PyPhi Documentation

Release v1.1.0

William GP Mayner

Mar 08, 2019
Usage and Examples

1 Installation

Python Module Index
PyPhi is a Python library for computing integrated information.

If you use this software in your research, please cite the paper:

To report issues, use the issue tracker on the GitHub repository. Bug reports and pull requests are welcome.

For general discussion, you are welcome to join the pyphi-users group.
To install the latest stable release, run

```
pip install pyphi
```

To install the latest development version, which is a work in progress and may have bugs, run

```
pip install "git+https://github.com/wmayner/pyphi@develop#egg=pyphi"
```

Tip: For detailed instructions on how to install PyPhi on macOS, see the *Detailed installation guide for macOS*.

Note: Windows users: PyPhi is only supported on Linux and macOS operating systems. However, you can run it on Windows by using the Anaconda Python distribution and installing PyPhi with conda: `conda install -c wmayner pyphi`

1.1 Installation

To install the latest stable release, run

```
pip install pyphi
```

To install the latest development version, which is a work in progress and may have bugs, run

```
pip install "git+https://github.com/wmayner/pyphi@develop#egg=pyphi"
```

Tip: For detailed instructions on how to install PyPhi on macOS, see the *Detailed installation guide for macOS*.
1.2 Getting started

To explore the following examples, install IPython by running `pip install ipython` on the command line. Then run it with the command `ipython`. Lines of code beginning with `>>>` and `...` can be pasted directly into IPython.

1.3 Basic Usage

Let’s make a simple 3-node network and compute its Φ.

To make a network, we need a TPM and (optionally) a connectivity matrix. The TPM can be in more than one form; see the documentation for `Network`. Here we’ll use the 2-dimensional state-by-node form.

```python
>>> import pyphi
>>> import numpy as np
>>> tpm = np.array(
...    [0, 0, 0],
...    [0, 0, 1],
...    [1, 0, 1],
...    [1, 0, 0],
...    [1, 1, 0],
...    [1, 1, 1],
...    [1, 1, 1],
...    [1, 1, 0]
...])
```

The connectivity matrix is a square matrix such that the $(i, j)^{th}$ entry is 1 if there is a connection from node i to node j, and 0 otherwise.

```python
>>> cm = np.array(
...    [0, 0, 1],
...    [1, 0, 1],
...    [1, 1, 0]
...])
```

We’ll also make labels for the network nodes so that PyPhi’s output is easier to read.

```python
>>> labels = ('A', 'B', 'C')
```

Now we construct the network itself with the arguments we just created:

```python
>>> network = pyphi.Network(tpm, cm=cm, node_labels=labels)
```

The next step is to define a subsystem for which we want to evaluate Φ. To make a subsystem, we need the network that it belongs to, the state of that network, and the indices of the subset of nodes which should be included.
The state should be an \(n \)-tuple, where \(n \) is the number of nodes in the network, and where the \(i \)th element is the state of the \(i \)th node in the network.

```
>>> state = (1, 0, 0)
```

In this case, we want the \(\Phi \) of the entire network, so we simply include every node in the network in our subsystem:

```
>>> node_indices = (0, 1, 2)
>>> subsystem = pyphi.Subsystem(network, state, node_indices)
```

Tip: If you do not explicitly provide node indices to a `Subsystem` the system will, by default, cover the entire network. For example, the following is equivalent to the above definition of `subsystem`:

```
>>> subsystem = pyphi.Subsystem(network, state)
```

Tip: Node labels can be used instead of indices when constructing a `Subsystem`:

```
>>> pyphi.Subsystem(network, state, ('B', 'C'))
Subsystem(B, C)
```

Now we use the `phi()` function to compute the \(\Phi \) of our subsystem:

```
>>> pyphi.compute.phi(subsystem)
2.3125
```

If we want to take a deeper look at the integrated-information-theoretic properties of our network, we can access all the intermediate quantities and structures that are calculated in the course of arriving at a final \(\Phi \) value by using `sia()`.

This returns a nested object, `SystemIrreducibilityAnalysis`, that contains data about the subsystem’s cause-effect structure, cause and effect repertoires, etc.

```
>>> sia = pyphi.compute.sia(subsystem)
```

For instance, we can see that this network has 4 concepts:

```
>>> len(sia.ces)
4
```

See the documentation for `SystemIrreducibilityAnalysis` and `Concept` for more information on these objects.

Tip: The network and subsystem discussed here are returned by the `pyphi.examples.basic_network()` and `pyphi.examples.basic_subsystem()` functions.

1.4 IIT 3.0 Paper (2014)

This section is meant to serve as a companion to the paper *From the Phenomenology to the Mechanisms of Consciousness: Integrated Information Theory 3.0* by Oizumi, Albantakis, and Tononi, and as a demonstration of how to use PyPhi. Readers are encouraged to follow along and analyze the systems shown in the figures, in order to become more familiar with both the theory and the software.
Install IPython by running `pip install ipython` on the command line. Then run it with the command `ipython`.

Lines of code beginning with `>>>` and ... can be pasted directly into IPython.

We begin by importing PyPhi and NumPy:

```python
>>> import pyphi
>>> import numpy as np
```

1.4.1 Figure 1

Existence: Mechanisms in a state having causal power.

For the first figure, we’ll demonstrate how to set up a network and a candidate set. In PyPhi, networks are built by specifying a transition probability matrix and (optionally) a connectivity matrix. (If no connectivity matrix is given, full connectivity is assumed.) So, to set up the system shown in Figure 1, we’ll start by defining its TPM.

Note: The TPM in the figure is given in state-by-state form; there is a row and a column for each state. However, in PyPhi, we use a more compact representation: state-by-node form, in which there is a row for each state, but a column for each node. The \((i, j)\)th entry gives the probability that the \(j\)th node is ON in the \(i\)th state. For more information on how TPMs are represented in PyPhi, see Transition probability matrix conventions.

In the figure, the TPM is shown only for the candidate set. We’ll define the entire network’s TPM. Also, nodes \(D, E\) and \(F\) are not assigned mechanisms; for the purposes of this example we will assume they are OR gates. With that assumption, we get the following TPM (before copying and pasting, see note below):

```python
>>> tpm = np.array([...
...   [0, 0, 0, 0, 0, 0],
...   [0, 0, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 1, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 1, 0, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 0, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 1, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 1, 0, 0, 1, 0],
...   [0, 0, 0, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 1, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 0, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 1, 0],
...   [1, 0, 0, 0, 0, 0],
...   [1, 0, 1, 0, 0, 0],
...   [1, 0, 1, 0, 1, 0],
...   [1, 0, 0, 0, 1, 0]
...
])
```

(continues on next page)
Note: This network is already built for you; you can get it from the examples module with `network = pyphi.examples.fig0a()`. The TPM can then be accessed with `network.tpm`.

Next we’ll define the connectivity matrix. In PyPhi, the \((i,j)\)th entry in a connectivity matrix indicates whether node \(i\) is connected to node \(j\). Thus, this network’s connectivity matrix is

```python
>>> cm = np.array([...
... [0, 1, 1, 0, 0, 0],
... [1, 0, 1, 0, 1, 0],
... [1, 1, 0, 0, 0, 0],
... [1, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0],
... [0, 0, 0, 0, 0, 0]
... ])
```

Now we can pass the TPM and connectivity matrix as arguments to the network constructor:
Now the network shown in the figure is stored in a variable called `network`. You can find more information about the network object we just created by running `help(network)` or by consulting the documentation for `Network`.

The next step is to define the candidate set shown in the figure, consisting of nodes A, B and C. In PyPhi, a candidate set for Φ evaluation is represented by the `Subsystem` class. Subsystems are built by giving the network it is a part of, the state of the network, and indices of the nodes to be included in the subsystem. So, we define our candidate set like so:

```python
>>> state = (1, 0, 0, 0, 1, 0)
>>> ABC = pyphi.Subsystem(network, state, [0, 1, 2])
```

For more information on the subsystem object, see the documentation for `Subsystem`.

That covers the basic workflow with PyPhi and introduces the two types of objects we use to represent and analyze networks. First you define the network of interest with a TPM and connectivity matrix; then you define a candidate set you want to analyze.

1.4.2 Figure 3

Information requires selectivity.

(A)

We’ll start by setting up the subsystem depicted in the figure and labeling the nodes. In this case, the subsystem is just the entire network.

```python
>>> network = pyphi.examples.fig3a()
>>> state = (1, 0, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices
```

Since the connections are noisy, we see that $A = 1$ is unselective; all previous states are equally likely:

```python
>>> subsystem.cause_repertoire((A,), (B, C, D))
array([[0.125, 0.125],
       [0.125, 0.125]])
```

And this gives us zero cause information:

```python
>>> subsystem.cause_info((A,), (B, C, D))
0.0
```

(B)

The same as (A) but without noisy connections:

```python
>>> network = pyphi.examples.fig3b()
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices
```
Now, A’s cause repertoire is maximally selective.

```python
>>> cr = subsystem.cause_repertoire((A,), (B, C, D))
>>> cr
array([[[[0., 0.],
          [0., 0.]],
         [[0., 0.],
          [0., 1.]]]])
```

Since the cause repertoire is over the purview BCD, the first dimension (which corresponds to A’s states) is a singleton. We can squeeze out A’s singleton dimension with

```python
>>> cr = cr.squeeze()
```

and now we can see that the probability of B, C, and D having been all ON is 1:

```python
>>> cr[(1, 1, 1)]
1.0
```

Now the cause information specified by $A = 1$ is 1.5:

```python
>>> subsystem.cause_info((A,), (B, C, D))
1.5
```

(C)

The same as (B) but with $A = 0$:

```python
>>> state = (0, 0, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C, D = subsystem.node_indices
```

And here the cause repertoire is minimally selective, only ruling out the state where B, C, and D were all ON:

```python
>>> subsystem.cause_repertoire((A,), (B, C, D))
array([[[[0.14285714, 0.14285714],
           [0.14285714, 0.14285714]],
          [[[0.14285714, 0.14285714],
            [0.14285714, 0.]]]])
```

And so we have less cause information:

```python
>>> subsystem.cause_info((A,), (B, C, D))
0.214284
```

1.4.3 Figure 4

Information: “Differences that make a difference to a system from its own intrinsic perspective.”

First we’ll get the network from the `examples` module, set up a subsystem, and label the nodes, as usual:
Then we’ll compute the cause and effect repertoires of mechanism A over purview ABC:

```python
>>> subsystem.cause_repertoire((A,), (A, B, C))
array([[0., 0.16666667],
       [0.16666667, 0.16666667]])
```

```python
>>> subsystem.effect_repertoire((A,), (A, B, C))
array([[0.0625, 0.0625],
       [0.0625, 0.0625]])
```

And the unconstrained repertoires over the same (these functions don’t take a mechanism; they only take a purview):

```python
>>> subsystem.unconstrained_cause_repertoire((A, B, C))
array([[0.125, 0.125],
       [0.125, 0.125]])
```

```python
>>> subsystem.unconstrained_effect_repertoire((A, B, C))
array([[0.09375, 0.09375],
       [0.09375, 0.09375]])
```

The Earth Mover’s distance between them gives the cause and effect information:

```python
>>> subsystem.cause_info((A,), (A, B, C))
0.333332
```

```python
>>> subsystem.effect_info((A,), (A, B, C))
0.25
```

And the minimum of those gives the cause-effect information:

```python
>>> subsystem.cause_effect_info((A,), (A, B, C))
0.25
```

1.4.4 Figure 5

A mechanism generates information only if it has both selective causes and selective effects within the system.

(A)
>>> network = pyphi.examples.fig5a()
>>> state = (1, 1, 1)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices

A has inputs, so its cause repertoire is selective and it has cause information:

```python
given
>>> subsystem.cause_repertoire((A,), (A, B, C))
array([[0., 0.],
       [0., 0.5]],
       <BLANKLINE>
       [[0., 0.],
       [0., 0.5]])
```

```python
given
>>> subsystem.cause_info((A,), (A, B, C))
1.0
```

But because it has no outputs, its effect repertoire no different from the unconstrained effect repertoire, so it has no effect information:

```python
given
>>> np.array_equal(subsystem.effect_repertoire((A,), (A, B, C)),
...                  subsystem.unconstrained_effect_repertoire((A, B, C)))
True
>>> subsystem.effect_info((A,), (A, B, C))
0.0
```

And thus its cause effect information is zero.

```python
given
>>> subsystem.cause_effect_info((A,), (A, B, C))
0.0
```

(B)

```python
given
>>> network = pyphi.examples.fig5b()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices
```

Symmetrically, A now has outputs, so its effect repertoire is selective and it has effect information:

```python
given
>>> subsystem.effect_repertoire((A,), (A, B, C))
array([[0., 0.],
       [0., 0.5]],
       <BLANKLINE>
       [[0., 0.],
       [0., 1.]]))
```

```python
given
>>> subsystem.effect_info((A,), (A, B, C))
0.5
```

But because it now has no inputs, its cause repertoire is no different from the unconstrained effect repertoire, so it has no cause information:

```python
given
>>> np.array_equal(subsystem.cause_repertoire((A,), (A, B, C)),
...                  subsystem.unconstrained_cause_repertoire((A, B, C)))
True
>>> subsystem.cause_info((A,), (A, B, C))
0.0
```
And its cause effect information is again zero.

```
>>> subsystem.cause_effect_info((A,), (A, B, C))
0.0
```

1.4.5 Figure 6

Integrated information: The information generated by the whole that is irreducible to the information generated by its parts.

```
>>> network = pyphi.examples.fig6()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> ABC = subsystem.node_indices
```

Here we demonstrate the functions that find the minimum information partition a mechanism over a purview:

```
>>> mip_c = subsystem.cause_mip(ABC, ABC)
>>> mip_e = subsystem.effect_mip(ABC, ABC)
```

These objects contain the \(\phi_{\text{MIP}}^{\text{cause}} \) and \(\phi_{\text{MIP}}^{\text{effect}} \) values in their respective phi attributes, and the minimal partitions in their partition attributes:

```
>>> mip_c.phi
0.499999
>>> mip_c.partition  # doctest: +NORMALIZE_WHITESPACE
A  B,C
_____  
A,B,C
>>> mip_e.phi
0.25
>>> mip_e.partition  # doctest: +NORMALIZE_WHITESPACE
A  B,C
_____  
B  A,C
```

For more information on these objects, see the documentation for the `RepertoireIrreducibilityAnalysis` class, or use `help(mip_c)`.

Note that the minimal partition found for the cause is

\[
\frac{A^c}{\emptyset} \times \frac{BC^c}{ABC^w},
\]

rather than the one shown in the figure. However, both partitions result in a difference of 0.5 between the unpartitioned and partitioned cause repertoires. So we see that in small networks like this, there can be multiple choices of partition that yield the same, minimal \(\phi_{\text{MIP}} \). In these cases, which partition the software chooses is left undefined.

1.4.6 Figure 7

A mechanism generates integrated information only if it has both integrated causes and integrated effects.

It is left as an exercise for the reader to use the subsystem methods `cause_mip` and `effect_mip`, introduced in the previous section, to demonstrate the points made in Figure 7.

To avoid building TPMs and connectivity matrices by hand, you can use the graphical user interface for PyPhi available online at http://integratedinformationtheory.org/calculate.html. You can build the networks shown in the figure there,
and then use the **Export** button to obtain a JSON file representing the network. You can then import the file into Python like so:

```python
network = pyphi.network.from_json('path/to/network.json')
```

1.4.7 Figure 8

The maximally integrated cause repertoire over the power set of purviews is the “core cause” specified by a mechanism.

```python
>>> network = pyphi.examples.fig8()
>>> state = (1, 0, 0)
>>> subsystem = pyphi.Subsystem(network, state)
>>> A, B, C = subsystem.node_indices
```

In PyPhi, the “core cause” is called the maximally-irreducible cause (MIC). To find the MIC of a mechanism over all purviews, use the `mic()` method:

```python
>>> mic = subsystem.mic((B, C))
>>> mic.phi
0.333334
```

Similarly, the `mie()` method returns the “core effect” or maximally-irreducible effect (MIE).

For a detailed description of the MIC and MIE objects returned by these methods, see the documentation for `MaximallyIrreducibleCause` or use `help(subsystem.mic)` and `help(subsystem.mie)`.

1.4.8 Figure 9

A mechanism that specifies a maximally irreducible cause-effect repertoire.

This figure and the next few use the same network as in Figure 8, so we don’t need to reassign the `network` and `subsystem` variables.

Together, the MIC and MIE of a mechanism specify a concept. In PyPhi, this is represented by the `Concept` object. Concepts are computed using the `concept()` method of a subsystem:

```python
>>> concept_A = subsystem.concept((A,))
>>> concept_A.phi
0.166667
```

As usual, please consult the documentation or use `help(concept_A)` for a detailed description of the `Concept` object.

1.4.9 Figure 10

Information: A conceptual structure C (constellation of concepts) is the set of all concepts generated by a set of elements in a state.

For functions of entire subsystems rather than mechanisms within them, we use the `compute` module. In this figure, we see the constellation of concepts of the powerset of ABC’s mechanisms. A constellation of concepts is represented in PyPhi by a `CauseEffectStructure`. We can compute the cause-effect structure of the subsystem like so:

```python
>>> ces = pyphi.compute.ces(subsystem)
```
And verify that the \(\varphi \) values match:

```python
>>> ces.labeled_mechanisms
([['A'], ['B'], ['C'], ['A', 'B'], ['B', 'C'], ['A', 'B', 'C'])
>>> ces.phis
[0.166667, 0.166667, 0.25, 0.25, 0.333334, 0.499999]
```

The null concept (the small black cross shown in concept-space) is available as an attribute of the subsystem:

```python
>>> subsystem.null_concept.phi
0.0
```

1.4.10 Figure 11

Assessing the conceptual information CI of a conceptual structure (constellation of concepts).

Conceptual information can be computed using the function named, as you might expect, `conceptual_info()`:

```python
>>> pyphi.compute.conceptual_info(subsystem)
2.11109
```

1.4.11 Figure 12

Assessing the integrated conceptual information \(\Phi \) of a constellation \(C \).

To calculate \(\Phi_{MIP} \) for a candidate set, we use the function `sia()`:

```python
>>> sia = pyphi.compute.sia(subsystem)
```

The returned value is a large object containing the \(\Phi_{MIP} \) value, the minimal cut, the cause-effect structure of the whole set and that of the partitioned set \(C_{MIP} \), the total calculation time, the calculation time for just the unpartitioned cause-effect structure, a reference to the subsystem that was analyzed, and a reference to the subsystem with the minimal unidirectional cut applied. For details see the documentation for `SystemIrreducibilityAnalysis` or use `help(sia)`.

We can verify that the \(\Phi_{MIP} \) value and minimal cut are as shown in the figure:

```python
>>> sia.phi
1.916665
>>> sia.cut
Cut [A, B] / / [C]
```

Note: This Cut represents removing any connections from the nodes with indices 0 and 1 to the node with index 2.

1.4.12 Figure 13

A set of elements generates integrated conceptual information \(\Phi \) only if each subset has both causes and effects in the rest of the set.

It is left as an exercise for the reader to demonstrate that of the networks shown, only (B) has \(\Phi > 0 \).
1.4.13 Figure 14

A complex: A local maximum of integrated conceptual information Φ.

```python
>>> network = pyphi.examples.fig14()
>>> state = (1, 0, 0, 0, 1, 0)
```

To find the subsystem within a network that is the major complex, we use the function of that name, which returns a `SystemIrreducibilityAnalysis` object:

```python
>>> major_complex = pyphi.compute.major_complex(network, state)
```

And we see that the nodes in the complex are indeed A, B, and C:

```python
>>> major_complex.subsystem.nodes
(A, B, C)
```

1.4.14 Figure 15

A quale: The maximally irreducible conceptual structure (MICS) generated by a complex.

You can use the visual interface at http://integratedinformationtheory.org/calculate.html to view a conceptual structure in a 3D projection of qualia space. The network in the figure is already built for you; click the Load Example button and select “IIT 3.0 Paper, Figure 1” (this network is the same as the candidate set in Figure 1).

1.4.15 Figure 16

A system can condense into a major complex and minor complexes that may or may not interact with it.

For this figure, we omit nodes H, I, J, K and L, since the TPM of the full 12-node network is very large, and the point can be illustrated without them.

```python
>>> network = pyphi.examples.fig16()
>>> state = (1, 0, 0, 1, 1, 1, 0)
```

To find the maximal set of non-overlapping complexes that a network condenses into, use `condensed()`:

```python
>>> condensed = pyphi.compute.condensed(network, state)
```

We find that there are two complexes: the major complex ABC with $\Phi \approx 1.92$, and a minor complex FG with $\Phi \approx 0.069$ (note that there is typo in the figure: FG’s Φ value should be 0.069). Furthermore, the program has been updated to only consider background conditions of current states, not previous states; as a result the minor complex DE shown in the paper no longer exists.

```python
>>> len(condensed)
2
>>> ABC, FG = condensed
>>> (ABC.subsystem.nodes, ABC.phi)
((A, B, C), 1.916665)
>>> (FG.subsystem.nodes, FG.phi)
((F, G), 0.069445)
```

There are several other functions available for working with complexes; see the documentation for `subsystems()`, `all_complexes()`, `possible_complexes()`, and `complexes()`.
1.5 Conditional Independence

Conditional independence is the property of a TPM that each node’s state at time \(t + 1 \) must be independent of the state of the others, given the state of the network at time \(t \):

\[
\Pr(S_{t+1} | S_t = s_t) = \prod_{N \in S} \Pr(N_{t+1} | S_t = s_t), \quad \forall s_t \in S.
\]

This example explores the assumption of conditional independence, and the behaviour of the program when it is not satisfied.

Every state-by-node TPM corresponds to a unique state-by-state TPM which satisfies the conditional independence property (see Transition probability matrix conventions for a discussion of the different TPM forms). If a state-by-node TPM is given as input for a Network, PyPhi assumes that it is from a system with the corresponding conditionally independent state-by-state TPM.

When a state-by-state TPM is given as input for a Network, the state-by-state TPM is first converted to a state-by-node TPM. PyPhi then assumes that the system corresponds to the unique conditionally independent representation of the state-by-node TPM.

Note: Every deterministic state-by-state TPM satisfies the conditional independence property.

Consider a system of two binary nodes (\(A \) and \(B \)) which do not change if they have the same value, but flip with probability 50% if they have different values.

We’ll load the state-by-state TPM for such a system from the examples module:

```python
>>> import pyphi
>>> tpm = pyphi.examples.cond_depend_tpm()
>>> print(tpm)
[[1. 0. 0. 0. ]
 [0. 0.5 0.5 0. ]
 [0. 0.5 0.5 0. ]
 [0. 0. 0. 1. ]]
```

This system does not satisfy the conditional independence property; given a previous state of \((1, 0)\), the current state of node \(A \) depends on whether or not \(B \) has flipped.

If a conditionally dependent TPM is used to create a Network, PyPhi will raise an error:

```python
>>> network = pyphi.Network(tpm)
Traceback (most recent call last):
 ... pyphi.exceptions.ConditionallyDependentError: TPM is not conditionally independent. See the conditional independence example in the documentation for more info.
```

To see the conditionally independent TPM that corresponds to the conditionally dependent TPM, convert it to state-by-node form and then back to state-by-state form:

```python
>>> sbn_tpm = pyphi.convert.state_by_state2state_by_node(tpm)
>>> print(sbn_tpm)
[[[0. 0. ]
  [0.5 0.5]]
 [[[0.5 0.5]
   [1. 1. ]]]
```

(continues on next page)
A system which does not satisfy the conditional independence property exhibits “instantaneous causality.” In such situations, there must be additional exogenous variable(s) which explain the dependence.

Now consider the above example, but with the addition of a third node (C) which is equally likely to be ON or OFF, and such that when nodes A and B are in different states, they will flip when C is ON, but stay the same when C is OFF.

```python
>>> tpm2 = pyphi.examples.cond_independ_tpm()
>>> print(tpm2)
[[0.5 0. 0. 0. 0. 0. 0. 0. ]
 [0. 0.5 0. 0. 0. 0. 0. 0. ]
 [0. 0. 0.5 0. 0. 0. 0. 0.5]
 [0.5 0. 0. 0. 0. 0. 0. 0. ]
 [0. 0. 0. 0.5 0. 0. 0. 0.5]
 [0. 0.5 0. 0. 0. 0. 0. 0.5]
 [0. 0. 0.5 0. 0. 0. 0. 0.5]
 [0. 0. 0. 0.5 0. 0. 0. 0.5]]
```

The resulting state-by-state TPM now satisfies the conditional independence property.

```python
>>> sbn_tpm2 = pyphi.convert.state_by_state2state_by_node(tpm2)
>>> print(sbn_tpm2)
[[[0. 0. 0.5]
  [0. 0. 0.5]]
 [[0. 1. 0.5]
  [1. 0. 0.5]]]
```

The node indices are 0 and 1 for A and B, and 2 for C:

```python
>>> AB = [0, 1]
>>> C = [2]
```

From here, if we marginalize out the node C:

```python
>>> tpm2_marginalizeC = pyphi.tpm.marginalize_out(C, sbn_tpm2)
```

And then restrict the purview to only nodes A and B:

```python
>>> import numpy as np
>>> tpm2_purviewAB = np.squeeze(tpm2_marginalizeC[:, :, :, AB])
```

We get back the original state-by-node TPM from the system with just A and B.
1.6 XOR Network

This example describes a system of three fully connected XOR nodes, A, B and C (no self-connections).

First let’s create the XOR network:

```python
>>> import pyphi
>>> network = pyphi.examples.xor_network()
```

We’ll consider the state with all nodes OFF.

```python
>>> state = (0, 0, 0)
```

According to IIT, existence is a holistic notion; the whole is more important than its parts. The first step is to confirm the existence of the whole, by finding the major complex of the network:

```python
>>> major_complex = pyphi.compute.major_complex(network, state)
```

The major complex exists ($\Phi > 0$),

```python
>>> major_complex.phi
1.874999
```

and it consists of the entire network:

```python
>>> major_complex.subsystem
Subsystem(A, B, C)
```

Knowing what exists at the system level, we can now investigate the existence of concepts within the complex.

```python
>>> ces = major_complex.ces
>>> len(ces)
3
>>> ces.labeled_mechanisms
[('A', 'B'), ('A', 'C'), ('B', 'C')]
```

There are three concepts in the cause-effect structure. They are all the possible second order mechanisms: AB, AC and BC.

Focusing on the concept specified by mechanism AB, we investigate existence, and the irreducible cause and effect. Based on the symmetry of the network, the results will be similar for the other second order mechanisms.

```python
>>> concept = ces[0]
>>> concept.mechanism
(0, 1)
>>> concept.phi
0.5
```

The concept has $\varphi = \frac{1}{2}$.
So we see that the cause purview of this mechanism is the whole system ABC, and that the repertoire shows a 0.5 of probability the previous state being $(0, 0, 0)$ and the same for $(1, 1, 1)$:

```python
>>> concept.cause.repertoire[(0, 0, 0)]
0.5
>>> concept.cause.repertoire[(1, 1, 1)]
0.5
```

This tells us that knowing both A and B are currently OFF means that the previous state of the system was either all OFF or all ON with equal probability.

For any reduced purview, we would still have the same information about the elements in the purview (either all ON or all OFF), but we would lose the information about the elements outside the purview.

The effect purview of this concept is the node C. The mechanism AB is able to completely specify the next state of C. Since both nodes are OFF, the next state of C will be OFF.

The mechanism AB does not provide any information about the next state of either A or B, because the relationship depends on the value of C. That is, the next state of A (or B) may be either ON or OFF, depending on the value of C. Any purview larger than C would be reducible by pruning away the additional elements.

<table>
<thead>
<tr>
<th>Major Complex: ABC with $\Phi = 1.875$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mechanism</td>
</tr>
<tr>
<td>----------------</td>
</tr>
<tr>
<td>AB</td>
</tr>
<tr>
<td>AC</td>
</tr>
<tr>
<td>BC</td>
</tr>
</tbody>
</table>

An analysis of the *intrinsic existence* of this system reveals that the major complex of the system is the entire network of XOR nodes. Furthermore, the concepts which exist within the complex are those specified by the second-order mechanisms AB, AC, and BC.

To understand the notion of intrinsic existence, in addition to determining what exists for the system, it is useful to consider also what does not exist.

Specifically, it may be surprising that none of the first order mechanisms A, B or C exist. This physical system of XOR gates is sitting on the table in front of me; I can touch the individual elements of the system, so how can it be that they do not exist?

That sort of existence is what we term *extrinsic existence*. The XOR gates exist for me as an observer, external to the system. I am able to manipulate them, and observe their causes and effects, but the question that matters for *intrinsic* existence is, do they have irreducible causes and effects within the system? There are two reasons a mechanism may have no irreducible cause-effect power: either the cause-effect power is completely reducible, or there was no cause-effect power to begin with. In the case of elementary mechanisms, it must be the latter.
To see this, again due to symmetry of the system, we will focus only on the mechanism A.

```python
>>> subsystem = pyphi.examples.xor_subsystem()
>>> A = (0,)
>>> ABC = (0, 1, 2)
```

In order to exist, a mechanism must have irreducible cause and effect power within the system.

```python
>>> subsystem.cause_info(A, ABC)
0.5
>>> subsystem.effect_info(A, ABC)
0.0
```

The mechanism has no effect power over the entire subsystem, so it cannot have effect power over any purview within the subsystem. Furthermore, if a mechanism has no effect power, it certainly has no irreducible effect power. The first-order mechanisms of this system do not exist intrinsically, because they have no effect power (having causal power is not enough).

To see why this is true, consider the effect of A. There is no self-loop, so A can have no effect on itself. Without knowing the current state of A, in the next state B could be either ON or OFF. If we know that the current state of A is ON, then B could still be either ON or OFF, depending on the state of C. Thus, on its own, the current state of A does not provide any information about the next state of B. A similar result holds for the effect of A on C. Since A has no effect power over any element of the system, it does not exist from the intrinsic perspective.

To complete the discussion, we can also investigate the potential third order mechanism ABC. Consider the cause information over the purview ABC:

```python
>>> subsystem.cause_info(ABC, ABC)
0.749999
```

Since the mechanism has nonzero cause information, it has causal power over the system—but is it irreducible?

```python
>>> mip = subsystem.cause_mip(ABC, ABC)
>>> mip.phi
0.0
>>> mip.partition  # doctest: +NORMALIZE_WHITESPACE
<table>
<thead>
<tr>
<th>A</th>
<th>B,C</th>
</tr>
</thead>
<tbody>
<tr>
<td>A,B,C</td>
<td></td>
</tr>
</tbody>
</table>
```

The mechanism has $c_i = 0.75$, but it is completely reducible ($\varphi = 0$) to the partition

$$
\begin{array}{c}
\mathcal{A} \\
\varnothing \\
\end{array} \times
\begin{array}{c}
BC \\
ABC \\
\end{array}
$$

This result can be understood as follows: knowing that B and C are OFF in the current state is sufficient to know that A, B, and C were all OFF in the previous state; there is no additional information gained by knowing that A is currently OFF.

Similarly for any other potential purview, the current state of B and C being $(0, 0)$ is always enough to fully specify the previous state, so the mechanism is reducible for all possible purviews, and hence does not exist.
1.7 Emergence (coarse-graining and blackboxing)

1.7.1 Coarse-graining

We’ll use the `macro` module to explore alternate spatial scales of a network. The network under consideration is a 4-node non-deterministic network, available from the `examples` module.

```python
code
>>> import pyphi
>>> network = pyphi.examples.macro_network()
```

The connectivity matrix is all-to-all:

```python
code
>>> network.cm
array([[1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.],
       [1., 1., 1., 1.]])
```

We’ll set the state so that nodes are OFF.

```python
code
>>> state = (0, 0, 0, 0)
```

At the “micro” spatial scale, we can compute the major complex, and determine the Φ value:

```python
code
>>> major_complex = pyphi.compute.major_complex(network, state)
>>> major_complex.phi
0.113889
```

The question is whether there are other spatial scales which have greater values of Φ. This is accomplished by considering all possible coarse-graining of micro-elements to form macro-elements. A coarse-graining of nodes is any partition of the elements of the micro system. First we’ll get a list of all possible coarse-grainings:

```python
code
>>> grains = list(pyphi.macro.all_coarse_grains(network.node_indices))
```

We start by considering the first coarse grain:

```python
code
>>> coarse_grain = grains[0]
```

Each `CoarseGrain` has two attributes: the partition of states into macro elements, and the grouping of micro-states into macro-states. Let’s first look at the partition:

```python
code
>>> coarse_grain.partition
((0, 1, 2), (3,))
```

There are two macro-elements in this partition: one consists of micro-elements (0, 1, 2) and the other is simply micro-element 3.

We must then determine the relationship between micro-elements and macro-elements. When coarse-graining the system we assume that the resulting macro-elements do not differentiate the different micro-elements. Thus any correspondence between states must be stated solely in terms of the number of micro-elements which are ON, and not depend on which micro-elements are ON.

For example, consider the macro-element (0, 1, 2). We may say that the macro-element is ON if at least one micro-element is ON, or if all micro-elements are ON; however, we may not say that the macro-element is ON if micro-element 1 is ON, because this relationship involves identifying specific micro-elements.

The `grouping` attribute of the `CoarseGrain` describes how the state of micro-elements describes the state of macro-elements.
```
>>> grouping = coarse_grain.grouping
>>> grouping
(((0, 1, 2), (3,)), ((0,), (1,)))
```

The grouping consists of two lists, one for each macro-element:

```
>>> grouping[0]
((0, 1, 2), (3,))
```

For the first macro-element, this grouping means that the element will be OFF if zero, one or two of its micro-elements are ON, and will be ON if all three micro-elements are ON.

```
>>> grouping[1]
((0,), (1,))
```

For the second macro-element, the grouping means that the element will be OFF if its micro-element is OFF, and ON if its micro-element is ON.

One we have selected a partition and grouping for analysis, we can create a mapping between micro-states and macro-states:

```
>>> mapping = coarse_grain.make_mapping()
>>> mapping
array([0, 0, 0, 0, 0, 0, 0, 1, 2, 2, 2, 2, 2, 2, 2, 3])
```

The interpretation of the mapping uses the little-endian convention of indexing (see *Little-endian convention*).

```
>>> mapping[7]
1
```

This says that micro-state 7 corresponds to macro-state 1:

```
>>> pyphi.convert.le_index2state(7, 4)
(1, 1, 1, 0)
```

```
>>> pyphi.convert.le_index2state(1, 2)
(1, 0)
```

In micro-state 7, all three elements corresponding to the first macro-element are ON, so that macro-element is ON. The micro-element corresponding to the second macro-element is OFF, so that macro-element is OFF.

The *CoarseGrain* object uses the mapping internally to create a state-by-state TPM for the macro-system corresponding to the selected partition and grouping:

```
>>> coarse_grain.macro_tpm(network.tpm)
Traceback (most recent call last):
  ...pyphi.exceptions.ConditionallyDependentError...
```

However, this macro-TPM does not satisfy the conditional independence assumption, so this particular partition and grouping combination is not a valid coarse-graining of the system. Constructing a *MacroSubsystem* with this coarse-graining will also raise a *ConditionallyDependentError*.

Let’s consider a different coarse-graining instead.

```
>>> coarse_grain = grains[14]
>>> coarse_grain.partition
```
We can now construct a **MacroSubsystem** using this coarse-graining:

```python
>>> macro_subsystem = pyphi.macro.MacroSubsystem(
...     network, state, coarse_grain=coarse_grain)
```

We can then consider the integrated information of this macro-network and compare it to the micro-network.

```python
>>> macro_sia = pyphi.compute.sia(macro_subsystem)
>>> macro_sia.phi
0.597212
```

The integrated information of the macro subsystem ($\Phi = 0.597212$) is greater than the integrated information of the micro system ($\Phi = 0.113889$). We can conclude that a macro-scale is appropriate for this system, but to determine which one, we must check all possible partitions and all possible groupings to find the maximum of integrated information across all scales.

```python
>>> M = pyphi.macro.emergence(network, state)
>>> M.emergence
0.483323
>>> M.system
(0, 1, 2, 3)
>>> M.coarse_grain.partition
((0, 1), (2, 3))
>>> M.coarse_grain.grouping
(((0, 1), (2,)), ((0, 1), (2,)))
```

The analysis determines the partition and grouping which results in the maximum value of integrated information, as well as the emergence (increase in Φ) from the micro-scale to the macro-scale.

1.7.2 Blackboxing

- `pyphi.examples.blackbox_network()`

The **macro** module also provides tools for studying the emergence of systems using blackboxing.

```python
>>> import pyphi
>>> network = pyphi.examples.blackbox_network()
```
We consider the state where all nodes are OFF:

```python
>>> state = (0, 0, 0, 0, 0, 0)
```

The system has minimal Φ without blackboxing:

```python
>>> subsys = pyphi.Subsystem(network, state)
>>> pyphi.compute.phi(subsys)
0.215278
```

We will consider the blackbox system consisting of two blackbox elements, ABC and DEF, where C and F are output elements and AB and DE are hidden within their respective blackboxes.

Blackboxing is done with a `Blackbox` object. As with `CoarseGrain`, we pass it a partition of micro-elements:

```python
>>> partition = ((0, 1, 2), (3, 4, 5))
>>> output_indices = (2, 5)
>>> blackbox = pyphi.macro.Blackbox(partition, output_indices)
```

Blackboxes have a few convenient attributes and methods. The `hidden_indices` attribute returns the elements which are hidden within blackboxes:

```python
>>> blackbox.hidden_indices
(0, 1, 3, 4)
```

The `micro_indices` attribute lists all the micro-elements in the box:

```python
>>> blackbox.micro_indices
(0, 1, 2, 3, 4, 5)
```

The `macro_indices` attribute generates a set of indices which index the blackbox macro-elements. Since there are two blackboxes in our example, and each has one output element, there are two macro-indices:

```python
>>> blackbox.macro_indices
(0, 1)
```

The `macro_state` method converts a state of the micro elements to the state of the macro-elements. The macro-state of a blackbox system is simply the state of the system’s output elements:

```python
>>> micro_state = (0, 0, 0, 0, 0, 1)
>>> blackbox.macro_state(micro_state)
(0, 1)
```

Let us also define a time scale over which to perform our analysis:

```python
>>> time_scale = 2
```

As in the coarse-graining example, the blackbox and time scale are passed to `MacroSubsystem`:

```python
>>> macro_subsystem = pyphi.macro.MacroSubsystem(network, state,
...                                             blackbox=blackbox,
...                                             time_scale=time_scale)
```

We can now compute Φ for this macro system:

```python
>>> pyphi.compute.phi(macro_subsystem)
0.638888
```
We find that the macro subsystem has greater integrated information \(\Phi = 0.638888 \) than the micro system \(\Phi = 0.215278 \)—the system demonstrates emergence.

1.8 Actual Causation


```python
>>> import pyphi
>>> from pyphi import actual, config, Direction
```

1.8.1 Configuration

Before we begin we need to set some configuration values. The correct way of partitioning for actual causation is using the 'ALL' partitions setting; 'TRI'-partitions are a reasonable approximation. In case of ties the smaller purview should be chosen. IIT 3.0 style bipartitions will give incorrect results.

```python
>>> config.PARTITION_TYPE = 'TRI'
>>> config.PICK_SMALLEST_PURVIEW = True
```

When calculating a causal account of the transition between a set of elements \(X \) at time \(t - 1 \) and a set of elements \(Y \) at time \(t \), with \(X \) and \(Y \) being subsets of the same system, the transition should be valid according to the system's TPM. However, the state of \(X \) at \(t - 1 \) does not necessarily need to have a valid previous state so we can disable state validation:

```python
>>> config.VALIDATE_SUBSYSTEM_STATES = False
```

1.8.2 Computation

We will look at how to perform computations over the basic \(OR\text{-}AND \) network introduced in Figure 1 of the paper.

```python
>>> network = pyphi.examples.actual_causation()
```

This is a standard PyPhi \textit{Network} so we can look at its TPM:

```python
>>> pyphi.convert.state_by_node2state_by_state(network.tpm)
array([[1., 0., 0., 0.],
       [0., 1., 0., 0.],
       [0., 1., 0., 0.],
       [0., 0., 0., 1.]])
```

The \texttt{OR} gate is element 0, and the \texttt{AND} gate is element 1 in the network.

```python
>>> OR = 0
>>> AND = 1
```

We want to observe both elements at \(t - 1 \) and \(t \), with \texttt{OR} ON and \texttt{AND} OFF in both observations:

```python
>>> X = Y = (OR, AND)
>>> X_state = Y_state = (1, 0)
```
The `Transition` object is the core of all actual causation calculations. To instantiate a `Transition`, we pass it a `Network`, the state of the network at \(t - 1 \) and \(t \), and elements of interest at \(t - 1 \) and \(t \). Note that PyPhi requires the state to be the state of the entire network, not just the state of the nodes in the transition.

```python
>>> transition = actual.Transition(network, X_state, Y_state, X, Y)
```

Cause and effect repertoires can be obtained for the transition. For example, as shown on the right side of Figure 2B, we can compute the effect repertoire to see how \(X_{t-1} = \{O_R = 1\} \) constrains the probability distribution of the purview \(Y_t = \{O_R, A_N_D\} \):

```python
>>> transition.effect_repertoire((OR,), (OR, AND))
array([[0., 0.],
       [0.5, 0.5]])
```

Similarly, as in Figure 2C, we can compute the cause repertoire of \(Y_t = \{O_R, A_N_D\} = 10\} \) to see how it constrains the purview \(X_{t-1} = \{O_R\} \):

```python
>>> transition.cause_repertoire((OR, AND), (OR,))
array([[0.5],
       [0.5]])
```

Note: In all `Transition` methods the constraining occurrence is passed as the `mechanism` argument and the constrained occurrence is the `purview` argument. This mirrors the terminology introduced in the IIT code.

`Transition` also provides methods for computing cause and effect ratios. For example, the effect ratio of \(X_{t-1} = \{O_R = 1\} \) constraining \(Y_t = \{O_R\} \) (as shown in Figure 3A) is computed as follows:

```python
>>> transition.effect_ratio((OR,), (OR,))
0.415037
```

The effect ratio of \(X_{t-1} = \{O_R = 1\} \) constraining \(Y_t = \{A_N_D\} \) is negative:

```python
>>> transition.effect_ratio((OR,), (AND,))
-0.584963
```

And the cause ratio of \(Y_t = \{O_R = 1\} \) constraining \(X_{t-1} = \{O_R, A_N_D\} \) (Figure 3B) is:

```python
>>> transition.cause_ratio((OR,), (OR, AND))
0.415037
```

We can evaluate \(\alpha \) for a particular pair of occurrences, as in Figure 3C. For example, to find the irreducible effect ratio of \(\{O_R, A_N_D\} \rightarrow \{O_R, A_N_D\} \), we use the `find_mip` method:

```python
>>> link = transition.find_mip(Direction.EFFECT, (OR, AND), (OR, AND))
```

This returns a `AcRepertoireIrreducibilityAnalysis` object, with a number of useful properties. This particular MIP is reducible, as we can see by checking the value of \(\alpha \):

```python
>>> link.alpha
0.0
```

The `partition` property shows the minimum information partition that reduces the occurrence and candidate effect:

```python
>>> link.partition
# doctest: +NORMALIZE_WHITESPACE
OR     AND
```
Let’s look at the MIP for the irreducible occurrence $Y_t = \{OR, AND\}$ constraining $X_{t-1} = \{OR, AND\}$ (Figure 3D). This candidate causal link has positive α:

```python
>>> link = transition.find_mip(Direction.CAUSE, (OR, AND), (OR, AND))
>>> link.alpha
0.169925
```

To find the actual cause or actual effect of a particular occurrence, use the `find_actual_cause` or `find_actual_effect` methods:

```python
>>> transition.find_actual_cause((OR, AND))
CausalLink
  $\alpha = 0.1699$ [OR, AND] [OR, AND]
```

1.8.3 Accounts

The complete causal account of our transition can be computed with the `account` function:

```python
>>> account = actual.account(transition)
>>> print(account)  # doctest: +NORMALIZE_WHITESPACE
<BLANKLINE>
Account (5 causal links)
***********************************
Irreducible effects
  $\alpha = 0.415$ [OR] [OR]
  $\alpha = 0.415$ [AND] [AND]
Irreducible causes
  $\alpha = 0.415$ [OR] [OR]
  $\alpha = 0.415$ [AND] [AND]
  $\alpha = 0.1699$ [OR, AND] [OR, AND]
```

We see that this function produces the causal links shown in Figure 4. The `Account` object is a subclass of `tuple`, and can manipulated the same:

```python
>>> len(account)
5
```

1.8.4 Irreducible Accounts

The irreducibility of the causal account of our transition of interest can be evaluated using the following function:

```python
>>> sia = actual.sia(transition)
>>> sia.alpha
0.169925
```

As shown in Figure 4, the second order occurrence $Y_t = \{OR, AND = 10\}$ is destroyed by the MIP:

```python
>>> sia.partitioned_account  # doctest: +NORMALIZE_WHITESPACE
<BLANKLINE>
Account (4 causal links)
```
Irreducible effects
\[\alpha = 0.415 \text{ [OR]} \]\n\[\alpha = 0.415 \text{ [AND]} \]

Irreducible causes
\[\alpha = 0.415 \text{ [OR]} \]\n\[\alpha = 0.415 \text{ [AND]} \]

The partition of the MIP is available in the cut property:

```
>>> sia.cut
```

To find all irreducible accounts within the transition of interest, use nexus:

```
>>> all_accounts = actual.nexus(network, X_state, Y_state)
```

This computes \(A \) for all permutations of elements in \(X_{t-1} \) and \(Y_t \) and returns a tuple of all \textit{AcSystemIrreducibilityAnalysis} objects with \(A > 0 \):

```
>>> for n in all_accounts:
...    print(n.transition, n.alpha)
Transition([OR, AND] [OR, AND] 2.0
Transition([OR, AND] [OR, AND]) 2.0
Transition([OR, OR, AND] OR, AND] 2.0
```

The \textit{causal_nexus} function computes the maximally irreducible account for the transition of interest:

```
>>> cn = actual.causal_nexus(network, X_state, Y_state)
>>> cn.alpha
2.0
>>> cn.transition
Transition([OR] [OR])
```

1.8.5 Disjunction of conjunctions

If you are interested in exploring further, the disjunction of conjunctions network from Figure 7 is provided as well:

```
>>> network = pyphi.examples.disjunction_conjunction_network()
>>> cn = actual.causal_nexus(network, (1, 0, 1, 0), (0, 0, 0, 1))
```

The only irreducible transition is from \(X_{t-1} = C \) to \(Y_t = D \), with \(A \) of 2.0:

```
>>> cn.transition
Transition([C] [D])
>>> cn.alpha
2.0
```
1.9 Residue

This example describes a system containing two AND gates, A and B, with a single overlapping input node.

First let’s create the subsystem corresponding to the residue network, with all nodes OFF in the current and previous states.

```python
>>> import pyphi

>>> subsystem = pyphi.examples.residue_subsystem()
```

Next, we can define the mechanisms of interest. Mechanisms and purviews are represented by tuples of node indices in the network:

```python
>>> A = (0,)

>>> B = (1,)

>>> AB = (0, 1)
```

And the possible cause purviews that we’re interested in:

```python
>>> CD = (2, 3)

>>> DE = (3, 4)

>>> CDE = (2, 3, 4)
```

We can then evaluate the cause information for each of the mechanisms over the cause purview CDE.

```python
>>> subsystem.cause_info(A, CDE)
0.333332

>>> subsystem.cause_info(B, CDE)
0.333332

>>> subsystem.cause_info(AB, CDE)
0.5
```

The composite mechanism AB has greater cause information than either of the individual mechanisms. This contradicts the idea that AB should exist minimally in this system.

Instead, we can quantify existence as the irreducible cause information of a mechanism. The MIP of a mechanism is the partition of mechanism and purview which makes the least difference to the cause repertoire (see the documentation for the `RepertoireIrreducibilityAnalysis` object). The irreducible cause information is the distance between the unpartitioned and partitioned repertoires.

To analyze the irreducibility of the mechanism AB on the cause side:

```python
>>> mip_AB = subsystem.cause_mip(AB, CDE)
```

We can then determine what the specific partition is.

```python
>>> mip_AB.partition  # doctest: +NORMALIZE_WHITESPACE
A,B
C  D,E
```

The indices $(0, 1, 2, 3, 4)$ correspond to nodes A, B, C, D, E respectively. Thus the MIP is $\frac{AB}{CDE} \times \frac{CDE}{CDE}$, where \emptyset denotes the empty mechanism.

The partitioned repertoire of the MIP can also be retrieved.
And we can then calculate the irreducible cause information as the difference between partitioned and unpartitioned repertoires.

```python
>>> mip_AB.phi
0.1
```

One counterintuitive result that merits discussion is that since irreducible cause information is what defines existence, we must also evaluate the irreducible cause information of the mechanisms A and B.

The mechanism A over the purview CDE is completely reducible to $\frac{A}{C} \times 0$ because E has no effect on A, so it has zero φ.

```python
>>> subsystem.cause_mip(A, CDE).phi
0.0
>>> subsystem.cause_mip(A, CDE).partition  # doctest: +NORMALIZE_WHITESPACE
    A
    E C, D
```

Instead, we should evaluate A over the purview CD.

```python
>>> mip_A = subsystem.cause_mip(A, CD)
```

In this case, there is a well-defined MIP

```python
>>> mip_A.partition  # doctest: +NORMALIZE_WHITESPACE
    A
    C D
```

which is $0 \times \frac{A}{D}$. It has partitioned repertoire

```python
>>> mip_A.partitioned_repertoire
array([[[[0.33333333],[0.16666667]],
        [[0.33333333],[0.16666667]]]]
```

and irreducible cause information

```python
>>> mip_A.phi
0.166667
```

A similar result holds for B. Thus the mechanisms A and B exist at levels of $\varphi = \frac{1}{6}$, while the higher-order mechanism AB exists only as the residual of causes, at a level of $\varphi = \frac{1}{10}$.

1.10 Magic Cuts

This example explores a system of three fully connected elements A, B and C, which follow the logic of the Rule 110 cellular automaton. The point of this example is to highlight an unexpected behaviour of system cuts: that the minimum information partition of a system can result in new concepts being created.

First let’s create the the Rule 110 network, with all nodes OFF in the current state.

```python
>>> import pyphi
>>> network = pyphi.examples.rule110_network()
>>> state = (0, 0, 0)
```

Next, we want to identify the spatial scale and major complex of the network:

```python
>>> macro = pyphi.macro.emergence(network, state)
>>> print(macro.emergence)
-1.112671
```

Since the emergence value is negative, there is no macro scale which has greater integrated information than the original micro scale. We can now analyze the micro scale to determine the major complex of the system:

```python
>>> major_complex = pyphi.compute.major_complex(network, state)
>>> major_complex.subsystem
Subsystem(A, B, C)
>>> print(major_complex.phi)
1.35708
```

The major complex of the system contains all three nodes of the system, and it has integrated information $\Phi = 1.35708$. Now that we have identified the major complex of the system, we can explore its cause-effect structure and the effect of the MIP.

```python
>>> ces = major_complex.ces
```

There two equivalent cuts for this system; for concreteness we sever all connections from elements A and B to C.

```python
>>> cut = pyphi.models.Cut(from_nodes=(0, 1), to_nodes=(2,))
>>> cut_subsystem = pyphi.Subsystem(network, state, cut=cut)
>>> cut_ces = pyphi.compute.ces(cut_subsystem)
```

Let’s investigate the concepts in the unpartitioned cause-effect structure,

```python
>>> ces.labeled_mechanisms
(['A'], ['B'], ['C'], ['A', 'B'], ['A', 'C'], ['B', 'C'])
>>> ces.phis
[0.125, 0.125, 0.125, 0.499999, 0.499999, 0.499999]
>>> sum(ces.phis)
1.8749970000000002
```

and also the concepts of the partitioned cause-effect structure.

```python
>>> cut_ces.labeled_mechanisms
(['A'], ['B'], ['C'], ['A', 'B'], ['B', 'C'], ['A', 'B', 'C'])
>>> cut_ces.phis
[0.125, 0.125, 0.125, 0.499999, 0.266666, 0.333333]
>>> sum(_)
1.4749988000000003
```
The unpartitioned cause-effect structure includes all possible first and second order concepts, but there is no third order concept. After applying the cut and severing the connections from A and B to C, the third order concept ABC is created and the second order concept AC is destroyed. The overall amount of φ in the system decreases from 1.875 to 1.475.

Let’s explore the concept which was created to determine why it does not exist in the unpartitioned cause-effect structure and what changed in the partitioned cause-effect structure.

```python
>>> subsystem = major_complex.subsystem
>>> ABC = subsystem.node_indices
>>> subsystem.cause_info(ABC, ABC)
0.749999
>>> subsystem.effect_info(ABC, ABC)
1.875
```

The mechanism does have cause and effect power over the system. But, since it doesn’t specify a concept, it must be that this power is reducible:

```python
>>> mic = subsystem.mic(ABC)
>>> mic.phi
0.0
>>> mie = subsystem.mie(ABC)
>>> mie.phi
0.625
```

The reason ABC does not exist as a concept is that its cause is reducible. Looking at the TPM of the system, there are no possible states where two elements are OFF. This means that knowing two elements are OFF is enough to know that the third element must also be OFF, and thus the third element can always be cut from the concept without a loss of information. This will be true for any purview, so the cause information is reducible.

```python
>>> BC = (1, 2)
>>> A = (0,)
>>> repertoire = subsystem.cause_repertoire(ABC, ABC) *
... subsystem.cause_repertoire(A, ())
>>> pyphi.distance.hamming_emd(repertoire, cut_repertoire)
0.0
```

Next, let’s look at the cut subsystem to understand how the new concept comes into existence.

```python
>>> ABC = (0, 1, 2)
>>> C = (2,)
>>> AB = (0, 1)
```

The cut applied to the subsystem severs the connections going to C from either A or B. In this circumstance, knowing the state of A or B does not tell us anything about the state of C; only the previous state of C can tell us about the next state of C. $C_node.tpm_on$ gives us the probability of C being ON in the next state, while $C_node.tpm_off$ would give us the probability of C being OFF.

```python
>>> C_node = cut_subsystem.indices2nodes(C)[0]
>>> C_node.tpm_on.flatten()
array([0.5 , 0.75])
```

This states that C has a 50% chance of being ON in the next state if it currently OFF, but a 75% chance of being ON in the next state if it is currently ON. Thus, unlike the unpartitioned case, knowing the current state of C gives us additional information over and above knowing the state of A or B.

32 Chapter 1. Installation
repertoire = cut_subsystem.cause_repertoire(ABC, ABC)
cut_repertoire = (cut_subsystem.cause_repertoire(AB, ABC) *...
cut_subsystem.cause_repertoire(C, ()))
print(pyphi.distance.hamming_emd(repertoire, cut_repertoire))
0.500001

With this partition, the integrated information is \(\varphi = 0.5 \), but we must check all possible partitions to find the maximally-irreducible cause:

mic = cut_subsystem.mic(ABC)
mic.purview
(0, 1, 2)
mic.phi
0.333333

It turns out that the MIP of the maximally-irreducible cause is

\[
\frac{AB}{\emptyset} \times \frac{C}{ABC}
\]

and the integrated information of mechanism \(ABC \) is \(\varphi = 1/3 \).

Note that in order for a new concept to be created by a cut, there must be a within-mechanism connection severed by the cut.

In the previous example, the MIP created a new concept, but the amount of \(\varphi \) in the cause-effect structure still decreased. This is not always the case. Next we will look at an example of system whose MIP increases the amount of \(\varphi \). This example is based on a five-node network that implements the logic of the Rule 154 cellular automaton. Let’s first load the network:

network = pyphi.examples.rule154_network()
state = (1, 0, 0, 0, 0)
subsystem = pyphi.Subsystem(network, state, (0, 1, 4))

Calculating the MIP of the system,

sia = pyphi.compute.sia(subsystem)
sia.phi
0.217829
sia.cut
Cut [A, E] / / [B]

we see that this subsystem has a \(\Phi \) value of 0.15533, and the MIP cuts the connections from \(AE \) to \(B \). Investigating the concepts in both the partitioned and unpartitioned cause-effect structures,

sia.ces.labeled_mechanisms
(['A'], ['B'], ['A', 'B'])
sia.ces.phis
[0.25, 0.166667, 0.178572]
print(sum(_))
0.5952390000000001

We see that the unpartitioned cause-effect structure has mechanisms \(A, B \) and \(AB \) with \(\sum \varphi = 0.595239 \).
The partitioned cause-effect structure has mechanisms A, B and AB but with $\sum \phi = 0.630953$. There are the same number of concepts in both cause-effect structures, over the same mechanisms; however, the partitioned cause-effect structure has a greater ϕ value for the concept AB, resulting in an overall greater $\sum \phi$ for the partitioned cause-effect structure.

Although situations described above are rare, they do occur, so one must be careful when analyzing the integrated information of physical systems not to dismiss the possibility of partitions creating new concepts or increasing the amount of ϕ; otherwise, an incorrect major complex may be identified.

1.11 Detailed installation guide for macOS

This is a step-by-step guide intended for those unfamiliar with Python or the command-line *(a.k.a. the “shell”)*. A shell can be opened by opening a new tab in the Terminal app (located in Utilities). Text that is formatted like code is meant to be copied and pasted into the terminal (hit the Enter key to run the command).

The first step is to install the versions of Python that we need. The most convenient way of doing this is to use the OS X package manager Homebrew. Install Homebrew by running this command:

```bash
/usr/bin/ruby -e "$(curl -fsSL https://raw.githubusercontent.com/Homebrew/install/˓→master/install)"
```

Now you should have access to the `brew` command. First, we need to install Python 2 and 3. Using these so-called “brewed” Python versions, rather than the version of Python that comes with your computer, will protect your computer’s Python version from unwanted changes that could interfere with other applications.

```bash
brew install python python3
```

Then we need to ensure that the terminal “knows about” the newly-installed Python versions:

```bash
brew link --overwrite python
brew link --overwrite python3
```

Now that we’re using our shiny new Python versions, it is highly recommended to set up a virtual environment in which to install PyPhi. Virtual environments allow different projects to isolate their dependencies from one another, so that they don’t interact in unexpected ways. Please see this guide for more information.

To do this, you must install `virtualenvwrapper`, a tool for manipulating virtual environments. This tool is available on PyPI, the Python package index, and can be installed with `pip`, the command-line utility for installing and managing Python packages *(pip was installed automatically with the brewed Python)*:

```bash
pip install virtualenvwrapper
```

Now we need to edit your shell startup file. This is a file that runs automatically every time you open a new shell (a new window or tab in the Terminal app). This file should be in your home directory, though it will be invisible in the Finder because the filename is preceded by a period. On most Macs it is called `.bash_profile`. You can open this in a text editor by running this command:
open -a TextEdit ~/.bash_profile

If you get an error that says the file doesn’t exist, then run touch ~/.bash_profile first to create it.

Now, you’ll add three lines to the shell startup file. These lines will set the location where the virtual environments will live, the location of your development project directories, and the location of the script installed with this package, respectively. **Note**: The location of the script can be found by running `which virtualenvwrapper.sh`.

The filepath after the equals sign on the second line will different for everyone, but here is an example:

```bash
export WORKON_HOME=$HOME/.virtualenvs
export PROJECT_HOME=$HOME/dev
source /usr/local/bin/virtualenvwrapper.sh
```

After editing the startup file and saving it, open a new terminal shell by opening a new tab or window (or just reload the startup file by running `source ~/.bash_profile`).

Now that `virtualenvwrapper` is fully installed, use it to create a Python 3 virtual environment, like so:

```bash
mkvirtualenv -p `which python3` <name_of_your_project>
```

The option `-p `which python3` ensures that when the virtual environment is activated, the commands `python` and `pip` will refer to their Python 3 counterparts.

The virtual environment should have been activated automatically after creating it. Virtual environments can be manually activated with `workon <name_of_your_project>`, and deactivated with `deactivate`.

Important: Remember to activate the virtual environment with the `workon` command **every time you begin working on your project**. Also, note that the currently active virtual environment is *not* associated with any particular folder; it is associated with a terminal shell. In other words, each time you open a new Terminal tab or terminal window, you need to run `workon <name_of_your_project>` (with some extra setup, this can be done automatically; see here). When a virtual environment is active, your command-line prompt will be prepended with the name of the virtual environment in parentheses.

Once you’ve checked that the new virtual environment is active, you’re finally ready to install PyPhi into it (note that this may take a few minutes):

```bash
pip install pyphi
```

Congratulations, you’ve just installed PyPhi!

To play around with the software, ensure that you’ve activated the virtual environment with `workon <name_of_your_project>`. Then run `python` to start a Python 3 interpreter. Then, in the interpreter’s command-line (which is preceded by the `>>>` prompt), run

```python
import pyphi
```

Optionally, you can also install IPython with `pip install ipython` to get a more useful Python interpreter that offers things like tab-completion. Once you’ve installed it, you can start the IPython interpreter with the command `ipython`.

Next, please see the documentation for some examples of how to use PyPhi and information on how to configure it.

1.12 Transition probability matrix conventions

A **Network** can be created with a transition probability matrix (TPM) in any of the three forms described below. However, in PyPhi the canonical TPM representation is **multidimensional state-by-node form**. The TPM will be
converted to this form when the Network is built.

Tip: Functions for converting TPMs from one form to another are available in the `convert` module.

1.12.1 State-by-node form

A TPM in **state-by-node form** is a matrix where the entry \((i, j)\) gives the probability that the \(j\)th node will be ON at time \(t + 1\) if the system is in the \(i\)th state at time \(t\).

1.12.2 Multidimensional state-by-node form

A TPM in **multidimensional state-by-node** form is a state-by-node form that has been reshaped so that it has \(n + 1\) dimensions instead of two. The first \(n\) dimensions correspond to each of the \(n\) nodes at time \(t\), while the last dimension corresponds to the probabilities of each node being ON at \(t + 1\).

With this form, we can take advantage of NumPy array indexing and use a network state as an index directly:

```python
>>> from pyphi.examples import basic_noisy_selfloop_network
>>> tpm = basic_noisy_selfloop_network().tpm
>>> state = (0, 0, 1)  # A network state is a binary tuple
>>> tpm[state]
array([0.919, 0.91 , 0.756])
```

This tells us that if the current state is \(N_0 = 0, N_1 = 0, N_2 = 1\), then the for the next state, \(Pr(N_0 = 1) = 0.919\), \(Pr(N_1 = 1) = 0.91\) and \(Pr(N_2 = 1) = 0.756\).

Important: The multidimensional state-by-node form is used throughout PyPhi, regardless of the form that was used to create the Network.

1.12.3 State-by-state form

A TPM in **state-by-state form** is a matrix where the entry \((i, j)\) gives the probability that the state at time \(t + 1\) will be \(j\) if the state at time \(t\) is labeled by \(i\).

Warning: When converting a state-by-state TPM to one of the other forms, information may be lost! This is because the space of possible state-by-state TPMs is larger than the space of state-by-node TPMs (so the conversion cannot be injective). However, if we restrict the state-by-state TPMs to only those that satisfy the conditional independence property, then the mapping becomes bijective.

See Conditional Independence for a more detailed discussion.

1.12.4 Little-endian convention

Even after choosing one of the above representations, there are several ways to write down the TPM.

With both state-by-state and state-by-node TPMs, one is confronted with a choice about which rows correspond to which states. In state-by-state TPMs, this choice must also be made for the columns.
There are two possible choices for the rows. Either the first node changes state every other row:

<table>
<thead>
<tr>
<th>State at t</th>
<th>$\Pr(N = ON)$ at $t + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>A</td>
</tr>
<tr>
<td>(0, 0)</td>
<td>0.1</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>0.3</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0.5</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Or the last node does:

<table>
<thead>
<tr>
<th>State at t</th>
<th>$\Pr(N = ON)$ at $t + 1$</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B</td>
<td>A</td>
</tr>
<tr>
<td>(0, 0)</td>
<td>0.1</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0.5</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>0.3</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0.7</td>
</tr>
</tbody>
</table>

Note that the index i of a row in a TPM encodes a network state: convert the index to binary, and each bit gives the state of a node. The question is, which node?

Throughout PyPhi, we always choose the first convention—the state of the first node (the one with the lowest index) varies the fastest. So, the least-significant bit—the one’s place—gives the state of the lowest-index node.

This is analogous to the little-endian convention in organizing computer memory. The other convention, where the highest-index node varies the fastest, is analogous to the big-endian convention (see Endianness).

The rationale for this choice of convention is that the little-endian mapping is stable under changes in the number of nodes, in the sense that the same bit always corresponds to the same node index. The big-endian mapping does not have this property.

Tip: Functions to convert states to indices and vice versa, according to either the little-endian or big-endian convention, are available in the `convert` module.

Note: This applies to only situations where decimal indices are encoding states. Whenever a network state is represented as a list or tuple, we use the only sensible convention: the i^{th} element gives the state of the i^{th} node.

1.13 Connectivity matrix conventions

Throughout PyPhi, if CM is a connectivity matrix, then $[CM]_{i,j} = 1$ means that there is a directed edge (i,j) from node i to node j, and $[CM]_{i,j} = 0$ means there is no edge from i to j.

For example, this network of four nodes:

1.13. Connectivity matrix conventions
has the following connectivity matrix:

```python
>>> cm = 
[[0, 0, 1, 0],
 [1, 0, 1, 0],
 [0, 1, 0, 1],
 [0, 0, 0, 1]]
```

1.14 Loading a configuration

Various aspects of PyPhi’s behavior can be configured.

When PyPhi is imported, it checks for a YAML file named `pyphi_config.yml` in the current directory and automatically loads it if it exists; otherwise the default configuration is used.

The various settings are listed here with their defaults.

```python
>>> import pyphi

>>> defaults = pyphi.config.defaults()
```

Print the `config` object to see the current settings:

```python
>>> print(pyphi.config)  # doctest: +SKIP
{'ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS': False,
 'CACHE_SIAS': False,
 'CACHE_POTENTIAL_PURVIEWS': True,
 'CACHING_BACKEND': 'fs',
 ...}
```

Setting can be changed on the fly by assigning them a new value:

```python
>>> pyphi.config.PROGRESS_BARS = False
```

It is also possible to manually load a configuration file:

```python
>>> pyphi.config.load_file('pyphi_config.yml')
```

Or load a dictionary of configuration values:

```python
>>> pyphi.config.load_dict({'PRECISION': 1})
```
1.15 Approximations and theoretical options

These settings control the algorithms PyPhi uses.

- `ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS`
- `CUT_ONE_APPROXIMATION`
- `MEASURE`
- `PARTITION_TYPE`
- `PICK_SMALLEST_PURVIEW`
- `USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE`
- `SYSTEM_CUTS`
- `SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI`
- `VALIDATE_SUBSYSTEM_STATES`
- `VALIDATE_CONDITIONAL_INDEPENDENCE`

1.16 Parallelization and system resources

These settings control how much processing power and memory is available for PyPhi to use. The default values may not be appropriate for your use-case or machine, so please check these settings before running anything. Otherwise, there is a risk that simulations might crash (potentially after running for a long time!), resulting in data loss.

- `PARALLEL_CONCEPT_EVALUATION`
- `PARALLEL_CUT_EVALUATION`
- `PARALLEL_COMPLEX_EVALUATION`
- `NUMBER_OF_CORES`
- `MAXIMUM_CACHE_MEMORY_PERCENTAGE`

Important: Only one of `PARALLEL_CONCEPT_EVALUATION`, `PARALLEL_CUT_EVALUATION`, and `PARALLEL_COMPLEX_EVALUATION` can be set to True at a time.

For most networks, `PARALLEL_CUT_EVALUATION` is the most efficient. This is because the algorithm is exponential time in the number of nodes, so the most of the time is spent on the largest subsystem.

You should only parallelize concept evaluation if you are just computing a `CauseEffectStructure`.

1.17 Memoization and caching

PyPhi provides a number of ways to cache intermediate results.

- `CACHE_SIARS`
- `CACHE_REPERTOIRES`
- `CACHE_POTENTIAL_PURVIEWS`
- `CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA`
1.18 Logging

These settings control how PyPhi handles log messages. Logs can be written to standard output, a file, both, or none. If these simple default controls are not flexible enough for you, you can override the entire logging configuration. See the documentation on Python’s logger for more information.

- LOG_STDOUT_LEVEL
- LOG_FILE_LEVEL
- LOG_FILE
- PROGRESS_BARS
- REPR_VERBOSITY
- PRINT_FRACTIONS

1.19 Numerical precision

- PRECISION

1.20 The config API

class pyphi.conf.Option(default, values=None, on_change=None, doc=None)

A descriptor implementing PyPhi configuration options.

Parameters

default – The default value of this Option.

Keyword Arguments

• values (list) – Allowed values for this option. A ValueError will be raised if values is not None and the option is set to be a value not in the list.

• on_change (function) – Optional callback that is called when the value of the option is changed. The Config instance is passed as the only argument to the callback.

• doc (str) – Optional docstring for the option.

class pyphi.conf.ConfigMeta(cls_name, bases, namespace)

Metaclass for Config.

Responsible for setting the name of each Option when a subclass of Config is created; because Option objects are defined on the class, not the instance, their name should only be set once.

Python 3.6 handles this exact need with the special descriptor method __set_name__ (see PEP 487). We should use that once we drop support for 3.4 & 3.5.
class pyphi.conf.Config

Base configuration object.

See PyphiConfig for usage.

classmethod options()
Return a dictionary of the Option objects for this config.

defaults()
Return the default values of this configuration.

load_dict(dct)
Load a dictionary of configuration values.

load_file(filename)
Load config from a YAML file.

snapshot()
Return a snapshot of the current values of this configuration.

override(**new_values)
Decorator and context manager to override configuration values.

The initial configuration values are reset after the decorated function returns or the context manager completes it block, even if the function or block raises an exception. This is intended to be used by tests which require specific configuration values.

Example

```python
>>> from pyphi import config
>>> @config.override(PRECISION=20000)
... def test_something():
...     assert config.PRECISION == 20000
... >>> test_something()
>>> with config.override(PRECISION=100):
...     assert config.PRECISION == 100
... ```

pyphi.conf.configure_logging(conf)  
Reconfigure PyPhi logging based on the current configuration.

class pyphi.conf.PyphiConfig

pyphi.config is an instance of this class.

ASSUME_CUTS_CANT_CREATE_NEW_CONCEPTS
default=False

In certain cases, making a cut can actually cause a previously reducible concept to become a proper, irreducible concept. Assuming this can never happen can increase performance significantly, however the obtained results are not strictly accurate.

CUT_ONE_APPROXIMATION
default=False

When determining the MIP for Φ, this restricts the set of system cuts that are considered to only those that cut the inputs or outputs of a single node. This restricted set of cuts scales linearly with the size of the system; the full set of all possible bipartitions scales exponentially. This approximation is more likely to give theoretically accurate results with modular, sparsely-connected, or homogeneous networks.
**MEASURE**

default='EMD'

The measure to use when computing distances between repertoires and concepts. A full list of currently installed measures is available by calling `print(pyphi.distance.measures.all())`. Note that some measures cannot be used for calculating $\Phi$ because they are asymmetric.

Custom measures can be added using the `pyphi.distance.measures.register` decorator. For example:

```python
from pyphi.distance import measures
@measures.register('ALWAYS_ZERO')
def always_zero(a, b):
 return 0
```

This measure can then be used by setting `config.MEASURE = 'ALWAYS_ZERO'`.

If the measure is asymmetric you should register it using the `asymmetric` keyword argument. See `distance` for examples.

**PARALLEL_CONCEPT_EVALUATION**

default=False

Controls whether concepts are evaluated in parallel when computing cause-effect structures.

**PARALLEL_CUT_EVALUATION**

default=True

Controls whether system cuts are evaluated in parallel, which is faster but requires more memory. If cuts are evaluated sequentially, only two `SystemIrreducibilityAnalysis` instances need to be in memory at once.

**PARALLEL_COMPLEX_EVALUATION**

default=False

Controls whether systems are evaluated in parallel when computing complexes.

**NUMBER_OF_CORES**

default=-1

Controls the number of CPU cores used to evaluate unidirectional cuts. Negative numbers count backwards from the total number of available cores, with -1 meaning ‘use all available cores.’

**MAXIMUM_CACHE_MEMORY_PERCENTAGE**

default=50

PyPhi employs several in-memory caches to speed up computation. However, these can quickly use a lot of memory for large networks or large numbers of them; to avoid thrashing, this setting limits the percentage of a system’s RAM that the caches can collectively use.

**CACHE_SIASE**

default=False

PyPhi is equipped with a transparent caching system for `SystemIrreducibilityAnalysis` objects which stores them as they are computed to avoid having to recompute them later. This makes it easy to play around interactively with the program, or to accumulate results with minimal effort. For larger projects, however, it is recommended that you manage the results explicitly, rather than relying on the cache. For this reason it is disabled by default.

**CACHE_REPERTOIRES**

default=True
PyPhi caches cause and effect repertoires. This greatly improves speed, but can consume a significant amount of memory. If you are experiencing memory issues, try disabling this.

**CACHE_POTENTIAL_PURVIEWS**

```python
default=True
```

Controls whether the potential purviews of mechanisms of a network are cached. Caching speeds up computations by not recomputing expensive reducibility checks, but uses additional memory.

**CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA**

```python
default=False
```

Controls whether a Subsystem's repertoire and MICE caches are cleared with `clear_caches()` after computing the `SystemIrreducibilityAnalysis`. If you don’t need to do any more computations after running `sia()`, then enabling this may help conserve memory.

**CACHING_BACKEND**

```python
default='fs'
```

Controls whether precomputed results are stored and read from a local filesystem-based cache in the current directory or from a database. Set this to `'fs'` for the filesystem, `'db'` for the database.

**FS_CACHE_VERBOSITY**

```python
default=0
```

Controls how much caching information is printed if the filesystem cache is used. Takes a value between 0 and 11.

**FS_CACHE_DIRECTORY**

```python
default='__pyphi_cache__'
```

If the filesystem is used for caching, the cache will be stored in this directory. This directory can be copied and moved around if you want to reuse results e.g. on another computer, but it must be in the same directory from which Python is being run.

**MONGODB_CONFIG**

```python
27017, 'database_name': 'pyphi', 'collection_name': 'cache'
```

Set the configuration for the MongoDB database backend (only has an effect if CACHING_BACKEND is `'db'`).

- **Type** `'default={host'
- **Type** `'localhost', 'port'

**REDIS_CACHE**

```python
default=False
```

Specifies whether to use Redis to cache `MaximallyIrreducibleCauseOrEffect`.

**REDIS_CONFIG**

```python
6379, 'db': 0, 'test_db': 1}
```

Configure the Redis database backend. These are the defaults in the provided `redis.conf` file.

- **Type** `'default={host'
- **Type** `'localhost', 'port'

**LOG_FILE**

```python
default='pyphi.log', on_change=configure_logging
```

Controls the name of the log file.
LOG_FILE_LEVEL
default='INFO', on_change=configure_logging

Controls the level of log messages written to the log file. This setting has the same possible values as LOG_STDOUT_LEVEL.

LOG_STDOUT_LEVEL
default='WARNING', on_change=configure_logging

Controls the level of log messages written to standard output. Can be one of 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', or None. 'DEBUG' is the least restrictive level and will show the most log messages. 'CRITICAL' is the most restrictive level and will only display information about fatal errors. If set to None, logging to standard output will be disabled entirely.

PROGRESS_BARS
default=True

Controls whether to show progress bars on the console.

Tip: If you are iterating over many systems rather than doing one long-running calculation, consider disabling this for speed.

PRECISION
default=6

If MEASURE is EMD, then the Earth Mover's Distance is calculated with an external C++ library that a numerical optimizer to find a good approximation. Consequently, systems with analytically zero $\Phi$ will sometimes be numerically found to have a small but non-zero amount. This setting controls the number of decimal places to which PyPhi will consider EMD calculations accurate. Values of $\Phi$ lower than $10^{\text{PRECISION}}$ will be considered insignificant and treated as zero. The default value is about as accurate as the EMD computations get.

VALIDATE_SUBSYSTEM_STATES
default=True

Controls whether PyPhi checks if the subsystems’s state is possible (reachable with nonzero probability from some previous state), given the subsystem’s TPM (which is conditioned on background conditions). If this is turned off, then calculated $\Phi$ values may not be valid, since they may be associated with a subsystem that could never be in the given state.

VALIDATE_CONDITIONAL_INDEPENDENCE
default=True

Controls whether PyPhi checks if a system’s TPM is conditionally independent.

SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI
default=False

If set to True, the $\Phi$ value of single micro-node subsystems is the difference between their unpartitioned CauseEffectStructure (a single concept) and the null concept. If set to False, their $\Phi$ is defined to be zero. Single macro-node subsystems may always be cut, regardless of circumstances.

REPR_VERBOSITY
default=2, values=[0, 1, 2]

Controls the verbosity of __repr__ methods on PyPhi objects. Can be set to 0, 1, or 2. If set to 1, calling repr on PyPhi objects will return pretty-formatted and legible strings, excluding repertoires. If set to 2, repr calls also include repertoires.
Although this breaks the convention that `__repr__` methods should return a representation which can reconstruct the object, readable representations are convenient since the Python REPL calls `repr` to represent all objects in the shell and PyPhi is often used interactively with the REPL. If set to 0, `repr` returns more traditional object representations.

**PRINT_FRACTIONS**  
default=True  

Controls whether numbers in a `repr` are printed as fractions. Numbers are still printed as decimals if the fraction’s denominator would be large. This only has an effect if `REPR_VERBOSITY > 0`.

**PARTITION_TYPE**  
default='BI'  

Controls the type of partition used for \( \varphi \) computations.

If set to 'BI', partitions will have two parts.

If set to 'TRI', partitions will have three parts. In addition, computations will only consider partitions that strictly partition the mechanism. That is, for the mechanism \((A, B)\) and purview \((B, C, D)\) the partition:

```
A, B | |
 B | C,D
```

is not considered, but:

```
A | B |
 | B | C,D
```

is. The following is also valid:

```
A, B | |
 | B, C, D
```

In addition, this setting introduces “wedge” tripartitions of the form:

```
A | B | |
 | B | C | D
```

where the mechanism in the third part is always empty.

Finally, if set to 'ALL', all possible partitions will be tested.

You can experiment with custom partitioning strategies using the `pyphi.partition.partition_types.register` decorator. For example:

```python
from pyphi.models import KPartition, Part
from pyphi.partition import partition_types

@partition_types.register('SINGLE_NODE')
def single_node_partitions(mechanism, purview, node_labels=None):
 for element in mechanism:
 element = tuple([element])
 others = tuple(sorted(set(mechanism) - set(element)))
```

(continues on next page)
part1 = Part(mechanism=element, purview=())
part2 = Part(mechanism=others, purview=purview)

```python
eyield KPartition(part1, part2, node_labels=node_labels)
```

This generates the set of partitions that cut connections between a single mechanism element and the entire purview. The mechanism and purview of each Part remain undivided - only connections between parts are severed.

You can use this new partitioning scheme by setting `config.PARTITION_TYPE = 'SINGLE_NODE'`.

See `partition` for more examples.

**PICK_SMALLEST_PURVIEW**

`default=False`

When computing a `MaximallyIrreducibleCause` or `MaximallyIrreducibleEffect`, it is possible for several MIPs to have the same $\phi$ value. If this setting is set to `True` the MIP with the smallest purview is chosen; otherwise, the one with largest purview is chosen.

**USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE**

`default=False`

If set to `True`, the distance between cause-effect structures (when computing a `SystemIrreducibilityAnalysis`) is calculated using the difference between the sum of $\phi$ in the cause-effect structures instead of the extended EMD.

**SYSTEM_CUTS**

`default='3.0_STYLE', values=['3.0_STYLE', 'CONCEPT_STYLE']`

If set to `'3.0_STYLE'`, then traditional IIT 3.0 cuts will be used when computing $\Phi$. If set to `'CONCEPT_STYLE'`, then experimental concept-style system cuts will be used instead.

```python
log()
```

Log current settings.

### 1.21 actual

Methods for computing actual causation of subsystems and mechanisms.

```python
pyphi.actual.log2(x)
```

Rounded version of `log2`.

```python
class pyphi.actual.Transition(network, before_state, after_state, cause_indices, effect_indices, cut=None, noise_background=False)
```

A state transition between two sets of nodes in a network.

A `Transition` is implemented with two `Subsystem` objects: one representing the system at time $t-1$ used to compute effect coefficients, and another representing the system at time $t$ which is used to compute cause coefficients. These subsystems are accessed with the `effect_system` and `cause_system` attributes, and are mapped to the causal directions via the `system` attribute.

**Parameters**

- `network` (`Network`) – The network the subsystem belongs to.
- `before_state` (`tuple[int]`) – The state of the network at time $t-1$. 

---

(continued from previous page)
• \texttt{after\_state}(\text{tuple[int]}) – The state of the network at time $t$.

• \texttt{cause\_indices}(\text{tuple[int] or tuple[str]}) – Indices of nodes in the cause system. (TODO: clarify)

• \texttt{effect\_indices}(\text{tuple[int] or tuple[str]}) – Indices of nodes in the effect system. (TODO: clarify)

Keyword Arguments \texttt{noise\_background} (\texttt{bool}) – If True, background conditions are noised instead of frozen.

def node\_indices:
    "The indices of the nodes in the system."
    return tuple

def network:
    "The network the system belongs to."
    return Network

def before\_state:
    "The state of the network at time $t - 1$."
    return tuple

def after\_state:
    "The state of the network at time $t$."
    return tuple

def effect\_system:
    "The system in before\_state used to compute effect repertoires and coefficients."
    return Subsystem

def cause\_system:
    "The system in after\_state used to compute cause repertoires and coefficients."
    return Subsystem

def system:
    "A dictionary mapping causal directions to the system used to compute repertoires in that direction."
    return dict

def cut:
    "The cut that has been applied to this transition."
    return ActualCut

Note: During initialization, both the cause and effect systems are conditioned on \texttt{before\_state} as the background state. After conditioning the \texttt{effect\_system} is then properly reset to \texttt{after\_state}.


def node\_labels:
    "Return a JSON-serializable representation."

    return json()
apply_cut(cut)
Return a cut version of this transition.

cause_repertoire(mechanism, purview)
Return the cause repertoire.

effect_repertoire(mechanism, purview)
Return the effect repertoire.

unconstrained_cause_repertoire(purview)
Return the unconstrained cause repertoire of the occurrence.

unconstrained_effect_repertoire(purview)
Return the unconstrained effect repertoire of the occurrence.

repertoire(direction, mechanism, purview)
Return the cause or effect repertoire function based on a direction.

Parameters
direction (str) – The temporal direction, specifying the cause or effect repertoire.

state_probability(direction, repertoire, purview)
Compute the probability of the purview in its current state given the repertoire.
Collapses the dimensions of the repertoire that correspond to the purview nodes onto their state. All other dimension are already singular and thus receive 0 as the conditioning index.

Returns A single probability.

Return type float

probability(direction, mechanism, purview)
Probability that the purview is in its current state given the state of the mechanism.

unconstrained_probability(direction, purview)
Unconstrained probability of the purview.

purview_state(direction)
The state of the purview when we are computing coefficients in direction.

For example, if we are computing the cause coefficient of a mechanism in after_state, the direction is “CAUSE” and the purview_state is before_state.

mechanism_state(direction)
The state of the mechanism when computing coefficients in direction.

mechanism_indices(direction)
The indices of nodes in the mechanism system.

purview_indices(direction)
The indices of nodes in the purview system.

cause_ratio(mechanism, purview)
The cause ratio of the purview given mechanism.

effect_ratio(mechanism, purview)
The effect ratio of the purview given mechanism.

partitioned_repertoire(direction, partition)
Compute the repertoire over the partition in the given direction.

partitioned_probability(direction, partition)
Compute the probability of the mechanism over the purview in the partition.
**find_mip** *(direction, mechanism, purview, allow_neg=False)*

Find the ratio minimum information partition for a mechanism over a purview.

**Parameters**

- **direction** *(str)* – **CAUSE** or **EFFECT**
- **mechanism** *(tuple[int]*) – A mechanism.
- **purview** *(tuple[int]*) – A purview.

**Keyword Arguments**

- **allow_neg** *(boolean)* – If true, alpha is allowed to be negative. Otherwise, negative values of alpha will be treated as if they were 0.

**Returns** The irreducibility analysis for the mechanism.

**Return type** *AcRepertoireIrreducibilityAnalysis*

**potential_purviews** *(direction, mechanism, purviews=False)*

Return all purviews that could belong to the *MaximallyIrreducibleCause/MaximallyIrreducibleEffect*.

Filters out trivially-reducible purviews.

**Parameters**

- **direction** *(str)* – Either **CAUSE** or **EFFECT**.
- **mechanism** *(tuple[int]*) – The mechanism of interest.

**Keyword Arguments**

- **purviews** *(tuple[int]*) – Optional subset of purviews of interest.

**find_causal_link** *(direction, mechanism, purviews=False, allow_neg=False)*

Return the maximally irreducible cause or effect ratio for a mechanism.

**Parameters**

- **direction** *(str)* – The temporal direction, specifying cause or effect.
- **mechanism** *(tuple[int]*) – The mechanism to be tested for irreducibility.

**Keyword Arguments**

- **purviews** *(tuple[int]*) – Optionally restrict the possible purviews to a subset of the subsystem. This may be useful for _e.g._ finding only concepts that are “about” a certain subset of nodes.

**Returns** The maximally-irreducible actual cause or effect.

**Return type** *CausalLink*

**find_actual_cause** *(mechanism, purviews=False)*

Return the actual cause of a mechanism.

**find_actual_effect** *(mechanism, purviews=False)*

Return the actual effect of a mechanism.

**find_mice** *(*args, **kwargs)*

Backwards-compatible alias for **find_causal_link()**.

**pyphi.actual.directed_account** *(transition, direction, mechanisms=False, purviews=False, allow_neg=False)*

Return the set of all *CausalLink* of the specified direction.

**pyphi.actual.account** *(transition, direction=<Direction.BIDIRECTIONAL: 2>)*

Return the set of all causal links for a *Transition*.

**Parameters**

- **transition** *(Transition)* – The transition of interest.

**Keyword Arguments**

- **direction** *(Direction)* – By default the account contains actual causes and actual effects.
pyphi.actual.account_distance(A1, A2)
Return the distance between two accounts. Here that is just the difference in sum(alpha)

Parameters
- A1 (Account) – The first account.
- A2 (Account) – The second account

Returns The distance between the two accounts.
Return type float

pyphi.actual.sia(transition, direction=<Direction.BIDIRECTIONAL: 2>)
Return the minimal information partition of a transition in a specific direction.

Parameters transition (Transition) – The candidate system.

Returns A nested structure containing all the data from the intermediate calculations. The top level contains the basic irreducibility information for the given subsystem.

Return type AcSystemIrreducibilityAnalysis

class pyphi.actual.ComputeACSystemIrreducibility(iterable, *context)
Computation engine for AC SIAs.
description = 'Evaluating AC cuts'
empty_result (transition, direction, unpartitioned_account)
Return the default result with which to begin the computation.
static compute(cut, transition, direction, unpartitioned_account)
Map over a single object from self.iterable.
process_result(new_sia, min_sia)
Reduce handler.

Every time a new result is generated by compute, this method is called with the result and the previous (accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final result.

pyphi.actual.transitions(network, before_state, after_state)
Return a generator of all possible transitions of a network.

pyphi.actual.nexus(network, before_state, after_state, direction=<Direction.BIDIRECTIONAL: 2>)
Return a tuple of all irreducible nexus of the network.

pyphi.actual.causal_nexus(network, before_state, after_state, direction=<Direction.BIDIRECTIONAL: 2>)
Return the causal nexus of the network.

pyphi.actual.nice_true_ces(tc)
Format a true CauseEffectStructure.

pyphi.actual.events(network, previous_state, current_state, next_state, nodes, mechanisms=False)
Find all events (mechanisms with actual causes and actual effects).

pyphi.actual.true_ces(subsystem, previous_state, next_state)
Set of all sets of elements that have true causes and true effects.

Note: Since the true CauseEffectStructure is always about the full system, the background conditions don’t matter and the subsystem should be conditioned on the current state.
pyphi.actual.true_events(network, previous_state, current_state, next_state, indices=None, major_complex=None)

Return all mechanisms that have true causes and true effects within the complex.

Parameters

- **network** (Network) – The network to analyze.
- **previous_state** (tuple\[int\]) – The state of the network at t - 1.
- **current_state** (tuple\[int\]) – The state of the network at t.
- **next_state** (tuple\[int\]) – The state of the network at t + 1.

Keyword Arguments

- **indices** (tuple\[int\]) – The indices of the major complex.
- **major_complex** (AcSystemIrreducibilityAnalysis) – The major complex. If major_complex is given then indices is ignored.

Returns List of true events in the major complex.

Return type  tuple[Event]

pyphi.actual.extrinsic_events(network, previous_state, current_state, next_state, indices=None, major_complex=None)

Set of all mechanisms that are in the major complex but which have true causes and effects within the entire network.

Parameters

- **network** (Network) – The network to analyze.
- **previous_state** (tuple\[int\]) – The state of the network at t - 1.
- **current_state** (tuple\[int\]) – The state of the network at t.
- **next_state** (tuple\[int\]) – The state of the network at t + 1.

Keyword Arguments

- **indices** (tuple\[int\]) – The indices of the major complex.
- **major_complex** (AcSystemIrreducibilityAnalysis) – The major complex. If major_complex is given then indices is ignored.

Returns List of extrinsic events in the major complex.

Return type  tuple(actions)

1.22 cache

Memoization and caching utilities.

pyphi.cache.memory_full()

Check if the memory is too full for further caching.

pyphi.cache.cache(cache={}, maxmem=50, typed=False)

Memory-limited cache decorator.

maxmem is a float between 0 and 100, inclusive, specifying the maximum percentage of physical memory that the cache can use.
If `typed` is `True`, arguments of different types will be cached separately. For example, `f(3.0)` and `f(3)` will be treated as distinct calls with distinct results.

Arguments to the cached function must be hashable.

View the cache statistics named tuple (`hits`, `misses`, `currsiz`) with `f.cache_info()`. Clear the cache and statistics with `f.cache_clear()`. Access the underlying function with `f.__wrapped__`.

```python
class pyphi.cache.DictCache
A generic dictionary-based cache.

Intended to be used as an object-level cache of method results.

clear()
size() Number of items in cache
info() Return info about cache hits, misses, and size
get(key) Get a value out of the cache.
 Returns None if the key is not in the cache. Updates cache statistics.
set(key, value) Set a value in the cache
key(*args, _prefix=None, **kwargs) Get the cache key for the given function args.
 Kwargs: prefix: A constant to prefix to the key.
```

```python
pyphi.cache.redis_init(db)
pyphi.cache.redis_available() Check if the Redis server is connected.
```

```python
class pyphi.cache.RedisCache

clear() Flush the cache.

static size() Size of the Redis cache.

Note: This is the size of the entire Redis database.

info() Return cache information.

Note: This is not the cache info for the entire Redis key space.

get(key) Get a value from the cache.
 Returns None if the key is not in the cache.
```
**set** *(key, value)*
Set a value in the cache.

**key** *
Delegate to subclasses.

`pyphi.cache.validate_parent_cache(parent_cache)`

**class** `pyphi.cache.RedisMICECache(subsystem, parent_cache=None)`
A Redis-backed cache for `find_mice()`.

See `MICECache` for more info.

**get** *(key)*
Get a value from the cache.

If the `MaximallyIrreducibleCauseOrEffect` cannot be found in this cache, try and find it in the parent cache.

**set** *(key, value)*
Only need to set if the subsystem is uncut.
Caches are only inherited from uncut subsystems.

**key** *(direction, mechanism, purviews=False, _prefix=None)*
Cache key. This is the call signature of `find_mice()`.

**class** `pyphi.cache.DictMICECache(subsystem, parent_cache=None)`
A subsystem-local cache for `MaximallyIrreducibleCauseOrEffect` objects.

See `MICECache` for more info.

**set** *(key, mice)*
Set a value in the cache.

**Only cache if:**
- The subsystem is uncut (caches are only inherited from uncut subsystems so there is no reason to cache on cut subsystems.)
- \( \varphi > 0 \). Ideally we would cache all mice, but the size of the cache grows way too large, making parallel computations incredibly inefficient because the caches have to be passed between process. This will be changed once global caches are implemented.
- Memory is not too full.

**key** *(direction, mechanism, purviews=False, _prefix=None)*
Cache key. This is the call signature of `find_mice()`.

**class** `pyphi.cache.MICECache(subsystem, parent_cache=None)`
Construct a `MaximallyIrreducibleCauseOrEffect` cache.

Uses either a Redis-backed cache or a local dict cache on the object.

**Parameters**
- **subsystem** *(Subsystem)* – The subsystem that this is a cache for.

**Kwargs:**
- **parent_cache** *(MICECache)*: The cache generated by the uncut version of `subsystem`. Any cached `MaximallyIrreducibleCauseOrEffect` which are unaffected by the cut are reused in this cache. If None, the cache is initialized empty.

**class** `pyphi.cache.PurviewCache`
A network-level cache for possible purviews.
set (key, value)
Only set if purview caching is enabled

`pyphi.cache.method(cache_name, key_prefix=None)`
Caching decorator for object-level method caches.
Cache key generation is delegated to the cache.

Parameters
- `cache_name (str)` – The name of the (already-instantiated) cache on the decorated object which should be used to store results of this method.
- `*key_prefix` – A constant to use as part of the cache key in addition to the method arguments.

1.23 compute

See `pyphi.compute.subsystem`, `pyphi.compute.network`, `pyphi.compute.distance`, and `pyphi.compute.parallel` for documentation.

`pyphi.compute.all_complexes`
Alias for `pyphi.compute.network.all_complexes()`.

`pyphi.compute.ces`
Alias for `pyphi.compute.subsystem.ces()`.

`pyphi.compute.ces_distance`
Alias for `pyphi.compute.distance.ces_distance()`.

`pyphi.compute.complexes`
Alias for `pyphi.compute.network.complexes()`.

`pyphi.compute.concept_distance`
Alias for `pyphi.compute.distance.concept_distance()`.

`pyphi.compute.conceptual_info`
Alias for `pyphi.compute.subsystem.conceptual_info()`.

`pyphi.compute.condensed`
Alias for `pyphi.compute.network.condensed()`.

`pyphi.compute.evaluate_cut`
Alias for `pyphi.compute.subsystem.evaluate_cut()`.

`pyphi.compute.major_complex`
Alias for `pyphi.compute.network.major_complex()`.

`pyphi.compute.phi`
Alias for `pyphi.compute.subsystem.phi()`.

`pyphi.compute.possible_complexes`
Alias for `pyphi.compute.network.possible_complexes()`.

`pyphi.compute.sia`
Alias for `pyphi.compute.subsystem.sia()`.

`pyphi.compute.subsystems`
Alias for `pyphi.compute.network.subsystems()`.
1.24 compute.distance

Functions for computing distances between various PyPhi objects.

```python
pyphi.compute.distance.concept_distance(c1, c2)
```

Return the distance between two concepts in concept space.

**Parameters**

- `c1` (*Concept*) – The first concept.
- `c2` (*Concept*) – The second concept.

**Returns**
The distance between the two concepts in concept space.

**Return type** `float`

```python
pyphi.compute.distance.ces_distance(C1, C2)
```

Return the distance between two cause-effect structures.

**Parameters**

- `C1` (*CauseEffectStructure*) – The first *CauseEffectStructure*.
- `C2` (*CauseEffectStructure*) – The second *CauseEffectStructure*.

**Returns**
The distance between the two cause-effect structures in concept space.

**Return type** `float`

```python
pyphi.compute.distance.small_phi_ces_distance(C1, C2)
```

Return the difference in $\phi$ between *CauseEffectStructure*.

---

1.25 compute.network

Functions for computing network-level properties.

```python
pyphi.compute.network.subsystems(network, state)
```

Return a generator of all possible subsystems of a network.

**Note:** Does not return subsystems that are in an impossible state (after conditioning the subsystem TPM on the state of the other nodes).

**Parameters**

- `network` (*Network*) – The *Network* of interest.
- `state` (*tuple[int]*) – The state of the network (a binary tuple).

**Yields**

- *Subsystem* – A *Subsystem* for each subset of nodes in the network, excluding subsystems that would be in an impossible state.

```python
pyphi.compute.network.possible_complexes(network, state)
```

Return a generator of subsystems of a network that could be a complex.

This is the just powerset of the nodes that have at least one input and output (nodes with no inputs or no outputs cannot be part of a main complex, because they do not have a causal link with the rest of the subsystem in the previous or next timestep, respectively).
Note: Does not return subsystems that are in an impossible state (after conditioning the subsystem TPM on the state of the other nodes).

Parameters

- **network** ([Network](#)) – The Network of interest.
- **state** ([tuple[int]]()) – The state of the network (a binary tuple).

Yields `Subsystem` – The next subsystem that could be a complex.

class pyphi.compute.network.FindAllComplexes(iterable, *context)
Computation engine for finding all complexes.

description = 'Finding complexes'

empty_result ()
Return the default result with which to begin the computation.

static compute(subsystem)
Map over a single object from self.iterable.

process_result (new_sia, sias)
Reduce handler.
Every time a new result is generated by compute, this method is called with the result and the previous (accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final result.

pyphi.compute.network.all_complexes(network, state)
Return a generator for all complexes of the network.

Note: Includes reducible, zero-Φ complexes (which are not, strictly speaking, complexes at all).

Parameters

- **network** ([Network](#)) – The Network of interest.
- **state** ([tuple[int]]()) – The state of the network (a binary tuple).

Yields `SystemIrreducibilityAnalysis` – A `SystemIrreducibilityAnalysis` for each Subsystem of the Network.

class pyphi.compute.network.FindIrreducibleComplexes(iterable, *context)
Computation engine for finding irreducible complexes of a network.

process_result (new_sia, sias)
Reduce handler.
Every time a new result is generated by compute, this method is called with the result and the previous (accumulated) result. This method compares or collates these two values, returning the new result.

Setting self.done to True in this method will abort the remainder of the computation, returning this final result.

pyphi.compute.network.complexes(network, state)
Return all irreducible complexes of the network.
Parameters

- **network** (Network) – The Network of interest.
- **state** (tuple[int]) – The state of the network (a binary tuple).

Yields **SystemIrreducibilityAnalysis** – A SystemIrreducibilityAnalysis for each Subsystem of the Network, excluding those with $\Phi = 0$.

```python
pyphi.compute.network.major_complex(network, state)
```

Return the major complex of the network.

Parameters

- **network** (Network) – The Network of interest.
- **state** (tuple[int]) – The state of the network (a binary tuple).

Returns The SystemIrreducibilityAnalysis for the Subsystem with maximal $\Phi$.

Return type **SystemIrreducibilityAnalysis**

```python
pyphi.compute.network.condensed(network, state)
```

Return a list of maximal non-overlapping complexes.

Parameters

- **network** (Network) – The Network of interest.
- **state** (tuple[int]) – The state of the network (a binary tuple).

Returns A list of SystemIrreducibilityAnalysis for non-overlapping complexes with maximal $\Phi$ values.

Return type list[SystemIrreducibilityAnalysis]

### 1.26 compute.parallel

Utilities for parallel computation.

```python
pyphi.compute.parallel.get_num_processes()
```

Return the number of processes to use in parallel.

```python
class pyphi.compute.parallel.ExceptionWrapper(exception)
```

A picklable wrapper suitable for passing exception tracebacks through instances of multiprocessing. Queue.

Parameters **exception** (Exception) – The exception to wrap.

```python
reraise()
```

Re-raise the exception.

```python
class pyphi.compute.parallel.MapReduce(iterable, *context)
```

An engine for doing heavy computations over an iterable.

This is similar to multiprocessing.Pool, but allows computations to shortcircuit, and supports both parallel and sequential computations.

Parameters

- **iterable** (Iterable) – A collection of objects to perform a computation over.
- **context** – Any additional data necessary to complete the computation.

Any subclass of MapReduce must implement three methods:
The engine includes a builtin tqdm progress bar; this can be disabled by setting `pyphi.config.PROGRESS_BARS` to `False`.

Parallel operations start a daemon thread which handles log messages sent from worker processes.

Subprocesses spawned by `MapReduce` cannot spawn more subprocesses; be aware of this when composing nested computations. This is not an issue in practice because it is typically most efficient to only parallelize the top level computation.

```python
description = ''
empty_result(*context)
 Return the default result with which to begin the computation.

static compute(obj, *context)
 Map over a single object from `self.iterable`.

process_result(new_result, old_result)
 Reduce handler.
 Every time a new result is generated by `compute`, this method is called with the result and the previous (accumulated) result. This method compares or collates these two values, returning the new result.
 Setting `self.done` to `True` in this method will abort the remainder of the computation, returning this final result.

init_progress_bar()
 Initialize and return a progress bar.

static worker(compute, task_queue, result_queue, log_queue, complete, *context)
 A worker process, run by `multiprocessing.Process`.

start_parallel()
 Initialize all queues and start the worker processes and the log thread.

initialize_tasks()
 Load the input queue to capacity.
 Overfilling causes a deadlock when `queue.put` blocks when full, so further tasks are enqueued as results are returned.

maybe_put_task()
 Enqueue the next task, if there are any waiting.

run_parallel()
 Perform the computation in parallel, reading results from the output queue and passing them to `process_result`.

finish_parallel()
 Orderly shutdown of workers.

run_sequential()
 Perform the computation sequentially, only holding two computed objects in memory at a time.

run(parallel=True)
 Perform the computation.
```
    Keyword Arguments parallel (boolean) – If True, run the computation in parallel. Otherwise, operate sequentially.
class pyphi.compute.parallel.LogThread(q)
    Thread which handles log records sent from MapReduce processes.
    It listens to an instance of multiprocessing.Queue, rewriting log messages to the PyPhi log handler.

    run()
        Method representing the thread’s activity.
        You may override this method in a subclass. The standard run() method invokes the callable object passed to the object’s constructor as the target argument, if any, with sequential and keyword arguments taken from the args and kwargs arguments, respectively.

configure_worker_logging(queue)
    Configure a worker process to log all messages to queue.

1.27 compute.subsystem

Functions for computing subsystem-level properties.

class pyphi.compute.subsystem.ComputeCauseEffectStructure(iterable, *context)
    Engine for computing a CauseEffectStructure.

description = 'Computing concepts'

subsystem

empty_result(*args)
    Return the default result with which to begin the computation.

static compute(mechanism, subsystem, purviews, cause_purviews, effect_purviews)
    Compute a Concept for a mechanism, in this Subsystem with the provided purviews.

process_result(new_concept, concepts)
    Save all concepts with non-zero \( \phi \) to the CauseEffectStructure.

pyphi.compute.subsystem.ces(subsystem, mechanisms=False, purviews=False, cause_purviews=False, effect_purviews=False, parallel=False)
    Return the conceptual structure of this subsystem, optionally restricted to concepts with the mechanisms and purviews given in keyword arguments.
    If you don’t need the full CauseEffectStructure, restricting the possible mechanisms and purviews can make this function much faster.

    Parameters subsystem (Subsystem) – The subsystem for which to determine the CauseEffectStructure.

    Keyword Arguments
        • mechanisms (tuple[tuple[int]]) – Restrict possible mechanisms to those in this list.
        • purviews (tuple[tuple[int]]) – Same as in concept().
        • cause_purviews (tuple[tuple[int]]) – Same as in concept().
        • effect_purviews (tuple[tuple[int]]) – Same as in concept().
        • parallel (bool) – Whether to compute concepts in parallel. If True, overrides config.PARALLEL_CONCEPT_EVALUATION.

    Returns A tuple of every Concept in the cause-effect structure.

    Return type CauseEffectStructure
pyphi.compute.subsystem.conceptual_info(subsystem)
Return the conceptual information for a Subsystem.

This is the distance from the subsystem’s CauseEffectStructure to the null concept.

pyphi.compute.subsystem.evaluate_cut(uncut_subsystem, cut, unpartitioned_ces)
Compute the system irreducibility for a given cut.

Parameters
- uncut_subsystem (Subsystem) – The subsystem without the cut applied.
- cut (Cut) – The cut to evaluate.
- unpartitioned_ces (CauseEffectStructure) – The cause-effect structure of the uncut subsystem.

Returns The SystemIrreducibilityAnalysis for that cut.

Return type SystemIrreducibilityAnalysis

class pyphi.compute.subsystem.ComputeSystemIrreducibility(iterable, *context)
Computation engine for system-level irreducibility.

description = 'Evaluating \( \Phi \) cuts'

empty_result (subsystem, unpartitioned_ces)
Begin with a SystemIrreducibilityAnalysis with infinite \( \Phi \); all actual SIAs will have less.

static compute(cut, subsystem, unpartitioned_ces)
Evaluate a cut.

process_result(new_sia, min_sia)
Check if the new SIA has smaller \( \Phi \) than the standing result.

pyphi.compute.subsystem.sia_bipartitions(nodes, node_labels=None)
Return all \( \Phi \) cuts for the given nodes.

This value changes based on config.CUT_ONE_APPROXIMATION.

Parameters nodes (tuple[int]) – The node indices to partition.

Returns All unidirectional partitions.

Return type list[Cut]

pyphi.compute.subsystem.sia(cache_key, subsystem)
Return the minimal information partition of a subsystem.

Parameters subsystem (Subsystem) – The candidate set of nodes.

Returns A nested structure containing all the data from the intermediate calculations. The top level contains the basic irreducibility information for the given subsystem.

Return type SystemIrreducibilityAnalysis

pyphi.compute.subsystem.phi(subsystem)
Return the \( \Phi \) value of a subsystem.

class pyphi.compute.subsystem.ConceptStyleSystem(subsystem, direction, cut=None)
A functional replacement for Subsystem implementing concept-style system cuts.

apply_cut(cut)
__getattr__(name)
Pass attribute access through to the basic subsystem.
cause_system
effect_system
concept (mechanism, purviews=False, cause_purviews=False, effect_purviews=False)
    Compute a concept, using the appropriate system for each side of the cut.

pyphi.compute.subsystem.concept_cuts (direction, node_indices, node_labels=None)
    Generator over all concept-style cuts for these nodes.

pyphi.compute.subsystem.directional_sia (subsystem, direction, unpartitioned_ces=None)
    Calculate a concept-style SystemIrreducibilityAnalysisCause or SystemIrreducibilityAnalysisEffect.

class pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle (sia_cause, sia_effect)
    Represents a SystemIrreducibilityAnalysis computed using concept-style system cuts.

    min_sia
    __getattr__ (name)
        Pass attribute access through to the minimal SIA.

    unorderable_unless_eq = ['network']

    order_by ()
        Return a list of values to compare for ordering.

        The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

pyphi.compute.subsystem.sia_concept_style (subsystem)
    Compute a concept-style SystemIrreducibilityAnalysis

1.28 conf

1.28.1 Loading a configuration

Various aspects of PyPhi’s behavior can be configured.

When PyPhi is imported, it checks for a YAML file named pyphi_config.yml in the current directory and automatically loads it if it exists; otherwise the default configuration is used.

The various settings are listed here with their defaults.

```python
>>> import pyphi
```

```python
>>> defaults = pyphi.config.defaults()
```

Print the config object to see the current settings:

```python
>>> print(pyphi.config) # doctest: +SKIP
{'ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS': False,
 'CACHE_SIAS': False,
 'CACHE_POTENTIAL_PURVIEWS': True,
 'CACHING_BACKEND': 'fs',
 ...
```

Setting can be changed on the fly by assigning them a new value:

```python
>>> pyphi.config.PROGRESS_BARS = False
```
It is also possible to manually load a configuration file:

```python
>>> pyphi.config.load_file('pyphi_config.yml')
```

Or load a dictionary of configuration values:

```python
>>> pyphi.config.load_dict({'PRECISION': 1})
```

### 1.28.2 Approximations and theoretical options

These settings control the algorithms PyPhi uses.

- `ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS`
- `CUT_ONE_APPROXIMATION`
- `MEASURE`
- `PARTITION_TYPE`
- `PICK_SMALLEST_PURVIEW`
- `USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE`
- `SYSTEM_CUTS`
- `SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI`
- `VALIDATE_SUBSYSTEM_STATES`
- `VALIDATE_CONDITIONAL_INDEPENDENCE`

### 1.28.3 Parallelization and system resources

These settings control how much processing power and memory is available for PyPhi to use. The default values may not be appropriate for your use-case or machine, so please check these settings before running anything. Otherwise, there is a risk that simulations might crash (potentially after running for a long time!), resulting in data loss.

- `PARALLEL_CONCEPT_EVALUATION`
- `PARALLEL_CUT_EVALUATION`
- `PARALLEL_COMPLEX_EVALUATION`
- `NUMBER_OF_CORES`
- `MAXIMUM_CACHE_MEMORY_PERCENTAGE`

**Important:** Only one of `PARALLEL_CONCEPT_EVALUATION`, `PARALLEL_CUT_EVALUATION`, and `PARALLEL_COMPLEX_EVALUATION` can be set to `True` at a time.

For most networks, `PARALLEL_CUT_EVALUATION` is the most efficient. This is because the algorithm is exponential time in the number of nodes, so the most of the time is spent on the largest subsystem.

You should only parallelize concept evaluation if you are just computing a `CauseEffectStructure`. 
1.28.4 Memoization and caching

PyPhi provides a number of ways to cache intermediate results.

- CACHE_SIAS
- CACHE_REPERTOIRES
- CACHE_POTENTIAL_PURVIEWS
- CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA
- CACHING_BACKEND
- FS_CACHE_VERBOSITY
- FS_CACHE_DIRECTORY
- MONGODB_CONFIG
- REDIS_CACHE
- REDIS_CONFIG

1.28.5 Logging

These settings control how PyPhi handles log messages. Logs can be written to standard output, a file, both, or none. If these simple default controls are not flexible enough for you, you can override the entire logging configuration. See the documentation on Python’s logger for more information.

- LOG_STDOUT_LEVEL
- LOG_FILE_LEVEL
- LOG_FILE
- PROGRESS_BARS
- REPR_VERBOSITY
- PRINT_FRACTIONS

1.28.6 Numerical precision

- PRECISION

1.28.7 The config API

class pyphi.conf.Option(default, values=None, on_change=None, doc=None)

A descriptor implementing PyPhi configuration options.

Parameters
default – The default value of this Option.

Keyword Arguments

- values (list) – Allowed values for this option. A ValueError will be raised if values is not None and the option is set to be a value not in the list.

- on_change (function) – Optional callback that is called when the value of the option is changed. The Config instance is passed as the only argument to the callback.

- doc (str) – Optional docstring for the option.
class pyphi.conf.ConfigMeta(cls_name, bases, namespace)
    Metaclass for Config.
    Responsible for setting the name of each Option when a subclass of Config is created; because Option objects are defined on the class, not the instance, their name should only be set once.
    Python 3.6 handles this exact need with the special descriptor method __set_name__ (see PEP 487). We should use that once we drop support for 3.4 & 3.5.

class pyphi.conf.Config
    Base configuration object.
    See PyphiConfig for usage.
    
    @classmethod
    options()
        Return a dictionary of the Option objects for this config.
        
    defaults()
        Return the default values of this configuration.
        
    load_dict(dct)
        Load a dictionary of configuration values.
        
    load_file(filename)
        Load config from a YAML file.
        
    snapshot()
        Return a snapshot of the current values of this configuration.
        
    override(**new_values)
        Decorator and context manager to override configuration values.
        The initial configuration values are reset after the decorated function returns or the context manager completes it block, even if the function or block raises an exception. This is intended to be used by tests which require specific configuration values.

Example

```python
>>> from pyphi import config
>>> @config.override(PRECISION=20000)
... def test_something():
... assert config.PRECISION == 20000
... >>> test_something()
>>> with config.override(PRECISION=100):
... assert config.PRECISION == 100
...```

pyphi.conf.configure_logging(conf)
 Reconfigure PyPhi logging based on the current configuration.

class pyphi.conf.PyphiConfig
 pyphi.config is an instance of this class.

 ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS
 default=False
 In certain cases, making a cut can actually cause a previously reducible concept to become a proper, irreducible concept. Assuming this can never happen can increase performance significantly, however the obtained results are not strictly accurate.
CUT_ONE_APPROXIMATION
default=False

When determining the MIP for Φ, this restricts the set of system cuts that are considered to only those that cut the inputs or outputs of a single node. This restricted set of cuts scales linearly with the size of the system; the full set of all possible bipartitions scales exponentially. This approximation is more likely to give theoretically accurate results with modular, sparsely-connected, or homogeneous networks.

MEASURE
default='EMD'

The measure to use when computing distances between repertoires and concepts. A full list of currently installed measures is available by calling `print(pyphi.distance.measures.all())`. Note that some measures cannot be used for calculating Φ because they are asymmetric.

Custom measures can be added using the `pyphi.distance.measures.register` decorator. For example:

```python
from pyphi.distance import measures

@measures.register('ALWAYS_ZERO')
def always_zero(a, b):
    return 0
```

This measure can then be used by setting `config.MEASURE = 'ALWAYS_ZERO'`.

If the measure is asymmetric you should register it using the `asymmetric` keyword argument. See `distance` for examples.

PARALLEL_CONCEPT_EVALUATION
default=False

Controls whether concepts are evaluated in parallel when computing cause-effect structures.

PARALLEL_CUT_EVALUATION
default=True

Controls whether system cuts are evaluated in parallel, which is faster but requires more memory. If cuts are evaluated sequentially, only two `SystemIrreducibilityAnalysis` instances need to be in memory at once.

PARALLEL_COMPLEX_EVALUATION
default=False

Controls whether systems are evaluated in parallel when computing complexes.

NUMBER_OF_CORES
default=-1

Controls the number of CPU cores used to evaluate unidirectional cuts. Negative numbers count backwards from the total number of available cores, with -1 meaning ‘use all available cores.’

MAXIMUM_CACHE_MEMORY_PERCENTAGE
default=50

PyPhi employs several in-memory caches to speed up computation. However, these can quickly use a lot of memory for large networks or large numbers of them; to avoid thrashing, this setting limits the percentage of a system’s RAM that the caches can collectively use.

CACHE_SIAs
default=False
PyPhi is equipped with a transparent caching system for `SystemIrreducibilityAnalysis` objects which stores them as they are computed to avoid having to recompute them later. This makes it easy to play around interactively with the program, or to accumulate results with minimal effort. For larger projects, however, it is recommended that you manage the results explicitly, rather than relying on the cache. For this reason it is disabled by default.

CACHE_REPERTOIRES

```
default=True
```

PyPhi caches cause and effect repertoires. This greatly improves speed, but can consume a significant amount of memory. If you are experiencing memory issues, try disabling this.

CACHE_POTENTIAL_PURVIEWS

```
default=True
```

Controls whether the potential purviews of mechanisms of a network are cached. Caching speeds up computations by not recomputing expensive reducibility checks, but uses additional memory.

CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA

```
default=False
```

Controls whether a Subsystem's repertoire and MICE caches are cleared with `clear_caches()` after computing the `SystemIrreducibilityAnalysis`. If you don't need to do any more computations after running `sia()`, then enabling this may help conserve memory.

CACHING_BACKEND

```
default='fs'
```

Controls whether precomputed results are stored and read from a local filesystem-based cache in the current directory or from a database. Set this to 'fs' for the filesystem, 'db' for the database.

FS_CACHE_VERBOSITY

```
default=0
```

Controls how much caching information is printed if the filesystem cache is used. Takes a value between 0 and 11.

FS_CACHE_DIRECTORY

```
default='__pyphi_cache__'
```

If the filesystem is used for caching, the cache will be stored in this directory. This directory can be copied and moved around if you want to reuse results e.g. on another computer, but it must be in the same directory from which Python is being run.

MONGODB_CONFIG

```
27017, 'database_name': 'pyphi', 'collection_name': 'cache'}
```

Set the configuration for the MongoDB database backend (only has an effect if `CACHING_BACKEND` is 'db').

<table>
<thead>
<tr>
<th>Type</th>
<th><code>default</code>=<code>host</code></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>localhost</code>, <code>port</code></td>
</tr>
</tbody>
</table>

REDIS_CACHE

```
default=False
```

Specifies whether to use Redis to cache `MaximallyIrreducibleCauseOrEffect`.

REDIS_CONFIG

```
6379, 'db': 0, 'test_db': 1}
```

Configure the Redis database backend. These are the defaults in the provided `redis.conf` file.
Type ``default={‘host’
Type ‘localhost’, ‘port’

LOG_FILE
default='pyphi.log', on_change=configure_logging

Controls the name of the log file.

LOG_FILE_LEVEL
default='INFO', on_change=configure_logging

Controls the level of log messages written to the log file. This setting has the same possible values as LOG_STDOUT_LEVEL.

LOG_STDOUT_LEVEL
default='WARNING', on_change=configure_logging

Controls the level of log messages written to standard output. Can be one of 'DEBUG', 'INFO', 'WARNING', 'ERROR', 'CRITICAL', or None. 'DEBUG' is the least restrictive level and will show the most log messages. 'CRITICAL' is the most restrictive level and will only display information about fatal errors. If set to None, logging to standard output will be disabled entirely.

PROGRESS_BARS
default=True

Controls whether to show progress bars on the console.

Tip: If you are iterating over many systems rather than doing one long-running calculation, consider disabling this for speed.

PRECISION
default=6

If MEASURE is EMD, then the Earth Mover’s Distance is calculated with an external C++ library that a numerical optimizer to find a good approximation. Consequently, systems with analytically zero Φ will sometimes be numerically found to have a small but non-zero amount. This setting controls the number of decimal places to which PyPhi will consider EMD calculations accurate. Values of Φ lower than $10^{-\text{PRECISION}}$ will be considered insignificant and treated as zero. The default value is about as accurate as the EMD computations get.

VALIDATE_SUBSYSTEM_STATES
default=True

Controls whether PyPhi checks if the subsystems’s state is possible (reachable with nonzero probability from some previous state), given the subsystem’s TPM (which is conditioned on background conditions). If this is turned off, then calculated Φ values may not be valid, since they may be associated with a subsystem that could never be in the given state.

VALIDATECONDITIONAL_INDEPENDENCE
default=True

Controls whether PyPhi checks if a system’s TPM is conditionally independent.

SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PHI
default=False

If set to True, the Φ value of single micro-node subsystems is the difference between their unpartitioned CauseEffectStructure (a single concept) and the null concept. If set to False, their Φ is defined to be zero. Single macro-node subsystems may always be cut, regardless of circumstances.
REPR_VERBOSITY

default=2, values=[0, 1, 2]

Controls the verbosity of __repr__ methods on PyPhi objects. Can be set to 0, 1, or 2. If set to 1, calling repr on PyPhi objects will return pretty-formatted and legible strings, excluding repertoires. If set to 2, repr calls also include repertoires.

Although this breaks the convention that __repr__ methods should return a representation which can reconstruct the object, readable representations are convenient since the Python REPL calls repr to represent all objects in the shell and PyPhi is often used interactively with the REPL. If set to 0, repr returns more traditional object representations.

PRINT_FRACTIONS

default=True

Controls whether numbers in a repr are printed as fractions. Numbers are still printed as decimals if the fraction's denominator would be large. This only has an effect if REPR_VERBOSITY > 0.

PARTITION_TYPE

default='BI'

Controls the type of partition used for ϕ computations.

If set to 'BI', partitions will have two parts.

If set to 'TRI', partitions will have three parts. In addition, computations will only consider partitions that strictly partition the mechanism. That is, for the mechanism (A, B) and purview (B, C, D) the partition:

```
 A, B
  ___
   B  C, D
```

is not considered, but:

```
 A   B
   ___
 B  C, D
```

is. The following is also valid:

```
 A, B
  ___
 B, C, D
```

In addition, this setting introduces “wedge” tripartitions of the form:

```
 A   B
  ___
 B    C, D
```

where the mechanism in the third part is always empty.

Finally, if set to 'ALL', all possible partitions will be tested.

You can experiment with custom partitioning strategies using the pyphi.partition.partition_types.register decorator. For example:

```python
from pyphi.models import KPartition, Part
from pyphi.partition import partition_types
```
This generates the set of partitions that cut connections between a single mechanism element and the entire purview. The mechanism and purview of each `Part` remain undivided - only connections between parts are severed.

You can use this new partitioning scheme by setting `config.PARTITION_TYPE = 'SINGLE_NODE'`.

See `partition` for more examples.

PICK_SMALLEST_PURVIEW

`default=False`

When computing a `MaximallyIrreducibleCause` or `MaximallyIrreducibleEffect`, it is possible for several MIPs to have the same Φ value. If this setting is set to `True` the MIP with the smallest purview is chosen; otherwise, the one with largest purview is chosen.

USE_SMALL_PHI_DIFFERENCE_FOR_CES_DISTANCE

`default=False`

If set to `True`, the distance between cause-effect structures (when computing a `SystemIrreducibilityAnalysis`) is calculated using the difference between the sum of Φ in the cause-effect structures instead of the extended EMD.

SYSTEM_CUTS

`default='3.0_STYLE', values=['3.0_STYLE', 'CONCEPT_STYLE']`

If set to '3.0_STYLE', then traditional IIT 3.0 cuts will be used when computing Φ. If set to 'CONCEPT_STYLE', then experimental concept-style system cuts will be used instead.

`log()`

Log current settings.

1.29 connectivity

Functions for determining network connectivity properties.

`pyphi.connectivity.apply_boundary_conditions_to_cm(external_indices, cm)`

Remove connections to or from external nodes.

`pyphi.connectivity.get_inputs_from_cm(index, cm)`

Return indices of inputs to the node with the given index.

`pyphi.connectivity.get_outputs_from_cm(index, cm)`

Return indices of the outputs of node with the given index.
pyphi.connectivity.causally_significant_nodes(cm)
 Return indices of nodes that have both inputs and outputs.

pyphi.connectivity.relevant_connections(n, _from, to)
 Construct a connectivity matrix.

 Parameters
 • n (int) – The dimensions of the matrix
 • _from (tuple[int]) – Nodes with outgoing connections to to
 • to (tuple[int]) – Nodes with incoming connections from _from

 Returns
 An \(N \times N \) connectivity matrix with the \((i, j)\)th entry is 1 if \(i \) is in _from and \(j \) is in to, and 0 otherwise.

 Return type np.ndarray

pyphi.connectivity.block_cm(cm)
 Return whether cm can be arranged as a block connectivity matrix.

 If so, the corresponding mechanism/purview is trivially reducible. Technically, only square matrices are “block diagonal”, but the notion of connectivity carries over.

 We test for block connectivity by trying to grow a block of nodes such that:
 • ‘source’ nodes only input to nodes in the block
 • ‘sink’ nodes only receive inputs from source nodes in the block

 For example, the following connectivity matrix represents connections from nodes1 = A, B, C to nodes2 = D, E, F, G (without loss of generality, note that nodes1 and nodes2 may share elements):

<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Since nodes \(AB \) only connect to nodes \(DE \), and node \(C \) only connects to nodes \(FG \), the subgraph is reducible, because the cut

```
A, B, C
  D, E  F, G
```

does not change the structure of the graph.

pyphi.connectivity.block_reducible(cm, nodes1, nodes2)
 Return whether connections from nodes1 to nodes2 are reducible.

 Parameters
 • cm (np.ndarray) – The network’s connectivity matrix.
 • nodes1 (tuple[int]) – Source nodes
 • nodes2 (tuple[int]) – Sink nodes

pyphi.connectivity.is_strong(cm, nodes=None)
 Return whether the connectivity matrix is strongly connected.

 Remember that a singleton graph is strongly connected.

 Parameters
 • cm (np.ndarray) – A square connectivity matrix.
Keyword Arguments `nodes` (`tuple[int]`) – A subset of nodes to consider.

```python
pyphi.connectivity.is_weak(cm, nodes=None)
```

Return whether the connectivity matrix is weakly connected.

Parameters
- `cm` (`np.ndarray`) – A square connectivity matrix.
- `nodes` (`tuple[int]`) – A subset of nodes to consider.

```python
pyphi.connectivity.is_full(cm, nodes1, nodes2)
```

Test connectivity of one set of nodes to another.

Parameters
- `cm` (`np.ndarray`) – The connectivity matrix
- `nodes1` (`tuple[int]`) – The nodes whose outputs to `nodes2` will be tested.
- `nodes2` (`tuple[int]`) – The nodes whose inputs from `nodes1` will be tested.

Returns
- True if all elements in `nodes1` output to some element in `nodes2` and all elements in `nodes2` have an input from some element in `nodes1`, or if either set of nodes is empty; False otherwise.

Return type `bool`

1.30 constants

Package-wide constants.

```python
pyphi.constants.EPSILON = 1e-06
```

The threshold below which we consider differences in phi values to be zero.

```python
pyphi.constants.FILESYSTEM = 'fs'
```

Label for the filesystem cache backend.

```python
pyphi.constants.DATABASE = 'db'
```

Label for the MongoDB cache backend.

```python
pyphi.constants.PICKLE_PROTOCOL = 4
```

The protocol used for pickling objects.

```python
pyphi.constants.joblib_memory = Memory(location=__pyphi_cache__/joblib)
```

The joblib Memory object for persistent caching without a database.

```python
pyphi.constants.OFF = (0,)
```

Node states

1.31 convert

Conversion functions.

See the documentation on PyPhi *Transition probability matrix conventions* for information on the different representations that these functions convert between.

```python
pyphi.convert.reverse_bits(i, n)
```

Reverse the bits of the n-bit decimal number `i`.
Examples

```python
>>> reverse_bits(12, 7)
24
>>> reverse_bits(0, 1)
0
>>> reverse_bits(1, 2)
2
```
The output is the reverse of `be_index2state()`.

Parameters
- `i` (int) – A decimal integer corresponding to a network state under the little-endian convention.

Returns
A state-tuple where the \(i \)th element of the tuple gives the state of the \(i \)th node.

Return type
tuple[int]

Examples

```python
>>> number_of_nodes = 5
>>> ie_index2state(1, number_of_nodes)
(1, 0, 0, 0, 0)
>>> number_of_nodes = 8
>>> ie_index2state(7, number_of_nodes)
(1, 1, 0, 0, 0, 0, 0, 0)
```

`pyphi.convert.be_index2state(i, number_of_nodes)`

Convert a decimal integer to a PyPhi state tuple using the big-endian convention that the most-significant bits correspond to low-index nodes.

The output is the reverse of `le_index2state()`.

Parameters
- `i` (int) – A decimal integer corresponding to a network state under the big-endian convention.

Returns
A state-tuple where the \(i \)th element of the tuple gives the state of the \(i \)th node.

Return type
tuple[int]

Examples

```python
>>> number_of_nodes = 5
>>> be_index2state(1, number_of_nodes)
(0, 0, 0, 0, 1)
>>> number_of_nodes = 8
>>> be_index2state(7, number_of_nodes)
(0, 0, 0, 0, 1, 1, 1, 1)
```

`pyphi.convert.be2le_state_by_state(tpm)`

Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters
- `tpm` (np.ndarray) – A state-by-state TPM.

Returns
The state-by-state TPM in the other indexing format.

Return type
np.ndarray

Example

```python
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0.,  1.,  2.,  3.],
       [ 8.,  9., 10., 11.],
       [ 4.,  5.,  6.,  7.],
       [12., 13., 14., 15.]])
```
pyphi.convert.le2be_state_by_state *(tpm)*

Convert a state-by-state TPM from big-endian to little-endian or vice versa.

Parameters `tpm` *(np.ndarray)* – A state-by-state TPM.

Returns The state-by-state TPM in the other indexing format.

Return type `np.ndarray`

Example

```python
>>> tpm = np.arange(16).reshape([4, 4])
>>> be2le_state_by_state(tpm)
array([[ 0.,  1.,  2.,  3.],
       [ 8.,  9., 10., 11.],
       [ 4.,  5.,  6.,  7.],
       [12., 13., 14., 15.]])
```

pyphi.convert.to_multidimensional *(tpm)*

Reshape a state-by-node TPM to the multidimensional form.

See documentation for the `Network` object for more information on TPM formats.

pyphi.convert.to_2dimensional *(tpm)*

Reshape a state-by-node TPM to the 2-dimensional form.

See `Transition probability matrix conventions` and documentation for the `Network` object for more information on TPM representations.

pyphi.convert.state_by_state2state_by_node *(tpm)*

Convert a state-by-state TPM to a state-by-node TPM.

Danger: Many nondeterministic state-by-state TPMs can be represented by a single a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally independent, as this function does. **If the given TPM is not conditionally independent, the conditional dependencies will be silently lost.**

Note: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention. See the documentation on PyPhi the `Transition probability matrix conventions` more information.

Parameters `tpm` *(list[list] or np.ndarray)* – A square state-by-state TPM with row and column indices following the little-endian convention.

Returns A state-by-node TPM, with row indices following the little-endian convention.

Return type `np.ndarray`

Example

```python
>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
...                  [0.0, 1.0, 0.0, 0.0],
...                  [0.0, 0.2, 0.0, 0.8],
...                  [0.0, 0.0, 0.0, 1.0]])
```
>>> state_by_state2state_by_node(tpm)
array([[0.5, 0.],
 [1. , 0.8]],

 [[1. , 0.],
 [0.3, 0.7]])

pyphi.convert.state_by_node2state_by_state(tpm)

Convert a state-by-node TPM to a state-by-state TPM.

Important: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally independent. Therefore, **this function returns the corresponding conditionally independent state-by-state TPM.**

Note: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention, while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi Transition probability matrix conventions for more info.

Parameters

- **tpm** *(list[list] or np.ndarray)* – A state-by-node TPM with row indices following the little-endian convention and column indices following the big-endian convention.

Returns

A state-by-state TPM, with both row and column indices following the big-endian convention.

Return type np.ndarray

```python
>>> tpm = np.array([[1, 1, 0],
                  ... [0, 0, 1],
                  ... [0, 1, 1],
                  ... [1, 0, 0],
                  ... [0, 0, 1],
                  ... [1, 0, 0],
                  ... [1, 1, 1],
                  ... [1, 0, 1]])
```

```python
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1.],
       [0., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1.],
       [0., 0., 0., 0., 0., 0., 1., 0.]]
```

pyphi.convert.b2l(i, n)

Convert between big-endian and little-endian for indices in range(n).

pyphi.convert.l2b(i, n)

Convert between big-endian and little-endian for indices in range(n).
pyphi.convert.l2s(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple with the little-endian convention.

The output is the reverse of be_index2state().

Parameters

- `i (int)` – A decimal integer corresponding to a network state under the little-endian convention.

Returns

A state-tuple where the \(i\)th element of the tuple gives the state of the \(i\)th node.

Return type
tuple[int]

Examples

```python
>>> number_of_nodes = 5
>>> le_index2state(1, number_of_nodes)
(1, 0, 0, 0, 0)
>>> number_of_nodes = 8
>>> le_index2state(7, number_of_nodes)
(1, 1, 1, 0, 0, 0, 0, 0)
```

pyphi.convert.b2s(i, number_of_nodes)
Convert a decimal integer to a PyPhi state tuple using the big-endian convention that the most-significant bits correspond to low-index nodes.

The output is the reverse of le_index2state().

Parameters

- `i (int)` – A decimal integer corresponding to a network state under the big-endian convention.

Returns

A state-tuple where the \(i\)th element of the tuple gives the state of the \(i\)th node.

Return type
tuple[int]

Examples

```python
>>> number_of_nodes = 5
>>> be_index2state(1, number_of_nodes)
(0, 0, 0, 0, 1)
>>> number_of_nodes = 8
>>> be_index2state(7, number_of_nodes)
(0, 0, 0, 0, 0, 1, 1, 1)
```

pyphi.convert.s2l(state)
Convert a PyPhi state-tuple to a decimal index according to the little-endian convention.

Parameters

- `state (tuple[int])` – A state-tuple where the \(i\)th element of the tuple gives the state of the \(i\)th node.

Returns

A decimal integer corresponding to a network state under the little-endian convention.

Return type
int

Examples
```python
>>> state2le_index((1, 0, 0, 0, 0))
1
>>> state2le_index((1, 1, 1, 0, 0, 0, 0, 0))
7

pyphi.convert.s2b(state)
Convert a PyPhi state-tuple to a decimal index according to the big-endian convention.

Parameters
- state (tuple[int]) – A state-tuple where the i\text{th} element of the tuple gives the state of the i\text{th} node.

Returns
- A decimal integer corresponding to a network state under the big-endian convention.

Return type
- int

Examples
```
pyphi.convert.to_md(tpm)
Reshape a state-by-node TPM to the multidimensional form.
See documentation for the Network object for more information on TPM formats.

pyphi.convert.to_2d(tpm)
Reshape a state-by-node TPM to the 2-dimensional form.
See Transition probability matrix conventions and documentation for the Network object for more information on TPM representations.

pyphi.convert.sbn2sbs(tpm)
Convert a state-by-node TPM to a state-by-state TPM.

Important: A nondeterministic state-by-node TPM can have more than one representation as a state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the TPMs to be conditionally independent. Therefore, this function returns the corresponding conditionally independent state-by-state TPM.

Note: The indices of the rows of the state-by-node TPM are assumed to follow the little-endian convention, while the indices of the columns follow the big-endian convention. The indices of the rows and columns of the resulting state-by-state TPM both follow the big-endian convention. See the documentation on PyPhi Transition probability matrix conventions for more info.

Parameters

- **tpm** (*list[list] or np.ndarray*) – A state-by-node TPM with row indices following the little-endian convention and column indices following the big-endian convention.

Returns

- A state-by-state TPM, with both row and column indices following the big-endian convention.

Return type

- np.ndarray

```python
>>> tpm = np.array([[1, 1, 0],
        ... [0, 0, 1],
        ... [0, 1, 1],
        ... [1, 0, 0],
        ... [0, 0, 1],
        ... [1, 0, 0],
        ... [1, 1, 1],
        ... [1, 0, 1]])
>>> state_by_node2state_by_state(tpm)
array([[0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 1., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 1., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 1., 0., 0., 0.],
       [0., 1., 0., 0., 0., 0., 0., 0.],
       [0., 0., 0., 0., 0., 0., 0., 1.]])
```
pyphi.convert.sbs2sbn(tpm)
Convert a state-by-state TPM to a state-by-node TPM.

Danger: Many nondeterministic state-by-state TPMs can be represented by a single state-by-state TPM. However, the mapping can be made to be one-to-one if we assume the state-by-state TPM is conditionally independent, as this function does. **If the given TPM is not conditionally independent, the conditional dependencies will be silently lost.**

Note: The indices of the rows and columns of the state-by-state TPM are assumed to follow the little-endian convention. The indices of the rows of the resulting state-by-node TPM also follow the little-endian convention. See the documentation on PyPhi the Transition probability matrix conventions more information.

Parameters

- **tpm** *(list[list] or np.ndarray)* – A square state-by-state TPM with row and column indices following the little-endian convention.

Returns
A state-by-node TPM, with row indices following the little-endian convention.

Return type
np.ndarray

Example

```python
>>> tpm = np.array([[0.5, 0.5, 0.0, 0.0],
...                  [0.0, 1.0, 0.0, 0.0],
...                  [0.0, 0.2, 0.0, 0.8],
...                  [0.0, 0.3, 0.7, 0.0]])
>>> state_by_state2state_by_node(tpm)
array([[0.5, 0.],
       [1.0, 0.8]])
```

1.32 direction

Causal directions.

class pyphi.direction.Direction

Constant that parametrizes cause and effect methods.

Accessed using Direction.CAUSE and Direction.EFFECT, etc.

- **CAUSE** = 0
- **EFFECT** = 1
- **BIDIRECTIONAL** = 2

to_json()

from_json = <bound method Direction.from_json of <enum 'Direction'>>

order *(mechanism, purview)*

Order the mechanism and purview in time.
If the direction is \text{CAUSE}, then the purview is at $t - 1$ and the mechanism is at time t. If the direction is \text{EFFECT}, then the mechanism is at time t and the purview is at $t + 1$.

1.33 distance

Functions for measuring distances.

```python
class pyphi.distance.MeasureRegistry:
    Storage for measures registered with PyPhi.
```

Users can define custom measures:

Examples

```python
>>> @measures.register('ALWAYS_ZERO')  # doctest: +SKIP
... def always_zero(a, b):
...     return 0
```

And use them by setting `config.MEASURE = 'ALWAYS_ZERO'`.

```python
desc = 'measures'
register(name, asymmetric=False)
```

Decorator for registering a measure with PyPhi.

```python
decorator
Parameters name (string) -- The name of the measure.
Keyword Arguments asymmetric (boolean) -- True if the measure is asymmetric.
```

```python
class pyphi.distance.np_suppress:
    Decorator to suppress NumPy warnings about divide-by-zero and multiplication of NaN.
```

Note

This should only be used in cases where you are sure that these warnings are not indicative of deeper issues in your code.

```python
pyphi.distance.hamming_emd(d1, d2)
```

Return the Earth Mover’s Distance between two distributions (indexed by state, one dimension per node) using the Hamming distance between states as the transportation cost function.

Singleton dimensions are squeezed out.

```python
pyphi.distance.effect_emd(d1, d2)
```

Compute the EMD between two effect repertoires.

Because the nodes are independent, the EMD between effect repertoires is equal to the sum of the EMDs between the marginal distributions of each node, and the EMD between marginal distribution for a node is the absolute difference in the probabilities that the node is OFF.

Parameters

- `d1 (np.ndarray)` – The first repertoire.
- `d2 (np.ndarray)` – The second repertoire.

Returns The EMD between \textit{d1} and \textit{d2}.
Return type float

pyphi.distance.l1(d1, d2)
Return the L1 distance between two distributions.

Parameters
• d1 (np.ndarray) – The first distribution.
• d2 (np.ndarray) – The second distribution.

Returns The sum of absolute differences of d1 and d2.

Return type float

pyphi.distance.kld(d1, d2)
Return the Kullback-Leibler Divergence (KLD) between two distributions.

Parameters
• d1 (np.ndarray) – The first distribution.
• d2 (np.ndarray) – The second distribution.

Returns The KLD of d1 from d2.

Return type float

pyphi.distance.entropy_difference(d1, d2)
Return the difference in entropy between two distributions.

pyphi.distance.psq2(d1, d2)
Compute the PSQ2 measure.

Parameters
• d1 (np.ndarray) – The first distribution.
• d2 (np.ndarray) – The second distribution.

pyphi.distance.mp2q(p, q)
Compute the MP2Q measure.

Parameters
• p (np.ndarray) – The unpartitioned repertoire
• q (np.ndarray) – The partitioned repertoire

pyphi.distance.klm(p, q)
Compute the KLM divergence.

pyphi.distance.directional_emd(direction, d1, d2)
Compute the EMD between two repertoires for a given direction.

The full EMD computation is used for cause repertoires. A fast analytic solution is used for effect repertoires.

Parameters
• direction (Direction) – CAUSE or EFFECT.
• d1 (np.ndarray) – The first repertoire.
• d2 (np.ndarray) – The second repertoire.

Returns The EMD between d1 and d2, rounded to PRECISION.

Return type float
Raises `ValueError` – If `direction` is invalid.

```python
def repertoire_distance(direction, r1, r2)
    Compute the distance between two repertoires for the given direction.

Parameters
    • `direction` (Direction) – `CAUSE` or `EFFECT`.
    • `r1` (np.ndarray) – The first repertoire.
    • `r2` (np.ndarray) – The second repertoire.

Returns
    The distance between d1 and d2, rounded to PRECISION.

Return type
    float
```

```python
def system_repertoire_distance(r1, r2)
    Compute the distance between two repertoires of a system.

Parameters
    • `r1` (np.ndarray) – The first repertoire.
    • `r2` (np.ndarray) – The second repertoire.

Returns
    The distance between r1 and r2.

Return type
    float
```

1.34 distribution

Functions for manipulating probability distributions.

```python
def normalize(a)
    Normalize a distribution.

Parameters
    • `a` (np.ndarray) – The array to normalize.

Returns
    a normalized so that the sum of its entries is 1.

Return type
    np.ndarray
```

```python
def uniform_distribution(number_of_nodes)
    Return the uniform distribution for a set of binary nodes, indexed by state (so there is one dimension per node, the size of which is the number of possible states for that node).

Parameters
    • `nodes` (np.ndarray) – A set of indices of binary nodes.

Returns
    The uniform distribution over the set of nodes.

Return type
    np.ndarray
```

```python
def marginal_zero(repertoire, node_index)
    Return the marginal probability that the node is OFF.
```

```python
def marginal(repertoire, node_index)
    Get the marginal distribution for a node.
```

```python
def independent(repertoire)
    Check whether the repertoire is independent.
```

```python
def purview(repertoire)
    The purview of the repertoire.
```
Parameters `repertoire (np.ndarray)` – A repertoire

Returns The purview that the repertoire was computed over.

Return type tuple[int]

`pyphi.distribution.purview_size (repertoire)`

Return the size of the purview of the repertoire.

Parameters `repertoire (np.ndarray)` – A repertoire

Returns The size of the purview that the repertoire was computed over.

Return type int

`pyphi.distribution.repertoire_shape (purview, N)`

Return the shape of a repertoire.

Parameters

- `purview (tuple[int])` – The purview over which the repertoire is computed.
- `N (int)` – The number of elements in the system.

Returns The shape of the repertoire. Purview nodes have two dimensions and non-purview nodes are collapsed to a unitary dimension.

Return type list[int]

Example

```python
>>> purview = (0, 2)
>>> N = 3
>>> repertoire_shape(purview, N)
[2, 1, 2]
```

`pyphi.distribution.flatten (repertoire, big_endian=False)`

Flatten a repertoire, removing empty dimensions.

By default, the flattened repertoire is returned in little-endian order.

Parameters `repertoire (np.ndarray or None)` – A repertoire.

Keyword Arguments `big_endian (boolean)` – If True, flatten the repertoire in big-endian order.

Returns The flattened repertoire.

Return type np.ndarray

`pyphi.distribution.max_entropy_distribution (node_indices, number_of_nodes)`

Return the maximum entropy distribution over a set of nodes.

This is different from the network’s uniform distribution because nodes outside `node_indices` are fixed and treated as if they have only 1 state.

Parameters

- `node_indices (tuple[int])` – The set of node indices over which to take the distribution.
- `number_of_nodes (int)` – The total number of nodes in the network.

Returns The maximum entropy distribution over the set of nodes.
Return type np.ndarray

1.35 examples

Example networks and subsystems to go along with the documentation.

pyphi.examples.basic_network (cm=False)
A 3-node network of logic gates.

Diagram:

TPM:

<table>
<thead>
<tr>
<th>Previous state</th>
<th>Current state</th>
</tr>
</thead>
<tbody>
<tr>
<td>A, B, C</td>
<td>A, B, C</td>
</tr>
<tr>
<td>0, 0, 0</td>
<td>0, 0, 0</td>
</tr>
<tr>
<td>1, 0, 0</td>
<td>0, 0, 1</td>
</tr>
<tr>
<td>0, 1, 0</td>
<td>1, 0, 1</td>
</tr>
<tr>
<td>1, 1, 0</td>
<td>1, 0, 0</td>
</tr>
<tr>
<td>0, 0, 1</td>
<td>1, 1, 0</td>
</tr>
<tr>
<td>1, 0, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>0, 1, 1</td>
<td>1, 1, 1</td>
</tr>
<tr>
<td>1, 1, 1</td>
<td>1, 1, 0</td>
</tr>
</tbody>
</table>

Connectivity matrix:

Note:

Note: \([CM]_{i,j} = 1\) means that there is a directed edge \((i,j)\) from node \(i\) to node \(j\) and \([CM]_{i,j} = 0\) means there is no edge from \(i\) to \(j\).

pyphi.examples.basic_state ()
The state of nodes in basic_network().

pyphi.examples.basic_subsystem ()
A subsystem containing all the nodes of the basic_network().
pyphi.examples.basic_noisy_selfloop_network()

Based on the basic_network, but with added selfloops and noisy edges.

Nodes perform deterministic functions of their inputs, but those inputs may be flipped (i.e. what should be a 0 becomes a 1, and vice versa) with probability epsilon (eps = 0.1 here).

Diagram:

```
+---+
|   v
+---------+
| ~~~> | A | ~<----+
|     |   (OR) +----+
|     | ~~~~~~+   |
|     |       v   |
+---------+ ~~~~+
| ~~~~~~+ ~~~~~~+
|     | B | ~<----+
|     |   (COPY) ~~~~~~+
|     | ~~~~~~+   |
|     |       v   |
+---+ ~~~~+
```

pyphi.examples.basic_noisy_selfloop_subsystem()

A subsystem containing all the nodes of the **basic_noisy_selfloop_network()**.

pyphi.examples.residue_network()

The network for the residue example.

Current and previous state are all nodes OFF.

Diagram:

```
+---------+ +---------+
| A | | B |
| ~~~> | (AND) | | (AND) | ~<~~+
| +--------+ +--------+|
|   ^       ^       |
|     |   |     |
|     | +----+   |
|     | ~~~~~~+ ~~~~~~+
|     |       | | |
|     | +--------+ +--------+|
|     |     |     |
|     | +--------+ +--------+|
|     |     |     |
|     | +--------+ +--------+|
|     |     |     |
|     |   |   |
|     | C | D | E |
| +--------+ +--------+ +--------+|
```

Connectivity matrix:

```
<table>
<thead>
<tr>
<th>. A B C D E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A 0 0 0 0 0</td>
</tr>
<tr>
<td>B 0 0 0 0 0</td>
</tr>
<tr>
<td>C 1 0 0 0 0</td>
</tr>
<tr>
<td>D 1 1 0 0 0</td>
</tr>
<tr>
<td>E 0 1 0 0 0</td>
</tr>
</tbody>
</table>
```

pyphi.examples.residue_subsystem()

The subsystem containing all the nodes of the **residue_network()**.
pyphi.examples.xor_network()

A fully connected system of three XOR gates. In the state \((0, 0, 0)\), none of the elementary mechanisms exist.

Diagram:

```
+--------+ +--------+
| A +<--------+ B |
| (XOR) +-------->| (XOR) |
+--------+ +--------+
| ^        ^       |
| +--------| C +-----|
+--------+ (XOR) +<-----+
                    +------+
```

Connectivity matrix:

```
   .  A  B  C
  A 0 1 1
  B 1 0 1
  C 1 1 0
```

pyphi.examples.xor_subsystem()

The subsystem containing all the nodes of the `xor_network()`.

pyphi.examples.cond_depend_tpm()

A system of two general logic gates A and B such if they are in the same state they stay the same, but if they are in different states, they flip with probability 50%.

Diagram:

```
+--------+ +--------+
| A +<--------+ B |
| +-------->| |
+--------+ +--------+
```

TPM:

```
<table>
<thead>
<tr>
<th></th>
<th>(0, 0)</th>
<th>(1, 0)</th>
<th>(0, 1)</th>
<th>(1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0)</td>
<td>1.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 0)</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>(0, 1)</td>
<td>0.0</td>
<td>0.5</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>
```

Connectivity matrix:

```
   .  A  B
  A 0 1
  B 1 0
```

pyphi.examples.cond_independ_tpm()

A system of three general logic gates A, B and C such that: if A and B are in the same state then they stay the same; if they are in different states, they flip if C is ON and stay the same if C is OFF; and C is ON 50% of the time, independent of the previous state.
Diagram:

PyPhi Documentation, Release v1.1.0

TPM:

<table>
<thead>
<tr>
<th></th>
<th>(0, 0, 0)</th>
<th>(1, 0, 0)</th>
<th>(0, 1, 0)</th>
<th>(1, 1, 0)</th>
<th>(0, 0, 1)</th>
<th>(0, 1, 1)</th>
<th>(1, 0, 1)</th>
<th>(1, 1, 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(0, 0, 0)</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 0, 0)</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(0, 1, 0)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 1, 0)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>(0, 0, 1)</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 0, 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>(0, 1, 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
<tr>
<td>(1, 1, 1)</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.5</td>
<td>0.0</td>
</tr>
</tbody>
</table>

Connectivity matrix:

```
.  A  B  C
A  0  1  0
B  1  0  0
C  1  1  0
```

pyphi.examples.propagation_delay_network()

A version of the primary example from the IIT 3.0 paper with deterministic COPY gates on each connection. These copy gates essentially function as propagation delays on the signal between OR, AND and XOR gates from the original system.

The current and previous states of the network are also selected to mimic the corresponding states from the IIT 3.0 paper.

Diagram:

(continues on next page)
States:

In the IIT 3.0 paper example, the previous state of the system has only the XOR gate ON. For the propagation delay network, this corresponds to a state of \((0, 0, 0, 1, 0, 0, 0, 0, 0)\).

The current state of the IIT 3.0 example has only the OR gate ON. By advancing the propagation delay system two time steps, the current state \((1, 0, 0, 0, 0, 0, 0, 0, 0)\) is achieved, with corresponding previous state \((0, 0, 1, 0, 1, 0, 0, 0, 0)\).

pyphi.examples.macro_network()
A network of micro elements which has greater integrated information after coarse graining to a macro scale.

pyphi.examples.macro_subsystem()
A subsystem containing all the nodes of `macro_network()`.

pyphi.examples.blackbox_network()
A micro-network to demonstrate blackboxing.

Diagram:
Connectivity Matrix:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

In the documentation example, the state is (0, 0, 0, 0, 0, 0).

```python
gardenpyphi.examples.rule110_network()
gardenpyphi.examples.rule154_network()
gardenpyphi.examples.fig1a()
gardenpyphi.examples.fig3a()
gardenpyphi.examples.fig3b()
gardenpyphi.examples.fig4()
gardenpyphi.examples.fig5a()
```

Diagram:
```
+--------+
| ~~~~> | A | ~~~~< |
| | +~~~+ (OR) +~~~+ |
| | | +--------+ |
| | | v
| v
+--------+ +--------+
| | B | ~~~~< | C |
| | (AND) +--------> (XOR) |
+--------+ +--------+
```

```python
gardenpyphi.examples.fig5a()
```

Diagram:
```
+--------+
| ~~~~> | A | ~~~~< |
| | | (AND) |
| | | +--------+ |
| +--------+ +--------+
| | B | ~~~~< | C |
| | (COPY) +--------> (COPY) |
+--------+ +--------+
```
pyphi.examples.fig5b()

The network shown in Figure 5B of the 2014 IIT 3.0 paper.

Diagram:

```
+--------+
|   A    |
|  (AND) |
+--------+
|  v     |
+--------+   +--------+
|   B    |   |   C   |
|  (COPY) ->|       (COPY) |
+--------+   +--------+
```

pyphi.examples.fig6()

The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

```
+--------+
|   A    |
|  (OR)  |
|  v     |
+--------+   +--------+
|   B    |   |   C   |
|  (AND) ->|       (XOR) |
+--------+   +--------+
```

pyphi.examples.fig8()

The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

```
+--------+
|   A    |
|  (OR)  |
|  v     |
+--------+   +--------+
|   B    |   |   C   |
|  (AND) ->|       (XOR) |
+--------+   +--------+
```

pyphi.examples.fig9()

The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

```
+--------+
|   A    |
|  (OR)  |
|  v     |
+--------+   +--------+
|   B    |   |   C   |
|  (AND) ->|       (XOR) |
+--------+   +--------+
```

(continues on next page)
The network shown in Figure 4 of the 2014 IIT 3.0 paper.

Diagram:

```
+--------+
| ~~~~~~+ | (~AND) ~~~~~~>| (~XOR) ~~~~~~+
+--------+ +--------+
```

The network shown in Figure 1A of the 2014 IIT 3.0 paper.

The network shown in Figure 5B of the 2014 IIT 3.0 paper.

The actual causation example network, consisting of an OR and AND gate with self-loops.

The disjunction-conjunction example from Actual Causation Figure 7.

A network of four elements, one output D with three inputs A B C. The output turns ON if A AND B are ON or if C is ON.

The Transition for the prevention example from Actual Causation Figure 5D.

1.36 exceptions

PyPhi exceptions.

exception pyphi.exceptions.StateUnreachableError(state)

The current state cannot be reached from any previous state.

exception pyphi.exceptions.ConditionallyDependentError

The TPM is conditionally dependent.

exception pyphi.exceptions.JSONVersionError

JSON was serialized with a different version of PyPhi.

exception pyphi.exceptions.WrongDirectionError

The wrong direction was provided.
1.37 jsonify

PyPhi- and NumPy-aware JSON serialization.

To be properly serialized and deserialized, PyPhi objects must implement a `to_json` method which returns a dictionary of attribute names and attribute values. These attributes should be the names of arguments passed to the object constructor. If the constructor takes additional, fewer, or different arguments, the object needs to implement a custom `classmethod` called `from_json` that takes a Python dictionary as an argument and returns a PyPhi object. For example:

```python
class Phi:
    def __init__(self, phi):
        self.phi = phi

    def to_json(self):
        return {'phi': self.phi, 'twice_phi': 2 * self.phi}

    @classmethod
    def from_json(cls, json):
        return Phi(json['phi'])
```

The object must also be added to `jsonify._loadable_models`.

The JSON encoder adds the name of the object and the current PyPhi version to the JSON stream. The JSON decoder uses this metadata to recursively deserialize the stream to a nested PyPhi object structure. The decoder will raise an exception if current PyPhi version doesn’t match the version in the JSON data.

```python
pyphi.jsonify.jsonify(obj)
```

Return a JSON-encodable representation of an object, recursively using any available `to_json` methods, converting NumPy arrays and datatypes to native lists and types along the way.

```python
class pyphi.jsonify.PyPhiJSONEncoder(*, skipkeys=False, ensure_ascii=True,
                                      check_circular=True, allow_nan=True,
                                      sort_keys=False, indent=None, separators=(',', ':'),
                                      default=None)
```

JSONEncoder that allows serializing PyPhi objects with `jsonify`.

Constructor for JSONEncoder, with sensible defaults.

If `skipkeys` is false, then it is a TypeError to attempt encoding of keys that are not str, int, float or None. If `skipkeys` is True, such items are simply skipped.

If `ensure_ascii` is true, the output is guaranteed to be str objects with all incoming non-ASCII characters escaped. If `ensure_ascii` is false, the output can contain non-ASCII characters.

If `check_circular` is true, then lists, dicts, and custom encoded objects will be checked for circular references during encoding to prevent an infinite recursion (which would cause an OverflowError). Otherwise, no such check takes place.

If `allow_nan` is true, then NaN, Infinity, and -Infinity will be encoded as such. This behavior is not JSON specification compliant, but is consistent with most JavaScript based encoders and decoders. Otherwise, it will be a ValueError to encode such floats.

If `sort_keys` is true, then the output of dictionaries will be sorted by key; this is useful for regression tests to ensure that JSON serializations can be compared on a day-to-day basis.

If `indent` is a non-negative integer, then JSON array elements and object members will be pretty-printed with that indent level. An indent level of 0 will only insert newlines. None is the most compact representation.
If specified, separators should be an (item_separator, key_separator) tuple. The default is (', ', ': ') if `indent` is `None` and (' ', ': ') otherwise. To get the most compact JSON representation, you should specify (' ', ': ') to eliminate whitespace.

If specified, default is a function that gets called for objects that can’t otherwise be serialized. It should return a JSON encodable version of the object or raise a `TypeError`.

```python
def encode(obj)
    # Encode the output of jsonify with the default encoder.

def iterencode(obj, **kwargs)
    # Analog to encode used by json.dump.
```

```python
pyphi.jsonify.dumps(obj, **user_kwargs)
    # Serialize obj as JSON-formatted stream.

pyphi.jsonify.dump(obj, fp, **user_kwargs)
    # Serialize obj as a JSON-formatted stream and write to fp (a .write()-supporting file-like object.
```

```python
class pyphi.jsonify.PyPhiJSONDecoder(*args, **kwargs)
    # Extension of the default encoder which automatically deserializes PyPhi JSON to the appropriate model classes.

pyphi.jsonify.loads(string)
    # Deserializes a JSON string to a Python object.

pyphi.jsonify.load(fp)
    # Deserializes a JSON stream to a Python object.
```

1.38 Macro

Methods for coarse-graining systems to different levels of spatial analysis.

```python
pyphi.macro.reindex(indices)
    # Generate a new set of node indices, the size of indices.

pyphi.macro.rebuild_system_tpm(node_tpms)
    # Reconstruct the network TPM from a collection of node TPMs.

pyphi.macro.remove_singleton_dimensions(tpm)
    # Remove singleton dimensions from the TPM.

Singleton dimensions are created by conditioning on a set of elements. This removes those elements from the TPM, leaving a TPM that only describes the non-conditioned elements.

Note that indices used in the original TPM must be reindexed for the smaller TPM.

```python
pyphi.macro.run_tpm(system, steps, blackbox)
 # Iterate the TPM for the given number of timesteps.

 Returns tpm * (noise_tpm**(t-1))

 Return type np.ndarray
```

```python
class pyphi.macro.SystemAttrs
 # An immutable container that holds all the attributes of a subsystem.

 Versions of this object are passed down the steps of the micro-to-macro pipeline.

 Create new instance of SystemAttrs(tpm, cm, node_indices, state)

 node_labels
 # Return the labels for macro nodes.
```
nodes

static pack(system)

apply(system)

class pyphi.macro.MacroSubsystem(network, state, nodes=None, cut=None, mice_cache=None, time_scale=1, blackbox=None, coarse_grain=None)

A subclass of Subsystem implementing macro computations.

This subsystem performs blackboxing and coarse-graining of elements.

Unlike Subsystem, whose TPM has dimensionality equal to that of the subsystem’s network and represents nodes external to the system using singleton dimensions, MacroSubsystem squeezes the TPM to remove these singletons. As a result, the node indices of the system are also squeezed to 0..n so they properly index the TPM, and the state-tuple is reduced to the size of the system.

After each macro update (temporal blackboxing, spatial blackboxing, and spatial coarse-graining) the TPM, CM, nodes, and state are updated so that they correctly represent the updated system.

cut_indices

The indices of this system to be cut for Φ computations.

For macro computations the cut is applied to the underlying micro-system.

cut_mechanisms

The mechanisms of this system that are currently cut.

Note that although cut_indices returns micro indices, this returns macro mechanisms.

Yields tuple[int]

cut_node_labels

Labels for the nodes that can be cut.

These are the labels of the micro elements.

apply_cut(cut)

Return a cut version of this MacroSubsystem.

Parameters cut (Cut) – The cut to apply to this MacroSubsystem.

Returns The cut version of this MacroSubsystem.

Return type MacroSubsystem

potential_purviews(direction, mechanism, purviews=False)

Override Subsystem implementation using Network-level indices.

macro2micro(macro_indices)

Return all micro indices which compose the elements specified by macro_indices.

macro2blackbox_outputs(macro_indices)

Given a set of macro elements, return the blackbox output elements which compose these elements.

__eq__(other)

Two macro systems are equal if each underlying Subsystem is equal and all macro attributes are equal.

class pyphi.macro.CoarseGrain

Represents a coarse graining of a collection of nodes.

partition

The partition of micro-elements into macro-elements.

Type tuple[tuple]
grouping
The grouping of micro-states into macro-states.

Type tuple[tuple[tuple]]

Create new instance of CoarseGrain(partition, grouping)

micro_indices
Indices of micro elements represented in this coarse-graining.

macro_indices
Indices of macro elements of this coarse-graining.

reindex()
Re-index this coarse graining to use squeezed indices.
The output grouping is translated to use indices 0..n, where n is the number of micro indices in the coarse-graining. Re-indexing does not effect the state grouping, which is already index-independent.

Returns A new CoarseGrain object, indexed from 0..n.

Return type CoarseGrain

Example

```python
>>> partition = ((1, 2),)
>>> grouping = (((0,), (1, 2)),)
>>> coarse_grain = CoarseGrain(partition, grouping)
>>> coarse_grain.reindex()
CoarseGrain(partition=((0, 1),), grouping=(((0,), (1, 2)),))
```

macro_state (micro_state)
Translate a micro state to a macro state

Parameters micro_state (tuple[int]) – The state of the micro nodes in this coarse-graining.

Returns The state of the macro system, translated as specified by this coarse-graining.

Return type tuple[int]

Example

```python
>>> coarse_grain = CoarseGrain(((1, 2),), (((0,), (1, 2)),))
>>> coarse_grain.macro_state((0, 0))
(0,)
>>> coarse_grain.macro_state((1, 0))
(1,)
>>> coarse_grain.macro_state((1, 1))
(1,)
```

make_mapping()
Return a mapping from micro-state to the macro-states based on the partition and state grouping of this coarse-grain.

Returns A mapping from micro-states to macro-states. The i\textsuperscript{th} entry in the mapping is the macro-state corresponding to the i\textsuperscript{th} micro-state.

Return type (nd.ndarray)
macro_tpm_sbs \( \text{(state\_by\_state\_micro\_tpm)} \)
Create a state-by-state coarse-grained macro TPM.

**Parameters**
- **micro_tpm** \( \text{(nd.array)} \) – The state-by-state TPM of the micro-system.

**Returns**
The state-by-state TPM of the macro-system.

**Return type**
np.ndarray

macro_tpm \( \text{(micro\_tpm, check\_independence=True)} \)
Create a coarse-grained macro TPM.

**Parameters**
- **micro_tpm** \( \text{(nd.array)} \) – The TPM of the micro-system.
- **check_independence** \( \text{(bool)} \) – Whether to check that the macro TPM is conditionally independent.

**Raises**
*ConditionallyDependentError* – If check_independence is True and the macro TPM is not conditionally independent.

**Returns**
The state-by-node TPM of the macro-system.

**Return type**
np.ndarray

class pyphi.macro.Blackbox
Class representing a blackboxing of a system.

**partition**
The partition of nodes into boxes.

- **Type**
tuple[tuple[int]]

**output_indices**
Outputs of the blackboxes.

- **Type**
tuple[int]

Create new instance of Blackbox(partition, output_indices)

**hidden_indices**
All elements hidden inside the blackboxes.

**micro_indices**
Indices of micro-elements in this blackboxing.

**macro_indices**
Fresh indices of macro-elements of the blackboxing.

**outputs_of** \( \text{(partition\_index)} \)
The outputs of the partition at partition\_index.

Note that this returns a tuple of element indices, since coarse-grained blackboxes may have multiple outputs.

**reindex**()
Squeeze the indices of this blackboxing to 0..n.

- **Returns**
a new, reindexed Blackbox.

- **Return type**
Blackbox
Example

```python
>>> partition = ((3,), (2, 4))
>>> output_indices = (2, 3)
>>> blackbox = Blackbox(partition, output_indices)
>>> blackbox.reindex()
Blackbox(partition=((1,), (0, 2)), output_indices=(0, 1))
```

**macro_state** *(micro_state)*

Compute the macro-state of this blackbox.

This is just the state of the blackbox’s output indices.

**Parameters**

- **micro_state** *(tuple[int]*) – The state of the micro-elements in the blackbox.

**Returns**

The state of the output indices.

**Return type**

tuple[int]

**in_same_box** *(a, b)*

Return True if nodes a and b are in the same box.

**hidden_from** *(a, b)*

Return True if a is hidden in a different box than b.

**pyphi.macro.all_partitions** *(indices)*

Return a list of all possible coarse grains of a network.

**Parameters**

- **indices** *(tuple[int]*) – The micro indices to partition.

**Yields**

tuple[tuple] – A possible partition. Each element of the tuple is a tuple of micro-elements which correspond to macro-elements.

**pyphi.macro.all_groupings** *(partition)*

Return all possible groupings of states for a particular coarse graining (partition) of a network.

**Parameters**

- **partition** *(tuple[tuple]*) – A partition of micro-elements into macro elements.

**Yields**

tuple[tuple[tuple]] – A grouping of micro-states into macro states of system.

**TODO:** document exactly how to interpret the grouping.

**pyphi.macro.all_coarse_grains** *(indices)*

Generator over all possible **CoarseGrain** of these indices.

**Parameters**

- **indices** *(tuple[int]*) – Node indices to coarse grain.

**Yields**

**CoarseGrain** – The next **CoarseGrain** for indices.

**pyphi.macro.all_coarse_grains_for_blackbox** *(blackbox)*

Generator over all **CoarseGrains** for the given blackbox.

If a box has multiple outputs, those outputs are partitioned into the same coarse-grain macro-element.

**pyphi.macro.all_blackboxes** *(indices)*

Generator over all possible blackboxings of these indices.

**Parameters**

- **indices** *(tuple[int]*) – Nodes to blackbox.

**Yields**

**Blackbox** – The next **Blackbox** of indices.

**class** pyphi.macro.MacroNetwork *(network, system, macro_phi, micro_phi, coarse_grain, time_scale=1, blackbox=None)*

A coarse-grained network of nodes.
See the *Emergence (coarse-graining and blackboxing)* example in the documentation for more information.

**network**
- The network object of the macro-system.
  - Type: `Network`

**phi**
- The $\Phi$ of the network’s major complex.
  - Type: `float`

**micro_network**
- The network object of the corresponding micro system.
  - Type: `Network`

**micro_phi**
- The $\Phi$ of the major complex of the corresponding micro-system.
  - Type: `float`

**coarse_grain**
- The coarse-graining of micro-elements into macro-elements.
  - Type: `CoarseGrain`

**time_scale**
- The time scale the macro-network run over.
  - Type: `int`

**blackbox**
- The blackboxing of micro elements in the network.
  - Type: `Blackbox`

**emergence**
- The difference between the $\Phi$ of the macro- and the micro-system.
  - Type: `float`

**emergence**
- Difference between the $\Phi$ of the macro and micro systems

`pyphi.macro.coarse_graining(network, state, internal_indices)`
- Find the maximal coarse-graining of a micro-system.

  **Parameters**
  - network (`Network`) – The network in question.
  - state (`tuple[int]`) – The state of the network.
  - internal_indices (`tuple[int]`) – Nodes in the micro-system.

  **Returns** The phi-value of the maximal `CoarseGrain`.

  **Return type** `tuple[int, CoarseGrain]`

`pyphi.macro.all_macro_systems(network, state, do_blackbox=False, do_coarse_grain=False, time_scales=None)`
- Generator over all possible macro-systems for the network.

`pyphi.macro.emergence(network, state, do_blackbox=False, do_coarse_grain=True, time_scales=None)`
- Check for the emergence of a micro-system into a macro-system.
Checks all possible blackboxings and coarse-grainings of a system to find the spatial scale with maximum integrated information.

Use the `do_blackbox` and `do_coarse_grain` args to specify whether to use blackboxing, coarse-graining, or both. The default is to just coarse-grain the system.

**Parameters**
- `network (Network)` – The network of the micro-system under investigation.
- `state (tuple[int])` – The state of the network.
- `do_blackbox (bool)` – Set to `True` to enable blackboxing. Defaults to `False`.
- `do_coarse_grain (bool)` – Set to `True` to enable coarse-graining. Defaults to `True`.
- `time_scales (list[int])` – List of all time steps over which to check for emergence.

**Returns** The maximal macro-system generated from the micro-system.

**Return type** `MacroNetwork`

```python
cpyphi.macro.phi_by_grain(network, state)
```

Return the effective information of the given network.

**Note:** For details, see:


Available online: doi: 10.1073/pnas.1314922110.

### 1.39 models

See `pyphi.models.subsystem`, `pyphi.models.mechanism`, and `pyphi.models.cuts` for documentation.

- `pyphi.models.Account`  
  Alias for `pyphi.models.actual_causation.Account`.
- `pyphi.models.AcRepertoireIrreducibilityAnalysis`  
  Alias for `pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis`.
- `pyphi.models.AcSystemIrreducibilityAnalysis`  
  Alias for `pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis`.
- `pyphi.models.ActualCut`  
  Alias for `pyphi.models.cuts.ActualCut`.
- `pyphi.models.Bipartition`  
  Alias for `pyphi.models.cuts.Bipartition`.
- `pyphi.models.CausalLink`  
  Alias for `pyphi.models.actual_causation.CausalLink`.
- `pyphi.models.CauseEffectStructure`  
PyPhi Documentation, Release v1.1.0

pyphi.models.Concept
Alias for pyphi.models.mechanism.Concept.

pyphi.models.Cut
Alias for pyphi.models.cuts.Cut.

pyphi.models.DirectedAccount
Alias for pyphi.models.actual_causation.DirectedAccount.

pyphi.models.MaximallyIrreducibleCause
Alias for pyphi.models.mechanism.MaximallyIrreducibleCause.

pyphi.models.MaximallyIrreducibleEffect
Alias for pyphi.models.mechanism.MaximallyIrreducibleEffect.

pyphi.models.MaximallyIrreducibleCauseOrEffect
Alias for pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect.

pyphi.models.Part
Alias for pyphi.models.cuts.Part.

pyphi.models.RepertoireIrreducibilityAnalysis
Alias for pyphi.models.mechanism.RepertoireIrreducibilityAnalysis.

pyphi.models.SystemIrreducibilityAnalysis
Alias for pyphi.models.subsystem.SystemIrreducibilityAnalysis.

1.40 models.actual_causation

Objects that represent structures used in actual causation.

pyphi.models.actual_causation.greater_than_zero(alpha)
Return True if alpha is greater than zero, accounting for numerical errors.

class pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis(alpha, state, direction, mechanism, purview, partition, probability, partitioned Probability, node_labels=None)

A minimum information partition for ac_coef calculation.

These can be compared with the built-in Python comparison operators (<, >, etc.). First, $\alpha$ values are compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared.
**alpha**
This is the difference between the mechanism’s unpartitioned and partitioned actual probability.

*Type* float

**state**
state of system in specified direction (cause, effect)

*Type* tuple[int]

**direction**
The temporal direction specifining whether this analysis should be calculated with cause or effect repertoires.

*Type* str

**mechanism**
The mechanism to analyze.

*Type* tuple[int]

**purview**
The purview over which the unpartitioned actual probability differs the least from the actual probability of the partition.

*Type* tuple[int]

**partition**
The partition that makes the least difference to the mechanism’s repertoire.

*Type* tuple[Part, Part]

**probability**
The probability of the state in the previous/next timestep.

*Type* float

**partitioned_probability**
The probability of the state in the partitioned repertoire.

*Type* float

**unorderable_unless_eq** = ['direction']

**order_by**()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

**__bool__()**
An `AcRepertoireIrreducibilityAnalysis` is True if it has $\alpha > 0$.

**phi**
Alias for $\alpha$ for PyPhi utility functions.

**to_json**()
Return a JSON-serializable representation.

class pyphi.models.actual_causation.CausalLink(ria)
A maximally irreducible actual cause or effect.

These can be compared with the built-in Python comparison operators ($<$, $>$, etc.). First, $\alpha$ values are compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared.
**alpha**

The difference between the mechanism’s unpartitioned and partitioned actual probabilities.

*Type* float

**phi**

Alias for $\alpha$ for PyPhi utility functions.

**direction**

Either *CAUSE* or *EFFECT*.

*Type* Direction

**mechanism**

The mechanism for which the action is evaluated.

*Type* list[int]

**purview**

The purview over which this mechanism’s $\alpha$ is maximal.

*Type* list[int]

**ria**

The irreducibility analysis for this mechanism.

*Type* AcRepertoireIrreducibilityAnalysis

**node_labels**

unorderable_unless_eq = ['direction']

**order_by()**

Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

**__bool__()**

An CausalLink is True if $\alpha > 0$.

**to_json()**

Return a JSON-serializable representation.

### class pyphi.models.actual_causation.Event

A mechanism which has both an actual cause and an actual effect.

**actual_cause**

The actual cause of the mechanism.

*Type* CausalLink

**actual_effect**

The actual effect of the mechanism.

*Type* CausalLink

Create new instance of Event(actual_cause, actual_effect)

**mechanism**

The mechanism of the event.

### class pyphi.models.actual_causation.Account(causal_links)

The set of CausalLink with $\alpha > 0$. This includes both actual causes and actual effects.
irreducible_causes
The set of irreducible causes in this Account.

irreducible_effects
The set of irreducible effects in this Account.

to_json()
classmethod from_json(det)

class pyphi.models.actual_causation.DirectedAccount(causal_links)
The set of CausalLink with $\alpha > 0$ for one direction of a transition.

class pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis(alpha=None, direction=None, account=None, partitioned_account=None, transition=None, cut=None)

An analysis of transition-level irreducibility ($A$).
Contains the $A$ value of the Transition, the causal account, and all the intermediate results obtained in the course of computing them.

alpha
The $A$ value for the transition when taken against this analysis, i.e. the difference between the unpartitioned account and this analysis’s partitioned account.

Type float

account
The account of the whole transition.

Type Account

partitioned_account
The account of the partitioned transition.

Type Account

transition
The transition this analysis was calculated for.

Type Transition

cut
The minimal partition.

Type ActualCut

before_state
Return the actual previous state of the Transition.

after_state
Return the actual current state of the Transition.

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.
The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

```python
__bool__()
An AcSystemIrreducibilityAnalysis is True if it has \(\mathcal{A} > 0 \).
```

to_json()

### 1.41 models.cuts

Objects that represent partitions of sets of nodes.

```python
class pyphi.models.cuts.NullCut(indices, node_labels=None)
The cut that does nothing.

is_null
This is the only cut where is_null == True.

indices
Indices of the cut.

cut_matrix(n)
Return a matrix of zeros.

to_json()
```

class pyphi.models.cuts.Cut(from_nodes, to_nodes, node_labels=None)
Represents a unidirectional cut.

```python
from_nodes
Connections from this group of nodes to those in to_nodes are from_nodes.

Type tuple[int]

to_nodes
Connections to this group of nodes from those in from_nodes are from_nodes.

Type tuple[int]

from_nodes
to_nodes
node_labels
indices
Indices of this cut.

cut_matrix(n)
Compute the cut matrix for this cut.

The cut matrix is a square matrix which represents connections severed by the cut.

Parameters
- \(n \) (int) - The size of the network.

Example
```python
>>> cut = Cut((1,), (2,))
>>> cut.cut_matrix(3)
array([[0., 0., 0.],
       [0., 0., 1.],
       [0., 0., 0.]])
```

to_json()
Return a JSON-serializable representation.

class pyphi.models.cuts.KCut(direction, partition, node_labels=None)
A cut that severs all connections between parts of a K-partition.

indices
Indices of this cut.

cut_matrix(n)
The matrix of connections that are severed by this cut.

to_json()

class pyphi.models.cuts.ActualCut(direction, partition, node_labels=None)
Represents an cut for a Transition.

indices
Indices of this cut.

class pyphi.models.cuts.Part
Represents one part of a Bipartition.

mechanism
The nodes in the mechanism for this part.

 Type tuple[int]

purview
The nodes in the mechanism for this part.

 Type tuple[int]

Example

When calculating ϕ of a 3-node subsystem, we partition the system in the following way:

| mechanism: | A, C | B |
| purview: | B | A, C |

This class represents one term in the above product.

Create new instance of Part(mechanism, purview)

to_json()
 Return a JSON-serializable representation.

class pyphi.models.cuts.KPartition(*parts, node_labels=None)
A partition with an arbitrary number of parts.

parts
node_labels
mechanism
 The nodes of the mechanism in the partition.

 Type tuple[int]

purview
 The nodes of the purview in the partition.

 Type tuple[int]

normalize()
 Normalize the order of parts in the partition.

to_json()

classmethod from_json(dct)

class pyphi.models.cuts.Bipartition(*parts, node_labels=None)
 A bipartition of a mechanism and purview.

part0
 The first part of the partition.

 Type Part

part1
 The second part of the partition.

 Type Part

to_json()
 Return a JSON-serializable representation.

classmethod from_json(dct)

node_labels

parts

class pyphi.models.cuts.Tripartition(*parts, node_labels=None)
 A partition with three parts.

node_labels

parts

1.42 models.mechanism

Mechanism-level objects.

class pyphi.models.mechanism.RepertoireIrreducibilityAnalysis(phi, direction, mechanism, purview, partition, repertoire, partitioned_repertoire, node_labels=None)

An analysis of the irreducibility (φ) of a mechanism over a purview, for a given partition, in one temporal direction.

These can be compared with the built-in Python comparison operators ($<$, $>$, etc.). First, φ values are compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the PICK_SMALLEST_PURVIEW option in config.)
phi

This is the difference between the mechanism’s unpartitioned and partitioned repertoires.

 Type float
direction

 CAUSE or EFFECT.

 Type Direction
mechanism

The mechanism that was analyzed.

 Type tuple[int]
purview

The purview over which the mechanism was analyzed.

 Type tuple[int]
partition

The partition of the mechanism-purview pair that was analyzed.

 Type KPartition
repertoire

The repertoire of the mechanism over the purview.

 Type np.ndarray
partitioned_repertoire

The partitioned repertoire of the mechanism over the purview. This is the product of the repertoires of each part of the partition.

 Type np.ndarray
node_labels

NodeLabels for this system.

unorderable_unless_eq = ['direction']

order_by()

Return a list of values to compare for ordering.

 The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

__bool__()

A RepertoireIrreducibilityAnalysis is True if it has $\phi > 0$.
to_json()

class pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect (ria)

A maximally irreducible cause or effect (MICE).

These can be compared with the built-in Python comparison operators (<, >, etc.). First, ϕ values are compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared (see the PICK_SMALLEST_PURVIEW option in config.)
Type `Direction`

mechanism
The mechanism for which the MICE is evaluated.

Type `list[int]`

purview
The purview over which this mechanism’s ϕ is maximal.

Type `list[int]`

mip
The partition that makes the least difference to the mechanism’s repertoire.

Type `KPartition`

repertoire
The unpartitioned repertoire of the mechanism over the purview.

Type `np.ndarray`

partitioned_repertoire
The partitioned repertoire of the mechanism over the purview.

Type `np.ndarray`

ria
The irreducibility analysis for this mechanism.

Type `RepertoireIrreducibilityAnalysis`

unorderable_unless_eq = ['direction']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

to_json()

damaged_by_cut(subsystem)
Return `True` if this MICE is affected by the subsystem’s cut.

The cut affects the MICE if it either splits the MICE’s mechanism or splits the connections between the purview and mechanism.

class pyphi.models.mechanism.MaximallyIrreducibleCause(ria)
A maximally irreducible cause (MIC).

These can be compared with the built-in Python comparison operators (`, >`, etc.). First, ϕ values are compared. Then, if these are equal up to `PRECISION`, the size of the mechanism is compared (see the `PICK_SMALLEST_PURVIEW` option in config.)

direction

Type `Direction`

class pyphi.models.mechanism.MaximallyIrreducibleEffect(ria)
A maximally irreducible effect (MIE).

These can be compared with the built-in Python comparison operators (`, >`, etc.). First, ϕ values are compared. Then, if these are equal up to `PRECISION`, the size of the mechanism is compared (see the `PICK_SMALLEST_PURVIEW` option in config.)
direction

 EFFECT.

 Type Direction

class pyphi.models.mechanism.Concept (mechanism=None, cause=None, effect=None, subsystem=None, time=None)

 The maximally irreducible cause and effect specified by a mechanism.

 These can be compared with the built-in Python comparison operators (<, >, etc.). First, ϕ values are compared. Then, if these are equal up to PRECISION, the size of the mechanism is compared.

 mechanism

 The mechanism that the concept consists of.

 Type tuple[int]

cause

 The MaximallyIrreducibleCause representing the maximally-irreducible cause of this concept.

 Type MaximallyIrreducibleCause

effect

 The MaximallyIrreducibleEffect representing the maximally-irreducible effect of this concept.

 Type MaximallyIrreducibleEffect

subsystem

 This concept's parent subsystem.

 Type Subsystem

time

 The number of seconds it took to calculate.

 Type float

phi

 The size of the concept.

 This is the minimum of the ϕ values of the concept's MaximallyIrreducibleCause and MaximallyIrreducibleEffect.

 Type float

cause_purview

 The cause purview.

 Type tuple[int]

effect_purview

 The effect purview.

 Type tuple[int]
cause_repertoire

 The cause repertoire.

 Type np.ndarray

effect_repertoire

 The effect repertoire.

 Type np.ndarray

mechanism_state

 The state of this mechanism.
Type tuple(int)

unorderable_unless_eq = ['subsystem']

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

__bool__()
A concept is True if $\phi > 0$.

eq_repertoires(other)
Return whether this concept has the same repertoires as another.

Warning: This only checks if the cause and effect repertoires are equal as arrays; mechanisms, purviews, or even the nodes that the mechanism and purview indices refer to, might be different.

eqd_eq(other)
Return whether this concept is equal to another in the context of an EMD calculation.

expand_cause_repertoire(new_purview=None)
See expand_repertoire().

expand_effect_repertoire(new_purview=None)
See expand_repertoire().

expand_partitioned_cause_repertoire()
See expand_repertoire().

expand_partitioned_effect_repertoire()
See expand_repertoire().

to_json()
Return a JSON-serializable representation.

classmethod from_json(det)

1.43 models.subsystem

Subsystem-level objects.

class pyphi.models.subsystem.CauseEffectStructure(concepts=(), subsystem=None, time=None)
A collection of concepts.

order_by()
Return a list of values to compare for ordering.

The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

to_json()

mechanisms
The mechanism of each concept.

phis
The ϕ values of each concept.
labeled_mechanisms
The labeled mechanism of each concept.

class pyphi.models.subsystem.SystemIrreducibilityAnalysis(phi=None, ces=None, partitioned_ces=None, subsystem=None, cut_subsystem=None, time=None)

An analysis of system irreducibility (Φ).
Contains the Φ value of the Subsystem, the cause-effect structure, and all the intermediate results obtained in the course of computing them.
These can be compared with the built-in Python comparison operators (<, >, etc.). First, Φ values are compared. Then, if these are equal up to PRECISION, the one with the larger subsystem is greater.

phi
The Φ value for the subsystem when taken against this analysis, i.e. the difference between the cause-effect structure and the partitioned cause-effect structure for this analysis.
Type float

ces
The cause-effect structure of the whole subsystem.
Type CauseEffectStructure

partitioned_ces
The cause-effect structure when the subsystem is cut.
Type CauseEffectStructure

subsystem
The subsystem this analysis was calculated for.
Type Subsystem

cut_subsystem
The subsystem with the minimal cut applied.
Type Subsystem

time
The number of seconds it took to calculate.
Type float

print(ces=True)
Print this SystemIrreducibilityAnalysis, optionally without cause-effect structures.

small_phi_time
The number of seconds it took to calculate the CES.

cut
The unidirectional cut that makes the least difference to the subsystem.

network
The network the subsystem belongs to.

unorderable_unless_eq = ['network']

order_by()
Return a list of values to compare for ordering.
The first value in the list has the greatest priority; if the first objects are equal the second object is compared, etc.

__bool__()

A SystemIrreducibilityAnalysis is True if it has $\Phi > 0$.

to_json()

Return a JSON-serializable representation.

classmethod from_json(dct)

1.44 network

Represents the network of interest. This is the primary object of PyPhi and the context of all φ and Φ computation.

```python
class pyphi.network.Node(tpm, cm=None, node_labels=None, purview_cache=None)
A network of nodes.

Parameters
tpm (np.ndarray) – The transition probability matrix of the network.

The TPM can be provided in any of three forms: state-by-state, state-by-node, or multidimensional state-by-node form. In the state-by-node forms, row indices must follow the little-endian convention (see Little-endian convention). In state-by-state form, column indices must also follow the little-endian convention.

If the TPM is given in state-by-node form, it can be either 2-dimensional, so that $\text{tpm}[i]$ gives the probabilities of each node being ON if the previous state is encoded by $i$ according to the little-endian convention, or in multidimensional form, so that $\text{tpm}[(0, 0, 1)]$ gives the probabilities of each node being ON if the previous state is $N_0 = 0, N_1 = 0, N_2 = 1$.

The shape of the 2-dimensional form of a state-by-node TPM must be $(s, n)$, and the shape of the multidimensional form of the TPM must be $[2] \times n + [n]$, where $s$ is the number of states and $n$ is the number of nodes in the network.

Keyword Arguments

* cm (np.ndarray) – A square binary adjacency matrix indicating the connections between nodes in the network. $\text{cm}[i][j] == 1$ means that node $i$ is connected to node $j$ (see Connectivity matrix conventions). If no connectivity matrix is given, PyPhi assumes that every node is connected to every node (including itself).

* node_labels (tuple[str] or NodeLabels) – Human-readable labels for each node in the network.

Example

In a 3-node network, $\text{the_network.tpm}[(0, 0, 1)]$ gives the transition probabilities for each node at $t$ given that state at $t - 1$ was $N_0 = 0, N_1 = 0, N_2 = 1$.

```
Type np.ndarray

connectivity_matrix
Alias for cm.
Type np.ndarray

causally_significant_nodes
See `pyphi.connectivity.causally_significant_nodes()`.

size
The number of nodes in the network.
Type int

num_states
The number of possible states of the network.
Type int

node_indices
The indices of nodes in the network.
This is equivalent to `tuple(range(network.size))`.
Type tuple[int]

node_labels
The labels of nodes in the network.
Type tuple[str]

potential_purviews *(direction, mechanism)*
All purviews which are not clearly reducible for mechanism.

Parameters

- **direction** *(Direction)* – CAUSE or EFFECT.
- **mechanism** *(tuple[int])* – The mechanism which all purviews are checked for reducibility over.

Returns All purviews which are irreducible over mechanism.

Return type list[tuple[int]]

__len__() int: The number of nodes in the network.

__eq__(other) Return whether this network equals the other object.
Networks are equal if they have the same TPM and CM.

to_json() Return a JSON-serializable representation.

classmethod from_json *(json_dict)* Return a Network object from a JSON dictionary representation.

`pyphi.network.irreducible_purviews` *(cm, direction, mechanism, purviews)*
Return all purviews which are irreducible for the mechanism.

Parameters

- **cm** *(np.ndarray)* – An \(N \times N \) connectivity matrix.
- **direction** *(Direction)* – CAUSE or EFFECT.
- **purviews** *(list[tuple[int]])* – The purviews to check.
- **mechanism** *(tuple[int])* – The mechanism in question.

Returns All purviews in purviews which are not reducible over mechanism.

Return type list[tuple[int]]

Raises ValueError – If direction is invalid.

pyphi.network.from_json *(filename)*

Convert a JSON network to a PyPhi network.

Parameters

- **filename** *(str)* – A path to a JSON file representing a network.

Returns The corresponding PyPhi network object.

Return type Network

1.45 node

Represents a node in a network. Each node has a unique index, its position in the network’s list of nodes.

class *pyphi.node.Node*(tpm, cm, index, state, node_labels)*

A node in a subsystem.

Parameters

- **tpm** *(np.ndarray)* – The TPM of the subsystem.
- **cm** *(np.ndarray)* – The CM of the subsystem.
- **index** *(int)* – The node’s index in the network.
- **state** *(int)* – The state of this node.
- **node_labels** *(NodeLabels)* – Labels for these nodes.

tpm

The node TPM is an array with shape \((2,) \times (n + 1)\), where \(n\) is the size of the Network. The first \(n\) dimensions correspond to each node in the system. Dimensions corresponding to nodes that provide input to this node are of size 2, while those that do not correspond to inputs are of size 1, so that the TPM has \(2^m \times 2\) elements where \(m\) is the number of inputs. The last dimension corresponds to the state of the node in the next timestep, so that `node.tpm[..., 0]` gives probabilities that the node will be ‘OFF’ and `node.tpm[..., 1]` gives probabilities that the node will be ‘ON’.

Type np.ndarray

tpm_off

The TPM of this node containing only the ‘OFF’ probabilities.

tpm_on

The TPM of this node containing only the ‘ON’ probabilities.

inputs

The set of nodes with connections to this node.

outputs

The set of nodes this node has connections to.

label

The textual label for this node.
__eq__(other)
 Return whether this node equals the other object.
 Two nodes are equal if they belong to the same subsystem and have the same index (their TPMs must be
 the same in that case, so this method doesn’t need to check TPM equality).
 Labels are for display only, so two equal nodes may have different labels.

to_json()
 Return a JSON-serializable representation.

pyphi.node.generate_nodes(tpm, cm, network_state, indices, node_labels=None)
 Generate Node objects for a subsystem.

 Parameters
 • tpm (np.ndarray) – The system’s TPM
 • cm (np.ndarray) – The corresponding CM.
 • network_state (tuple) – The state of the network.
 • indices (tuple[int]) – Indices to generate nodes for.

 Keyword Arguments
 node_labels (NodeLabels) – Textual labels for each node.

 Returns
 The nodes of the system.

 Return type
 tuple[Node]

pyphi.node.expand_node_tpm(tpm)
 Broadcast a node TPM over the full network.
 This is different from broadcasting the TPM of a full system since the last dimension (containing the state of the
 node) contains only the probability of this node being on, rather than the probabilities for each node.

1.46 partition

Functions for generating partitions.

pyphi.partition.partitions(collection)
 Generate all set partitions of a collection.

Example

```python
>>> list(partitions(range(3)))  # doctest: +NORMALIZE_WHITESPACE
[[[0, 1, 2]],
 [0], [1, 2]],
 [0, 1], [2]],
 [1], [0, 2]],
 [0], [1], [2]]
```

pyphi.partition.bipartition_indices(N)
 Return indices for undirected bipartitions of a sequence.

 Parameters
 N (int) – The length of the sequence.

 Returns
 A list of tuples containing the indices for each of the two parts.

 Return type
 list
Example

```python
>>> N = 3
>>> bipartition_indices(N)
[((()), ((0, 1, 2))), (((0,), (1, 2))), (((1,), (0, 2))), (((0, 1), (2,)))]
```

pyphi.partition.bipartition(seq)

Return a list of bipartitions for a sequence.

- **Parameters** `a` (Iterable) – The sequence to partition.
- **Returns** A list of tuples containing each of the two partitions.
- **Return type** list[tuple[tuple]]

Example

```python
>>> bipartition((1,2,3))
[((((), (1, 2, 3)), ((1,), (2, 3))), ((2,), (1, 3))), ((1, 2), (3,))]
```

pyphi.partition.directed_bipartition_indices(N)

Return indices for directed bipartitions of a sequence.

- **Parameters** `N` (int) – The length of the sequence.
- **Returns** A list of tuples containing the indices for each of the two parts.
- **Return type** list

Example

```python
>>> N = 3
>>> directed_bipartition_indices(N)  # doctest: +NORMALIZE_WHITESPACE
[((()), (0, 1, 2)),
 ((0,), (1, 2)),
 ((1,), (0, 2)),
 ((0, 1), (2,)),
 ((2,), (0, 1)),
 ((0, 2), (1,)),
 ((1, 2), (0,)),
 ((0, 1, 2), ())]
```

pyphi.partition.directed_bipartition(seq, nontrivial=False)

Return a list of directed bipartitions for a sequence.

- **Parameters** `seq` (Iterable) – The sequence to partition.
- **Returns** A list of tuples containing each of the two parts.
- **Return type** list[tuple[tuple]]

Example
>>> directed_bipartition((1, 2, 3)) # doctest: +NORMALIZE_WHITESPACE
[(()), ((1), (2, 3))],
[[(1), (2, 3))],
[[(2), (1, 3))],
[[(1, 2), (3))],
[[(3), (1, 2))],
[[(1, 3), (2))],
[[(2, 3), (1))],
[[(1, 2, 3), ()]]

pyphi.partition.bipartition_of_one(seq)
Generate bipartitions where one part is of length 1.

pyphi.partition.reverse_elements(seq)
Reverse the elements of a sequence.

pyphi.partition.directed_bipartition_of_one(seq)
Generate directed bipartitions where one part is of length 1.

 Parameters seq (Iterable) -- The sequence to partition.
 Returns A list of tuples containing each of the two partitions.
 Return type list[tuple[tuple]]

Example

>>> partitions = directed_bipartition_of_one((1, 2, 3))
>>> list(partitions) # doctest: +NORMALIZE_WHITESPACE
[[(1,), (2, 3))],
[[(2,), (1, 3))],
[[(3,), (1, 2))],
[[(2, 3), (1))],
[[(1, 3), (2))],
[[(1, 2), (3))]]

pyphi.partition.directed_tripartition_indices(N)
Return indices for directed tripartitions of a sequence.

 Parameters N (int) -- The length of the sequence.
 Returns A list of tuples containing the indices for each partition.
 Return type list[tuple]

Example

>>> N = 1
>>> directed_tripartition_indices(N)
[[(0,), (), ()], [(0), (0), ()], [(0,), (), ()]]

pyphi.partition.directed_tripartition(seq)
Generator over all directed tripartitions of a sequence.

 Parameters seq (Iterable) -- A sequence.
 Yields tuple[tuple] -- A tripartition of seq.
Example

```python
>>> seq = (2, 5)
>>> list(directed_tripartition(seq))  # doctest: +NORMALIZE_WHITESPACE
[((2, 5), (), ()),
 ((2,), (5,), ()),
 ((2,), (), (5,)),
 ((5,), (2,), ()),
 ((), (2, 5), ()),
 ((), (2,), (5,)),
 ((5,), (), (2,)),
 ((), (5,), (2,)),
 ((), (), (2, 5))]
```

`pyphi.partition.k_partitions(collection, k)`
Generate all k-partitions of a collection.

Example

```python
>>> list(k_partitions(range(3), 2))
[[[0, 1], [2]], [[0], [1, 2]], [[0, 2], [1]]]
```

class `pyphi.partition.PartitionRegistry`
Storage for partition schemes registered with PyPhi.

Users can define custom partitions:

Examples

```python
>>> @partition_types.register('NONE')  # doctest: +SKIP
... def no_partitions(mechanism, purview):
...     return []
```

And use them by setting `config.PARTITION_TYPE = 'NONE'`

desc = 'partitions'

`pyphi.partition.mip_partitions(mechanism, purview, node_labels=None)`
Return a generator over all mechanism-purview partitions, based on the current configuration.

`pyphi.partition.mip_bipartitions(mechanism, purview, node_labels=None)`
Return a generator of all ϕ bipartitions of a mechanism over a purview.

Excludes all bipartitions where one half is entirely empty, e.g:

```
A   B
```

is not valid, but

```
A   B
```

is.
Parameters

- **mechanism**(*tuple*[int]) – The mechanism to partition
- **purview**(*tuple*[int]) – The purview to partition

Yields: **Bipartition** –

Where each bipartition is:

```
<table>
<thead>
<tr>
<th>bipart[0].mechanism</th>
<th>bipart[1].mechanism</th>
</tr>
</thead>
<tbody>
<tr>
<td>bipart[0].purview</td>
<td>bipart[1].purview</td>
</tr>
</tbody>
</table>
```

Example

```python
def mip_bipartitions(mechanism, purview):
    ... # doctest: +NORMALIZE_WHITESPACE
    for partition in mip_bipartitions(mechanism, purview):
        print(partition, '
')
```

pyphi.partition.wedge_partitions(*mechanism, purview, node_labels=None)*

Return an iterator over all wedge partitions.

These are partitions which strictly split the mechanism and allow a subset of the purview to be split into a third partition, e.g.:

```
A     B
|___|___|
B     C     D
```

See **PARTITION_TYPE** in **config** for more information.

Parameters

- **mechanism**(*tuple*[int]) – A mechanism.
- **purview**(*tuple*[int]) – A purview.

Yields: **Tripartition** – all unique tripartitions of this mechanism and purview.

pyphi.partition.all_partitions(*mechanism, purview, node_labels=None)*

Return all possible partitions of a mechanism and purview.

Partitions can consist of any number of parts.

Parameters

- **mechanism**(*tuple*[int]) – A mechanism.
- **purview**(*tuple*[int]) – A purview.
Yields \textit{KPartition} – A partition of this mechanism and purview into \(k\) parts.

1.47 subsystem

Represents a candidate system for \(\varphi\) and \(\Phi\) evaluation.

```python
class pyphi.subsystem.Subsystem(network, state, nodes=None, cut=None, mice_cache=None, repertoire_cache=None, single_node_repetoire_cache=None, _external_indices=None)
```

A set of nodes in a network.

Parameters

- `network` (**Network**) – The network the subsystem belongs to.
- `state` (**\(\text{tuple}[\text{int}]\)**) – The state of the network.

Keyword Arguments

- `nodes` (**\(\text{tuple}[\text{int}]\) or \(\text{tuple}[\text{str}]\)**) – The nodes of the network which are in this subsystem. Nodes can be specified either as indices or as labels if the \textit{Network} was passed \textit{node_labels}. If this is \textit{None} then the full network will be used.
- `cut` (**\textit{Cut}**) – The unidirectional \textit{Cut} to apply to this subsystem.

network

The network the subsystem belongs to.

Type **Network**

tpm

The TPM conditioned on the state of the external nodes.

Type **np.ndarray**

cm

The connectivity matrix after applying the cut.

Type **np.ndarray**

state

The state of the network.

Type **\text{tuple}[\text{int}]**

node_indices

The indices of the nodes in the subsystem.

Type **\text{tuple}[\text{int}]**

cut

The cut that has been applied to this subsystem.

Type **\textit{Cut}**

null_cut

The cut object representing no cut.

Type **\textit{Cut}**

nodes

The nodes in this \textit{Subsystem}.

Type **\text{tuple}[\textit{Node}]**
proper_state
The state of the subsystem.

proper_state[i] gives the state of the ith node in the subsystem. Note that this is not the state of nodes[i].

Type tuple[int]

connectivity_matrix
Alias for cm.

Type np.ndarray

size
The number of nodes in the subsystem.

Type int

is_cut
True if this Subsystem has a cut applied to it.

Type bool

cut_indices
The nodes of this subsystem to cut for Φ computations.

This was added to support MacroSubsystem, which cuts indices other than node_indices.

Yields tuple[int]

Type tuple[int]

cut_mechanisms
The mechanisms that are cut in this system.

Type list[tuple[int]]

cut_node_labels
Labels for the nodes of this system that will be cut.

Type NodeLabels

tpm_size
The number of nodes in the TPM.

Type int

cache_info()
Report repertoire cache statistics.

clear_caches()
Clear the mice and repertoire caches.

__bool__()
Return False if the Subsystem has no nodes, True otherwise.

__eq__(other)
Return whether this Subsystem is equal to the other object.

Two Subsystems are equal if their sets of nodes, networks, and cuts are equal.

__lt__(other)
Return whether this subsystem has fewer nodes than the other.

__gt__(other)
Return whether this subsystem has more nodes than the other.
__len__()
Return the number of nodes in this Subsystem.

to_json()
Return a JSON-serializable representation.

apply_cut(cut)
Return a cut version of this Subsystem.

 Parameters cut (Cut) – The cut to apply to this Subsystem.
 Returns The cut subsystem.
 Return type Subsystem

indices2nodes(indices)
Return Node for these indices.

 Parameters indices (tuple[int]) – The indices in question.
 Returns The Node objects corresponding to these indices.
 Return type tuple[Node]
 Raises ValueError – If requested indices are not in the subsystem.

cause_repertoire(mechanism, purview)
Return the cause repertoire of a mechanism over a purview.

 Parameters
 • mechanism (tuple[int]) – The mechanism for which to calculate the cause repertoire.
 • purview (tuple[int]) – The purview over which to calculate the cause repertoire.
 Returns The cause repertoire of the mechanism over the purview.
 Return type np.ndarray

Note: The returned repertoire is a distribution over purview node states, not the states of the whole network.

effect_repertoire(mechanism, purview)
Return the effect repertoire of a mechanism over a purview.

 Parameters
 • mechanism (tuple[int]) – The mechanism for which to calculate the effect repertoire.
 • purview (tuple[int]) – The purview over which to calculate the effect repertoire.
 Returns The effect repertoire of the mechanism over the purview.
 Return type np.ndarray

Note: The returned repertoire is a distribution over purview node states, not the states of the whole network.

repertoire(direction, mechanism, purview)
Return the cause or effect repertoire based on a direction.
Parameters

- **direction** ([`Direction`]) – *CAUSE* or *EFFECT*.
- **mechanism** ([`tuple[int]`]) – The mechanism for which to calculate the repertoire.
- **purview** ([`tuple[int]`]) – The purview over which to calculate the repertoire.

Returns

The cause or effect repertoire of the mechanism over the purview.

Return type

`np.ndarray`

Raises

`ValueError` – If `direction` is invalid.

unconstrained_repertoire (`direction`, `purview`)

Return the unconstrained cause/effect repertoire over a purview.

unconstrained_cause_repertoire (`purview`)

Return the unconstrained cause repertoire for a purview.

This is just the cause repertoire in the absence of any mechanism.

unconstrained_effect_repertoire (`purview`)

Return the unconstrained effect repertoire for a purview.

This is just the effect repertoire in the absence of any mechanism.

partitioned_repertoire (`direction`, `partition`)

Compute the repertoire of a partitioned mechanism and purview.

expand_repertoire (`direction`, `repertoire`, `new_purview=None`)

Distribute an effect repertoire over a larger purview.

Parameters

- **direction** ([`Direction`]) – *CAUSE* or *EFFECT*.
- **repertoire** ([`np.ndarray`]) – The repertoire to expand.

Keyword Arguments

`new_purview` ([`tuple[int]`]) – The new purview to expand the repertoire over. If `None` (the default), the new purview is the entire network.

Returns

A distribution over the new purview, where probability is spread out over the new nodes.

Return type

`np.ndarray`

Raises

`ValueError` – If the expanded purview doesn’t contain the original purview.

expand_cause_repertoire (`repertoire`, `new_purview=None`)

Alias for `expand_repertoire()` with `direction` set to *CAUSE*.

expand_effect_repertoire (`repertoire`, `new_purview=None`)

Alias for `expand_repertoire()` with `direction` set to *EFFECT*.

cause_info (`mechanism`, `purview`)

Return the cause information for a mechanism over a purview.

effect_info (`mechanism`, `purview`)

Return the effect information for a mechanism over a purview.

cause_effect_info (`mechanism`, `purview`)

Return the cause-effect information for a mechanism over a purview.

This is the minimum of the cause and effect information.
evaluate_partition(direction, mechanism, purview, partition, repertoire=None)

Return the ϕ of a mechanism over a purview for the given partition.

Parameters
- **direction** (Direction) – CAUSE or EFFECT.
- **mechanism** (tuple[int]) – The nodes in the mechanism.
- **purview** (tuple[int]) – The nodes in the purview.
- **partition** (Bipartition) – The partition to evaluate.

Keyword Arguments **repertoire** (np.array) – The unpartitioned repertoire. If not supplied, it will be computed.

Returns The distance between the unpartitioned and partitioned repertoires, and the partitioned repertoire.

Return type tuple[int, np.ndarray]

find_mip(direction, mechanism, purview)

Return the minimum information partition for a mechanism over a purview.

Parameters
- **direction** (Direction) – CAUSE or EFFECT.
- **mechanism** (tuple[int]) – The nodes in the mechanism.
- **purview** (tuple[int]) – The nodes in the purview.

Returns The irreducibility analysis for the minimum-information partition in one temporal direction.

Return type RepertoireIrreducibilityAnalysis

cause_mip(mechanism, purview)

Return the irreducibility analysis for the cause MIP.

Alias for find_mip() with direction set to CAUSE.

effect_mip(mechanism, purview)

Return the irreducibility analysis for the effect MIP.

Alias for find_mip() with direction set to EFFECT.

phi_cause_mip(mechanism, purview)

Return the ϕ of the cause MIP.

This is the distance between the unpartitioned cause repertoire and the MIP cause repertoire.

phi_effect_mip(mechanism, purview)

Return the ϕ of the effect MIP.

This is the distance between the unpartitioned effect repertoire and the MIP cause repertoire.

phi(mechanism, purview)

Return the ϕ of a mechanism over a purview.

potential_purviews(direction, mechanism, purviews=False)

Return all purviews that could belong to the MaximallyIrreducibleCause/MaximallyIrreducibleEffect.

Filters out trivially-reducible purviews.

Parameters
- **direction** (Direction) – CAUSE or EFFECT.
• `mechanism(tuple[int])` – The mechanism of interest.

Keyword Arguments

`purviews(tuple[int])` – Optional subset of purviews of interest.

```python
find_mice(direction, mechanism, purviews=False)
```

Return the `MaximallyIrreducibleCause` or `MaximallyIrreducibleEffect` for a mechanism.

Parameters

• `direction(Direction)`: *CAUSE or EFFECT.*

• `mechanism(tuple[int])` – The mechanism to be tested for irreducibility.

Keyword Arguments

`purviews(tuple[int])` – Optionally restrict the possible purviews to a subset of the subsystem. This may be useful for _e.g._ finding only concepts that are “about” a certain subset of nodes.

Returns The `MaximallyIrreducibleCause` or `MaximallyIrreducibleEffect`.

Return type `MaximallyIrreducibleCauseOrEffect`

```python
mic(mechanism, purviews=False)
```

Return the mechanism’s maximally-irreducible cause (`MaximallyIrreducibleCause`).

Alias for `find_mice()` with `direction` set to *CAUSE.*

```python
mie(mechanism, purviews=False)
```

Return the mechanism’s maximally-irreducible effect (`MaximallyIrreducibleEffect`).

Alias for `find_mice()` with `direction` set to *EFFECT.*

```python
phi_max(mechanism)
```

Return the φ_{max} of a mechanism.

This is the maximum of φ taken over all possible purviews.

```python
null_concept
```

Return the null concept of this subsystem.

The null concept is a point in concept space identified with the unconstrained cause and effect repertoire of this subsystem.

```python
concept(mechanism, purviews=False, cause_purviews=False, effect_purviews=False)
```

Return the concept specified by a mechanism within this subsystem.

Parameters

`mechanism(tuple[int])` – The candidate set of nodes.

Keyword Arguments

• `purviews(tuple[tuple[int]])` – Restrict the possible purviews to those in this list.

• `cause_purviews(tuple[tuple[int]])` – Restrict the possible cause purviews to those in this list. Takes precedence over `purviews`.

• `effect_purviews(tuple[tuple[int]])` – Restrict the possible effect purviews to those in this list. Takes precedence over `purviews`.

Returns The pair of maximally irreducible cause/effect repertoires that constitute the concept specified by the given mechanism.

Return type `Concept`
1.48 timescale

Functions for converting the timescale of a TPM.

- `pyphi.timescale.sparse(matrix, threshold=0.1)`
- `pyphi.timescale.sparse_time(tpm, time_scale)`
- `pyphi.timescale.dense_time(tpm, time_scale)`
- `pyphi.timescale.run_tpm(tpm, time_scale)`

Iterate a TPM by the specified number of time steps.

Parameters

- `tpm (np.ndarray)` — A state-by-node tpm.
- `time_scale (int)` — The number of steps to run the tpm.

Returns `np.ndarray`

- `pyphi.timescale.run_cm(cm, time_scale)`

Iterate a connectivity matrix the specified number of steps.

Parameters

- `cm (np.ndarray)` — A connectivity matrix.
- `time_scale (int)` — The number of steps to run.

Returns The connectivity matrix at the new timescale.

Return type `np.ndarray`

1.49 tpm

Functions for manipulating transition probability matrices.

- `pyphi.tpm.tpm_indices(tpm)`
 Return the indices of nodes in the TPM.

- `pyphi.tpm.is_state_by_state(tpm)`
 Return `True` if `tpm` is in state-by-state form, otherwise `False`.

- `pyphi.tpm.condition_tpm(tpm, fixed_nodes, state)`
 Return a TPM conditioned on the given fixed node indices, whose states are fixed according to the given state-tuple.

 The dimensions of the new TPM that correspond to the fixed nodes are collapsed onto their state, making those dimensions singletons suitable for broadcasting. The number of dimensions of the conditioned TPM will be the same as the unconditioned TPM.

- `pyphi.tpm.expand_tpm(tpm)`
 Broadcast a state-by-node TPM so that singleton dimensions are expanded over the full network.

- `pyphi.tpm.marginalize_out(node_indices, tpm)`
 Marginalize out nodes from a TPM.

Parameters

- `node_indices (list[int])` — The indices of nodes to be marginalized out.
- `tpm (np.ndarray)` — The TPM to marginalize the node out of.
Returns A TPM with the same number of dimensions, with the nodes marginalized out.

Return type np.ndarray

pyphi.tpm.infer_edge(tpm, a, b, contexts)
Infer the presence or absence of an edge from node A to node B.

Let S be the set of all nodes in a network. Let $A' = S - \{A\}$. We call the state of A' the context C of A. There is an edge from A to B if there exists any context $C(A)$ such that $\Pr(B \mid C(A), A = 0) \neq \Pr(B \mid C(A), A = 1)$.

Parameters

- **tpm** (np.ndarray) – The TPM in state-by-node, multidimensional form.
- **a** (int) – The index of the putative source node.
- **b** (int) – The index of the putative sink node.

Returns True if the edge $A \rightarrow B$ exists, False otherwise.

Return type bool

pyphi.tpm.infer_cm(tpm)
Infer the connectivity matrix associated with a state-by-node TPM in multidimensional form.

1.50 utils

Functions used by more than one PyPhi module or class, or that might be of external use.

pyphi.utils.state_of(nodes, network_state)
Return the state-tuple of the given nodes.

pyphi.utils.all_states(n, big_endian=False)
Return all binary states for a system.

Parameters

- **n** (int) – The number of elements in the system.
- **big_endian** (bool) – Whether to return the states in big-endian order instead of little-endian order.

Yields tuple[int] – The next state of an n-element system, in little-endian order unless big_endian is True.

pyphi.utils.np Immutable(a)
Make a NumPy array immutable.

pyphi.utils.np_hash(a)
Return a hash of a NumPy array.

class pyphi.utils.np hashable(array)
A hashable wrapper around a NumPy array.

pyphi.utils.eq(x, y)
Compare two values up to PRECISION.

pyphi.utils.combs(a, r)
NumPy implementation of itertools.combinations.
Return successive r-length combinations of elements in the array a.

Parameters
• **a** (*np.ndarray*) – The array from which to get combinations.
• **r** (*int*) – The length of the combinations.

Returns An array of combinations.

Return type *np.ndarray*

Example

```python
>>> n, k = 3, 2
>>> data = np.arange(6).reshape(2, 3)
>>> data[:, comb_indices(n, k)]
array([[0, 1],
       [0, 2],
       [1, 2]],
       [[3, 4],
        [3, 5],
        [4, 5]])
```

pyphi.utils.powerset (*iterable*, **nonempty=False**, **reverse=False**)

Generate the power set of an iterable.

Parameters *iterable* (*Iterable*) – The iterable from which to generate the power set.

Keyword Arguments
- **nonempty** (*boolean*) – If True, don’t include the empty set.
- **reverse** (*boolean*) – If True, reverse the order of the powerset.

Returns An iterator over the power set.

Return type *Iterable*

Example

```python
>>> ps = powerset(np.arange(2))
>>> list(ps)
[(), (0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True)
>>> list(ps)
[(0,), (1,), (0, 1)]
>>> ps = powerset(np.arange(2), nonempty=True, reverse=True)
>>> list(ps)
[(1, 0), (1,), (0,)]
```
PyPhi Documentation, Release v1.1.0

pyphi.utils.load_data(directory, num)

Load numpy data from the data directory.

The files should be stored in `../data/<dir>` and named `0.npy`, `1.npy`, ... `<num - 1>.npy`.

Returns A list of loaded data, such that `list[i]` contains the contents of `i.npy`.

Return type list

pyphi.utils.time_annotated(func, *args, **kwargs)

Annotate the decorated function or method with the total execution time.

The result is annotated with a `time` attribute.

1.51 validate

Methods for validating arguments.

pyphi.validate.direction(direction, allow_bi=False)

Validate that the given direction is one of the allowed constants.

If `allow_bi` is True then `Direction.BIDIRECTIONAL` is acceptable.

pyphi.validate.tpm(tpm, check_independence=True)

Validate a TPM.

The TPM can be in

- 2-dimensional state-by-state form,
- 2-dimensional state-by-node form, or
- multidimensional state-by-node form.

pyphi.validate.conditionally_independent(tpm)

Validate that the TPM is conditionally independent.

pyphi.validate.connectivity_matrix(cm)

Validate the given connectivity matrix.

pyphi.validate.node_labels(node_labels, node_indices)

Validate that there is a label for each node.

pyphi.validate.network(n)

Validate a `Network`.

Checks the TPM and connectivity matrix.

pyphi.validate.is_network(network)

Validate that the argument is a `Network`.

pyphi.validate.node_states(state)

Check that the state contains only zeros and ones.

pyphi.validate.state_length(state, size)

Check that the state is the given size.

pyphi.validate.state_reachable(subsystem)

Return whether a state can be reached according to the network’s TPM.

pyphi.validate.cut(cut, node_indices)

Check that the cut is for only the given nodes.
pyphi.validate.subsystem(s)

Validate a Subsystem.

Checks its state and cut.

pyphi.validate.time_scale(time_scale)

Validate a macro temporal time scale.

pyphi.validate.partition(partition)

Validate a partition - used by blackboxes and coarse grains.

pyphi.validate.coarse_grain(coarse_grain)

Validate a macro coarse-graining.

pyphi.validate.blackbox(blackbox)

Validate a macro blackboxing.

pyphi.validate.blackbox_and_coarse_grain(blackbox, coarse_grain)

Validate that a coarse-graining properly combines the outputs of a blackboxing.
<table>
<thead>
<tr>
<th>Module / Component</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyphi.actual</td>
<td>46</td>
</tr>
<tr>
<td>pyphi.cache</td>
<td>51</td>
</tr>
<tr>
<td>pyphi.compute</td>
<td>54</td>
</tr>
<tr>
<td>pyphi.compute.distance</td>
<td>55</td>
</tr>
<tr>
<td>pyphi.compute.network</td>
<td>55</td>
</tr>
<tr>
<td>pyphi.compute.parallel</td>
<td>57</td>
</tr>
<tr>
<td>pyphi.compute.subsystem</td>
<td>59</td>
</tr>
<tr>
<td>pyphi.conf</td>
<td>38</td>
</tr>
<tr>
<td>pyphi.connectivity</td>
<td>69</td>
</tr>
<tr>
<td>pyphi.constants</td>
<td>71</td>
</tr>
<tr>
<td>pyphi.convert</td>
<td>71</td>
</tr>
<tr>
<td>pyphi.direction</td>
<td>79</td>
</tr>
<tr>
<td>pyphi.distance</td>
<td>80</td>
</tr>
<tr>
<td>pyphi.distribution</td>
<td>82</td>
</tr>
<tr>
<td>pyphi.examples</td>
<td>84</td>
</tr>
<tr>
<td>pyphi.exceptions</td>
<td>91</td>
</tr>
<tr>
<td>pyphi.jsonify</td>
<td>92</td>
</tr>
<tr>
<td>pyphi.macro</td>
<td>93</td>
</tr>
<tr>
<td>pyphi.models</td>
<td>99</td>
</tr>
<tr>
<td>pyphi.models.actual_causation</td>
<td>100</td>
</tr>
<tr>
<td>pyphi.models.cuts</td>
<td>104</td>
</tr>
<tr>
<td>pyphi.models.mechanism</td>
<td>106</td>
</tr>
<tr>
<td>pyphi.models.subsystem</td>
<td>110</td>
</tr>
<tr>
<td>pyphi.network</td>
<td>112</td>
</tr>
<tr>
<td>pyphi.node</td>
<td>114</td>
</tr>
<tr>
<td>pyphi.partition</td>
<td>115</td>
</tr>
<tr>
<td>pyphi.subsystem</td>
<td>120</td>
</tr>
<tr>
<td>pyphi.timescale</td>
<td>126</td>
</tr>
<tr>
<td>pyphi.tpm</td>
<td>126</td>
</tr>
<tr>
<td>pyphi.utils</td>
<td>127</td>
</tr>
<tr>
<td>pyphi.validate</td>
<td>129</td>
</tr>
</tbody>
</table>
Symbols

__bool__() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis method), 101
__bool__() (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis method), 104
__bool__() (pyphi.models.actual_causation.CausalLink method), 102
__bool__() (pyphi.models.mechanism.Concept method), 110
__bool__() (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis method), 107
__bool__() (pyphi.models.subsystem.SystemIrreducibilityAnalysis method), 112
__bool__() (pyphi.subsystem.Subsystem method), 121
__eq__() (pyphi.macro.MacroSubsystem method), 94
__eq__() (pyphi.network.Network method), 113
__eq__() (pyphi.node.Node method), 114
__eq__() (pyphi.subsystem.Subsystem method), 121
__getattr__() (pyphi.compute.subsystem.ConceptStyleSystem method), 60
__getattr__() (pyphi.compute.subsystem.SystemIrreducibilityAnalysisConceptStyle method), 61
__gt__() (pyphi.subsystem.Subsystem method), 121
__len__() (pyphi.network.Network method), 113
__len__() (pyphi.subsystem.Subsystem method), 121
__lt__() (pyphi.subsystem.Subsystem method), 121

A

Account (class in pyphi.models.actual_causation), 102
Account (in module pyphi.models), 99
account (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis attribute), 103
account () (in module pyphi.actual), 49
account_distance() (in module pyphi.actual), 49
AcRepertoireIrreducibilityAnalysis (class in pyphi.models.actual_causation), 100
AcRepertoireIrreducibilityAnalysis (in module pyphi.models), 99
AcSystemIrreducibilityAnalysis (class in pyphi.models.actual_causation), 103
AcSystemIrreducibilityAnalysis (in module pyphi.models), 99
actual_cause (pyphi.models.actual_causation.Event attribute), 102
actual_effect (pyphi.models.actual_causation.Event attribute), 102
ActualCut (class in pyphi.models.cuts), 105
ActualCut (in module pyphi.models), 99
after_state (pyphi.actual.Transition attribute), 47
after_state (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis attribute), 103
all_blackboxes() (in module pyphi.macro), 97
all_coarse_grains() (in module pyphi.macro), 97
all_coarse_grains_for_blackbox() (in module pyphi.macro), 97
all_complexes (in module pyphi.compute), 54
all_complexes() (in module pyphi.compute), 56
all_groupings() (in module pyphi.macro), 97
all_macro_systems() (in module pyphi.macro), 98
all_partitions() (in module pyphi.macro), 97
all_partitions() (in module pyphi.partition), 119
all_states() (in module pyphi.utils), 127
alpha (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis attribute), 100
alpha (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis attribute), 103
alpha (pyphi.models.actual_causation.CausalLink attribute), 101
apply() (pyphi.macro.SystemAttrs method), 94
apply_boundary_conditions_to_cm() (in module pyphi.connectivity), 69
apply_cut() (pyphi.actual.Transition method), 47
apply_cut() (pyphi.compute.subsystem.ConceptStyleSystem method), 60
apply_cut() (pyphi.macro.MacroSubsystem method), 94
<table>
<thead>
<tr>
<th>Function/Method Name</th>
<th>Module/Class/Attribute</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply_cut()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>ASSUME_CUTS_CANNOT_CREATE_NEW_CONCEPTS</td>
<td>(pyphi.conf.PyphiConfig attribute)</td>
</tr>
<tr>
<td>asymmetric()</td>
<td>(pyphi.distance.MeasureRegistry method)</td>
</tr>
<tr>
<td>b2l()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>b21()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>b21_sbs()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>b2s()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>basic_network()</td>
<td>(in module pyphi.examples)</td>
</tr>
<tr>
<td>basic_noisy_selfloop_network()</td>
<td>(in module pyphi.examples)</td>
</tr>
<tr>
<td>basic_noisy_selfloop_subsystem()</td>
<td>(in module pyphi.examples)</td>
</tr>
<tr>
<td>basic_state()</td>
<td>(in module pyphi.examples)</td>
</tr>
<tr>
<td>basic_subsystem()</td>
<td>(in module pyphi.examples)</td>
</tr>
<tr>
<td>be2le()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>be2le_state_by_state()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>be_index2state()</td>
<td>(in module pyphi.convert)</td>
</tr>
<tr>
<td>before_state()</td>
<td>(in module pyphi.actual.Transition method)</td>
</tr>
<tr>
<td>before_state()</td>
<td>(in module pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis attribute)</td>
</tr>
<tr>
<td>BIDIRECTIONAL</td>
<td>(pyphi.direction.Direction attribute)</td>
</tr>
<tr>
<td>Bipartition</td>
<td>(class in pyphi.models.cuts)</td>
</tr>
<tr>
<td>Bipartition</td>
<td>(in module pyphi.models)</td>
</tr>
<tr>
<td>bipartition()</td>
<td>(in module pyphi.partition)</td>
</tr>
<tr>
<td>bipartition_indices()</td>
<td>(in module pyphi.partition)</td>
</tr>
<tr>
<td>bipartition_of_one()</td>
<td>(in module pyphi.partition)</td>
</tr>
<tr>
<td>Blockbox</td>
<td>(class in pyphi.macro)</td>
</tr>
<tr>
<td>blackbox()</td>
<td>(pyphi.macro.MacroNetwork attribute)</td>
</tr>
<tr>
<td>block_cm()</td>
<td>(in module pyphi.connectivity)</td>
</tr>
<tr>
<td>block_reducible()</td>
<td>(in module pyphi.connectivity)</td>
</tr>
<tr>
<td>cache()</td>
<td>(in module pyphi.cache)</td>
</tr>
<tr>
<td>cache_info()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>CACHING_BACKEND</td>
<td>(pyphi.conf.PyphiConfig attribute)</td>
</tr>
<tr>
<td>causal_nexus()</td>
<td>(in module pyphi.actual)</td>
</tr>
<tr>
<td>Causallink</td>
<td>(class in pyphi.models.actual_causation)</td>
</tr>
<tr>
<td>Causallink</td>
<td>(in module pyphi.models)</td>
</tr>
<tr>
<td>causally_significant_nodes</td>
<td>(pyphi.network.Network attribute)</td>
</tr>
<tr>
<td>causally_significant_nodes()</td>
<td>(in module pyphi.connectivity)</td>
</tr>
<tr>
<td>cause()</td>
<td>(pyphi.direction.Direction attribute)</td>
</tr>
<tr>
<td>cause_effect_info()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>cause_info()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>cause_mip()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>cause_purview</td>
<td>(pyphi.models.mechanism.Concept attribute)</td>
</tr>
<tr>
<td>cause_ratio()</td>
<td>(pyphi.actual.Transition method)</td>
</tr>
<tr>
<td>cause_repertoire()</td>
<td>(pyphi.models.mechanism.Concept attribute)</td>
</tr>
<tr>
<td>cause_repertoire()</td>
<td>(pyphi.actual.Transition method)</td>
</tr>
<tr>
<td>cause_repertoire()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>cause_system()</td>
<td>(pyphi.actual.Transition attribute)</td>
</tr>
<tr>
<td>CauseEffectStructure</td>
<td>(class in pyphi.models.subsystem)</td>
</tr>
<tr>
<td>CauseEffectStructure</td>
<td>(in module pyphi.models)</td>
</tr>
<tr>
<td>ces()</td>
<td>(in module pyphi.compute)</td>
</tr>
<tr>
<td>ces()</td>
<td>(pyphi.models.subsystem.SystemIrreducibilityAnalysis attribute)</td>
</tr>
<tr>
<td>ces()</td>
<td>(in module pyphi.compute.subsystem)</td>
</tr>
<tr>
<td>ces_distance()</td>
<td>(in module pyphi.compute)</td>
</tr>
<tr>
<td>ces_distance()</td>
<td>(in module pyphi.compute.distance)</td>
</tr>
<tr>
<td>clear()</td>
<td>(pyphi.cache.DictCache method)</td>
</tr>
<tr>
<td>clear()</td>
<td>(pyphi.cache.RedisCache method)</td>
</tr>
<tr>
<td>clear_caches()</td>
<td>(pyphi.subsystem.Subsystem method)</td>
</tr>
<tr>
<td>CLEAR_SUBSYSTEM_CACHES_AFTER_COMPUTING_SIA</td>
<td>(pyphi.conf.PyphiConfig attribute)</td>
</tr>
<tr>
<td>cm()</td>
<td>(pyphi.network.Network attribute)</td>
</tr>
<tr>
<td>cm()</td>
<td>(pyphi.subsystem.Subsystem attribute)</td>
</tr>
<tr>
<td>coarse_grain()</td>
<td>(pyphi.macro.MacroNetwork attribute)</td>
</tr>
<tr>
<td>coarse_grain()</td>
<td>(in module pyphi.validate)</td>
</tr>
<tr>
<td>coarse_graining()</td>
<td>(in module pyphi.macro)</td>
</tr>
</tbody>
</table>
directed_bipartition() (in module pyphi.partition), 116
directed_bipartition_indices() (in module pyphi.partition), 116
directed_bipartition_of_one() (in module pyphi.partition), 117
directed_tripartition() (in module pyphi.partition), 117
directed_tripartition_indices() (in module pyphi.partition), 117
DirectedAccount (class in pyphi.models.actual_causation), 103
DirectedAccount (in module pyphi.models), 100
Direction (class in pyphi.direction), 79
direction (pyphi.models.actual_causation.AcRepetoireIrreducibilityAnalysis attribute), 101
direction (pyphi.models.actual_causation.CausalLink attribute), 102
direction (pyphi.models.mechanism.MaximallyIrreducibleCausality analysis attribute), 108
direction (pyphi.models.mechanism.MaximallyIrreducibleCausality analysis attribute), 107
direction() (in module pyphi.validate), 129
directional_end() (in module pyphi.distance), 81
directional_sia() (in module pyphi.compute.subsystem), 61
disjunction_disjunction() (in module pyphi.models.actual_causation), 91
dump() (in module pyphi.jsonify), 93
dumps() (in module pyphi.jsonify), 93

effect (pyphi.models.mechanism.Concept attribute), 103
effect (pyphi.models.mechanism.Concept attribute), 109
effect() (in module pyphi.distance), 80
effect_info() (pyphi.subsystemSubsystem method), 123
effect_mip() (pyphi.subsystemSubsystem method), 124
effect_purview (pyphi.models.mechanism.Concept attribute), 109
effect_ratio() (pyphi.actual.Transition attribute), 48
effect_repoertoire (pyphi.models.mechanism.Concept attribute), 109
effect_repoertoire (pyphi.models.mechanism.Concept attribute), 109
effect_repoertoire (pyphi.actual.Transition method), 48

evolve_events() (pyphi.models.mechanism.Concept attribute), 99
 evolve_events() (pyphi.models.mechanism.Concept attribute), 110
is_null (pyphi.models.cuts.NullCut attribute), 104
is_state_by_state () (in module pyphi.tpm), 126
is_strong () (in module pyphi.connectivity), 70
is_weak () (in module pyphi.connectivity), 71
iterencode () (pyphi.jsonify.PyPhiJSONEncoder method), 93

J
joblib_memory (in module pyphi.constants), 71
jsonify() (in module pyphi.jsonify), 92
JSONVersionError, 91

K
k_partitions () (in module pyphi.partition), 118
KCut (class in pyphi.models.cuts), 105
key() (pyphi.cache.DictCache method), 52
key() (pyphi.cache.DictMICECache method), 53
key() (pyphi.cache.RedisCache method), 53
kld() (in module pyphi.distance), 81
klm() (in module pyphi.distance), 81
KPartition (class in pyphi.models.cuts), 105

L
l1() (in module pyphi.distance), 81
l2b() (in module pyphi.convert), 75
l2b_sbs () (in module pyphi.convert), 77
l2s() (in module pyphi.convert), 75
label (pyphi.node.Node attribute), 114
labeled_mechanisms
(pyphi.models.subsystem.CauseEffectStructure attribute), 111
le2be() (in module pyphi.convert), 72
le2be_state_by_state() (in module pyphi.convert), 73
le_index2state () (in module pyphi.convert), 72
load() (in module pyphi.jsonify), 93
load_data() (in module pyphi.utils), 128
load_dict() (pyphi.conf.Config method), 41
load_file() (pyphi.conf.Config method), 41
loads() (in module pyphi.jsonify), 93
log() (pyphi.conf.PyPhiConfig method), 46
log2 () (in module pyphi.actual), 46
LOG_FILE (pyphi.conf.PyPhiConfig attribute), 43
LOG_FILE_LEVEL (pyphi.conf.PyPhiConfig attribute), 43
LOG_STDOUT_LEVEL (pyphi.conf.PyPhiConfig attribute), 44
LogThread (class in pyphi.compute.parallel), 58

M
macro2blackbox_outputs()
(pyphi.macro.MacroSubsystem method), 94
macro2micro() (pyphi.macro.MacroSubsystem method), 94
macro_indices (pyphi.macro.Blackbox attribute), 96
macro_indices (pyphi.macro.CoarseGrain attribute), 95
macro_network() (in module pyphi.examples), 88
macro_state() (pyphi.macro.Blackbox method), 97
macro_state() (pyphi.macro.CoarseGrain method), 95
macro_subsystem() (in module pyphi.examples), 88
macro_tpm() (pyphi.macro.CoarseGrain method), 96
macro_tpm_sbs() (pyphi.macro.CoarseGrain method), 95
MacroNetwork (class in pyphi.macro), 97
MacroSubsystem (class in pyphi.macro), 94
major_complex (in module pyphi.compute), 54
major_complex() (in module pyphi.compute.network), 57
make_mapping() (pyphi.macro.CoarseGrain method), 95
MapReduce (class in pyphi.compute.parallel), 57
marginal () (in module pyphi.distribution), 82
marginal_zero() (in module pyphi.distribution), 82
marginalize_out() (in module pyphi.tpm), 126
max_entropy_distribution() (in module pyphi.distribution), 83
MaximallyIrreducibleCause (class in pyphi.models.mechanism), 108
MaximallyIrreducibleCause (in module pyphi.models), 100
MaximallyIrreducibleCauseOrEffect (class in pyphi.models.mechanism), 107
MaximallyIrreducibleCauseOrEffect (in module pyphi.models), 100
MaximallyIrreducibleEffect (class in pyphi.models.mechanism), 108
MaximallyIrreducibleEffect (in module pyphi.models), 100
MAXIMUM_CACHE_MEMORY_PERCENTAGE (pyphi.conf.PyPhiConfig attribute), 42
maybe_put_task() (pyphi.compute.parallel.MapReduce method), 58
MEASURE (pyphi.conf.PyPhiConfig attribute), 41
MeasureRegistry (class in pyphi.distance), 80
mechanism (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis attribute), 101
mechanism (pyphi.models.actual_causation.CausalLink attribute), 102
mechanism (pyphi.models.actual_causation.Event attribute), 102
mechanism (pyphi.models.cuts.KPartition attribute), 105
mechanism (pyphi.models.cuts.Part attribute), 105
mechanism (pyphi.models.mechanism.Concept attribute), 109
mechanism (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect attribute), 108
mechanism (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis attribute), 107
mechanism_indices() (pyphi.actual.Transition method), 48
mechanism_state (pyphi.models.mechanism.Concept attribute), 109
mechanism_state() (pyphi.actual.Transition method), 48
mechanisms (pyphi.models.subsystem.CauseEffectStructure attribute), 110
memory_full() (in module pyphi.cache), 51
method() (in module pyphi.cache), 54
mic() (pyphi.subsystemSubsystem method), 125
MICECache() (in module pyphi.cache), 53
micro_indices (pyphi.macro.Blackbox attribute), 96
micro_indices (pyphi.macro.CoarseGrain attribute), 95
micro_network (pyphi.macro.MacroNetwork attribute), 98
micro_phi (pyphi.macro.MacroNetwork attribute), 98
mie() (pyphi.subsystemSubsystem method), 125
min_sia (pyphi.computeSubsystemSystemIrreducibilityAnalysis attribute), 61
mip (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect attribute), 108
mip_bipartitions() (in module pyphi.partition), 118
mip_partitions() (in module pyphi.partition), 118
MONGODB_CONFIG (pyphi.conf.PyphiConfig attribute), 43
mp2q() (in module pyphi.distance), 81

N
Network (class in pyphi.network), 112
network (pyphi.actual.Transition attribute), 47
network (pyphi.macro.MacroNetwork attribute), 98
network (pyphi.models.subsystemSystemIrreducibilityAnalysis attribute), 111
network (pyphi.subsystemSubsystem attribute), 120
network() (in module pyphi.validate), 129
nexus() (in module pyphi.actual), 50
nice_true_ces() (in module pyphi.actual), 50
Node (class in pyphi.node), 114
node_indices (pyphi.actual.Transition attribute), 47
node_indices (pyphi.networkNetwork attribute), 113
node_indices (pyphi.subsystemSubsystem attribute), 120
node_labels (pyphi.actual.Transition attribute), 47
node_labels (pyphi.macro.SystemAttrs attribute), 93
node_labels (pyphi.models.actual_causation.CausalLink attribute), 102
node_labels (pyphi.models.cuts.Bipartition attribute), 106
node_labels (pyphi.models.cuts.Part attribute), 104
node_labels (pyphi.models.cuts.KPartition attribute), 105
node_labels (pyphi.models.cuts.Tripartition attribute), 106
node_labels (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis attribute), 107
node_labels (pyphi.networkNetwork attribute), 113
nodes() (in module pyphi.validate), 129
nodes() (in module pyphi.validate), 129
nodes (pyphi.macro.SystemAttrs attribute), 93
nodes (pyphi.subsystemSubsystem attribute), 120
nodes2indices() (in module pyphi.convert), 72
nodes2state() (in module pyphi.convert), 72
normalize() (in module pyphi.distance), 82
normalize() (pyphi.models.cuts.KPartition method), 106
np_hash() (in module pyphi.utils), 127
np_hashable (class in pyphi.utils), 127
np_immutable() (in module pyphi.utils), 127
np_suppress (class in pyphi.distance), 80
null_concept (pyphi.subsystemSubsystem attribute),
null_cut (pyphi.subsystemSubsystem attribute), 120
OrEffect (class in pyphi.models.cuts), 104
num_states (pyphi.networkNetwork attribute), 113
NUMBER_OF_CORES (pyphi.conf.PyphiConfig attribute), 42

O
OFF (in module pyphi.constants), 71
Option (class in pyphi.conf), 40
options() (pyphi.conf.Config class method), 41
order() (pyphi.direction.Direction method), 79
order_by() (pyphi.computeSubsystemSystemIrreducibilityAnalysisConceptStyle method), 61
order_by() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis method), 101
order_by() (pyphi.models.actual_causation.AcSystemIrreducibilityAnalysis method), 103
order_by() (pyphi.models.actual_causation.CausalLink method), 102
order_by() (pyphi.models.mechanism.Concept method), 110
order_by() (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect method), 108
order_by() (pyphi.models.mechanism.RepertoireIrreducibilityAnalysis method), 107

Index 139
residue_subsystem() (in module pyphi.examples), 85
reverse_bits() (in module pyphi.convert), 71
reverse_elements() (in module pyphi.partition), 117
ria (pyphi.models.actual_causation.CausalLink attribute), 102
ria (pyphi.models.mechanism.MaximallyIrreducibleCauseOrEffect attribute), 108
rule110_network() (in module pyphi.examples), 89
rule154_network() (in module pyphi.examples), 89
run() (pyphi.compute.parallel.LogThread method), 59
run() (pyphi.compute.parallel.MapReduce method), 58
run_cm() (in module pyphi.timescale), 126
run_parallel() (pyphi.compute.parallel.MapReduce method), 58
run_sequential() (pyphi.compute.parallel.MapReduce method), 58
run_tpm() (in module pyphi.macro), 93
run_tpm() (in module pyphi.timescale), 126
system_repertoire_distance() (in module pyphi.compute.subsystem), 60
system_repertoire_distance() (in module pyphi.compute.subsystem), 60
sia_concept_style() (in module pyphi.compute.subsystem), 61
SINGLE_MICRO_NODES_WITH_SELFLOOPS_HAVE_PhiMe (pyphi.models.mechanism.Concept attribute), 109
size (pyphi.network.Network attribute), 113
size (pyphi.subsystemSubsystem attribute), 121
size() (pyphi.cache.DictCache method), 52
size() (pyphi.cache.RedisCache method), 52
small_phi_ces_distance() (in module pyphi.compute.distance), 55
small_phi_time (pyphi.models.subsystem.SystemIrreducibilityAnalysis attribute), 111
snapshot() (pyphi.conf.Config method), 41
sparse() (in module pyphi.timescale), 126
sparse_time() (in module pyphi.timescale), 126
start_parallel() (pyphi.compute.parallel.MapReduce start method), 58
state (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis attribute), 101
state (pyphi.subsystemSubsystem attribute), 120
state2be_index() (in module pyphi.convert), 72
state2le_index() (in module pyphi.convert), 72
state_by_node2state_by_state() (in module pyphi.convert), 75
state_by_node2state_by_node() (in module pyphi.convert), 75
state_length() (in module pyphi.actual.Transition method), 48
state_reachable() (in module pyphi.validate), 129
StateUnreachableError, 91
Subsystem (class in pyphi.subsystem), 120
Subsystem (pyphi.compute.subsystem.ComputeCauseEffectStructure attribute), 59
subsystem (pyphi.models.mechanism.Concept attribute), 109
subsystem (pyphi.models.subsystem.SystemIrreducibilityAnalysis attribute), 111
subsystem() (in module pyphi.validate), 129
subsystems (in module pyphi.compute), 54
subsystems() (in module pyphi.compute.network), 55
system (pyphi.actual.Transition attribute), 47
SYSTEM_CUTS (pyphi.conf.PyphiConfig attribute), 46
system_repertoire_distance() (in module pyphi.distances), 82
SystemAttrs (class in pyphi.macro), 93
SystemIrreducibilityAnalysis (class in pyphi.models.subsystem), 111
SystemIrreducibilityAnalysis (in module pyphi.models), 100
SystemIrreducibilityAnalysisConceptStyle (class in pyphi.compute.subsystem), 61
time (pyphi.models.subsystem.SystemIrreducibilityAnalysis attribute), 111
time_annotated() (in module pyphi.utils), 129
time_scale (pyphi.macro.MacroNetwork attribute), 98
time_scale() (in module pyphi.validate), 130
to_2d() (in module pyphi.convert), 78
to_json() (pyphi.models.actual_causation.Account method), 103
to_json() (pyphi.models.actual_causation.AcRepertoireIrreducibilityAnalysis method), 101
T