striatum Documentation

Release 0.0.1

Y.-Y. Yang, Y.-A. Lin

November 11, 2016
Contents

1 API Reference 3
 1.1 striatum.bandit package ... 3
 1.2 striatum.storage package .. 19

2 Gallery of Examples 23
 2.1 General examples ... 23

Bibliography 29

Python Module Index 31
CHAPTER 1

API Reference

1.1 striatum.bandit package

1.1.1 Submodules

1.1.2 striatum.bandit.exp3 module

Exp3: Exponential-weight algorithm for Exploration and Exploitation

This module contains a class that implements EXP3, a bandit algorithm that randomly choose an action according to a learned probability distribution.

```python
class striatum.bandit.exp3.Exp3(history_storage, model_storage, action_storage, recommendation_cls=None, gamma=0.3, random_state=None)
```

Bases: striatum.bandit.bandit.BaseBandit

Exp3 algorithm.

Parameters

- **history_storage**: HistoryStorage object
 - The HistoryStorage object to store history context, actions and rewards.

- **model_storage**: ModelStorage object
 - The ModelStorage object to store model parameters.

- **action_storage**: ActionStorage object
 - The ActionStorage object to store actions.

- **recommendation_cls**: class (default: None)
 - The class used to initiate the recommendations. If None, then use default Recommendation class.

- **gamma**: float, 0 < gamma <= 1
 - The parameter used to control the minimum chosen probability for each action.

- **random_state**: {int, np.random.RandomState} (default: None)
 - If int, np.random.RandomState will used it as seed. If None, a random seed will be used.

References

[R1]
Attributes

- `history_storage`

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>add_action(actions)</code></td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td><code>calculate_avg_reward()</code></td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td><code>calculate_cum_reward()</code></td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td><code>get_action([context, n_actions])</code></td>
<td>Return the action to perform.</td>
</tr>
<tr>
<td><code>plot_avg_regret()</code></td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td><code>plot_avg_reward()</code></td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td><code>remove_action(action_id)</code></td>
<td>Remove action by id.</td>
</tr>
<tr>
<td><code>reward(history_id, rewards)</code></td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td><code>update_action(action)</code></td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action (actions)

Add new actions (if needed).

Parameters

- `actions` : iterable

 A list of Action objects for recommendation

get_action (context=None, n_actions=None)

Return the action to perform

Parameters

- `context` : {array-like, None}

 The context of current state, None if no context available.

- `n_actions` : int (default: None)

 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- `history_id` : int

 The history id of the action.

- `recommendations` : list of dict

 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action (action_id)

Remove action by id.

Parameters

- `action_id` : int

 The id of the action to remove.

reward (history_id, rewards)

Reward the previous action with reward.

Parameters

- `history_id` : int

 The history id of the action to reward.

- `rewards` : dictionary

 The dictionary {action_id, reward}, where reward is a float.
1.1.3 striatum.bandit.exp4p module

EXP4.P: An extension to exponential-weight algorithm for exploration and exploitation. This module contains a class that implements EXP4.P, a contextual bandit algorithm with expert advice.

class striatum.bandit.exp4p.Exp4P(actions, historystorage, modelstorage, delta=0.1, p_min=None, max_rounds=10000)

Exp4.P with pre-trained supervised learning algorithm.

Parameters
- **actions**: list of Action objects
 - List of actions to be chosen from.
- **historystorage**: a HistoryStorage object
 - The place where we store the histories of contexts and rewards.
- **modelstorage**: a ModelStorage object
 - The place where we store the model parameters.
- **delta**: float, 0 < delta <= 1
 - With probability 1 - delta, LinThompSamp satisfies the theoretical regret bound.
- **p_min**: float, 0 < p_min < 1/k
 - The minimum probability to choose each action.

References

[R2]

Attributes

- **history_storage**

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action(actions)</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward()</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward()</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action([context, n_actions])</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret()</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward()</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action(action_id)</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward(history_id, rewards)</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action(action)</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

get_action(context=None, n_actions=1)

Return the action to perform

Parameters
- **context**: dictionary
Contexts \{\text{expert_id: \{action_id: expert_prediction\}\}}\} of different actions.

\textbf{n_actions: int}

Number of actions wanted to recommend users.

\textbf{Returns history_id : int}

The history id of the action.

\textbf{action_recommendation : list of dictionaries}

In each dictionary, it will contains \{Action object, estimated_reward, uncertainty\}.

\textbf{reward(history_id, rewards)}

Reward the previous action with reward.

\textbf{Parameters history_id : int}

The history id of the action to reward.

\textbf{rewards : dictionary}

The dictionary \{action_id, reward\}, where reward is a float.

\subsection{striatum.bandit.linthompssamp module}

Thompson Sampling with Linear Payoff In This module contains a class that implements Thompson Sampling with Linear Payoff. Thompson Sampling with linear payoff is a contextual multi-armed bandit algorithm which assume the underlying relationship between rewards and contexts is linear. The sampling method is used to balance the exploration and exploitation. Please check the reference for more details.

\textbf{class \texttt{striatum.bandit.linthompssamp.LinThompSamp} (history_storage, model_storage, action_storage, recommendation_cls=None, context_dimension=128, delta=0.5, R=0.01, epsilon=0.5, random_state=None)}

Bases: \texttt{striatum.bandit.bandit.BaseBandit}

Thompson sampling with linear payoff.

\textbf{Parameters history_storage} : HistoryStorage object

The HistoryStorage object to store history context, actions and rewards.

\textbf{model_storage} : ModelStorage object

The ModelStorage object to store model parameters.

\textbf{action_storage} : ActionStorage object

The ActionStorage object to store actions.

\textbf{recommendation_cls} : class (default: None)

The class used to initiate the recommendations. If None, then use default Recommendation class.

\textbf{delta: float, 0 < delta < 1}

With probability 1 - delta, LinThompSamp satisfies the theoretical regret bound.

\textbf{R: float, R \geq 0}

Assume that the residual \(ri(t) - bi(t)^T \mu \) is R-sub-gaussian. In this case, \(R^2 \) represents the variance for residuals of the linear model \(bi(t)^T \).
epsilon: float, $0 < \epsilon < 1$

A parameter used by the Thompson Sampling algorithm. If the total trials T is known, we can choose $\epsilon = 1/\ln(T)$.

random_state: {int, np.random.RandomState} (default: None)

If int, np.random.RandomState will use it as seed. If None, a random seed will be used.

References

[R3]

Attributes

- `history_storage`

Methods

- `add_action(actions)`: Add new actions (if needed).
- `calculate_avg_reward()`: Calculate average reward with respect to time.
- `calculate_cum_reward()`: Calculate cumulative reward with respect to time.
- `get_action(context[, n_actions])`: Return the action to perform.
- `plot_avg_regret()`: Plot average regret with respect to time.
- `plot_avg_reward()`: Plot average reward with respect to time.
- `remove_action(action_id)`: Remove action by id.
- `reward(history_id, rewards)`: Reward the previous action with reward.
- `update_action(action)`: Update action.

add_action *(actions)*

Add new actions (if needed).

Parameters

- `actions` : iterable

 A list of Action objects for recommendation

get_action *(context, n_actions=\text{None})*

Return the action to perform

Parameters

- `context` : dictionary

 Contexts \{action_id: context\} of different actions.

- `n_actions` : int (default: None)

 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- `history_id` : int

 The history id of the action.

- `recommendations` : list of dict

 Each dict contains \{Action object, estimated_reward, uncertainty\}.
remove_action (action_id)
Remove action by id.

Parameters action_id : int
 The id of the action to remove.

reward (history_id, rewards)
Reward the previous action with reward.

Parameters history_id : int
 The history id of the action to reward.

rewards : dictionary
 The dictionary {action_id, reward}, where reward is a float.

1.1.5 striatum.bandit.linucb module

LinUCB with Disjoint Linear Models
This module contains a class that implements LinUCB with disjoint linear model, a contextual bandit algorithm assuming the reward function is a linear function of the context.

class striatum.bandit.linucb.LinUCB (history_storage, model_storage, action_storage, recommendation_cls=None, context_dimension=128, alpha=0.5)
Bases: striatum.bandit.bandit.BaseBandit

LinUCB with Disjoint Linear Models

Parameters history_storage : HistoryStorage object
 The HistoryStorage object to store history context, actions and rewards.

model_storage : ModelStorage object
 The ModelStorage object to store model parameters.

action_storage : ActionStorage object
 The ActionStorage object to store actions.

recommendation_cls : class (default: None)
 The class used to initiate the recommendations. If None, then use default Recommendation class.

context_dimension: int
 The dimension of the context.

alpha: float
 The constant determines the width of the upper confidence bound.

References

[R4]

Attributes
Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action (actions)</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action (context[, n_actions])</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action (action_id)</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward (history_id, rewards)</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action (action)</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action (actions)
Add new actions (if needed).

Parameters
- actions : iterable
 A list of Action objects for recommendation

get_action (context, n_actions=None)
Return the action to perform

Parameters
- context : dict
 Contexts {action_id: context} of different actions.
- n_actions: int (default: None)
 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns
- history_id : int
 The history id of the action.
- recommendations : list of dict
 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action (action_id)
Remove action by id.

Parameters
- action_id : int
 The id of the action to remove.

reward (history_id, rewards)
Reward the previous action with reward.

Parameters
- history_id : int
 The history id of the action to reward.
- rewards : dictionary
 The dictionary {action_id, reward}, where reward is a float.
1.1.6 striatum.bandit.ucb1 module

This module contains a class that implements UCB1 algorithm, a famous multi-armed bandit algorithm without context.

class striatum.bandit.ucb1.UCB1

Parameters

- **history_storage**: HistoryStorage object
 The HistoryStorage object to store history context, actions and rewards.
- **model_storage**: ModelStorage object
 The ModelStorage object to store model parameters.
- **action_storage**: ActionStorage object
 The ActionStorage object to store actions.
- **recommendation_cls**: class (default: None)
 The class used to initiate the recommendations. If None, then use default Recommendation class.

References

[R5]

Attributes

<table>
<thead>
<tr>
<th>history_storage</th>
</tr>
</thead>
</table>

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action(actions)</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward()</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward()</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action([context, n_actions])</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret()</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward()</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action(action_id)</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward(history_id, rewards)</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action(action)</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action (actions)

Add new actions (if needed).

Parameters actions: iterable

A list of Action objects for recommendation

get_action (context=None, n_actions=None)
Return the action to perform

Parameters

- **context** : \{array-like, None\}
 - The context of current state, None if no context available.

- **n_actions**: int (default: None)
 - Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- **history_id** : int
 - The history id of the action.

- **recommendations** : list of dict
 - Each dict contains \{Action object, estimated_reward, uncertainty\}.

remove_action(action_id)

Remove action by id.

Parameters

- **action_id** : int
 - The id of the action to remove.

reward(history_id, rewards)

Reward the previous action with reward.

Parameters

- **history_id** : int
 - The history id of the action to reward.

- **rewards** : dictionary
 - The dictionary \{action_id, reward\}, where reward is a float.

1.1.7 Module contents

Bandit algorithm classes

class striatum.bandit.Exp3

Bases: striatum.bandit.bandit.BaseBandit

Exp3 algorithm.

Parameters

- **history_storage** : HistoryStorage object
 - The HistoryStorage object to store history context, actions and rewards.

- **model_storage** : ModelStorage object
 - The ModelStorage object to store model parameters.

- **action_storage** : ActionStorage object
 - The ActionStorage object to store actions.

- **recommendation_cls** : class (default: None)
 - The class used to initiate the recommendations. If None, then use default Recommendation class.

- **gamma**: float, 0 < gamma <= 1
 - The parameter used to control the minimum chosen probability for each action.
random_state: {int, np.random.RandomState} (default: None)

If int, np.random.RandomState will used it as seed. If None, a random seed will be used.

References

[R6]

Attributes

<table>
<thead>
<tr>
<th>Attributes</th>
</tr>
</thead>
<tbody>
<tr>
<td>history_storage</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action(actions)</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward()</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward()</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action([context, n_actions])</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret()</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward()</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action(action_id)</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward(history_id, rewards)</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action(action)</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action *(actions)*

Add new actions (if needed).

Parameters

- actions : iterable

 A list of Action objects for recommendation

get_action *(context=None, n_actions=None)*

Return the action to perform

Parameters

- context : {array-like, None}

 The context of current state, None if no context available.

- n_actions: int (default: None)

 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- history_id : int

 The history id of the action.

- recommendations : list of dict

 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action *(action_id)*

Remove action by id.

Parameters

- action_id : int
The id of the action to remove.

reward *(history_id, rewards)*
Reward the previous action with reward.

Parameters
history_id : int
The history id of the action to reward.
rewards : dictionary
The dictionary {action_id, reward}, where reward is a float.

class **striatum.bandit.Exp4P** *(actions, historystorage, modelstorage, delta=0.1, p_min=None, max_rounds=10000)*
Bases: **striatum.bandit.bandit.BaseBandit**
Exp4.P with pre-trained supervised learning algorithm.

Parameters
actions : list of Action objects
List of actions to be chosen from.
historystorage : a HistoryStorage object
The place where we store the histories of contexts and rewards.
modelstorage : a ModelStorage object
The place where we store the model parameters.
delta : float, 0 < delta <= 1
With probability 1 - delta, LinThompSamp satisfies the theoretical regret bound.
p_min : float, 0 < p_min < 1/k
The minimum probability to choose each action.

References

[R7]

Attributes

- **history_storage**

Methods

- **add_action** *(actions)*
Add new actions (if needed).
- **calculate_avg_reward** ()
Calculate average reward with respect to time.
- **calculate_cum_reward** ()
Calculate cumulative reward with respect to time.
- **get_action** *((context, n_actions))*
Return the action to perform.
- **plot_avg_regret** ()
Plot average regret with respect to time.
- **plot_avg_reward** ()
Plot average reward with respect to time.
- **remove_action** *(action_id)*
Remove action by id.
- **reward** *(history_id, rewards)*
Reward the previous action with reward.
- **update_action** *(action)*
Update action.
get_action\((\text{context}=\text{None}, \text{n_actions}=1) \)

Return the action to perform

Parameters

- **context**: dictionary
 - Contexts \{expert_id: \{action_id: expert_prediction\}\} of different actions.

- **n_actions**: int
 - Number of actions wanted to recommend users.

Returns

- **history_id**: int
 - The history id of the action.

- **action_recommendation**: list of dictionaries
 - In each dictionary, it will contains \{Action object, estimated_reward, uncertainty\}.

reward\((\text{history_id}, \text{rewards}) \)

Reward the previous action with reward.

Parameters

- **history_id**: int
 - The history id of the action to reward.

- **rewards**: dictionary
 - The dictionary \{action_id, reward\}, where reward is a float.

class striatum.bandit.LinThompSamp\((\text{history_storage}, \text{model_storage}, \text{action_storage}, \text{recommendation_cls}=\text{None}, \text{context_dimension}=128, \text{delta}=0.5, \text{R}=0.01, \text{epsilon}=0.5, \text{random_state}=\text{None}) \)

Bases: striatum.bandit.bandit.BaseBandit

Thompson sampling with linear payoff.

Parameters

- **history_storage**: HistoryStorage object
 - The HistoryStorage object to store history context, actions and rewards.

- **model_storage**: ModelStorage object
 - The ModelStorage object to store model parameters.

- **action_storage**: ActionStorage object
 - The ActionStorage object to store actions.

- **recommendation_cls**: class (default: None)
 - The class used to initiate the recommendations. If None, then use default Recommendation class.

- **delta**: float, \(0 < \delta < 1\)
 - With probability \(1 - \delta\), LinThompSamp satisfies the theoretical regret bound.

- **R**: float, \(R \geq 0\)
 - Assume that the residual \(r_i(t) - b_i(t)^T \hat{\mu}\) is R-sub-gaussian. In this case, \(R^2\) represents the variance for residuals of the linear model \(b_i(t)^T\).

- **epsilon**: float, \(0 < \epsilon < 1\)
 - A parameter used by the Thompson Sampling algorithm. If the total trials T is known, we can choose epsilon = 1/ln(T).

- **random_state**: \{int, np.random.RandomState\} (default: None)
If int, np.random.RandomState will used it as seed. If None, a random seed will be used.

References

[R8]

Attributes

- **history_storage**

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action *(actions)*

Add new actions (if needed).

Parameters

- **actions**: iterable
 A list of Action objects for recommendation

get_action *(context, n_actions=None)*

Return the action to perform

Parameters

- **context**: dictionary
 Contexts {action_id: context} of different actions.
- **n_actions**: int (default: None)
 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- **history_id**: int
 The history id of the action.
- **recommendations**: list of dict
 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action *(action_id)*

Remove action by id.

Parameters

- **action_id**: int
 The id of the action to remove.
reward (*history_id, rewards*)

Reward the previous action with reward.

Parameters

- **history_id**: int

 The history id of the action to reward.

- **rewards**: dictionary

 The dictionary {action_id, reward}, where reward is a float.

class `striatum.bandit.LinUCB` (*history_storage, model_storage, action_storage, recommendation_cls=None, context_dimension=128, alpha=0.5*)

Bases: `striatum.bandit.bandit.BaseBandit`
LinUCB with Disjoint Linear Models

Parameters

- **history_storage**: HistoryStorage object

 The HistoryStorage object to store history context, actions and rewards.

- **model_storage**: ModelStorage object

 The ModelStorage object to store model parameters.

- **action_storage**: ActionStorage object

 The ActionStorage object to store actions.

- **recommendation_cls**: class (default: None)

 The class used to initiate the recommendations. If None, then use default Recommendation class.

- **context_dimension**: int

 The dimension of the context.

- **alpha**: float

 The constant determines the width of the upper confidence bound.

References

[R9]

Attributes

- **history_storage**

Methods

- **add_action**(actions)

 Add new actions (if needed).

- **calculate_avg_reward**()

 Calculate average reward with respect to time.

- **calculate_cum_reward**()

 Calculate cumulative reward with respect to time.

- **get_action**(context[, n_actions])

 Return the action to perform

- **plot_avg_regret**()

 Plot average regret with respect to time.

- **plot_avg_reward**()

 Plot average reward with respect to time.
Table 1.18 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>remove_action(action_id)</code></td>
<td>Remove action by id.</td>
</tr>
<tr>
<td><code>reward(history_id, rewards)</code></td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td><code>update_action(action)</code></td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action(actions)

Add new actions (if needed).

Parameters

- `actions`: iterable

 A list of Action objects for recommendation

get_action(context, n_actions=None)

Return the action to perform

Parameters

- `context`: dict

 Contexts {action_id: context} of different actions.

- `n_actions`: int (default: None)

 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- `history_id`: int

 The history id of the action.

- `recommendations`: list of dict

 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action(action_id)

Remove action by id.

Parameters

- `action_id`: int

 The id of the action to remove.

reward(history_id, rewards)

Reward the previous action with reward.

Parameters

- `history_id`: int

 The history id of the action to reward.

- `rewards`: dictionary

 The dictionary {action_id, reward}, where reward is a float.

class striatum.bandit.

UCB1(history_storage, model_storage, action_storage, recommendation_cls=None)

Bases: striatum.bandit.bandit.BaseBandit

Upper Confidence Bound 1

Parameters

- `history_storage`: HistoryStorage object

 The HistoryStorage object to store history context, actions and rewards.

- `model_storage`: ModelStorage object

 The ModelStorage object to store model parameters.

- `action_storage`: ActionStorage object

 The ActionStorage object to store actions.
recommendation_cls : class (default: None)

The class used to initiate the recommendations. If None, then use default Recommendation class.

References

[R10]

Attributes

- **history_storage**

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>add_action(actions)</td>
<td>Add new actions (if needed).</td>
</tr>
<tr>
<td>calculate_avg_reward()</td>
<td>Calculate average reward with respect to time.</td>
</tr>
<tr>
<td>calculate_cum_reward()</td>
<td>Calculate cumulative reward with respect to time.</td>
</tr>
<tr>
<td>get_action([context, n_actions])</td>
<td>Return the action to perform</td>
</tr>
<tr>
<td>plot_avg_regret()</td>
<td>Plot average regret with respect to time.</td>
</tr>
<tr>
<td>plot_avg_reward()</td>
<td>Plot average reward with respect to time.</td>
</tr>
<tr>
<td>remove_action(action_id)</td>
<td>Remove action by id.</td>
</tr>
<tr>
<td>reward(history_id, rewards)</td>
<td>Reward the previous action with reward.</td>
</tr>
<tr>
<td>update_action(action)</td>
<td>Update action.</td>
</tr>
</tbody>
</table>

add_action(actions)

Add new actions (if needed).

Parameters

- **actions** : iterable

 A list of Action objects for recommendation

get_action(context=None, n_actions=None)

Return the action to perform

Parameters

- **context** : {array-like, None}

 The context of current state, None if no context available.

- **n_actions** : int (default: None)

 Number of actions wanted to recommend users. If None, only return one action. If -1, get all actions.

Returns

- **history_id** : int

 The history id of the action.

- **recommendations** : list of dict

 Each dict contains {Action object, estimated_reward, uncertainty}.

remove_action(action_id)

Remove action by id.

Parameters

- **action_id** : int
The id of the action to remove.

\[\text{reward}(\text{history_id}, \text{rewards}) \]
Reward the previous action with reward.

Parameters

- **history_id** : int
 The history id of the action to reward.
- **rewards** : dictionary
 The dictionary \{action_id, reward\}, where reward is a float.

1.2 striatum.storage package

1.2.1 Submodules

1.2.2 striatum.storage.model module

Model storage

```python
class striatum.storage.model.MemoryModelStorage
    Bases: striatum.storage.model.ModelStorage
    Store the model in memory.

    Methods
    __init__(self)
    get_model(self)
    save_model(model)
```

```python
class striatum.storage.model.ModelStorage
    Bases: object
    The object to store the model.

    Methods
    __init__(self)
    get_model(self)
    save_model(model)
```

1.2. striatum.storage package
1.2.3 striatum.storage.history module

History storage

class striatum.storage.history.History(history_id, context, recommendations, created_at, rewarded_at=None)

Bases: object

action/reward history entry.

Parameters

 history_id : int
 context : {dict of list of float, None}
 recommendations : {Recommendation, list of Recommendation}
 created_at : datetime
 rewards : {float, dict of float, None}
 rewarded_at : {datetime, None}

Attributes

rewards

Methods

update_reward(rewards, rewarded_at) Update reward_time and rewards.

rewards

update_reward(rewards, rewarded_at)
 Update reward_time and rewards.

Parameters

 rewards : {float, dict of float, None}
 rewarded_at : {datetime, None}

class striatum.storage.history.HistoryStorage

Bases: object

The object to store the history of context, recommendations and rewards.

Methods

add_history(context, recommendations[, rewards]) Add a history record.

add_reward(history_id, rewards) Add reward to a history record.

get_history(history_id) Get the previous context, recommendations and rewards with history_id.

get_unrewarded_history(history_id) Get the previous unrewarded context, recommendations and rewards with history_id.

add_history (context, recommendations, rewards=None)
 Add a history record.

Parameters

 context : {dict of list of float, None}
recommendations : {Recommendation, list of Recommendation}

rewards : {float, dict of float, None}

add_reward(history_id, rewards)
Add reward to a history record.

Parameters

history_id : int
The history id of the history record to retrieve.

rewards : {float, dict of float, None}

get_history(history_id)
Get the previous context, recommendations and rewards with history_id.

Parameters

history_id : int
The history id of the history record to retrieve.

Returns

history: History

get_unrewarded_history(history_id)
Get the previous unrewarded context, recommendations and rewards with history_id.

Parameters

history_id : int
The history id of the history record to retrieve.

Returns

history: History

class striatum.storage.history.MemoryHistoryStorage
Bases: striatum.storage.history.HistoryStorage

HistoryStorage that store History objects in memory.

Methods

add_history(context, recommendations[, rewards])
Add a history record.

Parameters

context : {dict of list of float, None}
recommendations : {Recommendation, list of Recommendation}
rewards : {float, dict of float, None}

add_reward(history_id, rewards)
Add reward to a history record.

Parameters

history_id : int
The history id of the history record to retrieve.

rewards : {float, dict of float, None}

get_history(history_id)
Get the previous context, recommendations and rewards with history_id.

Parameters

history_id : int

Returns

history: History

get_unrewarded_history(history_id)
Get the previous unrewarded context, recommendations and rewards with history_id.

Parameters

history_id : int

Returns

history: History

1.2. striatum.storage package
Parameters history_id : int
The history id of the history record to retrieve.

Returns history: History

get_unrewarded_history(history_id)
Get the previous unrewarded context, recommendations and rewards with history_id.

Parameters history_id : int
The history id of the history record to retrieve.

Returns history: History

1.2.4 Module contents

Storage classes
2.1 General examples

General-purpose and introductory examples from the sphinx-gallery

2.1.1 preprocess MovieLens dataset

In this script, we pre-process the MovieLens 10M Dataset to get the right format of contextual bandit algorithms. This data set is released by GroupLens at 1/2009. Please first download the dataset from http://grouplens.org/datasets/movielens/; then unzipped the file ‘ml-1m.zip’ to the examples folder.

```python
import pandas as pd
import numpy as np
import itertools

def movie_preprocessing(movie):
    movie_col = list(movie.columns)
    movie_tag = [doc.split(' | ') for doc in movie['tag']]
    tag_table = {token: idx for idx, token in enumerate(set(itertools.chain.from_iterable(movie_tag)))}
    movie_tag = pd.DataFrame(movie_tag)
    tag_table = pd.DataFrame(tag_table.items())
    tag_table.columns = ['Tag', 'Index']

    # use one-hot encoding for movie genres (here called tag)
    tag_dummy = np.zeros([len(movie), len(tag_table)])
    for i in range(len(movie)):
        for j in range(len(tag_table)):
            if tag_table['Tag'][j] in list(movie_tag.iloc[i, :]):
                tag_dummy[i, j] = 1

    # combine the tag_dummy one-hot encoding table to original movie files
    movie = pd.concat([movie, pd.DataFrame(tag_dummy)], 1)
    movie_col.extend(['tag' + str(i) for i in range(len(tag_table))])
    movie.columns = movie_col
    movie = movie.drop('tag', 1)
    return movie

def feature_extraction(data):
```

actions = data.groupby('movie_id').size().sort_values(ascending=False)[:50]
actions = list(actions.index)

user_feature = user_feature.groupby('user_id').aggregate(np.sum)
user_feature = user_feature.drop(['movie_id', 'rating', 'timestamp'], 1)
user_feature = user_feature.div(user_feature.sum(axis=1), axis=0)

streaming_batch = top50_data['user_id']

reward_list = reward_list[reward_list['reward'] == 1]
return streaming_batch, user_feature, actions, reward_list

def main():
 # read and preprocess the movie data
 movie = pd.read_table('movies.dat', sep='::', names=['movie_id', 'movie_name', 'tag'], engine='python')
 movie = movie_preprocessing(movie)

 # read the ratings data and merge it with movie data
 rating = pd.read_table('ratings.dat', sep='::',
 names=['user_id', 'movie_id', 'rating', 'timestamp'], engine='python')
 data = pd.merge(rating, movie, on='movie_id')

 # extract feature from our data set
 streaming_batch, user_feature, actions, reward_list = feature_extraction(data)
 streaming_batch.to_csv("streaming_batch.csv", sep='\t', index=False)
 user_feature.to_csv("user_feature.csv", sep='\t')
 pd.DataFrame(actions, columns=['movie_id']).to_csv("actions.csv", sep='\t', index=False)
 reward_list.to_csv("reward_list.csv", sep='\t', index=False)
 action_context = movie[movie['movie_id'].isin(actions)]
 action_context.to_csv("action_context.csv", sep='\t', index = False)

if __name__ == '__main__':
 main()
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
from striatum.storage import history
from striatum.storage import model
from striatum.bandit import ucb1
from striatum.bandit import linucb
from striatum.bandit import linthompson
from striatum.bandit import exp4p
from striatum.bandit import exp3
from striatum.bandit.bandit import Action
from sklearn.naive_bayes import MultinomialNB
from sklearn.linear_model import LogisticRegression
from sklearn.multiclass import OneVsRestClassifier

def get_data():
 streaming_batch = pd.read_csv('streaming_batch.csv', sep='	', names=['user_id'], engine='c')
 user_feature = pd.read_csv('user_feature.csv', sep='	', header=0, index_col=0, engine='c')
 actions_id = list(pd.read_csv('actions.csv', sep='	', header=0, engine='c')['movie_id'])
 reward_list = pd.read_csv('reward_list.csv', sep='	', header=0, engine='c')
 action_context = pd.read_csv('action_context.csv', sep='	', header=0, engine='c')
 actions = []
 for key in actions_id:
 action = Action(key)
 actions.append(action)
 return streaming_batch, user_feature, actions, reward_list, action_context

def train_expert(action_context):
 logreg = OneVsRestClassifier(LogisticRegression())
 mnb = OneVsRestClassifier(MultinomialNB(),
 logreg.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1])
 mnb.fit(action_context.iloc[:, 2:], action_context.iloc[:, 1])
 return [logreg, mnb]

def get_advice(context, actions_id, experts):
 advice = {}
 for time in context.keys():
 advice[time] = {}
 for i in range(len(experts)):
 prob = experts[i].predict_proba(context[time])[[0]
 advice[time][i] = {}
 for j in range(len(prob)):
 advice[time][i][actions_id[j]] = prob[j]
 return advice

def policy_generation(bandit, actions):
 historystorage = history.MemoryHistoryStorage()
 modelstorage = model.MemoryModelStorage()
 if bandit == 'Exp4P':
 policy = exp4p.Exp4P(actions, historystorage, modelstorage, delta=0.5, pmin=None)
 elif bandit == 'LinUCB':
 policy = linucb.LinUCB(actions, historystorage, modelstorage, delta=0.5, pmin=None)
policy = linucb.LinUCB(actions, historystorage, modelstorage, 0.3, 20)

elif bandit == 'LinThompSamp':
 policy = linthompsamp.LinThompSamp(actions, historystorage, modelstorage,
 d=20, delta=0.61, r=0.01, epsilon=0.71)

elif bandit == 'UCB1':
 policy = ucb1.UCB1(actions, historystorage, modelstorage)

eelif bandit == 'Exp3':
 policy = exp3.Exp3(actions, historystorage, modelstorage, gamma=0.2)

elif bandit == 'random':
 policy = 0

return policy

def policy_evaluation(policy, bandit, streaming_batch, user_feature, reward_list, actions, action_context=None):
 times = len(streaming_batch)
 seq_error = np.zeros(shape=(times, 1))
 actions_id = [actions[i].action_id for i in range(len(actions))]

 if bandit in ['LinUCB', 'LinThompSamp', 'UCB1', 'Exp3']:
 for t in range(times):
 feature = np.array(user_feature[user_feature.index == streaming_batch.iloc[t, 0]])[0]
 full_context = {}
 for action_id in actions_id:
 full_context[action_id] = feature
 history_id, action = policy.get_action(full_context, 1)
 watched_list = reward_list[reward_list['user_id'] == streaming_batch.iloc[t, 0]]

 if action[0]['action'].action_id not in list(watched_list['movie_id']):
 policy.reward(history_id, {action[0]['action'].action_id: 0.0})
 if t == 0:
 seq_error[t] = 1.0
 else:
 seq_error[t] = seq_error[t - 1] + 1.0

 if bandit == 'Exp4P':
 for t in range(times):
 feature = user_feature[user_feature.index == streaming_batch.iloc[t, 0]]
 experts = train_expert(action_context)
 advice = {}
 for i in range(len(experts)):
 prob = experts[i].predict_proba(feature)[0]
 advice[i] = {}
 for j in range(len(prob)):
 advice[i][actions_id[j]] = prob[j]
 history_id, action = policy.get_action(advice)
 watched_list = reward_list[reward_list['user_id'] == streaming_batch.iloc[t, 0]]

 if action[0]['action'].action_id not in list(watched_list['movie_id']):
 policy.reward(history_id, {action[0]['action'].action_id: 0.0})
if t == 0:
 seq_error[t] = 1.0
else:
 seq_error[t] = seq_error[t - 1] + 1.0

else:
 policy.reward(history_id, {action[0]['action'].action_id: 1.0})
if t > 0:
 seq_error[t] = seq_error[t - 1]

elif bandit == 'random':
 for t in range(times):
 action = actions_id[np.random.randint(0, len(actions)-1)]
 watched_list = reward_list[reward_list['user_id'] == streaming_batch.iloc[t, 0]]
 if action not in list(watched_list['movie_id']):
 if t == 0:
 seq_error[t] = 1.0
 else:
 seq_error[t] = seq_error[t - 1] + 1.0
 else:
 if t > 0:
 seq_error[t] = seq_error[t - 1]

return seq_error

def regret_calculation(seq_error):
 t = len(seq_error)
 regret = [x / y for x, y in zip(seq_error, range(1, t + 1))]
 return regret

def main():
 streaming_batch, user_feature, actions, reward_list, action_context = get_data()
 streaming_batch_small = streaming_batch.iloc[0:10000]

 # conduct regret analyses
 experiment_bandit = ['LinUCB', 'LinThompSamp', 'Exp4P', 'UCB1', 'Exp3', 'random']
 regret = {}
 col = ['b', 'g', 'r', 'c', 'm', 'y', 'k', 'w']
 i = 0
 for bandit in experiment_bandit:
 policy = policy_generation(bandit, actions)
 seq_error = policy_evaluation(policy, bandit, streaming_batch_small, user_feature, reward_list, actions, action_context)
 regret[bandit] = regret_calculation(seq_error)
 plt.plot(range(len(streaming_batch_small)), regret[bandit], c=col[i], ls='-', label=bandit)
 plt.xlabel('time')
 plt.ylabel('regret')
 plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.)
 axes = plt.gca()
 axes.set_ylim([0, 1])
 plt.title("Regret Bound with respect to T")
 i += 1
 plt.show()
if __name__ == '__main__':
 main()

Total running time of the script: (0 minutes 0.000 seconds)
Download Python source code: movielens_bandit.py
Download Jupyter notebook: movielens_bandit.ipynb
Generated by Sphinx-Gallery
Download all examples in Python source code: auto_examples_python.zip
Download all examples in Jupyter notebooks: auto_examples_jupyter.zip
Generated by Sphinx-Gallery

- genindex
- modindex
- search

S
striatum.bandit, 11
striatum.bandit.exp3, 3
striatum.bandit.exp4p, 5
striatum.bandit.linthompsamp, 6
striatum.bandit.linucb, 8
striatum.bandit.ucbl, 10
striatum.storage, 22
striatum.storage.history, 20
striatum.storage.model, 19
remove_action() (striatum.bandit.LinUCB method), 17
remove_action() (striatum.bandit.linucb.LinUCB method), 9
remove_action() (striatum.bandit.UCB1 method), 18
remove_action() (striatum.bandit.ucb1.UCB1 method), 11
reward() (striatum.bandit.Exp3 method), 13
reward() (striatum.bandit.exp3.Exp3 method), 4
reward() (striatum.bandit.Exp4P method), 14
reward() (striatum.bandit.exp4p.Exp4P method), 6
reward() (striatum.bandit.LinThompSamp method), 15
reward() (striatum.bandit.linthompsamp.LinThompSamp method), 8
reward() (striatum.bandit.LinUCB method), 17
reward() (striatum.bandit.linucb.LinUCB method), 9
reward() (striatum.bandit.UCB1 method), 19
reward() (striatum.bandit.ucb1.UCB1 method), 11
rewards (striatum.storage.history.History attribute), 20

S

save_model() (striatum.storage.model.MemoryModelStorage method), 19
save_model() (striatum.storage.model.ModelStorage method), 19
striatum.bandit (module), 11
striatum.bandit.exp3 (module), 3
striatum.bandit.exp4p (module), 5
striatum.bandit.linthompsamp (module), 6
striatum.bandit.linucb (module), 8
striatum.bandit.ucb1 (module), 10
striatum.storage (module), 22
striatum.storage.history (module), 20
striatum.storage.model (module), 19

U

UCB1 (class in striatum.bandit), 17
UCB1 (class in striatum.bandit.ucb1), 10
update_reward() (striatum.storage.history.History method), 20