
XWorkflows Documentation
Release 1.0.4

Raphaël Barrois

February 05, 2017

Contents

1 Getting started 3
1.1 Declaring workflows . 3
1.2 Applying a workflow . 3
1.3 Using the transitions . 4
1.4 Custom transition code . 4
1.5 Hooks . 5

2 Contents 7
2.1 Reference . 7
2.2 Internals . 14
2.3 ChangeLog . 25

3 Resources 29

4 Indices and tables 31

Python Module Index 33

i

ii

XWorkflows Documentation, Release 1.0.4

XWorkflows is a library designed to bring a simple approach to workflows in Python.

It provides:

• Simple workflow definition

• Running code when performing transitions

• Hooks for running extra code before/after the transition

• A hook for logging performed transitions

You can also refer to the django_xworkflows project for integration with Django.

Contents 1

http://github.com/rbarrois/django_xworkflows

XWorkflows Documentation, Release 1.0.4

2 Contents

CHAPTER 1

Getting started

First, install the xworkflows package:

pip install xworkflows

1.1 Declaring workflows

You can now define a Workflow :

import xworkflows

class MyWorkflow(xworkflows.Workflow):
states = (

('init', "Initial state"),
('ready', "Ready"),
('active', "Active"),
('done', "Done"),
('cancelled', "Cancelled"),

)

transitions = (
('prepare', 'init', 'ready'),
('activate', 'ready', 'active'),
('complete', 'active', 'done'),
('cancelled', ('ready', 'active'), 'cancelled'),

)

initial_state = 'init'

1.2 Applying a workflow

In order to apply that workflow to an object, you must:

• Inherit from xworkflows.WorkflowEnabled

• Define one (or more) class attributes as Workflow instances.

Here is an example:

3

http://pypi.python.org/pypi/xworkflows

XWorkflows Documentation, Release 1.0.4

class MyObject(xworkflows.WorkflowEnabled):
state = MyWorkflow()

1.3 Using the transitions

With the previous definition, some methods have been magically added to your object definition (have a look at
WorkflowEnabledMeta to see how).

There is now one method per transition defined in the workflow:

>>> obj = MyObject()
>>> obj.state
<StateWrapper: <State: 'init'>>
>>> obj.state.name
'init'
>>> obj.state.title
'Initial state'
>>> obj.prepare()
>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.state.name
'ready'
>>> obj.state.title
'Ready'

As seen in the example above, calling a transition automatically updates the state of the workflow.

Only transitions compatible with the current state may be called:

>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.complete()
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
InvalidTransitionError: Transition 'complete' isn't available from state 'ready'.

1.4 Custom transition code

It is possible to define explicit code for a transition:

class MyObject(xworkflows.WorkflowEnabled):
state = MyWorkflow()

@xworkflows.transition()
def activate(self, user):

self.activated_by = user
print("State is %s" % self.state.name)

obj = MyObject()

When calling the transition, the custom code is called before updating the state:

>>> obj.state
<StateWrapper: <State: 'init'>>
>>> obj.prepare()

4 Chapter 1. Getting started

XWorkflows Documentation, Release 1.0.4

>>> obj.state
<StateWrapper: <State: 'ready'>>
>>> obj.activate('blah')
State is ready
>>> obj.state
<StateWrapper: <State: 'active'>>
>>> obj.activated_by
'blah'

1.5 Hooks

Other functions can be hooked onto transitions, through the before_transition(), after_transition(),
transition_check(), on_enter_state() and on_leave_state() decorators:

class MyObject(xworkflows.WorkflowEnabled):
state = MyWorkflow()

@xworkflows.before_transition('foobar', 'gobaz')
def hook(self, *args, **kwargs):

pass

1.5. Hooks 5

XWorkflows Documentation, Release 1.0.4

6 Chapter 1. Getting started

CHAPTER 2

Contents

2.1 Reference

The XWorkflow library has two main aspects:

• Defining a workflow;

• Using a workflow on an object.

2.1.1 Defining a workflow

A workflow is defined by subclassing the Workflow class, and setting a few specific attributes:

class MyWorkflow(xworkflows.Workflow):

The states in the workflow
states = (

('init', _(u"Initial state")),
('ready', _(u"Ready")),
('active', _(u"Active")),
('done', _(u"Done")),
('cancelled', _(u"Cancelled")),

)

The transitions between those states
transitions = (

('prepare', 'init', 'ready'),
('activate', 'ready', 'active'),
('complete', 'active', 'done'),
('cancel', ('ready', 'active'), 'cancelled'),

)

The initial state of objects using that workflow
initial_state = 'init'

Those attributes will be transformed into similar attributes with friendlier APIs:

• states is defined as a list of two-tuples and converted into a StateList

• transitions is defined as a list of three-tuples and converted into a TransitionList

• initial_state is defined as the name of the initial State of the Workflow and converted into the
appropriate State

7

XWorkflows Documentation, Release 1.0.4

Accessing Workflow states and transitions

The states attribute, a StateList instance, provides a mixed dictionary/object API:

>>> MyWorkflow.states.init
State('init')
>>> MyWorkflow.states.init.title
u"Initial state"
>>> MyWorkflow.states['ready']
State('ready')
>>> 'active' in MyWorkflow.states
True
>>> MyWorkflow.states.init in MyWorkflow.states
True
>>> list(MyWorkflow.states) # definition order is kept
[State('init'), State('ready'), State('active'), State('done'), State('cancelled')]

The transitions attribute of a Workflow is a TransitionList instance, exposing a mixed dictionary/object
API:

>>> MyWorkflow.transitions.prepare
Transition('prepare', [State('init')], State('ready'))
>>> MyWorkflow.transitions['cancel']
Transition('cancel', [State('ready'), State('actuve')], State('cancelled'))
>>> 'activate' in MyWorkflow.transitions
True
>>> MyWorkflow.transitions.available_from(MyWorkflow.states.ready)
[Transition('activate'), Transition('cancel')]
>>> list(MyWorkflow.transitions) # Definition order is kept
[Transition('prepare'), Transition('activate'), Transition('complete'), Transition('cancel')]

2.1.2 Using a workflow

The process to apply a Workflow to an object is quite straightforward:

• Inherit from WorkflowEnabled

• Define one or more class-level attributes as foo = SomeWorkflow()

These attributes will be transformed into StateProperty objects, acting as a wrapper around the State held in
the object’s internal __dict__.

For each transition of each related Workflow , the WorkflowEnabledMeta metaclass will add or enhance a
method for each transition, according to the following rules:

• If a class method is decorated with transition(’XXX’) where XXX is the name of a transition, that method
becomes the ImplementationWrapper for that transition

• For each remaining transition, if a method exists with the same name and is decorated with the transition()
decorator, it will be used for the ImplementationWrapper of the transition. Methods with a transition
name but no decorator will raise a TypeError – this ensures that all magic is somewhat explicit.

• For all transitions which didn’t have an implementation in the class definition, a new method is added to the
class definition. They have the same name as the transition, and a noop() implementation. TypeError is
raised if a non-callable attribute already exists for a transition name.

8 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

Accessing the current state

For a WorkflowEnabled object, each <attr> = SomeWorkflow() definition is translated into a
StateProperty object, which adds a few functions to a plain attribute:

• It checks that any value set is a valid State from the related Workflow :

>>> obj = MyObject()
>>> obj.state = State('foo')
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: Value State('foo') is not a valid state for workflow MyWorkflow.

• It defaults to the initial_state of the Workflow if no value was set:

>>> obj = MyObject()
>>> obj.state
State('init')

• It wraps retrieved values into a StateWrapper, which adds a few extra attributes:

– Access to the related workflow:

>>> obj.state.workflow
<Workflow: MyWorkflow>

– List of accessible transitions:

>>> obj.state.transitions
[Transition('accept')]

– Easy testing of the current value:

>>> obj.state.is_init
True
>>> obj.state.is_ready
False

– Native equivalence to the state’s name:

>>> obj.state == 'init'
True
>>> obj.state == 'ready'
False
>>> obj.state in ['init', 'ready']
True

Note: This behavior should only be used when accessing the State objects from the
Workflow.states list is impossible, e.g comparison with external data (URL, database, ...).

Using State objects or the is_XXX attributes protects from typos in the code (AttributeError
would be raised), whereas raw strings provide no such guarantee.

– Easily setting the current value:

>>> obj.state = MyWorkflow.states.ready
>>> obj.state.is_ready
True

>>> # Setting from a state name is also possible

2.1. Reference 9

XWorkflows Documentation, Release 1.0.4

>>> obj.state = 'ready'
>>> obj.state.is_ready
True

Note: Setting the state without going through transitions defeats the goal of xworkflows; this feature
should only be used for faster testing or when saving/restoring objects from external storage.

2.1.3 Using transitions

Defining a transition implementation

In order to link a state change with specific code, a WorkflowEnabled object must simply have a method decorated
with the transition() decorator.

If that method cannot be defined with the name of the related Transition, the name of that Transition should
be passed as first argument to the transition() decorator:

class MyObject(xworkflows.WorkflowEnabled):

state = MyWorkflow()

@xworkflows.transition()
def accept(self):

pass

@xworkflows.transition('cancel')
def do_cancel(self):

pass

Once decorated, any call to that method will perfom the following steps:

1. Check that the current State of the object is a valid source for the target Transition (raises
InvalidTransitionError otherwise);

2. Checks that all optional transition_check() hooks, if defined, returns True (raises
ForbiddenTransition otherwise);

3. Run optional before_transition() and on_leave_state() hooks

4. Call the code of the function;

5. Change the State of the object;

6. Call the Workflow.log_transition() method of the related Workflow ;

7. Run the optional after_transition() and on_enter_state() hooks, if defined.

Transitions for which no implementation was defined will have a basic noop() implementation.

Controlling transitions

According to the order above, preventing a State change can be done:

• By returning False in a custom transition_check() hook;

• By raising any exception in a custom before_transition() or on_leave_state() hook;

• By raising any exception in the actual implementation.

10 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

Hooks

Additional control over the transition implementation can be obtained via hooks. 5 kinds of hooks exist:

• transition_check(): those hooks are called just after the State check, and should return True if the
transition can proceed. No argument is provided to the hook.

• before_transition(): hooks to call just before running the actual implementation. They receive the
same *args and **kwargs as passed to the actual implementation (but can’t modify them).

• after_transition(): those hooks are called just after the State has been updated. It receives:

– res: the return value of the actual implementation;

– *args and **kwargs: the arguments passed to the actual implementation

• on_leave_state(): functions to call just before leaving a state, along with the before_transition()
hooks. They receive the same arguments as a before_transition() hook.

• on_enter_state(): hooks to call just after entering a new state, along with after_transition()
hooks. They receive the same arguments as a after_transition() hook.

The hook decorators all accept the following arguments:

• A list of Transition names (for transition-related hooks) or State names (for state-related hooks); if empty,
the hook will apply to all transitions:

@xworkflows.before_transition()
@xworkflows.after_transition('foo', 'bar')
def hook(self, *args, **kwargs):

pass

• As a keyword field= argument, the name of the field whose transitions the hook applies to (when an instance
uses more than one workflow):

class MyObject(xworkflows.WorkflowEnabled):
state1 = SomeWorkflow()
state2 = AnotherWorkflow()

@xworkflows.on_enter_state(field='state2')
def hook(self, res, *args, **kwargs):

Only called for transitions on state2.
pass

• As a keyword priority= argument (default: 0), the priority of the hook; hooks are applied in decreasing
priority order:

class MyObject(xworkflows.WorkflowEnabled):
state = SomeWorkflow()

@xworkflows.before_transition('*', priority=-1)
def last_hook(self, *args, **kwargs):

Will be called last
pass

@xworkflows.before_transition('foo', priority=10)
def first_hook(self, *args, **kwargs):

Will be called first
pass

Hook decorators can also be stacked, in order to express complex hooking systems:

2.1. Reference 11

XWorkflows Documentation, Release 1.0.4

@xworkflows.before_transition('foobar', priority=4)
@xworkflows.on_leave_state('baz')
def hook(self, *args, **kwargs):

pass

Hook call order

The order in which hooks are applied is computed based on the following rules:

• Build the list of hooks to apply

– When testing if a transition can be applied, use all transition_check() hooks

– Before performing a transition, use all before_transition() and on_leave_state()
hooks

– After performing a transition, use all after_transition() and on_enter_state() hooks

• Sort that list from higher to lower priority, and in alphabetical order if priority match

In the following code snippet, the order is hook3, hook1, hook4, hook2:

@xworkflows.before_transition()
def hook1(self):

pass

@xworkflows.before_transition(priority=-1)
def hook2(self):

pass

@xworkflows.before_transition(priority=10)
def hook3(self):

pass

@xworkflows.on_leave_state()
def hook4(self):

pass

Old-style hooks

Hooks can also be bound to the implementation at the transition() level:

@xworkflows.transition(check=some_fun, before=other_fun, after=something_else)
def accept(self):

pass

Deprecated since version 0.4.0: Use before_transition(), after_transition() and
transition_check() instead; will be removed in 0.5.0.

The old behaviour did not allow for hook overriding in inherited workflows.

Checking transition availability

Some programs may need to display available transitions, without calling them. Instead of checking manually the
state of the object and calling the appropriate transition_check() hooks if defined, you should simply call
myobj.some_transition.is_available():

12 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

class MyObject(WorkflowEnabled):
state = MyWorkflow
x = 13

@transition_check('accept')
def check(self):

return self.x == 42

def accept(self):
pass

@transition()
def cancel(self):

pass

>>> obj = MyObject()
>>> obj.accept.is_available() # Forbidden by 'check'
False
>>> obj.cancel.is_available() # Forbidden by current state
False
>>> obj.x = 42
>>> obj.accept.is_available()
True

Logging transitions

The log_transition() method of a Workflow allows logging each Transition performed by an object
using that Workflow .

This method is called with the following arguments:

• transition: the Transition just performed

• from_state: the State in which the object was just before the transition

• instance: the object to which the transition was applied

• *args: the arguments passed to the transition implementation

• **kwargs: the keyword arguments passed to the transition implementation

The default implementation logs (with the logging module) to the xworkflows.transitions logger.

This behaviour can be overridden on a per-workflow basis: simply override the Workflow.log_transition()
method.

Advanced customization

In order to perform advanced tasks when running transitions, libraries may hook directly at the
ImplementationWrapper level.

For this, custom Workflow classes should override the Workflow.implementation_class attribute with
their custom subclass and add extra behaviour there.

Possible customizations would be:

• Wrapping implementation call and state update in a database transaction

• Persisting the updated object after the transition

2.1. Reference 13

XWorkflows Documentation, Release 1.0.4

• Adding workflow-level hooks to run before/after the transition

• Performing the same sanity checks for all objects using that Workflow

2.2 Internals

This document presents the various classes and components of XWorkflows.

Note: All objects defined in the base module should be considered internal API and subject to change without
notice.

Public API consists of the public methods and attributes of the following objects:

• The transition() function;

• The before_transition(), after_transition(), transition_check(),
on_enter_state() and on_leave_state() decorators;

• The Workflow and WorkflowEnabled classes;

• The WorkflowError, AbortTransition, InvalidTransitionError and
ForbiddenTransition exceptions.

2.2.1 Exceptions

The xworkflows module exposes a few specific exceptions:

exception xworkflows.WorkflowError
This is the base for all exceptions from the xworkflows module.

exception xworkflows.AbortTransition(WorkflowError)
This error is raised whenever a transition call fails, either due to state validation or pre-transition checks.

exception xworkflows.InvalidTransitionError(AbortTransition)
This exception is raised when trying to perform a transition from an incompatible state.

exception xworkflows.ForbiddenTransition(AbortTransition)
This exception will be raised when the check parameter of the transition() decorator returns a non-True
value.

2.2.2 States

States may be represented with different objects:

• base.State is a basic state (name and title)

• base.StateWrapper is an enhanced wrapper around the State with enhanced comparison functions.

• base.StateProperty is a class-level property-like wrapper around a State.

The State class

class base.State(name, title)
This class describes a state in the most simple manner: with an internal name and a human-readable title.

14 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

name
The name of the State; used as an internal representation of the state, this should only contain ascii
letters and numbers.

title
The title of the State; used for display to users.

The StateWrapper class

class base.StateWrapper(state, workflow)
Intended for use as a WorkflowEnabled attribute, this wraps a State with knowledge about the related
Workflow .

Its __hash__ is computed from the related name. It compares equal to:

•Another StateWrapper for the same State

•Its State

•The name of its State

state
The wrapped State

workflow
The Workflow to which this State belongs.

transitions()

Returns A list of Transition with this State as source

The StateProperty class

class base.StateProperty(workflow, state_field_name)
Special property-like object (technically a data descriptor), this class controls access to the current State of a
WorkflowEnabled object.

It performs the following actions:

•Checks that any set value is a valid State from the workflow (raises ValueError otherwise)

•Wraps retrieved values into a StateWrapper

workflow
The Workflow to which the attribute is related

field_name
The name of the attribute wrapped by this StateProperty .

2.2.3 Workflows

A Workflow definition is slightly different from the resulting class.

A few class-level declarations will be converted into advanced objects:

• states is defined as a list of two-tuples and converted into a StateList

• transitions is defined as a list of three-tuples and converted into a TransitionList

• initial_state is defined as the name of the initial State of the Workflow and converted into that
State

2.2. Internals 15

XWorkflows Documentation, Release 1.0.4

Workflow definition

A Workflow definition must inherit from the Workflow class, or use the base.WorkflowMeta metaclass for
proper setup.

Defining states

The list of states should be defined as a list of two-tuples of (name, title):

class MyWorkflow(xworkflows.Workflow):
states = (

('initial', "Initial"),
('middle', "Intermediary"),
('final', "Final - all is said and done."),

)

This is converted into a StateList object.

class base.StateList
This class acts as a mixed dictionary/object container of states.

It replaces the states list from the Workflow definition.

__len__()
Returns the number of states in the Workflow

__getitem__()
Allows retrieving a State from its name or from an instance, in a dict-like manner

__getattr__()
Allows retrieving a State from its name, as an attribute of the StateList:

MyWorkflow.states.initial == MyWorkflow.states['initial']

__iter__()
Iterates over the states, in the order they were defined

__contains__()
Tests whether a State instance or its name belong to the Workflow

Defining transitions

At a Workflow level, transition are defined in a list of three-tuples:

• transition name

• list of the names of source states for the transition, or name of the source state if unique

• name of the target State

class MyWorkflow(xworkflows.Workflow):
transitions = (

('advance', 'initial', 'middle'),
('end', ['initial', 'middle'], 'final'),

)

This is converted into a TransitionList object.

16 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

class base.TransitionList
This acts as a mixed dictionary/object container of transitions.

It replaces the transitions list from the Workflow definition.

__len__()
Returns the number of transitions in the Workflow

__getitem__()
Allows retrieving a Transition from its name or from an instance, in a dict-like manner

__getattr__()
Allows retrieving a Transition from its name, as an attribute of the TransitionList:

MyWorkflow.transitions.accept == MyWorkflow.transitions['accept']

__iter__()
Iterates over the transitions, in the order they were defined

__contains__()
Tests whether a Transition instance or its name belong to the Workflow

available_from(state)
Retrieve the list of Transition available from the given State.

class base.Transition
Container for a transition.

name
The name of the Transition; should be a valid Python identifier

source
A list of source states for this Transition

target
The target State for this Transition

Workflow attributes

A Workflow should inherit from the Workflow base class, or use the WorkflowMeta metaclass (that builds the
states, transitions, initial_state attributes).

class xworkflows.Workflow
This class holds the definition of a workflow.

states
A StateList of all State for this Workflow

transitions
A TransitionList of all Transition for this Workflow

initial_state
The initial State for this Workflow

log_transition(transition, from_state, instance, *args, **kwargs)

Parameters

• transition – The Transition just performed

• from_state – The source State of the instance (before performing a transition)

• instance – The object undergoing a transition

2.2. Internals 17

XWorkflows Documentation, Release 1.0.4

• args – All non-keyword arguments passed to the transition implementation

• kwargs – All keyword arguments passed to the transition implementation

This method allows logging all transitions performed by objects using a given workflow.

The default implementation logs to the logging module, in the base logger.

implementation_class
The class to use when creating ImplementationWrapper for a WorkflowEnabled using this
Workflow .

Defaults to ImplementationWrapper.

class base.WorkflowMeta
This metaclass will simply convert the states, transitions and initial_state class attributes into
the related StateList, TransitionList and State objects.

During this process, some sanity checks are performed:

•Each source/target State of a Transition must appear in states

•The initial_state must appear in states.

2.2.4 Applying workflows

In order to use a Workflow , related objects should inherit from the WorkflowEnabled class.

class xworkflows.WorkflowEnabled
This class will handle all specific setup related to using workflows:

•Converting attr = SomeWorkflow() into a StateProperty class attribute

•Wrapping all transition()-decorated functions into ImplementationProperty wrappers

•Adding noop implementations for other transitions

_add_workflow(mcs, field_name, state_field, attrs)
Adds a workflow to the attributes dict of the future class.

Parameters

• field_name (str) – Name of the field at which the field holding the current state will
live

• state_field (StateField) – The StateField as returned by
_find_workflows()

• attrs (dict) – Attribute dict of the future class, updated with the new
StateProperty .

Note: This method is also an extension point for custom XWorkflow-related libraries.

_find_workflows(mcs, attrs)
Find all workflow definitions in a class attributes dict.

Parameters attrs (dict) – Attribute dict of the future class

Returns A dict mapping a field name to a StateField describing parameters for the workflow

Note: This method is also an extension point for custom XWorkflow-related libraries.

18 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

_workflows
This class-level attribute holds a dict mapping an attribute to the related Workflow .

Note: This is a private attribute, and may change at any time in the future.

_xworkflows_implems
This class-level attribute holds a dict mapping an attribute to the related implementations.

Note: This is a private attribute, and may change at any time in the future.

class base.WorkflowEnabledMeta
This metaclass handles the parsing of WorkflowEnabled and related magic.

Most of the work is handled by ImplementationList, with one instance handling each Workflow at-
tached to the WorkflowEnabled object.

2.2.5 Customizing transitions

A bare WorkflowEnabled subclass definition will be automatically modified to include “noop” implementations
for all transitions from related workflows.

In order to customize this behaviour, one should use the transition() decorator on methods that should be called
when performing transitions.

xworkflows.transition([trname=’‘, field=’‘, check=None, before=None, after=None])
Decorates a method and uses it for a given Transition.

Parameters

• trname (str) – Name of the transition during which the decorated method should be
called. If empty, the name of the decorated method is used.

• field (str) – Name of the field this transition applies to; useful when two workflows
define a transition with the same name.

• check (callable) – An optional function to call before running the transition, with the
about-to-be-modified instance as single argument.

Should return True if the transition can proceed.

Deprecated since version 0.4.0: Will be removed in 0.5.0; use transition_check()
instead.

• before (callable) – An optional function to call after checks and before the actual
implementation.

Receives the same arguments as the transition implementation.

Deprecated since version 0.4.0: Will be removed in 0.5.0; use before_transition()
instead.

• after (callable) – An optional function to call after the transition was performed and
logged.

Receives the instance, the implementation return value and the implementation arguments.

Deprecated since version 0.4.0: Will be removed in 0.5.0; use after_transition()
instead.

2.2. Internals 19

XWorkflows Documentation, Release 1.0.4

class base.TransitionWrapper
Actual class holding all values defined by the transition() decorator.

func
The decorated function, wrapped with a few checks and calls.

Hooks

Hooks are declared through a _HookDeclaration decorator, which attaches a specific xworkflows_hook at-
tribute to the decorated method. Methods with such attribute will be collected into Hook objects containing all useful
fields.

Registering hooks

xworkflows._make_hook_dict(function)
Ensures that the given function has a xworkflows_hook attributes, and returns it.

The xworkflows_hook is a dict mapping each hook kind to a list of (field, hook) pairs:

function.xworkflows_hook = {
HOOK_BEFORE: [('state', <Hook: ...>), ('', <Hook: ...>)],
HOOK_AFTER: [],
...

}

Note: Although the xworkflows_hook is considered a private API, it may become an official extension
point in future releases.

class base._HookDeclaration
Base class for hook declaration decorators.

It accepts an (optional) list of transition/state names, and priority / field as keyword arguments:

@_HookDeclaration('foo', 'bar')
@_HookDeclaration(priority=42)
@_HookDeclaration('foo', field='state1')
@_HookDeclaration(priority=42, field='state1')
def hook(self):

pass

names
List of transition or state names the hook applies to

Type str list

priority
The priority of the hook

Type int

field
The name of the StateWrapper field whose transitions the hook applies to

Type str

_as_hook(self, func)
Create a Hook for the given callable

20 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

__call__(self, func)
Create a Hook for the function, and store it in the function’s xworkflows_hook attribute.

xworkflows.before_transition(*names, priority=0, field=’‘)
Marks a method as a pre-transition hook. The hook will be called just before changing a WorkflowEnabled
object state, with the same *args and **kwargs as the actual implementation.

xworkflows.transition_check(*names, priority=0, field=’‘)
Marks a method as a transition check hook.

The hook will be called when using is_available() and before running the implementation, without any
args, and should return a boolean indicating whether the transition may proceed.

xworkflows.after_transition(*names, priority=0, field=’‘)
Marks a method as a post-transition hook

The hook will be called immediately after the state update, with:

•res, return value of the actual implementation

•*args and **kwargs that were passed to the implementation

xworkflows.on_leave_state(*names, priority=0, field=’‘)
Marks a method as a pre-transition hook to call when the object leaves one of the given states.

The hook will be called with the same arguments as a before_transition() hook.

xworkflows.on_enter_state(*names, priority=0, field=’‘)
Marks a method as a post-transition hook to call just after changing the state to one of the given states.

The hook will be called with the same arguments as a after_transition() hook.

Calling hooks

xworkflows.HOOK_BEFORE
The kind of before_transition() hooks

xworkflows.HOOK_CHECK
The kind of transition_check() hooks

xworkflows.HOOK_AFTER
The kind of after_transition() hooks

xworkflows.HOOK_ON_ENTER
The kind of on_leave_state() hooks

xworkflows.HOOK_ON_LEAVE
The kind of on_enter_state() hooks

class base.Hook
Describes a hook, including its kind, priority and the list of transitions it applies to.

kind
One of HOOK_BEFORE, HOOK_AFTER, HOOK_CHECK, HOOK_ON_ENTER or HOOK_ON_LEAVE; the
kind of hook.

priority
The priority of the hook, as an integer defaulting to 0. Hooks with higher priority will be executed first;
hooks with the same priority will be sorted according to the function name.

Type int

2.2. Internals 21

XWorkflows Documentation, Release 1.0.4

function
The actual hook function to call. Arguments passed to that function depend on the hook’s kind.

Type callable

names
Name of states or transitions this hook applies to; will be (’*’,) if the hook applies to all
states/transitions.

Type str tuple

applies_to(self, transition[, from_state=None])
Check whether the hook applies to the given Transition and optional source State.

If from_state is None, the test means “could the hook apply to the given transition, in at least one
source state”.

If from_state is not None, the test means “does the hook apply to the given transition for this specific
source state”.

Returns bool

__call__(self, *args, **kwargs):
Call the hook

__eq__(self, other)

__ne__(self, other)
Two hooks are “equal” if they wrap the same function, have the same kind, priority and names.

__cmp__(self, other)
Hooks are ordered by descending priority and ascending decorated function name.

Advanced customization

Once WorkflowEnabledMeta has updated the WorkflowEnabled subclass, all transitions – initially defined
and automatically added – are replaced with a base.ImplementationProperty instance.

class base.ImplementationProperty
This class holds all objects required to instantiate a ImplementationWrapper whenever the attribute is
accessed on an instance.

Internally, it acts as a ‘non-data descriptor’, close to property().

__get__(self, instance, owner)
This method overrides the getattr() behavior:

•When called without an instance (instance=None), returns itself

•When called with an instance, this will instantiate a ImplementationWrapper attached to that
instance and return it.

add_hook(self, hook)
Register a new Hook.

class base.ImplementationWrapper
This class handles applying a Transition to a WorkflowEnabled object.

instance
The WorkflowEnabled object to modify when calling this wrapper.

field_name
The name of the field modified by this ImplementationProperty (a string)

22 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

Type str

transition
The Transition performed by this object.

Type Transition

workflow
The Workflow to which this ImplementationProperty relates.

Type Workflow

implementation
The actual method to call when performing the transition. For undefined implementations, uses noop().

Type callable

hooks
All hooks that may be applied when performing the related transition.

Type dict mapping a hook kind to a list of Hook

current_state
Actually a property, retrieve the current state from the instance.

Type StateWrapper

__call__()
This method allows the TransitionWrapper to act as a function, performing the whole range of
checks and hooks before and after calling the actual implementation.

is_available()
Determines whether the wrapped transition implementation can be called. In details:

•it makes sure that the current state of the instance is compatible with the transition;

•it calls the transition_check() hooks, if defined.

Return type bool

base.noop(instance)
The ‘do-nothing’ function called as default implementation of transitions.

Collecting the ImplementationProperty

Warning: This documents private APIs. Use at your own risk.

Building the list of ImplementationProperty for a given WorkflowEnabled, and generating the missing
ones, is a complex job.

class base.ImplementationList
This class performs a few low-level operations on a WorkflowEnabled class:

•Collecting TransitionWrapper attributes

•Converting them into ImplementationProperty

•Adding noop() implementations for remaining Transition

•Updating the class attributes with those ImplementationProperty

2.2. Internals 23

XWorkflows Documentation, Release 1.0.4

state_field
The name of the attribute (from attr = SomeWorkflow() definition) currently handled.

Type str

workflow
The Workflow this ImplementationList refers to

implementations
Dict mapping a transition name to the related ImplementationProperty

Type dict (str => ImplementationProperty)

transitions_at
Dict mapping the name of a transition to the attribute holding its ImplementationProperty:

@transition('foo')
def bar(self):

pass

will translate into:

self.implementations == {'foo': <ImplementationProperty for 'foo' on 'state': <function bar at 0xdeadbeed>>}
self.transitions_at == {'foo': 'bar'}

custom_implems
Set of name of implementations which were remapped within the workflow.

load_parent_implems(self, parent_implems)
Loads implementations defined in a parent ImplementationList.

Parameters parent_implems (ImplementationList) – The
ImplementationList from a parent

get_custom_implementations(self)
Retrieves definition of custom (non-automatic) implementations from the current list.

Yields (trname, attr, implem): Tuples containing the transition name, the
name of the attribute its implementation is stored at, and that implementation (a
ImplementationProperty).

should_collect(self, value)
Whether a given attribute value should be collected in the current list.

Checks that it is a TransitionWrapper, for a Transition of the current Workflow , and relates
to the current state_field.

collect(self, attrs)
Collects all TransitionWrapper from an attribute dict if they verify should_collect().

Raises ValueError If two TransitionWrapper for a same Transition are defined in the
attributes.

add_missing_implementations(self)
Registers noop() ImplementationProperty for all Transition that weren’t collected in the
collect() step.

register_hooks(self, cls)
Walks the class attributes and collects hooks from those with a xworkflows_hook attribute (through
register_function_hooks())

24 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

register_function_hooks(self, func)
Retrieves hook definitions from the given function, and registers them on the related
ImplementationProperty .

_may_override(self, implem, other)
Checks whether the implem ImplementationProperty is a valid override for the other
ImplementationProperty .

Rules are:

•A ImplementationProperty may not override another ImplementationProperty for
another Transition or another state_field

•A ImplementationProperty may not override a TransitionWrapper unless it was gener-
ated from that TransitionWrapper

•A ImplementationProperty may not override other types of previous definitions.

fill_attrs(self, attrs)
Adds all ImplementationProperty from implementations to the given attributes dict, unless
_may_override() prevents the operation.

transform(self, attrs)

Parameters attrs (dict) – Mapping holding attribute declarations from a class definition

Performs the following actions, in order:

•collect(): Create ImplementationProperty from the transition wrappers in the
attrs dict

•add_missing_implementations(): create ImplementationProperty for the remain-
ing transitions

•fill_attrs(): Update the attrs dict with the implementations defined in the previous
steps.

2.3 ChangeLog

2.3.1 1.0.4 (2014-08-11)

Bugfix:

• Fix setup.py execution on Python3 or non-UTF locale.

2.3.2 1.0.3 (2014-01-29)

Bugfix:

• Allow setting the current state of a WorkflowEnabled instance from a state’s name

• Ensure states behaves as a proper mapping

2.3.3 1.0.2 (2013-09-24)

Bugfix:

• Fix installation from PyPI

2.3. ChangeLog 25

XWorkflows Documentation, Release 1.0.4

2.3.4 1.0.1 (2013-09-24)

Misc:

• Switch back to setuptools >= 0.8 for packaging.

2.3.5 1.0.0 (2013-04-29)

Bugfix:

• Fix hook registration on custom implementations while inheriting WorkflowEnabled.

New:

• Add support for Python 2.6 to 3.2

Backward incompatible:

• The string representation of State and StateWrapper now reflects the state’s name, as does their
unicode() representation in Python 2.X.

2.3.6 0.4.1 (2012-08-03)

Bugfix:

• Support passing a Transition or a State to hooks, instead of its name.

2.3.7 0.4.0 (2012-08-02)

New:

• Improve support for transition hooks, with the xworkflows.before_transition(),
xworkflows.after_transition(), xworkflows.transition_check(),
xworkflows.on_enter_state() and xworkflows.on_leave_state() decorators.

Bugfix:

• Fix support for inheritance of xworkflows.WorkflowEnabled objects.

Deprecated:

• Use of the check=, before=, after= keyword arguments in the @transition decorator is now depre-
cated; use @before_transition, @after_transition and @transition_check instead. Support
for old keyword arguments will be removed in 0.5.0.

Backward incompatible:

• The (private) ImplementationWrapper class no longer accepts the check, before, after arguments
(use hooks instead)

2.3.8 0.3.2 (2012-06-05)

Bugfix:

• Fix transition logging for objects whose __repr__ doesn’t convert to unicode.

26 Chapter 2. Contents

XWorkflows Documentation, Release 1.0.4

2.3.9 0.3.1 (2012-05-29)

Bugfix:

• Make the title argument mandatory in State initialization

2.3.10 0.3.0 (2012-04-30)

New:

• Allow and document customization of the ImplementationWrapper

• Add a method to check whether a transition is available from the current instance

• Cleanup ImplementationList and improve its documentation

2.3.11 0.2.4 (23 04 2012)

New:

• Improve documentation

• Add pre-transition check hook

• Remove alternate Workflow definition schemes.

• Properly validate objects using two workflows with conflicting transitions.

2.3.12 0.2.3 (15 04 2012)

New:

• Simplify API

• Add support for pe/post transition and logging hooks

2.3.13 0.2.1 (26 03 2012)

New:

• Add support for workflow subclassing

• Improve packaging

2.3.14 0.1.0 (08 09 2011)

New:

• First Public Release.

2.3. ChangeLog 27

XWorkflows Documentation, Release 1.0.4

28 Chapter 2. Contents

CHAPTER 3

Resources

• Package on PyPI: http://pypi.python.org/pypi/xworkflows

• Repository and issues on GitHub: http://github.com/rbarrois/xworkflows

• Doc on http://readthedocs.org/docs/xworkflows/

29

http://pypi.python.org/pypi/xworkflows
http://github.com/rbarrois/xworkflows
http://readthedocs.org/docs/xworkflows/

XWorkflows Documentation, Release 1.0.4

30 Chapter 3. Resources

CHAPTER 4

Indices and tables

• genindex

• modindex

• search

31

XWorkflows Documentation, Release 1.0.4

32 Chapter 4. Indices and tables

Python Module Index

x
xworkflows, 14

33

XWorkflows Documentation, Release 1.0.4

34 Python Module Index

Index

Symbols
__call__() (xworkflows.base.ImplementationWrapper

method), 23
__call__() (xworkflows.base._HookDeclaration method),

20
__cmp__() (xworkflows.base.Hook method), 22
__contains__() (xworkflows.base.StateList method), 16
__contains__() (xworkflows.base.TransitionList method),

17
__eq__() (xworkflows.base.Hook method), 22
__get__() (xworkflows.base.ImplementationProperty

method), 22
__getattr__() (xworkflows.base.StateList method), 16
__getattr__() (xworkflows.base.TransitionList method),

17
__getitem__() (xworkflows.base.StateList method), 16
__getitem__() (xworkflows.base.TransitionList method),

17
__iter__() (xworkflows.base.StateList method), 16
__iter__() (xworkflows.base.TransitionList method), 17
__len__() (xworkflows.base.StateList method), 16
__len__() (xworkflows.base.TransitionList method), 17
__ne__() (xworkflows.base.Hook method), 22
_add_workflow() (xworkflows.WorkflowEnabled

method), 18
_as_hook() (xworkflows.base._HookDeclaration

method), 20
_find_workflows() (xworkflows.WorkflowEnabled

method), 18
_make_hook_dict() (in module xworkflows), 20
_may_override() (xworkflows.base.ImplementationList

method), 25
_workflows (xworkflows.WorkflowEnabled attribute), 18
_xworkflows_implems (xworkflows.WorkflowEnabled

attribute), 19

A
AbortTransition, 14
add_hook() (xworkflows.base.ImplementationProperty

method), 22

add_missing_implementations() (xwork-
flows.base.ImplementationList method),
24

after_transition() (in module xworkflows), 21
applies_to() (xworkflows.base.Hook method), 22
available_from() (xworkflows.base.TransitionList

method), 17

B
base._HookDeclaration (class in xworkflows), 20
base.Hook (class in xworkflows), 21
base.ImplementationList (class in xworkflows), 23
base.ImplementationProperty (class in xworkflows), 22
base.ImplementationWrapper (class in xworkflows), 22
base.noop() (in module xworkflows), 23
base.State (class in xworkflows), 14
base.StateList (class in xworkflows), 16
base.StateProperty (class in xworkflows), 15
base.StateWrapper (class in xworkflows), 15
base.Transition (class in xworkflows), 17
base.TransitionList (class in xworkflows), 16
base.TransitionWrapper (class in xworkflows), 19
base.WorkflowEnabledMeta (class in xworkflows), 19
base.WorkflowMeta (class in xworkflows), 18
before_transition() (in module xworkflows), 21

C
collect() (xworkflows.base.ImplementationList method),

24
current_state (xworkflows.base.ImplementationWrapper

attribute), 23
custom_implems (xworkflows.base.ImplementationList

attribute), 24

F
field (xworkflows.base._HookDeclaration attribute), 20
field_name (xworkflows.base.ImplementationWrapper

attribute), 22
field_name (xworkflows.base.StateProperty attribute), 15
fill_attrs() (xworkflows.base.ImplementationList

method), 25

35

XWorkflows Documentation, Release 1.0.4

ForbiddenTransition, 14
func (xworkflows.base.TransitionWrapper attribute), 20
function (xworkflows.base.Hook attribute), 21

G
get_custom_implementations() (xwork-

flows.base.ImplementationList method),
24

H
HOOK_AFTER (in module xworkflows), 21
HOOK_BEFORE (in module xworkflows), 21
HOOK_CHECK (in module xworkflows), 21
HOOK_ON_ENTER (in module xworkflows), 21
HOOK_ON_LEAVE (in module xworkflows), 21
hooks (xworkflows.base.ImplementationWrapper at-

tribute), 23

I
implementation (xwork-

flows.base.ImplementationWrapper attribute),
23

implementation_class (xworkflows.Workflow attribute),
18

implementations (xworkflows.base.ImplementationList
attribute), 24

initial_state (xworkflows.Workflow attribute), 17
instance (xworkflows.base.ImplementationWrapper at-

tribute), 22
InvalidTransitionError, 14
is_available() (xworkflows.base.ImplementationWrapper

method), 23

K
kind (xworkflows.base.Hook attribute), 21

L
load_parent_implems() (xwork-

flows.base.ImplementationList method),
24

log_transition() (xworkflows.Workflow method), 17

N
name (xworkflows.base.State attribute), 14
name (xworkflows.base.Transition attribute), 17
names (xworkflows.base._HookDeclaration attribute), 20
names (xworkflows.base.Hook attribute), 22

O
on_enter_state() (in module xworkflows), 21
on_leave_state() (in module xworkflows), 21

P
priority (xworkflows.base._HookDeclaration attribute),

20
priority (xworkflows.base.Hook attribute), 21

R
register_function_hooks() (xwork-

flows.base.ImplementationList method),
24

register_hooks() (xworkflows.base.ImplementationList
method), 24

S
should_collect() (xworkflows.base.ImplementationList

method), 24
source (xworkflows.base.Transition attribute), 17
state (xworkflows.base.StateWrapper attribute), 15
state_field (xworkflows.base.ImplementationList at-

tribute), 23
states (xworkflows.Workflow attribute), 17

T
target (xworkflows.base.Transition attribute), 17
title (xworkflows.base.State attribute), 15
transform() (xworkflows.base.ImplementationList

method), 25
transition (xworkflows.base.ImplementationWrapper at-

tribute), 23
transition() (in module xworkflows), 19
transition_check() (in module xworkflows), 21
transitions (xworkflows.Workflow attribute), 17
transitions() (xworkflows.base.StateWrapper method), 15
transitions_at (xworkflows.base.ImplementationList at-

tribute), 24

W
Workflow (class in xworkflows), 17
workflow (xworkflows.base.ImplementationList at-

tribute), 24
workflow (xworkflows.base.ImplementationWrapper at-

tribute), 23
workflow (xworkflows.base.StateProperty attribute), 15
workflow (xworkflows.base.StateWrapper attribute), 15
WorkflowEnabled (class in xworkflows), 18
WorkflowError, 14

X
xworkflows (module), 14

36 Index

	Getting started
	Declaring workflows
	Applying a workflow
	Using the transitions
	Custom transition code
	Hooks

	Contents
	Reference
	Internals
	ChangeLog

	Resources
	Indices and tables
	Python Module Index

