Welcome to the documentation of the HeartPy, Python Heart Rate Analysis Toolkit. The toolkit is designed to handle (noisy) PPG data collected with either PPG or camera sensors.

- The toolkit was presented at the Humanist 2018 conference in The Hague (see paper here).
- A technical paper about the functionality is available here

Please cite one or both of these papers when using the toolkit in your research!

The documentation will help you get up to speed quickly. Follow the *Quickstart Guide* guide for a general overview of how to use the toolkit in only a few lines of code. For a more in-depth review of the module’s functionality you can refer to the papers mentioned above, or the *Heart Rate Analysis* overview.
Note on using it in scientific research

Support is available at P.vanGent@tudelft.nl. When using the toolkit in your scientific work: please include me in the process. I can help you implement the toolkit, and the collaboration will also help improve the toolkit so that it can handle more types of data in the future.
2.1 Quickstart Guide

2.1.1 Installation

```bash
pip
python -m pip install heartpy
```

```
github
Download the latest release here
python setup.py install
```

2.1.2 Basic Example

Import the HeartPy module and load a file

```python
import heartpy as hp
hrdata = hp.get_data('data.csv')
```

This returns a numpy.ndarray.

Analysis requires the sampling rate for your data. If you know this a priori, supply it when calling the `process()` function, which returns a dict object containing all measures:

```python
import heartpy as hp

data = hp.get_data('data.csv')  # data.csv is sampled at 100Hz
working_data, measures = hp.process(data, 100.0)
```
process(dataset, sample_rate, windowsize=0.75, report_time=False, calc_freq=False, freq_method='welch', interp_clipping=False, clipping_scale=False, interp_threshold=1020, hampel_correct=False, bpmmin=40, bpmmax=180, reject_segmentwise=False, high_precision=False, high_precision_fs=1000.0, measures = {}, working_data = {})

requires two arguments:

- **dataset**: An 1-dimensional list, numpy array or array-like object containing the heart rate data;
- **sample_rate**: The samplerate of the signal in Hz;

Several optional arguments are available:

- **windowsize**: _optional_ windowsize is the window size used for the calculation of the moving average. The windowsize is defined as windowsize * samplerate. Default windowsize=0.75.
- **report_time**: _optional_ whether to report total processing time of process() loop.
- **calc_fft**: _optional_ whether to calculate frequency domain measures. Default = false Note: can cause slowdowns in some cases.
- **calc_freq**: _optional_ whether to calculate frequency domain measures. Default = false Note: can cause slowdowns in some cases.
- **freq_method**: _optional_ method used to extract the frequency spectrum. Available: ‘fft’ (Fourier Analysis), ‘periodogram’, and ‘welch’ (Welch’s method), Default = ‘welch’
- **interp_clipping**: if True, clipping parts of the signal are identified and the implied peak shape is interpolated. Default=False
- **clipping_scale**: whether to scale the data prior to clipping detection. Can correct errors if signal amplitude has been affected after digitization (for example through filtering). Default = False
- **interp_threshold**: the amplitude threshold beyond which will be checked for clipping. Recommended is to take this as the maximum value of the ADC with some margin for signal noise (default 1020, default ADC max 1024)
- **hampel_correct**: whether to reduce noisy segments using large median filter. Disabled by default due to computational complexity, and generally it is not necessary. Default = false.
- **bpmmin**: minimum value to see as likely for BPM when fitting peaks. Default = 40
- **bpmmax**: maximum value to see as likely for BPM when fitting peaks. Default = 180
- **reject_segmentwise**: whether to reject segments with more than 30% rejected beats. By default looks at segments of 10 beats at a time. Default = false.
- **high_precision**: _optional_ boolean, whether to estimate peak positions by upsampling hr signal to sample rate as specified in _high_precision_fs_. Default = False
- **high_precision_fs**: _optional_: the sample rate to which to upsample for more accurate peak position estimation. Default = 1000 Hz, resulting in 1 ms peak position accuracy
- **measures**: measures dict in which results are stored. Custom dictionary can be passed, otherwise one is created and returned.
- **working_data**: working_data dict in which results are stored. Custom dictionary can be passed, otherwise one is created and returned.

Two dict{} objects are returned: one working data dict, and one containing all measures. Access as such:

```python
import heartpy as hp

data = hp.get_data('data.csv')
```

(continues on next page)
fs = 100.0 # example file 'data.csv' is sampled at 100.0 Hz

working_data, measures = hp.process(data, fs, report_time=True)

print(measures['bpm']) # returns BPM value
print(measures['rmssd']) # returns RMSSD HRV measure

You can also use Pandas if you so desire
import pandas as pd

df = pd.read_csv("data.csv", names=['hr'])

note we need calc_freq if we want frequency-domain measures
working_data, measures = hp.process(df['hr'].values, fs, calc_freq=True)

print(measures['bpm'])
print(measures['lf/hf'])

2.1.3 Getting Data From Files

The toolkit has functionality to open and parse delimited .csv and .txt files, as well as matlab .mat files. Opening a file is done by the get_data() function:

```python
import heartpy as hp

data = hp.get_data('data.csv')
```

This returns a 1-dimensional numpy.ndarray containing the heart rate data.

get_data(filename, delim = ',', column_name = 'None') requires one argument:

- **filename**: absolute or relative path to a valid (delimited .csv/.txt or matlab .mat) file;

Several optional arguments are available:

- *delim* _optional_: when loading a delimited .csv or .txt file, this specifies the delimiter used. Default delim = ",";

- *column_name* _optional_: In delimited files with header: specifying column_name will return data from that column. Not specifying column_name for delimited files will assume the file contains only numerical data, returning np.nan values where data is not numerical. For matlab files: column_name specifies the table name in the matlab file.

Examples:

```python
import heartpy as hp

# load data from a delimited file without header info
headerless_data = hp.get_data('data.csv')

# load data from column labeles 'hr' in a delimited file with header info
headered_data = hp.get_data('data2.csv', column_name = 'hr')

# load matlab file
matlabdata = hp.get_data('data2.mat', column_name = 'hr')

# note that the column_name here represents the table name in the matlab file
```
2.1.4 Estimating Sample Rate

The toolkit has a simple built-in sample-rate detection. It can handle ms-based timers and datetime-based timers.

```python
import heartpy as hp

# if you have a ms-based timer:
mstimer_data = hp.get_data('data2.csv', column_name='timer')
fs = hp.get_samplerate_mstimer(mstimer_data)
print(fs)

# if you have a datetime-based timer:
datetime_data = hp.get_data('data3.csv', column_name='datetime')
fs = hp.get_samplerate_datetime(datetime_data, timeformat='%Y-%m-%d %H:%M:%S.%f')
print(fs)
```

get_samplerate_mstimer(timerdata) requires one argument:

- timerdata: a list, numpy array or array-like object containing ms-based timestamps (float or int).

get_samplerate_datetime(datetimedata, timeformat = '%H:%M:%S.%f') requires one argument:

- datetimedata: a list, numpy array or array-like object containing datetime-based timestamps (string);

One optional argument is available:

2.1.5 Plotting Results

A plotting function is included. It plots the original signal and overlays the detected peaks and the rejected peaks (if any were rejected).

Example with the included data.csv example file (recorded at 100.0Hz):

```python
import heartpy as hp

data = hp.get_data('data.csv')
working_data, measures = hp.process(data, 100.0)
hp.plotter(working_data, measures)
```

This returns:
plotter(working_data, measures, show = True, title = 'Heart Rate Signal Peak Detection') has two required arguments:

- **working_data** The working data dict() container returned by the process() function.
- **measures** The measures dict() container returned by the process() function.

Several optional arguments are available:

- **show** _optional_: if set to True a plot is visualised, if set to False a matplotlib.pyplot object is returned. Default show = True;
- **title** _optional_: Sets the title of the plot. If not specified, default title is used.

Examples:

```python
import heartpy as hp
hrdata = hp.get_data('data2.csv', column_name='hr')
timerdata = hp.get_data('data2.csv', column_name='timer')
working_data, measures = hp.process(hrdata, hp.get_samplerate_mstimer(timerdata))

#plot with different title
hp.plotter(working_data, measures, title='Heart Beat Detection on Noisy Signal')
```
Measures are only calculated for non-rejected peaks and intervals between two non-rejected peaks. Rejected detections do not influence the calculated measures.

By default a plot is visualised when plotter() is called. The function returns a matplotlib.pyplot object if the argument show=False is passed:

```python
working_data, measures = hp.process(hrdata, hp.get_samplerate_mstimer(timerdata))
plot_object = hp.plotter(working_data, measures, show=False)
```

This returns:

```python
<module 'matplotlib.pyplot' [...]>  
```

Object can then be saved, appended to, or visualised:

```python
working_data, measures = hp.process(hrdata, hp.get_samplerate_mstimer(timerdata))
plot_object = hp.plotter(working_data, measures, show=False)
plot_object.savefig('plot_1.jpg')  #saves the plot as JPEG image.
plot_object.show()  #displays plot
```

Plotting results of segmentwise analysis

After calling `process_segmentwise()`, the returned `working_data` and `measures` contain analysis results on the segmented data. This can be visualised using the function `segment_plotter()`:

```python
segment_plotter(working_data, measures, title='Heart Rate Signal Peak Detection', path = '', start=0, end=None, step=1).  
```

The function has two required arguments:

- **working_data** The working data dict() container returned by the `process_segmentwise()` function.
- **measures** The measures dict() container returned by the `process_segmentwise()` function.

Several optional arguments are available:

- **title** Optional: Sets the title of the plot. If not specified, default title is used.
- **path** Optional: Where to save the plots. Folder will be created if it doesn’t exist.
- **start** Optional: segment index to start at, default = 0, beginning of segments.
• **end**: optional, plotting stops when this segment index is reached. Default=None, which is interpreted as meaning plot until end of segment list.

• **step**: optional, the stepsize of the plotting. Every step’th segment will be visualised. Default=1, meaning every segment.

2.1.6 Getting heart rate over time

There may be situations where you have a long heart rate signal, and want to compute how the heart rate measures change over time in the signal. HeartPy includes the `process_segmentwise` function that does just that!

Usage works like this:

```python
working_data, measures = hp.process_segmentwise(data, sample_rate=100.0, segment_width = 40, segment_overlap = 0.25)
```

What this will do is segment the data into sections of 40 seconds each. In this example each window will have an overlap with the previous window of 25%, meaning each iteration the 40 second window moves by 30 seconds.

`process_segmentwise()` expects two arguments: - data: 1-d numpy array or list containing heart rate data - sample_rate: the sample rate with which the data is collected, in Hz

Several optional arguments are possible:

• **segment_width**: the width of the window used, in seconds.

• **segment_overlap**: the fraction of overlap between adjacent windows: 0 <= segment_overlap < 1.0

• **replace_outliers**: bool, whether to replace outliers in the computed measures with the median

• **segment_min_size**: When segmenting, the tail end of the data if often shorter than the specified size in segment_width. The tail end is only included if it is longer than the segment_min_size. Default = 20. Setting this too low is not recommended as it may make peak fitting unstable, and it also doesn’t make much sense from a biosignal analysis perspective to use very short data segments.

• **outlier_method**: which outlier detection method to use. The interquartile-range (‘iqr’) or modified z-score (‘z-score’) methods are available as of now. Default: ‘iqr’

• **mode**: ‘fast’ or ‘full’. The ‘fast’ method detects peaks over the entire signal, then segments and computes heart rate and heart rate variability measures. The ‘full’ method segments the data first, then runs the full analysis pipeline on each segment. For small numbers of segments (<10), there is not much difference and the fast method can actually be slower. The more segments there are, the larger the difference becomes. By default you should choose the ‘fast’ method. If there are problems with peak fitting, consider trying the ‘full’ method.

• ****kwargs**: you can pass all the arguments normally passed to the `process()` function at the end of the arguments here as well. These will be passed on and used in the analysis. Example:

```python
working_data, measures = hp.process_segmentwise(data, sample_rate=100.0, segment_width = 40, segment_overlap = 0.25, calc_freq=True, reject_segmentwise=True, report_time=True)
```

In this example the last three arguments will be passed on the the `process()` function and used in the analysis. For a full list of arguments that `process()` supports, see the Basic Example

2.2 Heart Rate Analysis

A complete description of the algorithm can be found in: <ref embedded paper>.
2.2.1 Background

The Python Heart Rate Analysis Toolkit has been designed mainly with PPG signals in mind. The Raspberry Pi and the Arduino platforms have enabled more diverse data collection methods by providing affordable open hardware platforms. This is great for researchers, especially because traditional ECG may be considered to invasive or too disruptive for experiments.

2.2.2 Measuring the heart rate signal

Two often used ways of measuring the heart rate are the electrocardiogram (ECG) and the Photoplethysmogram (PPG). Many of the online available algorithms are designed for ECG measurements. Applying an ECG algorithm (like the famous Pan-Tompkins one\(^1\)) to PPG data does not necessarily make sense. Although both the ECG and PPG are measures for cardiac activity, they measure very different constructs to estimate it.

The ECG measures the electrical activations that lead to the contraction of the heart muscle, using electrodes attached to the body, usually at the chest. The PPG uses a small optical sensor in conjunction with a light source to measure the discoloration of the skin as blood perfuses through it after each heartbeat. This measuring of electrical activation and pressure waves respectively, leads to very different signal and noise properties, that require specialised tools to process. This toolkit specialises in PPG data.

Figure 1: a. and b. display the ECG and PPG waveform morphology, respectively. The ECG is divided into distinct waves (a, I-V), of which the R-wave (a, II) is used for heart beat extraction. With the PPG wave, the systolic peak (b, I) is used. The plot in c. shows the relationship between ECG and PPG signals.
Most notably in the ECG is the QRS-complex (Fig 1a, I-III), which represents the electrical activation that leads to the ventricles contracting and expelling blood from the heart muscle. The R-peak is the point of largest amplitude in the signal. When extracting heart beats, these peaks are marked in the ECG. Advantages of the ECG are that it provides a good signal/noise ratio, and the R-peak that is of interest generally has a large amplitude compared to the surrounding data points (Fig 1c). The main disadvantage is that the measurement of the ECG is invasive. It requires the attachment of wired electrodes to the chest of the participant, which can interfere with experimental tasks such as driving.

The PPG measures the discoloration of the skin as blood perfuses through the capillaries and arteries after each heartbeat. The signal consists of the systolic peak (Fig 1-b, I), dicrotic notch (II), and the diastolic peak (III). When extracting heart beats, the systolic peaks (I) are used. PPG sensors offer a less invasive way of measuring heart rate data, which is one of their main advantages. Usually the sensors are placed at the fingertip, earlobe, or on the wrist using a bracelet. Contactless camera-based systems have recently been demonstrated. These offer non-intrusive ways of acquiring the PPG signal. PPG signals have the disadvantages of showing more noise, large amplitude variations, and the morphology of the peaks displays broader variation (Figure 2b, c). This complicates analysis of the signal, especially when using software designed for ECG, which the available open source tools generally are.

Figure 2 – The ECG signal (a.) shows a strong QRS complex together with little amplitude variation. The PPG signal measured simultaneously while the patient is at rest in a hospital bed (b.) shows some amplitude variation

but relatively stable morphology. When measuring PPG in a driving simulator using low-cost sensors (c.), strong amplitude and waveform morphology variation is visible.

2.2.3 On the Accuracy of Peak Position

When analysing heart rate, the main crux lies in the accuracy of the peak position labeling being used. When extracting instantaneous heart rate (BPM), accurate peak placement is not crucial. The BPM is an aggregate measure, which is calculated as the average beat-beat interval across the entire analysed signal (segment). This makes it quite robust to outliers.

However, when extracting heart rate variability (HRV) measures, the peak positions are crucial. Take as an example two often used variability measures, the RMSSD (root mean square of successive differences) and the SDSD (standard deviation of successive differences). Given a segment of heart rate data as displayed in the figure below, the RMSSD is calculated as shown. The SDSD is the standard deviation between successive differences.
Figure 3 - Image displaying the desired peak detection result, as well as the calculation of the RMSSD measure. The SDSD measure is the standard deviation between successive differences.
Now consider that two mistakes are possible: either a beat is not detected at all (missed), or a beat is placed at an incorrect time position (incorrectly placed). These will have an effect on the calculated HRV output measures, which are highly sensitive to outliers as they are designed to capture the slight natural variation between peak-peak intervals in the heart rate signal!

To illustrate the problem we have run a few simulations. We took a sample of a heart rate signal which was annotated manually, and introduced two types of errors:

- We randomly dropped $n\%$ of peaks from the signal, than re-ran the analysis considering only intervals between two peaks where no missing value occurred in between.

- We introduced a random position error (0.1% - 10% of peak position, meaning between about 1ms and 100ms deviation) in $n\%$ of peaks.

- The simulation ran bootstrapped for 10,000 iterations, with values $n=[5, 10, 20]$.

Results show that the effect of incorrect beat placements far outweigh those of missing values. As described earlier, the instantaneous heart rate (BPM) is not sensitive to outliers, as is shown in the plots as well, where almost no discernible deviation is visible.
2.2. Heart Rate Analysis

n=5%

- Effects of disturbances on RMSSD
- Effects of disturbances on SDSD
- Effects of disturbances on BPM

n=10%

- Effects of disturbances on RMSSD
- Effects of disturbances on SDSD
- Effects of disturbances on BPM

n=20%
Figure 4 - Results for manually annotated measures (ground truth), and error induction of n% missed beats, as well as error induction on the detected position of n% beats (random error 0.1% - 10%, or 1-100ms).

Take into consideration that the scale for RMSSD doesn’t typically exceed +/- 130, SDSD doesn’t differ by much. This means that even a few incorrectly detected peaks are already introducing large measurement errors into the output variables. The algorithm described here is specifically designed to handle noisy PPG data from cheap sensors. The main design criteria was to minimise the number of incorrectly placed peaks as to minimise the error introduced into the output measures.

More information on the functioning can be found in the rest of the documentation, as well as in the technical paper here6. Information on the validation can be found in5.

2.2.4 References

2.3 Algorithm functioning

This section describes the details of the algorithm functionality.

2.3.1 Pre-processing

Various options are available for pre-processing. These are described below

Clipping detection and interpolation

Whenever a measured property exceeds a sensor’s sensitivity range, or when digitising an analog signal, clipping can occur. Clipping in this case means the peaks are flattened off because the signal continues outside the boundaries of the sensor you’re using:

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{clipping.png}
\caption{Example of clipping in PPG signal.}
\end{figure}

Clipping functions by detecting (almost) flat parts of the signal near its maximum, preceded and followed by a steep angle on both ends. The ‘missing’ signal peak is interpolated using a cubic spline, which takes into account 100ms of data on both ends of the clipping portion of the signal. The reconstructed R-peak is overlaid on the original signal and used for further analysis.
Peak enhancement

A peak enhancement function is available that attempts to normalise the amplitude, then increase R-peak amplitude relative to the rest of the signal. It only uses linear transformations, meaning absolute peak positions are not disturbed (in contrast to FIR filters). It runs a predefined number of iterations. Generally two iterations are sufficient. Be cautious not to over-iterate as this will start to suppress peaks of interest as well.

```python
import heartpy as hp

enhanced = hp.enhance_peaks(data, iterations=2)
```

![Diagram showing original signal and enhanced signal with different iterations](image-url)
Butterworth filter

A Butterworth filter implementation is available to remove high frequency noise. Note that this will disturb the absolute peak positions slightly, influencing the output measures. However, in cases of heavy noise this is the only way useful information can be extracted from the signal.

```python
import heartpy as hp
filtered = hp.butter_lowpass_filter(data, cutoff=5, sample_rate=100.0, order=3)
```

Filtering is generally not recommended unless there is high noise present in the signal. An extreme example is displayed below:
Hampel Correction

The Hampel Correction functions as an extended version of a Hampel Filter, with a larger window size than the standard datapoint + 3 datapoints on each side (=7). The downside is that it (the current implementation at least) takes significant processing time since a window median and median absolute deviation needs to be computed for each datapoint.

In the current implementation, if called, a median filter is taken over a 1-sec window of the heart rate signal. The filter output is subsequently subtracted from the original signal. When doing so, the property of noise suppression arises:

Note that the absolute peak positions will shift slightly when using this type of filter. With it, the output measures will start to deviate as error is induced. Generally the error is not high, but by default hampel filtering is disabled. It should
only be used when encountering segments of heavy noise that the algorithm cannot handle properly.

2.3.2 Peak detection

The peak detection phase attempts to accommodate amplitude variation and morphology changes of the PPG complexes by using an adaptive peak detection threshold (Fig 3, III), followed by several steps of outlier detection and rejection. To identify heartbeats, a moving average is calculated using a window of 0.75 seconds on both sides of each data point. The first and last 0.75 seconds of the signal are populated with the signal’s mean, no moving average is generated for these sections. Regions of interest (ROI) are marked between two points of intersection where the signal amplitude is larger than the moving average (Fig 3, I-II), which is a standard way of detecting peaks. R-peaks are marked at the maximum of each ROI.

![Figure showing the process of peak extraction. A moving average is used as an intersection threshold (II). Candidate peaks are marked at the maximum between intersections (III). The moving average is adjusted stepwise to compensate for varying PPG waveform morphology (I).](image)

During the peak detection phase, the algorithm adjusts the amplitude of the calculated threshold stepwise. To find the best fit, the standard deviation between successive differences (SDSD, see also 2.2) is minimised and the signal’s BPM is checked. This represents a fast method of approximating the optimal threshold by exploiting the relative regularity of the heart rate signal. As shown in the figure below, missing one R-peak (III) already leads to a substantial increase in SDSD compared to the optimal fit (II). Marking incorrect R-peaks also leads to an increase in SDSD (I). The lowest SDSD value that is not zero, in combination with a likely BPM value, is selected as the best fit. The BPM must lie within a predetermined range (default: 40 <= BPM <= 180, range settable by user).

The figure below displays how the SDSD relates to peak fitting. In essence the fitting function exploits the strong regularity expected in the heart rate signal.
Whenever clipping occurs, the algorithm detects this and will attempt to reconstruct the waveform by spline interpolation. This is discussed under Clipping detection and interpolation.

An optional 'high precision mode' is available that takes the signal surrounding each detected peak (+/- 100ms on both ends), and upsamples it to simulate a higher sampling rate for more accurate peak position estimation. By default it upsamples to 1000Hz to provide ms-accurate peak position estimations.

2.3.3 Peak rejection

After the fitting phase, several incorrectly detected peaks may still remain due to various factors. These are tested and rejected based on a thresholded value for the RR-intervals in the section:
Thresholds are computed based on the mean of the RR-intervals in the segments. Thresholds are determined as \(\text{RR_mean} \pm (30\% \text{ of RR_mean, with minimum value of 300}) \) (+ or - for upper and lower threshold, respectively). If the RR-interval exceeds one of the thresholds, it is ignored.

2.3.4 Calculation of measures

All measures are computed on the detected and accepted peaks in the segment. When RR-intervals are used in computation, only the intervals created by two adjacent, accepted, peaks are used. Whenever differences in RR-intervals are required (for example in the RMSSD), only intervals between two adjacent RR-intervals, which in turn are created by three adjacent, accepted, peaks are used. This ensures that any rejected peaks do not inject measurement error in the subsequent measure calculations.

Time-series

Time-series measurements are computed from detected peaks. The output measures are:

- beats per minute (BPM)
- interbeat interval (IBI)
- standard deviation of RR intervals (SDNN)
- standard deviation of successive differences (SDSD)
- root mean square of successive differences (RMSSD)
- proportion of successive differences above 20ms (pNN20)
- proportion of successive differences above 50ms (pNN50)
- median absolute deviation of RR intervals (MAD)
Frequency Domain

Frequency domain measures computed are:

- low-frequency, frequency spectrum between 0.05-0.15Hz (LF)
- high-frequency, frequency spectrum between 0.15-0.5Hz (HF)
- the ratio high frequency / low frequency (HF/LF)

The measures are computed from the PSD (Power Spectral Density), which itself is estimated using either FFT-based, Periodogram-based, or Welch-based methods. The default is Welch’s method.

Estimating breathing rate

One interesting property of the heart is that the frequency with which it beats is strongly influenced by breathing, through the autonomous nervous system. It is one of the reasons why deep breaths can calm nerves. We can also exploit this relationship to extract breathing rate from a segment of heart rate data. For example, using a dataset from\(^1\) which contains both CO2 capnometry signals as well as PPG signals, we can see the relationship between breathing and the RR-intervals clearly. Below are plotted the CO2 capnometry signal (breathing signal measured at the nose), as well as the (upsampled) signal created by the RR-intervals:

The problem is now reduced to one of peak finding. Breathing rate can be extracted using the toolkit. After calling the ‘process’ function, breathing rate (in Hz) is available in the dict() object that is returned.

```python
import heartpy as hp
data = hp.get_data('data.csv')
```

```python
fs = 100.0
working_data, measures = hp.process(data, fs, report_time=True)
print('breathing rate is: %s Hz' %measures['breathingrate'])
```

This will result in:

```
breathing rate is: 0.16109544905356424 Hz
```

2.3.5 References

2.4 Development

2.4.1 Release Notes

V0.8.1

- Added changelog to repository
- Implemented clipping detection and interpolation functionality
- Changed FFT calculation flag to default False, as in some cases the FFT takes very long to compute. Possible causes and fixes to be investigated
- Pushed readthedocs.io documentation source structure to repository
- Added encoding argument to get_data function, per the NumPy deprecation of not using encoding. For more info: https://docs.scipy.org/doc/numpy-1.14.0/release.html#encoding-argument-for-text-io-functions

V0.8.2

- RR_difference interval no longer taken into account when RR-intervals are not technically adjacent due to rejected peak presence in between
- Moved matplotlib import statement so that it is no longer necessary unless calling the plot functionality, reduces need to install irrelevant dependencies when plotting functionality not needed
- Added Hampel Filter with settable filtersize
- Added method to suppress noisy segments called ‘Hampel Corrector’, called such as it’s simply a Hampel Filter with large window size. Computationally on the expensive side so disabled by default, but very good at suppressing noisy segments without influencing peak positions in the rest of the signal.
- Added breathing rate extraction method. Stores estimated breathing rate in measures['breathingrate']
- Made BPM threshold values settable
- Added Periodogram- and Welch-based PSD estimation
- Added support for edge case where clipping segment starts early in signal, meaning there is insufficient data to interpolate accurately.
V1.0

- Released Version 1.0
- Added flag to disable scaling when interpolating clipping segments. Useful for data with large amplitude variations.
- Added marking of rejected segments in plotter
- Added automatic peak rejection when first peak occurs within 150ms, since the signal might start just after a peak, which creates slight inaccuracy.
- Added segment rejection based on percentage of incorrect peaks.

V1.0.1

- Changed segmentwise rejection API to simplify plotting

V1.1

- We are now officially called HeartPy
- Changed overall structure to get rid of global dicts, allows for modular or multithreaded use easier.
- Changed docs to reflect changes

2.4.2 Questions

contact me at P.vanGent@tudelft.nl