Contents

1 Installation (python 3) 3
2 Examples 5
3 Motivation 7
4 Contents 9
 4.1 Documentation .. 9
5 Indices and tables 29
Python Module Index 31
Index 33
It is a Technical Analysis library to financial time series datasets (open, close, high, low, volume). You can use it to do feature engineering from financial datasets. It is built on Python Pandas library.
Installation (python 3)

> virtualenv -p python3 virtualenvironment
> source virtualenvironment/bin/activate
> pip install ta
Examples

Adding all features:

```python
import pandas as pd
from ta import *

# Load data
df = pd.read_csv('your-file.csv', sep=',')

# Clean nan values
df = utils.dropna(df)

# Add ta features filling Nans values
df = add_all_ta_features(df, "Open", "High", "Low", "Close", "Volume_BTC",
                         fillna=True)
```

Adding individual features:

```python
import pandas as pd
from ta import *

# Load data
df = pd.read_csv('your-file.csv', sep=',')

# Clean nan values
df = utils.dropna(df)

# Add bollinger band high indicator filling Nans values
df['bb_high_indicator'] = bollinger_hband_indicator(df["Close"], n=20, ndev=2,
                                                   fillna=True)

# Add bollinger band low indicator filling Nans values
df['bb_low_indicator'] = bollinger_lband_indicator(df["Close"], n=20, ndev=2,
                                                  fillna=True)
```
CHAPTER 3

Motivation

• English: https://towardsdatascience.com/technical-analysis-library-to-financial-datasets-with-pandas-python-4b2b390d3543

• Spanish: https://medium.com/datos-y-ciencia/biblioteca-de-an%C3%A1lisis-t%C3%A9cnico-sobre-series-temporales-financieras-para-machine-learning-con-cb28f9427d0
4.1 Documentation

It is a technical analysis library to financial time series datasets. You can use it to do feature engineering from financial datasets. It is builded on pandas python library.

4.1.1 Momentum Indicators

Momentum Indicators.

ta.momentum.\texttt{ao}(\texttt{high, low, s=5, len=34, fillna=False})

Awesome Oscillator

From: https://www.tradingview.com/wiki/Awesome_Oscillator_(AO)

The Awesome Oscillator is an indicator used to measure market momentum. AO calculates the difference of a 34 Period and 5 Period Simple Moving Averages. The Simple Moving Averages that are used are not calculated using closing price but rather each bar’s midpoints. AO is generally used to affirm trends or to anticipate possible reversals.

From: https://www.ifcm.co.uk/ntx-indicators/awesome-oscillator

Awesome Oscillator is a 34-period simple moving average, plotted through the central points of the bars \((H+L)/2\), and subtracted from the 5-period simple moving average, graphed across the central points of the bars \((H+L)/2\).

\[
\text{MEDIAN PRICE} = (\text{HIGH}+\text{LOW})/2 \\
\text{AO} = \text{SMA(MEDIAN PRICE, 5)}-\text{SMA(MEDIAN PRICE, 34)}
\]

where

SMA — Simple Moving Average.

Parameters

- \texttt{high} (pandas.Series) – dataset ‘High’ column.
• **low** (*pandas.Series*) – dataset ‘Low’ column.
• **s** (*int*) – short period
• **len** (*int*) – long period
• **fillna** (*bool*) – if True, fill nan values with -50.

Returns New feature generated.

Return type *pandas.Series*

```
import ta.momentum

ta.momentum.kama(close, n=10, pow1=2, pow2=30, fillna=False)
```

Kaufman’s Adaptive Moving Average (KAMA)

Moving average designed to account for market noise or volatility. KAMA will closely follow prices when the price swings are relatively small and the noise is low. KAMA will adjust when the price swings widen and follow prices from a greater distance. This trend-following indicator can be used to identify the overall trend, time turning points and filter price movements.

https://www.tradingview.com/ideas/kama/

Parameters

• **close** (*pandas.Series*) – dataset ‘Close’ column
• **n** (*int*) – n number of periods for the efficiency ratio
• **pow1** (*int*) – number of periods for the fastest EMA constant
• **pow2** (*int*) – number of periods for the slowest EMA constant

Returns New feature generated.

Return type *pandas.Series*

```
import ta.momentum
ta.momentum.money_flow_index(high, low, close, volume, n=14, fillna=False)
```

Money Flow Index (MFI)

Uses both price and volume to measure buying and selling pressure. It is positive when the typical price rises (buying pressure) and negative when the typical price declines (selling pressure). A ratio of positive and negative money flow is then plugged into an RSI formula to create an oscillator that moves between zero and one hundred.

Parameters

• **high** (*pandas.Series*) – dataset ‘High’ column.
• **low** (*pandas.Series*) – dataset ‘Low’ column.
• **close** (*pandas.Series*) – dataset ‘Close’ column.
• **volume** (*pandas.Series*) – dataset ‘Volume’ column.
• **n** (*int*) – n period.
• **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type *pandas.Series*

```
import ta.momentum

ta.momentum.rsi(close, n=14, fillna=False)
```

Relative Strength Index (RSI)
Comparing the magnitude of recent gains and losses over a specified time period to measure speed and change of price movements of a security. It is primarily used to attempt to identify overbought or oversold conditions in the trading of an asset.

https://www.investopedia.com/terms/r/rsi.asp

Parameters
- `close` (pandas.Series) – dataset ‘Close’ column.
- `n` (int) – n period.
- `fillna` (bool) – if True, fill nan values.

Returns New feature generated.
Return type pandas.Series

ta.momentum.stoch(high, low, close, n=14, fillna=False)

Stochastic Oscillator

Developed in the late 1950s by George Lane. The stochastic oscillator presents the location of the closing price of a stock in relation to the high and low range of the price of a stock over a period of time, typically a 14-day period.

https://www.investopedia.com/terms/s/stochasticoscillator.asp

Parameters
- `high` (pandas.Series) – dataset ‘High’ column.
- `low` (pandas.Series) – dataset ‘Low’ column.
- `close` (pandas.Series) – dataset ‘Close’ column.
- `n` (int) – n period.
- `fillna` (bool) – if True, fill nan values.

Returns New feature generated.
Return type pandas.Series

ta.momentum.stoch_signal(high, low, close, n=14, d_n=3, fillna=False)

Stochastic Oscillator Signal

Shows SMA of Stochastic Oscillator. Typically a 3 day SMA.

https://www.investopedia.com/terms/s/stochasticoscillator.asp

Parameters
- `high` (pandas.Series) – dataset ‘High’ column.
- `low` (pandas.Series) – dataset ‘Low’ column.
- `close` (pandas.Series) – dataset ‘Close’ column.
- `n` (int) – n period.
- `d_n` (int) – sma period over stoch_k
- `fillna` (bool) – if True, fill nan values.

Returns New feature generated.
Return type pandas.Series
ta.momentum.tsi(close, r=25, s=13, fillna=False)

True strength index (TSI)

Shows both trend direction and overbought/oversold conditions.

https://en.wikipedia.org/wiki/True_strength_index

Parameters

- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **r** (*int*) – high period.
- **s** (*int*) – low period.
- **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type *pandas.Series*

ta.momentum.uo(high, low, close, s=7, m=14, len=28, ws=4.0, wm=2.0, wl=1.0, fillna=False)

Ultimate Oscillator

Larry Williams’ (1976) signal, a momentum oscillator designed to capture momentum across three different timeframes.

BP = Close - Minimum(Low or Prior Close). TR = Maximum(High or Prior Close) - Minimum(Low or Prior Close) Average7 = (7-period BP Sum) / (7-period TR Sum) Average14 = (14-period BP Sum) / (14-period TR Sum) Average28 = (28-period BP Sum) / (28-period TR Sum)

UO = 100 x [(4 x Average7)+(2 x Average14)+Average28]/(4+2+1)

Parameters

- **high** (*pandas.Series*) – dataset ‘High’ column.
- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **s** (*int*) – short period
- **m** (*int*) – medium period
- **len** (*int*) – long period
- **ws** (*float*) – weight of short BP average for UO
- **wm** (*float*) – weight of medium BP average for UO
- **wl** (*float*) – weight of long BP average for UO
- **fillna** (*bool*) – if True, fill nan values with 50.

Returns New feature generated.

Return type *pandas.Series*

ta.momentum.wr(high, low, close, lbp=14, fillna=False)

Williams %R

Developed by Larry Williams, Williams %R is a momentum indicator that is the inverse of the Fast Stochastic Oscillator. Also referred to as %R, Williams %R reflects the level of the close relative to the highest high for the look-back period. In contrast, the Stochastic Oscillator reflects the level of the close relative to the lowest low.
%R corrects for the inversion by multiplying the raw value by -100. As a result, the Fast Stochastic Oscillator and Williams %R produce the exact same lines, only the scaling is different. Williams %R oscillates from 0 to -100.

Readings from 0 to -20 are considered overbought. Readings from -80 to -100 are considered oversold.

Unsurprisingly, signals derived from the Stochastic Oscillator are also applicable to Williams %R.

\[
%R = \frac{\text{Highest High} - \text{Close}}{\text{Highest High} - \text{Lowest Low}} \times -100
\]

Lowest Low = lowest low for the look-back period
Highest High = highest high for the look-back period
%R is multiplied by -100 correct the inversion and move the decimal.

From: https://www.investopedia.com/terms/w/williamsr.asp The Williams %R oscillates from 0 to -100. When the indicator produces readings from 0 to -20, this indicates overbought market conditions. When readings are -80 to -100, it indicates oversold market conditions.

Parameters
- high (pandas.Series) – dataset ‘High’ column.
- low (pandas.Series) – dataset ‘Low’ column.
- close (pandas.Series) – dataset ‘Close’ column.
- lbp (int) – lookback period
- fillna (bool) – if True, fill nan values with -50.

Returns New feature generated.

Return type pandas.Series

4.1.2 Volume Indicators

Volume Indicators.

ta.volume.acc_dist_index (high, low, close, volume, fillna=False)

Accumulation/Distribution Index (ADI)

Acting as leading indicator of price movements.

https://en.wikipedia.org/wiki/Accumulation/distribution_index

Parameters
- high (pandas.Series) – dataset ‘High’ column.
- low (pandas.Series) – dataset ‘Low’ column.
- close (pandas.Series) – dataset ‘Close’ column.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

ta.volume.chaikin_money_flow (high, low, close, volume, n=20, fillna=False)

Chaikin Money Flow (CMF)

It measures the amount of Money Flow Volume over a specific period.

Parameters

- **high** (*pandas.Series*) – dataset ‘High’ column.
- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **n** (*int*) – n period.
- **fillna** (*bool*) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

```
import ta

# Function call example
ta.volume.ease_of_movement(high, low, close, volume, n=20, fillna=False)
```

Ease of movement (EoM, EMV)

It relates an asset’s price change to its volume and is particularly useful for assessing the strength of a trend.

Parameters

- **high** (*pandas.Series*) – dataset ‘High’ column.
- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **n** (*int*) – n period.
- **fillna** (*bool*) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

```
import ta

# Function call example
ta.volume.force_index(close, volume, n=2)
```

Force Index (FI)

It illustrates how strong the actual buying or selling pressure is. High positive values mean there is a strong rising trend, and low values signify a strong downward trend.

Parameters

- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **n** (*int*) – n period.
- **fillna** (*bool*) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

```
import ta

# Function call example
ta.volume.negative_volume_index(close, volume, fillna=False)
```

Negative Volume Index (NVI)

The Negative Volume Index (NVI) is a cumulative indicator that uses the change in volume to decide when the smart money is active. Paul Dysart first developed this indicator in the 1930s. […] Dysart’s Negative Volume Index works under the assumption that the smart money is active on days when volume decreases and the not-so-smart money is active on days when volume increases.

The cumulative NVI line was unchanged when volume increased from one period to the other. In other words, nothing was done. Norman Fosback, of Stock Market Logic, adjusted the indicator by substituting the percentage price change for Net Advances.

This implementation is the Fosback version.

If today’s volume is less than yesterday’s volume then:

\[
\text{nvi}(t) = \text{nvi}(t-1) \times (1 + (\text{close}(t) - \text{close}(t-1)) / \text{close}(t-1))
\]

Else \(\text{nvi}(t) = \text{nvi}(t-1)\)

Please note: the “stockcharts.com” example calculation just adds the percentage change of price to previous NVI when volumes decline; other sources indicate that the same percentage of the previous NVI value should be added, which is what is implemented here.

Parameters

- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **fillna** (*bool*) – if True, fill nan values with 1000.

Returns New feature generated.

Return type *pandas.Series*

See also: https://en.wikipedia.org/wiki/Negative_volume_index

On-balance volume (OBV)

It relates price and volume in the stock market. OBV is based on a cumulative total volume.

Parameters

- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type *pandas.Series*

Put/Call ratio (PCR) https://en.wikipedia.org/wiki/Put/call_ratio

Volume-price trend (VPT)

Is based on a running cumulative volume that adds or subtracts a multiple of the percentage change in share price trend and current volume, depending upon the investment’s upward or downward movements.

https://en.wikipedia.org/wiki/Volume%E2%80%93price_trend

Parameters

- **close** (*pandas.Series*) – dataset ‘Close’ column.
• **volume** *(pandas.Series)* – dataset ‘Volume’ column.
• **n** *(int)* – n period.
• **fillna** *(bool)* – if True, fill nan values.

Returns New feature generated.
Return type pandas.Series

4.1.3 Volatility Indicators

Volatility Indicators.

ta.volatility.average_true_range(high, low, close, n=14, fillna=False)

Average True Range (ATR)
The indicator provide an indication of the degree of price volatility. Strong moves, in either direction, are often accompanied by large ranges, or large True Ranges.

Parameters
• **high** *(pandas.Series)* – dataset ‘High’ column.
• **low** *(pandas.Series)* – dataset ‘Low’ column.
• **close** *(pandas.Series)* – dataset ‘Close’ column.
• **n** *(int)* – n period.

Returns New feature generated.
Return type pandas.Series

ta.volatility.bollinger_hband(close, n=20, ndev=2, fillna=False)

Bollinger Bands (BB)
Upper band at K times an N-period standard deviation above the moving average (MA + Kdeviation).

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters
• **close** *(pandas.Series)* – dataset ‘Close’ column.
• **n** *(int)* – n period.
• **ndev** *(int)* – n factor standard deviation

Returns New feature generated.
Return type pandas.Series

ta.volatility.bollinger_hband_indicator(close, n=20, ndev=2, fillna=False)

Bollinger High Band Indicator
Returns 1, if close is higher than bollinger high band. Else, return 0.

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters
• **close** *(pandas.Series)* – dataset ‘Close’ column.
• **n** *(int)* – n period.
• `ndev (int)` – n factor standard deviation

Returns New feature generated.

Return type pandas.Series

`ta.volatility.bollinger_lband(close, n=20, ndev=2, fillna=False)`

Bollinger Bands (BB)

Lower band at K times an N-period standard deviation below the moving average (MA Kdeviation).

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- `close (pandas.Series)` – dataset ‘Close’ column.
- `n (int)` – n period.
- `ndev (int)` – n factor standard deviation

Returns New feature generated.

Return type pandas.Series

`ta.volatility.bollinger_lband_indicator(close, n=20, ndev=2, fillna=False)`

Bollinger Low Band Indicator

Returns 1, if close is lower than bollinger low band. Else, return 0.

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- `close (pandas.Series)` – dataset ‘Close’ column.
- `n (int)` – n period.
- `ndev (int)` – n factor standard deviation

Returns New feature generated.

Return type pandas.Series

`ta.volatility.bollinger_mavg(close, n=20, fillna=False)`

Bollinger Bands (BB)

N-period simple moving average (MA).

https://en.wikipedia.org/wiki/Bollinger_Bands

Parameters

- `close (pandas.Series)` – dataset ‘Close’ column.
- `n (int)` – n period.

Returns New feature generated.

Return type pandas.Series

`ta.volatility.donchian_channel_hband(close, n=20, fillna=False)`

Donchian channel (DC)

The upper band marks the highest price of an issue for n periods.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters
• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.

Returns New feature generated.

Return type pandas.Series

```python
ta.volatility.donchian_channel_hband_indicator(close, n=20, fillna=False)
```

Donchian High Band Indicator

Returns 1, if close is higher than donchian high band channel. Else, return 0.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.

Returns New feature generated.

Return type pandas.Series

```python
ta.volatility.donchian_channel_lband(close, n=20, fillna=False)
```

Donchian channel (DC)

The lower band marks the lowest price for n periods.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.

Returns New feature generated.

Return type pandas.Series

```python
ta.volatility.donchian_channel_lband_indicator(close, n=20, fillna=False)
```

Donchian Low Band Indicator

Returns 1, if close is lower than donchian low band channel. Else, return 0.

https://www.investopedia.com/terms/d/donchianchannels.asp

Parameters

• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.

Returns New feature generated.

Return type pandas.Series

```python
ta.volatility.keltner_channel_central(high, low, close, n=10, fillna=False)
```

Keltner channel (KC)

Showing a simple moving average line (central) of typical price.

https://en.wikipedia.org/wiki/Keltner_channel

Parameters

• high (pandas.Series) – dataset ‘High’ column.
• low (\texttt{pandas.Series}) – dataset ‘Low’ column.
• close (\texttt{pandas.Series}) – dataset ‘Close’ column.
• n (\texttt{int}) – n period.

\textbf{Returns} New feature generated.

\textbf{Return type} pandas.Series

\textit{ta.volatility.keltner_channel_hband}(high, low, close, n=10, fillna=False)
Keltner channel (KC)
Showing a simple moving average line (high) of typical price.

\url{https://en.wikipedia.org/wiki/Keltner_channel}

\textbf{Parameters}

• high (\texttt{pandas.Series}) – dataset ‘High’ column.
• low (\texttt{pandas.Series}) – dataset ‘Low’ column.
• close (\texttt{pandas.Series}) – dataset ‘Close’ column.
• n (\texttt{int}) – n period.

\textbf{Returns} New feature generated.

\textbf{Return type} pandas.Series

\textit{ta.volatility.keltner_channel_hband_indicator}(high, low, close, n=10, fillna=False)
Keltner Channel High Band Indicator (KC)
Returns 1, if close is higher than keltner high band channel. Else, return 0.

\url{https://en.wikipedia.org/wiki/Keltner_channel}

\textbf{Parameters}

• high (\texttt{pandas.Series}) – dataset ‘High’ column.
• low (\texttt{pandas.Series}) – dataset ‘Low’ column.
• close (\texttt{pandas.Series}) – dataset ‘Close’ column.
• n (\texttt{int}) – n period.

\textbf{Returns} New feature generated.

\textbf{Return type} pandas.Series

\textit{ta.volatility.keltner_channel_lband}(high, low, close, n=10, fillna=False)
Keltner channel (KC)
Showing a simple moving average line (low) of typical price.

\url{https://en.wikipedia.org/wiki/Keltner_channel}

\textbf{Parameters}

• high (\texttt{pandas.Series}) – dataset ‘High’ column.
• low (\texttt{pandas.Series}) – dataset ‘Low’ column.
• close (\texttt{pandas.Series}) – dataset ‘Close’ column.
• n (\texttt{int}) – n period.

\textbf{Returns} New feature generated.
Return type pandas.Series

ta.volatility.keltner_channel_lband_indicator (high, low, close, n=10, fillna=False)
Keltner Channel Low Band Indicator (KC)
Returns 1, if close is lower than keltner low band channel. Else, return 0.
https://en.wikipedia.org/wiki/Keltner_channel

Parameters

• high (pandas.Series) – dataset ‘High’ column.
• low (pandas.Series) – dataset ‘Low’ column.
• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.

Returns New feature generated.
Return type pandas.Series

4.1.4 Trend Indicators

Trend Indicators.

ta.trend.adx (high, low, close, n=14, fillna=False)
Average Directional Movement Index (ADX)
The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed aver-
ages of these differences, and measure trend direction over time. These two indicators are often referred to
collectively as the Directional Movement Indicator (DMI).
The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between
+DI and -DI, and measures the strength of the trend (regardless of direction) over time.
Using these three indicators together, chartists can determine both the direction and strength of the trend.

Parameters

• high (pandas.Series) – dataset ‘High’ column.
• low (pandas.Series) – dataset ‘Low’ column.
• close (pandas.Series) – dataset ‘Close’ column.
• n (int) – n period.
• fillna (bool) – if True, fill nan values.

Returns New feature generated.
Return type pandas.Series

ta.trend.adx_neg (high, low, close, n=14, fillna=False)
Average Directional Movement Index Negative (ADX)
The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed aver-
ages of these differences, and measure trend direction over time. These two indicators are often referred to
collectively as the Directional Movement Indicator (DMI).
The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between
+DI and -DI, and measures the strength of the trend (regardless of direction) over time.
Using these three indicators together, chartists can determine both the direction and strength of the trend.

Parameters

- `n` *(int)* – n period.
- `fillna` *(bool)* – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

ta.trend.adx_pos(high, low, close, n=14,fillna=False)

Average Directional Movement Index Positive (ADX)

The Plus Directional Indicator (+DI) and Minus Directional Indicator (-DI) are derived from smoothed averages of these differences, and measure trend direction over time. These two indicators are often referred to collectively as the Directional Movement Indicator (DMI).

The Average Directional Index (ADX) is in turn derived from the smoothed averages of the difference between +DI and -DI, and measures the strength of the trend (regardless of direction) over time.

Using these three indicators together, chartists can determine both the direction and strength of the trend.

Parameters

- `n` *(int)* – n period.
- `fillna` *(bool)* – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

ta.trend.aroon_down(close, n=25,fillna=False)

Aroon Indicator (AI)

Identify when trends are likely to change direction (downtrend).

Aroon Down - ((N - Days Since N-day Low) / N) x 100

https://www.investopedia.com/terms/a/aroon.asp

Parameters

- `n` *(int)* – n period.
- `fillna` *(bool)* – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series
ta.trend.aroon_up(close, n=25, fillna=False)

Aroon Indicator (AI)

Identify when trends are likely to change direction (uptrend).

Aroon Up - ((N - Days Since N-day High) / N) x 100

https://www.investopedia.com/terms/a/aroon.asp

Parameters:
- close (pandas.Series) – dataset ‘Close’ column.
- n (int) – n period.
- fillna (bool) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

ta.trend.cci(high, low, close, n=20, c=0.015, fillna=False)

Commodity Channel Index (CCI)

CCI measures the difference between a security’s price change and its average price change. High positive readings indicate that prices are well above their average, which is a show of strength. Low negative readings indicate that prices are well below their average, which is a show of weakness.

Parameters:
- high (pandas.Series) – dataset ‘High’ column.
- low (pandas.Series) – dataset ‘Low’ column.
- close (pandas.Series) – dataset ‘Close’ column.
- n (int) – n period.
- c (int) – constant.
- fillna (bool) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

ta.trend.dpo(close, n=20, fillna=False)

Detrended Price Oscillator (DPO)

Is an indicator designed to remove trend from price and make it easier to identify cycles.

Parameters:
- close (pandas.Series) – dataset ‘Close’ column.
- n (int) – n period.
- fillna (bool) – if True, fill nan values.

Returns
New feature generated.

Return type
pandas.Series

ta.trend.ema_indicator(close, n=12, fillna=False)

EMA

Exponential Moving Average via Pandas
Parameters

- close (pandas.Series) – dataset ‘Close’ column.
- n_fast (int) – n period short-term.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```
ta.trend.ichimoku_a (high, low, n1=9, n2=26, visual=False, fillna=False)
Ichimoku Kinkō Hyō (Ichimoku)
```

It identifies the trend and look for potential signals within that trend.

Parameters

- high (pandas.Series) – dataset ‘High’ column.
- low (pandas.Series) – dataset ‘Low’ column.
- n1 (int) – n1 low period.
- n2 (int) – n2 medium period.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```
ta.trend.ichimoku_b (high, low, n2=26, n3=52, visual=False, fillna=False)
Ichimoku Kinkō Hyō (Ichimoku)
```

It identifies the trend and look for potential signals within that trend.

Parameters

- high (pandas.Series) – dataset ‘High’ column.
- low (pandas.Series) – dataset ‘Low’ column.
- n2 (int) – n2 medium period.
- n3 (int) – n3 high period.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```
ta.trend.kst (close, r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, fillna=False)
KST Oscillator (KST)
```

It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle.

https://en.wikipedia.org/wiki/KST_oscillator

Parameters

- close (pandas.Series) – dataset ‘Close’ column.
• \texttt{r1 (int)} – r1 period.
• \texttt{r2 (int)} – r2 period.
• \texttt{r3 (int)} – r3 period.
• \texttt{r4 (int)} – r4 period.
• \texttt{n1 (int)} – n1 smoothed period.
• \texttt{n2 (int)} – n2 smoothed period.
• \texttt{n3 (int)} – n3 smoothed period.
• \texttt{n4 (int)} – n4 smoothed period.
• \texttt{fillna (bool)} – if True, fill nan values.

Returns New feature generated.

Return type \texttt{pandas.Series}

\begin{verbatim}
ta.trend.kst_sig(close, r1=10, r2=15, r3=20, r4=30, n1=10, n2=10, n3=10, n4=15, nsig=9, fillna=False)
\end{verbatim}

KST Oscillator (KST Signal)

It is useful to identify major stock market cycle junctures because its formula is weighed to be more greatly influenced by the longer and more dominant time spans, in order to better reflect the primary swings of stock market cycle.

Parameters

• \texttt{close (pandas.Series)} – dataset ‘Close’ column.
• \texttt{r1 (int)} – r1 period.
• \texttt{r2 (int)} – r2 period.
• \texttt{r3 (int)} – r3 period.
• \texttt{r4 (int)} – r4 period.
• \texttt{n1 (int)} – n1 smoothed period.
• \texttt{n2 (int)} – n2 smoothed period.
• \texttt{n3 (int)} – n3 smoothed period.
• \texttt{n4 (int)} – n4 smoothed period.
• \texttt{nsig (int)} – n period to signal.
• \texttt{fillna (bool)} – if True, fill nan values.

Returns New feature generated.

Return type \texttt{pandas.Series}

\begin{verbatim}
ta.trend.macd(close, n_fast=12, n_slow=26, fillna=False)
\end{verbatim}

Moving Average Convergence Divergence (MACD)

Is a trend-following momentum indicator that shows the relationship between two moving averages of prices.

https://en.wikipedia.org/wiki/MACD

Parameters

• \texttt{close (pandas.Series)} – dataset ‘Close’ column.
- **n_fast** (*int*) – n period short-term.
- **n_slow** (*int*) – n period long-term.
- **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.macd_diff(close, n_fast=12, n_slow=26, n_sign=9,fillna=False)
```
Moving Average Convergence Divergence (MACD Diff)

Shows the relationship between MACD and MACD Signal.

https://en.wikipedia.org/wiki/MACD

Parameters
- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **n_fast** (*int*) – n period short-term.
- **n_slow** (*int*) – n period long-term.
- **n_sign** (*int*) – n period to signal.
- **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.macd_signal(close, n_fast=12, n_slow=26, n_sign=9,fillna=False)
```
Moving Average Convergence Divergence (MACD Signal)

Shows EMA of MACD.

https://en.wikipedia.org/wiki/MACD

Parameters
- **close** (*pandas.Series*) – dataset ‘Close’ column.
- **n_fast** (*int*) – n period short-term.
- **n_slow** (*int*) – n period long-term.
- **n_sign** (*int*) – n period to signal.
- **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.mass_index(high, low, n=9, n2=25,fillna=False)
```
Mass Index (MI)

It uses the high-low range to identify trend reversals based on range expansions. It identifies range bulges that can foreshadow a reversal of the current trend.

Parameters
- **high** (*pandas.Series*) – dataset ‘High’ column.
• **n** (*int*) – n low period.
• **n2** (*int*) – n high period.
• **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.trix(close, n=15,fillna=False)
```

Trix (TRIX)

Shows the percent rate of change of a triple exponentially smoothed moving average.

Parameters

• **close** (pandas.Series) – dataset ‘Close’ column.
• **n** (*int*) – n period.
• **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.vortex_indicator_neg(high, low, close, n=14,fillna=False)
```

Vortex Indicator (VI)

It consists of two oscillators that capture positive and negative trend movement. A bearish signal triggers when the negative trend indicator crosses above the positive trend indicator or a key level.

Parameters

• **high** (pandas.Series) – dataset ‘High’ column.
• **low** (pandas.Series) – dataset ‘Low’ column.
• **close** (pandas.Series) – dataset ‘Close’ column.
• **n** (*int*) – n period.
• **fillna** (*bool*) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.trend.vortex_indicator_pos(high, low, close, n=14,fillna=False)
```

Vortex Indicator (VI)

It consists of two oscillators that capture positive and negative trend movement. A bullish signal triggers when the positive trend indicator crosses above the negative trend indicator or a key level.

Parameters

• **high** (pandas.Series) – dataset ‘High’ column.
• **low** (pandas.Series) – dataset ‘Low’ column.
• **close** (pandas.Series) – dataset ‘Close’ column.
• **n** (*int*) – n period.
• **fillna (bool)** – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

4.1.5 Others Indicators

Others Indicators.

```python
ta.others.cumulative_return(close, fillna=False)
```

Cumulative Return (CR)

Parameters

- close (pandas.Series) – dataset ‘Close’ column.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.others.daily_log_return(close, fillna=False)
```

Daily Log Return (DLR)

Parameters

- close (pandas.Series) – dataset ‘Close’ column.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series

```python
ta.others.daily_return(close, fillna=False)
```

Daily Return (DR)

Parameters

- close (pandas.Series) – dataset ‘Close’ column.
- fillna (bool) – if True, fill nan values.

Returns New feature generated.

Return type pandas.Series
CHAPTER 5

Indices and tables

- genindex
- modindex
- search
m
momentum, 9

o
others, 27

t
 ta, 9
 ta.momentum, 9
 ta.others, 27
 ta.trend, 20
 ta.volatility, 16
 ta.volume, 13
 trend, 20

v
volatility, 16
volume, 13
<table>
<thead>
<tr>
<th>A</th>
<th>acc_dist_index() in module ta.volume, 13</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>adx() in module ta.trend, 20</td>
</tr>
<tr>
<td></td>
<td>adx_neg() in module ta.trend, 20</td>
</tr>
<tr>
<td></td>
<td>adx_pos() in module ta.trend, 21</td>
</tr>
<tr>
<td></td>
<td>ao() in module ta.momentum, 9</td>
</tr>
<tr>
<td></td>
<td>aroon_down() in module ta.trend, 21</td>
</tr>
<tr>
<td></td>
<td>aroon_up() in module ta.trend, 21</td>
</tr>
<tr>
<td></td>
<td>average_true_range() in module ta.volatility, 16</td>
</tr>
<tr>
<td>B</td>
<td>bollinger_hband() in module ta.volatility, 16</td>
</tr>
<tr>
<td></td>
<td>bollinger_hband_indicator() in module ta.volatility, 16</td>
</tr>
<tr>
<td></td>
<td>bollinger_lband() in module ta.volatility, 17</td>
</tr>
<tr>
<td></td>
<td>bollinger_lband_indicator() in module ta.volatility, 17</td>
</tr>
<tr>
<td></td>
<td>bollinger_mavg() in module ta.volatility, 17</td>
</tr>
<tr>
<td>C</td>
<td>cci() in module ta.trend, 22</td>
</tr>
<tr>
<td></td>
<td>chaikin_money_flow() in module ta.volume, 13</td>
</tr>
<tr>
<td></td>
<td>cumulative_return() in module ta.others, 27</td>
</tr>
<tr>
<td>D</td>
<td>daily_log_return() in module ta.others, 27</td>
</tr>
<tr>
<td></td>
<td>daily_return() in module ta.others, 27</td>
</tr>
<tr>
<td></td>
<td>donchian_channel_hband() in module ta.volatility, 17</td>
</tr>
<tr>
<td></td>
<td>donchian_channel_hband_indicator() in module ta.volatility, 18</td>
</tr>
<tr>
<td></td>
<td>donchian_channel_lband() in module ta.volatility, 18</td>
</tr>
<tr>
<td></td>
<td>donchian_channel_lband_indicator() in module ta.volatility, 18</td>
</tr>
<tr>
<td></td>
<td>dpo() in module ta.trend, 22</td>
</tr>
<tr>
<td>E</td>
<td>ease_of_movement() in module ta.volume, 14</td>
</tr>
<tr>
<td></td>
<td>ema_indicator() in module ta.trend, 22</td>
</tr>
<tr>
<td>F</td>
<td>force_index() in module ta.volume, 14</td>
</tr>
<tr>
<td>I</td>
<td>ichimoku_a() in module ta.trend, 23</td>
</tr>
<tr>
<td></td>
<td>ichimoku_b() in module ta.trend, 23</td>
</tr>
<tr>
<td>K</td>
<td>kama() in module ta.momentum, 10</td>
</tr>
<tr>
<td></td>
<td>keltner_channel_central() in module ta.volatility, 18</td>
</tr>
<tr>
<td></td>
<td>keltner_channel_hband() in module ta.volatility, 19</td>
</tr>
<tr>
<td></td>
<td>keltner_channel_hband_indicator() in module ta.volatility, 19</td>
</tr>
<tr>
<td></td>
<td>keltner_channel_lband() in module ta.volatility, 19</td>
</tr>
<tr>
<td></td>
<td>keltner_channel_lband_indicator() in module ta.volatility, 20</td>
</tr>
<tr>
<td></td>
<td>kst() in module ta.trend, 23</td>
</tr>
<tr>
<td></td>
<td>kst_sig() in module ta.trend, 24</td>
</tr>
<tr>
<td>M</td>
<td>macd() in module ta.trend, 24</td>
</tr>
<tr>
<td></td>
<td>macd_diff() in module ta.trend, 25</td>
</tr>
<tr>
<td></td>
<td>macd_signal() in module ta.trend, 25</td>
</tr>
<tr>
<td></td>
<td>momentum in module ta.trend, 9</td>
</tr>
<tr>
<td></td>
<td>money_flow_index() in module ta.momentum, 10</td>
</tr>
<tr>
<td>N</td>
<td>negative_volume_index() in module ta.volume, 14</td>
</tr>
<tr>
<td>O</td>
<td>on_balance_volume() in module ta.volume, 15</td>
</tr>
<tr>
<td></td>
<td>others in module ta.others, 27</td>
</tr>
</tbody>
</table>
P
put_call_ratio() (in module ta.volume), 15

R
rsi() (in module ta.momentum), 10

S
stoch() (in module ta.momentum), 11
stoch_signal() (in module ta.momentum), 11

T
ta (module), 9
ta.momentum (module), 9
ta.others (module), 27
ta.trend (module), 20
ta.volatility (module), 16
ta.volume (module), 13
trend (module), 20
trix() (in module ta.trend), 26
tsi() (in module ta.momentum), 11

U
uo() (in module ta.momentum), 12

V
volatility (module), 16
volume (module), 13
volume_price_trend() (in module ta.volume), 15
vortex_indicator_neg() (in module ta.trend), 26
vortex_indicator_pos() (in module ta.trend), 26

W
wr() (in module ta.momentum), 12