
SciKit-Learn Laboratory
Documentation

Release 1.5.3

Daniel Blanchard Michael Heilman
Nitin Madnani

Jun 20, 2019

Contents

1 Documentation 3
1.1 Installation . 3
1.2 License . 3
1.3 Tutorial . 3

1.3.1 Workflow . 4
1.3.2 Titanic Example . 4
1.3.3 Running your own experiments . 8

1.4 Running Experiments . 10
1.4.1 Quick Example . 10
1.4.2 Feature file formats . 10
1.4.3 Creating configuration files . 12
1.4.4 Using run_experiment . 30

1.5 Utility Scripts . 33
1.5.1 compute_eval_from_predictions . 33
1.5.2 filter_features . 34
1.5.3 generate_predictions . 34
1.5.4 join_features . 35
1.5.5 plot_learning_curves . 36
1.5.6 print_model_weights . 36
1.5.7 skll_convert . 37
1.5.8 summarize_results . 38

1.6 API Documentation . 38
1.6.1 Quickstart . 38
1.6.2 skll Package . 39
1.6.3 data Package . 55
1.6.4 experiments Module . 67
1.6.5 learner Module . 69
1.6.6 metrics Module . 91

1.7 Internal Documentation . 94

i

1.7.1 Release Process . 94

2 Indices and tables 97

Python Module Index 99

Index 101

ii

SciKit-Learn Laboratory Documentation, Release 1.5.3

SKLL (pronounced “skull”) provides a number of utilities to make it simpler to run common scikit-
learn experiments with pre-generated features.

There are two primary means of using SKLL: the run_experiment script and the Python API.

Contents 1

SciKit-Learn Laboratory Documentation, Release 1.5.3

2 Contents

CHAPTER 1

Documentation

1.1 Installation

SKLL can be installed via pip for any Python version:

pip install skll

or via conda (only for Python 3.6):

conda install -c defaults -c conda-forge -c desilinguist python=3.6
→˓skll

It can also be downloaded directly from GitHub.

1.2 License

SKLL is distributed under the 3-clause BSD License.

1.3 Tutorial

Before doing anything below, you’ll want to install SKLL.

3

https://github.com/EducationalTestingService/skll

SciKit-Learn Laboratory Documentation, Release 1.5.3

1.3.1 Workflow

In general, there are four steps to using SKLL:

1. Get some data in a SKLL-compatible format.

2. Create a small configuration file describing the machine learning experiment you would like
to run.

3. Run that configuration file with run_experiment.

4. Examine results

1.3.2 Titanic Example

Let’s see how we can apply the basic workflow above to a simple example using the Titantic:
Machine Learning from Disaster data from Kaggle.

Get your data into the correct format

The first step to getting the Titanic data is logging into Kaggle and downloading train.csv and
test.csv. Once you have those files, you’ll also want to grab the examples folder on our GitHub
page and put train.csv and test.csv in examples.

The provided script, make_titanic_example_data.py, will split the training and test data
files from Kaggle up into groups of related features and store them in dev, test, train, and
train+dev subdirectories. The development set that gets created by the script is 20% of the data
that was in the original training set, and train contains the other 80%.

Create a configuration file for the experiment

For this tutorial, we will refer to an “experiment” as having a single data set split into training
and testing portions. As part of each experiment, we can train and test several models, either
simultaneously or sequentially, depending whether we’re using GridMap or not. This will be
described in more detail later on, when we are ready to run our experiment.

You can consult the full list of learners currently available in SKLL to get an idea for the things
you can do. As part of this tutorial, we will use the following classifiers:

• Decision Tree

• Multinomial Naïve Bayes

• Random Forest

• Support Vector Machine

4 Chapter 1. Documentation

https://www.kaggle.com/c/titanic/
https://www.kaggle.com/c/titanic/
https://www.kaggle.com
https://www.kaggle.com/c/titanic-gettingStarted/download/train.csv
https://www.kaggle.com/c/titanic-gettingStarted/download/test.csv
https://github.com/EducationalTestingService/skll/tree/master/examples
https://pypi.org/project/gridmap/

SciKit-Learn Laboratory Documentation, Release 1.5.3

[General]
experiment_name = Titanic_Evaluate_Tuned
task = evaluate

[Input]
this could also be an absolute path instead (and must be if you're
→˓not
running things in local mode)
train_directory = train
test_directory = dev
featuresets = [["family.csv", "misc.csv", "socioeconomic.csv", "vitals.
→˓csv"]]
learners = ["RandomForestClassifier", "DecisionTreeClassifier", "SVC",
→˓"MultinomialNB"]
label_col = Survived
id_col = PassengerId

[Tuning]
grid_search = true
objectives = ['accuracy']

[Output]
again, these can be absolute paths
metrics = ['roc_auc']
log = output
results = output
predictions = output
models = output

Let’s take a look at the options specified in titanic/evaluate_tuned.cfg. Here, we are
only going to train a model and evaluate its performance on the development set, because in the
General section, task is set to evaluate. We will explore the other options for task later.

In the Input section, we have specified relative paths to the training and testing directories via the
train_directory and test_directory settings respectively. featuresets indicates the name of both the
training and testing files. learners must always be specified in between [] brackets, even if you
only want to use one learner. This is similar to the featuresets option, which requires two sets of
brackets, since multiple sets of different-yet-related features can be provided. We will keep our
examples simple, however, and only use one set of features per experiment. The label_col and
id_col settings specify the columns in the CSV files that specify the class labels and instances IDs
for each example.

The Tuning section defines how we want our model to be tuned. Setting grid_search to True here
employs scikit-learn’s GridSearchCV class, which is an implementation of the standard, brute-
force approach to hyperparameter optimization.

objectives refers to the desired objective functions; here, accuracy will optimize for overall

1.3. Tutorial 5

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html#sklearn.model_selection.GridSearchCV
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search
https://en.wikipedia.org/wiki/Hyperparameter_optimization#Grid_search

SciKit-Learn Laboratory Documentation, Release 1.5.3

accuracy. You can see a list of all the available objective functions here.

In the Output section, we first define the additional evaluation metrics we want to compute in
addition to the tuning objective via the metrics option. The other options are directories where
you’d like all of the relevant output from your experiment to go. results refers to the results of the
experiment in both human-readable and JSON forms. log specifies where to put log files containing
any status, warning, or error messages generated during model training and evaluation. predictions
refers to where to store the individual predictions generated for the test set. models is for specifying
a directory to serialize the trained models.

Running your configuration file through run_experiment

Getting your experiment running is the simplest part of using SKLL, you just need to type the
following into a terminal:

$ run_experiment titanic/evaluate_tuned.cfg

That should produce output like:

2017-12-07 11:40:17,381 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Task: evaluate
2017-12-07 11:40:17,381 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Training on train, Test on dev, feature set ['family.csv', 'misc.csv
→˓', 'socioeconomic.csv', 'vitals.csv'] ...
Loading /Users/nmadnani/work/skll/examples/titanic/train/family.csv...
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/misc.csv...
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/train/socioeconomic.
→˓csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/train/vitals.csv...
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/family.csv...
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/misc.csv...
→˓ done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/socioeconomic.
→˓csv... done
Loading /Users/nmadnani/work/skll/examples/titanic/dev/vitals.csv...
→˓ done
2017-12-07 11:40:17,515 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Featurizing and training new RandomForestClassifier model
2017-12-07 11:40:17,515 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - WARNING -
→˓Training data will be shuffled to randomize grid search folds.
→˓Shuffling may yield different results compared to scikit-learn.

(continues on next page)

6 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

(continued from previous page)

2017-12-07 11:40:21,650 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Best accuracy grid search score: 0.809
2017-12-07 11:40:21,651 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Hyperparameters: bootstrap: True, class_weight: None, criterion:
→˓gini, max_depth: 10, max_features: auto, max_leaf_nodes: None, min_
→˓impurity_decrease: 0.0, min_impurity_split: None, min_samples_leaf:
→˓1, min_samples_split: 2, min_weight_fraction_leaf: 0.0, n_
→˓estimators: 500, n_jobs: 1, oob_score: False, random_state:
→˓123456789, verbose: 0, warm_start: False
2017-12-07 11:40:21,651 - Titanic_Evaluate_Tuned_family.csv+misc.
→˓csv+socioeconomic.csv+vitals.csv_RandomForestClassifier - INFO -
→˓Evaluating predictions

We could squelch the warnings about shuffling by setting shuffle to True in the Input section.

The reason we see the loading messages repeated is that we are running the different learners
sequentially, whereas SKLL is designed to take advantage of a cluster to execute everything in
parallel via GridMap.

Examine the results

As a result of running our experiment, there will be a whole host of files in our results directory.
They can be broken down into three types of files:

1. .results files, which contain a human-readable summary of the experiment, complete
with confusion matrix.

2. .results.json files, which contain all of the same information as the .results files,
but in a format more well-suited to automated processing.

3. A summary .tsv file, which contains all of the information in all of the .results.json
files with one line per file. This is very nice if you’re trying many different learners and want
to compare their performance. If you do additional experiments later (with a different config
file), but would like one giant summary file, you can use the summarize_results command.

An example of a human-readable results file for our Titanic config file is:

Experiment Name: Titanic_Evaluate_Tuned
SKLL Version: 1.5
Training Set: train
Training Set Size: 712
Test Set: dev
Test Set Size: 179
Shuffle: False

(continues on next page)

1.3. Tutorial 7

SciKit-Learn Laboratory Documentation, Release 1.5.3

(continued from previous page)

Feature Set: ["family.csv", "misc.csv", "socioeconomic.csv", "vitals.
→˓csv"]
Learner: RandomForestClassifier
Task: evaluate
Feature Scaling: none
Grid Search: True
Grid Search Folds: 3
Grid Objective Function: accuracy
Additional Evaluation Metrics: ['roc_auc']
Scikit-learn Version: 0.19.1
Start Timestamp: 07 Dec 2017 11:42:04.911657
End Timestamp: 07 Dec 2017 11:42:09.118036
Total Time: 0:00:04.206379

Fold:
Model Parameters: {"bootstrap": true, "class_weight": null, "criterion
→˓": "gini", "max_depth": 10, "max_features": "auto", "max_leaf_nodes
→˓": null, "min_impurity_decrease": 0.0, "min_impurity_split": null,
→˓"min_samples_leaf": 1, "min_samples_split": 2, "min_weight_fraction_
→˓leaf": 0.0, "n_estimators": 500, "n_jobs": 1, "oob_score": false,
→˓"random_state": 123456789, "verbose": 0, "warm_start": false}
Grid Objective Score (Train) = 0.8089887640449438
+---+-------+------+-----------+--------+-----------+
| | 0 | 1 | Precision | Recall | F-measure |
+---+-------+------+-----------+--------+-----------+
| 0 | [101] | 14 | 0.871 | 0.878 | 0.874 |
+---+-------+------+-----------+--------+-----------+
| 1 | 15 | [49] | 0.778 | 0.766 | 0.772 |
+---+-------+------+-----------+--------+-----------+
(row = reference; column = predicted)
Accuracy = 0.8379888268156425
Objective Function Score (Test) = 0.8379888268156425

Additional Evaluation Metrics (Test):
roc_auc = 0.8219429347826087

1.3.3 Running your own experiments

Once you’ve gone through the Titanic example, you will hopefully be interested in trying out SKLL
with your own data. To do so, you’ll still need to get your data in an appropriate format first.

Get your data into the correct format

8 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Supported formats

SKLL can work with several common data formats, each of which are described here.

If you need to convert between any of the supported formats, because, for example, you would like
to create a single data file that will work both with SKLL and Weka (or some other external tool),
the skll_convert script can help you out. It is as easy as:

$ skll_convert examples/titanic/train/family.csv examples/titanic/
→˓train/family.arff

Creating sparse files

skll_convert can also create sparse data files in .jsonlines, .libsvm, .megam, or .ndj formats. This
is very useful for saving disk space and memory when you have a large data set with mostly zero-
valued features.

Training and testing directories

At minimum you will probably want to work with a training set and a testing set. If you have mul-
tiple feature files that you would like SKLL to join together for you automatically, you will need
to create feature files with the exact same names and store them in training and testing directories.
You can specifiy these directories in your config file using train_directory and test_directory. The
list of files is specified using the featuresets setting.

Single-file training and testing sets

If you’re conducting a simpler experiment, where you have a single training file with all of your
features and a similar single testing file, you should use the train_file and test_file settings in your
config file.

If you would like to split an existing file up into a training set and a testing set, you can employ the
filter_features tool to select instances you would like to include in each file.

Creating a configuration file

Now that you’ve seen a basic configuration file, you should look at the extensive option available
in our config file reference.

1.3. Tutorial 9

SciKit-Learn Laboratory Documentation, Release 1.5.3

Running your configuration file through run_experiment

There are a few meta-options for experiments that are specified directly to the run_experiment
command rather than in a configuration file. For example, if you would like to run an ablation
experiment, which conducts repeated experiments using different combinations of the features in
your config, you should use the run_experiment --ablation option. A complete list of
options is available here.

1.4 Running Experiments

The simplest way to use SKLL is to create configuration files that describe experiments you would
like to run on pre-generated features. This document describes the supported feature file formats,
how to create configuration files (and layout your directories), and how to use run_experiment to
get things going.

1.4.1 Quick Example

If you don’t want to read the whole document, and just want an example of how things work, do
the following from the command prompt:

$ cd examples
$ python make_iris_example_data.py # download a simple dataset
$ cd iris
$ run_experiment --local evaluate.cfg # run an experiment

1.4.2 Feature file formats

The following feature file formats are supported:

arff

The same file format used by Weka with the following added restrictions:

• Only simple numeric, string, and nomimal values are supported.

• Nominal values are converted to strings.

• If the data has instance IDs, there should be an attribute with the name specified by id_col
in the Input section of the configuration file you create for your experiment. This defaults to
id. If there is no such attribute, IDs will be generated automatically.

10 Chapter 1. Documentation

https://www.cs.waikato.ac.nz/ml/weka/

SciKit-Learn Laboratory Documentation, Release 1.5.3

• If the data is labelled, there must be an attribute with the name specified by label_col in the
Input section of the configuartion file you create for your experiment. This defaults to y.
This must also be the final attribute listed (like in Weka).

csv/tsv

A simple comma or tab-delimited format with the following restrictions:

• If the data is labelled, there must be a column with the name specified by label_col in the
Input section of the configuartion file you create for your experiment. This defaults to y.

• If the data has instance IDs, there should be a column with the name specified by id_col in
the Input section of the configuration file you create for your experiment. This defaults to
id. If there is no such column, IDs will be generated automatically.

• All other columns contain feature values, and every feature value must be specified (making
this a poor choice for sparse data).

jsonlines/ndj (Recommended)

A twist on the JSON format where every line is a either JSON dictionary (the entire contents of a
normal JSON file), or a comment line starting with //. Each dictionary is expected to contain the
following keys:

• y: The class label.

• x: A dictionary of feature values.

• id: An optional instance ID.

This is the preferred file format for SKLL, as it is sparse and can be slightly faster to load than
other formats.

libsvm

While we can process the standard input file format supported by LibSVM, LibLinear, and SVM-
Light, we also support specifying extra metadata usually missing from the format in comments at
the of each line. The comments are not mandatory, but without them, your labels and features will
not have names. The comment is structured as follows:

ID | 1=ClassX | 1=FeatureA 2=FeatureB

The entire format would like this:

2 1:2.0 3:8.1 # Example1 | 2=ClassY | 1=FeatureA 3=FeatureC
1 5:7.0 6:19.1 # Example2 | 1=ClassX | 5=FeatureE 6=FeatureF

1.4. Running Experiments 11

http://www.json.org/
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://www.csie.ntu.edu.tw/~cjlin/liblinear/
http://svmlight.joachims.org
http://svmlight.joachims.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

Note: IDs, labels, and feature names cannot contain the following characters: | # =

megam

An expanded form of the input format for the MegaM classification package with the -fvals
switch.

The basic format is:

Instance1
CLASS1 F0 2.5 F1 3 FEATURE_2 -152000
Instance2
CLASS2 F1 7.524

where the optional comments before each instance specify the ID for the following line, class
names are separated from feature-value pairs with a tab, and feature-value pairs are separated by
spaces. Any omitted features for a given instance are assumed to be zero, so this format is handy
when dealing with sparse data. We also include several utility scripts for converting to/from this
MegaM format and for adding/removing features from the files.

1.4.3 Creating configuration files

The experiment configuration files that run_experiment accepts are standard Python configuration
files that are similar in format to Windows INI files.1 There are four expected sections in a config-
uration file: General, Input, Tuning, and Output. A detailed description of each possible settings
for each section is provided below, but to summarize:

• If you want to do cross-validation, specify a path to training feature files, and set task to
cross_validate. Please note that the cross-validation currently uses StratifiedKFold.
You also can optionally use predetermined folds with the folds_file setting.

Note: When using classifiers, SKLL will automatically reduce the number of cross-
validation folds to be the same as the minimum number of examples for any of the classes
in the training data.

• If you want to train a model and evaluate it on some data, specify a training location, a test
location, and a directory to store results, and set task to evaluate.

• If you want to just train a model and generate predictions, specify a training location, a
test location, and set task to predict.

1 We are considering adding support for YAML configuration files in the future, but we have not added this func-
tionality yet.

12 Chapter 1. Documentation

http://users.umiacs.umd.edu/~hal/megam/
https://docs.python.org/2/library/configparser.html
https://docs.python.org/2/library/configparser.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.StratifiedKFold.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

• If you want to just train a model, specify a training location, and set task to train.

• If you want to generate a learning curve for your data, specify a training location and set
task to learning_curve. The learning curve is generated using essentially the same
underlying process as in scikit-learn except that the SKLL feature pre-processing pipline is
used while training the various models and computing the scores.

Note: Ideally, one would first do cross-validation experiments with grid search and/or
ablation and get a well-performing set of features and hyper-parameters for a set of learners.
Then, one would explicitly specify those features (via featuresets) and hyper-parameters (via
fixed_parameters) in the config file for the learning curve and explore the impact of the size
of the training data.

• A list of classifiers/regressors to try on your feature files is required.

Example configuration files are available here.

General

Both fields in the General section are required.

experiment_name

A string used to identify this particular experiment configuration. When generating result summary
files, this name helps prevent overwriting previous summaries.

task

What types of experiment we’re trying to run. Valid options are: cross_validate, evaluate, predict,
train, learning_curve.

Input

The Input section has only one required field, learners, but also must contain either train_file or
train_directory.

learners

List of scikit-learn models to try using. A separate job will be run for each combination of classifier
and feature-set. Acceptable values are described below. Custom learners can also be specified. See
custom_learner_path.

1.4. Running Experiments 13

https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.learning_curve.html#sklearn.model_selection.learning_curve
https://github.com/EducationalTestingService/skll/tree/master/examples/

SciKit-Learn Laboratory Documentation, Release 1.5.3

Classifiers:

• AdaBoostClassifier: AdaBoost Classification. Note that the default base estimator is a
DecisionTreeClassifier. A different base estimator can be used by specifying a
base_estimator fixed parameter in the fixed_parameters list. The following additional
base estimators are supported: MultinomialNB, SGDClassifier, and SVC. Note that
the last two base require setting an additional algorithm fixed parameter with the value
'SAMME'.

• DummyClassifier: Simple rule-based Classification

• DecisionTreeClassifier: Decision Tree Classification

• GradientBoostingClassifier: Gradient Boosting Classification

• KNeighborsClassifier: K-Nearest Neighbors Classification

• LinearSVC: Support Vector Classification using LibLinear

• LogisticRegression: Logistic Regression Classification using LibLinear

• MLPClassifier: Multi-layer Perceptron Classification

• MultinomialNB: Multinomial Naive Bayes Classification

• RandomForestClassifier: Random Forest Classification

• RidgeClassifier: Classification using Ridge Regression

• SGDClassifier: Stochastic Gradient Descent Classification

• SVC: Support Vector Classification using LibSVM

Regressors:

• AdaBoostRegressor: AdaBoost Regression. Note that the default base estimator
is a DecisionTreeRegressor. A different base estimator can be used by
specifying a base_estimator fixed parameter in the fixed_parameters list.
The following additional base estimators are supported: SGDRegressor, and
SVR.

• BayesianRidge: Bayesian Ridge Regression

• DecisionTreeRegressor: Decision Tree Regressor

• DummyRegressor: Simple Rule-based Regression

• ElasticNet: ElasticNet Regression

• GradientBoostingRegressor: Gradient Boosting Regressor

• HuberRegressor: Huber Regression

• KNeighborsRegressor: K-Nearest Neighbors Regression

• Lars: Least Angle Regression

14 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostClassifier.html#sklearn.ensemble.AdaBoostClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyClassifier.html#sklearn.dummy.DummyClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingClassifier.html#sklearn.ensemble.GradientBoostingClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.html#sklearn.neighbors.KNeighborsClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVC.html#sklearn.svm.LinearSVC
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html#sklearn.linear_model.LogisticRegression
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPClassifier.html#sklearn.neural_network.MLPClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html#sklearn.naive_bayes.MultinomialNB
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html#sklearn.ensemble.RandomForestClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RidgeClassifier.html#sklearn.linear_model.RidgeClassifier
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html#sklearn.svm.SVC
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.AdaBoostRegressor.html#sklearn.ensemble.AdaBoostRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.BayesianRidge.html#sklearn.linear_model.BayesianRidge
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeRegressor.html#sklearn.tree.DecisionTreeRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.dummy.DummyRegressor.html#sklearn.dummy.DummyRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.ElasticNet.html#sklearn.linear_model.ElasticNet
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.GradientBoostingRegressor.html#sklearn.ensemble.GradientBoostingRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.HuberRegressor.html#sklearn.linear_model.HuberRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborsRegressor.html#sklearn.neighbors.KNeighborsRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lars.html#sklearn.linear_model.Lars

SciKit-Learn Laboratory Documentation, Release 1.5.3

• Lasso: Lasso Regression

• LinearRegression: Linear Regression

• LinearSVR: Support Vector Regression using LibLinear

• MLPRegressor: Multi-layer Perceptron Regression

• RandomForestRegressor: Random Forest Regression

• RANSACRegressor: RANdom SAmple Consensus Regression. Note that the
default base estimator is a LinearRegression. A different base regres-
sor can be used by specifying a base_estimator fixed parameter in the
fixed_parameters list.

• Ridge: Ridge Regression

• SGDRegressor: Stochastic Gradient Descent Regression

• SVR: Support Vector Regression using LibSVM

• TheilSenRegressor: Theil-Sen Regression

For all regressors you can also prepend Rescaled to the beginning of the full name
(e.g., RescaledSVR) to get a version of the regressor where predictions are rescaled
and constrained to better match the training set.

train_file (Optional)

Path to a file containing the features to train on. Cannot be used in combination with featuresets,
train_directory, or test_directory.

Note: If train_file is not specified, train_directory must be.

train_directory (Optional)

Path to directory containing training data files. There must be a file for each featureset. Cannot be
used in combination with train_file or test_file.

Note: If train_directory is not specified, train_file must be.

1.4. Running Experiments 15

https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Lasso.html#sklearn.linear_model.Lasso
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html#sklearn.linear_model.LinearRegression
https://scikit-learn.org/stable/modules/generated/sklearn.svm.LinearSVR.html#sklearn.svm.LinearSVR
https://scikit-learn.org/stable/modules/generated/sklearn.neural_network.MLPRegressor.html#sklearn.neural_network.MLPRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestRegressor.html#sklearn.ensemble.RandomForestRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.RANSACRegressor.html#sklearn.linear_model.RANSACRegressor
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.Ridge.html#sklearn.linear_model.Ridge
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDRegressor.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html#sklearn.svm.SVR
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.TheilSenRegressor.html#sklearn.linear_model.TheilSenRegressor

SciKit-Learn Laboratory Documentation, Release 1.5.3

test_file (Optional)

Path to a file containing the features to test on. Cannot be used in combination with featuresets,
train_directory, or test_directory

test_directory (Optional)

Path to directory containing test data files. There must be a file for each featureset. Cannot be used
in combination with train_file or test_file.

featuresets (Optional)

List of lists of prefixes for the files containing the features you would like to train/test on. Each
list will end up being a job. IDs are required to be the same in all of the feature files, and a
ValueError will be raised if this is not the case. Cannot be used in combination with train_file
or test_file.

Note: If specifying train_directory or test_directory, featuresets is required.

suffix (Optional)

The file format the training/test files are in. Valid option are .arff , .csv, .jsonlines, .libsvm, .megam,
.ndj, and .tsv.

If you omit this field, it is assumed that the “prefixes” listed in featuresets are actually complete
filenames. This can be useful if you have feature files that are all in different formats that you
would like to combine.

id_col (Optional)

If you’re using ARFF, CSV , or TSV files, the IDs for each instance are assumed to be in a column
with this name. If no column with this name is found, the IDs are generated automatically. Defaults
to id.

label_col (Optional)

If you’re using ARFF, CSV , or TSV files, the class labels for each instance are assumed to be in a
column with this name. If no column with this name is found, the data is assumed to be unlabelled.

16 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Defaults to y. For ARFF files only, this must also be the final column to count as the label (for
compatibility with Weka).

ids_to_floats (Optional)

If you have a dataset with lots of examples, and your input files have IDs that look like numbers
(can be converted by float()), then setting this to True will save you some memory by storing IDs
as floats. Note that this will cause IDs to be printed as floats in prediction files (e.g., 4.0 instead
of 4 or 0004 or 4.000).

shuffle (Optional)

If True, shuffle the examples in the training data before using them for learning. This happens
automatically when doing a grid search but it might be useful in other scenarios as well, e.g., online
learning. Defaults to False.

class_map (Optional)

If you would like to collapse several labels into one, or otherwise modify your labels (without
modifying your original feature files), you can specify a dictionary mapping from new class labels
to lists of original class labels. For example, if you wanted to collapse the labels beagle and
dachsund into a dog class, you would specify the following for class_map:

{'dog': ['beagle', 'dachsund']}

Any labels not included in the dictionary will be left untouched.

One other use case for class_map is to deal with classification labels that would be converted
to float improperly. All Reader sub-classes use the skll.data.readers.safe_float
function internally to read labels. This function tries to convert a single label first to int, then to
float. If neither conversion is possible, the label remains a str. Thus, care must be taken to
ensure that labels do not get converted in unexpected ways. For example, consider the situation
where there are classification labels that are a mixture of int-converting and float-converting
labels:

import numpy as np
from skll.data.readers import safe_float
np.array([safe_float(x) for x in ["2", "2.2", "2.21"]]) # array([2. ,
→˓2.2 , 2.21])

The labels will all be converted to floats and any classification model generated with this data will
predict labels such as 2.0, 2.2, etc., not str values that exactly match the input labels, as might

1.4. Running Experiments 17

SciKit-Learn Laboratory Documentation, Release 1.5.3

be expected. class_map could be used to map the original labels to new values that do not have
the same characteristics.

num_cv_folds (Optional)

The number of folds to use for cross validation. Defaults to 10.

random_folds (Optional)

Whether to use random folds for cross-validation. Defaults to False.

folds_file (Optional)

Path to a csv file specifying the mapping of instances in the training data to folds. This can be spec-
ified when the task is either train or cross_validate. For the train task, if grid_search
is True, this file, if specified, will be used to define the cross-validation used for the grid search
(leave one fold ID out at a time). Otherwise, it will be ignored.

For the cross_validate task, this file will be used to define the outer cross-validation loop
and, if grid_search is True, also for the inner grid-search cross-validation loop. If the goal of
specifiying the folds file is to ensure that the model does not learn to differentiate based on a
confound: e.g. the data from the same person is always in the same fold, it makes sense to keep
the same folds for both the outer and the inner cross-validation loops.

However, sometimes the goal of specifying the folds file is simply for the purpose of compar-
ison to another existing experiment or another context in which maintaining the constitution of
the folds in the inner grid-search loop is not required. In this case, users may set the parame-
ter use_folds_file_for_grid_search to False which will then direct the inner grid-search cross-
validation loop to simply use the number specified via grid_search_folds instead of using the folds
file. This will likely lead to shorter execution times as well depending on how many folds are in
the folds file and the value of grid_search_folds.

The format of this file must be as follows: the first row must be a header. This header row is
ignored, so it doesn’t matter what the header row contains, but it must be there. If there is no
header row, whatever row is in its place will be ignored. The first column should consist of training
set IDs and the second should be a string for the fold ID (e.g., 1 through 5, A through D, etc.). If
specified, the CV and grid search will leave one fold ID out at a time.2

2 K-1 folds will be used for grid search within CV, so there should be at least 3 fold IDs.

18 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

learning_curve_cv_folds_list (Optional)

List of integers specifying the number of folds to use for cross-validation at each point of
the learning curve (training size), one per learner. For example, if you specify the following
learners: ["SVC", "LogisticRegression"], specifying [10, 100] as the value of
learning_curve_cv_folds_list will tell SKLL to use 10 cross-validation folds at each
point of the SVC curve and 100 cross-validation folds at each point of the logistic regression
curve. Although more folds will generally yield more reliable results, smaller number of folds
may be better for learners that are slow to train. Defaults to 10 for each learner.

learning_curve_train_sizes (Optional)

List of floats or integers representing relative or absolute numbers of training examples that will
be used to generate the learning curve respectively. If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is determined by the selected validation method), i.e.
it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note
that for classification the number of samples usually have to be big enough to contain at least one
sample from each class. Defaults to [0.1, 0.325, 0.55, 0.775, 1.0].

custom_learner_path (Optional)

Path to a .py file that defines a custom learner. This file will be imported dynamically. This is
only required if a custom learner is specified in the list of learners.

All Custom learners must implement the fit and predict methods. Custom classi-
fiers must either (a) inherit from an existing scikit-learn classifier, or (b) inherit from both
sklearn.base.BaseEstimator. and from sklearn.base.ClassifierMixin.

Similarly, Custom regressors must either (a) inherit from an existing scikit-learn regressor, or (b)
inherit from both sklearn.base.BaseEstimator. and from sklearn.base.RegressorMixin.

Learners that require dense matrices should implement a method requires_dense that returns
True.

sampler (Optional)

It performs a non-linear transformations of the input, which can serve as a basis for linear classifi-
cation or other algorithms. Valid options are: Nystroem, RBFSampler, SkewedChi2Sampler, and
AdditiveChi2Sampler. For additional information see the scikit-learn documentation.

1.4. Running Experiments 19

https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.ClassifierMixin.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.BaseEstimator.html
https://scikit-learn.org/stable/modules/generated/sklearn.base.RegressorMixin.html
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.Nystroem.html#sklearn.kernel_approximation.Nystroem
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.RBFSampler.html#sklearn.kernel_approximation.RBFSampler
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html#sklearn.kernel_approximation.SkewedChi2Sampler
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.AdditiveChi2Sampler.html#sklearn.kernel_approximation.AdditiveChi2Sampler
https://scikit-learn.org/stable/modules/kernel_approximation.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

sampler_parameters (Optional)

dict containing parameters you want to have fixed for the sampler. Any empty ones will be
ignored (and the defaults will be used).

The default fixed parameters (beyond those that scikit-learn sets) are:

Nystroem

{'random_state': 123456789}

RBFSampler

{'random_state': 123456789}

SkewedChi2Sampler

{'random_state': 123456789}

feature_hasher (Optional)

If “true”, this enables a high-speed, low-memory vectorizer that uses feature hashing for converting
feature dictionaries into NumPy arrays instead of using a DictVectorizer. This flag will drastically
reduce memory consumption for data sets with a large number of features. If enabled, the user
should also specify the number of features in the hasher_features field. For additional information
see the scikit-learn documentation.

hasher_features (Optional)

The number of features used by the FeatureHasher if the feature_hasher flag is enabled.

Note: To avoid collisions, you should always use the power of two larger than the number of
features in the data set for this setting. For example, if you had 17 features, you would want to set
the flag to 32.

featureset_names (Optional)

Optional list of names for the feature sets. If omitted, then the prefixes will be munged together to
make names.

20 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
https://scikit-learn.org/stable/modules/feature_extraction.html#feature-hashing
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

fixed_parameters (Optional)

List of dicts containing parameters you want to have fixed for each learner in learners list. Any
empty ones will be ignored (and the defaults will be used). If grid_search (Optional) is True,
there is a potential for conflict with specified/default parameter grids and fixed parameters.

The default fixed parameters (beyond those that scikit-learn sets) are:

AdaBoostClassifier and AdaBoostRegressor

{'n_estimators': 500, 'random_state': 123456789}

DecisionTreeClassifier and DecisionTreeRegressor

{'random_state': 123456789}

DummyClassifier

{'random_state': 123456789}

ElasticNet

{'random_state': 123456789}

GradientBoostingClassifier and GradientBoostingRegressor

{'n_estimators': 500, 'random_state': 123456789}

Lasso:

{'random_state': 123456789}

LinearSVC and LinearSVR

{'random_state': 123456789}

LogisticRegression

{'random_state': 123456789}

MLPClassifier and MLPRegressor:

{'learning_rate': 'invscaling', max_iter': 500}

RandomForestClassifier and RandomForestRegressor

{'n_estimators': 500, 'random_state': 123456789}

RANSACRegressor

1.4. Running Experiments 21

SciKit-Learn Laboratory Documentation, Release 1.5.3

{'loss': 'squared_loss', 'random_state': 123456789}

Ridge and RidgeClassifier

{'random_state': 123456789}

SVC and SVR

{'cache_size': 1000}

SGDClassifier

{'loss': 'log', 'random_state': 123456789}

SGDRegressor

{'random_state': 123456789}

TheilSenRegressor

{'random_state': 123456789}

Note: This option allows us to deal with imbalanced data sets by using the
parameter class_weight for the classifiers: DecisionTreeClassifier,
LogisticRegression, LinearSVC, RandomForestClassifier,
RidgeClassifier, SGDClassifier, and SVC.

Two possible options are available. The first one is balanced, which automatically adjust
weights inversely proportional to class frequencies, as shown in the following code:

{'class_weight': 'balanced'}

The second option allows you to assign a specific weight per each class. The default weight per
class is 1. For example:

{'class_weight': {1: 10}}

Additional examples and information can be seen here.

feature_scaling (Optional)

Whether to scale features by their mean and/or their standard deviation. If you scale by mean, your
data will automatically be converted to dense, so use caution when you have a very large dataset.
Valid options are:

22 Chapter 1. Documentation

https://scikit-learn.org/stable/auto_examples/linear_model/plot_sgd_weighted_samples.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

none Perform no feature scaling at all.

with_std Scale feature values by their standard deviation.

with_mean Center features by subtracting their mean.

both Perform both centering and scaling.

Defaults to none.

Tuning

grid_search (Optional)

Whether or not to perform grid search to find optimal parameters for classifier. Defaults to False.
Note that for the learning_curve task, grid search is not allowed and setting it to Truewill generate
a warning and be ignored.

grid_search_folds (Optional)

The number of folds to use for grid search. Defaults to 3.

grid_search_jobs (Optional)

Number of folds to run in parallel when using grid search. Defaults to number of grid search folds.

use_folds_file_for_grid_search (Optional)

Whether to use the specified folds_file for the inner grid-search cross-validation loop when task is
set to cross_validate. Defaults to True.

Note: This flag is ignored for all other tasks, including the train task where a specified folds_file
is always used for the grid search.

min_feature_count (Optional)

The minimum number of examples for which the value of a feature must be nonzero to be included
in the model. Defaults to 1.

1.4. Running Experiments 23

SciKit-Learn Laboratory Documentation, Release 1.5.3

objectives (Optional)

The objective functions to use for tuning. This is a list of one or more objective functions. Valid
options are:

Classification:

• accuracy: Overall accuracy

• precision: Precision

• recall: Recall

• f1: The default scikit-learn F1 score (F1 of the positive class for binary classification, or the
weighted average F1 for multiclass classification)

• f1_score_micro: Micro-averaged F1 score

• f1_score_macro: Macro-averaged F1 score

• f1_score_weighted: Weighted average F1 score

• f1_score_least_frequent: F:1 score of the least frequent class. The least frequent class may
vary from fold to fold for certain data distributions.

• neg_log_loss: The negative of the classification log loss . Since scikit-learn recommends
using negated loss functions as scorer functions, SKLL does the same for the sake of consis-
tency. To use this as the objective, probability must be set to True.

• average_precision: Area under PR curve (for binary classification)

• roc_auc: Area under ROC curve (for binary classification)

Regression or classification with integer labels:

• unweighted_kappa: Unweighted Cohen’s kappa (any floating point values are rounded to
ints)

• linear_weighted_kappa: Linear weighted kappa (any floating point values are rounded to
ints)

• quadratic_weighted_kappa: Quadratic weighted kappa (any floating point values are
rounded to ints)

• uwk_off_by_one: Same as unweighted_kappa, but all ranking differences are dis-
counted by one. In other words, a ranking of 1 and a ranking of 2 would be considered
equal.

• lwk_off_by_one: Same as linear_weighted_kappa, but all ranking differences are
discounted by one.

• qwk_off_by_one: Same as quadratic_weighted_kappa, but all ranking differences
are discounted by one.

24 Chapter 1. Documentation

https://scikit-learn.org/stable/modules/generated/sklearn.metrics.accuracy_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.recall_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.f1_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.log_loss.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.average_precision_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html
https://en.wikipedia.org/wiki/Cohen's_kappa

SciKit-Learn Laboratory Documentation, Release 1.5.3

Regression or classification with binary labels:

• kendall_tau: Kendall’s tau

• pearson: Pearson correlation

• spearman: Spearman rank-correlation

Regression:

• r2: R2

• neg_mean_squared_error: The negative of the mean squared error regression loss. Since
scikit-learn recommends using negated loss functions as scorer functions, SKLL does the
same for the sake of consistency.

Defaults to ['f1_score_micro'].

Note:

1. Using objective=x instead of objectives=['x'] is also acceptable, for backward-
compatibility.

2. Also see the metrics option below.

param_grids (Optional)

List of parameter grids to search for each learner. Each parameter grid should be a list of dictionar-
ies mapping from strings to lists of parameter values. When you specify an empty list for a learner,
the default parameter grid for that learner will be searched.

The default parameter grids for each learner are:

AdaBoostClassifier and AdaBoostRegressor

[{'learning_rate': [0.01, 0.1, 1.0, 10.0, 100.0]}]

BayesianRidge

[{'alpha_1': [1e-6, 1e-4, 1e-2, 1, 10],
'alpha_2': [1e-6, 1e-4, 1e-2, 1, 10],
'lambda_1': [1e-6, 1e-4, 1e-2, 1, 10],
'lambda_2': [1e-6, 1e-4, 1e-2, 1, 10]}]

DecisionTreeClassifier and DecisionTreeRegressor

[{'max_features': ["auto", None]}]

ElasticNet

1.4. Running Experiments 25

https://en.wikipedia.org/wiki/Kendall_tau_rank_correlation_coefficient
https://en.wikipedia.org/wiki/Pearson_product-moment_correlation_coefficient
https://en.wikipedia.org/wiki/Spearman's_rank_correlation_coefficient
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.r2_score.html
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.mean_squared_error.html
https://scikit-learn.org/stable/modules/model_evaluation.html#common-cases-predefined-values

SciKit-Learn Laboratory Documentation, Release 1.5.3

[{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}]

GradientBoostingClassifier and GradientBoostingRegressor

[{'max_depth': [1, 3, 5]}]

HuberRegressor

[{'epsilon': [1.05, 1.35, 1.5, 2.0, 2.5, 5.0],
'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1, 10, 100, 1000]}]

KNeighborsClassifier and KNeighborsRegressor

[{'n_neighbors': [1, 5, 10, 100],
'weights': ['uniform', 'distance']}]

Lasso

[{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}]

LinearSVC

[{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}]

LogisticRegression

[{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}]

MLPClassifier and MLPRegressor:

[{'activation': ['logistic', 'tanh', 'relu'],
'alpha': [1e-4, 1e-3, 1e-3, 1e-1, 1],
'learning_rate_init': [0.001, 0.01, 0.1]}],

MultinomialNB

[{'alpha': [0.1, 0.25, 0.5, 0.75, 1.0]}]

RandomForestClassifier and RandomForestRegressor

[{'max_depth': [1, 5, 10, None]}]

Ridge and RidgeClassifier

[{'alpha': [0.01, 0.1, 1.0, 10.0, 100.0]}]

SGDClassifier and SGDRegressor

26 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

[{'alpha': [0.000001, 0.00001, 0.0001, 0.001, 0.01],
'penalty': ['l1', 'l2', 'elasticnet']}]

SVC

[{'C': [0.01, 0.1, 1.0, 10.0, 100.0],
'gamma': ['auto', 0.01, 0.1, 1.0, 10.0, 100.0]}]

SVR

[{'C': [0.01, 0.1, 1.0, 10.0, 100.0]}]

Note: Note that learners not listed here do not have any default parameter grids in SKLL either
because either there are no hyper-parameters to tune or decisions about which parameters to tune
(and how) depend on the data being used for the experiment and are best left up to the user.

pos_label_str (Optional)

The string label for the positive class in the binary classification setting. If unspecified, an arbitrary
class is picked.

Output

probability (Optional)

Whether or not to output probabilities for each class instead of the most probable class for each
instance. Only really makes a difference when storing predictions. Defaults to False. Note that
this also applies to the tuning objective.

pipeline (Optional)

Whether or not the final learner object should contain a pipeline attribute that contains a scikit-
learn Pipeline object composed of copies of each of the following steps of training the learner:

• feature vectorization (vectorizer)

• feature selection (selector)

• feature sampling (sampler)

• feature scaling (scaler)

1.4. Running Experiments 27

http://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

• main estimator (estimator)

The strings in the parentheses represent the name given to each step in the pipeline.

The goal of this attribute is to allow better interoperability between SKLL learner objects and
scikit-learn. The user can train the model in SKLL and then further tweak or analyze the pipeline
in scikit-learn, if needed. Each component of the pipeline is a (deep) copy of the component that
was fit as part of the SKLL model training process. We use copies since we do not want the original
SKLL model to be affected if the user modifies the components of the pipeline in scikit-learn space.

Here’s an example of how to use this attribute.

from sklearn.preprocessing import LabelEncoder

from skll import Learner
from skll.data import Reader

train a classifier and a regressor using the SKLL API
fs1 = Reader.for_path('examples/iris/train/example_iris_features.
→˓jsonlines').read()
learner1 = Learner('LogisticRegression', pipeline=True)
_ = learner1.train(fs1, grid_search=True, grid_objective='f1_score_
→˓macro')

fs2 = Reader.for_path('examples/boston/train/example_boston_features.
→˓jsonlines').read()
learner2 = Learner('RescaledSVR', feature_scaling='both',
→˓pipeline=True)
_ = learner2.train(fs2, grid_search=True, grid_objective='pearson')

now, we can explore the stored pipelines in sklearn space
enc = LabelEncoder().fit(fs1.labels)

first, the classifier
D1 = {"f0": 6.1, "f1": 2.8, "f2": 4.7, "f3": 1.2}
pipeline1 = learner1.pipeline
enc.inverse_transform(pipeline1.predict(D1))

then, the regressor
D2 = {"f0": 0.09178, "f1": 0.0, "f2": 4.05, "f3": 0.0, "f4": 0.51, "f5
→˓": 6.416, "f6": 84.1, "f7": 2.6463, "f8": 5.0, "f9": 296.0, "f10":
→˓16.6, "f11": 395.5, "f12": 9.04}
pipeline2 = learner2.pipeline
pipeline2.predict(D2)

note that without the `pipeline` attribute, one would have to
do the following for D1, which is much less readable
enc.inverse_transform(learner1.model.predict(learner1.scaler.
→˓transform(learner1.feat_selector.transform(learner1.feat_vectorizer.
→˓transform(D1)))))

(continues on next page)

28 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

(continued from previous page)

Note:

1. When using a DictVectorizer in SKLL along with feature_scaling set to either with_mean
or both, the sparse attribute of the vectorizer stage in the pipeline is set to False since
centering requires dense arrays.

2. When feature hashing is used (via a FeatureHasher) in SKLL along with feature_scaling set
to either with_mean or both , a custom pipeline stage (skll.learner.Densifier)
is inserted in the pipeline between the feature vectorization (here, hashing) stage and the
feature scaling stage. This is necessary since a FeatureHasher does not have a sparse
attribute to turn off – it only returns sparse vectors.

3. A Densifier is also inserted in the pipeline when using a SkewedChi2Sampler for feature
sampling since this sampler requires dense input and cannot be made to work with sparse
arrays.

results (Optional)

Directory to store result files in. If omitted, the current working directory is used.

metrics (Optional)

For the evaluate and cross_validate tasks, this is a list of additional metrics that
will be computed in addition to the tuning objectives and added to the results files. For the
learning_curve task, this will be the list of metrics for which the learning curves will be
plotted. Can take all of the same functions as those available for the tuning objectives.

Note:

1. For learning curves, metrics can be specified instead of objectives since both serve
the same purpose. If both are specified, objectives will be ignored.

2. For the evaluate and cross_validate tasks, any functions that are specified in both
metrics and objectives are assumed to be the latter.

3. If you just want to use neg_log_loss as an additional metric, you do not need to set
probability to True. That’s only neeeded for neg_log_loss to be used as a tuning
objective.

1.4. Running Experiments 29

https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.DictVectorizer.html
https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.FeatureHasher.html
https://scikit-learn.org/stable/modules/generated/sklearn.kernel_approximation.SkewedChi2Sampler.html

SciKit-Learn Laboratory Documentation, Release 1.5.3

log (Optional)

Directory to store log files in. If omitted, the current working directory is used.

models (Optional)

Directory to store trained models in. Can be omitted to not store models.

predictions (Optional)

Directory to store prediction files in. Can be omitted to not store predictions.

Note: You can use the same directory for results, log, models, and predictions.

save_cv_folds (Optional)

Whether to save the folds that were used for a cross-validation experiment to a CSV
file named EXPERIMENT_skll_fold_ids.csv in the results (Optional) directory, where
EXPERIMENT refers to the experiment_name. Defaults to False.

1.4.4 Using run_experiment

Once you have created the configuration file for your experiment, you can usually just get your
experiment started by running run_experiment CONFIGFILE.3 That said, there are a few
options that are specified via command-line arguments instead of in the configuration file:

-a <num_features>, --ablation <num_features>
Runs an ablation study where repeated experiments are conducted with the specified number
of feature files in each featureset in the configuration file held out. For example, if you have
three feature files (A, B, and C) in your featureset and you specifiy --ablation 1, there
will be three experiments conducted with the following featuresets: [[A, B], [B, C],
[A, C]]. Additionally, since every ablation experiment includes a run with all the features
as a baseline, the following featureset will also be run: [[A, B, C]].

If you would like to try all possible combinations of feature files, you can use the
run_experiment --ablation_all option instead.

3 If you installed SKLL via pip on macOS, you might get an error when using run_experiment to generate
learning curves. To get around this, add MPLBACKEND=Agg before the run_experiment command and re-run.

30 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Warning: Ablation will not work if you specify a train_file and test_file since no fea-
turesets are defined in that scenario.

-A, --ablation_all
Runs an ablation study where repeated experiments are conducted with all combinations of
feature files in each featureset.

Warning: This can create a huge number of jobs, so please use with caution.

-k, --keep-models
If trained models already exist for any of the learner/featureset combinations in your config-
uration file, just load those models and do not retrain/overwrite them.

-r, --resume
If result files already exist for an experiment, do not overwrite them. This is very useful
when doing a large ablation experiment and part of it crashes.

-v, --verbose
Print more status information. For every additional time this flag is specified, output gets
more verbose.

--version
Show program’s version number and exit.

GridMap options

If you have GridMap installed, run_experiment will automatically schedule jobs on your
DRMAA- compatible cluster. You can use the following options to customize this behavior.

-l, --local
Run jobs locally instead of using the cluster.4

-q <queue>, --queue <queue>
Use this queue for GridMap. (default: all.q)

-m <machines>, --machines <machines>
Comma-separated list of machines to add to GridMap’s whitelist. If not specified, all avail-
able machines are used.

Note: Full names must be specified, (e.g., nlp.research.ets.org).

4 This will happen automatically if GridMap cannot be imported.

1.4. Running Experiments 31

https://pypi.org/project/gridmap/
https://pypi.org/project/gridmap/

SciKit-Learn Laboratory Documentation, Release 1.5.3

Output files

For most of the tasks, the result, log, model, and prediction files gener-
ated by run_experiment will all share the automatically generated prefix
EXPERIMENT_FEATURESET_LEARNER_OBJECTIVE, where the following definitions
hold:

EXPERIMENT The name specified as experiment_name in the configuration file.

FEATURESET The feature set we’re training on joined with “+”.

LEARNER The learner the current results/model/etc. was generated using.

OBJECTIVE The objective function the current results/model/etc. was generated us-
ing.

However, if objectives contains only one objective function, the result, log, model, and
prediction files will share the prefix EXPERIMENT_FEATURESET_LEARNER. For backward-
compatibility, the same applies when a single objective is specified using objective=x.

In addition to the above log files that are specific to each “job” (a specific combination of feature-
sets, learners, and objectives specified in the configuration file), SKLL also produces a single, top
level “experiment” log file with only EXPERIMENT as the prefix. While the job-level log files
contain messages that pertain to the specific characteristics of the job, the experiment-level log file
will contain logging messages that pertain to the overall experiment and configuration file. The
messages in the log files are in the following format:

TIMESTAMP - LEVEL - MSG

where TIMESTAMP refers to the exact time when the message was logged, LEVEL refers to the
level of the logging message (e.g., INFO, WARNING, etc.), and MSG is the actual content of the
message. All of the messages are also printed to the console in addition to being saved in the
job-level log files and the experiment-level log file.

For every experiment you run, there will also be a result summary file generated that is a tab-
delimited file summarizing the results for each learner-featureset combination you have in your
configuration file. It is named EXPERIMENT_summary.tsv. For learning_curve experiments,
this summary file will contain training set sizes and the averaged scores for all combinations of
featuresets, learners, and objectives.

If seaborn is available when running a learning_curve experiment, actual learning curves are also
generated as PNG files - one for each feature set specified in the configuration file. Each PNG file
is named EXPERIMENT_FEATURESET.png and contains a faceted learning curve plot for the
featureset with objective functions on rows and learners on columns. Here’s an example of such a
plot.

If you didn’t have seaborn available when running the learning curve experiment, you can always
generate the plots later from the learning curve summary file using the plot_learning_curves utility
script.

32 Chapter 1. Documentation

http://seaborn.pydata.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

1.5 Utility Scripts

In addition to the main script, run_experiment, SKLL comes with a number of helpful utility scripts
that can be used to prepare feature files and perform other routine tasks. Each is described briefly
below.

1.5.1 compute_eval_from_predictions

Compute evaluation metrics from prediction files after you have run an experiment.

Positional Arguments

examples_file
SKLL input file with labeled examples

predictions_file
file with predictions from SKLL

metric_names
metrics to compute

Optional Arguments

--version
Show program’s version number and exit.

1.5. Utility Scripts 33

SciKit-Learn Laboratory Documentation, Release 1.5.3

1.5.2 filter_features

Filter feature file to remove (or keep) any instances with the specified IDs or labels. Can also be
used to remove/keep feature columns.

Positional Arguments

infile
Input feature file (ends in .arff, .csv, .jsonlines, .megam, .ndj, or .tsv)

outfile
Output feature file (must have same extension as input file)

Optional Arguments

-f <feature <feature ...>>, --feature <feature <feature ...>>
A feature in the feature file you would like to keep. If unspecified, no features are removed.

-I <id <id ...>>, --id <id <id ...>>
An instance ID in the feature file you would like to keep. If unspecified, no instances are
removed based on their IDs.

-i, --inverse
Instead of keeping features and/or examples in lists, remove them.

-L <label <label ...>>, --label <label <label ...>>
A label in the feature file you would like to keep. If unspecified, no instances are removed
based on their labels.

-l label_col, --label_col label_col
Name of the column which contains the class labels in ARFF, CSV, or TSV files. For ARFF
files, this must be the final column to count as the label. (default: y)

-q, --quiet
Suppress printing of "Loading..." messages.

--version
Show program’s version number and exit.

1.5.3 generate_predictions

Loads a trained model and outputs predictions based on input feature files. Useful if you want to
reuse a trained model as part of a larger system without creating configuration files.

34 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Positional Arguments

model_file
Model file to load and use for generating predictions.

input_file(s)
One or more csv file(s), jsonlines file(s), or megam file(s) (with or without the label column),
with the appropriate suffix.

Optional Arguments

-a, --all_probabilities
Flag indicating whether to output the probabilities of all labels instead of just the probability
of the positive label.

-i <id_col>, --id_col <id_col>
Name of the column which contains the instance IDs in ARFF, CSV, or TSV files. (default:
id)

-l <label_col>, --label_col <label_col>
Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-p <positive_label>, --positive_label <positive_label>
If the model is only being used to predict the probability of a particular label, this speci-
fies the index of the label we’re predicting. 1 = second label, which is default for binary
classification. Keep in mind that labels are sorted lexicographically. (default: 1)

-q, --quiet
Suppress printing of "Loading..." messages.

-t <threshold>, --threshold <threshold>
If the model we’re using is generating probabilities of the positive label, return 1 if it
meets/exceeds the given threshold and 0 otherwise.

--version
Show program’s version number and exit.

1.5.4 join_features

Combine multiple feature files into one larger file.

1.5. Utility Scripts 35

SciKit-Learn Laboratory Documentation, Release 1.5.3

Positional Arguments

infile ...
Input feature files (ends in .arff, .csv, .jsonlines, .megam, .ndj, or .tsv)

outfile
Output feature file (must have same extension as input file)

Optional Arguments

-l <label_col>, --label_col <label_col>
Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-q, --quiet
Suppress printing of "Loading..." messages.

--version
Show program’s version number and exit.

1.5.5 plot_learning_curves

Generate learning curve plots from a learning curve output TSV file.

Positional Arguments

tsv_file
Input learning Curve TSV output file.

output_dir
Output directory to store the learning curve plots.

1.5.6 print_model_weights

Prints out the weights of a given trained model.

Positional Arguments

model_file
Model file to load.

36 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Optional Arguments

--k <k>
Number of top features to print (0 for all) (default: 50)

sign {positive,negative,all}
Show only positive, only negative, or all weights (default: all)

--version
Show program’s version number and exit.

1.5.7 skll_convert

Convert between .arff, .csv., .jsonlines, .libsvm, .megam, and .tsv formats.

Positional Arguments

infile
Input feature file (ends in .arff, .csv, .jsonlines, .libsvm, .megam, .ndj, or
.tsv)

outfile
Output feature file (ends in .arff, .csv, .jsonlines, .libsvm, .megam, .ndj, or
.tsv)

Optional Arguments

-l <label_col>, --label_col <label_col>
Name of the column which contains the labels in ARFF, CSV, or TSV files. For ARFF files,
this must be the final column to count as the label. (default: y)

-q, --quiet
Suppress printing of "Loading..." messages.

--arff_regression
Create ARFF files for regression, not classification.

--arff_relation ARFF_RELATION
Relation name to use for ARFF file. (default: skll_relation)

--reuse_libsvm_map REUSE_LIBSVM_MAP
If you want to output multiple files that use the same mapping from labels and features to
numbers when writing libsvm files, you can specify an existing .libsvm file to reuse the
mapping from.

1.5. Utility Scripts 37

SciKit-Learn Laboratory Documentation, Release 1.5.3

--version
Show program’s version number and exit.

1.5.8 summarize_results

Creates an experiment summary TSV file from a list of JSON files generated by run_experiment.

Positional Arguments

summary_file
TSV file to store summary of results.

json_file
JSON results file generated by run_experiment.

Optional Arguments

-a, --ablation
The results files are from an ablation run.

--version
Show program’s version number and exit.

1.6 API Documentation

1.6.1 Quickstart

Here is a quick run-down of how you accomplish common tasks.

Load a FeatureSet from a file:

from skll import Reader

example_reader = Reader.for_path('myexamples.megam')
train_examples = example_reader.read()

Or, work with an existing pandas DataFrame:

from skll import FeatureSet

train_examples = FeatureSet.from_data_frame(my_data_frame, 'A Name for
→˓My Data', labels_column='name of the column containing the data
→˓labels')

(continues on next page)

38 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

(continued from previous page)

Train a linear svm (assuming we have train_examples):

from skll import Learner

learner = Learner('LinearSVC')
learner.train(train_examples)

Evaluate a trained model:

test_examples = Reader.for_path('test.tsv').read()
conf_matrix, accuracy, prf_dict, model_params, obj_score = learner.
→˓evaluate(test_examples)

Perform ten-fold cross-validation with a radial SVM:

learner = Learner('SVC')
fold_result_list, grid_search_scores = learner.cross-validate(train_
→˓examples)

fold_result_list in this case is a list of the results returned by learner.evaluate for
each fold, and grid_search_scores is the highest objective function value achieved when
tuning the model.

Generate predictions from a trained model:

predictions = learner.predict(test_examples)

1.6.2 skll Package

The most useful parts of our API are available at the package level in addition to the module level.
They are documented in both places for convenience.

From data Package

class skll.FeatureSet(name, ids, labels=None, features=None, vector-
izer=None)

Bases: object

Encapsulation of all of the features, values, and metadata about a given set of data. This
replaces ExamplesTuple from older versions of SKLL.

Parameters

• name (str) – The name of this feature set.

1.6. API Documentation 39

SciKit-Learn Laboratory Documentation, Release 1.5.3

• ids (np.array) – Example IDs for this set.

• labels (np.array, optional) – labels for this set. Defaults to
None.

• feature (list of dict or array-like, optional) –
The features for each instance represented as either a list of dictionaries
or an array-like (if vectorizer is also specified). Defaults to None.

• vectorizer (DictVectorizer or FeatureHasher,
optional) – Vectorizer which will be used to generate the feature
matrix. Defaults to None.

Warning: FeatureSets can only be equal if the order of the instances is identical be-
cause these are stored as lists/arrays. Since scikit-learn’s DictVectorizer automatically
sorts the underlying feature matrix if it is sparse, we do not do any sorting before check-
ing for equality. This is not a problem because we _always_ use sparse matrices with
DictVectorizer when creating FeatureSets.

Notes

If ids, labels, and/or features are not None, the number of rows in each array must be equal.

filter(ids=None, labels=None, features=None, inverse=False)
Removes or keeps features and/or examples from the Featureset depending on the pa-
rameters. Filtering is done in-place.

Parameters

• ids (list of str/float, optional) – Examples to keep in
the FeatureSet. If None, no ID filtering takes place. Defaults to None.

• labels (list of str/float, optional) – Labels that we
want to retain examples for. If None, no label filtering takes place.
Defaults to None.

• features (list of str, optional) – Features to keep in the
FeatureSet. To help with filtering string-valued features that were con-
verted to sequences of boolean features when read in, any features in
the FeatureSet that contain a = will be split on the first occurrence and
the prefix will be checked to see if it is in features. If None, no feature
filtering takes place. Cannot be used if FeatureSet uses a FeatureHasher
for vectorization. Defaults to None.

• inverse (bool, optional) – Instead of keeping features and/or
examples in lists, remove them. Defaults to False.

40 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Raises ValueError – If attempting to use features to filter a
FeatureSet that uses a FeatureHasher vectorizer.

filtered_iter(ids=None, labels=None, features=None, inverse=False)
A version of __iter__ that retains only the specified features and/or examples from the
output.

Parameters

• ids (list of str/float, optional) – Examples to keep in
the FeatureSet. If None, no ID filtering takes place. Defaults to
None.

• labels (list of str/float, optional) – Labels that we
want to retain examples for. If None, no label filtering takes place.
Defaults to None.

• features (list of str, optional) – Features to keep in the
FeatureSet. To help with filtering string-valued features that were
converted to sequences of boolean features when read in, any features
in the FeatureSet that contain a = will be split on the first occur-
rence and the prefix will be checked to see if it is in features. If
None, no feature filtering takes place. Cannot be used if FeatureSet
uses a FeatureHasher for vectorization. Defaults to None.

• inverse (bool, optional) – Instead of keeping features and/or
examples in lists, remove them. Defaults to False.

Yields

• id_ (str) – The ID of the example.

• label_ (str) – The label of the example.

• feat_dict (dict) – The feature dictionary, with feature name as the key
and example value as the value.

Raises ValueError – If the vectorizer is not a DictVectorizer.

static from_data_frame(df, name, labels_column=None, vectorizer=None)
Helper function to create a FeatureSet instance from a pandas.DataFrame. Will
raise an Exception if pandas is not installed in your environment. The ids in the
FeatureSet will be the index from the given frame.

Parameters

• df (pd.DataFrame) – The pandas.DataFrame object to use as a
FeatureSet.

• name (str) – The name of the output FeatureSet instance.

• labels_column (str, optional) – The name of the column
containing the labels (data to predict). Defaults to None.

1.6. API Documentation 41

SciKit-Learn Laboratory Documentation, Release 1.5.3

• vectorizer (DictVectorizer or FeatureHasher,
optional) – Vectorizer which will be used to generate the feature
matrix. Defaults to None.

Returns feature_set – A FeatureSet instance generated from from the
given data frame.

Return type skll.FeatureSet

has_labels
Check if FeatureSet has finite labels.

Returns has_labels – Whether or not this FeatureSet has any finite labels.

Return type bool

static split_by_ids(fs, ids_for_split1, ids_for_split2=None)
Split the FeatureSet into two new FeatureSet instances based on the given IDs
for the two splits.

Parameters

• fs (skll.FeatureSet) – The FeatureSet instance to split.

• ids_for_split1 (list of int) – A list of example IDs which
will be split out into the first FeatureSet instance. Note that the
FeatureSet instance will respect the order of the specified IDs.

• ids_for_split2 (list of int, optional) – An optional
ist of example IDs which will be split out into the second
FeatureSet instance. Note that the FeatureSet instance will re-
spect the order of the specified IDs. If this is not specified, then the
second FeatureSet instance will contain the complement of the first
set of IDs sorted in ascending order. Defaults to None.

Returns

• fs1 (skll.FeatureSet) – The first FeatureSet.

• fs2 (skll.FeatureSet) – The second FeatureSet.

class skll.Reader(path_or_list, quiet=True, ids_to_floats=False, label_col=u’y’,
id_col=u’id’, class_map=None, sparse=True, fea-
ture_hasher=False, num_features=None, logger=None)

Bases: object

A helper class to make picklable iterators out of example dictionary generators.

Parameters

• path_or_list (str or list of dict) – Path or a list of ex-
ample dictionaries.

42 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• quiet (bool, optional) – Do not print “Loading. . . ” status mes-
sage to stderr. Defaults to True.

• ids_to_floats (bool, optional) – Convert IDs to float to save
memory. Will raise error if we encounter an a non-numeric ID. Defaults
to False.

• label_col (str, optional) – Name of the column which con-
tains the class labels for ARFF/CSV/TSV files. If no column with that
name exists, or None is specified, the data is considered to be unlabelled.
Defaults to 'y'.

• id_col (str, optional) – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated. Defaults to 'id'.

• class_map (dict, optional) – Mapping from original class la-
bels to new ones. This is mainly used for collapsing multiple labels into a
single class. Anything not in the mapping will be kept the same. Defaults
to None.

• sparse (bool, optional) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features. Defaults to True.

• feature_hasher (bool, optional) – Whether or not a Feature-
Hasher should be used to vectorize the features. Defaults to False.

• num_features (int, optional) – If using a FeatureHasher, how
many features should the resulting matrix have? You should set this to a
power of 2 greater than the actual number of features to avoid collisions.
Defaults to None.

• logger (logging.Logger, optional) – A logger instance to
use to log messages instead of creating a new one by default. Defaults to
None.

classmethod for_path(path_or_list, **kwargs)
Instantiate the appropriate Reader sub-class based on the file extension of the given
path. Or use a dictionary reader if the input is a list of dictionaries.

Parameters

• path_or_list (str or list of dicts) – A path or list of
example dictionaries.

• kwargs (dict, optional) – The arguments to the Reader object
being instantiated.

Returns reader – A new instance of the Reader sub-class that is appropriate
for the given path.

1.6. API Documentation 43

SciKit-Learn Laboratory Documentation, Release 1.5.3

Return type skll.Reader

Raises ValueError – If file does not have a valid extension.

read()
Loads examples in the .arff, .csv, .jsonlines, .libsvm, .megam, .ndj, or .tsv formats.

Returns feature_set – FeatureSet instance representing the input file.

Return type skll.FeatureSet

Raises

• ValueError – If ids_to_floats is True, but IDs cannot be con-
verted.

• ValueError – If no features are found.

• ValueError – If the example IDs are not unique.

class skll.Writer(path, feature_set, **kwargs)
Bases: object

Helper class for writing out FeatureSets to files on disk.

Parameters

• path (str) – A path to the feature file we would like to create. The suf-
fix to this filename must be .arff, .csv, .jsonlines, .libsvm,
.megam, .ndj, or .tsv. If subsets is not None, when calling the
write() method, path is assumed to be a string containing the path to
the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.csv.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the file.

• quiet (bool) – Do not print “Writing. . . ” status message to stderr.
Defaults to True.

• requires_binary (bool) – Whether or not the Writer must open
the file in binary mode for writing with Python 2. Defaults to False.

• subsets (dict (str to list of str)) – A mapping from
subset names to lists of feature names that are included in those sets. If
given, a feature file will be written for every subset (with the name con-
taining the subset name as suffix to path). Note, since string- valued
features are automatically converted into boolean features with names
of the form FEATURE_NAME=STRING_VALUE, when doing the filter-
ing, the portion before the = is all that’s used for matching. Therefore,
you do not need to enumerate all of these boolean feature names in your
mapping. Defaults to None.

44 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• logger (logging.Logger) – A logger instance to use to log mes-
sages instead of creating a new one by default. Defaults to None.

classmethod for_path(path, feature_set, **kwargs)
Retrieve object of Writer sub-class that is appropriate for given path.

Parameters

• path (str) – A path to the feature file we would like to create.
The suffix to this filename must be .arff, .csv, .jsonlines, .
libsvm, .megam, .ndj, or .tsv. If subsets is not None, when
calling the write() method, path is assumed to be a string containing
the path to the directory to write the feature files with an additional file
extension specifying the file type. For example /foo/.csv.

• feature_set (skll.FeatureSet) – The FeatureSet in-
stance to dump to the output file.

• kwargs (dict) – The keyword arguments for for_path are the
same as the initializer for the desired Writer subclass.

Returns writer – New instance of the Writer sub-class that is appropriate for
the given path.

Return type skll.data.writers.Writer

write()
Writes out this Writer’s FeatureSet to a file in its format.

From experiments Module

skll.run_configuration(config_file, local=False, overwrite=True,
queue=u’all.q’, hosts=None, write_summary=True,
quiet=False, ablation=0, resume=False, log_level=20)

Takes a configuration file and runs the specified jobs on the grid.

Parameters

• config_file (str) – Path to the configuration file we would like to
use.

• local (bool, optional) – Should this be run locally instead of on
the cluster? Defaults to False.

• overwrite (bool, optional) – If the model files already exist,
should we overwrite them instead of re-using them? Defaults to True.

• queue (str, optional) – The DRMAA queue to use if we’re run-
ning on the cluster. Defaults to 'all.q'.

1.6. API Documentation 45

SciKit-Learn Laboratory Documentation, Release 1.5.3

• hosts (list of str, optional) – If running on the cluster,
these are the machines we should use. Defaults to None.

• write_summary (bool, optional) – Write a TSV file with a
summary of the results. Defaults to True.

• quiet (bool, optional) – Suppress printing of “Loading. . . ” mes-
sages. Defaults to False.

• ablation (int, optional) – Number of features to remove when
doing an ablation experiment. If positive, we will perform repeated abla-
tion runs for all combinations of features removing the specified number
at a time. If None, we will use all combinations of all lengths. If 0, the
default, no ablation is performed. If negative, a ValueError is raised.
Defaults to 0.

• resume (bool, optional) – If result files already exist for an ex-
periment, do not overwrite them. This is very useful when doing a large
ablation experiment and part of it crashes. Defaults to False.

• log_level (str, optional) – The level for logging messages.
Defaults to logging.INFO.

Returns result_json_paths – A list of paths to .json results files for each varia-
tion in the experiment.

Return type list of str

Raises

• ValueError – If value for "ablation" is not a positive int or None.

• OSError – If the lenth of the FeatureSet name > 210.

From learner Module

class skll.Learner(model_type, probability=False, pipeline=False,
feature_scaling=u’none’, model_kwargs=None,
pos_label_str=None, min_feature_count=1, sampler=None,
sampler_kwargs=None, custom_learner_path=None, log-
ger=None)

Bases: object

A simpler learner interface around many scikit-learn classification and regression functions.

Parameters

• model_type (str) – Name of estimator to create (e.g.,
'LogisticRegression'). See the skll package documenta-
tion for valid options.

46 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• probability (bool, optional) – Should learner return proba-
bilities of all labels (instead of just label with highest probability)? De-
faults to False.

• pipeline (bool, optional) – Should learner contain a pipeline
attribute that contains a scikit-learn Pipeline object composed of all steps
including the vectorizer, the feature selector, the sampler, the feature
scaler, and the actual estimator. Note that this will increase the size of
the learner object in memory and also when it is saved to disk. Defaults
to False.

• feature_scaling (str, optional) – How to scale the features,
if at all. Options are - ‘with_std’: scale features using the standard de-
viation - ‘with_mean’: center features using the mean - ‘both’: do both
scaling as well as centering - ‘none’: do neither scaling nor centering
Defaults to ‘none’.

• model_kwargs (dict, optional) – A dictionary of keyword ar-
guments to pass to the initializer for the specified model. Defaults to
None.

• pos_label_str (str, optional) – The string for the positive
label in the binary classification setting. Otherwise, an arbitrary label is
picked. Defaults to None.

• min_feature_count (int, optional) – The minimum number
of examples a feature must have a nonzero value in to be included. De-
faults to 1.

• sampler (str, optional) – The sampler to use for kernel approx-
imation, if desired. Valid values are - ‘AdditiveChi2Sampler’ - ‘Nys-
troem’ - ‘RBFSampler’ - ‘SkewedChi2Sampler’ Defaults to None.

• sampler_kwargs (dict, optional) – A dictionary of keyword
arguments to pass to the initializer for the specified sampler. Defaults to
None.

• custom_learner_path (str, optional) – Path to module
where a custom classifier is defined. Defaults to None.

• logger (logging object, optional) – A logging object. If
None is passed, get logger from __name__. Defaults to None.

cross_validate(examples, stratified=True, cv_folds=10, grid_search=True,
grid_search_folds=3, grid_jobs=None, grid_objective=None,
output_metrics=[], prediction_prefix=None,
param_grid=None, shuffle=False, save_cv_folds=False,
use_custom_folds_for_grid_search=True)

Cross-validates a given model on the training examples.

1.6. API Documentation 47

SciKit-Learn Laboratory Documentation, Release 1.5.3

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
cross-validate learner performance on.

• stratified (bool, optional) – Should we stratify the folds to
ensure an even distribution of labels for each fold? Defaults to True.

• cv_folds (int, optional) – The number of folds to use for
cross-validation, or a mapping from example IDs to folds. Defaults
to 10.

• grid_search (bool, optional) – Should we do grid search
when training each fold? Note: This will make this take much longer.
Defaults to False.

• grid_search_folds (int or dict, optional) – The
number of folds to use when doing the grid search, or a mapping from
example IDs to folds. Defaults to 3.

• grid_jobs (int, optional) – The number of jobs to run in par-
allel when doing the grid search. If None or 0, the number of grid
search folds will be used. Defaults to None.

• grid_objective (str, optional) – The name of the objec-
tive function to use when doing the grid search. Must be specified if
grid_search is True. Defaults to None.

• output_metrics (list of str, optional) – List of addi-
tional metric names to compute in addition to the metric used for grid
search. Empty by default. Defaults to an empty list.

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

• param_grid (list of dicts, optional) – The parameter
grid to traverse. Defaults to None.

• shuffle (bool, optional) – Shuffle examples before splitting
into folds for CV. Defaults to False.

• save_cv_folds (bool, optional) – Whether to save the cv
fold ids or not? Defaults to False.

• use_custom_folds_for_grid_search (bool,
optional) – If cv_folds is a custom dictionary, but
grid_search_folds is not, perhaps due to user oversight,
should the same custom dictionary automatically be used for the inner
grid-search cross-validation? Defaults to True.

Returns

48 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• results (list of 6-tuples) – The confusion matrix, overall accuracy, per-
label PRFs, model parameters, objective function score, and evaluation
metrics (if any) for each fold.

• grid_search_scores (list of floats) – The grid search scores for each
fold.

• grid_search_cv_results_dicts (list of dicts) – A list of dictionaries
of grid search CV results, one per fold, with keys such as “params”,
“mean_test_score”, etc, that are mapped to lists of values associated
with each hyperparameter set combination.

• skll_fold_ids (dict) – A dictionary containing the test-fold number for
each id if save_cv_folds is True, otherwise None.

Raises ValueError – If labels are not encoded as strings.

evaluate(examples, prediction_prefix=None, append=False,
grid_objective=None, output_metrics=[])

Evaluates a given model on a given dev or test FeatureSet.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
evaluate the performance of the model on.

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

• append (bool, optional) – Should we append the current pre-
dictions to the file if it exists? Defaults to False.

• grid_objective (function, optional) – The objective
function that was used when doing the grid search. Defaults to None.

• output_metrics (list of str, optional) – List of addi-
tional metric names to compute in addition to grid objective. Empty by
default. Defaults to an empty list.

Returns res – The confusion matrix, the overall accuracy, the per-label PRFs,
the model parameters, the grid search objective function score, and the
additional evaluation metrics, if any.

Return type 6-tuple

classmethod from_file(learner_path, logger=None)
Load a saved Learner instance from a file path.

Parameters

• learner_path (str) – The path to a saved Learner instance file.

1.6. API Documentation 49

SciKit-Learn Laboratory Documentation, Release 1.5.3

• logger (logging object, optional) – A logging object. If
None is passed, get logger from __name__. Defaults to None.

Returns learner – The Learner instance loaded from the file.

Return type skll.Learner

Raises

• ValueError – If the pickled object is not a Learner instance.

• ValueError – If the pickled version of the Learner instance is out
of date.

learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325,
0.55, 0.775, 1.]))

Generates learning curves for a given model on the training examples via cross-
validation. Adapted from the scikit-learn code for learning curve generation
(cf.‘‘sklearn.model_selection.learning_curve‘‘).

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
generate the learning curve on.

• cv_folds (int, optional) – The number of folds to use for
cross-validation, or a mapping from example IDs to folds. Defaults
to 10.

• metric (str) – The name of the metric function to use when com-
puting the train and test scores for the learning curve.

• train_sizes (list of float or int, optional) – Rel-
ative or absolute numbers of training examples that will be used to gen-
erate the learning curve. If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is determined by the se-
lected validation method), i.e. it has to be within (0, 1]. Otherwise it is
interpreted as absolute sizes of the training sets. Note that for classifica-
tion the number of samples usually have to be big enough to contain at
least one sample from each class. Defaults to np.linspace(0.1,
1.0, 5).

Returns

• train_scores (list of float) – The scores for the training set.

• test_scores (list of float) – The scores on the test set.

• num_examples (list of int) – The numbers of training examples used
to generate the curve

load(learner_path)
Replace the current learner instance with a saved learner.

50 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Parameters learner_path (str) – The path to a saved learner object
file to load.

model
The underlying scikit-learn model

model_kwargs
A dictionary of the underlying scikit-learn model’s keyword arguments

model_params
Model parameters (i.e., weights) for a LinearModel (e.g., Ridge) regression and
liblinear models.

Returns

• res (dict) – A dictionary of labeled weights.

• intercept (dict) – A dictionary of intercept(s).

Raises ValueError – If the instance does not support model parameters.

model_type
The model type (i.e., the class)

predict(examples, prediction_prefix=None, append=False, class_labels=False)
Uses a given model to generate predictions on a given FeatureSet.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
predict labels for.

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

• append (bool, optional) – Should we append the current pre-
dictions to the file if it exists? Defaults to False.

• class_labels (bool, optional) – For classifier, should we
convert class indices to their (str) labels? Defaults to False.

Returns yhat – The predictions returned by the Learner instance.

Return type array-like

Raises MemoryError – If process runs out of memory when converting to
dense.

probability
Should learner return probabilities of all labels (instead of just label with highest prob-
ability)?

1.6. API Documentation 51

SciKit-Learn Laboratory Documentation, Release 1.5.3

save(learner_path)
Save the Learner instance to a file.

Parameters learner_path (str) – The path to save the Learner in-
stance to.

train(examples, param_grid=None, grid_search_folds=3, grid_search=True,
grid_objective=None, grid_jobs=None, shuffle=False, cre-
ate_label_dict=True)

Train a classification model and return the model, score, feature vectorizer, scaler, label
dictionary, and inverse label dictionary.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
use for training.

• param_grid (list of dicts, optional) – The parameter
grid to search through for grid search. If None, a default parameter
grid will be used. Defaults to None.

• grid_search_folds (int or dict, optional) – The
number of folds to use when doing the grid search, or a mapping from
example IDs to folds. Defaults to 3.

• grid_search (bool, optional) – Should we do grid search?
Defaults to True.

• grid_objective (str, optional) – The name of the objec-
tive function to use when doing the grid search. Must be specified if
grid_search is True. Defaults to None.

• grid_jobs (int, optional) – The number of jobs to run in par-
allel when doing the grid search. If None or 0, the number of grid
search folds will be used. Defaults to None.

• shuffle (bool, optional) – Shuffle examples (e.g., for grid
search CV.) Defaults to False.

• create_label_dict (bool, optional) – Should we create
the label dictionary? This dictionary is used to map between string
labels and their corresponding numerical values. This should only be
done once per experiment, so when cross_validate calls train,
create_label_dict gets set to False. Defaults to True.

Returns tuple – 1) The best grid search objective function score, or 0 if we’re
not doing grid search, and 2) a dictionary of grid search CV results with
keys such as “params”, “mean_test_score”, etc, that are mapped to lists
of values associated with each hyperparameter set combination, or None
if not doing grid search.

52 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Return type (float, dict)

Raises

• ValueError – If grid_objective is not a valid grid objective or if one
is not specified when necessary.

• MemoryError – If process runs out of memory converting training
data to dense.

• ValueError – If FeatureHasher is used with MultinomialNB.

From metrics Module

skll.f1_score_least_frequent(y_true, y_pred)
Calculate the F1 score of the least frequent label/class in y_true for y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – F1 score of the least frequent label.

Return type float

skll.kappa(y_true, y_pred, weights=None, allow_off_by_one=False)
Calculates the kappa inter-rater agreement between two the gold standard and the predicted
ratings. Potential values range from -1 (representing complete disagreement) to 1 (repre-
senting complete agreement). A kappa value of 0 is expected if all agreement is due to
chance.

In the course of calculating kappa, all items in y_true and y_pred will first be converted
to floats and then rounded to integers.

It is assumed that y_true and y_pred contain the complete range of possible ratings.

This function contains a combination of code from yorchopolis’s kappa-stats and Ben Ham-
ner’s Metrics projects on Github.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

1.6. API Documentation 53

SciKit-Learn Laboratory Documentation, Release 1.5.3

• weights (str or np.array, optional) – Specifies the
weight matrix for the calculation. Options are

- None = unweighted-kappa
- 'quadratic' = quadratic-weighted kappa
- 'linear' = linear-weighted kappa
- two-dimensional numpy array = a custom matrix of

weights. Each weight corresponds to the 𝑤𝑖𝑗 values in the wikipedia
description of how to calculate weighted Cohen’s kappa. Defaults to
None.

• allow_off_by_one (bool, optional) – If true, ratings that are
off by one are counted as equal, and all other differences are reduced by
one. For example, 1 and 2 will be considered to be equal, whereas 1
and 3 will have a difference of 1 for when building the weights matrix.
Defaults to False.

Returns k – The kappa score, or weighted kappa score.

Return type float

Raises

• AssertionError – If y_true != y_pred.

• ValueError – If labels cannot be converted to int.

• ValueError – If invalid weight scheme.

skll.kendall_tau(y_true, y_pred)
Calculate Kendall’s tau between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Kendall’s tau if well-defined, else 0.0

Return type float

skll.spearman(y_true, y_pred)
Calculate Spearman’s rank correlation coefficient between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

54 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Spearman’s rank correlation coefficient if well-defined, else
0.0

Return type float

skll.pearson(y_true, y_pred)
Calculate Pearson product-moment correlation coefficient between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Pearson product-moment correlation coefficient if well-
defined, else 0.0

Return type float

1.6.3 data Package

data.featureset Module

Classes related to storing/merging feature sets.

author Dan Blanchard (dblanchard@ets.org)

author Nitin Madnani (nmadnani@ets.org)

author Jeremy Biggs (jbiggs@ets.org)

organization ETS

class skll.data.featureset.FeatureSet(name, ids, labels=None, fea-
tures=None, vectorizer=None)

Bases: object

Encapsulation of all of the features, values, and metadata about a given set of data. This
replaces ExamplesTuple from older versions of SKLL.

Parameters

• name (str) – The name of this feature set.

• ids (np.array) – Example IDs for this set.

• labels (np.array, optional) – labels for this set. Defaults to
None.

1.6. API Documentation 55

mailto:dblanchard@ets.org
mailto:nmadnani@ets.org
mailto:jbiggs@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

• feature (list of dict or array-like, optional) –
The features for each instance represented as either a list of dictionaries
or an array-like (if vectorizer is also specified). Defaults to None.

• vectorizer (DictVectorizer or FeatureHasher,
optional) – Vectorizer which will be used to generate the feature
matrix. Defaults to None.

Warning: FeatureSets can only be equal if the order of the instances is identical be-
cause these are stored as lists/arrays. Since scikit-learn’s DictVectorizer automatically
sorts the underlying feature matrix if it is sparse, we do not do any sorting before check-
ing for equality. This is not a problem because we _always_ use sparse matrices with
DictVectorizer when creating FeatureSets.

Notes

If ids, labels, and/or features are not None, the number of rows in each array must be equal.

filter(ids=None, labels=None, features=None, inverse=False)
Removes or keeps features and/or examples from the Featureset depending on the pa-
rameters. Filtering is done in-place.

Parameters

• ids (list of str/float, optional) – Examples to keep in
the FeatureSet. If None, no ID filtering takes place. Defaults to None.

• labels (list of str/float, optional) – Labels that we
want to retain examples for. If None, no label filtering takes place.
Defaults to None.

• features (list of str, optional) – Features to keep in the
FeatureSet. To help with filtering string-valued features that were con-
verted to sequences of boolean features when read in, any features in
the FeatureSet that contain a = will be split on the first occurrence and
the prefix will be checked to see if it is in features. If None, no feature
filtering takes place. Cannot be used if FeatureSet uses a FeatureHasher
for vectorization. Defaults to None.

• inverse (bool, optional) – Instead of keeping features and/or
examples in lists, remove them. Defaults to False.

Raises ValueError – If attempting to use features to filter a
FeatureSet that uses a FeatureHasher vectorizer.

filtered_iter(ids=None, labels=None, features=None, inverse=False)
A version of __iter__ that retains only the specified features and/or examples from the

56 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

output.

Parameters

• ids (list of str/float, optional) – Examples to keep in
the FeatureSet. If None, no ID filtering takes place. Defaults to
None.

• labels (list of str/float, optional) – Labels that we
want to retain examples for. If None, no label filtering takes place.
Defaults to None.

• features (list of str, optional) – Features to keep in the
FeatureSet. To help with filtering string-valued features that were
converted to sequences of boolean features when read in, any features
in the FeatureSet that contain a = will be split on the first occur-
rence and the prefix will be checked to see if it is in features. If
None, no feature filtering takes place. Cannot be used if FeatureSet
uses a FeatureHasher for vectorization. Defaults to None.

• inverse (bool, optional) – Instead of keeping features and/or
examples in lists, remove them. Defaults to False.

Yields

• id_ (str) – The ID of the example.

• label_ (str) – The label of the example.

• feat_dict (dict) – The feature dictionary, with feature name as the key
and example value as the value.

Raises ValueError – If the vectorizer is not a DictVectorizer.

static from_data_frame(df, name, labels_column=None, vectorizer=None)
Helper function to create a FeatureSet instance from a pandas.DataFrame. Will
raise an Exception if pandas is not installed in your environment. The ids in the
FeatureSet will be the index from the given frame.

Parameters

• df (pd.DataFrame) – The pandas.DataFrame object to use as a
FeatureSet.

• name (str) – The name of the output FeatureSet instance.

• labels_column (str, optional) – The name of the column
containing the labels (data to predict). Defaults to None.

• vectorizer (DictVectorizer or FeatureHasher,
optional) – Vectorizer which will be used to generate the feature
matrix. Defaults to None.

1.6. API Documentation 57

SciKit-Learn Laboratory Documentation, Release 1.5.3

Returns feature_set – A FeatureSet instance generated from from the
given data frame.

Return type skll.FeatureSet

has_labels
Check if FeatureSet has finite labels.

Returns has_labels – Whether or not this FeatureSet has any finite labels.

Return type bool

static split_by_ids(fs, ids_for_split1, ids_for_split2=None)
Split the FeatureSet into two new FeatureSet instances based on the given IDs
for the two splits.

Parameters

• fs (skll.FeatureSet) – The FeatureSet instance to split.

• ids_for_split1 (list of int) – A list of example IDs which
will be split out into the first FeatureSet instance. Note that the
FeatureSet instance will respect the order of the specified IDs.

• ids_for_split2 (list of int, optional) – An optional
ist of example IDs which will be split out into the second
FeatureSet instance. Note that the FeatureSet instance will re-
spect the order of the specified IDs. If this is not specified, then the
second FeatureSet instance will contain the complement of the first
set of IDs sorted in ascending order. Defaults to None.

Returns

• fs1 (skll.FeatureSet) – The first FeatureSet.

• fs2 (skll.FeatureSet) – The second FeatureSet.

data.readers Module

This module handles loading data from various types of data files. A base Reader class is pro-
vided that is sub-classed for each data file type that is supported, e.g. CSVReader.

Notes about Label Conversion

All Reader sub-classes use the safe_float function internally to read in labels. This function
tries to convert a single label first to int, then to float. If neither conversion is possible, the
label remains a str. It should be noted that, if classification is being done with a feature set that
is read in with one of the Reader sub-classes, care must be taken to ensure that labels do not

58 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

get converted in unexpected ways. For example, classification labels should not be a mixture of
int-converting and float-converting labels. Consider the situation below:

>>> import numpy as np
>>> from skll.data.readers import safe_float
>>> np.array([safe_float(x) for x in ["2", "2.2", "2.21"]]) # array([2.
→˓ , 2.2 , 2.21])

The labels will all be converted to floats and any classification model generated with this data will
predict labels such as 2.0, 2.2, etc., not str values that exactly match the input labels, as might
be expected. Be aware that it may be best to make use of the class_map keyword argument in
such cases to map original labels to labels that convert only to str.

author Dan Blanchard (dblanchard@ets.org)

author Michael Heilman (mheilman@ets.org)

author Nitin Madnani (nmadnani@ets.org)

organization ETS

class skll.data.readers.ARFFReader(path_or_list, pandas_kwargs=None,
**kwargs)

Bases: skll.data.readers.Reader

Reader for creating a FeatureSet instance from an ARFF file.

If example/instance IDs are included in the files, they must be specified in the id column.

Also, there must be a column with the name specified by label_col if the data is labeled,
and this column must be the final one (as it is in Weka).

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – Other arguments to the Reader object.

split_with_quotes(s, delimiter=u’ ’, header=None, quote_char=u"’", es-
cape_char=u’\\’)

A replacement for string.split that won’t split delimiters enclosed in quotes.

Parameters

• s (str) – The string with quotes to split

• header (list or None, optional) – The names of the header
columns or None. Defaults to None.

• delimiter (str, optional) – The delimiter to split on. De-
faults to ' '.

1.6. API Documentation 59

mailto:dblanchard@ets.org
mailto:mheilman@ets.org
mailto:nmadnani@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

• quote_char (str, optional) – The quote character to ignore.
Defaults to "'".

• escape_char (str, optional) – The escape character. De-
faults to '\'.

class skll.data.readers.CSVReader(path_or_list, pandas_kwargs=None,
**kwargs)

Bases: skll.data.readers.Reader

Reader for creating a FeatureSet instance from a CSV file.

If example/instance IDs are included in the files, they must be specified in the id column.

Also, there must be a column with the name specified by label_col if the data is labeled.

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – Other arguments to the Reader object.

class skll.data.readers.DictListReader(path_or_list, pan-
das_kwargs=None, **kwargs)

Bases: skll.data.readers.Reader

This class is to facilitate programmatic use of Learner.predict() and other methods
that take FeatureSet objects as input. It iterates over examples in the same way as other
Reader classes, but uses a list of example dictionaries instead of a path to a file.

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas data frame constructor. Defaults to
None.

• kwargs (dict, optional) – Other arguments to the Reader object.

class skll.data.readers.LibSVMReader(path_or_list, quiet=True,
ids_to_floats=False, la-
bel_col=u’y’, id_col=u’id’,
class_map=None, sparse=True,
feature_hasher=False,
num_features=None, log-
ger=None)

Bases: skll.data.readers.Reader

Reader to create a FeatureSet instance from a LibSVM/LibLinear/SVMLight file.

60 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

We use a specially formatted comment for storing example IDs, class names, and feature
names, which are normally not supported by the format. The comment is not mandatory,
but without it, your labels and features will not have names. The comment is structured as
follows:

ExampleID | 1=FirstClass | 1=FirstFeature 2=SecondFeature

class skll.data.readers.MegaMReader(path_or_list, quiet=True,
ids_to_floats=False, label_col=u’y’,
id_col=u’id’, class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: skll.data.readers.Reader

Reader to create a FeatureSet instance from a MegaM -fvals file.

If example/instance IDs are included in the files, they must be specified as a comment line
directly preceding the line with feature values.

class skll.data.readers.NDJReader(path_or_list, pandas_kwargs=None,
**kwargs)

Bases: skll.data.readers.Reader

Reader to create a FeatureSet instance from a JSONlines/NDJ file.

If example/instance IDs are included in the files, they must be specified as the “id” key in
each JSON dictionary.

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – Other arguments to the Reader object.

class skll.data.readers.Reader(path_or_list, quiet=True,
ids_to_floats=False, label_col=u’y’,
id_col=u’id’, class_map=None,
sparse=True, feature_hasher=False,
num_features=None, logger=None)

Bases: object

A helper class to make picklable iterators out of example dictionary generators.

Parameters

• path_or_list (str or list of dict) – Path or a list of ex-
ample dictionaries.

• quiet (bool, optional) – Do not print “Loading. . . ” status mes-
sage to stderr. Defaults to True.

1.6. API Documentation 61

SciKit-Learn Laboratory Documentation, Release 1.5.3

• ids_to_floats (bool, optional) – Convert IDs to float to save
memory. Will raise error if we encounter an a non-numeric ID. Defaults
to False.

• label_col (str, optional) – Name of the column which con-
tains the class labels for ARFF/CSV/TSV files. If no column with that
name exists, or None is specified, the data is considered to be unlabelled.
Defaults to 'y'.

• id_col (str, optional) – Name of the column which contains the
instance IDs. If no column with that name exists, or None is specified,
example IDs will be automatically generated. Defaults to 'id'.

• class_map (dict, optional) – Mapping from original class la-
bels to new ones. This is mainly used for collapsing multiple labels into a
single class. Anything not in the mapping will be kept the same. Defaults
to None.

• sparse (bool, optional) – Whether or not to store the features
in a numpy CSR matrix when using a DictVectorizer to vectorize the
features. Defaults to True.

• feature_hasher (bool, optional) – Whether or not a Feature-
Hasher should be used to vectorize the features. Defaults to False.

• num_features (int, optional) – If using a FeatureHasher, how
many features should the resulting matrix have? You should set this to a
power of 2 greater than the actual number of features to avoid collisions.
Defaults to None.

• logger (logging.Logger, optional) – A logger instance to
use to log messages instead of creating a new one by default. Defaults to
None.

classmethod for_path(path_or_list, **kwargs)
Instantiate the appropriate Reader sub-class based on the file extension of the given
path. Or use a dictionary reader if the input is a list of dictionaries.

Parameters

• path_or_list (str or list of dicts) – A path or list of
example dictionaries.

• kwargs (dict, optional) – The arguments to the Reader object
being instantiated.

Returns reader – A new instance of the Reader sub-class that is appropriate
for the given path.

Return type skll.Reader

Raises ValueError – If file does not have a valid extension.

62 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

read()
Loads examples in the .arff, .csv, .jsonlines, .libsvm, .megam, .ndj, or .tsv formats.

Returns feature_set – FeatureSet instance representing the input file.

Return type skll.FeatureSet

Raises

• ValueError – If ids_to_floats is True, but IDs cannot be con-
verted.

• ValueError – If no features are found.

• ValueError – If the example IDs are not unique.

class skll.data.readers.TSVReader(path_or_list, pandas_kwargs=None,
**kwargs)

Bases: skll.data.readers.CSVReader

Reader for creating a FeatureSet instance from a TSV file.

If example/instance IDs are included in the files, they must be specified in the id column.

Also there must be a column with the name specified by label_col if the data is labeled.

Parameters

• path_or_list (str) – The path to a comma-delimited file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – Other arguments to the Reader object.

skll.data.readers.safe_float(text, replace_dict=None, logger=None)
Attempts to convert a string to an int, and then a float, but if neither is possible, returns the
original string value.

Parameters

• text (str) – The text to convert.

• replace_dict (dict, optional) – Mapping from text to re-
placement text values. This is mainly used for collapsing multiple la-
bels into a single class. Replacing happens before conversion to floats.
Anything not in the mapping will be kept the same. Defaults to None.

• logger (logging.Logger) – The Logger instance to use to log
messages. Used instead of creating a new Logger instance by default.
Defaults to None.

Returns text – The text value converted to int or float, if possible

Return type int or float or str

1.6. API Documentation 63

SciKit-Learn Laboratory Documentation, Release 1.5.3

data.writers Module

Handles loading data from various types of data files.

author Dan Blanchard (dblanchard@ets.org)

author Michael Heilman (mheilman@ets.org)

author Nitin Madnani (nmadnani@ets.org)

organization ETS

class skll.data.writers.ARFFWriter(path, feature_set, pan-
das_kwargs=None, **kwargs)

Bases: skll.data.writers.Writer

Writer for writing out FeatureSets as ARFF files.

Parameters

• path (str) – A path to the feature file we would like to create. If
subsets is not None, this is assumed to be a string containing the path
to the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.arff.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the output file.

• relation (str, optional) – The name of the relation in the
ARFF file. Defaults to 'skll_relation'.

• regression (bool, optional) – Is this an ARFF file to be used
for regression? Defaults to False.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – The arguments to the Writer object
being instantiated.

class skll.data.writers.CSVWriter(path, feature_set, pan-
das_kwargs=None, **kwargs)

Bases: skll.data.writers.Writer

Writer for writing out FeatureSet instances as CSV files.

Parameters

• path (str) – A path to the feature file we would like to create. If
subsets is not None, this is assumed to be a string containing the path
to the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.csv.

64 Chapter 1. Documentation

mailto:dblanchard@ets.org
mailto:mheilman@ets.org
mailto:nmadnani@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the output file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – The arguments to the Writer object
being instantiated.

class skll.data.writers.LibSVMWriter(path, feature_set, **kwargs)
Bases: skll.data.writers.Writer

Writer for writing out FeatureSets as LibSVM/SVMLight files.

Parameters

• path (str) – A path to the feature file we would like to create. If
subsets is not None, this is assumed to be a string containing the path
to the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.libsvm.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the output file.

• kwargs (dict, optional) – The arguments to the Writer object
being instantiated.

class skll.data.writers.MegaMWriter(path, feature_set, **kwargs)
Bases: skll.data.writers.Writer

Writer for writing out FeatureSets as MegaM files.

class skll.data.writers.NDJWriter(path, feature_set, pan-
das_kwargs=None, **kwargs)

Bases: skll.data.writers.Writer

Writer for writing out FeatureSets as .jsonlines/.ndj files.

Parameters

• path (str) – A path to the feature file we would like to create. If
subsets is not None, this is assumed to be a string containing the path
to the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.ndj.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the output file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – The arguments to the Writer object
being instantiated.

1.6. API Documentation 65

SciKit-Learn Laboratory Documentation, Release 1.5.3

class skll.data.writers.TSVWriter(path, feature_set, pan-
das_kwargs=None, **kwargs)

Bases: skll.data.writers.CSVWriter

Writer for writing out FeatureSets as TSV files.

Parameters

• path (str) – A path to the feature file we would like to create. If
subsets is not None, this is assumed to be a string containing the path
to the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.tsv.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the output file.

• pandas_kwargs (dict or None, optional) – Arguments that
will be passed directly to the pandas I/O reader. Defaults to None.

• kwargs (dict, optional) – The arguments to the Writer object
being instantiated.

class skll.data.writers.Writer(path, feature_set, **kwargs)
Bases: object

Helper class for writing out FeatureSets to files on disk.

Parameters

• path (str) – A path to the feature file we would like to create. The suf-
fix to this filename must be .arff, .csv, .jsonlines, .libsvm,
.megam, .ndj, or .tsv. If subsets is not None, when calling the
write() method, path is assumed to be a string containing the path to
the directory to write the feature files with an additional file extension
specifying the file type. For example /foo/.csv.

• feature_set (skll.FeatureSet) – The FeatureSet instance
to dump to the file.

• quiet (bool) – Do not print “Writing. . . ” status message to stderr.
Defaults to True.

• requires_binary (bool) – Whether or not the Writer must open
the file in binary mode for writing with Python 2. Defaults to False.

• subsets (dict (str to list of str)) – A mapping from
subset names to lists of feature names that are included in those sets. If
given, a feature file will be written for every subset (with the name con-
taining the subset name as suffix to path). Note, since string- valued
features are automatically converted into boolean features with names
of the form FEATURE_NAME=STRING_VALUE, when doing the filter-
ing, the portion before the = is all that’s used for matching. Therefore,

66 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

you do not need to enumerate all of these boolean feature names in your
mapping. Defaults to None.

• logger (logging.Logger) – A logger instance to use to log mes-
sages instead of creating a new one by default. Defaults to None.

classmethod for_path(path, feature_set, **kwargs)
Retrieve object of Writer sub-class that is appropriate for given path.

Parameters

• path (str) – A path to the feature file we would like to create.
The suffix to this filename must be .arff, .csv, .jsonlines, .
libsvm, .megam, .ndj, or .tsv. If subsets is not None, when
calling the write() method, path is assumed to be a string containing
the path to the directory to write the feature files with an additional file
extension specifying the file type. For example /foo/.csv.

• feature_set (skll.FeatureSet) – The FeatureSet in-
stance to dump to the output file.

• kwargs (dict) – The keyword arguments for for_path are the
same as the initializer for the desired Writer subclass.

Returns writer – New instance of the Writer sub-class that is appropriate for
the given path.

Return type skll.data.writers.Writer

write()
Writes out this Writer’s FeatureSet to a file in its format.

1.6.4 experiments Module

Functions related to running experiments and parsing configuration files.

author Dan Blanchard (dblanchard@ets.org)

author Michael Heilman (mheilman@ets.org)

author Nitin Madnani (nmadnani@ets.org)

author Chee Wee Leong (cleong@ets.org)

1.6. API Documentation 67

mailto:dblanchard@ets.org
mailto:mheilman@ets.org
mailto:nmadnani@ets.org
mailto:cleong@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

class skll.experiments.NumpyTypeEncoder(skipkeys=False, en-
sure_ascii=True,
check_circular=True,
allow_nan=True,
sort_keys=False, in-
dent=None, separators=None,
encoding=’utf-8’, de-
fault=None)

Bases: json.encoder.JSONEncoder

This class is used when serializing results, particularly the input label values if the input has
int-valued labels. Numpy int64 objects can’t be serialized by the json module, so we must
convert them to int objects.

A related issue where this was adapted from: https://stackoverflow.com/questions/11561932/
why-does-json-dumpslistnp-arange5-fail-while-json-dumpsnp-arange5-tolis

default(obj)
Implement this method in a subclass such that it returns a serializable object for o, or
calls the base implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

skll.experiments.run_configuration(config_file, local=False, over-
write=True, queue=u’all.q’,
hosts=None, write_summary=True,
quiet=False, ablation=0, re-
sume=False, log_level=20)

Takes a configuration file and runs the specified jobs on the grid.

Parameters

• config_file (str) – Path to the configuration file we would like to
use.

• local (bool, optional) – Should this be run locally instead of on
the cluster? Defaults to False.

• overwrite (bool, optional) – If the model files already exist,
should we overwrite them instead of re-using them? Defaults to True.

68 Chapter 1. Documentation

https://stackoverflow.com/questions/11561932/why-does-json-dumpslistnp-arange5-fail-while-json-dumpsnp-arange5-tolis
https://stackoverflow.com/questions/11561932/why-does-json-dumpslistnp-arange5-fail-while-json-dumpsnp-arange5-tolis

SciKit-Learn Laboratory Documentation, Release 1.5.3

• queue (str, optional) – The DRMAA queue to use if we’re run-
ning on the cluster. Defaults to 'all.q'.

• hosts (list of str, optional) – If running on the cluster,
these are the machines we should use. Defaults to None.

• write_summary (bool, optional) – Write a TSV file with a
summary of the results. Defaults to True.

• quiet (bool, optional) – Suppress printing of “Loading. . . ” mes-
sages. Defaults to False.

• ablation (int, optional) – Number of features to remove when
doing an ablation experiment. If positive, we will perform repeated abla-
tion runs for all combinations of features removing the specified number
at a time. If None, we will use all combinations of all lengths. If 0, the
default, no ablation is performed. If negative, a ValueError is raised.
Defaults to 0.

• resume (bool, optional) – If result files already exist for an ex-
periment, do not overwrite them. This is very useful when doing a large
ablation experiment and part of it crashes. Defaults to False.

• log_level (str, optional) – The level for logging messages.
Defaults to logging.INFO.

Returns result_json_paths – A list of paths to .json results files for each varia-
tion in the experiment.

Return type list of str

Raises

• ValueError – If value for "ablation" is not a positive int or None.

• OSError – If the lenth of the FeatureSet name > 210.

1.6.5 learner Module

Provides easy-to-use wrapper around scikit-learn.

author Michael Heilman (mheilman@ets.org)

author Nitin Madnani (nmadnani@ets.org)

author Dan Blanchard (dblanchard@ets.org)

author Aoife Cahill (acahill@ets.org)

organization ETS

1.6. API Documentation 69

mailto:mheilman@ets.org
mailto:nmadnani@ets.org
mailto:dblanchard@ets.org
mailto:acahill@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

class skll.learner.Densifier
Bases: sklearn.base.BaseEstimator, sklearn.base.TransformerMixin

A custom pipeline stage that will be inserted into the learner pipeline attribute to accom-
modate the situation when SKLL needs to manually convert feature arrays from sparse to
dense. For example, when features are being hashed but we are also doing centering using
the feature means.

fit_transform(X, y=None)
Fit to data, then transform it.

Fits transformer to X and y with optional parameters fit_params and returns a trans-
formed version of X.

Parameters

• X (numpy array of shape [n_samples, n_features])
– Training set.

• y (numpy array of shape [n_samples]) – Target values.

Returns X_new – Transformed array.

Return type numpy array of shape [n_samples, n_features_new]

class skll.learner.FilteredLeaveOneGroupOut(keep, example_ids)
Bases: sklearn.model_selection._split.LeaveOneGroupOut

Version of LeaveOneGroupOut cross-validation iterator that only outputs indices of in-
stances with IDs in a prespecified set.

Parameters

• keep (set of str) – A set of IDs to keep.

• example_ids (list of str, of length n_samples) – A
list of example IDs.

split(X, y, groups)
Generate indices to split data into training and test set.

Parameters

• X (array-like, with shape (n_samples,
n_features)) – Training data, where n_samples is the num-
ber of samples and n_features is the number of features.

• y (array-like, of length n_samples) – The target vari-
able for supervised learning problems.

• groups (array-like, with shape (n_samples,)) –
Group labels for the samples used while splitting the dataset into
train/test set.

70 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Yields

• train_index (np.array) – The training set indices for that split.

• test_index (np.array) – The testing set indices for that split.

class skll.learner.Learner(model_type, probability=False, pipeline=False,
feature_scaling=u’none’, model_kwargs=None,
pos_label_str=None, min_feature_count=1,
sampler=None, sampler_kwargs=None, cus-
tom_learner_path=None, logger=None)

Bases: object

A simpler learner interface around many scikit-learn classification and regression functions.

Parameters

• model_type (str) – Name of estimator to create (e.g.,
'LogisticRegression'). See the skll package documenta-
tion for valid options.

• probability (bool, optional) – Should learner return proba-
bilities of all labels (instead of just label with highest probability)? De-
faults to False.

• pipeline (bool, optional) – Should learner contain a pipeline
attribute that contains a scikit-learn Pipeline object composed of all steps
including the vectorizer, the feature selector, the sampler, the feature
scaler, and the actual estimator. Note that this will increase the size of
the learner object in memory and also when it is saved to disk. Defaults
to False.

• feature_scaling (str, optional) – How to scale the features,
if at all. Options are - ‘with_std’: scale features using the standard de-
viation - ‘with_mean’: center features using the mean - ‘both’: do both
scaling as well as centering - ‘none’: do neither scaling nor centering
Defaults to ‘none’.

• model_kwargs (dict, optional) – A dictionary of keyword ar-
guments to pass to the initializer for the specified model. Defaults to
None.

• pos_label_str (str, optional) – The string for the positive
label in the binary classification setting. Otherwise, an arbitrary label is
picked. Defaults to None.

• min_feature_count (int, optional) – The minimum number
of examples a feature must have a nonzero value in to be included. De-
faults to 1.

1.6. API Documentation 71

SciKit-Learn Laboratory Documentation, Release 1.5.3

• sampler (str, optional) – The sampler to use for kernel approx-
imation, if desired. Valid values are - ‘AdditiveChi2Sampler’ - ‘Nys-
troem’ - ‘RBFSampler’ - ‘SkewedChi2Sampler’ Defaults to None.

• sampler_kwargs (dict, optional) – A dictionary of keyword
arguments to pass to the initializer for the specified sampler. Defaults to
None.

• custom_learner_path (str, optional) – Path to module
where a custom classifier is defined. Defaults to None.

• logger (logging object, optional) – A logging object. If
None is passed, get logger from __name__. Defaults to None.

cross_validate(examples, stratified=True, cv_folds=10, grid_search=True,
grid_search_folds=3, grid_jobs=None, grid_objective=None,
output_metrics=[], prediction_prefix=None,
param_grid=None, shuffle=False, save_cv_folds=False,
use_custom_folds_for_grid_search=True)

Cross-validates a given model on the training examples.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
cross-validate learner performance on.

• stratified (bool, optional) – Should we stratify the folds to
ensure an even distribution of labels for each fold? Defaults to True.

• cv_folds (int, optional) – The number of folds to use for
cross-validation, or a mapping from example IDs to folds. Defaults
to 10.

• grid_search (bool, optional) – Should we do grid search
when training each fold? Note: This will make this take much longer.
Defaults to False.

• grid_search_folds (int or dict, optional) – The
number of folds to use when doing the grid search, or a mapping from
example IDs to folds. Defaults to 3.

• grid_jobs (int, optional) – The number of jobs to run in par-
allel when doing the grid search. If None or 0, the number of grid
search folds will be used. Defaults to None.

• grid_objective (str, optional) – The name of the objec-
tive function to use when doing the grid search. Must be specified if
grid_search is True. Defaults to None.

• output_metrics (list of str, optional) – List of addi-
tional metric names to compute in addition to the metric used for grid

72 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

search. Empty by default. Defaults to an empty list.

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

• param_grid (list of dicts, optional) – The parameter
grid to traverse. Defaults to None.

• shuffle (bool, optional) – Shuffle examples before splitting
into folds for CV. Defaults to False.

• save_cv_folds (bool, optional) – Whether to save the cv
fold ids or not? Defaults to False.

• use_custom_folds_for_grid_search (bool,
optional) – If cv_folds is a custom dictionary, but
grid_search_folds is not, perhaps due to user oversight,
should the same custom dictionary automatically be used for the inner
grid-search cross-validation? Defaults to True.

Returns

• results (list of 6-tuples) – The confusion matrix, overall accuracy, per-
label PRFs, model parameters, objective function score, and evaluation
metrics (if any) for each fold.

• grid_search_scores (list of floats) – The grid search scores for each
fold.

• grid_search_cv_results_dicts (list of dicts) – A list of dictionaries
of grid search CV results, one per fold, with keys such as “params”,
“mean_test_score”, etc, that are mapped to lists of values associated
with each hyperparameter set combination.

• skll_fold_ids (dict) – A dictionary containing the test-fold number for
each id if save_cv_folds is True, otherwise None.

Raises ValueError – If labels are not encoded as strings.

evaluate(examples, prediction_prefix=None, append=False,
grid_objective=None, output_metrics=[])

Evaluates a given model on a given dev or test FeatureSet.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
evaluate the performance of the model on.

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

1.6. API Documentation 73

SciKit-Learn Laboratory Documentation, Release 1.5.3

• append (bool, optional) – Should we append the current pre-
dictions to the file if it exists? Defaults to False.

• grid_objective (function, optional) – The objective
function that was used when doing the grid search. Defaults to None.

• output_metrics (list of str, optional) – List of addi-
tional metric names to compute in addition to grid objective. Empty by
default. Defaults to an empty list.

Returns res – The confusion matrix, the overall accuracy, the per-label PRFs,
the model parameters, the grid search objective function score, and the
additional evaluation metrics, if any.

Return type 6-tuple

classmethod from_file(learner_path, logger=None)
Load a saved Learner instance from a file path.

Parameters

• learner_path (str) – The path to a saved Learner instance file.

• logger (logging object, optional) – A logging object. If
None is passed, get logger from __name__. Defaults to None.

Returns learner – The Learner instance loaded from the file.

Return type skll.Learner

Raises

• ValueError – If the pickled object is not a Learner instance.

• ValueError – If the pickled version of the Learner instance is out
of date.

learning_curve(examples, metric, cv_folds=10, train_sizes=array([0.1, 0.325,
0.55, 0.775, 1.]))

Generates learning curves for a given model on the training examples via cross-
validation. Adapted from the scikit-learn code for learning curve generation
(cf.‘‘sklearn.model_selection.learning_curve‘‘).

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
generate the learning curve on.

• cv_folds (int, optional) – The number of folds to use for
cross-validation, or a mapping from example IDs to folds. Defaults
to 10.

• metric (str) – The name of the metric function to use when com-
puting the train and test scores for the learning curve.

74 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• train_sizes (list of float or int, optional) – Rel-
ative or absolute numbers of training examples that will be used to gen-
erate the learning curve. If the type is float, it is regarded as a fraction
of the maximum size of the training set (that is determined by the se-
lected validation method), i.e. it has to be within (0, 1]. Otherwise it is
interpreted as absolute sizes of the training sets. Note that for classifica-
tion the number of samples usually have to be big enough to contain at
least one sample from each class. Defaults to np.linspace(0.1,
1.0, 5).

Returns

• train_scores (list of float) – The scores for the training set.

• test_scores (list of float) – The scores on the test set.

• num_examples (list of int) – The numbers of training examples used
to generate the curve

load(learner_path)
Replace the current learner instance with a saved learner.

Parameters learner_path (str) – The path to a saved learner object
file to load.

model
The underlying scikit-learn model

model_kwargs
A dictionary of the underlying scikit-learn model’s keyword arguments

model_params
Model parameters (i.e., weights) for a LinearModel (e.g., Ridge) regression and
liblinear models.

Returns

• res (dict) – A dictionary of labeled weights.

• intercept (dict) – A dictionary of intercept(s).

Raises ValueError – If the instance does not support model parameters.

model_type
The model type (i.e., the class)

predict(examples, prediction_prefix=None, append=False, class_labels=False)
Uses a given model to generate predictions on a given FeatureSet.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
predict labels for.

1.6. API Documentation 75

SciKit-Learn Laboratory Documentation, Release 1.5.3

• prediction_prefix (str, optional) – If saving the predic-
tions, this is the prefix that will be used for the filename. It will be
followed by "_predictions.tsv" Defaults to None.

• append (bool, optional) – Should we append the current pre-
dictions to the file if it exists? Defaults to False.

• class_labels (bool, optional) – For classifier, should we
convert class indices to their (str) labels? Defaults to False.

Returns yhat – The predictions returned by the Learner instance.

Return type array-like

Raises MemoryError – If process runs out of memory when converting to
dense.

probability
Should learner return probabilities of all labels (instead of just label with highest prob-
ability)?

save(learner_path)
Save the Learner instance to a file.

Parameters learner_path (str) – The path to save the Learner in-
stance to.

train(examples, param_grid=None, grid_search_folds=3, grid_search=True,
grid_objective=None, grid_jobs=None, shuffle=False, cre-
ate_label_dict=True)

Train a classification model and return the model, score, feature vectorizer, scaler, label
dictionary, and inverse label dictionary.

Parameters

• examples (skll.FeatureSet) – The FeatureSet instance to
use for training.

• param_grid (list of dicts, optional) – The parameter
grid to search through for grid search. If None, a default parameter
grid will be used. Defaults to None.

• grid_search_folds (int or dict, optional) – The
number of folds to use when doing the grid search, or a mapping from
example IDs to folds. Defaults to 3.

• grid_search (bool, optional) – Should we do grid search?
Defaults to True.

• grid_objective (str, optional) – The name of the objec-
tive function to use when doing the grid search. Must be specified if
grid_search is True. Defaults to None.

76 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• grid_jobs (int, optional) – The number of jobs to run in par-
allel when doing the grid search. If None or 0, the number of grid
search folds will be used. Defaults to None.

• shuffle (bool, optional) – Shuffle examples (e.g., for grid
search CV.) Defaults to False.

• create_label_dict (bool, optional) – Should we create
the label dictionary? This dictionary is used to map between string
labels and their corresponding numerical values. This should only be
done once per experiment, so when cross_validate calls train,
create_label_dict gets set to False. Defaults to True.

Returns tuple – 1) The best grid search objective function score, or 0 if we’re
not doing grid search, and 2) a dictionary of grid search CV results with
keys such as “params”, “mean_test_score”, etc, that are mapped to lists
of values associated with each hyperparameter set combination, or None
if not doing grid search.

Return type (float, dict)

Raises

• ValueError – If grid_objective is not a valid grid objective or if one
is not specified when necessary.

• MemoryError – If process runs out of memory converting training
data to dense.

• ValueError – If FeatureHasher is used with MultinomialNB.

class skll.learner.RescaledAdaBoostRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.ensemble.weight_boosting.AdaBoostRegressor

fit(X, y=None)
Build a boosted regressor from the training set (X, y).

Parameters

• X ({array-like, sparse matrix} of shape =
[n_samples, n_features]) – The training input samples.
Sparse matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL
are converted to CSR.

• y (array-like of shape = [n_samples]) – The target val-
ues (real numbers).

• sample_weight (array-like of shape =
[n_samples], optional) – Sample weights. If None, the
sample weights are initialized to 1 / n_samples.

1.6. API Documentation 77

SciKit-Learn Laboratory Documentation, Release 1.5.3

Returns self

Return type object

predict(X)
Predict regression value for X.

The predicted regression value of an input sample is computed as the weighted median
prediction of the classifiers in the ensemble.

Parameters X ({array-like, sparse matrix} of shape =
[n_samples, n_features]) – The training input samples. Sparse
matrix can be CSC, CSR, COO, DOK, or LIL. DOK and LIL are
converted to CSR.

Returns y – The predicted regression values.

Return type array of shape = [n_samples]

class skll.learner.RescaledBayesianRidge(constrain=True,
rescale=True, **kwargs)

Bases: sklearn.linear_model.bayes.BayesianRidge

fit(X, y=None)
Fit the model

Parameters

• X (numpy array of shape [n_samples,n_features]) –
Training data

• y (numpy array of shape [n_samples]) – Target values.
Will be cast to X’s dtype if necessary

• sample_weight (numpy array of shape [n_samples])
– Individual weights for each sample

New in version 0.20: parameter sample_weight support to Bayesian-
Ridge.

Returns self

Return type returns an instance of self.

predict(X)
Predict using the linear model.

In addition to the mean of the predictive distribution, also its standard deviation can be
returned.

Parameters

• X ({array-like, sparse matrix}, shape =
(n_samples, n_features)) – Samples.

78 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• return_std (boolean, optional) – Whether to return the
standard deviation of posterior prediction.

Returns

• y_mean (array, shape = (n_samples,)) – Mean of predictive distribu-
tion of query points.

• y_std (array, shape = (n_samples,)) – Standard deviation of predictive
distribution of query points.

class skll.learner.RescaledDecisionTreeRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.tree.tree.DecisionTreeRegressor

fit(X, y=None)
Build a decision tree regressor from the training set (X, y).

Parameters

• X (array-like or sparse matrix, shape =
[n_samples, n_features]) – The training input samples.
Internally, it will be converted to dtype=np.float32 and if a
sparse matrix is provided to a sparse csc_matrix.

• y (array-like, shape = [n_samples] or
[n_samples, n_outputs]) – The target values (real num-
bers). Use dtype=np.float64 and order='C' for maximum
efficiency.

• sample_weight (array-like, shape = [n_samples]
or None) – Sample weights. If None, then samples are equally
weighted. Splits that would create child nodes with net zero or negative
weight are ignored while searching for a split in each node.

• check_input (boolean, (default=True)) – Allow to by-
pass several input checking. Don’t use this parameter unless you know
what you do.

• X_idx_sorted (array-like, shape = [n_samples,
n_features], optional) – The indexes of the sorted training
input samples. If many tree are grown on the same dataset, this allows
the ordering to be cached between trees. If None, the data will be
sorted here. Don’t use this parameter unless you know what to do.

Returns self

Return type object

predict(X)
Predict class or regression value for X.

1.6. API Documentation 79

SciKit-Learn Laboratory Documentation, Release 1.5.3

For a classification model, the predicted class for each sample in X is returned. For a
regression model, the predicted value based on X is returned.

Parameters

• X (array-like or sparse matrix of shape =
[n_samples, n_features]) – The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

• check_input (boolean, (default=True)) – Allow to by-
pass several input checking. Don’t use this parameter unless you know
what you do.

Returns y – The predicted classes, or the predict values.

Return type array of shape = [n_samples] or [n_samples, n_outputs]

class skll.learner.RescaledElasticNet(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.linear_model.coordinate_descent.ElasticNet

fit(X, y=None)
Fit model with coordinate descent.

Parameters

• X (ndarray or scipy.sparse matrix, (n_samples,
n_features)) – Data

• y (ndarray, shape (n_samples,) or (n_samples,
n_targets)) – Target. Will be cast to X’s dtype if necessary

• check_input (boolean, (default=True)) – Allow to by-
pass several input checking. Don’t use this parameter unless you know
what you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence
it will automatically convert the X input as a Fortran-contiguous numpy array if neces-
sary.

To avoid memory re-allocation it is advised to allocate the initial data in memory di-
rectly using that format.

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

80 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledGradientBoostingRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.ensemble.gradient_boosting.
GradientBoostingRegressor

fit(X, y=None)
Fit the gradient boosting model.

Parameters

• X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – The input samples. Inter-
nally, it will be converted to dtype=np.float32 and if a sparse
matrix is provided to a sparse csr_matrix.

• y (array-like, shape (n_samples,)) – Target values
(strings or integers in classification, real numbers in regression) For
classification, labels must correspond to classes.

• sample_weight (array-like, shape (n_samples,) or
None) – Sample weights. If None, then samples are equally weighted.
Splits that would create child nodes with net zero or negative weight
are ignored while searching for a split in each node. In the case of
classification, splits are also ignored if they would result in any single
class carrying a negative weight in either child node.

• monitor (callable, optional) – The monitor is called after
each iteration with the current iteration, a reference to the estima-
tor and the local variables of _fit_stages as keyword arguments
callable(i, self, locals()). If the callable returns True
the fitting procedure is stopped. The monitor can be used for various
things such as computing held-out estimates, early stopping, model in-
trospect, and snapshoting.

Returns self

Return type object

predict(X)
Predict regression target for X.

Parameters X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – The input samples. Internally,
it will be converted to dtype=np.float32 and if a sparse matrix is
provided to a sparse csr_matrix.

1.6. API Documentation 81

SciKit-Learn Laboratory Documentation, Release 1.5.3

Returns y – The predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledHuberRegressor(constrain=True,
rescale=True, **kwargs)

Bases: sklearn.linear_model.huber.HuberRegressor

fit(X, y=None)
Fit the model according to the given training data.

Parameters

• X (array-like, shape (n_samples, n_features)) –
Training vector, where n_samples in the number of samples and
n_features is the number of features.

• y (array-like, shape (n_samples,)) – Target vector rela-
tive to X.

• sample_weight (array-like, shape (n_samples,)) –
Weight given to each sample.

Returns self

Return type object

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledKNeighborsRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.neighbors.regression.KNeighborsRegressor

fit(X, y=None)
Fit the model using X as training data and y as target values

Parameters

• X ({array-like, sparse matrix, BallTree,
KDTree}) – Training data. If array or matrix, shape [n_samples,
n_features], or [n_samples, n_samples] if metric=’precomputed’.

• y ({array-like, sparse matrix}) –

82 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Target values, array of float values, shape = [n_samples] or
[n_samples, n_outputs]

predict(X)
Predict the target for the provided data

Parameters X (array-like, shape (n_query, n_features),
or (n_query, n_indexed) if metric ==
'precomputed') – Test samples.

Returns y – Target values

Return type array of int, shape = [n_samples] or [n_samples, n_outputs]

class skll.learner.RescaledLars(constrain=True, rescale=True, **kwargs)
Bases: sklearn.linear_model.least_angle.Lars

fit(X, y=None)
Fit the model using X, y as training data.

Parameters

• X (array-like, shape (n_samples, n_features)) –
Training data.

• y (array-like, shape (n_samples,) or (n_samples,
n_targets)) – Target values.

• Xy (array-like, shape (n_samples,) or
(n_samples, n_targets), optional) – Xy = np.dot(X.T,
y) that can be precomputed. It is useful only when the Gram matrix is
precomputed.

Returns self – returns an instance of self.

Return type object

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledLasso(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.linear_model.coordinate_descent.Lasso

fit(X, y=None)
Fit model with coordinate descent.

1.6. API Documentation 83

SciKit-Learn Laboratory Documentation, Release 1.5.3

Parameters

• X (ndarray or scipy.sparse matrix, (n_samples,
n_features)) – Data

• y (ndarray, shape (n_samples,) or (n_samples,
n_targets)) – Target. Will be cast to X’s dtype if necessary

• check_input (boolean, (default=True)) – Allow to by-
pass several input checking. Don’t use this parameter unless you know
what you do.

Notes

Coordinate descent is an algorithm that considers each column of data at a time hence
it will automatically convert the X input as a Fortran-contiguous numpy array if neces-
sary.

To avoid memory re-allocation it is advised to allocate the initial data in memory di-
rectly using that format.

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledLinearRegression(constrain=True,
rescale=True, **kwargs)

Bases: sklearn.linear_model.base.LinearRegression

fit(X, y=None)
Fit linear model.

Parameters

• X (array-like or sparse matrix, shape
(n_samples, n_features)) – Training data

• y (array_like, shape (n_samples, n_targets)) – Tar-
get values. Will be cast to X’s dtype if necessary

• sample_weight (numpy array of shape [n_samples])
– Individual weights for each sample

New in version 0.17: parameter sample_weight support to Linear-
Regression.

84 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Returns self

Return type returns an instance of self.

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledLinearSVR(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.svm.classes.LinearSVR

fit(X, y=None)
Fit the model according to the given training data.

Parameters

• X ({array-like, sparse matrix}, shape =
[n_samples, n_features]) – Training vector, where
n_samples in the number of samples and n_features is the num-
ber of features.

• y (array-like, shape = [n_samples]) – Target vector rel-
ative to X

• sample_weight (array-like, shape = [n_samples],
optional) – Array of weights that are assigned to individual
samples. If not provided, then each sample is given unit weight.

Returns self

Return type object

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledMLPRegressor(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.neural_network.multilayer_perceptron.
MLPRegressor

1.6. API Documentation 85

SciKit-Learn Laboratory Documentation, Release 1.5.3

fit(X, y=None)
Fit the model to data matrix X and target(s) y.

Parameters

• X (array-like or sparse matrix, shape
(n_samples, n_features)) – The input data.

• y (array-like, shape (n_samples,) or (n_samples,
n_outputs)) – The target values (class labels in classification, real
numbers in regression).

Returns self

Return type returns a trained MLP model.

predict(X)
Predict using the multi-layer perceptron model.

Parameters X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – The input data.

Returns y – The predicted values.

Return type array-like, shape (n_samples, n_outputs)

class skll.learner.RescaledRANSACRegressor(constrain=True,
rescale=True, **kwargs)

Bases: sklearn.linear_model.ransac.RANSACRegressor

fit(X, y=None)
Fit estimator using RANSAC algorithm.

Parameters

• X (array-like or sparse matrix, shape
[n_samples, n_features]) – Training data.

• y (array-like, shape = [n_samples] or
[n_samples, n_targets]) – Target values.

• sample_weight (array-like, shape = [n_samples]) –
Individual weights for each sample raises error if sample_weight is
passed and base_estimator fit method does not support it.

Raises ValueError – If no valid consensus set could be found. This oc-
curs if is_data_valid and is_model_valid return False for all max_trials
randomly chosen sub-samples.

predict(X)
Predict using the estimated model.

This is a wrapper for estimator_.predict(X).

86 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

Parameters X (numpy array of shape [n_samples,
n_features]) –

Returns y – Returns predicted values.

Return type array, shape = [n_samples] or [n_samples, n_targets]

class skll.learner.RescaledRandomForestRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.ensemble.forest.RandomForestRegressor

fit(X, y=None)
Build a forest of trees from the training set (X, y).

Parameters

• X (array-like or sparse matrix of shape =
[n_samples, n_features]) – The training input samples.
Internally, its dtype will be converted to dtype=np.float32.
If a sparse matrix is provided, it will be converted into a sparse
csc_matrix.

• y (array-like, shape = [n_samples] or
[n_samples, n_outputs]) – The target values (class labels in
classification, real numbers in regression).

• sample_weight (array-like, shape = [n_samples]
or None) – Sample weights. If None, then samples are equally
weighted. Splits that would create child nodes with net zero or negative
weight are ignored while searching for a split in each node. In the
case of classification, splits are also ignored if they would result in any
single class carrying a negative weight in either child node.

Returns self

Return type object

predict(X)
Predict regression target for X.

The predicted regression target of an input sample is computed as the mean predicted
regression targets of the trees in the forest.

Parameters X (array-like or sparse matrix of shape =
[n_samples, n_features]) – The input samples. Internally, its
dtype will be converted to dtype=np.float32. If a sparse matrix is
provided, it will be converted into a sparse csr_matrix.

Returns y – The predicted values.

Return type array of shape = [n_samples] or [n_samples, n_outputs]

1.6. API Documentation 87

SciKit-Learn Laboratory Documentation, Release 1.5.3

class skll.learner.RescaledRidge(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.linear_model.ridge.Ridge

fit(X, y=None)
Fit Ridge regression model

Parameters

• X ({array-like, sparse matrix}, shape =
[n_samples, n_features]) – Training data

• y (array-like, shape = [n_samples] or
[n_samples, n_targets]) – Target values

• sample_weight (float or numpy array of shape
[n_samples]) – Individual weights for each sample

Returns self

Return type returns an instance of self.

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.RescaledSGDRegressor(constrain=True, rescale=True,
**kwargs)

Bases: sklearn.linear_model.stochastic_gradient.SGDRegressor

fit(X, y=None)
Fit linear model with Stochastic Gradient Descent.

Parameters

• X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – Training data

• y (numpy array, shape (n_samples,)) – Target values

• coef_init (array, shape (n_features,)) – The initial
coefficients to warm-start the optimization.

• intercept_init (array, shape (1,)) – The initial intercept
to warm-start the optimization.

• sample_weight (array-like, shape (n_samples,
), optional) – Weights applied to individual samples (1. for

88 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

unweighted).

Returns self

Return type returns an instance of self.

predict(X)
Predict using the linear model

Parameters X ({array-like, sparse matrix}, shape
(n_samples, n_features)) –

Returns Predicted target values per element in X.

Return type array, shape (n_samples,)

class skll.learner.RescaledSVR(constrain=True, rescale=True, **kwargs)
Bases: sklearn.svm.classes.SVR

fit(X, y=None)
Fit the SVM model according to the given training data.

Parameters

• X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – Training vectors, where
n_samples is the number of samples and n_features is the num-
ber of features. For kernel=”precomputed”, the expected shape of X is
(n_samples, n_samples).

• y (array-like, shape (n_samples,)) – Target values (class
labels in classification, real numbers in regression)

• sample_weight (array-like, shape (n_samples,)) –
Per-sample weights. Rescale C per sample. Higher weights force the
classifier to put more emphasis on these points.

Returns self

Return type object

Notes

If X and y are not C-ordered and contiguous arrays of np.float64 and X is not a
scipy.sparse.csr_matrix, X and/or y may be copied.

If X is a dense array, then the other methods will not support sparse matrices as input.

predict(X)
Perform regression on samples in X.

For an one-class model, +1 (inlier) or -1 (outlier) is returned.

1.6. API Documentation 89

SciKit-Learn Laboratory Documentation, Release 1.5.3

Parameters X ({array-like, sparse matrix}, shape
(n_samples, n_features)) – For kernel=”precomputed”,
the expected shape of X is (n_samples_test, n_samples_train).

Returns y_pred

Return type array, shape (n_samples,)

class skll.learner.RescaledTheilSenRegressor(constrain=True,
rescale=True,
**kwargs)

Bases: sklearn.linear_model.theil_sen.TheilSenRegressor

fit(X, y=None)
Fit linear model.

Parameters

• X (numpy array of shape [n_samples, n_features])
– Training data

• y (numpy array of shape [n_samples]) – Target values

Returns self

Return type returns an instance of self.

predict(X)
Predict using the linear model

Parameters X (array_like or sparse matrix, shape
(n_samples, n_features)) – Samples.

Returns C – Returns predicted values.

Return type array, shape (n_samples,)

class skll.learner.SelectByMinCount(min_count=1)
Bases: sklearn.feature_selection.univariate_selection.
SelectKBest

Select features occurring in more (and/or fewer than) than a specified number of examples
in the training data (or a CV training fold).

Parameters min_count (int, optional) – The minimum feature count
to select. Defaults to 1.

fit(X, y=None)
Fit the SelectByMinCount model.

Parameters

• X (array-like, with shape (n_samples,
n_features)) – The training data to fit.

90 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• y (Ignored) –

Returns

Return type self

skll.learner.rescaled(cls)
Decorator to create regressors that store a min and a max for the training data and make sure
that predictions fall within that range. It also stores the means and SDs of the gold standard
and the predictions on the training set to rescale the predictions (e.g., as in e-rater).

Parameters cls (BaseEstimator) – An estimator class to add rescaling to.

Returns cls – Modified version of estimator class with rescaled functions added.

Return type BaseEstimator

Raises ValueError – If classifier cannot be rescaled (i.e. is not a regressor).

1.6.6 metrics Module

This module contains a bunch of evaluation metrics that can be used to evaluate the performance
of learners.

author Michael Heilman (mheilman@ets.org)

author Nitin Madnani (nmadnani@ets.org)

author Dan Blanchard (dblanchard@ets.org)

organization ETS

skll.metrics.f1_score_least_frequent(y_true, y_pred)
Calculate the F1 score of the least frequent label/class in y_true for y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – F1 score of the least frequent label.

Return type float

skll.metrics.kappa(y_true, y_pred, weights=None, allow_off_by_one=False)
Calculates the kappa inter-rater agreement between two the gold standard and the predicted
ratings. Potential values range from -1 (representing complete disagreement) to 1 (repre-
senting complete agreement). A kappa value of 0 is expected if all agreement is due to
chance.

1.6. API Documentation 91

mailto:mheilman@ets.org
mailto:nmadnani@ets.org
mailto:dblanchard@ets.org

SciKit-Learn Laboratory Documentation, Release 1.5.3

In the course of calculating kappa, all items in y_true and y_pred will first be converted
to floats and then rounded to integers.

It is assumed that y_true and y_pred contain the complete range of possible ratings.

This function contains a combination of code from yorchopolis’s kappa-stats and Ben Ham-
ner’s Metrics projects on Github.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

• weights (str or np.array, optional) – Specifies the
weight matrix for the calculation. Options are

- None = unweighted-kappa
- 'quadratic' = quadratic-weighted kappa
- 'linear' = linear-weighted kappa
- two-dimensional numpy array = a custom matrix of

weights. Each weight corresponds to the 𝑤𝑖𝑗 values in the wikipedia
description of how to calculate weighted Cohen’s kappa. Defaults to
None.

• allow_off_by_one (bool, optional) – If true, ratings that are
off by one are counted as equal, and all other differences are reduced by
one. For example, 1 and 2 will be considered to be equal, whereas 1
and 3 will have a difference of 1 for when building the weights matrix.
Defaults to False.

Returns k – The kappa score, or weighted kappa score.

Return type float

Raises

• AssertionError – If y_true != y_pred.

• ValueError – If labels cannot be converted to int.

• ValueError – If invalid weight scheme.

skll.metrics.kendall_tau(y_true, y_pred)
Calculate Kendall’s tau between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

92 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Kendall’s tau if well-defined, else 0.0

Return type float

skll.metrics.pearson(y_true, y_pred)
Calculate Pearson product-moment correlation coefficient between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Pearson product-moment correlation coefficient if well-
defined, else 0.0

Return type float

skll.metrics.spearman(y_true, y_pred)
Calculate Spearman’s rank correlation coefficient between y_true and y_pred.

Parameters

• y_true (array-like of float) – The true/actual/gold labels for
the data.

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – Spearman’s rank correlation coefficient if well-defined, else
0.0

Return type float

skll.metrics.use_score_func(func_name, y_true, y_pred)
Call the scoring function in sklearn.metrics.SCORERS with the given name. This
takes care of handling keyword arguments that were pre-specified when creating the scorer.
This applies any sign-flipping that was specified by make_scorer() when the scorer was
created.

Parameters

• func_name (str) – The name of the objective function to use from
SCORERS.

• y_true (array-like of float) – The true/actual/gold labels for
the data.

1.6. API Documentation 93

SciKit-Learn Laboratory Documentation, Release 1.5.3

• y_pred (array-like of float) – The predicted/observed labels
for the data.

Returns ret_score – The scored result from the given scorer.

Return type float

1.7 Internal Documentation

1.7.1 Release Process

This document is only meant for the project administrators, not users and developers.

1. Create a release branch on GitHub.

2. In the release branch:

a. update the version numbers in version.py.

b. update the conda recipe.

c. update the documentation with any new features or details about changes.

d. run make linkcheck on the documentation and fix any redirected/broken links.

e. update the README.

3. Build the new conda package locally on your mac using the following command (Note: you
may have to replace the contents of the requirements() function in setup.py with a
pass statement to get conda build to work):

conda build -c defaults -c conda-forge --python=3.6 --numpy=1.14
→˓skll

4. Convert the package for both linux and windows:

conda convert -p win-64 -p linux-64 <mac package tarball>

5. Upload each of the packages to anaconda.org using anaconda upload <package
tarball>.

6. Upload source package to PyPI using python setup.py sdist upload.

7. Draft a release on GitHub.

8. Make a pull request with the release branch to be merged into master and request code
review.

9. Once the build for the PR passes and the reviewers approve, merge the release branch into
master.

94 Chapter 1. Documentation

SciKit-Learn Laboratory Documentation, Release 1.5.3

10. Make sure that the RTFD build for master passes.

11. Tag the latest commit in master with the appropriate release tag and publish the release on
GitHub.

12. Send an email around at ETS announcing the release and the changes.

1.7. Internal Documentation 95

SciKit-Learn Laboratory Documentation, Release 1.5.3

96 Chapter 1. Documentation

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

97

SciKit-Learn Laboratory Documentation, Release 1.5.3

98 Chapter 2. Indices and tables

Python Module Index

s
skll.data.featureset, 55
skll.data.readers, 58
skll.data.writers, 64
skll.experiments, 67
skll.learner, 69
skll.metrics, 91

99

SciKit-Learn Laboratory Documentation, Release 1.5.3

100 Python Module Index

Index

Symbols
-arff_regression

skll_convert command line
option, 37

-arff_relation ARFF_RELATION
skll_convert command line

option, 37
-k <k>

print_model_weights command
line option, 37

-reuse_libsvm_map
REUSE_LIBSVM_MAP

skll_convert command line
option, 37

-version
compute_eval_from_predictions

command line option, 33
filter_features command line

option, 34
generate_predictions command

line option, 35
join_features command line

option, 36
print_model_weights command

line option, 37
run_experiment command line

option, 31
skll_convert command line

option, 37
summarize_results command

line option, 38
-A, -ablation_all

run_experiment command line
option, 31

-I <id <id ...>>, -id <id <id
...>>

filter_features command line
option, 34

-L <label <label ...>>, -label
<label <label ...>>

filter_features command line
option, 34

-a <num_features>, -ablation
<num_features>

run_experiment command line
option, 30

-a, -ablation
summarize_results command

line option, 38
-a, -all_probabilities

generate_predictions command
line option, 35

-f <feature <feature ...>>,
-feature <feature <feature
...>>

filter_features command line
option, 34

-i <id_col>, -id_col <id_col>
generate_predictions command

line option, 35
-i, -inverse

filter_features command line
option, 34

-k, -keep-models

101

SciKit-Learn Laboratory Documentation, Release 1.5.3

run_experiment command line
option, 31

-l <label_col>, -label_col
<label_col>

generate_predictions command
line option, 35

join_features command line
option, 36

skll_convert command line
option, 37

-l label_col, -label_col
label_col

filter_features command line
option, 34

-l, -local
run_experiment command line

option, 31
-m <machines>, -machines

<machines>
run_experiment command line

option, 31
-p <positive_label>,

-positive_label
<positive_label>

generate_predictions command
line option, 35

-q <queue>, -queue <queue>
run_experiment command line

option, 31
-q, -quiet

filter_features command line
option, 34

generate_predictions command
line option, 35

join_features command line
option, 36

skll_convert command line
option, 37

-r, -resume
run_experiment command line

option, 31
-t <threshold>, -threshold

<threshold>
generate_predictions command

line option, 35

-v, -verbose
run_experiment command line

option, 31

A
ARFFReader (class in skll.data.readers), 59
ARFFWriter (class in skll.data.writers), 64

C
compute_eval_from_predictions

command line option
-version, 33
examples_file, 33
metric_names, 33
predictions_file, 33

cross_validate() (skll.Learner method),
47

cross_validate() (skll.learner.Learner
method), 72

CSVReader (class in skll.data.readers), 60
CSVWriter (class in skll.data.writers), 64

D
default() (skll.experiments.NumpyTypeEncoder

method), 68
Densifier (class in skll.learner), 69
DictListReader (class in

skll.data.readers), 60

E
evaluate() (skll.Learner method), 49
evaluate() (skll.learner.Learner method),

73
examples_file

compute_eval_from_predictions
command line option, 33

F
f1_score_least_frequent() (in mod-

ule skll), 53
f1_score_least_frequent() (in mod-

ule skll.metrics), 91
FeatureSet (class in skll), 39
FeatureSet (class in skll.data.featureset), 55
filter() (skll.data.featureset.FeatureSet

method), 56

102 Index

SciKit-Learn Laboratory Documentation, Release 1.5.3

filter() (skll.FeatureSet method), 40
filter_features command line

option
-version, 34
-I <id <id ...>>, -id <id <id

...>>, 34
-L <label <label ...>>,

-label <label <label
...>>, 34

-f <feature <feature ...>>,
-feature <feature <feature
...>>, 34

-i, -inverse, 34
-l label_col, -label_col

label_col, 34
-q, -quiet, 34
infile, 34
outfile, 34

filtered_iter()
(skll.data.featureset.FeatureSet
method), 56

filtered_iter() (skll.FeatureSet
method), 41

FilteredLeaveOneGroupOut (class in
skll.learner), 70

fit() (skll.learner.RescaledAdaBoostRegressor
method), 77

fit() (skll.learner.RescaledBayesianRidge
method), 78

fit() (skll.learner.RescaledDecisionTreeRegressor
method), 79

fit() (skll.learner.RescaledElasticNet
method), 80

fit() (skll.learner.RescaledGradientBoostingRegressor
method), 81

fit() (skll.learner.RescaledHuberRegressor
method), 82

fit() (skll.learner.RescaledKNeighborsRegressor
method), 82

fit() (skll.learner.RescaledLars method), 83
fit() (skll.learner.RescaledLasso method), 83
fit() (skll.learner.RescaledLinearRegression

method), 84
fit() (skll.learner.RescaledLinearSVR

method), 85

fit() (skll.learner.RescaledMLPRegressor
method), 85

fit() (skll.learner.RescaledRandomForestRegressor
method), 87

fit() (skll.learner.RescaledRANSACRegressor
method), 86

fit() (skll.learner.RescaledRidge method), 88
fit() (skll.learner.RescaledSGDRegressor

method), 88
fit() (skll.learner.RescaledSVR method), 89
fit() (skll.learner.RescaledTheilSenRegressor

method), 90
fit() (skll.learner.SelectByMinCount

method), 90
fit_transform() (skll.learner.Densifier

method), 70
for_path() (skll.data.readers.Reader class

method), 62
for_path() (skll.data.writers.Writer class

method), 67
for_path() (skll.Reader class method), 43
for_path() (skll.Writer class method), 45
from_data_frame()

(skll.data.featureset.FeatureSet static
method), 57

from_data_frame() (skll.FeatureSet static
method), 41

from_file() (skll.Learner class method), 49
from_file() (skll.learner.Learner class

method), 74

G
generate_predictions command

line option
-version, 35
-a, -all_probabilities, 35
-i <id_col>, -id_col

<id_col>, 35
-l <label_col>, -label_col

<label_col>, 35
-p <positive_label>,

-positive_label
<positive_label>, 35

-q, -quiet, 35

Index 103

SciKit-Learn Laboratory Documentation, Release 1.5.3

-t <threshold>, -threshold
<threshold>, 35

input_file(s), 35
model_file, 35

H
has_labels (skll.data.featureset.FeatureSet

attribute), 58
has_labels (skll.FeatureSet attribute), 42

I
infile

filter_features command line
option, 34

skll_convert command line
option, 37

infile ...
join_features command line

option, 36
input_file(s)

generate_predictions command
line option, 35

J
join_features command line

option
-version, 36
-l <label_col>, -label_col

<label_col>, 36
-q, -quiet, 36
infile ..., 36
outfile, 36

json_file
summarize_results command

line option, 38

K
kappa() (in module skll), 53
kappa() (in module skll.metrics), 91
kendall_tau() (in module skll), 54
kendall_tau() (in module skll.metrics), 92

L
Learner (class in skll), 46
Learner (class in skll.learner), 71

learning_curve() (skll.Learner method),
50

learning_curve() (skll.learner.Learner
method), 74

LibSVMReader (class in skll.data.readers),
60

LibSVMWriter (class in skll.data.writers),
65

load() (skll.Learner method), 50
load() (skll.learner.Learner method), 75

M
MegaMReader (class in skll.data.readers), 61
MegaMWriter (class in skll.data.writers), 65
metric_names

compute_eval_from_predictions
command line option, 33

model (skll.Learner attribute), 51
model (skll.learner.Learner attribute), 75
model_file

generate_predictions command
line option, 35

print_model_weights command
line option, 36

model_kwargs (skll.Learner attribute), 51
model_kwargs (skll.learner.Learner at-

tribute), 75
model_params (skll.Learner attribute), 51
model_params (skll.learner.Learner at-

tribute), 75
model_type (skll.Learner attribute), 51
model_type (skll.learner.Learner attribute),

75

N
NDJReader (class in skll.data.readers), 61
NDJWriter (class in skll.data.writers), 65
NumpyTypeEncoder (class in

skll.experiments), 67

O
outfile

filter_features command line
option, 34

104 Index

SciKit-Learn Laboratory Documentation, Release 1.5.3

join_features command line
option, 36

skll_convert command line
option, 37

output_dir
plot_learning_curves command

line option, 36

P
pearson() (in module skll), 55
pearson() (in module skll.metrics), 93
plot_learning_curves command

line option
output_dir, 36
tsv_file, 36

predict() (skll.Learner method), 51
predict() (skll.learner.Learner method), 75
predict() (skll.learner.RescaledAdaBoostRegressor

method), 78
predict() (skll.learner.RescaledBayesianRidge

method), 78
predict() (skll.learner.RescaledDecisionTreeRegressor

method), 79
predict() (skll.learner.RescaledElasticNet

method), 80
predict() (skll.learner.RescaledGradientBoostingRegressor

method), 81
predict() (skll.learner.RescaledHuberRegressor

method), 82
predict() (skll.learner.RescaledKNeighborsRegressor

method), 83
predict() (skll.learner.RescaledLars

method), 83
predict() (skll.learner.RescaledLasso

method), 84
predict() (skll.learner.RescaledLinearRegression

method), 85
predict() (skll.learner.RescaledLinearSVR

method), 85
predict() (skll.learner.RescaledMLPRegressor

method), 86
predict() (skll.learner.RescaledRandomForestRegressor

method), 87
predict() (skll.learner.RescaledRANSACRegressor

method), 86

predict() (skll.learner.RescaledRidge
method), 88

predict() (skll.learner.RescaledSGDRegressor
method), 89

predict() (skll.learner.RescaledSVR
method), 89

predict() (skll.learner.RescaledTheilSenRegressor
method), 90

predictions_file
compute_eval_from_predictions

command line option, 33
print_model_weights command

line option
-k <k>, 37
-version, 37
model_file, 36
sign {positive,negative,all},

37
probability (skll.Learner attribute), 51
probability (skll.learner.Learner at-

tribute), 76

R
read() (skll.data.readers.Reader method), 62
read() (skll.Reader method), 44
Reader (class in skll), 42
Reader (class in skll.data.readers), 61
rescaled() (in module skll.learner), 91
RescaledAdaBoostRegressor (class in

skll.learner), 77
RescaledBayesianRidge (class in

skll.learner), 78
RescaledDecisionTreeRegressor

(class in skll.learner), 79
RescaledElasticNet (class in

skll.learner), 80
RescaledGradientBoostingRegressor

(class in skll.learner), 81
RescaledHuberRegressor (class in

skll.learner), 82
RescaledKNeighborsRegressor (class

in skll.learner), 82
RescaledLars (class in skll.learner), 83
RescaledLasso (class in skll.learner), 83

Index 105

SciKit-Learn Laboratory Documentation, Release 1.5.3

RescaledLinearRegression (class in
skll.learner), 84

RescaledLinearSVR (class in skll.learner),
85

RescaledMLPRegressor (class in
skll.learner), 85

RescaledRandomForestRegressor
(class in skll.learner), 87

RescaledRANSACRegressor (class in
skll.learner), 86

RescaledRidge (class in skll.learner), 87
RescaledSGDRegressor (class in

skll.learner), 88
RescaledSVR (class in skll.learner), 89
RescaledTheilSenRegressor (class in

skll.learner), 90
run_configuration() (in module skll),

45
run_configuration() (in module

skll.experiments), 68
run_experiment command line

option
-version, 31
-A, -ablation_all, 31
-a <num_features>, -ablation

<num_features>, 30
-k, -keep-models, 31
-l, -local, 31
-m <machines>, -machines

<machines>, 31
-q <queue>, -queue <queue>, 31
-r, -resume, 31
-v, -verbose, 31

S
safe_float() (in module skll.data.readers),

63
save() (skll.Learner method), 51
save() (skll.learner.Learner method), 76
SelectByMinCount (class in skll.learner),

90
sign {positive,negative,all}

print_model_weights command
line option, 37

skll.data.featureset (module), 55

skll.data.readers (module), 58
skll.data.writers (module), 64
skll.experiments (module), 67
skll.learner (module), 69
skll.metrics (module), 91
skll_convert command line

option
-arff_regression, 37
-arff_relation ARFF_RELATION,

37
-reuse_libsvm_map

REUSE_LIBSVM_MAP, 37
-version, 37
-l <label_col>, -label_col

<label_col>, 37
-q, -quiet, 37
infile, 37
outfile, 37

spearman() (in module skll), 54
spearman() (in module skll.metrics), 93
split() (skll.learner.FilteredLeaveOneGroupOut

method), 70
split_by_ids()

(skll.data.featureset.FeatureSet static
method), 58

split_by_ids() (skll.FeatureSet static
method), 42

split_with_quotes()
(skll.data.readers.ARFFReader
method), 59

summarize_results command line
option

-version, 38
-a, -ablation, 38
json_file, 38
summary_file, 38

summary_file
summarize_results command

line option, 38

T
train() (skll.Learner method), 52
train() (skll.learner.Learner method), 76
tsv_file

106 Index

SciKit-Learn Laboratory Documentation, Release 1.5.3

plot_learning_curves command
line option, 36

TSVReader (class in skll.data.readers), 63
TSVWriter (class in skll.data.writers), 65

U
use_score_func() (in module

skll.metrics), 93

W
write() (skll.data.writers.Writer method), 67
write() (skll.Writer method), 45
Writer (class in skll), 44
Writer (class in skll.data.writers), 66

Index 107

	Documentation
	Installation
	License
	Tutorial
	Workflow
	Titanic Example
	Running your own experiments

	Running Experiments
	Quick Example
	Feature file formats
	Creating configuration files
	Using run_experiment

	Utility Scripts
	compute_eval_from_predictions
	filter_features
	generate_predictions
	join_features
	plot_learning_curves
	print_model_weights
	skll_convert
	summarize_results

	API Documentation
	Quickstart
	skll Package
	data Package
	experiments Module
	learner Module
	metrics Module

	Internal Documentation
	Release Process

	Indices and tables
	Python Module Index
	Index

