
Cartographer Documentation

The Cartographer Authors

Sep 06, 2022

Contents

1 Configuration 1
1.1 cartographer.common.proto.CeresSolverOptions . 1
1.2 cartographer.mapping.pose_graph.proto.ConstraintBuilderOptions 1
1.3 cartographer.mapping.pose_graph.proto.OptimizationProblemOptions 2
1.4 cartographer.mapping.proto.MapBuilderOptions . 2
1.5 cartographer.mapping.proto.MotionFilterOptions . 2
1.6 cartographer.mapping.proto.PoseGraphOptions . 3
1.7 cartographer.mapping.proto.TrajectoryBuilderOptions . 3
1.8 cartographer.mapping_2d.proto.LocalTrajectoryBuilderOptions . 3
1.9 cartographer.mapping_2d.proto.RangeDataInserterOptions . 4
1.10 cartographer.mapping_2d.proto.SubmapsOptions . 4
1.11 cartographer.mapping_2d.scan_matching.proto.CeresScanMatcherOptions 4
1.12 cartographer.mapping_2d.scan_matching.proto.FastCorrelativeScanMatcherOptions 4
1.13 cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions 5
1.14 cartographer.mapping_3d.proto.LocalTrajectoryBuilderOptions . 5
1.15 cartographer.mapping_3d.proto.RangeDataInserterOptions . 6
1.16 cartographer.mapping_3d.proto.SubmapsOptions . 6
1.17 cartographer.mapping_3d.scan_matching.proto.CeresScanMatcherOptions 6
1.18 cartographer.mapping_3d.scan_matching.proto.FastCorrelativeScanMatcherOptions 6
1.19 cartographer.sensor.proto.AdaptiveVoxelFilterOptions . 7

2 Evaluation 9
2.1 Concept . 9
2.2 Advantages & Limitations . 10
2.3 How-To . 10
2.4 References . 11

3 Terminology 13
3.1 Frames . 13
3.2 Transforms . 13

4 Cost functions 15
4.1 Relative Transform Error 2D . 15
4.2 Landmark Cost Function . 15

5 Migration tool for pbstream files 17
5.1 Migrating pre-1.0 pbstream files . 17

i

6 Technical Overview 19

7 Getting started 21
7.1 Getting started with ROS . 21
7.2 Getting started without ROS . 21

8 System Requirements 23
8.1 Known Issues . 23

9 How to cite us 25

ii

CHAPTER 1

Configuration

1.1 cartographer.common.proto.CeresSolverOptions

bool use_nonmonotonic_steps Configure the Ceres solver. See the Ceres documentation for more information: https:
//code.google.com/p/ceres-solver/

int32 max_num_iterations Not yet documented.

int32 num_threads Not yet documented.

1.2 cartographer.mapping.pose_graph.proto.ConstraintBuilderOptions

double sampling_ratio A constraint will be added if the proportion of added constraints to potential constraints drops
below this number.

double max_constraint_distance Threshold for poses to be considered near a submap.

double min_score Threshold for the scan match score below which a match is not considered. Low scores indicate
that the scan and map do not look similar.

double global_localization_min_score Threshold below which global localizations are not trusted.

double loop_closure_translation_weight Weight used in the optimization problem for the translational component
of loop closure constraints.

double loop_closure_rotation_weight Weight used in the optimization problem for the rotational component of loop
closure constraints.

bool log_matches If enabled, logs information of loop-closing constraints for debugging.

cartographer.mapping_2d.scan_matching.proto.FastCorrelativeScanMatcherOptions fast_correlative_scan_matcher_options
Options for the internally used scan matchers.

cartographer.mapping_2d.scan_matching.proto.CeresScanMatcherOptions ceres_scan_matcher_options Not
yet documented.

1

https://code.google.com/p/ceres-solver/
https://code.google.com/p/ceres-solver/

Cartographer Documentation

cartographer.mapping_3d.scan_matching.proto.FastCorrelativeScanMatcherOptions fast_correlative_scan_matcher_options_3d
Not yet documented.

cartographer.mapping_3d.scan_matching.proto.CeresScanMatcherOptions ceres_scan_matcher_options_3d
Not yet documented.

1.3 cartographer.mapping.pose_graph.proto.OptimizationProblemOptions

double huber_scale Scaling parameter for Huber loss function.

double acceleration_weight Scaling parameter for the IMU acceleration term.

double rotation_weight Scaling parameter for the IMU rotation term.

double local_slam_pose_translation_weight Scaling parameter for translation between consecutive nodes based on
the local SLAM pose.

double local_slam_pose_rotation_weight Scaling parameter for rotation between consecutive nodes based on the
local SLAM pose.

double odometry_translation_weight Scaling parameter for translation between consecutive nodes based on the
odometry.

double odometry_rotation_weight Scaling parameter for rotation between consecutive nodes based on the odome-
try.

double fixed_frame_pose_translation_weight Scaling parameter for the FixedFramePose translation.

double fixed_frame_pose_rotation_weight Scaling parameter for the FixedFramePose rotation.

bool log_solver_summary If true, the Ceres solver summary will be logged for every optimization.

cartographer.common.proto.CeresSolverOptions ceres_solver_options Not yet documented.

1.4 cartographer.mapping.proto.MapBuilderOptions

bool use_trajectory_builder_2d Not yet documented.

bool use_trajectory_builder_3d Not yet documented.

int32 num_background_threads Number of threads to use for background computations.

cartographer.mapping.proto.PoseGraphOptions pose_graph_options Not yet documented.

1.5 cartographer.mapping.proto.MotionFilterOptions

double max_time_seconds Threshold above which range data is inserted based on time.

double max_distance_meters Threshold above which range data is inserted based on linear motion.

double max_angle_radians Threshold above which range data is inserted based on rotational motion.

2 Chapter 1. Configuration

Cartographer Documentation

1.6 cartographer.mapping.proto.PoseGraphOptions

int32 optimize_every_n_nodes Online loop closure: If positive, will run the loop closure while the map is built.

cartographer.mapping.pose_graph.proto.ConstraintBuilderOptions constraint_builder_options Options for
the constraint builder.

double matcher_translation_weight Weight used in the optimization problem for the translational component of
non-loop-closure scan matcher constraints.

double matcher_rotation_weight Weight used in the optimization problem for the rotational component of non-
loop-closure scan matcher constraints.

cartographer.mapping.pose_graph.proto.OptimizationProblemOptions optimization_problem_options
Options for the optimization problem.

int32 max_num_final_iterations Number of iterations to use in ‘optimization_problem_options’ for the final opti-
mization.

double global_sampling_ratio Rate at which we sample a single trajectory’s nodes for global localization.

bool log_residual_histograms Whether to output histograms for the pose residuals.

double global_constraint_search_after_n_seconds If for the duration specified by this option no global contraint
has been added between two trajectories, loop closure searches will be performed globally rather than in a
smaller search window.

1.7 cartographer.mapping.proto.TrajectoryBuilderOptions

cartographer.mapping_2d.proto.LocalTrajectoryBuilderOptions trajectory_builder_2d_options Not yet docu-
mented.

cartographer.mapping_3d.proto.LocalTrajectoryBuilderOptions trajectory_builder_3d_options Not yet docu-
mented.

bool pure_localization Not yet documented.

1.8 cartographer.mapping_2d.proto.LocalTrajectoryBuilderOptions

float min_range Rangefinder points outside these ranges will be dropped.

float max_range Not yet documented.

float min_z Not yet documented.

float max_z Not yet documented.

float missing_data_ray_length Points beyond ‘max_range’ will be inserted with this length as empty space.

int32 num_accumulated_range_data Number of range data to accumulate into one unwarped, combined range data
to use for scan matching.

float voxel_filter_size Voxel filter that gets applied to the range data immediately after cropping.

cartographer.sensor.proto.AdaptiveVoxelFilterOptions adaptive_voxel_filter_options Voxel filter used to com-
pute a sparser point cloud for matching.

cartographer.sensor.proto.AdaptiveVoxelFilterOptions loop_closure_adaptive_voxel_filter_options Voxel filter
used to compute a sparser point cloud for finding loop closures.

1.6. cartographer.mapping.proto.PoseGraphOptions 3

Cartographer Documentation

bool use_online_correlative_scan_matching Whether to solve the online scan matching first using the correlative
scan matcher to generate a good starting point for Ceres.

cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions real_time_correlative_scan_matcher_options
Not yet documented.

cartographer.mapping_2d.scan_matching.proto.CeresScanMatcherOptions ceres_scan_matcher_options Not
yet documented.

cartographer.mapping.proto.MotionFilterOptions motion_filter_options Not yet documented.

double imu_gravity_time_constant Time constant in seconds for the orientation moving average based on observed
gravity via the IMU. It should be chosen so that the error 1. from acceleration measurements not due to gravity
(which gets worse when the constant is reduced) and 2. from integration of angular velocities (which gets worse
when the constant is increased) is balanced.

cartographer.mapping_2d.proto.SubmapsOptions submaps_options Not yet documented.

bool use_imu_data True if IMU data should be expected and used.

1.9 cartographer.mapping_2d.proto.RangeDataInserterOptions

double hit_probability Probability change for a hit (this will be converted to odds and therefore must be greater than
0.5).

double miss_probability Probability change for a miss (this will be converted to odds and therefore must be less than
0.5).

bool insert_free_space If ‘false’, free space will not change the probabilities in the occupancy grid.

1.10 cartographer.mapping_2d.proto.SubmapsOptions

double resolution Resolution of the map in meters.

int32 num_range_data Number of range data before adding a new submap. Each submap will get twice the number
of range data inserted: First for initialization without being matched against, then while being matched.

cartographer.mapping_2d.proto.RangeDataInserterOptions range_data_inserter_options Not yet documented.

1.11 cartographer.mapping_2d.scan_matching.proto.CeresScanMatcherOptions

double occupied_space_weight Scaling parameters for each cost functor.

double translation_weight Not yet documented.

double rotation_weight Not yet documented.

cartographer.common.proto.CeresSolverOptions ceres_solver_options Configure the Ceres solver. See the Ceres
documentation for more information: https://code.google.com/p/ceres-solver/

1.12 cartographer.mapping_2d.scan_matching.proto.FastCorrelativeScanMatcherOptions

double linear_search_window Minimum linear search window in which the best possible scan alignment will be
found.

4 Chapter 1. Configuration

https://code.google.com/p/ceres-solver/

Cartographer Documentation

double angular_search_window Minimum angular search window in which the best possible scan alignment will
be found.

int32 branch_and_bound_depth Number of precomputed grids to use.

1.13 cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions

double linear_search_window Minimum linear search window in which the best possible scan alignment will be
found.

double angular_search_window Minimum angular search window in which the best possible scan alignment will
be found.

double translation_delta_cost_weight Weights applied to each part of the score.

double rotation_delta_cost_weight Not yet documented.

1.14 cartographer.mapping_3d.proto.LocalTrajectoryBuilderOptions

float min_range Rangefinder points outside these ranges will be dropped.

float max_range Not yet documented.

int32 num_accumulated_range_data Number of range data to accumulate into one unwarped, combined range data
to use for scan matching.

float voxel_filter_size Voxel filter that gets applied to the range data immediately after cropping.

cartographer.sensor.proto.AdaptiveVoxelFilterOptions high_resolution_adaptive_voxel_filter_options Voxel
filter used to compute a sparser point cloud for matching.

cartographer.sensor.proto.AdaptiveVoxelFilterOptions low_resolution_adaptive_voxel_filter_options Not yet
documented.

bool use_online_correlative_scan_matching Whether to solve the online scan matching first using the correlative
scan matcher to generate a good starting point for Ceres.

cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions real_time_correlative_scan_matcher_options
Not yet documented.

cartographer.mapping_3d.scan_matching.proto.CeresScanMatcherOptions ceres_scan_matcher_options Not
yet documented.

cartographer.mapping.proto.MotionFilterOptions motion_filter_options Not yet documented.

double imu_gravity_time_constant Time constant in seconds for the orientation moving average based on observed
gravity via the IMU. It should be chosen so that the error 1. from acceleration measurements not due to gravity
(which gets worse when the constant is reduced) and 2. from integration of angular velocities (which gets worse
when the constant is increased) is balanced.

int32 rotational_histogram_size Number of histogram buckets for the rotational scan matcher.

cartographer.mapping_3d.proto.SubmapsOptions submaps_options Not yet documented.

1.13. cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions 5

Cartographer Documentation

1.15 cartographer.mapping_3d.proto.RangeDataInserterOptions

double hit_probability Probability change for a hit (this will be converted to odds and therefore must be greater than
0.5).

double miss_probability Probability change for a miss (this will be converted to odds and therefore must be less than
0.5).

int32 num_free_space_voxels Up to how many free space voxels are updated for scan matching. 0 disables free
space.

1.16 cartographer.mapping_3d.proto.SubmapsOptions

double high_resolution Resolution of the ‘high_resolution’ map in meters used for local SLAM and loop closure.

double high_resolution_max_range Maximum range to filter the point cloud to before insertion into the
‘high_resolution’ map.

double low_resolution Resolution of the ‘low_resolution’ version of the map in meters used for local SLAM only.

int32 num_range_data Number of range data before adding a new submap. Each submap will get twice the number
of range data inserted: First for initialization without being matched against, then while being matched.

cartographer.mapping_3d.proto.RangeDataInserterOptions range_data_inserter_options Not yet documented.

1.17 cartographer.mapping_3d.scan_matching.proto.CeresScanMatcherOptions

double occupied_space_weight Scaling parameters for each cost functor.

double translation_weight Not yet documented.

double rotation_weight Not yet documented.

bool only_optimize_yaw Whether only to allow changes to yaw, keeping roll/pitch constant.

cartographer.common.proto.CeresSolverOptions ceres_solver_options Configure the Ceres solver. See the Ceres
documentation for more information: https://code.google.com/p/ceres-solver/

1.18 cartographer.mapping_3d.scan_matching.proto.FastCorrelativeScanMatcherOptions

int32 branch_and_bound_depth Number of precomputed grids to use.

int32 full_resolution_depth Number of full resolution grids to use, additional grids will reduce the resolution by half
each.

double min_rotational_score Minimum score for the rotational scan matcher.

double min_low_resolution_score Threshold for the score of the low resolution grid below which a match is not
considered. Only used for 3D.

double linear_xy_search_window Linear search window in the plane orthogonal to gravity in which the best possi-
ble scan alignment will be found.

double linear_z_search_window Linear search window in the gravity direction in which the best possible scan align-
ment will be found.

6 Chapter 1. Configuration

https://code.google.com/p/ceres-solver/

Cartographer Documentation

double angular_search_window Minimum angular search window in which the best possible scan alignment will
be found.

1.19 cartographer.sensor.proto.AdaptiveVoxelFilterOptions

float max_length ‘max_length’ of a voxel edge.

float min_num_points If there are more points and not at least ‘min_num_points’ remain, the voxel length is reduced
trying to get this minimum number of points.

float max_range Points further away from the origin are removed.

1.19. cartographer.sensor.proto.AdaptiveVoxelFilterOptions 7

Cartographer Documentation

8 Chapter 1. Configuration

CHAPTER 2

Evaluation

Performing evaluation is a crucial part of developing a SLAM system. For this purpose, Cartographer offers built-in
tools that can aid the tuning process or can be used for quality assurance purposes.

These tools can be used to assess the SLAM result even when no dedicated ground truth is available. This is in contrast
to public SLAM benchmarks like e.g the KITTI dataset1 or the TUM RGB-D dataset2, where highly-precise ground
truth states (GPS-RTK, motion capture) are available as a reference.

2.1 Concept

The process comprises two steps:

1. auto-generation of “ground truth” relations

2. evaluation of the test data against the generated ground truth

The evaluation is based on the pose relations metric proposed in3. Rather than comparing the pose of a trajectory node
directly to the corresponding ground truth pose, it compares the relative poses between two trajectory nodes in the
probe data to the corresponding relation of two trajectory nodes in the ground truth trajectory.

In Cartographer, we can generate such ground truth relations from trajectories with loop closures. Let an optimized
trajectory with loop closures be the input for the ground truth generation. We select the relations from loop closure
constraints that satisfy the following criteria:

• min_covered_distance: Minimum covered distance in meters before a loop closure is considered a can-
didate for autogenerated ground truth.

• outlier_threshold_meters: Distance in meters beyond which constraints are considered outliers.

• outlier_threshold_radians: Distance in radians beyond which constraints are considered outliers.

1 Andreas Geiger, Philip Lenz and Raquel Urtasun. Are we ready for Autonomous Driving? The KITTI Vision Benchmark Suite. CVPR, 2012.
2 Jürgen Sturm, Nikolas Engelhard, Felix Endres, Wolfram Burgard and Daniel Cremers. A Benchmark for the Evaluation of RGB-D SLAM

Systems. IROS, 2012.
3 Rainer Kümmerle, Bastian Steder, Christian Dornhege, Michael Ruhnke, Giorgio Grisetti, Cyrill Stachniss and Alexander Kleiner. On mea-

suring the accuracy of SLAM algorithms. Autonomous Robots 27(4), pp.387-407, 2009.

9

Cartographer Documentation

We can assume the pose relations of neighboring trajectory nodes fulfilling these requirements to be locally correct
in a fully optimized trajectory. Although this is not a ground truth in the sense of an independent input from another
source, we can now use it to evaluate the quality of local SLAM results that were generated without loop closure
optimization.

The following figure illustrates the concept. On the left side, the ground truth relations are visualized as green con-
nections between trajectory nodes of a fully optimized trajectory. On the right side, the corresponding relations in a
non-optimized trajectory are shown in red.

The actual metric that is computed is the difference between the ground truth (green) and the probe (red) relations.

2.2 Advantages & Limitations

The first obvious advantage is the easier data collection process compared to a cumbersome ground truth setup. An-
other great advantage of this methodology is that the SLAM system can be evaluated in any custom sensor configura-
tion (compared to public benchmarks where we are restricted to the data and the sensor configuration of the authors).

However, this type of self-evaluation is not suitable for measuring the accuracy of the full SLAM system with all
optimizations enabled - only an evaluation with real ground truth states can provide that. Furthermore, trajectory
nodes outside of loop closure areas can’t be considered.

2.3 How-To

Given a serialized state of a fully optimized trajectory (here: optimized.pbstream file), the ground truth relations
can be generated with the following command:

cd <build> # (directory where Cartographer's binaries are located)
./cartographer_autogenerate_ground_truth -pose_graph_filename optimized.pbstream -
→˓output_filename relations.pbstream -min_covered_distance 100 -outlier_threshold_
→˓meters 0.15 -outlier_threshold_radians 0.02

Then, a non-optimized trajectory test.pbstream can be evaluated against the generated relations with:

./cartographer_compute_relations_metrics -relations_filename relations.pbstream -pose_
→˓graph_filename test.pbstream

This will produce output in this form:

10 Chapter 2. Evaluation

Cartographer Documentation

Abs translational error 0.01944 +/- 0.01819 m
Sqr translational error 0.00071 +/- 0.00189 m^2
Abs rotational error 0.11197 +/- 0.12432 deg
Sqr rotational error 0.02799 +/- 0.07604 deg^2

2.4 References

2.4. References 11

Cartographer Documentation

12 Chapter 2. Evaluation

CHAPTER 3

Terminology

This documents a few common patterns that exist in the Cartographer codebase.

3.1 Frames

global map frame This is the frame in which global SLAM results are expressed. It is the fixed map frame including
all loop closure and optimization results. The transform between this frame and any other frame can jump when
new optimization results are available. Its z-axis points upwards, i.e. the gravitational acceleration vector points
in the -z direction, i.e. the gravitational component measured by an accelerometer is in the +z direction.

local map frame This is the frame in which local SLAM results are expressed. It is the fixed map frame excluding
loop closures and the pose graph optimization. For a given point in time, the transform between this and the
global map frame may change, but the transform between this and all other frames does not change.

submap frame Each submap has a separate fixed frame.

tracking frame The frame in which sensor data is expressed. It is not fixed, i.e. it changes over time. It is also
different for different trajectories.

gravity-aligned frame Only used in 2D. A frame colocated with the tracking frame but with a different orientation
that is approximately aligned with gravity, i.e. the gravitational acceleration vector points approximately in the
-z direction. No assumption about yaw (rotation around the z axis between this and the tracking frame) should
be made. A different gravity-aligned frame is used for different trajectory nodes, e.g. yaw can change arbitrarily
between gravity-aligned frames of consecutive nodes.

3.2 Transforms

local_pose Transforms data from the tracking frame (or a submap frame, depending on context) to the local map
frame.

global_pose Transforms data from the tracking frame (or a submap frame, depending on context) to the global map
frame.

13

Cartographer Documentation

local_submap_pose Transforms data from a submap frame to the local map frame.

global_submap_pose Transforms data from a submap frame to the global map frame.

14 Chapter 3. Terminology

CHAPTER 4

Cost functions

4.1 Relative Transform Error 2D

Given two poses p𝑖 = [x𝑖; 𝜃𝑖] = [𝑥𝑖, 𝑦𝑖, 𝜃𝑖]
𝑇 and p𝑗 = [x𝑗 ; 𝜃𝑗] = [𝑥𝑗 , 𝑦𝑗 , 𝜃𝑗]

𝑇 the transformation T from the
coordinate frame 𝑗 to the coordinate frame 𝑖 has the following form

T(p𝑖,p𝑗) =

[︂
𝑅(𝜃𝑖)

𝑇 (x𝑗 − x𝑖)
𝜃𝑗 − 𝜃𝑖

]︂
where 𝑅(𝜃𝑖)

𝑇 is the rotation matrix of 𝜃𝑖.

The weighted error 𝑓 : R6 ↦→ R3 between T and the measured transformation T𝑚
𝑖𝑗 = [x𝑚

𝑖𝑗 ; 𝜃
𝑚
𝑗] from the coordinate

frame 𝑗 to the coordinate frame 𝑖 can be computed as

frelative(p𝑖,p𝑗) = [𝑤t 𝑤r]
(︀
T𝑚

𝑖𝑗 −T(p𝑖,p𝑗)
)︀
=

[︂
𝑤t

(︀
x𝑚
𝑖𝑗 −𝑅(𝜃𝑖)

𝑇 (x𝑗 − x𝑖)
)︀

𝑤r
(︀
clamp(𝜃𝑚𝑖𝑗 − (𝜃𝑗 − 𝜃𝑖))

)︀]︂
where 𝑤𝑡 and 𝑤𝑟 are weights for translation and rotation respectively and clamp : R ↦→ [−𝜋, 𝜋] normalizes the angle
difference.

Jacobian matrix 𝐽𝑓 is given by:

𝐽𝑓 (p𝑖,p𝑗) =

[︂
𝜕f

𝜕𝑥𝑖

𝜕f

𝜕𝑦𝑖

𝜕f

𝜕𝜃𝑖

𝜕f

𝜕𝑥𝑗

𝜕f

𝜕𝑦𝑗

𝜕f

𝜕𝜃𝑗

]︂
(4.1)

(4.2)

=

[︃
𝑤t𝑅

𝑇 (𝜃𝑖) −𝑤t
d𝑅𝑇 (𝜃𝑖)

d𝜃 (x𝑗 − x𝑖) −𝑤t𝑅
𝑇 (𝜃𝑖) 0

0𝑇 𝑤r 0𝑇 −𝑤r

]︃
(4.3)

4.2 Landmark Cost Function

Let p𝑜 denote the global pose of the SLAM tracking frame at which a landmark with the global pose p𝑙 is observed.
The landmark observation itself is the measured transformation T𝑚

𝑜𝑙 that was observed at time 𝑡𝑜.

15

Cartographer Documentation

As the landmark can be observed asynchronously, the pose of observation p𝑜 is modeled in between two regular,
consecutive trajectory nodes p𝑖,p𝑗 . It is interpolated between p𝑖 and p𝑗 at the observation time 𝑡𝑜 using a linear
interpolation for the translation and a quaternion SLERP for the rotation:

p𝑜 = interpolate(p𝑖,p𝑗 , 𝑡𝑜)

Then, the full weighted landmark cost function can be written as:

flandmark(p𝑙,p𝑖,p𝑗) = frelative(p𝑙,p𝑜) (4.4)
= [𝑤t 𝑤r] (T

𝑚
𝑜𝑙 −T(p𝑜,p𝑙))(4.5)

The translation and rotation weights 𝑤t, 𝑤r are part of the landmark observation data that is fed into Cartographer.

16 Chapter 4. Cost functions

CHAPTER 5

Migration tool for pbstream files

The pbstream serialization format for 3D has changed to include additional data (histograms) in each submap. Code
to load old data by migrating on-the-fly will be removed soon. Once this happened, users who wish to migrate old
pbstream files can use a migration tool.

The tool is shipped as part of Cartographer’s pbstream tool (source) and once built can be invoked as follows::

cartographer_pbstream migrate old.pbstream new.pbstream

The tool assumes 3D data in the old submap format as input and converts it to the currently used format version.

5.1 Migrating pre-1.0 pbstream files

With the update of the pbstream serialization format as discussed in RFC-0021, previously serialized pbstream files
are not loadable in Cartographer 1.0 anymore.

In order to enable users to reuse previously generated pbstream files, migration using an older version of the migration
tool is necessary. The current tool does not support this migration anymore. Please use the version at Git SHA
6c889490e245cc5d9da15023249c6fc7119def3f.

Cartographer is a system that provides real-time simultaneous localization and mapping (SLAM) in 2D and 3D across
multiple platforms and sensor configurations.

17

https://github.com/cartographer-project/cartographer/blob/master/cartographer/io/pbstream_main.cc
https://github.com/cartographer-project/rfcs/blob/master/text/0021-serialization-format.md
https://github.com/cartographer-project/cartographer
https://en.wikipedia.org/wiki/Simultaneous_localization_and_mapping

Cartographer Documentation

18 Chapter 5. Migration tool for pbstream files

CHAPTER 6

Technical Overview

• High level system overview of Cartographer

19

https://github.com/cartographer-project/cartographer/blob/master/docs/source/high_level_system_overview.png

Cartographer Documentation

20 Chapter 6. Technical Overview

CHAPTER 7

Getting started

Cartographer is a standalone C++ library. To get started quickly, use our ROS integration.

7.1 Getting started with ROS

ROS integration is provided by the Cartographer ROS repository. You will find complete documentation for using
Cartographer with ROS at the Cartographer ROS Read the Docs site.

7.2 Getting started without ROS

Please see our ROS integration as a starting point for integrating your system with the standalone library. Currently, it
is the best available reference.

On Ubuntu 18.04 (Bionic):

Install the required libraries that are available as debs.
sudo apt-get update
sudo apt-get install -y \

clang \
cmake \
g++ \
git \
google-mock \
libboost-all-dev \
libcairo2-dev \
libceres-dev \
libcurl4-openssl-dev \
libeigen3-dev \
libgflags-dev \
libgoogle-glog-dev \
liblua5.2-dev \

(continues on next page)

21

http://www.ros.org
https://github.com/cartographer-project/cartographer_ros
https://google-cartographer-ros.readthedocs.io

Cartographer Documentation

(continued from previous page)

libsuitesparse-dev \
lsb-release \
ninja-build \
python3-sphinx \
stow

Install Protocol Buffers and Abseil if available.
No need to build it ourselves.
case "$(lsb_release -sc)" in

jammy|bullseye)
sudo apt-get install -y libgmock-dev protobuf-compiler libabsl-dev ;;

focal|buster)
sudo apt-get install -y libgmock-dev protobuf-compiler ;;

bionic)
;;

esac

git clone https://github.com/abseil/abseil-cpp.git
cd abseil-cpp
git checkout 215105818dfde3174fe799600bb0f3cae233d0bf # 20211102.0
mkdir build
cd build
cmake -G Ninja \
-DCMAKE_BUILD_TYPE=Release \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_INSTALL_PREFIX=/usr/local/stow/absl \
..

ninja
sudo ninja install
cd /usr/local/stow
sudo stow absl

VERSION="v3.4.1"

Build and install proto3.
git clone https://github.com/google/protobuf.git
cd protobuf
git checkout tags/${VERSION}
mkdir build
cd build
cmake -G Ninja \
-DCMAKE_POSITION_INDEPENDENT_CODE=ON \
-DCMAKE_BUILD_TYPE=Release \
-Dprotobuf_BUILD_TESTS=OFF \
../cmake

ninja
sudo ninja install

Build and install Cartographer.
cd cartographer
mkdir build
cd build
cmake .. -G Ninja
ninja
CTEST_OUTPUT_ON_FAILURE=1 ninja test
sudo ninja install

22 Chapter 7. Getting started

CHAPTER 8

System Requirements

Although Cartographer may run on other systems, it is confirmed to be working on systems that meet the following
requirements:

• 64-bit, modern CPU (e.g. 3rd generation i7)

• 16 GB RAM

• Ubuntu 18.04 (Bionic), 20.04 (Focal), 22.04 (Jammy)

• gcc version 7.5.0, 8.3.0, 9.3.0, 10.2.1, 11.2.0

8.1 Known Issues

• 32-bit builds have libeigen alignment problems which cause crashes and/or memory corruptions.

23

Cartographer Documentation

24 Chapter 8. System Requirements

CHAPTER 9

How to cite us

Background about the algorithms developed for Cartographer can be found in the following publication. If you use
Cartographer for your research, we would appreciate it if you cite our paper.

W. Hess, D. Kohler, H. Rapp, and D. Andor, Real-Time Loop Closure in 2D LIDAR SLAM, in Robotics and Automa-
tion (ICRA), 2016 IEEE International Conference on. IEEE, 2016. pp. 1271–1278.

25

https://research.google.com/pubs/pub45466.html

	Configuration
	cartographer.common.proto.CeresSolverOptions
	cartographer.mapping.pose_graph.proto.ConstraintBuilderOptions
	cartographer.mapping.pose_graph.proto.OptimizationProblemOptions
	cartographer.mapping.proto.MapBuilderOptions
	cartographer.mapping.proto.MotionFilterOptions
	cartographer.mapping.proto.PoseGraphOptions
	cartographer.mapping.proto.TrajectoryBuilderOptions
	cartographer.mapping_2d.proto.LocalTrajectoryBuilderOptions
	cartographer.mapping_2d.proto.RangeDataInserterOptions
	cartographer.mapping_2d.proto.SubmapsOptions
	cartographer.mapping_2d.scan_matching.proto.CeresScanMatcherOptions
	cartographer.mapping_2d.scan_matching.proto.FastCorrelativeScanMatcherOptions
	cartographer.mapping_2d.scan_matching.proto.RealTimeCorrelativeScanMatcherOptions
	cartographer.mapping_3d.proto.LocalTrajectoryBuilderOptions
	cartographer.mapping_3d.proto.RangeDataInserterOptions
	cartographer.mapping_3d.proto.SubmapsOptions
	cartographer.mapping_3d.scan_matching.proto.CeresScanMatcherOptions
	cartographer.mapping_3d.scan_matching.proto.FastCorrelativeScanMatcherOptions
	cartographer.sensor.proto.AdaptiveVoxelFilterOptions

	Evaluation
	Concept
	Advantages & Limitations
	How-To
	References

	Terminology
	Frames
	Transforms

	Cost functions
	Relative Transform Error 2D
	Landmark Cost Function

	Migration tool for pbstream files
	Migrating pre-1.0 pbstream files

	Technical Overview
	Getting started
	Getting started with ROS
	Getting started without ROS

	System Requirements
	Known Issues

	How to cite us

