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The Mailman home page is http://www.list.org, and there is a community driven wiki at http://wiki.list.org.

Mailman 3.1 was released on May 25, 2017. The Mailman Suite consists of 5 individual projects Below are links to
documentation for each of the projects.

Those packages are copyrighted by the Free Software Foundation and distributed under the terms of the GNU General
Public License (GPL) version 3 or later.

• Mailman Core - the mailing list manager core (required)

• Postorius - the adminstrative web user interface

• MailmanClient - the official REST API Python bindings

• HyperKitty - the web archiver

• HyperKitty Mailman plugin - archiver plugin for Core

Contents 1
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CHAPTER 1

The Pre-Installation Guide

What do I need to know before trying to install Mailman3?

1.1 Pre-Installation Guide

1.1.1 What is the current state of Mailman 3?

Mailman 3 is a complete re-write of Mailman 2.1 and has been split into several modular components which collec-
tively we call Mailman Suite. We also often just call it Mailman 3. Let us look very briefly into these components:

• Mailman Core or just Core is the main engine that is responsible for handling emails. It does all the task of
managing users, subscriptions, mailing lists, email addresses, talking to the MTA etc. However, the things that
it doesn’t manage include user authorization & user authentication.

However, users can manage their settings using email based commands which includes subscribing, unsubscrib-
ing, changing a few basic settings for their accounts etc.

Most functionalities in Core can be accessed using an administrative REST API which provides full control over
the Core. Core expects the clients that consume this API would take up the responsibility of authenticating and
authorizing users and provide interfaces for them to manage their settings and subscriptions.

• Mailman Client is just sometimes called as Client and is the official Python bindings to the Core’s REST API.

• Postorius is the official web front-end over the Core’s REST API and is built on Django web framework. In
Django’s terminology, Postorius is an “app” which can be be plugged into any Django installation or “project”.
Postorius has been built to be deployed alongside other Django “apps” which makes it a little bit difficult to
deploy since you need to have a “project” of your own if you just need it to work!

See also:

What is Django?

If you don’t have any familiarity with Django We do provide an example Django “project” with pre-populated
settings which should run Postorius out of the box. However, because of the several different ways in which you
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can configure Django, it might not suite everybody’s needs, in which case you might have to dive into Django’s
(and other helper library’s) settings related documentation to figure out the best settings for you.

• Hyperkitty is the official archiver and, similar to Postorius, is a Django “app”. It is also built along the same
principles of re-usability and can be deployed alongside Postorius with the provided Django “project”.

1.1.2 How Can I upgrade from Mailman 2.1.x?

Mailman 2.1 series is the current most popular series of Mailman. The short version is that as of now, upgrading from
Mailman 2.1 to Mailman 3.1 is buggy.

Now the long version. Because of the changes in Database Schema, migrating from Mailman 2.1 to Mailman 3.1 is
not very easy, though it can be done with some scripting. We are working on it and it should be working soon, we
don’t have an exact timeline on it though.

Archives however can be imported into Hyperkitty easily, however URLs to attachments are going to break because
the URL paths are different in Hyperkitty. Although, You might be able to retain your HTML archives from Mailman
2.1 and continue archiving newer emails in Hyperkitty.

1.1.3 What do I need to know before deploying Mailman 3?

The installation guide presumes some knowledge of general Python based web applications and their ecosystem. This
requirement however is only required if you follow the installation guide provided here. When the distro packages for
Mailman 3 are out, you probably won’t need any of this information. If you are new to Python and have no idea about
what pip, django and wsgi means, this section is for you!

Here are the three most basic terminologies that you will often encounter when trying to deploy Mailman 3:

• pip is the Python’s official package manager and can be used to download and install libraries and packages
from PyPI a.k.a Python CheeseShop. On most Linux based distributions, you can install it form the distro’s
package manager. Here are the instructions for apt & yum (or dnf) based systems:

$ sudo apt install python3-pip

and:

$ sudo yum install python3-pip

If you have any other Linux distro, please check their documentation on how to install. After that, you can use
it to install python packages using the command like below:

$ sudo pip3 install <packagename>

The above command is equivalent to:

$ sudo python3 -m pip install <packagename>

• Django is the Python web framework that Postorius & Hyperkitty are based on. It allows you to run several
different web “apps” under a single “project”. People often write their web applications as reusable Django
“apps” which can then be plugged into any running Django “project”. Django “project” is also sometimes
called as a Django “installation”.

A typical Django project has a structure of something like this:

4 Chapter 1. The Pre-Installation Guide
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toplevel_project:
\
|---- urls.py
|---- settings.py
|---- manage.py
|---- wsgi.py

It is important to understand the above structure even when using Django, because the configuration of a Django
project requires you to edit these files.

Here is a brief overview of these files:

– urls.py: This is how Django routes request. If you want to install a new Django “app”, you have to add
it’s base_url to this file.

– settings.py : This is Django’s configuration file. It is the home for all the different configuration
options that are required.

– manage.py : This is a generally a helper script used to perform administrative tasks from command line
on a Django project. You should never edit this file after creating a project.

– wsgi.py : This is the WSGI or Web Server Gateway Interface application for the Django project. You
will need this file later to interface Django with an actual webserver like Nginx or Apache. Usually, you
don’t need to change anything in this file.

• wsgi or the Web Server Gateway Interface is the protocol by which Python web applications talk to the web
servers. While Django comes with a in-built web server, which you can invoke by using the following command:

$ python manage.py runserver

This will start a development server on http://localhost:8000/. You can also specify a different host:port to bind
to. See python manage.py runserver --help for more instructions.

To deploy any Python based web application, you need an intermediate WSGI server which mediates the inter-
action between Python and Web Server. There are several of them out there but we recommend using uwsgi.
Uwsgi has several advantages over others including the ability to configure completely using environment vari-
ables which helps in container based deployments. Also, Nginx and Apache web servers have plugins built-in
for Uwsgi which makes the it even more compelling candidate.

However, you are not tied to using Uwsgi and are free to choose any other WSGI server.

• When running Django using the inbuilt development server, Django serves it’s static files which makes it easy
for the developers. However, in production environment, it is advised to serve the static files separately.

To collect all the static files for all the Django projects in one single place:

$ python manage.py collectstatic

This will collect all the static files in the location mentioned in Django’s settings as STATIC_ROOT, which is
usually under static directory in Django’s project’s root path.

You need to serve this directly with your web server using a proxy or alias rule, depending on your webserver.

Here is the relevant portion of the configuration for Ningx:

server {
...

location /static/ {
alias /path/to/django/STATIC_ROOT;

(continues on next page)
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(continued from previous page)

}
}

You can do this in Apache using a configuration that looks something like this:

<VirtualHost *:443>
...

Alias /static /opt/mailman/web/static
Alias /favicon.ico /opt/mailman/web/static/hyperkitty/img/favicon.ico
ProxyPassMatch ^/static/ !
...

</VirtualHost>
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CHAPTER 2

Upgrading to Mailman Suite 3.2

Upgrading from Mailman Suite 3.1 to 3.2

2.1 Upgrading to Mailman 3.2

This includes the requirements to upgrade to Mailman 3.2 suite, which includes (latest versions as of writing):

• Mailman Core 3.2.0

• Postorius 1.2.1

• MailmanClient 3.2.0

• Django-mailman3 1.2.0

• Hyperkitty 1.2.0

If you are interested in the full change log for each component, please refer to documentation of each project.

2.1.1 Python 3

Postorius, Django-mailman3 and Hyperkitty have been ported to Python 3 now. To upgrade from a previous version,
you would need to setup your Django project to use Python 3.5+. Django 1.11-2.0 are supported.

If you are using virtual environments, you can now run the whole stack from a single virtual environment, unlike
before, when you needed separate ones for Django and Mailman Core.

2.1.2 Migration Steps

The migration for your Mailman installation depends on how you got everything running.

• If you are using system packages, they should handle the upgrade process themselves. You may need to perform
some changes after the upgrade is done, see the sections below for those steps.
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• If you are using the packages directory from PyPI or source, you can do a pip update -U mailman to
install Mailman Core. For Django packages, you would need to create a new virtual-environment (if you are
using it), or install it using Python 3 pip.

• For Django apps, the usual steps for migrations include:

$ python manage.py migration
$ python manage.py collectstatic
$ python manage.py compilemessages

• Mailman Core should handle database migration on its own when the new version is started.

2.1.3 Configuration

• Postorius added a new required configuration flag POSTORIUS_TEMPLATE_BASE_URL which should be set
to URL that Postorius is expected to be listening at. You should set it to whatever URL your WSGI server is
listening at.

2.1.4 Extra Migration Steps

• Full text index for Hyperkitty needs to be re-built since our indexing engine doesn’t maintain compatibility
between index created in Python 2 and Python 3.

Simplest way to do this to run python manage.py rebuild_index in your Django project. Note that if
your project has a huge number of lists, this will take a lot of time.

A new command python manage.py update_index_one_list <listname@example.com>
was added to Hyperkitty so that you can rebuild your index one-by-one, if you prefer that.
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CHAPTER 3

The Installation Guide

3.1 Mailman Suite Installation

This is a step-by-step installation guide for Mailman Suite, also sometimes referred as Mailman 3 Suite or just Mailman
3. There are more than one ways to have Mailman 3 running on your machine.

3.1.1 Mailman 3 in Docker

Abhilash Raj maintains container images for Mailman 3 which you can use directly without having to go through
all the steps to download dependencies and configuring Mailman. You can find the detailed documentation on how
to use them. If you have any issues using the container images, please report them directly on the Github repo for
docker-mailman.

3.1.2 Distribution Packages

Debian provides Mailman 3 packages. The meta-package mailman3-full depends on all components of a complete
Mailman 3 suite. If you want to split the installation of the Mailman 3 core mailinglist delivery daemon and the
Mailman 3 Django web suite with Postorius and Hyperkitty, take a look at the packages mailman3 and mailman3-web.

The Debian Mailman 3 packages can be found here: https://packages.debian.org/search?keywords=mailman3

Other distribution specific packages for Mailman 3 are not yet available. If you would like to help package Mailman
3 for your favorite Linux distro, please get in touch at mailman-developers@python.org.

3.1.3 Dependencies

• Python3.5+.

• MTA: Mailman 3 in theory would support any MTA or mail server which can send emails to Mailman over
LMTP. Officially, there are configurations for Postfix, Exim4, qmail and sendmail. Mailman Core has a fairly

9

https://asynchronous.in/docker-mailman/
https://github.com/maxking/docker-mailman
https://github.com/maxking/docker-mailman
https://packages.debian.org/search?keywords=mailman3
mailto:mailman-developers@python.org
http://www.postfix.org/
http://www.exim.org/
http://cr.yp.to/qmail.html
https://www.proofpoint.com/us/sendmail-open-source


Mailman Suite Documentation, Release 3.0

elaborate documentation on setting up your MTA. Look below at ‘setting up mailman core‘_ to find out the
location of configuration file mailman.cfg which is mentioned in the documentation above.

The Web Front-end is based on a Python web framework called Django. For email verification and sending out
error logs, Django also must be configured to send out emails.

• A sass compiler. Syntactically Awesome Stylesheets or Sass is an extension of CSS, which is used to style
webpages, that adds more power to the old CSS syntax. It allows using variables, nested rules, inline imports
etc. which CSS originally doesn’t support. Hyperkitty uses this to generate CSS styles.

You can either use the Ruby implementation or C/C++ implementation. Please look at the installation guide for
sass to see how you can get one.

For apt based systems:

$ sudo apt install ruby-sass

For yum based systems try:

$ sudo yum install rubygem-sass

or:

$ sudo dnf install rubygem-sass

After installing this, you’d have to configure Django to use these compilers. A basic configuration would look
like:

# To be added to Django's settings.py

COMPRESS_PRECOMPILERS = (
('text/x-scss', 'sass -t compressed {infile} {outfile}'),
('text/x-sass', 'sass -t compressed {infile} {outfile}'),

)

You can replace sass above with whatever is the name of the binary is. For the Ruby implementation it is
generally sass, for C/C++ it is sassc.

• A full text search engine like Whoosh or Xapian. Whoosh is the easiest to setup. First, install Whoosh:

$ sudo pip3 install whoosh

See also:

What is pip?

Then configure Django to use it:

# To be added to Django's settings.py

HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
'PATH': os.path.join(BASE_DIR, "fulltext_index"),
},

}

For setup instruction on other search backends, look at the documentation for django-haystack.

• An HTML to plaintext converter like lynx is required by Mailman Core if you have configured it to convert
emails to plaintext.
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3.1.4 Installing Mailman Core

Mailman Core is responsible for sending and receiving emails. It exposes a REST API that different clients can use
to interact with over an HTTP protocol. The API itself is an administrative API and it is recommended that you don’t
expose it to outside of your host or trusted network. To install Core run:

$ sudo pip3 install mailman

This _should_ install the latest release of Mailman Core, which is 3.1.0 as of writing of this document. After this,
create a configuration file at /etc/mailman.cfg for Mailman Core.

After this, running mailman info will give you an output which looks something like below:

$ mailman info
GNU Mailman 3.1.0 (Between The Wheels)
Python 3.5.3 (default, Jan 19 2017, 14:11:04)
[GCC 6.3.0 20170118]
config file: /etc/mailman.cfg
db url: sqlite:////var/lib/mailman/data/mailman.db
devmode: DISABLED
REST root url: http://localhost:8001/3.1/
REST credentials: restadmin:restpass

3.1.5 Installing Web UI

Postorius and Hyperkitty are Mailman’s official Web UI and Archiver. Both of them are Django based apps and can
be integrated into an existing Django installation/website.

Installing Postorius & Hyperkitty

Postorius and Hyperkitty are Django “apps” and can be directly installed using the commands below:

$ sudo pip3 install postorius
$ sudo pip3 install hyperkitty

mailman-hyperkitty plugin enables interaction between Core and Hyperkitty. You can install it using:

$ sudo pip3 install mailman-hyperkitty

Note that mailman-hyperkitty is a plugin for Mailman Core and not Django.

Setting up Django Project

See also:

What is Django?

If you have absolutely no idea about Django, just clone/download this mailman-suite repo . It should have a docu-
mented settings.py and a pre-configured urls.py which you can use to run new Django installation. If you
find any setting that is not documented, please look at Django’s settings reference for all available settings.

Exact commands would look something like this:

3.1. Mailman Suite Installation 11
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# Download and install the latest release of django.
$ sudo pip3 install Django>=1.11

# Clone the repo locally.
$ git clone https://gitlab.com/mailman/mailman-suite.git
$ cd mailman-suite/mailman-suite_project/

# Create the tables in the database and load fixtures.
$ python3 manage.py migrate

# Copy all the static files to one single location.
$ python3 manage.py collectstatic

# Run the Django's "development" server at localhost:8000
$ python3 manage.py runserver

3.1.6 Setting up a WSGI server

See also:

What is WSGI?

These instructions are to setup your Django website behind a webserver. We are using a uwsgi as the wsgi server to
communicate between the webserver and Django. To install uwsgi, run:

$ sudo pip3 install uwsgi

Note: The configuration below doesn’t serve static files, so if you are just “trying-it-out” and want static files to be
served, you need to add some additional configuration and steps. See serving static files with uwsgi.

See also:

Why does my django site look ugly?

Then you can configure it using the following configuration file:

# uwsgi.ini
#
[uwsgi]
# Port on which uwsgi will be listening.
http-socket = 0.0.0.0:8000

# Move to the directory wher the django files are.
chdir = /path-to-django-project-directory/

# Use the wsgi file provided with the django project.
wsgi-file = wsgi.py

# Setup default number of processes and threads per process.
master = true
process = 2
threads = 2

# Drop privielges and don't run as root.
uid = 1000

(continues on next page)
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(continued from previous page)

gid = 1000

# Setup the django_q related worker processes.
attach-daemon = ./manage.py qcluster

# Setup the request log.
req-logger = file:/path-to-logs/logs/uwsgi.log

# Log cron seperately.
logger = cron file:/path-to-logs/logs/uwsgi-cron.log
log-route = cron uwsgi-cron

# Log qcluster commands seperately.
logger = qcluster file:/path-to-logs/logs/uwsgi-qcluster.log
log-route = qcluster uwsgi-daemons

# Last log and it logs the rest of the stuff.
logger = file:/path-to-logs/logs/uwsgi-error.log

You can run uwsgi using the following command:

$ uwsgi --ini /path/to/uwsgi.ini

Note that in the above configuration, there is a command called python manage.py qcluster which run the
django-q processes. You can remove this from here if you want to manage this yourself via some other init process.

Have a look at ‘uwsgi‘_ documentation to learn more about different configuration options. One minor optimization
that can be done is to replace:

http-socket = 0.0.0.0:8000

with a more performant option:

uwsgi-socket = 0.0.0.0:8000

However, this requires support for uwsgi protocol in the webserver. Nginx and Apache, the two most popular web-
servers have the support and the Nginx configuration below uses uwsgi-socket.

3.1.7 Nginx Configuration

You can reverse proxy the requests to uwsgi server using Nginx. Uwsgi has a special protocol called uwsgi protocol
that is available in Nginx as a plugin. Add the following configuration to your sites-availbale in Nginx

Note: This configuration relies on uwsgi listening on a uwsgi-socket instead of a http-socket. Please make
sure before using this configuration.

Also, if you must use the http-socket option for some reason, replace the line below with uwsgi_pass 0.0.
0.0:8000; with proxy_pass http://0.0.0.0:8000;.

server {

listen 443 ssl default_server;
listen [::]:443 ssl default_server;

(continues on next page)
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(continued from previous page)

server_name MY_SERVER_NAME;
location /static/ {

alias /path-to-djang-staticdir/static/;
}
ssl_certificate /path-to-ssl-certs/cert.pem;
ssl_certificate_key /path-to-ssl-certs/privkey.pem;

location / {
include uwsgi_params;
uwsgi_pass 0.0.0.0:8000;

}

}

Fill in the appropriate paths above in the configuration before using it.
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CHAPTER 4

Configuring Mailman 3

Mailman 3 can be configured in a wide variety of ways. After you have installed Mailman 3, you can now proceed to
configure it for production use.

4.1 Configuring Mailman Core

If you are here, it means that you have successfully installed complete Mailman 3 or some of its components. To verify
that you have Mailman Core installed try:

$ mailman info
GNU Mailman 3.1.0 (Between The Wheels)
Python 3.5.3 (default, Jan 19 2017, 14:11:04)
[GCC 6.3.0 20170118]
config file: /etc/mailman.cfg
db url: sqlite:////var/lib/mailman/data/mailman.db
devmode: DISABLED
REST root url: http://localhost:8001/3.1/
REST credentials: restadmin:restpass

There are a few important parameters in the above command that can help you debug problems if they occur. Most
important of which is the configuration file that is being used, pointed to by config_file that you see above.

Mailman 3 uses a total of two main configuration files, the first one is for Mailman Core and the other is Django’s
settings.py used to deploy the web front end.

mailman.cfg is the main configuration file for Mailman Core. Core will look for this file at several different places
in order like:

• Filesystem Path pointed to by MAILMAN_CONFIG_FILE environment variable.

• mailman.cfg in the current working directory.

• var/etc/mailman.cfg relative to the current working directory.

• $HOME/.mailman.cfg
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• /etc/mailman.cfg

• ../../etc/mailman.cfg relative to the working directory of argv[0] i.e. the working directory of the
mailman command script.

Alternatively, you can specify the absolute path of the configuration file using the -C flag in the command line.

4.1.1 Configuring Filesystem Paths

Mailman by default puts all the configuration, logs and lock files in the current working directory under a var direc-
tory. Each var directory belongs to either a running or previously run Mailman Core instance.

While it is often confusing to several people, the reason it is default is because it helps a lot with debugging and testing.
In production you want a static location for your configuration, locks and logs.

All the different paths that Mailman creates are, by default, configured relative to var_dir. For example, paths.
fhs which is based on Filesystem Hierarchy Standard . To use it add the following to your configuration:

[mailman]
layout: fhs

This is equivalent to the following configuration:

bin_dir: /sbin
var_dir: /var/lib/mailman
queue_dir: /var/spool/mailman
log_dir: /var/log/mailman
lock_dir: /var/lock/mailman
etc_dir: /etc
ext_dir: /etc/mailman.d
pid_file: /var/run/mailman/master.pid

Most of the path names are self explanatory, like all the runnable scripts are put under /sbin and all the logs are placed
under /var/log/mailman.

If you want a custom directory layout you can define a new layout and use that instead. For example:

[paths.custom]
var_dir: /home/user/.mailman

[mailman]
layout: custom

If you are installing Mailman from source (or using Pip), it is recommended to use paths.local. To use it, add the
following to your mailman.cfg:

[mailman]
layout: local

It is equivalent to the following configuration:

var_dir: /var/tmp/mailman
bin_dir: $argv
log_dir: $var_dir/logs
lock_dir: $var_dir/locks
data_dir: $var_dir/data
cache_dir: $var_dir/cache
etc_dir: $var_dir/etc

(continues on next page)
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(continued from previous page)

messages_dir: $var_dir/messages
archive_dir: $var_dir/archives
template_dir: $var_dir/templates
pid_file: $var_dir/master.pid
lock_file: $lock_dir/master.lck

4.1.2 Configuring MTA

The first step to get Core to work is to enable it to talk to the Mail Transport Agent or MTA. It supports various
different MTAs.

• Postfix: Core automatically generated transport maps(postfix_lmtp and postfix_lmtp) to be used by
Postfix at var/data/. To configure Postfix, add the following configuration to main.cf:

# Support the default VERP delimiter.
recipient_delimiter = +
unknown_local_recipient_reject_code = 550
owner_request_special = no
transport_maps =

hash:/path-to-mailman/var/data/postfix_lmtp
local_recipient_maps =

hash:/path-to-mailman/var/data/postfix_lmtp
relay_domains =

hash:/path-to-mailman/var/data/postfix_domains

Mailman’s var directory can vary according your source of installation. Please refer to the documentation
provided with your source or ask Mailman Developers at mailman-developers@python.org.

To configure Core to use Postfix, add the following configuration to your mailman.cfg configuration, be sure
to replace mail.example.com with your email domain:

[mta]
incoming: mailman.mta.postfix.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: mail.example.com
lmtp_port: 8024
smtp_host: mail.example.com
smtp_port: 25

• Exim4: To setup Exim4, add the following files to your configuration as file names mentioned above:

# /etc/exim4/conf.d/main/25_mm3_macros
# The colon-separated list of domains served by Mailman.
domainlist mm_domains=list.example.net

MM3_LMTP_PORT=8024

# MM3_HOME must be set to Mailman's var directory, wherever it is
# according to your installation.
MM3_HOME=/path-to-mailman/var/
MM3_UID=list
MM3_GID=list

################################################################
# The configuration below is boilerplate:

(continues on next page)
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(continued from previous page)

# you should not need to change it.

# The path to the list receipt (used as the required file when
# matching list addresses)
MM3_LISTCHK=MM3_HOME/lists/${local_part}.${domain}

# /etc/exim4/conf.d/router/455_mm3_router
mailman3_router:
driver = accept
domains = +mm_domains
require_files = MM3_LISTCHK
local_part_suffix_optional
local_part_suffix = \
-bounces : -bounces+* : \
-confirm : -confirm+* : \
-join : -leave : \
-owner : -request : \
-subscribe : -unsubscribe
transport = mailman3_transport

# /etc/exim4/conf.d/transport/55_mm3_transport
mailman3_transport:
driver = smtp
protocol = lmtp
allow_localhost
hosts = localhost
port = MM3_LMTP_PORT
rcpt_include_affixes = true

You should note that Exim4 configuration above doesn’t support multiple domains like Postfix does. Please
change the variables in the configuration above before installing it.

To configure Mailman to use Exim4 add the following to your mailman.cfg

[mta]
incoming: mailman.mta.exim4.LMTP
outgoing: mailman.mta.deliver.deliver
lmtp_host: mail.example.com
smtp_host: mail.example.com
lmtp_port: 8024
smtp_port: 25

• Mailman also supports Sendmail and qmail. Please check the Mailman Core documentation for sendmail setup
and qmail setup to configure them.

4.1.3 Configuring REST API

Core presents a HTTP Rest API which clients can use to interact with it. Note that this is an administrative API and
must not be exposed to the public internet. It has a very basic HTTP Basic Authentication which can be configured
using the configuration below:

[webservice]
hostname: localhost
port: 8001
use_https: no

(continues on next page)
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(continued from previous page)

admin_user: restadmin
admin_pass: restpass
api_version: 3.1

If you need to bind to a different host or port, you can change the configuration above according to you needs.

There are several different other ways to configure Core and you can find more details about it in the Core’s documen-
tation.

4.1.4 Configure Templates

You can configure templates for headers, footers and automated emails generated by Mailman. By default, the only
templates available are in English, but you can add them other languages too. You can add templates to the var
directory of Mailman, which will be picked up by Core.

• sitewide templates can be put in $var/templates/site/LC/,

• domain specific templates in var/templates/domains/DOMAIN/LC/

• list specific templates invar/templates/lists/LIST-ID/LC/

List overrides domain overrides site overrides defaults.

4.1.5 Configuring Databases

Core supports Sqlite, PostgreSQL and MySQL and each of them are tested. By default, without any configuraiton,
Core uses Sqlite database. For a production use, a more efficient database like PostgreSQL or MySQL is highly
recommended. Please have a look at the setting up your database in Core’s documentation for the same.

4.1.6 Configuring Cron Jobs

Depending on your configuration, Core has some periodic tasks that need to be run using job schedulers like cron.
Right now, the only task required to be run routinely for Core is periodic sending of digests for mailing lists that have
digest_send_periodic set to true. It can be customized to send at any periodic time, the following format
sends out digests at midnight:

@daily mailman digests --send

4.2 Configure Web Frontend

Mailman 3 has a web frontend which can be used to administer the Core, manage subscriptions and view the Archives.
There are two principal components, Postorius, the Mailman’s web frontend, and Hyperkitty, the Mailman’s official
Archiver.

Both Postorius and Hyperkitty are built atop Django, a Python based web framework.

See also:

What is Django?

Django is generally configured using a python module called settings.py which is usually present at the root of
the Django project. It doesn’t have to be at the root of the project, but anywhere importable by python.
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Assuming that you have already cloned or installed the Django project and know their location, we can now start
configuring Mailman Components. If you haven’t have a look at Setting up Django Project .

4.2.1 Setting up Admin Account

To create a superuser account in Django, run the following interactive command:

$ cd mailman-suite_project
$ python manage.py createsuperuser

Before you can login with this user, you have to configure Django to send emails, so that it can verify the email
provided for the superuser account above.

In Postorius, a superuser is assumed to be the Site Owner and has access to all the domains, mailing lists and their
settings. List Owners and Moderators can be added based on per-list basis and don’t need to have a superuser account
in Django.

4.2.2 Setting up Email (required)

It is important that Django be able to send emails to verify the addresses that are subscribing to the Mailman. This
configuration is separate from what is done is Core. Please have a look at how to setup email backend for django. A
simple configuration would look something like this for a mail server listening on localhost:

# To be added to Django's settings.py

EMAIL_BACKEND = 'django.core.mail.backends.smtp.EmailBackend'
EMAIL_HOST = 'localhost'
EMAIL_PORT = 25
EMAIL_HOST_USER = <username>
EMAIL_HOST_PASSWORD = <password>

Note: Mailman Suite project in Gitlab disables sending of emails when DEBUG=True is set in settings.py, and
instead prints the emails to a directory emails under mailman-suite_project. If you don’t see any outgoing
emails, please check your settings.py and set DEBUG=False.

If you want to sent out emails along with DEBUG=True, you can remove the conditional setting at the bottom of
settings.py in mailman-suite project.

Here are some settings that determine how your emails from them look like:

• DEFAULT_FROM_EMAIL : This is the default address that used used as the FROM header in all the emails from
your django installation.

• SERVER_EMAIL : This is the address from which the errors emails will be sent to you.

Note: In order to make django send mails, you need to change EMAIL_BACKEND from django.core.mail.
backends.console.EmailBackend to django.core.mail.backends.smtp.EmailBackend in the
mailman-suite project, if you are using that.

Note that both of these are general Django related settings and will affect other parts of your Django installation too.
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4.2.3 Running the task queue (required)

Hyperkitty uses django_q as a task queue. It supports various different backends like Redis, Disque, IronMQ, SQS etc.
Please check the documentation to better understand how to configure it. The most basic setup where it uses Django
orm as the queue can be configured using the settings below:

Q_CLUSTER = {
'timeout': 300,
'save_limit': 100,
'orm': 'default',

}

You will also have to run python manage.py qcluster command along with Hyperkitty. See Hyperkitty’s docs about
asynchronous tasks.

4.2.4 Enable full text search (required)

Hyperkitty uses django-haystack for its full text search. There are several full text engines that can be used. See
django-haystack documentation for more details about the different backend engines that it supports. For the most
basic setup, you can use whoosh backend. To install the library try:

$ sudo pip2 install whoosh

Then add the following configuration to the Django’s settings.py to enable whoosh engine for full text search.:

HAYSTACK_CONNECTIONS = {
'default': {
'ENGINE': 'haystack.backends.whoosh_backend.WhooshEngine',
'PATH': os.path.join(BASE_DIR, "fulltext_index"),
# You can also use the Xapian engine, it's faster and more accurate,
# but requires another library.
# http://django-haystack.readthedocs.io/en/v2.4.1/installing_search_engines.html

→˓#xapian
# Example configuration for Xapian:
#'ENGINE': 'xapian_backend.XapianEngine'
},

}

4.2.5 Scheduled Tasks (required)

There are some routine tasks that need to be run alongside Django, most of which are meant to do some specific
routine functions in Hyperkitty. You can add the following to your crontab run them using other cron-like interfaces.:

# This goes in /etc/cron.d/mailman

# Replace "apache" by your webserver user ("www-data" on Debian systems) and
# set the path to the Django project directory

@hourly apache django-admin runjobs hourly --pythonpath /path/to/project --
→˓settings settings
@daily apache django-admin runjobs daily --pythonpath /path/to/project --
→˓settings settings
@weekly apache django-admin runjobs weekly --pythonpath /path/to/project --
→˓settings settings

(continues on next page)
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(continued from previous page)

@monthly apache django-admin runjobs monthly --pythonpath /path/to/project --
→˓settings settings
@yearly apache django-admin runjobs yearly --pythonpath /path/to/project --
→˓settings settings

* * * * * apache django-admin runjobs minutely --pythonpath /path/to/project --
→˓settings settings
2,17,32,47 * * * * apache django-admin runjobs quarter_hourly --pythonpath /path/to/
→˓project --settings settings

4.2.6 Setting up Database (required)

Django supports a wide variety of databases and you can have a look at the documentation for different options and
ways to configure your database to use with Django.

4.2.7 Configure Login to Django

Postorius & Hyperkitty both use django-allauth for authentication because it supports a wire variety of social providers
and also allows users to sign up with their email if they desire.

Note that if you have any problems with the account signup/signin related emails, you should look the documentation
for django-allauth.

Some of the very basic settings that are required to be set for Postorius & Hyperkitty to work are mentioned below:

• ACCOUNT_AUTHENTICATION_METHOD = “username_email”

• ACCOUNT_EMAIL_REQUIRED = True

• ACCOUNT_EMAIL_VERIFICATION = “mandatory”

• ACCOUNT_DEFAULT_HTTP_PROTOCOL = “http”

• ACCOUNT_UNIQUE_EMAIL = True

4.2.8 Configure Social Login

Yes, so the way social login works in Mailman is by using a library called django-allauth. There are a few so-
cial providers already “enabled” in the Django configuration for the container images, to add more you would have
change INSTALLED_APPS in your settings_local.py. There is no way to “add” any apps as the one defined in
settings_local.py will override the original one (they are just python variables), so you’d have to copy the entire IN-
STALLED_APPS3 and then add whatever new ones you want.

To see a list of all the providers, please have a look at the documentation of django-allauth. Make sure that the one
you choose provides “email” as part of user data, otherwise it won’t work with Mailman. e.g. Twitter doesn’t give out
emails.

Now to be able to use any provider, you’d have to configure them in your site. django-allauth documentation2 does
provide instructions and direct urls to configure each one. To summarize the documentation here are the steps:

Go to your Django admin interface (located at ‘/admin’, like http://example.com/admin) and login with whatever
superuser you created. Scroll down to the section “SOCIAL ACCOUNTS” and enter the one saying “Social applica-
tions”.The relative url for that is ‘/admin/socialaccount/socialapp/’ Click on “ADD SOCIAL APPLICATION” button
on the top left of the page. Fill out the details from your social provider and choose the “Sites” you want to use for
that particular social provider. You can have separate credentials for separate “Sites”.
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That should be all. Make sure when you request client_id and client_secret from the social providers, you provide the
correct callback_url. The documentation for django-allauth has the correct url for each provider, but it looks basically
like

http://mysite.com/accounts/<provider>/login/callback

and you replace <provider> with amazon, facebook, google or whatever provider.

4.2.9 Configure Postorius & Hyperkitty

Here are the parameters that will affect Postorius and Hyperkitty will function. These parameters are configured in
your Django’s settings.py.

• MAILMAN_REST_API_URL : Complete URL to the Core’s REST API Server. Usually, Mailman Core listens
on port 8001 for REST API. e.g. http://localhost:8001/

• MAILMAN_REST_API_USER : Username for the Core’s REST API, default value in core is ‘restadmin’ if not
set.

• MAILMAN_REST_API_PASS : Password for Mailman REST API User, default value in core is ‘restpass’ if
not set.

• MAILMAN_ARCHIVER_KEY : The Key used to authenticate the emails for archiving in Hyperkitty. Its value
should be exactly same as set in Core.

Also note that the value in settings.pywill be within single quotes, but in mailman.cfg it will be without
any quotes.

• FILTER_VHOST : Filter the list of available lists in Hyperkitty depending on the domain it is being currently
served from. Mailman 3 supports multiple domains in a single installation.

• Add compressor.finders.CompressorFinder to your STATICFILES_FINDERS.

• LOGIN_URL = ‘account_login’

• LOGIN_REDIRECT_URL = ‘list_index’

• LOGOUT_URL = ‘account_logout’

• This setting is for django-compressor which is used here to compile and compress static files:

COMPRESS_PRECOMPILERS = (
('text/x-scss', 'sassc -t compressed {infile} {outfile}'),
('text/x-sass', 'sassc -t compressed {infile} {outfile}'),

)
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CHAPTER 5

The User Guide

5.1 GNU Mailman 3.1 - List Member Manual

Mailman is free software for managing electronic mail discussion and e-newsletter lists. Mailman is integrated with
the web, making it easy for users to manage their accounts and for list owners to administer their lists. Mailman
supports built-in archiving, automatic bounce processing, content filtering, digest delivery, spam filters, and more.

This guide contains instructions for members of Mailman mailing lists so they can learn to use the features available
to them. This focuses on the web interface and includes sections on joining and leaving lists, editing options and other
subscriber-level tasks.

This guide is written for Mailman 3.1. If you are using Mailman 2.1 (our popular previous stable release), you should
see the Mailman 2.1 Members Manual.

5.1.1 Introduction to Mailman Suite

It may be easier to think of Mailman 3 as a single piece of software that does mailing list management, but it’s actually
a set of interconnected pieces of software under the hood.

The big pieces you care about as a user are as follows:

• Mailman Core - This is the “core” of Mailman that handles getting and sending email and stores all your
email-related preferences.

• Postorius - This is the web interface to Mailman, which allows users to subscribe and unsubscribe from mailing
lists and set preferences from the web.

• Hyperkitty - This is the archiver for Mailman, which allows users to view and interact with list archives from
the web.

These were divided up so that you could replace pieces of Mailman as needed. For example, if a site already had a
user settings page, you might want to run a modified version of Postorius so that users can set all their preferences in
one place, or you might want to replace the web interface entirely.
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This document is going to assume you’re using these pieces together in their default states. If your Mailman installation
is customized or has replaced any of these pieces, you’ll need to adjust the instructions accordingly.

Mailing List Terminology

• A “post” typically denotes a message sent to a mailing list.

• People who are part of an electronic mailing list are usually called the list’s “members” or “subscribers.”

• “List administrators” are the people in charge of maintaining that one list. Lists may have one or more admin-
istrators.

• A list may also have people in charge of reading posts and deciding if they should be sent on to all subscribers.
These people are called “list moderators.”

• Often more than one electronic mailing list will be run using the same piece of software. The person who
maintains the software which runs the lists is called the “site administrator.” Often the same person who acts
as site administrator also administrates individual lists.

Translating from our examples to real lists

Often, it’s easier to simply give an example than explain exactly how to find the address for your specific list. As such,
we’ll frequently give examples for a fictional list called LISTNAME@DOMAIN whose list information page can be
found at http://WEBSERVER/mailman3/lists/LISTNAME.DOMAIN.

Neither of these are real addresses, but they show the form of a typical list address. The capital letters used for the
list-specific parts of each address should make it easier to see what should be changed for each list. Although specific
list configurations may be different, you will probably be able to just replace the words given in capital letters with the
appropriate values for a real list:

LISTNAME The name of your list.

DOMAIN The name of the mail server which handles that list.

WEBSERVER The name of the web server which handles the list web interface. This may be the same as DOMAIN,
and often refers to the same machine, but does not have to be identical.

As a real-life example, if you are interested in the mailman-users list that runs on Mailman3.org, you’d make the
following substitutions: LISTNAME=mailman-users, DOMAIN=mailman3.org, WEBSERVER=lists.mailman3.org.
As such, for the mailman-users mailing list on mailman3.org, the list information page can be found at the URL
http://lists.mailman3.org/mailman3/lists/mailman-users.mailman3.org/. (These, unlike most of the examples given in
this document, are real addresses.)

Most lists will have this information stored in the List-* headers. Many mail programs will hide these by default, so
you may have to choose to view full headers before you can see these informational headers.

5.1.2 I need to talk to a human!

If you have any trouble with any of these commands, you can always reach the person or people in charge of a list
by using the list administrator email address. The list administrators can help you figure out how to do something,
subscribe/unsubscribe you, or change your settings if you are unable to change them yourself for some reason. Please
remember that many mailing list administrators are volunteers who are donating their spare time to run the list, and
they may be very busy people.

This list administrator email address is in the form LISTNAME-owner@DOMAIN, where LISTNAME is the name
of the list and DOMAIN is the name of the server. So for an example list called <wolfhounds@example.com> the
administrators could be reached using <wolfhounds-owner@example.com>
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This email address can also be found on the list information pages.

5.1.3 Making a Mailman account

In order to manage your options and easily subscribe to or unsubscribe from Mailman lists, you typically want to make
an account. There is a “sign up” link on most list pages (usually displayed in the upper right of the page), or you can
go directly to the sign up interface at a URL that will be something like http://WEBSERVER/accounts/signup/

If you’ve been subscribed to a list without making an account (because you did this yourself or because your lists
were migrated from a Mailman 2.1 setup) you can make an account using the same email address and once you’ve
confirmed that you have access to that email, you’ll be able to edit all the associated options.

Note that in Mailman 3, you can actually have multiple email addresses associated to the same user account, so you
don’t need to make many separate accounts to handle your permissions.

5.1.4 Subscribing and Unsubscribing

How do I join a list?

1. Go to the list information page for the list you want to join. This will be something like http://WEBSERVER/
mailman3/lists/LISTNAME.DOMAIN

2. Usually, it is a good idea to make an account first using the “sign up” option (on the upper right). This account
will allow you to change your settings later and make it easier for you to unsubscribe.

3. Once you are signed in, go back to the list information page and there will be a large section labelled “Subscribe
to this list” where you can choose the email address you want to use and optionally choose a display name. Fill
out this form and click the “subscribe” button.

4. Alternatively, you can also join a list without signing in by using the subscribe boxes at the bottom of the list
information page. If you need to edit your settings later, you will need to create an account associated with the
same email address.

How do I leave a list?

1. Go to the list information page for the list you want to leave. This will be something like http://WEBSERVER/
mailman3/lists/LISTNAME.DOMAIN

2. Log in to confirm that you are the owner of the address that you wish to unsubscribe. If you don’t already have
an account associated with that address, you may need to make one to prove that you are the correct owner of
that email address.

3. Once you are logged in, there will be a section marked “Subscription / Unsubscription” that shows you the
address which is subscribed to that list and a large “unsubscribe” button you can click to leave the list.

5.1.5 Changing your list settings

Mailman has a number of different settings for list subscribers as follows:

Delivery status Set this option to Enabled to receive messages posted to this mailing list. Set it to Disabled if you
want to stay subscribed, but don’t want mail delivered to you for a while (e.g. you’re going on vacation). If you
disable mail delivery, don’t forget to re-enable it when you come back; it will not be automatically re-enabled.
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Delivery mode If you select summary digests , you’ll get posts bundled together (usually one per day but possibly
more on busy lists), instead of singly when they’re sent. Your mail reader may or may not support MIME digests.
In general MIME digests are preferred, but if you have a problem reading them, select plain text digests.

Receive own postings Ordinarily, you will get a copy of every message you post to the list. If you don’t want to
receive this copy, set this option to No. Note that some mail services (most prominently Gmail) will suppress
this copy no matter what you do. If you need to know when your email went through and your mail provider
is blocking or removing the copy, you can also use the “Acknowledge posts” option to get a separate email
acknowledging your post.

Acknowledge posts Receive acknowledgement mail when you send mail to the list? The options are yes or no. This
is useful if your mail provider is making it difficult for you to know if your post has gone through.

Hide address When someone views the list membership, your email address is normally shown (in an obscured
fashion to thwart spam harvesters). If you do not want your email address to show up on this membership roster
at all, select Yes for this option.

Avoid Duplicates When you are listed explicitly in the To: or Cc: headers of a list message, you can opt to not
receive another copy from the mailing list. Select Yes to avoid receiving copies from the mailing list; select No
to receive copies.

Each of these settings can be set globally, per address, or per list. Your per-list settings over-ride the per-address
settings which over-ride the global settings.

How do I view my list settings?

To change any settings, you can go to your settings page.

1. Log in to Mailman.

2. Click on the dropdown menu by your username (in the upper right) and select “Mailman settings”

3. Alternatively, the URL for this page will be something like http://WEBSERVER/mailman3/accounts/
subscriptions/LISTNAME.DOMAIN

How do I disable/enable my mail delivery?

You may wish to temporarily stop getting messages from the list without having to unsubscribe. If you disable mail
delivery, you will no longer receive messages, but will still be a subscriber and will retain your other settings.

To disable or enable mail delivery from the web interface:

1. Log in and go to your list settings page

2. There is an option labelled “Delivery status” which you can enable or disable on your preferences tabs, either
globally, per address, or per list subscription.

This can be handy in a many different cases. For example, you could be going on vacation or need a break from the
list because you’re too busy to read any extra mail. Many mailing lists also allow only subscribers to post to the list,
so if you commonly send mail from more than one address (e.g., one address for at home and another for when you’re
travelling), you may want to have more than one subscribed account, but have only one of them actually receive mail.
You can also use this as a way to read private archives even on a list which may be too busy for you to have sent
directly to your mailbox. All you need to do is subscribe, disable mail delivery, and use your password and email to
log in to the archives.
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How can I start or stop getting the list posts grouped into one big email?

Groups of posts are called “digests” in Mailman. Rather than get messages one at a time, you can get messages
grouped together. On a moderately busy list, this typically means you get one email per day, although it may be more
or less frequent depending upon the list.

To change your digest settings:

1. Log in and go to your list settings page

2. There is an option labelled “Delivery Mode” which you can set on your preferences tabs, either globally, per
address, or per list subscription.

There are a number of different options:

Regular You get an email every time the list sends one out.

Mime Digests MIME is short for Multipurpose Internet Mail Extensions. It is used to send things by email which
are not necessarily simple plain text. (For example, MIME would be used if you were sending a picture of your
dog to a friend.) A MIME digest has each message as an attachment inside the message, along with a summary
table of contents.

Plain Text Digests A plain text digest is a simpler form of digest, which should be readable even in mail readers
which don’t support MIME. The messages are simply put one after the other into one large text message.

Most modern mail programs do support MIME, so you only need to choose plain text digests if you are having trouble
reading the MIME ones.

How do I stop or start getting copies of my own posts?

By default in Mailman, you get a copy of every post you send to the list. Some people like this since it lets them
know when the post has gone through and means they have a copy of their own words with the rest of a discussion,
but others don’t want to bother downloading copies of their own posts.

To receive or stop receiving your own posts:

1. Log in and go to your list settings page

2. There is an option labelled “Receive own postings” which you can set to yes or no on your preferences tabs,
either globally, per address, or per list subscription.

Note: This option has no effect if you are receiving digests.

Despite the availability of this option, some mail hosts (such as Gmail) will hide these posts from you. You may wish
to see “How can I get Mailman to tell me when my post has been received by the list?” as an alternative solution if
your posts are being eaten by your mail host.

How can I get Mailman to tell me when my post has been received by the list?

On most lists, you will simply receive a copy of your mail when it has gone through the list software, but if this is
disabled, your list mail delivery is disabled, you use a mail host such as Gmail which blocks copies of your post from
being received, or you simply want an extra acknowledgement from the system, this option may be useful to you.

To receive or stop receiving your own posts:

1. Log in and go to your list settings page

2. There is an option labelled “Acknowledge Posts” which you can set to yes or no on your preferences tabs, either
globally, per address, or per list subscription.
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How can I hide my email address on the subscriber list?

When someone views the list membership, your email address is normally shown (in an obscured fashion to thwart
spam harvesters), but you can hide the address if you want:

1. Log in and go to your list settings page

2. There is an option labelled “Hide adresss” which you can set to yes or no on your preferences tabs, either
globally, per address, or per list subscription.

Note that this does NOT hide your address in the list archives (if the list has archives) or when it’s sent out in emails,
so a dedicated spammer could probably get your address in other ways.

How can I avoid getting duplicate messages?

Mailman can’t completely stop you from getting duplicate messages, but it can help. One common reason people get
multiple copies of a mail is that the sender has used a “group reply” function to send mail to both the list and some
number of individuals. If you want to avoid getting these messages, Mailman can be set to check and see if you are
in the To: or CC: lines of the message. If your address appears there, then Mailman can be told not to deliver another
copy to you.

To avoid duplicates:

1. Log in and go to your list settings page

2. There is an option labelled “Avoid Duplicates” which you can set to yes or no on your preferences tabs, either
globally, per address, or per list subscription.

Documentation for Mailman 3 List Owners and Site Administrators is not yet complete.
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CHAPTER 6

The Contributor Guide

6.1 The Contributor Guide

Mailman 3 consists of a collection of separate-but-linked projects, each of which has its own development setup guide.
This makes sense when you want to focus on a single piece of Mailman, but can make setting up the entire Mailman
Suite in one go somewhat confusing. This guide attempts to move all the information currently in the wiki and various
package documentation into a single “definitive” guide.

Main package documentation on Readthedocs.io:

• Mailman core start guide

• Mailman core “web ui in 5” guide

• Mailman core “archive in 5”

• Postorius dev guide

• Hyperkitty dev guide

6.1.1 Getting prerequisites

For the most part, setup for each project will download any needed packages. However, you will need a few system
packages to be sure you’ve got the necessary version of Python and its tools, git (to get the source code), postfix (a
mail server), and a few other tools that are used during setup.

On Fedora, you probably want to run:

$ sudo yum install python-setuptools python-virtualenv python3-devel git gcc nodejs-
→˓less postfix

On Debian and Ubuntu, this may be something like:

$ sudo apt-get install python-setuptools python-virtualenv python3-dev git gcc node-
→˓less nodejs postfix

31

https://mailman.readthedocs.io/en/release-3.0/src/mailman/docs/START.html
https://mailman.readthedocs.io/en/release-3.0/src/mailman/docs/WebUIin5.html
https://mailman.readthedocs.io/en/release-3.0/src/mailman/docs/ArchiveUIin5.html
http://postorius.readthedocs.io/en/latest/development.html
http://hyperkitty.readthedocs.io/en/latest/development.html


Mailman Suite Documentation, Release 3.0

If you prefer, you can substitute Exim4 for Postfix. Postfix is the MTA used by most Mailman developers, but we
do support Exim 4. (Sendmail support is very much desired, but the Mailman core developers need contributors with
Sendmail expertise to help.)

You will need tox to run tests. You can get this using pip install tox.

HyperKitty also needs sassc.

FIXME: Add instructions on how to get sassc on a few platforms.

6.1.2 Gitlab Setup

We use Gitlab for source code hosting and our CI. You can fork any of the projects you want and start working on it. If
you don’t already have an account on Gitlab, please create one, you will need that for contributing code or participating
in any other way.

We also use Gitlab for code reviews. Our workflow looks very similar to the official Gitlab Workflow. Please remember
to enable shared runners on your fork, it will be used to build your code and run unittests on pull requests that you will
make. It is mandatory that you have runners enabled before you send any pull requests.

6.1.3 Set up a directory

Setting up the whole Mailman suite means you have to pull code from a bunch of different related repositories. You
can put all the code anywhere you want, but you might want to set up a directory to keep all the pieces of mailman
together. For example:

$ mkdir ~/mailman
# cd ~/mailman

For the rest of this development guide, we are going to assume you’re using ~/mailman as your directory, but you
can use whatever you want.

6.1.4 Set up virtual environments

All parts of Mailman support only Python 3.5+. For your development, it is advised that you create a virtualenv so
that the packages you install don’t break any of the system packages using Python.

To create the virtualenv run the following command:

$ python3 -m venv venv3

To activate a virtualenv, you need to run the appropriate activate script:

$ source venv3/bin/activate

You must use source (or . if your shell is a pure POSIX shell) everytime you want to activate your development
environment. To make your life easier when managing virtualenvs, see virtualenvwrapper .

6.1.5 Set up and run Mailman Core

First, get the code:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/mailman.git
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To set up Mailman Core, you’ll need to switch to your Python 3 virtualenv:

$ source venv3/bin/activate

Then, go into the mailman directory, run setup, and then run mailman info to be sure everything is set up correctly,
and that the right settings are in place:

$ cd mailman
$ python setup.py develop
$ mailman info

You can edit your mailman.cfg file to make any necessary changes. By default, during development, it is located
at var/etc/mailman.cfg. Then start things up:

$ mailman start
$ cd ..

You may want to deactivate your virtualenv now, since you’ll be using a different one for other components:

$ deactivate

Note that mailman just makes a var/ directory wherever you start it and uses that to store your data. This is great for
the purposes of testing so you can easily make fresh installs, but might be confusing if you restart your instance later
from a different location and don’t have your original mailman.db file, or if you start looking around and finding var/
directories everywhere.

Later on, if you need to restart Mailman (i.e. if you get the error “Mailman REST API not available. Please start
Mailman core.”) then you can also do that by calling the mailman executable from the venv as follows:

$ ~/mailman/venv3/bin/mailman start

Note that the mailman executable has several sub-commands. One that is particularly useful for debugging is
mailman shell.

Note: If you like IPython shell (like I do!), you add the following to your mailman.cfg:

[shell]
use_ipython: yes

Also, remember to install ipython using pip::

$ pip install ipython

6.1.6 Set up Mailman Client

Get the code:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/mailmanclient.git

Then set up mailmanclient:

$ cd mailmanclient
$ python setup.py develop
$ cd ..
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6.1.7 Set up Django-mailman3

This package holds the Django libraries and templates used by Postorius and HyperKitty.

Get the code and set it up:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/django-mailman3.git
$ cd django-mailman3
$ python setup.py develop
$ cd ..

6.1.8 Set up and run Postorius

The Postorius documentation, including a more extensive setup guide, can be found here: http://postorius.readthedocs.
org/

Make sure to install mailmanclient and django-mailman3 before setting up Postorius. (If you’re following this guide
in order, you’ve just done that.)

Get the code and run setup. Make sure you’re in venv which has Python 3.5+ for Postorius:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/postorius.git
$ cd postorius
$ python setup.py develop
$ cd ..

Postorius and HyperKitty both come with example_project directories with basic configuration so you can try
them out. For this tutorial, however, we’ll be using a project that combines both instead.

6.1.9 Set up a mail server

To be able to actually receive emails, you need to setup a mail server. Mailman core receives emails over LMTP
Protocol, which most of the modern MTAs support. However, setup instructions are provided only for Postfix, Exim4
and qmail. Please refer to the MTA documentation at Mailman Core for the details.

You will also have to add some settings to your django configuration. The setup instructions are provided in django’s
email documentation.

6.1.10 Set up and run HyperKitty

Complete guide here: https://hyperkitty.readthedocs.org/en/latest/development.html

Make sure to install mailmanclient and django-mailman3 before setting up Hyperkitty. (If you’re following this guide
in order, you’ve just done that.)

Get the code and run setup:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/hyperkitty.git
$ cd hyperkitty
$ python setup.py develop
$ cd ..
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Postorius and HyperKitty both come with example_project directories with basic configuration so you can try
them out. By default, they both use port 8000, so if you do want to run both example projects at the same time, do
remember that you’ll need to specify a different port on the command line for one of them.

However, we’re going to run them both in a single Django instance at the end of this guide, so don’t worry about ports
right now.

6.1.11 Set up mailman-hyperkitty

mailman-hyperkitty is the package that actually sends the incoming emails to HyperKitty for archiving. Note
that this is one of the components that uses Python 3.

Setting it up:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/mailman-hyperkitty.git
$ cd mailman-hyperkitty
$ python setup.py develop
$ cd ..

You’ll need to fix the default mailman-hyperkitty.cfg file to use the correct url for HyperKitty. If you’re
running it on http://localhost:8002 then you need to change base_url to match that.

6.1.12 Link Mailman to HyperKitty

Now you have to enable HyperKitty in Mailman. To do that, edit the mailman.cfg (in ~/mailman/mailman/
var/etc, or wherever the output of mailman info says it is) and add the following config. Note that you need to
fill in the absolute path to your mailman-hyperkitty.cfg in the configuration below:

# mailman.cfg
[archiver.hyperkitty]
class: mailman_hyperkitty.Archiver
enable: yes
configuration: <absolute path to mailman-hyperkitty.cfg>

6.1.13 Run the Mailman Suite (combined hyperkitty+postorius)

You can run HyperKitty and Postorius as separate applications, but many developers are going to want to run them on
a single server. The configuration files for this are in a repository called mailman-suite.

The first time you run the suite, you will want to set up a superuser account. This is the account you will use in the web
interface to set up your first domains. Please enter an email address otherwise the database won’t be setup correctly
and you will run into errors later:

$ cd ~/mailman
$ git clone https://gitlab.com/mailman/mailman-suite.git
$ cd mailman-suite/mailman-suite_project
$ python manage.py migrate
$ python manage.py createsuperuser

You’ll want to run the following commands in a window where you can leave them running, since it dumps all the
django logs to the console:
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$ python manage.py runserver

At this point, you should be able to see Mailman Suite running! In the default setup, you can go to http://127.0.0.1:8000
and start poking around. You should be able to use the superuser account you created to log in and create a domain
and then some lists.

The default config file uses a dummy email backend created by this line in settings.py:

EMAIL_BACKEND = 'django.core.mail.backends.console.EmailBackend'

Using this backend, all emails will be printed to the Postorius console (rather than sent as email) so you can get the url
to verify your email from the console.

Don’t leave the console email backend configured and running once you get to the point where you want to send real
emails, though!
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