Contents

1 **Installation**
 1.1 Using CONDA ... 3
 1.2 Using PIP ... 3

2 **Citing Pyomo** 5
 2.1 Pyomo ... 5
 2.2 PySP ... 5

3 **Pyomo Overview** 7
 3.1 Mathematical Modeling ... 7
 3.2 Overview of Modeling Components and Processes 9
 3.3 Abstract Versus Concrete Models 9
 3.4 Simple Models ... 10

4 **Pyomo Modeling Components** 17
 4.1 Sets ... 17
 4.2 Parameters ... 24
 4.3 Variables ... 25
 4.4 Objectives ... 26
 4.5 Constraints ... 26
 4.6 Expressions ... 27
 4.7 Suffixes ... 32

5 **Solving Pyomo Models**
 5.1 Solving ConcreteModels ... 41
 5.2 Solving AbstractModels ... 41
 5.3 `pyomo solve Command` ... 41
 5.4 Supported Solvers ... 42

6 **Working with Pyomo Models** 43
 6.1 Repeated Solves ... 43
 6.2 Changing the Model or Data and Re-solving 46
 6.3 Fixing Variables and Re-solving 47
 6.4 Extending the Objective Function 48
 6.5 Activating and Deactivating Objectives
 6.6 Accessing Variable Values 49
 6.7 Accessing Parameter Values 51
6.8 Accessing Duals .. 51
6.9 Accessing Slacks ... 53
6.10 Accessing Solver Status 53
6.11 Display of Solver Output 54
6.12 Sending Options to the Solver 54
6.13 Specifying the Path to a Solver 55
6.14 Warm Starts .. 55
6.15 Solving Multiple Instances in Parallel 55
6.16 Changing the temporary directory 57

7 Working with Abstract Models 59
 7.1 Instantiating Models 59
 7.2 Managing Data in AbstractModels 61
 7.3 The pyomo Command 91
 7.4 BuildAction and BuildCheck 93

8 Modeling Extensions .. 97
 8.1 Bilevel Programming 97
 8.2 Dynamic Optimization with pyomo.DAE 97
 8.3 MPEC .. 114
 8.4 Generalized Disjunctive Programming 114
 8.5 Stochastic Programming 117
 8.6 Pyomo Network .. 141

9 Pyomo Tutorial Examples 153

10 Debugging Pyomo Models 155
 10.1 Interrogating Pyomo Models 155
 10.2 FAQ .. 155
 10.3 Getting Help .. 156

11 Advanced Topics .. 157
 11.1 Persistent Solvers 157
 11.2 rapper: a PySP wrapper 160

12 Developer Reference 167
 12.1 Pyomo Expressions 167

13 Library Reference .. 191
 13.1 AML Library Reference 191
 13.2 Expression Reference 218
 13.3 Solver Interfaces 251
 13.4 Model Data Management 260
 13.5 The Kernel Library 263

14 Contributing to Pyomo 301
 14.1 Contribution Requirements 301
 14.2 Review Process 302
 14.3 Where to put contributed code 302
 14.4 pyomo.contrib 302

15 Third-Party Contributions 305
 15.1 Pyomo Nonlinear Preprocessing 305
 15.2 GDPopt logic-based solver 311
 15.3 GDP Branch and Bound Solver 314
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15.4</td>
<td>Multistart Solver</td>
<td>315</td>
</tr>
<tr>
<td>15.5</td>
<td>parmest</td>
<td>316</td>
</tr>
<tr>
<td>15.6</td>
<td>Pyomo Interface to MC++</td>
<td>328</td>
</tr>
<tr>
<td>15.7</td>
<td>MindtPy solver</td>
<td>329</td>
</tr>
<tr>
<td>16</td>
<td>Bibliography</td>
<td>331</td>
</tr>
<tr>
<td>17</td>
<td>Indices and Tables</td>
<td>333</td>
</tr>
<tr>
<td>18</td>
<td>Pyomo Resources</td>
<td>335</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>337</td>
</tr>
<tr>
<td></td>
<td>Python Module Index</td>
<td>339</td>
</tr>
</tbody>
</table>
Pyomo is a Python-based, open-source optimization modeling language with a diverse set of optimization capabilities.
Pyomo currently supports the following versions of Python:

- CPython: 2.7, 3.4, 3.5, 3.6, 3.7

1.1 Using CONDA

We recommend installation with *conda*, which is included with the Anaconda distribution of Python. You can install Pyomo in your system Python installation by executing the following in a shell:

```
conda install -c conda-forge pyomo
```

Pyomo also has conditional dependencies on a variety of third-party Python packages. These can also be installed with conda:

```
conda install -c conda-forge pyomo.extras
```

Optimization solvers are not installed with Pyomo, but some open source optimization solvers can be installed with conda as well:

```
conda install -c conda-forge ipopt coincbc glpk
```

1.2 Using PIP

The standard utility for installing Python packages is *pip*. You can install Pyomo in your system Python installation by executing the following in a shell:

```
pip install pyomo
```
CHAPTER 2

Citing Pyomo

2.1 Pyomo

2.2 PySP

CHAPTER 3

Pyomo Overview

3.1 Mathematical Modeling

This section provides an introduction to Pyomo: Python Optimization Modeling Objects. A more complete description is contained in the [PyomoBookII] book. Pyomo supports the formulation and analysis of mathematical models for complex optimization applications. This capability is commonly associated with commercially available algebraic modeling languages (AMLs) such as [AMPL], [AIMMS], and [GAMS]. Pyomo’s modeling objects are embedded within Python, a full-featured, high-level programming language that contains a rich set of supporting libraries.

Modeling is a fundamental process in many aspects of scientific research, engineering and business. Modeling involves the formulation of a simplified representation of a system or real-world object. Thus, modeling tools like Pyomo can be used in a variety of ways:

- Explain phenomena that arise in a system,
- Make predictions about future states of a system,
- Assess key factors that influence phenomena in a system,
- Identify extreme states in a system, that might represent worst-case scenarios or minimal cost plans, and
- Analyze trade-offs to support human decision makers.

Mathematical models represent system knowledge with a formalized language. The following mathematical concepts are central to modern modeling activities:

3.1.1 Variables

Variables represent unknown or changing parts of a model (e.g., whether or not to make a decision, or the characteristic of a system outcome). The values taken by the variables are often referred to as a solution and are usually an output of the optimization process.
3.1.2 Parameters

Parameters represents the data that must be supplied to perform the optimization. In fact, in some settings the word *data* is used in place of the word *parameters*.

3.1.3 Relations

These are equations, inequalities or other mathematical relationships that define how different parts of a model are connected to each other.

3.1.4 Goals

These are functions that reflect goals and objectives for the system being modeled.

The widespread availability of computing resources has made the numerical analysis of mathematical models a commonplace activity. Without a modeling language, the process of setting up input files, executing a solver and extracting the final results from the solver output is tedious and error-prone. This difficulty is compounded in complex, large-scale real-world applications which are difficult to debug when errors occur. Additionally, there are many different formats used by optimization software packages, and few formats are recognized by many optimizers. Thus the application of multiple optimization solvers to analyze a model introduces additional complexities.

Pyomo is an AML that extends Python to include objects for mathematical modeling. [PyomoBookI], [PyomoBookII], and [PyomoJournal] compare Pyomo with other AMLs. Although many good AMLs have been developed for optimization models, the following are motivating factors for the development of Pyomo:

3.1.5 Open Source

Pyomo is developed within Pyomo’s open source project to promote transparency of the modeling framework and encourage community development of Pyomo capabilities.

3.1.6 Customizable Capability

Pyomo supports a customizable capability through the extensive use of plug-ins to modularize software components.

3.1.7 Solver Integration

Pyomo models can be optimized with solvers that are written either in Python or in compiled, low-level languages.

3.1.8 Programming Language

Pyomo leverages a high-level programming language, which has several advantages over custom AMLs: a very robust language, extensive documentation, a rich set of standard libraries, support for modern programming features like classes and functions, and portability to many platforms.
3.2 Overview of Modeling Components and Processes

Pyomo supports an object-oriented design for the definition of optimization models. The basic steps of a simple modeling process are:

- Create model and declare components
- Instantiate the model
- Apply solver
- Interrogate solver results

In practice, these steps may be applied repeatedly with different data or with different constraints applied to the model. However, we focus on this simple modeling process to illustrate different strategies for modeling with Pyomo.

A Pyomo model consists of a collection of modeling components that define different aspects of the model. Pyomo includes the modeling components that are commonly supported by modern AMLs: index sets, symbolic parameters, decision variables, objectives, and constraints. These modeling components are defined in Pyomo through the following Python classes:

3.2.1 Set

set data that is used to define a model instance

3.2.2 Param

parameter data that is used to define a model instance

3.2.3 Var

decision variables in a model

3.2.4 Objective

expressions that are minimized or maximized in a model

3.2.5 Constraint

constraint expressions that impose restrictions on variable values in a model

3.3 Abstract Versus Concrete Models

A mathematical model can be defined using symbols that represent data values. For example, the following equations represent a linear program (LP) to find optimal values for the vector x with parameters n and b, and parameter vectors a and c:

$$\min \sum_{j=1}^{n} c_j x_j$$

subject to:

$$\sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad \forall i = 1 \ldots m$$

$$x_j \geq 0 \quad \forall j = 1 \ldots n$$
Note: As a convenience, we use the symbol \forall to mean “for all” or “for each.”

We call this an abstract or symbolic mathematical model since it relies on unspecified parameter values. Data values can be used to specify a model instance. The AbstractModel class provides a context for defining and initializing abstract optimization models in Pyomo when the data values will be supplied at the time a solution is to be obtained.

In many contexts, a mathematical model can and should be directly defined with the data values supplied at the time of the model definition. We call these concrete mathematical models. For example, the following LP model is a concrete instance of the previous abstract model:

\[
\text{min } 2x_1 + 3x_2 \\
\text{s.t. } 3x_1 + 4x_2 \geq 1 \\
x_1, x_2 \geq 0
\]

The ConcreteModel class is used to define concrete optimization models in Pyomo.

Note: Python programmers will probably prefer to write concrete models, while users of some other algebraic modeling languages may tend to prefer to write abstract models. The choice is largely a matter of taste; some applications may be a little more straightforward using one or the other.

3.4 Simple Models

3.4.1 A Simple Abstract Pyomo Model

We repeat the abstract model already given:

\[
\text{min } \sum_{j=1}^{n} c_j x_j \\
\text{s.t. } \sum_{j=1}^{n} a_{ij} x_j \geq b_i \quad \forall i = 1 \ldots m \\
x_j \geq 0 \quad \forall j = 1 \ldots n
\]

Pyomo is as shown as follows:

```python
# abstract1.py
from __future__ import division
from pyomo.environ import *

model = AbstractModel()
model.m = Param(within=NonNegativeIntegers)
model.n = Param(within=NonNegativeIntegers)
model.I = RangeSet(1, model.m)
model.J = RangeSet(1, model.n)
model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals)

def obj_expression(model):
    return summation(model.c, model.x)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    return True  # (continues on next page)
```

(continues on next page)
We will now examine the lines in this example. The first import line is used to ensure that \texttt{int} or \texttt{long} division arguments are converted to floating point values before division is performed.

\begin{quote}
\texttt{>>> from __future_ import division}
\end{quote}

In Python versions before 3.0, division returns the floor of the mathematical result of division if arguments are \texttt{int} or \texttt{long}. This import line avoids unexpected behavior when developing mathematical models with integer values.

The next import line that is required in every Pyomo model. Its purpose is to make the symbols used by Pyomo known to Python.

\begin{quote}
\texttt{>>> from pyomo.environ import *}
\end{quote}

The declaration of a model is also required. The use of the name \texttt{model} is not required. Almost any name could be used, but we will use the name \texttt{model} most of the time in this book. In this example, we are declaring that it will be an abstract model.

\begin{quote}
\texttt{model = AbstractModel()}
\end{quote}

We declare the parameters \(m\) and \(n\) using the Pyomo \texttt{Param} function. This function can take a variety of arguments; this example illustrates use of the \texttt{within} option that is used by Pyomo to validate the data value that is assigned to the parameter. If this option were not given, then Pyomo would not object to any type of data being assigned to these parameters. As it is, assignment of a value that is not a non-negative integer will result in an error.

\begin{quote}
\texttt{model.m = Param(within=NonNegativeIntegers)}
\texttt{model.n = Param(within=NonNegativeIntegers)}
\end{quote}

Although not required, it is convenient to define index sets. In this example we use the \texttt{RangeSet} function to declare that the sets will be a sequence of integers starting at 1 and ending at a value specified by the the parameters \texttt{model.m} and \texttt{model.n}.

\begin{quote}
\texttt{model.I = RangeSet(1, model.m)}
\texttt{model.J = RangeSet(1, model.n)}
\end{quote}

The coefficient and right-hand-side data are defined as indexed parameters. When sets are given as arguments to the \texttt{Param} function, they indicate that the set will index the parameter.

\begin{quote}
\texttt{model.a = Param(model.I, model.J)}
\texttt{model.b = Param(model.I)}
\texttt{model.c = Param(model.J)}
\end{quote}
Note: In Python, and therefore in Pyomo, any text after pound sign is considered to be a comment.

The next line that is interpreted by Python as part of the model declares the variable \(x \). The first argument to the `Var` function is a set, so it is defined as an index set for the variable. In this case the variable has only one index set, but multiple sets could be used as was the case for the declaration of the parameter `model.a`. The second argument specifies a domain for the variable. This information is part of the model and will passed to the solver when data is provided and the model is solved. Specification of the `NonNegativeReals` domain implements the requirement that the variables be greater than or equal to zero.

```python
# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals)
```

In abstract models, Pyomo expressions are usually provided to objective function and constraint declarations via a function defined with a Python `def` statement. The `def` statement establishes a name for a function along with its arguments. When Pyomo uses a function to get objective function or constraint expressions, it always passes in the model (i.e., itself) as the the first argument so the model is always the first formal argument when declaring such functions in Pyomo. Additional arguments, if needed, follow. Since summation is an extremely common part of optimization models, Pyomo provides a flexible function to accommodate it. When given two arguments, the `summation` function returns an expression for the sum of the product of the two arguments over their indexes. This only works, of course, if the two arguments have the same indexes. If it is given only one argument it returns an expression for the sum over all indexes of that argument. So in this example, when `summation` is passed the arguments `model.c`, `model.x` it returns an internal representation of the expression \(\sum_{j=1}^{n} c_j x_j \).

```python
def obj_expression(model):
    return summation(model.c, model.x)
```

To declare an objective function, the Pyomo function called `Objective` is used. The `rule` argument gives the name of a function that returns the expression to be used. The default `sense` is minimization. For maximization, the `sense=maximize` argument must be used. The name that is declared, which is `OBJ` in this case, appears in some reports and can be almost any name.

```python
model.OBJ = Objective(rule=obj_expression)
```

Declaration of constraints is similar. A function is declared to deliver the constraint expression. In this case, there can be multiple constraints of the same form because we index the constraints by \(i \) in the expression \(\sum_{j=1}^{n} a_{ij} x_j \geq b_i \) \(\forall i = 1 \ldots m \), which states that we need a constraint for each value of \(i \) from one to \(m \). In order to parametrize the expression by \(i \) we include it as a formal parameter to the function that declares the constraint expression. Technically, we could have used anything for this argument, but that might be confusing. Using an \(i \) for an \(i \) seems sensible in this situation.

```python
def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]
```

Note: In Python, indexes are in square brackets and function arguments are in parentheses.

In order to declare constraints that use this expression, we use the Pyomo `Constraint` function that takes a variety of arguments. In this case, our model specifies that we can have more than one constraint of the same form and we have created a set, `model.I`, over which these constraints can be indexed so that is the first argument to the constraint declaration function. The next argument gives the rule that will be used to generate expressions for the constraints. Taken as a whole, this constraint declaration says that a list of constraints indexed by the set `model.I` will be created and for each member of `model.I`, the function `ax_constraint_rule` will be called and it will be passed the model object as well as the member of `model.I`.

12 | Chapter 3. Pyomo Overview
In the object oriented view of all of this, we would say that `model` object is a class instance of the `AbstractModel` class, and `model.J` is a `Set` object that is contained by this model. Many modeling components in Pyomo can be optionally specified as **indexed components**: collections of components that are referenced using one or more values. In this example, the parameter `model.c` is indexed with set `model.J`.

In order to use this model, data must be given for the values of the parameters. Here is one file that provides data.

```plaintext
# one way to input the data in AMPL format
# for indexed parameters, the indexes are given before the value
param m := 1 ;
param n := 2 ;

param a :=
1 1 3
1 2 4
;

param c :=
1 2
2 3
;

param b := 1 1 ;
```

There are multiple formats that can be used to provide data to a Pyomo model, but the AMPL format works well for our purposes because it contains the names of the data elements together with the data. In AMPL data files, text after a pound sign is treated as a comment. Lines generally do not matter, but statements must be terminated with a semi-colon.

For this particular data file, there is one constraint, so the value of `model.m` will be one and there are two variables (i.e., the vector `model.x` is two elements long) so the value of `model.n` will be two. These two assignments are accomplished with standard assignments. Notice that in AMPL format input, the name of the model is omitted.

```plaintext
param m := 1 ;
param n := 2 ;
```

There is only one constraint, so only two values are needed for `model.a`. When assigning values to arrays and vectors in AMPL format, one way to do it is to give the index(es) and the value. The line 1 2 4 causes `model.a[1,2]` to get the value 4. Since `model.c` has only one index, only one index value is needed so, for example, the line 1 2 causes `model.c[1]` to get the value 2. Line breaks generally do not matter in AMPL format data files, so the assignment of the value for the single index of `model.b` is given on one line since that is easy to read.

```plaintext
param a :=
1 1 3
1 2 4
;

param c :=
1 2
2 3
;
```

(continues on next page)
3.4.2 Symbolic Index Sets

When working with Pyomo (or any other AML), it is convenient to write abstract models in a somewhat more abstract way by using index sets that contain strings rather than index sets that are implied by 1, ..., m or the summation from 1 to n. When this is done, the size of the set is implied by the input, rather than specified directly. Furthermore, the index entries may have no real order. Often, a mixture of integers and indexes and strings as indexes is needed in the same model. To start with an illustration of general indexes, consider a slightly different Pyomo implementation of the model we just presented.

```python
# abstract2.py
from __future__ import division
from pyomo.environ import *

model = AbstractModel()
model.I = Set()
model.J = Set()

model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals)

def obj_expression(model):
    return summation(model.c, model.x)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)
```

To get the same instantiated model, the following data file can be used.

```dat
# abstract2a.dat AMPL format
set I := 1 ;
set J := 1 2 ;

param a :=
1 1 3
1 2 4
;
param c :=
```
However, this model can also be fed different data for problems of the same general form using meaningful indexes.

```plaintext
# abstract2.dat AMPL data format

set I := TV Film ;
set J := Graham John Carol ;

param a :=
TV Graham 3
TV John 4.4
TV Carol 4.9
Film Graham 1
Film John 2.4
Film Carol 1.1
;

param c := [*]
Graham 2.2
John 3.1416
Carol 3
;

param b := TV 1 Film 1 ;
```

3.4.3 A Simple Concrete Pyomo Model

It is possible to get nearly the same flexible behavior from models declared to be abstract and models declared to be concrete in Pyomo; however, we will focus on a straightforward concrete example here where the data is hard-wired into the model file. Python programmers will quickly realize that the data could have come from other sources.

We repeat the concrete model already given:

\[
\begin{align*}
\text{min} & \quad 2x_1 + 3x_2 \\
\text{s.t.} & \quad 3x_1 + 4x_2 \geq 1
\end{align*}
\]

This is implemented as a concrete model as follows:

```python
from __future__ import division
from pyomo.environ import *

model = ConcreteModel()

model.x = Var([1,2], domain=NonNegativeReals)

model.OBJ = Objective(expr = 2*model.x[1] + 3*model.x[2])

```

Although rule functions can also be used to specify constraints and objectives, in this example we use the `expr` option that is available only in concrete models. This option gives a direct specification of the expression.
3.4.4 Solving the Simple Examples

Pyomo supports modeling and scripting but does not install a solver automatically. In order to solve a model, there must be a solver installed on the computer to be used. If there is a solver, then the `pyomo` command can be used to solve a problem instance.

Suppose that the solver named glpk (also known as glpsol) is installed on the computer. Suppose further that an abstract model is in the file named `abstract1.py` and a data file for it is in the file named `abstract1.dat`. From the command prompt, with both files in the current directory, a solution can be obtained with the command:

```bash
pyomo solve abstract1.py abstract1.dat --solver=glpk
```

Since glpk is the default solver, there really is no need specify it so the `--solver` option can be dropped.

Note: There are two dashes before the command line option names such as `solver`.

To continue the example, if CPLEX is installed then it can be listed as the solver. The command to solve with CPLEX is

```bash
pyomo solve abstract1.py abstract1.dat --solver=cplex
```

This yields the following output on the screen:

```
[ 0.00] Setting up Pyomo environment
[ 0.00] Applying Pyomo preprocessing actions
[ 0.07] Creating model
[ 0.15] Applying solver
[ 0.37] Processing results
Number of solutions: 1
Solution Information
Gap: 0.0
Status: optimal
Function Value: 0.666666666667
Solver results file: results.json
[ 0.39] Applying Pyomo postprocessing actions
[ 0.39] Pyomo Finished
```

The numbers in square brackets indicate how much time was required for each step. Results are written to the file named `results.json`, which has a special structure that makes it useful for post-processing. To see a summary of results written to the screen, use the `--summary` option:

```bash
pyomo solve abstract1.py abstract1.dat --solver=cplex --summary
```

To see a list of Pyomo command line options, use:

```bash
pyomo solve --help
```

Note: There are two dashes before `help`.

For a concrete model, no data file is specified on the Pyomo command line.
4.1 Sets

4.1.1 Declaration

Sets can be declared using the \texttt{Set} and \texttt{RangeSet} functions or by assigning set expressions. The simplest set declaration creates a set and postpones creation of its members:

```
>>> model.A = Set()
```

The \texttt{Set} function takes optional arguments such as:

- \texttt{doc} = String describing the set
- \texttt{dimen} = Dimension of the members of the set
- \texttt{filter} = A Boolean function used during construction to indicate if a potential new member should be assigned to the set
- \texttt{initialize} = An iterable containing the initial members of the Set, or function that returns an iterable of the initial members the set.
- \texttt{ordered} = A Boolean indicator that the set is ordered; the default is \texttt{False}
- \texttt{validate} = A Boolean function that validates new member data
- \texttt{virtual} = A Boolean indicator that the set will never have elements; it is unusual for a modeler to create a virtual set; they are typically used as domains for sets, parameters and variables
- \texttt{within} = Set used for validation; it is a super-set of the set being declared.

In general, Pyomo attempts to infer the “dimensionality” of Set components (that is, the number of apparent indices) when they are constructed. However, there are situations where Pyomo either cannot detect a dimensionality (e.g., a Set that was not initialized with any members), or you the user may want to assert the dimensionality of the set. This can be accomplished through the \texttt{dimen} keyword. For example, to create a set whose members will be two dimensional, one could write:
To create a set of all the numbers in set \texttt{model.A} doubled, one could use:

\begin{verbatim}
>>> def DoubleA_init(model):
... return (i*2 for i in model.A)
>>> model.C = Set(initialize=DoubleA_init)
\end{verbatim}

As an aside we note that as always in Python, there are lot of ways to accomplish the same thing. Also, note that this will generate an error if \texttt{model.A} contains elements for which multiplication times two is not defined.

The \texttt{initialize} option can accept any Python iterable, including a \texttt{set}, \texttt{list}, or \texttt{tuple}. This data may be returned from a function or specified directly as in:

\begin{verbatim}
>>> model.D = Set(initialize=['red', 'green', 'blue'])
\end{verbatim}

The \texttt{initialize} option can also specify either a generator or a function to specify the Set members. In the case of a generator, all data yielded by the generator will become the initial set members:

\begin{verbatim}
>>> def X_init(m):
... for i in range(10):
... yield 2*i+1
>>> model.X = Set(initialize=X_init)
\end{verbatim}

For initialization functions, Pyomo supports two signatures. In the first, the function returns an iterable (\texttt{set}, \texttt{list}, or \texttt{tuple}) containing the data with which to initialize the Set:

\begin{verbatim}
>>> def Y_init(m):
... return [2*i+1 for i in range(10)]
>>> model.Y = Set(initialize=Y_init)
\end{verbatim}

In the second signature, the function is called for each element, passing the element number in as an extra argument. This is repeated until the function returns the special value \texttt{Set.End}:

\begin{verbatim}
>>> def Z_init(model, i):
... if i > 10:
... return Set.End
... return 2*i+1
>>> model.Z = Set(initialize=Z_init)
\end{verbatim}

Note that the element number starts with 1 and not 0:

\begin{verbatim}
>>> model.X.pprint()
X : Dim=0, Dimen=1, Size=10, Domain=None, Ordered=False, Bounds=(1, 19)
 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> model.Y.pprint()
Y : Dim=0, Dimen=1, Size=10, Domain=None, Ordered=False, Bounds=(1, 19)
 [1, 3, 5, 7, 9, 11, 13, 15, 17, 19]
>>> model.Z.pprint()
Z : Dim=0, Dimen=1, Size=10, Domain=None, Ordered=False, Bounds=(3, 21)
 [3, 5, 7, 9, 11, 13, 15, 17, 19, 21]
\end{verbatim}

Additional information about iterators for set initialization is in the [PyomoBookII] book.

\textbf{Note:} For Abstract models, data specified in an input file or through the \texttt{data} argument to \texttt{create_instance()} will override the data specified by the initialize options.
If sets are given as arguments to `Set` without keywords, they are interpreted as indexes for an array of sets. For example, to create an array of sets that is indexed by the members of the set `model.A`, use:

```python
>>> model.E = Set(model.A)
```

Arguments can be combined. For example, to create an array of sets, indexed by set `model.A` where each set contains three dimensional members, use:

```python
>>> model.F = Set(model.A, dimen=3)
```

The `initialize` option can be used to create a set that contains a sequence of numbers, but the `RangeSet` function provides a concise mechanism for simple sequences. This function takes as its arguments a start value, a final value, and a step size. If the `RangeSet` has only a single argument, then that value defines the final value in the sequence; the first value and step size default to one. If two values given, they are the first and last value in the sequence and the step size defaults to one. For example, the following declaration creates a set with the numbers 1.5, 5 and 8.5:

```python
>>> model.G = RangeSet(1.5, 10, 3.5)
```

4.1.2 Operations

Sets may also be created by storing the result of set operations using other Pyomo sets. Pyomo supports set operations including union, intersection, difference, and symmetric difference:

```python
>>> model.I = model.A | model.D # union
>>> model.J = model.A & model.D # intersection
>>> model.K = model.A - model.D # difference
>>> model.L = model.A ^ model.D # exclusive-or
```

For example, the cross-product operator is the asterisk (*). To define a new set `M` that is the cross product of sets `B` and `C`, one could use:

```python
>>> model.M = model.B * model.C
```

This creates a virtual set that holds references to the original sets, so any updates to the original sets (`B` and `C`) will be reflected in the new set (`M`). In contrast, you can also create a concrete set, which directly stores the values of the cross product at the time of creation and will not reflect subsequent changes in the original sets with:

```python
>>> model.M_concrete = Set(initialize=model.B * model.C)
```

Finally, you can indicate that the members of a set are restricted to be in the cross product of two other sets, one can use the `within` keyword:

```python
>>> model.N = Set(within=model.B * model.C)
```

4.1.3 Predefined Virtual Sets

For use in specifying domains for sets, parameters and variables, Pyomo provides the following pre-defined virtual sets:

- `Any` = all possible values
- `Reals` = floating point values
- `PositiveReals` = strictly positive floating point values
- `NonPositiveReals` = non-positive floating point values
• NegativeReals = strictly negative floating point values
• NonNegativeReals = non-negative floating point values
• PercentFraction = floating point values in the interval [0,1]
• UnitInterval = alias for PercentFraction
• Integers = integer values
• PositiveIntegers = positive integer values
• NonPositiveIntegers = non-positive integer values
• NegativeIntegers = negative integer values
• NonNegativeIntegers = non-negative integer values
• Boolean = Boolean values, which can be represented as False/True, 0/1, ’False’/’True’ and ’F’/’T’
• Binary = same as Boolean

For example, if the set `model.M` is declared to be within the virtual set `NegativeIntegers` then an attempt to add anything other than a negative integer will result in an error. Here is the declaration:

```python
model.M = Set(within=NegativeIntegers)
```

4.1.4 Sparse Index Sets

Sets provide indexes for parameters, variables and other sets. Index set issues are important for modelers in part because of efficiency considerations, but primarily because the right choice of index sets can result in very natural formulations that are conducive to understanding and maintenance. Pyomo leverages Python to provide a rich collection of options for index set creation and use.

The choice of how to represent indexes often depends on the application and the nature of the instance data that are expected. To illustrate some of the options and issues, we will consider problems involving networks. In many network applications, it is useful to declare a set of nodes, such as

```python
model.Nodes = Set()
```

and then a set of arcs can be created with reference to the nodes.

Consider the following simple version of minimum cost flow problem:

\[
\begin{align*}
\text{minimize} & \quad \sum_{a \in A} c_a x_a \\
\text{subject to} & \quad S_n + \sum_{(i,n) \in A} x(i,n) - D_n - \sum_{(n,j) \in A} x(n,j) \\
& \quad x_a \geq 0,
\end{align*}
\]

where

- Set: **Nodes** $\equiv \mathcal{N}$
- Set: **Arcs** $\equiv \mathcal{A} \subseteq \mathcal{N} \times \mathcal{N}$
- Var: Flow on arc $(i,j) \equiv x_{i,j}$, $(i,j) \in \mathcal{A}$
- Param: Flow Cost on arc $(i,j) \equiv c_{i,j}$, $(i,j) \in \mathcal{A}$
- Param: Demand at node latexmath: $i \equiv D_i$, $i \in \mathcal{N}$
- Param: Supply at node latexmath: $i \equiv S_i$, $i \in \mathcal{N}$

In the simplest case, the arcs can just be the cross product of the nodes, which is accomplished by the definition
that creates a set with two dimensional members. For applications where all nodes are always connected to all other nodes this may suffice. However, issues can arise when the network is not fully dense. For example, the burden of avoiding flow on arcs that do not exist falls on the data file where high-enough costs must be provided for those arcs. Such a scheme is not very elegant or robust.

For many network flow applications, it might be better to declare the arcs using

```python
model.Arcs = Set(within=model.Nodes*model.Nodes)
```

or

```python
model.Arcs = Set(dimen=2)
```

where the difference is that the first version will provide error checking as data is assigned to the set elements. This would enable specification of a sparse network in a natural way. But this results in a need to change the `FlowBalance` constraint because as it was written in the simple example, it sums over the entire set of nodes for each node. One way to remedy this is to sum only over the members of the set `model.arcs` as in

```python
def FlowBalance_rule(model, node):
    return model.Supply[node] +
    sum(model.Flow[i, node] for i in model.Nodes if (i,node) in model.Arcs) -
    model.Demand[node] -
    sum(model.Flow[node, j] for j in model.Nodes if (j,node) in model.Arcs) == 0
```

This will be OK unless the number of nodes becomes very large for a sparse network, then the time to generate this constraint might become an issue (admittedly, only for very large networks, but such networks do exist).

Another method, which comes in handy in many network applications, is to have a set for each node that contain the nodes at the other end of arcs going to the node at hand and another set giving the nodes on out-going arcs. If these sets are called `model.NodesIn` and `model.NodesOut` respectively, then the flow balance rule can be re-written as

```python
def FlowBalance_rule(model, node):
    return model.Supply[node] +
    sum(model.Flow[i, node] for i in model.NodesIn[node]) -
    model.Demand[node] -
    sum(model.Flow[node, j] for j in model.NodesOut[node]) == 0
```

The data for `NodesIn` and `NodesOut` could be added to the input file, and this may be the most efficient option.

For all but the largest networks, rather than reading `Arcs`, `NodesIn` and `NodesOut` from a data file, it might be more elegant to read only `Arcs` from a data file and declare `model.NodesIn` with an `initialize` option specifying the creation as follows:

```python
def NodesIn_init(model, node):
    retval = []
    for (i,j) in model.Arcs:
        if j == node:
            retval.append(i)
    return retval
model.NodesIn = Set(model.Nodes, initialize=NodesIn_init)
```

with a similar definition for `model.NodesOut`. This code creates a list of sets for `NodesIn`, one set of nodes for each node. The full model is:
Isinglecomm.py
NodesIn and NodesOut are initialized using the Arcs
from pyomo.environ import *

model = AbstractModel()

model.Nodes = Set()
model.Arcs = Set(dimen=2)

def NodesOut_init(model, node):
 retval = []
 for (i,j) in model.Arcs:
 if i == node:
 retval.append(j)
 return retval
model.NodesOut = Set(model.Nodes, initialize=NodesOut_init)

def NodesIn_init(model, node):
 retval = []
 for (i,j) in model.Arcs:
 if j == node:
 retval.append(i)
 return retval
model.NodesIn = Set(model.Nodes, initialize=NodesIn_init)

model.Flow = Var(model.Arcs, domain=NonNegativeReals)
model.FlowCost = Param(model.Arcs)
model.Demand = Param(model.Nodes)
model.Supply = Param(model.Nodes)

def Obj_rule(model):
 return summation(model.FlowCost, model.Flow)
model.Obj = Objective(rule=Obj_rule, sense=minimize)

def FlowBalance_rule(model, node):

for this model, a toy data file would be:

```dat
# Isinglecomm.dat: data for Isinglecomm.py
set Nodes := CityA CityB CityC ;
set Arcs :=
  CityA CityB
  CityA CityC
  CityC CityB
;
param : FlowCost :=
  CityA CityB 1.4
```

(continues on next page)
This can be done somewhat more efficiently, and perhaps more clearly, using a BuildAction as shown in Isinglebuild.py in :ref:Isinglebuild.py.

Sparse Index Sets Example

One may want to have a constraint that holds

```python
>>> for i in model.I, k in model.K, v in model.V[k]
```

There are many ways to accomplish this, but one good way is to create a set of tuples composed of all of `model.k`, `model.V[k]` pairs. This can be done as follows:

```python
def kv_init(model):
    return ((k,v) for k in model.K for v in model.V[k])
model.KV=Set(dimen=2, initialize=kv_init)
```

So then if there was a constraint defining rule such as

```python
>>> def MyC_rule(model, i, k, v):
...    return ...
```

Then a constraint could be declared using

```python
model.MyConstraint = Constraint(model.I,model.KV,rule=c1Rule)
```

Here is the first few lines of a model that illustrates this:

```python
from pyomo.environ import *
model = AbstractModel()
model.I=Set()
model.K=Set()
model.V=Set(model.K)
def kv_init(model):
    return ((k,v) for k in model.K for v in model.V[k])
model.KV=Set(dimen=2, initialize=kv_init)
```

(continues on next page)
model.a = Param(model.I, model.K)
model.y = Var(model.I)
model.x = Var(model.I, model.KV)

include a constraint
x[i,k,v] <= a[i,k]*y[i], for i in model.I, k in model.K, v in model.V[k]
def c1Rule(model,i,k,v):
 return model.x[i,k,v] <= model.a[i,k]*model.y[i]
model.c1 = Constraint(model.I, model.KV, rule=c1Rule)

4.2 Parameters

The word “parameters” is used in many settings. When discussing a Pyomo model, we use the word to refer to data that must be provided in order to find an optimal (or good) assignment of values to the decision variables. Parameters are declared with the Param function, which takes arguments that are somewhat similar to the Set function. For example, the following code snippet declares sets model.A, model.B and then a parameter array model.P that is indexed by model.A:

model.A = Set()
model.B = Set()
model.P = Param(model.A, model.B)

In addition to sets that serve as indexes, the Param function takes the following command options:

- default = The value absent any other specification.
- doc = String describing the parameter
- initialize = A function (or Python object) that returns the members to initialize the parameter values.
- validate = A boolean function with arguments that are the prospective parameter value, the parameter indices and the model.
- within = Set used for validation; it specifies the domain of the parameter values.

These options perform in the same way as they do for Set. For example, suppose that Model.A = RangeSet(1, 3), then there are many ways to create a parameter that is a square matrix with 9, 16, 25 on the main diagonal zeros elsewhere, here are two ways to do it. First using a Python object to initialize:

v={}
v[1,1] = 9
v[2,2] = 16
v[3,3] = 25
model.S = Param(model.A, model.A, initialize=v, default=0)

And now using an initialization function that is automatically called once for each index tuple (remember that we are assuming that model.A contains 1,2,3)

def s_init(model, i, j):
 if i == j:
 return i*i
 else:
 return 0.0
model.S1 = Param(model.A, model.A, initialize=s_init)
In this example, the index set contained integers, but index sets need not be numeric. It is very common to use strings.

Note: Data specified in an input file will override the data specified by the initialize options.

Parameter values can be checked by a validation function. In the following example, the parameter S indexed by `model.A` and is checked to be greater than 3.14159. If a value is provided that is less than that, the model instantiation would be terminated and an error message issued. The function used to validate should be written so as to return `True` if the data is valid and `False` otherwise.

```python
def s_validate(model, v, i):
    return v > 3.14159
model.s = Param(model.A, validate=s_validate)
```

4.3 Variables

Variables are intended to ultimately be given values by an optimization package. They are declared and optionally bounded, given initial values, and documented using the Pyomo `Var` function. If index sets are given as arguments to this function they are used to index the variable. Other optional directives include:

- **bounds** = A function (or Python object) that gives a (lower, upper) bound pair for the variable
- **domain** = A set that is a super-set of the values the variable can take on.
- **initialize** = A function (or Python object) that gives a starting value for the variable; this is particularly important for non-linear models
- **within** = (synonym for domain)

The following code snippet illustrates some aspects of these options by declaring a *singleton* (i.e. unindexed) variable `model.LumberJack` that will take on real values between zero and six and it initialized to be 1.5:

```python
model.LumberJack = Var(within=NonNegativeReals, bounds=(0,6), initialize=1.5)
```

Instead of the `initialize` option, initialization is sometimes done with a Python assignment statement as in

```python
model.LumberJack = 1.5
```

For indexed variables, bounds and initial values are often specified by a rule (a Python function) that itself may make reference to parameters or other data. The formal arguments to these rules begins with the model followed by the indexes. This is illustrated in the following code snippet that makes use of Python dictionaries declared as `lb` and `ub` that are used by a function to provide bounds:

```python
model.A = Set(initialize=['Scones', 'Tea'])
lb = {'Scones':2, 'Tea':4}
ub = {'Scones':5, 'Tea':7}
def fb(model, i):
    return (lb[i], ub[i])
model.PriceToCharge = Var(model.A, domain=PositiveIntegers, bounds=fb)
```

Note: Many of the pre-defined virtual sets that are used as domains imply bounds. A strong example is the set `Boolean` that implies bounds of zero and one.
4.4 Objectives

An objective is a function of variables that returns a value that an optimization package attempts to maximize or minimize. The `Objective` function in Pyomo declares an objective. Although other mechanisms are possible, this function is typically passed the name of another function that gives the expression. Here is a very simple version of such a function that assumes `model.x` has previously been declared as a `Var`:

```python
def ObjRule(model):
    return 2*model.x[1] + 3*model.x[2]
model.g = Objective(rule=ObjRule)
```

It is more common for an objective function to refer to parameters as in this example that assumes that `model.p` has been declared as a `Param` and that `model.x` has been declared with the same index set, while `model.y` has been declared as a singleton:

```python
def profrul(model):
    return summation(model.p, model.x) + model.y
model.Obj = Objective(rule=ObjRule, sense=maximize)
```

This example uses the `sense` option to specify maximization. The default sense is `minimize`.

4.5 Constraints

Most constraints are specified using equality or inequality expressions that are created using a rule, which is a Python function. For example, if the variable `model.x` has the indexes ‘butter’ and ‘scones’, then this constraint limits the sum over these indexes to be exactly three:

```python
def teaOKrule(model):
    return (model.x['butter'] + model.x['scones'] == 3)
model.TeaConst = Constraint(rule=teaOKrule)
```

Instead of expressions involving equality (==) or inequalities (<= or >=), constraints can also be expressed using a 3-tuple if the form (lb, expr, ub) where lb and ub can be `None`, which is interpreted as lb <= expr <= ub. Variables can appear only in the middle expr. For example, the following two constraint declarations have the same meaning:

```python
model.x = Var()

def aRule(model):
    return model.x >= 2
model.Boundx = Constraint(rule=aRule)

def bRule(model):
    return (2, model.x, None)
model.boundx = Constraint(rule=bRule)
```

For this simple example, it would also be possible to declare `model.x` with a `bounds` option to accomplish the same thing.

Constraints (and objectives) can be indexed by lists or sets. When the declaration contains lists or sets as arguments, the elements are iteratively passed to the rule function. If there is more than one, then the cross product is sent. For example the following constraint could be interpreted as placing a budget of \(i \) on the \(i^{th} \) item to buy where the cost per item is given by the parameter `model.a`:

```python
```
model.A = RangeSet(1,10)
model.a = Param(model.A, within=PositiveReals)
model.ToBuy = Var(model.A)
def bud_rule(model, i):
 return model.a[i]*model.ToBuy[i] <= i
aBudget = Constraint(model.A, rule=bud_rule)

Note: Python and Pyomo are case sensitive so model.a is not the same as model.A.

4.6 Expressions

In this section, we use the word “expression” in two ways: first in the general sense of the word and second to describe a class of Pyomo objects that have the name Expression as described in the subsection on expression objects.

4.6.1 Rules to Generate Expressions

Both objectives and constraints make use of rules to generate expressions. These are Python functions that return the appropriate expression. These are first-class functions that can access global data as well as data passed in, including the model object.

Operations on model elements results in expressions, which seems natural in expressions like the constraints we have seen so far. It is also possible to build up expressions. The following example illustrates this, along with a reference to global Python data in the form of a Python variable called switch:

switch = 3
model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)
def pi_rule(model):
 accexpr = summation(model.c, model.x)
 if switch >= 2:
 accexpr = accexpr - model.d
 return accexpr >= 0.5
PieSlice = Constraint(rule=pi_rule)

In this example, the constraint that is generated depends on the value of the Python variable called switch. If the value is 2 or greater, then the constraint is summation(model.c, model.x) - model.d >= 0.5; otherwise, the model.d term is not present.

Warning: Because model elements result in expressions, not values, the following does not work as expected in an abstract model!!
model.A = RangeSet(1, 10)
model.c = Param(model.A)
model.d = Param()
model.x = Var(model.A, domain=Boolean)
def pi_rule(model):
 accexpr = summation(model.c, model.x)
 if model.d >= 2: # NOT in an abstract model!!
 accexpr = accexpr - model.d
 return accexpr >= 0.5
PieSlice = Constraint(rule=pi_rule)
The trouble is that `model.d >= 2` results in an expression, not its evaluated value. Instead use `if value(model.d) >= 2`

Note: Pyomo supports non-linear expressions and can call non-linear solvers such as Ipopt.

4.6.2 Piecewise Linear Expressions

Pyomo has facilities to add piecewise constraints of the form \(y = f(x) \) for a variety of forms of the function \(f \).

The piecewise types other than SOS2, BIGM_SOS1, BIGM_BIN are implement as described in the paper [Vielma_et_al].

There are two basic forms for the declaration of the constraint:

```python
#model.pwconst = Piecewise(indexes, yvar, xvar, **Keywords)
#model.pwconst = Piecewise(yvar, xvar, **Keywords)
```

where `pwconst` can be replaced by a name appropriate for the application. The choice depends on whether the \(x \) and \(y \) variables are indexed. If so, they must have the same index sets and these sets are give as the first arguments.

Keywords:

- **pw_pts={ },[],()**

 A dictionary of lists (where keys are the index set) or a single list (for the non-indexed case or when an identical set of breakpoints is used across all indices) defining the set of domain breakpoints for the piecewise linear function.

 Note: `pw_pts` is always required. These give the breakpoints for the piecewise function and are expected to fully span the bounds for the independent variable(s).

- **pw_repn=<Option>**

 Indicates the type of piecewise representation to use. This can have a major impact on solver performance. Options: (Default “SOS2”)
 - “SOS2” - Standard representation using sos2 constraints.
 - “BIGM_BIN” - BigM constraints with binary variables. The theoretically tightest M values are automatically determined.
 - “BIGM_SOS1” - BigM constraints with sos1 variables. The theoretically tightest M values are automatically determined.
 - “DCC” - Disaggregated convex combination model.
 - “DLOG” - Logarithmic disaggregated convex combination model.
 - “CC” - Convex combination model.
 - “LOG” - Logarithmic branching convex combination.
 - “MC” - Multiple choice model.
 - “INC” - Incremental (delta) method.
• **pw_constr_type= <Option>**
 Indicates the bound type of the piecewise function. Options:
 – “UB” - y variable is bounded above by piecewise function.
 – “LB” - y variable is bounded below by piecewise function.
 – “EQ” - y variable is equal to the piecewise function.

• **f_rule=f(model,i,j,...,x), { }, [], ()**
 An object that returns a numeric value that is the range value corresponding to each piecewise domain point. For functions, the first argument must be a Pyomo model. The last argument is the domain value at which the function evaluates (Not a Pyomo Var). Intermediate arguments are the corresponding indices of the Piecewise component (if any). Otherwise, the object can be a dictionary of lists/tuples (with keys the same as the indexing set) or a single list/tuple (when no indexing set is used or when all indices use an identical piecewise function). Examples:

```python
# A function that changes with index
def f(model, j, x):
    if (j == 2):
        return x**2 + 1.0
    else:
        return x**2 + 5.0

# A nonlinear function
f = lambda model, x : exp(x) + value(model.p)

# A step function
f = [0,0,1,1,2,2]
```

• **force_pw=True/False**
 Using the given function rule and pw_pts, a check for convexity/concavity is implemented. If (1) the function is convex and the piecewise constraints are lower bounds or if (2) the function is concave and the piecewise constraints are upper bounds then the piecewise constraints will be substituted for linear constraints. Setting ‘force_pw=True’ will force the use of the original piecewise constraints even when one of these two cases applies.

• **warning_tol=<float>**
 To aid in debugging, a warning is printed when consecutive slopes of piecewise segments are within <warning_tol> of each other. Default=1e-8

• **warn_domain_coverage=True/False**
 Print a warning when the feasible region of the domain variable is not completely covered by the piecewise breakpoints. Default=True

• **unbounded_domain_var=True/False**
 Allow an unbounded or partially bounded Pyomo Var to be used as the domain variable. Default=False

Note: This does not imply unbounded piecewise segments will be constructed. The outermost piecewise breakpoints will bound the domain variable at each index. However, the Var attributes .lb and .ub will not be modified.
Here is an example of an assignment to a Python dictionary variable that has keywords for a piecewise constraint:

```
kwds = {'pw_constr_type': 'EQ', 'pw_repn': 'SOS2', 'sense': maximize, 'force_pw': True}
```

Here is a simple example based on the example given earlier in Symbolic Index Sets. In this new example, the objective function is the sum of c times x to the fourth. In this example, the keywords are passed directly to the Piecewise function without being assigned to a dictionary variable. The upper bound on the x variables was chosen whimsically just to make the example. The important thing to note is that variables that are going to appear as the independent variable in a piecewise constraint must have bounds.

```
# abstract2piece.py
# Similar to abstract2.py, but the objective is now c times x to the fourth power

from pyomo.environ import *

model = AbstractModel()
model.I = Set()
model.J = Set()

Topx = 6.1  # range of x variables
model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0, Topx))
model.y = Var(model.J, domain=NonNegativeReals)

# to avoid warnings, we set breakpoints at or beyond the bounds
PieceCnt = 100
bpts = []
for i in range(PieceCnt + 2):
    bpts.append(float((i * Topx) / PieceCnt))

def f4(model, j, xp):
    # we not need j, but it is passed as the index for the constraint
    return xp**4

model.ComputeObj = Piecewise(model.J, model.y, model.x, pw_pts=bpts, pw_constr_type='EQ', f_rule=f4)

def obj_expression(model):
    return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    return sum(model.a[i, j] * model.x[j] for j in model.J) >= model.b[i]

# the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)
```

A more advanced example is provided in abstract2piecebuild.py in BuildAction and BuildCheck.
4.6.3 Expression Objects

Pyomo Expression objects are very similar to the Param component (with mutable=True) except that the underlying values can be numeric constants or Pyomo expressions. Here’s an illustration of expression objects in an AbstractModel. An expression object with an index set that is the numbers 1, 2, 3 is created and initialized to be the model variable x times the index. Later in the model file, just to illustrate how to do it, the expression is changed but just for the first index to be x squared.

```python
model = ConcreteModel()
model.x = Var(initialize=1.0)
def _e(m,i):
    return m.x*i
model.e = Expression([1,2,3], rule=_e)
instance = model.create_instance()
print (value(instance.e[1]))  # -> 1.0
print (instance.e[1]())       # -> 1.0
print (instance.e[1].value)   # -> a pyomo expression object

# Change the underlying expression
instance.e[1].value = instance.x**2

#... solve
#... load results

# print the value of the expression given the loaded optimal solution
print (value(instance.e[1]))
```

An alternative is to create Python functions that, potentially, manipulate model objects. E.g., if you define a function

```python
def f(x, p):
    return x + p
```

You can call this function with or without Pyomo modeling components as the arguments. E.g., f(2,3) will return a number, whereas f(model.x, 3) will return a Pyomo expression due to operator overloading.

If you take this approach you should note that anywhere a Pyomo expression is used to generate another expression (e.g., f(model.x, 3) + 5), the initial expression is always cloned so that the new generated expression is independent of the old. For example:

```python
model = ConcreteModel()
model.x = Var()

# create a Pyomo expression
e1 = model.x + 5

# create another Pyomo expression
# e1 is copied when generating e2
e2 = e1 + model.x
```

If you want to create an expression that is shared between other expressions, you can use the Expression component.
4.7 Suffixes

Suffixes provide a mechanism for declaring extraneous model data, which can be used in a number of contexts. Most commonly, suffixes are used by solver plugins to store extra information about the solution of a model. This and other suffix functionality is made available to the modeler through the use of the Suffix component class. Uses of Suffix include:

- Importing extra information from a solver about the solution of a mathematical program (e.g., constraint duals, variable reduced costs, basis information).
- Exporting information to a solver or algorithm to aid in solving a mathematical program (e.g., warm-starting information, variable branching priorities).
- Tagging modeling components with local data for later use in advanced scripting algorithms.

4.7.1 Suffix Notation and the Pyomo NL File Interface

The Suffix component used in Pyomo has been adapted from the suffix notation used in the modeling language AMPL [AMPL]. Therefore, it follows naturally that AMPL style suffix functionality is fully available using Pyomo’s NL file interface. For information on AMPL style suffixes the reader is referred to the AMPL website:

http://www.ampl.com

A number of scripting examples that highlight the use AMPL style suffix functionality are available in the examples/pyomo/suffixes directory distributed with Pyomo.

4.7.2 Declaration

The effects of declaring a Suffix component on a Pyomo model are determined by the following traits:

- **direction**: This trait defines the direction of information flow for the suffix. A suffix direction can be assigned one of four possible values:
 - LOCAL - suffix data stays local to the modeling framework and will not be imported or exported by a solver plugin (default)
 - IMPORT - suffix data will be imported from the solver by its respective solver plugin
 - EXPORT - suffix data will be exported to a solver by its respective solver plugin
 - IMPORT_EXPORT - suffix data flows in both directions between the model and the solver or algorithm

- **datatype**: This trait advertises the type of data held on the suffix for those interfaces where it matters (e.g., the NL file interface). A suffix datatype can be assigned one of three possible values:
 - FLOAT - the suffix stores floating point data (default)
 - INT - the suffix stores integer data
 - None - the suffix stores any type of data

Note: Exporting suffix data through Pyomo’s NL file interface requires all active export suffixes have a strict datatype (i.e., datatype=None is not allowed).

The following code snippet shows examples of declaring a Suffix component on a Pyomo model:
from pyomo.environ import *

model = ConcreteModel()

Export integer data
model.priority = Suffix(direction=Suffix.EXPORT, datatype=Suffix.INT)

Export and import floating point data
model.dual = Suffix(direction=Suffix.IMPORT_EXPORT)

Store floating point data
model.junk = Suffix()

Declaring a Suffix with a non-local direction on a model is not guaranteed to be compatible with all solver plugins in Pyomo. Whether a given Suffix is acceptable or not depends on both the solver and solver interface being used. In some cases, a solver plugin will raise an exception if it encounters a Suffix type that it does not handle, but this is not true in every situation. For instance, the NL file interface is generic to all AMPL-compatible solvers, so there is no way to validate that a Suffix of a given name, direction, and datatype is appropriate for a solver. One should be careful in verifying that Suffix declarations are being handled as expected when switching to a different solver or solver interface.

4.7.3 Operations

The Suffix component class provides a dictionary interface for mapping Pyomo modeling components to arbitrary data. This mapping functionality is captured within the ComponentMap base class, which is also available within Pyomo’s modeling environment. The ComponentMap can be used as a more lightweight replacement for Suffix in cases where a simple mapping from Pyomo modeling components to arbitrary data values is required.

Note: ComponentMap and Suffix use the built-in `id()` function for hashing entry keys. This design decision arises from the fact that most of the modeling components found in Pyomo are either not hashable or use a hash based on a mutable numeric value, making them unacceptable for use as keys with the built-in `dict` class.

Warning: The use of the built-in `id()` function for hashing entry keys in ComponentMap and Suffix makes them inappropriate for use in situations where built-in object types must be used as keys. It is strongly recommended that only Pyomo modeling components be used as keys in these mapping containers (`Var`, `Constraint`, etc.).

Warning: Do not attempt to pickle or deepcopy instances of ComponentMap or Suffix unless doing so along with the components for which they hold mapping entries. As an example, placing one of these objects on a model and then cloning or pickling that model is an acceptable scenario.

In addition to the dictionary interface provided through the ComponentMap base class, the Suffix component class also provides a number of methods whose default semantics are more convenient for working with indexed modeling components. The easiest way to highlight this functionality is through the use of an example.

from pyomo.environ import *

model = ConcreteModel()
model.x = Var()

(continues on next page)
In this example we have a concrete Pyomo model with two different types of variable components (indexed and non-indexed) as well as a Suffix declaration (foo). The next code snippet shows examples of adding entries to the suffix foo.

```python
# Assign a suffix value of 1.0 to model.x
model.foo.set_value(model.x, 1.0)

# Same as above with dict interface
model.foo[model.x] = 1.0

# Assign a suffix value of 0.0 to all indices of model.y
# By default this expands so that entries are created for
# every index (y[1], y[2], y[3]) and not model.y itself
model.foo.set_value(model.y, 0.0)

# The same operation using the dict interface results in an entry only
# for the parent component model.y
model.foo[model.y] = 50.0

# Assign a suffix value of -1.0 to model.y[1]
model.foo.set_value(model.y[1], -1.0)

# Same as above with the dict interface
model.foo[model.y[1]] = -1.0
```

In this example we highlight the fact that the `__setitem__` and `setValue` entry methods can be used interchangeably except in the case where indexed components are used (model.y). In the indexed case, the `__setitem__` approach creates a single entry for the parent indexed component itself, whereas the `setValue` approach by default creates an entry for each index of the component. This behavior can be controlled using the optional keyword 'expand', where assigning it a value of `False` results in the same behavior as `__setitem__`.

Other operations like accessing or removing entries in our mapping can performed as if the built-in `dict` class is in use.

```python
print(model.foo.get(model.x))  # -> 1.0
print(model.foo[model.x])      # -> 1.0
print(model.foo.get(model.y[1]))  # -> -1.0
print(model.foo[model.y[1]])   # -> -1.0
print(model.foo.get(model.y[2]))  # -> 0.0
print(model.foo[model.y[2]])   # -> 0.0
print(model.foo.get(model.y))  # -> 50.0
print(model.foo[model.y])      # -> 50.0

del model.foo[model.y]

print(model.foo.get(model.y))  # -> None
```

(continues on next page)
The non-dict method `clear_value` can be used in place of `__delitem__` to remove entries, where it inherits the same default behavior as `setValue` for indexed components and does not raise a `KeyError` when the argument does not exist as a key in the mapping.

```python
model.foo.clear_value(model.y)
```

```python
try:
    print(model.foo[model.y[1]])
    # -> raise KeyError
except KeyError:
    pass
```

```python
try:
    del model.foo[model.y[1]]
    # -> raise KeyError
except KeyError:
    pass
```

```python
model.foo.clear_value(model.y[1])
# -> does nothing
```

A summary non-dict Suffix methods is provided here:

- `clearAllValues()`: Clears all suffix data.

- `clear_value(component, expand=True)`: Clears suffix information for a component.

- `setAllValues(value)`: Sets the value of this suffix on all components.

- `setValue(component, value, expand=True)`: Sets the value of this suffix on the specified component.

- `updateValues(data_buffer, expand=True)`: Updates the suffix data given a list of component,value tuples. Provides an improvement in efficiency over calling `setValue` on every component.

- `getDatatype()`: Return the suffix datatype.

- `setDatatype(datatype)`: Set the suffix datatype.

- `getDirection()`: Return the suffix direction.

- `setDirection(direction)`: Set the suffix direction.
importEnabled()
Returns True when this suffix is enabled for import from solutions.

exportEnabled()
Returns True when this suffix is enabled for export to solvers.

4.7.4 Importing Suffix Data

Importing suffix information from a solver solution is achieved by declaring a Suffix component with the appropriate name and direction. Suffix names available for import may be specific to third-party solvers as well as individual solver interfaces within Pyomo. The most common of these, available with most solvers and solver interfaces, is constraint dual multipliers. Requesting that duals be imported into suffix data can be accomplished by declaring a Suffix component on the model.

```python
from pyomo.environ import *
model = ConcreteModel()
model.dual = Suffix(direction=Suffix.IMPORT)
model.x = Var()
model.obj = Objective(expr=model.x)
model.con = Constraint(expr=model.x>=1.0)
```

The existence of an active suffix with the name dual that has an import style suffix direction will cause constraint dual information to be collected into the solver results (assuming the solver supplies dual information). In addition to this, after loading solver results into a problem instance (using a python script or Pyomo callback functions in conjunction with the pyomo command), one can access the dual values associated with constraints using the dual Suffix component.

```python
SolverFactory('glpk').solve(model)
print(model.dual[model.con]) # -> 1.0
```

Alternatively, the pyomo option --solver-suffixes can be used to request suffix information from a solver. In the event that suffix names are provided via this command-line option, the pyomo script will automatically declare these Suffix components on the constructed instance making these suffixes available for import.

4.7.5 Exporting Suffix Data

Exporting suffix data is accomplished in a similar manner as to that of importing suffix data. One simply needs to declare a Suffix component on the model with an export style suffix direction and associate modeling component values with it. The following example shows how one can declare a special ordered set of type 1 using AMPL-style suffix notation in conjunction with Pyomo’s NL file interface.

```python
from pyomo.environ import *
model = ConcreteModel()
model.y = Var([1,2,3],within=NonNegativeReals)
model.sosno = Suffix(direction=Suffix.EXPORT)
model.ref = Suffix(direction=Suffix.EXPORT)
# Add entry for each index of model.y
model.sosno.set_value(model.y,1)
```

(continues on next page)
model.ref[model.y[1]] = 0
model.ref[model.y[2]] = 1
model.ref[model.y[3]] = 2

Most AMPL-compatible solvers will recognize the suffix names sosno and ref as declaring a special ordered set, where a positive value for sosno indicates a special ordered set of type 1 and a negative value indicates a special ordered set of type 2.

Note: Pyomo provides the SOSConstraint component for declaring special ordered sets, which is recognized by all solver interface, including the NL file interface.

Pyomo's NL file interface will recognize an EXPORT style Suffix component with the name ‘dual’ as supplying initializations for constraint multipliers. As such it will be treated separately than all other EXPORT style suffixes encountered in the NL writer, which are treated as AMPL-style suffixes. The following example script shows how one can warmstart the interior-point solver Ipopt by supplying both primal (variable values) and dual (suffixes) solution information. This dual suffix information can be both imported and exported using a single Suffix component with an IMPORT_EXPORT direction.

```python
from pyomo.environ import *
from pyomo.opt import SolverFactory

### Create the ipopt solver plugin using the ASL interface
solver = 'ipopt'
solver_io = 'nl'
stream_solver = True  # True prints solver output to screen
keepfiles = False      # True prints intermediate file names (.nl,.sol,...)
opt = SolverFactory(solver,solver_io=solver_io)
if opt is None:
    print('')
    print("ERROR: Unable to create solver plugin for ", solver, " using the ", solver_io, " interface")
    print('')
    exit(1)

### Create the example model
model = ConcreteModel()
model.x1 = Var(bounds=(1,5),initialize=1.0)
model.x2 = Var(bounds=(1,5),initialize=5.0)
model.x3 = Var(bounds=(1,5),initialize=5.0)
model.x4 = Var(bounds=(1,5),initialize=1.0)
model.obj = Objective(expr=model.x1*model.x4*(model.x1+model.x2+model.x3) + model.x3)
model.inequality = Constraint(expr=model.x1*model.x2*model.x3*model.x4 >= 25.0)
model.equality = Constraint(expr=model.x1**2 + model.x2**2 + model.x3**2 + model.x4**2 == 40.0)

### Declare all suffixes
# Ipopt bound multipliers (obtained from solution)
model.ipopt_zL_out = Suffix(direction=Suffix.IMPORT)
model.ipopt_zU_out = Suffix(direction=Suffix.IMPORT)
# Ipopt bound multipliers (sent to solver)
model.ipopt_zL_in = Suffix(direction=Suffix.EXPORT)
```
model.ipopt_zU_in = Suffix(direction=Suffix.EXPORT)
Obtain dual solutions from first solve and send to warm start
model.dual = Suffix(direction=Suffix.IMPORT_EXPORT)
###
Send the model to ipopt and collect the solution
print('')
print('INITIAL SOLVE')
results including any values for previously declared IMPORT /
IMPORT_EXPORT Suffix components will be automatically loaded into the
model
opt.solve(model,keepfiles=keepfiles,tee=stream_solver)
###
Set Ipopt options for warm-start
The current values on the ipopt_zU_out and
ipopt_zL_out suffixes will be used as initial
conditions for the bound multipliers to solve
the new problem
model.ipopt_zL_in.update(model.ipopt_zL_out)
model.ipopt_zU_in.update(model.ipopt_zU_out)
opt.options['warm_start_init_point'] = 'yes'
opt.options['warm_start_bound_push'] = 1e-6
opt.options['warm_start_mult_bound_push'] = 1e-6
opt.options['mu_init'] = 1e-6
###
Send the model and suffix information to ipopt and collect the solution
print('')
print('WARM-STARTED SOLVE')
The solver plugin will scan the model for all active suffixes
valid for importing, which it will load into the model
opt.solve(model,keepfiles=keepfiles,tee=stream_solver)
###

The difference in performance can be seen by examining Ipopt’s iteration log with and without warm starting:

- **Without Warmstart:**

 | iter | objective | inf_pr | inf_du | lg(mu) | ||d|| | lg(rg) | alpha_du | alpha_pr | ls |
 |------|-----------|--------|--------|--------|------|--------|----------|----------|----|
 | 0 | 1.6109693e+01 | 1.12e+01 | 5.28e-01 | -1.0 | 0.00e+00 | 0.00e+00 | 0 | 0 | 0 |
 | 1 | 1.6982239e+01 | 7.30e-01 | 1.02e+01 | -1.0 | 6.11e-01 | 1.00e+00 | 1 | 0 | 0 |
 | 2 | 1.7318411e+01 | 3.60e-02 | 5.05e-01 | -1.0 | 1.61e-01 | 1.00e+00 | 1 | 0 | 0 |
 | 3 | 1.6849424e+01 | 2.78e-01 | 6.68e-02 | -1.7 | 2.85e-01 | 1.00e+00 | 1 | 0 | 0 |
 | 4 | 1.7051199e+01 | 4.71e-03 | 2.78e-03 | -1.7 | 6.06e-02 | 1.00e+00 | 1 | 0 | 1 |
 | 5 | 1.7011979e+01 | 7.19e-03 | 8.50e-03 | -3.8 | 3.66e-02 | 9.45e-01 | 9.98e-01 | 1 | 0 |
 | 6 | 1.7014032e+01 | 7.19e-03 | 8.50e-03 | -5.7 | 3.66e-02 | 9.45e-01 | 9.98e-01 | 1 | 0 |
 | 8 | 1.7014032e+01 | 1.23e-07 | 8.50e-03 | -8.6 | 3.32e-02 | 9.98e-01 | 9.98e-01 | 1 | 0 |

Number of Iterations....: 8

- **With Warmstart:**

 | iter | objective | inf_pr | inf_du | lg(mu) | ||d|| | lg(rg) | alpha_du | alpha_pr | ls |
 |------|-----------|--------|--------|--------|------|--------|----------|----------|----|
 | 0 | 1.7014032e+01 | 2.00e-06 | 4.07e-06 | -6.0 | 0.00e+00 | 0.00e+00 | 0 | 0 | 0 |

(continues on next page)
4.7.6 Using Suffixes With an AbstractModel

In order to allow the declaration of suffix data within the framework of an AbstractModel, the Suffix component can be initialized with an optional construction rule. As with constraint rules, this function will be executed at the time of model construction. The following simple example highlights the use of the rule keyword in suffix initialization. Suffix rules are expected to return an iterable of (component, value) tuples, where the expand=True semantics are applied for indexed components.

```python
from pyomo.environ import *

model = AbstractModel()
model.x = Var()
model.c = Constraint(expr= model.x >= 1)

def foo_rule(m):
    return ((m.x, 2.0), (m.c, 3.0))
model.foo = Suffix(rule=foo_rule)

# Instantiate the model
inst = model.create_instance()
try:
    print(inst.foo[inst.x])  # -> raise KeyError
except KeyError:
    print("raised an error")
print(inst.foo[inst.x])  # -> 2.0
print(inst.foo[inst.c])  # -> 3.0

The next example shows an abstract model where suffixes are attached only to the variables:

```python
from pyomo.environ import *

model = AbstractModel()
model.I = RangeSet(1,4)
model.x = Var(model.I)
def c_rule(m, i):
 return m.x[i] >= i
model.c = Constraint(model.I, rule=c_rule)
def foo_rule(m):
 return ((m.x[i], 3.0*i) for i in m.I)
model.foo = Suffix(rule=foo_rule)

Instantiate the model
inst = model.create_instance()
for i in inst.I:
 print (i, inst.foo[inst.x[i]])
```
5.1 Solving ConcreteModels

If you have a ConcreteModel, add these lines at the bottom of your Python script to solve it:

```python
>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(model)
```

5.2 Solving AbstractModels

If you have an AbstractModel, you must create a concrete instance of your model before solving it using the same lines as above:

```python
>>> instance = model.create_instance()
>>> opt = pyo.SolverFactory('glpk')
>>> opt.solve(instance)
```

5.3 pyomo solve Command

To solve a ConcreteModel contained in the file `my_model.py` using the `pyomo` command and the solver GLPK, use the following line in a terminal window:

```
pyomo solve my_model.py --solver='glpk'
```

To solve an AbstractModel contained in the file `my_model.py` with data in the file `my_data.dat` using the `pyomo` command and the solver GLPK, use the following line in a terminal window:

```
pyomo solve my_model.py my_data.dat --solver='glpk'
```
5.4 Supported Solvers

Pyomo supports a wide variety of solvers. Pyomo has specialized interfaces to some solvers (for example, BARON, CBC, CPLEX, and Gurobi). It also has generic interfaces that support calling any solver that can read AMPL ".nl" and write ".sol" files and the ability to generate GAMS-format models and retrieve the results. You can get the current list of supported solvers using the pyomo command:

```
pyomo help --solvers
```
This section gives an overview of commonly used scripting commands when working with Pyomo models. These commands must be applied to a concrete model instance or in other words an instantiated model.

6.1 Repeated Solves

```python
>>> import pyomo.environ as pyo
>>> from pyomo.opt import SolverFactory
>>> model = pyo.ConcreteModel()
>>> model.nVars = pyo.Param(initialize=4)
>>> model.N = pyo.RangeSet(model.nVars)
>>> model.x = pyo.Var(model.N, within=pyo.Binary)
>>> model.obj = pyo.Objective(expr=pyo.summation(model.x))
>>> model.cuts = pyo.ConstraintList()
>>> opt = SolverFactory('glpk')
>>> opt.solve(model)

Iterate, adding a cut to exclude the previously found solution
>>> for i in range(5):
... expr = 0
... for j in model.x:
... if pyo.value(model.x[j]) < 0.5:
... expr += model.x[j]
... else:
... expr += (1 - model.x[j])
... model.cuts.add(expr >= 1)
... results = opt.solve(model)
... print("\n===== iteration",i)
... model.display()
```

To illustrate Python scripts for Pyomo we consider an example that is in the file `iterative1.py` and is executed using the command
This script creates a model, solves it, and then adds a constraint to preclude the solution just found. This process is repeated, so the script finds and prints multiple solutions. The particular model it creates is just the sum of four binary variables. One does not need a computer to solve the problem or even to iterate over solutions. This example is provided just to illustrate some elementary aspects of scripting.

```python
iterative1.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = pyo.SolverFactory('glpk')

A simple model with binary variables and
an empty constraint list.
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
 return pyo.summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

Iterate to eliminate the previously found solution
for i in range(5):
 expr = 0
 for j in instance.x:
 if pyo.value(instance.x[j]) == 0:
 expr += instance.x[j]
 else:
 expr += (1-instance.x[j])
 instance.c.add(expr >= 1)
 results = opt.solve(instance)
 print("\n==== iteration",i)
 instance.display()
```

Let us now analyze this script. The first line is a comment that happens to give the name of the file. This is followed by two lines that import symbols for Pyomo. The pyomo namespace is imported as `pyo`. Therefore, `pyo` must precede each use of a Pyomo name.
An object to perform optimization is created by calling `SolverFactory` with an argument giving the name of the solver. The argument would be `'gurobi'` if, e.g., Gurobi was desired instead of glpk:

```
Create a solver
opt = pyo.SolverFactory('glpk')
```

The next lines after a comment create a model. For our discussion here, we will refer to this as the base model because it will be extended by adding constraints later. (The words “base model” are not reserved words, they are just being introduced for the discussion of this example). There are no constraints in the base model, but that is just to keep it simple. Constraints could be present in the base model. Even though it is an abstract model, the base model is fully specified by these commands because it requires no external data:

```
Create a solver
opt = pyo.SolverFactory('glpk')
```

The next line is not part of the base model specification. It creates an empty constraint list that the script will use to add constraints.

```
model.c = pyo.ConstraintList()
```

The next non-comment line creates the instantiated model and refers to the instance object with a Python variable `instance`. Models run using the `pyomo` script do not typically contain this line because model instantiation is done by the `pyomo` script. In this example, the `create` function is called without arguments because none are needed; however, the name of a file with data commands is given as an argument in many scripts.

```
instance = model.create_instance()
```

The next line invokes the solver and refers to the object contain results with the Python variable `results`.

```
results = opt.solve(instance)
```

The solve function loads the results into the instance, so the next line writes out the updated values.

```
instance.display()
```

The next non-comment line is a Python iteration command that will successively assign the integers from 0 to 4 to the Python variable `i`, although that variable is not used in script. This loop is what causes the script to generate five more solutions:

```
for i in range(5):
```

An expression is built up in the Python variable named `expr`. The Python variable `j` will be iteratively assigned all of the indexes of the variable `x`. For each index, the value of the variable (which was loaded by the `load` method just described) is tested to see if it is zero and the expression in `expr` is augmented accordingly. Although `expr` is initialized to 0 (an integer), its type will change to be a Pyomo expression when it is assigned expressions involving Pyomo variable objects:

```
expr = 0
for j in instance.x:
 if pyo.value(instance.x[j]) == 0:
 expr += instance.x[j]
 else:
 expr += (1-instance.x[j])
```

During the first iteration (when `i` is 0), we know that all values of `x` will be 0, so we can anticipate what the expression will look like. We know that `x` is indexed by the integers from 1 to 4 so we know that `j` will take on the values from 1 to 4. Therefore, `expr` will be initialized to 0 and then added to 0 for each index where the value of `x` is 0. The expression will look like this:

```
expr = 0 + 0 + 0 + 0 + 0
```

The next non-comment line is a Python iteration command that will successively assign the integers from 0 to 4 to the Python variable `i`, although that variable is not used in script. This loop is what causes the script to generate five more solutions:

```
for i in range(5):
```

An expression is built up in the Python variable named `expr`. The Python variable `j` will be iteratively assigned all of the indexes of the variable `x`. For each index, the value of the variable (which was loaded by the `load` method just described) is tested to see if it is zero and the expression in `expr` is augmented accordingly. Although `expr` is initialized to 0 (an integer), its type will change to be a Pyomo expression when it is assigned expressions involving Pyomo variable objects:

```
expr = 0
for j in instance.x:
 if pyo.value(instance.x[j]) == 0:
 expr += instance.x[j]
 else:
 expr += (1-instance.x[j])
```

During the first iteration (when `i` is 0), we know that all values of `x` will be 0, so we can anticipate what the expression will look like. We know that `x` is indexed by the integers from 1 to 4 so we know that `j` will take on the values from 1 to 4. Therefore, `expr` will be initialized to 0 and then added to 0 for each index where the value of `x` is 0. The expression will look like this:

```
expr = 0 + 0 + 0 + 0 + 0
```

The next non-comment line is a Python iteration command that will successively assign the integers from 0 to 4 to the Python variable `i`, although that variable is not used in script. This loop is what causes the script to generate five more solutions:

```
for i in range(5):
```

An expression is built up in the Python variable named `expr`. The Python variable `j` will be iteratively assigned all of the indexes of the variable `x`. For each index, the value of the variable (which was loaded by the `load` method just described) is tested to see if it is zero and the expression in `expr` is augmented accordingly. Although `expr` is initialized to 0 (an integer), its type will change to be a Pyomo expression when it is assigned expressions involving Pyomo variable objects:

```
expr = 0
for j in instance.x:
 if pyo.value(instance.x[j]) == 0:
 expr += instance.x[j]
 else:
 expr += (1-instance.x[j])
```

During the first iteration (when `i` is 0), we know that all values of `x` will be 0, so we can anticipate what the expression will look like. We know that `x` is indexed by the integers from 1 to 4 so we know that `j` will take on the values from 1 to 4. Therefore, `expr` will be initialized to 0 and then added to 0 for each index where the value of `x` is 0. The expression will look like this:

```
expr = 0 + 0 + 0 + 0 + 0
```
1 to 4 and we also know that all value of \( x \) will be zero for all indexes so we know that the value of \( \text{expr} \) will be something like

\[
\]

The value of \( j \) will be evaluated because it is a Python variable; however, because it is a Pyomo variable, the value of \( \text{instance}.x[j] \) not be used, instead the variable object will appear in the expression. That is exactly what we want in this case. When we wanted to use the current value in the if statement, we used the value function to get it.

The next line adds to the constant list called \( c \) the requirement that the expression be greater than or equal to one:

\[
\text{instance}.c.add( \text{expr} >= 1 )
\]

The proof that this precludes the last solution is left as an exercise for the reader.

The final lines in the outer for loop find a solution and display it:

```
results = opt.solve(instance)
print("\n===== iteration",i)
instance.display()
```

Note: The assignment of the solve output to a results object is somewhat anachronistic. Many scripts just use

```python
>>> opt.solve(instance) # doctest: +SKIP
```

since the results are moved to the instance by default, leaving the results object with little of interest. If, for some reason, you want the results to stay in the results object and not be moved to the instance, you would use

```python
>>> results = opt.solve(instance, load_solutions=False) # doctest: +SKIP
```

This approach can be useful if there is a concern that the solver did not terminate with an optimal solution. For example,

```python
>>> results = opt.solve(instance, load_solutions=False) # doctest: +SKIP
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... doctest: +SKIP
... instance.solutions.load_from(results) # doctest: +SKIP
```

### 6.2 Changing the Model or Data and Re-solving

The `iterative1.py` example above illustrates how a model can be changed and then re-solved. In that example, the model is changed by adding a constraint, but the model could also be changed by altering the values of parameters. Note, however, that in these examples, we make the changes to the concrete model instances. This is particularly important for AbstractModel users, as this implies working with the instance object rather than the model object, which allows us to avoid creating a new model object for each solve. Here is the basic idea for users of an AbstractModel:

1. Create an AbstractModel (suppose it is called model)
2. Call `model.create_instance()` to create an instance (suppose it is called instance)
3. Solve instance
4. Change something in instance
5. Solve instance again

Note: Users of ConcreteModel typically name their models model, which can cause confusion to novice readers of documentation. Examples based on an AbstractModel will refer to instance where users of a ConcreteModel would typically use the name model.

If instance has a parameter whose name is Theta that was declared to be mutable (i.e., mutable=True) with an index that contains idx, then the value in NewVal can be assigned to it using

```python
>>> instance.Theta[idx] = NewVal
```

For a singleton parameter named sigma (i.e., if it is not indexed), the assignment can be made using

```python
>>> instance.sigma = NewVal
```

Note: If the Param is not declared to be mutable, an error will occur if an assignment to it is attempted.

For more information about access to Pyomo parameters, see the section in this document on Param access Accessing Parameter Values. Note that for concrete models, the model is the instance.

### 6.3 Fixing Variables and Re-solving

Instead of changing model data, scripts are often used to fix variable values. The following example illustrates this.

```python
iterative2.py
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = pyo.SolverFactory('cplex')

A simple model with binary variables and an empty constraint list.
model = pyo.AbstractModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(model.n, within=pyo.Binary)
def o_rule(model):
 return summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()

Create a model instance and optimize
instance = model.create_instance()
results = opt.solve(instance)
instance.display()

"flip" the value of x[2] (it is binary)
then solve again
```

(continues on next page)
In this example, the variables are binary. The model is solved and then the value of `model.x[2]` is flipped to the opposite value before solving the model again. The main lines of interest are:

```python
if pyo.value(instance.x[2]) == 0:
 instance.x[2].fix(1)
else:
 instance.x[2].fix(0)
results = opt.solve(instance)
instance.display()
```

This could also have been accomplished by setting the upper and lower bounds:

```python
>>> if instance.x[2] == 0:
... instance.x[2].setlb(1)
... instance.x[2].setub(1)
... else:
... instance.x[2].setlb(0)
... instance.x[2].setub(0)
```

Notice that when using the bounds, we do not set `fixed` to `True` because that would fix the variable at whatever value it presently has and then the bounds would be ignored by the solver.

For more information about access to Pyomo variables, see the section in this document on `Var access Accessing Variable Values`.

Note that

```python
>>> instance.x.fix(2)
```

is equivalent to

```python
>>> instance.y.value = 2
>>> instance.y.fixed = True
```

and

```python
>>> instance.x.fix()
```

is equivalent to

```python
>>> instance.x.fixed = True
```

### 6.4 Extending the Objective Function

One can add terms to an objective function of a `ConcreteModel` (or and instantiated `AbstractModel`) using the `expr` attribute of the objective function object. Here is a simple example:
Multiple objectives can be declared, but only one can be active at a time (at present, Pyomo does not support any solvers that can be given more than one objective). If both `model.obj1` and `model.obj2` have been declared using `Objective`, then one can ensure that `model.obj2` is passed to the solver as shown in this simple example:

```python
>>> model = pyo.ConcreteModel()
>>> model.obj1 = pyo.Objective(expr = 0)
>>> model.obj2 = pyo.Objective(expr = 0)
>>> model.obj1.deactivate()
>>> model.obj2.activate()
```

For abstract models this would be done prior to instantiation or else the `activate` and `deactivate` calls would be on the instance rather than the model.

### 6.6 Accessing Variable Values

#### 6.6.1 Primal Variable Values

Often, the point of optimization is to get optimal values of variables. Some users may want to process the values in a script. We will describe how to access a particular variable from a Python script as well as how to access all variables from a Python script and from a callback. This should enable the reader to understand how to get the access that they desire. The Iterative example given above also illustrates access to variable values.
6.6.2 One Variable from a Python Script

Assuming the model has been instantiated and solved and the results have been loaded back into the instance object, then we can make use of the fact that the variable is a member of the instance object and its value can be accessed using its `value` member. For example, suppose the model contains a variable named `quant` that is a singleton (has no indexes) and suppose further that the name of the instance object is `instance`. Then the value of this variable can be accessed using `pyo.value(instance.quant)`. Variables with indexes can be referenced by supplying the index.

Consider the following very simple example, which is similar to the iterative example. This is a concrete model. In this example, the value of `x[2]` is accessed.

```python
noiteration1.py

import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('glpk')

A simple model with binary variables and an empty constraint list.
model = pyo.ConcreteModel()
model.n = pyo.Param(default=4)
model.x = pyo.Var(pyo.RangeSet(model.n), within=pyo.Binary)
def o_rule(model):
 return summation(model.x)
model.o = pyo.Objective(rule=o_rule)
model.c = pyo.ConstraintList()
results = opt.solve(model)

if pyo.value(model.x[2]) == 0:
 print("The second index has a zero")
else:
 print("x[2]=",pyo.value(model.x[2]))
```

**Note:** If this script is run without modification, Pyomo is likely to issue a warning because there are no constraints. The warning is because some solvers may fail if given a problem instance that does not have any constraints.

6.6.3 All Variables from a Python Script

As with one variable, we assume that the model has been instantiated and solved. Assuming the instance object has the name `instance`, the following code snippet displays all variables and their values:

```
>>> for v in instance.component_objects(pyo.Var, active=True):
... print("Variable", v) # doctest: +SKIP
... for index in v:
... print(" ", index, pyo.value(v[index])) # doctest: +SKIP
```

Alternatively,
>>> for v in instance.component_data_objects(pyo.Var, active=True):
...    print(v, pyo.value(v))  # doctest: +SKIP

This code could be improved by checking to see if the variable is not indexed (i.e., the only index value is `None`), then the code could print the value without the word `None` next to it.

Assuming again that the model has been instantiated and solved and the results have been loaded back into the instance object. Here is a code snippet for fixing all integers at their current value:

```python
>>> for var in instance.component_data_objects(pyo.Var, active=True):
... if not var.is_continuous:
... print("fixing "+str(v)) # doctest: +SKIP
... var.fixed = True # fix the current value
```

Another way to access all of the variables (particularly if there are blocks) is as follows (this particular snippet assumes that instead of `import pyomo.environ as pyo from pyo.environ` was used):

```python
for v in model.component_objects(Var, descend_into=True):
 print("FOUND VAR:" + v.name)
 v.pprint()

for v_data in model.component_data_objects(Var, descend_into=True):
 print("Found: "+v_data.name+, value = "+str(value(v_data)))
```

### 6.7 Accessing Parameter Values

Accessing parameter values is completely analogous to accessing variable values. For example, here is a code snippet to print the name and value of every Parameter in a model:

```python
>>> for parmobject in instance.component_objects(pyo.Param, active=True):
... nametoprint = str(str(parmobject.name))
... print ("Parameter ", nametoprint) # doctest: +SKIP
... for index in parmobject:
... vtoprint = pyo.value(parmobject[index])
... print (" ", index, vtoprint) # doctest: +SKIP
```

### 6.8 Accessing Duals

Access to dual values in scripts is similar to accessing primal variable values, except that dual values are not captured by default so additional directives are needed before optimization to signal that duals are desired.

To get duals without a script, use the `pyomo` option `--solver-suffixes='dual'` which will cause dual values to be included in output. Note: In addition to duals (dual), reduced costs (rc) and slack values (slack) can be requested. All suffixes can be requested using the `pyomo` option `--solver-suffixes='.*'`

**Warning:** Some of the duals may have the value `None`, rather than 0.
6.8.1 Access Duals in a Python Script

To signal that duals are desired, declare a Suffix component with the name “dual” on the model or instance with an IMPORT or IMPORT_EXPORT direction.

```
Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)
```

See the section on Suffixes *Suffixes* for more information on Pyomo’s Suffix component. After the results are obtained and loaded into an instance, duals can be accessed in the following fashion.

```
display all duals
print ("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):
 print (" Constraint", c)
 for index in c:
 print (" ", index, instance.dual[c[index]])
```

The following snippet will only work, of course, if there is a constraint with the name AxbConstraint that has an index, which is the string Film.

```
access one dual
print ("Dual for Film=", instance.dual[instance.AxbConstraint['Film']])
```

Here is a complete example that relies on the file abstract2.py to provide the model and the file abstract2.dat to provide the data. Note that the model in abstract2.py does contain a constraint named AxbConstraint and abstract2.dat does specify an index for it named Film.

```
driveabs2.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('cplex')

get the model from another file
from abstract2 import model

Create a model instance and optimize
instance = model.create_instance('abstract2.dat')

Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
instance.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)

results = opt.solve(instance)
also puts the results back into the instance for easy access

display all duals
print ("Duals")
for c in instance.component_objects(pyo.Constraint, active=True):
 print (" Constraint", c)
 for index in c:
 print (" ", index, instance.dual[c[index]])
```

(continues on next page)
Concrete models are slightly different because the model is the instance. Here is a complete example that relies on the file `concrete1.py` to provide the model and instantiate it.

```python
driveconcl.py
from __future__ import division
import pyomo.environ as pyo
from pyomo.opt import SolverFactory

Create a solver
opt = SolverFactory('cplex')

get the model from another file
from concrete1 import model

Create a 'dual' suffix component on the instance
so the solver plugin will know which suffixes to collect
model.dual = pyo.Suffix(direction=pyo.Suffix.IMPORT)
results = opt.solve(model) # also load results to model

display all duals
print("Duals")
for c in model.component_objects(pyo.Constraint, active=True):
 print(" Constraint",c)
 for index in c:
 print(" \", index, model.dual[c[index]])
```

### 6.9 Accessing Slacks

The functions `lslack()` and `uslack()` return the upper and lower slacks, respectively, for a constraint.

### 6.10 Accessing Solver Status

After a solve, the results object has a member `Solution.Status` that contains the solver status. The following snippet shows an example of access via a `print` statement:

```python
results = opt.solve(instance)
#print("The solver returned a status of:"+str(results.solver.status))
```

The use of the Python `str` function to cast the value to a `be` string makes it easy to test it. In particular, the value ‘optimal’ indicates that the solver succeeded. It is also possible to access Pyomo data that can be compared with the solver status as in the following code snippet:

```python
from pyomo.opt import SolverStatus, TerminationCondition
```
if (results.solver.status == SolverStatus.ok) and (results.solver.termination_condition == TerminationCondition.optimal):
    print("this is feasible and optimal")
elif results.solver.termination_condition == TerminationCondition.infeasible:
    print("do something about it? or exit?")
else:
    # something else is wrong
    print(str(results.solver))

Alternatively,

from pyomo.opt import TerminationCondition

... 
results = opt.solve(model, load_solutions=False)
if results.solver.termination_condition == TerminationCondition.optimal:
    model.solutions.load_from(results)
else:
    print("Solution is not optimal")
    # now do something about it? or exit? ...

6.11 Display of Solver Output

To see the output of the solver, use the option tee=True as in

results = opt.solve(instance, tee=True)

This can be useful for troubleshooting solver difficulties.

6.12 Sending Options to the Solver

Most solvers accept options and Pyomo can pass options through to a solver. In scripts or callbacks, the options can be attached to the solver object by adding to its options dictionary as illustrated by this snippet:

optimizer = pyo.SolverFactory['cbc']
optimizer.options["threads"] = 4

If multiple options are needed, then multiple dictionary entries should be added.

Sometime it is desirable to pass options as part of the call to the solve function as in this snippet:

results = optimizer.solve(instance, options="threads=4", tee=True)

The quoted string is passed directly to the solver. If multiple options need to be passed to the solver in this way, they should be separated by a space within the quoted string. Notice that tee is a Pyomo option and is solver-independent, while the string argument to options is passed to the solver without very little processing by Pyomo. If the solver does not have a “threads” option, it will probably complain, but Pyomo will not.

There are no default values for options on a SolverFactory object. If you directly modify its options dictionary, as was done above, those options will persist across every call to optimizer.solve(...) unless you delete them.
from the options dictionary. You can also pass a dictionary of options into the `opt.solve(...)` method using the `options` keyword. Those options will only persist within that solve and temporarily override any matching options in the options dictionary on the solver object.

### 6.13 Specifying the Path to a Solver

Often, the executables for solvers are in the path; however, for situations where they are not, the `SolverFactory` function accepts the keyword `executable`, which you can use to set an absolute or relative path to a solver executable. E.g.,

```python
opt = pyo.SolverFactory("ipopt", executable="../ipopt")
```

### 6.14 Warm Starts

Some solvers support a warm start based on current values of variables. To use this feature, set the values of variables in the instance and pass `warmstart=True` to the `solve()` method. E.g.,

```python
instance = model.create()
instance.y[0] = 1
instance.y[1] = 0

opt = pyo.SolverFactory("cplex")
results = opt.solve(instance, warmstart=True)
```

**Note:** The Cplex and Gurobi LP file (and Python) interfaces will generate an MST file with the variable data and hand this off to the solver in addition to the LP file.

**Warning:** Solvers using the NL file interface (e.g., “gurobi_ampl”, “cplexamp”) do not accept warmstart as a keyword to the `solve()` method as the NL file format, by default, includes variable initialization data (drawn from the current value of all variables).

### 6.15 Solving Multiple Instances in Parallel

Use of parallel solvers for PySP is discussed in the section on parallel PySP Solving Sub-problems in Parallel and/or Remotely.

Solvers are controlled by solver servers. The `pyro_mip_server` solver server is launched with the command `pyro_mip_server`. This command may be repeated to launch as many solvers as are desired. A name server and a dispatch server must be running and accessible to the process that runs the script that will use the mip servers as well as to the mip servers. The name server is launched using the command `pyomo_ns` and then the dispatch server is launched with `dispatch_srvr`. Note that both commands contain an underscore. Both programs keep running until terminated by an external signal, so it is common to pipe their output to a file. The commands are:

- **Once**: `pyomo_ns`
- **Once**: `dispatch_srvr`
- **Multiple times**: `pyro_mip_server`
This example demonstrates how to use these services to solve two instances in parallel.

```python
parallel.py
from __future__ import division
from pyomo.environ import *
from pyomo.opt import SolverFactory
from pyomo.opt.parallel import SolverManagerFactory
import sys

action_handle_map = {} # maps action handles to instances

Create a solver
optsolver = SolverFactory('cplex')

Create a solver manager
'pyro' could be replaced with 'serial'
solver_manager = SolverManagerFactory('pyro')
if solver_manager is None:
 print "Failed to create solver manager."
 sys.exit(1)

A simple model with binary variables and an empty constraint list.
model = AbstractModel()
model.n = Param(default=4)
model.x = Var(RangeSet(model.n), within=Binary)
def o_rule(model):
 return summation(model.x)
model.o = Objective(rule=o_rule)
model.c = ConstraintList()

Create two model instances
instance1 = model.create()
instance2 = model.create()
instance2.x[1] = 1
instance2.x[1].fixed = True

Send them to the solver(s)
action_handle = solver_manager.queue(instance1, opt=optsolver, warmstart=False, tee=True, verbose=False)
action_handle_map[action_handle] = "Original"
action_handle = solver_manager.queue(instance2, opt=optsolver, warmstart=False, tee=True, verbose=False)
action_handle_map[action_handle] = "One Var Fixed"

Retrieve the solutions
for i in range(2): # we know there are two instances
 this_action_handle = solver_manager.wait_any()
 solved_name = action_handle_map[this_action_handle]
 results = solver_manager.get_results(this_action_handle)
 print "Results for", solved_name
 print results
```

This example creates two instances that are very similar and then sends them to be dispatched to solvers. If there are two solvers, then these problems could be solved in parallel (we say “could” because for such trivial problems
to be actually solved in parallel, the solvers would have to be very, very slow). This example is non-sensical; the
goal is simply to show `solver_manager.queue` to submit jobs to a name server for dispatch to solver servers
and `solver_manager.wait_any` to recover the results. The `wait_all` function is similar, but it takes a list of
action handles (returned by `queue`) as an argument and returns all of the results at once.

### 6.16 Changing the temporary directory

A “temporary” directory is used for many intermediate files. Normally, the name of the directory for temporary files
is provided by the operating system, but the user can specify their own directory name. The pyomo command-line
`--tempdir` option propagates through to the TempFileManager service. One can accomplish the same through the
following few lines of code in a script:

```python
from pyutilib.services import TempfileManager
TempfileManager.tempdir = YourDirectoryNameGoesHere
```
7.1 Instantiating Models

If you start with a ConcreteModel, each component you add to the model will be fully constructed and initialized at the time it attached to the model. However, if you are starting with an AbstractModel, construction occurs in two phases. When you first declare and attach components to the model, those components are empty containers and not fully constructed, even if you explicitly provide data.

```python
>>> import pyomo.environ as pyo
>>> model = pyo.AbstractModel()
>>> model.is_constructed()
False
>>> model.p = pyo.Param(initialize=5)
>>> model.p.is_constructed()
False
>>> model.I = pyo.Set(initialize=[1,2,3])
>>> model.x = pyo.Var(model.I)
>>> model.x.is_constructed()
False
```

If you look at the model at this point, you will see that everything is “empty”:

```plaintext
>>> model.pprint()
1 Set Declarations
 I : Dim=0, Dimen=1, Size=0, Domain=None, Ordered=False, Bounds=None
 Not constructed

1 Param Declarations
 p : Size=0, Index=None, Domain=Any, Default=None, Mutable=False
 Not constructed

1 Var Declarations
```

(continues on next page)
Before you can manipulate modeling components or solve the model, you must first create a concrete *instance* by applying data to your abstract model. This can be done using the `create_instance()` method, which takes the abstract model and optional data and returns a new *concrete* instance by constructing each of the model components in the order in which they were declared (attached to the model). Note that the instance creation is performed “out of place”; that is, the original abstract model is left untouched.

```python
>>> instance = model.create_instance()
>>> model.is_constructed()
False
>>> type(instance)
<class 'pyomo.core.base.PyomoModel.ConcreteModel'>
>>> instance.is_constructed()
True
>>> instance.pprint()
```

**Note:** AbstractModel users should note that in some examples, your concrete model instance is called “*instance*” and not “*model*”. This is the case here, where we are explicitly calling `instance = model.create_instance()`.

The `create_instance()` method can also take a reference to external data, which overrides any data specified in the original component declarations. The data can be provided from several sources, including using a dict, DataPortal, or DAT file. For example:

```python
>>> instance2 = model.create_instance({None: {'I': {None: [4,5]}}})
>>> instance2.pprint()
```

<table>
<thead>
<tr>
<th>Declaration</th>
<th>Type</th>
<th>Domain</th>
<th>Default</th>
<th>Mutable</th>
<th>Fixed</th>
<th>Stale</th>
<th>Domain</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>I</code></td>
<td>Set</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>p</code></td>
<td>Param</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><code>x</code></td>
<td>Var</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Var Declarations

x : Size=2, Index=I

Key : Lower : Value : Upper : Fixed : Stale : Domain
4 : None : None : None : False : True : Reals
5 : None : None : None : False : True : Reals

3 Declarations: p I x

7.2 Managing Data in AbstractModels

There are roughly three ways of using data to construct a Pyomo model:

1. use standard Python objects,
2. initialize a model with data loaded with a DataPortal object, and
3. load model data from a Pyomo data command file.

Standard Python data objects include native Python data types (e.g. lists, sets, and dictionaries) as well as standard data formats like numpy arrays and Pandas data frames. Standard Python data objects can be used to define constant values in a Pyomo model, and they can be used to initialize Set and Param components. However, initializing Set and Param components in this manner provides few advantages over direct use of standard Python data objects. (An import exception is that components indexed by Set objects use less memory than components indexed by native Python data.)

The DataPortal class provides a generic facility for loading data from disparate sources. A DataPortal object can load data in a consistent manner, and this data can be used to simply initialize all Set and Param components in a model. DataPortal objects can be used to initialize both concrete and abstract models in a uniform manner, which is important in some scripting applications. But in practice, this capability is only necessary for abstract models, whose data components are initialized after being constructed. (In fact, all abstract data components in an abstract model are loaded from DataPortal objects.)

Finally, Pyomo data command files provide a convenient mechanism for initializing Set and Param components with a high-level data specification. Data command files can be used with both concrete and abstract models, though in a different manner. Data command files are parsed using a DataPortal object, which must be done explicitly for a concrete model. However, abstract models can load data from a data command file directly, after the model is constructed. Again, this capability is only necessary for abstract models, whose data components are initialized after being constructed.

The following sections provide more detail about how data can be used to initialize Pyomo models.

7.2.1 Using Standard Data Types

Defining Constant Values

In many cases, Pyomo models can be constructed without Set and Param data components. Native Python data types class can be simply used to define constant values in Pyomo expressions. Consequently, Python sets, lists and dictionaries can be used to construct Pyomo models, as well as a wide range of other Python classes.

TODO

More examples here: set, list, dict, numpy, pandas.
Initializing Set and Parameter Components

The `Set` and `Param` components used in a Pyomo model can also be initialized with standard Python data types. This enables some modeling efficiencies when manipulating sets (e.g. when re-using sets for indices), and it supports validation of set and parameter data values. The `Set` and `Param` components are initialized with Python data using the `initialize` option.

Set Components

In general, `Set` components can be initialized with iterable data. For example, simple sets can be initialized with:

- list, set and tuple data:

  ```python
 model.A = Set(initialize=[2,3,5])
 model.B = Set(initialize=set([2,3,5]))
 model.C = Set(initialize=(2,3,5))
  ```

- generators:

  ```python
 model.D = Set(initialize=range(9))
 model.E = Set(initialize=(i for i in model.B if i%2 == 0))
  ```

- numpy arrays:

  ```python
 f = numpy.array([2, 3, 5])
 model.F = Set(initialize=f)
  ```

Sets can also be indirectly initialized with functions that return native Python data:

```python
def g(model):
 return [2,3,5]
model.G = Set(initialize=g)
```

Indexed sets can be initialized with dictionary data where the dictionary values are iterable data:

```python
H_init = {}
H_init[2] = [1,3,5]
H_init[3] = [2,4,6]
H_init[4] = [3,5,7]
model.H = Set([2,3,4],initialize=H_init)
```

Parameter Components

When a parameter is a single value, then a `Param` component can be simply initialized with a value:

```python
model.a = Param(initialize=1.1)
```

More generally, `Param` components can be initialized with dictionary data where the dictionary values are single values:

```python
model.b = Param([1,2,3], initialize={1:1, 2:2, 3:3})
```

Parameters can also be indirectly initialized with functions that return native Python data:
def c(model):
    return {1:1, 2:2, 3:3}
model.c = Param([1,2,3], initialize=c)

## 7.2.2 Using a Python Dictionary

Data can be passed to the model `create_instance()` method through a series of nested native Python dictionaries. The structure begins with a dictionary of `namespaces`, with the only required entry being the `None` namespace. Each namespace contains a dictionary that maps component names to dictionaries of component values. For scalar components, the required data dictionary maps the implicit index `None` to the desired value:

```python
>>> from pyomo.environ import *
>>> m = AbstractModel()
>>> m.I = Set()
>>> m.p = Param()
>>> m.q = Param(m.I)
>>> m.r = Param(m.I, m.I, default=0)
>>> data = {None: {
... 'I': {None: [1,2,3]},
... 'p': {None: 100},
... 'q': {1: 10, 2:20, 3:30},
... 'r': {(1,1): 110, (1,2): 120, (2,3): 230},
... }}
>>> i = m.create_instance(data)
>>> i.pprint()
```

---

### 7.2.3 Data Command Files

**Note:** The discussion and presentation below are adapted from Chapter 6 of the “Pyomo Book” [PyomoBookII]. The discussion of the `DataPortal` class uses these same examples to illustrate how data can be loaded into Pyomo.
models within Python scripts (see the Data Portals section).

Model Data

Pyomo’s data command files employ a domain-specific language whose syntax closely resembles the syntax of AMPL’s data commands [AMPL]. A data command file consists of a sequence of commands that either (a) specify set and parameter data for a model, or (b) specify where such data is to be obtained from external sources (e.g. table files, CSV files, spreadsheets and databases).

The following commands are used to declare data:

• The set command declares set data.
• The param command declares a table of parameter data, which can also include the declaration of the set data used to index the parameter data.
• The table command declares a two-dimensional table of parameter data.
• The load command defines how set and parameter data is loaded from external data sources, including ASCII table files, CSV files, XML files, YAML files, JSON files, ranges in spreadsheets, and database tables.

The following commands are also used in data command files:

• The include command specifies a data command file that is processed immediately.
• The data and end commands do not perform any actions, but they provide compatibility with AMPL scripts that define data commands.
• The namespace keyword allows data commands to be organized into named groups that can be enabled or disabled during model construction.

The following data types can be represented in a data command file:

• Numeric value: Any Python numeric value (e.g. integer, float, scientific notation, or boolean).
• Simple string: A sequence of alpha-numeric characters.
• Quoted string: A simple string that is included in a pair of single or double quotes. A quoted string can include quotes within the quoted string.

Numeric values are automatically converted to Python integer or floating point values when a data command file is parsed. Additionally, if a quoted string can be interpreted as a numeric value, then it will be converted to Python numeric types when the data is parsed. For example, the string “100” is converted to a numeric value automatically.

**Warning:** Pyomo data commands do not exactly correspond to AMPL data commands. The set and param commands are designed to closely match AMPL’s syntax and semantics, though these commands only support a subset of the corresponding declarations in AMPL. However, other Pyomo data commands are not generally designed to match the semantics of AMPL.

**Note:** Pyomo data commands are terminated with a semicolon, and the syntax of data commands does not depend on whitespace. Thus, data commands can be broken across multiple lines – newlines and tab characters are ignored – and data commands can be formatted with whitespace with few restrictions.
The set Command

Simple Sets

The set data command explicitly specifies the members of either a single set or an array of sets, i.e., an indexed set. A single set is specified with a list of data values that are included in this set. The formal syntax for the set data command is:

```
set <setname> := [<value>] ... ;
```

A set may be empty, and it may contain any combination of numeric and non-numeric string values. For example, the following are valid set commands:

```plaintext
An empty set
set A := ;

A set of numbers
set A := 1 2 3;

A set of strings
set B := north south east west;

A set of mixed types
set C :=
0
-1.0e+10
'foo bar'
infinity
"100"
;
```

Sets of Tuple Data

The set data command can also specify tuple data with the standard notation for tuples. For example, suppose that set A contains 3-tuples:

```plaintext
model.A = Set(dimen=3)
```

The following set data command then specifies that A is the set containing the tuples (1,2,3) and (4,5,6):

```
set A := (1,2,3) (4,5,6) ;
```

Alternatively, set data can simply be listed in the order that the tuple is represented:

```
set A := 1 2 3 4 5 6 ;
```

Obviously, the number of data elements specified using this syntax should be a multiple of the set dimension.

Sets with 2-tuple data can also be specified in a matrix denoting set membership. For example, the following set data command declares 2-tuples in A using plus (+) to denote valid tuples and minus (−) to denote invalid tuples:

```
set A : A1 A2 A3 A4 :=
 1 + - - +
 2 + - + -
 3 - + - - ;
```
This data command declares the following five 2-tuples: ('A1',1), ('A1',2), ('A2',3), ('A3',2), and ('A4',1).

Finally, a set of tuple data can be concisely represented with tuple templates that represent a slice of tuple data. For example, suppose that the set A contains 4-tuples:

```python
model.A = Set(dimen=4)
```

The following set data command declares groups of tuples that are defined by a template and data to complete this template:

```python
set A :=
 (1,2,*4) A B
 (*,2,*4) A B C D ;
```

A tuple template consists of a tuple that contains one or more asterisk (*) symbols instead of a value. These represent indices where the tuple value is replaced by the values from the list of values that follows the tuple template. In this example, the following tuples are in set A:

- (1, 2, 'A', 4)
- (1, 2, 'B', 4)
- ('A', 2, 'B', 4)
- ('C', 2, 'D', 4)

**Set Arrays**

The set data command can also be used to declare data for a set array. Each set in a set array must be declared with a separate set data command with the following syntax:

```python
set <set-name>[<index>] := [<value>] ... ;
```

Because set arrays can be indexed by an arbitrary set, the index value may be a numeric value, a non-numeric string value, or a comma-separated list of string values.

Suppose that a set A is used to index a set B as follows:

```python
model.A = Set()
model.B = Set(model.A)
set A := 1 aaa 'a b';
set B[1] := 0 1 2;
set B[aaa] := aa bb cc;
set B['a b'] := 'aa bb cc';
```

**The param Command**

Simple or non-indexed parameters are declared in an obvious way, as shown by these examples:

```python
param A := 1.4;
param B := 1;
param C := abc;
```
Parameters can be defined with numeric data, simple strings and quoted strings. Note that parameters cannot be defined without data, so there is no analog to the specification of an empty set.

### One-dimensional Parameter Data

Most parameter data is indexed over one or more sets, and there are a number of ways the `param` data command can be used to specify indexed parameter data. One-dimensional parameter data is indexed over a single set. Suppose that the parameter $B$ is a parameter indexed by the set $A$:

```plaintext
define model.A = Set()
define model.B = Param(model.A)
```

A `param` data command can specify values for $B$ with a list of index-value pairs:

```plaintext
define set A := a c e;
define param B := a 10 c 30 e 50;
```

Because whitespace is ignored, this example data command file can be reorganized to specify the same data in a tabular format:

```plaintext
define set A := a c e;
define param B :=
a 10
c 30
e 50;
```

Multiple parameters can be defined using a single `param` data command. For example, suppose that parameters $B$, $C$, and $D$ are one-dimensional parameters all indexed by the set $A$:

```plaintext
define model.A = Set()
define model.B = Param(model.A)
define model.C = Param(model.A)
define model.D = Param(model.A)
```

Values for these parameters can be specified using a single `param` data command that declares these parameter names followed by a list of index and parameter values:

```plaintext
define set A := a c e;
define param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
```

The values in the `param` data command are interpreted as a list of sublists, where each sublist consists of an index followed by the corresponding numeric value.

Note that parameter values do not need to be defined for all indices. For example, the following data command file is valid:
set A := a c e g;
param : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

The index g is omitted from the param command, and consequently this index is not valid for the model instance that uses this data. More complex patterns of missing data can be specified using the period (.) symbol to indicate a missing value. This syntax is useful when specifying multiple parameters that do not necessarily have the same index values:

set A := a c e;
param : B C D :=
a . -1 1.1
c 30 . 3.3
e 50 -5 .
;

This example provides a concise representation of parameters that share a common index set while using different index values.

Note that this data file specifies the data for set A twice: (1) when A is defined and (2) implicitly when the parameters are defined. An alternate syntax for param allows the user to concisely specify the definition of an index set along with associated parameters:

param : A : B C D :=
a 10 -1 1.1
c 30 -3 3.3
e 50 -5 5.5
;

Finally, we note that default values for missing data can also be specified using the default keyword:

set A := a c e;
param B default 0.0 :=
c 30
e 50
;

Note that default values can only be specified in param commands that define values for a single parameter.

**Multi-Dimensional Parameter Data**

Multi-dimensional parameter data is indexed over either multiple sets or a single multi-dimensional set. Suppose that parameter B is a parameter indexed by set A that has dimension 2:

```python
model.A = Set(dimen=2)
model.B = Param(model.A)
```

The syntax of the param data command remains essentially the same when specifying values for B with a list of index and parameter values:
Missing and default values are also handled in the same way with multi-dimensional index sets:

```python
set A := a 1 c 2 e 3;
param B default 0 :=
a 1 10
c 2 30
e 3 50;
```

Similarly, multiple parameters can be defined with a single `param` data command. Suppose that parameters B, C, and D are parameters indexed over set A that has dimension 2:

```python
model.A = Set(dimen=2)
model.B = Param(model.A)
model.C = Param(model.A)
model.D = Param(model.A)
```

These parameters can be defined with a single `param` command that declares the parameter names followed by a list of index and parameter values:

```python
set A := a 1 c 2 e 3;
param : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;
```

Similarly, the following `param` data command defines the index set along with the parameters:

```python
param : A : B C D :=
a 1 10 -1 1.1
c 2 30 -3 3.3
e 3 50 -5 5.5
;
```

The `param` command also supports a matrix syntax for specifying the values in a parameter that has a 2-dimensional index. Suppose parameter B is indexed over set A that has dimension 2:

```python
model.A = Set(dimen=2)
model.B = Param(model.A)
```

The following `param` command defines a matrix of parameter values:

```python
set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;
param B : a c e :=
1 1 2 3
2 4 5 6
```

(continues on next page)
Additionally, the following syntax can be used to specify a transposed matrix of parameter values:

```plaintext
set A := 1 a 1 c 1 e 2 a 2 c 2 e 3 a 3 c 3 e;
param B (tr) : 1 2 3 :=
 a 1 4 7
 c 2 5 8
 e 3 6 9;
```

This functionality facilitates the presentation of parameter data in a natural format. In particular, the transpose syntax may allow the specification of tables for which the rows comfortably fit within a single line. However, a matrix may be divided column-wise into shorter rows since the line breaks are not significant in Pyomo data commands.

For parameters with three or more indices, the parameter data values may be specified as a series of slices. Each slice is defined by a template followed by a list of index and parameter values. Suppose that parameter B is indexed over set A that has dimension 4:

```plaintext
model.A = Set(dimen=4)
model.B = Param(model.A)
```

The following param command defines a matrix of parameter values with multiple templates:

```plaintext
set A := (a,1,a,1) (a,2,a,2) (b,1,b,1) (b,2,b,2);
param B :=
 [*1,*1] a a 10 b b 20
 [*2,*2] a a 30 b b 40
;
```

The B parameter consists of four values: \( B[a,1,a,1]=10, B[b,1,b,1]=20, B[a,2,a,2]=30, \) and \( B[b,2,b,2]=40. \)

### The table Command

The table data command explicitly specifies a two-dimensional array of parameter data. This command provides a more flexible and complete data declaration than is possible with a param declaration. The following example illustrates a simple table command that declares data for a single parameter:

```plaintext
table M(A) :
 A B M N :
 A1 B1 4.3 5.3
 A2 B2 4.4 5.4
 A3 B3 4.5 5.5
;
```

The parameter M is indexed by column A, which must be pre-defined unless declared separately (see below). The column labels are provided after the colon and before the colon-equal (:=). Subsequently, the table data is provided. The syntax is not sensitive to whitespace, so the following is an equivalent table command:
Multiple parameters can be declared by simply including additional parameter names. For example:

```plaintext
table M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;
```

This example declares data for the $M$ and $N$ parameters, which have different indexing columns. The indexing columns represent set data, which is specified separately. For example:

```plaintext
table A={A} Z={A,B} M(A) N(A,B) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;
```

This example declares data for the $M$ and $N$ parameters, along with the $A$ and $Z$ indexing sets. The correspondence between the index set $Z$ and the indices of parameter $N$ can be made more explicit by indexing $N$ by $Z$:

```plaintext
table A={A} Z={A,B} M(A) N(Z) :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;
```

Set data can also be specified independent of parameter data:

```plaintext
table Z={A,B} Y={M,N} :
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;
```

**Warning:** If a `table` command does not explicitly indicate the indexing sets, then these are assumed to be initialized separately. A `table` command can separately initialize sets and parameters in a Pyomo model, and there is no presumed association between the data that is initialized. For example, the `table` command initializes a set $Z$ and a parameter $M$ that are not related:

```plaintext
table Z={A,B} M(A):
A B M N :=
A1 B1 4.3 5.3
A2 B2 4.4 5.4
A3 B3 4.5 5.5
;
```

Finally, simple parameter values can also be specified with a `table` command:

```plaintext
table M(A) :
A B M N :=
A1 B1 4.3 5.3 A2 B2 4.4 5.4 A3 B3 4.5 5.5 ;
```
Table \( \pi := 3.1416 \)

The previous examples considered examples of the `table` command where column labels are provided. The `table` command can also be used without column labels. For example, the first example can be revised to omit column labels as follows:

\[
\text{table columns=4 M(1)={3}} := \\
A1 B1 4.3 5.3 \\
A2 B2 4.4 5.4 \\
A3 B3 4.5 5.5 \\
; \\
\]

The `columns=4` is a keyword-value pair that defines the number of columns in this table; this must be explicitly specified in tables without column labels. The default column labels are integers starting from 1; the labels are columns 1, 2, 3, and 4 in this example. The \( M \) parameter is indexed by column 1. The braces syntax declares the column where the \( M \) data is provided.

Similarly, set data can be declared referencing the integer column labels:

\[
\text{table columns=4 A={1} Z={1,2} M(1)={3} N(1,2)={4}} := \\
A1 B1 4.3 5.3 \\
A2 B2 4.4 5.4 \\
A3 B3 4.5 5.5 \\
; \\
\]

Declared set names can also be used to index parameters:

\[
\text{table columns=4 A={1} Z={1,2} M(A)={3} N(Z)={4}} := \\
A1 B1 4.3 5.3 \\
A2 B2 4.4 5.4 \\
A3 B3 4.5 5.5 \\
; \\
\]

Finally, we compare and contrast the `table` and `param` commands. Both commands can be used to declare parameter and set data, and both commands can be used to declare a simple parameter. However, there are some important differences between these data commands:

- The `param` command can declare a single set that is used to index one or more parameters. The `table` command can declare data for any number of sets, independent of whether they are used to index parameter data.

- The `param` command can declare data for multiple parameters only if they share the same index set. The `table` command can declare data for any number of parameters that are may be indexed separately.

- The `table` syntax unambiguously describes the dimensionality of indexing sets. The `param` command must be interpreted with a model that provides the dimension of the indexing set.

This last point provides a key motivation for the `table` command. Specifically, the `table` command can be used to reliably initialize concrete models using Pyomo's `DataPortal` class. By contrast, the `param` command can only be used to initialize concrete models with parameters that are indexed by a single column (i.e., a simple set).

**The load Command**

The `load` command provides a mechanism for loading data from a variety of external tabular data sources. This command loads a table of data that represents set and parameter data in a Pyomo model. The table consists of rows and columns for which all rows have the same length, all columns have the same length, and the first row represents labels for the column data.
The `load` command can load data from a variety of different external data sources:

- **TAB File**: A text file format that uses whitespace to separate columns of values in each row of a table.
- **CSV File**: A text file format that uses comma or other delimiters to separate columns of values in each row of a table.
- **XML File**: An extensible markup language for documents and data structures. XML files can represent tabular data.
- **Excel File**: A spreadsheet data format that is primarily used by the Microsoft Excel application.
- **Database**: A relational database.

This command uses a data manager that coordinates how data is extracted from a specified data source. In this way, the `load` command provides a generic mechanism that enables Pyomo models to interact with standard data repositories that are maintained in an application-specific manner.

**Simple Load Examples**

The simplest illustration of the `load` command is specifying data for an indexed parameter. Consider the file `Y.tab`:

```
A Y
A1 3.3
A2 3.4
A3 3.5
```

This file specifies the values of parameter `Y` which is indexed by set `A`. The following `load` command loads the parameter data:

```
load Y.tab : [A] Y;
```

The first argument is the filename. The options after the colon indicate how the table data is mapped to model data. Option `[A]` indicates that set `A` is used as the index, and option `Y` indicates the parameter that is initialized.

Similarly, the following load command loads both the parameter data as well as the index set `A`:

```
```

The difference is the specification of the index set, `A=[A]`, which indicates that set `A` is initialized with the index loaded from the ASCII table file.

Set data can also be loaded from an ASCII table file that contains a single column of data:

```
A
A1
A2
A3
```

The `format` option must be specified to denote the fact that the relational data is being interpreted as a set:

```
load A.tab format=set : A;
```

Note that this allows for specifying set data that contains tuples. Consider file `C.tab`:

```
A B
A1 1
A1 2
A1 3
```

(continues on next page)
A similar load syntax will load this data into set $C$:

```
load C.tab format=set : C;
```

Note that this example requires that $C$ be declared with dimension two.

### Load Syntax Options

The syntax of the `load` command is broken into two parts. The first part ends with the colon, and it begins with a filename, database URL, or DSN (data source name). Additionally, this first part can contain option value pairs. The following options are recognized:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>format</strong></td>
<td>A string that denotes how the relational table is interpreted.</td>
</tr>
<tr>
<td><strong>password</strong></td>
<td>The password that is used to access a database.</td>
</tr>
<tr>
<td><strong>query</strong></td>
<td>The query that is used to request data from a database.</td>
</tr>
<tr>
<td><strong>range</strong></td>
<td>The subset of a spreadsheet that is requested.</td>
</tr>
<tr>
<td><strong>user</strong></td>
<td>The user name that is used to access the data source.</td>
</tr>
<tr>
<td><strong>using</strong></td>
<td>The data manager that is used to process the data source.</td>
</tr>
<tr>
<td><strong>table</strong></td>
<td>The database table that is requested.</td>
</tr>
</tbody>
</table>

The `format` option is the only option that is required for all data managers. This option specifies how a relational table is interpreted to represent set and parameter data. If the `using` option is omitted, then the filename suffix is used to select the data manager. The remaining options are specific to spreadsheets and relational databases (see below).

The second part of the `load` command consists of the specification of column names for indices and data. The remainder of this section describes different specifications and how they define how data is loaded into a model. Suppose file `ABCD.tab` defines the following relational table:

```
A B C D
A1 B1 1 10
A2 B2 2 20
A3 B3 3 30
```

There are many ways to interpret this relational table. It could specify a set of 4-tuples, a parameter indexed by 3-tuples, two parameters indexed by 2-tuples, and so on. Additionally, we may wish to select a subset of this table to initialize data in a model. Consequently, the `load` command provides a variety of syntax options for specifying how a table is interpreted.

A simple specification is to interpret the relational table as a set:

```
load ABCD.tab format=set : Z;
```

Note that $Z$ is a set in the model that the data is being loaded into. If this set does not exist, an error will occur while loading data from this table.

Another simple specification is to interpret the relational table as a parameter with indexed by 3-tuples:
Again, this requires that \( D \) be a parameter in the model that the data is being loaded into. Additionally, the index set for \( D \) must contain the indices that are specified in the table. The `load` command also allows for the specification of the index set:

```plaintext
load ABCD.tab : Z=[A,B,C] D ;
```

This specifies that the index set is loaded into the \( Z \) set in the model. Similarly, data can be loaded into another parameter than what is specified in the relational table:

```plaintext
load ABCD.tab : Z=[A,B,C] Y=D ;
```

This specifies that the index set is loaded into the \( Z \) set and that the data in the \( D \) column in the table is loaded into the \( Y \) parameter.

This syntax allows the `load` command to provide an arbitrary specification of data mappings from columns in a relational table into index sets and parameters. For example, suppose that a model is defined with set \( Z \) and parameters \( Y \) and \( W \):

```python
model.Z = Set()
model.Y = Param(model.Z)
model.W = Param(model.Z)
```

Then the following command defines how these data items are loaded using columns \( B \), \( C \) and \( D \):

```plaintext
load ABCD.tab : Z=[B] Y=D W=C;
```

When the `using` option is omitted the data manager is inferred from the filename suffix. However, the filename suffix does not always reflect the format of the data it contains. For example, consider the relational table in the file `ABCD.txt`:

```
A,B,C,D
A1,B1,1,10
A2,B2,2,20
A3,B3,3,30
```

We can specify the `using` option to load from this file into parameter \( D \) and set \( Z \):

```plaintext
load ABCD.txt using=csv : Z=[A,B,C] D ;
```

**Note:** The data managers supported by Pyomo can be listed with the `pyomo help` subcommand

```
pyomo help --data-managers
```

The following data managers are supported in Pyomo 5.1:

```
Pyomo Data Managers

csv
 CSV file interface
dat
 Pyomo data command file interface
json
 JSON file interface
```

(continues on next page)
Interpreting Tabular Data

By default, a table is interpreted as columns of one or more parameters with associated index columns. The `format` option can be used to specify other interpretations of a table:

<table>
<thead>
<tr>
<th>Format</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>array</code></td>
<td>The table is a matrix representation of a two dimensional parameter.</td>
</tr>
<tr>
<td><code>param</code></td>
<td>The data is a simple parameter value.</td>
</tr>
<tr>
<td><code>set</code></td>
<td>Each row is a set element.</td>
</tr>
<tr>
<td><code>set_array</code></td>
<td>The table is a matrix representation of a set of 2-tuples.</td>
</tr>
<tr>
<td><code>transposed_array</code></td>
<td>The table is a transposed matrix representation of a two dimensional parameter.</td>
</tr>
</tbody>
</table>

We have previously illustrated the use of the `set` format value to interpret a relational table as a set of values or tuples. The following examples illustrate the other format values.

A table with a single value can be interpreted as a simple parameter using the `param` format value. Suppose that `Z.tab` contains the following table:

```
1.1
```

The following load command then loads this value into parameter `p`:

```
load Z.tab format=param: p;
```

Sets with 2-tuple data can be represented with a matrix format that denotes set membership. The `set_array` format value interprets a relational table as a matrix that defines a set of 2-tuples where `+` denotes a valid tuple and `−` denotes an invalid tuple. Suppose that `D.tab` contains the following relational table:

```
B A1 A2 A3
1 + − −
```
Then the following load command loads data into set $B$:

```
load D.tab format=set_array: B;
```

This command declares the following 2-tuples: ('A1', 1), ('A2', 2), and ('A3', 3).

Parameters with 2-tuple indices can be interpreted with a matrix format that where rows and columns are different indices. Suppose that $U.tab$ contains the following table:

<table>
<thead>
<tr>
<th>I</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>I2</td>
<td>1.4</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>I3</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>I4</td>
<td>1.6</td>
<td>2.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

Then the following load command loads this value into parameter $U$ with a 2-dimensional index using the `array` format value:

```
load U.tab format=array: A=[X] U;
```

The `transpose_array` format value also interprets the table as a matrix, but it loads the data in a transposed format:

```
load U.tab format=transposed_array: A=[X] U;
```

Note that these format values do not support the initialization of the index data.

## Loading from Spreadsheets and Relational Databases

Many of the options for the `load` command are specific to spreadsheets and relational databases. The `range` option is used to specify the range of cells that are loaded from a spreadsheet. The range of cells represents a table in which the first row of cells defines the column names for the table.

Suppose that file `ABCD.xls` contains the range `ABCD` that is shown in the following figure:

![Spreadsheet Image]

The following command loads this data to initialize parameter $D$ and index $Z$:

```
load ABCD.xls range=ABCD : Z=[A,B,C] Y=D ;
```
Thus, the syntax for loading data from spreadsheets only differs from CSV and ASCII text files by the use of the range option.

When loading from a relational database, the data source specification is a filename or data connection string. Access to a database may be restricted, and thus the specification of username and password options may be required. Alternatively, these options can be specified within a data connection string.

A variety of database interface packages are available within Python. The using option is used to specify the database interface package that will be used to access a database. For example, the pyodbc interface can be used to connect to Excel spreadsheets. The following command loads data from the Excel spreadsheet `ABCD.xls` using the pyodbc interface. The command loads this data to initialize parameter `D` and index `Z`:

```
load ABCD.xls using=pyodbc table=ABCD : Z=[A,B,C] Y=D ;
```

The using option specifies that the pyodbc package will be used to connect with the Excel spreadsheet. The table option specifies that the table `ABCD` is loaded from this spreadsheet. Similarly, the following command specifies a data connection string to specify the ODBC driver explicitly:

```
load "Driver={Microsoft Excel Driver (*.xls)}; Dbq=ABCD.xls;"
 using=pyodbc
 table=ABCD : Z=[A,B,C] Y=D ;
```

ODBC drivers are generally tailored to the type of data source that they work with; this syntax illustrates how the load command can be tailored to the details of the database that a user is working with.

The previous examples specified the table option, which declares the name of a relational table in a database. Many databases support the Structured Query Language (SQL), which can be used to dynamically compose a relational table from other tables in a database. The classic diet problem will be used to illustrate the use of SQL queries to initialize a Pyomo model. In this problem, a customer is faced with the task of minimizing the cost for a meal at a fast food restaurant – they must purchase a sandwich, side, and a drink for the lowest cost. The following is a Pyomo model for this problem:

```
diet1.py
from pyomo.environ import *

infinity = float('inf')
MAX_FOOD_SUPPLY = 20.0 # There is a finite food supply

model = AbstractModel()

#--
model.FOOD = Set()
model.cost = Param(model.FOOD, within=PositiveReals)
model.f_min = Param(model.FOOD, within=NonNegativeReals, default=0.0)
def f_max_validate (model, value, j):
 return model.f_max[j] > model.f_min[j]
model.f_max = Param(model.FOOD, validate=f_max_validate, default=MAX_FOOD_SUPPLY)

model.NUTR = Set()
model.n_min = Param(model.NUTR, within=NonNegativeReals, default=0.0)
model.n_max = Param(model.NUTR, default=infinity)
model.amt = Param(model.NUTR, model.FOOD, within=NonNegativeReals)

#--

def Buy_bounds(model, i):
 return (model.f_min[i], model.f_max[i])

(continues on next page)
model.Buy = Var(model.FOOD, bounds=Buy_bounds, within=NonNegativeIntegers)

--
def Total_Cost_rule(model):
 return sum(model.cost[j] * model.Buy[j] for j in model.FOOD)
model.Total_Cost = Objective(rule=Total_Cost_rule, sense=minimize)

--
def Entree_rule(model):
 entrees = ['Cheeseburger', 'Ham Sandwich', 'Hamburger', 'Fish Sandwich', 'Chicken Sandwich']
 return sum(model.Buy[e] for e in entrees) >= 1
model.Entree = Constraint(rule=Entree_rule)

def Side_rule(model):
 sides = ['Fries', 'Sausage Biscuit']
 return sum(model.Buy[s] for s in sides) >= 1
model.Side = Constraint(rule=Side_rule)

def Drink_rule(model):
 drinks = ['Lowfat Milk', 'Orange Juice']
 return sum(model.Buy[d] for d in drinks) >= 1
model.Drink = Constraint(rule=Drink_rule)

Suppose that the file diet1.sqlite be a SQLite database file that contains the following data in the Food table:

<table>
<thead>
<tr>
<th>FOOD</th>
<th>cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cheeseburger</td>
<td>1.84</td>
</tr>
<tr>
<td>Ham Sandwich</td>
<td>2.19</td>
</tr>
<tr>
<td>Hamburger</td>
<td>1.84</td>
</tr>
<tr>
<td>Fish Sandwich</td>
<td>1.44</td>
</tr>
<tr>
<td>Chicken Sandwich</td>
<td>2.29</td>
</tr>
<tr>
<td>Fries</td>
<td>0.77</td>
</tr>
<tr>
<td>Sausage Biscuit</td>
<td>1.29</td>
</tr>
<tr>
<td>Lowfat Milk</td>
<td>0.60</td>
</tr>
<tr>
<td>Orange Juice</td>
<td>0.72</td>
</tr>
</tbody>
</table>

In addition, the Food table has two additional columns, f_min and f_max, with no data for any row. These columns exist to match the structure for the parameters used in the model.

We can solve the diet1 model using the Python definition in diet1.py and the data from this database. The file diet.sqlite.dat specifies a load command that uses that sqlite3 data manager and embeds a SQL query to retrieve the data:

```python
# File diet.sqlite.dat
load "diet.sqlite"
using=sqlite3
query="SELECT FOOD, cost, f_min, f_max FROM Food"
: FOOD=\[FOOD\] cost f_min f_max ;
```

The PyODBC driver module will pass the SQL query through an Access ODBC connector, extract the data from the diet1.mdb file, and return it to Pyomo. The Pyomo ODBC handler can then convert the data received into the
proper format for solving the model internally. More complex SQL queries are possible, depending on the underlying database and ODBC driver in use. However, the name and ordering of the columns queried are specified in the Pyomo data file; using SQL wildcards (e.g., SELECT *) or column aliasing (e.g., SELECT f AS FOOD) may cause errors in Pyomo’s mapping of relational data to parameters.

The include Command

The include command allows a data command file to execute data commands from another file. For example, the following command file executes data commands from ex1.dat and then ex2.dat:

```
include ex1.dat;
include ex2.dat;
```

Pyomo is sensitive to the order of execution of data commands, since data commands can redefine set and parameter values. The include command respects this data ordering; all data commands in the included file are executed before the remaining data commands in the current file are executed.

The namespace Keyword

The namespace keyword is not a data command, but instead it is used to structure the specification of Pyomo’s data commands. Specifically, a namespace declaration is used to group data commands and to provide a group label. Consider the following data command file:

```
set C := 1 2 3 ;
namespace ns1
{
    set C := 4 5 6 ;
}
namespace ns2
{
    set C := 7 8 9 ;
}
```

This data file defines two namespaces: ns1 and ns2 that initialize a set C. By default, data commands contained within a namespace are ignored during model construction; when no namespaces are specified, the set C has values 1, 2, 3. When namespace ns1 is specified, then the set C values are overridden with the set 4, 5, 6.

7.2.4 Data Portals

Pyomo’s DataPortal class standardizes the process of constructing model instances by managing the process of loading data from different data sources in a uniform manner. A DataPortal object can load data from the following data sources:

- **TAB File**: A text file format that uses whitespace to separate columns of values in each row of a table.
- **CSV File**: A text file format that uses comma or other delimiters to separate columns of values in each row of a table.
- **JSON File**: A popular lightweight data-interchange format that is easily parsed.
- **YAML File**: A human friendly data serialization standard.
• **XML File**: An extensible markup language for documents and data structures. XML files can represent tabular data.

• **Excel File**: A spreadsheet data format that is primarily used by the Microsoft Excel application.

• **Database**: A relational database.

• **DAT File**: A Pyomo data command file.

Note that most of these data formats can express tabular data.

Warning: The `DataPortal` class requires the installation of Python packages to support some of these data formats:

- **YAML File**: `pyyaml`
- **Excel File**: `win32com`, `openpyxl` or `xlrd`

 These packages support different data Excel data formats: the `win32com` package supports `.xls`, `.xlsm` and `.xlsx`, the `openpyxl` package supports `.xlsx` and the `xlrd` package supports `.xls`.

- **Database**: `pyodbc`, `pypyodbc`, `sqlite3` or `pymysql`

 These packages support different database interface APIs: the `pyodbc` and `pypyodbc` packages support the ODBC database API, the `sqlite3` package uses the SQLite C library to directly interface with databases using the DB-API 2.0 specification, and `pymysql` is a pure-Python MySQL client.

`DataPortal` objects can be used to initialize both concrete and abstract Pyomo models. Consider the file `A.tab`, which defines a simple set with a tabular format:

```
A
A1
A2
A3
```

The `load` method is used to load data into a `DataPortal` object. Components in a concrete model can be explicitly initialized with data loaded by a `DataPortal` object:

```python
data = DataPortal()
data.load(filename='A.tab', set="A", format="set")
model = ConcreteModel()
model.A = Set(initialize=data['A'])
```

All data needed to initialize an abstract model must be provided by a `DataPortal` object, and the use of the `DataPortal` object to initialize components is automated for the user:

```python
model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)
```

Note the difference in the execution of the `load` method in these two examples: for concrete models data is loaded by name and the format must be specified, and for abstract models the data is loaded by component, from which the data format can often be inferred.
The `load` method opens the data file, processes it, and loads the data in a format that can be used to construct a model instance. The `load` method can be called multiple times to load data for different sets or parameters, or to override data processed earlier. The `load` method takes a variety of arguments that define how data is loaded:

- `filename`: This option specifies the source data file.
- `format`: This option specifies the how to interpret data within a table. Valid formats are: `set`, `set_array`, `param`, `table`, `array`, and `transposed_array`.
- `set`: This option is either a string or model component that defines a set that will be initialized with this data.
- `param`: This option is either a string or model component that defines a parameter that will be initialized with this data. A list or tuple of strings or model components can be used to define multiple parameters that are initialized.
- `index`: This option is either a string or model component that defines an index set that will be initialized with this data.
- `using`: This option specifies the Python package used to load this data source. This option is used when loading data from databases.
- `select`: This option defines the columns that are selected from the data source. The column order may be changed from the data source, which allows the `DataPortal` object to define
- `namespace`: This option defines the data namespace that will contain this data.

The use of these options is illustrated below.

The `DataPortal` class also provides a simple API for accessing set and parameter data that are loaded from different data sources. The `[]` operator is used to access set and parameter values. Consider the following example, which loads data and prints the value of the `[]` operator:

```python
data = DataPortal()
data.load(filename='A.tab', set="A", format="set")
print(data['A'])  # ['A1', 'A2', 'A3']
data.load(filename='Z.tab', param="z", format="param")
print(data['z'])  # 1.1
data.load(filename='Y.tab', param="y", format="table")
for key in sorted(data['y']):
    print("%s %s" % (key, data['y'][key]))
```

The `DataPortal` class also has several methods for iterating over the data that has been loaded:

- `keys()`: Returns an iterator of the data keys.
- `values()`: Returns an iterator of the data values.
- `items()`: Returns an iterator of (name, value) tuples from the data.

Finally, the `data()` method provides a generic mechanism for accessing the underlying data representation used by `DataPortal` objects.

Loading Structured Data

JSON and YAML files are structured data formats that are well-suited for data serialization. These data formats do not represent data in tabular format, but instead they directly represent set and parameter values with lists and dictionaries:

- **Simple Set**: a list of string or numeric value
- **Indexed Set**: a dictionary that maps an index to a list of string or numeric value
• **Simple Parameter**: a string or numeric value

• **Indexed Parameter**: a dictionary that maps an index to a numeric value

For example, consider the following JSON file:

```json
{
    "A": ["A1", "A2", "A3"],
    "B": [[1, "B1"], [2, "B2"], [3, "B3"]],
    "C": {
        "A1": [1, 2, 3],
        "A3": [10, 20, 30]
    },
    "p": 0.1,
    "q": {
        "A1": 3.3,
        "A2": 3.4,
        "A3": 3.5
    },
    "r": [
        {"index": [1, "B1"], "value": 3.3},
        {"index": [2, "B2"], "value": 3.4},
        {"index": [3, "B3"], "value": 3.5}]
}
```

The data in this file can be used to load the following model:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.json')
```

Note that no set or param option needs to be specified when loading a JSON or YAML file. All of the set and parameter data in the file are loaded by the `DataPortal` object, and only the data needed for model construction is used.

The following YAML file has a similar structure:

```yaml
A: [A1, A2, A3]
B:
- [1, B1]
- [2, B2]
- [3, B3]
C:
  'A1': [1, 2, 3]
  'A3': [10, 20, 30]
q: {A1: 3.3, A2: 3.4, A3: 3.5}
r:
  - index: [1, B1]
    value: 3.3
  - index: [2, B2]
    value: 3.4
  - index: [3, B3]
    value: 3.5
```

The data in this file can be used to load a Pyomo model with the same syntax as a JSON file:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set()
model.B = Set(dimen=2)
model.C = Set(model.A)
model.p = Param()
```

(continues on next page)
model.q = Param(model.A)
model.r = Param(model.B)
data.load(filename='T.yaml')

Loading Tabular Data

Many data sources supported by Pyomo are tabular data formats. Tabular data is numerical or textual data that is organized into one or more simple tables, where data is arranged in a matrix. Each table consists of a matrix of numeric string values, simple strings, and quoted strings. All rows have the same length, all columns have the same length, and the first row typically represents labels for the column data.

The following section describes the tabular data sources supported by Pyomo, and the subsequent sections illustrate ways that data can be loaded from tabular data using TAB files. Subsequent sections describe options for loading data from Excel spreadsheets and relational databases.

Tabular Data

TAB files represent tabular data in an ascii file using whitespace as a delimiter. A TAB file consists of rows of values, where each row has the same length. For example, the file `PP.tab` has the format:

```
A  B  PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5
```

CSV files represent tabular data in a format that is very similar to TAB files. Pyomo assumes that a CSV file consists of rows of values, where each row has the same length. For example, the file `PP.csv` has the format:

```
A,B,PP
A1,B1,4.3
A2,B2,4.4
A3,B3,4.5
```

Excel spreadsheets can express complex data relationships. A `range` is a contiguous, rectangular block of cells in an Excel spreadsheet. Thus, a range in a spreadsheet has the same tabular structure as is a TAB file or a CSV file. For example, consider the file `excel.xls` that has the range `PPtable`:

![PPtable](image)

A relational database is an application that organizes data into one or more tables (or `relations`) with a unique key in each row. Tables both reflect the data in a database as well as the result of queries within a database.

XML files represent tabular using `table` and `row` elements. Each sub-element of a `row` element represents a different column, where each row has the same length. For example, the file `PP.xml` has the format:

```
<table>
  <row>
    <A value="A1"/> <B value="B1"/> <PP value="4.3"/>
  </row>
</table>
```
Loading Set Data

The set option is used specify a Set component that is loaded with data.

Loading a Simple Set

Consider the file A.tab, which defines a simple set:

```
A
A1
A2
A3
```

In the following example, a DataPortal object loads data for a simple set A:

```python
model = AbstractModel()
model.A = Set()
data = DataPortal()
data.load(filename='A.tab', set=model.A)
instance = model.create_instance(data)
```

Loading a Set of Tuples

Consider the file C.tab:

```
A  B
A1 1
A1 2
A1 3
A2 1
A2 2
A2 3
A3 1
A3 2
A3 3
```

In the following example, a DataPortal object loads data for a two-dimensional set C:

```python
model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C)
instance = model.create_instance(data)
```
In this example, the column titles do not directly impact the process of loading data. Column titles can be used to select a subset of columns from a table that is loaded (see below).

Loading a Set Array

Consider the file `D.tab`, which defines an array representation of a two-dimensional set:

<table>
<thead>
<tr>
<th>B</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>-</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
</tbody>
</table>

In the following example, a `DataPortal` object loads data for a two-dimensional set `D`:

```python
model = AbstractModel()
model.D = Set(dimen=2)
data = DataPortal()
data.load(filename='D.tab', set=model.D, format='set_array')
instance = model.create_instance(data)
```

The format option indicates that the set data is declared in an array format.

Loading Parameter Data

The `param` option is used specify a `Param` component that is loaded with data.

Loading a Simple Parameter

The simplest parameter is simply a singleton value. Consider the file `Z.tab`:

| 1.1 |

In the following example, a `DataPortal` object loads data for a simple parameter `z`:

```python
model = AbstractModel()
data = DataPortal()
model.z = Param()
data.load(filename='Z.tab', param=model.z)
instance = model.create_instance(data)
```

Loading an Indexed Parameter

An indexed parameter can be defined by a single column in a table. For example, consider the file `Y.tab`:

<table>
<thead>
<tr>
<th>A</th>
<th>Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.3</td>
</tr>
<tr>
<td>A2</td>
<td>3.4</td>
</tr>
<tr>
<td>A3</td>
<td>3.5</td>
</tr>
</tbody>
</table>

In the following example, a `DataPortal` object loads data for an indexed parameter `y`:
When column names are not used to specify the index and parameter data, then the `DataPortal` object assumes that the rightmost column defines parameter values. In this file, the A column contains the index values, and the Y column contains the parameter values.

Loading Set and Parameter Values

Note that the data for set A is predefined in the previous example. The index set can be loaded with the parameter data using the `index` option. In the following example, a `DataPortal` object loads data for set A and the indexed parameter y:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set()
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y, index=model.A)
instance = model.create_instance(data)
```

An index set with multiple dimensions can also be loaded with an indexed parameter. Consider the file PP.tab:

```
A B PP
A1 B1 4.3
A2 B2 4.4
A3 B3 4.5
```

In the following example, a `DataPortal` object loads data for a tuple set and an indexed parameter:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='PP.tab', param=model.p, index=model.A)
instance = model.create_instance(data)
```

Loading a Parameter with Missing Values

Missing parameter data can be expressed in two ways. First, parameter data can be defined with indices that are a subset of valid indices in the model. The following example loads the indexed parameter y:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3','A4'])
model.y = Param(model.A)
data.load(filename='Y.tab', param=model.y)
instance = model.create_instance(data)
```

The model defines an index set with four values, but only three parameter values are declared in the data file Y.tab.
Parameter data can also be declared with missing values using the period (.) symbol. For example, consider the file S.tab:

<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>PP</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>B1</td>
<td>4.3</td>
</tr>
<tr>
<td>A2</td>
<td>B2</td>
<td>4.4</td>
</tr>
<tr>
<td>A3</td>
<td>B3</td>
<td>4.5</td>
</tr>
</tbody>
</table>

In the following example, a `DataPortal` object loads data for the index set `A` and indexed parameter `y`:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set()
model.s = Param(model.A)
data.load(filename='S.tab', param=model.s, index=model.A)
instance = model.create_instance(data)
```

The period (.) symbol indicates a missing parameter value, but the index set `A` contains the index value for the missing parameter.

Loading Multiple Parameters

Multiple parameters can be initialized at once by specifying a list (or tuple) of component parameters. Consider the file XW.tab:

<table>
<thead>
<tr>
<th>A</th>
<th>X</th>
<th>W</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>3.3</td>
<td>4.3</td>
</tr>
<tr>
<td>A2</td>
<td>3.4</td>
<td>4.4</td>
</tr>
<tr>
<td>A3</td>
<td>3.5</td>
<td>4.5</td>
</tr>
</tbody>
</table>

In the following example, a `DataPortal` object loads data for parameters `x` and `w`:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.x = Param(model.A)
model.w = Param(model.A)
data.load(filename='XW.tab', param=(model.x,model.w))
instance = model.create_instance(data)
```

Selecting Parameter Columns

We have previously noted that the column names do not need to be specified to load set and parameter data. However, the `select` option can be to identify the columns in the table that are used to load parameter data. This option specifies a list (or tuple) of column names that are used, in that order, to form the table that defines the component data.

For example, consider the following load declaration:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set()
model.w = Param(model.A)
data.load(filename='XW.tab', select=('A','W'),
```
param=model.w, index=model.A)
instance = model.create_instance(data)

The columns A and W are selected from the file XW.tab, and a single parameter is defined.

Loading a Parameter Array

Consider the file U.tab, which defines an array representation of a multiply-indexed parameter:

<table>
<thead>
<tr>
<th>I</th>
<th>A1</th>
<th>A2</th>
<th>A3</th>
</tr>
</thead>
<tbody>
<tr>
<td>I1</td>
<td>1.3</td>
<td>2.3</td>
<td>3.3</td>
</tr>
<tr>
<td>I2</td>
<td>1.4</td>
<td>2.4</td>
<td>3.4</td>
</tr>
<tr>
<td>I3</td>
<td>1.5</td>
<td>2.5</td>
<td>3.5</td>
</tr>
<tr>
<td>I4</td>
<td>1.6</td>
<td>2.6</td>
<td>3.6</td>
</tr>
</tbody>
</table>

In the following example, a DataPortal object loads data for a two-dimensional parameter u:

```python
model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.I = Set(initialize=['I1','I2','I3','I4'])
model.u = Param(model.I, model.A)
data.load(filename='U.tab', param=model.u, format='array')
instance = model.create_instance(data)
```

The `format` option indicates that the parameter data is declared in a array format. The `format` option can also indicate that the parameter data should be transposed.

```python
model = AbstractModel()
data = DataPortal()
model.A = Set(initialize=['A1','A2','A3'])
model.I = Set(initialize=['I1','I2','I3','I4'])
model.t = Param(model.A, model.I)
data.load(filename='U.tab', param=model.t, format='transposed_array')
instance = model.create_instance(data)
```

Note that the transposed parameter data changes the index set for the parameter.

Loading from Spreadsheets and Databases

Tabular data can be loaded from spreadsheets and databases using auxiliary Python packages that provide an interface to these data formats. Data can be loaded from Excel spreadsheets using the win32com, xlrd and openpyxl packages. For example, consider the following range of cells, which is named PPtable:

<table>
<thead>
<tr>
<th>PPtable</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
</tr>
<tr>
<td>A1</td>
</tr>
<tr>
<td>A2</td>
</tr>
<tr>
<td>A3</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>B2</td>
</tr>
<tr>
<td>B3</td>
</tr>
<tr>
<td>4.3</td>
</tr>
<tr>
<td>4.4</td>
</tr>
<tr>
<td>4.5</td>
</tr>
</tbody>
</table>

In the following example, a DataPortal object loads the named range PPtable from the file excel.xls:

```python
model = AbstractModel()
data = DataPortal()
data.load('excel.xls', 'PPtable', param=model.u)
instance = model.create_instance(data)
```
model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='excel.xls', range='PPtable',
 param=model.p, index=model.A)
instance = model.create_instance(data)

Note that the range option is required to specify the table of cell data that is loaded from the spreadsheet.

There are a variety of ways that data can be loaded from a relational database. In the simplest case, a table can be specified within a database:

model = AbstractModel()
data = DataPortal()
model.A = Set(dimen=2)
model.p = Param(model.A)
data.load(filename='PP.sqlite', using='sqlite3',
 table='PPtable',
 param=model.p, index=model.A)
instance = model.create_instance(data)

In this example, the interface sqlite3 is used to load data from an SQLite database in the file PP.sqlite. More generally, an SQL query can be specified to dynamically generate a table. For example:

model = AbstractModel()
data = DataPortal()
model.A = Set()
model.p = Param(model.A)
data.load(filename='PP.sqlite', using='sqlite3',
 query="SELECT A,PP FROM PPtable",
 param=model.p, index=model.A)
instance = model.create_instance(data)

Data Namespaces

The DataPortal class supports the concept of a namespace to organize data into named groups that can be enabled or disabled during model construction. Various DataPortal methods have an optional namespace argument that defaults to None:

- data(name=None, namespace=None): Returns the data associated with data in the specified namespace
- []: For a DataPortal object data, the function data['A'] returns data corresponding to A in the default namespace, and data['ns1', 'A'] returns data corresponding to A in namespace ns1.
- namespaces(): Returns an iteratore for the data namespaces.
- keys(namespace=None): Returns an iterator of the data keys in the specified namespace.
- values(namespace=None): Returns and iterator of the data values in the specified namespace.
- items(namespace=None): Returns an iterator of (name, value) tuples in the specified namespace.

By default, data within a namespace are ignored during model construction. However, concrete models can be initialized with data from a specific namespace. Further, abstract models can be initialized with a list of namespaces that define the data used to initialized model components. For example, the following script generates two model instances from an abstract model using data loaded into different namespaces:
model = AbstractModel()
model.C = Set(dimen=2)
data = DataPortal()
data.load(filename='C.tab', set=model.C, namespace='ns1')
data.load(filename='D.tab', set=model.C, namespace='ns2',
format='set_array')
instance1 = model.create_instance(data, namespaces=['ns1'])
instance2 = model.create_instance(data, namespaces=['ns2'])

7.2.5 Storing Data from Pyomo Models

Currently, Pyomo has rather limited capabilities for storing model data into standard Python data types and serialized data formats. However, this capability is under active development.

Storing Model Data in Excel

TODO
More here.

7.3 The pyomo Command

The pyomo command is issued to the DOS prompt or a Unix shell. To see a list of Pyomo command line options, use:

```
pyomo solve --help
```

Note: There are two dashes before help.

In this section we will detail some of the options.

7.3.1 Passing Options to a Solver

To pass arguments to a solver when using the pyomo solve command, appned the Pyomo command line with the argument `--solver-options=` followed by an argument that is a string to be sent to the solver (perhaps with dashes added by Pyomo). So for most MIP solvers, the mip gap can be set using

```
--solver-options= "mipgap=0.01 "
```

Multiple options are separated by a space. Options that do not take an argument should be specified with the equals sign followed by either a space or the end of the string.

For example, to specify that the solver is GLPK, then to specify a mipgap of two percent and the GLPK cuts option, use

```
solver=glpk --solver-options="mipgap=0.02 cuts="
```
If there are multiple “levels” to the keyword, as is the case for some Gurobi and CPLEX options, the tokens are separated by underscore. For example, *mip cuts all* would be specified as *mip_cuts_all*. For another example, to set the solver to be CPLEX, then to set a mip gap of one percent and to specify ‘y’ for the sub-option numerical to the option emphasis use

```bash
--solver=cplex --solver-options="mipgap=0.001 emphasis_numerical=y"
```

See *Sending Options to the Solver* for a discussion of passing options in a script.

7.3.2 Troubleshooting

Many of things that can go wrong are covered by error messages, but sometimes they can be confusing or do not provide enough information. Depending on what the troubles are, there might be ways to get a little additional information.

If there are syntax errors in the model file, for example, it can occasionally be helpful to get error messages directly from the Python interpreter rather than through Pyomo. Suppose the name of the model file is `scuc.py`, then

```bash
cpython scuc.py
```

can sometimes give useful information for fixing syntax errors.

When there are no syntax errors, but there troubles reading the data or generating the information to pass to a solver, then the `--verbose` option provides a trace of the execution of Pyomo. The user should be aware that for some models this option can generate a lot of output.

If there are troubles with solver (i.e., after Pyomo has output “Applying Solver”), it is often helpful to use the option `--stream-solver` that causes the solver output to be displayed rather than trapped. (See `<<TeeTrue>>` for information about getting this output in a script). Advanced users may wish to examine the files that are generated to be passed to a solver. The type of file generated is controlled by the `--solver-io` option and the `--keepfiles` option instructs pyomo to keep the files and output their names. However, the `--symbolic-solver-labels` option should usually also be specified so that meaningful names are used in these files.

When there seem to be troubles expressing the model, it is often useful to embed print commands in the model in places that will yield helpful information. Consider the following snippet:

```python
def ax_constraint_rule(model, i):
    # return the expression for the constraint for i
    print (*"ax_constraint_rule was called for i=", str(i))
    return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]
```

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

The effect will be to output every member of the set `model.I` at the time the constraint named `model.AxbConstraint` is constructed.

7.3.3 Direct Interfaces to Solvers

In many applications, the default solver interface works well. However, in some cases it is useful to specify the interface using the `solver-io` option. For example, if the solver supports a direct Python interface, then the option would be specified on the command line as

```bash
--solver-io=python
```

Here are some of the choices:
• lp: generate a standard linear programming format file with filename extension *.lp
• nlp: generate a file with a standard format that supports linear and nonlinear optimization with filename extension *.nlp
• os: generate an OSiL format XML file.
• python: use the direct Python interface.

Note: Not all solvers support all interfaces.

7.4 BuildAction and BuildCheck

This is a somewhat advanced topic. In some cases, it is desirable to trigger actions to be done as part of the model building process. The BuildAction function provides this capability in a Pyomo model. It takes as arguments optional index sets and a function to perform the action. For example,

```python
model.BuildBpts = BuildAction(model.J, rule=bpts_build)
```
calls the function bpts_build for each member of model.J. The function bpts_build should have the model and a variable for the members of model.J as formal arguments. In this example, the following would be a valid declaration for the function:

```python
def bpts_build(model, j):
```

A full example, which extends the Symbolic Index Sets and Piecewise Linear Expressions examples, is

```python
# abstract2piecebuild.py
# Similar to abstract2piece.py, but the breakpoints are created using a build action
from pyomo.environ import *

model = AbstractModel()
model.I = Set()
model.J = Set()
model.a = Param(model.I, model.J)
model.b = Param(model.I)
model.c = Param(model.J)
model.Topx = Param(default=6.1) # range of x variables
model.PieceCnt = Param(default=100)

# the next line declares a variable indexed by the set J
model.x = Var(model.J, domain=NonNegativeReals, bounds=(0,model.Topx))
model.y = Var(model.J, domain=NonNegativeReals)

# to avoid warnings, we set breakpoints beyond the bounds
# we are using a dictionary so that we can have different
# breakpoints for each index. But we won’t.
model.bpts = {}

def bpts_build(model, j):
    model.bpts[j] = []
    for i in range(model.PieceCnt+2):
```
model.bpts[j].append(float((i*model.Topx)/model.PieceCnt))
The object model.BuildBpts is not referred to again;
the only goal is to trigger the action at build time
model.BuildBpts = BuildAction(model.J, rule=bpts_build)

def f4(model, j, xp):
 # we not need j in this example, but it is passed as the index for the constraint
 return xp**4

model.ComputePieces = Piecewise(model.J, model.y, model.x, pw_pts=model.bpts, pw_→constr_type='EQ', f_rule=f4)

def obj_expression(model):
 return summation(model.c, model.y)

model.OBJ = Objective(rule=obj_expression)

def ax_constraint_rule(model, i):
 # return the expression for the constraint for i
 return sum(model.a[i,j] * model.x[j] for j in model.J) >= model.b[i]

the next line creates one constraint for each member of the set model.I
model.AxbConstraint = Constraint(model.I, rule=ax_constraint_rule)

This example uses the build action to create a model component with breakpoints for a Piecewise Linear Expressions function. The BuildAction is triggered by the assignment to model.BuildBpts. This object is not referenced again, the only goal is to cause the execution of bpts_build, which places data in the model.bpts dictionary. Note that if model.bpts had been a Set, then it could have been created with an initialize argument to the Set declaration. Since it is a special-purpose dictionary to support the Piecewise Linear Expressions functionality in Pyomo, we use a BuildAction.

Another application of BuildAction can be initialization of Pyomo model data from Python data structures, or efficient initialization of Pyomo model data from other Pyomo model data. Consider the Sparse Index Sets example. Rather than using an initialization for each list of sets NodesIn and NodesOut separately using initialize, it is a little more efficient and probably a little clearer, to use a build action.

The full model is:

Isinglebuild.py
from pyomo.environ import *

model = AbstractModel()
model.Nodes = Set()
model.Arcs = Set(dimen=2)
model.NodesOut = Set(model.Nodes, within=model.Nodes, initialize=[])
model.NodesIn = Set(model.Nodes, within=model.Nodes, initialize=[])
def Populate_In_and_Out(model):
 # loop over the arcs and put the end points in the appropriate places
 for (i, j) in model.Arcs:
 model.NodesIn[j].add(i)
 model.NodesOut[i].add(j)

model.In_n_Out = BuildAction(rule = Populate_In_and_Out)
model.Flow = Var(model.Arcs, domain=NonNegativeReals)
model.FlowCost = Param(model.Arcs)
model.Demand = Param(model.Nodes)
model.Supply = Param(model.Nodes)

def Obj_rule(model):
 return summation(model.FlowCost, model.Flow)
model.Obj = Objective(rule=Obj_rule, sense=minimize)

def FlowBalance_rule(model, node):

for this model, the same data file can be used as for Isinglecomm.py in Sparse Index Sets such as the toy data file:

```
# Isinglecomm.dat: data for Isinglecomm.py

set Nodes := CityA CityB CityC ;

set Arcs :=
    CityA CityB
    CityA CityC
    CityC CityB
;

param : FlowCost :=
    CityA CityB 1.4
    CityA CityC 2.7
    CityC CityB 1.6
;

param Demand :=
    CityA 0
    CityB 1
    CityC 1
;

param Supply :=
    CityA 2
    CityB 0
    CityC 0
;
```

Build actions can also be a way to implement data validation, particularly when multiple Sets or Parameters must be analyzed. However, the the BuildCheck component is preferred for this purpose. It executes its rule just like a BuildAction but will terminate the construction of the model instance if the rule returns False.
8.1 Bilevel Programming

pyomo.bilevel provides extensions supporting modeling of multi-level optimization problems.

8.2 Dynamic Optimization with pyomo.DAE

The pyomo.DAE modeling extension [PyomoDAE] allows users to incorporate systems of differential algebraic equations (DAE)s in a Pyomo model. The modeling components in this extension are able to represent ordinary or partial differential equations. The differential equations do not have to be written in a particular format and the components are flexible enough to represent higher-order derivatives or mixed partial derivatives. Pyomo.DAE also includes model transformations which use simultaneous discretization approaches to transform a DAE model into an algebraic model. Finally, pyomo.DAE includes utilities for simulating DAE models and initializing dynamic optimization problems.

8.2.1 Modeling Components

Pyomo.DAE introduces three new modeling components to Pyomo:

<table>
<thead>
<tr>
<th>pyomo.dae.ContinuousSet</th>
<th>Represents a bounded continuous domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.dae.DerivativeVar</td>
<td>Represents derivatives in a model and defines how a Var is differentiated</td>
</tr>
<tr>
<td>pyomo.dae.Integral</td>
<td>Represents an integral over a continuous domain</td>
</tr>
</tbody>
</table>

As will be shown later, differential equations can be declared using using these new modeling components along with
the standard Pyomo Var and Constraint components.

ContinuousSet

This component is used to define continuous bounded domains (for example ‘spatial’ or ‘time’ domains). It is similar to a Pyomo Set component and can be used to index things like variables and constraints. Any number of ContinuousSets can be used to index a component and components can be indexed by both Sets and ContinuousSets in arbitrary order.

In the current implementation, models with ContinuousSet components may not be solved until every ContinuousSet has been discretized. Minimally, a ContinuousSet must be initialized with two numeric values representing the upper and lower bounds of the continuous domain. A user may also specify additional points in the domain to be used as finite element points in the discretization.

```python
class pyomo.dae.ContinuousSet(*args, **kwds)
    Represents a bounded continuous domain

    Minimally, this set must contain two numeric values defining the bounds of a continuous range. Discrete points of interest may be added to the continuous set. A continuous set is one dimensional and may only contain numerical values.

    Parameters
    • initialize (list) – Default discretization points to be included
    • bounds (tuple) – The bounding points for the continuous domain. The bounds will be included as discrete points in the ContinuousSet but will not be used to restrict points added to the ContinuousSet through the ‘initialize’ argument, a data file, or the add() method

    _changed
    This keeps track of whether or not the ContinuousSet was changed during discretization. If the user specifies all of the needed discretization points before the discretization then there is no need to go back through the model and reconstruct things indexed by the ContinuousSet

        Type boolean

    _fe
    This is a sorted list of the finite element points in the ContinuousSet. i.e. this list contains all the discrete points in the ContinuousSet that are not collocation points. Points that are both finite element points and collocation points will be included in this list.

        Type list

    _discretization_info
    This is a dictionary which contains information on the discretization transformation which has been applied to the ContinuousSet.

        Type dict

    construct (values=None)
    Constructs a ContinuousSet component

    get_changed()
    Returns flag indicating if the ContinuousSet was changed during discretization

    Returns “True” if additional points were added to the ContinuousSet while applying a discretization scheme

    Return type boolean
```

98 Chapter 8. Modeling Extensions
get_discretization_info()
Returns a dict with information on the discretization scheme that has been applied to the ContinuousSet.

Returns
Return type dict
get_finite_elements()
Returns the finite element points
If the ContinuousSet has been discretized using a collocation scheme, this method will return a list of the finite element discretization points but not the collocation points within each finite element. If the ContinuousSet has not been discretized or a finite difference discretization was used, this method returns a list of all the discretization points in the ContinuousSet.

Returns
Return type list of floats
get_lower_element_boundary(point)
Returns the first finite element point that is less than or equal to ‘point’

Parameters point (float) –
Returns
Return type float
get_upper_element_boundary(point)
Returns the first finite element point that is greater or equal to ‘point’

Parameters point (float) –
Returns
Return type float
set_changed(newvalue)
Sets the _changed flag to ‘newvalue’

Parameters newvalue (boolean) –

The following code snippet shows examples of declaring a ContinuousSet component on a concrete Pyomo model:

```
Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = ConcreteModel()

Declarative by providing bounds
>>> model.t = ContinuousSet(bounds=(0,5))

Declarative by initializing with desired discretization points
>>> model.x = ContinuousSet(initialize=[0,1,2,5])
```

Note: A ContinuousSet may not be constructed unless at least two numeric points are provided to bound the continuous domain.

The following code snippet shows an example of declaring a ContinuousSet component on an abstract Pyomo model using the example data file.

8.2. Dynamic Optimization with pyomo.DAE
set t := 0 0.5 2.25 3.75 5;

Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

>>> model = AbstractModel()

The ContinuousSet below will be initialized using the points in the data file when a model instance is created.

Note: If a separate data file is used to initialize a ContinuousSet, it is done using the ‘set’ command and not ‘continuousset’

Note: Most valid ways to declare and initialize a Set can be used to declare and initialize a ContinuousSet. See the documentation for Set for additional options.

Warning: Be careful using a ContinuousSet as an implicit index in an expression, i.e. \(\sum (m.v[i] \text{ for } i \text{ in } m.myContinuousSet) \). The expression will be generated using the discretization points contained in the ContinuousSet at the time the expression was constructed and will not be updated if additional points are added to the set during discretization.

Note: ContinuousSet components are always ordered (sorted) therefore the first() and last() Set methods can be used to access the lower and upper boundaries of the ContinuousSet respectively

DerivativeVar

class pyomo.dae.DerivativeVar (sVar, **kwds)

Represents derivatives in a model and defines how a Var is differentiated

The DerivativeVar component is used to declare a derivative of a Var. The constructor accepts a single positional argument which is the Var that’s being differentiated. A Var may only be differentiated with respect to a ContinuousSet that it is indexed by. The indexing sets of a DerivativeVar are identical to those of the Var it is differentiating.

Parameters

- sVar (pyomo.environ.Var) – The variable being differentiated
- wrt (pyomo.dae.ContinuousSet or tuple) – Equivalent to withrespectsito keyword argument. The ContinuousSet that the derivative is being taken with respect to. Higher order derivatives are represented by including the ContinuousSet multiple times in the tuple sent to this keyword. i.e. wrt=(m.t, m.t) would be the second order derivative with respect to m.t

get_continuousset_list ()

Return the a list of ContinuousSet components the derivative is being taken with respect to.
Returns

Return type list

get_derivative_expression()

Returns the current discretization expression for this derivative or creates an access function to its Var the first time this method is called. The expression gets built up as the discretization transformations are sequentially applied to each ContinuousSet in the model.

get_state_var()

Returns

Return type Var

is_fully_discretized()

Check to see if all the ContinuousSets this derivative is taken with respect to have been discretized.

Returns

Return type boolean

set_derivative_expression(expr)

Sets ''expr'', an expression representing the discretization equations linking the DerivativeVar to its state Var.

The code snippet below shows examples of declaring DerivativeVar components on a Pyomo model. In each case, the variable being differentiated is supplied as the only positional argument and the type of derivative is specified using the ‘wrt’ (or the more verbose ‘withrespectto’) keyword argument. Any keyword argument that is valid for a Pyomo Var component may also be specified.

Required imports

```python
>>> from pyomo.environ import *
>>> from pyomo.dae import *

model = ConcreteModel()
model.s = Set(initialize=['a','b'])
model.t = ContinuousSet(bounds=(0,5))
model.l = ContinuousSet(bounds=(-10,10))

model.x = Var(model.t)
model.y = Var(model.s,model.t)
model.z = Var(model.t,model.l)

Declare the first derivative of model.x with respect to model.t

model.dxdt = DerivativeVar(model.x, withrespectto=model.t)

Declare the second derivative of model.y with respect to model.t

Note that this DerivativeVar will be indexed by both model.s and model.t

model.dydt2 = DerivativeVar(model.y, wrt=(model.t,model.t))

Declare the partial derivative of model.z with respect to model.l

Note that this DerivativeVar will be indexed by both model.t and model.l

model.dzdl = DerivativeVar(model.z, wrt=(model.l), initialize=0)

Declare the mixed second order partial derivative of model.z with respect to model.t and model.l and set bounds

model.dz2 = DerivativeVar(model.z, wrt=(model.t, model.l), bounds=(-10, 10))
```
Note: The ‘initialize’ keyword argument will initialize the value of a derivative and is **not** the same as specifying an initial condition. Initial or boundary conditions should be specified using a `Constraint` or `ConstraintList` or by fixing the value of a `Var` at a boundary point.

8.2.2 Declaring Differential Equations

A differential equations is declared as a standard Pyomo `Constraint` and is not required to have any particular form. The following code snippet shows how one might declare an ordinary or partial differential equation.

```python
Required imports
>>> from pyomo.environ import *
>>> from pyomo.dae import *

---
```

```python
model = ConcreteModel()

model.s = Set(initialize=['a', 'b'])
model.t = ContinuousSet(bounds=(0, 5))
model.l = ContinuousSet(bounds=(-10, 10))

model.x = Var(model.s, model.t)
model.y = Var(model.t, model.l)
model.dxdt = DerivativeVar(model.x, wrt=model.t)
model.dydt = DerivativeVar(model.y, wrt=model.t)
model.dydl2 = DerivativeVar(model.y, wrt=(model.l, model.l))

An ordinary differential equation
>>> def _ode_rule(m, s, t):
...     if t == 0:
...         return Constraint.Skip
...     return m.dxdt[s, t] == m.x[s, t]**2

>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

A partial differential equation
>>> def _pde_rule(m, t, l):
...     if t == 0 or l == m.l.first() or l == m.l.last():
...         return Constraint.Skip
...     return m.dydt[t, l] == m.dydl2[t, l]

>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)
```

By default, a `Constraint` declared over a `ContinuousSet` will be applied at every discretization point contained in the set. Often a modeler does not want to enforce a differential equation at one or both boundaries of a continuous domain. This may be addressed explicitly in the `Constraint` declaration using `Constraint.Skip` as shown above. Alternatively, the desired constraints can be deactivated just before the model is sent to a solver as shown below.

```python
>>> def _ode_rule(m, s, t):
...     return m.dxdt[s, t] == m.x[s, t]**2

>>> model.ode = Constraint(model.s, model.t, rule=_ode_rule)

>>> def _pde_rule(m, t, l):
...     return m.dydt[t, l] == m.dydl2[t, l]

>>> model.pde = Constraint(model.t, model.l, rule=_pde_rule)
```

Declare other model components and apply a discretization transformation ...
Deactivate the differential equations at certain boundary points

```python
>>> for con in model.ode[:, model.t.first()]:
...    con.deactivate()

>>> for con in model.pde[0, :]:
...    con.deactivate()

>>> for con in model.pde[:, model.l.first()]:
...    con.deactivate()

>>> for con in model.pde[:, model.l.last()]:
...    con.deactivate()
```

Solve the model

```
...```

Note: If you intend to use the pyomo.DAE Simulator on your model then you must use constraint deactivation instead of constraint skipping in the differential equation rule.

### 8.2.3 Declaring Integrals

**Warning:** The `Integral` component is still under development and considered a prototype. It currently includes only basic functionality for simple integrals. We welcome feedback on the interface and functionality but we do not recommend using it on general models. Instead, integrals should be reformulated as differential equations.

```python
class pyomo.dae.Integral(*args, **kwds)
```

Represents an integral over a continuous domain

The `Integral` component can be used to represent an integral taken over the entire domain of a `ContinuousSet`. Once every `ContinuousSet` in a model has been discretized, any integrals in the model will be converted to algebraic equations using the trapezoid rule. Future development will include more sophisticated numerical integration methods.

**Parameters**

- `*args` – Every indexing set needed to evaluate the integral expression
- `wrt (ContinuousSet)` – The continuous domain over which the integral is being taken
- `rule (function)` – Function returning the expression being integrated

```
def get_continuousset()
 Return the ContinuousSet the integral is being taken over
```

Declaring an `Integral` component is similar to declaring an `Expression` component. A simple example is shown below:

```python
>>> model = ConcreteModel()
>>> model.time = ContinuousSet(bounds=(0, 10))
>>> model.X = Var(model.time)
>>> model.scale = Param(initialize=1E-3)
```
>>> def _intX(m,t):
...     return m.X[t]
>>> model.intX = Integral(model.time,wrt=model.time,rule=_intX)

>>> def _obj(m):
...     return m.scale*m.intX
>>> model.obj = Objective(rule=_obj)

Notice that the positional arguments supplied to the `Integral` declaration must include all indices needed to evaluate the integral expression. The integral expression is defined in a function and supplied to the ‘rule’ keyword argument. Finally, a user must specify a `ContinuousSet` that the integral is being evaluated over. This is done using the ‘wrt’ keyword argument.

**Note:** The `ContinuousSet` specified using the ‘wrt’ keyword argument must be explicitly specified as one of the indexing sets (meaning it must be supplied as a positional argument). This is to ensure consistency in the ordering and dimension of the indexing sets.

After an `Integral` has been declared, it can be used just like a Pyomo `Expression` component and can be included in constraints or the objective function as shown above.

If an `Integral` is specified with multiple positional arguments, i.e. multiple indexing sets, the final component will be indexed by all of those sets except for the `ContinuousSet` that the integral was taken over. In other words, the `ContinuousSet` specified with the ‘wrt’ keyword argument is removed from the indexing sets of the `Integral` even though it must be specified as a positional argument. This should become more clear with the following example showing a double integral over the `ContinuousSet` components `model.t1` and `model.t2`. In addition, the expression is also indexed by the `Set` `model.s`. The mathematical representation and implementation in Pyomo are shown below:

\[
\sum_s \int_{t_2}^{t_1} \int_{t_1}^{t_2} X(t_1, t_2, s) \, dt_1 \, dt_2
\]

```python
>>> model = ConcreteModel()
>>> model.t1 = ContinuousSet(bounds=(0, 10))
>>> model.t2 = ContinuousSet(bounds=(-1, 1))
>>> model.s = Set(initialize=['A', 'B', 'C'])

>>> model.X = Var(model.t1, model.t2, model.s)

>>> def _intX1(m, t1, t2, s):
... return m.X[t1, t2, s]
>>> model.intX1 = Integral(model.t1, model.t2, model.s, wrt=model.t1,
... rule=_intX1)

>>> def _intX2(m, t2, s):
... return m.intX1[t2, s]
>>> model.intX2 = Integral(model.t2, model.s, wrt=model.t2, rule=_intX2)

>>> def _obj(m):
... return sum(m.intX2[k] for k in m.s)
>>> model.obj = Objective(rule=_obj)
```
8.2.4 Discretization Transformations

Before a Pyomo model with DerivativeVar or Integral components can be sent to a solver it must first be sent through a discretization transformation. These transformations approximate any derivatives or integrals in the model by using a numerical method. The numerical methods currently included in pyomo.DAE discretize the continuous domains in the problem and introduce equality constraints which approximate the derivatives and integrals at the discretization points. Two families of discretization schemes have been implemented in pyomo.DAE, Finite Difference and Collocation. These schemes are described in more detail below.

**Note:** The schemes described here are for derivatives only. All integrals will be transformed using the trapezoid rule.

The user must write a Python script in order to use these discretizations, they have not been tested on the pyomo command line. Example scripts are shown below for each of the discretization schemes. The transformations are applied to Pyomo model objects which can be further manipulated before being sent to a solver. Examples of this are also shown below.

**Finite Difference Transformation**

This transformation includes implementations of several finite difference methods. For example, the Backward Difference method (also called Implicit or Backward Euler) has been implemented. The discretization equations for this method are shown below:

Given:
\[
\frac{dx}{dt} = f(t, x), \quad x(t_0) = x_0
\]

discretize \( t \) and \( x \) such that
\[
x(t_0 + kh) = x_k
\]
\[
x_{k+1} = x_k + h \cdot f(t_{k+1}, x_{k+1})
\]
\[
t_{k+1} = t_k + h
\]

where \( h \) is the step size between discretization points or the size of each finite element. These equations are generated automatically as **Constraints** when the backward difference method is applied to a Pyomo model.

There are several discretization options available to a dae.finite_difference transformation which can be specified as keyword arguments to the .apply_to() function of the transformation object. These keywords are summarized below:

Keyword arguments for applying a finite difference transformation:

- **nfe** The desired number of finite element points to be included in the discretization. The default value is 10.
- **wrt** Indicates which ContinuousSet the transformation should be applied to. If this keyword argument is not specified then the same scheme will be applied to every ContinuousSet.
- **scheme** Indicates which finite difference method to apply. Options are ‘BACKWARD’, ‘CENTRAL’, or ‘FORWARD’. The default scheme is the backward difference method.

If the existing number of finite element points in a ContinuousSet is less than the desired number, new discretization points will be added to the set. If a user specifies a number of finite element points which is less than the number of points already included in the ContinuousSet then the transformation will ignore the specified number and proceed with the larger set of points. Discretization points will never be removed from a ContinuousSet during the discretization.

The following code is a Python script applying the backward difference method. The code also shows how to add a constraint to a discretized model.
Discretize model using Backward Difference method

```python
>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model, nfe=20, wrt=model.time, scheme='BACKWARD')
```

Add another constraint to discretized model

```python
>>> def _sum_limit(m):
... return sum(m.x1[i] for i in m.time) <= 50
>>> model.con_sum_limit = Constraint(rule=_sum_limit)
```

Solve discretized model

```python
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)
```

Collocation Transformation

This transformation uses orthogonal collocation to discretize the differential equations in the model. Currently, two types of collocation have been implemented. They both use Lagrange polynomials with either Gauss-Radau roots or Gauss-Legendre roots. For more information on orthogonal collocation and the discretization equations associated with this method please see chapter 10 of the book “Nonlinear Programming: Concepts, Algorithms, and Applications to Chemical Processes” by L.T. Biegler.

The discretization options available to a `dae.collocation` transformation are the same as those described above for the finite difference transformation with different available schemes and the addition of the ‘ncp’ option.

Additional keyword arguments for collocation discretizations:

- `scheme` The desired collocation scheme, either ‘LAGRANGE-RADAU’ or ‘LAGRANGE-LEGENDRE’. The default is ‘LAGRANGE-RADAU’.
- `ncp` The number of collocation points within each finite element. The default value is 3.

**Note:** If the user’s version of Python has access to the package Numpy then any number of collocation points may be specified, otherwise the maximum number is 10.

**Note:** Any points that exist in a `ContinuousSet` before discretization will be used as finite element boundaries and not as collocation points. The locations of the collocation points cannot be specified by the user, they must be generated by the transformation.

The following code is a Python script applying collocation with Lagrange polynomials and Radau roots. The code also shows how to add an objective function to a discretized model.

Discretize model using Radau Collocation

```python
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model, nfe=20, ncp=6, scheme='LAGRANGE-RADAU')
```

Add objective function after model has been discretized

```python
>>> def obj_rule(m):
... return sum((m.x[i]-m.x_ref)**2 for i in m.time)
>>> model.obj = Objective(rule=obj_rule)
```

Solve discretized model

```python
>>> solver = SolverFactory('ipopt')
>>> results = solver.solve(model)
```
Restricting Optimal Control Profiles

When solving an optimal control problem a user may want to restrict the number of degrees of freedom for the control input by forcing, for example, a piecewise constant profile. Pyomo.DAE provides the `reduce_collocation_points` function to address this use-case. This function is used in conjunction with the `dae.collocation` discretization transformation to reduce the number of free collocation points within a finite element for a particular variable.

```python
class pyomo.dae.plugins.colloc.Collocation_Discretization_Transformation

 reduce_collocation_points(instance, var=None, ncp=None, contset=None)
```

This method will add additional constraints to a model to reduce the number of free collocation points (degrees of freedom) for a particular variable.

**Parameters**

- **instance** (*Pyomo model*) – The discretized Pyomo model to add constraints to
- **var** (*pyomo.environ.Var*) – The Pyomo variable for which the degrees of freedom will be reduced
- **ncp** (*int*) – The new number of free collocation points for `var`. Must be less that the number of collocation points used in discretizing the model.
- **contset** (*pyomo.dae.ContinuousSet*) – The `ContinuousSet` that was discretized and for which the `var` will have a reduced number of degrees of freedom

An example of using this function is shown below:

```python
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(model, nfe=10, ncp=6)
>>> model = discretizer.reduce_collocation_points(model,
... var=model.u,
... ncp=1,
... contset=model.time)
```

In the above example, the `reduce_collocation_points` function restricts the variable `model.u` to have only 1 free collocation point per finite element, thereby enforcing a piecewise constant profile. Fig. 8.1 shows the solution profile before and after applying the `reduce_collocation_points` function.

**Applying Multiple Discretization Transformations**

Discretizations can be applied independently to each `ContinuousSet` in a model. This allows the user great flexibility in discretizing their model. For example the same numerical method can be applied with different resolutions:

```python
>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model, wrt=model.t1, nfe=10)
>>> discretizer.apply_to(model, wrt=model.t2, nfe=100)
```

This also allows the user to combine different methods. For example, applying the forward difference method to one `ContinuousSet` and the central finite difference method to another `ContinuousSet`:

```python
>>> discretizer = TransformationFactory('dae.finite_difference')
>>> discretizer.apply_to(model, wrt=model.t1, scheme='FORWARD')
>>> discretizer.apply_to(model, wrt=model.t2, scheme='CENTRAL')
```

In addition, the user may combine finite difference and collocation discretizations. For example:
Fig. 8.1: (left) Profile before applying the `reduce_collocation_points` function (right) Profile after applying the function, restricting `model.u` to have a piecewise constant profile.
If the user would like to apply the same discretization to all ContinuousSet components in a model, just specify the discretization once without the ‘wrt’ keyword argument. This will apply that scheme to all ContinuousSet components in the model that haven’t already been discretized.

**Custom Discretization Schemes**

A transformation framework along with certain utility functions has been created so that advanced users may easily implement custom discretization schemes other than those listed above. The transformation framework consists of the following steps:

1. Specify Discretization Options
2. Discretize the ContinuousSet(s)
3. Update Model Components
4. Add Discretization Equations
5. Return Discretized Model

If a user would like to create a custom finite difference scheme then they only have to worry about step (4) in the framework. The discretization equations for a particular scheme have been isolated from of the rest of the code for implementing the transformation. The function containing these discretization equations can be found at the top of the source code file for the transformation. For example, below is the function for the forward difference method:

```python
def _forward_transform(v, s):
 """
 Applies the Forward Difference formula of order O(h) for first derivatives
 """
 def _fwd_fun(i):
 tmp = sorted(s)
 idx = tmp.index(i)
 return 1/(tmp[idx+1]-tmp[idx])*(v(tmp[idx+1])-v(tmp[idx]))
 return _fwd_fun
```

In this function, ‘v’ represents the continuous variable or function that the method is being applied to. ‘s’ represents the set of discrete points in the continuous domain. In order to implement a custom finite difference method, a user would have to copy the above function and just replace the equation next to the first return statement with their method.

After implementing a custom finite difference method using the above function template, the only other change that must be made is to add the custom method to the ‘all_schemes’ dictionary in the dae.finite_difference class.

In the case of a custom collocation method, changes will have to be made in steps (2) and (4) of the transformation framework. In addition to implementing the discretization equations, the user would also have to ensure that the desired collocation points are added to the ContinuousSet being discretized.

### 8.2.5 Dynamic Model Simulation

The pyomo.dae Simulator class can be used to simulate systems of ODEs and DAEs. It provides an interface to integrators available in other Python packages.
Note: The pyomo.dae Simulator does not include integrators directly. The user must have at least one of the supported Python packages installed in order to use this class.

class pyomo.dae.Simulator (m, package='scipy')
Simulator objects allow a user to simulate a dynamic model formulated using pyomo.dae.

Parameters

- m (Pyomo Model) – The Pyomo model to be simulated should be passed as the first argument
- package (string) – The Python simulator package to use. Currently ‘scipy’ and ‘casadi’ are the only supported packages

get_variable_order (vartype=None)
This function returns the ordered list of differential variable names. The order corresponds to the order being sent to the integrator function. Knowing the order allows users to provide initial conditions for the differential equations using a list or map the profiles returned by the simulate function to the Pyomo variables.

Parameters vartype (string or None) – Optional argument for specifying the type of variables to return the order for. The default behavior is to return the order of the differential variables. ‘time-varying’ will return the order of all the time-dependent algebraic variables identified in the model. ‘algebraic’ will return the order of algebraic variables used in the most recent call to the simulate function. ‘input’ will return the order of the time-dependent algebraic variables that were treated as inputs in the most recent call to the simulate function.

Returns

Return type list

initialize_model ()
This function will initialize the model using the profile obtained from simulating the dynamic model.

simulate (numpoints=None, tstep=None, integrator=None, varying_inputs=None, initcon=None, integrator_options=None)
Simulate the model. Integrator-specific options may be specified as keyword arguments and will be passed on to the integrator.

Parameters

- numpoints (int) – The number of points for the profiles returned by the simulator. Default is 100
- tstep (int or float) – The time step to use in the profiles returned by the simulator. This is not the time step used internally by the integrators. This is an optional parameter that may be specified in place of ‘numpoints’.
- integrator (string) – The string name of the integrator to use for simulation. The default is ‘lsoda’ when using Scipy and ‘idas’ when using CasADi
- varying_inputs (pyomo.environ.Suffix) – A Suffix object containing the piecewise constant profiles to be used for certain time-varying algebraic variables.
- initcon (list of floats) – The initial conditions for the the differential variables. This is an optional argument. If not specified then the simulator will use the current value of the differential variables at the lower bound of the ContinuousSet for the initial condition.
- integrator_options (dict) – Dictionary containing options that should be passed to the integrator. See the documentation for a specific integrator for a list of valid options.
**Returns** The first return value is a 1D array of time points corresponding to the second return value which is a 2D array of the profiles for the simulated differential and algebraic variables.

**Return type** numpy array, numpy array

**Note:** Any keyword options supported by the integrator may be specified as keyword options to the simulate function and will be passed to the integrator.

### Supported Simulator Packages

The Simulator currently includes interfaces to SciPy and CasADi. ODE simulation is supported in both packages however, DAE simulation is only supported by CasADi. A list of available integrators for each package is given below. Please refer to the SciPy and CasADi documentation directly for the most up-to-date information about these packages and for more information about the various integrators and options.

#### SciPy Integrators:

- ‘vode’: Real-valued Variable-coefficient ODE solver, options for non-stiff and stiff systems
- ‘zvode’: Complex-values Variable-coefficient ODE solver, options for non-stiff and stiff systems
- ‘lsoda’: Real-values Variable-coefficient ODE solver, automatic switching of algorithms for non-stiff or stiff systems
- ‘dopri5’: Explicit runge-kutta method of order (4)5 ODE solver
- ‘dop853’: Explicit runge-kutta method of order 8(5,3) ODE solver

#### CasADi Integrators:

- ‘cvodes’: CVodes from the Sundials suite, solver for stiff or non-stiff ODE systems
- ‘idas’: IDAS from the Sundials suite, DAE solver
- ‘collocation’: Fixed-step implicit runge-kutta method, ODE/DAE solver
- ‘rk’: Fixed-step explicit runge-kutta method, ODE solver

### Using the Simulator

We now show how to use the Simulator to simulate the following system of ODEs:

\[
\frac{d\theta}{dt} = \omega \\
\frac{d\omega}{dt} = -b \cdot \omega - c \cdot \sin(\theta)
\]

We begin by formulating the model using pyomo.DAE

```python
>>> m = ConcreteModel()
>>> m.t = ContinuousSet(bounds=(0.0, 10.0))
>>> m.b = Param(initialize=0.25)
>>> m.c = Param(initialize=5.0)
>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)
>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
```

(continues on next page)
Setting the initial conditions

```python
>>> m.omega[0].fix(0.0)
>>> m.theta[0].fix(3.14 - 0.1)
```

```python
>>> def _diffeq1(m, t):
... return
... m.domegadt[t] == -m.b * m.omega[t] - m.c * sin(m.theta[t])

>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
... return
... m.dthetadt[t] == m.omega[t]

>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)
```

Notice that the initial conditions are set by fixing the values of `m.omega` and `m.theta` at t=0 instead of being specified as extra equality constraints. Also notice that the differential equations are specified without using `Constraint.Skip` to skip enforcement at t=0. The Simulator cannot simulate any constraints that contain if-statements in their construction rules.

To simulate the model you must first create a Simulator object. Building this object prepares the Pyomo model for simulation with a particular Python package and performs several checks on the model to ensure compatibility with the Simulator. Be sure to read through the list of limitations at the end of this section to understand the types of models supported by the Simulator.

```python
>>> sim = Simulator(m, package='scipy')
```

After creating a Simulator object, the model can be simulated by calling the simulate function. Please see the API documentation for the `Simulator` for more information about the valid keyword arguments for this function.

```python
>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode')
```

The `simulate` function returns numpy arrays containing time points and the corresponding values for the dynamic variable profiles.

**Simulator Limitations:**

- Differential equations must be first-order and separable
- Model can only contain a single ContinuousSet
- Can’t simulate constraints with if-statements in the construction rules
- Need to provide initial conditions for dynamic states by setting the value or using `fix()`

**Specifying Time-Varying Inputs**

The `Simulator` supports simulation of a system of ODE’s or DAE’s with time-varying parameters or control inputs. Time-varying inputs can be specified using a Pyomo `Suffix`. We currently only support piecewise constant profiles. For more complex inputs defined by a continuous function of time we recommend adding an algebraic variable and constraint to your model.

The profile for a time-varying input should be specified using a Python dictionary where the keys correspond to the switching times and the values correspond to the value of the input at a time point. A `Suffix` is then used to associate this dictionary with the appropriate `Var` or `Param` and pass the information to the `Simulator`. The code snippet below shows an example.
```python
>>> m = ConcreteModel()

>>> m.t = ContinuousSet(bounds=(0.0, 20.0))

Time-varying inputs
>>> m.b = Var(m.t)
>>> m.c = Param(m.t, default=5.0)

>>> m.omega = Var(m.t)
>>> m.theta = Var(m.t)

>>> m.domegadt = DerivativeVar(m.omega, wrt=m.t)
>>> m.dthetadt = DerivativeVar(m.theta, wrt=m.t)

Setting the initial conditions
>>> m.omega[0] = 0.0
>>> m.theta[0] = 3.14 - 0.1

>>> def _diffeq1(m, t):
... return m.domegadt[t] == -m.b[t] * m.omega[t] - m.c[t] * sin(m.theta[t])

>>> m.diffeq1 = Constraint(m.t, rule=_diffeq1)

>>> def _diffeq2(m, t):
... return m.dthetadt[t] == m.omega[t]

>>> m.diffeq2 = Constraint(m.t, rule=_diffeq2)

Specifying the piecewise constant inputs
>>> b_profile = {0: 0.25, 15: 0.025}
>>> c_profile = {0: 5.0, 7: 50}

Declaring a Pyomo Suffix to pass the time-varying inputs to the Simulator
>>> m.var_input = Suffix(direction=Suffix.LOCAL)

>>> m.var_input[m.b] = b_profile
>>> m.var_input[m.c] = c_profile

Simulate the model using scipy
>>> sim = Simulator(m, package='scipy')
>>> tsim, profiles = sim.simulate(numpoints=100,
... integrator='vode',
... varying_inputs=m.var_input)
```

Note: The Simulator does not support multi-indexed inputs (i.e. if `m.b` in the above example was indexed by another set besides `m.t`)

8.2.6 Dynamic Model Initialization

Providing a good initial guess is an important factor in solving dynamic optimization problems. There are several model initialization tools under development in pyomo.DAE to help users initialize their models. These tools will be documented here as they become available.
From Simulation

The Simulator includes a function for initializing discretized dynamic optimization models using the profiles returned from the simulator. An example using this function is shown below:

```
Simulate the model using scipy
>>> sim = Simulator(m, package='scipy')
>>> tsim, profiles = sim.simulate(numpoints=100, integrator='vode',
... varying_inputs=m.var_input)

Discretize the model using Orthogonal Collocation
>>> discretizer = TransformationFactory('dae.collocation')
>>> discretizer.apply_to(m, nfe=10, ncp=3)

Initialize the discretized model using the simulator profiles
>>> sim.initialize_model()
```

Note: A model must be simulated before it can be initialized using this function.

8.3 MPEC

pyomo.mpec supports modeling complementarity conditions and optimization problems with equilibrium constraints.

8.4 Generalized Disjunctive Programming

The Pyomo.GDP modeling extension allows users to include logical disjunctions in their models. These disjunctions are often used to model discrete decisions that have implications on the system behavior. For example, in process design, a disjunction may model the choice between processes A and B. If A is selected, then its associated equations and inequalities will apply; otherwise, if B is selected, then its respective constraints should be enforced. In the general case, if these models contain nonlinear relations, then they are Generalized Disjunctive Programming (GDP) models.

8.4.1 Disjunctions

A disjunction is a set of collections of variables, parameters, and constraints that are linked by an OR (really exclusive or) constraint. The simplest case is a 2-term disjunction:

\[
D_1 \lor D_2
\]

That is, either the constraints in the collection \(D_1\) are enforced, OR the constraints in the collection \(D_2\) are enforced.

In pyomo, we model each collection using a special type of block called a `Disjunct`. Each `Disjunct` is a block that contains an implicitly declared binary variable, “indicator_var” that is 1 when the constraints in that `Disjunct` is enforced and 0 otherwise.
**Declaration**

The following condensed code snippet illustrates a `Disjunct` and a `Disjunction`:

```python
from pyomo.gdp import *
Two conditions
def _d(disjunct, flag):
 model = disjunct.model()
 if flag:
 # x == 0
 disjunct.c = Constraint(expr=model.x == 0)
 else:
 # y == 0
 disjunct.c = Constraint(expr=model.y == 0)
model.d = Disjunct([0, 1], rule=_d)
Define the disjunction
def _c(model):
 return [model.d[0], model.d[1]]
model.c = Disjunction(rule=_c)
```

Model.d is an indexed `Disjunct` that is indexed over an implicit set with members 0 and 1. Since it is an indexed thing, each member is initialized using a call to a rule, passing in the index value (just like any other pyomo component). However, just defining disjuncts is not sufficient to define disjunctions, as pyomo has no way of knowing which disjuncts should be bundled into which disjunctions. To define a disjunction, you use a `Disjunction` component. The disjunction takes either a rule or an expression that returns a list of disjuncts over which it should form the disjunction. This is what `_c` function in the example returns.

**Note:** There is no requirement that disjuncts be indexed and also no requirement that they be defined using a shared rule. It was done in this case to create a condensed example.

**Transformation**

In order to use the solvers currently available, one must convert the disjunctive model to a standard MIP/MINLP model. The easiest way to do that is using the (included) BigM or Convex Hull transformations. From the Pyomo command line, include the option `--transform pyomo.gdp.bigm` or `--transform pyomo.gdp.chull`

**Notes**

Some notes:

- all variables that appear in disjuncts need upper and lower bounds
- for linear models, the BigM transform can estimate reasonably tight M values for you
- for all other models, you will need to provide the M values through a “BigM” Suffix.
- the convex hull reformulation is only valid for linear and convex nonlinear problems. Nonconvex problems are not supported (and are not checked for).

When you declare a `Disjunct`, it (at declaration time) will automatically have a variable “indicator_var” defined and attached to it. After that, it is just a `Var` like any other `Var`.

The following models all work and are equivalent:
### Option 1: Maximal Verbosity, Abstract-like

```python
>>> from pyomo.environ import *
>>> from pyomo.gdp import *

>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> # Two conditions
>>> def _d(disjunct, flag):
... model = disjunct.model()
... if flag:
... # x == 0
... disjunct.c = Constraint(expr=model.x == 0)
... else:
... # y == 0
... disjunct.c = Constraint(expr=model.y == 0)

>>> model.d = Disjunct([0, 1], rule=_d)

>>> # Define the disjunction
>>> def _c(model):
... return [model.d[0], model.d[1]]

>>> model.c = Disjunction(rule=_c)
```

### Option 2: Maximal Verbosity, Concrete-like:

```python
>>> from pyomo.environ import *
>>> from pyomo.gdp import *

>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)

>>> model.c = Disjunction(expr=[model.fix_x, model.fix_y])
```

### Option 3: Implicit disjuncts (disjunction rule returns a list of expressions or a list of lists of expressions)

```python
>>> from pyomo.environ import *
>>> from pyomo.gdp import *

>>> model = ConcreteModel()

>>> model.x = Var()
>>> model.y = Var()

>>> model.c = Disjunction(expr=[model.x == 0, model.y == 0])
```
8.5 Stochastic Programming

To express a stochastic program in PySP, the user specifies both the deterministic base model and the scenario tree model with associated uncertain parameters. Both concrete and abstract model representations are supported.

Given the deterministic and scenario tree models, PySP provides multiple paths for the solution of the corresponding stochastic program. One alternative involves forming the extensive form and invoking an appropriate deterministic solver for the entire problem once. For more complex stochastic programs, we provide a generic implementation of Rockafellar and Wets’ Progressive Hedging algorithm, with additional specializations for approximating mixed-integer stochastic programs as well as other decomposition methods. By leveraging the combination of a high-level programming language (Python) and the embedding of the base deterministic model in that language (Pyomo), we are able to provide completely generic and highly configurable solver implementations.

This section describes PySP: (Pyomo Stochastic Programming), where parameters are allowed to be uncertain.

8.5.1 Overview of Modeling Components and Processes

The sequence of activities is typically the following:

- Create a deterministic model and declare components
- Develop base-case data for the deterministic model
- Test, verify and validate the deterministic model
- Model the stochastic processes
- Develop a way to generate scenarios (in the form of a tree if there are more than two stages)
- Create the data files need to describe the stochastics
- Use PySP to solve stochastic problem

When viewed from the standpoint of file creation, the process is

- Create an abstract model for the deterministic problem in a file called `ReferenceModel.py`
- Specify the stochastics in a file called `ScenarioStructure.dat`
- Specify scenario data

8.5.2 Birge and Louveaux’s Farmer Problem

Birge and Louveaux [BirgeLouveauxBook] make use of the example of a farmer who has 500 acres that can be planted in wheat, corn or sugar beets, at a per acre cost of 150, 230 and 260 (Euros, presumably), respectively. The farmer needs to have at least 200 tons of wheat and 240 tons of corn to use as feed, but if enough is not grown, those crops can be purchased for 238 and 210, respectively. Corn and wheat grown in excess of the feed requirements can be sold for 170 and 150, respectively. A price of 36 per ton is guaranteed for the first 6000 tons grown by any farmer, but beets in excess of that are sold for 10 per ton. The yield is 2.5, 3, and 20 tons per acre for wheat, corn and sugar beets, respectively.
ReferenceModel.py

So far, this is a deterministic problem because we are assuming that we know all the data. The Pyomo model for this problem shown here is in the file ReferenceModel.py in the sub-directory examples/pysp/farmer/models that is distributed with Pyomo.

```python
Pyomo: Python Optimization Modeling Objects
Copyright 2017 National Technology and Engineering Solutions of Sandia, LLC
Under the terms of Contract DE-NA0003525 with National Technology and
Engineering Solutions of Sandia, LLC, the U.S. Government retains certain
rights in this software.
This software is distributed under the 3-clause BSD License.
#
Farmer: rent out version has a scalar root node var
note: this will minimize
#
Imports
#
from pyomo.core import *
#
Model
#
model = AbstractModel()
#
Parameters
#
model.CROPS = Set()
model.TOTAL_ACREAGE = Param(within=PositiveReals)
model.PriceQuota = Param(model.CROPS, within=PositiveReals)
model.SubQuotaSellingPrice = Param(model.CROPS, within=PositiveReals)
def super_quota_selling_price_validate (model, value, i):
 return model.SubQuotaSellingPrice[i] >= model.SuperQuotaSellingPrice[i]
model.SuperQuotaSellingPrice = Param(model.CROPS, validate=super_quota_selling_price_validate)
model.CattleFeedRequirement = Param(model.CROPS, within=NonNegativeReals)
model.PurchasePrice = Param(model.CROPS, within=PositiveReals)
model.PlantingCostPerAcre = Param(model.CROPS, within=PositiveReals)
model.Yield = Param(model.CROPS, within=NonNegativeReals)
#
Variables
```

(continues on next page)
model.DevotedAcreage = Var(model.CROPS, bounds=(0.0, model.TOTAL_ACREAGE))
model.QuantitySubQuotaSold = Var(model.CROPS, bounds=(0.0, None))
model.QuantitySuperQuotaSold = Var(model.CROPS, bounds=(0.0, None))
model.QuantityPurchased = Var(model.CROPS, bounds=(0.0, None))

# Constraints

def ConstrainTotalAcreage_rule(model):
    return summation(model.DevotedAcreage) <= model.TOTAL_ACREAGE
model.ConstrainTotalAcreage = Constraint(rule=ConstrainTotalAcreage_rule)

def EnforceCattleFeedRequirement_rule(model, i):
model.EnforceCattleFeedRequirement = Constraint(model.CROPS, rule=EnforceCattleFeedRequirement_rule)

def LimitAmountSold_rule(model, i):
    return model.QuantitySubQuotaSold[i] + model.QuantitySuperQuotaSold[i] - (model.Yield[i] * model.DevotedAcreage[i]) <= 0.0
model.LimitAmountSold = Constraint(model.CROPS, rule=LimitAmountSold_rule)

def EnforceQuotas_rule(model, i):
    return (0.0, model.QuantitySubQuotaSold[i], model.PriceQuota[i])
model.EnforceQuotas = Constraint(model.CROPS, rule=EnforceQuotas_rule)

# Stage-specific cost computations

def ComputeFirstStageCost_rule(model):
    return summation(model.PlantingCostPerAcre, model.DevotedAcreage)
model.FirstStageCost = Expression(rule=ComputeFirstStageCost_rule)

def ComputeSecondStageCost_rule(model):
    return expr
model.SecondStageCost = Expression(rule=ComputeSecondStageCost_rule)

# PySP Auto-generated Objective

(continues on next page)
Example Data

The data introduced here are in the file AverageScenario.dat in the sub-directory examples/pysp/farmer/scenariodata that is distributed with Pyomo. These data are given for illustration. The file ReferenceModel.dat is not required by PySP.

Any of these data could be modeled as uncertain, but we will consider only the possibility that the yield per acre could be higher or lower than expected. Assume that there is a probability of 1/3 that the yields will be the average values that were given (i.e., wheat 2.5; corn 3; and beets 20). Assume that there is a 1/3 probability that they will be lower (2, 2.4, 16) and 1/3 probability they will be higher (3, 3.6, 24). We refer to each full set of data as a \textit{scenario} and collectively we call them a \textit{scenario tree}. In this case the scenario tree is very simple: there is a root node and three leaf nodes: one corresponding to each scenario. The acreage-to-plant decisions are root node decisions because they must be made without knowing what the yield will be. The other variables are so-called \textit{second stage} decisions, because they will depend on which scenario is realized.

ScenarioStructure.dat

PySP requires that users describe the scenario tree using specific constructs in a file named ScenarioStructure.dat; for the farmer problem, this file can be found in the pyomo sub-directory examples/pysp/farmer/scenariodata that is distributed with Pyomo.
# IMPORTANT - THE STAGES ARE ASSUMED TO BE IN TIME-ORDER.

```plaintext
set Stages := FirstStage SecondStage ;

set Nodes := RootNode
 BelowAverageNode
 AverageNode
 AboveAverageNode ;

param NodeStage := RootNode FirstStage
 BelowAverageNode SecondStage
 AverageNode SecondStage
 AboveAverageNode SecondStage ;

set Children[RootNode] := BelowAverageNode
 AverageNode
 AboveAverageNode ;

param ConditionalProbability := RootNode 1.0
 BelowAverageNode 0.33333333
 AverageNode 0.33333334
 AboveAverageNode 0.33333333 ;

set Scenarios := BelowAverageScenario
 AverageScenario
 AboveAverageScenario ;

param ScenarioLeafNode :=
 BelowAverageScenario BelowAverageNode
 AverageScenario AverageNode
 AboveAverageScenario AboveAverageNode ;

set StageVariables[FirstStage] := DevotedAcreage[*];

set StageVariables[SecondStage] := QuantitySubQuotaSold[*]
 QuantitySuperQuotaSold[*]
 QuantityPurchased[*];

param StageCost := FirstStage FirstStageCost
 SecondStage SecondStageCost ;
```

This data file is verbose and somewhat redundant, but in most applications it is generated by software rather than by a person, so this is not an issue. Generally, the left-most part of each expression (e.g. "set Stages :=") is required and uses reserved words (e.g., Stages) and the other names are supplied by the user (e.g., "FirstStage" could be any name). Every assignment is terminated with a semi-colon. We will now consider the assignments in this file one at a time.

The first assignments provides names for the stages and the words “set Stages” are required, as are the := symbols. Any names can be used. In this example, we used “FirstStage” and “SecondStage” but we could have used “EtapPrimero” and “ZweiteEtage” if we had wanted to. Whatever names are given here will continue to be used to refer to the stages in the rest of the file. The order of the names is important. A simple way to think of it is that generally, the names must be in time order (technically, they need to be in order of information discovery, but that is usually time-order). Stages refers to decision stages, which may, or may not, correspond directly with time stages. In the farmer example, decisions about how much to plant are made in the first stage and “decisions” (which are pretty obvious, but which are decision variables nonetheless) about how much to sell at each price and how much needs to be bought are second stage decisions because they are made after the yield is known.
Node names are constructed next. The words “set Nodes” are required, but any names may be assigned to the nodes. In two stage stochastic problems there is a root node, which we chose to name “RootNode” and then there is a node for each scenario.

```
set Nodes := RootNode
 BelowAverageNode
 AverageNode
 AboveAverageNode ;
```

Nodes are associated with time stages with an assignment beginning with the required words “param Nodestage.” The assignments must make use of previously defined node and stage names. Every node must be assigned a stage.

```
param NodeStage := RootNode FirstStage
 BelowAverageNode SecondStage
 AverageNode SecondStage
 AboveAverageNode SecondStage ;
```

The structure of the scenario tree is defined using assignment of children to each node that has them. Since this is a two stage problem, only the root node has children. The words “param Children” are required for every node that has children and the name of the node is in square brackets before the colon-equals assignment symbols. A list of children is assigned.

```
set Children[RootNode] := BelowAverageNode
 AverageNode
 AboveAverageNode ;
```

The probability for each node, conditional on observing the parent node is given in an assignment that begins with the required words “param ConditionalProbability.” The root node always has a conditional probability of 1, but it must always be given anyway. In this example, the second stage nodes are equally likely.

```
param ConditionalProbability := RootNode 1.0
 BelowAverageNode 0.33333333
 AverageNode 0.33333334
 AboveAverageNode 0.33333333 ;
```

Scenario names are given in an assignment that begins with the required words “set Scenarios” and provides a list of the names of the scenarios. Any names may be given. In many applications they are given unimaginative names generated by software such as “Scen1” and the like. In this example, there are three scenarios and the names reflect the relative values of the yields.

```
set Scenarios := BelowAverageScenario
 AverageScenario
 AboveAverageScenario ;
```

Leaf nodes, which are nodes with no children, are associated with scenarios. This assignment must be one-to-one and it is initiated with the words “param ScenarioLeafNode” followed by the colon-equals assignment characters.

```
param ScenarioLeafNode :=
 BelowAverageScenario BelowAverageNode
 AverageScenario AverageNode
 AboveAverageScenario AboveAverageNode ;
```

Variables are associated with stages using an assignment that begins with the required words “set StageVariables” and the name of a stage in square brackets followed by the colon-equals assignment characters. Variable names that have been defined in the file ReferenceModel.py can be assigned to stages. Any variables that are not assigned are assumed
to be in the last stage. Variable indexes can be given explicitly and/or wildcards can be used. Note that the variable names appear without the prefix “model.” In the farmer example, DevotedAcreage is the only first stage variable.

```python
set StageVariables[FirstStage] := DevotedAcreage[*] ;
set StageVariables[SecondStage] := QuantitySubQuotaSold[*]
 QuantitySuperQuotaSold[*]
 QuantityPurchased[*] ;
```

**Note:** Variable names appear without the prefix “model.”

**Note:** Wildcards can be used, but fully general Python slicing is not supported.

For reporting purposes, it is useful to define auxiliary variables in `ReferenceModel.py` that will be assigned the cost associated with each stage. This variables do not impact algorithms, but the values are output by some software during execution as well as upon completion. The names of the variables are assigned to stages using the “param `StageCost`” assignment. The stages are previously defined in `ScenarioStructure.dat` and the variables are previously defined in `ReferenceModel.py`.

```python
param StageCost := FirstStage FirstStageCost
 SecondStage SecondStageCost ;
```

### Scenario data specification

So far, we have given a model in the file named `ReferenceModel.py`, a set of deterministic data in the file named `ReferenceModel.py`, and a description of the stochastics in the file named `ScenarioStructure.dat`. All that remains is to give the data for each scenario. There are two ways to do that in PySP: scenario-based and node-based. The default is scenario-based so we will describe that first.

For scenario-based data, the full data for each scenario is given in a .dat file with the root name that is the name of the scenario. So, for example, the file named `AverageScenario.dat` must contain all the data for the model for the scenario named “AverageScenario.” It turns out that this file can be created by simply copying the file `ReferenceModel.dat` as shown above because it contains a full set of data for the “AverageScenario” scenario. The files `BelowAverageScenario.dat` and `AboveAverageScenario.dat` will differ from this file and from each other only in their last line, where the yield is specified. These three files are distributed with Pyomo and are in the pyomo sub-directory `examples/pysp/farmer/scenariodata` along with `ScenarioStructure.dat` and `ReferenceModel.dat`.

Scenario-based data wastes resources by specifying the same thing over and over again. In many cases, that does not matter and it is convenient to have full scenario data files available (for one thing, the scenarios can easily be run independently using the `pyomo` command). However, in many other settings, it is better to use a node-based specification where the data that is unique to each node is specified in a .dat file with a root name that matches the node name. In the farmer example, the file `RootNode.dat` will be the same as `ReferenceModel.dat` except that it will lack the last line that specifies the yield. The files `BelowAverageNode.dat`, `AverageNode.dat`, and `AboveAverageNode.dat` will contain only one line each to specify the yield. If node-based data is to be used, then the `ScenarioStructure.dat` file must contain the following line:

```python
param ScenarioBasedData := False ;
```

An entire set of files for node-based data for the farmer problem are distributed with Pyomo in the sub-directory `examples/pysp/farmer/nodedata`. 

### 8.5. Stochastic Programming
8.5.3 Finding Solutions for Stochastic Models

PySP provides a variety of tools for finding solutions to stochastic programs.

runef

The runef command puts together the so-called extensive form version of the model. It creates a large model that has constraints to ensure that variables at a node have the same value. For example, in the farmer problem, all of the DevotedAcres variables must have the same value regardless of which scenario is ultimately realized. The objective can be the expected value of the objective function, or the CVaR, or a weighted combination of the two. Expected value is the default. A full set of options for runef can be obtained using the command:

```
runef --help
```

The pyomo distribution contains the files need to run the farmer example in the sub-directories to the sub-directory examples/pysp/farmer so if this is the current directory and if CPLEX is installed, the following command will cause formation of the EF and its solution using CPLEX.

```
runef -m models -i nodedata --solver=cplex --solve
```

The option -m models has one dash and is short-hand for the option --model-directory=models and note that the full option uses two dashes. The -i is equivalent to --instance-directory= in the same fashion. The default solver is CPLEX, so the solver option is not really needed. With the --solve option, runef would simply write an .lp data file that could be passed to a solver.

runph

The runph command executes an implementation of Progressive Hedging (PH) that is intended to support scripting and extension.

The pyomo distribution contains the files need to run the farmer example in the sub-directories to the sub-directory examples/pysp/farmer so if this is the current directory and if CPLEX is installed, the following command will cause PH to execute using the default sub-problem solver, which is CPLEX.

```
runph -m models -i nodedata
```

The option -m models has one dash and is short-hand for the option --model-directory=models and note that the full option uses two dashes. The -i is equivalent to --instance-directory= in the same fashion.

After about 33 iterations, the algorithm will achieve the default level of convergence and terminate. A lot of output is generated and among the output is the following solution information:

```
Variable=DevotedAcreage
 Index: [CORN] (Scenarios: BelowAverageScenario AverageScenario AboveAverageScenario)
 Values: 79.9844 80.0000 79.9768 Max-Min= 0.0232 Avg= 79.9871
 Index: [SUGAR_BEETS] (Scenarios: BelowAverageScenario AverageScenario AboveAverageScenario)
 Values: 249.9848 249.9770 250.0000 Max-Min= 0.0230 Avg= 249.9873
 Index: [WHEAT] (Scenarios: BelowAverageScenario AverageScenario AboveAverageScenario)
 Values: 170.0308 170.0230 170.0232 Max-Min= 0.0078 Avg= 170.0256
```
Cost Variable=FirstStageCost
   Tree Node=RootNode   (Scenarios: BelowAverageScenario → AverageScenario → AboveAverageScenario)
   Values: 108897.0836 108897.4725 108898.1476 Max-Min= 1.0640 →
   → Avg= 108897.5679

For problems with no, or few, integer variables, the default level of convergence leaves root-node variables almost converged. Since the acreage to be planted cannot depend on the scenario that will be realized in the future, the average, which is labeled “Avg” in this output, would be used. A farmer would probably interpret acreages of 79.9871, 249.9873, and 170.0256 to be 80, 250, and 170. In real-world applications, PH is embedded in scripts that produce output in a format desired by a decision maker.

But in real-world applications, the default settings for PH seldom work well enough. In addition to post-processing the output, a number of parameters need to be adjusted and sometimes scripting to extend or augment the algorithm is needed to improve convergence rates. A full set of options can be obtained with the command:

```bash
runph --help
```

Note that there are two dashes before help.

By default, PH uses quadratic objective functions after iteration zero; in some settings it may be desirable to linearize the quadratic terms. This is required to use a solver such as glpk for MIPs because it does not support quadratic MIPs. The directive `--linearize-nonbinary-penalty-terms=n` causes linearization of the penalty terms using n pieces. For example, to use glpk on the farmer, assuming glpk is installed and the command is given when the current directory is the examples/pysp/farmer, the following command will use default settings for most parameters and four pieces to approximate quadratic terms in sub-problems:

```bash
runph -i nodedata -m models --solver=glpk --linearize-nonbinary-penalty-terms=4
```

Use of the `linearize-nonbinary-penalty-terms` option requires that all variables not in the final stage have bounds.

**Final Solution**

At each iteration, PH computes an average for each variable over the nodes of the scenario tree. We refer to this as X-bar. For many problems, particularly those with integer restrictions, X-bar might not be feasible for every scenario unless PH happens to be fully converged (in the primal variables). Consequently, the software computes a solution system X-hat that is more likely to be feasible for every scenario and will be equivalent to X-bar under full convergence. This solution is reported upon completion of PH and its expected value is report if it is feasible for all scenarios.

Methods for computing X-hat are controlled by the `--xhat-method` command-line option. For example

```bash
--xhat-method=closest-scenario
```

causes X-hat to be set to the scenario that is closest to X-bar (in a z-score sense). Other options, such as voting and rounding, assign values of X-bar to X-hat except for binary and general integer variables, where the values are set by probability weighted voting by scenarios and rounding from X-bar, respectively.

**Solution Output Control**

To get the full solution, including leaf node solution values, use the `runph --output-scenario-tree-solution` option.
In both runph and runef the solution can be written in csv format using the --solution-writer=pyomo.
pysp.plugins.csvsolutionwriter option.

### 8.5.4 Summary of PySP File Names

PySP scripts such as runef and runph require files that specify the model and data using files with specific names. All files can be in the current directory, but typically, the file ReferenceModel.py is in a directory that is specified using --model-directory= option (the short version of this option is -i) and the data files are in a directory specified in the --instance-directory= option (the short version of this option is -m).

**Note:** A file name other than ReferenceModel.py can be used if the file name is given in addition to the directory name as an argument to the --instance-directory option. For example, on a Windows machine --instance-directory=models\MyModel.py would specify the file MyModel.py in the local directory models.

- **ReferenceModel.py:** A full Pyomo model for a single scenario. There should be no scenario indexes in this model because they are implicit.
- **ScenarioStructure.dat:** Specifies the nature of the stochastics. It also specifies whether the rest of the data is node-based or scenario-based. It is scenario-based unless ScenarioStructure.dat contains the line
  ```plaintext
def ScenarioBasedData := False;
```

If scenario-based, then there is a data file for each scenario that specifies a full set of data for the scenario. The name of the file is the name of the scenario with .dat appended. The names of the scenarios are given in the ScenarioStructure.dat file.

If node-based, then there is a file with data for each node that specifies only that data that is unique for the node. The name of the file is the name of the node with .dat appended. The names of the nodes are given in the ScenarioStructure.dat file.

### 8.5.5 Solving Sub-problems in Parallel and/or Remotely

The Python package called Pyro provides capabilities that are used to enable PH to make use of multiple solver processes for sub-problems and allows both runef and runph to make use remote solvers. We will focus on PH in our discussion here.

There are two solver management systems available for runph, one is based on a pyro_mip_server and the other is based on a phsolverserver. Regardless of which is used, a name server and a dispatch server must be running and accessible to the runph process. The name server is launched using the command pyomo_ns and then the dispatch server is launched with dispatch_srvr. Note that both commands contain an underscore. Both programs keep running until terminated by an external signal, so it is common to pipe their output to a file.

Solvers are controlled by solver servers. The pyro mip solver server is launched with the command pyro_mip_server. This command may be repeated to launch as many solvers as are desired. The runph then needs a --solver-manager=pyro option to signal that runph should not launch its own solver, but should send subproblems to be dispatched to parallel solvers. To summarize the commands:

- **Once:** pyomo_ns
- **Once:** dispatch_srvr
- **Multiple times:** pyro_mip_server
• **Once**: runph ... --solver-manager=pyro ...

**Note:** The `runph` option `--shutdown-pyro` will cause a shutdown signal to be sent to `pyomo_ns`, `dispatch_srvr` and all `pyro_mip_server` programs upon termination of `runph`.

Instead of using `pyro_mip_server`, one can use `phsolverserver` in its place. You can get a list of arguments using `pyrosolverserver --help`, which does not launch a solver server (it just displays help and terminates). If you use the `phsolverserver`, then use `--solver-manager=phpyro` as an argument to `runph` rather than `--solver-manager=pyro`.

**Warning:** Unlike the normal `pyro_mip_server`, there must be one `phsolverserver` for each subproblem. One can use fewer `phsolverservers` than there are scenarios by adding the command-line option `--phpyro-required-workers=X`. This will partition the jobs among the available workers.

### 8.5.6 Generating SMPS Input Files From PySP Models

This document explains how to convert a PySP model into a set of files representing the SMPS format for stochastic linear programs. Conversion can be performed through the command line by invoking the SMPS converter using the command `python -m pyomo.pysp.convert.smps`. This command is available starting with Pyomo version 5.1. Prior to version 5.1, the same functionality was available via the command `pysp2smps` (starting at Pyomo version 4.2).

SMPS is a standard for expressing stochastic mathematical programs that is based on the ancient MPS format for linear programs, which is matrix-based. Modern algebraic modeling languages such as Pyomo offer a lot of flexibility so it is a challenge to take models expressed in Pyomo/PySP and force them into SMPS format. The conversions can be inefficient and error prone because Pyomo allows flexible expressions and model construction so the resulting matrix may not be the same for each set of input data. We provide tools for conversion to SMPS because some researchers have tools that read SMPS and exploit its limitations on problem structure; however, the user should be aware that the conversion is not always possible.

Currently, these routines only support two-stage stochastic programs. Support for models with more than two time stages will be considered in the future as this tool matures.

**Additional Requirements for SMPS Conversion**

To enable proper conversion of a PySP model to a set of SMPS files, the following additional requirements must be met:

1. The reference Pyomo model must include annotations that identify stochastic data locations in the second-stage problem.
2. All model variables must be declared in the `ScenarioStructure.dat` file.
3. The set of constraints and variables, and the overall sparsity structure of the objective and constraint matrix must not change across scenarios.

The bulk of this section discusses in-depth the annotations mentioned in the first point. The second point may come as a surprise to users that are not aware of the ability to *not* declare variables in the `ScenarioStructure.dat` file. Indeed, for most of the code in PySP, it is only critical that the variables for which non-anticipativity must be enforced need to be declared. That is, for a two-stage stochastic program, all second-stage variables can be left out of the `ScenarioStructure.dat` file when using commands such as `runef` and `runph`. However, conversion to SMPS format requires all variables to be properly assigned a decision stage by the user.
**Note:** Variables can be declared as *primary* by assigning them to a stage using the `StageVariables` assignment, or declared as *auxiliary* variables, which are assigned to a stage using `StageDerivedVariables` assignment. For algorithms such as PH, the distinction is meaningful and those variables that are fully determined by primary variables and the data should generally be assigned to `StageDerivedVariables` for their stage.

The third point may also come as a surprise, but the ability to handle a non-uniform problem structure in most PySP tools falls directly from the fact that the non-anticipativity conditions are all that is required in many cases. However, the conversion to SMPS format is based on a matrix representation of the problem where the stochastic coefficients are provided as a set of sparse matrix coordinates. This subsequently requires that the row and column dimensions as well as the sparsity structure of the problem does not change across scenarios.

### Annotating Models for SMPS File Generation

Annotations are necessary for alerting the SMPS conversion routines of the locations of data that needs to be updated when changing from one scenario to another. Knowing these sparse locations allows decomposition algorithms to employ efficient methods for solving a stochastic program. In order to use the SMPS conversion tool, at least one of the following annotations must be declared on the reference Pyomo model:

- **PySP_StochasticRHSAnnotation**: indicates the existence of stochastic constraint right-hand-sides (or bounds) in second-stage constraints
- **PySP_StochasticMatrixAnnotation**: indicates the existence of stochastic variable coefficients in second-stage constraints
- **PySP_StochasticObjectiveAnnotation**: indicates the existence stochastic cost coefficients in the second-stage cost function

These will be discussed in further detail in the remaining sections. The following code snippet demonstrates how to import these annotations and declare them on a model.

```python
from pyomo.pysp.annotations import *
model.stoch_rhs = StochasticConstraintBoundsAnnotation()
model.stoch_matrix = StochasticConstraintBodyAnnotation()
model.stoch_objective = StochasticObjectiveAnnotation()
```

Populating these annotations with entries is optional, and simply declaring them on the reference Pyomo model will alert the SMPS conversion routines that all coefficients appearing on the second-stage model should be assumed stochastic. That is, adding the lines in the previous code snippet alone implies that: (i) all second-stage constraints have stochastic bounds, (ii) all first- and second-stage variables appearing in second-stage constraints have stochastic coefficients, and (iii) all first- and second-stage variables appearing in the objective have stochastic coefficients.

PySP can attempt to determine the *stage*-ness of a constraint by examining the set of variables that appear in the constraint expression. E.g., a first-stage constraint is characterized as having only first-stage variables appearing in its expression. A second-stage constraint has at least one second-stage variable appearing in its expression. The stage of a variable is declared in the scenario tree provided to PySP. This method of constraint stage classification is not perfect. That is, one can very easily define a model with a constraint that uses only first-stage variables in an expression involving stochastic data. This constraint would be incorrectly identified as first-stage by the method above, even though the existence of stochastic data necessarily implies it is second-stage. To deal with cases such as this, an additional annotation is made available that is named **PySP_ConstraintStageAnnotation**. This annotation will be discussed further in a later section.

It is often the case that relatively few coefficients on a stochastic program change across scenarios. In these situations, adding explicit declarations within these annotations will allow for a more sparse representation of the problem and, consequently, more efficient solution by particular decomposition methods. Adding declarations to these annotations is performed by calling the `declare` method, passing some component as the initial argument. Any remaining
argument requirements for this method are specific to each annotation. Valid types for the component argument typically include:

- **Constraint**: includes single constraint objects as well as constraint containers
- **Objective**: includes single objective objects as well as objective containers
- **Block**: includes Pyomo models as well as single block objects and block containers

Any remaining details for adding declarations to the annotations mentioned thus far will be discussed in later sections. The remainder of this section discusses the semantics of these declarations based on the type for the component argument.

When the `declare` method is called with a component such as an indexed `Constraint` or a `Block` (model), the SMPS conversion routines will interpret this as meaning all constraints found within that indexed `Constraint` or on that `Block` (that have not been deactivated) should be considered. As an example, we consider the following partially declared concrete Pyomo model:

```python
model = ConcreteModel()

data that is initialized on a per-scenario basis
#p = ...
#q = ...

variables declared as second-stage on the
PySP scenario tree
model.z = Var()
model.y = Var()

indexed constraint
model.r_index = Set(initialize=[3, 6, 9])
def r_rule(model, i):
 return p + i <= 1 * model.z + model.y * 5 <= 10 + q + i
model.r = Constraint(model.r_index, rule=r_rule)

singleton constraint
model.c = Constraint(expr= p * model.z >= 1)

a sub-block with a singleton constraint
model.b = Block()
model.b.c = Constraint(expr= q * model.y >= 1)
```

Here the local Python variables `p` and `q` serve as placeholders for data that changes with each scenario.

The following are equivalent annotations of the model, each declaring all of the constraints shown above as having stochastic right-hand-side data:

- **Implicit form**
  ```python
 model.stoch_rhs = StochasticConstraintBoundsAnnotation()
  ```

- **Implicit form for Block (model) assignment**
  ```python
 model.stoch_rhs = StochasticConstraintBoundsAnnotation()
 model.stoch_rhs.declare(model)
  ```

- **Explicit form for singleton constraint with implicit form for indexed constraint and sub-block**
  ```python
 model.stoch_rhs = StochasticConstraintBoundsAnnotation()
 model.stoch_rhs.declare(model.r)
  ```

(continues on next page)
• Explicit form for singleton constraints at the model and sub-block level with implicit form for indexed constraint

```py
model.stoch_rhs.declare(model.c)
model.stoch_rhs.declare(model.b)
```

• Fully explicit form for singleton constraints as well as all indices of indexed constraint

```py
model.stoch_rhs = StochasticConstraintBoundsAnnotation()
model.stoch_rhs.declare(model.r[3])
model.stoch_rhs.declare(model.r[6])
model.stoch_rhs.declare(model.r[9])
model.stoch_rhs.declare(model.c)
model.stoch_rhs.declare(model.b.c)
```

Note that the equivalence of the first three bullet forms to the last two bullet forms relies on the following conditions being met: (1) `model.z` and `model.y` are declared on the second stage of the PySP scenario tree and (2) at least one of these second-stage variables appears in each of the constraint expressions above. Together, these two conditions cause each of the constraints above to be categorized as second-stage; thus, causing them to be considered by the SMPS conversion routines in the implicit declarations used by the first three bullet forms.

**Warning:** Pyomo simplifies product expressions such that terms with 0 coefficients are removed from the final expression. This can sometimes create issues with determining the correct stage classification of a constraint as well as result in different sparsity patterns across scenarios. This issue is discussed further in the later section entitled Edge-Cases.

When it comes to catching errors in model annotations, there is a minor difference between the first bullet form from above (empty annotation) and the others. In the empty case, PySP will use exactly the set of second-stage constraints it is aware of. This set will either be determined through inspection of the constraint expressions or through the user-provided constraint-stage classifications declared using the `PySP_ConstraintStageAnnotation` annotation type. In the case where the stochastic annotation is not empty, PySP will verify that all constraints declared within it belong to the set of second-stage constraints it is aware of. If this verification fails, an error will be reported. This behavior is meant to aid users in debugging problems associated with non-uniform sparsity structure across scenarios that are, for example, caused by 0 coefficients in product expressions.

**Annotations on AbstractModel Objects**

Pyomo models defined using the `AbstractModel` object require the modeler to take further steps when making these annotations. In the `AbstractModel` setting, these assignments must take place within a `BuildAction`, which is executed only after the model has been constructed with data. As an example, the last bullet form from the previous section could be written in the following way to allow execution with either an `AbstractModel` or a `ConcreteModel`:

```py
def annotate_rule(m):
 m.stoch_rhs = StochasticConstraintBoundsAnnotation()
 m.stoch_rhs.declare(m.r[3])
 m.stoch_rhs.declare(m.r[6])
 m.stoch_rhs.declare(m.r[9])
 m.stoch_rhs.declare(m.c)
```

(continues on next page)
Note that the use of \texttt{m} rather than \texttt{model} in the \texttt{annotate_rule} function is meant to draw attention to the fact that the model object being passed into the function as the first argument may not be the same object as the model outside of the function. This is in fact the case in the \texttt{AbstractModel} setting, whereas for the \texttt{ConcreteModel} setting they are the same object. We often use \texttt{model} in both places to avoid errors caused by forgetting to use the correct object inside the function (Python scoping rules handle the rest). Also note that a \texttt{BuildAction} must be declared on the model after the declaration of any components being accessed inside its rule function.

\textit{Stochastic Constraint Bounds (RHS)}

If stochastic elements appear on the right-hand-side of constraints (or as constants in the body of constraint expressions), these locations should be declared using the \texttt{PySP\_StochasticRHSAnnotation} annotation type. When components are declared with this annotation, there are no additional required arguments for the \texttt{declare} method. However, to allow for more flexibility when dealing with double-sided inequality constraints, the \texttt{declare} method can be called with at most one of the keywords \texttt{lb} or \texttt{ub} set to \texttt{False} to signify that one of the bounds is not stochastic. The following code snippet shows example declarations with this annotation for various constraint types.

```python
from pyomo.pysp.annotations import StochasticConstraintBoundsAnnotation

model = ConcreteModel()

data that is initialized on a per-scenario basis
\texttt{p} = ...
\texttt{q} = ...

a second-stage variable
model.y = Var()

declare the annotation
model.stoch_rhs = StochasticConstraintBoundsAnnotation()

equality constraint
model.c = Constraint(expr= model.y == q)
model.stoch_rhs.declare(model.c)

double-sided inequality constraint with
stochastic upper bound
model.r = Constraint(expr= 0 <= model.y <= p)
model.stoch_rhs.declare(model.r, lb=False)

indexed constraint using a BuildAction
model.C_index = RangeSet(1,3)
def C_rule(model, i):
 if i == 1:
 return model.y >= i * q
 else:
 return Constraint.Skip
model.C = Constraint(model.C_index, rule=C_rule)
def C_annotate_rule(model, i):
 if i == 1:
 model.stoch_rhs.declare(model.C[i])
 else:
 pass
model.C_annotate = BuildAction(model.C_index, rule=C_annotate_rule)
```
Note that simply declaring the `PySP_StochasticRHSAnnotation` annotation type and leaving it empty will alert the SMPS conversion routines that all constraints identified as second-stage should be treated as having stochastic right-hand-side data. Calling the `declare` method on at least one component implies that the set of constraints considered should be limited to what is declared within the annotation.

**Stochastic Constraint Matrix**

If coefficients of variables change in the second-stage constraint matrix, these locations should be declared using the `PySP_StochasticMatrixAnnotation` annotation type. When components are declared with this annotation, there are no additional required arguments for the `declare` method. Calling the `declare` method with the single component argument signifies that all variables encountered in the constraint expression (including first- and second-stage variables) should be treated as having stochastic coefficients. This can be limited to a specific subset of variables by calling the `declare` method with the `variables` keyword set to an explicit list of variable objects. The following code snippet shows example declarations with this annotation for various constraint types.

```
from pyomo.pysp.annotations import StochasticConstraintBodyAnnotation

model = ConcreteModel()

data that is initialized on a per-scenario basis
#p = ...
#q = ...

a first-stage variable
model.x = Var()

a second-stage variable
model.y = Var()

declare the annotation
model.stoch_matrix = StochasticConstraintBodyAnnotation()

a singleton constraint with stochastic coefficients
both the first- and second-stage variable
model.c = Constraint(expr= p * model.x + q * model.y == 1)
model.stoch_matrix.declare(model.c)

an assignment that is equivalent to the previous one
model.stoch_matrix.declare(model.c, variables=[model.x, model.y])

a singleton range constraint with a stochastic coefficient
for the first-stage variable only
model.r = Constraint(expr= 0 <= p * model.x - 2.0 * model.y <= 10)
model.stoch_matrix.declare(model.r, variables=[model.x])
```

As is the case with the `PySP_StochasticRHSAnnotation` annotation type, simply declaring the `PySP_StochasticMatrixAnnotation` annotation type and leaving it empty will alert the SMPS conversion routines that all constraints identified as second-stage should be considered, and, additionally, that all variables encountered in these constraints should be considered to have stochastic coefficients. Calling the `declare` method on at least one component implies that the set of constraints considered should be limited to what is declared within the annotation.

**Stochastic Objective Elements**

If the cost coefficients of any variables are stochastic in the second-stage cost expression, this should be noted using the `PySP_StochasticObjectiveAnnotation` annotation type. This annotation uses the same semantics for the `declare` method as the `PySP_StochasticMatrixAnnotation` annotation type, but with one additional consideration regarding any constants in the objective expression. Constants in the objective are treated as stochastic and automatically handled by the SMPS code. If the objective expression does not contain any constant terms or these constant terms do not
change across scenarios, this behavior can be disabled by setting the keyword include_constant to False in a call to the declare method.

```python
from pyomo.pysp.annotations import StochasticObjectiveAnnotation

model = ConcreteModel()

data that is initialized on a per-scenario basis
p = ...
q = ...

a first-stage variable
model.x = Var()

a second-stage variable
model.y = Var()

declare the annotation
model.stoch_objective = StochasticObjectiveAnnotation()

model.FirstStageCost = Expression(expr= 5.0 * model.x)
model.SecondStageCost = Expression(expr= p * model.x + q * model.y)
model.TotalCost = Objective(expr= model.FirstStageCost + model.SecondStageCost)

each of these declarations is equivalent for this model
model.stoch_objective.declare(model.TotalCost)
model.stoch_objective.declare(model.TotalCost, variables=[model.x, model.y])
```

Similar to the previous annotation type, simply declaring the `PySP_StochasticObjectiveAnnotation` annotation type and leaving it empty will alert the SMPS conversion routines that all variables appearing in the single active model objective expression should be considered to have stochastic coefficients.

**Annotating Constraint Stages**

Annotating the model with constraint stages is sometimes necessary to identify to the SMPS routines that certain constraints belong in the second time-stage even though they lack references to any second-stage variables. Annotation of constraint stages is achieved using the `PySP_ConstraintStageAnnotation` annotation type. If this annotation is added to the model, it is assumed that it will be fully populated with explicit stage assignments for every constraint in the model. The `declare` method should be called giving a `Constraint` or `Block` as the first argument and a positive integer as the second argument (1 signifies the first time stage). Example:

```python
from pyomo.pysp.annotations import PySP_ConstraintStageAnnotation()

declare the annotation
model.constraint_stage = PySP_ConstraintStageAnnotation()

all constraints on this Block are first-stage
model.B = Block()
...
model.constraint_stage.declare(model.B, 1)

all indices of this indexed constraint are first-stage
model.C1 = Constraint(..., rule=...)
model.constraint_stage.declare(model.C1, 1)

all but one index in this indexed constraint are second-stage
model.C2 = Constraint(..., rule=...)
for index in model.C2:

(continues on next page)```
if index == 'a':
 model.constraint_stage.declare(model.C2[index], 1)
else:
 model.constraint_stage.declare(model.C2[index], 2)

Edge Cases

The section discusses various points that may give users some trouble, and it attempts to provide more details about the common pitfalls associated with translating a PySP model to SMPS format.

- **Moving a Stochastic Objective to the Constraint Matrix**

It is often the case that decomposition algorithms theoretically support stochastic cost coefficients but the software implementation has not yet added support for them. This situation is easy to work around in PySP. One can simply augment the model with an additional constraint and variable that computes the objective, and then use this variable in the objective rather than directly using the second-stage cost expression. Consider the following reference Pyomo model that has stochastic cost coefficients for both a first-stage and a second-stage variable in the second-stage cost expression:

```python
from pyomo.pysp.annotations import StochasticObjectiveAnnotation
model = ConcreteModel()
# data that is initialized on a per-scenario basis
p = ...
q = ...
# first-stage variable
model.x = Var()
# second-stage variable
model.y = Var()

# first-stage cost expression
model.FirstStageCost = Expression(expr= 5.0 * model.x)
# second-stage cost expression
model.SecondStageCost = Expression(expr= p * model.x + q * model.y)

# define the objective as the sum of the
# stage-cost expressions
model.TotalCost = Objective(expr= model.FirstStageCost + model.SecondStageCost)

# declare that model.x and model.y have stochastic cost
# coefficients in the second stage
model.stoch_objective = StochasticObjectiveAnnotation()
model.stoch_objective.declare(model.TotalCost, variables=[model.x, model.y])
```

The code snippet below re-expresses this model using an objective consisting of the original first-stage cost expression plus a second-stage variable SecondStageCostVar that represents the second-stage cost. This is enforced by restricting the variable to be equal to the second-stage cost expression using an additional equality constraint named ComputeSecondStageCost. Additionally, the `PySP_StochasticObjectiveAnnotation` annotation type is replaced with the `PySP_StochasticMatrixAnnotation` annotation type.

```python
from pyomo.pysp.annotations import StochasticConstraintBodyAnnotation
model = ConcreteModel()
# data that is initialized on a per-scenario basis
```
first-stage variable
model.x = Var()

second-stage variables
model.y = Var()
model.SecondStageCostVar = Var()

first-stage cost expression
model.FirstStageCost = Expression(expr= 5.0 * model.x)

second-stage cost expression
model.SecondStageCost = Expression(expr= p * model.x + q * model.y)

define the objective using SecondStageCostVar
in place of SecondStageCost
model.TotalCost = Objective(expr= model.FirstStageCost + model.SecondStageCostVar)

set the variable SecondStageCostVar equal to the
expression SecondStageCost using an equality constraint
model.ComputeSecondStageCost = Constraint(expr= model.SecondStageCostVar == model.
˓→SecondStageCost)

declare that model.x and model.y have stochastic constraint matrix
coefficients in the ComputeSecondStageCost constraint
model.stoch_matrix = StochasticConstraintBodyAnnotation()
model.stoch_matrix.declare(model.ComputeSecondStageCost, variables=[model.x, model.y])

- **Stochastic Constant Terms**

The standard description of a linear program does not allow for a constant term in the objective function because this has no weight on the problem solution. Additionally, constant terms appearing in a constraint expression must be lumped into the right-hand-side vector. However, when modeling with an AML such as Pyomo, constant terms very naturally fall out of objective and constraint expressions.

If a constant terms falls out of a constraint expression and this term changes across scenarios, it is critical that this is accounted for by including the constraint in the `PySP_StochasticRHSAnnotation` annotation type. Otherwise, this would lead to an incorrect representation of the stochastic program in SMPS format. As an example, consider the following:

```python
model = AbstractModel()

# a first-stage variable
model.x = Var()

# a second-stage variable
model.y = Var()

# a param initialized with scenario-specific data
model.p = Param()

# a second-stage constraint with a stochastic upper bound
# hidden in the left-hand-side expression
def c_rule(m):
    return (m.x - m.p) + m.y <= 10
model.c = Constraint(rule=c_rule)
```
Note that in the expression for constraint c, there is a fixed parameter p involved in the variable expression on the left-hand-side of the inequality. When an expression is written this way, it can be easy to forget that the value of this parameter will be pushed to the bound of the constraint when it is converted into linear canonical form. Remember to declare these constraints within the \texttt{PySP_StochasticRHSAnnotation} annotation type.

A constant term appearing in the objective expression presents a similar issue. Whether or not this term is stochastic, it must be dealt with when certain outputs expect the problem to be expressed as a linear program. The SMPS code in PySP will deal with this situation for you by implicitly adding a new second-stage variable to the problem in the final output file that uses the constant term as its coefficient in the objective and that is fixed to a value of 1.0 using a trivial equality constraint. The default behavior when declaring the \texttt{PySP_StochasticObjectiveAnnotation} annotation type will be to assume this constant term in the objective is stochastic. This helps ensure that the relative scenario costs reported by algorithms using the SMPS files will match that of the PySP model for a given solution. When moving a stochastic objective into the constraint matrix using the method discussed in the previous subsection, it is important to be aware of this behavior. A stochastic constant term in the objective would necessarily translate into a stochastic constraint right-hand-side when moved to the constraint matrix.

- **Stochastic Variable Bounds**

 Although not directly supported, stochastic variable bounds can be expressed using explicit constraints along with the \texttt{PySP_StochasticRHSAnnotation} annotation type to achieve the same effect.

- **Problems Caused by Zero Coefficients**

 Expressions that involve products with some terms having 0 coefficients can be problematic when the zeros can become nonzero in certain scenarios. This can cause the sparsity structure of the LP to change across scenarios because Pyomo simplifies these expressions when they are created such that terms with a 0 coefficient are dropped. This can result in an invalid SMPS conversion. Of course, this issue is not limited to explicit product expressions, but can arise when the user implicitly assigns a variable a zero coefficient by outright excluding it from an expression. For example, both constraints in the following code snippet suffer from this same underlying issue, which is that the variable $\texttt{model.y}$ will be excluded from the constraint expressions in a subset of scenarios (depending on the value of q) either directly due to a 0 coefficient in a product expressions or indirectly due to user-defined logic that is based off of the values of stochastic data.

  ```python
  model = ConcreteModel()
  
  # data that is initialized on a per-scenario basis
  # with q set to zero for this particular scenario
  p = ...
  q = 0
  
  model.x = Var()
  model.y = Var()
  
  model.c1 = Constraint(expr= p * model.x + q * model.y == 1)
  
  def c2_rule(model):
      expr = p * model.x
      if q != 0:
          expr += model.y
      return expr >= 0
  model.c2 = Constraint(rule=c2_rule)
  
  def c2_rule(model):
      expr = p * model.x
      if q != 0:
          expr += model.y
      return expr >= 0
  model.c2 = Constraint(rule=c2_rule)
  
  The SMPS conversion routines will attempt some limited checking to help prevent this kind of situation from silently turning the SMPS representation to garbage, but it must ultimately be up to the user to ensure this is not an issue. This is in fact the most challenging aspect of converting PySP’s AML-based problem representation to the structure-preserving LP representation used in the SMPS format.

  One way to deal with the 0 coefficient issue, which works for both cases discussed in the example above, is to create a \texttt{zero} \texttt{Expression} object, \texttt{E.g.,}...
This component can be used to add variables to a linear expression so that the resulting expression retains a reference to them. This behavior can be verified by examining the output from the following example:

```python
from pyomo.environ import *
model = ConcreteModel()
model.x = Var()
model.y = Var()
model.zero = Expression(expr=0)

an expression that does NOT retain model.y
print((model.x + 0 * model.y).to_string()) # -> x

an equivalent expression that DOES retain model.y
print((model.x + model.zero * model.y).to_string()) # -> x + 0.0 * y

an equivalent expression that does NOT retain model.y (so beware)
print((model.x + 0 * model.zero * model.y).to_string()) # -> x
```

### Generating SMPS Input Files

This section explains how the SMPS conversion utilities available in PySP can be invoked from the command line. Starting with Pyomo version 5.1, the SMPS writer can be invoked using the command `python -m pyomo.pysp.convert.smps`. Prior to version 5.1, this functionality was available via the `pysp2smps` command (starting at Pyomo version 4.2). Use the `--help` option with the main command to see a detailed description of the command-line options available:

```bash
$ python -m pyomo.pysp.convert.smps --help
```

Next, we discuss some of the basic inputs to this command.

Consider the baa99 example inside the `pysp/baa99` subdirectory that is distributed with the Pyomo examples (examples/pysp/baa99). Both the reference model and the scenario tree structure are defined in the file `ReferenceModel.py` using PySP callback functions. This model has been annotated to enable conversion to the SMPS format. Assuming one is in this example’s directory, SMPS files can be generated for the model by executing the following shell command:

```bash
$ python -m pyomo.pysp.convert.smps -m ReferenceModel.py --basename baa99 --output-directory sdinput/baa99
```

Assuming successful execution, this would result in the following files being created:

- `sdinput/baa99/baa99.cor`
- `sdinput/baa99/baa99.tim`
- `sdinput/baa99/baa99.sto`
- `sdinput/baa99/baa99.cor.symbols`

The first file is the core problem file written in MPS format. The second file indicates at which row and column the first and second time stages begin. The third file contains the location and values of stochastic data in the problem for each scenario. This file is generated by merging the individual output for each scenario in the scenario tree into separate BLOCK sections. The last file contains a mapping for non-anticipative variables from the symbols used in

---

8.5. Stochastic Programming 137
the above files to a unique string that can be used to recover the variable on any Pyomo model. It is mainly used by PySP’s solver interfaces to load a solver solution.

To ensure that the problem structure is the same and that all locations of stochastic data have been annotated properly, the script creates additional auxiliary files that are compared across scenarios. The command-line option --keep-auxiliary-files can be used to retain the auxiliary files that were generated for the template scenario used to write the core file. When this option is used with the above example, the following additional files will appear in the output directory:

- sdinput/baa99/baa99.mps.det
- sdinput/baa99/baa99.sto.struct
- sdinput/baa99/baa99.row
- sdinput/baa99/baa99.col

The .mps.det file is simply the core file for the reference scenario with the values for all stochastic coefficients set to zero. If this does not match for every scenario, then there are places in the model that still need to be declared on one or more of the stochastic data annotations. The .row and the .col files indicate the ordering of constraints and variables, respectively, that was used to write the core file. The .sto.struct file lists the nonzero locations of the stochastic data in terms of their row and column location in the core file. These files are created for each scenario instance in the scenario tree and placed inside of a subdirectory named scenario_files within the output directory. These files will be removed removed unless validation fails or the --keep-scenario-files option is used.

The SMPS writer also supports parallel execution. This can significantly reduce the overall time required to produce the SMPS files when there are many scenarios. Parallel execution using PySP’s Pyro-based tools can be performed using the steps below. Note that each of these commands can be launched in the background inside the same shell or in their own separate shells.

1. Start the Pyro name server:

   $ pyomo_ns -n localhost

2. Start the Pyro dispatch server:

   $ dispatch_srvr -n localhost --daemon-host localhost

3. Start 8 ScenarioTree Servers (for the 625 baa99 scenarios)

   $ mpirun -np 8 scenariotreeserver --pyro-host=localhost

4. Run python -m pyomo.pysp.convert.smets using the Pyro ScenarioTree Manager

   $ python -m pyomo.pysp.convert.smets -m ReferenceModel.py --basename baa99 \
   --output-directory sdinput/baa99 \
   --pyro-required-scenariotreeservers=8 \
   --pyro-host=localhost --scenario-tree-manager=pyro

An annotated version of the farmer example is also provided. The model file can be found in the pysp/farmer/smps_model examples subdirectory. Note that the scenario tree for this model is defined in a separate file. When invoking the SMPS writer, a scenario tree structure file can be provided via the --scenario-tree-location (-s) command-line option. For example, assuming one is in the pysp/farmer subdirectory, the farmer model can be converted to SMPS files using the command:

$ python -m pyomo.pysp.convert.smets -m smps_model/ReferenceModel.py \
   -s scenariodata/ScenarioStructure.dat --basename farmer \
   --output-directory sdinput/farmer
Note that, by default, the files created by the SMPS writer use shortened symbols that do not match the names of the variables and constraints declared on the Pyomo model. This is for efficiency reasons, as using fully qualified component names can result in significantly larger files. However, it can be useful in debugging situations to generate the SMPS files using the original component names. To do this, simply add the command-line option 
--symbolic-solver-labels to the command string.

The SMPS writer supports other formats for the core problem file (e.g., the LP format). The command-line option 
--core-format can be used to control this setting. Refer to the command-line help string for more information about the list of available format.

### 8.5.7 Generating DDSIP Input Files From PySP Models

PySP provides support for creating DDSIP inputs, and some support for reading DDSIP solutions back into PySP is under development. Use of these utilities requires additional model annotations that declare the location of stochastic data coefficients. See the section on converting PySP models to SMPS for more information.

To access the DDSIP writer via the command line, use python -m pyomo.pysp.convert.ddsip. To access the full solver interface to DDSIP, which writes the input files, invokes the DDSIP solver, and reads the solution, use python -m pyomo.pysp.solvers.ddsip. For example, to get a list of command arguments, use:

```
$ python -m pyomo.pysp.convert.ddsip --help
```

**Note:** Not all of the command arguments are relevant for DDSIP.

For researchers that simply want to write out the files needed by DDSIP, the --output-directory option can be used with the DDSIP writer to specify the directory where files should be created. The DDSIP solver interface creates these files in a temporary directory. To have the DDSIP solver interface retain these files after it exits, use the --keep-solver-files command-line option. The following example invokes the DDSIP solver on the network-flow example that ships with PySP. In order to test it, one must first cd into to the networkflow example directory and then execute the command:

```
$ python -m pyomo.pysp.solvers.ddsip \
-s lef10 -m smps_model --solver-options="NODELIM=1"
```

The --solver-options command line argument can be used set the values of any DDSIP options that are written to the DDSIP configuration file; multiple options should be space-separated. See DDSIP documentation for a list of options.

Here is the same example modified to simply create the DDSIP input files in an output directory named ddsip_networkflow:

```
$ python -m pyomo.pysp.convert.ddsip \
-s lef10 -m smps_model --output-directory ddsip_networkflow \
--symbolic-solver-labels
```

The option --symbolic-solver-labels tells the DDSIP writer to produce the file names using symbols that match names on the original Pyomo model. This can significantly increase file size, so it is not done by default. When the DDSIP writer is invoked, a minimal DDSIP configuration file is created in the output directory that specifies the required problem structure information. Any additional DDSIP options must be manually added to this file by the user.

As with the SMPS writer, the DDSIP writer and solver interface support PySP’s Pyro-based parallel scenario tree management system. See the section on the SMPS writer for a description of how to use this functionality.
8.5.8 PySP in scripts

See rapper: a PySP wrapper for information about putting Python scripts around PySP functionality.

8.5.9 Introduction to Using Concrete Models with PySP

The concrete interface to PySP requires a function that can return a concrete model for a given scenario. Optionally, a function that returns a scenario tree can be provided; however, a ScenarioStructure.dat file is also an option. This very terse introduction might help you get started using concrete models with PySP.

Scenario Creation Function

There is a lot of flexibility in how this function is implemented, but the path of least resistance is

```python
>>> def pysp_instance_creation_callback(scenario_tree_model, ...
... scenario_name, ...
... node_names):
... pass
```

In many applications, only the scenario_name argument is used. Its purpose is almost always to determine what data to use when populating the scenario instance. Note that in older examples, the scenario_tree_model argument is not present.

An older example of this function can be seen in examples/pysp/farmer/concrete/ReferenceModel.py

Note that this example does not have a function to return a scenario tree, so it can be solved from the examples/pysp/farmer directory with a command like:

```bash
runef -m concrete/ReferenceModel.py -s scenariodata/ScenarioStructure.dat –solve
```

**Note:** If, for some reason, you want to use the concrete interface for PySP for an AbstractModel, the body of the function might be something like:

```python
>>> instance = model.create_instance(scenario_name+".dat") # doctest: +SKIP
>>> return instance # doctest: +SKIP
```

assuming that model is defined as an AbstractModel in the namespace of the file.

Scenario Tree Creation Function

There are many options for a function to return a scenario tree. The path of least resistance is to name the function pysp_scenario_tree_model_callback with no arguments. One example is shown in examples/pysp/farmer/concreteNetX/ReferenceModel.py

It can be solved from the examples/pysp/farmer directory with a command like:

```bash
runef -m concreteNetX/ReferenceModel.py –solve
```
8.6 Pyomo Network

Pyomo Network is a package that allows users to easily represent their model as a connected network of units. Units are blocks that contain ports, which contain variables, that are connected to other ports via arcs. The connection of two ports to each other via an arc typically represents a set of constraints equating each member of each port to each other, however there exist other connection rules as well, in addition to support for custom rules. Pyomo Network also includes a model transformation that will automatically expand the arcs and generate the appropriate constraints to produce an algebraic model that a solver can handle. Furthermore, the package also introduces a generic sequential decomposition tool that can leverage the modeling components to decompose a model and compute each unit in the model in a logically ordered sequence.

8.6.1 Modeling Components

Pyomo Network introduces two new modeling components to Pyomo:

<table>
<thead>
<tr>
<th>pyomo.network.Port</th>
<th>A collection of variables, which may be connected to other ports</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.network.Arc</td>
<td>Component used for connecting the members of two Port objects</td>
</tr>
</tbody>
</table>

Port

class pyomo.network.Port(*args, **kwds)
A collection of variables, which may be connected to other ports

The idea behind Ports is to create a bundle of variables that can be manipulated together by connecting them to other ports via Arcs. A preprocess transformation will look for Arcs and expand them into a series of constraints that involve the original variables contained within the Port. The way these constraints are built can be specified for each Port member when adding members to the port, but by default the Port members will be equated to each other. Additionally, other objects such as expressions can be added to Ports as long as they, or their indexed members, can be manipulated within constraint expressions.

Parameters

- `rule (function)` – A function that returns a dict of (name: var) pairs to be initially added to the Port. Instead of var it could also be a tuples of (var, rule). Or it could return an iterable of either vars or tuples of (var, rule) for implied names.
- `initialize` – Follows same specifications as rule’s return value, gets initially added to the Port
- `implicit` – An iterable of names to be initially added to the Port as implicit vars
- `extends (Port)` – A Port whose vars will be added to this Port upon construction

static Equality(port, name, index_set)
Arc Expansion procedure to generate simple equality constraints

static Extensive(port, name, index_set, include_splitfrac=False, write_var_sum=True)
Arc Expansion procedure for extensive variable properties
This procedure is the rule to use when variable quantities should be split for outlets and combined for inlets.
This will first go through every destination of the port and create a new variable on the arc’s expanded block of the same index as the current variable being processed. It will also create a splitfrac variable on
the expanded block as well. Then it will generate constraints for the new variable that relates it to the port member variable by the split fraction. Following this, an indexed constraint is written that states that the sum of all the new variables equals the parent. However, if write_var_sum=False is passed, instead of this last indexed constraint, a single constraint will be written that states the sum of the split fractions equals 1.

Then, this procedure will go through every source of the port and create a new variable (unless it already exists), and then write a constraint that states the sum of all the incoming new variables must equal the parent variable.

Model simplifications:

If the port has a 1-to-1 connection on either side, it will not create the new variables and instead write a simple equality constraint for that side.

If the outlet side is not 1-to-1 but there is only one outlet, it will not create a splitfrac variable or write the split constraint, but it will still write the outsum constraint which will be a simple equality.

If the port only contains a single Extensive variable, the splitfrac variables and the splitting constraints will be skipped since they will be unnecessary. However, they can be still be included by passing include_splitfrac=True.

Note: If split fractions are skipped, the write_var_sum=False option is not allowed.

class pyomo.network.port._PortData (component=None)
This class defines the data for a single Port

vars
A dictionary mapping added names to variables

Type dict

__getattr__ (name)
Returns self.vars[name] if it exists

add (var, name=None, rule=None, **kwds)
Add var to this Port, casting it to a Pyomo numeric if necessary

Parameters

• var – A variable or some NumericValue like an expression
• name (str) – Name to associate with this member of the Port
• rule (function) – Function implementing the desired expansion procedure for this member. Port.Equality by default, other options include Port.Extensive. Customs are allowed.
• kwds – Keyword arguments that will be passed to rule

arcs (active=None)
A list of Arcs in which this Port is a member

dests (active=None)
A list of Arcs in which this Port is a source

fix ()
Fix all variables in the port at their current values. For expressions, fix every variable in the expression.

free ()
Unfix all variables in the port. For expressions, unfix every variable in the expression.
get_split_fraction(arc)
Returns a tuple (val, fix) for the split fraction of this arc that was set via set_split_fraction if it exists, and otherwise None.

is_binary()
Return True if all variables in the Port are binary

is_continuous()
Return True if all variables in the Port are continuous

is_equality(name)
Return True if the rule for this port member is Port.Equality

is_extensive(name)
Return True if the rule for this port member is Port.Extensive

is_fixed()
Return True if all vars/expressions in the Port are fixed

is_integer()
Return True if all variables in the Port are integer

is_potentially_variable()
Return True as ports may (should!) contain variables

iter_vars(expr_vars=False, fixed=None, names=False)
Iterate through every member of the port, going through the indices of indexed members.

Parameters

• expr_vars (bool) – If True, call identify_variables on expression type members
• fixed (bool) – Only include variables/expressions with this type of fixed
• names (bool) – If True, yield (name, var/expr) pairs

polynomial_degree()
Returns the maximum polynomial degree of all port members

remove(name)
Remove this member from the port

rule_for(name)
Return the rule associated with the given port member

set_split_fraction(arc, val, fix=True)
Set the split fraction value to be used for an arc during arc expansion when using Port.Extensive.

sources(active=None)
A list of Arcs in which this Port is a destination

unfix()
Unfix all variables in the port. For expressions, unfix every variable in the expression.

The following code snippet shows examples of declaring and using a Port component on a concrete Pyomo model:

```python
>>> from pyomo.environ import *
>>> from pyomo.network import *

m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b']) # can be indexed
>>> m.z = Var()
>>> m.e = 5 * m.z # you can add Pyomo expressions too
```

Arc

```python
>>> m.w = Var()
>>> m.p = Port()
>>> m.p.add(m.x) # implicitly name the port member "x"
>>> m.p.add(m.y, "foo") # name the member "foo"
>>> m.p.add(m.e, rule=Port.Extensive) # specify a rule
>>> m.p.add(m.w, rule=Port.Extensive, write_var_sum=False) # keyword arg
```

```
Arc class pyomo.network.Arc(*args, **kwds)
 Component used for connecting the members of two Port objects

Parameters

- **source** *(Port) – A single Port for a directed arc. Aliases to src.*
- **destination** *(Port) – A single Port for a directed arc. Aliases to dest.*
- **ports** – A two-member list or tuple of single Ports for an undirected arc
- **directed** *(bool) – Set True for directed. Use along with rule to be able to return an
 implied (source, destination) tuple.
- **rule** *(function) – A function that returns either a dictionary of the arc arguments or a two-
 member iterable of ports

Arc class pyomo.network.arc._ArcData(component=None, **kwds)
 This class defines the data for a single Arc

 source
 The source Port when directed, else None. Aliases to src.
 Type Port

destination
 The destination Port when directed, else None. Aliases to dest.
 Type Port

ports
 A tuple containing both ports. If directed, this is in the order (source, destination).
 Type tuple

directed
 True if directed, False if not
 Type bool

expanded_block
 A reference to the block on which expanded constraints for this arc were placed
 Type Block

__getattr__(name)
 Returns self.expanded_block.name if it exists

set_value(vals)
 Set the port attributes on this arc
```

The following code snippet shows examples of declaring and using an `Arc` component on a concrete Pyomo model:
8.6.2 Arc Expansion Transformation

The examples above show how to declare and instantiate a Port and an Arc. These two components form the basis of the higher level representation of a connected network with sets of related variable quantities. Once a network model has been constructed, Pyomo Network implements a transformation that will expand all (active) arcs on the model and automatically generate the appropriate constraints. The constraints created for each port member will be indexed by the same indexing set as the port member itself.

During transformation, a new block is created on the model for each arc (located on the arc’s parent block), which serves to contain all of the auto generated constraints for that arc. At the end of the transformation, a reference is created on the arc that points to this new block, available via the arc property `arc.expanded_block`.

The constraints produced by this transformation depend on the rule assigned for each port member and can be different between members on the same port. For example, you can have two different members on a port where one member’s rule is `Port.Equality` and the other member’s rule is `Port.Extensive`. `Port.Equality` is the default rule for port members. This rule simply generates equality constraints on the expanded block between the source port’s member and the destination port’s member. Another implemented expansion method is `Port.Extensive`, which essentially represents implied splitting and mixing of certain variable quantities. Users can refer to the documentation of the static method itself for more details on how this implicit splitting and mixing is implemented. Additionally, should users desire, the expansion API supports custom rules that can be implemented to generate whatever is needed for special cases.

The following code demonstrates how to call the transformation to expand the arcs on a model:

```python
>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var(['a', 'b'])
>>> m.u = Var()
>>> m.v = Var(['a', 'b'])
>>> m.w = Var()
>>> m.z = Var(['a', 'b']) # indexes need to match
>>> m.p = Port(initialize=[m.x, m.y])
>>> m.q = Port(initialize={'x': m.u, 'y': m.v})
>>> m.r = Port(initialize={'x': m.w, 'y': m.z}) # names need to match
>>> m.a = Arc(source=m.p, destination=m.q) # directed
>>> m.b = Arc(ports=(m.p, m.q)) # undirected
>>> m.c = Arc(ports=(m.p, m.q), directed=True) # directed
>>> m.d = Arc(src=m.p, dest=m.q) # aliases work
>>> m.e = Arc(source=m.r, dest=m.p) # ports can have both in and out
```

(continues on next page)
>>> TransformationFactory("network.expand_arcs").apply_to(m)

### 8.6.3 Sequential Decomposition

Pyomo Network implements a generic `SequentialDecomposition` tool that can be used to compute each unit in a network model in a logically ordered sequence.

The sequential decomposition procedure is commenced via the `run` method.

#### Creating a Graph

To begin this procedure, the Pyomo Network model is first utilized to create a networkx `MultiDiGraph` by adding edges to the graph for every arc on the model, where the nodes of the graph are the parent blocks of the source and destination ports. This is done via the `create_graph` method, which requires all arcs on the model to be both directed and already expanded. The `MultiDiGraph` class of networkx supports both directed edges as well as having multiple edges between the same two nodes, so users can feel free to connect as many ports as desired between the same two units.

#### Computation Order

The order of computation is then determined by treating the resulting graph as a tree, starting at the roots of the tree, and making sure by the time each node is reached, all of its predecessors have already been computed. This is implemented through the `calculation_order` and `tree_order` methods. Before this, however, the procedure will first select a set of tear edges, if necessary, such that every loop in the graph is torn, while minimizing both the number of times any single loop is torn as well as the total number of tears.

#### Tear Selection

A set of tear edges can be selected in one of two ways. By default, a Pyomo MIP model is created and optimized resulting in an optimal set of tear edges. The implementation of this MIP model is based on a set of binary “torn” variables for every edge in the graph, and constraints on every loop in the graph that dictate that there must be at least one tear on the loop. Then there are two objectives (represented by a doubly weighted objective). The primary objective is to minimize the number of times any single loop is torn, and then secondary to that is to minimize the total number of tears. This process is implemented in the `select_tear_mip` method, which uses the model returned from the `select_tear_mip_model` method.

Alternatively, there is the `select_tear_heuristic` method. This uses a heuristic procedure that walks back and forth on the graph to find every optimal tear set, and returns each equally optimal tear set it finds. This method is much slower than the MIP method on larger models, but it maintains some use in the fact that it returns every possible optimal tear set.

A custom tear set can be assigned before calling the `run` method. This is useful so users can know what their tear set will be and thus what arcs will require guesses for uninitialized values. See the `set_tear_set` method for details.

#### Running the Sequential Decomposition Procedure

After all of this computational order preparation, the sequential decomposition procedure will then run through the graph in the order it has determined. Thus, the `function` that was passed to the `run` method will be called on every unit in sequence. This function can perform any arbitrary operations the user desires. The only thing that
SequentialDecomposition expects from the function is that after returning from it, every variable on every outgoing port of the unit will be specified (i.e. it will have a set current value). Furthermore, the procedure guarantees to the user that for every unit, before the function is called, every variable on every incoming port of the unit will be fixed.

In between computing each of these units, port member values are passed across existing arcs involving the unit currently being computed. This means that after computing a unit, the expanded constraints from each arc coming out of this unit will be satisfied, and the values on the respective destination ports will be fixed at these new values. While running the computational order, values are not passed across tear edges, as tear edges represent locations in loops to stop computations (during iterations). This process continues until all units in the network have been computed. This concludes the “first pass run” of the network.

**Guesses and Fixing Variables**

When passing values across arcs while running the computational order, values at the destinations of each of these arcs will be fixed at the appropriate values. This is important to the fact that the procedure guarantees every inlet variable will be fixed before calling the function. However, since values are not passed across torn arcs, there is a need for user-supplied guesses for those values. See the set_guesses_for method for details on how to supply these values.

In addition to passing dictionaries of guesses for certain ports, users can also assign current values to the variables themselves and the procedure will pick these up and fix the variables in place. Alternatively, users can utilize the default_guess option to specify a value to use as a default guess for all free variables if they have no guess or current value. If a free variable has no guess or current value and there is no default guess option, then an error will be raised.

Similarly, if the procedure attempts to pass a value to a destination port member but that port member is already fixed and its fixed value is different from what is trying to be passed to it (by a tolerance specified by the almost_equal_tol option), then an error will be raised. Lastly, if there is more than one free variable in a constraint while trying to pass values across an arc, an error will be raised asking the user to fix more variables by the time values are passed across said arc.

**Tear Convergence**

After completing the first pass run of the network, the sequential decomposition procedure will proceed to converge all tear edges in the network (unless the user specifies not to, or if there are no tears). This process occurs separately for every strongly connected component (SCC) in the graph, and the SCCs are computed in a logical order such that each SCC is computed before other SCCs downstream of it (much like tree_order).

There are two implemented methods for converging tear edges: direct substitution and Wegstein acceleration. Both of these will iteratively run the computation order until every value in every tear arc has converged to within the specified tolerance. See the SequentialDecomposition parameter documentation for details on what can be controlled about this procedure.

The following code demonstrates basic usage of the SequentialDecomposition class:

```python
>>> from pyomo.environ import *
>>> from pyomo.network import *
>>> m = ConcreteModel()
>>> m.unit1 = Block()
>>> m.unit1.x = Var()
>>> m.unit1.y = Var(['a', 'b'])
>>> m.unit2 = Block()
>>> m.unit2.x = Var()
>>> m.unit2.y = Var(['a', 'b'])
>>> m.unit1.port = Port(initialize=[m.unit1.x, (m.unit1.y, Port.Extensive)])
```
>>> m.unit2.port = Port(initialize=[m.unit2.x, (m.unit2.y, Port.Extensive)])
>>> m.a = Arc(source=m.unit1.port, destination=m.unit2.port)
>>> TransformationFactory("network.expand_arcs").apply_to(m)

>>> m.unit1.x.fix(10)
>>> m.unit1.y['a'].fix(15)
>>> m.unit1.y['b'].fix(20)

>>> seq = SequentialDecomposition(tol=1.0E-3)  # options can go to init
>>> seq.options.select_tear_method = "heuristic"  # or set them like so
>>> # seq.set_tear_set([...])  # assign a custom tear set
>>> # seq.set_guesses_for(m.unit.inlet, {...})  # choose guesses

>>> def initialize(b):
   ...  # b.initialize()
   ...
   pass

>>> seq.run(m, initialize)

class pyomo.network.SequentialDecomposition(**kwds)
A sequential decomposition tool for Pyomo Network models

The following parameters can be set upon construction of this class or via the options attribute.

Parameters

- **graph** (*MultiDiGraph*) – A networkx graph representing the model to be solved.
  default=None (will compute it)

- **tear_set** (*list*) – A list of indexes representing edges to be torn. Can be set with a list of
  edge tuples via set_tear_set.
  default=None (will compute it)

- **select_tear_method** (*str*) – Which method to use to select a tear set, either “mip” or
  “heuristic”.
  default=”mip”

- **run_first_pass** (*bool*) – Boolean indicating whether or not to run through network
  before running the tear stream convergence procedure.
  default=True

- **solve_tears** (*bool*) – Boolean indicating whether or not to run iterations to converge
  tear streams.
  default=True

- **guesses** (*ComponentMap*) – ComponentMap of guesses to use for first pass (see
  set_guesses_for method).
  default=ComponentMap()

- **default_guess** (*float*) – Value to use if a free variable has no guess.
  default=None

- **almost_equal_tol** (*float*) – Difference below which numbers are considered equal
  when checking port value agreement.
  default=1.0E-8
• **log_info** (*bool*) – Set logger level to INFO during run.
  
  \[default=False\]

• **tear_method** (*str*) – Method to use for converging tear streams, either “Direct” or “Wegstein”.
  
  \[default="Direct"\]

• **iterLim** (*int*) – Limit on the number of tear iterations.
  
  \[default=40\]

• **tol** (*float*) – Tolerance at which to stop tear iterations.
  
  \[default=1.0E-5\]

• **tol_type** (*str*) – Type of tolerance value, either “abs” (absolute) or “rel” (relative to current value).
  
  \[default="abs"\]

• **report_diffs** (*bool*) – Report the matrix of differences across tear streams for every iteration.
  
  \[default=False\]

• **accel_min** (*float*) – Min value for Wegstein acceleration factor.
  
  \[default=-5\]

• **accel_max** (*float*) – Max value for Wegstein acceleration factor.
  
  \[default=0\]

• **tear_solver** (*str*) – Name of solver to use for select_tear_mip.
  
  \[default="cplex"\]

• **tear_solver_io** (*str*) – Solver IO keyword for the above solver.
  
  \[default=None\]

• **tear_solver_options** (*dict*) – Keyword options to pass to solve method.
  
  \[default={}\]

**calculation_order** (*G, roots=None, nodes=None*)

Rely on tree_order to return a calculation order of nodes

**Parameters**

• **roots** – List of nodes to consider as tree roots, if None then the actual roots are used

• **nodes** – Subset of nodes to consider in the tree, if None then all nodes are used

**create_graph** (*model*)

Returns a networkx MultiDiGraph of a Pyomo network model

The nodes are units and the edges follow Pyomo Arc objects. Nodes that get added to the graph are determined by the parent blocks of the source and destination Ports of every Arc in the model. Edges are added for each Arc using the direction specified by source and destination. All Arcs in the model will be used whether or not they are active (since this needs to be done after expansion), and they all need to be directed.

**indexes_to_arcs** (*G, lst*)

Converts a list of edge indexes to the corresponding Arcs
Parameters

- **G** – A networkx graph corresponding to `lst`
- **lst** – A list of edge indexes to convert to tuples

Returns A list of arcs

`run(model, function)`

Compute a Pyomo Network model using sequential decomposition

Parameters

- **model** – A Pyomo model
- **function** – A function to be called on each block/node in the network

`select_tear_heuristic(G)`

This finds optimal sets of tear edges based on two criteria. The primary objective is to minimize the maximum number of times any cycle is broken. The secondary criteria is to minimize the number of tears.

This function uses a branch and bound type approach.

Returns

- **tsets** – List of lists of tear sets. All the tear sets returned are equally good. There are often a very large number of equally good tear sets.
- **upperbound_loop** – The max number of times any single loop is torn
- **upperbound_total** – The total number of loops

Improvements for the future

I think I can improve the efficiency of this, but it is good enough for now. Here are some ideas for improvement:

1. Reduce the number of redundant solutions. It is possible to find tears sets [1,2] and [2,1]. I eliminate redundant solutions from the results, but they can occur and it reduces efficiency.
2. Look at strongly connected components instead of whole graph. This would cut back on the size of graph we are looking at. The flowsheets are rarely one strongly conneted component.
3. When you add an edge to a tear set you could reduce the size of the problem in the branch by only looking at strongly connected components with that edge removed.
4. This returns all equally good optimal tear sets. That may not really be necessary. For very large flowsheets, there could be an extremely large number of optimial tear edge sets.

`select_tear_mip(G, solver, solver_io=None, solver_options={})`

This finds optimal sets of tear edges based on two criteria. The primary objective is to minimize the maximum number of times any cycle is broken. The secondary criteria is to minimize the number of tears.

This function creates a MIP problem in Pyomo with a doubly weighted objective and solves it with the solver arguments.

`select_tear_mip_model(G)`

Generate a model for selecting tears from the given graph

Returns

- **model**
- **bin_list** – A list of the binary variables representing each edge, indexed by the edge index of the graph
**set_guesses_for** *(port, guesses)*

Set the guesses for the given port

These guesses will be checked for all free variables that are encountered during the first pass run. If a free variable has no guess, its current value will be used. If its current value is None, the default_guess option will be used. If that is None, an error will be raised.

All port variables that are downstream of a non-tear edge will already be fixed. If there is a guess for a fixed variable, it will be silently ignored.

The guesses should be a dict that maps the following:

- Port Member Name -> Value

Or, for indexed members, multiple dicts that map:

- Port Member Name -> Index -> Value

For extensive members, “Value” must be a list of tuples of the form (arc, value) to guess a value for the expanded variable of the specified arc. However, if the arc connecting this port is a 1-to-1 arc with its peer, then there will be no expanded variable for the single arc, so a regular “Value” should be provided.

This dict cannot be used to pass guesses for variables within expression type members. Guesses for those variables must be assigned to the variable’s current value before calling run.

While this method makes things more convenient, all it does is:

```
self.options[“guesses”][port] = guesses
```

**set_tear_set** *(tset)*

Set a custom tear set to be used when running the decomposition

The procedure will use this custom tear set instead of finding its own, thus it can save some time. Additionally, this will be useful for knowing which edges will need guesses.

**Parameters**

- **tset** – A list of Arcs representing edges to tear

While this method makes things more convenient, all it does is:

```
self.options[“tear_set”] = tset
```

**tear_set_arcs** *(G, method='mip', **kwds)*

Call the specified tear selection method and return a list of arcs representing the selected tear edges.

The kwds will be passed to the method.

**tree_order** *(adj, adjR, roots=None)*

This function determines the ordering of nodes in a directed tree. This is a generic function that can operate on any given tree represented by the adjacency and reverse adjacency lists. If the adjacency list does not represent a tree the results are not valid.

In the returned order, it is sometimes possible for more than one node to be calculated at once. So a list of lists is returned by this function. These represent a breadth first search order of the tree. Following the order, all nodes that lead to a particular node will be visited before it.

**Parameters**

- **adj** – An adjacency list for a directed tree. This uses generic integer node indexes, not node names from the graph itself. This allows this to be used on sub-graphs and graphs of components more easily.
- **adjR** – The reverse adjacency list corresponding to adj
- **roots** – List of node indexes to start from. These do not need to be the root nodes of the tree, in some cases like when a node changes the changes may only affect nodes reachable
in the tree from the changed node, in the case that roots are supplied not all the nodes in the tree may appear in the ordering. If no roots are supplied, the roots of the tree are used.
Additional Pyomo tutorials and examples can be found at the following links:

Prof. Jeffrey Kantor’s Pyomo Cookbooks
Pyomo Gallery
10.1 Interrogating Pyomo Models

Show solver output by adding the `tee=True` option when calling the `solve` function

```python
>>> SolverFactory('glpk').solve(model, tee=True)
```

You can use the `pprint` function to display the model or individual model components

```python
>>> model.pprint()
>>> model.x.pprint()
```

10.2 FAQ

1. Solver not found

Solvers are not distributed with Pyomo and must be installed separately by the user. In general, the solver executable must be accessible using a terminal command. For example, ipopt can only be used as a solver if the command

```bash
$ ipopt
```

invokes the solver. For example

```bash
$ ipopt -?
usage: ipopt [options] stub [-AMPL] [<assignment> ...]

Options:
 -- {end of options}
 -= {show name= possibilities}
 -* {show usage}
 -bf {read boundsfile f}
 -e {suppress echoing of assignments}
```

(continues on next page)
10.3 Getting Help

See the Pyomo Forum for online discussions of Pyomo or to ask a question:

- http://groups.google.com/group/pyomo-forum/

Ask a question on StackExchange

- https://stackoverflow.com/questions/ask?tags=pyomo

Open an issue on GitHub:

- https://github.com/Pyomo/pyomo
11.1 Persistent Solvers

The purpose of the persistent solver interfaces is to efficiently notify the solver of incremental changes to a Pyomo model. The persistent solver interfaces create and store model instances from the Python API for the corresponding solver. For example, the `GurobiPersistent` class maintains a pointer to a gurobipy Model object. Thus, we can make small changes to the model and notify the solver rather than recreating the entire model using the solver Python API (or rewriting an entire model file - e.g., an lp file) every time the model is solved.

**Warning:** Users are responsible for notifying persistent solver interfaces when changes to a model are made!

11.1.1 Using Persistent Solvers

The first step in using a persistent solver is to create a Pyomo model as usual.

```python
>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
```

You can create an instance of a persistent solver through the SolverFactory.

```python
>>> opt = pe.SolverFactory('gurobi_persistent') # doctest: +SKIP
```

This returns an instance of `GurobiPersistent`. Now we need to tell the solver about our model.

```python
>>> opt.set_instance(m) # doctest: +SKIP
```
This will create a gurobipy Model object and include the appropriate variables and constraints. We can now solve the model.

```python
>>> results = opt.solve() # doctest: +SKIP
```

We can also add or remove variables, constraints, blocks, and objectives. For example,

```python
>>> m.c2 = pe.Constraint(expr=m.y >= m.x) # doctest: +SKIP
>>> opt.add_constraint(m.c2) # doctest: +SKIP
```

This tells the solver to add one new constraint but otherwise leave the model unchanged. We can now resolve the model.

```python
>>> results = opt.solve() # doctest: +SKIP
```

To remove a component, simply call the corresponding remove method.

```python
>>> opt.remove_constraint(m.c2) # doctest: +SKIP
>>> del m.c2 # doctest: +SKIP
>>> results = opt.solve() # doctest: +SKIP
```

If a pyomo component is replaced with another component with the same name, the first component must be removed from the solver. Otherwise, the solver will have multiple components. For example, the following code will run without error, but the solver will have an extra constraint. The solver will have both \( y \geq -2x + 5 \) and \( y \leq x \), which is not what was intended!

```python
>>> m = pe.ConcreteModel() # doctest: +SKIP
>>> m.x = pe.Var() # doctest: +SKIP
>>> m.y = pe.Var() # doctest: +SKIP
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5) # doctest: +SKIP
>>> opt = pe.SolverFactory('gurobi_persistent') # doctest: +SKIP
>>> opt.set_instance(m) # doctest: +SKIP
>>> # WRONG:
>>> del m.c # doctest: +SKIP
>>> m.c = pe.Constraint(expr=m.y <= m.x) # doctest: +SKIP
>>> opt.add_constraint(m.c) # doctest: +SKIP
```

The correct way to do this is:

```python
>>> m = pe.ConcreteModel() # doctest: +SKIP
>>> m.x = pe.Var() # doctest: +SKIP
>>> m.y = pe.Var() # doctest: +SKIP
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5) # doctest: +SKIP
>>> opt = pe.SolverFactory('gurobi_persistent') # doctest: +SKIP
>>> opt.set_instance(m) # doctest: +SKIP
>>> # Correct:
>>> opt.remove_constraint(m.c) # doctest: +SKIP
>>> del m.c # doctest: +SKIP
>>> m.c = pe.Constraint(expr=m.y <= m.x) # doctest: +SKIP
>>> opt.add_constraint(m.c) # doctest: +SKIP
```

**Warning:** Components removed from a pyomo model must be removed from the solver instance by the user. Additionally, unexpected behavior may result if a component is modified before being removed.
In most cases, the only way to modify a component is to remove it from the solver instance, modify it with Pyomo, and then add it back to the solver instance. The only exception is with variables. Variables may be modified and then updated with with solver:

```python
>>> m = pe.ConcreteModel() # doctest: +SKIP
>>> m.x = pe.Var() # doctest: +SKIP
>>> m.y = pe.Var() # doctest: +SKIP
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2) # doctest: +SKIP
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5) # doctest: +SKIP
>>> opt = pe.SolverFactory('gurobi_persistent') # doctest: +SKIP
>>> opt.set_instance(m) # doctest: +SKIP
>>> m.x.setlb(1.0) # doctest: +SKIP
>>> opt.update_var(m.x) # doctest: +SKIP
```

## 11.1.2 Persistent Solver Performance

In order to get the best performance out of the persistent solvers, use the “save_results” flag:

```python
>>> import pyomo.environ as pe
>>> m = pe.ConcreteModel()
>>> m.x = pe.Var()
>>> m.y = pe.Var()
>>> m.obj = pe.Objective(expr=m.x**2 + m.y**2)
>>> m.c = pe.Constraint(expr=m.y >= -2*m.x + 5)
>>> opt = pe.SolverFactory('gurobi_persistent') # doctest: +SKIP
>>> opt.set_instance(m) # doctest: +SKIP
>>> results = opt.solve(save_results=False) # doctest: +SKIP
```

Note that if the “save_results” flag is set to False, then the following is not supported.

```python
>>> results = opt.solve(save_results=False, load_solutions=False) # doctest: +SKIP
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... m.solutions.load_from(results) # doctest: +SKIP
```

However, the following will work:

```python
>>> results = opt.solve(save_results=False, load_solutions=False) # doctest: +SKIP
>>> if results.solver.termination_condition == TerminationCondition.optimal:
... opt.load_vars() # doctest: +SKIP
```

Additionally, a subset of variable values may be loaded back into the model:
11.2 rapper: a PySP wrapper

This is an advanced topic.

The `pyomo.pysp.util.rapper` package is built on the Pyomo optimization modeling language ([PyomoJournal], [PyomoBookII]) to provide a thin wrapper for some functionality of PySP [PySPJournal] associated with the `runef` and `runph` commands. The package is designed mainly for experienced Python programmers who are users of a Pyomo `ConcreteModel` in PySP and who want to embed the solution process in simple scripts. There is also support for users of a Pyomo `AbstractModel`. Note that callback functions are also supported for some aspects of PySP, which is somewhat orthogonal to the functionality provided by `pyomo.pysp.util.rapper`.

11.2.1 Demonstration of rapper Capabilities

In this section we provide a series of examples intended to show different things that can be done with rapper.

```python
>>> import pyomo.pysp.util.rapper as rapper
>>> import pyomo.pysp.plugins.csvsolutionwriter as csvw
>>> from pyomo.pysp.scenariotree.tree_structure_model import CreateAbstractScenarioTreeModel
>>> import pyomo.environ as pyo

The next line establishes the solver to be used.

```python
>>> solvername = "cplex"
```

The next two lines show one way to create a concrete scenario tree. There are others that can be found in `pyomo.pysp.scenariotree.tree_structure_model`

```python
>>> abstract_tree = CreateAbstractScenarioTreeModel()
>>> concrete_tree = abstract_tree.create_instance("ScenarioStructure.dat")
```

Emulate some aspects of `runef`

Create a rapper solver object assuming there is a file named `ReferenceModel.py` that has an appropriate `pysp_instance_creation_callback` function.

```python
>>> stsolver = rapper.StochSolver("ReferenceModel.py",
... tree_model = concrete_tree)
```

This object has a `solve_ef` method (as well as a `solve_ph` method)

```python
>>> ef_sol = stsolver.solve_ef(solvername) # doctest: +SKIP
```

The return status from the solver can be tested.

```python
>>> results = opt.solve(save_results=False, load_solutions=False) # doctest: +SKIP
>>> if results.solver.termination_condition == TerminationCondition.optimal:
...     opt.load_vars(m.x) # doctest: +SKIP
```
There is an iterator to loop over the root node solution:

```python
for varname, varval in stsolver.root_Var_solution():
    print (varname, str(varval))
```

There is also a function to compute the objective function value.

```python
obj = stsolver.root_E_obj()
print ("Expecatation take over scenarios=", obj)
```

Again, but with mip gap reported

Now we will solve the same problem again, but we cannot re-use the same `rapper.StochSolver` object in the same program so we must construct a new one; however, we can re-used the scenario tree.

```python
stsolver = rapper.StochSolver("ReferenceModel.py",
    ... tree_model = concrete_tree)
```

We add a solver option to get the mip gap

```python
sopts = {"mipgap": 1} # I want a gap
```

and we add the option to `solve_ef` to return the gap and the `tee` option to see the solver output as well.

```python
res, gap = stsolver.solve_ef(solvername, sopts = sopts, tee=True, need_gap = True)
print ("ef gap=",gap)
```

PH

We will now do the same problem, but with PH and we will re-use the scenario tree in `tree_model` from the code above. We put sub-solver options in `sopts` and PH options (i.e., those that would provided to `runph`) Note that if options are passed to the constructor (and the solver); they are passed as a dictionary where options that do not have an argument have the data value `None`. The constructor really only needs to some options, such as those related to bundling.

```python
sopts = {}
sop = sopts['threads'] = 2
phopts = {}
phopts['--output-solver-log'] = None
phopts['--max-iterations'] = '3'
```

```python
stsolver = rapper.StochSolver("ReferenceModel.py",
    ... tree_model = concrete_tree,
    ... phopts = phopts)
```

The `solve_ph` method is similar to `solve_ef`, but requires a `default_rho` and accepts PH options:
With PH, it is important to be careful to distinguish x-bar from x-hat.

We can compute and x-hat (using the current PH options):

There is a utility for obtaining the x-hat values:

11.2.2 rapper API

A class and some utilities to wrap PySP. In particular to enable programmatic access to some of the functionality in runef and runph for ConcreteModels Author: David L. Woodruff, started February 2017

```python
class pyomo.pysp.util.rapper.StochSolver(fsfile, fsfct=None, tree_model=None, phopts=None):
    A class for solving stochastic versions of concrete models and abstract models. Inspired by the IDAES use case and by daps ability to create tree models. Author: David L. Woodruff, February 2017
    
    Parameters
    • fsfile (str) – is a path to the file that contains the scenario callback for concrete or the reference model for abstract.
    • fsfct (str, or fct, or None) – str callback function name in the file fct callback function None it is a AbstractModel
    • tree_model (concrete model, or networkx tree, or path) – gives the tree as a concrete model (which could be a fct) or a valid networkx scenario tree or path to AMPL data file.
    • phopts – dictionary of ph options; needed during construction if there is bundling.

    scenario_tree
    scenario tree object (that includes data)

    make_ef (verbose=False)
    Make an ef object (used by solve_ef)
        Parameters verbose (boolean) – indicates verbosity to PySP for construction
        Returns the ef object
        Return type ef_instance

    root_E_obj()
    post solve Expected cost of the solution in the scenario tree (xbar)
        Returns the expected costs of the solution in the tree (xbar)
        Return type float
```
root_Var_solution()
Generator to loop over x-bar

Yields name, value pair for root node solution values

solve_ef (subsolver, sopts=None, tee=False, need_gap=False)
Solve the stochastic program directly using the extensive form.

Parameters
• subsolver (str) – the solver to call (e.g., ‘ipopt’)
• sopts (dict) – solver options
• tee (bool) – indicates dynamic solver output to terminal.
• need_gap (bool) – indicates the need for the optimality gap

Returns: (Pyomo solver result, float)
solve_result is the solver return value.
absgap is the absolute optimality gap (might not be valid); only if requested

Note: Also update the scenario tree, populated with the solution. Also attach the full ef instance to the object. So you might want obj = pyo.value(stsolver.ef_instance.MASTER) This needs more work to deal with solver failure (dlw, March, 2018)

solve_ph (subsolver, default_rho=None, phopts=None, sopts=None)
Solve the stochastic program given by this.scenario_tree using ph

Parameters
• subsolver (str) – the solver to call (e.g., ‘ipopt’)
• default_rho (float) – the rho value to use by default
• phopts – dictionary of ph options (optional)
• sopts – dictionary of subsolver options (optional)

Returns: the ph object

Note: Updates the scenario tree, populated with the xbar values; however, you probably want to do obj, xhat = ph.compute_and_report_inner_bound_using_xhat() where ph is the return value.

pyomo.pysp.util.rapper.xhat_from_ph(ph)
a service function to wrap a call to get xhat

Parameters ph – a post-solve ph object

Returns: (float, object)
float: the expected cost of the xhat solution for the scenarios
xhat: an object with the solution tree

pyomo.pysp.util.rapper.xhat_walker(xhat)
A service generator to walk over a given xhat

Parameters xhat (dict) – an xhat solution (probably from xhat_from_ph)

Yields (nodename, varname, varvalue)
11.2.3 Abstract Constructor

In Demonstration of rapper Capabilities we provide a series of examples intended to show different things that can be done with rapper and the constructor is shown for a ConcreteModel. The same capabilities are available for an AbstractModel but the construction of the rapper object is different as shown here.

```python
>>> import pyomo.pysp.util.rapper as rapper
```

The next line constructs the rapper object that can be used to emulate runph or runef.

```python
>>> stsolver = rapper.StochSolver(ReferencePath,
...                               fsfct = None,
...                               tree_model = scenariodirPath,
...                               phopts = None)
```

11.2.4 The rap

As homage to the tired cliché based on the rap-wrap homonym, we provide the lyrics to our rap anthem:

A PySP State of Mind (The Pyomo Hip Hop)

By Woody and https://www.song-lyrics-generator.org.uk

Yeah, yeah
Ayo, modeller, it's time.
It's time, modeller (aight, modeller, begin).
Straight out the scriptable dungeons of rap.

The cat drops deep as does my map.
I never program, 'cause to program is the uncle of rap.
Beyond the walls of scenarios, life is defined.
I think of optimization under uncertainty when I'm in a PySP state of mind.

Hope the resolution got some institution.
My revolution don't like no dirty retribution.
Run up to the distribution and get the evolution.

In a PySP state of mind.

What more could you ask for? The fast cat?
You complain about unscriptability.
I gotta love it though - somebody still speaks for the mat.

I'm rappin' with a cape,
And I'm gonna move your escape.

Easy, big, indented, like a solution
Boy, I tell you, I thought you were an institution.

I can't take the unscriptability, can't take the script.
I woulda tried to code I guess I got no transcript.

Yea, yaz, in a PySP state of mind.
When I was young my uncle had a nondescript.

(continues on next page)
I waz kicked out without no manuscript.
I never thought I'd see that crypt.
Ain't a soul alive that could take my uncle's transcript.

An object oriented fox is quite the box.

Thinking of optimization under uncertainty.
Yaz, thinking of optimization under uncertainty
(optimization under uncertainty).

11.2.5 Bibliography

11.2.6 Indices and Tables

• genindex
• modindex
• search
This section provides documentation about fundamental capabilities in Pyomo. This documentation serves as a reference for both (1) Pyomo developers and (2) advanced users who are developing Python scripts using Pyomo.

12.1 Pyomo Expressions

Warning: This documentation does not explicitly reference objects in pyomo.core.kernel. While the Pyomo5 expression system works with pyomo.core.kernel objects, the documentation of these documents was not sufficient to appropriately describe the use of kernel objects in expressions.

Pyomo supports the declaration of symbolic expressions that represent objectives, constraints and other optimization modeling components. Pyomo expressions are represented in an expression tree, where the leaves are operands, such as constants or variables, and the internal nodes contain operators. Pyomo relies on so-called magic methods to automate the construction of symbolic expressions. For example, consider an expression e declared as follows:

```python
M = ConcreteModel()
M.v = Var()
e = M.v*2
```

Python determines that the magic method `__mul__` is called on the `M.v` object, with the argument 2. This method returns a Pyomo expression object `ProductExpression` that has arguments `M.v` and 2. This represents the following symbolic expression tree:
12.1.1 Building Expressions Faster

Expression Generation

Pyomo expressions can be constructed using native binary operators in Python. For example, a sum can be created in a simple loop:

```python
M = ConcreteModel()
M.x = Var(range(5))
s = 0
for i in range(5):
    s = s + M.x[i]
```

Additionally, Pyomo expressions can be constructed using functions that iteratively apply Python binary operators. For example, the Python `sum()` function can be used to replace the previous loop:

```python
s = sum(M.x[i] for i in range(5))
```

The `sum()` function is both more compact and more efficient. Using `sum()` avoids the creation of temporary variables, and the summation logic is executed in the Python interpreter while the loop is interpreted.

Linear, Quadratic and General Nonlinear Expressions

Pyomo can express a very wide range of algebraic expressions, and there are three general classes of expressions that are recognized by Pyomo:

- **linear polynomials**
- **quadratic polynomials**
- **nonlinear expressions**, including higher-order polynomials and expressions with intrinsic functions

Note: End-users will not likely need to know details related to how symbolic expressions are generated and managed in Pyomo. Thus, most of the following documentation of expressions in Pyomo is most useful for Pyomo developers. However, the discussion of runtime performance in the first section will help end-users write large-scale models.
These classes of expressions are leveraged to efficiently generate compact representations of expressions, and to transform expression trees into standard forms used to interface with solvers. Note that not all quadratic polynomials are recognized by Pyomo; in other words, some quadratic expressions are treated as nonlinear expressions.

For example, consider the following quadratic polynomial:

```py
s = sum(M.x[i] for i in range(5))**2
```

This quadratic polynomial is treated as a nonlinear expression unless the expression is explicitly processed to identify quadratic terms. This lazy identification of quadratic terms allows Pyomo to tailor the search for quadratic terms only when they are explicitly needed.

Pyomo Utility Functions

Pyomo includes several similar functions that can be used to create expressions:

- `prod` A function to compute a product of Pyomo expressions.
- `quicksum` A function to efficiently compute a sum of Pyomo expressions.
- `sum_product` A function that computes a generalized dot product.

prod

The `prod` function is analogous to the built-in `sum()` function. Its main argument is a variable length argument list, `args`, which represents expressions that are multiplied together. For example:

```py
M = ConcreteModel()
M.x = Var(range(5))
M.z = Var()

# The product M.x[0] * M.x[1] * ... * M.x[4]
e1 = prod(M.x[i] for i in M.x)

# The product M.x[0]*M.z
e2 = prod([M.x[0], M.z])

# The product M.z*(M.x[0] + ... + M.x[4])
e3 = prod([sum(M.x[i] for i in M.x), M.z])
```

quicksum

The behavior of the `quicksum` function is similar to the built-in `sum()` function, but this function often generates a more compact Pyomo expression. Its main argument is a variable length argument list, `args`, which represents expressions that are summed together. For example:

```py
M = ConcreteModel()
M.x = Var(range(5))

# Summation using the Python sum() function
e1 = sum(M.x[i]**2 for i in M.x)

# Summation using the Pyomo quicksum function
e2 = quicksum(M.x[i]**2 for i in M.x)
```
The summation is customized based on the `start` and `linear` arguments. The `start` defines the initial value for summation, which defaults to zero. If `start` is a numeric value, then the `linear` argument determines how the sum is processed:

- If `linear` is `False`, then the terms in `args` are assumed to be nonlinear.
- If `linear` is `True`, then the terms in `args` are assumed to be linear.
- If `linear` is `None`, the first term in `args` is analyze to determine whether the terms are linear or nonlinear.

This argument allows the `quicksum` function to customize the expression representation used, and specifically a more compact representation is used for linear polynomials. The `quicksum` function can be slower than the builtin `sum()` function, but this compact representation can generate problem representations more quickly.

Consider the following example:

```python
M = ConcreteModel()
M.A = RangeSet(100000)
M.p = Param(M.A, mutable=True, initialize=1)
M.x = Var(M.A)

start = time.time()
e = sum( (M.x[i] - 1)**M.p[i] for i in M.A)
print("sum: \%f\n" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn: \%f\n" % (time.time() - start))

start = time.time()
e = quicksum( (M.x[i] - 1)**M.p[i] for i in M.A)
print("quicksum: \%f\n" % (time.time() - start))

start = time.time()
generate_standard_repn(e)
print("repn: \%f\n" % (time.time() - start))
```

The sum consists of linear terms because the exponents are one. The following output illustrates that quicksum can identify this linear structure to generate expressions more quickly:

```
sum: 1.447861
repn: 0.870225
quicksum: 1.388344
repn: 0.864316
```

If `start` is not a numeric value, then the `quicksum` sets the initial value to `start` and executes a simple loop to sum the terms. This allows the sum to be stored in an object that is passed into the function (e.g. the linear context manager `linear_expression`).

Warning: By default, `linear` is `None`. While this allows for efficient expression generation in normal cases, there are circumstances where the inspection of the first term in `args` is misleading. Consider the following example:

```python
M = ConcreteModel()
M.x = Var(range(5))
e = quicksum( (M.x[i]**2 if i > 0 else M.x[i]) for i in range(5))
```
The first term created by the generator is linear, but the subsequent terms are nonlinear. Pyomo gracefully transitions to a nonlinear sum, but in this case *quicksum* is doing additional work that is not useful.

sum_product

The *sum_product* function supports a generalized dot product. The *args* argument contains one or more components that are used to create terms in the summation. If the *args* argument contains a single component, then its sequence of terms are summed together; the sum is equivalent to calling *quicksum*. If two or more components are provided, then the result is the summation of their terms multiplied together. For example:

```python
M = ConcreteModel()
M.z = RangeSet(5)
M.x = Var(range(10))
M.y = Var(range(10))

# Sum the elements of x
e1 = sum_product(M.x)

# Sum the product of elements in x and y
e2 = sum_product(M.x, M.y)

# Sum the product of elements in x and y, over the index set z
e3 = sum_product(M.x, M.y, index=M.z)
```

The *denom* argument specifies components whose terms are in the denominator. For example:

```python
# Sum the product of x_i/y_i
e1 = sum_product(M.x, denom=M.y)

# Sum the product of 1/(x_i*y_i)
e2 = sum_product(denom=(M.x, M.y))
```

The terms summed by this function are explicitly specified, so *sum_product* can identify whether the resulting expression is linear, quadratic or nonlinear. Consequently, this function is typically faster than simple loops, and it generates compact representations of expressions.

Finally, note that the *dot_product* function is an alias for *sum_product*.

12.1.2 Design Overview

Historical Comparison

This document describes the “Pyomo5” expressions, which were introduced in Pyomo 5.6. The main differences between “Pyomo5” expressions and the previous expression system, called “Coopr3”, are:

- Pyomo5 supports both CPython and PyPy implementations of Python, while Coopr3 only supports CPython.

 The key difference in these implementations is that Coopr3 relies on CPython reference counting, which is not part of the Python language standard. Hence, this implementation is not guaranteed to run on other implementations of Python.

 Pyomo5 does not rely on reference counting, and it has been tested with PyPy. In the future, this should allow Pyomo to support other Python implementations (e.g. Jython).
• Pyomo5 expression objects are immutable, while Coopr3 expression objects are mutable.

This difference relates to how expression objects are managed in Pyomo. Once created, Pyomo5 expression objects cannot be changed. Further, the user is guaranteed that no “side effects” occur when expressions change at a later point in time. By contrast, Coopr3 allows expressions to change in-place, and thus “side effects” make occur when expressions are changed at a later point in time. (See discussion of entanglement below.)

• Pyomo5 provides more consistent runtime performance than Coopr3.

While this documentation does not provide a detailed comparison of runtime performance between Coopr3 and Pyomo5, the following performance considerations also motivated the creation of Pyomo5:

– There were surprising performance inconsistencies in Coopr3. For example, the following two loops had dramatically different runtime:

```python
def run_loops():
    M = ConcreteModel()
    M.x = Var(range(100))
    e = 0
    for i in range(100):
        e = e + M.x[i]

    e = 0
    for i in range(100):
        e = M.x[i] + e
```

– Coopr3 eliminates side effects by automatically cloning sub-expressions. Unfortunately, this can easily lead to unexpected cloning in models, which can dramatically slow down Pyomo model generation. For example:

```python
def run_loops():
    M = ConcreteModel()
    M.p = Param(initialize=3)
    M.q = 1/M.p
    M.x = Var(range(100))
    e = 0
    for i in range(100):
        e = e + M.x[i]*M.q
```

– Coopr3 leverages recursion in many operations, including expression cloning. Even simple non-linear expressions can result in deep expression trees where these recursive operations fail because Python runs out of stack space.

– The immutable representation used in Pyomo5 requires more memory allocations than Coopr3 in simple loops. Hence, a pure-Python execution of Pyomo5 can be 10% slower than Coopr3 for model construction. But when Cython is used to optimize the execution of Pyomo5 expression generation, the runtimes for Pyomo5 and Coopr3 are about the same. (In principle, Cython would improve the runtime of Coopr3 as well, but the limitations noted above motivated a new expression system in any case.)

Expression Entanglement and Mutability

Pyomo fundamentally relies on the use of magic methods in Python to generate expression trees, which means that Pyomo has very limited control for how expressions are managed in Python. For example:

• Python variables can point to the same expression tree
This is illustrated as follows:

- A variable can point to a sub-tree that another variable points to

```
M = ConcreteModel()
M.v = Var()
e = f = 2*M.v
```

This is illustrated as follows:
• Two expression trees can point to the same sub-tree

```python
M = ConcreteModel()
M.v = Var()

e = 2*M.v
f = e + 3
g = e + 4
```

This is illustrated as follows:
In each of these examples, it is almost impossible for a Pyomo user or developer to detect whether expressions are being shared. In CPython, the reference counting logic can support this to a limited degree. But no equivalent mechanisms are available in PyPy and other Python implementations.

Entangled Sub-Expressions

We say that expressions are *entangled* if they share one or more sub-expressions. The first example above does not represent entanglement, but rather the fact that multiple Python variables can point to the same expression tree. In the second and third examples, the expressions are entangled because the subtree represented by e is shared. However, if a leave node like $M.v$ is shared between expressions, we do not consider those expressions entangled.

Expression entanglement is problematic because shared expressions complicate the expected behavior when sub-expressions are changed. Consider the following example:

```python
M = ConcreteModel()
M.v = Var()
M.w = Var()

e = 2*M.v
f = e + 3
e += M.w
```

What is the value of e after $M.w$ is added to it? What is the value of f? The answers to these questions are not immediately obvious, and the fact that Coopr3 uses mutable expression objects makes them even less clear. However,
Pyomo5 and Coopr3 enforce the following semantics:

A change to an expression \(e \) that is a sub-expression of \(f \) does not change the expression tree for \(f \).

This property ensures a change to an expression does not create side effects that change the values of other, previously defined expressions.

For instance, the previous example results in the following (in Pyomo5):

With Pyomo5 expressions, each sub-expression is immutable. Thus, the summation operation generates a new expression \(e \) without changing existing expression objects referenced in the expression tree for \(f \). By contrast, Coopr3 imposes the same property by cloning the expression \(e \) before added \(M \cdot w \), resulting in the following:
This example also illustrates that leaves may be shared between expressions.

Mutable Expression Components

There is one important exception to the entanglement property described above. The `Expression` component is treated as a mutable expression when shared between expressions. For example:

```python
M = ConcreteModel()
M.v = Var()
M.w = Var()
M.e = Expression(expr=2*M.v)
f = M.e + 3
M.e += M.w
```

Here, the expression `M.e` is a so-called *named expression* that the user has declared. Named expressions are explicitly intended for re-use within models, and they provide a convenient mechanism for changing sub-expressions in complex applications. In this example, the expression tree is as follows before `M.w` is added:
And the expression tree is as follows after \(M.w \) is added.
When considering named expressions, Pyomo and Coopr enforce the following semantics:

A change to a named expression e that is a sub-expression of f changes the expression tree for f, because f continues to point to e after it is changed.

12.1.3 Design Details

Warning: Pyomo expression trees are not composed of Python objects from a single class hierarchy. Consequently, Pyomo relies on duck typing to ensure that valid expression trees are created.
Most Pyomo expression trees have the following form

1. Interior nodes are objects that inherit from the `ExpressionBase` class. These objects typically have one or more child nodes. Linear expression nodes do not have child nodes, but they are treated as interior nodes in the expression tree because they references other leaf nodes.

2. Leaf nodes are numeric values, parameter components and variable components, which represent the inputs to the expression.

Expression Classes

Expression classes typically represent unary and binary operations. The following table describes the standard operators in Python and their associated Pyomo expression class:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Python Syntax</th>
<th>Pyomo Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>sum</td>
<td>x + y</td>
<td>SumExpression</td>
</tr>
<tr>
<td>product</td>
<td>x * y</td>
<td>ProductExpression</td>
</tr>
<tr>
<td>negation</td>
<td>- x</td>
<td>NegationExpression</td>
</tr>
<tr>
<td>reciprocal</td>
<td>1 / x</td>
<td>ReciprocalExpression</td>
</tr>
<tr>
<td>power</td>
<td>x ** y</td>
<td>PowExpression</td>
</tr>
<tr>
<td>inequality</td>
<td>x <= y</td>
<td>InequalityExpression</td>
</tr>
<tr>
<td>equality</td>
<td>x == y</td>
<td>EqualityExpression</td>
</tr>
</tbody>
</table>

Additionally, there are a variety of other Pyomo expression classes that capture more general logical relationships, which are summarized in the following table:

<table>
<thead>
<tr>
<th>Operation</th>
<th>Example</th>
<th>Pyomo Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>external function</td>
<td>myfunc(x,y,z)</td>
<td>ExternalFunctionExpression</td>
</tr>
<tr>
<td>logical if-then-else</td>
<td>Expr_if(IF=x, THEN=y, ELSE=z)</td>
<td>Expr_ifExpression</td>
</tr>
<tr>
<td>intrinsic function</td>
<td>sin(x)</td>
<td>UnaryFunctionExpression</td>
</tr>
<tr>
<td>absolute function</td>
<td>abs(x)</td>
<td>AbsExpression</td>
</tr>
</tbody>
</table>

Expression objects are immutable. Specifically, the list of arguments to an expression object (a.k.a. the list of child nodes in the tree) cannot be changed after an expression class is constructed. To enforce this property, expression objects have a standard API for accessing expression arguments:

- `args` - a class property that returns a generator that yields the expression arguments
- `arg(i)` - a function that returns the i-th argument
- `nargs()` - a function that returns the number of expression arguments

Warning: Developers should never use the `_args_` property directly! The semantics for the use of this data has changed since earlier versions of Pyomo. For example, in some expression classes the the value `nargs()` may not equal `len(_args_)`!

Expression trees can be categorized in four different ways:

- constant expressions - expressions that do not contain numeric constants and immutable parameters.
- mutable expressions - expressions that contain mutable parameters but no variables.
- potentially variable expressions - expressions that contain variables, which may be fixed.
- fixed expressions - expressions that contain variables, all of which are fixed.
These three categories are illustrated with the following example:

```python
m = ConcreteModel()
m.p = Param(default=10, mutable=False)
m.q = Param(default=10, mutable=True)
m.x = Var()
m.y = Var(initialize=1)
m.y.fixed = True
```

The following table describes four different simple expressions that consist of a single model component, and it shows how they are categorized:

<table>
<thead>
<tr>
<th>Category</th>
<th>m.p</th>
<th>m.q</th>
<th>m.x</th>
<th>m.y</th>
</tr>
</thead>
<tbody>
<tr>
<td>constant</td>
<td>True</td>
<td>False</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>not potentially variable</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>False</td>
</tr>
<tr>
<td>potentially_variable</td>
<td>False</td>
<td>False</td>
<td>True</td>
<td>True</td>
</tr>
<tr>
<td>fixed</td>
<td>True</td>
<td>True</td>
<td>False</td>
<td>True</td>
</tr>
</tbody>
</table>

Expressions classes contain methods to test whether an expression tree is in each of these categories. Additionally, Pyomo includes custom expression classes for expression trees that are not potentially variable. These custom classes will not normally be used by developers, but they provide an optimization of the checks for potentially variability.

Special Expression Classes

The following classes are exceptions to the design principles described above.

Named Expressions

Named expressions allow for changes to an expression after it has been constructed. For example, consider the expression \(f \) defined with the `Expression` component:

```python
M = ConcreteModel()
M.v = Var()
M.w = Var()
M.e = Expression(expr=2*M.v)
f = M.e + 3  # f == 2*v + 3
M.e += M.w   # f == 2*v + 3 + w
```

Although \(f \) is an immutable expression, whose definition is fixed, a sub-expressions is the named expression \(M.e \). Named expressions have a mutable value. In other words, the expression that they point to can change. Thus, a change to the value of \(M.e \) changes the expression tree for any expression that includes the named expression.

Note: The named expression classes are not implemented as sub-classes of `ExpressionBase`. This reflects design constraints related to the fact that these are modeling components that belong to class hierarchies other than the expression class hierarchy, and Pyomo’s design prohibits the use of multiple inheritance for these classes.

Linear Expressions

Pyomo includes a special expression class for linear expressions. The class `LinearExpression` provides a compact description of linear polynomials. Specifically, it includes a constant value `constant` and two lists for coeffi-
clients and variables: linear_coefs and linear_vars.

This expression object does not have arguments, and thus it is treated as a leaf node by Pyomo visitor classes. Further, the expression API functions described above do not work with this class. Thus, developers need to treat this class differently when walking an expression tree (e.g. when developing a problem transformation).

Sum Expressions

Pyomo does not have a binary sum expression class. Instead, it has an n-ary summation class, SumExpression. This expression class treats sums as n-ary sums for efficiency reasons; many large optimization models contain large sums. But note that this class maintains the immutability property described above. This class shares an underlying list of arguments with other SumExpression objects. A particular object owns the first n arguments in the shared list, but different objects may have different values of n.

This class acts like a normal immutable expression class, and the API described above works normally. But direct access to the shared list could have unexpected results.

Mutable Expressions

Finally, Pyomo includes several mutable expression classes that are private. These are not intended to be used by users, but they might be useful for developers in contexts where the developer can appropriately control how the classes are used. Specifically, immutability eliminates side-effects where changes to a sub-expression unexpectedly create changes to the expression tree. But within the context of model transformations, developers may be able to limit the use of expressions to avoid these side-effects. The following mutable private classes are available in Pyomo:

mutableSumExpression This class is used in the nonlinear_expression context manager to efficiently combine sums of nonlinear terms.

mutableLinearExpression This class is used in the linear_expression context manager to efficiently combine sums of linear terms.

Expression Semantics

Pyomo clear semantics regarding what is considered a valid leaf and interior node. The following classes are valid interior nodes:

- Subclasses of ExpressionBase
- Classes that that are duck typed to match the API of the ExpressionBase class. For example, the named expression class Expression.

The following classes are valid leaf nodes:

- Members of nonpyomo_leaf_types, which includes standard numeric data types like int, float and long, as well as numeric data types defined by numpy and other commonly used packages. This set also includes NonNumericValue, which is used to wrap non-numeric arguments to the ExternalFunctionExpression class.

- Parameter component classes like SimpleParam and _ParamData, which arise in expression trees when the parameters are declared as mutable. (Immutable parameters are identified when generating expressions, and they are replaced with their associated numeric value.)

- Variable component classes like SimpleVar and _GeneralVarData, which often arise in expression trees.
Note: In some contexts the `LinearExpression` class can be treated as an interior node, and sometimes it can be treated as a leaf. This expression object does not have any child arguments, so `nargs()` is zero. But this expression references variables and parameters in a linear expression, so in that sense it does not represent a leaf node in the tree.

Context Managers

Pyomo defines several context managers that can be used to declare the form of expressions, and to define a mutable expression object that efficiently manages sums.

The `linear_expression` object is a context manager that can be used to declare a linear sum. For example, consider the following two loops:

```python
M = ConcreteModel()
M.x = Var(range(5))
s = 0
for i in range(5):
    s += M.x[i]

with linear_expression() as e:
    for i in range(5):
        e += M.x[i]
```

The first apparent difference in these loops is that the value of `s` is explicitly initialized while `e` is initialized when the context manager is entered. However, a more fundamental difference is that the expression representation for `s` differs from `e`. Each term added to `s` results in a new, immutable expression. By contrast, the context manager creates a mutable expression representation for `e`. This difference allows for both (a) a more efficient processing of each sum, and (b) a more compact representation for the expression.

The difference between `linear_expression` and `nonlinear_expression` is the underlying representation that each supports. Note that both of these are instances of context manager classes. In singled-threaded applications, these objects can be safely used to construct different expressions with different context declarations.

Finally, note that these context managers can be passed into the `start` method for the `quicksum` function. For example:

```python
M = ConcreteModel()
M.x = Var(range(5))
M.y = Var(range(5))

with linear_expression() as e:
    quicksum((M.x[i] for i in M.x), start=e)
    quicksum((M.y[i] for i in M.y), start=e)
```

This sum contains terms for `M.x[i]` and `M.y[i]`. The syntax in this example is not intuitive because the sum is being stored in `e`.

Note: We do not generally expect users or developers to use these context managers. They are used by the `quicksum` and `sum_product` functions to accelerate expression generation, and there are few cases where the direct use of these context managers would provide additional utility to users and developers.

12.1.4 Managing Expressions
Creating a String Representation of an Expression

There are several ways that string representations can be created from an expression, but the `expression_to_string` function provides the most flexible mechanism for generating a string representation. The options to this function control distinct aspects of the string representation.

Algebraic vs. Nested Functional Form

The default string representation is an algebraic form, which closely mimics the Python operations used to construct an expression. The `verbose` flag can be set to `True` to generate a string representation that is a nested functional form. For example:

```python
from pyomo.core.expr import current as EXPR
M = ConcreteModel()
M.x = Var()
e = sin(M.x) + 2*M.x
# sin(x) + 2*x
print(EXPR.expression_to_string(e))
# sum(sin(x), prod(2, x))
print(EXPR.expression_to_string(e, verbose=True))
```

Labeler and Symbol Map

The string representation used for variables in expression can be customized to define different label formats. If the `labeler` option is specified, then this function (or class functor) is used to generate a string label used to represent the variable. Pyomo defines a variety of labelers in the `pyomo.core.base.label` module. For example, the `NumericLabeler` defines a functor that can be used to sequentially generate simple labels with a prefix followed by the variable count:

```python
from pyomo.core.expr import current as EXPR
M = ConcreteModel()
M.x = Var()
M.y = Var()
e = sin(M.x) + 2*M.y
# sin(x1) + 2*x2
print(EXPR.expression_to_string(e, labeler=NumericLabeler('x')))  
```

The `smap` option is used to specify a symbol map object (`SymbolMap`), which caches the variable label data. This option is normally specified in contexts where the string representations for many expressions are being generated. In that context, a symbol map ensures that variables in different expressions have a consistent label in their associated string representations.

Standardized String Representations

The `standardize` option can be used to re-order the string representation to print polynomial terms before nonlinear terms. By default, `standardize` is `False`, and the string representation reflects the order in which terms were
combined to form the expression. Pyomo does not guarantee that the string representation exactly matches the Python expression order, since some simplification and re-ordering of terms is done automatically to improve the efficiency of expression generation. But in most cases the string representation will closely correspond to the Python expression order.

If `standardize` is `True`, then the pyomo expression is processed to identify polynomial terms, and the string representation consists of the constant and linear terms followed by an expression that contains other nonlinear terms. For example:

```python
from pyomo.core.expr import current as EXPR
M = ConcreteModel()
M.x = Var()
M.y = Var()
e = sin(M.x) + 2*M.y + M.x*M.y - 3
# -3 + 2*y + sin(x) + x*y
print(EXPR.expression_to_string(e, standardize=True))
```

Other Ways to Generate String Representations

There are two other standard ways to generate string representations:

- Call the `__str__()` magic method (e.g. using the Python `str()` function. This calls `expression_to_string` with the option `standardize` equal to `True` (see below).
- Call the `to_string()` method on the `ExpressionBase` class. This defaults to calling `expression_to_string` with the option `standardize` equal to `False` (see below).

In practice, we expect at the `__str__()` magic method will be used by most users, and the standardization of the output provides a consistent ordering of terms that should make it easier to interpret expressions.

Cloning Expressions

Expressions are automatically cloned only during certain expression transformations. Since this can be an expensive operation, the `clone_counter` context manager object is provided to track the number of times the `clone_expression` function is executed.

For example:

```python
from pyomo.core.expr import current as EXPR
M = ConcreteModel()
M.x = Var()

with EXPR.clone_counter() as counter:
    start = counter.count
e1 = sin(M.x)
e2 = e1.clone()
total = counter.count - start
assert(total == 1)
```
Evaluating Expressions

Expressions can be evaluated when all variables and parameters in the expression have a value. The `value` function can be used to walk the expression tree and compute the value of an expression. For example:

```python
M = ConcreteModel()
M.x = Var()
M.x.value = math.pi/2.0
val = value(M.x)
assert (isclose(val, math.pi/2.0))
```

Additionally, expressions define the `__call__()` method, so the following is another way to compute the value of an expression:

```python
val = M.x()
assert (isclose(val, math.pi/2.0))
```

If a parameter or variable is undefined, then the `value` function and `__call__()` method will raise an exception. This exception can be suppressed using the `exception` option. For example:

```python
M = ConcreteModel()
M.x = Var()
val = value(M.x, exception=False)
assert (val is None)
```

This option is useful in contexts where adding a try block is inconvenient in your modeling script.

Note: Both the `value` function and `__call__()` method call the `evaluate_expression` function. In practice, this function will be slightly faster, but the difference is only meaningful when expressions are evaluated many times.

Identifying Components and Variables

Expression transformations sometimes need to find all nodes in an expression tree that are of a given type. Pyomo contains two utility functions that support this functionality. First, the `identify_components` function is a generator function that walks the expression tree and yields all nodes whose type is in a specified set of node types. For example:

```python
from pyomo.core.expr import current as EXPR
M = ConcreteModel()
M.x = Var()
M.p = Param(mutable=True)
e = M.p+M.x
s = set([type(M.p)])
assert (list(EXPR.identify_components(e, s)) == [M.p])
```

The `identify_variables` function is a generator function that yields all nodes that are variables. Pyomo uses several different classes to represent variables, but this set of variable types does not need to be specified by the user. However, the `include_fixed` flag can be specified to omit fixed variables. For example:

```python
from pyomo.core.expr import current as EXPR
(continues on next page)
```
M = ConcreteModel()
M.x = Var()
M.y = Var()
e = M.x+M.y
M.y.value = 1
M.y.fixed = True
assert(set(id(v) for v in EXPR.identify_variables(e)) == set([id(M.x), id(M.y)]))
assert(set(id(v) for v in EXPR.identify_variables(e, include_fixed=False)) ==
->set([id(M.x)]))

Walking an Expression Tree with a Visitor Class

Many of the utility functions defined above are implemented by walking an expression tree and performing an operation at nodes in the tree. For example, evaluating an expression is performed using a post-order depth-first search process where the value of a node is computed using the values of its children.

Walking an expression tree can be tricky, and the code requires intimate knowledge of the design of the expression system. Pyomo includes several classes that define so-called visitor patterns for walking expression tree:

* **SimpleExpressionVisitor** A `visitor()` method is called for each node in the tree, and the visitor class collects information about the tree.

* **ExpressionValueVisitor** When the `visitor()` method is called on each node in the tree, the values of its children have been computed. The `value` of the node is returned from `visitor()`.

* **ExpressionReplacementVisitor** When the `visitor()` method is called on each node in the tree, it may clone or otherwise replace the node using objects for its children (which themselves may be cloning or replacements from the original child objects). The new node object is returned from `visitor()`.

These classes define a variety of suitable tree search methods:

- **SimpleExpressionVisitor**
 - `xbfs`: breadth-first search where leaf nodes are immediately visited
 - `xbfs_yield_leaves`: breadth-first search where leaf nodes are immediately visited, and the visit method yields a value

- **ExpressionValueVisitor**
 - `dfs_postorder_stack`: postorder depth-first search using a stack

- **ExpressionReplacementVisitor**
 - `dfs_postorder_stack`: postorder depth-first search using a stack

Note: The PyUtilib visitor classes define several other search methods that could be used with Pyomo expressions. But these are the only search methods currently used within Pyomo.

To implement a visitor object, a user creates a subclass of one of these classes. Only one of a few methods will need to be defined to implement the visitor:

`visitor()` Defines the operation that is performed when a node is visited. In the `ExpressionValueVisitor` and `ExpressionReplacementVisitor` visitor classes, this method returns a value that is used by its parent node.
visiting_potential_leaf() Checks if the search should terminate with this node. If no, then this method returns the tuple (False, None). If yes, then this method returns (False, value), where value is computed by this method. This method is not used in the SimpleExpressionVisitor visitor class.

finalize() This method defines the final value that is returned from the visitor. This is not normally redefined. Detailed documentation of the APIs for these methods is provided with the class documentation for these visitors.

SimpleExpressionVisitor Example

In this example, we describe an visitor class that counts the number of nodes in an expression (including leaf nodes). Consider the following class:

```python
from pyomo.core.expr.current as EXPR

class SizeofVisitor(EXPR.SimpleExpressionVisitor):
    def __init__(self):
        self.counter = 0
    def visit(self, node):
        self.counter += 1
    def finalize(self):
        return self.counter
```

The class constructor creates a counter, and the visit() method increments this counter for every node that is visited. The finalize() method returns the value of this counter after the tree has been walked. The following function illustrates this use of this visitor class:

```python
def sizeof_expression(expr):
    # Create the visitor object
    visitor = SizeofVisitor()
    # Compute the value using the :func:`xbfs` search method.
    return visitor.xbfs(expr)
```

ExpressionValueVisitor Example

In this example, we describe an visitor class that clones the expression tree (including leaf nodes). Consider the following class:

```python
from pyomo.core.expr.current as EXPR

class CloneVisitor(EXPR.ExpressionValueVisitor):
    def __init__(self):
        self.memo = {'__block_scope__': { id(None): False }}
    def visit(self, node, values):
        # Clone the interior node
        # Clone the interior node
        # Clone the interior node
```

(continues on next page)
The `visit()` method creates a new expression node with children specified by `values`. The `visiting_potential_leaf()` method performs a `deepcopy()` on leaf nodes, which are native Python types or non-expression objects.

```python
def clone_expression(expr):
    # Create the visitor object
    visitor = CloneVisitor()
    # Clone the expression using the :func:`dfs_postorder_stack` search method.
    return visitor.dfs_postorder_stack(expr)
```

ExpressionReplacementVisitor Example

In this example, we describe an visitor class that replaces variables with scaled variables, using a mutable parameter that can be modified later. the following class:

```python
from pyomo.core.expr import current as EXPR

class ScalingVisitor(EXPR.ExpressionReplacementVisitor):
    def __init__(self, scale):
        super(ScalingVisitor, self).__init__
        self.scale = scale

    def visiting_potential_leaf(self, node):
        # Clone leaf nodes in the expression tree
        if node.__class__ in native_numeric_types:
            return True, node
        if node.is_variable_type():
            return True, self.scale[id(node)]*node
        if isinstance(node, EXPR.LinearExpression):
            node_ = copy.deepcopy(node)
            node_.constant = node.constant
            return True, node_  # ...
Pyomo Documentation, Release 5.6.2.dev0

(continued from previous page)

```python
node_.linear_vars = copy.copy(node.linear_vars)
node_.linear_coefs = []
 for i, v in enumerate(node.linear_vars):
 node_.linear_coefs.append(node.linear_coefs[i] * self.scale[id(v)])
 return True, node_
return False, None
```

No visit() method needs to be defined. The visiting_potential_leaf() function identifies variable nodes and returns a product expression that contains a mutable parameter. The _LinearExpression class has a different representation that embeds variables. Hence, this class must be handled in a separate condition that explicitly transforms this sub-expression.

```python
def scale_expression(expr, scale):
 # Create the visitor object
 visitor = ScalingVisitor(scale)
 # Scale the expression using the :func:`dfs_postorder_stack` search method.
 return visitor.dfs_postorder_stack(expr)
```

The scale_expression() function is called with an expression and a dictionary, scale, that maps variable ID to model parameter. For example:

```python
M = ConcreteModel()
M.x = Var(range(5))
M.p = Param(range(5), mutable=True)

scale={}
 for i in M.x:
 scale[id(M.x[i])] = M.p[i]

e = quicksum(M.x[i] for i in M.x)
f = scale_expression(e, scale)
print(f)
```
Pyomo is being increasingly used as a library to support Python scripts. This section describes library APIs for key elements of Pyomo’s core library. This documentation serves as a reference for both (1) Pyomo developers and (2) advanced users who are developing Python scripts using Pyomo.

## 13.1 AML Library Reference

The following modeling components make up the core of the Pyomo Algebraic Modeling Language (AML). These classes are all available through the `pyomo.environ` namespace.

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ConcreteModel(*args,**kwds)</code></td>
<td>A concrete optimization model that does not defer construction of components.</td>
</tr>
<tr>
<td><code>AbstractModel(*args,**kwds)</code></td>
<td>An abstract optimization model that defers construction of components.</td>
</tr>
<tr>
<td><code>Block(*args,**kwargs)</code></td>
<td>Blocks are indexed components that contain other components (including blocks).</td>
</tr>
<tr>
<td><code>Set(*args,**kwds)</code></td>
<td>A set object that is used to index other Pyomo objects.</td>
</tr>
<tr>
<td><code>RangeSet(*args,**kwds)</code></td>
<td>A set that represents a list of numeric values.</td>
</tr>
<tr>
<td><code>Param(*args,**kwd)</code></td>
<td>A parameter value, which may be defined over an index.</td>
</tr>
<tr>
<td><code>Var(*args,**kwd)</code></td>
<td>A numeric variable, which may be defined over an index.</td>
</tr>
<tr>
<td><code>Objective(*args,**kwargs)</code></td>
<td>This modeling component defines an objective expression.</td>
</tr>
<tr>
<td><code>Constraint(*args,**kwargs)</code></td>
<td>This modeling component defines a constraint expression using a rule function.</td>
</tr>
<tr>
<td><code>Reference(reference[, ctype])</code></td>
<td>Creates a component that references other components.</td>
</tr>
</tbody>
</table>
13.1.1 AML Component Documentation

class pyomo.environ.ConcreteModel(*args, **kwds)
    Bases: pyomo.core.base.PyomoModel.Model

A concrete optimization model that does not defer construction of components.

activate()
    Set the active attribute to True

active
    Return the active attribute

add_component(name, val)
    Add a component 'name' to the block.
    This method assumes that the attribute is not in the model.

block_data_objects(active=None, sort=False, descend_into=True, descent_order=None)
    This method returns a generator that iterates through the current block and recursively all sub-blocks. This
    is semantically equivalent to

        component_data_objects(Block, …)

clear()
    Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
    Set the suffix value for this component data

cloned
    TODO

collect_ctypes(active=None, descend_into=True)
    Count all component types stored on or under this block.

    Parameters

    • active (True/None) – Set to True to indicate that only active components should be counted. The default value
      of None indicates that all components (including those that have been deactivated) should be counted.

    • descend_into (bool) – Indicates whether or not component types should be counted on sub-blocks. Default is True.

    Returns: A set of component types.

component(name_or_object)
    Return a child component of this block.

    If passed a string, this will return the child component registered by that name. If passed a component, this
    will return that component IFF the component is a child of this block. Returns None on lookup failure.

component_data_iterindex(cctype=None, active=None, sort=False, descend_into=True, descent_order=None)
    Return a generator that returns a tuple for each component data object in a block. By default, this generator
    recursively descends into sub-blocks. The tuple is

        ((component name, index value), _ComponentData)

component_data_objects(cctype=None, active=None, sort=False, descend_into=True, descent_order=None)
    Return a generator that iterates through the component data objects for all components in a block. By
    default, this generator recursively descends into sub-blocks.
component_map (ctype=None, active=None, sort=False)
Returns a PseudoMap of the components in this block.
   
   **ctype** None - All components ComponentType - A single ComponentType Iterable - Iterate to
generate ComponentTypes
   
   **active** None - All True - Active False - Inactive
   
   **sort** True, False True - Maps to Block.alphabetizeComponentAndIndex False - Maps to
Block.declarationOrder

cOMPONENT OBJECTS (ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Returns a generator that iterates through the component objects in a block. By default, the generator recurs-
ively descends into sub-blocks.

cOMPUTE STATISTICS (active=True)
Compute model statistics

construct (data=None)
Initialize the block

contains_component (ctype)
Return True if the component type is in _ctypes and ... TODO.

create (filename=None, **kwargs)
Create a concrete instance of this Model, possibly using data read in from a file.

create_instance (filename=None, data=None, name=None, namespace=None, namespaces=None,
profile_memory=0, report_timing=False, **kwds)
Create a concrete instance of an abstract model, possibly using data read in from a file.

Parameters
   
   • **filename** (str, optional) – The name of a Pyomo Data File that will be used to load data
into the model.
   
   • **data** (dict, optional) – A dictionary containing initialization data for the model to be used
if there is no filename
   
   • **name** (str, optional) – The name given to the model.
   
   • **namespace** (str, optional) – A namespace used to select data.
   
   • **namespaces** (list, optional) – A list of namespaces used to select data.
   
   • **profile_memory** (int, optional) – A number that indicates the profiling level.
   

deactivate ()
Set the active attribute to False

del_component (name_or_object)
Delete a component from this block.

dim ()
Return the dimension of the index

display (filename=None, ostream=None, prefix=")
Display values in the block

find_component (label_or_component)
Return a block component given a name.
get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Return a string with the component name and index

id_index_map()
Return a dictionary id->index for all ComponentData instances.

index()
Returns the index of this ComponentData instance relative to the parent component index set. None is
returned if this instance does not have a parent component, or if - for some unknown reason - this instance
does not belong to the parent component’s index set. This method is not intended to be a fast method; it
should be used rarely, primarily in cases of label formulation.

index_set()
Return the index set

is_component_type()
Return True if this class is a Pyomo component

is_constructed()
A boolean indicating whether or not all active components of the input model have been properly con-
structed.

is_indexed()
Return true if this component is indexed

items()
Return a list (index,data) tuples from the dictionary

iteritems()
Return an iterator of (index,data) tuples from the dictionary

iterkeys()
Return an iterator of the keys in the dictionary

itervalues()
Return an iterator of the component data objects in the dictionary

keys()
Return a list of keys in the dictionary

load(arg, namespaces=[None], profile_memory=0, report_timing=None)
Load the model with data from a file, dictionary or DataPortal object.

local_name
Get the component name only within the context of the immediate parent container.

model()
Return the model of the component that owns this data.

name
Get the fully qualified component name.

parent_block()
Return the parent of the component that owns this data.

parent_component()
Returns the component associated with this object.

pprint(filename=None, ostream=None, verbose=False, prefix="")
Print block information
```python
preprocess (preprocessor=None)
 Apply the preprocess plugins defined by the user

preprocessor_ep = <ExtensionPoint IPyomoPresolver env=pyomo>

reclassify_component_type (name_or_object, new_ctype, preserve_declaration_order=True)
 TODO

reconstruct (data=None)
 Re-construct model expressions

root_block ()
 Return self.model()

set_suffix_value (suffix_or_name, value, expand=True)
 Set the suffix value for this component data

set_value (val)
 Set the value of a scalar component.

to_dense_data ()
 TODO

to_string (verbose=None, labeler=None, smap=None, compute_values=False)
 Return a string representation of this component, applying the labeler if passed one.

type ()
 Return the class type for this component

valid_model_component ()
 Return True if this can be used as a model component.

valid_problem_types ()
 This method allows the pyomo.opt convert function to work with a Model object.

values ()
 Return a list of the component data objects in the dictionary

write (filename=None, format=None, solver_capability=None, io_options={})
 Write the model to a file, with a given format.

class pyomo.environ.AbstractModel (*args, **kwds)
 Bases: pyomo.core.base.PyomoModel.Model

An abstract optimization model that defers construction of components.

activate ()
 Set the active attribute to True

active
 Return the active attribute

add_component (name, val)
 Add a component ‘name’ to the block.
 This method assumes that the attribute is not in the model.

block_data_objects (active=None, sort=False, descend_into=True, descent_order=None)
 This method returns a generator that iterates through the current block and recursively all sub-blocks. This
 is semantically equivalent to
 component_data_objects(Block, …)

clear ()
 Clear the data in this component
```
clear_suffix_value(suffix_or_name, expand=True)
Set the suffix value for this component data

close()?
TODO

collect_ctypes(active=None, descend_into=True)
Count all component types stored on or under this block.

 Parameters

- active (True/None) – Set to True to indicate that only active components should be counted. The default value of None indicates that all components (including those that have been deactivated) should be counted.
- descend_into (bool) – Indicates whether or not component types should be counted on sub-blocks. Default is True.

 Returns: A set of component types.

component(name_or_object)
Return a child component of this block.

If passed a string, this will return the child component registered by that name. If passed a component, this will return that component IFF the component is a child of this block. Returns None on lookup failure.

component_data_iterindex(ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Return a generator that returns a tuple for each component data object in a block. By default, this generator recursively descends into sub-blocks. The tuple is

((component name, index value), _ComponentData)

component_data_objects(ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Return a generator that iterates through the component data objects for all components in a block. By default, this generator recursively descends into sub-blocks.

component_map(ctype=None, active=None, sort=False)
Returns a PseudoMap of the components in this block.

- ctype None - All components ComponentType - A single ComponentType Iterable - Iterate to generate ComponentTypes
- active is None, True, False None - All True - Active False - Inactive
- sort is True, False True - Maps to Block.alphabetizeComponentAndIndex False - Maps to Block.declarationOrder

component_objects(ctype=None, active=None, sort=False, descend_into=True, descent_order=None)
Return a generator that iterates through the component objects in a block. By default, the generator recursively descends into sub-blocks.

compute_statistics(active=True)
Compute model statistics

construct(data=None)
Initialize the block

contains_component(ctype)
Return True if the component type is in _ctypes and … TODO.

create(filename=None, **kwargs)
Create a concrete instance of this Model, possibly using data read in from a file.
create_instance (filename=None, data=None, name=None, namespace=None, namespaces=None, profile_memory=0, report_timing=False, **kwds)
Create a concrete instance of an abstract model, possibly using data read in from a file.

Parameters

- **filename** (str, optional) – The name of a Pyomo Data File that will be used to load data into the model.
- **data** (dict, optional) – A dictionary containing initialization data for the model to be used if there is no filename.
- **name** (str, optional) – The name given to the model.
- **namespace** (str, optional) – A namespace used to select data.
- **namespaces** (list, optional) – A list of namespaces used to select data.
- **profile_memory** (int, optional) – A number that indicates the profiling level.

deactivate()
Set the active attribute to False

del_component (name_or_object)
Delete a component from this block.

dim()
Return the dimension of the index

display (filename=None, ostream=None, prefix="")
Display values in the block

find_component (label_or_component)
Return a block component given a name.

get_suffix_value (suffix_or_name, default=None)
Get the suffix value for this component data

gidenav (fully_qualified=False, name_buffer=None, relative_to=None)
Return a string with the component name and index

id_index_map()
Return an dictionary id->index for all ComponentData instances.

index()
Returns the index of this ComponentData instance relative to the parent component index set. None is returned if this instance does not have a parent component, or if - for some unknown reason - this instance does not belong to the parent component’s index set. This method is not intended to be a fast method; it should be used rarely, primarily in cases of label formulation.

index_set()
Return the index set

is_component_type()
Return True if this class is a Pyomo component

is_constructed()
A boolean indicating whether or not all active components of the input model have been properly constructed.

is_indexed()
Return true if this component is indexed
items()  
Return a list (index, data) tuples from the dictionary

iteritems()  
Return an iterator of (index, data) tuples from the dictionary

iterkeys()  
Return an iterator of the keys in the dictionary

itervalues()  
Return an iterator of the component data objects in the dictionary

keys()  
Return a list of keys in the dictionary

load(arg, namespaces=[None], profile_memory=0, report_timing=None)  
Load the model with data from a file, dictionary or DataPortal object.

local_name  
Get the component name only within the context of the immediate parent container.

model()  
Return the model of the component that owns this data.

name  
Get the fully qualified component name.

parent_block()  
Return the parent of the component that owns this data.

parent_component()  
Returns the component associated with this object.

pprint(filename=None, ostream=None, verbose=False, prefix="")  
Print block information

preprocess(preprocessor=None)  
Apply the preprocess plugins defined by the user

preprocessor_ep = <ExtensionPoint IPyomoPresolver env=pyomo>

reclassify_component_type(name_or_object, new_ctype, preserve_declaration_order=True)  
TODO

reconstruct(data=None)  
Re-construct model expressions

root_block()  
Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)  
Set the suffix value for this component data

set_value(val)  
Set the value of a scalar component.

to_dense_data()  
TODO

to_string(verbose=None, labeler=None, smap=None, compute_values=False)  
Return a string representation of this component, applying the labeler if passed one.

type()  
Return the class type for this component
valid_model_component()  
Return True if this can be used as a model component.

valid_problem_types()  
This method allows the pyomo.opt convert function to work with a Model object.

values()  
Return a list of the component data objects in the dictionary

write(filename=None, format=None, solver_capability=None, io_options={})  
Write the model to a file, with a given format.

class pyomo.environ.Block(*args, **kwargs)  
Bases: pyomo.core.base.indexed_component.ActiveIndexedComponent

Blocks are indexed components that contain other components (including blocks). Blocks have a global attribute
that defines whether construction is deferred. This applies to all components that they contain except blocks.
Blocks contained by other blocks use their local attribute to determine whether construction is deferred.

activate()  
Set the active attribute to True

active  
Return the active attribute

clear()  
Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)  
Clear the suffix value for this component data

construct(data=None)  
Initialize the block

disable()  
Set the active attribute to False

dim()  
Return the dimension of the index

display(filename=None, ostream=None, prefix="")  
Display values in the block

find_component(label_or_component)  
Return a block component given a name.

get_suffix_value(suffix_or_name, default=None)  
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)  
Returns the component name associated with this object.

Parameters

- Generate full name from nested block names(fully_qualified) –
- Can be used to optimize iterative name(name_buffer) – generation (using a dictionary)
- When generating a fully qualified name, (relative_to) – stop at this block.

id_index_map()  
Return an dictionary id->index for all ComponentData instances.
index_set()
    Return the index set

is_component_type()
    Return True if this class is a Pyomo component

is_constructed()
    Return True if this class has been constructed

is_indexed()
    Return true if this component is indexed

items()
    Return a list (index, data) tuples from the dictionary

iteritems()
    Return an iterator of (index, data) tuples from the dictionary

iterkeys()
    Return an iterator of the keys in the dictionary

itervalues()
    Return an iterator of the component data objects in the dictionary

keys()
    Return a list of keys in the dictionary

local_name
    Get the component name only within the context of the immediate parent container.

model()
    Returns the model associated with this object.

name
    Get the fully qualified component name.

parent_block()
    Returns the parent of this object.

parent_component()
    Returns the component associated with this object.

pprint (filename=None, ostream=None, verbose=False, prefix="")
    Print block information

reconstruct (data=None)
    Re-construct model expressions

root_block()
    Return self.model()

set_suffix_value (suffix_or_name, value, expand=True)
    Set the suffix value for this component data

set_value (value)
    Set the value of a scalar component.

to_dense_data()
    TODO

to_string (verbose=None, labeler=None, smap=None, compute_values=False)
    Return the component name
type()
   Return the class type for this component

valid_model_component()
   Return True if this can be used as a model component.

values()
   Return a list of the component data objects in the dictionary

class pyomo.environ.Constraint(*args, **kwargs)
   Bases: pyomo.core.base.indexed_component.ActiveIndexedComponent
   This modeling component defines a constraint expression using a rule function.

   Constructor arguments:
   expr  A Pyomo expression for this constraint
   rule  A function that is used to construct constraint expressions
   doc   A text string describing this component
   name  A name for this component

   Public class attributes:
   doc   A text string describing this component
   name  A name for this component
   active A boolean that is true if this component will be used to construct a model instance
   rule  The rule used to initialize the constraint(s)

   Private class attributes:
   _constructed A boolean that is true if this component has been constructed
   _data A dictionary from the index set to component data objects
   _index The set of valid indices
   _implicit_subsets A tuple of set objects that represents the index set
   _model A weakref to the model that owns this component
   _parent A weakref to the parent block that owns this component
   _type The class type for the derived subclass

   activate()
   Set the active attribute to True

   active
   Return the active attribute

   clear()
   Clear the data in this component

   clear_suffix_value(suffix_or_name, expand=True)
   Clear the suffix value for this component data

   construct(data=None)
   Construct the expression(s) for this constraint.

   deactivate()
   Set the active attribute to False
dim()
  Return the dimension of the index

display(prefix="", ostream=None)
  Print component state information
  This duplicates logic in Component.pprint()

get_suffix_value(suffix_or_name, default=None)
  Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
  Returns the component name associated with this object.

  Parameters
  • Generate full name from nested block names(fully_qualified) –
  • Can be used to optimize iterative name (name_buffer) – generation
    (using a dictionary)
  • When generating a fully qualified name, (relative_to) – stop at
    this block.

id_index_map()
  Return an dictionary id->index for all ComponentData instances.

index_set()
  Return the index set

is_component_type()
  Return True if this class is a Pyomo component

is_constructed()
  Return True if this class has been constructed

is_indexed()
  Return true if this component is indexed

items()
  Return a list (index,data) tuples from the dictionary

iteritems()
  Return an iterator of (index,data) tuples from the dictionary

iterkeys()
  Return an iterator of the keys in the dictionary

itervalues()
  Return an iterator of the component data objects in the dictionary

keys()
  Return a list of keys in the dictionary

local_name
  Get the component name only within the context of the immediate parent container.

model()
  Returns the model associated with this object.

name
  Get the fully qualified component name.

parent_block()
  Returns the parent of this object.
parent_component()  
Returns the component associated with this object.

pprint(oostream=None, verbose=False, prefix="")  
Print component information

reconstruct(data=None)  
Re-construct model expressions

root_block()  
Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)  
Set the suffix value for this component data

set_value(value)  
Set the value of a scalar component.

to_dense_data()  
TODO

to_string(checkbox=None, labeler=None, smap=None, compute_values=False)  
Return the component name

type()  
Return the class type for this component

valid_model_component()  
Return True if this can be used as a model component.

values()  
Return a list of the component data objects in the dictionary

class pyomo.environ.Objective(*args, **kwargs)  
Bases: pyomo.core.base.indexed_component.ActiveIndexedComponent

This modeling component defines an objective expression.

Note that this is a subclass of NumericValue to allow objectives to be used as part of expressions.

Constructor arguments:

    expr  A Pyomo expression for this objective
    rule  A function that is used to construct objective expressions
    sense  Indicate whether minimizing (the default) or maximizing
    doc  A text string describing this component
    name  A name for this component

Public class attributes:

    doc  A text string describing this component
    name  A name for this component
    active  A boolean that is true if this component will be used to construct a model instance
    rule  The rule used to initialize the objective(s)
    sense  The objective sense

Private class attributes:

    _constructed  A boolean that is true if this component has been constructed
_data  A dictionary from the index set to component data objects
_index  The set of valid indices
_implicit_subsets  A tuple of set objects that represents the index set
_model  A weakref to the model that owns this component
_parent  A weakref to the parent block that owns this component
_type  The class type for the derived subclass
activate()  Set the active attribute to True
active  Return the active attribute
clear()  Clear the data in this component
clear_suffix_value(suffix_or_name, expand=True)  Clear the suffix value for this component data
construct(data=None)  Construct the expression(s) for this objective.
deactivate()  Set the active attribute to False
dim()  Return the dimension of the index
display(prefix=", ostream=None)  Provide a verbose display of this object
get_suffix_value(suffix_or_name, default=None)  Get the suffix value for this component data
getname(fully_qualified=False, name_buffer=None, relative_to=None)  Returns the component name associated with this object.

- Generate full name from nested block names(fully_qualified)=
- Can be used to optimize iterative name(name_buffer) – generation (using a dictionary)
- When generating a fully qualified name, (relative_to) – stop at
this block.

id_index_map()  Return an dictionary id->index for all ComponentData instances.
index_set()  Return the index set
is_component_type()  Return True if this class is a Pyomo component
is_constructed()  Return True if this class has been constructed
is_indexed()  Return true if this component is indexed
items()
    Return a list (index, data) tuples from the dictionary

iteritems()
    Return an iterator of (index, data) tuples from the dictionary

iterkeys()
    Return an iterator of the keys in the dictionary

itervalues()
    Return an iterator of the component data objects in the dictionary

keys()
    Return a list of keys in the dictionary

local_name
    Get the component name only within the context of the immediate parent container.

model()
    Returns the model associated with this object.

name
    Get the fully qualified component name.

parent_block()
    Returns the parent of this object.

parent_component()
    Returns the component associated with this object.

pprint (ostream=None, verbose=False, prefix= )
    Print component information

reconstruct (data=None)
    Re-construct model expressions

root_block()
    Return self.model()

set_suffix_value (suffix_or_name, value, expand=True)
    Set the suffix value for this component data

set_value (value)
    Set the value of a scalar component.

to_dense_data()
    TODO

to_string (verbose=None, labeler=None, smap=None, compute_values=False)
    Return the component name

type()
    Return the class type for this component

valid_model_component()
    Return True if this can be used as a model component.

values()
    Return a list of the component data objects in the dictionary

class pyomo.environ.Param(*args, **kwds)
    Bases: pyomo.core.base.indexed_component.IndexedComponent

A parameter value, which may be defined over an index.
Constructor Arguments:

- **name** The name of this parameter
- **index** The index set that defines the distinct parameters. By default, this is None, indicating that there is a single parameter.
- **domain** A set that defines the type of values that each parameter must be.
- **within** A set that defines the type of values that each parameter must be.
- **validate** A rule for validating this parameter w.r.t. data that exists in the model
- **default** A scalar, rule, or dictionary that defines default values for this parameter
- **initialize** A dictionary or rule for setting up this parameter with existing model data

**active**

Return the active attribute

**clear()**

Clear the data in this component

**clear_suffix_value(suffix_or_name, expand=True)**

Clear the suffix value for this component data

**construct(data=None)**

Initialize this component.

A parameter is constructed using the initial data or the data loaded from an external source. We first set all the values based on self._rule, and then allow the data dictionary to overwrite anything.

Note that we allow an undefined Param value to be constructed. We throw an exception if a user tries to use an uninitialized Param.

**default()**

Return the value of the parameter default.

Possible values:

- **None** No default value is provided.
- **Numeric** A constant value that is the default value for all undefined parameters.
- **Function** f(model, i) returns the value for the default value for parameter i

**dim()**

Return the dimension of the index

**extract_values()**

A utility to extract all index-value pairs defined for this parameter, returned as a dictionary.

This method is useful in contexts where key iteration and repeated __getitem__ calls are too expensive to extract the contents of a parameter.

**extract_values_sparse()**

A utility to extract all index-value pairs defined with non-default values, returned as a dictionary.

This method is useful in contexts where key iteration and repeated __getitem__ calls are too expensive to extract the contents of a parameter.

**get_suffix_value(suffix_or_name, default=None)**

Get the suffix value for this component data

**getname(fully_qualified=False, name_buffer=None, relative_to=None)**

Returns the component name associated with this object.
Parameters

- **Generate full name from nested block names** (`fullyQualified`)
- **Can be used to optimize iterative name** (`nameBuffer`) generation (using a dictionary)
- **When generating a fully qualified name**, (`relativeTo`) stop at this block.

### id_index_map()

Return an dictionary id->index for all ComponentData instances.

### index_set()

Return the index set

### is_component_type()

Return True if this class is a Pyomo component

### is_constructed()

Return True if this class has been constructed

### is_expression_type()

Returns False because this is not an expression

### is_indexed()

Return true if this component is indexed

### items()

Return a list (index,data) tuples from the dictionary

### iteritems()

Return an iterator of (index,data) tuples from the dictionary

### iterkeys()

Return an iterator of the keys in the dictionary

### itervalues()

Return an iterator of the component data objects in the dictionary

### keys()

Return a list of keys in the dictionary

### local_name

Get the component name only within the context of the immediate parent container.

### model()

Returns the model associated with this object.

### name

Get the fully qualified component name.

### parent_block()

Returns the parent of this object.

### parent_component()

Returns the component associated with this object.

### pprint (ostram=None, verbose=False, prefix=“”)

Print component information

### reconstruct (data=None)

Reconstruct this parameter object. This is particularly useful for cases where an initialize rule is provided.
An initialize rule can return an expression that is a function of other parameters, so reconstruction can account for changes in dependent parameters.

Only mutable parameters can be reconstructed. Otherwise, the changes would not be propagated into expressions in objectives or constraints.

```
root_block()
 Return self.model()

set_default(val)
 Perform error checks and then set the default value for this parameter.
 NOTE: this test will not validate the value of function return values.

set_suffix_value(suffix_or_name, value, expand=True)
 Set the suffix value for this component data

set_value(value)
 Set the value of a scalar component.

sparse_items()
 Return a list (index,data) tuples for defined parameters

sparse_iteritems()
 Return an iterator of (index,data) tuples for defined parameters

sparse_iterkeys()
 Return an iterator for the keys in the defined parameters

sparse_itervalues()
 Return an iterator for the defined param data objects

sparse_keys()
 Return a list of keys in the defined parameters

sparse_values()
 Return a list of the defined param data objects

store_values(new_values, check=True)
 A utility to update a Param with a dictionary or scalar.
 If check=True, then both the index and value are checked through the __getitem__ method. Using check=False should only be used by developers!

to_dense_data()
 TODO

to_string(verbos=None, labeler=None, smap=None, compute_values=False)
 Return the component name

type()
 Return the class type for this component

valid_model_component()
 Return True if this can be used as a model component.

values()
 Return a list of the component data objects in the dictionary
```

class pyomo.environ.RangeSet(*args, **kwds)
    Bases: pyomo.core.base.sets.OrderedSimpleSet
    A set that represents a list of numeric values.
active
Return the active attribute

add(*args)
Add one or more elements to a set.

bounds()
Return bounds information. The default value is ‘None’, which indicates that this set does not contain
bounds. Otherwise, this is assumed to be a tuple: (lower, upper).

cHECK_VALUES()
Verify that the values in this set are valid.

clear()
Clear that data in this component.

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

construct(values=None)
Initialize set data

cross(*args)
Return the cross-product between this set and one or more sets

data()
The underlying set data.

difference(*args)
Return the difference between this set with one or more sets

dim()
Return the dimension of the index

discard(element)
Remove an element from the set.
If the element is not a member, do nothing.

first()
The first element is the lower bound

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters

• Generate full name from nested block names(fully_qualified) –
  • Can be used to optimize iterative name(name_buffer) – generation
    (using a dictionary)
  • When generating a fully qualified name, (relative_to) – stop at
    this block.

id_index_map()
Return an dictionary id->index for all ComponentData instances.

index()
Returns the index of this ComponentData instance relative to the parent component index set. None is
returned if this instance does not have a parent component, or if - for some unknown reason - this instance
does not belong to the parent component’s index set. This method is not intended to be a fast method; it
should be used rarely, primarily in cases of label formulation.

\[\text{index} \set()\]
Return the index set

\[\text{intersection}(*\text{args})\]
Return the intersection of this set with one or more sets

\[\text{is\_component\_type}()\]
Return True if this class is a Pyomo component

\[\text{is\_constructed}()\]
Return True if this class has been constructed

\[\text{is\_indexed}()\]
Return true if this component is indexed

\[\text{is\_disjoint}(\text{other})\]
Return True if the set has no elements in common with ‘other’. Sets are disjoint if and only if their
intersection is the empty set.

\[\text{issubset}(\text{other})\]
Return True if the set is a subset of ‘other’.

\[\text{issuperset}(\text{other})\]
Return True if the set is a superset of ‘other’.

Note that we do not simply call other.issubset(self) because ‘other’ may not be a Set instance.

\[\text{items}()\]
Return a list (index, data) tuples from the dictionary

\[\text{iteritems}()\]
Return an iterator of (index, data) tuples from the dictionary

\[\text{iterkeys}()\]
Return an iterator of the keys in the dictionary

\[\text{itervalues}()\]
Return an iterator of the component data objects in the dictionary

\[\text{keys}()\]
Return a list of keys in the dictionary

\[\text{last}()\]
The last element is the upper bound

\[\text{local\_name}\]
Get the component name only within the context of the immediate parent container.

\[\text{member} (\text{key})\]
Return the value associated with this key.

\[\text{model}()\]
Returns the model associated with this object.

\[\text{name}\]
Get the fully qualified component name.

\[\text{next}(\text{match\_element}, k=1)\]
Return the next element in the set. The default behavior is to return the very next element. The k option
can specify how many steps are taken to get the next element.
If the next element is beyond the end of the set, then an exception is raised.

`nextw(match_element, k=1)`  
Return the next element in the set. The default behavior is to return the very next element. The k option can specify how many steps are taken to get the next element.

If the next element goes beyond the end of the list of elements in the set, then this wraps around to the beginning of the list.

`ord(match_element)`  
Return the position index of the input value. The position indices start at 1.

`parent_block()`  
Returns the parent of this object.

`parent_component()`  
Returns the component associated with this object.

`pprint(ostream=None, verbose=False, prefix=\"\")`  
Print component information

`prev(match_element, k=1)`  
Return the previous element in the set. The default behavior is to return the element immediately prior to the specified element. The k option can specify how many steps are taken to get the previous element.

If the previous element is before the start of the set, then an exception is raised.

`prew(match_element, k=1)`  
Return the previous element in the set. The default behavior is to return the element immediately prior to the specified element. The k option can specify how many steps are taken to get the previous element.

If the previous element is before the start of the set, then this wraps around to the end of the list.

`reconstruct(data=None)`  
Re-construct model expressions

`remove(element)`  
Remove an element from the set.

If the element is not a member, raise an error.

`root_block()`  
Return self.model()

`set_suffix_value(suffix_or_name, value, expand=True)`  
Set the suffix value for this component data

`set_value(value)`  
Set the value of a scalar component.

`symmetric_difference(*args)`  
Return the symmetric difference of this set with one or more sets

`to_dense_data()`  
TODO

`to_string(\text{verbose=\textit{None}}, \text{labeler=\textit{None}}, \text{smap=\textit{None}}, \text{compute_values=\textit{False}})`  
Return the component name

`type()`  
Return the class type for this component

`union(*\text{\textit{args}})`  
Return the union of this set with one or more sets.
valid_model_component()
    Return True if this can be used as a model component.

values()
    Return a list of the component data objects in the dictionary pyomo.environ.Reference(reference, ctype=<object object>)
    Creates a component that references other components

Reference generates a reference component; that is, an indexed component that does not contain data, but instead references data stored in other components as defined by a component slice. The ctype parameter sets the Component.type() of the resulting indexed component. If the ctype parameter is not set and all data identified by the slice (at construction time) share a common Component.type(), then that type is assumed. If either the ctype parameter is None or the data has more than one ctype, the resulting indexed component will have a ctype of IndexedComponent.

If the indices associated with wildcards in the component slice all refer to the same Set objects for all data identified by the slice, then the resulting indexed component will be indexed by the product of those sets. However, if all data do not share common set objects, or only a subset of indices in a multidimensional set appear as wildcards, then the resulting indexed component will be indexed by a SetOf containing a _ReferenceSet for the slice.

Parameters

- reference (_IndexedComponent_slice) – component slice that defines the data to include in the Reference component
- ctype (type [optional]) – the type used to create the resulting indexed component. If not specified, the data’s ctype will be used (if all data share a common ctype). If multiple data ctypes are found or type is None, then IndexedComponent will be used.

Examples

```python
def b(b, i, j):
 b.x = Var(bounds=(i, j))

m.r1 = Reference(m.b[:,:].x)
m.r1.pprint()
```

Reference components may also refer to subsets of the original data:

```python
m.r2 = Reference(m.b[:,3].x)
m.r2.pprint()
```

Reference components may have wildcards at multiple levels of the model hierarchy:
```python
>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> @m.Block([1,2])
... def b(b,i):
... b.x = Var([3,4], bounds=(i,None))
... >>> m.r3 = Reference(m.b[:].x[:])
>>> m.r3.pprint()
```

```
r3 : Size=4, Index=r3_index
 Key : Lower : Value : Upper : Fixed : Stale : Domain
 (1, 3) : 1 : None : None : False : True : Reals
 (1, 4) : 1 : None : None : False : True : Reals
 (2, 3) : 2 : None : None : False : True : Reals
 (2, 4) : 2 : None : None : False : True : Reals
```

The resulting reference component may be used just like any other component. Changes to the stored data will be reflected in the original objects:

```python
>>> m.r3[1,4] = 10
>>> m.b[1].x.pprint()
x : Size=2, Index=b[1].x_index
 Key : Lower : Value : Upper : Fixed : Stale : Domain
 3 : 1 : None : None : False : True : Reals
 4 : 1 : 10 : None : False : False : Reals
```

```python
class pyomo.environ.Set(*args, **kwds)
Bases: pyomo.core.base.indexed_component.IndexedComponent
```

A set object that is used to index other Pyomo objects.

This class has a similar look-and-feel as a Python set class. However, the set operations defined in this class return another abstract Set object. This class contains a concrete set, which can be initialized by the load() method.

**Constructor Arguments:**

- `name` The name of the set
- `doc` A text string describing this component
- `within` A set that defines the type of values that can be contained in this set
- `domain` A set that defines the type of values that can be contained in this set
- `initialize` A dictionary or rule for setting up this set with existing model data
- `validate` A rule for validating membership in this set. This has the functional form: f(data) -> bool, and returns true if the data belongs in the set
- `dimen` Specify the set’s arity, or None if no arity is enforced
- `virtual` If true, then this is a virtual set that does not store data using the class dictionary
- `bounds` A 2-tuple that specifies the range of possible set values.
- `ordered` Specifies whether the set is ordered. Possible values are
  - False: Unordered
  - True: Ordered by insertion order
  - InsertionOrder: Ordered by insertion order
  - SortedOrder: Ordered by sort order
• `<function>`: Ordered with this comparison function

  `filter` A function that is used to filter set entries.

**Public class attributes:**

  `concrete` If True, then this set contains elements.(TODO)

  `dimen` The dimension of the data in this set.

  `doc` A text string describing this component

  `domain` A set that defines the type of values that can be contained in this set

  `filter` A function that is used to filter set entries.

  `initialize` A dictionary or rule for setting up this set with existing model data

  `ordered` Specifies whether the set is ordered.

  `validate` A rule for validating membership in this set.

  `virtual` If True, then this set does not store data using the class dictionary

**active**

  Return the active attribute

**clear()**

  Clear the data in this component

**clear_suffix_value(suffix_or_name, expand=True)**

  Clear the suffix value for this component data

**construct(data=None)**

  API definition for constructing components

**dim()**

  Return the dimension of the index

**get_suffix_value(suffix_or_name, default=None)**

  Get the suffix value for this component data

**getname(fully_qualified=False, name_buffer=None, relative_to=None)**

  Returns the component name associated with this object.

  **Parameters**

  - **Generate full name from nested block names**(`fully_qualified`) –

  - **Can be used to optimize iterative name**(`name_buffer`) – generation (using a dictionary)

  - **When generating a fully qualified name,** (`relative_to`) – stop at this block.

**id_index_map()**

  Return an dictionary id->index for all ComponentData instances.

**index_set()**

  Return the index set

**is_component_type()**

  Return True if this class is a Pyomo component

**is_constructed()**

  Return True if this class has been constructed
is_indexed()
    Return true if this component is indexed

items()
    Return a list (index,data) tuples from the dictionary

iteritems()
    Return an iterator of (index,data) tuples from the dictionary

iterkeys()
    Return an iterator of the keys in the dictionary

itervalues()
    Return an iterator of the component data objects in the dictionary

keys()
    Return a list of keys in the dictionary

local_name
    Get the component name only within the context of the immediate parent container.

model()
    Returns the model associated with this object.

ame
    Get the fully qualified component name.

parent_block()
    Returns the parent of this object.

parent_component()
    Returns the component associated with this object.

pprint(ostream=None, verbose=False, prefix=")
    Print component information

reconstruct(data=None)
    Re-construct model expressions

root_block()
    Return self.model()

set_suffix_value(suffix_or_name, value, expand=True)
    Set the suffix value for this component data

set_value(value)
    Set the value of a scalar component.

to_dense_data()
    TODO

to_string(verbose=None, labeler=None, smap=None, compute_values=False)
    Return the component name

type()
    Return the class type for this component

valid_model_component()
    Return True if this can be used as a model component.

values()
    Return a list of the component data objects in the dictionary
class pyomo.environ.Var(*args, **kwds)
Bases: pyomo.core.base.indexed_component.IndexedComponent

A numeric variable, which may be defined over an index.

Parameters

- **domain** (Set or function, optional) – A Set that defines valid values for the variable (e.g., Reals, NonNegativeReals, Binary), or a rule that returns Sets. Defaults to Reals.
- **within** (Set or function, optional) – An alias for domain.
- **bounds** (tuple or function, optional) – A tuple of (lower, upper) bounds for the variable, or a rule that returns tuples. Defaults to (None, None).
- **initialize** (float or function, optional) – The initial value for the variable, or a rule that returns initial values.
- **rule** (float or function, optional) – An alias for initialize.
- **dense** (bool, optional) – Instantiate all elements from index_set() when constructing the Var (True) or just the variables returned by initialize/rule (False). Defaults to True.

active
Return the active attribute

add(index)
Add a variable with a particular index.

clear()
Clear the data in this component

clear_suffix_value(suffix_or_name, expand=True)
Clear the suffix value for this component data

construct(data=None)
Construct this component.

dim()
Return the dimension of the index

extract_values(include_fixed_values=True)
Return a dictionary of index-value pairs.

flag_as_stale()
Set the ‘stale’ attribute of every variable data object to True.

get_suffix_value(suffix_or_name, default=None)
Get the suffix value for this component data

get_values(include_fixed_values=True)
Return a dictionary of index-value pairs.

getname(fully_qualified=False, name_buffer=None, relative_to=None)
Returns the component name associated with this object.

Parameters

- Generate full name from nested block names(fully_qualified) –
- Can be used to optimize iterative name (name_buffer) – generation (using a dictionary)
When generating a fully qualified name, \( \textit{relative\_to} \) – stop at this block.

**id_index_map()**
Return an dictionary id->index for all ComponentData instances.

**index_set()**
Return the index set

**is_component_type()**
Return True if this class is a Pyomo component

**is_constructed()**
Return True if this class has been constructed

**is_expression_type()**
Returns False because this is not an expression

**is_indexed()**
Return true if this component is indexed

**items()**
Return a list (index, data) tuples from the dictionary

**iteritems()**
Return an iterator of (index, data) tuples from the dictionary

**iterkeys()**
Return an iterator of the keys in the dictionary

**itervalues()**
Return an iterator of the component data objects in the dictionary

**keys()**
Return a list of keys in the dictionary

**local_name**
Get the component name only within the context of the immediate parent container.

**model()**
Returns the model associated with this object.

**name**
Get the fully qualifed component name.

**parent_block()**
Returns the parent of this object.

**parent_component()**
Returns the component associated with this object.

**pprint (ostream=None, verbose=False, prefix=”)**
Print component information

**reconstruct (data=None)**
Re-construct model expressions

**root_block()**
Return self.model()

**set_suffix_value(suffix_or_name, value, expand=True)**
Set the suffix value for this component data
set_value(value)
Set the value of a scalar component.

set_values(new_values, valid=False)
Set the values of a dictionary.

The default behavior is to validate the values in the dictionary.

to_dense_data()
TODO

to_string(verbos=None, labeler=None, smap=None, compute_values=False)
Return the component name

type()
Return the class type for this component

valid_model_component()
Return True if this can be used as a model component.

values()
Return a list of the component data objects in the dictionary

13.2 Expression Reference

13.2.1 Utilities to Build Expressions

pyomo.core.util.prod(terms)
A utility function to compute the product of a list of terms.

Parameters terms(list) – A list of terms that are multiplied together.

Returns The value of the product, which may be a Pyomo expression object.

pyomo.core.util.quicksum(args, start=0, linear=None)
A utility function to compute a sum of Pyomo expressions.

The behavior of quicksum() is similar to the builtin sum() function, but this function generates a more compact Pyomo expression.

Parameters

• args – A generator for terms in the sum.

• start – A value that is initializes the sum. If this value is not a numeric constant, then the += operator is used to add terms to this object. Defaults to zero.

• linear – If start is not a numeric constant, then this option is ignored. Otherwise, this value indicates whether the terms in the sum are linear. If the value is False, then the terms are treated as nonlinear, and if True, then the terms are treated as linear. Default is None, which indicates that the first term in the args is used to determine this value.

Returns The value of the sum, which may be a Pyomo expression object.

pyomo.core.util.sum_product(*args, **kwds)
A utility function to compute a generalized dot product.

This function accepts one or more components that provide terms that are multiplied together. These products are added together to form a sum.

Parameters
*args – Variable length argument list of generators that create terms in the summation.

**kwargs – Arbitrary keyword arguments.

Keyword Arguments

- index – A set that is used to index the components used to create the terms
- denom – A component or tuple of components that are used to create the denominator of the terms
- start – The initial value used in the sum

Returns The value of the sum.

```python
pyomo.core.util.summation = <function sum_product>
An alias for sum_product
```

```python
pyomo.core.util.dot_product = <function sum_product>
An alias for sum_product
```

13.2.2 Utilities to Manage and Analyze Expressions

Functions

```python
pyomo.core.expr.current.expression_to_string(expr, verbose=None, labeler=None, smap=None, compute_values=False)
```

Return a string representation of an expression.

Parameters

- expr – The root node of an expression tree.
- verbose (bool) – If True, then the output is a nested functional form. Otherwise, the output is an algebraic expression. Default is False.
- labeler – If specified, this labeler is used to label variables in the expression.
- smap – If specified, this SymbolMap is used to cache labels.
- compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated. Default is False.

Returns A string representation for the expression.

```python
pyomo.core.expr.current.decompose_term(expr)
```

A function that returns a tuple consisting of (1) a flag indicated whether the expression is linear, and (2) a list of tuples that represents the terms in the linear expression.

Parameters expr (expression) – The root node of an expression tree

Returns A tuple with the form (flag, list). If flag is False, then a nonlinear term has been found, and list is None. Otherwise, list is a list of tuples: (coef, value). If value is None, then this represents a constant term with value coef. Otherwise, value is a variable object, and coef is the numeric coefficient.

```python
pyomo.core.expr.current.clone_expression(expr, substitute=None)
```

A function that is used to clone an expression.

Cloning is equivalent to calling copy.deepcopy with no Block scope. That is, the expression tree is duplicated, but no Pyomo components (leaf nodes or named Expressions) are duplicated.

Parameters
• **expr** – The expression that will be cloned.

• **substitute (dict)** – A dictionary mapping object ids to objects. This dictionary has the same semantics as the memo object used with `copy.deepcopy`. Defaults to None, which indicates that no user-defined dictionary is used.

**Returns** The cloned expression.

```python
def evaluate_expression(expr, exception=True, constant=False):
 Evaluate the value of the expression.

 Parameters
 • **expr** – The root node of an expression tree.
 • **exception (bool)** – A flag that indicates whether exceptions are raised. If this flag is False, then an exception that occurs while evaluating the expression is caught and the return value is None. Default is True.
 • **constant (bool)** – If True, constant expressions are evaluated and returned but non-constant expressions raise either FixedExpressionError or NonconstantExpressionError (default=False).

 Returns A floating point value if the expression evaluates normally, or None if an exception occurs and is caught.
```

```python
def identify_components(expr, component_types):
 A generator that yields a sequence of nodes in an expression tree that belong to a specified set.

 Parameters
 • **expr** – The root node of an expression tree.
 • **component_types (set or list)** – A set of class types that will be matched during the search.

 Yields Each node that is found.
```

```python
def identify_variables(expr, include_fixed=True):
 A generator that yields a sequence of variables in an expression tree.

 Parameters
 • **expr** – The root node of an expression tree.
 • **include_fixed (bool)** – If True, then this generator will yield variables whose value is fixed. Defaults to True.

 Yields Each variable that is found.
```

**Classes**

class SymbolMap(labeler=None):
    A class for tracking assigned labels for modeling components.

    Symbol maps are used, for example, when writing problem files for input to an optimizer.

    **Warning:** A symbol map should never be pickled. This class is typically constructed by solvers and writers, and it may be owned by models.
Note: We should change the API to not use camelcase.

byObject
  maps (object id) to (string label)
  Type  dict

bySymbol
  maps (string label) to (object weakref)
  Type  dict

alias
  maps (string label) to (object weakref)
  Type  dict

default_labeler
  used to compute a string label from an object

13.2.3 Context Managers

class pyomo.core.expr.current.nonlinear_expression
  Context manager for mutable sums.
  This context manager is used to compute a sum while treating the summation as a mutable object.

class pyomo.core.expr.current.linear_expression
  Context manager for mutable linear sums.
  This context manager is used to compute a linear sum while treating the summation as a mutable object.

class pyomo.core.expr.current.clone_counter
  Context manager for counting cloning events.
  This context manager counts the number of times that the clone_expression function is executed.

count
  A property that returns the clone count value.

13.2.4 Core Classes

The following are the two core classes documented here:

- NumericValue
- ExpressionBase

The remaining classes are the public classes for expressions, which developers may need to know about. The methods for these classes are not documented because they are described in the ExpressionBase class.

Sets with Expression Types

The following sets can be used to develop visitor patterns for Pyomo expressions.

```python
pyomo.core.expr.numvalue.native_numeric_types = set([<type 'float'>, <type 'int'>, <type 'long'>, <type 'bool'>, <type 'numpy.float64'>, <type 'numpy.int64'>, <type 'numpy.int32'>, <type 'numpy.int16'>, <type 'numpy.int8'>, <type 'numpy.uint8'>, <type 'numpy.uint16'>, <type 'numpy.uint32'>, <type 'numpy.uint64'>])
```

Python set used to identify numeric constants. This set includes native Python types as well as numeric types from Python packages like numpy, which may be registered by users.
pyomo.core.expr.numvalue.native_types = set([<type 'float'>, <type 'int'>, <type 'long'>, <type 'NoneType'>, <type 'str'>, <type 'unicode'>, ... <type 'numpy.int64'>, <type 'numpy.int32'>, <type 'numpy.int16'>, <type 'numpy.int8'>, <type 'numpy.bool_'>])

Python set used to identify numeric constants and related native types. This set includes native Python types as well as numeric types from Python packages like numpy.

\[
native_types = native_numeric_types + \{ \text{str} \}\]

pyomo.core.expr.numvalue.nonpyomo_leaf_types = set([<type 'float'>, <type 'int'>, <type 'long'>, <type 'NoneType'>, <type 'str'>, <type ... <type 'numpy.int64'>, <type 'numpy.int32'>, <type 'numpy.int16'>, <type 'numpy.int8'>, <type 'numpy.bool_'>])

Python set used to identify numeric constants, boolean values, strings and instances of NonNumericValue, which is commonly used in code that walks Pyomo expression trees.

\[
onpyomo_leaf_types = native_types + \{ \text{NonNumericValue} \}\]

**NumericValue and ExpressionBase**

```python
class pyomo.core.expr.numvalue.NumericValue
 This is the base class for numeric values used in Pyomo.

 __abs__()
 Absolute value
 (This method is called when Python processes the statement:)
 abs(self)

 __add__(other)
 Binary addition
 (This method is called when Python processes the statement:)
 self + other

 __div__(other)
 Binary division
 (This method is called when Python processes the statement:)
 self / other

 __eq__(other)
 Equal to operator
 (This method is called when Python processes the statement:)
 self == other

 __float__()
 Coerce the value to a floating point
 Raises TypeError

 __ge__(other)
 Greater than or equal operator
 (This method is called when Python processes statements of the form:)
 self >= other
 other <= self

 __getstate__()
 Prepare a picklable state of this instance for pickling.
```
Nominally, `__getstate__() should execute the following:

```python
def __getstate__(self):
 state = super(Class, self).__getstate__()
 for i in Class.__slots__:
 state[i] = getattr(self, i)
 return state
```

However, in this case, the (nominal) parent class is ‘object’, and object does not implement `__getstate__`. So, we will check to make sure that there is a base `__getstate__()` to call. You might think that there is nothing to check, but multiple inheritance could mean that another class got stuck between this class and “object” in the MRO.

Further, since there are actually no slots defined here, the real question is to either return an empty dict or the parent’s dict.

`__gt__(other)`
Greater than operator

This method is called when Python processes statements of the form:

```python
self > other
other < self
```

`__iadd__(other)`
Binary addition

This method is called when Python processes the statement:

```python
self += other
```

`__idiv__(other)`
Binary division

This method is called when Python processes the statement:

```python
self /= other
```

`__imul__(other)`
Binary multiplication

This method is called when Python processes the statement:

```python
self *= other
```

`__int__()`
Coerce the value to an integer

Raises: `TypeError`

`__ipow__(other)`
Binary power

This method is called when Python processes the statement:

```python
self **= other
```

`__isub__(other)`
Binary subtraction

This method is called when Python processes the statement:
self -= other

__itruediv__(other)
Binary division (when __future__.division is in effect)
This method is called when Python processes the statement:

    self /= other

__le__(other)
Less than or equal operator
This method is called when Python processes statements of the form:

    self <= other
    other >= self

__lt__(other)
Less than operator
This method is called when Python processes statements of the form:

    self < other
    other > self

__mul__(other)
Binary multiplication
This method is called when Python processes the statement:

    self * other

__neg__()
Negation
This method is called when Python processes the statement:

    - self

__pos__()
Positive expression
This method is called when Python processes the statement:

    + self

__pow__(other)
Binary power
This method is called when Python processes the statement:

    self ** other

__radd__(other)
Binary addition
This method is called when Python processes the statement:

    other + self
__rdiv__(other)
Binary division
This method is called when Python processes the statement:

```
other / self
```

__rmul__(other)
Binary multiplication
This method is called when Python processes the statement:

```
other * self
```

when other is not a `NumericValue` object.

__rpow__(other)
Binary power
This method is called when Python processes the statement:

```
other ** self
```

__rsub__(other)
Binary subtraction
This method is called when Python processes the statement:

```
other - self
```

__rtruediv__(other)
Binary division (when __future__.division is in effect)
This method is called when Python processes the statement:

```
other / self
```

__setstate__(state)
Restore a pickled state into this instance
Our model for setstate is for derived classes to modify the state dictionary as control passes up the inheritance hierarchy (using super() calls). All assignment of state -> object attributes is handled at the last class before ‘object’, which may – or may not (thanks to MRO) – be here.

__sub__(other)
Binary subtraction
This method is called when Python processes the statement:

```
self - other
```

__truediv__(other)
Binary division (when __future__.division is in effect)
This method is called when Python processes the statement:

```
self / other
```

_compute_polynomial_degree(values)
Compute the polynomial degree of this expression given the degree values of its children.
Parameters `values(list)` – A list of values that indicate the degree of the children expression.

Returns None

def getname(fully_qualified=False, name_buffer=None)
    If this is a component, return the component’s name on the owning block; otherwise return the value converted to a string

is_component_type()
    Return True if this class is a Pyomo component

is_constant()
    Return True if this numeric value is a constant value

is_expression_type()
    Return True if this numeric value is an expression

is_fixed()
    Return True if this is a non-constant value that has been fixed

is_indexed()
    Return True if this numeric value is an indexed object

is_named_expression_type()
    Return True if this numeric value is a named expression

is_parameter_type()
    Return False unless this class is a parameter object

is_potentially_variable()
    Return True if variables can appear in this expression

is_relational()
    Return True if this numeric value represents a relational expression.

is_variable_type()
    Return False unless this class is a variable object

polynomial_degree()
    Return the polynomial degree of the expression.

Returns None

def to_string(verbose=None, labeler=None, smap=None, compute_values=False)
    Return a string representation of the expression tree.

Parameters
    • `verbose(bool)` – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation. Defaults to False.
    • `labeler` – An object that generates string labels for variables in the expression tree. Defaults to None.

class pyomo.core.expr.current.ExpressionBase(args)
Bases: pyomo.core.expr.numvalue.NumericValue

The base class for Pyomo expressions.

This class is used to define nodes in an expression tree.

Parameters `args(list or tuple)` – Children of this node.
__bool__()  
Compute the value of the expression and convert it to a boolean.

Returns A boolean value.

__call__(exception=True)  
Evaluate the value of the expression tree.

Parameters exception (bool) – If False, then an exception raised while evaluating is captured, and the value returned is None. Default is True.

Returns The value of the expression or None.

__getstate__()  
Pickle the expression object

Returns The pickled state.

__init__(args)  
x.__init__(...) initializes x; see help(type(x)) for signature

__nonzero__()  
Compute the value of the expression and convert it to a boolean.

Returns A boolean value.

__str__()  
Returns a string description of the expression.

Returns A string.

__apply_operation(result)  
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

Parameters values (list) – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.

__compute_polynomial_degree(values)  
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.
Parameters `values (list)` – A list of values that indicate the degree of the children expression.

Returns A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

`_is_fixed (values)`
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the `_IsFixedVisitor` class. It can be over-written by expression classes to customize this logic.

Parameters `values (list)` – A list of boolean values that indicate whether the children of this expression are fixed

Returns A boolean that is True if the fixed values of the children are all True.

`_to_string (values, verbose, smap, compute_values)`
Construct a string representation for this node, using the string representations of its children.

This method is called by the `_ToStringVisitor` class. It must must be defined in subclasses.

Parameters

- `values (list)` – The string representations of the children of this node.
- `verbose (bool)` – If True, then the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- `smap` – If specified, this `SymbolMap` is used to cache labels for variables.
- `compute_values (bool)` – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

`arg(i)`
Return the i-th child node.

Parameters `i (int)` – Nonnegative index of the child that is returned.

Returns The i-th child node.

`args`
Return the child nodes

Returns: Either a list or tuple (depending on the node storage model) containing only the child nodes of this node

`clone (substitute=None)`
Return a clone of the expression tree.

Note: This method does not clone the leaves of the tree, which are numeric constants and variables. It only clones the interior nodes, and expression leaf nodes like `_MutableLinearExpression`. However, named expressions are treated like leaves, and they are not cloned.

Parameters `substitute (dict)` – a dictionary that maps object ids to clone objects generated earlier during the cloning process.

Returns A new expression tree.
**create_node_with_local_data**(*args*)

Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

```
self.__class__(args)
```

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

**Parameters**

- **args** *(list)* – A list of child nodes for the new expression object
- **memo** *(dict)* – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.

**create_potentially_variable_object**()

Create a potentially variable version of this object.

This method returns an object that is a potentially variable version of the current object. In the simplest case, this simply sets the value of **class**:

```
self.__class__ = self.__class__.__mro__[1]
```

Note that this method is allowed to modify the current object and return it. But in some cases it may create a new potentially variable object.

**Returns** An object that is potentially variable.

**getname**(*args, **kwds*)

Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

**Parameters**

- **arg** – a variable length list of arguments
- **kwds** – keyword arguments

**Returns** A string name for the function.

**is_constant**()

Return True if this expression is an atomic constant

This method contrasts with the **is_fixed**() method. This method returns True if the expression is an atomic constant, that is it is composed exclusively of constants and immutable parameters. NumericValue objects returning **is_constant**() == True may be simplified to their numeric value at any point without warning.

Note: This defaults to False, but gets redefined in sub-classes.

**is_expression_type**()

Return True if this object is an expression.

This method obviously returns True for this class, but it is included in other classes within Pyomo that are not expressions, which allows for a check for expressions without evaluating the class type.

**Returns** A boolean.

**is_fixed**()

Return True if this expression contains no free variables.
Returns A boolean.

**is_named_expression_type()**

Return True if this object is a named expression.

This method returns False for this class, and it is included in other classes within Pyomo that are not named expressions, which allows for a check for named expressions without evaluating the class type.

Returns A boolean.

**is_potentially_variable()**

Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

Returns A boolean. Defaults to True for expressions.

**nargs()**

Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

---

**Note:** This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

---

Returns A nonnegative integer that is the number of child nodes.

**polynomial_degree()**

Return the polynomial degree of the expression.

Returns A non-negative integer that is the polynomial degree if the expression is polynomial, or None otherwise.

**size()**

Return the number of nodes in the expression tree.

Returns A nonnegative integer that is the number of interior and leaf nodes in the expression tree.

**to_string**(verbose=None, labeler=None, smap=None, compute_values=False)

Return a string representation of the expression tree.

**Parameters**

- **verbose** (bool) – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation. Defaults to False.
- **labeler** – An object that generates string labels for variables in the expression tree. Defaults to None.
- **smap** – If specified, this SymbolMap is used to cache labels for variables.
- **compute_values** (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated. Default is False.

Returns A string representation for the expression tree.
Other Public Classes

class pyomo.core.expr.current.NegationExpression(args)
    Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase

    Negation expressions:

    \[- x\]

    PRECEDENCE = 4

    __apply_operation__(result)
        Compute the values of this node given the values of its children.

        This method is called by the _EvaluationVisitor class. It must be over-written by expression classes
to customize this logic.

        Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the
arguments in the process, but assumes that they have been previously evaluated. But noted that if this class
contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those
values must be evaluated as part of this function call. An uninitialzied parameter value encountered during
the execution of this method is considered an error.

        Parameters values (list) – A list of values that indicate the value of the children expres-
sions.

        Returns A floating point value for this expression.

    __compute_polynomial_degree__(result)
        Compute the polynomial degree of this expression given the degree values of its children.

        This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expres-
sion classes to customize this logic.

        Parameters values (list) – A list of values that indicate the degree of the children expres-
sion.

        Returns A nonnegative integer that is the polynomial degree of the expression, or None. Default
            is None.

    __precedence__()

    __to_string__(values, verbose, smap, compute_values)
        Construct a string representation for this node, using the string representations of its children.

        This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

        Parameters

            • values (list) – The string representations of the children of this node.

            • verbose (bool) – If True, then the the string representation consists of nested func-
tions. Otherwise, the string representation is an algebraic equation.

            • smap – If specified, this SymbolMap is used to cache labels for variables.

            • compute_values (bool) – If True, then parameters and fixed variables are evaluated
before the expression string is generated.

        Returns A string representation for this node.
getname (*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters

- *arg – a variable length list of arguments
- **kwds – keyword arguments

Returns A string name for the function.

nargs()
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

Note: This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

Returns A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.ExternalFunctionExpression (args, fcn=None)
Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase

External function expressions

Example:

```python
model = ConcreteModel()
model.a = Var()
model.f = ExternalFunction(library='foo.so', function='bar')
expr = model.f(model.a)
```

Parameters

- args (tuple) – children of this node
- fcn – a class that defines this external function

_apply_operation (result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

Parameters values (list) – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.
_compute_polynomial_degree (result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

Parameters
values (list) – A list of values that indicate the degree of the children expression.

Returns
A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

_fcn
_to_string (values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.
• verbose (bool) – If True, then the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
• smap – If specified, this SymbolMap is used to cache labels for variables.
• compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns
A string representation for this node.

create_node_with_local_data (args)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

self.__class__ (args)

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

Parameters
• args (list) – A list of child nodes for the new expression object
• memo (dict) – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

Returns
A new expression object with the same type as the current class.

getname (*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
• *arg – a variable length list of arguments
• **kwds – keyword arguments

Returns
A string name for the function.
nargs()  
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

**Note:** This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

**Returns**  
A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.ProductExpression(args)  
Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase

Product expressions:

```plaintext
x*y
```

**PRECEDENCE = 4**

**_apply_operation_(result)**  
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

**Note:** This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

**Parameters values (list)** – A list of values that indicate the value of the children expressions.

**Returns**  
A floating point value for this expression.

**_compute_polynomial_degree_(result)**  
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

**Parameters values (list)** – A list of values that indicate the degree of the children expression.

**Returns**  
A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

**_is_fixed_(args)**  
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to customize this logic.

**Parameters values (list)** – A list of boolean values that indicate whether the children of this expression are fixed
Returns A boolean that is True if the fixed values of the children are all True.

_to_string (values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.
This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
- values (list) – The string representations of the children of this node.
- verbose (bool) – If True, then the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- smap – If specified, this SymbolMap is used to cache labels for variables.
- compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

getname (*args, **kwds)
Return the text name of a function associated with this expression object.
In general, no arguments are passed to this function.

Parameters
- *arg – a variable length list of arguments
- **kwds – keyword arguments

Returns A string name for the function.

class pyomo.core.expr.current.ReciprocalExpression (args)
Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase
Reciprocal expressions:

\[ \frac{1}{x} \]

PRECEDENCE = 3.5

_apply_operation (result)
Compute the values of this node given the values of its children.
This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

Parameters values (list) – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.
_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

Parameters values (list) – A list of values that indicate the degree of the children expression.

Returns A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

_precedence() 
_to_string(values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
- values (list) – The string representations of the children of this node.
- verbose (bool) – If True, then the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- smap – If specified, this SymbolMap is used to cache labels for variables.
- compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

getname(*args, **kwds)
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
- *arg – a variable length list of arguments
- **kwds – keyword arguments

Returns A string name for the function.

nargs()
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

Note: This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

Returns A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.InequalityExpression(args, strict)
Bases: pyomo.core.expr.expr_pyomo5._LinearOperatorExpression

Inequality expressions, which define less-than or less-than-or-equal relations:

```
x < y
x <= y
```
Parameters

- **args** *(tuple)* – child nodes
- **strict** *(bool)* – a flag that indicates whether the inequality is strict

**PRECEDENCE = 9**

**_apply_operation(result)**

Compute the values of this node given the values of its children.

This method is called by the `_EvaluationVisitor` class. It must be over-written by expression classes to customize this logic.

**Note:** This method applies the logical operation of the operator to the arguments. It does *not* evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the `LinearExpression` class, then those values *must* be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

**Parameters**

- **values** *(list)* – A list of values that indicate the value of the children expressions.

**Returns** A floating point value for this expression.

**_precedence()**

**_strict**

**_to_string(values, verbose, smap, compute_values)**

Construct a string representation for this node, using the string representations of its children.

This method is called by the `_ToStringVisitor` class. It must must be defined in subclasses.

**Parameters**

- **values** *(list)* – The string representations of the children of this node.
- **verbose** *(bool)* – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- **smap** – If specified, this `SymbolMap` is used to cache labels for variables.
- **compute_values** *(bool)* – If True, then parameters and fixed variables are evaluated before the expression string is generated.

**Returns** A string representation for this node.

**create_node_with_local_data(args)**

Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

```python
self.__class__(args)
```

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

**Parameters**

- **args** *(list)* – A list of child nodes for the new expression object
• **memo** *(dict)* – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.

**is_constant()**
Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method. This method returns True if the expression is an atomic constant, that is it is composed exclusively of constants and immutable parameters. NumericValue objects returning is_constant() == True may be simplified to their numeric value at any point without warning.

Note: This defaults to False, but gets redefined in sub-classes.

**is_potentially_variable()**
Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

**Returns** A boolean. Defaults to True for expressions.

**is_relational()**
Return True if this numeric value represents a relational expression.

**nargs()**
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

**Note:** This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

**Returns** A nonnegative integer that is the number of child nodes.

**class pyomo.core.expr.current.EqualityExpression(args)**
**Bases:** pyomo.core.expr.expr_pyomo5._LinearOperatorExpression

Equality expression:

```
x == y
```

**PRECEDENCE = 9**

**_apply_operation(result)**
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

**Note:** This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.
Parameters `values (list)` – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.

`_precedence()`

`_to_string (values, verbose, smap, compute_values)`

Construct a string representation for this node, using the string representations of its children.

This method is called by the `_ToStringVisitor` class. It must must be defined in subclasses.

Parameters

- `values (list)` – The string representations of the children of this node.
- `verbose (bool)` – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- `smap` – If specified, this `SymbolMap` is used to cache labels for variables.
- `compute_values (bool)` – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

`is_constant()`

Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method. This method returns True if the expression is an atomic constant, that is it is composed exclusively of constants and immutable parameters. NumericValue objects returning is_constant() == True may be simplified to their numeric value at any point without warning.

Note: This defaults to False, but gets redefined in sub-classes.

`is_potentially_variable()`

Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

Returns A boolean. Defaults to True for expressions.

`is_relational()`

Return True if this numeric value represents a relational expression.

`nargs()`

Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

Note: This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

Returns A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.SumExpression (args)
Bases: pyomo.core.expr.expr_pyomo5.SumExpressionBase

Sum expression:
\[ x + y \]

Parameters **args** (*list*) – Children nodes

**PRECEDEENCE** = 6

__**_apply_operation**__(result)
Compute the values of this node given the values of its children.

This method is called by the \_EvaluationVisitor\_ class. It must be over-written by expression classes to customize this logic.

**Note:** This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

Parameters **values** (*list*) – A list of values that indicate the value of the children expressions.

**Returns** A floating point value for this expression.

__**_nargs**__

**_precedence_**()

__**_shared_args**__

**_to_string**__(values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.

This method is called by the \_ToStringVisitor\_ class. It must must be defined in subclasses.

Parameters

- **values** (*list*) – The string representations of the children of this node.
- **verbose** (*bool*) – If True, then the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- **smap** – If specified, this SymbolMap is used to cache labels for variables.
- **compute_values** (*bool*) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

**Returns** A string representation for this node.

**add**(*new_arg*)

**create_node_with_local_data**(*args*)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

```python
self.__class__(args)
```

But in general this creates an expression object using local data as well as arguments that represent the child nodes.
Parameters

- **args (list)** – A list of child nodes for the new expression object
- **memo (dict)** – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.

**is_constant**()
Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method. This method returns True if the expression is an atomic constant, that is it is composed exclusively of constants and immutable parameters. NumericValue objects returning is_constant() == True may be simplified to their numeric value at any point without warning.

Note: This defaults to False, but gets redefined in sub-classes.

**is_potentially_variable**()
Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

**Returns** A boolean. Defaults to True for expressions.

**nargs**()
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

Note: This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

**class** pyomo.core.expr.current.GetItemExpression (args, base=None)

Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase

Expression to call __getitem__() on the base object.

**PRECEDENCE** = 1

**_apply_operation**(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.
Parameters values (list) – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.

_base

_compute_polynomial_degree (result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

Parameters values (list) – A list of values that indicate the degree of the children expression.

Returns A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

_is_fixed (values)
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to customize this logic.

Parameters values (list) – A list of boolean values that indicate whether the children of this expression are fixed.

Returns A boolean that is True if the fixed values of the children are all True.

_precedence ()

_to_string (values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters
• values (list) – The string representations of the children of this node.
• verbose (bool) – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
• smap – If specified, this SymbolMap is used to cache labels for variables.
• compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

create_node_with_local_data (args)
Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

Parameters
• args (list) – A list of child nodes for the new expression object
• **memo**(dict) – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.

**getname(**

getname(*args, **kwds)

Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

**Parameters**

• *arg – a variable length list of arguments
• **kwds – keyword arguments

**Returns** A string name for the function.

**is_fixed()**

Return True if this expression contains no free variables.

**Returns** A boolean.

**is_potentially_variable()**

Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

**Returns** A boolean. Defaults to True for expressions.

**nargs()**

Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

**Note:** This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

**Returns** A nonnegative integer that is the number of child nodes.

**resolve_template()**

**class** pyomo.core.expr.current.Expr_ifExpression(IF_=None, THEN_=None, ELSE_=None)

**Bases:** pyomo.core.expr.expr_pyomo5.ExpressionBase

A logical if-then-else expression:

Expr_if(IF_=x, THEN_=y, ELSE_=z)

**Parameters**

• **IF**(expression) – A relational expression
• **THEN**(expression) – An expression that is used if IF_ is true.
• **ELSE**(expression) – An expression that is used if IF_ is false.
_apply_operation(result)
Compute the values of this node given the values of its children.

This method is called by the _EvaluationVisitor class. It must be over-written by expression classes to customize this logic.

**Note:** This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxilliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

**Parameters**
values (list) – A list of values that indicate the value of the children expressions.

**Returns**
A floating point value for this expression.

_compute_polynomial_degree(result)
Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

**Parameters**
values (list) – A list of values that indicate the degree of the children expression.

**Returns**
A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

_else

_if

_is_fixed(args)
Compute whether this expression is fixed given the fixed values of its children.

This method is called by the _IsFixedVisitor class. It can be over-written by expression classes to customize this logic.

**Parameters**
values (list) – A list of boolean values that indicate whether the children of this expression are fixed

**Returns**
A boolean that is True if the fixed values of the children are all True.

_then

_to_string(values, verbose, smap, compute_values)
Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

**Parameters**

- values (list) – The string representations of the children of this node.
- verbose (bool) – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.
- smap – If specified, this SymbolMap is used to cache labels for variables.
- compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.
Returns A string representation for this node.

`getname(*args, **kwds)`
Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

Parameters
- `*arg` – a variable length list of arguments
- `**kwds` – keyword arguments

Returns A string name for the function.

`is_constant()`
Return True if this expression is an atomic constant

This method contrasts with the is_fixed() method. This method returns True if the expression is an atomic constant, that is it is composed exclusively of constants and immutable parameters. NumericValue objects returning is_constant() == True may be simplified to their numeric value at any point without warning.

Note: This defaults to False, but gets redefined in sub-classes.

`is_potentially_variable()`
Return True if this expression might represent a variable expression.

This method returns True when (a) the expression tree contains one or more variables, or (b) the expression tree contains a named expression. In both cases, the expression cannot be treated as constant since (a) the variables may not be fixed, or (b) the named expressions may be changed at a later time to include non-fixed variables.

Returns A boolean. Defaults to `True` for expressions.

`nargs()`
Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

Note: This function does not simply compute the length of `args` because some expression classes use a subset of the `args` array. Thus, it is imperative that developers use this method!

Returns A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.UnaryFunctionExpression(args, name=None, fcn=None)

Bases: pyomo.core.expr.expr_pyomo5.ExpressionBase

An expression object used to define intrinsic functions (e.g. sin, cos, tan).

Parameters
- `args` (tuple) – Children nodes
- `name` (string) – The function name
- `fcn` – The function that is used to evaluate this expression

 `_apply_operation(result)`
Compute the values of this node given the values of its children.

This method is called by the `_EvaluationVisitor` class. It must be over-written by expression classes to customize this logic.
Note: This method applies the logical operation of the operator to the arguments. It does not evaluate the arguments in the process, but assumes that they have been previously evaluated. But noted that if this class contains auxiliary data (e.g. like the numeric coefficients in the LinearExpression class, then those values must be evaluated as part of this function call. An uninitialized parameter value encountered during the execution of this method is considered an error.

Parameters

values (list) – A list of values that indicate the value of the children expressions.

Returns A floating point value for this expression.

_computepolynomial_degree (result) Compute the polynomial degree of this expression given the degree values of its children.

This method is called by the _PolynomialDegreeVisitor class. It can be over-written by expression classes to customize this logic.

Parameters

values (list) – A list of values that indicate the degree of the children expression.

Returns A nonnegative integer that is the polynomial degree of the expression, or None. Default is None.

__fcn

__name

_to_string (values, verbose, smap, compute_values) Construct a string representation for this node, using the string representations of its children.

This method is called by the _ToStringVisitor class. It must must be defined in subclasses.

Parameters

• values (list) – The string representations of the children of this node.

• verbose (bool) – If True, then the the string representation consists of nested functions. Otherwise, the string representation is an algebraic equation.

• smap – If specified, this SymbolMap is used to cache labels for variables.

• compute_values (bool) – If True, then parameters and fixed variables are evaluated before the expression string is generated.

Returns A string representation for this node.

create_node_with_local_data (args) Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

self.__class__(args)

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

Parameters

• args (list) – A list of child nodes for the new expression object
memo (dict) – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.

getname (*args, **kwds)

Return the text name of a function associated with this expression object.

In general, no arguments are passed to this function.

**Parameters**

* arg – a variable length list of arguments

* **kwds – keyword arguments

**Returns** A string name for the function.

nargs ()

Returns the number of child nodes.

By default, Pyomo expressions represent binary operations with two arguments.

**Note:** This function does not simply compute the length of _args_ because some expression classes use a subset of the _args_ array. Thus, it is imperative that developers use this method!

**Returns** A nonnegative integer that is the number of child nodes.

class pyomo.core.expr.current.AbsExpression (arg)

Bases: pyomo.core.expr.expr_pyomo5.UnaryFunctionExpression

An expression object for the abs() function.

**Parameters**

* args (tuple) – Children nodes

create_node_with_local_data (args)

Construct a node using given arguments.

This method provides a consistent interface for constructing a node, which is used in tree visitor scripts. In the simplest case, this simply returns:

```python
self.__class__(args)
```

But in general this creates an expression object using local data as well as arguments that represent the child nodes.

**Parameters**

* args (list) – A list of child nodes for the new expression object

* memo (dict) – A dictionary that maps object ids to clone objects generated earlier during a cloning process. This argument is needed to clone objects that are owned by a model, and it can be safely ignored for most expression classes.

**Returns** A new expression object with the same type as the current class.
13.2.5 Visitor Classes

class pyomo.core.expr.current.SimpleExpressionVisitor

Note: This class is a customization of the PyUtilib SimpleVisitor class that is tailored to efficiently walk Pyomo expression trees. However, this class is not a subclass of the PyUtilib SimpleVisitor class because all key methods are reimplemented.

finalize()  
Return the “final value” of the search.

The default implementation returns None, because the traditional visitor pattern does not return a value.

Returns The final value after the search. Default is None.

visit(node)  
Visit a node in an expression tree and perform some operation on it.

This method should be over-written by a user that is creating a sub-class.

Parameters node – a node in an expression tree

Returns nothing

xbfs(node)  
Breadth-first search of an expression tree, except that leaf nodes are immediately visited.

Note: This method has the same functionality as the PyUtilib SimpleVisitor.xbfs method. The difference is that this method is tailored to efficiently walk Pyomo expression trees.

Parameters node – The root node of the expression tree that is searched.

Returns The return value is determined by the finalize() function, which may be defined by the user. Defaults to None.

xbfs_yield_leaves(node)  
Breadth-first search of an expression tree, except that leaf nodes are immediately visited.

Note: This method has the same functionality as the PyUtilib SimpleVisitor.xbfs_yield_leaves method. The difference is that this method is tailored to efficiently walk Pyomo expression trees.

Parameters node – The root node of the expression tree that is searched.

Returns The return value is determined by the finalize() function, which may be defined by the user. Defaults to None.

class pyomo.core.expr.current.ExpressionValueVisitor

Note: This class is a customization of the PyUtilib ValueVisitor class that is tailored to efficiently walk Pyomo expression trees. However, this class is not a subclass of the PyUtilib ValueVisitor class because
all key methods are reimplemented.

```python
dfs_postorder_stack(node)
```

Perform a depth-first search in postorder using a stack implementation.

**Note:** This method has the same functionality as the PyUtilib `ValueVisitor.dfs_postorder_stack` method. The difference is that this method is tailored to efficiently walk Pyomo expression trees.

- **Parameters**  
  `node` – The root node of the expression tree that is searched.

- **Returns**  
  The return value is determined by the `finalize()` function, which may be defined by the user.

```python
finalize(ans)
```

This method defines the return value for the search methods in this class.

The default implementation returns the value of the initial node (aka the root node), because this visitor pattern computes and returns value for each node to enable the computation of this value.

- **Parameters**  
  `ans` – The final value computed by the search method.

- **Returns**  
  The final value after the search. Defaults to simply returning `ans`.

```python
visit(node, values)
```

Visit a node in a tree and compute its value using the values of its children.

This method should be over-written by a user that is creating a sub-class.

- **Parameters**
  
  - `node` – a node in a tree
  
  - `values` – a list of values of this node’s children

- **Returns**  
  The value for this node, which is computed using `values`.

```python
visiting_potential_leaf(node)
```

Visit a node and return its value if it is a leaf.

**Note:** This method needs to be over-written for a specific visitor application.

- **Parameters**  
  `node` – a node in a tree

- **Returns**  
  `(flag, value)`. If `flag` is False, then the node is not a leaf and `value` is `None`. Otherwise, `value` is the computed value for this node.

**Return type**  
A tuple

```python
class pyomo.core.expr.current.ExpressionReplacementVisitor(substitute=None, descend_into_named_expressions=True, remove_named_expressions=False)
```

13.2. Expression Reference 249
Note: This class is a customization of the PyUtilib ValueVisitor class that is tailored to support replacement of sub-trees in a Pyomo expression tree. However, this class is not a subclass of the PyUtilib ValueVisitor class because all key methods are reimplemented.

**construct_node**(node, values)
Call the expression create_node_with_local_data() method.

**dfs_postorder_stack**(node)
Perform a depth-first search in postorder using a stack implementation.

This method replaces subtrees. This method detects if the visit() method returns a different object. If so, then the node has been replaced and search process is adapted to replace all subsequent parent nodes in the tree.

Note: This method has the same functionality as the PyUtilib ValueVisitor. dfs_postorder_stack method that is tailored to support the replacement of sub-trees in a Pyomo expression tree.

**Parameters**
- node – The root node of the expression tree that is searched.

**Returns**
The return value is determined by the finalize() function, which may be defined by the user.

**finalize**(ans)
This method defines the return value for the search methods in this class.

The default implementation returns the value of the initial node (aka the root node), because this visitor pattern computes and returns value for each node to enable the computation of this value.

**Parameters**
- ans – The final value computed by the search method.

**Returns**
The final value after the search. Defaults to simply returning ans.

**visit**(node, values)
Visit and clone nodes that have been expanded.

Note: This method normally does not need to be re-defined by a user.

**Parameters**
- node – The node that will be cloned.
- values (list) – The list of child nodes that have been cloned. These values are used to define the cloned node.

**Returns**
The cloned node. Default is to simply return the node.

**visiting_potential_leaf**(node)
Visit a node and return a cloned node if it is a leaf.

Note: This method needs to be over-written for a specific visitor application.

**Parameters**
- node – a node in a tree
Returns (flag, value). If flag is False, then the node is not a leaf and value is None. Otherwise, value is a cloned node.

Return type A tuple

13.3 Solver Interfaces

13.3.1 GAMS

GAMSShell Solver

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GAMSShell.available(exception_flag)</td>
<td>True if the solver is available.</td>
</tr>
<tr>
<td>GAMSShell.executable()</td>
<td>Returns the executable used by this solver.</td>
</tr>
<tr>
<td>GAMSShell.solve(*args, **kwds)</td>
<td>Solve a model via the GAMS executable.</td>
</tr>
<tr>
<td>GAMSShell.version()</td>
<td>Returns a 4-tuple describing the solver executable version.</td>
</tr>
<tr>
<td>GAMSShell.warm_start_capable()</td>
<td>True is the solver can accept a warm-start solution.</td>
</tr>
</tbody>
</table>

class pyomo.solvers.plugins.solvers.GAMS.GAMSShell(**kwds)

A generic shell interface to GAMS solvers.

available(exception_flag=True)

True if the solver is available.

executable()

Returns the executable used by this solver.

solve(*args, **kwds)

Solve a model via the GAMS executable.

Keyword Arguments

- tee=False (bool) – Output GAMS log to stdout.
- logfile=None (str) – Filename to output GAMS log to a file.
- load_solutions=True (bool) – Load solution into model. If False, the results object will contain the solution data.
- keepfiles=False (bool) – Keep temporary files.
- tmpdir=None (str) – Specify directory path for storing temporary files. A directory will be created if one of this name doesn’t exist. By default uses the system default temporary path.
- report_timing=False (bool) – Print timing reports for presolve, solver, postsolve, etc.
- io_options (dict) – Options that get passed to the writer. See writer in pyomo.repn.plugins.gams_writer for details. Updated with any other keywords passed to solve method. Note: put_results is not available for modification on GAMSShell solver.

GAMSDirect Solver
GAMS Direct available(exception_flag)  True if the solver is available.
GAMS Direct solve(*args, **kwds)  Solve a model via the GAMS Python API.
GAMS Direct version()  Returns a 4-tuple describing the solver executable version.
GAMS Direct warm_start_capable()  True if the solver can accept a warm-start solution.

class pyomo.solvers.plugins.solvers.GAMS.GAMS Direct(**kwds)

A generic python interface to GAMS solvers.
Visit Python API page on gams.com for installation help.

available(exception_flag=True)
True if the solver is available.
solve(*args, **kwds)
Solve a model via the GAMS Python API.

Keyword Arguments

- **tee=False**(bool) – Output GAMS log to stdout.
- **logfile=None**(str) – Filename to output GAMS log to a file.
- **load_solutions=True**(bool) – Load solution into model. If False, the results object will contain the solution data.
- **keepfiles=False**(bool) – Keep temporary files. Equivalent of DebugLevel.KeepFiles. Summary of temp files can be found in _gams_py_gjo0.pf
- **tmpdir=None**(str) – Specify directory path for storing temporary files. A directory will be created if one of this name doesn’t exist. By default uses the system default temporary path.
- **report_timing=False**(bool) – Print timing reports for presolve, solver, postsolve, etc.
- **io_options**(dict) – Options that get passed to the writer. See writer in pyomo.repn.plugins.gams_writer for details. Updated with any other keywords passed to solve method.

GAMS Writer

This class is most commonly accessed and called upon via model.write("filename.gms", ...), but is also utilized by the GAMS solver interfaces.

class pyomo.repn.plugins.gams_writer.ProblemWriter_gams

__call__(model, output_filename, solver_capability, io_options)
Write a model in the GAMS modeling language format.

Keyword Arguments

- **output_filename**(str) – Name of file to write GAMS model to. Optionally pass a file-like stream and the model will be written to that instead.
- **io_options**(dict) –
  - **warmstart=True** Warmstart by initializing model’s variables to their values.
- `symbolic_solver_labels=False` Use full Pyomo component names rather than shortened symbols (slower, but useful for debugging).
- `labeler=None` Custom labeler. Incompatible with `symbolic_solver_labels`.
- `solver=None` If None, GAMS will use default solver for model type.
- `mtype=None` Model type. If None, will chose from lp, nlp, mip, and minlp.
- `add_options=None` List of additional lines to write directly into model file before the `solve` statement. For model attributes, `<model name>` is `GAMS_MODEL`.
- `skip_trivial_constraints=False` Skip writing constraints whose body section is fixed.
- `file_determinism=1` How much effort do we want to put into ensuring the GAMS file is written deterministically for a Pyomo model:
  0 : None
  1 : sort keys of indexed components (default)
  2 : sort keys AND sort names (over declaration order)
- `put_results=None` Filename for optionally writing solution values and marginals to (put_results).dat, and solver statuses to (put_results + ‘stat’).dat.

### 13.3.2 CPLEXPersistent

```python
class pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent(**kwds):
 Bases: pyomo.solvers.plugins.solvers.persistent_solver.PersistentSolver,
 pyomo.solvers.plugins.solvers.cplex_direct.CPLEXDirect

 A class that provides a persistent interface to Cplex. Direct solver interfaces do not use any file io. Rather, they interface directly with the python bindings for the specific solver. Persistent solver interfaces are similar except that they “remember” their model. Thus, persistent solver interfaces allow incremental changes to the solver model (e.g., the gurobi python model or the cplex python model). Note that users are responsible for notifying the persistent solver interfaces when changes are made to the corresponding pyomo model.

 Keyword Arguments
 - `model (ConcreteModel)` – Passing a model to the constructor is equivalent to calling the `set_instance` method.
 - `type (str)` – String indicating the class type of the solver instance.
 - `name (str)` – String representing either the class type of the solver instance or an assigned name.
 - `doc (str)` – Documentation for the solver
 - `options (dict)` – Dictionary of solver options

 add_block(block)
 Add a single Pyomo Block to the solver’s model.

 This will keep any existing model components intact.

 Parameters
 - `block (Block (scalar Block or single _BlockData))`–

 add_constraint(con)
 Add a single constraint to the solver’s model.

 This will keep any existing model components intact.

 Parameters
 - `con (Constraint (scalar Constraint or single _ConstraintData))`–
```

13.3. Solver Interfaces 253
add_sos_constraint(*con*)
Add a single SOS constraint to the solver’s model (if supported).
This will keep any existing model components intact.

Parameters
**con** (*SOSConstraint*) –

add_var(*var*)
Add a single variable to the solver’s model.
This will keep any existing model components intact.

Parameters
**var** (*Var*) –

available(*exception_flag=True*)
True if the solver is available.

has_capability(*cap*)
Returns a boolean value representing whether a solver supports a specific feature. Defaults to ‘False’ if the solver is unaware of an option. Expects a string.

Example:

```python
prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability('sos1'))
```

```python
prints True is solver supports ‘feature’, and False otherwise print(solver.has_capability('feature'))
```

Parameters
**cap** (*str*) – The feature

Returns
**val** – Whether or not the solver has the specified capability.

Return type
**bool**

has_instance()
True if set_instance has been called and this solver interface has a pyomo model and a solver model.

Returns
**tmp**

Return type
**bool**

load_duals(*cons_to_load=None*)
Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.

Parameters
**cons_to_load** (*list of Constraint*) –

load_rc(*vars_to_load*)
Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.

Parameters
**vars_to_load** (*list of Var*) –

load_slacks(*cons_to_load=None*)
Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent model.

Parameters
**cons_to_load** (*list of Constraint*) –

load_vars(*vars_to_load=None*)
Load the values from the solver’s variables into the corresponding pyomo variables.

Parameters
**vars_to_load** (*list of Var*) –

problem_format()
Returns the current problem format.

remove_block(*block*)
Remove a single block from the solver’s model.
This will keep any other model components intact.

WARNING: Users must call remove_block BEFORE modifying the block.

Parameters
**block** (*Block (scalar Block or a single _BlockData)*) –
remove_constraint (con)
Remove a single constraint from the solver’s model.
This will keep any other model components intact.

Parameters con (Constraint (scalar Constraint or single
_ConstraintData))

remove_sos_constraint (con)
Remove a single SOS constraint from the solver’s model.
This will keep any other model components intact.

Parameters con (SOSConstraint)

remove_var (var)
Remove a single variable from the solver’s model.
This will keep any other model components intact.

Parameters var (Var (scalar Var or single _VarData))

reset ()
Reset the state of the solver

results_format ()
Returns the current results format.

set_callback (name, callback_fn=None)
Set the callback function for a named callback.
A call-back function has the form:

def fn(solver, model): pass

where ‘solver’ is the native solver interface object and ‘model’ is a Pyomo model instance object.

set_instance (model, **kwds)
This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.
This discards any existing model and starts from scratch.

Parameters model (ConcreteModel) – The pyomo model to be used with the solver.

Keyword Arguments

* symbolic_solver_labels (bool) – If True, the solver’s components (e.g., variables, constraints) will be given names that correspond to the Pyomo component names.

* skip_trivial_constraints (bool) – If True, then any constraints with a constant body will not be added to the solver model. Be careful with this. If a trivial constraint is skipped then that constraint cannot be removed from a persistent solver (an error will be raised if a user tries to remove a non-existent constraint).

* output_fixed_variable_bounds (bool) – If False then an error will be raised if a fixed variable is used in one of the solver constraints. This is useful for catching bugs. Ordinarily a fixed variable should appear as a constant value in the solver constraints. If True, then the error will not be raised.

set_objective (obj)
Set the solver’s objective. Note that, at least for now, any existing objective will be discarded. Other than that, any existing model components will remain intact.

Parameters obj (Objective)

set_problem_format (format)
Set the current problem format (if it’s valid) and update the results format to something valid for this problem format.
set_results_format (format)
    Set the current results format (if it’s valid for the current problem format).
solve(*args, **kwds)
    Solve the model.

Keyword Arguments
    • suffixes (list of str) – The strings should represent suffixes supported by the solver. Examples include ‘dual’, ‘slack’, and ‘rc’.
    • options (dict) – Dictionary of solver options. See the solver documentation for possible solver options.
    • warmstart (bool) – If True, the solver will be warmstarted.
    • keepfiles (bool) – If True, the solver log file will be saved.
    • logfile (str) – Name to use for the solver log file.
    • load_solutions (bool) – If True and a solution exists, the solution will be loaded into the Pyomo model.
    • report_timing (bool) – If True, then timing information will be printed.
    • tee (bool) – If True, then the solver log will be printed.

update_var (var)
    Update a single variable in the solver’s model.
    This will update bounds, fix/unfix the variable as needed, and update the variable type.

Parameters
    var (Var (scalar Var or single _VarData)) –

version()
    Returns a 4-tuple describing the solver executable version.

warm_start_capable()
    True is the solver can accept a warm-start solution

write (filename, filetype=“”)
    Write the model to a file (e.g., an lp file).

Parameters
    • filename (str) – Name of the file to which the model should be written.
    • filetype (str) – The file type (e.g., lp).

13.3.3 GurobiPersistent

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>GurobiPersistent.add_block (block)</td>
<td>Add a single Pyomo Block to the solver’s model.</td>
</tr>
<tr>
<td>GurobiPersistent.add_constraint (con)</td>
<td>Add a constraint to the solver’s model.</td>
</tr>
<tr>
<td>GurobiPersistent.set_objective (obj)</td>
<td>Set the solver’s objective.</td>
</tr>
<tr>
<td>GurobiPersistent.add_sos_constraint (con)</td>
<td>Add an SOS constraint to the solver’s model (if supported).</td>
</tr>
<tr>
<td>GurobiPersistent.add_var (var)</td>
<td>Add a variable to the solver’s model.</td>
</tr>
<tr>
<td>GurobiPersistent.available (exception_flag)</td>
<td>True if the solver is available.</td>
</tr>
</tbody>
</table>

Continued on next page
### Table 13.4 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>GurobiPersistent.has_capability(cap)</code></td>
<td>Returns a boolean value representing whether a solver supports a specific feature.</td>
</tr>
<tr>
<td><code>GurobiPersistent.has_instance()</code></td>
<td>True if set_instance has been called and this solver interface has a pyomo model and a solver model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.load_vars([vars_to_load])</code></td>
<td>Load the values from the solver’s variables into the corresponding pyomo variables.</td>
</tr>
<tr>
<td><code>GurobiPersistent.problem_format()</code></td>
<td>Returns the current problem format.</td>
</tr>
<tr>
<td><code>GurobiPersistent.remove_block(block)</code></td>
<td>Remove a single block from the solver’s model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.remove_constraint(con)</code></td>
<td>Remove a single constraint from the solver’s model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.remove_sos_constraint(con)</code></td>
<td>Remove a single SOS constraint from the solver’s model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.remove_var(var)</code></td>
<td>Remove a single variable from the solver’s model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.reset()</code></td>
<td>Reset the state of the solver</td>
</tr>
<tr>
<td><code>GurobiPersistent.results_format()</code></td>
<td>Returns the current results format.</td>
</tr>
<tr>
<td><code>GurobiPersistent.set_callback(name[, ...])</code></td>
<td>Set the callback function for a named callback.</td>
</tr>
<tr>
<td><code>GurobiPersistent.set_instance(model,**kwds)</code></td>
<td>This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.set_problem_format(format)</code></td>
<td>Set the current problem format (if it’s valid) and update the results format to something valid for this problem format.</td>
</tr>
<tr>
<td><code>GurobiPersistent.set_results_format(format)</code></td>
<td>Set the current results format (if it’s valid for the current problem format).</td>
</tr>
<tr>
<td><code>GurobiPersistent.solve(*args,**kwds)</code></td>
<td>Solve the model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.update_var(var)</code></td>
<td>Update a single variable in the solver’s model.</td>
</tr>
<tr>
<td><code>GurobiPersistent.version()</code></td>
<td>Returns a 4-tuple describing the solver executable version.</td>
</tr>
<tr>
<td><code>GurobiPersistent.write(filename)</code></td>
<td>Write the model to a file (e.g., and lp file).</td>
</tr>
</tbody>
</table>

**Class** `pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent(**kwds)`

**Bases:** `pyomo.solvers.plugins.solvers.persistent_solver.PersistentSolver`, `pyomo.solvers.plugins.solvers.gurobi_direct.GurobiDirect`

A class that provides a persistent interface to Gurobi. Direct solver interfaces do not use any file io. Rather, they interface directly with the python bindings for the specific solver. Persistent solver interfaces are similar except that they “remember” their model. Thus, persistent solver interfaces allow incremental changes to the solver model (e.g., the gurobi python model or the cplex python model). Note that users are responsible for notifying the persistent solver interfaces when changes are made to the corresponding pyomo model.

**Keyword Arguments**

- `model (ConcreteModel)` – Passing a model to the constructor is equivalent to calling the set_instance method.
- `type (str)` – String indicating the class type of the solver instance.
- `name (str)` – String representing either the class type of the solver instance or an assigned name.
- `doc (str)` – Documentation for the solver
- `options (dict)` – Dictionary of solver options

**add_block (block)**

Add a single Pyomo Block to the solver’s model.

This will keep any existing model components intact.
Parameters block (Block (scalar Block or single _BlockData)) –

add_constraint (con)
Add a constraint to the solver’s model. This will keep any existing model components intact.
Parameters con (Constraint) –

add_sos_constraint (con)
Add an SOS constraint to the solver’s model (if supported). This will keep any existing model components intact.
Parameters con (SOSConstraint) –

add_var (var)
Add a variable to the solver’s model. This will keep any existing model components intact.
Parameters var (Var) – The variable to add to the solver’s model.

available (exception_flag=True)
True if the solver is available.

has_capability (cap)
Returns a boolean value representing whether a solver supports a specific feature. Defaults to ‘False’ if the solver is unaware of an option. Expects a string.
Example: # prints True if solver supports sos1 constraints, and False otherwise
print(solver.has_capability('sos1'))

# prints True is solver supports ‘feature’, and False otherwise
print(solver.has_capability('feature'))
Parameters cap (str) – The feature
Returns val – Whether or not the solver has the specified capability.
Return type bool

has_instance ()
True if set_instance has been called and this solver interface has a pyomo model and a solver model.
Returns tmp
Return type bool

load_duals (cons_to_load=None)
Load the duals into the ‘dual’ suffix. The ‘dual’ suffix must live on the parent model.
Parameters cons_to_load (list of Constraint) –

load_rc (vars_to_load)
Load the reduced costs into the ‘rc’ suffix. The ‘rc’ suffix must live on the parent model.
Parameters vars_to_load (list of Var) –

load_slacks (cons_to_load=None)
Load the values of the slack variables into the ‘slack’ suffix. The ‘slack’ suffix must live on the parent model.
Parameters cons_to_load (list of Constraint) –

load_vars (vars_to_load=None)
Load the values from the solver’s variables into the corresponding pyomo variables.
Parameters vars_to_load (list of Var) –

problem_format ()
Returns the current problem format.

remove_block (block)
Remove a single block from the solver’s model.
This will keep any other model components intact.
WARNING: Users must call remove_block BEFORE modifying the block.

Parameters

**block** *(Block (scalar Block or a single _BlockData))—*

**remove_constraint** *(con)*

Remove a single constraint from the solver’s model.

This will keep any other model components intact.

Parameters

**con** *(Constraint (scalar Constraint or single _ConstraintData))—*

**remove_sos_constraint** *(con)*

Remove a single SOS constraint from the solver’s model.

This will keep any other model components intact.

Parameters

**con** *(SOSConstraint)—*

**remove_var** *(var)*

Remove a single variable from the solver’s model.

This will keep any other model components intact.

Parameters

**var** *(Var (scalar Var or single _VarData))—*

**reset** ()

Reset the state of the solver

**results_format** ()

Returns the current results format.

**set_callback** *(name, callback_fn=None)*

Set the callback function for a named callback.

A call-back function has the form:

```python
def fn(solver, model): pass
```

where ‘solver’ is the native solver interface object and ‘model’ is a Pyomo model instance object.

**set_instance** *(model, **kwds)*

This method is used to translate the Pyomo model provided to an instance of the solver’s Python model.

This discards any existing model and starts from scratch.

Parameters

**model** *(ConcreteModel)—* The pyomo model to be used with the solver.

Keyword Arguments

- **symbolic_solver_labels** *(bool)—* If True, the solver’s components (e.g., variables, constraints) will be given names that correspond to the Pyomo component names.

- **skip_trivial_constraints** *(bool)—* If True, then any constraints with a constant body will not be added to the solver model. Be careful with this. If a trivial constraint is skipped then that constraint cannot be removed from a persistent solver (an error will be raised if a user tries to remove a non-existent constraint).

- **output_fixed_variable_bounds** *(bool)—* If False then an error will be raised if a fixed variable is used in one of the solver constraints. This is useful for catching bugs. Ordinarily a fixed variable should appear as a constant value in the solver constraints. If True, then the error will not be raised.

**set_objective** *(obj)*

Set the solver’s objective. Note that, at least for now, any existing objective will be discarded. Other than that, any existing model components will remain intact.

Parameters

**obj** *(Objective)—*
**set_problem_format** *(format)*
Set the current problem format (if it’s valid) and update the results format to something valid for this problem format.

**set_results_format** *(format)*
Set the current results format (if it’s valid for the current problem format).

**solve** (*args, **kwds)*
Solve the model.

**Keyword Arguments**

- **suffixes** *(list of str)* – The strings should represent suffixes supported by the solver. Examples include ‘dual’, ‘slack’, and ‘rc’.
- **options** *(dict)* – Dictionary of solver options. See the solver documentation for possible solver options.
- **warmstart** *(bool)* – If True, the solver will be warmstarted.
- **keepfiles** *(bool)* – If True, the solver log file will be saved.
- **logfile** *(str)* – Name to use for the solver log file.
- **load_solutions** *(bool)* – If True and a solution exists, the solution will be loaded into the Pyomo model.
- **report_timing** *(bool)* – If True, then timing information will be printed.
- **tee** *(bool)* – If True, then the solver log will be printed.

**update_var** *(var)*
Update a single variable in the solver’s model.

This will update bounds, fix/unfix the variable as needed, and update the variable type.

**Parameters**

- **var** *(Var (scalar Var or single _VarData))* –

**version** ()
Returns a 4-tuple describing the solver executable version.

**warm_start_capable** ()
True is the solver can accept a warm-start solution

**write** *(filename)*
Write the model to a file (e.g., an lp file).

**Parameters**

- **filename** *(str)* – Name of the file to which the model should be written.

## 13.4 Model Data Management

**class pyomo.dataportal.DataPortal** *(DataPortal)*
An object that manages loading and storing data from external data sources. This object interfaces to plugins that manipulate the data in a manner that is dependent on the data format.

Internally, the data in a DataPortal object is organized as follows:

```
data[namespace][symbol][index] -> value
```

All data is associated with a symbol name, which may be indexed, and which may belong to a namespace. The default namespace is `None`.

**Parameters**
• **model** – The model for which this data is associated. This is used for error checking (e.g., object names must exist in the model, set dimensions must match, etc.). Default is `None`.

• **filename** *(str)* – A file from which data is loaded. Default is `None`.

• **data_dict** *(dict)* – A dictionary used to initialize the data in this object. Default is `None`.

__getitem__ *(args)*

Return the specified data value.

If a single argument is given, then this is the symbol name:

```python
dp = DataPortal()
dp[name]
```

If a two arguments are given, then the first is the namespace and the second is the symbol name:

```python
dp = DataPortal()
dp[namespace, name]
```

**Parameters**

*args *(str)* – A tuple of arguments.

**Returns**

If a single argument is given, then the data associated with that symbol in the namespace `None` is returned. If two arguments are given, then the data associated with symbol in the given namespace is returned.

__init__ *(args, **kwds)*

Constructor

__setitem__ *(name, value)*

Set the value of `name` with the given value.

**Parameters**

• **name** *(str)* – The name of the symbol that is set.

• **value** – The value of the symbol.

__weakref__

list of weak references to the object (if defined)

connect *(**kwds)*

Construct a data manager object that is associated with the input source. This data manager is used to process future data imports and exports.

**Parameters**

• **filename** *(str)* – A filename that specifies the data source. Default is `None`.

• **server** *(str)* – The name of the remote server that hosts the data. Default is `None`.

• **using** *(str)* – The name of the resource used to load the data. Default is `None`.

Other keyword arguments are passed to the data manager object.

data *(name=None, namespace=None)*

Return the data associated with a symbol and namespace

**Parameters**

• **name** *(str)* – The name of the symbol that is returned. Default is `None`, which indicates that the entire data in the namespace is returned.
* namespace (str) – The name of the namespace that is accessed. Default is None.

Returns If name is None, then the dictionary for the namespace is returned. Otherwise, the data associated with name in given namespace is returned. The return value is a constant if None if there is a single value in the symbol dictionary, and otherwise the symbol dictionary is returned.

disconnect ()
Close the data manager object that is associated with the input source.

items (namespace=None)
Return an iterator of (name, value) tuples from the data in the specified namespace.

Yields The next (name, value) tuple in the namespace. If the symbol has a simple data value, then that is included in the tuple. Otherwise, the tuple includes a dictionary mapping symbol indices to values.

keys (namespace=None)
Return an iterator of the data keys in the specified namespace.

Yields A string name for the next symbol in the specified namespace.

load (**kwds)
Import data from an external data source.

Parameters model – The model object for which this data is associated. Default is None.
Other keyword arguments are passed to the connect () method.

namespaces ()
Return an iterator for the namespaces in the data portal.

Yields A string name for the next namespace.

store (**kwds)
Export data to an external data source.

Parameters model – The model object for which this data is associated. Default is None.
Other keyword arguments are passed to the connect () method.

values (namespace=None)
Return an iterator of the data values in the specified namespace.

Yields The data value for the next symbol in the specified namespace. This may be a simple value, or a dictionary of values.

class pyomo.dataportal.TableData
A class used to read/write data from/to a table in an external data source.

__init__ ()
Constructor

__weakref__
list of weak references to the object (if defined)

add_options (**kwds)
Add the keyword options to the Options object in this object.

available ()

Returns Return True if the data manager is available.

clear ()
Clear the data that was extracted from this table

close ()
Close the data manager.
initialize(**kwds)
Initialize the data manager with keyword arguments.

The filename argument is recognized here, and other arguments are passed to the add_options() method.

open()
Open the data manager.

process(model, data, default)
Process the data that was extracted from this data manager and return it.

read()
Read data from the data manager.

write(data)
Write data to the data manager.

Pyomo is under active ongoing development. The following API documentation describes Beta functionality.

Warning: The pyomo.kernel API is still in the beta phase of development. It is fully tested and functional; however, the interface may change as it becomes further integrated with the rest of Pyomo.

Warning: Models built with pyomo.kernel components are not yet compatible with pyomo extension modules (e.g., pyomo.pysp, pyomo.dae, pyomo.gdp).

13.5 The Kernel Library

The pyomo.kernel library is an experimental modeling interface designed to provide a better experience for users doing concrete modeling and advanced application development with Pyomo. It includes the basic set of modeling components necessary to build algebraic models, which have been redesigned from the ground up to make it easier for users to customize and extend. For a side-by-side comparison of pyomo.kernel and pyomo.environ syntax, visit the link below.
### 13.5.1 Syntax Comparison Table (pyomo.kernel vs pyomo.environ)

<table>
<thead>
<tr>
<th>Import</th>
<th>pyomo.kernel</th>
<th>pyomo.environ</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td><code>import pyomo.kernel as pmo</code></td>
<td><code>import pyomo.environ as aml</code></td>
</tr>
<tr>
<td>Model</td>
<td><code>def create(data):</code></td>
<td><code>m = aml.AbstractModel()</code></td>
</tr>
<tr>
<td></td>
<td>- instance = pmo.block()</td>
<td>- <code>instance = Thing()</code></td>
</tr>
<tr>
<td></td>
<td>- # ... define instance</td>
<td>- # ... define model ...</td>
</tr>
<tr>
<td></td>
<td>- ...</td>
<td>- <code>instance = create(data)</code></td>
</tr>
<tr>
<td></td>
<td>- return instance</td>
<td>- <code>m.create_</code></td>
</tr>
<tr>
<td></td>
<td>- <code>instance = create(data)</code></td>
<td>- <code>instance(datafile)</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m = pmo.block()</code></td>
<td>- <code>m = aml.ConcreteModel()</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m.b = pmo.block()</code></td>
<td>- <code>m.b = aml.Block()</code></td>
</tr>
<tr>
<td>Set</td>
<td>`m.s = [1, 2]</td>
<td><code>m.s = aml.Set(initialize=[1, 2], ...)</code></td>
</tr>
<tr>
<td></td>
<td>- # [0,1,2]</td>
<td>- <code>ordered=True)</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m.q = range(3)</code></td>
<td>- <code># [1,2,3]</code></td>
</tr>
<tr>
<td></td>
<td></td>
<td>- <code>m.q = aml.RangeSet(1,3)</code></td>
</tr>
<tr>
<td>Parameter</td>
<td><code>m.p = pmo.parameter(0)</code></td>
<td><code>m.p = aml.Param(mutable=True, initialize=0)</code></td>
</tr>
<tr>
<td></td>
<td>- # pd[1] = 0, pd[2] = 1</td>
<td>- <code>initialize=0</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m.pd = pmo.parameter_.dict()</code></td>
<td>- <code># pd[1] = 0, pd[2] = 1</code></td>
</tr>
<tr>
<td></td>
<td>- for k,i in enumerate(m.s):</td>
<td>- <code>def pd_(m,i):</code></td>
</tr>
<tr>
<td></td>
<td>- m.pd[i] = pmo.parameter(k)</td>
<td>- <code>return m.s.ord(i) - 1</code></td>
</tr>
<tr>
<td></td>
<td>- # uses 0-based indexing</td>
<td>- <code>--mutable=True, rule=pd_</code></td>
</tr>
<tr>
<td></td>
<td>- # pl[0] = 0, pl[1] = 1</td>
<td>- <code># No ParamList exists</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m.pl = pmo.parameter_.list()</code></td>
<td>- <code>#</code></td>
</tr>
<tr>
<td></td>
<td>- for j in m.q:</td>
<td>- <code>#</code></td>
</tr>
<tr>
<td></td>
<td>- m.pl.append(pmo.parameter(j))</td>
<td>- <code>#</code></td>
</tr>
<tr>
<td>Variable</td>
<td><code>m.v = pmo.variable(value=1, lb=1, ub=4)</code></td>
<td><code>m.v = aml.Var(initialize=1.0, bounds=(1, 4))</code></td>
</tr>
<tr>
<td></td>
<td>- <code>m.vd = pmo.variable_dict()</code></td>
<td>- <code>--bounds=(None,9))</code></td>
</tr>
<tr>
<td></td>
<td>- for i in m.s:</td>
<td>- <code>--bounds=(None,9))</code></td>
</tr>
<tr>
<td></td>
<td>- m.vd[i] = pmo.variable(ub=9)</td>
<td>- <code>--bounds=(None,9))</code></td>
</tr>
</tbody>
</table>

### 13.5. The Kernel Library
Models built from `pyomo.kernel` components are fully compatible with the standard solver interfaces included with Pyomo. A minimal example script that defines and solves a model is shown below.

```python
import pyomo.kernel as pmo

model = pmo.block()
model.x = pmo.variable()
model.c = pmo.constraint(model.x >= 1)
model.o = pmo.objective(model.x)

opt = pmo.SolverFactory("ipopt")
result = opt.solve(model)
assert str(result.solver.termination_condition) == "optimal"
```

### 13.5.2 Notable Improvements

#### More Control of Model Structure

Containers in `pyomo.kernel` are analogous to indexed components in `pyomo.environ`. However, `pyomo.kernel` containers allow for additional layers of structure as they can be nested within each other as long as they have compatible categories. The following example shows this using `pyomo.kernel.variable` containers.

```python
vlist = pyomo.kernel.variable_list()
vlist.append(pyomo.kernel.variable_dict())
vlist[0]["x"] = pyomo.kernel.variable()
```

As the next section will show, the standard modeling component containers are also compatible with user-defined classes that derive from the existing modeling components.

#### Sub-Classing

The existing components and containers in `pyomo.kernel` are designed to make sub-classing easy. User-defined classes that derive from the standard modeling components and containers in `pyomo.kernel` are compatible with existing containers of the same component category. As an example, in the following code we see that the `pyomo.kernel.block_list` container can store both `pyomo.kernel.block` objects as well as a user-defined `Widget` object that derives from `pyomo.kernel.block`. The `Widget` object can also be placed on another block object as an attribute and treated itself as a block.

```python
class Widget(pyomo.kernel.block):
 ...

model = pyomo.kernel.block()
model.blist = pyomo.kernel.block_list()
model.blist.append(Widget())
model.blist.append(pyomo.kernel.block())
model.w = Widget()
model.w.x = pyomo.kernel.variable()
```

---

1. `pyomo.kernel` does not include an alternative to the `AbstractModel` component from `pyomo.environ`. All data necessary to build a model must be imported by the user.
2. `pyomo.kernel` does not include an alternative to the `Pyomo Set` component from `pyomo.environ`.
3. `pyomo.kernel.parameter` objects are always mutable.
4. Special Ordered Sets
5. Both `pyomo.kernel.piecewise` and `pyomo.kernel.piecewise_nd` create objects that are sub-classes of `pyomo.kernel.block`. Thus, these objects can be stored in containers such as `pyomo.kernel.block_dict` and `pyomo.kernel.block_list`. 

---

266 Chapter 13. Library Reference
The next series of examples goes into more detail on how to implement derived components or containers.

The following code block shows a class definition for a non-negative variable, starting from `pyomo.kernel.variable` as a base class.

```python
class NonNegativeVariable(pyomo.kernel.variable):
 """A non-negative variable."""
 __slots__ = ()
 def __init__(self, **kwds):
 if 'lb' not in kwds:
 kwds['lb'] = 0
 if kwds['lb'] < 0:
 raise ValueError("lower bound must be non-negative")
 super(NonNegativeVariable, self).__init__(**kwds)
 #
 # restrict assignments to x.lb to non-negative numbers
 #
 @property
def lb(self):
 # calls the base class property getter
 return pyomo.kernel.variable.lb.fget(self)
 @lb.setter
def lb(self, lb):
 if lb < 0:
 raise ValueError("lower bound must be non-negative")
 # calls the base class property setter
 pyomo.kernel.variable.lb.fset(self, lb)
```

The `NonNegativeVariable` class prevents negative values from being stored into its lower bound during initialization or later on through assignment statements (e.g, `x.lb = -1` fails). Note that the `__slots__ == ()` line at the beginning of the class definition is optional, but it is recommended if no additional data members are necessary as it reduces the memory requirement of the new variable type.

The next code block defines a custom variable container called `Point` that represents a 3-dimensional point in Cartesian space. The new type derives from the `pyomo.kernel.variable_tuple` container and uses the `NonNegativeVariable` type we defined previously in the `z` coordinate.

```python
class Point(pyomo.kernel.variable_tuple):
 """A 3-dimensional point in Cartesian space with the z coordinate restricted to non-negative values."""
 __slots__ = ()
 def __init__(self):
 super(Point, self).__init__(
 (pyomo.kernel.variable(),
 pyomo.kernel.variable(),
 NonNegativeVariable()))
 #
 # restrict assignments to x, y, z to non-negative numbers
 #
 @property
def x(self):
 return self[0]
 @property
def y(self):
 return self[1]
 @property
def z(self):
 return self[2]
```

13.5. The Kernel Library 267
The Point class can be treated like a tuple storing three variables, and it can be placed inside of other variable containers or added as attributes to blocks. The property methods included in the class definition provide an additional syntax for accessing the three variables it stores, as the next code example will show.

The following code defines a class for building a convex second-order cone constraint from a Point object. It derives from the pyomo.kernel.constraint class, overriding the constructor to build the constraint expression and utilizing the property methods on the point class to increase readability.

```python
class SOC(pyomo.kernel.constraint):
 """A convex second-order cone constraint""
 __slots__ = ()
 def __init__(self, point):
 assert isinstance(point.z, NonNegativeVariable)
 super(SOC, self).__init__(point.x**2 + point.y**2 <= point.z**2)
```

### Reduced Memory Usage

The pyomo.kernel library offers significant opportunities to reduce memory requirements for highly structured models. The situation where this is most apparent is when expressing a model in terms of many small blocks consisting of singleton components. As an example, consider expressing a model consisting of a large number of voltage transformers. One option for doing so might be to define a Transformer component as a subclass of pyomo.kernel.block. The example below defines such a component, including some helper methods for connecting input and output voltage variables and updating the transformer ratio.

```python
class Transformer(pyomo.kernel.block):
 def __init__(self):
 super(Transformer,self).__init__()
 self._a = pyomo.kernel.parameter()
 self._v_in = pyomo.kernel.expression()
 self._v_out = pyomo.kernel.expression()
 self._c = pyomo.kernel.constraint(
 self._a * self._v_out == self._v_in)
 def set_ratio(self, a):
 assert a > 0
 self._a.value = a
 def connect_v_in(self, v_in):
 self._v_in.expr = v_in
 def connect_v_out(self, v_out):
 self._v_out.expr = v_out
```

A simplified version of this using pyomo.environ components might look like what is below.

```python
def Transformer():
 b = pyomo.environ.Block(concrete=True)
 b._a = pyomo.environ.Param(mutable=True)
 b._v_in = pyomo.environ.Expression()
 b._v_out = pyomo.environ.Expression()
 b._c = pyomo.environ.Constraint(expr=\n b._a * b._v_out == b._v_in)
 return b
```

The transformer expressed using pyomo.kernel components requires roughly 2 KB of memory, whereas the pyomo.environ version requires roughly 8.4 KB of memory (an increase of more than 4x). Additionally, the pyomo.kernel transformer is fully compatible with all existing pyomo.kernel block containers.
13.5.3 Reference

Modeling Components:

Blocks

Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.core.kernel.block.block()</td>
<td>A generalized container for defining hierarchical models by adding modeling components as attributes.</td>
</tr>
<tr>
<td>pyomo.core.kernel.block.block_tuple(*args,...)</td>
<td>A tuple-style container for objects with category type IBlock</td>
</tr>
<tr>
<td>pyomo.core.kernel.block.block_list(*args,**kwds)</td>
<td>A list-style container for objects with category type IBlock</td>
</tr>
<tr>
<td>pyomo.core.kernel.block.block_dict(*args,**kwds)</td>
<td>A dict-style container for objects with category type IBlock</td>
</tr>
</tbody>
</table>

Member Documentation

class pyomo.core.kernel.block.block

Bases: pyomo.core.kernel.block.IBlock

A generalized container for defining hierarchical models by adding modeling components as attributes.

Examples

```python
>>> import pyomo.kernel as pmo
>>> model = pmo.block()
>>> model.x = pmo.variable()
>>> model.c = pmo.constraint(model.x >= 1)
>>> model.o = pmo.objective(model.x)
```

child_ctypes()

Returns the set of child object category types stored in this container.

children(ctype=<class 'pyomo.core.kernel.base._no_ctype'>)

Iterate over the children of this block.

Parameters
ctype – Indicates the category of children to include. The default value indicates that all categories should be included.

Returns iterator of child objects

load_solution(solution, allow_consistent_values_for_fixed_vars=False, comparison_tolerance_for_fixed_vars=1e-05)

Load a solution.

Parameters

- solution – A pyomo.opt.Solution object with a symbol map. Optionally, the solution can be tagged with a default variable value (e.g., 0) that will be applied to those variables in the symbol map that do not have a value in the solution.
- allow_consistent_values_for_fixed_vars – Indicates whether a solution can specify consistent values for variables that are fixed.
• **comparision_tolerance_for_fixed_vars** – The tolerance used to define whether or not a value in the solution is consistent with the value of a fixed variable.

```python
write(filename=format=None, _solver_capability=None, _called_by_solver=False, **kwds)
```

Write the model to a file, with a given format.

**Parameters**

- **filename** *(str)* – The name of the file to write.
- **format** – The file format to use. If this is not specified, the file format will be inferred from the filename suffix.
- ****kwds** – Additional keyword options passed to the model writer.

**Returns**

a SymbolMap

```python
class pyomo.core.kernel.block.block_tuple(*args, **kwds)
```

A tuple-style container for objects with category type IBlock

```python
class pyomo.core.kernel.block.block_list(*args, **kwds)
```

A list-style container for objects with category type IBlock

```python
class pyomo.core.kernel.block.block_dict(*args, **kwds)
```

A dict-style container for objects with category type IBlock

### Variables

**Summary**

```python
pyomo.core.kernel.variable.variable(...)
```

A decision variable

```python
pyomo.core.kernel.variable.variable_tuple(...)
```

A tuple-style container for objects with category type IVariable

```python
pyomo.core.kernel.variable.variable_list(...)
```

A list-style container for objects with category type IVariable

```python
pyomo.core.kernel.variable.variable_dict(...)
```

A dict-style container for objects with category type IVariable

### Member Documentation

```python
class pyomo.core.kernel.variable.variable(domain_type=None, domain=None, lb=None, ub=None, value=None, fixed=False)
```

A decision variable

Decision variables are used in objectives and constraints to define an optimization problem.

**Parameters**

- **domain_type** – Sets the domain type of the variable. Must be one of RealSet or IntegerSet. Can be updated later by assigning to the domain_type property.
The default value of None is equivalent to RealSet, unless the domain keyword is used.

- **domain** – Sets the domain of the variable. This updates the domain_type, lb, and ub properties of the variable. The default value of None implies that this keyword is ignored. This keyword can not be used in combination with the domain_type keyword.

- **lb** – Sets the lower bound of the variable. Can be updated later by assigning to the lb property on the variable. Default is None, which is equivalent to -inf.

- **ub** – Sets the upper bound of the variable. Can be updated later by assigning to the ub property on the variable. Default is None, which is equivalent to +inf.

- **value** – Sets the value of the variable. Can be updated later by assigning to the value property on the variable. Default is None.

- **fixed**(bool) – Sets the fixed status of the variable. Can be updated later by assigning to the fixed property or by calling the fix() method. Default is False.

### Examples

```python
>>> import pyomo.kernel as pmo
>>> # A continuous variable with infinite bounds
>>> x = pmo.variable()
>>> # A binary variable
>>> x = pmo.variable(domain=pmo.Binary)
>>> # Also a binary variable
>>> x = pmo.variable(domain_type=pmo.IntegerSet, lb=0, ub=1)
```

domain

Set the domain of the variable. This method updates the domain_type property and overwrites the lb and ub properties with the domain bounds.

domain_type

The domain type of the variable (RealSet or IntegerSet)

fixed

The fixed status of the variable

lb

The lower bound of the variable

stale

The stale status of the variable

ub

The upper bound of the variable

value

The value of the variable

class pyomo.core.kernel.variable.variable_tuple(*args, **kwds)

Bases: pyomo.core.kernel.tuple_container.TupleContainer

A tuple-style container for objects with category type IVariable

class pyomo.core.kernel.variable.variable_list(*args, **kwds)

Bases: pyomo.core.kernel.list_container.ListContainer

A list-style container for objects with category type IVariable

13.5. The Kernel Library
class pyomo.core.kernel.variable.variable_dict (*args, **kwds)

Bases: pyomo.core.kernel.dict_container.DictContainer

A dict-style container for objects with category type IVariable

Constraints

Summary

<table>
<thead>
<tr>
<th>Constraint Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.core.kernel.constraint.constraint(...)</td>
<td>A general algebraic constraint</td>
</tr>
<tr>
<td>pyomo.core.kernel.constraint.linear_constraint(...)</td>
<td>A linear constraint</td>
</tr>
<tr>
<td>pyomo.core.kernel.constraint.constraint_tuple(...)</td>
<td>A tuple-style container for objects with category type IConstraint</td>
</tr>
<tr>
<td>pyomo.core.kernel.constraint.constraint_list(...)</td>
<td>A list-style container for objects with category type IConstraint</td>
</tr>
<tr>
<td>pyomo.core.kernel.constraint.constraint_dict(...)</td>
<td>A dict-style container for objects with category type IConstraint</td>
</tr>
<tr>
<td>pyomo.core.kernel.matrix_constraint.matrix_constraint(A)</td>
<td>A container for constraints of the form lb &lt;= Ax &lt;= ub.</td>
</tr>
</tbody>
</table>

Member Documentation

class pyomo.core.kernel.constraint.constraint (expr=None, body=None, lb=None, ub=None, rhs=None)

Bases: pyomo.core.kernel.constraint._MutableBoundsConstraintMixin, pyomo.core.kernel.constraint.IConstraint

A general algebraic constraint

Algebraic constraints store relational expressions composed of linear or nonlinear functions involving decision variables.

Parameters

- **expr** – Sets the relational expression for the constraint. Can be updated later by assigning to the `expr` property on the constraint. When this keyword is used, values for the `body`, `lb`, `ub`, and `rhs` attributes are automatically determined based on the relational expression type. Default value is `None`.

- **body** – Sets the body of the constraint. Can be updated later by assigning to the `body` property on the constraint. Default is `None`. This keyword should not be used in combination with the `expr` keyword.

- **lb** – Sets the lower bound of the constraint. Can be updated later by assigning to the `lb` property on the constraint. Default is `None`, which is equivalent to `-inf`. This keyword should not be used in combination with the `expr` keyword.

- **ub** – Sets the upper bound of the constraint. Can be updated later by assigning to the `ub` property on the constraint. Default is `None`, which is equivalent to `+inf`. This keyword should not be used in combination with the `expr` keyword.

- **rhs** – Sets the right-hand side of the constraint. Can be updated later by assigning to the `rhs` property on the constraint. The default value of `None` implies that this
keyword is ignored. Otherwise, use of this keyword implies that the equality property is set to True. This keyword should not be used in combination with the \texttt{expr} keyword.

\textbf{Examples}

\begin{verbatim}
>>> import pyomo.kernel as pmo
>>> # A decision variable used to define constraints
>>> x = pmo.variable()
>>> # An upper bound constraint
>>> c = pmo.constraint(0.5*x <= 1)
>>> # (equivalent form)
>>> c = pmo.constraint(body=0.5*x, ub=1)
>>> # A range constraint
>>> c = pmo.constraint(lb=-1, body=0.5*x, ub=1)
>>> # An nonlinear equality constraint
>>> c = pmo.constraint(x**2 == 1)
>>> # (equivalent form)
>>> c = pmo.constraint(body=x**2, rhs=1)
\end{verbatim}

\textbf{body}

The body of the constraint

\textbf{expr}

Get or set the expression on this constraint.

\textbf{class pyomo.core.kernel.constraint.linear_constraint (variables=None, coefficients=None, terms=None, \texttt{lb}=None, \texttt{ub}=None, \texttt{rhs}=None)}

\textbf{Bases: pyomo.core.kernel.constraint._MutableBoundsConstraintMixin, pyomo.core.kernel.constraint.IConstraint}

A linear constraint

A linear constraint stores a linear relational expression defined by a list of variables and coefficients. This class can be used to reduce build time and memory for an optimization model. It also increases the speed at which the model can be output to a solver.

\textbf{Parameters}

- \textbf{variables (list)} – Sets the list of variables in the linear expression defining the body of the constraint. Can be updated later by assigning to the \texttt{variables} property on the constraint.

- \textbf{coefficients (list)} – Sets the list of coefficients for the variables in the linear expression defining the body of the constraint. Can be updated later by assigning to the \texttt{coefficients} property on the constraint.

- \textbf{terms (list)} – An alternative way of initializing the \texttt{variables} and \texttt{coefficients} lists using an iterable of (variable, coefficient) tuples. Can be updated later by assigning to the \texttt{terms} property on the constraint. This keyword should not be used in combination with the \texttt{variables} or \texttt{coefficients} keywords.

- \textbf{lb} – Sets the lower bound of the constraint. Can be updated later by assigning to the \texttt{lb} property on the constraint. Default is \texttt{None}, which is equivalent to \texttt{-inf}.

- \textbf{ub} – Sets the upper bound of the constraint. Can be updated later by assigning to the \texttt{ub} property on the constraint. Default is \texttt{None}, which is equivalent to \texttt{+inf}.
• **rhs** – Sets the right-hand side of the constraint. Can be updated later by assigning to the rhs property on the constraint. The default value of None implies that this keyword is ignored. Otherwise, use of this keyword implies that the equality property is set to True.

**Examples**

```python
>>> import pyomo.kernel as pmo
>>> # Decision variables used to define constraints
>>> x = pmo.variable()
>>> y = pmo.variable()
>>> # An upper bound constraint
>>> c = pmo.linear_constraint(variables=[x, y], coefficients=[1, 2], ub=1)
>>> # (equivalent form)
>>> c = pmo.linear_constraint(terms=[(x, 1), (y, 2)], ub=1)
>>> # (equivalent form using a general constraint)
>>> c = pmo.constraint(x + 2*y <= 1)
```

**body**

The body of the constraint

```
canonical_form(compute_values=True)
```

Build a canonical representation of the body of this constraints

**terms**

An iterator over the terms in the body of this constraint as (variable, coefficient) tuples

```python
class pyomo.core.kernel.constraint.constraint_tuple(*args, **kwds)
Bases: pyomo.core.kernel.tuple_container.TupleContainer
```

A tuple-style container for objects with category type IConstraint

```python
class pyomo.core.kernel.constraint.constraint_list(*args, **kwds)
Bases: pyomo.core.kernel.list_container.ListContainer
```

A list-style container for objects with category type IConstraint

```python
class pyomo.core.kernel.constraint.constraint_dict(*args, **kwds)
Bases: pyomo.core.kernel.dict_container.DictContainer
```

A dict-style container for objects with category type IConstraint

```python
class pyomo.core.kernel.matrix_constraint.matrix_constraint(A, lb=None, ub=None, rhs=None, x=None, sparse=True)
Bases: pyomo.core.kernel.constraint.constraint_tuple
```

A container for constraints of the form lb <= Ax <= ub.

**Parameters**

- **A** – A scipy sparse matrix or 2D numpy array (always copied)
- **lb** – A scalar or array with the same number of rows as A that defines the lower bound of the constraints
- **ub** – A scalar or array with the same number of rows as A that defines the upper bound of the constraints
- **rhs** – A scalar or array with the same number of rows as A that defines the right-hand side of the constraints (implies equality constraints)
• **x** – A list with the same number of columns as A that stores the variable associated with each column

• **sparse** – Indicates whether or not sparse storage (CSR format) should be used to store A. Default is True.

**equality**
The array of boolean entries indicating the indices that are equality constraints

**lb**
The array of constraint lower bounds

**lslack**
Lower slack (body - lb)

**rhs**
The array of constraint right-hand sides. Can be set to a scalar or a numpy array of the same dimension. This property can only be read when the equality property is True on every index. Assigning to this property implicitly sets the equality property to True on every index.

**slack**
min(lslack, uslack)

**sparse**
Boolean indicating whether or not the underlying matrix uses sparse storage

**ub**
The array of constraint upper bounds

**uslack**
Upper slack (ub - body)

**x**
The list of variables associated with the columns of the constraint matrix

### Parameters

### Summary

<table>
<thead>
<tr>
<th>Class</th>
<th>Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>pyomo.core.kernel.parameter.parameter</strong>([value])</td>
<td>A object for storing a mutable, numeric value that can be used to build a symbolic expression.</td>
</tr>
<tr>
<td><strong>pyomo.core.kernel.parameter.functional_value</strong>([fn])</td>
<td>An object for storing a numeric function that can be used in a symbolic expression.</td>
</tr>
<tr>
<td><strong>pyomo.core.kernel.parameter.parameter_tuple(...)</strong></td>
<td>A tuple-style container for objects with category type IParameter</td>
</tr>
<tr>
<td><strong>pyomo.core.kernel.parameter.parameter_list(...)</strong></td>
<td>A list-style container for objects with category type IParameter</td>
</tr>
<tr>
<td><strong>pyomo.core.kernel.parameter.parameter_dict(...)</strong></td>
<td>A dict-style container for objects with category type IParameter</td>
</tr>
</tbody>
</table>

### Member Documentation

**class**  **pyomo.core.kernel.parameter.parameter**(*value=None*)

Bases: pyomo.core.kernel.parameter.IParameter

A object for storing a mutable, numeric value that can be used to build a symbolic expression.

**value**
The value of the parameter

```python
class pyomo.core.kernel.parameter.functional_value(fn=None)
 Bases: pyomo.core.kernel.parameter.IParameter

An object for storing a numeric function that can be used in a symbolic expression.
Note that models making use of this object may require the dill module for serialization.
```

```python
fn
The function stored with this object
```

```python
class pyomo.core.kernel.parameter.parameter_tuple(*args, **kwds)
 Bases: pyomo.core.kernel.tuple_container.TupleContainer

A tuple-style container for objects with category type IParameter
```

```python
class pyomo.core.kernel.parameter.parameter_list(*args, **kwds)
 Bases: pyomo.core.kernel.list_container.ListContainer

A list-style container for objects with category type IParameter
```

```python
class pyomo.core.kernel.parameter.parameter_dict(*args, **kwds)
 Bases: pyomo.core.kernel.dict_container.DictContainer

A dict-style container for objects with category type IParameter
```

### Objectives

### Summary

```python
pyomo.core.kernel.objective.objective([...])
An optimization objective.
```

```python
pyomo.core.kernel.objective.objective_tuple(...)
A tuple-style container for objects with category type IObjective
```

```python
pyomo.core.kernel.objective.objective_list(...)
A list-style container for objects with category type IObjective
```

```python
pyomo.core.kernel.objective.objective_dict(...)
A dict-style container for objects with category type IObjective
```

### Member Documentation

```python
class pyomo.core.kernel.objective.objective(expr=None, sense=1)
 Bases: pyomo.core.kernel.objective.IObjective

An optimization objective.
```

```python
class pyomo.core.kernel.objective.objective_tuple(*args, **kwds)
 Bases: pyomo.core.kernel.tuple_container.TupleContainer

A tuple-style container for objects with category type IObjective
```

```python
class pyomo.core.kernel.objective.objective_list(*args, **kwds)
 Bases: pyomo.core.kernel.list_container.ListContainer

A list-style container for objects with category type IObjective
```

```python
class pyomo.core.kernel.objective.objective_dict(*args, **kwds)
 Bases: pyomo.core.kernel.dict_container.DictContainer

```
A dict-style container for objects with category type IObjective

**Expressions**

**Summary**

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pyomo.core.kernel.expression.expression(expr=None)</code></td>
<td>A named, mutable expression.</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.expression.expression_tuple(*args,**kwds)</code></td>
<td>A tuple-style container for objects with category type IExpression</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.expression.expression_list(*args,**kwds)</code></td>
<td>A list-style container for objects with category type IExpression</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.expression.expression_dict(*args,**kwds)</code></td>
<td>A dict-style container for objects with category type IExpression</td>
</tr>
</tbody>
</table>

**Member Documentation**

```python
class pyomo.core.kernel.expression.expression(Expr=None)
Bases: pyomo.core.kernel.expression.IExpression
A named, mutable expression.

class pyomo.core.kernel.expression.expression_tuple(*args,**kwds)
Bases: pyomo.core.kernel.tuple_container.TupleContainer
A tuple-style container for objects with category type IExpression

class pyomo.core.kernel.expression.expression_list(*args,**kwds)
Bases: pyomo.core.kernel.list_container.ListContainer
A list-style container for objects with category type IExpression

class pyomo.core.kernel.expression.expression_dict(*args,**kwds)
Bases: pyomo.core.kernel.dict_container.DictContainer
A dict-style container for objects with category type IExpression
```

**Special Ordered Sets**

**Summary**

<table>
<thead>
<tr>
<th>Class</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>pyomo.core.kernel.sos.sos(variables[,...])</code></td>
<td>A Special Ordered Set of type n.</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.sos.sos1(variables[,...],weights)</code>)`</td>
<td>A Special Ordered Set of type 1.</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.sos.sos2(variables[,...],weights)</code></td>
<td>A Special Ordered Set of type 2.</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.sos.sos_tuple(*args,**kwds)</code></td>
<td>A tuple-style container for objects with category type ISOS</td>
</tr>
<tr>
<td><code>pyomo.core.kernel.sos.sos_list(*args,**kwds)</code></td>
<td>A list-style container for objects with category type ISOS</td>
</tr>
</tbody>
</table>

Continued on next page
Table 13.11 – continued from previous page

| pyomo.core.kernel.sos.sos_dict(*args, **kwds) | A dict-style container for objects with category type ISOS |

Member Documentation

```python
class pyomo.core.kernel.sos.sos(variables, weights=None, level=1):
 Bases: pyomo.core.kernel.sos.ISOS
 A Special Ordered Set of type n.

class pyomo.core.kernel.sos.sos1(variables, weights=None):
 A Special Ordered Set of type 1.
 This is an alias for sos(..., level=1)

class pyomo.core.kernel.sos.sos2(variables, weights=None):
 A Special Ordered Set of type 2.
 This is an alias for sos(..., level=2).
```

```python
class pyomo.core.kernel.sos.sos_tuple(*args, **kwds):
 Bases: pyomo.core.kernel.tuple_container.TupleContainer
 A tuple-style container for objects with category type ISOS

class pyomo.core.kernel.sos.sos_list(*args, **kwds):
 Bases: pyomo.core.kernel.list_container.ListContainer
 A list-style container for objects with category type ISOS

class pyomo.core.kernel.sos.sos_dict(*args, **kwds):
 Bases: pyomo.core.kernel.dict_container.DictContainer
 A dict-style container for objects with category type ISOS
```

Suffixes

```python
class pyomo.core.kernel.suffix.ISuffix(*args, **kwds):
 Bases: pyomo.core.kernel.component_map.ComponentMap, pyomo.core.kernel.base.ICategorizedObject
 The interface for suffixes.

datatype
 The suffix datatype

direction
 The suffix direction
```

```python
class pyomo.core.kernel.suffix.export_suffix_generator(blk, datatype=<object object>, active=True, descend_into=True):
 Generates an efficient traversal of all suffixes that have been declared for exporting data.

 Parameters

 blk
 A block object.
 datatype
 Restricts the suffixes included in the returned generator to those matching the provided suffix datatype.
```
- **active** *(True/None)* – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is `True`. Setting this keyword to `None` causes the active status of objects to be ignored.

- **descend_into** *(bool, function)* – Indicates whether or not to descend into a heterogeneous container. Default is `True`, which is equivalent to `lambda x: True`, meaning all heterogeneous containers will be descended into.

**Returns** iterator of suffixes

```python
pyomo.core.kernel.suffix.import_suffix_generator(blk, datatype=<object object>, active=True, descend_into=True)
```

Generates an efficient traversal of all suffixes that have been declared for importing data.

**Parameters**

- **blk** – A block object.
- **datatype** – Restricts the suffixes included in the returned generator to those matching the provided suffix datatype.
- **active** *(True/None)* – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is `True`. Setting this keyword to `None` causes the active status of objects to be ignored.
- **descend_into** *(bool, function)* – Indicates whether or not to descend into a heterogeneous container. Default is `True`, which is equivalent to `lambda x: True`, meaning all heterogeneous containers will be descended into.

**Returns** iterator of suffixes

```python
pyomo.core.kernel.suffix.local_suffix_generator(blk, datatype=<object object>, active=True, descend_into=True)
```

Generates an efficient traversal of all suffixes that have been declared local data storage.

**Parameters**

- **blk** – A block object.
- **datatype** – Restricts the suffixes included in the returned generator to those matching the provided suffix datatype.
- **active** *(True/None)* – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is `True`. Setting this keyword to `None` causes the active status of objects to be ignored.
- **descend_into** *(bool, function)* – Indicates whether or not to descend into a heterogeneous container. Default is `True`, which is equivalent to `lambda x: True`, meaning all heterogeneous containers will be descended into.

**Returns** iterator of suffixes

```python
class pyomo.core.kernel.suffix.suffix(*args, **kwds)
Bases: pyomo.core.kernel.suffix.ISuffix
```

A container for storing extraneous model data that can be imported to or exported from a solver.

**datatype**

Return the suffix datatype.

**direction**

Return the suffix direction.

**export_enabled**

Returns `True` when this suffix is enabled for export to solvers.

**import_enabled**

Returns `True` when this suffix is enabled for import from solutions.
class pyomo.core.kernel.suffix.suffix_dict(*args, **kwds)
    Bases: pyomo.core.kernel.dict_container.DictContainer

A dict-style container for objects with category type ISuffix

pyomo.core.kernel.suffix.suffix_generator(blk, datatype=<object object>, active=True, descend_into=True)

Generates an efficient traversal of all suffixes that have been declared.

Parameters

- blk – A block object.
- datatype – Restricts the suffixes included in the returned generator to those matching the provided suffix datatype.
- active (True/None) – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is True. Setting this keyword to None causes the active status of objects to be ignored.
- descend_into (bool, function) – Indicates whether or not to descend into a heterogeneous container. Default is True, which is equivalent to lambda x: True, meaning all heterogeneous containers will be descended into.

Returns iterator of suffixes

---

Piecewise Function Library

Modules

Single-variate Piecewise Functions

Summary

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise(...)</td>
<td>Models a single-variate piecewise linear function.</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction(...)</td>
<td>A piecewise linear function</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction(f)</td>
<td>Base class for transformed piecewise linear functions</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_convex(...)</td>
<td>Simple convex piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_sos2(...)</td>
<td>Discrete SOS2 piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_dcc(...)</td>
<td>Discrete DCC piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_cc(...)</td>
<td>Discrete CC piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_mc(...)</td>
<td>Discrete MC piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_inc(...)</td>
<td>Discrete INC piecewise representation</td>
</tr>
</tbody>
</table>

Continued on next page
Table 13.12 – continued from previous page

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_dlog(...)</td>
<td>Discrete DLOG piecewise representation</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms.piecewise_log(...)</td>
<td>Discrete LOG piecewise representation</td>
</tr>
</tbody>
</table>

**Member Documentation**

```python
pyomo.core.kernel.piecewise_library.transforms.piecewise(breakpoints, values, input=None, output=None, bound='eq', repn='sos2', validate=True, simplify=True, equal_slopes_tolerance=1e-06, require_bounded_input_variable=True, require_variable_domain_coverage=True)
```

Models a single-variate piecewise linear function.

This function takes a list breakpoints and function values describing a piecewise linear function and transforms this input data into a block of variables and constraints that enforce a piecewise linear relationship between an input variable and an output variable. In the general case, this transformation requires the use of discrete decision variables.

**Parameters**

- **breakpoints** *(list)* – The list of breakpoints of the piecewise linear function. This can be a list of numbers or a list of objects that store mutable data (e.g., mutable parameters). If mutable data is used validation might need to be disabled by setting the `validate` keyword to `False`. The list of breakpoints must be in non-decreasing order.
- **values** *(list)* – The values of the piecewise linear function corresponding to the breakpoints.
- **input** – The variable constrained to be the input of the piecewise linear function.
- **output** – The variable constrained to be the output of the piecewise linear function.
- **bound** *(str)* – The type of bound to impose on the output expression. Can be one of:
  - 'lb': $y \leq f(x)$
  - 'eq': $y = f(x)$
  - 'ub': $y \geq f(x)$
- **repn** *(str)* – The type of piecewise representation to use. Choices are shown below (+ means step functions are supported)
  - 'sos2': standard representation using sos2 constraints (+)
  - 'dcc': disaggregated convex combination (+)
  - 'dlog': logarithmic disaggregated convex combination (+)
  - 'cc': convex combination (+)
  - 'log': logarithmic branching convex combination (+)
  - 'mc': multiple choice
- ‘inc’: incremental method (+)

- **validate**(bool) – Indicates whether or not to perform validation of the input data. The default is True. Validation can be performed manually after the piecewise object is created by calling the `validate()` method. Validation should be performed any time the inputs are changed (e.g., when using mutable parameters in the breakpoints list or when the input variable changes).

- **simplify**(bool) – Indicates whether or not to attempt to simplify the piecewise representation to avoid using discrete variables. This can be done when the feasible region for the output variable, with respect to the piecewise function and the bound type, is a convex set. Default is True. Validation is required to perform simplification, so this keyword is ignored when the `validate` keyword is False.

- **equal_slopes_tolerance**(float) – Tolerance used check if consecutive slopes are nearly equal. If any are found, validation will fail. Default is 1e-6. This keyword is ignored when the `validate` keyword is False.

- **require_bounded_input_variable**(bool) – Indicates if the input variable is required to have finite upper and lower bounds. Default is True. Setting this keyword to False can be used to allow general expressions to be used as the input in place of a variable. This keyword is ignored when the `validate` keyword is False.

- **require_variable_domain_coverage**(bool) – Indicates if the function domain (defined by the endpoints of the breakpoints list) needs to cover the entire domain of the input variable. Default is True. Ignored for any bounds of variables that are not finite, or when the input is not assigned a variable. This keyword is ignored when the `validate` keyword is False.

Returns

A block that stores any new variables, constraints, and other modeling objects used by the piecewise representation

**Return type** TransformedPiecewiseLinearFunction

```python
class pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction (breakpoints, values, validate=True, **kwds)
```

**Bases:** object

A piecewise linear function

Piecewise linear functions are defined by a list of breakpoints and a list function values corresponding to each breakpoint. The function value between breakpoints is implied through linear interpolation.

**Parameters**

- **breakpoints**(list) – The list of function breakpoints.
- **values**(list) – The list of function values (one for each breakpoint).
- **validate**(bool) – Indicates whether or not to perform validation of the input data. The default is True. Validation can be performed manually after the piecewise object is created by calling the `validate()` method. Validation should be performed any time the inputs are changed (e.g., when using mutable parameters in the breakpoints list).
- ****kwds – Additional keywords are passed to the `validate()` method when the `validate` keyword is True; otherwise, they are ignored.
__call__(x)
Evaluates the piecewise linear function at the given point using interpolation. Note that step functions are assumed lower-semicontinuous.

breakpoints
The set of breakpoints used to defined this function

validate(equal_slopes_tolerance=1e-06)
Validate this piecewise linear function by verifying various properties of the breakpoints and values lists (e.g., that the list of breakpoints is nondecreasing).

Parameters

equal_slopes_tolerance (float) – Tolerance used check if consecutive slopes are nearly equal. If any are found, validation will fail. Default is 1e-6.

Returns
a function characterization code (see util.characterize_function())

Return type
int

Raises
PiecewiseValidationError – if validation fails

gvalues
The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction(f,
input=None,
output=None,
bound='eq',
validate=True,**kwds)

Bases: pyomo.core.kernel.block.block

Base class for transformed piecewise linear functions

A transformed piecewise linear functions is a block of variables and constraints that enforce a piecewise linear relationship between an input variable and an output variable.

Parameters

• f (PiecewiseLinearFunction) – The piecewise linear function to transform.

• input – The variable constrained to be the input of the piecewise linear function.

• output – The variable constrained to be the output of the piecewise linear function.

• bound (str) – The type of bound to impose on the output expression. Can be one of:
  - 'lb': y <= f(x)
  - 'eq': y = f(x)
  - 'ub': y >= f(x)

• validate (bool) – Indicates whether or not to perform validation of the input data. The default is True. Validation can be performed manually after the piecewise object is created by calling the validate() method. Validation should be performed any time the inputs are changed (e.g., when using mutable parameters in the breakpoints list or when the input variable changes).

• **kwds – Additional keywords are passed to the validate() method when the validate keyword is True; otherwise, they are ignored.
__call__(x)
    Evaluates the piecewise linear function at the given point using interpolation

bound
    The bound type assigned to the piecewise relationship (‘lb’, ‘ub’, ‘eq’).

breakpoints
    The set of breakpoints used to defined this function

input
    The expression that stores the input to the piecewise function. The returned object can be updated by assigning to its expr attribute.

output
    The expression that stores the output of the piecewise function. The returned object can be updated by assigning to its expr attribute.

validate(equal_slopes_tolerance=1e-06, require_bounded_input_variable=True, require_variable_domain_coverage=True)
    Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).

Parameters

    • equal_slopes_tolerance(float) -- Tolerance used check if consecutive slopes are nearly equal. If any are found, validation will fail. Default is 1e-6.
    • require_bounded_input_variable(bool) -- Indicates if the input variable is required to have finite upper and lower bounds. Default is True. Setting this keyword to False can be used to allow general expressions to be used as the input in place of a variable.
    • require_variable_domain_coverage(bool) -- Indicates if the function domain (defined by the endpoints of the breakpoints list) needs to cover the entire domain of the input variable. Default is True. Ignored for any bounds of variables that are not finite, or when the input is not assigned a variable.

Returns  a function characterization code (see util.characterize_function())

Return type  int

Raises  PiecewiseValidationError -- if validation fails

values
    The set of values used to defined this function

class pyomo.core.kernel.piecewise_library.transforms.piecewise_convex(*args, **kwds)
Bases:      pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction

Simple convex piecewise representation

Expresses a piecewise linear function with a convex feasible region for the output variable using a simple collection of linear constraints.

validate(**kwds)
    Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).

    See base class documentation for keyword descriptions.
class pyomo.core.kernel.piecewise_library.transforms.piecewise_sos2(*args, **kwds)
Bases: pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
Discrete SOS2 piecewise representation
Expresses a piecewise linear function using the SOS2 formulation.
validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).
See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_dcc(*args, **kwds)
Bases: pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
Discrete DCC piecewise representation
Expresses a piecewise linear function using the DCC formulation.
validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).
See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_cc(*args, **kwds)
Bases: pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
Discrete CC piecewise representation
Expresses a piecewise linear function using the CC formulation.
validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).
See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_mc(*args, **kwds)
Bases: pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
Discrete MC piecewise representation
Expresses a piecewise linear function using the MC formulation.
validate(**kwds)
Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).
See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_inc(*args, **kwds)
Bases: pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction
Discrete INC piecewise representation
Expresses a piecewise linear function using the INC formulation.

**validate(**

Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_dlog(**kwds**)

Discrete DLOG piecewise representation

Expresses a piecewise linear function using the DLOG formulation. This formulation uses logarithmic number of discrete variables in terms of number of breakpoints.

**validate(**

Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

class pyomo.core.kernel.piecewise_library.transforms.piecewise_log(**kwds**)

Discrete LOG piecewise representation

Expresses a piecewise linear function using the LOG formulation. This formulation uses logarithmic number of discrete variables in terms of number of breakpoints.

**validate(**

Validate this piecewise linear function by verifying various properties of the breakpoints, values, and input variable (e.g., that the list of breakpoints is nondecreasing).

See base class documentation for keyword descriptions.

### Multi-variate Piecewise Functions

#### Summary

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms_nd.piecewise_nd(...)</td>
<td>Models a multi-variate piecewise linear function.</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND(f)</td>
<td>Base class for transformed multi-variate piecewise linear functions.</td>
</tr>
<tr>
<td>pyomo.core.kernel.piecewise_library.transforms_nd.piecewise_nd_cc(...)</td>
<td>Discrete CC multi-variate piecewise representation.</td>
</tr>
</tbody>
</table>
Models a multi-variate piecewise linear function.

This function takes a D-dimensional triangulation and a list of function values associated with the points of the triangulation and transforms this input data into a block of variables and constraints that enforce a piecewise linear relationship between an D-dimensional vector of input variable and a single output variable. In the general case, this transformation requires the use of discrete decision variables.

Parameters

- **tri** *(scipy.spatial.Delaunay)* – A triangulation over the discretized variable domain. Can be generated using a list of variables using the utility function `util.generate_delaunay()`. Required attributes:
  - points: An (npoints, D) shaped array listing the D-dimensional coordinates of the discretization points.
  - simplices: An (nsimplices, D+1) shaped array of integers specifying the D+1 indices of the points vector that define each simplex of the triangulation.

- **values** *(numpy.array)* – An (npoints,) shaped array of the values of the piecewise function at each of coordinates in the triangulation points array.

- **input** – A D-length list of variables or expressions bound as the inputs of the piecewise function.

- **output** – The variable constrained to be the output of the piecewise linear function.

- **bound** *(str)* – The type of bound to impose on the output expression. Can be one of:
  - 'lb': y <= f(x)
  - 'eq': y = f(x)
  - 'ub': y >= f(x)

- **repn** *(str)* – The type of piecewise representation to use. Can be one of:
  - 'cc': convex combination

Returns a block containing any new variables, constraints, and other components used by the piecewise representation

Return type **TransformedPiecewiseLinearFunctionND**

A multi-variate piecewise linear function

Multi-variate piecewise linear functions are defined by a triangulation over a finite domain and a list of function values associated with the points of the triangulation. The function value between points in the triangulation is implied through linear interpolation.
Parameters

- **tri** (*scipy.spatial.Delaunay*) – A triangulation over the discretized variable domain. Can be generated using a list of variables using the utility function `util.generate_delaunay()`. Required attributes:
  - *points*: An (*npoints, D*) shaped array listing the D-dimensional coordinates of the discretization points.
  - *simplices*: An (*nsimplices, D+1*) shaped array of integers specifying the D+1 indices of the points vector that define each simplex of the triangulation.

- **values** (*numpy.array*) – An (*npoints,*) shaped array of the values of the piecewise function at each of coordinates in the triangulation points array.

__call__(x)

Evaluates the piecewise linear function using interpolation. This method supports vectorized function calls as the interpolation process can be expensive for high dimensional data.

For the case when a single point is provided, the argument *x* should be a (*D,*) shaped numpy array or list, where *D* is the dimension of points in the triangulation.

For the vectorized case, the argument *x* should be a (*n,D*)-shaped numpy array.

**transformation**

The triangulation over the domain of this function

**values**

The set of values used to defined this function

### class pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND

Bases: `pyomo.core.kernel.block.block`

Base class for transformed multi-variate piecewise linear functions

A transformed multi-variate piecewise linear functions is a block of variables and constraints that enforce a piecewise linear relationship between an vector input variables and a single output variable.

Parameters

- **f** (*PiecewiseLinearFunctionND*) – The multi-variate piecewise linear function to transform.
- **input** – The variable constrained to be the input of the piecewise linear function.
- **output** – The variable constrained to be the output of the piecewise linear function.
- **bound** (*str*) – The type of bound to impose on the output expression. Can be one of:
  - *lb*: \( y \leq f(x) \)
  - *eq*: \( y = f(x) \)
  - *ub*: \( y \geq f(x) \)

__call__(x)

Evaluates the piecewise linear function using interpolation. This method supports vectorized function calls as the interpolation process can be expensive for high dimensional data.

For the case when a single point is provided, the argument *x* should be a (*D,*) shaped numpy array or list, where *D* is the dimension of points in the triangulation.
For the vectorized case, the argument $x$ should be a $(n,D)$-shaped numpy array.

**bound**
The bound type assigned to the piecewise relationship (‘lb’, ‘ub’, ‘eq’).

**input**
The tuple of expressions that store the inputs to the piecewise function. The returned objects can be updated by assigning to their `expr` attribute.

**output**
The expression that stores the output of the piecewise function. The returned object can be updated by assigning to its `expr` attribute.

**triangulation**
The triangulation over the domain of this function

**values**
The set of values used to defined this function

```python
class pyomo.core.kernel.piecewise_library.transforms_nd.piecewise_nd_cc(*args, **kwds)

Bases: pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND

Discrete CC multi-variate piecewise representation
Expresses a multi-variate piecewise linear function using the CC formulation.
```

### Utilities for Piecewise Functions

**exception** pyomo.core.kernel.piecewise_library.util.PiecewiseValidationError

Bases: exceptions.Exception

An exception raised when validation of piecewise linear functions fail.

```python
pyomo.core.kernel.piecewise_library.util.characterize_function(breakpoints, values)

Characterizes a piecewise linear function described by a list of breakpoints and function values.

Parameters

- **breakpoints (list)** – The list of breakpoints of the piecewise linear function. It is assumed that the list of breakpoints is in non-decreasing order.
- **values (list)** – The values of the piecewise linear function corresponding to the breakpoints.

Returns a function characterization code and the list of slopes.

Return type (int, list)

Note: The function characterization codes are

- 1: affine
- 2: convex
- 3: concave
- 4: step
- 5: other

If the function has step points, some of the slopes may be `None`.

```python
pyomo.core.kernel.piecewise_library.util.generate_delaunay(variables, num=10, **kwds)

Generate a Delaunay triangulation of the D-dimensional bounded variable domain given a list of D variables.
Requires numpy and scipy.

Parameters

- **variables** – A list of variables, each having a finite upper and lower bound.
- **num (int)** – The number of grid points to generate for each variable (default=10).
- ****kwds – All additional keywords are passed to the scipy.spatial.Delaunay constructor.

Returns

A scipy.spatial.Delaunay object.

```python
pyomo.core.kernel.piecewise_library.util.generate_gray_code(nbits)
```
Generates a Gray code of nbits as list of lists

```python
pyomo.core.kernel.piecewise_library.util.is_constant(vals)
```
Checks if a list of points is constant

```python
pyomo.core.kernel.piecewise_library.util.is_nondecreasing(vals)
```
Checks if a list of points is nondecreasing

```python
pyomo.core.kernel.piecewise_library.util.is_nonincreasing(vals)
```
Checks if a list of points is nonincreasing

```python
pyomo.core.kernel.piecewise_library.util.is_positive_power_of_two(x)
```
Checks if a number is a nonzero and positive power of 2

```python
pyomo.core.kernel.piecewise_library.util.log2floor(n)
```
Computes the exact value of floor(log2(n)) without using floating point calculations. Input argument must be a positive integer.

**Base API:**

**Base Object Storage Interface**

```python
class pyomo.core.kernel.base.ICategorizedObject
```
Bases: object

Interface for objects that maintain a weak reference to a parent storage object and have a category type.

This class is abstract. It assumes any derived class declares the attributes below with or without slots:

```python
_ctype
```
Stores the object’s category type, which should be some class derived from ICategorizedObject. This attribute may be declared at the class level.

```python
_parent
```
Stores a weak reference to the object’s parent container or None.

```python
_storage_key
```
Stores key this object can be accessed with through its parent container.

```python
_active
```
Stores the active status of this object.

```python
Type bool
```

```python
activate()
```
Activate this object.

```python
active
```
The active status of this object.
clone()
   Returns a copy of this object with the parent pointer set to None.
   A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendants of this object will reference the same object on the clone.

ctype
   The object’s category type.

deactivate()
   Deactivate this object.

glename(fullyQualified=False, nameBuffer={}, convert=<type 'str'>, relativeTo=None)
   Dynamically generates a name for this object.
   
   Parameters
   
   - **fullyQualified** (bool) – Generate a full name by iterating through all
     ancestor containers. Default is False.
   
   - **convert** (function) – A function that converts a storage key into a string
     representation. Default is the built-in function str.
   
   - **relativeTo** (object) – When generating a fully qualified name, generate
     the name relative to this block.
   
   Returns If a parent exists, this method returns a string representing the name of the object
   in the context of its parent; otherwise (if no parent exists), this method returns None.

local_name
   The object’s local name within the context of its parent. Alias for obj.getname(fullyQualified=False).

name
   The object’s fully qualified name. Alias for obj.getname(fullyQualified=True).

parent
   The object’s parent (possibly None).

storage_key
   The object’s storage key within its parent

class pyomo.core.kernel.base.ICategorizedObjectContainer
   Bases: pyomo.core.kernel.base.ICategorizedObject

   Interface for categorized containers of categorized objects.

activate(shallow=True)
   Activate this container.

child(*args, **kws)
   Returns a child of this container given a storage key.

children(*args, **kws)
   A generator over the children of this container.

components(*args, **kws)
   A generator over the set of components stored under this container.

deactivate(shallow=True)
   Deactivate this container.
Homogeneous Object Containers

class pyomo.core.kernel.homogeneous_container.IHomogeneousContainer
    Bases: pyomo.core.kernel.base.ICategorizedObjectContainer

A partial implementation of the ICategorizedObjectContainer interface for implementations that store a single
category of objects and that uses the same category as the objects it stores.

Complete implementations need to set the _ctype attribute and declare the remaining required abstract properties
of the ICategorizedObjectContainer base class.

Note that this implementation allows nested storage of other ICategorizedObjectContainer imple-
mentations that are defined with the same ctype.

components (active=True)
    Generates an efficient traversal of all components stored under this container. Components are categorized
    objects that are either (1) not containers, or (2) are heterogeneous containers.
    
    Parameters
    active (True/None) – Controls whether or not to filter the iteration to in-
    clude only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.

    Returns iterator of components in the storage tree

Heterogeneous Object Containers

class pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer
    Bases: pyomo.core.kernel.base.ICategorizedObjectContainer

A partial implementation of the ICategorizedObjectContainer interface for implementations that store multiple
categories of objects.

Complete implementations need to set the _ctype attribute and declare the remaining required abstract properties
of the ICategorizedObjectContainer base class.

child_ctypes (*args, **kwds)
    Returns the set of child object category types stored in this container.

collect_ctypes (active=True, descend_into=True)
    Returns the set of object category types that can be found under this container.
    
    Parameters
    active (True/None) – Controls whether or not to filter the iteration to include
    only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.
    
    descend_into (bool, function) – Indicates whether or not to descend
    into a heterogeneous container. Default is True, which is equivalent to lambda x:
    True, meaning all heterogeneous containers will be descended into.

    Returns A set of object category types

components (ctype=<class 'pyomo.core.kernel.base._no_ctype'>, active=True, descend_into=True)
    Generates an efficient traversal of all components stored under this container. Components are categorized
    objects that are either (1) not containers, or (2) are heterogeneous containers.
    
    Parameters
    ctype – Indicates the category of components to include. The default value
    indicates that all categories should be included.
• **active** (True/None) – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is True. Setting this keyword to None causes the active status of objects to be ignored.

• **descend_into** (bool, function) – Indicates whether or not to descend into a heterogeneous container. Default is True, which is equivalent to lambda x: True, meaning all heterogeneous containers will be descended into.

**Returns** iterator of components in the storage tree

```python
pyomo.core.kernel.heterogeneous_container.heterogeneous_containers(node, ctype=<class 'pyomo.core.kernel.base._no_ctype'>, active=True, descend_into=True)
```

A generator that yields all heterogeneous containers included in an object storage tree, including the root object. Heterogeneous containers are categorized objects with a category type different from their children.

**Parameters**

• **node** – The root object.

• **ctype** – Indicates the category of objects to include. The default value indicates that all categories should be included.

• **active** (True/None) – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is True. Setting this keyword to None causes the active status of objects to be ignored.

• **descend_into** (bool, function) – Indicates whether or not to descend into a heterogeneous container. Default is True, which is equivalent to lambda x: True, meaning all heterogeneous containers will be descended into.

**Returns** iterator of heterogeneous containers in the storage tree, include the root object.

### Containers:

#### Tuple-like Object Storage

```python
class pyomo.core.kernel.tuple_container.TupleContainer(*args)
```

A partial implementation of the IHomogeneousContainer interface that provides tuple-like storage functionality.

Complete implementations need to set the _ctype property at the class level and initialize the remaining ICategorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.

Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that are defined with the same ctype.

```python
__class__
 alias of abc.ABCMeta

__delattr__
 x.__delattr__('name') <==> del x.name

__eq__
 x.__eq__(y) <==> x==y
```
__format__
    default object formatter

__getattr__
    x.__getattr__('name') <==> x.name

__hash__

__init__(*args)
    x.__init__(...) initializes x; see help(type(x)) for signature

__metaclass__
    alias of abc.ABCMeta

__ne__(other)
    x.__ne__(y) <==> x!=y

__new__(S, ...) → a new object with type S, a subtype of T

__reduce__()
    helper for pickle

__reduce_ex__()
    helper for pickle

__repr__

__setattr__
    x.__setattr__('name', value) <==> x.name = value

__sizeof__() → int
    size of object in memory, in bytes

__str__()
    Convert this object to a string by first attempting to generate its fully qualified name. If the object
does not have a name (because it does not have a parent, then a string containing the class name is returned.

classmethod __subclasshook__(C)
    Abstract classes can override this to customize issubclass().
    This is invoked early on by abc.ABCMeta.__subclasscheck__(C). It should return True, False or NotImple-
    mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
    algorithm (and the outcome is cached).

__weakref__
    list of weak references to the object (if defined)

activate(shallow=True)
    Activate this container.

active
    The active status of this object.

child(key)
    Get the child object associated with a given storage key for this container.
    Raises KeyError – if the argument is not a storage key for any children of this container

children()
    A generator over the children of this container.

close()
    Returns a copy of this object with the parent pointer set to None.
A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not descendents of this object will reference the same object on the clone.

- **components (active=True)**
  Generates an efficient traversal of all components stored under this container. Components are categorized objects that are either (1) not containers, or (2) are heterogeneous containers.

  - **Parameters**
    active (True/None) – Controls whether or not to filter the iteration to include only the active part of the storage tree. The default is True. Setting this keyword to None causes the active status of objects to be ignored.

  - **Returns**
    iterator of components in the storage tree

- **count (value)** → integer – return number of occurrences of value

- **ctype**
  The object’s category type.

- **deactivate (shallow=True)**
  Deactivate this container.

- **getname (fully_qualified=False, name_buffer=[], convert=type 'str', relative_to=None)**
  Dynamically generates a name for this object.

  - **Parameters**
    - fully_qualified (bool) – Generate a full name by iterating through all ancestor containers. Default is False.
    - convert (function) – A function that converts a storage key into a string representation. Default is the built-in function str.
    - relative_to (object) – When generating a fully qualified name, generate the name relative to this block.

  - **Returns**
    If a parent exists, this method returns a string representing the name of the object in the context of its parent; otherwise (if no parent exists), this method returns None.

- **index (value[, start[, stop]])** → integer – return first index of value.
  Raises ValueError if the value is not present.

- **local_name**
  The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

- **name**
  The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).

- **parent**
  The object’s parent (possibly None).

- **storage_key**
  The object’s storage key within its parent

### List-like Object Storage

- **class pyomo.core.kernel.list_container.ListContainer(*args)**
  Bases: pyomo.core.kernel.tuple_container.TupleContainer, _abcoll.MutableSequence

  A partial implementation of the IHomogeneousContainer interface that provides list-like storage functionality.

  Complete implementations need to set the _ctype property at the class level and initialize the remaining ICategorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.
Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that are defined with the same ctype.

**class**
alias of abc.ABCMeta

**delattr**
x.__delattr__('name') <==> del x.name

**eq**
x.__eq__(y) <==> x==y

**format**
default object formatter

**getattribute**
x.__getattribute__('name') <==> x.name

**hash**

**init**
x.__init__(...) initializes x; see help(type(x)) for signature

**metaclass**
alias of abc.ABCMeta

**ne**
x.__ne__(y) <==> x!=y

**new**
S(...) → a new object with type S, a subtype of T

**reduce**
helper for pickle

**reduce_ex**
helper for pickle

**repr**

**setattr**
x.__setattr__('name', value) <==> x.name = value

**sizeof**
size of object in memory, in bytes

**str**
Convert this object to a string by first attempting to generate its fully qualified name. If the object does not have a name (because it does not have a parent, then a string containing the class name is returned.

```
classmethod __subclasshook__(C)
Abstract classes can override this to customize issubclass().
```

```
This is invoked early on by abc.ABCMeta.__subclasscheck__(). It should return True, False or NotImplemented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal algorithm (and the outcome is cached).
```

**weakref**
list of weak references to the object (if defined)

**activate**
(shallow=True)
Activate this container.

**active**
The active status of this object.
append\((value)\)
S.append(object) – append object to the end of the sequence

cchild\((key)\)
Get the child object associated with a given storage key for this container.
    Raises KeyError – if the argument is not a storage key for any children of this container

cchildren()
A generator over the children of this container.

cclone()
Returns a copy of this object with the parent pointer set to None.
A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

ccomponents\((active=True)\)
Generates an efficient traversal of all components stored under this container. Components are categorized
objects that are either (1) not containers, or (2) are heterogeneous containers.
    Parameters active\((True/None)\) – Controls whether or not to filter the iteration to include
    only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.
    Returns iterator of components in the storage tree

count\((value)\) \rightarrow integer – return number of occurrences of value

cctype
The object’s category type.

cdeactivate\((shallow=True)\)
Deactivate this container.

cextend\((values)\)
S.extend(iterable) – extend sequence by appending elements from the iterable

cgetname\((fully_qualified=False, name_buffer=\{}, convert=<type \'str\'>, relative_to=None)\)
Dynamically generates a name for this object.
    Parameters
        * fully_qualified\((bool)\) – Generate a full name by iterating through all
            ancestor containers. Default is False.
        * convert\((function)\) – A function that converts a storage key into a string
            representation. Default is the built-in function str.
        * relative_to\((object)\) – When generating a fully qualified name, generate
            the name relative to this block.
    Returns If a parent exists, this method returns a string representing the name of the object
    in the context of its parent; otherwise (if no parent exists), this method returns None.

cindex\((value[, start[, stop]])\) \rightarrow integer – return first index of value.
    Raises ValueError if the value is not present.

cinsert\((i, item)\)
S.insert(index, object) – insert object before index

clocal_name
The object’s local name within the context of its parent. Alias for obj.getname(fully_qualified=False).

cname
The object’s fully qualified name. Alias for obj.getname(fully_qualified=True).
parent
The object’s parent (possibly None).

pop([index]) → item – remove and return item at index (default last).
Raise IndexError if list is empty or index is out of range.

remove(value)
S.remove(value) – remove first occurrence of value. Raise ValueError if the value is not present.

reverse()
S.reverse() – reverse IN PLACE

storage_key
The object’s storage key within its parent

Dict-like Object Storage

class pyomo.core.kernel.dict_container.DictContainer(*args, **kwds)
Bases: pyomo.core.kernel.homogeneous_container.IHomogeneousContainer,
       _abcoll.MutableMapping
A partial implementation of the IHomogeneousContainer interface that provides dict-like storage functionality.
Complete implementations need to set the _ctype property at the class level and initialize the remaining ICate-
gorizedObject attributes during object creation. If using __slots__, a slot named “_data” must be included.
Note that this implementation allows nested storage of other ICategorizedObjectContainer implementations that
are defined with the same ctype.
__setattr__
   x.__setattr__('name', value) <==> x.name = value

__sizeof__() \to int
   size of object in memory, in bytes

__str__()  
   Convert this object to a string by first attempting to generate its fully qualified name. If the object does not have a name (because it does not have a parent), then a string containing the class name is returned.

classmethod __subclasshook__(C)
   Abstract classes can override this to customize issubclass().

   This is invoked early on by abc.ABCMeta._subclasscheck(). It should return True, False or NotImple-
   mented. If it returns NotImplemented, the normal algorithm is used. Otherwise, it overrides the normal
   algorithm (and the outcome is cached).

__weakref__
   list of weak references to the object (if defined)

activate (shallow=True)
   Activate this container.

active
   The active status of this object.

child(key)
   Get the child object associated with a given storage key for this container.

   Raises KeyError – if the argument is not a storage key for any children of this container

cchildren()  
   A generator over the children of this container.

clear() \to None. Remove all items from D.

clone()
   Returns a copy of this object with the parent pointer set to None.

   A clone is almost equivalent to deepcopy except that any categorized objects encountered that are not
descendents of this object will reference the same object on the clone.

components (active=True)
   Generates an efficient traversal of all components stored under this container. Components are categorized
   objects that are either (1) not containers, or (2) are heterogeneous containers.

   Parameters active (True/None) – Controls whether or not to filter the iteration to in-
   clude only the active part of the storage tree. The default is True. Setting this keyword
to None causes the active status of objects to be ignored.

   Returns iterator of components in the storage tree

ctype
   The object’s category type.

deactivate (shallow=True)
   Deactivate this container.

get(k, d) \to D[k] if k in D, else d. d defaults to None.

getname (fully_qualified=False, name_buffer={}, convert=<type 'str'>, relative_to=None)
   Dynamically generates a name for this object.

   Parameters
• **fullyQualified**(bool) – Generate a full name by iterating through all ancestor containers. Default is False.

• **convert**(function) – A function that converts a storage key into a string representation. Default is the built-in function str.

• **relativeTo**(object) – When generating a fully qualified name, generate the name relative to this block.

**Returns** If a parent exists, this method returns a string representing the name of the object in the context of its parent; otherwise (if no parent exists), this method returns None.

**items**() → list of D’s (key, value) pairs, as 2-tuples

**iteritems**() → an iterator over the (key, value) items of D

**iterkeys**() → an iterator over the keys of D

**itervalues**() → an iterator over the values of D

**keys**() → list of D’s keys

**local_name**

The object’s local name within the context of its parent. Alias for *obj.getname(fully_qualified=False)*.

**name**

The object’s fully qualified name. Alias for *obj.getname(fully_qualified=True)*.

**parent**

The object’s parent (possibly None).

**pop**(k[, d]) → v, remove specified key and return the corresponding value.

If key is not found, d is returned if given, otherwise KeyError is raised.

**popitem**() → (k, v), remove and return some (key, value) pair as a 2-tuple; but raise KeyError if D is empty.

**setdefault**(k[, d]) → D.get(k,d), also set D[k]=d if k not in D

**storage_key**

The object’s storage key within its parent

**update**(E[, **F]) → None. Update D from mapping/iterable E and F.

If E present and has a .keys() method, does: for k in E: D[k] = E[k] If E present and lacks .keys() method, does: for (k, v) in E: D[k] = v In either case, this is followed by: for k, v in F.items(): D[k] = v

**values**() → list of D’s values
We welcome all contributions including bug fixes, feature enhancements, and documentation improvements. Pyomo manages source code contributions via GitHub pull requests (PRs).

14.1 Contribution Requirements

A PR should be 1 set of related changes. PRs for large-scale non-functional changes (i.e. PEP8, comments) should be separated from functional changes. This simplifies the review process and ensures that functional changes aren’t obscured by large amounts of non-functional changes.

14.1.1 Coding Standards

- Required: 4 space indentation (no tabs)
- Desired: PEP8
- No use of __author__
- Inside pyomo.contrib: Contact information for the contribution maintainer (such as a Github ID) should be included in the Sphinx documentation

Sphinx-compliant documentation is required for:

- Modules
- Public and Private Classes
- Public and Private Functions

We also encourage you to include examples, especially for new features and contributions to pyomo.contrib.
14.1.2 Testing

Pyomo uses unittest, TravisCI, and Appveyor for testing and continuous integration. Submitted code should include tests to establish the validity of its results and/or effects. Unit tests are preferred but we also accept integration tests. When test are run on a PR, we require at least 70% coverage of the lines modified in the PR and prefer coverage closer to 90%. We also require that all tests pass before a PR will be merged.

At any point in the development cycle, a “work in progress” pull request may be opened by including ‘[WIP]’ at the beginning of the PR title. This allows your code changes to be tested by Pyomo’s automatic testing infrastructure. Any pull requests marked ‘[WIP]’ will not be reviewed or merged by the core development team. In addition, any ‘[WIP]’ pull request left open for an extended period of time without active development may be marked ‘stale’ and closed.

14.2 Review Process

After a PR is opened it will be reviewed by at least two members of the core development team. The core development team consists of anyone with write-access to the Pyomo repository. Pull requests opened by a core developer only require one review. The reviewers will decide if they think a PR should be merged or if more changes are necessary.

Reviewers look for:

- Outside of pyomo.contrib: Code rigor and standards, edge cases, side effects, etc.
- Inside of pyomo.contrib: No “glaringly obvious” problems with the code
- Documentation and tests

The core development team tries to review pull requests in a timely manner but we make no guarantees on review timeframes. In addition, PRs might not be reviewed in the order they are opened in.

14.3 Where to put contributed code

In order to contribute to Pyomo, you must first make a fork of the Pyomo git repository. Next, you should create a branch on your fork dedicated to the development of the new feature or bug fix you’re interested in. Once you have this branch checked out, you can start coding. Bug fixes and minor enhancements to existing Pyomo functionality should be made in the appropriate files in the Pyomo code base. New examples, features, and packages built on Pyomo should be placed in pyomo.contrib. Follow the link below to find out if pyomo.contrib is right for your code.

14.4 pyomo.contrib

Pyomo uses the pyomo.contrib package to facilitate the inclusion of third-party contributions that enhance Pyomo’s core functionality. The are two ways that pyomo.contrib can be used to integrate third-party packages:

- pyomo.contrib can provide wrappers for separate Python packages, thereby allowing these packages to be imported as subpackages of pyomo.
- pyomo.contrib can include contributed packages that are developed and maintained outside of the Pyomo developer team.

Including contrib packages in the Pyomo source tree provides a convenient mechanism for defining new functionality that can be optionally deployed by users. We expect this mechanism to include Pyomo extensions and experimental modeling capabilities. However, contrib packages are treated as optional packages, which are not maintained by the Pyomo developer team. Thus, it is the responsibility of the code contributor to keep these packages up-to-date.
Contrib package contributions will be considered as pull-requests, which will be reviewed by the Pyomo developer team. Specifically, this review will consider the suitability of the proposed capability, whether tests are available to check the execution of the code, and whether documentation is available to describe the capability. Contrib packages will be tested along with Pyomo. If test failures arise, then these packages will be disabled and an issue will be created to resolve these test failures.

The following two examples illustrate the two ways that `pyomo.contrib` can be used to integrate third-party contributions.

### 14.4.1 Including External Packages

The `pyomocontrib_simplemodel` package is derived from Pyomo, and it defines the class SimpleModel that illustrates how Pyomo can be used in a simple, less object-oriented manner. Specifically, this class mimics the modeling style supported by PuLP.

While `pyomocontrib_simplemodel` can be installed and used separate from Pyomo, this package is included in `pyomo/contrib/simplemodel`. This allows this package to be referenced as if were defined as a subpackage of `pyomo.contrib`. For example:

```python
from pyomo.contrib.simplemodel import *
from math import pi

m = SimpleModel()

r = m.var('r', bounds=(0, None))
h = m.var('h', bounds=(0, None))

m += 2*pi*r*(r + h)
m += pi*h*r**2 == 355

status = m.solve("ipopt")
```

This example illustrates that a package can be distributed separate from Pyomo while appearing to be included in the `pyomo.contrib` subpackage. Pyomo requires a separate directory be defined under `pyomo/contrib` for each such package, and the Pyomo developer team will approve the inclusion of third-party packages in this manner.

### 14.4.2 Contrib Packages within Pyomo

Third-party contributions can also be included directly within the `pyomo.contrib` package. The `pyomo/contrib/example` package provides an example of how this can be done, including a directory for plugins and package tests. For example, this package can be imported as a subpackage of `pyomo.contrib`:

```python
from pyomo.environ import *
from pyomo.contrib.example import a

Print the value of 'a' defined by this package
print(a)
```

Although `pyomo.contrib.example` is included in the Pyomo source tree, it is treated as an optional package. Pyomo will attempt to import this package, but if an import failure occurs, Pyomo will silently ignore it. Otherwise, this pyomo package will be treated like any other. Specifically:

- Plugin classes defined in this package are loaded when `pyomo.environ` is loaded.
- Tests in this package are run with other Pyomo tests.
Pyomo includes a variety of additional features and functionality provided by third parties through the `pyomo.contrib` package. This package includes both contributions included with the main Pyomo distribution and wrappers for third-party packages that must be installed separately.

These packages are maintained by the original contributors and are managed as optional Pyomo packages.

Contributed packages distributed with Pyomo:

### 15.1 Pyomo Nonlinear Preprocessing

`pyomo.contrib.preprocessing` is a contributed library of preprocessing transformations intended to operate upon nonlinear and mixed-integer nonlinear programs (NLPs and MINLPs), as well as generalized disjunctive programs (GDPs).

This contributed package is maintained by Qi Chen and his colleagues from Carnegie Mellon University.

The following preprocessing transformations are available. However, some may later be deprecated or combined, depending on their usefulness.

<table>
<thead>
<tr>
<th>Transformation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>var_aggregator.VariableAggregator</code></td>
<td>Aggregate model variables that are linked by equality constraints.</td>
</tr>
<tr>
<td><code>bounds_to_vars.ConstraintToVarBoundTransform</code></td>
<td>Change constraints to be a bound on the variable.</td>
</tr>
<tr>
<td><code>induced_linearity.InducedLinearity</code></td>
<td>Reformulate nonlinear constraints with induced linearity.</td>
</tr>
<tr>
<td><code>constraint_tightener.TightenConstraintFromVars</code></td>
<td>Tightens upper and lower bound on constraints based on variable bounds.</td>
</tr>
<tr>
<td><code>deactivate_trivial_constraints.TrivialConstraintDeactivator</code></td>
<td>Deactivates trivial constraints.</td>
</tr>
<tr>
<td><code>detect_fixed_vars.FixedVarDetector</code></td>
<td>Detects variables that are de-facto fixed but not considered fixed.</td>
</tr>
</tbody>
</table>
Table 15.1 – continued from previous page

<table>
<thead>
<tr>
<th>Propagator</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>equality_propagate. FixedVarPropagator</td>
<td>Propagate variable fixing for equalities of type $x = y$.</td>
</tr>
<tr>
<td>equality_propagate. VarBoundPropagator</td>
<td>Propagate variable bounds for equalities of type $x = y$.</td>
</tr>
<tr>
<td>init-vars.InitMidpoint</td>
<td>Initialize non-fixed variables to the midpoint of their bounds.</td>
</tr>
<tr>
<td>init-vars.InitZero</td>
<td>Initialize non-fixed variables to zero.</td>
</tr>
<tr>
<td>remove_zero_terms.RemoveZeroTerms</td>
<td>Looks for $0v$ in a constraint and removes it.</td>
</tr>
<tr>
<td>strip_bounds.VariableBoundStripper</td>
<td>Strip bounds from variables.</td>
</tr>
<tr>
<td>zero_sum_propagator. ZeroSumPropagator</td>
<td>Propagates fixed-to-zero for sums of only positive (or negative) vars.</td>
</tr>
</tbody>
</table>

### 15.1.1 Variable Aggregator

The following code snippet demonstrates usage of the variable aggregation transformation on a concrete Pyomo model:

```python
>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> m.v1 = Var(initialize=1, bounds=(1, 8))
>>> m.v2 = Var(initialize=2, bounds=(0, 3))
>>> m.v3 = Var(initialize=3, bounds=(-7, 4))
>>> m.v4 = Var(initialize=4, bounds=(2, 6))
>>> m.c1 = Constraint(expr=m.v1 == m.v2)
>>> m.c2 = Constraint(expr=m.v2 == m.v3)
>>> m.c3 = Constraint(expr=m.v3 == m.v4)
```

TransformationFactory('contrib.aggregate_vars').apply_to(m)

To see the results of the transformation, you could then use the command

```python
>>> m.pprint()
```

```python
class pyomo.contrib.preprocessing.plugins.var_aggregator.VariableAggregator(**kwds)
Aggregate model variables that are linked by equality constraints.

Before:

\[
x = y
a = 2x + 6y + 7
b = 5y + 6
\]

After:

\[
z = x = y
a = 8z + 7
b = 5z + 6
\]
```

**Warning:** TODO: unclear what happens to “capital-E” Expressions at this point in time.
update_variables(model)
Update the values of the variables that were replaced by aggregates.

TODO: reduced costs

15.1.2 Explicit Constraints to Variable Bounds

```python
defines
>>> from pyomo.environ import *
>>> m = ConcreteModel()
>>> m.v1 = Var(initialize=1)
>>> m.v2 = Var(initialize=2)
>>> m.v3 = Var(initialize=3)
>>> m.c1 = Constraint(expr=m.v1 == 2)
>>> m.c2 = Constraint(expr=m.v2 >= -2)
>>> m.c3 = Constraint(expr=m.v3 <= 5)
>>> TransformationFactory('contrib.constraints_to_var_bounds').apply_to(m)
```

class pyomo.contrib.preprocessing.plugins.bounds_to_vars.ConstraintToVarBoundTransform(**kwds)
Change constraints to be a bound on the variable.

Looks for constraints of form: \(k \cdot v + c_1 \leq c_2\). Changes variable lower bound on \(v\) to match \((c_2 - c_1)/k\) if it results in a tighter bound. Also does the same thing for lower bounds.

Keyword arguments below are specified for the apply_to and create_using functions.

- **tolerance** – tolerance on bound equality \((LB = UB)\)
- **detect_fixed** – If True, fix variable when \(|LB - UB| \leq tolerance\).

apply_to(model, **kwds)
Apply the transformation to the given model.

create_using(model, **kwds)
Create a new model with this transformation

15.1.3 Induced Linearity Reformulation

class pyomo.contrib.preprocessing.plugins.induced_linearity.InducedLinearity(**kwds)
Reformulate nonlinear constraints with induced linearity.

Finds continuous variables \(v\) where \(v = d_1 + d_2 + d_3\), where \(d\)'s are discrete variables. These continuous variables may participate nonlinearly in other expressions, which may then be induced to be linear.

The overall algorithm flow can be summarized as:
1. Detect effectively discrete variables and the constraints that imply discreteness.
2. Determine the set of valid values for each effectively discrete variable
3. Find nonlinear expressions in which effectively discrete variables participate.

Note: Tasks 1 & 2 must incorporate scoping considerations (Disjuncts)

Keyword arguments below are specified for the apply_to and create_using functions.

- **equality_tolerance** – Tolerance on equality constraints.
- **pruning_solver** – Solver to use when pruning possible values.
apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

15.1.4 Constraint Bounds Tightener

This transformation was developed by Sunjeev Kale at Carnegie Mellon University.

class pyomo.contrib.preprocessing.plugins.constraint_tightener.TightlyConstraintFromVars (**kwds)
Tightens upper and lower bound on constraints based on variable bounds.

Iterates through each variable and tightens the constraint bounds using the inferred values from the variable bounds.

For now, this only operates on linear constraints.

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

15.1.5 Trivial Constraint Deactivation

class pyomo.contrib.preprocessing.plugins.deactivate_trivial_constraints.TrivialConstraintDeactivator (**kwds)
Deactivates trivial constraints.

Trivial constraints take form \( k_1 = k_2 \) or \( k_1 \leq k_2 \), where \( k_1 \) and \( k_2 \) are constants. These constraints typically arise when variables are fixed.

Keyword arguments below are specified for the apply_to and create_using functions.

Keyword Arguments
- **tmp** – True to store a set of transformed constraints for future reversion of the transformation.
- **ignore_infeasible** – True to skip over trivial constraints that are infeasible instead of raising a ValueError.
- **return_trivial** – a list to which the deactivated trivial constraints are appended (side effect)
- **tolerance** – tolerance on constraint violations

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

revert (instance)
Revert constraints deactivated by the transformation.

Parameters instance – the model instance on which trivial constraints were earlier deactivated.
15.1.6 Fixed Variable Detection

```python
class pyomo.contrib.preprocessing.plugins.detect_fixed_vars.FixedVarDetector(**kwds)
Detected variables that are de-facto fixed but not considered fixed.

For each variable \(v \) found on the model, check to see if its lower bound \(v^{LB} \) is within some tolerance of its upper bound \(v^{UB} \). If so, fix the variable to the value of \(v^{LB} \).

Keyword arguments below are specified for the apply_to and create_using functions.

Keyword Arguments

- `tmp` – True to store the set of transformed variables and their old values so that they can be restored.
- `tolerance` – tolerance on bound equality (LB == UB)

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

revert (instance)
Revert variables fixed by the transformation.
```

15.1.7 Fixed Variable Equality Propagator

```python
class pyomo.contrib.preprocessing.plugins.equality_propagate.FixedVarPropagator(**kwds)
Propagate variable fixing for equalities of type \(x = y \).

If \(x \) is fixed and \(y \) is not fixed, then this transformation will fix \(y \) to the value of \(x \).

This transformation can also be performed as a temporary transformation, whereby the transformed variables are saved and can be later unfixed.

Keyword arguments below are specified for the apply_to and create_using functions.

Keyword Arguments `tmp` – True to store the set of transformed variables and their old states so that they can be later restored.

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

revert (instance)
Revert variables fixed by the transformation.
```

15.1.8 Variable Bound Equality Propagator

```python
class pyomo.contrib.preprocessing.plugins.equality_propagate.VarBoundPropagator(**kwds)
Propagate variable bounds for equalities of type \(x = y \).

If \(x \) has a tighter bound then \(y \), then this transformation will adjust the bounds on \(y \) to match those of \(x \).

Keyword arguments below are specified for the apply_to and create_using functions.

Keyword Arguments `tmp` – True to store the set of transformed variables and their old states so that they can be later restored.

apply_to (model, **kwds)
Apply the transformation to the given model.
```
create_using (model, **kwds)
Create a new model with this transformation

revert (instance)
Revert variable bounds.

15.1.9 Variable Midpoint Initializer

class pyomo.contrib.preprocessing.plugins.init_vars.InitMidpoint (**kwds)
Initialize non-fixed variables to the midpoint of their bounds.
  • If the variable does not have bounds, set the value to zero.
  • If the variable is missing one bound, set the value to that of the existing bound.

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

15.1.10 Variable Zero Initializer

class pyomo.contrib.preprocessing.plugins.init_vars.InitZero (**kwds)
Initialize non-fixed variables to zero.
  • If setting the variable value to zero will violate a bound, set the variable value to the relevant bound value.

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

15.1.11 Zero Term Remover

class pyomo.contrib.preprocessing.plugins.remove_zero_terms.RemoveZeroTerms (**kwds)
Looks for 0v in a constraint and removes it.
Currently limited to processing linear constraints of the form x1 = 0x3, occurring as a result of fixing x2 = 0.

Note: TODO: support nonlinear expressions

apply_to (model, **kwds)
Apply the transformation to the given model.

create_using (model, **kwds)
Create a new model with this transformation

15.1.12 Variable Bound Remover

class pyomo.contrib.preprocessing.plugins.strip_bounds.VariableBoundStripper (**kwds)
Strip bounds from variables.

Keyword arguments below are specified for the apply_to and create_using functions.

Keyword Arguments
  • strip_domains – strip the domain for discrete variables as well
• **reversible** – Whether the bound stripping will be temporary. If so, store information for reversion.

```python
apply_to(model, **kwds)
```
Apply the transformation to the given model.

```python
create_using(model, **kwds)
```
Create a new model with this transformation

```python
revert(instance)
```
Revert variable bounds and domains changed by the transformation.

### 15.1.13 Zero Sum Propagator

```python
class pyomo.contrib.preprocessing.plugins.zero_sum_propagator.ZeroSumPropagator(**kwds)
```
Propagates fixed-to-zero for sums of only positive (or negative) vars.

If \( z \) is fixed to zero and \( z = x_1 + x_2 + x_3 \) and \( x_1, x_2, x_3 \) are all non-negative or all non-positive, then \( x_1, x_2, \) and \( x_3 \) will be fixed to zero.

```python
apply_to(model, **kwds)
```
Apply the transformation to the given model.

```python
create_using(model, **kwds)
```
Create a new model with this transformation

### 15.2 GDPopt logic-based solver

The GDPopt solver in Pyomo allows users to solve nonlinear Generalized Disjunctive Programming (GDP) models using logic-based decomposition approaches, as opposed to the conventional approach via reformulation to a Mixed Integer Nonlinear Programming (MINLP) model.

GDPopt currently implements an updated version of the logic-based outer approximation (LOA) algorithm originally described in Turkay & Grossmann, 1996. Usage and implementation details for GDPopt can be found in the PSE 2018 paper Chen et al., 2018, or via its preprint.

The paper contains the following flowchart, taken from the preprint version:

![Flowchart](image)

Usage of GDPopt to solve a Pyomo.GDP concrete model involves:

```python
>>> SolverFactory('gdpopt').solve(model)
```

An example which includes the modeling approach may be found below.
Required imports
>>> from pyomo.environ import *
>>> from pyomo.gdp import *

Create a simple model
>>> model = ConcreteModel()

>>> model.x = Var(bounds=(-1.2, 2))
>>> model.y = Var(bounds=(-10,10))

>>> model.fix_x = Disjunct()
>>> model.fix_x.c = Constraint(expr=model.x == 0)

>>> model.fix_y = Disjunct()
>>> model.fix_y.c = Constraint(expr=model.y == 0)

>>> model.c = Disjunction(expr=[model.fix_x, model.fix_y])

>>> model.objective = Objective(expr=model.x, sense=minimize)

Solve the model using GDPopt
>>> SolverFactory('gdpopt').solve(model, mip_solver='glpk')

The solution may then be displayed by using the commands

>>> model.objective.display()
>>> model.display()
>>> model.pprint()

**Note:** When troubleshooting, it can often be helpful to turn on verbose output using the tee flag.

>>> SolverFactory('gdpopt').solve(model, tee=True)

15.2.1 GDPopt implementation and optional arguments

**Warning:** GDPopt optional arguments should be considered beta code and are subject to change.

class pyomo.contrib.gdpopt.GDPopt.GDPoptSolver
Decomposition solver for Generalized Disjunctive Programming (GDP) problems.

The GDPopt (Generalized Disjunctive Programming optimizer) solver applies a variety of decomposition-based approaches to solve Generalized Disjunctive Programming (GDP) problems. GDP models can include nonlinear, continuous variables and constraints, as well as logical conditions.

These approaches include:
- Outer approximation
- Partial surrogate cuts [pending]
- Generalized Bender decomposition [pending]

This solver implementation was developed by Carnegie Mellon University in the research group of Ignacio Grossmann.

For nonconvex problems, the bounds self.LB and self.UB may not be rigorous.

Questions: Please make a post at StackOverflow and/or contact Qi Chen <https://github.com/qtothec>.
Keyword arguments below are specified for the solve function.

**Keyword Arguments**

- **iterlim** – Iteration limit.
- **strategy** – Decomposition strategy to use.
- **init_strategy** – Selects the initialization strategy to use when generating the initial cuts to construct the master problem.
- **custom_init_disjuncts** – List of disjunct sets to use for initialization.
- **max_slack** – Upper bound on slack variables for OA
- **OA_penalty_factor** – Penalty multiplication term for slack variables on the objective value.
- **set_cover_iterlim** – Limit on the number of set covering iterations.
- **mip_solver** – Mixed integer linear solver to use.
- **mip_presolve** – Flag to enable or disable Pyomo MIP presolve. Default=True.
- **mip_solver_args** –
- **nlp_solver** – Nonlinear solver to use
- **nlp_solver_args** –
- **subproblem_presolve** – Flag to enable or disable subproblem presolve. Default=True.
- **minlp_solver** – MINLP solver to use
- **minlp_solver_args** –
- **call_before_master_solve** – callback hook before calling the master problem solver
- **call_after_master_solve** – callback hook after a solution of the master problem
- **call_before_subproblem_solve** – callback hook before calling the subproblem solver
- **call_after_subproblem_solve** – callback hook after a solution of the nonlinear subproblem
- **call_after_subproblem_feasible** – callback hook after feasible solution of the nonlinear subproblem
- **algorithm_stall_after** – number of non-improving master iterations after which the algorithm will stall and exit.
- **tee** – Stream output to terminal.
- **logger** – The logger object or name to use for reporting.
- **bound_tolerance** – Tolerance for bound convergence.
- **small_dual_tolerance** – When generating cuts, small duals multiplied by expressions can cause problems. Exclude all duals smaller in absolute value than the following.
- **integer_tolerance** – Tolerance on integral values.
- **constraint_tolerance** – Tolerance on constraint satisfaction.
• variable_tolerance – Tolerance on variable bounds.
• zero_tolerance – Tolerance on variable equal to zero.
• round_discrete_vars – flag to round subproblem discrete variable values to the nearest integer. Rounding is done before fixing disjuncts.
• force_subproblem_nlp – Force subproblems to be NLP, even if discrete variables exist.

available (exception_flag=True)
Check if solver is available.

TODO: For now, it is always available. However, sub-solvers may not always be available, and so this should reflect that possibility.

solve (model, **kwds)
Solve the model.

Warning: this solver is still in beta. Keyword arguments subject to change. Undocumented keyword arguments definitely subject to change.

This function performs all of the GDPopt solver setup and problem validation. It then calls upon helper functions to construct the initial master approximation and iteration loop.

Parameters model (Block) – a Pyomo model or block to be solved

version ()
Return a 3-tuple describing the solver version.

15.3 GDP Branch and Bound Solver

The GDP Branch and Bound solver is used to solve Generalized Disjunctive Programming (GDP) Problems. It branches through relaxed subproblems with inactive disjunctions. It explores the possibilities based on best lower bound, eventually activating all disjunctions and presenting the global optimal.

15.3.1 Using GDP Branch and Bound Solver

To use the GDPbb solver, define your Pyomo GDP model as usual:

Required import
>>> from pyomo.environ import *
>>> from pyomo.gdp import Disjunct, Disjunction

Create a simple model
>>> m = ConcreteModel()
>>> m.x1 = Var(bounds = (0,8))
>>> m.x2 = Var(bounds = (0,8))
>>> m.obj = Objective(expr=m.x1 + m.x2, sense=minimize)
>>> m.y1 = Disjunct()
>>> m.y2 = Disjunct()
>>> m.y1.c1 = Constraint(expr=m.x1 >= 2)
>>> m.y1.c2 = Constraint(expr=m.x2 >= 2)
>>> m.y2.c1 = Constraint(expr=m.x1 >= 3)
>>> m.y2.c2 = Constraint(expr=m.x2 >= 3)
>>> m.djn = Disjunction(expr=[m.y1, m.y2])

Invoke the GDPbb solver

(continues on next page)
>>> results = SolverFactory('gdpbb').solve(m)

>>> print(results)
ok

>>> print(results.solver.status)
optimal

>>> print([value(m.y1.indicator_var), value(m.y2.indicator_var)])
[1, 0]

### 15.3.2 GDP Branch and Bound implementation and optional arguments

**class** pyomo.contrib.gdpbb.GDPbb.GDPbbSolver

A branch and bound-based solver for Generalized Disjunctive Programming (GDP) problems

The GDPbb solver solves subproblems relaxing certain disjunctions, and builds up a tree of potential active disjunctions. By exploring promising branches, it eventually results in an optimal configuration of disjunctions.

Keyword arguments below are specified for the solve function.

- **available** *(exception_flag=True)*
  
  Check if solver is available.

  TODO: For now, it is always available. However, sub-solvers may not always be available, and so this should reflect that possibility.

### 15.4 Multistart Solver

The multistart solver is used in cases where the objective function is known to be non-convex but the global optimum is still desired. It works by running a non-linear solver of your choice multiple times at different starting points, and returns the best of the solutions.

#### 15.4.1 Using Multistart Solver

To use the multistart solver, define your Pyomo model as usual:

```python
>>> from pyomo.environ import *

Create a simple model
>>> m = ConcreteModel()
>>> m.x = Var()
>>> m.y = Var()
>>> m.obj = Objective(expr=m.x**2 + m.y**2)
>>> m.c = Constraint(expr=m.y >= -2*m.x + 5)

Invoke the multistart solver
>>> SolverFactory('multistart').solve(m)
```
15.4.2 Multistart wrapper implementation and optional arguments

class pyomo.contrib.multistart.multi.MultiStart
Solver wrapper that initializes at multiple starting points.

# TODO: also return appropriate duals
For theoretical underpinning, see https://www.semanticscholar.org/paper/How-many-random-restarts-are-enough-Dick-Wong/55b248b398a03dc1ac9a65437f88b835554329e0

Keyword arguments below are specified for the solve function.

Keyword Arguments

- **strategy** – Specify the restart strategy.
  - "rand": random choice between variable bounds
  - "midpoint_guess_and_bound": midpoint between current value and farthest bound
  - "rand_guess_and_bound": random choice between current value and farthest bound
  - "rand_distributed": random choice among evenly distributed values

- **solver** – solver to use, defaults to ipopt

- **solver_args** – Dictionary of keyword arguments to pass to the solver.

- **iterations** – Specify the number of iterations, defaults to 10. If -1 is specified, the high confidence stopping rule will be used

- **stopping_mass** – Maximum allowable estimated missing mass of optima for the high confidence stopping rule, only used with the random strategy. The lower the parameter, the stricter the rule. Value bounded in (0, 1].

- **stopping_delta** – 1 minus the confidence level required for the stopping rule for the high confidence stopping rule, only used with the random strategy. The lower the parameter, the stricter the rule. Value bounded in (0, 1].

- **suppress_unbounded_warning** – True to suppress warning for skipping unbounded variables.

- **HCS_max_iterations** – Maximum number of iterations before interrupting the high confidence stopping rule.

- **HCS_tolerance** – Tolerance on HCS objective value equality. Defaults to Python float equality precision.

available (exception_flag=True)
Check if solver is available.

TODO: For now, it is always available. However, sub-solvers may not always be available, and so this should reflect that possibility.

15.5 parmest

parmest is a Python package built on the Pyomo optimization modeling language ([PyomoJournal], [PyomoBookII]) to support parameter estimation using experimental data along with confidence regions and subsequent creation of scenarios for PySP.
15.5.1 Overview

The Python package called parmest facilitates model-based parameter estimation along with characterization of uncertainty associated with the estimates. For example, parmest can provide confidence regions around the parameter estimates. Additionally, parameter vectors, each with an attached probability estimate, can be used to build scenarios for design optimization.

Functionality in parmest includes:

- Model based parameter estimation using experimental data
- Bootstrap resampling for parameter estimation
- Confidence regions based on single or multi-variate distributions
- Likelihood ratio
- Parallel processing

Background

The goal of parameter estimation is to estimate values for a vector, $\theta$, to use in the functional form

$$y = g(x; \theta)$$

where $x$ is a vector containing measured data, typically in high dimension, $\theta$ is a vector of values to estimate, in much lower dimension, and the response vectors are given as $y_i, i = 1, \ldots, m$ with $m$ also much smaller than the dimension of $x$. This is done by collecting $S$ data points, which are $\tilde{x}, \tilde{y}$ pairs and then finding $\theta$ values that minimize some function of the deviation between the values of $\tilde{y}$ that are measured and the values of $g(\tilde{x}; \theta)$ for each corresponding $\tilde{x}$, which is a subvector of the vector $x$. Note that for most experiments, only small parts of $x$ will change from one experiment to the next.

The following least squares objective can be used to estimate parameter values, where data points are indexed by $s = 1, \ldots, S$

$$\min_{\theta} Q(\theta; \tilde{x}, \tilde{y}) \equiv \sum_{s=1}^{S} q_s(\theta; \tilde{x}_s, \tilde{y}_s)$$

where

$$q_s(\theta; \tilde{x}_s, \tilde{y}_s) = \sum_{i=1}^{m} w_i [\tilde{y}_{si} - g_i(\tilde{x}_s; \theta)]^2,$$

i.e., the contribution of sample $s$ to $Q$, where $w \in \mathbb{R}^m$ is a vector of weights for the responses. For multi-dimensional $y$, this is the squared weighted $L_2$ norm and for univariate $y$ the weighted squared deviation. Custom objectives can also be defined for parameter estimation.

In the applications of interest to us, the function $g(\cdot)$ is usually defined as an optimization problem with a large number of (perhaps constrained) optimization variables, a subset of which are fixed at values $\tilde{x}$ when the optimization is performed. In other applications, the values of $\theta$ are fixed parameter values, but for the problem formulation above, the values of $\theta$ are the primary optimization variables. Note that in general, the function $g(\cdot)$ will have a large set of parameters that are not included in $\theta$. Often, the $y_{is}$ will be vectors themselves, perhaps indexed by time with index sets that vary with $s$.

15.5.2 Installation Instructions

parmest is included in Pyomo (pyomo/contrib/parmest). To run parmest, you will need Python version 3.x along with various Python package dependencies and the IPOPT software library for non-linear optimization.
Python package dependencies

1. numpy
2. pandas
3. pyomo
4. pyutilib
5. matplotlib (optional, used for graphics)
6. scipy.stats (optional, used for graphics)
7. seaborn (optional, used for graphics)
8. mpi4py.MPI (optional, used for parallel computing)

IPOPT

IPOPT can be downloaded from https://projects.coin-or.org/Ipopt.

Testing

The following commands can be used to test parmest:

```bash
cd pyomo/contrib/parmest/tests
python test_parmest.py
```

15.5.3 Parameter Estimation using parmest

Parameter Estimation using parmest requires a Pyomo model, experimental data which defines multiple scenarios, and a list of thetas to estimate. parmest uses PySP [PyomoBookII] to solve a two-stage stochastic programming problem, where the experimental data is used to create a scenario tree. The objective function needs to be written in PySP form with the Pyomo Expression for first stage cost (named “FirstStateCost”) set to zero and the Pyomo Expression for second stage cost (named “SecondStageCost”) defined as the deviation between model and the observations (typically defined as the sum of squared deviation between model values and observed values).

If the Pyomo model is not formatted as a two-stage stochastic programming problem in this format, the user can supply a custom function to use as the second stage cost and the Pyomo model will be modified within parmest to match the specifications required by PySP. The PySP callback function is also defined within parmest. The callback function returns a populated and initialized model for each scenario.

To use parmest, the user creates a `Estimator` object and uses its methods for:

- Parameter estimation, `theta_est`
- Bootstrap resampling for parameter estimation, `theta_est_bootstrap`
- Compute the objective at theta values, `objective_at_theta`
- Compute likelihood ratio, `likelihood_ratio_test`

A `Estimator` object can be created using the following code. A description of each argument is listed below. Examples are provided in the `Examples` Section.

```python
>>> import pyomo.contrib.parmest.parmest as parmest
>>> pest = parmest.Estimator(model_function, data, theta_names, objective_function)
```
Model function

The first argument is a function which uses data for a single scenario to return a populated and initialized Pyomo model for that scenario. Parameters that the user would like to estimate must be defined as variables (Pyomo Var). The variables can be fixed (parmest unfixes variables that will be estimated). The model does not have to be specifically written for parmest. That is, parmest can modify the objective for pySP; see Objective function below.

Data

The second argument is the data which will be used to populate the Pyomo model. Supported data formats include:

- **Pandas DataFrame** where each row is a separate scenario and column names refer to observed quantities. Pandas DataFrames are easily stored and read in from csv, excel, or databases, or created directly in Python.

- **List of dictionaries** where each entry in the list is a separate scenario and the keys (or nested keys) refer to observed quantities. Dictionaries are often preferred over DataFrames when using static and time series data. Dictionaries are easily stored and read in from json or yaml files, or created directly in Python.

- **List of json file names** where each entry in the list contains a json file name for a separate scenario. This format is recommended when using large datasets in parallel computing.

The data must be compatible with the model function that returns a populated and initialized Pyomo model for a single scenario. Data can include multiple entries per variable (time series and/or duplicate sensors). This information can be included in custom objective functions, see Objective function below.

Theta names

The third argument is a list of variable names that the user wants to estimate. The list contains strings with Var names from the Pyomo model.

Objective function

The forth argument is an optional argument which defines the optimization objective function to use in parameter estimation. If no objective function is specified, the Pyomo model is used “as is” and should be defined with a “FirstStateCost” and “SecondStageCost” expression that are used to build an objective for PySP. If the Pyomo model is not written as a two stage stochastic programming problem in this format, and/or if the user wants to use an objective that is different than the original model, a custom objective function can be defined for parameter estimation. The objective function arguments include model and data and the objective function returns a Pyomo expression which are used to define “SecondStageCost”. The objective function can be used to customize data points and weights that are used in parameter estimation.

15.5.4 Graphics

parmest includes a function, pairwise_plot, to visualize results from bootstrap and likelihood ratio analysis. Confidence intervals using rectangular, multivariate normal, and kernel density estimate distributions can be included in the plot and used for scenario creation. Examples are provided in the Examples Section.

The pairwise plot includes a histogram of each parameter along the diagonal and a scatter plot for each pair of parameters in the upper and lower sections. The pairwise plot can also include the following optional information:

- A single value for each theta (generally theta* from parameter estimation).
- Confidence intervals for rectangular, multivariate normal, and/or kernel density estimate distributions at a specified level (i.e. 0.8). For plots with more than 2 parameters, theta* is used to extract a slice of the confidence region for each pairwise plot.
• Filled contour lines for objective values at a specified level (i.e. 0.8). For plots with more than 2 parameters, \( \theta^* \) is used to extract a slice of the contour lines for each pairwise plot.

• In addition to creating a figure, the user can optionally return the confidence region distributions which can be used to generate scenarios.

The following examples were generated using the reactor design example. \[\text{fig:pairwise1}\] uses output from the bootstrap analysis, and \[\text{fig:pairwise2}\] uses output from the likelihood ratio test.

Fig. 15.1: Pairwise bootstrap plot with rectangular, multivariate normal and kernel density estimation confidence region.

### 15.5.5 Examples

Examples can be found in `pyomo/contrib/parmest/examples` and include:

• Reactor design example [PyomoBookII]
• Semibatch example [SemiBatch]
• Rooney Biegler example [RooneyBiegler]

Each example contains a Python file that contains the Pyomo model and a Python file to run parameter estimation.
Fig. 15.2: Pairwise likelihood ratio plot with contours of the objective and points that lie within an alpha confidence region.
The description below uses the reactor design example. The file `reactor_design.py` includes a function which returns an populated instance of the Pyomo model. Note that the model is defined to maximize $cb$ and that $k_1$, $k_2$, and $k_3$ are fixed. The `_main_` program is included for easy testing of the model declaration.

```python
""
Continuously stirred tank reactor model, based on
pyomo\examples\doc\pyomobook\nonlinear-ch\react_design\ReactorDesign.py
""
import pandas as pd
from pyomo.environ import *
from pyomo.core import *

def reactor_design_model(data):
 # Create the concrete model
 model = ConcreteModel()

 # Rate constants
 model.k1 = Var(initialize = 5.0/6.0, within=PositiveReals) # min^-1
 model.k2 = Var(initialize = 5.0/3.0, within=PositiveReals) # min^-1
 model.k3 = Var(initialize = 1.0/6000.0, within=PositiveReals) # m^3/(gmol min)
 model.k1.fixed = True
 model.k2.fixed = True
 model.k3.fixed = True

 # Inlet concentration of A, gmol/m^3
 model.caf = float(data['caf'])

 # Space velocity (flowrate/volume)
 model.svg = float(data['sv'])

 # Outlet concentration of each component
 model.ca = Var(initialize = 5000.0, within=PositiveReals)
 model.cb = Var(initialize = 2000.0, within=PositiveReals)
 model.cc = Var(initialize = 2000.0, within=PositiveReals)
 model.cd = Var(initialize = 1000.0, within=PositiveReals)

 # Objective
 model.obj = Objective(expr = model.cb, sense=maximize)

 # Constraints
 model.ca_bal = Constraint(expr = (0 == model.svg * model.caf - model.svg * model.ca - model.k1 * model.ca - 2.0 * model.k3 * model.ca ** 2.0))
 model.cb_bal = Constraint(expr = (0 == -model.svg * model.cb + model.k1 * model.ca - model.k2 * model.cb))
 model.cc_bal = Constraint(expr = (0 == -model.svg * model.cc + model.k2 * model.cb))
 model.cd_bal = Constraint(expr = (0 == -model.svg * model.cd + model.k3 * model.ca ** 2.0))

 return model

if __name__ == "__main__":
 (continues on next page)
```
# For a range of sv values, return ca, cb, cc, and cd
results = []
sv_values = [1.0 + v * 0.05 for v in range(1, 20)]
caf = 10000
for sv in sv_values:
    model = reactor_design_model({'caf': caf, 'sv': sv})
solver = SolverFactory('ipopt')
solver.solve(model)
results.append([sv, caf, model.ca(), model.cb(), model.cc(), model.cd()])
results = pd.DataFrame(results, columns=['sv', 'caf', 'ca', 'cb', 'cc', 'cd'])
print(results)

The file reactor_design_parmest.py uses parmest to estimate values of k1, k2, and k3 by minimizing the sum of squared error between model and observed values of ca, cb, cc, and cd. The file also uses parmest to run parameter estimation with bootstrap resampling and perform a likelihood ratio test over a range of theta values.

```python
import numpy as np
import pandas as pd
from itertools import product
import pyomo.contrib.parmest.parmest as parmest
from reactor_design import reactor_design_model

Parameter estimation
Vars to estimate
theta_names = ['k1', 'k2', 'k3']

Data
data = pd.read_excel('reactor_data.xlsx')

Sum of squared error function
def SSE(model, data):
 expr = (float(data['ca']) - model.ca)**2 +
 (float(data['cb']) - model.cb)**2 +
 (float(data['cc']) - model.cc)**2 +
 (float(data['cd']) - model.cd)**2
 return expr

pest = parmest.Estimator(reactor_design_model, data, theta_names, SSE)
obj, theta = pest.theta_est()
print(obj)
print(theta)

Parameter estimation with bootstrap resampling
bootstrap_theta = pest.theta_est_bootstrap(50)
print(bootstrap_theta.head())
parmest.pairwise_plot(bootstrap_theta)
parmest.pairwise_plot(bootstrap_theta, theta, 0.8, ['MVN', 'KDE', 'Rect'])

Likelihood ratio test
k1 = np.arange(0.78, 0.92, 0.02)
```
k2 = np.arange(1.48, 1.79, 0.05)
k3 = np.arange(0.000155, 0.000185, 0.000005)
theta_vals = pd.DataFrame(list(product(k1, k2, k3)), columns=theta_names)

obj_at_theta = pest.objective_at_theta(theta_vals)
print(obj_at_theta.head())

LR = pest.likelihood_ratio_test(obj_at_theta, obj, [0.8, 0.85, 0.9, 0.95])
print(LR.head())
parmest.pairwise_plot(LR, theta, 0.8)

The semibatch and Rooney Biegler examples are defined in a similar manner.

Additional use cases include:

- Parameter estimation using data with duplicate sensors and time-series data (reactor design example)
- Parameter estimation using mpi4py, the example saves results to a file for later analysis/graphics (semibatch example)

### 15.5.6 Parallel Implementation

Parallel implementation in parmest is preliminary. To run parmest in parallel, you need the mpi4py Python package and a compatible MPI installation. If you do NOT have mpi4py or a MPI installation, parmest still works (you should not get MPI import errors).

For example, the following command can be used to run the semibatch model in parallel:

```
mpiexec -n 4 python semibatch_parmest_parallel.py
```

The file `semibatch_parmest_parallel.py` is shown below. Results are saved to file for later analysis.

```
""
The following script can be used to run semibatch parameter estimation in parallel and save results to files for later analysis and graphics.
Example command: mpiexec -n 4 python semibatch_parmest_parallel.py
""
import numpy as np
import pandas as pd
from itertools import product
import pyomo.contrib.parmest.parmest as parmest
from semibatch import generate_model

Parameter estimation

Vars to estimate
theta_names = ['k1', 'k2', 'E1', 'E2']

Data, list of json file names
data = []
for exp_num in range(10):
 data.append('exp'+str(exp_num+1)+'.out')

Note, the model already includes a 'SecondStageCost' expression
for sum of squared error that will be used in parameter estimation
```

(continues on next page)
pest = parmest.Estimator(generate_model, data, theta_names)

### Parameter estimation with bootstrap resampling

bootstrap_theta = pest.theta_est_bootstrap(100)
bootstrap_theta.to_csv('bootstrap_theta.csv')

### Compute objective at theta for likelihood ratio test

k1 = np.arange(4, 24, 3)
k2 = np.arange(40, 160, 40)
E1 = np.arange(29000, 32000, 500)
E2 = np.arange(38000, 42000, 500)
theta_vals = pd.DataFrame(list(product(k1, k2, E1, E2)), columns=theta_names)

obj_at_theta = pest.objective_at_theta(theta_vals)
obj_at_theta.to_csv('obj_at_theta.csv')

**Installation**

The mpi4py Python package should be installed using conda. The following installation instructions were tested on a Mac with Python 3.5.

Create a conda environment and install mpi4py using the following commands:

```bash
conda create -n parmest-parallel python=3.5
source activate parmest-parallel
conda install -c conda-forge mpi4py
```

This should install libgfortran, mpi, mpi4py, and openmpi.

To verify proper installation, create a Python file with the following:

```python
from mpi4py import MPI
import time
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
print('Rank = ', rank)
time.sleep(10)
```

Save the file as test_mpi.py and run the following command:

```bash
time mpiexec -n 4 python test_mpi.py
time python test_mpi.py
```

The first one should be faster and should start 4 instances of Python.

**15.5.7 API**

```python
class pyomo.contrib.parmest.parmest.Estimator(model_function, data, theta_names, obj_function=None, tee=False, diagnostic_mode=False)
```

Bases: `object`
Parameter estimation class. Provides methods for parameter estimation, bootstrap resampling, and likelihood ratio test.

**Parameters**

- **model_function** *(function)* – Function that generates an instance of the Pyomo model using ‘data’ as the input argument.
- **data** *(pandas DataFrame, list of dictionaries, or list of json file names)* – Data that is used to build an instance of the Pyomo model and build the objective function.
- **theta_names** *(list of strings)* – List of Vars to estimate.
- **obj_function** *(function, optional)* – Function used to formulate parameter estimation objective, generally sum of squared error between measurements and model variables. If no function is specified, the model is used “as is” and should be defined with a “FirstStateCost” and “SecondStageCost” expression that are used to build an objective for pysp.
- **tee** *(bool, optional)* – Indicates that ef solver output should be teed.
- **diagnostic_mode** *(bool, optional)* – if True, print diagnostics from the solver.

**likelihood_ratio_test** *(obj_at_theta, obj_value, alpha, return_thresholds=False)*

Compute the likelihood ratio for each value of alpha.

**Parameters**

- **obj_at_theta** *(DataFrame, columns = theta_names + 'obj')* – Objective values for each theta value (returned by objective_at_theta).
- **obj_value** *(float)* – Objective value from parameter estimation using all data.
- **alpha** *(list)* – List of alpha values to use in the chi2 test.
- **return_thresholds** *(bool, optional)* – Return the threshold value for each alpha.

**Returns**

- **LR** *(DataFrame)* – Objective values for each theta value along with True or False for.
- **thresholds** *(dictionary)* – If return_threshold = True, the thresholds are also returned.

**objective_at_theta** *(theta_values)*

Compute the objective over a range of theta values.

**Parameters**

- **theta_values** *(DataFrame, columns=theta_names)* – Values of theta used to compute the objective.

**Returns**

- **obj_at_theta** – Objective values for each theta value (infeasible solutions are omitted).

**theta_est** *(solver='ef_ipopt', bootlist=None)*

Run parameter estimation using all data.

**Parameters**

- **solver** *(string, optional)* – “ef_ipopt” or “k_aug”. Default is “ef_ipopt”.

**Returns**
• **objectiveval** (*float*) – The objective function value

• **thetavals** (*dict*) – A dictionary of all values for theta

• **Hessian** (*dict*) – A dictionary of dictionaries for the Hessian. The Hessian is not returned if the solver is ef.

**theta_est_bootstrap** *(N, samplesize=None, replacement=True, seed=None, return_samples=False)*

Run parameter estimation using N bootstrap samples

**Parameters**

• **N** (*int*) – Number of bootstrap samples to draw from the data

• **samplesize** (*int or None, optional*) – Sample size, if None sample-size will be set to the number of experiments

• **replacement** (*bool, optional*) – Sample with or without replacement

• **seed** (*int or None, optional*) – Set the random seed

• **return_samples** (*bool, optional*) – Return a list of experiment numbers used in each bootstrap estimation

**Returns** **bootstrap_theta** – Theta values for each bootstrap sample and (if return_samples = True) the sample numbers used in each estimation

**Return type** **DataFrame**

**pyomo.contrib.parmest.parmest.group_data** *(data, groupby_column_name, use_mean=None)*

Group data by experiment/scenario

**Parameters**

• **data** (*DataFrame*) – Data

• **groupby_column_name** (*strings*) – Name of data column which contains experiment/scenario numbers

• **use_mean** (*list of column names or None, optional*) – Name of data columns which should be reduced to a single value per experiment/scenario by taking the mean

**Returns** **grouped_data** – Grouped data

**Return type** list of dictionaries

**pyomo.contrib.parmest.graphics.pairwise_plot** *(theta_values, theta_star=None, alpha=None, distributions=[], axis_limits=None, add_obj_contour=True, add_legend=True, filename=None, return_scipy_distributions=False)*

Plot pairwise relationship for theta values, and optionally confidence intervals and results from likelihood ratio tests

**Parameters**

• **theta_values** (*DataFrame, columns = variable names and (optionally) 'obj' and alpha values*) – Theta values and (optionally) an objective value and results from the likelihood ratio test

• **theta_star** (*dict, keys = variable names, optional*) – Theta* (or other individual values of theta, also used to slice higher dimensional contour intervals in 2D)

• **alpha** (*float, optional*) – Confidence interval value
• **distributions** *(list of strings, optional)* – Statistical distribution used for confidence intervals, options = ‘MVN’ for multivariate_normal, ‘KDE’ for gaussian_kde, and ‘Rect’ for rectangular.

  Confidence interval is a 2D slice, using linear interpolation at theta*.

• **axis_limits** *(dict, optional)* – Axis limits in the format {variable: [min, max]}

• **add_obj_contour** *(bool, optional)* – Add a contour plot using the column ‘obj’ in theta_values. Contour plot is a 2D slice, using linear interpolation at theta*.

• **add_legend** *(bool, optional)* – Add a legend to the plot

• **filename** *(string, optional)* – Filename used to save the figure

• **return_scipy_distributions** *(bool, optional)* – Return the scipy distributions for MVN and KDE

**Returns** *(mvn_dist, kde_dist)* – If return_scipy_distributions = True, return the MVN and KDE scipy distributions

**Return type** tuple

### 15.5.8 Indices and Tables

- genindex
- modindex
- search

### 15.6 Pyomo Interface to MC++

The Pyomo-MC++ interface allows for bounding of factorable functions using the MC++ library developed by the OMEGA research group at Imperial College London. Documentation for MC++ may be found on the MC++ website.

#### 15.6.1 Installation

Support for MC++ has only been validated by Pyomo developers using Linux and OSX. Installation instructions for the MC++ library may be found on the MC++ website. Until a more simple installation scheme is developed, you may install MC++ and this interface using this guide.

We assume that you have installed MC++ into a directory of your choice. We will denote this directory by \$MCPP\_PATH. For example, you should see that the file \$MCPP\_PATH/INSTALL exists.

Navigate to the pyomo/contrib/mcpp directory in your pyomo installation. This directory should contain a file named mcppInterface.cpp. You will need to compile this file using the following command:

```
g++ -I \$MCPP_PATH/src/3rdparty/fadbad++ -I \$MCPP_PATH/src/mc -I/usr/include/python3.6 -fPIC -O2 -c mcppInterface.cpp
```

This links the MC++ required library FADBAD++, MC++ itself, and Python to compile the Pyomo-MC++ interface. If successful, you will now have a file named mcppInterface.o in your working directory. If you are not using Python 3.6, you will need to link to the appropriate Python version. You now need to create a shared object file with the following command:
You may then test your installation by running the test file:

```python
g++ -shared mcppInterface.o -o mcppInterface.so
```

```
python test_mcpp.py
```

# 15.7 MindtPy solver

The Mixed-Integer Nonlinear Decomposition Toolbox in Pyomo (MindtPy) solver allows users to solve Mixed-Integer Nonlinear Programs (MINLP) using decomposition algorithms. These decomposition algorithms usually rely on the solution of Mixed-Integer Linear Programs (MILP) and Nonlinear Programs (NLP).

MindtPy currently implements the Outer Approximation (OA) algorithm originally described in Duran & Grossmann. Usage and implementation details for MindtPy can be found in the PSE 2018 paper Bernal et al., (ref, preprint).

Usage of MindtPy to solve a Pyomo concrete model involves:

```python
>>> SolverFactory('mindtpy').solve(model)
```

An example which includes the modeling approach may be found below.

Required imports

```python
>>> from pyomo.environ import *
```

Create a simple model

```python
>>> model = ConcreteModel()
```

```python
>>> model.x = Var(bounds=(1.0,10.0),initialize=5.0)
```

```python
>>> model.y = Var(within=Binary)
```

```python
>>> model.c1 = Constraint(expr=(model.x-3.0)**2 <= 50.0*(1-model.y))
```

```python
>>> model.c2 = Constraint(expr=model.x*log(model.x)+5.0 <= 50.0*(model.y))
```

```python
>>> model.objective = Objective(expr=model.x, sense=minimize)
```

Solve the model using MindtPy

```python
>>> SolverFactory('mindtpy').solve(model, mip_solver='glpk', nlp_solver='ipopt')
```

The solution may then be displayed by using the commands

```python
>>> model.objective.display()
>>> model.display()
>>> model.pprint()
```

**Note:** When troubleshooting, it can often be helpful to turn on verbose output using the `tee` flag.

```python
>>> SolverFactory('mindtpy').solve(model, mip_solver='glpk', nlp_solver='ipopt', tee=True)
```
15.7.1 MindtPy implementation and optional arguments

**Warning:** MindtPy optional arguments should be considered beta code and are subject to change.

```python
class pyomo.contrib.mindtpy.MindtPy.MindtPySolver
 A decomposition-based MINLP solver.

 available (exception_flag=True)
 Check if solver is available. TODO: For now, it is always available. However, sub-solvers may not always be available, and so this should reflect that possibility.

 solve(model, **kwds)
 Solve the model. Warning: this solver is still in beta. Keyword arguments subject to change. Undocumented keyword arguments definitely subject to change. Warning: at this point in time, if you try to use PSC or GBD with anything other than IPOPT as the NLP solver, bad things will happen. This is because the suffixes are not in place to extract dual values from the variable bounds for any other solver. TODO: fix needed with the GBD implementation. :param model: a Pyomo model or block to be solved :type model: Block

 version()
 Return a 3-tuple describing the solver version.
```

Contributed packages distributed independently of Pyomo, but accessible through `pyomo.contrib`:

- `pyomo.contrib.simplemodel`

---

Chapter 15. Third-Party Contributions
CHAPTER 16

Bibliography
CHAPTER 17

Indices and Tables

- genindex
- modindex
- search
Pyomo Resources

The Pyomo home page provides resources for Pyomo users:

- http://pyomo.org

Pyomo development is hosted at GitHub:

- https://github.com/Pyomo/pyomo

See the Pyomo Forum for online discussions of Pyomo:

- http://groups.google.com/group/pyomo-forum/
Bibliography


p
pyomo.contrib.parmest.graphics, 327
pyomo.contrib.parmest.parmest, 325
pyomo.core.kernel.base, 290
pyomo.core.kernel.heterogeneous_container, 292
pyomo.core.kernel.homogeneous_container, 292
pyomo.core.kernel.piecewise_library.util, 289
pyomo.core.kernel.suffix, 278
pyomo.pysp.util.rapper, 162
Symbols

_ArcData (class in pyomo.network.arc), 144
_PortData (class in pyomo.network.port), 142
__abs__ () (pyomo.core.expr.numvalue.NumericValue method), 222
__add__ () (pyomo.core.expr.numvalue.NumericValue method), 222
__bool__ () (pyomo.core.current.ExpressionBase method), 226
__call__ () (pyomo.core.current.ExpressionBase method), 227
__call__ () (pyomo.core.kernel.piecewise_library.transforms.PiecewiseLinearFunction method), 283
__call__ () (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction method), 284
__call__ () (pyomo.core.kernel.piecewise_library.transforms_nd.PiecewiseLinearFunctionND method), 288
__call__ () (pyomo.core.kernel.piecewise_library.transforms_nd.TransformedPiecewiseLinearFunctionND method), 288
__call__ () (pyomo.repn.plugins.gams_writer.ProblemWriter_gams method), 252
__class__ (pyomo.core.kernel.dict_container.DictContainer attribute), 298
__class__ (pyomo.core.kernel.list_container.ListContainer attribute), 296
__class__ (pyomo.core.kernel.tuple_container.TupleContainer attribute), 293
__delattr__ (pyomo.core.kernel.dict_container.DictContainer attribute), 298
__delattr__ (pyomo.core.kernel.list_container.ListContainer attribute), 296
__delattr__ (pyomo.core.kernel.tuple_container.TupleContainer attribute), 293
__eq__ () (pyomo.core.kernel.list_container.ListContainer method), 296
__eq__ () (pyomo.core.kernel.tuple_container.TupleContainer method), 293
__float__ () (pyomo.core.expr.numvalue.NumericValue method), 222
__format__ () (pyomo.core.dict_container.DictContainer method), 298
__format__ () (pyomo.core.kernel.list_container.ListContainer method), 296
__format__ () (pyomo.core.kernel.tuple_container.TupleContainer method), 294
__ge__ () (pyomo.core.expr.numvalue.NumericValue method), 222
__getattr__ () (pyomo.network.arc._ArcData method), 144
__getattr__ () (pyomo.network.port._PortData method), 142
__getattribute__ (pyomo.core.core.kernel.dict_container.DictContainer attribute), 298
__getattribute__ (pyomo.core.kernel.list_container.ListContainer attribute), 296
__getattribute__ (pyomo.core.kernel.tuple_container.TupleContainer attribute), 294
__getstate__ () (pyomo.core.expr.current.ExpressionBase method), 227
__getstate__ () (pyomo.core.expr.numvalue.NumericValue method), 222
__gt__ () (pyomo.core.expr.numvalue.NumericValue method), 223
__hash__ (pyomo.core.kernel.list_container.ListContainer attribute), 296

341
_discretization_info (pyomo.dae.ContinuousSet attribute), 98
_else (pyomo.core.expr.current.Expr_ifExpression attribute), 244
_fcn (pyomo.core.expr.current.ExternalFunctionExpression to_string() (pyomo.core.expr.current.ExpressionBase method, 233
_fcn (pyomo.core.expr.current.UnaryFunctionExpression to_string() (pyomo.core.expr.current.EqualityExpression method, 239
_fe (pyomo.dae.ContinuousSet attribute), 98
_if (pyomo.core.expr.current.Expr_ifExpression attribute), 244
_is_fixed() (pyomo.core.expr.current.Expr_ifExpression method, 244
_is_fixed() (pyomo.core.expr.current.ExpressionBase method, 228
_is_fixed() (pyomo.core.expr.current.GetItemExpression method, 242
_is_fixed() (pyomo.core.expr.current.ProductExpression method, 234
_name (pyomo.core.expr.current.UnaryFunctionExpression attribute), 246
_nargs (pyomo.core.expr.current.SumExpression attribute), 240
_parent (pyomo.kernel.base.ICategorizedObject attribute), 290
_precedence() (pyomo.core.expr.current.EqualityExpression method, 239
_precedence() (pyomo.core.expr.current.GetItemExpression method, 242
_precedence() (pyomo.core.expr.current.InequalityExpression method, 237
_precedence() (pyomo.core.expr.current.NegationExpression method, 231
_precedence() (pyomo.core.expr.current.ProductExpression method, 235
_precedence() (pyomo.core.expr.current.ReciprocalExpression method, 236
_precedence() (pyomo.core.expr.current.SumExpression method, 240
_precedence() (pyomo.core.expr.current.SumExpression method, 240
_shared_args (pyomo.core.expr.current.SumExpression attribute), 240
_storage_key (pyomo.kernel.base.ICategorizedObject attribute), 290
_strict (pyomo.core.expr.current.InequalityExpression attribute), 237
_then (pyomo.core.expr.current.Expr_ifExpression attribute), 244

A

AbsExpression (class in pyomo.core.expr.current), 247
AbstractModel (class in pyomo.environ), 195
activate() (pyomo.core.kernel.base.ICategorizedObject method), 290
activate() (pyomo.core.kernel.base.ICategorizedObjectContainer method), 291
activate() (pyomo.core.kernel.dict_container.DictContainer method), 299
activate() (pyomo.core.kernel.list_container.ListContainer method), 296
activate() (pyomo.core.kernel.tuple_container.TupleContainer method), 294
activate() (pyomo.environ.AbstractModel method), 195
activate() (pyomo.environ.Block method), 199
activate() (pyomo.environ.ConcreteModel method), 192
activate() (pyomo.environ.Constraint method), 201
activate() (pyomo.environ.Objective method), 204
active (pyomo.core.kernel.base.ICategorizedObject attribute), 290
active (pyomo.core.kernel.dict_container.DictContainer attribute), 299
active (pyomo.core.kernel.list_container.ListContainer attribute), 296
active (pyomo.core.kernel.tuple_container.TupleContainer attribute), 294
active (pyomo.environ.AbstractModel attribute), 195
active (pyomo.environ.Block attribute), 199
Index
bound (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction, 284)
clear () (pyomo.environ.Constraint, 201)
bound (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction듈, 204)
clear () (pyomo.environ.Constraint, 201)
bounds () (pyomo.environ.RangeSet, 209)
clear () (pyomo.environ.RangeSet, 209)
breakpoints (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction, 284)
clear () (pyomo.environ.RangeSet, 209)
breakpoints (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction, 284)
clear () (pyomo.environ.RangeSet, 209)
byObject (pyomo.core.expr.symbol_map.SymbolMap, 221)
clear_suffix_value () (pyomo.environ.Block, 199)
bySymbol (pyomo.core.expr.symbol_map.SymbolMap, 221)
clear_suffix_value () (pyomo.environ.ConcreteModel, 192)
clear_suffix_value () (pyomo.environ.Block, 199)
clear_suffix_value () (pyomo.environ.ConcreteModel, 192)
clear_suffix_value () (pyomo.environ.Constraint, 201)
calculation_order () (pyomo.network.SequentialDecomposition, 149)
canonical_form () (pyomo.core.kernel.constraint.linear_constraint, 274)
characterize_function () (in module pyomo.core.kernel.piecewise_library.util, 289)
check_values () (pyomo.environ.RangeSet, 209)
child () (pyomo.core.kernel.base.ICategorizedObjectContainer, 291)
clone () (pyomo.core.kernel.base.ICategorizedObjectContainer, 228)
child () (pyomo.core.kernel.dict_container.DictContainer, 299)
clone () (pyomo.core.kernel.dict_container.DictContainer, 299)
child () (pyomo.core.kernel.list_container.ListContainer, 297)
clone () (pyomo.core.kernel.list_container.ListContainer, 297)
child_ctypes () (pyomo.core.kernel.block.block, 269)
clone () (pyomo.core.kernel.block.block, 219)
child_ctypes () (pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer, 292)
clone_counter (class in pyomo.core.expr.current, 196)
children () (pyomo.core.kernel.base.ICategorizedObjectContainer, 221)
clone_expression () (in module pyomo.core.expr.current, 219)
children () (pyomo.core.kernel.block.block, 269)
close () (pyomo.dataportal.TableData, 262)
children () (pyomo.core.kernel.dict_container.DictContainer, 299)
collect_ctypes () (pyomo.core.kernel.heterogeneous_container.IHeterogeneousContainer, 292)
children () (pyomo.core.kernel.list_container.ListContainer, 297)
collect_ctypes () (pyomo.environ.AbstractModel, 196)
children () (pyomo.core.kernel.tuple_container.TupleContainer, 294)
collect_ctypes () (pyomo.environ.AbstractModel, 196)
clear () (pyomo.core.kernel.dict_container.DictContainer, 299)
clear () (pyomo.environ.AbstractModel, 195)
clear () (pyomo.environ.Block, 199)
clear () (pyomo.environ.Block, 199)
clear () (pyomo.environ.ConcreteModel, 192)
clear () (pyomo.environ.ConcreteModel, 192)
method), 246
create_potentially_variable_object()
(pymo.core.expr.current.ExpressionBase
method), 229
create_using()
(pymo.contrib.preprocessing.plugins.bounds_to_vars.ConstrainedBoundTransform
data_type
(pymo.core.kernel.suffix.ISuffix attribute), 278
data_type
(pymo.core.kernel.suffix.suffix attribute), 279
deactivate()
(pymo.core.kernel.base.ICategorizedObject
method), 291
deactivate()
(pymo.core.kernel.base.ICategorizedObjectContainer
method), 291
deactivate()
(pymo.core.kernel.dict_container.DictContainer
method), 299
deactivate()
(pymo.core.kernel.list_container.ListContainer
method), 301
deactivate() (pymo.core.kernel.tuple_container.TupleContainer
method), 305
deactivate() (pymo.environ.AbstractModel
method), 197
deactivate() (pymo.environ.Block method), 199
deactivate() (pymo.environ.ConcreteModel
method), 193
deactivate() (pymo.environ.Constraint method), 201
deactivate() (pymo.environ.ConstraintDeactivator
method), 294
deactivate() (pymo.environ.InitMidpoint
method), 310
deactivate() (pymo.environ.InitZero
method), 310
default() (pymo.environ.Param method), 206
default_labeler
(pymo.core.expr.symbol_map.SymbolMap
attribute), 221
del_component() (pymo.environ.ConcreteModel
method), 193
destination
(pymo.environ.ArcData attribute), 142
dests() (pymo.network.arc._ArcData
attribute), 142
dfs_postorder_stack()
(pymo.core.expr.current.ExpressionReplacementVisitor
method), 250
dfs_postorder_stack()
(pymo.core.expr.current.ExpressionValueVisitor
method), 249
DictContainer
(class in pymo.core.kernel.dict_container), 295
difference() (pymo.environ.RangeSet
method), 209
dim() (pymo.environ.AbstractModel
method), 197
functional_value (class in pyomo.core.kernel.parameter), 276

G
GAMSDirect (class in pyomo.solvers.plugins.solvers.GAMS), 252
GAMSShell (class in pyomo.solvers.plugins.solvers.GAMS), 251
GDPbbSolver (class in pyomo.contrib.gdpbb.GDPbb), 315
GDPoptSolver (class in pyomo.contrib.gdpopt.GDPopt), 312
generate_delaunay() (in module pyomo.core.kernel.piecewise_library.util), 289
generate_gray_code() (in module pyomo.core.kernel.piecewise_library.util), 290
get() (pyomo.core.kernel.dict_container.DictContainer method), 299
get_changed() (pyomo.dae.ContinuousSet method), 98
get_continuousset() (pyomo.dae.Integral method), 103
get_continuousset_list() (pyomo.dae.DerivativeVar method), 100
get_derivative_expression() (pyomo.dae.DerivativeVar method), 101
get_discretization_info() (pyomo.dae.ContinuousSet method), 98
get_finite_elements() (pyomo.dae.ContinuousSet method), 99
get_lower_element_boundary() (pyomo.dae.ContinuousSet method), 99
get_split_fraction() (pyomo.network.port._PortData method), 142
get_state_var() (pyomo.dae.DerivativeVar method), 101
get_suffix_value() (pyomo.environ.AbstractModel method), 197
group_data() (in module pyomo.contrib.parmest.parmest), 327
get_upper_element_boundary() (pyomo.dae.ContinuousSet method), 99
get_values() (pyomo.environ.Var method), 216
get_variable_order() (pyomo.dae.Simulator method), 110
GurobiPersistent (class in pyomo.solvers.plugins.solvers.gurobi_persistent), 257
has_capability() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent method), 254

H
Index
Index
nargs() (pyomo.core.expr.current.ExpressionBase method), 230
nargs() (pyomo.core.expr.current.ExternalFunctionExpression method), 233
nargs() (pyomo.core.expr.current.GetItemExpression method), 243
nargs() (pyomo.core.expr.current.InequalityExpression method), 238
nargs() (pyomo.core.expr.current.NegationExpression method), 243
nargs() (pyomo.core.expr.current.ReciprocalExpression method), 236
nargs() (pyomo.core.expr.current.SumExpression method), 241
nargs() (pyomo.core.expr.current.UnaryFunctionExpression method), 247
native_numeric_types (in module pyomo.core.expr.numvalue), 221
native_types (in module pyomo.core.expr.numvalue), 221
NegationExpression (class in pyomo.core.expr.current), 231
next() (pyomo.environ.RangeSet method), 210
nextw() (pyomo.environ.RangeSet method), 211
nonlinear_expression (class in pyomo.core.expr.current), 221
nonpyomo_leaf_types (in module pyomo.core.expr.numvalue), 222
NumericValue (class in pyomo.core.expr.numvalue), 222

O
objective (class in pyomo.core.kernel.objective), 276
Objective (class in pyomo.environ), 203
objective_at_theta() (pyomo.contrib.parmest.parmest.parmest.Estimator method), 326
objective_dict (class in pyomo.core.kernel.objective), 276
objective_list (class in pyomo.core.kernel.objective), 276
objective_tuple (class in pyomo.core.kernel.objective), 276
open() (pyomo.dataportal.TableData.TableData method), 263
ord() (pyomo.environ.RangeSet method), 211
output (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunction attribute), 284
output (pyomo.core.kernel.piecewise_library.transforms.TransformedPiecewiseLinearFunctionND attribute), 289

P
pairwise_plot() (in module pyomo.contrib.parmest.graphics), 327
Param (class in pyomo.environ), 205
parameter (class in pyomo.core.kernel.parameter), 275
parameter_dict (class in pyomo.core.kernel.parameter), 275
parameter_list (class in pyomo.core.kernel.parameter), 275
parameter_tuple (class in pyomo.core.kernel.parameter), 275
parent (pyomo.core.kernel.base.ICategorizedObject attribute), 291
parent (pyomo.core.kernel.dict_container.DictContainer attribute), 300
parent (pyomo.core.kernel.list_container.ListContainer attribute), 297
parent (pyomo.core.kernel.tuple_container.TupleContainer attribute), 295
parent_block() (pyomo.environ.AbstractModel method), 198
parent_block() (pyomo.environ.Block method), 200
parent_block() (pyomo.environ.Constraint method), 202
parent_block() (pyomo.environ.ConcreteModel method), 194
parent_block() (pyomo.environ.Constraint method), 205
parent_block() (pyomo.environ.Parameter method), 207
parent_block() (pyomo.environ.RangeSet method), 211
parent_block() (pyomo.environ.Set method), 215
parent_block() (pyomo.environ.Set method), 217
parent_component() (pyomo.environ.AbstractModel method), 198
parent_component() (pyomo.environ.Block method), 200
parent_component() (pyomo.environ.ConcreteModel method), 194
parent_component() (pyomo.environ.Constraint method), 202
parent_component() (pyomo.environ.Objective method), 205
parent_component() (pyomo.environ.Parameter method), 207
parent_component() (pyomo.environ.RangeSet method), 211
parent_component() (pyomo.environ.RangeSet method), 215
TransformedPiecewiseLinearFunction (pyomo.environ.Set method), 215
TransformedPiecewiseLinearFunctionND (pyomo.environ.Set method), 215
piecewise() (in module pyomo.core.kernel.piecewise_library.transforms), 281
piecewise_cc (class in py-
Index
slack (pyomo.core.kernel.matrix_constraint.matrix_constraint attribute), 275
solve() (pyomo.contrib.gdopt.GDOpt.GDOptSolver method), 314
solve() (pyomo.contrib.mindtpy.MindPy.MindPySolver method), 330
solve() (pyomo.solvers.plugins.solvers.cplex_persistent.CPLEXPersistent (class in pyomo.core.expr.current), method), 256
solve() (pyomo.solvers.plugins.solvers.GAMS.GAMSDirect summation (module pyomo.core.util), 219
solve() (pyomo.solvers.plugins.solvers.GAMS.GAMSShell method), 251
solve() (pyomo.solvers.plugins.solvers.gurobi_persistent.GurobiPersistent method), 260
solve_ef() (pyomo.pysp.util.rapper.StochSolver method), 163
solve_ph() (pyomo.pysp.util.rapper.StochSolver method), 163
sos (class in pyomo.core.kernel.sos), 278
sos1() (module pyomo.core.kernel.sos), 278
sos2() (module pyomo.core.kernel.sos), 278
sos_dict (class in pyomo.core.kernel.sos), 279
sos_generator() (module pyomo.core.kernel.sos), 280
sum_product() (module pyomo.core.util), 218
symbolMap (class in pyomo.core.expr.symbol_map), 220
symmetric_difference() (pyomo.environ.RangeSet method), 211
T
TableData (class in pyomo.dataportal.TableData), 262
tear_set_arcs() (pyomo.network.SequentialDecomposition method), 151
terms (pyomo.core.kernel.constraint.linear_constraint attribute), 200
theta_est() (pyomo.contrib.parmest.parmest.Estimator method), 326
theta_est_bootstrap() (pyomo.contrib.parmest.parmest.Estimator method), 327
TightenConstraintFromVars (class in pyomo.contrib.preprocessing.plugins.constraint_tightener), 308
to_dense_data() (pyomo.environ.ConcreteModel method), 198
to_dense_data() (pyomo.environ.Block method), 200
to_dense_data() (pyomo.environ.Block method), 203
to_dense_data() (pyomo.environ.Parameter method), 205
to_dense_data() (pyomo.environ.RangeSet method), 211
to_dense_data() (pyomo.environ.Set method), 215
to_dense_data() (pyomo.environ.Variable method), 218
to_string() (pyomo.core.expr.current.ExpressionBase method), 230
to_string() (pyomo.core.expr.numvalue.NumericValue method), 226
to_string() (pyomo.environ.AbstractModel method), 198
to_string() (pyomo.environ.Block method), 200
to_string() (pyomo.environ.ConcreteModel method), 195