Contents

1 Geometric Programming 101
1.1 What is a GP? ... 3
1.2 Why are GPs special? 4
1.3 What are Signomials / Signomial Programs? 4
1.4 Where can I learn more? 4

2 Installation ... 5
2.1 Installing MOSEK ... 5
2.2 Debugging your installation 6
2.3 Bleeding-edge installations 6

3 Getting Started ... 7
3.1 Declaring Variables 7
3.2 Creating Monomials and Posynomials 8
3.3 Declaring Constraints 8
3.4 Formulating a Model 9
3.5 Solving the Model 9
3.6 Printing Results ... 9
3.7 Sensitivities and dual variables 10

4 Debugging Models 11
4.1 Potential errors and warnings 12
4.2 Dual Infeasibility 13
4.3 Primal Infeasibility 14

5 Visualization and Interaction 19
5.1 Sankey Diagrams .. 19
5.2 Plotting a 1D Sweep 21

6 Building Complex Models 25
6.1 Checking for result changes 25
6.2 Inheriting from Model 25
6.3 Accessing Variables in Models 26
6.4 Vectorization ... 27
6.5 Multipoint analysis modeling 29

7 Advanced Commands 37
GPkit is a Python package for defining and manipulating geometric programming (GP) models.

Our hopes are to bring the mathematics of Geometric Programming into the engineering design process in a disciplined and collaborative way, and to encourage research with and on GPs by providing an easily extensible object-oriented framework.

GPkit abstracts away the backend solver so that users can work directly with engineering equations and optimization concepts. Supported solvers are MOSEK and CVXOPT.

Join our mailing list and/or chatroom for support and examples.
1.1 What is a GP?

A Geometric Program (GP) is a type of non-linear optimization problem whose objective and constraints have a particular form.

The decision variables must be strictly positive (non-zero, non-negative) quantities. This is a good fit for engineering design equations (which are often constructed to have only positive quantities), but any model with variables of unknown sign (such as forces and velocities without a predefined direction) may be difficult to express in a GP. Such models might be better expressed as Signomials.

More precisely, GP objectives and inequalities are formed out of monomials and posynomials. In the context of GP, a monomial is defined as:

\[f(x) = cx_1^{a_1}x_2^{a_2}...x_n^{a_n} \]

where \(c \) is a positive constant, \(x_1...n \) are decision variables, and \(a_1...n \) are real exponents. For example, taking \(x, y \) and \(z \) to be positive variables, the expressions

\[
7x \quad 4xy^2z \quad \frac{2x}{y^2z^{0.3}} \quad \sqrt{2xy}
\]

are all monomials. Building on this, a posynomial is defined as a sum of monomials:

\[g(x) = \sum_{k=1}^{K} c_k x_1^{a_{1k}}x_2^{a_{2k}}...x_n^{a_{nk}} \]

For example, the expressions

\[
x^2 + 2xy + 1 \quad 7xy + 0.4(yz)^{-1/3} \quad 0.56 + \frac{x^{0.7}}{yz}
\]

are all posynomials. Alternatively, monomials can be defined as the subset of posynomials having only one term. Using \(f_i \) to represent a monomial and \(g_i \) to represent a posynomial, a GP in standard form is
written as:

\[
\begin{align*}
\text{minimize} & \quad g_0(x) \\
\text{subject to} & \quad f_i(x) = 1, \quad i = 1, \ldots, m \\
& \quad g_i(x) \leq 1, \quad i = 1, \ldots, n
\end{align*}
\]

Boyd et. al. give the following example of a GP in standard form:

\[
\begin{align*}
\text{minimize} & \quad x^{-1}y^{-1/2}z^{-1} + 2.3xz + 4xyz \\
\text{subject to} & \quad (1/3)x^{-2/3}y^{-2} + (4/3)y^{1/2}z^{-1} \leq 1 \\
& \quad x + 2y + 3z \leq 1 \\
& \quad (1/2)xy = 1
\end{align*}
\]

1.2 Why are GPs special?

Geometric programs have several powerful properties:

1. Unlike most non-linear optimization problems, large GPs can be solved extremely quickly.
2. If there exists an optimal solution to a GP, it is guaranteed to be globally optimal.
3. Modern GP solvers require no initial guesses or tuning of solver parameters.

These properties arise because GPs become convex optimization problems via a logarithmic transformation. In addition to their mathematical benefits, recent research has shown that many practical problems can be formulated as GPs or closely approximated as GPs.

1.3 What are Signomials / Signomial Programs?

When the coefficients in a posynomial are allowed to be negative (but the variables stay strictly positive), that is called a Signomial.

A Signomial Program has signomial constraints. While they cannot be solved as quickly or to global optima, because they build on the structure of a GP they can often be solved more quickly than a generic nonlinear program. More information can be found under Signomial Programming.

1.4 Where can I learn more?

To learn more about GPs, refer to the following resources:

- A tutorial on geometric programming, by S. Boyd, S.J. Kim, L. Vandenberghe, and A. Hassibi.
- Convex optimization, by S. Boyd and L. Vandenberghe.
Installation

1. If you are on Mac or Windows, we recommend installing Anaconda. Alternatively, install pip and create a virtual environment.
2. (optional) Install the MOSEK solver as directed below
3. Run `pip install gpkit` in the appropriate terminal or command prompt.
4. Open a Python prompt and run `import gpkit` to finish installation and run unit tests.

If you encounter any bugs please email gpkit@mit.edu or raise a GitHub issue.

2.1 Installing MOSEK

GPkit interfaces with two off the shelf solvers: cvxopt, and MOSEK. Cvxopt is open source and installed by default; MOSEK requires a commercial licence or (free) academic license.

Before any of the steps below, if you are using Python 2 run `pip install ctypesgen`.

Mac OS X

- If `which gcc` does not return anything, install the Apple Command Line Tools.
- Download **MOSEK 8**, then:
 - Move the *mosek* folder to your home directory
 - Follow these steps for Mac.
 - Request an academic license file and put it in `~/mosek/`

Linux

- Download **MOSEK 8**, then:
 - Move the *mosek* folder to your home directory
 - Follow these steps for Linux.
Windows

- Request an academic license file and put it in `~/mosek/`

- Download MOSEK 8, then:
 - Follow these steps for Windows.
 - Request an academic license file and put it in `C:\Users\(your_username)\mosek`
 - Make sure `gcc` is on your system path.
 - To do this, type `gcc` into a command prompt.
 - If you get `executable not found`, then install the 64-bit version (x86_64 installer architecture dropdown option) with GCC version 6.4.0 or older of mingw.
 - In an Anaconda command prompt (or equivalent), run `cd C:\Program Files\mingw-w64\x86_64-6.4.0-posix-seh-rt_v5-rev0\` (or whatever corresponds to the correct installation directory; note that if mingw is in `Program Files` (x86) instead of `Program Files` you’ve installed the 32-bit version by mistake)
 - Run `mingw-64` to add it to your executable path. For step 3 of the install process you’ll need to run `pip install gpkit` from this prompt.

2.2 Debugging your installation

You may need to rebuild GPkit if any of the following occur:

- You install MOSEK after installing GPkit
- You see `Could not load settings file. when importing GPkit, or`
- `Could not load MOSEK library: ImportError('expopt.so not found.')`

To rebuild GPkit run `python -c "from gpkit.build import import rebuild; rebuild()"`.

If that doesn’t solve your issue then try the following:

- `pip uninstall gpkit`
- `pip install --no-cache-dir --no-deps gpkit`
- `python -c "import gpkit.tests; gpkit.tests.run()"
- If any tests fail, please email gpkit@mit.edu or raise a GitHub issue.

2.3 Bleeding-edge installations

Active developers may wish to install the latest GPkit directly from Github. To do so,

1. `pip uninstall gpkit` to uninstall your existing GPkit.
2. `git clone https://github.com/convexengineering/gpkit.git`
3. `pip install -e gpkit` to install that directory as your environment-wide GPkit.
4. `cd ..; python -c "import gpkit.tests; gpkit.tests.run()"` to test your installation from a non-local directory.
GPkit is a Python package, so we assume basic familiarity with Python: if you’re new to Python we recommend you take a look at Learn Python. Otherwise, install GPkit and import away:

```python
from gpkit import Variable, VectorVariable, Model
```

3.1 Declaring Variables

Instances of the `Variable` class represent scalar variables. They create a `VarKey` to store the variable’s name, units, a description, and value (if the Variable is to be held constant), as well as other metadata.

3.1.1 Free Variables

```python
# Declare a variable, x
x = Variable("x")

# Declare a variable, y, with units of meters
y = Variable("y", "m")

# Declare a variable, z, with units of meters, and a description
z = Variable("z", "m", "A variable called z with units of meters")
```

3.1.2 Fixed Variables

To declare a variable with a constant value, use the `Variable` class, as above, but put a number before the units:
Declare \rho equal to 1.225 kg/m^3.
NOTE: in python string literals, backslashes must be doubled
rho = Variable("\rho", 1.225, "kg/m^3", "Density of air at sea level")

In the example above, the key name "\rho" is for LaTeX printing (described later). The unit and description arguments are optional.

Declare pi equal to 3.14
pi = Variable("\pi", 3.14)

3.1.3 Vector Variables

Vector variables are represented by the `VectorVariable` class. The first argument is the length of the vector. All other inputs follow those of the `Variable` class.

Declare a 3-element vector variable "x" with units of "m"
x = VectorVariable(3, "x", "m", "Cube corner coordinates")
x_min = VectorVariable(3, "x", [1, 2, 3], "m", "Cube corner minimum")

3.2 Creating Monomials and Posynomials

Monomial and posynomial expressions can be created using mathematical operations on variables.

create a Monomial term xy^2/z
x = Variable("x")
y = Variable("y")
z = Variable("z")
m = x * y**2 / z
type(m) # gpkit.nomials.Monomial

create a Posynomial expression x + xy^2
x = Variable("x")
y = Variable("y")
p = x + x * y**2
type(p) # gpkit.nomials.Posynomial

3.3 Declaring Constraints

Constraint objects represent constraints of the form Monomial \geq Posynomial or Monomial \leq Monomial (which are the forms required for GP-compatibility).

Note that constraints must be formed using \leq, \geq, or == operators, not < or >.

consider a block with dimensions x, y, z less than 1
constrain surface area less than 1.0 m^2
x = Variable("x", "m")
y = Variable("y", "m")
z = Variable("z", "m")
S = Variable("S", 1.0, "m^2")
c = (2*x*y + 2*x*z + 2*y*z <= S)
type(c) # gpkit.nomials.PosynomialInequality
3.4 Formulating a Model

The Model class represents an optimization problem. To create one, pass an objective and list of Constraints.

By convention, the objective is the function to be minimized. If you wish to maximize a function, take its reciprocal. For example, the code below creates an objective which, when minimized, will maximize $x \cdot y \cdot z$.

```python
objective = 1/(x*y*z)
constraints = [2*x*y + 2*x*z + 2*y*z <= S,
                x >= 2*y]
m = Model(objective, constraints)
```

3.5 Solving the Model

When solving the model you can change the level of information that gets printed to the screen with the verbosity setting. A verbosity of 1 (the default) prints warnings and timing; a verbosity of 2 prints solver output, and a verbosity of 0 prints nothing.

```python
sol = m.solve(verbosity=0)
```

3.6 Printing Results

The solution object can represent itself as a table:

```python
print sol.table()
```

```
Cost
----
  15.59 [1/m**3]

Free Variables
-------------
x : 0.5774 [m]
y : 0.2887 [m]
z : 0.3849 [m]

Constants
--------
S : 1 [m**2]

Sensitivities
-------------
S : -1.5
```

We can also print the optimal value and solved variables individually.

```python
print "The optimal value is \$s." % sol["cost"]
print "The x dimension is \$s." % sol(x)
print "The y dimension is \$s." % sol["variables"]["y"]
```
The optimal value is 15.5884619886.
The x dimension is 0.5774 meter.
The y dimension is 0.2887 meter.

3.7 Sensitivities and dual variables

When a GP is solved, the solver returns not just the optimal value for the problem’s variables (known as the “primal solution”) but also the effect that relaxing each constraint would have on the overall objective (the “dual solution”).

From the dual solution GPkit computes the sensitivities for every fixed variable in the problem. This can be quite useful for seeing which constraints are most crucial, and prioritizing remodeling and assumption-checking.

3.7.1 Using variable sensitivities

Fixed variable sensitivities can be accessed from a SolutionArray’s "sensitivities"["constants"] dict, as in this example:

```python
import gpkit
x = gpkit.Variable("x")
x_min = gpkit.Variable("x_{min}", 2)
sol = gpkit.Model(x, [x_min <= x]).solve()
assert sol["sensitivities"]["constants"][x_min] == 1
```

These sensitivities are actually log derivatives \(\frac{\log(y)}{\log(x)} \); whereas a regular derivative is a tangent line, these are tangent monomials, so the 1 above indicates that \(x_{min} \) has a linear relation with the objective. This is confirmed by a further example:

```python
import gpkit
x = gpkit.Variable("x")
x_squared_min = gpkit.Variable("x^2_{min}", 2)
sol = gpkit.Model(x, [x_squared_min <= x**2]).solve()
assert sol["sensitivities"]["constants"][x_squared_min] == 2
```
A number of errors and warnings may be raised when attempting to solve a model. A model may be primal infeasible: there is no possible solution that satisfies all constraints. A model may be dual infeasible: the optimal value of one or more variables is 0 or infinity (negative and positive infinity in logspace).

For a GP model that does not solve, solvers may be able to prove its primal or dual infeasibility, or may return an unknown status.

GPkit contains several tools for diagnosing which constraints and variables might be causing infeasibility. The first thing to do with a model \(m \) that won’t solve is to run \(m\.debug() \), which will search for changes that would make the model feasible:

```python
"Debug examples"
from gpkit import Variable, Model, units

x = Variable("x", "ft")
x_min = Variable("x_min", 2, "ft")
x_max = Variable("x_max", 1, "ft")
y = Variable("y", "volts")

m = Model(x/y, [x <= x_max, x >= x_min])
m.debug()

print("# Now let's try a model unsolvable with relaxed constants\n")
Model(x, [x <= units("inch"), x >= units("yard")]).debug()

print("# And one that's only unbounded\n")

# the value of x_min was used up in the previous model!
x_min = Variable("x_min", 2, "ft")
Model(x/y, [x >= x_min]).debug()
```

< DEBUGGING >
> Trying with bounded variables and relaxed constants:
Solves with these variables bounded:
 value near upper bound: y
 sensitive to upper bound: y

and these constants relaxed:
 x_min [ft]: relaxed from 2 to 1

>> Success!

Now let's try a model unsolvable with relaxed constants

< DEBUGGING >

> Trying with bounded variables and relaxed constants:

>> Failure.

> Trying with relaxed constraints:

Solves with these constraints relaxed:
 1: 3500% relaxed, from x [ft] >= 1 [yd]
 to 36*x [ft] >= 1 [yd]

>> Success!

And one that's only unbounded

< DEBUGGING >

> Trying with bounded variables and relaxed constants:

Solves with these variables bounded:
 value near upper bound: y
 sensitive to upper bound: y

>> Success!

Note that certain modeling errors (such as omitting or forgetting a constraint) may be difficult to diagnose from this output.

4.1 Potential errors and warnings

- **RuntimeWarning**: final status of solver 'mosek' was 'DUAL_INFEAS_CER', not 'optimal'.

 - The solver found a certificate of dual infeasibility: the optimal value of one or more variables is 0 or infinity. See *Dual Infeasibility* below for debugging advice.

- **RuntimeWarning**: final status of solver 'mosek' was 'PRIM_INFEAS_CER', not 'optimal'.

 - The solver found a certificate of primal infeasibility: no possible solution satisfies all constraints. See *Primal Infeasibility* below for debugging advice.

- **RuntimeWarning**: final status of solver 'cvxopt' was 'unknown', not 'optimal' or Run...
-- The solver could not solve the model or find a certificate of infeasibility. This may indicate a dual infeasible model, a primal infeasible model, or other numerical issues. Try debugging with the techniques in Dual and Primal Infeasibility below.

• **RuntimeWarning:** Primal solution violates constraint: 1.0000149786 is greater than 1

-- this warning indicates that the solver-returned solution violates a constraint of the model, likely because the solver’s tolerance for a final solution exceeds GPkit’s tolerance during solution checking. This is sometimes seen in dual infeasible models, see Dual Infeasibility below. If you run into this, please note on this GitHub issue your solver and operating system.

• **RuntimeWarning:** Dual cost nan does not match primal cost 1.00122315152

-- Similarly to the above, this warning may be seen in dual infeasible models, see Dual Infeasibility below.

4.2 Dual Infeasibility

In some cases a model will not solve because the optimal value of one or more variables is 0 or infinity (negative or positive infinity in logspace). Such a problem is dual infeasible because the GP’s dual problem, which determines the optimal values of the sensitivies, does not have any feasible solution. If the solver can prove that the dual is infeasible, it will return a dual infeasibility certificate. Otherwise, it may finish with a solution status of unknown.

gpkit.constraints.bounded.Bounded is a simple tool that can be used to detect unbounded variables and get dual infeasible models to solve by adding extremely large upper bounds and extremely small lower bounds to all variables in a ConstraintSet.

When a model with a Bounded ConstraintSet is solved, it checks whether any variables slid off to the bounds, notes this in the solution dictionary and prints a warning (if verbosity is greater than 0).

For example, Mosek returns DUAL_INFEAS_CER when attempting to solve the following model:

```python
"Demonstrate a trivial unbounded variable"
from gpkit import Variable, Model
from gpkit.constraints.bounded import Bounded
x = Variable("x")
constraints = [x >= 1]

m = Model(1/x, constraints)  # MOSEK returns DUAL_INFEAS_CER on .solve()
m = Model(1/x, Bounded(constraints))
# by default, prints bounds warning during solve
sol = m.solve(verbosity=0)
print(sol.summary())
print("sol['boundedness'] is: \$s" % sol["boundedness"])```

Upon viewing the printed output,

```
Solves with these variables bounded:
value near upper bound: x
sensitive to upper bound: x
```

(continues on next page)
The problem, unsurprisingly, is that the cost $1/x$ has no lower bound because $x$ has no upper bound. For details read the Bounded docstring.

### 4.3 Primal Infeasibility

A model is primal infeasible when there is no possible solution that satisfies all constraints. A simple example is presented below.

```python
"A simple primal infeasible example"
from gpkit import Variable, Model
x = Variable("x")
y = Variable("y")
m = Model(x*y, [
 x >= 1,
 y >= 2,
 x*y >= 0.5,
 x*y <= 1.5
])
m.solve() # raises unknown on cvxopt
and PRIM_INFEAS_CER on mosek
```

It is not possible for $x*y$ to be less than 1.5 while $x$ is greater than 1 and $y$ is greater than 2.

A common bug in large models that use substitutions is to substitute overly constraining values in for variables that make the model primal infeasible. An example of this is given below.

```python
"Another simple primal infeasible example"
from gpkit import Variable, Model
#Make the necessary Variables
x = Variable("x")
y = Variable("y", 2)
#make the constraints
```
constraints = [
    x >= 1,
    0.5 <= x*y,
    x*y <= 1.5
]

# declare the objective
objective = x*y

# construct the model
m = Model(objective, constraints)

# solve the model
# raises RuntimeError unknown on cvxopt and RuntimeWarning
# PRIM_INFES_CER with mosek
# m.solve()

Since \( y \) is now set to 2 and \( x \) can be no less than 1, it is again impossible for \( x*y \) to be less than 1.5 and the model is primal infeasible. If \( y \) was instead set to 1, the model would be feasible and the cost would be 1.

### 4.3.1 Relaxation

If you suspect your model is primal infeasible, you can find the nearest primal feasible version of it by relaxing constraints: either relaxing all constraints by the smallest number possible (that is, dividing the less-than side of every constraint by the same number), relaxing each constraint by its own number and minimizing the product of those numbers, or changing each constant by the smallest total percentage possible.

"Relaxation examples"

```python
from gpkit import Variable, Model
x = Variable("x")
x_min = Variable("x_min", 2)
x_max = Variable("x_max", 1)
m = Model(x, [x <= x_max, x >= x_min])
print("Original model")
print(m)
print("")
m.solve() # raises a RuntimeWarning!
print("With constraints relaxed equally")
print("")
from gpkit.constraints.relax import ConstraintsRelaxedEqually
allrelaxed = ConstraintsRelaxedEqually(m)
mrl = Model(allrelaxed.relaxvar, allrelaxed)
print(mrl)
print(mrl.solve(verbosity=0).table()) # solves with an x of 1.414
print("")

print("With constraints relaxed individually")
print("")
from gpkit.constraints.relax import ConstraintsRelaxed
constraintsrelaxed = ConstraintsRelaxed(m)
```
mr2 = Model(constraintsrelaxed.relaxvars.prod() * m.cost**0.01,
            # add a bit of the original cost in
            constraintsrelaxed)
print(mr2)
print(mr2.solve(verbosity=0).table())  # solves with an x of 1.0
print(""")
print("With constants relaxed individually")
print("="*40)
from gpkit.constraints.relax import ConstantsRelaxed
constantsrelaxed = ConstantsRelaxed(m)
mr3 = Model(constantsrelaxed.relaxvars.prod() * m.cost**0.01,
            # add a bit of the original cost in
            constantsrelaxed)
print(mr3)
print(mr3.solve(verbosity=0).table())  # brings x_min down to 1.0
print("")

Original model
===============

Cost
-----

x

Constraints
----------

x <= x_max
x >= x_min

With constraints relaxed equally
================================

Cost
-----

C

Constraints
----------

"minimum relaxation":
  C >= 1
"relaxed constraints":
  x <= C*x_max
  x_min <= C*x

Cost
-----

1.414

Free Variables
--------------

x : 1.414  
| Relax
C : 1.414

(continues on next page)
Constants
---------
x_max : 1
x_min : 2

Sensitivities
------------
x_max : -0.5
x_min : +0.5

Tightest Constraints
--------------------
+0.5 : x <= C*x_max
+0.5 : x_min <= C*x

With constraints relaxed individually
-------------------------------------

Cost
----
C[:].prod()*x^0.01

Constraints
-----------
"minimum relaxation":
  C[:] >= 1
"relaxed constraints":
  x <= C[0]*x_max
  x_min <= C[1]*x

Cost
----
2

Free Variables
--------------
x : 1
  | Relax1
C : [ 1 2 ]

Constants
---------
x_max : 1
x_min : 2

Sensitivities
------------
x_min : +1
x_max : -0.99

Tightest Constraints
--------------------
+1 : x_min <= C[1]*x
+0.99 : x <= C[0]*x_max
+0.01 : C[0] >= 1
With constants relaxed individually
=====================================

Cost
----
[Relax2.x_max, Relax2.x_min].prod() * x^0.01

Constraints
----------
Relax2
  "original constraints":
    x <= x_max
    x >= x_min
  "relaxation constraints":
    "x_max":
      Relax2.x_max >= 1
      x_max >= x_max_{prelax}/Relax2.x_max
      x_max <= x_max_{prelax}*Relax2.x_max
    "x_min":
      Relax2.x_min >= 1
      x_min >= x_min_{prelax}/Relax2.x_min
      x_min <= x_min_{prelax}*Relax2.x_min

Cost
----
2

Free Variables
------------
  x : 1
  x_max : 1
  x_min : 1
  | Relax2
  x_max : 1
  x_min : 2

Constants
---------
  x_max_{prelax} : 1
  x_min_{prelax} : 2

Sensitivities
------------
  x_min : +1
  x_max : -0.99

Tightest Constraints
-------------------
  +1 : x >= x_min
  +1 : x_min >= x_min_{prelax}/x_min
  +0.99 : x <= x_max
  +0.99 : x_max <= x_max_{prelax}*x_max
5.1 Sankey Diagrams

5.1.1 Requirements

- jupyter notebook
- ipysankeywidget

5.1.2 Example

Code in this section uses the CE solar model

```python
from solar import *
Vehicle = Aircraft(Npod=1, sp = False)
M = Mission(Vehicle, latitude=[20])
M.cost = M[M.aircraft.Wtotal]
sol = M.solve()

from gpkit.interactive.sankey import Sankey
Sankey(M).diagram(M.aircraft.Wtotal)
```

(objective) adds +1 to the sensitivity of Wtotal_Aircraft
(objective) is Wtotal_Aircraft [lbf]

adds +0.0075 to the overall sensitivity of Wtotal_Aircraft
is Wtotal_Aircraft <= 0.5*CL_Mission/Climb/AircraftDrag/WingAero_(0,)*S_→Aircraft/Wing/Planform.2*V_Mission/Climb_(0, 0)**2*rho_Mission/Climb_(0, 0)

adds +0.0117 to the overall sensitivity of Wtotal_Aircraft
is Wtotal_Aircraft <= 0.5*CL_Mission/Climb/AircraftDrag/WingAero_(1,)*S_→Aircraft/Wing/Planform.2*V_Mission/Climb_(0, 1)**2*rho_Mission/Climb_(0, 1)

(continues on next page)
5.1.3 Explanation

Sankey diagrams can be used to visualize sensitivity structure in a model. A blue flow from a constraint to its parent indicates that the sensitivity of the chosen variable (or of making the constraint easier, if no variable is given) is negative; that is, the objective of the overall model would improve if that variable’s value were increased in that constraint alone. Red indicates a positive sensitivity: the objective and the constraint ‘want’ that variable’s value decreased. Gray flows indicate a sensitivity whose absolute value is below $1e^{-7}$, i.e. a constraint that is inactive for that variable. Where equal red and blue flows meet, they cancel each other out to gray.

5.1.4 Usage

Variables

In a Sankey diagram of a variable, the variable is on the left with its final sensitivity; to the right of it are all constraints that variable is in.

Free

Free variables have an overall sensitivity of 0, so this visualization shows how the various pressures on that variable in all its constraints cancel each other out; this can get quite complex, as in this diagram of the pressures on wingspan:

```python
Sankey(M).diagram(M.aircraft.b)
```

Fixed

Fixed variables can have a nonzero overall sensitivity. Sankey diagrams can how that sensitivity comes together:

```python
Sankey(M).diagram(M['vgust'])
```

Equivalent Variables

If any variables are equal to the diagram’s variable (modulo some constant factor; e.g. $2 \times x = y$ counts for this, as does $2 \times x \leq y$ if the constraint is sensitive), they are found and plotted at the same time, and all shown on the left. The constraints responsible for this are shown next to their labels.

```python
Sankey(M).sorted_by('constraints', 11)
```
Models

When created without a variable, the diagram shows the sensitivity of every named model to becoming locally easier. Because derivatives are additive, these sensitivities are too: a model’s sensitivity is equal to the sum of its constraints’ sensitivities. Gray lines in this diagram indicate models without any tight constraints.

Sankey(M).diagram(left=60, right=90, width=1050)

5.1.5 Syntax

<table>
<thead>
<tr>
<th>Code</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>s = Sankey(M)</td>
<td>Creates Sankey object of a given model</td>
</tr>
<tr>
<td>s.diagram(vars)</td>
<td>Creates the diagram in a way Jupyter knows how to present</td>
</tr>
<tr>
<td>d = s.diagram()</td>
<td>Don’t do this! Captures output, preventing Jupyter from seeing it.</td>
</tr>
<tr>
<td>s.diagram(width=..)</td>
<td>Sets width in pixels. Same for height.</td>
</tr>
<tr>
<td>s.diagram(left=..)</td>
<td>Sets top margin in pixels. Same for right, top, bottom. Use if the left-hand text is being cut off.</td>
</tr>
<tr>
<td>s.diagram(flowright=True)</td>
<td>Shows the variable / top constraint on the right instead of the left.</td>
</tr>
<tr>
<td>s.sorted_by(&quot;maxflow&quot;, 0)</td>
<td>Creates diagram of the variable with the largest single constraint sensitivity. (change the 0 index to go down the list)</td>
</tr>
<tr>
<td>s.sorted_by(&quot;constraints&quot;, 0)</td>
<td>Creates diagram of the variable that’s in the most constraints. (change the 0 index to go down the list)</td>
</tr>
</tbody>
</table>

5.2 Plotting a 1D Sweep

Methods exist to facilitate creating, solving, and plotting the results of a single-variable sweep (see Sweeps for details). Example usage is as follows:

"Demonstrates manual and auto sweeping and plotting"
import matplotlib as mpl
mpl.use('Agg')
# comment out the lines above to show figures in a window
import numpy as np
from gpkit import Model, Variable, units
from gpkit.constraints.tight import Tight

x = Variable("x", "m", "Swept Variable")
y = Variable("y", "m^2", "Cost")
m = Model(y, [
    y >= (x/2)^-0.5 * units.m**2.5 + 1*units.m**2,
    Tight([y >= (x/2)**2])
])

# arguments are: model, swept: values, posnomial for y-axis

(continues on next page)
sol = m.sweep({x: np.linspace(1, 3, 20)}, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Manually swept (20 points)")
f.show()
f.savefig("plot_sweep1d.png")
sol.save()

# arguments are: model, swept: (min, max, optional logtol), posnomial for y-axis
sol = m.autosweep({x: (1, 3)}, tol=0.001, verbosity=0)
f, ax = sol.plot(y)
ax.set_title("Autoswept (7 points)\nGuaranteed to be in blue region")
f.show()
f.savefig("plot_autosweep1d.png")

Which results in:

Manually swept (20 points)
5.2. Plotting a 1D Sweep

Autoswept (7 points)
Guaranteed to be in blue region

Cost [m³]

Swept Variable [m]

1.0 2.0 3.0
2.0 2.2 2.4
CHAPTER 6

Building Complex Models

6.1 Checking for result changes

Tracking the effects of changes to complex models can get out of hand; we recommend saving solutions with `sol.save()`, then checking that new solutions are almost equivalent with `sol1.almost_equal(sol2)` and/or `print sol1.diff(sol2)`, as shown below.

```python
import pickle
...
build the model
sol = m.solve()
uncomment the line below to verify a new model
sol.save("last_verified.sol")
last_verified_sol = pickle.load(open("last_verified.sol"))
if not sol.almost_equal(last_verified_sol, reltol=1e-3):
 print last_verified_sol.diff(sol)

Note you can replace the last three lines above with
print sol.diff("last_verified.sol")
if you don't mind doing the diff in that direction.
```

You can also check differences between swept solutions, or between a point solution and a sweep.

6.2 Inheriting from Model

GPkit encourages an object-oriented modeling approach, where the modeler creates objects that inherit from `Model` to break large systems down into subsystems and analysis domains. The benefits of this approach include modularity, reusability, and the ability to more closely follow mental models of system hierarchy. For example: two different models for a simple beam, designed by different modelers, should be able to be used interchangeably inside another subsystem (such as an aircraft wing) without either modeler having to write specifically with that use in mind.
When you create a class that inherits from Model, write a \texttt{.setup()} method to create the model's variables and return its constraints. \texttt{GPkit.Model.__init__} will call that method and automatically add your model's name and unique ID to any created variables.

Variables created in a \texttt{setup} method are added to the model even if they are not present in any constraints. This allows for simplistic ‘template’ models, which assume constant values for parameters and can grow incrementally in complexity as those variables are freed.

At the end of this page a detailed example shows this technique in practice.

### 6.3 Accessing Variables in Models

\texttt{GPkit} provides several ways to access a \texttt{Variable} in a \texttt{Model} (or \texttt{ConstraintSet}):

- using \texttt{Model.variables_byname(key)}. This returns all Variables in the Model, as well as in any submodels, that match the key.
- using \texttt{Model.__getitem__}. \texttt{Model[key]} returns the only variable matching the key, even if the match occurs in a submodel. If multiple variables match the key, an error is raised.

These methods are illustrated in the following example.

```python
"Demo of accessing variables in models"
from gpkit import Model, Variable
class Battery(Model):
 """A simple battery
 Upper Unbounded

m
 Lower Unbounded

 E
 ""
 def setup(self):
 h = Variable("h", 200, "Wh/kg", "specific energy")
 E = self.E = Variable("E", "MJ", "stored energy")
 m = self.m = Variable("m", "lb", "battery mass")
 return [E <= m*h]
class Motor(Model):
 """Electric motor
 Upper Unbounded

m
 Lower Unbounded

Pmax
 ""
```

(continues on next page)
def setup(self):
    m = self.m = Variable("m", "lb", "motor mass")
f = Variable("f", 20, "lb/hp", "mass per unit power")
Pmax = self.Pmax = Variable("P_{max}", "hp", "max output power")
    return [m >= f*Pmax]

class PowerSystem(Model):
    """A battery powering a motor
    """
    Upper Unbounded
    -----------
m
    Lower Unbounded
    --------------
E, Pmax
    """
    def setup(self):
        battery, motor = Battery(), Motor()
        components = [battery, motor]
m = self.m = Variable("m", "lb", "mass")
        self.E = battery.E
        self.Pmax = motor.Pmax
        return [components,
                m >= sum(comp.m for comp in components)]

PS = PowerSystem()
print("Getting the only var 'E': %s") % PS.E
print("The top-level var 'm': %s") % PS.m
print("All the variables 'm': %s") % PS.variables_byname("m"))

Getting the only var 'E': PowerSystem.Battery.E [MJ]
The top-level var 'm': PowerSystem.m [lb]
All the variables 'm': [gpkit.Variable(PowerSystem.Battery.m [lb]), gpkit.
variable(PowerSystem.Motor.m [lb]), gpkit.Variable(PowerSystem.m [lb])]}

6.4 Vectorization

gpkit.Vectorize creates an environment in which Variables are created with an additional dimension:

"from gpkit/tests/t_vars.py"


def test_shapes(self):
    with gpkit.Vectorize(3):
        with gpkit.Vectorize(5):
            y = gpkit.Variable("y")
x = gpkit.VectorVariable(2, "x")
z = gpkit.VectorVariable(7, "z")

        self.assertEqual(y.shape, (5, 3))

(continues on next page)
This allows models written with scalar constraints to be created with vector constraints:

```python
"""Vectorization demonstration"
from gpkit import Model, Variable, Vectorize

class Test(Model):
 """A simple scalar model
 Upper Unbounded
 """
 x

 def setup(self):
 x = self.x = Variable("x")
 return [x >= 1]

print("SCALAR")
m = Test()
m.cost = m["x"]
print(m.solve(verbosety=0).summary())

print("\\n")
print("VECTORIZED")
with Vectorize(3):
 m = Test()
m.cost = m["x"]').prod()
m.append(m["x"])[1] >= 2)
print(m.solve(verbosety=0).summary())
```

SCALAR
Cost
----
1

Free Variables
-------------
x : 1

Tightest Constraints
---------------------
+1 : x >= 1

VECTORIZED
Cost
----
2

Free Variables
-------------
6.5 Multipoint analysis modeling

In many engineering models, there is a physical object that is operated in multiple conditions. Some variables correspond to the design of the object (size, weight, construction) while others are vectorized over the different conditions (speed, temperature, altitude). By combining named models and vectorization we can create intuitive representations of these systems while maintaining modularity and interoperability.

In the example below, the models Aircraft and Wing have a `dynamic()` method which creates instances of AircraftPerformance and WingAero, respectively. The Aircraft and Wing models create variables, such as size and weight without fuel, that represent a physical object. The `dynamic` models create properties that change based on the flight conditions, such as drag and fuel weight.

This means that when an aircraft is being optimized for a mission, you can create the aircraft (`AC` in this example) and then pass it to a `Mission` model which can create vectorized aircraft performance models for each flight segment and/or flight condition.

```python
"""Modular aircraft concept""
import pickle
import numpy as np
from gpkit import Model, Vectorize, parse_variables

class AircraftP(Model):
 """Aircraft flight physics: weight <= lift, fuel burn
 Variables

 Wfuel [lbf] fuel weight
 Wburn [lbf] segment fuel burn

 Upper Unbounded

 Wburn, aircraft.wing.c, aircraft.wing.A

 Lower Unbounded

 Wfuel, aircraft.W, state.mu

 """
 def setup(self, aircraft, state):
 self.aircraft = aircraft
 self.state = state
```

(continues on next page)
exec(parse_variables(AircraftP.__doc__))

self.wing_aero = aircraft.wing.dynamic(aircraft.wing, state)
self.perf_models = [self.wing_aero]

W = aircraft.W
S = aircraft.wing.S
V = state.V
rho = state.rho
D = self.wing_aero.D
CL = self.wing_aero.CL

return {
    "lift":
    W + Wfuel <= 0.5*rho*CL*S*V**2,
    "fuel burn rate":
    Wburn >= 0.1*D,
    "performance":
    self.perf_models}

class Aircraft(Model):
    """The vehicle model

    Variables
    -------
    W [lbf] weight

    Upper Unbounded
    ---------------
    W

    Lower Unbounded
    ---------------
    wing.c, wing.S
    ""
    def setup(self):
        exec(parse_variables(Aircraft.__doc__))
        self.fuse = Fuselage()
        self.wing = Wing()
        self.components = [self.fuse, self.wing]

        return {
            "definition of W":
            W >= sum(c.W for c in self.components),
            "components":
            self.components}

    dynamic = AircraftP

class FlightState(Model):
    """Context for evaluating flight physics

    Variables
\[\begin{align*}
\text{V} &= 40 \quad \text{[knots]} \quad \text{true airspeed} \\
\mu &= 1.628 \times 10^{-5} \quad \text{[N*s/m^2]} \quad \text{dynamic viscosity} \\
\rho &= 0.74 \quad \text{[kg/m^3]} \quad \text{air density}
\end{align*}\]

```python
def setup(self):
 exec(parse_variables(FlightState.__doc__))

class FlightSegment(Model):
 """Combines a context (flight state) and a component (the aircraft)

 Upper Unbounded

 Wburn, aircraft.wing.c, aircraft.wing.A \\

 Lower Unbounded

 Wfuel, aircraft.W
 ""
 def setup(self, aircraft):
 self.aircraft = aircraft
 self.flightstate = FlightState()
 self.aircraftp = aircraft.dynamic(aircraft, self.flightstate)
 self.Wburn = self.aircraftp.Wburn
 self.Wfuel = self.aircraftp.Wfuel
 return {
 "flightstate": self.flightstate,
 "aircraft performance": self.aircraftp
 }

class Mission(Model):
 """A sequence of flight segments

 Upper Unbounded

 aircraft.wing.c, aircraft.wing.A \\

 Lower Unbounded

 aircraft.W
 ""
 def setup(self, aircraft):
 self.aircraft = aircraft
 with Vectorize(4):
 # four flight segments
 self.fs = FlightSegment(aircraft)
 Wburn = self.fs.aircraftp.Wburn
 Wfuel = self.fs.aircraftp.Wfuel
 self.takeoff_fuel = Wfuel[0]

 return {
```
"definition of \( W_{\text{burn}} \):

\[
W_{\text{fuel}[:1]} \geq W_{\text{fuel}[1:]} + W_{\text{burn}[:-1]},
\]

"require fuel for the last leg":  

\[
W_{\text{fuel}[-1]} \geq W_{\text{burn}[-1]},
\]

"flight segment":  

```python
self.fs
```

class WingAero(Model):
    """Wing aerodynamics

Variables
---------
CD [-] drag coefficient  
CL [-] lift coefficient  
e 0.9 [-] Oswald efficiency  
Re [-] Reynold's number  
D [lbf] drag force  

Upper Unbounded
----------------
D, Re, wing.A, state.mu

Lower Unbounded
----------------
CL, wing.S, state.mu, state.rho, state.V
""

def setup(self, wing, state):
    self.wing = wing
    self.state = state
    exec(parse_variables(WingAero.__doc__))

    c = wing.c
    A = wing.A
    S = wing.S
    rho = state.rho
    V = state.V
    mu = state.mu

    return {
        "drag model":
            CD >= 0.074/Re**0.2 + CL**2/np.pi/A/e,
        "definition of Re":
            Re == rho*V*c/mu,
        "definition of D":
            D >= 0.5*rho*V**2*CD*S
```

class Wing(Model):
 """Aircraft wing model

Variables

W [lbf] weight
S [ft^2] surface area
rho 1 [lbf/ft^2] areal density
A 27 [-] aspect ratio
```

(continues on next page)
c  [ft]  mean chord

Upper Unbounded  
------------
W

Lower Unbounded  
------------
c, S

---

```python
def setup(self):
 exec(parse_variables(Wing.__doc__))
 return

 """
 def setup(self):
 exec(parse_variables(Wing.__doc__))
 return

 dynamic = WingAero

class Fuselage(Model):
 """The thing that carries the fuel, engine, and payload

 A full model is left as an exercise for the reader.

 Variables

 W 100 [lbf] weight
 """
 def setup(self):
 exec(parse_variables(Fuselage.__doc__))

AC = Aircraft()
MISSION = Mission(AC)
M = Model(MISSION.takeoff_fuel, [MISSION, AC])
print(M)
sol = M.solve(verbosity=0)
save solution to some files
sol.savemat()
sol.savecsv()
sol.savetxt()
sol.save("solution.pkl")
retrieve solution from a file
sol_loaded = pickle.load(open("solution.pkl"))

vars_of_interest = set(AC.varkeys)
note that there's two ways to access submodels
assert (MISSION["flight segment"]["aircraft performance"]
is MISSION.fs.aircraftp)
vars_of_interest.update(MISSION.fs.aircraftp.unique_varkeys)
vars_of_interest.add(M["D"])
print(sol.summary(vars_of_interest))
print(sol.table(tables=["loose constraints"]))

MISSION["flight segment"]["aircraft performance"]["fuel burn rate"] = (MISSION.fs.aircraftp.Wburn >= 0.2*MISSION.fs.aircraftp.wing_aero.D)
sol = M.solve(verbosity=0)
print(sol.diff("solution.pkl", showvars=vars_of_interest, sortbymodel=False))

Note that the output table can be filtered with a list of variables to show.

<table>
<thead>
<tr>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wfuel[0]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mission</td>
</tr>
<tr>
<td>"definition of Wburn":</td>
</tr>
<tr>
<td>"require fuel for the last leg":</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>FlightSegment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aircraft</td>
</tr>
<tr>
<td>"fuel burn rate":</td>
</tr>
<tr>
<td>Wburn[:3] >= 0.1*D[:3]</td>
</tr>
<tr>
<td>"lift":</td>
</tr>
<tr>
<td>Aircraft.W + Wfuel[:3] <= 0.5*rho[:3]*CL[:3]SV[:3]^2</td>
</tr>
<tr>
<td>"performance":</td>
</tr>
<tr>
<td>WingAero</td>
</tr>
<tr>
<td>"definition of D":</td>
</tr>
<tr>
<td>D[:3] >= 0.5*rho[:3]V[:3]^2CD[:3]*S</td>
</tr>
<tr>
<td>"definition of Re":</td>
</tr>
<tr>
<td>Re[:3] = rho[:3]*V[:3]*c/mu[:3]</td>
</tr>
<tr>
<td>"drag model":</td>
</tr>
<tr>
<td>CD[:3] >= 0.074/Re[:3]^0.2 + CL[:3]^2/PI/A/e[:3]</td>
</tr>
</tbody>
</table>

| FlightState |
| (no constraints) |

| Aircraft |
| "definition of W": |
| "components": |
| Fuselage |
| (no constraints) |

| Wing |
| "definition of mean chord": |
| c = (S/A)^0.5 |
| "parametrization of wing weight": |
| Aircraft.Wing.W >= S*Aircraft.Wing.rho |

<table>
<thead>
<tr>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.091 [lbf]</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Free Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>W : 144.1 [lbf] weight</td>
</tr>
</tbody>
</table>
S : 44.14 \text{ [ft}^2\text{]} \quad \text{surface area}
W : 44.14 \text{ [lbf]} \quad \text{weight}
c : 1.279 \text{ [ft]} \quad \text{mean chord}

Wburn : [0.274 \quad 0.273 \quad 0.272 \quad 0.272] \text{ [lbf]} \quad \text{segment fuel burn}
Wfuel : [1.09 \quad 0.817 \quad 0.544 \quad 0.272] \text{ [lbf]} \quad \text{fuel weight}

D : [2.74 \quad 2.73 \quad 2.72 \quad 2.72] \text{ [lbf]} \quad \text{drag force}

Sensitivities

W : +0.97 \quad \text{weight}
A : -0.67 \quad \text{aspect ratio}
rho : +0.43 \quad \text{areal density}

Next Largest Sensitivities

e : [-0.18 \quad -0.18 \quad -0.18 \quad -0.18] \quad \text{Oswald efficiency}

V : [-0.22 \quad -0.21 \quad -0.21 \quad -0.21] \quad \text{true airspeed}
rho : [-0.12 \quad -0.11 \quad -0.11 \quad -0.11] \quad \text{air density}

Tightest Constraints

\text{Aircraft}

\text{Mission}

\text{Aircraft.Wing}
+0.43 : .W >= S*.rho

All Loose Constraints

No constraints had a sensitivity below +1e-05.

Solution difference for variables given in `showvars`
(positive means the argument is bigger)

Wburn : [-50.5\% \quad -50.4\% \quad -50.3\% \quad -50.1\%] \quad \text{segment fuel burn}
Wfuel : [-50.3\% \quad -50.3\% \quad -50.2\% \quad -50.1\%] \quad \text{fuel weight}
D : [-1.1\% \quad -0.8\% \quad -0.5\% \quad -0.3\%] \quad \text{drag force}

Solution sensitivity delta for variables given in `showvars`
--
The largest sensitivity delta is +0.00451643
CHAPTER 7

Advanced Commands

7.1 Derived Variables

7.1.1 Evaluated Fixed Variables

Some fixed variables may be derived from the values of other fixed variables. For example, air density, viscosity, and temperature are functions of altitude. These can be represented by a substitution or value that is a one-argument function accepting `model.substitutions` (for details, see Substitutions below).

```python
# code from t_GPSubs.test_calcconst in tests/t_sub.py
x = Variable("x", "hours")
t_day = Variable("t_{day}", 12, "hours")
t_night = Variable("t_{night}", lambda c: 24 - c[t_day], "hours")
# note that t_night has a function as its value
m = Model(x, [x >= t_day, x >= t_night])
sol = m.solve(verbosity=0)
self.assertAlmostEqual(sol(t_night)/gpkit.ureg.hours, 12)
m.substitutions.update({t_day: ("sweep", [8, 12, 16])})
sol = m.solve(verbosity=0)
sel.fassertAlmostEqual(sol(t_night)/gpkit.ureg.hours, 12)
self.assertAlmostEqual(sol(t_night)/gpkit.ureg.hours, 12)
```

These functions are automatically differentiated with the ad package to provide more accurate sensitivities. In some cases may require using functions from the ad.admath instead of their python or numpy equivalents; the ad documentation contains details on how to do this.

7.1.2 Evaluated Free Variables

Some free variables may be evaluated from the values of other (non-evaluated) free variables after the optimization is performed. For example, if the efficiency ν of a motor is not a GP-compatible variable, but $(1 - \nu)$ is a valid GP variable, then ν can be calculated after solving. These evaluated free variables
can be represented by a Variable with evalfn metadata. Note that this variable should not be used in constructing your model!

```python
# code from t_constraints.test_evalfn in tests/t_sub.py
x = Variable("x")
x2 = Variable("x^2", evalfn=lambda v: v[x]**2)
m = Model(x, [x >= 2])
m.unique_varkeys = set({x2.key})
sol = m.solve(verbosity=0)
self.assertAlmostEqual(sol(x2), sol(x)**2)
```

For evaluated variables that can be used during a solution, see externalfn under Sequential Geometric Programs.

7.2 Sweeps

Sweeps are useful for analyzing tradeoff surfaces. A sweep “value” is an Iterable of numbers, e.g. [1, 2, 3]. The simplest way to sweep a model is to call `model.sweep({sweepvar: sweepvalues})`, which will return a solution array but not change the model’s substitutions dictionary. If multiple sweepvars are given, the method will run them all as independent one-dimensional sweeps and return a list of one solution per sweep. The method `model.autosweep({sweepvar: (start, end)}, tol=0.01)` behaves very similarly, except that only the bounds of the sweep need be specified and the region in between will be swept to a maximum possible error of tol in the log of the cost. For details see 1D Autosweeps below.

7.2.1 Sweep Substitutions

Alternatively, or to sweep a higher-dimensional grid, Variables can swept with a substitution value takes the form ('sweep', Iterable), such as ('sweep', np.linspace(1e6, 1e7, 100)). During variable declaration, giving an Iterable value for a Variable is assumed to be giving it a sweep value: for example, `x = Variable("x", [1, 2, 3])` will sweep `x` over three values.

Vector variables may also be substituted for: `{y: ('sweep', [[1, 2], [1, 2], [1, 2]])}` will sweep `y` over `y1 ∈ {1, 2}`. These sweeps cannot be specified during Variable creation.

A Model with sweep substitutions will solve for all possible combinations: e.g., if there’s a variable `x` with value ('sweep', [1, 3]) and a variable `y` with value ('sweep', [14, 17]) then the gp will be solved four times, for `(x, y) ∈ {(1,14), (1,17), (3,14), (3,17)}`. The returned solutions will be a one-dimensional array (or 2-D for vector variables), accessed in the usual way.

7.2.2 1D Autosweeps

If you’re only sweeping over a single variable, autosweeping lets you specify a tolerance for cost error instead of a number of exact positions to solve at. GPkit will then search the sweep segment for a locally optimal number of sweeps that can guarantee a max absolute error on the log of the cost.

Accessing variable and cost values from an autosweep is slightly different, as can be seen in this example:

```python
"Show autosweep_1d functionality"
import pickle
import numpy as np
import gpkit
from gpkit import units, Variable, Model
(continues on next page)
from gpkit.tools.autosweep import autosweep_1d
from gpkit.small_scripts import mag

A = Variable("A", "m**2")
l = Variable("l", "m")

m1 = Model(A**2, [A >= l**2 + units.m**2])
toll = 1e-3
bst1 = autosweep_1d(m1, toll, l, [1, 10], verbosity=0)
print("Solved after %2i passes, cost logtol +/-%.3g" % (bst1.nsols, bst1.tol))

# autosweep solution accessing
l_vals = np.linspace(1, 10, 10)
soll = bst1.sample_at(l_vals)
print("values of l: %s" % l_vals)
print("values of A: %s" % soll("A"))
cost_estimate = soll("cost")
cost_lb, cost_ub = soll.cost_lb(), soll.cost_ub()
print("cost lower bound: %s" % cost_lb)
print("cost estimate: %s" % cost_estimate)
print("cost upper bound: %s" % cost_ub)

# you can evaluate arbitrary posynomials
np.testing.assert_allclose(mag(2*soll(A)), mag(soll(2*A)))
assert (soll("cost") == soll(A**2)).all()

# the cost estimate is the logspace mean of its upper and lower bounds
np.testing.assert_allclose((np.log(mag(cost_lb)) + np.log(mag(cost_ub)))/2, np.log(mag(cost_estimate)))

# save autosweep to a file and retrieve it
bst1.save("autosweep.pkl")
bst1_loaded = pickle.load(open("autosweep.pkl", "rb"))

# this problem is two intersecting lines in logspace
m2 = Model(A**2, [A >= (1/3)**2, A >= (1/3)**0.5 * units.m**1.5])
tol2 = {"mosek": 1e-12, "cvxopt": 1e-7,
        "mosek_cli": 1e-6}[gpkit.settings["default_solver"]]

# test Model method
sol2 = m2.autosweep({l: [1, 10]}, tol2, verbosity=0)
bst2 = sol2.bst
print("Solved after %2i passes, cost logtol +/-%.3g" % (bst2.nsols, bst2.tol))
print("Table of solutions used in the autosweep:")
print(bst2.solarray.table())

If you need access to the raw solutions arrays, the smallest simplex tree containing any given point can be gotten with \( \text{min}\_\text{bst} = \text{bst}.\text{min}\_\text{bst}(\text{val}) \), the extents of that tree with \( \text{bst}.\text{bounds} \) and solutions of that tree with \( \text{bst}.\text{sols} \). More information is in \texttt{help(bst)}.

## 7.3 Tight ConstraintSets

Tight ConstraintSets will warn if any inequalities they contain are not tight (that is, the right side does not equal the left side) after solving. This is useful when you know that a constraint \textit{should} be tight for a given model, but representing it as an equality would be non-convex.
from gpkit import Variable, Model
from gpkit.constraints.tight import Tight
Tight.reltol = 1e-2  # set the global tolerance of Tight
x = Variable('x')
x_min = Variable('x_{min}', 2)
m = Model(x, [Tight([x >= 1], reltol=1e-3),  # set the specific tolerance
            x >= x_min])
m.solve(verbosity=0)  # prints warning

7.4 Loose ConstraintSets

Loose ConstraintSets will warn if any GP-compatible constraints they contain are not loose (that is, their
sensitivity is above some threshold after solving). This is useful when you want a constraint to be inactive
for a given model because it represents an important model assumption (such as a fit only valid over a
particular interval).

from gpkit import Variable, Model
from gpkit.constraints.tight import Loose
Tight.reltol = 1e-4  # set the global tolerance of Tight
x = Variable('x')
x_min = Variable('x_{min}', 1)
m = Model(x, [Loose([x >= 2], senstol=1e-4),  # set the specific tolerance
            x >= x_min])
m.solve(verbosity=0)  # prints warning

7.5 Substitutions

Substitutions are a general-purpose way to change every instance of one variable into either a number or
another variable.

7.5.1 Substituting into Posynomials, NomialArrays, and GPs

The examples below all use Posynomials and NomialArrays, but the syntax is identical for GPs (except
when it comes to sweep variables).

# adapted from t_sub.py / t_NomialSubs / test_Basic
from gpkit import Variable
x = Variable("x")
p = x**2
assert p.sub(x, 3) == 9
assert p.sub(x.varkeys["x"], 3) == 9
assert p.sub("x", 3) == 9

Here the variable x is being replaced with 3 in three ways: first by substituting for x directly, then by
substituting for the VarKey("x"), then by substituting the string “x”. In all cases the substitution is
understood as being with the VarKey: when a variable is passed in the VarKey is pulled out of it, and
when a string is passed in it is used as an argument to the Posynomial's varkeys dictionary.
7.5.2 Substituting multiple values

```python
adapted from t_sub.py / t_NomialSubs / test_Vector
from gpkit import Variable, VectorVariable
x = Variable("x")
y = Variable("y")
z = VectorVariable(2, "z")
p = x*y*z
assert all(p.sub({x: 1, "y": 2}) == 2*z)
assert all(p.sub({x: 1, y: 2, "z": [1, 2]}) == z.sub(z, [2, 4]))
```

To substitute in multiple variables, pass them in as a dictionary where the keys are what will be replaced and values are what it will be replaced with. Note that you can also substitute for VectorVariables by their name or by their NomialArray.

7.5.3 Substituting with nonnumeric values

You can also substitute in sweep variables (see Sweeps), strings, and monomials:

```python
adapted from t_sub.py / t_NomialSubs
from gpkit import Variable
from gpkit.small_scripts import mag
x = Variable("x", "m")
xvk = x.varkeys.values()[0]
derc_before = x.exp.keys()[0].descr
y = Variable("y", "km")
yvk = y.varkeys.values()[0]
for x_ in ["x", xvk, x]:
 for y_ in ["y", yvk, y]:
 if not isinstance(y_, str) and type(xvk.units) != str:
 expected = 0.001
 else:
 expected = 1.0
 assert abs(expected - mag(x.sub(x_, y_).c)) < 1e-6
if type(xvk.units) != str:
 # this means units are enabled
 z = Variable("z", "s")
 # y.sub(y, z) will raise ValueError due to unit mismatch
```

Note that units are preserved, and that the value can be either a string (in which case it just renames the variable), a varkey (in which case it changes its description, including the name) or a Monomial (in which case it substitutes for the variable with a new monomial).

7.5.4 Updating ConstraintSet substitutions

ConstraintSets have a .substitutions KeyDict attribute which will be substituted before solving. This KeyDict accepts variable names, VarKeys, and Variable objects as keys, and can be updated (or deleted from) like a regular Python dictionary to change the substitutions that will be used at solve-time. If a ConstraintSet itself contains ConstraintSets, it and all its elements share pointers to the same substitutions dictionary object, so that updating any one of them will update all of them.
### 7.5.5 Fixed Variables

When a Model is created, any fixed Variables are used to form a dictionary: 
```python
{var: var descr['value'] for var in self.varlocs if 'value' in var descr}
```
This dictionary is then substituted into the Model’s cost and constraints before the `substitutions` argument is (and hence values are supplanted by any later substitutions).

- `solution.subinto(p)` will substitute the solution(s) for variables into the posynomial `p`, returning a NominalArray. For a non-swept solution, this is equivalent to `p.sub(solution['variables'])`.
- You can also substitute by just calling the solution, i.e. `solution(p)`. This returns a numpy array of just the coefficients (`c`) of the posynomial after substitution, and will raise a `ValueError` if some of the variables in `p` were not found in `solution`.

### 7.5.6 Freeing Fixed Variables

After creating a Model, it may be useful to “free” a fixed variable and resolve. This can be done using the command `del m.substitutions['x']`, where `m` is a Model. An example of how to do this is shown below.

```python
from gpkit import Variable, Model
x = Variable("x")
y = Variable("y", 3) # fix value to 3
m = Model(x, [x >= 1 + y, y >= 1])
_ = m.solve() # optimal cost is 4; y appears in sol['constants']

del m.substitutions['y']
_ = m.solve() # optimal cost is 2; y appears in Free Variables
```

Note that `del m.substitutions['y']` affects `m` but not `y.key`. `y.value` will still be 3, and if `y` is used in a new model, it will still carry the value of 3.
Signomial Programming

Signomial programming finds a local solution to a problem of the form:

\[
\begin{align*}
\text{minimize} & \quad g_0(x) \\
\text{subject to} & \quad f_i(x) = 1, \quad i = 1, \ldots, m \\
& \quad g_i(x) - h_i(x) \leq 1, \quad i = 1, \ldots, n
\end{align*}
\]

where each \( f \) is monomial while each \( g \) and \( h \) is a posynomial.

This requires multiple solutions of geometric programs, and so will take longer to solve than an equivalent geometric programming formulation.

In general, when given the choice of which variables to include in the positive-posynomial \( / g \) side of the constraint, the modeler should:

1. maximize the number of variables in \( g \),
2. prioritize variables that are in the objective,
3. then prioritize variables that are present in other constraints.

The `.localsolve` syntax was chosen to emphasize that signomial programming returns a local optimum. For the same reason, calling `.solve` on an SP will raise an error.

By default, signomial programs are first solved conservatively (by assuming each \( h \) is equal only to its constant portion) and then become less conservative on each iteration.

### 8.1 Example Usage

```python
"Adapted from t_SP in tests/t_geometric_program.py"
import gpkit

Decision variables
x = gpkit.Variable('x')
y = gpkit.Variable('y')
```

(continues on next page)
When using the `localsolve` method, the `reltol` argument specifies the relative tolerance of the solver: that is, by what percent does the solution have to improve between iterations? If any iteration improves less than that amount, the solver stops and returns its value.

If you wish to start the local optimization at a particular point $x_k$, however, you may do so by putting that position (a dictionary formatted as you would a substitution) as the $x_k$ argument.

### 8.2 Sequential Geometric Programs

The method of solving local GP approximations of a non-GP compatible model can be generalized, at the cost of the general smoothness and lack of a need for trust regions that SPs guarantee.

For some applications, it is useful to call external codes which may not be GP compatible. Imagine we wished to solve the following optimization problem:

\[
\begin{align*}
\text{minimize} & \quad y \\
\text{subject to} & \quad y \geq \sin(x) \\
& \quad \frac{\pi}{4} \leq x \leq \frac{\pi}{2}
\end{align*}
\]

This problem is not GP compatible due to the $\sin(x)$ constraint. One approach might be to take the first term of the Taylor expansion of $\sin(x)$ and attempt to solve:

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"

```python
import numpy as np
from gpkit import Variable, Model

x = Variable("x")
y = Variable("y")

objective = y

constraints = [y >= x,
 x <= np.pi/2.,
 x >= np.pi/4.,
]

m = Model(objective, constraints)
print(m.solve(verbosity=0).summary())
```

"Can be found in gpkit/docs/source/examples/sin_approx_example.py"
We can do better, however, by utilizing some built in functionality of GPkit. For simple cases with a single variable, GPkit looks for `externalfn` metadata:

```python
"Can be found in gpkit/docs/source/examples/external_sp2.py"
import numpy as np
from gpkit import Variable, Model

x = Variable("x")

def y_ext(self, x0):
 "Returns constraints on y derived from x0"
 if x not in x0:
 return self >= x
 return self >= x/x0[x] * np.sin(x0[x])

y = Variable("y", externalfn=y_ext)

m = Model(y, [np.pi/4 <= x, x <= np.pi/2])
print(m.localsolve(verbosity=0).summary())
```

Cost
----
0.7071

Free Variables
--------------
x : 0.7854
y : 0.7071

Tightest Constraints
---------------------
+1 : <function y_ext>
+1 : x >= 0.785

However, for external functions not intrinsically tied to a single variable it’s best to use the full ConstraintSet API, as follows:

Assume we have some external code which is capable of evaluating our incompatible function:
import numpy as np

def external_code(x):
    """Returns sin(x)""
    return np.sin(x)

Now, we can create a ConstraintSet that allows GPkit to treat the incompatible constraint as though it were a signomial programming constraint:

```python
from gpkit.exceptions import InvalidGPConstraint
from external_function import external_code

class ExternalConstraint(object):
 "Class for external calling"
 varkeys = {}

 def __init__(self, x, y):
 # We need a GPkit variable defined to return in our constraint. The easiest way to do this is to read in the parameters of interest in the initiation of the class and store them here.
 self.x = x
 self.y = y

 def as_posyslt1(self, _):
 "Ensures this is treated as an SGP constraint"
 raise InvalidGPConstraint("ExternalConstraint cannot solve as a GP.")

 def as_gpconstr(self, x0):
 "Returns locally-approximating GP constraint"

 # Unpacking the GPkit variables
 x = self.x
 y = self.y

 # Creating a default constraint for the first solve
 if not x0:
 return (y >= x)

 # Returns constraint updated with new call to the external code
 else:
 # Unpack Design Variables at the current point
 x_star = x0['x']

 # Call external code
 res = external_code(x_star)

 # Return linearized constraint
 posynomial_constraint = (y >= res*x/x_star)
 posynomial_constraint.sgp_parent = self
 return posynomial_constraint
```

and replace the incompatible constraint in our GP:
which is the expected result. This method has been generalized to larger problems, such as calling XFOIL
and AVL.

If you wish to start the local optimization at a particular point \(x_0\), however, you may do so by putting that
position (a dictionary formatted as you would a substitution) as the \(x0\) argument.
9.1 iPython Notebook Examples

More examples, including some with in-depth explanations and interactive visualizations, can be seen on nbviewer.

9.2 A Trivial GP

The most trivial GP we can think of: minimize \( x \) subject to the constraint \( x \geq 1 \).

```python
"Very simple problem: minimize x while keeping x greater than 1."
from gpkit import Variable, Model

Decision variable
x = Variable("x")

Constraint
constraints = [x >= 1]

Objective (to minimize)
objective = x

Formulate the Model
m = Model(objective, constraints)

Solve the Model
sol = m.solve(verbosity=0)

print selected results
print("Optimal cost: ".4g" % sol["cost"])
print("Optimal x val: ".4g" % sol["variables"][x])
```

Of course, the optimal value is 1. Output:
9.3 Maximizing the Volume of a Box

This example comes from Section 2.4 of the GP tutorial, by S. Boyd et. al.

"Maximizes box volume given area and aspect ratio constraints."

```python
from gpkit import Variable, Model

Parameters
alpha = Variable("alpha", 2, "-", "lower limit, wall aspect ratio")
beta = Variable("beta", 10, ",", "upper limit, wall aspect ratio")
gamma = Variable("gamma", 2, ",", "lower limit, floor aspect ratio")
delta = Variable("delta", 10, ",", "upper limit, floor aspect ratio")
A_wall = Variable("A_wall", 200, "m^2", "upper limit, wall area")
A_floor = Variable("A_floor", 50, "m^2", "upper limit, floor area")

Decision variables
h = Variable("h", "m", "height")
w = Variable("w", "m", "width")
d = Variable("d", "m", "depth")

Constraints
constraints = [A_wall >= 2*h*w + 2*h*d,
 A_floor >= w*d,
 h/w >= alpha,
 h/w <= beta,
 d/w >= gamma,
 d/w <= delta]

Objective function
V = h*w*d
objective = 1/V # To maximize V, we minimize its reciprocal

Formulate the Model
m = Model(objective, constraints)

Solve the Model and print the results table
print(m.solve(verbosity=0).table())

The output is

| Cost | 0.003674 [1/m**3] |

<table>
<thead>
<tr>
<th>Free Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>d : 8.17 [m] depth</td>
</tr>
<tr>
<td>h : 8.163 [m] height</td>
</tr>
<tr>
<td>w : 4.081 [m] width</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Constants</th>
</tr>
</thead>
</table>

(continues on next page)

A_{floor} : 50 \[m^{2}\] upper limit, floor area
A_{wall} : 200 \[m^{2}\] upper limit, wall area
alpha : 2 lower limit, wall aspect ratio
beta : 10 upper limit, wall aspect ratio
delta : 10 upper limit, floor aspect ratio
gamma : 2 lower limit, floor aspect ratio

Sensitivities

A_{wall} : -1.5 upper limit, wall area
alpha : +0.5 lower limit, wall aspect ratio

Tightest Constraints

+1.5 : A_{wall} >= 2*h*w + 2*h*d
+0.5 : alpha <= h/w

9.4 Water Tank

Say we had a fixed mass of water we wanted to contain within a tank, but also wanted to minimize the
cost of the material we had to purchase (i.e. the surface area of the tank):

"Minimizes cylindrical tank surface area for a particular volume."
from gpkit import Variable, VectorVariable, Model

M = Variable("M", 100, "kg", "Mass of Water in the Tank")
rho = Variable("\rho", 1000, "kg/m^3", "Density of Water in the Tank")
A = Variable("A", "m^2", "Surface Area of the Tank")
V = Variable("V", "m^3", "Volume of the Tank")
d = VectorVariable(3, "d", "m", "Dimension Vector")

because its units are incorrect the line below will print a warning
bad_monomial_equality = (M == V)

 V == d[0]*d[1]*d[2],
 M == V*rho)

m = Model(A, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())

The output is

Infeasible monomial equality: Cannot convert from 'V [m**3]' to 'M [kg]'

Cost

1.293 \[m^{2}\]

Free Variables

A : 1.293 \quad m^2 \quad \text{Surface Area of the Tank}
V : 0.1 \quad m^3 \quad \text{Volume of the Tank}
d : [0.464 \ 0.464 \ 0.464] \quad m \quad \text{Dimension Vector}

Sensitivities

M : +0.67 \quad \text{Mass of Water in the Tank}
\rho : -0.67 \quad \text{Density of Water in the Tank}

Tightest Constraints

+0.67 : M = V*\rho
+0.67 : V = d[0]*d[1]*d[2]

9.5 Simple Wing

This example comes from Section 3 of Geometric Programming for Aircraft Design Optimization, by W. Hoburg and P. Abbeel.

"Minimizes airplane drag for a simple drag and structure model."

```python
import pickle
import numpy as np
from gpkit import Variable, Model
pi = np.pi

# Constants
k = Variable("k", 1.2, "", "form factor")
e = Variable("e", 0.95, "", "Oswald efficiency factor")
mu = Variable("\mu", 1.78e-5, "kg/m/s", "viscosity of air")
rho = Variable("\rho", 1.23, "kg/m^3", "density of air")
tau = Variable("\tau", 0.12, "", "airfoil thickness to chord ratio")
N_ult = Variable("N_{ult}", 3.8, "", "ultimate load factor")
V_min = Variable("V_{min}", 22, "m/s", "takeoff speed")
C_Lmax = Variable("C_{L,max}\", 1.5, "", "max CL with flaps down")
S_wetratio = Variable("\frac{S}{S_{wet}}\", 2.05, "", "wetted area ratio")
W_W_coeff1 = Variable("W_{W_{coeff1}}\", 8.71e-5, "1/m", "Wing Weight Coefficient 1")
W_W_coeff2 = Variable("W_{W_{coeff2}}\", 45.24, "Pa", "Wing Weight Coefficient 2")
CDA0 = Variable("(CDA0)\", 0.031, "m^2", "fuselage drag area")
W_0 = Variable("W_0\", 4940.0, "N", "aircraft weight excluding wing")

# Free Variables
D = Variable("D\", "N", "total drag force")
A = Variable("A\", "-", "aspect ratio")
S = Variable("S\", "m^2", "total wing area")
V = Variable("V\", "m/s", "cruising speed")
W = Variable("W\", "N", "total aircraft weight")
Re = Variable("Re\", "-", "Reynold's number")
C_D = Variable("C_D\", "-", "Drag coefficient of wing")
C_L = Variable("C_L\", "-", "Lift coefficient of wing")
```

(continues on next page)
C_f = Variable("C_f", ",", "skin friction coefficient")
W_w = Variable("W_w", ",", "wing weight")

constraints = []

Drag model
C_D_fuse = CDA0/S
C_D_wpar = k*C_f*S_wetratio
C_D_ind = C_L**2/(pi*A*e)
constraints += [C_D >= C_D_fuse + C_D_wpar + C_D_ind]

Wing weight model
W_w_strc = W_W_coeff1*(N_ult*A**1.5*(W_0*W*S)**0.5)/tau
W_w_surf = W_W_coeff2 * S
constraints += [W_w >= W_w_surf + W_w_strc]

and the rest of the models
constraints += [D >= 0.5*rho*S*C_D*V**2,
 Re <= (rho/mu)*V*(S/A)**0.5,
 C_f >= 0.074/Re**0.2,
 W <= 0.5*rho*S*C_Lmax*V_min**2,
 W >= W_0 + W_w]

print("SINGLE\n=======")
m = Model(D, constraints)
sol = m.solve(verbosity=0)
print(sol.summary())
save solution to a file and retrieve it
sol.save("solution.pkl")
print(sol.diff("solution.pkl"))

print("SWEEP\n=======")
N = 2
sweeps = {V_min: ("sweep", np.linspace(20, 25, N)),
 V: ("sweep", np.linspace(45, 55, N)),}
m.substitutions.update(sweeps)
sweepsol = m.solve(verbosity=0)
print(sweepsol.summary())
print(sweepsol.diff(sol_loaded))

The output is

SINGLE
=======

Cost

303.1 [N]

Free Variables

A : 8.46 aspect ratio
C_D : 0.02059 Drag coefficient of wing
C_L : 0.4988 Lift coefficient of wing
C_f : 0.00359 skin friction coefficient

(continues on next page)
D : 303.1 [N] total drag force
Re : 3.675e+06 Reynold's number
S : 16.44 [m**2] total wing area
V : 38.15 [m/s] cruising speed
W : 7341 [N] total aircraft weight
W_w : 2401 [N] wing weight

Most Sensitive

W_0 : +1 aircraft weight excluding wing
e : -0.48 Oswald efficiency factor
(\frac{S}{S_{wet}}) : +0.43 wetted area ratio
k : +0.43 form factor
V_(min) : -0.37 takeoff speed

Tightest Constraints

+1.3 : W >= W_0 + W_w
+1 : C_D >= (CDA0)/S + k*C_f*(\frac{S}{S_{wet}}) + C_L^2/(PI*A*e)
+1 : D >= 0.5*rho*S*C_D*V^2
+0.96 : W <= 0.5*rho*S*C_L*V^2
+0.43 : C_f >= 0.074/Re^0.2

Solution difference

The largest difference is 0%

Solution sensitivity delta

The largest sensitivity delta is +0

SWEEP
=====

Cost

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>338</td>
<td>396</td>
<td>294</td>
<td>326</td>
</tr>
</tbody>
</table>

Sweep Variables

V : [45 55 45 55] [m/s] cruising speed
V_(min) : [20 20 25 25] [m/s] takeoff speed

Free Variables

A : [6.2 4.77 8.84 7.16] aspect ratio
C_D : [0.0146 0.0123 0.0196 0.0157] Drag coefficient of wing
C_L : [0.296 0.198 0.463 0.31] Lift coefficient of wing
C_f : [0.00333 0.00314 0.00361 0.00342] skin friction coefficient
D : [338 396 294 326] [N] total drag force
Re : [5.38e+06 7.24e+06 3.63e+06 4.75e+06] Reynold's number
S : [18.6 17.3 12.1 11.2] [m**2] total wing area
W : [6.05e+03 6.4e+03 6.97e+03 6.44e+03] [N] total aircraft weight
W_w : [1.91e+03 1.46e+03 2.03e+03 1.5e+03] [N] wing weight

Most Sensitive

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
</tr>
</thead>
<tbody>
<tr>
<td>W_0</td>
<td>+0.92</td>
<td>+0.85</td>
<td>+0.95</td>
<td>+0.85</td>
</tr>
<tr>
<td>V_{min}</td>
<td>-0.82</td>
<td>-1</td>
<td>-0.41</td>
<td>-0.71</td>
</tr>
<tr>
<td>V</td>
<td>+0.59</td>
<td>+0.97</td>
<td>+0.25</td>
<td>+0.75</td>
</tr>
<tr>
<td>(\frac{S}{S_{wet}})</td>
<td>+0.56</td>
<td>+0.63</td>
<td>+0.45</td>
<td>+0.54</td>
</tr>
<tr>
<td>k</td>
<td>+0.56</td>
<td>+0.63</td>
<td>+0.45</td>
<td>+0.54</td>
</tr>
</tbody>
</table>

Tightest Constraints

(continues on next page)
9.6 Simple Beam

In this example we consider a beam subjected to a uniformly distributed transverse force along its length. The beam has fixed geometry so we are not optimizing its shape, rather we are simply solving a discretization of the Euler-Bernoulli beam bending equations using GP.

```python
import numpy as np
from gpkit import parse_variables, Model, ureg
from gpkit.small_scripts import mag

eps = 2e-4  # has to be quite large for consistent cvxopt printouts;
            # normally you'd set this to something more like 1e-20

class Beam(Model):
    """Discretization of the Euler beam equations for a distributed load."
    Variables
       ---------
    EI [N*m^2] Bending stiffness
    dx [m] Length of an element
    L 5 [m] Overall beam length

    Boundary Condition Variables
       ----------------------------
    V_tip eps [N] Tip loading
    M_tip eps [N*m] Tip moment
    th_base eps [-] Base angle
    w_base eps [m] Base deflection

    Node Variables of length N
       --------------------------
    q 100*np.ones(N) [N/m] Distributed load
    V [N] Internal shear
    M [N*m] Internal moment
    th [-] Slope
    w [m] Displacement

    Upper Unbounded
       ---------------
    w_tip

"""

def setup(self, N=4):
```

exec(parse_variables(self.__doc__))
minimize tip displacement (the last w)
self.cost = self.w_tip = w[-1]

return {
 "definition of dx": L == (N-1)*dx,
 "boundary_conditions": [
 V[-1] == V_tip,
 M[-1] == M_tip,
 th[0] >= th_base,
 w[0] >= w_base
],
 # below: trapezoidal integration to form a piecewise-linear
 # approximation of loading, shear, and so on
 "shear integration":
 V[:-1] >= V[1:] + 0.5*dx*(q[:-1] + q[1:]),
 "moment integration":
 M[:-1] >= M[1:] + 0.5*dx*(V[:-1] + V[1:]),
 # slope and displacement increase from base to tip (right > left)
 "theta integration":
 th[1:] >= th[:-1] + 0.5*dx*(M[1:] + M[:-1])/EI,
 "displacement integration":
 w[1:] >= w[:-1] + 0.5*dx*(th[1:] + th[:-1])
}

b = Beam(N=6, substitutions={"L": 6, "EI": 1.1e4, "q": 110*np.ones(6)})
sol = b.solve(verbosity=0)
print(sol.summary(maxcolumns=6))

w_gp = sol("w") # deflection along beam

L, EI, q = sol("L"), sol("EI"), sol("q")
x = np.linspace(0, mag(L), len(q))*ureg.m # position along beam
q = q[0] # assume uniform loading for the check below

w_exact = q/(24.*EI) * x**2 * (x**2 - 4*L*x + 6*L**2) # analytic soln
assert max(abs(w_gp - w_exact)) <= 1.1*ureg.cm

PLOT = False
if PLOT:
 import matplotlib.pyplot as plt
 x_exact = np.linspace(0, L, 1000)
 plt.plot(x, w_gp, color='red', linestyle='solid', marker='^', markersize=8)
 plt.plot(x_exact, w_exact, color='blue', linestyle='dashed')
 plt.xlabel('x [m]')
 plt.ylabel('Deflection [m]')
 plt.axis('equal')
 plt.legend(['GP solution', 'Analytical solution'])
 plt.show()
Free Variables

\[
\begin{align*}
\text{dx} : & \quad 1.2 \quad \text{[m]} \\
\text{M} : & \quad [1.98e+03 \quad 1.27e+03 \quad 713 \quad 317 \quad 79.2 \quad 0.0002] \quad \text{[N}\cdot\text{m]} \\
\text{V} : & \quad [660 \quad 528 \quad 396 \quad 264 \quad 132 \quad 0.0002] \quad \text{[N]} \\
\text{th} : & \quad [0.0002 \quad 0.177 \quad 0.285 \quad 0.341 \quad 0.363 \quad 0.367] \\
\text{w} : & \quad [0.0002 \quad 0.107 \quad 0.384 \quad 0.76 \quad 1.18 \quad 1.62] \quad \text{[m]}
\end{align*}
\]

Most Sensitive

\[
\begin{align*}
\text{L} : & \quad +4 \quad \text{Overall} \\
\text{EI} : & \quad -1 \quad \text{Bending} \\
\text{q} : & \quad [+0.0072 \quad +0.042 \quad +0.12 \quad +0.23 \quad +0.37 \quad +0.22]
\end{align*}
\]

Tightest Constraints

\[
\begin{align*}
+4 : & \quad L = 5\times\text{dx} \\
+1 : & \quad w[5] \geq w[4] + 0.5\times\text{dx}\times(\text{th}[5] + \text{th}[4]) \\
+0.74 : & \quad \text{th}[2] \geq \text{th}[1] + 0.5\times\text{dx}\times(\text{M}[2] + \text{M}[1])/\text{EI} \\
+0.73 : & \quad w[4] \geq w[3] + 0.5\times\text{dx}\times(\text{th}[4] + \text{th}[3]) \\
+0.64 : & \quad \text{M}[1] \geq \text{M}[2] + 0.5\times\text{dx}\times(\text{V}[1] + \text{V}[2])
\end{align*}
\]

By plotting the deflection, we can see that the agreement between the analytical solution and the GP solution is good.
For an alphabetical listing of all commands, check out the genindex

10.1 gpkit package

10.1.1 Subpackages

gpkit.constraints package

Submodules

gpkit.constraints.array module

Implements ArrayConstraint

```python
class gpkit.constraints.array.ArrayConstraint(constraints, left, oper, right):
    Bases: gpkit.constraints.single_equation.SingleEquationConstraint,
          gpkit.constraints.set.ConstraintSet

    A ConstraintSet for prettier array-constraint printing.
    ArrayConstraint gets its sub method from ConstrainSet, and so left and right are only used for
printing.
    When created by NomialArray left and right are likely to be either NomialArrays or Varkeys of
VectorVariables.
```

gpkit.constraints.bounded module

Implements Bounded
class gpkit.constraints.bounded.Bounded(constraints, verbosity=1, eps=1e-30, lower=None, upper=None)

Bases: gpkit.constraints.set.ConstraintSet

Bounds contained variables so as to ensure dual feasibility.

constraints [iterable] constraints whose varkeys will be bounded

verbosity [int (default 1)]

how detailed of a warning to print 0: nothing 1: print warnings

eps [float (default 1e-30)] default lower bound is eps, upper bound is 1/eps

lower [float (default None)] lower bound for all varkeys, replaces eps

upper [float (default None)] upper bound for all varkeys, replaces 1/eps

check_boundaries(result)

Creates (and potentially prints) a dictionary of unbounded variables.

logtol_threshold = 3

process_result(result)

Add boundedness to the model’s solution

sens_from_dual(las, nus, result)

Return sensitivities while capturing the relevant lambdas

sens_threshold = 1e-07

gpkit.constraints.bounded.varkey_bounds(varkeys, lower, upper)

Returns constraints list bounding all varkeys.

varkeys [iterable] list of varkeys to create bounds for

lower [float] lower bound for all varkeys

upper [float] upper bound for all varkeys

gpkit.constraints.costed module

Implement CostedConstraintSet

class gpkit.constraints.costed.CostedConstraintSet(cost, constraints, substitutions=None)

Bases: gpkit.constraints.set.ConstraintSet

A ConstraintSet with a cost

cost : gpkit.Posynomial

constraints : Iterable

substitutions : dict (None)

constrained_varkeys()

Return all varkeys in the cost and non-ConstraintSet constraints

reset_varkeys()

Resets varkeys to what is in the cost and constraints

rootconstr_latex(excluded=())

Latex showing cost, to be used when this is the top constraint

rootconstr_str(excluded=())

String showing cost, to be used when this is the top constraint
gpkit.constraints.gp module

Implement the GeometricProgram class

```python
class gpkit.constraints.gp.GeometricProgram(cost, constraints, substitutions, allow_missingbounds=False):

Standard mathematical representation of a GP.

solver_out and solver_log are set during a solve result is set at the end of a solve if solution status
is optimal

```
gpkit Documentation, Release 0.9.0

\[\text{gpkit.constraints.gp.genA(} \text{exps, varlocs, meq_idx}\text{s)} \]
Generates A matrix

\[A \text{[sparse Cootmatrix]} \text{Exponents of the various free variables for each monomial: rows of } A \text{are monomials, columns of } A \text{are variables.} \]

\[\text{missingbounds [dict]} \text{Keys: variables that lack bounds. Values: which bounds are missed.} \]

\[\text{gpkit.constraints.gp.gemono_eq_bounds(} \text{exps, meq_idx}\text{s)} \]
Generate conditional monomial equality bounds

\[\text{gpkit.constraints.model module} \]
Implements Model

\[\text{class gpkit.constraints.model.Model(} \text{cost=} \text{None}, \text{ constraints=} \text{None}, \text{ *args, } \text{ **kwargs)} \]
Bases: gpkit.constraints.costed.CostedConstraintSet
Symbolic representation of an optimization problem.
The Model class is used both directly to create models with constants and sweeps, and indirectly inherited to create custom model classes.

\[\text{cost [Posynomial (optional)] Defaults to Monomial(1).} \]

\[\text{constraints [ConstraintSet or list of constraints (optional)] Defaults to an empty list.} \]

\[\text{substitutions [dict (optional)] This dictionary will be substituted into the problem before solving, and also allows the declaration of sweeps and linked sweeps.} \]

\[\text{program is set during a solve solution is set at the end of a solve} \]

\[\text{as_gpconstr(} x0 \text{)} \]
Returns approximating constraint, keeping name and num

\[\text{autosweep(} \text{sweeps, tol=} 0.01, \text{ samplepoints=} 100, \text{ **solveargs)} \]
Autosweeps \{var: (start, end)} pairs in sweeps to tol.

Returns swept and sampled solutions. The original simplex tree can be accessed at sol.bst

\[\text{debug(} \text{solver=} \text{None, verbosity=} 1, \text{ **solveargs)} \]
Attempts to diagnose infeasible models.

If a model debugging but errors in a process_result call, debug again with \text{process_results=} False

\[\text{gp(} \text{constants=} \text{None, } \text{ **kwargs)} \]
Return program version of self

\[\text{lineage = None} \]

\[\text{localsolve(} \text{solver=} \text{None, verbosity=} 1, \text{ skipsweepfailures=} False, \text{ **kwargs)} \]
Forms a mathematical program and attempts to solve it.

\[\text{solver [string or function (default None)] If None, uses the default solver found in installation.} \]

\[\text{verbosity [int (default 1)] If greater than 0 prints runtime messages. Is decremented by one and then passed to programs.} \]

\[\text{skipsweepfailures [bool (default False)] If True, when a solve errors during a sweep, skip it.} \]

\[\text{**kwargs : Passed to solver} \]

\[\text{sol [SolutionArray] See the SolutionArray documentation for details.} \]
ValueError if the program is invalid. RuntimeWarning if an error occurs in solving or parsing the solution.

```
program = None
solution = None

solve (solver=None, verbosity=1, skipsweepfailures=False, **kwargs)
```

Forms a mathematical program and attempts to solve it.

- **solver** [string or function (default None)] If None, uses the default solver found in installation.
- **verbosity** [int (default 1)] If greater than 0 prints runtime messages. Is decremented by one and then passed to programs.
- **skipsweepfailures** [bool (default False)] If True, when a solve errors during a sweep, skip it.

```
sp (constants=None, **kwargs)
```

Return program version of self

```
sweep (sweeps, **solveargs)
```

Sweeps {var: values} pairs in sweeps. Returns swept solutions.

```
verify_docstring ()
```

Verifies docstring bounds are sufficient but not excessive.

```
gpkit.constraints.model.get_relaxed (relaxvals, mapped_list, min_return=1)
```

Determines which relaxvars are considered ‘relaxed’

gpkit.constraints.prog_factories module

Scripts for generating, solving and sweeping programs

```
gpkit.constraints.prog_factories.evaluate_linked (constants, linked)
```

Evaluates the values and gradients of linked variables.

```
gpkit.constraints.prog_factories.run_sweep (genfunction, self, solution, skipsweepfailures, constants, sweep, linked, solver, verbosity, **kwargs)
```

Runs through a sweep.

gpkit.constraints.relax module

Models for assessing primal feasibility

```
class gpkit.constraints.relax.ConstantsRelaxed (constraints, in-
include_only=None, ex-
clude=None)
```

Bases: gpkit.constraints.set.ConstraintSet

Relax constants in a constraintset.

```
constraints [iterable] Constraints which will be relaxed (made easier).
```
include_only [set (optional)] variable names must be in this set to be relaxed

exclude [set (optional)] variable names in this set will never be relaxed

relaxvars [Variable] The variables controlling the relaxation. A solved value of 1 means no relaxation was necessary or optimal for a particular constant. Higher values indicate the amount by which that constant has been made easier: e.g., a value of 1.5 means it was made 50 percent easier in the final solution than in the original problem. Of course, this can also be determined by looking at the constant’s new value directly.

process_result (result)

class gpkit.constraints.relax.ConstraintsRelaxed(constraints)
 Bases: gpkit.constraints.set.ConstraintSet
 Relax constraints, as in Eqn. 11 of [Boyd2007].
 constraints [iterable] Constraints which will be relaxed (made easier).

relaxvars [Variable] The variables controlling the relaxation. A solved value of 1 means no relaxation was necessary or optimal for a particular constraint. Higher values indicate the amount by which that constraint has been made easier: e.g., a value of 1.5 means it was made 50 percent easier in the final solution than in the original problem.

class gpkit.constraints.relax.ConstraintsRelaxedEqually(constraints)
 Bases: gpkit.constraints.set.ConstraintSet
 Relax constraints the same amount, as in Eqn. 10 of [Boyd2007].
 constraints [iterable] Constraints which will be relaxed (made easier).

relaxvar [Variable] The variable controlling the relaxation. A solved value of 1 means no relaxation was necessary or optimal for a particular constraint. Higher values indicate the amount by which all constraints have been made easier: e.g., a value of 1.5 means all constraints were 50 percent easier in the final solution than in the original problem.

gpkit.constraints.set module

Implements ConstraintSet

class gpkit.constraints.set.ConstraintSet(constraints, substitutions=None)
 Bases: list, gpkit.repr_conventions.GPkitObject
 Recursive container for ConstraintSets and Inequalities

as_gpconstr (x0)
 Returns GPConstraint approximating this constraint at x0
 When x0 is none, may return a default guess.

as_posyslt1 (substitutions=None)
 Returns list of posynomials which must be kept \(\leq 1 \)

as_view()
 Return a ConstraintSetView of this ConstraintSet.
constrained_varkeys()
 Return all varkeys in non-ConstraintSet constraints

flat (constraintsets=False)
 Yields contained constraints, optionally including constraintsets.

idxlookup = None

latex (excluded=(u'units',))
 LaTeX representation of a ConstraintSet.

lines_without (excluded)
 Lines representation of a ConstraintSet.

name_collision_varkeys()
 Returns the set of contained varkeys whose names are not unique

process_result (result)
 Does arbitrary computation / manipulation of a program’s result
 There’s no guarantee what order different constraints will process results in, so any changes
 made to the program’s result should be careful not to step on other constraint’s toes.
 • check that an inequality was tight
 • add values computed from solved variables

reset_varkeys()
 Goes through constraints and collects their varkeys.

sens_from_dual (las, nus, result)
 Computes constraint and variable sensitivities from dual solution
 las [list] Sensitivity of each posynomial returned by self.as_posyslt1
 nus: list of lists Each posynomial’s monomial sensitivities

 constraint_sens [dict] The interesting and computable sensitivities of this constraint
 var_senss [dict] The variable sensitivities of this constraint

str_without (excluded=(u'unnecessary lineage', u'units'))
 String representation of a ConstraintSet.

unique_varkeys = frozenset([])

variables_byname (key)
 Get all variables with a given name

varkeys = None

class gpkit.constraints.set.ConstraintSetView (constraintset, index=())
 Bases: object
 Class to access particular views on a set’s variables

gpkit.constraints.set.add_meq_bounds (bounded, meq_bounded)
 Iterates through meq_bounds until convergence

gpkit.constraints.set.raise_badelement (cns, i, constraint)
 Identify the bad element and raise a ValueError

gpkit.constraints.set.raise_elementhasnumpybools (constraint)
 Identify the bad subconstraint array and raise a ValueError
gpkit Documentation, Release 0.9.0

gpkit.constraints.sgp module

Implement the SequentialGeometricProgram class

```python
class gpkit.constraints.sgp.SequentialGeometricProgram(cost, constraints, substi-
tutions)

Bases: gpkit.constraints.costed.CostedConstraintSet
```

Prepares a collection of signomials for a SP solve.

- **cost** [Posynomial] Objective to minimize when solving
- **constraints** [list of Constraint or SignomialConstraint objects] Constraints to maintain when solving (implicitly Signomials <= 1)
- **verbosity** [int (optional)] Currently has no effect: SequentialGeometricPrograms don’t know anything new after being created, unlike GeometricPrograms.

gps is set during a solve **result** is set at the end of a solve

```python
>>> gp = gpkit.geometric_program.SequentialGeometricProgram(
    # minimize
    x,
    [ # subject to
      1/x - y/x, # <= 1, implicitly
      y/10 # <= 1
    ])
>>> gp.solve()
```

- **gp** *(x0=None, mutategp=False)*
 The GP approximation of this SP at x0.

- **init_gp** *(substitutions, x0=None)*
 Generates a simplified GP representation for later modification

- **localsolve** *(solver=None, verbosity=1, x0=None, reltol=0.0001, iteration_limit=50, mut-
tategp=True, **kwargs)*
 Locally solves a SequentialGeometricProgram and returns the solution.

 - **solver** [str or function (optional)] By default uses one of the solvers found during installation.
 - If set to "mosek", "mosek_cli", or "cvxopt", uses that solver. If set to a function, passes that function cs, A, p_idx, and k.

 - **verbosity** [int (optional)] If greater than 0, prints solve time and number of iterations. Each GP is created and solved with verbosity one less than this, so if greater than 1, prints solver name and time for each GP.

 - **x0** [dict (optional)] Initial location to approximate signomials about.

 - **reltol** [float] Iteration ends when this is greater than the distance between two consecutive solve’s objective values.

 - **iteration_limit** [int] Maximum GP iterations allowed.

 - ***args, **kwargs** : Passed to solver function.

- **result** [dict] A dictionary containing the translated solver result.

- **results**
 Creates and caches results from the raw solver_outs

Chapter 10. Glossary
gpkit.constraints.sigeq module

Implements SignomialEquality

class gpkit.constraints.sigeq.SignomialEquality(left, right)
 Bases: gpkit.constraints.set.ConstraintSet
 A constraint of the general form posynomial == posynomial

gpkit.constraints.single_equation module

Implements SingleEquationConstraint

class gpkit.constraints.single_equation.SingleEquationConstraint(left, oper, right)
 Bases: gpkit.repr_conventions.GPkitObject
 Constraint expressible in a single equation.
 func_opers = {u'<=': <built-in function le>, u'=': <built-in function eq>, u'=': '
 latex(excluded=u'units')
 Latex representation without attributes in excluded list
 latex_opers = {u'<=': u'\leq', u'=': u'=', u'=': u'\geq'}
 str_without(excluded=u'units')
 String representation without attributes in excluded list

gpkit.constraints.tight module

Implements Tight

class gpkit.constraints.tight.Tight(constraints, reltol=None, raiseerror=False, **kwargs)
 Bases: gpkit.constraints.set.ConstraintSet
 ConstraintSet whose inequalities must result in an equality.
 process_result(result)
 Checks that all constraints are satisfied with equality
 reltol = 0.001

Module contents

Contains ConstraintSet and related classes and objects

gpkit.interactive package

Submodules

gpkit.interactive.chartjs module
gpkit.interactive.plot_sweep module

Implements plot_sweep1d function

gpkit.interactive.plot_sweep.assign_axes(var, posys, axes)
Assigns axes to posys, creating and formatting if necessary

gpkit.interactive.plot_sweep.format_and_label_axes(var, posys, axes, ylabel=True)
Formats and labels axes

gpkit.interactive.plot_sweep.plot_1dsweepgrid(model, sweeps, posys, origsol=None, tol=0.01, **solveargs**)
Creates and plots a sweep from an existing model
Example usage: f, _ = plot_sweep_1d(m, {'x': np.linspace(1, 2, 5), 'y'}) f.savefig('mysweep.png')

gpkit.interactive.plotting module

Plotting methods

gpkit.interactive.plotting.compare(models, sweeps, posys, tol=0.001)
Compares the values of posys over a sweep of several models.
If posys is of the same length as models, this will plot different variables from different models.
Currently only supports a single sweepvar.
Example Usage: compare([ae, fbc], {'R': (160, 300)}, ["cost", ("W_{rm batt}", "W_{rm fuel}")], tol=0.001)

gpkit.interactive.plotting.plot_convergence(model)
Plots the convergence of a signomial programming model

model: Model Signomial programming model that has already been solved

matplotlib.pyplot Figure Plot of cost as functions of SP iteration #

gpkit.interactive.ractor module

gpkit.interactive.sankey module

gpkit.interactive.widgets module

Module contents

Module for the interactive and plotting functions of GPkit

gpkit.nomials package

Submodules
gpkit.nomials.array module

Module for creating NomialArray instances.

Example

```python
>>> x = gpkit.Monomial('x')
>>> px = gpkit.NomialArray([1, x, x**2])
```

class gpkit.nomials.array.NomialArray

Bases: gpkit.repr_conventions.GPkitObject, numpy.ndarray

A Numpy array with elementwise inequalities and substitutions.

input_array : array-like

```python
>>> px = gpkit.NomialArray([1, x, x**2])
```

latex(excluded=())

Returns latex representation without certain fields.

outer(other)

Returns the array and argument’s outer product.

prod(*args, **kwargs)

Returns a product. O(N) if no arguments and only contains monomials.

str_without(excluded=())

Returns string without certain fields (such as ‘lineage’).

sub(subs, require_positive=True)

Substitutes into the array

sum(*args, **kwargs)

Returns a sum. O(N) if no arguments are given.

units

units must have same dimensions across the entire nomial array

vectorize(function, *args, **kwargs)

Apply a function to each terminal constraint, returning the array

gpkit.nomials.array.array_constraint(symbol, func)

Return function which creates constraints of the given operator.

gpkit.nomials.core module

The shared non-mathematical backbone of all Nomials

class gpkit.nomials.core.Nomial(hmap)

Bases: gpkit.nomials.data.NomialData

Shared non-mathematical properties of all nomials

latex(excluded=())

Latex representation, parsing excluded just as .str_without does

prod()

Return self for compatibility with NomialArray
str_without(excluded=())
 String representation, excluding fields ('units', varkey attributes)
sub = None
sum()
 Return self for compatibility with NomialArray
value
 Self, with values substituted for variables that have values
 float, if no symbolic variables remain after substitution (Monomial, Posynomial, or Nomial), otherwise.

gpkit.nomials.data module

Machinery for exps, cs, varlocs data – common to nomials and programs

class gpkit.nomials.data.NomialData(hmap)
 Bases: gpkit.repr_conventions.GPkitObject
 Object for holding cs, exps, and other basic ‘nomial’ properties.
 cs: array (coefficient of each monomial term) exps: tuple of {VarKey: float} (exponents of each monomial term) varlocs: {VarKey: list} (terms each variable appears in) units: pint.UnitsContainer
 cs
 Create cs or return cached cs
 exps
 Create exps or return cached exps
to(units)
 Create new Signomial converted to new units
varkeys
 The NomialData’s varkeys, created when necessary for a substitution.
varkeyvalues()
 Returns the NomialData’s keys’ values
varlocs
 Create varlocs or return cached varlocs

gpkit.nomials.map module

Implements the NomialMap class

class gpkit.nomials.map.NomialMap
 Bases: gpkit.small_classes.HashVector
 Class for efficient algebraic representation of a nomial
 A NomialMap is a mapping between hashvectors representing exponents and their coefficients in a posynomial.
 For example, {{x: 1}: 2.0, {y: 1}: 3.0} represents 2*x + 3*y, where x and y are VarKey objects.
copy()
 Return a copy of this
csmap = None
diff (varkey)
 Differentiates a NomialMap with respect to a varkey
expmap = None
mmap (orig)
 Maps substituted monomials back to the original nomial

 self.expmap is the map from pre- to post-substitution exponents, and takes the form
 {original_exp: new_exp}

 self.csmap is the map from pre-substitution exponents to coefficients.

 m_from_ns is of the form {new_exp: [old_exps,]}

 mmap is of the form [(orig_idx1: fraction1, orig_idx2: fraction2,)] where at the index
 corresponding to each new_exp is a dictionary mapping the indices corresponding to
 the old exps to their fraction of the post-substitution coefficient

sub (substitutions, varkeys, parsedsubs=False)
 Applies substitutions to a NomialMap

 substitutions [(dict-like)] list of substitutions to perform

 varkeys [set-like] varkeys that are present in self (required argument so as to require effi-
 cient code)

 parsedsubs [bool] flag if the substitutions have already been parsed to contain only keys in

 to (to_units)
 Returns a new NomialMap of the given units

units = None

units_of_product (thing, thing2=None)
 Sets units to those of thing*thing2. Ugly optimized code.

gpkit.nomials.map.subinplace (cp, exp, o_exp, vk, cval, squished)
 Modifies cp by substituting cval/expval for vk in exp

gpkit.nomials.math module

Signomial, Posynomial, Monomial, Constraint, & MonoEQConstraint classes
class gpkit.nomials.math.Monomial (hmap=None, cs=1, require_positive=True, **descr)
 Bases: gpkit.nomials.math.Posynomial
 A Posynomial with only one term

c
 Creates c or returns a cached c

exp

 Creates exp or returns a cached exp

mono_approximation (x0)
class gpkit.nomials.math.MonomialEquality (left, right)
 Bases: gpkit.nomials.math.PosynomialInequality

10.1. gpkit package
A Constraint of the form Monomial == Monomial.

\texttt{as_posyslt1(substitutions=None)}
Tags posynomials for dual feasibility checking

\texttt{oper = u'='}

\texttt{sens_from_dual}(la, nu, result)
Returns the variable/constraint sensitivities from lambda/nu

\texttt{class gpkit.nomials.math.Posynomial(hmap=None, cs=1, require_positive=True, **descr)}
Bases: \texttt{gpkit.nomials.math.Signomial}
A Signomial with strictly positive cs

\texttt{mono_lower_bound(x0)}
Monomial lower bound at a point \(x_0\)

\(x_0 (\text{dict})\): point to make lower bound exact

Monomial

\texttt{class gpkit.nomials.math.PosynomialInequality(left, oper, right)}
Bases: \texttt{gpkit.nomials.math.ScalarSingleEquationConstraint}
A constraint of the general form monomial >= posynomial Stored in the posylt1_rep attribute as a single Posynomial (self <= 1) Usually initialized via operator overloading, e.g. \(cc = (y**2 >= 1 + x)\)

\texttt{as_gpconstr(x0)}
The GP version of a Posynomial constraint is itself

\texttt{as_posyslt1(substitutions=None)}
Returns the posys <= 1 representation of this constraint.

\texttt{feastol = 0.001}

\texttt{sens_from_dual}(la, nu, result)
Returns the variable/constraint sensitivities from lambda/nu

\texttt{class gpkit.nomials.math.ScalarSingleEquationConstraint(left, oper, right)}
Bases: \texttt{gpkit.constraints.single_equation.SingleEquationConstraint}
A SingleEquationConstraint with scalar left and right sides.

\texttt{nomials = []}

\texttt{relaxed(relaxvar)}
Returns the relaxation of the constraint in a list.

\texttt{class gpkit.nomials.math.Signomial(hmap=None, cs=1, require_positive=True, **descr)}
Bases: \texttt{gpkit.nomials.core.Nomial}
A representation of a Signomial.

\texttt{exps: tuple of dicts} Exponent dicts for each monomial term

\texttt{cs: tuple} Coefficient values for each monomial term

\texttt{require_positive: boolean} If True and Signomials not enabled, c <= 0 will raise ValueError

Signomial Posynomial (if the input has only positive cs) Monomial (if the input has one term and only positive cs)
diff *(var)*
Derivative of this with respect to a Variable

var [Variable key] Variable to take derivative with respect to

Signomial (or Posynomial or Monomial)

mono_approximation *(x0)*
Monomial approximation about a point x0

x0 (dict): point to monomialize about

Monomial (unless self(x0) < 0, in which case a Signomial is returned)

posy_negy ()
Get the positive and negative parts, both as Posynomials

Posynomial, Posynomial: p_pos and p_neg in (self = p_pos - p_neg) decomposition,

sub *(substitutions, require_positive=True)*
Returns a nomial with substituted values.

3 == (x**2 + y).sub({'x': 1, y: 2}) 3 == (x).gp.sub(x, 3)

substitutions [dict or key] Either a dictionary whose keys are strings, Variables, or VarKeys, and whose values are numbers, or a string, Variable or Varkey.

val [number (optional)] If the substitutions entry is a single key, val holds the value

require_positive [boolean (optional, default is True)] Controls whether the returned value can be a Signomial.

Returns substituted nomial.

class gpkit.nomials.math.SignomialInequality *(left, oper, right)*
Bases: gpkit.nomials.math.ScalarSingleEquationConstraint

A constraint of the general form posynomial >= posynomial

Stored internally (exps, cs) as a single Signomial (0 >= self)

as_approxsgt *(x0)*
Returns monomial-greater-than sides, to be called after as_approxlt1

as_approxslt ()
Returns posynomial-less-than sides of a signomial constraint

as_gpconstr *(x0)*
Returns GP approximation of an SP constraint at x0

as_posyslt1 *(substitutions=None)*
Returns the posys <= 1 representation of this constraint.

sens_from_dual *(la, nu, result)*

We want to do the following chain:

dlog(Obj)/dlog(monomial[i]) = nu[i] *

dlog(monomial)/d(monomial) = 1/(monomial value) * d(monomial)/d(var) = see below * d(var)/dlog(var) = var = dlog(Obj)/dlog(var)

each final monomial is really (coeff signomial)/(negy signomial)

and by the chain rule d(monomial)/d(var) = d(coeff)/d(var)*1/negy +

d(1/negy)/d(var)*coeff = d(coeff)/d(var)*1/negy - d(negy)/d(var)*coeff*1/negy**2
class gpkit.nomials.math.SingleSignomialEquality(left, right)
Bases: gpkit.nomials.math.SignomialInequality
A constraint of the general form posynomial == posynomial

as_approxsgt(x0)
Returns monomial-greater-than sides, to be called after as_approxlt1

as_approxslt()
Returns posynomial-less-than sides of a signomial constraint

as_gpconstr(x0)
Returns GP approximation of an SP constraint at x0

as_posyslt1(substitutions=None)
Returns the posys <= 1 representation of this constraint.

gpkit.nomials.substitution module

Scripts to parse and collate substitutions

gpkit.nomials.substitution.append_sub(sub, keys, constants, sweep, linkedsweep)
Appends sub to constants, sweep, or linkedsweep.

gpkit.nomials.substitution.parse_subs(varkeys, substitutions, clean=False)
Seperates subs into the constants, sweeps, linkedsweeps actually present.

gpkit.nomials.variables module

Implement Variable and ArrayVariable classes

class gpkit.nomials.variables.ArrayVariable
 Bases: gpkit.nomials.array.NomialArray
A described vector of singlet Monomials.
shape [int or tuple] length or shape of resulting array
*args :
 may contain “name” (Strings)
 “value” (Iterable) “units” (Strings)
 and/or “label” (Strings)
**descr : VarKey description
NomialArray of Monomials, each containing a VarKey with name ‘$name_[i]’, where $name is the vector’s name and i is the VarKey’s index.

class gpkit.nomials.variables.Variable(*args, **descr)
 Bases: gpkit.nomials.math.Monomial1
A described singlet Monomial.
*args [list]
 may contain “name” (Strings)
 “value” (Numbers + Quantity) or (Iterable) for a sweep “units” (Strings)
 and/or “label” (Strings)
descr [dict] VarKey description

Monomials containing a VarKey with the name ‘$name’, where $name is the vector’s name and i is the VarKey’s index.

sub (*args, **kwargs)

Same as nominal substitution, but also allows single-argument calls

 x = Variable('x') assert x.sub(3) == Variable('x', value=3)

to (units)

Create new Signomial converted to new units

class gpkit.nomials.variables.VectorizableVariable (*args, **descr)

Bases: gpkit.nomials.variables.Variable, gpkit.nomials.variables.ArrayVariable

A Variable outside a vectorized environment, an ArrayVariable within.

gpkit.nomials.variables.addmodelstodescr (descr, addtonamedvars=None)

Add models to descr, optionally adding the second argument to NAMEDVARS

gpkit.nomials.variables.veclinkedfn (linkedfn, i)

Generate an indexed linking function.

Module contents

Contains nomials, inequalities, and arrays

gpkit.tools package

Submodules

gpkit.tools.autosweep module

Tools for optimal fits to GP sweeps

class gpkit.tools.autosweep.BinarySweepTree (bounds, sols, sweptvar, cost-posy)

Bases: object

Spans a line segment. May contain two subtrees that divide the segment.

bounds [two-element list] The left and right boundaries of the segment

sols [two-element list] The left and right solutions of the segment

costs [array] The left and right logcosts of the segment

splits [None or two-element list] If not None, contains the left and right subtrees

splitval [None or float] The worst-error point, where the split will be if tolerance is too low

splitlb [None or float] The cost lower bound at splitval

splitub [None or float] The cost upper bound at splitval

add_split (splitval, splitsol)

Creates subtrees from bounds[0] to splitval and splitval to bounds[1]
add_splitcost \((\text{splitval}, \text{splitlb}, \text{splitub})\)

Adds a splitval, lower bound, and upper bound

cost_at \((_, \text{value}, \text{bound}=None)\)

Logspace interpolates between split and costs. Guaranteed bounded.

min_bst \((\text{value})\)

Returns smallest bst around value.

posy_at \((\text{posy}, \text{value})\)

Logspace interpolates between sols to get posynomial values.

No guarantees, just like a regular sweep.

sample_at \((\text{values})\)

Creates a SolutionOracle at a given range of values

save \((\text{filename}='\text{autosweep.p}')\)

Pickle the autosweep and saves it to a file.

The saved autosweep is identical except for two things:

- the cost is made unitless
- each solution’s ‘program’ attribute is removed

Solution can then be loaded with e.g.:

```python
>>> import cPickle as pickle
>>> pickle.load(open("autosweep.p"))
```

solarray

Returns a solution array of all the solutions in an autosweep

sollist

Returns a list of all the solutions in an autosweep

class gpkit.tools.autosweep.SolutionOracle \((\text{bst, sampled_at})\)

Bases: object

Acts like a SolutionArray for autosweeps

cost_lb()

Gets cost lower bounds from the BST and units them

cost_ub()

Gets cost upper bounds from the BST and units them

plot \((\text{posys=None, axes=None})\)

Plots the sweep for each posy

gpkit.tools.autosweep.autosweep_1d \((\text{model, logtol, sweepvar, bounds, **solvekwargs})\)

Autosweep a model over one sweepvar

gpkit.tools.autosweep.get_tol \((\text{costs, bounds, sols, variable})\)

Gets the intersection point and corresponding bounds from two solutions.

gpkit.tools.autosweep.recurse_splits \((\text{model, bst, variable, logtol, solvekwargs, sols})\)

Recursively splits a BST until logtol is reached
gpkit.tools.docstring module

Docstring-parsing methods

- `gpkit.tools.docstring.check_and_parse_flag(string, flag, errorcatch, declaration_func=None)`: Checks for instances of flag in string and parses them.
- `gpkit.tools.docstring.constant_declare(string, flag, idx2, countstr)`: Turns Variable declarations into Constant ones.
- `gpkit.tools.docstring.expected_unbounded(instance, doc)`: Gets expected-unbounded variables from a string.
- `gpkit.tools.docstring.parse_variables(string, errorcatch=True)`: Parses a string to determine what variables to create from it.
- `gpkit.tools.docstring.variable_declaration(nameval, units, label, line, errorcatch=True)`: Turns parsed output into a Variable declaration.
- `gpkit.tools.docstring.vv_declare(string, flag, idx2, countstr)`: Turns Variable declarations into VectorVariable ones.

gpkit.tools.fmincon module

gpkit.tools.spdata module

gpkit.tools.tools module

Non-application-specific convenience methods for GPkit

- `gpkit.tools.tools.te_exp_minus1(posy, nterm)`: Taylor expansion of \(e^{{posy}} - 1 \)
 - `posy` [gpkit.Posynomial] Variable or expression to exponentiate
 - `nterm` [int] Number of non-constant terms in resulting Taylor expansion

- `gpkit.Posynomial` Taylor expansion of \(e^{{posy}} - 1 \), carried to nterm terms

- `gpkit.tools.tools.te_secant(var, nterm)`: Taylor expansion of \(\sec(var) \)
 - `var` [gpkit.monomial] Variable or expression argument
 - `nterm` [int] Number of non-constant terms in resulting Taylor expansion

- `gpkit.Posynomial` Taylor expansion of \(\sec(x) \), carried to nterm terms

- `gpkit.tools.tools.te_tangent(var, nterm)`: Taylor expansion of \(\tan(var) \)
 - `var` [gpkit.monomial] Variable or expression argument
 - `nterm` [int] Number of non-constant terms in resulting Taylor expansion

- `gpkit.Posynomial` Taylor expansion of \(\tan(x) \), carried to nterm terms
Module contents

Contains miscellaneous tools including fmincon comparison tool

10.1.2 Submodules

10.1.3 gpkit.build module

Finds solvers, sets gpkit settings, and builds gpkit

class gpkit.build.CVXopt
 Bases: gpkit.build.SolverBackend
 CVXopt finder.
 look()
 Attempts to import cvxopt.
 name = u'cvxopt'
class gpkit.build.Mosek
 Bases: gpkit.build.SolverBackend
 MOSEK finder and builder.
 bin_dir = None
 build()
 Builds a dynamic library to GPKITBUILD or $HOME/gpkit
 expopt_files = None
 flags = None
 lib_name = None
 lib_path = None
 look()
 Looks in default install locations for latest mosek version.
 name = u'mosek'
 patches = {u'dgopt.c': {u'printf("Number of Hessian non-zeros: %d\n",nlh[0]->numhesnz);': ... The variable with index '％d' has only positive coefficients akj.\n The problem is possibly ill-posed.\n.\n",i);'}}
 version = None
class gpkit.build.MosekCLI
 Bases: gpkit.build.SolverBackend
 MOSEK command line interface finder.
 look()
 Attempts to run mskexpopt.
 name = u'mosek_cli'
class gpkit.build.SolverBackend
 Bases: object
 Inheritable class for finding solvers. Logs.
 build = None
installed = False
look = None
name = None
gpkit.build.build()
 Builds GPkit
gpkit.build.call(cmd)
 Calls subprocess. Logs.
gpkit.build.diff(filename, diff_dict)
 Applies a simple diff to a file. Logs.
gpkit.build.isfile(path)
 Returns true if there's a file at $path. Logs.
gpkit.build.log(*args)
 Print a line and append it to the log string.
gpkit.build.pathjoin(*args)
 Join paths, collating multiple arguments.
gpkit.build.replacedir(path)
 Replaces directory at $path. Logs.

10.1.4 gpkit.exceptions module

GPkit-specific Exception classes

exception gpkit.exceptions.InvalidGPConstraint
 Bases: exceptions.Exception
 Raised when a non-GP-compatible constraint is used in a GP

exception gpkit.exceptions.InvalidPosynomial
 Bases: exceptions.Exception
 Raised when a Posynomial would be created with a negative coefficient

10.1.5 gpkit.globals module

global mutable variables

class gpkit.globals.NamedVariables(name)
 Bases: object
 Creates an environment in which all variables have a model name and num appended to their varkeys.
 lineage = ()
 modelnums = {}
 namedvars = {}
 classmethod reset_modelnumbers()
 Clear all model number counters
class gpkit.globals.SignomialsEnabled
Bases: object

Class to put up and tear down signomial support in an instance of GPkit.

```python
>>> import gpkit
>>> x = gpkit.Variable("x")
>>> y = gpkit.Variable("y", 0.1)
>>> with SignomialsEnabled():
...     constraints = [x >= 1-y]
...     gpkit.Model(x, constraints).localsolve()
```

class gpkit.globals.SignomialsEnabledMeta
Bases: type

Metaclass to implement falsiness for SignomialsEnabled

class gpkit.globals.Vectorize(dimension_length)
Bases: object

Creates an environment in which all variables are extended in an additional dimension.

```
vectorization = ()
```

gpkit.globals.load_settings(path=None, firstattempt=True)

Load the settings file at SETTINGSPATH; return settings dict

10.1.6 gpkit.keydict module

Implements KeyDict and KeySet classes

class gpkit.keydict.KeyDict(*args, **kwargs)
Bases: dict

KeyDicts do two things over a dict: map keys and collapse arrays.

```
>>>> kd = gpkit.keydict.KeyDict()
```

If .keymapping is True, a KeyDict keeps an internal list of VarKeys as canonical keys, and their values can be accessed with any object whose key attribute matches one of those VarKeys, or with strings matching any of the multiple possible string interpretations of each key:

For example, after creating the KeyDict `kd` and setting `kd[x] = v` (where `x` is a Variable or VarKey), `v` can be accessed with by the following keys:

- `x`
- `x.key`
- `x.name` (a string)
- "x_modelname" (x’s name including modelname)

Note that if a item is set using a key that does not have a .key attribute, that key can be set and accessed normally.

If .collapse_arrays is True then VarKeys which have a shape parameter (indicating they are part of an array) are stored as numpy arrays, and automatically de-indexed when a matching VarKey with a particular idx parameter is used as a key.

See also: gpkit/tests/t_keydict.py.

collapse_arrays = True
get(\(k, d\)) \rightarrow D[k] if \(k\) in \(D\), else \(d\). \(d\) defaults to None.

```
keymap = []
keymapping = True
```

```
parse_and_index(key)
    Returns key if key had one, and veckey/idx for indexed veckeys.
```

```
update(*args, **kwargs)
    Iterates through the dictionary created by args and kwargs
```

```
update_keymap()
    Updates the keymap with the keys in _unmapped_keys
```

```
class gpkit.keydict.KeySet(*args, **kwargs)
    KeyDicts that don’t collapse arrays or store values.
```

```
add(item)
    Adds an item to the keyset
```

```
collapse_arrays = False
update(*args, **kwargs)
    Iterates through the dictionary created by args and kwargs
```

```
gpkit.keydict.clean_value(key, value)
    Gets the value of variable-less monomials, so that 
    \(x\).sub({x: gpkit.units.m}) and 
    \(x\).sub({x: gpkit.ureg.m}) are equivalent.
    Also converts any quantities to the key’s units, because quantities can’t/shouldn’t be stored as elements of numpy arrays.
```

10.1.7 gpkit.repr_conventions module

Repository for representation standards

```
class gpkit.repr_conventions.GPkitObject
    This class combines various printing methods for easier adoption.
```

```
ast = None
cached_strs = None
latex_unitstr()
    Returns latex unitstr
```

```
lineagestr(modelnums=True)
    Returns properly formatted lineage string
```

```
parse_ast(excluded=u'units')
    Turns the AST of this object’s construction into a faithful string
```

```
unitstr(into=u'\&', options=u':~', dimless=u")
    Returns the string corresponding to an object’s units.
```

```
gpkit.repr_conventions.lineagestr(lineage, modelnums=True)
    Returns properly formatted lineage string
```
gpkit repr_conventions.parenthesize(string, addi=True, mult=True)
Parenthesizes a string if it needs it and isn’t already.

gpkit repr_conventions.strify(val, excluded)
Turns a value into as pretty a string as possible.

gpkit repr_conventions.unitstr(units, into=u'%s', options=u'~', dimless=u")
Returns the string corresponding to an object’s units.

10.1.8 gpkit.small_classes module

Miscellaneous small classes

class gpkit.small_classes.CootMatrix(row, col, data)
 Bases: object
 A very simple sparse matrix representation.
 dot(arg)
 Returns dot product with arg.
 tocoo()
 Converts to another type of matrix.
 tocsc()
 Converts to another type of matrix.
 tocsr()
 Converts to a Scipy sparse csr_matrix
 todense()
 Converts to another type of matrix.
 todia()
 Converts to another type of matrix.
 todok()
 Converts to another type of matrix.

class gpkit.small_classes.Count
 Bases: object
 Like python 2’s itertools.count, for Python 3 compatibility.
 next()
 Increment self.count and return it

class gpkit.small_classes.DictOfLists
 Bases: dict
 A hierarchy of dictionaries, with lists at the bottom.
 append(sol)
 Appends a dict (of dicts) of lists to all held lists.
 atindex(i)
 Indexes into each list independently.
 to_arrays()
 Converts all lists into array.
gpkit Documentation, Release 0.9.0

```python
class gpkit.small_classes.FixedScalar
    Bases: object

    Instances of this class are scalar Nomials with no variables

class gpkit.small_classes.FixedScalarMeta
    Bases: type

    Metaclass to implement instance checking for fixed scalars

class gpkit.small_classes.HashVector
    Bases: dict

    A simple, sparse, string-indexed vector. Inherits from dict.

    The HashVector class supports element-wise arithmetic: any undeclared variables are assumed to
    have a value of zero.

    arg: iterable

        >>> x = gpkit.nomials.Monomial('x')
        >>> exp = gpkit.small_classes.HashVector({x: 2})

        copy()

        Return a copy of this

        hashvalue = None

class gpkit.small_classes.SolverLog
    verbosity=0, output=None, **kwargs)

    Bases: list

    Adds a write method to list so it’s file-like and can replace stdout.

    write(writ)

        Append and potentially write the new line.

    gpkit.small_classes.matrix_converter(name)

        Generates conversion function.

10.1.9 gpkit.small_scripts module

    Assorted helper methods

    class gpkit.small_scripts.SweepValue(value)

        Bases: object

        Object to represent a swept substitution.

    gpkit.small_scripts.appendsolwarning(msg, data, result, category='uncategorized')

        Append a particular category of warnings to a solution.

    gpkit.small_scripts.get_sweepval(sub)

        Returns a given substitution’s indicated sweep, or None.

    gpkit.small_scripts.is_sweepvar(sub)

        Determines if a given substitution indicates a sweep.

    gpkit.small_scripts.latex_num(c)

        Returns latex string of numbers, potentially using exponential notation.

    gpkit.small_scripts.mag(c)

        Return magnitude of a Number or Quantity

10.1. gpkit package
gpkitDocumentation, Release 0.9.0

gpkit.small_scripts.maybe_flatten(value)
Extract values from 0-d numpy arrays, if necessary

gpkit.small_scripts.nomial_latex_helper(c, pos_vars, neg_vars)
Combines (varlatex, exponent) tuples, separated by positive vs negative exponent, into a single latex string

gpkit.small_scripts.splitsweep(sub)
Splits a substitution into (is_sweepvar, sweepval)

gpkit.small_scripts.try_str_without(item, excluded, latex=False)
Try to call item.str_without(excluded); fall back to str(item)

10.1.10 gpkit.solution_array module

Defines SolutionArray class

class gpkit.solution_array.SolutionArray
Bases: gpkit.small_classes.DictOfLists

A dictionary (of dictionaries) of lists, with convenience methods.

cost : array
variables: dict of arrays
sensitivities: dict containing:

monomials : array
posynomials : array
variables: dict of arrays

localmodels [NomialArray] Local power-law fits (small sensitivities are cut off)

>>> import gpkit
>>> import numpy as np
>>> x = gpkit.Variable("x")
>>> x_min = gpkit.Variable("x_{min}", 2)
>>> sol = gpkit.Model(x, [x >= x_min]).solve(verbosity=0)

>>> # VALUES
>>> values = [sol(x), sol.subinto(x), sol["variables"]["x"]]
>>> assert all(np.array(values) == 2)

>>> # SENSITIVITIES
>>> senss = [sol.sens(x_min), sol.sens(x_min)]
>>> senss.append(sol["sensitivities"]["variables"]["x_{min}"])
>>> assert all(np.array(senss) == 1)

almost_equal(sol, reltol=0.001, sens_abstol=0.01)
Checks for almost-equality between two solutions
diff(sol, showvars=None, min_percent=1.0, show_sensitivities=True,
min_senss_delta=0.1, sortbymodel=True)
Outputs differences between this solution and another

sol [solution or string] Strings are treated as paths to valid pickled solutions

min_percent [float] The smallest percentage difference in the result to consider

show_sensitivities [boolean] if True, also computer sensitivity deltas

min_senss_delta [float] The smallest absolute difference in sensitivities to consider

str

model = None
name_collision_varkeys()

Returns the set of contained varkeys whose names are not unique

pickle_prep()

After calling this, the SolutionArray is ready to pickle

plot(posys=None, axes=None)

Plots a sweep for each posy

program = None

save(filename='solution.pkl')

Pickles the solution and saves it to a file.

The saved solution is identical except for two things:

- the cost is made unitless
- the solution’s ‘program’ attribute is removed
- the solution’s ‘model’ attribute is removed
- the data field is removed from the solution’s warnings (the “message” field is preserved)

Solution can then be loaded with e.g. >>> import pickle >>>
pickle.load(open("solution.pkl"))

savecsv(showvars=None, filename='solution.csv', valcols=5, **kwargs)

Saves primal solution as a CSV sorted by modelname, like the tables.

savemat(filename='solution.mat', include=None)

Saves primal solution as matlab file

savetxt(filename='solution.txt', printmodel=True, **kwargs)

Saves solution table as a text file

subinto(posy)

Returns NominalArray of each solution substituted into posy.

summary(showvars=(), ntopsenss=5, **kwargs)

Print summary table, showing top sensitivities and no constants

table(showvars=(), tables=('cost', 'warnings', 'sweepvariables', 'freevariables',
                          'constants', 'sensitivities', 'tightest constraints'), **kwargs)

A table representation of this SolutionArray

tables: Iterable

Which to print of ("cost", "sweepvariables", "freevariables", "constants", "sensitivities")

fixedcols: If true, print vectors in fixed-width format latex: int

If > 0, return latex format (options 1-3); otherwise plain text

included_models: Iterable of strings

If specified, the models (by name) to include

excluded_models: Iterable of strings

If specified, model names to exclude

str
table_titles = {'constants': 'Constants', 'freevariables': 'Free Variables',
todataframe(include=None)

Returns primal solution as pandas dataframe
gpkit Documentation, Release 0.9.0

varnames (include)
Returns list of variables, optionally with minimal unique names

gpkit.solution_array.constraint_table (data, sortmodel=True, showmodels=True, **kwargs)
Creates lines for tables where the right side is a constraint.

gpkit.solution_array.insenss_table (data, _maxval=0.1, **kwargs)
Returns insensitivity table lines

gpkit.solution_array.loose_table (self, _min_senss=1e-05, **kwargs)
Return constraint tightness lines

gpkit.solution_array.reldiff (val1, val2)
Relative difference between val1 and val2 (positive if val2 is larger)

gpkit.solution_array.senss_table (data, showvars=(), title=u'Sensitivities', **kwargs)
Returns sensitivity table lines

gpkit.solution_array.tight_table (self, _ntightconstrs=5, _tight_senss=0.01, **kwargs)
Return constraint tightness lines

gpkit.solution_array.topsenss_filter (data, showvars, nvars=5)
Filters sensitivities down to top N vars

gpkit.solution_array.topsenss_table (data, showvars, nvars=5, **kwargs)
Returns top sensitivity table lines

gpkit.solution_array.var_table (data, title, printunits=True, latex=False, rawlines=False, varfmt=u'%s : ', valfmt=u'%-.4g ', vecfmt=u'%-8.3g', minval=0, sortbyvals=False, hidebelowminval=False, included_models=None, excluded_models=None, sortbymodel=True, maxcolumns=5, **kwargs)
Pretty string representation of a dict of VarKeys Iterable values are handled specially (partial printing)

data [dict whose keys are VarKey’s] data to represent in table

title : string printunits : bool latex : int
If > 0, return latex format (options 1-3); otherwise plain text

varfmt [string] format for variable names

valfmt [string] format for scalar values

vecfmt [string] format for vector values

minval [float] skip values with all(abs(value)) < minval

sortbyvals [boolean] If true, rows are sorted by their average value instead of by name.

included_models [Iterable of strings] If specified, the models (by name) to include

excluded_models [Iterable of strings] If specified, model names to exclude

gpkit.solution_array.warnings_table (self, _, **kwargs)
Makes a table for all warnings in the solution.
10.1.11 gpkit.varkey module

Defines the VarKey class

class gpkit.varkey.VarKey(name=None, **kwargs)

    Bases: gpkit.repr_conventions.GPkitObject

    An object to correspond to each ‘variable name’.

    name [str, VarKey, or Monomial] Name of this Variable, or object to derive this Variable from.

    **kwargs : Any additional attributes, which become the descr attribute (a dict).

    VarKey with the given name and descr.

latex (excluded=())
    Returns latex representation.

models
    Returns a tuple of just the names of models in self.lineage

str_without (excluded=())
    Returns string without certain fields (such as ‘lineage’).

subscripts = (u'lineage', u'idx')

classmethod unique_id()
    Increment self.count and return it

vars_of_a_name = {}
Citing GPkit

If you use GPkit, please cite it with the following bibtex:

```bibtex
@Misc{gpkit,
 author={Edward Burnell and Warren Hoburg},
 title={GPkit software for geometric programming},
 howpublished={\url{https://github.com/convexengineering/gpkit}},
 year={2014},
 note={Version 0.9.0}
}
```
We thank the following contributors for helping to improve GPkit:

- Marshall Galbraith for setting up continuous integration.
- Stephen Boyd for inspiration and suggestions.
- Kirsten Bray for designing the GPkit logo.
CHAPTER 13

Release Notes

Release notes are available on Github
Index

A
add() (gpkit.keydict.KeySet method), 81
add_meq_bounds() (in module gpkit.constraints.set), 65
add_split() (gpkit.tools.autosweep.BinarySweepTree method), 75
add_splitcost() (gpkit.tools.autosweep.BinarySweepTree method), 75
addmodelstodescr() (in module gpkit.nomials.variables), 75
almost_equal() (gpkit.solution_array.SolutionArray method), 84
append() (gpkit.small_classes.DictOfLists method), 82
append_sub() (in module gpkit.nomials.substitution), 74
appendsolwarning() (in module gpkit.small_scripts), 83
array_constraint() (in module gpkit.nomials.array), 69
ArrayConstraint (class in gpkit.constraints.array), 59
ArrayVariable (class in gpkit.nomials.variables), 74
as_approxsgt() (gpkit.nomials.math.SignomialInequality method), 73
as_approxsigt() (gpkit.nomials.math.SingleSignomialEquality method), 74
as_approxsllt() (gpkit.nomials.math.SignomialInequality method), 73
as_approxsllt() (gpkit.nomials.math.SingleSignomialEquality method), 74
as_gpconstr() (gpkit.constraints.model.Model method), 62
as_gpconstr() (gpkit.nomials.math.PosynomialInequality method), 72
as_gpconstr() (gpkit.nomials.math.SignomialInequality method), 73
as_gpconstr() (gpkit.nomials.math.SingleSignomialEquality method), 74
as_posyslt1() (gpkit.constraints.set.ConstraintSet method), 64
as_posyslt1() (gpkit.nomials.math.MonomialEquality method), 72
as_posyslt1() (gpkit.nomials.math.PosynomialInequality method), 72
as_posyslt1() (gpkit.nomials.math.SignomialInequality method), 73
as_posyslt1() (gpkit.nomials.math.SingleSignomialEquality method), 74
as_view() (gpkit.constraints.set.ConstraintSet method), 64
assign_axes() (in module gpkit.interactive.plot_sweep), 68
ast (gpkit.repr_conventions.GPkitObject attribute), 81
atindex() (gpkit.small_classes.DictOfLists method), 82
autosweep() (gpkit.constraints.model.Model method), 62
autosweep_id() (in module gpkit.tools.autosweep), 76

B
bin_dir (gpkit.build.Mosek attribute), 78
BinarySweepTree (class in gpkit.tools.autosweep), 75
Bounded (class in gpkit.constraints.bounded), 59
gp() (gpkit.constraints.model.Model method), 62
init_gp() (gpkit.constraints.sgp.SequentialGeometricProgram
method), 66
inspect_table() (in module gpkit.solution_array), 66
installed(gpkit.build.SolverBackend attribute), 78
InvalidGPConstraint, 79
InvalidPosynomial, 79
is_sweepvar() (in module gpkit.small_scripts), 83
isfile() (in module gpkit.build), 79

K
KeyDict (class in gpkit.keydict), 80
keymap (gpkit.keydict.KeyDict attribute), 81
keymapping (gpkit.keydict.KeyDict attribute), 81
KeySet (class in gpkit.keydict), 81

L
latex() (gpkit.constraints.set.ConstraintSet method), 65
latex() (gpkit.constraints.single_equation.SingleEquationConstraint
method), 67
latex() (gpkit.nomials.array.NomialArray method), 69
latex() (gpkit.nomials.core.Nomial method), 69
latex() (gpkit.small_classes.HashVector attribute), 83
latex() (gpkit.small_classes.HashVector attribute), 83
latex() (gpkit.small_classes.HashVector attribute), 83
latex() (gpkit.varkey.VarKey method), 87

H
hashvalue (gpkit.small_classes.HashVector attribute), 83
HashVector (class in gpkit.small_classes), 83

I
idxlookup (gpkit.constraints.set.ConstraintSet attribute), 65
log() (in module gpkit.build), 79
logtol_threshold (gpkit.constraints.bounded.Bounded attribute), 60

Index 99
loose_table() (in module gpkit.solution_array), 86

M
mag() (in module gpkit.small_scripts), 83
matrix_converter() (in module gpkit.small_classes), 83
maybe_flatten() (in module gpkit.small_scripts), 83
min_bst() (gpkit.tools.autosweep.BinarySweepTree method), 76
mmap() (gpkit.nomials.map.NomialMap method), 71
Model (class in gpkit.constraints.model), 62
model (gpkit.solution_array.SolutionArray attribute), 84
modelnums (gpkit.globals.NamedVariables attribute), 79
models (gpkit.varkey.VarKey attribute), 87
mono_approximation() (gpkit.nomials.math.Monomial method), 71
mono_approximation() (gpkit.nomials.math.Signomial method), 73
mono_lower_bound() (gpkit.nomials.math.Posynomial method), 72
Monomial (class in gpkit.nomials.math), 71
MonomialEquality (class in gpkit.nomials.math), 71
Mosek (class in gpkit.build), 78
MosekCLI (class in gpkit.build), 78

N
name (gpkit.build.CVXopt attribute), 78
name (gpkit.build.Mosek attribute), 78
name (gpkit.build.MosekCLI attribute), 78
name (gpkit.build.SolverBackend attribute), 79
name_collision_varkeys() (gpkit.constraints.set.ConstraintSet method), 65
name_collision_varkeys() (gpkit.solution_array.SolutionArray method), 84
NamedVariables (class in gpkit.globals), 79
namedvars (gpkit.globals.NamedVariables attribute), 79
next() (gpkit.small_classes.Count method), 82
Nomial (class in gpkit.nomials.core), 69
nomial_latex_helper() (in module gpkit.small_scripts), 84
NomialArray (class in gpkit.nomials.array), 69
NomialData (class in gpkit.nomials.data), 70
NomialMap (class in gpkit.nomials.map), 70
nomials (gpkit.nomials.math.ScalarSingleEquationConstraint attribute), 72

O
oper (gpkit.nomials.math.MonomialEquality attribute), 72

P
parenthesize() (in module gpkit.repr_conventions), 81
parse_and_index() (gpkit.keydict.KeyDict method), 81
parse_ast() (gpkit.repr_conventions.GPkitObject method), 81
parse_subs() (in module gpkit.nomials.substitution), 74
parse_variables() (in module gpkit.tools.docstring), 77
patches (gpkit.build.Mosek attribute), 78
pathjoin() (in module gpkit.build), 79
pickle_prep() (gpkit.solution_array.SolutionArray method), 85
plot() (gpkit.solution_array.SolutionArray method), 85
plot() (gpkit.tools.autosweep.SolutionOracle method), 76
plot_1dsweepgrid() (in module gpkit.interactive.plot_sweep), 68
plot_convergence() (in module gpkit.interactive.plotting), 68
posy_at() (gpkit.tools.autosweep.BinarySweepTree method), 76
posy_negy() (gpkit.nomials.math.Signomial method), 73
Posynomial (class in gpkit.nomials.math), 72
PosynomialInequality (class in gpkit.nomials.math), 72
process_result() (gpkit.constraints.bounded.Bounded method), 60
process_result() (gpkit.constraints.relax.ConstantsRelaxed method), 64
process_result() (gpkit.constraints.set.ConstraintSet method), 65
process_result() (gpkit.constraints.tight.Tight method), 67
prod() (gpkit.nomials.array.NomialArray method), 69
prod() (gpkit.nomials.core.Nomial method), 69
program (gpkit.constraints.model.Model attribute), 63
program (gpkit.solution_array.SolutionArray attribute), 85

R
raise_badelement() (in module gpkit.constraints.set), 65
Index