
pytracemalloc Documentation
Release latest

Victor Stinner

Nov 12, 2018

Contents

1 Table of Contents 3
1.1 Installation . 3
1.2 Examples . 5
1.3 API . 9
1.4 tracemallocqt: GUI to analyze snapshots . 14
1.5 Changelog . 16

2 Status of the module 19

3 Similar Projects 21

Python Module Index 23

i

ii

pytracemalloc Documentation, Release latest

The tracemalloc module is a debug tool to trace
memory blocks allocated by Python. It provides the following information:

• Traceback where an object was allocated

• Statistics on allocated memory blocks per filename and per line number: total size, number and average size of
allocated memory blocks

• Compute the differences between two snapshots to detect memory leaks

To trace most memory blocks allocated by Python, the module should be started as early as possible by setting the
PYTHONTRACEMALLOC environment variable to 1. The tracemalloc.start() function can be called at run-
time to start tracing Python memory allocations.

By default, a trace of an allocated memory block only stores the most recent frame (1 frame). To store 25 frames at
startup: set the PYTHONTRACEMALLOC environment variable to 25, or use tracemalloc.start(25).

Quick Links:

• pytracemalloc documentation (this documentation)

• Download pytracemalloc on PyPI

• pytracemalloc on GitHub (source code, bugs)

• Qt graphical interface: tracemallocqt

The tracemalloc module has been integrated in Python 3.4: read tracemalloc module documentation.

Contents 1

http://unmaintained.tech/
http://www.flickr.com/photos/haypo/7199655050/
https://pytracemalloc.readthedocs.io/
https://pypi.org/project/pytracemalloc/
https://github.com/vstinner/pytracemalloc
https://github.com/vstinner/tracemallocqt
http://docs.python.org/dev/library/tracemalloc.html

pytracemalloc Documentation, Release latest

2 Contents

CHAPTER 1

Table of Contents

1.1 Installation

1.1.1 Use Python 3.4 or newer

tracemalloc is now part of Python 3.4 standard library! Nothing to do, enjoy!

Note: Installing pytracemalloc on Python older than 3.4 is much more complex, it requires to recompile a patched
version of Python. It is worth to try to run your application on Python 3.4 rather than trying to compile and install
manually pytracemalloc on older versions of Python.

1.1.2 Linux packages

Ubuntu packages for pytracemalloc 1.2: pytracemalloc 1.0 PPA by Ionel Cristian Maries.

1.1.3 Manual installation

First, create the directory /opt/tracemalloc. Example:

sudo mkdir /opt/tracemalloc
sudo chown $USER: /opt/tracemalloc

Go into the /opt/tracemalloc directory. Then follow these commands to compile a patched Python and install pytrace-
malloc:

wget http://www.python.org/ftp/python/2.7.15/Python-2.7.15.tgz
wget https://pypi.org/packages/source/p/pytracemalloc/pytracemalloc-1.4.tar.gz
tar -xf Python-2.7.15.tgz
tar -xf pytracemalloc-1.4.tar.gz

(continues on next page)

3

https://launchpad.net/~ionel-mc/+archive/pytracemalloc-1.0

pytracemalloc Documentation, Release latest

(continued from previous page)

cd Python-2.7.15
patch -p1 < ../pytracemalloc-1.4/patches/2.7.15/pep445.patch
./configure --enable-unicode=ucs4 --prefix=/opt/tracemalloc/py27
make
make install
cd ../pytracemalloc-1.4
/opt/tracemalloc/py27/bin/python2.7 setup.py install

You may also run unit tests:

/opt/tracemalloc/py27/bin/python2.7 test_tracemalloc.py -v

You have now a patched Python 2.7 installed in /opt/tracemalloc/py27/bin/python2.7 with the
tracemalloc module installed, congrats!

To use modules installed for the system Python, directories of sys.path should be copied from the system Python
to the patched Python. Example of command to generate an environment variable to use system modules:

python -c 'import sys; print("PYTHONPATH=%s" % ":".join(filter(bool, sys.path)))'

1.1.4 Patch Python

To install pytracemalloc, you need a modified Python runtime:

• Download Python source code (tarball)

• Uncompress the tarball and enter the newly created directory (ex: Python-2.7.8)

• Apply the patch of your Python version, example:

patch -p1 < ~/pytracemalloc-1.0/patches/2.7/pep445.patch

• Compile and install Python:

./configure --enable-unicode=ucs4 --prefix=/opt/python && make && sudo make
→˓install

Note: --enable-unicode=ucs4 uses the wide mode: store Unicode code points in 32-bit (4 bytes per character).
It is the mode used by all Linux distributions. Your modified Python will have the same ABI and so you should be
able to use extension modules of the system.

--enable-unicode=ucs4 is no more needed with Python 3.3 which always uses compact strings: see the PEP
393.

Note: Currently, only patches for Python 2.7 and 3.3 are provided. If you need patches for other Python versions,
please ask. The code should work on Python 2.5-3.3.

1.1.5 Compile and install pytracemalloc

Dependencies:

• Python 2.5 - 3.3

4 Chapter 1. Table of Contents

http://www.python.org

pytracemalloc Documentation, Release latest

Download pytracemalloc from the Python Cheeseshop (PyPI).

Install pytracemalloc:

/opt/python/bin/python setup.py install

1.2 Examples

1.2.1 Display the top 10

Display the 10 files allocating the most memory:

import tracemalloc

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('lineno')

print("[Top 10]")
for stat in top_stats[:10]:

print(stat)

Example of output of the Python test suite:

[Top 10]
<frozen importlib._bootstrap>:716: size=4855 KiB, count=39328, average=126 B
<frozen importlib._bootstrap>:284: size=521 KiB, count=3199, average=167 B
/usr/lib/python3.4/collections/__init__.py:368: size=244 KiB, count=2315, average=108
→˓B
/usr/lib/python3.4/unittest/case.py:381: size=185 KiB, count=779, average=243 B
/usr/lib/python3.4/unittest/case.py:402: size=154 KiB, count=378, average=416 B
/usr/lib/python3.4/abc.py:133: size=88.7 KiB, count=347, average=262 B
<frozen importlib._bootstrap>:1446: size=70.4 KiB, count=911, average=79 B
<frozen importlib._bootstrap>:1454: size=52.0 KiB, count=25, average=2131 B
<string>:5: size=49.7 KiB, count=148, average=344 B
/usr/lib/python3.4/sysconfig.py:411: size=48.0 KiB, count=1, average=48.0 KiB

We can see that Python loaded 4.8 MiB data (bytecode and constants) from modules and that the collections
module allocated 244 KiB to build namedtuple types.

See Snapshot.statistics() for more options.

1.2.2 Compute differences

Take two snapshots and display the differences:

import tracemalloc
tracemalloc.start()
... start your application ...

snapshot1 = tracemalloc.take_snapshot()

(continues on next page)

1.2. Examples 5

https://pypi.python.org/pypi/pytracemalloc

pytracemalloc Documentation, Release latest

(continued from previous page)

... call the function leaking memory ...
snapshot2 = tracemalloc.take_snapshot()

top_stats = snapshot2.compare_to(snapshot1, 'lineno')

print("[Top 10 differences]")
for stat in top_stats[:10]:

print(stat)

Example of output before/after running some tests of the Python test suite:

[Top 10 differences]
<frozen importlib._bootstrap>:716: size=8173 KiB (+4428 KiB), count=71332 (+39369),
→˓average=117 B
/usr/lib/python3.4/linecache.py:127: size=940 KiB (+940 KiB), count=8106 (+8106),
→˓average=119 B
/usr/lib/python3.4/unittest/case.py:571: size=298 KiB (+298 KiB), count=589 (+589),
→˓average=519 B
<frozen importlib._bootstrap>:284: size=1005 KiB (+166 KiB), count=7423 (+1526),
→˓average=139 B
/usr/lib/python3.4/mimetypes.py:217: size=112 KiB (+112 KiB), count=1334 (+1334),
→˓average=86 B
/usr/lib/python3.4/http/server.py:848: size=96.0 KiB (+96.0 KiB), count=1 (+1),
→˓average=96.0 KiB
/usr/lib/python3.4/inspect.py:1465: size=83.5 KiB (+83.5 KiB), count=109 (+109),
→˓average=784 B
/usr/lib/python3.4/unittest/mock.py:491: size=77.7 KiB (+77.7 KiB), count=143 (+143),
→˓average=557 B
/usr/lib/python3.4/urllib/parse.py:476: size=71.8 KiB (+71.8 KiB), count=969 (+969),
→˓average=76 B
/usr/lib/python3.4/contextlib.py:38: size=67.2 KiB (+67.2 KiB), count=126 (+126),
→˓average=546 B

We can see that Python has loaded 8.2 MiB of module data (bytecode and constants), and that this is 4.4 MiBmore
than had been loaded before the tests, when the previous snapshot was taken. Similarly, the linecache module has
cached 940 KiB of Python source code to format tracebacks, all of it since the previous snapshot.

If the system has little free memory, snapshots can be written on disk using the Snapshot.dump() method to
analyze the snapshot offline. Then use the Snapshot.load() method reload the snapshot.

1.2.3 Get the traceback of a memory block

Code to display the traceback of the biggest memory block:

import tracemalloc

Store 25 frames
tracemalloc.start(25)

... run your application ...

snapshot = tracemalloc.take_snapshot()
top_stats = snapshot.statistics('traceback')

pick the biggest memory block

(continues on next page)

6 Chapter 1. Table of Contents

pytracemalloc Documentation, Release latest

(continued from previous page)

stat = top_stats[0]
print("%s memory blocks: %.1f KiB" % (stat.count, stat.size / 1024))
for line in stat.traceback.format():

print(line)

Example of output of the Python test suite (traceback limited to 25 frames):

903 memory blocks: 870.1 KiB
File "<frozen importlib._bootstrap>", line 716
File "<frozen importlib._bootstrap>", line 1036
File "<frozen importlib._bootstrap>", line 934
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/doctest.py", line 101
import pdb

File "<frozen importlib._bootstrap>", line 284
File "<frozen importlib._bootstrap>", line 938
File "<frozen importlib._bootstrap>", line 1068
File "<frozen importlib._bootstrap>", line 619
File "<frozen importlib._bootstrap>", line 1581
File "<frozen importlib._bootstrap>", line 1614
File "/usr/lib/python3.4/test/support/__init__.py", line 1728
import doctest

File "/usr/lib/python3.4/test/test_pickletools.py", line 21
support.run_doctest(pickletools)

File "/usr/lib/python3.4/test/regrtest.py", line 1276
test_runner()

File "/usr/lib/python3.4/test/regrtest.py", line 976
display_failure=not verbose)

File "/usr/lib/python3.4/test/regrtest.py", line 761
match_tests=ns.match_tests)

File "/usr/lib/python3.4/test/regrtest.py", line 1563
main()

File "/usr/lib/python3.4/test/__main__.py", line 3
regrtest.main_in_temp_cwd()

File "/usr/lib/python3.4/runpy.py", line 73
exec(code, run_globals)

File "/usr/lib/python3.4/runpy.py", line 160
"__main__", fname, loader, pkg_name)

We can see that the most memory was allocated in the importlib module to load data (bytecode and constants)
from modules: 870 KiB. The traceback is where the importlib loaded data most recently: on the import pdb
line of the doctest module. The traceback may change if a new module is loaded.

1.2.4 Pretty top

Code to display the 10 lines allocating the most memory with a pretty output, ignoring <frozen importlib.
_bootstrap> and <unknown> files:

import os
import tracemalloc

def display_top(snapshot, group_by='lineno', limit=10):

(continues on next page)

1.2. Examples 7

pytracemalloc Documentation, Release latest

(continued from previous page)

snapshot = snapshot.filter_traces((
tracemalloc.Filter(False, "<frozen importlib._bootstrap>"),
tracemalloc.Filter(False, "<unknown>"),

))
top_stats = snapshot.statistics(group_by)

print("Top %s lines" % limit)
for index, stat in enumerate(top_stats[:limit], 1):

frame = stat.traceback[0]
replace "/path/to/module/file.py" with "module/file.py"
filename = os.sep.join(frame.filename.split(os.sep)[-2:])
print("#%s: %s:%s: %.1f KiB"

% (index, filename, frame.lineno,
stat.size / 1024))

other = top_stats[limit:]
if other:

size = sum(stat.size for stat in other)
print("%s other: %.1f KiB" % (len(other), size / 1024))

total = sum(stat.size for stat in top_stats)
print("Total allocated size: %.1f KiB" % (total / 1024))

tracemalloc.start()

... run your application ...

snapshot = tracemalloc.take_snapshot()
display_top(snapshot)

Example of output of the Python test suite:

2013-11-08 14:16:58.149320: Top 10 lines
#1: collections/__init__.py:368: 291.9 KiB
#2: Lib/doctest.py:1291: 200.2 KiB
#3: unittest/case.py:571: 160.3 KiB
#4: Lib/abc.py:133: 99.8 KiB
#5: urllib/parse.py:476: 71.8 KiB
#6: <string>:5: 62.7 KiB
#7: Lib/base64.py:140: 59.8 KiB
#8: Lib/_weakrefset.py:37: 51.8 KiB
#9: collections/__init__.py:362: 50.6 KiB
#10: test/test_site.py:56: 48.0 KiB
7496 other: 4161.9 KiB
Total allocated size: 5258.8 KiB

See Snapshot.statistics() for more options.

1.2.5 Thread to write snapshots into files every minutes

Create a daemon thread writing snapshots every minutes into /tmp/tracemalloc-PPP-CCCC.pickle where
PPP is the identifier of the process and CCCC is a counter:

import pickle, gc, os, signal, threading, time, tracemalloc

class TakeSnapshot(threading.Thread):
(continues on next page)

8 Chapter 1. Table of Contents

pytracemalloc Documentation, Release latest

(continued from previous page)

daemon = True

def run(self):
if hasattr(signal, 'pthread_sigmask'):

Available on UNIX with Python 3.3+
signal.pthread_sigmask(signal.SIG_BLOCK, range(1, signal.NSIG))

counter = 1
while True:

time.sleep(60)
filename = ("/tmp/tracemalloc-%d-%04d.pickle"

% (os.getpid(), counter))
print("Write snapshot into %s..." % filename)
gc.collect()
snapshot = tracemalloc.take_snapshot()
with open(filename, "wb") as fp:

Pickle version 2 can be read by Python 2 and Python 3
pickle.dump(snapshot, fp, 2)

snapshot = None
print("Snapshot written into %s" % filename)
counter += 1

save 25 frames
tracemalloc.start(25)
TakeSnapshot().start()

1.3 API

The version of the module is tracemalloc.__version__ (string), example: "1.2".

1.3.1 Functions

clear_traces()
Clear traces of memory blocks allocated by Python.

See also stop().

get_object_traceback(obj)
Get the traceback where the Python object obj was allocated. Return a Traceback instance, or None if the
tracemalloc module is not tracing memory allocations or did not trace the allocation of the object.

See also gc.get_referrers() and sys.getsizeof() functions.

get_traceback_limit()
Get the maximum number of frames stored in the traceback of a trace.

The tracemalloc module must be tracing memory allocations to get the limit, otherwise an exception is
raised.

The limit is set by the start() function.

get_traced_memory()
Get the current size and peak size of memory blocks traced by the tracemalloc module as a tuple:
(current: int, peak: int).

1.3. API 9

pytracemalloc Documentation, Release latest

get_tracemalloc_memory()
Get the memory usage in bytes of the tracemalloc module used to store traces of memory blocks. Return
an int.

is_tracing()
True if the tracemalloc module is tracing Python memory allocations, False otherwise.

See also start() and stop() functions.

start(nframe: int=1)
Start tracing Python memory allocations: install hooks on Python memory allocators. Collected tracebacks of
traces will be limited to nframe frames. By default, a trace of a memory block only stores the most recent frame:
the limit is 1. nframe must be greater or equal to 1.

Storing more than 1 frame is only useful to compute statistics grouped by 'traceback' or to compute
cumulative statistics: see the Snapshot.compare_to() and Snapshot.statistics() methods.

Storing more frames increases the memory and CPU overhead of the tracemalloc module. Use the
get_tracemalloc_memory() function to measure how much memory is used by the tracemalloc
module.

See also stop(), is_tracing() and get_traceback_limit() functions.

stop()
Stop tracing Python memory allocations: uninstall hooks on Python memory allocators. Also clears all previ-
ously collected traces of memory blocks allocated by Python.

Call take_snapshot() function to take a snapshot of traces before clearing them.

See also start(), is_tracing() and clear_traces() functions.

take_snapshot()
Take a snapshot of traces of memory blocks allocated by Python. Return a new Snapshot instance.

The snapshot does not include memory blocks allocated before the tracemalloc module started to trace
memory allocations.

Tracebacks of traces are limited to get_traceback_limit() frames. Use the nframe parameter of the
start() function to store more frames.

The tracemalloc module must be tracing memory allocations to take a snapshot, see the the start()
function.

See also the get_object_traceback() function.

1.3.2 Filter

class Filter(inclusive: bool, filename_pattern: str, lineno: int=None, all_frames: bool=False)
Filter on traces of memory blocks.

See the fnmatch.fnmatch() function for the syntax of filename_pattern. The '.pyc' and '.pyo' file
extensions are replaced with '.py'.

Examples:

• Filter(True, subprocess.__file__) only includes traces of the subprocess module

• Filter(False, tracemalloc.__file__) excludes traces of the tracemalloc module

• Filter(False, "<unknown>") excludes empty tracebacks

10 Chapter 1. Table of Contents

pytracemalloc Documentation, Release latest

inclusive
If inclusive is True (include), only trace memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

If inclusive is False (exclude), ignore memory blocks allocated in a file with a name matching
filename_pattern at line number lineno.

lineno
Line number (int) of the filter. If lineno is None, the filter matches any line number.

filename_pattern
Filename pattern of the filter (str).

all_frames
If all_frames is True, all frames of the traceback are checked. If all_frames is False, only the most
recent frame is checked.

This attribute has no effect if the traceback limit is 1. See the get_traceback_limit() function and
Snapshot.traceback_limit attribute.

1.3.3 Frame

class Frame
Frame of a traceback.

The Traceback class is a sequence of Frame instances.

filename
Filename (str).

lineno
Line number (int).

1.3.4 Snapshot

class Snapshot
Snapshot of traces of memory blocks allocated by Python.

The take_snapshot() function creates a snapshot instance.

compare_to(old_snapshot: Snapshot, group_by: str, cumulative: bool=False)
Compute the differences with an old snapshot. Get statistics as a sorted list of StatisticDiff instances
grouped by group_by.

See the statistics() method for group_by and cumulative parameters.

The result is sorted from the biggest to the smallest by: absolute value of StatisticDiff.
size_diff, StatisticDiff.size, absolute value of StatisticDiff.count_diff,
Statistic.count and then by StatisticDiff.traceback.

dump(filename)
Write the snapshot into a file.

Use load() to reload the snapshot.

filter_traces(filters)
Create a new Snapshot instance with a filtered traces sequence, filters is a list of Filter instances.
If filters is an empty list, return a new Snapshot instance with a copy of the traces.

1.3. API 11

pytracemalloc Documentation, Release latest

All inclusive filters are applied at once, a trace is ignored if no inclusive filters match it. A trace is ignored
if at least one exclusive filter matchs it.

classmethod load(filename)
Load a snapshot from a file.

See also dump().

statistics(group_by: str, cumulative: bool=False)
Get statistics as a sorted list of Statistic instances grouped by group_by:

group_by description
'filename' filename
'lineno' filename and line number
'traceback' traceback

If cumulative is True, cumulate size and count of memory blocks of all frames of the traceback of a
trace, not only the most recent frame. The cumulative mode can only be used with group_by equals to
'filename' and 'lineno'.

The result is sorted from the biggest to the smallest by: Statistic.size, Statistic.count and
then by Statistic.traceback.

traceback_limit
Maximum number of frames stored in the traceback of traces: result of the
get_traceback_limit() when the snapshot was taken.

traces
Traces of all memory blocks allocated by Python: sequence of Trace instances.

The sequence has an undefined order. Use the Snapshot.statistics() method to get a sorted list
of statistics.

1.3.5 Statistic

class Statistic
Statistic on memory allocations.

Snapshot.statistics() returns a list of Statistic instances.

See also the StatisticDiff class.

count
Number of memory blocks (int).

size
Total size of memory blocks in bytes (int).

traceback
Traceback where the memory block was allocated, Traceback instance.

1.3.6 StatisticDiff

class StatisticDiff
Statistic difference on memory allocations between an old and a new Snapshot instance.

Snapshot.compare_to() returns a list of StatisticDiff instances. See also the Statistic class.

12 Chapter 1. Table of Contents

pytracemalloc Documentation, Release latest

count
Number of memory blocks in the new snapshot (int): 0 if the memory blocks have been released in the
new snapshot.

count_diff
Difference of number of memory blocks between the old and the new snapshots (int): 0 if the memory
blocks have been allocated in the new snapshot.

size
Total size of memory blocks in bytes in the new snapshot (int): 0 if the memory blocks have been
released in the new snapshot.

size_diff
Difference of total size of memory blocks in bytes between the old and the new snapshots (int): 0 if the
memory blocks have been allocated in the new snapshot.

traceback
Traceback where the memory blocks were allocated, Traceback instance.

1.3.7 Trace

class Trace
Trace of a memory block.

The Snapshot.traces attribute is a sequence of Trace instances.

size
Size of the memory block in bytes (int).

traceback
Traceback where the memory block was allocated, Traceback instance.

1.3.8 Traceback

class Traceback
Sequence of Frame instances sorted from the most recent frame to the oldest frame.

A traceback contains at least 1 frame. If the tracemalloc module failed to get a frame, the filename
"<unknown>" at line number 0 is used.

When a snapshot is taken, tracebacks of traces are limited to get_traceback_limit() frames. See the
take_snapshot() function.

The Trace.traceback attribute is an instance of Traceback instance.

1.3.9 Differences between pytracemalloc (PyPI) and tracemalloc (stdlib)

The tracemalloc module is part of the Python standard library since Python 3.4: read tracemalloc module documenta-
tion.

There are differences between the third party pytracemalloc module (downloaded from PyPI) and the tracemalloc
which is part of the Python standard library:

• stdlib tracemalloc supports a -X tracemalloc=NFRAMES command line option to start tracing at Python
startup.

1.3. API 13

http://docs.python.org/dev/library/tracemalloc.html
http://docs.python.org/dev/library/tracemalloc.html

pytracemalloc Documentation, Release latest

1.4 tracemallocqt: GUI to analyze snapshots

tracemallocqt is graphical interface to analyze tracemalloc snapshots. It uses the Qt toolkit.

• tracemallocqt project at GitHub

1.4.1 Usage

Analyze a single snapshot:

./tracemallocqt.py snapshot.pickle

Compare two snapshots:

./tracemallocqt.py snapshot1.pickle snapshot2.pickle

You can pass more snapshots and then use the checkbox to select which snapshots are compared. The snpashots are
sorted by the modification time of the files.

1.4.2 Installation

There is no release yet, you have to clone the Mercurial repository:

git clone https://github.com/vstinner/tracemallocqt

tracemallocqt works on Python 2 and 3 and requires PyQt4 or PySide.

14 Chapter 1. Table of Contents

https://github.com/vstinner/tracemallocqt

pytracemalloc Documentation, Release latest

1.4.3 Screenshots

Traces grouped by line number

1.4. tracemallocqt: GUI to analyze snapshots 15

pytracemalloc Documentation, Release latest

Traces grouped by traceback

1.5 Changelog

1.5.1 Version 1.4 (2018-10-12)

• Fix code using the PYTHONTRACEMALLOC environment variable: it is now checked after importing the site
module, not before.

• Update patch to Python 2.7.15

• Project moved to https://github.com/vstinner/pytracemalloc

• tracemallocqt moved to https://github.com/vstinner/tracemallocqt

• Add script to test patches.

Note: tracemalloc 1.3 has no been released because of a mistake in the release procedure.

1.5.2 Version 1.2 (2014-10-15)

• filter_traces() now raises a TypeError if filters is not an iterable

16 Chapter 1. Table of Contents

https://github.com/vstinner/pytracemalloc
https://github.com/vstinner/tracemallocqt

pytracemalloc Documentation, Release latest

• Update Python 2.7 patch to try to keep the ABI unchanged, especially for Python compiled in debug mode
(./configure --with-pydebug)

• Support Python 2.6

• Enhance the documentation (website)

1.5.3 Version 1.0 (2014-03-05)

• Python issue #20616: Add a format() method to tracemalloc.Traceback.

• Python issue #20354: Fix alignment issue in the tracemalloc module on 64-bit platforms. Bug seen on 64-bit
Linux when using “make profile-opt”.

• Fix slicing traces and fix slicing a traceback.

1.5.4 Version 1.0beta1 (2013-12-14)

• A trace of a memory block can now contain more than 1 frame, a whole traceback instead of just the most recent
frame

• The malloc hook API has been proposed as the PEP 445. The PEP has been accepted and implemented in
Python 3.4.

• The tracemalloc module has been proposed as the PEP 454. After many reviews, the PEP has been accepted
and the code has been merged into Python 3.4.

• The code has been almost fully rewritten from scratch between the version 0.9.1 and 1.0. The tracemalloc has
now a completly different API:

– DisplayTop, TakeSnapshot and DisplayGarbage classes have been removed

– Rename enable/disable to start/stop

– start() now takes an optional nframe parameter which is the maximum number of frames stored in a trace
of a memory block

– Raw traces are accesible in Snapshot.traces

– The get_process_memory() has been removed, but new functions are added like get_traced_memory()

• The glib hashtable has been replaced by a builtin hashtable based on the libcfu library. The glib dependency has
been removed so it should be easier to install the module (ex: on Windows).

1.5.5 Version 0.9.1 (2013-06-01)

• Add PYTRACEMALLOC environment variable to trace memory allocation as early as possible at Python startup

• Disable the timer while calling its callback to not call the callback while it is running

• Fix pythonXXX_track_free_list.patch patches for zombie frames

• Use also MiB, GiB and TiB units to format a size, not only B and KiB

1.5. Changelog 17

pytracemalloc Documentation, Release latest

1.5.6 Version 0.9 (2013-05-31)

• Tracking free lists is now the recommended method to patch Python

• Fix code tracking Python free lists and python2.7_track_free_list.patch

• Add patches tracking free lists for Python 2.5.2 and 3.4.

1.5.7 Version 0.8.1 (2013-03-23)

• Fix python2.7.patch and python3.4.patch when Python is not compiled in debug mode (without –with-pydebug)

• Fix DisplayTop: display “0 B” instead of an empty string if the size is zero (ex: trace in user data)

• setup.py automatically detects which patch was applied on Python

1.5.8 Version 0.8 (2013-03-19)

• The top uses colors and displays also the memory usage of the process

• Add DisplayGarbage class

• Add get_process_memory() function

• Support collecting arbitrary user data using a callback: Snapshot.create(), DisplayTop and
TakeSnapshot have has an optional user_data_callback parameter/attribute

• Display the name of the previous snapshot when comparing two snapshots

• Command line (-m tracemalloc):

– Add --color and --no-color options

– --include and --exclude command line options can now be specified multiple times

• Automatically disable tracemalloc at exit

• Remove get_source() and get_stats() functions: they are now private

1.5.9 Version 0.7 (2013-03-04)

• First public version

18 Chapter 1. Table of Contents

CHAPTER 2

Status of the module

pytracemalloc 1.0 contains patches for Python 2.7 and 3.3. The version 1.0 has been tested on Linux with Python 2.7
and 3.3: unit tests passed.

19

pytracemalloc Documentation, Release latest

20 Chapter 2. Status of the module

CHAPTER 3

Similar Projects

Python projects:

• Meliae: Python Memory Usage Analyzer

• Guppy-PE: umbrella package combining Heapy and GSL

• PySizer: developed for Python 2.4

• memory_profiler

• pympler

• memprof: based on sys.getsizeof() and sys.settrace()

• Dozer: WSGI Middleware version of the CherryPy memory leak debugger

• objgraph

• caulk

Perl projects:

• Devel::MAT by Paul Evans

• Devel::Size by Dan Sugalski

• Devel::SizeMe by Dan Sugalski

21

https://pypi.python.org/pypi/meliae
http://guppy-pe.sourceforge.net/
http://pysizer.8325.org/
https://pypi.python.org/pypi/memory_profiler
http://code.google.com/p/pympler/
http://jmdana.github.io/memprof/
https://pypi.python.org/pypi/Dozer
http://mg.pov.lt/objgraph/
https://github.com/smartfile/caulk/
https://metacpan.org/release/Devel-MAT
http://search.cpan.org/~nwclark/Devel-Size/lib/Devel/Size.pm
http://search.cpan.org/~timb/Devel-SizeMe/lib/Devel/SizeMe.pm

pytracemalloc Documentation, Release latest

22 Chapter 3. Similar Projects

Python Module Index

t
tracemalloc, ??

23

pytracemalloc Documentation, Release latest

24 Python Module Index

Index

A
all_frames (Filter attribute), 11

C
clear_traces() (built-in function), 9
compare_to() (Snapshot method), 11
count (Statistic attribute), 12
count (StatisticDiff attribute), 12
count_diff (StatisticDiff attribute), 13

D
dump() (Snapshot method), 11

E
environment variable

PYTHONTRACEMALLOC, 1

F
filename (Frame attribute), 11
filename_pattern (Filter attribute), 11
Filter (built-in class), 10
filter_traces() (Snapshot method), 11
Frame (built-in class), 11

G
get_object_traceback() (built-in function), 9
get_traceback_limit() (built-in function), 9
get_traced_memory() (built-in function), 9
get_tracemalloc_memory() (built-in function), 9

I
inclusive (Filter attribute), 10
is_tracing() (built-in function), 10

L
lineno (Filter attribute), 11
lineno (Frame attribute), 11
load() (Snapshot class method), 12

P
PYTHONTRACEMALLOC, 1

S
size (Statistic attribute), 12
size (StatisticDiff attribute), 13
size (Trace attribute), 13
size_diff (StatisticDiff attribute), 13
Snapshot (built-in class), 11
start() (built-in function), 10
Statistic (built-in class), 12
StatisticDiff (built-in class), 12
statistics() (Snapshot method), 12
stop() (built-in function), 10

T
take_snapshot() (built-in function), 10
Trace (built-in class), 13
Traceback (built-in class), 13
traceback (Statistic attribute), 12
traceback (StatisticDiff attribute), 13
traceback (Trace attribute), 13
traceback_limit (Snapshot attribute), 12
tracemalloc (module), 1
traces (Snapshot attribute), 12

25

	Table of Contents
	Installation
	Examples
	API
	tracemallocqt: GUI to analyze snapshots
	Changelog

	Status of the module
	Similar Projects
	Python Module Index

