Federation Feeder Documentation
Release 0.9.4

Leif Johansson

Jan 29, 2018

Contents

Installation 3
1.1 Beforeyouinstall e e e e e e 3
1.2 Installing o e e e e e e 4
1.3 Upgrading o e e e e e e e e e 4
Using pyFF 5
Examples 7
3.1 Example I - Asimplepull e e 7
3.2 Example 2 - Grab the IdPs fromedugain 7
33 Example3-UseanXRDfile o 8
34 Example4-Signusinga PKCS#llmodule 10
3.5 Example S-MDX e e e e e e e e 11
Extending pyFF 13
Frequenty Asked Questions 15

Federation Feeder Documentation, Release 0.9.4

Author Leif Johansson <leifj @ sunet.se>
Release 0.9.4

pyFF is a simple but reasonably complete SAML metadata processor. It is intended to be used by anyone who needs
to aggregate, validate, combine, transform, sign or publish SAML metadata.

Possible usecases include running an federation aggregator, filtering metadata for use by a discovery service, generat-
ing reports from metadata (eg certificate expiration reports), transforming metadata to add custom elements.

pyFF supports producing and validating digital signatures on SAML metadata using the pyXMLSecurity package
which in turn supports using PKCS#11-modules - notoriously difficult to achieve using other tools.

pyFF is not a SAML metadata registry. If you need one of those have a look at the PEER project (also on pypi).

Contents 1

Federation Feeder Documentation, Release 0.9.4

2 Contents

CHAPTER 1

Installation

1.1 Before you install

Make sure you have a reasonably modern python. pyFF is developed using 2.7 but 2.6 should work just fine. It is
recommended that you install pyFF into a virtualenv but there are two ways: with or without site packages.

For both methods start by installing a few basic OS packages. Here we illustrate with commands for a debian/ubuntu
install:

apt—-get install build-essential python-dev libxml2-dev libxsltl-dev libyaml-dev

and if you’re on a centos system (or other yum-based systems):

yum install python-devel 1libxml2-devel libxslt-devel libyaml-devel
easy_install pyyaml # bug in pip install pyyaml
yum install make gcc kernel-devel kernel-headers glibc—-headers

If you want to use OS packages instead of python packages from pypi then consider also installing the following
packages before you begin:

apt—-get install python-1lxml python-yaml python-eventlet python-setuptools

1.1.1 With Sitepackages

This method re-uses existing OS-level python packages. This means you’ll have fewer worries keeping your python
environment in sync with OS-level libraries.

apt-get install python-virtualenv
mkdir -p /opt/pyff
virtualenv /Jopt/pyff

Choose this method if you want the OS to keep as many of your packages up to date for you.

Federation Feeder Documentation, Release 0.9.4

1.1.2 Without Sitepackages

This method keeps everything inside your virtualenv. Use this method if you are developing pyFF or want to run
multiple python-based applications in parallell without having to worry about conflicts between packages.

apt—get install python-virtualenv
mkdir -p /opt/pyff
virtualenv /opt/pyff —-no-site-packages

Choose this method for maximum control - ideal for development setups.

1.2 Installing

Now that you have a virtualeny, its time to install pyFF into it. Start by activating your virtualenv:

’# . /opt/pyff/bin/activate

Next install pyFF:

’# pip install pyFF

This will install a bunch of dependencies and compile bindings for both Ixml, pyyaml aswell as pyXMLSecurity. This
may take some time to complete. If there are no errors and if you have the pyff binary in your $PATH you should be
done.

1.3 Upgrading

Unless you’ve made modifications, upgrading should be as simple as running

. Jopt/pyff/bin/activate
pip install -U pyff

This should bring your virtualenv up to the latest version of pyff and its dependencies. You probably need to restart
pyffd manually though.

4 Chapter 1. Installation

CHAPTER 2

Using pyFF

pyFF has two command-line tools: pyff and pyftfd.

pyff —--loglevel=INFO pipeline.fd [pipelinel2.fd]
pyffd —--loglevel=INFO pipeline.fd [pipelinel2.fd]

pyff operates by setting up and running “pipelines”. Each pipeline starts with an empty “active repository” - an in-
memory representation of a set of SAML metadata documents - and an empty “working document” - a subset of the
EntityDescriptor elements in the active repository.

The pyffd tool starts a metadata server with an HTTP-based interface for viewing and downloading metadata. The
HTTP interface can produce XML, HTML and JSON output (as well as other formats with a bit of configuration) and
implements the MDX specification for online SAML metadata query.

Pipeline files are yaml documents representing a list of processing steps:

- stepl
- step2
- step3

Each step represents a processing instruction. pyFF has a library of built-in instructions to choose from that include
fetching local and remote metadata, xslt transforms, signing, validation and various forms of output and statistics.

Processing steps are called pipes. A pipe can have arguments and options:

- step [option]x:
- argumentl
- argument?2

- step [option]=*:
keyl: valuel
key2: value2

Typically options are used to modify the behaviour of the pipe itself (think macros), while arguments provide runtime
data to operate on.

Federation Feeder Documentation, Release 0.9.4

Documentation for each pipe is in the pyff .pipes.builtins Module. Also take a look at the Examples.

6 Chapter 2. Using pyFF

CHAPTER 3

Examples

Examples are king.

3.1 Example 1 - A simple puli

Fetch SWAMID metadata, split it up into EntityDescriptor elements and store each as a separate file in /tmp/swamid.

- load:
- http://mds.swamid.se/md/swamid-2.0.xml
- select
- publish: "/tmp/swamid-2.0.xml"
- stats

This is a simple example in 3 steps: load, select, store and stats. Each of these commands operate on a metadata
repository that starts out as empty. The first command (load) causes a URL to be downloaded and the SAML metadata
found there is stored in the metadata repository. The next command (select) creates an active document (which in
this case consists of all EntityDescriptors in the metadata repository). Next, publish is called which causes the active
document to be stored in an XML file. Finally the stats command prints out some information about the metadata
repository.

This is essentially a 1-1 operation: the metadata loaded is stored in a local file. Next we’ll look at a more complex
example that involves filtering and transformation.

3.2 Example 2 - Grab the IdPs from edugain

Grab edugain metadata, select the IdPs (using an XPath expression), run it through the built-in ‘tidy’ XSL stylesheet
(cf below) which cleans up some known problems, sign the result and write the lot to a file.

- load:
- http://mds.edugain.org edugain-signer.crt
- select: "http://mds.edugain.org!//md:EntityDescriptor [md:IDPSSODescriptor]"

Federation Feeder Documentation, Release 0.9.4

- xslt:
stylesheet: tidy.xsl
— finalize:
cacheDuration: PTS5H
validUntil: P10D
- sign:
key: sign.key
cert: sign.crt
- publish: /tmp/edugain-idp.xml
- stats

In this case the select (which uses an xpath in this case) picks the EntityDescriptors that contain at least one
IDPSSODescriptor - in other words all IdPs. The xslt command transforms the result of this select using an xslt
transformation. The finalize command sets cacheDuration and validUntil (to 10 days from the current date and time)
on the EntitiesDescriptor element which is the result of calling select. The sign command performs an XML-dsig on

the EntitiesDescriptor.

For reference the ‘tidy’ xsl is included with pyFF and looks like this:

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.0rg/1999/XSL/Transform"
xmlns:shibmeta="urn:mace:shibboleth:metadata:1.0"
xmlns:xsi="http://www.w3.0rg/2001/XMLSchema-instance"
xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#"
xmlns:md="urn:ocasis:names:tc:SAML:2.0:metadata"

xmlns:xi="http://www.w3.0rg/2001/XInclude"

<xsl:template
<xsl:template
<xsl:template

<xsl:template

xmlns:shibmd="urn:mace:shibboleth:metadata:1.0">
match="QID"/>
match="@validUntil"/>

match="Q@cacheDuration"/>

match="text () | comment () |@%x">

<xsl:copy/>
</xsl:template>

<xsl:template match="x">
<xsl:copy>
<xsl:apply-templates select="node () [@+"/>
</xsl:copy>
</xsl:template>

</xsl:stylesheet>

3.3 Example 3 - Use an XRD file

Sometimes it is useful to keep metadata URLs and signing certificates used for validation in a separate file and pyFF

supports XRD-files for this purpose. Modify the previous example to look like this:

- load:

- links.xrd
- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:

stylesheet: tidy.xsl

Chapter 3. Examples

Federation Feeder Documentation, Release 0.9.4

- sign:

key: sign.key

cert: sign.crt
- publish: /tmp/idp.xml
- stats

Note that in this case the select doesn’t include the http://mds.edugain.org prefix before the ‘!’-sign. This causes the
xpath to operate on all source URLSs, rather than just the single source http://mds.edugain.org . It would have been
possible to call select with multiple arguments, each using a different URL from the file links.xrd which contains the
following:

<?xml version="1.0" encoding="UTF-8"?>
<XRDS xmlns="http://docs.oasis-open.org/ns/xri/xrd-1.0">
<XRD>
<Subject>http://mds.swamid.se/md/swamid-2.0.xml</Subject>
<Link rel="urn:oasis:names:tc:SAML:2.0:metadata" href="http://mds.swamid.se/
—md/swamid-2.0.xml">
<Title>SWAMID</Title>
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>
MITIFyzCCA70gAwWIBAgIJAIILIsUIJXDMVMAOGCSGSIb3DQEBCWUAMHWXCZAJBgNV
BAYTAINFMRIWEAYDVQQIDA1TAGY9ja2hvbGOXE jJAQBgNVBACMCVNODL2NraG9sbTEO
MAWGA1UECgwFU1VORVQxDzANBgNVBAsMBINXQU1JRDEKMCIGA1IUEAwWwbU1dBTULE
IG11dGFkYXRhIHNpPZ251ciB2Mi4wMB4XDTE2MT IwNjA5MjgyMFoXDTM2MT IWwN A5
MjgyMFowfDELMAkGA1UEBhMCUOUXE JAQBgNVBAGMCVNOb2NraG9sbTESMBAGALUE
BwwJU3RVY2tob2xtMQ4wDAYDVQQKDAVTIVUSFVDEPMAOGAIUECWWGU1dBTUL1EMSQw
IgYDVQQODDBt TVOFNSUQgbWVOYWRhAGEgc21lnbmVy IHYyLjAwggIiMAOGCSGGSIb3
DQEBAQUAA4ICDWAWggIKAOICAQDQVW72PnTo9QIeV439kQnPcxZh/LddKw86eIU+
nMfl4TpjSIygTudKISnXbJygXg+jQj3RzEIBUblpGrR70kmQwOh2nh+5A6SmyTOR
P7VEVT/ZwOGNnQi9gAW7J8Cy+Gnok4LeILI5u43hPy1NKAnvs1+bo0Z1bHM6US jm
6M10+1rYA9dZzoPQqoCQbr30weAag5g8H54HuZacpYal3Q2GnUadv+xywjntPdSQU
RTADWWyJ13cHctX5+8UnX8nGCaxoBZgNp9PcEopyYJX801nr LumBMqu9Uh6GW1lnx
OHfKDLvUoykG3Dm704ENVs88KaJXB1gQONs jd1lml4UI9XCZbHEnFVnQ53ehsGFMha
Bf/Abd6v2wnhBLH/RxEUlw347gSeokw+SdDTSAW8 JOEBiSgP/8BUzpCcbGlgAsVO
NKUSOK7IB2Bb79YYhyMvmJ124BGtkX+VM/mv47dx0t fzZNFCMtUcJ2D1uv0xJIG8xI
ot 7umx/kbMBLUgq7WAWELZJrgpt 2bb9sXt YBpuxt GCW5g7+U7MNN1aKCiCSfg09YH
qu2DsU7THHAXECGEFXBiepBliCwZ24WLOh53bA3rihaln7SjdapTo9VuSTpCvytbIRX
rg39mVuHMXVvIWYOG20XTV0+8U2vns jAwsy28xPACcr LWRWoZbRI+RoGp6L3GACg+t+
HPTIukwIDAQABROI1AWT jAdBgNVHQAEFgQUQ21gKQV/mMZDeJDt LXvy0Bsn/BQwHwYD
VRO jBBgwFoAUQ21gKQV/mMzZDeJDtLXvy0Bsn/BQwDAYDVROTBAUwWAWEB/ zANBgkg
hkiG9w0OBAQSFAAOCAGEAHViIAfS8viUN8Qk//Ulp6Z1VK5718NeS7ugabug/Swhi
Vxtg/0x9FPJIYL05HX J4moAf2W1ZLnhrOpnEPGDbdHAGDC672 fpaAvV7D095d7xubc
rofR70£2fehYSUZbXBWFiQ+xB5QfRsUFgB/qgHUolgn+4RXniiBY1We6QJVncHx+
FtxD+vhl15rLNkJgJLw2Lt 3pbemSxUvv0CItnK4 jt2y95GsWGuluSsVLrsOPR1Lj
kuxL6zZH4Pp9y JRDOUhbVYANQO17mdcjvHYtp7c4GIWgyaBkDoMtUGEAL 70QpeG]
XhecXk7L1x+0YNdZnl4ZdFPRGMyAESLrT4ZfIM7QS3ypnWn/Ux0SwKWbnPUeRVDHO
VZZ+M0 JjmdYK60+UUS5xH3peRWSJII jjRaK JbVIWS5GgHWGEmQc/LN+va2 j jThRsQWIWt
zEwOb1ijedInQ6wfL/VzFAwlWWODAzKKIgnK4Rf30RKkvhKrUa//20YnZDOkHtHiC
OL+iFRLtJ/DQP5iZAF+M1Hta7aclmQ8vIMnl1ZRI1yDWzFx57VOKKt J6RAMBvxOdP
8cIgBNVLAEdXh2knOLgYU/CeaGkxTD7Y0SEKx60xEEdafba//MBkVLt4bRoLXts6
6JY25FqFh3eJZjR6h4WINWSKNBWuy+ITGEXx0JSsX78/pwAY+v32JRxMZGUL1J4=
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</Link>
</XRD>
<XRD>

3.3. Example 3 - Use an XRD file 9

http://mds.edugain.org
http://mds.edugain.org

Federation Feeder Documentation, Release 0.9.4

<Subject>https://incommon.org</Subject>
<Link rel="urn:ocasis:names:tc:SAML:2.0:metadata" href="http://md.incommon.org/
—InCommon/InCommon-metadata.xml">
<Title>InCommon Metadata (main aggregate)</Title>
<ds:KeyInfo xmlns:ds="http://www.w3.0rg/2000/09/xmldsig#">
<ds:X509Data>
<ds:X509Certificate>
MIIDgTCCAmMmMgAWIBAgIJAJRIZzvdpkmNaMAOGCSgGSIb3DQEBCWUAMFcxCzAJBgNV
BAYTAIVIMRUWEWYDVQQKDAXJbkNvbW1vbiBMTEMXMTAVBgNVBAMMKE 1uQ2 9tbWou
IEZ1ZGVyYXRpb24gTWVOYWRhAGEgU2 lnbmluZyBLZXkwHhcNMTMxMJE2MTk zNDU1
WhcNMzcxMjE4MTkzNDU1W jBXMQswCQYDVQQGEwJVUZEVMBMGA1UECgwMSW5Db21t
b24gTExXDMTEWLWYDVQQODDChJbkNvbW1vbiBGZWR1cmF0aWOuIEL11dGFkYXRhIFNp
7.25pbmcgS2V5SMIIBI JANBgkghkiG9w0OBAQEFAAOCAQS8AMI IBCgKCAQEAOChdkrn+
dG5Zj5L3UIw+xeWgNzm8ajw7/FygqRQ1SIDALEg2WCA1fjOrYGNnVZMCTfItoXTSp
g4rXxHQsykeNiYRu2+02uMS+1pnBgWjzdPJEOod+g8EbdvE6ShimjyNnOyQ£fGyQK
CNdYuc+75MIHsaIOAEtDZUST9Sd40eUlzRjV2sGvUd+IFHveUAhRCcOb+JEZEfIEUg
/LIU9gxm/+gFaawlmojzPyOWz1J1lswbrrJdYYynl0ggndvjh9gZWXK jmPxqvHKJICA
TPhAh2gWGabWTXBJCckMelhrHC1/vbDLCmz0/0YuoaSDzP6zE9YSA/xCplaHAOmo
C1Vs2H5MOQGlewIDAQABOLAWT JAABGNVHQ4EFgQUS51j9YLUS52Q6K75kPgVpyQ2N/
1PswHwYDVRO jBBgwFoAU51 j9YLU52zQ6K75kPgVpyQ2N/1PswDAYDVROTBAUWAWEB
/zANBgkghkiG9wOBAQSFAAOCAQEAaQkEx 9xvaLUt OPNLVHMt xXQPedCPw5xQBd2V
WOSWPYspRAOSNbU1V1oY+xUkUKorYTogKUY1g+uh2gDIEazW0uzZaQviPp8xdxilg
Dh96n5US061szEc+Lj3dgdxWkXRRgEb jhBFh/utXaeyeSOtaX65GwD5svDHNnJIBcl
AGkzeRIXgxmYG+I2zMm/JYGzEnbwToyC7yF60Q08cQx0r37hEpgz+WN/x3gqM2qyBLE
CQF jm1JrvRLkSL15PCZiu+xFNFd/zx6btDun5DB1fDS9DG+SHCNHONg+NEP+ZQ8C
GzP/3TaZPzM1KPDCjp0X0QfyQqF IXdw jPFTWiEusDBlm4qJAlQ==
</ds:X509Certificate>
</ds:X509Data>
</ds:KeyInfo>
</Link>
</XRD>
</XRDS>

The structure of the file should be fairly self-evident. Only links with @rel="urn:oasis:names:tc:SAML:2.0:metadata”
will be parsed. If a KeyInfo with a X509Certificate element (usual base64-encoded certificate format) then this certifi-
cate is used to validate the signature on the downloaded SAML metadata. Note that while ‘load’ supports validation
based on certificate fingerprint the XRD format does not and you will have to include Base64-encoded certificates if
you want validation to work.

3.4 Example 4 - Sign using a PKCS#11 module

Fetch SWAMID metadata (and validate the signature using a certificate matching the given SHA1 fingerprint), se-
lect the Identity Providers, tidy it up a bit and sign with the key with the label ‘signer’ in the PKCS#11 module
/usr/lib/libsofthsm.so. If a certificate is found in the same PKCS#11 object, that certificate is included in the Signature
object.

- load:
- http://mds.swamid.se/md/swamid-2.0.xml_
—A6:78:5A:37:C9:C9:0C:25:AD:5F:1F:69:22:EF:76:7B:C9:78:67:67:3A:AF:4F:8B:EA:A1:A7:6D:A]

- select: "!//md:EntityDescriptor[md:IDPSSODescriptor]"
- xslt:

stylesheet: tidy.xsl
- sign:

key: pkcsll:///usr/lib/libsofthsm.so/signer
- publish: /tmp/idp.xml

10 Chapter 3. Examples

:A8:E5:85

urn:oasis:names:tc:SAML:2.0:metadata

Federation Feeder Documentation, Release 0.9.4

— Stats

Running this example requires some preparation. Run the ‘p11setup.sh’ script in the examples directory. This results
in a SoftHSM token being setup with the PIN ‘secretl’ and SO_PIN ‘secret2’. Now run pyFF (assuming you are using
a unix-like environment).

’# env PYKCSIIPIN=secretl SOFTHSM _CONF=softhsm.conf pyff —--loglevel=DEBUG pll.fd

3.5 Example 5 - MDX

Running an MDX server is pretty easy using pyFF. Lets start with the links.xrd file (cf example above) and add this
simple pipeline.

- when update:
- load:
- links.xrd
- break
- when request:
- select
- pipe:
- when accept application/xml:
- xslt:
stylesheet: tidy.xsl
- first
- finalize:
cacheDuration: PTOH
validUntil: P10D
- sign:
key: sign.key
cert: sign.crt
- emit application/xml
- break
- when accept application/json:
- xslt:
stylesheet: discojson.xsl
- emit application/json:
- break

The big difference here are the two when commands. They are used to select between the two main entrypoints for the
pyFF server: the update flow and the request flow. The update flow is run repeatedly and is usually used for updating
the internal metadata repository.

The request flow is called every time an MDX request is submitted. The internal when statements are used to provide
basic content negotiation for the MDX request. Content negotiation is based both on the Accept header and on the
extension (suffix) on the URL - ending a resource with .json’ selects application/json, etc and overrides the Accept
header.

The only new commands here are emit, break and first. The emit command transforms the result into the appropriate
output format (UTF-8 encoded text), the break terminates the pipeline. The first command strips the outer EntitiesDe-
scriptor if only a single EntityDescriptor is present in the active document which is consistent with expected behaviour
for the MDX protocol.

The behaviour of the select command in the request pipeline is a bit different: the select operates on a query fed to the
request pipeline from the HTTP server that runs the command. This is called implicit select.

Now start pyffd:

3.5. Example 5 - MDX 11

Federation Feeder Documentation, Release 0.9.4

pyffd —-f --loglevel=DEBUG -p /var/run/pyffd.pid mdx.fd

This should start pyffd in the foreground. If you remove the —f pyFF should daemonize. For running pyFF in
production I suggest something like this:

pyffd —--loglevel=INFO —--log=syslog:auth —--frequency=300 -p /var/run/pyffd.pid --
—dir="pwd’' -H<ip> -P80 mdx.fd

This starts pyff on the interface <ip>:80 and uses the current directory as the working directory. If you leave out —dir
then pyffd will change directory to $SHOME of the current user which is probably not what you want. In this case
logging is done through syslog (the auth facility) and with log level INFO. The refresh-rate is set to 300 seconds so at
minimum your downstream feeds will be refreshed that often.

12 Chapter 3. Examples

CHAPTER 4

Extending pyFF

Not much here yet - come back later or UTSL

13

Federation Feeder Documentation, Release 0.9.4

14 Chapter 4. Extending pyFF

CHAPTER B

Frequenty Asked Questions

Q: I get ‘select is empty’ but I know my xpath should match. What is wrong?

A: You’ve probably forgotten to include namespaces in your xpath expression. The expression ““//Entity-
Descriptor” won’t match anything - //md:EntityDescriptor” is what you want.

The pyFF logo is the chemical symbol for sublimation - a process by which elements are transitioned from solid to
gas without becoming liquids.

15

	Installation
	Before you install
	Installing
	Upgrading

	Using pyFF
	Examples
	Example 1 - A simple pull
	Example 2 - Grab the IdPs from edugain
	Example 3 - Use an XRD file
	Example 4 - Sign using a PKCS#11 module
	Example 5 - MDX

	Extending pyFF
	Frequenty Asked Questions

