Introduction

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Introduction</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>Environment requirement</td>
<td>7</td>
</tr>
<tr>
<td>3</td>
<td>Using docker</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>Manual setup</td>
<td>11</td>
</tr>
<tr>
<td>5</td>
<td>Basic usage</td>
<td>13</td>
</tr>
<tr>
<td>6</td>
<td>Advanced usage</td>
<td>23</td>
</tr>
<tr>
<td>7</td>
<td>Benchmark usage</td>
<td>35</td>
</tr>
<tr>
<td>8</td>
<td>Operator lists</td>
<td>41</td>
</tr>
<tr>
<td>9</td>
<td>Quantization</td>
<td>43</td>
</tr>
<tr>
<td>10</td>
<td>Contributing guide</td>
<td>45</td>
</tr>
<tr>
<td>11</td>
<td>Adding a new Op</td>
<td>47</td>
</tr>
<tr>
<td>12</td>
<td>How to run tests</td>
<td>51</td>
</tr>
<tr>
<td>13</td>
<td>How to debug</td>
<td>53</td>
</tr>
<tr>
<td>14</td>
<td>Memory layout</td>
<td>57</td>
</tr>
<tr>
<td>15</td>
<td>Data Format</td>
<td>59</td>
</tr>
<tr>
<td>16</td>
<td>Dynamic LSTM</td>
<td>61</td>
</tr>
<tr>
<td>17</td>
<td>Frequently asked questions</td>
<td>65</td>
</tr>
</tbody>
</table>
Welcome to Mobile AI Compute Engine documentation.

The main documentation is organized into the following sections:
Introduction
MACE (Mobile AI Compute Engine) is a deep learning inference framework optimized for mobile heterogeneous computing platforms. MACE provides tools and documents to help users to deploy deep learning models to mobile phones, tablets, personal computers and IoT devices.

1.1 Architecture

The following figure shows the overall architecture.

1.1.1 MACE Model

MACE defines a customized model format which is similar to Caffe2. The MACE model can be converted from exported models by TensorFlow, Caffe or ONNX Model.

1.1.2 MACE Interpreter

Mace Interpreter mainly parses the NN graph and manages the tensors in the graph.

1.1.3 Runtime

CPU/GPU/DSP runtime correspond to the Ops for different devices.
1.2 Workflow

The following figure shows the basic work flow of MACE.

1.2.1 1. Configure model deployment file

Model deploy configuration file (.yml) describes the information of the model and library. MACE will build the library based on the file.

1.2.2 2. Build libraries

Build MACE dynamic or static libraries.

1.2.3 3. Convert model

Convert TensorFlow, Caffe or ONNX model to MACE model.

1.2.4 4.1. Deploy

Integrate the MACE library into your application and run with MACE API.

1.2.5 4.2. Run (CLI)

MACE provides mace_run command line tool, which could be used to run model and validate model correctness against original TensorFlow or Caffe results.

1.2.6 4.3. Benchmark

MACE provides benchmark tool to get the Op level profiling result of the model.
1.3 简介

Mobile AI Compute Engine (MACE) 是一个专为移动端异构计算设备优化的深度学习前端预测框架。MACE覆盖了常见的移动端计算设备（CPU、GPU和DSP），并且提供了完整的工具链和文档。用户借助MACE能够方便地在移动端部署深度学习模型。MACE已经在小米内部广泛使用并且被充分验证具有业界领先的性能和稳定性。

1.4 框架

下图描述了MACE的基本框架。

1.4.1 MACE Model

MACE定义了自有的模型格式（类似于Caffe2），通过MACE提供的工具可以将Caffe/TensorFlow/ONNX格式的模型转为MACE模型。

1.4.2 MACE Interpreter

MACE Interpreter主要负责解析运行神经网络图（DAG）并管理网络中的Tensors。

1.4.3 Runtime

CPU/GPU/DSP Runtime对应于各个计算设备的算子实现。

1.5 使用流程

下图描述了MACE使用的基本流程。
1.5.1 1. 配置模型部署文件(.yml)
模型部署文件详细描述了需要部署的模型以及生成库的信息，MACE根据该文件最终生成对应的库文件。

1.5.2 2. 编译MACE库
编译MACE的静态库或动态库。

1.5.3 3. 转换模型
将TensorFlow或Caffe或ONNX的模型转为MACE的模型。

1.5.4 4.1. 部署
根据不同使用目的集成Build阶段生成的库文件，然后调用MACE相应的接口执行模型。

1.5.5 4.2. 命令行运行
MACE提供了命令行工具，可以在命令行运行模型，可以用来测试模型运行时间，内存占用和正确性。

1.5.6 4.3. Benchmark
MACE提供了命令行benchmark工具，可以细粒度的查看模型中所涉及的所有算子的运行时间。
MACE requires the following dependencies:

2.1 Required dependencies

<table>
<thead>
<tr>
<th>Software</th>
<th>Installation command</th>
<th>Tested version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Python</td>
<td></td>
<td>2.7 or 3.6</td>
</tr>
<tr>
<td>Bazel</td>
<td>bazel installation guide</td>
<td>0.13.0</td>
</tr>
<tr>
<td>CMake</td>
<td>Linux: apt-get install cmake Mac: brew install cmake</td>
<td>>= 3.11.3</td>
</tr>
<tr>
<td>Jinja2</td>
<td>pip install jinja2==2.10</td>
<td>2.10</td>
</tr>
<tr>
<td>PyYaml</td>
<td>pip install pyyaml==3.12</td>
<td>3.12.0</td>
</tr>
<tr>
<td>sh</td>
<td>pip install sh==1.12.14</td>
<td>1.12.14</td>
</tr>
<tr>
<td>Numpy</td>
<td>pip install numpy==1.14.0</td>
<td>Required by model validation</td>
</tr>
<tr>
<td>six</td>
<td>pip install six==1.11.0</td>
<td>Required for Python 2 and 3 compatibility</td>
</tr>
</tbody>
</table>

For Bazel, install it following installation guide. For python dependencies,
pip install -U --user -r setup/requirements.txt

2.2 Optional dependencies

<table>
<thead>
<tr>
<th>Software</th>
<th>Installation command</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>Android NDK</td>
<td>NDK installation guide</td>
<td>Required by Android build, r15b, r15c, r16b, r17b</td>
</tr>
<tr>
<td>CMake</td>
<td>apt-get install cmake</td>
<td>>= 3.11.3</td>
</tr>
<tr>
<td>ADB</td>
<td>Linux: <code>apt-get install android-tools-adb</code> Mac: <code>brew cask install android-platform-tools</code></td>
<td>Required by Android run, >= 1.0.32</td>
</tr>
<tr>
<td>TensorFlow</td>
<td><code>pip install tensorflow==1.8.0</code></td>
<td>Required by TensorFlow model</td>
</tr>
<tr>
<td>Docker</td>
<td>docker installation guide</td>
<td>Required by docker mode for Caffe model</td>
</tr>
<tr>
<td>Scipy</td>
<td><code>pip install scipy==1.0.0</code></td>
<td>Required by model validation</td>
</tr>
<tr>
<td>File-Lock</td>
<td><code>pip install filelock==3.0.0</code></td>
<td>Required by run on Android</td>
</tr>
<tr>
<td>ONNX</td>
<td><code>pip install onnx==1.5.0</code></td>
<td>Required by ONNX model</td>
</tr>
</tbody>
</table>

For python dependencies,

```
pip install -U --user -r setup/optionals.txt
```

Note:

- For **Android build**, `ANDROID_NDK_HOME` must be configured by using `export ANDROID_NDK_HOME=/path/to/ndk`
- It will link **libc++** instead of **gnustl** if NDK version >= r17b and bazel version >= 0.13.0, please refer to **NDK cpp-support**.
- For **Mac**, please install Homebrew at first before installing other dependencies. Set `ANDROID_NDK_HOME` in `/etc/bashrc` and then run `source /etc/bashrc`. This installation was tested with macOS Mojave(10.14).
CHAPTER 3

Using docker

3.1 Pull or build docker image

MACE provides docker images with dependencies installed and also Dockerfiles for images building, you can pull the existing ones directly or build them from the Dockerfiles. In most cases, the lite edition image can satisfy developer’s basic needs.

Note: It’s highly recommended to pull built images.

- **lite edition docker image**.

```bash
# You can pull lite edition docker image from docker repo (recommended)
docker pull registry.cn-hangzhou.aliyuncs.com/xiaomimace/mace-dev-lite
# Or build lite edition docker image by yourself
docker build -t registry.cn-hangzhou.aliyuncs.com/xiaomimace/mace-dev-lite ./docker/
```  

- **full edition docker image** (which contains multiple NDK versions and other dev tools).

```bash
# You can pull full edition docker image from docker repo (recommended)
docker pull registry.cn-hangzhou.aliyuncs.com/xiaomimace/mace-dev
# Or build full edition docker image by yourself
docker build -t registry.cn-hangzhou.aliyuncs.com/xiaomimace/mace-dev ./docker/mace-
```  

Note: We will show steps with lite edition later.
3.2 Using the image

Create container with the following command

```bash
# Create a container named `mace-dev`
docker run -it --privileged -d --name mace-dev \
    -v /dev/bus/usb:/dev/bus/usb --net=host \
    -v /local/path:/container/path \
    -v /usr/bin/docker:/usr/bin/docker \
    -v /var/run/docker.sock:/var/run/docker.sock \n    registry.cn-hangzhou.aliyuncs.com/xiaomimace/mace-dev-lite
# Execute an interactive bash shell on the container
docker exec -it mace-dev /bin/bash
```

3.3 Update images to repository

If you are mace inner developer and need update images in remote repository, it can be achieved by `docker/update_images.sh` script.

```bash
cd docker/
./update_images.sh
```
The setup steps are based on Ubuntu, you can change the commands correspondingly for other systems. For the detailed installation dependencies, please refer to Environment requirement.

4.1 Install Bazel

Recommend bazel with version larger than 0.13.0 (Refer to Bazel documentation).

```bash
export BAZEL_VERSION=0.13.1
mkdir /bazel &&
  cd /bazel &&
  wget https://github.com/bazelbuild/bazel/releases/download/$BAZEL_VERSION/bazel-
  $BAZEL_VERSION-installer-linux-x86_64.sh &&
  chmod +x bazel-*-sh &&
  ./bazel-$BAZEL_VERSION-installer-linux-x86_64.sh &&
  cd / &&
  rm -f /bazel/bazel-$BAZEL_VERSION-installer-linux-x86_64.sh
```

4.2 Install Android NDK

The recommended Android NDK versions includes r15b, r15c and r16b (Refers to NDK installation guide).

```bash
# Download NDK r15c
cd /opt/ &&
  wget -q https://dl.google.com/android/repository/android-ndk-r15c-linux-x86_64.zip 
  &&
  unzip -q android-ndk-r15c-linux-x86_64.zip &&
  rm -f android-ndk-r15c-linux-x86_64.zip
export ANDROID_NDK_VERSION=r15c
```

(continues on next page)
4.3 Install extra tools

```bash
export ANDROID_NDK=/opt/android-ndk-${ANDROID_NDK_VERSION}
export ANDROID_NDK_HOME=${ANDROID_NDK}
# add to PATH
export PATH=${PATH}:${ANDROID_NDK_HOME}
```

```bash
apt-get install -y --no-install-recommends \
  cmake \
  android-tools-adb \
  pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com \
  --setuptools \
  pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com \
  "numpy>=1.14.0" \
  scipy \
  jinja2 \
  pyyaml \
  sh==1.12.14 \
  pycodestyle==2.4.0 \
  filelock
```

4.4 Install TensorFlow (Optional)

```bash
pip install -i http://pypi.douban.com/simple/ --trusted-host pypi.douban.com \
  --tensorflow==1.8.0
```

4.5 Install Caffe (Optional)

Please follow the installation instruction of Caffe.

4.6 Install ONNX (Optional)

Please follow the installation instruction of ONNX.
5.1 Build and run an example model

At first, make sure the environment has been set up correctly already (refer to Environment requirement). The followings are instructions about how to quickly build and run a provided model in MACE Model Zoo. Here we use the mobilenet-v2 model as an example.

Commands

1. Pull MACE project.

```
git clone https://github.com/XiaoMi/mace.git
cd mace/
git fetch --all --tags --prune
```

Checkout the latest tag (i.e. release version)
tag_name=`git describe --abbrev=0 --tags`
git checkout tags/${tag_name}

Note: It’s highly recommended to use a release version instead of master branch.

2. Pull MACE Model Zoo project.

```
git clone https://github.com/XiaoMi/mace-models.git
```

3. Build a generic MACE library.

```
cd path/to/mace
# Build library
# output lib path: build/lib
bash tools/bazel-build-standalone-lib.sh
```
Note:
• This step can be skipped if you just want to run a model using tools/converter.py, such as commands in step 5.
• Libraries in build/lib/arm64-v7a/cpu_gpu/ means it can run on cpu or gpu devices.
• The results in build/lib/arm64-v7a/cpu_gpu_dsp/ need HVX supported.

4. Convert the pre-trained mobilenet-v2 model to MACE format model.

```bash
cd path/to/mace
# Build library
python tools/converter.py convert --config=/path/to/mace-models/mobilenet-v2/
˓→mobilenet-v2.yml
```

Note: If you want to run on phone, please plug in at least one phone. Or if you want to run on embedded device, please give a Advanced usage.

```bash
# Run
python tools/converter.py run --config=/path/to/mace-models/mobilenet-v2/
˓→mobilenet-v2.yml

# Test model run time
python tools/converter.py run --config=/path/to/mace-models/mobilenet-v2/
˓→mobilenet-v2.yml --round=100

# Validate the correctness by comparing the results against the
# original model and framework, measured with cosine distance for similarity.
python tools/converter.py run --config=/path/to/mace-models/mobilenet-v2/
˓→mobilenet-v2.yml --validate
```

5.2 Build your own model

This part will show you how to use your own pre-trained model in MACE.

5.2.1 1. Prepare your model

MACE now supports models from TensorFlow and Caffe (more frameworks will be supported).

• TensorFlow
 Prepare your pre-trained TensorFlow model.pb file.

• Caffe
 Caffe 1.0+ models are supported in MACE converter tool.
 If your model is from lower version Caffe, you need to upgrade it by using the Caffe built-in tool before converting.
Upgrade prototxt

```
$CAFFE_ROOT/build/tools/upgrade_net_proto_text MODEL.prototxt MODEL.new.prototxt
```

Upgrade caffemodel

```
$CAFFE_ROOT/build/tools/upgrade_net_proto_binary MODEL.caffemodel MODEL.new.caffemodel
```

- **ONNX**

Prepare your ONNX model.onnx file.

Use ONNX Optimizer Tool to optimize your model for inference. This tool will improve the efficiency of inference like the Graph Transform Tool in TensorFlow.

```
# Optimize your model
$python MACE_ROOT/tools/onnx_optimizer.py model.onnx model_opt.onnx
```

5.2.2 2. Create a deployment file for your model

When converting a model or building a library, MACE needs to read a YAML file which is called model deployment file here.

A model deployment file contains all the information of your model(s) and building options. There are several example deployment files in *MACE Model Zoo* project.

The following shows two basic usage of deployment files for TensorFlow and Caffe models. Modify one of them and use it for your own case.

- **TensorFlow**

```
# The name of library
library_name: mobilenet

target_abis: [arm64-v8a]

model_graph_format: file

model_data_format: file

models:

  mobilenet_v1: # model tag, which will be used in model loading and must be specific.

  platform: tensorflow

  model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb

  # sha256_checksum of your model's pb file.
  model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6

  # define your model’s interface

  # if there multiple inputs or outputs, write like blow:

  # subgraphs:

  # - input_tensors:
  # - input0
  # - input1

  # output_tensors:

  # - 1,224,224,3
  # - 1,224,224,3
```

(continues on next page)
MACE

- output0
- output1
- output_shapes:
- 1,1001
- 1,1001
subgraphs:
 - input_tensors:
 - input
 input_shapes:
 - 1,224,224,3
 output_tensors:
 - MobilenetV1/Predictions/Reshape_1
 output_shapes:
 - 1,1001
cpu, gpu or cpu+gpu
runtime: cpu+gpu
winograd: 0

- Caffe

The name of library
library_name: squeezenet-v10
target_abis: [arm64-v8a]
model_graph_format: file
model_data_format: file
models:
 squeezenet-v10: # model tag, which will be used in model loading and must be specific.
 platform: caffe
 # support local path, http:// and https://
 model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/squeezenet/
 weight_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/
 sha256_checksum of your model's graph and data files.
 # get the sha256_checksum: sha256sum path/to/your/file
 model_sha256_checksum:
 - db680cf18bb0387d98e9401b1bcbf5dc09bf704ef1e3d3db1937e772ca0
data_sha256_checksum:
 - 9f8031aada1f9fa880b35252680d971434b141ec9fbcbe88309f09a675ce
 # define your model's interface
 # if there multiple inputs or outputs, write like blow:
 subgraphs:
 - input_tensors:
 - input0
 - input1
 input_shapes:
 - 1,224,224,3
 - 1,224,224,3
 output_tensors:
 - output0
 - output1
 output_shapes:
 - 1,1001
 - 1,1001
subgraphs:
 - input_tensors:
- data
 input_shapes:
 - 1,227,227,3
 output_tensors:
 - prob
 output_shapes:
 - 1,1,1,1000
runtime: cpu+gpu
winograd: 0

• ONNX

```yaml
# The name of library
library_name: mobilenet
target_abis: [arm64-v8a]
model_graph_format: file
model_data_format: file
models:
  mobilenet_v1: # model tag, which will be used in model loading and must be specific.
    platform: onnx
    model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/mobilenet-v1-1.0.pb
    # sha256_checksum of your model's onnx file.
    # use this command to get the sha256_checksum: sha256sum path/to/your/pb/file
    model_sha256_checksum: 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
    # define your model's interface
    # if there multiple inputs or outputs, write like blow:
    # subgraphs:
    # - input_tensors:
    #   - input0
    #   - input1
    # input_shapes:
    #   - 1,224,224,3
    #   - 1,224,224,3
    # output_tensors:
    #   - output0
    #   - output1
    # output_shapes:
    #   - 1,1001
    #   - 1,1001
    subgraphs:
      - input_tensors:
        - input
        input_shapes:
          - 1,224,224,3
        output_tensors:
          - MobilenetV1/Predictions/Reshape_1
        output_shapes:
          - 1,1001
    # onnx backend framwork for validation. Suppport pytorch/caffe/tensorflow.
    backend: tensorflow
    # cpu, gpu or cpu+gpu
    runtime: cpu+gpu
```

(continues on next page)
5.2.3 3. Convert your model

When the deployment file is ready, you can use MACE converter tool to convert your model(s).

```bash
python tools/converter.py convert --config=/path/to/your/model_deployment_file.yml
```

This command will download or load your pre-trained model and convert it to a MACE model proto file and weights data file. The generated model files will be stored in `build/${library_name}/model` folder.

Warning: Please set `model_graph_format: file` and `model_data_format: file` in your deployment file before converting. The usage of `model_graph_format: code` will be demonstrated in Advanced usage.

5.2.4 4. Build MACE into a library

You could Download the prebuilt MACE Library from Github MACE release page.

Or use bazel to build MACE source code into a library.

```bash
cd path/to/mace
# Build library
# output lib path: build/lib
bash tools/bazel-build-standalone-lib.sh
```

The above command will generate dynamic library `build/lib/${ABI}/${DEVICES}/libmace.so` and static library `build/lib/${ABI}/${DEVICES}/libmace.a`.

Warning: Please verify that the target_abis param in the above command and your deployment file are the same.

5.2.5 5. Run your model

With the converted model, the static or shared library and header files, you can use the following commands to run and validate your model.

Warning: If you want to run on device/phone, please plug in at least one device/phone.

- run

 run the model.
Test model run time

```bash
python tools/converter.py run --config=/path/to/your/model_deployment_file.yml --round=100
```

Validate the correctness by comparing the results against the original model and framework, measured with cosine distance for similarity.

```bash
python tools/converter.py run --config=/path/to/your/model_deployment_file.yml --validate
```

If you want to run model on specified arm linux device, you should put device config file in the working directory or run with flag `--device_yml`.

```bash
python tools/converter.py run --config=/path/to/your/model_deployment_file.yml --device_yml=/path/to/devices.yml
```

- benchmark

 benchmark and profile the model. the details are in Benchmark usage.

  ```bash
  # Benchmark model, get detailed statistics of each Op.
  python tools/converter.py run --config=/path/to/your/model_deployment_file.yml --benchmark
  ```

5.2.6 6. Deploy your model into applications

You could run model on CPU, GPU and DSP (based on the runtime in your model deployment file). However, there are some differences in different devices.

- **CPU**

 Almost all of mobile SoCs use ARM-based CPU architecture, so your model could run on different SoCs in theory.

- **GPU**

 Although most GPUs use OpenCL standard, but there are some SoCs not fully complying with the standard, or the GPU is too low-level to use. So you should have some fallback strategies when the GPU run failed.

- **DSP**

 MACE only supports Qualcomm DSP. And you need to push the hexagon nn library to the device.

  ```bash
  # For Android device
  adb root; adb remount
  adb push third_party/nnlib/v6x/libhexagon_nn_skel.so /system/vendor/lib/rfsa/adsp/
  ```

In the converting and building steps, you’ve got the static/shared library, model files and header files.

${library_name} is the name you defined in the first line of your deployment YAML file.

Note: When linking generated libmace.a into shared library, version script is helpful for reducing a specified set of symbols to local scope.

- The generated static library files are organized as follows,

5.2. Build your own model
Please refer to `mace/tools/mace_run.cc` for full usage. The following list the key steps.

```c++
// Include the headers
#include "mace/public/mace.h"

// 0. Declare the device type (must be same with `runtime` in configuration file)
DeviceType device_type = DeviceType::GPU;

// 1. configuration
MaceStatus status;
MaceEngineConfig config(device_type);
std::shared_ptr<GPUContext> gpu_context;
// Set the path to store compiled OpenCL kernel binaries.
// Please make sure your application have read/write rights of the directory.
// This is used to reduce the initialization time since the compiling is too slow.
// It's suggested to set this even when pre-compiled OpenCL program file is provided
// because the OpenCL version upgrade may also leads to kernel recompileations.
const std::string storage_path = "path/to/storage";
gpu_context = GPUContextBuilder()
    .SetStoragePath(storage_path)
    .Finalize();
config.SetGPUContext(gpu_context);
config.SetGPUHints(
    static_cast<GPUPerfHint>(GPUPerfHint::PERF_NORMAL),
    static_cast<GPUPriorityHint>(GPUPriorityHint::PRIORITY_LOW));

// 2. Define the input and output tensor names.
std::vector<std::string> input_names = {...};
```

(continues on next page)
std::vector<std::string> output_names = { ... };

// 3. Create MaceEngine instance
std::shared_ptr<mace::MaceEngine> engine;
MaceStatus create_engine_status;

// Create Engine from model file
create_engine_status =
 CreateMaceEngineFromProto(model_graph_proto,
 model_graph_proto_size,
 model_weights_data,
 model_weights_data_size,
 input_names,
 output_names,
 device_type,
 &engine);
if (create_engine_status != MaceStatus::MACE_SUCCESS) {
 // fall back to other strategy.
}

// 4. Create Input and Output tensor buffers
std::map<std::string, mace::MaceTensor> inputs;
std::map<std::string, mace::MaceTensor> outputs;
for (size_t i = 0; i < input_count; ++i) {
 // Allocate input and output
 int64_t input_size =
 std::accumulate(input_shapes[i].begin(), input_shapes[i].end(), 1,
 std::multiplies<int64_t>())
 auto buffer_in = std::shared_ptr<float>(new float[input_size],
 std::default_delete<float[]>());
 // Load input here
 // ...
 inputs[input_names[i]] = mace::MaceTensor(input_shapes[i], buffer_in);
}
for (size_t i = 0; i < output_count; ++i) {
 int64_t output_size =
 std::accumulate(output_shapes[i].begin(), output_shapes[i].end(), 1,
 std::multiplies<int64_t>())
 auto buffer_out = std::shared_ptr<float>(new float[output_size],
 std::default_delete<float[]>());
 outputs[output_names[i]] = mace::MaceTensor(output_shapes[i], buffer_out);
}

// 5. Run the model
MaceStatus status = engine.Run(inputs, &outputs);

More details are in *Advanced usage*.

5.2. *Build your own model*
CHAPTER 6

Advanced usage

This part contains the full usage of MACE.

6.1 Overview

As mentioned in the previous part, a model deployment file defines a case of model deployment. The building process includes parsing model deployment file, converting models, building MACE core library and packing generated model libraries.

6.2 Deployment file

One deployment file will generate one library normally, but if more than one ABIs are specified, one library will be generated for each ABI. A deployment file can also contain multiple models. For example, an AI camera application may contain face recognition, object recognition, and voice recognition models, all of which can be defined in one deployment file.

• Example

Here is an example deployment file with two models.

```plaintext
# The name of library
library_name: mobile_squeeze
# host, armeabi-v7a or arm64-v8a
target_abis: [arm64-v8a]
# soc's name or all
target_socs: [all]
# The build mode for model(s).
# 'code' for transferring model(s) into cpp code, 'file' for keeping
# model(s) in protobuf file(s) (.pb).
model_graph_format: code
# 'code' for transferring model data(s) into cpp code, 'file' for keeping
# model data(s) in file(s) (.data).
```

(continues on next page)
model_data_format: code

One yaml config file can contain multi models' deployment info.
models:
 mobilenet_v1:
 platform: tensorflow
 model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/
 →mobilenet-v1/mobilenet-v1-1.0.pb
 model_sha256_checksum:
 →71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
 subgraphs:
 - input_tensors:
 - input
 input_shapes:
 - 1,224,224,3
 output_tensors:
 - MobilenetV1/Predictions/Reshape_1
 output_shapes:
 - 1,1001
 validation_inputs_data:
 - https://cnbj1.fds.api.xiaomi.com/mace/inputs/dog.npy
 runtime: cpu+gpu
 limit_opencl_kernel_time: 0
 obfuscate: 0
 winograd: 0
 squeezenet_v11:
 platform: caffe
 model_file_path: http://cnbj1-inner-fds.api.xiaomi.net/mace/mace-
 →models/squeezenet/SqueezeNet_v1.1/model.prototxt
 weight_file_path: http://cnbj1-inner-fds.api.xiaomi.net/mace/mace-
 →models/squeezenet/SqueezeNet_v1.1/weight.caffemodel
 model_sha256_checksum:
 →625c952063da1569e22d2f499dc454952244d42cd8feca61f05502566e70ae1c
 weight_sha256_checksum:
 →72b912ace512e8621f8ff168a7d72af55910d3c7c9445af8dfbff4c2ee960142
 subgraphs:
 - input_tensors:
 - data
 input_shapes:
 - 1,227,227,3
 output_tensors:
 - prob
 output_shapes:
 - 1,1,1000
 accuracy_validation_script:
 - path/to/your/script
 runtime: cpu+gpu
 limit_opencl_kernel_time: 0
 obfuscate: 0
 winograd: 0

• Configurations
<table>
<thead>
<tr>
<th>Options</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>library_name</td>
<td>Library name.</td>
</tr>
<tr>
<td>target_abis</td>
<td>The target ABI(s) to build, could be 'host', 'armeabi-v7a' or 'arm64-v8a'. If more than one ABIs will be used, separate them by commas.</td>
</tr>
<tr>
<td>target_socs</td>
<td>[optional] Build for specific SoCs.</td>
</tr>
<tr>
<td>model_graph_format</td>
<td>Model graph format, could be 'file' or 'code'. 'file' for converting model graph to ProtoBuf file(.pb) and 'code' for converting model graph to c++ code.</td>
</tr>
<tr>
<td>model_data_format</td>
<td>Model data format, could be 'file' or 'code'. 'file' for converting model weight to data file(.data) and 'code' for converting model weight to c++ code.</td>
</tr>
<tr>
<td>model_name</td>
<td>Model name should be unique if there are more than one models. LIMIT: if build_type is code, model_name will be used in c++ code so that model_name must comply with c++ name specification.</td>
</tr>
<tr>
<td>platform</td>
<td>The source framework, tensorflow or caffe.</td>
</tr>
<tr>
<td>model_file_path</td>
<td>The path of your model file which can be local path or remote URL.</td>
</tr>
<tr>
<td>subgraphs</td>
<td>Subgraph key. DO NOT EDIT</td>
</tr>
<tr>
<td>input_tensors</td>
<td>The input tensor name(s) (tensorflow) or top name(s) of inputs’ layer (caffe). If there are more than one tensors, use one line for a tensor.</td>
</tr>
<tr>
<td>output_tensors</td>
<td>The output tensor name(s) (tensorflow) or top name(s) of outputs’ layer (caffe). If there are more than one tensors, use one line for a tensor.</td>
</tr>
<tr>
<td>input_shapes</td>
<td>The shapes of the input tensors, default is NHWC order.</td>
</tr>
<tr>
<td>output_shapes</td>
<td>The shapes of the output tensors, default is NHWC order.</td>
</tr>
<tr>
<td>input_ranges</td>
<td>The numerical range of the input tensors’ data, default [-1, 1]. It is only for test.</td>
</tr>
<tr>
<td>validation_inputs_data</td>
<td>[optional] Specify Numpy validation inputs. When not provided, [-1, 1] random values will be used.</td>
</tr>
<tr>
<td>accuracy_validation_script</td>
<td>[optional] Specify the accuracy validation script as a plugin to test accuracy, see doc.</td>
</tr>
<tr>
<td>validation_threshold</td>
<td>[optional] Specify the similarity threshold for validation. A dict with key in 'CPU', 'GPU' and/or 'HEXAGON' and value <= 1.0.</td>
</tr>
<tr>
<td>backend</td>
<td>The onnx backend framework for validation, could be [tensorflow, caffe2, pytorch], default is tensorflow.</td>
</tr>
<tr>
<td>runtime</td>
<td>The running device, one of [cpu, gpu, dsp, cpu+gpu]. cpu+gpu contains CPU and GPU model definition so you can run the model on both CPU and GPU.</td>
</tr>
<tr>
<td>data_type</td>
<td>The data type used for specified runtime. [fp16_f32, f32_f32] for GPU, default is fp16_f32, [fp32] for CPU and [uint8] for DSP.</td>
</tr>
<tr>
<td>input_data_type</td>
<td>[optional] The input data type for specific op(eg. gather), which can be [int32, float32], default to float32.</td>
</tr>
<tr>
<td>input_data_format</td>
<td>[optional] The format of the input tensors, one of [NONE, NHWC, NCHW]. If there is no format for the input, please use NONE. If only one single format is specified, all inputs will use that format, default is NHWC order.</td>
</tr>
<tr>
<td>output_data_format</td>
<td>[optional] The format of the output tensors, one of [NONE, NHWC, NCHW]. If there is no format for the output, please use NONE. If only one single format is specified, all inputs will use that format, default is NHWC order.</td>
</tr>
<tr>
<td>limit_opencl_kernel_time</td>
<td>[optional] Whether splitting the OpenCL kernel within 1 ms to keep UI responsiveness, default is 0.</td>
</tr>
<tr>
<td>obfuscate</td>
<td>[optional] Whether to obfuscate the model operator name, default to 0.</td>
</tr>
<tr>
<td>winograd</td>
<td>[optional] Which type winograd to use, could be [0, 2, 4]. 0 for disable winograd, 2 and 4 for enable winograd, 4 may be faster than 2 but may take more memory.</td>
</tr>
</tbody>
</table>
Note: Some command tools:

```bash
# Get device's soc info.
adb shell getprop | grep platform

# command for generating sha256_sum
sha256sum /path/to/your/file
```

6.3 Advanced usage

There are three common advanced use cases:

- run your model on the embedded device (ARM LINUX)
- converting model to C++ code.
- tuning GPU kernels for a specific SoC.

6.4 Run you model on the embedded device (ARM Linux)

The way to run your model on the ARM Linux is nearly same as with android, except you need specify a device config file.

```bash
python tools/converter.py run --config=/path/to/your/model_deployment_file.yml --device_yml=/path/to/devices.yml
```

There are two steps to do before run:

1. configure login without password

 MACE use ssh to connect embedded device, you should copy your public key to embedded device with the blow command.

   ```bash
   cat ~/.ssh/id_rsa.pub | ssh -q {user}@{ip} "cat >> ~/.ssh/authorized_keys"
   ```

2. write your own device yaml configuration file.

 - Example

 Here is an device yaml config demo.

   ```yaml
   devices:
   # The name of the device
   nanopi:
   # arm64 or armhf
   target_abis: [arm64, armhf]
   # device soc, you can get it from device manual
   target_socs: RK3399
   # device model full name
   models: FriendlyElec Nanopi M4
   # device ip address
   address: 10.0.0.0
   ```

(continues on next page)
• Configuration The detailed explanation is listed in the blow table.

<table>
<thead>
<tr>
<th>Options</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>target_abis</td>
<td>Device supported abis, you can get it via dpkg --print-architecture and dpkg --print-foreign-architectures command, if more than one abi is supported, separate them by commas.</td>
</tr>
<tr>
<td>target_socs</td>
<td>device soc, you can get it from device manual, we haven’t found a way to get it in shell.</td>
</tr>
<tr>
<td>models</td>
<td>device models full name, you can get via get lshw command (third party package, install it via your package manager). see it’s product value.</td>
</tr>
<tr>
<td>address</td>
<td>Since we use ssh to connect device, ip address is required.</td>
</tr>
<tr>
<td>username</td>
<td>login username, required.</td>
</tr>
</tbody>
</table>

6.5 Convert model(s) to C++ code

• 1. Change the model deployment file(.yml)

If you want to protect your model, you can convert model to C++ code. there are also two cases:

 – convert model graph to code and model weight to file with below model configuration.

```yaml
model_graph_format: code
model_data_format: file
```

 – convert both model graph and model weight to code with below model configuration.

```yaml
model_graph_format: code
model_data_format: code
```

Note: Another model protection method is using obfuscate to obfuscate names of model’s operators.

• 2. Convert model(s) to code

```bash
python tools/converter.py convert --config=/path/to/model_deployment_file.ym
```

The command will generate ${library_name}.a in build/${library_name}/model directory and **.h * in build/${library_name}/include like the following dir-tree.
• 3. Deployment

 – Link `libmace.a` and `${library_name}.a` to your target.
 – Refer to `mace/tools/mace_run.cc` for full usage. The following list the key steps.
6.6 Tuning for specific SoC’s GPU

If you want to use the GPU of a specific device, you can just specify the target_socs in your YAML file and then tune the MACE lib for it (OpenCL kernels), which may get 1~10% performance improvement.

- 1. Change the model deployment file(.yml)

Specify target_socs in your model deployment file(.yml):

```
target_socs: [sdm845]
```

Note: Get device’s soc info: `adb shell getprop | grep platform`

- 2. Convert model(s)

```
python tools/converter.py convert --config=/path/to/model_deployment_file.yml
```

- 3. Tuning

The tools/converter.py will enable automatic tuning for GPU kernels. This usually takes some time to finish depending on the complexity of your model.

Note: You should plug in device(s) with the specific SoC(s).

```
python tools/converter.py run --config=/path/to/model_deployment_file.yml --validate
```

The command will generate two files in `build/${library_name}/opencl`, like the following dir-tree.

```
build
  └── mobilenet-v2
      ├── model
      │    └── mobilenet_v2.data
      │    └── mobilenet_v2.pb
      └── opencl
          └── arm64-v8a
              └── mobilenet-v2_compiled_opencl_kernel.MiNote3.sdm660.
      └── bin
          └── mobilenet-v2_compiled_opencl_kernel.MiNote3.sdm660.
      └── bin.cc
          └── mobilenet-v2_tuned_opencl_parameter.MiNote3.sdm660.
      └── bin
          └── bin.cc
```

- `mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin` stands for the OpenCL binaries used for your models, which could accelerate the initialization stage. Details please refer to OpenCL Specification.

- `mobilenet-v2-gpu_compiled_opencl_kernel.MI6.msm8998.bin.cc` contains C++ source code which defines OpenCL binary data as const array.
– mobilenet-v2-tuned_opencl_parameter.MI6.msm8998.bin stands for the tuned OpenCL parameters for the SoC.
– mobilenet-v2-tuned_opencl_parameter.MI6.msm8998.bin.cc contains C++ source code which defines OpenCL binary data as const array.

• 4. Deployment
– Change the names of files generated above for not collision and push them to your own device’s directory.
– Use like the previous procedure, below lists the key steps differently.

```cpp
// Include the headers
#include "mace/public/mace.h"

// 0. Declare the device type (must be same with `runtime` in configuration file)
DeviceType device_type = DeviceType::GPU;

// 1. configuration
MaceStatus status;
MaceEngineConfig config(device_type);
std::shared_ptr<GPUContext> gpu_context;
const std::string storage_path = "path/to/storage";
gpu_context = GPUContextBuilder()
  .SetStoragePath(storage_path)
  .SetOpenCLBinaryPaths(path/to/opencl_binary_paths)
  .SetOpenCLParameterPath(path/to/opencl_parameter_file)
  .Finalize();
config.SetGPUContext(gpu_context);
config.SetGPUHints(
  static_cast<GPUPerfHint>(GPUPerfHint::PERF_NORMAL),
  static_cast<GPUPriorityHint>(GPUPriorityHint::PRIORITY_LOW));

// ... Same with the code in basic usage.
```

6.7 Validate accuracy of MACE model

MACE supports python validation script as a plugin to test the accuracy, the plugin script could be used for below two purpose.

1. Test the accuracy (like Top-1) of MACE model (specifically quantization model) converted from other framework (like tensorflow)

2. Show some real output if you want to see it.

The script define some interfaces like preprocess and postprocess to deal with input/output and calculate the accuracy, you could refer to the sample code for detail. The sample code show how to calculate the Top-1 accuracy with imagenet validation dataset.

6.8 Useful Commands

• run the model
`# Test model run time`
python tools/converter.py run --config=/path/to/model_deployment_file.yml --round=100

`# Validate the correctness by comparing the results against the original model and framework, measured with cosine distance for similarity.`
python tools/converter.py run --config=/path/to/model_deployment_file.yml --validate

`# Check the memory usage of the model (**Just keep only one model in deployment file**)`
python tools/converter.py run --config=/path/to/model_deployment_file.yml --round=10000 &
sleep 5
adb shell dumpsys meminfo | grep mace_run
kill %1

Warning: run rely on convert command, you should convert before run.

- benchmark and profile model

the detailed information is in Benchmark usage.

`# Benchmark model, get detailed statistics of each Op.`
python tools/converter.py run --config=/path/to/model_deployment_file.yml --benchmark

Warning: benchmark rely on convert command, you should benchmark after convert.

Common arguments

<table>
<thead>
<tr>
<th>option</th>
<th>type</th>
<th>default</th>
<th>commands</th>
<th>explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>-omp_num_threads</td>
<td>int</td>
<td>-1</td>
<td>run</td>
<td>number of threads</td>
</tr>
<tr>
<td>-cpu_affinity_policy</td>
<td>int</td>
<td>1</td>
<td>run</td>
<td>0:AFFINITY_NONE/1:AFFINITY_BIG_ONLY/2:AFFINITY_LITTLE_ONLY</td>
</tr>
<tr>
<td>-gpu_perf_hint</td>
<td>int</td>
<td>3</td>
<td>run</td>
<td>0:DEFAULT/1:LOW/2:NORMAL/3:HIGH</td>
</tr>
<tr>
<td>-gpu_priority_hint</td>
<td>int</td>
<td>3</td>
<td>run/benchmark</td>
<td>0:DEFAULT/1:LOW/2:NORMAL/3:HIGH</td>
</tr>
</tbody>
</table>

Use `-h` to get detailed help.

python tools/converter.py -h
python tools/converter.py build -h
python tools/converter.py run -h

6.9 Reduce Library Size

- Build for your own usage purpose.
 - dynamic library
* If the models don't need to run on device dsp, change the build option --define hexagon=true to false. And the library will be decreased about 100KB.
* Further more, if only cpu device needed, change --define opencl=true to false. This way will reduce half of library size to about 700KB for armeabi-v7a and 1000KB for arm64-v8a
* About 300KB can be reduced when add --config symbol_hidden building option. It will change the visibility of inner apis in libmace.so and lead to linking error when load model(s) in code but no effection for file mode.

– static library
* The methods in dynamic library can be useful for static library too. In additional, the static library may also contain model graph and model datas if the configs model_graph_format and model_data_format in deployment file are set to code.
* It is recommended to use version script and strip feature when linking mace static library. The effect is remarkable.

• Remove the unused ops.
Remove the registration of the ops unused for your models in the mace/ops/ops_register.cc, which will reduce the library size significantly. the final binary just link the registered ops' code.

```cpp
#include "mace/ops/ops_register.h"

namespace mace {
namespace ops {

    // Just leave the ops used in your models

    ...
}
} // namespace ops

OpRegistry::OpRegistry() : OpRegistryBase() {
    // Just leave the ops used in your models

    ...
    ops::RegisterMyCustomOp(this);
    ...
}
} // namespace mace
```

6.10 Reduce Model Size

Model file size can be a bottleneck for the deployment of neural networks on mobile devices, so MACE provides several ways to reduce the model size with no or little performance or accuracy degradation.

1. **Save model weights in half-precision floating point format**

 The default data type of a regular model is float (32bit). To reduce the model weights size, half (16bit) can be used to reduce it by half with negligible accuracy degradation.
For CPU, `data_type` can be specified as `fp16_fp32` in the deployment file to save the weights in half and actual inference in float.

For GPU, `fp16_fp32` is default. The ops in GPU take half as inputs and outputs while kernel execution in float.

2. Save model weights in quantized fixed point format

Weights of convolutional (excluding depthwise) and fully connected layers take up a major part of model size. These weights can be quantized to 8bit to reduce the size to a quarter, whereas the accuracy usually decreases only by 1%-3%. For example, the top-1 accuracy of MobileNetV1 after quantization of weights is 68.2% on the ImageNet validation set. `quantize_large_weights` can be specified as 1 in the deployment file to save these weights in 8bit and actual inference in float. It can be used for both CPU and GPU.
CHAPTER 7

Benchmark usage

This part contains the usage of MACE benchmark tools.

7.1 Overview

As mentioned in the previous part, there are two kinds of benchmark tools, one for operator and the other for model.

7.2 Operator Benchmark

Operator Benchmark is used for test and optimize the performance of specific operator.

7.2.1 Usage

```python
tools/bazel_adb_run.py --target="/test/ccbenchmark:mace_cc_benchmark
˓→" --run_target=True --args="--filter=.*BM_CONV.*"
```

7.2.2 Output

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>Time(ns)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MACE_BM_CONV_2D_1_1024_7_7_K1x1S1D1SAME_1024_float_CPU</td>
<td>1759129</td>
</tr>
<tr>
<td>→479 114.09 29.21</td>
<td></td>
</tr>
<tr>
<td>MACE_BM_CONV_2D_1_1024_7_7_K1x1S1D1SAME_1024_float_GPU</td>
<td>4031301</td>
</tr>
<tr>
<td>→226 49.79 12.75</td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
7.2.3 Explanation

<table>
<thead>
<tr>
<th>Options</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benchmark</td>
<td>Benchmark unit name.</td>
</tr>
<tr>
<td>Time</td>
<td>Time of one round.</td>
</tr>
<tr>
<td>Iterations</td>
<td>the number of iterations to run, which is between 10 and 1000,000,000. the value is calculated based on the strategy total run time does not exceed 1s.</td>
</tr>
<tr>
<td>Input</td>
<td>The bandwidth of dealing with input. the unit is MB/s.</td>
</tr>
<tr>
<td>GMACPS</td>
<td>The speed of running MACs(multiply-accumulation). the unit is G/s.</td>
</tr>
</tbody>
</table>

7.3 Model Benchmark

Model Benchmark is used for test and optimize the performance of your model. This tool could record the running time of the model and the detailed running information of each operator of your model.

7.3.1 Usage

```python
tools/converter.py run --config=/path/to/your/model_deployment.yml --benchmark
```

7.3.2 Output

```plaintext
I statistics.cc:343
```

(continues on next page)
7.3. Model Benchmark

<table>
<thead>
<tr>
<th>Op Type</th>
<th>Start</th>
<th>First</th>
<th>Avg(ms)</th>
<th>%</th>
<th>cdf%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conv2D</td>
<td>30.093</td>
<td>2.102</td>
<td>2.198</td>
<td>6.922</td>
<td>6.922</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[1024,1024,1,1]</td>
<td>[1,1024,7,7]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>23.372</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_13_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7.823</td>
<td>2.115</td>
<td>2.164</td>
<td>6.813</td>
<td>13.735</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[128,128,1,1]</td>
<td>[1,128,56,56]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>23.747</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_3_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.358</td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
</tr>
<tr>
<td></td>
<td>23.457</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_7_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.517</td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
</tr>
<tr>
<td></td>
<td>24.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.569</td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
</tr>
<tr>
<td></td>
<td>24.569</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_9_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>26.204</td>
<td>2.081</td>
<td>2.093</td>
<td>6.590</td>
<td>33.567</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>24.549</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_10_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>21.038</td>
<td>2.036</td>
<td>2.091</td>
<td>6.585</td>
<td>40.152</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>24.569</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_11_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>24.684</td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
</tr>
<tr>
<td></td>
<td>24.684</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_8_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>18.465</td>
<td>2.034</td>
<td>2.082</td>
<td>6.554</td>
<td>46.706</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[512,512,1,1]</td>
<td>[1,512,14,14]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>24.684</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_7_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2.709</td>
<td>1.984</td>
<td>2.058</td>
<td>6.482</td>
<td>53.188</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[64,32,1,1]</td>
<td>[1,64,112,112]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>12.480</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_1_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12.220</td>
<td>1.788</td>
<td>1.901</td>
<td>5.986</td>
<td>59.174</td>
</tr>
<tr>
<td></td>
<td>[1,1]</td>
<td>SAME</td>
<td>[256,256,1,1]</td>
<td>[1,256,28,28]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>27.027</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_5_pointwise/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.107</td>
<td>1.541</td>
<td>1.570</td>
<td>4.943</td>
<td>64.117</td>
</tr>
<tr>
<td></td>
<td>[2,2]</td>
<td>SAME</td>
<td>[32,3,3,3]</td>
<td>[1,32,112,112]</td>
<td>[1,1]</td>
</tr>
<tr>
<td></td>
<td>6.904</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MobilenetV1/MobilenetV1/Conv2d_0/Relu6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
7.3.3 Explanation

There are 8 sections of the output information.

1. **Warm Up**
This section lists the time information of warm-up run. The detailed explanation is list as below.

<table>
<thead>
<tr>
<th>Key</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>round</td>
<td>the number of round has been run.</td>
</tr>
<tr>
<td>first</td>
<td>the run time of first round. unit is millisecond.</td>
</tr>
<tr>
<td>curr</td>
<td>the run time of last round. unit is millisecond.</td>
</tr>
<tr>
<td>min</td>
<td>the minimal run time of all rounds. unit is millisecond.</td>
</tr>
<tr>
<td>max</td>
<td>the maximal run time of all rounds. unit is millisecond.</td>
</tr>
<tr>
<td>avg</td>
<td>the average run time of all rounds. unit is millisecond.</td>
</tr>
<tr>
<td>std</td>
<td>the standard deviation of all rounds.</td>
</tr>
</tbody>
</table>

2. Run without statistics

This section lists the run time information without statistics code. the detailed explanation is the same as the section of Warm Up.

3. Run with statistics

This section lists the run time information with statistics code, the time maybe longer compared with the second section. the detailed explanation is the same as the section of Warm Up.

4. Sort by Run Order

This section lists the detailed run information of every operator in your model. The operators is listed based on the run order, Every line is an operator of your model. The detailed explanation is list as below.

<table>
<thead>
<tr>
<th>Key</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Op Type</td>
<td>the type of operator.</td>
</tr>
<tr>
<td>Start</td>
<td>the start time of the operator. unit is millisecond.</td>
</tr>
<tr>
<td>First</td>
<td>the run time of first round. unit is millisecond.</td>
</tr>
<tr>
<td>Avg</td>
<td>the average run time of all rounds. unit is millisecond.</td>
</tr>
<tr>
<td>%</td>
<td>the percentage of total running time.</td>
</tr>
<tr>
<td>cdf%</td>
<td>the cumulative percentage of running time.</td>
</tr>
<tr>
<td>GMACPS</td>
<td>The number of run MACs(multiply-accumulation) per second. the unit is G/s.</td>
</tr>
<tr>
<td>Stride</td>
<td>the stride parameter of the operator if exist.</td>
</tr>
<tr>
<td>Pad</td>
<td>the pad parameter of the operator if exist.</td>
</tr>
<tr>
<td>Filter Shape</td>
<td>the filter shape of the operator if exist.</td>
</tr>
<tr>
<td>Output Shape</td>
<td>the output shape of the operator.</td>
</tr>
<tr>
<td>Dilation</td>
<td>the dilation parameter of the operator if exist.</td>
</tr>
<tr>
<td>Name</td>
<td>the name of the operator.</td>
</tr>
</tbody>
</table>

5. Sort by Computation time

This section lists the top-10 most time-consuming operators. The operators is listed based on the computation time, the detailed explanation is the same as previous section.

6. Stat by Op Type

This section stats the run information about operators based on operator type.
7. **Stat by MACs**

This section stats the MACs information of your model.

<table>
<thead>
<tr>
<th>total</th>
<th>the number of MACs of your model.</th>
</tr>
</thead>
<tbody>
<tr>
<td>round</td>
<td>the number of round has been run.</td>
</tr>
<tr>
<td>First</td>
<td>the GMAPS of first round. unit is G/s.</td>
</tr>
<tr>
<td>Avg</td>
<td>the average GMAPS of all rounds. unit is G/s.</td>
</tr>
<tr>
<td>std</td>
<td>the standard deviation of all rounds.</td>
</tr>
</tbody>
</table>

8. **Summary of Ops’ Stat**

This section lists the run time information which is summation of every operator’s run time. which may be shorter than the model’s run time with statistics. the detailed explanation is the same as the section of Warm Up.
Operator lists

<table>
<thead>
<tr>
<th>Operator</th>
<th>Supported</th>
<th>Remark</th>
</tr>
</thead>
<tbody>
<tr>
<td>AVERAGE_POOL_2D</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported.</td>
</tr>
<tr>
<td>ARGMAX</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported.</td>
</tr>
<tr>
<td>BATCH_NORM</td>
<td>Y</td>
<td>Fusion with activation is supported.</td>
</tr>
<tr>
<td>BATCH_TO_SPACE_ND</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>BIAS_ADD</td>
<td>Y</td>
<td>Only CPU and TensorFlow model is supported.</td>
</tr>
<tr>
<td>CAST</td>
<td>Y</td>
<td>Only CPU and TensorFlow model is supported.</td>
</tr>
<tr>
<td>CHANNEL_SHUFFLE</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>CONCATENATION</td>
<td>Y</td>
<td>For GPU only support channel axis concatenation.</td>
</tr>
<tr>
<td>CONV_2D</td>
<td>Y</td>
<td>Fusion with BN and activation layer is supported.</td>
</tr>
<tr>
<td>CROP</td>
<td>Y</td>
<td>Only Caffe’s crop layer is supported (in GPU, offset on channel-dim should be dividable by 4).</td>
</tr>
<tr>
<td>DECONV_2D</td>
<td>Y</td>
<td>Supports Caffe’s Deconvolution and TensorFlow’s tf.layers.conv2d_transpose.</td>
</tr>
<tr>
<td>DEPTHWISE_DECONV2D</td>
<td>Y</td>
<td>Supports Caffe’s Group and Depthwise Deconvolution. For GPU only support.</td>
</tr>
<tr>
<td>DEPTHWISE_CONV_2D</td>
<td>Y</td>
<td>Only multipler = 1 is supported; Fusion is supported.</td>
</tr>
<tr>
<td>DEPTH_TO_SPACE</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>DEQUANTIZE</td>
<td>Y</td>
<td>Model quantization will be supported later.</td>
</tr>
<tr>
<td>ELEMENT_WISE</td>
<td>Y</td>
<td>ADD/MUL/DIV/MIN/MAX/NEG/ABS/SQR_DIFF/POW/RSQRT/SQR</td>
</tr>
<tr>
<td>EMBEDDING_LOOKUP</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>EXPANDDIMS</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported.</td>
</tr>
<tr>
<td>FILL</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported.</td>
</tr>
<tr>
<td>FLATTEN</td>
<td>Y</td>
<td>Only Caffe is supported.</td>
</tr>
<tr>
<td>FULLY_CONNECTED</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>GROUP_CONV_2D</td>
<td></td>
<td>Caffe model with group count = channel count is supported.</td>
</tr>
<tr>
<td>IDENTITY</td>
<td>Y</td>
<td>Only TensorFlow model is supported.</td>
</tr>
<tr>
<td>LOCAL_RESPONSE_NORMALIZATION</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>LOGISTIC</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>LSTM</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATMUL</td>
<td>Y</td>
<td>Only CPU is supported.</td>
</tr>
<tr>
<td>MAX_POOL_2D</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>Operator</td>
<td>Supported</td>
<td>Remark</td>
</tr>
<tr>
<td>----------------------</td>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>ONE_HOT</td>
<td>Y</td>
<td>Only TensorFlow model is supported.</td>
</tr>
<tr>
<td>PAD</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>PSROI_ALIGN</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>PReLU</td>
<td>Y</td>
<td>Only Caffe model is supported</td>
</tr>
<tr>
<td>PRIOR_BOX</td>
<td>Y</td>
<td>Only Caffe model is supported</td>
</tr>
<tr>
<td>REDUCE_MEAN</td>
<td>Y</td>
<td>Only TensorFlow model is supported. For GPU only H + W axis reduce</td>
</tr>
<tr>
<td>RELU</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>RELU1</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>RELU6</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>RELUX</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>RESHAPE</td>
<td>Y</td>
<td>Limited support: GPU only supports softmax-like usage, CPU only support</td>
</tr>
<tr>
<td>RESIZE_BICUBIC</td>
<td>Y</td>
<td>Only Tensorflow is supported</td>
</tr>
<tr>
<td>RESIZE_BILINEAR</td>
<td>Y</td>
<td>Only Tensorflow is supported</td>
</tr>
<tr>
<td>RESIZE_NEAREST_NEIGHBOR</td>
<td>Y</td>
<td>Only Tensorflow is supported</td>
</tr>
<tr>
<td>REVERSE</td>
<td>Y</td>
<td>Only CPU and Tensorflow is supported</td>
</tr>
<tr>
<td>RNN</td>
<td></td>
<td></td>
</tr>
<tr>
<td>RPN_PROPOSAL_LAYER</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>SHAPE</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
<tr>
<td>STACK</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
<tr>
<td>STRIDEDSLICE</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
<tr>
<td>SPLIT</td>
<td>Y</td>
<td>In Caffe, this op is equivalent to SLICE; For GPU only support channel</td>
</tr>
<tr>
<td>SOFTMAX</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>SPACE_TO_BATCH_ND</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>SPACE_TO_DEPTH</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>SQUEEZE</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
<tr>
<td>TANH</td>
<td>Y</td>
<td></td>
</tr>
<tr>
<td>TRANSPOSE</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
<tr>
<td>UNSTACK</td>
<td>Y</td>
<td>Only CPU and TensorFlow is supported</td>
</tr>
</tbody>
</table>
MACE supports two kinds of quantization mechanisms, i.e.,

- **Quantization-aware training (Recommend)**

 After pre-training model using float point, insert simulated quantization operations into the model. Fine tune the new model. Refer to Tensorflow quantization-aware training.

- **Post training quantization**

 After pre-training model using float point, estimate output range of each activation layer using sample inputs.

9.1 Quantization-aware training

It is recommended that developers fine tune the fixed-point model, as experiments show that by this way accuracy could be improved, especially for lightweight models, e.g., MobileNet. The only thing you need to make it run using MACE is to add the following config to model yaml file:

1. `input_ranges`: the ranges of model’s inputs, e.g., -1.0,1.0.
2. `quantize`: set `quantize` to be 1.

9.2 Post training quantization

MACE supports post-training quantization if you want to take a chance to quantize model directly without fine tuning. This method requires developer to calculate tensor range of each activation layer statistically using sample inputs. MACE provides tools to do statistics with following steps:

1. Convert original model to run on CPU host without obfuscation (by setting `target_abis` to `host`, `runtime` to `cpu`, and `obfuscate` to 0, appending ;0 to `output_tensors` if missing in yaml config). E.g.,

   ```bash
   python tools/converter.py convert --config ../mace-models/inception-v3/→inception-v3.yml
   ```
2. Log tensor range of each activation layer by inferring several samples on CPU host. Sample inputs should be representative to calculate the ranges of each layer properly.

```bash
# Convert images to input tensors for MACE, see image_to_tensor.py for more arguments.
python tools/image/image_to_tensor.py --input /path/to/directory/of/input/images
    --output_dir /path/to/directory/of/input/tensors --image_shape=299,299,3

# Rename input tensors to start with input tensor name (to differentiate multiple inputs of a model), input tensor name is what you specified as "input_tensors" in yaml config. For example, "input" is the input tensor name of InceptionV3 as below.
rename 's/^/input/' *

# Run with input tensors
python tools/converter.py run --config ../mace-models/inception-v3/inception-v3.yml
    --quantize_stat --input_dir /path/to/directory/of/input/tensors > range_log
```

3. Calculate overall range of each activation layer. You may specify --percentile or --enhance and --enhance_ratio to try different ranges and see which is better. Experimentation shows that the default percentile and enhance_ratio works fine for several common models.

```bash
python mace/python/tools/quantization/quantize_stat.py --log_file range_log > overall_range
```

4. Convert quantized model (by setting target_abis to the final target abis, e.g., armeabi-v7a, quantize to 1 and quantize_range_file to the overall_range file path in yaml config).

Note: quantize_weights and quantize_nodes should not be specified when using TransformGraph tool if using MACE quantization.
CHAPTER 10

Contributing guide

10.1 License

The source file should contain a license header. See the existing files as the example.

10.2 Python coding style

Changes to Python code should conform to PEP8 Style Guide for Python Code.
You can use pycodestyle to check the style.

10.3 C++ coding style

Changes to C++ code should conform to Google C++ Style Guide.
You can use cpplint to check the style and use clang-format to format the code:

```
clang-format -style="{BasedOnStyle: google,           
    DerivePointerAlignment: false,          
    PointerAlignment: Right,               
    BinPackParameters: false}" $file
```

10.4 C++ logging guideline

VLOG is used for verbose logging, which is configured by environment variable MACE_CPP_MIN_VLOG_LEVEL.
The guideline of VLOG level is as follows:
0. Ad hoc debug logging, should only be added in test or temporary ad hoc debugging
1. Important network level Debug/Latency trace log (Op run should never generate level 1 vlog)
2. Important op level Latency trace log
3. Unimportant Debug/Latency trace log
4.Verbose Debug/Latency trace log

10.5 C++ marco

C++ macros should start with MACE_, except for most common ones like LOG and VLOG.
You can create a custom op if it is not supported yet. To add a custom op, you need to follow these steps:

11.1 Implement the Operation

The Best way is to refer to the implementation of other operator(e.g. /mace/ops/activation.cc)
Define the new Op class in mace/ops/my_custom_op.cc.

1. ARM kernels: Kernel about NEON is located at mace/ops/arm/my_custom_op.cc
2. GPU kernels: OpenCL kernel API is defined in mace/ops/opencl/my_custom_op.h,
 - Kernel based on Image is realized in mace/ops/opencl/image/my_custom_op.cc,
 - Kernel based on Buffer is realized in mace/ops/opencl/buffer/my_custom_op.cc.
 - OpenCL kernel file is realized in mace/ops/opencl/cl/my_custom_op.cl.
 - Add the path of opencl kernel file in file mace/repository/opencl-kernel/
 opencl Kernel configure.bzl

The structure of Op is like the following code.

```cpp
#include "mace/core/operator.h"

namespace mace {
namespace ops {

  template <DeviceType D, class T>
  class MyCustomOp;

  template <>
  class MyCustomOp<DeviceType::CPU, float> : public Operation {
```

(continues on next page)
11.2 Register the Operation

Register the new Op in `mace/ops/ops_register.cc`.

```cpp
#include "mace/ops/ops_register.h"

namespace mace {
namespace ops {

// Keep in lexicographical order
...

extern void RegisterMyCustomOp(OpRegistryBase *op_registry);
...
}

OpRegistry::OpRegistry() : OpRegistryBase() {
// Keep in lexicographical order
...

ops::RegisterMyCustomOp(this);
...
}
}

// namespace mace
```
11.3 Add UTs

Add operation unit tests in `mace/ops/my_custom_op_test.cc`

11.4 Add benchmark

Add operation benchmark in `mace/ops/my_custom_op_benchmark.cc` It's strongly recommended to add unit tests and micro benchmarks for your new Op. If you wish to contribute back, it's required.

11.5 Add Op in model converter

You need to add this new Op in the model converter.

11.6 Document the new Op

Finally, add an entry in operator table in the document.
To run tests, you need to first cross compile the code, push the binary into the device and then execute the binary. To automate this process, MACE provides `tools/bazel_adb_run.py` tool.

You need to make sure your device has been connected to your dev pc before running tests.

12.1 Run unit tests

MACE use `gtest` for unit tests.

- Run all unit tests defined in a Bazel target, for example, run `mace_cc_test`:

  ```
  python tools/bazel_adb_run.py --target="//test/ccunit:mace_cc_test" \\ 
  --run_target=True
  ```

- Run unit tests with `gtest` filter, for example, run `Conv2dOpTest` unit tests:

  ```
  python tools/bazel_adb_run.py --target="//test/ccunit:mace_cc_test" \\ 
  --run_target=True \\ 
  --args="--gtest_filter=Conv2dOpTest*"
  ```

12.2 Run micro benchmarks

MACE provides a micro benchmark framework for performance tuning.

- Run all micro benchmarks defined in a Bazel target, for example, run all `mace_cc_benchmark` micro benchmarks:

  ```
  python tools/bazel_adb_run.py --target="//test/ccbenchmark:mace_cc_benchmark" \\ 
  --run_target=True
  ```

- Run micro benchmarks with regex filter, for example, run all `CONV_2D` GPU micro benchmarks:
```python
def bazel_adb_run(py, target, run_target, args):
    return "python tools/bazel_adb_run.py \"
    --target="$target" \"
    --run_target=True \"
    --args="$args"
```

Chapter 12. How to run tests
13.1 Debug correctness

MACE provides tools to examine correctness of model execution by comparing model’s output of MACE with output of training platform (e.g., Tensorflow, Caffe). Three metrics are used as comparison results:

- **Cosine Similarity**:

\[
\text{Cosine Similarity} = \frac{X \cdot X'}{||X|| \cdot ||X'||}
\]

This metric will be approximately equal to 1 if output is correct.

- **SQNR (Signal-to-Quantization-Noise Ratio)**:

\[
\text{SQNR} = \frac{P_{\text{signal}}}{P_{\text{noise}}} = \frac{||X||^2}{||X - X'||^2}
\]

It is usually used to measure quantization accuracy. The higher SQNR is, the better accuracy will be.

- **Pixel Accuracy**:

\[
\text{Pixel Accuracy} = \frac{\sum_{b=1}^{\text{batch}} \text{equal}(\text{argmax}X_b, \text{argmax}X'_b)}{\text{batch}}
\]

It is usually used to measure classification accuracy. The higher the better.

where \(X \) is expected output (from training platform) whereas \(X' \) is actual output (from MACE).

You can validate it by specifying `--validate` while running the model.

```bash
# Validate the correctness by comparing the results against the original model and framework
python tools/converter.py run --config=/path/to/your/model_deployment_file.yaml --validate
```

MACE automatically validate these metrics by running models with synthetic inputs. If you want to specify input data to use, you can add an option in yaml config under 'subgraphs', e.g.,
models:
 mobilenet_v1:
 platform: tensorflow
 model_file_path: https://cnbj1.fds.api.xiaomi.com/mace/miai-models/mobilenet-v1/
 → mobilenet-v1-1.0.pb
 model_sha256_checksum:
 → 71b10f540ece33c49a7b51f5d4095fc9bd78ce46ebf0300487b2ee23d71294e6
 subgraphs:
 - input_tensors:
 - input
 input_shapes:
 - 1,224,224,3
 output_tensors:
 - MobilenetV1/Predictions/Reshape_1
 output_shapes:
 - 1,1001
 check_tensors:
 - MobilenetV1/Logits/Conv2d_1c_1x1/BiasAdd:0
 check_shapes:
 - 1,1,1,1001
 validation_inputs_data:
 - https://cnbj1.fds.api.xiaomi.com/mace/inputs/dog.npy

If model’s output is suspected to be incorrect, it might be useful to debug your model layer by layer by specifying an intermediate layer as output, or use binary search method until suspicious layer is found.

You can also specify –layers after –validate to validate all or some of the layers of the model(excluding some layers changed by MACE, e.g., BatchToSpaceND), it only supports TensorFlow now. You can find validation results in build/your_model/model/runtime_in_yaml/log.csv.

For quantized model, if you want to check one layer, you can add check_tensors and check_shapes like in the yaml above. You can only specify MACE op’s output.

13.2 Debug with crash

When MACE crashes, a complete stacktrace is useful in debugging. But because of selinux problem, symbols table is not loaded in memory, which leading to no symbol in stack trace. To circumvent this problem, you can rebuild mace_run with –debug_mode option to reserve debug symbols, e.g.,

```
python tools/converter.py run --config=/path/to/config.yml --debug_mode
```

For android, you can use ndk-stack tools to symbolize stack trace, e.g.,

```
adb logcat | $ANDROID_NDK_HOME/ndk-stack -sym /path/to/local/binary/
             →directory/
```

13.3 Debug memory usage

The simplest way to debug process memory usage is to use top command. With –H option, it can also show thread info. For android, if you need more memory info, e.g., memory used of all categories, adb shell dumpsys meminfo will help. By watching memory usage, you can check if memory usage meets expectations or if any leak happens.
13.4 Debug performance

Using MACE, you can benchmark a model by examining each layer’s duration as well as total duration. Or you can benchmark a single op. The detailed information is in Benchmark usage.

13.5 Debug model conversion

After model is converted to MACE model, a literal model graph is generated in directory mace/codegen/models/your_model. You can refer to it when debugging model conversion.

MACE also provides model visualization HTML generated in build directory, generated after converting model.

13.6 Debug engine using log

MACE implements a similar logging mechanism like glog. There are two types of logs, LOG for normal logging and VLOG for debugging.

LOG includes four levels, sorted by severity level: INFO, WARNING, ERROR, FATAL. The logging severity threshold can be configured via environment variable, e.g. MACE_CPP_MIN_LOG_LEVEL=WARNING to set as WARNING. Only the log messages with equal or above the specified severity threshold will be printed, the default threshold is INFO. We don’t support integer log severity value like glog, because they are confusing with VLOG.

VLOG is verbose logging which is logged as LOG(INFO). VLOG also has more detailed integer verbose levels, like 0, 1, 2, 3, etc. The threshold can be configured through environment variable, e.g. MACE_CPP_MIN_VLOG_LEVEL=2 to set as 2. With VLOG, the lower the verbose level, the more likely messages are to be logged. For example, when the threshold is set to 2, both VLOG(1), VLOG(2) log messages will be printed, but VLOG(3) and highers won’t.

By using mace_run tool, VLOG level can be easily set by option, e.g.,

```bash
code
python tools/converter.py run --config /path/to/model.yml --vlog_level=2
```

If models are run on android, you might need to use adb logcat to view logs.

13.7 Debug engine using GDB

GDB can be used as the last resort, as it is powerful that it can trace stacks of your process. If you run models on android, things may be a little bit complicated.

```bash
code
# push gdbserver to your phone
adb push $ANDROID_NDK_HOME/prebuilt/android-arm64/gdbserver/gdbserver /data/
    →local/tmp/

# set system env, pull system libs and bins to host
export SYSTEM_LIB=/path/to/android/system_lib
export SYSTEM_BIN=/path/to/android/system_bin
mkdir -p $SYSTEM_LIB
adb pull /system/lib/. $SYSTEM_LIB
mkdir -p $SYSTEM_BIN
adb pull /system/bin/. $SYSTEM_BIN
```

(continues on next page)
Suppose ndk compiler used to compile Mace is of android-21
export PLATFORMS_21_LIB=$ANDROID_NDK_HOME/platforms/android-21/arch-arm/usr/lib/

start gdbserver. make gdb listen to port 6000
adb shell /data/local/tmp/gdbserver :6000 /path/to/binary/on/phone/example_bin
adb shell LD_LIBRARY_PATH=/dir/to/dynamic/library/on/phone/ /data/local/tmp/gdbserver :6000 /data/local/tmp/mace_run/example_bin
or attach a running process
adb shell /data/local/tmp/gdbserver :6000 --attach 8700
forward tcp port
adb forward tcp:6000 tcp:6000

use gdb on host to execute binary
$ANDROID_NDK_HOME/prebuilt/linux-x86_64/bin/gdb [/path/to/binary/on/host/example_bin]

connect remote port after starting gdb command
target remote :6000

set lib path
set solib-search-path $SYSTEM_LIB:$SYSTEM_BIN:$PLATFORMS_21_LIB

then you can use it as host gdb, e.g.,
btt
CHAPTER 14

Memory layout

14.1 CPU runtime memory layout

The CPU tensor buffer is organized in the following order:

<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Buffer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intermediate input/output</td>
<td>NCHW</td>
</tr>
<tr>
<td>Convolution Filter</td>
<td>OIHW</td>
</tr>
<tr>
<td>Depthwise Convolution Filter</td>
<td>MIHW</td>
</tr>
<tr>
<td>1-D Argument, length = W</td>
<td>W</td>
</tr>
</tbody>
</table>

14.2 GPU runtime memory layout

GPU runtime implementation base on OpenCL, which uses 2D image with CL_RGBA channel order as the tensor storage. This requires OpenCL 1.2 and above.

The way of mapping the Tensor data to OpenCL 2D image (RGBA) is critical for kernel performance.

In CL_RGBA channel order, each 2D image pixel contains 4 data items. The following tables describe the mapping from different type of tensors to 2D RGBA Image.

14.2.1 Input/Output Tensor

The Input/Output Tensor is stored in NHWC format:
<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Buffer</th>
<th>Image size [width, height]</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel-Major Input/Output</td>
<td>NHWC</td>
<td>[W * (C+3)/4, N * H]</td>
<td>Default Input/Output format</td>
</tr>
<tr>
<td>Height-Major Input/Output</td>
<td>NHWC</td>
<td>[W * C, N * (H+3)/4]</td>
<td>WinogradTransform and MatMul output format</td>
</tr>
<tr>
<td>Width-Major Input/Output</td>
<td>NHWC</td>
<td>[(W+3)/4 * C, N * H]</td>
<td>Unused now</td>
</tr>
</tbody>
</table>

Each Pixel of **Image** contains 4 elements. The below table list the coordination relation between **Image** and **Buffer**.

<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Pixel coordinate relationship</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Channel-Major Input/Output</td>
<td>(P[i, j] = { E[n, h, w, c] \mid (n=j/H, h=j%H, w=i%W, c=i/W * 4 + k) })</td>
<td>(k=[0, 4))</td>
</tr>
<tr>
<td>Height-Major Input/Output</td>
<td>(P[i, j] = { E[n, h, w, c] \mid (n=j%N, h=[j/H*4 + k], w=i%W, c=i/W) })</td>
<td>(k=[0, 4))</td>
</tr>
<tr>
<td>Width-Major Input/Output</td>
<td>(P[i, j] = { E[n, h, w, c] \mid (n=j/H, h=j%H, w=[i%W*4 + k], c=i/W) })</td>
<td>(k=[0, 4))</td>
</tr>
</tbody>
</table>

14.2.2 Filter Tensor

<table>
<thead>
<tr>
<th>Tensor</th>
<th>Buffer</th>
<th>Image size [width, height]</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution Filter</td>
<td>OIHW</td>
<td>[I, (O+3)/4 * W * H]</td>
<td>Convolution filter format. There is no difference compared to ([HWI, (O+3)/4])</td>
</tr>
<tr>
<td>Depthwise Convolution Filter</td>
<td>MIHW</td>
<td>[H * W * M, (I+3)/4]</td>
<td>Depthwise-Convolution filter format</td>
</tr>
</tbody>
</table>

Each Pixel of **Image** contains 4 elements. The below table list the coordination relation between **Image** and **Buffer**.

<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Pixel coordinate relationship</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Convolution Filter</td>
<td>(P[m, n] = { E[o, i, h, w] \mid (o=[n/HW*4+k], i=m, h=T/W, w=T%W) })</td>
<td>(HW= H * W, T=n%HW, k=[0, 4))</td>
</tr>
<tr>
<td>Depthwise Convolution Filter</td>
<td>(P[m, n] = { E[0, i, h, w] \mid (i=[n*4+k], h=m/W, w=m%W) })</td>
<td>only support multiplier == 1, (k=[0, 4))</td>
</tr>
</tbody>
</table>

14.2.3 1-D Argument Tensor

<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Buffer</th>
<th>Image size [width, height]</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D Argument</td>
<td>W</td>
<td>[(W+3)/4, 1]</td>
<td>1D argument format, e.g. Bias</td>
</tr>
</tbody>
</table>

Each Pixel of **Image** contains 4 elements. The below table list the coordination relation between **Image** and **Buffer**.

<table>
<thead>
<tr>
<th>Tensor type</th>
<th>Pixel coordinate relationship</th>
<th>Explanation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1-D Argument</td>
<td>(P[i, 0] = { E[w] \mid w=i*4+k })</td>
<td>(k=[0, 4))</td>
</tr>
</tbody>
</table>
As we all know, input/output tensors in CNN model have data format like NHWC (tensorflow) or NCHW (caffe), but there is no data format for non-CNN model.

However, in MACE, CNN model run on CPU with float type using NCHW data format, while the others using NHWC data format.

To support all models, so there are some concepts in MACE you should know.

15.1 Source Data Format

Source Data Format (src_df for short) stands for the original data format where the model come from. For example, if you use caffe, the src_df is NCHW. We need this data format because some operators (Reshape etc.) are related to the data format.

15.2 Operators Partition

Generally, operators could be divided into 2 categories based on whether the operator needs inputs with fixed data format (NHWC or NCHW), one is the operators whose inputs have fixed data format (like convolution), the other is the operators whose inputs should be the same with source framework.

Since the data format the operators need in MACE may be inconsistent with the original framework, we need to add Transpose operator to transpose the input tensors if necessary.

However, for some operators like concat, we could transpose their arguments to eliminate Transpose op for acceleration.

Based on these conditions, We partition the ops into 3 categories.

1. Ops with fixed inputs' data format (FixedDataFormatOps): Convolution, Depthwise Convolution, etc.
2. Ops could eliminate Transpose by transposing their arguments(TransposableDataFormatOps): Concat, Element-wise, etc.

3. Ops keeping consistent with source platform(SourceDataFormatOps): Reshape, ExpandDims, etc.

By default, the operators not in either FixedDataFormatOps or TransposableDataFormatOps are listed in SourceDataFormatOps.

For detailed information, you could refer to code.

15.3 Data Format in Operator

Based on the operator partition strategy, every operator in MACE has data format argument which stands for the wanted inputs' data format, the values could be one of the [NHWC, NCHW, AUTO].

1. NHWC or NCHW represent src_df.

2. AUTO represents the operator’s inputs must have fixed data format, and the real data format will be determined at runtime. the data format of operators in FixedDataFormatOps must be AUTO, while the data format of operators in TransposableDataFormatOps is determined based on their inputs’ ops data format.

MACE will transpose the input tensors based on the data format information automatically at runtime.

15.4 Data Format of Model’s Inputs/Outputs

1. If the model’s inputs/outputs have data format, MACE supports the data format NHWC and NCHW.

2. If the model’s inputs/outputs do not have data format, just set NONE for model’s inputs and outputs at model deployment file and MaceTensor.
The DynamicLSTM in MACE is implemented for Kaldi’s time delay RNN models. The following pictures explain how to fuse components into a DynamicLSTMCell. Before fusing:
Fuse these parts into a DynamicLSTMCell
After fusing:

For more details about LSTMNonlinear in Kaldi, please refer to [LstmNonlinearityComponent](http://kaldi-asr.org/doc/nnet-combined-component_8h_source.html#l00255)
17.1 **Does the tensor data consume extra memory when compiled into C++ code?**

When compiled into C++ code, the tensor data will be mmaped by the system loader. For the CPU runtime, the tensor data are used without memory copy. For the GPU and DSP runtime, the tensor data are used once during model initialization. The operating system is free to swap the pages out, however, it still consumes virtual memory addresses. So generally speaking, it takes no extra physical memory. If you are short of virtual memory space (this should be very rare), you can use the option to load the tensor data from data file (can be manually unmapped after initialization) instead of compiled code.

17.2 **Why is the generated static library file size so huge?**

The static library is simply an archive of a set of object files which are intermediate and contain much extra information, please check whether the final binary file size is as expected.

17.3 **Why is the generated binary file (including shared library) size so huge?**

When compiling the model into C++ code, the final binary may contains extra debug symbols, they usually take a lot of space. Try to strip the shared library or binary and make sure you are following best practices to reduce the size of an ELF binary, including disabling C++ exception, disabling RTTI, avoiding C++ iostream, hidden internal functions etc. In most cases, the expected overhead should be less than \(\frac{\text{model weights size in float32}}{2} + 3\text{MB} \).
17.4 How to set the input shape in your model deployment file(.yml) when your model support multiple input shape?

Set the largest input shape of your model. The input shape is used for memory optimization.

17.5 OpenCL allocator failed with CL_OUT_OF_RESOURCES

OpenCL runtime usually requires continuous virtual memory for its image buffer, the error will occur when the OpenCL driver can’t find the continuous space due to high memory usage or fragmentation. Several solutions can be tried:

- Change the model by reducing its memory usage
- Split the Op with the biggest single memory buffer
- Change from armeabi-v7a to arm64-v8a to expand the virtual address space
- Reduce the memory consumption of other modules of the same process

17.6 Why is the performance worse than the official result for the same model?

The power options may not set properly, see mace/public/mace.h for details.

17.7 Why is the UI getting poor responsiveness when running model with GPU runtime?

Try to set limit_opencl_kernel_time to 1. If still not resolved, try to modify the source code to use even smaller time intervals or changed to CPU or DSP runtime.

17.8 Why is MACE not working on DSP?

Running models on Hexagon DSP need a few prerequisites for DSP developers:

- You need to make sure SOCs of your phone is manufactured by Qualcomm and has HVX supported.
- You need a phone that disables secure boot (once enabled, cannot be reversed, so you probably can only get that type phones from manufacturers)
- You need to root your phone.
- You need to sign your phone by using testsig provided by Qualcomm. (Download Qualcomm Hexagon SDK first, plugin your phone to PC, run scripts/testsig.py)
- You need to push third_party/nnlib/v6x/libhexagon_nn_skel.so to /system/vendor/lib/rfsa/adsp/.

Then, there you go. You can run Mace on Hexagon DSP.