
Servant Documentation

Servant Contributors

Apr 24, 2019

Contents

1 Tutorial 3
1.1 A web API as a type . 3
1.2 Serving an API . 9
1.3 Querying an API . 27
1.4 Generating Javascript functions to query an API . 31
1.5 Documenting an API . 39
1.6 Authentication in Servant . 44

2 Cookbook 53
2.1 Structuring APIs . 53
2.2 Using generics . 56
2.3 Serving web applications over HTTPS . 58
2.4 SQLite database . 59
2.5 PostgreSQL connection pool . 61
2.6 Using a custom monad . 63
2.7 Inspecting, debugging, simulating clients and more . 64
2.8 Basic Authentication . 67
2.9 Streaming out-of-the-box . 70
2.10 Combining JWT-based authentication with basic access authentication 72
2.11 Hoist Server With Context for Custom Monads . 76
2.12 File Upload (multipart/form-data) . 83
2.13 Pagination . 85
2.14 Generating mock curl calls . 89
2.15 Error logging with Sentry . 92
2.16 How To Test Servant Applications . 94
2.17 OpenID Connect . 102

3 Helpful Links 113

4 Principles 115

i

ii

Servant Documentation

servant is a set of Haskell libraries for writing type-safe web applications but also deriving clients (in Haskell and
other languages) or generating documentation for them, and more.

This is achieved by taking as input a description of the web API as a Haskell type. Servant is then able to check
that your server-side request handlers indeed implement your web API faithfully, or to automatically derive Haskell
functions that can hit a web application that implements this API, generate a Swagger description or code for client
functions in some other languages directly.

If you would like to learn more, click the tutorial link below.

Contents 1

Servant Documentation

2 Contents

CHAPTER 1

Tutorial

This is an introductory tutorial to servant. Whilst browsing is fine, it makes more sense if you read the sections in
order, or at least read the first section before anything else.

Any comments, issues or feedback about the tutorial can be submitted to servant’s issue tracker.

In fact, the whole tutorial is a cabal project and can be built and played with locally as follows:

$ git clone https://github.com/haskell-servant/servant.git
$ cd servant
build
$ cabal new-build tutorial
load in ghci to play with it
$ cabal new-repl tutorial

The code can be found in the *.lhs files under doc/tutorial/ in the repository. Feel free to edit it while you’re reading
this documentation and see the effect of your changes.

Nix users should feel free to take a look at the nix/shell.nix file in the repository and use it to provision a suitable
environment to build and run the examples.

1.1 A web API as a type

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

module ApiType where

import Data.Text
import Data.Time (UTCTime)
import Servant.API

3

http://github.com/haskell-servant/servant/issues
https://cabal.readthedocs.io/en/latest/
https://nixos.org/nix/

Servant Documentation

Consider the following informal specification of an API:

The endpoint at /users expects a GET request with query string parameter sortby whose value can
be one of age or name and returns a list/array of JSON objects describing users, with fields age, name,
email, registration_date”.

You should be able to formalize that. And then use the formalized version to get you much of the way towards writing
a web app. And all the way towards getting some client libraries, and documentation, and more.

How would we describe it with servant? An endpoint description is a good old Haskell type:

type UserAPI = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]

data SortBy = Age | Name

data User = User {
name :: String,
age :: Int,
email :: String,
registration_date :: UTCTime

}

Let’s break that down:

• "users" says that our endpoint will be accessible under /users;

• QueryParam "sortby" SortBy, where SortBy is defined by data SortBy = Age | Name, says
that the endpoint has a query string parameter named sortby whose value will be extracted as a value of type
SortBy.

• Get '[JSON] [User] says that the endpoint will be accessible through HTTP GET requests, returning a
list of users encoded as JSON. You will see later how you can make use of this to make your data available
under different formats, the choice being made depending on the Accept header specified in the client’s request.

• The :> operator that separates the various “combinators” just lets you sequence static path fragments, URL cap-
tures and other combinators. The ordering only matters for static path fragments and URL captures. "users"
:> "list-all" :> Get '[JSON] [User], equivalent to /users/list-all, is obviously not the
same as "list-all" :> "users" :> Get '[JSON] [User], which is equivalent to /list-all/
users. This means that sometimes :> is somehow equivalent to /, but sometimes it just lets you chain another
combinator.

Tip: If your endpoint responds to / (the root path), just omit any combinators that introduce path segments. E.g. the
following api has only one endpoint on /:

type RootEndpoint =
Get '[JSON] User

We can also describe APIs with multiple endpoints by using the :<|> combinators. Here’s an example:

type UserAPI2 = "users" :> "list-all" :> Get '[JSON] [User]
:<|> "list-all" :> "users" :> Get '[JSON] [User]

servant provides a fair amount of combinators out-of-the-box, but you can always write your own when you need it.
Here’s a quick overview of the most often needed combinators that servant comes with.

1.1.1 Combinators

4 Chapter 1. Tutorial

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html

Servant Documentation

Static strings

As you’ve already seen, you can use type-level strings (enabled with the DataKinds language extension) for static
path fragments. Chaining them amounts to /-separating them in a URL.

type UserAPI3 = "users" :> "list-all" :> "now" :> Get '[JSON] [User]
-- describes an endpoint reachable at:
-- /users/list-all/now

Delete, Get, Patch, Post and Put

The Get combinator is defined in terms of the more general Verb:

data Verb method (statusCode :: Nat) (contentType :: [*]) a
type Get = Verb 'GET 200

There are other predefined type synonyms for other common HTTP methods, such as e.g.:

type Delete = Verb 'DELETE 200
type Patch = Verb 'PATCH 200
type Post = Verb 'POST 200
type Put = Verb 'PUT 200

There are also variants that do not return a 200 status code, such as for example:

type PostCreated = Verb 'POST 201
type PostAccepted = Verb 'POST 202

An endpoint always ends with a variant of the Verb combinator (unless you write your own combinators). Examples:

type UserAPI4 = "users" :> Get '[JSON] [User]
:<|> "admins" :> Get '[JSON] [User]

StreamGet and StreamPost

Note: Streaming has changed considerably in servant-0.15.

The StreamGet and StreamPost combinators are defined in terms of the more general Stream

data Stream (method :: k1) (status :: Nat) (framing :: *) (contentType :: *) (a :: *)

type StreamGet = Stream 'GET 200
type StreamPost = Stream 'POST 200

These describe endpoints that return a stream of values rather than just a single value. They not only take a sin-
gle content type as a parameter, but also a framing strategy – this specifies how the individual results are delin-
eated from one another in the stream. The three standard strategies given with Servant are NewlineFraming,
NetstringFraming and NoFraming, but others can be written to match other protocols.

Capture

URL captures are segments of the path of a URL that are variable and whose actual value is captured and passed to
the request handlers. In many web frameworks, you’ll see it written as in /users/:userid, with that leading :
denoting that userid is just some kind of variable name or placeholder. For instance, if userid is supposed to

1.1. A web API as a type 5

Servant Documentation

range over all integers greater or equal to 1, our endpoint will match requests made to /users/1, /users/143
and so on.

The Capture combinator in servant takes a (type-level) string representing the “name of the variable” and a type,
which indicates the type we want to decode the “captured value” to.

data Capture (s :: Symbol) a
-- s :: Symbol just says that 's' must be a type-level string.

In some web frameworks, you use regexes for captures. We use a FromHttpApiData class, which the captured
value must be an instance of.

Examples:

type UserAPI5 = "user" :> Capture "userid" Integer :> Get '[JSON] User
-- equivalent to 'GET /user/:userid'
-- except that we explicitly say that "userid"
-- must be an integer

:<|> "user" :> Capture "userid" Integer :> DeleteNoContent '[JSON]
→˓NoContent

-- equivalent to 'DELETE /user/:userid'

In the second case, DeleteNoContent specifies a 204 response code, JSON specifies the content types on which
the handler will match, and NoContent says that the response will always be empty.

QueryParam, QueryParams, QueryFlag

QueryParam, QueryParams and QueryFlag are about parameters in the query string, i.e., those parameters
that come after the question mark (?) in URLs, like sortby in /users?sortby=age, whose value is set to
age. QueryParams lets you specify that the query parameter is actually a list of values, which can be specified
using ?param=value1¶m=value2. This represents a list of values composed of value1 and value2.
QueryFlag lets you specify a boolean-like query parameter where a client isn’t forced to specify a value. The
absence or presence of the parameter’s name in the query string determines whether the parameter is considered to
have the value True or False. For instance, /users?active would list only active users whereas /users
would list them all.

Here are the corresponding data type declarations:

data QueryParam (sym :: Symbol) a
data QueryParams (sym :: Symbol) a
data QueryFlag (sym :: Symbol)

Examples:

type UserAPI6 = "users" :> QueryParam "sortby" SortBy :> Get '[JSON] [User]
-- equivalent to 'GET /users?sortby={age, name}'

Again, your handlers don’t have to deserialize these things (into, for example, a SortBy). servant takes care of it.

ReqBody

Each HTTP request can carry some additional data that the server can use in its body, and this data can be encoded in
any format – as long as the server understands it. This can be used for example for an endpoint for creating new users:
instead of passing each field of the user as a separate query string parameter or something dirty like that, we can group
all the data into a JSON object. This has the advantage of supporting nested objects.

6 Chapter 1. Tutorial

https://hackage.haskell.org/package/http-api-data/docs/Web-HttpApiData.html#t:FromHttpApiData

Servant Documentation

servant’s ReqBody combinator takes a list of content types in which the data encoded in the request body can be
represented and the type of that data. And, as you might have guessed, you don’t have to check the content type header,
and do the deserialization yourself. We do it for you. And return Bad Request or Unsupported Content
Type as appropriate.

Here’s the data type declaration for it:

data ReqBody (contentTypes :: [*]) a

Examples:

type UserAPI7 = "users" :> ReqBody '[JSON] User :> Post '[JSON] User
-- - equivalent to 'POST /users' with a JSON object
-- describing a User in the request body
-- - returns a User encoded in JSON

:<|> "users" :> Capture "userid" Integer
:> ReqBody '[JSON] User
:> Put '[JSON] User

-- - equivalent to 'PUT /users/:userid' with a JSON
-- object describing a User in the request body
-- - returns a User encoded in JSON

Request Headers

Request headers are used for various purposes, from caching to carrying auth-related data. They consist of a header
name and an associated value. An example would be Accept: application/json.

The Header combinator in servant takes a type-level string for the header name and the type to which we want to
decode the header’s value (from some textual representation), as illustrated below:

data Header (sym :: Symbol) a

Here’s an example where we declare that an endpoint makes use of the User-Agent header which specifies the
name of the software/library used by the client to send the request.

type UserAPI8 = "users" :> Header "User-Agent" Text :> Get '[JSON] [User]

Content types

So far, whenever we have used a combinator that carries a list of content types, we’ve always specified '[JSON].
However, servant lets you use several content types, and also lets you define your own content types.

Four content types are provided out-of-the-box by the core servant package: JSON, PlainText,
FormUrlEncoded and OctetStream. If for some obscure reason you wanted one of your endpoints to make
your user data available under those 4 formats, you would write the API type as below:

type UserAPI9 = "users" :> Get '[JSON, PlainText, FormUrlEncoded, OctetStream] [User]

(There are other packages that provide other content types. For example servant-lucid and servant-blaze allow to
generate html pages (using lucid and blaze-html) and both come with a content type for html.)

We will further explain how these content types and your data types can play together in the section about serving an
API.

1.1. A web API as a type 7

Server.html
Server.html

Servant Documentation

Response Headers

Just like an HTTP request, the response generated by a webserver can carry headers too. servant provides a Headers
combinator that carries a list of Header types and can be used by simply wrapping the “return type” of an endpoint
with it.

data Headers (ls :: [*]) a

If you want to describe an endpoint that returns a “User-Count” header in each response, you could write it as below:

type UserAPI10 = "users" :> Get '[JSON] (Headers '[Header "User-Count" Integer]
→˓[User])

Basic Authentication

Once you’ve established the basic routes and semantics of your API, it’s time to consider protecting parts of it. Au-
thentication and authorization are broad and nuanced topics; as servant began to explore this space we started small
with one of HTTP’s earliest authentication schemes: Basic Authentication.

When protecting endpoints with basic authentication, we need to specify two items:

1. The realm of authentication as per the Basic Authentication spec.

2. The datatype returned by the server after authentication is verified. This is usually a User or Customer type
datatype.

With those two items in mind, servant provides the following combinator:

data BasicAuth (realm :: Symbol) (userData :: *)

Which is used like so:

type ProtectedAPI11
= UserAPI -- this is public

:<|> BasicAuth "my-realm" User :> UserAPI2 -- this is protected by auth

Empty APIs

Sometimes it is useful to be able to generalise an API over the type of some part of it:

type UserAPI12 innerAPI
= UserAPI -- this is the fixed bit of the API

:<|> "inner" :> innerAPI -- this lets us put various other APIs under /inner

If there is a case where you do not have anything extra to serve, you can use the EmptyAPI combinator to indicate
this:

type UserAPI12Alone = UserAPI12 EmptyAPI

This also works well as a placeholder for unfinished parts of an API while it is under development, for when you know
that there should be something there but you don’t yet know what. Think of it as similar to the unit type ().

8 Chapter 1. Tutorial

https://en.wikipedia.org/wiki/Basic_access_authentication

Servant Documentation

Interoperability with wai: Raw

Finally, we also include a combinator named Raw that provides an escape hatch to the underlying low-level web library
wai. It can be used when you want to plug a wai Application into your webservice:

type UserAPI13 = "users" :> Get '[JSON] [User]
-- a /users endpoint

:<|> Raw
-- requests to anything else than /users
-- go here, where the server will try to
-- find a file with the right name
-- at the right path

One example for this is if you want to serve a directory of static files along with the rest of your API. But you can
plug in everything that is an Application, e.g. a whole web application written in any of the web frameworks that
support wai.

1.2 Serving an API

Enough chit-chat about type-level combinators and representing an API as a type. Can we have a webservice already?

1.2.1 A first example

Equipped with some basic knowledge about the way we represent APIs, let’s now write our first webservice.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}

module Server where

import Prelude ()
import Prelude.Compat

import Control.Monad.Except
import Control.Monad.Reader
import Data.Aeson
import Data.Aeson.Types
import Data.Attoparsec.ByteString
import Data.ByteString (ByteString)
import Data.List
import Data.Maybe
import Data.String.Conversions
import Data.Time.Calendar

(continues on next page)

1.2. Serving an API 9

http://hackage.haskell.org/package/wai

Servant Documentation

(continued from previous page)

import GHC.Generics
import Lucid
import Network.HTTP.Media ((//), (/:))
import Network.Wai
import Network.Wai.Handler.Warp
import Servant
import System.Directory
import Text.Blaze
import Text.Blaze.Html.Renderer.Utf8
import Servant.Types.SourceT (source)
import qualified Data.Aeson.Parser
import qualified Text.Blaze.Html

Important: the Servant module comes from the servant-server package, the one that lets us run webservers that
implement a particular API type. It reexports all the types from the servant package that let you declare API types
as well as everything you need to turn your request handlers into a fully-fledged webserver. This means that in your
applications, you can just add servant-server as a dependency, import Servant and not worry about anything else.

We will write a server that will serve the following API.

type UserAPI1 = "users" :> Get '[JSON] [User]

Here’s what we would like to see when making a GET request to /users.

[{"name": "Isaac Newton", "age": 372, "email": "isaac@newton.co.uk", "registration_
→˓date": "1683-03-01"}
, {"name": "Albert Einstein", "age": 136, "email": "ae@mc2.org", "registration_date":
→˓"1905-12-01"}
]

Now let’s define our User data type and write some instances for it.

data User = User
{ name :: String
, age :: Int
, email :: String
, registration_date :: Day
} deriving (Eq, Show, Generic)

instance ToJSON User

Nothing funny going on here. But we now can define our list of two users.

users1 :: [User]
users1 =

[User "Isaac Newton" 372 "isaac@newton.co.uk" (fromGregorian 1683 3 1)
, User "Albert Einstein" 136 "ae@mc2.org" (fromGregorian 1905 12 1)
]

We can now take care of writing the actual webservice that will handle requests to such an API. This one will be very
simple, being reduced to just a single endpoint. The type of the web application is determined by the API type, through
a type family named Server. (Type families are just functions that take types as input and return types.) The Server
type family will compute the right type that a bunch of request handlers should have just from the corresponding API
type.

The first thing to know about the Server type family is that behind the scenes it will drive the routing, letting you
focus only on the business logic. The second thing to know is that for each endpoint, your handlers will by default run

10 Chapter 1. Tutorial

Servant Documentation

in the Handler monad. This is overridable very easily, as explained near the end of this guide. Third thing, the type
of the value returned in that monad must be the same as the second argument of the HTTP method combinator used
for the corresponding endpoint. In our case, it means we must provide a handler of type Handler [User]. Well,
we have a monad, let’s just return our list:

server1 :: Server UserAPI1
server1 = return users1

That’s it. Now we can turn server into an actual webserver using wai and warp:

userAPI :: Proxy UserAPI1
userAPI = Proxy

-- 'serve' comes from servant and hands you a WAI Application,
-- which you can think of as an "abstract" web application,
-- not yet a webserver.
app1 :: Application
app1 = serve userAPI server1

The userAPI bit is, alas, boilerplate (we need it to guide type inference). But that’s about as much boilerplate as you
get.

And we’re done! Let’s run our webservice on the port 8081.

main :: IO ()
main = run 8081 app1

You can put this all into a file or just grab servant’s repo and look at the doc/tutorial directory. This code (the source
of this web page) is in doc/tutorial/Server.lhs.

If you run it, you can go to http://localhost:8081/users in your browser or query it with curl and you see:

$ curl http://localhost:8081/users
[{"email":"isaac@newton.co.uk","registration_date":"1683-03-01","age":372,"name":
→˓"Isaac Newton"},{"email":"ae@mc2.org","registration_date":"1905-12-01","age":136,
→˓"name":"Albert Einstein"}]

1.2.2 More endpoints

What if we want more than one endpoint? Let’s add /albert and /isaac to view the corresponding users encoded
in JSON.

type UserAPI2 = "users" :> Get '[JSON] [User]
:<|> "albert" :> Get '[JSON] User
:<|> "isaac" :> Get '[JSON] User

And let’s adapt our code a bit.

isaac :: User
isaac = User "Isaac Newton" 372 "isaac@newton.co.uk" (fromGregorian 1683 3 1)

albert :: User
albert = User "Albert Einstein" 136 "ae@mc2.org" (fromGregorian 1905 12 1)

users2 :: [User]
users2 = [isaac, albert]

1.2. Serving an API 11

http://hackage.haskell.org/package/wai
http://hackage.haskell.org/package/warp
http://github.com/haskell-servant/servant

Servant Documentation

Now, just like we separate the various endpoints in UserAPI with :<|>, we are going to separate the handlers with
:<|> too! They must be provided in the same order as in in the API type.

server2 :: Server UserAPI2
server2 = return users2

:<|> return albert
:<|> return isaac

And that’s it! You can run this example in the same way that we showed for server1 and check out the data available
at /users, /albert and /isaac.

1.2.3 From combinators to handler arguments

Fine, we can write trivial webservices easily, but none of the two above use any “fancy” combinator from servant.
Let’s address this and use QueryParam, Capture and ReqBody right away. You’ll see how each occurrence
of these combinators in an endpoint makes the corresponding handler receive an argument of the appropriate type
automatically. You don’t have to worry about manually looking up URL captures or query string parameters, or
decoding/encoding data from/to JSON. Never.

We are going to use the following data types and functions to implement a server for API.

type API = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

data Position = Position
{ xCoord :: Int
, yCoord :: Int
} deriving Generic

instance ToJSON Position

newtype HelloMessage = HelloMessage { msg :: String }
deriving Generic

instance ToJSON HelloMessage

data ClientInfo = ClientInfo
{ clientName :: String
, clientEmail :: String
, clientAge :: Int
, clientInterestedIn :: [String]
} deriving Generic

instance FromJSON ClientInfo
instance ToJSON ClientInfo

data Email = Email
{ from :: String
, to :: String
, subject :: String
, body :: String
} deriving Generic

instance ToJSON Email

(continues on next page)

12 Chapter 1. Tutorial

Servant Documentation

(continued from previous page)

emailForClient :: ClientInfo -> Email
emailForClient c = Email from' to' subject' body'

where from' = "great@company.com"
to' = clientEmail c
subject' = "Hey " ++ clientName c ++ ", we miss you!"
body' = "Hi " ++ clientName c ++ ",\n\n"

++ "Since you've recently turned " ++ show (clientAge c)
++ ", have you checked out our latest "
++ intercalate ", " (clientInterestedIn c)
++ " products? Give us a visit!"

We can implement handlers for the three endpoints:

server3 :: Server API
server3 = position

:<|> hello
:<|> marketing

where position :: Int -> Int -> Handler Position
position x y = return (Position x y)

hello :: Maybe String -> Handler HelloMessage
hello mname = return . HelloMessage $ case mname of
Nothing -> "Hello, anonymous coward"
Just n -> "Hello, " ++ n

marketing :: ClientInfo -> Handler Email
marketing clientinfo = return (emailForClient clientinfo)

Did you see that? The types for your handlers changed to be just what we needed! In particular:

• a Capture "something" a becomes an argument of type a (for position);

• a QueryParam "something" a becomes an argument of type Maybe a (because an endpoint can tech-
nically be accessed without specifying any query string parameter, we decided to “force” handlers to be aware
that the parameter might not always be there);

• a ReqBody contentTypeList a becomes an argument of type a;

And that’s it. Here’s the example in action:

$ curl http://localhost:8081/position/1/2
{"xCoord":1,"yCoord":2}
$ curl http://localhost:8081/hello
{"msg":"Hello, anonymous coward"}
$ curl http://localhost:8081/hello?name=Alp
{"msg":"Hello, Alp"}
$ curl -X POST -d '{"clientName":"Alp Mestanogullari", "clientEmail" : "alp@foo.com",
→˓"clientAge": 25, "clientInterestedIn": ["haskell", "mathematics"]}' -H 'Accept:
→˓application/json' -H 'Content-type: application/json' http://localhost:8081/
→˓marketing
{"subject":"Hey Alp Mestanogullari, we miss you!","body":"Hi Alp Mestanogullari,
→˓\n\nSince you've recently turned 25, have you checked out our latest haskell,
→˓mathematics products? Give us a visit!","to":"alp@foo.com","from":"great@company.com
→˓"}

For reference, here’s a list of some combinators from servant:

1.2. Serving an API 13

Servant Documentation

• Delete, Get, Patch, Post, Put: these do not become arguments. They provide the return type of handlers,
which usually is Handler <something>.

• Capture "something" a becomes an argument of type a.

• QueryParam "something" a, Header "something" a all become arguments of type Maybe a,
because there might be no value at all specified by the client for these.

• QueryFlag "something" gets turned into an argument of type Bool.

• QueryParams "something" a gets turned into an argument of type [a].

• ReqBody contentTypes a gets turned into an argument of type a.

1.2.4 The FromHttpApiData/ToHttpApiData classes

Wait. . . How does servant know how to decode the Ints from the URL? Or how to decode a ClientInfo value
from the request body? This is what this and the following two sections address.

Captures and QueryParams are represented by some textual value in URLs. Headers are similarly represented
by a pair of a header name and a corresponding (textual) value in the request’s “metadata”. How types are decoded
from headers, captures, and query params is expressed in a class FromHttpApiData (from the package http-api-
data):

class FromHttpApiData a where
{-# MINIMAL parseUrlPiece | parseQueryParam #-}
-- | Parse URL path piece.
parseUrlPiece :: Text -> Either Text a
parseUrlPiece = parseQueryParam

-- | Parse HTTP header value.
parseHeader :: ByteString -> Either Text a
parseHeader = parseUrlPiece . decodeUtf8

-- | Parse query param value.
parseQueryParam :: Text -> Either Text a
parseQueryParam = parseUrlPiece

As you can see, as long as you provide either parseUrlPiece (for Captures) or parseQueryParam (for
QueryParams), the other methods will be defined in terms of this.

http-api-data provides a decent number of instances, helpers for defining new ones, and wonderful documentation.

There’s not much else to say about these classes. You will need instances for them when using Capture,
QueryParam, QueryParams, and Header with your types. You will need FromHttpApiData instances for
server-side request handlers and ToHttpApiData instances only when using servant-client, as described in the
section about deriving haskell functions to query an API.

1.2.5 Using content-types with your data types

The same principle was operating when decoding request bodies from JSON, and responses into JSON. (JSON is just
the running example - you can do this with any content-type.)

This section introduces a couple of typeclasses provided by servant that make all of this work.

14 Chapter 1. Tutorial

http://hackage.haskell.org/package/http-api-data
http://hackage.haskell.org/package/http-api-data
Client.html

Servant Documentation

The truth behind JSON

What exactly is JSON (the type as used in Get '[JSON] User)? Like the 3 other content-types provided out of
the box by servant, it’s a really dumb data type.

data JSON
data PlainText
data FormUrlEncoded
data OctetStream

Obviously, this is not all there is to JSON, otherwise it would be quite pointless. Like most of the data types in servant,
JSON is mostly there as a special symbol that’s associated with encoding (resp. decoding) to (resp. from) the JSON
format. The way this association is performed can be decomposed into two steps.

The first step is to provide a proper MediaType (from http-media) representation for JSON, or for your own content-
types. If you look at the haddocks from this link, you can see that we just have to specify application/json
using the appropriate functions. In our case, we can just use (//) :: ByteString -> ByteString ->
MediaType. The precise way to specify the MediaType is to write an instance for the Accept class:

-- for reference:
class Accept ctype where

contentType :: Proxy ctype -> MediaType

instance Accept JSON where
contentType _ = "application" // "json"

The second step is centered around the MimeRender and MimeUnrender classes. These classes just let you specify
a way to encode and decode values into or from your content-type’s representation.

class Accept ctype => MimeRender ctype a where
mimeRender :: Proxy ctype -> a -> ByteString
-- alternatively readable as:
mimeRender :: Proxy ctype -> (a -> ByteString)

Given a content-type and some user type, MimeRender provides a function that encodes values of type a to lazy
ByteStrings.

In the case of JSON, this is easily dealt with! For any type a with a ToJSON instance, we can render values of that
type to JSON using Data.Aeson.encode.

instance ToJSON a => MimeRender JSON a where
mimeRender _ = encode

And now the MimeUnrender class, which lets us extract values from lazy ByteStrings, alternatively failing with
an error string.

class Accept ctype => MimeUnrender ctype a where
mimeUnrender :: Proxy ctype -> ByteString -> Either String a

We don’t have much work to do there either, Data.Aeson.eitherDecode is precisely what we need. However,
it only allows arrays and objects as toplevel JSON values and this has proven to get in our way more than help us so
we wrote our own little function around aeson and attoparsec that allows any type of JSON value at the toplevel of a
“JSON document”. Here’s the definition in case you are curious.

eitherDecodeLenient :: FromJSON a => ByteString -> Either String a
eitherDecodeLenient input = do

v :: Value <- parseOnly (Data.Aeson.Parser.value <* endOfInput) (cs input)
parseEither parseJSON v

1.2. Serving an API 15

https://hackage.haskell.org/package/http-media-0.6.2/docs/Network-HTTP-Media.html

Servant Documentation

This function is exactly what we need for our MimeUnrender instance.

instance FromJSON a => MimeUnrender JSON a where
mimeUnrender _ = eitherDecodeLenient

And this is all the code that lets you use JSON with ReqBody, Get, Post and friends. We can check our under-
standing by implementing support for an HTML content-type, so that users of your webservice can access an HTML
representation of the data they want, ready to be included in any HTML document, e.g. using jQuery’s load function,
simply by adding Accept: text/html to their request headers.

Case-studies: servant-blaze and servant-lucid

These days, most of the haskellers who write their HTML UIs directly from Haskell use either blaze-html or lucid.
The best option for servant is obviously to support both (and hopefully other templating solutions!). We’re first going
to look at lucid:

data HTMLLucid

Once again, the data type is just there as a symbol for the encoding/decoding functions, except that this time we will
only worry about encoding since lucid doesn’t provide a way to extract data from HTML.

instance Accept HTMLLucid where
contentType _ = "text" // "html" /: ("charset", "utf-8")

Note that this instance uses the (/:) operator from http-media which lets us specify additional information about a
content-type, like the charset here.

The rendering instances call similar functions that take types with an appropriate instance to an “abstract” HTML
representation and then write that to a ByteString.

instance ToHtml a => MimeRender HTMLLucid a where
mimeRender _ = renderBS . toHtml

-- let's also provide an instance for lucid's
-- 'Html' wrapper.
instance MimeRender HTMLLucid (Html a) where

mimeRender _ = renderBS

For blaze-html everything works very similarly:

-- For this tutorial to compile 'HTMLLucid' and 'HTMLBlaze' have to be
-- distinct. Usually you would stick to one html rendering library and then
-- you can go with one 'HTML' type.
data HTMLBlaze

instance Accept HTMLBlaze where
contentType _ = "text" // "html" /: ("charset", "utf-8")

instance ToMarkup a => MimeRender HTMLBlaze a where
mimeRender _ = renderHtml . Text.Blaze.Html.toHtml

-- while we're at it, just like for lucid we can
-- provide an instance for rendering blaze's 'Html' type
instance MimeRender HTMLBlaze Text.Blaze.Html.Html where

mimeRender _ = renderHtml

16 Chapter 1. Tutorial

https://api.jquery.com/load/
http://hackage.haskell.org/package/blaze-html
http://hackage.haskell.org/package/lucid

Servant Documentation

Both servant-blaze and servant-lucid let you use HTMLLucid and HTMLBlaze in any content-type list as long as
you provide an instance of the appropriate class (ToMarkup for blaze-html, ToHtml for lucid).

We can now write a webservice that uses servant-lucid to show the HTMLLucid content-type in action. We will be
serving the following API:

type PersonAPI = "persons" :> Get '[JSON, HTMLLucid] [Person]

where Person is defined as follows:

data Person = Person
{ firstName :: String
, lastName :: String
} deriving Generic -- for the JSON instance

instance ToJSON Person

Now, let’s teach lucid how to render a Person as a row in a table, and then a list of Persons as a table with a row
per person.

-- HTML serialization of a single person
instance ToHtml Person where

toHtml person =
tr_ $ do

td_ (toHtml $ firstName person)
td_ (toHtml $ lastName person)

-- do not worry too much about this
toHtmlRaw = toHtml

-- HTML serialization of a list of persons
instance ToHtml [Person] where
toHtml persons = table_ $ do
tr_ $ do

th_ "first name"
th_ "last name"

-- this just calls toHtml on each person of the list
-- and concatenates the resulting pieces of HTML together
foldMap toHtml persons

toHtmlRaw = toHtml

We create some Person values and serve them as a list:

people :: [Person]
people =
[Person "Isaac" "Newton"
, Person "Albert" "Einstein"
]

personAPI :: Proxy PersonAPI
personAPI = Proxy

server4 :: Server PersonAPI
server4 = return people

app2 :: Application
(continues on next page)

1.2. Serving an API 17

http://hackage.haskell.org/package/servant-blaze
http://hackage.haskell.org/package/servant-lucid

Servant Documentation

(continued from previous page)

app2 = serve personAPI server4

And we’re good to go:

$ curl http://localhost:8081/persons
[{"lastName":"Newton","firstName":"Isaac"},{"lastName":"Einstein","firstName":"Albert
→˓"}]
$ curl -H 'Accept: text/html' http://localhost:8081/persons
<table><tr><td>first name</td><td>last name</td></tr><tr><td>Isaac</td><td>Newton</td>
→˓</tr><tr><td>Albert</td><td>Einstein</td></tr></table>
or just point your browser to http://localhost:8081/persons

1.2.6 The Handler monad

At the heart of the handlers is the monad they run in, namely a newtype Handler around ExceptT ServerError
IO (haddock documentation for ExceptT). One might wonder: why this monad? The answer is that it is the simplest
monad with the following properties:

• it lets us both return a successful result (using return) or “fail” with a descriptive error (using throwError);

• it lets us perform IO, which is absolutely vital since most webservices exist as interfaces to databases that we
interact with in IO.

Let’s recall some definitions.

-- from the 'mtl' package at
newtype ExceptT e m a = ExceptT (m (Either e a))

In short, this means that a handler of type Handler a is simply equivalent to a computation of type IO (Either
ServerError a), that is, an IO action that either returns an error or a result.

The module Control.Monad.Except from which ExceptT comes is worth looking at. Perhaps most impor-
tantly, ExceptT and Handler are instances of MonadError, so throwError can be used to return an error
from your handler (whereas return is enough to return a success).

Most of what you’ll be doing in your handlers is running some IO and, depending on the result, you might sometimes
want to throw an error of some kind and abort early. The next two sections cover how to do just that.

Performing IO

Other important instances from the list above are MonadIO m => MonadIO (ExceptT e m), and therefore
also MonadIO Handler as there is a MonadIO IO instance. MonadIO is a class from the transformers package
defined as:

class Monad m => MonadIO m where
liftIO :: IO a -> m a

So if you want to run any kind of IO computation in your handlers, just use liftIO:

type IOAPI1 = "myfile.txt" :> Get '[JSON] FileContent

newtype FileContent = FileContent
{ content :: String }
deriving Generic

(continues on next page)

18 Chapter 1. Tutorial

http://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#t:ExceptT
https://hackage.haskell.org/package/mtl-2.2.1/docs/Control-Monad-Except.html#t:ExceptT
http://hackage.haskell.org/package/transformers-0.4.3.0/docs/Control-Monad-IO-Class.html

Servant Documentation

(continued from previous page)

instance ToJSON FileContent

server5 :: Server IOAPI1
server5 = do

filecontent <- liftIO (readFile "myfile.txt")
return (FileContent filecontent)

Failing, through ServerError

If you want to explicitly fail at providing the result promised by an endpoint using the appropriate HTTP status code
(not found, unauthorized, etc) and some error message, all you have to do is use the throwError function mentioned
above and provide it with the appropriate value of type ServerError, which is defined as:

data ServerError = ServerError
{ errHTTPCode :: Int
, errReasonPhrase :: String
, errBody :: ByteString -- lazy bytestring
, errHeaders :: [Header]
}

Many standard values are provided out of the box by the Servant.Server module. If you want to use these values
but add a body or some headers, just use record update syntax:

failingHandler :: Handler ()
failingHandler = throwError myerr

where myerr :: ServerError
myerr = err503 { errBody = "Sorry dear user." }

Here’s an example where we return a customised 404-Not-Found error message in the response body if “myfile.txt”
isn’t there:

server6 :: Server IOAPI1
server6 = do

exists <- liftIO (doesFileExist "myfile.txt")
if exists
then liftIO (readFile "myfile.txt") >>= return . FileContent
else throwError custom404Err

where custom404Err = err404 { errBody = "myfile.txt just isn't there, please leave
→˓this server alone." }

Here’s how that server looks in action:

$ curl --verbose http://localhost:8081/myfile.txt
[snip]

* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 404 Not Found
[snip]
myfile.txt just isnt there, please leave this server alone.

(continues on next page)

1.2. Serving an API 19

Servant Documentation

(continued from previous page)

$ echo Hello > myfile.txt

$ curl --verbose http://localhost:8081/myfile.txt
[snip]

* Connected to localhost (127.0.0.1) port 8081 (#0)
> GET /myfile.txt HTTP/1.1
> User-Agent: curl/7.30.0
> Host: localhost:8081
> Accept: */*
>
< HTTP/1.1 200 OK
[snip]
< Content-Type: application/json
[snip]
{"content":"Hello\n"}

1.2.7 Response headers

To add headers to your response, use addHeader. Note that this changes the type of your API, as we can see in the
following example:

type MyHandler = Get '[JSON] (Headers '[Header "X-An-Int" Int] User)

myHandler :: Server MyHandler
myHandler = return $ addHeader 1797 albert

Note that the type of addHeader header x is different than the type of x! And if you add more headers, more
headers will appear in the header list:

type MyHeadfulHandler = Get '[JSON] (Headers '[Header "X-A-Bool" Bool, Header "X-An-
→˓Int" Int] User)

myHeadfulHandler :: Server MyHeadfulHandler
myHeadfulHandler = return $ addHeader True $ addHeader 1797 albert

But what if your handler only sometimes adds a header? If you declare that your handler adds headers, and you don’t
add one, the return type of your handler will be different than expected. To solve this, you have to explicitly not add a
header by using noHeader:

type MyMaybeHeaderHandler
= Capture "withHeader" Bool :> Get '[JSON] (Headers '[Header "X-An-Int" Int] User)

myMaybeHeaderHandler :: Server MyMaybeHeaderHandler
myMaybeHeaderHandler x = return $ if x then addHeader 1797 albert

else noHeader albert

1.2.8 Serving static files

servant-server also provides a way to just serve the content of a directory under some path in your web API. As
mentioned earlier in this document, the Raw combinator can be used in your APIs to mean “plug here any WAI
application”. Well, servant-server provides a function to get a file and directory serving WAI application, namely:

20 Chapter 1. Tutorial

http://hackage.haskell.org/package/servant/docs/Servant-API-ResponseHeaders.html

Servant Documentation

-- exported by Servant and Servant.Server
serveDirectoryWebApp :: FilePath -> Server Raw

serveDirectoryWebApp’s argument must be a path to a valid directory.

Here’s an example API that will serve some static files:

type StaticAPI = "static" :> Raw

And the server:

staticAPI :: Proxy StaticAPI
staticAPI = Proxy

server7 :: Server StaticAPI
server7 = serveDirectoryWebApp "static-files"

app3 :: Application
app3 = serve staticAPI server7

This server will match any request whose path starts with /static and will look for a file at the path described by
the rest of the request path, inside the static-files/ directory of the path you run the program from.

In other words: If a client requests /static/foo.txt, the server will look for a file at ./static-files/
foo.txt. If that file exists it’ll succeed and serve the file. If it doesn’t exist, the handler will fail with a 404 status
code.

serveDirectoryWebApp uses some standard settings that fit the use case of serving static files for most web apps.
You can find out about the other options in the documentation of the Servant.Utils.StaticFiles module.

1.2.9 Nested APIs

Let’s see how you can define APIs in a modular way, while avoiding repetition. Consider this simple example:

type UserAPI3 = -- view the user with given userid, in JSON
Capture "userid" Int :> Get '[JSON] User

:<|> -- delete the user with given userid. empty response
Capture "userid" Int :> DeleteNoContent '[JSON] NoContent

We can instead factor out the userid:

type UserAPI4 = Capture "userid" Int :>
(Get '[JSON] User
:<|> DeleteNoContent '[JSON] NoContent
)

However, you have to be aware that this has an effect on the type of the corresponding Server:

Server UserAPI3 = (Int -> Handler User)
:<|> (Int -> Handler NoContent)

Server UserAPI4 = Int -> (Handler User
:<|> Handler NoContent
)

1.2. Serving an API 21

Servant Documentation

In the first case, each handler receives the userid argument. In the latter, the whole Server takes the userid and has
handlers that are just computations in Handler, with no arguments. In other words:

server8 :: Server UserAPI3
server8 = getUser :<|> deleteUser

where getUser :: Int -> Handler User
getUser _userid = error "..."

deleteUser :: Int -> Handler NoContent
deleteUser _userid = error "..."

-- notice how getUser and deleteUser
-- have a different type! no argument anymore,
-- the argument directly goes to the whole Server
server9 :: Server UserAPI4
server9 userid = getUser userid :<|> deleteUser userid

where getUser :: Int -> Handler User
getUser = error "..."

deleteUser :: Int -> Handler NoContent
deleteUser = error "..."

Note that there’s nothing special about Capture that lets you “factor it out”: this can be done with any combinator.
Here are a few examples of APIs with a combinator factored out for which we can write a perfectly valid Server.

-- we just factor out the "users" path fragment
type API1 = "users" :>
(Get '[JSON] [User] -- user listing
:<|> Capture "userid" Int :> Get '[JSON] User -- view a particular user
)

-- we factor out the Request Body
type API2 = ReqBody '[JSON] User :>

(Get '[JSON] User -- just display the same user back, don't register it
:<|> PostNoContent '[JSON] NoContent -- register the user. empty response
)

-- we factor out a Header
type API3 = Header "Authorization" Token :>

(Get '[JSON] SecretData -- get some secret data, if authorized
:<|> ReqBody '[JSON] SecretData :> PostNoContent '[JSON] NoContent -- add some

→˓secret data, if authorized
)

newtype Token = Token ByteString
newtype SecretData = SecretData ByteString

This approach lets you define APIs modularly and assemble them all into one big API type only at the end.

type UsersAPI =
Get '[JSON] [User] -- list users

:<|> ReqBody '[JSON] User :> PostNoContent '[JSON] NoContent -- add a user
:<|> Capture "userid" Int :>

(Get '[JSON] User -- view a user
:<|> ReqBody '[JSON] User :> PutNoContent '[JSON] NoContent -- update a user
:<|> DeleteNoContent '[JSON] NoContent -- delete a user

(continues on next page)

22 Chapter 1. Tutorial

Servant Documentation

(continued from previous page)

)

usersServer :: Server UsersAPI
usersServer = getUsers :<|> newUser :<|> userOperations

where getUsers :: Handler [User]
getUsers = error "..."

newUser :: User -> Handler NoContent
newUser = error "..."

userOperations userid =
viewUser userid :<|> updateUser userid :<|> deleteUser userid

where
viewUser :: Int -> Handler User
viewUser = error "..."

updateUser :: Int -> User -> Handler NoContent
updateUser = error "..."

deleteUser :: Int -> Handler NoContent
deleteUser = error "..."

type ProductsAPI =
Get '[JSON] [Product] -- list products

:<|> ReqBody '[JSON] Product :> PostNoContent '[JSON] NoContent -- add a product
:<|> Capture "productid" Int :>

(Get '[JSON] Product -- view a product
:<|> ReqBody '[JSON] Product :> PutNoContent '[JSON] NoContent -- update a

→˓product
:<|> DeleteNoContent '[JSON] NoContent -- delete a product

)

data Product = Product { productId :: Int }

productsServer :: Server ProductsAPI
productsServer = getProducts :<|> newProduct :<|> productOperations

where getProducts :: Handler [Product]
getProducts = error "..."

newProduct :: Product -> Handler NoContent
newProduct = error "..."

productOperations productid =
viewProduct productid :<|> updateProduct productid :<|> deleteProduct

→˓productid

where
viewProduct :: Int -> Handler Product
viewProduct = error "..."

updateProduct :: Int -> Product -> Handler NoContent
updateProduct = error "..."

(continues on next page)

1.2. Serving an API 23

Servant Documentation

(continued from previous page)

deleteProduct :: Int -> Handler NoContent
deleteProduct = error "..."

type CombinedAPI = "users" :> UsersAPI
:<|> "products" :> ProductsAPI

server10 :: Server CombinedAPI
server10 = usersServer :<|> productsServer

Finally, we can realize the user and product APIs are quite similar and abstract that away:

-- API for values of type 'a'
-- indexed by values of type 'i'
type APIFor a i =

Get '[JSON] [a] -- list 'a's
:<|> ReqBody '[JSON] a :> PostNoContent '[JSON] NoContent -- add an 'a'
:<|> Capture "id" i :>

(Get '[JSON] a -- view an 'a' given its "identifier" of type 'i'
:<|> ReqBody '[JSON] a :> PutNoContent '[JSON] NoContent -- update an 'a'
:<|> DeleteNoContent '[JSON] NoContent -- delete an 'a'

)

-- Build the appropriate 'Server'
-- given the handlers of the right type.
serverFor :: Handler [a] -- handler for listing of 'a's

-> (a -> Handler NoContent) -- handler for adding an 'a'
-> (i -> Handler a) -- handler for viewing an 'a' given its identifier of

→˓type 'i'
-> (i -> a -> Handler NoContent) -- updating an 'a' with given id
-> (i -> Handler NoContent) -- deleting an 'a' given its id
-> Server (APIFor a i)

serverFor = error "..."
-- implementation left as an exercise. contact us on IRC
-- or the mailing list if you get stuck!

When your API contains the EmptyAPI combinator, you’ll want to use emptyServer in the corresponding slot for
your server, which will simply fail with 404 whenever a request reaches it:

type CombinedAPI2 = API :<|> "empty" :> EmptyAPI

server11 :: Server CombinedAPI2
server11 = server3 :<|> emptyServer

1.2.10 Using another monad for your handlers

Remember how Server turns combinators for HTTP methods into Handler? Well, actually, there’s more to that.
Server is actually a simple type synonym.

type Server api = ServerT api Handler

ServerT is the actual type family that computes the required types for the handlers that’s part of the HasServer
class. It’s like Server except that it takes another parameter which is the monad you want your handlers to run in,
or more generally the return types of your handlers. This third parameter is used for specifying the return type of
the handler for an endpoint, e.g when computing ServerT (Get '[JSON] Person) SomeMonad. The result
would be SomeMonad Person.

24 Chapter 1. Tutorial

Servant Documentation

The first and main question one might have then is: how do we write handlers that run in another monad? How can
we “bring back” the value from a given monad into something servant can understand?

Natural transformations

If we have a function that gets us from an m a to an n a, for any a, what do we have?

type (~>) m n = forall a. m a -> n a

For example:

listToMaybe' :: [] ~> Maybe
listToMaybe' = listToMaybe -- from Data.Maybe

Note that servant doesn’t declare the ~> type-alias, as the unfolded variant isn’t much longer to write, as we’ll see
shortly.

So if you want to write handlers using another monad/type than Handler, say the Reader String monad, the
first thing you have to prepare is a function:

readerToHandler :: Reader String a -> Handler a

We obviously have to run the Reader computation by supplying it with a String, like "hi". We get an a out from
that and can then just return it into Handler.

readerToHandler :: Reader String a -> Handler a
readerToHandler r = return (runReader r "hi")

We can write some simple webservice with the handlers running in Reader String.

type ReaderAPI = "a" :> Get '[JSON] Int
:<|> "b" :> ReqBody '[JSON] Double :> Get '[JSON] Bool

readerAPI :: Proxy ReaderAPI
readerAPI = Proxy

readerServerT :: ServerT ReaderAPI (Reader String)
readerServerT = a :<|> b where

a :: Reader String Int
a = return 1797

b :: Double -> Reader String Bool
b _ = asks (== "hi")

We unfortunately can’t use readerServerT as an argument of serve, because serve wants a Server
ReaderAPI, i.e., with handlers running in Handler. But there’s a simple solution to this.

Welcome hoistServer

That’s right. We have just written readerToHandler, which is exactly what we would need to apply to all handlers
to make the handlers have the right type for serve. Being cumbersome to do by hand, we provide a function
hoistServer which takes a natural transformation between two parameterized types m and n and a ServerT
someapi m, and returns a ServerT someapi n.

In our case, we can wrap up our little webservice by using hoistServer readerAPI readerToHandler on
our handlers.

1.2. Serving an API 25

Servant Documentation

readerServer :: Server ReaderAPI
readerServer = hoistServer readerAPI readerToHandler readerServerT

app4 :: Application
app4 = serve readerAPI readerServer

This is the webservice in action:

$ curl http://localhost:8081/a
1797
$ curl http://localhost:8081/b -X GET -d '42.0' -H 'Content-Type: application/json'
true

An arrow is a reader too.

In previous versions of servant we had an enter to do what hoistServer does now. enter had a ambitious
design goals, but was problematic in practice.

One problematic situation was when the source monad was (->) r, yet it’s handy in practice, because (->) r is
isomorphic to Reader r.

We can rewrite the previous example without Reader:

funServerT :: ServerT ReaderAPI ((->) String)
funServerT = a :<|> b where

a :: String -> Int
a _ = 1797

-- unfortunately, we cannot make `String` the first argument.
b :: Double -> String -> Bool
b _ s = s == "hi"

funToHandler :: (String -> a) -> Handler a
funToHandler f = return (f "hi")

app5 :: Application
app5 = serve readerAPI (hoistServer readerAPI funToHandler funServerT)

1.2.11 Streaming endpoints

We can create endpoints that don’t just give back a single result, but give back a stream of results, served one at a
time. Stream endpoints only provide a single content type, and also specify what framing strategy is used to delineate
the results. To serve these results, we need to give back a stream producer. Adapters can be written to Pipes, Conduit
and the like, or written directly as SourceIOs. SourceIO builts upon servant’s own SourceT stream type (it’s
simpler than Pipes or Conduit). The API of a streaming endpoint needs to explicitly specify which sort of generator
it produces. Note that the generator itself is returned by a Handler action, so that additional IO may be done in the
creation of one.

type StreamAPI = "userStream" :> StreamGet NewlineFraming JSON (SourceIO User)
streamAPI :: Proxy StreamAPI
streamAPI = Proxy

streamUsers :: SourceIO User
streamUsers = source [isaac, albert, albert]

(continues on next page)

26 Chapter 1. Tutorial

Servant Documentation

(continued from previous page)

app6 :: Application
app6 = serve streamAPI (return streamUsers)

This simple application returns a stream of User values encoded in JSON format, with each value separated by a
newline. In this case, the stream will consist of the value of isaac, followed by the value of albert, then the value
of albert a second time. Importantly, the stream is written back as results are produced, rather than all at once. This
means first that results are delivered when they are available, and second, that if an exception interrupts production of
the full stream, nonetheless partial results have already been written back.

1.2.12 Conclusion

You’re now equipped to write webservices/web-applications using servant. The rest of this document focuses on
servant-client, servant-js and servant-docs.

1.3 Querying an API

While defining handlers that serve an API has a lot to it, querying an API is simpler: we do not care about what
happens inside the webserver, we just need to know how to talk to it and get a response back. That said, we usually
have to write the querying functions by hand because the structure of the API isn’t a first class citizen and can’t be
inspected to generate the client-side functions.

servant however has a way to inspect APIs, because APIs are just Haskell types and (GHC) Haskell lets us do quite
a few things with types. In the same way that we look at an API type to deduce the types the handlers should have,
we can inspect the structure of the API to derive Haskell functions that take one argument for each occurrence of
Capture, ReqBody, QueryParam and friends (see the tutorial introduction for an overview). By derive, we mean
that there’s no code generation involved - the functions are defined just by the structure of the API type.

The source for this tutorial section is a literate Haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}

module Client where

import Data.Aeson
import Data.Proxy
import GHC.Generics
import Network.HTTP.Client (newManager, defaultManagerSettings)
import Servant.API
import Servant.Client
import Servant.Types.SourceT (foreach)

import qualified Servant.Client.Streaming as S

Also, we need examples for some domain specific data types:

data Position = Position
{ xCoord :: Int
, yCoord :: Int
} deriving (Show, Generic)

(continues on next page)

1.3. Querying an API 27

Server.lhs
ApiType.lhs

Servant Documentation

(continued from previous page)

instance FromJSON Position

newtype HelloMessage = HelloMessage { msg :: String }
deriving (Show, Generic)

instance FromJSON HelloMessage

data ClientInfo = ClientInfo
{ clientName :: String
, clientEmail :: String
, clientAge :: Int
, clientInterestedIn :: [String]
} deriving Generic

instance ToJSON ClientInfo

data Email = Email
{ from :: String
, to :: String
, subject :: String
, body :: String
} deriving (Show, Generic)

instance FromJSON Email

Enough chitchat, let’s see an example. Consider the following API type from the previous section:

type API = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON] Position
:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

What we are going to get with servant-client here is three functions, one to query each endpoint:

position :: Int -- ^ value for "x"
-> Int -- ^ value for "y"
-> ClientM Position

hello :: Maybe String -- ^ an optional value for "name"
-> ClientM HelloMessage

marketing :: ClientInfo -- ^ value for the request body
-> ClientM Email

Each function makes available as an argument any value that the response may depend on, as evidenced in the API
type. How do we get these functions? By calling the function client. It takes one argument:

• a Proxy to your API,

api :: Proxy API
api = Proxy

position :<|> hello :<|> marketing = client api

client api returns client functions for our entire API, combined with :<|>, which we can pattern match on as
above. You could say client “calculates” the correct type and number of client functions for the API type it is given
(via a Proxy), as well as their implementations.

28 Chapter 1. Tutorial

Servant Documentation

If you have an EmptyAPI in your API, servant-client will hand you a value of type EmptyClient in the corre-
sponding slot, where data EmptyClient = EmptyClient, as a way to indicate that you can’t do anything
useful with it.

type API' = API :<|> EmptyAPI

api' :: Proxy API'
api' = Proxy

(position' :<|> hello' :<|> marketing') :<|> EmptyClient = client api'

-- | URI scheme to use
data Scheme =

Http -- ^ http://
| Https -- ^ https://
deriving

-- | Simple data type to represent the target of HTTP requests
-- for servant's automatically-generated clients.
data BaseUrl = BaseUrl

{ baseUrlScheme :: Scheme -- ^ URI scheme to use
, baseUrlHost :: String -- ^ host (eg "haskell.org")
, baseUrlPort :: Int -- ^ port (eg 80)
, baseUrlPath :: String -- ^ path (eg "/a/b/c")
}

That’s it. Let’s now write some code that uses our client functions.

queries :: ClientM (Position, HelloMessage, Email)
queries = do

pos <- position 10 10
message <- hello (Just "servant")
em <- marketing (ClientInfo "Alp" "alp@foo.com" 26 ["haskell", "mathematics"])
return (pos, message, em)

run :: IO ()
run = do
manager' <- newManager defaultManagerSettings
res <- runClientM queries (mkClientEnv manager' (BaseUrl Http "localhost" 8081 ""))
case res of
Left err -> putStrLn $ "Error: " ++ show err
Right (pos, message, em) -> do

print pos
print message
print em

Here’s the output of the above code running against the appropriate server:

Position {xCoord = 10, yCoord = 10}
HelloMessage {msg = "Hello, servant"}
Email {from = "great@company.com", to = "alp@foo.com", subject = "Hey Alp, we miss
→˓you!", body = "Hi Alp,\n\nSince you've recently turned 26, have you checked out our
→˓latest haskell, mathematics products? Give us a visit!"}

The types of the arguments for the functions are the same as for (server-side) request handlers.

1.3. Querying an API 29

Servant Documentation

1.3.1 Changing the monad the client functions live in

Just like hoistServer allows us to change the monad in which request handlers of a web application live in, we
also have hoistClient for changing the monad in which client functions live. Consider the following trivial API:

type HoistClientAPI = Get '[JSON] Int :<|> Capture "n" Int :> Post '[JSON] Int

hoistClientAPI :: Proxy HoistClientAPI
hoistClientAPI = Proxy

We already know how to derive client functions for this API, and as we have seen above they all return results in
the ClientM monad when using servant-client. However, ClientM rarely (or never) is the actual monad
we need to use the client functions in. Sometimes we need to run them in IO, sometimes in a custom monad stack.
hoistClient is a very simple solution to the problem of “changing” the monad the clients run in.

hoistClient
:: HasClient ClientM api -- we need a valid API
=> Proxy api -- a Proxy to the API type
-> (forall a. m a -> n a) -- a "monad conversion function" (natural transformation)
-> Client m api -- clients in the source monad
-> Client n api -- result: clients in the target monad

The “conversion function” argument above, just like the ones given to hoistServer, must be able to turn an m a
into an n a for any choice of type a.

Let’s see this in action on our example. We first derive our client functions as usual, with all of them returning a result
in ClientM.

getIntClientM :: ClientM Int
postIntClientM :: Int -> ClientM Int
getIntClientM :<|> postIntClientM = client hoistClientAPI

And we finally decide that we want the handlers to run in IO instead, by “post-applying” runClientM to a fixed
client environment.

-- our conversion function has type: forall a. ClientM a -> IO a
-- the result has type:
-- Client IO HoistClientAPI = IO Int :<|> (Int -> IO Int)
getClients :: ClientEnv -> Client IO HoistClientAPI
getClients clientEnv

= hoistClient hoistClientAPI
(fmap (either (error . show) id)
. flip runClientM clientEnv
)
(client hoistClientAPI)

1.3.2 Querying Streaming APIs.

Consider the following streaming API type:

type StreamAPI = "positionStream" :> StreamGet NewlineFraming JSON (SourceIO Position)

Note that we use the same SourceIO type as on the server-side (this is different from servant-0.14). However,
we have to use different client, Servant.Client.Streaming, which can stream (but has different API).

In any case, here’s how we write a function to query our API:

30 Chapter 1. Tutorial

Servant Documentation

streamAPI :: Proxy StreamAPI
streamAPI = Proxy

posStream :: S.ClientM (SourceIO Position)
posStream = S.client streamAPI

We’ll get back a SourceIO Position. Instead of runClientM, the streaming client provides withClientM:
the underlying HTTP connection is open only until the inner functions exits. Inside the block we can e.g just print out
all elements from a SourceIO, to give some idea of how to work with them.

printSourceIO :: Show a => ClientEnv -> S.ClientM (SourceIO a) -> IO ()
printSourceIO env c = S.withClientM c env $ \e -> case e of

Left err -> putStrLn $ "Error: " ++ show err
Right rs -> foreach fail print rs

The stream is parsed and provided incrementally. So the above loop prints out each result as soon as it is received on
the stream, rather than waiting until they are all available to print them at once.

You now know how to use servant-client!

1.4 Generating Javascript functions to query an API

We will now see how servant lets you turn an API type into javascript functions that you can call to query a webservice.

For this, we will consider a simple page divided in two parts. At the top, we will have a search box that lets us search in
a list of Haskell books by author/title with a list of results that gets updated every time we enter or remove a character,
while at the bottom we will be able to see the classical probabilistic method to approximate pi, using a webservice to
get random points. Finally, we will serve an HTML file along with a couple of Javascript files, among which one that’s
automatically generated from the API type and which will provide ready-to-use functions to query your API.

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}

module Javascript where

import Control.Monad.IO.Class
import Data.Aeson
import Data.Proxy
import Data.Text as T (Text)
import Data.Text.IO as T (writeFile, readFile)
import GHC.Generics
import Language.Javascript.JQuery
import Network.Wai
import Network.Wai.Handler.Warp
import qualified Data.Text as T
import Servant
import Servant.JS
import System.Random

Now let’s have the API type(s) and the accompanying datatypes.

1.4. Generating Javascript functions to query an API 31

http://en.wikipedia.org/wiki/Approximations_of_%CF%80#Summing_a_circle.27s_area

Servant Documentation

type API = "point" :> Get '[JSON] Point
:<|> "books" :> QueryParam "q" Text :> Get '[JSON] (Search Book)

type API' = API :<|> Raw

data Point = Point
{ x :: Double
, y :: Double
} deriving Generic

instance ToJSON Point

data Search a = Search
{ query :: Text
, results :: [a]
} deriving Generic

mkSearch :: Text -> [a] -> Search a
mkSearch = Search

instance ToJSON a => ToJSON (Search a)

data Book = Book
{ author :: Text
, title :: Text
, year :: Int
} deriving Generic

instance ToJSON Book

book :: Text -> Text -> Int -> Book
book = Book

We need a “book database”. For the purpose of this guide, let’s restrict ourselves to the following books.

books :: [Book]
books =

[book "Paul Hudak" "The Haskell School of Expression: Learning Functional
→˓Programming through Multimedia" 2000
, book "Bryan O'Sullivan, Don Stewart, and John Goerzen" "Real World Haskell" 2008
, book "Miran Lipovača" "Learn You a Haskell for Great Good!" 2011
, book "Graham Hutton" "Programming in Haskell" 2007
, book "Simon Marlow" "Parallel and Concurrent Programming in Haskell" 2013
, book "Richard Bird" "Introduction to Functional Programming using Haskell" 1998
]

Now, given an optional search string q, we want to perform a case insensitive search in that list of books. We’re
obviously not going to try and implement the best possible algorithm, this is out of scope for this tutorial. The
following simple linear scan will do, given how small our list is.

searchBook :: Monad m => Maybe Text -> m (Search Book)
searchBook Nothing = return (mkSearch "" books)
searchBook (Just q) = return (mkSearch q books')

where books' = filter (\b -> q' `T.isInfixOf` T.toLower (author b)
|| q' `T.isInfixOf` T.toLower (title b)

)

(continues on next page)

32 Chapter 1. Tutorial

Servant Documentation

(continued from previous page)

books
q' = T.toLower q

We also need an endpoint that generates random points (x, y) with -1 <= x,y <= 1. The code below uses
random’s System.Random.

randomPoint :: MonadIO m => m Point
randomPoint = liftIO . getStdRandom $ \g ->
let (rx, g') = randomR (-1, 1) g

(ry, g'') = randomR (-1, 1) g'
in (Point rx ry, g'')

If we add static file serving, our server is now complete.

api :: Proxy API
api = Proxy

api' :: Proxy API'
api' = Proxy

server :: Server API
server = randomPoint

:<|> searchBook

server' :: Server API'
server' = server

:<|> serveDirectoryFileServer "static"

app :: Application
app = serve api' server'

main :: IO ()
main = run 8000 app

Why two different API types, proxies and servers though? Simply because we don’t want to generate javascript
functions for the Raw part of our API type, so we need a Proxy for our API type API' without its Raw endpoint.

The EmptyAPI combinator needs no special treatment as it generates no Javascript functions: an empty API has no
endpoints to access.

Very similarly to how one can derive haskell functions, we can derive the javascript with just a simple function call to
jsForAPI from Servant.JS.

apiJS1 :: Text
apiJS1 = jsForAPI api jquery

This Text contains 2 Javascript functions, ‘getPoint’ and ‘getBooks’:

var getPoint = function(onSuccess, onError)
{

$.ajax(
{ url: '/point'
, success: onSuccess
, error: onError
, type: 'GET'
});

}

(continues on next page)

1.4. Generating Javascript functions to query an API 33

http://hackage.haskell.org/package/random

Servant Documentation

(continued from previous page)

var getBooks = function(q, onSuccess, onError)
{

$.ajax(
{ url: '/books' + '?q=' + encodeURIComponent(q)
, success: onSuccess
, error: onError
, type: 'GET'
});

}

We created a directory static that contains two static files: index.html, which is the entrypoint to our little web
application; and ui.js, which contains some hand-written javascript. This javascript code assumes the two generated
functions getPoint and getBooks in scope. Therefore we need to write the generated javascript into a file:

writeJSFiles :: IO ()
writeJSFiles = do

T.writeFile "static/api.js" apiJS1
jq <- T.readFile =<< Language.Javascript.JQuery.file
T.writeFile "static/jq.js" jq

(We’re also writing the jquery library into a file, as it’s also used by ui.js.) static/api.js will be included in
index.html and the two generated functions will therefore be available in ui.js.

And we’re good to go. You can start the main function of this file and go to http://localhost:8000/. Start
typing in the name of one of the authors in our database or part of a book title, and check out how long it takes to
approximate pi using the method mentioned above.

1.4.1 Customizations

Instead of calling jquery, you can call its variant jqueryWith. Here are the type definitions

jquery :: JavaScriptGenerator
jqueryWith :: CommonGeneratorOptions -> JavaScriptGenerator

The CommonGeneratorOptions will let you define different behaviors to change how functions are generated.
Here is the definition of currently available options:

data CommonGeneratorOptions = CommonGeneratorOptions
{
-- | function generating function names
functionNameBuilder :: FunctionName -> Text
-- | name used when a user want to send the request body (to let you redefine it)

, requestBody :: Text
-- | name of the callback parameter when the request was successful

, successCallback :: Text
-- | name of the callback parameter when the request reported an error

, errorCallback :: Text
-- | namespace on which we define the js function (empty mean local var)

, moduleName :: Text
-- | a prefix that should be prepended to the URL in the generated JS

, urlPrefix :: Text
}

This pattern is available with all supported backends, and default values are provided.

34 Chapter 1. Tutorial

Servant Documentation

1.4.2 Vanilla support

If you don’t use JQuery for your application, you can reduce your dependencies to simply use the XMLHttpRequest
object from the standard API.

Use the same code as before but simply replace the previous apiJS with the following one:

apiJS2 :: Text
apiJS2 = jsForAPI api vanillaJS

The rest is completely unchanged.

The output file is a bit different, but it has the same parameters,

var getPoint = function(onSuccess, onError)
{

var xhr = new XMLHttpRequest();
xhr.open('GET', '/point', true);
xhr.setRequestHeader(\"Accept\",\"application/json\");
xhr.onreadystatechange = function (e) {
if (xhr.readyState == 4) {

if (xhr.status == 204 || xhr.status == 205) {
onSuccess();

} else if (xhr.status >= 200 && xhr.status < 300) {
var value = JSON.parse(xhr.responseText);
onSuccess(value);

} else {
var value = JSON.parse(xhr.responseText);
onError(value);

}
}

}
xhr.send(null);

}

var getBooks = function(q, onSuccess, onError)
{

var xhr = new XMLHttpRequest();
xhr.open('GET', '/books' + '?q=' + encodeURIComponent(q), true);
xhr.setRequestHeader(\"Accept\",\"application/json\");
xhr.onreadystatechange = function (e) {
if (xhr.readyState == 4) {

if (xhr.status == 204 || xhr.status == 205) {
onSuccess();

} else if (xhr.status >= 200 && xhr.status < 300) {
var value = JSON.parse(xhr.responseText);
onSuccess(value);

} else {
var value = JSON.parse(xhr.responseText);
onError(value);

}
}

}
xhr.send(null);

}

1.4. Generating Javascript functions to query an API 35

Servant Documentation

And that’s all, your web service can of course be accessible from those two clients at the same time!

1.4.3 Axios support

Simple usage

If you use Axios library for your application, we support that too!

Use the same code as before but simply replace the previous apiJS with the following one:

apiJS3 :: Text
apiJS3 = jsForAPI api $ axios defAxiosOptions

The rest is completely unchanged.

The output file is a bit different,

var getPoint = function()
{

return axios({ url: '/point'
, method: 'get'
});

}

var getBooks = function(q)
{

return axios({ url: '/books' + '?q=' + encodeURIComponent(q)
, method: 'get'
});

}

Caution: In order to support the promise style of the API, there are no onSuccess nor onError callback functions.

Defining Axios configuration

Axios lets you define a ‘configuration’ to determine the behavior of the program when the AJAX request is sent.

We mapped this into a configuration

data AxiosOptions = AxiosOptions
{ -- | indicates whether or not cross-site Access-Control requests
-- should be made using credentials
withCredentials :: !Bool
-- | the name of the cookie to use as a value for xsrf token

, xsrfCookieName :: !(Maybe Text)
-- | the name of the header to use as a value for xsrf token

, xsrfHeaderName :: !(Maybe Text)
}

1.4.4 Angular support

36 Chapter 1. Tutorial

Servant Documentation

Simple usage

You can apply the same procedure as with vanillaJS and jquery, and generate top level functions.

The difference is that angular Generator always takes an argument.

apiJS4 :: Text
apiJS4 = jsForAPI api $ angular defAngularOptions

The generated code will be a bit different than previous generators. An extra argument $http will be added to let
Angular magical Dependency Injector operate.

Caution: In order to support the promise style of the API, there are no onSuccess nor onError callback functions.

var getPoint = function($http)
{

return $http(
{ url: '/point'
, method: 'GET'
});

}

var getBooks = function($http, q)
{

return $http(
{ url: '/books' + '?q=' + encodeURIComponent(q)
, method: 'GET'
});

}

You can then build your controllers easily

app.controller("MyController", function($http) {
this.getPoint = getPoint($http)
.success(/* Do something */)
.error(/* Report error */);

this.getPoint = getBooks($http, q)
.success(/* Do something */)
.error(/* Report error */);

});

Service generator

You can also generate automatically a service to wrap the whole API as a single Angular service:

app.service('MyService', function($http) {
return ({
postCounter: function()
{
return $http(
{ url: '/counter'
, method: 'POST'
});

},

(continues on next page)

1.4. Generating Javascript functions to query an API 37

Servant Documentation

(continued from previous page)

getCounter: function()
{
return $http(

{ url: '/books' + '?q=' + encodeURIComponent(q), true);
, method: 'GET'
});

}
});

});

To do so, you just have to use an alternate generator.

apiJS5 :: Text
apiJS5 = jsForAPI api $ angularService defAngularOptions

Again, it is possible to customize some portions with the options.

data AngularOptions = AngularOptions
{ -- | When generating code with wrapInService, name of the service to generate,

→˓default is 'app'
serviceName :: Text

, -- | beginning of the service definition
prologue :: Text -> Text -> Text

, -- | end of the service definition
epilogue :: Text

}

1.4.5 Custom function name builder

Servant comes with three name builders included:

• camelCase (the default)

• concatCase

• snakeCase

Keeping the JQuery as an example, let’s see the impact:

apiJS6 :: Text
apiJS6 = jsForAPI api $ jqueryWith defCommonGeneratorOptions { functionNameBuilder=
→˓snakeCase }

This Text contains 2 Javascript functions:

var get_point = function(onSuccess, onError)
{

$.ajax(
{ url: '/point'
, success: onSuccess
, error: onError
, type: 'GET'
});

}

var get_books = function(q, onSuccess, onError)

(continues on next page)

38 Chapter 1. Tutorial

Servant Documentation

(continued from previous page)

{
$.ajax(
{ url: '/books' + '?q=' + encodeURIComponent(q)
, success: onSuccess
, error: onError
, type: 'GET'
});

}

1.5 Documenting an API

The source for this tutorial section is a literate haskell file, so first we need to have some language extensions and
imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}
{-# OPTIONS_GHC -fno-warn-orphans #-}

module Docs where

import Data.ByteString.Lazy (ByteString)
import Data.Proxy
import Data.Text.Lazy.Encoding (encodeUtf8)
import Data.Text.Lazy (pack)
import Network.HTTP.Types
import Network.Wai
import Servant.API
import Servant.Docs
import Servant.Server
import Web.FormUrlEncoded(FromForm(..), ToForm(..))

And we’ll import some things from one of our earlier modules (Serving an API):

import Server (Email(..), ClientInfo(..), Position(..), HelloMessage(..),
server3, emailForClient)

Like client function generation, documentation generation amounts to inspecting the API type and extracting all the
data we need to then present it in some format to users of your API.

This time however, we have to assist servant. While it is able to deduce a lot of things about our API, it can’t
magically come up with descriptions of the various pieces of our APIs that are human-friendly and explain what’s
going on “at the business-logic level”. A good example to study for documentation generation is our webservice with
the /position, /hello and /marketing endpoints from earlier:

type ExampleAPI = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON]
→˓Position

:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON] ClientInfo :> Post '[JSON] Email

(continues on next page)

1.5. Documenting an API 39

Server.html

Servant Documentation

(continued from previous page)

exampleAPI :: Proxy ExampleAPI
exampleAPI = Proxy

While servant can see e.g. that there are 3 endpoints and that the response bodies will be in JSON, it doesn’t know
what influence the captures, parameters, request bodies and other combinators have on the webservice. This is where
some manual work is required.

For every capture, request body, response body, query param, we have to give some explanations about how it in-
fluences the response, what values are possible and the likes. Here’s how it looks like for the parameters we have
above.

instance ToCapture (Capture "x" Int) where
toCapture _ =
DocCapture "x" -- name

"(integer) position on the x axis" -- description

instance ToCapture (Capture "y" Int) where
toCapture _ =
DocCapture "y" -- name

"(integer) position on the y axis" -- description

instance ToSample Position where
toSamples _ = singleSample (Position 3 14) -- example of output

instance ToParam (QueryParam "name" String) where
toParam _ =
DocQueryParam "name" -- name

["Alp", "John Doe", "..."] -- example of values (not necessarily
→˓exhaustive)

"Name of the person to say hello to." -- description
Normal -- Normal, List or Flag

instance ToSample HelloMessage where
toSamples _ =
[("When a value is provided for 'name'", HelloMessage "Hello, Alp")
, ("When 'name' is not specified", HelloMessage "Hello, anonymous coward")
]
-- mutliple examples to display this time

ci :: ClientInfo
ci = ClientInfo "Alp" "alp@foo.com" 26 ["haskell", "mathematics"]

instance ToSample ClientInfo where
toSamples _ = singleSample ci

instance ToSample Email where
toSamples _ = singleSample (emailForClient ci)

Types that are used as request or response bodies have to instantiate the ToSample typeclass which lets you specify
one or more examples of values. Captures and QueryParams have to instantiate their respective ToCapture
and ToParam classes and provide a name and some information about the concrete meaning of that argument, as
illustrated in the code above. The EmptyAPI combinator needs no special treatment as it generates no documentation:
an empty API has no endpoints to document.

With all of this, we can derive docs for our API.

40 Chapter 1. Tutorial

Servant Documentation

apiDocs :: API
apiDocs = docs exampleAPI

API is a type provided by servant-docs that stores all the information one needs about a web API in order to generate
documentation in some format. Out of the box, servant-docs only provides a pretty documentation printer that outputs
Markdown, but the servant-pandoc package can be used to target many useful formats.

servant’s markdown pretty printer is a function named markdown.

markdown :: API -> String

That lets us see what our API docs look down in markdown, by looking at markdown apiDocs.

GET /hello

GET Parameters:

- name
- **Values**: *Alp, John Doe, ...*
- **Description**: Name of the person to say hello to.

Response:

- Status code 200
- Headers: []

- Supported content types are:

- `application/json;charset=utf-8`
- `application/json`

- When a value is provided for 'name' (`application/json;charset=utf-8`, `application/
→˓json`):

```javascript
{"msg":"Hello, Alp"}

```

- When 'name' is not specified (`application/json;charset=utf-8`, `application/json`):

```javascript
{"msg":"Hello, anonymous coward"}

```

POST /marketing

Request:

- Supported content types are:

- `application/json;charset=utf-8`
- `application/json`

- Example (`application/json;charset=utf-8`, `application/json`):

```javascript

(continues on next page)

1.5. Documenting an API 41

http://en.wikipedia.org/wiki/Markdown
http://hackage.haskell.org/package/servant-pandoc


Servant Documentation

(continued from previous page)

{"clientAge":26,"clientEmail":"alp@foo.com","clientName":"Alp","clientInterestedIn":[
→˓"haskell","mathematics"]}

```

Response:

- Status code 200
- Headers: []

- Supported content types are:

- `application/json;charset=utf-8`
- `application/json`

- Example (`application/json;charset=utf-8`, `application/json`):

```javascript
{"subject":"Hey Alp, we miss you!","body":"Hi Alp,\n\nSince you've recently turned 26,
→˓ have you checked out our latest haskell, mathematics products? Give us a visit!",
→˓"to":"alp@foo.com","from":"great@company.com"}

```

GET /position/:x/:y

Captures:

- *x*: (integer) position on the x axis
- *y*: (integer) position on the y axis

Response:

- Status code 200
- Headers: []

- Supported content types are:

- `application/json;charset=utf-8`
- `application/json`

- Example (`application/json;charset=utf-8`, `application/json`):

```javascript
{"yCoord":14,"xCoord":3}

````

However, we can also add one or more introduction sections to the document. We just need to tweak the way we
generate apiDocs. We will also convert the content to a lazy ByteString since this is what wai expects for Raw
endpoints.

docsBS :: ByteString
docsBS = encodeUtf8

. pack

. markdown
$ docsWithIntros [intro] exampleAPI

where intro = DocIntro "Welcome" ["This is our super webservice's API.", "Enjoy!"]

42 Chapter 1. Tutorial

Servant Documentation

docsWithIntros just takes an additional parameter, a list of DocIntros that must be displayed before any
endpoint docs.

More customisation can be done with the markdownWith function, which allows customising some of the parame-
ters used when generating Markdown. The most obvious of these is how to handle when a request or response body
has multiple content types. For example, if we make a slight change to the /marketing endpoint of our API so that
the request body can also be encoded as a form:

type ExampleAPI2 = "position" :> Capture "x" Int :> Capture "y" Int :> Get '[JSON]
→˓Position

:<|> "hello" :> QueryParam "name" String :> Get '[JSON] HelloMessage
:<|> "marketing" :> ReqBody '[JSON, FormUrlEncoded] ClientInfo :> Post '[JSON]

→˓Email

instance ToForm ClientInfo
instance FromForm ClientInfo

exampleAPI2 :: Proxy ExampleAPI2
exampleAPI2 = Proxy

api2Docs :: API
api2Docs = docs exampleAPI2

The relevant output of markdown api2Docs is now:

Request:

- Supported content types are:

- `application/json;charset=utf-8`
- `application/json`
- `application/x-www-form-urlencoded`

- Example (`application/json;charset=utf-8`, `application/json`):

```javascript
{"clientAge":26,"clientEmail":"alp@foo.com","clientName":"Alp","clientInterestedIn":[
→˓"haskell","mathematics"]}

```

- Example (`application/x-www-form-urlencoded`):

```
clientAge=26&clientEmail=alp%40foo.com&clientName=Alp&clientInterestedIn=haskell&
→˓clientInterestedIn=mathematics

```

If, however, you don’t want the extra example encoding shown, then you can use markdownWith
(defRenderingOptions & requestExamples .~ FirstContentType) to get behaviour identical to
markdown apiDocs.

We can now serve the API and the API docs with a simple server.

type DocsAPI = ExampleAPI :<|> Raw

api :: Proxy DocsAPI
api = Proxy

(continues on next page)

1.5. Documenting an API 43

Servant Documentation

(continued from previous page)

server :: Server DocsAPI
server = Server.server3 :<|> Tagged serveDocs where

serveDocs _ respond =
respond $ responseLBS ok200 [plain] docsBS

plain = ("Content-Type", "text/plain")

app :: Application
app = serve api server

And if you spin up this server and request anything else than /position, /hello and /marketing, you will
see the API docs in markdown. This is because serveDocs is attempted if the 3 other endpoints don’t match and
systematically succeeds since its definition is to just return some fixed bytestring with the text/plain content type.

1.6 Authentication in Servant

Once you’ve established the basic routes and semantics of your API, it’s time to consider protecting parts of it. Au-
thentication and authorization are broad and nuanced topics; as servant began to explore this space we started small
with one of HTTP’s earliest authentication schemes: Basic Authentication.

Servant 0.5 shipped with out-of-the-box support for Basic Authentication. However, we recognize that every web
application is its own beautiful snowflake and are offering experimental support for generalized or ad-hoc authentica-
tion.

In this tutorial we’ll build two APIs. One protecting certain routes with Basic Authentication and another protecting
the same routes with a custom, in-house authentication scheme.

1.6.1 Basic Authentication

When protecting endpoints with basic authentication, we need to specify two items:

1. The realm of authentication as per the Basic Authentication spec.

2. The datatype returned by the server after authentication is verified. This is usually a User or Customer
datatype.

With those two items in mind, servant provides the following combinator:

data BasicAuth (realm :: Symbol) (userData :: *)

You can use this combinator to protect an API as follows:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE UndecidableInstances #-}

module Authentication where

(continues on next page)

44 Chapter 1. Tutorial

https://en.wikipedia.org/wiki/Basic_access_authentication

Servant Documentation

(continued from previous page)

import Data.Aeson (ToJSON)
import Data.ByteString (ByteString)
import Data.Map (Map, fromList)
import Data.Monoid ((<>))
import qualified Data.Map as Map
import Data.Proxy (Proxy (Proxy))
import Data.Text (Text)
import GHC.Generics (Generic)
import Network.Wai (Request, requestHeaders)
import Network.Wai.Handler.Warp (run)
import Servant.API ((:<|>) ((:<|>)), (:>), BasicAuth,

Get, JSON)
import Servant.API.BasicAuth (BasicAuthData (BasicAuthData))
import Servant.API.Experimental.Auth (AuthProtect)
import Servant (throwError)
import Servant.Server (BasicAuthCheck (BasicAuthCheck),

BasicAuthResult(Authorized
, Unauthorized
),

Context ((:.), EmptyContext),
err401, err403, errBody, Server,
serveWithContext, Handler)

import Servant.Server.Experimental.Auth (AuthHandler, AuthServerData,
mkAuthHandler)

import Servant.Server.Experimental.Auth()
import Web.Cookie (parseCookies)

-- | private data that needs protection
newtype PrivateData = PrivateData { ssshhh :: Text }

deriving (Eq, Show, Generic)

instance ToJSON PrivateData

-- | public data that anyone can use.
newtype PublicData = PublicData { somedata :: Text }

deriving (Eq, Show, Generic)

instance ToJSON PublicData

-- | A user we'll grab from the database when we authenticate someone
newtype User = User { userName :: Text }

deriving (Eq, Show)

-- | a type to wrap our public api
type PublicAPI = Get '[JSON] [PublicData]

-- | a type to wrap our private api
type PrivateAPI = Get '[JSON] PrivateData

-- | our API
type BasicAPI = "public" :> PublicAPI

:<|> "private" :> BasicAuth "foo-realm" User :> PrivateAPI

-- | a value holding a proxy of our API type
basicAuthApi :: Proxy BasicAPI
basicAuthApi = Proxy

1.6. Authentication in Servant 45

Servant Documentation

You can see that we’ve prefixed our public API with “public” and our private API with “private.” Additionally, the
private parts of our API use the BasicAuth combinator to protect them under a Basic Authentication scheme (the
realm for this authentication is "foo-realm").

Unfortunately we’re not done. When someone makes a request to our "private" API, we’re going to need to
provide to servant the logic for validifying usernames and passwords. This adds a certain conceptual wrinkle in
servant’s design that we’ll briefly discuss. If you want the TL;DR: we supply a lookup function to servant’s new
Context primitive.

Until now, all of servant’s API combinators extracted information from a request or dictated the structure of a response
(e.g. a Capture param is pulled from the request path). Now consider an API resource protected by basic authentica-
tion. Once the required WWW-Authenticate header is checked, we need to verify the username and password. But
how? One solution would be to force an API author to provide a function of type BasicAuthData -> Handler
User and servant should use this function to authenticate a request. Unfortunately this didn’t work prior to 0.5
because all of servant’s machinery was engineered around the idea that each combinator can extract information from
only the request. We cannot extract the function BasicAuthData -> Handler User from a request! Are we
doomed?

Servant 0.5 introduced Context to handle this. The type machinery is beyond the scope of this tutorial, but the
idea is simple: provide some data to the serve function, and that data is propagated to the functions that handle
each combinator. Using Context, we can supply a function of type BasicAuthData -> Handler User
to the BasicAuth combinator handler. This will allow the handler to check authentication and return a User to
downstream handlers if successful.

In practice we wrap BasicAuthData -> Handler into a slightly different function to better capture the seman-
tics of basic authentication:

-- | The result of authentication/authorization
data BasicAuthResult usr

= Unauthorized
| BadPassword
| NoSuchUser
| Authorized usr
deriving (Eq, Show, Read, Generic, Typeable, Functor)

-- | Datatype wrapping a function used to check authentication.
newtype BasicAuthCheck usr = BasicAuthCheck

{ unBasicAuthCheck :: BasicAuthData
-> IO (BasicAuthResult usr)

}
deriving (Generic, Typeable, Functor)

We now use this datatype to supply servant with a method to authenticate requests. In this simple example the only
valid username and password is "servant" and "server", respectively, but in a real, production application you
might do some database lookup here.

-- | 'BasicAuthCheck' holds the handler we'll use to verify a username and password.
authCheck :: BasicAuthCheck User
authCheck =

let check (BasicAuthData username password) =
if username == "servant" && password == "server"
then return (Authorized (User "servant"))
else return Unauthorized

in BasicAuthCheck check

And now we create the Context used by servant to find BasicAuthCheck:

46 Chapter 1. Tutorial

Servant Documentation

-- | We need to supply our handlers with the right Context. In this case,
-- Basic Authentication requires a Context Entry with the 'BasicAuthCheck' value
-- tagged with "foo-tag" This context is then supplied to 'server' and threaded
-- to the BasicAuth HasServer handlers.
basicAuthServerContext :: Context (BasicAuthCheck User ': '[])
basicAuthServerContext = authCheck :. EmptyContext

We’re now ready to write our server method that will tie everything together:

-- | an implementation of our server. Here is where we pass all the handlers to our
→˓endpoints.
-- In particular, for the BasicAuth protected handler, we need to supply a function
-- that takes 'User' as an argument.
basicAuthServer :: Server BasicAPI
basicAuthServer =

let publicAPIHandler = return [PublicData "foo", PublicData "bar"]
privateAPIHandler (user :: User) = return (PrivateData (userName user))

in publicAPIHandler :<|> privateAPIHandler

Finally, our main method and a sample session working with our server:

-- | hello, server!
basicAuthMain :: IO ()
basicAuthMain = run 8080 (serveWithContext basicAuthApi

basicAuthServerContext
basicAuthServer

)

{- Sample session

$ curl -XGET localhost:8080/public
[{"somedata":"foo"},{"somedata":"bar"}

$ curl -iXGET localhost:8080/private
HTTP/1.1 401 Unauthorized
transfer-encoding: chunked
Date: Thu, 07 Jan 2016 22:36:38 GMT
Server: Warp/3.1.8
WWW-Authenticate: Basic realm="foo-realm"

$ curl -iXGET localhost:8080/private -H "Authorization: Basic c2VydmFudDpzZXJ2ZXI="
HTTP/1.1 200 OK
transfer-encoding: chunked
Date: Thu, 07 Jan 2016 22:37:58 GMT
Server: Warp/3.1.8
Content-Type: application/json
{"ssshhh":"servant"}
-}

1.6.2 Generalized Authentication

Sometimes your server’s authentication scheme doesn’t quite fit with the standards (or perhaps servant hasn’t rolled-
out support for that new, fancy authentication scheme). For such a scenario, servant 0.5 provides easy and simple
experimental support to roll your own authentication.

Why experimental? We worked on the design for authentication for a long time. We really struggled to find a nice,
type-safe niche in the design space. In fact, Context came out of this work, and while it really fit for schemes like

1.6. Authentication in Servant 47

Servant Documentation

Basic and JWT, it wasn’t enough to fully support something like OAuth or HMAC, which have flows, roles, and other
fancy ceremonies. Further, we weren’t sure how people will use auth.

So, in typical startup fashion, we developed an MVP of ‘generalized auth’ and released it in an experimental module,
with the hope of getting feedback from you! So, if you’re reading this or using generalized auth support, please give
us your feedback!

What is Generalized Authentication?

TL;DR: you throw a tagged AuthProtect combinator in front of the endpoints you want protected and then supply
a function Request -> Handler a, where a is the type of your choice representing the data returned by success-
ful authentication - e.g., a User or, in our example below, Account. This function is run anytime a request matches
a protected endpoint. It precisely solves the “I just need to protect these endpoints with a function that does some com-
plicated business logic” and nothing more. Behind the scenes we use a type family instance (AuthServerData)
and Context to accomplish this.

Generalized Authentication in Action

Let’s implement a trivial authentication scheme. We will protect our API by looking for a cookie named
"servant-auth-cookie". This cookie’s value will contain a key from which we can lookup a Account.

-- | An account type that we "fetch from the database" after
-- performing authentication
newtype Account = Account { unAccount :: Text }

-- | A (pure) database mapping keys to accounts.
database :: Map ByteString Account
database = fromList [("key1", Account "Anne Briggs")

, ("key2", Account "Bruce Cockburn")
, ("key3", Account "Ghédalia Tazartès")
]

-- | A method that, when given a password, will return a Account.
-- This is our bespoke (and bad) authentication logic.
lookupAccount :: ByteString -> Handler Account
lookupAccount key = case Map.lookup key database of
Nothing -> throwError (err403 { errBody = "Invalid Cookie" })
Just usr -> return usr

For generalized authentication, servant exposes the AuthHandler type, which is used to wrap the Request ->
Handler Account logic. Let’s create a value of type AuthHandler Request Account using the above
lookupAccount method (note: we depend upon cookie’s parseCookies for this):

--- | The auth handler wraps a function from Request -> Handler Account.
--- We look for a token in the request headers that we expect to be in the cookie.
--- The token is then passed to our `lookupAccount` function.
authHandler :: AuthHandler Request Account
authHandler = mkAuthHandler handler

where
maybeToEither e = maybe (Left e) Right
throw401 msg = throwError $ err401 { errBody = msg }
handler req = either throw401 lookupAccount $ do
cookie <- maybeToEither "Missing cookie header" $ lookup "cookie" $

→˓requestHeaders req
maybeToEither "Missing token in cookie" $ lookup "servant-auth-cookie" $

→˓parseCookies cookie

48 Chapter 1. Tutorial

https://hackage.haskell.org/package/cookie

Servant Documentation

Let’s now protect our API with our new, bespoke authentication scheme. We’ll re-use the endpoints from our Basic
Authentication example.

-- | Our API, with auth-protection
type AuthGenAPI = "private" :> AuthProtect "cookie-auth" :> PrivateAPI

:<|> "public" :> PublicAPI

-- | A value holding our type-level API
genAuthAPI :: Proxy AuthGenAPI
genAuthAPI = Proxy

Now we need to bring everything together for the server. We have the AuthHandler Request Account value
and an AuthProtected endpoint. To bind these together, we need to provide a Type Family instance that tells the
HasServer instance that our Context will supply a Account (via AuthHandler Request Account) and
that downstream combinators will have access to this Account value (or an error will be thrown if authentication
fails).

-- | We need to specify the data returned after authentication
type instance AuthServerData (AuthProtect "cookie-auth") = Account

Note that we specify the type-level tag "cookie-auth" when defining the type family instance. This allows us to
have multiple authentication schemes protecting a single API.

We now construct the Context for our server, allowing us to instantiate a value of type Server AuthGenAPI, in
addition to the server value:

-- | The context that will be made available to request handlers. We supply the
-- "cookie-auth"-tagged request handler defined above, so that the 'HasServer'
→˓instance
-- of 'AuthProtect' can extract the handler and run it on the request.
genAuthServerContext :: Context (AuthHandler Request Account ': '[])
genAuthServerContext = authHandler :. EmptyContext

-- | Our API, where we provide all the author-supplied handlers for each end
-- point. Note that 'privateDataFunc' is a function that takes 'Account' as an
-- argument. We dont' worry about the authentication instrumentation here,
-- that is taken care of by supplying context
genAuthServer :: Server AuthGenAPI
genAuthServer =

let privateDataFunc (Account name) =
return (PrivateData ("this is a secret: " <> name))

publicData = return [PublicData "this is a public piece of data"]
in privateDataFunc :<|> publicData

We’re now ready to start our server (and provide a sample session)!

-- | run our server
genAuthMain :: IO ()
genAuthMain = run 8080 (serveWithContext genAuthAPI genAuthServerContext
→˓genAuthServer)

{- Sample Session:

$ curl -XGET localhost:8080/private
Missing auth header

$ curl -XGET localhost:8080/private -H "servant-auth-cookie: key3"
[{"ssshhh":"this is a secret: Ghédalia Tazartès"}]

(continues on next page)

1.6. Authentication in Servant 49

https://downloads.haskell.org/%7Eghc/latest/docs/html/users_guide/type-families.html

Servant Documentation

(continued from previous page)

$ curl -XGET localhost:8080/private -H "servant-auth-cookie: bad-key"
Invalid Cookie

$ curl -XGET localhost:8080/public
[{"somedata":"this is a public piece of data"}]
-}

Recap

Creating a generalized, ad-hoc authentication scheme was fairly straight forward:

1. use the AuthProtect combinator to protect your API.

2. choose a application-specific data type used by your server when authentication is successful (in our case this
was Account).

3. Create a value of AuthHandler Request Account which encapsulates the authentication logic
(Request -> Handler Account). This function will be executed everytime a request matches a pro-
tected route.

4. Provide an instance of the AuthServerData type family, specifying your application-specific data type re-
turned when authentication is successful (in our case this was Account).

Caveats:

1. The module Servant.Server.Experimental.Auth contains an orphan HasServer instance for the
AuthProtect combinator. You may be get orphan instance warnings when using this.

2. Generalized authentication requires the UndecidableInstances extension.

1.6.3 Client-side Authentication

Basic Authentication

As of 0.5, servant-client comes with support for basic authentication! Endpoints protected by Basic Authentication
will require a value of type BasicAuthData to complete the request.

You can find more comprehensive Basic Authentication example in the Cookbook.

Generalized Authentication

Servant 0.5 also shipped with support for generalized authentication. Similar to the server-side support, clients need
to supply an instance of the AuthClientData type family specifying the datatype the client will use to marshal an
unauthenticated request into an authenticated request. Generally, this will look like:

import Servant.Common.Req (Req, addHeader)

-- | The datatype we'll use to authenticate a request. If we were wrapping
-- something like OAuth, this might be a Bearer token.
type instance AuthClientData (AuthProtect "cookie-auth") = String

-- | A method to authenticate a request
authenticateReq :: String -> Req -> Req
authenticateReq s req = addHeader "my-bespoke-header" s req

50 Chapter 1. Tutorial

../cookbook/basic-auth/BasicAuth.html

Servant Documentation

Now, if the client method for our protected endpoint was getProtected, then we could perform authenticated
requests as follows:

-- | one could curry this to make it simpler to work with.
result = runExceptT (getProtected (mkAuthenticateReq "secret" authenticateReq))

1.6. Authentication in Servant 51

Servant Documentation

52 Chapter 1. Tutorial

CHAPTER 2

Cookbook

This page is a collective effort whose goal is to show how to solve many common problems with servant. If you’re
interested in contributing examples of your own, feel free to open an issue or a pull request on our github repository
or even to just get in touch with us on the #servant IRC channel on freenode or on the mailing list.

The scope is very wide. Simple and fancy authentication schemes, file upload, type-safe links, working with CSV, .zip
archives, you name it!

2.1 Structuring APIs

In this recipe, we will see a few simple ways to structure your APIs by splitting them up into smaller “sub-APIs” or
by sharing common structure between different parts. Let’s start with the usual throat clearing.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE KindSignatures #-}
import Data.Aeson
import GHC.Generics
import GHC.TypeLits
import Network.Wai.Handler.Warp
import Servant

Our application will consist of three different “sub-APIs”, with a few endpoints in each of them. Our global API is
defined as follows.

type API = FactoringAPI
:<|> SimpleAPI "users" User UserId
:<|> SimpleAPI "products" Product ProductId

We simply join the three different parts with :<|>, as if each sub-API was just a simple endpoint. The first part,
FactoringAPI, shows how we can “factor out” combinators that are common to several endpoints, just like we
turn a * b + a * c into a * (b + c) in algebra.

53

https://github.com/haskell-servant/servant
https://groups.google.com/forum/#!forum/haskell-servant

Servant Documentation

-- Two endpoints:
-- - GET /x/<some 'Int'>[?y=<some 'Int'>]
-- - POST /x/<some 'Int'>
type FactoringAPI =

"x" :> Capture "x" Int :>
(QueryParam "y" Int :> Get '[JSON] Int
:<|> Post '[JSON] Int
)

{- this is equivalent to:

type FactoringAPI' =
"x" :> Capture "x" Int :> QueryParam "y" Int :> Get '[JSON] Int :<|>
"x" :> Capture "x" Int :> Post '[JSON] Int

-}

You can see that both endpoints start with a static path fragment, /"x", then capture some arbitrary Int until they
finally differ. Now, this also has an effect on the server for such an API, and its type in particular. While the server for
FactoringAPI' would be made of a function of type Int -> Maybe Int -> Handler Int and a func-
tion of type Int -> Handler Int glued with :<|>, a server for FactoringAPI (without the ') reflects the
“factorisation” and therefore, Server FactoringAPI is Int -> (Maybe Int -> Handler Int :<|>
Handler Int). That is, the server must be a function that takes an Int (the Capture) and returns two val-
ues glued with :<|>, one of type Maybe Int -> Handler Int and the other of type Handler Int. Let’s
provide such a server implementation, with those “nested types”.

Tip: you can load this module in ghci and ask for the concrete type that Server FactoringAPI “resolves to” by
typing :kind! Server FactoringAPI.

factoringServer :: Server FactoringAPI
factoringServer x = getXY :<|> postX

where getXY Nothing = return x
getXY (Just y) = return (x + y)

postX = return (x - 1)

If you want to avoid the “nested types” and the need to manually dispatch the arguments (like x above) to the different
request handlers, and would just like to be able to declare the API type as above but pretending that the Capture
is not factored out, that every combinator is “distributed” (i.e that all endpoints are specified like FactoringAPI'
above), then you should look at flatten from the servant-flatten package.

Next come the two sub-APIs defined in terms of this SimpleAPI type, but with different parameters. That type is
just a good old Haskell type synonym that abstracts away a pretty common structure in web services, where you have:

• one endpoint for listing a bunch of entities of some type

• one endpoint for accessing the entity with a given identifier

• one endpoint for creating a new entity

There are many variants on this theme (endpoints for deleting, paginated listings, etc). The simple definition below
reproduces such a structure, but instead of picking concrete types for the entities and their identifiers, we simply let
the user of the type decide, by making those types parameters of SimpleAPI. While we’re at it, we’ll put all our
endpoints under a common prefix that we also take as a parameter.

-- Three endpoints:
-- - GET /<name>
-- - GET /<name>/<some 'i'>

(continues on next page)

54 Chapter 2. Cookbook

https://hackage.haskell.org/package/servant-flatten

Servant Documentation

(continued from previous page)

-- - POST /<name>
type SimpleAPI (name :: Symbol) a i = name :>
(Get '[JSON] [a]
:<|> Capture "id" i :> Get '[JSON] a
:<|> ReqBody '[JSON] a :> Post '[JSON] NoContent
)

Symbol is the kind of type-level strings, which is what servant uses for representing static path fragments. We can
even provide a little helper function for creating a server for that API given one handler for each endpoint as arguments.

simpleServer
:: Handler [a]
-> (i -> Handler a)
-> (a -> Handler NoContent)
-> Server (SimpleAPI name a i)

simpleServer listAs getA postA =
listAs :<|> getA :<|> postA

{- you could alternatively provide such a definition
but with the handlers running in another monad,
or even an arbitrary one!

simpleAPIServer
:: m [a]
-> (i -> m a)
-> (a -> m NoContent)
-> Server (SimpleAPI name a i) m

simpleAPIServer listAs getA postA =
listAs :<|> getA :<|> postA

and use 'hoistServer' on the result of `simpleAPIServer`
applied to your handlers right before you call `serve`.

-}

We can use this to define servers for the user and product related sections of the API.

userServer :: Server (SimpleAPI "users" User UserId)
userServer = simpleServer

(return [])
(\userid -> return $

if userid == 0
then User "john" 64
else User "everybody else" 10

)
(_user -> return NoContent)

productServer :: Server (SimpleAPI "products" Product ProductId)
productServer = simpleServer
(return [])
(_productid -> return $ Product "Great stuff")
(_product -> return NoContent)

Finally, some dummy types and the serving part.

type UserId = Int

(continues on next page)

2.1. Structuring APIs 55

https://wiki.haskell.org/Kind

Servant Documentation

(continued from previous page)

data User = User { username :: String, age :: Int }
deriving Generic

instance FromJSON User
instance ToJSON User

type ProductId = Int

data Product = Product { productname :: String }
deriving Generic

instance FromJSON Product
instance ToJSON Product

api :: Proxy API
api = Proxy

main :: IO ()
main = run 8080 . serve api $

factoringServer :<|> userServer :<|> productServer

This program is available as a cabal project here.

2.2 Using generics

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE TypeOperators #-}
module Main (main, api, getLink, routesLinks, cliGet) where

import Control.Exception (throwIO)
import Control.Monad.Trans.Reader (ReaderT, runReaderT)
import Data.Proxy (Proxy (..))
import Network.Wai.Handler.Warp (run)
import System.Environment (getArgs)

import Servant
import Servant.Client

import Servant.API.Generic
import Servant.Client.Generic
import Servant.Server.Generic

The usage is simple, if you only need a collection of routes. First you define a record with field types prefixed by a
parameter route:

data Routes route = Routes
{ _get :: route :- Capture "id" Int :> Get '[JSON] String
, _put :: route :- ReqBody '[JSON] Int :> Put '[JSON] Bool
}

deriving (Generic)

Then we’ll use this data type to define API, links, server and client.

56 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/structuring-apis

Servant Documentation

2.2.1 API

You can get a Proxy of the API using genericApi:

api :: Proxy (ToServantApi Routes)
api = genericApi (Proxy :: Proxy Routes)

It’s recommented to use genericApi function, as then you’ll get better error message, for example if you forget to
derive Generic.

2.2.2 Links

The clear advantage of record-based generics approach, is that we can get safe links very conviently. We don’t need
to define endpoint types, as field accessors work as proxies:

getLink :: Int -> Link
getLink = fieldLink _get

We can also get all links at once, as a record:

routesLinks :: Routes (AsLink Link)
routesLinks = allFieldLinks

2.2.3 Client

Even more power starts to show when we generate a record of client functions. Here we use genericClientHoist
function, which let us simultaneously hoist the monad, in this case from ClientM to IO.

cliRoutes :: Routes (AsClientT IO)
cliRoutes = genericClientHoist

(\x -> runClientM x env >>= either throwIO return)
where
env = error "undefined environment"

cliGet :: Int -> IO String
cliGet = _get cliRoutes

2.2.4 Server

Finally, probably the most handy usage: we can convert record of handlers into the server implementation:

record :: Routes AsServer
record = Routes

{ _get = return . show
, _put = return . odd
}

app :: Application
app = genericServe record

main :: IO ()
main = do

args <- getArgs

(continues on next page)

2.2. Using generics 57

Servant Documentation

(continued from previous page)

case args of
("run":_) -> do

putStrLn "Starting cookbook-generic at http://localhost:8000"
run 8000 app

-- see this cookbook below for custom-monad explanation
("run-custom-monad":_) -> do

putStrLn "Starting cookbook-generic with a custom monad at http://
→˓localhost:8000"

run 8000 (appMyMonad AppCustomState)
_ -> putStrLn "To run, pass 'run' argument: cabal new-run cookbook-generic run

→˓"

2.2.5 Using generics together with a custom monad

If your app uses a custom monad, here’s how you can combine it with generics.

data AppCustomState =
AppCustomState

type AppM = ReaderT AppCustomState Handler

apiMyMonad :: Proxy (ToServantApi Routes)
apiMyMonad = genericApi (Proxy :: Proxy Routes)

getRouteMyMonad :: Int -> AppM String
getRouteMyMonad = return . show

putRouteMyMonad :: Int -> AppM Bool
putRouteMyMonad = return . odd

recordMyMonad :: Routes (AsServerT AppM)
recordMyMonad = Routes {_get = getRouteMyMonad, _put = putRouteMyMonad}

-- natural transformation
nt :: AppCustomState -> AppM a -> Handler a
nt s x = runReaderT x s

appMyMonad :: AppCustomState -> Application
appMyMonad state = genericServeT (nt state) recordMyMonad

2.3 Serving web applications over HTTPS

This short recipe shows how one can serve a servant application over HTTPS, by simply using warp-tls instead of
warp to provide us a run function for running the Application that we get by calling serve.

As usual, we start by clearing our throat of a few language extensions and imports.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
import Network.Wai
import Network.Wai.Handler.Warp
import Network.Wai.Handler.WarpTLS
import Servant

58 Chapter 2. Cookbook

Servant Documentation

No need to work with a complicated API here, let’s make it as simple as it gets:

type API = Get '[JSON] Int

api :: Proxy API
api = Proxy

server :: Server API
server = return 10

app :: Application
app = serve api server

It’s now time to actually run the Application. The warp-tls package provides two functions for running an
Application, called runTLS and runTLSSocket. We will be using the first one.

It takes two arguments, the TLS settings (certificates, keys, ciphers, etc) and the warp settings (port, logger, etc).

We will be using very simple settings for this example but you are of course invited to read the documentation for
those types to find out about all the knobs that you can play with.

main :: IO ()
main = runTLS tlsOpts warpOpts app

where tlsOpts = tlsSettings "cert.pem" "secret-key.pem"
warpOpts = setPort 8080 defaultSettings

This program is available as a cabal project here.

2.4 SQLite database

Let’s see how we can write a simple web application that uses an SQLite database to store simple textual messages.
As usual, we start with a little bit of throat clearing.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}
import Control.Concurrent
import Control.Exception (bracket)
import Control.Monad.IO.Class
import Database.SQLite.Simple
import Network.HTTP.Client (newManager, defaultManagerSettings)
import Network.Wai.Handler.Warp
import Servant
import Servant.Client

We will only care about a single type here, the messages. We want to be able to add a new one and retrieve them all,
using two different endpoints.

type Message = String

type API = ReqBody '[PlainText] Message :> Post '[JSON] NoContent
:<|> Get '[JSON] [Message]

api :: Proxy API
api = Proxy

2.4. SQLite database 59

https://hackage.haskell.org/package/warp-tls-3.2.4/docs/Network-Wai-Handler-WarpTLS.html
https://hackage.haskell.org/package/warp-tls-3.2.4/docs/Network-Wai-Handler-WarpTLS.html#v:runTLS
https://hackage.haskell.org/package/warp-tls-3.2.4/docs/Network-Wai-Handler-WarpTLS.html#v:runTLSSocket
https://hackage.haskell.org/package/warp-tls-3.2.4/docs/Network-Wai-Handler-WarpTLS.html#t:TLSSettings
https://hackage.haskell.org/package/warp-3.2.12/docs/Network-Wai-Handler-Warp-Internal.html#t:Settings
https://github.com/haskell-servant/servant/tree/master/doc/cookbook/https
https://www.sqlite.org/

Servant Documentation

We proceed with a simple function for creating a table for holding our messages if it doesn’t already exist.

initDB :: FilePath -> IO ()
initDB dbfile = withConnection dbfile $ \conn ->
execute_ conn
"CREATE TABLE IF NOT EXISTS messages (msg text not null)"

Next, our server implementation. It will be parametrised (take as an argument) by the name of the file that contains
our SQLite database. The handlers are straightforward. One takes care of inserting a new value in the database while
the other fetches all messages and returns them. We also provide a function for serving our web app given an SQLite
database file, which simply calls servant-server’s serve function.

server :: FilePath -> Server API
server dbfile = postMessage :<|> getMessages

where postMessage :: Message -> Handler NoContent
postMessage msg = do
liftIO . withConnection dbfile $ \conn ->

execute conn
"INSERT INTO messages VALUES (?)"
(Only msg)

return NoContent

getMessages :: Handler [Message]
getMessages = fmap (map fromOnly) . liftIO $
withConnection dbfile $ \conn ->

query_ conn "SELECT msg FROM messages"

runApp :: FilePath -> IO ()
runApp dbfile = run 8080 (serve api $ server dbfile)

Let’s also derive some clients for our API and use them to insert two messages and retrieve them in main.

postMsg :: Message -> ClientM NoContent
getMsgs :: ClientM [Message]
postMsg :<|> getMsgs = client api

main :: IO ()
main = do

-- you could read this from some configuration file,
-- environment variable or somewhere else instead.
let dbfile = "test.db"
initDB dbfile
mgr <- newManager defaultManagerSettings
bracket (forkIO $ runApp dbfile) killThread $ _ -> do
ms <- flip runClientM (mkClientEnv mgr (BaseUrl Http "localhost" 8080 "")) $ do

postMsg "hello"
postMsg "world"
getMsgs

print ms

This program prints Right ["hello","world"] the first time it is executed, Right ["hello","world",
"hello","world"] the second time and so on.

The entire source for this example is available as a cabal project here.

60 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/db-sqlite-simple

Servant Documentation

2.5 PostgreSQL connection pool

Let’s see how we can write a simple web application that uses a PostgreSQL database to store simple textual messages,
just like in the SQLite cookbook recipe. The main difference, besides the database technology, is that in this example
we will be using a pool of connections to talk to the database server. The pool abstraction will be provided by the
resource-pool library.

As usual, we start with a little bit of throat clearing.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}
import Data.ByteString (ByteString)
import Control.Concurrent
import Control.Exception (bracket)
import Control.Monad.IO.Class
import Data.Pool
import Database.PostgreSQL.Simple
import Network.HTTP.Client (newManager, defaultManagerSettings)
import Network.Wai.Handler.Warp
import Servant
import Servant.Client

type DBConnectionString = ByteString

We will only care about a single type here, the messages. We want to be able to add a new one and retrieve them all,
using two different endpoints.

type Message = String

type API = ReqBody '[PlainText] Message :> Post '[JSON] NoContent
:<|> Get '[JSON] [Message]

api :: Proxy API
api = Proxy

We proceed with a simple function for creating a table for holding our messages if it doesn’t already exist, given a
PostgreSQL connection string.

initDB :: DBConnectionString -> IO ()
initDB connstr = bracket (connectPostgreSQL connstr) close $ \conn -> do

execute_ conn
"CREATE TABLE IF NOT EXISTS messages (msg text not null)"

return ()

Next, our server implementation. It will be parametrised (take as argument) by the pool of database connections that
handlers can use to talk to the PostgreSQL database. The resource pool abstraction allows us to flexibly set up a whole
bunch of PostgreSQL connections tailored to our needs and then to forget about it all by simply asking for a connection
using withResource.

The handlers are straightforward. One takes care of inserting a new value in the database while the other fetches all
messages and returns them. We also provide a function for serving our web app given a PostgreSQL connection pool,
which simply calls servant-server’s serve function.

server :: Pool Connection -> Server API
server conns = postMessage :<|> getMessages

(continues on next page)

2.5. PostgreSQL connection pool 61

https://www.postgresql.org/
https://hackage.haskell.org/package/resource-pool

Servant Documentation

(continued from previous page)

where postMessage :: Message -> Handler NoContent
postMessage msg = do
liftIO . withResource conns $ \conn ->

execute conn
"INSERT INTO messages VALUES (?)"
(Only msg)

return NoContent

getMessages :: Handler [Message]
getMessages = fmap (map fromOnly) . liftIO $
withResource conns $ \conn ->

query_ conn "SELECT msg FROM messages"

runApp :: Pool Connection -> IO ()
runApp conns = run 8080 (serve api $ server conns)

We will also need a function for initialising our connection pool. resource-pool is quite configurable, feel free
to wander in its documentation to gain a better understanding of how it works and what the configuration knobs are. I
will be using some dummy values in this example.

initConnectionPool :: DBConnectionString -> IO (Pool Connection)
initConnectionPool connStr =

createPool (connectPostgreSQL connStr)
close
2 -- stripes
60 -- unused connections are kept open for a minute
10 -- max. 10 connections open per stripe

Let’s finally derive some clients for our API and use them to insert two messages and retrieve them in main, after
setting up our pool of database connections.

postMsg :: Message -> ClientM NoContent
getMsgs :: ClientM [Message]
postMsg :<|> getMsgs = client api

main :: IO ()
main = do

-- you could read this from some configuration file,
-- environment variable or somewhere else instead.
-- you will need to either change this connection string OR
-- set some environment variables (see
-- https://www.postgresql.org/docs/9.5/static/libpq-envars.html)
-- to point to a running PostgreSQL server for this example to work.
let connStr = ""
pool <- initConnectionPool connStr
initDB connStr
mgr <- newManager defaultManagerSettings
bracket (forkIO $ runApp pool) killThread $ _ -> do
ms <- flip runClientM (mkClientEnv mgr (BaseUrl Http "localhost" 8080 "")) $ do

postMsg "hello"
postMsg "world"
getMsgs

print ms

This program prints Right ["hello","world"] the first time it is executed, Right ["hello","world",
"hello","world"] the second time and so on.

62 Chapter 2. Cookbook

https://hackage.haskell.org/package/resource-pool

Servant Documentation

You could alternatively have the handlers live in ReaderT (Pool Connection) and access the pool using e.g
ask, but this would be more complicated than simply taking the pool as argument.

The entire source for this example is available as a cabal project here.

2.6 Using a custom monad

In this section we will create and API for a book shelf without any backing DB storage. We will keep state in memory
and share it between requests using Reader monad and STM.

We start with a pretty standard set of imports and definition of the model:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}

import Control.Concurrent (forkIO, killThread)
import Control.Concurrent.STM.TVar (TVar, newTVar, readTVar,

writeTVar)
import Control.Exception (bracket)
import Control.Monad.IO.Class (liftIO)
import Control.Monad.STM (atomically)
import Control.Monad.Trans.Reader (ReaderT, ask, runReaderT)
import Data.Aeson (FromJSON, ToJSON)
import GHC.Generics (Generic)
import Network.HTTP.Client (defaultManagerSettings,

newManager)
import Network.Wai.Handler.Warp (run)

import Servant
import Servant.Client

newtype Book = Book String deriving (Show, Generic)
instance ToJSON Book
instance FromJSON Book

Now, let’s define the API for book storage. For the sake of simplicity we’ll only have methods for getting all books
and adding a new one.

type GetBooks = Get '[JSON] [Book]
type AddBook = ReqBody '[JSON] Book :> PostCreated '[JSON] Book
type BooksAPI = "books" :> (GetBooks :<|> AddBook)

api :: Proxy BooksAPI
api = Proxy

Next, we define the state and the monad to run our handlers

data State = State
{ books :: TVar [Book]
}

type AppM = ReaderT State Handler

Note that we can’t use State monad here, because state will not be shared between requests.

We can now define handlers in terms of AppM. . .

2.6. Using a custom monad 63

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/db-postgres-pool

Servant Documentation

server :: ServerT BooksAPI AppM
server = getBooks :<|> addBook

where getBooks :: AppM [Book]
getBooks = do
State{books = p} <- ask
liftIO $ atomically $ readTVar p

addBook :: Book -> AppM Book
addBook book = do
State{books = p} <- ask
liftIO $ atomically $ readTVar p >>= writeTVar p . (book :)
return book

. . . and transform AppM to Handler by simply using runReaderT

nt :: State -> AppM a -> Handler a
nt s x = runReaderT x s

app :: State -> Application
app s = serve api $ hoistServer api (nt s) server

Finally, we end up with the following program

main :: IO ()
main = do

let port = 8080
mgr <- newManager defaultManagerSettings
initialBooks <- atomically $ newTVar []
let runApp = run port $ app $ State initialBooks
bracket (forkIO runApp) killThread $ _ -> do
let getBooksClient :<|> addBookClient = client api
let printBooks = getBooksClient >>= liftIO . print
_ <- flip runClientM (mkClientEnv mgr (BaseUrl Http "localhost" port "")) $ do

_ <- printBooks
_ <- addBookClient $ Book "Harry Potter and the Order of the Phoenix"
_ <- printBooks
_ <- addBookClient $ Book "To Kill a Mockingbird"
_ <- printBooks
_ <- addBookClient $ Book "The Picture of Dorian Gray"
printBooks

return ()

When run, it outputs the following:

Running cookbook-using-custom-monad...
[]
[Book "Harry Potter and the Order of the Phoenix"]
[Book "To Kill a Mockingbird",Book "Harry Potter and the Order of the Phoenix"]
[Book "The Picture of Dorian Gray",Book "To Kill a Mockingbird",Book "Harry Potter
→˓and the Order of the Phoenix"]

To use Raw endpoints, look at the servant-rawm package.

2.7 Inspecting, debugging, simulating clients and more

or simply put: a practical introduction to Servant.Client.Free.

64 Chapter 2. Cookbook

http://hackage.haskell.org/package/servant-rawm

Servant Documentation

Someone asked on IRC how one could access the intermediate Requests (resp. Responses) produced (resp. received)
by client functions derived using servant-client. My response to such inquiries is: to extend servant-client in
an ad-hoc way (e.g for testing or debugging purposes), use Servant.Client.Free. This recipe shows how.

First the module header, but this time We’ll comment the imports.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
module Main (main) where

We will primarily use Servant.Client.Free, it doesn’t re-export anything from free package, so we need to
import it as well.

import Control.Monad.Free
import Servant.Client.Free

Also we’ll use servant-client internals, which uses http-client, so let’s import them qualified

import qualified Servant.Client.Internal.HttpClient as I
import qualified Network.HTTP.Client as HTTP

The rest of the imports are for a server we implement here for completeness.

import Servant
import Network.Wai.Handler.Warp (run)
import System.Environment (getArgs)

2.7.1 API & Main

We’ll work with a very simple API:

type API = "square" :> Capture "n" Int :> Get '[JSON] Int

api :: Proxy API
api = Proxy

Next we implement a main. If passed "server" it will run server, if passed "client" it will run a test
function (to be defined next). This should be pretty straightforward:

main :: IO ()
main = do

args <- getArgs
case args of

("server":_) -> do
putStrLn "Starting cookbook-using-free-client at http://localhost:8000"
run 8000 $ serve api $ \n -> return (n * n)

("client":_) ->
test

_ -> do
putStrLn "Try:"
putStrLn "cabal new-run cookbook-using-free-client server"
putStrLn "cabal new-run cookbook-using-free-client client"

2.7. Inspecting, debugging, simulating clients and more 65

Servant Documentation

2.7.2 Test

In the client part, we will use a Servant.Client.Free client. Because we have a single endpoint API, we’ll get
a single client function, running in the Free ClientF (free) monad:

getSquare :: Int -> Free ClientF Int
getSquare = client api

Such clients are “client functions without a backend”, so to speak, or where the backend has been abstracted out. To
be more precise, ClientF is a functor that precisely represents the operations servant-client-core needs from an http
client backend. So if we are to emulate one or augment what such a backend does, it will be by interpreting all those
operations, the way we want to. This also means we get access to the requests and responses and can do anything we
want with them, right when they are produced or consumed, respectively.

Next, we can write our small test. We’ll pass a value to getSquare and inspect the Free structure. The first three
possibilities are self-explanatory:

test :: IO ()
test = case getSquare 42 of

Pure n ->
putStrLn $ "ERROR: got pure result: " ++ show n

Free (Throw err) ->
putStrLn $ "ERROR: got error right away: " ++ show err

We are interested in RunRequest, that’s what client should block on:

Free (RunRequest req k) -> do

Then we need to prepare the context, get HTTP (connection) Manager and BaseUrl:

burl <- parseBaseUrl "http://localhost:8000"
mgr <- HTTP.newManager HTTP.defaultManagerSettings

Now we can use servant-client’s internals to convert servant’s Request to http-client’s Request, and we
can inspect it:

let req' = I.requestToClientRequest burl req
putStrLn $ "Making request: " ++ show req'

servant-client’s request does a little more, but this is good enough for our demo. We get back an http-client
Response which we can also inspect.

res' <- HTTP.httpLbs req' mgr
putStrLn $ "Got response: " ++ show res'

And we continue by turning http-client’s Response into servant’s Response, and calling the continuation. We
should get a Pure value.

let res = I.clientResponseToResponse id res'

case k res of
Pure n ->

putStrLn $ "Expected 1764, got " ++ show n
_ ->

putStrLn "ERROR: didn't got a response"

So that’s it. Using Free we can evaluate servant clients step-by-step, and validate that the client functions or the
HTTP client backend does what we expect (e.g by printing requests/responses on the fly). In fact, using Servant.

66 Chapter 2. Cookbook

Servant Documentation

Client.Free is a little simpler than defining a custom RunClient instance, especially for those cases where it is
handy to have the full sequence of client calls and responses available for us to inspect, since RunClient only gives
us access to one Request or Response at a time.

On the other hand, a “batch collection” of requests and/or responses can be achieved with both free clients and a
custom RunClient instance rather easily, for example by using a Writer [(Request, Response)] monad.

Here is an example of running our small test against a running server:

Making request: Request {
host = "localhost"
port = 8000
secure = False
requestHeaders = [("Accept","application/json;charset=utf-8,application/json

→˓")]
path = "/square/42"
queryString = ""
method = "GET"
proxy = Nothing
rawBody = False
redirectCount = 10
responseTimeout = ResponseTimeoutDefault
requestVersion = HTTP/1.1

}

Got response: Response
{ responseStatus = Status {statusCode = 200, statusMessage = "OK"}
, responseVersion = HTTP/1.1
, responseHeaders =
[("Transfer-Encoding","chunked")
, ("Date","Thu, 05 Jul 2018 21:12:41 GMT")
, ("Server","Warp/3.2.22")
, ("Content-Type","application/json;charset=utf-8")
]

, responseBody = "1764"
, responseCookieJar = CJ {expose = []}
, responseClose' = ResponseClose
}

Expected 1764, got 1764

2.8 Basic Authentication

Let’s see a simple example of a web application with a single endpoint, protected by Basic Authentication.

First, some throat clearing.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeOperators #-}
import Control.Concurrent
import Control.Exception
import qualified Data.Map as Map
import qualified Data.Text as T
import Data.Text.Encoding (decodeUtf8)
import Network.HTTP.Client (newManager, defaultManagerSettings)

(continues on next page)

2.8. Basic Authentication 67

https://en.wikipedia.org/wiki/Basic_access_authentication

Servant Documentation

(continued from previous page)

import Network.Wai.Handler.Warp
import Servant
import Servant.Client

We will be dealing with a very simple model of users, as shown below. Our “user database” will just be a map from
usernames to full user details. For the sake of simplicity, it will just be read only but the same code could be used with
mutable references, database connections, files and more in place of our Map.

type Username = T.Text
type Password = T.Text
type Website = T.Text

data User = User
{ user :: Username
, pass :: Password
, site :: Website
} deriving (Eq, Show)

-- could be a postgres connection, a file, anything.
type UserDB = Map.Map Username User

-- create a "database" from a list of users
createUserDB :: [User] -> UserDB
createUserDB users = Map.fromList [(user u, u) | u <- users]

-- our test database
userDB :: UserDB
userDB = createUserDB
[User "john" "shhhh" "john.com"
, User "foo" "bar" "foobar.net"
]

Our API will contain a single endpoint, returning the authenticated user’s own website.

-- a 'GET /mysite' endpoint, protected by basic authentication
type API = BasicAuth "People's websites" User :> "mysite" :> Get '[JSON] Website

{- if there were more endpoints to be protected, one could write:
type API = BasicAuth "People's websites" User :>

("foo" :> Get '[JSON] Foo
:<|> "bar" :> Get '[JSON] Bar

)
-}

api :: Proxy API
api = Proxy

server :: Server API
server usr = return (site usr)

In order to protect our endpoint ("mysite" :> Get '[JSON] Website), we simply drop the BasicAuth
combinator in front of it. Its first parameter, "People's websites" in our example, is the realm, which is an
arbitrary string identifying the protected resources. The second parameter, User in our example, corresponds to the
type we want to use to represent authenticated users. It could be anything.

When using BasicAuth in an API, the server implementation “gets” an argument of the authenticated user type
used with BasicAuth, User in our case, in the “corresponding spot”. In this example, the server implementation

68 Chapter 2. Cookbook

Servant Documentation

simply returns the site field of the authenticated user. More realistic applications would have endpoints that take
other arguments and where a lot more logic would be implemented. But in a sense, BasicAuth adds an argument
just like Capture, QueryParam, ReqBody and friends. But instead of performing some form of decoding logic
behind the scenes, servant runs some “basic auth check” that the user provides.

In our case, we need access to our user database, so we simply take it as an argument. A more serious implementation
would probably take a database connection or even a connection pool.

-- provided we are given a user database, we can supply
-- a function that checks the basic auth credentials
-- against our database.
checkBasicAuth :: UserDB -> BasicAuthCheck User
checkBasicAuth db = BasicAuthCheck $ \basicAuthData ->

let username = decodeUtf8 (basicAuthUsername basicAuthData)
password = decodeUtf8 (basicAuthPassword basicAuthData)

in
case Map.lookup username db of
Nothing -> return NoSuchUser
Just u -> if pass u == password

then return (Authorized u)
else return BadPassword

This check simply looks up the user in the “database” and makes sure the right password was used. For reference, here
are the definitions of BasicAuthResult and BasicAuthCheck:

-- | The result of authentication/authorization
data BasicAuthResult usr

= Unauthorized
| BadPassword
| NoSuchUser
| Authorized usr
deriving (Eq, Show, Read, Generic, Typeable, Functor)

-- | Datatype wrapping a function used to check authentication.
newtype BasicAuthCheck usr = BasicAuthCheck

{ unBasicAuthCheck :: BasicAuthData
-> IO (BasicAuthResult usr)

}
deriving (Generic, Typeable, Functor)

This is all great, but how is our BasicAuth combinator supposed to know that it should use our checkBasicAuth
from above? The answer is that it simply expects to find a BasicAuthCheck value for the right user type in the
Context with which we serve the application, where Context is just servant’s way to allow users to communicate
some configuration of sorts to combinators. It is nothing more than an heterogeneous list and we can create a context
with our auth check and run our application with it with the following code:

runApp :: UserDB -> IO ()
runApp db = run 8080 (serveWithContext api ctx server)

where ctx = checkBasicAuth db :. EmptyContext

ctx above is just a context with one element, checkBasicAuth db, whose type is BasicAuthCheck
User. In order to say that we want to serve our application using the supplied context, we just have to use
serveWithContext in place of serve.

Finally, let’s derive a client to this endpoint as well in order to see our server in action!

2.8. Basic Authentication 69

Servant Documentation

getSite :: BasicAuthData -> ClientM Website
getSite = client api

main :: IO ()
main = do

mgr <- newManager defaultManagerSettings
bracket (forkIO $ runApp userDB) killThread $ _ ->
runClientM (getSite u) (mkClientEnv mgr (BaseUrl Http "localhost" 8080 ""))
>>= print

where u = BasicAuthData "foo" "bar"

This program prints Right "foobar.net", as expected. Feel free to change this code and see what happens when
you specify credentials that are not in the database.

The entire program covered here is available as a literate Haskell file here, along with a cabal project.

2.9 Streaming out-of-the-box

In other words, without streaming libraries.

2.9.1 Introduction

• Servant supports streaming

• Some basic usage doesn’t require usage of streaming libraries, like conduit, pipes, machines or
streaming. We have bindings for them though.

• This is similar example file, which is bundled with each of the packages (TODO: links)

• SourceT doesn’t have Prelude with handy combinators, so we have to write things ourselves. (Note to self:
mapM and foldM would be handy to have).

2.9.2 Code

{-# LANGUAGE BangPatterns #-}
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE TypeOperators #-}
module Main (main) where

import Control.Concurrent
(threadDelay)

import Control.Monad.IO.Class
(MonadIO (..))

import qualified Data.ByteString as BS
import Data.Maybe

(fromMaybe)
import Network.HTTP.Client

(defaultManagerSettings, newManager)
import Network.Wai

(Application)
import System.Environment

(continues on next page)

70 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/basic-auth

Servant Documentation

(continued from previous page)

(getArgs, lookupEnv)
import Text.Read

(readMaybe)

import Servant
import Servant.Client.Streaming
import qualified Servant.Types.SourceT as S

import qualified Network.Wai.Handler.Warp as Warp

type FastAPI = "get" :> Capture "num" Int :> StreamGet NewlineFraming JSON (SourceIO
→˓Int)

type API = FastAPI
:<|> "slow" :> Capture "num" Int :> StreamGet NewlineFraming JSON (SourceIO Int)
-- monad can be ResourceT IO too.
:<|> "readme" :> StreamGet NoFraming OctetStream (SourceIO BS.ByteString)
-- we can have streaming request body
:<|> "proxy"

:> StreamBody NoFraming OctetStream (SourceIO BS.ByteString)
:> StreamPost NoFraming OctetStream (SourceIO BS.ByteString)

api :: Proxy API
api = Proxy

server :: Server API
server = fast :<|> slow :<|> readme :<|> proxy where

fast n = liftIO $ do
putStrLn $ "/get/" ++ show n
return $ fastSource n

slow n = liftIO $ do
putStrLn $ "/slow/" ++ show n
return $ slowSource n

readme = liftIO $ do
putStrLn "/proxy"
return (S.readFile "README.md")

proxy c = liftIO $ do
putStrLn "/proxy"
return c

-- for some reason unfold leaks?
fastSource = S.fromStepT . mk where

mk m
| m < 0 = S.Stop
| otherwise = S.Yield m (mk (m - 1))

slowSource m = S.mapStepT delay (fastSource m) where
delay S.Stop = S.Stop
delay (S.Error err) = S.Error err
delay (S.Skip s) = S.Skip (delay s)
delay (S.Effect ms) = S.Effect (fmap delay ms)
delay (S.Yield x s) = S.Effect $

S.Yield x (delay s) <$ threadDelay 1000000

(continues on next page)

2.9. Streaming out-of-the-box 71

Servant Documentation

(continued from previous page)

app :: Application
app = serve api server

cli :: Client ClientM FastAPI
cli :<|> _ :<|> _ :<|> _ = client api

main :: IO ()
main = do

args <- getArgs
case args of

("server":_) -> do
putStrLn "Starting cookbook-basic-streaming at http://localhost:8000"
port <- fromMaybe 8000 . (>>= readMaybe) <$> lookupEnv "PORT"
Warp.run port app

("client":ns:_) -> do
n <- maybe (fail $ "not a number: " ++ ns) pure $ readMaybe ns
mgr <- newManager defaultManagerSettings
burl <- parseBaseUrl "http://localhost:8000/"
withClientM (cli n) (mkClientEnv mgr burl) $ \me -> case me of

Left err -> print err
Right src -> do

x <- S.unSourceT src (go (0 :: Int))
print x

where
go !acc S.Stop = return acc
go !acc (S.Error err) = print err >> return acc
go !acc (S.Skip s) = go acc s
go !acc (S.Effect ms) = ms >>= go acc
go !acc (S.Yield _ s) = go (acc + 1) s

_ -> do
putStrLn "Try:"
putStrLn "cabal new-run cookbook-basic-streaming server"
putStrLn "cabal new-run cookbook-basic-streaming client 10"
putStrLn "time curl -H 'Accept: application/json' localhost:8000/slow/5"

2.10 Combining JWT-based authentication with basic access authen-
tication

In this example we will make a service with basic HTTP authentication for Haskell clients and other programs, as well
as with JWT-based authentication for web browsers. Web browsers will still use basic HTTP authentication to retrieve
JWTs though.

Warning: this is insecure when done over plain HTTP, so TLS should be used. See warp-tls for that.

While basic authentication comes with Servant itself, servant-auth and servant-auth-server packages are needed for
the JWT-based one.

This recipe uses the following ingredients:

{-# LANGUAGE OverloadedStrings, TypeFamilies, DataKinds,
DeriveGeneric, TypeOperators #-}

import Data.Aeson
import GHC.Generics
import Data.Proxy

(continues on next page)

72 Chapter 2. Cookbook

https://en.wikipedia.org/wiki/Basic_access_authentication
https://en.wikipedia.org/wiki/JSON_Web_Token
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://hackage.haskell.org/package/warp-tls
https://hackage.haskell.org/package/servant-auth
https://hackage.haskell.org/package/servant-auth-server

Servant Documentation

(continued from previous page)

import System.IO
import Network.HTTP.Client (newManager, defaultManagerSettings)
import Network.Wai.Handler.Warp
import Servant as S
import Servant.Client
import Servant.Auth as SA
import Servant.Auth.Server as SAS
import Control.Monad.IO.Class (liftIO)
import Data.Map as M
import Data.ByteString (ByteString)

port :: Int
port = 3001

2.10.1 Authentication

Below is how we’ll represent a user: usually user identifier is handy to keep around, along with their role if role-based
access control is used, and other commonly needed information, such as an organization identifier:

data AuthenticatedUser = AUser { auID :: Int
, auOrgID :: Int
} deriving (Show, Generic)

The following instances are needed for JWT:

instance ToJSON AuthenticatedUser
instance FromJSON AuthenticatedUser
instance ToJWT AuthenticatedUser
instance FromJWT AuthenticatedUser

We’ll have to use a bit of imagination to pretend that the following Map is a database connection pool:

type Login = ByteString
type Password = ByteString
type DB = Map (Login, Password) AuthenticatedUser
type Connection = DB
type Pool a = a

initConnPool :: IO (Pool Connection)
initConnPool = pure $ fromList [(("user", "pass"), AUser 1 1)

, (("user2", "pass2"), AUser 2 1)]

See the “PostgreSQL connection pool” recipe for actual connection pooling, and we proceed to an authentication
function that would use our improvised DB connection pool and credentials provided by a user:

authCheck :: Pool Connection
-> BasicAuthData
-> IO (AuthResult AuthenticatedUser)

authCheck connPool (BasicAuthData login password) = pure $
maybe SAS.Indefinite Authenticated $ M.lookup (login, password) connPool

Warning: make sure to use a proper password hashing function in functions like this: see bcrypt, scrypt, pgcrypto.

Unlike Servant.BasicAuth, Servant.Auth uses FromBasicAuthData type class for the authentication
process itself. But since our connection pool will be initialized elsewhere, we’ll have to pass it somehow: it can be

2.10. Combining JWT-based authentication with basic access authentication 73

https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Role-based_access_control
https://en.wikipedia.org/wiki/Bcrypt
https://en.wikipedia.org/wiki/Scrypt
https://www.postgresql.org/docs/current/static/pgcrypto.html

Servant Documentation

done via a context entry and BasicAuthCfg type family. We can actually pass a function at once, to make it a bit
more generic:

type instance BasicAuthCfg = BasicAuthData -> IO (AuthResult AuthenticatedUser)

instance FromBasicAuthData AuthenticatedUser where
fromBasicAuthData authData authCheckFunction = authCheckFunction authData

2.10.2 API

Test API with a couple of endpoints:

type TestAPI = "foo" :> Capture "i" Int :> Get '[JSON] ()
:<|> "bar" :> Get '[JSON] ()

We’ll use this for server-side functions, listing the allowed authentication methods using the Auth combinator:

type TestAPIServer =
Auth '[SA.JWT, SA.BasicAuth] AuthenticatedUser :> TestAPI

But Servant.Auth.Client only supports JWT-based authentication, so we’ll have to use regular Servant.
BasicAuth to derive client functions that use basic access authentication:

type TestAPIClient = S.BasicAuth "test" AuthenticatedUser :> TestAPI

2.10.3 Client

Client code in this setting is the same as it would be with just Servant.BasicAuth, using servant-client:

testClient :: IO ()
testClient = do

mgr <- newManager defaultManagerSettings
let (foo :<|> _) = client (Proxy :: Proxy TestAPIClient)

(BasicAuthData "name" "pass")
res <- runClientM (foo 42)
(mkClientEnv mgr (BaseUrl Http "localhost" port ""))

hPutStrLn stderr $ case res of
Left err -> "Error: " ++ show err
Right r -> "Success: " ++ show r

2.10.4 Server

Server code is slightly different – we’re getting AuthResult here:

server :: Server TestAPIServer
server (Authenticated user) = handleFoo :<|> handleBar
where
handleFoo :: Int -> Handler ()
handleFoo n = liftIO $ hPutStrLn stderr $
concat ["foo: ", show user, " / ", show n]

handleBar :: Handler ()
handleBar = liftIO testClient

74 Chapter 2. Cookbook

https://hackage.haskell.org/package/servant-client

Servant Documentation

Catch-all for BadPassword, NoSuchUser, and Indefinite:

server _ = throwAll err401

With Servant.Auth, we’ll have to put both CookieSettings and JWTSettings into context even if we’re
not using those, and we’ll put a partially applied authCheck function there as well, so that FromBasicAuthData
will be able to use it, while it will use our connection pool. Otherwise it is similar to the usual way:

mkApp :: Pool Connection -> IO Application
mkApp connPool = do
myKey <- generateKey
let jwtCfg = defaultJWTSettings myKey

authCfg = authCheck connPool
cfg = jwtCfg :. defaultCookieSettings :. authCfg :. EmptyContext
api = Proxy :: Proxy TestAPIServer

pure $ serveWithContext api cfg server

Finally, the main function:

main :: IO ()
main = do

connPool <- initConnPool
let settings =

setPort port $
setBeforeMainLoop (hPutStrLn stderr

("listening on port " ++ show port)) $
defaultSettings

runSettings settings =<< mkApp connPool

2.10.5 Usage

Now we can try it out with curl. First of all, let’s ensure that it fails with err401 if we’re not authenticated:

$ curl -v 'http://localhost:3001/bar'
...
< HTTP/1.1 401 Unauthorized

$ curl -v 'http://user:wrong_password@localhost:3001/bar'
...
< HTTP/1.1 401 Unauthorized

Now let’s see that basic HTTP authentication works, and that we get JWTs:

$ curl -v 'http://user:pass@localhost:3001/bar'
...
< HTTP/1.1 200 OK
...
< Set-Cookie: XSRF-TOKEN=lQE/sb1fW4rZ/FYUQZskI6RVRllG0CWZrQ0d3fXU4X0=; Path=/; Secure
< Set-Cookie: JWT-Cookie=eyJhbGciOiJIUzUxMiJ9.
→˓eyJkYXQiOnsiYXVPcmdJRCI6MSwiYXVJRCI6MX19.6ZQba-Co5Ul4wpmU34zXlI75wmasxDfaGRmO3BsOx-
→˓ONupX93OBfyYBCIJ3tbWMXKBVVqMDt0Pz-5CakyF2wng; Path=/; HttpOnly; Secure

And authenticate using JWTs alone, using the token from JWT-Cookie:

2.10. Combining JWT-based authentication with basic access authentication 75

Servant Documentation

curl -v -H 'Authorization: Bearer eyJhbGciOiJIUzUxMiJ9.
→˓eyJkYXQiOnsiYXVPcmdJRCI6MSwiYXVJRCI6MX19.6ZQba-Co5Ul4wpmU34zXlI75wmasxDfaGRmO3BsOx-
→˓ONupX93OBfyYBCIJ3tbWMXKBVVqMDt0Pz-5CakyF2wng' 'http://localhost:3001/bar'
...
< HTTP/1.1 200 OK

This program is available as a cabal project here.

2.11 Hoist Server With Context for Custom Monads

In this example we’ll combine some of the patterns we’ve seen in other examples in order to demonstrate using a
custom monad with Servant’s Context and the function hoistServerWithContext.

hoistServerWithContext is a pattern you may encounter if you are trying to use a library such as servant-auth-
server along with your own custom monad.

In this example, our custom monad will be based on the commonly used ReaderT env IO a stack. We’ll create an
AppCtx to represent our env and include some logging utilities as well as other variables we’d like to have available.

In addition, in order to demonstrate a custom Context, we’ll also include authentication in our example. As noted
previously (in jwt-and-basic-auth), while basic authentication comes with Servant itself, servant-auth and servant-
auth-server packages are needed for JWT-based authentication.

Finally, we’re going to use fast-logger for our logging example below.

This recipe uses the following ingredients:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}

import Prelude ()
import Prelude.Compat

import Control.Monad.IO.Class (liftIO)
import Control.Monad.Reader
import Data.Aeson
import Data.Default
import Data.Proxy
import Data.Text
import Data.Time.Clock (UTCTime, getCurrentTime)
import GHC.Generics
import Network.Wai (Middleware)
import Network.Wai.Handler.Warp as Warp
import Network.Wai.Middleware.RequestLogger
import Network.Wai.Middleware.RequestLogger.JSON
import Servant as S
import Servant.Auth as SA
import Servant.Auth.Server as SAS
import System.Log.FastLogger (ToLogStr(..)

, LoggerSet
, defaultBufSize
, newStdoutLoggerSet
, flushLogStr

(continues on next page)

76 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/jwt-and-basic-auth
https://hackage.haskell.org/package/servant-auth-server
https://hackage.haskell.org/package/servant-auth-server
../jwt-and-basic-auth/JWTAndBasicAuth.lhs
https://hackage.haskell.org/package/servant-auth
https://hackage.haskell.org/package/servant-auth-server
https://hackage.haskell.org/package/servant-auth-server
http://hackage.haskell.org/package/fast-logger

Servant Documentation

(continued from previous page)

, pushLogStrLn)

port :: Int
port = 3001

2.11.1 Custom Monad

Let’s say we’d like to create a custom monad based on ReaderT env in order to hold access to a config object as
well as some logging utilities.

With that, we could define an AppCtx and AppM like this:

type AppM = ReaderT AppCtx Handler

data AppCtx = AppCtx {
_getConfig :: SiteConfig
, _getLogger :: LoggerSet
}

data SiteConfig = SiteConfig {
environment :: !Text
, version :: !Text
, adminUsername :: !Text
, adminPasswd :: !Text

} deriving (Generic, Show)

This SiteConfig is a simple example: it refers to our deployment environment as well as an application version.
For instance, we may do something different based on the environment our app is deployed into. When emitting log
messages, we may want to include information about the deployed version of our application.

In addition, we’re going to identify a single admin user in our config and use that definition to authenticate requests
inside our handlers. This is not too flexible (and probably not too secure. . .), but it works as a simple example.

2.11.2 Logging

A common contemporary pattern is to emit log messages as JSON for later ingestion into a database like Elasticsearch.

To emit JSON log messages, we’ll create a LogMessage object and make it so we can turn it into a JSON-encoded
LogStr (a type from fast-logger).

data LogMessage = LogMessage {
message :: !Text
, timestamp :: !UTCTime
, level :: !Text
, lversion :: !Text
, lenvironment :: !Text

} deriving (Eq, Show, Generic)

instance FromJSON LogMessage
instance ToJSON LogMessage where

toEncoding = genericToEncoding defaultOptions

instance ToLogStr LogMessage where
toLogStr = toLogStr . encode

2.11. Hoist Server With Context for Custom Monads 77

Servant Documentation

Eventually, when we’d like to emit a log message inside one of our Handlers, it’ll look like this:

sampleHandler :: AppM LogMessage
sampleHandler = do

config <- asks _getConfig
logset <- asks _getLogger

tstamp <- liftIO getCurrentTime
let logMsg = LogMessage { message = "let's do some logging!"

, timestamp = tstamp
, level = "info"
, lversion = version config
, lenvironment = environment config
}

-- emit log message
liftIO $ pushLogStrLn logset $ toLogStr logMsg
-- return handler result (for simplicity, result is also a LogMessage)
pure logMsg

2.11.3 Authentication

To demonstrate the other part of this recipe, we are going to use a simple representation of a user, someone who may
have access to an admin section of our site:

data AdminUser = AdminUser { name :: Text }
deriving (Eq, Show, Read, Generic)

The following instances are needed for JWT:

instance ToJSON AdminUser
instance FromJSON AdminUser
instance SAS.ToJWT AdminUser
instance SAS.FromJWT AdminUser

2.11.4 API

Now we can define our API.

We’ll have an admin endpoint and a login endpoint that takes a LoginForm:

type AdminApi =
"admin" :> Get '[JSON] LogMessage

type LoginApi =
"login"

:> ReqBody '[JSON] LoginForm
:> Post '[JSON] (Headers '[Header "Set-Cookie" SetCookie, Header "Set-Cookie"

→˓SetCookie] LogMessage)

data LoginForm = LoginForm {
username :: Text
, password :: Text

} deriving (Eq, Show, Generic)

(continues on next page)

78 Chapter 2. Cookbook

Servant Documentation

(continued from previous page)

instance ToJSON LoginForm
instance FromJSON LoginForm

We can combine both APIs into one like so:

type AdminAndLogin auths = (SAS.Auth auths AdminUser :> AdminApi) :<|> LoginApi

2.11.5 Server

When we define our server, we’ll have to define handlers for the AdminApi and the LoginApi and we’ll have to
supply JWTSettings and CookieSettings so our login handler can authenticate users:

adminServer :: SAS.CookieSettings -> SAS.JWTSettings -> ServerT (AdminAndLogin auths)
→˓AppM
adminServer cs jwts = adminHandler :<|> loginHandler cs jwts

The admin route should receive an authenticated AdminUser as an argument or it should return a 401:

adminHandler :: AuthResult AdminUser -> AppM LogMessage
adminHandler (SAS.Authenticated adminUser) = do

config <- asks _getConfig
logset <- asks _getLogger

tstamp <- liftIO getCurrentTime
let logMsg = LogMessage { message = "Admin User accessing admin: " <> name

→˓adminUser
, timestamp = tstamp
, level = "info"
, lversion = version config
, lenvironment = environment config
}

-- emit log message
liftIO $ pushLogStrLn logset $ toLogStr logMsg
-- return handler result (for simplicity, result is a LogMessage)
pure logMsg

adminHandler _ = throwError err401

By contrast, the login handler is waiting for a POST with a login form.

If login is successful, it will set session cookies and return a value.

Here we’re going to include lots of log messages:

loginHandler :: CookieSettings
-> JWTSettings
-> LoginForm
-> AppM (Headers '[Header "Set-Cookie" SetCookie, Header "Set-Cookie"

→˓SetCookie] LogMessage)
loginHandler cookieSettings jwtSettings form = do
config <- asks _getConfig
logset <- asks _getLogger

tstamp <- liftIO getCurrentTime
let logMsg = LogMessage { message = "AdminUser login attempt failed!"

, timestamp = tstamp

(continues on next page)

2.11. Hoist Server With Context for Custom Monads 79

Servant Documentation

(continued from previous page)

, level = "info"
, lversion = version config
, lenvironment = environment config
}

case validateLogin config form of
Nothing -> do

liftIO $ pushLogStrLn logset $ toLogStr logMsg
throwError err401

Just usr -> do
mApplyCookies <- liftIO $ SAS.acceptLogin cookieSettings jwtSettings usr
case mApplyCookies of

Nothing -> do
liftIO $ pushLogStrLn logset $ toLogStr logMsg
throwError err401

Just applyCookies -> do
let successMsg = logMsg{message = "AdminUser succesfully authenticated!"}
liftIO $ pushLogStrLn logset $ toLogStr successMsg
pure $ applyCookies successMsg

loginHandler _ _ _ = throwError err401

validateLogin :: SiteConfig -> LoginForm -> Maybe AdminUser
validateLogin config (LoginForm uname passwd) =
if (uname == adminUsername config) && (passwd == adminPasswd config)
then Just $ AdminUser uname
else Nothing

2.11.6 serveWithContext and hoistServerWithContext

In order to build a working server, we’ll need to hoist our custom monad into Servant’s Handler monad. We’ll also
need to pass in the proper context to ensure authentication will work.

This will require both serveWithContext and hoistServerWithContext.

Let’s define the function which will create our Application:

adminLoginApi :: Proxy (AdminAndLogin '[JWT])
adminLoginApi = Proxy

mkApp :: Context '[SAS.CookieSettings, SAS.JWTSettings] -> CookieSettings ->
→˓JWTSettings -> AppCtx -> Application
mkApp cfg cs jwts ctx =
serveWithContext adminLoginApi cfg $
hoistServerWithContext adminLoginApi (Proxy :: Proxy '[SAS.CookieSettings, SAS.

→˓JWTSettings])
(flip runReaderT ctx) (adminServer cs jwts)

One footenote: because we’d like our logs to be in JSON form, we’ll also create a Middleware object so that Warp
also will emit logs as JSON. This will ensure all logs are emitted as JSON:

jsonRequestLogger :: IO Middleware
jsonRequestLogger =
mkRequestLogger $ def { outputFormat = CustomOutputFormatWithDetails formatAsJSON }

We now have all the pieces we need to serve our application inside a main function:

80 Chapter 2. Cookbook

Servant Documentation

main :: IO ()
main = do

-- typically, we'd create our config from environment variables
-- but we're going to just make one here
let config = SiteConfig "dev" "1.0.0" "admin" "secretPassword"

warpLogger <- jsonRequestLogger
appLogger <- newStdoutLoggerSet defaultBufSize

tstamp <- getCurrentTime
myKey <- generateKey

let lgmsg = LogMessage {
message = "My app starting up!"
, timestamp = tstamp
, level = "info"
, lversion = version config
, lenvironment = environment config

}
pushLogStrLn appLogger (toLogStr lgmsg) >> flushLogStr appLogger

let ctx = AppCtx config appLogger

warpSettings = Warp.defaultSettings
portSettings = Warp.setPort port warpSettings
settings = Warp.setTimeout 55 portSettings
jwtCfg = defaultJWTSettings myKey
cookieCfg = if environment config == "dev"

then defaultCookieSettings{cookieIsSecure=SAS.NotSecure}
else defaultCookieSettings

cfg = cookieCfg :. jwtCfg :. EmptyContext

Warp.runSettings settings $ warpLogger $ mkApp cfg cookieCfg jwtCfg ctx

2.11.7 Usage

Now we can run it and try it out with curl. In one terminal, let’s run our application and see what our log output
looks like:

{"message":"My app starting up!","timestamp":"2018-10-04T00:33:12.482568Z","level":
→˓"info","lversion":"1.0.0","lenvironment":"dev"}

In another terminal, let’s ensure that it fails with err401 if we’re not authenticated:

$ curl -v 'http://localhost:3001/admin'
...
< HTTP/1.1 401 Unauthorized

$ curl -v -XPOST 'http://localhost:3001/login' \
-H "Content-Type:application/json" \
-d '{"username": "bad", "password": "wrong"}'

...
< HTTP/1.1 401 Unauthorized

And in the other terminal with our log messages (from our JSON Middleware):

2.11. Hoist Server With Context for Custom Monads 81

Servant Documentation

{"time":"03/Oct/2018:17:35:56 -0700","response":{"status":401,"size":null,"body":""},
→˓"request":{"httpVersion":"1.1","path":"/admin","size":0,"body":"","durationMs":0.22,
→˓"remoteHost":{"hostAddress":"127.0.0.1","port":51029},"headers":[["Host",
→˓"localhost:3001"],["User-Agent","curl/7.60.0"],["Accept","*/*"]],"queryString":[],
→˓"method":"GET"}}

Now let’s see that authentication works, and that we get JWTs:

$ curl -v -XPOST 'http://localhost:3001/login' \
-H "Content-Type:application/json" \
-d '{"username": "admin", "password": "secretPassword"}'

...
< HTTP/1.1 200 OK
...
< Server: Warp/3.2.25
< Content-Type: application/json;charset=utf-8
< Set-Cookie: JWT-Cookie=eyJhbGciOiJIUzUxMiJ9.eyJkYXQiOnsibmFtZSI6ImFkbWluIn19.
→˓SIoRcABKSO4mXnRifzqPWlHJUhVwuy32Qon7s1E_
→˓c3vHOsLXdXyX4V4eXOw9tMFoeIqgsXMZucqoFb36vAdKwQ; Path=/; HttpOnly; SameSite=Lax
< Set-Cookie: XSRF-TOKEN=y5PmrYHX3ywFUCwGRQqHh1TDheTLiQpwRQB3FFRd8N4=; Path=/
...
{"message":"AdminUser succesfully authenticated!","timestamp":"2018-10-04T00:37:44.
→˓455441Z","level":"info","lversion":"1.0.0","lenvironment":"dev"}

And in the other terminal with our log messages (note that logging out passwords is insecure. . .):

{"message":"AdminUser succesfully authenticated!","timestamp":"2018-10-04T00:37:44.
→˓455441Z","level":"info","lversion":"1.0.0","lenvironment":"dev"}
{"time":"03/Oct/2018:17:37:44 -0700","response":{"status":200,"size":null,"body":null}
→˓,"request":{"httpVersion":"1.1","path":"/login","size":51,"body":"{\"username\": \
→˓"admin\", \"password\": \"secretPassword\"}","durationMs":0.23,"remoteHost":{
→˓"hostAddress":"127.0.0.1","port":51044},"headers":[["Host","localhost:3001"],["User-
→˓Agent","curl/7.60.0"],["Accept","*/*"],["Content-Type","application/json"],[
→˓"Content-Length","51"]],"queryString":[],"method":"POST"}}

Finally, let’s make sure we can access a protected resource with our tokens:

$ export jwt=eyJhbGciOiJIUzUxMiJ9.eyJkYXQiOnsibmFtZSI6ImFkbWluIn19.
→˓SIoRcABKSO4mXnRifzqPWlHJUhVwuy32Qon7s1E_
→˓c3vHOsLXdXyX4V4eXOw9tMFoeIqgsXMZucqoFb36vAdKwQ
$ curl -v \

-H "Authorization: Bearer $jwt" \
'http://localhost:3001/admin'

...
< HTTP/1.1 200 OK
{"message":"Admin User accessing admin: admin","timestamp":"2018-10-04T00:58:07.
→˓216605Z","level":"info","lversion":"1.0.0","lenvironment":"dev"}

And we should see this message logged-out as well:

{"message":"Admin User accessing admin: admin","timestamp":"2018-10-04T00:58:07.
→˓216605Z","level":"info","lversion":"1.0.0","lenvironment":"dev"}

This program is available as a cabal project here.

82 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/hoist-server-with-context

Servant Documentation

2.12 File Upload (multipart/form-data)

In this recipe, we will implement a web application with a single endpoint that can process multipart/form-data
request bodies, which most commonly come from HTML forms that allow file upload.

As usual, a bit of throat clearing.

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE OverloadedStrings #-}

import Control.Concurrent
import Control.Exception
import Control.Monad
import Control.Monad.IO.Class
import Data.Text.Encoding (encodeUtf8)
import Network.Socket (withSocketsDo)
import Network.HTTP.Client hiding (Proxy)
import Network.HTTP.Client.MultipartFormData
import Network.Wai.Handler.Warp
import Servant
import Servant.Multipart

import qualified Data.ByteString.Lazy as LBS

Our API consists in a single POST endpoint at / that takes a multipart/form-data request body and pretty-
prints the data it got to stdout before returning 0 (because why not).

type API = MultipartForm Mem (MultipartData Mem) :> Post '[JSON] Integer

api :: Proxy API
api = Proxy

Because of some technicalities, multipart form data is not represented as a good old content type like JSON in
servant, that one could use with ReqBody, but instead is its own dedicated ReqBody-like combinator named
MultiPartForm.

This combinator takes two parameters. The first one is the “backend” to use. Currently, you only have the choice
between Mem and Tmp. The former loads the entire input in memory, even the uploaded files, while Tmp will stream
uploaded files to some temporary directory.

The second parameter is the type you want the multipart data to be decoded to. Indeed there is a FromMultipart
class that allows you to specify how to decode multipart form data from MultipartData to a custom type of yours.
Here we use the trivial “decoding” to MultipartData itself, and simply will get our hands on the raw input. If you
want to use a type of yours, see the documentation for FromMultipart.

Our only request handler has type MultipartData Mem -> Handler Integer. All it does is list the textual
and file inputs that were sent in the multipart request body. The textual inputs are in the inputs field while the file
inputs are in the files field of multipartData.

-- MultipartData consists in textual inputs,
-- accessible through its "inputs" field, as well
-- as files, accessible through its "files" field.
upload :: Server API
upload multipartData = do
liftIO $ do
putStrLn "Inputs:"

(continues on next page)

2.12. File Upload (multipart/form-data) 83

https://hackage.haskell.org/package/servant-multipart-0.11/docs/Servant-Multipart.html#t:MultipartForm
https://hackage.haskell.org/package/servant-multipart-0.11/docs/Servant-Multipart.html#t:FromMultipart

Servant Documentation

(continued from previous page)

forM_ (inputs multipartData) $ \input ->
putStrLn $ " " ++ show (iName input)

++ " -> " ++ show (iValue input)

forM_ (files multipartData) $ \file -> do
let content = fdPayload file
putStrLn $ "Content of " ++ show (fdFileName file)
LBS.putStr content

return 0

startServer :: IO ()
startServer = run 8080 (serve api upload)

Finally, a main function that brings up our server and sends some test request with http-client (and not servant-
client this time, has servant-multipart does not yet have support for client generation.

main :: IO ()
main = withSocketsDo . bracket (forkIO startServer) killThread $ _threadid -> do

-- we fork the server in a separate thread and send a test
-- request to it from the main thread.
manager <- newManager defaultManagerSettings
req <- parseRequest "http://localhost:8080/"
resp <- flip httpLbs manager =<< formDataBody form req
print resp

where form =
[partBS "title" "World"
, partBS "text" $ encodeUtf8 "Hello"
, partFileSource "file" "./README.md"
]

If you run this, you should get:

$ cabal new-build cookbook-file-upload
[...]
$ dist-newstyle/build/x86_64-linux/ghc-8.2.1/cookbook-file-upload-0.1/x/cookbook-file-
→˓upload/build/cookbook-file-upload/cookbook-file-upload
Inputs:

"title" -> "World"
"text" -> "Hello"

Content of "README.md"
servant - A Type-Level Web DSL

![servant](https://raw.githubusercontent.com/haskell-servant/servant/master/servant.
→˓png)

Getting Started

We have a [tutorial](http://docs.servant.dev/en/stable/tutorial/index.html) that
introduces the core features of servant. After this article, you should be able
to write your first servant webservices, learning the rest from the haddocks'
examples.

[...]

Response {responseStatus = Status {statusCode = 200, statusMessage = "OK"},
→˓responseVersion = HTTP/1.1, responseHeaders = [("Transfer-Encoding","chunked"),(
→˓"Date","Fri, 08 Dec 2017 16:50:14 GMT"),("Server","Warp/3.2.13"),("Content-Type",
→˓"application/json;charset=utf-8")], responseBody = "0", responseCookieJar = CJ
→˓{expose = []}, responseClose' = ResponseClose}

(continues on next page)

84 Chapter 2. Cookbook

Servant Documentation

(continued from previous page)

As usual, the code for this recipe is available in a cabal project here.

2.13 Pagination

2.13.1 Overview

Let’s see an approach to typed pagination with Servant using servant-pagination.

This module offers opinionated helpers to declare a type-safe and a flexible pagination mechanism for Servant APIs.
This design, inspired by Heroku’s API, provides a small framework to communicate about a possible pagination feature
of an endpoint, enabling a client to consume the API in different fashions (pagination with offset / limit, endless scroll
using last referenced resources, ascending and descending ordering, etc.)

Therefore, client can provide a Range header with their request with the following format:

• Range: <field> [<value>][; offset <o>][; limit <l>][; order <asc|desc>]

For example: Range: createdAt 2017-01-15T23:14:67.000Z; offset 5; order desc indi-
cates that the client is willing to retrieve the next batch of document in descending order that were created after
the fifteenth of January, skipping the first 5.

As a response, the server may return the list of corresponding document, and augment the response with 3 headers:

• Accept-Ranges: A comma-separated list of fields upon which a range can be defined

• Content-Range: Actual range corresponding to the content being returned

• Next-Range: Indicate what should be the next Range header in order to retrieve the next range

For example:

• Accept-Ranges: createdAt, modifiedAt

• Content-Range: createdAt 2017-01-15T23:14:51.000Z..2017-02-18T06:10:23.
000Z

• Next-Range: createdAt 2017-02-19T12:56:28.000Z; offset 0; limit 100;
order desc

2.13.2 Getting Started

Code-wise the integration is quite seamless and unobtrusive. servant-pagination provides a Ranges
(fields :: [Symbol]) (resource :: *) -> * data-type for declaring available ranges on a group
of fields and a target resource. To each combination (resource + field) is associated a given type RangeType
(resource :: *) (field :: Symbol) -> * as described by the type-family in the HasPagination
type-class.

So, let’s start with some imports and extensions to get this out of the way:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE TypeApplications #-}
{-# LANGUAGE TypeFamilies #-}

(continues on next page)

2.13. Pagination 85

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/file-upload
https://hackage.haskell.org/package/servant-pagination
https://devcenter.heroku.com/articles/platform-api-reference#ranges

Servant Documentation

(continued from previous page)

{-# LANGUAGE TypeOperators #-}

import Data.Aeson
(ToJSON, genericToJSON)

import Data.Maybe
(fromMaybe)

import Data.Proxy
(Proxy (..))

import GHC.Generics
(Generic)

import Servant
((:>), GetPartialContent, Handler, Header, Headers, JSON, Server,

→˓addHeader)
import Servant.Pagination

(HasPagination (..), PageHeaders, Range (..), Ranges, RangeOptions(..
→˓),

applyRange, extractRange, returnRange)

import qualified Data.Aeson as Aeson
import qualified Network.Wai.Handler.Warp as Warp
import qualified Servant
import qualified Servant.Pagination as Pagination

Declaring the Resource

Servant APIs are rather resource-oriented, and so is servant-pagination. This guide shows a basic example
working with JSON (as you could tell from the import list already). To make the world a better colored place, let’s
create an API to retrieve colors – with pagination.

data Color = Color
{ name :: String
, rgb :: [Int]
, hex :: String
} deriving (Eq, Show, Generic)

instance ToJSON Color where
toJSON =
genericToJSON Aeson.defaultOptions

colors :: [Color]
colors =

[Color "Black" [0, 0, 0] "#000000"
, Color "Blue" [0, 0, 255] "#0000ff"
, Color "Green" [0, 128, 0] "#008000"
, Color "Grey" [128, 128, 128] "#808080"
, Color "Purple" [128, 0, 128] "#800080"
, Color "Red" [255, 0, 0] "#ff0000"
, Color "Yellow" [255, 255, 0] "#ffff00"
]

Declaring the Ranges

Now that we have defined our resource (a.k.a Color), we are ready to declare a new Range that will operate
on a “name” field (genuinely named after the name fields from the Color record). For that, we need to tell

86 Chapter 2. Cookbook

Servant Documentation

servant-pagination two things:

• What is the type of the corresponding Range values

• How do we get one of these values from our resource

This is done via defining an instance of HasPagination as follows:

instance HasPagination Color "name" where
type RangeType Color "name" = String
getFieldValue _ = name
-- getRangeOptions :: Proxy "name" -> Proxy Color -> RangeOptions
-- getDefaultRange :: Proxy Color -> Range "name" String

defaultRange :: Range "name" String
defaultRange =

getDefaultRange (Proxy @Color)

Note that getFieldValue :: Proxy "name" -> Color -> String is the minimal complete definin-
tion of the class. Yet, you can define getRangeOptions to provide different parsing options (see the last section
of this guide). In the meantime, we’ve also defined a defaultRange as it will come in handy when defining our
handler.

API

Good, we have a resource, we have a Range working on that resource, we can now declare our API using other
Servant combinators we already know:

type API =
"colors"
:> Header "Range" (Ranges '["name"] Color)
:> GetPartialContent '[JSON] (Headers MyHeaders [Color])

type MyHeaders =
Header "Total-Count" Int ': PageHeaders '["name"] Color

PageHeaders is a type alias provided by the library to declare the necessary response headers we mentionned in
introduction. Expanding the alias boils down to the following:

-- type MyHeaders =
-- '[Header "Total-Count" Int
-- , Header "Accept-Ranges" (AcceptRanges '["name"])
-- , Header "Content-Range" (ContentRange '["name"] Color)
-- , Header "Next-Range" (Ranges '["name"] Color)
--]

As a result, we will need to provide all those headers with the response in our handler. Worry not, servant-pagination
provides an easy way to lift a collection of resources into such handler.

Server

Time to connect the last bits by defining the server implementation of our colorful API. The Ranges type we’ve
defined above (tight to the Range HTTP header) indicates the server to parse any Range header, looking for the
format defined in introduction with fields and target types we have just declared. If no such header is provided, we
will end up receiving Nothing. Otherwise, it will be possible to extract a Range from our Ranges.

2.13. Pagination 87

Servant Documentation

server :: Server API
server = handler
where
handler :: Maybe (Ranges '["name"] Color) -> Handler (Headers MyHeaders [Color])
handler mrange = do
let range =

fromMaybe defaultRange (mrange >>= extractRange)

addHeader (length colors) <$> returnRange range (applyRange range colors)

main :: IO ()
main =

Warp.run 1442 $ Servant.serve (Proxy @API) server

Let’s try it out using different ranges to observe the server’s behavior. As a reminder, here’s the format we defined,
where <field> here can only be name and <value> must parse to a String:

• Range: <field> [<value>][; offset <o>][; limit <l>][; order <asc|desc>]

Beside the target field, everything is pretty much optional in the Range HTTP header. Missing parts are deducted
from the RangeOptions that are part of the HasPagination instance. Therefore, all following examples are
valid requests to send to our server:

• 1 - curl http://localhost:1442/colors -vH 'Range: name'

• 2 - curl http://localhost:1442/colors -vH 'Range: name; limit 2'

• 3 - curl http://localhost:1442/colors -vH 'Range: name Green; order asc;
offset 1'

Considering the following default options:

• defaultRangeLimit: 100

• defaultRangeOffset: 0

• defaultRangeOrder: RangeDesc

The previous ranges reads as follows:

• 1 - The first 100 colors, ordered by descending names

• 2 - The first 2 colors, ordered by descending names

• 3 - The 100 colors after Green (not included), ordered by ascending names.

2.13.3 Going Forward

Multiple Ranges

Note that in the simple above scenario, there’s no ambiguity with extractRange and returnRange because
there’s only one possible Range defined on our resource. Yet, as you’ve most probably noticed, the Ranges combi-
nator accepts a list of fields, each of which must declare a HasPagination instance. Doing so will make the other
helper functions more ambiguous and type annotation are highly likely to be needed.

instance HasPagination Color "hex" where
type RangeType Color "hex" = String
getFieldValue _ = hex

-- to then define: Ranges '["name", "hex"] Color

88 Chapter 2. Cookbook

Servant Documentation

Parsing Options

By default, servant-pagination provides an implementation of getRangeOptions for each
HasPagination instance. However, this can be overwritten when defining the instance to provide your
own options. This options come into play when a Range header is received and isn’t fully specified (limit,
offset, order are all optional) to provide default fallback values for those.

For instance, let’s say we wanted to change the default limit to 5 in a new range on "rgb", we could tweak the
corresponding HasPagination instance as follows:

instance HasPagination Color "rgb" where
type RangeType Color "rgb" = Int
getFieldValue _ = sum . rgb
getRangeOptions _ _ = Pagination.defaultOptions { defaultRangeLimit = 5 }

2.14 Generating mock curl calls

In this example we will generate curl requests with mock post data from a servant API. This may be usefull for testing
and development purposes. Especially post requests with a request body are tedious to send manually.

Also, we will learn how to use the servant-foreign library to generate stuff from servant APIs.

Language extensions and imports:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE GeneralizedNewtypeDeriving #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeOperators #-}

import Control.Lens ((^.))
import Data.Aeson
import Data.Aeson.Text
import Data.Monoid ((<>))
import Data.Proxy (Proxy (Proxy))
import Data.Text (Text)
import Data.Text.Encoding (decodeUtf8)
import qualified Data.Text.IO as T.IO
import qualified Data.Text.Lazy as LazyT
import GHC.Generics
import Servant ((:<|>), (:>), Get, JSON,

Post, ReqBody)
import Servant.Foreign (Foreign, GenerateList,

HasForeign, HasForeignType, Req,
Segment, SegmentType (Cap,

→˓Static),
argName, listFromAPI, path,
reqBody, reqMethod, reqUrl,

→˓typeFor,
unPathSegment, unSegment,)

(continues on next page)

2.14. Generating mock curl calls 89

Servant Documentation

(continued from previous page)

import Test.QuickCheck.Arbitrary
import Test.QuickCheck.Arbitrary.Generic
import Test.QuickCheck.Gen (generate)
import qualified Data.Text as T

Let’s define our API:

type UserAPI = "users" :> Get '[JSON] [User]
:<|> "new" :> "user" :> ReqBody '[JSON] User :> Post '[JSON] ()

data User = User
{ name :: String
, age :: Int
, email :: String
} deriving (Eq, Show, Generic)

instance Arbitrary User where
arbitrary = genericArbitrary
shrink = genericShrink

instance ToJSON User
instance FromJSON User

Notice the Arbitrary User instance which we will later need to create mock data.

Also, the obligatory servant boilerplate:

api :: Proxy UserAPI
api = Proxy

2.14.1 servant-foreign and the HasForeignType Class

Servant-foreign allows us to look into the API we designed. The entry point is listFromAPI which takes three
types and returns a list of endpoints:

listFromAPI :: (HasForeign lang ftype api, GenerateList ftype (Foreign ftype api)) =>
→˓Proxy lang -> Proxy ftype -> Proxy api -> [Req ftype]

This looks a bit confusing. . . Here is the documentation for the HasForeign typeclass. We will not go into details
here, but this allows us to create a value of type ftype for any type a in our API.

In our case we want to create a mock of every type a.

We create a new datatype that holds our mocked value. Well, not the mocked value itself. To mock it we need IO
(random). So the promise of a mocked value after some IO is performed:

data NoLang

data Mocked = Mocked (IO Text)

Now, we create an instance of HasForeignType for NoLang and Mocked for every a that implements ToJSON
and Arbitrary:

instance (ToJSON a, Arbitrary a) => HasForeignType NoLang Mocked a where
typeFor _ _ _ =
Mocked (genText (Proxy :: Proxy a))

90 Chapter 2. Cookbook

https://hackage.haskell.org/package/servant-foreign-0.11.1/docs/Servant-Foreign.html#t:HasForeignType

Servant Documentation

What does genText do? It generates an arbitrary value of type a and encodes it as text. (And does some lazy to
non-lazy text transformation we do not care about):

genText :: (ToJSON a, Arbitrary a) => Proxy a -> IO Text
genText p =

fmap (\v -> LazyT.toStrict $ encodeToLazyText v) (genArb p)

genArb :: Arbitrary a => Proxy a -> IO a
genArb _ =
generate arbitrary

Generating curl calls for every endpoint

Everything is prepared now and we can start generating some curl calls.

generateCurl :: (GenerateList Mocked (Foreign Mocked api), HasForeign NoLang Mocked
→˓api)
=> Proxy api
-> Text
-> IO Text

generateCurl p host =
fmap T.unlines body
where
body = foldr (\endp curlCalls -> mCons (generateEndpoint host endp) curlCalls)

→˓(return [])
$ listFromAPI (Proxy :: Proxy NoLang) (Proxy :: Proxy Mocked) p

To understand this function, better start at the end:

listFromAPI gives us a list of endpoints. We iterate over them (foldr) and call generateEndpoint for every
endpoint.

As generate endpoint will not return Text but IO Text (remember we need some random bits to mock), we cannot
just use the cons operator but need to build IO [Text] from IO Texts.

mCons :: IO a -> IO [a] -> IO [a]
mCons ele list =

ele >>= \e -> list >>= \l -> return (e : l)

Now comes the juicy part; accessing the endpoints data:

generateEndpoint :: Text -> Req Mocked -> IO Text
generateEndpoint host req =
case maybeBody of
Just body ->

body >>= \b -> return $ T.intercalate " " ["curl", "-X", method, "-d", "'" <>
→˓b <> "'"

, "-H 'Content-Type: application/json'
→˓", host <> "/" <> url]

Nothing ->
return $ T.intercalate " " ["curl", "-X", method, host <> "/" <> url]

where
method = decodeUtf8 $ req ^. reqMethod

url = T.intercalate "/" $ map segment (req ^. reqUrl . path)

maybeBody = fmap (\(Mocked io) -> io) (req ^. reqBody)

2.14. Generating mock curl calls 91

Servant Documentation

servant-foreign offers a multitude of lenses to be used with Req-values.

reqMethod gives us a straigthforward Network.HTTP.Types.Method, reqUrl the url part and so on. Just
take a look at the docs.

But how do we get our mocked json string? This seems to be a bit to short to be true:

maybeBody = fmap (\(Mocked io) -> io) (req ^. reqBody)

But it is that simple! The docs say reqBody gives us a Maybe f. What is f, you ask? As defined
in generateCurl, f is Mocked and contains a IO Text. How is this Mocked value created? The
HasForeignType::typeFor does it!

Of course only if the endpoint has a request body.

Some (incomplete) code for url segments:

segment :: Segment Mocked -> Text
segment seg =
case unSegment seg of
Static p ->
unPathSegment p

Cap arg ->
-- Left as exercise for the reader: Mock args in the url
unPathSegment $ arg ^. argName

And now, lets hook it all up in our main function:

main :: IO ()
main =

generateCurl api "localhost:8081" >>= (\v -> T.IO.putStrLn v)

Done:

curl -X GET localhost:8081/users
curl -X POST -d '{"email":"wV_b:z!(3DM V","age":10,"name":"=|W"}' -H 'Content-Type:
→˓application/json' localhost:8081/new/user

This is of course no complete curl call mock generator, many things including path arguments are missing. But it
correctly generate mock calls for simple POST requests.

Also, we now know how to use HasForeignType and listFromAPI to generate anything we want.

2.15 Error logging with Sentry

In this recipe we will use Sentry to collect the runtime exceptions generated by our application. We will use the raven-
haskell package, which is a client for a Sentry event server. Mind that this package is not present on Stackage, so if
we are using Stack we’ll need to add it to our extra-deps section in the stack.yaml file.

To exemplify this we will need the following imports

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE TypeOperators #-}

import Control.Exception (Exception,
SomeException, throw)

(continues on next page)

92 Chapter 2. Cookbook

https://hackage.haskell.org/package/servant-foreign-0.11.1/docs/Servant-Foreign.html
https://sentry.io
https://hackage.haskell.org/package/raven-haskell
https://hackage.haskell.org/package/raven-haskell
https://www.stackage.org/
https://docs.haskellstack.org

Servant Documentation

(continued from previous page)

import Data.ByteString.Char8 (unpack)
import Network.Wai (Request, rawPathInfo,

requestHeaderHost)
import Network.Wai.Handler.Warp (defaultOnException,

defaultSettings,
runSettings,
setOnException,
setPort)

import Servant
import System.Log.Raven (initRaven, register,

silentFallback)
import System.Log.Raven.Transport.HttpConduit (sendRecord)
import System.Log.Raven.Types (SentryLevel (Error),

SentryRecord (..))

Just for the sake of the example we will use the following API which will throw an exception

type API = "break" :> Get '[JSON] ()

data MyException = MyException deriving (Show)

instance Exception MyException

server = breakHandler
where breakHandler :: Handler ()

breakHandler = do
throw MyException
return ()

First thing we need to do if we want to intercept and log this exception, we need to look in the section of our code where
we run the warp application, and instead of using the simple run function from warp, we use the runSettings
functions which allows to customise the handling of requests

main :: IO ()
main =

let
settings =

setPort 8080 $
setOnException sentryOnException $
defaultSettings

in
runSettings settings $ serve (Proxy :: Proxy API) server

The definition of the sentryOnException function could look as follows

sentryOnException :: Maybe Request -> SomeException -> IO ()
sentryOnException mRequest exception = do
sentryService <- initRaven
"https://username:password@senty.host/id"
id
sendRecord
silentFallback

register
sentryService
"myLogger"
Error

(continues on next page)

2.15. Error logging with Sentry 93

Servant Documentation

(continued from previous page)

(formatMessage mRequest exception)
(recordUpdate mRequest exception)

defaultOnException mRequest exception

It does three things. First it initializes the service which will communicate with Sentry. The parameters it receives are:

• the Sentry DSN, which is obtained when creating a new project on Sentry

• a default way to update sentry fields, where we use the identity function

• an event trasport, which generally would be sendRecord, an HTTPS capable trasport which uses http-conduit

• a fallback handler, which we choose to be silentFallback since later we are logging to the console anyway.

In the second step it actually sends our message to Sentry with the register function. Its arguments are:

• the configured Sentry service which we just created

• the name of the logger

• the error level (see SentryLevel for the possible options)

• the message we want to send

• an update function to handle the specific SentryRecord

Eventually it just delegates the error handling to the default warp mechanism.

The function formatMessage simply uses the request and the exception to return a string with the error message.

formatMessage :: Maybe Request -> SomeException -> String
formatMessage Nothing exception = "Exception before request could be parsed: "
→˓++ show exception
formatMessage (Just request) exception = "Exception " ++ show exception ++ " while
→˓handling request " ++ show request

The only piece left now is the recordUpdate function which allows to decorate with other attributes the default
SentryRecord.

recordUpdate :: Maybe Request -> SomeException -> SentryRecord -> SentryRecord
recordUpdate Nothing exception record = record
recordUpdate (Just request) exception record = record

{ srCulprit = Just $ unpack $ rawPathInfo request
, srServerName = fmap unpack $ requestHeaderHost request
}

In this examples we set the raw path as the culprit and we use the Host header to populate the server name field.

You can try to run this code using the cookbook-sentry executable. You should obtain a MyException error
in the console and, if you provided a valid Sentry DSN, you should also find your error in the Sentry interface.

2.16 How To Test Servant Applications

Even with a nicely structured API that passes Haskell’s strict type checker, it’s a good idea to write some tests for your
application.

In this recipe we’ll work through some common testing strategies and provide examples of utlizing these testing
strategies in order to test Servant applications.

94 Chapter 2. Cookbook

https://hackage.haskell.org/package/raven-haskell-0.1.2.0/docs/System-Log-Raven-Types.html#t:SentryLevel
https://docs.sentry.io/clientdev/attributes/

Servant Documentation

2.16.1 Testing strategies

There are many testing strategies you may wish to employ when testing your Servant application, but included below
are three common testing patterns:

• We’ll use servant-client to derive client functions and then send valid requests to our API, running in
another thread. This is great for testing that our business logic is correctly implemented with only valid HTTP
requests.

• We’ll also use hspec-wai to make arbitrary HTTP requests, in order to test how our application may
respond to invalid or otherwise unexpected requests.

• Finally, we can also use servant-quickcheck for whole-API tests, in order to assert that our entire appli-
cation conforms to best practices.

2.16.2 Useful Libraries

The following libraries will often come in handy when we decide to test our Servant applications:

• hspec

• hspec-wai

• QuickCheck

• servant-quickcheck

2.16.3 Imports and Our Testing Module

This recipe starts with the following ingredients:

{-# LANGUAGE OverloadedStrings, TypeFamilies, DataKinds,
DeriveGeneric, TypeOperators #-}

import Prelude ()
import Prelude.Compat

import qualified Control.Concurrent as C
import Control.Concurrent.MVar
import Control.Exception (bracket)
import Control.Lens hiding (Context)
import Data.Aeson
import Data.Aeson.Lens
import qualified Data.HashMap.Strict as HM
import Data.Text (Text, unpack)
import GHC.Generics
import Network.HTTP.Client hiding (Proxy)
import Network.HTTP.Types
import Network.Wai
import qualified Network.Wai.Handler.Warp as Warp

import Servant
import Servant.Client
import Servant.Server
import Servant.QuickCheck
import Servant.QuickCheck.Internal (serverDoesntSatisfy)

import Test.Hspec
(continues on next page)

2.16. How To Test Servant Applications 95

https://hspec.github.io/
http://hackage.haskell.org/package/hspec-wai
http://hackage.haskell.org/package/QuickCheck
https://hackage.haskell.org/package/servant-quickcheck

Servant Documentation

(continued from previous page)

import Test.Hspec.Wai
import Test.Hspec.Wai.Matcher

We’re going to produce different Specs that represent different aspects of our application, and we’ll ask hspec to
run all of our different Specs. This is a common organizational method for testing modules:

spec :: Spec
spec = do

businessLogicSpec
thirdPartyResourcesSpec
servantQuickcheckSpec

Often, codebases will use hspec’s autodiscover pragma to find all testing modules and Specs inside, but we’re going
to explicitly make a main function to run our tests because we have only one spec defined above:

main :: IO ()
main = hspec spec

2.16.4 Testing Your Business Logic

Let’s say we have an API that looks something like this:

data User = User {
name :: Text
, user_id :: Integer
} deriving (Eq, Show, Generic)

instance FromJSON User
instance ToJSON User

type UserApi =
-- One endpoint: create a user
"user" :> Capture "userId" Integer :> Post '[JSON] User

A real server would likely use a database to store, retrieve, and validate users, but we’re going to do something really
simple merely to have something to test. With that said, here’s a sample handler, server, and Application for the
endpoint described above:

userApp :: Application
userApp = serve (Proxy :: Proxy UserApi) userServer

userServer :: Server UserApi
userServer = createUser

createUser :: Integer -> Handler User
createUser userId = do
if userId > 5000
then pure $ User { name = "some user", user_id = userId }
else throwError $ err400 { errBody = "userId is too small" }

Strategy 1: Spin Up a Server, Create a Client, Make Some Requests

One of the benefits of Servant’s type-level DSL for describing APIs is that once you have provided a type-level
description of your API, you can create clients, documentation, or other tools for it somewhat magically.

96 Chapter 2. Cookbook

http://hspec.github.io/hspec-discover.html

Servant Documentation

In this case, we’d like to test our server, so we can use servant-client to create a client, after which we’ll run
our server, and then make requests of it and see how it responds.

Let’s write some tests:

withUserApp :: IO () -> IO ()
withUserApp action =

-- we can spin up a server in another thread and kill that thread when done
-- in an exception-safe way
bracket (liftIO $ C.forkIO $ Warp.run 8888 userApp)
C.killThread
(const action)

businessLogicSpec :: Spec
businessLogicSpec =
-- `around` will start our Server before the tests and turn it off after
around_ withUserApp $ do
-- create a test client function
let createUser = client (Proxy :: Proxy UserApi)
-- create a servant-client ClientEnv
baseUrl <- runIO $ parseBaseUrl "http://localhost:8888"
manager <- runIO $ newManager defaultManagerSettings
let clientEnv = mkClientEnv manager baseUrl

-- testing scenarios start here
describe "POST /user" $ do
it "should create a user with a high enough ID" $ do

result <- runClientM (createUser 50001) clientEnv
result `shouldBe` (Right $ User { name = "some user", user_id = 50001})

it "will it fail with a too-small ID?" $ do
result <- runClientM (createUser 4999) clientEnv
result `shouldBe` (Right $ User { name = "some user", user_id = 50001})

Running These Tests

Let’s run our tests and see what happens:

$ cabal new-test all
POST /user

should create a user with a high enough ID
should fail with a too-small ID FAILED [1]

Failures:

Testing.lhs:129:7:
1) POST /user should fail with a too-small ID

expected: Right (User {name = "some user", user_id = 50001})
but got: Left (FailureResponse (Response {responseStatusCode = Status

→˓{statusCode = 400, statusMessage = "Bad Request"}, responseHeaders = fromList [(
→˓"Transfer-Encoding","chunked"),("Date","Fri, 12 Oct 2018 04:36:22 GMT"),("Server",
→˓"Warp/3.2.25")], responseHttpVersion = HTTP/1.1, responseBody = "userId is too small
→˓"}))

To rerun use: --match "/POST /user/should fail with a too-small ID/"

Hmm. One passed and one failed! It looks like I was expecting a success response in the second test, but I actually got
a failure. We should fix that, but first I’d like to introduce hspec-wai, which will give us different mechanisms for

2.16. How To Test Servant Applications 97

Servant Documentation

making requests of our application and validating the responses we get. We’re also going to spin up a fake Elasticsearch
server, so that our server can think it’s talking to a real database.

2.16.5 Mocking 3rd Party Resources

Often our web applications will need to make their own web requests to other 3rd-party applications. These requests
provide a lot of opportunity for failure and so we’d like to test that the right messages and failure values (in addition
to success values) are returned from our application.

Define the 3rd-Party Resource

With Servant’s type-level API definitions, assuming you’ve already defined the API you want to mock, it’s relatively
trivial to create a simple server for the purposes of running tests. For instance, consider an API server that needs to get
data out of Elasticsearch. Let’s first define the Elasticsearch server and client using Servant API descriptions:

type SearchAPI =
-- We're using Aeson's Generic JSON `Value` to make things easier on
-- ourselves. We're also representing only one Elasticsearch endpoint:
-- get item by id
"myIndex" :> "myDocType" :> Capture "docId" Integer :> Get '[JSON] Value

-- Here's our Servant Client function
getDocument = client (Proxy :: Proxy SearchAPI)

-- We can use these helpers when we want to make requests
-- using our client function
clientEnv :: Text -> Text -> IO ClientEnv
clientEnv esHost esPort = do
baseUrl <- parseBaseUrl $ unpack $ esHost <> ":" <> esPort
manager <- newManager defaultManagerSettings
pure $ mkClientEnv manager baseUrl

runSearchClient :: Text -> Text -> ClientM a -> IO (Either ClientError a)
runSearchClient esHost esPort = (clientEnv esHost esPort >>=) . runClientM

Servant Server Example Using this 3rd-Party Resource

So we’ve got an Elasticsearch server and a client to talk to it. Let’s now build a simple app server that uses this
client to retrieve documents. This is somewhat contrived, but hopefully it illustrates the typical three-tier application
architecture.

One note: we’re also going to take advantage of lens-aeson here, which may look a bit foreign. The gist of it is
that we’re going to traverse a JSON Value from Elasticsearch and try to extract some kind of document to return.

Imagine, then, that this is our real server implementation:

type DocApi =
"docs" :> Capture "docId" Integer :> Get '[JSON] Value

docsApp :: Text -> Text -> Application
docsApp esHost esPort = serve (Proxy :: Proxy DocApi) $ docServer esHost esPort

docServer :: Text -> Text -> Server DocApi
docServer esHost esPort = getDocById esHost esPort

(continues on next page)

98 Chapter 2. Cookbook

Servant Documentation

(continued from previous page)

-- Our Handler tries to get a doc from Elasticsearch and then tries to parse
-- it. Unfortunately, there's a lot of opportunity for failure in these
-- actions
getDocById :: Text -> Text -> Integer -> Handler Value
getDocById esHost esPort docId = do

-- Our Servant Client function returns Either ClientError Value here:
docRes <- liftIO $ runSearchClient esHost esPort (getDocument docId)
case docRes of
Left err -> throwError $ err404 { errBody = "Failed looking up content" }
Right value -> do
-- we'll either fail to parse our document or we'll return it
case value ^? _Object . ix "_source" of
Nothing -> throwError $ err400 { errBody = "Failed parsing content" }
Just obj -> pure obj

Testing Our Backend

So the above represents our application and is close to a server we may actually deploy. How then shall we test this
application?

Ideally, we’d like it to make requests of a real Elasticsearch server, but we certainly don’t want our tests to trigger
requests to a live, production database. In addition, we don’t want to depend on our real Elasticsearch server having
specific, consistent results for us to test against, because that would make our tests flaky (and flaky tests are sometimes
described as worse than not having tests at all).

One solution to this is to create a trivial Elasticsearch server as part of our testing code. We can do this relatively easily
because we already have an API definition for it above. With a real server, we can then let our own application make
requests of it and we’ll simulate different scenarios in order to make sure our application responds the way we expect
it to.

Let’s start with some helpers which will allow us to run a testing version of our Elasticsearch server in another thread:

-- | We'll run the Elasticsearch server so we can test behaviors
withElasticsearch :: IO () -> IO ()
withElasticsearch action =
bracket (liftIO $ C.forkIO $ Warp.run 9999 esTestApp)
C.killThread
(const action)

esTestApp :: Application
esTestApp = serve (Proxy :: Proxy SearchAPI) esTestServer

esTestServer :: Server SearchAPI
esTestServer = getESDocument

-- This is the *mock* handler we're going to use. We create it
-- here specifically to trigger different behavior in our tests.
getESDocument :: Integer -> Handler Value
getESDocument docId

-- arbitrary things we can use in our tests to simulate failure:
-- we want to trigger different code paths.
| docId > 1000 = throwError err500
| docId > 500 = pure . Object $ HM.fromList [("bad", String "data")]
| otherwise = pure $ Object $ HM.fromList [("_source", Object $ HM.fromList [("a",

→˓String "b")])]

2.16. How To Test Servant Applications 99

Servant Documentation

Now, we should be ready to write some tests.

In this case, we’re going to use hspec-wai, which will give us a simple way to run our application, make requests,
and make assertions against the responses we receive.

Hopefully, this will simplify our testing code:

thirdPartyResourcesSpec :: Spec
thirdPartyResourcesSpec = around_ withElasticsearch $ do

-- we call `with` from `hspec-wai` and pass *real* `Application`
with (pure $ docsApp "localhost" "9999") $ do
describe "GET /docs" $ do
it "should be able to get a document" $

-- `get` is a function from hspec-wai`.
get "/docs/1" `shouldRespondWith` 200

it "should be able to handle connection failures" $
get "/docs/1001" `shouldRespondWith` 404

it "should be able to handle parsing failures" $
get "/docs/501" `shouldRespondWith` 400

it "should be able to handle odd HTTP requests" $
-- we can also make all kinds of arbitrary custom requests to see how
-- our server responds using the `request` function:
-- request :: Method -> ByteString -> [Header]
-- -> LB.ByteString -> WaiSession SResponse
request methodPost "/docs/501" [] "{" `shouldRespondWith` 405

it "we can also do more with the Response using hspec-wai's matchers" $
-- see also `MatchHeader` and JSON-matching tools as well...
get "/docs/1" `shouldRespondWith` 200 { matchBody = MatchBody bodyMatcher }

bodyMatcher :: [Network.HTTP.Types.Header] -> Body -> Maybe String
bodyMatcher _ body = case (decode body :: Maybe Value) of
-- success in this case means we return `Nothing`
Just val | val == (Object $ HM.fromList [("a", String "b")]) -> Nothing
_ -> Just "This is how we represent failure: this message will be printed"

Out of the box, hspec-wai provides a lot of useful tools for us to run tests against our application. What happens
when we run these tests?

$ cabal new-test all
...

GET /docs
should be able to get a document
should be able to handle connection failures
should be able to handle parsing failures
should be able to handle odd HTTP requests
we can also do more with the Response using hspec-wai's matchers

Fortunately, they all passed! Let’s move to another strategy: whole-API testing.

2.16.6 Servant Quickcheck

servant-quickcheck is a project that allows users to write tests for whole Servant APIs using quickcheck-style
property-checking mechanisms.

servant-quickcheck is great for asserting API-wide rules, such as “no endpoint throws a 500” or “all 301 status
codes also come with a Location header”. The project even comes with a number of predicates that reference the RFCs
they originate from.

100 Chapter 2. Cookbook

https://github.com/haskell-servant/servant-quickcheck
https://github.com/haskell-servant/servant-quickcheck/blob/master/src/Servant/QuickCheck/Internal/Predicates.hs
https://github.com/haskell-servant/servant-quickcheck/blob/master/src/Servant/QuickCheck/Internal/Predicates.hs

Servant Documentation

In other words, it’s one way to assert that your APIs conform to specs and best practices.

Quickcheckable API

Let’s make an API and a server to demonstrate how to use servant-quickcheck:

type API = ReqBody '[JSON] String :> Post '[JSON] String
:<|> Get '[JSON] Int
:<|> BasicAuth "some-realm" () :> Get '[JSON] ()

api :: Proxy API
api = Proxy

server :: IO (Server API)
server = do

mvar <- newMVar ""
return $ (\x -> liftIO $ swapMVar mvar x)

:<|> (liftIO $ readMVar mvar >>= return . length)
:<|> (const $ return ())

Using servant-quickcheck

Let’s build some tests for our API using servant-quickcheck.

Similar to the above examples, we’re going to create Specs, but in this case, we’ll rely on a number of predicates
available from servant-quickcheck to see if our API server conforms to best practices:

-- Let's set some QuickCheck values
args :: Args
args = defaultArgs { maxSuccess = 500 }

-- Here's a Servant Context object we'll use
ctx :: Context '[BasicAuthCheck ()]
ctx = BasicAuthCheck (const . return $ NoSuchUser) :. EmptyContext

servantQuickcheckSpec :: Spec
servantQuickcheckSpec = describe "" $ do
it "API demonstrates best practices" $
-- `withServerServer` and `withServantServerAndContext` come from `servant-

→˓quickcheck`
withServantServerAndContext api ctx server $ \burl ->

-- `serverSatisfies` and the predicates also come from `servant-quickcheck`
serverSatisfies api burl args (unauthorizedContainsWWWAuthenticate

<%> not500
<%> onlyJsonObjects -- this one isn't true!
<%> mempty)

it "API doesn't have these things implemented yet" $
withServantServerAndContext api ctx server $ \burl -> do

serverDoesntSatisfy api burl args (getsHaveCacheControlHeader
<%> notAllowedContainsAllowHeader
<%> mempty)

Let’s see what happens when we run these tests:

2.16. How To Test Servant Applications 101

Servant Documentation

API demonstrates best practices FAILED [2]
+++ OK, passed 500 tests.

API doesn't have these things implemented yet

src/Servant/QuickCheck/Internal/QuickCheck.hs:143:11:
2) Main[339:25] API demonstrates best practices

Failed:
Just Predicate failed

Predicate: onlyJsonObjects

Response:
Status code: 200
Headers: "Transfer-Encoding": "chunked"

"Date": "Fri, 12 Oct 2018 04:36:22 GMT"
"Server": "Warp/3.2.25"
"Content-Type": "application/json;charset=utf-8"

Body: ""

To rerun use: --match "/Main[339:25]/API demonstrates best practices/"

Randomized with seed 1046277487

Finished in 0.4306 seconds

Hmm. It looks like we thought our API only returned JSON objects, which is a best practice, but in fact, we did have
an endpoint that returned an empty body, which you can see in the printed response above: Body: "". We should
consider revising our API to only return top-level JSON Objects in the future!

Other Cool Things

servant-quickcheck also has a cool mechanism where you can compare two API servers to demonstrate that
they respond identically to requests. This may be useful if you are planning to rewrite one API in another lan-
guage or with another web framework. You have to specify whether you’re looking for jsonEquality vs regular
ByteString equality, though.

2.16.7 Conclusion

There are lots of techniques for testing and we only covered a few here.

Useful libraries such as hspec-wai have ways of running Wai Applications and sending requests to them, while
Servant’s type-level DSL for defining APIs allows us to more easily mock out servers and to derive clients, which will
only craft valid requests.

Lastly, if you want a broad overview of where your application fits in with regard to best practices, consider using
servant-quickcheck.

This program is available as a cabal project here.

2.17 OpenID Connect

Use OpenID Connect to authenticate your users. This example use google OIDC provider. It was made for a working
with single page application where some login token would be saved in the user agent local storage.

Workflow:

102 Chapter 2. Cookbook

https://github.com/haskell-servant/servant/tree/master/doc/cookbook/testing

Servant Documentation

1. user is presentend with a login button,

2. when the user click on the button it is redirected to the OIDC provider,

3. the user login in the OIDC provider,

4. the OIDC provider will redirect the user and provide a code,

5. the server will use this code to make a POST to the OIDC provider and will get back authentication infos,

6. The user will get display an HTML page that will save a secret identifying him in the local storage, then it will
be redirected to /.

Let’s put the imports behind us:

{-# LANGUAGE DataKinds #-}
{-# LANGUAGE DeriveGeneric #-}
{-# LANGUAGE DuplicateRecordFields #-}
{-# LANGUAGE FlexibleContexts #-}
{-# LANGUAGE FlexibleInstances #-}
{-# LANGUAGE MultiParamTypeClasses #-}
{-# LANGUAGE NoImplicitPrelude #-}
{-# LANGUAGE OverloadedLists #-}
{-# LANGUAGE OverloadedStrings #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE PolyKinds #-}
{-# LANGUAGE RankNTypes #-}
{-# LANGUAGE RecordWildCards #-}
{-# LANGUAGE ScopedTypeVariables #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE TypeOperators #-}
{-# LANGUAGE TypeSynonymInstances #-}

module Main where

import Protolude

import Data.Aeson
(FromJSON (..), (.:))

import qualified Data.Aeson as JSON
import qualified Data.Aeson.Types as AeT
import qualified Data.ByteString.Lazy as LBS
import qualified Data.List as List
import qualified Data.Text as Text
import Jose.Jwt

(Jwt (..), decodeClaims)
import Network.HTTP.Client

(Manager, newManager)
import Network.HTTP.Client.TLS

(tlsManagerSettings)
import Network.Wai.Handler.Warp

(run)
import Servant
import Servant.HTML.Blaze

(HTML)
import qualified System.Random as Random
import Text.Blaze

(ToMarkup (..))
import qualified Text.Blaze.Html as H
import Text.Blaze.Html5

(continues on next page)

2.17. OpenID Connect 103

Servant Documentation

(continued from previous page)

((!))
import qualified Text.Blaze.Html5 as H
import qualified Text.Blaze.Html5.Attributes as HA
import Text.Blaze.Renderer.Utf8

(renderMarkup)
import qualified Web.OIDC.Client as O

You’ll need to create a new OpenID Connect client in an OpenID Provider. This example was tested with Google.

You can find a list of public OIDC provider here: https://connect2id.com/products/nimbus-oauth-openid-connect-
sdk/openid-connect-providers

I copied some here:

• Google: https://developers.google.com/identity/protocols/OpenIDConnect more precisely:
https://console.developers.google.com/apis/credentials

• Microsoft: https://docs.microsoft.com/en-us/previous-versions/azure/dn645541(v=azure.100)

• Yahoo: https://developer.yahoo.com/oauth2/guide/openid_connect/

• PayPal: https://developer.paypal.com/docs/integration/direct/identity/log-in-with-paypal/

During the configuration you’ll need to provide a redirect uri. The redirect_uri should correspond to the uri user will
be redirected to after a successful login into the OpenID provider.

So during your test, you should certainly just use http://localhost:3000/login/cb. In general you should
use your own domain name.

You’ll then be given a client_id and a client_password. Fill those values in here:

oidcConf :: OIDCConf
oidcConf = OIDCConf { redirectUri = "http://localhost:3000/login/cb"

, clientId = "xxxxxxxxxxxx-xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx.apps.
→˓googleusercontent.com"

, clientPassword = "************************" }

Then we declare our main server:

main :: IO ()
main = do

oidcEnv <- initOIDC oidcConf
run 3000 (app oidcEnv)

type API = IdentityRoutes Customer
:<|> Get '[HTML] Homepage

api :: Proxy API
api = Proxy

server :: OIDCEnv -> Server API
server oidcEnv = serveOIDC oidcEnv handleOIDCLogin

:<|> return Homepage

-- | Then main app
app :: OIDCEnv -> Application
app oidcEnv = serve api (server oidcEnv)

104 Chapter 2. Cookbook

Servant Documentation

2.17.1 OIDC

That part try to separate concern, and certainly in a real world application that should be in its distinct module.

-- * OIDC

data OIDCConf =
OIDCConf { redirectUri :: ByteString

, clientId :: ByteString
, clientPassword :: ByteString
} deriving (Show, Eq)

First we need to initialize OIDC. A short explanation about it:

• to complete the workflow we need to make a POST request to the OIDC provider. So we need to create an http
manager to make those call properly.

• Then in order to prevent replay attack, each time an user wants to login we should provide a random string called
the state. When the user is redirected to the redirect_uri, the OIDC provider should provide the same
state along a code parameter.

initOIDC :: OIDCConf -> IO OIDCEnv
initOIDC OIDCConf{..} = do

mgr <- newManager tlsManagerSettings
prov <- O.discover "https://accounts.google.com" mgr
let oidc = O.setCredentials clientId clientPassword redirectUri (O.newOIDC prov)
return OIDCEnv { oidc = oidc

, mgr = mgr
, genState = genRandomBS
, prov = prov
, redirectUri = redirectUri
, clientId = clientId
, clientPassword = clientPassword
}

data OIDCEnv = OIDCEnv { oidc :: O.OIDC
, mgr :: Manager
, genState :: IO ByteString
, prov :: O.Provider
, redirectUri :: ByteString
, clientId :: ByteString
, clientPassword :: ByteString
}

The IdentityRoutes are two endpoints:

• an endpoint to redirect the users to the OIDC Provider,

• another one the user will be redirected to from the OIDC Provider.

type IdentityRoutes a =
"login" :> (-- redirect User to the OpenID Provider

Get '[JSON] NoContent
-- render the page that will save the user creds in the user-agent

:<|> "cb" :> QueryParam "error" Text
:> QueryParam "code" Text
:> Get '[HTML] User)

-- | gen a 302 redirect helper

(continues on next page)

2.17. OpenID Connect 105

Servant Documentation

(continued from previous page)

redirects :: (StringConv s ByteString) => s -> Handler ()
redirects url = throwError err302 { errHeaders = [("Location",toS url)]}

That function will generate the URL to redirect the users to when they’ll click on the login link: https://
yourdomain/login.

genOIDCURL :: OIDCEnv -> IO ByteString
genOIDCURL OIDCEnv{..} = do

st <- genState -- generate a random string
let oidcCreds = O.setCredentials clientId clientPassword redirectUri (O.newOIDC

→˓prov)
loc <- O.getAuthenticationRequestUrl oidcCreds [O.openId, O.email, O.profile] (Just

→˓st) []
return (show loc)

handleLogin :: OIDCEnv -> Handler NoContent
handleLogin oidcenv = do
loc <- liftIO (genOIDCURL oidcenv)
redirects loc
return NoContent

The AuthInfo is about the infos we can grab from OIDC provider.

To be more precise, the user should come with a code (a token) and POSTing that code to the correct OIDC provider
endpoint should return a JSON object. One of the field should be named id_token which should be a JWT contain-
ing all the informations we need. Depending on the scopes we asked we might get more informations.

-- | @AuthInfo@
data AuthInfo = AuthInfo { email :: Text

, emailVerified :: Bool
, name :: Text } deriving (Eq, Show, Generic)

instance FromJSON AuthInfo where
parseJSON (JSON.Object v) = do
email :: Text <- v .: "email"
email_verified :: Bool <- v .: "email_verified"
name :: Text <- v .: "name"
return $ AuthInfo (toS email) email_verified (toS name)

parseJSON invalid = AeT.typeMismatch "Coord" invalid
instance JSON.ToJSON AuthInfo where

toJSON (AuthInfo e ev n) =
JSON.object ["email" JSON..= (toS e :: Text)

, "email_verified" JSON..= ev
, "name" JSON..= (toS n :: Text)
]

type LoginHandler = AuthInfo -> IO (Either Text User)

The handleLoggedIn is that part that will retrieve the informations from the user once he is redirected from the
OIDC Provider after login.

If the user is redirected to the redirect_uri but with an error query parameter then it means something goes
wrong. If there is no error query param but a code query param it means the user sucessfully logged in. From there
we need to make a request to the token endpoint of the OIDC provider. Its a POST that should contains the code as
well as the client id & secret. This is the role of the requestTokens to make this HTTP POST.

From there we extract the claims of the JWT contained in one of the value of the JSON returned by the POST HTTP
Request.

106 Chapter 2. Cookbook

Servant Documentation

data User = User { userId :: Text
, userSecret :: Text
, localStorageKey :: Text
, redirectUrl :: Maybe Text
} deriving (Show,Eq,Ord)

handleLoggedIn :: OIDCEnv
-> LoginHandler -- ^ handle successful id
-> Maybe Text -- ^ error
-> Maybe Text -- ^ code
-> Handler User

handleLoggedIn oidcenv handleSuccessfulId err mcode =
case err of
Just errorMsg -> forbidden errorMsg
Nothing -> case mcode of
Just oauthCode -> do

tokens <- liftIO $ O.requestTokens (oidc oidcenv) (toS oauthCode) (mgr
→˓oidcenv)

putText . show . O.claims . O.idToken $ tokens
let jwt = toS . unJwt . O.jwt . O.idToken $ tokens

eAuthInfo = decodeClaims jwt :: Either O.JwtError (O.JwtHeader,AuthInfo)
case eAuthInfo of
Left jwtErr -> forbidden $ "JWT decode/check problem: " <> show jwtErr
Right (_,authInfo) ->

if emailVerified authInfo
then do
user <- liftIO $ handleSuccessfulId authInfo
either forbidden return user

else forbidden "Please verify your email"
Nothing -> do

liftIO $ putText "No code param"
forbidden "no code parameter given"

When you render a User with blaze-html, it will generate a page with a js that will put a secret for that user in the local
storage. And it will redirect the user to /.

instance ToMarkup User where
toMarkup User{..} = H.docTypeHtml $ do
H.head $
H.title "Logged In"

H.body $ do
H.h1 "Logged In"
H.p (H.toHtml ("Successful login with id " <> userId))
H.script (H.toHtml ("localStorage.setItem('" <> localStorageKey <> "','" <>

→˓userSecret <> "');"
<> "localStorage.setItem('user-id','" <> userId <> "');"

<> "window.location='" <> fromMaybe "/" redirectUrl <> "';" -
→˓- redirect the user to /

));

serveOIDC :: OIDCEnv -> LoginHandler -> Server (IdentityRoutes a)
serveOIDC oidcenv loginHandler =
handleLogin oidcenv :<|> handleLoggedIn oidcenv loginHandler

-- * Auth
type APIKey = ByteString
type Account = Text.Text

(continues on next page)

2.17. OpenID Connect 107

Servant Documentation

(continued from previous page)

type Conf = [(APIKey,Account)]
data Customer = Customer {
account :: Account
, apiKey :: APIKey
, mail :: Maybe Text
, fullname :: Maybe Text
}

Here is the code that display the homepage. It should contain a link to the the /login URL. When the user will click
on this link it will be redirected to Google login page with some generated informations.

The page also display the content of the local storage. And in particular the items api-key and user-id. Those
items should be set after a successful login when the user is redirected to /login/cb.

The logic used generally is to use that api-key to uniquely identify an user. Another option would have been to set a
cookie.

data Homepage = Homepage

instance ToMarkup Homepage where
toMarkup Homepage = H.docTypeHtml $ do
H.head $ do

H.title "OpenID Connect Servant Example"
H.style (H.toHtml ("body { font-family: monospace; font-size: 18px; }" :: Text.

→˓Text))
H.body $ do
H.h1 "OpenID Connect Servant Example"
H.div $
H.a ! HA.href "/login" $ "Click here to login"

H.ul $ do
H.li $ do
H.span "API Key in Local storage: "
H.script (H.toHtml ("document.write(localStorage.getItem('api-key'));" ::

→˓Text.Text))
H.li $ do
H.span "User ID in Local storage: "
H.script (H.toHtml ("document.write(localStorage.getItem('user-id'));" ::

→˓Text.Text))

We need some helpers to generate random string for generating state and API Keys.

-- | generate a random Bystestring, not necessarily extremely good randomness
-- still the password will be long enough to be very difficult to crack
genRandomBS :: IO ByteString
genRandomBS = do
g <- Random.newStdGen
Random.randomRs (0, n) g & take 42 & fmap toChar & readable 0 & toS & return
where
n = length letters - 1
toChar i = letters List.!! i
letters = ['A'..'Z'] <> ['0'..'9'] <> ['a'..'z']
readable :: Int -> [Char] -> [Char]
readable _ [] = []
readable i str =
let blocksize = case n of

0 -> 8
1 -> 4

(continues on next page)

108 Chapter 2. Cookbook

Servant Documentation

(continued from previous page)

2 -> 4
3 -> 4
_ -> 12

block = take blocksize str
rest = drop blocksize str

in if List.null rest
then str
else block <> "-" <> readable (i+1) rest

customerFromAuthInfo :: AuthInfo -> IO Customer
customerFromAuthInfo authinfo = do

apikey <- genRandomBS
return Customer { account = toS (email authinfo)

, apiKey = apikey
, mail = Just (toS (email authinfo))
, fullname = Just (toS (name authinfo))
}

handleOIDCLogin :: LoginHandler
handleOIDCLogin authInfo = do
custInfo <- customerFromAuthInfo authInfo
if emailVerified authInfo
then return . Right . customerToUser $ custInfo
else return (Left "You emails is not verified by your provider. Please verify

→˓your email.")
where
customerToUser :: Customer -> User
customerToUser c =

User { userId = toS (account c)
, userSecret = toS (apiKey c)
, redirectUrl = Nothing
, localStorageKey = "api-key"
}

2.17.2 Error helpers

data Err = Err { errTitle :: Text
, errMsg :: Text }

instance ToMarkup Err where
toMarkup Err{..} = H.docTypeHtml $ do
H.head $ do

H.title "Error"
H.body $ do

H.h1 (H.a ! HA.href "/" $ "Home")
H.h2 (H.toHtml errTitle)
H.p (H.toHtml errMsg)

format :: ToMarkup a => a -> LBS.ByteString
format err = toMarkup err & renderMarkup

appToErr :: ServerError -> Text -> ServerError
appToErr x msg = x
{ errBody = toS $ format (Err (toS (errReasonPhrase x)) msg)
, errHeaders = [("Content-Type","text/html")]}

(continues on next page)

2.17. OpenID Connect 109

Servant Documentation

(continued from previous page)

unauthorized :: (MonadError ServerError m) => Text -> m a
unauthorized = throwError . unauthorizedErr

unauthorizedErr :: Text -> ServerError
unauthorizedErr = appToErr err401

forbidden :: (MonadError ServerError m) => Text -> m a
forbidden = throwError . forbiddenErr

forbiddenErr :: Text -> ServerError
forbiddenErr = appToErr err403

notFound :: (MonadError ServerError m) => Text -> m a
notFound = throwError . notFoundErr

notFoundErr :: Text -> ServerError
notFoundErr = appToErr err404

preconditionFailed :: (MonadError ServerError m) => Text -> m a
preconditionFailed = throwError . preconditionFailedErr

preconditionFailedErr :: Text -> ServerError
preconditionFailedErr = appToErr err412

serverError :: (MonadError ServerError m) => Text -> m a
serverError = throwError . serverErrorErr

serverErrorErr :: Text -> ServerError
serverErrorErr = appToErr err500

Example Projects

• [example-servant-minimal](https://github.com/haskell-servant/example-servant-minimal):

A minimal example for a web server written using servant-server, including a test-suite using
[hspec](http://hspec.github.io/) and servant-client.

• [servant-examples](https://github.com/sras/servant-examples):

Similar to [the cookbook](https://docs.servant.dev/en/latest/cookbook/index.html) but with no expla-
nations, for developers who just want to look at code examples to find out how to do X or Y with
servant.

• [stack-templates](https://github.com/commercialhaskell/stack-templates)

Repository for templates for haskell projects, including some templates using servant. These tem-
plates can be used with stack new.

• [custom-monad](https://github.com/themoritz/diener):

A custom monad that can replace IO in servant applications. It adds among other things logging
functionality and a reader monad (for database connections). A full usage example of servant/diener
is also provided.

• [example-servant-elm](https://github.com/haskell-servant/example-servant-elm):

An example for a project consisting of

– a backend web server written using servant-server,

110 Chapter 2. Cookbook

http://hspec.github.io/
https://docs.servant.dev/en/latest/cookbook/index.html

Servant Documentation

– a frontend written in [elm](http://elm-lang.org/) using [servant-elm](https://github.com/
mattjbray/servant-elm) to generate client functions in elm for the API,

– test-suites for both the backend and the frontend.

• [servant-purescript](https://github.com/eskimor/servant-purescript/tree/master/examples/central-
counter):

An example consisting of

– a backend that uses servant

– a frontend written in [PureScript](http://www.purescript.org/) using [servant-purescript](https:
//github.com/eskimor/servant-purescript) to generate an API wrapper in PureScript to interface
the web API with

• [example-servant-persistent](https://github.com/haskell-servant/example-servant-persistent):

An example for a web server written with servant-server and [persistent](https://www.stackage.org/
package/persistent) for writing data into a database.

• [full-example-servant-elm-auth-yeshql-postgresql](https://github.com/aRkadeFR/FlashCard):

A full open source website written with servant-server, yeshql, postgresql and elm 0.19.

• [import Servant github search](https://github.com/search?q=%22import+Servant%22+language%3AHaskell&
type=Code)

It has thousands of results and can be a good way to see how people use servant in their projects or
even to discover servant-related libraries.

2.17. OpenID Connect 111

http://elm-lang.org/
https://github.com/mattjbray/servant-elm
https://github.com/mattjbray/servant-elm
http://www.purescript.org/
https://github.com/eskimor/servant-purescript
https://github.com/eskimor/servant-purescript
https://www.stackage.org/package/persistent
https://www.stackage.org/package/persistent
https://github.com/search?q=%22import+Servant%22+language%3AHaskell&type=Code
https://github.com/search?q=%22import+Servant%22+language%3AHaskell&type=Code

Servant Documentation

112 Chapter 2. Cookbook

CHAPTER 3

Helpful Links

• the central documentation (this site): docs.servant.dev

• the github repo: github.com/haskell-servant/servant

• the issue tracker (Feel free to create issues and submit PRs!): https://github.com/haskell-servant/servant/issues

• the irc channel: #servant on freenode

• the mailing list: groups.google.com/forum/#!forum/haskell-servant

• blog posts and videos and slides of some talks on servant: www.servant.dev

• the servant packages on hackage:

– hackage.haskell.org/package/servant

– hackage.haskell.org/package/servant-server

– hackage.haskell.org/package/servant-client

– hackage.haskell.org/package/servant-blaze

– hackage.haskell.org/package/servant-lucid

– hackage.haskell.org/package/servant-cassava

– hackage.haskell.org/package/servant-docs

– hackage.haskell.org/package/servant-foreign

– hackage.haskell.org/package/servant-js

– hackage.haskell.org/package/servant-mock

113

http://docs.servant.dev/
https://github.com/haskell-servant/servant
https://github.com/haskell-servant/servant/issues
https://groups.google.com/forum/#!forum/haskell-servant
http://www.servant.dev
http://hackage.haskell.org/package/servant
http://hackage.haskell.org/package/servant-server
http://hackage.haskell.org/package/servant-client
http://hackage.haskell.org/package/servant-blaze
http://hackage.haskell.org/package/servant-lucid
http://hackage.haskell.org/package/servant-cassava
http://hackage.haskell.org/package/servant-docs
http://hackage.haskell.org/package/servant-foreign
http://hackage.haskell.org/package/servant-js
http://hackage.haskell.org/package/servant-mock

Servant Documentation

114 Chapter 3. Helpful Links

CHAPTER 4

Principles

servant has the following guiding principles:

• concision

This is a pretty wide-ranging principle. You should be able to get nice documentation for your web
servers, and client libraries, without repeating yourself. You should not have to manually serialize and
deserialize your resources, but only declare how to do those things once per type. If a bunch of your
handlers take the same query parameters, you shouldn’t have to repeat that logic for each handler,
but instead just “apply” it to all of them at once. Your handlers shouldn’t be where composition goes
to die. And so on.

• flexibility

If we haven’t thought of your use case, it should still be easily achievable. If you want to use
templating library X, go ahead. Forms? Do them however you want, but without difficulty. We’re
not opinionated.

• separation of concerns

Your handlers and your HTTP logic should be separate. True to the philosophy at the core of HTTP
and REST, with servant your handlers return normal Haskell datatypes - that’s the resource. And
then from a description of your API, servant handles the presentation (i.e., the Content-Types). But
that’s just one example.

• type safety

Want to be sure your API meets a specification? Your compiler can check that for you. Links you
can be sure exist? You got it.

To stick true to these principles, we do things a little differently than you might expect. The core idea is reifying the
description of your API. Once reified, everything follows. We think we might be the first web framework to reify API
descriptions in an extensible way. We’re pretty sure we’re the first to reify it as types.

115

	Tutorial
	A web API as a type
	Serving an API
	Querying an API
	Generating Javascript functions to query an API
	Documenting an API
	Authentication in Servant

	Cookbook
	Structuring APIs
	Using generics
	Serving web applications over HTTPS
	SQLite database
	PostgreSQL connection pool
	Using a custom monad
	Inspecting, debugging, simulating clients and more
	Basic Authentication
	Streaming out-of-the-box
	Combining JWT-based authentication with basic access authentication
	Hoist Server With Context for Custom Monads
	File Upload (multipart/form-data)
	Pagination
	Generating mock curl calls
	Error logging with Sentry
	How To Test Servant Applications
	OpenID Connect

	Helpful Links
	Principles

