
gwf Documentation
Release 1.5.1

Thomas Mailund

Jun 03, 2019

CONTENTS

1 Installation 3

2 Getting Started 5
2.1 Tutorial . 5
2.2 Patterns . 13

3 Topic Guides 17
3.1 Topic Guides . 17

4 Development 21
4.1 Development . 21

5 Reference 27
5.1 Settings . 27
5.2 Backends . 27
5.3 API . 29

6 Change Log 39
6.1 Version 1.5.1 . 39
6.2 Version 1.5.0 . 39
6.3 Version 1.4.0 . 39
6.4 Version 1.3.2 . 39
6.5 Version 1.3.1 . 40
6.6 Version 1.3.0 . 40
6.7 Version 1.2.1 . 41
6.8 Version 1.2 . 41
6.9 Version 1.1 . 41
6.10 Version 1.0 . 42
6.11 Version 1.0b10 . 43
6.12 Version 1.0b9 . 43
6.13 Version 1.0b8 . 43
6.14 Version 1.0b7 . 44
6.15 Version 1.0b6 . 44
6.16 Version 1.0b5 . 45
6.17 Contributors . 45

Python Module Index 47

Index 49

i

ii

gwf Documentation, Release 1.5.1

gwf is a flexible, pragmatic workflow tool for building and running large, scientific workflows. It runs on Python 3.5+
and is developed at the Bioinformatics Research Centre (BiRC), Aarhus University.

Examples To get a feeling for what a gwf workflow looks like, have a look at a few examples.

Getting started To quickly get started writing workflows in gwf you can read the Tutorial.

Extending We don’t have the backend you need to run your workflow on your cluster? See the Writing Backends
section to roll your own.

Contributing We aim to make gwf a community developed project. Learn how to contribute.

CONTENTS 1

https://github.com/mailund/gwf/tree/master/examples

gwf Documentation, Release 1.5.1

2 CONTENTS

CHAPTER

ONE

INSTALLATION

To install gwf via pip:

pip install gwf

To install gwf via conda:

conda config --add channels gwforg
conda install gwf

We recommend that you install gwf in a project-specific environment:

conda config --add channels gwforg
conda create -n myproject python=3.5 gwf dep1 dep2 ...
source activate myproject

You can find the code for gwf here. You are encouraged to report any issues through the issue tracker, which is also a
good place to ask questions.

3

https://github.com/gwforg/gwf
https://github.com/gwforg/gwf/issues

gwf Documentation, Release 1.5.1

4 Chapter 1. Installation

CHAPTER

TWO

GETTING STARTED

2.1 Tutorial

In this tutorial we will explore various concepts in gwf. We will define workflows and see how gwf can help us keep
track of the progress of workflow execution, the output of targets and dependencies between targets. Have fun!

We’ll assume that you have the Anaconda distribution installed and that you are familiar with how to install and
manage packages and environments through the conda package manager.

First, let’s install gwf in its own conda environment. Create a new environment for your project, we’ll call it myproject.

$ conda config --add channels gwforg
$ conda create -n myproject python=3.5 gwf
$ source activate myproject

You should now be able to run the following command.

$ gwf --help

This should show you the commands and options available through gwf.

Caution: You may see an error similar to this when you try running gwf :

UnicodeEncodeError: 'charmap' codec can't encode character '\u2020' in
position 477: character maps to <undefined>

This error occurs because your isn’t configured to use UTF-8 as the default encoding. To fix the error insert the
following lines in your .bashrc file:

export LANG=en_US.utf8
export LC_ALL=en_US.utf8

If you’re not in the US you may want to set it to something else. For example, if you’re in Denmark you may want
to use the following configuration:

export LANG=da_DK.utf8
export LC_ALL=da_DK.utf8

2.1.1 A Minimal Workflow

To get started we must define a workflow file containing a workflow to which we can add targets. Unless gwf is told
otherwise it assumes that the workflow file is called workflow.py and that the workflow is called gwf :

5

https://www.continuum.io/downloads

gwf Documentation, Release 1.5.1

from gwf import Workflow

gwf = Workflow()

gwf.target('MyTarget', inputs=[], outputs=[]) << """
echo hello world
"""

In the example above we define a workflow and then add a target called MyTarget. A target is a single unit of
computation that uses zero or more files (inputs) and produces zero or more files (outputs).

The target defined above does not use any files and doesn’t produce any files either. However, it does run a single
command (echo hello world), but the output of the command is thrown away. Let’s fix that! Change the target
definition to this:

gwf.target('MyTarget', inputs=[], outputs=['greeting.txt']) << """
echo hello world
"""

This tells gwf that the target will create a file called greeting.txt when it is run. However, the target does not
actually create the file yet. Let’s fix that too:

gwf.target('MyTarget', inputs=[], outputs=['greeting.txt']) << """
echo hello world > greeting.txt
"""

There you go! We have now declared a workflow with one target and that target creates the file greeting.txt with
the line hello world in it. Now let’s try to run our workflow. . .

2.1.2 Running Your First Workflow

First, let’s make a directory for our project. We’ll call the directory myproject. Now create an empty file called
workflow.py in the project directory and paste the workflow specification into it:

from gwf import Workflow

gwf = Workflow()

gwf.target('MyTarget', inputs=[], outputs=['greeting.txt']) << """
echo hello world > greeting.txt
"""

We’re now ready to run our workflow. However, gwf does not actually execute the targets in a workflow, it only
schedules the target using a backend. This may sound cumbersome, but it enables gwf to run workflows in very
different environments: anything from your laptop to a cluster with thousands of cores available.

For this tutorial we just want to run our workflows locally. To do this we can use the built-in local backend.
Essentially this backend allows you to run workflows utilizing all cores of your computer and thus it can be very
useful for small workflows that don’t require a lot of resources.

First, open another terminal window and navigate to the myproject directory. Then run the command:

$ gwf workers
Started 4 workers, listening on port 12345

This will start a pool of workers that gwf can now submit targets to. Switch back to the other terminal and then run:

6 Chapter 2. Getting Started

gwf Documentation, Release 1.5.1

$ gwf run
Scheduling target MyTarget
Submitting target MyTarget

gwf schedules and then submits MyTarget to the pool of workers you started in the other terminal window.

This says that gwf considered the target for execution and then decided to submit it to the backend (because the output
file, greeting.txt, does not already exist).

Within a few seconds you should see greeting.txt in the project directory. Try to open it in your favorite text
editor!

Now try the same command again:

$ gwf run
Scheduling target MyTarget

This time, gwf considers the target for submission, but decides not to submit it since all of the output files (only one
in this case) exist.

Note: When you’ve completed this tutorial, you probably want to close the local workers. To do this simply change
to the terminal where you started the workers and press Control-c.

2.1.3 Setting the Default Verbosity

Maybe you got tired of seeing this much output from gwf all the time, despite the pretty colors. We can change the
verbosity (how chatty gwf is) using the -v/--verbose flag:

$ gwf -v warning run

Now gwf only prints warnings. However, it quickly gets annoying to type this again and again, so let’s configure gwf
to make warning the default verbosity level.

$ gwf config set verbose warning
$ gwf run

As we’d expect, gwf outputs the same as before, but this time we didn’t have to set the -v warning flag!

We can configure other aspects of gwf through the config command. For more details, refer to the Configuration page.

2.1.4 Defining Targets with Dependencies

Targets in gwf represent isolated units of work. However, we can declare dependencies between targets to construct
complex workflows. A target B that depends on a target A will only run when A has been run successfully (that is, if
all of the output files of A exist).

In gwf, dependencies are declared through file dependencies. This is best understood through an example:

from gwf import Workflow

gwf = Workflow()

gwf.target('TargetA', inputs=[], outputs=['x.txt']) << """
echo "this is x" > x.txt

(continues on next page)

2.1. Tutorial 7

gwf Documentation, Release 1.5.1

(continued from previous page)

"""

gwf.target('TargetB', inputs=[], outputs=['y.txt']) << """
echo "this is y" > y.txt
"""

gwf.target('TargetC', inputs=['x.txt', 'y.txt'], outputs=['z.txt']) << """
cat x.txt y.txt > z.txt
"""

In this workflow, TargetA and TargetB each produce a file. TargetC declares that it needs two files as inputs.
Since the file names match the file names produced by TargetA and TargetB, TargetC depends on these two
targets.

Let’s try to run this workflow:

$ gwf run
Scheduling target TargetC
Scheduling dependency TargetA of TargetC
Submitting target TargetA
Scheduling dependency TargetB of TargetC
Submitting target TargetB
Submitting target TargetC

(You can leave out the -v info option if you set it as the default in the previous section).

Notice that gwf first attempts to submit TargetC. However, because of the file dependencies it first schedules each
dependency and submits those to the backend. It then submits TargetC and makes sure that it will only be run when
both TargetA and TargetB has been run. If we decided that we needed to re-run TargetC, but not TargetA
and TargetB, we could just delete z.txt and run gwf run again. gwf will automatically figure out that it only
needs to run TargetC again and submit it to the backend.

What happens if we do something nonsensical like declaring a cyclic dependency? Let’s try:

from gwf import Workflow

gwf = Workflow()

gwf.target('TargetA', inputs=['x.txt'], outputs=['x.txt']) << """
echo "this is x" > x.txt
"""

Run this workflow. You should see the following:

Error: Target TargetA depends on itself.

2.1.5 Observing Target Execution

As workflows get larger they make take a very long time to run. With gwf it’s easy to see how many targets have been
completed, how many failed and how many are still running using the gwf status command. We’ll modify the
workflow from earlier to fake that each target takes some time to run:

from gwf import Workflow

gwf = Workflow()

(continues on next page)

8 Chapter 2. Getting Started

gwf Documentation, Release 1.5.1

(continued from previous page)

gwf.target('TargetA', inputs=[], outputs=['x.txt']) << """
sleep 20 && echo "this is x" > x.txt
"""

gwf.target('TargetB', inputs=[], outputs=['y.txt']) << """
sleep 30 && echo "this is y" > y.txt
"""

gwf.target('TargetC', inputs=['x.txt', 'y.txt'], outputs=['z.txt']) << """
sleep 10 && cat x.txt y.txt > z.txt
"""

Now run gwf status (Remember to remove x.txt, y.txt and z.txt, otherwise gwf will not submit the targets
again). You should see something like this, but with pretty colors.

TargetA shouldrun 0.00%
TargetB shouldrun 0.00%
TargetC shouldrun 0.00%

Each target in the workflow is shown on a separate line. We can see the status of the target (shouldrun) and percentage
completion. The percentage tells us how many dependencies of the target have been completed. If all dependencies of
the target, and the target itself, have been completed, the percentage will be 100%.

Let’s try to run the workflow and see what happens.

$ gwf run
$ gwf status
TargetA running 0.00%
TargetB submitted 0.00%
TargetC submitted 0.00%

The R shows that one third of the targets are running (since I’m only running with one worker, only one target can run
at a time) and the other two thirds have been submitted. Running the status command again after some time should
show something like this.

TargetA completed 100.00%
TargetB running 0.00%
TargetC submitted 33.33%

Now the target that was running before has completed, and another target is now running, while the final target is still
just submitted. After some time, run the status command again. The last target should now be running.

TargetA completed 100.00%
TargetB completed 100.00%
TargetC running 66.67%

After a while, all targets should have completed.

TargetA completed 100.00%
TargetB completed 100.00%
TargetC completed 100.00%

Here’s a few neat things you should know about the status command:

• If you only want to see endpoints (targets that no other targets depend on), you can use the --endpoints flag.

2.1. Tutorial 9

gwf Documentation, Release 1.5.1

• You can use wildcards in target names. For example, gwf status 'Foo*' will list all targets beginning
with Foo. You can specify multiple targets/patterns by separating them with a space. This also works in the
cancel and clean commands (but remember the quotes around the pattern)!

• Only want to see which targets are running? You can filter targets by their status using e.g. gwf status
-s running. You can also combine filters, i.e. gwf status --endpoints --status running
'Align*' to show all endpoints that are running and where the name starts with Align.

For more details you can always refer to builtin help with gwf status --help.

2.1.6 Reusable Targets with Templates

Often you will want to reuse a target definition for a lot of different files. For example, you may have two files with
reads that you need to map to a reference genome. The mapping is the same for the two files, so it would be annoying
to repeat it in the workflow specification.

Instead, gwf allows us to define a template which can be used to generate one or more targets easily. In general, a
template is just a function which returns a tuple containing four values:

1. The inputs files,

2. The outputs files,

3. a dictionary with options for the target that is to be generated, for example how many cores the template needs
and which files it depends on,

4. a string which contains the specification of the target that is to be generated.

Templates are great because they allow you to reuse functionality and encapsulate target creation logic. Let’s walk
through the example above.

Note: Code and data files for this example is available here. To get started, follow these steps:

1. Change your working directory to the readmapping directory.

2. Run conda env create to create a new environment called readmapping. This will install all required
packages, including gwf itself, samtools and bwa.

3. Activate the environment with source activate readmapping.

4. Open another terminal and navigate to the same directory.

5. Activate the environment in this terminal too, using the same command as above.

6. Start a pool with two workers with gwf workers -n 2.

7. Jump back to the first terminal. Configure gwf to use the local backend for this project using gwf config
backend local.

8. You should now be able to run gwf status and all of the other gwf commands used in this tutorial.

Our reference genome is stored in ponAbe2.fa.gz, so we’ll need to unzip it first. Let’s write a template that
unpacks files.

def unzip(inputfile, outputfile):
"""A template for unzipping files."""
inputs = [inputfile]
outputs = [outputfile]
options = {

'cores': 1,

(continues on next page)

10 Chapter 2. Getting Started

https://github.com/mailund/gwf/blob/master/examples/readmapping/

gwf Documentation, Release 1.5.1

(continued from previous page)

'memory': '2g',
}

spec = '''
gzcat {} > {}
'''.format(inputfile, outputfile)

return inputs, outputs, options, spec

This is just a normal Python function that returns a tuple. The function takes two arguments, the name of the input
file and the name of the output file. In the function we define the inputs and outputs files, a dictionary that defines the
options of the targets created with this template, and a string describing the action of the template.

We can now create a concrete target using this template:

gwf.target_from_template('UnzipGenome',
unzip(inputfile='ponAbe2.fa.gz',

outputfile='ponAbe2.fa'))

You could run the workflow now. The UnzipGenome target would be scheduled and submitted, and after a few
seconds you should have a ponAbe2.fa file in the project directory.

Let’s now define another template for indexing a genome.

def bwa_index(ref_genome):
"""Template for indexing a genome with `bwa index`."""
inputs = ['{}.fa'.format(ref_genome)]
outputs = ['{}.amb'.format(ref_genome),

'{}.ann'.format(ref_genome),
'{}.pac'.format(ref_genome),
'{}.bwt'.format(ref_genome),
'{}.sa'.format(ref_genome),
]

options = {
'cores': 16,
'memory': '1g',

}

spec = """
bwa index -p {ref_genome} -a bwtsw {ref_genome}.fa
""".format(ref_genome=ref_genome)

return inputs, outputs, options, spec

This template looks more complicated, but really it’s the same thing as before. We define the inputs and outputs, a
dictionary with options and a string with the command that will be executed.

Let’s use this template to create a target for indexing the reference genome:

gwf.target_from_template('IndexGenome',
bwa_index(ref_genome='ponAbe2'))

Finally, we’ll create a template for actually mapping the reads to the reference.

def bwa_map(ref_genome, r1, r2, bamfile):
"""Template for mapping reads to a reference genome with `bwa` and `samtools`."""
inputs = [r1, r2,

(continues on next page)

2.1. Tutorial 11

gwf Documentation, Release 1.5.1

(continued from previous page)

'{}.amb'.format(ref_genome),
'{}.ann'.format(ref_genome),
'{}.pac'.format(ref_genome),
]

outputs = [bamfile]
options = {

'cores': 16,
'memory': '1g',

}

spec = '''
bwa mem -t 16 {ref_genome} {r1} {r2} | \
samtools sort | \
samtools rmdup -s - {bamfile}
'''.format(ref_genome=ref_genome, r1=r1, r2=r2, bamfile=bamfile)

return inputs, outputs, options, spec

This is much the same as the previous template. Here’s how we’re going to use it:

gwf.target_from_template('MapReads',
bwa_map(ref_genome='ponAbe2',

r1='Masala_R1.fastq.gz',
r2='Masala_R2.fastq.gz',
bamfile='Masala.bam'))

As you can see, templates are just normal Python functions and thus they can be inspected and manipulated in much
the same way. Also, templates can be put into modules and imported into your workflow files to facilitate reuse. It’s
all up to you!

2.1.7 Viewing Logs

We may be curious about what the MapReads target wrote to the console when the target ran, to see if there were any
warnings. If a target failed, it’s also valuable to see it’s output to diagnose the problem. Luckily, gwf makes this very
easy.

$ gwf logs MapReads

When you run this command you’ll see nothing. This is because the gwf logs command by default only shows
things written to stdout by the target, and not stderr, and apparently nothing was written to stdout in this target. Let’s
try to take a look at stderr instead by applying the --stderr flag (or the short version -e).

$ gwf logs --stderr MapReads
[M::bwa_idx_load_from_disk] read 0 ALT contigs
[M::process] read 15000 sequences (1500000 bp)...
[M::mem_pestat] # candidate unique pairs for (FF, FR, RF, RR): (1, 65, 1, 0)
[M::mem_pestat] skip orientation FF as there are not enough pairs
[M::mem_pestat] analyzing insert size distribution for orientation FR...
[M::mem_pestat] (25, 50, 75) percentile: (313, 369, 429)
[M::mem_pestat] low and high boundaries for computing mean and std.dev: (81, 661)
[M::mem_pestat] mean and std.dev: (372.88, 86.21)
[M::mem_pestat] low and high boundaries for proper pairs: (1, 777)
[M::mem_pestat] skip orientation RF as there are not enough pairs
[M::mem_pestat] skip orientation RR as there are not enough pairs
[M::mem_process_seqs] Processed 15000 reads in 1.945 CPU sec, 0.678 real sec

(continues on next page)

12 Chapter 2. Getting Started

gwf Documentation, Release 1.5.1

(continued from previous page)

[main] Version: 0.7.15-r1140
[main] CMD: bwa mem -t 16 ponAbe2 Masala_R1.fastq.gz Masala_R2.fastq.gz
[main] Real time: 0.877 sec; CPU: 2.036 sec

We can do this for any target in our workflow. The logs shown are always the most recent ones since gwf does not
archive logs from old runs of targets.

2.1.8 Cleaning Up

Now that we have run our workflow we may wish to remove intermediate files to save disk space. In gwf we can use
the gwf clean command for this:

$ gwf clean

This command only removes files produced by an endpoint target (a target which no other target depends on):

$ gwf clean
Will delete 1.3MiB of files!
Deleting output files of IndexGenome
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.amb" from target
→˓"IndexGenome"
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.ann" from target
→˓"IndexGenome"
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.pac" from target
→˓"IndexGenome"
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.bwt" from target
→˓"IndexGenome"
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.sa" from target
→˓"IndexGenome"
Deleting output files of UnzipGenome
Deleting file "/Users/das/Code/gwf/examples/readmapping/ponAbe2.fa" from target
→˓"UnzipGenome"

We can tell gwf to remove all files by running gwf clean --all.

2.1.9 A Note About Reproducibility

Reproducibility is an important part of research and since gwf workflows describe every step of your computation,
how the steps are connected, and the files produced in each step, it’s a valuable tool in making your workflows
reproducible. In combination with the conda package manager and the concept of environments, you can build
completely reproducible workflows in a declarative, flexible fashion.

Consider the read mapping example used above. Since we included a specification of the complete environment
through a environment.yml file, which even included samtools, bwa and gwf itself, we were able to easily create
a working environment with exactly the right software versions used for our workflow. The whole workflow could also
easily be copied to a cluster and run through e.g. the Slurm backend, since we can exactly reproduce the environment
used locally.

2.2 Patterns

This guide takes you through some advanced features and patterns that can be utilized in gwf. Remember that gwf is
just a way of generating workflows using the Python programming language and thus many of these patterns simply

2.2. Patterns 13

gwf Documentation, Release 1.5.1

use plain Python code to abstract and automate certain things.

2.2.1 Iterating Over a Parameter Space

Say that you have a workflow that runs a program with many different combinations of parameters, e.g. the parameters
xs, ys, and zs. Each parameter can take multiple values:

We now want to run out program simulate with all possible combinations of these parameters. To do this, we’ll use
the Python function itertools.product() to create an iterator over all combinations of the parameters:

import itertools

parameter_space = itertools.product(xs, ys, zs)

We can then iterate over the parameter space:

gwf = Workflow()

for x, y, z in parameter_space:
gwf.target(

name='sim_{}_{}_{}'.format(x, y, z),
inputs=['input.txt'],
outputs=['output_{}_{}_{}.txt'.format(x, y, z)],

) << """
./simulate {} {} {}
""".format(x, y, z)

2.2.2 Dynamically Generating a Workflow

We can make our workflows more reusable by generating them dynamically. For example, we may wish to make it
easy for others to change the inputs to our workflow or let users specify a different output directory. When generating
workflows dynamically you can essentially parameterize the workflow in any way you want. In combination with
inclusion of workflows into other workflows, this allows for extremely powerful composition.

To dynamically generate a workflow, we simply create a function which builds the workflow and returns it:

import os.path.join
from gwf import Workflow

def my_fancy_workflow(output_dir='outputs/'):
Create an empty workflow object.
w = Workflow()

Add targets to the workflow object, respecting the value of `output_dir`.
foo_output = os.path.join(output_dir, 'output1.txt')
gwf.target(

name='Foo',
inputs=['input.txt'],
outputs=[foo_output],

) << """
./run_foo > {}
""".format(foo_output)

bar_output = os.path.join(output_dir, 'output2.txt')
gwf.target(

(continues on next page)

14 Chapter 2. Getting Started

https://docs.python.org/3.5/library/itertools.html#itertools.product

gwf Documentation, Release 1.5.1

(continued from previous page)

name='Bar',
inputs=[foo_output],
outputs=[bar_output]

)

Now return the workflow.
return w

You can put this function in file next to your workflow, or any other place from which you can import the function. In
this case, let’s put the file next to workflow.py in a file called fancy.py.

In workflow.py we can then use the workflow as follows:

from fancy import my_fancy_workflow

gwf = my_fancy_workflow()

We can now run the workflow as usual:

$ gwf run

However, we can now easily change the output directory:

from fancy import my_fancy_workflow

gwf = my_fancy_workflow(output_dir='new_outputs/')

Parameterizing the workflow can also let the user choose to deactivate parts of the workflow. For example, imagine
that Bar generates summary files that may now always be needed. In this case, we can let the user choose to leave it
out:

import os.path.join
from gwf import Workflow

def my_fancy_workflow(output_dir='outputs/', summarize=True):
Create an empty workflow object.
w = Workflow()

Add targets to the workflow object, respecting the value of `output_dir`.
foo_output = os.path.join(output_dir, 'output1.txt')
gwf.target(

name='Foo',
inputs=['input.txt'],
outputs=[foo_output],

) << """
./run_foo > {}
""".format(foo_output)

Only create target `Bar` if we want to summarize the data.
if summarize:

bar_output = os.path.join(output_dir, 'output2.txt')
gwf.target(

name='Bar',
inputs=[foo_output],
outputs=[bar_output]

)

(continues on next page)

2.2. Patterns 15

gwf Documentation, Release 1.5.1

(continued from previous page)

Now return the workflow.
return w

In workflow.py we can then use the workflow as follows:

from fancy import my_fancy_workflow

gwf = my_fancy_workflow(summarize=False)

2.2.3 External Configuration of Workflows

In the previous section we saw how we can parameterize workflows. However, in some cases we may want to let the
user of our workflow specify the parameters without touching any Python code at all. That is, we want an external
configuration file.

The configuration format could be anything, but in this example we’ll use a JSON as the configuration format. First,
this is what our configuration file is going to look like:

{
"output_dir": "some_output_directory/",
"summarize": true

}

We put this file next to workflow.py, e.g. as config.json. We can now read the configuration using the Python
json module in workflow.py:

import json
from fancy import my_fancy_workflow

config = json.load(open('config.json'))

gwf = my_fancy_workflow(
output_dir=config['output_dir'],
summarize=config['summarize'],

)

We can now change the values in config.json and run the workflow as usual.

16 Chapter 2. Getting Started

CHAPTER

THREE

TOPIC GUIDES

3.1 Topic Guides

Topic guides cover specific gwf features individually, giving an overview of how they’re used and how they work.

3.1.1 Configuration

Configuration of gwf is project-specific and thus all configuration must be done in the project directory where the
workflow file is located.

To see the value of a configuration key, use:

$ gwf config get KEY

To set the value of a key (or update it, if it already exists):

$ gwf config set KEY VALUE

Note that a keys are often of the form this.is.a.key. For example, the local backend supports the local.port setting
which sets the port that the workers are running on. To set this settings, just run:

$ gwf config set local.port 4321

Now, when you run gwf with the local backend, it will try to connect workers on port 4321.

Your configuration is stored in the current working directory, which will usually be your project directory, in a file
called .gwfconf.json. This means that all configuration is project-specific, which helps with reproducibility. You
can inspect and change the file directly, but this is not recommended unless you really know what you’re doing.

Core settings are listed on the Settings page. To see which options are available for a specific backend, refer to the
Backends documentation.

3.1.2 Templates

Templates in gwf provide a simple mechanism for constructing a bunch of similar targets. For example, you may have
100 images that you want to transform in some way. We could write a gwf workflow to do this:

from gwf import Workflow

gwf = Workflow()

(continues on next page)

17

gwf Documentation, Release 1.5.1

(continued from previous page)

photos = gwf.glob('photos/*.jpg')
for index, path in enumerate(photos):

gwf.target('TransformPhoto.{}'.format(index), inputs=[path], outputs=[path + '.new
→˓']) << """

./transform_photo {}
""".format(path)

This will generate a target for each photo we’ve got which is all fine and dandy. However, we can make the
code a lot clearer using templates. In gwf a template is a function that returns either a tuple or an instance of
AnonymousTarget. Using a tuple is simple, but returning an AnonymousTarget is safer and clearer.

If the function returns a tuple, the tuple must contain four things:

1. a list of input files, corresponding to the inputs argument,

2. a list of output files, corresponding to the outputs argument,

3. a dictionary with options for the target that is to be generated, for example how many cores the template needs
and which files it depends on,

4. a string which contains the specification of the target that is to be generated.

Let’s rewrite our workflow from before with a template. First, we’ll define the template function:

def transform_photo(path):
inputs = [path]
outputs = [path + '.new']
options = {}
spec = """./transform_photo {}""".format(path)
return inputs, outputs, options, spec

Or if we wanted to return an AnonymousTarget (note that you need to import it first):

from gwf import AnonymousTarget

def transform_photo(path):
inputs = [path]
outputs = [path + '.new']
options = {}
spec = """./transform_photo {}""".format(path)
return AnonymousTarget(inputs=inputs, outputs=outputs, options=options, spec=spec)

Next, we tell gwf to create a target using the target_from_template() method. This works the same regardless
of what your template function returns:

from gwf import Workflow

gwf = Workflow()

photos = gwf.glob('photos/*.jpg')
for index, path in enumerate(photos):

gwf.target_from_template('TransformPhoto.{}'.format(index), transform_photo(path))

Templates are just Python functions, so you can do pretty much anything in a template function. For example, you
can create template functions that work across a wide range of systems. E.g. the template can determine the operating
system used and adapt the spec according to this.

Templates can also be put in separate files. We can put the transform_photo() template function into
templates.py and then import it as we would import any other Python module:

18 Chapter 3. Topic Guides

gwf Documentation, Release 1.5.1

from gwf import Workflow
from templates import transform_photo

gwf = Workflow()

photos = gwf.glob('photos/*.jpg')
for index, path in enumerate(photos):

gwf.target_from_template('TransformPhoto.{}'.format(index), transform_photo(path))

3.1.3 Large Workflows

While gwf can handle quite large workflows without any problems, there are some things that may cause significant
pain when working with very, very large workflows, especially when the workflows has many (> 50000) targets
producing many files. However, the problems depend hugely on your filesystem since most scalability problems are
caused by the time it takes gwf to access the filesystem when scheduling targets.

In this section we will show a few tricks for handling very large workflows.

I have to run the same pipeline for a lot of files and running gwf status is very slow.

In this case gwf is probably slow because computing the dependency graph for your entire workflow takes a while and
because gwf needs to access the filesystem for each input and output file in the workflow to check if any targets should
be re-run.

One solution to this problem is to dynamically generate individual workflows for each input file, as shown here:

from glob import glob
from gwf import Workflow

data_files = ['Sample1', 'Sample2', 'Sample3']
for input_file in data_files:

workflow_name = 'Analyse.{}'.format(input_file)

wf = Workflow(name=workflow_name)
wf.target('{}.Filter'.format(input_file), inputs=[input_file], outputs=[...]) << "

→˓""..."""
wf.target('{}.ComputeSummaries'.format(input_file), ...) << """..."""

globals()[workflow_name] = wf

You can now run the workflow for a single sample by specifying the name of the workflow:

$ gwf run -f workflow.py:Analyse.Sample1 run

This will only run the targets associated with Sample1. While this means that running all workflows in one go involves
a bit more work, it also means that gwf will only have to compute the dependency graph and check timestamps for the
targets associated with the selected sample.

3.1. Topic Guides 19

gwf Documentation, Release 1.5.1

20 Chapter 3. Topic Guides

CHAPTER

FOUR

DEVELOPMENT

4.1 Development

You can extend gwf by writing backends, which can be distributed as regular Python packages and registered with gwf
through the entrypoints mechanism.

4.1.1 Writing Backends

Backends in gwf are the interface between gwf and whatever can be used to execute a target. For example, the Slurm
backend included with gwf submits targets to the Slurm Workload Manager.

To get started we must declare define a class that inherits from Backend:

mybackend/mybackend.py
from gwf.backends import Backend

class MyBackend(Backend):
pass

Registering a Backend

Backends must be registered under the gwf.backends entrypoint as shown here:

mybackend/setup.py
from setuptools import setup

setup(
name="mybackend",
version="0.0.1",
py_modules=['mybackend'],
install_requires=[

'gwf>=1.0',
],
entry_points={

'gwf.backends': [
'mybackend = mybackend:MyBackend',

]
},

)

21

http://setuptools.readthedocs.io/en/latest/setuptools.html#dynamic-discovery-of-services-and-plugins
http://slurm.schedmd.com/

gwf Documentation, Release 1.5.1

Backends must implement a set of methods that gwf uses to submit to the backend and query the backend for the status
of targets.

Option Defaults

The backend should define option_defaults as an attribute. The value must be a dictionary mapping option
names to defaults, e.g.:

mybackend/mybackend.py
from gwf.backends import Backend

class MyBackend(Backend):
option_defaults = {

'cores': 1,
}

Internally, gwf uses this dictionary to check whether targets contain options not supported by the backend and warn
the user if this is the case. Thus, all options supported by the backend must be specified in this dictionary.

Targets in a workflow can now declare the number of cores they wish to allocate and we can use this information in
submit() to allocate the given number of cores for the target to be submitted. If the user doesn’t specify the cores
option it will default to 1.

If want to specify support for an option, but there is no sensible default value (e.g. in the case of a username or e-mail
address), use None as the default value.

Implementing the Backend Interface

Our backend still doesn’t really do anything. We’ve only told gwf that our backend exists (by its entrypoint) and which
options are supported. To get a backend to actually work we must implement three methods: submit(), cancel()
and status(). If needed, one may also implement the close() method, which will be called when the backend
is no longer needed (right before gwf exits).

All methods must return immediately, that is, calling submit() should submit the target for execution in some other
process, but not run the target itself. For example, the local backend connects to a set of workers running in a different
process, submits jobs to these workers and returns immedicately.

Storing Log Files

Backends can store log files in different ways. For example, the Slurm backend stores log files as files on disk, while
other backends may wish to store log files in an S3 bucket or in a database.

To allow for all of these scenarios, gwf has the concept of a log manager. The log manager interface only assumes
that log files can be written and accessed through file-like objects. Log managers should inherit from LogManager.

from gwf.backends.base import LogManager

class MyLogManager(LogManager):

def open_stdout(self, target, mode='r'):
pass

def open_stderr(self, target, mode='r'):
pass

22 Chapter 4. Development

gwf Documentation, Release 1.5.1

Each method must return a file-like object providing access to the log data for target. Log managers can also provide
other methods. For example, the FileLogManager provides methods for retrieving the paths of the log files.

Backends should set the log_manager attribute on the class to an instance of a the log manager to be used. The
log manager must be set as a class attribute to allow access to log files without initializing the backend, which may be
slow.

At the moment we provide two log managers:

• FileLogManager (default)

• MemoryLogManager

Handling Configuration

We can allow the user to configure aspects of the backend by using the central configuration object.

from gwf.conf import config

key1 = config.get('yourbackend.key1', 'default1')
key2 = config.get('yourbackend.key2', 'default2')

Backends should provide reasonable defaults, as shown above. The user can set configuration keys using the builtin
config command:

$ gwf config set yourbackend.key1 value1
$ gwf config set yourbackend.key2 value2

If you want to contribute code, documentation or anything else to gwf, or you’re a maintainer, this is where you should
look.

4.1.2 For Contributors

We appreciate all contributions to gwf, not just contributions to the code! Think something is missing from the
documentation? Defined useful snippets for your text editor? Add it and submit a pull request!

Set Up a Development Environment

We strongly recommend that you use the Anaconda Python distribution and the conda package manager to set up
a development environment (actually, we recommend it for all of your Python work). However, feel free to use
virtualenvs instead.

1. Download and install the Anaconda Python distribution following the instructions here.

2. Create an environment for gwf development:

conda create -n gwfdev python=3.5

3. Activate the environment:

source activate gwfdev

4.1. Development 23

https://www.continuum.io/anaconda-overview
https://www.continuum.io/downloads

gwf Documentation, Release 1.5.1

Make Your Changes

1. Fork the repository, clone it and create a branch for your changes:

git checkout -b my-change

2. Make the necessary changes and add unit tests if necessary.

3. Add a description of the changes to CHANGELOG.rst and add yourself to CONTRIBUTORS.rst (if you’re
not already there).

4. Test your changes and check for style violations:

make init # to install gwf for development
gwf ... # test your changes by running gwf
make lint # to check for style issues
make test # to run tests
make coverage # to check test coverage

5. If everything is alright, commit your changes:

git add .
git commit -m "Added some-feature"

Show Us Your Contribution!

1. Push your committed changes back to your fork on GitHub:

git push origin HEAD

2. Follow these steps to create a pull request.

3. Check for comments and suggestions on your pull request and keep an eye on the CI output.

4.1.3 For Maintainers

The gwf build, testing and deployment process is automated through Travis.

Merging Changes

1. Make sure that the changes have proper test coverage, e.g. by checking the branch on Coveralls.

2. Check that the PR includes necessary updates of CHANGELOG.rst and CONTRIBUTORS.rst.

3. Always make a merge commit (don’t rebase/fast-forward). The merge commit will be referenced in the change
log.

4. Add the change to the change log for the coming (draft) release on GitHub. Make sure to follow the formatting
used in previous change logs. Also, read about how to keep a change log.

Rolling a New Release

1. Make sure that all changes for the new release have been merged into master and that tests pass. Check Travis.

2. Make any other release-related changes such as adding new contributors to CONTRIBUTORS.rst or adding
missing items to CHANGELOG.rst.

24 Chapter 4. Development

https://help.github.com/articles/creating-a-pull-request/
https://travis-ci.org/mailund/gwf
https://coveralls.io/github/gwforg/gwf
https://github.com/gwforg/gwf/releases
http://keepachangelog.com/en/0.3.0/
https://travis-ci.org/gwforg/gwf

gwf Documentation, Release 1.5.1

3. Increase the version number in gwf/__init__.py

4. Commit the changes and push the branch. Wait for tests to run.

5. Make a new release by tagging the merge commit with the version number, e.g. vX.X.X. Push the tag and wait
for Travis to catch up.

6. Run make package, then make publish to publish the source distribution and wheel to PyPI.

7. Run make package-conda, then ‘‘make publish-conda

The documentation will be automatically be built by ReadTheDocs.

4.1. Development 25

gwf Documentation, Release 1.5.1

26 Chapter 4. Development

CHAPTER

FIVE

REFERENCE

5.1 Settings

This page lists settings that are used by gwf. Backends and plugins may define their own settings, but these are
documented for each backend/plugin individually. See Configuration if in doubt about how to configure gwf.

• backend (str): Set the backend. Corresponds to the --backend flag (default: local).

• verbose (str): Set the verbosity. Corresponds to the --verbose flag (default: info).

• no_color (bool): If true, colors will not be used (default: false).

5.2 Backends

gwf supports multiple backends for running workflows. If you don’t find a backend that suits your needs here, it’s
easy to write your own backend.

By default, gwf comes with the local, slurm, and sge backends.

5.2.1 Local

class gwf.backends.local.LocalBackend
Backend that runs targets on a local cluster.

To use this backend you must activate the local backend and start a local cluster (with one or more workers) that
the backend can submit targets to. To start a cluster with two workers run the command:

gwf -b local workers -n 2

in the working directory of your project. The workflow file must be accessible to gwf. Thus, if your workflow
file is not called workflow.py or the workflow object is not called gwf, you must specify this so that gwf can
locate the workflow:

gwf -f myworkflow.py:wf1 -b local workers -n 2

If the local backend is your default backend you can of course omit the -b local option.

If the -n option is omitted, gwf will detect the number of cores available and use all of them.

To run your workflow, open another terminal and then type:

gwf -b local run

27

gwf Documentation, Release 1.5.1

To stop the pool of workers press Control-c.

Backend options:

• local.host (str): Set the host that the workers are running on (default: localhost).

• local.port (int): Set the port used to connect to the workers (default: 12345).

Target options:

None available.

5.2.2 Slurm

class gwf.backends.slurm.SlurmBackend
Backend for the Slurm workload manager.

To use this backend you must activate the slurm backend.

Backend options:

• backend.slurm.log_mode (str): Must be either full, merged or none. If full, two log files will be stored
for each target, one for standard output and one for standard error. If merged, only one log file will be
written containing the combined streams. If none, no logs will be stored. (default: full).

Target options:

• cores (int): Number of cores allocated to this target (default: 1).

• memory (str): Memory allocated to this target (default: 1).

• walltime (str): Time limit for this target (default: 01:00:00).

• queue (str): Queue to submit the target to. To specify multiple queues, specify a comma-separated list of
queue names.

• account (str): Account to be used when running the target.

• constraint (str): Constraint string. Equivalent to setting the –constraint flag on sbatch.

• qos (str): Quality-of-service strring. Equivalent to setting the –qos flog on sbatch.

5.2.3 Sun Grid Engine (SGE)

class gwf.backends.sge.SGEBackend
Backend for Sun Grid Engine (SGE).

To use this backend you must activate the sge backend. The backend currently assumes that a SGE parallel
environment called “smp” is available. You can check which parallel environments are available on your system
by running qconf -spl.

Backend options:

None.

Target options:

• cores (int): Number of cores allocated to this target (default: 1).

• memory (str): Memory allocated to this target (default: 1).

• walltime (str): Time limit for this target (default: 01:00:00).

28 Chapter 5. Reference

gwf Documentation, Release 1.5.1

• queue (str): Queue to submit the target to. To specify multiple queues, specify a comma-separated list of
queue names.

• account (str): Account to be used when running the target. Corresponds to the SGE project.

5.3 API

The implementation of gwf consists of a few main abstractions. Units of work are defined by creating Target
instances which also define the files used and produced by the target. A Workflow ties together and allows for easy
creation of targets.

When all targets have been defined on a workflow, the workflow is turned into a Graph which will compute the entire
dependency graph of the workflow, checking the workflow for inconsistencies and circular dependencies.

A target in a Graph can be scheduled on a Backend using the Scheduler.

5.3.1 Core

gwf.core.graph_from_config(config)
Return graph for the workflow specified by config.

See graph_from_path() for further information.

gwf.core.graph_from_path(path)
Return graph for the workflow given by path.

Returns a Graph object containing the workflow graph of the workflow given by path. Note that calling this
function computes the complete dependency graph which may take some time for large workflows.

Parameters path (str) – Path to a workflow file, optionally specifying a workflow object in that
file.

class gwf.core.AnonymousTarget(inputs, outputs, options, working_dir=None, spec=”, pro-
tect=None)

Represents an unnamed target.

An anonymous target is an unnamed, abstract target much like the tuple returned by function templates. Thus,
AnonymousTarget can also be used as the return value of a template function.

Variables

• inputs (list) – A list of input paths for this target.

• outputs (list) – A list of output paths for this target.

• options (dict) – Options such as number of cores, memory requirements etc. Options
are backend-dependent. Backends will ignore unsupported options.

• working_dir (str) – Working directory of this target.

• spec (str) – The specification of the target.

• protect (set) – An iterable of protected files which will not be removed during cleaning,
even if this target is not an endpoint.

property is_sink
Return whether this target is a sink.

A target is a sink if it does not output any files.

5.3. API 29

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#list
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#set

gwf Documentation, Release 1.5.1

property is_source
Return whether this target is a source.

A target is a source if it does not depend on any files.

class gwf.core.Target(name=None, **kwargs)
Represents a target.

This class inherits from AnonymousTarget.

A target is a named unit of work that declare their file inputs and outputs. Target names must be valid Python
identifiers.

A script (or spec) is associated with the target. The script must be a valid Bash script and should produce the
files declared as outputs and consume the files declared as inputs. Both parameters must be provided explicitly,
even if no inputs or outputs are needed. In that case, provide the empty list:

Target('Foo', inputs=[], outputs=[], options={}, working_dir='/tmp')

The target can also specify an options dictionary specifying the resources needed to run the target. The options
are consumed by the backend and may be ignored if the backend doesn’t support a given option. For example,
we can set the cores option to set the number of cores that the target uses:

Target('Foo', inputs=[], outputs=[], options={'cores': 16}, working_dir='/tmp')

To see which options are supported by your backend of choice, see the documentation for the backend.

Variables name (str) – Name of the target.

classmethod empty(name)
Return a target with no inputs, outputs and options.

This is mostly useful for testing.

class gwf.core.Workflow(name=None, working_dir=None, defaults=None)
Represents a workflow.

This is the most central user-facing abstraction in gwf.

A workflow consists of a collection of targets and has methods for adding targets to the workflow in two different
ways. A workflow can be initialized with the following arguments:

Variables

• name (str) – initial value: None The name is used for namespacing when including work-
flows. See include() for more details on namespacing.

• working_dir (str) – The directory containing the file where the workflow was ini-
tialized. All file paths used in targets added to this workflow are relative to the working
directory.

• defaults (dict) – A dictionary with defaults for target options.

By default, working_dir is set to the directory of the workflow file which initialized the workflow. However,
advanced users may wish to set it manually. Targets added to the workflow will inherit the workflow working
directory.

The defaults argument is a dictionary of option defaults for targets and overrides defaults provided by the back-
end. Targets can override the defaults individually. For example:

gwf = Workflow(defaults={
'cores': 12,
'memory': '16g',

(continues on next page)

30 Chapter 5. Reference

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#dict

gwf Documentation, Release 1.5.1

(continued from previous page)

})

gwf.target('Foo', inputs=[], outputs=[]) << """echo hello"""
gwf.target('Bar', inputs=[], outputs=[], cores=2) << """echo world"""

In this case Foo and Bar inherit the cores and memory options set in defaults, but Bar overrides the cores option.

See include() for a description of the use of the name argument.

glob(pathname, *args, **kwargs)
Return a list of paths matching pathname.

This method is equivalent to glob.glob(), but searches with relative paths will be performed relative
to the working directory of the workflow.

iglob(pathname, *args, **kwargs)
Return an iterator which yields paths matching pathname.

This method is equivalent to glob.iglob(), but searches with relative paths will be performed relative
to the working directory of the workflow.

include(other_workflow, namespace=None)
Include targets from another gwf.Workflow into this workflow.

This method can be given either an gwf.Workflow instance, a module or a path to a workflow file.

If a module or path the workflow object to include will be determined according to the following rules:

1. If a module object is given, the module must define an attribute named gwf containing a gwf.
Workflow object.

2. If a path is given it must point to a file defining a module with an attribute named gwf containing a
gwf.Workflow object. If you want to include a workflow with another name you can specify the
attribute name with a colon, e.g.:

/some/path/workflow.py:myworkflow

This will include all targets from the workflow myworkflow declared in the file
/some/path/workflow.py.

When a gwf.Workflow instance has been obtained, all targets will be included directly into this work-
flow. To avoid name clashes the namespace argument must be provided. For example:

workflow1 = Workflow()
workflow1.target('TestTarget')

workflow2 = Workflow()
workflow2.target('TestTarget')

workflow1.include(workflow2, namespace='wf1')

The workflow now contains two targets named TestTarget (defined in workflow2) and wf1.TestTarget (de-
fined in workflow1). The namespace parameter can be left out if the workflow to be included has been
named:

workflow1 = Workflow(name='wf1')
workflow1.target('TestTarget')

workflow2 = Workflow()

(continues on next page)

5.3. API 31

https://docs.python.org/3.5/library/glob.html#glob.glob
https://docs.python.org/3.5/library/glob.html#glob.iglob

gwf Documentation, Release 1.5.1

(continued from previous page)

workflow2.target('TestTarget')

workflow1.include(workflow2)

This yields the same result as before. The namespace argument can be used to override the specified name:

workflow1 = Workflow(name='wf1')
workflow1.target('TestTarget')

workflow2 = Workflow()
workflow2.target('TestTarget')

workflow1.include(workflow2, namespace='foo')

The workflow will now contain targets named TestTarget and foo.TestTarget.

include_path(path, namespace=None)
Include targets from another gwf.Workflow into this workflow.

See include().

include_workflow(other_workflow, namespace=None)
Include targets from another gwf.Workflow into this workflow.

See include().

shell(*args, **kwargs)
Return the output of a shell command.

This method is equivalent to subprocess.check_output(), but automatically runs the command
in a shell with the current working directory set to the working directory of the workflow.

Changed in version 1.0: This function no longer return a list of lines in the output, but a byte array with the
output, exactly like subprocess.check_output(). You may specifically set universal_newlines to
True to get a string with the output instead.

target(name, inputs, outputs, **options)
Create a target and add it to the gwf.Workflow.

This is syntactic sugar for creating a new Target and adding it to the workflow. The target is also returned
from the method so that the user can directly manipulate it, if necessary. For example, this allows assigning
a spec to a target directly after defining it:

workflow = Workflow()
workflow.target('NewTarget', inputs=['test.txt', 'out.txt']) <<< '''
cat test.txt > out.txt
echo hello world >> out.txt
'''

This will create a new target named NewTarget, add it to the workflow and assign a spec to the target.

Parameters

• name (str) – Name of the target.

• inputs (iterable) – List of files that this target depends on.

• outputs (iterable) – List of files that this target produces.

Any further keyword arguments are passed to the backend.

32 Chapter 5. Reference

https://docs.python.org/3.5/library/subprocess.html#subprocess.check_output
https://docs.python.org/3.5/library/subprocess.html#subprocess.check_output
https://docs.python.org/3.5/library/stdtypes.html#str

gwf Documentation, Release 1.5.1

target_from_template(name, template, **options)
Create a target from a template and add it to the gwf.Workflow.

This is syntactic sugar for creating a new Target and adding it to the workflow. The target is also returned
from the method so that the user can directly manipulate it, if necessary.

workflow = Workflow()
workflow.target_from_template('NewTarget', my_template())

This will create a new target named NewTarget, configure it based on the specification in the template
my_template, and add it to the workflow.

Parameters

• name (str) – Name of the target.

• template (tuple) – Target specification of the form (inputs, outputs, options, spec).

Any further keyword arguments are passed to the backend and will override any options provided by the
template.

class gwf.core.Graph(targets, provides, dependencies, dependents, unresolved)
Represents a dependency graph for a set of targets.

The graph represents the targets present in a workflow, but also their dependencies and the files they provide.

During construction of the graph the dependencies between targets are determined by looking at target inputs
and outputs. If a target specifies a file as input, the file must either be provided by another target or already exist
on disk. In case that the file is provided by another target, a dependency to that target will be added:

Variables dependencies (dict) – A dictionary mapping a target to a set of its dependencies.

If the file is not provided by another target, the file is unresolved:

Variables unresolved (set) – A set containing file paths of all unresolved files.

If the graph is constructed successfully, the following instance variables will be available:

Variables

• targets (dict) – A dictionary mapping target names to instances of gwf.Target.

• provides (dict) – A dictionary mapping a file path to the target that provides that path.

• dependents (dict) – A dictionary mapping a target to a set of all targets which depend
on the target.

The graph can be manipulated in arbitrary, diabolic ways after it has been constructed. Checks are only per-
formed at construction-time, thus introducing e.g. a circular dependency by manipulating dependencies will not
raise an exception.

Raises gwf.exceptions.WorkflowError – Raised if the workflow contains a circular de-
pendency.

dfs(root)
Return the depth-first traversal path through a graph from root.

endpoints()
Return a set of all targets that are not depended on by other targets.

classmethod from_targets(targets)
Construct a dependency graph from a set of targets.

5.3. API 33

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/stdtypes.html#tuple
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#set
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict
https://docs.python.org/3.5/library/stdtypes.html#dict

gwf Documentation, Release 1.5.1

When a graph is initialized it computes all dependency relations between targets, ensuring that the graph
is semantically sane. Therefore, construction of the graph is an expensive operation which may raise a
number of exceptions:

Raises gwf.exceptions.FileProvidedByMultipleTargetsError – Raised if the
same file is provided by multiple targets.

Since this method initializes the graph, it may also raise:

Raises gwf.exceptions.WorkflowError – Raised if the workflow contains a circular
dependency.

class gwf.core.Scheduler(graph, backend, dry_run=False, file_cache={})
Schedule one or more targets and submit to a backend.

Scheduling a target will determine whether the target needs to run based on whether it already has been submitted
and whether any of its dependencies have been submitted.

Targets that should run will be submitted to backend, unless dry_run is set to True.

When scheduling a target, the scheduler checks whether any of its inputs are unresolved, meaning that during
construction of the graph, no other target providing the file was found. This means that the file should then exist
on disk. If it doesn’t the following exception is raised:

Raises gwf.exceptions.FileRequiredButNotProvidedError – Raised if a target has
an input file that does not exist on the file system and that is not provided by another target.

schedule(target)
Schedule a target and its dependencies.

Returns True if target was submitted to the backend (even when dry_run is True).

Parameters target (gwf.Target) – Target to be scheduled.

schedule_many(targets)
Schedule multiple targets and their dependencies.

This is a convenience method for scheduling multiple targets. See schedule() for a detailed description
of the arguments and behavior.

Parameters targets (list) – A list of targets to be scheduled.

should_run(target)
Return whether a target should be run or not.

status(target: gwf.core.Target)→ gwf.core.TargetStatus
Return the status of a target.

Returns the status of a target where it is taken into account whether the target should run or not.

Parameters target (Target) – The target to return status for.

5.3.2 Backends

gwf.backends.list_backends()
Return the names of all registered backends.

gwf.backends.backend_from_name(name)
Return backend class for the backend given by name.

Returns the backend class registered with name. Note that the class is returned, not the instance, since not all
uses requires initialization of the backend (e.g. accessing the backends’ log manager), and initialization of the
backend may be expensive.

34 Chapter 5. Reference

https://docs.python.org/3.5/library/stdtypes.html#list

gwf Documentation, Release 1.5.1

Parameters name (str) – Path to a workflow file, optionally specifying a workflow object in that
file.

gwf.backends.backend_from_config(config)
Return backend class for the backend specified by config.

See backend_from_name() for further information.

class gwf.backends.Backend
Base class for backends.

cancel(target)
Cancel target.

Parameters target (gwf.Target) – The target to cancel.

Raises gwf.exception.TargetError – If the target does not exist in the workflow.

close()
Close the backend.

Called when the backend is no longer needed and should close all resources (open files, connections) used
by the backend.

log_manager = <gwf.backends.logmanager.FileLogManager object>

classmethod logs(target, stderr=False)
Return log files for a target.

If the backend cannot return logs a NoLogFoundError is raised.

By default standard output (stdout) is returned. If stderr=True standard error will be returned instead.

Parameters

• target (gwf.Target) – Target to return logs for.

• stderr (bool) – default: False. If true, return standard error.

Returns A file-like object. The user is responsible for closing the returned file(s) after use.

Raises gwf.exceptions.NoLogFoundError – if the backend could not find a log for the
given target.

status(target)
Return the status of target.

Parameters target (gwf.Target) – The target to return the status of.

Return gwf.backends.Status Status of target.

submit(target, dependencies)
Submit target with dependencies.

This method must submit the target and return immediately. That is, the method must not block while
waiting for the target to complete.

Parameters

• target (gwf.Target) – The target to submit.

• dependencies – An iterable of gwf.Target objects that target depends on and that
have already been submitted to the backend.

class gwf.backends.Status
Status of a target.

5.3. API 35

https://docs.python.org/3.5/library/stdtypes.html#str
https://docs.python.org/3.5/library/functions.html#bool

gwf Documentation, Release 1.5.1

A target is unknown to the backend if it has not been submitted or the target has completed and thus isn’t being
tracked anymore by the backend.

A target is submitted if it has been successfully submitted to the backend and is pending execution.

A target is running if it is currently being executed by the backend.

RUNNING = 2
The target is currently running.

SUBMITTED = 1
The target has been submitted, but is not currently running.

UNKNOWN = 0
The backend is not aware of the status of this target (it may be completed or failed).

Log Managers

class gwf.backends.logmanager.FileLogManager
A file-based log manager.

This log manager stores logs on disk in the log_dir directory (which defaults to .gwf/logs).

open_stderr(target, mode=’r’)
Return file handle to standard error log file for target.

Raises LogError – If the log could not be found.

open_stdout(target, mode=’r’)
Return file handle to the standard output log file for target.

Raises LogError – If the log could not be found.

stderr_path(target_name)
Return path of the log file containing standard error for target.

stdout_path(target_name)
Return path of the log file containing standard output for target.

class gwf.backends.logmanager.MemoryLogManager
A memory-based log manager.

This log manager stores logs in memory.

5.3.3 Filtering

gwf.filtering.filter_generic(targets, filters)
Filter targets given a list of filters.

Return all targets from targets passing all filters. For example:

matched_targets = filter_generic(
targets=graph.targets.values(),
filters=[

NameFilter(patterns=['Foo*'],
StatusFilter(scheduler=scheduler, status='running'),

]
)

returns a generator yielding all targets with a name matching Foo* which are currently running.

36 Chapter 5. Reference

gwf Documentation, Release 1.5.1

Parameters

• targets – A list of targets to be filtered.

• filters – A list of Filter instances.

gwf.filtering.filter_names(targets, patterns)
Filter targets with a list of patterns.

Return all targets in targets where the target name matches one or more of the patterns in pattern. For example:

matched_targets = filter_names(graph.targets.values(), ['Foo*'])

returns a generator yielding all targets with a name matching the pattern Foo*. Multiple patterns can be provided:

matched_targets = filter_names(graph.targets.values(), ['Foo*', 'Bar*'])

returns all targets with a name matching either Foo* or Bar*.

This function is a simple wrapper around NameFilter.

Helpers for filtering:

class gwf.filtering.ApplyMixin
A mixin for predicate-based filters providing the apply method.

Most filters are predicate-based in the sense that they simply filter targets one by one based on a predicate
function that decides whether to include the target or not. Such filters can inherit this mixin and then only need
to declare a predicate() method which returns True if the target should be included and False otherwise.

For examples of using this mixin, see the StatusFilter and EndpointFilter filters.

apply(targets)
Apply the filter to all targets.

This method returns a generator yielding all targets in targets for each predicate() returns True.

predicate(target)
Return True if target should be included, False otherwise.

This method must be overriden by subclasses.

5.3. API 37

gwf Documentation, Release 1.5.1

38 Chapter 5. Reference

CHAPTER

SIX

CHANGE LOG

6.1 Version 1.5.1

6.1.1 Fixed

• Crash when Slurm returns unknown job state (#244).

6.2 Version 1.5.0

6.2.1 Added

• Users can now run gwf init to bootstrap a new gwf project (c78193).

• Add option to protect output files in a target from being removed when gwf clean is being run (2f51ed).

6.2.2 Fixed

• Ensure job script end with a newline (#239).

• Ignore missing log files when cleaning on run (#237).

6.3 Version 1.4.0

6.3.1 Added

• Backend for Sun Grid Engine (SGE). The backend does not support all target options supported by the Slurm
backend, so workflows can not necessarily run with the SGE backend without changes. See the documentation
for a list of supported options.

6.4 Version 1.3.2

6.4.1 Fixed

• Made the touch command faster.

39

gwf Documentation, Release 1.5.1

6.5 Version 1.3.1

6.5.1 Added

• The gwf status command now accepts multiple -s/--status flags and will show targets matching any
of the given states. E.g. gwf status -s completed -s runningwill show all completed and running
targets.

• A new command gwf touch has been introduced. The command touches all files in the workflow in order,
creating missing files and updating timestamps, such that gwf thinks that the workflow has been run.

• When specifying the workflow attribute in the workflow path, e.g. gwf -f workflow.py:foo, the file-
name part can now be left out and will default to workflow.py. For example, gwf -f :foo will access the
foo workflow object in workflow.py.

• Documentation describing advanced patterns for gwf workflows.

6.6 Version 1.3.0

This release contains a bunch of new features and plenty of bug fixes. Most noteworthy is the removal of the progress
bars in the status command. The status bars were often confusing and didn’t communicate much more than a simple
“percentage completion”. The status command now outputs a table with target name, target status, and percentage
completion (see the tutorial for examples). Additionally, the status command now shows all targets by default (not
only endpoints). For users who wish to only see endpoints, there’s now a --endpoints flag.

We aim to make gwf a good cluster citizen. Thus, logs from targets that no no longer exist in the workflow will now
be removed when running gwf run. This ensures that gwf doesn’t unnecessarily accumulate logs over time.

6.6.1 Fixed

• Add missing import to documentation for function templates (4eddcac).

• Remove reference to --not-endpoints flag (d7ed251).

• Remove broken badges in README (e352f09).

• Remove pre-1.0 upgrade documentation (bfa03da6).

• Fixed bug in scheduler that caused an exception when a target’s input file did not exist, but the output file did
(reported by Jonas Berglund) (92301ef3).

6.6.2 Changed

• Dots have been removed from logging output to make copy-pasting target names easier (f33f7195).

• Now uses pipenv to fix development environment.

• Improved coloring of logging output when running with -v debug (ab4ac7e3).

• Remove status bars in gwf status command (47cb7b50).

40 Chapter 6. Change Log

gwf Documentation, Release 1.5.1

6.6.3 Added

• Added undocumented API which allows core and plugins to register validation functions for configuration keys.
This fixes issues like #226 (c8c57d7c7).

• The gwf clean command now shows how much data will be removed (d81f143f1).

• Remove log files for targets that are no longer defined in the workflow (beb912bd).

• Note in tutorial on how to terminate the local workers (a long with other updates to the tutorial) (34421498).

6.7 Version 1.2.1

6.7.1 Fixed

• Bug when returning an AnonymousTarget from a template function without specifying the working_dir in
the constructor (#212). Thanks to Steffen Møller-Larsen for reporting this.

6.8 Version 1.2

6.8.1 Fixed

• Bug when using --format table and no targets were found (#203).

• Bug when cancelling a target running on the Slurm backend (#199).

• Link to documentation in error message when unable to connect to local workers.

• Fixed bug in the FileLogManager where the wrong exception was raised when no log was found.

6.8.2 Changed

• Moved checking of file timestamps to the scheduler. This means that creating a Graph object will never touch
the file system, and thus won’t raise an exception if a target depends on a file that doesn’t exist and that’s not
provided a target. Instead, unresolved paths are added to Graph.unresolved. They will then be checked by
the scheduler (if necessary). For end users, this means that many commands have become substantially faster.

6.8.3 Added

• Added AnonymousTarget which represents an unnamed target. Target now inherits from this class and
templates may now return an AnonymousTarget instead of a tuple.

• Added backend.slurm.log_mode option, see the documentation for the Slurm backend for usage (#202).

6.9 Version 1.1

6.9.1 Fixed

• Very slow scheduling when using dry run with unsubmitted targets (#184, 93e71a).

6.7. Version 1.2.1 41

gwf Documentation, Release 1.5.1

• Fixed cancellation with the Slurm backend (#183, 29445f).

• Fixed wildcard filtering of targets (#185, 036e3d).

6.9.2 Changed

• Move file cache construction out of Graph (#186, 93e71a). This change is invisible to end-users, but speeds up
the logs, cancel, info, logs and workers commands.

• Replaced --not-endpoints flag in clean command with --all flag.

• Made filtering more intuitive in all commands.

• The info command now outputs JSON instead of invalid YAML.

• The info command outputs information for all targets in the workflow by default.

• Backends must now specify a log_manager class attribute specifying which log manager to use for accessing
target log files.

• Backends should now be used as context managers to make sure that Backend.close() is called when the
backend is no longer needed, as it is no longer called automatically on exit.

6.9.3 Added

• Added filtering of targets by name in the info command.

• Added API documentation for the gwf.filtering module.

• Added gwf.core.graph_from_path() and gwf.core.graph_from_config().

• Added gwf.backends.list_backends(), gwf.backends.backend_from_name() and gwf.
backends.backend_from_config().

• Added SlurmBackend.get_job_id() and SlurmBackend.forget_job() to SlurmBackend to
make it easier for plugins to integrate with Slurm.

• Documentation for log managers.

• Documentation on how to handle large workflows.

6.10 Version 1.0

First stable release of gwf ! We strongly encourage users of pre-1.0 users to read the tutorial, since quite a lot of things
have changed. We also recommend reading the guide for converting pre-1.0 workflows to version 1.0. However, users
attempting to do this should be aware that the the template mechanism in 1.0 is slightly different and thus requires
rewriting template functions.

6.10.1 Fixed

• Fixed a bug which caused gwf to fail when cancelling jobs when using the Slurm backend (8c1717).

42 Chapter 6. Change Log

gwf Documentation, Release 1.5.1

6.10.2 Changed

• Documentation in various places, especially the core API.

• Documentation for maintainers.

6.10.3 Added

• Topic guide covering templates (b175fe).

• Added info command (6dbdbb).

6.11 Version 1.0b10

6.11.1 Fixed

• Fixed a subtle bug in scheduling which caused problems when resubmitting a workflow where some targets
were already running (a5d884).

• Fixed a bug in the SlurmBackend which caused gwf to crash if the Slurm queue contained a job with many
dependencies (eb4446).

• Added back the -e flag in the logs command.

6.12 Version 1.0b9

6.12.1 Fixed

• Fixed a bug in the SlurmBackend which caused running targets as unknown (33a6bd).

6.12.2 Changed

• The Slurm backend’s database of tracked jobs is now cleaned on initialization to keep it from growing indefi-
nitely (bd3f95).

6.13 Version 1.0b8

6.13.1 Fixed

• Fixed a bug which caused the gwf logs command to always show stderr (01b267).

• Fixed a bug which caused dependencies to be set incorrectly when two targets depended on the same target
(4d9e07).

6.11. Version 1.0b10 43

gwf Documentation, Release 1.5.1

6.13.2 Changed

• Improved error message when trying to create a target from an invalid template (d27d1f).

• Improved error message when assigning a non-string spec to a target (2aca0a).

• gwf logs command now outputs logs via a pager when the system supports it, unless –no-pager is used (01b267).

6.13.3 Added

• Added more tests to cover scenarios with included workflows when building the workflow graph (86a68d0).

• Added a bunch of documentation (69e136, 51a0e7, 942b05).

6.14 Version 1.0b7

6.14.1 Fixed

• Fixed bug in scheduling which was actually the cause of the incorrect scheduling that was “fixed” in 1.0b6. Also
added documentation for gwf.core.schedule (7c47cb).

6.14.2 Changed

• Updated documentation in a bunch of places, mostly styling.

6.15 Version 1.0b6

6.15.1 Fixed

• A bug in SlurmBackend which caused dependencies between targets to not be set correctly (6b71d2).

6.15.2 Changed

• More improvements to and clean up of build process.

• Updated some examples in the tutorial with current output from gwf (42c5da).

• Logging output is now more consistent (b95af04).

6.15.3 Added

• Documentation for maintainers on how to merge in contributions and rolling a new release (fe1ee3).

44 Chapter 6. Change Log

gwf Documentation, Release 1.5.1

6.16 Version 1.0b5

6.16.1 Fixed

• Unset option passed to backend causes error (#166, dcff44).

• Set import path to allow import of module in workflow file (64841c).

6.16.2 Changed

• Vastly improved build and deploy process. We’re now actually building and testing with conda.

6.17 Contributors

• Thomas Mailund

• Dan Søndergaard

• Anders Halager

• Michael Knudsen

• Tobias Madsen

6.16. Version 1.0b5 45

gwf Documentation, Release 1.5.1

46 Chapter 6. Change Log

PYTHON MODULE INDEX

g
gwf.backends, 34
gwf.backends.logmanager, 36
gwf.core, 29
gwf.filtering, 37

47

gwf Documentation, Release 1.5.1

48 Python Module Index

INDEX

A
AnonymousTarget (class in gwf.core), 29
apply() (gwf.filtering.ApplyMixin method), 37
ApplyMixin (class in gwf.filtering), 37

B
Backend (class in gwf.backends), 35
backend_from_config() (in module

gwf.backends), 35
backend_from_name() (in module gwf.backends),

34

C
cancel() (gwf.backends.Backend method), 35
close() (gwf.backends.Backend method), 35

D
dfs() (gwf.core.Graph method), 33

E
empty() (gwf.core.Target class method), 30
endpoints() (gwf.core.Graph method), 33

F
FileLogManager (class in

gwf.backends.logmanager), 36
filter_generic() (in module gwf.filtering), 36
filter_names() (in module gwf.filtering), 37
from_targets() (gwf.core.Graph class method), 33

G
glob() (gwf.core.Workflow method), 31
Graph (class in gwf.core), 33
graph_from_config() (in module gwf.core), 29
graph_from_path() (in module gwf.core), 29
gwf.backends (module), 34
gwf.backends.logmanager (module), 36
gwf.core (module), 29
gwf.filtering (module), 36, 37

I
iglob() (gwf.core.Workflow method), 31

include() (gwf.core.Workflow method), 31
include_path() (gwf.core.Workflow method), 32
include_workflow() (gwf.core.Workflow method),

32
is_sink() (gwf.core.AnonymousTarget property), 29
is_source() (gwf.core.AnonymousTarget property),

29

L
list_backends() (in module gwf.backends), 34
LocalBackend (class in gwf.backends.local), 27
log_manager (gwf.backends.Backend attribute), 35
logs() (gwf.backends.Backend class method), 35

M
MemoryLogManager (class in

gwf.backends.logmanager), 36

O
open_stderr() (gwf.backends.logmanager.FileLogManager

method), 36
open_stdout() (gwf.backends.logmanager.FileLogManager

method), 36

P
predicate() (gwf.filtering.ApplyMixin method), 37

R
RUNNING (gwf.backends.Status attribute), 36

S
schedule() (gwf.core.Scheduler method), 34
schedule_many() (gwf.core.Scheduler method), 34
Scheduler (class in gwf.core), 34
SGEBackend (class in gwf.backends.sge), 28
shell() (gwf.core.Workflow method), 32
should_run() (gwf.core.Scheduler method), 34
SlurmBackend (class in gwf.backends.slurm), 28
Status (class in gwf.backends), 35
status() (gwf.backends.Backend method), 35
status() (gwf.core.Scheduler method), 34

49

gwf Documentation, Release 1.5.1

stderr_path() (gwf.backends.logmanager.FileLogManager
method), 36

stdout_path() (gwf.backends.logmanager.FileLogManager
method), 36

submit() (gwf.backends.Backend method), 35
SUBMITTED (gwf.backends.Status attribute), 36

T
Target (class in gwf.core), 30
target() (gwf.core.Workflow method), 32
target_from_template() (gwf.core.Workflow

method), 32

U
UNKNOWN (gwf.backends.Status attribute), 36

W
Workflow (class in gwf.core), 30

50 Index

	Installation
	Getting Started
	Tutorial
	Patterns

	Topic Guides
	Topic Guides

	Development
	Development

	Reference
	Settings
	Backends
	API

	Change Log
	Version 1.5.1
	Version 1.5.0
	Version 1.4.0
	Version 1.3.2
	Version 1.3.1
	Version 1.3.0
	Version 1.2.1
	Version 1.2
	Version 1.1
	Version 1.0
	Version 1.0b10
	Version 1.0b9
	Version 1.0b8
	Version 1.0b7
	Version 1.0b6
	Version 1.0b5
	Contributors

	Python Module Index
	Index

