Prado Board by Silica Architech
Documentation

Release 1.0

Silica

Mar 20, 2017
Contents

1 Pass-Through Mode 5

2 Factory Reset 7
 2.1 by terminal ... 7
 2.2 by hardware ... 8

3 Update RN-131C firmware 9
 3.1 FTP Update ... 9

4 Firmware Details 11
 4.1 Modify Software .. 11
 4.2 Debug options ... 12

5 Quick start guide 13
 5.1 Hardware requirements .. 13
 5.2 Software Requirements .. 13
 5.3 Set Up Software .. 14
 5.4 Set Up Hardware .. 14
 5.5 Microchip Demo .. 16
 5.6 Run demo first time ... 20
Version 1.0.0
Copyright (C)2016 Avnet Silica company
Architech Prado

WiFly RN-131C
The daughterboard Architech Prado of Silica helps to access the WiFly RN-131C module (version 4.00) of Microchip.

It was designed to be connected to the LPC1115 LPCXpresso board.

The project provides a demo developed with the LPCxpresso IDE and through the microcontroller LPC1115 configures the RN-131C module to operate in different modes.

Architech Prado Features:

- Interfaceable with:
 - LPC1115 LPCXpresso board
 - mBed board
- 1 UART 3.3V level for debugging purpose
- 5 status leds
- Power supply by mini-usb

The WiFly radio module is a complete standalone embedded wireless LAN access device. The device has on board TCP/IP stack and applications, requiring only 4 pins (POWER, TX, RX, GND) to design in. Once initial configuration is set, the radio can automatically access the Wi-Fi network and send/receive serial data over UART.

For a quick consultation of the instruments used, please visit the following websites:

- IDE LPCXPRESSO (free IDE up to 128KB):

- LPC1115 LPCXpresso:
 - http://www.nxp.com/products/microcontrollers/cortex_m0_m0/LPC1115FBD48.html

- Connected to the Prado daughterboard:
• Microchip RN-131C:

• The demo has been developed starting from the design LPCOpen platform v1.03
 – http://www.lpcware.com/content/nxpfile/lpcopen-platform

and with the demo of the microchip “RN171 and RN131 PICtail WebServer” ver 1.0R:
 • http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=1406&dDocName=en560211

We suggest you to read the Quick Start Guide to setup your evaluation system

Quick start guide
This guide explains how to use this application and provides an overview of on the structure of the project firmware
Pass-Through Mode

Warning: For using this mode you need a UART interface (3.3V level only) to connect Prado to your pc. This interface is not provided.

The demo provided can operate in pass-through mode. Enable this mode to be able to send and receive commands to the console manually through terminal WiFly module. In order to enable this mode follow the following steps:
1. Insert the jumper connector J1

2. Connect to CN1 (UART 3.3V level only) a UART interface (not provided) that will allow to connect the wiFly module to your pc

PIN1 = LPC_UART_RX (3,3V level)
PIN2 = LPC_UART_TX (3,3V level)
PIN3 = GND

3. The UART configuration is Baud: 9600, Data: 8bit, Parity: None, 1bit stop, Flow: None

4. Connect Prado to the PC

5. When the demo starts, LED1 remain always turned on.

At this point it is possible to send commands from the terminal and receive response messages.
For example, you can reset the module to factory defaults Factory Reset.

CHAPTER 2

Factory Reset

by terminal

Warning: For using this mode you need a UART interface (3,3V level only) to connect Prado to your pc. This interface is not provided.

It can be possible reset to factory defaults module RN-131C through the *Pass-Through Mode* with the following commands:

1. Place the mode RN-131C module in command mode

 $$$

2. Reset the module to factory default conditions.

 factory R

3. Reboot the device.

 reboot
To reset to the factory settings the **RN-131C** module means hardware you need to follow the following steps:

1. insert the jumpers **J1** and **J2**
2. start the demo
3. take off and put the jumper **J2** until the **LED3, LED5** do not flash.
Update RN-131C firmware

FTP Update

Important:

1. To proceed you need a UART interface (3,3V level only) to connect WiFiexpresso to your pc. This interface is not provided.

2. Requires Wi-Fi network with internet access!

1. Starting from Pass-Through Mode, type following commands to update RN-131C firmware:

2. Restore module to factory defaults, type these commands:

$$$
factory R
save
reboot

3. Associate to Internet-Connected Network your network

$$$
scan
set wlan ssid <insert here your ssid>
set wlan pass <insert here your password>
save
reboot

4. Update firmware and verify the version number

$$$
ftp update
ver
reboot
5. After downloading new firmware it is recommended restore module to factory defaults one more time before using it.

```plaintext
$$$ 
ver

$$$ 
factory R
save
reboot
```
This project is taken from LPCOPEN v1.03. The starting demo project taken from lpcopen is nxp_xpresso_11c24_periph_uart. After which it was ported the project microchip ‘RN171 and RN131 PICTail Web-Server’. From the design of microchips improvements have been made in the management of web server software, the main changes are in sys_tasks.c:

- The sending of the icon favicon.ico. Browsers require this icon automatically after loading an html page. Do not send it determines the possible malfunction of certain browser.
- The web server closes the connection after 0.5 seconds if the browser does not need any page. This system prevents that the browser manage in their own way the connection with the server.

RN-131C handles only one socket at a time, the web server can properly handle a socket at a time.

Modify Software

For customers who desire to connect the module to a cloud server of their own choosing, instead of of the default http://mtt.mchpcloud.com, the changes required to the demo http-client application are quite simple. Follow these steps to change the cloud server:

In the LPCXpresso IDE, locate the following lines of code in the wifly_util.h file:

```
#define NAME_VALUE "mtt.mchpcloud.com" // DNS name of host
```

Change the value of the NAME_VALUE macro to the new designated cloud server, and re-build the project.

The module, after associating with an access point that is connected to the Internet will, open a socket connection with the new cloud server and begin to make data requests.

For customers who desire to build a more customized web-server and http client application, are encouraged to carefully review the file sys_task.c, and specifically the function TCPTasks(). The TCPTasks() function is essentially a state machine. It sequences the module through all its phases of operation, from initialization, configuration, association, connection to server to operation as a http client.
The current implementation of the demo does not have a file system, so all the html web pages are pre-loaded into memory, with the sys_task.c file.

Debug options

- In options.h there are 2 defines:

```c
#define PRINTF_ENABLED 0
#define VERBOSE_DEBUG 0
```

Use these only if you want debug the code. These enables the function `printf` and it is used to display messages on the debug console of the IDE.

Warning: Use `printf` carefully because disables all interrupts temporarily when executed. Also stops the micro-controller execution if you do not use debug.
CHAPTER 5

Quick start guide

Hardware requirements

To run the demo application, you need the following hardware:

- LPC1115 LPCXpresso Board
- Architech Prado daughterboard
- 802.11b/g-compliant Wi-Fi access point with internet access
- Two Jumper
- Two mini usb cables
- A pc/laptop with Windows operating system and a WiFi device
- 2 male strip (1x20) to soldier in LPCXpresso Board

Optionally (for Pass-Through Mode)

- A UART interface (3,3V level only) to connect Prado to your pc. This interface is not provided.

Software Requirements

- A Registered version of “Free LPCXpresso IDE” at the least version 5.2.4: http://lpexprso.code-red-tech.com/LPCXpresso/. You need create an account and register the product.
- Source of demo: SILICA site
Optionally (for demo *Pass-Through Mode*)

- Terminal emulator application such as Hyperterminal or other with **UART** support.

Note: You will use the terminal emulator to send configuration commands to the module over a UART interface. The emulator also displays information transmitted from the module.

Set Up Software

1. Install the **IDE LPCExpresso** and following the instructions of **default**
2. Launch LPCExpresso and select a workspace folder
3. In the menu go to **Help → Product activation → Create serial number and activate**. Follow the instructions to register the software
4. When you will have an activation code go to **Help → Enter Activate Code**

Set Up Hardware

Perform the following steps to set up the hardware and prepare it for configuration:

1. In LPCXpresso Board connect **J4 PIN1** to **J4 PIN2**, **J4 PIN3** to **J4 PIN4**, ... **J4 PIN15** to **J4 PIN16**.

2. Solder two male strip (1x20) on the LPCxpresso board in:

 | J6 from PIN1 (GND) to PIN20 (ADS) |
 | J6 from PIN28 (3V3) to PIN47 (P2.5) |

3. Mount the LPC1115 LPCXpresso Board connectors on Prado evaluation board. LPCXpresso **J6 PIN1** must be connect in Prado **U1 PIN1** ... **J6 PIN20** to **U1 PIN20** ... **J6 PIN47** to **U1 PIN40** ... **J6 PIN28** to **U1 PIN21**.
4. remove the two jumpers J1 and J2 from Prado

5. Connect PC to boards with mini-USB cables.
6. Optionally connect the UART interface (not provided) from the connector Prado CN1 (UART 3.3V level only) to the PC if you want to see the communication between the LPC1115 and the WiFi module. The UART configuration is **Baud: 9600, Data: 8bit, Parity: None, 1bit stop, Flow: None**

<table>
<thead>
<tr>
<th>PIN1</th>
<th>LPC_UART_RX (3.3V level)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PIN2</td>
<td>LPC_UART_TX (3.3V level)</td>
</tr>
<tr>
<td>PIN3</td>
<td>GND</td>
</tr>
</tbody>
</table>

7. Make sure that the router is connected to internet and it is configured to accept the connection of the module RN-131C and it can access the internet. Router must have:

- A secure Wi-Fi authentication schemes (WEP / WPA / WPA2).
- DHCP enabled

Microchip Demo

When the demo will have configured your wifi module will access the Microchip web site. To enable access, follow these steps:

1. Register the module to the Microchip website:
 - Browse to the website: http://mtt.mchpcloud.com and follow the instructions on the page to create an account.
• Logging in with the account that you have created and follow the instructions to register the MAC address of the module. Associate to a name, such as MYRN131MODULE. Later this name will be used to connect the demo server to the cloud. The MAC address of the module are the last few 6-hex bytes in the numerical sequence shown under the barcode module.
2. Importing the demo into your LPCXpresso workspace To use the projects in LPCXpresso, they must first be imported into LPCXpresso. To import the projects, go to File → Import → General → Existing Projects and press Next. On the import dialog window in the Select root directory box, browse to the platform directory lpcopen/applications/lpc11xx/xpresso_projects/nxp_xpresso_11c24/. Select nxp_xpresso_11c24_board_lib and Prado. Make sure the Copy projects to workspace option is disabled. Then select Finish to start the import.
The imported project should appear in the **Project Browser** window.
3. Compile it by selecting from the menu **Project → Build → Build All**. If the compilation fails, for all node in **Project Explorer** window open the properties form and go to **Settings → Include** and modify the relative paths in absolutes. Then retry to compile.

Run demo first time

1. Choose Prado in project explorer and launch debugging by pressing the icon showed below:

2. All messages of the demo will be displayed on the debug console LPCXpresso IDE, see *options.h* for details. After initialization, the dispositive will try to associate with an Access Point within 10 seconds. The message *associating ...* will appear on the debug console. In this state only LED2 blinks.

3. After 10 seconds if it fails to join the demo will set the module as an Access Point (SOFT AP). Once set, appear the message on the debug console **Config w/ Browser http://5.16.71.1**. In this state, the demo application will work as a small webserver, blue LED2 blinks and red LED4 and LED5 are turned on.

4. The demo in this state, it is waiting for a connection request from a **browser**. As an Access Point, the module’s IP address is **5.16.71.1**. Its SSID is **mttSoftAP_xx_yy**, where xx & yy, are the last two hex bytes of the module’s MAC address (example mttSoftAP_03_06). Associate your PC to this access point.
5. The module is listening for TCP address, open a browser (IE, Safari, Firefox) etc, and enter http://5.16.71.1:2000/index.html into the browser window.

6. Insert in all areas, the SSID of the access point where the RN-131C can connect to access of internet. Password (appears in plain text), select a channel, and enable channel auto-join. After that click on the Enter button.

5.6. Run demo first time
7. Now that the demo has all the information to access the Access Point sets the WIFI module with all the data and try to access. It is important that there are no filters on the network that prevent the module to access the internet otherwise the demo can not continue. If happen, fix the configuration router and restart the application.

8. Set the PC to access the access point and go with the company http://mtt.mchpcloud.com browser to the site. Log in and select the name chosen previously, for example MYRN131MODULE. Press the Connect button to enable communication between the module and the WiFly cloud server. Once connected you will see on the website the data transmitted from the demo. In this state if all works correctly you will see all leds LED1, LED2, LED3, LED4 turned on and LED5 blinking slowly.

TCP/IP Demo using Amazon Cloud

Overview

Logout

Bonjour/Welcome "Join" to the Cloud Website!

LEDs:

Buttons:

V V V V V

Potentiometer: 0

Select Device to Monitor:

MYRN131MODULE

Disconnect

MAC

NAME

To add Device, enter MAC and assign a NAME:

Add Device

To Delete Device, select in the Pull down Menu:

Delete Device

TCP Expert team website demonstrates the use of the Amazon Elastic Compute Cloud (Amazon EC2) web service. Amazon EC2 provides resizable compute capacity in the cloud. It is designed to make web-scale computing easier and provides an always accessible server for controlling and collecting data from Microchip's embedded devices.

This site demonstrates the power, flexibility, and scalability of an 8, 16 or 32-bit embedded HTTP Client. Everything you see is updated by a Microchip PIC microcontroller running the Microchip TCP/IP Stack.

On the right you'll see the current status of the demo board. For a quick example, click the LEDs to toggle the lights on the board. Press the push buttons (except MCLR) or turn the potentiometer and you'll see the status update immediately. This examples uses AJAX techniques to provide real-time feedback.

Copyright © 2012 Microchip Technology, Inc.

• search
D
Debug options, 12

F
Factory Reset, 6
FTP Update, 9

H
Hardware requirements, 13

I
Install software, 16

M
Modify software, 11

P
Pass-Through mode, 4

R
Run demo, 20

S
Software Requirements, 13

W
Webserver tips, 11