
pystray
Release 0.19.5

Sep 17, 2023

Contents

1 Table of contents 3
1.1 Creating a system tray icon . 3
1.2 Integrating with other frameworks . 6
1.3 Selecting a backend . 7
1.4 Frequently asked question . 7
1.5 Reference . 8

Index 13

i

ii

pystray, Release 0.19.5

This library allows you to create a system tray icon.

It allows specifying an icon, a title and a callback for when the icon is activated. The icon and title can be changed
after the icon has been created, and the visibility of the icon can be toggled.

Contents 1

pystray, Release 0.19.5

2 Contents

CHAPTER 1

Table of contents

1.1 Creating a system tray icon

In order to create a system tray icon, the class pystray.Icon is used:

import pystray

from PIL import Image, ImageDraw

def create_image(width, height, color1, color2):
Generate an image and draw a pattern
image = Image.new('RGB', (width, height), color1)
dc = ImageDraw.Draw(image)
dc.rectangle(

(width // 2, 0, width, height // 2),
fill=color2)

dc.rectangle(
(0, height // 2, width // 2, height),
fill=color2)

return image

In order for the icon to be displayed, you must provide an icon
icon = pystray.Icon(

'test name',
icon=create_image(64, 64, 'black', 'white'))

To finally show you icon, call run
icon.run()

The call to pystray.Icon.run() is blocking, and it must be performed from the main thread of the application.
The reason for this is that the system tray icon implementation for OSX will fail unless called from the main thread,

3

pystray, Release 0.19.5

and it also requires the application runloop to be running. pystray.Icon.run() will start the runloop.

If you only target Windows, calling run() from a thread other than the main thread is safe.

The run() method accepts an optional argument: setup, a callable.

The setup function will be run in a separate thread once the system tray icon is ready. The icon does not wait for it
to complete, so you may put any code that would follow the call to pystray.Icon.run() in it.

The call to pystray.Icon.run() will not complete until stop() is called.

1.1.1 Getting input from the system tray icon

In order to receive notifications about user interaction with the icon, a popup menu can be added with the menu
constructor argument.

This must be an instance of pystray.Menu. Please see the reference for more information about the format.

It will be displayed when the right-hand button has been pressed on the icon on Windows, and when the icon has been
clicked on other platforms. Menus are not supported on X.

Menus also support a default item. On Windows, and X, this item will be activated when the user clicks on the icon
using the primary button. On other platforms it will be activated if the menu contains no visible entries; it does not
have to be visible.

All properties of menu items, except for the callback, can be dynamically calculated by supplying callables instead of
values to the menu item constructor. The properties are recalculated every time the icon is clicked or any menu item
is activated.

If the dynamic properties change because of an external event, you must ensure that Icon.update_menu is called.
This is required since not all supported platforms allow for the menu to be generated when displayed.

1.1.2 Creating the menu

This is not supported on Xorg; please check Icon.HAS_MENU at runtime for support on the current platform.

A menu can be attached to a system tray icon by passing an instance of pystray.Menu as the menu keyword
argument.

A menu consists of a list of menu items, optionally separated by menu separators.

Separators are intended to group menu items into logical groups. They will not be displayed as the first and last visible
item, and adjacent separators will be hidden.

A menu item has several attributes:

text and action The menu item text and its associated action.

These are the only required attributes. Please see submenu below for alternate interpretations of action.

checked Whether the menu item is checked.

This can be one of three values:

False The item is decorated with an unchecked check box.

True The item is decorated with a checked check box.

None There is no hint that the item is checkable.

If you want this to actually be togglable, you must pass a callable that returns the current state:

4 Chapter 1. Table of contents

pystray, Release 0.19.5

from pystray import Icon as icon, Menu as menu, MenuItem as item

state = False

def on_clicked(icon, item):
global state
state = not item.checked

Update the state in `on_clicked` and return the new state in
a `checked` callable
icon('test', create_image(), menu=menu(

item(
'Checkable',
on_clicked,
checked=lambda item: state))).run()

radio This is not supported on macOS; please check Icon.HAS_MENU_RADIO at runtime for support on the current
platform.

Whether this is a radio button.

This is used only if checked is True or False, and only has a visual meaning. The menu has no concept of
radio button groups:

from pystray import Icon as icon, Menu as menu, MenuItem as item

state = 0

def set_state(v):
def inner(icon, item):

global state
state = v

return inner

def get_state(v):
def inner(item):

return state == v
return inner

Let the menu items be a callable returning a sequence of menu
items to allow the menu to grow
icon('test', create_image(), menu=menu(lambda: (

item(
'State %d' % i,
set_state(i),
checked=get_state(i),
radio=True)

for i in range(max(5, state + 2))))).run()

default This is not supported on Darwin and using AppIndicator; please check Icon.HAS_DEFAULT at runtime for
support on the current platform.

Whether this is the default item.

It is drawn in a distinguished style and will be activated as the default item on platforms that support default
actions. On X, this is the only action available.

visible Whether the menu item is visible.

1.1. Creating a system tray icon 5

pystray, Release 0.19.5

enabled Whether the menu item is enabled. Disabled menu items are displayed, but are greyed out and cannot be
activated.

submenu The submenu, if any, that is attached to this menu item. Either a submenu or an action can be passed as the
second argument to the constructor.

The submenu must be an instance of Menu:

from pystray import Icon as icon, Menu as menu, MenuItem as item

icon('test', create_image(), menu=menu(
item(

'With submenu',
menu(

item(
'Submenu item 1',
lambda icon, item: 1),

item(
'Submenu item 2',
lambda icon, item: 2))))).run()

Once created, menus and menu items cannot be modified. All attributes except for the menu item callbacks can
however be set to callables returning the current value. This also applies to the sequence of menu items belonging to
a menu: this can be a callable returning the current sequence.

1.1.3 Displaying notifications

This is not supported on macOS and Xorg; please check Icon.HAS_NOTIFICATION at runtime for support on the
current platform.

To display a system notification, use pystray.Icon.notify():

from pystray import Icon as icon, Menu as menu, MenuItem as item

icon('test', create_image(), menu=menu(
item(

'With submenu',
menu(

item(
'Show message',
lambda icon, item: icon.notify('Hello World!')),

item(
'Submenu item 2',
lambda icon, item: icon.remove_notification()))))).run()

1.2 Integrating with other frameworks

The pystray run method is blocking, and must be called from the main thread to maintain platform independence.
This is troublesome when attempting to use frameworks with an event loop, since they may also require running in the
main thread.

For this case you can use run_detached. This allows you to setup the icon and then pass control to the framework.
Please see the documentation for more information.

6 Chapter 1. Table of contents

pystray, Release 0.19.5

1.3 Selecting a backend

pystray aims to provide a unified API for all supported platforms. In some cases, however, that is not entirely possible.

This library supports a number of backends. On macOS and Windows, the operating system has system tray icons
built-in, so the default backends should be used, but on Linux you may have to make a decision depending on your
needs.

By setting the environment variable PYSTRAY_BACKEND to one of the strings in the next section, the automatic
selection is turned off.

1.3.1 Supported backends

appindicator This is one of the backends available on Linux, and is the preferred choice. All pystray features except
for a menu default action are supported, and if the appindicator library is installed on the system and the desktop
environment supports it, the icon is guaranteed to be displayed.

If the appindicator library is not available on the system, a fallback on ayatana-appindicator is attempted.

darwin This is the default backend when running on macOS. All pystray features are available.

gtk This is one of the backends available on Linux, and is prioritised above the XOrg backend. It uses GTK as
underlying library. All pystray features are available, but it may not actually result in a visible icon: when
running a gnome-shell session, an third party plugin is required to display legacy tray icons.

win32 This is the default backend when running on Windows. All pystray features are available.

xorg This is one of the backends available on Linux. It is used as a fallback when no other backend can be loaded. It
does not support any menu functionality except for a default action.

1.4 Frequently asked question

1.4.1 How do I use pystray in a virtualenv on Linux?

On Linux, runtime introspection data is required to use the AppIndicator backend, and the GTK backend may not
be fully functional without installing desktop environment extensions. The XOrg backend will work, but it provides
limited functionality.

In order to use the AppIndicator backend, you may install the package PyGObject. No wheel is provided, so the
package must be built locally. On Debian derivatives, such as Ubuntu, the following packages, in addition to compilers
and pkg-config, must be installed:

• libcairo-dev

• libgirepository1.0-dev

1.4.2 I am trying to integrate with a framework, but run_detached does not work

The run_detached method is used to allow a different framework to drive the main loop. This requires that the
framework uses the same kind of mainloop.

On Windows and macOS, this will be the case if you use the platform GUI toolkits. On Linux, the situation is a bit
more complicated. Generally, the xorg backend will work with any toolkit, as long as you run it in an X session and
not under Wayland. The GTK and AppIndicator backends will work if your toolkit is based on GObject.

1.3. Selecting a backend 7

pystray, Release 0.19.5

However, run_detached is strictly necessary only on macOS. For other platforms, it is possible to just launch the
icon mainloop in a thread:

import pystray
import threading
import some_toolkit

Create the icon
icon = pystray.Icon(

'test name',
icon=create_icon())

Run the icon mainloop in a separate thread
threading.Thread(target=icon.run).start()

Run the toolkit mainlon in the main thread
some_toolkit.mainloop()

1.5 Reference

class pystray.Icon(name, icon=None, title=None, menu=None, **kwargs)
A representation of a system tray icon.

The icon is initially hidden. Set visible to True to show it.

Parameters

• name (str) – The name of the icon. This is used by the system to identify the icon.

• icon – The icon to use. If this is specified, it must be a PIL.Image.Image instance.

• title (str) – A short title for the icon.

• menu – A menu to use as popup menu. This can be either an instance of Menu or an iterable,
which will be interpreted as arguments to the Menu constructor, or None, which disables
the menu.

The behaviour of the menu depends on the platform. Only one action is guaranteed to be
invokable: the first menu item whose default attribute is set.

Some platforms allow both menu interaction and a special way of activating the default
action, some platform allow only either an invisible menu with a default entry as special
action or a full menu with no special way to activate the default item, and some platforms
do not support a menu at all.

• kwargs – Any non-standard platform dependent options. These should be prefixed with
the platform name thus: appindicator_, darwin_, gtk_, win32_ or xorg_.

Supported values are:

darwin_nsapplication An NSApplication instance used to run the event loop.
If this is not specified, the shared application will be used.

HAS_DEFAULT_ACTION = True
Whether this particular implementation has a default action that can be invoked in a special way, such as
clicking on the icon.

HAS_MENU = True
Whether this particular implementation supports menus.

8 Chapter 1. Table of contents

pystray, Release 0.19.5

HAS_MENU_RADIO = True
Whether this particular implementation supports displaying mutually exclusive menu items using the
MenuItem.radio attribute.

HAS_NOTIFICATION = True
Whether this particular implementation supports displaying a notification.

SETUP_THREAD_TIMEOUT = 5.0
The timeout, in secods, before giving up on waiting for the setup thread when stopping the icon.

icon
The current icon.

Setting this to a falsy value will hide the icon. Setting this to an image while the icon is hidden has no
effect until the icon is shown.

menu
The menu.

Setting this to a falsy value will disable the menu.

name
The name passed to the constructor.

notify(message, title=None)
Displays a notification.

The notification will generally be visible until remove_notification() is called.

The class field HAS_NOTIFICATION indicates whether this feature is supported on the current platform.

Parameters

• message (str) – The message of the notification.

• title (str) – The title of the notification. This will be replaced with title if None.

remove_notification()
Remove a notification.

run(setup=None)
Enters the loop handling events for the icon.

This method is blocking until stop() is called. It must be called from the main thread.

Parameters setup (callable) – An optional callback to execute in a separate thread once
the loop has started. It is passed the icon as its sole argument.

Please note that this function is started in a thread, and when the icon is stopped, an
attempt to join this thread is made, so stopping the icon may be blocking for up to
SETUP_THREAD_TIMEOUT seconds if the function is not well-behaved.

If not specified, a simple setup function setting visible to True is used. If you specify a
custom setup function, you must explicitly set this attribute.

run_detached(setup=None)
Prepares for running the loop handling events detached.

This allows integrating pystray with other libraries requiring a mainloop. Call this method before entering
the mainloop of the other library.

Depending on the backend used, calling this method may require special preparations:

1.5. Reference 9

pystray, Release 0.19.5

macOS Pass an instance of NSApplication retrieved from the library with which you are integrating
as the argument darwin_nsapplication. This will allow this library to integrate with the main
loop.

Parameters setup (callable) – An optional callback to execute in a separate thread once
the loop has started. It is passed the icon as its sole argument.

If not specified, a simple setup function setting visible to True is used. If you specify a
custom setup function, you must explicitly set this attribute.

Raises NotImplementedError – if this is not implemented for the preparations taken

stop()
Stops the loop handling events for the icon.

If the icon is not running, calling this method has no effect.

title
The current icon title.

update_menu()
Updates the menu.

If the properties of the menu descriptor are dynamic, that is, any are defined by callables and not constants,
and the return values of these callables change by actions other than the menu item activation callbacks,
calling this function is required to keep the menu in sync.

This is required since not all supported platforms allow the menu to be generated when shown.

For simple use cases where menu changes are triggered by interaction with the menu, this method is not
necessary.

visible
Whether the icon is currently visible.

Raises ValueError – if set to True and no icon image has been set

class pystray.Menu(*items)
A description of a menu.

A menu description is immutable.

It is created with a sequence of Menu.Item instances, or a single callable which must return a generator for
the menu items.

First, non-visible menu items are removed from the list, then any instances of SEPARATOR occurring at the
head or tail of the item list are removed, and any consecutive separators are reduced to one.

SEPARATOR = <pystray._base.MenuItem object>
A representation of a simple separator

items
All menu items.

visible
Whether this menu is visible.

class pystray.MenuItem(text, action, checked=None, radio=False, default=False, visible=True, en-
abled=True)

A single menu item.

A menu item is immutable.

10 Chapter 1. Table of contents

pystray, Release 0.19.5

It has a text and an action. The action is either a callable of a menu. It is callable; when called, the activation
callback is called.

The visible attribute is provided to make menu creation easier; all menu items with this value set to False
will be discarded when a Menu is constructed.

checked
Whether this item is checked.

This can be either True, which implies that the item is checkable and checked, False, which implies
that the item is checkable but not checked, and None for uncheckable items.

Depending on platform, uncheckable items may be rendered differently from unchecked items.

default
Whether this is the default menu item.

enabled
Whether this menu item is enabled.

radio
Whether this item is a radio button.

This is only used for checkable items. It is always set to False for uncheckable items.

submenu
The submenu used by this menu item, or None.

text
The menu item text.

visible
Whether this menu item is visible.

If the action for this menu item is a menu, that also has to be visible for this property to be True.

• genindex

1.5. Reference 11

pystray, Release 0.19.5

12 Chapter 1. Table of contents

Index

C
checked (pystray.MenuItem attribute), 11

D
default (pystray.MenuItem attribute), 11

E
enabled (pystray.MenuItem attribute), 11

H
HAS_DEFAULT_ACTION (pystray.Icon attribute), 8
HAS_MENU (pystray.Icon attribute), 8
HAS_MENU_RADIO (pystray.Icon attribute), 8
HAS_NOTIFICATION (pystray.Icon attribute), 9

I
Icon (class in pystray), 8
icon (pystray.Icon attribute), 9
items (pystray.Menu attribute), 10

M
Menu (class in pystray), 10
menu (pystray.Icon attribute), 9
MenuItem (class in pystray), 10

N
name (pystray.Icon attribute), 9
notify() (pystray.Icon method), 9

R
radio (pystray.MenuItem attribute), 11
remove_notification() (pystray.Icon method), 9
run() (pystray.Icon method), 9
run_detached() (pystray.Icon method), 9

S
SEPARATOR (pystray.Menu attribute), 10
SETUP_THREAD_TIMEOUT (pystray.Icon attribute), 9

stop() (pystray.Icon method), 10
submenu (pystray.MenuItem attribute), 11

T
text (pystray.MenuItem attribute), 11
title (pystray.Icon attribute), 10

U
update_menu() (pystray.Icon method), 10

V
visible (pystray.Icon attribute), 10
visible (pystray.Menu attribute), 10
visible (pystray.MenuItem attribute), 11

13

	Table of contents
	Creating a system tray icon
	Integrating with other frameworks
	Selecting a backend
	Frequently asked question
	Reference

	Index

