Streamz helps you build pipelines to manage continuous streams of data. It is simple to use in simple cases, but also supports complex pipelines that involve branching, joining, flow control, feedback, back pressure, and so on.

Optionally, Streamz can also work with Pandas dataframes to provide sensible streaming operations on continuous tabular data.

To learn more about how to use streams, visit Core documentation.
CHAPTER 1

Motivation

Continuous data streams arise in many applications like the following:

1. Log processing from web servers
2. Scientific instrument data like telemetry or image processing pipelines
3. Financial time series
4. Machine learning pipelines for real-time and on-line learning
5. ...

Sometimes these pipelines are very simple, with a linear sequence of processing steps:

And sometimes these pipelines are more complex, involving branching, look-back periods, feedback into earlier stages, and more.

Streamz endeavors to be simple in simple cases, while also being powerful enough to let you define custom and powerful pipelines for your application.

1.1 Why not Python generator expressions?

Python users often manage continuous sequences of data with iterators or generator expressions.

```python
def fib():
    a, b = 0, 1
    while True:
        yield a
        a, b = b, a + b

sequence = (f(n) for n in fib())
```
However iterators become challenging when you want to fork them or control the flow of data. Typically people rely on tools like `itertools.tee` and `zip`.

```python
x1, x2 = itertools.tee(x, 2)
y1 = map(f, x1)
y2 = map(g, x2)
```

However this quickly become cumbersome, especially when building complex pipelines.
Streamz is similar to reactive programming systems like RxPY or big data streaming systems like Apache Flink, Apache Beam or Apache Spark Streaming.

2.1 Core Streams

This document takes you through how to build basic streams and push data through them. We start with map and accumulate, talk about emitting data, then discuss flow control and finally back pressure. Examples are used throughout.

2.1.1 Map, emit, and sink

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Stream.emit</code></td>
<td>Push data into the stream at this point</td>
</tr>
<tr>
<td><code>map</code></td>
<td>Apply a function to every element in the stream</td>
</tr>
<tr>
<td><code>sink</code></td>
<td>Apply a function on every element</td>
</tr>
</tbody>
</table>

You can create a basic pipeline by instantiating the `Streamz` object and then using methods like `map`, `accumulate`, and `sink`.

```python
from streamz import Stream
def increment(x):
    return x + 1

source = Stream()
source.map(increment).sink(print)
```

The `map` and `sink` methods both take a function and apply that function to every element in the stream. The `map` method returns a new stream with the modified elements while `sink` is typically used at the end of a stream for final actions.

To push data through our pipeline we call `emit`
As we can see, whenever we push data in at the source, our pipeline calls `increment` on that data, and then calls `print` on that data, resulting in incremented results being printed to the screen.

Often we call `emit` from some other continuous process, like reading lines from a file.

```python
import json
data = []
source = Stream()
source.map(json.loads).sink(data.append)
for line in open('myfile.json'):
    source.emit(line)
```

2.1.2 Accumulating State

Map and sink both pass data directly through a stream. One piece of data comes in, either one or zero pieces go out. Accumulate allows you to track some state within the pipeline. It takes an accumulation function that takes the previous state, the new element, and then returns a new state and a new element to emit. In the following example we make an accumulator that keeps a running total of the elements seen so far.

```python
def add(x, y):
    return x + y
source = Stream()
source.accumulate(add).sink(print)
```

The accumulation function above is particularly simple, the state that we store and the value that we emit are the same. In more complex situations we might want to keep around different state than we emit. For example let's count the number of distinct elements that we have seen so far.

```python
def num_distinct(state, new):
    state.add(new)
    return state, len(state)
```

(continues on next page)
source = Stream()
source.accumulate(num_distinct, returns_state=True, start=set()).sink(print)

>>> source.emit('cat')
1
>>> source.emit('dog')
2
>>> source.emit('cat')
2
>>> source.emit('mouse')
3

Accumulators allow us to build many interesting operations.

2.1.3 Flow Control

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>buffer</code></td>
<td>Allow results to pile up at this point in the stream</td>
</tr>
<tr>
<td><code>flatten</code></td>
<td>Flatten streams of lists or iterables into a stream of elements</td>
</tr>
<tr>
<td><code>partition</code></td>
<td>Partition stream into tuples of equal size</td>
</tr>
<tr>
<td><code>sliding_window</code></td>
<td>Produce overlapping tuples of size n</td>
</tr>
<tr>
<td><code>union</code></td>
<td>Combine multiple streams into one</td>
</tr>
<tr>
<td><code>unique</code></td>
<td>Avoid sending through repeated elements</td>
</tr>
</tbody>
</table>

You can batch and slice streams into streams of batches in various ways with operations like `partition`, `buffer`, and `sliding_window`.

source = Stream()
source.sliding_window(3, return_partial=False).sink(print)

>>> source.emit(1)
>>> source.emit(2)
>>> source.emit(3)
(1, 2, 3)
>>> source.emit(4)
(2, 3, 4)
>>> source.emit(5)
(3, 4, 5)

2.1.4 Branching and Joining

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>combine_latest</code></td>
<td>Combine multiple streams together to a stream of tuples</td>
</tr>
<tr>
<td><code>zip</code></td>
<td>Combine streams together into a stream of tuples</td>
</tr>
<tr>
<td><code>zip_latest</code></td>
<td>Combine multiple streams together to a stream of tuples</td>
</tr>
</tbody>
</table>

You can branch multiple streams off of a single stream. Elements that go into the input will pass through to both output streams.

def increment(x):
 return x + 1

(continues on next page)
def decrement(x):
 return x - 1

source = Stream()
a = source.map(increment).sink(print)
b = source.map(decrement).sink(print)
b.visualize(rankdir='LR')

>>> source.emit(1)
0
2
>>> source.emit(10)
9
11

Similarly you can also combine multiple streams together with operations like zip, which emits once both streams have provided a new element, or combine_latest which emits when either stream has provided a new element.

source = Stream()
a = source.map(increment)
b = source.map(decrement)
c = a.zip(b).map(sum).sink(print)

>>> source.emit(10)
20 # 9 + 11

This branching and combining is where Python iterators break down, and projects like streamz start becoming valuable.

2.1.5 Processing Time and Back Pressure

<table>
<thead>
<tr>
<th>Operation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay(upstream, interval, **kwargs)</td>
<td>Add a time delay to results</td>
</tr>
<tr>
<td>rate_limit(upstream, interval, **kwargs)</td>
<td>Limit the flow of data</td>
</tr>
<tr>
<td>timed_window(upstream, interval, **kwargs)</td>
<td>Emit a tuple of collected results every interval</td>
</tr>
</tbody>
</table>

Time-based flow control depends on having an active Tornado event loop. Tornado is active by default within a Jupyter notebook, but otherwise you will need to learn at least a little about asynchronous programming in Python to use these features. Learning async programming is not mandatory, the rest of the project will work fine without Tornado.

You can control the flow of data through your stream over time. For example you may want to batch all elements that have arrived in the last minute, or slow down the flow of data through sensitive parts of the pipeline, particularly when they may be writing to slow resources like databases.

Streamz helps you do these operations both with operations like delay, rate_limit, and timed_window, and also by passing Tornado futures back through the pipeline. As data moves forward through the pipeline, futures that signal work completed move backwards. In this way you can reliably avoid buildup of data in slower parts of your pipeline.

Let’s consider the following example that reads JSON data from a file and inserts it into a database using an async-aware insertion function.
async def write_to_database(...):
 ...

build pipeline
source = Source()
source.map(json.loads).sink(write_to_database)

async def process_file(fn):
 with open(fn) as f:
 for line in f:
 await source.emit(line) # wait for pipeline to clear

As we call the `write_to_database` function on our parsed JSON data it produces a future for us to signal that
the writing process has finished. Streamz will ensure that this future is passed all the way back to the `source.emit`
call, so that user code at the start of our pipeline can await on it. This allows us to avoid build up even in very large and
complex streams. We always pass futures back to ensure responsiveness.

But wait, maybe we don’t mind having a few messages in memory at once, this will help steady the flow of data so
that we can continue to work even if our sources or sinks become less productive for brief periods. We might add a
`buffer` just before writing to the database.

source.map(json.loads).buffer(100).sink(write_to_database)

And if we are pulling from an API with known limits then we might want to introduce artificial rate limits at 10ms.

source.rate_limit(0.010).map(json.loads).buffer(100).sink(write_to_database)

Operations like these (and more) allow us to shape the flow of data through our pipelines.

2.1.6 Modifying and Cleaning up Streams

When you call `Stream` you create a stream. When you call any method on a `Stream`, like `Stream.map`, you also
create a stream. All operations can be chained together. Additionally, as discussed in the section on Branching, you
can split multiple streams off of any point. Streams will pass their outputs on to all downstream streams so that anyone
can hook in at any point, and get a full view of what that stream is producing.

If you delete a part of a stream then it will stop getting data. Streamz follows normal Python garbage collection
semantics so once all references to a stream have been lost those operations will no longer occur. The one counter
example to this is `sink`, which is intended to be used with side effects and will stick around even without a reference.

Note: Sink streams store themselves in `streamz.core._global_sinks`. You can remove them permanently
by clearing that collection.

```python
>>> source.map(print)       # this doesn't do anything
>>> source.sink(print)      # this stays active even without a reference
>>> s = source.map(print)   # this works too because we have a handle to s
```

2.1.7 Recursion and Feedback

By connecting sources to sinks you can create feedback loops. As an example, here is a tiny web crawler:
from streamz import Stream

source = Stream()

pages = source.unique()
pages.sink(print)

content = pages.map(requests.get).map(lambda x: x.content)
links = content.map(get_list_of_links).flatten()
links.connect(source) # pipe new links back into pages

>>> source.emit('http://github.com')
http://github.com
http://github.com/features
http://github.com/business
http://github.com/explore
http://github.com/pricing
...

Note: Execution order is important here, as if the print was ordered after the map; get node then the print would never run.

2.1.8 Performance

Streamz adds microsecond overhead to normal Python operations.

You may want to avoid pushing millions of individual elements per second through a stream. However, you can avoid performance issues by collecting lots of data into single elements, for example by pushing through Pandas dataframes instead of individual integers and strings. This will be faster regardless, just because projects like NumPy and Pandas can be much faster than Python generally.

In the following example we pass filenames through a stream, convert them to Pandas dataframes, and then map pandas-level functions on those dataframes. For operations like this Streamz adds virtually no overhead.

(continues on next page)
for fn in glob('data/2017-***.csv'):
 source.emit(fn)

Streams provides higher level APIs for situations just like this one. You may want to read further about collections.

2.2 DataFrames

When handling large volumes of streaming tabular data it is often more efficient to pass around larger Pandas dataframes with many rows each rather than pass around individual Python tuples or dicts. Handling and computing on data with Pandas can be much faster than operating on Python objects.

So one could imagine building streaming dataframe pipelines using the .map and .accumulate streaming operators with functions that consume and produce Pandas dataframes as in the following example:

```python
from streamz import Stream
def query(df):
    return df[df.name == 'Alice']
def aggregate(acc, df):
    return acc + df.amount.sum()
stream = Stream()
stream.map(query).accumulate(aggregate, start=0)
```

This is fine, and straightforward to do if you understand streamz.core, Pandas, and have some skill with developing algorithms.

2.2.1 Streaming Dataframes

The streamz.dataframe module provides a streaming dataframe object that implements many of these algorithms for you. It provides a Pandas-like interface on streaming data. Our example above is rewritten below using streaming dataframes:

```python
import pandas as pd
from streamz.dataframe import DataFrame
example = pd.DataFrame({'name': [], 'amount': []})
sdf = DataFrame(stream, example=example)
sdf[sdf.name == 'Alice'].amount.sum()
```

The two examples are identical in terms of performance and execution. The resulting streaming dataframe contains a .stream attribute which is equivalent to the stream produced in the first example. Streaming dataframes are only syntactic sugar on core streams.

2.2.2 Supported Operations

Streaming dataframes support the following classes of operations:

- Elementwise operations like df.x + 1
- Filtering like df[df.name == 'Alice']
• Column addition like df['z'] = df.x + df.y
• Reductions like df.amount.mean()
• Groupby-aggregations like df.groupby(df.name).amount.mean()
• Windowed aggregations (fixed length) like df.window(n=100).amount.sum()
• Windowed aggregations (index valued) like df.window(value='2h').amount.sum()
• Windowed groupby aggregations like df.window(value='2h').groupby('name').amount.
 sum()

2.2.3 DataFrame Aggregations

Dataframe aggregations are composed of an aggregation (like sum, mean, ...) and a windowing scheme (fixed sized
windows, index-valued, all time, ...)

Aggregations

Streaming Dataframe aggregations are built from three methods
• initial: Creates initial state given an empty example dataframe
• on_new: Updates state and produces new result to emit given new data
• on_old: Updates state and produces new result to emit given decayed data

So a simple implementation of sum as an aggregation might look like the following:

```python
from streamz.dataframe import Aggregation

class Mean(Aggregation):
    def initial(self, new):
        state = new.iloc[:0].sum(), new.iloc[:0].count()
        return state

    def on_new(self, state, new):
        total, count = state
        total = total + new.sum()
        count = count + new.count()
        new_state = (total, count)
        new_value = total / count
        return new_state, new_value

    def on_old(self, state, old):
        total, count = state
        total = total - new.sum()  # switch + for - here
        count = count - new.count()  # switch + for - here
        new_state = (total, count)
        new_value = total / count
        return new_state, new_value
```

These aggregations can then used in a variety of different windowing schemes with the aggregate method as follows:

```python
df.aggregate(Mean())
```

(continues on next page)
whose job it is to deliver new and old data to your aggregation for processing.

Windowing Schemes

Different windowing schemes like fixed sized windows (last 100 elements) or value-indexed windows (last two hours of data) will track newly arrived and decaying data and call these methods accordingly. The mechanism to track data arriving and leaving is kept orthogonal from the aggregations themselves. These windowing schemes include the following:

1. All previous data. Only `initial` and `on_new` are called, `on_old` is never called.

   ```python
   >>> df.sum()
   ```

2. The previous n elements

   ```python
   >>> df.window(n=100).sum()
   ```

3. An index range, like a time range for a datetime index

   ```python
   >>> df.window(value='2h').sum()
   ```

 Although this can be done for any range on any type of index, time is just a common case.

Windowing schemes generally maintain a deque of historical values within accumulated state. As new data comes in they inspect that state and eject data that no longer falls within the window.

Grouping

Groupby aggregations also maintain historical data on the grouper and perform a parallel aggregation on the number of times any key has been seen, removing that key once it is no longer present.

2.2.4 Dask

In all cases, dataframe operations are only implemented with the `.map` and `.accumulate` operators, and so are equally compatible with core Stream and DaskStream objects.

2.2.5 Not Yet Supported

Streaming dataframes algorithms do not currently pay special attention to data arriving out-of-order.

2.3 Dask Integration

The streamz.dask module contains a Dask-powered implementation of the core Stream object. This is a drop-in implementation, but uses Dask for execution and so can scale to a multicore machine or a distributed cluster.
2.3.1 Quickstart

Installation

First install dask and dask.distributed:

```bash
conda install dask
or
pip install dask[complete] --upgrade
```

You may also want to install Bokeh for web diagnostics:

```bash
conda install -c bokeh bokeh
or
pip install bokeh --upgrade
```

Start Local Dask Client

Then start a local Dask cluster

```python
from dask.distributed import Client
client = Client()
```

This operates on a local processes or threads. If you have Bokeh installed then this will also start a diagnostics web server at `http://localhost:8787/status` which you may want to open to get a real-time view of execution.

Sequential Execution

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Stream.emit</code></td>
<td>Push data into the stream at this point</td>
</tr>
<tr>
<td><code>map</code></td>
<td>Apply a function to every element in the stream</td>
</tr>
<tr>
<td><code>sink</code></td>
<td>Apply a function on every element</td>
</tr>
</tbody>
</table>

Before we build a parallel stream, let's build a sequential stream that maps a simple function across data, and then prints those results. We use the core `Stream` object.

```python
from time import sleep
def inc(x):
    sleep(1)  # simulate actual work
    return x + 1
from streamz import Stream
source = Stream()
source.map(inc).sink(print)
for i in range(10):
    source.emit(i)
```

This should take ten seconds we call the `inc` function ten times sequentially.
Parallel Execution

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>scatter(*args, **kwargs)</code></td>
<td>Convert local stream to Dask Stream</td>
</tr>
<tr>
<td><code>buffer(upstream, n, **kwargs)</code></td>
<td>Allow results to pile up at this point in the stream</td>
</tr>
<tr>
<td><code>gather([upstream, upstreams, stream_name, ...])</code></td>
<td>Wait on and gather results from DaskStream to local Stream</td>
</tr>
</tbody>
</table>

That example ran sequentially under normal execution, now we use `.scatter()` to convert our stream into a DaskStream and `.gather()` to convert back.

```python
source = Stream()
source.scatter().map(inc).buffer(8).gather().sink(print)
for i in range(10):
    source.emit(i)
```

You may want to look at http://localhost:8787/status during execution to get a sense of the parallel execution.

This should have run much more quickly depending on how many cores you have on your machine. We added a few extra nodes to our stream, let’s look at what they did.

- **scatter**: Converted our Stream into a DaskStream. The elements that we emitted into our source were sent to the Dask client, and the subsequent map call used that client’s cores to perform the computations.
- **gather**: Converted our DaskStream back into a Stream, pulling data on our Dask client back to our local stream
- **buffer(5)**: Normally gather would exert back pressure so that the source would not accept new data until results finished and were pulled back to the local stream. This back-pressure would limit parallelism. To counteract this we add a buffer of size eight to allow eight unfinished futures to build up in the pipeline before we start to apply back-pressure to `source.emit`.

Gotchas

An important gotcha with DaskStream is that it is a subclass Stream, and so can be used as an input to any function expecting a Stream. If there is no intervening `.gather()`, then the downstream node will receive Dask futures instead of the data they represent:

```python
source = Stream()
source2 = Stream()
a = source.scatter().map(inc)
b = source2.combine_latest(a)
```

In this case, the combine operation will get real values from `source2`, and Dask futures. Downstream nodes would be free to operate on the futures, but more likely, the line should be:

```python
b = source2.combine_latest(a.gather())
```

2.4 Collections

Streamz high-level collection APIs are built on top of streamz.core, and bring special consideration to certain types of data:
1. **streamz.batch**: supports streams of lists of Python objects like tuples or dictionaries

2. **streamz.dataframe**: supports streams of Pandas/cudf dataframes or Pandas/cudf series. cudf support is in beta phase and has limited functionality as of cudf version 0.8

These high-level APIs help us handle common situations in data processing. They help us implement complex algorithms and also improve efficiency.

These APIs are built on the streamz core operations (map, accumulate, buffer, timed_window, …) which provide the building blocks to build complex pipelines but offer no help with what those functions should be. The higher-level APIs help to fill in this gap for common situations.

2.4.1 Conversion

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Stream.to_batch(**kwargs)</code></td>
<td>Convert a stream of lists to a Batch</td>
</tr>
<tr>
<td><code>Stream.to_dataframe(self, example)</code></td>
<td>Convert a stream of Pandas dataframes to a DataFrame</td>
</tr>
</tbody>
</table>

You can convert from core Stream objects to Batch, and DataFrame objects using the `.to_batch` and `.to_dataframe` methods. In each case we assume that the stream is a stream of batches (lists or tuples) or a list of Pandas dataframes.

```python
>>> batch = stream.to_batch()
>>> sdf = stream.to_dataframe()
```

To convert back from a Batch or a DataFrame to a `core.Stream` you can access the `.stream` property.

```python
>>> stream = sdf.stream
>>> stream = batch.stream
```

2.4.2 Example

We create a stream and connect it to a file object

```python
file = ...  # filename or file-like object
from streamz import Stream

source = Stream.from_textfile(file)
```

Our file produces line-delimited JSON serialized data on which we want to call `json.loads` to parse into dictionaries.

To reduce overhead we first batch our records up into 100-line batches and turn this into a Batch object. We provide our Batch object an example element that it will use to help it determine metadata.

```python
example = [{'name': 'Alice', 'x': 1, 'y': 2}]
lines = source.partition(100).to_batch(example=example)  # batches of 100 elements
records = lines.map(json.loads)  # convert lines to text.
```

We could have done the `.map(json.loads)` command on the original stream, but this way reduce overhead by applying this function to lists of items, rather than one item at a time.

Now we convert these batches of records into pandas dataframes and do some basic filtering and groupby-aggregations.
```
sdf = records.to_dataframe()
sdf = sdf[sdf.name == "Alice"]
sdf = sdf.groupby(sdf.x).y.mean()
```

The DataFrames satisfy a subset of the Pandas API, but now rather than operate on the data directly, they set up a pipeline to compute the data in an online fashion.

Finally we convert this back to a stream and push the results into a fixed-size deque.

```
from collections import deque
d = deque(maxlen=10)
sdf.stream.sink(d.append)
```

See Collections API for more information.

2.5 API

2.5.1 Stream

A Stream is an infinite sequence of data

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stream.connect</td>
<td>Connect this stream to a downstream element.</td>
</tr>
<tr>
<td>Stream.destroy</td>
<td>Disconnect this stream from any upstream sources.</td>
</tr>
<tr>
<td>Stream.disconnect</td>
<td>Disconnect this stream to a downstream element.</td>
</tr>
<tr>
<td>Stream.visualize</td>
<td>Render the computation of this object’s task graph using graphviz.</td>
</tr>
<tr>
<td>accumulate</td>
<td>Accumulate results with previous state.</td>
</tr>
<tr>
<td>buffer</td>
<td>Allow results to pile up at this point in the stream.</td>
</tr>
<tr>
<td>collect</td>
<td>Hold elements in a cache and emit them as a collection when flushed.</td>
</tr>
<tr>
<td>combine_latest</td>
<td>Combine multiple streams together to a stream of tuples</td>
</tr>
<tr>
<td>delay</td>
<td>Add a time delay to results.</td>
</tr>
<tr>
<td>filter</td>
<td>Only pass through elements that satisfy the predicate.</td>
</tr>
<tr>
<td>flatten</td>
<td>Flatten streams of lists or iterables into a stream of elements</td>
</tr>
<tr>
<td>map</td>
<td>Apply a function to every element in the stream.</td>
</tr>
<tr>
<td>partition</td>
<td>Partition stream into tuples of equal size</td>
</tr>
<tr>
<td>rate_limit</td>
<td>Limit the flow of data</td>
</tr>
<tr>
<td>scatter</td>
<td>Convert local stream to Dask Stream</td>
</tr>
<tr>
<td>sink</td>
<td>Apply a function on every element</td>
</tr>
<tr>
<td>slice</td>
<td>Get only some events in a stream by position.</td>
</tr>
<tr>
<td>sliding_window</td>
<td>Produce overlapping tuples of size n</td>
</tr>
<tr>
<td>starmap</td>
<td>Apply a function to every element in the stream, splayed out</td>
</tr>
<tr>
<td>timed_window</td>
<td>Emit a tuple of collected results every interval</td>
</tr>
<tr>
<td>union</td>
<td>Combine multiple streams into one</td>
</tr>
<tr>
<td>unique</td>
<td>Avoid sending through repeated elements</td>
</tr>
<tr>
<td>pluck</td>
<td>Select elements from elements in the stream.</td>
</tr>
</tbody>
</table>

Continued on next page
Table 11 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>zip(*upstreams,**kwargs)</td>
<td>Combine streams together into a stream of tuples</td>
</tr>
<tr>
<td>zip_latest(lossless, *upstreams,**kwargs)</td>
<td>Combine multiple streams together to a stream of tuples</td>
</tr>
</tbody>
</table>

Stream.connect(self, downstream)

Connect this stream to a downstream element.

Parameters

downstream: Stream The downstream stream to connect to

Stream.disconnect(self, downstream)

Disconnect this stream to a downstream element.

Parameters

downstream: Stream The downstream stream to disconnect from

Stream.destroy(self, streams=None)

Disconnect this stream from any upstream sources

Stream.emit(self, x, asynchronous=False)

Push data into the stream at this point

This is typically done only at source Streams but can theoretically be done at any point

Stream.frequencies(self,**kwargs)

Count occurrences of elements

Stream.register_api(modifier=<function identity at 0x7f57e7929400>)

Add callable to Stream API

This allows you to register a new method onto this class. You can use it as a decorator:

```python
>>> @Stream.register_api()
...     class foo(Stream):
...         ...
>>> Stream().foo(...) # this works now
```

It attaches the callable as a normal attribute to the class object. In doing so it respects inheritance (all subclasses of Stream will also get the foo attribute).

By default callables are assumed to be instance methods. If you like you can include modifiers to apply before attaching to the class as in the following case where we construct a staticmethod.

```python
>>> @Stream.register_api(staticmethod)
...     class foo(Stream):
...         ...
>>> Stream.foo(...) # Foo operates as a static method
```

Stream.sink_to_list(self)

Append all elements of a stream to a list as they come in

Examples
```python
>>> source = Stream()
>>> L = source.map(lambda x: 10 * x).sink_to_list()
>>> for i in range(5):
...    source.emit(i)
>>> L
[0, 10, 20, 30, 40]
```

Stream.update(self, x, who=None)

Stream.visualize(self, filename='mystream.png', **kwargs)

Render the computation of this object’s task graph using graphviz.

Requires graphviz to be installed.

Parameters

filename [str, optional] The name of the file to write to disk.

kwargs: Graph attributes to pass to graphviz like rankdir="LR"

2.5.2 Sources

<table>
<thead>
<tr>
<th>filenames(path[, poll_interval, start])</th>
<th>Stream over filenames in a directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>from_kafka(topics, consumer_params[...])</td>
<td>Accepts messages from Kafka</td>
</tr>
<tr>
<td>from_kafka_batched(topic, consumer_params[, ...])</td>
<td>Get messages from Kafka in batches</td>
</tr>
<tr>
<td>from_process(cmd[, open_kwargs, ...])</td>
<td>Messages from a running external process</td>
</tr>
<tr>
<td>from_textfile(f[, poll_interval, delimiter, ...])</td>
<td>Stream data from a text file</td>
</tr>
<tr>
<td>from_tcp(port[, delimiter, start, server_kwars])</td>
<td>Creates events by reading from a socket using tornado TCPServer</td>
</tr>
<tr>
<td>from_http_server(port[, path, start, ...])</td>
<td>Listen for HTTP POSTs on given port</td>
</tr>
</tbody>
</table>

2.5.3 DaskStream

DaskStream(*args, **kwargs) A Parallel stream using Dask

gather([upstream, upstreams, stream_name, ...]) Wait on and gather results from DaskStream to local Stream

2.5.4 Definitions

streamz.accumulate(upstream, func, start='--no-default--', returns_state=False, **kwargs)

Accumulate results with previous state

This performs running or cumulative reductions, applying the function to the previous total and the new element. The function should take two arguments, the previous accumulated state and the next element and it should return a new accumulated state. - state = func(previous_state, new_value) (returns_state=False) - state, result = func(previous_state, new_value) (returns_state=True)

where the new_state is passed to the next invocation. The state or result is emitted downstream for the two cases.

Parameters

func: callable

start: object Initial value, passed as the value of previous_state on the first invocation.
Defaults to the first submitted element

returns_state: boolean If true then func should return both the state and the value to emit If false then both values are the same, and func returns one value

kwargs: Keyword arguments to pass to func

Examples

A running total, producing triangular numbers

```python
>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + x).sink(print)
... for i in range(5):
...     source.emit(i)
0
1
3
6
10
```

A count of number of events (including the current one)

```python
>>> source = Stream()
>>> source.accumulate(lambda acc, x: acc + 1, start=0).sink(print)
... for _ in range(5):
...     source.emit(0)
1
2
3
4
5
```

Like the built-in “enumerate”.

```python
>>> source = Stream()
>>> source.accumulate(lambda acc, x: ((acc[0] + 1, x), (acc[0], x)), start=(0, 0), returns_state=True).sink(print)
... for i in range(3):
...     source.emit(0)
(0, 0)
(1, 0)
(2, 0)
```

streamz.buffer (upstream, n, **kwargs)
Allow results to pile up at this point in the stream

This allows results to buffer in place at various points in the stream. This can help to smooth flow through the system when backpressure is applied.

streamz.collect (upstream, cache=None, **kwargs)
Hold elements in a cache and emit them as a collection when flushed.
Examples

```python
>>> source1 = Stream()
>>> source2 = Stream()
>>> collector = collect(source1)
>>> collector.sink(print)
>>> source2.sink(collector.flush)
>>> source1.emit(1)
>>> source1.emit(2)
>>> source2.emit('anything')  # flushes collector
...
[1, 2]
```

`streamz.combine_latest(*upstreams, **kwargs)`

Combine multiple streams together to a stream of tuples

This will emit a new tuple of all of the most recent elements seen from any stream.

Parameters

- **emit_on** [stream or list of streams or None] only emit upon update of the streams listed. If None, emit on update from any stream

See also:

`zip`

`streamz.delay(upstream, interval, **kwargs)`

Add a time delay to results

`streamz.filter(upstream, predicate, *args, **kwargs)`

Only pass through elements that satisfy the predicate

Parameters

- **predicate** [function] The predicate. Should return True or False, where True means that the predicate is satisfied.
- **args** : The arguments to pass to the predicate.
- **kwargs**: Keyword arguments to pass to predicate

Examples

```python
>>> source = Stream()
>>> source.filter(lambda x: x % 2 == 0).sink(print)
>>> for i in range(5):
...    source.emit(i)
0
2
4
```

`streamz.flatten(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)`

Flatten streams of lists or iterables into a stream of elements

See also:

`partition`

2.5. API
Examples

```python
>>> source = Stream()
>>> source.flatten().sink(print)
>>> for x in [[1, 2, 3], [4, 5], [6, 7, 7]]:
...     source.emit(x)
1
2
3
4
5
6
7
```

`streamz.map(upstream, func, *args, **kwargs)`
Apply a function to every element in the stream

Parameters

- `func`: callable
- `*args`: The arguments to pass to the function.
- `**kwargs`: Keyword arguments to pass to `func`

Examples

```python
>>> source = Stream()
>>> source.map(lambda x: 2*x).sink(print)
>>> for i in range(5):
...     source.emit(i)
0
2
4
6
8
```

`streamz.partition(upstream, n, **kwargs)`
Partition stream into tuples of equal size

Examples

```python
>>> source = Stream()
>>> source.partition(3).sink(print)
>>> for i in range(10):
...     source.emit(i)
(0, 1, 2)
(3, 4, 5)
(6, 7, 8)
```

`streamz.rate_limit(upstream, interval, **kwargs)`
Limit the flow of data

This stops two elements of streaming through in an interval shorter than the provided value.

Parameters
interval: float Time in seconds

streamz.sink(upstream, func, *args, **kwargs)
Apply a function on every element

See also:

map
Stream.sink_to_list

Examples

```python
>>> source = Stream()
>>> L = list()
>>> source.sink(L.append)
>>> source.sink(print)
>>> source.emit(123)
123
123
>>> L
[123]
```

streamz.sliding_window(upstream, n, return_partial=True, **kwargs)
Produce overlapping tuples of size n

Parameters

return_partial [bool] If True, yield tuples as soon as any events come in, each tuple being smaller or equal to the window size. If False, only start yielding tuples once a full window has accrued.

Examples

```python
>>> source = Stream()
>>> source.sliding_window(3, return_partial=False).sink(print)
>>> for i in range(8):
...     source.emit(i)
(0, 1, 2)
(1, 2, 3)
(2, 3, 4)
(3, 4, 5)
(4, 5, 6)
(5, 6, 7)
```

streamz.Stream(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)
A Stream is an infinite sequence of data

Streams subscribe to each other passing and transforming data between them. A Stream object listens for updates from upstream, reacts to these updates, and then emits more data to flow downstream to all Stream objects that subscribe to it. Downstream Stream objects may connect at any point of a Stream graph to get a full view of the data coming off of that point to do with as they will.

Parameters
asynchronous: boolean or None Whether or not this stream will be used in asynchronous functions or normal Python functions. Leave as None if you don’t know. True will cause operations like emit to return awaitable Futures False will use an Event loop in another thread (starts it if necessary)

ensure_io_loop: boolean Ensure that some IOLoop will be created. If asynchronous is None or False then this will be in a separate thread, otherwise it will be IOLoop.current

Examples

```python
>>> def inc(x):
...     return x + 1

>>> source = Stream()  # Create a stream object
>>> s = source.map(inc).map(str)  # Subscribe to make new streams
>>> s.sink(print)  # take an action whenever an element reaches the end

>>> L = list()
>>> s.sink(L.append)  # or take multiple actions (streams can branch)

>>> for i in range(5):
...     source.emit(i)  # push data in at the source
...     '1'
...     '2'
...     '3'
...     '4'
...     '5'
>>> L  # and the actions happen at the sinks
['1', '2', '3', '4', '5']
```

streamz.timed_window(upstream, interval, **kwargs)
Emit a tuple of collected results every interval
Every interval seconds this emits a tuple of all of the results seen so far. This can help to batch data coming off of a high-volume stream.

streamz.union(*upstreams, **kwargs)
Combine multiple streams into one
Every element from any of the upstream streams will immediately flow into the output stream. They will not be combined with elements from other streams.

See also:
Stream.zip
Stream.combine_latest

streamz.unique(upstream, maxsize=None, key=<function identity>, hashable=True, **kwargs)
Avoid sending through repeated elements
This deduplicates a stream so that only new elements pass through. You can control how much of a history is stored with the history= parameter. For example setting history=1 avoids sending through elements when one is repeated right after the other.

Parameters

history [int or None, optional] number of stored unique values to check against
streamz Documentation, Release 0.5.2

key [function, optional] Function which returns a representation of the incoming data. For example key=lambda x: x['a'] could be used to allow only pieces of data with unique 'a' values to pass through.

hashable [bool, optional] If True then data is assumed to be hashable, else it is not. This is used for determining how to cache the history, if hashable then either dicts or LRU caches are used, otherwise a deque is used. Defaults to True.

Examples

```python
>>> source = Stream()
>>> source.unique(history=1).sink(print)
>>> for x in [1, 1, 2, 2, 2, 1, 3):
...    source.emit(x)
1
2
1
3
```

streamz.pluck(upstream, pick, **kwargs)
Select elements from elements in the stream.

Parameters

pluck [object, list] The element(s) to pick from the incoming element in the stream If an instance of list, will pick multiple elements.

Examples

```python
>>> source = Stream()
>>> source.pluck([0, 3]).sink(print)
>>> for x in [[1, 2, 3, 4], [4, 5, 6, 7], [8, 9, 10, 11]]:
...    source.emit(x)
(1, 4)
(4, 7)
(8, 11)
```

```python
>>> source = Stream()
>>> source.pluck('name').sink(print)
>>> for x in [{'name': 'Alice', 'x': 123}, {'name': 'Bob', 'x': 456}):
...    source.emit(x)
'Alice'
'Bob'
```

streamz.zip(*upstreams, **kwargs)
Combine streams together into a stream of tuples

We emit a new tuple once all streams have produce a new tuple.

See also:

- combine_latest
- zip_latest
streamz.zip_latest *(lossless, *upstreams, **kwargs)*

Combine multiple streams together to a stream of tuples

The stream which this is called from is lossless. All elements from the lossless stream are emitted regardless of when they came in. This will emit a new tuple consisting of an element from the lossless stream paired with the latest elements from the other streams. Elements are only emitted when an element on the lossless stream are received, similar to `combine_latest` with the `emit_on` flag.

See also:

- `Stream.combine_latest`
- `Stream.zip`

streamz.filenames *(path, poll_interval=0.1, start=False, **kwargs)*

Stream over filenames in a directory

Parameters

- **path**: string Directory path or globstring over which to search for files
- **poll_interval**: Number Seconds between checking path
- **start**: bool (False) Whether to start running immediately; otherwise call stream.start() explicitly.

Examples

```python
>>> source = Stream.filenames('path/to/dir')  # doctest: +SKIP
```

```python
>>> source = Stream.filenames('path/to/*.csv', poll_interval=0.500)  # doctest: +SKIP
```

streamz.from_kafka *(topics, consumer_params, poll_interval=0.1, start=False, **kwargs)*

Accepts messages from Kafka

Uses the confluent-kafka library, https://docs.confluent.io/current/clients/confluent-kafka-python/

Parameters

- **topics**: list of str Labels of Kafka topics to consume from
- **consumer_params**: dict Settings to set up the stream, see https://docs.confluent.io/current/clients/confluent-kafka-python/#configuration https://github.com/edenhill/librdkafka/blob/master/CONFIGURATION.md Examples: bootstrap.servers, Connection string(s) (host:port) by which to reach Kafka; group.id, Identity of the consumer. If multiple sources share the same group, each message will be passed to only one of them.
- **poll_interval**: number Seconds that elapse between polling Kafka for new messages
- **start**: bool (False) Whether to start polling upon instantiation

Examples

```python
>>> source = Stream.from_kafka(['mytopic'],
...                           {'bootstrap.servers': 'localhost:9092',
...                            'group.id': 'streamz'})  # doctest: +SKIP
```

streamz.from_textfile *(f, poll_interval=0.1, delimiter='\n', start=False, from_end=False, **kwargs)*

Stream data from a text file

26 Chapter 2. Related Work
Parameters

- **f:** file or string Source of the data. If string, will be opened.
- **poll_interval:** Number Interval to poll file for new data in seconds
- **delimiter:** str Character(s) to use to split the data into parts
- **start:** bool Whether to start running immediately; otherwise call stream.start() explicitly.
- **from_end:** bool Whether to begin streaming from the end of the file (i.e., only emit lines appended after the stream starts).

Returns

- Stream

Examples

```python
>>> source = Stream.from_textfile('myfile.json')  # doctest: +SKIP
>>> js.map(json.loads).pluck('value').sum().sink(print)  # doctest: +SKIP
>>> source.start()  # doctest: +SKIP
```

`streamz.dask.DaskStream(*args, **kwargs)`

A Parallel stream using Dask

This object is fully compliant with the `streamz.core.Stream` object but uses a Dask client for execution. Operations like map and accumulate submit functions to run on the Dask instance using `dask.distributed.Client.submit` and pass around Dask futures. Time-based operations like `timed_window`, `buffer`, and so on operate as normal.

Typically one transfers between normal Stream and DaskStream objects using the `Stream.scatter()` and `DaskStream.gather()` methods.

See also:

- `dask.distributed.Client`

Examples

```python
>>> from dask.distributed import Client

>>> client = Client()

>>> from streamz import Stream

>>> source = Stream()

>>> source.scatter().map(func).accumulate(binop).gather().sink(...)```

`streamz.dask.gather(upstream=None, upstreams=None, stream_name=None, loop=None, asynchronous=None, ensure_io_loop=False)`

Wait on and gather results from DaskStream to local Stream

This waits on every result in the stream and then gathers that result back to the local stream. Warning, this can restrict parallelism. It is common to combine a `gather()` node with a `buffer()` to allow unfinished futures to pile up.

See also:

- `buffer`
### 2.6 Collections API

#### 2.6.1 Collections

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streaming</td>
<td>Superclass for streaming collections</td>
</tr>
<tr>
<td>Streaming.map_partitions</td>
<td>Map a function across all batch elements of this stream</td>
</tr>
<tr>
<td>Streaming.accumulate_partitions</td>
<td>Accumulate a function with state across batch elements</td>
</tr>
<tr>
<td>Streaming.verify</td>
<td>Verify elements that pass through this stream</td>
</tr>
</tbody>
</table>

#### 2.6.2 Batch

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Batch</td>
<td>A Stream of tuples or lists</td>
</tr>
<tr>
<td>Batch.filter</td>
<td>Filter elements by a predicate</td>
</tr>
<tr>
<td>Batch.map</td>
<td>Map a function across all elements</td>
</tr>
<tr>
<td>Batch.pluck</td>
<td>Pick a field out of all elements</td>
</tr>
<tr>
<td>Batch.to_dataframe</td>
<td>Convert to a streaming dataframe</td>
</tr>
<tr>
<td>Batch.to_stream</td>
<td>Concatenate batches and return base Stream</td>
</tr>
</tbody>
</table>

#### 2.6.3 Dataframes

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>DataFrame</td>
<td>A Streaming dataframe</td>
</tr>
<tr>
<td>DataFrame.groupby</td>
<td>Groupby aggregations on streaming dataframes</td>
</tr>
<tr>
<td>DataFrame.rolling</td>
<td>Compute rolling aggregations</td>
</tr>
<tr>
<td>DataFrame.assign</td>
<td>Assign new columns to this dataframe</td>
</tr>
<tr>
<td>DataFrame.sum</td>
<td>Sum frame</td>
</tr>
<tr>
<td>DataFrame.mean</td>
<td>Average</td>
</tr>
<tr>
<td>DataFrame.cumsum</td>
<td>Cumulative sum</td>
</tr>
<tr>
<td>DataFrame.cumprod</td>
<td>Cumulative product</td>
</tr>
<tr>
<td>DataFrame.cummin</td>
<td>Cumulative minimum</td>
</tr>
<tr>
<td>DataFrame.cummax</td>
<td>Cumulative maximum</td>
</tr>
</tbody>
</table>

GroupBy | Groupby aggregations on streaming dataframes |
--------|-------------------------------------------|
GroupBy.count | Groupby-count |
GroupBy.mean | Groupby-mean |
GroupBy.size | Groupby-size |
GroupBy.std | Groupby-std |
GroupBy.sum | Groupby-sum |

Continued on next page
Table 17 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GroupBy.var(self[, ddof])</code></td>
<td>Groupby-variance</td>
</tr>
<tr>
<td><code>Rolling(sdf, window, min_periods)</code></td>
<td>Rolling aggregations</td>
</tr>
<tr>
<td><code>Rolling.aggregate(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling aggregation</td>
</tr>
<tr>
<td><code>Rolling.count(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling count</td>
</tr>
<tr>
<td><code>Rolling.max(self)</code></td>
<td>Rolling maximum</td>
</tr>
<tr>
<td><code>Rolling.mean(self)</code></td>
<td>Rolling mean</td>
</tr>
<tr>
<td><code>Rolling.median(self)</code></td>
<td>Rolling median</td>
</tr>
<tr>
<td><code>Rolling.min(self)</code></td>
<td>Rolling minimum</td>
</tr>
<tr>
<td><code>Rolling.quantile(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling quantile</td>
</tr>
<tr>
<td><code>Rolling.std(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling standard deviation</td>
</tr>
<tr>
<td><code>Rolling.sum(self)</code></td>
<td>Rolling sum</td>
</tr>
<tr>
<td><code>Rolling.var(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling variance</td>
</tr>
<tr>
<td><code>DataFrame.window(self[, n, value])</code></td>
<td>Sliding window operations</td>
</tr>
<tr>
<td><code>Window.apply(self, func)</code></td>
<td>Apply an arbitrary function over each window of data</td>
</tr>
<tr>
<td><code>Window.count(self)</code></td>
<td>Count elements within window</td>
</tr>
<tr>
<td><code>Window.groupby(self, other)</code></td>
<td>Groupby-aggregations within window</td>
</tr>
<tr>
<td><code>Window.sum(self)</code></td>
<td>Sum elements within window</td>
</tr>
<tr>
<td><code>Window.size</code></td>
<td>Number of elements within window</td>
</tr>
<tr>
<td><code>Window.std(self[, ddof])</code></td>
<td>Compute standard deviation of elements within window</td>
</tr>
<tr>
<td><code>Window.var(self[, ddof])</code></td>
<td>Compute variance of elements within window</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Rolling.aggregate(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling aggregation</td>
</tr>
<tr>
<td><code>Rolling.count(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling count</td>
</tr>
<tr>
<td><code>Rolling.max(self)</code></td>
<td>Rolling maximum</td>
</tr>
<tr>
<td><code>Rolling.mean(self)</code></td>
<td>Rolling mean</td>
</tr>
<tr>
<td><code>Rolling.median(self)</code></td>
<td>Rolling median</td>
</tr>
<tr>
<td><code>Rolling.min(self)</code></td>
<td>Rolling minimum</td>
</tr>
<tr>
<td><code>Rolling.quantile(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling quantile</td>
</tr>
<tr>
<td><code>Rolling.std(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling standard deviation</td>
</tr>
<tr>
<td><code>Rolling.sum(self)</code></td>
<td>Rolling sum</td>
</tr>
<tr>
<td><code>Rolling.var(self, \*\*args, \*\*kwargs)</code></td>
<td>Rolling variance</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>Random([freq, interval, dask])</code></td>
<td>A streaming dataframe of random data</td>
</tr>
</tbody>
</table>

### 2.6.4 Details

```python
class streamz.collection.Streaming(stream=None, example=None, stream_type=None)
```

Superclass for streaming collections

Do not create this class directly, use one of the subclasses instead.

**Parameters**

- **stream**: `streamz.Stream`

- **example**: `object`  An object to represent an example element of this stream

**See also:**

---

2.6. Collections API
**streamz.dataframe.StreamingDataFrame**

**streamz.dataframe.StreamingBatch**

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulate_partitions</td>
<td>Accumulate a function with state across batch elements</td>
</tr>
<tr>
<td>map_partitions</td>
<td>Map a function across all batch elements of this stream</td>
</tr>
<tr>
<td>verify</td>
<td>Verify elements that pass through this stream</td>
</tr>
</tbody>
</table>

```python
accumulate_partitions(self, func, *args, **kwargs)
```

Accumulate a function with state across batch elements

See also:

*Streaming.map_partitions*

```python
static map_partitions(func, *args, **kwargs)
```

Map a function across all batch elements of this stream

The output stream type will be determined by the action of that function on the example

See also:

*Streaming.accumulate_partitions*

```python
verify(self, x)
```

Verify elements that pass through this stream

```python
class streamz.batch.Batch(stream=None, example=None)
```

A Stream of tuples or lists

This streaming collection manages batches of Python objects such as lists of text or dictionaries. By batching many elements together we reduce overhead from Python.

This library is typically used at the early stages of data ingestion before handing off to streaming dataframes

**Examples**

```python
>>> text = Streaming.from_file(myfile) # doctest: +SKIP
>>> b = text.partition(100).map(json.loads) # doctest: +SKIP
```

**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>accumulate_partitions</td>
<td>Accumulate a function with state across batch elements</td>
</tr>
<tr>
<td>filter</td>
<td>Filter elements by a predicate</td>
</tr>
</tbody>
</table>

Continued on next page
Table 23 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>map(self, func, \*\*kwargs)</code></td>
<td>Map a function across all elements</td>
</tr>
<tr>
<td><code>map_partitions(func, \*\*kwargs)</code></td>
<td>Map a function across all batch elements of this stream</td>
</tr>
<tr>
<td><code>pluck(self, ind)</code></td>
<td>Pick a field out of all elements</td>
</tr>
<tr>
<td><code>sum(self)</code></td>
<td>Sum elements</td>
</tr>
<tr>
<td><code>to_dataframe(self)</code></td>
<td>Convert to a streaming dataframe</td>
</tr>
<tr>
<td><code>to_stream(self)</code></td>
<td>Concatenate batches and return base Stream</td>
</tr>
<tr>
<td><code>verify(self, x)</code></td>
<td>Verify elements that pass through this stream</td>
</tr>
</tbody>
</table>

accumulate_partitions (self, func, *args, **kwargs)

Accumulate a function with state across batch elements

See also:

Streaming.map_partitions

filter (self, predicate)

Filter elements by a predicate

map (self, func, **kwargs)

Map a function across all elements

static map_partitions (func, *args, **kwargs)

Map a function across all batch elements of this stream

The output stream type will be determined by the action of that function on the example

See also:

Streaming.accumulate_partitions

pluck (self, ind)

Pick a field out of all elements

sum (self)

Sum elements

to_dataframe (self)

Convert to a streaming dataframe

This calls `pd.DataFrame` on all list-elements of this stream

to_stream (self)

Concatenate batches and return base Stream

Returned stream will be composed of single elements

verify (self, x)

Verify elements that pass through this stream

class streamz.dataframe.DataFrame(*args, **kwargs)

A Streaming dataframe

This is a logical collection over a stream of Pandas dataframes. Operations on this object will translate to the appropriate operations on the underlying Pandas dataframes.

See also:
Series

Attributes
- columns
- dtypes
- index
- **size** size of frame

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>accumulate_partitions</code></td>
<td>Accumulate a function with state across batch elements</td>
</tr>
<tr>
<td><code>assign</code></td>
<td>Assign new columns to this dataframe</td>
</tr>
<tr>
<td><code>count</code></td>
<td>Count of frame</td>
</tr>
<tr>
<td><code>cummax</code></td>
<td>Cumulative maximum</td>
</tr>
<tr>
<td><code>cummin</code></td>
<td>Cumulative minimum</td>
</tr>
<tr>
<td><code>cumprod</code></td>
<td>Cumulative product</td>
</tr>
<tr>
<td><code>cumsum</code></td>
<td>Cumulative sum</td>
</tr>
<tr>
<td><code>groupby</code></td>
<td>Groupby aggregations</td>
</tr>
<tr>
<td><code>map_partitions</code></td>
<td>Map a function across all batch elements of this stream</td>
</tr>
<tr>
<td><code>mean</code></td>
<td>Average</td>
</tr>
<tr>
<td><code>reset_index</code></td>
<td>Reset Index</td>
</tr>
<tr>
<td><code>rolling</code></td>
<td>Compute rolling aggregations</td>
</tr>
<tr>
<td><code>round</code></td>
<td>Round elements in frame</td>
</tr>
<tr>
<td><code>set_index</code></td>
<td>Set Index</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>Sum frame</td>
</tr>
<tr>
<td><code>tail</code></td>
<td>Round elements in frame</td>
</tr>
<tr>
<td><code>to_frame</code></td>
<td>Convert to a streaming dataframe</td>
</tr>
<tr>
<td><code>verify</code></td>
<td>Verify consistency of elements that pass through this stream</td>
</tr>
<tr>
<td><code>window</code></td>
<td>Sliding window operations</td>
</tr>
</tbody>
</table>

### accumulate_partitions

`accumulate_partitions(self, func, args, ...)`

Accumulate a function with state across batch elements

See also:

Streaming.map_partitions

### assign

`assign(self, **kwargs)`

Assign new columns to this dataframe
Alternatively use setitem syntax

**Examples**

```python
>>> sdf = sdf.assign(z=sdf.x + sdf.y) # doctest: +SKIP
>>> sdf['z'] = sdf.x + sdf.y # doctest: +SKIP
```

**count** *(self)*
Count of frame

**cummax** *(self)*
Cumulative maximum

**cummin** *(self)*
Cumulative minimum

**cumprod** *(self)*
Cumulative product

**cumsum** *(self)*
Cumulative sum

**groupby** *(self, other)*
Groupby aggregations

**static map_partitions** *(func, *args, **kwargs)*
Map a function across all batch elements of this stream
The output stream type will be determined by the action of that function on the example

**See also:**

```
Streaming.accumulate_partitions
```

**mean** *(self)*
Average

**reset_index** *(self)*
Reset Index

**rolling** *(self, window, min_periods=1)*
Compute rolling aggregations
When followed by an aggregation method like **sum**, **mean**, or **std** this produces a new Streaming dataframe whose values are aggregated over that window.
The window parameter can be either a number of rows or a timedelta like ‘2 minutes’ in which case the index should be a datetime index.
This operates by keeping enough of a backlog of records to maintain an accurate stream. It performs a copy at every added dataframe. Because of this it may be slow if the rolling window is much larger than the average stream element.

**Parameters**

- **window**: int or timedelta  Window over which to roll

**Returns**

- Rolling object

**See also:**
**DataFrame.window** more generic window operations

```python
df.window(n=10).sum() # sum of the last ten elements
```

or over an index value range (index must be monotonic):

```python
df.window(value='2h').mean() # average over the last two hours
```

Windowed dataframes support all normal arithmetic, aggregations, and groupby-aggregations.

See also:

**DataFrame.rolling** mimic’s Pandas rolling aggregations

**Examples**

```python
>>> df.window(n=10).std()
>>> df.window(value='2h').count()
```

```python
>>> w = df.window(n=100)
>>> w.groupby(w.name).amount.sum()
>>> w.groupby(w.x % 10).y.var()
```

### class streamz.dataframe.Rolling(sdf, window, min_periods)

Rolling aggregations

This intermediate class enables rolling aggregations across either a fixed number of rows or a time window.

**Examples**

```python
>>> sdf.rolling(10).x.mean() # doctest: +SKIP
>>> sdf.rolling('100ms').x.mean() # doctest: +SKIP
```
**Methods**

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>aggregate</code></td>
<td>Rolling aggregation</td>
</tr>
<tr>
<td><code>count</code></td>
<td>Rolling count</td>
</tr>
<tr>
<td><code>max</code></td>
<td>Rolling maximum</td>
</tr>
<tr>
<td><code>median</code></td>
<td>Rolling median</td>
</tr>
<tr>
<td><code>min</code></td>
<td>Rolling minimum</td>
</tr>
<tr>
<td><code>quantile</code></td>
<td>Rolling quantile</td>
</tr>
<tr>
<td><code>std</code></td>
<td>Rolling standard deviation</td>
</tr>
<tr>
<td><code>sum</code></td>
<td>Rolling sum</td>
</tr>
<tr>
<td><code>var</code></td>
<td>Rolling variance</td>
</tr>
</tbody>
</table>

**class streamz.dataframe.Window**(self, n=None, value=None)

Windowed aggregations

This provides a set of aggregations that can be applied over a sliding window of data.

See also:

- `DataFrame.window` contains full docstring

**Attributes**

- columns
- dtypes
- example
- index
**size** Number of elements within window

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>apply()</code></td>
<td>Apply an arbitrary function over each window of data</td>
</tr>
<tr>
<td><code>count()</code></td>
<td>Count elements within window</td>
</tr>
<tr>
<td><code>groupby()</code></td>
<td>Groupby aggregations within window</td>
</tr>
<tr>
<td><code>mean()</code></td>
<td>Average elements within window</td>
</tr>
<tr>
<td><code>std()</code></td>
<td>Compute standard deviation of elements within window</td>
</tr>
<tr>
<td><code>sum()</code></td>
<td>Sum elements within window</td>
</tr>
<tr>
<td><code>value_counts()</code></td>
<td>Count groups of elements within window</td>
</tr>
<tr>
<td><code>var()</code></td>
<td>Compute variance of elements within window</td>
</tr>
</tbody>
</table>

#### aggregate methods
- `full`
- `map_partitions`
- `reset_index`

**apply**(self, func)

Apply an arbitrary function over each window of data

**count**(self)

Count elements within window

**groupby**(self, other)

Groupby aggregations within window

**mean**(self)

Average elements within window

**std**(self[, ddof])

Compute standard deviation of elements within window

**sum**(self)

Sum elements within window

**value_counts**(self)

Count groups of elements within window

**var**(self[, ddof])

Compute variance of elements within window

**class** streamz.dataframe.GroupBy(root, grouper, index=None)

Groupby aggregations on streaming dataframes

### Methods
### count(self)
Groupby-count

### mean(self)
Groupby-mean

### size(self)
Groupby-size

### std(self, ddof)
Groupby-std

### sum(self)
Groupby-sum

### var(self, ddof=1)
Groupby-variance

```python
class streamz.dataframe.Random(freq='100ms', interval='500ms', dask=False)
```
A streaming dataframe of random data

The x column is uniformly distributed. The y column is poisson distributed. The z column is normally distributed.

This class is experimental and will likely be removed in the future

**Parameters**

- **freq**: timedelta The time interval between records
- **interval**: timedelta The time interval between new dataframes, should be significantly larger than freq

**Attributes**

- columns
- dtypes
- index
- size size of frame

**Methods**

- **accumulate_partitions(self, func, \*\*kwargs)** Accumulate a function with state across batch elements
- **assign(self, \*\*kwargs)** Assign new columns to this dataframe
- **count(self)** Count of frame
- **cummax(self)** Cumulative maximum
- **cummin(self)** Cumulative minimum

Continued on next page
Table 28 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cumprod(self)</code></td>
<td>Cumulative product</td>
</tr>
<tr>
<td><code>cumsum(self)</code></td>
<td>Cumulative sum</td>
</tr>
<tr>
<td><code>groupby(self, other)</code></td>
<td>Groupby aggregations</td>
</tr>
<tr>
<td><code>map_partitions(func, *args, **kwargs)</code></td>
<td>Map a function across all batch elements of this stream</td>
</tr>
<tr>
<td><code>mean(self)</code></td>
<td>Average</td>
</tr>
<tr>
<td><code>reset_index(self)</code></td>
<td>Reset Index</td>
</tr>
<tr>
<td><code>rolling(self, window[, min_periods])</code></td>
<td>Compute rolling aggregations</td>
</tr>
<tr>
<td><code>round(self[, decimals])</code></td>
<td>Round elements in frame</td>
</tr>
<tr>
<td><code>set_index(self, index, **kwargs)</code></td>
<td>Set Index</td>
</tr>
<tr>
<td><code>sum(self)</code></td>
<td>Sum frame</td>
</tr>
<tr>
<td><code>tail(self[, n])</code></td>
<td>Round elements in frame</td>
</tr>
<tr>
<td><code>to_frame(self)</code></td>
<td>Convert to a streaming dataframe</td>
</tr>
<tr>
<td><code>verify(self, x)</code></td>
<td>Verify consistency of elements that pass through this stream</td>
</tr>
<tr>
<td><code>window(self[, n, value])</code></td>
<td>Sliding window operations</td>
</tr>
</tbody>
</table>

2.7 Asynchronous Computation

This section is only relevant if you want to use time-based functionality. If you are only using operations like map and accumulate then you can safely skip this section.

When using time-based flow control like `rate_limit`, `delay`, or `timed_window` Streamz relies on the Tornado framework for concurrency. This allows us to handle many concurrent operations cheaply and consistently within a single thread. However, this also adds complexity and requires some understanding of asynchronous programming. There are a few different ways to use Streamz with a Tornado event loop.

We give a few examples below that all do the same thing, but with different styles. In each case we use the following toy functions:

```python
from tornado import gen
import time

def increment(x):
 """ A blocking increment function
 Simulates a computational function that was not designed to work asynchronously
 ""
 time.sleep(0.1)
 return x + 1

@gen.coroutine
def write(x):
 # Function to write to a stream
```

(continues on next page)
""" A non-blocking write function

Simulates writing to a database asynchronously
"""
yield gen.sleep(0.2)
print(x)

2.7.1 Within the Event Loop

You may have an application that runs strictly within an event loop.

```python
from streamz import Stream
from tornado.ioloop import IOLoop

@gen.coroutine
def f():
 source = Stream(asynchronous=True) # tell the stream we're working asynchronously
 source.map(increment).rate_limit(0.500).sink(write)

 for x in range(10):
 yield source.emit(x)

IOLoop().run_sync(f)
```

We call Stream with the `asynchronous=True` keyword, informing it that it should expect to operate within an event loop. This ensures that calls to `emit` return Tornado futures rather than block. We wait on results using `yield`.

```python
yield source.emit(x) # waits until the pipeline is ready
```

This would also work with async-await syntax in Python 3

```python
from streamz import Stream
from tornado.ioloop import IOLoop

async def f():
 source = Stream(asynchronous=True) # tell the stream we're working asynchronously
 source.map(increment).rate_limit(0.500).sink(write)

 for x in range(10):
 await source.emit(x)

IOLoop().run_sync(f)
```

2.7.2 Event Loop on a Separate Thread

Sometimes the event loop runs on a separate thread. This is common when you want to support interactive workloads (the user needs their own thread for interaction) or when using Dask (next section).

```python
from streamz import Stream

source = Stream(asynchronous=False) # starts IOLoop in separate thread
source.map(increment).rate_limit('500ms').sink(write)
```

(continues on next page)
for x in range(10):
    source.emit(x)

In this case we pass asynchronous=False to inform the stream that it is expected to perform time-based computation (our write function is a coroutine) but that it should not expect to run in an event loop, and so needs to start its own in a separate thread. Now when we call source.emit normally without using yield or await the emit call blocks, waiting on a coroutine to finish within the IOLoop.

All functions here happen on the IOLoop. This is good for consistency, but can cause other concurrent applications to become unresponsive if your functions (like increment) block for long periods of time. You might address this by using Dask (see below) which will offload these computations onto separate threads or processes.

### 2.7.3 Using Dask

Dask is a parallel computing library that uses Tornado for concurrency and threads for computation. The DaskStream object is a drop-in replacement for Stream (mostly). Typically we create a Dask client, and then scatter a local Stream to become a DaskStream.

```python
from dask.distributed import Client
client = Client(processes=False) # starts thread pool, IOLoop in separate thread

from streamz import Stream
source = Stream()
(source.scatter() # scatter local elements to cluster, creating a DaskStream
 .map(increment) # map a function remotely
 .buffer(5) # allow five futures to stay on the cluster at any time
 .gather() # bring results back to local process
 .sink(write)) # call write locally

for x in range(10):
 source.emit(x)
```

This operates very much like the synchronous case in terms of coding style (no @gen.coroutine or yield) but does computations on separate threads. This also provides parallelism and access to a dashboard at http://localhost:8787/status.

### 2.7.4 Asynchronous Dask

Dask can also operate within an event loop if preferred. Here you can get the non-blocking operation within an event loop while also offloading computations to separate threads.

```python
from dask.distributed import Client
from tornado.ioloop import IOLoop

async def f():
 client = await Client(processes=False, asynchronous=True)
 source = Stream(asynchronous=True)
 source.scatter().map(increment).rate_limit('500ms').gather().sink(write)

 for x in range(10):
 await source.emit(x)

IOLoop().run_sync(f)
```
A
accumulate() (in module streamz), 19
accumulate_partitions() (streamz.batch.Batch method), 31
accumulate_partitions() (streamz.collection.Streaming method), 30
accumulate_partitions() (streamz.dataframe.DataFrame method), 32
aggregate() (streamz.dataframe.Rolling method), 35
apply() (streamz.dataframe.Window method), 36
assign() (streamz.dataframe.DataFrame method), 32
B
Batch (class in streamz.batch), 30
buffer() (in module streamz), 20
C
collect() (in module streamz), 20
combine_latest() (in module streamz), 21
connect() (streamz.Stream method), 18
count() (streamz.dataframe.DataFrame method), 33
count() (streamz.dataframe.GroupBy method), 37
count() (streamz.dataframe.Rolling method), 35
count() (streamz.dataframe.Window method), 36
cummax() (streamz.dataframe.DataFrame method), 33
cummin() (streamz.dataframe.DataFrame method), 33
cumprod() (streamz.dataframe.DataFrame method), 33
cumsum() (streamz.dataframe.DataFrame method), 33
D
DaskStream() (in module streamz.dask), 27
DataFrame (class in streamz.dataframe), 31
delay() (in module streamz), 31
destroy() (streamz.Stream method), 18
disconnect() (streamz.Stream method), 18
E
emit() (streamz.Stream method), 18
F
filenames() (in module streamz), 26
filter() (in module streamz), 21
filter() (streamz.batch.Batch method), 31
flatten() (in module streamz), 21
frequencies() (streamz.Stream method), 18
from_kafka() (in module streamz), 26
from_textfile() (in module streamz), 26
G
gather() (in module streamz.dask), 27
GroupBy (class in streamz.dataframe), 36
groupby() (streamz.dataframe.DataFrame method), 33
groupby() (streamz.dataframe.Window method), 36
M
map() (in module streamz), 22
map() (streamz.batch.Batch method), 31
map_partitions() (streamz.batch.Batch static method), 31
map_partitions() (streamz.collection.Streaming static method), 30
map_partitions() (streamz.dataframe.DataFrame static method), 33
max() (streamz.dataframe.Rolling method), 35
mean() (streamz.dataframe.DataFrame method), 33
mean() (streamz.dataframe.GroupBy method), 37
mean() (streamz.dataframe.Rolling method), 35
mean() (streamz.dataframe.Window method), 36
median() (streamz.dataframe.Rolling method), 35
min() (streamz.dataframe.Rolling method), 35
P
partition() (in module streamz), 22
pluck() (in module streamz), 25
pluck() (streamz.batch.Batch method), 31
Q
quantile() (streamz.dataframe.Rolling method), 35
R
Random (class in streamz.dataframe), 37
rate_limit() (in module streamz), 22
register_api() (streamz.Stream class method), 18
reset_index() (streamz.dataframe.DataFrame method), 33
Rolling (class in streamz.dataframe), 34
rolling() (streamz.dataframe.DataFrame method), 33
round() (streamz.dataframe.DataFrame method), 34

S
set_index() (streamz.dataframe.DataFrame method), 34
sink() (in module streamz), 23
sink_to_list() (streamz.Stream method), 18
size (streamz.dataframe.DataFrame attribute), 34
size (streamz.dataframe.Window attribute), 36
size() (streamz.dataframe.GroupBy method), 37
sliding_window() (in module streamz), 23
std() (streamz.dataframe.GroupBy method), 37
std() (streamz.dataframe.Rolling method), 35
std() (streamz.dataframe.Window method), 36
Stream() (in module streamz), 23
Streaming (class in streamz.collection), 29
sum() (streamz.batch.Batch method), 31
sum() (streamz.dataframe.DataFrame method), 34
sum() (streamz.dataframe.GroupBy method), 37
sum() (streamz.dataframe.Rolling method), 35
sum() (streamz.dataframe.Window method), 36

T
tail() (streamz.dataframe.DataFrame method), 34
timed_window() (in module streamz), 24
to_dataframe() (streamz.batch.Batch method), 31
to_frame() (streamz.dataframe.DataFrame method), 34
to_stream() (streamz.batch.Batch method), 31

U
union() (in module streamz), 24
unique() (in module streamz), 24
update() (streamz.Stream method), 19

V
value_counts() (streamz.dataframe.Window method), 36
var() (streamz.dataframe.GroupBy method), 37
var() (streamz.dataframe.Rolling method), 35
var() (streamz.dataframe.Window method), 36
verify() (streamz.batch.Batch method), 31
verify() (streamz.collection.Streaming method), 30
verify() (streamz.dataframe.DataFrame method), 34

visualize() (streamz.Stream method), 19

W
Window (class in streamz.dataframe), 35
window() (streamz.dataframe.DataFrame method), 34

Z
zip() (in module streamz), 25
zip_latest() (in module streamz), 25