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Source code: https://github.com/simple-dmrg/simple-dmrg/

Documentation: http://simple-dmrg.readthedocs.org/

The goal of this tutorial (given at the 2013 summer school on quantum spin liquids, in Trieste, Italy) is to present the
density-matrix renormalization group (DMRG) in its traditional formulation (i.e. without using matrix product states).
DMRG is a numerical method that allows for the efficient simulation of quantum model Hamiltonians. Since it is a
low-entanglement approximation, it often works quite well for one-dimensional systems, giving results that are nearly
exact.

Typical implementations of DMRG in C++ or Fortran can be tens of thousands of lines long. Here, we have attempted
to strike a balance between clear, simple code, and including many features and optimizations that would exist in
a production code. One thing that helps with this is the use of Python. We have tried to write the code in a very
explicit style, hoping that it will be (mostly) understandable to somebody new to Python. (See also the included
Python cheatsheet, which lists many of the Python features used by simple-dmrg, and which should be helpful
when trying the included exercises.)

The four modules build up DMRG from its simplest implementation to more complex implementations and optimiza-
tions. Each file adds lines of code and complexity compared with the previous version.

1. Infinite system algorithm (~180 lines, including comments)

2. Finite system algorithm (~240 lines)

3. Conserved quantum numbers (~310 lines)

4. Eigenstate prediction (~370 lines)

Throughout the tutorial, we focus on the spin-1/2 Heisenberg XXZ model, but the code could easily be modified (or
expanded) to work with other models.
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CHAPTER 1

Authors

• James R. Garrison (UCSB)

• Ryan V. Mishmash (UCSB)

Licensed under the MIT license. If you plan to publish work based on this code, please contact us to find out how to
cite us.
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CHAPTER 2

Contents

2.1 Using the code

The requirements are:

• Python 2.6 or higher (Python 3 works as well)

• numpy and scipy

Download the code using the Download ZIP button on github, or run the following command from a terminal:

$ wget -O simple-dmrg-master.zip https://github.com/simple-dmrg/simple-dmrg/archive/
→˓master.zip

Within a terminal, execute the following to unpack the code:

$ unzip simple-dmrg-master.zip
$ cd simple-dmrg-master/

Once the relevant software is installed, each program is contained entirely in a single file. The first program, for
instance, can be run by issuing:

$ python simple_dmrg_01_infinite_system.py

Note: If you see an error that looks like this:

SyntaxError: future feature print_function is not defined

then you are using a version of Python below 2.6. Although it would be best to upgrade, it may be possible to make
the code work on Python versions below 2.6 without much trouble.
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2.2 Exercises

2.2.1 Day 1

1. Consider a reduced density matrix 𝜌 corresponding to a maximally mixed state in a Hilbert space of dimension
𝑚𝑑. Compute the truncation error associated with keeping only the largest m eigenvectors of 𝜌. Fortunately, the
reduced density matrix eigenvalues for ground states of local Hamiltonians decay much more quickly!

2. Explore computing the ground state energy of the Heisenberg model using the infinite system algorithm. The
exact Bethe ansatz result in the thermodynamic limit is 𝐸/𝐿 = 0.25− ln 2 = −0.443147. Note the respectable
accuracy obtained with an extremely small block basis of size 𝑚 ∼ 10. Why does the DMRG work so well in
this case?

3. Entanglement entropy:

(a) Calculate the bipartite (von Neumann) entanglement entropy at the center of the chain during the infinite
system algorithm. How does it scale with 𝐿?

(b) Now, using the finite system algorithm, calculate the bipartite entanglement entropy for every bipartite
splitting. How does it scale with subsystem size 𝑥?

Hint: To create a simple plot in python:

>>> from matplotlib import pyplot as plt
>>> x_values = [1, 2, 3, 4]
>>> y_values = [4, 2, 7, 3]
>>> plt.plot(x_values, y_values)
>>> plt.show()

(c) From the above, estimate the central charge 𝑐 of the “Bethe phase” (1D quasi-long-range Néel phase) of
the 1D Heisenberg model, and in light of that, think again about your answer to the last part of exercise 2.

The formula for fitting the central charge on a system with open boundary conditions is:

𝑆 =
𝑐

6
ln

[︂
𝐿

𝜋
sin

(︁𝜋𝑥
𝐿

)︁]︂
+𝐴

where 𝑆 is the von Neumann entropy.

Hint: To fit a line in python:

>>> x_values = [1, 2, 3, 4]
>>> y_values = [-4, -2, 0, 2]
>>> slope, y_intercept = np.polyfit(x_values, y_values, 1)

4. XXZ model:

(a) Change the code (ever so slightly) to accommodate spin-exchange anisotropy: 𝐻 =∑︀
⟨𝑖𝑗⟩

[︀
𝐽
2 (𝑆

+
𝑖 𝑆−

𝑗 + h.c.) + 𝐽𝑧𝑆
𝑧
𝑖 𝑆

𝑧
𝑗

]︀
.

(b) For 𝐽𝑧/𝐽 > 1 (𝐽𝑧/𝐽 < −1), the ground state is known to be an Ising antiferromagnet (ferromagnet), and
thus fully gapped. Verify this by investigating scaling of the entanglement entropy as in exercise 3. What
do we expect for the central charge in this case?
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2.2.2 Day 2

1. Using simple_dmrg_03_conserved_quantum_numbers.py, calculate the “spin gap” 𝐸0(𝑆𝑧 = 1)−
𝐸0(𝑆𝑧 = 0). How does the gap scale with 1/𝐿? Think about how you would go about computing the spectral
gap in the 𝑆𝑧 = 0 sector: 𝐸1(𝑆𝑧 = 0) − 𝐸0(𝑆𝑧 = 0), i.e., the gap between the ground state and first excited
state within the 𝑆𝑧 = 0 sector.

2. Calculate the total weight of each 𝑆𝑧 sector in the enlarged system block after constructing each block of 𝜌. At
this point, it’s important to fully understand why 𝜌 is indeed block diagonal, with blocks labeled by the total
quantum number 𝑆𝑧 for the enlarged system block.

3. Starting with simple_dmrg_02_finite_system.py, implement a spin-spin correlation function mea-
surement of the free two sites at each step in the finite system algorithm, i.e., calculate ⟨�⃗�𝑖 · �⃗�𝑖+1⟩ for all 𝑖.
In exercise 3 of yesterday’s tutorial, you should have noticed a strong period-2 oscillatory component of the
entanglement entropy. With your measurement of ⟨�⃗�𝑖 · �⃗�𝑖+1⟩, can you now explain this on physical grounds?

Answer: finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30,
40, 40]) with 𝐽 = 𝐽𝑧 = 1 should give ⟨�⃗�10 · �⃗�11⟩ = −0.363847565413 on the last step.

4. Implement the “ring term” 𝐻ring = 𝐾
∑︀

𝑖 𝑆
𝑧
𝑖 𝑆

𝑧
𝑖+1𝑆

𝑧
𝑖+2𝑆

𝑧
𝑖+3. Note that this term is one of the pieces of the

SU(2)-invariant four-site ring-exchange operator for sites (𝑖, 𝑖+ 1, 𝑖+ 2, 𝑖+ 3), a term which is known to drive
the 𝐽1-𝐽2 Heisenberg model on the two-leg triangular strip into a quasi-1D descendant of the spinon Fermi sea
(“spin Bose metal”) spin liquid [see http://arxiv.org/abs/0902.4210].

Answer: finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30,
40, 40]) with 𝐾 = 𝐽 = 1, should give 𝐸/𝐿 = −0.40876250668.

2.3 Python cheatsheet

[designed specifically for understanding and modifying simple-dmrg]

For a programmer, the standard, online Python tutorial is quite nice. Below, we try to mention a few things so that you
can get acquainted with the simple-dmrg code as quickly as possible.

Python includes a few powerful internal data structures (lists, tuples, and dictionaries), and we use numpy (numeric
python) and scipy (additional “scientific” python routines) for linear algebra.

2.3.1 Basics

Unlike many languages where blocks are denoted by braces or special end statements, blocks in python are denoted
by indentation level. Thus indentation and whitespace are significant in a python program.

It is possible to execute python directly from the commandline:

$ python

This will bring you into python’s real-eval-print loop (REPL). From here, you can experiment with various commands
and expressions. The examples below are taken from the REPL, and include the prompts (“>>>” and “...”) one
would see there.

2.3.2 Lists, tuples, and loops

The basic sequence data types in python are lists and tuples.

A list can be constructed literally:

2.3. Python cheatsheet 7
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>>> x_list = [2, 3, 5, 7]

and a number of operations can be performed on it:

>>> len(x_list)
4

>>> x_list.append(11)
>>> x_list
[2, 3, 5, 7, 11]

>>> x_list[0]
2

>>> x_list[0] = 0
>>> x_list
[0, 3, 5, 7, 11]

Note, in particular, that python uses indices counting from zero, like C (but unlike Fortran and Matlab).

A tuple in python acts very similarly to a list, but once it is constructed it cannot be modified. It is constructed using
parentheses instead of brackets:

>>> x_tuple = (2, 3, 5, 7)

Lists and tuples can contain any data type, and the data type of the elements need not be consistent:

>>> x = ["hello", 4, 8, (23, 12)]

It is also possible to get a subset of a list (e.g. the first three elements) by using Python’s slice notation:

>>> x = [2, 3, 5, 7, 11]
>>> x[:3]
[2, 3, 5]

Looping over lists and tuples

Looping over a list or tuple is quite straightforward:

>>> x_list = [5, 7, 9, 11]
>>> for x in x_list:
... print(x)
...
5
7
9
11

If you wish to have the corresponding indices for each element of the list, the enumerate() function will provide
this:

>>> x_list = [5, 7, 9, 11]
>>> for i, x in enumerate(x_list):
... print(i, x)
...
0 5

8 Chapter 2. Contents
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1 7
2 9
3 11

If you have two (or more) parallel arrays with the same number of elements and you want to loop over each of them
at once, use the zip() function:

>>> x_list = [2, 3, 5, 7]
>>> y_list = [12, 13, 14, 15]
>>> for x, y in zip(x_list, y_list):
... print(x, y)
...
2 12
3 13
5 14
7 15

There is a syntactic shortcut for transforming a list into a new one, known as a list comprehension:

>>> primes = [2, 3, 5, 7]
>>> doubled_primes = [2 * x for x in primes]
>>> doubled_primes
[4, 6, 10, 14]

2.3.3 Dictionaries

Dictionaries are python’s powerful mapping data type. A number, string, or even a tuple can be a key, and any data
type can be the corresponding value.

Literal construction syntax:

>>> d = {2: "two", 3: "three"}

Lookup syntax:

>>> d[2]
'two'
>>> d[3]
'three'

Modifying (or creating) elements:

>>> d[4] = "four"
>>> d
{2: 'two', 3: 'three', 4: 'four'}

The method get() is another way to lookup an element, but returns the special value None if the key does not exist
(instead of raising an error):

>>> d.get(2)
'two'
>>> d.get(4)

2.3. Python cheatsheet 9
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Looping over dictionaries

Looping over the keys of a dictionary:

>>> d = {2: "two", 3: "three"}
>>> for key in d:
... print(key)
...
2
3

Looping over the values of a dictionary:

>>> d = {2: "two", 3: "three"}
>>> for value in d.values():
... print(value)
...
two
three

Looping over the keys and values, together:

>>> d = {2: "two", 3: "three"}
>>> for key, value in d.items():
... print(key, value)
...
2 two
3 three

2.3.4 Functions

Function definition in python uses the def keyword:

>>> def f(x):
... y = x + 2
... return 2 * y + x
...

Function calling uses parentheses, along with any arguments to be passed:

>>> f(2)
10
>>> f(3)
13

When calling a function, it is also possibly to specify the arguments by name (e.g. x=4):

>>> f(x=4)
16

An alternative syntax for writing a one-line function is to use python’s lambda keyword:

>>> g = lambda x: 3 * x
>>> g(5)
15
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2.3.5 numpy arrays

numpy provides a multi-dimensional array type. Unlike lists and tuples, numpy arrays have fixed size and hold values
of a single data type. This allows the program to perform operations on large arrays very quickly.

Literal construction of a 2x2 matrix:

>>> np.array([[1, 2], [3, 4]], dtype='d')
array([[ 1., 2.],

[ 3., 4.]])

Note that dtype='d' specifies that the type of the array should be double-precision (real) floating point.

It is also possibly to construct an array of all zeros:

>>> np.zeros([3, 4], dtype='d')
array([[ 0., 0., 0., 0.],

[ 0., 0., 0., 0.],
[ 0., 0., 0., 0.]])

And then elements can be added one-by-one:

>>> x = np.zeros([3, 4], dtype='d')
>>> x[1, 2] = 12
>>> x[1, 3] = 18
>>> x
array([[ 0., 0., 0., 0.],

[ 0., 0., 12., 18.],
[ 0., 0., 0., 0.]])

It is possible to access a given row or column by index:

>>> x[1, :]
array([ 0., 0., 12., 18.])
>>> x[:, 2]
array([ 0., 12., 0.])

or to access multiple columns (or rows) at once:

>>> col_indices = [2, 1, 3]
>>> x[:, col_indices]
array([[ 0., 0., 0.],

[ 12., 0., 18.],
[ 0., 0., 0.]])

For matrix-vector (or matrix-matrix) multiplication use the np.dot() function:

>>> np.dot(m, v)

Warning: One tricky thing about numpy arrays is that they do not act as matrices by default. In fact, if you
multiply two numpy arrays, python will attempt to multiply them element-wise!

To take an inner product, you will need to take the transpose-conjugate of the left vector yourself:

>>> np.dot(v1.conjugate().transpose(), v2)

2.3. Python cheatsheet 11
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Array storage order

Although a numpy array acts as a multi-dimensional object, it is actually stored in memory as a one-dimensional con-
tiguous array. Roughly speaking, the elements can either be stored column-by-column (“column major”, or “Fortran-
style”) or row-by-row (“row major”, or “C-style”). As long as we understand the underlying storage order of an array,
we can reshape it to have different dimensions. In particular, the logic for taking a partial trace in simple-dmrg
uses this reshaping to make the system and environment basis elements correspond to the rows and columns of the
matrix, respectively. Then, only a simple matrix multiplication is required to find the reduced density matrix.

2.3.6 Mathematical constants

numpy also provides a variety of mathematical constants:

>>> np.pi
3.141592653589793
>>> np.e
2.718281828459045

2.3.7 Experimentation and getting help

As mentioned above, python’s REPL can be quite useful for experimentation and getting familiar with the language.
Another thing we can do is to import the simple-dmrg code directly into the REPL so that we can experiment with
it directly. The line:

>>> from simple_dmrg_01_infinite_system import *

will execute all lines except the ones within the block that says:

if __name__ == "__main__":

So if we want to use the finite system algorithm, we can (assuming our source tree is in the PYTHONPATH, which
should typically include the current directory):

$ python
>>> from simple_dmrg_04_eigenstate_prediction import *
>>> finite_system_algorithm(L=10, m_warmup=8, m_sweep_list=[8, 8, 8])

It is also possible to get help in the REPL by using python’s built-in help() function on various objects, functions,
and types:

>>> help(sum) # help on python's sum function

>>> help([]) # python list methods
>>> help({}) # python dict methods

>>> help({}.setdefault) # help on a specific dict method

>>> import numpy as np
>>> help(np.log) # natural logarithm
>>> help(np.linalg.eigh) # eigensolver for hermitian matrices
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2.4 Additional information on DMRG

Below is an incomplete list of resources for learning DMRG.

2.4.1 References

• “An introduction to numerical methods in low-dimensional quantum systems” by A. L. Malvezzi (2003) teaches
DMRG concisely but in enough detail to understand the simple-dmrg code.

• U. Schollwöck has written two review articles on DMRG. The first (from 2005) focuses on DMRG in its tradi-
tional formulation, while the second (from 2011) describes it in terms of matrix product states.

• Steve White’s papers, including the original DMRG paper (1992), a more in-depth paper (1993) which includes
(among other things) periodic boundary conditions, and a later paper (1996) which describes eigenstate predic-
tion, are quite useful.

2.4.2 Links

• The dmrg101 tutorial by Iván González, was prepared for the Taipai DMRG winter school.

• sophisticated-dmrg, a more “sophisticated” program based on this tutorial.

2.5 Source code

Formatted versions of the source code are available in this section. See also the github repository, which contains all
the included code.

2.5.1 simple_dmrg_01_infinite_system.py

(Raw download)

1 #!/usr/bin/env python
2 #
3 # Simple DMRG tutorial. This code contains a basic implementation of the
4 # infinite system algorithm
5 #
6 # Copyright 2013 James R. Garrison and Ryan V. Mishmash.
7 # Open source under the MIT license. Source code at
8 # <https://github.com/simple-dmrg/simple-dmrg/>
9

10 # This code will run under any version of Python >= 2.6. The following line
11 # provides consistency between python2 and python3.
12 from __future__ import print_function, division # requires Python >= 2.6
13

14 # numpy and scipy imports
15 import numpy as np
16 from scipy.sparse import kron, identity
17 from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
18

19 # We will use python's "namedtuple" to represent the Block and EnlargedBlock
20 # objects
21 from collections import namedtuple

2.4. Additional information on DMRG 13

http://arxiv.org/abs/cond-mat/0304375
http://arxiv.org/abs/cond-mat/0409292
http://arxiv.org/abs/1008.3477
http://prl.aps.org/abstract/PRL/v69/i19/p2863_1
http://prb.aps.org/abstract/PRB/v48/i14/p10345_1
http://arxiv.org/abs/cond-mat/9604129
http://dmrg101.readthedocs.org/
http://sites.google.com/site/dmrg101/home
https://github.com/simple-dmrg/sophisticated-dmrg
https://github.com/simple-dmrg/simple-dmrg


simple-dmrg Documentation, Release 1.0

22

23 Block = namedtuple("Block", ["length", "basis_size", "operator_dict"])
24 EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict"])
25

26 def is_valid_block(block):
27 for op in block.operator_dict.values():
28 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
29 return False
30 return True
31

32 # This function should test the same exact things, so there is no need to
33 # repeat its definition.
34 is_valid_enlarged_block = is_valid_block
35

36 # Model-specific code for the Heisenberg XXZ chain
37 model_d = 2 # single-site basis size
38

39 Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
40 Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+
41

42 H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero
43

44 def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
45 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
46 (e.g. two blocks), returns a Kronecker product representing the
47 corresponding two-site term in the Hamiltonian that joins the two sites.
48 """
49 J = Jz = 1.
50 return (
51 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().

→˓transpose(), Sp2)) +
52 Jz * kron(Sz1, Sz2)
53 )
54

55 # conn refers to the connection operator, that is, the operator on the edge of
56 # the block, on the interior of the chain. We need to be able to represent S^z
57 # and S^+ on that site in the current basis in order to grow the chain.
58 initial_block = Block(length=1, basis_size=model_d, operator_dict={
59 "H": H1,
60 "conn_Sz": Sz1,
61 "conn_Sp": Sp1,
62 })
63

64 def enlarge_block(block):
65 """This function enlarges the provided Block by a single site, returning an
66 EnlargedBlock.
67 """
68 mblock = block.basis_size
69 o = block.operator_dict
70

71 # Create the new operators for the enlarged block. Our basis becomes a
72 # Kronecker product of the Block basis and the single-site basis. NOTE:
73 # `kron` uses the tensor product convention making blocks of the second
74 # array scaled by the first. As such, we adopt this convention for
75 # Kronecker products throughout the code.
76 enlarged_operator_dict = {
77 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o[

→˓"conn_Sz"], o["conn_Sp"], Sz1, Sp1),

14 Chapter 2. Contents
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78 "conn_Sz": kron(identity(mblock), Sz1),
79 "conn_Sp": kron(identity(mblock), Sp1),
80 }
81

82 return EnlargedBlock(length=(block.length + 1),
83 basis_size=(block.basis_size * model_d),
84 operator_dict=enlarged_operator_dict)
85

86 def rotate_and_truncate(operator, transformation_matrix):
87 """Transforms the operator to the new (possibly truncated) basis given by
88 `transformation_matrix`.
89 """
90 return transformation_matrix.conjugate().transpose().dot(operator.

→˓dot(transformation_matrix))
91

92 def single_dmrg_step(sys, env, m):
93 """Performs a single DMRG step using `sys` as the system and `env` as the
94 environment, keeping a maximum of `m` states in the new basis.
95 """
96 assert is_valid_block(sys)
97 assert is_valid_block(env)
98

99 # Enlarge each block by a single site.
100 sys_enl = enlarge_block(sys)
101 if sys is env: # no need to recalculate a second time
102 env_enl = sys_enl
103 else:
104 env_enl = enlarge_block(env)
105

106 assert is_valid_enlarged_block(sys_enl)
107 assert is_valid_enlarged_block(env_enl)
108

109 # Construct the full superblock Hamiltonian.
110 m_sys_enl = sys_enl.basis_size
111 m_env_enl = env_enl.basis_size
112 sys_enl_op = sys_enl.operator_dict
113 env_enl_op = env_enl.operator_dict
114 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) +

→˓kron(identity(m_sys_enl), env_enl_op["H"]) + \
115 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_

→˓op["conn_Sz"], env_enl_op["conn_Sp"])
116

117 # Call ARPACK to find the superblock ground state. ("SA" means find the
118 # "smallest in amplitude" eigenvalue.)
119 (energy,), psi0 = eigsh(superblock_hamiltonian, k=1, which="SA")
120

121 # Construct the reduced density matrix of the system by tracing out the
122 # environment
123 #
124 # We want to make the (sys, env) indices correspond to (row, column) of a
125 # matrix, respectively. Since the environment (column) index updates most
126 # quickly in our Kronecker product structure, psi0 is thus row-major ("C
127 # style").
128 psi0 = psi0.reshape([sys_enl.basis_size, -1], order="C")
129 rho = np.dot(psi0, psi0.conjugate().transpose())
130

131 # Diagonalize the reduced density matrix and sort the eigenvectors by
132 # eigenvalue.

2.5. Source code 15
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133 evals, evecs = np.linalg.eigh(rho)
134 possible_eigenstates = []
135 for eval, evec in zip(evals, evecs.transpose()):
136 possible_eigenstates.append((eval, evec))
137 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue

→˓first
138

139 # Build the transformation matrix from the `m` overall most significant
140 # eigenvectors.
141 my_m = min(len(possible_eigenstates), m)
142 transformation_matrix = np.zeros((sys_enl.basis_size, my_m), dtype='d', order='F')
143 for i, (eval, evec) in enumerate(possible_eigenstates[:my_m]):
144 transformation_matrix[:, i] = evec
145

146 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
147 print("truncation error:", truncation_error)
148

149 # Rotate and truncate each operator.
150 new_operator_dict = {}
151 for name, op in sys_enl.operator_dict.items():
152 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)
153

154 newblock = Block(length=sys_enl.length,
155 basis_size=my_m,
156 operator_dict=new_operator_dict)
157

158 return newblock, energy
159

160 def infinite_system_algorithm(L, m):
161 block = initial_block
162 # Repeatedly enlarge the system by performing a single DMRG step, using a
163 # reflection of the current block as the environment.
164 while 2 * block.length < L:
165 print("L =", block.length * 2 + 2)
166 block, energy = single_dmrg_step(block, block, m=m)
167 print("E/L =", energy / (block.length * 2))
168

169 if __name__ == "__main__":
170 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
171

172 infinite_system_algorithm(L=100, m=20)

2.5.2 simple_dmrg_02_finite_system.py

(Raw download)

1 #!/usr/bin/env python
2 #
3 # Simple DMRG tutorial. This code integrates the following concepts:
4 # - Infinite system algorithm
5 # - Finite system algorithm
6 #
7 # Copyright 2013 James R. Garrison and Ryan V. Mishmash.
8 # Open source under the MIT license. Source code at
9 # <https://github.com/simple-dmrg/simple-dmrg/>

10
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11 # This code will run under any version of Python >= 2.6. The following line
12 # provides consistency between python2 and python3.
13 from __future__ import print_function, division # requires Python >= 2.6
14

15 # numpy and scipy imports
16 import numpy as np
17 from scipy.sparse import kron, identity
18 from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
19

20 # We will use python's "namedtuple" to represent the Block and EnlargedBlock
21 # objects
22 from collections import namedtuple
23

24 Block = namedtuple("Block", ["length", "basis_size", "operator_dict"])
25 EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict"])
26

27 def is_valid_block(block):
28 for op in block.operator_dict.values():
29 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
30 return False
31 return True
32

33 # This function should test the same exact things, so there is no need to
34 # repeat its definition.
35 is_valid_enlarged_block = is_valid_block
36

37 # Model-specific code for the Heisenberg XXZ chain
38 model_d = 2 # single-site basis size
39

40 Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
41 Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+
42

43 H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero
44

45 def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
46 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
47 (e.g. two blocks), returns a Kronecker product representing the
48 corresponding two-site term in the Hamiltonian that joins the two sites.
49 """
50 J = Jz = 1.
51 return (
52 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().

→˓transpose(), Sp2)) +
53 Jz * kron(Sz1, Sz2)
54 )
55

56 # conn refers to the connection operator, that is, the operator on the edge of
57 # the block, on the interior of the chain. We need to be able to represent S^z
58 # and S^+ on that site in the current basis in order to grow the chain.
59 initial_block = Block(length=1, basis_size=model_d, operator_dict={
60 "H": H1,
61 "conn_Sz": Sz1,
62 "conn_Sp": Sp1,
63 })
64

65 def enlarge_block(block):
66 """This function enlarges the provided Block by a single site, returning an
67 EnlargedBlock.
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68 """
69 mblock = block.basis_size
70 o = block.operator_dict
71

72 # Create the new operators for the enlarged block. Our basis becomes a
73 # Kronecker product of the Block basis and the single-site basis. NOTE:
74 # `kron` uses the tensor product convention making blocks of the second
75 # array scaled by the first. As such, we adopt this convention for
76 # Kronecker products throughout the code.
77 enlarged_operator_dict = {
78 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o[

→˓"conn_Sz"], o["conn_Sp"], Sz1, Sp1),
79 "conn_Sz": kron(identity(mblock), Sz1),
80 "conn_Sp": kron(identity(mblock), Sp1),
81 }
82

83 return EnlargedBlock(length=(block.length + 1),
84 basis_size=(block.basis_size * model_d),
85 operator_dict=enlarged_operator_dict)
86

87 def rotate_and_truncate(operator, transformation_matrix):
88 """Transforms the operator to the new (possibly truncated) basis given by
89 `transformation_matrix`.
90 """
91 return transformation_matrix.conjugate().transpose().dot(operator.

→˓dot(transformation_matrix))
92

93 def single_dmrg_step(sys, env, m):
94 """Performs a single DMRG step using `sys` as the system and `env` as the
95 environment, keeping a maximum of `m` states in the new basis.
96 """
97 assert is_valid_block(sys)
98 assert is_valid_block(env)
99

100 # Enlarge each block by a single site.
101 sys_enl = enlarge_block(sys)
102 if sys is env: # no need to recalculate a second time
103 env_enl = sys_enl
104 else:
105 env_enl = enlarge_block(env)
106

107 assert is_valid_enlarged_block(sys_enl)
108 assert is_valid_enlarged_block(env_enl)
109

110 # Construct the full superblock Hamiltonian.
111 m_sys_enl = sys_enl.basis_size
112 m_env_enl = env_enl.basis_size
113 sys_enl_op = sys_enl.operator_dict
114 env_enl_op = env_enl.operator_dict
115 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) +

→˓kron(identity(m_sys_enl), env_enl_op["H"]) + \
116 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_

→˓op["conn_Sz"], env_enl_op["conn_Sp"])
117

118 # Call ARPACK to find the superblock ground state. ("SA" means find the
119 # "smallest in amplitude" eigenvalue.)
120 (energy,), psi0 = eigsh(superblock_hamiltonian, k=1, which="SA")
121
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122 # Construct the reduced density matrix of the system by tracing out the
123 # environment
124 #
125 # We want to make the (sys, env) indices correspond to (row, column) of a
126 # matrix, respectively. Since the environment (column) index updates most
127 # quickly in our Kronecker product structure, psi0 is thus row-major ("C
128 # style").
129 psi0 = psi0.reshape([sys_enl.basis_size, -1], order="C")
130 rho = np.dot(psi0, psi0.conjugate().transpose())
131

132 # Diagonalize the reduced density matrix and sort the eigenvectors by
133 # eigenvalue.
134 evals, evecs = np.linalg.eigh(rho)
135 possible_eigenstates = []
136 for eval, evec in zip(evals, evecs.transpose()):
137 possible_eigenstates.append((eval, evec))
138 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue

→˓first
139

140 # Build the transformation matrix from the `m` overall most significant
141 # eigenvectors.
142 my_m = min(len(possible_eigenstates), m)
143 transformation_matrix = np.zeros((sys_enl.basis_size, my_m), dtype='d', order='F')
144 for i, (eval, evec) in enumerate(possible_eigenstates[:my_m]):
145 transformation_matrix[:, i] = evec
146

147 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
148 print("truncation error:", truncation_error)
149

150 # Rotate and truncate each operator.
151 new_operator_dict = {}
152 for name, op in sys_enl.operator_dict.items():
153 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)
154

155 newblock = Block(length=sys_enl.length,
156 basis_size=my_m,
157 operator_dict=new_operator_dict)
158

159 return newblock, energy
160

161 def graphic(sys_block, env_block, sys_label="l"):
162 """Returns a graphical representation of the DMRG step we are about to
163 perform, using '=' to represent the system sites, '-' to represent the
164 environment sites, and '**' to represent the two intermediate sites.
165 """
166 assert sys_label in ("l", "r")
167 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
168 if sys_label == "r":
169 # The system should be on the right and the environment should be on
170 # the left, so reverse the graphic.
171 graphic = graphic[::-1]
172 return graphic
173

174 def infinite_system_algorithm(L, m):
175 block = initial_block
176 # Repeatedly enlarge the system by performing a single DMRG step, using a
177 # reflection of the current block as the environment.
178 while 2 * block.length < L:
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179 print("L =", block.length * 2 + 2)
180 block, energy = single_dmrg_step(block, block, m=m)
181 print("E/L =", energy / (block.length * 2))
182

183 def finite_system_algorithm(L, m_warmup, m_sweep_list):
184 assert L % 2 == 0 # require that L is an even number
185

186 # To keep things simple, this dictionary is not actually saved to disk, but
187 # we use it to represent persistent storage.
188 block_disk = {} # "disk" storage for Block objects
189

190 # Use the infinite system algorithm to build up to desired size. Each time
191 # we construct a block, we save it for future reference as both a left
192 # ("l") and right ("r") block, as the infinite system algorithm assumes the
193 # environment is a mirror image of the system.
194 block = initial_block
195 block_disk["l", block.length] = block
196 block_disk["r", block.length] = block
197 while 2 * block.length < L:
198 # Perform a single DMRG step and save the new Block to "disk"
199 print(graphic(block, block))
200 block, energy = single_dmrg_step(block, block, m=m_warmup)
201 print("E/L =", energy / (block.length * 2))
202 block_disk["l", block.length] = block
203 block_disk["r", block.length] = block
204

205 # Now that the system is built up to its full size, we perform sweeps using
206 # the finite system algorithm. At first the left block will act as the
207 # system, growing at the expense of the right block (the environment), but
208 # once we come to the end of the chain these roles will be reversed.
209 sys_label, env_label = "l", "r"
210 sys_block = block; del block # rename the variable
211 for m in m_sweep_list:
212 while True:
213 # Load the appropriate environment block from "disk"
214 env_block = block_disk[env_label, L - sys_block.length - 2]
215 if env_block.length == 1:
216 # We've come to the end of the chain, so we reverse course.
217 sys_block, env_block = env_block, sys_block
218 sys_label, env_label = env_label, sys_label
219

220 # Perform a single DMRG step.
221 print(graphic(sys_block, env_block, sys_label))
222 sys_block, energy = single_dmrg_step(sys_block, env_block, m=m)
223

224 print("E/L =", energy / L)
225

226 # Save the block from this step to disk.
227 block_disk[sys_label, sys_block.length] = sys_block
228

229 # Check whether we just completed a full sweep.
230 if sys_label == "l" and 2 * sys_block.length == L:
231 break # escape from the "while True" loop
232

233 if __name__ == "__main__":
234 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
235

236 #infinite_system_algorithm(L=100, m=20)
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237 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40])

2.5.3 simple_dmrg_03_conserved_quantum_numbers.py

(Raw download)

1 #!/usr/bin/env python
2 #
3 # Simple DMRG tutorial. This code integrates the following concepts:
4 # - Infinite system algorithm
5 # - Finite system algorithm
6 # - Conserved quantum numbers
7 #
8 # Copyright 2013 James R. Garrison and Ryan V. Mishmash.
9 # Open source under the MIT license. Source code at

10 # <https://github.com/simple-dmrg/simple-dmrg/>
11

12 # This code will run under any version of Python >= 2.6. The following line
13 # provides consistency between python2 and python3.
14 from __future__ import print_function, division # requires Python >= 2.6
15

16 # numpy and scipy imports
17 import numpy as np
18 from scipy.sparse import kron, identity, lil_matrix
19 from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
20

21 # We will use python's "namedtuple" to represent the Block and EnlargedBlock
22 # objects
23 from collections import namedtuple
24

25 Block = namedtuple("Block", ["length", "basis_size", "operator_dict", "basis_sector_
→˓array"])

26 EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict",
→˓"basis_sector_array"])

27

28 def is_valid_block(block):
29 if len(block.basis_sector_array) != block.basis_size:
30 return False
31 for op in block.operator_dict.values():
32 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
33 return False
34 return True
35

36 # This function should test the same exact things, so there is no need to
37 # repeat its definition.
38 is_valid_enlarged_block = is_valid_block
39

40 # Model-specific code for the Heisenberg XXZ chain
41 model_d = 2 # single-site basis size
42 single_site_sectors = np.array([0.5, -0.5]) # S^z sectors corresponding to the
43 # single site basis elements
44

45 Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
46 Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+
47

48 H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero
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49

50 def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
51 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
52 (e.g. two blocks), returns a Kronecker product representing the
53 corresponding two-site term in the Hamiltonian that joins the two sites.
54 """
55 J = Jz = 1.
56 return (
57 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().

→˓transpose(), Sp2)) +
58 Jz * kron(Sz1, Sz2)
59 )
60

61 # conn refers to the connection operator, that is, the operator on the edge of
62 # the block, on the interior of the chain. We need to be able to represent S^z
63 # and S^+ on that site in the current basis in order to grow the chain.
64 initial_block = Block(length=1, basis_size=model_d, operator_dict={
65 "H": H1,
66 "conn_Sz": Sz1,
67 "conn_Sp": Sp1,
68 }, basis_sector_array=single_site_sectors)
69

70 def enlarge_block(block):
71 """This function enlarges the provided Block by a single site, returning an
72 EnlargedBlock.
73 """
74 mblock = block.basis_size
75 o = block.operator_dict
76

77 # Create the new operators for the enlarged block. Our basis becomes a
78 # Kronecker product of the Block basis and the single-site basis. NOTE:
79 # `kron` uses the tensor product convention making blocks of the second
80 # array scaled by the first. As such, we adopt this convention for
81 # Kronecker products throughout the code.
82 enlarged_operator_dict = {
83 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o[

→˓"conn_Sz"], o["conn_Sp"], Sz1, Sp1),
84 "conn_Sz": kron(identity(mblock), Sz1),
85 "conn_Sp": kron(identity(mblock), Sp1),
86 }
87

88 # This array keeps track of which sector each element of the new basis is
89 # in. `np.add.outer()` creates a matrix that adds each element of the
90 # first vector with each element of the second, which when flattened
91 # contains the sector of each basis element in the above Kronecker product.
92 enlarged_basis_sector_array = np.add.outer(block.basis_sector_array, single_site_

→˓sectors).flatten()
93

94 return EnlargedBlock(length=(block.length + 1),
95 basis_size=(block.basis_size * model_d),
96 operator_dict=enlarged_operator_dict,
97 basis_sector_array=enlarged_basis_sector_array)
98

99 def rotate_and_truncate(operator, transformation_matrix):
100 """Transforms the operator to the new (possibly truncated) basis given by
101 `transformation_matrix`.
102 """
103 return transformation_matrix.conjugate().transpose().dot(operator.

→˓dot(transformation_matrix))

22 Chapter 2. Contents



simple-dmrg Documentation, Release 1.0

104

105 def index_map(array):
106 """Given an array, returns a dictionary that allows quick access to the
107 indices at which a given value occurs.
108

109 Example usage:
110

111 >>> by_index = index_map([3, 5, 5, 7, 3])
112 >>> by_index[3]
113 [0, 4]
114 >>> by_index[5]
115 [1, 2]
116 >>> by_index[7]
117 [3]
118 """
119 d = {}
120 for index, value in enumerate(array):
121 d.setdefault(value, []).append(index)
122 return d
123

124 def single_dmrg_step(sys, env, m, target_Sz):
125 """Performs a single DMRG step using `sys` as the system and `env` as the
126 environment, keeping a maximum of `m` states in the new basis.
127 """
128 assert is_valid_block(sys)
129 assert is_valid_block(env)
130

131 # Enlarge each block by a single site.
132 sys_enl = enlarge_block(sys)
133 sys_enl_basis_by_sector = index_map(sys_enl.basis_sector_array)
134 if sys is env: # no need to recalculate a second time
135 env_enl = sys_enl
136 env_enl_basis_by_sector = sys_enl_basis_by_sector
137 else:
138 env_enl = enlarge_block(env)
139 env_enl_basis_by_sector = index_map(env_enl.basis_sector_array)
140

141 assert is_valid_enlarged_block(sys_enl)
142 assert is_valid_enlarged_block(env_enl)
143

144 # Construct the full superblock Hamiltonian.
145 m_sys_enl = sys_enl.basis_size
146 m_env_enl = env_enl.basis_size
147 sys_enl_op = sys_enl.operator_dict
148 env_enl_op = env_enl.operator_dict
149 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) +

→˓kron(identity(m_sys_enl), env_enl_op["H"]) + \
150 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_

→˓op["conn_Sz"], env_enl_op["conn_Sp"])
151

152 # Build up a "restricted" basis of states in the target sector and
153 # reconstruct the superblock Hamiltonian in that sector.
154 sector_indices = {} # will contain indices of the new (restricted) basis
155 # for which the enlarged system is in a given sector
156 restricted_basis_indices = [] # will contain indices of the old (full) basis,

→˓which we are mapping to
157 for sys_enl_Sz, sys_enl_basis_states in sys_enl_basis_by_sector.items():
158 sector_indices[sys_enl_Sz] = []
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159 env_enl_Sz = target_Sz - sys_enl_Sz
160 if env_enl_Sz in env_enl_basis_by_sector:
161 for i in sys_enl_basis_states:
162 i_offset = m_env_enl * i # considers the tensor product structure of

→˓the superblock basis
163 for j in env_enl_basis_by_sector[env_enl_Sz]:
164 current_index = len(restricted_basis_indices) # about-to-be-

→˓added index of restricted_basis_indices
165 sector_indices[sys_enl_Sz].append(current_index)
166 restricted_basis_indices.append(i_offset + j)
167

168 restricted_superblock_hamiltonian = superblock_hamiltonian[:, restricted_basis_
→˓indices][restricted_basis_indices, :]

169

170 # Call ARPACK to find the superblock ground state. ("SA" means find the
171 # "smallest in amplitude" eigenvalue.)
172 (energy,), restricted_psi0 = eigsh(restricted_superblock_hamiltonian, k=1, which=

→˓"SA")
173

174 # Construct each block of the reduced density matrix of the system by
175 # tracing out the environment
176 rho_block_dict = {}
177 for sys_enl_Sz, indices in sector_indices.items():
178 if indices: # if indices is nonempty
179 psi0_sector = restricted_psi0[indices, :]
180 # We want to make the (sys, env) indices correspond to (row,
181 # column) of a matrix, respectively. Since the environment
182 # (column) index updates most quickly in our Kronecker product
183 # structure, psi0_sector is thus row-major ("C style").
184 psi0_sector = psi0_sector.reshape([len(sys_enl_basis_by_sector[sys_enl_

→˓Sz]), -1], order="C")
185 rho_block_dict[sys_enl_Sz] = np.dot(psi0_sector, psi0_sector.conjugate().

→˓transpose())
186

187 # Diagonalize each block of the reduced density matrix and sort the
188 # eigenvectors by eigenvalue.
189 possible_eigenstates = []
190 for Sz_sector, rho_block in rho_block_dict.items():
191 evals, evecs = np.linalg.eigh(rho_block)
192 current_sector_basis = sys_enl_basis_by_sector[Sz_sector]
193 for eval, evec in zip(evals, evecs.transpose()):
194 possible_eigenstates.append((eval, evec, Sz_sector, current_sector_basis))
195 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue

→˓first
196

197 # Build the transformation matrix from the `m` overall most significant
198 # eigenvectors. It will have sparse structure due to the conserved quantum
199 # number.
200 my_m = min(len(possible_eigenstates), m)
201 transformation_matrix = lil_matrix((sys_enl.basis_size, my_m), dtype='d')
202 new_sector_array = np.zeros((my_m,), dtype='d') # lists the sector of each
203 # element of the new/truncated

→˓basis
204 for i, (eval, evec, Sz_sector, current_sector_basis) in enumerate(possible_

→˓eigenstates[:my_m]):
205 for j, v in zip(current_sector_basis, evec):
206 transformation_matrix[j, i] = v
207 new_sector_array[i] = Sz_sector

24 Chapter 2. Contents



simple-dmrg Documentation, Release 1.0

208 # Convert the transformation matrix to a more efficient internal
209 # representation. `lil_matrix` is good for constructing a sparse matrix
210 # efficiently, but `csr_matrix` is better for performing quick
211 # multiplications.
212 transformation_matrix = transformation_matrix.tocsr()
213

214 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
215 print("truncation error:", truncation_error)
216

217 # Rotate and truncate each operator.
218 new_operator_dict = {}
219 for name, op in sys_enl.operator_dict.items():
220 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)
221

222 newblock = Block(length=sys_enl.length,
223 basis_size=my_m,
224 operator_dict=new_operator_dict,
225 basis_sector_array=new_sector_array)
226

227 return newblock, energy
228

229 def graphic(sys_block, env_block, sys_label="l"):
230 """Returns a graphical representation of the DMRG step we are about to
231 perform, using '=' to represent the system sites, '-' to represent the
232 environment sites, and '**' to represent the two intermediate sites.
233 """
234 assert sys_label in ("l", "r")
235 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
236 if sys_label == "r":
237 # The system should be on the right and the environment should be on
238 # the left, so reverse the graphic.
239 graphic = graphic[::-1]
240 return graphic
241

242 def infinite_system_algorithm(L, m, target_Sz):
243 block = initial_block
244 # Repeatedly enlarge the system by performing a single DMRG step, using a
245 # reflection of the current block as the environment.
246 while 2 * block.length < L:
247 current_L = 2 * block.length + 2 # current superblock length
248 current_target_Sz = int(target_Sz) * current_L // L
249 print("L =", current_L)
250 block, energy = single_dmrg_step(block, block, m=m, target_Sz=current_target_

→˓Sz)
251 print("E/L =", energy / current_L)
252

253 def finite_system_algorithm(L, m_warmup, m_sweep_list, target_Sz):
254 assert L % 2 == 0 # require that L is an even number
255

256 # To keep things simple, this dictionary is not actually saved to disk, but
257 # we use it to represent persistent storage.
258 block_disk = {} # "disk" storage for Block objects
259

260 # Use the infinite system algorithm to build up to desired size. Each time
261 # we construct a block, we save it for future reference as both a left
262 # ("l") and right ("r") block, as the infinite system algorithm assumes the
263 # environment is a mirror image of the system.
264 block = initial_block
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265 block_disk["l", block.length] = block
266 block_disk["r", block.length] = block
267 while 2 * block.length < L:
268 # Perform a single DMRG step and save the new Block to "disk"
269 print(graphic(block, block))
270 current_L = 2 * block.length + 2 # current superblock length
271 current_target_Sz = int(target_Sz) * current_L // L
272 block, energy = single_dmrg_step(block, block, m=m_warmup, target_Sz=current_

→˓target_Sz)
273 print("E/L =", energy / current_L)
274 block_disk["l", block.length] = block
275 block_disk["r", block.length] = block
276

277 # Now that the system is built up to its full size, we perform sweeps using
278 # the finite system algorithm. At first the left block will act as the
279 # system, growing at the expense of the right block (the environment), but
280 # once we come to the end of the chain these roles will be reversed.
281 sys_label, env_label = "l", "r"
282 sys_block = block; del block # rename the variable
283 for m in m_sweep_list:
284 while True:
285 # Load the appropriate environment block from "disk"
286 env_block = block_disk[env_label, L - sys_block.length - 2]
287 if env_block.length == 1:
288 # We've come to the end of the chain, so we reverse course.
289 sys_block, env_block = env_block, sys_block
290 sys_label, env_label = env_label, sys_label
291

292 # Perform a single DMRG step.
293 print(graphic(sys_block, env_block, sys_label))
294 sys_block, energy = single_dmrg_step(sys_block, env_block, m=m, target_

→˓Sz=target_Sz)
295

296 print("E/L =", energy / L)
297

298 # Save the block from this step to disk.
299 block_disk[sys_label, sys_block.length] = sys_block
300

301 # Check whether we just completed a full sweep.
302 if sys_label == "l" and 2 * sys_block.length == L:
303 break # escape from the "while True" loop
304

305 if __name__ == "__main__":
306 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
307

308 #infinite_system_algorithm(L=100, m=20, target_Sz=0)
309 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40],

→˓target_Sz=0)

2.5.4 simple_dmrg_04_eigenstate_prediction.py

(Raw download)

1 #!/usr/bin/env python
2 #
3 # Simple DMRG tutorial. This code integrates the following concepts:
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4 # - Infinite system algorithm
5 # - Finite system algorithm
6 # - Conserved quantum numbers
7 # - Eigenstate prediction
8 #
9 # Copyright 2013 James R. Garrison and Ryan V. Mishmash.

10 # Open source under the MIT license. Source code at
11 # <https://github.com/simple-dmrg/simple-dmrg/>
12

13 # This code will run under any version of Python >= 2.6. The following line
14 # provides consistency between python2 and python3.
15 from __future__ import print_function, division # requires Python >= 2.6
16

17 # numpy and scipy imports
18 import numpy as np
19 from scipy.sparse import kron, identity, lil_matrix
20 from scipy.sparse.linalg import eigsh # Lanczos routine from ARPACK
21

22 # We will use python's "namedtuple" to represent the Block and EnlargedBlock
23 # objects
24 from collections import namedtuple
25

26 Block = namedtuple("Block", ["length", "basis_size", "operator_dict", "basis_sector_
→˓array"])

27 EnlargedBlock = namedtuple("EnlargedBlock", ["length", "basis_size", "operator_dict",
→˓"basis_sector_array"])

28

29 def is_valid_block(block):
30 if len(block.basis_sector_array) != block.basis_size:
31 return False
32 for op in block.operator_dict.values():
33 if op.shape[0] != block.basis_size or op.shape[1] != block.basis_size:
34 return False
35 return True
36

37 # This function should test the same exact things, so there is no need to
38 # repeat its definition.
39 is_valid_enlarged_block = is_valid_block
40

41 # Model-specific code for the Heisenberg XXZ chain
42 model_d = 2 # single-site basis size
43 single_site_sectors = np.array([0.5, -0.5]) # S^z sectors corresponding to the
44 # single site basis elements
45

46 Sz1 = np.array([[0.5, 0], [0, -0.5]], dtype='d') # single-site S^z
47 Sp1 = np.array([[0, 1], [0, 0]], dtype='d') # single-site S^+
48

49 H1 = np.array([[0, 0], [0, 0]], dtype='d') # single-site portion of H is zero
50

51 def H2(Sz1, Sp1, Sz2, Sp2): # two-site part of H
52 """Given the operators S^z and S^+ on two sites in different Hilbert spaces
53 (e.g. two blocks), returns a Kronecker product representing the
54 corresponding two-site term in the Hamiltonian that joins the two sites.
55 """
56 J = Jz = 1.
57 return (
58 (J / 2) * (kron(Sp1, Sp2.conjugate().transpose()) + kron(Sp1.conjugate().

→˓transpose(), Sp2)) +
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59 Jz * kron(Sz1, Sz2)
60 )
61

62 # conn refers to the connection operator, that is, the operator on the edge of
63 # the block, on the interior of the chain. We need to be able to represent S^z
64 # and S^+ on that site in the current basis in order to grow the chain.
65 initial_block = Block(length=1, basis_size=model_d, operator_dict={
66 "H": H1,
67 "conn_Sz": Sz1,
68 "conn_Sp": Sp1,
69 }, basis_sector_array=single_site_sectors)
70

71 def enlarge_block(block):
72 """This function enlarges the provided Block by a single site, returning an
73 EnlargedBlock.
74 """
75 mblock = block.basis_size
76 o = block.operator_dict
77

78 # Create the new operators for the enlarged block. Our basis becomes a
79 # Kronecker product of the Block basis and the single-site basis. NOTE:
80 # `kron` uses the tensor product convention making blocks of the second
81 # array scaled by the first. As such, we adopt this convention for
82 # Kronecker products throughout the code.
83 enlarged_operator_dict = {
84 "H": kron(o["H"], identity(model_d)) + kron(identity(mblock), H1) + H2(o[

→˓"conn_Sz"], o["conn_Sp"], Sz1, Sp1),
85 "conn_Sz": kron(identity(mblock), Sz1),
86 "conn_Sp": kron(identity(mblock), Sp1),
87 }
88

89 # This array keeps track of which sector each element of the new basis is
90 # in. `np.add.outer()` creates a matrix that adds each element of the
91 # first vector with each element of the second, which when flattened
92 # contains the sector of each basis element in the above Kronecker product.
93 enlarged_basis_sector_array = np.add.outer(block.basis_sector_array, single_site_

→˓sectors).flatten()
94

95 return EnlargedBlock(length=(block.length + 1),
96 basis_size=(block.basis_size * model_d),
97 operator_dict=enlarged_operator_dict,
98 basis_sector_array=enlarged_basis_sector_array)
99

100 def rotate_and_truncate(operator, transformation_matrix):
101 """Transforms the operator to the new (possibly truncated) basis given by
102 `transformation_matrix`.
103 """
104 return transformation_matrix.conjugate().transpose().dot(operator.

→˓dot(transformation_matrix))
105

106 def index_map(array):
107 """Given an array, returns a dictionary that allows quick access to the
108 indices at which a given value occurs.
109

110 Example usage:
111

112 >>> by_index = index_map([3, 5, 5, 7, 3])
113 >>> by_index[3]
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114 [0, 4]
115 >>> by_index[5]
116 [1, 2]
117 >>> by_index[7]
118 [3]
119 """
120 d = {}
121 for index, value in enumerate(array):
122 d.setdefault(value, []).append(index)
123 return d
124

125 def single_dmrg_step(sys, env, m, target_Sz, psi0_guess=None):
126 """Performs a single DMRG step using `sys` as the system and `env` as the
127 environment, keeping a maximum of `m` states in the new basis. If
128 `psi0_guess` is provided, it will be used as a starting vector for the
129 Lanczos algorithm.
130 """
131 assert is_valid_block(sys)
132 assert is_valid_block(env)
133

134 # Enlarge each block by a single site.
135 sys_enl = enlarge_block(sys)
136 sys_enl_basis_by_sector = index_map(sys_enl.basis_sector_array)
137 if sys is env: # no need to recalculate a second time
138 env_enl = sys_enl
139 env_enl_basis_by_sector = sys_enl_basis_by_sector
140 else:
141 env_enl = enlarge_block(env)
142 env_enl_basis_by_sector = index_map(env_enl.basis_sector_array)
143

144 assert is_valid_enlarged_block(sys_enl)
145 assert is_valid_enlarged_block(env_enl)
146

147 # Construct the full superblock Hamiltonian.
148 m_sys_enl = sys_enl.basis_size
149 m_env_enl = env_enl.basis_size
150 sys_enl_op = sys_enl.operator_dict
151 env_enl_op = env_enl.operator_dict
152 superblock_hamiltonian = kron(sys_enl_op["H"], identity(m_env_enl)) +

→˓kron(identity(m_sys_enl), env_enl_op["H"]) + \
153 H2(sys_enl_op["conn_Sz"], sys_enl_op["conn_Sp"], env_enl_

→˓op["conn_Sz"], env_enl_op["conn_Sp"])
154

155 # Build up a "restricted" basis of states in the target sector and
156 # reconstruct the superblock Hamiltonian in that sector.
157 sector_indices = {} # will contain indices of the new (restricted) basis
158 # for which the enlarged system is in a given sector
159 restricted_basis_indices = [] # will contain indices of the old (full) basis,

→˓which we are mapping to
160 for sys_enl_Sz, sys_enl_basis_states in sys_enl_basis_by_sector.items():
161 sector_indices[sys_enl_Sz] = []
162 env_enl_Sz = target_Sz - sys_enl_Sz
163 if env_enl_Sz in env_enl_basis_by_sector:
164 for i in sys_enl_basis_states:
165 i_offset = m_env_enl * i # considers the tensor product structure of

→˓the superblock basis
166 for j in env_enl_basis_by_sector[env_enl_Sz]:
167 current_index = len(restricted_basis_indices) # about-to-be-

→˓added index of restricted_basis_indices
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168 sector_indices[sys_enl_Sz].append(current_index)
169 restricted_basis_indices.append(i_offset + j)
170

171 restricted_superblock_hamiltonian = superblock_hamiltonian[:, restricted_basis_
→˓indices][restricted_basis_indices, :]

172 if psi0_guess is not None:
173 restricted_psi0_guess = psi0_guess[restricted_basis_indices]
174 else:
175 restricted_psi0_guess = None
176

177 # Call ARPACK to find the superblock ground state. ("SA" means find the
178 # "smallest in amplitude" eigenvalue.)
179 (energy,), restricted_psi0 = eigsh(restricted_superblock_hamiltonian, k=1, which=

→˓"SA", v0=restricted_psi0_guess)
180

181 # Construct each block of the reduced density matrix of the system by
182 # tracing out the environment
183 rho_block_dict = {}
184 for sys_enl_Sz, indices in sector_indices.items():
185 if indices: # if indices is nonempty
186 psi0_sector = restricted_psi0[indices, :]
187 # We want to make the (sys, env) indices correspond to (row,
188 # column) of a matrix, respectively. Since the environment
189 # (column) index updates most quickly in our Kronecker product
190 # structure, psi0_sector is thus row-major ("C style").
191 psi0_sector = psi0_sector.reshape([len(sys_enl_basis_by_sector[sys_enl_

→˓Sz]), -1], order="C")
192 rho_block_dict[sys_enl_Sz] = np.dot(psi0_sector, psi0_sector.conjugate().

→˓transpose())
193

194 # Diagonalize each block of the reduced density matrix and sort the
195 # eigenvectors by eigenvalue.
196 possible_eigenstates = []
197 for Sz_sector, rho_block in rho_block_dict.items():
198 evals, evecs = np.linalg.eigh(rho_block)
199 current_sector_basis = sys_enl_basis_by_sector[Sz_sector]
200 for eval, evec in zip(evals, evecs.transpose()):
201 possible_eigenstates.append((eval, evec, Sz_sector, current_sector_basis))
202 possible_eigenstates.sort(reverse=True, key=lambda x: x[0]) # largest eigenvalue

→˓first
203

204 # Build the transformation matrix from the `m` overall most significant
205 # eigenvectors. It will have sparse structure due to the conserved quantum
206 # number.
207 my_m = min(len(possible_eigenstates), m)
208 transformation_matrix = lil_matrix((sys_enl.basis_size, my_m), dtype='d')
209 new_sector_array = np.zeros((my_m,), dtype='d') # lists the sector of each
210 # element of the new/truncated

→˓basis
211 for i, (eval, evec, Sz_sector, current_sector_basis) in enumerate(possible_

→˓eigenstates[:my_m]):
212 for j, v in zip(current_sector_basis, evec):
213 transformation_matrix[j, i] = v
214 new_sector_array[i] = Sz_sector
215 # Convert the transformation matrix to a more efficient internal
216 # representation. `lil_matrix` is good for constructing a sparse matrix
217 # efficiently, but `csr_matrix` is better for performing quick
218 # multiplications.
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219 transformation_matrix = transformation_matrix.tocsr()
220

221 truncation_error = 1 - sum([x[0] for x in possible_eigenstates[:my_m]])
222 print("truncation error:", truncation_error)
223

224 # Rotate and truncate each operator.
225 new_operator_dict = {}
226 for name, op in sys_enl.operator_dict.items():
227 new_operator_dict[name] = rotate_and_truncate(op, transformation_matrix)
228

229 newblock = Block(length=sys_enl.length,
230 basis_size=my_m,
231 operator_dict=new_operator_dict,
232 basis_sector_array=new_sector_array)
233

234 # Construct psi0 (that is, in the full superblock basis) so we can use it
235 # later for eigenstate prediction.
236 psi0 = np.zeros([m_sys_enl * m_env_enl, 1], dtype='d')
237 for i, z in enumerate(restricted_basis_indices):
238 psi0[z, 0] = restricted_psi0[i, 0]
239 if psi0_guess is not None:
240 overlap = np.absolute(np.dot(psi0_guess.conjugate().transpose(), psi0).item())
241 overlap /= np.linalg.norm(psi0_guess) * np.linalg.norm(psi0) # normalize it
242 print("overlap |<psi0_guess|psi0>| =", overlap)
243

244 return newblock, energy, transformation_matrix, psi0
245

246 def graphic(sys_block, env_block, sys_label="l"):
247 """Returns a graphical representation of the DMRG step we are about to
248 perform, using '=' to represent the system sites, '-' to represent the
249 environment sites, and '**' to represent the two intermediate sites.
250 """
251 assert sys_label in ("l", "r")
252 graphic = ("=" * sys_block.length) + "**" + ("-" * env_block.length)
253 if sys_label == "r":
254 # The system should be on the right and the environment should be on
255 # the left, so reverse the graphic.
256 graphic = graphic[::-1]
257 return graphic
258

259 def infinite_system_algorithm(L, m, target_Sz):
260 block = initial_block
261 # Repeatedly enlarge the system by performing a single DMRG step, using a
262 # reflection of the current block as the environment.
263 while 2 * block.length < L:
264 current_L = 2 * block.length + 2 # current superblock length
265 current_target_Sz = int(target_Sz) * current_L // L
266 print("L =", current_L)
267 block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block,

→˓m=m, target_Sz=current_target_Sz)
268 print("E/L =", energy / current_L)
269

270 def finite_system_algorithm(L, m_warmup, m_sweep_list, target_Sz):
271 assert L % 2 == 0 # require that L is an even number
272

273 # To keep things simple, these dictionaries are not actually saved to disk,
274 # but they are used to represent persistent storage.
275 block_disk = {} # "disk" storage for Block objects
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276 trmat_disk = {} # "disk" storage for transformation matrices
277

278 # Use the infinite system algorithm to build up to desired size. Each time
279 # we construct a block, we save it for future reference as both a left
280 # ("l") and right ("r") block, as the infinite system algorithm assumes the
281 # environment is a mirror image of the system.
282 block = initial_block
283 block_disk["l", block.length] = block
284 block_disk["r", block.length] = block
285 while 2 * block.length < L:
286 # Perform a single DMRG step and save the new Block to "disk"
287 print(graphic(block, block))
288 current_L = 2 * block.length + 2 # current superblock length
289 current_target_Sz = int(target_Sz) * current_L // L
290 block, energy, transformation_matrix, psi0 = single_dmrg_step(block, block,

→˓m=m_warmup, target_Sz=current_target_Sz)
291 print("E/L =", energy / current_L)
292 block_disk["l", block.length] = block
293 block_disk["r", block.length] = block
294

295 # Now that the system is built up to its full size, we perform sweeps using
296 # the finite system algorithm. At first the left block will act as the
297 # system, growing at the expense of the right block (the environment), but
298 # once we come to the end of the chain these roles will be reversed.
299 sys_label, env_label = "l", "r"
300 sys_block = block; del block # rename the variable
301 sys_trmat = None
302 for m in m_sweep_list:
303 while True:
304 # Load the appropriate environment block from "disk"
305 env_block = block_disk[env_label, L - sys_block.length - 2]
306 env_trmat = trmat_disk.get((env_label, L - sys_block.length - 1))
307

308 # If possible, predict an estimate of the ground state wavefunction
309 # from the previous step's psi0 and known transformation matrices.
310 if psi0 is None or sys_trmat is None or env_trmat is None:
311 psi0_guess = None
312 else:
313 # psi0 currently looks e.g. like ===**--- but we need to
314 # transform it to look like ====**-- using the relevant
315 # transformation matrices and paying careful attention to the
316 # tensor product structure.
317 #
318 # Keep in mind that the tensor product of the superblock is
319 # (sys_enl_block, env_enl_block), which is equal to
320 # (sys_block, sys_extra_site, env_block, env_extra_site).
321 # Note that this does *not* correspond to left-to-right order
322 # on the chain.
323 #
324 # First we reshape the psi0 vector into a matrix with rows
325 # corresponding to the enlarged system basis and columns
326 # corresponding to the enlarged environment basis.
327 psi0_a = psi0.reshape((-1, env_trmat.shape[1] * model_d), order="C")
328 # Now we transform the enlarged system block into a system
329 # block, so that psi0_b looks like ====*-- (with only one
330 # intermediate site).
331 psi0_b = sys_trmat.conjugate().transpose().dot(psi0_a)
332 # At the moment, the tensor product goes as (sys_block,
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333 # env_enl_block) == (sys_block, env_block, extra_site), but we
334 # need it to look like (sys_enl_block, env_block) ==
335 # (sys_block, extra_site, env_block). In other words, the
336 # single intermediate site should now be part of a new enlarged
337 # system, not part of the enlarged environment.
338 psi0_c = psi0_b.reshape((-1, env_trmat.shape[1], model_d), order="C").

→˓transpose(0, 2, 1)
339 # Now we reshape the psi0 vector into a matrix with rows
340 # corresponding to the enlarged system and columns
341 # corresponding to the environment block.
342 psi0_d = psi0_c.reshape((-1, env_trmat.shape[1]), order="C")
343 # Finally, we transform the environment block into the basis of
344 # an enlarged block the so that psi0_guess has the tensor
345 # product structure of ====**--.
346 psi0_guess = env_trmat.dot(psi0_d.transpose()).transpose().reshape((-

→˓1, 1))
347

348 if env_block.length == 1:
349 # We've come to the end of the chain, so we reverse course.
350 sys_block, env_block = env_block, sys_block
351 sys_label, env_label = env_label, sys_label
352 if psi0_guess is not None:
353 # Re-order psi0_guess based on the new sys, env labels.
354 psi0_guess = psi0_guess.reshape((sys_trmat.shape[1] * model_d,

→˓env_trmat.shape[0]), order="C").transpose().reshape((-1, 1))
355

356 # Perform a single DMRG step.
357 print(graphic(sys_block, env_block, sys_label))
358 sys_block, energy, sys_trmat, psi0 = single_dmrg_step(sys_block, env_

→˓block, m=m, target_Sz=target_Sz, psi0_guess=psi0_guess)
359

360 print("E/L =", energy / L)
361

362 # Save the block and transformation matrix from this step to disk.
363 block_disk[sys_label, sys_block.length] = sys_block
364 trmat_disk[sys_label, sys_block.length] = sys_trmat
365

366 # Check whether we just completed a full sweep.
367 if sys_label == "l" and 2 * sys_block.length == L:
368 break # escape from the "while True" loop
369

370 if __name__ == "__main__":
371 np.set_printoptions(precision=10, suppress=True, threshold=10000, linewidth=300)
372

373 #infinite_system_algorithm(L=100, m=20, target_Sz=0)
374 finite_system_algorithm(L=20, m_warmup=10, m_sweep_list=[10, 20, 30, 40, 40],

→˓target_Sz=0)
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