
pysyncgateway Documentation
Release 1.2.0

Construct Technology Ltd

Oct 12, 2018

Contents:

1 pysyncgateway 3
1.1 Resources . 3

Python Module Index 33

i

ii

pysyncgateway Documentation, Release 1.2.0

Contents: 1

https://circleci.com/gh/constructpm/pysyncgateway/tree/master
https://pysyncgateway.readthedocs.io/
https://pypi.org/project/pysyncgateway/
https://pypi.org/project/pysyncgateway/
https://github.com/constructpm/pysyncgateway/blob/master/LICENSE

pysyncgateway Documentation, Release 1.2.0

2 Contents:

CHAPTER 1

pysyncgateway

Basic object orientated library for communicating with Couchbase Sync Gateway, primarily through the admin port.

1.1 Resources

• Documentation on ReadTheDocs

• Package on PyPI

• Source code on GitHub

• Licensed on Apache License 2.0

• Changelog

Tested against Pythons 2.7 and 3.5 (WIP); Sync Gateway 1.5 community edition (walrus mode).

1.1.1 Quickstart

Install

You can install pysyncgateway from PyPi:

pip install pysyncgateway

Make an Admin Client

Assuming that you have a Sync Gateway running with its admin port on http://localhost:4985/, create an
instance of AdminClient to connect:

>>> from pysyncgateway import AdminClient
>>> admin_client = AdminClient('http://localhost:4985/')

3

https://github.com/couchbase/sync_gateway/
https://pysyncgateway.readthedocs.io/
https://pypi.org/project/pysyncgateway/
https://github.com/constructpm/pysyncgateway
https://github.com/constructpm/pysyncgateway/blob/master/LICENSE
https://github.com/constructpm/pysyncgateway/blob/master/CHANGELOG.rst
https://github.com/constructpm/pysyncgateway/issues/23
https://pypi.org/project/pysyncgateway/

pysyncgateway Documentation, Release 1.2.0

Check that your admin_client instance is connected to the admin port by loading the server info from Sync
Gateway:

>>> server_info = admin_client.get_server()
>>> sorted(list(server_info))
[u'ADMIN', u'couchdb', u'vendor', u'version']
>>> server_info['ADMIN']
True
>>> server_info['version']
u'Couchbase Sync Gateway/1.5.1(4;cb9522c)'

You can use the admin client to load a list of databases currently on the Sync Gateway (the default Docker container
is initialised with a database called ‘db’):

>>> print(admin_client.all_databases())
[<Database "http://localhost:4985/db/">]

Create Database

Create a new instance of Database to contain our test user and document:

>>> database = admin_client.get_database('test')
>>> database.create()
True

The new ‘test’ database will not contain any documents or users:

>>> database.all_docs()
[]
>>> database.all_users()
[]

Create some Documents

First create a Document with the ID ‘message’. This will have the “Hello World!” content and be in the ‘world’
channel (we’ll use this to test with our User later):

>>> hello_doc = database.get_document('message')
>>> hello_doc.data = {'content': 'Hello World!'}
>>> hello_doc.set_channels('world')
>>> hello_doc.create_update()
1

Now create a second document with ID ‘stuff’ - this is not saved in any channels:

>>> other_doc = database.get_document('stuff')
>>> other_doc.data = {'private_info': 'Secret things'}
>>> other_doc.create_update()
1

Finally, check with the admin client that those two documents are in the database.

>>> sorted(database.all_docs())
[<Document "http://localhost:4985/test/message">, <Document "http://localhost:4985/
→˓test/stuff">]

4 Chapter 1. pysyncgateway

https://hub.docker.com/r/couchbase/sync-gateway/

pysyncgateway Documentation, Release 1.2.0

Create a User

Now we need a User in the database to check that our created documents work OK - we create this from the database
instance. At first the user instance will not be subscribed to any channels:

>>> user = database.get_user('friend')
>>> user.set_password('__PASSWORD__')
>>> user.create_update()
1

pysyncgateway provides a UserClient which we can now connect to the public port at http://
localhost:4984/ with the credentials we created for the ‘friend’ User above. Again, load the server info to
ensure that the client is connected - but this time there is no ‘ADMIN’ key in the response because the client is
connected on the public port.

>>> from pysyncgateway import UserClient
>>> user_client = UserClient('http://localhost:4984/')
>>> user_client.auth('friend', '__PASSWORD__')
>>> server_info = user_client.get_server()
>>> sorted(list(server_info))
[u'couchdb', u'vendor', u'version']

Now check a list of the documents that the user can access. We first have to generate a second database instance - this
one is for the user client rather than the admin client.

>>> user_database = user_client.get_database('test')
>>> user_database.all_docs()
[]

They have no access to any documents!

Grant access to the ‘message’ document by using the admin client to subscribe the ‘friend’ User to the ‘world’ channel:

>>> user.set_admin_channels('world')
>>> user.create_update()
2

Now the ‘friend’ user can retrieve the message document:

>>> user_docs = user_database.all_docs()
>>> user_docs
[<Document "http://localhost:4984/test/message">]
>>> message = user_docs[0]
>>> message.retrieve()
True
>>> message.data
{u'content': u'Hello World!'}

Success!

Clean up

Finally, the admin client can be used to remove the ‘test’ database. This will cascade into the Sync Gateway and
remove all users and documents in that database:

>>> database.delete()
True

1.1. Resources 5

pysyncgateway Documentation, Release 1.2.0

1.1.2 pysyncgateway package

Submodules

pysyncgateway.admin_client module

class pysyncgateway.admin_client.AdminClient(url)
Bases: pysyncgateway.client.Client

Sync Gateway admin client for performing actions on the private admin API.

url
str – Sync Gateway admin REST API URL.

all_databases()
Provide all Databases on the server.

GET /_all_dbs

Returns All databases found, connected with this client.

Return type list (Database)

Raises GatewayDown – When sync gateway instance can not be reached by client.

pysyncgateway.client module

class pysyncgateway.client.Client(url)
Bases: pysyncgateway.helpers.ComparableMixin, object

Abstract parent class for AdminClient and UserClient.

_auth
requests.HTTPBasicAuth – Initialises to None and is only used by UserClient.

url
str – Sync Gateway REST API URL.

CONFLICT = 3

CREATED = 1

UPDATED = 2

delete(**kwargs)

get(**kwargs)

get_database(database_name)
Get a Database instance connected to this client.

Parameters database_name (str) – Name of database.

Returns Database

get_server()

Returns Meta-information about the server.

Return type dict

post(**kwargs)

put(**kwargs)

6 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

pysyncgateway.data_dict module

class pysyncgateway.data_dict.DataDict
Bases: dict

DataDict is the developer facing dictionary of data contained within a Couchbase Document. It prevents settings
items with reserved Couchbase keys like “_rev” or “_id”, but still acts like a dictionary to make manipulating
Document data easy.

NOTE: It is not design agnostic because it protects the “channels” key. Depending on your application and sync
function, that might not be a list of channels in your data design.

filtered_keys = (u'_id', u'_rev', u'channels')

classmethod from_dict(data)
Given a dictionary data, create a new DataDict from a dictionary data, silently removing all filtered keys
from that input.

Parameters data (dict) – Input data.

Returns New instance created with cleaned, copied data.

Return type DataDict

Raises ValueError – When passed a non-dict.

to_dict()

Returns A dictionary version of self

Return type dict

pysyncgateway.database module

class pysyncgateway.database.Database(client, name)
Bases: pysyncgateway.helpers.ComparableMixin, object

A Database on Sync Gateway.

client
AdminClient

name
str

url
str – URL to the database, created at init time, including trailing slash.

all_docs()
Get list of all Documents in database.

GET /:name/_all_docs

Warning: Use for testing only. From Simon @ Couchbase:

We would strongly advise against using the _all_docs endpoint. As your database
grows relying on the View that this calls to return to you every document key is inadvisable
and does not scale well to very high numbers of documents.

If you need to retrieve or update multiple documents please use the _bulk_get and
_bulk_docs end points to supply a list of keys (or documents) for retrieval or update.

1.1. Resources 7

pysyncgateway Documentation, Release 1.2.0

Returns An instance of Document for each document returned by the endpoint. For each in-
stance the data['_rev'] value is populated with the revision ID from value.rev.

Return type list (Document)

Raises DoesNotExist – Database can’t be found on Sync Gateway.

all_users()
GET /:name/_user/

Returns All Users in Database.

Return type list (User)

bulk_docs(docs, new_edits=False)
Update multiple documents.

POST /:name/_bulk_docs

Parameters

• docs (list (Document)) – Documents to be created.

• new_edits (bool, Optional) – Value for the new_edits value passed in the
POST data. When deleting open revisions, this should be set to None so that no
new_edits value is sent in the POST data - this is required for the deletion to be suc-
cessful. Defaults to False.

Returns Bulk document update was accepted.

Return type bool

Raises DoesNotExist – Database can’t be found on Sync Gateway.

create()
Write this Database instance to Sync Gateway.

Uses test orientated settings (i.e. none - the empty dictionary {} is passed as data) to create database. This
function is intended for test functionality, rather than for clients to be regularly creating databases.

PUT /:name/

Returns Creation was successful.

Return type bool

delete()
Remove database.

Whereas Sync Gateway will raise 404 if the database is not found, this fails silently with the intention that
it can be used ‘scatter gun’ style at the end of test runs to clean up database lists.

DELETE /:name/

Returns Database was found and deleted.

Return type bool

get()
Return information about this Database from Sync Gateway.

GET /:name/

Returns Information loaded from SG.

Return type dict

8 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

Raises

• DoesNotExist – When database is not written to Sync Gateway regardless of whether
the client is authorized or not.

• ClientUnauthorized – When database exists and client is not authorized.

get_document(doc_id)

Returns An instance of Document in this Database with provided doc_id.

Return type Document

get_query(doc_id)

Returns An instance of a query design document in this Database with the provided doc_id.

Return type Query

get_session()

Returns Session

get_user(username)

Returns An instance of User for the provided username.

Return type User

pysyncgateway.document module

class pysyncgateway.document.Document(database, doc_id)
Bases: pysyncgateway.resource.Resource

A Couchbase Document in a database.

channels
tuple (str) – Channels this document is in.

data
DataDict – Data from the Document using the DataDict manager. The DataDict instance prevents pro-
tected keys from entering the data, but does nothing to prevent mutation. Therefore it never contains the
private SG fields ‘_id’, ‘_rev’, ‘channels’.

doc_id
str – ID of document.

rev
str – Revision identifier of document. Set to empty string when no document has been retrieved.

to_delete
bool – Flag used by Document.flatten_data(). When set it generates data used to delete the
Document when posted with Database.bulk_docs().

open_revisions
list (Document) – List of previous revisions as Document instances. This will be populated when
Document.retrieve() is called with revs=True.

url
str – URL for this resource on Sync Gateway.

create_update()
Save or update Document in Sync Gateway. Saves the received revision id into instance’s rev attribute.

PUT /<database_name>/<doc_id>

1.1. Resources 9

pysyncgateway Documentation, Release 1.2.0

Note: Works for updates but is not tested.

Returns AdminClient.CREATED if document was created (matches 201).

Return type int

Raises RevisionMismatch – When create (no revision) is tried on an existing Document or
update is tried on an existing document, but the revision numbers do not match. Two args are
passed to the exception: url of the document and any revision that was passed with the PUT
request.

delete()
Delete Document from its Database. Document must have been retrieved in order for a valid revision ID
to be provided. If there isn’t a cache of this information when a delete is asked for, then a pre-fetch will
occur.

Uses the default Client.delete() action, but then inspects the response to ensure that {"ok":
true}.

DELETE /<name>/<doc_id>?rev=<rev>

Returns Delete was successful.

Return type bool

Raises

• DoesNotExist – If Document can’t be found (doc has to be loaded first to retrieve
the revision number, which can yield a 404 if it doesn’t exist). Also can be raised if the
Database does not exist.

• RevisionMismatch – Provided rev parameter did not match the live revision ID on
Sync Gateway at request time.

flatten_data()
Used when posting multiple documents with Database.bulk_docs() to the /_bulk_docs end-
point. Set the to_delete flag on the Document instance if it should be deleted - only the particular
revision will be marked for deletion, not all open revisions.

Returns Data for this document including _rev and _id.

Return type dict

Raises ValueError – Document needs a rev to be deletable.

get_open_revisions(include_deleted=False)
Retrieve all leaf revisions of this document and update this instance with the currently winning revision’s
data.

Sync Gateway provides the leaf revision documents “as is” with no flag that one or other is the current
document. Therefore this function makes two requests:

• A GET request using Document.retrieve(). This is used to find the currently winning revision.

• A GET request with ?open_revs=all to collect all leaf nodes.

The list of leaf nodes is iterated and the currently winning revision is used to update this instance. Losing
leaf revisions are blown up into Document instances and stored in the open_revisions list.

10 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

Parameters include_deleted (bool, Optional) – When set to True, Documents
found that are not currently the winning revision and contain {'_deleted': True}
are ignored. Defaults to False.

Returns Number of open revisions found including the current revision.

Return type int

Raises RevisionMismatch – When winning revision’s rev was not found when the open
revisions were loaded. This usually means that the winning revision was deleted before the
open revisions could be retrieved. (untested and needs improvement to avoid race condition.)

retrieve()
Load document contents. Once loaded, _rev and channels are used to update the internal attributes
before the data is sent to the DataDict.

GET /<name>/<doc_id>

Returns Load was successful.

Return type bool

Raises DoesNotExist – Document with provided doc_id can not be loaded.

Note: DataDict never contains the private Sync Gateway fields _id, _rev, channels.

Note: Not running through /<name>/_raw/<doc_id>.

Warning: Side effect: self.channels is updated based on returned the JSON using self.
set_channels().

Warning: Side effect: self.data is updated with data dictionary loaded from JSON.

Warning: Side effect: self.rev is updated from revision passed in JSON using self.set_rev.

set_channels(*channels)
Validate each channel passed and save to channels attribute. No update to channels is made if one is bad,
all are rejected.

Parameters *args (str) – Channels to be set for this document.

Returns None

Raises InvalidChannelName – When a bad channel name is passed.

set_rev(revision_id)
Set Document’s revision id. This is used for subsequent updates and deletions. Not checked for any
validity.

Parameters revision_id (str) –

Returns None

1.1. Resources 11

pysyncgateway Documentation, Release 1.2.0

Raises ValueError – When revision_id is empty string.

pysyncgateway.exceptions module

exception pysyncgateway.exceptions.ClientUnauthorized
Bases: pysyncgateway.exceptions.PysyncgatewayException

Client is not authorized to access this URL

exception pysyncgateway.exceptions.DoesNotExist
Bases: pysyncgateway.exceptions.PysyncgatewayException

Generic exception to replace 404s. Used if databases, users or documents can’t be loaded.

exception pysyncgateway.exceptions.GatewayDown
Bases: pysyncgateway.exceptions.PysyncgatewayException

SyncGateway could not be reached on configured URL

exception pysyncgateway.exceptions.InvalidChannelName
Bases: pysyncgateway.exceptions.PysyncgatewayException

exception pysyncgateway.exceptions.InvalidDataKey
Bases: pysyncgateway.exceptions.PysyncgatewayException

exception pysyncgateway.exceptions.InvalidDatabaseName
Bases: pysyncgateway.exceptions.PysyncgatewayException

exception pysyncgateway.exceptions.InvalidDocumentID
Bases: pysyncgateway.exceptions.PysyncgatewayException

exception pysyncgateway.exceptions.InvalidPassword
Bases: pysyncgateway.exceptions.PysyncgatewayException

exception pysyncgateway.exceptions.NotLoaded
Bases: pysyncgateway.exceptions.PysyncgatewayException

Item from a Resources data attribute was requested, but that resource has not yet been successfully retrieved
from Sync Gateway.

exception pysyncgateway.exceptions.PysyncgatewayException
Bases: exceptions.Exception

The root of all Evil >:D

exception pysyncgateway.exceptions.RevisionMismatch
Bases: pysyncgateway.exceptions.PysyncgatewayException

Sync Gateway was not able to update a resource because either a rev number was not provided and the resource
unexpectedly existed or the provided rev number did not match what Sync Gateway has.

(str)
URL resource that update was attempted for.

(str)
Revision that was sent with the update request.

exception pysyncgateway.exceptions.SyncGatewayClientErrorResponse(status_code,
json)

Bases: pysyncgateway.exceptions.PysyncgatewayException

Sync Gateway responded with a 4xx error.

12 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

status_code
int – Error code in the response from Sync Gateway.

json
dict – Body of response from Sync Gateway.

classmethod from_response(response)

Parameters response (requests.Response) –

Returns SyncGatewayClientErrorResponse

pysyncgateway.helpers module

class pysyncgateway.helpers.ComparableMixin
Bases: object

Alex Martelli’s suggestion from https://stackoverflow.com/a/1061350/1286705

pysyncgateway.helpers.assert_valid_channel_name(name)
Assert channel name passes Sync Gateway’s requirements:

Valid channel names consist of letter [A-Z, a-z], digits [0-9], and a few special characters
[= + / . , _ @]. The empty string is not allowed. The special channel name * denotes all
channels.

Docs are out of date: https://github.com/couchbase/sync_gateway/issues/656 Therefore adding - as allowed.

Parameters name (str) –

Raises InvalidChannelName

Examples

>>> from pysyncgateway.helpers import assert_valid_channel_name

1. Empty string is invalid:

>>> assert_valid_channel_name('')
Traceback (most recent call last):
...
InvalidChannelName: Empty channel name is not allowed

2. Special-special characters are not allowed:

>>> assert_valid_channel_name('stuff!channel')
Traceback (most recent call last):
...
InvalidChannelName: Special characters are not allowed in channels, first bad
→˓character is "!"

3. White space is not allowed:

>>> assert_valid_channel_name('channel 2')
Traceback (most recent call last):
...
InvalidChannelName: Special characters are not allowed in channels, first bad
→˓character is " "

1.1. Resources 13

https://stackoverflow.com/a/1061350/1286705
https://github.com/couchbase/sync_gateway/issues/656

pysyncgateway Documentation, Release 1.2.0

4. When bad character matches at start of line, it’s found:

>>> assert_valid_channel_name('$1 channel')
Traceback (most recent call last):
...
InvalidChannelName: Special characters are not allowed in channels, first bad
→˓character is "$"

5. When name is just bad characters, first bad char is returned:

>>> assert_valid_channel_name('#&()`')
Traceback (most recent call last):
...
InvalidChannelName: Special characters are not allowed in channels, first bad
→˓character is "#"

6. Some special characters are OK:

>>> assert_valid_channel_name('-ABC_project=+/.,@1234')

pysyncgateway.helpers.assert_valid_database_name(name)
Raise exception if database name does not match Couchbase requirements

From docs (http://docs.couchdb.org/en/stable/api/database/common.html#put–db):

The database name must begin with a lowercase letter.

The database name must contain only valid characters. The following characters are valid in database
names:

• Lowercase letters: a-z

• Numbers: 0-9

• Special characters: _$()+-/

NOTE hyphen is allowed, compared to channel names below.

Parameters name (str) –

Returns None

Raises InvalidDatabaseName – When passed name is invalid as a name for a database in Sync
Gateway.

Examples

>>> from pysyncgateway.helpers import assert_valid_database_name

1. Empty string is invalid:

>>> assert_valid_database_name('')
Traceback (most recent call last):
...
InvalidDatabaseName: Empty database name is not allowed

2. Special-special characters are not allowed:

14 Chapter 1. pysyncgateway

http://docs.couchdb.org/en/stable/api/database/common.html#put--db

pysyncgateway Documentation, Release 1.2.0

>>> assert_valid_database_name('stuff!db')
Traceback (most recent call last):
...
InvalidDatabaseName: Special characters are not allowed in database names,
→˓first bad character is "!"

3. White space is not allowed:

>>> assert_valid_database_name('db 2')
Traceback (most recent call last):
...
InvalidDatabaseName: Special characters are not allowed in database names,
→˓first bad character is " "

4. Capitals are not allowed:

>>> assert_valid_database_name('bIGdATA')
Traceback (most recent call last):
...
InvalidDatabaseName: Special characters are not allowed in database names,
→˓first bad character is "I"

5. Name must start with a letter:

>>> assert_valid_database_name('-10degrees')
Traceback (most recent call last):
...
InvalidDatabaseName: Database names must start with a lowercase letter

6. Happy ‘simple’ database names are OK:

>>> assert_valid_database_name('construct-pm($)//x_x')

pysyncgateway.helpers.assert_valid_document_id(doc_id)
NOTE this could become prohibitive if the admin client can’t delete documents that fall outside the boundaries
of the set of allowed names. E.g. App creates bad document and admin needs to clean it up, but can’t. Therefore
this validation should only be used on creation.

Parameters doc_id (str) –

Returns None

Raises InvalidDocumentID – When provided doc_id is not a valid ID for a Document in
Sync Gateway.

Examples

>>> from pysyncgateway.helpers import assert_valid_document_id

1. Empty string is invalid

>>> assert_valid_document_id('')
Traceback (most recent call last):
...
InvalidDocumentID: Empty document id is not allowed

1.1. Resources 15

pysyncgateway Documentation, Release 1.2.0

2. Colon is not allowed in document id

>>> assert_valid_document_id('colon:nope')
Traceback (most recent call last):
...
InvalidDocumentID: Colon is not allowed in document ids

3. Question mark is not allowed (this is allowed in couchbase, but would require much urlencoding and
mashing to get working via python IMO so banning it for now)

If trying to quote, then quote(doc_id, safe='') will raise KeyError and Hell’s Armies walk the
earth.

>>> assert_valid_document_id('Questions? Nope')
Traceback (most recent call last):
...
InvalidDocumentID: Question mark is not allowed in document ids

4. Hash banned for the same reason as question mark.

>>> assert_valid_document_id('hashes### like a boss')
Traceback (most recent call last):
...
InvalidDocumentID: Hash is not allowed in document ids

5. Special-special characters are allowed, and can start the doc id.

>>> assert_valid_document_id('$stuff!channel')

6. White space is allowed.

>>> assert_valid_document_id('channel 2')

7. Loads of special characters are OK

>>> assert_valid_document_id('*-=|+/.,@(1234)')

pysyncgateway.helpers.sg_method(func, *args, **kwargs)
Wrap a normal request Verb (E.g. requests.get) in exception handling logic.

Raises

• DoesNotExist – 404 was received for a request.

• GatewayDown – SyncGateway can’t be reached.

• RevisionMismatch – When a 409 conflict is received from Sync Gateway. Two args
are passed to the exception: url of the resource and any revision that was passed.

• SyncGatewayClientErrorResponse – When any “not OK” response (according to
requests.Response.ok is received that is not a 404.

pysyncgateway.query module

class pysyncgateway.query.Query(database, doc_id)
Bases: pysyncgateway.resource.Resource

Query a design document.

16 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

data
DataDict – Data from the design document using the DataDict manager.

doc_id
str – ID of design document.

url
str – URL for this resource on Sync Gateway.

build_view_url(view_name)

Parameters view_name (str) –

Returns URL for querying view.

Return type str

create_update()
Create or update design document with data.

PUT /<database_name>/_design/<doc_id>

Returns Design document was created or updated successfully.

Return type bool

delete()
Delete design document.

Returns Design document deleted.

Return type bool

Raises DoesNotExist – Design document or Database can not be found.

query_view(view_name, key=None, stale=True, timeout=None)
Load a view function from this design Document. Document must be written to Sync Gateway and view’s
Javascript function must be valid.

Parameters

• view_name (str) – View’s name.

• key (Optional) – Value to use to search the view’s key (the left part of the map). Any
type can be passed as long as:

– key is not None

– key can be serialized to a string by json.dumps().

To query a view with multiple keys set key as an iterable which will be serialized to JSON
as an array. E.g. key=['left_id', 'right_id'].

• stale (bool, Optional) – Allow stale results in the view. This is currently the
default value in Sync Gateway, so is only passed when set to False. Default True.

'false' is an undocumented option for this param. See https://github.com/couchbase/
sync_gateway/issues/727#issuecomment-83588984

It also doesn’t work in Walrus mode, see https://github.com/constructpm/pysyncgateway/
issues/7

• timeout (int, Optional) – Set a time out of seconds as per requests’ spec which
means that if the Sync Gateway does not respond to the GET request within the timeout
period, a ReadTimeoutwill be raised. Default Nonewhich means that requests’ default
is used.

1.1. Resources 17

https://github.com/couchbase/sync_gateway/issues/727#issuecomment-83588984
https://github.com/couchbase/sync_gateway/issues/727#issuecomment-83588984
https://github.com/constructpm/pysyncgateway/issues/7
https://github.com/constructpm/pysyncgateway/issues/7

pysyncgateway Documentation, Release 1.2.0

Returns Decoded JSON for view data result. Will usually be a dictionary contain keys ‘Colla-
tor’, ‘rows’ and ‘total_rows’.

Return type dict

Raises

• DoesNotExist – When database, design document or contained view can not be found.

• requests.exceptions.ReadTimeout – When Sync Gateway does not respond
within given timeout.

retrieve()

Returns Design document was retrieved.

Return type bool

Raises DoesNotExist – Design document or Database can not be found.

Side effects: data: Updates internal data dictionary with data loaded from JSON.

pysyncgateway.resource module

class pysyncgateway.resource.Resource(database)
Bases: pysyncgateway.helpers.ComparableMixin, object

A Couchbase object stored within a Database, identified by a URL and accessible through REST verbs. Data is
stored in a DataDict manager.

_data
DataDict

database
Database

url
str

data

pysyncgateway.session module

class pysyncgateway.session.Session(database)
Bases: pysyncgateway.resource.Resource

Sessions on the Database are undocumented as of Sync Gateway 1.5 in both the public and admin REST APIs.
But since they provide a useful test mechanism by showing a list of channels that the authenticated User has
been subscribed to, they are included in this library.

data
DataDict – Data from the session using the DataDict manager.

database
Database

url
str – URL for the session in the Database on Sync Gateway.

get_channels()
Helper to pick user’s subscribed channels from retrieved session data.

18 Chapter 1. pysyncgateway

https://developer.couchbase.com/documentation/mobile/1.5/references/sync-gateway/rest-api/index.html#/
https://developer.couchbase.com/documentation/mobile/1.5/references/sync-gateway/admin-rest-api/index.html

pysyncgateway Documentation, Release 1.2.0

Returns Sorted list of channel names found in response including the special ! public channel.

Return type list

Raises

• NotLoaded – When session has not been retrieved.

• KeyError – When the userCtx data in the session response does not contain a
channels dictionary.

get_name()
Helper to pick user’s name field from retrieved session data.

Returns Name of user according to Sync Gateway.

Return type str

Raises

• NotLoaded – When session has not been retrieved.

• KeyError – When the userCtx data in the session response does not contain a name
field.

retrieve()
Collect session information for the current client in the database attribute.

For unauthorized users on the public API and requests on the admin API this looks like:

{
'authentication_handlers': ['default', 'cookie'],
'ok': True,
'userCtx': {

'channels': {},
'name': None,

},
}

For authenticated users on the public API, in this example with the name __USERNAME__ and channels
a, b and c, this looks like:

{
'authentication_handlers': ['default', 'cookie'],
'ok': True,
'userCtx': {

'channels': {
'!': 1,
'a': 1,
'b': 1,
'c': 1,

},
'name': '__USERNAME__',

},
}

Returns Success

Return type bool

Raises DoesNotExist – When database does not exist on Sync Gateway, regardless of
whether client is authorized or not.

1.1. Resources 19

pysyncgateway Documentation, Release 1.2.0

Warning: Side effect: Updates self.data with response from Sync Gateway on success.

pysyncgateway.stats module

class pysyncgateway.stats.Stats(client)
Bases: object

Stats object from the expvars endpoint on the Sync Gateway. See https://github.com/couchbase/sync_gateway/
wiki/expvars

NOTE: Stats come from the server and not from the database.

client
AdminClient – Used to communicate with the server.

data
dict – Statistical data populated after retrieval. Will be empty dictionary before retrieval.

url
str – Location of stats.

retrieve()
Load stats, parse info and stash in data attr.

Returns load was successful.

Return type bool

Raises

• GatewayDown – When the endpoint can’t be reached.

• ValueError – When something non-JSON is loaded.

Side effects: data: Populated with dictionary parsed from the JSON response.

pysyncgateway.user module

class pysyncgateway.user.User(database, name)
Bases: pysyncgateway.resource.Resource

A User in a Database.

admin_channels
tuple(str) – Channels that this User has been added to by admin or sync function.

data
DataDict

name
str – Username of this user.

password
str – User’s password. Can be None and is only set with set_password.

retrieved
bool – User been retrieved from sync gateway. Acts as a flag to know if there should be a password sent at
create_update time.

20 Chapter 1. pysyncgateway

https://github.com/couchbase/sync_gateway/wiki/expvars
https://github.com/couchbase/sync_gateway/wiki/expvars

pysyncgateway Documentation, Release 1.2.0

url
str – URL for this User on sync gateway.

create_update()
Create a new or update an existing user for currently connected database. When creating a new User then
their password must have been set on this instance using set_password, or the sync gateway will reject the
PUT with a 400.

NOTE it’s not possible to change the username (name) of a user with this function.

NOTE Does not handle roles, email or disabled state.

PUT /<database_name>/_user/<name>

Returns

AdminClient.CREATED if a new user was created (matches 201),
AdminClient.UPDATED if an existing user was updated,

Return type int

Raises

• DoesNotExist – When Database does not exist.

• SyncGatewayClientErrorResponse – When sync gateway returns a client error
HTTP code.

delete()
Delete User from Database.

Returns User was deleted.

Return type bool

Raises DoesNotExist – User can’t be found in this Database or Database does not exist.

retrieve()
Get User’s info from sync gateway.

When User is found the response’s payload is kept in the data attribute.

When User is not found (404), any existing data is erased. Sync gateway response can optionally contain
an admin_channels field. When none are returned then admin_channels attribute of the User is set to the
empty tuple.

GET /<database_name>/_user/<name>

Returns Retrieval was successful.

Return type bool

Raises DoesNotExist – User can’t be found in this Database or Database does not exist.

set_admin_channels(*channels)
Validate each channel passed in channels and save to admin_channels attribute. No update to channels is
made if one is bad, all are rejected.

Parameters *args – Variable number of channels as str.

Raises InvalidChannelName – Bad channel name is received.

set_password(password)

Parameters password (str) – A password for the User. Must not be empty (this is a basic
security measure and is not enforced by sync gateway.

1.1. Resources 21

pysyncgateway Documentation, Release 1.2.0

Raises InvalidPassword – Password provided for User was invalid.

pysyncgateway.user_client module

class pysyncgateway.user_client.UserClient(url)
Bases: pysyncgateway.client.Client

auth(username, password)
Authorise client with provided credentials. Does not check with Sync Gateway that credentials are correct
until a request is made.

Parameters

• username (str) – User name.

• password (str) – Password.

Returns None

Module contents

class pysyncgateway.AdminClient(url)
Bases: pysyncgateway.client.Client

Sync Gateway admin client for performing actions on the private admin API.

url
str – Sync Gateway admin REST API URL.

all_databases()
Provide all Databases on the server.

GET /_all_dbs

Returns All databases found, connected with this client.

Return type list (Database)

Raises GatewayDown – When sync gateway instance can not be reached by client.

class pysyncgateway.Database(client, name)
Bases: pysyncgateway.helpers.ComparableMixin, object

A Database on Sync Gateway.

client
AdminClient

name
str

url
str – URL to the database, created at init time, including trailing slash.

all_docs()
Get list of all Documents in database.

GET /:name/_all_docs

Warning: Use for testing only. From Simon @ Couchbase:

22 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

We would strongly advise against using the _all_docs endpoint. As your database
grows relying on the View that this calls to return to you every document key is inadvisable
and does not scale well to very high numbers of documents.

If you need to retrieve or update multiple documents please use the _bulk_get and
_bulk_docs end points to supply a list of keys (or documents) for retrieval or update.

Returns An instance of Document for each document returned by the endpoint. For each in-
stance the data['_rev'] value is populated with the revision ID from value.rev.

Return type list (Document)

Raises DoesNotExist – Database can’t be found on Sync Gateway.

all_users()
GET /:name/_user/

Returns All Users in Database.

Return type list (User)

bulk_docs(docs, new_edits=False)
Update multiple documents.

POST /:name/_bulk_docs

Parameters

• docs (list (Document)) – Documents to be created.

• new_edits (bool, Optional) – Value for the new_edits value passed in the
POST data. When deleting open revisions, this should be set to None so that no
new_edits value is sent in the POST data - this is required for the deletion to be suc-
cessful. Defaults to False.

Returns Bulk document update was accepted.

Return type bool

Raises DoesNotExist – Database can’t be found on Sync Gateway.

create()
Write this Database instance to Sync Gateway.

Uses test orientated settings (i.e. none - the empty dictionary {} is passed as data) to create database. This
function is intended for test functionality, rather than for clients to be regularly creating databases.

PUT /:name/

Returns Creation was successful.

Return type bool

delete()
Remove database.

Whereas Sync Gateway will raise 404 if the database is not found, this fails silently with the intention that
it can be used ‘scatter gun’ style at the end of test runs to clean up database lists.

DELETE /:name/

Returns Database was found and deleted.

Return type bool

1.1. Resources 23

pysyncgateway Documentation, Release 1.2.0

get()
Return information about this Database from Sync Gateway.

GET /:name/

Returns Information loaded from SG.

Return type dict

Raises

• DoesNotExist – When database is not written to Sync Gateway regardless of whether
the client is authorized or not.

• ClientUnauthorized – When database exists and client is not authorized.

get_document(doc_id)

Returns An instance of Document in this Database with provided doc_id.

Return type Document

get_query(doc_id)

Returns An instance of a query design document in this Database with the provided doc_id.

Return type Query

get_session()

Returns Session

get_user(username)

Returns An instance of User for the provided username.

Return type User

class pysyncgateway.Document(database, doc_id)
Bases: pysyncgateway.resource.Resource

A Couchbase Document in a database.

channels
tuple (str) – Channels this document is in.

data
DataDict – Data from the Document using the DataDict manager. The DataDict instance prevents pro-
tected keys from entering the data, but does nothing to prevent mutation. Therefore it never contains the
private SG fields ‘_id’, ‘_rev’, ‘channels’.

doc_id
str – ID of document.

rev
str – Revision identifier of document. Set to empty string when no document has been retrieved.

to_delete
bool – Flag used by Document.flatten_data(). When set it generates data used to delete the
Document when posted with Database.bulk_docs().

open_revisions
list (Document) – List of previous revisions as Document instances. This will be populated when
Document.retrieve() is called with revs=True.

url
str – URL for this resource on Sync Gateway.

24 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

create_update()
Save or update Document in Sync Gateway. Saves the received revision id into instance’s rev attribute.

PUT /<database_name>/<doc_id>

Note: Works for updates but is not tested.

Returns AdminClient.CREATED if document was created (matches 201).

Return type int

Raises RevisionMismatch – When create (no revision) is tried on an existing Document or
update is tried on an existing document, but the revision numbers do not match. Two args are
passed to the exception: url of the document and any revision that was passed with the PUT
request.

delete()
Delete Document from its Database. Document must have been retrieved in order for a valid revision ID
to be provided. If there isn’t a cache of this information when a delete is asked for, then a pre-fetch will
occur.

Uses the default Client.delete() action, but then inspects the response to ensure that {"ok":
true}.

DELETE /<name>/<doc_id>?rev=<rev>

Returns Delete was successful.

Return type bool

Raises

• DoesNotExist – If Document can’t be found (doc has to be loaded first to retrieve
the revision number, which can yield a 404 if it doesn’t exist). Also can be raised if the
Database does not exist.

• RevisionMismatch – Provided rev parameter did not match the live revision ID on
Sync Gateway at request time.

flatten_data()
Used when posting multiple documents with Database.bulk_docs() to the /_bulk_docs end-
point. Set the to_delete flag on the Document instance if it should be deleted - only the particular
revision will be marked for deletion, not all open revisions.

Returns Data for this document including _rev and _id.

Return type dict

Raises ValueError – Document needs a rev to be deletable.

get_open_revisions(include_deleted=False)
Retrieve all leaf revisions of this document and update this instance with the currently winning revision’s
data.

Sync Gateway provides the leaf revision documents “as is” with no flag that one or other is the current
document. Therefore this function makes two requests:

• A GET request using Document.retrieve(). This is used to find the currently winning revision.

• A GET request with ?open_revs=all to collect all leaf nodes.

1.1. Resources 25

pysyncgateway Documentation, Release 1.2.0

The list of leaf nodes is iterated and the currently winning revision is used to update this instance. Losing
leaf revisions are blown up into Document instances and stored in the open_revisions list.

Parameters include_deleted (bool, Optional) – When set to True, Documents
found that are not currently the winning revision and contain {'_deleted': True}
are ignored. Defaults to False.

Returns Number of open revisions found including the current revision.

Return type int

Raises RevisionMismatch – When winning revision’s rev was not found when the open
revisions were loaded. This usually means that the winning revision was deleted before the
open revisions could be retrieved. (untested and needs improvement to avoid race condition.)

retrieve()
Load document contents. Once loaded, _rev and channels are used to update the internal attributes
before the data is sent to the DataDict.

GET /<name>/<doc_id>

Returns Load was successful.

Return type bool

Raises DoesNotExist – Document with provided doc_id can not be loaded.

Note: DataDict never contains the private Sync Gateway fields _id, _rev, channels.

Note: Not running through /<name>/_raw/<doc_id>.

Warning: Side effect: self.channels is updated based on returned the JSON using self.
set_channels().

Warning: Side effect: self.data is updated with data dictionary loaded from JSON.

Warning: Side effect: self.rev is updated from revision passed in JSON using self.set_rev.

set_channels(*channels)
Validate each channel passed and save to channels attribute. No update to channels is made if one is bad,
all are rejected.

Parameters *args (str) – Channels to be set for this document.

Returns None

Raises InvalidChannelName – When a bad channel name is passed.

set_rev(revision_id)
Set Document’s revision id. This is used for subsequent updates and deletions. Not checked for any
validity.

Parameters revision_id (str) –

26 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

Returns None

Raises ValueError – When revision_id is empty string.

class pysyncgateway.Query(database, doc_id)
Bases: pysyncgateway.resource.Resource

Query a design document.

data
DataDict – Data from the design document using the DataDict manager.

doc_id
str – ID of design document.

url
str – URL for this resource on Sync Gateway.

build_view_url(view_name)

Parameters view_name (str) –

Returns URL for querying view.

Return type str

create_update()
Create or update design document with data.

PUT /<database_name>/_design/<doc_id>

Returns Design document was created or updated successfully.

Return type bool

delete()
Delete design document.

Returns Design document deleted.

Return type bool

Raises DoesNotExist – Design document or Database can not be found.

query_view(view_name, key=None, stale=True, timeout=None)
Load a view function from this design Document. Document must be written to Sync Gateway and view’s
Javascript function must be valid.

Parameters

• view_name (str) – View’s name.

• key (Optional) – Value to use to search the view’s key (the left part of the map). Any
type can be passed as long as:

– key is not None

– key can be serialized to a string by json.dumps().

To query a view with multiple keys set key as an iterable which will be serialized to JSON
as an array. E.g. key=['left_id', 'right_id'].

• stale (bool, Optional) – Allow stale results in the view. This is currently the
default value in Sync Gateway, so is only passed when set to False. Default True.

'false' is an undocumented option for this param. See https://github.com/couchbase/
sync_gateway/issues/727#issuecomment-83588984

1.1. Resources 27

https://github.com/couchbase/sync_gateway/issues/727#issuecomment-83588984
https://github.com/couchbase/sync_gateway/issues/727#issuecomment-83588984

pysyncgateway Documentation, Release 1.2.0

It also doesn’t work in Walrus mode, see https://github.com/constructpm/pysyncgateway/
issues/7

• timeout (int, Optional) – Set a time out of seconds as per requests’ spec which
means that if the Sync Gateway does not respond to the GET request within the timeout
period, a ReadTimeoutwill be raised. Default Nonewhich means that requests’ default
is used.

Returns Decoded JSON for view data result. Will usually be a dictionary contain keys ‘Colla-
tor’, ‘rows’ and ‘total_rows’.

Return type dict

Raises

• DoesNotExist – When database, design document or contained view can not be found.

• requests.exceptions.ReadTimeout – When Sync Gateway does not respond
within given timeout.

retrieve()

Returns Design document was retrieved.

Return type bool

Raises DoesNotExist – Design document or Database can not be found.

Side effects: data: Updates internal data dictionary with data loaded from JSON.

class pysyncgateway.Session(database)
Bases: pysyncgateway.resource.Resource

Sessions on the Database are undocumented as of Sync Gateway 1.5 in both the public and admin REST APIs.
But since they provide a useful test mechanism by showing a list of channels that the authenticated User has
been subscribed to, they are included in this library.

data
DataDict – Data from the session using the DataDict manager.

database
Database

url
str – URL for the session in the Database on Sync Gateway.

get_channels()
Helper to pick user’s subscribed channels from retrieved session data.

Returns Sorted list of channel names found in response including the special ! public channel.

Return type list

Raises

• NotLoaded – When session has not been retrieved.

• KeyError – When the userCtx data in the session response does not contain a
channels dictionary.

get_name()
Helper to pick user’s name field from retrieved session data.

Returns Name of user according to Sync Gateway.

28 Chapter 1. pysyncgateway

https://github.com/constructpm/pysyncgateway/issues/7
https://github.com/constructpm/pysyncgateway/issues/7
https://developer.couchbase.com/documentation/mobile/1.5/references/sync-gateway/rest-api/index.html#/
https://developer.couchbase.com/documentation/mobile/1.5/references/sync-gateway/admin-rest-api/index.html

pysyncgateway Documentation, Release 1.2.0

Return type str

Raises

• NotLoaded – When session has not been retrieved.

• KeyError – When the userCtx data in the session response does not contain a name
field.

retrieve()
Collect session information for the current client in the database attribute.

For unauthorized users on the public API and requests on the admin API this looks like:

{
'authentication_handlers': ['default', 'cookie'],
'ok': True,
'userCtx': {

'channels': {},
'name': None,

},
}

For authenticated users on the public API, in this example with the name __USERNAME__ and channels
a, b and c, this looks like:

{
'authentication_handlers': ['default', 'cookie'],
'ok': True,
'userCtx': {

'channels': {
'!': 1,
'a': 1,
'b': 1,
'c': 1,

},
'name': '__USERNAME__',

},
}

Returns Success

Return type bool

Raises DoesNotExist – When database does not exist on Sync Gateway, regardless of
whether client is authorized or not.

Warning: Side effect: Updates self.data with response from Sync Gateway on success.

class pysyncgateway.Stats(client)
Bases: object

Stats object from the expvars endpoint on the Sync Gateway. See https://github.com/couchbase/sync_gateway/
wiki/expvars

NOTE: Stats come from the server and not from the database.

client
AdminClient – Used to communicate with the server.

1.1. Resources 29

https://github.com/couchbase/sync_gateway/wiki/expvars
https://github.com/couchbase/sync_gateway/wiki/expvars

pysyncgateway Documentation, Release 1.2.0

data
dict – Statistical data populated after retrieval. Will be empty dictionary before retrieval.

url
str – Location of stats.

retrieve()
Load stats, parse info and stash in data attr.

Returns load was successful.

Return type bool

Raises

• GatewayDown – When the endpoint can’t be reached.

• ValueError – When something non-JSON is loaded.

Side effects: data: Populated with dictionary parsed from the JSON response.

class pysyncgateway.User(database, name)
Bases: pysyncgateway.resource.Resource

A User in a Database.

admin_channels
tuple(str) – Channels that this User has been added to by admin or sync function.

data
DataDict

name
str – Username of this user.

password
str – User’s password. Can be None and is only set with set_password.

retrieved
bool – User been retrieved from sync gateway. Acts as a flag to know if there should be a password sent at
create_update time.

url
str – URL for this User on sync gateway.

create_update()
Create a new or update an existing user for currently connected database. When creating a new User then
their password must have been set on this instance using set_password, or the sync gateway will reject the
PUT with a 400.

NOTE it’s not possible to change the username (name) of a user with this function.

NOTE Does not handle roles, email or disabled state.

PUT /<database_name>/_user/<name>

Returns

AdminClient.CREATED if a new user was created (matches 201),
AdminClient.UPDATED if an existing user was updated,

Return type int

Raises

30 Chapter 1. pysyncgateway

pysyncgateway Documentation, Release 1.2.0

• DoesNotExist – When Database does not exist.

• SyncGatewayClientErrorResponse – When sync gateway returns a client error
HTTP code.

delete()
Delete User from Database.

Returns User was deleted.

Return type bool

Raises DoesNotExist – User can’t be found in this Database or Database does not exist.

retrieve()
Get User’s info from sync gateway.

When User is found the response’s payload is kept in the data attribute.

When User is not found (404), any existing data is erased. Sync gateway response can optionally contain
an admin_channels field. When none are returned then admin_channels attribute of the User is set to the
empty tuple.

GET /<database_name>/_user/<name>

Returns Retrieval was successful.

Return type bool

Raises DoesNotExist – User can’t be found in this Database or Database does not exist.

set_admin_channels(*channels)
Validate each channel passed in channels and save to admin_channels attribute. No update to channels is
made if one is bad, all are rejected.

Parameters *args – Variable number of channels as str.

Raises InvalidChannelName – Bad channel name is received.

set_password(password)

Parameters password (str) – A password for the User. Must not be empty (this is a basic
security measure and is not enforced by sync gateway.

Raises InvalidPassword – Password provided for User was invalid.

class pysyncgateway.UserClient(url)
Bases: pysyncgateway.client.Client

auth(username, password)
Authorise client with provided credentials. Does not check with Sync Gateway that credentials are correct
until a request is made.

Parameters

• username (str) – User name.

• password (str) – Password.

Returns None

1.1.3 Release checklist

Items to be completed for each release. Given a new version called x.y.z:

• Create a branch for the new release. Usually called something like bump-vx.y.z.

1.1. Resources 31

pysyncgateway Documentation, Release 1.2.0

• Update __version__ in __about__.py with the new version number 'x.y.z'.

• Update CHANGELOG.

– Add a new subtitle below Unreleased after the note about latest documentation, in the format x.y.z_
- yyyy/mm/dd, where yyyy/mm/dd is the reverse formatted date of the day the release is created.

– Update the .. _Unreleased: link at the bottom of the page to compare vx.y.z...HEAD.

– Under the _Unreleased link, create a new link for the release .. _x.y.z: https:/[...]/
compare/va.b.c...vx.y.z, where va.b.c is the previous release.

• Commit changes and push bump-vx.y.z branch for testing.

• Now is a good time to build and check the documentation locally.

• When branch bump-vx.y.z is green, then merge it to master.

• Update master locally and ensure that you remain on master for the rest of the process.

• Test that a build can be shipped to test PyPI with make testpypi. (Every build runs the full clean test suite
locally to ensure that nothing has broken before building)

• After successful push, check the TestPyPI page.

• Then tag the repo with make tag. Add a short message about what the key change is.

• Make the new tag public with git push origin --tags.

• Build and push to PyPI with make pypi.

• After successful push, check the PyPI page.

Post release checks

• Visit the CHANGELOG and ensure that the new release’s comparison link works with the new tag.

• Check the RTD builds to ensure that the latest documentation version has been picked up and that the stable
docs are pointed at it.

A new docs release will not have been created for the new tag as per this issue. Click “Build Version:” on the
builds page for the new tag to be picked up.

32 Chapter 1. pysyncgateway

https://github.com/constructpm/pysyncgateway/blob/master/pysyncgateway/__about__.py
https://github.com/constructpm/pysyncgateway/blob/master/CHANGELOG.rst
https://test.pypi.org/project/pysyncgateway/
https://pypi.org/project/pysyncgateway/
https://github.com/constructpm/pysyncgateway/blob/master/CHANGELOG.rst
https://readthedocs.org/projects/pysyncgateway/builds/
https://github.com/rtfd/readthedocs.org/issues/3508

Python Module Index

p
pysyncgateway, 22
pysyncgateway.admin_client, 6
pysyncgateway.client, 6
pysyncgateway.data_dict, 7
pysyncgateway.database, 7
pysyncgateway.document, 9
pysyncgateway.exceptions, 12
pysyncgateway.helpers, 13
pysyncgateway.query, 16
pysyncgateway.resource, 18
pysyncgateway.session, 18
pysyncgateway.stats, 20
pysyncgateway.user, 20
pysyncgateway.user_client, 22

33

pysyncgateway Documentation, Release 1.2.0

34 Python Module Index

Index

Symbols
_auth (pysyncgateway.client.Client attribute), 6
_data (pysyncgateway.resource.Resource attribute), 18

A
admin_channels (pysyncgateway.User attribute), 30
admin_channels (pysyncgateway.user.User attribute), 20
AdminClient (class in pysyncgateway), 22
AdminClient (class in pysyncgateway.admin_client), 6
all_databases() (pysyncgate-

way.admin_client.AdminClient method),
6

all_databases() (pysyncgateway.AdminClient method),
22

all_docs() (pysyncgateway.Database method), 22
all_docs() (pysyncgateway.database.Database method), 7
all_users() (pysyncgateway.Database method), 23
all_users() (pysyncgateway.database.Database method), 8
assert_valid_channel_name() (in module pysyncgate-

way.helpers), 13
assert_valid_database_name() (in module pysyncgate-

way.helpers), 14
assert_valid_document_id() (in module pysyncgate-

way.helpers), 15
auth() (pysyncgateway.user_client.UserClient method),

22
auth() (pysyncgateway.UserClient method), 31

B
build_view_url() (pysyncgateway.Query method), 27
build_view_url() (pysyncgateway.query.Query method),

17
bulk_docs() (pysyncgateway.Database method), 23
bulk_docs() (pysyncgateway.database.Database method),

8

C
channels (pysyncgateway.Document attribute), 24

channels (pysyncgateway.document.Document attribute),
9

Client (class in pysyncgateway.client), 6
client (pysyncgateway.Database attribute), 22
client (pysyncgateway.database.Database attribute), 7
client (pysyncgateway.Stats attribute), 29
client (pysyncgateway.stats.Stats attribute), 20
ClientUnauthorized, 12
ComparableMixin (class in pysyncgateway.helpers), 13
CONFLICT (pysyncgateway.client.Client attribute), 6
create() (pysyncgateway.Database method), 23
create() (pysyncgateway.database.Database method), 8
create_update() (pysyncgateway.Document method), 24
create_update() (pysyncgateway.document.Document

method), 9
create_update() (pysyncgateway.Query method), 27
create_update() (pysyncgateway.query.Query method), 17
create_update() (pysyncgateway.User method), 30
create_update() (pysyncgateway.user.User method), 21
CREATED (pysyncgateway.client.Client attribute), 6

D
data (pysyncgateway.Document attribute), 24
data (pysyncgateway.document.Document attribute), 9
data (pysyncgateway.Query attribute), 27
data (pysyncgateway.query.Query attribute), 16
data (pysyncgateway.resource.Resource attribute), 18
data (pysyncgateway.Session attribute), 28
data (pysyncgateway.session.Session attribute), 18
data (pysyncgateway.Stats attribute), 29
data (pysyncgateway.stats.Stats attribute), 20
data (pysyncgateway.User attribute), 30
data (pysyncgateway.user.User attribute), 20
Database (class in pysyncgateway), 22
Database (class in pysyncgateway.database), 7
database (pysyncgateway.resource.Resource attribute), 18
database (pysyncgateway.Session attribute), 28
database (pysyncgateway.session.Session attribute), 18
DataDict (class in pysyncgateway.data_dict), 7
delete() (pysyncgateway.client.Client method), 6

35

pysyncgateway Documentation, Release 1.2.0

delete() (pysyncgateway.Database method), 23
delete() (pysyncgateway.database.Database method), 8
delete() (pysyncgateway.Document method), 25
delete() (pysyncgateway.document.Document method),

10
delete() (pysyncgateway.Query method), 27
delete() (pysyncgateway.query.Query method), 17
delete() (pysyncgateway.User method), 31
delete() (pysyncgateway.user.User method), 21
doc_id (pysyncgateway.Document attribute), 24
doc_id (pysyncgateway.document.Document attribute), 9
doc_id (pysyncgateway.Query attribute), 27
doc_id (pysyncgateway.query.Query attribute), 17
Document (class in pysyncgateway), 24
Document (class in pysyncgateway.document), 9
DoesNotExist, 12

F
filtered_keys (pysyncgateway.data_dict.DataDict at-

tribute), 7
flatten_data() (pysyncgateway.Document method), 25
flatten_data() (pysyncgateway.document.Document

method), 10
from_dict() (pysyncgateway.data_dict.DataDict class

method), 7
from_response() (pysyncgate-

way.exceptions.SyncGatewayClientErrorResponse
class method), 13

G
GatewayDown, 12
get() (pysyncgateway.client.Client method), 6
get() (pysyncgateway.Database method), 23
get() (pysyncgateway.database.Database method), 8
get_channels() (pysyncgateway.Session method), 28
get_channels() (pysyncgateway.session.Session method),

18
get_database() (pysyncgateway.client.Client method), 6
get_document() (pysyncgateway.Database method), 24
get_document() (pysyncgateway.database.Database

method), 9
get_name() (pysyncgateway.Session method), 28
get_name() (pysyncgateway.session.Session method), 19
get_open_revisions() (pysyncgateway.Document

method), 25
get_open_revisions() (pysyncgate-

way.document.Document method), 10
get_query() (pysyncgateway.Database method), 24
get_query() (pysyncgateway.database.Database method),

9
get_server() (pysyncgateway.client.Client method), 6
get_session() (pysyncgateway.Database method), 24
get_session() (pysyncgateway.database.Database

method), 9

get_user() (pysyncgateway.Database method), 24
get_user() (pysyncgateway.database.Database method), 9

I
InvalidChannelName, 12
InvalidDatabaseName, 12
InvalidDataKey, 12
InvalidDocumentID, 12
InvalidPassword, 12

J
json (pysyncgateway.exceptions.SyncGatewayClientErrorResponse

attribute), 13

N
name (pysyncgateway.Database attribute), 22
name (pysyncgateway.database.Database attribute), 7
name (pysyncgateway.User attribute), 30
name (pysyncgateway.user.User attribute), 20
NotLoaded, 12

O
open_revisions (pysyncgateway.Document attribute), 24
open_revisions (pysyncgateway.document.Document at-

tribute), 9

P
password (pysyncgateway.User attribute), 30
password (pysyncgateway.user.User attribute), 20
post() (pysyncgateway.client.Client method), 6
put() (pysyncgateway.client.Client method), 6
pysyncgateway (module), 22
pysyncgateway.admin_client (module), 6
pysyncgateway.client (module), 6
pysyncgateway.data_dict (module), 7
pysyncgateway.database (module), 7
pysyncgateway.document (module), 9
pysyncgateway.exceptions (module), 12
pysyncgateway.helpers (module), 13
pysyncgateway.query (module), 16
pysyncgateway.resource (module), 18
pysyncgateway.session (module), 18
pysyncgateway.stats (module), 20
pysyncgateway.user (module), 20
pysyncgateway.user_client (module), 22
PysyncgatewayException, 12

Q
Query (class in pysyncgateway), 27
Query (class in pysyncgateway.query), 16
query_view() (pysyncgateway.Query method), 27
query_view() (pysyncgateway.query.Query method), 17

36 Index

pysyncgateway Documentation, Release 1.2.0

R
Resource (class in pysyncgateway.resource), 18
retrieve() (pysyncgateway.Document method), 26
retrieve() (pysyncgateway.document.Document method),

11
retrieve() (pysyncgateway.Query method), 28
retrieve() (pysyncgateway.query.Query method), 18
retrieve() (pysyncgateway.Session method), 29
retrieve() (pysyncgateway.session.Session method), 19
retrieve() (pysyncgateway.Stats method), 30
retrieve() (pysyncgateway.stats.Stats method), 20
retrieve() (pysyncgateway.User method), 31
retrieve() (pysyncgateway.user.User method), 21
retrieved (pysyncgateway.User attribute), 30
retrieved (pysyncgateway.user.User attribute), 20
rev (pysyncgateway.Document attribute), 24
rev (pysyncgateway.document.Document attribute), 9
RevisionMismatch, 12

S
Session (class in pysyncgateway), 28
Session (class in pysyncgateway.session), 18
set_admin_channels() (pysyncgateway.User method), 31
set_admin_channels() (pysyncgateway.user.User

method), 21
set_channels() (pysyncgateway.Document method), 26
set_channels() (pysyncgateway.document.Document

method), 11
set_password() (pysyncgateway.User method), 31
set_password() (pysyncgateway.user.User method), 21
set_rev() (pysyncgateway.Document method), 26
set_rev() (pysyncgateway.document.Document method),

11
sg_method() (in module pysyncgateway.helpers), 16
Stats (class in pysyncgateway), 29
Stats (class in pysyncgateway.stats), 20
status_code (pysyncgate-

way.exceptions.SyncGatewayClientErrorResponse
attribute), 12

SyncGatewayClientErrorResponse, 12

T
to_delete (pysyncgateway.Document attribute), 24
to_delete (pysyncgateway.document.Document attribute),

9
to_dict() (pysyncgateway.data_dict.DataDict method), 7

U
UPDATED (pysyncgateway.client.Client attribute), 6
url (pysyncgateway.admin_client.AdminClient attribute),

6
url (pysyncgateway.AdminClient attribute), 22
url (pysyncgateway.client.Client attribute), 6

url (pysyncgateway.Database attribute), 22
url (pysyncgateway.database.Database attribute), 7
url (pysyncgateway.Document attribute), 24
url (pysyncgateway.document.Document attribute), 9
url (pysyncgateway.Query attribute), 27
url (pysyncgateway.query.Query attribute), 17
url (pysyncgateway.resource.Resource attribute), 18
url (pysyncgateway.Session attribute), 28
url (pysyncgateway.session.Session attribute), 18
url (pysyncgateway.Stats attribute), 30
url (pysyncgateway.stats.Stats attribute), 20
url (pysyncgateway.User attribute), 30
url (pysyncgateway.user.User attribute), 20
User (class in pysyncgateway), 30
User (class in pysyncgateway.user), 20
UserClient (class in pysyncgateway), 31
UserClient (class in pysyncgateway.user_client), 22

Index 37

	pysyncgateway
	Resources

	Python Module Index

