
SublimeLinter Documentation
Release 4.0.0

The SublimeLinter Community

May 03, 2019

User Documentation

1 Installation 3

2 Settings 5
2.1 Settings stack . 5
2.2 Styles (colors) . 5
2.3 Project settings . 6
2.4 Settings Expansion . 6

3 Linter Settings 9
3.1 args . 9
3.2 disable . 9
3.3 env . 10
3.4 excludes . 10
3.5 executable . 10
3.6 filter_errors . 10
3.7 lint_mode . 11
3.8 python . 11
3.9 selector . 11
3.10 styles . 12
3.11 working_dir . 13

4 Troubleshooting 15
4.1 Debug mode . 15
4.2 The linter doesn’t work! . 15
4.3 Debugging PATH problems . 15

5 Creating a gutter theme 17

6 Creating a linter plugin 19

7 Linter Attributes 21
7.1 cmd (mandatory) . 21
7.2 default_type . 21
7.3 defaults . 22
7.4 error_stream . 22
7.5 line_col_base . 22
7.6 multiline . 23

i

7.7 name . 23
7.8 re_flags . 23
7.9 regex (mandatory) . 23
7.10 tempfile_suffix . 24
7.11 word_re . 24

8 Linter Methods 25
8.1 cmd . 25
8.2 split_match . 25

9 PythonLinter class 27

10 RubyLinter class 29
10.1 rbenv and rvm support . 29

ii

SublimeLinter Documentation, Release 4.0.0

SublimeLinter is a plugin for Sublime Text that provides a framework for linting code.

SublimeLinter repo and issues can be reached on GitHub.

User Documentation 1

https://www.sublimetext.com/
https://github.com/SublimeLinter/SublimeLinter

SublimeLinter Documentation, Release 4.0.0

2 User Documentation

CHAPTER 1

Installation

SublimeLinter and corresponding linter plugins should be installed using PackageControl.

First install PackageControl and then see its usage, which explains how to install packages to SublimeText.

Notice that it may be required to restart SublimeText after package installation.

Make sure to read SublimeLinter messages.

3

https://packagecontrol.io/installation
https://packagecontrol.io/docs/usage
https://github.com/SublimeLinter/SublimeLinter/tree/master/messages

SublimeLinter Documentation, Release 4.0.0

4 Chapter 1. Installation

CHAPTER 2

Settings

The settings are documented in the default settings file, so you can refer to them while editing your settings.

Note: Settings are checked for correctness, a message will display with errors. You need to fix or remove incorrect
settings, like typos and deprecated settings.

This page covers some extra tricks and how to work with project specific settings.

2.1 Settings stack

SublimeLinter merges settings from several sources to calculate the value. Settings are merged in the following order:

1. Default settings

2. User settings

3. Project settings (only “linters” settings)

2.2 Styles (colors)

Colors are applied to highlights and gutter icons using scopes.

Scopes are how Sublime Text manages color. Regions of code (and sections of the gutter) are labelled with scopes.
You can think of scopes as class names in an HTML file. These scopes then receive color from the color scheme,
which is kinda like a CSS stylesheet.

SublimeLinter expects the scopes markup.warning and markup.error to get correct colors from most color
schemes. We use scopes like region.redish for color schemes that don’t provide colors for these scopes.

To change the colors, you can use region.colorish scopes: redish, orangish, yellowish, greenish, bluish, purplish,
pinkish

5

SublimeLinter Documentation, Release 4.0.0

Or you can customize your color scheme.

2.3 Project settings

Only the “linters” settings in can be changed in a project. All other settings can only be changed in your user settings.

Note: Read more about project setting in Sublime Text’s documentation.

Here is an example project settings file where the flake8 linter has been disabled:

{
"folders":
[

{
"path": "."

}
],
"settings":
{

"SublimeLinter.linters.flake8.disable": true
}

}

2.4 Settings Expansion

After the settings have been merged, SublimeLinter iterates over all settings values and expands any strings.
This uses Sublime Text’s expand_variables API, which uses the ${varname} syntax and supports placeholders
(${varname:placeholder}). Placeholders are resolved recursively (e.g. ${XDG_CONFIG_HOME:$HOME/.
config}).

To insert a literal $ character, use \\$.

The following case-sensitive variables are provided:

• packages

• platform

• file

• file_path

• file_name

• file_base_name

• file_extension

• folder

• project

• project_path

• project_name

• project_base_name

6 Chapter 2. Settings

https://www.sublimetext.com/docs/3/color_schemes.html#customization
https://www.sublimetext.com/docs/3/projects.html

SublimeLinter Documentation, Release 4.0.0

• project_extension

• all environment variables

Note: See the documentation on build systems for an explanation of what each variable contains.

We enhanced the expansion for folder. It now attempts to guess the correct folder if you have multiple folders open
in a window.

Additionally, ~ will get expanded using os.path.expanduser.

2.4. Settings Expansion 7

https://www.sublimetext.com/docs/3/build_systems.html#variables
https://docs.python.org/3/library/os.path.html#os.path.expanduser

SublimeLinter Documentation, Release 4.0.0

8 Chapter 2. Settings

CHAPTER 3

Linter Settings

Each linter plugin can provide its own settings. SublimeLinter already provides these for every linter:

3.1 args

Specifies extra arguments to pass to an external binary.

The value may be a string or an array. If it is a string, it will be parsed as if it were passed on a command line. For
example, these values are equivalent:

{
"args": "--foo=bar --bar=7 --no-baz"

}

{
"args": [

"--foo=bar",
"--bar=7",
"--no-baz"

]
}

The default value is an empty array.

3.2 disable

Disables the linter.

9

SublimeLinter Documentation, Release 4.0.0

3.3 env

Set additional environment variables.

{
"env": "{'GEM_HOME': '~/foo/bar'}"

}

3.4 excludes

This setting specifies a list of path patterns to exclude from linting. If there is only a single pattern, the value may be
a string. Otherwise it must be an array of patterns.

Patterns are matched against a file’s absolute path with all symlinks/shortcuts resolved. This means to match a
filename, you must match everything in the path before the filename. For example, to exclude any python files whose
name begins with “foo”, you would use this pattern:

{
"excludes": "*/foo*.py"

}

The default value is an empty array. Untitled views can be ignored with <untitled>, and you can use ! to negate
a pattern. Note that Settings Expansion can be used here as well.

3.5 executable

At any time you can manually set the executable a linter should use. This can be a string or a list.

{
"executable": "${folder}/node_modules/bin/eslint",
"executable": ["py", "-3", "-m", "flake8"],
"executable": ["nvm", "exec", "8.9", "eslint"]

}

See Settings Expansion for more info on using variables.

3.6 filter_errors

This defines a post filter to suppress some problems a linter might report. (Useful if the linter cannot be configured
very well.)

The value may be a string or an array of strings. Each string is handled as a case-insensitive regex pattern, and then
matched against the error type, code (or rule), and message of a particular lint problem. If it matches, the lint error
will be thrown away.

Note: This will completely supress the matching errors. If you only want to visually demote some errors, take a look
at the styles section below.

Some examples:

10 Chapter 3. Linter Settings

SublimeLinter Documentation, Release 4.0.0

{
// suppress all warnings
"filter_errors": "warning: ",

// suppress a specific eslint rule
"filter_errors": "no-trailing-spaces: ",

// suppress some flake8/pyflakes rules,
"filter_errors": "W3\\d\\d: ",

// typical html tidy message
"filter_errors": "missing <!DOCTYPE> declaration"

}

Be aware of special escaping since what you’re writing must be valid JSON.

Technical note: For each reported problem we construct a string “<error_type>: <error_code>: <error_message”. We
then match each regex pattern against that virtual line. We keep the error if none of the patterns match, otherwise we
keep it.

3.7 lint_mode

Lint Mode determines when the linter is run.

• background: asynchronously on every change

• load_save: when a file is opened and every time it’s saved

• manual: only when calling the Lint This View command

• save: only when a file is saved

3.8 python

This should point to a python binary on your system. Alternatively it can be set to a version, in which case we try to
find a python binary on your system matching that version (using PATH).

It then executes python -m script_name (where script_name is e.g. flake8).

3.9 selector

This defines if when given linter is activated for specific file types. It should be a string containing a list of comma
separated selectors.

For example, by default yamllint is activated only for YAML files (source.yaml) files. But we also want to activate
it for ansible files, which have the source.ansible scope.

To do that, we can override the selector for this linter:

{
"linters": {

"yamllint":
{

(continues on next page)

3.7. lint_mode 11

SublimeLinter Documentation, Release 4.0.0

(continued from previous page)

"selector": "source.yaml, source.ansible"

},
}

}

To find out what selector to use for given file type, use the “Tools > Developer > Show Scope Name” menu entry.

It’s also possible to exclude scopes using the - operator. E.g. to disable embedded code in situation where linting
doesn’t make sense. ESLint can be disabled for HTML script tags with the following:

{
"selector": "source.js - text.html.basic"

}

Note: The selector setting takes precedence over the deprecated syntax property.

3.10 styles

Styles can be set per linter.

You can change the color (via scope) or icon per linter, for errors or warnings, and even for each error code if the
plugin reports them.

Example: this changes the appearance of shellcheck warnings:

{
"shellcheck": {

"styles": [
{

"mark_style": "stippled_underline",
"scope": "region.bluish",
"types": ["warning"]

}
]

}
}

Example: this changes the appearance of whitespace warnings in flake8:

{
"flake8": {

"styles": [
{

"mark_style": "outline",
"scope": "comment",
"icon": "none",
"codes": ["W293", "W291", "W292"]

}
]

}
}

12 Chapter 3. Linter Settings

SublimeLinter Documentation, Release 4.0.0

Note: If you set both “mark_style” and “icon” to “none”, you get a less noisy view and still can see those errors in
the panel.

3.11 working_dir

This setting specifies the linter working directory. The value must be a string, corresponding to a valid directory path.

For example (this is also the default):

{
"working_dir": "${folder:$file_path}"

}

Here the linter will get invoked from the ${folder} directory or the file’s directory if it is not contained within a
project folder.

See Settings Expansion for more info on using variables.

3.11. working_dir 13

SublimeLinter Documentation, Release 4.0.0

14 Chapter 3. Linter Settings

CHAPTER 4

Troubleshooting

This page covers a number of common problems and how to debug them. If this doesn’t help you, look in the GitHub
issues for similar issues (also look in the closed issues).

If you end up opening a new issue, please include (relevant) settings and a debug log.

4.1 Debug mode

In debug mode, SublimeLinter prints additional information to Sublime Text’s console. Among other things it will list
if a linter was able to run and its output.

To enable this mode, set "debug" to true in your SublimeLinter settings.

4.2 The linter doesn’t work!

When a linter does not work try to run the program from the command line (Terminal in Mac OS X/Linux, Command
Prompt in Windows). If it does not work there, it definitely won’t work in SublimeLinter.

Here are the most common reasons why a linter does not work:

• The linter binary or its dependencies are not installed. Be sure to install the linter as documented in the linter
plugin’s README.

• The linter binary is installed, but its path is not available to SublimeLinter. Follow the steps in Debugging PATH
problems below.

4.3 Debugging PATH problems

In order for SublimeLinter to use linter executables, it must be able to find them on your system. There are two
possible sources for this information:

15

https://github.com/SublimeLinter/SublimeLinter/issues
https://github.com/SublimeLinter/SublimeLinter/issues

SublimeLinter Documentation, Release 4.0.0

1. The PATH environment variable.

2. The "paths" setting.

In debug mode SublimeLinter prints the computed path to the console. If a linter’s executable cannot be found, the
debug output will include a cannot locate <linter> message.

A linter may have additional dependencies (e.g. NodeJS) that may be missing. The console should also have informa-
tion about that.

We noticed some users having an issue where a linter couldn’t find “node” even though “node” is in their $PATH. If
you’re having this problem you can remedy it by patching the “env” for that linter in your settings like so:

"linters": {
"eslint": {

"env": {"PATH":"/usr/local/bin/"}
}

}

4.3.1 Finding a linter executable

If a linter executable cannot be found, these are steps you can take to locate the source of the problem.

First check if the executable is in your PATH. Enter the following at a command prompt, replacing <linter> with
the correct name (e.g. eslint):

Mac OS X, Linux
which <linter>

Windows
where <linter>

If this fails to output the executable’s location it will not work. Make sure the executable is installed and if necessary
edit your PATH. How to edit your PATH strongly depends on you operating system and its specific configuration. The
internet is full of HOWTO’s on this subject.

4.3.2 Adding to the “paths” setting

If you cannot rely on the PATH environment variable, paths can be configured in SublimeLinter’s settings.

For example, let’s say you are using rbenv on macOS. To add the path ~/.rbenv/shims you would change the
"paths" setting like this:

"paths": {
"linux": [],
"osx": [

"~/.rbenv/shims"
],
"windows": []

}

16 Chapter 4. Troubleshooting

CHAPTER 5

Creating a gutter theme

Use one of the existing gutter themes as a starting point. You can find them in the repo.

To colorize icons the .gutter-theme file should contain: { "colorize": true }. In this case your icons should
be mostly white, (with shades of gray).

If you set colorize to false, Sublime Text will still colorize them. To maintain the original color we colorize them
using a scope that should get a white color: region.whitish. If this results in incorrectly colored icons, this scope
needs to be added to your color scheme.

Gutter images are scaled to to 16 x 16. For best results with Retina displays, gutter images should be 32 x 32.

To install your theme place the directory in Packages/User.

17

https://github.com/SublimeLinter/SublimeLinter/tree/master/gutter-themes

SublimeLinter Documentation, Release 4.0.0

18 Chapter 5. Creating a gutter theme

CHAPTER 6

Creating a linter plugin

Fork the template repo to get started on your plugin. It contains a howto with all the information you need.

The SublimeLinter package control channel lists all existing plugins, you can find examples there too.

To publish your plugin, start a PR.

19

https://github.com/SublimeLinter/SublimeLinter-template
https://github.com/SublimeLinter/package_control_channel
https://github.com/SublimeLinter/package_control_channel/pulls

SublimeLinter Documentation, Release 4.0.0

20 Chapter 6. Creating a linter plugin

CHAPTER 7

Linter Attributes

All linter plugins must be subclasses of SublimeLinter.lint.Linter. The Linter class provides the attributes
and methods necessary to make linters work within SublimeLinter.

The Linter class is designed to allow interfacing with most linter executables/libraries through the configuration of
class attributes. Some linters, however, will need to do more work to set up the environment for the linter executable,
or may do the linting directly in the linter plugin itself. In that case, refer to the linter method documentation.

7.1 cmd (mandatory)

A tuple or callable that returns a tuple, containing the command line (with arguments) used to lint.

• If cmd is None, it is assumed the plugin overrides the run method.

• A ${file} argument will be replaced with the full filename, which allows you to guarantee that certain
arguments will be passed after the filename.

• When tempfile_suffix is set, the filename will be the temp filename.

• A ${args} argument will be replaced with the arguments built from the linter settings, which allows you to
guarantee that certain arguments will be passed at the end of the argument list.

7.2 default_type

Usually the error and warning named capture groups in the regex (mandatory) classify the problems. If the linter
output does not provide information which can be captured with those groups, this attribute is used to determine how
to classify the linter error. The value should be SublimeLinter.lint.ERROR or SublimeLinter.lint.
WARNING.

The default value is SublimeLinter.lint.ERROR.

21

SublimeLinter Documentation, Release 4.0.0

7.3 defaults

Set this attribute to a dict of setting names and values to provide defaults for the linter’s settings.

The most important setting is "selector", which specifies the scopes for which the linter is run.

If a setting will be passed as an argument to the linter executable, you may specify the format of the argument here
and the setting will automatically be passed as an argument to the executable. The format specification is as follows:

<prefix><name><joiner>[<sep>[+]]

• prefix – Either @, - or --.

• name – The name of the setting.

• joiner – Either = or :. If prefix is @, this attribute is ignored (but may not be omitted). Otherwise, if this is
=, the setting value is joined with name by = and passed as a single argument. If :, name and the value are
passed as separate arguments.

• sep – If the argument accepts a list of values, sep specifies the character used to delimit the list (usually ,).

• + – If the setting can be a list of values, but each value must be passed as a separate argument, terminate the
setting with +.

After the format is parsed, the prefix and suffix are removed and the setting key is replaced with name.

Note: When building the list of arguments to pass to the linter, if the setting value is falsy (None, zero, False, or
an empty sequence), the argument is not passed to the linter.

7.4 error_stream

Some linters report problem on stdout, some on stderr. By default SublimeLinter listens for both. If
that’s wrong you can set this to SublimeLinter.lint.STREAM_STDOUT or SublimeLinter.lint.
STREAM_STDERR.

Note however, it’s important to capture errors generated by the linter itself, for example a bad command line argument
or some internal error. Usually linters will report their own errors on stderr. To ensure you capture both regular
linter output and internal linter errors, you need to determine on which stream the linter writes reports and errors.

7.5 line_col_base

This attribute is a tuple that defines the number base used by linters in reporting line and column numbers. In general,
most linters use one-based line numbers and column numbers, so the default value is (1, 1). If a linter uses zero-
based line numbers or column numbers, the linter class should define this attribute accordingly.

Note: For example, if the linter reports one-based line numbers but zero-based column numbers, the value of this
attribute should be (1, 0).

22 Chapter 7. Linter Attributes

SublimeLinter Documentation, Release 4.0.0

7.6 multiline

This attribute determines whether the regex (mandatory) attribute parses multiple lines. The linter may output multiline
error messages, but if regex only parses single lines, this attribute should be False (the default).

• If multiline is False, the linter output is split into lines (using str.splitlines and each line is
matched against regex pattern.

• If multiline is True, the linter output is iterated over using re.finditer until no more matches are
found.

Note: It is important that you set this attribute correctly; it does more than just add the re.MULTILINE flag when
it compiles the regex pattern.

7.7 name

Usually the name of the linter is derived from the name of the class. If that doesn’t work out, you can also set it
explicitly with this attribute.

7.8 re_flags

If you wish to add custom re flags that are used when compiling the regex (mandatory) pattern, you may specify
them here.

For example, if you want the pattern to be case-insensitive, you could do this:

re_flags = re.IGNORECASE

Note: These flags can also be included within the regex pattern itself. It’s up to you which technique you prefer.

7.9 regex (mandatory)

A python regular expression pattern used to extract information from the linter’s output. The pattern must contain at
least the following named capture groups:

Name Description
line The line number on which the problem occurred
message The description of the problem

If your pattern doesn’t have these groups you must override the split_match method to provide those values yourself.

In addition to the above capture groups, the pattern should contain the following named capture groups when possible:

7.6. multiline 23

SublimeLinter Documentation, Release 4.0.0

NameDescription
col The column number where the error occurred, or a string whose length provides the column number
er-
ror

If this is not empty, the error will be marked as an error by SublimeLinter

warn-
ing

If this is not empty, the error will be marked as a warning by SublimeLinter

near If the linter does not provide a column number but mentions a name, match the name with this capture group
and SublimeLinter will attempt to highlight that name. Enclosing single or double quotes will be stripped,
you may include them in the capture group. If the linter provides a column number, you may still use this
capture group and SublimeLinter will highlight that text (stripped of quotes) exactly.

code The corresponding error code given by the linter, if supported.

7.10 tempfile_suffix

This attribute configures the behaviour of linter executables that cannot receive input from stdin.

If the linter executable require input from a file, SublimeLinter can automatically create a temp file from the current
code and pass that file to the linter executable. To enable automatic temp file creation, set this attribute to the suffix of
the temp file name (with or without a leading .).

7.10.1 File-only linters

Some linters can only work from an actual disk file, because they rely on an entire directory structure that cannot be
realistically be copied to a temp directory. In such cases, you can mark a linter as file-only by setting tempfile_suffix to
-.

File-only linters will only run on files that have not been modified since their last save, ensuring that what the user sees
and what the linter executable sees is in sync.

7.11 word_re

If a linter reports a column position, SublimeLinter highlights the nearest word at that point. By default, SublimeLinter
uses the regex pattern r'^([-\w]+)' to determine what is a word. You can customize the regex used to highlight
words by setting this attribute to a pattern string or a compiled regex.

24 Chapter 7. Linter Attributes

CHAPTER 8

Linter Methods

The Linter class is designed to allow interfacing with most linter executables/libraries through the configuration of
class attributes. Some linters, however, will need to set up the environment for the linter executable, or may do the
linting directly in the linter plugin itself.

In those cases, you will need to override one or more methods. SublimeLinter provides a set of methods that are
designed to be overridden.

8.1 cmd

cmd(self)

If you need to dynamically generate the command line that is executed in order to lint, implement this method in your
Linter subclass. Return a tuple/list with separate arguments. The first argument in the result should be the full path
to the linter executable.

8.2 split_match

split_match(self, match)

This method extracts the named capture groups from the regex (mandatory) and return a tuple of match, line, col,
error, warning, message, near.

If subclasses need to modify the values returned by the regex, they should override this method, call super().
split_match(match), then modify the values and return them.

25

SublimeLinter Documentation, Release 4.0.0

26 Chapter 8. Linter Methods

CHAPTER 9

PythonLinter class

If your linter plugin interfaces with a linter that is written in python, you should subclass from SublimeLinter.
lint.PythonLinter.

By doing so, you get the following features:

• Use correct environment using a python setting.

• Automatically find an environment using pipenv

27

SublimeLinter Documentation, Release 4.0.0

28 Chapter 9. PythonLinter class

CHAPTER 10

RubyLinter class

If your linter plugin interfaces with a linter that is written in ruby, you should subclass from SublimeLinter.
lint.RubyLinter.

By doing so, you get support for rbenv and rvm (via rvm-auto-ruby).

10.1 rbenv and rvm support

During class construction, SublimeLinter attempts to locate the gem and ruby specified in cmd.

The following forms are valid for the first argument of cmd:

gem@ruby
gem
ruby

If rbenv is installed and the gem is also under rbenv control, the gem will be executed directly. Otherwise (ruby
[, gem]) will be executed.

If rvm-auto-ruby is installed, (rvm-auto-ruby [, gem]) will be executed.

Otherwise ruby or gem will be executed.

29

https://github.com/rbenv/rbenv
http://rvm.io

	Installation
	Settings
	Settings stack
	Styles (colors)
	Project settings
	Settings Expansion

	Linter Settings
	args
	disable
	env
	excludes
	executable
	filter_errors
	lint_mode
	python
	selector
	styles
	working_dir

	Troubleshooting
	Debug mode
	The linter doesn’t work!
	Debugging PATH problems

	Creating a gutter theme
	Creating a linter plugin
	Linter Attributes
	cmd (mandatory)
	default_type
	defaults
	error_stream
	line_col_base
	multiline
	name
	re_flags
	regex (mandatory)
	tempfile_suffix
	word_re

	Linter Methods
	cmd
	split_match

	PythonLinter class
	RubyLinter class
	rbenv and rvm support

