1 Documentation

1.1 Installation ... 3
1.2 Example 1: NetLogo interaction through the pyNetLogo connector 4
1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel 11
1.4 Example 3: Sensitivity analysis for a NetLogo model with SALib and Multiprocessing .. 21
1.5 core ... 23
1.6 Changelog .. 26

2 Indices and tables

Python Module Index 29
Interface to use and access NetLogo (Wilensky 1999) from Python. One can interact with NetLogo in either headless (no GUI) or interactive GUI mode. The library provides functions to load models, execute commands, and get values from reporters. It is compatible with NetLogo 5.2, 5.3, and 6.0. It is largely similar to the ‘NetLogo’ Mathematica Link and RNetLogo.
1.1 Installation

pyNetLogo requires the NumPy, SciPy and pandas packages, which are included in most scientific Python distributions. The module has been tested using the Continuum Anaconda 2.7 and 3.6 64-bit distributions.

In addition, pyNetLogo depends on Jpype. Please follow the instructions provided there to install Jpype; the conda package manager usually provides the easiest option.

pyNetLogo can be installed using the pip package manager, with the following command from a terminal:

```
    pip install pynetlogo
```

By default, pyNetLogo and Jpype will attempt to automatically identify the NetLogo version and installation directory on Mac or Windows, as well as the Java home directory. On Linux, or in case of issues (e.g. if NetLogo was installed in a different directory, or if the Java path is not found on a Mac), these parameters can be passed directly to the NetLogoLink class as described in the module documentation.

1.1.1 Known bugs and limitations

- On a Mac, only headless mode (without GUI) is supported.
- pyNetLogo can be used to control NetLogo from within Python. Calling Python from within NetLogo is not supported by this library. However, this can be achieved using the Python extension for NetLogo.
- See Jpype limitations for additional limitations.
- Mixing 32-bit and 64-bit versions of Java, Python, and NetLogo will crash Python.
1.2 Example 1: NetLogo interaction through the pyNetLogo connector

This notebook provides a simple example of interaction between a NetLogo model and the Python environment, using the Wolf Sheep Predation model included in the NetLogo example library (Wilensky, 1999). This model is slightly modified to add additional agent properties and illustrate the exchange of different data types. All files used in the example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo.

We start by instantiating a link to NetLogo, loading the model, and executing the setup command in NetLogo.

```python
[1]: %matplotlib inline
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
sns.set_style('white')
sns.set_context('talk')
import pyNetLogo
netlogo = pyNetLogo.NetLogoLink(gui=True)
netlogo.load_model('./models/Wolf Sheep Predation_v6.nlogo')
netlogo.command('setup')
```

We can use the write_NetLogo_attriblist method to pass properties to agents from a Pandas dataframe – for instance, initial values for given attributes. This improves performance by simultaneously setting multiple properties for multiple agents in a single function call.

As an example, we first load data from an Excel file into a dataframe. Each row corresponds to an agent, with columns for each attribute (including the who NetLogo identifier, which is required). In this case, we set coordinates for the agents using the xcor and ycor attributes.

```python
[2]: agent_xy = pd.read_excel('./data/xy_DataFrame.xlsx')
agent_xy[['who','xcor','ycor']].head(5)
```

<table>
<thead>
<tr>
<th>who</th>
<th>xcor</th>
<th>ycor</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-24.000000</td>
<td>-24.000000</td>
</tr>
<tr>
<td>1</td>
<td>-23.666667</td>
<td>-23.666667</td>
</tr>
<tr>
<td>2</td>
<td>-23.333333</td>
<td>-23.333333</td>
</tr>
<tr>
<td>3</td>
<td>-23.000000</td>
<td>-23.000000</td>
</tr>
<tr>
<td>4</td>
<td>-22.666667</td>
<td>-22.666667</td>
</tr>
</tbody>
</table>

We can then pass the dataframe to NetLogo, specifying which attributes and which agent type we want to update:

```python
[3]: netlogo.write_NetLogo_attriblist(agent_xy[['who','xcor','ycor']], 'a-sheep')
```

We can check the data exchange by returning data from NetLogo to the Python workspace, using the report method. In the example below, this returns arrays for the xcor and ycor coordinates of the sheep agents, sorted by their who number. These are then plotted on a conventional scatter plot.

The report method directly passes a string to the NetLogo instance, so that the command syntax may need to be adjusted depending on the NetLogo version. The netlogo_version property of the link object can be used to check the current version. By default, the link object will use the most recent NetLogo version which was found.

```python
[4]: if netlogo.netlogo_version == '6':
    x = netlogo.report('map [s -> [xcor] of s] sort sheep')
```

(continues on next page)
We can then run the model for 100 ticks and update the Python coordinate arrays for the sheep agents, and return an additional array for each agent’s energy value. The latter is plotted on a histogram for each agent type.

```
[6]: # We can use either of the following commands to run for 100 ticks:
    
    netlogo.command('repeat 100 [go]')
    #netlogo.repeat_command('go', 100)

    if netlogo.netlogo_version == '6':
        # Return sorted arrays so that the x, y and energy properties of each agent are in the same order
        x = netlogo.report('map [s -> [xcor] of s] sort sheep')
        y = netlogo.report('map [s -> [ycor] of s] sort sheep')
        energy_sheep = netlogo.report('map [s -> [energy] of s] sort sheep')
    elif netlogo.netlogo_version == '5':
        x = netlogo.report('map [[xcor] of ?1] sort sheep')
        y = netlogo.report('map [[ycor] of ?1] sort sheep')
```

(continues on next page)
energy_sheep = netlogo.report('map [[energy] of ?1] sort sheep')

energy_wolves = netlogo.report('[energy] of wolves') # NetLogo returns these in random order

from mpl_toolkits.axes_grid1 import make_axes_locatable

fig, ax = plt.subplots(1, 2)
sc = ax[0].scatter(x, y, s=50, c=energy_sheep, cmap=plt.cm.coolwarm)
ax[0].set_xlabel('xcor')
ax[0].set_ylabel('ycor')
ax[0].set_aspect('equal')
divider = make_axes_locatable(ax[0])
cax = divider.append_axes('right', size='5%', pad=0.1)
cbar = plt.colorbar(sc, cax=cax, orientation='vertical')
cbar.set_label('Energy of sheep')
sns.distplot(energy_sheep, kde=False, bins=10, ax=ax[1], label='Sheep')
sns.distplot(energy_wolves, kde=False, bins=10, ax=ax[1], label='Wolves')
ax[1].set_xlabel('Energy')
ax[1].set_ylabel('Counts')
ax[1].legend()
fig.set_size_inches(14, 5)

plt.show()
The dataframe is indexed by ticks, with labeled columns for each reporter. In this case, we track the number of wolf and sheep agents over 200 ticks; the outcomes are first plotted as a function of time. The number of wolf agents is then plotted as a function of the number of sheep agents, to approximate a phase-space plot.

[[8]]: counts = netlogo.repeat_report(['count wolves','count sheep'], 200, go='go')

[[9]]:

<table>
<thead>
<tr>
<th>count wolves</th>
<th>count sheep</th>
</tr>
</thead>
<tbody>
<tr>
<td>100.0</td>
<td>45</td>
</tr>
<tr>
<td>101.0</td>
<td>48</td>
</tr>
<tr>
<td>102.0</td>
<td>52</td>
</tr>
<tr>
<td>103.0</td>
<td>55</td>
</tr>
<tr>
<td>104.0</td>
<td>56</td>
</tr>
<tr>
<td>105.0</td>
<td>60</td>
</tr>
<tr>
<td>106.0</td>
<td>64</td>
</tr>
<tr>
<td>107.0</td>
<td>71</td>
</tr>
<tr>
<td>108.0</td>
<td>74</td>
</tr>
<tr>
<td>109.0</td>
<td>79</td>
</tr>
<tr>
<td>110.0</td>
<td>82</td>
</tr>
<tr>
<td>111.0</td>
<td>87</td>
</tr>
<tr>
<td>112.0</td>
<td>89</td>
</tr>
<tr>
<td>113.0</td>
<td>92</td>
</tr>
<tr>
<td>114.0</td>
<td>94</td>
</tr>
<tr>
<td>115.0</td>
<td>101</td>
</tr>
<tr>
<td>116.0</td>
<td>105</td>
</tr>
<tr>
<td>117.0</td>
<td>109</td>
</tr>
<tr>
<td>118.0</td>
<td>116</td>
</tr>
<tr>
<td>119.0</td>
<td>112</td>
</tr>
<tr>
<td>120.0</td>
<td>114</td>
</tr>
<tr>
<td>121.0</td>
<td>114</td>
</tr>
<tr>
<td>122.0</td>
<td>125</td>
</tr>
<tr>
<td>123.0</td>
<td>130</td>
</tr>
<tr>
<td>124.0</td>
<td>130</td>
</tr>
<tr>
<td>125.0</td>
<td>123</td>
</tr>
<tr>
<td>126.0</td>
<td>126</td>
</tr>
<tr>
<td>127.0</td>
<td>127</td>
</tr>
<tr>
<td>128.0</td>
<td>127</td>
</tr>
<tr>
<td>129.0</td>
<td>130</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td>270.0</td>
<td>110</td>
</tr>
<tr>
<td>271.0</td>
<td>116</td>
</tr>
<tr>
<td>272.0</td>
<td>123</td>
</tr>
<tr>
<td>273.0</td>
<td>126</td>
</tr>
<tr>
<td>274.0</td>
<td>131</td>
</tr>
<tr>
<td>275.0</td>
<td>134</td>
</tr>
<tr>
<td>276.0</td>
<td>131</td>
</tr>
<tr>
<td>277.0</td>
<td>129</td>
</tr>
<tr>
<td>278.0</td>
<td>128</td>
</tr>
<tr>
<td>279.0</td>
<td>132</td>
</tr>
<tr>
<td>280.0</td>
<td>131</td>
</tr>
<tr>
<td>281.0</td>
<td>130</td>
</tr>
<tr>
<td>282.0</td>
<td>129</td>
</tr>
<tr>
<td>283.0</td>
<td>130</td>
</tr>
<tr>
<td>284.0</td>
<td>129</td>
</tr>
<tr>
<td>285.0</td>
<td>128</td>
</tr>
<tr>
<td>286.0</td>
<td>132</td>
</tr>
<tr>
<td>287.0</td>
<td>134</td>
</tr>
</tbody>
</table>

(continues on next page)
The `repeat_report` method can also be used with reporters that return a NetLogo list. In this case, the list is converted to a numpy array. As an example, we track the energy of the wolf and sheep agents over 5 ticks, and plot the distribution of the wolves’ energy at the final tick recorded in the dataframe.

```python
[10]: fig, (ax1, ax2) = plt.subplots(1, 2)

counts.plot(ax=ax1, use_index=True, legend=True)
ax1.set_xlabel('Ticks')
ax1.set_ylabel('Counts')

ax2.plot(counts['count wolves'], counts['count sheep'])
ax2.set_xlabel('Wolves')
ax2.set_ylabel('Sheep')
fig.set_size_inches(12,5)
plt.tight_layout()
plt.show()
```
To illustrate different data types, we also track the `sheep_str` of sheep reporter (which returns a string property across the sheep agents, converted to a numpy object array), `count sheep` (returning a single numerical variable), and `glob_str` (returning a single string variable).

```python
            "[energy] of sheep",
            "sheep_str of sheep",
            "count sheep",
            "glob_str"], 5)

fig, ax = plt.subplots(1)

sns.distplot(energy_df['[energy] of wolves'].iloc[-1], kde=False, bins=20, ax=ax)
ax.set_xlabel('Energy')
ax.set_ylabel('Counts')
fig.set_size_inches(4,4)
plt.show()
```

```python
[12]: energy_df.head()
```

<table>
<thead>
<tr>
<th></th>
<th>[energy] of wolves</th>
<th>[energy] of sheep</th>
<th>sheep_str of sheep</th>
<th>count sheep</th>
<th>glob_str</th>
</tr>
</thead>
<tbody>
<tr>
<td>300.0</td>
<td>[8.294958114624023, 23.694859385490417, 22.863...]</td>
<td>[5.172172546386719, 3.6378173828125, 25.859207...]</td>
<td>sheep, sheep, sheep, sheep, sheep, sheep, she...</td>
<td>104 global</td>
<td></td>
</tr>
<tr>
<td>301.0</td>
<td>[40.23937809467316, 8.457512378692627, 3.58932...]</td>
<td>[24.6978759765625, 42.978271484375, 20.4865303...]</td>
<td>sheep, sheep, sheep, sheep, sheep, sheep, she...</td>
<td>102 global</td>
<td></td>
</tr>
<tr>
<td>302.0</td>
<td>[13.11083984375, 9.551701173186302, 61.8630952...]</td>
<td>[12.33160400390625, 11.172172546386719, 13.954...]</td>
<td>sheep, sheep, sheep, sheep, sheep, sheep, she...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>303.0</td>
<td>[5.399667739868164, 8.6378173828125, 33.122662...]</td>
<td>[10.68287181854248, 10.33160400390625, 14.1128...]</td>
<td>sheep, sheep, sheep, sheep, sheep, sheep, she...</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
```

(continues on next page)
The `patch_report` method can be used to return a dataframe which (for this example) contains the `countdown` attribute of each NetLogo patch. This dataframe essentially replicates the NetLogo environment, with column labels corresponding to the xcor patch coordinates, and indices following the pycor coordinates.

```python
[13]: countdown_df = netlogo.patch_report('countdown')

fig, ax = plt.subplots(1)
patches = sns.heatmap(countdown_df, xticklabels=5, yticklabels=5,
cbar_kws={'label':'countdown'}, ax=ax)
ax.set_xlabel('pxcor')
ax.set_ylabel('pycor')
ax.set_aspect('equal')
fig.set_size_inches(8,4)
plt.show()
```

The dataframes can be manipulated with any of the existing Pandas functions, for instance by exporting to an Excel file. The `patch_set` method provides the inverse functionality to `patch_report`, and updates the NetLogo environment from a dataframe.

```python
[14]: countdown_df.to_excel('countdown.xlsx')
netlogo.patch_set('countdown', countdown_df.max()-countdown_df)

[15]: countdown_update_df = netlogo.patch_report('countdown')

fig, ax = plt.subplots(1)
patches = sns.heatmap(countdown_update_df, xticklabels=5, yticklabels=5, cbar_kws={
˓→'label':'countdown'}, ax=ax)
ax.set_xlabel('pxcor')
```

(continues on next page)
```
ax.set_ylabel('pycor')
ax.set_aspect('equal')
fig.set_size_inches(8,4)
plt.show()
```

Finally, the `kill_workspace()` method shuts down the NetLogo instance.

```python
[16]: netlogo.kill_workspace()
```

### 1.3 Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel

This provides a more advanced example of interaction between NetLogo and a Python environment, using the SALib library (Herman & Usher, 2017; available through the pip package manager) to sample and analyze a suitable experimental design for a Sobol global sensitivity analysis. Furthermore, the ipyparallel package (also available on pip) is used to parallelize the simulations.

All files used in the example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo.

```python
[1]: #Ensuring compliance of code with both python2 and python3
 from __future__ import division, print_function
 try:
 from itertools import izip as zip
 except ImportError: # will be 3.x series
 pass

[2]: import numpy as np
 import pandas as pd
 import matplotlib.pyplot as plt
 import seaborn as sns
```

(continues on next page)
SALib relies on a problem definition dictionary which contains the number of input parameters to sample, their names (which should here correspond to a NetLogo global variable), and the sampling bounds. Documentation for SALib can be found at https://salib.readthedocs.io/en/latest/.

```python
problem = {
 'num_vars': 6,
 'names': ['random-seed',
 'grass-regrowth-time',
 'sheep-gain-from-food',
 'wolf-gain-from-food',
 'sheep-reproduce',
 'wolf-reproduce'],
 'bounds': [[1, 100000],
 [20., 40.],
 [2., 8.],
 [16., 32.],
 [2., 8.],
 [2., 8.]]
}
```

The SALib sampler will automatically generate an appropriate number of samples for Sobol analysis, using a revised Saltelli sampling sequence. To calculate first-order, second-order and total sensitivity indices, this gives a sample size of $n(2p+2)$, where $p$ is the number of input parameters, and $n$ is a baseline sample size which should be large enough to stabilize the estimation of the indices. For this example, we use $n = 1000$, for a total of 14000 experiments.

```python
n = 1000
param_values = saltelli.sample(problem, n, calc_second_order=True)
```

The sampler generates an input array of shape $(n(2p+2), p)$ with rows for each experiment and columns for each input parameter.

```python
param_values.shape
```

```
(14000, 6)
```

### 1.3.1 Running the experiments in parallel using ipyparallel

Ipyparallel is a standalone package (available through the pip package manager) which can be used to interactively run parallel tasks from IPython on a single PC, but also on multiple computers. On machines with multiple cores, this can significantly improve performance: for instance, the multiple simulations required for a sensitivity analysis are easy to run in parallel. Documentation for Ipyparallel is available at http://ipyparallel.readthedocs.io/en/latest/intro.html.

Ipyparallel first requires starting a controller and multiple engines, which can be done from a terminal or command prompt with the following:

```
ipcluster start -n 4
```
The optional -n argument specifies the number of processes to start (4 in this case).

Next, we can connect the interactive notebook to the started cluster by instantiating a client, and checking that client.ids returns a list of 4 available engines.

```
[6]: import ipyparallel
 client = ipyparallel.Client()
 client.ids
[6]: [0, 1, 2, 3]
```

We then set up the engines so that they can run the simulations, using a “direct view” that accesses all engines.

We first need to change the working directories to import pyNetLogo on the engines (assuming the pyNetLogo module is located in the same directory as this notebook, rather than being on the Python path). This also ensures we have the proper path to the file we need to load. We also send the SALib problem definition variable to the workspace of the engines, so that it can be used in the simulation.

Note: there are various solutions to both problems. For example, we could make the NetLogo file a keyword argument and pass the absolute path to it.

```
[7]: direct_view = client[:]

[8]: import os
 #Push the current working directory of the notebook to a "cwd" variable on the engines that can be accessed later
 direct_view.push(dict(cwd=os.getcwd()))
[8]: <AsyncResult: _push>

[9]: #Push the "problem" variable from the notebook to a corresponding variable on the engines
 direct_view.push(dict(problem=problem))
[9]: <AsyncResult: _push>
```

The %%px command can be added to a notebook cell to run it in parallel on each of the engines. Here the code first involves some imports and a change of the working directory. We then start a link to NetLogo, and load the example model on each of the engines.

```
[11]: %%px
 import os
 os.chdir(cwd)
 import pyNetLogo
 import pandas as pd
 netlogo = pyNetLogo.NetLogoLink(gui=False)
 netlogo.load_model('./models/Wolf Sheep Predation_v6.nlogo')
```

We can then use the IPyparallel map functionality to run the sampled experiments, now using a “load balanced” view to automatically handle the scheduling and distribution of the simulations across the engines. This is for instance useful when simulations may take different amounts of time.

We first set up a simulation function that takes a single experiment (i.e. a vector of input parameters) as an argument, and returns the outcomes of interest in a pandas Series.
```python
[12]: def simulation(experiment):
 # Set the input parameters
 for i, name in enumerate(problem['names']):
 if name == 'random-seed':
 # The NetLogo random seed requires a different syntax
 netlogo.command('random-seed {}'.format(experiment[i]))
 else:
 # Otherwise, assume the input parameters are global variables
 netlogo.command('set {} {}'.format(name, experiment[i]))

 netlogo.command('setup')
 # Run for 100 ticks and return the number of sheep and wolf agents at each time step
 counts = netlogo.repeat_report([r'count sheep', r'count wolves'], 100)
 results = pd.Series([counts[r'count sheep'].values.mean(),
 counts[r'count wolves'].values.mean()],
 index=[r'Avg. sheep', r'Avg. wolves'])
 return results

We then create a load balanced view and run the simulation with the `map_sync` method. This method takes a function and a Python sequence as arguments, applies the function to each element of the sequence, and returns results once all computations are finished.

In this case, we pass the simulation function and the array of experiments (param_values), so that the function will be executed for each row of the array.

The DataFrame constructor is then used to immediately build a DataFrame from the results (which are returned as a list of Series). The `to_csv` method provides a simple way of saving the results to disk; pandas supports several more advanced storage options, such as serialization with msgpack, or hierarchical HDF5 storage.

```
Bivariate scatter plots can be useful to visualize relationships between each input parameter and the outputs. Taking the outcome for the average sheep count as an example, we obtain the following, using the scipy library to calculate the Pearson correlation coefficient (r) for each parameter, and the seaborn library to plot a linear trend fit.

[17]: `import scipy`

```python
nrow=2
ncol=3

fig, ax = plt.subplots(nrow, ncol, sharey=True)
y = results['Avg. sheep']

for i, a in enumerate(ax.flatten()):
 x = param_values[:,i]
 sns.regplot(x, y, ax=a, ci=None, color='k', scatter_kws={'alpha':0.2, 's':4, 'color': 'gray'});
 pearson = scipy.stats.pearsonr(x, y)
 a.annotate("r: {0:.3f} " formatter(pearson[0]), xy=(0.15, 0.85), xycoords='axes fraction', fontsize=13)
 if divmod(i, ncol)[1]>0:
 a.get_yaxis().set_visible(False)
a.set_xlabel(problem['names'][i])
a.set_ylim([0,1.1*np.max(y)])

fig.set_size_inches(9,9,forward=True)
fig.subplots_adjust(wspace=0.2, hspace=0.3)
```

1.3. Example 2: Sensitivity analysis for a NetLogo model with SALib and ipyparallel
This indicates a positive relationship between the “sheep-gain-from-food” parameter and the mean sheep count, and negative relationships for the “wolf-gain-from-food” and “wolf-reproduce” parameters.

We can then use SALib to calculate first-order (S1), second-order (S2) and total (ST) Sobol indices, to estimate each input’s contribution to output variance as well as input interactions (again using the mean sheep count). By default, 95% confidence intervals are estimated for each index.

As a simple example, we first select and visualize the total and first-order indices for each input, converting the dictionary returned by SALib to a DataFrame. The default pandas plotting method is then used to plot these indices along with their estimated confidence intervals (shown as error bars).
The "sheep-gain-from-food" parameter has the highest ST index, indicating that it contributes over 50% of output variance when accounting for interactions with other parameters. However, it can be noted that confidence bounds are still quite broad with this sample size, particularly for the S1 index (which indicates each input’s individual contribution to variance).
We can use a more sophisticated visualization to include the second-order interactions between inputs estimated from the $S_2$ values.

```python
[25]: %matplotlib inline
import itertools
from math import pi

def normalize(x, xmin, xmax):
 return (x-xmin)/(xmax-xmin)

def plot_circles(ax, locs, names, max_s, stats, smax, smin, fc, ec, lw, zorder):
 s = np.asarray([stats[name] for name in names])
 s = 0.01 + max_s * np.sqrt(normalize(s, smin, smax))
 fill = True
 for loc, name, si in zip(locs, names, s):
 if fc=='w':
 fill=False
 ec='none'
 x = np.cos(loc)
 y = np.sin(loc)
 circle = plt.Circle((x,y), radius=si, ec=ec, fc=fc, transform=ax.transData._b, zorder=zorder, lw=lw, fill=True)
 ax.add_artist(circle)

def filter(sobol_indices, names, locs, criterion, threshold):
 if criterion in ['ST', 'S1', 'S2']:
 data = sobol_indices[criterion]
 data = np.abs(data)
 data = data.flatten() # flatten in case of S_2
 # TODO:: remove nans
 filtered = [(name, locs[i]) for i, name in enumerate(names) if data[i]>threshold]
 filtered_names, filtered_locs = zip(*filtered)
 elif criterion in ['ST_conf', 'S1_conf', 'S2_conf']:
 raise NotImplementedError
 else:
 raise ValueError('unknown value for criterion')
 return filtered_names, filtered_locs

def plot_sobol_indices(sobol_indices, criterion='ST', threshold=0.01):
 '''plot sobol indices on a radial plot

 Parameters

 sobol_indices : dict
 the return from SAlib
 criterion : {'ST', 'S1', 'S2', 'ST_conf', 'S1_conf', 'S2_conf'}, optional
 '''
```

(continues on next page)
threshold : float
    only visualize variables with criterion larger than cutoff
    
    max_linewidth_s2 = 15*25*1.8
    max_s_radius = 0.3

    # prepare data
    # use the absolute values of all the indices
    #sobol_indices = {key:np.abs(stats) for key, stats in sobol_indices.items()}

    # dataframe with ST and S1
    sobol_stats = {key:sobol_indices[key] for key in ['ST', 'S1']}
    sobol_stats = pd.DataFrame(sobol_stats, index=problem['names'])

    smax = sobol_stats.max().max()
    smin = sobol_stats.min().min()

    # dataframe with s2
    s2 = pd.DataFrame(sobol_indices['S2'], index=problem['names'],
                      columns=problem['names'])
    s2[s2<0.0]=0.0. #Set negative values to 0 (artifact from small sample sizes)
    s2max = s2.max().max()
    s2min = s2.min().min()

    names = problem['names']
    n = len(names)
    ticklocs = np.linspace(0, 2*pi, n+1)
    locs = ticklocs[0:-1]

    filtered_names, filtered_locs = filter(sobol_indices, names, locs,
                                            criterion, threshold)

    # setup figure
    fig = plt.figure()
    ax = fig.add_subplot(111, polar=True)
    ax.grid(False)
    ax.spines['polar'].set_visible(False)
    ax.set_xticks(ticklocs)
    ax.set_xticklabels(names)
    ax.set_yticklabels([])
    ax.set_ylim(top=1.4)
    legend(ax)

    # plot ST
    plot_circles(ax, filtered_locs, filtered_names, max_s_radius,
                 sobol_stats['ST'], smax, smin, 'w', 'k', 1, 9)

    # plot S1
    plot_circles(ax, filtered_locs, filtered_names, max_s_radius,
                 sobol_stats['S1'], smax, smin, 'k', 'k', 1, 10)

    # plot S2
    for name1, name2 in itertools.combinations(zip(filtered_names, filtered_locs), 2):
        name1, loc1 = name1
        name2, loc2 = name2

(continues on next page)
weight = s2.loc[name1, name2]
lw = 0.5+max_linewidth_s2+normalize(weight, s2min, s2max)
ax.plot([loc1, loc2], [1,1], c='darkgray', lw=lw, zorder=1)

return fig

from matplotlib.legend_handler import HandlerPatch
class HandlerCircle(HandlerPatch):
def create_artists(self, legend, orig_handle, xdescent, ydescent, width, height, fontsize, trans):
    center = 0.5 * width - 0.5 * xdescent, 0.5 * height - 0.5 * ydescent
    p = plt.Circle(xy=center, radius=orig_handle.radius)
    self.update_prop(p, orig_handle, legend)
    p.set_transform(trans)
    return [p]
def legend(ax):
some_identifiers = [plt.Circle((0,0), radius=5, color='k', fill=False, lw=1),
                    plt.Circle((0,0), radius=5, color='k', fill=True),
                    plt.Line2D([0,0.5], [0,0.5], lw=8, color='darkgray')]
    ax.legend(some_identifiers, ['ST', 'S1', 'S2'],
              loc=(1,0.75), borderaxespad=0.1, mode='expand',
              handler_map={plt.Circle: HandlerCircle()})
sns.set_style('whitegrid')
fig = plot_sobol_indices(Si, criterion='ST', threshold=0.005)
fig.set_size_inches(7,7)
plt.show()
In this case, the “sheep-gain-from-food” variable has strong interactions with the “wolf-gain-from-food” and “wolf-reproduce” inputs in particular. The size of the ST and S1 circles correspond to the normalized variable importances.

1.4 Example 3: Sensitivity analysis for a NetLogo model with SALib and Multiprocessing

This is a short demo similar to example two but using the multiprocessing Pool. All files used in the example are available from the pyNetLogo repository at https://github.com/quaquel/pyNetLogo. This code requires python3. For in depth discussion, please see example 2.

1.4.1 Running the experiments in parallel using a Process Pool

There are multiple libraries available in the python ecosystem for performing tasks in parallel. One of the default libraries that ships with Python is concurrent.futures. This is in fact a high level interface around several other libraries. See the documentation for details. One of the libraries wrapped by concurrent.futures is multiprocessing. Below we use multiprocessing, anyone on python3.7 can use the either code below or use the ProcessPoolExecutoror from concurrent.futures (recommended).

Here we are going to use the ProcessPoolExecutor, which uses the multiprocessing library. Parallelization is an advanced topic and the exact way in which it is to be done depends at least in part on the operating system one is using. It is recommended to carefully read the documentation provided by both concurrent.futures and multiprocessing. This example is ran on a mac, linux is expected to be similar but Windows is likely to be slightly different.
from multiprocessing import Pool
import os
import pandas as pd
import pyNetLogo
from SALib.sample import saltelli

def initializer(modelfile):
    '''initialize a subprocess

    Parameters
    ----------
    modelfile : str
    '''
    # we need to set the instantiated netlogo
    # link as a global so run_simulation can
    # use it
    global netlogo

    netlogo = pyNetLogo.NetLogoLink(gui=False)
    netlogo.load_model(modelfile)

def run_simulation(experiment):
    '''run a netlogo model

    Parameters
    ----------
    experiments : dict
    '''
    #Set the input parameters
    for key, value in experiment.items():
        if key == 'random-seed':
            #The NetLogo random seed requires a different syntax
            netlogo.command('random-seed {}'.format(value))
        else:
            #Otherwise, assume the input parameters are global variables
            netlogo.command('set {} {}'.format(key, value))

    netlogo.command('setup')
    # Run for 100 ticks and return the number of sheep and
    # wolf agents at each time step
    counts = netlogo.repeat_report(['count sheep','count wolves'], 100)

    results = pd.Series([counts['count sheep'].values.mean(),
                         counts['count wolves'].values.mean()],
                         index=['Avg. sheep', 'Avg. wolves'])

    return results

if __name__ == '__main__':
    modelfile = os.path.abspath('./models/Wolf Sheep Predation_v6.nlogo')
(continues on next page)
problem = {
    'num_vars': 6,
    'names': ['random-seed',
              'grass-regrowth-time',
              'sheep-gain-from-food',
              'wolf-gain-from-food',
              'sheep-reproduce',
              'wolf-reproduce'],
    'bounds': [[1, 100000],
                [20., 40.],
                [2., 8.],
                [16., 32.],
                [2., 8.],
                [2., 8.]]
}

n = 1000
param_values = saltelli.sample(problem, n,
                               calc_second_order=True)

# cast the param_values to a dataframe to
# include the column labels
experiments = pd.DataFrame(param_values,
                           columns=problem['names'])

with Pool(4, initializer=initializer, initargs=(modelfile,)) as executor:
    results = []
    for entry in executor.map(run_simulation, experiments.to_dict('records')):
        results.append(entry)
    results = pd.DataFrame(results)

1.5 core

class pyNetLogo.core.NetLogoLink(gui=False, thd=False, netlogo_home=None, netlogo_version=None, jvm_home=None, jvmargs=[])  
Create a link with NetLogo. Underneath, the NetLogo JVM is started through Jpype.

If netlogo_home, netlogo_version, or jvm_home are not provided, the link will try to identify the correct parameters automatically on Mac or Windows. netlogo_home and netlogo_version are required on Linux.

Parameters

- **gui**(bool, optional) – If true, displays the NetLogo GUI (not supported on Mac)
- **thd**(bool, optional) – If true, use NetLogo 3D
- **netlogo_home**(str, optional) – Path to the NetLogo installation directory (required on Linux)
- **netlogo_version**(['6', '5'], optional) – Used to choose command syntax for link methods (required on Linux)
- **jvm_home**(str, optional) – Java home directory for Jpype
- **jvmargs**(list of str, optional) – additional arguments that should be used when starting the jvm
command (netlogo_command)
   Execute the supplied command in NetLogo

   Parameters netlogo_command (str) – Valid NetLogo command

   Raises NetLogoException – If a LogoException or CompilerException is raised by NetL-
   ogo

kill_workspace()
   Close NetLogo and shut down the JVM.

load_model (path)
   Load a NetLogo model.

   Parameters path (str) – Path to the NetLogo model

   Raises

   • FileNotFoundError – in case path does not exist

   • NetLogoException – In case of a NetLogo exception

patch_report (attribute)
   Return patch attributes from NetLogo

   Returns a pandas DataFrame with same dimensions as the NetLogo world, with column labels and row in-
   dices following pxcor and pycor patch coordinates. Values of the dataframe correspond to patch attributes.

   Parameters attribute (str) – Valid NetLogo patch attribute

   Returns  DataFrame containing patch attributes

   Return type  pandas DataFrame

   Raises NetLogoException – If a LogoException or CompilerException is raised by NetL-
   ogo

patch_set (attribute, data)
   Set patch attributes in NetLogo

   Inverse of the patch_report method. Sets a patch attribute using values from a pandas DataFrame of same
dimensions as the NetLogo world.

   Parameters

   • attribute (str) – Valid NetLogo patch attribute

   • data (Pandas DataFrame) – DataFrame with same dimensions as NetLogo world

   Raises NetLogoException – If a LogoException or CompilerException is raised by NetL-
   ogo

repeat_command (netlogo_command, reps)
   Execute the supplied command in NetLogo a given number of times

   Parameters

   • netlogo_command (str) – Valid NetLogo command

   • reps (int) – Number of repetitions for which to repeat commands

   Raises NetLogoException – If a LogoException or CompilerException is raised by NetL-
   ogo

repeat_report (netlogo_reporter, reps, go='go')
   Return values from a NetLogo reporter over a number of ticks.
Can be used with multiple reporters by passing a list of strings. The values of the returned DataFrame are formatted following the data type returned by the reporters (numerical or string data, with single or multiple values). If the reporter returns multiple values, the results are converted to a numpy array.

**Parameters**

- **netlogo_reporter** *(str or list of str)* – Valid NetLogo reporter(s)
- **reps** *(int)* – Number of NetLogo ticks for which to return values
- **go** *(str, optional)* – NetLogo command for running the model (‘go’ by default)

**Returns** DataFrame of reported values indexed by ticks, with columns for each reporter

**Return type** pandas DataFrame

**Raises** `NetLogoException` – If reporters are not in a valid format, or if a LogoException or CompilerException is raised by NetLogo

**report** *(netlogo_reporter)*

Return values from a NetLogo reporter

Any reporter (command which returns a value) that can be called in the NetLogo Command Center can be called with this method.

**Parameters**

- **netlogo_reporter** *(str)* – Valid NetLogo reporter

**Raises** `NetLogoException` – If a LogoException or CompilerException is raised by NetLogo

**report_while** *(netlogo_reporter, condition, command='go', max_seconds=0)*

Return values from a NetLogo reporter while a condition is true in the NetLogo model

**Parameters**

- **netlogo_reporter** *(str)* – Valid NetLogo reporter
- **condition** *(str)* – Valid boolean NetLogo reporter
- **command** *(str)* – NetLogo command used to execute the model
- **max_seconds** *(int, optional)* – Time limit used to break execution

**Raises** `NetLogoException` – If a LogoException or CompilerException is raised by NetLogo

**write_NetLogo_attriblist** *(agent_data, agent_name)*

Update attributes of a set of NetLogo agents from a DataFrame

Assumes a set of NetLogo agents of the same type. Attribute values can be numerical or strings.

**Parameters**

- **agent_data** *(pandas DataFrame)* – DataFrame indexed with a row for each agent, and columns for each attribute to update. Requires a ‘who’ column for the NetLogo agent ID
- **agent_name** *(str)* – Name of the NetLogo agent type to update (singular, e.g. a-sheep)

**Raises** `NetLogoException` – If a LogoException or CompilerException is raised by NetLogo

**exception** `pyNetLogo.core.NetLogoException`

Basic project exception
1.6 Changelog

1.6.1 Version 0.3

- new repeat_report method
- load_model now raises a FileNotFoundError if the model can’t be found
- use temporary folders created by tempfile module in repeat_report (contributed by tfrench)
- extensions now no longer need to be copied to the model directory (contributed by tfrench)
- addition keyword argument on init of PyNetLogo link for passing additional arguments to jvm
- additional documentation
CHAPTER 2

Indices and tables

- genindex
- modindex
- search
p

pyNetLogo.core, 23
Index

C
command() (pyNetLogo.core.NetLogoLink method), 23

K
kill_workspace() (pyNetLogo.core.NetLogoLink method), 24

L
load_model() (pyNetLogo.core.NetLogoLink method), 24

N
NetLogoException, 25
NetLogoLink (class in pyNetLogo.core), 23

P
patch_report() (pyNetLogo.core.NetLogoLink method), 24
patch_set() (pyNetLogo.core.NetLogoLink method), 24
pyNetLogo.core (module), 23

R
repeat_command() (pyNetLogo.core.NetLogoLink method), 24
repeat_report() (pyNetLogo.core.NetLogoLink method), 24
report() (pyNetLogo.core.NetLogoLink method), 25
report_while() (pyNetLogo.core.NetLogoLink method), 25

W
write_NetLogo_attriblist() (pyNetLogo.core.NetLogoLink method), 25