
Phinx Documentation
Release 0.9.2

CakePHP

Aug 15, 2018

Contents

1 Contents 3
1.1 Introduction . 3
1.2 Goals . 3
1.3 Installation . 3
1.4 Writing Migrations . 4
1.5 Database Seeding . 34
1.6 Commands . 37
1.7 Configuration . 42
1.8 Copyright . 48

2 Indices and tables 49

i

ii

Phinx Documentation, Release 0.9.2

Phinx makes it ridiculously easy to manage the database migrations for your PHP app. In less than 5 minutes, you can
install Phinx using Composer and create your first database migration. Phinx is just about migrations without all the
bloat of a database ORM system or application framework.

Contents 1

Phinx Documentation, Release 0.9.2

2 Contents

CHAPTER 1

Contents

1.1 Introduction

Good developers always version their code using a SCM system, so why don’t they do the same for their database
schema?

Phinx allows developers to alter and manipulate databases in a clear and concise way. It avoids the use of writing
SQL by hand and instead offers a powerful API for creating migrations using PHP code. Developers can then version
these migrations using their preferred SCM system. This makes Phinx migrations portable between different database
systems. Phinx keeps track of which migrations have been run, so you can worry less about the state of your database
and instead focus on building better software.

1.2 Goals

Phinx was developed with the following goals in mind:

• Be portable amongst the most popular database vendors.

• Be PHP framework independent.

• Have a simple install process.

• Have an easy to use command-line operation.

• Integrate with various other PHP tools (Phing, PHPUnit) and web frameworks.

1.3 Installation

Phinx should be installed using Composer, which is a tool for dependency management in PHP. Please visit the
Composer website for more information.

3

https://getcomposer.org/

Phinx Documentation, Release 0.9.2

Note: Phinx requires at least PHP 5.4 (or later).

To install Phinx, simply require it using Composer:

php composer.phar require robmorgan/phinx

Create folders in your project following the structure db/migrations with adequate permissions. It is where your
migration files will live and should be writable.

Phinx can now be executed from within your project:

vendor/bin/phinx init

1.4 Writing Migrations

Phinx relies on migrations in order to transform your database. Each migration is represented by a PHP class in a
unique file. It is preferred that you write your migrations using the Phinx PHP API, but raw SQL is also supported.

1.4.1 Creating a New Migration

Generating a skeleton migration file

Let’s start by creating a new Phinx migration. Run Phinx using the create command:

$ vendor/bin/phinx create MyNewMigration

This will create a new migration in the format YYYYMMDDHHMMSS_my_new_migration.php, where the first 14
characters are replaced with the current timestamp down to the second.

If you have specified multiple migration paths, you will be asked to select which path to create the new migration in.

Phinx automatically creates a skeleton migration file with a single method:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Change Method.

*
* Write your reversible migrations using this method.

*
* More information on writing migrations is available here:

* http://docs.phinx.org/en/latest/migrations.html#the-abstractmigration-class

*
* The following commands can be used in this method and Phinx will

* automatically reverse them when rolling back:

*
* createTable

* renameTable

* addColumn

(continues on next page)

4 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

* renameColumn

* addIndex

* addForeignKey

*
*/

public function change()
{

}
}

All Phinx migrations extend from the AbstractMigration class. This class provides the necessary support to
create your database migrations. Database migrations can transform your database in many ways, such as creating
new tables, inserting rows, adding indexes and modifying columns.

The Change Method

Phinx 0.2.0 introduced a new feature called reversible migrations. This feature has now become the default migration
method. With reversible migrations, you only need to define the up logic, and Phinx can figure out how to migrate
down automatically for you. For example:

<?php

use Phinx\Migration\AbstractMigration;

class CreateUserLoginsTable extends AbstractMigration
{

/**
* Change Method.

*
* More information on this method is available here:

* http://docs.phinx.org/en/latest/migrations.html#the-change-method

*
* Uncomment this method if you would like to use it.

*/
public function change()
{

// create the table
$table = $this->table('user_logins');
$table->addColumn('user_id', 'integer')

->addColumn('created', 'datetime')
->create();

}

/**
* Migrate Up.

*/
public function up()
{

}

/**
* Migrate Down.

*/

(continues on next page)

1.4. Writing Migrations 5

Phinx Documentation, Release 0.9.2

(continued from previous page)

public function down()
{

}
}

When executing this migration, Phinx will create the user_logins table on the way up and automatically figure out
how to drop the table on the way down. Please be aware that when a change method exists, Phinx will automatically
ignore the up and down methods. If you need to use these methods it is recommended to create a separate migration
file.

..note When creating or updating tables inside a change() method you must use the Table create() and
update() methods. Phinx cannot automatically determine whether a save() call is creating a new table
or modifying an existing one.

Phinx can only reverse the following commands:

• createTable

• renameTable

• addColumn

• renameColumn

• addIndex

• addForeignKey

If a command cannot be reversed then Phinx will throw an IrreversibleMigrationException when it’s
migrating down.

The Up Method

The up method is automatically run by Phinx when you are migrating up and it detects the given migration hasn’t been
executed previously. You should use the up method to transform the database with your intended changes.

The Down Method

The down method is automatically run by Phinx when you are migrating down and it detects the given migration has
been executed in the past. You should use the down method to reverse/undo the transformations described in the up
method.

1.4.2 Executing Queries

Queries can be executed with the execute() and query() methods. The execute() method returns the number
of affected rows whereas the query() method returns the result as a PDOStatement

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
(continues on next page)

6 Chapter 1. Contents

http://php.net/manual/en/class.pdostatement.php

Phinx Documentation, Release 0.9.2

(continued from previous page)

* Migrate Up.

*/
public function up()
{

// execute()
$count = $this->execute('DELETE FROM users'); // returns the number of

→˓affected rows

// query()
$stmt = $this->query('SELECT * FROM users'); // returns PDOStatement
$rows = $stmt->fetchAll(); // returns the result as an array

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Note: These commands run using the PHP Data Objects (PDO) extension which defines a lightweight, consistent in-
terface for accessing databases in PHP. Always make sure your queries abide with PDOs before using the execute()
command. This is especially important when using DELIMITERs during insertion of stored procedures or triggers
which don’t support DELIMITERs.

Warning: When using execute() or query() with a batch of queries, PDO doesn’t throw an exception if
there is an issue with one or more of the queries in the batch.

As such, the entire batch is assumed to have passed without issue.

If Phinx was to iterate any potential result sets, looking to see if one had an error, then Phinx would be deny-
ing access to all the results as there is no facility in PDO to get a previous result set nextRowset() - but no
previousSet()).

So, as a consequence, due to the design decision in PDO to not throw an exception for batched queries, Phinx is
unable to provide the fullest support for error handling when batches of queries are supplied.

Fortunately though, all the features of PDO are available, so multiple batches can be controlled within the migration
by calling upon nextRowset() and examining errorInfo.

1.4.3 Fetching Rows

There are two methods available to fetch rows. The fetchRow() method will fetch a single row, whilst the
fetchAll() method will return multiple rows. Both methods accept raw SQL as their only parameter.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration

(continues on next page)

1.4. Writing Migrations 7

http://php.net/manual/en/pdostatement.nextrowset.php
http://php.net/manual/en/pdostatement.nextrowset.php
http://php.net/manual/en/pdostatement.errorinfo.php

Phinx Documentation, Release 0.9.2

(continued from previous page)

{
/**
* Migrate Up.

*/
public function up()
{

// fetch a user
$row = $this->fetchRow('SELECT * FROM users');

// fetch an array of messages
$rows = $this->fetchAll('SELECT * FROM messages');

}

/**
* Migrate Down.

*/
public function down()
{

}
}

1.4.4 Inserting Data

Phinx makes it easy to insert data into your tables. Whilst this feature is intended for the seed feature, you are also
free to use the insert methods in your migrations.

<?php

use Phinx\Migration\AbstractMigration;

class NewStatus extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

// inserting only one row
$singleRow = [

'id' => 1,
'name' => 'In Progress'

];

$table = $this->table('status');
$table->insert($singleRow);
$table->saveData();

// inserting multiple rows
$rows = [

[
'id' => 2,
'name' => 'Stopped'

],
[

(continues on next page)

8 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

'id' => 3,
'name' => 'Queued'

]
];

$this->table('status')->insert($rows)->save();
}

/**
* Migrate Down.

*/
public function down()
{

$this->execute('DELETE FROM status');
}

}

Note: You cannot use the insert methods inside a change() method. Please use the up() and down() methods.

1.4.5 Working With Tables

The Table Object

The Table object is one of the most useful APIs provided by Phinx. It allows you to easily manipulate database tables
using PHP code. You can retrieve an instance of the Table object by calling the table() method from within your
database migration.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('tableName');
}

/**
* Migrate Down.

*/
public function down()
{

}
}

You can then manipulate this table using the methods provided by the Table object.

1.4. Writing Migrations 9

Phinx Documentation, Release 0.9.2

The Save Method

When working with the Table object, Phinx stores certain operations in a pending changes cache.

When in doubt, it is recommended you call this method. It will commit any pending changes to the database.

Creating a Table

Creating a table is really easy using the Table object. Let’s create a table to store a collection of users.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$users = $this->table('users');
$users->addColumn('username', 'string', ['limit' => 20])

->addColumn('password', 'string', ['limit' => 40])
->addColumn('password_salt', 'string', ['limit' => 40])
->addColumn('email', 'string', ['limit' => 100])
->addColumn('first_name', 'string', ['limit' => 30])
->addColumn('last_name', 'string', ['limit' => 30])
->addColumn('created', 'datetime')
->addColumn('updated', 'datetime', ['null' => true])
->addIndex(['username', 'email'], ['unique' => true])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Columns are added using the addColumn() method. We create a unique index for both the username and email
columns using the addIndex() method. Finally calling save() commits the changes to the database.

Note: Phinx automatically creates an auto-incrementing primary key column called id for every table.

The id option sets the name of the automatically created identity field, while the primary_key option selects the
field or fields used for primary key. id will always override the primary_key option unless it’s set to false. If you
don’t need a primary key set id to false without specifying a primary_key, and no primary key will be created.

To specify an alternate primary key, you can specify the primary_key option when accessing the Table object.
Let’s disable the automatic id column and create a primary key using two columns instead:

10 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('followers', ['id' => false, 'primary_key' => ['user_id
→˓', 'follower_id']]);

$table->addColumn('user_id', 'integer')
->addColumn('follower_id', 'integer')
->addColumn('created', 'datetime')
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Setting a single primary_key doesn’t enable the AUTO_INCREMENT option. To simply change the name of the
primary key, we need to override the default id field name:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('followers', ['id' => 'user_id']);
$table->addColumn('follower_id', 'integer')

->addColumn('created', 'timestamp', ['default' => 'CURRENT_TIMESTAMP'])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

In addition, the MySQL adapter supports following options:

1.4. Writing Migrations 11

Phinx Documentation, Release 0.9.2

Option Description
comment set a text comment on the table
row_format set the table row format
engine define table engine (defaults to ‘‘InnoDB‘‘)
collation define table collation (defaults to ‘‘utf8_general_ci‘‘)
signed whether the primary key is signed (defaults to ‘‘true‘‘)

By default the primary key is signed. To simply set it to unsigned just pass signed option with a false value:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('followers', ['signed' => false]);
$table->addColumn('follower_id', 'integer')

->addColumn('created', 'timestamp', ['default' => 'CURRENT_TIMESTAMP'])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

The PostgreSQL adapter supports the following options:

Option Description
comment set a text comment on the table

Valid Column Types

Column types are specified as strings and can be one of:

• biginteger

• binary

• boolean

• date

• datetime

• decimal

• float

12 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

• integer

• string

• text

• time

• timestamp

• uuid

In addition, the MySQL adapter supports enum, set, blob and json column types. (json in MySQL 5.7 and
above)

In addition, the Postgres adapter supports smallint, interval, json, jsonb, uuid, cidr, inet and
macaddr column types (PostgreSQL 9.3 and above).

For valid options, see the Valid Column Options below.

Custom Column Types & Default Values

Some DBMS systems provide additional column types and default values that are specific to them. If you don’t
want to keep your migrations DBMS-agnostic you can use those custom types in your migrations through the
\Phinx\Util\Literal::from method, which takes a string as its only argument, and returns an instance of
\Phinx\Util\Literal. When Phinx encounters this value as a column’s type it knows not to run any validation
on it and to use it exactly as supplied without escaping. This also works for default values.

You can see an example below showing how to add a citext column as well as a column whose default value is a
function, in PostgreSQL. This method of preventing the built-in escaping is supported in all adapters.

<?php

use Phinx\Migration\AbstractMigration;
use Phinx\Util\Literal;

class AddSomeColumns extends AbstractMigration
{

public function change()
{

$this->table('users')
->addColumn('username', Literal::from('citext'))
->addColumn('uniqid', 'uuid', [

'default' => Literal::from('uuid_generate_v4()')
])
->addColumn('creation', 'timestamp', [

'timezone' => true,
'default' => Literal::from('now()')

])
->save();

}
}

Determining Whether a Table Exists

You can determine whether or not a table exists by using the hasTable() method.

1.4. Writing Migrations 13

Phinx Documentation, Release 0.9.2

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$exists = $this->hasTable('users');
if ($exists) {

// do something
}

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Dropping a Table

Tables can be dropped quite easily using the drop() method. It is a good idea to recreate the table again in the
down() method.

Note that like other methods in the Table class, drop also needs save() to be called at the end in order to be
executed. This allows phinx to intelligently plan migrations when more than one table is involved.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$this->table('users')->drop()->save();
}

/**
* Migrate Down.

*/
public function down()
{

$users = $this->table('users');
$users->addColumn('username', 'string', ['limit' => 20])

->addColumn('password', 'string', ['limit' => 40])

(continues on next page)

14 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

->addColumn('password_salt', 'string', ['limit' => 40])
->addColumn('email', 'string', ['limit' => 100])
->addColumn('first_name', 'string', ['limit' => 30])
->addColumn('last_name', 'string', ['limit' => 30])
->addColumn('created', 'datetime')
->addColumn('updated', 'datetime', ['null' => true])
->addIndex(['username', 'email'], ['unique' => true])
->save();

}
}

Renaming a Table

To rename a table access an instance of the Table object then call the rename() method.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('users');
$table->rename('legacy_users');

}

/**
* Migrate Down.

*/
public function down()
{

$table = $this->table('legacy_users');
$table->rename('users');

}
}

Changing the Primary Key

To change the primary key on an existing table, use the changePrimaryKey() method. Pass in a column name
or array of columns names to include in the primary key, or null to drop the primary key. Note that the mentioned
columns must be added to the table, they will not be added implicitly.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
(continues on next page)

1.4. Writing Migrations 15

Phinx Documentation, Release 0.9.2

(continued from previous page)

* Migrate Up.

*/
public function up()
{

$users = $this->table('users');
$users

->addColumn('username', 'string', ['limit' => 20, 'null' => false])
->addColumn('password', 'string', ['limit' => 40])
->save();

$users
->addColumn('new_id', 'integer', ['null' => false])
->changePrimaryKey(['new_id', 'username'])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Changing the Table Comment

To change the comment on an existing table, use the changeComment() method. Pass in a string to set as the new
table comment, or null to drop the existing comment.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$users = $this->table('users');
$users

->addColumn('username', 'string', ['limit' => 20])
->addColumn('password', 'string', ['limit' => 40])
->save();

$users
->changeComment('This is the table with users auth information, password

→˓should be encrypted')
->save();

}

/**
* Migrate Down.

(continues on next page)

16 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

*/
public function down()
{

}
}

1.4.6 Working With Columns

Valid Column Types

Column types are specified as strings and can be one of:

• biginteger

• binary

• boolean

• char

• date

• datetime

• decimal

• float

• integer

• string

• text

• time

• timestamp

• uuid

In addition, the MySQL adapter supports enum, set and blob column types.

In addition, the Postgres adapter supports smallint, json, jsonb, uuid, cidr, inet and macaddr column
types (PostgreSQL 9.3 and above).

Valid Column Options

The following are valid column options:

For any column type:

Option Description
limit set maximum length for strings, also hints column types in adapters (see note below)
length alias for limit
default set default value or action
null allow NULL values (should not be used with primary keys!)
after specify the column that a new column should be placed after (only applies to MySQL)
comment set a text comment on the column

1.4. Writing Migrations 17

Phinx Documentation, Release 0.9.2

For decimal columns:

Option Description
precision combine with scale set to set decimal accuracy
scale combine with precision to set decimal accuracy
signed enable or disable the unsigned option (only applies to MySQL)

For enum and set columns:

Option Description
values Can be a comma separated list or an array of values

For integer and biginteger columns:

Option Description
identity enable or disable automatic incrementing
signed enable or disable the unsigned option (only applies to MySQL)

For timestamp columns:

Option Description
default set default value (use with CURRENT_TIMESTAMP)
update set an action to be triggered when the row is updated (use with CURRENT_TIMESTAMP)
time-
zone

enable or disable the with time zone option for time and timestamp columns (only applies to
Postgres)

You can add created_at and updated_at timestamps to a table using the addTimestamps() method. This
method also allows you to supply alternative names. The optional third argument allows you to change the timezone
option for the columns being added. Additionally, you can use the addTimestampsWithTimezone() method,
which is an alias to addTimestamps() that will always set the third argument to true (see examples below).

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Change.

*/
public function change()
{

// Use defaults (without timezones)
$table = $this->table('users')->addTimestamps()->create();
// Use defaults (with timezones)
$table = $this->table('users')->addTimestampsWithTimezone()->create();

// Override the 'created_at' column name with 'recorded_at'.
$table = $this->table('books')->addTimestamps('recorded_at')->create();

// Override the 'updated_at' column name with 'amended_at', preserving
→˓timezones.

// The two lines below do the same, the second one is simply cleaner.

(continues on next page)

18 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

$table = $this->table('books')->addTimestamps(null, 'amended_at', true)->
→˓create();

$table = $this->table('users')->addTimestampsWithTimezone(null, 'amended_at')-
→˓>create();

}
}

For boolean columns:

Option Description
signed enable or disable the unsigned option (only applies to MySQL)

For string and text columns:

Option Description
collation set collation that differs from table defaults (only applies to MySQL)
encoding set character set that differs from table defaults (only applies to MySQL)

For foreign key definitions:

Option Description
update set an action to be triggered when the row is updated
delete set an action to be triggered when the row is deleted

You can pass one or more of these options to any column with the optional third argument array.

Limit Option and PostgreSQL

When using the PostgreSQL adapter, additional hinting of database column type can be made for integer columns.
Using limit with one the following options will modify the column type accordingly:

Limit Column Type
INT_SMALL SMALLINT

use Phinx\Db\Adapter\PostgresAdapter;

//...

$table = $this->table('cart_items');
$table->addColumn('user_id', 'integer')

->addColumn('subtype_id', 'integer', ['limit' => PostgresAdapter::INT_SMALL])
->create();

Limit Option and MySQL

When using the MySQL adapter, additional hinting of database column type can be made for integer, text and
blob columns. Using limit with one the following options will modify the column type accordingly:

1.4. Writing Migrations 19

Phinx Documentation, Release 0.9.2

Limit Column Type
BLOB_TINY TINYBLOB
BLOB_REGULAR BLOB
BLOB_MEDIUM MEDIUMBLOB
BLOB_LONG LONGBLOB
TEXT_TINY TINYTEXT
TEXT_REGULAR TEXT
TEXT_MEDIUM MEDIUMTEXT
TEXT_LONG LONGTEXT
INT_TINY TINYINT
INT_SMALL SMALLINT
INT_MEDIUM MEDIUMINT
INT_REGULAR INT
INT_BIG BIGINT

use Phinx\Db\Adapter\MysqlAdapter;

//...

$table = $this->table('cart_items');
$table->addColumn('user_id', 'integer')

->addColumn('product_id', 'integer', ['limit' => MysqlAdapter::INT_BIG])
->addColumn('subtype_id', 'integer', ['limit' => MysqlAdapter::INT_SMALL])
->addColumn('quantity', 'integer', ['limit' => MysqlAdapter::INT_TINY])
->create();

Get a column list

To retrieve all table columns, simply create a table object and call getColumns() method. This method will return an
array of Column classes with basic info. Example below:

<?php

use Phinx\Migration\AbstractMigration;

class ColumnListMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$columns = $this->table('users')->getColumns();
...

}

/**
* Migrate Down.

*/
public function down()
{

...
}

}

20 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

Get a column by name

To retrieve one table column, simply create a table object and call the getColumn() method. This method will return a
Column class with basic info or NULL when the column doesn’t exist. Example below:

<?php

use Phinx\Migration\AbstractMigration;

class ColumnListMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$column = $this->table('users')->getColumn('email');
...

}

/**
* Migrate Down.

*/
public function down()
{

...
}

}

Checking whether a column exists

You can check if a table already has a certain column by using the hasColumn() method.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Change Method.

*/
public function change()
{

$table = $this->table('user');
$column = $table->hasColumn('username');

if ($column) {
// do something

}

}
}

1.4. Writing Migrations 21

Phinx Documentation, Release 0.9.2

Renaming a Column

To rename a column, access an instance of the Table object then call the renameColumn() method.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('users');
$table->renameColumn('bio', 'biography');

}

/**
* Migrate Down.

*/
public function down()
{

$table = $this->table('users');
$table->renameColumn('biography', 'bio');

}
}

Adding a Column After Another Column

When adding a column you can dictate its position using the after option.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Change Method.

*/
public function change()
{

$table = $this->table('users');
$table->addColumn('city', 'string', ['after' => 'email'])

->update();
}

}

Dropping a Column

To drop a column, use the removeColumn() method.

22 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate up.

*/
public function up()
{

$table = $this->table('users');
$table->removeColumn('short_name')

->save();
}

}

Specifying a Column Limit

You can limit the maximum length of a column by using the limit option.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Change Method.

*/
public function change()
{

$table = $this->table('tags');
$table->addColumn('short_name', 'string', ['limit' => 30])

->update();
}

}

Changing Column Attributes

To change column type or options on an existing column, use the changeColumn() method. See ‘Valid Column
Types‘_ and Valid Column Options for allowed values.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

(continues on next page)

1.4. Writing Migrations 23

Phinx Documentation, Release 0.9.2

(continued from previous page)

$users = $this->table('users');
$users->changeColumn('email', 'string', ['limit' => 255])

->save();
}

/**
* Migrate Down.

*/
public function down()
{

}
}

1.4.7 Working With Indexes

To add an index to a table you can simply call the addIndex() method on the table object.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('users');
$table->addColumn('city', 'string')

->addIndex(['city'])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

By default Phinx instructs the database adapter to create a normal index. We can pass an additional parameter unique
to the addIndex() method to specify a unique index. We can also explicitly specify a name for the index using the
name parameter.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
(continues on next page)

24 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

* Migrate Up.

*/
public function up()
{

$table = $this->table('users');
$table->addColumn('email', 'string')

->addIndex(['email'], [
'unique' => true,
'name' => 'idx_users_email'])

->save();
}

/**
* Migrate Down.

*/
public function down()
{

}
}

The MySQL adapter also supports fulltext indexes. If you are using a version before 5.6 you must ensure the
table uses the MyISAM engine.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

public function change()
{

$table = $this->table('users', ['engine' => 'MyISAM']);
$table->addColumn('email', 'string')

->addIndex('email', ['type' => 'fulltext'])
->create();

}
}

In addition, MySQL adapter also supports setting the index length defined by limit option. When you are using a
multi-column index, you are able to define each column index length. The single column index can define its index
length with or without defining column name in limit option.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

public function change()
{

$table = $this->table('users');
$table->addColumn('email', 'string')

->addColumn('username','string')
->addColumn('user_guid', 'string', ['limit' => 36])
->addIndex(['email','username'], ['limit' => ['email' => 5, 'username'

→˓=> 2]])
(continues on next page)

1.4. Writing Migrations 25

Phinx Documentation, Release 0.9.2

(continued from previous page)

->addIndex('user_guid', ['limit' => 6])
->create();

}
}

Removing indexes is as easy as calling the removeIndex() method. You must call this method for each index.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('users');
$table->removeIndex(['email']);

// alternatively, you can delete an index by its name, ie:
$table->removeIndexByName('idx_users_email');

}

/**
* Migrate Down.

*/
public function down()
{

}
}

Note: There is no need to call the save() method when using removeIndex(). The index will be removed
immediately.

1.4.8 Working With Foreign Keys

Phinx has support for creating foreign key constraints on your database tables. Let’s add a foreign key to an example
table:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

(continues on next page)

26 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

$table = $this->table('tags');
$table->addColumn('tag_name', 'string')

->save();

$refTable = $this->table('tag_relationships');
$refTable->addColumn('tag_id', 'integer', ['null' => true])

->addForeignKey('tag_id', 'tags', 'id', ['delete'=> 'SET_NULL',
→˓'update'=> 'NO_ACTION'])

->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

“On delete” and “On update” actions are defined with a ‘delete’ and ‘update’ options array. Possibles values are
‘SET_NULL’, ‘NO_ACTION’, ‘CASCADE’ and ‘RESTRICT’. If ‘SET_NULL’ is used then the column must be
created as nullable with the option ['null' => true]. Constraint name can be changed with the ‘constraint’
option.

It is also possible to pass addForeignKey() an array of columns. This allows us to establish a foreign key
relationship to a table which uses a combined key.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('follower_events');
$table->addColumn('user_id', 'integer')

->addColumn('follower_id', 'integer')
->addColumn('event_id', 'integer')
->addForeignKey(['user_id', 'follower_id'],

'followers',
['user_id', 'follower_id'],
['delete'=> 'NO_ACTION', 'update'=> 'NO_ACTION',

→˓'constraint' => 'user_follower_id'])
->save();

}

/**
* Migrate Down.

*/
public function down()
{

(continues on next page)

1.4. Writing Migrations 27

Phinx Documentation, Release 0.9.2

(continued from previous page)

}
}

We can add named foreign keys using the constraint parameter. This feature is supported as of Phinx version
0.6.5

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('your_table');
$table->addForeignKey('foreign_id', 'reference_table', ['id'],

['constraint' => 'your_foreign_key_name']);
->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

We can also easily check if a foreign key exists:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('tag_relationships');
$exists = $table->hasForeignKey('tag_id');
if ($exists) {

// do something
}

}

/**
* Migrate Down.

*/

(continues on next page)

28 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

public function down()
{

}
}

Finally, to delete a foreign key, use the dropForeignKey method.

Note that like other methods in the Table class, dropForeignKey also needs save() to be called at the end in
order to be executed. This allows phinx to intelligently plan migrations when more than one table is involved.

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

$table = $this->table('tag_relationships');
$table->dropForeignKey('tag_id')->save();

}

/**
* Migrate Down.

*/
public function down()
{

}
}

1.4.9 Using the Query Builder

It is not uncommon to pair database structuree changes with data changes. For example, you may want to migrate the
data in a couple columns from the users to a newly created table. For this type of scenarios, Phinx provides access to
a Query builder object, that you may use to execute complex SELECT, UPDATE, INSERT or DELETE statements.

The Query builder is provided by the cakephp/database project, and should be easy to work with as it resembles very
closely plain SQL. Accesing the query builder is done by calling the getQueryBuilder() function:

<?php

use Phinx\Migration\AbstractMigration;

class MyNewMigration extends AbstractMigration
{

/**
* Migrate Up.

*/
public function up()
{

(continues on next page)

1.4. Writing Migrations 29

https://github.com/cakephp/database

Phinx Documentation, Release 0.9.2

(continued from previous page)

$builder = $this->getQueryBuilder();
$statement = $builder->select('*')->from('users')->execute();
var_dump($statement->fetchAll());

}
}

Selecting Fields

Adding fields to the SELECT clause:

<?php
$builder->select(['id', 'title', 'body']);

// Results in SELECT id AS pk, title AS aliased_title, body ...
$builder->select(['pk' => 'id', 'aliased_title' => 'title', 'body']);

// Use a closure
$builder->select(function ($builder) {

return ['id', 'title', 'body'];
});

Where Conditions

Generating conditions:

// WHERE id = 1
$builder->where(['id' => 1]);

// WHERE id > 2
$builder->where(['id >' => 1]);

As you can see you can use any operator by placing it with a space after the field name. Adding multiple conditions is
easy as well:

<?php
$builder->where(['id >' => 1])->andWhere(['title' => 'My Title']);

// Equivalent to
$builder->where(['id >' => 1, 'title' => 'My title']);

// WHERE id > 1 OR title = 'My title'
$builder->where(['OR' => ['id >' => 1, 'title' => 'My title']]);

For even more complex conditions you can use closures and expression objects:

<?php
// Coditions are tied together with AND by default
$builder

->select('*')
->from('articles')
->where(function ($exp) {

return $exp
->eq('author_id', 2)

(continues on next page)

30 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

->eq('published', true)
->notEq('spam', true)
->gt('view_count', 10);

});

Which results in:

SELECT * FROM articles
WHERE

author_id = 2
AND published = 1
AND spam != 1
AND view_count > 10

Combining expressions is also possible:

<?php
$builder

->select('*')
->from('articles')
->where(function ($exp) {

$orConditions = $exp->or_(['author_id' => 2])
->eq('author_id', 5);

return $exp
->not($orConditions)
->lte('view_count', 10);

});

It generates:

SELECT *
FROM articles
WHERE

NOT (author_id = 2 OR author_id = 5)
AND view_count <= 10

When using the expression objects you can use the following methods to create conditions:

• eq() Creates an equality condition.

• notEq() Create an inequality condition

• like() Create a condition using the LIKE operator.

• notLike() Create a negated LIKE condition.

• in() Create a condition using IN.

• notIn() Create a negated condition using IN.

• gt() Create a > condition.

• gte() Create a >= condition.

• lt() Create a < condition.

• lte() Create a <= condition.

• isNull() Create an IS NULL condition.

• isNotNull() Create a negated IS NULL condition.

1.4. Writing Migrations 31

Phinx Documentation, Release 0.9.2

Aggregates and SQL Functions

<?php
// Results in SELECT COUNT(*) count FROM ...
$builder->select(['count' => $builder->func()->count('*')]);

A number of commonly used functions can be created with the func() method:

• sum() Calculate a sum. The arguments will be treated as literal values.

• avg() Calculate an average. The arguments will be treated as literal values.

• min() Calculate the min of a column. The arguments will be treated as literal values.

• max() Calculate the max of a column. The arguments will be treated as literal values.

• count() Calculate the count. The arguments will be treated as literal values.

• concat() Concatenate two values together. The arguments are treated as bound parameters unless marked as
literal.

• coalesce() Coalesce values. The arguments are treated as bound parameters unless marked as literal.

• dateDiff() Get the difference between two dates/times. The arguments are treated as bound parameters
unless marked as literal.

• now() Take either ‘time’ or ‘date’ as an argument allowing you to get either the current time, or current date.

When providing arguments for SQL functions, there are two kinds of parameters you can use, literal arguments and
bound parameters. Literal parameters allow you to reference columns or other SQL literals. Bound parameters can be
used to safely add user data to SQL functions. For example:

<?php
// Generates:
// SELECT CONCAT(title, ' NEW') ...;
$concat = $builder->func()->concat([

'title' => 'literal',
' NEW'

]);
$query->select(['title' => $concat]);

Getting Results out of a Query

Once you’ve made your query, you’ll want to retrieve rows from it. There are a few ways of doing this:

<?php
// Iterate the query
foreach ($builder as $row) {

echo $row['title'];
}

// Get the statement and fetch all results
$results = $builder->execute()->fetchAll('assoc');

Creating an Insert Query

Creating insert queries is also possible:

32 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

<?php
$builder = $this->getQueryBuilder();
$builder

->insert(['first_name', 'last_name'])
->into('users')
->values(['first_name' => 'Steve', 'last_name' => 'Jobs'])
->values(['first_name' => 'Jon', 'last_name' => 'Snow'])
->execute()

For increased performance, you can use another builder object as the values for an insert query:

<?php

$namesQuery = $this->getQueryBuilder();
$namesQuery

->select(['fname', 'lname'])
->from('users')
->where(['is_active' => true])

$builder = $this->getQueryBuilder();
$st = $builder

->insert(['first_name', 'last_name'])
->into('names')
->values($namesQuery)
->execute()

var_dump($st->lastInsertId('names', 'id'));

The above code will generate:

INSERT INTO names (first_name, last_name)
(SELECT fname, lname FROM USERS where is_active = 1)

Creating an update Query

Creating update queries is similar to both inserting and selecting:

<?php
$builder = $this->getQueryBuilder();
$builder

->update('users')
->set('fname', 'Snow')
->where(['fname' => 'Jon'])
->execute()

Creating a Delete Query

Finally, delete queries:

<?php
$builder = $this->getQueryBuilder();
$builder

->delete('users')
->where(['accepted_gdpr' => false])
->execute()

1.4. Writing Migrations 33

Phinx Documentation, Release 0.9.2

1.5 Database Seeding

In version 0.5.0 Phinx introduced support for seeding your database with test data. Seed classes are a great way to
easily fill your database with data after it’s created. By default they are stored in the seeds directory; however, this
path can be changed in your configuration file.

Note: Database seeding is entirely optional, and Phinx does not create a seeds directory by default.

1.5.1 Creating a New Seed Class

Phinx includes a command to easily generate a new seed class:

$ php vendor/bin/phinx seed:create UserSeeder

If you have specified multiple seed paths, you will be asked to select which path to create the new seed class in.

It is based on a skeleton template:

<?php

use Phinx\Seed\AbstractSeed;

class MyNewSeeder extends AbstractSeed
{

/**
* Run Method.

*
* Write your database seeder using this method.

*
* More information on writing seeders is available here:

* http://docs.phinx.org/en/latest/seeding.html

*/
public function run()
{

}
}

1.5.2 The AbstractSeed Class

All Phinx seeds extend from the AbstractSeed class. This class provides the necessary support to create your seed
classes. Seed classes are primarily used to insert test data.

The Run Method

The run method is automatically invoked by Phinx when you execute the seed:run command. You should use this
method to insert your test data.

Note: Unlike with migrations, Phinx does not keep track of which seed classes have been run. This means database
seeders can be run repeatedly. Keep this in mind when developing them.

34 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

Foreign Key Dependencies

Often you’ll find that seeders need to run in a particular order, so they don’t violate foreign key constraints. To define
this order, you can implement the getDependencies() method that returns an array of seeders to run before the
current seeder:

<?php

use Phinx\Seed\AbstractSeed;

class ShoppingCartSeeder extends AbstractSeed
{

public function getDependencies()
{

return [
'UserSeeder',
'ShopItemSeeder'

];
}

public function run()
{

// Seed the shopping cart after the `UserSeeder` and
// `ShopItemSeeder` have been run.

}
}

1.5.3 Inserting Data

Using The Table Object

Seed classes can also use the familiar Table object to insert data. You can retrieve an instance of the Table object by
calling the table() method from within your seed class and then use the insert() method to insert data:

<?php

use Phinx\Seed\AbstractSeed;

class PostsSeeder extends AbstractSeed
{

public function run()
{

$data = [
[

'body' => 'foo',
'created' => date('Y-m-d H:i:s'),

],[
'body' => 'bar',
'created' => date('Y-m-d H:i:s'),

]
];

$posts = $this->table('posts');
$posts->insert($data)

->save();

(continues on next page)

1.5. Database Seeding 35

Phinx Documentation, Release 0.9.2

(continued from previous page)

}
}

Note: You must call the save() method to commit your data to the table. Phinx will buffer data until you do so.

Integrating with the Faker library

It’s trivial to use the awesome Faker library in your seed classes. Simply install it using Composer:

$ composer require fzaninotto/faker

Then use it in your seed classes:

<?php

use Phinx\Seed\AbstractSeed;

class UserSeeder extends AbstractSeed
{

public function run()
{

$faker = Faker\Factory::create();
$data = [];
for ($i = 0; $i < 100; $i++) {

$data[] = [
'username' => $faker->userName,
'password' => sha1($faker->password),
'password_salt' => sha1('foo'),
'email' => $faker->email,
'first_name' => $faker->firstName,
'last_name' => $faker->lastName,
'created' => date('Y-m-d H:i:s'),

];
}

$this->table('users')->insert($data)->save();
}

}

1.5.4 Truncating Tables

In addition to inserting data Phinx makes it trivial to empty your tables using the SQL TRUNCATE command:

<?php

use Phinx\Seed\AbstractSeed;

class UserSeeder extends AbstractSeed
{

public function run()
{

(continues on next page)

36 Chapter 1. Contents

https://github.com/fzaninotto/Faker

Phinx Documentation, Release 0.9.2

(continued from previous page)

$data = [
[

'body' => 'foo',
'created' => date('Y-m-d H:i:s'),

],
[

'body' => 'bar',
'created' => date('Y-m-d H:i:s'),

]
];

$posts = $this->table('posts');
$posts->insert($data)

->save();

// empty the table
$posts->truncate();

}
}

Note: SQLite doesn’t natively support the TRUNCATE command so behind the scenes DELETE FROM is used. It is
recommended to call the VACUUM command after truncating a table. Phinx does not do this automatically.

1.5.5 Executing Seed Classes

This is the easy part. To seed your database, simply use the seed:run command:

$ php vendor/bin/phinx seed:run

By default, Phinx will execute all available seed classes. If you would like to run a specific class, simply pass in the
name of it using the -s parameter:

$ php vendor/bin/phinx seed:run -s UserSeeder

You can also run multiple seeders:

$ php vendor/bin/phinx seed:run -s UserSeeder -s PermissionSeeder -s LogSeeder

You can also use the -v parameter for more output verbosity:

$ php vendor/bin/phinx seed:run -v

The Phinx seed functionality provides a simple mechanism to easily and repeatably insert test data into your database.

1.6 Commands

Phinx is run using a number of commands.

1.6. Commands 37

Phinx Documentation, Release 0.9.2

1.6.1 The Breakpoint Command

The Breakpoint command is used to set breakpoints, allowing you to limit rollbacks. You can toggle the breakpoint of
the most recent migration by not supplying any parameters.

$ phinx breakpoint -e development

To toggle a breakpoint on a specific version then use the --target parameter or -t for short.

$ phinx breakpoint -e development -t 20120103083322

You can remove all the breakpoints by using the --remove-all parameter or -r for short.

$ phinx breakpoint -e development -r

Breakpoints are visible when you run the status command.

1.6.2 The Create Command

The Create command is used to create a new migration file. It requires one argument: the name of the migration. The
migration name should be specified in CamelCase format.

$ phinx create MyNewMigration

Open the new migration file in your text editor to add your database transformations. Phinx creates migration files
using the path specified in your phinx.yml file. Please see the Configuration chapter for more information.

You are able to override the template file used by Phinx by supplying an alternative template filename.

$ phinx create MyNewMigration --template="<file>"

You can also supply a template generating class. This class must implement the interface
Phinx\Migration\CreationInterface.

$ phinx create MyNewMigration --class="<class>"

In addition to providing the template for the migration, the class can also define a callback that will be called once the
migration file has been generated from the template.

You cannot use --template and --class together.

1.6.3 The Init Command

The Init command (short for initialize) is used to prepare your project for Phinx. This command generates the phinx.
yml file in the root of your project directory.

$ cd yourapp
$ phinx init

Optionally you can specify a custom location for Phinx’s config file:

$ cd yourapp
$ phinx init ./custom/location/

You can also specify a custom file name:

38 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

$ cd yourapp
$ phinx init custom-config.yml

Open this file in your text editor to setup your project configuration. Please see the Configuration chapter for more
information.

1.6.4 The Migrate Command

The Migrate command runs all of the available migrations, optionally up to a specific version.

$ phinx migrate -e development

To migrate to a specific version then use the --target parameter or -t for short.

$ phinx migrate -e development -t 20110103081132

Use --dry-run to print the queries to standard output without executing them

$ phinx migrate --dry-run

1.6.5 The Rollback Command

The Rollback command is used to undo previous migrations executed by Phinx. It is the opposite of the Migrate
command.

You can rollback to the previous migration by using the rollback command with no arguments.

$ phinx rollback -e development

To rollback all migrations to a specific version then use the --target parameter or -t for short.

$ phinx rollback -e development -t 20120103083322

Specifying 0 as the target version will revert all migrations.

$ phinx rollback -e development -t 0

To rollback all migrations to a specific date then use the --date parameter or -d for short.

$ phinx rollback -e development -d 2012
$ phinx rollback -e development -d 201201
$ phinx rollback -e development -d 20120103
$ phinx rollback -e development -d 2012010312
$ phinx rollback -e development -d 201201031205
$ phinx rollback -e development -d 20120103120530

If a breakpoint is set, blocking further rollbacks, you can override the breakpoint using the --force parameter or -f
for short.

$ phinx rollback -e development -t 0 -f

Use --dry-run to print the queries to standard output without executing them

$ phinx rollback --dry-run

1.6. Commands 39

Phinx Documentation, Release 0.9.2

Note: When rolling back, Phinx orders the executed migrations using the order specified in the version_order
option of your phinx.yml file. Please see the Configuration chapter for more information.

1.6.6 The Status Command

The Status command prints a list of all migrations, along with their current status. You can use this command to
determine which migrations have been run.

$ phinx status -e development

This command exits with code 0 if the database is up-to-date (ie. all migrations are up) or one of the following codes
otherwise:

• 1: There is at least one down migration.

• 2: There is at least one missing migration.

1.6.7 The Seed Create Command

The Seed Create command can be used to create new database seed classes. It requires one argument, the name of the
class. The class name should be specified in CamelCase format.

$ phinx seed:create MyNewSeeder

Open the new seed file in your text editor to add your database seed commands. Phinx creates seed files using the path
specified in your phinx.yml file. Please see the Configuration chapter for more information.

1.6.8 The Seed Run Command

The Seed Run command runs all of the available seed classes or optionally just one.

$ phinx seed:run -e development

To run only one seed class use the --seed parameter or -s for short.

$ phinx seed:run -e development -s MyNewSeeder

1.6.9 Configuration File Parameter

When running Phinx from the command line, you may specify a configuration file using the --configuration or
-c parameter. In addition to YAML, the configuration file may be the computed output of a PHP file as a PHP array:

<?php
return [

"paths" => [
"migrations" => "application/migrations"

],
"environments" => [

"default_migration_table" => "phinxlog",
"default_database" => "dev",

(continues on next page)

40 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

(continued from previous page)

"dev" => [
"adapter" => "mysql",
"host" => $_ENV['DB_HOST'],
"name" => $_ENV['DB_NAME'],
"user" => $_ENV['DB_USER'],
"pass" => $_ENV['DB_PASS'],
"port" => $_ENV['DB_PORT']

]
]

];

Phinx auto-detects which language parser to use for files with *.yml, *.json, and *.php extensions. The appro-
priate parser may also be specified via the --parser and -p parameters. Anything other than "json" or "php"
is treated as YAML.

When using a PHP array, you can provide a connection key with an existing PDO instance. It is also important to
pass the database name too, as Phinx requires this for certain methods such as hasTable():

<?php
return [

"paths" => [
"migrations" => "application/migrations"

),
"environments" => [

"default_migration_table" => "phinxlog",
"default_database" => "dev",
"dev" => [

"name" => "dev_db",
"connection" => $pdo_instance

]
]

];

1.6.10 Running Phinx in a Web App

Phinx can also be run inside of a web application by using the Phinx\Wrapper\TextWrapper class. An example
of this is provided in app/web.php, which can be run as a standalone server:

$ php -S localhost:8000 vendor/robmorgan/phinx/app/web.php

This will create local web server at http://localhost:8000 which will show current migration status by default. To run
migrations up, use http://localhost:8000/migrate and to rollback use http://localhost:8000/rollback.

The included web app is only an example and should not be used in production!

Note: To modify configuration variables at runtime and override %%PHINX_DBNAME%% or other another dynamic
option, set $_SERVER['PHINX_DBNAME'] before running commands. Available options are documented in the
Configuration page.

1.6.11 Using Phinx with PHPUnit

Phinx can be used within your unit tests to prepare or seed the database. You can use it programatically :

1.6. Commands 41

http://localhost:8000
http://localhost:8000/migrate
http://localhost:8000/rollback

Phinx Documentation, Release 0.9.2

public function setUp ()
{

$app = new PhinxApplication();
$app->setAutoExit(false);
$app->run(new StringInput('migrate'), new NullOutput());

}

If you use a memory database, you’ll need to give Phinx a specific PDO instance. You can interact with Phinx directly
using the Manager class :

use PDO;
use Phinx\Config\Config;
use Phinx\Migration\Manager;
use PHPUnit\Framework\TestCase;
use Symfony\Component\Console\Input\StringInput;
use Symfony\Component\Console\Output\NullOutput;

class DatabaseTestCase extends TestCase {

public function setUp ()
{

$pdo = new PDO('sqlite::memory:', null, null, [
PDO::ATTR_ERRMODE => PDO::ERRMODE_EXCEPTION

]);
$configArray = require('phinx.php');
$configArray['environments']['test'] = [

'adapter' => 'sqlite',
'connection' => $pdo

];
$config = new Config($configArray);
$manager = new Manager($config, new StringInput(' '), new NullOutput());
$manager->migrate('test');
$manager->seed('test');
// You can change default fetch mode after the seeding
$this->pdo->setAttribute(PDO::ATTR_DEFAULT_FETCH_MODE, PDO::FETCH_OBJ);
$this->pdo = $pdo;

}

}

1.7 Configuration

When you initialize your project using the Init Command, Phinx creates a default file in the root of your project
directory. By default, this file uses the YAML data serialization format, but you can use the --format command
line option to specify either yml, json, or php.

If a --configuration command line option is given, Phinx will load the specified file. Otherwise, it will attempt
to find phinx.php, phinx.json or phinx.yml and load the first file found. See the Commands chapter for
more information.

Warning: Remember to store the configuration file outside of a publicly accessible directory on your webserver.
This file contains your database credentials and may be accidentally served as plain text.

Note that while JSON and YAML files are parsed, the PHP file is included. This means that:

42 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

• It must return an array of configuration items.

• The variable scope is local, i.e. you would need to explicitly declare any global variables your initialization file
reads or modifies.

• Its standard output is suppressed.

• Unlike with JSON and YAML, it is possible to omit environment connection details and instead specify
connection which must contain an initialized PDO instance. This is useful when you want your migra-
tions to interact with your application and/or share the same connection. However remember to also pass the
database name as Phinx cannot infer this from the PDO connection.

$app = require 'app/phinx.php';
$pdo = $app->getDatabase()->getPdo();

return [
'environments' => [

'default_database' => 'development',
'development' => [

'name' => 'devdb',
'connection' => $pdo

]
]

];

1.7.1 Migration Paths

The first option specifies the path to your migration directory. Phinx uses %%PHINX_CONFIG_DIR%%/db/
migrations by default.

Note: %%PHINX_CONFIG_DIR%% is a special token and is automatically replaced with the root directory where
your phinx.yml file is stored.

In order to overwrite the default %%PHINX_CONFIG_DIR%%/db/migrations, you need to add the following to
the yaml configuration.

paths:
migrations: /your/full/path

You can also provide multiple migration paths by using an array in your configuration:

paths:
migrations:

- application/module1/migrations
- application/module2/migrations

You can also use the %%PHINX_CONFIG_DIR%% token in your path.

paths:
migrations: '%%PHINX_CONFIG_DIR%%/your/relative/path'

Migrations are captured with glob, so you can define a pattern for multiple directories.

paths:
migrations: '%%PHINX_CONFIG_DIR%%/module/*/{data,scripts}/migrations'

1.7. Configuration 43

Phinx Documentation, Release 0.9.2

1.7.2 Custom Migration Base

By default all migrations will extend from Phinx’s AbstractMigration class. This can be set to a custom class that
extends from AbstractMigration by setting migration_base_class in your config:

migration_base_class: MyMagicalMigration

1.7.3 Seed Paths

The second option specifies the path to your seed directory. Phinx uses %%PHINX_CONFIG_DIR%%/db/seeds by
default.

Note: %%PHINX_CONFIG_DIR%% is a special token and is automatically replaced with the root directory where
your phinx.yml file is stored.

In order to overwrite the default %%PHINX_CONFIG_DIR%%/db/seeds, you need to add the following to the yaml
configuration.

paths:
seeds: /your/full/path

You can also provide multiple seed paths by using an array in your configuration:

paths:
seeds:

- /your/full/path1
- /your/full/path2

You can also use the %%PHINX_CONFIG_DIR%% token in your path.

paths:
seeds: '%%PHINX_CONFIG_DIR%%/your/relative/path'

1.7.4 Environments

One of the key features of Phinx is support for multiple database environments. You can use Phinx to create migrations
on your development environment, then run the same migrations on your production environment. Environments are
specified under the environments nested collection. For example:

environments:
default_migration_table: phinxlog
default_database: development
production:

adapter: mysql
host: localhost
name: production_db
user: root
pass: ''
port: 3306
charset: utf8
collation: utf8_unicode_ci

44 Chapter 1. Contents

Phinx Documentation, Release 0.9.2

would define a new environment called production.

In a situation when multiple developers work on the same project and each has a different environment
(e.g. a convention such as <environment type>-<developer name>-<machine name>), or when
you need to have separate environments for separate purposes (branches, testing, etc) use environment variable
PHINX_ENVIRONMENT to override the default environment in the yaml file:

export PHINX_ENVIRONMENT=dev-`whoami`-`hostname`

1.7.5 Table Prefix and Suffix

You can define a table prefix and table suffix:

environments:
development:

....
table_prefix: dev_
table_suffix: _v1

testing:
....
table_prefix: test_
table_suffix: _v2

1.7.6 Socket Connections

When using the MySQL adapter, it is also possible to use sockets instead of network connections. The socket path is
configured with unix_socket:

environments:
default_migration_table: phinxlog
default_database: development
production:

adapter: mysql
name: production_db
user: root
pass: ''
unix_socket: /var/run/mysql/mysql.sock
charset: utf8

1.7.7 External Variables

Phinx will automatically grab any environment variable prefixed with PHINX_ and make it available as a token in
the config file. The token will have exactly the same name as the variable but you must access it by wrapping two
%% symbols on either side. e.g: '%%PHINX_DBUSER%%'. This is especially useful if you wish to store your secret
database credentials directly on the server and not in a version control system. This feature can be easily demonstrated
by the following example:

environments:
default_migration_table: phinxlog
default_database: development
production:

adapter: mysql

(continues on next page)

1.7. Configuration 45

Phinx Documentation, Release 0.9.2

(continued from previous page)

host: '%%PHINX_DBHOST%%'
name: '%%PHINX_DBNAME%%'
user: '%%PHINX_DBUSER%%'
pass: '%%PHINX_DBPASS%%'
port: 3306
charset: utf8

1.7.8 Data Source Names

Phinx supports the use of data source names (DSN) to specify the connection options, which can be useful if you
use a single environment variable to hold the database credentials. PDO has a different DSN formats depending on
the underlying driver, so Phinx uses a database-agnostic DSN format used by other projects (Doctrine, Rails, AMQP,
PaaS, etc).

<adapter>://[<user>[:<pass>]@]<host>[:<port>]/<name>[?<additionalOptions>]

• A DSN requires at least adapter, host and name.

• You cannot specify a password without a username.

• port must be a positive integer.

• additionalOptions takes the form of a query string, and will be passed to the adapter in the options array.

environments:
default_migration_table: phinxlog
default_database: development
production:

Example data source name
dsn: mysql://root@localhost:3306/mydb?charset=utf8

Once a DSN is parsed, it’s values are merged with the already existing connection options. Values in specified in a
DSN will never override any value specified directly as connection options.

environments:
default_migration_table: phinxlog
default_database: development
development:

dsn: %%DATABASE_URL%%
production:

dsn: %%DATABASE_URL%%
name: production_database

If the supplied DSN is invalid, then it is completely ignored.

1.7.9 Supported Adapters

Phinx currently supports the following database adapters natively:

• MySQL: specify the mysql adapter.

• PostgreSQL: specify the pgsql adapter.

• SQLite: specify the sqlite adapter.

• SQL Server: specify the sqlsrv adapter.

46 Chapter 1. Contents

http://www.mysql.com/
http://www.postgresql.org/
http://www.sqlite.org/
http://www.microsoft.com/sqlserver

Phinx Documentation, Release 0.9.2

SQLite

Declaring an SQLite database uses a simplified structure:

environments:
development:

adapter: sqlite
name: ./data/derby
suffix: ".db" # Defaults to ".sqlite3"

testing:
adapter: sqlite
memory: true # Setting memory to *any* value overrides name

SQL Server

When using the sqlsrv adapter and connecting to a named instance you should omit the port setting as SQL Server
will negotiate the port automatically. Additionally, omit the charset: utf8 or change to charset: 65001
which corresponds to UTF8 for SQL Server.

Custom Adapters

You can provide a custom adapter by registering an implementation of the Phinx\Db\Adapter\AdapterInterface with
AdapterFactory:

$name = 'fizz';
$class = 'Acme\Adapter\FizzAdapter';

AdapterFactory::instance()->registerAdapter($name, $class);

Adapters can be registered any time before $app->run() is called, which normally called by bin/phinx.

1.7.10 Aliases

Template creation class names can be aliased and used with the --class command line option for the Create Com-
mand.

The aliased classes will still be required to implement the Phinx\Migration\CreationInterface interface.

aliases:
permission: \Namespace\Migrations\PermissionMigrationTemplateGenerator
view: \Namespace\Migrations\ViewMigrationTemplateGenerator

1.7.11 Version Order

When rolling back or printing the status of migrations, Phinx orders the executed migrations according to the
version_order option, which can have the following values:

• creation (the default): migrations are ordered by their creation time, which is also part of their filename.

• execution: migrations are ordered by their execution time, also known as start time.

1.7. Configuration 47

Phinx Documentation, Release 0.9.2

1.8 Copyright

License

(The MIT license)

Copyright (c) 2012 Rob Morgan

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documen-
tation files (the “Software”), to deal in the Software without restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom
the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the
Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PAR-
TICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFT-
WARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

48 Chapter 1. Contents

CHAPTER 2

Indices and tables

• genindex

• modindex

• search

49

Phinx Documentation, Release 0.9.2

50 Chapter 2. Indices and tables

Index

C
Commands, 37
Configuration, 42
Copyright, 47

D
Database Seeding, 33

G
Goals, 3

I
Installation, 3
Introduction, 3

W
Writing Migrations, 4

51

	Contents
	Introduction
	Goals
	Installation
	Writing Migrations
	Database Seeding
	Commands
	Configuration
	Copyright

	Indices and tables

