
Money Documentation
Release 3.0.0

Mathias Verraes

December 05, 2018

Features

1 Why a Money library for PHP? 3

2 The goal 5
2.1 Getting started . 5
2.2 Concept . 6
2.3 Inspiration . 7
2.4 Operation . 7
2.5 Comparison . 9
2.6 Allocation . 11
2.7 Parsing . 11
2.8 Formatting . 13
2.9 Aggregation . 15
2.10 Currencies . 15
2.11 Currency Conversion . 17
2.12 Bitcoin . 19

Bibliography 21

i

ii

Money Documentation, Release 3.0.0

This library intends to provide tools for storing and using monetary values in an easy, yet powerful way.

Features 1

Money Documentation, Release 3.0.0

2 Features

CHAPTER 1

Why a Money library for PHP?

Also see http://blog.verraes.net/2011/04/fowler-money-pattern-in-php/

This is a PHP implementation of the Money pattern, as described in [Fowler2002] :

A large proportion of the computers in this world manipulate money, so it’s always puzzled me that
money isn’t actually a first class data type in any mainstream programming language. The lack of a type
causes problems, the most obvious surrounding currencies. If all your calculations are done in a single
currency, this isn’t a huge problem, but once you involve multiple currencies you want to avoid adding
your dollars to your yen without taking the currency differences into account. The more subtle problem is
with rounding. Monetary calculations are often rounded to the smallest currency unit. When you do this
it’s easy to lose pennies (or your local equivalent) because of rounding errors.

3

http://blog.verraes.net/2011/04/fowler-money-pattern-in-php/

Money Documentation, Release 3.0.0

4 Chapter 1. Why a Money library for PHP?

CHAPTER 2

The goal

Implement a reusable Money class in PHP, using all the best practices and taking care of all the subtle intricacies of
handling money.

Getting started

Instantiation

All amounts are represented in the smallest unit (eg. cents), so USD 5.00 is written as

use Money\Currency;
use Money\Money;

$fiver = new Money(500, new Currency('USD'));
// or shorter:
$fiver = Money::USD(500);

See Parsing for additional ways to instantiate a Money object from strings.

Accepted integer values

The Money object only supports integer(ish) values on instantiation. The following is (not) supported. When a non-
supported value is passed a InvalidArgumentException will be thrown.

use Money\Currency;
use Money\Money;

// int is accepted
$fiver = new Money(500, new Currency('USD'));

// string is accepted if integer
$fiver = new Money('500', new Currency('USD'));

// string is accepted if fractional part is zero
$fiver = new Money('500.00', new Currency('USD'));

// leading zero's are not accepted
$fiver = new Money('00500', new Currency('USD'));

// multiple zero's are not accepted

5

Money Documentation, Release 3.0.0

$fiver = new Money('000', new Currency('USD'));

// plus sign is not accepted
$fiver = new Money('+500', new Currency('USD'));

Installation

Install the library using composer. Execute the following command in your command line.

$ composer require moneyphp/money

Concept

This section introduces the concept and basic features of the library

Immutability

Jim and Hannah both want to buy a copy of book priced at EUR 25.

use Money\Money;

$jimPrice = $hannahPrice = Money::EUR(2500);

Jim has a coupon for EUR 5.

$coupon = Money::EUR(500);
$jimPrice->subtract($coupon);

Because $jimPrice and $hannahPrice are the same object, you’d expect Hannah to now have the reduced
price as well. To prevent this problem, Money objects are immutable. With the code above, both $jimPrice and
$hannahPrice are still EUR 25:

$jimPrice->equals($hannahPrice); // true

The correct way of doing operations is:

$jimPrice = $jimPrice->subtract($coupon);
$jimPrice->lessThan($hannahPrice); // true
$jimPrice->equals(Money::EUR(2000)); // true

Integer Limit

Although in real life it is highly unprobable, you might have to deal with money values greater than the integer limit
of your system (PHP_INT_MAX constant represents the maximum integer value).

In order to bypass this limit, we introduced Calculators. Based on your environment, Money automatically picks the
best internally and globally. The following implementations are available:

• BC Math (requires bcmath extension)

• GMP (requires gmp extension)

• Plain integer

6 Chapter 2. The goal

Money Documentation, Release 3.0.0

Calculators are checked for availability in the order above. If no suitable Calculator is found Money silently falls back
to the integer implementation.

Because of PHP’s integer limit, money values are stored as string internally and Money::getAmount also returns
string.

use Money\Currency;
use Money\Money;

$hugeAmount = new Money('12345678901234567890', new Currency('USD'));

Note: Remember, because of the integer limit in PHP, you should inject a string that represents your huge amount.

JSON

If you want to serialize a money object into a JSON, you can just use the PHP method json_encode for that. Please
find below example of how to achieve this.

use Money\Money;

$money = Money::USD(350);
$json = json_encode($money);
echo $json; // outputs '{"amount":"350","currency":"USD"}'

Inspiration

• https://github.com/RubyMoney/money

• http://css.dzone.com/books/practical-php-patterns/basic/practical-php-patterns-value

• http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx

• http://stackoverflow.com/questions/1679292/proof-that-fowlers-money-allocation-algorithm-is-correct

• http://timeandmoney.sourceforge.net/

• http://www.joda.org/joda-money/

• http://en.wikipedia.org/wiki/Currency_pair

• https://github.com/RubyMoney/eu_central_bank

• http://en.wikipedia.org/wiki/ISO_4217

Operation

Attention: Operations with Money objects are always immutable. See Immutability.

2.3. Inspiration 7

https://github.com/RubyMoney/money
http://css.dzone.com/books/practical-php-patterns/basic/practical-php-patterns-value
http://www.codeproject.com/KB/recipes/MoneyTypeForCLR.aspx
http://stackoverflow.com/questions/1679292/proof-that-fowlers-money-allocation-algorithm-is-correct
http://timeandmoney.sourceforge.net/
http://www.joda.org/joda-money/
http://en.wikipedia.org/wiki/Currency_pair
https://github.com/RubyMoney/eu_central_bank
http://en.wikipedia.org/wiki/ISO_4217

Money Documentation, Release 3.0.0

Addition & Subtraction

Additions can be performed using add().

$value1 = Money::EUR(800); // C8.00
$value2 = Money::EUR(500); // C5.00

$result = $value1->add($value2); // C13.00

add() accepts variadic arguments as well.

$value1 = Money::EUR(800); // C8.00
$value2 = Money::EUR(500); // C5.00
$value3 = Money::EUR(600); // C6.00

$result = $value1->add($value2, $value3); // C19.00

Subtractions can be performed using subtract().

$value1 = Money::EUR(800); // C8.00
$value2 = Money::EUR(500); // C5.00

$result = $value1->subtract($value2); // C3.00

subtract() accepts variadic arguments as well.

$value1 = Money::EUR(1400); // C14.00
$value2 = Money::EUR(500); // C5.00
$value3 = Money::EUR(600); // C6.00

$result = $value1->subtract($value2, $value3); // C3.00

Multiplication & Division

Multiplications can be performed using multiply().

$value = Money::EUR(800); // C8.00

$result = $value->multiply(2); // C16.00

Divisions can be performed using divide().

$value = Money::EUR(800); // C8.00

$result = $value->divide(2); // C4.00

Modulus

Modulus operations can be performed using mod().

$value = Money::EUR(830); // C8.30
$divisor = Money::EUR(300); // C3.00

$result = $value->mod($divisor); // C2.30

8 Chapter 2. The goal

Money Documentation, Release 3.0.0

Rounding Modes

A number of rounding modes are available for Multiplication & Division above.

• Money::ROUND_HALF_DOWN

• Money::ROUND_HALF_EVEN

• Money::ROUND_HALF_ODD

• Money::ROUND_HALF_UP

• Money::ROUND_UP

• Money::ROUND_DOWN

• Money::ROUND_HALF_POSITIVE_INFINITY

• Money::ROUND_HALF_NEGATIVE_INFINITY

Absolute Value

absolute() provides the absolute value of a Money object.

$value = Money::EUR(-800); // -C8.00

$result = $value->absolute(); // C8.00

Ratio Of

ratioOf() provides the ratio of a Money object in comparison to another Money object.

$three = Money::EUR(300); // C3.00
$six = Money::EUR(600); // C6.00

$result = $three->ratioOf($six); // 0.5
$result = $six->ratioOf($three); // 2

Comparison

A number of built in methods are available for comparing Money objects.

Same Currency

isSameCurrency() compares whether two Money objects have the same currency.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(100); // $1.00
$value3 = Money::EUR(800); // C8.00

$result = $value1->isSameCurrency($value2); // true
$result = $value1->isSameCurrency($value3); // false

2.5. Comparison 9

Money Documentation, Release 3.0.0

Equality

equals() compares whether two Money objects are equal in value and currency.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(800); // $8.00
$value3 = Money::EUR(800); // C8.00

$result = $value1->equals($value2); // true
$result = $value1->equals($value3); // false

Greater Than

greaterThan() compares whether the first Money object is larger than the second.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(700); // $7.00

$result = $value1->greaterThan($value2); // true

You can also use greaterThanOrEqual() to additionally check for equality.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(800); // $8.00

$result = $value1->greaterThanOrEqual($value2); // true

Less Than

lessThan() compares whether the first Money object is less than the second.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(700); // $7.00

$result = $value1->lessThan($value2); // false

You can also use lessThanOrEqual() to additionally check for equality.

$value1 = Money::USD(800); // $8.00
$value2 = Money::USD(800); // $8.00

$result = $value1->lessThanOrEqual($value2); // true

Value Sign

You may determine the sign of Money object using the following methods.

• isZero()

• isPositive()

• isNegative()

Money::USD(100)->isZero(); // false
Money::USD(0)->isZero(); // true
Money::USD(-100)->isZero(); // false

10 Chapter 2. The goal

Money Documentation, Release 3.0.0

Money::USD(100)->isPositive(); // true
Money::USD(0)->isPositive(); // false
Money::USD(-100)->isPositive(); // false

Money::USD(100)->isNegative(); // false
Money::USD(0)->isNegative(); // false
Money::USD(-100)->isNegative(); // true

Allocation

Allocate by Ratios

My company made a whopping profit of 5 cents, which has to be divided amongst myself (70%) and my investor
(30%). Cents can’t be divided, so I can’t give 3.5 and 1.5 cents. If I round up, I get 4 cents, the investor gets 2,
which means I need to conjure up an additional cent. Rounding down to 3 and 1 cent leaves me 1 cent. Apart from
re-investing that cent in the company, the best solution is to keep handing out the remainder until all money is spent.
In other words:

use Money\Money;

$profit = Money::EUR(5);
list($my_cut, $investors_cut) = $profit->allocate([70, 30]);
// $my_cut is 4 cents, $investors_cut is 1 cent

// The order is important:
list($investors_cut, $my_cut) = $profit->allocate([30, 70]);
// $my_cut is 3 cents, $investors_cut is 2 cents

Allocate to N targets

An amount of money can be allocated to N targets using allocateTo().

$value = Money::EUR(800); // $8.00

$result = $value->allocateTo(3); // $result = [$2.67, $2.67, $2.66]

Parsing

In an earlier version of Money there was a Money::stringToUnits method which parsed strings and created
money objects. When the library started to move away from the ISO-only concept, we realized that there might be
other cases when parsing from string is necessary. This led us creating parsers and moving the stringToUnits to
StringToUnitsParser (later replaced by DecimalMoneyParser).

Money comes with the following implementations out of the box:

Intl Money Parser

As its name says, this parser requires the intl extension and uses NumberFormatter. In order to provide the correct
subunit for the specific currency, you should also provide the specific currency repository.

2.6. Allocation 11

Money Documentation, Release 3.0.0

Warning: Please be aware that using the intl extension can give different results in different environments.

use Money\Currencies\ISOCurrencies;
use Money\Parser\IntlMoneyParser;

$currencies = new ISOCurrencies();

$numberFormatter = new \NumberFormatter('en_US', \NumberFormatter::CURRENCY);
$moneyParser = new IntlMoneyParser($numberFormatter, $currencies);

$money = $moneyParser->parse('$1.00');

echo $money->getAmount(); // outputs 100

Intl Localized Decimal Parser

As its name says, this parser requires the intl extension and uses NumberFormatter. In order to provide the correct
subunit for the specific currency, you should also provide the specific currency repository.

Warning: Please be aware that using the intl extension can give different results in different environments.

use Money\Currency;
use Money\Currencies\ISOCurrencies;
use Money\Parser\IntlLocalizedDecimalParser;

$currencies = new ISOCurrencies();

$numberFormatter = new \NumberFormatter('nl_NL', \NumberFormatter::DECIMAL);
$moneyParser = new IntlLocalizedDecimalParser($numberFormatter, $currencies);

$money = $moneyParser->parse('1.000,00', new Currency('EUR'));

echo $money->getAmount(); // outputs 100000

Decimal Parser

This parser takes a simple decimal string which is always in a consistent format independent of locale. In order to
provide the correct subunit for the specific currency, you should provide the specific currency repository.

use Money\Currencies\ISOCurrencies;
use Money\Parser\DecimalMoneyParser;

$currencies = new ISOCurrencies();

$moneyParser = new DecimalMoneyParser($currencies);

$money = $moneyParser->parse('1000', 'USD');

echo $money->getAmount(); // outputs 100000

12 Chapter 2. The goal

Money Documentation, Release 3.0.0

Aggregate Parser

This parser collects multiple parsers and chooses the most appropriate one based on success to parse. Most parsers
throw an exception when the string’s format is not supported.

use Money\Parser\AggregateMoneyParser;
use Money\Parser\BitcoinMoneyParser;
use Money\Parser\IntlMoneyParser;

$numberFormatter = new \NumberFormatter('en_US', \NumberFormatter::CURRENCY);
$intlParser = new IntlMoneyParser($numberFormatter, 2);
$bitcoinParser = new BitcoinMoneyParser(2);

$moneyParser = new AggregateParser([
$intlParser,
$bitcoinParser,

]);

$dollars = $moneyParser->parse('1 USD');
$bitcoin = $moneyParser->parse("1.00");

This is very useful if you want to use one parser as a service in DI context.

Bitcoin Parser

See Bitcoin.

Formatting

It is often necessary that you display the money value somewhere, probably in a specific format. This is where
formatters help you. You can turn a money object into a human readable string.

Money comes with the following implementations out of the box:

Intl Money Formatter

As its name says, this formatter requires the intl extension and uses NumberFormatter. In order to provide the
correct subunit for the specific currency, you should also provide the specific currency repository.

Warning: Please be aware that using the intl extension can give different results in different environments.

use Money\Currencies\ISOCurrencies;
use Money\Currency;
use Money\Formatter\IntlMoneyFormatter;
use Money\Money;

$money = new Money(100, new Currency('USD'));
$currencies = new ISOCurrencies();

$numberFormatter = new \NumberFormatter('en_US', \NumberFormatter::CURRENCY);
$moneyFormatter = new IntlMoneyFormatter($numberFormatter, $currencies);

echo $moneyFormatter->format($money); // outputs $1.00

2.8. Formatting 13

Money Documentation, Release 3.0.0

Intl Decimal Formatter

As its name says, this formatter requires the intl extension and uses NumberFormatter. In order to provide the
correct subunit for the specific currency, you should also provide the specific currency repository.

Warning: Please be aware that using the intl extension can give different results in different environments.

use Money\Currencies\ISOCurrencies;
use Money\Currency;
use Money\Formatter\IntlMoneyFormatter;
use Money\Money;

$money = new Money(100000, new Currency('EUR'));
$currencies = new ISOCurrencies();

$numberFormatter = new \NumberFormatter('nl_NL', \NumberFormatter::DECIMAL);
$moneyFormatter = new IntlMoneyFormatter($numberFormatter, $currencies);

echo $moneyFormatter->format($money); // outputs 1.000,00

Decimal Formatter

This formatter outputs a simple decimal string which is always in a consistent format independent of locale. In order
to provide the correct subunit for the specific currency, you should provide the specific currency repository.

use Money\Currencies\ISOCurrencies;
use Money\Currency;
use Money\Formatter\DecimalMoneyFormatter;
use Money\Money;

$money = new Money(100, new Currency('USD'));
$currencies = new ISOCurrencies();

$moneyFormatter = new DecimalMoneyFormatter($currencies);

echo $moneyFormatter->format($money); // outputs 1.00

Aggregate Formatter

This formatter collects multiple formatters and chooses the most appropriate one based on currency code.

use Money\Currency;
use Money\Formatter\AggregateMoneyFormatter;
use Money\Formatter\BitcoinMoneyFormatter;
use Money\Formatter\IntlMoneyFormatter;
use Money\Money;

$dollars = new Money(100, new Currency('USD'));
$bitcoin = new Money(100, new Currency('XBT'));

$numberFormatter = new \NumberFormatter('en_US', \NumberFormatter::CURRENCY);
$intlFormatter = new IntlMoneyFormatter($numberFormatter);
$bitcoinFormatter = new BitcoinMoneyFormatter(2);

14 Chapter 2. The goal

Money Documentation, Release 3.0.0

$moneyFormatter = new AggregateFormatter([
'USD' => $intlFormatter,
'XBT' => $bitcoinFormatter,

]);

echo $moneyFormatter->format($dollars); // outputs $1.00
echo $moneyFormatter->format($bitcoin); // outputs 1.00

This is very useful if you want to use one formatter as a service in DI context and want to support multiple currencies.

Bitcoin Formatter

See Bitcoin.

Aggregation

min() returns the smallest of the given Money objects

$first = Money::EUR(100); // C1.00
$second = Money::EUR(200); // C2.00
$third = Money::EUR(300); // C3.00

$min = Money::min($first, $second, $third) // C1.00

max() returns the largest of the given Money objects

$first = Money::EUR(100); // C1.00
$second = Money::EUR(200); // C2.00
$third = Money::EUR(300); // C3.00

$max = Money::max($first, $second, $third) // C3.00

avg() returns the average value of the given Money objects as a Money object

$first = Money::EUR(100); // C1.00
$second = Money::EUR(-200); // -C2.00
$third = Money::EUR(300); // C3.00

$avg = Money::avg($first, $second, $third) // C2.00

sum() provides the sum of all given Money objects

$first = Money::EUR(100); // C1.00
$second = Money::EUR(-200); // -C2.00
$third = Money::EUR(300); // C3.00

$sum = Money::sum($first, $second, $third) // C2.00

Currencies

Applications often a certain subset of currencies. Those currencies come from different data sources. Therefore you
can implement the Currencies interface. The interface provides a list of available currencies and the subunit for the
currency.

2.9. Aggregation 15

Money Documentation, Release 3.0.0

Money comes with the following implementations out of the box:

ISOCurrencies

As it’s name says, the ISO currencies implementation provides all available ISO4217 currencies. It uses the official
ISO 4217 Maintenance Agency as source for the data.

use Money\Currencies\ISOCurrencies;
use Money\Currency;

$currencies = new ISOCurrencies();
foreach ($currencies as $currency) {

echo $currency->getCode(); // prints an available currency code within the repository
}

$currencies->contains(new Currency('USD')); // returns boolean whether USD is available in this repository
$currencies->subunitFor(new Currency('USD')); // returns the subunit for the dollar (2)

BitcoinCurrencies

The Bitcoin currencies provides a single currency: the Bitcoin. It uses XBT as its code and has a subunit of 8.

use Money\Currencies\BitcoinCurrencies;
use Money\Currency;

$currencies = new BitcoinCurrencies();
foreach ($currencies as $currency) {

echo $currency->getCode(); // prints XBT
}

$currencies->contains(new Currency('XBT')); // returns boolean whether XBT is available in this repository (true)
$currencies->contains(new Currency('USD')); // returns boolean whether USD is available in this repository (false)
$currencies->subunitFor(new Currency('XBT')); // returns the subunit for the Bitcoin (8)

CurrencyList

The CurrencyList class provides a way for a developer to create a custom currency repository. The class accepts an
array of currency code and minor unit pairs. In case of an invalid array an exception is thrown.

use Money\Currencies\CurrencyList;
use Money\Currency;

$currencies = new CurrencyList([
'MY1' => 2,

]);

foreach ($currencies as $currency) {
echo $currency->getCode(); // prints MY1

}

$currencies->contains(new Currency('MY1')); // returns boolean whether MY1 is available in this repository (true)
$currencies->contains(new Currency('USD')); // returns boolean whether USD is available in this repository (false)
$currencies->subunitFor(new Currency('MY1')); // returns the subunit for the currency MY1

16 Chapter 2. The goal

Money Documentation, Release 3.0.0

Aggregate Currencies

This formatter collects multiple currencies.

use Money\Currency;
use Money\Currencies\AggregateCurrencies;
use Money\Currencies\BitcoinCurrencies;
use Money\Currencies\ISOCurrencies;

$currencies = new AggregateCurrencies([
new BitcoinCurrencies(),
new ISOCurrencies()

]);

foreach ($currencies as $currency) {
echo $currency->getCode(); // prints XBT or any ISO currency code

}

$currencies->contains(new Currency('XBT')); // returns boolean whether XBT is available in this repository (true)
$currencies->contains(new Currency('USD')); // returns boolean whether USD is available in this repository (false)
$currencies->subunitFor(new Currency('XBT')); // returns the subunit for the Bitcoin (8)

This is very useful if you want to support multiple currencies data sources.

Currency Conversion

To convert a Money instance from one Currency to another, you need the Converter. This class depends on Currencies
and Exchange. Exchange returns a CurrencyPair, which is the combination of the base currency, counter currency and
the conversion ratio.

Fixed Exchange

You can use a fixed exchange to convert Money into another Currency.

use Money\Converter;
use Money\Currency;
use Money\Exchange\FixedExchange;

$exchange = new FixedExchange([
'EUR' => [

'USD' => 1.25
]

]);

$converter = new Converter(new ISOCurrencies(), $exchange);

$eur100 = Money::EUR(100);
$usd125 = $converter->convert($eur100, new Currency('USD'));

Reversed Currencies Exchange

In some cases you might want the Exchange to resolve the reverse of the Currency Pair as well if the original cannot be
found. To add this behaviour to any Exchange you need to wrap it in in a ReversedCurrenciesExchange. If a reverse
Currency Pair can be found, it’s simply used as a divisor of 1 to calculate the reverse conversion ratio.

2.11. Currency Conversion 17

Money Documentation, Release 3.0.0

For example this can be useful if you use a FixedExchange and you don’t want to define the currency pairs in both
directions.

use Money\Converter;
use Money\Currency;
use Money\Exchange\FixedExchange;
use Money\Exchange\ReversedCurrenciesExchange;

$exchange = new ReversedCurrenciesExchange(new FixedExchange([
'EUR' => [

'USD' => 1.25
]

]));

$converter = new Converter(new ISOCurrencies(), $exchange);

$usd125 = Money::USD(125);
$eur100 = $converter->convert($usd125, new Currency('EUR'));

Third Party Integrations

We also provide a way to integrate external sources of conversion rates by implementing the Money\Exchange
interface.

Swap

Swap is a currency exchanger library widespread in the PHP ecosystem. You can install it via Composer:

$ composer require florianv/swap

Then conversion is quite simple:

use Money\Money;
use Money\Converter;
use Money\Exchange\SwapExchange;

// $swap = Implementation of \Swap\SwapInterface
$exchange = new SwapExchange($swap);

$converter = new Converter(new ISOCurrencies(), $exchange);
$eur100 = Money::EUR(100);
$usd125 = $converter->convert($eur100, new Currency('USD'));

Exchanger

Exchanger is the currency exchange framework behind Swap.

$ composer require florianv/exchanger

Then conversion is quite simple:

use Money\Money;
use Money\Converter;
use Money\Exchanger\ExchangerExchange;

18 Chapter 2. The goal

https://github.com/florianv/swap
https://getcomposer.org
https://github.com/florianv/exchanger
https://github.com/florianv/swap

Money Documentation, Release 3.0.0

// $exchanger = Implementation of \Exchanger\Contract\ExchangeRateProvider
$exchange = new ExchangerExchange($exchanger);

$converter = new Converter(new ISOCurrencies(), $exchange);
$eur100 = Money::EUR(100);
$usd125 = $converter->convert($eur100, new Currency('USD'));

CurrencyPair

A CurrencyPair is returned by the Exchange. If you want to implement your own Exchange, you can use the OOP
notation to define a pair:

use Money\Currency;
use Money\CurrencyPair;

$pair = new CurrencyPair(new Currency('EUR'), new Currency('USD'), 1.2500);

But you can also parse ISO notations. For example, the quotation EUR/USD 1.2500 means that one euro is ex-
changed for 1.2500 US dollars.

use Money\CurrencyPair;

$pair = CurrencyPair::createFromIso('EUR/USD 1.2500');

You could also create a pair using a third party. There is a default one in the core using Swap which you can install via
Composer.

use Money\Currency;
use Money\Exchange\SwapExchange;

$eur = new Currency('EUR');
$usd = new Currency('USD');

// $swap = Implementation of \Swap\SwapInterface
$exchange = new SwapExchange($swap);

$pair = $exchange->quote($eur, $usd);

Bitcoin

Since Money is not ISO currency specific, you can construct a currency object by using the code XBT. For Bitcoin
there is also a formatter and a parser available. The subunit is 8 for a Bitcoin.

Please see the example below how to use the Bitcoin currency:

use Money\Currencies\BitcoinCurrencies;
use Money\Currency;
use Money\Formatter\BitcoinMoneyFormatter;
use Money\Money;
use Money\Parser\BitcoinMoneyParser;

// construct bitcoin (subunit of 8)
$money = new Money(100000000000, new Currency('XBT'));

// construct bitcoin currencies

2.12. Bitcoin 19

https://github.com/florianv/swap
https://getcomposer.org

Money Documentation, Release 3.0.0

$currencies = new BitcoinCurrencies();

// format bitcoin
$formatter = new BitcoinMoneyFormatter(2, $currencies);
echo $formatter->format($money); // prints 1000.00

// parse bitcoin
$parser = new BitcoinMoneyParser(2);
$money = $parser->parse("1000.00", 'XBT');
echo $money->getAmount(); // outputs 100000000000

In most cases you probably don’t know the exact currency you are going to format or parse. For such scenarios, we
have an aggregate formatter and a parser which lets you configure multiple parsers and then choose the best based on
the value. See more in Formatting and Parsing section.

20 Chapter 2. The goal

Bibliography

[Fowler2002] Fowler, M., D. Rice, M. Foemmel, E. Hieatt, R. Mee, and R. Stafford, Patterns of Enterprise Application
Architecture, Addison-Wesley, 2002. http://martinfowler.com/books.html#eaa

21

http://martinfowler.com/books.html#eaa

	Why a Money library for PHP?
	The goal
	Getting started
	Concept
	Inspiration
	Operation
	Comparison
	Allocation
	Parsing
	Formatting
	Aggregation
	Currencies
	Currency Conversion
	Bitcoin

	Bibliography

