snakePipes Documentation

Release 1.3.1

MPI-IE

Oct 10, 2019
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Below is the list of pipelines available in snakePipes</td>
<td>3</td>
</tr>
<tr>
<td>2 Quick start</td>
<td>5</td>
</tr>
<tr>
<td>3 Running your own analysis</td>
<td>7</td>
</tr>
<tr>
<td>4 Citation</td>
<td>9</td>
</tr>
<tr>
<td>5 Help and Support</td>
<td>11</td>
</tr>
<tr>
<td>6 Contents:</td>
<td>13</td>
</tr>
<tr>
<td>6.1 Setting up snakePipes</td>
<td>13</td>
</tr>
<tr>
<td>6.2 Running snakePipes</td>
<td>18</td>
</tr>
<tr>
<td>6.3 Advanced usage of snakePipes</td>
<td>22</td>
</tr>
<tr>
<td>6.4 createIndices</td>
<td>26</td>
</tr>
<tr>
<td>6.5 DNA-mapping</td>
<td>30</td>
</tr>
<tr>
<td>6.6 ChIP-seq</td>
<td>36</td>
</tr>
<tr>
<td>6.7 ATAC-seq</td>
<td>43</td>
</tr>
<tr>
<td>6.8 HiC</td>
<td>50</td>
</tr>
<tr>
<td>6.9 preprocessing</td>
<td>57</td>
</tr>
<tr>
<td>6.10 RNA-seq</td>
<td>62</td>
</tr>
<tr>
<td>6.11 scRNA-seq</td>
<td>71</td>
</tr>
<tr>
<td>6.12 WGBS</td>
<td>80</td>
</tr>
<tr>
<td>6.13 snakePipes News</td>
<td>89</td>
</tr>
<tr>
<td>7 Indices and tables</td>
<td>93</td>
</tr>
</tbody>
</table>
snakePipes are pipelines built using snakemake and python for the analysis of epigenomic datasets.
BELOW IS THE LIST OF PIPELINES AVAILABLE IN SNAKEPIPES

<table>
<thead>
<tr>
<th>Pipeline</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>createIndices</td>
<td>Create indices for an organism for further use within snakePipes</td>
</tr>
<tr>
<td>DNA-mapping</td>
<td>Basic DNA mapping using bowtie2, filter mapped files, QC and create coverage plots</td>
</tr>
<tr>
<td>ChIP-seq</td>
<td>Use the DNA mapping output and run ChIP/Input normalization and peak calling</td>
</tr>
<tr>
<td>ATAC-seq</td>
<td>Use the DNA mapping output and detect open chromatin regions for ATAC-seq data</td>
</tr>
<tr>
<td>HiC</td>
<td>Hi-C analysis workflow, from mapping to TAD calling</td>
</tr>
<tr>
<td>RNA-seq</td>
<td>RNA-Seq workflow : From mapping to differential expression using DEseq2</td>
</tr>
<tr>
<td>scRNA-seq</td>
<td>Single-cell RNA-Seq (CEL-Seq2) workflow : From mapping to differential expression</td>
</tr>
<tr>
<td>WGBS</td>
<td>Whole-genome Bisulfite-Seq analysis workflow, from mapping to DMR calling and differential methylation analysis</td>
</tr>
<tr>
<td>pre-processing</td>
<td>Merging technical replicates (e.g., across lanes), removing optical duplicates, running FastQC</td>
</tr>
</tbody>
</table>
Chapter 1. Below is the list of pipelines available in snakePipes
QUICK START

• Assuming you have `python3` with `conda`, install snakePipes with:

```bash
conda create -n snakePipes -c mpi-ie -c bioconda -c conda-forge snakePipes
```

• Download genome fasta and annotations for an your organism, and build indexes, Check in `createIndices`

• Download example fastq files for the human genome [here](#)

• Execute the DNA-mapping pipeline using the example `command.sh` in the test data directory.
RUNNING YOUR OWN ANALYSIS

For a detail introduction to setting up snakePipes from scratch, please visit *Setting up snakePipes*

For each organism of interest, snakePipes requires fasta files, genome indexes and annotation files. Paths to these files are specified in the organism/<name>.yaml files. After installation, the location of these files could be revealed by the following command:

```
snakePipes info
```

You could either modify the existing files (add your own paths), or add a new file there. See more detail in *Running snakePipes*

snakePipes could either be executed locally, or on any snakemake-supported cluster infrastructure. See details for setting up the cluster command in *Running snakePipes*
If you adopt/run snakePipes for your analysis, cite it as follows:

This tool suite is developed by the Bioinformatics Unit at the Max Planck Institute for Immunobiology and Epigenetics, Freiburg.
For query/questions regarding snakePipes, please write on biostars with the tag #snakePipes
For feature requests or bug reports, please open an issue on our GitHub Repository.
6.1 Setting up snakePipes

Unlike many other pipelines, setting up snakePipes is easy! All you need is a linux/OSX system with python3-conda installation.

6.1.1 Installing conda with python3

Follow the instructions here to install either miniconda or anaconda. A minimal version (miniconda) is enough for snakePipes. Get the miniconda installer here.

After installation, check your python path and version:

```bash
$ which python
$ /your_path/miniconda3/bin/python
$ python --version # anything above 3.5 is ok!
$ Python 3.6.5 :: Anaconda, Inc.
$ conda --version # only for sanity check
$ conda 4.5.8
```

Next, install snakePipes.

6.1.2 Installing snakePipes

The easiest way to install snakePipes is via our conda channel. The following command install snakePipes and also creates a conda virtual environment named snakePipes, which you can then activate via conda activate snakePipes.

```bash
conda create -n snakePipes -c mpi-ie -c bioconda -c conda-forge snakePipes
```

This way, the software used within snakePipes do not conflict with the software pre-installed on your terminal or in your python environment.

Note: This might take a few minutes depending on the access to conda channels.
Development installation

If you wish to modify snakePipes you can install it via pip from within a conda environment, using our GitHub repository.

```
conda create -n snakepipes python=3.7 snakemake pandas graphviz fuzzywuzzy
conda activate snakepipes
pip install git+https://github.com/maxplanck-ie/snakepipes@develop
```

Instead of providing the URL to pip, you can also clone our GitHub repository on your computer, and modify the code before running snakePipes. Please see Advanced usage of snakePipes for more information on how to modify and extend snakePipes workflows.

Testing whether the installation went fine

After installation, you can activate the snakePipes environment via

```
conda activate snakePipes
```

In case you installed conda using the latest version of conda installers (eg. miniconda 4.5.* or later), the `conda` command might not be available inside an environment. To enable this, export the path to conda/bin in your $PATH (or append the path manually in your `bashrc`)

```
export PATH="/path/to/miniconda3/bin:$PATH"
```

Snakemake and pandas are installed along with snakePipes as requirements. Ensure you have them working by testing these commands:

```
snakemake --help
snakePipes --help
```

6.1.3 Modify global options

It is often useful to store organism YAML files and the cluster configuration file outside of snakePipes, so that these can be used across snakePipes versions without needing to make copies. Since snakePipes 1.3.0, this can be done by modifying the `defaults.yaml` file, the location of which is given by `snakePipes info`. Instead of manually modifying this file, you may also use `snakePipes config`.

To see the location of the various YAML files so you can manually inspect them, you can use:

```
snakePipes info
```

This would show the locations of:

- `defaults.yaml` Defines default tool and file paths. See Create the conda environments
- `cluster.yaml` Defines execution command for the cluster. See Configure your cluster
- `organisms/<organism>.yaml` : Defines genome indices and annotations for various organisms. See Configure the organisms
- Workflow-specific defaults : Defines default options for our command line wrappers. See Configure default options for workflows
6.1.4 Create the conda environments

All the tools required for running various pipelines are installed via various conda repositories (mainly bioconda). The following commands installs the tools and creates the respective conda environments.

```
snakePipes createEnvs
```

Note: Creating the environments might take 1 hour. But it only has to be done once.

Note: `snakePipes createEnvs` will also set the `snakemakeOptions:` line in the global `snakePipes defaults.yaml` files. If you have already modified this then use the `--keepCondaDir` option.

Warning: If you installed with `pip` you must use the `--develop` option.

The place where the conda envs are created (and therefore the tools are installed) is defined in `snakePipes/defaults.yaml` file on our GitHub repository. You can modify it to suite your needs.

Here are the content of `defaults.yaml`:

```
snakemakeOptions: '--use-conda --conda-prefix /data/general/scratch/conda_envs'
```

Note: Whenever you change the `snakemakeOptions:` line in `defaults.yaml`, you should run `snakePipes createEnvs` to ensure that the conda environments are then created.

Running `snakePipes createEnvs` is not strictly required, but facilitates multiple users using the same `snakePipes` installation.

6.1.5 Configure the organisms

For each organism of your choice, create a file called `<organism>.yaml` in the folder specified by `organismsDir` in `defaults.yaml` and fill the paths to the required files next to the corresponding yaml entry. For common organisms, the required files are downloaded and the yaml entries can be created automatically via the workflow `createIndices`.

The yaml files look like this after the setup (an example from drosophila genome dm3):

```
# Integer, size of genome in base-pairs
genome_size: 142573017

# path to genome.fasta for mapping
genome_fasta: "/data/repository/organisms/dm3_ensembl/genome_fasta/genome.fa"

# path to genome.fasta.fai (fasta index) for mapping
genome_index: "/data/repository/organisms/dm3_ensembl/genome_fasta/genome.fa.fai"

# OPTIONAL. Needed for GC bias estimation by deepTools
genome_2bit: "/data/repository/organisms/dm3_ensembl/genome_fasta/genome.2bit"

# Needed for DNA-mapping workflow
bowtie2_index: "/data/repository/organisms/dm3_ensembl/BowtieIndex/genome"

# index of the genome.fasta using HISAT2, needed for RNA-seq workflow
hisat2_index: "/data/repository/organisms/dm3_ensembl/HISAT2Index/genome"

# needed by HISAT2 for RNA-seq workflow

(continues on next page)
known_splicesites: "/data/repository/organisms/dm3_ensembl/ensembl/release-78/HISAT2/splice_sites.txt"
bwa_index: "/data/repository/organisms/dm3_ensembl/BWAindex/genome.fa"
# index of the genome.fasta using STAR, needed for RNA-seq workflow
star_index: "/data/repository/organisms/dm3_ensembl/STARIndex/
# Needed for QC and annotation in DNA-mapping/RNA-Seq workflows
genes_bed: "/data/repository/organisms/dm3_ensembl/Ensembl/release-78/genes.bed"
# Needed for QC and annotation in DNA-mapping/RNA-Seq workflows
genes_gtf: "/data/repository/organisms/dm3_ensembl/Ensembl/release-78/genes.gtf"
# OPTIONAL. For QC and filtering of regions in multiple workflows.
blacklist_bed:
# STRING. Name of the chromosomes to ignore for calculation of normalization factors
ignoreForNormalization: "U Uextra X XHet YHet dmel_mitochondrion_genome"

**Warning:** Do not edit the yaml keywords corresponding to each required entry.

**Note:** Some fields are optional and can be left empty. For example, if a blacklist file is not available for your organism of interest, leave `blacklist_bed` empty. Files for either STAR or HISAT2 could be skipped for RNA-seq if the respective aligner is not used. We nevertheless recommended providing all the files, to allow more flexible analysis.

After setting up the yamls, we can execute a snakePipes workflow on the organism of choice by referring to the organism as `dm3`, where the keyword `dm3` matches the name of the yaml file (dm3.yaml).

**Note:** The name of the yaml file (except the .yaml suffix) is used as keyword to refer to the organism while running the workflows.

### 6.1.6 Download premade indices

For the sake of convenience, we provide premade indices for the following organisms:

- Human (GRCh38, Gencode release 29)
- Mouse (GRCm38/mm10, Gencode release m19)
- Mouse (GRCm37/mm9, Gencode release 1)
- Fruit fly (dm6, Ensembl release 94)

To use these, simply download and extract them. You will then need to modify the provided YAML file to indicate exactly where the indices are located (i.e., replace `/data/processing/ryan` with whatever is appropriate).

### 6.1.7 Configure your cluster

The `cluster.yaml` file contains both the default memory requirements as well as two options passed to snakemake that control how jobs are submitted to the cluster and files are retrieved:
The location of this file must be specified by the `clusterConfig` value in `defaults.yaml`.

You can change the default per-core memory allocation if needed here. Importantly, the `snakemake_cluster_cmd` option must be changed to match your needs (see table below). Whatever command you specify must include a `{cluster.memory}` option and a `{threads}` option. You can specify other required options here as well. The `snakemake_latency_wait` value defines how long snakemake should wait for files to appear before throwing an error. The default of 300 seconds is typically reasonable when a file system such as NFS is in use. Please also note that there are additional memory settings for each workflow in `snakePipes/workflows/[workflow]/cluster.yaml` that you might need to adjust.

`snakePipes_cluster_logDir`: can be used like a wildcard in `snakemake_cluster_cmd` to specify the directory for the stdout and stderr files from a job that is running on the cluster. This is given separate to make sure the directory exists before execution. A relative path is treated relative to the output directory of the workflow. If you want, you can also give an absolute log directory starting with `/.

<table>
<thead>
<tr>
<th>Scheduler/Queuing</th>
<th>snakemake_cluster_cmd example</th>
</tr>
</thead>
<tbody>
<tr>
<td>slurm</td>
<td>snakemake_cluster_cmd: module load slurm; sbatch --ntasks-per-node=1 -c {threads} -J {rule}.snakemake --mem-per-cpu={cluster.memory} -p MYQUEUE -o {snakePipes_cluster_logDir}/(rule).%j.out -e {snakePipes_cluster_logDir}/(rule).%j.err snakePipes_cluster_logDir: cluster_logs</td>
</tr>
<tr>
<td>SGE</td>
<td>Please send us a working example!</td>
</tr>
</tbody>
</table>

6.1.8 Configure default options for workflows

The default options for all command-line arguments as well as for the cluster (memory) are stored in the workflow-specific folders. If you have cloned the repository locally, these files are located under `snakePipes/workflows/<workflow_name>` folder. You can modify the values in these yamls to suite your needs. Most of the default values
could also be replaced from the command line wrappers while executing a workflow.

Below are some of the workflow defaults from the DNA-mapping pipeline. Empty sections means no default is set:

```bash
key for the genome name (eg. dm3)
genome:
FASTQ file extension (default: ".fastq.gz")
ext: ".fastq.gz"
paired-end read name extension (default: ["_R1", ",_R2"])read: ["_R1", ",_R2"]
mapping mode
mode: mapping
aligner: Bowtie2
Number of reads to downsample from each FASTQ file
downsamp:
Options for trimming
trim: False
trimmer: cutadapt
trimmerOptions:
Bin size of output files in bigWig format
bwBinSize: 25
Run FASTQC read quality control
fastqc: false
Run computeGCBias quality control
GCbias: false
Retain only de-duplicated reads/read pairs
dedup: false
Retain only reads with at least the given mapping quality
mapq: 0
```

### 6.1.9 Test data

Test data for the various workflows is available at the following locations:

- DNA mapping
- ChIP-seq
- ATAC-seq
- RNA-seq
- HiC
- WGBS
- scRNA-seq

[code @ github.](#)

### 6.2 Running snakePipes

Pipelines under snakePipes are designed in a way such that all workflows are configured and ran in a similar way.
6.2.1 An example with ChIP-seq data

A typical ChIP-seq analysis of human samples starts from paired-end FASTQ files in the directory `input-dir`:

```bash
$ ls /path/to/input-dir/
my_H3K27ac_sample_R1.fastq.gz my_H3K27me3_sample_R1.fastq.gz my_Input_sample_R1.fastq.gz
my_H3K27ac_sample_R2.fastq.gz my_H3K27me3_sample_R2.fastq.gz my_Input_sample_R2.fastq.gz
```

The ChIP-seq workflow requires the files to be processed via the DNA-mapping workflow first. We therefore run the DNA-mapping workflow:

```bash
$ DNA-mapping -i /path/to/input-dir -o /path/to/output-dir --mapq 5 -j 10 --dedup hs37d5
```

- `--mapq 5` would filter mapped reads for a minimum mapping quality of 5. This would keep only primary alignments from bowtie2, sufficient for downstream analysis.
- `--dedup` would remove PCR duplicates (reads with matching 5’ position in the genome), a typical step in ChIP-Seq analysis.
- `-j 10` defines 10 jobs to be run in parallel on the cluster (see below).
- `hs37d5` is the name of the genome (keyword for the yaml). The yaml file corresponding to this genome should exist as `snakePipes/shared/organisms/hs37d5.yaml` (see Setting up snakePipes for details).

All individual jobs of the workflow will be submitted to the Grid engine using the command specified under `shared/cluster.yaml`. The parameter `-j` defines the number of jobs to be run in parallel, while the number of threads per job is hard-coded in the workflows.

To run the workflow locally, use the parameter `--local` for local mode and the parameter `-j 10` to specify the maximal number of used CPU threads (here: 10).

For single-end FASTQ files, the workflow would automatically recognize them if the file name has no suffix (eg. "sample1.fastq" instead of "sample1_R1.fastq"). However, mixing of single and paired-end files in the same folder is not supported currently.

Once the DNA-mapping run is finished successfully. We can run the ChIP-seq analysis in the same directory:

```bash
$ ChIP-seq -d /path/to/dna-mapping-output/ hs37d5 chip-samples.yaml
```

- `--d` specifies the directory where the output of DNA-mapping workflow lies. The ChIP-seq workflow would also write it’s output there.
- `hs37d5` is the name of the genome (keyword for the yaml).
- `chip-samples.yaml` is a yaml file that defines for each ChIP sample, the corresponding control (input) sample and the type of mark (broad/sharp). See ChIP-seq for more details on how to setup this yaml file.

The ChIP-seq workflow would follow up from the DNA-mapping outputs and perform peak calling, create ChIP-input normalized coverage files and also perform differential (control-test) analysis if a sample information file is provided (see below).

6.2.2 The sample sheet

Most of the workflows allow users to perform grouped operations as an option, for example differential expression analysis in RNA-seq workflow, differential binding analysis in ChIP-Seq workflow, differential open-chromatin analysis in ATAC-seq workflow or merging of groups in Hi-C workflow. For all this analysis, snakePipes needs a
sampleSheet.tsv file (file name is not important, but it has to be tab-separated) that contains sample grouping information. In most cases users would want to groups samples by replicates. The format of the file is as follows:

<table>
<thead>
<tr>
<th>name</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample1</td>
<td>control</td>
</tr>
<tr>
<td>sample1</td>
<td>control</td>
</tr>
<tr>
<td>sample2</td>
<td>test</td>
</tr>
<tr>
<td>sample2</td>
<td>test</td>
</tr>
</tbody>
</table>

The name section refers to sample names (without the read suffix), while the condition section refers to sample group (control/test, male/female, normal/diseased etc..)

**6.2.3 Using BAM input**

In many workflows it is possible to directly use BAM files as input by specifying `--fromBAM`. Note that you must then specify whether you have paired-end (the default) or single-end data. This is typically done with the `--singleEnd` option.

**6.2.4 Changing read extensions or mate designators**

The default file names produced by Illumina sequencers are of the form `<sample>_R1.fastq.gz` and `<sample_R2.fastq.gz`. However, sometimes public datasets will instead have a `.fq.gz` suffix or use `_1` and `_2` as mate designators. To enable this, the `--ext` option can be used to change `.fastq.gz` default suffix to `.fq.gz` and `--reads` to `_1 _2`.

**6.2.5 Common considerations for all workflows**

All of the snakePipes workflows that begin with a FASTQ file, perform the same pre-processing steps.

- **Linking/downsampling the FASTQ file**: The FASTQ rule in the workflows links the input FASTQ file into the FASTQ folder in the output directory. If downsampling is specified, the FASTQ folder would contain the downsampled FASTQ file.

**Note**: The DNA-mapping and RNA-mapping pipelines can take either single, or paired-end FASTQ files. For paired-end data, the reads R1 and R2 are expected to have the suffix _R1 and _R2 respectively, which can be modified in the defaults.yaml file using the `reads` key, to your needs. For example, files downloaded from NCBI would normally have the extension `.1.fastq.gz` and `.2.fastq.gz`. Also, please check the `ext` key in the configuration file if you wish to modify the read extension (default is `.fastq.gz`).

- **Quality/adapter trimming** (optional): If `--trim` is selected, the trimming rule would run the selected program (either Trimgalore or Cutadapt) on the files in the FASTQ folder, and would produce another folder with name `FASTQ_<program>`, where `<program>` is either Cutadapt or Trimgalore.

- **FastQC** (optional): If `--fastqc` is specified, the FASTQC rule would run FastQC on the input files and store the output under FastQC folder. If trimming is specified, FastQC is always produced on trimmed files, and stored under `FastQC_trimmed` folder.

- **--snakemakeOptions**: All wrappers contain a `--snakemakeOptions` parameter, which is quite useful as it can be used to pass on any arguments directly to snakemake. One use case is to perform a `dry run`, i.e. to check which programs would be executed and which outputs would be created by the workflow, without actually running it. This can be executed via `--snakemakeOptions="-np"`. This would also print the commands to be used during the run.
• **--DAG**: All workflows can produce a directed acyclic graph of themselves, using the **--DAG** option in the wrappers. This could be useful in reporting/presenting the results.

• **--keepTemp**: This option control temporary/intermediate files are to be kept after the workflow is finished. Normally the temporary files are removed after analysis.

• **--bwBinSize**: This option is available for most workflows, and refers to the bin size used to create the coverage files. BigWig files are created by most workflows in order to allow downstream analysis and visualization of outputs. This argument controls the size of the bins in which the genome is divided for creating this file. The default is sufficient for most analysis.

• **Temporary directory/files**: Some tools need additional space during runtime (e.g., `samtools sort -T [DIR] ...`). SnakePipes uses the core tool `mktemp` to create temporary directories in some rules. On Linux-based systems the global env variable `$TMPDIR` is honored. On Mac OS and if `$TMPDIR` is empty, we fallback to `/tmp/` as the parent temporary directory. For performance reasons, it is recommended that the `$TMPDIR` points to a local drive (and not eg. an NFS share). Please make sure there is enough space!

### Logging of outputs

SnakePipes produces logs at three different levels.

• `<workflow>.log`: This file would be generated on the working directory, and contains everything printed on the screen via snakemake and python wrappers.

• `<workflow>_organism.yaml`: This file is a copy of the YAML file specifying where all of the genomic indices, annotations, and other files are located.

• `cluster_logs`: In case snakePipes is setup with a cluster, the folder `cluster_logs` would contain the output and error messages from the cluster scheduler.

• `<output>/logs`: Each output folder from snakePipes workflows contain their own log (.err and .out) file under `/logs/` folder. This contains the messages directly from the executed tools.

**Note:** For most cases where a tool fails, these files contain useful debugging information. However sometimes, the error can’t be captured in these files and therefore ends up in the `cluster_logs` folder.

### Quality-Checks

All workflows under snakePipes employ various quality-checks (QC) to inform users of the data quality.

• **MultiQC**: All workflows in snakePipes output a `MultiQC` folder, which summarizes the QC metrics obtained from various tools in the workflow via MultiQC, in an interactive HTML report. This output is quite useful to compare samples and get an overview of the data quality from all samples.

• **deepTools**: deepTools are a popular set of tools that perform QC, normalization and visualization of NGS data. In snakePipes, most workflows (except HiC and scRNAseq) contain outputs from various deepTools modules on the samples. The coverage files (bigWigs), are also generated by deepTools (bamCoverage and bamCompare modules). Therefore, it’s useful to look at the deepTools documentation before inspecting these results.

**Note:** We strongly encourage users to understand these quality matrices and inspect the results from QC, before making biological conclusions or proceeding to downstream analysis.

```code @ github```
6.3 Advanced usage of snakePipes

snakePipes is designed in a modular way, such that it’s easy to modify or extend it. Advanced users or developers can either use the underlying snakemake and Rscripts directly, or extend/add modules to the existing workflows.

6.3.1 Understanding snakePipes implementation

The implementation of snakePipes modules has been described in our preprint. Please clone our github repository locally to understand this organisation. Since snakePipes is dependent on snakemake and conda, we recommend being familiar with them first, by reading the documentation. Also, we utilize bioconda as a source of our biology-related tools implemented in snakePipes.

- Getting started with snakemake
- Getting started with conda
- How conda is used with snakemake
- What is bioconda

Once you are familiar with snakemake and conda/bioconda, we can look at how snakePipes workflows are implemented.

snakePipes folders

All files needed to be modified in order to extend/modify a workflow, are available under the snakePipes directory (snakepipes/snakePipes). Here is the structure of this directory:

```
./
|__ common_functions.py
|__ __init__.py
|__ parserCommon.py
| shared
| |__ cluster.yaml
| |__ defaults.yaml
| |__ organisms
| |__ rscripts
| |__ rules
| |__ tools
| workflows
| |__ ATAC-seq
| |__ ChIP-seq
| |__ createIndices
| |__ DNA-mapping
| |__ HiC
| |__ preprocessing
| |__ RNA-seq
| |__ scRNAseq
| |__ WGBS
```

- `common_functions.py` contains functions that directly operate on the variables received via various wrappers.
- `parserCommon.py` contains common command-line arguments for the wrappers.
- `shared`: This folder contains some important files.
 - `cluster.yaml`: defines the command for the execution of rules on a cluster or cloud, this command is passed on to the call to snakemake via the wrappers.
– defaults.yaml: defined the default options for snakemake and also defines the temporary directory to store intermediate files.

– organisms: This folder contains yaml files corresponding to each organism (see Setting up snakePipes for details)

– rscripts: Contains the R wrappers that are invoked via the rules. You would find the Rscripts for DESeq, CSAW and other R packages here.

– rules: These are the snakemake rules which are invoked during execution of a workflow. Depending upon the global parameters passed on from the wrappers, a rule may/may not be included in a workflow (controlled by various if conditionals).

Warning: Some rules are shared via multiple workflows, therefore be sure to check each Snakefile for each workflow to see which rules you need to modify.

– tools: This folder contains online tools which cannot be distributed via bioconda, and therefore are included with snakePipes package itself.

• workflows: This folder contains files which are specific to each workflow. Under each folder (named by the workflow), you would find a common set of files.

 – <workflow_name>.py: The command line python wrappers that are visible to users after installation.

 – Snakefile: This is the file that collects outputs from various rules, therefore contains the rule all for each workflow. This Snakefile also controls which rules from shared/rules folder are included in the final workflow, depending on the global parameters passed on from the wrappers.

 – internals.snakefile: Contains some python functions which are specific to the workflow, and therefore can’t be included under common_functions.py, these functions are imported in the Snakefile

 – cluster.yaml and defaults.yaml: contains workflow-specific options for the cluster, and for the wrappers. Modify them to suit your needs.

6.3.2 Calling snakemake directly using the snakefiles

It’s possible to directly run snakemake using the Snakefile provided in each workflow, therefore surpassing the command-line wrappers. In order to do that, you can begin with a copy of workflows/<workflow>/defaults.yaml file and add or adjust further options in that file.

Finally, provide an adjusted config via --configfile parameter to snakemake!

example call:

```bash
snakemake --snakefile /path/to/snakemake_workflows/workflows/ATAC-seq/Snakefile
--configFile /path/to/snakemake_workflows/workflows/ATAC-seq/defaults.yaml
--directory /path/to/outputdir
--cores 32
```

6.3.3 Executing the Rscript wrappers outside snakePipes

It’s also possible to use one of our Rscript wrappers present under the shared/rscripts folder. In order to do that, check how the parameters are supplied to the wrappers in the corresponding rule.

For example, in order to execute the DESeq2 wrapper, we can look at how it’s done via the DESeq2 rule under shared/rules/DESeq2.Snakefile
example call:

```
cd DeSeq2_test &&
Rscript /path/to/shared/rscripts/DESeq2.R 
${input.sample_info} \ 
${input.counts_table} \ 
${params.fdr} \ 
${input.symbol_file} \ 
${params.importfunc} \ 
${params.allele_info} \ 
${params.tx2gene_file} \ 
${params.rmdTemplate}
```

Replace each variable by the corresponding required file. The required files are indicated in the DESeq2 rule.

6.3.4 Updating/adding new tools to the workflows

Several yaml files provided under the folder `shared/rules/envs` are used to define the tools which are executed via each workflow. Here is an example from the HiC conda env:

```
name: hic_conda_env_1.0
channels:
- conda-forge
- anaconda
- bioconda
dependencies:
- hicexplorer = 2.1.4
- bwa = 0.7.17
- samtools = 1.8
- python-dateutil = 2.7.3
```

This file can be pointed out to the `conda` directive of any rule, under `shared/rules`. Example below

```
rule get_restrictionSite:
  input:
    genome_fasta
  output:
    enzyme + ".bed"
  params:
    res_seq = get_restriction_seq(enzyme)
  conda: CONDA_HIC_ENV
  shell:
    "findRestSite -f {input} --searchPattern {params.res_seq} -o {output} > {log.out} 2> {log.err}"
```

Where CONDA_HIC_ENV points to the location of the above yaml file. Under snakePipes all such global variables are defined under `common_functions.py`

Therefore in order to change or upgrade a tool version, all you need to do is to edit the `dependencies` key in the yaml file to point to the new/modified tool version!

6.3.5 Modifying or adding new rules to the workflows

Modifying or adding new rules to snakePipes workflows is relatively easy. Considering you want to add a new Rscript that performs a downstream analysis on the DESeq2 output in RNA-seq workflow. These would be the steps needed:
• Test the Rscript on command line first, then move it in the \texttt{shared/rscripts} folder.

• Add a rule that called the Rscript and put it under \texttt{shared/rules} folder.

• Add the corresponding rule all, that defines the expected output into \texttt{workflows/RNA-seq/Snakefile}

• Now, for easy and reproducible execution of the rule, add a \texttt{conda} directive and point it to the relevant \texttt{conda env} under \texttt{shared/rules/envs}. Since your rule might need a new R package, search whether it’s available in one of the conda channels and add the package name (as indicated in the conda channel) and version under the dependencies key.

• Finally, modify the command line wrapper (\texttt{workflows/RNA-seq/RNA-seq.py}) to make this new feature available to the users!

6.3.6 Using AWS or other cloud platforms

There is nothing particularly special about performing computations on AWS or other cloud platforms. Below are a few recommendations, using AWS as an example:

1. Use a small compute node for initial installation. On AWS a \texttt{t2.small} node is sufficient for general installation since \texttt{conda} will need 1-2GB RAM for dependency resolution during setup.

2. If you can need to create custom indices, then you will need a node with at least 80GB RAM and 10 cores.

3. Ensure that you install \texttt{snakePipes} on a separate EBS (or equivalent) storage block. We found that a 200GB / \texttt{data} partition was most convenient. This absolutely must not be the / partition, as mounting such a persistent image on other instances will result in paths being changed, which result in needing to modify large numbers of files.

4. It’s usually sufficient to use a single large (e.g., \texttt{m5.24xlarge}) compute node, with 100+ cores and a few hundred GB RAM. This allows one to use the \texttt{--local} option and not have to deal with the hassle of setting up a proper cluster on AWS. Make sure the then set \texttt{-j} to the number of available cores on the node, so \texttt{snakePipes} can make the most efficient use of the resources (and minimize your bill).

Below is an example of running the RNA-seq pipeline on AWS using the resources outlined above. Note that it’s best to store your input/output data on a separate storage block, since its lifetime is likely to be shorter than that of the indices.

```bash
# Using a t2.small
sudo mkdir /data
mount /dev/sdf1 /data # /dev/sdf1 is a persistent storage block!
sudo chown ec2-user /data
cd /data

# get datasets
mkdir indices
wget https://zenodo.org/record/1475957/files/GRCm38_gencode_snakePipes.tgz?download=1
mv GRC* indices/GRCm38.tgz
cd indices
tar xf GRCm38.tgz
rm GRCm38.tgz
cd ..
mkdir data
wget some_data_url
mv snakePipes_files.tar data/
cd data
tar xf snakePipes_files.tar
rm snakePipes_files.tar
```

(continues on next page)
cd ..

Edit the yaml file under indices to point to /data/indices

Get conda
wget https://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh
bash Miniconda3-latest-Linux-x86_64.sh -b -p conda
export PATH=/data/conda/bin:$PATH
conda config --set always_yes yes --set changeps1 no
conda update --q conda
conda create -n snakePipes -c mpi-ie -c conda-forge -c bioconda snakePipes
conda activate snakePipes
rm Miniconda3-latest-Linux-x86_64.sh

setup snakePipes
snakePipes createEnvs --only CONDA_SHARED_ENV CONDA_RNASEQ_ENV

Update defaults.yaml to use /data/tmp for temporary space

mkdir /data
mount /dev/sdf1 /data
chown ec2-user /data
export PATH=/data/snakePipes/bin:$PATH
conda activate snakePipes
RNA-seq -m alignment -i /data/data -o /data/output --local -j 192 /data/indices/GRCm28.yaml

Then a larger instance can be spun up and the RNA-seq pipeline run as normal.

mkdir /data
mount /dev/sdf1 /data
chown ec2-user /data
export PATH=/data/snakePipes/bin:$PATH
conda activate snakePipes
RNA-seq -m alignment -i /data/data -o /data/output --local -j 192 /data/indices/GRCm28.yaml

6.3.7 Receiving emails upon pipeline completion

SnakePipes can send an email to the user once a pipeline is complete if users specify --emailAddress. In order for this to work, the following values need to be set in defaults.yaml:

- **smtpServer**: The address of the outgoing SMTP server
- **smtpPort**: The port on the SMTP server to use (0 means to use the standard port)
- **onlySSL**: Set this to "True" if your SMTP server requires a full SSL connection from the beginning.
- **emailSender**: The name of the "user" that sends emails (e.g., snakepipes@your-domain.com)

There are two additional parameters that can be set: smtpUsername and smtpPassword. These are relevant to SMTP servers that require authentication to send emails. On shared systems, it's important to ensure that other users cannot read your defaults.yaml file if it includes your password!

6.4 createIndices

6.4.1 What it does

This is a special pipeline in that it creates index files required by various tools within snakePipes. This workflow takes as input a fasta file (or URL) and GTF file (or URL) as well as various optional files and generates both indices and
the organism yaml file used by snakePipes.

6.4.2 Input requirements

The pipeline has two required inputs: a fasta file or URL and a GTF file or URL. These may both be gzipped. Optionally, you may specify a blacklist file (such as that provided by ENCODE), an effective genome size, and a file listing chromosomes to be ignored during normalization steps.

Note: If you specify a blacklist file, please ensure that regions within it do NOT overlap. Overlapping regions in this file will cause incorrect results in some tools. Further, it is best to flank blacklisted regions by at least 50 bases, as otherwise many reads originating within these regions may be nonetheless included.

Configuration file

There is a configuration file in `snakePipes/workflows/createIndices/defaults.yaml`:

```yaml
pipeline: createIndices
outdir: 
configFile: 
clusterConfigFile: 
local: false
maxJobs: 5
verbose: False
## Genome name used in snakePipes (no spaces!)
genome: 
## Tools to create indices for. "all" for all of them
tools: all
## URLs or paths for fasta and GTF files
genomeURL: 
gtfURL: 
## The effective genome size
effectiveGenomeSize: 0
## Regions to blacklist in the ChIP-seq and related workflows
blacklist: 
## Regions to ignore during normalization (e.g., with bamCompare)
ignoreForNorm: 
```

These values are most conveniently set on the command line.

6.4.3 Output structure

The following structure will be created in the designated `outdir`:
These files are used internally within snakePipes and don’t require further inspection. The `createIndices_run-1.log` file contains a full log and will include the URLs or file paths that you specified. Whether the `annotation/blacklist.bed` file exists is dependent upon whether you specified one. The `genome_fasta/effectiveSize` fill will have the effective genome size (if you didn’t specify it, the number of non-N bases in the genome will be used).

In addition to these, an organism yaml file will be created. Its location can be found with `snakePipes info`.

Note: The astute observer will note that no Salmon index is created. This is intentional and done to facilitate users changing which transcripts should be included on the fly.

6.4.4 Command line options

Create indices for use by snakePipes. A YAML file will be created by default in the default location where snakePipes looks for organism YAML files.

(continues on next page)
Positional Arguments

GENOME

The name to save this genome as. No spaces or special characters! Specifying an organism that already exists will cause the old information to be overwritten. See also the --userYAML option.

Required Arguments

- **-o, --output-dir**
 output directory
- **--genomeURL**
 URL or local path to where the genome fasta file is located. The file may optionally be gzipped.
- **--gtfURL**
 URL or local path to where the genome annotation in GTF format is located. GFF is NOT supported. The file may optionally be gzipped. If this file is not specified, then RNA-seq related tools will NOT be usable.

General Arguments

- **-v, --verbose**
 verbose output (default: 'False')
- **-c, --configFile**
 configuration file: config.yaml (default: 'None')
- **--clusterConfigFile**
 configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')
- **-j, --jobs**
 maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')
- **--local**
 run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
- **--keepTemp**
 Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.
- **--snakemakeOptions**
 Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: ['--use-conda'])
- **--DAG**
 If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.
- **--version**
 show program’s version number and exit

6.4. createIndices
Email Arguments

--emailAddress If specified, send an email upon completion to the given email address
--smtpServer If specified, the email server to use.
--smtpPort The port on the SMTP server to connect to. A value of 0 specifies the default port.
--onlySSL The SMTP server requires an SSL connection from the beginning.
--emailSender The address of the email sender. If not specified, it will be the address indicated by --emailAddress
--smtpUsername If your SMTP server requires authentication, this is the username to use.
--smtpPassword If your SMTP server requires authentication, this is the password to use.

Options

--tools Possible choices: all, bowtie2, hisat2, bwa, bwa-meth, star, none

Only produce indices for the following tools (by default, all indices will be created). The default is 'all'. 'none' will create everything except aligner indices.

--effectiveGenomeSize The effective genome size. If you don’t specify a value then the number of non-N bases will be used.

--blacklist An optional URL or local path to a file to use to blacklist regions (such as that provided by the ENCODE consortium).

--ignoreForNormalization An optional file list, with one entry per line, the chromosomes to ignore during normalization. These are typically sex chromosomes, mitochondrial DNA, and unplaced contigs.

--userYAML By default, this workflow creates an organism YAML file where snakePipes will look for it by default. If this isn’t desired (e.g., you don’t want the organism to be selectable by default or you don’t have write permissions to the snakePipes installation) you can specify this option and the YAML file will instead be created in the location specified by the -o option.

[link to code on Github]

6.5 DNA-mapping

6.5.1 What it does

This is the primary DNA-mapping pipeline. It can be used both alone or upstream of the ATAC-seq and ChIP-seq pipelines. This has a wide array of options, including trimming and various QC steps (e.g., marking duplicates and plotting coverage and PCAs). In addition, basic coverage tracks are created to facilitate viewing the data in IGV.
6.5.2 Input requirements

The only requirement is a directory of gzipped fastq files. Files could be single or paired end, and the read extensions could be modified using the keys in the `defaults.yaml` file below.

Configuration file

There is a configuration file in `snakePipes/workflows/DNA-mapping/defaults.yaml`:

```yaml
## General/Snakemake parameters, only used/set by wrapper or in Snakemake cmdl, but not in Snakefile
pipeline: dna-mapping
outdir:
configFile:
clusterConfigFile:
local: False
maxJobs: 5
## directory with fastq files
indir:
## preconfigured target genomes (mm9,mm10,dm3,...), see /path/to/snakemake_workflows/shared/organisms/
## Value can be also path to your own genome config file!
genome:
## FASTQ file extension (default: ".fastq.gz")
ext: ".fastq.gz"
## paired-end read name extension (default: ['_R1', '_R2'])
reads: ['_R1', '_R2']
## mapping mode
mode: mapping
aligner: Bowtie2
## Number of reads to downsample from each FASTQ file
downsample:
## Options for trimming
trim: False
trimmer: cutadapt
trimmerOptions:
## Bin size of output files in bigWig format
```

(continues on next page)
Many of these options can be more conveniently set on the command-line (e.g., `--qualimap` sets `qualimap: true`). However, you may need to change the reads: setting if your paired-end files are not denoted by `sample_R1.fastq.gz` and `sample_R2.fastq.gz`, but rather `sample_1.fastq.gz` and `sample_2.fastq.gz`.

6.5.3 Understanding the outputs

The DNA mapping pipeline will generate output of the following structure:

```
<table>
<thead>
<tr>
<th></th>
<th>bamCoverage</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Bowtie2</td>
</tr>
<tr>
<td></td>
<td>deepTools_qc</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>bamPEFragmentSize</td>
</tr>
<tr>
<td></td>
<td>estimateReadFiltering</td>
</tr>
<tr>
<td></td>
<td>multiBamSummary</td>
</tr>
<tr>
<td></td>
<td>plotCorrelation</td>
</tr>
<tr>
<td></td>
<td>plotCoverage</td>
</tr>
<tr>
<td></td>
<td>plotPCA</td>
</tr>
<tr>
<td></td>
<td>FASTQ</td>
</tr>
<tr>
<td></td>
<td>FastQC</td>
</tr>
<tr>
<td></td>
<td>filtered_bam</td>
</tr>
<tr>
<td></td>
<td>multiQC</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>multiqc_data</td>
</tr>
<tr>
<td></td>
<td>Sambamba</td>
</tr>
</tbody>
</table>
```

In addition to the FASTQ module results (see *Running snakePipes*), the workflow produces the following outputs:

- **Bowtie2**: Contains the BAM files after mapping with Bowtie2 and indexed by Samtools.

- **filtered_bam**: Contains the BAM files filtered by the provided criteria, such as mapping quality (`--mapq`) or PCR duplicates (`--dedup`). This file is used for most downstream analysis in the DNA-mapping and ChIP-seq/ATAC-seq pipeline.
• **bamCoverage**: Contains the coverage files *(bigWig format)* produced from the BAM files by deepTools bamCoverage. The files are either raw, or 1x normalized (by sequencing depth). They are useful for plotting and inspecting the data in IGV.

• **deepTools_qc**: Contains various QC files and plots produced by deepTools on the filtered BAM files. These are very useful for evaluation of data quality. The folders are named after the tools. Please look at the deepTools documentation on how to interpret the outputs from each tool.

• **Sambamba**: Contains the alignment metrics evaluated on the BAM files by Sambamba.

A number of other directories may optionally be present if you specified read trimming, using Qualimap, or a variety of other options. These are typically self-explanatory.

A fair number of useful QC plots are or can be generated by the pipeline. These include correlation and PCA plots as well as the output from MultiQC.

6.5.4 Command line options

MPI-IE workflow for DNA mapping

usage example: DNA-mapping -i input-dir -o output-dir mm10

6.5. DNA-mapping

usage: DNA-mapping -i INDIR -o OUTDIR [-h] [-v] [--ext EXT]
 [-c CONFIGFILE] [-_clusterConfigFile CLUSTERCONFIGFILE] [-j INT] [--local]
 [-keepTemp] [--snakemakeOptions SNAKEMAKEOPTIONS] [--DAG]
 [-version] [-emailAddress EMAILADDRESS]
 [-smtpServer SMTPSERVER] [-smtpPort SMTPPORT] [--onlySSL]
 [-emailSender EMAILSENDER] [-smtpUsername SMTPUSERNAME]
 [-smtpPassword SMTPPASSWORD] [-VCFfile VCFFILE]
 [--snakemakeOptions SNAKEMAKEOPTIONS] [--clusterConfigFile CLUSTERCONFIGFILE]
 [-c CONFIGFILE] [-j INT] [--local]
 [-keepTemp] [-v] [-static]

Positional Arguments

GENOME

Genome acronym of the target organism. Either a yaml file or one of:
- mm10_gencodeM13
- dm6
- GRCz10
- dm3
- mm10
- mm9
- hs37d5
- hg38
- SchizoSPombe_ASM294v2

Required Arguments

- **-i, --input-dir**
 input directory containing the FASTQ files, either paired-end OR single-end data

- **-o, --output-dir**
 output directory

General Arguments

- **-v, --verbose**
 verbose output (default: 'False')

- **--ext**
 Suffix used by input fastq files (default: ".fastq.gz").

- **--reads**
 Suffix used to denote reads 1 and 2 for paired-end data. This should typically be
 either '_1' '_2' or '_R1' '_R2' (default: ['_R1', '_R2']). Note that you should
 NOT separate the values by a comma (use a space) or enclose them in brackets.

- **-c, --configFile**
 configuration file: config.yaml (default: 'None')

- **--clusterConfigFile**
 configuration file for cluster usage. In absence, the default options specified in
 defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')

- **-j, --jobs**
 maximum number of concurrently submitted Slurm jobs / cores if workflow is
 run locally (default: '5')

- **--local**
 run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
--keepTemp Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.

--snakemakeOptions Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: ['--use-conda'])

--DAG If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

--version show program’s version number and exit

Email Arguments

--emailAddress If specified, send an email upon completion to the given email address

--smtpServer If specified, the email server to use.

--smtpPort The port on the SMTP server to connect to. A value of 0 specifies the default port.

--onlySSL The SMTP server requires an SSL connection from the beginning.

--emailSender The address of the email sender. If not specified, it will be the address indicated by --emailAddress

--smtpUsername If your SMTP server requires authentication, this is the username to use.

--smtpPassword If your SMTP server requires authentication, this is the password to use.

Allele-specific mapping arguments

--VCFfile VCF file to create N-masked genomes (default: 'None')

--strains Name or ID of SNP strains separated by comma (default: 'None')

--SNPfile File containing SNP locations (default: 'None')

--NMaskedIndex N-masked index of the reference genome (default: 'None')

Options

-m, --mode workflow running modes (available: 'mapping,allelic-mapping')(default: '"mapping"")

--downsample Downsampling the given number of reads randomly from of each FASTQ file (default: 'False')

--trim Activate fastq read trimming. If activated, Illumina adaptors are trimmed by default. Additional parameters can be specified under --trimmerOptions. (default: 'False')

--trimmer Possible choices: cutadapt, trimgalore, fastp
Trimming program to use: Cutadapt, TrimGalore, or fastp. Note that if you change this you may need to change --trimmerOptions to match! (default: '"cutadapt"')
---trimmerOptions Additional option string for trimming program of choice. (default: "")
---fastqc Run FastQC read quality control (default: 'False')
---bcExtract To extract umi barcode from fastq file via UMI-tools and add it to the read name (default: 'False')
---bcPattern The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) (default: "")
---UMIDedup Deduplicate bam file based on UMIs via `umi_tools dedup` that are present in the read name. (default: 'False')
---UMIDedupSep umi separation character that will be passed to umi_tools.(default: '"_"')
---UMIDedupOpts Additional options that will be passed to umi_tools.(default: "")
---bwBinSize Bin size of output files in bigWig format (default: '25')
---plotFormat Possible choices: png, pdf, None

Format of the output plots from deepTools. Select 'none' for no plots (default: "png")

---alignerOpts Options that will be passed to bowtie2. You can specify things such as –local or –very-sensitive here. The mate orientation and maximum insert size are specified elsewhere. Read group information is set automatically. Note that you may need to escape the first - (e.g., ‘–very-fast’). Default: ".

---mateOrientation The –fr, –ff, or –rf option for bowtie2 (default: "--fr")
---qualimap activate Qualimap (default: 'False')
---dedup retain only de-duplicated reads/read pairs (given single-/paired-end data), recommended for ChIP-seq data (default: 'False')
---properPairs retain only reads mapping in proper pairs (default: 'False')
---mapq retain only reads with at least the given mapping quality. We recommend using mapq of 3 or more for ChIP-seq to remove all true multimapping reads. (default: '0')
---insertSizeMax Maximum insert size allowed during mapping (default: '1000')
---GCBias run computeGCBias quality control (long runtime!). Note that GCBias analysis is skipped if downsampling is specified (default: 'False')

```text
code @ github.
```

6.6 ChIP-seq

6.6.1 What it does

The ChIP-seq pipeline takes one or more BAM files and attempts to find peaks. If multiple samples and a sample sheet are provided, then CSAW is additionally used to call differential peaks. Both sharp and broad peak calling are supported.
In addition to peaks, bigWig tracks are also generated.

6.6.2 Input requirements

The DNA mapping pipeline generates output that is fully compatible with the ChIP-seq pipeline input requirements! When running the ChIP-seq pipeline, please specify the output directory of DNA-mapping pipeline as the working directory (`-w`).

If you need to provides file NOT generated by the DNA-mapping pipeline, then you must provide a directory with the following structure:

```
├── deepTools_qc
│   ├── bamPEFragmentSize
│   │   └── fragmentSize.metric.tsv
│   │   └── fragmentSizes.png
│   └── filtered_bam
│       ├── sample1.filtered.bam
│       ├── sample1.filtered.bam.bai
│       └── sample2.filtered.bam
│           └── sample2.filtered.bam.bai
└── Sambamba
    ├── flagstat_report_all.tsv
    ├── sample1.markdup.txt
    └── sample2.markdup.txt
```

- **deepTools_qc** contains the output of `bamPEFragmentSize` from deepTools, run on all the BAM files.
- **Sambamba** directory contains the output of `flagstat` command from sambamba (the `.markdup.txt` files) and a single file summarizing that with columns `sample` (sample name, such as `sampl1`), `total` (total reads), `dup` (number of duplicate reads), and `mapped` (number of mapped reads).
- **filtered_bam** directory contains the input BAM files (either filtered or unfiltered, however you prefer).
- **sampleSheet.tsv** (OPTIONAL) is only needed to test for differential binding.
Sample configuration

The ChIP-seq sample configuration yaml file describes what type of peak calling to perform on each sample and which sample to use as the input control.

```yaml
chip_dict:
  SRR6761497:
    control: SRR6761502
    broad: True
  SRR6761498:
    control: SRR6761502
    broad: True
  SRR6761495:
    control: SRR6761502
    broad: False
  SRR6761499:
    control: SRR6761502
    broad: False
```

As you can see above, the same control can be used for multiple samples.

Note: Set the flag broad to *True* for broad marks, such as H3K27me and H3K9me3.

Differential Binding analysis

If you wish to perform differential binding analysis between two group of samples, for example wild-type vs Knockouts, via snakePipes. You would require a sample-sheet and the *--sampleSheet* option. Sample sheet may contain only a subset of samples used in the previous steps e.g. for peak calling. In addition, input samples are filtered out prior to the analysis using the sample configuration yaml (see above).

The sample sheet is a tab-separated file with two columns, named name and condition. An example is below:

<table>
<thead>
<tr>
<th>name</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample1</td>
<td>wild-type</td>
</tr>
<tr>
<td>sample2</td>
<td>wild-type</td>
</tr>
<tr>
<td>SRR7013047</td>
<td>wild-type</td>
</tr>
<tr>
<td>SRR7013048</td>
<td>mutant</td>
</tr>
<tr>
<td>SRR7013049</td>
<td>mutant</td>
</tr>
<tr>
<td>SRR7013050</td>
<td>mutant</td>
</tr>
</tbody>
</table>

For comparison between two conditions, the name you assign to "condition" is not relevant, but rather the order is. The group mentioned first (in the above case "wild-type") would be used as a "control" and the group mentioned later would be used as "test".

The differential binding module utilizes the R package *CSAW* to detect significantly different peaks between two conditions. The analysis is performed on a "union" of peaks from all samples mentioned in the sample sheet. This merged set of regions are provided as an output inside the *CSAW* folder as the file 'DiffBinding_allregions.bed'. All differentially bound regions are available in 'CSAW/DiffBinding_significant.bed'. Two thresholds are applied to produce `Filtered.results.bed`: FDR (default 0.05) as well as absolute log fold change (1). These can be specified either in the defaults.yaml dictionary or via commandline parameters ‘--FDR’ and ‘--LFC’. Additionally, filtered results are split into up to 3 bed files, representing direction change (UP, DOWN, or MIXED).

If the user provides additional columns between 'name' and 'condition' in the sample sheet, the variables stored there will be used as blocking factors in the order they appear in the sample sheet. Condition will be the final column and it will be used for any statistical inference.
Note: In order to include or exclude peaks from selected samples in the union of peaks used in the differential binding analysis, the user may provide an additional column named 'UseRegions' and set it to True or False, accordingly. This column must supersede the 'condition' column in the column order.

Merged regions from filtered results with any direction change are further used to produce deepTools heatmaps, using log2 ratio of chip signal to input or depth-normalized coverage. For this purpose, the regions are rescaled to 1kb, and extended by 0.2kb on each side.

An html report summarizing the differential binding analysis is produced in the same folder.

Filtered results are also annotated with the distance to the closest gene using bedtools closest and written as '.txt' files to the AnnotatedResults_* folder.

Configuration file

There is a configuration file in snakePipes/workflows/ChIP-seq/defaults.yaml:

```yaml
pipeline: chip-seq
configFile:
clusterConfigFile:
local: false
maxJobs: 5
## workingdir need to be required DNA-mapping output dir, 'outdir' is set to workingdir internally
workingdir:
## preconfigured target genomes (mm9, mm10, dm3, ...), see /path/to/snakemake_workflows/shared/organisms/
genome:
## paired end data?
pairedEnd: true
## Bin size of output files in bigWig format
bwBinSize: 25
## Median/mean fragment length, only relevant for single-end data (default: 200)
fragmentLength: 200
verbose: false
# sampleInfo_DB
sample_info:
## windowsize
windowSize: 150
plot_format: png
## dummy string to skip filtering annotation
filter_annotation:
## parameters to filter DB regions on
fdr: 0.05
absBestLFC: 1
```

The only parameters that are useful to change are bwBinSize, fragmentLength, and windowSize. Note however that those can be more conveniently changed on the command line.

6.6.3 Understanding the outputs

The ChIP-seq pipeline will generate additional output as follows:
Following up on the DNA-mapping module results (see DNA-mapping), the workflow produces the following output directories:

- **deepTools_ChIP**: Contains output from two of the deepTools modules. The bamCompare output contains the input-normalized coverage files for the samples, which is very useful for downstream analysis, such as visualization in IGV and plotting the heatmaps. The plotFingerPrint output is a useful QC plot to assess signal enrichment in the ChIP samples.

- **MACS2**: This folder contains the output of MACS2 on the ChIP samples, MACS2 would perform either a narrow or broad peak calling on the samples, as indicated by the ChIP sample configuration file (see Configuration file). The outputs files would contain the respective tags (narrowPeak or broadPeak).

- **histoneHMM**: This folder contains the output of histoneHMM. This folder will only exist if you have broad marks.

- **CSAW_sampleSheet**: This folder is created optionally, if you provide a sample sheet for differential binding analysis. (see Differential Binding analysis)

- **AnnotatedResults_sampleSheet**: This folder is created optionally, if you provide a sample sheet for differential binding analysis. (see Differential Binding analysis). Differentially bound regions annotated with distance to nearest gene are stored here.

Note: Although in case of broad marks, we also perform the MACS2 broadpeak analysis (output available as MACS2/<sample>.filtered.BAM_peaks.broadPeak), we would recommend using the histoneHMM out-
puts in these cases, since histoneHMM produces better results than MACS2 for broad peaks.

Note: The _sampleSheet_ suffix for the CSAW_sampleSheet is drawn from the name of the sample sheet you use. So if you instead named the sample sheet mySampleSheet.txt then the folder would be named CSAW_mySampleSheet. This facilitates using multiple sample sheets.

6.6.4 Command line options

MPI-IE workflow for ChIP-seq analysis

Usage example: ChIP-seq -d working-dir mm10 samples.yaml

```bash
usage: ChIP-seq -d WORKINGDIR [-h] [-v] [-c CONFIGFILE]
        [--clusterConfigFile CLUSTERCONFIGFILE] [-j INT] [--local]
        [--keepTemp] [--snakemakeOptions SNAKEMAKEOPTIONS] [--DAG]
        [--version] [--emailAddress EMAILADDRESS]
        [--smtpServer SMTPSERVER] [--smtpPort SMTPPORT] [--onlySSL]
        [--emailSender EMAILSENDER] [--smtpUsername SMTPUSERNAME]
        [--smtpPassword SMTPPASSWORD] [--singleEnd]
        [--bigWigType BIGWIGTYPE] [--fragmentLength INT]
        [--bwBinSize INT] [--qval INT] [--sampleSheet SAMPLESHEET]
        [--windowSize WINDOWSIZE]
        [--predictChIPDict [PREDICTCHIPDICT]] [--fromBAM FROMBAM]
        [--bamExt BAMEXT] [--plotFormat {png,pdf, None}]
        [--mfold INT INT] [--FDR FDR] [--LFC ABSESTLFC]
        GENOME [SAMPLESCONFIG]
```

Positional Arguments

- **GENOME**

 Genome acronym of the target organism. Either a yaml file or one of: mm10_gencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38, SchizoSPombe_ASM294v2

- **SAMPLESCONFIG**

 configuration file (eg. 'example.chip_samples.yaml') with sample annotation

Required Arguments

- **-d, --working-dir**

 working directory is output directory and must contain DNA-mapping pipeline output files

General Arguments

- **-v, --verbose**

 verbose output (default: 'False')

- **-c, --configFile**

 configuration file: config.yaml (default: 'None')

- **--clusterConfigFile**

 configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')

- **-j, --jobs**

 maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')

6.6. ChIP-seq
run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')

Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.

Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: '['–use-conda']')

If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

show program’s version number and exit

If specified, send an email upon completion to the given email address

If specified, the email server to use.

The port on the SMTP server to connect to. A value of 0 specifies the default port.

The SMTP server requires an SSL connection from the beginning.

The address of the email sender. If not specified, it will be the address indicated by –emailAddress

If your SMTP server requires authentication, this is the username to use.

If your SMTP server requires authentication, this is the password to use.

Input data is single-end, not paired-end

Type of bigWig file to create. Options are: ‘subtract’ (control-subtracted ChIP coverage), ‘log2ratio’ (for log2 ratio of ChIP over control) or ‘both’ (create both set of bed files). Note that the allele-specific mode currently only produces 'log2ratio’ bigwigs. (default: ‘both’)

Fragment length in sequencing. Used only if –singleEnd. (default: '200')

bin size of output files in bigWig format (default: '25')

qvalue threshold for MACS2 (default: '0.001')

Information on samples (If differential binding analysis required); see 'docs/content/sampleSheet.example.tsv' for example. IMPORTANT: The first entry defines which group of samples are control. By this, the order of comparison and likewise the sign of values can be changed! Also, the condition control should only be used for input samples (control peaks are not evaluated for differential binding) (default: ’”)

Window size to counts reads in (If differential binding analysis required); Default size is suitable for most transcription factors and sharp histone marks.
Small window sizes (~20bp) should be used for very narrow transcription factor peaks, while large window sizes (~500 bp) should be used for broad marks (eg. H3K27me3) (default: '150')

--predictChIPDict Use existing bam files to predict a CHiP-seq sample configuration file. Write it to the workingdir. If no value is given, samples that contain 'input' are used as ChIP input/ctrl. Provide a custom pattern like 'input,H3$,H4$' to change that!

--fromBAM Input folder with bam files. If provided, the analysis will start from this point. If bam files contain single ends, please specify --singleEnd additionally. (default: 'False')

--bamExt Extension of provided bam files, will be substrated from basenames to obtain sample names. (default: '.filtered.bam')

--plotFormat Possible choices: png, pdf, None
Format of the output plots from deepTools. Select 'none' for no plots (default: '"png"')

--mfold Select the regions within MFOLD range of high-confidence enrichment ratio against background to build model. Fold-enrichment in regions must be lower than upper limit, and higher than the lower limit. Use as "-m 10 30". This setting is only used while building the shifting model. Tweaking it is not recommended. DEFAULT:5 50 (default: '"0 50"')

--FDR FDR threshold to apply for filtering DB regions (default: '0.05')

--LFC Log fold change threshold to apply for filtering DB regions (default: '1')

6.7 ATAC-seq

6.7.1 What it does

The ATAC-seq pipeline takes one or more BAM files and attempts to find accessible regions. If multiple samples and a sample sheet are provided, then CSAW is additionally used to find differentially accessible regions. Prior to finding open/accessible regions, the BAM files are filtered to include only properly paired reads with appropriate fragment sizes (<150 bases by default). These filtered fragments are then used for the remainder of the pipeline.
Note: The CSAW step will be skipped if there is no sample_info.tsv file (see Running snakePipes).

6.7.2 Input requirements

The DNA mapping pipeline generates output that is fully compatible with the ATAC-seq pipeline input requirements! When running the ATAC-seq pipeline, please specify the output directory of DNA-mapping pipeline as the working directory (-d).

- **filtered_bam** directory contains the input BAM files (either filtered or unfiltered, however you prefer).
- **sampleSheet.tsv** (OPTIONAL) is only needed to test for differential binding.

Differential open chromatin analysis

Similar to differential binding analysis with the ChIP-Seq data. We can perform the differential open chromatin analysis, using the --sampleSheet option of the ATAC-seq workflow. This requires a sample sheet, which is
identical to that required by the ChIP-seq and RNA-seq workflows (see ChIP-seq for details).

An example is below:

<table>
<thead>
<tr>
<th>name</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample1</td>
<td>eworo</td>
</tr>
<tr>
<td>sample2</td>
<td>eworo</td>
</tr>
<tr>
<td>SRR7013047</td>
<td>eworo</td>
</tr>
<tr>
<td>SRR7013048</td>
<td>OreR</td>
</tr>
<tr>
<td>SRR7013049</td>
<td>OreR</td>
</tr>
<tr>
<td>SRR7013050</td>
<td>OreR</td>
</tr>
</tbody>
</table>

Note: This sample sheet has the same requirements as the sample sheet in the ChIP-seq workflow, and also uses the same tool (CSAW) with a narrow default window size.

For comparison between two conditions, the name you assign to "condition" is not relevant, but rather the order is. The group mentioned first (in the above case "wild-type") would be used as a "control" and the group mentioned later would be used as "test".

If the user provides additional columns between 'name' and 'condition' in the sample sheet, the variables stored there will be used as blocking factors in the order they appear in the sample sheet. Condition will be the final column and it will be used for any statistical inference.

The differential binding module utilizes the R package CSAW to detect significantly different peaks between two conditions. The analysis is performed on a union of peaks from all samples mentioned in the sample sheet. This merged set of regions are provided as an output inside the **CSAW_sampleSheet** folder as the file 'DiffBinding_allregions.bed'. All differentially bound regions are available in 'CSAW/DiffBinding_significant.bed'. Two thresholds are applied to produce Filtered.results.bed: FDR (default 0.05) as well as absolute log fold change (1). These can be specified either in the defaults.yaml dictionary or via commandline parameters ‘–FDR’ and ‘–LFC’. Additionally, filtered results are split into up to 3 bed files, representing direction change (UP, DOWN, or MIXED).

Note: In order to include or exclude peaks from selected samples in the union of peaks used in the differential binding analysis, the user may provide an additional column named 'UseRegions' and set it to True or False, accordingly. This column must supersede the 'condition' column in the column order.

Merged regions from filtered results with any direction change are further used to produce deepTools heatmaps, using depth-normalized coverage. For this purpose, the regions are rescaled to 1kb, and extended by 0.2kb on each side.

An html report summarizing the differential binding analysis is produced in the same folder.

Filtered results are also annotated with the distance to the closest gene using bedtools closest and written as '.txt' files to the AnnotatedResults_* folder.

Configuration file

There is a configuration file in snakePipes/workflows/ATACseq/defaults.yaml:

```yaml
## General/Snakemake parameters, only used/set by wrapper or in Snakemake cmdl, but not in Snakefile
pipeline: ATAC-seq
configFile: 
clusterConfigFile: 
local: false
maxJobs: 5
```

(continues on next page)
Useful parameters are maxFragmentSize, minFragmentSize and windowSize, also available from commandline.

- **windowSize**: is the size of windows to test differential binding using CSAW. The default small window size is sufficient for most analysis, since an ATAC-seq peak is sharp.

- **fragmentCountThreshold**: refers to the minimum number of counts a chromosome must have to be included in the MACS2 analysis. It is introduced to avoid errors in the peak calling step and should only be changed if MACS2 fails.

- **Qval**: a value provided to MACS2 that affects the number and width of the resulting peaks.

6.7.3 Understanding the outputs

Assuming a sample sheet is used, the following will be added to the working directory:

```
- CSAW_sampleSheet
  - CSAW.log
  - CSAW.session_info.txt
  - DiffBinding_allregions.bed
```

(continues on next page)
Currently the ATAC-seq workflow performs detection of open chromatin regions via MACS2, and if a sample sheet is provided, the detection of differential open chromatin sites via CSAW. There are additionally log files in most of the directories. The various outputs are documented in the CSAW and MACS2 documentation. For more information on the contents of the CSAW_sampleSheet folder, see section Differential open chromatin analysis.

- **MACS2_QC**: contains a number of QC metrics that we find useful, namely:
 - the number of peaks
 - fraction of reads in peaks (FRiP)
 - percentage of the genome covered by peaks.

- **deepTools_ATAC**: contains the output of plotFingerPrint, which is a useful QC plot to assess signal enrichment between the ATAC-seq samples.

Note: The _sampleSheet suffix for the CSAW_sampleSheet is drawn from the name of the sample sheet you use. So if you instead named the sample sheet mySampleSheet.txt then the folder would be named CSAW_mySampleSheet. This facilitates using multiple sample sheets.

6.7.4 Where to find final bam files and biowgigs

Bam files with the extention filtered.bam are only filtered for PCR duplicates. The final bam files filtered additionally for fragment size and used as direct input to MACS2 are found in the MACS2 folder with the extention .short.cleaned.bam. Bigwig files calculated from these bam files are found under deepTools_ATAC/bamCompare with the extention .filtered.bw.
6.7.5 Command line options

MPI-IE workflow for ATAC-seq Analysis

usage example: ATAC-seq -d working-dir mm10

```
usage: ATAC-seq -d WORKINGDIR [-h] [-v] [-c CONFIGFILE]
                        [--clusterConfigFile CLUSTERCONFIGFILE] [-j INT] [--local]
                        [--keepTemp] [--snakemakeOptions SNAKEMAKEOPTIONS] [--DAG]
                        [--version] [--emailAddress EMAILADDRESS]
                        [--smtpServer SMTPSERVER] [--smtpPort SMTPPORT] [--onlySSL]
                        [--emailSender EMAILSENDER] [--smtpUsername SMTPUSERNAME]
                        [--smtpPassword SMTPPASSWORD]
                        [--maxFragmentSize MAXFRAGMENTSIZE]
                        [--minFragmentSize MINFRAGMENTSIZE] [--qval INT]
                        [--sampleSheet SAMPLESHEET] [--fromBAM FROMBAM]
                        [--bamExt BAMEXT] [--FDR FDR] [--LFC ABSBESTLFC]
                        GENOME
```

Positional Arguments

GENOME Genome acronym of the target organism. Either a yaml file or one of:
mm10_gencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38, SchizoSPombe_ASM294v2

Required Arguments

- **-d, --working-dir** working directory is output directory and must contain DNA-mapping pipeline output files

General Arguments

- **-v, --verbose** verbose output (default: 'False')
- **-c, --configFile** configuration file: config.yaml (default: 'None')
- **--clusterConfigFile** configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')
- **-j, --jobs** maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')
- **--local** run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
- **--keepTemp** Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.
- **--snakemakeOptions** Snakemake options to be passed directly to snakemake, e.g. use `--snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'`. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: ['"--use-conda"'])
--DAG
If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

--version
show program’s version number and exit

Email Arguments

--emailAddress
If specified, send an email upon completion to the given email address

--smtpServer
If specified, the email server to use.

--smtpPort
The port on the SMTP server to connect to. A value of 0 specifies the default port.

--onlySSL
The SMTP server requires an SSL connection from the beginning.

--emailSender
The address of the email sender. If not specified, it will be the address indicated by --emailAddress

--smtpUsername
If your SMTP server requires authentication, this is the username to use.

--smtpPassword
If your SMTP server requires authentication, this is the password to use.

Options

--maxFragmentSize
Maximum size of (typically nucleosomal) fragments for inclusion in the analysis (default: '150')

--minFragmentSize
Minimum size of (typically nucleosomal) fragments for inclusion in the analysis (default: '0')

--qval
qvalue threshold for MACS2 (default: '0.001')

--sampleSheet
Invoke differential accessibility analysis by providing information on samples; see 'docs/content/sampleSheet.example.tsv' for example. IMPORTANT: The first entry defines which group of samples are control. With this, the order of comparison and likewise the sign of values can be changed! Also, the condition control should not be used (reserved to mark input samples in the ChIP-Seq workflow (default: 'None').

--fromBAM
Input folder with bam files. If provided, the analysis will start from this point. (default: 'False')

--bamExt
Extention of provided bam files, will be substracted from basenames to obtain sample names. (default: '"filtered.bam")

--FDR
FDR threshold to apply for filtering DB regions (default: '0.05')

--LFC
Log fold change threshold to apply for filtering DB regions (default: '1')

[link to github]
6.8 HiC

6.8.1 What it does

The snakePipes HiC workflow allows users to process their HiC data from raw fastq files to corrected HiC matrices and TADs. The workflow utilized mapping by BWA, followed by analysis using HiCExplorer. The workflow follows the example workflow described in the documentation of HiCExplorer, which explains each step in detail and would be useful for new users to have a look at. The output matrices are produced in the .hdf5 format.
6.8.2 Input requirements and outputs

This pipeline requires paired-end reads fastq files as input in order to build a contact matrix and to call TADs. Prior to building the matrix, the pipeline maps reads against a user-specified reference genome. The output of mapping step is then used for building the contact matrix.

6.8.3 Workflow configuration file

Default parameters from the provided config file can be altered by user. Below is the config file description for the HiC workflow:

```plaintext
# This file is the default configuration of the HiC workflow!
#
# In order to adjust some parameters, please either use the wrapper script
# (eg. /path/to/snakemake_workflows/workflows/HiC/HiC)
# or save a copy of this file, modify necessary parameters and then provide
# this file to the wrapper or snakemake via '--configFile' option
# (see below how to call the snakefile directly)
#
# Own parameters will be loaded during snakefile execution as well and hence
# can be used in new/extended snakemake rules!

## General/Snakemake parameters, only used/set by wrapper or in Snakemake cmdl, but
## not in Snakefile
pipeline: hic
outdir:
configFile:
clusterConfigFile:
#set to true if running locally
local: False
#number of threads
maxJobs: 5
## directory with fastq files
indir:
## preconfigured target genomes (mm9,mm10,dm3,...) , see /path/to/snakemake_workflows/
## shared/organisms/
## Value can be also path to your own genome config file!
genome:
## FASTQ file extension (default: ".fastq.gz")
ext: ".fastq.gz"
## paired-end read name extension (default: ['_R1', '_R2'])
reads: ['_R1', '_R2']
aligner: BWA
## Number of reads to downsample from each FASTQ file
downsample:
## Options for trimming and fastqc
trim: False
trimmer: cutadapt
trimmerOptions:
fastqc: false
verbose: False
## is the Matrix RF resolution?
RFResolution: false
## which restriction enzyme was used
enzyme: HindIII
```

(continues on next page)
bin size in base pairs, if RF resolution is not required
binSize: 10000
build matrix only for a given region chr:start-end
restrictRegion:
Create files after merging a given number bins to be merged (default 0 = bins are not merged)
nBinsToMerge: 0
shall we merge the samples?
mergeSamples: false
parameters for hicFindTADs
findTADParams: '--thresholdComparisons 0.01'
Should hicPlotDistVsCounts be run?
distVsCount: false
#Parameters to run hicPlotDistVsCounts
distVsCountParams:
#Terminate the pipeline before calling TADs
noTAD: false
#Terminate the pipeline before correting the matrices with a certain cutoff value
noCorrect: false
#Chromosomes of interest to build matrix on them
chromosomes:
 # a .tsv file contains names and replicates of samples. It is needed if mergeSamples
sampleSheet:

Call snakemake directly, i.e. without using the wrapper script:
#
Please save a copy of this config yaml file and provide an adjusted config
via '---configFile' parameter!
example call:
#
snakemake --snakefile /path/to/snakemake_workflows/workflows/HiC/Snakefile
--configFile /path/to/snakemake_workflows/workflows/HiC/defaults.yaml
--directory /path/to/outputdir
--cores 32

6.8.4 Structure of output directory

In addition to the FASTQ module results (see Running snakePipes), the workflow produces the following outputs:

- BWA folder contains the mapping results in BAM format. The files were obtained after running BWA on each of the paired-end reads individually.
- HiC_matrices folder accommodates the contact matrices generated by hicBuildMatrix. In case of merging samples or merging bins the initial matrix is saved in this folder along with the merged ones.
– QCplot includes the QC measurements for each sample along with a diagnostic plot which illustrates a distribution of counts per bin. This information can be used to set a cutoff to prune (correct) the contact matrix.

Note: The cutoff value is computed by the pipeline and by default will be applied to build a corrected matrix. Generated matrices by the pipeline can further be used for downstream analysis such as detecting A/B compartments and they can also be visualized using hicPlotMatrix.

• HiC_matrices_corrected folder is in fact containing the corrected matrix which has been generated via hicCorrectMatrix after pruning as has been mentioned above.

• TADs folder includes the output of calling TADs using hicFindTADs. The output contains TAD boundaries, TAD domains and TAD scores. These along with the matrices can be visualized together as several tracks using pyGenomeTracks or can be interactively browsed via hicBrowser. Check figure below as an example.

6.8.5 Command line options

MPI-IE workflow for Hi-C analysis

usage example: HiC -i input-dir -o output-dir mm10

```
usage: HiC -i INDIR -o OUTDIR [-h] [-v] [--ext EXT] [--reads READS READS]
       [-c CONFIGFILE] [-c clusterConfigFile CLUSTERCONFIGFILE] [-j INT]
       [-DAG] [--version] [--emailAddress EMAILADDRESS]
       [-s smtpServer SMTPSERVER] [-s smtpPort SMTPPORT] [--onlySSL]
       [-e emailSender EMAILSENDERS] [-s smtpUsername SMTPUSERNAME]
       [-s smtpPassword SMTPPASSWORD] [--downsample INT] [--trim]
       [-e trimmer {cutadapt,trimgalore,fastp}]
       [-e trimmerOptions TRIMMEROPTIONS] [--fastqc] [--bcExtract]
       [-e bcPattern BCPATTERN] [--UMIDedup] [--UMIDedupSep UMIDEDUPSEP]
       [-e UMIDedupOpt {UMIDEDUPOPTS}] [--RFResolution]
       [-e enzyme {DpnII,HindIII}] [--binSize INT] [--restrictRegion STR]
       [-e mergeSamples] [--nBinsToMerge NBINSTOMERGE]
       [-e findTADsParams STR] [--noTAD] [--noCorrect] [--distVsCount]
       [-e distVsCountParams STR] [--sampleSheet STR]

Genome acronym of the target organism. Either a yaml file or one of:
mm10_gencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38,
SchizoSPombe_ASM294v2
```
Required Arguments

-i, --input-dir
input directory containing the FASTQ files, either paired-end OR single-end data

-o, --output-dir
output directory

General Arguments

-v, --verbose
verbose output (default: 'False')

--ext
Suffix used by input fastq files (default: "".fastq.gz"").

--reads
Suffix used to denote reads 1 and 2 for paired-end data. This should typically be either '_1' '_2' or '_R1' '_R2' (default: ['_R1', '_R2']). Note that you should NOT separate the values by a comma (use a space) or enclose them in brackets.

-c, --configFile
configuration file: config.yaml (default: 'None')

--clusterConfigFile
configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')

-j, --jobs
maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')

--local
run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')

--keepTemp
Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.

--snakemakeOptions
Snakemake options to be passed directly to snakemake, e.g. use –snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: ['--use-conda'])

--DAG
If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

--version
show program’s version number and exit

Email Arguments

--emailAddress
If specified, send an email upon completion to the given email address

--smtpServer
If specified, the email server to use.

--smtpPort
The port on the SMTP server to connect to. A value of 0 specifies the default port.

--onlySSL
The SMTP server requires an SSL connection from the beginning.

--emailSender
The address of the email sender. If not specified, it will be the address indicated by --emailAddress

--smtpUsername
If your SMTP server requires authentication, this is the username to use.

--smtpPassword
If your SMTP server requires authentication, this is the password to use.
Options

--downsample
Downsample the given number of reads randomly from of each FASTQ file (default: 'False')

--trim
Activate fastq read trimming. If activated, Illumina adaptors are trimmed by default. Additional parameters can be specified under --trimmerOptions. (default: 'False')

--trimmer
Possible choices: cutadapt, trimgalore, fastp
Trimming program to use: Cutadapt, TrimGalore, or fastp. Note that if you change this you may need to change --trimmerOptions to match! (default: "cutadapt")

--trimmerOptions
Additional option string for trimming program of choice. (default: "")

--fastqc
Run FastQC read quality control (default: 'False')

--bcExtract
To extract umi barcode from fastq file via UMI-tools and add it to the read name (default: 'False')

--bcPattern
The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) (default: "")

--UMIDedup
Deduplicate bam file based on UMIs via umi_tools dedup that are present in the read name. (default: 'False')

--UMIDedupSep
umi separation character that will be passed to umi_tools.(default: ":")

--UMIDedupOpts
Additional options that will be passed to umi_tools.(default: "")

--RFResolution
Create Hi-C matrices at the restriction fragment resolution. Using RFResolution would override the --binSize argument. (default: 'False')

--enzyme
Possible choices: DpnII, HindIII
Which enzyme was used to create Hi-C library (default: "HindIII")

--binSize
Create Hi-C matrices at the given binSize. This option is mutally exclusive with the --RFResolution option (default: '10000')

--restrictRegion
Restrict building of HiC Matrix to given region [Chr:Start-End]. Only one chromosome can also be specified (default: 'None')

--mergeSamples
Merge the HiC matrices and create a new matrix. If this option is specified together with --sampleInfo (see below), the samples would be merged based on the defined groups. (default: 'False')

--nBinsToMerge
If > 0, create a lower resolution HiC matrix for each sample by merging the given number of bins. (default: '0')

--findTADsParams
parameters for HiCFindTADs. (default: ":--thresholdComparisons 0.01"")

--noTAD
Stop the pipeline before TAD calling. (default: 'False')

--noCorrect
Stop the pipeline before ICE-correction (i.e. run only upto building the matrix). (default: 'False')

--distVsCount
Produce a plot of the ICE-corrected HiC counts as a function of distance. This plot could be used for QC as well as comparison between samples for biological effects. The plot is create using the tool 'hicDistVsCount'. (default: 'False')

--distVsCountParams
parameters to run hicDistVsCount. (default: 'None')
--sampleSheet A .tsv file containing sample names and associated groups. If provided, the file would be used to identify groups to merge the samples. An example can be found at 'docs/content/sampleSheet.example.tsv'(default: None)

code @ github.

6.9 preprocessing

6.9.1 What it does

The preprocessing pipeline handles a few tasks that are commonly done by some, but not all, sequencing providers:

- Merging samples across lanes (or technical replicates)
- Removal of apparent optical duplicates
- Reformattting fastq files to extract UMIs
- Running FastQC
6.9.2 Input requirements

The minimal requirement is a directory of fastq files. If files should be merged (e.g., the sequencing provider did not merge samples across lanes) then a sample sheet should also be provided of the following form:

```plaintext
sample1_S1_L001_R1_001.fastq.gz _R1 sample1
sample1_S1_L001_R2_001.fastq.gz _R2 sample1
sample1_S1_L002_R1_001.fastq.gz _R1 sample1
sample1_S1_L002_R2_001.fastq.gz _R2 sample1
sample1_S1_L003_R1_001.fastq.gz _R1 sample1
sample1_S1_L003_R2_001.fastq.gz _R2 sample1
```

The first column contains file names, the second the associated read 1/2 designator (this should match the `--reads` option), and finally the desired sample name.

Care should be given when setting `--optDedupDist`, as values of 0 (the default) disable removal of optical duplicates. The appropriate value to use is sequencer-dependent.

6.9.3 Understanding the outputs

The preprocessing pipeline can generate the following files and directories (depending on the options given):

```
./
  deduplicatedFASTQ
    sample1.metrics
    sample1_R1.fastq.gz
    sample1_R1_optical_duplicates.fastq.gz
    sample1_R2.fastq.gz
    sample1_R2_optical_duplicates.fastq.gz
    optical_dedup_mqc.json
  FASTQ
  FastQC
  mergedFASTQ
  multiQC
  originalFASTQ
```

As shown above, the pipeline produces the following directories:

- **mergedFASTQ**: If a sample sheet is given, this file contains the merged fastq files.
- **deduplicatedFASTQ**: The results of optical duplicate removal (or symlinks to mergedFASTQ). The "_optical_duplicates" files contain the reads marked by clumpify as being likely optical duplicates. The associated ".metrics" file contains two values: number of optical duplicates and then the total reads. The `optical_dedup_mqc.json` file merges the various sample metrics files for downstream use by MultiQC.
- **originalFASTQ**: This folder exists from compatibility with other pipelines and will contain either symlinks to the original fastq files or, if a sample sheet is specified, those in deduplicatedFASTQ.
- **FASTQ**: Fastq files produced by UMI processing (or symlinks to originalFASTQ).
- **FastQC**: If the `--fastqc` parameter was given, the output of FastQC.
- **multiQC**: If either FastQC was run or optical duplicates were removed, an interactive web report will be created using MultiQC.

6.9.4 Command line options

MPI-IE workflow for preprocessing
Usage Example

```bash
usage: Preprocessing -i INDIR -o OUTDIR [-h] [-v] [---ext EXT]
        [---reads READS READS] [-c CONFIGFILE]
        [---clusterConfigFile CLUSTERCONFIGFILE] [-j INT]
        [---local] [---keepTemp]
        [---snakemakeOptions SNAKEMAKEOPTIONS] [---DAG] [---version]
        [---emailAddress EMAILADDRESS] [---smtpServer SMTPSERVER]
        [---smtpPort SMTPPORT] [---onlySSL]
        [---emailSender EMAILSENDER] [---smtpUsername SMTPUSERNAME]
        [---smtpPassword SMTPPASSWORD] [---fastqc] [---bcExtract]
        [---bcPattern BCPATTERN] [---optDedupDist OPTDEDUPDIST]
        [---clumpifyOptions CLUMPIFYOPTIONS]
        [---clumpifyMemory CLUMPIFYMEMORY]
        [---sampleSheet SAMPLESHEET]
```

Required Arguments

- `-i, --input-dir` input directory containing the FASTQ files, either paired-end OR single-end data
- `-o, --output-dir` output directory

General Arguments

- `-v, --verbose` verbose output (default: 'False')
- `--ext` Suffix used by input fastq files (default: '.fastq.gz').
- `--reads` Suffix used to denote reads 1 and 2 for paired-end data. This should typically be either '_1' '_2' or '_R1' '_R2' (default: ['_R1', '_R2']). Note that you should NOT separate the values by a comma (use a space) or enclose them in brackets.
- `-c, --configFile` configuration file: config.yaml (default: 'None')
- `--clusterConfigFile` configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')
- `-j, --jobs` maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')
- `--local` run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
- `--keepTemp` Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.
- `--snakemakeOptions` Snakemake options to be passed directly to snakemake, e.g. use `--snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'`. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: ['--use-conda'])
- `--DAG` If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.
- `--version` show program’s version number and exit
Email Arguments

--emailAddress If specified, send an email upon completion to the given email address
--smtpServer If specified, the email server to use.
--smtpPort The port on the SMTP server to connect to. A value of 0 specifies the default port.
--onlySSL The SMTP server requires an SSL connection from the beginning.
--emailSender The address of the email sender. If not specified, it will be the address indicated by --emailAddress
--smtpUsername If your SMTP server requires authentication, this is the username to use.
--smtpPassword If your SMTP server requires authentication, this is the password to use.

Options

--fastqc Run FastQC read quality control (default: 'False')
--bcExtract To extract umi barcode from fastq file via UMI-tools and add it to the read name (default: 'False')
--bcPattern The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) (default: '')
--optDedupDist The maximum distance between clusters to mark one as an optical duplicate of the other. Setting this to 0 will disable optical deduplication, which is only needed on patterned flow cells (NextSeq, NovaSeq, HiSeq 3000/4000, etc.). Common values are: 2500 (HiSeq 3000/4000), 40 (NextSeq) or 12000 (NovaSeq). (default: '0')
--clumpifyOptions Options passed to clumpify, which should generally NOT be changed. The exception to this is with NextSeq runs, where 'spany=t adjacent=t' should be ADDED.
--clumpifyMemory This controls how much memory clumpify is instructed to use, in GB. This may need to be increased if samples are particularly large or there are MANY optical duplicates. This is passed to clumpify (e.g., as -Xmx30G). You may additionally need to instruct your scheduler about the per-core memory usage (e.g., in cluster.yaml). (default: '"30G"')
--sampleSheet Information on samples (required for merging across lanes); see 'docs/content/preprocessing_sampleSheet.example.tsv' for an example. The first set of columns should hold the current sample names (excluding things like _R1.fastq.gz or _1.fastq.gz) while the second holds the name that the final sample should have (again, excluding things like _R1.fastq.gz or _1.fastq.gz). (default: 'None')

code @ github.
6.10 RNA-seq

6.10.1 What it does

The snakePipes RNA-seq workflow allows users to process their single or paired-end RNA-Seq fastq files up to the point of gene/transcript-counts and differential expression. It also allows full allele-specific RNA-Seq analysis (up to allele-specific differential expression) using the *allelic-mapping* mode.

6.10.2 Input requirements

The only requirement is a directory of gzipped fastq files. Files could be single or paired end, and the read extensions could be modified using the keys in the *defaults.yaml* file below.

Configuration file

There is a configuration file in *snakePipes/workflows/RNA-seq/defaults.yaml*:

```yaml
## General/Snakemake parameters, only used/set by wrapper or in Snakemake cmdl, but _ → not in Snakefile
pipeline: rna-seq
outdir: configFile: clusterConfigFile: local: False
maxJobs: 5
## directory with fastq files
indir:
## preconfigured target genomes (mm9,mm10,dm3,...), see /path/to/snakemake_workflows/ → shared/organisms/
## Value can be also path to your own genome config file!
genome:
## FASTQ file extension (default: ".fastq.gz")
ext: ".fastq.gz"
## paired-end read name extension (default: ["_R1", ",_R2"])
reads: ["_R1","_R2"]
## Number of reads to downsample from each FASTQ file
downsample:
```

(continues on next page)
Options for trimming

```yaml
## Options for trimming
trim: False
trimmer: cutadapt
trimmerOptions:
## further options
mode: alignment-free, deepTools_qc
sampleSheet:
bwBinSize: 25
fastqc: False
featureCountsOptions: --C -Q 10 --primary
filterGTF:
fragmentLength: 200
libraryType: 2
salmonIndexOptions: --type quasi -k 31
dnaContam: False
```

Further options

```yaml
## further options
mode: alignment-free, deepTools_qc
sampleSheet:
bwBinSize: 25
fastqc: False
featureCountsOptions: --C -Q 10 --primary
filterGTF:
fragmentLength: 200
libraryType: 2
salmonIndexOptions: --type quasi -k 31
dnaContam: False
```

Supported mappers: STAR, HISAT2

```yaml
## supported mappers: STAR, HISAT2
aligner: STAR
```

N.B., setting --outBAMsortingBinsN too high can result in cryptic errors

```yaml
alignerOptions:
verbose: False
plotFormat: png
```

for allele-specific mapping

```yaml
SNPFile:
NMappedIndex:
```

Apart from the common workflow options (see *Running snakePipes*), the following parameters are useful to consider:

- **aligner**: You can choose either STAR or HISAT2. While HISAT2 requires less memory than STAR, we keep STAR as the default aligner due to its superior accuracy (see this paper). Make sure that `--alignerOptions` matches this.

- **alignerOptions**: Options to pass on to your chosen aligner. Note that library type and junction definitions don’t have to be passed to the aligners as options, as they are handled either automatically, or via other parameters.

- **featureCountsOptions**: Options to pass to featureCounts (in case the alignment or allelic-mapping mode is used). Note that the paired-end information is automatically passed to featurecounts via the workflow, and the summarization is always performed at gene level, since the workflow assumes that featurecounts output is being used for gene-level differential expression analysis. If you wish to perform a transcript-level DE analysis, please choose the mode `alignment-free`.

- **filterGTF**: Options you can pass on to filter the original GTF file. This is useful in case you want to filter certain kind of transcripts (such as pseudogenes) before running the counts/DE analysis.

- **libraryType**: The default library-type is suitable for most RNAseq protocols (using Illumina Tru-Seq). Change this option in case you have a different strandednes.

- **salmonIndexOptions**: In the alignment-free mode (see below), this option allows you to change the type of index created by salmon. New users can leave it to default.

- **dnaContam**: Enable this to test for possible DNA contamination in your RNA-seq samples. DNA contamination is quantified as the fraction of reads falling into intronic and intergenic regions, compared to those falling into exons. Enabling this option would produce a directory called *GenomicContamination* with `.tsv` files containing this information.

- **plotFormat**: You can switch the type of plot produced by all deepTools modules using this option. Possible choices: png, pdf, svg, eps, plotly
• **SNPFile**: For the allelic-mapping mode. The SNPFile is the file produced by SNPsplit after creating a dual-hybrid genome. The file has the suffix `.vcf`.

• **NMaskedIndex**: For the allelic-mapping mode. The NMaskedIndex refers to the basename of the index file created using STAR, on the SNPsplit output.

Note: SNPFile and NMaskedIndex file could be specified in case you already have this and would like to re-run the analysis on new data. In case you are running the allele-specific analysis for the first time, you would need a VCF file and the name of the two strains. In this case the SNPFile as well as the NMaskedIndex files would be automatically created by the workflow using SNPsplit.

6.10.3 Differential expression

Like the other workflows, differential expression can be performed using the `--sampleSheet` option and supplying a sample sheet like that below:

<table>
<thead>
<tr>
<th>name</th>
<th>condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample1</td>
<td>eworo</td>
</tr>
<tr>
<td>sample2</td>
<td>eworo</td>
</tr>
<tr>
<td>SRR7013047</td>
<td>eworo</td>
</tr>
<tr>
<td>SRR7013048</td>
<td>OreR</td>
</tr>
<tr>
<td>SRR7013049</td>
<td>OreR</td>
</tr>
<tr>
<td>SRR7013050</td>
<td>OreR</td>
</tr>
</tbody>
</table>

Note: The first entry defines which group of samples are control. This way, the order of comparison and likewise the sign of values can be changed. The DE analysis might fail if your sample names begin with a number. So watch out for that!

Complex designs with blocking factors

If the user provides additional columns between 'name' and 'condition' in the sample sheet, the variables stored there will be used as blocking factors in the order they appear in the sample sheet. Eg. if the first line of your sample sheet looks like 'name batch condition', this will translate into a formula `batch + condition`. 'condition' has to be the final column and it will be used for any statistical inference.

6.10.4 Analysis modes

Following analysis (modes) are possible using the RNA-seq workflow:

"alignment"

In this mode, the pipeline uses one of the selected aligners to create BAM files, followed by gene-level quantification using `featureCounts`. Gene-level differential expression analysis is then performed using `DESeq2`.

"allelic-mapping"

allelic-mapping mode follows a similar process as the "mapping" mode, however the alignment performed on an allele-masked genome, followed by allele-specific splitting of mapped files. Gene-level quantification is performed
for each allele using featureCounts. Allele-specific, gene-level differential expression analysis is then performed using DESeq2.

Note: allelic-mapping mode is mutually exclusive with mapping mode

"alignment-free"

In this mode, the pipeline uses salmon to perform transcript-level expression quantification. This mode performs both transcript-level differential expression (using Sleuth), and gene-level differential expression (using wasabi, followed by DESeq2).

Note: The salmon index is recreated each time in alignment-free mode. This is done to facilitate changing how the GTF file is filtered, which necessitates reindexing.

"deepTools_qc"

The pipeline provides multiple quality controls through deepTools, which can be triggered using the deepTools_qc mode. It’s a very useful add-on with any of the other modes.

Note: Since most deeptools functions require an aligned (BAM) file, the deepTools_qc mode will additionally perform the alignment of the fastq files. However this would not interfere with operations of the other modes.

6.10.5 Understanding the outputs

Assuming the pipeline was run with `--mode 'alignment-free,alignment,deepTools_qc'` on a set of FASTQ files, the structure of the output directory would look like this (files are shown only for one sample)

```plaintext
  Annotation
    filter_command.txt
    genes.annotated.bed
    genes.filtered.bed
    genes.filtered.fa
    genes.filtered.gtf
    genes.filtered.symbol
    genes.filtered.t2g
  bamCoverage
    logs
    sample1.coverage.bw
    sample1.RPKM.bw
    sample1.uniqueMappings.fwd.bw
    sample1.uniqueMappings.rev.bw
  cluster_logs
  deepTools_qc
    bamPEFragmentSize
      fragmentSize.metric.tsv
      fragmentSizes.png
    estimateReadFiltering
      sample1_filtering_estimation.txt
```

(continues on next page)
logs
multiBigwigSummary
plotCorrelation
 correlation.pearson.bed_coverage.heatmap.png
 correlation.pearson.bed_coverage.tsv
 correlation.spearman.bed_coverage.heatmap.png
 correlation.spearman.bed_coverage.tsv
plotEnrichment
 plotEnrichment.png
 plotEnrichment.tsv
plotPCA
 PCA.bed_coverage.png
 PCA.bed_coverage.tsv
DESeq2_Salmon_sampleSheet
 DESeq2_Salmon.err
 DESeq2_Salmon.out
 citations.bib
 DESeq2_report_files
 DESeq2_report.html
 DESeq2_report.Rmd
 DESeq2.session_info.txt
 DEseq_basic_counts_DESeq2.normalized.tsv
 DEseq_basic_DEresults.tsv
 DEseq_basic_DESeq.Rdata
DESeq2_sampleSheet
 DESeq2.err
 DESeq2.out
 citations.bib
 DESeq2_report_files
 DESeq2_report.html
 DESeq2_report.Rmd
 DESeq2.session_info.txt
 DEseq_basic_counts_DESeq2.normalized.tsv
 DEseq_basic_DEresults.tsv
 DEseq_basic_DESeq.Rdata
FASTQ
 sample1_R1.fastq.gz
 sample1_R2.fastq.gz
featureCounts
 counts.tsv
 sample1.counts.txt
 sample1.counts.txt.summary
 sample1.err
 sample1.out
multiQC
 multiqc_data
 multiQC.err
 multiQC.out
 multiqc_report.html
QC_report
 QC_report_all.tsv
RNA-seq.cluster_config.yaml
RNA-seq.config.yaml
RNA-seq_organism.yaml
RNA-seq_pipeline.pdf
RNA-seq_run-1.log
Salmon

(continues on next page)
Note: The _sampleSheet suffix for the DESeq2_sampleSheet and sleuth_Salmon_sampleSheet is drawn from the name of the sample sheet you use. So if you instead named the sample sheet mySampleSheet.txt then the folders would be named DESeq2_mySampleSheet and sleuth_Salmon_mySampleSheet. This facilitates using multiple sample sheets.

Apart from the common module outputs (see Running snakePipes), the workflow would produce the following folders:

- **Annotation**: This folder would contain the GTF and BED files used for analysis. In case the file has been filtered using the --filterGTGTFF option (see Configuration file), this would contain the filtered files.

- **STAR/HISAT2**: (not produced in mode alignment-free) This would contain the output of RNA-alignment by STAR or HISAT2 (indexed BAM files).

- **featureCounts**: (not produced in mode alignment-free) This would contain the gene-level counts (output of featureCounts), on the filtered GTF files, that can be used for differential expression analysis.

- **bamCoverage**: (not produced in mode alignment-free) This would contain the bigWigs produced by deepTools bamCoverage. Files with suffix .coverage.bw are raw coverage files, while the files with suffix RPKM.bw are RPKM-normalized coverage files.

- **deepTools_QC**: (produced in the mode deepTools_QC) This contains the quality checks specific for RNA-seq, performed via deepTools. The output folders are names after various deepTools functions and the outputs are explained under deepTools documentation. In short, they show the insert size distribution(bamPEFragmentSize), mapping statistics (estimateReadFiltering), sample-to-sample correlations and PCA (multiBigwigSummary, plotCorrelation, plotPCA), and read enrichment on various genic features (plotEnrichment).

- **DESeq2_[sampleSheet]/DESeq2_Salmon_[sampleSheet]**: (produced in the modes alignment or alignment-free, only if a sample-sheet is provided.) The folder contains the HTML result report DESeq2_report.html, the annotated output file from DESeq2 (DESeq_basic_DEResults.tsv) and normalized counts for all samples, produced via DESeq2 (DEseq_basic_counts_DEseq2.normalized.tsv) as well as an Rdata file (DESeq_basic_DESeq.Rdata) with the R objects dds <- DEseq2::DESeq(dds) and ddr <- DDESeq2::results(dds,alpha = fdr). DESeq2_[sampleSheet] uses gene counts from
featureCounts/counts.tsv, whereas DESeq2_Salmon_[sampleSheet] uses transcript counts from Salmon/counts.tsv that are merged via tximport in R.

- **Salmon**: (produced in mode alignment-free) This folder contains transcript-level (counts.tsv) and gene-level (counts.genes.tsv) counts estimated by the tool Salmon.

- **sleuth_Salmon_[sampleSheet]** (produced in mode alignment-free, only if a sample-sheet is provided) This folder contains a transcript-level differential expression output produced using the tool Sleuth.

6.10.6 Command line options

MPI-IE workflow for RNA mapping and analysis

usage example: RNA-seq -i input-dir -o output-dir mm10

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i</code>, <code>--input-dir</code></td>
<td>input directory containing the FASTQ files, either paired-end OR single-end data</td>
</tr>
<tr>
<td><code>-o</code>, <code>--output-dir</code></td>
<td>output directory</td>
</tr>
<tr>
<td><code>-v</code>, <code>--verbose</code></td>
<td>verbose output (default: 'False')</td>
</tr>
<tr>
<td><code>--ext</code></td>
<td>Suffix used by input fastq files (default: ".fastq.gz")</td>
</tr>
<tr>
<td><code>-c</code></td>
<td>CONFIGFILE</td>
</tr>
<tr>
<td><code>-j</code></td>
<td>INT</td>
</tr>
<tr>
<td><code>--snakemakeOptions</code></td>
<td>SNAKEMAKEOPTIONS</td>
</tr>
<tr>
<td><code>--smtpServer</code></td>
<td>SMTPSERVER</td>
</tr>
<tr>
<td><code>--smtpUsername</code></td>
<td>SMTPUSERNAME</td>
</tr>
<tr>
<td><code>--smtpPassword</code></td>
<td>SMTPPASSWORD</td>
</tr>
<tr>
<td><code>--VCFfile</code></td>
<td>VCFFILE</td>
</tr>
<tr>
<td><code>--NMaskedIndex</code></td>
<td>NMAKEDINDEX</td>
</tr>
<tr>
<td><code>--trim</code></td>
<td>trim</td>
</tr>
<tr>
<td><code>--trimmerOptions</code></td>
<td>TRIMMEROPTIONS</td>
</tr>
<tr>
<td><code>--bcPattern</code></td>
<td>BCPATTERN</td>
</tr>
<tr>
<td><code>--UMIDedup</code></td>
<td>UMIDedup</td>
</tr>
<tr>
<td><code>--UMIDedupSep</code></td>
<td>UMIDEDUPSEP</td>
</tr>
<tr>
<td><code>--bwBinSize</code></td>
<td>BWBINSIZE</td>
</tr>
<tr>
<td><code>--libraryType</code></td>
<td>LIBRARYTYPE</td>
</tr>
<tr>
<td><code>--alignerOptions</code></td>
<td>ALIGNEROPTIONS</td>
</tr>
<tr>
<td><code>--salmonIndexOptions</code></td>
<td>SALMONINDEXOPTIONS</td>
</tr>
<tr>
<td><code>--featureCountsOptions</code></td>
<td>FEATURECOUNTSOPTIONS</td>
</tr>
<tr>
<td><code>--filterGTF</code></td>
<td>FILTERGTF</td>
</tr>
<tr>
<td><code>--sampleSheet</code></td>
<td>SAMPLESHEET</td>
</tr>
<tr>
<td><code>--dnaContam</code></td>
<td>DNAContam</td>
</tr>
<tr>
<td><code>--fromBAM</code></td>
<td>FROMBAM</td>
</tr>
<tr>
<td><code>--singleEnd</code></td>
<td>SingleEnd</td>
</tr>
</tbody>
</table>

Positional Arguments

- **GENOME**: Genome acronym of the target organism. Either a yaml file or one of: mm10, gencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38, SchizoSPombe_ASM294v2

Required Arguments

- `-i`, `--input-dir`
- `-o`, `--output-dir`

General Arguments

- `-v`, `--verbose`
- `--ext`
--reads Suffix used to denote reads 1 and 2 for paired-end data. This should typically be either '_1' '__2' or '_R1' '__R2' (default: [''_R1', '__R2']). Note that you should NOT separate the values by a comma (use a space) or enclose them in brackets.

-c, --configFile configuration file: config.yaml (default: 'None')

--clusterConfigFile configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')

-j, --jobs maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '5')

--local run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')

--keepTemp Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.

--snakemakeOptions Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default: [''--use-conda''])

--DAG If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

--version show program’s version number and exit

Email Arguments

--emailAddress If specified, send an email upon completion to the given email address

--smtpServer If specified, the email server to use.

--smtpPort The port on the SMTP server to connect to. A value of 0 specifies the default port.

--onlySSL The SMTP server requires an SSL connection from the beginning.

--emailSender The address of the email sender. If not specified, it will be the address indicated by --emailAddress

--smtpUsername If your SMTP server requires authentication, this is the username to use.

--smtpPassword If your SMTP server requires authentication, this is the password to use.

Allele-specific mapping arguments

--VCFfile VCF file to create N-masked genomes (default: 'None')

--strains Name or ID of SNP strains separated by comma (default: 'None')

--SNPfile File containing SNP locations (default: 'None')

--NMaskedIndex N-masked index of the reference genome (default: 'None')
Options

-m, --mode workflow running modes (available: 'alignment-free, alignment, allelic-mapping, deepTools_qc') (default: "alignment,deepTools_qc")

--downsample Downsample the given number of reads randomly from of each FASTQ file (default: 'False')

--trim Activate fastq read trimming. If activated, Illumina adaptors are trimmed by default. Additional parameters can be specified under --trimmerOptions. (default: 'False')

--trimmer Possible choices: cutadapt, trimgalore, fastp

Trimming program to use: Cutadapt, TrimGalore, or fastp. Note that if you change this you may need to change --trimmerOptions to match! (default: "cutadapt")

--trimmerOptions Additional option string for trimming program of choice. (default: 'None')

--fastqc Run FastQC read quality control (default: 'False')

--bcExtract To extract umi barcode from fastq file via UMI-tools and add it to the read name (default: 'False')

--bcPattern The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) (default: "")

--UMIDedup Deduplicate bam file based on UMIs via umi_tools dedup that are present in the read name. (default: 'False')

--UMIDedupSep umi separation character that will be passed to umi_tools.(default: "_")

--UMIDedupOpts Additional options that will be passed to umi_tools.(default: ")

--bwBinSize Bin size of output files in bigWig format (default: '25')

--plotFormat Possible choices: png, pdf, None

Format of the output plots from deepTools. Select 'none' for no plots (default: "png")

--libraryType user provided library type strand specificity. featurCounts style: 0, 1, 2 (Illumina TruSeq); default: '2'

--aligner Program used for mapping: STAR or HISAT2 (default: "STAR"). If you change this, please change --alignerOptions to match.

--alignerOptions STAR or hisat2 option string, e.g.: '--twopassMode Basic' (default: 'None')

--salmonIndexOptions Salmon index options, e.g. '--type fmd' (default: "--type quasi -k 31")

--featureCountsOptions featureCounts option string. The options '-p -B' are always used for paired-end data (default: "-C -Q 10 --primary")

--filterGTF filter annotation GTF by grep for use with Salmon, e.g. use --filterGTF='--v pseudogene'; default: 'None'

--sampleSheet Information on samples (required for DE analysis); see 'docs/content/sampleSheet.example.tsv' for example. The column names in the tsv files are 'name' and 'condition'. The first entry defines which group of samples are control. This way, the order of comparison and likewise the sign of values can be changed. The DE analysis might fail if your sample names begin with a number. So watch out for that! (default: 'None')
--dnaContam Returns a plot which presents the proportion of the intergenic reads (default: ‘False’)

--fromBAM Input folder with bam files. If provided, the analysis will start from this point. If bam files contain single ends, please specify –singleEnd additionally.

--singleEnd input data is single-end, not paired-end. This is only used if –fromBAM is specified.

code @ github.

6.11 scRNA-seq

6.11.1 What it does

The scRNA-seq pipeline is intended to process CEL-Seq2 data, though it may be able to process some similar Drop-seq protocols. The general procedure involves

1. moving cell barcodes and UMIs from read 1 into the read headers of read 2,
2. mapping read 2,
3. quantification at the single cell level.

UMIs in the read headers are used to avoid counting PCR duplicates. A number of bigWig and QC plots (e.g., from plotEnrichment) are generated as well.

6.11.2 Input requirements

The primary input requirement is a directory of paired-end fastq files. In addition, if you do not wish to use the default list of cell-barcodes you must then supply your own.

Cell barcodes

The format of the cell barcodes file is shown below. Note that the default file is included in the snakePipes source code under snakePipes/workflows/scRNAseq. This file is automatically used if you leave cellBarcodeFile
The default cell barcodes are 192 hexamers listed in a file with the first column a cell number and the second the barcode sequence.

Predefined cell barcodes are required right now. However it is planned to make this more generic in future workflow versions.

Configuration file

The default configuration file is listed below and can be found in `snakePipes/workflows/scRNAseq/defaults.yaml`:

```yaml
pipeline: scrna-seq
outdir:     
configFile: 
clusterConfigFile:
local: False
maxJobs: 5
## directory with fastq files
indir: 
## preconfigured target genomes (mm9,mm10,dm3,...), see /path/to/snakemake_workflows/
shared/organisms/
## Value can be also path to your own genome config file!
genome:
## FASTQ file extension (default: "fastq.gz")
ext: '.fastq.gz'
## paired-end read name extension (default: ['_R1', '_R2'])
reads: ['_R1','_R2']
## Number of reads to downsample from each FASTQ file
downsampling:
## Options for trimming
trim: False
trimmer: cutadapt
trimmerOptions: -a A{'30'}
## further options
filterGTF: "-v -p 'decay|pseudogene' "
cellBarcodeFile:
cellBarcodePattern: "NNNNNNNNNNNN"
splitLib: False
cellNames:
libraryType: 1
bwBinSize: 10
verbose: False
plotFormat: pdf
dnaContam: False
## Parameters for the statistical analysis
```

(continues on next page)
While some of these can be changed on the command line, you may find it useful to change cellBarcodePattern and cellBarcodeFile if you find that you need to change them frequently.

Barcode pattern

The scRNA-seq pipeline requires barcodes at 5’ end of read 1. The default cellBarcodePattern takes the first 6 bases as UMI (NNNNNN) and the following 6 bases as cell barcode (XXXXXX). If your read/barcode layout requires additional 'Don’t care' positions eg. before stretches of N one can indicate these with .

Barcode file

Only specify a file if you use other than the default CEL-seq2 barcodes.

Trimming

It is recommended to use the --trim option as this uses cutadapt to trim remaining adapters and poly-A tails from read 2 (see defaults for --trimmerOptions).

Pseudogene filter

As default, transcripts or genes that contain that are related to biotypes like ‘pseudogene’ or ‘decay’ are filtered out before tag counting (see --filterGTF default). Here we assume you provide eg. a gencode or ensemble annotation file (via genes_gtf in the organism configuration yaml) that contains this information.

Library Type

The CEL-seq2 protocol produces reads where read 2 maps in sense direction (libraryType: 1). After barcodes are transferred to read 2, the workflow continues in single-end mode.

Split lib

This option you need in case a library contains only 96 instead of 192 cells.

6.11.3 Output structure

The following will be produced in the output directory:

|-- cluster_logs
 |-- Filtered_cells_RaceID
 `-- logs
 |-- Filtered_cells_monocle
 `-- logs
 |-- cellQC_test
 |-- mtab_test

(continues on next page)
6.11.4 Understanding the outputs

- **Main result**: the genes per cell count table with poisson-corrected counts can be found under `Results/all_samples.gencode_genomic.corrected_merged.csv`

- **Corresponding annotation files**: `Annotation/genes.filtered.bed` and `Annotation/genes.filtered.gtf`, respectively.

- **The folders QC_report, FASTQC, deepTools_qc and multiQC contain various QC tables and plots.**

- **Sambamba** and **STAR_genomic** directories contain the output file from duplicate marking and genomic alignments, respectively.

Filtered_cells_monocle

The poisson-rescaled count matrix is read and converted into a monocle dataset. A range of transcript counts per cell thresholds (from 1000 to 5000 by 500) are applied to filter cells and the resulting R objects are written to `minT*.mono.set.RData`. For every cell filtering threshold, several metrics are collected and written to `metrics.tab.txt`.
Filtered_cells_RaceID

Cell filtering, metrics collection and threshold selection are done as above only using RaceID package functions, where applicable.

Clustering is done with RaceID default settings. The fully processed RaceID object is written to sc.minT*.RData, the tsne plot with the clustering information to sc.minT*.tsne.clu.png. Top 10 and top 2 markers are calculated, and the resulting plots and tables written out as above. Violin and feature plots are generated for the top2 marker list and saved to files as in the description above. Session info is written to sessionInfo.txt. Statistical procedures and results are summarized in Stats_report.html.

Example images

There are a number of QC images produced by the pipeline:
This figure plots the number of UMIs on transcripts per cell vs the number of reads aligning to transcripts. These should form a largely straight line, with the slope indicating the level of PCR duplication.
This figure shows the distribution of the number of UMIs across the single cells. Each block is a single cell and the color indicates the number of UMIs assigned to it. This is useful for flagging outlier cells. Note: the layout corresponds to half of a 384-well plate as this is used usually for CEL-seq2. The plot can also help to see biases corresponding to the well-plate.

6.11.5 Command line options

MPI-IE workflow for scRNA-seq (CEL-Seq2 and related protocols)

usage example: `scRNAseq -i input-dir -o output-dir mm10`

```
```
snakePipes Documentation, Release 1.3.1

(continued from previous page)

[-j INT] [--local] [--keepTemp]
[--snakemakeOptions SNAKEMAKEOPTIONS] [--DAG] [--version]
[--emailAddress EMAILADDRESS] [--smtpServer SMTPSERVER]
[--smtpPort SMTPPORT] [--onlySSL] [--emailSender EMAILSENDER]
[--smtpUsername SMTPUSERNAME] [--smtpPassword SMTPPASSWORD]
[--downsample INT] [--trim] [--trimmerOptions STR]
[--alignerOptions ALIGNEROPTIONS] [--cellBarcodeFile STR]
[--cellBarcodePattern STR] [--splitLib]
[--filterGTF FILTERGTF] [--cellNames STR]
[--bwBinSize BWBINSIZE] [--plotFormat STR]
[--cellFilterMetric STR] [--skipRaceID]

Positional Arguments

Genome acronym of the target organism. Either a yaml file or one of:
mm10_gencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38,
SchizoSPombe_ASM294v2

Required Arguments

- i, --input-dir
input directory containing the FASTQ files, either paired-end OR single-end data
- o, --output-dir
output directory

General Arguments

- v, --verbose
verbose output (default: 'False')
- ext
Suffix used by input fastq files (default: '.fastq.gz').
- reads
Suffix used to denote reads 1 and 2 for paired-end data. This should typically be
either '_1' ' _2' or '_R1' ' _R2' (default: ['_R1', '_R2']). Note that you should
NOT separate the values by a comma (use a space) or enclose them in brackets.
- c, --configFile
configuration file: config.yaml (default: 'None')
- clusterConfigFile
configuration file for cluster usage. In absence, the default options specified in
defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default:
'None')
- j, --jobs
maximum number of concurrently submitted Slurm jobs / cores if workflow is
run locally (default: '5')
- local
run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
- keepTemp
Prevent snakemake from removing files marked as being temporary (typically
intermediate files that are rarely needed by end users). This is mostly useful for
debugging problems.
- snakemakeOptions
Snakemake options to be passed directly to snakemake, e.g. use
--snakemakeOptions="'--dryrun --rerun-incomplete --unlock --forceall'". WARNING!
ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT
VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN! (default:
[''--use-conda''])
--DAG If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.

--version show program’s version number and exit

Email Arguments

--emailAddress If specified, send an email upon completion to the given email address
--smtpServer If specified, the email server to use.
--smtpPort The port on the SMTP server to connect to. A value of 0 specifies the default port.
--onlySSL The SMTP server requires an SSL connection from the beginning.
--emailSender The address of the email sender. If not specified, it will be the address indicated by –emailAddress
--smtpUsername If your SMTP server requires authentication, this is the username to use.
--smtpPassword If your SMTP server requires authentication, this is the password to use.

Options

--downsample Downsampling the given number of reads randomly from each FASTQ file
--trim Activate trimming with Cutadapt. Default: no Trimming!
--trimmerOptions Options passed to the selected trimmer, e.g. use –trimmerOptions=’-a A[30]’ for polyA trimming with Cutadapt (default: “-a A{30}"")
--alignerOptions STAR option string, e.g.: ’–twopassMode Basic’ (default: ”–outBAMsortingBinsN 30 –twopassMode Basic"")
--cellBarcodeFile 2-column file with cell-index (1st col) and barcode (2nd col). Default/None will use internal CelSeq2@MPI-IE file with 192 barcodes. (default: ‘None’)
--cellBarcodePattern Defines the cell barcode and UMI order and length at the 5’ end of R1 (Cel-seq protocol). ’N’ defines UMI/random positions, X defines fixed positions; (default "NNNNNNXXXXXX")
--splitLib Set this option if only 96 out of 192 barcodes were used per sample.
--filterGTF filter annotation GTF by grep for feature counting, e.g. use –filterGTF=’-v pseudogene’; (default: "-v -P ‘decay/pseudogene’ ")
--cellNames either tab-sep. file with cell name ranges or directory with *.csv files that contain cell names and plate/library information for all fastq files! (default: ‘None’)
--bwBinSize Bin size of output files in bigWig format (default: ’10’)
--plotFormat Possible choices: png, pdf, None

Format of the output plots from deeptools. Select ’none’ for no plot (default: "’png’")
--cellFilterMetric Possible choices: gene_universe, medGPC

The metric to maximise when selecting a cell filtering threshold (default: "’gene_universe’")
--skipRaceID Skip RaceID analysis.
6.12 WGBS

6.12.1 What it does

Optionally trimmed reads are mapped to the reference genome using a bisulfite-specific aligner (bwa-meth). Quality metrics are collected and synthesized in a QC report, including bisulfite conversion rate, mapping rate, coverage metrics, and methylation bias.

There are two flags that allow skipping certain QC metric calculation, i.e. \(--\text{skipDOC}\) and \(--\text{GCbias}\). These deactivate or activate, respectively, the depth of coverage (DOC) calculations or GC bias calculation done by deepTools.

Methylation ratios are extracted (via MethylDackel) for CpG positions in the reference genome with a minimum coverage specified by \(--\text{minCoverage}\) and low SNP allelic frequency (<0.25 illegitimate bases). If a sample sheet is provided, Metilene, DMRseq and/or DSS (as specified by \(--\text{DMRprograms}\)) will be used to find differentially methylated regions (DMRs). Filtering criterion can be changed both for the CpGs used to find DMRs as well as what are considered as significant DMRs.
6.12.2 Input requirements

This pipeline requires fastq files and a genome alias, for which bwa-meth index has been built. Optional inputs include a sample sheet with grouping information to use in differential methylation analysis and a blacklist bed file with genomic positions corresponding to known snps to mask single CpG methylation values.

It is possible to use pipeline-compatible bam files as input. For that, the user has to use the --fromBAM flag and provide the bam file extension if not matched by the default.

6.12.3 Workflow configuration file

```plaintext
## General/Snakemake parameters, only used/set by wrapper or in Snakemake cmdl, but not in Snakefile
outdir: 
configFile: 
clusterConfigFile: 
local: False
maxJobs: 12
## directory with fastq or bam files
indir: 
## Genome information
genome: 
###SNP black list (bed file)
blacklist: 
###sample Sheet
sampleSheet: 
###inclusion bounds for methylation extraction
noAutoMethylationBias: False
## FASTQ file extension (default: ".fastq.gz")
ext: '.fastq.gz'
## paired-end read name extension (default: ['_R1', "_R2"])
reads: [_R1, _R2]
## Number of reads to downsample from each FASTQ file
downsamp: 
## Options for trimming
trim: False
trimmer: 'fastp'
trimmerOptions: '-q 5 -l 30 -M 5'
## Bin size of output files in bigWig format
bwBinSize: 25
## Run FASTQC read quality control
fastqc: false
verbose: False
plotFormat: 'png'
## Flag to control the pipeline entry point
fromBAM: False
bamExt: '.bam'
pairedEnd: True
##Flags to control skipping of certain QC calculations
skipDOC: False
GCbias: False
##Thresholds for filtering of statistical comparisons (DMRs and DMLs)
DMRprograms: 'metilene, dmrseq'
maxDist: 300
minCpGs: 10
minCoverage: 5
```

(continues on next page)
6.12.4 Understanding the outputs

The WGBS pipeline invoked fastq files and a sample sheet and the --trim and --fastqc options will generate the following output:

The workflow produces the following outputs:

- **FASTQ_downsampled**: contains read files downsized to 5mln reads. These are used to calculate conversion rate which would otherwise take a very long time.

- **bwameth**: contains bam files obtained through read alignment with bwa-meth and the PCR duplicate removal with sambamba, as well as matching bam index files.

- **dmrseq_sampleSheet_minCoverage<X>**: DMRs (DMRs.txt) and a report (Stats_report.html) from DMRseq as well as a saved R session (Session.RData) using the requested minimum coverage. If you rerun the pipeline with a different minimum coverage specified then a new directory will be created.

- **DSS_sampleSheet_minCoverage<X>**: As with DMRseq above.

- **FastQC_trimmed**: FastQC output on the trimmed reads.

- **FASTQ_fastp**: The trimmed reads and QC metrics from FastP.

- **MethylDackel**: BigWig coverage and methylation files as well as the bedGraph files produced by Methyl-Dackel.

- **metilene_sampleSheet_minCoverage<X>**: contains output files from metilene in DMRs.txt. DMRs.annotated.txt is an annotated version of that, wherein DMRs are annotated with the nearest gene and the distance to it. There is additionally a QC report (Stats_report.html) that summarizes various properties of the DMRs.
• **QC_metrics**: contains output files from conversion rate, flagstat, depth of coverage, GCbias and methylation bias calculations. The QC report in pdf format collecting those metrics in tabular form is also found in this folder.

6.12.5 Example output plots

Using data from Habibi et al., Cell Stem Cell 2013 corresponding to mouse chr6:4000000-6000000, following plots could be obtained:
6.12.6 Command line options

MPI-IE workflow for WGBS analysis

usage example: WGBS -i read_input_dir -o output-dir mm10

```
usage: WGBS -i INDIR -o OUTDIR [-h] [-v] [-ext EXT] [--reads READS READS] 
[-c CONFIGFILE] [--clusterConfigFile CLUSTERCONFIGFILE] [-j INT] 
[--local] [--keepTemp] [--snakemakeOptions SNAKEMAKEOPTIONS] 
[-DAG] [--version] [--emailAddress EMAILADDRESS] 
[-smtpServer SMTPSERVER] [-smtpPort SMTPPORT] [--onlySSL] 
[--emailSender EMAILSENDER] [--smtpUsername SMTPUSERNAME] 
[--smtpPassword SMTPPASSWORD] [-downsample INT] [---trim] 
[-trimmer {cutadapt,trimgalore,fastp}] 
[-trimmerOptions TRIMMEROPTIONS] [-fastqc] [-bcExtract] 
[-bcPattern BC_PATTERN] [-UMIDedup] [-UMIDedupSep UMIDEDUPSEP] 
[-UMIDedupOpts UMIDEDUPOPTS] [-bwBinSize BWBINSIZE] 
[--plotFormat STR] [--blacklist BLACKLIST] 
[-sampleSheet SAMPLESHEET] [-noAutoMethylationBias] 
[-maxDist MAXDIST] [-minCpGs MINCPGS] 
[-minMethDiff MINMETHDIFF] [-minCoverage MINCOVERAGE] 
[-FDR FDR] [-MethylDackelOptions METHYLDAKCELOPTIONS] 
[-fromBAM] [-bamExt BAMEXT] [-singleEnd] 
[-DMRprograms DMRPROGRAMS] [-skipDOC] [-GCbias] 
GENOME
```
Positional Arguments

GENOME
Genome acronym of the target organism. Either a yaml file or one of: mm10_genencodeM13, dm6, GRCz10, dm3, mm10, mm9, hs37d5, hg38, SchizoSPombe_ASM294v2

Required Arguments

- **-i, --input-dir**
 input directory containing the FASTQ files, either paired-end OR single-end data
- **-o, --output-dir**
 output directory

General Arguments

- **-v, --verbose**
 verbose output (default: 'False')
- **--ext**
 Suffix used by input fastq files (default: ""fastq.gz").
- **--reads**
 Suffix used to denote reads 1 and 2 for paired-end data. This should typically be either ‘_1’, ‘_2’, or ‘_R1’, ‘_R2’ (default: ['_R1', '_R2']). Note that you should NOT separate the values by a comma (use a space) or enclose them in brackets.
- **-c, --configFile**
 configuration file: config.yaml (default: 'None')
- **--clusterConfigFile**
 configuration file for cluster usage. In absence, the default options specified in defaults.yaml and workflows/[workflow]/cluster.yaml would be selected (default: 'None')
- **-j, --jobs**
 maximum number of concurrently submitted Slurm jobs / cores if workflow is run locally (default: '12')
- **--local**
 run workflow locally; default: jobs are submitted to Slurm queue (default: 'False')
- **--keepTemp**
 Prevent snakemake from removing files marked as being temporary (typically intermediate files that are rarely needed by end users). This is mostly useful for debugging problems.
- **--snakemakeOptions**
 Snakemake options to be passed directly to snakemake, e.g. use --snakemakeOptions='--dryrun --rerun-incomplete --unlock --forceall'. **WARNING! ONLY EXPERT USERS SHOULD CHANGE THIS! THE DEFAULT VALUE WILL BE APPENDED RATHER THAN OVERWRITTEN!** (default: ['--use-conda'])
- **--DAG**
 If specified, a file ending in _pipeline.pdf is produced in the output directory that shows the rules used and their relationship to each other.
- **--version**
 show program’s version number and exit

Email Arguments

- **--emailAddress**
 If specified, send an email upon completion to the given email address
- **--smtpServer**
 If specified, the email server to use.
- **--smtpPort**
 The port on the SMTP server to connect to. A value of 0 specifies the default port.
- **--onlySSL**
 The SMTP server requires an SSL connection from the beginning.
The address of the email sender. If not specified, it will be the address indicated by --emailAddress

If your SMTP server requires authentication, this is the username to use.

If your SMTP server requires authentication, this is the password to use.

Options

--downsample
Downsample the given number of reads randomly from each FASTQ file (default: 'None')

--trim
Activate fastq read trimming. If activated, Illumina adaptors are trimmed by default. Additional parameters can be specified under --trimmerOptions. (default: 'True')

--trimmer
Possible choices: cutadapt, trimgalore, fastp

Trimming program to use: Cutadapt, TrimGalore, or fastp. Note that if you change this you may need to change --trimmerOptions to match! (default: '"fastp"')

--trimmerOptions
Additional option string for trimming program of choice. (default: '"-q 5 -l 30 -M 5"')

--fastqc
Run FastQC read quality control (default: 'False')

--bcExtract
To extract umi barcode from fastq file via UMI-tools and add it to the read name (default: 'False')

--bcPattern
The pattern to be considered for the barcode. 'N' = UMI position (required) 'C' = barcode position (optional) (default: "")

--UMIDedup
Deduplicate bam file based on UMIs via umi_tools dedup that are present in the read name. (default: 'False')

--UMIDedupSep
umi separation character that will be passed to umi_tools.(default: '" _"')

--UMIDedupOpts
Additional options that will be passed to umi_tools.(default: "")

--bwBinSize
Bin size of output files in bigWig format (default: '25')

--plotFormat
Possible choices: png, pdf, None

Format of the output plots from deepTools. Select 'none' for no plots (default: '"png"')

--blacklist
Bed file(s) with positions to mask for methylation calling. Useful for masking SNPs in your strain of interest. (default: 'None')

--sampleSheet
Perform differential methylation analysis between groups of samples by providing a text file with sample information to use for statistical analysis. (default: 'None')

--noAutoMethylationBias
If specified, MethylDackel mbias will NOT be run and the suggested parameters from it will NOT be used for methylation extraction. You can instead supply them manually in --MethylDackelOptions.

--maxDist
The maximum distance between CpGs in a DMR (for metilene, default: '300')

--minCpGs
The minimum number of CpGs in a DMR (for metilene, default: '10')

--minMethDiff
The minimum methylation change in methylation for CpG inclusion in DMR detection (for metilene, default: '0.1')
--minCoverage The minimum coverage needed for across all samples for a CpG to be used in DMR calling and PCA. Note that you can change this value without overwriting the DMR output. Default: ‘5’

--FDR FDR threshold for returned DMRs (default: ‘0.1’)

--MethylDackelOptions Options to pass to MethylDackel extract. You are highly advised NOT to set a minimum coverage at this step. Default: ‘"–mergeContext –maxVariantFrac 0.25 –minDepth 4"’

--fromBAM If specified, the input is taking from BAM files containing alignments rather than fastq files. See also --bamExt.

--bamExt If --fromBAM is specified, this is the expected file extension. Removing it yields sample names. Default: ‘".bam"’

--singleEnd If --fromBAM is specified, this indicates that the input BAM files contain paired-end data. The option is ignored unless --fromBAM is given.

--DMRprograms If a sample sheet is provided, use the specified DMR-calling programs. Multiple programs can be comma-separated with no spaces (e.g., ‘metilene,dmrseq,dss’). The available programs are metilene, dmrseq, and DSS (note that this is very slow). Default: “metilene,dmrseq”.

--skipDOC Skip depth of coverage calculation with deepTools.

--GCbias Perform GC bias calculation with deepTools.

6.13 snakePipes News

6.13.1 snakePipes 1.3.1

- Support for snakeMake 5.7.0

6.13.2 snakePipes 1.3.0

- Overhauled WGBS pipeline
- Standardized options to be camelCase
- Further standardized options between pipelines
- UMI handling is now available in most pipelines
- The --fromBAM option is now available and documented
- Users can now change the read number indicator (“_R1” and “_R2” by default) as well as the fastq file extension on the command line.
- Added the preprocessing pipeline, prevented python packages in users’ home directories from inadvertently being used.
- Added a snakePipes config command that can be used in lieu of editing defaults.yaml
6.13.3 snakePipes published

snakePipes was published: https://www.ncbi.nlm.nih.gov/pubmed/31134269

6.13.4 snakePipes 1.2.3

- Updated citation for snakePipes
- Fixed replicate check for samples with trailing spaces in names
- Fixed input filtering in CSAW
- Several allele-specific RNAseq fixes
- ATACseq peakQC is now run on fragment-size filtered bam
- Fixed Salmon output (Number of Reads output in "prefix_counts.tsv" files and file naming)
- Fixed CSAW QC plot error with single end reads
- Updated histone HMM environment to a working conda version
- Salmon_wasabi is now a localrule

6.13.5 snakePipes 1.2.2

- Fixed a bug in the ATAC-seq environment where GenomeInfoDbData was missing.
- Also an occasional issue with CSAW

6.13.6 snakePipes 1.2.1

- Fixed a typo in createIndices.
- Implemented complex experimental design in RNAseq (differential gene expression), ChIP/ATACseq (differential binding).
- Fixed an issue with ggplot2 and log transformation in RNAseq report Rmd.
- fastqc folder is created and its content will be added to multiqc only if fastqc flag is called.
- fastqc-trimmed folder is created and its content will be added to multiqc only if both fastqc and trim flags are called.

6.13.7 snakePipes 1.2.0

- A number of minor bug fixes across all of the pipelines
- Updates of all tool versions and switching to R 3.5.1
- A snakePipes flushOrganisms option was added to remove the default organism YAML files.
- Renamed --notemp to --keepTemp, which should be less confusing
6.13.8 snakePipes 1.1.2

- A number of minor bug fixes and enhancements in the HiC and WGBS pipelines
- The RNA-seq pipeline now uses samtools for sorting. This should avoid issues with STAR running out of memory during the output sorting step.
- Increased the memory allocation for MACS2 to 8GB and bamPEFragmentSize to 3G
- Fixed the scRNA-seq pipeline, which seems to have been broken in 1.1.1

6.13.9 snakePipes 1.1.1

- Fixed some conda environments so they could all be solved in a reasonable amount of time.
- Updated some WGBS memory limits

6.13.10 snakePipes 1.1.0

- A wide number of bug fixes to scRNA-seq and other pipelines. In particular, many memory limits were updated.
- An optional email can be sent upon pipeline completion.
- The RNA-seq pipeline can now produce a fuller report upon completion if you are performing differential expression.
- Sample merging in HiC works properly.
- GTF files are now handled more generically, which means that they no longer need to have _gencode and _ensembl in their path.
- WGBS:
 - Merging data from WGBS replicates is now an independent step so that dependent rules don’t have to wait for successful completion of single CpG stats but can go ahead instead.
 - Filtering of differential methylation test results is now subject to two user-modifiable parameters minAbsDiff (default 0.2) and FDR (0.02) stored in defaults.yaml.
 - Metilene commandline parameters are now available in defaults.yaml. Defaults are used apart from requesting output intervals with any methylation difference (minMethDiff 0).
 - Additional diagnostic plots are generated - p value distribution before and after BH adjustment as well as a volcano plot.
 - Automatic reports are generated in every folder containing results of statistical analysis (single CpG stats, metilene DMR stats, user interval aggregate stats), as long as sample sheet is provided.
 - R sessionInfo() is now printed at the end of the statistical analysis.
- scRNAseq:
 - An extention to the pipeline now takes the processed csv file from Results folder as input and runs cell filtering with a range of total transcript thresholds using monocle and subsequently runs clustering, produces tSNE visualizations, calculates top 2 and top10 markers per cluster and produces heatmap visualizations for these using monocle/seurat. If the skipRaceID flag is set to False (default), all of the above are also executed using RaceID.
 - Stats reports were implemented for RaceID and Monocle/Seurat so that folders Filtered_cells_RaceID and Filtered_cells_monocle now contain a Stats_report.html.
 - User can select a metric to maximize during cell filtering (cellFilterMetric, default: gene_universe).
– For calculating median GPC, RaceID counts are multiplied by the TPC threshold applied (similar to ‘down-scaling’ in RaceID2).

• all sample sheets now need to have a "name" and a "condition" column, that was not consistent before

• consistent –sampleSheet [FILE] options to invoke differential analysis mode (RNA-seq, ChIP-seq, ATAC-seq), –DE/--DB were dropped

6.13.11 snakePipes 1.0.0 (king cobra) released

9.10.2018

First stable version of snakePipes has been released with various feature improvements. You can download it from GitHub

6.13.12 snakePipes preprint released

We released the preprint of snakePipes describing the implementation and usefulness of this tool in integrative epigenomics analysis. Read the preprint on bioRxiv
CHAPTER
SEVEN

INDICES AND TABLES

- genindex
- modindex
- search

code @ github.