pyseer was first written a python reimplementation of seer, which was written in C++. pyseer uses linear models with fixed or mixed effects to estimate the effect of genetic variation in a bacterial population on a phenotype of interest, while accounting for potentially very strong confounding population structure. This allows for genome-wide association studies (GWAS) to be performed in clonal organisms such as bacteria and viruses.

The original version of seer used sequence elements (k-mers) to represent variation across the pan-genome. pyseer also allows variants stored in VCF files (e.g. SNPs and INDELs mapped against a reference genome) or Rtab files (e.g. from roary or piggy to be used too). There are also a greater range of association models available, and tools to help with processing the output.

Testing shows that results (p-values) should be the same as the original seer, with a runtime that is roughly twice as long as the optimised C++ code.

We have also extended pyseer to fit association models to the whole genome, which also allows the use of machine learning to predict traits in new samples.
CHAPTER 1

Citations

If you find pyseer useful, please cite:

If you use unitigs (through unitig-counter) please cite:

1.1 Installation

The easiest way to install pyseer and its dependencies is through conda:

```
conda install pyseer
```

If you need conda, download miniconda and add the necessary channels:

```
conda config --add channels defaults
conda config --add channels bioconda
conda config --add channels conda-forge
```

pyseer can also be installed through pip:

```
python -m pip install pyseer
```

If you want multithreading make sure that you are using a version 3 python interpreter:

```
python3 -m pip install pyseer
```
1.1.1 Prerequisites

These modules are installed through the pip command above, but if you have cloned the repository you will need to install the dependencies yourself.

We used the following versions, though higher should also work:

- python 3+ (3.5.3)
- numpy (1.13.3)
- scipy (1.0.0)
- pandas (0.21.0)
- scikit-learn (0.19.1)
- statsmodels (0.8.0)
- pysam (0.13)
- glmnet_py (commit 946b65c)
- matplotlib (2.1.0) – for scree plots
- DendroPy (4.3.0) – for phylogeny distances
- pybedtools (0.7.10) – for annotating k-mers
- bedtools (2.27.0) – for annotating k-mers
- bedops (2.4.9) – for annotating k-mers

1.1.2 Test installation

Run unit tests:

```
pytest -v tests
```

Test functions and output:

```
cd tests/ && bash run_test.sh && cd ../
```

1.1.3 Other software

To count k-mers, you may find fsm-lite or the original seer package useful. These can easily be installed with conda, set up as above:

```
conda install fsm-lite
conda install seer
```

Packages to count unitigs and help with their interpretation are also available on bioconda:

```
conda install unitig-counter unitig-caller
```
1.2 Option reference

Usage:

usage: pyseer [-h] --phenotypes PHENOTYPES
 [--phenotype-column PHENOTYPE_COLUMN]
 [--kmers KMERS | --vcf VCF | --pres PRES] [--burden BURDEN]
 [--distances DISTANCES | --load-m LOAD_M]
 [--similarity SIMILARITY | --load-1mm LOAD_LMM]
 [--save-m SAVE_M] [--save-1mm SAVE_LMM]
 [--max-dimensions MAX_DIMENSIONS] [--no-distances]
 [--continuous] [--lmm] [--wg (enet,rf,blup)] [--lineage]
 [--lineage-clusters LINEAGE_CLUSTERS]
 [--lineage-file LINEAGE_FILE] [--sequence-reweighting]
 [--save-vars SAVE_VARS] [--load-vars LOAD_VARS]
 [--save-model SAVE_MODEL] [--alpha ALPHA] [--n-folds N_FOLDS]
 [--min-af MIN_AF] [--max-af MAX_AF] [--max-missing MAX_MISSING]
 [--filter-pvalue FILTER_PVALUE] [--lrt-pvalue LRT_PVALUE]
 [--cor-filter COR_FILTER] [--covariates COVARIATES]
 [--use-covariates [USE_COVARIATES [USE_COVARIATES ...]]]
 [--print-samples] [--print-filtered]
 [--output-patterns OUTPUT_PATTERNS] [--uncompressed] [--cpu CPU]
 [--block_size BLOCK_SIZE] [--version]

SEER (doi: 10.1038/ncomms12797), reimplemented in python

optional arguments:
 -h, --help show this help message and exit

Phenotype:
 --phenotypes PHENOTYPES
 Phenotypes file (whitespace separated)
 --phenotype-column PHENOTYPE_COLUMN
 Phenotype file column to use [Default: last column]

Variants:
 --kmers KMERS
 --vcf VCF
 --pres PRES
 Presence/absence .Rtab matrix as produced by roary and piggy
 --burden BURDEN
 VCF regions to group variants by for burden testing
 (requires --vcf). Requires vcf to be indexed

Distances:
 --distances DISTANCES
 Strains distance square matrix (fixed or lineage effects)
 --load-m LOAD_M
 --similarity SIMILARITY
 Load an existing matrix decomposition
 Strains similarity square matrix (for --lmm)
 --load-1mm LOAD_LMM
 --save-m SAVE_M
 --save-1mm SAVE_LMM
 --mds (classic,metric,non-metric)
 Prefix for saving matrix decomposition
 Prefix for saving LMM cache
 Type of multidimensional scaling [Default: classic]
 --max-dimensions MAX_DIMENSIONS

(continues on next page)
Maximum number of dimensions to consider after MDS
[Default: 10]

--no-distances Allow run without a distance matrix

Association options:
 --continuous Force continuous phenotype [Default: binary auto-detect]
 --lmm Use random instead of fixed effects to correct for population structure. Requires a similarity matrix
 --wg {enet,rf,blup} Use a whole genome model for association and prediction. Population structure correction is implicit.
 --lineage Report lineage effects
 --lineage-clusters LINEAGE_CLUSTERS Custom clusters to use as lineages [Default: MDS components]
 --lineage-file LINEAGE_FILE File to write lineage association to [Default: lineage_effects.txt]

Whole genome options:
 --sequence-reweighting Use --lineage-clusters to downweight sequences.
 --save-vars SAVE_VARS Prefix for saving variants
 --load-vars LOAD_VARS Prefix for loading variants
 --save-model SAVE_MODEL Prefix for saving model
 --alpha ALPHA Set the mixing between l1 and l2 penalties [Default: 0.0069]
 --n-folds N_FOLDS Number of folds cross-validation to perform [Default: 10]

Filtering options:
 --min-af MIN_AF Minimum AF [Default: 0.01]
 --max-af MAX_AF Maximum AF [Default: 0.99]
 --max-missing MAX_MISSING Maximum missing (vcf/Rtab) [Default: 0.05]
 --filter-pvalue FILTER_PVALUE Prefiltering t-test pvalue threshold [Default: 1]
 --lrt-pvalue LRT_PVALUE Likelihood ratio test pvalue threshold [Default: 1]
 --cor-filter COR_FILTER Correlation filter for elastic net (phenotype/variant correlation quantile at which to start keeping variants) [Default: 0.25]

Covariates:
 --covariates COVARIATES User-defined covariates file (tab-delimited, no header, first column contains sample names)
 --use-covariates [USE_COVARIATES [USE_COVARIATES ...]] Covariates to use. Format is "2 3q 4" (q for quantitative) [Default: load covariates but don’t use them]

Other:
 --print-samples Print sample lists [Default: hide samples]
--print-filtered Print filtered variants (i.e. fitting errors)
[Default: hide them]

--output-patterns OUTPUT_PATTERNS
File to print patterns to, useful for finding p-value threshold

--uncompressed Uncompressed kmers file [Default: gzipped]

--cpu CPU Processes [Default: 1]

--block_size BLOCK_SIZE
Number of variants per core [Default: 3000]

--version show program's version number and exit

1.3 Usage

Quick start:

pyseer --phenotypes phenotypes.tsv --kmers kmers.gz --distances structure.tsv --min-af 0.01 --max-af 0.99 --cpu 15 --filter-pvalue 1E-8 > pyseer.assoc

Will run the original seer model on given phenotypes and k-mers, using MDS scaling of the pairwise distances provided to correct for population structure. This will parallelize the analysis over 15 cores.

Current ‘best-practice’ GWAS recommendations:

• Use the --lmm mode.

• Use a phylogeny to generate the --similarity matrix.

• Use unitigs as the input, with --kmers. End-to-end analysis is identical to k-mers.

For whole-genome models or prediction we recommend you read Prediction tutorial.
1.3.1 Input

pyseer will automatically take the intersection of samples found in the phenotype file and the population structure file. Only variation within these samples will be considered. Information on this is printed to STDERR.

Phenotype and covariates

The phenotype file is required to be supplied using the `--phenotypes` option. The format is tab-delimited, with the sample name in the first column, and the phenotype in the last column. A header is required as the first row:

```plaintext
samples continuous binary
sample_1 1 0
sample_2 2 1
sample_3 3 1
sample_4 4 1
sample_5 5 1
sample_6 6 1
sample_7 7 0
```

The default column to use as the phenotype is the last column, but you can provide an explicit value with `--phenotype-column`. Missing phenotypes can be supplied as ‘NA’. If all values are 0 or 1 a binary phenotype is assumed (only relevant for the fixed effect model), otherwise a continuous phenotype is used. Use `--continuous` to force this behaviour.

Covariate files (`--covariates`) must be tab-delimited with a header row, and the first column must contain the sample names:

```plaintext
samples time cluster
sample_1 1 cluster1
sample_2 2 cluster2
sample_3 3 cluster0
sample_4 4 cluster1
sample_5 5 cluster2
sample_6 6 cluster0
sample_7 7 cluster1
```
Choose which covariates to use with \texttt{--use-covariates}. Provide space separated column numbers to use. The default is that the covariates are labels, but for a quantitative covariate add ‘q’ after the column number. For the above example \texttt{--use-covariates 2q 3} would be the correct argument.

k-mers

Variable length k-mers counted by \texttt{fsm-lite} or \texttt{dsm-framework} are input with the \texttt{--kmers} option. This file is assumed to be gzipped, use the \texttt{--uncompressed} option if they aren’t. If you wish to use \texttt{dsk} to count k-mers you will need to use \texttt{combineKmers} from the original \texttt{seer} installation to convert them to the correct input format.

If needed, both \texttt{fsm-lite} and \texttt{seer} can be installed through conda. See \texttt{Installation} for details.

Note: For common variation k-mers or unitigs should probably be your variant of choice. \texttt{seer} was mainly designed to work with k-mers, due to their ability to test variation across the pan-genome without the need to call variants against multiple references, or deal with the complexities of constructing accurate COGs for the whole population. We have included these input formats for convenience and flexibility.

We would recommend the use of SNPs and genes in addition to k-mers, or for a quick first pass analysis.

unitigs

Unitigs are nodes in a compressed de Bruijn graph, and remove some of the redundancy present in k-mer counting, as well as presenting fewer tests (and advantage both computationally and statistically) and being easier to interpret thanks to their length and context provided by the variation graph.

Count unitigs with \texttt{unitig-counter} (see documentation in the \texttt{README.md}). This can be installed thorough conda, see \texttt{Installation} for details.

Usage is then identical to k-mers, with the \texttt{--kmers} options, and \texttt{--uncompressed} if necessary.

SNPs and INDELs

Short variation (SNPs and INDELs) can be read from a VCF file using the \texttt{PySAM} module. Simply use the \texttt{--vcf} option to read in your file.

If you have multiple VCF files (e.g. one per sample) you can combine them with \texttt{bcftools}:

```
bcftools merge -m none -0 -O z *.vcf.gz > merged.vcf.gz
```

Sample names are taken from the header row. Only one ALT variant per row is supported, if you have multiple alternative variants use:

```
bcftools norm -m <in.vcf> > out.vcf
```

To split them into multiple rows otherwise they will be skipped. If \texttt{FILTER} fields are present only those with ‘PASS’ will be processed.

Note: The GT field is used to determine variant presence/absence. ‘0’ or ‘.’ is absence, anything else is presence.
Genes and intergenic regions, or any other variant type

COG or intergenic region variation is represented as an .Rtab file by roary and piggy:

<table>
<thead>
<tr>
<th>Gene</th>
<th>sample_1</th>
<th>sample_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>COG1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>COG2</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

These can be used directly with --pres, and this format can be used flexibly to represent variants from other sources.

Rare variants

pyseer supports burden testing of rare variants. Variants at low frequency which are associated with the phenotype cannot be detected by a standard regression model. A burden test groups sets of rare variants with the same predicted biological effect, and then treats these sets like common variants.

Note: Group variants only with the same predicted functional effect. A good start would be all loss of function mutations (frameshift or stop gained/nonsense) within a gene. This can be expanded to operons or pathways, and to variants predicted as damaging (missense) or all variants. Burden tests assume all variants in a group have the same direction of effect, and will lose power if this assumption is broken.

To run a burden test, available under any of the association models below, requires a VCF file of SNPs and INDELs. First predict the function of mutations (using VEP or bcftools csq) and filter the VCF file appropriately on variant frequency and predicted effect:

```
bcftools view -Q 0.01 -i 'CSQ[*] ~ “stop_gained” snps_indels.vcf.gz | CSQ[*] ~ “frameshift_variant”' | bgzip -c > low_freq_vars.vcf.gz
```

Then run pyseer providing a list of regions to group variants by to the --burden option and the filtered VCF file with --vcf. These regions are one per line, with their name and the bcftools style region co-ordinates:

<table>
<thead>
<tr>
<th>CDS1</th>
<th>FM211187:3910-3951</th>
</tr>
</thead>
<tbody>
<tr>
<td>CDS2</td>
<td>FM211187:4006-4057</td>
</tr>
</tbody>
</table>

Warning: The same frequency filters as for common variants still apply. Only groups within the threshold will be tested. To ensure only rare variants enter the sets, you will need to pre-filter the VCF file with bcftools as shown above.

Filtering

Filtering on allele frequency is necessary, unless the input has already been filtered. We would recommend only including variants with a minor allele count of at least five. Use --min-af and --max-af to achieve this. The default is to test variants with a MAF > 1%.

If computational resources are limited, you can use the unadjusted p-value as a pre-filter --filter-pvalue. 10^{-5} is a reasonable value, or three orders of magnitude below your final significance threshold. If you just want to plot the significant results, or save space in the output you can also print just those passing a final threshold with --lrt-pvalue.
Warning: We would recommend not filtering on p-value if possible. It is possible that variants not significant before correction may be significant afterwards, and taking a final threshold will prevent a Q-Q plot from being used to test for inflation of p-values.

1.3.2 Population structure

To adjust for population structure, the fixed effects (Fixed effects (SEER)) model needs a matrix with distances between all pairs of samples in the analysis:

<table>
<thead>
<tr>
<th></th>
<th>sample_1</th>
<th>sample_2</th>
<th>sample_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample_1</td>
<td>0</td>
<td>0.0115761</td>
<td>0.0119383</td>
</tr>
<tr>
<td>sample_2</td>
<td>0.0115761</td>
<td>0.0</td>
<td>0.0101878</td>
</tr>
<tr>
<td>sample_3</td>
<td>0.0119383</td>
<td>0.0101878</td>
<td>0.0</td>
</tr>
</tbody>
</table>

This file is included with --distances. The default is to perform classical MDS on this matrix and retain 10 dimensions. The type of MDS performed can be changed with the --mds option to metric or non-metric if desired. Once the MDS has run once, the --save-m argument can be used to save the result to file. Subsequent runs can then be provided with this decomposition directly using load-m rather than recomputing the MDS.

An alternative to using a distance matrix in the fixed effects analysis is to provide clusters of samples with the same genetic background (e.g. from BAPS) as a categorical covariate with the --use-covariates option. In this case you should also add the --no-distances options to allow running without one of the matrices below, which would define these covariates twice.

The mixed effects model (Mixed model (FaST-LMM)) needs a matrix with covariances/similarities included with --similarities between all pairs of samples in the analysis:

<table>
<thead>
<tr>
<th></th>
<th>sample_1</th>
<th>sample_2</th>
<th>sample_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample_1</td>
<td>0.319</td>
<td>0.004</td>
<td>0.153</td>
</tr>
<tr>
<td>sample_2</td>
<td>0.004</td>
<td>0.004</td>
<td>0.004</td>
</tr>
<tr>
<td>sample_3</td>
<td>0.153</td>
<td>0.004</td>
<td>0.288</td>
</tr>
</tbody>
</table>

This is known as the kinship matrix K. Analogously to the MDS runs, the decomposition can be save with --save-lmm and loaded with --load-lmm in subsequent analysis rather than processing the similarity matrix again.

Both types of matrix are necessarily symmetric. The entries along the diagonal of a pairwise distance matrix are zeros. The matrices can be generated in three ways.

mash

mash can be used to rapidly estimate distance between samples. First of all create a sketch of all your samples (assuming assembled contigs in fasta files):

```
mash sketch -s 10000 -o samples *.fa
```

Calculate the pairwise distances and create a distance matrix:

```
mash dist samples.msh samples.msh | square_mash > mash.tsv
```

These distances can only be used with the fixed effects model.
Phylogeny based

If you have a high quality phylogeny (removing recombination, using a more accurate model of evolution) using this to calculate pairwise distances may be more accurate than mash. For the fixed effects model you can extract the patristic distances between all samples. Using a newick file:

```bash
generate_distances.py core_genome.tree > phylogeny_distances.tsv
```

For use with **Mixed model (FaST-LMM)** add the `--calc-C` or `--lmm` option (which are equivalent). This calculates the similarities based on the shared branch length between each pair’s MRCA and the root (as PDDIST):

```bash
generate_distances.py --lmm core_genome.tree > phylogeny_similarity.tsv
```

If you want to ignore branch lengths (not usually recommended) use the `--topology` option. Other tree formats supported by dendropy can be used by specifying `--format`.

Genotype matrix

For a mixed model association the FaST-LMM default is to use the genotype matrix (design matrix) of variant presence absence to calculate the kinship matrix $K = GG^T$. To use this method for the `--similarity` option use the similarity script with any valid pyseer input variant type:

```bash
similarity_pyseer --vcf core_gene_snps.vcf sample_list.txt > genotype_kinship.tsv
```

Where `sample_list.txt` is a file containing sample names to keep, one on each line.

Warning: Choose the input to this command carefully. Using too few variants or those which don’t represent vertical evolution may be inaccurate (e.g. the roary gene presence/absence list). Choosing too many will be prohibitive in terms of memory use and runtime (e.g. all k-mers). A VCF of SNPs from the core genome is a good tradeoff in many cases.

No population structure correction

You can run the fixed effects model without a population structure correction. As this is generally not recommended you need to add the `--no-distances` option to allow the analysis to run.

Situations where this may be desirable are when you are using population structure/lineage as the phenotype i.e. looking for k-mers which define lineages, or if you are correcting for population structure manually using covariates such as cluster IDs.

1.3.3 Association models

Symbols used:
Fixed effects (SEER)

If provided with a valid phenotype and variant file this is the default analysis run by pyseer. In summary, a generalized linear model is run on each k-mer (variant), amounting to multiple linear regression for continuous phenotypes and logistic regression for binary phenotypes. Firth regression is used in the latter case when large effect sizes are predicted. For details see the original publication.

\[y \sim Wa + Xb \]

The most important adjustment to this analysis is choosing the number of MDS components with the `--max-dimensions` argument. Once you have your `--distances` matrix, draw a scree plot:

```
scree_plot_pyseer mash.tsv
```

This will show the variance explained (the eigenvalues of each MDS component) for the first 30 dimensions (increased using `--max-dimensions` to `scree_plot_pyseer`). You can pick a value at the ‘knee’ of this plot, or choose to include much of the total variation. Consider choosing around the first 30 components.

Mixed model (FaST-LMM)

A linear mixed model (LMM) of fixed and random effects can be fitted by adding the `--lmm` option, as well as either `--similarities` or `--load-lmm` from a previous analysis.

\[y \sim Wa + Xb + Ku \]

We use FaST-LMM’s likelihood calculation to compute this model in linear time for each variant. The phenotype is always treated as continuous, which in the case of case/control data may cause some loss of power.

The main advantage of this model is that all relationships are implicitly included and selection of the number of components to retain is not necessary. In comparison to the fixed effect model this has shown to better control inflation of p-values (https://elifesciences.org/articles/26255).

In addition this model will output the narrow sense heritability \(h^2 \), which is the proportion of variance in phenotype explained by the genetic variation when maximizing the log-likelihood:

\[
LL(\sigma_E^2, \sigma_G^2, \beta) = \log N(y|X\beta; \sigma_G^2K + \sigma_E^2I)
\]

\[
h^2 = \frac{\sigma_G^2}{\sigma_G^2 + \sigma_E^2}
\]

This assumes effect sizes are normally distributed, with a variance proportional to the total genetic variance (the GCTA model). See this paper for more information on the heritability of pathogen traits.
Warning: pyseer will print the h^2 estimate to STDERR, but it will only be valid under the assumptions of the model used. You may wish to compare estimates from other software, and particular care should be taken with binary phenotypes.

Whole genome models (elastic net)

All variants can be included at once with the `--wg` mode. Currently only the elastic net is implemented, but more models will be included in future.

An elastic net can be fitted to all the variants at once by providing the `--wg enet` option, using the glmnet package to solve the following problem:

$$\min_{b_0, b} \frac{1}{N} \sum_{i=1}^{N} w_i l(y_i, b_0 + b^T x_i)^2 + \lambda \left[(1 - \alpha) \|b\|^2_2 + \alpha \|b\|_1 \right]$$

with the link function $w_i l()$ set by the phenotype error distribution.

In this mode, all the variants are read into an object in memory, a correlation-based filter is applied, the model is fitted, then those variants with non-zero b are printed in the output. The model is fit by ten-fold cross-validation to pick the λ which gives the lowest deviance when compared to the true phenotypes. Higher λ leads to smaller fitted b values. These values, along with the corresponding best R^2 will be written to STDERR. Setting α closer to one will remove more variants from the model by giving them zero beta.

Tip: Population structure can be included using `--sequence-reweighting` and `--lineage-clusters`. Use of the latter will also use these clusters to give a more representative cross-validation accuracy. See Prediction tutorial for more details.

Cross-validation uses `--cpu` threads, which is recommended for better performance.

Warning: As all variants are stored in memory, and potentially copied, very large variant files will cause this method to run out of RAM. We therefore do not recommend running on k-mers, but to use unitigs instead. SNPs and genes work fine.

By default, the top 75% of variants correlated with the phenotype are included in the fit. Variants will include the unadjusted single-variate p-values, if distances have been provided with either `--distances` or `--load-m` the adjusted p-values will also be present.

<table>
<thead>
<tr>
<th>Option</th>
<th>Use</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>--save-vars</code></td>
<td>Save the object representing all objects to disk. Useful for reruns, or using multiple phenotypes.</td>
</tr>
<tr>
<td><code>--load-vars</code></td>
<td>Load the variants saved to disk, the most time-consuming step.</td>
</tr>
<tr>
<td><code>--save-model</code></td>
<td>Save the fitted model so that one can perform Prediction with the elastic net on samples with unobserved phenotypes.</td>
</tr>
<tr>
<td><code>--alpha</code></td>
<td>Sets the mixing between ridge regression (0) and lasso regression (1) in the above formula. Default is 0.0069 (closer to ridge regression)</td>
</tr>
<tr>
<td><code>--n-folds</code></td>
<td>Number of folds in cross validation (samples removed to test prediction accuracy). Default is 10.</td>
</tr>
<tr>
<td><code>--cor-filter</code></td>
<td>Set the correlation filter to discard the variants with low correlation to the phenotype. Default is 0.25 (keeping the top 75% variants correlated with phenotype).</td>
</tr>
</tbody>
</table>
Note: When using --load-vars you still need to provide the original variant file with --vcf, --kmers or --pres as this is read again to output the selected variants. Pyseer will test that the checksums of this files is identical to that used with --save-vars, and will warn if any difference is detected.

Prediction with the elastic net

If --wg was used with --save-model this fit can be used to attempt to predict the phenotype of new samples without a phenotype label:

```
enet_predict --vcf new_snps.vcf.gz old_snps.lasso_model.pkl samples.list > lasso_predictions.txt
```

Provide the samples you wish to predict the phenotype of in samples.list along with comparable variants and covariates to that which were used in the original model. If any variant or covariate is not found in the new input this will be noted on STDERR and the mean values (the originally observed allele frequency) will be used instead. Use --ignore-missing to turn this off.

See Prediction tutorial for more examples.

Lineage effects (bugwas)

Earle et al introduced the distinction between ‘lineage’ and ‘locus’ effects. Also see this review. The p-values output by pyseer are aimed at finding ‘locus’ effects. To find lineage effects Earle et al proposed ordering variants by those associated with both the phenotype and a lineage highly associated with a phenotype. They performed this by decomposing the random effects to find the principal component each variant was most associated with, and then order variants by those principal components most associated with the phenotype.

To perform a similar analysis in pyseer, add the --lineage option. This first checks the lineages most associated with the phenotype:

\[y \sim Wa \]

writing the results to --lineage_file, ordered by the most associated lineage. For each variant, after the main regression the lineage the variant belongs to is chosen by the most significant when regress the variant presence/absence on the lineages:

\[X \sim Wa \]

To pick lineage effects, those variants assigned to a lineage highly associated with the phenotype in the --lineage_file and with a significant p-value should be chosen. A Manhattan plot, with the x-axis order defined by the lineage column in the output, can be created.

The default is to use the MDS components to define lineage effects, but you can supply custom lineage definitions such as BAPS clusters with the --lineage-clusters options:

```
sample_1 BAPS_3
sample_2 BAPS_16
sample_3 BAPS_27
sample_4 BAPS_3
```

Note: One of these clusters will be removed to ensure the regressions are of full rank. Therefore there is one cluster variants will never be assigned to. This is chosen as the cluster least associated with the phenotype.
1.3.4 Output

`pyseer` writes output to STDOUT, which you can redirect with a pipe `>`. The format is tab separated, one line per variant tested and passing filtering, with the first line as a header. Add `--print-samples` to print the k-samples and nk-samples fields.

Fields for a fixed effect analysis:

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>variant</td>
<td>sequence of k-mer or ID of variant from VCF or Rtab.</td>
</tr>
<tr>
<td>af</td>
<td>allele frequency. The proportion of samples the variant is present in.</td>
</tr>
<tr>
<td>filter-pvalue</td>
<td>association of the variant with the phenotype, unadjusted for population structure.</td>
</tr>
<tr>
<td>lrt-pvalue</td>
<td>the p-value of association, adjusted for population structure. This corresponds to the LRT p-value of <code>seer</code>.</td>
</tr>
<tr>
<td>beta</td>
<td>the effect size/slope of the variant. For a binary phenotype, exponentiate to obtain the odds-ratio.</td>
</tr>
<tr>
<td>beta-std-err</td>
<td>the standard error of the fit on beta.</td>
</tr>
<tr>
<td>intercept</td>
<td>the intercept of the regression.</td>
</tr>
<tr>
<td>PCX</td>
<td>the slope each fixed effect (covariate and MDS component).</td>
</tr>
<tr>
<td>k-samples</td>
<td>the samples the variant is present in (comma separated).</td>
</tr>
<tr>
<td>nk-samples</td>
<td>the samples the variant is not present in (comma separated).</td>
</tr>
<tr>
<td>lineage</td>
<td>the lineage the variant is most associated with.</td>
</tr>
<tr>
<td>notes</td>
<td>notes about the fit.</td>
</tr>
</tbody>
</table>

Fields for a mixed model analysis:

<table>
<thead>
<tr>
<th>Field</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>variant</td>
<td>sequence of k-mer or ID of variant from VCF or Rtab.</td>
</tr>
<tr>
<td>af</td>
<td>allele frequency. The proportion of samples the variant is present in.</td>
</tr>
<tr>
<td>filter-pvalue</td>
<td>association of the variant with the phenotype, unadjusted for population structure.</td>
</tr>
<tr>
<td>lrt-pvalue</td>
<td>the p-value from the mixed model association, as given by FaST-LMM.</td>
</tr>
<tr>
<td>beta</td>
<td>the effect size/slope of the variant. For a binary phenotype, exponentiate to obtain the odds-ratio.</td>
</tr>
<tr>
<td>beta-std-err</td>
<td>the standard error of the fit on beta.</td>
</tr>
<tr>
<td>variant_h2</td>
<td>the variance in phenotype explained by the variant. The h^2 for this variant alone.</td>
</tr>
<tr>
<td>k-samples</td>
<td>the samples the variant is present in (comma separated).</td>
</tr>
<tr>
<td>nk-samples</td>
<td>the samples the variant is not present in (comma separated).</td>
</tr>
<tr>
<td>lineage</td>
<td>the lineage the variant is most associated with.</td>
</tr>
<tr>
<td>notes</td>
<td>notes about the fit.</td>
</tr>
</tbody>
</table>

Notes field

Possible 'notes' are:
<table>
<thead>
<tr>
<th>Note</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>af-filter</td>
<td>Variant failed set allele frequency filters --min-af or --max-af.</td>
</tr>
<tr>
<td>pre-filtering-failed</td>
<td>Variant failed filter-pvalue filter.</td>
</tr>
<tr>
<td>lrt-filtering-failed</td>
<td>Variant failed lrt-pvalue filter.</td>
</tr>
<tr>
<td>bad-chisq</td>
<td>χ^2 test was invalid, suggesting either a very high effect size or low allele frequency. Firth regression used.</td>
</tr>
<tr>
<td>high-bse</td>
<td>SE of fit was $>$3, which may imply a high effect size. Firth regression used.</td>
</tr>
<tr>
<td>perfectly-separable-data</td>
<td>Variant presence and phenotype exactly correlate, so regression cannot be fitted.</td>
</tr>
<tr>
<td>firth-fail</td>
<td>Firth regression failed (did not converge after 1000 iterations).</td>
</tr>
<tr>
<td>matrix-inversion-error</td>
<td>A pseudo-inverse could not be taken, preventing model from being fitted. This likely implies nearly separable data.</td>
</tr>
</tbody>
</table>

Number of unique patterns

One way to pick the threshold for significance is to use a Bonferroni correction with the number of unique variant patterns as the number of multiple tests. When running `pyseer` add the `--output-patterns` option to write a file with hashes of the patterns.

Then run the `count_patterns.py` script on this output:

```bash
python scripts/count_patterns.py --alpha 0.05 --cores 4 --memory 1000 --temp /tmp --patterns.txt
```

This will return the number of unique patterns and the significance threshold. `--alpha` is the unadjusted significance threshold to use. The other options interface to GNU `sort` to speed up the calculation, and control the amount of data stored in main memory/where to store on disk.

1.3.5 Processing k-mer output

See the [GWAS tutorial](#) for full concrete examples.

Mapping to references (phandango)

K-mers can be mapped to reference genomes using the provided script and a fasta file of the reference:

```
phandango pyseer_kmers.assoc reference_1.fa reference_1.plot
```

These `.plot` files can be dragged and dropped into `phandango` along with a reference annotation file (the `.gff` file corresponding to the fasta reference file). Phandango will display the length of the k-mer as well as its position. The y-axis is $-\log_{10}(p)$.

Warning: If all the k-mers are plotted performance will be slow. It is computationally challenging to render tens of millions of k-mers with a real time interface, so we recommend filtering out those with a p-value below a threshold value for interactive performance.

Annotating k-mers

K-mers can also be annotated with the gene they are in, or nearby. This requires a list of annotations. Trusted references are used first, and allow a close match of k-mer (using `bwa mem`). Draft annotations, ideally those the k-mers were
counted from, are used second, and require an exact match of the k-mer (using bwa fastmap).

K-mers will be iteratively mapped to references in the order provided, either until all the references are used, or all k-mers have been mapped:

```
annotate_hits_pyseer pyseer_kmers.assoc references.txt kmer_annotation.txt
```

The `references.txt` file contains the sequence, annotation and type of the references to be used:

<table>
<thead>
<tr>
<th>Reference</th>
<th>Annotation</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>D39.fa</td>
<td>D39.gff</td>
<td>ref</td>
</tr>
<tr>
<td>TIGR4.fa</td>
<td>TIGR4.gff</td>
<td>ref</td>
</tr>
<tr>
<td>sample1.fa</td>
<td>sample1.gff</td>
<td>draft</td>
</tr>
<tr>
<td>sample2.fa</td>
<td>sample2.gff</td>
<td>draft</td>
</tr>
</tbody>
</table>

To map all of the k-mers, and ensure good quality annotation where possible, provide a few trusted references as the first lines in this file. You can then list all of the assemblies used as input after this, designated as draft.

For each k-mer, each match will be returned in the format ‘contig:pos;gene_down;gene_in;gene_up’ i.e. the closest downstream gene, the gene the k-mer is in (if it is), the closest upstream gene. The gene name will be chosen if in the GFF, otherwise the gene ID will be used.

Note: This analysis uses bedtools to find overlapping and nearby genes. A working installation of bedtools is therefore required. The construction of each query is slow, so only significant k-mers should be annotated in this manner.

To summarise these annotations over all significant k-mers, use the `summarise_annotations.py` script:

```
python scripts/summarise_annotations.py kmer_annotation.txt
```

For each gene name, the number of overlapping significant k-mers, maximum p-value, average MAF and average effect size will be reported. This is ideal input for plotting with ggplot2.

1.3.6 Processing unitig output

As unitigs are sequence elements of variable length, identical steps can be taken as for k-mers, as described above.

Additionally, cdbg-ops provided by installing unitig-counter can be used to extend short unitigs leftwards and rightwards by following the neighbouring nodes in the de Bruijn graph. This can help map sequences which on their own are difficult to align in a specific manner.

Create a file `unitigs.txt` with the unitigs to extend (probably your significantly associated hits) and run:

```
cdbg-ops extend --graph output/graph --unitigs unitigs.txt > extended.txt
```

The output `extended.txt` will contain possible extensions, comma separated, with lines corresponding to unitigs in the input. See the help for more options.

1.4 GWAS tutorial

For a short introduction to bacterial GWAS, you may wish to read this review.

This tutorial shows how to use pyseer to perform a GWAS for penicillin resistance using 616 S. pneumoniae genomes collected from Massachusetts. These genomes were first reported here and can be accessed here. One of the earliest GWAS studies in bacteria was performed using this data, and we will try to replicate their results.

The data for this tutorial can be accessed here. Extract the archive:
To find the following files:

<table>
<thead>
<tr>
<th>File</th>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>assemblies.tar.bz2</td>
<td>Archive of genome assemblies.</td>
</tr>
<tr>
<td>fsm_file_list.txt</td>
<td>Input to run fsm-lite.</td>
</tr>
<tr>
<td>snps.vcf.gz</td>
<td>SNPs mapped against the Spn23F reference.</td>
</tr>
<tr>
<td>gene_presence_absence.Rtab</td>
<td>Output from roary run on these genomes.</td>
</tr>
<tr>
<td>core_genome_aln.tree</td>
<td>IQ-TREE phylogeny (using -m GTR) from the core genome alignment.</td>
</tr>
<tr>
<td>resistances.pheno</td>
<td>Whether an isolate was resistant to penicillin, to be used as the phenotype.</td>
</tr>
<tr>
<td>mash_sketch.msh</td>
<td>mash sketch output, from running mash sketch -s 10000 -o mash_sketch *.fa.</td>
</tr>
<tr>
<td>Spn23F.fa</td>
<td>23FSpn sequence.</td>
</tr>
<tr>
<td>Spn23F.gff</td>
<td>23FSpn sequence and annotation.</td>
</tr>
<tr>
<td>6952_7#3.fa</td>
<td>The draft sequence assembly of one isolate in the collection.</td>
</tr>
<tr>
<td>6952_7#3.gff</td>
<td>The draft annotation of the isolate.</td>
</tr>
</tbody>
</table>

Note: To run commands with the scripts/ directory you will need to have cloned the github repository (though other commands can continue to be run using your conda/pip install.

1.4.1 SNP and COG association with fixed effects model

We will first of all demonstrate using pyseer with the original seer model, using MDS components as fixed effects to control for the population structure. We will test the association of SNPs mapped to a reference (provided as a VCF file) and COG presence/absence (provided as and Rtab file, from running roary on the annotations).

The first step is to estimate the population structure. We will do this using a pairwise distance matrix produced using mash. Either create the mash sketches yourself:

```bash
mkdir assemblies
cd assemblies
tar xf ../assemblies.tar.bz2
cd ..
mash sketch -s 10000 -o mash_sketch assemblies/*.fa
```

or use the pre-computed `mash_sketch.msh` directly. Next, use these to calculate distances between all pairs of samples:

```bash
mash dist mash_sketch.msh mash_sketch.msh | square_mash > mash.tsv
```

Note: Alternatively, we could extract patristic distances from a phylogeny: python scripts/phylogeny_distance.py core_genome_aln.tree > phylogeny_dists.tsv

Let’s perform an MDS and these distances and look at a scree plot to choose the number of dimensions to retain:

```bash
scree_plot_pyseer mash.tsv
```
There is a drop after about 8 dimensions, so we will use this many. This is subjective, and you may choose to include many more. This is a sensitivity/specitivity tradeoff – choosing more components is more likely to reduce false positives from population structure, at the expense of power. Using more components will also slightly increase computation time.

We can now run the analysis on the COGs:

```
pyseer --phenotypes resistances.pheno --pres gene_presence_absence.Rtab --distances=mash.tsv --save-m mash_mds --max-dimensions 8 > penicillin_COGs.txt
```

Which prints the following to STDERR:

```
Read 603 phenotypes
Detected binary phenotype
Structure matrix has dimension (616, 616)
Analysing 603 samples found in both phenotype and structure matrix
10944 loaded variants
4857 filtered variants
6087 tested variants
6087 printed variants
```

`pyseer` has automatically matched the sample labels between the inputs, and only used those which were present in the phenotype file. This has accounted for the fact that not all of the samples were measured for the current phenotype. We have used the default filters, so only intermediate frequency COGs have been considered. The core genome COGs and low frequency COGs are in the 4857 filtered out. Take a look at the top hits:

```
sort -g -k4,4 penicillin_COGs.txt | head
```

<table>
<thead>
<tr>
<th>variant</th>
<th>PC1</th>
<th>PC2</th>
<th>PC3</th>
<th>PC4</th>
<th>PC5</th>
<th>PC6</th>
<th>PC7</th>
<th>PC8</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>group_4276</td>
<td>7.79E-02</td>
<td>1.27E-11</td>
<td>2.70E-21</td>
<td>1.29E+01</td>
<td>7.12E-01</td>
<td>-1.29E+00</td>
<td>-7.01E-01</td>
<td>-2.75E+00</td>
<td>high-bse</td>
</tr>
<tr>
<td>group_4417</td>
<td>8.96E-02</td>
<td>3.21E-09</td>
<td>4.72E-20</td>
<td>-6.08E+00</td>
<td>6.99E-01</td>
<td>-4.51E-01</td>
<td>-1.12E+00</td>
<td>5.08E-01</td>
<td>8.20E-01</td>
</tr>
<tr>
<td>cpsG</td>
<td>1.18E-01</td>
<td>1.34E-16</td>
<td>1.69E-19</td>
<td>3.77E+00</td>
<td>5.25E-01</td>
<td>-1.34E+00</td>
<td>2.49E+00</td>
<td>1.24E-01</td>
<td>5.19E+00</td>
</tr>
<tr>
<td>group_3096</td>
<td>1.18E-01</td>
<td>1.34E-16</td>
<td>1.69E-19</td>
<td>3.77E+00</td>
<td>5.25E-01</td>
<td>1.34E+00</td>
<td>2.49E+00</td>
<td>1.24E-01</td>
<td>5.19E+00</td>
</tr>
<tr>
<td>group_4276</td>
<td>7.79E-02</td>
<td>1.27E-11</td>
<td>2.70E-21</td>
<td>1.29E+01</td>
<td>7.12E-01</td>
<td>-1.29E+00</td>
<td>-7.01E-01</td>
<td>-2.75E+00</td>
<td>high-bse</td>
</tr>
<tr>
<td>group_4417</td>
<td>8.96E-02</td>
<td>3.21E-09</td>
<td>4.72E-20</td>
<td>-6.08E+00</td>
<td>6.99E-01</td>
<td>-4.51E-01</td>
<td>-1.12E+00</td>
<td>5.08E-01</td>
<td>8.20E-01</td>
</tr>
<tr>
<td>cpsG</td>
<td>1.18E-01</td>
<td>1.34E-16</td>
<td>1.69E-19</td>
<td>3.77E+00</td>
<td>5.25E-01</td>
<td>-1.34E+00</td>
<td>2.49E+00</td>
<td>1.24E-01</td>
<td>5.19E+00</td>
</tr>
<tr>
<td>group_3096</td>
<td>1.18E-01</td>
<td>1.34E-16</td>
<td>1.69E-19</td>
<td>3.77E+00</td>
<td>5.25E-01</td>
<td>1.34E+00</td>
<td>2.49E+00</td>
<td>1.24E-01</td>
<td>5.19E+00</td>
</tr>
</tbody>
</table>
Note that the first two rows have notes high-bse and bad-chisq respectively. For the former this may represent a high effect size, low frequency results. For the latter this is likely due to the MAF filter not being stringent enough. The identical p-values of the other results are as these COGs appear in exactly the same set of samples.

We will now perform an analysis using the SNPs produced from mapping reads against the provided reference genome. To speed up the program we will load the MDS decomposition `mash_mds.pkl` which was created by the COG analysis above:

```bash
pyseer --phenotypes resistances.pheno --vcf snps.vcf.gz --load-m mash_mds.pkl --lineage --print-samples > penicillin_SNPs.txt
```

This gives similar log messages:

```
Read 603 phenotypes
Detected binary phenotype
Loaded projection with dimension (603, 269)
Analysing 603 samples found in both phenotype and structure matrix
Writing lineage effects to lineage_effects.txt
198248 loaded variants
81370 filtered variants
116878 tested variants
116700 printed variants
```

We haven’t specified the number of MDS dimensions to retain, so the default of 10 will be used (anything up to the 269 retained positive eigenvalues could be chosen). Turning on the test for lineage effects with `--lineage` uses the MDS components as the lineage, and writes the lineages most associated with the phenotype to `lineage_effects.txt`:

```
lineage wald_test p-value
MDS3 10.3041807281 0.0
MDS10 6.61332035523 3.75794950713e-11
MDS5 6.03559150525 1.58381441295e-09
MDS4 2.35736678835 0.0184050574981
MDS9 0.850386297867 0.39511035157
MDS7 0.780676383001 0.434992854366
MDS8 0.478181602218 0.632520955891
MDS1 0.34492992152 0.730147754076
```

Variants associated with both the phenotype and MDS3, MDS10 or MDS5 may therefore be of interest as lineage effects.

1.4. GWAS tutorial
The output now includes the lineage each variant is associated with, though not all variants can be assigned a lineage.

`--print-samples` forces the inclusion of a comma separated list of samples the variant is present in `k-samples` and not present in `nk-samples` (not shown here for brevity):

```
variant  af  filter-pvalue  lrt-pvalue  beta  beta-std-err  intercept
         →  PC1  PC2  PC3  PC4  PC5  PC6  PC7  PC8  PC9  PC10  →
lineage  notes
26_23_G  4.31E-02  3.31E-01  4.42E-01  -4.19E-01  5.49E-01  →
        →  -9.22E-01  1.84E-01  -6.00E-01  -7.53E+00  8.84E-01  2.05E+01
        →  -1.79E+00  2.69E-01  1.16E-01  -7.52E-01  3.66E+00  →

26_31_G_T  5.64E-02  3.94E-06  1.00E+00  6.78E-01  6.92E-01  →
           →  -8.90E-01  1.97E-01  -4.13E-01  -7.05E+00  8.63E-01  →
           →  1.91E+01  -1.33E+00  3.02E-01  9.13E-02  -4.99E-01  →
           →  3.35E+00  MDS10  bad-chisq  →

26_83_A_G  4.58E-01  9.88E-04  3.25E-01  4.06E-01  4.13E-01  →
           →  -1.21E+00  -1.43E-01  -7.84E-01  -7.35E+00  6.13E-01  →
           →  1.91E+01  -1.19E+00  1.73E-01  6.44E-01  -4.47E-01  →
           →  3.63E+00  MDS6  →

26_109_G_A  1.33E-02  1.46E-01  2.10E-14  4.15E00  7.25E-01  →
            →  -9.97E-01  9.39E-02  3.33E-02  9.52E+00  1.72E+00  →
            →  3.41E+00  MDS10  bad-chisq  →

26_184_G_A  3.32E-02  1.06E-02  8.49E-01  1.75E-01  9.11E-01  →
            →  -9.65E-01  1.37E-01  -5.96E-01  -7.42E+00  8.65E-01  →
            →  1.98E+01  -1.71E+00  3.00E-01  2.78E-01  -6.18E-01  →
            →  3.63E+00  MDS6  →

26_281_C_T  1.01E-01  1.20E-05  3.97E-01  -5.91E-01  6.91E-01  →
            →  -9.08E-01  1.12E-01  -7.04E-01  -7.24E+00  7.18E-01  →
            →  2.02E+01  2.03E+01  3.02E-01  2.55E-01  -5.93E-01  →
            →  3.66E+00  MDS4  →

26_293_G_A  1.49E-02  3.50E-01  5.31E-01  7.06E-01  1.07E+00  →
            →  -9.73E-01  1.29E-01  -6.11E-01  -7.49E+00  9.16E-01  →
            →  2.03E+01  -1.54E+00  3.02E-01  2.55E-01  -5.93E-01  →
            →  3.66E+00  MDS6  →

26_483_G_A  2.37E-01  7.85E-02  1.82E-02  9.16E-01  3.90E-01  →
            →  -1.32E+00  -2.83E-01  -1.30E+00  -7.28E+00  6.77E-01  →
            →  1.78E+01  -1.79E+00  2.59E-01  1.10E+00  3.15E-02  →
            →  3.44E+00  MDS9  →

26_539_G_A  1.33E-02  1.46E-01  2.10E-14  4.15E00  7.25E-01  →
            →  -9.97E-01  9.39E-02  3.33E-02  9.52E+00  1.72E+00  →
            →  3.41E+00  MDS6  →

This contains co-ordinates and p-values, which can be converted to a .plot file using the following awk one-liner:

```
cat <(echo "#CHR$MINLOG10(P)log10(p)$r^2") \"
<(paste <(sed '1d' penicillin_SNPs.txt | cut -d "_" -f 2) \"
<(sed '1d' penicillin_SNPs.txt | cut -f 4) | \"
awk '{p = -log($2)/log(10); print "26","","$1,p,p,0")') | \"
tr ' ' '	' > penicillin_snps.plot
```

If we drag and drop 23FSpn.gff and penicillin_snps.plot files into phandango you should see a Manhattan plot similar to this:
The three highest peaks are in the \textit{pbp2x}, \textit{pbp1a} and \textit{pbp2b} genes, which are the correct loci. There are also flat lines, suggesting these may be lineage effects from population structure that has not been fully controlled for. In actual fact, if we inspect the SNPs along these two lines (\( p = 2.10\times10^{-14} \) and \( p = 1.58\times10^{-15} \)) we see that all of them are annotated with the note \textit{bad-chisq} and are at the lower end of the included minor allele frequency threshold (1.3% and 1.2% respectively). These are therefore variants which were underpowered, and the associations are spurious. They should be filtered out, and we should probably have used a MAF cutoff of at least 2% given the total number of samples we have. As a rule of thumb, a MAF cutoff corresponding to a MAC of at least 10 isn’t a bad start. Let’s run it again:

```
pyseer --phenotypes resistances.pheno --vcf snps.vcf.gz --load-m output/mash_mds.pkl --min-af 0.02 --max-af 0.98 > penicillin_SNPs.txt
```

Read 603 phenotypes
Detected binary phenotype
Loaded projection with dimension (603, 269)
Analysing 603 samples found in both phenotype and structure matrix
198248 loaded variants
106949 filtered variants
91299 tested variants
91225 printed variants

A lot more low frequency variants have been filtered out this time, and if we make a plot file our Manhattan plot looks much cleaner:
1.4.2 K-mer association with mixed effects model

We will now use k-mers as a variant to test both short variation as well as gene presence/absence. This can be done using the steps above replacing the `--vcf` argument with `--kmers`, which would replicate the results from the original `seer` tutorial. For demonstration purposes we will instead use the other association model available in `pyseer`, the linear mixed model.

First, count the k-mers from the assemblies:

```bash
mkdir -p assemblies
cd assemblies
tar xvf ../assemblies.tar.bz2
fsm-lite -l ../fsm_file_list.txt -s 6 -S 610 -v -t fsm_kmers | gzip -c - > ../fsm_kmers.txt.gz
cd ..
```

This will require you to have `fsm-lite` installed. If you do not have the time/resources to do this, you can follow the rest of these steps using the SNPs as above.

**Note:** Everything here also applies to unitigs, which can be called with `unitig-counter`. These are generally recommended due to their lower redundancy (and are also therefore faster) and potentially easier interpretation.

To correct for population structure we must supply `pyseer` with the kinship matrix $K$ using the `--similarities` argument (or `--load-lmm` if using a previous analysis where `--save-lmm` was used).
We will use the distances from the core genome phylogeny, which has been midpoint rooted:

```
python scripts/phylogeny_distance.py --lmm core_genome_aln.tree > phylogeny_K.tsv
```

**Note:** Alternatively, we could extract a kinship matrix from the mapped SNPs by calculating \( K = GG^T \)

```
similarity_pyseer --vcf snps.vcf.gz samples.txt > gg.snps.txt
```

We can now run `pyseer` with `--lmm`. Due to the large number of k-mers we are going to test, we will increase the number of CPUs used to 8:

```
pyseer --lmm --phenotypes resistances.pheno --kmer fsm_kmers.txt.gz --similarity --phylogeny_K.tsv --output-patterns kmer_patterns.txt --cpu 8 > penicillin_kmers.txt
```

The heritability \( h^2 \) estimated from the kinship matrix \( K \) is printed to STDERR, and after about 5 hours the results have finished being written:

```
Read 603 phenotypes
Detected binary phenotype
Setting up LMM
Similarity matrix has dimension (616, 616)
Analysing 603 samples found in both phenotype and similarity matrix
\(h^2 = 0.90 \)
15167239 loaded variants
1042215 filtered variants
14125024 tested variants
14124993 printed variants
```

**Note:** The heritability estimate shouldn’t be interpreted as a quantitative measure for this binary phenotype, but a high heritability is consistent with the mechanism of penicillin resistance in this species (the sequence can give up to 99% prediction accuracy of penicillin resistance).

The results look similar, though also include the heritability of each variant tested:

<table>
<thead>
<tr>
<th>variant</th>
<th>af</th>
<th>filter-pvalue</th>
<th>lrt-pvalue</th>
<th>beta</th>
<th>beta-std-err</th>
<th>variant_h2</th>
</tr>
</thead>
<tbody>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>8.11E-01</td>
<td>1.51E-06</td>
<td>1.05E-01</td>
<td>6.13E-02</td>
<td>3.78E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>6.60E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>7.08E-01</td>
<td>6.20E-06</td>
<td>4.03E-01</td>
<td>-3.34E-02</td>
<td>3.98E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>3.41E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>5.97E-01</td>
<td>6.39E-05</td>
<td>1.81E-01</td>
<td>-4.05E-02</td>
<td>3.03E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>5.45E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>3.55E-01</td>
<td>5.92E-04</td>
<td>7.90E-01</td>
<td>-6.84E-03</td>
<td>2.57E-02</td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>1.09E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>1.48E-01</td>
<td>2.11E-03</td>
<td>7.38E-01</td>
<td>1.13E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>3.37E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>6.47E-02</td>
<td>3.94E-01</td>
<td>4.89E-01</td>
<td>3.11E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>4.49E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>3.48E-02</td>
<td>2.73E-02</td>
<td>2.59E-01</td>
<td>-6.73E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>5.96E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>2.32E-02</td>
<td>2.18E-01</td>
<td>6.96E-01</td>
<td>-2.81E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>7.19E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TTTTTTTTTTTTTT</td>
<td>1.66E-02</td>
<td>2.58E-01</td>
<td>9.46E-01</td>
<td>-5.63E-03</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>8.37E-02</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>-02</td>
<td>2.74E-03</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1.4. GWAS tutorial
The downstream processing of the k-mer results in `penicillin_kmers.txt` will be shown in the next section. Before that, we can determine a significance threshold using the number of unique k-mer patterns:

```
python scripts/count_patterns.py kmer_patterns.txt
Patterns: 2627332
Threshold: 1.90E-08
```

This is over five times lower than the total number of k-mers tested, so stops us from being hyper-conservative with the multiple testing correction.

We can also create a Q-Q plot to check that p-values are not inflated. We can do that by using the `qq_plot.py` script:

```
python scripts/qq_plot.py penicillin_kmers.txt
```

which produces the following Q-Q plot:

![Q-Q Plot](image)

When interpreting this plot, check that it is well controlled at low p-values and doesn’t show any large ‘shelves’ symptomatic of poorly controlled confounding population structure. Although this plot is far above the null (as indeed, there are many k-mers associated with penicillin resistance), the p-values up to 0.01 are as expected which is what we’re after.

### 1.4.3 Interpreting significant k-mers

For the final step we will work with only those k-mers which exceeded the significance threshold in the mixed model analysis. We will filter these from the output using a simple `awk` command:

```
cat <(head -1 penicillin_kmers.txt) <(awk '$4<1.90E-08 {print $0}' penicillin_kmers.txt) > significant_kmers.txt
```

There are 5327 significant k-mers.
Mapping to a single reference

Let’s use `bwa mem` to map these to the reference provided:

```
phandango_mapper significant_kmers.txt Spn23F.fa Spn23F_kmers.plot
```

Read 5327 k-mers
Mapped 2425 k-mers

Not all the k-mers have been mapped, which is usually the case. Note there are 2459 mapping lines in the output, as 34 secondary mappings we included. It is a good idea to map to range of references to help with an interpretation for all of the significant k-mers. The k-mer annotation step, described next, also helps cover all k-mers. Let’s look at the plot file in `phandango`:

In this view we no longer see all of the Manhattan plot as we have filtered out the low p-value k-mers. There is generally less noise due to LD/population structure when compared to our previous result above. There are peaks in the three `php` genes again, with the strongest results in `php2x` and `php2b` as before. Zooming in:
The whole \textit{pbp2x} gene is covered by significant k-mers, whereas only a small part of \textit{pbp1a} is hit. This could be due to the fact that only some sites in \textit{pbp1a} can be variable, only some of the variable sites affect penicillin resistance, or due to the ability to map k-mers to this region.

**Annotating k-mers**

We can annotate these k-mers with the genes they are found in, or are near. To try and map every k-mer we can include a number of different reference annotations, as well as all the draft annotations of the sequences the k-mers were counted from. For the purposes of this tutorial we will demonstrate with a single type of each annotation, but this could be expanded by adding all the annotated assemblies to the input.

We'll start by creating a \texttt{references.txt} file listing the annotations we wish to use (see Annotating k-mers for more information on how to construct this file):

```
Spn23F.fa Spn23F.gff ref
6952_7#3.fa 6952_7#3.gff draft
```

Now run the script. This will iterate down the list of annotations, annotating the k-mers which haven't already been mapped to a previous annotation (requires \texttt{bedtools}, \texttt{bedops} and the \texttt{pybedtools} package):

```
annotate_hits_pyseer significant_kmers.txt references.txt annotated_kmers.txt
```

Reference 1
5327 kmers remain
Draft reference 2
2902 kmers remain
Note: If this runs slowly you can split the significant_kmers.txt file into pieces to parallelise the process.

Annotations marked ref can partially match between k-mer and reference sequence, whereas those marked draft require an exact match. In this case the single draft didn’t add any matches. The genes a k-mer is in, as well as the nearest upstream and downstream are added to the output:

```
TTTTTTTCTACAATAAAATAGGCTCCATAATATCTATAGTGATTACCCACTAACAATATTATAGAACCAGCTTTTTATAGGAAAGACTTTACTTTGACTTT
→ 6.47E-02 2.08E-12 2.10E-09 7.97E-01 1.31E-01
→ 2.41E-01 FM211187:252213-252312;FM211187.832;FM211187.834
TTTTTTTAGATTTTCAGGTCAGCAAATAGTAATCCGG 8.42E-01 1.03E-36 2.99E-10
→ -4.38E-01 6.83E-02 2.53E-01 FM211187:723388-723417;FM211187
→ 2367;FM211187.2371
TTTTTTTAGATTTTCAGGTCAGCAAATAGTAATCCGGCTG 8.39E-01 3.38E-35 4.04E-09 -3.95E-01 6.62E-02 2.37E-01 FM211187:1614084-
→ -1614122;penA;penA;penA
```

The output format is contig:position;upstream;in;downstream. The first line shows the k-mer was mapped to FM211187:252213-252312, the nearest gene downstream having ID FM211187.832 and upstream having ID FM211187.834. The third line shows that k-mer overlaps penA – note when a gene= field is found this is used in preference to the ID= field.

Finally, we can summarise these annotations to create a plot of significant genes. We will only use genes k-mers are actually in, but if we wanted to we could also include up/downstream genes by using the --nearby option:

```
python scripts/summarise_annotations.py annotated_kmers.txt > gene_hits.txt
```

We’ll use ggplot2 in R to plot these results:

```
require(ggplot2)
require(ggrepel)
library(ggrepel)

gene_hits = read.table("gene_hits.txt", stringsAsFactors=FALSE, header=True)

ggplot(gene_hits, aes(x=avg_beta, y=maxp, colour=avg_maf, size=hits, label=gene)) +
 geom_point(alpha=0.5) +
 geom_text_repel(aes(size=60), show.legend = FALSE, colour='black') +
 scale_size("Number of k-mers", range=c(1,10)) +
 scale_colour_gradient("Average MAF") +
 theme_bw(base_size=14) +
 ggtitle("Penicillin resistance") +
 xlab("Average effect size") +
 ylab("Maximum \(-\log_{10}(p-value)\)"")
```

You can customise this however you wish (for example adding the customary italics on gene names); these commands will produce a plot like this:
The main hits have high p-values and are common, and in this case are covered by many k-mers. In this case *penA* (*pbp2b*) and *penX* (*pbp2x*) are the main hits. Other top genes *recR* and *ddl* are adjacent to the *pbp* genes and are in LD with them, creating an artificial association. The results with large effect sizes (recall that the odds-ratio is given by $e^\beta$) and relatively low p-values also have low MAF, and are probably false positives. This can be seen better by changing the axes:
1.5 Prediction tutorial

This page describes how to fit whole genome models with \texttt{--wg}, and how they can be used to predict the phenotype for new samples. This tutorial starts from the same dataset as the GWAS tutorial, which is described at the top of that page.

**Note:** Presently only the elastic net is implemented, which is the method used in this tutorial. Future methods will include random forests and best linear unbiased predictors (BLUPs).

- \textbf{Fitting a whole-genome model}
  - Accounting for population structure
- \textbf{Using the model to predict phenotype in new samples}
  - Generating consistent unitig calls

1.5.1 Fitting a whole-genome model

The first step to performing prediction is to train a model on genetic data with a known phenotype. The trained models in pyseer can also be used for association purposes, as the individual variants associated with the phenotype
are reported.

Here we will try and find SNPs which can predict penicillin resistance in *S. pneumoniae*. It would also be possible to use unitigs by changing `--vcf` to `--kmers`. Variants are loaded, the model is fitted and saved. This can all be done in a single step:

```
pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet --save-vars output/ma_snps --save-model penicillin.lasso --cpu 4 --alpha 1 > selected.txt
```

Read 603 phenotypes
Detected binary phenotype
Reading all variants
198248 variants [04:46, 691.24 variants/s]
Saved enet variants as output/ma_snps.pkl
Applying correlation filtering
100%|| 89703/89703 [00:51<00:00, 1742.25 variants/s]
Fitting elastic net to top 67277 variants
[status] Parallel glmnet cv with 4 cores
Best penalty (lambda) from cross-validation: 2.09E-02
Best model deviance from cross-validation: 0.405 ± 4.57E-02
Best R^2 from cross-validation: 0.822
Finding and printing selected variants
Saved enet model as penicillin.lasso.pkl
198248 loaded variants
130971 filtered variants
67277 tested variants
35 printed variants

**Warning:** You may see warnings about variants with no observations. In this case the VCF has many missing calls causing this, which can be ignored. In other settings this often points to a mismatch between sample labels in the variant and phenotype files.

selected.txt now contains the selected variants in a GWAS-like format:

<table>
<thead>
<tr>
<th>variant</th>
<th>af</th>
<th>filter-pvalue</th>
<th>lrt-pvalue</th>
<th>beta</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>26_31771_C_T</td>
<td>3.48E-02</td>
<td>8.06E-02</td>
<td>1.10E-01</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26_292628_G_A</td>
<td>3.78E-01</td>
<td>6.12E-94</td>
<td>9.92E-02</td>
<td></td>
<td></td>
</tr>
<tr>
<td>26_292653_T_C</td>
<td>6.63E-02</td>
<td>2.95E-16</td>
<td>9.56E-01</td>
<td>bad-chisq</td>
<td></td>
</tr>
</tbody>
</table>

To calculate an adjusted p-value you can add `--distances` as one would do for GWAS with the SEER fixed effects model, or create a new variant file with just the selected variants, then run pyseer again.

Differences of this approach from the univariate GWAS approach covered in *GWAS tutorial*:

- `--wg enet` fits an elastic net to all variants with `--n-folds` cross-validation (default 10-fold).
- `--save-vars` saves the variants loaded by `--vcf` in an efficient sparse matrix format, which can be quickly loaded for new model fitting.
- `--save-model` saves the fitted model so it can be used for prediction.
- `--cpu` uses four cores efficiently during cross-validation.
- `--alpha` controls the mixing between ridge regression and lasso regression. Above we have used a value of 1, which is lasso regression, selecting just a few variants. We can use a value closer to ridge regression if desired, which will select more variants with smaller effect sizes:
pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet \
--load-vars output/ma_snps --save-model penicillin.001 --alpha 0.01 > selected.txt

Read 603 phenotypes
Detected binary phenotype
Reading all variants
Analysing 603 samples found in both phenotype and loaded npy
Applying correlation filtering
100% | 89703/89703 [01:03<00:00, 1421.87variants/s]
Fitting elastic net to top 67275 variants
Best penalty (lambda) from cross-validation: 8.26E-01
Best model deviance from cross-validation: 0.402 ± 4.45E-02
Best R^2 from cross-validation: 0.815
Finding and printing selected variants
Saved enet model as penicillin.001.pkl
198248 loaded variants
130973 filtered variants
67275 tested variants
3523 printed variants

We can load the variants saved previously which saves a lot of time. The variant file is needed to print the selected
variants at the end – this is checked to ensure it is the same as the one originally provided.

Loading the variants can also be used when just a subset of --phenotypes is provided, which is useful for training-
test validation.

**Accounting for population structure**

As the model includes all genetic variants at once, covariance between them from population structure can implicitly
be included already. However, it is possible to include an explicit correction for population structure which may
improve prediction accuracy in new populations.

This correction is based on providing discrete definitions of lineages/strains. Prepare a file `lineages.txt` with the
following format:

```
7001_3#17 0
6999_7#9 0
7622_5#50 0
6999_1#2 0
7622_4#1 0
...
7622_2#40 59
7622_3#86 60
7622_5#61 61
```

**Important:** Rare lineages must be represented correctly, i.e. in their own cluster rather than being grouped in a ‘bin’.
One method we recommend to do this is PopPUNK. Connecting samples together which are below a certain distance
threshold will also work.

Now add this to the analysis:

```
pyseer --vcf snps.vcf.gz --phenotypes resistances.pheno --wg enet \
--load-vars output/ma_snps --lineage-clusters poppunk_clusters.csv --sequence- \n--reweighting
```

(continues on next page)
Read 603 phenotypes
Detected binary phenotype
Reading all variants
Analysing 603 samples found in both phenotype and loaded npy
Applying correlation filtering
100%|| 89703/89703 [00:59<00:00, 1513.70variants/s]
Fitting elastic net to top 67275 variants
Best penalty (lambda) from cross-validation: 1.17E+00
Best model deviance from cross-validation: 0.572 ± 8.76E-02
Best R^2 from cross-validation: 0.815
Predictions within each lineage
<table>
<thead>
<tr>
<th>Lineage</th>
<th>Size</th>
<th>R2</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>96</td>
<td>0.820</td>
<td>35</td>
<td>57</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>0.182</td>
<td>2</td>
<td>48</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>-0.200</td>
<td>0</td>
<td>15</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>18</td>
<td>1.000</td>
<td>0</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Finding and printing selected variants
198248 loaded variants
130973 filtered variants
67275 tested variants
4357 printed variants

Adding **--lineage-clusters** has two effects. Cross-validation will be performed by leaving one strain out. This will usually take longer as there are more strains than folds, but may help reduce the number of lineage effects included. Also, training prediciton accuracy for each lineage will be reported, making it easier to see whether there are some parts of the data where the model is performing better. For binary phenotypes $R^2$ can be difficult to interpret, so true/false positives/negatives are also reported.

Adding **--sequence-reweighting** has one further effect. Within each lineage, the weight $w_i$ given to each sample in the loss function

$$\min_{b_0, b} \frac{1}{N} \sum_{i=1}^{N} w_i \ell(y_i, b_0 + b^T x_i)^2 + \lambda \left[(1 - \alpha) ||b||_2^2 + \alpha ||b||_1 \right]$$

is set by

$$\frac{1}{u_i} = \sum_{j=1}^{N} [j \in C(i)]$$

$$w_i = u_i \cdot \frac{N}{\sum_{j=1}^{N} u_i}$$

where $C(x)$ is the lineage cluster of $x$.

This sets the weights as being inversely proportional to the size of the cluster, and rescales all weights to sum to $N$. Without this option $w_i = 1$ ∀ $i$.

### 1.5.2 Using the model to predict phenotype in new samples

The elastic net models can be used to predict phenotypes in new samples. We will first split the samples into training and test sets:
head -500 resistances.pheno > train.pheno
cat <(head -1 resistances.pheno) <(tail -104 resistances.pheno) > test.pheno
cut -f 1 test.pheno | sed '1d' > test.samples

**Warning:** This is a random split of the samples, unlikely to be equivalent to different sample collections made up of different proportions of strains. Accuracy is likely overestimated, but within strain accuracies can be useful.

We will use lasso regression as fewer variants are selected, so if they were uncalled in the test set this should be less of a problem (but is still an important concern). Fit a model to the training set:

```
pyseer --vcf snps.vcf.gz --phenotypes train.pheno --wg enet
--load-vars output/ma_snps --alpha 1 --save-model test_lasso --cpu 4
--lineage-clusters poppunk_clusters.csv --sequence-reweighting
```

Read 499 phenotypes
Detected binary phenotype
Reading all variants
Analysing 499 samples found in both phenotype and loaded npy
Applying correlation filtering
100% | 89703/89703 [00:56<00:00, 1597.01variants/s]
Fitting elastic net to top 67277 variants
[status] Parallel glmnet cv with 4 cores
Best penalty (lambda) from cross-validation: 3.38E-02
Best model deviance from cross-validation: 0.605 ± 1.01E-01
Best R^2 from cross-validation: 0.788

Predictions within each lineage

<table>
<thead>
<tr>
<th>Lineage</th>
<th>Size</th>
<th>R2</th>
<th>TP</th>
<th>TN</th>
<th>FP</th>
<th>FN</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>74</td>
<td>0.753</td>
<td>24</td>
<td>46</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>41</td>
<td>0.219</td>
<td>2</td>
<td>35</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>1.000</td>
<td>0</td>
<td>12</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>9</td>
<td>1.000</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>8</td>
<td>1.000</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>11</td>
<td>1.000</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>9</td>
<td>1.000</td>
<td>3</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>1.000</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>10</td>
<td>1.000</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>7</td>
<td>-0.167</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>6</td>
<td>1.000</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>5</td>
<td>-0.250</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>35</td>
<td>1.000</td>
<td>35</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>1.000</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>6</td>
<td>-0.200</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>7</td>
<td>1.000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>23</td>
<td>6</td>
<td>1.000</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>24</td>
<td>7</td>
<td>-0.167</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>7</td>
<td>1.000</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>26</td>
<td>6</td>
<td>-0.200</td>
<td>0</td>
<td>5</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>27</td>
<td>5</td>
<td>1.000</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>28</td>
<td>5</td>
<td>1.000</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>29</td>
<td>5</td>
<td>1.000</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>36</td>
<td>-0.059</td>
<td>34</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>30</td>
<td>3</td>
<td>1.000</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>31</td>
<td>4</td>
<td>-0.333</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>32</td>
<td>4</td>
<td>1.000</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>33</td>
<td>3</td>
<td>-0.500</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

(continues on next page)
The prediction accuracy is pretty similar across lineages, which is good. As the test set is a similar makeup of lineages hopefully prediction accuracy will be similar.

`enet_predict` is used to make the predictions:

```bash
enet_predict --vcf snps.vcf.gz --lineage-clusters poppunk_clusters.csv --true-values, --test.pheno \ test_lasso.pkl test.samples > test_predictions.txt
```

Reading variants from input

```
198248 variants [00:11, 17657.99 variants/s]
```

Overall prediction accuracy

```
R2: 0.8668373879641486
tn: 69
fp: 2
fn: 1
tp: 32
Predictions within each lineage
```

(continues on next page)
The required options are a variant file, in this case the same \(--\text{vcf}\) contains calls for the test samples, but this could be a new file, as long as the variant labels match (non-trivial!). \text{test\_lasso.pkl} is the saved model and \text{test\_samples} are the names of samples appearing in the variants file to produce predictions for.

Here, providing \(--\text{true-values}\) is needed to give the prediction accuracies. Providing \(--\text{lineage-clusters}\) in addition gives the per lineage prediction accuracy. For the reasons noted above, the test accuracy is pretty similar to the training set.

The predictions are in \text{test\_predictions.txt}:

<table>
<thead>
<tr>
<th>Sample</th>
<th>Prediction</th>
<th>Link</th>
<th>Probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>7622_3#79</td>
<td>1.0</td>
<td>1.1723387708055686</td>
<td>0.7635674993396665</td>
</tr>
<tr>
<td>7622_3#80</td>
<td>1.0</td>
<td>2.828167499490956</td>
<td>0.9441790988402875</td>
</tr>
<tr>
<td>7622_3#81</td>
<td>1.0</td>
<td>2.2308130622857987</td>
<td>0.9029826106893201</td>
</tr>
<tr>
<td>7622_3#82</td>
<td>0.0</td>
<td>-0.7572524088945985</td>
<td>0.3192430949937001</td>
</tr>
</tbody>
</table>

For a binary phenotype:

- a 0/1 prediction at \(--\text{threshold}\) on the probability.
- Link is the value of the linear sum of the model betas, before entering the logit link function.
- Probability is a continuous prediction (after taking logit).
Generating consistent unitig calls

It has been mentioned many times above that it is necessary that variant calls match between the inputs of the training and test data. This was ensured above as all variants were called together and merged into a single file. Generally this may not be possible, especially if testing prediction accuracy in a new cohort. If a variant in the model is missing its mean slope value will be used for all samples, which may significantly reduce accuracy.

One way around this issue is to use unitigs. However, sequences which are unitigs in the DBG of one population may not be unitigs in the DBG of a different sample set, even if they are present. So simply running unitig-counter on both training and test datasets will result in many missing calls.

You should instead use unitig-caller to make variant calls in the test population using the same unitigs definitions as in the training population. Full usage and details are given in the README.md, but briefly:

```bash
gzip -d -c unitigs.txt.gz | cut -f 1 > queries.txt
unitig-caller --mode simple --strains strain_list.txt --unitigs queries.txt --output_calls.txt
```

Will write a file of sequence elements for the samples in strain_list.txt to calls.txt, which is guaranteed to overlap with the original training set calls, and can therefore be used with enet_predict.

1.6 Multiprocessing

pyseer supports the use of multiple CPUs through the --cpu option. This sends batches of processed variants to a core, which will fit the chosen model on all variants in the batch.

The constant --block-size controls the number of variants sent to each core. The higher this is set the more efficient the use of CPUs will be (up to a limit, set by the time spent reading the variant input) at the expense of a roughly linear increase in memory usage. The default is 1000, using which on 8 cores required around 1.5Gb of memory for a 1.4x speedup with the mixed model. Increasing this to 30000 while using 4 cores gave a similar (1.5x) speedup, but needed 12Gb of memory.

Depending on your computing architecture, you may wish to split the input and run separate jobs. This will be more efficient, but is less convenient. This can be done using GNU split:

```bash
split -d -n l/8 fsm_kmers.txt fsm_out
```

This would split the input k-mers into 8 separate files.

1.7 Reference documentation

1.7.1 input.py

Functions to read data into pyseer and iterate over instances

```python
pyseer.input.file_hash(filename)
Calculates the hash of an entire file on disk

Parameters filename (str) -- Location of file on disk

Returns

hash (str) -- SHA256 checksum

pyseer.input.hash_pattern(k)
Calculates the hash of a presence/absence vector
```
Parameters $k$ (numpy.array) – Variant presence/absence binary vector (n, 1)

Returns

hash (byte) Hashed pattern

pyseer.input.iter_variants($p, m, cov, var_type, burden, burden_regions, infile, all_strains, sample_order, lineage_effects, lineage_clusters, min_af, max_af, max_missing, filter_pvalue, lrt_pvalue, null_fit, firth_null, uncompressed, continuous)$

Make an iterable to pass single variants to fixed effects regression

Parameters

- $p$ (pandas.DataFrame) – Phenotype vector (n, 1)
- $m$ (numpy.array) – Population structure matrix (n, k)
- $cov$ (pandas.DataFrame) – Covariates matrix (n, m)
- $var_type$ (str) – Variants type (one of: kmer, vcf or Rtab)
- $burden$ (bool) – Whether to slice a vcf file by burden regions
- $burden_regions$ (collections.deque) – Burden regions to slice the vcf with
- $infile$ (opened file) – Handle to opened variant file
- $all_strains$ (set-like) – All sample labels that should be present
- $sample_order$ – Samples order to interpret each Rtab line
- $lineage_effects$ (bool) – Whether to fit lineage effects
- $clusters$ (lineage) – Lineage clusters indexes
- $min_af$ (float) – Minimum allele frequency (inclusive)
- $max_af$ (float) – Maximum allele frequency (inclusive)
- $max_missing$ (float) – Maximum missing frequency
- $filter_pvalue$ (float) – Pre-filtering p-value threshold
- $lrt_pvalue$ (float) – Filtering p-value threshold
- $null_fit$ (float or statsmodels.regression.linear_model.RegressionResultsWrapper) – Null-fit likelihood (binary) or model (continuous)
- $firth_null$ (float) – Firth regression likelihood
- $uncompressed$ (bool) – Whether the kmers file is uncompressed
- $continuous$ (bool) – Whether the phenotype is continuous or not

Returns

var_name (str) Variant name

$v$ (numpy.array) Phenotypes vector (n, 1)

$k$ (numpy.array) Variant presence/absence vector (n, 1)

$m$ (numpy.array) Population structure matrix (n, k)

$c$ (numpy.array) Covariates matrix (n, m)

$af$ (float) Allele frequency

$pattern$ (bytes) Variant hash
pyseer Documentation, Release 1.3.1

- `lineage_effects (bool)`: Whether to fit lineage effects
- `lineage_clusters (list)`: Lineage clusters indexes
- `filter_pvalue (float)`: Pre-filtering p-value threshold
- `lrt_pvalue (float)`: Filtering p-value threshold
- `null_fit (float or statsmodels.regression.linear_model.RegressionResultsWrapper)`: Null-fit likelihood (binary) or model (continuous)
- `firth_null (float)`: Firth regression likelihood
- `kstrains (iterable)`: Sample labels with the variant
- `nkstrains (iterable)`: Sample labels without the variant
- `continuous (bool)`: Whether the phenotype is continuous or not

```python
def iter_variants_lmm(variant_iter, lmm, h2, lineage, lineage_clusters, covariates, continuous, filter_pvalue, lrt_pvalue):
 # Make an iterable to pass single variants to fixed effects regression
```

```python
def load_burden(infile, burden_regions):
 # Load burden regions for VCF analysis

 Parameters
 - `infile (str)`: Input file for burden regions
 - `burden_regions (list)`: List to be filled in-place

```python
def load_covariates(infile, covariates, p):
    # Load and encode a covariates matrix

    Parameters
    - `infile (str)`: Input file for the covariates matrix
    - `covariates (iterable or None)`: List of string indicating which columns to use and their interpretation. Example: 2q indicates that the second column from the file is a quantitative variable, 2 indicates that that same column is categorical. If None, the matrix is loaded but nothing is done with it.
    - `p (pandas.Series)`: Phenotypes vector (n, 1)

    Returns
    - `cov (pandas.DataFrame)`: Covariance matrix (n, m)

```python
def load_lineage(infile, p):
 # Load custom lineage clusters definitions

 Parameters
 - `infile (str)`: Input file for lineage clusters
 - `p (pandas.Series)`: Phenotypes vector (n, 1)

 Returns
 - `result (tuple of (numpy.array, list))`: Lineage binary matrix and cluster labels

```python
def load_phenotypes(infile, column):
    # Load phenotypes vector

    Parameters
    - `infile (str)`: Matrix input file
- **column**(str or None) – Phenotype column name or None to pick the last column

Returns

p (pandas.Series)  Phenotype vector (n, 1)

pyseer.input.load_structure(infile, p, max_dimensions, mds_type='classic', n_cpus=1, seed=None)

Load population structure and apply multidimensional scaling

Parameters

- **infile**(str) – Population structure (distance matrix) input file
- **p**(pandas.Series) – Phenotype vector (n, 1)
- **max_dimensions**(int) – Maximum dimensions to consider when applying metric or non-metric MDS
- **mds_type**(str) – MDS algorithm to apply. One of classic, metric or non-metric. Any other input will trigger the metric MDS
- **n_cpus**(int) – Number of CPUs to be used for the metric or non-metric MDS
- **seed**(int or None) – Random seed for metric or non-metric MDS, None if not required

Returns

m (pandas.DataFrame)  Population structure after MDS (n, m)

pyseer.input.load_var_block(var_type, p, burden, burden_regions, infile, all_strains, sample_order, min_af, max_af, max_missing, uncompressed, block_size)

Make in iterable to load blocks of variants for LMM

Parameters

- **var_type**(str) – Variants type (one of: kmers, vcf or Rtab)
- **p**(pandas.DataFrame) – Phenotype vector (n, 1)
- **burden**(bool) – Whether to slice a vcf file by burden regions
- **burden_regions**(collections.deque) – Burden regions to slice the vcf with
- **infile**(opened file) – Handle to opened variant file
- **all_strains**(set-like) – All sample labels that should be present
- **sample_order** – Sample order to interpret each Rtab line
- **min_af**(float) – Minimum allele frequency (inclusive)
- **max_af**(float) – Maximum allele frequency (inclusive)
- **max_missing**(float) – Maximum missing frequency
- **uncompressed**(bool) – Whether the kmer file is uncompressed
- **block_size**(int) – How many variants to be loaded at once

Returns

variants (iterable)  A collection of pyseer.classes.LMM objects describing the loaded variants (n)

variant_mat (numpy.array)  Variant block presence/absence matrix (n, block_size)

eof (bool)  Whether we are at the end of the file

1.7. Reference documentation
pyseer.input.open_variant_file(var_type, var_file, burden_file, burden_regions, uncompressed)

Open a variant file for use as an iterable

**Parameters**

- **var_type (str)** – Type of variants file (kmers, vcf, Rtab)
- **var_file (str)** – Location of file
- **burden_file (str)** – File containing regions to group burden tests
- **burden_regions (list)** – List of burden regions to be filled in-place
- **uncompressed (bool)** – True if kmer file is not gzipped

pyseer.input.read_variant(infile, p, var_type, burden, burden_regions, uncompressed, all_strains, sample_order, keep_list=None, noparse=False)

Read input line and parse depending on input file type

**Parameters**

- **infile (opened file)** – Handle to opened variant file
- **p (pandas.Series)** – Phenotypes vector (n, 1)
- **var_type (str)** – Variants type (one of: kmers, vcf or Rtab)
- **burden (bool)** – Whether to slice a vcf file by burden regions
- **burden_regions (collections.deque)** – Burden regions to slice the vcf with
- **uncompressed (bool)** – Whether the kmers file is uncompressed
- **all_strains (set-like)** – All sample labels that should be present
- **sample_order** – Samples order to interpret each Rtab line
- **keep_list (dict)** – Variant names to properly read, any other will return None
  (default = None)
- **noparse (bool)** – Set True to skip line without parsing and return None, irrespective of presence in skip_list
  (default = False)

**Returns**

- **eof (bool)** – Whether we are at the end of the file
- **k (numpy.array)** – Variant presence/absence vector
- **var_name (str)** – Variant name
- **kstrains (list)** – Samples in which the variant is present
- **nkstrains (list)** – Samples in which the variant is absent
- **af (float)** – Allele frequency
- **missing (float)** – Missing frequency

pyseer.input.read_vcf_var(variant, d, keep_list=None)

Parses vcf variants from pysam

**Returns** None if filtered variant. Mutates passed dictionary d

**Parameters**
• **variant** (*pysam.libcbcf.VariantRecord*) – Variant to be parsed
• **d** (*dict*) – Dictionary to be populated in-place
• **keep_list** (*list*) – List of variants to read

## 1.7.2 model.py

Original SEER model (fixed effects) implementations

**pyseer.model.firth_likelihood**(*beta, logit*)

Convenience function to calculate likelihood of Firth regression

**Parameters**

• **beta** (*numpy.array*) – (n, 1)
• **logit** (*statsmodels.discrete.discrete_model.Logit*) – Logistic model

**Returns**

- **likelihood** (*float*) Firth likelihood

**pyseer.model.fit_firth**(*logit_model, start_vec, X, y, step_limit=1000, convergence_limit=0.0001*)

Do firth regression

**Parameters**

• **logit** (*statsmodels.discrete.discrete_model.Logit*) – Logistic model
• **start_vec** (*numpy.array*) – Pre-initialized vector to speed-up convergence (n, 1)
• **X** (*numpy.array*) – (n, m)
• **y** (*numpy.array*) – (n, )
• **step_limit** (*int*) – Maximum number of iterations
• **convergence_limit** (*float*) – Convergence tolerance

**Returns**

- **intercept** (*float*) Intercept
- **kbeta** (*float*) Variant beta
- **beta** (*iterable*) Covariates betas (n-2)
- **bse** (*float*) Beta std-err
- **fitll** (*float or None*) Likelihood of fit or None if could not fit

**pyseer.model.fit_lineage_effect**(*lin, c,k*)

Fits the model $k \sim Wa$ using binomial error with logit link. W are the lineages (either a projection of samples, or cluster indicators) and covariates. Returns the index of the most significant lineage

**Parameters**

• **lin** (*numpy.array*) – Population structure matrix or lineage association binary matrix (n, k)
• **c** (*numpy.array*) – Covariants matrix (n, j)
• **k** (*numpy.array*) – Variant presence-absence vector (n, 1)

**Returns**

- **max_lineage** (*int or None*) Index of the most significant lineage or None is could not fit
pyseer.model.fit_null(p, m, cov, continuous, firth=False)

Fit the null model i.e. regression without k-mer

\[ y \sim W a \]

Returns log-likelihood

**Parameters**

- \( p \) (numpy.array) – Phenotypes vector (n, 1)
- \( m \) (numpy.array) – Population structure matrix (n, k)
- \( cov \) (pandas.DataFrame) – Covariants dataframe (n, j)
- \( \text{continuous} \) (bool) – Whether phenotypes are continuous or binary
- \( \text{firth} \) (bool) – For binary phenotypes whether to use firth regression

**Returns**

null_res (statsmodels.regression.linear_model.RegressionResultsWrapper or float or None)

Fitted model or log-likelihood (if firth) or None if could not fit

pyseer.model.fixed_effects_regression(variant, p, k, m, c, af, pattern, lineage_effects, lin, pret, lrt, null_res, null_firth, kstrains, nkstrains, continuous)

Fits the model \( y \sim X b + W a \) using either binomial error with logit link (binary traits) or Gaussian error (continuous traits)

- \( y \) is the phenotype
- \( X \) is the variant presence/absence (fixed effects)
- \( W \) are covariate fixed effects, including population structure
- \( a \) and \( b \) are slopes to be fitted

**Parameters**

- \( \text{variant} \) (str) – Variant identifier
- \( p \) (numpy.array) – Phenotype vector (binary or continuous) (n, 1)
- \( k \) (numpy.array) – Variant presence/absence vector (n, 1)
- \( m \) (numpy.array) – Population structure matrix (n, m)
- \( c \) (numpy.array) – Covariants matrix (n, j)
- \( af \) (float) – Allele frequency
- \( \text{pattern} \) (str) – Variant hashed pattern
- \( \text{lineage\_effects} \) (bool) – Whether to fit lineages or not
- \( lin \) (numpy.array) – Lineages matrix (n, k)
- \( \text{pret} \) (float) – Pre-filtering p-value threshold
- \( \text{lrt} \) (float) – Post-fitting p-value threshold
- \( \text{null\_res} \) (float or statsmodels.regression.linear_model.RegressionResultsWrapper) – Null-fit likelihood (binary) or model (continuous)
- \( \text{null\_firth} \) (float) – Firth regression likelihood
- \( \text{kstrains} \) (iterable) – Sample labels with the variant
• \texttt{nkstrains(iterable)} – Sample labels without the variant
• \texttt{continuous(bool)} – Whether the phenotype is continuous or not

Returns
\begin{itemize}
\item \texttt{result (pyseer.classes.Seer)} Results container
\end{itemize}

\texttt{pyseer.model.pre_filtering(p, k, continuous)}
Calculate a naive p-value from a chisq test (binary phenotype) or a t-test (continuous phenotype) which is not adjusted for population structure

Parameters
\begin{itemize}
\item \texttt{p (numpy.array)} – Phenotypes vector (n, 1)
\item \texttt{k (numpy.array)} – Variant presence-absence vector (n, 1)
\item \texttt{continuous(bool)} – Whether phenotypes are continuous or binary
\end{itemize}

Returns
\begin{itemize}
\item \texttt{prep (float)} Naive p-value
\item \texttt{bad_chisq (boolean)} Whether the chisq test had small values in the contingency table
\end{itemize}

1.7.3 lmm.py

LMM interface implementations

\texttt{pyseer.lmm.fit_lmm(lmm, h2, variants, variant_mat, lineage_effects, lineage_clusters, covariates, continuous, filter_pvalue, lrt_pvalue)}
Fits LMM and returns LMM tuples for printing

Parameters
\begin{itemize}
\item \texttt{lmm (pyseer.fastlmm.lmm_cov.LMM)} – Initialised LMM model
\item \texttt{h2 (float)} – Trait’s variance explained by covariates
\item \texttt{variants(iterable)} – Tuples with variant object, phenotype vector and variant vector (pyseer.classes.LMM, numpy.array, numpy.array)
\item \texttt{variant_mat (numpy.array)} – Variants presence absence matrix (n, k)
\item \texttt{lineage_effects (bool)} – Whether to fit lineage effects
\item \texttt{lineage_clusters (numpy.array)} – Population structure matrix or lineage association binary matrix (n, k)
\item \texttt{covariates (numpy.array)} – Covariates matrix (n, m)
\item \texttt{continuous (bool)} – Whether the phenotype is continuous
\item \texttt{filter_pvalue (float)} – Pre-filtering p-value threshold
\item \texttt{lrt_pvalue (float)} – Post-fitting p-value threshold
\end{itemize}

Returns
\begin{itemize}
\item \texttt{all_variants (iterable)} All variant objects fitted or filtered
\end{itemize}

\texttt{pyseer.lmm.fit_lmm_block(lmm, h2, variant_block)}
Actually fits the LMM to numpy variant array see map/reduce section of \_internal\_single in fastlmm.association.single_snp
Parameters

• \texttt{lmm} (\texttt{pyseer.fastlmm.lmm_cov.LMM}) – Initialised LMM model
• \texttt{h2} (float) – Trait’s variance explained by covariates
• \texttt{variant\_block} (\texttt{numpy.array}) – Variants presence absence matrix (n, k)

Returns

\texttt{lmm\_results (dict)} LMM results for this variants block

\texttt{pyseer.lmm.initialise\_lmm (p, cov, K\_in, lmm\_cache\_in=None, lmm\_cache\_out=None, lineage\_samples=None)}

Initialises LMM using the similarity matrix see \_internal\_single in fastlmm.association.single_snp

Parameters

• \texttt{p} (\texttt{pandas.Series}) – Phenotypes vector (n, 1)
• \texttt{cov} (\texttt{pandas.DataFrame}) – Covariance matrix (n, m)
• \texttt{K\_in} (str) – Similarity matrix filename
• \texttt{lmm\_cache\_in} (str or None) – Filename for an input LMM cache, None if it has to be computed
• \texttt{lmm\_cache\_out} (str or None) – Filename to save the LMM cache, None otherwise.
• \texttt{lineage\_samples} (list or None) – Sample names used for lineage (must match \texttt{K\_in})

Returns

\texttt{p (pandas.Series)} Phenotype vector with the samples present in the similarity matrix
\texttt{lmm (pyseer.fastlmm.lmm\_cov.LMM)} Initialised LMM model
\texttt{h2 (float)} Trait’s variance explained by covariates

1.7.4 \texttt{utils.py}

Utilities

\texttt{pyseer.utils.format\_output (item, lineage\_dict=None, model='seer', print\_samples=False)}

Format results for a variant for stdout printing

Parameters

• \texttt{item} (\texttt{pyseer.classes.Seer} or \texttt{pyseer.classes.LMM}) – Variant results container
• \texttt{lineage\_dict} (list) – Lineage labels
• \texttt{model} (str) – The model used
• \texttt{print\_samples} (bool) – Whether to add the samples list to the output

Returns

\texttt{out (str)} Tab-delimited string to be printed

\texttt{pyseer.utils.set\_env(**environ)}

Temporarily set the process environment variables.
>>> with set_env(PLUGINS_DIR=u'test/plugins'):
...   "PLUGINS_DIR" in os.environ
True

>>> "PLUGINS_DIR" in os.environ
False

1.7.5 cmdscale.py

Function to perform classical MDS

pyseer.cmdscale.cmdscale(D)
Classical multidimensional scaling (MDS)

Parameters D (numpy.array) – Symmetric distance matrix (n, n)

Returns

Y (numpy.array) Configuration matrix (n, p). Each column represents a dimension. Only
the p dimensions corresponding to positive eigenvalues of B are returned. Note that each
dimension is only determined up to an overall sign, corresponding to a reflection.

e (numpy.array) Eigenvalues of B (n, 1)

1.7.6 enet.py

Elastic net model implementations

pyseer.enet.correlation_filter(p, all_vars, quantile_filter=0.25)
Calculates correlations between phenotype and variants, giving those that are above the specified quantile

Parameters

• p (pandas.DataFrame) – Phenotype vector (n, 1)
• all_vars (scipy.sparse.csr_matrix) – Narrow sparse matrix representation of
  all variants to fit to (rows = variants, columns = samples)
• quantile_filter (float) – The quantile to discard at e.g. 0.25, retain top 75%
  [default = 0.25]

Returns

cor_filter (numpy.array) The indices of variants passing the filter

pyseer.enet.enet_predict(enet_fit, variants, continuous, responses=None)
Use a fitted elastic net model to make predictions about new observations. Returns accuracy if true responses
known

Parameters

• enet_fit (cvglmnet) – An elastic net model fitted using cvglmnet or similar
• variants (scipy.sparse.csc_matrix) – Wide sparse matrix representation of all
  variants to predict with (rows = samples, columns = variants)
• continuous (bool) – True if a continuous phenotype, False if a binary phenotype
• **responses** (*np.array*) – True phenotypes to calculate $R^2$ with
  [default = None]

**Returns**

**preds** (*numpy.array*) Predicted phenotype for each input sample in variants

**R2** (*float*) Variance explained by model (or None if true labels not provided).

**pyseer.enet.find_enet_selected** (*enet_betas*, *var_indices*, *p*, *c*, *var_type*, *fit_seer*, *burden*, *burden_regions*, *infile*, *all_strains*, *sample_order*, *continuous*, *find_lineage*, *lin*, *uncompressed*)

Read through the variant input file again, yielding just those variants which had a non-zero slope for printing

**Parameters**

• **enet_betas** (*numpy.array*) – Fitted slopes of intercept, covariants and variants from elastic net

• **var_indices** (*list*) – The 0-indexed locations (in the original file) of variants represented in enet_betas

• **p** (*pandas.DataFrame*) – Phenotype vector (n, 1)

• **c** (*numpy.array*) – Covariate matrix (n, j)

• **var_type** (*str*) – Variants type (one of: kmers, vcf or Rtab)

• **(tuple** (*fit_seer*) – m, null_model, null_firth) Distance projection and null models required to fit fixed effect regression

• **burden** (*bool*) – Whether to slice a vcf file by burden regions

• **burden_regions** (*collections.deque*) – Burden regions to slice the vcf with

• **infile** (*opened file*) – Handle to opened variant file

• **all_strains** (*set-like*) – All sample labels that should be present

• **sample_order** – Sample order to interpret each Rtab line

• **continuous** (*bool*) – Is phenotype/fit continuous?

• **lineage_effects** (*bool*) – Whether to fit lineages or not

• **lin** (*numpy.array*) – Lineages matrix (n, k)

• **uncompressed** (*bool*) – Whether the kmers file is uncompressed

**Returns**

**variant** (*var_obj.Enet*) Iterable of processed variants for printing

**pyseer.enet.fit_enet** (*p*, *variants*, *covariates*, *weights*, *continuous*, *alpha*, *lineage_dict=None, fold_ids=None, n_folds=10, n_cpus=1*)

Fit an elastic net model to a set of variants. Prints information about model fit and prediction quality to STDERR

**Parameters**

• **p** (*pandas.DataFrame*) – Phenotype vector (n, 1)

• **variants** (*scipy.sparse.csc_matrix*) – Wide sparse matrix representation of all variants to fit to (rows = samples, columns = variants)

• **covariates** (*pandas.DataFrame*) – Covariate matrix (n, j)

• **weights** (*np.array*) – Vector of sample weights (n, 1)
• **continuous** *(bool)* – If True fit a Gaussian error model, otherwise Bionomial error

• **alpha** *(float)* – Between 0-1, sets the mix between ridge regression and lasso regression

• **lineage_dict** *(list)* – Names of lineages, indices corresponding to fold_ids
  [default = None]

• **fold_ids** *(list)* – Index of fold assignment for cross-validation, from 0 to 1-n_folds
  [default = None]

• **n_folds** *(int)* – Number of folds in cross-validation
  [default = 10]

• **n_cpus** *(int)* – Number of processes to use in cross-validation Set to -1 to use all available
  [default = 1]

Returns

betas *(numpy.array)* The fitted betas (slopes) for each variant

pyseer.enet.load_all_vars *(var_type, p, burden, burden_regions, infile, all_strains, sample_order, min_af, max_af, max_missing, uncompressed)*

Load all variants in the input file into a sparse matrix representation

Parameters

• **var_type** *(str)* – Variants type (one of: kmers, vcf or Rtab)

• **p** *(pandas.DataFrame)* – Phenotype vector (n, 1)

• **burden** *(bool)* – Whether to slice a vcf file by burden regions

• **burden_regions** *(collections.deque)* – Burden regions to slice the vcf with

• **infile** *(opened file)* – Handle to opened variant file

• **all_strains** *(set-like)* – All sample labels that should be present

• **sample_order** – Samples order to interpret each Rtab line

• **min_af** *(float)* – Minimum allele frequency (inclusive)

• **max_af** *(float)* – maximum allele frequency (inclusive)

• **max_missing** *(float)* – maximum missing frequency

• **uncompressed** *(bool)* – Whether the kmers file is uncompressed

Returns

variants *(scipy.sparse.csr_matrix)* A sparse matrix representation of all variants in the input

selected_vars *(list)* 0-Indices of variants in the input file in variants (which passed AF filtering)

var_idx *(int)* The number of read variants (number of rows of variants)

pyseer.enet.write_lineage_predictions *(true_values, predictions, fold_ids, lineage_dict, continuous, stderr_print=True)*

Writes prediction ability stratified by lineage to stderr

Parameters

• **true_values** *(np.array)* – Observed values of phenotype

• **predictions** *(np.array)* – Predicted phenotype values

• **lineage_dict** *(list)* – Names of lineages, indices corresponding to fold_ids
• **fold_ids** (list) – Index of fold assignment for cross-validation, from 0 to 1-n_folds
• **continuous** (bool) – True if a continuous phenotype, False if a binary phenotype
• **stderr_print** (bool) – Print output to stderr
  [default = True]

**Returns**

- **R2_vals** (list)  R2 values for each fold
- **confusion** (list)  Tuple of tn, fp, fn, tp for each fold
CHAPTER 2

Index:

- genindex
- search
Python Module Index

p
  pyseer.cmdscale, 47
  pyseer.enet, 47
  pyseer.input, 38
  pyseer.lmm, 45
  pyseer.model, 43
  pyseer.utils, 46
Index

C
cmdscale() (in module pyseer.cmdscale), 47
correlation_filter() (in module pyseer.enet), 47

E
enet_predict() (in module pyseer.enet), 47

F
file_hash() (in module pyseer.input), 38
find_enet_selected() (in module pyseer.enet), 48
firth_likelihood() (in module pyseer.model), 43
fit_enet() (in module pyseer.enet), 48
fit_firth() (in module pyseer.model), 43
fit_lineage_effect() (in module pyseer.model), 43
fit_lmm() (in module pyseer.lmm), 45
fit_lmm_block() (in module pyseer.lmm), 45
fit_null() (in module pyseer.model), 44
fixed_effects_regression() (in module pyseer.model), 44
format_output() (in module pyseer.utils), 46

H
hash_pattern() (in module pyseer.input), 38

I
initialise_lmm() (in module pyseer.lmm), 46
iter_variants() (in module pyseer.input), 39
iter_variants_lmm() (in module pyseer.input), 40

L
load_all_vars() (in module pyseer.enet), 49
load_burden() (in module pyseer.input), 40
load_covariates() (in module pyseer.input), 40
load_lineage() (in module pyseer.input), 40
load_phenotypes() (in module pyseer.input), 40
load_structure() (in module pyseer.input), 41
load_var_block() (in module pyseer.input), 41

O
open_variant_file() (in module pyseer.input), 41

P
pre_filtering() (in module pyseer.model), 45
pyseer.cmdscale (module), 47
pyseer.enet (module), 47
pyseer.input (module), 38
pyseer.lmm (module), 45
pyseer.model (module), 43
pyseer.utils (module), 46

R
read_variant() (in module pyseer.input), 42
read_vcf_var() (in module pyseer.input), 42

S
set_env() (in module pyseer.utils), 46

W
write_lineage_predictions() (in module pyseer.enet), 49