Contents

1 fluids tutorial
 1.1 Required Resources .. 3
 1.2 Importing ... 3
 1.3 Design philosophy ... 3
 1.4 Dimensionless numbers ... 4
 1.5 Miscellaneous utilities .. 5
 1.6 Friction factors ... 6
 1.7 Pipe schedules .. 7
 1.8 Wire gauges ... 8
 1.9 Tank geometry ... 9
 1.10 Miscellaneous geometry .. 10
 1.11 Atmospheric properties ... 10
 1.12 Compressor sizing .. 13
 1.13 Gas pipeline sizing .. 15
 1.14 Gas pipeline sizing: Empirical equations 17
 1.15 Drag and terminal velocity ... 18
 1.16 Pressure drop through packed beds 19
 1.17 Pressure drop through piping 20
 1.18 Control valve sizing: Introduction 22
 1.19 Control valve sizing: Liquid flow 23
 1.20 Control valve sizing: Gas flow 24
 1.21 Electric motor sizing .. 26
 1.22 Particle Size Distributions ... 27

2 API Reference
 2.1 Atmospheric properties (fluids.atmosphere) 29
 2.2 Compressible flow and compressor sizing (fluids.compressible) 43
 2.3 Control valve sizing and rating (fluids.control_valve) 65
 2.4 Dimensionless numbers (fluids.core) 77
 2.5 Drag and terminal velocity (fluids.drag) 115
 2.6 Filter pressure drop (fluids.filters) 131
 2.7 Fittings pressure drop (fluids.fittings) 134
 2.8 Orifice plates, flow nozzles, Venturi tubes, cone and wedge meters (fluids.flow_meter) 187
 2.9 Friction factor and pipe roughness (fluids.friction) 213
 2.10 Tank and helical coil sizing (fluids.geometry) 259
 2.11 Jet Pump (ejector/eductor) Sizing and Rating (fluids.jet_pump) 307
3 Solved Fluids Mechanics Problems

3.1 7.1 Smooth Pipe (Plastic) .. 461
3.2 7.2 L, L over D and K from Kv for Conventional Type Valves 462
3.3 7.3 L, L over D, K and Kv for Conventional Type Valves 462
3.4 7.4 Venturi Type Valves ... 463
3.5 7.5 Lift Check Valves ... 463
3.6 7.6 Reduced Port Ball Valve 464
3.7 7.7 Laminar flow in Valves, Fittings, and Pipe - System from Example 7.6 465
3.8 7.8 Laminar flow in Valves, Fittings, and Pipe - SAE oil through a pipe and globe valve 467
3.9 7.9 Laminar Flow in Valves, Fittings, and Pipe 467
3.10 7.10 Piping Systems - Steam 469
3.11 7.11 Flat heating Coils - Water 470
3.12 7.12 Orifice Size for Given Pressure Drop and Velocity 471
3.13 7.13 Flow given in English Units - Oil 473
3.14 7.14 Bernoulli’s Theorem-Water 474
3.15 7.15 Power Required for Pumping 475
3.16 7.16 Air Lines .. 476
3.17 7.17 Sizing of Pump for Oil Pipelines 477
3.18 7.18 Gas ... 478
3.19 7.19 Water ... 479
3.20 7.20 Steam at Sonic Velocity 481
3.21 7.21 Gases at Sonic Velocity 482
3.22 7.22 Compressible Fluids at Subsonic Velocity 483
3.23 7.23 Flow Through Orifice Meters 484
3.24 7.24 Laminar Flow ... 485
3.25 7.25 Rectangular Duct - Application of Hydraulic Radius to Flow Problems 486
3.26 7.26 Pipe Partially Filled with Flowing Water 487
3.27 7.27 Sizing Control Valves for Liquid Service 488
3.28 7.28 Checking for Choked Flow Conditions in a Control Valve 489
3.29 7.29 Orifice Flow Rate Calculation 489
3.30 7.30 Nozzle Sizing Calculations 490
3.31 7.31 NPRD Calculations 491
3.32 7.32 NPSH Available Calculation 491
3.33 7.33 Pump Affinity Rules 492
3.34 7.34 Pump Power and Operating Cost 492
3.35 7.35 Hydraulic Resistance of a Converging Tee 493
3.36 7.36 Hydraulic Resistance of a Diverging Wye 493
4 Data included in Fluids
 4.1 Friction ... 495
 4.2 Sieve Sizes for Particle Size Distributions 501
 4.3 Pipe Schedules 510

5 Developer’s Guide and Roadmap 541
 5.1 Scope and Future Features 541
 5.2 Contributing 542
 5.3 Running Tests 542
 5.4 Docstrings 542
 5.5 Doctest .. 543
 5.6 Type Hints 543
 5.7 Supported Python Versions 544
 5.8 Packaging .. 544
 5.9 Code Formatting 544
 5.10 Documentation 544
 5.11 Sample Notebooks 544
 5.12 Continuous Integration 545
 5.13 Load Speed 545
 5.14 RAM Usage 545
 5.15 Notes on Pint Integration Implementation 545
 5.16 Notes on PyPy 545
 5.17 Notes on Numba 546
 5.18 Things to Keep In Mind While Coding 547

6 Installation 549

7 Latest source code 551

8 Bug reports 553

9 License information 555

10 Citation 557

11 Indices and tables 559

Bibliography 561

Python Module Index 605

Index 607
Fluids is open-source software for engineers and technicians working in the fields of chemical, mechanical, or civil engineering. It includes modules for piping, fittings, pumps, tanks, compressible flow, open-channel flow, atmospheric properties, solar properties, particle size distributions, two phase flow, friction factors, control valves, orifice plates and other flow meters, ejectors, relief valves, and more.

Module Contents:
1.1 Required Resources

The fluids library is designed to be a low-overhead, lightweight repository of engineering knowledge and utilities that relate to fluid dynamics. It occupies ~4 MB of RAM on load and should load in a small fraction of a second. Fluids does load NumPy if it is present, which takes ~150 ms; fluids itself loads in approximately 20 ms. No other libraries will become required dependencies; anything else, including SciPy, is optional and loaded when needed.

Fluids was originally tightly integrated with SciPy and NumPy; today they are optional components used for only a small amount of functionality which do not have pure-Python numerical methods implemented. Fluids targets Python 2.7 and up as well as PyPy2 and PyPy3. Additionally, fluids has been tested by the author to load in IronPython, Jython, and micropython.

1.2 Importing

Fluids can be imported as a standalone library, or all of its functions and classes may be imported with star imports:

```python
>>> import fluids # Good practice
>>> from fluids import * # Bad practice but convenient
```

All functions are available from either the main fluids module or the submodule; i.e. both fluids.friction_factor and fluids.friction.friction_factor are valid ways of accessing a function.

1.3 Design philosophy

Like all libraries, this was developed to scratch my own itches. Since its public release it has been found useful by many others, from students across the world to practicing engineers at some of the world’s largest companies.
The bulk of this library’s API is considered stable; enhancements to functions and classes will still happen, and default methods when using a generic correlation interface may change to newer and more accurate correlations as they are published and reviewed.

To the extent possible, correlations are implemented depending on the highest level parameters. The `friction_factor` correlation does not accept pipe diameter, velocity, viscosity, density, and roughness - it accepts Reynolds number and relative roughness. This makes the API cleaner and encourages modular design.

All functions are designed to accept inputs in base SI units. However, any set of consistent units given to a function will return a consistent result; for instance, a function calculating volume doesn’t care if given an input in inches or meters; the output units will be the cube of those given to it. The user is directed to unit conversion libraries such as pint to perform unit conversions if they prefer not to work in SI units. The tutorial for using it with fluids is at `fluids.units`.

There are two ways to use numpy arrays with fluids. Easiest to use is a `vectorized` module, which wraps all of the fluids functions with np.vectorize. Instead of importing from fluids, the user can import from `fluids.vectorized`:

```python
>>> from fluids.vectorized import *
>>> friction_factor(Re=[100, 1000, 10000], eD=0)
array([0.64 , 0.064 , 0.03088295])
```

It is possible to switch back and forth between the namespaces with a subsequent import:

```python
>>> from fluids import *
```

The second way is Numba. This optional dependency provides the speed you expect from NumPy arrays - or better. In some cases, much better. The tutorial for using it is at `fluids.numba`, but in general use it the same way but with a different import.

```python
>>> from fluids.numba_vectorized import *
```

1.4 Dimensionless numbers

More than 30 Dimensionless numbers are available in `fluids.core`:

Calculation of Reynolds and Prandtl number for water flowing in a 0.01 m diameter pipe at 1.5 m/s:

```python
>>> fluids.core.Reynolds(D=0.01, rho=1000, V=1.5, mu=1E-3)
15000.0
>>> fluids.core.Prandtl(rho=1000, mu=1E-3, Cp=4200, k=0.6)
7.000000000000001
```

Where different parameters may be used with a dimensionless number, either a separate function is created for each or both sets of parameters are can be specified. For example, instead of specifying viscosity and density for the Reynolds number calculation, kinematic viscosity could have been used instead:

```python
>>> Reynolds(D=0.01, V=1.5, nu=1E-6)
15000.0
```

In the case of groups like the Fourier number, used in both heat and mass transfer, two separate functions are available, `Fourier_heat` and `Fourier_mass`. The heat transfer version supports specifying either the density, heat capacity, and thermal conductivity - or just the thermal diffusivity. There is no equivalent set of three parameters for the mass transfer version; it always requires mass diffusivity.

1.5 Miscellaneous utilities

More than just dimensionless groups are implemented in fluids.core.

Converters between loss coefficient, L/D equivalent, length of pipe, and pressure drop are available. It is recommended to convert length/diameter equivalents and lengths of pipe at specified friction factors to loss coefficients using the K_from_L_equiv and K_from_f functions respectively. They can all be summed easily afterwards.

```
>>> K_from_f(fd=0.018, L=100., D=.3)
6.0
>>> K_from_L_equiv(L_D=240, fd=0.02)
4.8
```

Either head loss or pressure drop can be calculated once the total loss coefficient K is known using head_from_K or dP_from_K respectively. Head loss does not require knowledge of the fluid’s density, but pressure drop does.

```
>>> head_from_K(K=(6+4.8), V=3)
4.955820795072732
```

```
>>> head_from_P(P=98066.5, rho=1000)
10.0
```

```
>>> dP_from_K(K=(6+4.8), rho=1000, V=3)
48600.0
```

```
>>> P_from_head(head=5., rho=800.)
39226.6
```

If a K value is known and desired to be converted to a L/D ratio or to an equivalent length of pipe, that calculation is available as well with L_from_K or L_equiv_from_K respectively:

```
>>> L_from_K(K=6, fd=0.018, D=.3)
100.0
```

```
>>> L_equiv_from_K(3.6, fd=0.02)
180.0
```

Pressure and head are also convertible with the head_from_P and P_from_head functions:

```
>>> head_from_P(P=98066.5, rho=1000)
10.0
```

```
>>> P_from_head(head=5., rho=800.)
39226.6
```

Also implemented in fluids.core. are the following:

thermal_diffusivity:
Fluids Documentation, Release 0.1.86

>>> thermal_diffusivity(k=0.02, rho=1., Cp=1000.)
2e-05

Speed of sound in an ideal gas \(c_{\text{ideal_gas}} \): (requires temperature, isentropic exponent \(\frac{C_p}{C_v} \)):

>>> c_ideal_gas(T=303, k=1.4, MW=28.96)
348.9820953185441

A converter between dynamic and kinematic viscosity \(\nu_{\mu_converter} \):

>>> nu_mu_converter(rho=998., nu=1.0E-6)
0.000998
>>> nu_mu_converter(998., mu=0.000998)
1e-06

Calculation of \(\text{gravity} \) on earth as a function of height and latitude (input in degrees and height in meters):

>>> gravity(latitude=55, H=1E6)
6.729011976863571

1.6 Friction factors

Friction factor is easily calculable with \(\text{friction_factor} \).

>>> epsilon = 1.5E-6 # m, clean steel
>>> fluids.friction.friction_factor(Re=15000, eD=epsilon/0.01)
0.028087909385731864

The transition to laminar flow is implemented abruptly at \(Re=2040 \), one of the latest experimental results which is accurate to +/- 10. If the Reynolds number is in the laminar regime, the transition to a different correlation happens automatically and the well-known solution \(f_d = \frac{64}{Re} \) is given.

>>> fluids.friction.friction_factor(Re=150)
0.4266666666666667

Friction factor in curved pipes is available as \(\text{friction_factor_curved} \). The curved friction factor is applicable for helices and coils, and to a lesser extent curved bends.

>>> friction_factor_curved(Re=15000, Di=.01, Dc=2.5, roughness=1.5E-6)
0.02984622907768603

The critical Reynolds number for curved pipes is increased compared to straight pipe flow, and is a function of the curvature of the pipe. The preferred method to calculate the transition (used by default for the automatic regime transition) is the method of Schmidt (1967) \(\text{helical_transition_Re_Schmidt} \).

>>> helical_transition_Re_Schmidt(Di=.01, Dc=2.5)
3948.7442097768603

Although roughness is a hard value to know without measuring it for a pipe, several hundred pipe conditions have had their roughness values measured in the literature, and they can be searched through using fuzzy matching and the functions \(\text{nearest_material_roughness} \) and \(\text{material_roughness} \).
The material_roughness function can also be used directly, but in that case there is no feedback about the material which was found.

```python
>>> material_roughness('glass')
1e-05
```

As fuzzy string matching is a pretty terrible solution, it is encouraged to find the desired string in the actual source code of fluids.

There is one more way of obtaining the roughness of a clean pipe, developed by Farshad and Rieke (2006) roughness_Farshad. It has been established that in commercial pipe, the larger the diameter, the larger the roughness.

```python
>>> roughness_Farshad('Carbon steel, bare', D=0.05)
3.529128126365038e-05
```

Only the following types of clean, new pipe have data available:

- ‘Plastic coated’
- ‘Carbon steel, honed bare’
- ‘Cr13, electropolished bare’
- ‘Cement lining’
- ‘Carbon steel, bare’
- ‘Fiberglass lining’
- ‘Cr13, bare’

There is also a term called Transmission factor, used in many pipeline applications. It is effectively a variant on friction factor. They can be inter-converted with the transmission_factor function.

```python
>>> transmission_factor(fd=0.0185) # calculate transmission factor
14.704292441876154
>>> transmission_factor(F=20) # calculate Darcy friction factor
0.01
```

1.7 Pipe schedules

ASME/ANSI pipe tables from B36.10M-2004 and B36-19M-2004 are implemented in fluids.piping.

Piping can be looked up based on nominal pipe size, outer diameter, or inner diameter with the nearest_pipe function.

```python
>>> nearest_pipe(NPS=2) # returns NPS, inside diameter, outer diameter, wall thickness
(2, 0.05248, 0.0603, 0.00391)
```

When looking up by actual diameter, the nearest pipe as large or larger then requested is returned:

If a diameter which is larger than any pipe in the schedule is input, an exception is raised:

```
>>> nearest_pipe(Do=1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "fluids/piping.py", line 276, in nearest_pipe
    raise
  File "fluids/piping.py", line 276, in nearest_pipe
    raise
ValueError: Pipe input is larger than max of selected schedule
```

1.8 Wire gauges

The construction of mechanical systems often uses the “gauge” systems, a variety of old imperial conversions between plate or wire thickness and a dimensionless number. Conversion from and to the gauge system is done by the `gauge_from_t` and `t_from_gauge` functions.

Looking up the gauge from a wire of known diameter approximately 1.2 mm:

```
>>> gauge_from_t(.0012)
18
```

The reverse conversion:

```
>>> t_from_gauge(18)
0.001245
```

Other schedules are also supported:

- Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch).
- American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires.
- Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge.
- Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge.
- British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG).
- Stub’s Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch)
1.9 Tank geometry

Sizing of vessels and storage tanks is implemented in an object-oriented way as `TANK` in `fluids.geometry`. All results use the exact equations; all are documented in the many functions in `fluids.geometry`.

```python
>>> T1 = TANK(D=1.2, L=4, horizontal=False)
>>> T1.V_total, T1.A
(4.523893421169302, 17.34159144781566)
```

By default, tanks are cylinders without heads. Tank heads can be specified to be conical, ellipsoidal, torispherical, guppy, or spherical. The heads can be specified independently. The diameter and length are not required; the total volume desired can be specified along with the length to diameter ratio.

```python
>>> T1 = TANK(V=10, L_over_D=0.7, sideB='conical', horizontal=False)
>>> T1.L, T1.D
(1.7731788548899077, 2.5331126498427254)
```

Conical, ellipsoidal, guppy and spherical heads are all governed only by one parameter, \(a \), the distance the head extends out from the main tank body. Torispherical heads are governed by two parameters \(k \) and \(f \). If these parameters are not provided, the distance the head extends out will be 25% of the size of the tank’s diameter. For torispherical heads, the distance is similar but more complicated.

```python
>>> TANK(D=10., V=500, horizontal=False, sideA='ellipsoidal', sideB='ellipsoidal', sideA_a=1, sideB_a=1)
<Vertical tank, V=500.000000 m^3, D=10.000000 m, L=5.032864 m, ellipsoidal heads, a=1.000000 m.>
```

Each `TANK` has `__repr__` implemented, to describe the tank when printed.

Torispherical tanks default to the ratios specified as ASME F&D. Other standard ratios can also be used; the documentation for `<TANK>` lists their values. Here we implement DIN 28011’s ratios.

```python
>>> TANK(D=0.01, V=0.25, horizontal=False, sideA='torispherical', sideB='torispherical')
<Vertical tank, V=0.250000 m^3, D=0.010000 m, L=3183.096799 m, torispherical heads, a=0.001693 m.>
```

Partial volume lookups are also useful. This is useful when the height of fluid in the tank is known, but not the volume. The reverse calculation is also implemented, and useful when doing dynamic simulation and to calculate the new height after a specified volume of liquid is removed.

```python
>>> DIN.h_max
4.937742251701451
>>> DIN.h_from_V(40)
2.3760173045849315
>>> DIN.V_from_h(4.1)
```

(continues on next page)
Surface areas of the heads and the main body are available as well as the total surface area of the tank.

1.10 Miscellaneous geometry

In addition to sizing all sorts of tanks, helical coils are supported and so are a number of other simple calculations.

Sphericity is implemented as `sphericity`, requiring a calculated surface area and volume. For a cube of side length 3, the surface area is \(6 \times a^2 = 54\) and volume \(a^3 = 27\). Its sphericity is then:

\[
sphericity(A=54, V=27)
\]

0.8059959770082346

Aspect ratio of is implemented as `aspect_ratio`; for example, a rectangle 0.2 m by 2 m:

\[
\text{aspect_ratio}(0.2, 2)
\]

0.1

Circularity, a parameter used to characterize 2d images of particles, is implemented as `circularity`. For a rectangle, one side length = 1, second side length = 100:

\[
\text{D1 = 1}
\]
\[
\text{D2 = 100}
\]
\[
\text{A = D1 \times D2}
\]
\[
\text{P = 2 \times D1 + 2 \times D2}
\]
\[
\text{circularity(A, P)}
\]

0.030796908671598795

1.11 Atmospheric properties

Various main classes are available to model the atmosphere, of varying accuracy. They are the US Standard Atmosphere 1976 (`ATMOSPHERE_1976`), a basic but very quick model; the NRLMSISE 00 model, substantially more powerful and accurate and still the standard to this day (`ATMOSPHERE_NRLMSISE00`); and two models for wind speed only, Horizontal Wind Model 1993 (`hwm93`) and Horizontal Wind Model 2014 (`hwm14`). The two horizontal wind models are actually fortran codes, and are not compiled automatically on installation. Solar models are `earthsun_distance`, `solar_position`, `sunrise_sunset` and `solar_irradiation`.

`ATMOSPHERE_1976` is the simplest model, and very suitable for basic engineering purposes. It supports atmospheric temperature, density, and pressure as a function of elevation. Optionally, a local temperature difference from earth’s average can be specified to correct the model to local conditions but this is only a crude approximation.

Conditions 5 km into the air:

\[
\text{atm} = \text{ATMOSPHERE_1976}(Z=5000)
\]
\[
\text{atm.T, atm.P, atm.rho}
\]

(255.67554322180348, 54048.28614576141, 0.7364284207799743)
The standard also specifies simplistic formulas for calculating the thermal conductivity, viscosity, speed of sound, and gravity at a given elevation:

```python
>>> atm.g, atm.mu, atm.k, atm.v_sonic
(9.791241076982665, 1.628248135362207e-05, 0.02273190295142526, 320.5455196704035)
```

Those property routines are static methods, and can be used without instantiating an atmosphere object:

```python
>>> ATMOSPHERE_1976.gravity(Z=1E5)
9.505238763515356
>>> ATMOSPHERE_1976.sonic_velocity(T=300)
347.22080908230015
>>> ATMOSPHERE_1976.viscosity(T=400)
2.285266457680251e-05
>>> ATMOSPHERE_1976.thermal_conductivity(T=400)
0.033657148617592114
```

`ATMOSPHERE_NRLMSISE00` is the recommended model, and calculates atmospheric density, temperature, and pressure as a function of height, latitude/longitude, day of year, and seconds since start of day. The model can also take into account solar and geomagnetic disturbances which affect the atmosphere at very high elevations if more parameters are provided. It is valid up to 1000 km. This model is somewhat slow; it is a Python port of the Fortran version, created by Joshua Milas. It does not support gravity profiles or transport properties, but does calculate the composition of the atmosphere (He, O, N2, O2, Ar, H2, N2 as constituents).

1000 m elevation, 45 degrees latitude and longitude, 150th day of year, 0 seconds in:

```python
>>> atm = ATMOSPHERE_NRLMSISE00(Z=1E3, latitude=45, longitude=45, day=150)
>>> atm.T, atm.P, atm.rho
(285.54408606237405, 90394.44061071602, 1.1019062026405517)
```

The composition of the atmosphere is specified in terms of individual molecules/m^3:

```python
>>> atm.N2_density, atm.O2_density
(1.7909954550444606e+25, 4.8047035072477747e+24)
```

This model uses the ideal gas law to convert particle counts to mass density. Mole fractions of each species are available as well.

```python
>>> atm.components
['N2', 'O2', 'Ar', 'He', 'O', 'H', 'N']
>>> atm.zs
[0.7811046347676225, 0.2095469403691101, 0.009343183088772914, 5.241774494627779e-06, ...]
```

The horizontal wind models have almost the same API, and calculate wind speed and direction as a function of elevation, latitude, longitude, day of year and time of day. `hwm93` can also take as an argument local geomagnetic conditions and solar activity, but this effect was found to be so negligible it was removed from future versions of the model such as `hwm14`.

Calculation of wind velocity, meridional (m/sec Northward) and zonal (m/sec Eastward) for 1000 m elevation, 45 degrees latitude and longitude, 150th day of year, 0 seconds in, with both models:

```python
>>> hwm93(Z=1000, latitude=45, longitude=45, day=150)
(-0.0038965975400060415, 3.8324742317199707)
>>> hwm14(Z=1000, latitude=45, longitude=45, day=150)
(-0.9920163154602051, 0.4105832874774933)
```

These wind velocities are only historical normals; conditions may vary year to year.

1.11. Atmospheric properties
The solar radiation model is based around the Sun Position Algorithm (SPA) developed by NREL; it can calculate the position of the sun in the sky at any time for any place on Earth, and can calculate how far away the sun is from Earth. The python implementation used is a slightly modified version of the Python implementation written by Tony Lorenzo and released under the BSD 3-clause license. The algorithm is published with the excellent pvlib library for solar energy modelling applications.

The functions included are `earthsun_distance`, `sunrise_sunset`, `solar_position` and `solar_irradiation`. All take and/or receive datetime instances, which introduces the nightmare of time zones.

All the functions have no internal way of knowing about what time zone the latitude/longitude inputs are in. They only calculate the position of earth, and they need to know what “real” time it is, so it can deal with leap seconds, etc. There are now two options for how to provide time inputs. The first is to provide the time in the UTC time zone, which has replaced Greenwich Mean Time (GMT) as the standard reference time. The inputs and outputs of this function will look strange, because unless you happen to be working somewhere with that time zone, you have to convert the time inputs to that time zone initially.

So to find the solar position at 6 AM in Perth, Australia (offset -8 hours), we would manually convert the time zone.

```python
>>> from datetime import datetime, timedelta
>>> solar_position(datetime(2020, 6, 6, 14, 30, 0) - timedelta(hours=8), -31.95265, 115.85742)
[63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]
```

This painful, so timezone support has been added to the functions using the library `pytz`.

```python
>>> import pytz
>>> when = pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 14, 30, 0))
>>> solar_position(when, -31.95265, 115.85742)
[63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]
```

To determine the distance of earth and the sun, use the `earthsun_distance` function which accepts a single datetime object and returns the distance in meters. This is still impacted by timezones.

```python
>>> earthsun_distance(pytz.timezone('America/Edmonton').localize(datetime(2003, 10, 17, 13, 30, 30)))
149080606927.64246
```

To determine when the sun rises, sets, and is at solar noon, use the `sunrise_sunset` function, which accepts a datetime instance, a latitude, and a longitude.

```python
>>> import pytz
>>> sunrise, sunset, transit = sunrise_sunset(pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 17)), 51.0486, -114.07)
>>> sunrise
datetime.datetime(2018, 4, 16, 6, 39, 1, 570479, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>)
>>> sunset
datetime.datetime(2018, 4, 16, 20, 32, 25, 778162, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>)
>>> transit
datetime.datetime(2018, 4, 16, 13, 36, 0, 386341, tzinfo=<DstTzInfo 'America/Edmonton' MDT-1 day, 18:00:00 DST>)
```

To determine where in the sky the sun appears at any location and time, use the `solar_position` function, which requires a datetime instance, a latitude, and a longitude.
The function returns several other properties which may be of interest. Its first return value, apparent_zenith, is the zenith which an observer on the ground would see the sun at after accounting for atmospheric refraction. To more accurately calculate the solar position, the temperature and pressure at ground level are required as well - as they impact the refraction as well; these arguments are accepted as well by `solar_position` for more accuracy. When specifying pressure, be sure to use the real pressure of the site - not an adjusted to standard conditions one as reported by weather stations!

The primary application of sun position is for calculating the amount of sunlight received by an object, via the `solar_irradiation` function. Unlike the previous functions, it requires an installation of `pvlib` to work.

In addition to the arguments previously discussed, the surface_tilt and surface_azimuth of the object are required. The elevation is required, as well as the average albedo of the ground surrounding the object (not immediately; within several kilometers). The calculation is then straightforward:

The first return value is the solar radiation which hits the object, in W/m^2. The next two are the components of the radiation that comes 1) directly from the sun and 2) diffusely, after being reflected from some other object. The final two return values break up the diffuse light into 3) a component reflected only in the sky and clouds and 4) a component caused by earth’s albedo, bounding off the surface, then the sky, before hitting the object.

Note that if not provided, the temperature and pressure of the ground are obtained via the `ATMOSPHERE_NRLMSISE00` class, but this quadruples the time required for the calculation.

1.12 Compressor sizing

Both isothermal and isentropic/polytropic compression models are implemented in `fluids.compressible`. Isothermal compression calculates the work required to compress a gas from one pressure to another at a specified temperature. This is the best possible case for compression; all actual compressors require more work to do the compression. By making the compression take a large number of stages and cooling the gas between stages, this can be approached reasonable closely. Integrally geared compressors are often used for this purpose.

The function `isothermal_work_compression` provides this calculation.

Work is calculated on a J/mol basis. If the second pressure is lower than the first, a negative work will result and you are modeling an expander instead of a compressor. Gas compressibility factor can also be specified. The lower the
Fluids Documentation, Release 0.1.86

The less power required to compress it.

```python
>>> isothermal_work_compression(P1=1E6, P2=1E5, T=300)
-5743.427304244768
>>> isothermal_work_compression(P1=1E5, P2=1E6, T=300, Z=0.95)
5456.25593903253
```

There is only one function implemented to model both isentropic and polytropic compressors, as the only difference is that a polytropic exponent \(n \) is used instead of the gas’s isentropic exponent \(\frac{C_p}{C_v} k \) and the type of efficiency is changed. The model requires initial temperature, inlet and outlet pressure, isentropic exponent or polytropic exponent, and optionally an efficiency.

Compressing air from 1 bar to 10 bar, with inlet temperature of 300 K and efficiency of 78% with the `isentropic_work_compression` function:

```python
>>> isentropic_work_compression(P1=1E5, P2=1E6, T1=300, k=1.4, eta=0.78) # work, J/mol
10416.876986384483
```

The model allows for the inlet or outlet pressure or efficiency to be calculated instead of the work:

```python
>>> isentropic_work_compression(T1=300, P1=1E5, P2=1E6, k=1.4, W=10416) # Calculate_efficiency
0.7800656729435386
>>> isentropic_work_compression(T1=300, P1=1E5, k=1.4, W=10416, eta=0.78) # Calculate_P2
999857.9648950758
>>> isentropic_work_compression(T1=300, P2=1E6, k=1.4, W=10416, eta=0.78) # Calculate_P1
100014.20552817611
```

The approximate temperature rise can also be calculated with the function `isentropic_T_rise_compression`.

```python
>>> T2 = isentropic_T_rise_compression(P1=1E5, P2=1E6, T1=300, k=1.4, eta=0.78)
>>> T2, T2-300 # outlet temperature and temperature rise, K
(657.960664955096, 357.96066495509604)
```

It is more accurate to use an enthalpy-based model which incorporates departure functions.

Polytropic exponents and efficiencies are convertible to isentropic exponents and efficiencies with `isentropic_efficiency` and `polytropic_exponent`. For the above example, with \(k=1.4 \) and \('eta_s'=0.78\):

```python
>>> eta_p = isentropic_efficiency(P1=1E5, P2=1E6, k=1.4, eta_s=0.78) # with eta_s
>>> n = polytropic_exponent(k=1.4, eta_p=eta_p)
>>> eta_p, n
(0.8376835349411107, 1.517631868575738)
```

With those results, we can prove the calculation worked by calculating the work required using these polytropic inputs:

```python
>>> isentropic_work_compression(P1=1E5, P2=1E6, T1=300, k=n, eta=eta_p)
10416.87698638448
```

The work is the same as calculated with the original inputs. Note that the conversion is specific to three inputs: Inlet pressure; outlet pressure; and isentropic exponent \(k \). If any of those change, then the calculated polytropic exponent and efficiency will be different as well.

To go in the reverse direction, we take the case of isentropic exponent \(k=C_p/C_v=1.4 \), \(eta_p=0.83 \) The power is calculated to be:
We first need to calculate the polytropic exponent from the polytropic efficiency:

```python
>>> n = polytropic_exponent(k=1.4, eta_p=0.83)
>>> print(n)
1.5249343832020996
```

Converting polytropic efficiency to isentropic efficiency:

```python
>>> eta_s = isentropic_efficiency(P1=1E5, P2=1E6, k=1.4, eta_p=0.83)
>>> print(eta_s)
0.7696836498942261
```

Checking the calculated power is the same:

```python
>>> isentropic_work_compression(P1=1E5, P2=1E6, T1=300, k=n, eta=0.83)
10556.49818012439
```

1.13 Gas pipeline sizing

The standard isothermal compressible gas flow is fully implemented as *isothermal_gas*, and through a variety of numerical and analytical expressions, can solve for any of the following parameters:

- Mass flow rate
- Upstream pressure (numerical)
- Downstream pressure (analytical or numerical if an overflow occurs)
- Diameter of pipe (numerical)
- Length of pipe

Solve for the mass flow rate of gas (kg/s) flowing through a 1 km long 0.5 m inner diameter pipeline, initially at 10 bar with a density of 11.3 kg/m^3 going downstream to a pressure of 9 bar.

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=9E5, L=1000, D=0.5)
145.4847572636031
```

The same case, but sizing the pipe to take 100 kg/s of gas:

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=9E5, L=1000, m=100)
0.42971089110619
```

The same case, but determining what the outlet pressure will be if 200 kg/s flow in the 0.5 m diameter pipe:

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, D=0.5, L=1000, m=200)
784701.0681827427
```

Determining pipe length from known diameter, pressure drop, and mass flow (possible but not necessarily useful):

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=9E5, D=0.5, m=150)
937.3258027759333
```
Not all specified mass flow rates are possible. At a certain downstream pressure, choked flow will develop - that downstream pressure is that at which the mass flow rate reaches a maximum. An exception will be raised if such an input is specified:

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, L=1000, D=0.5, m=260) # doctest: +SKIP
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "fluids/compressible.py", line 886, in isothermal_gas
    'kg/s at a downstream pressure of %f' %(P1, m_max, Pcf))
Exception: The desired mass flow rate cannot be achieved with the specified upstream pressure of 1000000.000000 Pa; the maximum flowrate is 257.216733 kg/s at a downstream pressure of 389699.731765
```

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=3E5, L=1000, D=0.5) # doctest: +SKIP
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "fluids/compressible.py", line 821, in isothermal_gas
    due to the formation of choked flow at P2=%f, specified outlet pressure was %f' % (Pcf, P2))
Exception: Given outlet pressure is not physically possible due to the formation of choked flow at P2=389699.731765, specified outlet pressure was 300000.000000
```

The downstream pressure at which choked flow occurs can be calculated directly as well:

```python
>>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5)
389699.7317645518
```

A number of limitations exist with respect to the accuracy of this model:

- Density dependence is that of an ideal gas.
- If calculating the pressure drop, the average gas density cannot be known immediately; iteration must be used to correct this.
- The friction factor depends on both the gas density and velocity, so it should be solved for iteratively as well. It changes throughout the pipe as the gas expands and velocity increases.
- The model is not easily adapted to include elevation effects due to the acceleration term included in it.
- As the gas expands, it will change temperature slightly, further altering the density and friction factor.

We can explore how the gas density and friction factor effect the model using the thermo library for chemical properties.

Compute the downstream pressure of 50 kg/s of natural gas flowing in a 0.5 m diameter pipeline for 1 km, roughness = 5E-5 m:

```python
>>> from thermo import *
>>> from fluids import *
>>> from math import pi

>>> D = 0.5
>>> L = 1000
>>> epsilon = 5E-5
>>> S1 = Stream('natural gas', P=1E6, m=50)
>>> V = S1.Q/(pi/4*D**2)
>>> Re = S1.Reynolds(D=D, V=V)
>>> fd = friction_factor(Re=Re, eD=epsilon/D)
>>> P2 = isothermal_gas(rho=S1.rho, fd=fd, P1=S1.P, D=D, L=L, m=S1.m)
```
In the above example, the friction factor was calculated using the density and velocity of the gas when it enters the stream. However, the average values, at the middle pressure, and more representative. We can iterate to observe the effect of using the average values:

```python
>>> for i in range(10):
...    S2 = Stream('natural gas', P=0.5*(P2+S1.P), m=50)
...    V = S2.Q/(pi/4*D**2)
...    Re = S2.Reynolds(D=D, V=V)
...    fd = friction_factor(Re=Re, eD=epsilon/D)
...    P2 = isothermal_gas(rho=S2.rho, fd=fd, P1=S1.P, D=D, L=L, m=S1.m)
...    print('%.6g' %P2)
868535
867840
867786
867781
867781
867781
867781
867781
867781
867781
```

As can be seen, the system converges very quickly. The difference in calculated pressure drop is approximately 1%. Please note the values given here may change as properties are updated in the thermo library, they are here to demonstrate the technique only.

1.14 Gas pipeline sizing: Empirical equations

In addition to the actual model, many common simplifications used in industry are implemented as well. These are equally capable of solving for any of the following inputs:

- Mass flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe
- Length of pipe

None of these models include an acceleration term. In addition to reducing their accuracy, it allows all solutions for the above variables to be analytical. These models cannot predict the occurrence of choked flow, and model only turbulent, not laminar, flow. Most of these models do not depend on the gas’s viscosity.

Rather than using mass flow rate, they use specific gravity and volumetric flow rate. The volumetric flow rate is specified with respect to a reference temperature and pressure. The defaults are 288.7 K and 101325 Pa, dating to the old imperial standard of 60° F. The specific gravity is with respect to air at the reference conditions. As the ideal gas law is used in each of these models, in addition to pressure and specific gravity the average temperature in the pipeline is required. Average compressibility factor is an accepted input to all models and corrects the ideal gas law’s ideality.

The full list of approximate models is as follows:

- Panhandle_A

As an example, calculating flow for a pipe with diameter 0.34 m, upstream pressure 90 bar and downstream pressure 20 bar, 160 km long, 0.693 specific gravity and with an average temperature in the pipeline of 277.15 K:

```python
>>> Panhandle_A(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
42.56082051195928
```

Each model also includes a pipeline efficiency term, ranging from 0 to 1. These are just empirical correction factors. Some of the models were developed with theory and a correction factor applied always; others are more empirical, and have a default correction factor. 0.92 is the default for the Panhandle A/B, Weymouth, and Oliphant models; the rest default to a correction of 1 i.e. no correction at all.

The Muller and IGT models are the most accurate and recent approximations. They both depend on viscosity.

```python
>>> Muller(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5, Tavg=277.15)
60.45796698148659

>>> IGT(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5, Tavg=277.15)
48.92351786788815
```

These empirical models are included because they are mandated in many industrial applications regardless of their accuracy, and correction factors have already been determined.

A great deal of effort was spent converting these models to base SI units and checking the coefficients used in each model with multiple sources. In many cases multiple sets of coefficients are available for a model; the most authoritative or common ones were used in those cases.

1.15 Drag and terminal velocity

A number of spherical particle drag correlations are implemented.

In the simplest case, consider a spherical particle of diameter $D=1$ mm, density $=3400$ kg/m3, travelling at 30 m/s in air with viscosity $\mu=1E-5$ Pa*s and density 1.2 kg/m3.

We calculate the particle Reynolds number:

```python
>>> Re = Reynolds(V=30, rho=1.2, mu=1E-5, D=1E-3)
>>> Re
3599.9999999999995
```

The drag coefficient C_d can be calculated with no other parameters from `drag_sphere`:

```python
>>> drag_sphere(Re)
0.3914804681941151
```

The terminal velocity of the particle is easily calculated with the `v_terminal` function.
Very often, we are not interested in just what the velocity of the particle will be at terminal conditions, but on the
distance it will travel and the particle will never have time to reach terminal conditions. An integrating function is
available to do that. Consider that same particle being shot directly down from a helicopter 100 m high.

The integrating function, `integrate_drag_sphere`, performs the integral with respect to time. At one second,
we can see the (velocity, distance travelled):

```
>>> integrate_drag_sphere(D=1E-3, rhop=3400, rho=1.2, mu=1E-5, t=1, V=30,
                        distance=True)
(10.561878111165333, 15.607904177715518)
```

After integrating to 10 seconds, we can see the particle has travelled 97 meters and is almost on the ground.

```
>>> integrate_drag_sphere(D=1E-3, rhop=3400, rho=1.2, mu=1E-5, t=10, V=30,
                        distance=True)
(8.97122398706632, 97.13276290361276)
```

For this example simply using the terminal velocity would have given an accurate estimation of distance travelled:

```
>>> 8.971223953182939*10
89.7122395318294
```

Many engineering applications such as direct contact condensers do operate far from terminal velocity however, and
this function is useful there.

1.16 Pressure drop through packed beds

Twelve different packed bed pressure drop correlations are available. A meta function which allows any of them to be
selected and automatically selects the most accurate correlation for the given parameters.

Pressure drop through a packed bed depends on the density, viscosity and velocity of the fluid, as well as the diameter
of the particles, the amount of free space in the bed (voidage), and to a lesser amount the ratio of particle to tube
diameter and the shape of the particles.

Consider 0.8 mm pebbles with 40% empty space with water flowing through a 2 m column creeping flow at a superfi-
cial velocity of 1 mm/s. We can calculate the pressure drop in Pascals using the `dP_packed_bed` function:

```
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=2)
2876.565391768883
```

The method can be specified manually as well, for example the commonly used Ergun equation:

```
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=2, Method='Ergun')
2677.734374999999
```

Incorporation of the tube diameter will add wall effects to the model.

```
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=2, Dt=0.01)
2510.3251325096853
```

Models can be used directly as well. The length of the column is an optional input; if not provided, the result will be
in terms of Pa/m.
If the column diameter was 0.5 m, the flow rate in m³/s would be:

```python
>>> .001*(pi/4*0.5**2) # superficial_velocity*A_column
0.00019634954084936208
```

The holdup (total volume of the column holding fluid not particles) would be:

```python
>>> (pi/4*0.5**2)*(2)*0.4 # A_column*H_column*voidage
0.15707963267948966
```

Not all particles are spherical. There have been correlations published for specific shapes, but what is often performed is simply an adjustment of particle diameter by its sphericity in the correlation, with the effective \(dp \) used as the product of the actual \(dp \) and the sphericity of the particle. The less spherical the particles, the higher the pressure drop. This is supported in all of the correlations.

```python
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=2, Dt=0.01, sphericity=0.9)
3050.419598116882
```

While it is easy to measure the volume of particles added to a given column and determine the voidage experimentally, this does not help in the design process. Several authors have methodically filled columns with particles of different sizes and created correlations in terms of sphericity and particle to tube diameter ratios. Three such correlations are implemented in fluids, one generally using sphericity, one for spheres, and one for cylinders (`voidage_Benyahia_Oneil`, `voidage_Benyahia_Oneil_spherical` and `voidage_Benyahia_Oneil_cylindrical` respectively).

1 mm spheres in a 5 cm diameter tube:

```python
>>> voidage_Benyahia_Oneil_spherical(Dp=.001, Dt=.05)
0.3906653157443224
```

1 mm diameter cylinder 5 mm long in a 5 cm diameter tube:

```python
>>> V_cyl = V_cylinder(D=0.001, L=0.005)
>>> D_sphere_eq = (6*V_cyl/pi)**(1/3.)
>>> A_cyl = A_cylinder(D=0.001, L=0.005)
>>> sph = sphericity(A=A_cyl, V=V_cyl)
>>> voidage_Benyahia_Oneil_cylindrical(Dpe=D_sphere_eq, Dt=0.05, sphericity=sph)
0.3754895273247688
```

Same calculation, but using the general correlation for all shapes:

```python
>>> voidage_Benyahia_Oneil(Dpe=D_sphere_eq, Dt=0.05, sphericity=sph)
0.4425769555048246
```

1.17 Pressure drop through piping

It is straightforward to calculate the pressure drop of fluid flowing in a pipeline with any number of fittings using the fluids library’s `fluids.fittings` submodule.
15 m of piping, with a sharp entrance and sharp exit, two 30 degree miter bends, one rounded bend 45 degrees, 1 sharp contraction to half the pipe diameter and 1 sharp expansion back to the normal pipe diameter (water, \(V=3 \) m/s, \(D_i=0.05 \), roughness 0.01 mm):

```python
>>> Re = Reynolds(V=3, D=0.05, rho=1000, mu=1E-3)
>>> fd = friction_factor(Re, eD=1E-5/0.05)
>>> K = K_from_f(fd, L=15, D=0.05)
>>> K += entrance_sharp()
>>> K += exit_normal()
>>> K += 2*bend_miter(angle=30)
>>> K += bend_rounded(Di=0.05, angle=45, fd=fd)
>>> K += contraction_sharp(Di1=0.05, Di2=0.025)
>>> K += diffuser_sharp(Di1=0.025, Di2=0.05)
>>> dP_from_K(K, rho=1000, V=3)
37920.5114014637
```

If the diameter of the piping varies, not all of the loss coefficients will be with respect to the same diameter. Each loss coefficient must be converted to one standard diameter before the total pressure drop can be calculated. The following example is solved with the optional pint unit compatibility module.

40 m piping, beveled entrance (10 mm length, 30 degrees, into 5 cm ID pipe), then a 30 degree miter bend, a sharp contraction to half the pipe diameter (5 m long), a 30 degree miter bend, a rounded 45 degree bend, a sharp expansion to 4 cm ID pipe (15 more meters), and a sharp exit:

```python
>>> from fluids.units import *
>>> from math import *
>>> material = nearest_material_roughness('steel', clean=True)
>>> epsilon = material_roughness(material)
>>> Q = .01*u.m**3/u.s
>>> rho = 1000*u.kg/u.m**3
>>> mu = 1E-4*u.Pa*u.s
>>> D1 = 5*u.cm
>>> D2 = 2.5*u.cm
>>> D3 = 4*u.cm
>>> L1 = 20*u.m
>>> L2 = 5*u.m
>>> L3 = 15*u.m
>>> V1 = Q/(pi/4*D1**2)
>>> Re = Reynolds(V=V1, D=D1, rho=rho, mu=mu)
>>> fd = friction_factor(Re, eD=epsilon/D1)
>>> K = K_from_f(fd, L=L1, D=D1)
>>> K += entrance_beveled(Di=D1, l=10*u.mm, angle=30*u.degrees)
>>> K += bend_miter(angle=30*u.degrees)
>>> K += contraction_sharp(Di1=D1, Di2=0.025)
>>> V2 = Q/(pi/4*D2**2)
>>> Re2 = Reynolds(V=V2, D=D2, rho=rho, mu=mu)
>>> fd2 = friction_factor(Re2, eD=epsilon/D2)
>>> K += change_K_basis(K_from_f(fd=fd, L=L2, D=D2), D1=D2, D2=D1)
>>> V3 = Q/(pi/4*D3**2)
```

(continues on next page)
1.18 Control valve sizing: Introduction

The now internationally-standardized methods (IEC 60534) for sizing liquid and gas valves have been implemented. Conversion factors among the different types of valve coefficients are implemented as well.

There are two forms of loss coefficient used for valves, an imperial and a metric variable called “valve flow coefficient”. Both can be converted to the standard dimensionless loss coefficient.

If one knows the actual loss coefficient used for valves, an imperial and a metric variable called “valve flow coefficient”. Both can be converted to the standard dimensionless loss coefficient.

If Kv or Cv are known, they can be converted to each other with the proportionality constant 1.156, which is derived from a unit conversion only. This conversion does not require valve diameter.

If a Cv or Kv is obtained from a valve datasheet, it can be converted into a standard loss coefficient as follows.

For a valve with a specified Kv and pressure drop, the flow rate can be calculated easily for the case of non-choked non-compressible flow (neglecting other friction losses), as illustrated in the example below for a 5 cm valve with a pressure drop 370 kPa and density of 870 kg/m\(^3\):
Alternatively, the required \(K_v \) can be calculated from an assumed diameter and allowable pressure drop:

\[
\begin{align*}
\text{Q} &= \frac{\text{V} \times \text{A}}{} \\
\text{Q} &= .05 \\
\text{D} &= 0.05 \\
\text{dP} &= 370\text{E3} \\
\text{rho} &= 870 \\
\text{A} &= \frac{\pi}{4} \times \text{D}^2 \\
\text{V} &= \frac{\text{Q}}{\text{A}} \\
\text{K} &= \frac{\text{dP}}{\left(\frac{1}{2} \times \text{rho} \times \text{V}^2\right)} \\
\text{K}_{\text{to} \ K_v}(\text{D}, \text{K}) &= 87.31399992583778
\end{align*}
\]

The approach documented above is not an adequate procedure for sizing valves however because choked flow, compressible flow, the effect of inlet and outlet reducers, the effect of viscosity and the effect of laminar/turbulent flow all have large influences on the performance of control valves.

Historically, valve manufacturers had their own standards for sizing valves, but these have been standardized today into the IEC 60534 methods.

1.19 Control valve sizing: Liquid flow

To rigorously size a control valve for liquid flow, the inlet pressure, allowable pressure drop, and desired flow rate must first be known. These need to be determined taking into account the entire pipe network and the various operating conditions it needs to support; sizing the valves can be performed afterward and only if no valve with the desired performance is available does the network need to be redesigned.

To illustrate sizing a valve, we borrow an example from Emerson’s Control Valve Handbook, 4th edition (2005). It involves a flow of 800 gpm of liquid propane. The inlet and outlet pipe size is 8 inches, but the size of the valve itself is unknown. The desired pressure drop is 25 psi.

Converting this problem to SI units and using the thermo library to calculate the necessary properties of the fluid, we calculate the necessary \(K_v \) of the valve based on an assumed valve size of 3 inches:

```
>>> from scipy.constants import *
>>> from fluids.control_valve import size_control_valve_l
>>> from thermo.chemical import Chemical

>>> P1 = 300*psi + psi # to Pa
>>> P2 = 275*psi + psi # to Pa
>>> T = 273.15 + 21 # to K
>>> propane = Chemical('propane', P=(P1+P2)/2, T=T)
>>> rho = propane.rho
>>> Psat = propane.Psat
>>> Pc = propane.Pc
>>> mu = propane.mu
>>> Q = 800*gallon/minute # to m^3/s
>>> D1 = D2 = 8*inch # to m
>>> d = 3*inch # to m
```

The standard specifies two more parameters specific to a valve:

- FL, Liquid pressure recovery factor of a control valve without attached fittings
Fluids Documentation, Release 0.1.86

- **Fd, Valve style modifier**

Both of these are factors between 0 and 1. In the Emerson handbook, they are not considered in the sizing procedure and set to 1. These factors are also a function of the diameter of the valve and are normally tabulated next to the values of \(Cv\) or \(Kv\) for a valve. Now using \texttt{size_control_valve_l}\) to solve for the flow coefficient:

```python
>>> Kv = size_control_valve\_l(rho, Psat, Pc, mu, P1, P2, Q, D1, D2, d, FL=1, Fd=1)
>>> Kv
109.39701927957765
```

The handbook states the \(Cv\) of the valve is 121; we convert \(Kv\) to \(Cv\):

```python
>>> Kv\_to\_Cv(Kv=Kv)
126.47380957330982
```

The example in the book calculated \(Cv = 125.7\), but doesn’t actually use the full calculation method. Either way, the valve will not carry the desired flow rate; we need to try a larger valve size. The 4 inch size is tried next in the example, which has a known \(Cv\) of 203.

```python
>>> d = 4\text{\ inch} \# \text{\ to\ m}
>>> Kv = size_control_valve\_l(rho, Psat, Pc, mu, P1, P2, Q, D1, D2, d, FL=1, Fd=1)
>>> Kv\_to\_Cv(Kv=Kv)
116.17550388277834
```

The calculated \(Cv\) is well under the valve’s maximum \(Cv\); we can select it.

This model requires a vapor pressure and a critical pressure of the fluid as inputs. There is no clarification in the standard about how to handle mixtures, which do not have these values. It is reasonable to calculate vapor pressure as the bubble pressure, and the mixture’s critical pressure through a mole-weighted average.

For actual values of \(Cv, Fl, Fd,\) and available diameters, an excellent resource is the Fisher Catalog 12.

1.20 Control valve sizing: Gas flow

To rigorously size a control valve for gas flow, the inlet pressure, allowable pressure drop, and desired flow rate must first be known. These need to be determined taking into account the entire pipe network and the various operating conditions it needs to support; sizing the valves can be performed afterward and only if no valve with the desired performance is available does the network need to be redesigned.

To illustrate sizing a valve, we borrow an example from Emerson’s Control Valve Handbook, 4th edition (2005). It involves a flow of 6 million \(\text{ft}^{3}/\text{hour}\) of natural gas. The inlet and outlet pipe size is 8 inches, but the size of the valve itself is unknown. The desired pressure drop is 150 psi.

Converting this problem to SI units and using the thermo library to calculate the necessary properties of the fluid, we calculate the necessary \(Kv\) of the valve based on an assumed valve size of 8 inches.

```python
>>> from scipy.constants import *
>>> from fluids.control_valve import size_control_valve\_g
>>> from thermo.chemical import Chemical

>>> P1 = 214.7*psi
>>> P2 = 64.7*psi
>>> T = 16 + 273.15
>>> natural\_gas = Mixture('natural\_gas', T=T, P=(P1+P2)/2)
>>> Z = natural\_gas.Z
>>> MW = natural\_gas.MW
>>> mu = natural\_gas.mu
```

(continues on next page)
>>> gamma = natural_gas.isentropic_exponent
>>> Q = 6E6*foot**3/hour
>>> D1 = D2 = d = 8*inch # 8-inch Fisher Design V250

The standard specifies three more parameters specific to a valve:

- FL, Liquid pressure recovery factor of a control valve without attached fittings
- Fd, Valve style modifier
- xT, Pressure difference ratio factor of a valve without fittings at choked flow

All three of these are factors between 0 and 1. In the Emerson handbook, FL and Fd are not considered in the sizing procedure and set to 1. xT is specified as 0.137 at full opening. These factors are also a function of the diameter of the valve and are normally tabulated next to the values of Cv or Kv for a valve. Now using size_control_valve_g to solve for the flow coefficient:

```python
>>> Kv = size_control_valve_g(T, MW, mu, gamma, Z, P1, P2, Q, D1, D2, d, FL=1, Fd=1, xT=0.137)
>>> Kv_to_Cv(Kv)
1563.447724002566
```

The 8-inch valve is rated with Cv = 2190. The valve is adequate to provide the desired flow because the rated Cv is higher. The calculated value in their example is 1515, differing slightly due to the properties used.

The example next goes on to determine the actual opening position the valve should be set at to provide the required flow. Their conclusion is approximately 75% open; we can do better using a numerical solver. The values of opening at different positions are obtained in this example from the valve’s datasheet.

Loading the data and creating interpolation functions so FL, Fd, and xT are all smooth functions:

```python
>>> from scipy.interpolate import interp1d
>>> from scipy.optimize import newton

>>> openings = [.2, .3, .4, .5, .6, .7, .8, .9]
>>> Fds = [0.59, 0.75, 0.85, 0.92, 0.96, 0.98, 0.99, 0.99]
>>> Fls = [0.9, 0.9, 0.9, 0.85, 0.78, 0.68, 0.57, 0.45]
>>> xTs = [0.92, 0.81, 0.85, 0.63, 0.58, 0.48, 0.29, 0.14]
>>> Kvs = [24.1, 79.4, 153, 266, 413, 623, 1060, 1890]

>>> Fd_interp = interp1d(openings, Fds, kind='cubic')
>>> Fl_interp = interp1d(openings, Fls, kind='cubic')
>>> xT_interp = interp1d(openings, xTs, kind='cubic')
>>> Kv_interp = interp1d(openings, Kvs, kind='cubic')

Creating and solving the objective function:

```python
>>> def to_solve(opening):
... Fd = float(Fd_interp(opening))
... Fl = float(Fl_interp(opening))
... xT = float(xT_interp(opening))
... Kv_lookup = float(Kv_interp(opening))
... Kv_calc = size_control_valve_g(T, MW, mu, gamma, Z, P1, P2, Q, D1, D2, d, FL=Fl, Fd=Fd, xT=xT)
... return Kv_calc - Kv_lookup

>>> newton(to_solve, .8) # initial guess of 80%
0.7500814714947652
```

We see the valve should indeed be set to almost exactly 75% open to provide the desired flow.
1.21 Electric motor sizing

Motors are available in standard sizes, mostly as designated by the National Electrical Manufacturers Association (NEMA). To easily determine what the power of a motor will actually be once purchased, `motor_round_size` implements rounding up of a motor power to the nearest size. NEMA standard motors are specified in terms of horsepower.

```python
>>> motor_round_size(1E5) # 100 kW motor; 11.8% larger than desired
111854.98073734052
>>> from scipy.constants import hp
>>> motor_round_size(1E5)/hp # convert to hp
150.0
```

Motors are designed to generate a certain amount of power, but they themselves are not 100% efficient at doing this and require more power due to efficiency losses. Many minimum values for motor efficiency are standardized. The Canadian standard for this is implemented in fluids as `CSA_motor_efficiency`.

```python
>>> CSA_motor_efficiency(P=5*hp)
0.855
```

Most motors are not enclosed (the default assumption), but those that are closed are more efficient.

```python
>>> CSA_motor_efficiency(P=5*hp, closed=True)
0.875
```

The number of poles in a motor also affects its efficiency:

```python
>>> CSA_motor_efficiency(P=5*hp, poles=6)
0.875
```

There is also a schedule of higher efficiency values standardized as well, normally available at somewhat higher cost:

```python
>>> CSA_motor_efficiency(P=5*hp, closed=True, poles=6, high_efficiency=True)
0.895
```

A motor will spin at more or less its design frequency, depending on its type. However, if it does not meet sufficient resistance, it will not be using its design power. This is good and bad - less power is used, but as a motor drops under 50% of its design power, its efficiency becomes terrible. The function `motor_efficiency_underloaded` has been written based on generic performance curves to estimate the underloaded efficiency of a motor. Just how bad efficiency drops off depends on the design power of a motor - higher power motors do better operating at low loads than small motors.

```python
>>> motor_efficiency_underloaded(P=1E3, load=.9)
1
>>> motor_efficiency_underloaded(P=1E3, load=.2)
0.6639347559654663
```

This needs to be applied on top of the normal motor efficiency; for example, that 1 kW motor at 20% load would have a net efficiency of:

```python
>>> motor_efficiency_underloaded(P=1E3, load=.2)*CSA_motor_efficiency(P=1E3)
0.5329404286134798
```

Many motors have Variable Frequency Drives (VFDs) which allow them to vary the speed of their rotation. The VFD is another source of inefficiency, but by allowing the pump or other piece of equipment to vary its speed, a system may be designed to be less energy intensive. For example, rather than running a pump at a certain high frequency and controlling the flow with a large control valve, the flow rate can be controlled with the VFD directly.
The efficiency of a VFD depends on the maximum power it needs to be able to generate, and the power it is actually generating at an instant (load). A table of typical modern VFD efficiencies is implemented in fluids as VFD_efficiency.

```python
>>> VFD_efficiency(1E5) # 100 kW
0.97
>>> VFD_efficiency(5E3, load=.2) # 5 kW, 20% load
0.8562
```

### 1.22 Particle Size Distributions

Fluids has means for calculating, fitting, and manipulating particle size distributions through the `fluids.particle_size_distribution` module. In addition to discrete and continuous distributions, there are also means to create interpolating distributions from discrete distributions, and to use any of SciPy’s statistical distributions or a custom distribution for calculations.

The following example particle size distribution shows some calculations. Note there is one more diameter point than number point - this is how the input should be given when the analysis provides classes and each bin has a range of sizes representing it. Also supported is providing as many diameter values as fraction values.

```python
>>> ds = [240, 360, 450, 562.5, 703, 878, 1097, 1371, 2141, 2676, 3345, 4181, 5226, 6532]
>>> numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
>>> psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
>>> psd
<Particle Size Distribution, points=14, D[3, 3]=2450.886241 m>
```

In the above example, the analysis available was the number of particles counted in each bin. This is equivalent to having normalized the numbers into fractions; they are normalized inside the `ParticleSizeDistribution` class.

If masses in each of the different bins had been known instead, then the same constructor would be given except with `order=3`, representing a mass or volume distribution (they are the same thing for distributions with the same density for all particles).

If the data is available as a cumulative distribution, simple add the flag `cdf=True` and it will be interpreted correctly.

The probability distribution and cumulative distribution can be plotted with `plot_pdf` and `plot_cdf` respectively. Important statistical parameters describing the distribution can be calculated with the methods `fluids.particle_size_distribution.ParticleSizeDistribution.mean_size` or `fluids.particle_size_distribution.ParticleSizeDistribution.mean_size_ISO`. The following example shows calculation of the size-weighted mean diameter; arithmetic mean diameter; Sauter mean diameter; and De Brouckere diameter.

```python
>>> psd.mean_size(2, 1)
1857.788572055526
>>> psd.mean_size(1, 0)
1459.3725650679328
>>> psd.mean_size(1, 2)
1857.788572055529
>>> psd.mean_size(1, 3)
2053.270397730935
```

An interpolated distribution exists underneath the discrete data to allow useful properties to be calculated, such as the D10 or D90:

```python
```
Or probability density functions:

```
>>> psd.pdf(1000)
0.00010632384327525037
>>> psd.cdf(5000)
0.9897400734854199
```

Statistical distributions implemented are `PSDLognormal`, `PSDGatesGaudinSchuhman`, and `PSDRosinRammler`. Discrete and continuous distributions share most methods.

```
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6)
>>> psd.pdf(1e-6) # probability density function
4487.892155358317
>>> psd.cdf(7e-6) # cumulative distribution function
0.749508691386811
>>> psd.dn(0.1) # At what diameter is this fraction of particles smaller than?
2.6344175914801822e-06
>>> psd.mean_size(3, 2)
4.412484512922977e-06
>>> ds = psd.ds_discrete(pts=1000) # Compare calculations with the discrete_distribution

```

It is straightforward to calculate descriptions of the distribution using the available routines:

Volume specific surface area:

```
>>> psd.vssa
1359778.1436801916
```

Span (D90 - D10):

```
>>> psd.dn(.9) - psd.dn(0.1)
6.855345945193371e-06
```

Relative span (D90 - D10)/D50:

```
>>> (psd.dn(.9) - psd.dn(0.1))/psd.dn(0.5)
1.3710691890386741
```

Percentile ratios, D75/D25 and D90/D10:

```
>>> psd.dn(0.75)/psd.dn(0.25)
1.9630310841582577
>>> psd.dn(0.9)/psd.dn(0.1)
3.6022244792791582
```
2.1 Atmospheric properties (fluids.atmosphere)

This module contains models of earth’s atmosphere. Models are empirical and based on extensive research, primarily by NASA.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker or contact the author at Caleb.Andrew.Bell@gmail.com.

- Atmospheres
- Solar Radiation and Position
- Wind Models (requires Fortran compiler!)

2.1.1 Atmospheres

class fluids.atmosphere.ATMOSPHERE_1976 (Z, dT=0.0)

Bases: object

US Standard Atmosphere 1976 class, which calculates $T$, $P$, $rho$, $v_{sonic}$, $mu$, $k$, and $g$ as a function of altitude above sea level. Designed to provide reasonable results up to an elevation of 86,000 m (0.4 Pa). The model is also valid under sea level, to -610 meters.

**Parameters**

- Z [float] Elevation, [m]
- dT [float, optional] Temperature difference from standard conditions used in determining the properties of the atmosphere, [K]
Notes

Up to 32 km, the International Standard Atmosphere (ISA) and World Meteorological Organization (WMO) standard atmosphere are identical.

This is a revision of the US 1962 atmosphere.

References

[1], [2], [3]

Examples

```python
>>> five_km = ATMOSPHERE_1976(5000)
>>> five_km.P, five_km.rho, five_km.mu
(54048.28614576141, 0.7364284207799743, 1.628248135362207e-05)
>>> five_km.k, five_km.g, five_km.v_sonic
(0.02273190295142526, 9.791241076982665, 320.5455196704035)
```

Attributes

- **T** [float] Temperature of atmosphere at specified conditions, [K]
- **P** [float] Pressure of atmosphere at specified conditions, [Pa]
- **rho** [float] Mass density of atmosphere at specified conditions [kg/m^3]
- **H** [float] Geopotential height, [m]
- **g** [float] Acceleration due to gravity, [m/s^2]
- **mu** [float] Viscosity of atmosphere at specified conditions, [Pa*s]
- **k** [float] Thermal conductivity of atmosphere at specified conditions, [W/m/K]
- **v_sonic** [float] Speed of sound of atmosphere at specified conditions, [m/s]

Methods

- **density** *(T, P)* Method defined in the US Standard Atmosphere 1976 for calculating density of air as a function of $T$ and $P$.
- **gravity** *(Z)* Method defined in the US Standard Atmosphere 1976 for calculating the gravitational acceleration above earth as a function of elevation only.
- **pressure_integral** *(T1, P1, dH)* Method to compute an integral of the pressure differential of an elevation difference with a base elevation defined by temperature $T1$ and pressure $P1$.
- **sonic_velocity** *(T)* Method defined in the US Standard Atmosphere 1976 for calculating the speed of sound in air as a function of $T$ only.
- **thermal_conductivity** *(T)* Method defined in the US Standard Atmosphere 1976 for calculating thermal conductivity of air as a function of $T$ only.

Continued on next page
**viscosity** \((T)\)  
Method defined in the US Standard Atmosphere 1976 for calculating viscosity of air as a function of \(T\) only.

**static density** \((T, P)\)  
Method defined in the US Standard Atmosphere 1976 for calculating density of air as a function of \(T\) and \(P\). MW is defined as 28.9644 g/mol, and \(R\) as 8314.52 J/kmol/K

\[
\rho_g = \frac{P \cdot MW}{T \cdot R \cdot 1000}
\]

Parameters  
\(T\) [float] Temperature, [K]  
\(P\) [float] Pressure, [Pa]

Returns  
\(\rho_g\) [float] Mass density, [kg/m^3]

**static gravity** \((Z)\)  
Method defined in the US Standard Atmosphere 1976 for calculating the gravitational acceleration above earth as a function of elevation only.

\[
g = g_0 \left(\frac{r_0}{r_0 + Z}\right)^2
\]

Parameters  
\(Z\) [float] Elevation above sea level, [m]

Returns  
\(g\) [float] Acceleration due to gravity, [m/s^2]

**static pressure_integral** \((T1, P1, dH)\)  
Method to compute an integral of the pressure differential of an elevation difference with a base elevation defined by temperature \(T1\) and pressure \(P1\). This is similar to subtracting the pressures at two different elevations, except it allows for local conditions (temperature and pressure) to be taken into account. This is useful for e.x. evaluating the pressure difference between the top and bottom of a natural draft cooling tower.

Parameters  
\(T1\) [float] Temperature at the lower elevation condition, [K]  
\(P1\) [float] Pressure at the lower elevation condition, [Pa]  
\(dH\) [float] Elevation difference for which to evaluate the pressure difference, [m]

Returns  
\(\delta_P\) [float] Pressure difference between the elevations, [Pa]

**static sonic_velocity** \((T)\)  
Method defined in the US Standard Atmosphere 1976 for calculating the speed of sound in air as a function of \(T\) only.

\[
c = \left(\frac{\gamma RT}{MW}\right)^{0.5}
\]

Parameters
Fluids Documentation, Release 0.1.86

\[ T \text{ [float] Temperature, [K]} \]

\textbf{Returns}

\[ c \text{ [float] Speed of sound, [m/s]} \]

\textbf{static thermal conductivity}(T)

Method defined in the US Standard Atmosphere 1976 for calculating thermal conductivity of air as a function of \( T \) only.

\[ k_g = \frac{2.64638 \times 10^{-3} T^{1.5}}{T + 245.4 \cdot 10^{-12}/T} \]

\textbf{Parameters}

\[ T \text{ [float] Temperature, [K]} \]

\textbf{Returns}

\[ \text{kg} \text{ [float] Thermal conductivity, [W/m/K]} \]

\textbf{static viscosity}(T)

Method defined in the US Standard Atmosphere 1976 for calculating viscosity of air as a function of \( T \) only.

\[ \mu_g = \frac{1.458 \times 10^{-6} T^{1.5}}{T + 110.4} \]

\textbf{Parameters}

\[ T \text{ [float] Temperature, [K]} \]

\textbf{Returns}

\[ \text{mug} \text{ [float] Viscosity, [Pa*s]} \]

\textbf{class} \texttt{fluids.atmosphere.ATMOSPHERE_NRLMSISE00}(Z, latitude=0.0, longitude=0.0, day=0, seconds=0.0, f107=150.0, f107_avg=150.0, geomagnetic_disturbance_indices=None)

\textbf{Bases:} \texttt{object}

NRLMSISE 00 model for calculating temperature and density of gases in the atmosphere, from ground level to 1000 km, as a function of time of year, longitude and latitude, solar activity and earth’s geomagnetic disturbance.


\textbf{Parameters}

\[ Z \text{ [float] Elevation, [m]} \]

\textbf{latitude} [float, optional] Latitude, between -90 and 90 [degrees]

\textbf{longitude} [float, optional] Longitude, between -180 and 180 or 0 and 360, [degrees]

\textbf{day} [float, optional] Day of year, 0-366 [day]

\textbf{seconds} [float, optional] Seconds since start of day, in UT1 time; using UTC provides no loss in accuracy [s]

\textbf{f107} [float, optional] Daily average 10.7 cm solar flux measurement of the strength of solar emissions on the 100 MHz band centered on 2800 MHz, averaged hourly; in sfu units, which are multiples of 10^-22 W/m^2/Hz; use 150 as a default [10^-22 W/m^2/Hz]
f107_avg [float, optional] 81-day sfu average; centered on specified day if possible, otherwise use the previous days \([10^{-22} \text{ W/m}^2/\text{Hz}]\)

geomagnetic_disturbance_indices [list of float, optional] List of the 7 following Ap indexes also known as planetary magnetic indexes. Has a negligible effect on the calculation. 4 is the default value often used for each of these values.

- Average daily Ap.
- 3-hour average Ap centered on the current time.
- 3-hour average Ap before the current time.
- 6-hour average Ap before the current time.
- 9-hour average Ap before the current time.
- Average Ap from 12 to 33 hours before the current time, based on eight 3-hour average Ap values.
- Average Ap from 36 to 57 hours before the current time, based on eight 3-hour average Ap values.

Notes

No full description has been published of this model; it has been defined by its implementation only. It was written in FORTRAN, and is accessible at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/msis/nrlmsise00/

A C port of the model by Dominik Brodowski has become popular, and is available on his website: http://www.brodo.de/space/nrlmsise/.

In 2013 Joshua Milas ported the C port to Python. This is an interface to his excellent port. It is a 1000-sloc model, and has been rigorously tested against the C version, and the online calculation tool available at [3] for parametric inputs of latitude, longitude, altitude, time of day and day of year.

This model is based on measurements other than gravity; it does not provide a calculation method for \(g\). It does not provide transport properties.

This model takes on the order of \(~2 \text{ ms}\).

References

[1], [2], [3]

Examples

```python
>>> atmosphere = ATMOSPHERE_NRLMSISE00(1E3, 45, 45, 150)
>>> atmosphere.T, atmosphere.rho
(285.5440860623, 1.10190620264)
```

Attributes

- **rho** [float] Mass density [kg/m^3]
- **T** [float] Temperature, [K]
- **P** [float] Pressure, calculated with ideal gas law [Pa]
**Fluids Documentation, Release 0.1.86**

- **He_density** [float] Density of helium atoms [count/m^3]
- **O_density** [float] Density of monatomic oxygen [count/m^3]
- **N2_density** [float] Density of nitrogen molecules [count/m^3]
- **O2_density** [float] Density of oxygen molecules [count/m^3]
- **Ar_density** [float] Density of Argon atoms [count/m^3]
- **H_density** [float] Density of hydrogen atoms [count/m^3]
- **N_density** [float] Density of monatomic nitrogen [count/m^3]
- **O_anomalous_density** [float] Density of anomalous oxygen; see [1] for details [count/m^3]
- **particle_density** [float] Total density of molecules [count/m^3]
- **components** [list[str]] List of species making up the atmosphere [-]
- **zs** [list[float]] Mole fractions of each molecule in the atmosphere, in order of **components** [-]

\[ \text{MWs} = \{28.0134, 31.9988, 39.948, 4.002602, 15.9994, 1.00794, 14.0067\} \]

\[ \text{attrs} = \{\text{'N2_density'}, \text{'O2_density'}, \text{'Ar_density'}, \text{'He_density'}, \text{'O_density'}, \text{'H_density'}, \text{'N_density'}\} \]

\[ \text{components} = \{\text{'N2'}, \text{'O2'}, \text{'Ar'}, \text{'He'}, \text{'O'}, \text{'H'}, \text{'N'}\} \]

**flows.atmosphere.airmass** *(func, angle, H_max=86400.0, R_planet=6371229.0, RI=1.000276)*

Calculates mass of air per square meter in the atmosphere using a provided atmospheric model. The lowest air mass is calculated straight up; as the angle is lowered to nearer and nearer the horizon, the air mass increases, and can approach 40x or more the minimum airmass.

\[ m(\gamma) = \frac{\int_0^\infty \rho \left(1 - \left(1 + 2(RI - 1)(1 - \rho/\rho_0)\right) \left(\frac{\cos \gamma}{(1 + h/R)}\right)^2\right)^{-1/2} dH}{2} \]

**Parameters**

- **func** [float] Function which returns the density of the atmosphere as a function of elevation
- **angle** [float] Degrees above the horizon (90 = straight up), [degrees]
- **H_max** [float, optional] Maximum height to compute the integration up to before the contribution of density becomes negligible, [m]
- **R_planet** [float, optional] The radius of the planet for which the integration is being performed, [m]
- **RI** [float, optional] The refractive index of the atmosphere (air on earth at 0.7 um as default) assumed a constant, [-]

**Returns**

- **m** [float] Mass of air per square meter in the atmosphere, [kg/m^2]

**Notes**

Numerical integration via SciPy’s *quad* is used to perform the calculation.

**References**

[1]
Examples

```python
>>> airmass(lambda Z : ATMOSPHERE_1976(Z).rho, 90)
10356.12766586
```

2.1.2 Solar Radiation and Position

`fluids.atmosphere.solar_position(moment, latitude, longitude, Z=0.0, T=298.15, P=101325.0, atmos_refract=0.5667)`

Calculate the position of the sun in the sky. It is defined in terms of two angles - the zenith and the azimuth. The azimuth tells where a sundial would see the sun as coming from; the zenith tells how high in the sky it is. The solar elevation angle is returned for convinience; it is the complimentary angle of the zenith.

The sun’s refraction changes how high it appears as though the sun is; so values are returned with an optional conversion to the aparent angle. This impacts only the zenith/elevation.

Uses the Reda and Andreas (2004) model described in [1], originally incorporated into the excellent `pvlib library`

**Parameters**

- `moment` [datetime, optionally with pytz info] Time and date for the calculation, in UTC time OR in the time zone of the latitude/longitude specified BUT WITH A TZINFO ATTACHED! Please be careful with this argument, time zones are confusing. [-]
- `latitude` [float] Latitude, between -90 and 90 [degrees]
- `longitude` [float] Longitude, between -180 and 180, [degrees]
- `Z` [float, optional] Elevation above sea level for the solar position calculation, [m]
- `T` [float, optional] Temperature of atmosphere at ground level, [K]
- `P` [float, optional] Pressure of atmosphere at ground level, [Pa]
- `atmos_refract` [float, optional] Atmospheric refractivity, [degrees]

**Returns**

- `apparent_zenith` [float] Zenith of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees]
- `zenith` [float] Actual zenith of the sun (ignores atmospheric refraction), [degrees]
- `apparent_altitude` [float] Altitude of the sun as observed from the ground based after accounting for atmospheric refraction, [degrees]
- `altitude` [float] Actual altitude of the sun (ignores atmospheric refraction), [degrees]
- `azimuth` [float] The azimuth of the sun, [degrees]
- `equation_of_time` [float] Equation of time - the number of seconds to be added to the day’s mean solar time to obtain the apparent solar noon time, [seconds]

**Notes**

If you were standing at the same longitude of the sun such that it was no further east or west than you were, the amount of angle it was south or north of you is the **zenith**. If it were directly overhead it would be 0°; a little north or south and it would be a little positive; near sunset or sunrise, near 90°; and at night, between 90° and 180°.
The solar altitude angle is defined as 90° - zenith. Note the elevation angle is just another name for the altitude angle.

The azimuth the angle in degrees that the sun is East of the North angle. It is positive North eastwards 0° to 360°. Other conventions may be used.

Note that due to differences in atmospheric refractivity, estimation of sunset and sunrise are accurate to no more than one minute. Refraction conditions truly vary across the atmosphere; so characterizing it by an average value is limiting as well.

References
[1], [2]

Examples

```python
>>> import pytz

Perth, Australia - sunrise

>>> solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 7, 10, 57)), -31.95265, 115.85742)
[90.89617025931763, -0.8961702593176304, 63.60160176917509, 79.071123143035]

Perth, Australia - Comparing against an online source https://www.suncalc.org/#/-31.9526,115.8574,9/2020.06.06/14:30/10

>>> solar_position(pytz.timezone('Australia/Perth').localize(datetime(2020, 6, 6, 14, 30, 0)), -31.95265, 115.85742)
[63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]

Perth, Australia - time input without timezone; must be converted by user to UTC!

>>> solar_position(datetime(2020, 6, 6, 14, 30, 0) - timedelta(hours=8), -31.95265, 115.85742)
[63.40805686233129, 63.44000181582068, 26.591943137668704, 26.559998184179317, 325.1213762464115, 75.74674754854641]

Sunrise occurs when the zenith is 90 degrees (Calgary, AB):

```python
>>> local_time = datetime(2018, 4, 15, 6, 43, 5)
>>> local_time = pytz.timezone('America/Edmonton').localize(local_time)
>>> solar_position(local_time, 51.0486, -114.07)
[90.00054685485517]

Sunset occurs when the zenith is 90 degrees (13.5 hours later in this case):

```python
>>> solar_position(datetime(2018, 4, 15, 20, 30, 28)), 51.0486, -114.07)
[89.9995695661236, 90.54103812161853, 0.0043043387640950836, -0.5410381216185247, 286.8313781904518, 6.631429525878048]`
fluids.atmosphere.solar_irradiation(latitude, longitude, Z, moment, surface_tilt, surface_azimuth, T=None, P=None, solar_constant=1366.1, atmos_refract=0.5667, albedo=0.25, linke_turbidity=None, extraradiation_method='spencer', airmass_model='kastenyoung1989', cache=None)

Calculates the amount of solar radiation and radiation reflected back the atmosphere which hits a surface at a specified tilt, and facing a specified azimuth.

This function is a wrapper for the incredibly comprehensive pvlib library, and requires it to be installed.

Parameters

latitude [float] Latitude, between -90 and 90 [degrees]
longitude [float] Longitude, between -180 and 180, [degrees]
Z [float, optional] Elevation above sea level for the position, [m]
moment [datetime, optionally with pytz info] Time and date for the calculation, in UTC time OR in the time zone of the latitude/longitude specified BUT WITH A TZINFO ATTACHED! Please be careful with this argument, time zones are confusing. [-]
surface_tilt [float] The angle above the horizontal of the object being hit by radiation, [degrees]
surface_azimuth [float] The angle the object is facing (positive, North eastwards 0° to 360°), [degrees]
T [float, optional] Temperature of atmosphere at ground level, [K]
P [float, optional] Pressure of atmosphere at ground level, [Pa]
solar_constant [float, optional] The amount of solar radiation which reaches earth’s disk (at a standardized distance of 1 AU); this constant is independent of activity or conditions on earth, but will vary throughout the sun’s lifetime and may increase or decrease slightly due to solar activity, [W/m²]
atmos_refract [float, optional] Atmospheric refractivity at sunrise/sunset (0.5667 deg is an often used value; this varies substantially and has an impact of a few minutes on when sunrise and sunset is), [degrees]
albedo [float, optional] The average amount of reflection of the terrain surrounding the object at quite a distance; this impacts how much sunlight reflected off the ground, gets reflected back off clouds, [-]
linke_turbidity [float, optional] The amount of pollution/water in the sky versus a perfect clear sky; If not specified, this will be retrieved from a historical grid; typical values are 3 for cloudy, and 7 for severe pollution around a city, [-]
extraradiation_method [str, optional] The specified method to calculate the effect of earth’s position on the amount of radiation which reaches earth according to the methods available in the pvlib library, [-]
airmass_model [str, optional] The specified method to calculate the amount of air the sunlight needs to travel through to reach the earth according to the methods available in the pvlib library, [-]
cache [dict, optional] Dictionary to to check for values to use to skip some calculations; apparent_zenith, zenith, azimuth supported, [-]

Returns

poa_global [float] The total irradiance in the plane of the surface, [W/m²]
poa_direct [float] The total beam irradiance in the plane of the surface, [W/m²]

poa_diffuse [float] The total diffuse irradiance in the plane of the surface, [W/m²]

poa_sky_diffuse [float] The sky component of the diffuse irradiance, excluding the impact from the ground, [W/m²]

poa_ground_diffuse [float] The ground-sky diffuse irradiance component, [W/m²]

Notes

The retrieval of *linke_turbidity* requires the pytables library (and Pandas); if it is not installed, specify a value of *linke_turbidity* to avoid the dependency.

There is some redundancy of the calculated results, according to the following relations. The total irradiance is normally that desired for engineering calculations.

\[
\text{poa_diffuse} = \text{poa_ground_diffuse} + \text{poa_sky_diffuse}
\]

\[
\text{poa_global} = \text{poa_direct} + \text{poa_diffuse}
\]

For a surface such as a pipe or vessel, an approach would be to split it into a number of rectangles and sum up the radiation absorbed by each.

This calculation is fairly slow.

References

[1]

Examples

```python
>>> import pytz
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 13, 43, 5)), surface_tilt=41.0,
... surface_azimuth=180.0)
(1065.7621896280812, 945.2656564506323, 120.49653317744884, 95.31535344213178, 25.181179735317063)
```

```python
>>> cache = {'apparent_zenith': 41.099082295767545, 'zenith': 41.11285376417578, 'azimuth': 182.5631874250523}
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3, T=300, P=1E5,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 13, 43, 5)), surface_tilt=41.0,
... surface_azimuth=180.0, cache=cache)
(1042.5677703677, 918.2377548545, 124.33001551318, 99.6228657378, 24.70714977534)
```

At night, there is no solar radiation and this function returns zeros:

```python
>>> solar_irradiation(Z=1100.0, latitude=51.0486, longitude=-114.07, linke_turbidity=3,
... moment=pytz.timezone('America/Edmonton').localize(datetime(2018, 4, 15, 2, 43, 5)), surface_tilt=41.0,
... surface_azimuth=180.0, cache=cache)
```

(continues on next page)
fluids.atmosphere.sunrise_sunset \texttt{(moment, latitude, longitude)}

Calculates the times at which the sun is at sunset; sunrise; and halfway between sunrise and sunset (transit).

Uses the Reda and Andreas (2004) model described in [1], originally incorporated into the excellent pvlib library.

Parameters

- \texttt{moment} [datetime] Date for the calculation; needs to contain only the year, month, and day; if it is timezone-aware, the return values will be localized to this timezone [-]
- \texttt{latitude} [float] Latitude, between -90 and 90 [degrees]
- \texttt{longitude} [float] Longitude, between -180 and 180, [degrees]

Returns

- \texttt{sunrise} [datetime] The time at the specified day when the sun rises \textbf{IN UTC IF MOMENT DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT}, [-]
- \texttt{sunset} [datetime] The time at the specified day when the sun sets \textbf{IN UTC IF MOMENT DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT}, [-]
- \texttt{transit} [datetime] The time at the specified day when the sun is at solar noon - halfway between sunrise and sunset \textbf{IN UTC IF MOMENT DOES NOT HAVE A TIMEZONE, OTHERWISE THE TIMEZONE GIVEN WITH IT}, [-]

Notes

This function takes on the order of 2 ms per calculation.

References

[1]

Examples

```python
>>> sunrise, sunset, transit = sunrise_sunset(datetime(2018, 4, 17),
... 51.0486, -114.07)
>>> sunrise
datetime.datetime(2018, 4, 17, 12, 36, 55, 782660)
>>> sunset
datetime.datetime(2018, 4, 18, 2, 34, 4, 249326)
>>> transit
datetime.datetime(2018, 4, 17, 19, 35, 46, 686265)
```

Example with time zone:
Note that the year/month/day as input with a timezone, is converted to UTC time as well.

`fluids.atmosphere.earthsun_distance(moment)`

Calculates the distance between the earth and the sun as a function of date and time. Uses the Reda and Andreas (2004) model described in [1], originally incorporated into the excellent `pvlib library`

Parameters

- **moment** [datetime] Time and date for the calculation, in UTC time (or GMT, which is almost the same thing); OR a timezone-aware datetime instance which will be internally converted to UTC, [-]

Returns

- **distance** [float] Distance between the center of the earth and the center of the sun, [m]

Notes

This function is quite accurate. The difference comes from the impact of the moon.

Note this function is not continuous; the sun-earth distance is not sufficiently accurately modeled for the change to be continuous throughout each day.

References

[1]

Examples

```python
>>> earthsun_distance(datetime(2003, 10, 17, 13, 30, 30))
149090925951.18338
```

The distance at perihelion, which occurs at 4:21 according to this algorithm. The real value is 04:38 (January 2nd).

```python
>>> earthsun_distance(datetime(2013, 1, 2, 4, 21, 50))
147098089490.67123
```

The distance at aphelion, which occurs at 14:44 according to this algorithm. The real value is dead on - 14:44 (July 5).

```python
>>> earthsun_distance(datetime(2013, 7, 5, 14, 44, 51, 0))
152097354414.36044
```

Using a timezone-aware date:
2.1.3 Wind Models (requires Fortran compiler!)

```python
>>> import pytz
>>> earthsun_distance(pytz.timezone('America/Edmonton').localize(datetime(2020, 6, 6, 10, 0, 0, 0)))
151817805599.67142
```
This has a slightly different value than the value without a timezone; almost 5000 km further away!

```python
>>> earthsun_distance(datetime(2020, 6, 6, 10, 0, 0, 0))
151812898579.44104
```

fluids.atmosphere.hwm93

Horizontal Wind Model 1993, for calculating wind velocity in the atmosphere as a function of time of year, longitude and latitude, solar activity and earth’s geomagnetic disturbance.

The model is described across the publications [1], [2], and [3].

Parameters

- **Z** [float] Elevation, [m]
- **latitude** [float, optional] Latitude, between -90 and 90 [degrees]
- **longitude** [float, optional] Longitude, between -180 and 180 or 0 and 360, [degrees]
- **day** [float, optional] Day of year, 0-366 [day]
- **seconds** [float, optional] Seconds since start of day, in UT1 time; using UTC provides no loss in accuracy [s]
- **f107** [float, optional] Daily average 10.7 cm solar flux measurement of the strength of solar emissions on the 100 MHz band centered on 2800 MHz, averaged hourly; in sfu units, which are multiples of 10^-22 W/m^2/Hz; use 150 as a default [W/m^2/Hz]
- **f107_avg** [float, optional] 81-day sfu average; centered on specified day if possible, otherwise use the previous days [W/m^2/Hz]
- **geomagnetic_disturbance_index** [float, optional] Average daily Ap or also known as planetary magnetic index.

Returns

- **v_north** [float] Wind velocity, meridional (Northward) [m/s]
- **v_east** [float] Wind velocity, zonal (Eastward) [m/s]

Notes

No full description has been published of this model; it has been defined by its implementation only. It was written in FORTRAN, and is accessible at ftp://hanna.ccmc.gsfc.nasa.gov/pub/modelweb/atmospheric/hwm93/. F2PY auto-compilation support is not yet currently supported. To compile this file, run the following command in a shell after navigating to $FLUIDSPATH/fluids/optional/. This should generate the file hwm93.so in that directory.

```
f2py -c hwm93.pyf hwm93.for --f77flags="-std=legacy"
```

If the module is not compiled, an import error will be raised.
References

[1], [2], [3]

Examples

```python
>>> hwm93(5E5, 45, 50, 365)  # doctest: +SKIP
(-73.00312042236328, 0.1485661268234253)
```

```python
fluids.atmosphere.hwm14(Z, latitude=0, longitude=0, day=0, seconds=0, geomagnetic_disturbance_index=4)
```

Horizontal Wind Model 2014, for calculating wind velocity in the atmosphere as a function of time of year, longitude and latitude, and earth’s geomagnetic disturbance. The model is described in [1].

The model no longer accounts for solar flux.

Parameters

- **Z** [float] Elevation, [m]
- **latitude** [float, optional] Latitude, between -90 and 90 [degrees]
- **longitude** [float, optional] Longitude, between -180 and 180 or 0 and 360, [degrees]
- **day** [float, optional] Day of year, 0-366 [day]
- **seconds** [float, optional] Seconds since start of day, in UT1 time; using UTC provides no loss in accuracy [s]
- **geomagnetic_disturbance_index** [float, optional] Average daily Ap or also known as planetary magnetic index.

Returns

- **v_north** [float] Wind velocity, meridional (Northward) [m/s]
- **v_east** [float] Wind velocity, zonal (Eastward) [m/s]

Notes

No full description has been published of this model; it has been defined by its implementation only. It was written in FORTRAN, and is accessible at http://onlinelibrary.wiley.com/store/10.1002/2014EA000089/asset/supinfo/ess224-sup-0002-supinfo.tgz?v=1&s=2a957ba70b7cf9dd0612d9430076297c3634ea75.

F2PY auto-compilation support is not yet currently supported. To compile this file, run the following commands in a shell after navigating to $FLUIDSPATH/fluids/optional/.

Generate a .pyf signature file:

```bash
f2py -m hwm14 -h hwm14.pyf hwm14.f90
```

Compile the interface:

```bash
f2py -c hwm14.pyf hwm14.f90
```

If the module is not compiled, an import error will be raised.

No patches were necessary to either the generated pyf or hwm14.f90 file, as the authors of [1] have made it F2PY compatible.
Developed using 73 million data points taken by 44 instruments over 60 years.

References
[1]

Examples

```python
>>> hwm14(5E5, 45, 50, 365) # doctest: +SKIP
(-38.64341354370117, 12.871272087097168)
```

2.2 Compressible flow and compressor sizing (fluids.compressible)

```python
fluids.compressible.Panhandle_A(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=0.92)
```

Calculation function for dealing with flow of a compressible gas in a pipeline with the Panhandle A formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe
- Length of pipe

A variety of different constants and expressions have been presented for the Panhandle A equation. Here, a new form is developed with all units in base SI, based on the work of [1].

\[
Q = 158.02053E \left(\frac{T_s}{P_s} \right)^{1.0788} \left[\frac{P_1^2 - P_2^2}{L \cdot SG^{0.8539} T_{avg} Z_{avg}} \right]^{0.5394} D^{2.6182}
\]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(T_s\) and \(P_s\), [-]
- **Tavg** [float] Average temperature of the fluid in the pipeline, [K]
- **L** [float, optional] Length of pipe, [m]
- **D** [float, optional] Diameter of pipe, [m]
- **P1** [float, optional] Inlet pressure to pipe, [Pa]
- **P2** [float, optional] Outlet pressure from pipe, [Pa]
- **Q** [float, optional] Flow rate of gas through pipe at \(T_s\) and \(P_s\), \([m^3/s]\]
- **Ts** [float, optional] Reference temperature for the specific gravity of the gas, [K]
- **Ps** [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- **Zavg** [float, optional] Average compressibility factor for gas, [-]
- **E** [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns
\[Q, \ P_1, \ P_2, \ D, \text{ or } L \] [float] The missing input which was solved for [base SI]

Notes

[1]’s original constant was 4.5965E-3, and it has units of km (length), kPa, mm (diameter), and flowrate in m^3/day.

The form in [2] has the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in m^3/hour; its leading constant is 1.9152E-4.

The GPSA [3] has a leading constant of 0.191, a bracketed power of 0.5392, a specific gravity power of 0.853, and otherwise the same constants. It is in units of mm (diameter) and kPa and m^3/day; length is stated to be in km, but according to the errata is in m.

[4] has a leading constant of 1.198E7, a specific gravity of power of 0.8541, and a power of diameter which is under the root of 4.854 and is otherwise the same. It has units of kPa and m^3/day, but is otherwise in base SI units.

[5] has a leading constant of 99.5211, but its reference correction has no exponent; other exponents are the same as here. It is entirely in base SI units.

[6] has pressures in psi, diameter in inches, length in miles, Q in ft^3/day, T in degrees Rankine, and a constant of 435.87. Its reference condition power is 1.07881, and it has a specific gravity correction outside any other term with a power of 0.4604.

References

[1], [2], [3], [4], [5], [6]

Examples

```python
>>> Panhandle_A(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
42.56082051195928
```

```python
fluids.compressible.Panhandle_B(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=0.92)
```

Calculation function for dealing with flow of a compressible gas in a pipeline with the Panhandle B formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe
- Length of pipe

A variety of different constants and expressions have been presented for the Panhandle B equation. Here, a new form is developed with all units in base SI, based on the work of [1].

\[
Q = 152.88116E \left(\frac{T_s}{P_s} \right)^{1.02} \left[\frac{P_2^2 - P_1^2}{L \cdot SG^{0.961} T_{avg} Z_{avg}} \right]^{0.51} D^{2.53}
\]

Parameters
SG [float] Specific gravity of fluid with respect to air at the reference temperature and pressure Ts and Ps, [-]

T_{avg} [float] Average temperature of the fluid in the pipeline, [K]

L [float, optional] Length of pipe, [m]

D [float, optional] Diameter of pipe, [m]

P_1 [float, optional] Inlet pressure to pipe, [Pa]

P_2 [float, optional] Outlet pressure from pipe, [Pa]

Q [float, optional] Flow rate of gas through pipe at Ts and Ps, [m3/s]

Ts [float, optional] Reference temperature for the specific gravity of the gas, [K]

Ps [float, optional] Reference pressure for the specific gravity of the gas, [Pa]

Z_{avg} [float, optional] Average compressibility factor for gas, [-]

E [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

Q, P_1, P_2, D, or L [float] The missing input which was solved for [base SI]

Notes

[1]'s original constant was 1.002E-2, and it has units of km (length), kPa, mm (diameter), and flowrate in m3/day.

The form in [2] has the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in m3/hour; its leading constant is 4.1749E-4.

The GPSA [3] has a leading constant of 0.339, and otherwise the same constants. It is in units of mm (diameter) and kPa and m3/day; length is stated to be in km, but according to the errata is in m.

[4] has a leading constant of 1.264E7, a diameter power of 4.961 which is also under the 0.51 power, and is otherwise the same. It has units of kPa and m3/day, but is otherwise in base SI units.

[5] has a leading constant of 135.8699, but its reference correction has no exponent and its specific gravity has a power of 0.9608; the other exponents are the same as here. It is entirely in base SI units.

[6] has pressures in psi, diameter in inches, length in miles, Q in ft3/day, T in degrees Rankine, and a constant of 737 with the exponents the same as here.

References

[1], [2], [3], [4], [5], [6]

Examples

```python
>>> Panhandle_B(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
42.35366178004172
```

`fluids.compressible.Weymouth(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=0.92)`

Calculation function for dealing with flow of a compressible gas in a pipeline with the Weymouth formula. Can calculate any of the following, given all other inputs:
• Flow rate
• Upstream pressure
• Downstream pressure
• Diameter of pipe
• Length of pipe

A variety of different constants and expressions have been presented for the Weymouth equation. Here, a new form is developed with all units in base SI, based on the work of [1].

\[
Q = 137.32958E \frac{T_s}{P_s} \left[\frac{P_1^2 - P_2^2}{L \cdot SG \cdot T_{avg}Z_{avg}} \right]^{0.5} D^{2.667}
\]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(T_s\) and \(P_s\), [-]
- **Tavg** [float] Average temperature of the fluid in the pipeline, [K]
- **L** [float, optional] Length of pipe, [m]
- **D** [float, optional] Diameter of pipe, [m]
- **P1** [float, optional] Inlet pressure to pipe, [Pa]
- **P2** [float, optional] Outlet pressure from pipe, [Pa]
- **Q** [float, optional] Flow rate of gas through pipe at \(T_s\) and \(P_s\), [m^3/s]
- **Ts** [float, optional] Reference temperature for the specific gravity of the gas, [K]
- **Ps** [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- **Zavg** [float, optional] Average compressibility factor for gas, [-]
- **E** [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

- **Q, P1, P2, D, or L** [float] The missing input which was solved for [base SI]

Notes

[1]’s original constant was 3.7435E-3, and it has units of km (length), kPa, mm (diameter), and flowrate in m^3/day.

The form in [2] has the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in m^3/hour; its leading constant is 1.5598E-4.

The GPSA [3] has a leading constant of 0.1182, and otherwise the same constants. It is in units of mm (diameter) and kPa and m^3/day; length is stated to be in km, but according to the errata is in m.

[4] has a leading constant of 1.162E7, a diameter power of 5.333 which is also under the 0.50 power, and is otherwise the same. It has units of kPa and m^3/day, but is otherwise in base SI units.

[5] has a leading constant of 137.2364; the other exponents are the same as here. It is entirely in base SI units.

[6] has pressures in psi, diameter in inches, length in miles, Q in ft^3/hour, T in degrees Rankine, and a constant of 18.062 with the exponents the same as here.
Fluids Documentation, Release 0.1.86

References

[1], [2], [3], [4], [5], [6]

Examples

```python
>>> Weymouth(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
32.0729055913029
```

`fluids.compressible.Spitzglass_high(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=1.0)`

Calculation function for dealing with flow of a compressible gas in a pipeline with the Spitzglass (high pressure drop) formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe (numerical solution)
- Length of pipe

A variety of different constants and expressions have been presented for the Spitzglass (high pressure drop) formula. Here, the form as in [1] is used but with a more precise metric conversion from inches to m.

\[
Q = 125.1060 E \left(\frac{Ts}{Ps} \right) \left[\frac{P_1^2 - P_2^2}{L \cdot SG T_{avg} Z_{avg} (1 + 0.09144/D \cdot \frac{160}{P_2} D)} \right]^{0.5} \]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure
- **Tavg** [float] Average temperature of the fluid in the pipeline, [K]
- **L** [float, optional] Length of pipe, [m]
- **D** [float, optional] Diameter of pipe, [m]
- **P1** [float, optional] Inlet pressure to pipe, [Pa]
- **P2** [float, optional] Outlet pressure from pipe, [Pa]
- **Q** [float, optional] Flow rate of gas through pipe at `Ts` and `Ps`, [m³/s]
- **Ts** [float, optional] Reference temperature for the specific gravity of the gas, [K]
- **Ps** [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- **Zavg** [float, optional] Average compressibility factor for gas, [-]
- **E** [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

- **Q, P1, P2, D, or L** [float] The missing input which was solved for [base SI]
Notes

This equation is often presented without any correction for reference conditions for specific gravity.
This model is also presented in [2] with a leading constant of 1.0815E-2, the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in m^3/hour.

References

[1], [2]

Examples

```python
>>> Spitzglass_high(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
29.42670246281681
```

```python
fluids.compressible.Spitzglass_low(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=1.0)
```

Calculation function for dealing with flow of a compressible gas in a pipeline with the Spitzglass (low pressure drop) formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe (numerical solution)
- Length of pipe

A variety of different constants and expressions have been presented for the Spitzglass (low pressure drop) formula. Here, the form as in [1] is used but with a more precise metric conversion from inches to m.

\[
Q = 125.1060E \left(\frac{T_s}{P_s} \right) \left[\frac{2(P_1 - P_2)(P_s + 1210)}{L \cdot SG \cdot T_{avg} \cdot Z_{avg}(1 + 0.09144/D + \frac{150}{127} D)} \right]^{0.5} \cdot D^{2.5}
\]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(T_s\) and \(P_s\), [-]
- **Tavg** [float] Average temperature of the fluid in the pipeline, [K]
- **L** [float, optional] Length of pipe, [m]
- **D** [float, optional] Diameter of pipe, [m]
- **P1** [float, optional] Inlet pressure to pipe, [Pa]
- **P2** [float, optional] Outlet pressure from pipe, [Pa]
- **Q** [float, optional] Flow rate of gas through pipe at \(T_s\) and \(P_s\), [m^3/s]
- **Ts** [float, optional] Reference temperature for the specific gravity of the gas, [K]
- **Ps** [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- **Zavg** [float, optional] Average compressibility factor for gas, [-]
- **E** [float, optional] Pipeline efficiency, a correction factor between 0 and 1
Returns

\(Q, P_1, P_2, D, \text{ or } L \) [float] The missing input which was solved for [base SI]

Notes

This equation is often presented without any correction for reference conditions for specific gravity.

This model is also presented in [2] with a leading constant of 5.69E-2, the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in m^3/hour. However, it is believed to contain a typo, and gives results <1/3 of the correct values. It is also present in [2] in imperial form; this is believed correct, but makes a slight assumption not done in [1].

This model is present in [3] without reference corrections. The 1210 constant in [1] is an approximation necessary for the reference correction to function without a square of the pressure difference. The GPSA version is as follows, and matches this formulation very closely:

\[
Q = 0.821 \left(\frac{(P_1 - P_2)D^5}{L \cdot SG(1 + 91.44/D + 0.0018D)} \right)^{0.5}
\]

The model is also shown in [4], with diameter in inches, length in feet, flow in MMSCFD, pressure drop in inH2O, and a rounded leading constant of 0.09; this makes its predictions several percent higher than the model here.

References

[1], [2], [3], [4]

Examples

```python
>>> Spitzglass_low(D=0.154051, P1=6720.3199, P2=0, L=54.864, SG=0.6, Tavg=288.7)
0.948875242530617
```

fl Blues. Compressible.Oliphant

```python
(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None,
 Ts=288.7, Ps=101325.0, Zavg=1.0, E=0.92)
```

Calculation function for dealing with flow of a compressible gas in a pipeline with the Oliphant formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe (numerical solution)
- Length of pipe

This model is a more complete conversion to metric of the Imperial version presented in [1].

\[
Q = 84.5872 \left(D^{2.5} + 0.20915D^3 \right) \frac{T_s}{P_s} \left(\frac{P_1^2 - P_2^2}{L \cdot SG \cdot T_{avg}} \right)^{0.5}
\]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(T_s \) and \(P_s \), [-]

2.2. Compressible flow and compressor sizing (fluids.compressible) 49
Tavg [float] Average temperature of the fluid in the pipeline, [K]
L [float, optional] Length of pipe, [m]
D [float, optional] Diameter of pipe, [m]
P1 [float, optional] Inlet pressure to pipe, [Pa]
P2 [float, optional] Outlet pressure from pipe, [Pa]
Q [float, optional] Flow rate of gas through pipe at Ts and Ps, [m³/s]
Ts [float, optional] Reference temperature for the specific gravity of the gas, [K]
Ps [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
Zavg [float, optional] Average compressibility factor for gas, [-]
E [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns
Q, P1, P2, D, or L [float] The missing input which was solved for [base SI]

Notes
Recommended in [1] for use between vacuum and 100 psi.
The model is simplified by grouping constants here; however, it is presented in the imperial unit set inches (diameter), miles (length), psi, Rankine, and MMSCFD in [1]:

\[
Q = 42(24) \left(D_{2.5}^3 + \frac{D^3}{30} \right) \left(\frac{14.4}{P_s} \right) \left(\frac{T_s}{520} \right) \left[\left(\frac{0.6}{SG} \right) \left(\frac{520}{T_{avg}} \right) \left(\frac{P_1^2 - P_2^2}{L} \right) \right]^{0.5}
\]

References
[1], [2]

Examples

```python
>>> Oliphant(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
28.851535408143057
```

fluilds.compressible.Fritzsche(SG, Tavg, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=1.0)
Calculation function for dealing with flow of a compressible gas in a pipeline with the Fritzsche formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe
- Length of pipe
A variety of different constants and expressions have been presented for the Fritzsche formula. Here, the form as in [1] is used but with all inputs in base SI units.

\[
Q = 93.500 \frac{Ts}{Ps} \left(\frac{P_1^2 - P_2^2}{L \cdot SG^{0.8587} \cdot T_{avg}} \right)^{0.538} D^{2.69}
\]

Parameters

- **SG** [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(Ts \) and \(Ps \), [-]
- **Tavg** [float] Average temperature of the fluid in the pipeline, [K]
- **L** [float, optional] Length of pipe, [m]
- **D** [float, optional] Diameter of pipe, [m]
- **P1** [float, optional] Inlet pressure to pipe, [Pa]
- **P2** [float, optional] Outlet pressure from pipe, [Pa]
- **Q** [float, optional] Flow rate of gas through pipe at \(Ts \) and \(Ps \), \([m^3/s]\)
- **Ts** [float, optional] Reference temperature for the specific gravity of the gas, [K]
- **Ps** [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- **Zavg** [float, optional] Average compressibility factor for gas, [-]
- **E** [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

- **Q, P1, P2, D, or L** [float] The missing input which was solved for [base SI]

Notes

This model is also presented in [1] with a leading constant of 2.827, the same exponents as used here, units of mm (diameter), kPa, km (length), and flow in \(m^3/\text{hour} \).

This model is shown in base SI units in [2], and with a leading constant of 94.2565, a diameter power of 2.6911, main group power of 0.5382 and a specific gravity power of 0.858. The difference is very small.

References

[1], [2]

Examples

```python
>>> Fritzsche(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, Tavg=277.15)
39.421535157535565
```

`fluids.compressible.Muller(SG, Tavg, mu, L=None, D=None, P1=None, P2=None, Q=None, Ts=288.7, Ps=101325.0, Zavg=1.0, E=1.0)`

Calculation function for dealing with flow of a compressible gas in a pipeline with the Muller formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
• Downstream pressure
• Diameter of pipe
• Length of pipe

A variety of different constants and expressions have been presented for the Muller formula. Here, the form as in [1] is used but with all inputs in base SI units.

\[
Q = 15.7743 \frac{T_s}{P_s} E \left(\frac{P_1^2 - P_2^2}{L \cdot Z_{avg} \cdot T_{avg}} \right)^{0.575} \left(\frac{D^{2.725}}{\mu^{0.15} S G^{0.425}} \right)
\]

Parameters

- \(SG\) [float] Specific gravity of fluid with respect to air at the reference temperature and pressure \(T_s\) and \(P_s\), [-]
- \(T_{avg}\) [float] Average temperature of the fluid in the pipeline, [K]
- \(\mu\) [float] Average viscosity of the fluid in the pipeline, [Pa*s]
- \(L\) [float, optional] Length of pipe, [m]
- \(D\) [float, optional] Diameter of pipe, [m]
- \(P_1\) [float, optional] Inlet pressure to pipe, [Pa]
- \(P_2\) [float, optional] Outlet pressure from pipe, [Pa]
- \(Q\) [float, optional] Flow rate of gas through pipe at \(T_s\) and \(P_s\), [m^3/s]
- \(T_s\) [float, optional] Reference temperature for the specific gravity of the gas, [K]
- \(P_s\) [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- \(Z_{avg}\) [float, optional] Average compressibility factor for gas, [-]
- \(E\) [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

- \(Q, P_1, P_2, D,\) or \(L\) [float] The missing input which was solved for [base SI]

Notes

This model is presented in [1] with a leading constant of 0.4937, the same exponents as used here, units of inches (diameter), psi, feet (length), Rankine, pound/(foot*second) for viscosity, and 1000 ft^3/hour.

This model is also presented in [2] in both SI and imperial form. The SI form was incorrectly converted and yields much higher flow rates. The imperial version has a leading constant of 85.7368, the same powers as used here except with rounded values of powers of viscosity (0.2609) and specific gravity (0.7391) rearranged to be inside the bracketed group; its units are inches (diameter), psi, miles (length), Rankine, pound/(foot*second) for viscosity, and ft^3/day.

This model is shown in base SI units in [3], and with a leading constant of 15.7650, a diameter power of 2.724, main group power of 0.5747, a specific gravity power of 0.74, and a viscosity power of 0.1494.

References

[1], [2], [3]
Examples

```python
>>> Muller(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5,
...  Tavg=277.15)
... 60.45796698148659
```

`fluids.compressible.IGT(SG, Tavg, mu, L=None, D=None, P1=None, P2=None, Q=None,
Ts=288.7, Ps=101325.0, Zavg=1.0, E=1.0)`

Calculation function for dealing with flow of a compressible gas in a pipeline with the IGT formula. Can calculate any of the following, given all other inputs:

- Flow rate
- Upstream pressure
- Downstream pressure
- Diameter of pipe
- Length of pipe

A variety of different constants and expressions have been presented for the IGT formula. Here, the form as in [1] is used but with all inputs in base SI units.

\[
Q = 24.6241 \frac{T_s}{P_s} E \left(\frac{P_1^2 - P_2^2}{L \cdot Z_{avg} \cdot T_{avg}} \right)^{5/9} \left(\frac{D^{8/3}}{\mu^{1/9} SG^{4/9}} \right)
\]

Parameters

- `SG` [float] Specific gravity of fluid with respect to air at the reference temperature and pressure `Ts` and `Ps`, [-]
- `Tavg` [float] Average temperature of the fluid in the pipeline, [K]
- `mu` [float] Average viscosity of the fluid in the pipeline, [Pa*s]
- `L` [float, optional] Length of pipe, [m]
- `D` [float, optional] Diameter of pipe, [m]
- `P1` [float, optional] Inlet pressure to pipe, [Pa]
- `P2` [float, optional] Outlet pressure from pipe, [Pa]
- `Q` [float, optional] Flow rate of gas through pipe at `Ts` and `Ps`, [m³/s]
- `Ts` [float, optional] Reference temperature for the specific gravity of the gas, [K]
- `Ps` [float, optional] Reference pressure for the specific gravity of the gas, [Pa]
- `Zavg` [float, optional] Average compressibility factor for gas, [-]
- `E` [float, optional] Pipeline efficiency, a correction factor between 0 and 1

Returns

- `Q`, `P1`, `P2`, `D`, or `L` [float] The missing input which was solved for [base SI]

Notes

This model is presented in [1] with a leading constant of 0.6643, the same exponents as used here, units of inches (diameter), psi, feet (length), Rankine, pound/(foot*second) for viscosity, and 1000 ft³/hour.
This model is also presented in [2] in both SI and imperial form. Both forms are correct. The imperial version has a leading constant of 136.9, the same powers as used here except with rounded values of powers of viscosity (0.2) and specific gravity (0.8) rearranged to be inside the bracketed group; its units are inches (diameter), psi, miles (length), Rankine, pound/(foot*second) for viscosity, and ft^3/day.

This model is shown in base SI units in [3], and with a leading constant of 24.6145, and the same powers as used here.

References

[1], [2], [3]

Examples

```python
>>> IGT(D=0.340, P1=90E5, P2=20E5, L=160E3, SG=0.693, mu=1E-5, Tavg=277.15)
48.92351786788815
```

_isothermal_gas_

Calculation function for dealing with flow of a compressible gas in a pipeline for the complete isothermal flow equation. Can calculate any of the following, given all other inputs:

- Mass flow rate
- Upstream pressure (numerical)
- Downstream pressure (analytical or numerical if an overflow occurs)
- Diameter of pipe (numerical)
- Length of pipe

A variety of forms of this equation have been presented, differing in their use of the ideal gas law and choice of gas constant. The form here uses density explicitly, allowing for non-ideal values to be used.

\[
\dot{m}^2 = \left(\frac{\pi D^2}{4}\right) \rho_{\text{avg}} \frac{(P_1^2 - P_2^2)}{P_1 \left(\frac{f_d L}{D} + 2 \ln \frac{P_1}{P_2}\right)}
\]

Parameters

- `rho` [float] Average density of gas in pipe, [kg/m^3]
- `fd` [float] Darcy friction factor for flow in pipe [-]
- `P1` [float, optional] Inlet pressure to pipe, [Pa]
- `P2` [float, optional] Outlet pressure from pipe, [Pa]
- `L` [float, optional] Length of pipe, [m]
- `D` [float, optional] Diameter of pipe, [m]
- `m` [float, optional] Mass flow rate of gas through pipe, [kg/s]

Returns

- `m, P1, P2, D, or L` [float] The missing input which was solved for [base SI]
Notes

The solution for \(P_2 \) has the following closed form, derived using Maple:

\[
P_2 = P_1 \left(e^{\frac{-0.5}{m^2} \left(-Cm^2 + \text{lambertW} \left(\frac{-\frac{B_1}{m^2} e^{-\frac{-Cm^2 + B_1}{m^2}}}{m^2 + B_1} \right) \right)} \right)^{-1}
\]

\[
B = \frac{\pi^2 D^4}{4^2 - \rho_{avg}}
\]

\[
C = \frac{f_d L}{D}
\]

A wide range of conditions are impossible due to choked flow. See \textit{P_isothermal_critical_flow} for details. An exception is raised when they occur.

The 2 multiplied by the logarithm is often shown as a power of the pressure ratio; this is only the case when the pressure ratio is raised to the power of 2 before its logarithm is taken.

A number of limitations exist for this model:

- Density dependence is that of an ideal gas.
- If calculating the pressure drop, the average gas density cannot be known immediately; iteration must be used to correct this.
- The friction factor depends on both the gas density and velocity, so it should be solved for iteratively as well. It changes throughout the pipe as the gas expands and velocity increases.
- The model is not easily adapted to include elevation effects due to the acceleration term included in it.
- As the gas expands, it will change temperature slightly, further altering the density and friction factor.

There are many commercial packages which perform the actual direct integration of the flow, such as OLGA Dynamic Multiphase Flow Simulator, or ASPEN Hydraulics.

This expression has also been presented with the ideal gas assumption directly incorporated into it [4] (note \(R \) is the specific gas constant, in units of J/kg/K):

\[
\dot{m}^2 = \left(\frac{\pi D^2}{4} \right)^2 \frac{(P_2^2 - P_1^2)}{RT \left(\frac{f_d L}{D} + 2 \ln \frac{P_1}{P_2} \right)}
\]

References

[1], [2], [3], [4]

Examples

```python
>>> isothermal_gas(rho=11.3, fd=0.00185, P1=1E6, P2=9E5, L=1000, D=0.5)
145.4847572636031
```

\texttt{fluids.compressible.isothermal_work_compression}(P1, P2, T, Z=1.0)

Calculates the work of compression or expansion of a gas going through an isothermal process.

\[
W = zRT \ln \left(\frac{P_2}{P_1} \right)
\]
Parameters

- **P1** [float] Inlet pressure, [Pa]
- **P2** [float] Outlet pressure, [Pa]
- **T** [float] Temperature of the gas going through an isothermal process, [K]
- **Z** [float] Constant compressibility factor of the gas, [-]

Returns

- **W** [float] Work performed per mole of gas compressed/expanded [J/mol]

Notes

The full derivation with all forms is as follows:

\[
W = \int_{P_1}^{P_2} V dP = zRT \int_{P_1}^{P_2} \frac{1}{P} dP
\]

\[
W = zRT \ln \left(\frac{P_2}{P_1} \right) = P_1V_1 \ln \left(\frac{P_2}{P_1} \right) = P_2V_2 \ln \left(\frac{P_2}{P_1} \right)
\]

The substitutions are according to the ideal gas law with compressibility:

The work of compression/expansion is the change in enthalpy of the gas. Returns negative values for expansion and positive values for compression.

An average compressibility factor can be used where Z changes. For further accuracy, this expression can be used repeatedly with small changes in pressure and the work from each step summed.

This is the best possible case for compression; all actual compressors require more work to do the compression.

By making the compression take a large number of stages and cooling the gas between stages, this can be approached reasonable closely. Integrally geared compressors are often used for this purpose.

References

[1]

Examples

```python
>>> isothermal_work_compression(1E5, 1E6, 300)
5743.427304244769
```

fluids.compressible.polytropic_exponent *(k, n=None, eta_p=None)*

Calculates one of:

- Polytropic exponent from polytropic efficiency
- Polytropic efficiency from the polytropic exponent

\[
n = \frac{k \eta_p}{1 - k(1 - \eta_p)}
\]

\[
\eta_p = \left(\frac{n}{n-1} \right)^{\frac{k}{k-1}} = \frac{n(k-1)}{k(n-1)}
\]
Parameters

- `k` [float] Isentropic exponent of the gas (Cp/Cv) [-]
- `n` [float, optional] Polytropic exponent of the process [-]
- `eta_p` [float, optional] Polytropic efficiency of the process, [-]

Returns

- `n` or `eta_p` [float] Polytropic exponent or polytropic efficiency, depending on input, [-]

References

[1]

Examples

```python
>>> polytropic_exponent(1.4, eta_p=0.78)
1.5780346820809246
```

`fluids.compressible.isentropic_work_compression(T1, k, Z=1.0, P1=None, P2=None, W=None, eta=None)`

Calculation function for dealing with compressing or expanding a gas going through an isentropic, adiabatic process assuming constant Cp and Cv. The polytropic model is the same equation; just provide `n` instead of `k` and use a polytropic efficiency for `eta` instead of a isentropic efficiency. Can calculate any of the following, given all the other inputs:

- W, Work of compression
- P2, Pressure after compression
- P1, Pressure before compression
- eta, isentropic efficiency of compression

\[
W = \left(\frac{k}{k-1}\right) Z R T_1 \left[\left(\frac{P_2}{P_1}\right)^{\frac{(k-1)/k}{k-1}} - 1 \right] / \eta_{isentropic}
\]

Parameters

- `T1` [float] Initial temperature of the gas, [K]
- `k` [float] Isentropic exponent of the gas (Cp/Cv) or polytropic exponent `n` to use this as a polytropic model instead [-]
- `Z` [float, optional] Constant compressibility factor of the gas, [-]
- `P1` [float, optional] Inlet pressure, [Pa]
- `P2` [float, optional] Outlet pressure, [Pa]
- `W` [float, optional] Work performed per mole of gas compressed/expended [J/mol]
- `eta` [float, optional] Isentropic efficiency of the process or polytropic efficiency of the process to use this as a polytropic model instead [-]

Returns

- `W`, `P1`, `P2`, or `eta` [float] The missing input which was solved for [base SI]
Notes

For the same compression ratio, this is always of larger magnitude than the isothermal case.

The full derivation is as follows:

For constant-heat capacity “isentropic” fluid,

\[V = \frac{P_1^{1/k}}{P_1^{1/k}} \]

\[W = \int_{P_1}^{P_2} V dP = \int_{P_1}^{P_2} \frac{P_1^{1/k}}{P_1} dP \]

\[W = \frac{P_1^{1/k} V_1}{1 - \frac{k}{k}} \left[P_2^{1-1/k} - P_1^{1-1/k} \right] \]

After performing the integration and substantial mathematical manipulation we can obtain:

\[W = \left(\frac{k}{k-1} \right) P_1 V_1 \left[\left(\frac{P_2}{P_1} \right)^{(k-1)/k} - 1 \right] \]

Using PV = ZRT:

\[W = \left(\frac{k}{k-1} \right) ZRT_1 \left[\left(\frac{P_2}{P_1} \right)^{(k-1)/k} - 1 \right] \]

The work of compression/expansion is the change in enthalpy of the gas. Returns negative values for expansion and positive values for compression.

An average compressibility factor should be used as Z changes. For further accuracy, this expression can be used repeatedly with small changes in pressure and new values of isentropic exponent, and the work from each step summed.

For the polytropic case this is not necessary, as eta corrects for the simplification.

References

[1]

Examples

```python
>>> isentropic_work_compression(P1=1E5, P2=1E6, T1=300, k=1.4, eta=0.78)
10416.876986384483
```

fluids.compressible.isentropic_efficiency *(P1, P2, k, eta_s=None, eta_p=None)*

Calculates either isentropic or polytropic efficiency from the other type of efficiency.

\[\eta_s = \frac{(P_2/P_1)^{(k-1)/k} - 1}{(P_2/P_1)^{(k-1)/k} - 1} \]

\[\eta_p = \frac{(k - 1) \log \left(\frac{P_2}{P_1} \right)}{k \log \left(\frac{1}{\eta_s + \left(\frac{P_2}{P_1} \right)^{(k-1)/k} - 1} \right)} \]
Parameters

- **P1** [float] Initial pressure of gas [Pa]
- **P2** [float] Final pressure of gas [Pa]
- **k** [float] Isentropic exponent of the gas (Cp/Cv) [-]
- **eta_s** [float, optional] Isentropic (adiabatic) efficiency of the process, [-]
- **eta_p** [float, optional] Polytropic efficiency of the process, [-]

Returns

- **eta_s** or **eta_p** [float] Isentropic or polytropic efficiency, depending on input, [-]

Notes

The form for obtained **eta_p** from **eta_s** was derived with SymPy.

References

[1]

Examples

```python
>>> isentropic_efficiency(1E5, 1E6, 1.4, eta_p=0.78)
0.7027614191263858
```

```
fluids.compressible.isentropic_T_rise_compression(T1, P1, P2, k, eta=1)
```

Calculates the increase in temperature of a fluid which is compressed or expanded under isentropic, adiabatic conditions assuming constant Cp and Cv. The polytropic model is the same equation; just provide \(n \) instead of \(k \) and use a polytropic efficiency for \(\eta \) instead of a isentropic efficiency.

\[
T_2 = T_1 + \frac{\Delta T_s}{\eta_s} = T_1 \left(1 + \frac{1}{\eta_s} \left[\left(\frac{P_2}{P_1} \right)^{(k-1)/k} - 1 \right] \right)
\]

Parameters

- **T1** [float] Initial temperature of gas [K]
- **P1** [float] Initial pressure of gas [Pa]
- **P2** [float] Final pressure of gas [Pa]
- **k** [float] Isentropic exponent of the gas (Cp/Cv) or polytropic exponent \(n \) to use this as a polytropic model instead [-]
- **eta** [float] Isentropic efficiency of the process or polytropic efficiency of the process to use this as a polytropic model instead [-]

Returns

- **T2** [float] Final temperature of gas [K]
Notes

For the ideal case (\(\eta=1 \)), the model simplifies to:

\[
\frac{T_2}{T_1} = \left(\frac{P_2}{P_1} \right)^{(k-1)/k}
\]

References

[1], [2]

Examples

```python
>>> isentropic_T_rise_compression(286.8, 54050, 432400, 1.4)
519.5230938217768
```

fluids.compressible.T_critical_flow(*T*, *k*)

Calculates critical flow temperature \(T_{cf} \) for a fluid with the given isentropic coefficient. \(T_{cf} \) is in a flow (with \(Ma=1 \)) whose stagnation conditions are known. Normally used with converging/diverging nozzles.

\[
\frac{T^*}{T_0} = \frac{2}{k + 1}
\]

Parameters

- **T** [float] Stagnation temperature of a fluid with \(Ma=1 \) [K]
- **k** [float] Isentropic coefficient []

Returns

- **Tcf** [float] Critical flow temperature at \(Ma=1 \) [K]

Notes

Assumes isentropic flow.

References

[1]

Examples

Example 12.4 in [1]:

```python
>>> T_critical_flow(473, 1.289)
413.2809086937528
```

fluids.compressible.P_critical_flow(*P*, *k*)

Calculates critical flow pressure \(P_{cf} \) for a fluid with the given isentropic coefficient. \(P_{cf} \) is in a flow (with \(Ma=1 \)) whose stagnation conditions are known. Normally used with converging/diverging nozzles.

\[
\frac{P^*}{P_0} = \left(\frac{2}{k + 1} \right)^{k/(k-1)}
\]
Parameters

- **P** [float] Stagnation pressure of a fluid with Ma=1 [Pa]
- **k** [float] Isentropic coefficient []

Returns

- **Pcf** [float] Critical flow pressure at Ma=1 [Pa]

Notes

Assumes isentropic flow.

References

[1]

Examples

Example 12.4 in [1]:

```python
>>> P_critical_flow(1400000, 1.289)
766812.9022792266
```

 fluids.compressible.P_isothermal_critical_flow(P, fd, D, L)
 Calculates critical flow pressure Pcf for a fluid flowing isothermally and suffering pressure drop caused by a pipe’s friction factor.

\[
P_2 = P_1 e^{\frac{1}{D} \left(\text{LambertW} \left(-e^{\frac{1}{D} \left(-D - L f_d \right)} \right) + 1 \right) + L f_d}
\]

Parameters

- **P** [float] Inlet pressure [Pa]
- **fd** [float] Darcy friction factor for flow in pipe [-]
- **D** [float] Diameter of pipe, [m]
- **L** [float] Length of pipe, [m]

Returns

- **Pcf** [float] Critical flow pressure of a compressible gas flowing from \(P_1 \) to \(Pcf \) in a tube of length \(L \) and friction factor \(f_d \) [Pa]

Notes

Assumes isothermal flow. Developed based on the *isothermal_gas* model, using SymPy.

The isothermal gas model is solved for maximum mass flow rate; any pressure drop under it is impossible due to the formation of a shock wave.

References

[1]
Examples

```python
>>> P_isothermal_critical_flow(P=1E6, fd=0.00185, L=1000., D=0.5)
389699.7317645518
```

`fluids.compressible.is_critical_flow(P1, P2, k)`

Determines if a flow of a fluid driven by pressure gradient `P1 - P2` is critical, for a fluid with the given isentropic coefficient. This function calculates critical flow pressure, and checks if this is larger than `P2`. If so, the flow is critical and choked.

Parameters

- `P1` [float] Higher, source pressure [Pa]
- `P2` [float] Lower, downstream pressure [Pa]
- `k` [float] Isentropic coefficient []

Returns

- `flowtype` [bool] True if the flow is choked; otherwise False

Notes

Assumes isentropic flow. Uses `P_critical_flow` function.

References

[1]

Examples

Examples 1-2 from API 520.

```python
>>> is_critical_flow(670E3, 532E3, 1.11)
False
>>> is_critical_flow(670E3, 101E3, 1.11)
True
```

`fluids.compressible.stagnation_energy(V)`

Calculates the increase in enthalpy \(dH\) which is provided by a fluid’s velocity \(V\).

\[
\Delta H = \frac{V^2}{2}
\]

Parameters

- `V` [float] Velocity [m/s]

Returns

- `dH` [float] Increase in enthalpy [J/kg]

Notes

The units work out. This term is pretty small, but not trivial.
References

[1]

Examples

```python
>>> stagnation_energy(125)
7812.5
```

`fluids.compressible.P_stagnation(P, T, Tst, k)`

Calculates stagnation flow pressure \(P_{st} \) for a fluid with the given isentropic coefficient and specified stagnation temperature and normal temperature. Normally used with converging/diverging nozzles.

\[
\frac{P_0}{P} = \left(\frac{T_0}{T} \right)^{\frac{k}{k-1}}
\]

Parameters

- `P` [float] Normal pressure of a fluid [Pa]
- `T` [float] Normal temperature of a fluid [K]
- `Tst` [float] Stagnation temperature of a fluid moving at a certain velocity [K]
- `k` [float] Isentropic coefficient []

Returns

- `Pst` [float] Stagnation pressure of a fluid moving at a certain velocity [Pa]

Notes

Assumes isentropic flow.

References

[1]

Examples

Example 12-1 in [1].

```python
>>> P_stagnation(54050., 255.7, 286.8, 1.4)
80772.80495900588
```

`fluids.compressible.T_stagnation(T, P, Pst, k)`

Calculates stagnation flow temperature \(T_{st} \) for a fluid with the given isentropic coefficient and specified stagnation pressure and normal pressure. Normally used with converging/diverging nozzles.

\[
T = T_0 \left(\frac{P}{P_0} \right)^{\frac{k-1}{k}}
\]

Parameters

- `T` [float] Normal temperature of a fluid [K]
Fluids Documentation, Release 0.1.86

P [float] Normal pressure of a fluid [Pa]

Pst [float] Stagnation pressure of a fluid moving at a certain velocity [Pa]

k [float] Isentropic coefficient []

Returns

Tst [float] Stagnation temperature of a fluid moving at a certain velocity [K]

Notes

Assumes isentropic flow.

References

[1]

Examples

Example 12-1 in [1].

```python
>>> T_stagnation(286.8, 54050, 54050*8, 1.4)
519.5230938217768
```

fluids.compressible.T_stagnation

Calculates the ideal stagnation temperature *Tst* calculated assuming the fluid has a constant heat capacity *Cp* and with a specified velocity *V* and temperature *T*.

\[
T^* = T + \frac{V^2}{2C_p}
\]

Parameters

- **T** [float] Temperature [K]
- **V** [float] Velocity [m/s]
- **Cp** [float] Ideal heat capacity [J/kg/K]

Returns

Tst [float] Stagnation temperature [J/kg]

References

[1]

Examples

Example 12-1 in [1].

```python
>>> T_stagnation(255.7, 250, 1005.)
286.79452736318405
```
2.3 Control valve sizing and rating (fluids.control_valve)

`fluids.control_valve.size_control_valve_l(rho, Psat, Pc, mu, P1, P2, Q, D1=None, D2=None, d=None, FL=0.9, Fd=1, allow_choked=True, allow_laminar=True, full_output=False)`

Calculates flow coefficient of a control valve passing a liquid according to IEC 60534. Uses a large number of inputs in SI units. Note the return value is not standard SI. All parameters are required. This sizing model does not officially apply to liquid mixtures, slurries, non-Newtonian fluids, or liquid-solid conveyance systems. For details of the calculations, consult [1].

Parameters

- **rho** [float] Density of the liquid at the inlet [kg/m³]
- **Psat** [float] Saturation pressure of the fluid at inlet temperature [Pa]
- **Pc** [float] Critical pressure of the fluid [Pa]
- **mu** [float] Viscosity of the fluid [Pa*s]
- **P1** [float] Inlet pressure of the fluid before valves and reducers [Pa]
- **P2** [float] Outlet pressure of the fluid after valves and reducers [Pa]
- **Q** [float] Volumetric flow rate of the fluid [m³/s]
- **D1** [float, optional] Diameter of the pipe before the valve [m]
- **D2** [float, optional] Diameter of the pipe after the valve [m]
- **d** [float, optional] Diameter of the valve [m]
- **FL** [float, optional] Liquid pressure recovery factor of a control valve without attached fittings (normally 0.8-0.9 at full open and decreasing as opened further to below 0.5; use default very cautiously!) []
- **Fd** [float, optional] Valve style modifier (0.1 to 1; varies tremendously depending on the type of valve and position; do not use the default at all!) []

- **allow_choked** [bool, optional] Overrides the automatic transition into the choked regime if this is False and returns as if choked flow does not exist
- **allow_laminar** [bool, optional] Overrides the automatic transition into the laminar regime if this is False and returns as if laminar flow does not exist
- **full_output** [bool, optional] If True, returns intermediate calculation values as well as Kv in the form of a dictionary containing ‘Kv’, ‘Rev’, ‘choked’, ‘FL’, ‘FLP’, ‘FR’, ‘FP’, and ‘laminar’. Some may be None if they are not used in the calculation.

Returns

- **Kv** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]

Notes

It is possible to use this model without any diameters specified; in that case, turbulent flow is assumed. Choked flow can still be modeled. This is not recommended. All three diameters need to be None for this to work. *FL* and *Fd* are not used by the models when the diameters are not specified.
References

[1]

Examples

From [1], matching example 1 for a globe, parabolic plug, flow-to-open valve.

```python
>>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4,
... P1=680E3, P2=220E3, Q=0.1, D1=0.15, D2=0.15, d=0.15,
... FL=0.9, Fd=0.46)
164.9954763704956
```

From [1], matching example 2 for a ball, segmented ball, flow-to-open valve.

```python
>>> size_control_valve_l(rho=965.4, Psat=70.1E3, Pc=22120E3, mu=3.1472E-4,
... P1=680E3, P2=220E3, Q=0.1, D1=0.1, D2=0.1, d=0.1,
... FL=0.6, Fd=0.98)
238.05817216710483
```

`fluids.control_valve.size_control_valve_g(T, MW, mu, gamma, Z, P1, P2, Q, D1=None,
D2=None, d=None, FL=0.9, Fd=1, xT=0.7,
allow_choked=True, allow_laminar=True, full_output=False)`

Calculates flow coefficient of a control valve passing a gas according to IEC 60534. Uses a large number of inputs in SI units. Note the return value is not standard SI. All parameters are required. For details of the calculations, consult [1]. Note the inlet gas flow conditions.

Parameters

- **T** [float] Temperature of the gas at the inlet [K]
- **MW** [float] Molecular weight of the gas [g/mol]
- **mu** [float] Viscosity of the fluid at inlet conditions [Pa*s]
- **gamma** [float] Specific heat capacity ratio [-]
- **Z** [float] Compressibility factor at inlet conditions, [-]
- **P1** [float] Inlet pressure of the gas before valves and reducers [Pa]
- **P2** [float] Outlet pressure of the gas after valves and reducers [Pa]
- **Q** [float] Volumetric flow rate of the gas at 273.15 K and 1 atm specifically [m^3/s]
- **D1** [float, optional] Diameter of the pipe before the valve [m]
- **D2** [float, optional] Diameter of the pipe after the valve [m]
- **d** [float, optional] Diameter of the valve [m]
- **FL** [float, optional] Liquid pressure recovery factor of a control valve without attached fittings (normally 0.8-0.9 at full open and decreasing as opened further to below 0.5; use default very cautiously!) []
- **Fd** [float, optional] Valve style modifier (0.1 to 1; varies tremendously depending on the type of valve and position; do not use the default at all!) []
- **xT** [float, optional] Pressure difference ratio factor of a valve without fittings at choked flow (increasing to 0.9 or higher as the valve is closed further and decreasing to 0.1 or lower as the valve is opened further; use default very cautiously!) [-]
allow_choked [bool, optional] Overrides the automatic transition into the choked regime if this is False and returns as if choked flow does not exist

allow_laminar [bool, optional] Overrides the automatic transition into the laminar regime if this is False and returns as if laminar flow does not exist

Returns

Kv [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/3/hr]

Notes

It is possible to use this model without any diameters specified; in that case, turbulent flow is assumed. Choked flow can still be modeled. This is not recommended. All three diameters need to be None for this to work. FL and Fd are not used by the models when the diameters are not specified, but xT definitely is used by the model. When this model does not converge, the result is normally because of the specified delta P being less than that caused by the piping diameter changes.

References

[1]

Examples

From [1], matching example 3 for non-choked gas flow with attached fittings and a rotary, eccentric plug, flow-to-open control valve:

```python
>>> size_control_valve_g(T=433., MW=44.01, mu=1.4665E-4, gamma=1.30,
... Z=0.988, P1=680E3, P2=310E3, Q=38/36., D1=0.08, D2=0.1, d=0.05,
... FL=0.85, Fd=0.42, xT=0.60)
72.5866454539105
```

From [1], roughly matching example 4 for a small flow trim sized tapered needle plug valve. Difference is 3% and explained by the difference in algorithms used.

```python
>>> size_control_valve_g(T=320., MW=39.95, mu=5.625E-5, gamma=1.67, Z=1.0,
... P1=2.8E5, P2=1.3E5, Q=0.46/3600., D1=0.015, D2=0.015, d=0.015, FL=0.98,
... Fd=0.07, xT=0.8)
0.016498765335995726
```

```python
fluids.control_valve.cavitation_index(P1, P2, Psat)
```

Calculates the cavitation index of a valve with upstream and downstream absolute pressures P1 and P2 for a fluid with a vapor pressure Psat.

\[
\sigma = \frac{P_1 - P_{sat}}{P_1 - P_2}
\]

Parameters

- **P1** [float] Absolute pressure upstream of the valve [Pa]
P2 [float] Absolute pressure downstream of the valve [Pa]

Psat [float] Saturation pressure of the liquid at inlet temperature [Pa]

Returns

sigma [float] Cavitation index of the valve [-]

Notes

Larger values are safer. Models for adjusting cavitation indexes provided by the manufacturer to the user’s conditions are available, making use of scaling the pressure differences and size differences.

Values can be calculated for incipient cavitation, constant cavitation, maximum vibration cavitation, incipient damage, and choking cavitation.

Has also been defined as:

\[\sigma = \frac{P_2 - P_{sat}}{P_1 - P_2} \]

Another definition and notation series is:

\[K = xF = 1 - \frac{P_1 - P_2}{P_1 - P_{sat}} \]

References

[1]

Examples

```python
>>> cavitation_index(1E6, 8E5, 2E5)
4.0
```

`fluids.control_valve.FF_critical_pressure_ratio_1(Psat, Pc)`

Calculates FF, the liquid critical pressure ratio factor, for use in IEC 60534 liquid valve sizing calculations.

\[F_F = 0.96 - 0.28 \sqrt{\frac{P_{sat}}{P_c}} \]

Parameters

Psat [float] Saturation pressure of the liquid at inlet temperature [Pa]

Pc [float] Critical pressure of the liquid [Pa]

Returns

FF [float] Liquid critical pressure ratio factor [-]

References

[1]
Examples

From [1], matching example.

```python
>>> FF_critical_pressure_ratio_l(70100.0, 22120000.0)
0.9442375225233299
```

```python
fluids.control_valve.is_choked_turbulent_l(dP, P1, Psat, FF, FL=None, FLP=None, FP=None)
```

Calculates if a liquid flow in IEC 60534 calculations is critical or not, for use in IEC 60534 liquid valve sizing calculations. Either FL may be provided or FLP and FP, depending on the calculation process.

\[
\Delta P > F_F^2 (P_1 - F_F P_{sat})
\]

\[
\Delta P >= \left(\frac{F_{LP}}{F_P} \right)^2 (P_1 - F_F P_{sat})
\]

Parameters

- **dP** [float] Differential pressure across the valve, with reducer/expanders [Pa]
- **P1** [float] Pressure of the fluid before the valve and reducers/expanders [Pa]
- **Psat** [float] Saturation pressure of the fluid at inlet temperature [Pa]
- **FF** [float] Liquid critical pressure ratio factor [-]
- **FL** [float, optional] Liquid pressure recovery factor of a control valve without attached fittings [-]
- **FLP** [float, optional] Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-]
- **FP** [float, optional] Piping geometry factor [-]

Returns

- **choked** [bool] Whether or not the flow is choked [-]

References

[1]

Examples

```python
>>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.9)
False
>>> is_choked_turbulent_l(460.0, 680.0, 70.1, 0.94, 0.6)
True
```

```python
fluids.control_valve.is_choked_turbulent_g(x, Fgamma, xT=None, xTP=None)
```

Calculates if a gas flow in IEC 60534 calculations is critical or not, for use in IEC 60534 gas valve sizing calculations. Either xT or xTP must be provided, depending on the calculation process.

\[
x \geq F_\gamma x_T
\]

\[
x \geq F_\gamma x_{TP}
\]

Parameters
x [float] Differential pressure over inlet pressure, [-]
Fgamma [float] Specific heat ratio factor [-]
xT [float, optional] Pressure difference ratio factor of a valve without fittings at choked flow [-]
xTP [float] Pressure difference ratio factor of a valve with fittings at choked flow [-]

Returns
choked [bool] Whether or not the flow is choked [-]

References
[1]

Examples
Example 3, compressible flow, non-choked with attached fittings:

```python
>>> is_choked_turbulent_g(0.544, 0.929, 0.6)
False
>>> is_choked_turbulent_g(0.544, 0.929, xTP=0.625)
False
```

```
fluids.control_valve.Reynolds_valve(nu, Q, D1, FL, Fd, C)
Calculates Reynolds number of a control valve for a liquid or gas flowing through it at a specified Q, for a
specified D1, FL, Fd, C, and with kinematic viscosity nu according to IEC 60534 calculations.

\[
Re_v = \frac{N_4 F_d Q}{\nu \sqrt{CF_L}} \left( \frac{F_d^2 C^2}{N_2 D^4} + 1 \right)^{1/4}
\]

Parameters

nu [float] Kinematic viscosity, [m^2/s]
Q [float] Volumetric flow rate of the fluid [m^3/s]
D1 [float] Diameter of the pipe before the valve [m]
FL [float, optional] Liquid pressure recovery factor of a control valve without attached fittings []
Fd [float] Valve style modifier [-]
C [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr]

Returns

Rev [float] Valve reynolds number [-]

References

[1]
Examples

```python
given_3.26e-07, 360, 150.0, 0.9, 0.46, 165
gives 2966984.7525455453
```

`fluids.control_valve.loss_coefficient_piping(d, D1=None, D2=None)`
Calculates the sum of loss coefficients from possible inlet/outlet reducers/expanders around a control valve according to IEC 60534 calculations.

\[
\Sigma \xi = \xi_1 + \xi_2 + \xi_{B1} - \xi_{B2}
\]

\[
\xi_1 = 0.5 \left[ 1 - \left( \frac{d}{D_1} \right)^2 \right]^2
\]

\[
\xi_2 = 1.0 \left[ 1 - \left( \frac{d}{D_2} \right)^2 \right]^2
\]

\[
\xi_{B1} = 1 - \left( \frac{d}{D_1} \right)^4
\]

\[
\xi_{B2} = 1 - \left( \frac{d}{D_2} \right)^4
\]

Parameters

`d` [float] Diameter of the valve [m]

`D1` [float] Diameter of the pipe before the valve [m]

`D2` [float] Diameter of the pipe after the valve [m]

Returns

`loss` [float] Sum of the four loss coefficients [-]

References

[1]

Examples

In example 3, non-choked compressible flow with fittings:

```python
given 0.05, 0.08, 0.1
returns 0.6580810546875
```

`fluids.control_valve.Reynolds_factor(FL, C, d, Rev, full_trim=True)`
Calculates the Reynolds number factor \( FR \) for a valve with a Reynolds number \( Rev \), diameter \( d \), flow coefficient \( C \), liquid pressure recovery factor \( FL \), and with either full or reduced trim, all according to IEC 60534 calculations.

If full trim:

\[
FR,1a = 1 + \left( \frac{0.33FL^{0.5}}{n_1^{0.25}} \right) \log_{10} \left( \frac{Rev}{10000} \right)
\]

\[
FR,2 = \min \left( \frac{0.026}{FL} \sqrt{n_1 Rev}, 1 \right)
\]
\[ n_1 = \frac{N_2}{\left(\frac{C}{d}\right)^2} \]

\[ F_R = F_{R,2} \text{ if } \text{Rev} < 10 \text{ else } \min(F_{R,1a}, F_{R,2}) \]

Otherwise:

\[ F_{R,3a} = 1 + \left( \frac{0.33 F_{0.5}}{n_2^{0.25}} \right) \log_{10} \left( \frac{Re_v}{10000} \right) \]

\[ F_{R,A} = \frac{0.026}{F_L} \sqrt{n_2 Re_v} \]

\[ n_2 = 1 + N_{32} \left( \frac{C}{d} \right)^{2/3} \]

\[ F_R = F_{R,A} \text{ if } \text{Rev} < 10 \text{ else } \min(F_{R,3a}, F_{R,A}) \]

**Parameters**

- **FL** [float] Liquid pressure recovery factor of a control valve without attached fittings []
- **C** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]
- **d** [float] Diameter of the valve [m]
- **Rev** [float] Valve reynolds number [-]
- **full_trimm** [bool] Whether or not the valve has full trim

**Returns**

- **FR** [float] Reynolds number factor for laminar or transitional flow []

**References**

[1]

**Examples**

In Example 4, compressible flow with small flow trim sized for gas flow (Cv in the problem was converted to Kv here to make FR match with N32, N2):

```python
>>> Reynolds_factor(FL=0.98, C=0.015483, d=15., Rev=1202., full_trim=False)
0.7148753122302025
```

**Other scales** are *Qn* and *Cg*, but clear definitions have yet to be found.

**Parameters**

- **flow_coefficient** [float] Value of the flow coefficient to be converted, expressed in the original scale.
**old_scale** [str] String specifying the original scale; one of ‘Av’, ‘Cv’, or ‘Kv’, [-]

**new_scale** [str] String specifying the new scale; one of ‘Av’, ‘Cv’, or ‘Kv’, [-]

**Returns**

**converted_flow_coefficient** [float] Flow coefficient converted to the specified scale.

**Notes**

Q_n is a scale based on a flow of air in units of L/minute as air travels through a valve and loses one bar of pressure (initially 7 bar absolute, to 6 bar absolute). No consistent conversion factors have been found and those from theory do not match what have been found. Some uses of Q_n use its flow rate as in normal (STP reference conditions) flow rate of air; others use something like the 7 bar absolute condition.

**Examples**

```python
>>> convert_flow_coefficient(10, 'Kv', 'Av')
0.0002776532068951358
```

**fluids.control_valve.control_valve_choke_P_l** *(Psat, Pc, FL, P1=None, P2=None, disp=True)*

Calculates either the upstream or downstream pressure at which choked flow through a liquid control valve occurs, given either a set upstream or downstream pressure. Implements an analytical solution of the needed equations from the full function `size_control_valve_l`. For some pressures, no choked flow is possible; for choked flow to occur the direction of flow must be reversed. If *disp* is True, an exception will be raised for these conditions.

\[
P_1 = \frac{F_F F_L^2 P_{sat} - P_2}{F_L^2 - 1}
\]

\[
P_2 = F_F F_L^2 P_{sat} - F_L^2 P_1 + P_1
\]

**Parameters**

- **Psat** [float] Saturation pressure of the liquid at inlet temperature [Pa]
- **Pc** [float] Critical pressure of the liquid [Pa]
- **FL** [float, optional] Liquid pressure recovery factor of a control valve without attached fittings [-]
- **P1** [float, optional] Absolute pressure upstream of the valve [Pa]
- **P2** [float, optional] Absolute pressure downstream of the valve [Pa]
- **disp** [bool, optional] Whether or not to raise an exception on flow reversal, [-]

**Returns**

- **P_choke** [float] Pressure at which a choke occurs in the liquid valve [Pa]

**Notes**

Extremely cheap to compute.
**Examples**

```python
>>> control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, 680000.0)
458887.5306077305

>>> control_valve_choke_P_l(69682.89291024722, 22048320.0, 0.6, P2=458887.5306077305)
680000.0
```

```python
fluids.control_valve.control_valve_choke_P_g(xT, gamma, P1=None, P2=None)
```

Calculates either the upstream or downstream pressure at which choked flow through a gas control valve occurs, given either a set upstream or downstream pressure. Implements an analytical solution of the needed equations from the full function `size_control_valve_g`. A singularity arises as \( xT \) goes to 1 and \( \gamma \) goes to 1.4.

\[
P_1 = -\frac{7P_2}{5\gamma x_T - 7}
\]

\[
P_2 = \frac{P_1}{7} (-5\gamma x_T + 7)
\]

**Parameters**

- \( xT \) [float, optional] Pressure difference ratio factor of a valve without fittings at choked flow [-]
- \( \gamma \) [float] Specific heat capacity ratio [-]
- \( P1 \) [float] Specific heat capacity ratio [-] Absolute pressure upstream of the valve [Pa]
- \( P2 \) [float, optional] Absolute pressure downstream of the valve [Pa]

**Returns**

- \( P_{\text{choke}} \) [float] Pressure at which a choke occurs in the gas valve [Pa]

**Notes**

Extremely cheap to compute.

**Examples**

```python
>>> control_valve_choke_P_g(1.0, 1.3, 1E5)
7142.857142857143

>>> control_valve_choke_P_g(1.0, 1.3, P2=7142.857142857143)
100000.0
```

```python
fluids.control_valve.control_valve_noise_l_2015(m, P1, P2, Psat, rho, c, Kv, d, Di, FL, Fd, t_pipe, rho_pipe=7800.0, c_pipe=5000.0, rho_air=1.2, c_air=343.0, xFz=None, An=-4.6)
```

Calculates the sound made by a liquid flowing through a control valve according to the standard IEC 60534-8-4 (2015) [1].

**Parameters**

- \( m \) [float] Mass flow rate of liquid through the control valve, [kg/s]
- \( P1 \) [float] Inlet pressure of the fluid before valves and reducers [Pa]
- \( P2 \) [float] Outlet pressure of the fluid after valves and reducers [Pa]
**Psat** [float] Saturation pressure of the fluid at inlet temperature [Pa]

**rho** [float] Density of the liquid at the inlet [kg/m³]

**c** [float] Speed of sound of the liquid at the inlet conditions [m/s]

**Kv** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]

**d** [float] Diameter of the valve [m]

**Di** [float] Internal diameter of the pipe before and after the valve [m]

**FL** [float, optional] Liquid pressure recovery factor of a control valve without attached fittings (normally 0.8-0.9 at full open and decreasing as opened further to below 0.5) [-]

**Fd** [float, optional] Valve style modifier [-]

**t_pipe** [float] Wall thickness of the pipe after the valve, [m]

**rho_pipe** [float, optional] Density of the pipe wall material at flowing conditions, [kg/m³]

**c_pipe** [float, optional] Speed of sound of the pipe wall material at flowing conditions, [m/s]

**rho_air** [float, optional] Density of the air surrounding the valve and pipe wall, [kg/m³]

**c_air** [float, optional] Speed of sound of the air surrounding the valve and pipe wall, [m/s]

**xFz** [float, optional] If specified, this value xFz is used instead of estimated; the calculation is sensitive to this value, [-]

**An** [float, optional] Valve correction factor for acoustic efficiency

**Returns**

**LpAe1m** [float] A weighted sound pressure level 1 m from the pipe wall, 1 m distance downstream of the valve (at reference sound pressure level 2E-5), [dB]

**Notes**

For formulas see [1]. This takes on the order of 100 us to compute. This model can also tell if noise is being produced in a valve just due to turbulent flow, or cavitation. For values of An, see [1]; it is normally -4.6 for globel valves, -4.3 for butterfly valves, and -4.0 for expanders.

This model was checked against three examples in [1]; they match to all given decimals.

A formula is given in [1] for multihole trim valves to estimate xFz as well; this is not implemented here and xFz must be calculated by the user separately. The formula is

\[ x_{Fz} = \left( 4.5 + 1650 \frac{N_0 d_H^2}{F_L} \right)^{-1/2} \]

Where \( N_0 \) is the number of open channels and \( d_H \) is the multihole trim hole diameter.

**References**

[1]
Examples

```python
>>> control_valve_noise_l_2015(m=40, P1=1E6, P2=6.5E5, Psat=2.32E3,
... rho=997, c=1400, Kv=77.848, d=0.1, Di=0.1071, FL=0.92, Fd=0.42,
... t_pipe=0.0036, rho_pipe=7800.0, c_pipe=5000.0, rho_air=1.293,
... c_air=343.0, An=-4.6)
81.58200097996
```

Calculates the sound made by a gas flowing through a control valve according to the standard IEC 60534-8-3 (2011) [1].

**Parameters**

- **m** [float] Mass flow rate of gas through the control valve, [kg/s]
- **P1** [float] Inlet pressure of the gas before valves and reducers [Pa]
- **P2** [float] Outlet pressure of the gas after valves and reducers [Pa]
- **T1** [float] Inlet gas temperature, [K]
- **rho** [float] Density of the gas at the inlet [kg/m^3]
- **gamma** [float] Specific heat capacity ratio [-]
- **MW** [float] Molecular weight of the gas [g/mol]
- **Kv** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr]
- **d** [float] Diameter of the valve [m]
- **Di** [float] Internal diameter of the pipe before and after the valve [m]
- **t_pipe** [float] Wall thickness of the pipe after the valve, [m]
- **Fd** [float] Valve style modifier (0.1 to 1; varies tremendously depending on the type of valve and position; do not use the default at all!) [-]
- **FL** [float] Liquid pressure recovery factor of a control valve without attached fittings (normally 0.8-0.9 at full open and decreasing as opened further to below 0.5; use default very cautiously!) [-]
- **FLP** [float, optional] Combined liquid pressure recovery factor with piping geometry factor, for a control valve with attached fittings [-]
- **FP** [float, optional] Piping geometry factor [-]
- **rho_pipe** [float, optional] Density of the pipe wall material at flowing conditions, [kg/m^3]
- **c_pipe** [float, optional] Speed of sound of the pipe wall material at flowing conditions, [m/s]
- **P_air** [float, optional] Pressure of the air surrounding the valve and pipe wall, [Pa]
- **rho_air** [float, optional] Density of the air surrounding the valve and pipe wall, [kg/m^3]
- **c_air** [float, optional] Speed of sound of the air surrounding the valve and pipe wall, [m/s]
- **An** [float, optional] Valve correction factor for acoustic efficiency, [-]
**Stp** [float, optional] Strouhal number at the peak \( f_p \); between 0.1 and 0.3 typically, [-]

**T2** [float, optional] Outlet gas temperature; assumed \( T_1 \) if not provided (a PH flash should be used to obtain this if possible), [K]

**beta** [float, optional] Valve outlet / expander inlet contraction coefficient, [-]

**Returns**

**LpAe1m** [float] A-weighted sound pressure level 1 m from the pipe wall, 1 m distance downstream of the valve (at reference sound pressure level 2E-5), [dB]

**Notes**

For formulas see [1]. This takes on the order of 100 us to compute. For values of \( A_n \), see [1].

This model was checked against six examples in [1]; they match to all given decimals.

Several additional formulas are given for multi-hole trim valves, control valves with two or more fixed area stages, and multipath, multistage trim valves.

**References**

[1]

**Examples**

```python
>>> control_valve_noise_g_2011(m=2.22, P1=1E6, P2=7.2E5, T1=450, rho=5.3,...
gamma=1.22, Mw=19.8, Kv=77.85, d=0.1, Di=0.2031, FL=None, FLP=0.792,...
FP=0.98, Fd=0.296, t_pipe=0.008, rho_pipe=8000.0, c_pipe=5000.0,...
rho_air=1.293, c_air=343.0, An=-3.8, Stp=0.2)
91.67702674629604
```

## 2.4 Dimensionless numbers (fluids.core)

**fluids.core.Reynolds** \((V, D, rho=None, mu=None, nu=None)\)

Calculates Reynolds number or \( Re \) for a fluid with the given properties for the specified velocity and diameter.

\[
Re = \frac{D \cdot V}{\nu} = \frac{\rho V D}{\mu}
\]

**Inputs** either of any of the following sets:

- \( V, D \), density \( rho \) and kinematic viscosity \( mu \)
- \( V, D \), and dynamic viscosity \( nu \)

**Parameters**

- \( V \) [float] Velocity [m/s]
- \( D \) [float] Diameter [m]
- \( rho \) [float, optional] Density, [kg/m^3]
- \( mu \) [float, optional] Dynamic viscosity, [Pa*s]
Fluids Documentation, Release 0.1.86

nu [float, optional] Kinematic viscosity, [m^2/s]

Returns

Re [float] Reynolds number []

Notes

\[ Re = \frac{\text{Momentum}}{\text{Viscosity}} \]

An error is raised if none of the required input sets are provided.

References

[1], [2]

Examples

```python
>>> Reynolds(2.5, 0.25, 1.1613, 1.9E-5)
38200.65789473684
>>> Reynolds(2.5, 0.25, nu=1.636e-05)
38202.93398533008
```

fluids.core.Prandtl(Cp=None, k=None, mu=None, nu=None, rho=None, alpha=None)

Calculates Prandtl number or Pr for a fluid with the given parameters.

\[ Pr = \frac{C_p \mu}{k} = \frac{\nu}{\alpha} = \frac{C_p \rho \nu}{k} \]

Inputs can be any of the following sets:

- Heat capacity, dynamic viscosity, and thermal conductivity
- Thermal diffusivity and kinematic viscosity
- Heat capacity, kinematic viscosity, thermal conductivity, and density

Parameters

- Cp [float] Heat capacity, [J/kg/K]
- k [float] Thermal conductivity, [W/m/K]
- mu [float, optional] Dynamic viscosity, [Pa*s]
- nu [float, optional] Kinematic viscosity, [m^2/s]
- rho [float] Density, [kg/m^3]
- alpha [float] Thermal diffusivity, [m^2/s]

Returns

- Pr [float] Prandtl number []
Notes

\[ Pr = \frac{\text{kinematic viscosity}}{\text{thermal diffusivity}} = \frac{\text{momentum diffusivity}}{\text{thermal diffusivity}} \]

An error is raised if none of the required input sets are provided.

References

[1], [2], [3]

Examples

```python
>>> Prandtl(Cp=1637., k=0.010, mu=4.61E-6)
0.754657
>>> Prandtl(Cp=1637., k=0.010, nu=6.4E-7, rho=7.1)
0.7438528
>>> Prandtl(nu=6.3E-7, alpha=9E-7)
0.7000000000000001
```

`fluids.core.Grashof(L, beta, T1, T2=0, rho=None, mu=None, nu=None, g=9.80665)`

Calculates Grashof number or \( Gr \) for a fluid with the given properties, temperature difference, and characteristic length.

\[ Gr = g\beta(T_s - T_\infty)L^3/\nu^2 = g\beta(T_s - T_\infty)L^3\rho^2/\mu^2 \]

Inputs either of any of the following sets:

- L, beta, T1 and T2, and density \( \rho \) and kinematic viscosity \( \mu \)
- L, beta, T1 and T2, and dynamic viscosity \( \nu \)

Parameters

- **L** [float] Characteristic length [m]
- **beta** [float] Volumetric thermal expansion coefficient [1/K]
- **T1** [float] Temperature 1, usually a film temperature [K]
- **T2** [float, optional] Temperature 2, usually a bulk temperature (or 0 if only a difference is provided to the function) [K]
- **rho** [float, optional] Density, [kg/m^3]
- **mu** [float, optional] Dynamic viscosity, [Pa*s]
- **nu** [float, optional] Kinematic viscosity, [m^2/s]
- **g** [float, optional] Acceleration due to gravity, [m/s^2]

Returns

- **Gr** [float] Grashof number []
Notes

\[ Gr = \frac{\text{Buoyancy forces}}{\text{Viscous forces}} \]

An error is raised if none of the required input sets are provided. Used in free convection problems only.

References

[1], [2]

Examples

Example 4 of [1], p. 1-21 (matches):

```python
Grashof(L=0.9144, beta=0.000933, T1=178.2, rho=1.1613, mu=1.9E-5)
4656936556.178915
Grashof(L=0.9144, beta=0.000933, T1=378.2, T2=200, nu=1.636e-05)
4657491516.530312
```

**fluids.core.Nusselt**(h, L, k)

Calculates Nusselt number \( Nu \) for a heat transfer coefficient \( h \), characteristic length \( L \), and thermal conductivity \( k \).

\[ Nu = \frac{hL}{k} \]

Parameters

- h [float] Heat transfer coefficient, [W/m\(^2\)/K]
- L [float] Characteristic length, no typical definition [m]
- k [float] Thermal conductivity of fluid [W/m/K]

Returns

- Nu [float] Nusselt number, [-]

Notes

Do not confuse \( k \), the thermal conductivity of the fluid, with that of within a solid object associated with!

\[ Nu = \frac{\text{Convective heat transfer}}{\text{Conductive heat transfer}} \]

References

[1], [2]

Examples

```python
Nusselt(1000., 1.2, 300.)
4.0
Nusselt(10000., 0.01, 4000.)
0.025
```
**fluids.core.Sherwood\((K, L, D)\)**

Calculates Sherwood number \(Sh\) for a mass transfer coefficient \(K\), characteristic length \(L\), and diffusivity \(D\).

\[
Sh = \frac{KL}{D}
\]

**Parameters**
- \(K\) [float] Mass transfer coefficient, [m/s]
- \(L\) [float] Characteristic length, no typical definition [m]
- \(D\) [float] Diffusivity of a species [m/s²]

**Returns**
- \(Sh\) [float] Sherwood number, [-]

**Notes**
\[
Sh = \frac{\text{Mass transfer by convection}}{\text{Mass transfer by diffusion}} = \frac{K}{D/L}
\]

**References**
[1]

**Examples**

```python
>>> Sherwood(1000., 1.2, 300.)
4.0
```

**fluids.core.Rayleigh\((Pr, Gr)\)**

Calculates Rayleigh number or \(Ra\) using Prandtl number \(Pr\) and Grashof number \(Gr\) for a fluid with the given properties, temperature difference, and characteristic length used to calculate \(Gr\) and \(Pr\).

\[
Ra = PrGr
\]

**Parameters**
- \(Pr\) [float] Prandtl number [-]
- \(Gr\) [float] Grashof number [-]

**Returns**
- \(Ra\) [float] Rayleigh number [-]

**Notes**
Used in free convection problems only.

**References**
[1],[2]
Examples

```python
>>> Rayleigh(1.2, 4.6E9)
5520000000.0
```

```python
fluids.core.Schmidt(D, mu=None, nu=None, rho=None)
```
Calculates Schmidt number or $Sc$ for a fluid with the given parameters.

\[ Sc = \frac{\mu}{D\rho} = \frac{\nu}{D} \]

Inputs can be any of the following sets:
- Diffusivity, dynamic viscosity, and density
- Diffusivity and kinematic viscosity

**Parameters**
- `D` [float] Diffusivity of a species, [m^2/s]
- `mu` [float, optional] Dynamic viscosity, [Pa*s]
- `nu` [float, optional] Kinematic viscosity, [m^2/s]
- `rho` [float, optional] Density, [kg/m^3]

**Returns**
- `Sc` [float] Schmidt number

**Notes**

\[ Sc = \frac{\text{kinematic viscosity}}{\text{molecular diffusivity}} = \frac{\text{viscous diffusivity}}{\text{species diffusivity}} \]

An error is raised if none of the required input sets are provided.

**References**

[1], [2]

Examples

```python
>>> Schmidt(D=2E-6, mu=4.61E-6, rho=800)
0.00288125

>>> Schmidt(D=1E-9, nu=6E-7)
599.9999999999999
```

```python
fluids.core.Peclet_heat(V, L, rho=None, Cp=None, k=None, alpha=None)
```
Calculates heat transfer Peclet number or $Pe$ for a specified velocity $V$, characteristic length $L$, and specified properties for the given fluid.

\[ Pe = \frac{VL\rho C_p}{k} = \frac{LV}{\alpha} \]

Inputs either of any of the following sets:
- $V$, $L$, density $\rho$, heat capacity $C_p$, and thermal conductivity $k$
• V, L, and thermal diffusivity \( \alpha \)

**Parameters**

- **V** [float] Velocity [m/s]
- **L** [float] Characteristic length [m]
- **rho** [float, optional] Density, [kg/m^3]
- **Cp** [float, optional] Heat capacity, [J/kg/K]
- **k** [float, optional] Thermal conductivity, [W/m/K]
- **alpha** [float, optional] Thermal diffusivity, [m^2/s]

**Returns**

- **Pe** [float] Peclet number (heat) []

**Notes**

\[
P_e = \frac{\text{Bulk heat transfer}}{\text{Conduction heat transfer}}
\]

An error is raised if none of the required input sets are provided.

**References**

[1], [2]

**Examples**

```python
>>> Peclet_heat(1.5, 2, 1000., 4000., 0.6)
20000000.0
>>> Peclet_heat(1.5, 2, alpha=1E-7)
30000000.0
```

`fluids.core.Peclet_mass(V, L, D)`

Calculates mass transfer Peclet number or \( Pe \) for a specified velocity \( V \), characteristic length \( L \), and diffusion coefficient \( D \).

\[
Pe = \frac{LV}{D}
\]

**Parameters**

- **V** [float] Velocity [m/s]
- **L** [float] Characteristic length [m]
- **D** [float] Diffusivity of a species, [m^2/s]

**Returns**

- **Pe** [float] Peclet number (mass) []
Notes

\[ P_e = \frac{\text{Advective transport rate}}{\text{Diffusive transport rate}} \]

References

[1]

Examples

```python
>>> Peclet_mass(1.5, 2, 1E-9)
3000000000.0
```

Calculates heat transfer Fourier number or Fo for a specified time t, characteristic length L, and specified properties for the given fluid.

\[ Fo = \frac{kt}{C_p \rho L^2} = \frac{\alpha t}{L^2} \]

Inputs either of any of the following sets:

- t, L, density rho, heat capacity Cp, and thermal conductivity k
- t, L, and thermal diffusivity alpha

Parameters

- `t` [float] time [s]
- `L` [float] Characteristic length [m]
- `rho` [float, optional] Density, [kg/m^3]
- `Cp` [float, optional] Heat capacity, [J/kg/K]
- `k` [float, optional] Thermal conductivity, [W/m/K]
- `alpha` [float, optional] Thermal diffusivity, [m^2/s]

Returns

- `Fo` [float] Fourier number (heat) []

Notes

\[ Fo = \frac{\text{Heat conduction rate}}{\text{Rate of thermal energy storage in a solid}} \]

An error is raised if none of the required input sets are provided.

References

[1], [2]
Examples

```python
>>> Fourier_heat(t=1.5, L=2, rho=1000., Cp=4000., k=0.6)
5.625e-08
>>> Fourier_heat(1.5, 2, alpha=1E-7)
3.75e-08
```

```python
fluids.core.Fourier_mass(t, L, D)
Calculates mass transfer Fourier number or \(Fo \) for a specified time \(t \), characteristic length \(L \), and diffusion coefficient \(D \).

\[
Fo = \frac{Dt}{L^2}
\]

Parameters
- \(t \) [float] time [s]
- \(L \) [float] Characteristic length [m]
- \(D \) [float] Diffusivity of a species, [m^2/s]

Returns
- \(Fo \) [float] Fourier number (mass) []

Notes

\[
Fo = \frac{\text{Difffusive transport rate}}{\text{Storage rate}}
\]

References

[1]

Examples

```python
>>> Fourier_mass(t=1.5, L=2, D=1E-9)
3.7500000000000005e-10
```

```python
fluids.core.Graetz_heat(V, D, x, rho=None, Cp=None, k=None, alpha=None)
Calculates Graetz number or \( Gz \) for a specified velocity \( V \), diameter \( D \), axial distance \( x \), and specified properties for the given fluid.

\[
Gz = \frac{VD^2 \cdot C_p \rho}{x \cdot k} = \frac{VD^2}{x \alpha}
\]

Inputs either of any of the following sets:
- \( V, D, x, \) density \( \rho \), heat capacity \( C_p \), and thermal conductivity \( k \)
- \( V, D, x \), and thermal diffusivity \( \alpha \)

Parameters
- \( V \) [float] Velocity, [m/s]
- \( D \) [float] Diameter [m]
```
x [float] Axial distance [m]
rho [float, optional] Density, [kg/m^3]
Cp [float, optional] Heat capacity, [J/kg/K]
k [float, optional] Thermal conductivity, [W/m/K]
alpha [float, optional] Thermal diffusivity, [m^2/s]

Returns
Gz [float] Graetz number []

Notes

\[Gz = \frac{\text{Time for radial heat diffusion in a fluid by conduction}}{\text{Time taken by fluid to reach distance } x} \]

\[Gz = \frac{D}{x} Re Pr \]

An error is raised if none of the required input sets are provided.

References

[1]

Examples

```python
>>> Graetz_heat(1.5, 0.25, 5, 800., 2200., 0.6)
55000.0
>>> Graetz_heat(1.5, 0.25, 5, alpha=1E-7)
187500.0
```

Fluids Documentation, Release 0.1.86

fluids.core.Lewis(D=None, alpha=None, Cp=None, k=None, rho=None)

Calculates Lewis number or Le for a fluid with the given parameters.

\[Le = \frac{k}{\rho C_p D} = \frac{\alpha}{D} \]

Inputs can be either of the following sets:

- Diffusivity and Thermal diffusivity
- Diffusivity, heat capacity, thermal conductivity, and density

Parameters

D [float] Diffusivity of a species, [m^2/s]
alpha [float, optional] Thermal diffusivity, [m^2/s]
Cp [float, optional] Heat capacity, [J/kg/K]
k [float, optional] Thermal conductivity, [W/m/K]
rho [float, optional] Density, [kg/m^3]

Returns

Le [float] Lewis number []
Notes

\[Le = \frac{\text{Thermal diffusivity}}{\text{Mass diffusivity}} = \frac{Sc}{Pr} \]

An error is raised if none of the required input sets are provided.

References

[1], [2], [3]

Examples

```python
>>> Lewis(D=22.6E-6, alpha=19.1E-6)
0.8451327433628318
>>> Lewis(D=22.6E-6, rho=800., k=.2, Cp=2200)
0.00502815768302494
```

fluids.core.Weber \((V, L, \rho, \sigma)\)

Calculates Weber number, \(We\), for a fluid with the given density, surface tension, velocity, and geometric parameter (usually diameter of bubble).

\[We = \frac{V^2 L \rho}{\sigma} \]

Parameters

- \(V\) [float] Velocity of fluid, [m/s]
- \(L\) [float] Characteristic length, typically bubble diameter [m]
- \(\rho\) [float] Density of fluid, [kg/m\(^3\)]
- \(\sigma\) [float] Surface tension, [N/m]

Returns

- \(We\) [float] Weber number []

Notes

Used in bubble calculations.

\[We = \frac{\text{inertial force}}{\text{surface tension force}} \]

References

[1], [2], [3]

Examples

```python
>>> Weber(V=0.18, L=0.001, rho=900., sigma=0.01)
2.916
```
fluids.core.Mach(V, c)
Calculates Mach number or Ma for a fluid of velocity V with speed of sound c.

\[Ma = \frac{V}{c} \]

Parameters
- V [float] Velocity of fluid, [m/s]
- c [float] Speed of sound in fluid, [m/s]

Returns
- Ma [float] Mach number []

Notes
Used in compressible flow calculations.

\[Ma = \frac{\text{fluid velocity}}{\text{sonic velocity}} \]

References
[1], [2]

Examples
```python
>>> Mach(33., 330)
0.1
```

fluids.core.Knudsen(path, L)
Calculates Knudsen number or Kn for a fluid with mean free path path and for a characteristic length L.

\[Kn = \frac{\lambda}{L} \]

Parameters
- path [float] Mean free path between molecular collisions, [m]
- L [float] Characteristic length, [m]

Returns
- Kn [float] Knudsen number []

Notes
Used in mass transfer calculations.

\[Kn = \frac{\text{Mean free path length}}{\text{Characteristic length}} \]

References
[1], [2]
Examples

```python
>>> Knudsen(1e-10, .001)
1e-07
```

fluids.core.Bond (rhol, rhog, sigma, L)
Calculates Bond number, Bo also known as Eotvos number, for a fluid with the given liquid and gas densities, surface tension, and geometric parameter (usually length).

\[
Bo = \frac{g(\rho_l - \rho_g)L^2}{\sigma}
\]

Parameters
- `rhol` [float] Density of liquid, [kg/m³]
- `rhog` [float] Density of gas, [kg/m³]
- `sigma` [float] Surface tension, [N/m]
- `L` [float] Characteristic length, [m]

Returns
- `Bo` [float] Bond number [-]

References

[1]

Examples

```python
>>> Bond(1000., 1.2, .0589, 2)
665187.2339558573
```

fluids.core.Dean (Re, Di, D)
Calculates Dean number, De, for a fluid with the Reynolds number Re, inner diameter Di, and a secondary diameter D. D may be the diameter of curvature, the diameter of a spiral, or some other dimension.

\[
De = \sqrt{\frac{D_i}{D_i Re}} = \sqrt{\frac{D_i \rho v D}{D \mu}}
\]

Parameters
- `Re` [float] Reynolds number [-]
- `Di` [float] Inner diameter [-]
- `D` [float] Diameter of curvature or outer spiral or other dimension [-]

Returns
- `De` [float] Dean number [-]

Notes

Used in flow in curved geometry.

\[
De = \sqrt{\frac{\text{centripetal forces} \cdot \text{inertial forces}}{\text{viscous forces}}}
\]
Fluids Documentation, Release 0.1.86

References

[1]

Examples

```python
def Dean(rhol, rhog, mul, sigma):
    return 5000.0
```

```python
import fluids.core

def Morton(rhol, rhog, mul, sigma, g=9.80665):
    return fluids.core.Morton(rhol, rhog, mul, sigma, g=9.80665)
```

Calculates Morton number or Mo for a liquid and vapor with the specified properties, under the influence of gravitational force g.

$$Mo = \frac{g \mu_l^4 (\rho_l - \rho_g)}{\rho_l^2 \sigma^3}$$

Parameters

- rhol [float] Density of liquid phase, [kg/m3]
- rhog [float] Density of gas phase, [kg/m3]
- mul [float] Viscosity of liquid phase, [Pa*s]
- sigma [float] Surface tension between liquid-gas phase, [N/m]
- g [float, optional] Acceleration due to gravity, [m/s2]

Returns

- Mo [float] Morton number, [-]

Notes

Used in modeling bubbles in liquid.

References

[1], [2]

Examples

```python
>>> Morton(1077.0, 76.5, 4.27E-3, 0.023)
2.311183104430743e-07
```

```python
import fluids.core

def Froude(V, L, g=9.80665, squared=False):
    return fluids.core.Froude(V, L, g=9.80665, squared=False)
```

Calculates Froude number Fr for velocity V and geometric length L. If desired, gravity can be specified as well. Normally the function returns the result of the equation below; Froude number is also often said to be defined as the square of the equation below.

$$Fr = \frac{V}{\sqrt{gL}}$$

Parameters

- V [float] Velocity of the particle or fluid, [m/s]
L [float] Characteristic length, no typical definition [m]

g [float, optional] Acceleration due to gravity, [m/s²]

squared [bool, optional] Whether to return the squared form of Froude number

Returns

Fr [float] Froude number, [-]

Notes

Many alternate definitions including density ratios have been used.

\[Fr \defeq \frac{\text{Inertial Force}}{\text{Gravity Force}} \]

References

[1], [2]

Examples

```python
>>> Froude(1.83, L=2., g=1.63)
1.0135432593877318
>>> Froude(1.83, L=2., squared=True)
0.17074638128208924
```

fluids.core.Froude_densimetric *(V, L, rho1, rho2, heavy=True, g=9.80665)*

Calculates the densimetric Froude number \(Fr_{den} \) for velocity \(V \) geometric length \(L \), heavier fluid density \(\rho_1 \), and lighter fluid density \(\rho_2 \). If desired, gravity can be specified as well. Depending on the application, this dimensionless number may be defined with the heavy phase or the light phase density in the numerator of the square root. For some applications, both need to be calculated. The default is to calculate with the heavy liquid density on top; set `heavy` to False to reverse this.

\[Fr = \frac{V}{\sqrt{gL}} \sqrt{\frac{\rho_1 (1 or \ 2)}{\rho_1 - \rho_2}} \]

Parameters

- **V** [float] Velocity of the specified phase, [m/s]
- **L** [float] Characteristic length, no typical definition [m]
- **rho1** [float] Density of the heavier phase, [kg/m³]
- **rho2** [float] Density of the lighter phase, [kg/m³]
- **heavy** [bool, optional] Whether or not the density used in the numerator is the heavy phase or the light phase, [-]
- **g** [float, optional] Acceleration due to gravity, [m/s²]

Returns

Fr_den [float] Densimetric Froude number, [-]
Notes

Many alternate definitions including density ratios have been used.

\[Fr = \frac{\text{Inertial Force}}{\text{Gravity Force}} \]

Where the gravity force is reduced by the relative densities of one fluid in another.

Note that an Exception will be raised if rho1 > rho2, as the square root becomes negative.

References

[1]

Examples

```python
>>> Froude_densimetric(1.83, L=2., rho1=800, rho2=1.2, g=9.81)
0.4134543386272418
>>> Froude_densimetric(1.83, L=2., rho1=800, rho2=1.2, g=9.81, heavy=False)
0.016013017679205096
```

```
fluids.core.Strouhal(f, L, V)
Calculates Strouhal number \( St \) for a characteristic frequency \( f \), characteristic length \( L \), and velocity \( V \).

\[ St = \frac{fL}{V} \]

Parameters

- \( f \) [float] Characteristic frequency, usually that of vortex shedding, [Hz]
- \( L \) [float] Characteristic length, [m]
- \( V \) [float] Velocity of the fluid, [m/s]

Returns

- \( St \) [float] Strouhal number, [-]

Notes

Sometimes abbreviated to S or Sr.

\[ St = \frac{\text{Characteristic flow time}}{\text{Period of oscillation}} \]

References

[1], [2]
Examples

```python
>>> Strouhal(8, 2., 4.)
4.0
```

**fluids.core.Biot**(h, L, k)
Calculates Biot number $Br$ for heat transfer coefficient $h$, geometric length $L$, and thermal conductivity $k$.

$$Bi = \frac{hL}{k}$$

**Parameters**

- **h** [float] Heat transfer coefficient, [W/m^2/K]
- **L** [float] Characteristic length, no typical definition [m]
- **k** [float] Thermal conductivity, within the object [W/m/K]

**Returns**

- **Bi** [float] Biot number, [-]

**Notes**

Do not confuse $k$, the thermal conductivity within the object, with that of the medium $h$ is calculated with!

$$Bi = \frac{\text{Surface thermal resistance}}{\text{Internal thermal resistance}}$$

**References**

[1], [2]

**Examples**

```python
>>> Biot(1000., 1.2, 300.)
4.0
>>> Biot(10000., .01, 4000.)
0.025
```

**fluids.core.Stanton**(h, V, rho, Cp)
Calculates Stanton number or $St$ for a specified heat transfer coefficient $h$, velocity $V$, density $rho$, and heat capacity $Cp$.

$$St = \frac{h}{V\rho Cp}$$

**Parameters**

- **h** [float] Heat transfer coefficient, [W/m^2/K]
- **V** [float] Velocity, [m/s]
- **rho** [float] Density, [kg/m^3]
- **Cp** [float] Heat capacity, [J/kg/K]

**Returns**

- **St** [float] Stanton number []
Notes

\[ St = \frac{\text{Heat transfer coefficient}}{\text{Thermal capacity}} \]

References

[1], [1]

Examples

```python
>>> Stanton(5000, 5, 800, 2000.)
0.000625
```

**fluids.core.Euler\((dP, rho, V)\)**

Calculates Euler number or \( Eu \) for a fluid of velocity \( V \) and density \( rho \) experiencing a pressure drop \( dP \).

\[ Eu = \frac{\Delta P}{\rho V^2} \]

Parameters

- **dP** [float] Pressure drop experienced by the fluid, [Pa]
- **rho** [float] Density of the fluid, [kg/m^3]
- **V** [float] Velocity of fluid, [m/s]

Returns

- **Eu** [float] Euler number [ ]

Notes

Used in pressure drop calculations. Rarely, this number is divided by two. Named after Leonhard Euler applied calculus to fluid dynamics.

\[ Eu = \frac{\text{Pressure drop}}{2 \cdot \text{velocity head}} \]

References

[1], [2]

Examples

```python
>>> Euler(1E5, 1000., 4)
6.25
```

**fluids.core.Cavitation\((P, Psat, rho, V)\)**

Calculates Cavitation number or \( Ca \) for a fluid of velocity \( V \) with a pressure \( P \), vapor pressure \( Psat \), and density \( rho \).

\[ Ca = \sigma_c = \sigma = \frac{P - P_{sat}}{\frac{1}{2} \rho V^2} \]
Parameters

- **P** [float] Internal pressure of the fluid, [Pa]
- **Psat** [float] Vapor pressure of the fluid, [Pa]
- **rho** [float] Density of the fluid, [kg/m³]
- **V** [float] Velocity of fluid, [m/s]

Returns

- **Ca** [float] Cavitation number []

Notes

Used in determining if a flow through a restriction will cavitate. Sometimes, the multiplication by 2 will be omitted;

\[ Ca = \frac{\text{Pressure} - \text{Vapor pressure}}{\text{Inertial pressure}} \]

References

[1], [2]

Examples

```python
given = Cavitation(2E5, 1E4, 1000, 10)
3.8
```

`fluids.core.Eckert(V, Cp, dT)`

Calculates Eckert number or Ec for a fluid of velocity V with a heat capacity Cp, between two temperature given as dT.

\[ Ec = \frac{V^2}{C_p \Delta T} \]

Parameters

- **V** [float] Velocity of fluid, [m/s]
- **Cp** [float] Heat capacity of the fluid, [J/kg/K]
- **dT** [float] Temperature difference, [K]

Returns

- **Ec** [float] Eckert number []

Notes

Used in certain heat transfer calculations. Fairly rare.

\[ Ec = \frac{\text{Kinetic energy}}{\text{Enthalpy difference}} \]
fluids.core.Jakob(Cp, Hvap, Te)
Calculates Jakob number or Ja for a boiling fluid with sensible heat capacity Cp, enthalpy of vaporization Hvap, and boiling at Te degrees above its saturation boiling point.

\[ Ja = \frac{C_p \Delta T_e}{\Delta H_{vap}} \]

Parameters
- Cp [float] Heat capacity of the fluid, [J/kg/K]
- Hvap [float] Enthalpy of vaporization of the fluid at its saturation temperature [J/kg]
- Te [float] Temperature difference above the fluid’s saturation boiling temperature, [K]

Returns
- Ja [float] Jakob number []

Notes
Used in boiling heat transfer analysis. Fairly rare.

\[ Ja = \frac{\Delta \text{Sensible heat}}{\Delta \text{Latent heat}} \]

References
[1], [2]

Examples

```python
>>> Jakob(4000., 2E6, 10.)
0.02
```
N  [float] Speed [revolutions/second]
rho  [float] Density of fluid, [kg/m^3]

Returns

Po  [float] Power number []

Notes

Used in mixing calculations.

\[ Po = \frac{\text{Power}}{\text{Rotational inertia}} \]

References

[1],[2]

Examples

```python
>>> Power_number(P=180, L=0.01, N=2.5, rho=800.)
144000000.0
```

`fluids.core.Stokes_number(V, Dp, D, rhop, mu)`

Calculates Stokes Number for a given characteristic velocity \( V \), particle diameter \( D_p \), characteristic diameter \( D \), particle density \( \rho_p \), and fluid viscosity \( \mu \).

\[ \text{Stk} = \frac{\rho_p V D_p^2}{18 \mu_f D} \]

Parameters

\( V \)  [float] Characteristic velocity (often superficial), [m/s]
\( D_p \)  [float] Particle diameter, [m]
\( D \)  [float] Characteristic diameter (ex demister wire diameter or cyclone diameter), [m]
\( \rho_p \)  [float] Particle density, [kg/m^3]
\( \mu \)  [float] Fluid viscosity, [Pa*s]

Returns

\( \text{Stk} \)  [float] Stokes number, [-]

Notes

Used in droplet impaction or collection studies.

References

[1],[2]
Examples

```python
>>> Stokes_number(V=0.9, Dp=1E-5, D=1E-3, rhop=1000, mu=1E-5)
0.5
```

`fluids.core.Drag(F, A, V, rho)`
Calculates drag coefficient $C_d$ for a given drag force $F$, projected area $A$, characteristic velocity $V$, and density $\rho$.

\[
C_d = \frac{F}{A \cdot \frac{1}{2} \rho V^2}
\]

**Parameters**
- $F$ [float] Drag force, [N]
- $A$ [float] Projected area, [m^2]
- $V$ [float] Characteristic velocity, [m/s]
- $\rho$ [float] Density, [kg/m^3]

**Returns**
- $C_d$ [float] Drag coefficient, [-]

**Notes**

Used in flow around objects, or objects flowing within a fluid.

\[
C_d = \frac{\text{Drag forces}}{\text{Projected area} \cdot \text{Velocity head}}
\]

**References**

[1], [2]

**Examples**

```python
>>> Drag(1000, 0.0001, 5, 2000)
400.0
```

`fluids.core.Capillary(V, mu, sigma)`
Calculates Capillary number $Ca$ for a characteristic velocity $V$, viscosity $\mu$, and surface tension $\sigma$.

\[
Ca = \frac{V \mu}{\sigma}
\]

**Parameters**
- $V$ [float] Characteristic velocity, [m/s]
- $\mu$ [float] Dynamic viscosity, [Pa*s]
- $\sigma$ [float] Surface tension, [N/m]

**Returns**
- $Ca$ [float] Capillary number, [-]
Notes

Used in porous media calculations and film flow calculations. Surface tension may gas-liquid, or liquid-liquid.

\[ Ca = \frac{\text{Viscous forces}}{\text{Surface forces}} \]

References

[1], [2]

Examples

```python
>>> Capillary(1.2, 0.01, .1)
0.12
```

`fluids.core.Bejan_L(dP, L, mu, alpha)`

Calculates Bejan number of a length or Be_L for a fluid with the given parameters flowing over a characteristic length \( L \) and experiencing a pressure drop \( dP \).

\[ Be_L = \frac{\Delta P L^2}{\mu \alpha} \]

Parameters

- \( dP \) [float] Pressure drop, [Pa]
- \( L \) [float] Characteristic length, [m]
- \( mu \) [float, optional] Dynamic viscosity, [Pa*s]
- \( alpha \) [float] Thermal diffusivity, [m^2/s]

Returns

- \( Be_L \) [float] Bejan number with respect to length []

Notes

Termed a dimensionless number by someone in 1988.

References

[1], [2]

Examples

```python
>>> Bejan_L(1E4, 1, 1E-3, 1E-6)
10000000000000.0
```

`fluids.core.Bejan_p(dP, K, mu, alpha)`

Calculates Bejan number of a permeability or Be_p for a fluid with the given parameters and a permeability \( K \) experiencing a pressure drop \( dP \).

\[ Be_p = \frac{\Delta PK}{\mu \alpha} \]
Parameters

- \(dP\) [float] Pressure drop, [Pa]
- \(K\) [float] Permeability, [m^2]
- \(\mu\) [float, optional] Dynamic viscosity, [Pa*s]
- \(\alpha\) [float] Thermal diffusivity, [m^2/s]

Returns

- \(Be_p\) [float] Bejan number with respect to pore characteristics

Notes

Termed a dimensionless number by someone in 1988.

References

[1], [2]

Examples

```python
>>> Bejan_p(1E4, 1, 1E-3, 1E-6)
10000000000000.0
```

\texttt{fluids.core.Boiling}(G, q, Hvap)

Calculates Boiling number or \(B_g\) using heat flux, two-phase mass flux, and heat of vaporization of the fluid flowing. Used in two-phase heat transfer calculations.

\[
B_g = \frac{q}{G_{tp} \Delta H_{vap}}
\]

Parameters

- \(G\) [float] Two-phase mass flux in a channel (combined liquid and vapor) [kg/m^2/s]
- \(q\) [float] Heat flux [W/m^2]
- \(H_{vap}\) [float] Heat of vaporization of the fluid [J/kg]

Returns

- \(B_g\) [float] Boiling number [-]

Notes

Most often uses the symbol \(Bo\) instead of \(B_g\), but this conflicts with Bond number.

\[
B_g = \frac{\text{mass liquid evaporated}}{\text{area heat transfer surface}} \div \frac{\text{mass flow rate fluid}}{\text{flow cross sectional area}}
\]

First defined in [4], though not named.

References

[1], [2], [3], [4]
Examples

```python
>>> Boiling(300, 3000, 800000)
1.25e-05
```

`fluids.core.Confinement(D, rhol, rhog, sigma, g=9.80665)`
Calculates Confinement number or Co for a fluid in a channel of diameter D with liquid and gas densities rhol and rhog and surface tension sigma, under the influence of gravitational force g.

\[
Co = \left( \frac{\sigma}{g(\rho_l - \rho_g)} \right)^{0.5} \frac{0.5}{D}
\]

Parameters

- D [float] Diameter of channel, [m]
- rhol [float] Density of liquid phase, [kg/m^3]
- rhog [float] Density of gas phase, [kg/m^3]
- sigma [float] Surface tension between liquid-gas phase, [N/m]
- g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

- Co [float] Confinement number [-]

Notes

Used in two-phase pressure drop and heat transfer correlations. First used in [1] according to [3].

\[
Co = \frac{\text{surface tension force}}{\text{buoyancy force}} \frac{\text{Channel area}}{L^3 (\rho_p - \rho_f) g}
\]

References

[1], [2], [3]

Examples

```python
>>> Confinement(0.001, 1077, 76.5, 4.27E-3)
0.6596978265315191
```

`fluids.core.Archimedes(L, rhof, rhop, mu, g=9.80665)`
Calculates Archimedes number, Ar, for a fluid and particle with the given densities, characteristic length, viscosity, and gravity (usually diameter of particle).

\[
Ar = \frac{L^3 \rho_f (\rho_p - \rho_f) g}{\mu^2}
\]

Parameters

- L [float] Characteristic length, typically particle diameter [m]
- rhof [float] Density of fluid, [kg/m^3]
**rhop** [float] Density of particle, [kg/m³]

**mu** [float] Viscosity of fluid, [N/m]

**g** [float, optional] Acceleration due to gravity, [m/s²]

**Returns**

**Ar** [float] Archimedes number []

**Notes**

Used in fluid-particle interaction calculations.

\[
Ar = \frac{\text{Gravitational force}}{\text{Viscous force}}
\]

**References**

[1], [2]

**Examples**

```python
>>> Archimedes(0.002, 2., 3000, 1E-3)
470.4053872
```

**fluids.core.Ohnesorge**(*L*, *rho*, *mu*, *sigma*)

Calculates Ohnesorge number, *Oh*, for a fluid with the given characteristic length, density, viscosity, and surface tension.

\[
Oh = \frac{\mu}{\sqrt{\rho \sigma L}}
\]

**Parameters**

* L  [float] Characteristic length [m]
* rho  [float] Density of fluid, [kg/m³]
* mu  [float] Viscosity of fluid, [Pa·s]
* sigma  [float] Surface tension, [N/m]

**Returns**

**Oh** [float] Ohnesorge number []

**Notes**

Often used in spray calculations. Sometimes given the symbol Z.

\[
Oh = \frac{\sqrt{We}}{Re} = \frac{\text{viscous forces}}{\sqrt{\text{Inertia} \cdot \text{Surface tension}}}
\]

**References**

[1]
**Examples**

```python
>>> Ohnesorge(1E-4, 1000., 1E-3, 1E-1)
0.01
```

**fluids.core.Suratman** (*L, rho, mu, sigma*)

Calculates Suratman number, *Su*, for a fluid with the given characteristic length, density, viscosity, and surface tension.

\[
Su = \frac{\rho \sigma L}{\mu^2}
\]

**Parameters**
- **L** [float] Characteristic length [m]
- **rho** [float] Density of fluid, [kg/m³]
- **mu** [float] Viscosity of fluid, [Pa·s]
- **sigma** [float] Surface tension, [N/m]

**Returns**
- **Su** [float] Suratman number [

**Notes**

Also known as Laplace number. Used in two-phase flow, especially the bubbly-slug regime. No confusion regarding the definition of this group has been observed.

\[
Su = \frac{Re^2}{We} = \frac{\text{Inertia} \cdot \text{Surface tension}}{(\text{viscous forces})^2}
\]

The oldest reference to this group found by the author is in 1963, from [2].

**References**

[1], [2]

**Examples**

```python
>>> Suratman(1E-4, 1000., 1E-3, 1E-1)
10000.0
```

**fluids.core.Hagen** (*Re, fd*)

Calculates Hagen number, *Hg*, for a fluid with the given Reynolds number and friction factor.

\[
Hg = \frac{f_d}{2} Re^2 = \frac{1}{\rho} \frac{\Delta P}{\Delta z} \frac{D^3}{\nu^2} = \frac{\rho \Delta P D^3}{\mu^2 \Delta z}
\]

**Parameters**
- **Re** [float] Reynolds number [-]
- **fd** [float, optional] Darcy friction factor, [-]

**Returns**
- **Hg** [float] Hagen number, [-]
Notes

Introduced in [1]; further use of it is mostly of the correlations introduced in [1].
Notable for use in correlations, because it does not have any dependence on velocity.
This expression is useful when designing backwards with a pressure drop spec already known.

References

[1], [2], [3]

Examples

Example from [3]:

```python
>>> Hagen(Re=2610, fd=1.935235)
6591507.17175
```

`fluids.core.thermal_diffusivity(k, rho, Cp)`
Calculates thermal diffusivity or `alpha` for a fluid with the given parameters.

\[ \alpha = \frac{k}{\rho C_p} \]

Parameters

- `k` [float] Thermal conductivity, [W/m/K]
- `rho` [float] Density, [kg/m^3]
- `Cp` [float] Heat capacity, [J/kg/K]

Returns

- `alpha` [float] Thermal diffusivity, [m^2/s]

References

[1]

Examples

```python
>>> thermal_diffusivity(k=0.02, rho=1., Cp=1000.)
2e-05
```

`fluids.core.c_ideal_gas(T, k, MW)`
Calculates speed of sound `c` in an ideal gas at temperature `T`.

\[ c = \sqrt{k R_{\text{specific}} T} \]

Parameters

- `T` [float] Temperature of fluid, [K]
- `k` [float] Isentropic exponent of fluid, [-]
MW [float] Molecular weight of fluid, [g/mol]

Returns
c [float] Speed of sound in fluid, [m/s]

Notes
Used in compressible flow calculations. Note that the gas constant used is the specific gas constant:

\[ R_{\text{specific}} = \frac{R}{MW} \]

References
[1], [2]

Examples
```python
c_ideal_gas(T=303, k=1.4, MW=28.96)
```
348.9820953185441

`fluids.core.relative_roughness(D, roughness=1.52e-06)`
Calculates relative roughness \( eD \) using a diameter and the roughness of the material of the wall. Default roughness is that of steel.

\[ eD = \frac{\varepsilon}{D} \]

Parameters
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe wall [m]

Returns
eD [float] Relative Roughness, [-]

References
[1], [2]

Examples
```python
relative_roughness(0.5, 1E-4)
```
0.0002

`fluids.core.nu_mu_converter(rho, mu=None, nu=None)`
Calculates either kinematic or dynamic viscosity, depending on inputs. Used when one type of viscosity is known as well as density, to obtain the other type. Raises an error if both types of viscosity or neither type of viscosity is provided.

\[ \nu = \frac{\mu}{\rho} \]
\[ \mu = \nu \rho \]
Parameters

- **rho** [float] Density, [kg/m^3]
- **mu** [float, optional] Dynamic viscosity, [Pa*s]
- **nu** [float, optional] Kinematic viscosity, [m^2/s]

Returns

- **mu** or **nu** [float] Dynamic viscosity, Pa*s or Kinematic viscosity, m^2/s

References

[1]

Examples

```python
>>> nu_mu_converter(998., nu=1.0E-6)
0.000998
```

**fluids.core.gravity(latitude, H)**

Calculates local acceleration due to gravity $g$ according to [1]. Uses latitude and height to calculate $g$.

\[
g = 9.780356(1 + 0.0052885 \sin^2 \phi - 0.00000592 \sin^2 \phi) - 3.086 \times 10^{-6} H
\]

Parameters

- **latitude** [float] Degrees, [degrees]
- **H** [float] Height above earth’s surface [m]

Returns

- **g** [float] Acceleration due to gravity, [m/s^2]

Notes

Better models, such as EGM2008 exist.

References

[1]

Examples

```python
>>> gravity(55, 1E4)
9.784151976863571
```

**fluids.core.K_from_f(fd, L, D)**

Calculates loss coefficient, $K$, for a given section of pipe at a specified friction factor.

\[
K = \frac{f_d L}{D}
\]

Parameters
**K_from_f**

*Parameters*

- **fd** [float] friction factor of pipe, []
- **L** [float] Length of pipe, [m]
- **D** [float] Inner diameter of pipe, [m]

*Returns*

- **K** [float] Loss coefficient, []

**Notes**

For fittings with a specified L/D ratio, use D = 1 and set L to specified L/D ratio.

**Examples**

```python
>>> K_from_f(fd=0.018, L=100., D=.3)
6.0
```

**K_from_L_equiv**

Calculates loss coefficient, for a given equivalent length (L/D).

\[ K = f_d \frac{L}{D} \]

*Parameters*

- **L_D** [float] Length over diameter, []
- **fd** [float, optional] Darcy friction factor, [-]

*Returns*

- **K** [float] Loss coefficient, []

**Notes**

Almost identical to **K_from_f**, but with a default friction factor for fully turbulent flow in steel pipes.

**Examples**

```python
>>> K_from_L_equiv(240)
3.5999999999999996
```

**L_equiv_from_K**

Calculates equivalent length of pipe (L/D), for a given loss coefficient.

\[ \frac{L}{D} = \frac{K}{f_d} \]

*Parameters*

- **K** [float] Loss coefficient, [-]
- **fd** [float, optional] Darcy friction factor, [-]

*Returns*

- **L_D** [float] Length over diameter, [-]
Notes

Assumes a default friction factor for fully turbulent flow in steel pipes.

Examples

```python
>>> L_equiv_from_K(3.6)
240.00000000000003
```

```
fluids.core.L_from_K(K, D, fd=0.015)
Calculates the length of straight pipe at a specified friction factor required to produce a given loss coefficient K.

\[L = \frac{KD}{fd} \]

Parameters

- K [float] Loss coefficient, []
- D [float] Inner diameter of pipe, [m]
- fd [float] friction factor of pipe, []

Returns

- L [float] Length of pipe, [m]
```

```python
>>> L_from_K(K=6, D=.3, fd=0.018)
100.0
```

```
fluids.core.dP_from_K(K, rho, V)
Calculates pressure drop, for a given loss coefficient, at a specified density and velocity.

\[dP = 0.5K\rho V^2 \]

Parameters

- K [float] Loss coefficient, []
- rho [float] Density of fluid, [kg/m^3]
- V [float] Velocity of fluid in pipe, [m/s]

Returns

- dP [float] Pressure drop, [Pa]
```

Notes

Loss coefficient K is usually the sum of several factors, including the friction factor.

Examples
```python
>>> dP_from_K(K=10, rho=1000, V=3)
45000.0
```

**fluids.core.head_from_K(K, V, g=9.80665)**
Calculates head loss, for a given loss coefficient, at a specified velocity.

\[
\text{head} = \frac{KV^2}{2g}
\]

**Parameters**
- **K** [float] Loss coefficient, []
- **V** [float] Velocity of fluid in pipe, [m/s]
- **g** [float, optional] Acceleration due to gravity, [m/s\(^2\)]

**Returns**
- **head** [float] Head loss, [m]

**Notes**
Loss coefficient \( K \) is usually the sum of several factors, including the friction factor.

**Examples**
```python
>>> head_from_K(K=10, V=1.5)
1.1471807396001694
```

**fluids.core.head_from_P(P, rho, g=9.80665)**
Calculates head for a fluid of specified density at specified pressure.

\[
\text{head} = \frac{P}{\rho g}
\]

**Parameters**
- **P** [float] Pressure fluid in pipe, [Pa]
- **rho** [float] Density of fluid, [kg/m\(^3\)]
- **g** [float, optional] Acceleration due to gravity, [m/s\(^2\)]

**Returns**
- **head** [float] Head, [m]

**Notes**
By definition. Head varies with location, inversely proportional to the increase in gravitational constant.

**Examples**
```python
>>> head_from_P(P=98066.5, rho=1000)
10.000000000000002
```
Fluids Documentation, Release 0.1.86

**fluids.core.f_from_K(K, L, D)**
Calculates friction factor, $f_d$, from a loss coefficient, $K$, for a given section of pipe.

$$f_d = \frac{KD}{L}$$

**Parameters**
- **K** [float] Loss coefficient, []
- **L** [float] Length of pipe, [m]
- **D** [float] Inner diameter of pipe, [m]

**Returns**
- **fd** [float] Darcy friction factor of pipe, [-]

**Notes**
This can be useful to blend fittings at specific locations in a pipe into a pressure drop which is evenly distributed along a pipe.

**Examples**

```python
>>> f_from_K(K=0.6, L=100., D=.3)
0.0018
```

**fluids.core.P_from_head(head, rho, g=9.80665)**
Calculates head for a fluid of specified density at specified pressure.

$$P = \rho g \cdot \text{head}$$

**Parameters**
- **head** [float] Head, [m]
- **rho** [float] Density of fluid, [kg/m^3]
- **g** [float, optional] Acceleration due to gravity, [m/s^2]

**Returns**
- **P** [float] Pressure fluid in pipe, [Pa]

**Examples**

```python
>>> P_from_head(head=5., rho=800.)
39226.6
```

**fluids.core.Eotvos(rhol, rhog, sigma, L)**
Calculates Bond number, $Bo$ also known as Eotvos number, for a fluid with the given liquid and gas densities, surface tension, and geometric parameter (usually length).

$$Bo = \frac{g(\rho_l - \rho_g)L^2}{\sigma}$$

**Parameters**
Fluids Documentation, Release 0.1.86

**rhol**  [float] Density of liquid, [kg/m^3]

**rhog**  [float] Density of gas, [kg/m^3]

**sigma**  [float] Surface tension, [N/m]

**L**  [float] Characteristic length, [m]

**Returns**

**Bo**  [float] Bond number

**References**

[1]

**Examples**

```python
>>> Bond(1000., 1.2, .0589, 2)
665187.2339558573
```

**fluids.core.C2K(C)**

Convert Celsius to Kelvin.

**Parameters**

**C**  [float] Celsius temperature to be converted, [degC]

**Returns**

**K**  [float] Equivalent Kelvin temperature, [K]

**Notes**

Computes \( K = C + \text{zero} \_\text{Celsius} \) where \( \text{zero} \_\text{Celsius} = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

**Examples**

```python
>>> C2K(-40)
233.14999999999998
```

**fluids.core.K2C(K)**

Convert Kelvin to Celsius.

**Parameters**

**K**  [float] Kelvin temperature to be converted.

**Returns**

**C**  [float] Equivalent Celsius temperature.

**Notes**

Computes \( C = K - \text{zero} \_\text{Celsius} \) where \( \text{zero} \_\text{Celsius} = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.
Examples

```python
>>> K2C(233.15)
-39.99999999999997
```

`fluids.core.F2C(F)`
Convert Fahrenheit to Celsius.

**Parameters**
- F [float] Fahrenheit temperature to be converted.

**Returns**
- C [float] Equivalent Celsius temperature.

**Notes**
Computes  
\[
C = \frac{F - 32}{1.8}
\]

Examples

```python
>>> F2C(-40.0)
-40.0
```

`fluids.core.C2F(C)`
Convert Celsius to Fahrenheit.

**Parameters**
- C [float] Celsius temperature to be converted.

**Returns**
- F [float] Equivalent Fahrenheit temperature.

**Notes**
Computes  
\[
F = \frac{1.8 \times C + 32}{1.8}
\]

Examples

```python
>>> C2F(-40.0)
-40.0
```

`fluids.core.F2K(F)`
Convert Fahrenheit to Kelvin.

**Parameters**
- F [float] Fahrenheit temperature to be converted.

**Returns**
- K [float] Equivalent Kelvin temperature.
Notes

Computes \( K = (F - 32)/1.8 + \text{zero\_Celsius} \) where \( \text{zero\_Celsius} = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

Examples

```
>>> F2K(-40)
233.14999999999998
```

Fluids Documentation, Release 0.1.86

fluids.core.K2F (K)
Convert Kelvin to Fahrenheit.

Parameters

- \( K \) [float] Kelvin temperature to be converted.

Returns

- \( F \) [float] Equivalent Fahrenheit temperature.

Notes

Computes \( F = 1.8 \times (K - \text{zero\_Celsius}) + 32 \) where \( \text{zero\_Celsius} = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

Examples

```
>>> K2F(233.15)
-39.99999999999996
```

fluids.core.C2R (C)
Convert Celsius to Rankine.

Parameters

- \( C \) [float] Celsius temperature to be converted.

Returns

- \( Ra \) [float] Equivalent Rankine temperature.

Notes

Computes \( Ra = 1.8 \times (C + \text{zero\_Celsius}) \) where \( \text{zero\_Celsius} = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

Examples

```
>>> C2R(-40)
419.66999999999996
```

fluids.core.K2R (K)
Convert Kelvin to Rankine.

2.4. Dimensionless numbers (fluids.core)
Parameters

K [float] Kelvin temperature to be converted.

Returns

Ra [float] Equivalent Rankine temperature.

Notes

Computes $Ra = 1.8 \times K$.

Examples

```python
>>> K2R(273.15)
491.66999999999996
```

**fluids.core.F2R(F)**

Convert Fahrenheit to Rankine.

Parameters

F [float] Fahrenheit temperature to be converted.

Returns

Ra [float] Equivalent Rankine temperature.

Notes

Computes $Ra = F - 32 + 1.8 \times zero\_Celsius$ where $zero\_Celsius = 273.15$, i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

Examples

```python
>>> F2R(100)
559.67
```

**fluids.core.R2C(Ra)**

Convert Rankine to Celsius.

Parameters

Ra [float] Rankine temperature to be converted.

Returns

C [float] Equivalent Celsius temperature.

Notes

Computes $C = Ra / 1.8 - zero\_Celsius$ where $zero\_Celsius = 273.15$, i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.
Examples

```python
>>> R2C(459.67)
-17.777777777777743
```

**fluids.core.R2K(Ra)**
Convert Rankine to Kelvin.

**Parameters**

*Ra* [float] Rankine temperature to be converted.

**Returns**

*K* [float] Equivalent Kelvin temperature.

**Notes**

Computes \( K = \frac{Ra}{1.8} \).

Examples

```python
>>> R2K(491.67)
273.15
```

**fluids.core.R2F(Ra)**
Convert Rankine to Fahrenheit.

**Parameters**

*Ra* [float] Rankine temperature to be converted.

**Returns**

*F* [float] Equivalent Fahrenheit temperature.

**Notes**

Computes \( F = Ra + 32 - 1.8 \times zero\_Celsius \), where \( zero\_Celsius = 273.15 \), i.e., (the absolute value of) temperature “absolute zero” as measured in Celsius.

Examples

```python
>>> R2F(491.67)
32.00000000000006
```

## 2.5 Drag and terminal velocity (fluids.drag)

**fluids.drag.drag_sphere(Re, Method=None)**
This function handles calculation of drag coefficient on spheres. Twenty methods are available, all requiring only the Reynolds number of the sphere. Most methods are valid from \( Re=0 \) to \( Re=200,000 \). A correlation will be automatically selected if none is specified. If no correlation is selected, the following rules are used:
• If Re < 0.01, use Stoke’s solution.
• If 0.01 <= Re < 0.1, linearly combine ‘Barati’ with Stokes’ solution such that at Re = 0.1 the solution is ‘Barati’, and at Re = 0.01 the solution is ‘Stokes’.
• If 0.1 <= Re <= ~212963, use the ‘Barati’ solution.
• If ~212963 < Re <= 1E6, use the ‘Barati_high’ solution.
• For Re > 1E6, raises an exception; no valid results have been found.

Parameters

Re  [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd  [float] Drag coefficient [-]

Other Parameters

Method [string, optional] A string of the function name to use, as in the dictionary drag_sphere_correlations

Examples

```python
>>> drag_sphere(200)
0.7682237950389874
```

`fluids.drag.drag_sphere_methods(Re, check_ranges=True)`

This function returns a list of methods that can be used to calculate the drag coefficient of a sphere. Twenty one methods are available, all requiring only the Reynolds number of the sphere. Most methods are valid from Re=0 to Re=200,000.

Parameters

Re  [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

check_ranges  [bool, optional] Whether to return only correlations claiming to be valid for the given Re or not, [-]

Returns

methods  [list, only returned if AvailableMethods == True] List of methods which can be used to calculate Cd with the given Re

Examples

```python
>>> len(drag_sphere_methods(200))
20
>>> len(drag_sphere_methods(200000, check_ranges=False))
21
>>> len(drag_sphere_methods(200000, check_ranges=True))
5
```

`fluids.drag.v_terminal(D, rhop, rho, mu, Method=None)`

Calculates terminal velocity of a falling sphere using any drag coefficient method supported by drag_sphere.
The laminar solution for $Re < 0.01$ is first tried; if the resulting terminal velocity does not put it in the laminar regime, a numerical solution is used.

$$v_t = \sqrt{\frac{4gd_p(p_p - p_f)}{3C_Dp_f}}$$

**Parameters**

- **D** [float] Diameter of the sphere, [m]
- **rhop** [float] Particle density, [kg/m$^3$]
- **rho** [float] Density of the surrounding fluid, [kg/m$^3$]
- **mu** [float] Viscosity of the surrounding fluid [Pa*s]

**Method** [string, optional] A string of the function name to use, as in the dictionary `drag_sphere_correlations`

**Returns**

- **v_t** [float] Terminal velocity of falling sphere [m/s]

**Notes**

As there are no correlations implemented for $Re > 1E6$, an error will be raised if the numerical solver seeks a solution above that limit.

The laminar solution is given in [1] and is:

$$v_t = \frac{gd_p(p_p - p_f)}{18\mu_f}$$

**References**

[1], [2]

**Examples**

```python
>>> v_terminal(D=70E-6, rhop=2600., rho=1000., mu=1E-3)
0.004142497244531304
```

Example 7-1 in GPSA handbook, 13th edition:

```python
>>> from scipy.constants import *
>>> v_terminal(D=150E-6, rhop=31.2*lb/foot**3, rho=2.07*lb/foot**3, mu=1.2e-05)/foot
0.4491992020345101
```

The answer reported there is 0.46 ft/sec.

**Fluids**.drag.integrate_drag_sphere ($D$, rhop, rho, mu, t, V=0, Method=None, distance=False)

Integrates the velocity and distance traveled by a particle moving at a speed which will converge to its terminal velocity.

Performs an integration of the following expression for acceleration:

$$a = \frac{g(d(p_p - p_f))}{\rho_p} - \frac{3C_Dp_fu^2}{4Dp_p}$$
Parameters

- **D** [float] Diameter of the sphere, [m]
- **rhop** [float] Particle density, [kg/m^3]
- **rho** [float] Density of the surrounding fluid, [kg/m^3]
- **mu** [float] Viscosity of the surrounding fluid [Pa*s]
- **t** [float] Time to integrate the particle to, [s]
- **V** [float] Initial velocity of the particle, [m/s]

Method [string, optional] A string of the function name to use, as in the dictionary `drag_sphere_correlations`

**distance** [bool, optional] Whether or not to calculate the distance traveled and return it as well

Returns

- **v** [float] Velocity of falling sphere after time \( t \) [m/s]
- **x** [float, returned only if distance == True] Distance traveled by the falling sphere in time \( t \), [m]

Notes

This can be relatively slow as drag correlations can be complex.

There are analytical solutions available for the Stokes law regime (Re < 0.3). They were obtained from Wolfram Alpha. [1] was not used in the derivation, but also describes the derivation fully.

\[
V(t) = \frac{\exp(-at)(V_0a + b(\exp(at) - 1))}{a}
\]

\[
x(t) = \frac{\exp(-at)[V_0a(\exp(at) - 1) + b\exp(at)(at - 1) + b]}{a^2}
\]

\[
a = \frac{18\mu_f}{D^2\rho_p}
\]

\[
b = \frac{g(\rho_p - \rho_f)}{\rho_p}
\]

The analytical solution will automatically be used if the initial and terminal velocity is show the particle’s behavior to be laminar. Note that this behavior requires that the terminal velocity of the particle be solved for - this adds slight (1%) overhead for the cases where particles are not laminar.

References

[1]

Examples

```python
>>> integrate_drag_sphere(D=0.001, rhop=2200., rho=1.2, mu=1.78E-5, t=0.5,
 V=30, distance=True)
(9.686465044053, 7.8294546436299)
```
fluids.drag.time_v_terminal_Stokes \( (D, \text{rhop}, \text{rho}, \text{mu}, V0, \text{tol}=1e^{-14}) \)

Calculates the time required for a particle in Stoke’s regime only to reach terminal velocity (approximately). An infinitely long period is required theoretically, but with floating points, it is possible to calculate the time required to come within a specified \( \text{tol} \) of that terminal velocity.

\[
t_{\text{term}} = -\frac{1}{18\mu} \ln \left( \frac{D^2 g \rho - D^2 g \rho_p + 18\mu V_{\text{term}}}{D^2 g \rho - D^2 g \rho_p + 18\mu V_0} \right) D^2 \rho_p
\]

**Parameters**

- \( D \) [float] Diameter of the sphere, [m]
- \( \text{rhop} \) [float] Particle density, [kg/m\(^3\)]
- \( \text{rho} \) [float] Density of the surrounding fluid, [kg/m\(^3\)]
- \( \text{mu} \) [float] Viscosity of the surrounding fluid [Pa\(\cdot\)s]
- \( V_0 \) [float] Initial velocity of the particle, [m/s]
- \( \text{tol} \) [float, optional] How closely to approach the terminal velocity - the target velocity is the terminal velocity multiplied by 1 (+/-) this, depending on if the particle is accelerating or decelerating, [-]

**Returns**

- \( t \) [float] Time for the particle to reach the terminal velocity to within the specified or an achievable tolerance, [s]

**Notes**

The symbolic solution was obtained via Wolfram Alpha.

If a solution cannot be obtained due to floating point error at very high tolerance, an exception is raised - but first, the tolerance is doubled, up to fifty times in an attempt to obtain the highest possible precision while still giving an answer. If at any point the tolerance is larger than 1%, an exception is also raised.

**Examples**

```python
>>> time_v_terminal_Stokes(D=1e-7, rhop=2200., rho=1.2, mu=1.78E-5, V0=1)
3.1880031137871528e-06
>>> time_v_terminal_Stokes(D=1e-2, rhop=2200., rho=1.2, mu=1.78E-5, V0=1,
... tol=1e-30)
24800.63691801996
```

fluids.drag.Stokes(\( Re \))

Calculates drag coefficient of a smooth sphere using Stoke’s law.

\[
C_D = \frac{2A}{Re}
\]

**Parameters**

- \( Re \) [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

**Returns**

- \( C_D \) [float] Drag coefficient [-]
Notes

Range is Re <= 0.3

References

[1]

Examples

```python
>>> Stokes(0.1)
240.0
```

`fluids.drag.Barati(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1].

\[
C_D = 5.4856 \times 10^9 \tanh(4.3774 \times 10^{-9}/Re) + 0.0709 \tanh(700.6574/Re) + 0.3894 \tanh(74.1539/Re) - 0.1198 \tanh(7429.0843/Re) + 1.7174 \tanh\left[\frac{9.9851}{Re + 2.3384}\right] + 0.4744
\]

Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]

Notes

Range is Re <= 2E5

References

[1]

Examples

Matching example in [1], in a table of calculated values.

```python
>>> Barati(200.)
0.7682237950389874
```

`fluids.drag.Barati_high(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1].

\[
C_D = 8 \times 10^{-6} \left[ (Re/6530)^2 + \tanh(Re) - 8 \ln(Re)/\ln(10) \right] - 0.4119 \exp(-2.08 \times 10^{13}/[Re + Re^2]^4) - 2.1344 \exp(-\left[\ln(\tanh(\tanh(Re)))/\ln(10)\right] - 2.8257.7162/Re + 2.4795
\]

Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]
Notes

Range is \( Re \leq 1\times10^6 \) This model is the wider-range model the authors developed. At sufficiently low diameters or \( Re \) values, drag is no longer a phenomena.

References

[1]

Examples

Matching example in [1], in a table of calculated values.

```
>>> Barati_high(200.)
0.7730544082789523
```

```
fluids.drag.Rouse(Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} + \frac{3}{Re^{0.5}} + 0.34
\]

Parameters

- \(Re \) [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

- \(Cd \) [float] Drag coefficient [-]

Notes

Range is \(Re \leq 2\times10^5 \)

References

[1],[2]

Examples

```
>>> Rouse(200.)
0.6721320343559642
```

```
fluids.drag.Engelund_Hansen(Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} + 1.5
\]

Parameters

- \( Re \) [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]
Returns

Cd  [float] Drag coefficient [-]

Notes

Range is Re <= 2E5

References

[1],[2]

Examples

```python
>>> Engelund_Hansen(200.)
1.62
```

fluids.drag.Clift_Gauvin(Re)

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} (1 + 0.152Re^{0.677}) + \frac{0.417}{1 + 5070Re^{-0.94}}
\]

Parameters

- Re  [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd  [float] Drag coefficient [-]

Notes

Range is Re <= 2E5

References

[1],[2]

Examples

```python
>>> Clift_Gauvin(200.)
0.7905400398000133
```
fluids.drag.**Morsi_Alexander** *(Re)*

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \begin{cases} 
\frac{24}{Re} + 0.0903 + 3.69 & \text{if } Re < 0.1 \\
\frac{29.1667}{Re} - \frac{0.8889}{Re^2} + 1.2220 & \text{if } 0.1 < Re < 1 \\
\frac{462}{Re^2} - \frac{116.22}{Re^2} + 0.6167 & \text{if } 1 < Re < 10 \\
\frac{9533}{Re^2} - \frac{2778}{Re^2} + 0.3644 & \text{if } 10 < Re < 100 \\
\frac{148.62}{Re} - \frac{4.75 \times 10^4}{Re^2} + 0.3570 & \text{if } 100 < Re < 1000 \\
\frac{-490.5460}{Re} + \frac{57.87 \times 10^6}{Re^2} + 0.46 & \text{if } 5000 < Re < 10000 \\
\frac{-1662.5}{Re} + \frac{5.4167 \times 10^6}{Re^2} + 0.5191 & \text{if } 10000 < Re < 50000 \\
\end{cases}
\]

**Parameters**

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

**Returns**

Cd [float] Drag coefficient [-]

**Notes**

Range is Re <= 2E5. Original was reviewed, and confirmed to contain the cited equations.

**References**

[1], [2]

**Examples**

```python
>>> Morsi_Alexander(200)
0.7866
```

fluids.drag.**Graf** *(Re)*

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} + \frac{7.3}{1 + Re^{0.5}} + 0.25
\]

**Parameters**

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

**Returns**

Cd [float] Drag coefficient [-]

**Notes**

Range is Re <= 2E5
References

[1], [2]

Examples

```python
>>> Graf(200.)
0.8520984424785725
```

`fluids.drag.Flemmer_Banks(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} 10^E
\]

\[
E = 0.383 Re^{0.356} - 0.207 Re^{0.396} - \frac{0.143}{1 + (\log_{10} Re)^2}
\]

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity. [-]

Returns

- **Cd** [float] Drag coefficient [-]

Notes

Range is \( \text{Re} \leq 2 \times 10^5 \)

References

[1], [2]

Examples

```python
>>> Flemmer_Banks(200.)
0.7849169609270039
```

`fluids.drag.Khan_Richardson(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = (2.49 R e^{-0.328} + 0.34 R e^{0.067})^{3.18}
\]

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity. [-]

Returns

- **Cd** [float] Drag coefficient [-]
Notes

Range is Re <= 2E5

References

[1], [2]

Examples

```python
>>> Khan_Richardson(200.)
0.7747572379211097
```

fluids.drag.**Swamee_Ojha** *(Re)*

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = 0.5 \left\{ 16 \left[ \frac{24}{Re^{1.6}} + \left( \frac{130}{Re} \right)^{0.72} \right]^{2.5} + \left( \frac{40000}{Re} \right)^2 + 1 \right\}^{-0.25} \]^{0.25}

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

- **Cd** [float] Drag coefficient [-]

Notes

Range is Re <= 1.5E5

References

[1], [2]

Examples

```python
>>> Swamee_Ojha(200.)
0.8490012397545713
```

fluids.drag.**Yen** *(Re)*

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} \left( 1 + 0.15\sqrt{Re} + 0.017Re \right) - \frac{0.208}{1 + 10^4 Re^{-0.5}}
\]

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

- **Cd** [float] Drag coefficient [-]
Notes

Range is Re \leq 2E5

References

[1], [2]

Examples

```python
>>> Yen(200.)
0.7822647002187014
```

```python
fluids.drag.Haider_Levenspiel(Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[C_D = \frac{24}{Re} (1 + 0.1806Re^{0.6459}) + \left(\frac{0.4251}{1 + \frac{6880.95}{Re}} \right) \]

Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]

Notes

Range is Re \leq 2E5 An improved version of this correlation is in Brown and Lawler.

References

[1], [2]

Examples

```python
>>> Haider_Levenspiel(200.)
0.7959551680251666
```

```python
fluids.drag.Cheng(Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[ C_D = \frac{24}{Re} (1 + 0.27Re^{0.43} + 0.47[1 - \exp(-0.04Re^{0.38})]) \]

Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]
Notes
Range is Re <= 2E5

References
[1], [2]

Examples

```python
>>> Cheng(200.)
0.7939143028294227
```

`fluids.drag.Terfous(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = 2.689 + \frac{21.683}{Re} + \frac{0.131}{Re^{0.1}} - \frac{10.616}{Re^{0.2}} + \frac{12.216}{Re^{0.2}}
\]

Parameters
- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns
- **Cd** [float] Drag coefficient [-]

Notes
Range is 0.1 < Re <= 5E4

References
[1], [2]

Examples

```python
>>> Terfous(200.)
0.7814651149769638
```

`fluids.drag.Mikhailov_Freire(Re)`
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{3808[(1617933/2030) + (178861/1063)Re + (1219/1084)Re^2]}{681Re[(77531/422) + (13529/976)Re - (1/71154)Re^2]}
\]

Parameters
- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns
- **Cd** [float] Drag coefficient [-]
Notes

Range is Re <= 118300

References

[1], [2]

Examples

```python
>>> Mikhailov_Freire(200.)
0.7514111388018659
```

fluids.drag.Clift (Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \begin{cases} 
\frac{24}{Re} & \text{if } Re < 0.01 \\
\frac{24}{Re} + \frac{3}{16} (1 + 0.1315Re^{0.82-0.05\log Re}) & \text{if } 0.01 < Re < 20 \\
\frac{24}{Re} (1 + 0.1935Re^{0.6305}) & \text{if } 20 < Re < 260 \\
10^{1.6435-1.1242\log Re+0.1558[\log Re]^2} & \text{if } 260 < Re < 1500 \\
10^{-2.4571+2.5558\log Re-0.9295[\log Re]^2+0.1049[\log Re]^3} & \text{if } 1500 < Re < 12000 \\
10^{-1.9181+0.6370\log Re-0.0636[\log Re]^2} & \text{if } 12000 < Re < 44000 \\
10^{-4.3390+1.5809\log Re-0.1546[\log Re]^2} & \text{if } 44000 < Re < 338000 \\
9.78 - 5.3 \log Re & \text{if } 338000 < Re < 400000 \\
0.19 \log Re - 0.49 & \text{if } 400000 < Re < 1000000 \\
\end{cases}
\]

Parameters

- \textbf{Re} [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

- \textbf{Cd} [float] Drag coefficient [-]

Notes

Range is Re <= 1E6.

References

[1], [2]

Examples

```python
>>> Clift(200)
0.7756342422322543
```

fluids.drag.Ceylan (Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = 1 - 0.5 \exp(0.182) + 10.11 Re^{-2/3} \exp(0.952 Re^{-1/4}) - 0.03859 Re^{-4/3} \exp(1.30 Re^{-1/2}) + 0.037 \times 10^{-4} Re \exp(-0.444 Re^{-5/4}) + 0.116 \times 10^{-1} Re^{2} \exp(-0.125 Re^{-1/2})
\]
Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]

Notes

Range is 0.1 < Re <= 1E6 Original article reviewed.

References

[1], [2]

Examples

```python
>>> Ceylan(200.)
0.7816735980280175
```

`fluids.drag.Almedeij(Re)`

Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \left[ \frac{1}{(\phi_1 + \phi_2)^{-1} + (\phi_3)^{-1} + \phi_4} \right]^{0.1}
\]

\[
\phi_1 = (24Re^{-1})^{10} + (21Re^{-0.67})^{10} + (4Re^{-0.33})^{10} + 0.4^{10}
\]

\[
\phi_2 = \left[ (0.148Re^{0.11})^{-10} + (0.5)^{-10} \right]^{-1}
\]

\[
\phi_3 = (1.57 \times 10^8 Re^{-1.625})^{10}
\]

\[
\phi_4 = \left[ (6 \times 10^{-17} Re^{2.63})^{-10} + (0.2)^{-10} \right]^{-1}
\]

Parameters

Re [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

Cd [float] Drag coefficient [-]

Notes

Range is Re <= 1E6. Original work has been reviewed.

References

[1], [2]
Examples

```python
>>> Almedeij(200.)
0.7114768646813396
```

fluids.drag.Morrison(Re)
Calculates drag coefficient of a smooth sphere using the method in [1] as described in [2].

\[
C_D = \frac{24}{Re} + \frac{2.6Re/5}{1 + \left(\frac{Re}{5}\right)^{1.52}} + \frac{0.411 \left(\frac{Re}{263000}\right)^{-7.94}}{1 + \left(\frac{Re}{263000}\right)^{-8}} + \frac{Re^{0.8}}{461000}
\]

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]

Returns

- **Cd** [float] Drag coefficient [-]

Notes

Range is Re <= 1E6.

References

[1], [2]

Examples

```python
>>> Morrison(200.)
0.767731559965325
```

fluids.drag.Song_Xu(Re, sphericity=1.0, S=1.0)
Calculates drag coefficient of a particle using the method in [1]. Developed with data for spheres, cubes, and cylinders. Claims 3.52% relative error for 0.001 < Re < 100 based on 336 tests data.

\[
C_d = \frac{24}{Re^{0.85}S^{0.3}} (1 + 0.35Re)^{0.44}
\]

Parameters

- **Re** [float] Particle Reynolds number of the sphere using the surrounding fluid density and viscosity, [-]
- **sphericity** [float, optional] Sphericity of the particle
- **S** [float, optional] Ratio of equivalent sphere area and the projected area in the particle settling direction [-]

Returns

- **Cd** [float] Drag coefficient of particle [-]

Notes

Notable as its experimental data and analysis is included in their supporting material.
References

[1]

Examples

```python
>>> Song_Xu(30.)
2.3431335190092444
```

2.6 Filter pressure drop (fluids.filters)

`fluids.filters.round_edge_screen(alpha, Re, angle=0.0)`

Returns the loss coefficient for a round edged wire screen or bar screen, as shown in [1]. Angle of inclination may be specified as well.

**Parameters**

- `alpha` [float] Fraction of screen open to flow [-]
- `Re` [float] Reynolds number of flow through screen with \( D = \) space between rods, [-]
- `angle` [float, optional] Angle of inclination, with 0 being straight and 90 being parallel to flow [degrees]

**Returns**

- `K` [float] Loss coefficient [-]

**Notes**

Linear interpolation between a table of values. Re table extends from 20 to 400, with constant values outside of the table. This behavior should be adequate. alpha should be between 0.05 and 0.8. If angle is over 85 degrees, the value at 85 degrees is used.

The velocity the loss coefficient relates to is the approach velocity before the screen.

References

[1]

Examples

```python
>>> round_edge_screen(0.5, 100)
2.0999999999999996
>>> round_edge_screen(0.5, 100, 45)
1.05
```

`fluids.filters.round_edge_open_mesh(alpha, subtype='diamond pattern wire', angle=0.0)`

Returns the loss coefficient for a round edged open net/screen made of one of the following patterns, according to [1]:
‘round bar screen’:

\[ K = 0.95(1 - \alpha) + 0.2(1 - \alpha)^2 \]

‘diamond pattern wire’:

\[ K = 0.67(1 - \alpha) + 1.3(1 - \alpha)^2 \]

‘knotted net’:

\[ K = 0.70(1 - \alpha) + 4.9(1 - \alpha)^2 \]

‘knotless net’:

\[ K = 0.72(1 - \alpha) + 2.1(1 - \alpha)^2 \]

Parameters

- **alpha** [float] Fraction of net/screen open to flow [-]
- **subtype** [str] One of ‘round bar screen’, ‘diamond pattern wire’, ‘knotted net’ or ‘knotless net’.
- **angle** [float, optional] Angle of inclination, with 0 being straight and 90 being parallel to flow [degrees]

Returns

- **K** [float] Loss coefficient [-]

Notes

`alpha` should be between 0.85 and 1 for these correlations. Flow should be turbulent, with Re > 500.

The velocity the loss coefficient relates to is the approach velocity before the mesh.

References

[1]

Examples

```python
>>> round_edge_open_mesh(0.96, angle=33.)
0.02031327712601458
```

**fluids.filters.square_edge_screen(alpha)**

Returns the loss coefficient for a square wire screen or square bar screen or perforated plate with squared edges, as shown in [1].

Parameters

- **alpha** [float] Fraction of screen open to flow [-]

Returns

- **K** [float] Loss coefficient [-]
Notes

Linear interpolation between a table of values. The velocity the loss coefficient relates to is the approach velocity before the screen.

References

[1]

Examples

```python
>>> square_edge_screen(0.99)
0.00800000000000007
```

`fluids.filters.square_edge_grill(alpha, l=None, Dh=None, fd=None)`

Returns the loss coefficient for a square grill or square bar screen or perforated plate with squared edges of thickness l, as shown in [1].

for $D_{h} < l < 50D$

$$K = \frac{0.5(1 - \alpha) + (1 - \alpha^2)}{\alpha^2}$$

else:

$$K = \frac{0.5(1 - \alpha) + (1 - \alpha^2) + fl/D}{\alpha^2}$$

Parameters

- `alpha` [float] Fraction of grill open to flow [-]
- `l` [float, optional] Thickness of the grill or plate [m]
- `Dh` [float, optional] Hydraulic diameter of gap in grill, [m]
- `fd` [float, optional] Darcy friction factor [-]

Returns

- `K` [float] Loss coefficient [-]

Notes

If l, Dh, or fd is not provided, the first expression is used instead. The alteration of the expression to include friction factor is there if the grill is long enough to have considerable friction along the surface of the grill.

The velocity the loss coefficient relates to is the approach velocity before the grill.

References

[1]
**Fluids Documentation, Release 0.1.86**

```python
>>> square_edge_grill(.45)
5.296296296296296
>>> square_edge_grill(.45, l=.15, Dh=.002, fd=.0185)
12.148148148148147
```

**fluids.filters.round_edge_grill** *(alpha, l=None, Dh=None, fd=None)*

Returns the loss coefficient for a rounded square grill or square bar screen or perforated plate with rounded edges of thickness l, as shown in [1].

for $Dh < l < 50D$

$$K = \text{lookup}(\alpha)$$

else:

$$K = \text{lookup}(\alpha) + \frac{fl}{\alpha^2D}$$

**Parameters**

- alpha [float] Fraction of grill open to flow [-]
- l [float, optional] Thickness of the grill or plate [m]
- Dh [float, optional] Hydraulic diameter of gap in grill, [m]
- fd [float, optional] Darcy friction factor [-]

**Returns**

- K [float] Loss coefficient [-]

**Notes**

If l, Dh, or fd is not provided, the first expression is used instead. The alteration of the expression to include friction factor is there if the grill is long enough to have considerable friction along the surface of the grill. alpha must be between 0.3 and 0.7.

The velocity the loss coefficient relates to is the approach velocity before the grill.

**References**

[1]

**Examples**

```python
>>> round_edge_grill(.4)
1.0
>>> round_edge_grill(.4, l=.15, Dh=.002, fd=.0185)
2.3874999999999997
```

## 2.7 Fittings pressure drop (fluids.fittings)

**fluids.fittings.contraction_sharp** *(Di1, Di2, fd=None, Re=None, roughness=0.0, method='Rennels')*

Returns loss coefficient for a sharp edged pipe contraction.
This calculation has two methods available. The ‘Rennels’ [2] method is a fit for turbulent regimes, while the Hooper method is more complicated and claims to have full dependence on \(Re\) including a laminar transition at \(Re\) of 2500 (based on the original pipe diameter).

The Rennels [1] formulas are:

\[
K_1 = 0.0696(1 - \beta^5)\lambda^2 + (\lambda - 1)^2
\]
\[
\lambda = 1 + 0.622(1 - 0.215\beta^2 - 0.785\beta^5)
\]
\[
\beta = \frac{d_2}{d_1}
\]

The Hooper [1] formulas are:

If \(Re_1 \leq 2500\):

\[
K_1 = \left[1.2 + \frac{160}{Re_1}\right] \left(\frac{D_1}{D_2}\right)^4 - 1
\]

If \(Re_1 > 2500\):

\[
K_1 = [0.6 + 0.48f_1] \left(\frac{D_1}{D_2}\right)^2 \left[\left(\frac{D_1}{D_2}\right)^2 - 1\right]
\]

Converting the loss coefficient to a consistent basis:

\[
K_2 = K_1 \frac{D_2^4}{D_1^4}
\]

For the Crane formula see `contraction_conical_Crane` with a length of zero.

---

**Parameters**

- **Di1** [float] Inside diameter of original (larger) pipe, [m]
- **Di2** [float] Inside diameter of following (smaller) pipe, [m]
- **fd** [float, optional] Darcy friction factor in original pipe; used only in the Hooper method and will be calculated from \(Re\) if not given, [-]
- **Re** [float, optional] Reynolds number of the pipe (used in Hooper method, [m]
- **roughness** [float, optional] Roughness of original pipe (used in Hooper method only if no friction factor given), [m]
- **method** [str] The calculation method to use; one of ‘Hooper’, ‘Rennels’, or ‘Crane’ [-]

**Returns**

- **K** [float] Loss coefficient in terms of the following pipe [-]
Notes

A value of 0.506 or simply 0.5 is often used.

References

[1], [2]

Examples

```python
>>> contraction_sharp(Di1=1, Di2=0.4)
0.5301269161591805
>>> contraction_sharp(Di1=1, Di2=0.4, Re=1e5, method='Hooper')
0.5112534765075794
```

The Hooper method supports laminar flow, while Rennels is not even Re aware.

```python
>>> contraction_sharp(Di1=1, Di2=0.4, Re=1e3, method='Hooper')
1.3251840000000001
```

Crane offers similar results:

```python
>>> contraction_sharp(3.0, 2.0, method='Crane')
0.2777777777777778
```

`fluids.fittings.contraction_round(Di1, Di2, rc, method='Rennels')`

Returns loss coefficient for any any round edged pipe contraction. This calculation has three methods available.

The ’Miller’ [2] method is a bivariate spline digitization of a graph; the ‘Idelchik’ [3] method is an interpolation using a formula and a table of values.

The most conservative formulation is that of Rennels; with fairly similar. The ‘Idelchik’ method is more conservative and less complex; it offers a straight-line curve where the others curves are curved.

The Rennels [1] formulas are:

\[
K = 0.0696 \left(1 - 0.569 \frac{r}{d_2}\right) \left(1 - \sqrt{\frac{r}{d_2}} \beta\right) \left(1 - \beta^5\right) \lambda^2 + (\lambda - 1)^2
\]

\[
\lambda = 1 + 0.622 \left(1 - 0.30 \left(\frac{r}{d_2} - 0.70 \frac{r}{d_2}\right)^4\right) (1 - 0.215 \beta^2 - 0.785 \beta^5)
\]

\[
\beta = \frac{d_2}{d_1}
\]

Parameters
**Di1** [float] Inside diameter of original pipe, [m]

**Di2** [float] Inside diameter of following pipe, [m]

**rc** [float] Radius of curvature of the contraction, [m]

**method** [str] The calculation method to use; one of ‘Rennels’, ‘Miller’, or ‘Idelchik’, [-]

**Returns**

**K** [float] Loss coefficient in terms of the following pipe [-]

**Notes**

Rounding radius larger than 0.14Di2 prevents flow separation from the wall. Further increase in rounding radius continues to reduce loss coefficient.

**Comparison of available methods for rounded pipe contractions**

![Comparison of available methods for rounded pipe contractions](image)

**References**

[1], [2], [3]

2.7. Fittings pressure drop (fluids.fittings)
Examples

```python
>>> contraction_round(Di1=1, Di2=0.4, rc=0.04)
0.178332490866574
```

`fluids.fittings.contraction_round_Miller(Di1, Di2, rc)`

Returns loss coefficient for any round edged pipe contraction using the method of Miller [1]. This method uses a spline fit to a graph with area ratios 0 to 1, and radius ratios (rc/Di2) from 0.1 to 0.

Parameters

- **Di1** [float] Inside diameter of original pipe, [m]
- **Di2** [float] Inside diameter of following pipe, [m]
- **rc** [float] Radius of curvature of the contraction, [m]

Returns

- **K** [float] Loss coefficient in terms of the following pipe, [-]

Notes

This method normally gives lower losses than the Rennels formulation.

References

[1]

Examples

```python
>>> contraction_round_Miller(Di1=1, Di2=0.4, rc=0.04)
0.08565953051298639
```

`fluids.fittings.contraction_conical(Di1, Di2, fd=None, l=None, angle=None, Re=None, roughness=0.0, method='Rennels')`

Returns the loss coefficient for any conical pipe contraction. This calculation has five methods available. The ‘Idelchik’ [2] and ‘Blevins’ [3] methods use interpolation among tables of values; ‘Miller’ uses a 2d spline representation of a graph; and the ‘Rennels’ [1], ‘Crane’ [4], ‘Swamee’ [5] and ‘Hooper’ methods use formulas for their calculations.

The ‘Rennels’ [1] formulas are:

\[
K_2 = K_{fr,2} + K_{conv,2}
\]

\[
K_{fr,2} = \frac{f_d(1 - \beta^4)}{8\sin(\theta/2)}
\]

\[
K_{conv,2} = 0.0696(1 + C_B(\sin(\alpha/2) - 1))(1 - \beta^5)\lambda^2 + (\lambda - 1)^2
\]

\[
\lambda = 1 + 0.622(\alpha/180)^{0.8}(1 - 0.215\beta^2 - 0.785\beta^5)
\]

\[
\beta = d_2/d_1
\]

The ‘Swamee’ [5] formula is:

\[
K = 0.315\theta^{1/3}
\]
The Hooper [7] formulas are:

If $Re_1 \leq 2500$:

$$K_{1,\text{sharp}} = \left[ 1.2 + \frac{160}{Re_1} \right] \left( \frac{D_1}{D_2} \right)^4 - 1$$

If $Re_1 > 2500$:

$$K_{1,\text{sharp}} = [0.6 + 0.48 f_1] \left( \frac{D_1}{D_2} \right)^2 \left[ \left( \frac{D_1}{D_2} \right)^2 - 1 \right]$$

In both cases, a multiplier is added for the angle:

For angles between 45 and 180 degrees:

$$K_1 = K_{1,\text{sharp}} \sqrt{\sin \frac{\theta}{2}}$$

For angles between 0 and 45 degrees:

$$K_1 = K_{1,\text{sharp}} 1.6 \sin \frac{\theta}{2}$$

Converting the Hooper loss coefficient to a consistent basis:

$$K_2 = K_1 \frac{D_2^4}{D_1^4}$$

---

**Parameters**

- **Di1** [float] Inside pipe diameter of the larger, upstream, pipe, [m]
- **Di2** [float] Inside pipe diameter of the smaller, downstream, pipe, [m]
- **fd** [float, optional] Darcy friction factor; used only in the *Rennels* and *Hooper* method and will be calculated from $Re$ and *roughness* if not given, [-]
- **l** [float, optional] Length of the contraction, optional [m]
- **angle** [float, optional] Angle of contraction (180 = sharp, 0 = infinitely long contraction), optional [degrees]
- **Re** [float, optional] Reynolds number of the pipe (used in *Rennels* and *Hooper* method only if no friction factor given), [m]
- **roughness** [float, optional] Roughness of bend wall (used in Rennel method if no friction factor given), [m]

**Returns**

K [float] Loss coefficient in terms of the following pipe [-]

**Notes**

Cheap and has substantial impact on pressure drop.

The ‘Idelchik’ method includes two tabular interpolations; its friction term is limited to angles between 2 and 20 degrees and area ratios 0.05 to 0.6, while its main term is limited to length over diameter ratios 0.025 to 0.6. This seems to give it high results for angles < 25 degrees.

The ‘Blevins’ method is based on Idelchik data; it should not be used, because its data jumps around and its data is limited to area ratios .1 to 0.83, and length over diameter ratios 0 to 0.6. The ‘Miller’ method jumps around as well. Unlike most of Miller’s method, there is no correction for Reynolds number.

There is quite a bit of variance in the predictions of the methods, as demonstrated by the following figure.

**Comparison of available methods for conical pipe contractions**

Area ratio (x) vs. Loss coefficient (y)

![Graph showing comparison of available methods for conical pipe contractions](#)

**References**

[1], [2], [3], [4], [5], [6], [7]
Examples

```python
>>> contraction_conical(Di1=0.1, Di2=0.04, l=0.04, Re=1E6)
0.15639885880609544
```

`fluids.fittings.contraction_conical_Crane(Di1, Di2, l=None, angle=None)`

Returns loss coefficient for a conical pipe contraction as shown in Crane TP 410M [1] between 0 and 180 degrees.

If $\theta < 45^\circ$:

$$K_2 = 0.8 \sin \frac{\theta}{2} (1 - \beta^2)$$

otherwise:

$$K_2 = 0.5 \sqrt{\sin \frac{\theta}{2} (1 - \beta^2)}$$

$$\beta = d_2/d_1$$

Parameters

- **Di1** [float] Inside pipe diameter of the larger, upstream, pipe, [m]
- **Di2** [float] Inside pipe diameter of the smaller, downstream, pipe, [m]
- **l** [float, optional] Length of the contraction [m]
- **angle** [float, optional] Angle of contraction [degrees]

Returns

- **K** [float] Loss coefficient in terms of the following (smaller) pipe [-]

Notes

Cheap and has substantial impact on pressure drop. Note that the nomenclature in [1] is somewhat different - the smaller pipe is called 1, and the larger pipe is called 2; and so the beta ratio is reversed, and the fourth power of beta used in their equation is not necessary.

References

[1]

Examples

```python
>>> contraction_conical_Crane(Di1=0.0779, Di2=0.0525, l=0)
0.2729017979998056
```

`fluids.fittings.contraction_beveled(Di1, Di2, l=None, angle=None)`

Returns loss coefficient for any sharp beveled pipe contraction as shown in [1].

$$K = 0.0696[1 + C_B(\sin(\alpha/2) - 1)](1 - \beta^5)\lambda^2 + (\lambda - 1)^2$$

$$\lambda = 1 + 0.622 \left[ 1 + C_B \left( \frac{\alpha}{180} \right)^{0.8} \right] (1 - 0.215\beta^2 - 0.785\beta^5)$$
\[ C_B = \frac{l}{d_2^2} \frac{2\beta \tan(\alpha/2)}{1 - \beta} \]
\[ \beta = \frac{d_2}{d_1} \]

Parameters

- **Di1** [float] Inside diameter of original pipe, [m]
- **Di2** [float] Inside diameter of following pipe, [m]
- **l** [float] Length of the bevel along the pipe axis, [m]
- **angle** [float] Angle of bevel, [degrees]

Returns

- **K** [float] Loss coefficient in terms of the following pipe [-]

References

[1]

Examples

```python
>>> contraction_beveled(Di1=0.5, Di2=0.1, l=0.7*.1, angle=120)
0.40946469413070485
```

fluids.fittings.diffuser_sharp(Di1, Di2, Re=None, fd=None, roughness=0.0, method='Rennels')

Returns loss coefficient for any sudden pipe diameter expansion according to the specified method.

The main theoretical formula is as follows, in [1] and in other sources and is implemented under the name *Rennels*.

\[ K_2 = (1 - \beta^2)^2 \]

The Hooper [2] formulas are:

If \( Re_1 \leq 4000 \):

\[ K_1 = 2 \left[ 1 - \left( \frac{D_1}{D_2} \right)^4 \right] \]

else:

\[ K_1 = [1 + 0.8f_{d,1}] \left\{ 1 - \left( \frac{D_1}{D_2} \right)^2 \right\}^2 \]
Parameters

- **Di1** [float] Inside diameter of original pipe (smaller), [m]
- **Di2** [float] Inside diameter of following pipe (larger), [m]
- **Re** [float, optional] Reynolds number of the pipe for original (smaller) pipe, used in Hooper method [-]
- **fd** [float, optional] Darcy friction factor for original (smaller) pipe [-]
- **roughness** [float, optional] Roughness of pipe wall (used in Hooper method if no friction factor given), [m]
- **method** [str] The method to use for the calculation; one of ‘Rennels’, ‘Hooper’ [-]

Returns

- **K** [float] Loss coefficient with respect to the original (smaller) pipe [-]

Notes

- Highly accurate.

References

- [1], [2]

Examples

```python
>>> diffuser_sharp(Di1=.5, Di2=1)
0.5625
>>> diffuser_sharp(Di1=.5, Di2=1, Re=1e5, fd=1e-7, method='Hooper')
0.562500045
```

**fluids.fittings.diffuser_conical** *(Di1, Di2, l=None, angle=None, fd=None, Re=None, roughness=0.0, method='Rennels')*

Returns the loss coefficient for any conical pipe diffuser. This calculation has six methods available.

The ‘Rennels’ [1] formulas are as follows (three different formulas are used, depending on the angle and the ratio of diameters):

For 0 to 20 degrees, all aspect ratios:

$$K_1 = 8.30(\tan(\alpha/2))^{1.75}(1-\beta^4)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)}$$

For 20 to 60 degrees, beta < 0.5:

$$K_1 = 1.366\sin\left[\frac{2\pi(\alpha-15^\circ)}{180}\right]^{0.5} - 0.170 - 3.28(0.0625 - \beta^4)\sqrt{\frac{\alpha-20^\circ}{40^\circ}} \left(1-\beta^2\right)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)}$$

For 20 to 60 degrees, beta >= 0.5:

$$K_1 = 1.366\sin\left[\frac{2\pi(\alpha-15^\circ)}{180}\right]^{0.5} - 0.170 \left(1-\beta^2\right)^2 + \frac{f(1-\beta^4)}{8\sin(\alpha/2)}$$
For 60 to 180 degrees, beta < 0.5:

\[ K_1 = \left[ 1.205 - 3.28(0.0625 - \beta^4) - 12.8\beta^6 \sqrt{\frac{\alpha - 60^\circ}{120^\circ}} \right] (1 - \beta^2)^2 \]

For 60 to 180 degrees, beta >= 0.5:

\[ K_1 = \left[ 1.205 - 0.20 \sqrt{\frac{\alpha - 60^\circ}{120^\circ}} \right] (1 - \beta^2)^2 \]

The Swamee [5] formula is:

\[ K = \left\{ \begin{array}{l}
\frac{0.25}{\beta^3} \left[ 1 + \frac{0.6}{\pi/1.67} \left( \frac{\pi - \theta}{\theta} \right)^{0.533r - 2.6} \right]^{-0.5} \\
\end{array} \right. \]

The Hooper [6] formulas are:

If \( Re_1 \leq 4000 \):

\[ K_{\text{sharp}} = 2 \left[ 1 - \left( \frac{D_1}{D_2} \right)^4 \right] \]

else:

\[ K_{\text{sharp}} = \left[ 1 + 0.8f_d,1 \right] \left\{ \left[ 1 - \left( \frac{D_1}{D_2} \right)^2 \right]^2 \right\} \]

If the angle > 45 degrees, \( K = K_{\text{sharp}} \) otherwise

\[ K = 2.6 \sin \left( \frac{\theta}{2} \right) K_{\text{sharp}} \]

Parameters

- **Di1** [float] Inside diameter of original pipe (smaller), [m]
- **Di2** [float] Inside diameter of following pipe (larger), [m]
- **l** [float, optional] Length of the contraction along the pipe axis, optional, [m]
- **angle** [float, optional] Angle of contraction, [degrees]
- **fd** [float, optional] Darcy friction factor [-]
- **Re** [float, optional] Reynolds number of the pipe (used in Rennels method only if no friction factor given), [m]
roughness  [float, optional] Roughness of bend wall (used in Rennel method if no friction factor given), [m]


Returns

K  [float] Loss coefficient with respect to smaller, upstream diameter [-]

Notes

The Miller method changes around quite a bit.

There is quite a bit of variance in the predictions of the methods, as demonstrated by the following figure.

Comparison of available methods for conical pipe diffusers
Area ratio (x) vs. Loss coefficient (y)

References

[1], [2], [3], [4], [5], [6]
Examples

```python
>>> diffuser_conical(Di1=1/3., Di2=1.0, angle=50.0, Re=1E6)
0.8027721093415322
```

```python
fluids.fittings.diffuser_conical_staged(Di1, Di2, DEs, ls, fd=None, method='Rennels')
```

Returns loss coefficient for any series of staged conical pipe expansions as shown in [1]. Five different formulas are used, depending on the angle and the ratio of diameters. This function calls diffuser_conical.

Parameters

- **Di1** [float] Inside diameter of original pipe (smaller), [m]
- **Di2** [float] Inside diameter of following pipe (larger), [m]
- **DEs** [array] Diameters of intermediate sections, [m]
- **ls** [array] Lengths of the various sections, size 1 more than **DEs**, [m]
- **fd** [float] Darcy friction factor [-]
- **method** [str] The method to use for the calculation; one of ‘Rennels’, ‘Crane’, ‘Miller’, ‘Swamee’, or ‘Idelchik’ [-]

Returns

- **K** [float] Loss coefficient with respect to smaller, upstream diameter [-]

Notes

Only lengths of sections currently allowed. This could be changed to understand angles also.

Formula doesn’t make much sense, as observed by the example comparing a series of conical sections. Use only for small numbers of segments of highly differing angles.

References

[1]

Examples

```python
>>> diffuser_conical_staged(Di1=1., Di2=10., DEs=[2,3,4], ls=[1.1,1.2,1.3,1.4], fd=0.01)
1.9317533188274658
```

```python
fluids.fittings.diffuser_curved(Di1, Di2, l)
```

Returns loss coefficient for any curved wall pipe expansion as shown in [1].

\[
K_1 = \phi (1.43 - 1.3 \beta^2)(1 - \beta^2)^2
\]

\[
\phi = 1.01 - 0.624 \frac{l}{d_1} + 0.30 \left( \frac{l}{d_1} \right)^2 - 0.074 \left( \frac{l}{d_1} \right)^3 + 0.0070 \left( \frac{l}{d_1} \right)^4
\]

Parameters

- **Di1** [float] Inside diameter of original pipe (smaller), [m]
Fluids Documentation, Release 0.1.86

Di2 [float] Inside diameter of following pipe (larger), [m]

l [float] Length of the curve along the pipe axis, [m]

Returns

K [float] Loss coefficient [-]

Notes

Beta^2 should be between 0.1 and 0.9. A small mismatch between tabulated values of this function in table 11.3 is observed with the equation presented.

References

[1]

Examples

```python
diffuser_curved(Di1=0.25**0.5, Di2=1.0, l=2.)
0.2299781250000002
```

```
fluids.fittings.diffuser_pipe_reducer(Di1, Di2, l, fd1, fd2=None)

Returns loss coefficient for any pipe reducer pipe expansion as shown in [1]. This is an approximate formula.

\[K_f = f_1 \frac{0.20l}{d_1} + \frac{f_1(1 - \beta)}{8 \sin(\alpha/2)} + f_2 \frac{0.20l}{d_2} \beta^4 \]

\[\alpha = 2 \tan^{-1} \left(\frac{d_1 - d_2}{1.20l} \right) \]

Parameters

Di1 [float] Inside diameter of original pipe (smaller), [m]

Di2 [float] Inside diameter of following pipe (larger), [m]

l [float] Length of the pipe reducer along the pipe axis, [m]

fd1 [float] Darcy friction factor at inlet diameter [-]

fd2 [float] Darcy friction factor at outlet diameter, optional [-]

Returns

K [float] Loss coefficient [-]
Notes

Industry lack of standardization prevents better formulas from being developed. Add 15% if the reducer is eccentric. Friction factor at outlet will be assumed the same as at inlet if not specified.

Doubt about the validity of this equation is raised.

References

[1]

Examples

```python
>>> diffuser_pipe_reducer(Di1=.5, Di2=.75, l=1.5, fd1=0.07)
0.06873244301714816
```

```python
fluids.fittings.entrance_sharp(method='Rennels')
```

Returns loss coefficient for a sharp entrance to a pipe. Six sources are available; four of them recommending $K = 0.5$, the most recent ‘Rennels’, method recommending $K = 0.57$, and the ‘Miller’ method recommending ~0.51 as read from a graph.

![Diagram of entrance with loss coefficient K](attachment:diagram.png)

Parameters

Returns

- **K** [float] Loss coefficient [-]

Notes

0.5 is the result for ‘Swamee’, ‘Blevins’, ‘Idelchik’, and ‘Crane’; ‘Miller’ returns 0.5093, and ‘Rennels’ returns 0.57.

References

[1], [2], [3], [4], [5], [6]
Examples

```python
>>> entrance_sharp()
0.57
```

fluids.fittings.entrance_distance(\(Di, t=\text{None}, l=\text{None}, \text{method}='\text{Rennels}'\))

Returns the loss coefficient for a sharp entrance to a pipe at a distance from the wall of a reservoir. This calculation has five methods available; all but ‘Idelchik’ require the pipe to be at least \(Di/2\) into the reservoir.

The most conservative formulation is that of Rennels; with Miller being almost identical until \(t/\text{Di}\) reaches 0.05, when it continues settling to \(K = 0.53\) compared to \(K = 0.57\) for ‘Rennels’. ‘Idelchik’ is offset lower by about 0.03 and settles to 0.50. The ‘Harris’ method is a straight interpolation from experimental results with smoothing, and it is the lowest at all points. The ‘Crane’ [6] method returns 0.78 for all cases.

The Rennels [1] formula is:

\[
K = 1.12 - 22 \frac{t}{d} + 216 \left(\frac{t}{d} \right)^2 + 80 \left(\frac{t}{d} \right)^3
\]

Parameters

- \(Di\) [float] Inside diameter of pipe, [m]
- \(t\) [float, optional] Thickness of pipe wall, used in all but ‘Crane’ method, [m]
- \(l\) [float, optional] The distance the pipe extends into the reservoir; used only in the ‘Idelchik’ method, defaults to \(Di\), [m]

Returns

- \(K\) [float] Loss coefficient [-]

Notes

This type of inlet is also known as a Borda’s mouthpiece. It is not of practical interest according to [1]. The ‘Idelchik’ [3] data is recommended in [5]; it also provides rounded values for the ‘Harris’ method.

References

[1], [2], [3], [4], [5], [6]
Comparison of available methods for re-entrant entrances

- Rennels
- Miller
- Idelchik
- Harris
- Crane
Examples

```python
>>> entrance_distance(Di=0.1, t=0.0005)
1.0154100000000001
>>> entrance_distance(Di=0.1, t=0.0005, method='Idelchik')
0.9249999999999999
>>> entrance_distance(Di=0.1, t=0.0005, l=.02, method='Idelchik')
0.8474999999999999
```

```python
fluids.fittings.entrance_angled(angle, method='Idelchik')
```

Returns loss coefficient for a sharp, angled entrance to a pipe flush with the wall of a reservoir. First published in [2], it has been recommended in [3] as well as in [1].

\[K = 0.57 + 0.30 \cos(\theta) + 0.20 \cos(\theta)^2 \]

Parameters

angle [float] Angle of inclination (90° = straight, 0° = parallel to pipe wall), [degrees]

method [str, optional] The method to use; only ‘Idelchik’ is supported

Returns

K [float] Loss coefficient [-]

Notes

Not reliable for angles under 20 degrees. Loss coefficient is the same for an upward or downward angled inlet.

References

[1], [2], [3]

Examples

```python
>>> entrance_angled(30)
0.9798076211353315
```

```python
fluids.fittings.entrance_rounded(Di, rc, method='Rennels')
```

Returns loss coefficient for a rounded entrance to a pipe flush with the wall of a reservoir. This calculation has six methods available.

2.7. Fittings pressure drop (fluids.fittings)
The most conservative formulation is that of Rennels; with the Swammee correlation being 0.02-0.07 lower. They were published in 2012 and 2008 respectively, and for this reason could be regarded as more reliable.

The Idel’chik correlation appears based on the Hamilton data; and the Miller correlation as well, except a little more conservative. The Crane model trends similarly but only has a few points. The Harris data set is the lowest.

The Rennels \[1\] formulas are:

\[
K = 0.0696 \left(1 - 0.569 \frac{r}{d}\right) \lambda^2 + (\lambda - 1)^2
\]

\[
\lambda = 1 + 0.622 \left(1 - 0.30 \sqrt{\frac{r}{d}} - 0.70 \frac{r}{d}\right)^4
\]

The Swamee \[5\] formula is:

\[
K = 0.5 \left[1 + 36 \left(\frac{r}{D}\right)^{1.2}\right]^{-1}
\]

The most conservative formulation is that of Rennels; with the Swammee correlation being 0.02-0.07 lower. They were published in 2012 and 2008 respectively, and for this reason could be regarded as more reliable.

The Idel’chik correlation appears based on the Hamilton data; and the Miller correlation as well, except a little more conservative. The Crane model trends similarly but only has a few points. The Harris data set is the lowest.

The Rennels \[1\] formulas are:

\[
K = 0.0696 \left(1 - 0.569 \frac{r}{d}\right) \lambda^2 + (\lambda - 1)^2
\]

\[
\lambda = 1 + 0.622 \left(1 - 0.30 \sqrt{\frac{r}{d}} - 0.70 \frac{r}{d}\right)^4
\]

The Swamee \[5\] formula is:

\[
K = 0.5 \left[1 + 36 \left(\frac{r}{D}\right)^{1.2}\right]^{-1}
\]

Parameters

Di [float] Inside diameter of pipe, [m]
rc [float] Radius of curvature of the entrance, [m]

Returns

K [float] Loss coefficient [-]

Notes

For generously rounded entrance (rc/Di >= 1), the loss coefficient converges to 0.03 in the Rennels method.

The Rennels formulation was derived primarily from data and theoretical analysis from different flow scenarios than a rounded pipe entrance; the only available data in \[2\] is quite old and \[1\] casts doubt on it.

The Hamilton data set is available in \[1\] and \[6\].

References

[1], [2], [3], [4], [5], [6], [7], [8]

Examples

Point from Diagram 9.2 in \[1\], which was used to confirm the Rennels model implementation:
Comparison of available methods for rounded flush entrances to pipes

- Rennels
- Crane
- Miller
- Idelchik
- Harris
- Swamee

2.7. Fittings pressure drop (fluids.fittings)
fluids.fittings.entrance_rounded(Di=0.1, rc=0.0235)
0.09839534618360923

```
>>> entrance_rounded(Di=0.1, rc=0.0235)
0.09839534618360923
```

Returns loss coefficient for a beveled or chamfered entrance to a pipe flush with the wall of a reservoir. This calculation has two methods available.

The ‘Rennels’ and ‘Idelchik’ methods have similar trends, but the ‘Rennels’ formulation is centered around a straight loss coefficient of 0.57, so it is normally at least 0.07 higher.

The Rennels [1] formulas are:

\[
K = 0.0696 \left(1 - C_b \frac{l}{D} \right) \lambda^2 + (\lambda - 1)^2
\]

\[
\lambda = 1 + 0.622 \left[1 - 1.5C_b \left(\frac{l}{D} \right)^{1/(1/4)} \right]
\]

\[
C_b = \left(1 - \frac{\theta}{90} \right) \left(\frac{\theta}{90} \right)^{1/4}
\]
Comparison of available methods for beveled entrances

- Rennels, l/Di=0.025
- Idelchik, l/Di=0.025
- Rennels, l/Di=0.05
- Idelchik, l/Di=0.05
- Rennels, l/Di=0.1
- Idelchik, l/Di=0.1
- Rennels, l/Di=0.25
- Idelchik, l/Di=0.25
- Rennels, l/Di=0.5
- Idelchik, l/Di=0.5
- Rennels, l/Di=0.75
- Idelchik, l/Di=0.75
- Rennels, l/Di=1
- Idelchik, l/Di=1

2.7. Fittings pressure drop (fluids.fittings)
Examples

```python
>>> entrance_beveled(Di=0.1, l=0.003, angle=45)
0.45086864221916984
>>> entrance_beveled(Di=0.1, l=0.003, angle=45, method='Idelchik')
0.3995000000000001
```

```
fluids.fittings.entrance_beveled_orifice(Di, do, l, angle)

Returns loss coefficient for a beveled or chamfered orifice entrance to a pipe flush with the wall of a reservoir, as shown in [1].

\[
K = 0.0696 \left( 1 - C_b \frac{l}{d_o} \right) \lambda^2 + \left( \lambda - \left( \frac{d_o}{D_i} \right)^2 \right)^2
\]

\[
\lambda = 1 + 0.622 \left[ 1 - C_b \left( \frac{l}{d_o} \right)^{1 - (l/d_o)^{0.25}} \right]
\]

\[
C_b = \left( 1 - \frac{\Psi}{90} \right) \left( \frac{\Psi}{90} \right)^{\frac{1}{\pi/180}}
\]

Parameters

- **Di** [float] Inside diameter of pipe, [m]
- **do** [float] Inside diameter of orifice, [m]
- **l** [float] Length of bevel measured parallel to the pipe length, [m]
- **angle** [float] Angle of bevel with respect to the pipe length, [degrees]

Returns

- **K** [float] Loss coefficient [-]

References

[1]

Examples

```python
>>> entrance_beveled_orifice(Di=0.1, do=.07, l=0.003, angle=45)
1.2987552913818574
```
fluids.fittings.\texttt{entrance\_distance\_45\_Miller} \((Di, Di0)\)

Returns loss coefficient for a sharp entrance to a pipe at a distance from the wall of a reservoir with an initial 45 degree slope conical section of diameter \(Di0\) added to reduce the overall loss coefficient.

This method is as shown in Miller’s Internal Flow Systems [1]. This method is a curve fit to a graph in [1] which was digitized.

**Parameters**

\(Di\) [float] Inside diameter of pipe, [m]

\(Di0\) [float] Initial inner diameter of the welded conical section of the entrance of the distant (re-entrant) pipe, [m]

**Returns**

\(K\) [float] Loss coefficient with respect to the main pipe diameter \(Di\), [-]

**Notes**

The graph predicts an almost constant loss coefficient once the thickness of pipe wall to pipe diameter ratio becomes \(~0.02\).

**References**

[1]

**Examples**

```python
>>> entrance_distance_45_Miller(Di=0.1, Di0=0.14)
0.24407641818143339
```

---

fluids.fittings.\texttt{exit\_normal} ()

Returns loss coefficient for any exit to a pipe as shown in [1] and in other sources.

\[ K = 1 \]

Returns

\(K\) [float] Loss coefficient [-]
Notes

It has been found on occasion that \( K = 2.0 \) for laminar flow, and ranges from about 1.04 to 1.10 for turbulent flow.

References

[1]

Examples

```python
>>> exit_normal()
1.0
```

```python
fluids.fittings.bend_rounded(Di, angle, Di=None, rc=None, bend_diameters=None, Re=None,
 roughness=0.0, L_unimpeded=None, method='Rennels')
```

Returns loss coefficient for rounded bend in a pipe of diameter \( Di \), \( \text{angle} \), with a specified either radius of curvature \( rc \) or curvature defined by \( \text{bend_diameters} \), Reynolds number \( Re \) and optionally pipe roughness, unimpeded length downstream, and with the specified method. This calculation has six methods available.

It is hard to describe one method as more conservative than another as depending on the conditions, the relative results change significantly.

The ‘Miller’ method is the most complicated and slowest method; the ‘Ito’ method comprehensive as well and a source of original data, and the primary basis for the ‘Rennels’ method. The ‘Swamee’ method is very simple and generally does not match the other methods. The ‘Crane’ method may match or not match other methods depending on the inputs. There is also a ‘Crane standard’ method for use with threaded fittings which have higher pressure drops. It is a linear interpolation of values at angles of 45, 90, and 180 degrees.

The Rennels [1] formula is:

\[
K = f \alpha \frac{r}{d} + (0.10 + 2.4 f) \sin(\alpha/2) + \frac{6.6 f (\sqrt{\sin(\alpha/2)} + \sin(\alpha/2))}{(r/d)^{4.5}}
\]

The Swamee [5] formula is:

\[
K = \left[ 0.0733 + 0.923 \left( \frac{d}{rc} \right)^{3.5} \right] \beta^{0.5}
\]

Parameters

\( Di \) [float] Inside diameter of pipe, [m]
angle [float] Angle of bend, [degrees]

fd [float, optional] Darcy friction factor; used only in Rennels method; calculated if not pro-

vided from Reynolds number, diameter, and roughness [-]

rc [float, optional] Radius of curvature of the entrance, optional [m]

bend_diameters [float, optional (used if rc not provided)] Number of diameters of pipe making

up the bend radius [-]

Re [float, optional] Reynolds number of the pipe (used in Miller, Ito methods primarily, and

Rennels method if no friction factor given), [-]

roughness [float, optional] Roughness of bend wall (used in Miller, Ito methods primarily, and

Rennels method if no friction factor given), [m]

L_unimpeded [float, optional] The length of unimpeded pipe without any fittings, instrumen-

tation, or flow disturbances downstream (assumed 20 diameters if not specified); used only

in Miller method, [m]


‘Swamee’, [-]

Returns

K [float] Loss coefficient [-]

Notes

When inputting bend diameters, note that manufacturers often specify this as a multiplier of nominal diameter,

which is different than actual diameter. Those require that rc be specified.

In the ‘Rennels’ method, rc is limited to 0.5 or above; which represents a sharp, square, inner edge - and an outer

bend radius of 1.0. Losses are at a minimum when this value is large. Its first term represents surface friction

loss; the second, secondary flows; and the third, flow separation. It encompasses the entire range of elbow and

pipe bend configurations. It was developed for bend angles between 0 and 180 degrees; and r/D ratios above

0.5. Only smooth pipe data was used in its development. Note the loss coefficient includes the surface friction

of the pipe as if it was straight.

References

[1], [2], [3], [4], [5], [6]

Examples

>>> bend_rounded(Di=4.020, rc=4.0*5, angle=30, Re=1E5)
0.11519070808085191

fluids.fittings.bend_rounded_Miller (Di, angle, Re, rc=None, bend_diameters=None, rough-

ness=0.0, L_unimpeded=None)

Calculates the loss coefficient for a rounded pipe bend according to Miller [1]. This is a sophisticated model

which uses corrections for pipe roughness, the length of the pipe downstream before another interruption, and a

correction for Reynolds number. It interpolates several times using several corrections graphs in [1].

Parameters

Di [float] Inside diameter of pipe, [m]
angle  [float] Angle of bend, [degrees]

Re  [float] Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [m]

rc  [float, optional] Radius of curvature of the entrance, [m]

bend_diameters  [float, optional] Number of diameters of pipe making up the bend radius (used if rc not provided; defaults to 5), [-]

roughness  [float, optional] Roughness of bend wall, [m]

L_unimpeded  [float, optional] The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m]

Returns

K  [float] Loss coefficient [-]

Notes

When inputting bend diameters, note that manufacturers often specify this as a multiplier of nominal diameter, which is different than actual diameter. Those require that rc be specified.

rc is limited to 0.5 or above; which represents a sharp, square, inner edge - and an outer bend radius of 1.0. Losses are at a minimum when this value is large.

This was developed for bend angles between 10 and 180 degrees; and r/D ratios between 0.5 and 10. Both smooth and rough data was used in its development from several sources.

Note the loss coefficient includes the surface friction of the pipe as if it was straight.

References

[1]

Examples

>>> bend_rounded_Miller(Di=.6, bend_diameters=2, angle=90, Re=2e6,
... roughness=2E-5, L_unimpeded=30*.6)
0.15261820705145895

`fluids.fittings.bend_rounded_Crane(Di, angle, rc=None, bend_diameters=None)`

Calculates the loss coefficient for any rounded bend in a pipe according to the Crane TP 410M [1] method. This method effectively uses an interpolation from tabulated values in [1] for friction factor multipliers vs. curvature radius.
Parameters

- **Di** [float] Inside diameter of pipe, [m]
- **angle** [float] Angle of bend, [degrees]
- **rc** [float, optional] Radius of curvature of the entrance; specify either rc or **bend_diameters**, optional [m]
- **bend_diameters** [float, optional] Number of diameters of pipe making up the bend radius; specify either rc or **bend_diameters**, [-]

Returns

- **K** [float] Loss coefficient [-]

Notes

The Crane method does match the trend of increased pressure drop as roughness increases.
The points in [1] are extrapolated to other angles via a well-fitting Chebyshev approximation, whose accuracy can be seen in the below plot.

References

[1]
Examples

```python
>>> bend_rounded_Crane(Di=.4020, rc=.4*5, angle=30)
0.09321910015613409
```

```
fluids.fittings.bend_miter(angle, Di=None, Re=None, roughness=0.0, L_unimpeded=None, method='Rennels')
```

Returns loss coefficient for any single-joint miter bend in a pipe of angle `angle`, diameter `Di`, Reynolds number `Re`, roughness `roughness` unimpeded downstream length `L_unimpeded`, and using the specified method. This calculation has four methods available. The ‘Rennels’ method is based on a formula and extends to angles up to 150 degrees. The ‘Crane’ method extends only to 90 degrees; the ‘Miller’ and ‘Blevins’ methods extend to 120 degrees.

The Rennels [1] formula is:

\[
K = 0.42 \sin\left(\frac{\alpha}{2}\right) + 2.56 \sin^3\left(\frac{\alpha}{2}\right)
\]

The ‘Crane’, ‘Miller’, and ‘Blevins’ methods are all in part graph or tabular based and do not have straightforward formulas.

```

![Diagram of miter bend]
```

Parameters

- `angle` [float] Angle of bend, [degrees]
- `Di` [float, optional] Inside diameter of pipe, [m]
- `Re` [float, optional] Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [-]
- `roughness` [float, optional] Roughness of bend wall, [m]
- `L_unimpeded` [float, optional] The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m]

Returns

- `K` [float] Loss coefficient with respect to either upstream or downstream diameter, [-]

Notes

This method is designed only for single-jointed miter bends. It is common for miter bends to have two or three sections, to further reduce the loss coefficient. Some methods exist in [2] for taking this into account. Because the additional configurations reduce the pressure loss, it is “common practice” to simply ignore their effect and accept the slight overdesign.

The following figure illustrates the different methods.
Comparison of available methods for mitre bend losses
Angle (x) vs. Loss coefficient (y)
References

[1], [2], [3], [4]

Examples

```python
def bend_miter_Di=.6, angle=45, Re=1e6, roughness=1e-5, L_unimpeded=20,
... method='Miller')
0.2944060416245169
```

`fluids.fittings.bend_miter_Miller(Di, angle, Re, roughness=0.0, L_unimpeded=None)`

Calculates the loss coefficient for a single miter bend according to Miller [1]. This is a sophisticated model which uses corrections for pipe roughness, the length of the pipe downstream before another interruption, and a correction for Reynolds number. It interpolates several times using several corrections graphs in [1].

**Parameters**

- `Di` [float] Inside diameter of pipe, [m]
- `angle` [float] Angle of miter bend, [degrees]
- `Re` [float] Reynolds number of the pipe (no specification if inlet or outlet properties should be used), [m]
- `roughness` [float, optional] Roughness of bend wall, [m]
- `L_unimpeded` [float, optional] The length of unimpeded pipe without any fittings, instrumentation, or flow disturbances downstream (assumed 20 diameters if not specified), [m]

**Returns**

- `K` [float] Loss coefficient [-]

**Notes**

Note the loss coefficient includes the surface friction of the pipe as if it was straight.

References

[1]

Examples

```python
def bend_miter_Miller(Di=.6, angle=90, Re=2e6, roughness=2e-5,
... L_unimpeded=30*.6)
1.1921574594947664
```

`fluids.fittings.helix(Di, rs, pitch, N, fd)`

Returns loss coefficient for any size constant-pitch helix as shown in [1]. Has applications in immersed coils in tanks.

\[ K = N \left[ f \frac{ \sqrt{(2\pi r)^2 + p^2}}{d} + 0.20 + 4.8f \right] \]
Parameters

- **Di** [float] Inside diameter of pipe, [m]
- **rs** [float] Radius of spiral, [m]
- **pitch** [float] Distance between two subsequent coil centers, [m]
- **N** [float] Number of coils in the helix [-]
- **fd** [float] Darcy friction factor [-]

Returns

- **K** [float] Loss coefficient [-]

Notes

Formulation based on peak secondary flow as in two 180 degree bends per coil. Flow separation ignored. No f, Re, geometry limitations. Source not compared against others.

References

[1]

Examples

```python
>>> helix(Di=0.01, rs=0.1, pitch=.03, N=10, fd=.0185)
14.525134924495514
```

**`fluids.fittings.spiral` (Di, rmax, rmin, pitch, fd)**

Returns loss coefficient for any size constant-pitch spiral as shown in [1]. Has applications in immersed coils in tanks.

\[
K = \frac{r_{max} - r_{min}}{p} \left[ f \pi \left( \frac{r_{max} + r_{min}}{d} \right) + 0.20 + 4.8f \right] + \frac{13.2f}{(r_{min}/d)^2}
\]

Parameters

- **Di** [float] Inside diameter of pipe, [m]
- **rmax** [float] Radius of spiral extremity, [m]
- **rmin** [float] Radius of spiral at end near center, [m]
- **pitch** [float] Distance between two subsequent coil centers, [m]
- **fd** [float] Darcy friction factor [-]

Returns

- **K** [float] Loss coefficient [-]

Notes

Source not compared against others.
References

[1]

Examples

```python
>>> spiral(Di=0.01, rmax=.1, rmin=.02, pitch=.01, fd=0.0185)
7.950918552775473
```

`fluids.fittings.Darby3K(NPS=None, Re=None, name=None, K1=None, Ki=None, Kd=None)`

Returns loss coefficient for any various fittings, depending on the name input. Alternatively, the Darby constants K1, Ki and Kd may be provided and used instead. Source of data is [1]. Reviews of this model are favorable.

\[
K_f = \frac{K_1}{Re} + K_i \left(1 + \frac{K_d}{D_{NPS}^{0.3}}\right)
\]

Note this model uses nominal pipe diameter in inches.

Parameters

- **NPS** [float] Nominal diameter of the pipe, [in]
- **Re** [float] Reynolds number, [-]
- **name** [str] String from Darby dict representing a fitting
- **K1** [float] K1 parameter of Darby model, optional [-]
- **Ki** [float] Ki parameter of Darby model, optional [-]
- **Kd** [float] Kd parameter of Darby model, optional [in]

Returns

- **K** [float] Loss coefficient [-]

Notes

Also described in Albright’s Handbook and Ludwig’s Applied Process Design. Relatively uncommon to see it used.

The possibility of combining these methods with those above are attractive.

References

[1], [2]

Examples

```python
>>> Darby3K(NPS=2., Re=10000., name='Valve, Angle valve, 45°, full line size, β → 1')
1.1572523963562356
>>> Darby3K(NPS=12., Re=10000., K1=950, Ki=0.25, Kd=4)
0.819510280626355
```
Fluids Documentation, Release 0.1.86

**`fluids.fittings.Hooper2K(Di, Re, name=None, K1=None, Kinfty=None)`**

Returns loss coefficient for any various fittings, depending on the name input. Alternatively, the Hooper constants K1, Kinfty may be provided and used instead. Source of data is [1]. Reviews of this model are favorable less favorable than the Darby method but superior to the constant-K method.

\[
K = \frac{K_1}{Re} + K_\infty \left(1 + \frac{1 \text{ inch}}{D_{in}}\right)
\]

Note this model uses actual inside pipe diameter in inches.

**Parameters**
- `Di` [float] Actual inside diameter of the pipe, [in]
- `Re` [float] Reynolds number, [-]
- `name` [str, optional] String from Hooper dict representing a fitting
- `K1` [float, optional] K1 parameter of Hooper model, optional [-]
- `Kinfty` [float, optional] Kinfty parameter of Hooper model, optional [-]

**Returns**
- `K` [float] Loss coefficient [-]

**Notes**
Also described in Ludwig’s Applied Process Design. Relatively uncommon to see it used. No actual example found.

**References**
[1], [2], [3]

**Examples**
```python
>>> Hooper2K(Di=2., Re=10000., name='Valve, Globe, Standard')
6.15
>>> Hooper2K(Di=2., Re=10000., K1=900, Kinfty=4)
6.09
```

**`fluids.fittings.Kv_to_Cv(Kv)`**

Convert valve flow coefficient from imperial to common metric units.

\[
C_v = 1.156K_v
\]

**Parameters**
- `Kv` [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]

**Returns**
- `Cv` [float] Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute]
Notes

\( K_v = 0.865 \ C_v \) is in the IEC standard 60534-2-1. It has also been said that \( C_v = 1.17K_v \); this is wrong by current standards.

The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch.

The exact conversion coefficient between \( K_v \) to \( C_v \) is 1.1560992283536566; it is rounded in the formula above.

References

[1]

Examples

```python
>>> Kv_to_Cv(2)
2.3121984567073133
```

```python
fluids.fittings.Cv_to_Kv(Cv)
```

Convert valve flow coefficient from imperial to common metric units.

\[ K_v = C_v / 1.156 \]

Parameters

- \( C_v \) [float] Imperial \( C_v \) valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute]

Returns

- \( K_v \) [float] Metric \( K_v \) valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m^3/hr]

Notes

\( K_v = 0.865 \ C_v \) is in the IEC standard 60534-2-1. It has also been said that \( C_v = 1.17K_v \); this is wrong by current standards.

The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch.

The exact conversion coefficient between \( K_v \) to \( C_v \) is 1.1560992283536566; it is rounded in the formula above.

References

[1]

Examples

```python
>>> Cv_to_Kv(2.312)
1.9998283393826013
```
fluids.fittings.Kv_to_K(Kv, D)

Convert valve flow coefficient from common metric units to regular loss coefficients.

\[ K = 1.6 \times 10^9 \frac{D^4}{K_v^2} \]

Parameters

- **Kv** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]
- **D** [float] Inside diameter of the valve [m]

Returns

- **K** [float] Loss coefficient, [-]

Notes

Crane TP 410 M (2009) gives the coefficient of 0.04 (with diameter in mm).

It also suggests the density of water should be found between 5-40°C. Older versions specify the density should be found at 60 °F, which is used here, and the pressure for the appropriate density is back calculated.

\[ \Delta P = 1 \text{ bar} = \frac{1}{2} \rho V^2 \cdot K \]

\[ V = K \cdot \frac{3600 \text{ hour}}{3D^2} \]

\[ \rho = 999.29744568 \text{ kg/m}^3 \text{ at } T = 60^\circ F, P = 703572 Pa \]

The value of density is calculated with IAPWS-95; it is chosen as it makes the coefficient a very convenient round number. Others constants that have been used are 1.604E9, and 1.60045E9.

References

[1]

Examples

```python
>>> Kv_to_K(2.312, .015)
15.153374600399898
```

fluids.fittings.K_to_Kv(K, D)

Convert regular loss coefficient to valve flow coefficient.

\[ K_v = 4 \times 10^4 \sqrt{\frac{D^4}{K}} \]

Parameters

- **K** [float] Loss coefficient, [-]
- **D** [float] Inside diameter of the valve [m]

Returns

- **Kv** [float] Metric Kv valve flow coefficient (flow rate of water at a pressure drop of 1 bar) [m³/hr]
Notes

Crane TP 410 M (2009) gives the coefficient of 0.04 (with diameter in mm).

It also suggests the density of water should be found between 5-40°C. Older versions specify the density should be found at 60 °F, which is used here, and the pressure for the appropriate density is back calculated.

\[ \Delta P = 1 \text{ bar} = \frac{1}{2} \rho V^2 \cdot K \]

\[ V = \frac{K}{3600 \text{ second} \cdot \frac{1}{4} D^2} \]

\[ \rho = 999.29744568 \text{ kg/m}^3 \text{ at } T = 60^\circ F, P = 703572 Pa \]

The value of density is calculated with IAPWS-95; it is chosen as it makes the coefficient a very convenient round number. Others constants that have been used are 1.604E9, and 1.60045E9.

References

[1]

Examples

```python
>>> K_to_Kv(15.15337460039990, .015)
2.312
```

```
fluids.fittings.Cv_to_K(Cv, D)
Convert imperial valve flow coefficient from imperial units to regular loss coefficients.

K = 1.6 \times 10^9 \frac{D^4}{(C_v^2)}

Parameters

Cv [float] Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi) [gallons/minute]
D [float] Inside diameter of the valve [m]

Returns

K [float] Loss coefficient, [-]
```

Notes

The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above.

References

[1]
fluids.fittings.K_to_Cv(K, D)
Convert regular loss coefficient to imperial valve flow coefficient.

\[ K_v = 1.156 \cdot 4 \times 10^4 \sqrt{\frac{D^4}{K}} \]

Parameters
- K [float] Loss coefficient, [-]
- D [float] Inside diameter of the valve [m]

Returns
- Cv [float] Imperial Cv valve flow coefficient (flow rate of water at a pressure drop of 1 psi)
  [gallons/minute]

Notes
The conversion factor does not depend on the density of the fluid or the diameter of the valve. It is calculated with the definition of a US gallon as 231 cubic inches, and a psi as a pound-force per square inch.

The exact conversion coefficient between Kv to Cv is 1.1560992283536566; it is rounded in the formula above.

References
[1]

Examples

```python
>>> K_to_Cv(16, .015)
2.601223263795727
```

fluids.fittings.change_K_basis(K1, D1, D2)
Converts a loss coefficient K1 from the basis of one diameter D1 to another diameter, D2. This is necessary when dealing with pipelines of changing diameter.

\[ K_2 = K_1 \frac{D_2^4}{D_1^4} = K_1 \frac{A_2^2}{A_1^2} \]

Parameters
- K1 [float] Loss coefficient with respect to diameter D, [-]
- D1 [float] Diameter of pipe for which K1 has been calculated, [m]
- D2 [float] Diameter of pipe for which K2 will be calculated, [m]

Returns
- K2 [float] Loss coefficient with respect to the second diameter, [-]
Notes

This expression is shown in [1] and can easily be derived:

\[ \frac{\rho V^2}{2} \cdot K_1 = \frac{\rho V^2}{2} \cdot K_2 \]

Substitute velocities for flow rate divided by area:

\[ \frac{8K_1Q^2\rho}{\pi^2D_1^4} = \frac{8K_2Q^2\rho}{\pi^2D_2^4} \]

From here, simplification and rearrangement is all that is required.

References

[1]

Examples

```python
>>> change_K_basis(K1=32.68875692997804, D1=.01, D2=.02)
523.0201108796487
```

`fluids.fittings.K_gate_valve_Crane(D1, D2, angle, fd=None)`

Returns loss coefficient for a gate valve of types wedge disc, double disc, or plug type, as shown in [1].

If \( \beta = 1 \) and \( \theta = 0 \):

\[
K = K_1 = K_2 = 8f_d
\]

If \( \beta < 1 \) and \( \theta \leq 45^\circ \):

\[
K_2 = \frac{K + \sin \frac{\theta}{2} [0.8(1 - \beta^2) + 2.6(1 - \beta^2)^2]}{\beta^4}
\]

If \( \beta < 1 \) and \( \theta > 45^\circ \):

\[
K_2 = \frac{K + 0.5\sqrt{\sin \frac{\theta}{2}(1 - \beta^2) + (1 - \beta^2)^2}}{\beta^4}
\]

Parameters

- **D1** [float] Diameter of the valve seat bore (must be smaller or equal to \( D2 \)), [m]
- **D2** [float] Diameter of the pipe attached to the valve, [m]
- **angle** [float] Angle formed by the reducer in the valve, [degrees]
- **fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor! [-]

Returns

- **K** [float] Loss coefficient with respect to the pipe inside diameter [-]
Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions [2].

References

[1], [2]

Examples

Example 7-4 in [1]; a 150 by 100 mm class 600 steel gate valve, conically tapered ports, length 550 mm, back of sear ring ~150 mm. The valve is connected to 146 mm schedule 80 pipe. The angle can be calculated to be 13 degrees. The valve is specified to be operating in turbulent conditions.

```
>>> K_gate_valve_Crane(D1=.1, D2=.146, angle=13.115)
1.1466029421844073
```

The calculated result is lower than their value of 1.22; the difference is due to Crane’s generous intermediate rounding. A later, Imperial edition of Crane rounds differently - and comes up with K=1.06.

```
fluids.fittings.K_angle_valve_Crane(D1, D2, fd=None, style=0)
```

Returns the loss coefficient for all types of angle valve, (reduced seat or throttled) as shown in [1].

If $\beta = 1$:

$$ K = K_1 = K_2 = N \cdot f_d $$

Otherwise:

$$ K_2 = K + \frac{[0.5(1 - \beta^2) + (1 - \beta^2)^2]}{\beta^4} $$

For style 0 and 2, $N = 55$; for style 1, $N=150$.

Parameters

- **D1** [float] Diameter of the valve seat bore (must be smaller or equal to $D2$), [m]
- **D2** [float] Diameter of the pipe attached to the valve, [m]
- **fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]
- **style** [int, optional] One of 0, 1, or 2; refers to three different types of angle valves as shown in [1] [-]

Returns

- **K** [float] Loss coefficient with respect to the pipe inside diameter [-]

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.
fluids.fittings.K_globe_valve_Crane(D1, D2, fd=None)
Returns the loss coefficient for all types of globe valve, (reduced seat or throttled) as shown in [1].

If $\beta = 1$:

$$ K = K_1 = K_2 = 340 f_d $$

Otherwise:

$$ K_2 = K + \left[ 0.5(1 - \beta^2) + (1 - \beta^2)^2 \right] \frac{1}{\beta^4} $$

Parameters

- **D1** [float] Diameter of the valve seat bore (must be smaller or equal to D2), [m]
- **D2** [float] Diameter of the pipe attached to the valve, [m]
- **fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]

Returns

- **K** [float] Loss coefficient with respect to the pipe inside diameter [-]

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K_globe_valve_Crane(.01, .02)
26.597361811128465
```

fluids.fittings.K_swing_check_valve_Crane(D=None, fd=None, angled=True)
Returns the loss coefficient for a swing check valve as shown in [1].

$$ K_2 = N \cdot f_d $$

For angled swing check valves $N = 100$; for straight valves, $N = 50$. 
Parameters

D [float, optional] Diameter of the pipe attached to the valve, [m]
fd [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor, [-]
angled [bool, optional] If True, returns a value 2x the unangled value; the style of the valve [-]

Returns

K [float] Loss coefficient with respect to the pipe inside diameter [-]

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K.swing_check_valve_Crane(D=.02)
2.3974274785373257
```

fluids.fittings.K.lift_check_valve_Crane(D1, D2, fd=None, angled=True)

Returns the loss coefficient for a lift check valve as shown in [1].

If $\beta = 1$:

$$K = K_1 = K_2 = N \cdot f_d$$

Otherwise:

$$K_2 = \frac{K + \left[0.5(1 - \beta^2) + (1 - \beta^2)^2\right]}{\beta^4}$$

For angled lift check valves $N = 55$; for straight valves, $N = 600$.

Parameters

D1 [float] Diameter of the valve seat bore (must be smaller or equal to D2), [m]
D2 [float] Diameter of the pipe attached to the valve, [m]
fd [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]
angled [bool, optional] If True, returns a value 2x the unangled value; the style of the valve [-]

Returns

K [float] Loss coefficient with respect to the pipe inside diameter [-]
Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K_lift_check_valve_Crane(.01, .02)
28.597361811128465
```

`fluids.fittings.K_tilting_disk_check_valve_Crane(D, angle, fd=None)`

Returns the loss coefficient for a tilting disk check valve as shown in [1]. Results are specified in [1] to be for the disk’s resting position to be at 5 or 25 degrees to the flow direction. The model is implemented here so as to switch to the higher loss 15 degree coefficients at 10 degrees, and use the lesser coefficients for any angle under 10 degrees.

\[ K = N \cdot f_d \]

\( N \) is obtained from the following table:

<table>
<thead>
<tr>
<th>angle = 5°</th>
<th>angle = 15°</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-8&quot;</td>
<td>40</td>
</tr>
<tr>
<td>10-14&quot;</td>
<td>90</td>
</tr>
<tr>
<td>16-48&quot;</td>
<td>60</td>
</tr>
</tbody>
</table>

The actual change of coefficients happen at \( \leq 9" \) and \( \leq 15" \).

Parameters

- \( D \) [float] Diameter of the pipe section the valve in mounted in; the same as the line size [m]
- \( \text{angle} \) [float] Angle of the tilting disk to the flow direction; nominally 5 or 15 degrees [degrees]
- \( \text{fd} \) [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!

Returns

- \( K \) [float] Loss coefficient with respect to the pipe inside diameter [-]

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]
Examples

```python
>>> K_tilting_disk_check_valve_Crane(.01, 5)
1.1626516551826345
```

```
fluids.fittings.K_globe_stop_check_valve_Crane(D1, D2, fd=None, style=0)
Returns the loss coefficient for a globe stop check valve as shown in [1].
If $\beta = 1$:

$$ K = K_1 = K_2 = N \cdot f_d $$

Otherwise:

$$ K_2 = \frac{K + [0.5(1 - \beta^2) + (1 - \beta^2)^2]}{\beta^4} $$

Style 0 is the standard form; style 1 is angled, with a restriction to force the flow up through the valve; style 2 is also angled but with a smaller restriction forcing the flow up. N is 400, 300, and 55 for those cases respectively.

Parameters

- **D1** [float] Diameter of the valve seat bore (must be smaller or equal to D_2), [m]
- **D2** [float] Diameter of the pipe attached to the valve, [m]
- **fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!
- **style** [int, optional] One of 0, 1, or 2; refers to three different types of angle valves as shown in [1]

Returns

- **K** [float] Loss coefficient with respect to the pipe inside diameter

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K_globe_stop_check_valve_Crane(.1, .02, style=1)
4.5235076518969795
```

```
fluids.fittings.K_angle_stop_check_valve_Crane(D1, D2, fd=None, style=0)
Returns the loss coefficient for an angle stop check valve as shown in [1].
If $\beta = 1$:

$$ K = K_1 = K_2 = N \cdot f_d $$

2.7. Fittings pressure drop (fluids.fittings)
Otherwise:

\[ K_2 = K + \frac{[0.5(1 - \beta^2) + (1 - \beta^2)^2]}{\beta^4} \]

Style 0 is the standard form; style 1 has a restriction to force the flow up through the valve; style 2 is has the clearest flow area with no guides for the angle valve. N is 200, 350, and 55 for those cases respectively.

**Parameters**

- **D1** [float] Diameter of the valve seat bore (must be smaller or equal to D2), [m]
- **D2** [float] Diameter of the pipe attached to the valve, [m]
- **fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!
- **style** [int, optional] One of 0, 1, or 2; refers to three different types of angle valves as shown in [1]

**Returns**

- **K** [float] Loss coefficient with respect to the pipe inside diameter

**Notes**

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

**References**

[1]

**Examples**

```python
>>> K_angle_stop_check_valve_Crane(.1, .02, style=1)
4.525425593879809
```

**fluids.fittings.K_ball_valve_Crane** *(D1, D2, angle, fd=None)*

Returns the loss coefficient for a ball valve as shown in [1].

If \( \beta = 1 \):

\[ K = K_1 = K_2 = 3f_d \]

If \( \beta < 1 \) and \( \theta \leq 45^\circ \):

\[ K_2 = \frac{K + \sin \frac{\theta}{2} [0.8(1 - \beta^2) + 2.6(1 - \beta^2)^2]}{\beta^4} \]

If \( \beta < 1 \) and \( \theta > 45^\circ \):

\[ K_2 = \frac{K + 0.5\sqrt{\sin \frac{\theta}{2}(1 - \beta^2) + (1 - \beta^2)^2}}{\beta^4} \]

**Parameters**

- **D1** [float] Diameter of the valve seat bore (must be equal to or smaller than D2), [m]
**D2** [float] Diameter of the pipe attached to the valve, [m]

**angle** [float] Angle formed by the reducer in the valve, [degrees]

**fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]

**Returns**

**K** [float] Loss coefficient with respect to the pipe inside diameter [-]

**Notes**

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

**References**

[1]

**Examples**

```python
>>> K_ball_valve_Crane(.01, .02, 50)
14.051310974926592
```

**fluids.fittings.K_diaphragm_valve_Crane** *(D=None, fd=None, style=0)*

Returns the loss coefficient for a diaphragm valve of either weir (style = 0) or straight-through (style = 1) as shown in [1].

\[ K = K_1 = K_2 = N \cdot f_d \]

For style 0 (weir), N = 149; for style 1 (straight through), N = 39.

**Parameters**

**D** [float, optional] Diameter of the pipe section the valve in mounted in; the same as the line size [m]

**fd** [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]

**style** [int, optional] Either 0 (weir type valve) or 1 (straight through weir valve) [-]

**Returns**

**K** [float] Loss coefficient with respect to the pipe inside diameter [-]

**Notes**

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

**References**

[1]
Examples

```python
>>> K_diaphragm_valve_Crane(D=.1, style=0)
2.4269804835982565
```

```python
fluids.fittings.K_foot_valve_Crane(D=None, fd=None, style=0)
```

Returns the loss coefficient for a foot valve of either poppet disc (`style = 0`) or hinged-disk (`style = 1`) as shown in [1]. Both valves are specified include the loss of the attached strainer.

\[ K = K_1 = K_2 = N \cdot f_d \]

For style 0 (poppet disk), \( N = 420 \); for style 1 (hinged disk), \( N = 75 \).

**Parameters**

- `D` [float, optional] Diameter of the pipe section the valve in mounted in; the same as the line size [m]
- `fd` [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor! [-]
- `style` [int, optional] Either 0 (poppet disk foot valve) or 1 (hinged disk foot valve) [-]

**Returns**

- `K` [float] Loss coefficient with respect to the pipe inside diameter [-]

**Notes**

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

**References**

[1]

**Examples**

```python
>>> K_foot_valve_Crane(D=0.2, style=0)
5.912221498436275
```

```python
fluids.fittings.K_butterfly_valve_Crane(D, fd=None, style=0)
```

Returns the loss coefficient for a butterfly valve as shown in [1]. Three different types are supported; Centric (`style = 0`), double offset (`style = 1`), and triple offset (`style = 2`).

\[ K = N \cdot f_d \]

\( N \) is obtained from the following table:

<table>
<thead>
<tr>
<th>Size range</th>
<th>Centric</th>
<th>Double offset</th>
<th>Triple offset</th>
</tr>
</thead>
<tbody>
<tr>
<td>2” - 8”</td>
<td>45</td>
<td>74</td>
<td>218</td>
</tr>
<tr>
<td>10” - 14”</td>
<td>35</td>
<td>52</td>
<td>96</td>
</tr>
<tr>
<td>16” - 24”</td>
<td>25</td>
<td>43</td>
<td>55</td>
</tr>
</tbody>
</table>

The actual change of coefficients happen at <= 9” and <= 15”.
Parameters

D [float] Diameter of the pipe section the valve is mounted in; the same as the line size [m]

d [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]

style [int, optional] Either 0 (centric), 1 (double offset), or 2 (triple offset) [-]

Returns

K [float] Loss coefficient with respect to the pipe inside diameter [-]

Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K_butterfly_valve_Crane(D=.1, style=2)
3.5508841974793284
```

```
fluids.fittings.K_plug_valve_Crane(D1, D2, angle=None, fd=None, style=None)
```

Returns the loss coefficient for a plug valve or cock valve as shown in [1].

If \( \beta = 1 \):

\[
K = K_1 = K_2 = N f_d
\]

Otherwise:

\[
K_2 = \frac{K + 0.5 \sqrt{\sin \frac{\theta}{2}(1 - \beta^2) + (1 - \beta^2)^2}}{\beta^4}
\]

Three types of plug valves are supported. For straight-through plug valves (\( \text{style} = 0 \)), \( N = 18 \). For 3-way, flow straight through (\( \text{style} = 1 \)) plug valves, \( N = 30 \). For 3-way, flow 90° valves (\( \text{style} = 2 \)) \( N = 90 \).

Parameters

D1 [float] Diameter of the valve plug bore (must be equal to or smaller than \( D_2 \)), [m]

D2 [float] Diameter of the pipe attached to the valve, [m]

angle [float] Angle formed by the reducer in the valve, [degrees]

fd [float, optional] Darcy friction factor calculated for the actual pipe flow in clean steel (roughness = 0.0018 inch) in the fully developed turbulent region; do not specify this to use the original Crane friction factor!, [-]

style [int, optional] Either 0 (straight-through), 1 (3-way, flow straight-through), or 2 (3-way, flow 90°) [-]

Returns

K [float] Loss coefficient with respect to the pipe inside diameter [-]
Notes

This method is not valid in the laminar regime and the pressure drop will be underestimated in those conditions.

References

[1]

Examples

```python
>>> K_plug_valve_Crane(D1=.01, D2=.02, angle=50)
19.80513692341617
```

```
fluids.fittings.K_branch_converging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90.0)
```

Returns the loss coefficient for the branch of a converging tee or wye according to the Crane method [1].

\[
K_{\text{branch}} = C \left[ 1 + D \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \cdot \beta_{\text{branch}}^2 \right)^2 - E \left( 1 - \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right)^2 - \frac{F}{\beta_{\text{branch}}^2} \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right)^2 \right]
\]

\[
\beta_{\text{branch}} = \frac{D_{\text{branch}}}{D_{\text{comb}}}
\]

In the above equation, \( D = 1 \), \( E = 2 \). See the notes for definitions of \( F \) and \( C \).

Parameters

- **D_run** [float] Diameter of the straight-through inlet portion of the tee or wye [m]
- **D_branch** [float] Diameter of the pipe attached at an angle to the straight-through, [m]
- **Q_run** [float] Volumetric flow rate in the straight-through inlet of the tee or wye, \([\text{m}^3/\text{s}]\)
- **Q_branch** [float] Volumetric flow rate in the pipe attached at an angle to the straight-through, \([\text{m}^3/\text{s}]\)
- **angle** [float, optional] Angle the branch makes with the straight-through (tee=90, wye<90) [degrees]

Returns

- **K** [float] Loss coefficient of branch with respect to the velocity and inside diameter of the combined flow outlet [-]

Notes

\( F \) is linearly interpolated from the table of angles below. There is no cutoff to prevent angles from being larger or smaller than 30 or 90 degrees.

<table>
<thead>
<tr>
<th>Angle [°]</th>
<th>30</th>
<th>45</th>
<th>60</th>
<th>90</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1.74</td>
<td>1.41</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

If \( \beta_{\text{branch}}^2 \leq 0.35 \), \( C = 1 \)
If $\beta_{\text{branch}}^2 > 0.35$ and $Q_{\text{branch}}/Q_{\text{comb}} > 0.4$, $C = 0.55$.

If neither of the above conditions are met:

$$C = 0.9 \left( 1 - \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right)$$

Note that there is an error in the text of [1]; the errata can be obtained here: http://www.flowoffluids.com/publications/tp-410-errata.aspx

References

[1]

Examples

Example 7-35 of [1]. A DN100 schedule 40 tee has 1135 liters/minute of water passing through the straight leg, and 380 liters/minute of water converging with it through a 90° branch. Calculate the loss coefficient in the branch. The calculated value there is -0.04026.

```python
>>> K_branch_converging_Crane(0.1023, 0.1023, 0.018917, 0.00633)
-0.04044108513625682
```

In the above equation, $C=1$, $D=0$, $E=1$. See the notes for definitions of $F$ and also the special case of 90°.

**Parameters**

- **D_run** [float] Diameter of the straight-through inlet portion of the tee or wye [m]
- **D_branch** [float] Diameter of the pipe attached at an angle to the straight-through, [m]
- **Q_run** [float] Volumetric flow rate in the straight-through inlet of the tee or wye, [m³/s]
- **Q_branch** [float] Volumetric flow rate in the pipe attached at an angle to the straight-through, [m³/s]
- **angle** [float, optional] Angle the branch makes with the straight-through (tee=90, wye<90) [degrees]

**Returns**

- **K** [float] Loss coefficient of run with respect to the velocity and inside diameter of the combined flow outlet [-]

**Notes**

$F$ is linearly interpolated from the table of angles below. There is no cutoff to prevent angles from being larger or smaller than 30 or 60 degrees. The switch to the special 90° happens at 75°.
For the special case of $90^\circ$, the formula used is as follows.

\[
K_{\text{run}} = 1.55 \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right) - \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right)^2
\]

References

[1]

Examples

Example 7-35 of [1]. A DN100 schedule 40 tee has 1135 liters/minute of water passing through the straight leg, and 380 liters/minute of water converging with it through a $90^\circ$ branch. Calculate the loss coefficient in the run. The calculated value there is 0.03258.

```python
>>> K_run_converging_Crane(0.1023, 0.1023, 0.018917, 0.00633)
0.32575847854551254
```

```
fluids.fittings.K_branch_diverging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90)
```

Returns the loss coefficient for the branch of a diverging tee or wye according to the Crane method [1].

\[
K_{\text{branch}} = G \left[ 1 + H \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}} \beta_{\text{branch}}^2} \right)^2 - J \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}} \beta_{\text{branch}}^2} \right) \cos \theta \right]
\]

\[
\beta_{\text{branch}} = \frac{D_{\text{branch}}}{D_{\text{comb}}}
\]

See the notes for definitions of $H$, $J$, and $G$.

Parameters

- **D_run** [float] Diameter of the straight-through inlet portion of the tee or wye [m]
- **D_branch** [float] Diameter of the pipe attached at an angle to the straight-through, [m]
- **Q_run** [float] Volumetric flow rate in the straight-through outlet of the tee or wye, [m$^3$/s]
- **Q_branch** [float] Volumetric flow rate in the pipe attached at an angle to the straight-through, [m$^3$/s]
- **angle** [float, optional] Angle the branch makes with the straight-through (tee=90, wye<90) [degrees]

Returns

- **K** [float] Loss coefficient of branch with respect to the velocity and inside diameter of the combined flow inlet [-]
Notes

If $\beta_{\text{branch}} = 1, \theta = 90^\circ, H = 0.3$ and $J = 0$. Otherwise $H = 1$ and $J = 2$.

$G$ is determined according to the following pseudocode:

```python
if angle < 75:
 if beta2 <= 0.35:
 if Q_ratio <= 0.4:
 G = 1.1 - 0.7*Q_ratio
 else:
 G = 0.85
 else:
 if Q_ratio <= 0.6:
 G = 1.0 - 0.6*Q_ratio
 else:
 G = 0.6
else:
 if beta2 <= 2/3.:
 G = 1
 else:
 G = 1 + 0.3*Q_ratio*Q_ratio
```

Note that there are several errors in the text of [1]; the errata can be obtained here: [http://www.flowoffluids.com/publications/tp-410-errata.aspx](http://www.flowoffluids.com/publications/tp-410-errata.aspx)

References

[1]

Examples

Example 7-36 of [1]. A DN150 schedule 80 wye has 1515 liters/minute of water exiting the straight leg, and 950 liters/minute of water exiting it through a 45° branch. Calculate the loss coefficient in the branch. The calculated value there is 0.4640.

```python
>>> K_branch_diverging_Crane(0.146, 0.146, 0.02525, 0.01583, angle=45)
0.4639895627496694
```

`fluids.fittings.K_run_diverging_Crane(D_run, D_branch, Q_run, Q_branch, angle=90)`

Retruns the loss coefficient for the run of a converging tee or wye according to the Crane method [1].

$$K_{\text{run}} = M \left( \frac{Q_{\text{branch}}}{Q_{\text{comb}}} \right)^2$$

$$\beta_{\text{branch}} = \frac{D_{\text{branch}}}{D_{\text{comb}}}$$

See the notes for the definition of $M$.

Parameters

- `D_run` [float] Diameter of the straight-through inlet portion of the tee or wye [m]
- `D_branch` [float] Diameter of the pipe attached at an angle to the straight-through, [m]
- `Q_run` [float] Volumetric flow rate in the straight-through outlet of the tee or wye, [m^3/s]
**Q_branch** [float] Volumetric flow rate in the pipe attached at an angle to the straight-through, \([\text{m}^3/\text{s}]\).

**angle** [float, optional] Angle the branch makes with the straight-through (tee=90, wye<90) [degrees].

**Returns**

**K** [float] Loss coefficient of run with respect to the velocity and inside diameter of the combined flow inlet [-]

**Notes**

M is calculated according to the following pseudocode:

```python
if beta*beta <= 0.4:
 M = 0.4
eelif Q_branch/Q_comb <= 0.5:
 M = 2*(2*Q_branch/Q_comb - 1)
eelse:
 M = 0.3*(2*Q_branch/Q_comb - 1)
```

**References**

[1]

**Examples**

Example 7-36 of [1]. A DN150 schedule 80 wye has 1515 liters/minute of water exiting the straight leg, and 950 liters/minute of water exiting it through a 45° branch. Calculate the loss coefficient in the branch. The calculated value there is -0.06809.

```python
>>> K_run_diverging_Crane(0.146, 0.146, 0.02525, 0.01583, angle=45)
-0.06810067607153049
```

**fluids.fittings.v_lift_valve_Crane** *(rho, D1=None, D2=None, style='swing check angled')*

Calculates the approximate minimum velocity required to lift the disk or other controlling element of a check valve to a fully open, stable, position according to the Crane method [1].

\[
v_{\text{min}} = N \cdot \frac{\sqrt{\text{kg/m}^3}}{\rho}
\]

\[
v_{\text{min}} = N \beta^2 \cdot \frac{\sqrt{\text{kg/m}^3}}{\rho}
\]

See the notes for the definition of values of N and which check valves use which formulas.

**Parameters**

**rho** [float] Density of the fluid [kg/m\(^3\)]

**D1** [float, optional] Diameter of the valve bore (must be equal to or smaller than D2), [m]

**D2** [float, optional] Diameter of the pipe attached to the valve, [m]
style [str] The type of valve; one of ['swing check angled', 'swing check straight', 'swing check UL', 'lift check straight', 'lift check angled', 'tilting check 5°', 'tilting check 15°', 'stop check globe 1', 'stop check angle 1', 'stop check globe 2', 'stop check angle 2', 'stop check globe 3', 'stop check angle 3', 'foot valve poppet disc', 'foot valve hinged disc'], [-]

Returns

v_min [float] Approximate minimum velocity required to keep the disc fully lifted, preventing chattering and wear [m/s]

Notes

This equation is not dimensionless.

<table>
<thead>
<tr>
<th>Name/string</th>
<th>N</th>
<th>Full</th>
</tr>
</thead>
<tbody>
<tr>
<td>'swing check angled'</td>
<td>45</td>
<td>No</td>
</tr>
<tr>
<td>'swing check straight'</td>
<td>75</td>
<td>No</td>
</tr>
<tr>
<td>'swing check UL'</td>
<td>120</td>
<td>No</td>
</tr>
<tr>
<td>'lift check straight'</td>
<td>50</td>
<td>Yes</td>
</tr>
<tr>
<td>'lift check angled'</td>
<td>170</td>
<td>Yes</td>
</tr>
<tr>
<td>'tilting check 5°'</td>
<td>100</td>
<td>No</td>
</tr>
<tr>
<td>'tilting check 15°'</td>
<td>40</td>
<td>No</td>
</tr>
<tr>
<td>'stop check globe 1'</td>
<td>70</td>
<td>Yes</td>
</tr>
<tr>
<td>'stop check angle 1'</td>
<td>95</td>
<td>Yes</td>
</tr>
<tr>
<td>'stop check globe 2'</td>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>'stop check angle 2'</td>
<td>75</td>
<td>Yes</td>
</tr>
<tr>
<td>'stop check globe 3'</td>
<td>170</td>
<td>Yes</td>
</tr>
<tr>
<td>'stop check angle 3'</td>
<td>170</td>
<td>Yes</td>
</tr>
<tr>
<td>'foot valve poppet disc'</td>
<td>20</td>
<td>No</td>
</tr>
<tr>
<td>'foot valve hinged disc'</td>
<td>45</td>
<td>No</td>
</tr>
</tbody>
</table>

References

[1]

Examples

```python
>>> v_lift_valve_Crane(rho=998.2, D1=0.0627, D2=0.0779, style='lift check straight')
1.0252301935349286
```

2.8 Orifice plates, flow nozzles, Venturi tubes, cone and wedge meters (fluids.flow_meter)

fluids.flow_meter.C_Reader_Harris_Gallagher(D, Do, rho, mu, m, taps='corner')

Calculates the coefficient of discharge of the orifice based on the geometry of the plate, measured pressures of
the orifice, mass flow rate through the orifice, and the density and viscosity of the fluid.

\[
C = 0.5961 + 0.0261\beta^2 - 0.216\beta^8 + 0.000521 \left( \frac{10^6 \beta}{Re_D} \right)^{0.7} \\
+ (0.0188 + 0.0063A)\beta^{3.5} \left( \frac{10^6}{Re_D} \right)^{0.3} \\
+ (0.043 + 0.080 \exp(-10L_1) - 0.123 \exp(-7L_1))(1 - 0.11A) - 0.031(M'_2 - 0.8M'_2^{1.1})\beta^{1.3}
\]

\[
M'_2 = \frac{2L'_2}{1 - \beta}
\]

\[
A = \left( \frac{19000\beta}{Re_D} \right)^{0.8}
\]

\[
Re_D = \frac{\rho v D}{\mu}
\]

If \( D < 71.12 \text{ mm (2.8 in.)} \) (Note this is a continuous addition; there is no discontinuity):

\[
C^+ = 0.11(0.75 - \beta) \left( 2.8 - \frac{D}{0.0254} \right)
\]

If the orifice has corner taps:

\[
L_1 = L'_2 = 0
\]

If the orifice has D and D/2 taps:

\[
L_1 = 1 \\
L'_2 = 0.47
\]

If the orifice has Flange taps:

\[
L_1 = L'_2 = \frac{0.0254}{D}
\]

**Parameters**

- **D** [float] Upstream internal pipe diameter, [m]
- **Do** [float] Diameter of orifice at flow conditions, [m]
- **rho** [float] Density of fluid at \( P1 \), [kg/m³]
- **mu** [float] Viscosity of fluid at \( P1 \), [Pa*s]
- **m** [float] Mass flow rate of fluid through the orifice, [kg/s]
- **taps** [str] The orientation of the taps; one of ‘corner’, ‘flange’, ‘D’, or ‘D/2’, [-]

**Returns**

- **C** [float] Coefficient of discharge of the orifice, [-]
Notes

The following limits apply to the orifice plate standard [1]:

The measured pressure difference for the orifice plate should be under 250 kPa.

There are roughness limits as well; the roughness should be under 6 micrometers, although there are many more conditions to that given in [1].

For orifice plates with D and D/2 or corner pressure taps:

- Orifice bore diameter must be larger than 12.5 mm (0.5 inches)
- Pipe diameter between 50 mm and 1 m (2 to 40 inches)
- Beta between 0.1 and 0.75 inclusive
- Reynolds number larger than 5000 (for $0.10 \leq \beta \leq 0.56$) or for $\beta \geq 0.56$, $Re_D \geq 16000\beta^2$

For orifice plates with flange pressure taps:

- Orifice bore diameter must be larger than 12.5 mm (0.5 inches)
- Pipe diameter between 50 mm and 1 m (2 to 40 inches)
- Beta between 0.1 and 0.75 inclusive
- Reynolds number larger than 5000 and also larger than $170000\beta^2D$.

This is also presented in Crane’s TP410 (2009) publication, whereas the 1999 and 1982 editions showed only a graph for discharge coefficients.

References

[1], [2], [3], [4]

Examples

```python
>>> C_Reader_Harris_Gallagher(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5,
... m=0.12, taps='flange')
0.5990326277163659
```

`fluids.flow_meter.differential_pressure_meter_solver(D, rho, mu, k, D2=None,
P1=None, P2=None, m=None, meter_type='ISO 5167 orifice', taps=None,
tap_position=None, C_specified=None)`

Calculates either the mass flow rate, the upstream pressure, the second pressure value, or the orifice diameter for a differential pressure flow meter based on the geometry of the meter, measured pressures of the meter, and the density, viscosity, and isentropic exponent of the fluid. This solves an equation iteratively to obtain the correct flow rate.

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `rho` [float] Density of fluid at $P1$, [kg/m³]
- `mu` [float] Viscosity of fluid at $P1$, [Pa·s]
- `k` [float] Isentropic exponent of fluid, [-]
**D2** [float, optional] Diameter of orifice, or venturi meter orifice, or flow tube orifice, or cone meter end diameter, or wedge meter fluid flow height, [m]

**P1** [float, optional] Static pressure of fluid upstream of differential pressure meter at the cross-section of the pressure tap, [Pa]

**P2** [float, optional] Static pressure of fluid downstream of differential pressure meter or at the prescribed location (varies by type of meter) [Pa]

**m** [float, optional] Mass flow rate of fluid through the flow meter, [kg/s]

**meter_type** [str] One of {'conical orifice', 'orifice', 'machined convergent venturi tube', 'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp', 'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice', 'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice', 'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle', 'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth', 'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice', 'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter', 'as cast convergent venturi tube', 'Miller eccentric orifice', 'ISO 15377 eccentric orifice'}, [-]

**taps** [str, optional] The orientation of the taps; one of ‘corner’, ‘flange’, ‘D’, or ‘D/2’; applies for orifice meters only, [-]

**tap_position** [str, optional] The rotation of the taps, used only for the eccentric orifice case where the pressure profile is not symmetric; ‘180 degree’ for the normal case where the taps are opposite the orifice bore, and ‘90 degree’ for the case where, normally for operational reasons, the taps are near the bore [-]

**C_specified** [float, optional] If specified, the correlation for the meter type is not used - this value is used for C

**Returns**

**ans** [float] One of m, the mass flow rate of the fluid; P1, the pressure upstream of the flow meter; P2, the second pressure tap’s value; and D2, the diameter of the measuring device; units of respectively, kg/s, Pa, Pa, or m

**Notes**

See the appropriate functions for the documentation for the formulas and references used in each method.

The solvers make some assumptions about the range of values answers may be in.

Note that the solver for the upstream pressure uses the provided values of density, viscosity and isentropic exponent; whereas these values all depend on pressure (albeit to a small extent). An outer loop should be added with pressure-dependent values calculated in it for maximum accuracy.

It would be possible to solve for the upstream pipe diameter, but there is no use for that functionality.

If a meter has already been calibrated to have a known C, this may be provided and it will be used in place of calculating one.

**Examples**

```python
differential_pressure_meter_solver(D=0.07366, D2=0.05, P1=200000.0,
P2=183000.0, rho=999.1, mu=0.0011, k=1.33,
meter_type='ISO 5167 orifice', taps='D')
```

7.702338035732167
Calculates the non-recoverable pressure drop of a differential pressure flow meter based on the geometry of the meter, measured pressures of the meter, and for most models the meter discharge coefficient.

Parameters

- **D** [float] Upstream internal pipe diameter, [m]
- **D2** [float] Diameter of orifice, or venturi meter orifice, or flow tube orifice, or cone meter end diameter, or wedge meter fluid flow height, [m]
- **P1** [float] Static pressure of fluid upstream of differential pressure meter at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid downstream of differential pressure meter or at the prescribed location (varies by type of meter) [Pa]
- **C** [float, optional] Coefficient of discharge (used only in orifice plates, and venturi nozzles), [-]
- **meter_type** [str] One of {'conical orifice', 'orifice', 'machined convergent venturi tube', 'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp', 'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice', 'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice', 'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle', 'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth', 'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice', 'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter', 'as cast convergent venturi tube', 'Miller eccentric orifice', 'ISO 15377 eccentric orifice'}. [-]

Returns

- **dP** [float] Non-recoverable pressure drop of the differential pressure flow meter, [Pa]

Notes

See the appropriate functions for the documentation for the formulas and references used in each method.

Wedge meters, and venturi nozzles do not have standard formulas available for pressure drop computation.

Examples

```python
>>> differential_pressure_meter_dP(D=0.07366, D2=0.05, P1=200000.0,
... P2=183000.0, meter_type='as cast convergent venturi tube')
1788.5717754177406
```

Calculates the flow rate of an orifice plate based on the geometry of the plate, measured pressures of the orifice, and the density of the fluid.

\[
m = \left( \frac{\pi D_2^2}{4} \right) C \sqrt{\frac{2 \Delta P \rho_1}{\sqrt{1 - \beta^4}}} \epsilon
\]

Parameters

2.8. Orifice plates, flow nozzles, Venturi tubes, cone and wedge meters (fluids.flow_meter)
D [float] Upstream internal pipe diameter, [m]
Do [float] Diameter of orifice at flow conditions, [m]
P1 [float] Static pressure of fluid upstream of orifice at the cross-section of the pressure tap, [Pa]
P2 [float] Static pressure of fluid downstream of orifice at the cross-section of the pressure tap, [Pa]
rho [float] Density of fluid at P1, [kg/m^3]
C [float] Coefficient of discharge of the orifice, [-]
expansibility [float, optional] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]

Returns
m [float] Mass flow rate of fluid, [kg/s]

Notes
This is formula 1-12 in [1] and also [2].

References
[1],[2]

Examples

```python
>>> flow_meter_discharge(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, rho=1.1646, ...
... C=0.5988, expansibility=0.9975)
0.01120390943807026
```

`fluids.flow_meter.orifice_expansibility(D, Do, P1, P2, k)`
Calculates the expansibility factor for orifice plate calculations based on the geometry of the plate, measured pressures of the orifice, and the isentropic exponent of the fluid.

\[
\epsilon = 1 - (0.351 + 0.256\beta^4 + 0.93\beta^8) \left[ 1 - \left( \frac{P_2}{P_1} \right)^{1/k} \right]
\]

Parameters
D [float] Upstream internal pipe diameter, [m]
Do [float] Diameter of orifice at flow conditions, [m]
P1 [float] Static pressure of fluid upstream of orifice at the cross-section of the pressure tap, [Pa]
P2 [float] Static pressure of fluid downstream of orifice at the cross-section of the pressure tap, [Pa]
k [float] Isentropic exponent of fluid, [-]

Returns
expansibility [float, optional] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]
Notes

This formula was determined for the range of $P_2/P_1 \geq 0.80$, and for fluids of air, steam, and natural gas. However, there is no objection to using it for other fluids.

It is said in [1] that for liquids this should not be used. The result can be forced by setting $k$ to a really high number like 1E20.

References

[1], [2]

Examples

```python
>>> orifice_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.9974739057343425
```

`fluids.flow_meter.discharge_coefficient_to_K(D, Do, C)`

Converts a discharge coefficient to a standard loss coefficient, for use in computation of the actual pressure drop of an orifice or other device.

$$ K = \left[ \frac{\sqrt{1 - \beta^4(1 - C^2)}}{C\beta^2} - 1 \right]^2 $$

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of orifice at flow conditions, [m]
- `C` [float] Coefficient of discharge of the orifice, [-]

Returns

- `K` [float] Loss coefficient with respect to the velocity and density of the fluid just upstream of the orifice, [-]

Notes

If expansibility is used in the orifice calculation, the result will not match with the specified pressure drop formula in [1]; it can almost be matched by dividing the calculated mass flow by the expansibility factor and using that mass flow with the loss coefficient.

References

[1], [2]

Examples

```python
>>> discharge_coefficient_to_K(D=0.07366, Do=0.05, C=0.61512)
5.2314291729754
```
**fluids.flow_meter.K_to_discharge_coefficient** (*D, Do, K*)

Converting a standard loss coefficient to a discharge coefficient.

\[
C = \sqrt{\frac{1}{2\sqrt{K\beta^4 + K\beta^4}} - \frac{\beta^4}{2\sqrt{K\beta^4 + K\beta^4}}}
\]

**Parameters**

- **D** [float] Upstream internal pipe diameter, [m]
- **Do** [float] Diameter of orifice at flow conditions, [m]
- **K** [float] Loss coefficient with respect to the velocity and density of the fluid just upstream of the orifice, [-]

**Returns**

- **C** [float] Coefficient of discharge of the orifice, [-]

**Notes**

If expansibility is used in the orifice calculation, the result will not match with the specified pressure drop formula in [1]; it can almost be matched by dividing the calculated mass flow by the expansibility factor and using that mass flow with the loss coefficient.

This expression was derived with SymPy, and checked numerically. There were three other, incorrect roots.

**References**

[1], [2]

**Examples**

```python
>>> K_to_discharge_coefficient(D=0.07366, Do=0.05, K=5.2314291729754)
0.6151200000000001
```

**fluids.flow_meter.dP_orifice** (*D, Do, P1, P2, C*)

Calculating the non-recoverable pressure drop of an orifice plate based on the pressure drop and the geometry of the plate and the discharge coefficient.

\[
\Delta \bar{\omega} = \frac{\sqrt{1 - \beta^4(1 - C^2) - C^2}(P_1 - P_2)}{\sqrt{1 - \beta^4(1 - C^2) + C^2}}
\]

**Parameters**

- **D** [float] Upstream internal pipe diameter, [m]
- **Do** [float] Diameter of orifice at flow conditions, [m]
- **P1** [float] Static pressure of fluid upstream of orifice at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid downstream of orifice at the cross-section of the pressure tap, [Pa]
- **C** [float] Coefficient of discharge of the orifice, [-]

**Returns**

- **dP** [float] Non-recoverable pressure drop of the orifice plate, [Pa]
Notes

This formula can be well approximated by:

\[ \Delta \bar{w} = (1 - \beta^{1.9}) (P_1 - P_2) \]

The recoverable pressure drop should be recovered by 6 pipe diameters downstream of the orifice plate.

References

[1], [2]

Examples

```python
>>> dP_orifice(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0, C=0.61512)
9069.474705745388
```

`fluids.flow_meter.velocity_of_approach_factor(D, Do)`

Calculates a factor for orifice plate design called the velocity of approach.

\[
\text{Velocity of approach} = \frac{1}{\sqrt{1 - \beta^4}}
\]

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of orifice at flow conditions, [m]

Returns

`velocity_of_approach` [float] Coefficient of discharge of the orifice, [-]

References

[1]

Examples

```python
>>> velocity_of_approach_factor(D=0.0739, Do=0.0222)
1.0040970074165514
```

`fluids.flow_meter.flow_coefficient(D, Do, C)`

Calculates a factor for differential pressure flow meter design called the flow coefficient. This should not be confused with the flow coefficient often used when discussing valves.

\[
\text{Flow coefficient} = \frac{C}{\sqrt{1 - \beta^4}}
\]

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of flow meter characteristic dimension at flow conditions, [m]
- `C` [float] Coefficient of discharge of the flow meter, [-]

2.8. Orifice plates, flow nozzles, Venturi tubes, cone and wedge meters (`fluids.flow_meter`)
Returns

flow_coefficient [float] Differential pressure flow meter flow coefficient, [-]

Notes

This measure is used not just for orifices but for other differential pressure flow meters [2]. It is sometimes given the symbol K. It is also equal to the product of the diacharge coefficient and the velocity of approach factor [2].

References

[1], [2]

Examples

```
>>> flow_coefficient(D=0.0739, Do=0.0222, C=0.6)
0.6024582044499308
```

fluids.flow_meter.nozzle_expansibility(D, Do, P1, P2, k, beta=None)

Calculates the expansibility factor for a nozzle or venturi nozzle, based on the geometry of the plate, measured pressures of the orifice, and the isentropic exponent of the fluid.

\[
e = \left( \frac{\kappa_T^2}{\kappa - 1} \right) \left( \frac{1 - \beta^4}{1 - \beta^4_T^2/\kappa} \right) \left( \frac{1 - \tau^{(\kappa-1)/\kappa}}{1 - \tau} \right)^{0.5}
\]

Parameters

D [float] Upstream internal pipe diameter, [m]
Do [float] Diameter of orifice of the venturi or nozzle, [m]
P1 [float] Static pressure of fluid upstream of orifice at the cross-section of the pressure tap, [Pa]
P2 [float] Static pressure of fluid downstream of orifice at the cross-section of the pressure tap, [Pa]
k [float] Isentropic exponent of fluid, [-]
beta [float, optional] Optional beta ratio, which is useful to specify for wedge meters or flow meters which have a different beta ratio calculation, [-]

Returns

expansibility [float] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]

Notes

This formula was determined for the range of P2/P1 >= 0.75.

References

[1], [2]
Examples

```python
>>> nozzle_expansibility(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.9945702344566746
```

`fluids.flow_meter.C_long_radius_nozzle(D, Do, rho, mu, m)`

Calculates the coefficient of discharge of a long radius nozzle used for measuring flow rate of fluid, based on
the geometry of the nozzle, mass flow rate through the nozzle, and the density and viscosity of the fluid.

\[
C = 0.9965 - 0.00653 \beta^{0.5} \left( \frac{10^6}{Re_D} \right)^{0.5}
\]

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of long radius nozzle orifice at flow conditions, [m]
- `rho` [float] Density of fluid at `P1`, [kg/m³]
- `mu` [float] Viscosity of fluid at `P1`, [Pa·s]
- `m` [float] Mass flow rate of fluid through the nozzle, [kg/s]

Returns

- `C` [float] Coefficient of discharge of the long radius nozzle orifice, [-]

References

[1], [2]

Examples

```python
>>> C_long_radius_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
0.9805503704679863
```

`fluids.flow_meter.C_ISA_1932_nozzle(D, Do, rho, mu, m)`

Calculates the coefficient of discharge of an ISA 1932 style nozzle used for measuring flow rate of fluid, based
on the geometry of the nozzle, mass flow rate through the nozzle, and the density and viscosity of the fluid.

\[
C = 0.9900 - 0.2262\beta^{4.1} \left( (0.00175\beta^2 - 0.0033\beta^{4.15}) + \left( \frac{10^6}{Re_D} \right)^{1.15} \right)
\]

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of nozzle orifice at flow conditions, [m]
- `rho` [float] Density of fluid at `P1`, [kg/m³]
- `mu` [float] Viscosity of fluid at `P1`, [Pa·s]
- `m` [float] Mass flow rate of fluid through the nozzle, [kg/s]

Returns

- `C` [float] Coefficient of discharge of the nozzle orifice, [-]

2.8. Orifice plates, flow nozzles, Venturi tubes, cone and wedge meters (fluids.flow_meter)
**C_ISA_1932_nozzle**

Calculates the coefficient of discharge of an ISA style nozzle used for measuring flow rate of fluid, based on the geometry of the nozzle.

\[
C = 0.9858 - 0.196\beta^{4.5}
\]

**Parameters**
- D [float] Upstream internal pipe diameter, [m]
- Do [float] Diameter of nozzle orifice at flow conditions, [m]

**Returns**
- C [float] Coefficient of discharge of the nozzle orifice, [-]

**Examples**
```python
>>> C_ISA_1932_nozzle(D=0.07391, Do=0.0422, rho=1.2, mu=1.8E-5, m=0.1)
0.9635849973250495
```

**C_venturi_nozzle**

Calculates the coefficient of discharge of a Venturi style nozzle used for measuring flow rate of fluid, based on the geometry of the nozzle.

\[
C = 0.9858 - 0.196\beta^{4.5}
\]

**Parameters**
- D [float] Upstream internal pipe diameter, [m]
- Do [float] Diameter of nozzle orifice at flow conditions, [m]

**Returns**
- C [float] Coefficient of discharge of the nozzle orifice, [-]

**Examples**
```python
>>> C_venturi_nozzle(D=0.07391, Do=0.0422)
0.9698996454169576
```

**C_venturi_nozzle**

Calculates the coefficient of discharge of a Venturi style nozzle used for measuring flow rate of fluid, based on the geometry of the nozzle.

**Parameters**
- D [float] Upstream internal pipe diameter, [m]
- Do [float] Diameter of nozzle orifice at flow conditions, [m]

**Returns**
- C [float] Coefficient of discharge of the nozzle orifice, [-]

**Examples**
```python
>>> C_venturi_nozzle(D=0.07391, Do=0.0422)
0.9698996454169576
```

**orifice_expansibility_1989**

Calculates the expansibility factor for orifice plate calculations based on the geometry of the plate, measured pressures of the orifice, and the isentropic exponent of the fluid.

\[
\epsilon = 1 - (0.41 + 0.35\beta^{4})\Delta P/kP_1
\]

**Parameters**
- D [float] Upstream internal pipe diameter, [m]
- Do [float] Diameter of orifice at flow conditions, [m]
- P1 [float] Static pressure of fluid upstream of orifice at the cross-section of the pressure tap, [Pa]
- P2 [float] Static pressure of fluid downstream of orifice at the cross-section of the pressure tap, [Pa]
- k [float] Isentropic exponent of fluid, [-]

**Returns**
- expansibility [float] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]

**Examples**
```python
>>> orifice_expansibility_1989(D=0.07391, Do=0.0422, P1=101325, P2=100325, k=1.4)
0.9698996454169576
```
Notes

This formula was determined for the range of $P_2/P_1 \geq 0.75$, and for fluids of air, steam, and natural gas. However, there is no objection to using it for other fluids.

This is an older formula used to calculate expansibility factors for orifice plates.

In this standard, an expansibility factor formula transformation in terms of the pressure after the orifice is presented as well. This is the more standard formulation in terms of the upstream conditions. The other formula is below for reference only:

$$
\epsilon_2 = \sqrt{1 + \frac{\Delta P}{P_2}} \left(0.41 + 0.35\beta^4\right) \frac{\Delta P}{\kappa P_2 \sqrt{1 + \frac{\Delta P}{P_2}}}
$$

[2] recommends this formulation for wedge meters as well.

References

[1],[2]

Examples

```python
>>> orifice_expansibility_1989(D=0.0739, Do=0.0222, P1=1E5, P2=9.9E4, k=1.4)
0.9970510687411718
```

`fluids.flow_meter.dp_venturi_tube(D, Do, P1, P2)`
Calculates the non-recoverable pressure drop of a venturi tube differential pressure meter based on the pressure drop and the geometry of the venturi meter.

$$
\epsilon = \frac{\Delta \bar{\omega}}{\Delta P}
$$

The $\epsilon$ value is looked up in a table of values as a function of beta ratio and upstream pipe diameter (roughness impact).

Parameters

- `D` [float] Upstream internal pipe diameter, [m]
- `Do` [float] Diameter of venturi tube at flow conditions, [m]
- `P1` [float] Static pressure of fluid upstream of venturi tube at the cross-section of the pressure tap, [Pa]
- `P2` [float] Static pressure of fluid downstream of venturi tube at the cross-section of the pressure tap, [Pa]

Returns

- `dP` [float] Non-recoverable pressure drop of the venturi tube, [Pa]
Notes

The recoverable pressure drop should be recovered by 6 pipe diameters downstream of the venturi tube.

Note there is some information on the effect of Reynolds number as well in [1] and [2], with a curve showing an increased pressure drop from 1E5-6E5 to with a decreasing multiplier from 1.75 to 1; the multiplier is 1 for higher Reynolds numbers. This is not currently included in this implementation.

References

[1], [2]

Examples

```python
>>> dP_venturi_tube(D=0.07366, Do=0.05, P1=200000.0, P2=183000.0)
1788.5717754177406
```

```python
def diameter_ratio_cone_meter(D, Dc):
 # Calculates the diameter ratio beta used to characterize a cone flow meter.
 #
 # Parameters
 # D [float] Upstream internal pipe diameter, [m]
 # Dc [float] Diameter of the largest end of the cone meter, [m]
 #
 # Returns
 # beta [float] Cone meter diameter ratio, [-]
 #
 # Notes
 # A mathematically equivalent formula often written is:
 #
 # \[\beta = \sqrt{1 - \frac{d_c^2}{D^2}} \]
 #
 # References
 #
 # [1]
 #
 # Examples
 #
 # >>> diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
 # 0.6995709873957624
```

```python
def diameter_ratio_wedge_meter(D, H):
 # Calculates the diameter ratio beta used to characterize a wedge flow meter as given in [1] and [2].
 #
 # Parameters
 # D [float] Diameter of the largest end of the cone meter, [m]
 # H [float] Height of the wedge, [m]
 #
 # Returns
 # beta [float] Cone meter diameter ratio, [-]
 #
 # Notes
 # A mathematically equivalent formula often written is:
 #
 # \[\beta = \left(\frac{1}{\pi} \left\{ \arccos \left[1 - \frac{2H}{D} \right] - 2 \left[1 - \frac{2H}{D} \right] \left(\frac{H}{D} - \left[\frac{H}{D} \right]^2 \right)^{0.5} \right\} \right)^{0.5} \]
 #
 # References
 #
 # [1]
 #
 # Examples
 #
 # >>> diameter_ratio_cone_meter(D=0.2575, Dc=0.184)
 # 0.6995709873957624
```
Parameters

- **D** [float] Upstream internal pipe diameter, [m]
- **H** [float] Portion of the diameter of the clear segment of the pipe up to the wedge blocking flow; the height of the pipe up to the wedge, [m]

Returns

- **beta** [float] Wedge meter diameter ratio, [-]

References

[1], [2]

Examples

```python
>>> diameter_ratio_wedge_meter(D=0.2027, H=0.0608)
0.5022531424646643
```

**flows.flow_meter.cone_meter_expansibility_Stewart** *(D, Dc, P1, P2, k)*

Calculates the expansibility factor for a cone flow meter, based on the geometry of the cone meter, measured pressures of the orifice, and the isentropic exponent of the fluid. Developed in [1], also shown in [2].

\[
\epsilon = 1 - (0.649 + 0.696\beta^4) \frac{\Delta P}{\kappa P_1}
\]

Parameters

- **D** [float] Upstream internal pipe diameter, [m]
- **Dc** [float] Diameter of the largest end of the cone meter, [m]
- **P1** [float] Static pressure of fluid upstream of cone meter at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid at the end of the center of the cone pressure tap, [Pa]
- **k** [float] Isentropic exponent of fluid, [-]

Returns

- **expansibility** [float] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]

Notes

This formula was determined for the range of P2/P1 >= 0.75; the only gas used to determine the formula is air.

References

[1], [2]

Examples
fluids.flow_meter.dP_cone_meter(D, Dc, P1, P2)
Calculates the non-recoverable pressure drop of a cone meter based on the measured pressures before and at the cone end, and the geometry of the cone meter according to [1].

\[ \Delta \bar{\omega} = (1.09 - 0.813\beta)\Delta P \]

**Parameters**

- D [float] Upstream internal pipe diameter, [m]
- Dc [float] Diameter of the largest end of the cone meter, [m]
- P1 [float] Static pressure of fluid upstream of cone meter at the cross-section of the pressure tap, [Pa]
- P2 [float] Static pressure of fluid at the end of the center of the cone pressure tap, [Pa]

**Returns**

- dP [float] Non-recoverable pressure drop of the orifice plate, [Pa]

**Notes**

The recoverable pressure drop should be recovered by 6 pipe diameters downstream of the cone meter.

**References**

[1]

**Examples**

```python
>>> dP_cone_meter(1, .7, 1E6, 9.5E5)
25470.093437973323
```

fluids.flow_meter.C_wedge_meter_Miller(D, H)
Calculates the coefficient of discharge of an wedge flow meter used for measuring flow rate of fluid, based on the geometry of the differential pressure flow meter.

For half-inch lines:

\[ C = 0.7883 + 0.107(1 - \beta^2) \]

For 1 to 1.5 inch lines:

\[ C = 0.6143 + 0.718(1 - \beta^2) \]

For 1.5 to 24 inch lines:

\[ C = 0.5433 + 0.2453(1 - \beta^2) \]

**Parameters**

- D [float] Upstream internal pipe diameter, [m]
H [float] Portion of the diameter of the clear segment of the pipe up to the wedge blocking flow; the height of the pipe up to the wedge, [m]

Returns
C [float] Coefficient of discharge of the wedge flow meter, [-]

Notes
There is an ISO standard being developed to cover wedge meters as of 2018.
Wedge meters can have varying angles; 60 and 90 degree wedge meters have been reported. Tap locations 1 or 2 diameters (upstream and downstream), and 2D upstream/1D downstream have been used. Some wedges are sharp; some are smooth. [2] gives some experimental values.

References
[1], [2]

Examples
```python
>>> C_wedge_meter_Miller(D=0.1524, H=0.3*0.1524)
0.7267069372687651
```

**fluids.flow_meter.C_wedge_meter_ISO_5167_6_2017**(*D*, *H*)
Calculates the coefficient of discharge of an wedge flow meter used for measuring flow rate of fluid, based on the geometry of the differential pressure flow meter according to the ISO 5167-6 standard (draft 2017).

\[
C = 0.77 - 0.09\beta
\]

Parameters
D [float] Upstream internal pipe diameter, [m]
H [float] Portion of the diameter of the clear segment of the pipe up to the wedge blocking flow; the height of the pipe up to the wedge, [m]

Returns
C [float] Coefficient of discharge of the wedge flow meter, [-]

Notes
This standard applies for wedge meters in line sizes between 50 and 600 mm; and height ratios between 0.2 and 0.6. The range of allowable Reynolds numbers is large; between 1E4 and 9E6. The uncertainty of the flow coefficient is approximately 4%. Usually a 10:1 span of flow can be measured accurately. The discharge and entry length of the meters must be at least half a pipe diameter. The wedge angle must be 90 degrees, plus or minus two degrees.

The orientation of the wedge meter does not change the accuracy of this model.
There should be a straight run of 10 pipe diameters before the wedge meter inlet, and two of the same pipe diameters after it.
References

[1]

Examples

```python
>>> C_wedge_meter_ISO_5167_6_2017(D=0.1524, H=0.3*0.1524)
0.724792059539853
```

`fluids.flow_meter.dP_wedge_meter(D, H, P1, P2)`

Calculates the non-recoverable pressure drop of a wedge meter based on the measured pressures before and at the wedge meter, and the geometry of the wedge meter according to [1].

\[
\Delta \bar{\omega} = (1.09 - 0.79\beta)\Delta P
\]

Parameters

- **D** [float] Upstream internal pipe diameter, [m]
- **H** [float] Portion of the diameter of the clear segment of the pipe up to the wedge blocking flow; the height of the pipe up to the wedge, [m]
- **P1** [float] Static pressure of fluid upstream of wedge meter at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid at the end of the wedge meter pressure tap, [Pa]

Returns

- **dP** [float] Non-recoverable pressure drop of the wedge meter, [Pa]

Notes

The recoverable pressure drop should be recovered by 5 pipe diameters downstream of the wedge meter.

References

[1]

Examples

```python
>>> dP_wedge_meter(1, .7, 1E6, 9.5E5)
20344.849697483587
```

`fluids.flow_meter.C_Reader_Harris_Gallagher_wet_venturi_tube()`

Calculates the coefficient of discharge of the wet gas venturi tube based on the geometry of the tube, mass flow rates of liquid and vapor through the tube, the density of the liquid and gas phases, and an adjustable coefficient H.

\[
C = 1 - 0.0463 \exp(-0.05Fr_{gas,th}) \cdot \min\left(1, \sqrt{\frac{X}{0.016}}\right)
\]

\[
Fr_{gas,th} = \frac{Fr_{gas, densimetric}}{32.5}
\]

Chapter 2. API Reference
\[ \phi = \sqrt{1 + C_{Ch}X + X^2} \]

\[ C_{Ch} = \left( \frac{\rho_l}{\rho_{1,g}} \right)^n + \left( \frac{\rho_{1,g}}{\rho_l} \right)^n \]

\[ n = \max \left[ 0.583 - 0.18\beta^2 - 0.578 \exp \left( -0.8 \frac{Fr_{gas, densiometric}}{H} \right), 0.392 - 0.18\beta^2 \right] \]

\[ X = \left( \frac{m_l}{m_g} \right) \sqrt{\frac{\rho_{1,g}}{\rho_l}} \]

\[ Fr_{gas, densiometric} = \frac{v_{gas}}{\sqrt{gD}} \left( \frac{\rho_{1,g}}{\rho_l - \rho_{1,g}} \right) = \frac{4m_g}{\rho_{1,g} \pi D^2 \sqrt{gD}} \left( \frac{\rho_{1,g}}{\rho_l - \rho_{1,g}} \right) \]

Parameters

- \textbf{mg} [float] Mass flow rate of gas through the venturi tube, [kg/s]
- \textbf{ml} [float] Mass flow rate of liquid through the venturi tube, [kg/s]
- \textbf{rhog} [float] Density of gas at \( P_1 \), [kg/m^3]
- \textbf{rhol} [float] Density of liquid at \( P_1 \), [kg/m^3]
- \textbf{D} [float] Upstream internal pipe diameter, [m]
- \textbf{Do} [float] Diameter of venturi tube at flow conditions, [m]
- \textbf{H} [float, optional] A surface-tension effect coefficient used to adjust for different fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in steam) [-]

Returns

- \textbf{C} [float] Coefficient of discharge of the wet gas venturi tube flow meter (includes flow rate of gas ONLY), [-]

Notes

This model has more error than single phase differential pressure meters. The model was first published in [1], and became ISO 11583 later.

The limits of this correlation according to [2] are as follows:

\[ 0.4 \leq \beta \leq 0.75 \]
\[ 0 < X \leq 0.3 \]
\[ Fr_{gas,th} > 3 \]
\[ \frac{\rho_2}{\rho_l} > 0.02 \]
\[ D \geq 50 \text{ mm} \]

References

[1], [2]

Examples
Calculates the non-recoverable pressure drop of a wet gas venturi nozzle based on the pressure drop and the geometry of the venturi nozzle, the mass flow rates of liquid and gas through it, the densities of the vapor and liquid phase, and an adjustable coefficient \( H \).

\[
Y = \frac{\Delta \bar{\omega}}{\Delta P} - 0.0896 - 0.48\beta^9
\]

\[
Y_{\text{max}} = 0.61 \exp \left[ -11 \frac{\rho_{1,g}}{\rho_l} - 0.045 \frac{Fr_{\text{gas}}}{H} \right]
\]

\[
\frac{Y}{Y_{\text{max}}} = 1 - \exp \left[ -35X^{0.75} \exp \left( -0.28\frac{Fr_{\text{gas}}}{H} \right) \right]
\]

\[
Fr_{\text{gas, densiometric}} = \frac{v_{\text{gas}}}{\sqrt{gD}} \sqrt{\frac{\rho_{1,g}}{\rho_l}} = \frac{4m_{\text{g}}}{\rho_{1,g} \pi D^2 \sqrt{gD}} \sqrt{\frac{\rho_{1,g}}{\rho_l}}
\]

**Parameters**

- **D** [float] Upstream internal pipe diameter, [m]
- **Do** [float] Diameter of venturi tube at flow conditions, [m]
- **P1** [float] Static pressure of fluid upstream of venturi tube at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid downstream of venturi tube at the cross-section of the pressure tap, [Pa]
- **ml** [float] Mass flow rate of liquid through the venturi tube, [kg/s]
- **mg** [float] Mass flow rate of gas through the venturi tube, [kg/s]
- **rhol** [float] Density of liquid at \( P1 \), [kg/m\(^3\)]
- **rhog** [float] Density of gas at \( P1 \), [kg/m\(^3\)]
- **H** [float, optional] A surface-tension effect coefficient used to adjust for different fluids, (1 for a hydrocarbon liquid, 1.35 for water, 0.79 for water in steam) [-]

**Returns**

- **C** [float] Coefficient of discharge of the wet gas venturi tube flow meter (includes flow rate of gas ONLY), [-]

**Notes**

The model was first published in [1], and became ISO 11583 later.

**References**

[1], [2]
Examples

```python
>>> dP_Reader_Harris_Gallagher_wet_venturi_tube(D=.1, Do=.06, H=1,
... P1=6E6, P2=6E6-5E4, ml=5.31926/2, mg=5.31926, rhog=50.0, rhol=800.,)
16957.43843129572
```

**flows.flow_meter.differential_pressure_meter_C_epsilon**(*D, D2, m, P1, P2, rho, mu, k, meter_type, taps=None, tap_position=None, C_specified=None*)

Calculates the discharge coefficient and expansibility of a flow meter given the mass flow rate, the upstream pressure, the second pressure value, and the orifice diameter for a differential pressure flow meter based on the geometry of the meter, measured pressures of the meter, and the density, viscosity, and isentropic exponent of the fluid.

**Parameters**

- **D** [float] Upstream internal pipe diameter, [m]
- **D2** [float] Diameter of orifice, or venturi meter orifice, or flow tube orifice, or cone meter end diameter, or wedge meter fluid flow height, [m]
- **m** [float] Mass flow rate of fluid through the flow meter, [kg/s]
- **P1** [float] Static pressure of fluid upstream of differential pressure meter at the cross-section of the pressure tap, [Pa]
- **P2** [float] Static pressure of fluid downstream of differential pressure meter or at the prescribed location (varies by type of meter) [Pa]
- **rho** [float] Density of fluid at P1, [kg/m^3]
- **mu** [float] Viscosity of fluid at P1, [Pa*s]
- **k** [float] Isentropic exponent of fluid, [-]
- **meter_type** [str] One of {'conical orifice', 'orifice', 'machined convergent venturi tube', 'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp', 'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice', 'quarter circle orifice', 'Hollingshead v cone', 'wedge meter', 'eccentric orifice', 'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle', 'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth', 'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice', 'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter', 'as cast convergent venturi tube', 'Miller eccentric orifice', 'ISO 15377 eccentric orifice'}, [-]
- **taps** [str, optional] The orientation of the taps; one of ‘corner’, ‘flange’, ‘D’, or ‘D/2’; applies for orifice meters only, [-]
- **tap_position** [str, optional] The rotation of the taps, used only for the eccentric orifice case

where the pressure profile is not symmetric; ‘180 degree’ for the normal case where the taps are opposite the orifice bore, and ‘90 degree’ for the case where, normally for operational reasons, the taps are near the bore [-]

- **C_specified** [float, optional] If specified, the correlation for the meter type is not used - this value is returned for C

**Returns**

- **C** [float] Coefficient of discharge of the specified flow meter type at the specified conditions, [-]
- **expansibility** [float] Expansibility factor (1 for incompressible fluids, less than 1 for real fluids), [-]
Notes

This function should be called by an outer loop when solving for a variable. The latest ISO formulations for expansibility are used with the Miller correlations.

Examples

```python
>>> differential_pressure_meter_C_epsilon(D=0.07366, D2=0.05, P1=200000.0, ...
 ... P2=183000.0, rho=999.1, mu=0.0011, k=1.33, m=7.70238035732168,
 ... meter_type='ISO 5167 orifice', taps='D')
(0.6151252900244296, 0.9711026966676307)
```

**Fluids Documentation, Release 0.1.86**

```
fluids.flow_meter.differential_pressure_meter_beta(D, D2, meter_type)
Calculates the beta ratio of a differential pressure meter.

Parameters

- D [float] Upstream internal pipe diameter, [m]
- D2 [float] Diameter of orifice, or venturi meter orifice, or flow tube orifice, or cone meter end diameter, or wedge meter fluid flow height, [m]
- meter_type [str] One of {'conical orifice', 'orifice', 'machined convergent venturi tube', 'ISO 5167 orifice', 'Miller quarter circle orifice', 'Hollingshead venturi sharp', 'segmental orifice', 'Miller conical orifice', 'Miller segmental orifice', 'quarter circle orifice', 'Hollingshed v cone', 'wedge meter', 'eccentric orifice', 'venuri nozzle', 'rough welded convergent venturi tube', 'ISA 1932 nozzle', 'ISO 15377 quarter-circle orifice', 'Hollingshead venturi smooth', 'Hollingshead orifice', 'cone meter', 'Hollingshead wedge', 'Miller orifice', 'long radius nozzle', 'ISO 15377 conical orifice', 'unspecified meter', 'as cast convergent venturi tube', 'Miller eccentric orifice', 'ISO 15377 eccentric orifice' }, [-]

Returns

- beta [float] Differential pressure meter diameter ratio, [-]

Examples

```python
>>> differential_pressure_meter_beta(D=0.2575, D2=0.184,
    ... meter_type='cone meter')
0.6995709873957624
```

```
fluids.flow_meter.C_eccentric_orifice_ISO_15377_1998(D, Do)
Calculates the coefficient of discharge of an eccentric orifice based on the geometry of the plate according to ISO 15377, first introduced in 1998 and also presented in the second 2007 edition. It also appears in BS 1042-1.2: 1989.

\[ C = 0.9355 - 1.6889\beta + 3.0428\beta^2 - 1.7989\beta^3 \]

This type of plate is normally used to avoid obstructing entrained gas, liquid, or sediment.

Parameters

- D [float] Upstream internal pipe diameter, [m]
- Do [float] Diameter of orifice at flow conditions, [m]

Returns

```
C [float] Coefficient of discharge of the eccentric orifice, [-]

Notes

No correction for where the orifice bore is located is included.

The following limits apply to the orifice plate standard [1]:

- Bore diameter above 50 mm.
- Pipe diameter between 10 cm and 1 m.
- Beta ratio between 0.46 and 0.84
- \[2 \times 10^5 \beta^2 \leq \text{Re}_D \leq 10^6 \beta\]

The uncertainty of this equation for \(C\) is said to be 1% if \(\beta\) is under 0.75, otherwise 2%.

The \textit{orifice expansibility} function should be used with this method as well.

Additional specifications are:

- The thickness of the orifice should be between 0.005\:'D' and 0.02\:'D'.
- \textbf{Corner tappings should be used, with hole diameter between 3 and 10 mm.} The angular orientation of the tappings matters because the flow meter is not symmetrical. The angle should ideally be at the top or bottom of the plate, opposite which side the bore is on - but this can cause issues with deposition if the taps are on the bottom or gas bubbles if the taps are on the taps. The taps are often placed 30 degrees away from the ideal position to counteract this effect, with under an extra 2% error.

Some comparisons with CFD results can be found in [2].

References

[1], [2]

Examples

```python
>>> C_eccentric_orifice_ISO_15377_1998(.2, .075)
0.6351923828125
```

Calculates the coefficient of discharge of an eccentric orifice based on the geometry of the plate according to ISO 15377, first introduced in 1998 and also presented in the second 2007 edition. It also appears in BS 1042-1.2: 1989.

\[
C = 0.73823 + 0.3309\beta - 1.1615\beta^2 + 1.5084\beta^3
\]

Parameters

- \(D\) [float] Upstream internal pipe diameter, [m]
- \(D_0\) [float] Diameter of orifice at flow conditions, [m]

Returns

- \(C\) [float] Coefficient of discharge of the eccentric orifice, [-]
Notes

The discharge coefficient of this type of orifice plate remains constant down to a lower than normal Re, as occurs in highly viscous applications.

The following limits apply to the orifice plate standard [1]:

- Bore diameter ≥ 1.5 cm
- Pipe diameter ≤ 50 cm
- Beta ratio between 0.245 and 0.6
- $Re_d \leq 10^5 \beta$

There is also a table in [1] which lists increased minimum upstream pipe diameters for pipes of different roughnesses; the higher the roughness, the larger the pipe diameter required, and the table goes up to 20 cm for rusty cast iron.

Corner taps should be used up to pipe diameters of 40 mm; for larger pipes, corner or flange taps can be used. No impact on the flow coefficient is included in the correlation.

The recommended expansibility method for this type of orifice is `orifice_expansibility`.

References

[1]

Examples

```python
>>> C_quarter_circle_orifice_ISO_15377_1998(.2, .075)
0.77851484375000
```

`fluids.flow_meter.C_Miller_1996(D, Do, rho, mu, m, subtype='orifice', taps='corner',
 tap_position='180 degree')`

Calculates the coefficient of discharge of any of the orifice types supported by the Miller (1996) [1] correlation set. These correlations cover a wide range of industrial applications and sizes. Most of them are functions of beta ratio and Reynolds number. Unlike the ISO standards, these correlations do not come with well defined ranges of validity, so caution should be applied using there correlations.

The base equation is as follows, and each orifice type and range has different values or correlations for C_∞, b, and n.

$$C = C_\infty + \frac{b}{Re_D^n}$$

Parameters

- **D** [float] Upstream internal pipe diameter, [m]
- **Do** [float] Diameter of orifice at flow conditions, [m]
- **rho** [float] Density of fluid at $P1$, [kg/m3]
- **mu** [float] Viscosity of fluid at $P1$, [Pa*s]
- **m** [float] Mass flow rate of fluid through the orifice, [kg/s]
taps [str, optional] The orientation of the taps; one of ‘corner’, ‘flange’, ‘D and D/2’, ‘pipe’, or ‘vena contracta’; not all orifice subtypes support the all tap types [-]

tap_position [str, optional] The rotation of the taps, used only for the eccentric orifice case where the pressure profile is not symmetric; ‘180 degree’ for the normal case where the taps are opposite the orifice bore, and ‘90 degree’ for the case where, normally for operational reasons, the taps are near the bore [-]

Returns

C [float] Coefficient of discharge of the orifice, [-]

Notes

Many of the correlations transition at a pipe diameter of 100 mm to different equations, which will lead to discontinuous behavior.

It should also be noted the author of these correlations developed a commercial flow meter rating software package, at [2]. He passed away in 2014, but contributed massively to the field of flow measurement.

The numerous equations for the different cases are as follows:

For all regular (concentric) orifices, the b equation is as follows and $n = 0.75$:

$$b = 91.706 \beta^{2.5}$$

Regular (concentric) orifice, corner taps:

$$C_\infty = 0.5959 + 0.0312 \beta^{2.1} - 0.184 \beta^8$$

Regular (concentric) orifice, flange taps, $D > 58.4$ mm:

$$C_\infty = 0.5959 + 0.0312 \beta^{2.1} - 0.184 \beta^8 + \frac{2.286 \beta^4}{(D_{mm}(1.0 - \beta^4))} - \frac{0.856 \beta^3}{D_{mm}}$$

Regular (concentric) orifice, flange taps, $D < 58.4$ mm:

$$C_\infty = 0.5959 + 0.0312 \beta^{2.1} - 0.184 \beta^8 + \frac{0.039 \beta^4}{(1.0 - \beta^4)} - \frac{0.856 \beta^3}{D_{mm}}$$

Regular (concentric) orifice, ‘D and D/2’ taps:

$$C_\infty = 0.5959 + 0.0312 \beta^{2.1} - 0.184 \beta^8 + \frac{0.039 \beta^4}{(1.0 - \beta^4)} - 0.01584$$

Regular (concentric) orifice, ‘pipe’ taps:

$$C_\infty = 0.5959 + 0.461 \beta^{2.1} + 0.48 \beta^8 + \frac{0.039 \beta^4}{(1.0 - \beta^4)}$$

For the case of a conical orifice, there is no tap dependence and one equation ($b = 0, n = 0$):

$$C_\infty = 0.734 \text{ if } 250\beta \leq Re \leq 500\beta \text{ else } 0.730$$

For the case of a quarter circle orifice, corner and flange taps have the same dependence ($b = 0, n = 0$):

$$C_\infty = (0.7746 - 0.1334 \beta^{2.1} + 1.4098 \beta^8 + \frac{0.0675 \beta^4}{(1 - \beta^4)} + 0.3865 \beta^3)$$

For all segmental orifice types, $b = 0$ and $n = 0$
Segmental orifice, ‘flange’ taps, D < 10 cm:

\[C_\infty = 0.6284 + 0.1462\beta^{2.1} - 0.8464\beta^8 + \frac{0.2603\beta^4}{(1 - \beta^4)} - 0.2886\beta^3 \]

Segmental orifice, ‘flange’ taps, D > 10 cm:

\[C_\infty = 0.6276 + 0.0828\beta^{2.1} + 0.2739\beta^8 - \frac{0.0934\beta^4}{(1 - \beta^4)} - 0.1132\beta^3 \]

Segmental orifice, ‘vena contracta’ taps, D < 10 cm:

\[C_\infty = 0.6261 + 0.1851\beta^{2.1} - 0.2879\beta^8 + \frac{0.1170\beta^4}{(1 - \beta^4)} - 0.2845\beta^3 \]

Segmental orifice, ‘vena contracta’ taps, D > 10 cm:

\[C_\infty = 0.6276 + 0.0828\beta^{2.1} + 0.2739\beta^8 - \frac{0.0934\beta^4}{(1 - \beta^4)} - 0.1132\beta^3 \]

For all eccentric orifice types, \(n = 0.75 \) and \(b \) is fit to a polynomial of \(\beta \).

Eccentric orifice, ‘flange’ taps, 180 degree opposite taps, D < 10 cm:

\[C_\infty = 0.5917 + 0.3061\beta^{2.1} + 0.3406\beta^8 - \frac{1.019\beta^4}{(1 - \beta^4)} - 0.2715\beta^3 \]

\[b = 7.3 - 15.7\beta + 170.8\beta^2 - 399.7\beta^3 + 332.2\beta^4 \]

Eccentric orifice, ‘flange’ taps, 180 degree opposite taps, D > 10 cm:

\[C_\infty = 0.6016 + 0.3312\beta^{2.1} - 1.5581\beta^8 + \frac{0.6510\beta^4}{(1 - \beta^4)} - 0.7308\beta^3 \]

\[b = -139.7 + 1328.8\beta - 4228.2\beta^2 + 5691.9\beta^3 - 2710.4\beta^4 \]

Eccentric orifice, ‘flange’ taps, 90 degree side taps, D < 10 cm:

\[C_\infty = 0.5866 + 0.3917\beta^{2.1} + 0.7586\beta^8 - \frac{2.273\beta^4}{(1 - \beta^4)} - 0.3343\beta^3 \]

\[b = 69.1 - 469.4\beta + 1245.6\beta^2 - 1287.5\beta^3 + 486.2\beta^4 \]

Eccentric orifice, ‘flange’ taps, 90 degree side taps, D > 10 cm:

\[C_\infty = 0.6037 + 0.1598\beta^{2.1} - 0.2918\beta^8 + \frac{0.0244\beta^4}{(1 - \beta^4)} - 0.0790\beta^3 \]

\[b = -103.2 + 898.3\beta - 2557.3\beta^2 + 2977.0\beta^3 - 1131.3\beta^4 \]

Eccentric orifice, ‘vena contracta’ taps, 180 degree opposite taps, D < 10 cm:

\[C_\infty = 0.5925 + 0.3380\beta^{2.1} + 0.4016\beta^8 - \frac{1.046\beta^4}{(1 - \beta^4)} - 0.3212\beta^3 \]

\[b = 23.3 - 207.0\beta + 821.5\beta^2 - 1388.6\beta^3 + 900.3\beta^4 \]

Eccentric orifice, ‘vena contracta’ taps, 180 degree opposite taps, D > 10 cm:

\[C_\infty = 0.5922 + 0.3932\beta^{2.1} + 0.3412\beta^8 - \frac{0.569\beta^4}{(1 - \beta^4)} - 0.4628\beta^3 \]
\[b = 55.7 - 471.4\beta + 1721.8\beta^2 - 2722.6\beta^3 + 1569.4\beta^4 \]

Eccentric orifice, ‘vena contracta’ taps, 90 degree side taps, \(D < 10\) cm:

\[
C_\infty = 0.5875 + 0.3813\beta^{2.1} + 0.6898\beta^8 - \frac{0.1963\beta^4}{(1 - \beta^4)} - 0.3366\beta^3
\]

\[b = -69.3 + 556.9\beta - 1332.2\beta^2 + 1303.7\beta^3 - 394.8\beta^4 \]

Eccentric orifice, ‘vena contracta’ taps, 90 degree side taps, \(D > 10\) cm:

\[
C_\infty = 0.5949 + 0.4078\beta^{2.1} + 0.0547\beta^8 + \frac{0.0955\beta^4}{(1 - \beta^4)} - 0.5608\beta^3
\]

\[b = 52.8 - 434.2\beta + 1571.2\beta^2 - 2460.9\beta^3 + 1420.2\beta^4 \]

References

[1], [2]

Examples

```python
>>> C_Miller_1996(D=0.07391, Do=0.0222, rho=1.165, mu=1.85E-5, m=0.12, taps='flange', subtype='orifice')
0.599065557156788
```

2.9 Friction factor and pipe roughness (fluids.friction)

`fluids.friction.friction_factor(Re, eD=0.0, Method='Clamond', Darcy=True)`

Calculates friction factor. Uses a specified method, or automatically picks one from the dictionary of available methods. 29 approximations are available as well as the direct solution, described in the table below. The default is to use the exact solution.

For \(Re < 2040\), [1] the laminar solution is always returned, regardless of selected method.

Parameters

- `Re` [float] Reynolds number, [-]
- `eD` [float, optional] Relative roughness of the wall, [-]

Returns

- `f` [float] Friction factor, [-]

Other Parameters

- `Method` [string, optional] A string of the function name to use
- `Darcy` [bool, optional] If False, will return fanning friction factor, 1/4 of the Darcy value

See also:

- Colebrooke
- Clamond
Notes

A table of the supposed limits of each correlation is as follows. Note that the spaces in the method names are placed by underscores in the actual function names and when provided as the *Method* argument. The default method is likely to be sufficient.

<table>
<thead>
<tr>
<th>Nice name</th>
<th>Re min</th>
<th>Re max</th>
<th>𝜖/𝐷 Min</th>
<th>𝜖/𝐷 Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamond</td>
<td>0</td>
<td>None</td>
<td>0</td>
<td>None</td>
</tr>
<tr>
<td>Rao Kumar 2007</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Eck 1973</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Jain 1976</td>
<td>5000</td>
<td>1.0E+7</td>
<td>4.0E-5</td>
<td>0.05</td>
</tr>
<tr>
<td>Avci Karagoz 2009</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Swamee Jain 1976</td>
<td>5000</td>
<td>1.0E+8</td>
<td>1.0E-6</td>
<td>0.05</td>
</tr>
<tr>
<td>Churchill 1977</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Brkic 2011 1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Chen 1979</td>
<td>4000</td>
<td>4.0E+8</td>
<td>1.0E-7</td>
<td>0.05</td>
</tr>
<tr>
<td>Round 1980</td>
<td>4000</td>
<td>4.0E+8</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Papaevangelo 2010</td>
<td>10000</td>
<td>1.0E+7</td>
<td>1.0E-5</td>
<td>0.001</td>
</tr>
<tr>
<td>Fang 2011</td>
<td>3000</td>
<td>1.0E+8</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Shacham 1980</td>
<td>4000</td>
<td>4.0E+8</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Barr 1981</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Churchill 1973</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Moody</td>
<td>4000</td>
<td>1.0E+8</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Zigrang Sylvester 1</td>
<td>4000</td>
<td>1.0E+8</td>
<td>4.0E-5</td>
<td>0.05</td>
</tr>
<tr>
<td>Zigrang Sylvester 2</td>
<td>4000</td>
<td>1.0E+8</td>
<td>4.0E-5</td>
<td>0.05</td>
</tr>
<tr>
<td>Buzzelli 2008</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Haaland</td>
<td>4000</td>
<td>1.0E+8</td>
<td>1.0E-6</td>
<td>0.05</td>
</tr>
<tr>
<td>Serghides 1</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Serghides 2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Tsai 1989</td>
<td>4000</td>
<td>1.0E+8</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Alshul 1952</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Wood 1966</td>
<td>4000</td>
<td>5.0E+7</td>
<td>1.0E-5</td>
<td>0.04</td>
</tr>
<tr>
<td>Manadilli 1997</td>
<td>5245</td>
<td>1.0E+8</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Brkic 2011 2</td>
<td>None</td>
<td>None</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>Romeo 2002</td>
<td>3000</td>
<td>1.5E+8</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>Sonnad Goudar 2006</td>
<td>4000</td>
<td>1.0E+8</td>
<td>1.0E-6</td>
<td>0.05</td>
</tr>
</tbody>
</table>

References

[1]

Examples

```python
>>> friction_factor(Re=1E5, eD=1E-4)
0.01851386607747165
>>> friction_factor(Re=2.9E5, eD=1E-5, Method='Serghides_2')
0.0146199041093456
```

`fluids.friction.friction_factor_methods(Re, eD=0.0, check_ranges=True)`

Returns a list of correlation names for calculating friction factor for internal pipe flow.

Parameters
Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float, optional] Relative roughness of the wall, [-]
- **check_ranges** [bool, optional] Whether to filter the list for correlations which claim to be valid for the given values, [-]

Returns

- **methods** [list] List of methods which claim to be valid for the range of Re and eD given, [-]

Examples

```python
>>> len(friction_factor_methods(Re=1E5, eD=1E-4))
30
```

```python
def friction_factor_curved(Re, Di, Dc, roughness=0.0, Method=None, Rec_method='Schmidt', laminar_method='Schmidt laminar', turbulent_method='Schmidt turbulent', Darcy=True):
    # Calculates friction factor fluid flowing in a curved pipe or helical coil, supporting both laminar and turbulent regimes. Selects the appropriate regime by default, and has default correlation choices. Optionally, a specific correlation can be specified with the Method keyword.
    # The default correlations are those recommended in [1], and are believed to be the best publicly available.

    # Parameters
    Re [float] Reynolds number with D=Di, [-]
    Di [float] Inner diameter of the tube making up the coil, [m]
    Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
    roughness [float, optional] Roughness of pipe wall [m]

    # Returns
    f [float] Friction factor, [-]

    # Other Parameters
    Method [string, optional] A string of the function name to use, overriding the default turbulent/laminar selection.
    Rec_method [str, optional] Critical Reynolds number transition criteria; one of ['Seth Stahel', 'Ito', 'Kubair Kuloor', 'Kutateladze Borishanskii', 'Schmidt', 'Srinivasan']; the default is 'Schmidt'.
    laminar_method [str, optional] Friction factor correlation for the laminar regime; one of ['White', 'Mori Nakayama laminar', 'Schmidt laminar']; the default is 'Schmidt laminar'.
    turbulent_method [str, optional] Friction factor correlation for the turbulent regime; one of ['Guo', 'Ju', 'Schmidt turbulent', 'Prasad', 'Mandel Nigam', 'Mori Nakayama turbulent', 'Czop']; the default is 'Schmidt turbulent'.
    Darcy [bool, optional] If False, will return fanning friction factor, 1/4 of the Darcy value

    See also:

    *fluids.geometry.HelicalCoil*
helical_turbulent_fd_Schmidt
helical_turbulent_fd_Srinivasan
helical_turbulent_fd_Mandal_Nigam
helical_turbulent_fd_Ju
helical_turbulent_fd_Guo
helical_turbulent_fd_Czop
helical_turbulent_fd_Prasad
helical_turbulent_fd_Mori_Nakayama
helical_laminar_fd_Schmidt
helical_laminar_fd_Mori_Nakayama
helical_laminar_fd_White
helical_transition_Re_Schmidt
helical_transition_Re_Srinivasan
helical_transition_Re_Kutateladze_Borishanskii
helical_transition_Re_Kubair_Kuloor
helical_transition_Re_Ito
helical_transition_Re_Seth_Stahel

Notes
The range of accuracy of these correlations is much than that in a straight pipe.

References
[1]

Examples

```python
>>> friction_factor_curved(Re=1E5, Di=0.02, Dc=0.5)
0.022961996738387523
```

fluids.friction.helical_Re_crit(Di, Dc, Method='Schmidt')
Calculates the transition Reynolds number for fluid flowing in a curved pipe or helical coil. Selects the appropriate regime by default. Optionally, a specific correlation can be specified with the Method keyword.

The default correlations are those recommended in [1], and are believed to be the best publicly available.

Parameters

Di [float] Inner diameter of the tube making up the coil, [m]

Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
**Method**  [str, optional] Critical Reynolds number transition criteria correlation; one of ['Seth Stahel', 'Ito', 'Kubair Kuloor', 'Kutateladze Borishanskii', 'Schmidt', 'Srinivasan']; the default is 'Schmidt'.

**Returns**

- **Re_crit**  [float] Reynolds number for critical transition between laminar and turbulent flow, [-]

**See also:**

- `fluids.geometry.HelicalCoil`
- `helical_transition_Re_Schmidt`
- `helical_transition_Re_Srinivasan`
- `helical_transition_Re_Kutateladze_Borishanskii`
- `helical_transition_Re_Kubair_Kuloor`
- `helical_transition_Re_Ito`
- `helical_transition_Re_Seth_Stahel`

**References**

[1]

**Examples**

```python
>>> helical_Re_crit(Di=0.02, Dc=0.5)
6946.792538856203
```

`fluids.friction.friction_factor_curved_methods(Re, Di, Dc, roughness=0.0, check_ranges=True)`

Returns a list of correlation names for calculating friction factor of fluid flowing in a curved pipe or helical coil, supporting both laminar and turbulent regimes.

**Parameters**

- **Re**  [float] Reynolds number with \( D=Di \), [-]
- **Di**  [float] Inner diameter of the tube making up the coil, [m]
- **Dc**  [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
- **roughness**  [float, optional] Roughness of pipe wall [m]
- **check_ranges**  [bool, optional] Whether or not to return only correlations suitable for the provided data, [-]

**Returns**

- **methods**  [list] List of methods in the regime the specified \( Re \) is in at the given \( Di \) and \( Dc \).
Examples

```python
>>> friction_factor_curved_methods(Re=1E5, Di=0.02, Dc=0.5)[0]
'Schmidt turbulent'
```

`fluids.friciton.Colebrook (Re, eD, tol=None)`

Calculates Darcy friction factor using the Colebrook equation originally published in [1]. Normally, this function uses an exact solution to the Colebrook equation, derived with a CAS. A numerical can also be used.

\[
\frac{1}{\sqrt{f}} = -2 \log_{10} \left( \frac{\epsilon/D}{3.7} + \frac{2.51}{Re\sqrt{f}} \right)
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]
- **tol** [float, optional] None for analytical solution (default); user specified value to use the numerical solution; 0 to use *mpmath* and provide a bit-correct exact solution to the maximum fidelity of the system’s *float*; -1 to apply the Clamond solution where appropriate for greater speed (Re > 10), [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

The solution is as follows:

\[
f_d = \frac{\ln(10)^2 \cdot 3.7^2 \cdot 2.51^2}{\left( \log(10)\epsilon/D \cdot Re - 2 \cdot 2.51 \cdot 3.7 \cdot \text{lambertW} \left[ \log(\sqrt{10})\sqrt{10(\frac{\epsilon/D}{3.7} \cdot Re^2/2.51^2)} \right] \right)}
\]

Some effort to optimize this function has been made. The *lambertw* function from scipy is used, and is defined to solve the specific function:

\[
y = x \exp(x) \\
lambertW(y) = x
\]

This is relatively slow despite its explicit form as it uses the mathematical function *lambertw* which is expensive to compute.

For high relative roughness and Reynolds numbers, an OverflowError can be encountered in the solution of this equation. The numerical solution is then used.

The numerical solution provides values which are generally within an rtol of 1E-12 to the analytical solution; however, due to the different rounding order, it is possible for them to be as different as rtol 1E-5 or higher. The 1E-5 accuracy regime has been tested and confirmed numerically for hundreds of thousand of points within the region 1E-12 < Re < 1E12 and 0 < eD < 0.1.

The numerical solution attempts the secant method using *scipy’s newton* solver, and in the event of nonconvergence, attempts the *fsolve* solver as well. An initial guess is provided via the *Clamond* function.

The numerical and analytical solution take similar amounts of time; the *mpmath* solution used when *tol=0* is approximately 45 times slower. This function takes approximately 8 us normally.
References

[1]

Examples

```python
>>> Colebrook(1E5, 1E-4)
0.018513866077471648
```

```python
fluids.friction.Clamond(Re, eD, fast=False)
```
Calculates Darcy friction factor using a solution accurate to almost machine precision. Recommended very strongly. For details of the algorithm, see [1].

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]
- **fast** [bool, optional] If true, performs only one iteration, which gives roughly half the number of decimals of accuracy, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

This is a highly optimized function, 4 times faster than the solution using the LambertW function, and faster than many other approximations which are much less accurate.

The code used here is only slightly modified than that in [1], for further performance improvements.

For $10 < Re < 1E12$, and $0 < eD < 0.01$, this equation has been confirmed numerically to provide a solution to the Colebrook equation accurate to an rtol of 1E-9 or better - the same level of accuracy as the analytical solution to the Colebrook equation due to floating point precision.

Comparing this to the numerical solution of the Colebrook equation, identical values are given accurate to an rtol of 1E-9 for $10 < Re < 1E100$, and $0 < eD < 1$ and beyond.

However, for values of Re under 10, different answers from the *Colebrook* equation appear and then quickly a ValueError is raised.

References

[1]

Examples

```python
>>> Clamond(1E5, 1E-4)
0.01851386607747165
```

```python
fluids.friction.friction_laminar(Re)
```
Calculates Darcy friction factor for laminar flow, as shown in [1] or anywhere else.

\[
f_d = \frac{64}{Re}
\]
Parameters

- **Re** [float] Reynolds number, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

For round pipes, this valid for \( Re \approx < 2040 \).

Results in [2] show that this theoretical solution calculates too low of friction factors from \( Re = 10 \) and up, with an average deviation of 4%.

References

[1], [2]

Examples

```python
>>> friction_laminar(128)
0.5
```

**fluilds.friction.one_phase_dP** \((m, rho, mu, D, roughness=0.0, L=1.0, Method=None)\)

Calculates single-phase pressure drop. This is a wrapper around other methods.

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **rho** [float] Density of fluid, [kg/m^3]
- **mu** [float] Viscosity of fluid, [Pa*s]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]
- **Method** [string, optional] A string of the function name to use

Returns

- **dP** [float] Pressure drop of the single-phase flow, [Pa]

References

[1]

Examples

```python
>>> one_phase_dP(10.0, 1000, 1E-5, .1, L=1)
63.43447321097365
```
Fluids Documentation, Release 0.1.86

**fluids.friction.one_phase_dP_gravitational** *(angle, rho, L=1.0, g=9.80665)*

This function handles calculation of one-phase liquid-gas pressure drop due to gravitation for flow inside channels. This is either a differential calculation for a segment with an infinitesimal difference in elevation (if ‘L’=1 or a discrete calculation.

\[
-\left(\frac{dP}{dz}\right)_{grav} = \rho g \sin \theta
\]

\[
-\left(\Delta P\right)_{grav} = L \rho g \sin \theta
\]

**Parameters**

- **angle** [float] The angle of the pipe with respect to the horizontal, [degrees]
- **rho** [float] Fluid density, [kg/m³]
- **L** [float, optional] Length of pipe, [m]
- **g** [float, optional] Acceleration due to gravity, [m/s²]

**Returns**

- **dP** [float] Gravitational component of pressure drop for one-phase flow, [Pa/m] or [Pa]

**Examples**

```python
>>> one_phase_dP_gravitational(angle=90, rho=2.6)
25.49729
>>> one_phase_dP_gravitational(angle=90, rho=2.6, L=4)
101.98916
```

**fluids.friction.one_phase_dP_dz_acceleration** *(m, D, rho, dv_dp, dP_dL, dA_dL)*

This function handles calculation of one-phase fluid pressure drop due to acceleration for flow inside channels. This is a continuous calculation, providing the differential in pressure per unit length and should be called as part of an integration routine ([1], [2]).

\[
-\left(\frac{\partial P}{\partial L}\right)_A = G^2 \frac{\partial P}{\partial L} \left[ \frac{\partial (1/\rho)}{\partial P} \right] - \frac{G^2}{\rho} \frac{1}{A} \frac{\partial A}{\partial L}
\]

**Parameters**

- **m** [float] Mass flow rate of fluid, [kg/s]
- **D** [float] Diameter of pipe, [m]
- **rho** [float] Fluid density, [kg/m³]
- **dv_dp** [float] Derivative of mass specific volume of the fluid with respect to pressure, [m³/(kg*Pa)]
- **dP_dL** [float] Pressure drop per unit length of pipe, [Pa/m]
- **dA_dL** [float] Change in area of pipe per unit length of pipe, [m²/m]

**Returns**

- **dP_dz** [float] Acceleration component of pressure drop for one-phase flow, [Pa/m]
Notes

The value returned here is positive for pressure loss and negative for pressure increase. As $dP/dL$ is not known, this equation is normally used in a more complicated way than this function provides; this method can be used to check the consistency of that routine.

References

[1]

Examples

```python
>>> one_phase_dP_dz_acceleration(m=1, D=0.1, rho=827.1, dv_dP=-1.1E-5,
... dP_dL=5E5, dA_dL=0.0001)
89162.89116373913
```

`fluids.friction.one_phase_dP_acceleration(m, D, rho_o, rho_i)`

This function handles calculation of one-phase fluid pressure drop due to acceleration for flow inside channels. This is a discrete calculation, providing the total differential in pressure for a given length and should be called as part of a segment solver routine.

\[
-d\left(\frac{dP}{dz}\right)_{acc} = G^2 \frac{dz}{dP} \left[ \frac{1}{\rho_o} - \frac{1}{\rho_i} \right]
\]

Parameters

- `m` [float] Mass flow rate of fluid, [kg/s]
- `D` [float] Diameter of pipe, [m]
- `rho_o` [float] Fluid density out, [kg/m^3]
- `rho_i` [float]Fluid density int, [kg/m^3]

Returns

- `dP` [float] Acceleration component of pressure drop for one-phase flow, [Pa]

Examples

```python
>>> one_phase_dP_acceleration(m=1, D=0.1, rho_o=827.1, rho_i=830)
0.06848289670840459
```

`fluids.friction.transmission_factor(fd=None, F=None)`

Calculates either transmission factor from Darcy friction factor, or Darcy friction factor from the transmission factor. Raises an exception if neither input is given.

Transmission factor is a term used in compressible gas flow in pipelines.

\[
F = \frac{2}{\sqrt{f_d}}
\]

\[
f_d = \frac{4}{F^2}
\]

Parameters
fd [float, optional] Darcy friction factor, [-]
F [float, optional] Transmission factor, [-]

Returns
fd or F [float] Darcy friction factor or transmission factor [-]

References
[1]

Examples

```python
>>> transmission_factor(fd=0.0185)
14.704292441876154

>>> transmission_factor(F=20)
0.01
```

fluids.friction.material_roughness (ID, D=None, optimism=None)
Searches through either a dict of clean pipe materials or used pipe materials and conditions and returns the ID of the nearest material. Search is performed with either the standard library’s difflib or with the fuzzywuzzy module if available.

Parameters

ID [str] Search terms for matching pipe materials, [-]
D [float, optional] Diameter of desired pipe; used only if ID is in [2], [m]
optimism [bool, optional] For values in [1], a minimum, maximum, and average value is normally given; if True, returns the minimum roughness; if False, the maximum roughness; and if None, returns the average roughness. Most entries do not have all three values, so fallback logic to return the closest entry is used, [-]

Returns

roughness [float] Retrieved or calculated roughness, [m]

References
[1], [2]

Examples

```python
>>> material_roughness('condensate pipes')
0.0005
```

fluids.friction.nearest_material_roughness (name, clean=None)
Searches through either a dict of clean pipe materials or used pipe materials and conditions and returns the ID of the nearest material. Search is performed with either the standard library’s difflib or with the fuzzywuzzy module if available.

Parameters
**name** [str] Search term for matching pipe materials

**clean** [bool, optional] If True, search only clean pipe database; if False, search only the dirty database; if None, search both

**Returns**

**ID** [str] String for lookup of roughness of a pipe, in either `roughness_clean_dict` or `HHR_roughness` depending on if clean is True.

**References**

[1]

**Examples**

```python
>>> nearest_material_roughness('condensate pipes', clean=False)
'Seamless steel tubes, Condensate pipes in open systems or periodically operated steam pipelines'
```

**fluids.friction.roughness_Farshad** *(ID=None, D=None, coeffs=None)*

Calculates or retrieves the roughness of a pipe based on the work of [1]. This function will return an average value for pipes of a given material, or if diameter is provided, will calculate one specifically for the pipe inner diameter according to the following expression with constants $A$ and $B$:

$$
\epsilon = A \cdot D^{B+1}
$$

Please note that $A$ has units of inches, and $B$ requires $D$ to be in inches as well.

The list of supported materials is as follows:

- ‘Plastic coated’
- ‘Carbon steel, honed bare’
- ‘Cr13, electropolished bare’
- ‘Cement lining’
- ‘Carbon steel, bare’
- ‘Fiberglass lining’
- ‘Cr13, bare’

If `coeffs` and $D$ are given, the custom coefficients for the equation as given by the user will be used and $ID$ is not required.

**Parameters**

- **ID** [str, optional] Name of pipe material from above list
- **D** [float, optional] Actual inner diameter of pipe, [m]
- **coeffs** [tuple, optional] $(A, B)$ Coefficients to use directly, instead of looking them up; they are actually dimensional, in the forms `(inch^{-B}, -)` but only coefficients with those dimensions are available [-]

**Returns**

- **epsilon** [float] Roughness of pipe [m]
Notes

The diameter-dependent form provides lower roughness values for larger diameters.

The measurements were based on DIN 4768/1 (1987), using both a “Dektak ST Surface Profiler” and a “Hommel Tester T1000”. Both instruments were found to be in agreement. A series of flow tests, in which pressure drop directly measured, were performed as well, with nitrogen gas as an operating fluid. The accuracy of the data from these tests is claimed to be within 1%.

Using those results, the authors back-calculated what relative roughness values would be necessary to produce the observed pressure drops. The average difference between this back-calculated roughness and the measured roughness was 6.75%.

For microchannels, this model will predict roughness much larger than the actual channel diameter.

References

[1]

Examples

```python
>>> roughness_Farshad('Cr13, bare', 0.05)
5.3141677781137006e-05
```

```
fluids.friction.Moody(Re, eD)
Calculates Darcy friction factor using the method in Moody (1947) as shown in [1] and originally in [2].

\[f_f = 1.375 \times 10^{-3} \left[1 + \left(2 \times 10^4 \frac{\varepsilon}{D} + \frac{10^6}{Re} \right)^{\frac{1}{3}} \right] \]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Range is Re >= 4E3 and Re <= 1E8; eD >= 0 < 0.01.

References

[1], [2]

Examples

```python
>>> Moody(1E5, 1E-4)
0.01809185666808665
```
fluids.friction.Alshul_1952\((Re, eD) \)
Calculates Darcy friction factor using the method in Alshul (1952) as shown in [1].

\[
f_d = 0.11 \left(\frac{68}{Re} + \frac{e}{D} \right)^{0.25}
\]

Parameters

Re [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns

fd [float] Darcy friction factor [-]

Notes

No range of validity specified for this equation.

References

[1]

Examples

```python
>>> Alshul_1952(1E5, 1E-4)
0.018382997825686878
```

fluids.friction.Wood_1966\((Re, eD) \)
Calculates Darcy friction factor using the method in Wood (1966) [2] as shown in [1].

\[
f_d = 0.094 \left(\frac{e}{D} \right)^{0.225} + 0.53 \left(\frac{e}{D} \right) + 88 \left(\frac{e}{D} \right)^{0.4} Re^{-A_1}
\]

\[
A_1 = 1.62 \left(\frac{e}{D} \right)^{0.134}
\]

Parameters

Re [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns

fd [float] Darcy friction factor [-]

Notes

Range is 4E3 <= Re <= 5E7; 1E-5 <= eD <= 4E-2.

References

[1], [2]
Examples

```python
>>> Wood_1966(1E5, 1E-4)
0.021587570560090762
```

```python
fluids.friction.Churchill_1973(Re, eD)
Calculates Darcy friction factor using the method in Churchill (1973) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -2 \log \left[ \frac{\epsilon}{3.7D} + \left( \frac{7}{Re} \right)^{0.9} \right]
\]

Parameters
- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns
- **fd** [float] Darcy friction factor [-]

Notes
No range of validity specified for this equation.

References
[1], [2]

Examples

```python
>>> Churchill_1973(1E5, 1E-4)
0.01846708694482294
```

```python
fluids.friction.Eck_1973(Re, eD)
Calculates Darcy friction factor using the method in Eck (1973) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -2 \log \left[\frac{\epsilon}{3.715D} + \frac{15}{Re} \right]
\]

Parameters
- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns
- **fd** [float] Darcy friction factor [-]

Notes
No range of validity specified for this equation.
Fluids Documentation, Release 0.1.86

References

[1], [2]

Examples

```python
>>> Eck_1973(1E5, 1E-4)
0.01775666973488564
```

`fluids.friction.Jain_1976(Re, eD)`
Calculates Darcy friction factor using the method in Jain (1976) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_f}} = 2.28 - 4 \log \left(\frac{\epsilon}{D} + \left(\frac{29.843}{Re} \right)^{0.9} \right)
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Range is 5E3 <= Re <= 1E7, 4E-5 <= eD <= 5E-2.

References

[1], [2]

Examples

```python
>>> Jain_1976(1E5, 1E-4)
0.018436560312693327
```

`fluids.friction.Swamee_Jain_1976(Re, eD)`
Calculates Darcy friction factor using the method in Swamee and Jain (1976) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_f}} = -4 \log \left(\left(\frac{6.97}{Re} \right)^{0.9} + \left(\frac{\epsilon}{3.7D} \right) \right)
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]
Notes

Range is $5 \times 10^3 \leq Re \leq 1 \times 10^8$; $1 \times 10^{-6} \leq eD \leq 5 \times 10^{-2}$.

References

[1], [2]

Examples

```python
>>> Swamee_Jain_1976(1E5, 1E-4)
0.018452424431901808
```

`fluids.friction.Churchill_1977(Re, eD)`

Calculates Darcy friction factor using the method in Churchill and (1977) [2] as shown in [1].

\[
f_f = 2 \left[\left(\frac{8}{Re} \right)^{12} + (A_2 + A_3)^{-1.5} \right]^{1/12}
\]

\[
A_2 = \left(\frac{2.457 \ln \left(\frac{7}{Re} \right)^{0.9} + 0.27 \frac{e}{D} \right)^{16}
\]

\[
A_3 = \left(\frac{37530}{Re} \right)^{16}
\]

Parameters

- Re [float] Reynolds number, [-]
- eD [float] Relative roughness, [-]

Returns

- fd [float] Darcy friction factor [-]

Notes

No range of validity specified for this equation.

References

[1], [2]

Examples

```python
>>> Churchill_1977(1E5, 1E-4)
0.018462624566280075
```

`fluids.friction.Chen_1979(Re, eD)`

Calculates Darcy friction factor using the method in Chen (1979) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_f}} = -4 \log \left[\frac{\epsilon}{3.7065D} - \frac{5.0452}{Re} \log A_4 \right]
\]
\[A_4 = \frac{(\epsilon/D)^{1.1098}}{2.8257} + \left(\frac{7.149}{Re} \right)^{0.8981} \]

Parameters
- \(Re\) [float] Reynolds number, [-]
- \(eD\) [float] Relative roughness, [-]

Returns
- \(fd\) [float] Darcy friction factor [-]

Notes
Range is \(4E3 \leq Re \leq 4E8; \ 1E-7 \leq eD \leq 5E-2\).

References
[1], [2]

Examples
>>> Chen_1979(1E5, 1E-4)
0.018552817507472126

\texttt{fluids.friction.Round_1980(Re, eD)}
Calculates Darcy friction factor using the method in Round (1980) [2] as shown in [1].

\[\frac{1}{\sqrt{f_f}} = -3.6 \log \left[\frac{Re}{0.135 Re \frac{\epsilon}{D} + 6.5} \right] \]

Parameters
- \(Re\) [float] Reynolds number, [-]
- \(eD\) [float] Relative roughness, [-]

Returns
- \(fd\) [float] Darcy friction factor [-]

Notes
Range is \(4E3 \leq Re \leq 4E8; \ 0 \leq eD \leq 5E-2\).

References
[1], [2]
Examples

```python
>>> Round_1980(1E5, 1E-4)
0.01831475391244354
```

```
fluids.friction.Shacham_1980(Re, eD)
Calculates Darcy friction factor using the method in Shacham (1980) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -4 \log \left[ \frac{\epsilon}{3.7D} - \frac{5.02}{Re} \log \left( \frac{\epsilon}{3.7D} + 14.5 \frac{Re}{Re} \right) \right]
\]

Parameters

- Re [float] Reynolds number, [-]
- eD [float] Relative roughness, [-]

Returns

- fd [float] Darcy friction factor [-]

Notes

Range is 4E3 <= Re <= 4E8

References

[1], [2]

Examples

```python
>>> Shacham_1980(1E5, 1E-4)
0.01860641215097828
```

```
fluids.friction.Barr_1981(Re, eD)
Calculates Darcy friction factor using the method in Barr (1981) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -2 \log \left\{ \frac{\epsilon}{3.7D} + 4.518 \log \left(\frac{Re}{7} \right) \right\}
\]

Parameters

- Re [float] Reynolds number, [-]
- eD [float] Relative roughness, [-]

Returns

- fd [float] Darcy friction factor [-]

Notes

No range of validity specified for this equation.
References

[1], [2]

Examples

```python
>>> Barr_1981(1E5, 1E-4)
0.01849836032779929
```

`fluids.friction.Zigrang_Sylvester_1(Re, eD)`

Calculates Darcy friction factor using the method in Zigrang and Sylvester (1982) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_f}} = -4 \log \left[\frac{\epsilon}{3.7D} - \frac{5.02}{Re} \log A_5 \right]
\]

\[
A_5 = \frac{\epsilon}{3.7D} + \frac{13}{Re}
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Range is 4E3 <= Re <= 1E8; 4E-5 <= eD <= 5E-2.

References

[1], [2]

Examples

```python
>>> Zigrang_Sylvester_1(1E5, 1E-4)
0.01864689242598079
```

`fluids.friction.Zigrang_Sylvester_2(Re, eD)`

\[
\frac{1}{\sqrt{f_f}} = -4 \log \left[\frac{\epsilon}{3.7D} - \frac{5.02}{Re} \log A_6 \right]
\]

\[
A_6 = \frac{\epsilon}{3.7D} - \frac{5.02}{Re} \log A_5
\]

\[
A_5 = \frac{\epsilon}{3.7D} + \frac{13}{Re}
\]

Parameters
Re [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns
fd [float] Darcy friction factor [-]

Notes
Range is 4E3 <= Re <= 1E8; 4E-5 <= eD <= 5E-2

References
[1], [2]

Examples
```python
>>> Zigrang_Sylvester_2(1E5, 1E-4)
0.01850021312358548
```

```
fluids.friction.Haaland(Re, eD)
```

Calculates Darcy friction factor using the method in Haaland (1983) [2] as shown in [1].

\[
f_f = \left(-1.8 \log_{10} \left(\frac{\epsilon}{D} \right)^{1.11} + \frac{6.9}{Re} \right)^{-2}
\]

Parameters
Re [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns
fd [float] Darcy friction factor [-]

Notes
Range is 4E3 <= Re <= 1E8; 4E-6 <= eD <= 5E-2

References
[1], [2]

Examples
```python
>>> Haaland(1E5, 1E-4)
0.018265053014793857
```
fluids.friction.Serghides_1(Re, eD)

\[
f = \left[A - \frac{(B - A)^2}{C - 2B + A} \right]^{-2}
\]

\[
A = -2 \log_{10} \left[\frac{e/D}{3.7} + \frac{12}{Re} \right]
\]

\[
B = -2 \log_{10} \left[\frac{e/D}{3.7} + \frac{2.51A}{Re} \right]
\]

\[
C = -2 \log_{10} \left[\frac{e/D}{3.7} + \frac{2.51B}{Re} \right]
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

No range of validity specified for this equation.

References

[1], [2]

Examples

```python
>>> Serghides_1(1E5, 1E-4)
0.01851358983180063
```
Notes

No range of validity specified for this equation.

References

[1], [2]

Examples

```python
>>> Serghides_2(1E5, 1E-4)
0.018486377560664482
```

`fluids.friction.Tsal_1989(Re, eD)`

Calculates Darcy friction factor using the method in Tsal (1989) [2] as shown in [1].

\[
A = 0.11 \left(\frac{68}{Re} + \frac{\epsilon}{D} \right)^{0.25}
\]

if \(A \geq 0.018 \) then \(fd = A \);
if \(A < 0.018 \) then \(fd = 0.0028 + 0.85A \).

Parameters

- `Re` [float] Reynolds number, [-]
- `eD` [float] Relative roughness, [-]

Returns

- `fd` [float] Darcy friction factor [-]

Notes

Range is \(4E3 \leq Re \leq 1E8; 0 \leq eD \leq 5E-2 \)

References

[1], [2]

Examples

```python
>>> Tsal_1989(1E5, 1E-4)
0.018382997825686878
```

`fluids.friction.Manadilli_1997(Re, eD)`

Calculates Darcy friction factor using the method in Manadilli (1997) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -2 \log \left[\frac{\epsilon}{3.7D} + \frac{95}{Re^{0.383}} - \frac{96.82}{Re} \right]
\]

Parameters

- `Re` [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns

fd [float] Darcy friction factor [-]

Notes

Range is 5.245E3 <= Re <= 1E8; 0 <= eD <= 5E-2

References

[1], [2]

Examples

```python
>>> Manadilli_1997(1E5, 1E-4)
0.01856964649724108
```

```
fluids.friction.Romeo_2002 (Re, eD)
Calculates Darcy friction factor using the method in Romeo (2002) [2] as shown in [1].

\[
\frac{1}{\sqrt{f_d}} = -2 \log \left( \frac{\epsilon}{3.7065D} \times \frac{5.0272}{Re} \times \log \left[ \frac{\epsilon}{3.827D} - \frac{4.567}{Re} \times \log \left( \frac{\epsilon}{7.7918D} + \left( \frac{5.3326}{208.815 + Re} \right)^{0.9345} \right) \right] \right)
\]

Parameters

Re [float] Reynolds number, [-]
eD [float] Relative roughness, [-]

Returns

fd [float] Darcy friction factor [-]

Notes

Range is 3E3 <= Re <= 1.5E8; 0 <= eD <= 5E-2

References

[1], [2]

Examples

```python
>>> Romeo_2002(1E5, 1E-4)
0.018530291219676177
```

```
fluids.friction.Sonnad_Goudar_2006 (Re, eD)

\[
\frac{1}{\sqrt{f_d}} = 0.8686 \ln \left(\frac{0.4587 Re}{S^2/(S+1)} \right)
\]

```
\[
S = 0.1240 \times \frac{\varepsilon}{D} \times Re + \ln(0.4587Re)
\]

**Parameters**

- \(Re\) [float] Reynolds number, [-]
- \(eD\) [float] Relative roughness, [-]

**Returns**

- \(fd\) [float] Darcy friction factor [-]

**Notes**

Range is \(4E3 \leq Re \leq 1E8;\ 1E-6 \leq eD \leq 5E-2\)

**References**

[1], [2]

**Examples**

```python
gf = fluids.friction.Sonnad_Goudar_2006(1E5, 1E-4)
f = 0.0185971269898162
```


\[
\frac{1}{\sqrt{f_d}} = 2 \log \left( \left( \frac{(2 \pi)^{-1}}{0.444 + 0.135 Re} \right)^{\frac{1}{\beta}} \right)
\]

\[
\beta = 1 - 0.55 \exp(-0.33 \ln \left( \frac{Re}{6.5} \right)^2)
\]

**Parameters**

- \(Re\) [float] Reynolds number, [-]
- \(eD\) [float] Relative roughness, [-]

**Returns**

- \(fd\) [float] Darcy friction factor [-]

**Notes**

No range of validity specified for this equation. This equation is fit to original experimental friction factor data. Accordingly, this equation should not be used unless appropriate consideration is given.

**References**

[1], [2]
Examples

```python
>>> Rao_Kumar_2007(1E5, 1E-4)
0.01197759334600925
```

```
fluids.friction.Buzzelli_2008(Re, eD)

\[
\frac{1}{\sqrt{f_d}} = B_1 - \left[\frac{B_1 + 2 \log\left(\frac{B_2}{Re} \right)}{1 + \frac{2.18}{B_2}} \right]
\]

\[
B_1 = \frac{0.774 \ln(Re) - 1.41}{1 + 1.32 \sqrt{e}}
\]

\[
B_2 = \frac{e}{3.7D} Re + 2.51 \times B_1
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

No range of validity specified for this equation.

References

[1], [2]

Examples

```python
>>> Buzzelli_2008(1E5, 1E-4)
0.018513948401365277
```

```
fluids.friction.Avci_Karagoz_2009(Re, eD)
Calculates Darcy friction factor using the method in Avci and Karagoz (2009) [2] as shown in [1].

\[
f_D = \frac{6.4}{\left\{ \ln(Re) - \ln \left[ 1 + 0.01 Re \frac{e}{D} \left( 1 + 10 \left( \frac{e}{D} \right)^{0.5} \right) \right] \right\}^{2.4}}
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

References

[1], [2]
Notes

No range of validity specified for this equation.

References

[1], [2]

Examples

```python
>>> Avci_Karagoz_2009(1E5, 1E-4)
0.01857058061066499
```

**fluids.friction.Papaevangelo_2010** (*Re*, *eD*)


\[
f_D = 0.2479 - 0.0000947(7 - \log_{10} Re)^4\left[\log\left(\frac{\epsilon}{3.615D} + \frac{7.366}{Re^{0.9142}}\right)\right]^2
\]

Parameters

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Range is $10^4 \leq \text{Re} \leq 10^7; \, 10^{-5} \leq \text{eD} \leq 10^{-3}$

References

[1], [2]

Examples

```python
>>> Papaevangelo_2010(1E5, 1E-4)
0.015685600818488177
```

**fluids.friction.Brkic_2011_1** (*Re*, *eD*)

Calculates Darcy friction factor using the method in Brkic (2011) [2] as shown in [1].

\[
f_d = [-2 \log(10^{-0.4343\beta} + \frac{\epsilon}{3.71D})]^{-2}
\]

\[
\beta = \ln \left(\frac{Re}{1.816 \ln \left(\frac{1.1Re}{\ln(1+1.1Re)}\right)}\right)
\]

Parameters

- **Re** [float] Reynolds number, [-]
**fluids documentation, release 0.1.86**

**eD** [float] Relative roughness, [-]

**Returns**

**fd** [float] Darcy friction factor [-]

**Notes**

No range of validity specified for this equation.

**References**

[1], [2]

**Examples**

```python
>>> Brkic_2011_1(1E5, 1E-4)
0.01812455874141297
```

`fluids.friction.Brkic_2011_2(Re, eD)`

Calculates Darcy friction factor using the method in Brkic (2011) [2] as shown in [1].

\[
fd = \left( -2 \log\left( \frac{2.18\beta}{Re} + \frac{\epsilon}{3.71D} \right) \right)^{-2}
\]

\[
\beta = \ln \frac{Re}{1.816 \ln \left( \frac{1.1Re}{\ln(1+1.1Re)} \right)}
\]

**Parameters**

- **Re** [float] Reynolds number, [-]
- **eD** [float] Relative roughness, [-]

**Returns**

- **fd** [float] Darcy friction factor [-]

**Notes**

No range of validity specified for this equation.

**References**

[1], [2]

**Examples**

```python
>>> Brkic_2011_2(1E5, 1E-4)
0.018619745410688716
```
fluids.friction.Fang_2011(Re, eD)
Calculates Darcy friction factor using the method in Fang (2011) [2] as shown in [1].

\[ f_D = 1.613 \left\{ \ln \left[ 0.234 \frac{e}{D}^{1.1007} - \frac{60.525}{Re^{1.1105}} + \frac{56.291}{Re^{1.0712}} \right] \right\}^{-2} \]

**Parameters**
- Re [float] Reynolds number, [-]
- eD [float] Relative roughness, [-]

**Returns**
- fd [float] Darcy friction factor [-]

**Notes**
Range is 3E3 <= Re <= 1E8; 0 <= eD <= 5E-2

**References**
[1], [2]

**Examples**
```python
>>> Fang_2011(1E5, 1E-4)
0.018481390682985432
```

fluids.friction.Blasius(Re)
Calculates Darcy friction factor according to the Blasius formulation, originally presented in [1] and described more recently in [2].

\[ f_d = \frac{0.3164}{Re^{0.25}} \]

**Parameters**
- Re [float] Reynolds number, [-]

**Returns**
- fd [float] Darcy friction factor [-]

**Notes**
Developed for 3000 < Re < 200000.

**References**
[1], [2]

**Examples**
>> Blasius(10000)
0.03164

**fluids.friction.von_Karman**(eD)
Calculates Darcy friction factor for rough pipes at infinite Reynolds number from the von Karman equation (as given in [1] and [2]):

\[
\frac{1}{\sqrt{f_d}} = -2 \log_{10} \left( \frac{\epsilon/D}{3.7} \right)
\]

**Parameters**
- **eD** [float] Relative roughness, [-]

**Returns**
- **fd** [float] Darcy friction factor [-]

**Notes**
This case does not actually occur; Reynolds number is always finite. It is normally applied as a “limiting” value when a pipe’s roughness is so high it has a friction factor curve effectively independent of Reynolds number.

**References**
[1], [2]

**Examples**

```python
>>> von_Karman(1E-4)
0.01197365149564789
```

**fluids.friction.Prandtl_von_Karman_Nikuradse**(Re)
Calculates Darcy friction factor for smooth pipes as a function of Reynolds number from the Prandtl-von Karman Nikuradse equation as given in [1] and [2]:

\[
\frac{1}{\sqrt{f}} = -2 \log_{10} \left( \frac{2.51}{Re\sqrt{f}} \right)
\]

**Parameters**
- **Re** [float] Reynolds number, [-]

**Returns**
- **fd** [float] Darcy friction factor [-]

**Notes**
This equation is often stated as follows; the correct constant is not 0.8, but \(2\log_{10}(2.51)\) or approximately 0.7993474:

\[
\frac{1}{\sqrt{f}} \approx 2 \log_{10}(Re\sqrt{f}) - 0.8
\]
This function is calculable for all Reynolds numbers between 1E151 and 1E-151. It is solved with the LambertW function from SciPy. The solution is:

\[
f_d = \frac{1}{4} \log_2^{\frac{2}{10}} \left( \text{lambertW} \left( \log(10) \cdot \frac{Re}{2.5} \right) \right)^2
\]

References

[1], [2]

Examples

```python
>>> Prandtl_von_Karman_Nikuradse(1E7)
0.008102669430874914
```

`fluids.friction.ft_Crane(D)`

Calculates the Crane fully turbulent Darcy friction factor for flow in commercial pipe, as used in the Crane formulas for loss coefficients in various fittings. Note that this is not generally applicable to loss due to friction in pipes, as it does not take into account the roughness of various pipe materials. But for fittings in any type of pipe, this is the friction factor to use in the Crane [1] method to get their loss coefficients.

**Parameters**

- `D` [float] Pipe inner diameter, [m]

**Returns**

- `fd` [float] Darcy Crane friction factor for fully turbulent flow, [-]

**Notes**

There is confusion and uncertainty regarding the friction factor table given in Crane TP 410M [1]. This function does not help: it implements a new way to obtain Crane friction factors, so that it can better be based in theory and give more precision (not accuracy) and trend better with diameters not tabulated in [1].

The data in [1] was digitized, and nominal pipe diameters were converted to actual pipe diameters. An objective function was sought which would produce the exact same values as in [1] when rounded to the same decimal place. One was found fairly easily by using the standard Colebrook friction factor formula, and using the diameter-dependent roughness values calculated with the `roughness_Farshad` method for bare Carbon steel. A diameter-dependent Reynolds number was required to match the values; the \( \rho V/\mu \) term is set to 7.5E6.

The formula given in [1] is:

\[
f_T = \frac{0.25}{\left[ \log_{10} \left( \frac{V}{\sqrt{D}} \right) \right]^2}
\]

However, this function does not match the rounded values in [1] well and it is not very clear which roughness to use. Using both the value for new commercial steel (.05 mm) or a diameter-dependent value (`roughness_Farshad`), values were found to be too high and too low respectively. That function is based in theory - the limit of the Colebrook equation when Re goes to infinity - but in the end real pipe flow is not infinity, and so a large error occurs from that use.

The following plot shows all these options, and that the method implemented here matches perfectly the rounded values in [1].
Comparison of implementation options

- Crane data
- Cubic spline
- Crane formula
- Crane formula (rounded)
- Colebrook
- Colebrook (rounded)
References

[1]

Examples

```python
>>> ft_Crane(.1)
0.01628845962146481
```

Explicitly spelling out the function (note the exact same answer is not returned; it is accurate to 5-8 decimals however, for increased speed):

```python
>>> Di = 0.1
>>> Colebrook(7.5E6*Di, eD=roughness_Farshad(ID='Carbon steel, bare', D=Di)/Di)
0.01628842543122547
```

**flclsdfriction.helical_laminar_fd_White** (*Re, Di, Dc*)

Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under laminar conditions, using the method of White [1] as shown in [2].

\[
f_{\text{curved}} = f_{\text{straight, laminar}} \left[ 1 - \left( \frac{11.6}{De} \right)^{0.45} \right]^{-1}
\]

**Parameters**

- **Re** [float] Reynolds number with \(D=Di\), [-]
- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

**Returns**

- **fd** [float] Darcy friction factor for a curved pipe [-]

**Notes**

The range of validity of this equation is \(11.6 < De < 2000\), \(3.878 \times 10^{-4} < D_i/D_c < 0.066\).

The form of the equation means it yields nonsense results for \(De < 11.6\); at \(De < 11.6\), the equation is modified to return the straight pipe value.

This model is recommended in [3], with a slight modification for Dean numbers larger than 2000.

**References**

[1], [2], [3]

**Examples**

```python
>>> helical_laminar_fd_White(250, .02, .1)
0.4063281817830202
```
fluids.friction.helical_laminar_fd_Mori_Nakayama (Re, Di, Dc)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under laminar conditions, using the method of Mori and Nakayama [1] as shown in [2] and [3].

$$f_{\text{curved}} = f_{\text{straight,laminar}} \left( \frac{0.108 \sqrt{D_e}}{1 - 3.253 D_e^{-0.5}} \right)$$

Parameters

- Re [float] Reynolds number with \(D=Di\), [-]
- Di [float] Inner diameter of the coil, [m]
- Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- fd [float] Darcy friction factor for a curved pipe [-]

Notes

The range of validity of this equation is \(100 < D_e < 2000\).
The form of the equation means it yields nonsense results for \(D_e < 42.328\); under that, the equation is modified to return the value at \(D_e=42.328\), which is a multiplier of 1.405296 on the straight pipe friction factor.

References

[1], [2], [3]

Examples

```python
>>> helical_laminar_fd_Mori_Nakayama(250, .02, .1)
0.42224582857795434
```

fluids.friction.helical_laminar_fd_Schmidt (Re, Di, Dc)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under laminar conditions, using the method of Schmidt [1] as shown in [2] and [3].

$$f_{\text{curved}} = f_{\text{straight,laminar}} \left[ 1 + 0.14 \left( \frac{D_i}{D_c} \right)^{0.97} \left( \frac{D_i}{D_c} \right)^{0.312} Re \right]$$

Parameters

- Re [float] Reynolds number with \(D=Di\), [-]
- Di [float] Inner diameter of the coil, [m]
- Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- fd [float] Darcy friction factor for a curved pipe [-]
Notes

The range of validity of this equation is specified only for \( Re, 100 < Re < Re_{critical} \).
The form of the equation is such that as the curvature becomes negligible, straight tube result is obtained.

References

[1], [2], [3]

Examples

```python
>>> helical_laminar_fd_Schmidt(250, .02, .1)
0.47460725672835236
```

```
fluids.friction.helical_turbulent_fd_Schmidt (Re, Di, Dc, roughness=0)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent
conditions, using the method of Schmidt [1], also shown in [2].
For \(Re_{crit} < Re < 2.2 \times 10^4 \):

\[
f_{curv} = f_{str,turb} \left[1 + \frac{2.88 \times 10^4}{Re} \left(\frac{D_i}{D_c} \right)^{0.62} \right]
\]

For \(2.2 \times 10^4 < Re < 1.5 \times 10^5 \):

\[
f_{curv} = f_{str,turb} \left[1 + 0.0823 \left(1 + \frac{D_i}{D_c} \right) \left(\frac{D_i}{D_c} \right)^{0.53} Re^{0.25} \right]
\]

Parameters

- \(Re \) [float] Reynolds number with \(D=D_i \), [-]
- \(Di \) [float] Inner diameter of the coil, [m]
- \(Dc \) [float] Diameter of the helix/coil measured from the center of the tube on one side to the
 center of the tube on the other side, [m]
- \(roughness \) [float, optional] Roughness of pipe wall [m]

Returns

- \(fd \) [float] Darcy friction factor for a curved pipe [-]

Notes

Valid from the transition to turbulent flow up to \(Re = 1.5 \times 10^5 \). At very low curvatures, converges on the
straight pipe result.

References

[1], [2]
fluids.friction.helical_turbulent_fd_Mori_Nakayama \((Re, Di, Dc)\)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Mori and Nakayama [1], also shown in [2] and [3].

\[
 f_{\text{curv}} = 0.3 \left(\frac{D_i}{D_c} \right)^{0.5} \left[Re \left(\frac{D_i}{D_c} \right)^2 \right]^{-0.2} \left[1 + 0.112 \left(Re \left(\frac{D_i}{D_c} \right)^2 \right)^{-0.2} \right]
\]

Parameters
- \(Re\) [float] Reynolds number with \(D=Di\), [-]
- \(Di\) [float] Inner diameter of the coil, [m]
- \(Dc\) [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns
- \(fd\) [float] Darcy friction factor for a curved pipe [-]

Notes
Valid from the transition to turbulent flow up to \(Re = 6.5 \times 10^5 \sqrt{D_i/D_c}\). Does not use a straight pipe correlation, and so will not converge on the straight pipe result at very low curvature.

References
[1], [2], [3]

Examples

```python
>>> helical_turbulent_fd_Mori_Nakayama(1E4, 0.01, .2)
0.037311802071379796
```

fluids.friction.helical_turbulent_fd_Prasad \((Re, Di, Dc, \text{roughness}=0)\)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Prasad [1], also shown in [2].

\[
 f_{\text{curv}} = f_{\text{str.turb}} \left[1 + 0.18 \left(\frac{D_i}{D_c} \right)^2 \right]^{0.25}
\]

Parameters
- \(Re\) [float] Reynolds number with \(D=Di\), [-]
- \(Di\) [float] Inner diameter of the coil, [m]
- \(Dc\) [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
Fluids Documentation, Release 0.1.86

roughness [float, optional] Roughness of pipe wall [m]

Returns

fd [float] Darcy friction factor for a curved pipe [-]

Notes

No range of validity was specified, but the experiments used were with coil/tube diameter ratios of 17.24 and 34.9, hot water in the tube, and $1780 < Re < 59500$. At very low curvatures, converges on the straight pipe result.

References

[1], [2]

Examples

```python
>>> helical_turbulent_fd_Prasad(1E4, 0.01, .2)
0.043313098093994626
```

fluids.friction.helical_turbulent_fd_Czop(Re, Di, Dc)

Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Czop [1], also shown in [2].

$$f_{curv} = 0.096De^{-0.1517}$$

Parameters

* Re [float] Reynolds number with $D=Di$, [-]
* Di [float] Inner diameter of the coil, [m]
* Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

fd [float] Darcy friction factor for a curved pipe [-]

Notes

Valid for $2 \times 10^4 < Re < 1.5 \times 10^5$. Does not use a straight pipe correlation, and so will not converge on the straight pipe result at very low curvature.

References

[1], [2]
Examples

>>> helical_turbulent_fd_Czop(1E4, 0.01, .2)
0.02979575250574106

fluids.friction.helical_turbulent_fd_Guo(Re, Di, Dc)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Guo [1], also shown in [2].

\[f_{\text{curve}} = 0.638Re^{-0.15} \left(\frac{D_i}{D_c} \right)^{0.51} \]

Parameters

- **Re** [float] Reynolds number with \(D=Di \), [-]
- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- **fd** [float] Darcy friction factor for a curved pipe [-]

Notes

Valid for \(2 \times 10^4 < Re < 1.5 \times 10^5 \). Does not use a straight pipe correlation, and so will not converge on the straight pipe result at very low curvature.

References

[1], [2]

Examples

>>> helical_turbulent_fd_Guo(2E5, 0.01, .2)
0.022189161013253147

fluids.friction.helical_turbulent_fd_Ju(Re, Di, Dc, roughness=0.0)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Ju et al. [1], also shown in [2].

\[f_{\text{curve}} = f_{\text{str,turb}} \left[1 + 0.11Re^{0.23} \left(\frac{D_i}{D_c} \right)^{0.14} \right] \]

Parameters

- **Re** [float] Reynolds number with \(D=Di \), [-]
- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
- **roughness** [float, optional] Roughness of pipe wall [m]
Returns

fd [float] Darcy friction factor for a curved pipe [-]

Notes

Claimed to be valid for all turbulent conditions with $De > 11.6$. At very low curvatures, converges on the straight pipe result.

References

[1], [2]

Examples

```python
>>> helical_turbulent_fd_Ju(1E4, 0.01, .2)
0.04945959480770937
```

Returns

fd [float] Darcy friction factor for a curved pipe [-]

Notes

Valid for $0.01 < Di/Dc < 0.15$, with no Reynolds number criteria given in [2] or [3].

[2] recommends this method, using the transition criteria of Srinivasan as well. [3] recommends using either this method or the Ito method. This method did not make it into the popular review articles on curved flow.

References

[1], [2], [3]

Examples
fluids.friction.helical_turbulent_fd_Mandal_Nigam\(\textit{(Re, Di, Dc, roughness=0)}\)
Calculates Darcy friction factor for a fluid flowing inside a curved pipe such as a helical coil under turbulent conditions, using the method of Mandal and Nigam [1], also shown in [2].

\[
f_{\text{curv}} = f_{\text{str,turb}}[1 + 0.03De^{0.27}]
\]

Parameters
- **Re** [float] Reynolds number with \(D=Di\), [-]
- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]
- **roughness** [float, optional] Roughness of pipe wall [m]

Returns
- **fd** [float] Darcy friction factor for a curved pipe [-]

Notes
Claimed to be valid for all turbulent conditions with \(2500 < De < 15000\). At very low curvatures, converges on the straight pipe result.

References
[1],[2]

Examples

```python
>>> helical_turbulent_fd_Mandal_Nigam(1E4, 0.01, .2)
0.03831658117115902
```

fluids.friction.helical_transition_Re_Seth_Stahel\(\textit{(Di, Dc)}\)
Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1].

\[
Re_{\text{crit}} = 1900 \left[1 + 8 \sqrt{\frac{Di}{Dc}}\right]
\]

Parameters
- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns
- **Re_crit** [float] Transition Reynolds number between laminar and turbulent [-]
Notes

At very low curvatures, converges to Re = 1900.

References

[1]

Examples

```python
>>> helical_transition_Re_Seth_Stahel(1, 7.)
7645.059897402535
```

`fluids.friction.helical_transition_Re_Seth_Stahel(Di, Dc)`

Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1], as shown in [2] and in [3].

\[Re_{crit} = 20000 \left(\frac{D_i}{D_c} \right)^{0.32} \]

Parameters

- `Di` [float] Inner diameter of the coil, [m]
- `Dc` [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- `Re_crit` [float] Transition Reynolds number between laminar and turbulent [-]

Notes

At very low curvatures, converges to Re = 0. Recommended for 0.00116 < \(d_i/D_c < 0.067 \)

References

[1], [2], [3]

Examples

```python
>>> helical_transition_Re_Ito(1, 7.)
10729.97284697186
```

`fluids.friction.helical_transition_Re_Ito(Di, Dc)`

Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1], as shown in [2].

\[Re_{crit} = 12730 \left(\frac{D_i}{D_c} \right)^{0.2} \]

Parameters

- `Di` [float] Inner diameter of the coil, [m]

References

[1], [2], [3]
Dc [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

Re_crit [float] Transition Reynolds number between laminar and turbulent [-]

Notes

At very low curvatures, converges to Re = 0. Recommended for $0.0005 < d_i/D_c < 0.103$.

References

[1], [2]

Examples

```python
>>> helical_transition_Re_Kubair_Kuloor(1, 7.)
8625.986927588123
```

fluids.friction.helical_transition_Re_Kutateladze_Borishanskii(D_i, D_c)

Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1], also shown in [2].

$$Re_{crit} = 2300 + 1.05 \times 10^4 \left(\frac{D_i}{D_c}\right)^{0.3}$$

Parameters

- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- **Re_crit** [float] Transition Reynolds number between laminar and turbulent [-]

Notes

At very low curvatures, converges to Re = 2300. Recommended for $0.0417 < d_i/D_c < 0.1667$.

References

[1], [2]

Examples

```python
>>> helical_transition_Re_Kutateladze_Borishanskii(1, 7.)
7121.143774574058
```
fluids.friction.helical_transition_Re_Schmidt \((Di, Dc)\)

Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1], also shown in [2] and [3]. Correlation recommended in [3].

\[
Re_{crit} = 2300 \left[1 + 8.6 \left(\frac{D_i}{D_c} \right)^{0.45} \right]
\]

Parameters

- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- **Re_crit** [float] Transition Reynolds number between laminar and turbulent [-]

Notes

At very low curvatures, converges to Re = 2300. Recommended for \(d_i/D_c < 0.14\)

References

[1], [2], [3]

Examples

```python
>>> helical_transition_Re_Schmidt(1, 7.)
10540.094061770815
```

fluids.friction.helical_transition_Re_Srinivasan \((Di, Dc)\)

Calculates the transition Reynolds number for flow inside a curved or helical coil between laminar and turbulent flow, using the method of [1], also shown in [2] and [3]. Correlation recommended in [3].

\[
Re_{crit} = 2100 \left[1 + 12 \left(\frac{D_i}{D_c} \right)^{0.5} \right]
\]

Parameters

- **Di** [float] Inner diameter of the coil, [m]
- **Dc** [float] Diameter of the helix/coil measured from the center of the tube on one side to the center of the tube on the other side, [m]

Returns

- **Re_crit** [float] Transition Reynolds number between laminar and turbulent [-]

Notes

At very low curvatures, converges to Re = 2100. Recommended for \(0.004 < d_i/D_c < 0.1\).
References

[1], [2], [3]

Examples

```python
>>> helical_transition_Re_Srinivasan(1, 7.)
11624.704719832524
```

```
fluids.friction.LAMINAR_TRANSITION_PIPE = 2040.0
```


```
fluids.friction.friction_plate_Martin_1999(Re, plate_enlargement_factor)
```

Calculates Darcy friction factor for single-phase flow in a Chevron-style plate heat exchanger according to [1].

\[
\frac{1}{f_f} = \frac{\cos \phi}{\sqrt{0.045 \tan \phi + 0.09 \sin \phi + f_0/\cos(\phi)}} + \frac{1 - \cos \phi}{\sqrt{3.8f_1}}
\]

\[
f_0 = 16/Re \text{ for } Re < 2000
\]

\[
f_0 = (1.56 \ln Re - 3)^{-2} \text{ for } Re \geq 2000
\]

\[
f_1 = \frac{149}{Re} + 0.9625 \text{ for } Re < 2000
\]

\[
f_1 = \frac{9.75}{Re^{0.289}} \text{ for } Re \geq 2000
\]

Parameters

- **Re** [float] Reynolds number with respect to the hydraulic diameter of the channels, [-]
- **plate_enlargement_factor** [float] The extra surface area multiplier as compared to a flat plate caused the corrugations, [-]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Based on experimental data from Re from 200 - 10000 and enhancement factors calculated with chevron angles of 0 to 80 degrees. See PlateExchanger for further clarification on the definitions.

The length the friction factor gets multiplied by is not the flow path length, but rather the straight path length from port to port as if there were no chevrons.

Note there is a discontinuity at Re = 2000 for the transition from laminar to turbulent flow, although the literature suggests the transition is actually smooth.

This was first developed in [2] and only minor modifications by the original author were made before its republication in [1]. This formula is also suggested in [3].

References

[1], [2], [3]
Examples

```python
>>> friction_plate_Martin_1999(Re=20000, plate_enlargement_factor=1.15)
2.284018089834135
```

friction_plate_Martin_VDI (Re, plate_enlargement_factor)

Calculates Darcy friction factor for single-phase flow in a Chevron-style plate heat exchanger according to [1].

\[
\frac{1}{\sqrt{f_d}} = \frac{\cos \phi}{\sqrt{0.28 \tan \phi + 0.36 \sin \phi + f_0/\cos(\phi)}} + \frac{1 - \cos \phi}{\sqrt{3.8f_1}}
\]

\[
f_0 = 64/Re \text{ for } Re < 2000
\]

\[
f_0 = (1.56 \ln Re - 3)^{-2} \text{ for } Re \geq 2000
\]

\[
f_1 = \frac{597}{Re} + 3.85 \text{ for } Re < 2000
\]

\[
f_1 = \frac{39}{Re^{0.289}} \text{ for } Re \geq 2000
\]

Parameters

- **Re** [float] Reynolds number with respect to the hydraulic diameter of the channels, [-]
- **plate_enlargement_factor** [float] The extra surface area multiplier as compared to a flat plate caused the corrugations, [-]

Returns

- **fd** [float] Darcy friction factor [-]

See also:

friction_plate_Martin_1999

Notes

Based on experimental data from Re from 200 - 10000 and enhancement factors calculated with chevron angles of 0 to 80 degrees. See *PlateExchanger* for further clarification on the definitions.

The length the friction factor gets multiplied by is not the flow path length, but rather the straight path length from port to port as if there were no chevrons.

Note there is a discontinuity at Re = 2000 for the transition from laminar to turbulent flow, although the literature suggests the transition is actually smooth.

This is a revision of the Martin’s earlier model, adjusted to predict higher friction factors.

There are three parameters in this model, a, b and c; it is possible to adjust them to better fit a know exchanger’s pressure drop.

References

[1]
Fluids Documentation, Release 0.1.86

```python
>>> friction_plate_Martin_VDI(Re=20000, plate_enlargement_factor=1.15)
2.702534119024076
```

fluids.friction.friction_plate_Kumar (*Re*, *chevron_angle*)

Calculates Darcy friction factor for single-phase flow in a well-designed Chevron-style plate heat exchanger according to [1]. The data is believed to have been developed by APV International Limited, since acquired by SPX Corporation. This uses a curve fit of that data published in [2].

\[
f_f = \frac{C_2}{\text{Re}^p}
\]

C2 and p are coefficients looked up in a table, with varying ranges of Re validity and chevron angle validity. See the source for their exact values.

Parameters

- **Re** [float] Reynolds number with respect to the hydraulic diameter of the channels, [-]
- **chevron_angle** [float] Angle of the plate corrugations with respect to the vertical axis (the direction of flow if the plates were straight), between 0 and 90. Many plate exchangers use two alternating patterns; use their average angle for that situation [degrees]

Returns

- **fd** [float] Darcy friction factor [-]

Notes

Data on graph from Re=0.1 to Re=10000, with chevron angles 30 to 65 degrees. See PlateExchanger for further clarification on the definitions.

It is believed the constants used in this correlation were curve-fit to the actual graph in [1] by the author of [2] as there is no

The length the friction factor gets multiplied by is not the flow path length, but rather the straight path length from port to port as if there were no chevrons.

As the coefficients change, there are numerous small discontinuities, although the data on the graphs is continuous with sharp transitions of the slope.

The author of [1] states clearly this correlation is “applicable only to well designed Chevron PHEs”.

References

[1], [2]

Examples

```python
>>> friction_plate_Kumar(Re=2000, chevron_angle=30)
2.9760669055634517
```

```python
>>> friction_plate_Muley_Manglik(Re, chevron_angle, plate_enlargement_factor)
```

Calculates Darcy friction factor for single-phase flow in a Chevron-style plate heat exchanger according to [1], also shown and recommended in [2].

\[
f_f = \left[2.917 - 0.1277\beta + 2.016 \times 10^{-3}\beta^2\right] \times \left[20.78 - 19.02\phi + 18.93\phi^2 - 5.341\phi^3\right] \times \text{Re}^{-[0.2 + 0.0577\sin((\pi\beta/45)+2.1)]}
\]
Parameters

Re [float] Reynolds number with respect to the hydraulic diameter of the channels, [-]

chevron_angle [float] Angle of the plate corrugations with respect to the vertical axis (the direction of flow if the plates were straight), between 0 and 90. Many plate exchangers use two alternating patterns; use their average angle for that situation [degrees]

plate_enlargement_factor [float] The extra surface area multiplier as compared to a flat plate caused the corrugations, [-]

Returns

fd [float] Darcy friction factor [-]

Notes

Based on experimental data of plate enacement factors up to 1.5, and valid for Re > 1000 and chevron angles from 30 to 60 degrees with sinusoidal shape. See PlateExchanger for further clarification on the definitions.

The length the friction factor gets multiplied by is not the flow path length, but rather the straight path length from port to port as if there were no chevrons.

This is a continuous model with no discontinuities.

References

[1], [2]

Examples

```python
>>> friction_plate_Muley_Manglik(Re=2000, chevron_angle=45, plate_enlargement_factor=1.2)
1.0880870804075413
```

2.10 Tank and helical coil sizing (fluids.geometry)

```python
class fluids.geometry.TANK(D=None, L=None, horizontal=True, sideA=None, sideB=None, sideA_a=None, sideB_a=None, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None, sideA_a_ratio=None, sideB_a_ratio=None, L_over_D=None, V=None)
```

Bases: object

Class representing tank volumes and levels. All parameters are also attributes.

Parameters

D [float] Diameter of the cylindrical section of the tank, [m]

L [float] Length of the main cylindrical section of the tank, [m]

horizontal [bool, optional] Whether or not the tank is a horizontal or vertical tank

sideB [string, optional] The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’, ‘same’].
sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]
sideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]
sideA_f [float, optional] Dimensionless dish-radius parameter for side A; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]
sideA_k [float, optional] Dimensionless knuckle-radius parameter for side A; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]
sideB_f [float, optional] Dimensionless dish-radius parameter for side B; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]
sideB_k [float, optional] Dimensionless knuckle-radius parameter for side B; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]
sideA_a_ratio [float, optional] Ratio for a parameter; can be used instead of specifying an absolute value, [-]
sideB_a_ratio [float, optional] Ratio for a parameter; can be used instead of specifying an absolute value, [-]
L_over_D [float, optional] Ratio of length over diameter, used only when D and L are both unspecified but V is, [-]
V [float, optional] Volume of the tank; solved for if specified, using sideA_a_ratio/sideB_a_ratio, sideA, sideB, horizontal, and one of L_over_D, L, or D, [m^3]

Notes
For torpsherial tank heads, the following f and k parameters are used in standards. The default is ASME F&D:

<table>
<thead>
<tr>
<th></th>
<th>f</th>
<th>k</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:1 semi-elliptical</td>
<td>0.9</td>
<td>0.17</td>
</tr>
<tr>
<td>ASME F&D</td>
<td>1</td>
<td>0.06</td>
</tr>
<tr>
<td>ASME 80/6</td>
<td>0.8</td>
<td>0.06</td>
</tr>
<tr>
<td>ASME 80/10 F&D</td>
<td>0.8</td>
<td>0.1</td>
</tr>
<tr>
<td>DIN 28011</td>
<td>1</td>
<td>0.1</td>
</tr>
<tr>
<td>DIN 28013</td>
<td>0.8</td>
<td>0.154</td>
</tr>
</tbody>
</table>

For the following cases, numerical integrals are used:
- V_horiz_spherical
- V_horiz_torispherical
- SA_partial_horiz_spherical_head
- SA_partial_horiz_ellipsoidal_head
- SA_partial_horiz_guppy_head
- SA_partial_horiz_torispherical_head

Examples
Total volume of a tank:
Volume of a tank at a given height:

```python
>>> TANK(D=1.2, L=4, horizontal=False).V_total
4.523893421169302
```

Height of liquid for a given volume:

```python
>>> TANK(D=1.2, L=4, horizontal=False).V_from_h(.5)
0.5654866776461628
```

Surface area of a tank with a conical head:

```python
>>> T1 = TANK(V=10, L_over_D=0.7, sideB='conical', sideB_a=0.5)
(24.94775907657148, 5.11855935958284, 5.497246519930003, 14.331956620683192)
```

Solving for tank volumes, first horizontal, then vertical:

```python
>>> TANK(D=10., horizontal=True, sideA='conical', sideB='conical', V=500).L
4.699531057009147
>>> TANK(L=4.69953105701, horizontal=True, sideA='conical', sideB='conical',
    V=500).D
9.999999999999408
>>> TANK(L_over_D=0.469953105701, horizontal=True, sideA='conical', sideB='conical',
    V=500).L
4.699531057009791
```

```python
>>> TANK(D=10., horizontal=False, sideA='conical', sideB='conical', V=500).L
4.699531057009147
>>> TANK(L=4.69953105701, horizontal=False, sideA='conical', sideB='conical',
    V=500).D
9.999999999999407
>>> TANK(L_over_D=0.469953105701, horizontal=False, sideA='conical', sideB='conical',
    V=500).L
4.699531057009791
```

Attributes

- **h_max** [float] Height of the tank, [m]
- **V_total** [float] Total volume of the tank as calculated [m^3]
- **sideA_V** [float] Volume of only sideA [m^3]
- **sideB_V** [float] Volume of only sideB [m^3]
- **lateral_V** [float] Volume of cylindrical section of tank [m^3]
- **A** [float] Total surface area of the tank, [m^2]
- **A_sideA** [float] Surface area of sideA, [m^2]
- **A_sideB** [float] Surface area of sideB, [m^2]
- **A_lateral** [float] Surface area of the lateral side, [m^2]
- **A_sideA_extra** [float] Additional surface area of sideA beyond that of a flat disk, [m^2]
A_sideB_extra [float] Additional surface area of sideB beyond that of a flat disk, \([m^2]\)

table [bool] Whether or not a table of heights-volumes has been generated

heights [ndarray] Array of heights between 0 and h_max, [m]

volumes [ndarray] Array of volumes calculated from the heights, \([m^3]\)

c_forward [ndarray] Coefficients for the Chebyshev approximations in calculating V from h, [-]

c_backward [ndarray] Coefficients for the Chebyshev approximations in calculating h from V, [-]

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>A_cross-sectional ((h, \text{method}))</td>
<td>Method to calculate the cross-sectional liquid surface area from which gas can evolve in a fully defined tank given a specified height (h).</td>
</tr>
<tr>
<td>SA_from_h ((h, \text{method}))</td>
<td>Method to calculate the volume of liquid in a fully defined tank given a specified height (h).</td>
</tr>
<tr>
<td>V_from_h ((h, \text{method}))</td>
<td>Method to calculate the volume of liquid in a fully defined tank given a specified height (h).</td>
</tr>
<tr>
<td>add_thickness ((\text{thickness}, \text{sideA_thickness}, \ldots))</td>
<td>Method to create a new tank instance with the same parameters as itself, except with an added thickness to it.</td>
</tr>
<tr>
<td>from_two_specs ((\text{spec0}, \text{spec1}, \text{spec0_name}, \ldots))</td>
<td>Method to create a new tank instance according to two specifications which are not direct geometry parameters.</td>
</tr>
<tr>
<td>h_from_V ((V, \text{method}))</td>
<td>Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it (V).</td>
</tr>
<tr>
<td>set_chebyshev_approximators ((\text{deg_forward}, \ldots))</td>
<td>Method to derive and set coefficients for chebyshev polynomial function approximation of the height-volume and volume-height relationship.</td>
</tr>
<tr>
<td>set_misc</td>
<td>Set more parameters, after the tank is better defined than in the (_\text{init}) function.</td>
</tr>
<tr>
<td>set_table ((n, dx))</td>
<td>Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank.</td>
</tr>
</tbody>
</table>

A_cross-sectional \((h, \text{method}=\text{`full'})\)

Method to calculate the cross-sectional liquid surface area from which gas can evolve in a fully defined tank given a specified height \(h\). \(h\) must be under the maximum height. This is calculated by numeric differentiation for most cases.

Parameters

- **h** [float] Height specified, [m]
- **method** [str, optional] ‘full’ (calculated rigorously) or ‘chebyshev’, [-]

Returns

- **A_cross** [float] Surface area of liquid in the tank up to the specified height, \([m^2]\)

SA_from_h \((h, \text{method}=\text{`full'})\)

Method to calculate the volume of liquid in a fully defined tank given a specified height \(h\). \(h\) must be under
the maximum height.

Parameters

- **h** [float] Height specified, [m]
- **method** [str, optional] ‘full’ (calculated rigorously); nothing else is implemented

Returns

- **SA** [float] Surface area of liquid in the tank up to the specified height, [m2]

V_from_h (h, **method**='full')

Method to calculate the volume of liquid in a fully defined tank given a specified height h. h must be under the maximum height. If the method is ‘chebyshev’, and the coefficients have not yet been calculated, they are created by calling set_chebyshev_approximators.

Parameters

- **h** [float] Height specified, [m]
- **method** [str] One of ‘full’ (calculated rigorously) or ‘chebyshev’

Returns

- **V** [float] Volume of liquid in the tank up to the specified height, [m3]

add_thickness (**thickness**, **sideA_thickness**=None, **sideB_thickness**=None)

Method to create a new tank instance with the same parameters as itself, except with an added thickness to it. This is useful to obtain ex. the inside of a tank and the outside; their different in volumes is the volume of the shell, and could be used to determine weight.

Parameters

- **thickness** [float] Thickness to add to the tank diameter, [m]
- **sideA_thickness** [float, optional] The thickness to add to the sideA head; if not specified, it will be **thickness**, [m]
- **sideB_thickness** [float, optional] The thickness to add to the sideB head; if not specified, it will be **thickness**, [m]

Returns

- **TANK** [TANK] Tank object, [-]

Notes

Be careful not to specify a negative thickness larger than the heads’ lengths, or the head will become concave! The same applies to adding a thickness to convex heads - they can become convex.

chebyshev = **False**

static from_two_specs (**spec0**, **spec1**, **spec0_name**='V', **spec1_name**='A_cross', **h**=None, **horizontal**=True, **sideA**=None, **sideB**=None, **sideA_a**=None, **sideB_a**=None, **sideA_f**=None, **sideA_k**=None, **sideB_f**=None, **sideB_k**=None, **sideA_a_ratio**=None, **sideB_a_ratio**=None)

Method to create a new tank instance according to two specifications which are not direct geometry parameters.

The allowable options are ‘V’, ‘SA’, ‘V_partial’, ‘SA_partial’, and ‘A_cross’, the later three of which require h to be specified.
spec0 [float] Goal for spec0_name, [-]

spec1 [float] Goal for spec1_name, [-]

h [float] Height at which to calculate the specs, [m]

ehorizontal [bool, optional] Whether or not the tank is a horizontal or vertical tank

sideB [string, optional] The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’, ‘same’].

sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]

sideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]

sideA_f [float, optional] Dimensionless dish-radius parameter for side A; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

sideA_k [float, optional] Dimensionless knuckle-radius parameter for side A; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

sideB_f [float, optional] Dimensionless dish-radius parameter for side B; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

sideB_k [float, optional] Dimensionless knuckle-radius parameter for side B; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

Returns

TANK [TANK] Tank object at solved specifications, [-]

Notes

Limited testing has been done on this method. The bounds are D between 0.1 mm and 10 km, with L_D ratios of 1e-4 to 1e4.

h_from_V(V, method=’spline’)

Method to calculate the height of liquid in a fully defined tank given a specified volume of liquid in it V. V must be under the maximum volume. If the method is ‘spline’, and the interpolation table is not yet defined, creates it by calling the method set_table. If the method is ‘chebyshev’, and the coefficients have not yet been calculated, they are created by calling set_chebyshev_approximators.

Parameters

V [float] Volume of liquid in the tank up to the desired height, [m^3]

method [str] One of ‘spline’, ‘chebyshev’, or ‘brenth’

Returns

h [float] Height of liquid at which the volume is as desired, [m]
set_chebyshev_approximators *(deg_forward=50, deg_backwards=200)*

Method to derive and set coefficients for chebyshev polynomial function approximation of the height-volume and volume-height relationship.

A single set of chebyshev coefficients is used for the entire height-volume and volume-height relationships respectively.

The forward relationship, \(V_{from_h} \), requires far fewer coefficients in its fit than the reverse to obtain the same relative accuracy.

Optionally, \(\text{deg}_\text{forward} \) or \(\text{deg}_\text{backwards} \) can be set to None to try to automatically fit the series to machine precision.

Parameters

- **deg_forward** [int, optional] The degree of the chebyshev polynomial to be created for the \(V_{from_h} \) curve, [-]
- **deg_backwards** [int, optional] The degree of the chebyshev polynomial to be created for the \(h_{from_V} \) curve, [-]

set_misc()

Set more parameters, after the tank is better defined than in the __init__ function.

Notes

Two of D, L, and L_over_D must be known when this function runs. The other one is set from the other two first thing in this function. \(a_\text{ratio} \) parameters are used to calculate a values for the heads here, if applicable. Radius is calculated here. Maximum tank height is calculated here. \(V_{total} \) is calculated here.

set_table(n=100, dx=None)

Method to set an interpolation table of liquids levels versus volumes in the tank, for a fully defined tank. Normally run by the \(h_{from_V} \) method, this may be run prior to its use with a custom specification. Either the number of points on the table, or the vertical distance between steps may be specified.

Parameters

- **n** [float, optional] Number of points in the interpolation table, [-]
- **dx** [float, optional] Vertical distance between steps in the interpolation table, [m]

table = False

class `fluids.geometry.HelicalCoil(Dt, Do=None, pitch=None, H=None, N=None, H_total=None, Do_total=None, Di=None)`

Bases: object

Class representing a helical coiled tube, as are found in many heated tanks and some small nuclear reactors. All parameters are also attributes.

One set of the following parameters is required; inner tube diameter is optional.

- Tube outer diameter, coil outer diameter, pitch, number of coil turns
- Tube outer diameter, coil outer diameter, pitch, height
- Tube outer diameter, coil outer diameter, number of coil turns, height

Parameters

- **Dt** [float] Outer diameter of the tube wound to make up the helical spiral, [m]
Do [float] Diameter of the spiral as measured from the center of the coil on one side to the center of the coil on the other side, [m]

Do_total [float, optional] Diameter of the spiral as measured from one edge of the tube to the other edge; equal to Do + Dt; either Do or Do_total may be specified and the other will be calculated [m]

pitch [float, optional] Height change from one coil to the next as measured from the middles of the tube, [m]

H [float, optional] Height of the spiral, as measured from the middle of the bottom of the tube to the middle of the top of the tube, [m]

H_total [float, optional] Height of the spiral as measured from one edge of the tube to the other edge; equal to H_total + Dt; either may be specified and the other will be calculated [m]

N [float, optional] Number of coil turns; may be specified along with pitch instead of specifying H or H_total, [-]

Di [float, optional] Inner diameter of the tube; if specified, inside and annulus properties will be calculated, [m]

Notes

Do must be larger than Dt.

References

[1]

Examples

```python
>>> C1 = HelicalCoil(Do=30, H=20, pitch=5, Dt=2)
>>> C1.N, C1.tube_length, C1.surface_area
(4.0, 377.5212621504738, 2372.0360474917497)
```

Same coil, with the inputs one would physically measure from the coil, and a specified inlet diameter:

```python
>>> C1 = HelicalCoil(Do_total=32, H_total=22, pitch=5, Dt=2, Di=1.8)
>>> C1.N, C1.tube_length, C1.surface_area
(4.0, 377.5212621504738, 2372.0360474917497)
>>> C1.inner_surface_area, C1.inlet_area, C1.inner_volume, C1.total_volume, C1.
    →annulus_volume
(2134.832442742575, 2.5446900494077327, 960.6745992341587, 1186.0180237458749, 225.3434245117162)
```

Attributes

- **tube_circumference** [float] Circumference of the tube as measured though its center, not inner or outer edges; \(C = \pi D_o \), [m]

- **tube_length** [float] Length of tube used to make the helical coil; \(L = \sqrt{(\pi D_o \cdot N)^2 + H^2} \), [m]

- **surface_area** [float] Surface area of the outer surface of the helical coil; \(A_t = \pi D_t L \), \([m^2]\)
inner_surface_area [float] Surface area of the inner surface of the helical coil; calculated if \(D_i \) is supplied; \(A_{\text{inside}} = \pi D_i L, \text{[m}^2\text{]} \)

inlet_area [float] Area of the inlet to the helical coil; calculated if \(D_i \) is supplied; \(A_{\text{inlet}} = \frac{\pi}{4} D_i^2, \text{[m}^2\text{]} \)

inner_volume [float] Volume of the tube as would be filled by a fluid, useful for weight calculations; calculated if \(D_i \) is supplied; \(V_{\text{inside}} = A_i L, \text{[m}^3\text{]} \)

annulus_area [float] Area of the annulus (wall of the pipe); calculated if \(D_i \) is supplied; \(A_{a} = \frac{\pi}{4}(D^2 - D_i^2), \text{[m}^2\text{]} \)

annulus_volume [float] Volume of the annulus (wall of the pipe); calculated if \(D_i \) is supplied, useful for weight calculations; \(V_a = A_a L, \text{[m}^3\text{]} \)

total_volume [float] Total volume occupied by the pipe and the fluid inside it; \(V = D_i L, \text{[m}^3\text{]} \)

helix_angle [float] Angle between the pitch and coil diameter; used in some calculations; \(\alpha = \arctan \left(\frac{p}{\pi D_o} \right), \text{[radians]} \)

curvature [float] Coil curvature, useful in some calculations; \(\delta = -\frac{D_i}{D_o \left[1 + \frac{4 \pi^2 \tan^2(\alpha)}{s^2} \right]}, [-] \)

class `fluids.geometry.PlateExchanger` *(amplitude, wavelength, chevron_angle=45, chevron_angles=None, width=None, length=None, thickness=None, d_port=None, plates=None)*

Bases: `object`

Class representing a plate heat exchanger with sinusoidal ridges. All parameters are also attributes.

Parameters

- **amplitude** [float] Half the height of the wave of the ridges, [m]
- **wavelength** [float] Distance between the bottoms of two of the ridges (sometimes called pitch), [m]
- **chevron_angle** [float, optional] Angle of the plate corrugations with respect to the vertical axis (the direction of flow if the plates were straight), between 0 and 90, [degrees]
- **chevron_angles** [tuple(2), optional] Many plate exchangers use two alternating patterns; for those cases provide tuple of the two angles for that situation and the argument chevron_angle is ignored, [degrees]
- **width** [float, optional] Width of the plates in the heat exchanger, between the gaskets, [m]
- **length** [float, optional] Length of the heat exchanger as measured from one port to the other, excluding the diameter of the ports themselves (little useful heat transfer happens there), [m]
- **thickness** [float, optional] Thickness of the metal making up the plates, [m]
- **d_port** [float, optional] The diameter of the ports in the plates, [m]
- **plates** [int, optional] The number of plates in the heat exchanger, including the two not used for heat transfer at the beginning and end [-]

Notes

Only wavelength and amplitude are required as inputs to this function.
References

[1]

Examples

```python
>>> PlateExchanger(amplitude=5E-4, wavelength=3.7E-3, length=1.2, width=.3,
... d_port=.05, plates=51)
<Plate heat exchanger, amplitude=0.0005 m, wavelength=0.0037 m, chevron_angles=45/45 degrees, area enhancement factor=1.16119, width=0.3 m, length=1.2 m, port diameter=0.05 m, heat transfer area=20.4833 m^2, 51 plates>
```

Attributes

- **chevron_angles** (tuple(2)) The two specified angles (repeated value if only one specified), [degrees]
- **chevron_angle** (float) The averaged angle of the chevrons, [degrees]
- **inclination_angle** (float) 90 - chevron_angle, used in many publications instead of chevron_angle, [degrees]
- **plate_corrugation_aspect_ratio** (float) The aspect ratio of the corrugations \(\gamma = \frac{4a}{\lambda} \), [-]
- **plate_enlargement_factor** (float) The extra surface area multiplier as compared to a flat plate caused the corrugations, [-]
- **D_eq** (float) Equivalent diameter of the channels, \(D_{eq} = 4a \) [m]
- **D_hydraulic** (float) Hydraulic diameter of the channels, \(D_{hyd} = \frac{4a}{\phi} \) [m]
- **length_port** (float) Port center to port center along the direction of flow, [m]
- **A_plate_surface** (float) The surface area of one plate in the heat exchanger, including the extra due to corrugations (excluding the bit between the ports), \(A_p = L \cdot W \cdot \phi \) [m\(^2\)]
- **A_heat_transfer** (float) The total surface area available for heat transfer in the exchanger, the multiple of A_plate_surface by the number of plates after removing the two on the edges, [m\(^2\)]
- **A_channel_flow** (float) The area for the fluid to flow in one channel, \(W \cdot b \) [m\(^2\)]
- **channels** (int) The number of plates minus one, [-]
- **channels_per_fluid** (int) Half the number of total channels, [-]
- **plate_exchanger_identifier** (str) Method to create an identifying string in format ‘L’ + wavelength + ‘A’ + amplitude + ‘B’ + chevron angle-chevron angle.

plate_exchanger_identifier

Method to create an identifying string in format ‘L’ + wavelength + ‘A’ + amplitude + ‘B’ + chevron angle-chevron angle.

Wavelength and amplitude are specified in units of mm and rounded to two decimal places.

```python
class fluids.geometry.RectangularFinExchanger(fin_height, fin_thickness, fin_spacing, 
length=None, width=None, layers=None, 
plate_thickness=None, flow='crossflow')
```

Bases: object

Class representing a plate-fin heat exchanger with straight rectangular fins. All parameters are also attributes.
Parameters

fin_height [float] The total distance between the two metal plates sandwiching the fins and holding them together (abbreviated h), [m]

fin_thickness [float] The thickness of the material the fins were formed from (abbreviated t), [m]

fin_spacing [float] The unit cell spacing from one fin to the next; the space between the sides of two fins plus one thickness (abbreviated s), [m]

length [float, optional] The total length of the flow passage of the plate-fin exchanger (abbreviated L), [m]

width [float, optional] The total width of the space the fins are in; this is also $N_{fins} \times s$ (abbreviated W), [m]

layers [int, optional] The number of layers in the plate-fin exchanger; note these HX almost always single-pass only, [-]

plate_thickness [float, optional] The thickness of the metal separator between layers, [m]

flow [str, optional] One of ‘counterflow’, ‘crossflow’, or ‘parallelflow’

Notes

The only required parameters are the fin geometry itself; fin_height, fin_thickness, and fin_spacing.

References

[1], [2]

Examples

```python
>>> PFE = RectangularFinExchanger(0.03, 0.001, 0.012)
>>> PFE.Dh
0.01595
```

Attributes

channel_height [float] The height of the channel the fluid flows in channel height = fin height − fin thickness, [m]

channel_width [float] The width of the channel the fluid flows in channel width = fin spacing − fin thickness, [m]

fin_count [int] The number of fins per unit length of the layer, fin count = $\frac{1}{\text{fin spacing}}$, [1/m]

blockage_ratio [float] The fraction of the layer which is blocked to flow by the fins, blockage ratio = $\frac{s \cdot h - s \cdot t - t (h-t)}{s \cdot h}$, [m]

A_channel [float] Flow area of a single channel in a single layer, channel area = $(s - t)(h - t)$, [m]

P_channel [float] Wetted perimeter of a single channel in a single layer, channel perimeter = $2(s - t) + 2(h - t)$, [m]

Dh [float] Hydraulic diameter of a single channel in a single layer, $D_{\text{hydraulic}} = \frac{4A_{\text{channel}}}{P_{\text{channel}}}$, [m]
layer_thickness [float] The thickness of a single layer - the sum of a fin height and a plate thickness, [m]
layer_fin_count [int] The number of fins in a layer; rounded to the nearest whole fin, [-]
A_HX_layer [float] The surface area including fins for heat transfer in one layer of the HX, [m^2]
A_HX [float] The total surface area of the heat exchanger with all layers combined, [m^2]
height [float] The height of all the layers of the heat exchanger combined, plus one extra plate thickness, [m]
volume [float] The product of the height, width, and length of the HX, [m^3]
A_specific_HX [float] The specific surface area of the heat exchanger - square meters per meter cubed, [m^3]

Methods

set_overall_geometry()

class fluids.geometry.RectangularOffsetStripFinExchanger (fin_length, fin_height, fin_thickness, fin_spacing, length=None, width=None, layers=None, plate_thickness=None, flow='crossflow')

Bases: fluids.geometry.RectangularFinExchanger

Methods

set_overall_geometry()

class fluids.geometry.HyperbolicCoolingTower (H_inlet, D_outlet, H_outlet, D_inlet=None, D_base=None, D_throat=None, H_throat=None, H_support=None, D_support=None, n_support=None, inlet_rounding=None)

Bases: object

Class representing the geometry of a hyperbolic cooling tower, as used in many industries especially the power industry. All parameters are also attributes.

H_inlet, D_outlet, and H_outlet are always required. Additionally, one set of the following parameters is required: H_support, D_support, n_support, and inlet_rounding are all optional as well.

- Inlet diameter
- Inlet diameter and throat diameter
- Inlet diameter and throat height
- Inlet diameter, throat diameter, and throat height
- Base diameter, throat diameter, and throat height

If the inlet diameter is provided but the throat diameter and/or the throat height are missing, two heuristics are used to estimate them (to avoid these heuristics simply specify the values):

- Assume the throat elevation is 2/3 the elevation of the tower.
- Assume the throat diameter is 63% the diameter of the inlet.

Parameters

- \(H_{\text{inlet}} \) [float] Height of the inlet zone of the cooling tower (also called rain zone), [m]
- \(D_{\text{outlet}} \) [float] The inside diameter of the cooling tower outlet (top of the tower; the elevation the concrete section ends), [m]
- \(H_{\text{outlet}} \) [float] The height of the cooling tower outlet (top of the tower; the elevation the concrete section ends), [m]
- \(D_{\text{inlet}} \) [float, optional] The inside diameter of the cooling tower inlet at the elevation the concrete section begins, [m]
- \(D_{\text{base}} \) [float, optional] The diameter of the cooling tower at the very base of the tower (the bottom of the inlet zone, at the elevation of the ground), [m]
- \(D_{\text{throat}} \) [float, optional] The diameter of the cooling tower at its minimum section, called its throat; where the two hyperbolas meet, [m]
- \(h_{\text{throat}} \) [float, optional] The elevation of the cooling tower’s throat (its minimum section; where the two hyperbolas meet), [m]
- \(\text{inlet_rounding} \) [float, optional] Radius of an optional rounded protrusion from the lip of the cooling tower shell base, which curves upwards from the lip (used to reduce the dead zone area rather than having a flat lip), [m]
- \(H_{\text{support}} \) [float, optional] The height of each support column, [m]
- \(D_{\text{support}} \) [float, optional] The diameter of each support column, [m]
- \(n_{\text{support}} \) [int, optional] The number of support columns of the cooling tower, [m]

Notes

Note there are two hyperbolas in a hyperbolic cooling tower - one under the throat and one above it; they are not necessarily the same.

A hyperbolic cooling tower is not the absolute optimal design, but is close. The optimality is determined by the amount of material required to build it while maintaining its rigidity. For thermal design purposes, a hyperbolic model covers any minor variation quite well.

References

[1], [2]
Examples

```python
>>> ct = HyperbolicCoolingTower(D_outlet=89.0, H_outlet=200, D_inlet=136.18, H_inlet=14.5)
>>> ct
<Hyperbolic cooling tower, inlet diameter=136.18 m, outlet diameter=89 m, inlet_height=14.5 m, outlet height=200 m, throat diameter=85.7934 m, throat_height=133.333 m, base diameter=146.427 m>
>>> ct.diameter(5)
142.84514486126062
```

Attributes

- **b_lower** [float] The \(b \) parameter in the hyperbolic equation for the lower section of the cooling tower, [m]
- **b_upper** [float] The \(b \) parameter in the hyperbolic equation for the upper section of the cooling tower, [m]

Methods

- **diameter**(H) Calculates cooling tower diameter at a specified height, using the formulas for either hyperbola, depending on the height specified.

\[
D = D_{throat} \sqrt{\frac{H^2 + b^2}{b}}
\]

The value of \(H \) and \(b \) used in the above equation is as follows:
- \(H_{throat} \) - \(H \) and \(b_lower \) if under the throat
- \(H \) - \(H_{throat} \) and \(b_upper \), if above the throat

Parameters

- **H** [float] Height at which to calculate the cooling tower diameter, [m]

Returns

- **D** [float] Diameter of the cooling tower at the specified height, [m]

```python
plot (pts=100)
```
class fluids.geometry.AirCooledExchanger(tube_rows, tube_passes, tubes_per_row, tube_length, tube_diameter, fin_thickness, angle=None, pitch=None, pitch_parallel=None, pitch_normal=None, pitch_ratio=None, fin_diameter=None, fin_height=None, fin_density=None, fin_interval=None, parallel_bays=1, bundles_per_bay=1, fans_per_bay=1, corbels=False, tube_thickness=None, fan_diameter=None)

Bases: object

Class representing the geometry of an air cooled heat exchanger with one or more tube bays, fans, or bundles. All parameters are also attributes.

The minimum information required to describe an air cooler is as follows:

- `tube_rows`
- `tube_passes`
- `tubes_per_row`
- `tube_length`
- `tube_diameter`
- `fin_thickness`

Two of `angle`, `pitch`, `pitch_parallel`, and `pitch_normal` (pitch_ratio may take the place of pitch)

Either `fin_diameter` or `fin_height`. Either `fin_density` or `fin_interval`.

Parameters

- `tube_rows` [int] Number of tube rows per bundle, [-]
- `tube_passes` [int] Number of tube passes (times the fluid travels across one tube length), [-]
- `tubes_per_row` [float] Number of tubes per row per bundle, [-]
- `tube_length` [float] Total length of the tube bundle tubes, [m]
- `tube_diameter` [float] Diameter of the bare tube, [m]
- `fin_thickness` [float] Thickness of the fins, [m]
- `angle` [float, optional] Angle of the tube layout, [degrees]
- `pitch` [float, optional] Shortest distance between tube centers; defined in relation to the flow direction only, [m]
- `pitch_parallel` [float, optional] Distance between tube center along a line parallel to the flow; has been called *longitudinal* pitch, \(pp, s2, SL, \) and \(p2, \) [m]
- `pitch_normal` [float, optional] Distance between tube centers in a line 90° to the line of flow; has been called the *transverse* pitch, \(pn, s1, ST, \) and \(p1, \) [m]
- `pitch_ratio` [float, optional] Ratio of the pitch to bare tube diameter, [–]
- `fin_diameter` [float, optional] Outer diameter of each tube after including the fin on both sides, [m]
- `fin_height` [float, optional] Height above bare tube of the tube fins, [m]
- `fin_density` [float, optional] Number of fins per meter of tube, [1/m]
fin_interval [float, optional] Space between each fin, including the thickness of one fin at its base, [m]

parallel_bays [int, optional] Number of bays in the unit, [-]

bundles_per_bay [int, optional] Number of tube bundles per bay, [-]

fans_per_bay [int, optional] Number of fans per bay, [-]

corbels [bool, optional] Whether or not the air cooler has corbels, which increase the air velocity by adding half a tube to the sides for the case of non-rectangular tube layouts, [-]

tube_thickness [float, optional] Thickness of the bare metal tubes, [m]

fan_diameter [float, optional] Diameter of air cooler fan, [m]

References

[1]

Examples

```python
>>> AC = AirCooledExchanger(tube_rows=4, tube_passes=4, tubes_per_row=56, tube_length=10.9728,
...                     tube_diameter=1*inch, fin_thickness=0.013*inch, fin_density=10/inch,
...                     angle=30, pitch=2.5*inch, fin_height=0.625*inch, tube_thickness=0.00338,
...                     bundles_per_bay=2, parallel_bays=3, corbels=True)
```

Attributes

bare_length [float] Length of bare tube between two fins bare length = fin interval – \(t_{fin} \), [m]

tubes_per_bundle [float] Total number of tubes per bundle \(N_{tubes/bundle} = N_{tubes/row} \cdot N_{rows}, [-] \)

tubes_per_bay [float] Total number of tubes per bay \(N_{tubes/bay} = N_{tubes/bundle} \cdot N_{bundles/bay}, [-] \)

tubes [float] Total number of tubes in all bundles in all bays combined \(N_{tubes} = N_{tubes/bay} \cdot N_{bays}, [-] \)

pitch_diagonal [float] Distance between tube centers in a diagonal line between one normal tube and one parallel tube; \(s_D = \left[s_L^2 + \left(\frac{2\pi}{2} \right)^2 \right]^{0.5}, [m] \)

A_bare_tube_per_tube [float] Area of the bare tube including the portion hidden by the fin per tube \(A_{bare,total/tube} = \pi D_{tube} L_{tube}, [m^2] \)

A_bare_tube_per_row [float] Area of the bare tube including the portion hidden by the fin per tube row \(A_{bare,total/row} = \pi D_{tube} L_{tube} N_{tubes/row}, [m^2] \)

A_bare_tube_per_bundle [float] Area of the bare tube including the portion hidden by the fin per bundle \(A_{bare,total/bundle} = \pi D_{tube} L_{tube} N_{tubes/bundle}, [m^2] \)

A_bare_tube_per_bay [float] Area of the bare tube including the portion hidden by the fin per bay \(A_{bare,total/bay} = \pi D_{tube} L_{tube} N_{tubes/bay}, [m^2] \)

A_bare_tube [float] Area of the bare tube including the portion hidden by the fin per in all bundles and bays combined \(A_{bare,total} = \pi D_{tube} L_{tube} N_{tubes}, [m^2] \)

274 Chapter 2. API Reference
A_tube_showing_per_tube [float] Area of the bare tube which is exposed per tube
\[A_{bare,\,showing/tube} = \pi D_{tube} L_{tube} \left(1 - \frac{t_{fin}}{t_{fin\,interval}}\right), [m^2] \]

A_tube_showing_per_row [float] Area of the bare tube which is exposed per tube row, [m^2]

A_tube_showing_per_bundle [float] Area of the bare tube which is exposed per bundle, [m^2]

A_tube_showing_per_bay [float] Area of the bare tube which is exposed per bay, [m^2]

A_tube_showing [float] Area of the bare tube which is exposed in all bundles and bays combined, [m^2]

A_per_fin [float] Surface area per fin
\[A_{fin} = 2 \frac{\pi}{4} (D_{fin}^2 - D_{tube}^2) + \pi D_{fin} t_{fin}, [m^2] \]

A_fin_per_tube [float] Surface area of all fins per tube
\[A_{fin/tube} = N_{fins/m} L_{tube} A_{fin}, [m^2] \]

A_fin_per_row [float] Surface area of all fins per row, [m^2]

A_fin_per_bundle [float] Surface area of all fins per bundle, [m^2]

A_fin_per_bay [float] Surface area of all fins per bay, [m^2]

A_all_fin [float] Surface area of all fins in all bundles and bays combined, [m^2]

A_per_tube [float] Surface area of combined finned and non-finned area exposed for heat transfer per tube
\[A_{tube} = A_{bare,\,showing/tube} + A_{fin/tube}, [m^2] \]

A_per_row [float] Surface area of combined finned and non-finned area exposed for heat transfer per tube row, [m^2]

A_per_bundle [float] Surface area of combined finned and non-finned area exposed for heat transfer per tube bundle, [m^2]

A_per_bay [float] Surface area of combined finned and non-finned area exposed for heat transfer per bay, [m^2]

A [float] Surface area of combined finned and non-finned area exposed for heat transfer in all bundles and bays combined, [m^2]

A_increase [float] Ratio of actual surface area to bare tube surface area
\[A_{increase} = \frac{A_{tube}}{A_{bare,tube}}, [-] \]

A_tube_flow [float] The area for the fluid to flow in one tube, \(\pi/4 \cdot D_i^2 \), [m^2]

channels [int] The number of tubes the fluid flows through at the inlet header, [-]

tube_volume_per_tube [float] Fluid volume per tube inside
\[V_{tube,\,flow} = \frac{\pi}{4} D_i^2 L_{tube}, [m^3] \]

tube_volume_per_row [float] Fluid volume of tubes per row, [m^3]

tube_volume_per_bundle [float] Fluid volume of tubes per bundle, [m^3]

tube_volume [float] Fluid volume of tubes per bay, [m^3]

tube_volume [float] Fluid volume of tubes in all bundles and bays combined, [m^3]

A_diagonal_per_bundle [float] Air flow area along the diagonal plane per bundle
\[A_d = 2 N_{tubes/\,row} L_{tube} (P_d - D_{tube} - 2 N_{fins/m} h_{fin} t_{fin}) + A_{extra,\,side}, [m^2] \]

A_normal_per_bundle [float] Air flow area along the normal (transverse) plane; this is normally the minimum flow area, except for some staggered configurations
\[A_t = N_{tubes/\,row} L_{tube} (P_t - D_{tube} - 2 N_{fins/m} h_{fin} t_{fin}) + A_{extra,\,side}, [m^2] \]

A_min_per_bundle [float] Minimum air flow area per bundle; this is the characteristic area for velocity calculation in most finned tube convection correlations
\[A_{min} = min(A_d, A_t), [m^2] \]

2.10. Tank and helical coil sizing (fluids.geometry) 275
A_min_per_bay [float] Minimum air flow area per bay, [m^2]
A_min [float] Minimum air flow area, [m^2]
A_face_per_bundle [float] Face area per bundle \(A_{face} = P_T(1 + N_{tubes/row})L_{tube} \); if corbels are used, add 0.5 to tubes/row instead of 1, [m^2]
A_face_per_bay [float] Face area per bay, [m^2]
A_face [float] Total face area, [m^2]
flow_area_contraction_ratio [float] Ratio of A_min to A_face, [-]

fluids.geometry.SA_partial_sphere(D, h)
Calculates surface area of a partial sphere according to [1]. If h is half of D, the shape is half a sphere. No bottom is considered in this function. Valid inputs are positive values of D and h, with h always smaller or equal to D.

\[
\begin{align*}
a &= \sqrt{h(2r - h)} \\
A &= \pi(a^2 + h^2)
\end{align*}
\]

Parameters

D [float] Diameter of the sphere, [m]
h [float] Height, as measured from the cap to where the sphere is cut off [m]

Returns

SA [float] Surface area [m^2]

References

[1]

Examples

```python
>>> SA_partial_sphere(1., 0.7)
2.199114857512855
```

fluids.geometry.V_partial_sphere(D, h)
Calculates volume of a partial sphere according to [1]. If h is half of D, the shape is half a sphere. No bottom is considered in this function. Valid inputs are positive values of D and h, with h always smaller or equal to D.

\[
\begin{align*}
a &= \sqrt{h(2r - h)} \\
V &= \frac{1}{6}\pi h(3a^2 + h^2)
\end{align*}
\]

Parameters

D [float] Diameter of the sphere, [m]
h [float] Height, as measured up to where the sphere is cut off, [m]

Returns

V [float] Volume [m^3]
fluids.geometry.V_horiz_conical(D, L, a, h, headonly=False)

Calculates volume of a tank with conical ends, according to [1].

\[
V_f = A_f L + \frac{2aR^2}{3} K, \quad 0 \leq h < R
\]

\[
V_f = A_f L + \frac{2aR^2}{3} \frac{\pi}{2}, \quad h = R
\]

\[
V_f = A_f L + \frac{2aR^2}{3} (\pi - K), \quad R < h \leq 2R
\]

\[
K = \cos^{-1} M + M^3 \cosh^{-1} \frac{1}{M} - 2M \sqrt{1 - M^2}
\]

\[
M = \left| \frac{R - h}{R} \right|
\]

\[
A_f = R^2 \cos^{-1} \frac{R - h}{R} - (R - h) \sqrt{2Rh - h^2}
\]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **L** [float] Length of the main cylindrical section, [m]
- **a** [float] Distance the cone head extends on one side, [m]
- **h** [float] Height, as measured up to where the fluid ends, [m]
- **headonly** [bool, optional] Function returns only the volume of a single head side if True

Returns

- **V** [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_horiz_conical(D=108., L=156., a=42., h=36)/231
2041.1923581273443
```

2.10. Tank and helical coil sizing (fluids.geometry)
fluids.geometry.V_horiz_ellipsoidal(D, L, a, h, headonly=False)

Calculates volume of a tank with ellipsoidal ends, according to [1].

\[V_f = A_f L + \pi ah^2 \left(1 - \frac{h}{3R} \right) \]

\[A_f = R^2 \cos^{-1} \left(\frac{R - h}{R} \right) - (R - h)\sqrt{2Rh - h^2} \]

Parameters

- D [float] Diameter of the main cylindrical section, [m]
- L [float] Length of the main cylindrical section, [m]
- a [float] Distance the ellipsoidal head extends on one side, [m]
- h [float] Height, as measured up to where the fluid ends, [m]
- headonly [bool, optional] Function returns only the volume of a single head side if True

Returns

- V [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_horiz_ellipsoidal(D=108, L=156, a=42, h=36)/231.
2380.9565415578145
```

fluids.geometry.V_horiz_guppy(D, L, a, h, headonly=False)

Calculates volume of a tank with guppy heads, according to [1].

\[V_f = A_f L + \frac{2a}{3} R^2 \cos^{-1} \left(1 - \frac{h}{R} \right) + \frac{2a}{9R} \sqrt{2Rh - h^2(2h - 3R)(h + R)} \]

\[A_f = R^2 \cos^{-1} \left(\frac{R - h}{R} \right) - (R - h)\sqrt{2Rh - h^2} \]

Parameters

- D [float] Diameter of the main cylindrical section, [m]
- L [float] Length of the main cylindrical section, [m]
- a [float] Distance the guppy head extends on one side, [m]
- h [float] Height, as measured up to where the fluid ends, [m]
- headonly [bool, optional] Function returns only the volume of a single head side if True

Returns

- V [float] Volume [m^3]
References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_horiz_guppy(D=108., L=156., a=42., h=36)/231.
1931.7208029476762
```

```
fluids.geometry.V_horiz_spherical(D, L, a, h, headonly=False)
Calculates volume of a tank with spherical heads, according to [1].

\[
V_f = A_f L + \frac{\pi a}{6} (3R^2 + a^2), \quad h = R, |a| \leq R
\]

\[
V_f = A_f L + \frac{\pi a}{3} (3R^2 + a^2), \quad h = D, |a| \leq R
\]

\[
V_f = A_f L + \pi ah^2 \left(1 - \frac{h}{3R}\right), \quad h = 0, \text{ or } |a| = 0, R, -R
\]

\[
V_f = A_f L + \frac{a}{|a|} \left\{ \frac{2r^3}{3} \left[ \frac{\cos^{-1} \left(\frac{R^2 - rw}{R(w - r)}\right)}{R(w - r)} + \frac{\cos^{-1} \left(\frac{R^2 + rw}{R(w + r)}\right)}{R(w + r)} - \frac{z}{r} \left(2 + \frac{\left(\frac{R}{r}\right)^2}{3}\right) \cos^{-1} \frac{w}{R} \right] - \frac{2}{3} \left(\frac{wR^2 - w^3}{3}\right) \tan^{-1} \frac{y}{z} + \frac{4w^2}{3} \right\}, \quad h \neq R, D; a \neq 0, R, -R, |a| < 0.01D
\]

\[
Af = R^2 \cos^{-1} \frac{R - h}{R} - (R - h)\sqrt{2Rh - h^2}
\]

\[
r = \frac{a^2 + R^2}{2|a|}
\]

\[
w = R - h
\]

\[
y = \sqrt{2Rh - h^2}
\]

\[
z = \sqrt{r^2 - R^2}
\]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **L** [float] Length of the main cylindrical section, [m]
- **a** [float] Distance the spherical head extends on one side, [m]
- **h** [float] Height, as measured up to where the fluid ends, [m]
- **headonly** [bool, optional] Function returns only the volume of a single head side if True

Returns

- **V** [float] Volume [m^3]

References

[1]
Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_horiz_spherical(D=108., L=156., a=42., h=36)/231.
2303.9615116986183
```

```
fluids.geometry.V_horiz_torispherical(D, L, f, k, h, headonly=False)
Calculates volume of a tank with torispherical heads, according to [1].

\[
V_f = A_f L + 2V_1, \quad 0 \leq h \leq h_1 \\
V_f = A_f L + 2(V_{1,max} + V_2 + V_3), \quad h_1 < h < h_2 \\
V_f = A_f L + 2[V_{1,max} - V_1(h = D - h) + V_{2,max} + V_{3,max}], \quad h_2 \leq h \leq D
\]

\[
V_1 = \int_0^{\sqrt{2kDh - h^2}} \left[n^2 \sin^{-1} \frac{\sqrt{n^2 - w^2}}{n} - w\sqrt{n^2 - w^2}\right] dw \\
V_2 = \int_0^{kD \cos \alpha} n^2 \left[\cos^{-1} \frac{w}{n} - \cos^{-1} \frac{g}{n}\right] - w\sqrt{n^2 - w^2} + g\sqrt{n^2 - g^2} \right] dx \\
V_3 = \int_w^g \left(r^2 - x^2\right) \tan^{-1} \frac{\sqrt{g^2 - x^2}}{z} dx - \frac{z}{2} \left(g^2 \cos^{-1} \frac{w}{g} - w\sqrt{2g(h - h_1) - (h - h_1)^2}\right)
\]

\[
V_{1,max} = v_1(h = h_1) \\
v_{2,max} = v_2(h = h_2) \\
v_{3,max} = \frac{\pi a_1}{6} (3g^2 + a_1^2) \\
a_1 = fD(1 - \cos \alpha) \\
\alpha = \sin^{-1} \frac{1 - 2k}{2(f - k)} \\
n = R - kD + \sqrt{k^2D^2 - x^2} \\
g = r \sin \alpha \\
r = fD \\
h_2 = D - h_1 \\
w = R - h \\
z = \sqrt{r^2 - g^2}
\]

Parameters

D [float] Diameter of the main cylindrical section, [m]
L [float] Length of the main cylindrical section, [m]
f [float] Dimensionless dish-radius parameter; also commonly given as the product of f and D (fD), which is called both dish radius and also crown radius and has units of length, [-]
k [float] Dimensionless knuckle-radius parameter; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]
h [float] Height, as measured up to where the fluid ends, [m]
headonly [bool, optional] Function returns only the volume of a single head side if True

Returns

V [float] Volume [m^3]
References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_horiz_torispherical(D=108., L=156., f=1., k=0.06, h=36)/231.
2028.626670842139
```

```
fluids.geometry.V_vertical_conical(D, a, h)
Calculates volume of a vertical tank with a convex conical bottom, according to [1]. No provision for the top of
the tank is made here.

\[ V_f = \frac{\pi D^2}{4} \left( h - \frac{2a}{3} \right), \quad h \geq a \]

Parameters

- \( D \) [float] Diameter of the main cylindrical section, [m]
- \( a \) [float] Distance the cone head extends under the main cylinder, [m]
- \( h \) [float] Height, as measured up to where the fluid ends, [m]

Returns

- \( V \) [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_conical(132., 33., 24)/231.
250.67461381371024
```

```
fluids.geometry.V_vertical_ellipsoidal(D, a, h)
Calculates volume of a vertical tank with a convex ellipsoidal bottom, according to [1]. No provision for the top
of the tank is made here.

\[V_f = \frac{\pi D^2}{4} \left(h - \frac{a}{3} \right), \quad h \geq a \]

Parameters

- \(D \) [float] Diameter of the main cylindrical section, [m]
Fluids Documentation, Release 0.1.86

a [float] Distance the ellipsoid head extends under the main cylinder, [m]
h [float] Height, as measured up to where the fluid ends, [m]

Returns
V [float] Volume [m^3]

References
[1]

Examples
Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_ellipsoidal(132., 33., 24)/231.
783.3581681678445
```

```
fluids.geometry.V_vertical_spherical(D, a, h)
Calculates volume of a vertical tank with a convex spherical bottom, according to [1]. No provision for the top of the tank is made here.

\[ V_f = \frac{\pi h^2}{4} \left(2a + \frac{D^2}{2a} - \frac{4h}{3}\right), \quad h < a \]

\[ V_f = \frac{\pi}{4} \left(\frac{2a^3}{3} - \frac{aD^2}{2} + hD^2\right), \quad h \geq a \]

Parameters
D [float] Diameter of the main cylindrical section, [m]
a [float] Distance the spherical head extends under the main cylinder, [m]
h [float] Height, as measured up to where the fluid ends, [m]

Returns
V [float] Volume [m^3]

References
[1]

Examples
Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_spherical(132., 33., 24)/231.
583.6018352850442
```

```
fluids.geometry.V_vertical_torispherical(D, f, k, h)
Calculates volume of a vertical tank with a convex torispherical bottom, according to [1]. No provision for the top of the tank is made here.

\[V_f = \frac{\pi h^2}{4} \left(2a_1 + \frac{D_1^2}{2a_1} - \frac{4h}{3}\right), \quad 0 \leq h \leq a_1 \]
\[V_f = \frac{\pi}{4} \left(\frac{2a_1^3}{3} + \frac{a_1 D^2}{2} \right) + \pi u \left[\left(\frac{D}{2} - kD \right)^2 + s \right] + \frac{\pi tu^2}{2} - \frac{\pi u^3}{3} + \pi D(1-2k) \left[\frac{2u-t}{4} \sqrt{s+tu-u^2} + \frac{t\sqrt{s}}{4} + \frac{k^2 D^2}{2} \right] \]

\[V_f = \frac{\pi}{4} \left(\frac{2a_1^3}{3} + \frac{a_1 D^2}{2} \right) + \frac{\pi t^3}{12} + \pi D(1-2k) \left[\frac{t\sqrt{s}}{4} + \frac{k^2 D^2}{2} \sin^{-1}(\cos \alpha) \right] + \frac{\pi D^2}{4} [h - (a_1 + a_2)] \]

\[\alpha = \sin^{-1} \left(\frac{1 - 2k}{2(f - k)} \right) \]

\[a_1 = fD(1 - \cos \alpha) \]

\[a_2 = kD \cos \alpha \]

\[D_1 = 2fD \sin \alpha \]

\[s = (kD \sin \alpha)^2 \]

\[t = 2a_2 \]

\[u = h - fD(1 - \cos \alpha) \]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **f** [float] Dimensionless dish-radius parameter; also commonly given as the product of \(f \) and \(D \) (\(fD \)), which is called dish radius and has units of length, [-]
- **k** [float] Dimensionless knuckle-radius parameter; also commonly given as the product of \(k \) and \(D \) (\(kD \)), which is called the knuckle radius and has units of length, [-]
- **h** [float] Height, as measured up to where the fluid ends, [m]

Returns

- **V** [float] Volume \([\text{m}^3]\)

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_torispherical(D=132., f=1.0, k=0.06, h=24)/231.
904.0688283793
```

fluids.geometry.V_vertical_conical_concave \((D, a, h)\)

Calculates volume of a vertical tank with a concave conical bottom, according to [1]. No provision for the top of the tank is made here.

\[V = \frac{\pi D^2}{12} \left(3h + a - \frac{(a + h)^3}{a^2} \right), \ 0 \leq h < |a| \]

\[V = \frac{\pi D^2}{12} (3h + a), \ h \geq |a| \]

Parameters

2.10. Tank and helical coil sizing (fluids.geometry) 283
D [float] Diameter of the main cylindrical section, [m]
a [float] Negative distance the cone head extends inside the main cylinder, [m]
h [float] Height, as measured up to where the fluid ends, [m]

Returns

V [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_conical_concave(D=113., a=-33, h=15)/231
251.15825565795188
```

Calculates volume of a vertical tank with a concave ellipsoidal bottom, according to [1]. No provision for the top of the tank is made here.

\[
V = \frac{\pi D^2}{12} \left(3h + 2a - \frac{(a + h)(2a - h)}{a^2}\right), \quad 0 \leq h < |a|
\]

\[
V = \frac{\pi D^2}{12}(3h + 2a), \quad h \geq |a|
\]

Parameters

D [float] Diameter of the main cylindrical section, [m]
a [float] Negative distance the ellipsoid head extends inside the main cylinder, [m]
h [float] Height, as measured up to where the fluid ends, [m]

Returns

V [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_ellipsoidal_concave(D=113., a=-33, h=15)/231
44.84968851034856
```
fluids.geometry.V_vertical_spherical_concave(D, a, h)
Calculates volume of a vertical tank with a concave spherical bottom, according to [1]. No provision for the top of the tank is made here.

\[
V = \frac{\pi}{12} \left[3D^2h + \frac{a}{2}(3D^2 + 4a^2) + (a + h)^3 \left(4 - \frac{3D^2 + 12a^2}{2a(a + h)} \right) \right], \quad 0 \leq h < |a|
\]

\[
V = \frac{\pi}{12} \left[3D^2h + \frac{a}{2}(3D^2 + 4a^2) \right], \quad h \geq |a|
\]

Parameters

- D [float] Diameter of the main cylindrical section, [m]
- a [float] Negative distance the spherical head extends inside the main cylinder, [m]
- h [float] Height, as measured up to where the fluid ends, [m]

Returns

- V [float] Volume [m^3]

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_spherical_concave(D=113., a=-33, h=15)/231
112.81405437348528
```

fluids.geometry.V_vertical_torispherical_concave(D, f, k, h)
Calculates volume of a vertical tank with a concave torispherical bottom, according to [1]. No provision for the top of the tank is made here.

\[
V = \frac{\pi D^2h}{4} - v_1(h = a_1 + a_2) - v_1(h = a_1 + a_2 - h), \quad 0 \leq h < a_2
\]

\[
V = \frac{\pi D^2h}{4} - v_1(h = a_1 + a_2) + v_2(h = a_1 + a_2 - h), \quad a_2 \leq h < a_1 + a_2
\]

\[
V = \frac{\pi D^2h}{4} - v_1(h = a_1 + a_2) + 0, \quad h \geq a_1 + a_2
\]

\[
v_1 = \frac{\pi}{4} \left(\frac{2a_1^3}{3} + \frac{a_1 D_1^2}{2} \right) + \pi u \left[\left(\frac{D}{2} - kD \right)^2 + s \right] + \frac{\pi u^2}{2} - \frac{\pi u^3}{3} + \pi D(1 - 2k) \left[\frac{2u - t}{4} \sqrt{s + tu - u^2} + \frac{t\sqrt{s}}{4} + \frac{k^2 D^2}{2} \right] (c)
\]

\[
v_2 = \frac{\pi h^2}{4} \left(2a_1 + \frac{D_1^2}{2a_1} - \frac{4h}{3} \right)
\]

\[
\alpha = \sin^{-1} \frac{1 - 2k}{2(f - k)}
\]

\[
a_1 = f D(1 - \cos \alpha)
\]

\[
a_2 = k D \cos \alpha
\]

\[
D_1 = 2 f D \sin \alpha
\]
\[s = (kD \sin \alpha)^2 \]
\[t = 2a_2 \]
\[u = h - fD(1 - \cos \alpha) \]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **f** [float] Dimensionless dish-radius parameter; also commonly given as the product of \(f \) and \(D \) \((fD)\), which is called dish radius and has units of length, [-]
- **k** [float] Dimensionless knuckle-radius parameter; also commonly given as the product of \(k \) and \(D \) \((kD)\), which is called the knuckle radius and has units of length, [-]
- **h** [float] Height, as measured up to where the fluid ends, [m]

Returns

- **V** [float] Volume \([\text{m}^3]\)

References

[1]

Examples

Matching example from [1], with inputs in inches and volume in gallons.

```python
>>> V_vertical_torispherical_concave(D=113., f=0.71, k=0.081, h=15)/231
103.88569287163769
```

```python
fluids.geometry.a_torispherical(D, f, k)
```

Calculates depth of a torispherical head according to [1].

\[a = a_1 + a_2 \]
\[\alpha = \sin^{-1} \frac{1 - 2k}{2(f - k)} \]
\[a_1 = fD(1 - \cos \alpha) \]
\[a_2 = kD \cos \alpha \]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **f** [float] Dimensionless dish-radius parameter; also commonly given as the product of \(f \) and \(D \) \((fD)\), which is called dish radius and has units of length, [-]
- **k** [float] Dimensionless knuckle-radius parameter; also commonly given as the product of \(k \) and \(D \) \((kD)\), which is called the knuckle radius and has units of length, [-]

Returns

- **a** [float] Depth of head [m]
fluids.geometry SA_ellipsoidal_head(D, a)
Calculates the surface area of an ellipsoidal head according to [1] and [2]. The formula below is for the full shape, the result of which is halved. The formula is for \(a < R \). In the equations, \(a \) is the same and \(c \) is \(D \).

\[
SA = 2\pi a^2 + \frac{\pi c^2}{e_1} \ln \left(\frac{1 + e_1}{1 - e_1} \right)
\]

\[
e_1 = \sqrt{1 - \frac{c^2}{a^2}}
\]

For the case of \(a \geq R \) from [2], which is needed to make the tank head volume grow linearly with length:

\[
SA = 2\pi R^2 + \frac{2\pi a^2 R}{\sqrt{a^2 - R^2}} \cos^{-1} \frac{R}{|a|}
\]

Parameters

- \(D \) [float] Diameter of the main cylindrical section, [m]
- \(a \) [float] Distance the ellipsoidal head extends, [m]

Returns

- \(SA \) [float] Surface area [m^2]

References

[1], [2]

Examples

Spherical case

```python
>>> SA_ellipsoidal_head(2, 1)
6.283185307179586
```
Diameter of the main cylindrical section, [m]

a [float] Distance the conical head extends, [m]

Returns

SA [float] Surface area [m^2]

References

[1]

Examples

```python
>>> SA_conical_head(2, 1)
4.442882938158366
```

```
fluids.geometry.SA_guppy_head(D, a)
Calculates the surface area of a guppy head according to [1]. Some work was involved in combining formulas
for the ellipse of the head, and the conic section on the sides.

\[ SA = \frac{\pi D}{4} \sqrt{D^2 + a^2} + \frac{\pi D}{2} a \]

Parameters

D [float] Diameter of the main cylindrical section, [m]
a [float] Distance the conical head extends, [m]

Returns

SA [float] Surface area [m^2]

References

[1]

Examples

```python
>>> SA_guppy_head(2, 1)
6.654000019110157
```

```
fluids.geometry.SA_torispheroidal(D, f, k)
Calculates surface area of a torispherical head according to [1]. Somewhat involved. Equations are adapted to
be used for a full head.

\[SA = S_1 + S_2 \]

\[S_1 = 2\pi D^2 f_d \alpha \]

\[S_2 = 2\pi D^2 f_k \left(\alpha - \alpha_1 + (0.5 - f_k) \left(\sin^{-1} \left(\frac{\alpha - \alpha_2}{f_k} \right) - \sin^{-1} \left(\frac{\alpha_1 - \alpha_2}{f_k} \right) \right) \right) \]

\[\alpha_1 = f_d \left(1 - \sqrt{1 - \left(\frac{0.5 - f_k}{f_d - f_k} \right)^2} \right) \]

288 Chapter 2. API Reference
\[\alpha_2 = f_d - \sqrt{f_d^2 - 2f_df_k} + f_k - 0.25 \]

\[\alpha = \frac{a}{D_i} \]

Parameters

D [float] Diameter of the main cylindrical section, [m]

f [float] Dimensionless dish-radius parameter; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

k [float] Dimensionless knuckle-radius parameter; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

Returns

SA [float] Surface area [m^2]

References

[1]

Examples

Example from [1].

```python
>>> SA_torispheroidal(D=2.54, f=1.039370079, k=0.062362205)
6.00394283477063
```

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

References

[1]
Examples

```python
>>> SA_partial_cylindrical_body(L=200.0, D=96., h=22.0)
19168.852890279868
```

```python
fluids.geometry.A_partial_circle(D, h)
```

Calculates the partial area of a circle, in the context of the circle being an end cap to a horizontal cylindrical vessel and liquid partially filling it. This computes the wetted surface area of one of the end caps.

Multiply this by two to obtain the wetted area of two end caps.

\[
SA = R^2 \cos^{-1} \left(\frac{R-h}{R} \right) - (R-h) \sqrt{(2Rh - h^2)}
\]

Parameters

- **D** [float] Diameter of the circle, [m]
- **h** [float] Height measured from bottom of circle to liquid level, [m]

Returns

- **SA_partial** [float] Partial (wetted) surface area, [m^2]

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

References

[1]

Examples

```python
>>> A_partial_circle(D=96., h=22.0)
1251.2018147383194
```

```python
fluids.geometry.SA_partial_horiz_conical_head(D, a, h)
```

Calculates the partial area of a conical tank head in the context of a horizontal vessel and liquid partially filling it. This computes the wetted surface area of one of the conical heads only.

\[
SA = \sqrt{(a^2 + R^2)} \left[R^2 \cos^{-1} \left(\frac{(R-h)}{R} \right) - (R-h) \sqrt{(2Rh - h^2)} \right]
\]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **a** [float] Distance the cone head extends on one side, [m]
- **h** [float] Height, as measured up to where the fluid ends, [m]

Returns

- **SA_partial** [float] Partial (wetted) surface area of one conical tank head, [m^2]
Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

References

[1]

Examples

```python
>>> SA_partial_horiz_conical_head(D=72., a=48.0, h=24.0)
1980.0498315169873
```

`fluids.geometry.SA_partial_horiz_spherical_head(D, a, h)`

Calculates the partial area of a spherical tank head in the context of a horizontal vessel and liquid partially filling it. This computes the wetted surface area of one of the spherical heads only.

\[
SA = \frac{a^2 + R^2}{|a|} \int_{R-h}^{R} \sin^{-1} \left(\frac{2|a|\sqrt{R^2 - x^2}}{\sqrt{(a^2 + R^2)^2 - (2ax)^2}} \right) dx
\]

For the special case of \(|a| = R\),

\[
SA = \pi Rh
\]

Parameters

- `D` [float] Diameter of the main cylindrical section, [m]
- `a` [float] Distance the spherical head extends on one side, [m]
- `h` [float] Height, as measured up to where the fluid ends, [m]

Returns

- `SA_partial` [float] Partial (wetted) surface area of one spherical tank head, [m^2]

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

A symbolic attempt did not suggest any analytical integrals were available.

References

[1]

Examples

```python
>>> SAPartialHorizSphericalHead(D=72., a=48.0, h=24.0).
2027.267209167
```
fluids.geometry.SA_partial_horiz_guppy_head(D, a, h)
Calculates the partial area of a guppy tank head in the context of a horizontal vessel and liquid partially filling it. This computes the wetted surface area of one of the guppy heads only.

\[
SA = 2 \int_{-R}^{h-R} \int_{-R}^{R} \sqrt{R^2-x^2} \sqrt{1 + \left(\frac{a}{2R} \left(1 - \frac{y^2}{(R-x)^2} \right) \right)^2 + \left(\frac{ay}{R(R-x)} \right)^2} \, dy \, dx
\]

After extensive manipulation, the first integral was solved analytically, extending the result of [1]. Even with the special functions, this form has somewhat greater performance (and improved precision).

\[
SA = 2 \int_{-R}^{h-R} \frac{2a \left(4 + a^2 \frac{(2R^2-2Ry)^2}{R^2(y^2-a^2)} \right)^{\frac{1}{2}} \sqrt{R^2-y^2} + \left(4 + a^2 \frac{(2R^2-2Ry)^2}{R^2(y^2-a^2)} \right) \sqrt{R^2-y^2} - 2\sqrt{\frac{4R^2(R-y)^2+a^2(2R^2-2Ry)^2}{(R^2+y^2-a^2)\sqrt{4R^2+a^2(2R^2-2Ry)^2}}}}}{2a \left(\frac{R^2+y^2}{(R-y)^2\sqrt{4R^2+a^2}} \right) + \frac{a(R^2-y^2)}{R^2(y^2-a^2)}x^2 + y^2 - R^2} \, dy
\]

Where ellipeinc is the incomplete elliptic integral of the second kind, and ellipkinc is the incomplete elliptic integral of the first kind, both calculated with SciPy’s link to the cephes library.

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **a** [float] Distance the guppy head extends on one side, [m]
- **h** [float] Height, as measured up to where the fluid ends, [m]

Returns

- **SA_partial** [float] Partial (wetted) surface area of one guppy tank head, [m^2]

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

The analytical integral was derived with Rubi.

References

[1]

Examples

```python
>>> SA_partial_horiz_guppy_head(D=72., a=48.0, h=24.0)
1467.894780036994
```

fluids.geometry.SA_partial_horiz_ellipsoidal_head(D, a, h)
Calculates the partial area of an ellipsoidal tank head in the context of a horizontal vessel and liquid partially filling it. This computes the wetted surface area of one of the ellipsoidal heads only.

\[
SA = \frac{2}{R} \int_{R-h}^{R} \int_{0}^{\sqrt{R^2-x^2}} \sqrt{\frac{(R^2-a^2)x^2 + (R^2-a^2)y^2 - R^4}{x^2 + y^2 - R^2}} \, dy \, dx
\]
After extensive manipulation, the first integral was solved analytically, extending the result of [1] with greater performance.

\[
SA = \frac{2}{R} \int_{R-h}^{R} \left(\frac{R^4 - R^2 (R^2 - a^2)}{R^2 - y^2} \right)^{0.5} \left(R^2 - y^2 \right)^{0.5} E \left(\frac{-R^2 + y^2}{-R^2 + y^2 (R^2 - a^2)} \right) \left(\frac{R^4 - R^2 (R^2 - a^2)}{R^2 - y^2 (R^2 - a^2)} \right)^{0.5} \]

Where \(E(x) \) is the complete elliptic integral of the second kind, calculated with SciPy’s link to the cephes library.

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **a** [float] Distance the ellipsoidal head extends on one side, [m]
- **h** [float] Height, as measured up to where the fluid ends, [m]

Returns

- **SA_partial** [float] Partial (wetted) surface area of one ellipsoidal tank head, \([m^2]\)

Notes

This method is undefined for \(h > D\) and \(h < 0\), but those cases are handled by returning the full surface area and the zero respectively.

The original numerical double integral is extremely nasty - there are places where \(f(x) \to \infty\) but that have a bounded area. quadpack’s numerical integration handles this well, but adaptive integration which is not aware of singularities does not.

References

[1]

Examples

```python
>>> SA_partial_horiz_ellipsoidal_head(D=72., a=48.0, h=24.0)
3401.2336225472704
```

fluids.geometry.SA_partial_horiz_torispherical_head(\(D, f, k, h\))

Calculates the partial area of a torispherical tank head in the context of a horizontal vessel and liquid partially filling it. This computes the wetted surface area of one of the torispherical heads only.

The expressions used are quite complicated; see [1] for more details.

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **f** [float] Dimensionless dish-radius parameter; also commonly given as the product of \(f\) and \(D\) \((fD)\), which is called dish radius and has units of length, [-]
- **k** [float] Dimensionless knuckle-radius parameter; also commonly given as the product of \(k\) and \(D\) \((kD)\), which is called the knuckle radius and has units of length, [-]
- **h** [float] Height, as measured up to where the fluid ends, [m]
Returns

SA_partial [float] Partial (wetted) surface area of one torispherical tank head, [m²]

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

One integral:

\[
\int_{R-h}^{fD \sin \alpha} \cos^{-1} \frac{fD \cos \alpha}{\sqrt{f^2D^2 - x^2}} dx
\]

Can be computed as follows, using WolframAlpha.

\[
x \cos \left(\frac{c}{\sqrt{b - x^2}} \right) + \frac{\sqrt{b} \sqrt{(-b - x^2)^2 (-b + c^2 + x^2)} \tan \left(\frac{cx}{\sqrt{b^2 - c^2 - x^2}} \right) + c \sqrt{(-b + c^2 + x^2)^2 (-b + x^2)} \tan \left(\frac{-b + c^2 + x^2}{\sqrt{-b + c^2 + x^2}} \right) \sqrt{b - c^2 - x^2}}{\sqrt{-b + c^2 + x^2}} \right)
\]

With the following constants:

\[
c = fD \cos \alpha
\]

\[
b = f^2D^2
\]

The other integral is a double integral. There is an analytical integral available for the first integral, which takes the form:

\[
2 \left[\frac{R^2k^2 \left(4R^2k^2 - y^2 \right) + (-2Rk + R)^2 + 2 (-2Rk + R) \sqrt{4R^2k^2 - y^2} \right)}{\sqrt{(R - h)^2 - (4Rk + 2R) \sqrt{4R^2k^2 - y^2}}} \sqrt{(R - h)^2 - (4Rk + 2R) \sqrt{4R^2k^2 - y^2}} \right)
\]

References

[1]

Examples

```python
>>> SA_partial_horiz_torispherical_head(D=72., f=1, k=.06, h=24.0)
1471.201832459
```

Calculates the partial area of a conical tank head in the context of a vertical vessel and liquid partially filling it. This computes the wetted surface area of one of the conical heads only, and is valid for \(h \) up to \(a \) only.

\[
SA = \frac{\pi Rh^2 \sqrt{a^2 + R^2}}{a^2}
\]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **a** [float] Distance the cone head extends beneath the vertical tank, [m]
h [float] Height, as measured up to where the fluid ends or the top of the conical head, whichever is less, [m]

Returns

SA_partial [float] Partial (wetted) surface area of one conical tank head extending beneath the vessel, [m²]

Notes

This method is undefined for $h < 0$, but this is handled by returning zero.

References

[1]

Examples

```python
>>> SA_partial_vertical_conical_head(D=72., a=48.0, h=24.0)
1696.4600329384882
```

```
fluids.geometry.SA_partial_vertical_conical_head(D=72., a=48.0, h=24.0)
```

Calculates the partial area of a spherical tank head in the context of a vertical vessel and liquid partially filling it. This computes the wetted surface area of one of the conical heads only, and is valid for h up to a only.

\[
SA = \pi h \left(\frac{a^2 + R^2}{a} \right)
\]

Parameters

- D [float] Diameter of the main cylindrical section, [m]
- a [float] Distance the spherical head extends beneath the vertical tank, [m]
- h [float] Height, as measured up to where the fluid ends or the top of the spherical head, whichever is less, [m]

Returns

SA_partial [float] Partial (wetted) surface area of one spherical tank head extending beneath the vessel, [m²]

Notes

This method is undefined for $h < 0$, but this is handled by returning zero.

References

[1]

Examples
fluids.geometry.SA_partial_vertical_torispherical_head(D, f, k, h)
Calculates the partial area of a torispherical tank head in the context of a vertical vessel and liquid partially filling it. This computes the wetted surface area of one of the torispherical heads only.

if \(a_1 \leq h \):

\[
SA = 2\pi f Dh
\]

if \(a_1 \leq h \leq a \):

\[
SA = 2\pi f Da_1 + 2\pi kD \left(h - a_1 + (R - kD) \left(\sin^{-1} \frac{a_2}{kD} - \sin^{-1} \frac{a - h}{kD} \right) \right)
\]

\[
\alpha = \sin^{-1} \frac{1 - 2k}{2(f - k)}
\]

\[
a_1 = fD(1 - \cos \alpha)
\]

\[
a_2 = kD \cos \alpha
\]

Parameters

- **D** [float] Diameter of the main cylindrical section, [m]
- **f** [float] Dimensionless dish-radius parameter; also commonly given as the product of \(f \) and \(D \) (\(fD \)), which is called dish radius and has units of length, [-]
- **k** [float] Dimensionless knuckle-radius parameter; also commonly given as the product of \(k \) and \(D \) (\(kD \)), which is called the knuckle radius and has units of length, [-]
- **h** [float] Height, as measured up to where the fluid ends or the top of the torispherical head, whichever is less, [m]

Returns

- **SA_partial** [float] Partial (wetted) surface area of one torispherical tank head, [m^2]

Notes

This method is undefined for \(h > D \) and \(h < 0 \), but those cases are handled by returning the full surface area and the zero respectively.

References

[1]

Examples

This method is undefined for \(h < 0 \), but this is handled by returning zero.
If $a > R$:

$$SA = \pi R^2 - \frac{\pi(a-h)R\sqrt{a^4 - (a-h)^2(a^2-R^2)}}{a^2} + \frac{\pi a^2 R}{\sqrt{a^2 - R^2}} \left(\cos^{-1} \frac{R}{a} - \sin^{-1} \left(\frac{a-h}{a} \right) \sqrt{a^2 - R^2} \right)$$

Otherwise for $0 < a < R$:

$$SA = \pi R^2 - \frac{\pi(a-h)R\sqrt{a^4 - (a-h)^2(a^2-R^2)}}{a^2} + \frac{\pi a^2 R}{\sqrt{a^2 - R^2}} \ln \left(\frac{a(R^2-a^2)+R}{(a-h)\sqrt{R^2-a^2}+\sqrt{a^2+(a-h)^2(R^2-a^2)}} \right)$$

Parameters
- D [float] Diameter of the main cylindrical section, [m]
- a [float] Distance the ellipsoidal head extends beneath the vertical tank, [m]
- h [float] Height, as measured up to where the fluid ends or the top of the ellipsoidal head, whichever is less, [m]

Returns
- SA_{partial} [float] Partial (wetted) surface area of one ellipsoidal tank head extending beneath the vessel, [m2]

Notes
This method is undefined for $h < 0$, but this is handled by returning zero.

References
[1]

Examples
```python
>>> SA_partial_vertical_ellipsoidal_head(D=72., a=48.0, h=24.0)
4675.23789137632
```

fluids.geometry.V_from_h
h, D, L, horizontal=True, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None

Calculates partially full volume of a vertical or horizontal tank with different head types according to [1].

Parameters
- h [float] Height of the liquid in the tank, [m]
- D [float] Diameter of the cylindrical section of the tank, [m]
- L [float] Length of the main cylindrical section of the tank, [m]
- horizontal [bool, optional] Whether or not the tank is a horizontal or vertical tank
- sideA [string, optional] The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
- sideB [string, optional] The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].

2.10. Tank and helical coil sizing (fluids.geometry)
sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]

dsideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]

sideA_f [float, optional] Dimensionless dish-radius parameter for side A; also commonly given as the product of \(f \) and \(D (fD) \), which is called dish radius and has units of length, [-]

sideA_k [float, optional] Dimensionless knuckle-radius parameter for side A; also commonly given as the product of \(k \) and \(D (kD) \), which is called the knuckle radius and has units of length, [-]

sideB_f [float, optional] Dimensionless dish-radius parameter for side B; also commonly given as the product of \(f \) and \(D (fD) \), which is called dish radius and has units of length, [-]

sideB_k [float, optional] Dimensionless knuckle-radius parameter for side B; also commonly given as the product of \(k \) and \(D (kD) \), which is called the knuckle radius and has units of length, [-]

Returns

\(V \) [float] Volume up to \(h \) [m^3]

Examples

```python
>>> V_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical',
... sideB='conical', sideA_a=2., sideB_a=1.)
10.013826583317465
```

\[\text{fluids.geometry.V_tank} (D, L, \text{horizontal=True, sideA=\text{None}, sideB=\text{None}, sideA_a=0.0, sideB_a=0.0, sideA_f=\text{None}, sideA_k=\text{None}, sideB_f=\text{None}, sideB_k=\text{None})} \]

Calculates the total volume of a vertical or horizontal tank with different head types according to [1].

Parameters

\(D \) [float] Diameter of the cylindrical section of the tank, [m]

\(L \) [float] Length of the main cylindrical section of the tank, [m]

\text{horizontal} [bool, optional] Whether or not the tank is a horizontal or vertical tank

\text{sideA} [string, optional] The left (or bottom for vertical) head of the tank’s type; one of [\text{Name}, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].

\text{sideB} [string, optional] The right (or top for vertical) head of the tank’s type; one of [\text{Name}, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].

sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]

sideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]

sideA_f [float, optional] Dimensionless dish-radius parameter for side A; also commonly given as the product of \(f \) and \(D (fD) \), which is called dish radius and has units of length, [-]
sideA_k [float, optional] Dimensionless knuckle-radius parameter for side A; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

sideB_f [float, optional] Dimensionless dish-radius parameter for side B; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

sideB_k [float, optional] Dimensionless knuckle-radius parameter for side B; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

Returns

V [float] Total volume [m3]

sideA_V [float] Volume of only sideA [m3]

sideB_V [float] Volume of only sideB [m3]

lateral_V [float] Volume of cylindrical section of tank [m3]

Examples

```python
>>> V_tank(D=1.5, L=5., horizontal=False, sideA='conical', ...
   ... sideB='conical', sideA_a=2., sideB_a=1.)
(10.602875205865551, 1.1780972450961726, 0.5890486225480863, 8.835729338221293)
```

fluids.geometry.SA_from_h(h, D, L, horizontal=True, sideA=None, sideB=None, sideA_a=0.0, sideB_a=0.0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None)

Calculates partially full wetted surface area of a vertical or horizontal tank with different head types according to [1].

Parameters

h [float] Height of the liquid in the tank, [m]

D [float] Diameter of the cylindrical section of the tank, [m]

L [float] Length of the main cylindrical section of the tank, [m]

horizontal [bool, optional] Whether or not the tank is a horizontal or vertical tank

sideA [string, optional] The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].

sideB [string, optional] The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].

sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]

sideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]

sideA_f [float, optional] Dimensionless dish-radius parameter for side A; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

sideA_k [float, optional] Dimensionless knuckle-radius parameter for side A; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]
sideB_f [float, optional] Dimensionless dish-radius parameter for side B; also commonly given as the product of f and D (fD), which is called dish radius and has units of length, [-]

sideB_k [float, optional] Dimensionless knuckle-radius parameter for side B; also commonly given as the product of k and D (kD), which is called the knuckle radius and has units of length, [-]

Returns

SA [float] Wetted wall surface area up to h [m^3]

References

[1]

Examples

```python
>>> SA_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical', ... sideB='conical', sideA_a=2., sideB_a=1.)
28.59477853914843
```

`fluids.geometry.SA_tank(D, L, sideA=None, sideB=None, sideA_a=0, sideB_a=0, sideA_f=None, sideA_k=None, sideB_f=None, sideB_k=None)`

Calculates the surface area of a cylindrical tank with optional heads. In the degenerate case of being provided with only D and L, provides the surface area of a cylinder.

Parameters

D [float] Diameter of the cylindrical section of the tank, [m]
L [float] Length of the main cylindrical section of the tank, [m]
sideA [string, optional] The left (or bottom for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideB [string, optional] The right (or top for vertical) head of the tank’s type; one of [None, ‘conical’, ‘ellipsoidal’, ‘torispherical’, ‘guppy’, ‘spherical’].
sideA_a [float, optional] The distance the head as specified by sideA extends down or to the left from the main cylindrical section, [m]
sideB_a [float, optional] The distance the head as specified by sideB extends up or to the right from the main cylindrical section, [m]
sideA_f [float, optional] Dish-radius parameter for side A; fD = dish radius [1/m]
sideA_k [float, optional] knuckle-radius parameter for side A; kD = knuckle radius [1/m]
sideB_f [float, optional] Dish-radius parameter for side B; fD = dish radius [1/m]
sideB_k [float, optional] knuckle-radius parameter for side B; kD = knuckle radius [1/m]

Returns

SA [float] Surface area of the tank [m^2]
sideA_SA [float] Surface area of only sideA [m^2]
sideB_SA [float] Surface area of only sideB [m^2]
lateral_SA [float] Surface area of cylindrical section of tank [m^2]
Examples

Cylinder, Spheroid, Long Cones, and spheres. All checked.

```python
>>> SA_tank(D=2, L=2)[0]
18.84955592153876
>>> SA_tank(D=1., L=0, sideA='ellipsoidal', sideA_a=2, sideB='ellipsoidal',
... sideB_a=2)[0]
10.124375616183062
>>> SA_tank(D=1., L=5, sideA='conical', sideA_a=2, sideB='conical',
... sideB_a=2)[0]
22.18452243965656
>>> SA_tank(D=1., L=5, sideA='spherical', sideA_a=0.5, sideB='spherical',
... sideB_a=0.5)[0]
18.84955592153876
```

```
fluids.geometry.sphericity(A, V)
Returns the sphericity of a particle of surface area A and volume V. Sphericity is the ratio of the surface area of a sphere with the same volume as the particle (equivalent diameter) to the actual surface area of the particle.

\[ \Psi = \frac{A_{sphere}}{A_{particle}} = \frac{\pi \left(\frac{6V_{particle}}{\pi}\right)^{\frac{2}{3}}}{A_{particle}} \]

Parameters

- A [float] Surface area of particle, [m^2]
- V [float] Volume of particle, [m^3]

Returns

Psi [float] Sphericity [-]
```

Notes

All non-spherical particles have sphericities less than 1 but greater than 0. Many common geometrical shapes have their results calculated exactly in [2].

References

[1], [2]

Examples

```python
>>> sphericity(10., 2.)
0.767663317071005
```

For a cube of side length a=3, the surface area is 6*a^2=54 and volume a^3=27. Its sphericity is then:

```python
>>> sphericity(A=54, V=27)
0.8059959770082346
```

```
fluids.geometry.aspect_ratio(Dmin, Dmax)
Returns the aspect ratio of a shape with minimum and maximum dimension, Dmin and Dmax.

\[ A_R = \frac{D_{min}}{D_{max}} \]
```

2.10. Tank and helical coil sizing (fluids.geometry)
Parameters

Dmin [float] Minimum dimension, [m]
Dmax [float] Maximum dimension, [m]

Returns

a_r [float] Aspect ratio [-]

Examples

```python
>>> aspect_ratio(.2, 2)
0.1
```

fluids.geometry.circularity(A, P)

Returns the circularity of a shape with area A and perimeter P.

\[f_{\text{circ}} = \frac{4\pi A}{P^2} \]

Defined to be 1 for a circle. Used to characterize particles. Any non-circular shape must have a circularity less than one.

Parameters

A [float] Area of the shape, [m^2]
P [float] Perimeter of the shape, [m]

Returns

f_circ [float] Circularity of the shape [-]

Examples

Square, side length = 2 (all squares are the same):

```python
>>> circularity(A=(2*2), P=4*2)
0.7853981633974483
```

Rectangle, one side length = 1, second side length = 100

```python
>>> D1 = 1
>>> D2 = 100
>>> A = D1*D2
>>> P = 2*D1 + 2*D2
>>> circularity(A, P)
0.030796908671598795
```

fluids.geometry.A_cylinder(D, L)

Returns the surface area of a cylinder.

\[A = \pi DL + 2 \cdot \frac{\pi D^2}{4} \]

Parameters

D [float] Diameter of the cylinder, [m]
L [float] Length of the cylinder, [m]
Returns
A [float] Surface area [m^2]

Examples

```python
>>> A_cylinder(0.01, .1)
0.0032986722862692833
```

`fluids.geometry.V_cylinder(D, L)`

Returns the volume of a cylinder.

\[V = \frac{\pi D^2}{4} L \]

Parameters
D [float] Diameter of the cylinder, [m]
L [float] Length of the cylinder, [m]

Returns
V [float] Volume [m^3]

Examples

```python
>>> V_cylinder(0.01, .1)
7.853981633974484e-06
```

`fluids.geometry.A_hollow_cylinder(Di, Do, L)`

Returns the surface area of a hollow cylinder.

\[A = \pi D_o L + \pi D_i L + 2 \cdot \frac{\pi D_o^2}{4} - 2 \cdot \frac{\pi D_i^2}{4} \]

Parameters
Di [float] Diameter of the hollow in the cylinder, [m]
Do [float] Diameter of the exterior of the cylinder, [m]
L [float] Length of the cylinder, [m]

Returns
A [float] Surface area [m^2]

Examples

```python
>>> A_hollow_cylinder(0.005, 0.01, 0.1)
0.004830198704894308
```

`fluids.geometry.V_hollow_cylinder(Di, Do, L)`

Returns the volume of a hollow cylinder.

\[V = \frac{\pi D_o^2}{4} L - L \frac{\pi D_i^2}{4} \]
Parameters

- **Di** [float] Diameter of the hollow in the cylinder, [m]
- **Do** [float] Diameter of the exterior of the cylinder, [m]
- **L** [float] Length of the cylinder, [m]

Returns

- **V** [float] Volume [m^3]

Examples

```python
>>> V_hollow_cylinder(0.005, 0.01, 0.1)
5.890486225480862e-06
```

`flucts.geometry.A_multiple_hole_cylinder(Do, L, holes)`

Returns the surface area of a cylinder with multiple holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible. Holes may be of different shapes, but must be perpendicular to the axis of the cylinder.

\[
A = \pi D_o L + 2 \cdot \frac{\pi D_o^2}{4} + \sum_i \left(\pi D_i L - 2 \cdot \frac{\pi D_i^2}{4} \right)
\]

Parameters

- **Do** [float] Diameter of the exterior of the cylinder, [m]
- **L** [float] Length of the cylinder, [m]
- **holes** [list] List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes.

Returns

- **A** [float] Surface area [m^2]

Examples

```python
>>> A_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)])
0.004830198704894308
```

`flucts.geometry.V_multiple_hole_cylinder(Do, L, holes)`

Returns the solid volume of a cylinder with multiple cylindrical holes. Calculation will naively return a negative value or other impossible result if the number of cylinders added is physically impossible.

\[
V = \frac{\pi D_o^2 L}{4} - L \frac{\pi D_i^2}{4}
\]

Parameters

- **Do** [float] Diameter of the exterior of the cylinder, [m]
- **L** [float] Length of the cylinder, [m]
- **holes** [list] List of tuples containing (diameter, count) pairs of descriptions for each of the holes sizes.

Returns

- **V** [float] Volume [m^3]
Examples

```python
>>> V_multiple_hole_cylinder(0.01, 0.1, [(0.005, 1)])
5.890486225480862e-06
```

`fluids.geometry.pitch_angle_solver(angle=None, pitch=None, pitch_parallel=None, pitch_normal=None)`

Utility to take any two of `angle`, `pitch`, `pitch_parallel`, and `pitch_normal` and calculate the other two. This is useful for applications with tube banks, as in shell and tube heat exchangers or air coolers and allows for a wider range of user input.

\[
\text{pitch normal} = \text{pitch} \cdot \sin(\angle)
\]

\[
\text{pitch parallel} = \text{pitch} \cdot \cos(\angle)
\]

Parameters

- **angle** [float, optional] The angle of the tube layout, [degrees]
- **pitch** [float, optional] The shortest distance between tube centers; defined in relation to the flow direction only, [m]
- **pitch_parallel** [float, optional] The distance between tube center along a line parallel to the flow; has been called *longitudinal* pitch, \(pp\), \(s2\), \(SL\), and \(p2\), [m]
- **pitch_normal** [float, optional] The distance between tube centers in a line 90° to the line of flow; has been called the *transverse* pitch, \(pn\), \(s1\), \(ST\), and \(p1\), [m]

Returns

- **angle** [float] The angle of the tube layout, [degrees]
- **pitch** [float] The shortest distance between tube centers; defined in relation to the flow direction only, [m]
- **pitch_parallel** [float] The distance between tube center along a line parallel to the flow; has been called *longitudinal* pitch, \(pp\), \(s2\), \(SL\), and \(p2\), [m]
- **pitch_normal** [float] The distance between tube centers in a line 90° to the line of flow; has been called the *transverse* pitch, \(pn\), \(s1\), \(ST\), and \(p1\), [m]

Notes

For the 90 and 0 degree case, the normal or parallel pitches can be zero; given the angle and the zero value, obviously is it not possible to calculate the pitch and a math error will be raised.

No exception will be raised if three or four inputs are provided; the other two will simply be calculated according to the list of if statements used.

An exception will be raised if only one input is provided.

References

[1]
Examples

```python
>>> pitch_angle_solver(pitch=1, angle=30)
(30, 1, 0.8660254037844387, 0.49999999999999994)
```

```
fluids.geometry.plate_enlargement_factor(amplitude, wavelength)
```

Calculates the enhancement factor of the sinusoidal waves of the plate heat exchanger. This is the multiplier for the flat plate area to obtain the actual area available for heat transfer. Obtained from the following integral:

\[
\phi = \frac{\text{Effective area}}{\text{Projected area}} = \int_0^\lambda \sqrt{1 + \left(\frac{2\pi}{\lambda}\right)^2 \cos^2 \left(\frac{2\pi}{\lambda}x\right)} \, dx
\]

\[
\gamma = \frac{4a}{\lambda}
\]

The solution to the integral is:

\[
\phi = \frac{2E \left(-\frac{4a^2\pi^2}{\lambda^2}\right)}{\pi}
\]

where \(E\) is the complete elliptic integral of the second kind, calculated with SciPy.

Parameters

- **amplitude** [float] Half the height of the wave of the ridges, [m]
- **wavelength** [float] Distance between the bottoms of two of the ridges (sometimes called pitch), [m]

Returns

- **plate_enlargement_factor** [float] The extra surface area multiplier as compared to a flat plate caused the corrugations, [-]

Notes

This is the exact analytical integral, obtained via Mathematica, Maple, and quite a bit of trial and error. It is confirmed via numerical integration. The expression normally given is an approximation as follows:

\[
\phi = \frac{1}{6} \left(1 + \sqrt{1 + A^2} + 4\sqrt{1 + \frac{A^2}{2}}\right)
\]

\[
A = \frac{2\pi a}{\lambda}
\]

Most plate heat exchangers approximate a sinusoidal geometry only.

Examples

```python
>>> plate_enlargement_factor(amplitude=5E-4, wavelength=3.7E-3)
1.1611862034509677
```

306 Chapter 2. API Reference
2.11 Jet Pump (ejector/eductor) Sizing and Rating (fluids.jet_pump)

Calculate the remaining two variables in a liquid jet pump, using a model presented in [1] as well as [2], [3], and [4].

\[
N = \frac{2R + \frac{2CM^2R^2}{1-R}}{(1 + K_p) - 2R - \frac{2CM^2R^2}{1-R} + R^2(1 + CM)(1 + M)(1 + K_m + K_d + \alpha^2) - \frac{CM^2R^2}{(1-R)^2}} (1 + K_s)
\]

\[
P_1 - P_2 = \frac{1}{2} \rho_p \left(\frac{Q_p}{A_n} \right)^2 \left[(1 + K_p) - C(1 + K_s) \left(\frac{MR}{1-R} \right)^2 \right]
\]

Pressure ratio \(N = \frac{P_5 - P_2}{P_1 - P_5} \)

Volume flow ratio \(M = \frac{Q_s}{Q_p} \)

Jet pump efficiency \(\eta = M : N = \frac{Q_s(P_5 - P_2)}{Q_p(P_1 - P_5)} \)

\[
R = \frac{A_n}{A_m}
\]

\[
C = \frac{\rho_s}{\rho_p}
\]

There is no guarantee a solution will be found for the provided variable values, but every combination of two missing variables are supported.

Parameters

- rhop [float] The density of the primary (motive) fluid, [kg/m³]
- rhos [float] The density of the secondary fluid (drawn from the vacuum chamber), [kg/m³]
- Kp [float, optional] The primary nozzle loss coefficient, [-]
- Ks [float, optional] The secondary inlet loss coefficient, [-]
- Km [float, optional] The mixing chamber loss coefficient, [-]
- Kd [float, optional] The diffuser loss coefficient, [-]
- d_nozzle [float, optional] The inside diameter of the primary fluid’s nozzle, [m]
- d_mixing [float, optional] The diameter of the mixing chamber, [m]
- d_diffuser [float, optional] The diameter of the diffuser at its exit, [m]
- Qp [float, optional] The volumetric flow rate of the primary fluid, [m³/s]
- Qs [float, optional] The volumetric flow rate of the secondary fluid, [m³/s]
- P1 [float, optional] The pressure of the primary fluid entering its nozzle, [Pa]
- P2 [float, optional] The pressure of the secondary fluid at the entry of the ejector, [Pa]
- P5 [float, optional] The pressure at the exit of the diffuser, [Pa]
nozzle_retracted [bool, optional] Whether or not the primary nozzle’s exit is before the mixing chamber, or somewhat inside it, [-]

max_variations [int, optional] When the initial guesses do not lead to a converged solution, try this many more guesses at converging the problem, [-]

Returns

solution [dict] Dictionary of calculated parameters, [-]

Notes

The assumptions of the model are:

- The flows are one dimensional except in the mixing chamber.
- The mixing chamber has constant cross-sectional area.
- The mixing happens entirely in the mixing chamber, prior to entry into the diffuser.
- The primary nozzle is in a straight line with the middle of the mixing chamber.
- Both fluids are incompressible, and have no excess volume on mixing.
- Primary and secondary flows both enter the mixing throat with their own uniform velocity distribution; the mixed stream leaves with a uniform velocity profile.
- If the secondary fluid is a gas, it undergoes isothermal compression in the throat and diffuser.
- If the secondary fluid is a gas or contains a bubbly gas, it is homogeneously distributed in a continuous liquid phase.
- Heat transfer between the fluids is negligible - there is no change in density due to temperature changes
- The change in the solubility of a dissolved gas, if there is one, is negligibly changed by temperature or pressure changes.

The model can be derived from the equations in liquid_jet_pump_ancillary and the following:

Conservation of energy at the primary nozzle, secondary inlet, and diffuser exit:

\[P_1 = P_3 + \frac{1}{2} \rho_p V_n^2 + K_p \left(\frac{1}{2} \rho_p V_n^2 \right) \]

\[P_2 = P_3 + \frac{1}{2} \rho_s V_3^2 + K_s \left(\frac{1}{2} \rho_s V_3^2 \right) \]

\[P_5 = P_4 + \frac{1}{2} \rho_d V_4^2 - K_d \left(\frac{1}{2} \rho_d V_4^2 \right) \]

Continuity of the ejector:

\[\rho_p Q_p + \rho_s Q_s = \rho_d Q_d \]

References

[1], [2], [3], [4]

Examples
>>>
ans = liquid_jet_pump(rhop=998., rhos=1098., Km=.186, Kd=0.12, Ks=0.11,
... Kp=0.04, d_mixing=0.045, Qs=0.01, Qp=.01, P2=133600,
... P5=200E3, nozzle_retracted=False, max_variations=10000)
>>>
s = []
>>> for key, value in ans.items():
... s.append(' %s: %g' %(key, value))
>>>
sorted(s)
['M: 1', 'N: 0.293473', 'P1: 426256', 'P2: 133600', 'P5: 200000', 'Qp: 0.01', 'Qs: → 0.01', 'R: 0.247404', 'alpha: 1e-06', 'd_diffuser: 45', 'd_mixing: 0.045', 'd_nozzle: 0.0223829', 'efficiency: 0.293473']

fluids.jet_pump.liquid_jet_pump_ancillary

Calculates the remaining variable in a liquid jet pump when solving for one if the inlet variables only and the rest of them are known. The equation comes from conservation of energy and momentum in the mixing chamber.

The variable to be solved for must be one of \(d_{\text{nozzle}}, d_{\text{mixing}}, Q_p, Q_s, P_1, \) or \(P_2\).

\[
P_1 - P_2 = \frac{1}{2} \rho_p V_n^2 (1 + K_p) - \frac{1}{2} \rho_s V_s^2 (1 + K_s)
\]

Rearrange to express \(V_3\) in terms of \(V_n\), and using the density ratio \(C\), the expression becomes:

\[
P_1 - P_2 = \frac{1}{2} \rho_p V_n^2 \left[(1 + K_p) - C(1 + K_s) \left(\frac{MR}{1 - R} \right)^2 \right]
\]

Using the primary nozzle area and flow rate:

\[
P_1 - P_2 = \frac{1}{2} \rho_p \left(\frac{Q_p}{A_n} \right)^2 \left[(1 + K_p) - C(1 + K_s) \left(\frac{MR}{1 - R} \right)^2 \right]
\]

For \(P, P_2, Q_s,\) and \(Q_p\), the equation can be rearranged explicitly for them. For \(d_{\text{mixing}}\) and \(d_{\text{nozzle}}\), a bounded solver is used searching between 1E-9 m and 20 times the other diameter which was specified.

Parameters

- \(rhop\) [float] The density of the primary (motive) fluid, [kg/m\(^3\)]
- \(rhos\) [float] The density of the secondary fluid (drawn from the vacuum chamber), [kg/m\(^3\)]
- \(Kp\) [float] The primary nozzle loss coefficient, [-]
- \(Ks\) [float] The secondary inlet loss coefficient, [-]
- \(d_{\text{nozzle}}\) [float, optional] The inside diameter of the primary fluid’s nozle, [m]
- \(d_{\text{mixing}}\) [float, optional] The diameter of the mixing chamber, [m]
- \(Qp\) [float, optional] The volumetric flow rate of the primary fluid, [m\(^3\)/s]
- \(Qs\) [float, optional] The volumetric flow rate of the secondary fluid, [m\(^3\)/s]
- \(P1\) [float, optional] The pressure of the primary fluid entering its nozzle, [Pa]
- \(P2\) [float, optional] The pressure of the secondary fluid at the entry of the ejector, [Pa]

Returns

- \(solution\) [float] The parameter not specified (one of \(d_{\text{nozzle}}, d_{\text{mixing}}, Q_p, Q_s, P_1, \) or \(P_2\)),
 (units of \(m, m, m^3/s, m^3/s, Pa,\) or \(Pa\) respectively)
Notes

The following SymPy code was used to obtain the analytical formulas (they are not shown here due to their length):

```python
>>> from sympy import *

>>> A_nozzle, A_mixing, Qs, Qp, P1, P2, rhos, rhop, Ks, Kp = symbols('A_nozzle, A_mixing, Qs, Qp, P1, P2, rhos, rhop, Ks, Kp')

>>> R = A_nozzle/A_mixing
>>> M = Qs/Qp
>>> C = rhos/rhop
>>> rhs = rhop/2*(Qp/A_nozzle)**2*((1+Kp) - C*(1 + Ks)*((M*R)/(1-R))**2 )
>>> new = Eq(P1 - P2, rhs)
>>> #solve(new, Qp)
>>> #solve(new, Qs)
>>> #solve(new, P1)
>>> #solve(new, P2)
```

References

[1]

Examples

Calculating primary fluid nozzle inlet pressure P1:

```python
>>> liquid_jet_pump_ancillary(rhop=998., rhos=1098., Ks=0.11, Kp=.04, ... P2=133600, Qp=0.01, Qs=0.01, d_mixing=0.045, d_nozzle=0.02238)
426434.60314398084
```

2.12 Mixing (fluids.mixing)

`fluids.mixing.agitator_time_homogeneous (N, P, T, H, mu, rho, D=None, homogeneity=0.95)`

Calculates time for a fluid mixing in a tank with an impeller to reach a specified level of homogeneity, according to [1].

\[
N_p = \frac{Pg}{\rho N^3 D^5}
\]

\[
Re_{imp} = \frac{\rho D^2 N}{\mu}
\]

constant = \[N_p^{1/3}Re_{imp}\]

\[
Fo = \frac{5.2}{\text{constant}}\text{for turbulent regime}
\]

\[
Fo = \left(\frac{183}{\text{constant}}\right)^2\text{for transition regime}
\]

Parameters

- N [float] Speed of impeller, [revolutions/s]
- P [float] Actual power required to mix, ignoring mechanical inefficiencies [W]
- T [float] Tank diameter, [m]
Fluids Documentation, Release 0.1.86

\[H \] [float] Tank height, [m]

\[\mu \] [float] Mixture viscosity, [Pa*s]

\[\rho \] [float] Mixture density, [kg/m^3]

\[D \] [float, optional] Impeller diameter [m]

homogeneity [float, optional] Fraction completion of mixing, []

Returns

\[t \] [float] Time for specified degree of homogeneity [s]

Notes

If impeller diameter is not specified, assumed to be 0.5 tank diameters.

The first example is solved forward rather than backwards here. A rather different result is obtained, but is accurate.

No check to see if the mixture if laminar is currently implemented. This would under predict the required time.

References

[1]

Examples

```python
>>> agitator_time_homogeneous(D=36*.0254, N=56/60., P=957., T=1.83, H=1.83, mu=0.018, rho=1020, homogeneity=.995)
15.143198226374668
```

```python
>>> agitator_time_homogeneous(D=1, N=125/60., P=298., T=3, H=2.5, mu=.5, rho=980, homogeneity=.95)
67.7575069865228
```

fluids.mixing.Kp_helical_ribbon_Rieger \((D, h, nb, pitch, width, T)\)

Calculates product of power number and Reynolds number for a specified geometry for a helical ribbon mixer in the laminar regime. One of several correlations listed in [1], it used more data than other listed correlations and was recommended.

\[
K_p = 82.8 \frac{h}{D} \left(\frac{c}{D} \right)^{-0.38} \left(\frac{P}{D} \right)^{-0.35} \left(\frac{w}{D} \right)^{0.20} n_b^{0.78}
\]

Parameters

\[D \] [float] Impeller diameter [m]

\[h \] [float] Ribbon mixer height, [m]

\[nb \] [float:] Number of blades, [-]

\[pitch \] [float] Height of one turn around a helix [m]

\[width \] [float] Width of one blade [m]

\[T \] [float] Tank diameter, [m]

Returns

\[Kp \] [float] Product of Power number and Reynolds number for laminar regime []

2.12. Mixing (fluids.mixing)
Notes

Example is from example 9-6 in [1]. Confirmed.

References

[1], [2]

Examples

```python
>>> Kp_helical_ribbon_Rieger(D=1.9, h=1.9, nb=2, pitch=1.9, width=.19, T=2)
357.39749163259256
```

```
fluids.mixing.time_helical_ribbon_Grenville(Kp, N)
Calculates product of time required for mixing in a helical ribbon coil in the laminar regime according to the

\[ t = 896 \times 10^3 K_p^{-1.69} / N \]

Parameters

- **Kp** [float] Product of power number and Reynolds number for laminar regime []
- **N** [float] Speed of impeller, [revolutions/s]

Returns

- **t** [float] Time for homogeneity [s]

Notes

Degree of homogeneity is not specified. Example is from example 9-6 in [1]. Confirmed.

References

[1], [2]

Examples

```python
>>> time_helical_ribbon_Grenville(357.4, 4/60.)
650.980654028894
```

```
fluids.mixing.size_tee(Q1, Q2, D, D2, n=1, pipe_diameters=5)
Calculates CoV of an optimal or specified tee for mixing at a tee according to [1]. Assumes turbulent flow. The
smaller stream in injected into the main pipe, which continues straight. COV calculation is according to [2].

TODO

Parameters

- **Q1** [float] Volumetric flow rate of larger stream [m^3/s]
- **Q2** [float] Volumetric flow rate of smaller stream [m^3/s]
Fluids Documentation, Release 0.1.86

\[D \] [float] Diameter of pipe after tee [m]
\[D2 \] [float] Diameter of mixing inlet, optional (optimally calculated if not specified) [m]
\[n \] [float] Number of jets, 1 to 4 []

\[\text{pipe_diameters} \] [float] Number of diameters along tail pipe for CoV calculation, 0 to 5 []

Returns

\[\text{CoV} \] [float] Standard deviation of dimensionless concentration [-]

Notes

Not specified if this works for liquid also, though probably not. Example is from example Example 9-6 in [1]. Low precision used in example.

References

[1], [2]

Examples

```python
>>> size_tee(Q1=11.7, Q2=2.74, D=0.762, D2=None, n=1, pipe_diameters=5)
0.2940930233038544
```

Calculates CoV of a motionless mixer with a regression parameter in [1] and originally in [2].

\[
\frac{\text{CoV}}{\text{CoV}_0} = K_i L / D
\]

Parameters

\[K_i \] [float] Correlation parameter specific to a mixer’s design, [-]
\[Q_1 \] [float] Volumetric flow rate of larger stream [m^3/s]
\[Q_2 \] [float] Volumetric flow rate of smaller stream [m^3/s]

\[\text{pipe_diameters} \] [float] Number of diameters along tail pipe for CoV calculation, 0 to 5 []

Returns

\[\text{CoV} \] [float] Standard deviation of dimensionless concentration [-]

Notes

Example 7-8.3.2 in [1], solved backwards.

References

[1], [2]
Examples

```python
>>> COV_motionless_mixer(Ki=.33, Q1=11.7, Q2=2.74, pipe_diameters=4.74/.762)
0.0020900028665727685
```

`fluids.mixing.K_motionless_mixer(K, L, D, fd)`
Calculates loss coefficient of a motionless mixer with a regression parameter in [1] and originally in [2].

\[K = K_L/T f \frac{L}{D} \]

Parameters
- **K** [float] Correlation parameter specific to a mixer’s design, [-] Also specific to laminar or turbulent regime.
- **L** [float] Length of the motionless mixer [m]
- **D** [float] Diameter of pipe [m]
- **fd** [float] Darcy friction factor [-]

Returns
- **K** [float] Loss coefficient of mixer [-]

Notes
Related to example 7-8.3.2 in [1].

References
[1]. [2]

Examples

```python
>>> K_motionless_mixer(K=150, L=.762*5, D=.762, fd=.01)
7.5
```

2.13 Support for Numba (fluids.numba)

Basic module which wraps most of fluids functions and classes to be compatible with the Numba dynamic Python compiler. Numba is only supported on Python 3, and may require the latest version of Numba. Numba is rapidly evolving, and hopefully in the future it will support more of the functionality of fluids.

Using the numba-accelerated version of fluids is easy; simply call functions and classes from the fluids.numba namespace. The fluids.numba module must be imported separately; it is not loaded automatically as part of fluids.

```python
>>> import fluids
>>> import fluids.numba
>>> fluids.numba.bend_rounded(Di=4.020, rc=4.0*5, angle=30, Re=1E5)
0.11519070808085191
```
There is a delay while the code is compiled when using Numba; the speed is not quite free.

It is easy to compare the speed of a function with and without Numba.

```python
>>> %timeit fluids.numba.Stichlmair_flood(Vl=5E-3, rhog=5., rhol=1200., mug=5E-5, voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.) # doctest: +SKIP
15.9 µs ± 266 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit fluids.Stichlmair_flood(Vl=5E-3, rhog=5., rhol=1200., mug=5E-5, voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.) # doctest: +SKIP
109 µs ± 2.01 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)
```

Not everything is faster in the numba interface. For example, dictionary lookups have to be turned into slower jump lists:

```python
>>> %timeit fluids.numba.Darby3K(NPS=2., Re=10000., name='Valve, Angle valve, 45°, full line size, $\beta$ = 1') # doctest: +SKIP
7.04 µs ± 62.8 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit fluids.Darby3K(NPS=2., Re=10000., name='Valve, Angle valve, 45°, full line size, $\beta$ = 1') # doctest: +SKIP
435 ns ± 9.01 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Functions which take strings as inputs are also known to normally get slower:

```python
>>> %timeit fluids.numba.geometry.V_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical', sideB='conical', sideA_a=2., sideB_a=1.) # doctest: +SKIP
11.2 µs ± 457 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit fluids.geometry.V_from_h(h=7, D=1.5, L=5., horizontal=False, sideA='conical', sideB='conical', sideA_a=2., sideB_a=1.) # doctest: +SKIP
1.64 µs ± 25.6 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
```

Nevertheless, using the function from the numba interface may be preferably, to allow an even larger program to be completely compiled in njit mode.

Today, the list of things known not to work is as follows:

- `integrate_drag_sphere` (uses SciPy's odeint)
- The geometry class TANK and HelicalCoil, PlateExchanger, RectangularFinExchanger, HyperbolicCoolingTower, AirCooledExchanger
 - `SA_partial_horiz_torispherical_head` has numerical issues with numba; they exist in CPython but are handled there with numba-incompatible code.
- Everything in `fluids.particle_size_distribution`
- Everything in `fluids.atmosphere`
- Everything in `fluids.piping` (uses global lookups)
- In `fluids.friction`, only `nearest_material_roughness`, `material_roughness`, `roughness_Farshad` are unsupported as they use global lookups.

2.13.1 Numpy Support

Numba also allows fluids to provide any of its supported functions as a numpy universal function. Numpy’s wonderful broadcasting is implemented, so some arguments can be arrays and some can not.

```python
>>> import fluids.numba_vectorized
>>> import numpy as np
```
>>>
fluids.numba_vectorized.Moody(np.linspace(1e3, 1e4, 5), 1e-4)
array([0.06053664, 0.04271113, 0.03677223, 0.03343543, 0.03119781])

>>>
fluids.numba_vectorized.Moody(np.linspace(1e3, 1e4, 5), np.linspace(1e-4, 1e-5, 5))
array([0.06053664, 0.0426931 , 0.03672111, 0.03333917, 0.03104575])

Unfortunately, keyword-arguments are not supported by Numba.

>>>
fluids.numba_vectorized.Moody(Re=np.linspace(1e3, 1e4, 5), eD=np.linspace(1e-4, 1e-5, 5))
doctest: +SKIP
ValueError: invalid number of arguments

Also default arguments are not presently supported by Numba.

>>>
fluids.numba_vectorized.V_horiz_conical(108., 156., 42., np.linspace(0, 4, 4), False)
array([0. , 3333.2359001 , 9441.84364485, 17370.09634651])

>>>
fluids.numba_vectorized.V_horiz_conical(108., 156., 42., np.linspace(0, 4, 4))
doctest: +SKIP
ValueError: invalid number of arguments

Yet another unfortunate limitation is that Numba’s ufunc machinery will not wrap function calls with multiple return values.

>>>
fluids.numba_vectorized.Mandhane_Gregory_Aziz_regime(np.array([0.6]), np.array([112]), np.array([915.12]), np.array([2.67]), np.array([180E-6]), np.array([14E-6]), np.array([0.065]), np.array([0.05]))
doctest: +SKIP
NotImplementedError: Tuple(unicode_type, float64, float64) cannot be represented as a Numpy dtype

Despite these limitations is is here that Numba really shines! Arrays are Numba’s strength.

>>>
Res = np.linspace(1e4, 1e7, 10000)

>>> %timeit fluids.numba_vectorized.Clamond(Res, 1E-4, False) # doctest: +SKIP
797 µs ± 19 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

About 80 nanoseconds per friction factor call! As compared to the fluids.numba interface (442 ns) and the normal interface (1440 ns):

>>> %timeit fluids.numba.Clamond(1e4, 1E-4, False) # doctest: +SKIP
442 ns ± 7.36 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

>>> %timeit fluids.Clamond(1e4, 1E-4, False) # doctest: +SKIP
1.44 µs ± 40.5 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

Please note this interface is provided, but what works and what doesn’t is mostly up to the numba project. This backend is not quite as polished as their normal engine.

All of the regular Numba-compiled functions are built with the nogil flag, which means you can use Python’s threading mechanism effectively to get the speed of parallel processing even without the numba_vectorized interface.

2.13.2 SciPy dependent Functions Support

Some functions use scipy.special functions which do have a numba interface Numba-scipy. The project can be installed to make those functions work.
Getting this to work can be problematic at times; compiled code is often much more challenging to get working than interpreted code.

2.14 Hydrology, weirs and open flow (fluids.open_flow)

fluids.open_flow.Q_weir_V_Shen\((h1, angle=90)\)

Calculates the flow rate across a V-notch (triangular) weir from the height of the liquid above the tip of the notch, and with the angle of the notch. Most of these type of weir are 90 degrees. Model from [1] as reproduced in [2].

Flow rate is given by:

\[
Q = C \tan \left(\frac{\theta}{2} \right) \sqrt{g(h_1 + k)^{2.5}}
\]

Parameters

- **h1** [float] Height of the fluid above the notch [m]
- **angle** [float, optional] Angle of the notch [degrees]

Returns

- **Q** [float] Volumetric flow rate across the weir [m^3/s]

Notes

- **angles** = [20, 40, 60, 80, 100] Cs = [0.59, 0.58, 0.575, 0.575, 0.58] k = [0.0028, 0.0017, 0.0012, 0.001, 0.001]
- The following limits apply to the use of this equation:
 - h1 >= 0.05 m h2 > 0.45 m h1/h2 <= 0.4 m \(b > 0.9\) m
 - \(\frac{h_1}{b} \tan \left(\frac{\theta}{2} \right) < 2\)

Flows are lower than obtained by the curves at http://www.lmnoeng.com/Weirs/vweir.php.

References

- [1], [2]

Examples

```python
>>> Q_weir_V_Shen(0.6, angle=45)
0.21071725775478
```

fluids.open_flow.Q_weir_rectangular_Kindsvater_Carter\((h1, h2, b)\)

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].

Flow rate is given by:

\[
Q = 0.554 \left(1 - 0.0035 \frac{h_1}{h_2} \right) (b + 0.0025)\sqrt{g(h_1 + 0.0001)^{1.5}}
\]
Parameters

\(h1 \) [float] Height of the fluid above the crest of the weir [m]

\(h2 \) [float] Height of the fluid below the crest of the weir [m]

\(b \) [float] Width of the rectangular flow section of the weir [m]

Returns

\(Q \) [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

\(b/b1 \ < 0.2 \)
\(h1/h2 < 2 \)
\(b > 0.15 \text{ m} \)
\(h1 > 0.03 \text{ m} \)
\(h2 > 0.1 \text{ m} \)

References

[1], [2]

Examples

```python
>>> Q_weir_rectangular_Kindsvater_Carter(0.2, 0.5, 1)
0.15545928949179422
```

```
fluids.open_flow.Q_weir_rectangular_SIA(h1, h2, b, b1)
```

Calculates the flow rate across rectangular weir from the height of the liquid above the crest of the notch, the liquid depth beneath it, and the width of the notch. Model from [1] as reproduced in [2].

Flow rate is given by:

\[
Q = 0.544 \left[1 + 0.064 \left(\frac{b}{b1} \right)^2 + \frac{0.00626 - 0.00519(b/b1)^2}{h1 + 0.0016} \right] \left[1 + 0.5 \left(\frac{b}{b1} \right)^4 \left(\frac{h1}{h1 + h2} \right)^2 \right] b \sqrt{gh1.5}
\]

Parameters

\(h1 \) [float] Height of the fluid above the crest of the weir [m]

\(h2 \) [float] Height of the fluid below the crest of the weir [m]

\(b \) [float] Width of the rectangular flow section of the weir [m]

\(b1 \) [float] Width of the full section of the channel [m]

Returns

\(Q \) [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

\(b/b1 \ < 0.2 \)
\(h1/h2 < 2 \)
\(b > 0.15 \text{ m} \)
\(h1 > 0.03 \text{ m} \)
\(h2 > 0.1 \text{ m} \)
Fluids Documentation, Release 0.1.86

References

[1], [2]

Examples

```python
>>> Q_weir_rectangular_SIA(0.2, 0.5, 1, 2)
1.0408858453811165
```

`fluids.open_flow.Q_weir_rectangular_full_Ackers(h1, h2, b)`

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2], confirmed with [3].

Flow rate is given by:

\[Q = 0.564 \left(1 + 0.150 \frac{h_1}{h_2} \right) b \sqrt{g(h_1 + 0.001)^{1.5}} \]

Parameters

- `h1` [float] Height of the fluid above the crest of the weir [m]
- `h2` [float] Height of the fluid below the crest of the weir [m]
- `b` [float] Width of the channel section [m]

Returns

- `Q` [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

\[h_1 > 0.02 \text{ m} \]
\[h_2 > 0.15 \text{ m} \]
\[h_1/h_2 < 2.2 \]

References

[1], [2], [3]

Examples

Example as in [3], matches. However, example is unlikely in practice.

```python
>>> Q_weir_rectangular_full_Ackers(h1=0.9, h2=0.6, b=5)
9.251938159899948
```

`fluids.open_flow.Q_weir_rectangular_full_SIA(h1, h2, b)`

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[Q = \frac{2}{3} \sqrt{2} \left(0.615 + \frac{0.000615}{h_1} + 0.0016 \right) b \sqrt{gh_1} + 0.5 \left(\frac{h_1}{h_1 + h_2} \right)^2 b \sqrt{gh_1^{1.5}} \]

2.14. Hydrology, weirs and open flow (fluids.open_flow)
Parameters

- **h1** [float] Height of the fluid above the crest of the weir [m]
- **h2** [float] Height of the fluid below the crest of the weir [m]
- **b** [float] Width of the channel section [m]

Returns

- **Q** [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.025 < h < 0.8 m b > 0.3 m h2 > 0.3 m h1/h2 < 1

References

[1], [2]

Examples

Example compares terribly with the Ackers expression - probable error in [2]. DO NOT USE.

```python
>>> Q_weir_rectangular_full_SIA(h1=0.3, h2=0.4, b=2)
1.1875825055400384
```

```
fluids.open_flow.Q_weir_rectangular_full_Rehbock(h1, h2, b)
```

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[
Q = \frac{2}{3} \sqrt{2} \left(0.602 + 0.0832 \frac{h_1}{h_2} \right) b \sqrt{g(h_1 + 0.00125)}^{1.5}
\]

Parameters

- **h1** [float] Height of the fluid above the crest of the weir [m]
- **h2** [float] Height of the fluid below the crest of the weir [m]
- **b** [float] Width of the channel section [m]

Returns

- **Q** [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

0.03 m < h1 < 0.75 m b > 0.3 m h2 > 0.3 m h1/h2 < 1
References

[1], [2]

Examples

```python
>>> Q_weir_rectangular_full_Rehbock(h1=0.3, h2=0.4, b=2)
0.6486856330601333
```

`fluids.open_flow.Q_weir_rectangular_full_Kindsvater_Carter(h1, h2, b)`

Calculates the flow rate across a full-channel rectangular weir from the height of the liquid above the crest of the weir, the liquid depth beneath it, and the width of the channel. Model from [1] as reproduced in [2].

Flow rate is given by:

\[
Q = \frac{2}{3} \sqrt{2} \left(0.602 + 0.0832 \frac{h_1}{h_2} \right) b \sqrt{g(h_1 + 0.00125)^{1.5}}
\]

Parameters

- h1 [float] Height of the fluid above the crest of the weir [m]
- h2 [float] Height of the fluid below the crest of the weir [m]
- b [float] Width of the channel section [m]

Returns

- Q [float] Volumetric flow rate across the weir [m^3/s]

Notes

The following limits apply to the use of this equation:

h1 > 0.03 m, b > 0.15 m, h2 > 0.1 m, h1/h2 < 2

References

[1], [2]

Examples

```python
>>> Q_weir_rectangular_full_Kindsvater_Carter(h1=0.3, h2=0.4, b=2)
0.641560300081563
```

`fluids.open_flow.V_Manning(Rh, S, n)`

Predicts the average velocity of a flow across an open channel of hydraulic radius Rh and slope S, given the Manning roughness coefficient n.

Flow rate is given by:

\[
V = \frac{1}{n} R_h^{2/3} S^{0.5}
\]

Parameters

- Rh [float] Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
S [float] Slope of the channel, m/m [-]

n [float] Manning roughness coefficient; traditionally in the correct units, [s/m^(1/3)]

Returns

V [float] Average velocity of the channel [m/s]

Notes

This is equation is often given in imperial units multiplied by 1.49. Although n could be converted to be in imperial units, in practice this has not been done and all tables keep it in the units of s/m^(1/3).

References

[1], [2]

Examples

Example is from [2], matches.

```python
>>> V_Manning(0.2859, 0.005236, 0.03)
1.0467781958118971
```

```python
fluids.open_flow.n_Manning_to_C_Chezy(n, Rh)
Converts a Manning roughness coefficient to a Chezy coefficient, given the hydraulic radius of the channel.

\[ C = \frac{1}{n} R_h^{1/6} \]

Parameters

n [float] Manning roughness coefficient [s/m^(1/3)]

Rh [float] Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns

C [float] Chezy coefficient [m^0.5/s]

References

[1]

Examples

Custom example, checked.

```python
>>> n_Manning_to_C_Chezy(0.05, Rh=5)
26.15320972023661
```

```python
fluids.open_flow.C_Chezy_to_n_Manning(C, Rh)
Converts a Chezy coefficient to a Manning roughness coefficient, given the hydraulic radius of the channel.

\[n = \frac{1}{C} R_h^{1/6} \]
```
Parameters

- \( C \) [float] Chezy coefficient [m^{0.5}/s]
- \( Rh \) [float] Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]

Returns

- \( n \) [float] Manning roughness coefficient [s/m^{(1/3)}]

References

[1]

Examples

Custom example, checked.

```python
>>> C_Chezy_to_n_Manning(26.15, Rh=5)
0.05000613713238358
```

`fluids.open_flow.V_Chezy(Rh, S, C)`

Predicts the average velocity of a flow across an open channel of hydraulic radius \( Rh \) and slope \( S \), given the Chezy coefficient \( C \).

Flow rate is given by:

\[
V = C \sqrt{SR_h}
\]

Parameters

- \( Rh \) [float] Hydraulic radius of the channel, Flow Area/Wetted perimeter [m]
- \( S \) [float] Slope of the channel, m/m [-]
- \( C \) [float] Chezy coefficient [m^{0.5}/s]

Returns

- \( V \) [float] Average velocity of the channel [m/s]

References

[1], [2], [3]

Examples

Custom example, checked.

```python
>>> V_Chezy(Rh=5, S=0.001, C=26.153)
1.8492963648371776
```
2.15 Packed bed pressure drop (fluids.packed_bed)

The function `fluids.packed_bed.dP_packed_bed(dp, voidage, vs, rho, mu, L=1, Dt=None, sphericity=None, Method=None)` handles choosing which pressure drop in a packed bed correlation is used. Automatically select which correlation to use if none is provided. Returns None if insufficient information is provided.

Prefered correlations are ‘Erdim, Akgiray & Demir’ when tube diameter is not provided, and ‘Harrison, Brunner & Hecker’ when tube diameter is provided. If you are using a particles in a narrow tube between 2 and 3 particle diameters, expect higher than normal voidages (0.4-0.5) and used the method ‘Guo, Sun, Zhang, Ding & Liu’.

**Parameters**

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area) [m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]
- **Dt** [float, optional] Diameter of the tube, [m]
- **sphericity** [float, optional] Sphericity of the particles [-]

**Returns**

- **dP** [float] Pressure drop across the bed [Pa]

**Other Parameters**

- **Method** [string, optional] A string of the function name to use, as in the dictionary `packed_beds_correlations`

**Examples**

```python
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1438.2826958844414
>>> dP_packed_bed(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=0.01)
1255.1625662548427
>>> dP_packed_bed(dp=0.05, voidage=0.492, vs=0.1, rho=1E3, mu=1E-3, Dt=0.015, Method='Guo, Sun, Zhang, Ding & Liu')
18782.499710673364
```

The function `fluids.packed_bed.dP_packed_bed_methods(dp, voidage, vs, rho, mu, L=1.0, Dt=None, check_ranges=False)` handles determining which pressure drop in a packed bed correlation are suitable for the provided inputs.

Preferred correlations are ‘Erdim, Akgiray & Demir’ when tube diameter is not provided, and ‘Harrison, Brunner & Hecker’ when tube diameter is provided.

**Parameters**

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
Fluids Documentation, Release 0.1.86

vs [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area) [m/s]
rho [float] Density of the fluid [kg/m^3]
mu [float] Viscosity of the fluid, [Pa*s]
L [float, optional] Length the fluid flows in the packed bed [m]
Dt [float, optional] Diameter of the tube, [m]
check_ranges [bool, optional] Added for Future use only

Returns

methods [list] List of methods which can be used to calculate dP with the given inputs

Examples

```python
>>> dP_packed_bed_methods(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=1.0)
'Erdim, Akgiray & Demir'

>>> dP_packed_bed_methods(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, L=1.0, Dt=1e-2)
'Harrison, Brunner & Hecker'
```

```
fluids.packed_bed.Ergun(dp, voidage, vs, rho, mu, L=1.0)
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2] and [3]. Eighteenth most accurate correlation overall in the review of [2].

Most often presented in the following form:

$$\Delta P = \frac{150 \mu (1 - \epsilon)^2 v_s L}{\epsilon^3 d_p^2} + \frac{1.75 (1 - \epsilon) \rho v_s^2 L}{\epsilon^3 d_p}$$

It is also often presented with a term for sphericity, which is multiplied by particle diameter everywhere in the equation. However, this is highly empirical and better correlations for beds of differently-shaped particles exist. To use sphericity in this model, multiple the input particle diameter by the spericity separately.

In the review of [2], it is expressed in terms of a parameter f_p, shown below. This is a convenient means of expressing all forms of pressure drop in packed beds correlations in a way that allows for easy comparison.

$$f_p = \left(150 + 1.75 \left(\frac{Re}{1 - \epsilon}\right)\right) \frac{(1 - \epsilon)^2}{\epsilon^3 Re}$$

$$f_p = \frac{\Delta P d_p}{\rho v_s^2 L}$$

$$Re = \frac{\rho v_s d_p}{\mu}$$

Parameters

dp [float] Particle diameter of spheres [m]
voidage [float] Void fraction of bed packing [-]
vs [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
rho [float] Density of the fluid [kg/m^3]
mu [float] Viscosity of the fluid, [Pa*s]
L [float, optional] Length the fluid flows in the packed bed [m]

2.15. Packed bed pressure drop (fluids.packed_bed)
Returns

\(dP\) [float] Pressure drop across the bed [Pa]

Notes

The first term in this equation represents laminar loses, and the second, turbulent loses. Developed with data from spheres, sand, and pulverized coke. Fluids tested were carbon dioxide, nitrogen, methane, and hydrogen.

Validity range shown in [3] is \(1 < Re_{Erg} < 2300\). Over predicts pressure drop for \(Re_{Erg} > 700\).

References

[1], [2], [3]

Examples

```python
>>> Ergun(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1338.8671874999995
```

`fluids.packed_bed.Kuo_Nydegger(dp, voidage, vs, rho, mu, L=1.0)`

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2] and [3]. Thirty-eighth most accurate correlation overall in the review of [2].

\[
f_p = \left(276.23 + 5.05 \left(\frac{Re}{1-\epsilon}\right)^{0.87}\right) \left(1 - \epsilon\right)^2 \frac{1}{\epsilon^3 Re}
\]

\[
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
\]

\[
Re = \frac{\rho v_s d_p}{\mu}
\]

Parameters

- \(dp\) [float] Particle diameter of spheres [m]
- \(voidage\) [float] Void fraction of bed packing [-]
- \(vs\) [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- \(rho\) [float] Density of the fluid [kg/m^3]
- \(mu\) [float] Viscosity of the fluid, [Pa*s]
- \(L\) [float, optional] Length the fluid flows in the packed bed [m]

Returns

- \(dP\) [float] Pressure drop across the bed [Pa]

Notes

Validity range shown in [2] as for a range of \(460 < Re < 14600\). \(0.3760 < \epsilon < 0.3901\). Developed with data from rough granular ball propellants beds, with air.
References

[1], [2], [3]

Examples

```python
>>> Kuo_Nydegger(dp=8E-1, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
0.025651460973648624
```

fluids.packed_bed. **Jones_Krier** *(dp, voidage, vs, rho, mu, L=1.0)*

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], also shown in [2]. Tenth most accurate correlation overall in the review of [2].

\[
f_p = \left(150 + 3.89 \left(\frac{Re}{1-\epsilon}\right)^{0.87}\right) \left(1-\epsilon\right)^2 e^{0.87}
\]

\[
f_p = \frac{\Delta P d_p}{\rho v_s^2 L}
\]

\[
Re = \frac{\rho v_s d_p}{\mu}
\]

Parameters

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]

Returns

- **dP** [float] Pressure drop across the bed [Pa]

Notes

Validity range shown in [1] as for a range of \(733 < Re < 126,670\). \(0.3804 < \epsilon < 0.4304\). Developed from data of spherical glass beads.

References

[1], [2]

Examples

```python
>>> Jones_Krier(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1362.2719449873746
```
fluids.packed_bed.Carman(dp, voidage, vs, rho, mu, L=1.0)
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2]. Fifth most accurate correlation overall in the review of [2]. Also shown in [3].

\[f_p = \left(180 + 2.871 \left(\frac{Re}{1 - \epsilon} \right)^{0.9} \right) \frac{(1 - \epsilon)^2}{\epsilon^3 Re} \]

\[f_p = \frac{\Delta P d_p}{\rho v^2 s L} \]

\[Re = \frac{\rho v_s d_p}{\mu} \]

Parameters
- dp [float] Particle diameter of spheres [m]
- voidage [float] Void fraction of bed packing [-]
- vs [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- rho [float] Density of the fluid [kg/m^3]
- mu [float] Viscosity of the fluid, [Pa*s]
- L [float, optional] Length the fluid flows in the packed bed [m]

Returns
- dP [float] Pressure drop across the bed [Pa]

Notes
Valid in [1], [2], and [3] for a range of 300 < Re_Erg < 60,000.

References
[1], [2], [3]

Examples

```python
>>> Carman(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1614.721678121775
```

fluids.packed_bed.Hicks(dp, voidage, vs, rho, mu, L=1.0)
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2]. Twenty-third most accurate correlation overall in the review of [2]. Also shown in [3].

\[f_p = 6.8 \left(\frac{(1 - \epsilon)^{1.2}}{Re^{0.2} \epsilon^3} \right) \]

\[f_p = \frac{\Delta P d_p}{\rho v^2 s L} \]

\[Re = \frac{\rho v_s d_p}{\mu} \]

Parameters
Fluids Documentation, Release 0.1.86

dp [float] Particle diameter of spheres [m]

voidage [float] Void fraction of bed packing [-]

vs [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]

rho [float] Density of the fluid [kg/m³]

mu [float] Viscosity of the fluid, [Pa*s]

L [float, optional] Length the fluid flows in the packed bed [m]

Returns

dP [float] Pressure drop across the bed [Pa]

Notes

Valid in [1], [2], and [3] for a range of \(300 < Re_{Erg} < 60,000 \).

References

[1], [2], [3]

Examples

```python
>>> Hicks(dp=0.01, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
3.631703956680737
```

fluids.packed_bed.Brauer *(dp, voidage, vs, rho, mu, L=1.0)*

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2]. Also shown in [3].

\[
f_P = \left(160 + 3 \left(\frac{Re}{1 - \epsilon} \right)^{0.9} \right) \frac{(1 - \epsilon)^2}{\epsilon^3 Re}
\]

\[
f_P = \frac{\Delta P d_p}{\rho v_s^2 L}
\]

\[
Re = \frac{\rho v_s d_p}{\mu}
\]

Parameters

dp [float] Particle diameter of spheres [m]

voidage [float] Void fraction of bed packing [-]

vs [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]

rho [float] Density of the fluid [kg/m³]

mu [float] Viscosity of the fluid, [Pa*s]

L [float, optional] Length the fluid flows in the packed bed [m]

Returns

dP [float] Pressure drop across the bed [Pa]
Notes

Original has not been reviewed. In [2], is stated as for a range of $2 < Re_{Erg} < 20,000$. In [3], is stated as for a range of $0.01 < Re_{Erg} < 40,000$.

References

[1], [2], [2]

Examples

```python
>>> Brauer(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1441.5479196020563
```

`fluids.packed_bed.KTA(dp, voidage, vs, rho, mu, L=1.0)`

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2]. Third most accurate correlation overall in the review of [2].

$$f_p = \left(160 + 3 \left(\frac{Re}{1 - \epsilon}\right)^{0.9}\right) \frac{(1 - \epsilon)^2}{\epsilon^3 Re}$$

$$f_p = \frac{\Delta P d_p}{\rho v_s^2 L}$$

$$Re = \frac{\rho v_s d_p}{\mu}$$

Parameters

- `dp` [float] Particle diameter of spheres [m]
- `voidage` [float] Void fraction of bed packing [-]
- `vs` [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- `rho` [float] Density of the fluid [kg/m^3]
- `mu` [float] Viscosity of the fluid, [Pa*s]
- `L` [float, optional] Length the fluid flows in the packed bed [m]

Returns

- `dP` [float] Pressure drop across the bed [Pa]

Notes

Developed for gas flow through pebbles in nuclear reactors.

In [2], stated as for a range of $1 < RE_{Erg} < 100,000$. In [1], a limit on porosity is stated as $0.36 < \epsilon < 0.42$.

References

[1], [2]
Examples

```python
>>> KTA(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1440.409277034248
```

`fluids.packed_bed.Erdim_Akgiray_Demir(dp, voidage, vs, rho, mu, L=1.0)`
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], claiming to be the best model to date.

\[f_v = 160 + 2.81 Re_{Erg}^{0.904} \]
\[f_v = \frac{\Delta P d_p^2}{\mu v_s L (1 - \epsilon)^2} \]
\[Re_{Erg} = \frac{\rho v_s d_p}{\mu (1 - \epsilon)} \]

Parameters
- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]

Returns
- **dP** [float] Pressure drop across the bed [Pa]

Notes
Developed with data in the range of:

\[2 < Re_{Erg} < 3582 \]
\[4 < d_t/d_p < 34.1 \]
\[0.377 < \epsilon < 0.470 \]

References

[1]

Examples

```python
>>> Erdim_Akgiray_Demir(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1438.2826958844414
```

`fluids.packed_bed.Fahien_Schriver(dp, voidage, vs, rho, mu, L=1.0)`
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2]. Second most accurate correlation overall in the review of [2].

\[f_p = \left(q \frac{f_{1L}}{Re_{Erg}} + (1 - q) \left(f_2 + \frac{f_{1T}}{Re_{Erg}} \right) \right) \frac{1 - \epsilon}{\epsilon^3} \]
\[q = \exp \left(-\frac{\epsilon^2(1-\epsilon)}{12.6} Re_{Erg} \right) \]

\[f_{1L} = \frac{136}{(1-\epsilon)^{0.38}} \]

\[f_{1T} = \frac{29}{(1-\epsilon)^{1.45}\epsilon^2} \]

\[f_2 = \frac{1.87\epsilon^{0.75}}{(1-\epsilon)^{0.26}} \]

\[f_p = \frac{\Delta P d_p}{\rho v_s^2 L} \]

\[Re_{Erg} = \frac{\rho v_s d_p}{\mu (1-\epsilon)} \]

Parameters

- `dp` [float] Particle diameter of spheres [m]
- `voidage` [float] Void fraction of bed packing [-]
- `vs` [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- `rho` [float] Density of the fluid [kg/m^3]
- `mu` [float] Viscosity of the fluid, [Pa*s]
- `L` [float, optional] Length the fluid flows in the packed bed [m]

Returns

- `dP` [float] Pressure drop across the bed [Pa]

Notes

No range of validity available.

References

[1], [2]

Examples

```python
>>> Fahien_Schriver(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1470.6175541844711
```

`fluids.packed_bed.Tallmadge(dp, voidage, vs, rho, mu, L=1.0)`

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], as shown in [2] and [3].

\[f_p = \left(150 + 4.2 \left(\frac{Re}{1-\epsilon} \right)^{5/6} \right) \frac{(1-\epsilon)^2}{\epsilon^3 Re} \]

\[f_p = \frac{\Delta P d_p}{\rho v_s^2 L} \]

\[Re = \frac{\rho v_s d_p}{\mu} \]
Parameters

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]

Returns

- **dP** [float] Pressure drop across the bed [Pa]

Notes

The validity range shown in [2] is a range of 0.1 < Re < 100000.

References

[1], [2], [3]

Examples

```python
>>> Tallmadge(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1365.2739144209424
```

fluids.packed_bed. `Idelchik` *(dp, voidage, vs, rho, mu, L=1.0)*

Calculates pressure drop across a packed bed of spheres as in [2], originally in [1].

\[
\frac{\Delta P}{L \rho v_s^2} d_p = 0.765 \left(\frac{30}{Re_l} + \frac{3}{Re_l^{0.7}} + 0.3 \right)
\]

\[
Re_l = (0.45/\epsilon^{0.5}) Re_{Erg}
\]

\[
Re_{Erg} = \frac{\rho v_s D_p}{\mu (1 - \epsilon)}
\]

Parameters

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]

Returns

- **dP** [float] Pressure drop across the bed [Pa]
Notes

\[0.001 < Re_{Erg} < 1000 \] This equation is valid for void fractions between 0.3 and 0.8. Cited as by Bernshtein.

References

[1], [2]

Examples

```python
>>> Idelchik(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3)
1571.909125999067
```

Fluids documentation, Harrison_Brunner_Hecker (dp, voidage, vs, rho, mu, L=L, Dt=None)
Calculates pressure drop across a packed bed of spheres using a correlation developed in [1], also shown in [2]. Fourth most accurate correlation overall in the review of [2]. Applies a wall correction if diameter of tube is provided.

\[
f_p = \left(119.8A + 4.63B \left(\frac{Re}{1-\epsilon} \right)^{5/6} \frac{(1-\epsilon)^2}{\epsilon^3 Re} \right) (1-\epsilon)^2
\]

\[
A = \left(1 + \pi \frac{dp}{6(1-\epsilon)Dt} \right)^2
\]

\[
B = 1 - \pi^2 \frac{dp}{24Dt} \left(1 - \frac{0.5 dp}{Dt} \right)
\]

\[
f_p = \frac{\Delta P dp}{\rho_v^2 L}
\]

\[
Re = \frac{\rho_v dp}{\mu}
\]

Parameters

- `dp` [float] Particle diameter of spheres [m]
- `voidage` [float] Void fraction of bed packing [-]
- `vs` [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- `rho` [float] Density of the fluid [kg/m^3]
- `mu` [float] Viscosity of the fluid, [Pa*s]
- `L` [float, optional] Length the fluid flows in the packed bed [m]
- `Dt` [float, optional] Diameter of the tube, [m]

Returns

- `dP` [float] Pressure drop across the bed [Pa]

Notes

Uses data from other sources only. Correlation will underestimate pressure drop if tube diameter is not provided. Limits are specified in [1] as: .. math:
\[0.72 < \text{Re} < 7700 \]
\[8.3 < \frac{d_t}{d_p} < 50 \]
\[0.33 < \epsilon < 0.88\]

References

[1], [2]

Examples

```python
>>> Harrison_Brunner_Hecker(dp=8E-4, voidage=0.4, vs=1E-3, rho=1E3, mu=1E-3, Dt=1E-2)
1255.1625662548427
```

```
fluids.packed_bed.Montillet_Akkari_Comiti(dp, voidage, vs, rho, mu, L=1, Dt=None)
Calculates pressure drop across a packed bed of spheres as in [2], originally in [1]. Wall effect adjustment is used if Dt is provided.

\[
\frac{\Delta P}{L \rho V_s^2 D_p} \frac{c^3}{(1 - \epsilon)} = a \left( \frac{D_c}{D_p} \right)^{0.20} \left( \frac{1000}{Re_p} + 60 \frac{Re_p^{0.5}}{Re_p} + 12 \right)
\]

\[Re_p = \frac{\rho v_s D_p}{\mu}\]

Parameters

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **L** [float, optional] Length the fluid flows in the packed bed [m]
- **Dt** [float, optional] Diameter of the tube, [m]

Returns

- **dP** [float] Pressure drop across bed [Pa]

Notes

10 < \text{Re}_p < 2500 if Dc/D > 50, set to 2.2. a = 0.061 for epsilon < 0.4, 0.050 for > 0.4.

References

[1], [2]
Examples

Custom example:

```python
>>> Montillet_Akkari_Comiti(dp=0.0008, voidage=0.4, L=0.5, vs=0.00132629120,
 rho=1000., mu=1.00E-003)
1148.1905244077548
```

```python
fluids.packed_bed.Guo_Sun(dp, voidage, vs, rho, mu, Dt, L=1.0)
```

Calculates pressure drop across a packed bed of spheres using a correlation developed in [1]. This is valid for highly-packed particles at particle/tube diameter ratios between 2 and 3, where a ring packing structure occurs. If a packing ratio is so low, it is important to use this model because in some cases its predictions are as low as half those of other models!

\[
f_v = 180 + \left( 9.5374 \frac{d_p}{D_t} - 2.8054 \right) Re_{Er_g}^{0.97}
\]

\[
f_v = \frac{\Delta P d_p^2 \epsilon^3}{\mu v_s L (1 - \epsilon)^2}
\]

\[
Re_{Er_g} = \frac{\rho v_s d_p}{\mu (1 - \epsilon)}
\]

Parameters

- **dp** [float] Particle diameter of spheres [m]
- **voidage** [float] Void fraction of bed packing [-]
- **vs** [float] Superficial velocity of the fluid (volumetric flow rate/cross-sectional area)[m/s]
- **rho** [float] Density of the fluid [kg/m^3]
- **mu** [float] Viscosity of the fluid, [Pa*s]
- **Dt** [float] Diameter of the tube, [m]
- **L** [float, optional] Length the fluid flows in the packed bed [m]

Returns

- **dP** [float] Pressure drop across the bed [Pa]

Notes

Developed with data in the range of:

\[
100 < Re_m < 33000
\]

\[
2 < d_t/d_p < 31
\]

\[
0.476 < \epsilon < 0.492
\]

References

[1]
fluids.packed_bed.voidage_Benyahia_Oneil(Dpe, Dt, sphericity)
Calculates voidage of a bed of arbitrarily shaped uniform particles packed into a bed or tube of diameter $D_t$, with equivalent sphere diameter $D_p$. Shown in [1], and cited by various authors. Correlations exist also for spheres, solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.

\[
\epsilon = 0.1504 + \frac{0.2024}{\phi} + \frac{1.0814}{\left(\frac{d_t}{d_p} + 0.1226\right)^2}
\]

Parameters

- **Dpe** [float] Equivalent spherical particle diameter (diameter of a sphere with the same volume), [m]
- **Dt** [float] Diameter of the tube, [m]
- **sphericity** [float] Sphericity of particles in bed []

Returns

- **voidage** [float] Void fraction of bed packing []

Notes

Average error of 5.2%; valid $1.5 < \frac{d_t}{d_p} < 50$ and $0.42 < \text{sphericity} < 1$

References

[1]

Examples

```python
>>> voidage_Benyahia_Oneil(Dpe=1E-3, Dt=1E-2, sphericity=.8)
0.41395363849210065
```

fluids.packed_bed.voidage_Benyahia_Oneil_spherical(Dp, Dt)
Calculates voidage of a bed of spheres packed into a bed or tube of diameter $D_t$, with sphere diameters $D_p$. Shown in [1], and cited by various authors. Correlations exist also for solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.

\[
\epsilon = 0.390 + \frac{1.740}{\left(\frac{d_t}{d_p} + 1.140\right)^2}
\]

Parameters

- **Dp** [float] Spherical particle diameter, [m]
- **Dt** [float] Diameter of the tube, [m]

Returns

- **voidage** [float] Void fraction of bed packing []
Notes

Average error 1.5%, 1.5 < ratio < 50.

References

[1]

Examples

```python
>>> voidage_Benyahia_Oneil_spherical(Dp=.001, Dt=.05)
0.3906653157443224
```

`fluids.packed_bed.voidage_Benyahia_Oneil_cylindrical(Dpe, Dt, sphericity)`

Calculates voidage of a bed of cylindrical uniform particles packed into a bed or tube of diameter $Dt$, with equivalent sphere diameter $Dpe$. Shown in [1], and cited by various authors. Correlations exist also for spheres, solid cylinders, hollow cylinders, and 4-hole cylinders. Based on a series of physical measurements.

\[
\epsilon = 0.373 + \frac{1.703}{\left(\frac{d_{eq}}{d_p} + 0.611\right)^2}
\]

Parameters

- **Dpe** [float] Equivalent spherical particle diameter (diameter of a sphere with the same volume), [m]
- **Dt** [float] Diameter of the tube, [m]
- **sphericity** [float] Sphericity of particles in bed []

Returns

- **voidage** [float] Void fraction of bed packing []

Notes

Average error 1.6%; 1.7 < ratio < 26.3.

References

[1]

Examples

```python
>>> voidage_Benyahia_Oneil_cylindrical(Dpe=.01, Dt=.1, sphericity=.6)
0.38812523109607894
```
2.16 Packing & demister pressure drop (fluids.packed_tower)

This module contains correlations and functions for calculating pressure drop from packings and demisters; separation efficiency of demisters; demister pressure drop; and demister geometry.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker or contact the author at Caleb.Andrew.Bell@gmail.com.

• Packing Pressure Drop
• Packing Flooding
• Demister Pressure Drop
• Demister Separation Efficiency
• Demister Geometry

2.16.1 Packing Pressure Drop

fluids.packed_tower. Robbins \((L, G, \text{rhol}, \text{rhog}, \text{mul}, H=1.0, Fpd=24.0)\)

Calculates pressure drop across a packed column, using the Robbins equation.

Pressure drop is given by:

\[
\Delta P = C_3 G_f^2 10^{C_4 L_f} + 0.4\left[\frac{L_f}{20000}\right]^{0.1} \left[\frac{C_3 G_f^2 10^{C_4 L_f}}{L_f}\right]^{4}
\]

\[
G_f = G\left[\frac{0.075}{\rho_g}\right]^{0.5} \left[\frac{Fpd}{20}\right]^{0.5} = 986 F_s \left[\frac{Fpd}{20}\right]^{0.5}
\]

\[
L_f = L\left[\frac{62.4}{\rho_L}\right] \left[\frac{Fpd}{20}\right]^{0.5} \mu^{0.1}
\]

\[
F_s = V_s \rho_g^{0.5}
\]

Parameters

- \(L\) [float] Specific liquid mass flow rate [kg/s/m^2]
- \(G\) [float] Specific gas mass flow rate [kg/s/m^2]
- \(\text{rhol}\) [float] Density of liquid [kg/m^3]
- \(\text{rhog}\) [float] Density of gas [kg/m^3]
- \(\text{mul}\) [float] Viscosity of liquid [Pa*s]
- \(H\) [float] Height of packing [m]
- \(Fpd\) [float] Robbins packing factor (tabulated for packings) [1/ft]

Returns

- \(dP\) [float] Pressure drop across packing [Pa]

Notes

Perry’s displayed equation has a typo in a superscript. This model is based on the example in Perry’s.
References

[1]

Examples

```
>>> Robbins(L=12.2, G=2.03, rhol=1000., rhog=1.1853, mul=0.001, H=2.0, Fpd=24.0)
619.6624593438102
```

**fluids.packed_tower.Stichlmair_dry** *(Vg, rhog, mug, voidage, specific_area, C1, C2, C3, H=1.0)*

Calculates dry pressure drop across a packed column, using the Stichlmair [1] correlation. Uses three regressed constants for each type of packing, and voidage and specific area.

Pressure drop is given by:

\[
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1 - \epsilon}{\epsilon^{1.85}} \rho G H d_p V_g^2
\]

\[
f_0 = \frac{C_1}{R_{e_g}} + \frac{C_2}{R_{e_g^{0.5}}} + C_3
\]

\[
d_p = \frac{6(1 - \epsilon)}{a}
\]

**Parameters**

- **Vg** [float] Superficial velocity of gas, Q/A [m/s]
- **rhog** [float] Density of gas [kg/m^3]
- **mug** [float] Viscosity of gas [Pa*s]
- **voidage** [float] Voidage of bed of packing material []
- **specific_area** [float] Specific area of the packing material [m^2/m^3]
- **C1** [float] Packing-specific constant []
- **C2** [float] Packing-specific constant []
- **C3** [float] Packing-specific constant []
- **H** [float, optional] Height of packing [m]

**Returns**

- **dP_dry** [float] Pressure drop across dry packing [Pa]

**Notes**

This model is used by most process simulation tools. If H is not provided, it defaults to 1. If Z is not provided, it defaults to 1.

**References**

[1]
Examples

```python
>>> Stichlmair_dry(Vg=0.4, rhog=5., mug=5E-5, voidage=0.68,
... specific_area=260., C1=32., C2=7.0, C3=1.0)
236.80904286559885
```

`fluids.packed_tower.Stichlmair_wet(Vg, Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3, H=1.0)`

Calculates dry pressure drop across a packed column, using the Stichlmair [1] correlation. Uses three regressed constants for each type of packing, and voidage and specific area. This model is for irrigated columns only.

Pressure drop is given by:

\[
\frac{\Delta P_{irr}}{H} = \frac{\Delta P_{dry}}{H} \left( \frac{1 - \epsilon + h_T}{1 - \epsilon} \right)^{(2+c)/3} \times \left( \frac{\epsilon}{\epsilon - h_T} \right)^{4.65}
\]

\[
h_T = h_0 \left[ 1 + 20 \left( \frac{\Delta P_{irr}}{H \rho g} \right)^2 \right]
\]

\[
F_{rL} = \frac{V_L^2 a}{g \epsilon^{4.65}}
\]

\[
h_0 = 0.555 F_{rL}^{1/3}
\]

\[
c = -\frac{C_1}{Re_g} - \frac{C_2}{(2Re_g^{0.5})}
\]

\[
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1 - \epsilon}{\epsilon^{4.65} \rho g} \frac{H}{d_p} V_g^2
\]

\[
f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{0.5}} + C_3
\]

\[
d_p = \frac{6(1 - \epsilon)}{a}
\]

Parameters

- `Vg` [float] Superficial velocity of gas, Q/A [m/s]
- `Vl` [float] Superficial velocity of liquid, Q/A [m/s]
- `rhog` [float] Density of gas [kg/m^3]
- `rhol` [float] Density of liquid [kg/m^3]
- `mug` [float] Viscosity of gas [Pa*s]
- `voidage` [float] Voidage of bed of packing material []
- `specific_area` [float] Specific area of the packing material [m^2/m^3]
- `C1` [float] Packing-specific constant []
- `C2` [float] Packing-specific constant []
- `C3` [float] Packing-specific constant []
- `H` [float, optional] Height of packing [m]

Returns

- `dP` [float] Pressure drop across irrigated packing [Pa]
Notes

This model is used by most process simulation tools. If $H$ is not provided, it defaults to 1. If $Z$ is not provided, it defaults to 1. A numerical solver is used and needed by this model. Its initial guess is the dry pressure drop. Convergence problems may occur. The model as described in [1] appears to have a typo, and could not match the example. As described in [2], however, the model works.

References

[1], [2]

Examples

Example is from [1], matches.

```python
>>> Stichlmair_wet(Vg=0.4, Vl = 5E-3, rhog=5., rhol=1200., mug=5E-5, ...
... voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.)
539.876823725352
```

### 2.16.2 Packing Flooding

**`fluids.packed_tower.Stichlmair_flood(Vl, rhog, rhol, mug, voidage, specific_area, C1, C2, C3, H=1.0)`**

Calculates gas rate for flooding of a packed column, using the Stichlmair [1] correlation. Uses three regressed constants for each type of packing, and voidage and specific area.

Pressure drop is given by:

$$
\frac{\Delta P_{irr}}{H} = \frac{\Delta P_{dry}}{H} \left( \frac{1 - \epsilon + h_T}{1 - \epsilon} \right)^{2+\epsilon/3} \left( \frac{\epsilon}{\epsilon - h_T} \right)^{4.65}
$$

$$
h_T = h_0 \left[ 1 + 20 \left( \frac{\Delta P_{irr}}{H \rho_{L} g} \right)^2 \right]
$$

$$
F_{rL} = \frac{V_L^2 a}{g \epsilon^{4.65}}
$$

$$
h_0 = 0.555 F_{rL}^{1/3}
$$

$$
c = \frac{-C_1 / Re_g - C_2 / (2 Re_g^{0.5})}{f_0}
$$

$$
\Delta P_{dry} = \frac{3}{4} f_0 \frac{1 - \epsilon}{\epsilon^{4.65} \rho_{G} g} \frac{H}{d_p} V_G^2
$$

$$
f_0 = \frac{C_1}{Re_g} + \frac{C_2}{Re_g^{0.5}} + C_3
$$

$$
d_p = \frac{6(1 - \epsilon)}{a}
$$

**Parameters**

- **Vl** [float] Superficial velocity of liquid, Q/A [m/s]
- **rhog** [float] Density of gas [kg/m³]
 Fluids Documentation, Release 0.1.86

\[ \rho_{\text{ol}} \] [float] Density of liquid [kg/m^3]
\[ \mu_{\text{ug}} \] [float] Viscosity of gas [Pa*s]
\[ \text{voidage} \] [float] Voidage of bed of packing material []
\[ \text{specific area} \] [float] Specific area of the packing material [m^2/m^3]
\[ C_1 \] [float] Packing-specific constant []
\[ C_2 \] [float] Packing-specific constant []
\[ C_3 \] [float] Packing-specific constant []
\[ H \] [float, optional] Height of packing [m]

Returns

\[ V_g \] [float] Superficial velocity of gas, Q/A [m/s]

Notes

A numerical solver is used to solve this model.

References

[1]

Examples

Example is from [1], matches.

```python
>>> Stichlmair_flood(Vl = 5E-3, rhog=5., rhol=1200., mug=5E-5,
... voidage=0.68, specific_area=260., C1=32., C2=7., C3=1.)
0.6394323542746928
```

2.16.3 Demister Pressure Drop

\texttt{fluids.packed_tower.dp\_demister\_dry\_Setekleiv\_Svendsen}(S, \texttt{voidage}, \texttt{vs}, \texttt{rho}, \texttt{mu}, \texttt{L=1.0})

Calculates dry pressure drop across a demister, using the correlation in [1]. This model is for dry demisters with no holdup only.

\[
\frac{\Delta P e^2}{\rho_f v^2} = 10.29 - \frac{565}{69.6 S L - (S L)^2 - 779} - \frac{74.9}{160.9 - 4.85 S L} + 45.33 \left( \frac{\mu_f c S^2 L}{\rho_f v} \right)^{0.75}
\]

Parameters

\texttt{S} [float] Specific area of the demister, normally ~250-1000 [m^2/m^3]
\texttt{voidage} [float] Voidage of bed of the demister material, normally ~0.98 []
\texttt{vs} [float] Superficial velocity of fluid, Q/A [m/s]
\texttt{rho} [float] Density of fluid [kg/m^3]
\texttt{mu} [float] Viscosity of fluid [Pa*s]
\texttt{L} [float, optional] Length of the demister [m]
Returns

\(dP\) [float] Pressure drop across a dry demister [Pa]

Notes

Useful at startup and in modeling. Dry pressure drop is normally negligible compared to wet pressure drop. Coefficients obtained by evolutionary programming and may not fit data outside of the limits of the variables.

References

[1]

Examples

```python
>>> dP_demister_dry_Setekleiv_Svendsen(S=250, voidage=.983, vs=1.2, rho=10, mu=3E-5, L=1)
320.3280788941329
```

\[
\Delta P = \frac{c^2}{\rho f v^2} = 7.3 - \frac{320}{69.6 S L - (S L)^2 - 779} - \frac{52.4}{161 - 4.85 S L} + 27.2 \left( \frac{\mu f S^2 L}{\rho f v} \right)^{0.75}
\]

Parameters

- \(S\) [float] Specific area of the demister, normally ~250-1000 [m^2/m^3]
- \(\text{voidage}\) [float] Voidage of bed of the demister material, normally ~0.98 []
- \(\text{vs}\) [float] Superficial velocity of fluid, Q/A [m/s]
- \(\rho\) [float] Density of fluid [kg/m^3]
- \(\mu\) [float] Viscosity of fluid [Pa*s]
- \(L\) [float, optional] Length of the demister [m]

Returns

- \(dP\) [float] Pressure drop across a dry demister [Pa]

Notes

Useful at startup and in modeling. Dry pressure drop is normally negligible compared to wet pressure drop. Coefficients obtained by evolutionary programming and may not fit data outside of the limits of the variables.

References

[1]
Examples

```python
>>> dP_demister_dry_Setekleiv_Svendsen_lit(S=250, voidage=0.983, vs=1.2, rho=10, μ=3E-5, L=1.0)
209.083848658307
```

`fluids.packed_tower.dP_demister_wet_ElDessouky(vs, voidage, d_wire, L=1.0)`
Calculates wet pressure drop across a demister, using the correlation in [1]. Uses only their own experimental data.

\[
\frac{\Delta P}{L} = 0.002357(1 - \epsilon)^{0.375798}(V)^{0.81317}(d_w)^{-1.56114147}
\]

Parameters

- `vs` [float] Superficial velocity of fluid, Q/A [m/s]
- `voidage` [float] Voidage of bed of the demister material, normally ~0.98 []
- `d_wire` [float] Diameter of mesh wire,[m]
- `L` [float, optional] Length of the demister [m]

Returns

- `dP` [float] Pressure drop across a dry demister [Pa]

Notes

No dependency on the liquid properties is included here. Because of the exponential nature of the correlation, the limiting pressure drop as V is lowered is 0 Pa. A dry pressure drop correlation should be compared with results from this at low velocities, and the larger of the two pressure drops used.

The correlation in [1] was presented as follows, with wire diameter in units of mm, density in kg/m^3, V in m/s, and dP in Pa/m.

\[
\Delta P = 3.88178(\rho_{mesh})^{0.375798}(V)^{0.81317}(d_w)^{-1.56114147}
\]

Here, the correlation is converted to base SI units and to use voidage; not all demisters are stainless steel as in [1]. A density of 7999 kg/m^3 was used in the conversion.

In [1], V ranged from 0.98-7.5 m/s, rho from 80.317-208.16 kg/m^3, depth from 100 to 200 mm, wire diameter of 0.2mm to 0.32 mm, and particle diameter from 1 to 5 mm.

References

[1]

Examples

```python
>>> dP_demister_wet_ElDessouky(6, 0.978, 0.00032)
688.9216420105029
```
2.16.4 Demister Separation Efficiency

```
fluids.packed_tower.separation_demister_ElDessouky(vs, voidage, d_wire, d_drop)
```
Calculates droplet removal by a demister as a fraction from 0 to 1, using the correlation in [1]. Uses only their own experimental data.

\[
\eta = 0.85835(d_w)^{-0.28264}(1 - \epsilon)^{0.099625}(V)^{0.106878}(d_p)^{0.383197}
\]

**Parameters**

- `vs` [float] Superficial velocity of fluid, Q/A [m/s]
- `voidage` [float] Voidage of bed of the demister material, normally ~0.98 []
- `d_wire` [float] Diameter of mesh wire, [m]
- `d_drop` [float] Drop diameter, [m]

**Returns**

- `eta` [float] Fraction droplets removed by mass [-]

**Notes**

No dependency on the liquid properties is included here. Because of the exponential nature of the correlation, for smaller diameters separation quickly lowers. This correlation can predict a separation larger than 1 for higher velocities, lower voidages, lower wire diameters, and large droplet sizes. This function truncates these larger values to 1.

The correlation in [1] was presented as follows, with wire diameter in units of mm, density in kg/m³, V in m/s, separation in %, and particle diameter in mm.

\[
\eta = 17.5047(d_w)^{-0.28264}(\rho_{mesh})^{0.099625}(V)^{0.106878}(d_p)^{0.383197}
\]

Here, the correlation is converted to base SI units and to use voidage; not all demisters are stainless steel as in [1]. A density of 7999 kg/m³ was used in the conversion.

In [1], V ranged from 0.98-7.5 m/s, rho from 80.317-208.16 kg/m³, depth from 100 to 200 mm, wire diameter of 0.2 mm to 0.32 mm, and particle diameter from 1 to 5 mm.

**References**

[1]

**Examples**

```python
>>> separation_demister_ElDessouky(1.35, 0.974, 0.0002, 0.005)
0.8982892997640582
```

2.16.5 Demister Geometry

```
fluids.packed_tower.voidage_experimental(m, rho, D, H)
```
Calculates voidage of a bed or mesh given an experimental weight and fixed density, diameter, and height, as shown in [1]. The formula is also self-evident.

\[
\epsilon = 1 - \frac{m_{mesh} + \pi D^2 H \rho_{mesh}}{\rho_{material}}
\]
Parameters

- \( m \) [float] Mass of mesh or bed particles weighted, [kg]
- \( \rho \) [float] Density of solid particles or mesh [kg/m\(^3\)]
- \( D \) [float] Diameter of the cylindrical bed [m]
- \( H \) [float] Height of the demister or bed [m]

Returns

- \( \text{voidage} \) [float] Voidage of bed of the material []

Notes

Should be trusted over manufacturer data.

References

[1]

Examples

```python
>>> voidage_experimental(m=126, rho=8000, D=1, H=1)
0.9799464771704212
```

`fluids.packed_tower.specific_area_mesh(voidage, d)`

Calculates the specific area of a wire mesh, as used in demisters or filters. Shown in [1], and also self-evident and non-empirical. Makes the ideal assumption that wires never touch.

\[
S = \frac{4(1 - \epsilon)}{d_{wire}}
\]

Parameters

- \( \text{voidage} \) [float] Voidage of the mesh []
- \( d \) [float] Diameter of the wires making the mesh, [m]

Returns

- \( S \) [float] Specific area of the mesh [m\(^2\)/m\(^3\)]

Notes

Should be preferred over manufacturer data. Can also be used to show that manufacturer’s data is inconsistent with their claimed voidage and wire diameter.

References

[1]
2.17 Particle Size Distributions (fluids.particle_size_distribution)

This module contains particle distribution characterization, fitting, interpolating, and manipulation functions. It may be used with discrete particle size distributions, or with statistical ones with parameters specified.

For reporting bugs, adding feature requests, or submitting pull requests, please use the GitHub issue tracker or contact the author at Caleb.Andrew.Bell@gmail.com.

- Particle Size Distribution Base Class
- Discrete Particle Size Distributions
- Statistical Particle Size Distributions
- Helper functions: Lognormal Distribution
- Helper functions: Gates Gaudin Schuhman Distribution
- Helper functions: Rosin Rammler Distribution
- Sieves
- Point Spacing

2.17.1 Particle Size Distribution Base Class

```python
class fluids.particle_size_distribution.ParticleSizeDistributionContinuous
 Bases: object

 Base class representing a continuous particle size distribution specified by a mathematical/statistical function. This class holds the common methods only.
```

Notes

Although the stated units of input are in meters, this class is actually independent of the units provided; all results will be consistent with the provided unit.

References

[1]

Examples

Example problem from [1].
```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6)
```

### Attributes

**vssa** The volume-specific surface area of a particle size distribution.

### Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>cdf(d[, n])</code></td>
<td>Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td><code>cdf_discrete(ds[, n])</code></td>
<td>Computes the cumulative distribution functions for a list of specified particle diameters.</td>
</tr>
<tr>
<td><code>delta_cdf(d_min, d_max[, n])</code></td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td><code>dn(fraction[, n])</code></td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td><code>ds_discrete([d_min, d_max, pts, limit, method])</code></td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
<tr>
<td><code>fractions_discrete(ds[, n])</code></td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td><code>mean_size(p, q)</code></td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td><code>mean_size_ISO(k, r)</code></td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
<tr>
<td><code>pdf(d[, n])</code></td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td><code>plot_cdf([n, d_min, d_max, pts, method])</code></td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td><code>plot_pdf([n, d_min, d_max, pts, normalized, ...])</code></td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>

### cdf (d, n=None)

Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis. The evaluation function varies with the distribution chosen.

\[
Q_n(d) = \int_0^d q_n(d)
\]

#### Parameters

- **d** [float] Particle size diameter, [m]
- **n** [int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

#### Returns

- **cdf** [float] The cumulative distribution function at the specified diameter and order, [-]
Notes

Analytical integrals can be found for most distributions even when order conversions are necessary.

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> [psd.cdf(5e-6, n) for n in range(4)]
[0.933192798731, 0.8413447460685, 0.6914624612740, 0.5]
```

cdf_discrete(ds, n=None)
Computes the cumulative distribution functions for a list of specified particle diameters.

**Parameters**

- `ds` [list[float]]: Particle size diameters, [m]
- `n` [int, optional]: None (for the `order` specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

**Returns**

- `cdfs` [float]: The cumulative distribution functions at the specified diameters and order, [-]

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> psd.cdf_discrete([1e-6, 1e-5, 1e-4, 1e-3])
[0.000643471012913, 0.917171480998, 0.999999998960, 1.0]
```

delta_cdf(d_min, d_max, n=None)
Computes the difference in cumulative distribution function between two particle size diameters.

\[
\Delta Q_n = Q_n(d_{\text{max}}) - Q_n(d_{\text{min}})
\]

**Parameters**

- `d_min` [float]: Lower particle size diameter, [m]
- `d_max` [float]: Upper particle size diameter, [m]
- `n` [int, optional]: None (for the `order` specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

**Returns**

- `delta_cdf` [float]: The difference in the cumulative distribution function for the two diameters specified, [-]

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> psd.delta_cdf(1e-6, 1e-5)
0.9165280099853876
```
**dn** *(fraction, n=None)*

Computes the diameter at which a specified *fraction* of the distribution falls under. Utilizes a bounded solver to search for the desired diameter.

**Parameters**

- **fraction** [float] Fraction of the distribution which should be under the calculated diameter, [-]
- **n** [int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

**Returns**

- **d** [float] Particle size diameter, [m]

**Examples**

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> psd.dn(.5)
5e-06
>>> psd.dn(1)
0.0002947436533523378
>>> psd.dn(0)
0.0
```

**ds_discrete** *(d_min=None, d_max=None, pts=20, limit=1e-09, method='logarithmic')*

Create a particle spacing mesh to perform calculations with, according to one of several ways. The allowable meshes are ‘linear’, ‘logarithmic’, a geometric series specified by a Renard number such as ‘R10’, or the meshes available in one of several sieve standards.

**Parameters**

- **d_min** [float, optional] The minimum diameter at which the mesh starts, [m]
- **d_max** [float, optional] The maximum diameter at which the mesh ends, [m]
- **pts** [int, optional] The number of points to return for the mesh (note this is not respected by sieve meshes), [-]
- **limit** [float] If *d_min* or *d_max* is not specified, it will be calculated as the *dn* at which this limit or 1-limit exists (this is ignored for Renard numbers), [-]

**Returns**

- **ds** [list[float]] The generated mesh diameters, [m]

**Notes**

Note that when specifying a Renard series, only one of *d_min* or *d_max* can be respected! Provide only one of those numbers.

Note that when specifying a sieve standard the number of points is not respected!
fractions_discrete (ds, n=None)
Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters. The first diameter contains the cdf from 0 to it.

Parameters

- **ds** [list[float]] Particle size diameters, [m]
- **n** [int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

Returns

- **fractions** [float] The differences in the cumulative distribution functions at the specified diameters and order, [-]

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> psd.fractions_discrete([1e-6, 1e-5, 1e-4, 1e-3])
[0.00064347101291, 0.916528009985, 0.0828285179619, 1.039798e-09]
```

mean_size (p, q)
Calculates the mean particle size according to moment-ratio notation. This is the more common and often convenient definition.

\[
[D_{p,q}]^{(p-q)} = \sum_i n_i D_i^p - \sum_i n_i D_i^q
\]

\[
[D_{p,p}] = \exp \left[ \frac{\sum_i n_i D_i^p \ln D_i}{\sum_i n_i D_i^p} \right], \text{ if } p = q
\]

Note that \(n_i\) in the above equation is replaceable with the fraction of particles in that bin.

Parameters

- **p** [int] Power and/or subscript of D moment in the above equations, [-]
- **q** [int] Power and/or subscript of D moment in the above equations, [-]

Returns

- **d_pq** [float] Mean particle size according to the specified p and q, [m]

Notes

The following is a list of common names for specific mean diameters.

- **D[-3, 0]**: arithmetic harmonic mean volume diameter
- **D[-2, 1]**: size-weighted harmonic mean volume diameter
- **D[-1, 2]**: area-weighted harmonic mean volume diameter
- **D[-2, 0]**: arithmetic harmonic mean area diameter
- **D[-1, 1]**: size-weighted harmonic mean area diameter
• $D[-1,0]$ : arithmetic harmonic mean diameter
• $D[0,0]$ : arithmetic geometric mean diameter
• $D[1,1]$ : size-weighted geometric mean diameter
• $D[2,2]$ : area-weighted geometric mean diameter
• $D[3,3]$ : volume-weighted geometric mean diameter
• $D[1,0]$ : arithmetic mean diameter
• $D[2,1]$ : size-weighted mean diameter
• $D[3,2]$ : area-weighted mean diameter, Sauter mean diameter
• $D[4,3]$ : volume-weighted mean diameter, De Brouckere diameter
• $D[2,0]$ : arithmetic mean area diameter
• $D[3,1]$ : size-weighted mean area diameter
• $D[4,2]$ : area-weighted mean area diameter
• $D[5,3]$ : volume-weighted mean area diameter
• $D[3,0]$ : arithmetic mean volume diameter
• $D[4,1]$ : size-weighted mean volume diameter
• $D[5,2]$ : area-weighted mean volume diameter
• $D[6,3]$ : volume-weighted mean volume diameter

This notation was first introduced in [1].

The sum of $p$ and $q$ is called the order of the mean size [3].

\[ \bar{D}_{p,q} \equiv \bar{D}_{q,p} \]

References
[1], [2], [3]

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6)
>>> psd.mean_size(3, 2)
4.412484512922977e-06
```

Note that for the case where $p == q$, a different set of formulas are required - which do not have analytical results for many distributions. Therefore, a close numerical approximation is used instead, to perturb the values of $p$ and $q$ so they are 1E-9 away from each other. This leads only to slight errors, as in the example below where the correct answer is 5E-6.

```python
>>> psd.mean_size(3, 3)
4.9999999304923345e-06
```

\textbf{mean\_size\_ISO}(k, r)

Calculates the mean particle size according to moment notation (ISO). This system is related to the moment-ratio notation as follows; see the \texttt{mean\_size} method for the full formulas.

\[ \bar{x}_{p-q,q} \equiv \bar{x}_{k+r,r} \equiv \bar{D}_{p,q} \]
Parameters

- k [int] Power and/or subscript of D moment in the above equations, [-]
- r [int] Power and/or subscript of D moment in the above equations, [-]

Returns

- x_kr [float] Mean particle size according to the specified k and r in the ISO series, [m]

Notes

The following is a list of common names for specific mean diameters in the ISO naming convention.

- x[-3, 0]: arithmetic harmonic mean volume diameter
- x[-3, 1]: size-weighted harmonic mean volume diameter
- x[-3, 2]: area-weighted harmonic mean volume diameter
- x[-2, 0]: arithmetic harmonic mean area diameter
- x[-2, 1]: size-weighted harmonic mean area diameter
- x[-1, 0]: arithmetic harmonic mean diameter
- x[0, 0]: arithmetic geometric mean diameter
- x[0, 1]: size-weighted geometric mean diameter
- x[0, 2]: area-weighted geometric mean diameter
- x[0, 3]: volume-weighted geometric mean diameter
- x[1, 0]: arithmetic mean diameter
- x[1, 1]: size-weighted mean diameter
- x[1, 2]: area-weighted mean diameter, **Sauter mean diameter**
- x[1, 3]: volume-weighted mean diameter, **De Brouckere diameter**
- x[2, 0]: arithmetic mean area diameter
- x[1, 1]: size-weighted mean area diameter
- x[2, 1]: area-weighted mean area diameter
- x[2, 2]: volume-weighted mean area diameter
- x[3, 0]: arithmetic mean volume diameter
- x[3, 1]: size-weighted mean volume diameter
- x[3, 2]: area-weighted mean volume diameter
- x[3, 3]: volume-weighted mean volume diameter

When working with continuous distributions, the ISO series must be used to perform the actual calculations.

References

[1]
Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6)
>>> psd.mean_size_ISO(1, 2)
4.12484512922977e-06
```

pdf \((d, n=None)\)

Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis. The evaluation function varies with the distribution chosen. The interconversion between distribution orders is performed using the following formula [1):

\[
q_s(d) = \frac{x^{(s-r)}q_r(d)}{\int_0^\infty d^{(s-r)}q_r(d)dd}
\]

Parameters

- **d** [float] Particle size diameter, \([m]\)
- **n** [int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer, [-]

Returns

- **pdf** [float] The probability density function at the specified diameter and order, [-]

Notes

The pdf order conversions are typically available analytically after some work. They have been verified numerically. See the various functions with names ending with ‘basis_integral’ for the formulations. The distributions normally do not have analytical limits for diameters of 0 or infinity, but large values suffice to capture the area of the integral.

References

[1]

Examples

```python
>>> psd = PSDLognormal(s=0.5, d_characteristic=5E-6, order=3)
>>> psd.pdf(1e-5)
30522.765209509154
>>> psd.pdf(1e-5, n=3)
30522.765209509154
>>> psd.pdf(1e-5, n=0)
1238.661379483343
```

plot_cdf \((n=(0, 1, 2, 3), d_min=None, d_max=None, pts=500, method='logarithmic')\)

Plot the cumulative distribution function of the particle size distribution. The plotted range can be specified using \(d_{\text{min}}\) and \(d_{\text{max}}\), or estimated automatically. One or more order can be plotted, by providing an iterable of ints as the value of \(n\) or just one int.

Parameters

- **n** [tuple(int) or int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer; as many as desired may be specified, [-]
**d_min** [float, optional] Lower particle size diameter, [m]

**d_max** [float, optional] Upper particle size diameter, [m]

**pts** [int, optional] The number of points for values to be calculated, [-]


**plot_pdf** *(n=(0, 1, 2, 3), d_min=None, d_max=None, pts=500, normalized=False, method='linear')*

Plot the probability density function of the particle size distribution. The plotted range can be specified using *d_min* and *d_max*, or estimated automatically. One or more order can be plotted, by providing an iterable of ints as the value of *n* or just one int.

**Parameters**

**n** [tuple(int) or int, optional] None (for the order specified when the distribution was created), 0 (number), 1 (length), 2 (area), 3 (volume/mass), or any integer; as many as desired may be specified, [-]

**d_min** [float, optional] Lower particle size diameter, [m]

**d_max** [float, optional] Upper particle size diameter, [m]

**pts** [int, optional] The number of points for values to be calculated, [-]

**normalized** [bool, optional] Whether to display the actual probability density function, which may have a huge magnitude - or to divide each point by the sum of all the points. Doing this is a common practice, but the values at each point are dependent on the number of points being plotted, and the distribution of the points; [-]


**vssa**

The volume-specific surface area of a particle size distribution.

\[
VSSA = \frac{6}{x_{1,2}}
\]

**Returns**

**VSSA** [float] The volume-specific surface area of the distribution, [m^2/m^3]

**References**

[1]

**Examples**

```python
>>> PSDLognormal(s=0.5, d_characteristic=5E-6).vssa
1359778.1436801916
```
2.17.2 Discrete Particle Size Distributions

class fluids.particle_size_distribution.ParticleSizeDistribution

Bases: fluids.particle_size_distribution.ParticleSizeDistributionContinuous

Class representing a discrete particle size distribution specified by a series of diameter bins, and the quantity
of particles in each bin. The quantities may be specified as either the fraction of particles in each bin, or as
cumulative distributions. The input fractions can be specified to be in a mass basis \((\text{order}=3)\), number basis\((\text{order}=0)\), or the orders in between for length basis or area basis. If the fractions do not sum to 1, and \(\text{cdf}\) is
False, then the fractions are normalized. This allows flow rates or counts of size bins to be given as well.

Parameters

- **ds** [list[Float]] Diameter bins; length of the specified quantities, optionally +1 that length to
  specify a cutoff diameter for the smallest diameter bin, [\(\text{m}\)]
- **fractions** [list[float], optional] The mass/mole/volume/length/area/count fractions or cumulative
distributions or counts of each particle size in each diameter bin (the type is specified by \(\text{order}\)), [-]
- **order** [int, optional] 0 for a number distribution as input; 1 for length distribution; 2 for area
distribution; 3 for mass, mole, or volume distribution, [-]
- **cdf** [bool, optional] If the distribution is given as increasing fractions with 1 as the last result,
  \(\text{cdf}\) must be set to True, [-]
- **monotonic** [bool, optional] If True, for interpolated quantities, monotonic splines will be used
  instead of the standard splines, [-]

Notes

Although the stated units of input are in meters, this class is actually independent of the units provided; all
results will be consistent with the provided unit.

References

[1], [2]

Examples

Example problem from [1], calculating several diameters and the cumulative distribution.

```python
>>> import numpy as np
>>> ds = 1E-6*np.array([240, 360, 450, 562.5, 703, 849, 981, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
>>> numbers = [65, 119, 232, 410, 629, 849, 981, 825, 917, 579, 297, 111, 21, 1]
>>> psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
>>> psd
<Particle Size Distribution, points=14, D[3, 3]=0.002451 m>
```

Attributes
fractions  [list[float]] The mass/mole/volume basis fractions of particles in each bin, [-]

area_fractions  [list[float]] The area fractions of particles in each bin, [-]

length_fractions  [list[float]] The length fractions of particles in each bin, [-]

number_fractions  [list[float]] The number fractions of particles in each bin, [-]

fraction_cdf  [list[float]] The cumulative mass/mole/volume basis fractions of particles in each bin, [-]

area_cdf  [list[float]] The cumulative area fractions of particles in each bin, [-]

length_cdf  [list[float]] The cumulative length fractions of particles in each bin, [-]

number_cdf  [list[float]] The cumulative number fractions of particles in each bin, [-]

size_classes  [bool] Whether or not the diameter bins were set as size classes (as length of fractions + 1), [-]

N  [int] The number of provided points, [-]

### Methods

<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(d[, n])</td>
<td>Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>cdf_discrete(ds[, n])</td>
<td>Computes the cumulative distribution functions for a list of specified particle diameters.</td>
</tr>
<tr>
<td>delta_cdf(d_min, d_max[, n])</td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td>di_power(i[, power])</td>
<td>Method to calculate a power of a particle class/bin in a generic way so as to support when there are as many ds as fractions, or one more diameter spec than fractions.</td>
</tr>
<tr>
<td>dn(fraction[, n])</td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td>ds_discrete([d_min, d_max, pts, limit, method])</td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
<tr>
<td>fit([x0, distribution, n])</td>
<td>Incomplete method to fit experimental values to a curve.</td>
</tr>
<tr>
<td>fractions_discrete(ds[, n])</td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td>mean_size(p, q)</td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td>mean_size_ISO(k, r)</td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
<tr>
<td>pdf(d[, n])</td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>plot_cdf([n, d_min, d_max, pts, method])</td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td>plot_pdf([n, d_min, d_max, pts, normalized, ...])</td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>
Representative diameters of each bin.

\texttt{di\_power}(i, power=1)

Method to calculate a power of a particle class/bin in a generic way so as to support when there are as many \textit{ds} as \textit{fractions}, or one more diameter spec than \textit{fractions}.

When each bin has a lower and upper bound, the formula is as follows [1].

\[
D_r^i = \frac{D_{i,ub}^{(r+1)} - D_{i,lb}^{(r+1)}}{(D_{i,ub} - D_{i,lb})(r + 1)}
\]

Where \textit{ub} represents the upper bound, and \textit{lb} represents the lower bound. Otherwise, the standard definition is used:

\[
D_r^i = D_i^r
\]

**Parameters**

- \texttt{i} \ [\text{int}] The index of the diameter for the calculation, [-]
- \texttt{power} \ [\text{int}] The exponent, [-]

**Returns**

- \texttt{di\_power} \ [\text{float}] The representative bin diameter raised to \texttt{power}, [m^\text{power}]

**References**

[1]

\texttt{fit}(x0=None, distribution=’lognormal’, n=None, **kwargs)

Incomplete method to fit experimental values to a curve.

It is very hard to get good initial guesses, which are really required for this. Differential evolution is promising. This API is likely to change in the future.

\texttt{interpolated}

\texttt{mean\_size}(p, q)

Calculates the mean particle size according to moment-ratio notation. This is the more common and often convenient definition.

\[
[D_{p,q}]^{(p-q)} = \sum_i n_i D_i^p / \sum_i n_i D_i^q
\]

\[
[D_{p,p}] = \exp \left[ \sum_i n_i D_i^p \ln D_i / \sum_i n_i D_i^p \right], \text{ if } p = q
\]

Note that \(n_i\) in the above equation is replaceable with the fraction of particles in that bin.

**Parameters**

- \texttt{p} \ [\text{int}] Power and/or subscript of D moment in the above equations, [-]
- \texttt{q} \ [\text{int}] Power and/or subscript of D moment in the above equations, [-]

**Returns**

- \texttt{d\_pq} \ [\text{float}] Mean particle size according to the specified \texttt{p} and \texttt{q}, [m]
Notes

The following is a list of common names for specific mean diameters.

- $D_{[-3, 0]}$: arithmetic harmonic mean volume diameter
- $D_{[-2, 1]}$: size-weighted harmonic mean volume diameter
- $D_{[-1, 2]}$: area-weighted harmonic mean volume diameter
- $D_{[-2, 0]}$: arithmetic harmonic mean area diameter
- $D_{[-1, 1]}$: size-weighted harmonic mean area diameter
- $D_{[-1, 0]}$: arithmetic harmonic mean diameter
- $D_{[0, 0]}$: arithmetic geometric mean diameter
- $D_{[1, 1]}$: size-weighted geometric mean diameter
- $D_{[2, 2]}$: area-weighted geometric mean diameter
- $D_{[3, 3]}$: volume-weighted geometric mean diameter
- $D_{[1, 0]}$: arithmetic mean diameter
- $D_{[2, 1]}$: size-weighted mean diameter
- $D_{[3, 2]}$: area-weighted mean diameter, **Sauter mean diameter**
- $D_{[4, 3]}$: volume-weighted mean diameter, **De Brouckere diameter**
- $D_{[2, 0]}$: arithmetic mean area diameter
- $D_{[3, 1]}$: size-weighted mean area diameter
- $D_{[4, 2]}$: area-weighted mean area diameter
- $D_{[5, 3]}$: volume-weighted mean area diameter
- $D_{[3, 0]}$: arithmetic mean volume diameter
- $D_{[4, 1]}$: size-weighted mean volume diameter
- $D_{[5, 2]}$: area-weighted mean volume diameter
- $D_{[6, 3]}$: volume-weighted mean volume diameter

This notation was first introduced in [1].

The sum of $p$ and $q$ is called the order of the mean size [3].

\[ D_{p,q} \equiv D_{q,p} \]

References

[1], [2], [3]

Examples
```python
>>> import numpy as np

>>> ds = 1E-6*np.array([240, 360, 450, 562.5, 703, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])

>>> numbers = [65, 119, 232, 410, 629, 849, 981, 981, 825, 579, 297, 111, 21, 1]

>>> psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)

>>> psd.mean_size(3, 2)
0.002269321031745045
```

**mean_size_ISO** (*k*, *r*)

Calculates the mean particle size according to moment notation (ISO). This system is related to the moment-ratio notation as follows; see the mean_size method for the full formulas.

\[ \bar{x}_{p,q} \equiv \bar{x}_{k+r,r} \equiv \bar{D}_{p,q} \]

**Parameters**

- **k** [int] Power and/or subscript of D moment in the above equations, [-]
- **r** [int] Power and/or subscript of D moment in the above equations, [-]

**Returns**

- **x_kr** [float] Mean particle size according to the specified *k* and *r* in the ISO series, [m]

**Notes**

The following is a list of common names for specific mean diameters in the ISO naming convention.

- **x[3, 0]**: arithmetic harmonic mean volume diameter
- **x[3, 1]**: size-weighted harmonic mean volume diameter
- **x[3, 2]**: area-weighted harmonic mean volume diameter
- **x[2, 0]**: arithmetic harmonic mean area diameter
- **x[2, 1]**: size-weighted harmonic mean area diameter
- **x[1, 0]**: arithmetic harmonic mean diameter
- **x[0, 0]**: arithmetic geometric mean diameter
- **x[0, 1]**: size-weighted geometric mean diameter
- **x[0, 2]**: area-weighted geometric mean diameter
- **x[0, 3]**: volume-weighted geometric mean diameter
- **x[1, 0]**: arithmetic mean diameter
- **x[1, 1]**: size-weighted mean diameter, **Sauter mean diameter**
- **x[1, 2]**: area-weighted mean diameter
- **x[1, 3]**: volume-weighted mean diameter, **De Brouckere diameter**
- **x[2, 0]**: arithmetic mean area diameter
- **x[1, 1]**: size-weighted mean area diameter
- **x[2, 2]**: area-weighted mean area diameter
- **x[2, 3]**: volume-weighted mean area diameter
• \(x[3, 0]\): arithmetic mean volume diameter
• \(x[3, 1]\): size-weighted mean volume diameter
• \(x[3, 2]\): area-weighted mean volume diameter
• \(x[3, 3]\): volume-weighted mean volume diameter

When working with continuous distributions, the ISO series must be used to perform the actual calculations.

References

[1]

Examples

```python
>>> import numpy as np
>>> ds = 1E-6*np.array([240, 360, 450, 562.5, 703, 1097, 1371, 1713, 2141, 2676, 3345, 4181, 5226, 6532])
>>> numbers = [65, 119, 232, 410, 629, 849, 990, 981, 825, 579, 297, 111, 21, 1]
>>> psd = ParticleSizeDistribution(ds=ds, fractions=numbers, order=0)
>>> psd.mean_size_ISO(1, 2)
0.002269321031745045
```

name = 'Discrete'
points = True
size_classes = False
truncated = False

vssa

The volume-specific surface area of a particle size distribution. Note this uses the diameters provided by the method \(Dis\).

\[
VSSA = \sum_i \text{fraction}_i \frac{SA_i}{V_i}
\]

VSSA [float] The volume-specific surface area of the distribution, [m^2/m^3]

References

[1]

```python
class fluids.particle_size_distribution.PSDInterpolated(ds, fractions, order=3, monotonic=True)
```

Bases: fluids.particle_size_distribution.ParticleSizeDistributionContinuous

Attributes

vssa The volume-specific surface area of a particle size distribution.

Methods
<table>
<thead>
<tr>
<th>Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(d[, n])</td>
<td>Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>cdf_discrete(ds[, n])</td>
<td>Computes the cumulative distribution functions for a list of specified particle diameters.</td>
</tr>
<tr>
<td>delta_cdf(d_min, d_max[, n])</td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td>dn(fraction[, n])</td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td>ds_discrete([d_min, d_max, pts, limit, method])</td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
<tr>
<td>fractions_discrete(ds[, n])</td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td>mean_size(p, q)</td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td>mean_size_ISO(k, r)</td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
<tr>
<td>pdf(d[, n])</td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>plot_cdf([n, d_min, d_max, pts, method])</td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td>plot_pdf([n, d_min, d_max, pts, normalized, ...])</td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>

```python
ame = 'Interpolated'
points = True
truncated = False```

2.17.3 Statistical Particle Size Distributions

class `fluids.particle_size_distribution.PSDLognormal` *(d_characteristic, s, order=3, d_min=None, d_max=None)*

Bases: `fluids.particle_size_distribution.ParticleSizeDistributionContinuous`

Attributes

- `vssa` The volume-specific surface area of a particle size distribution.

Methods

- `cdf(d[, n])` Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.
- `cdf_discrete(ds[, n])` Computes the cumulative distribution functions for a list of specified particle diameters.
Table 7 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delta_cdf(d_min, d_max[, n])</td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td>dn(fraction[, n])</td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td>ds_discrete([d_min, d_max, pts, limit, method])</td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
<tr>
<td>fractions_discrete(ds[, n])</td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td>mean_size(p, q)</td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td>mean_size_ISO(k, r)</td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
<tr>
<td>pdf(d[, n])</td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>plot_cdf([n, d_min, d_max, pts, method])</td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td>plot_pdf([n, d_min, d_max, pts, normalized, ...])</td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>

```python
name = 'Lognormal'
points = False
truncated = False
class fluids.particle_size_distribution.PSDGatesGaudinSchuhman(d_characteristic, m, order=3, d_min=None, d_max=None)
```

Attributes

- **vssa** The volume-specific surface area of a particle size distribution.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(d[, n])</td>
<td>Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>cdf_discrete(ds[, n])</td>
<td>Computes the cumulative distribution functions for a list of specified particle diameters.</td>
</tr>
<tr>
<td>delta_cdf(d_min, d_max[, n])</td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td>dn(fraction[, n])</td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td>ds_discrete([d_min, d_max, pts, limit, method])</td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
</tbody>
</table>
Table 8 – continued from previous page

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>fractions_discrete(ds[, n])</td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td>mean_size(p, q)</td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td>mean_size_ISO(k, r)</td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
<tr>
<td>pdf(d[, n])</td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>plot_cdf([n, d_min, d_max, pts, method])</td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td>plot_pdf([n, d_min, d_max, pts, normalized, ...])</td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>

```python
name = 'Gates Gaudin Schuhman'
points = False
truncated = False
class fluids.particle_size_distribution.PSDRosinRammler(k, m, order=3, d_min=None, d_max=None)
```

Attributes

- `vssa` The volume-specific surface area of a particle size distribution.

Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cdf(d[, n])</td>
<td>Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>cdf_discrete(ds[, n])</td>
<td>Computes the cumulative distribution functions for a list of specified particle diameters.</td>
</tr>
<tr>
<td>delta_cdf(d_min, d_max[, n])</td>
<td>Computes the difference in cumulative distribution function between two particle size diameters.</td>
</tr>
<tr>
<td>dn(fraction[, n])</td>
<td>Computes the diameter at which a specified fraction of the distribution falls under.</td>
</tr>
<tr>
<td>ds_discrete([d_min, d_max, pts, limit, method])</td>
<td>Create a particle spacing mesh to perform calculations with, according to one of several ways.</td>
</tr>
<tr>
<td>fractions_discrete(ds[, n])</td>
<td>Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.</td>
</tr>
<tr>
<td>mean_size(p, q)</td>
<td>Calculates the mean particle size according to moment-ratio notation.</td>
</tr>
<tr>
<td>mean_size_ISO(k, r)</td>
<td>Calculates the mean particle size according to moment notation (ISO).</td>
</tr>
</tbody>
</table>

Continued on next page
<table>
<thead>
<tr>
<th>Method</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>pdf(d[, n])</td>
<td>Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.</td>
</tr>
<tr>
<td>plot_cdf([n, d_min, d_max, pts, method])</td>
<td>Plot the cumulative distribution function of the particle size distribution.</td>
</tr>
<tr>
<td>plot_pdf([n, d_min, d_max, pts, normalized, ...])</td>
<td>Plot the probability density function of the particle size distribution.</td>
</tr>
</tbody>
</table>

```python
name = 'Rosin Rammler'
points = False
truncated = False
class fluids.particle_size_distribution.PSDCustom(distribution, order=3.0, d_excessive=1.0, name=None, d_min=None, d_max=None)

Bases: fluids.particle_size_distribution.ParticleSizeDistributionContinuous
```

Attributes

- **vssa** The volume-specific surface area of a particle size distribution.

Methods

- **cdf(d[, n])** Computes the cumulative distribution density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.
- **cdf_discrete(ds[, n])** Computes the cumulative distribution functions for a list of specified particle diameters.
- **delta_cdf(d_min, d_max[, n])** Computes the difference in cumulative distribution function between two particle size diameters.
- **dn(fraction[, n])** Computes the diameter at which a specified **fraction** of the distribution falls under.
- **ds_discrete([d_min, d_max, pts, limit, method])** Create a particle spacing mesh to perform calculations with, according to one of several ways.
- **fractions_discrete(ds[, n])** Computes the fractions of the cumulative distribution functions which lie between the specified specified particle diameters.
- **mean_size(p, q)** Calculates the mean particle size according to moment-ratio notation.
- **mean_size_ISO(k, r)** Calculates the mean particle size according to moment notation (ISO).
- **pdf(d[, n])** Computes the probability density function of a continuous particle size distribution at a specified particle diameter, an optionally in a specified basis.
- **plot_cdf([n, d_min, d_max, pts, method])** Plot the cumulative distribution function of the particle size distribution.
- **plot_pdf([n, d_min, d_max, pts, normalized, ...])** Plot the probability density function of the particle size distribution.
2.17.4 Helper functions: Lognormal Distribution

fluids.particle_size_distribution.pdf_lognormal \((d, \text{d_characteristic}, s)\)

Calculates the probability density function of a lognormal particle distribution given a particle diameter \(d\), characteristic particle diameter \(d\text{_characteristic}\), and distribution standard deviation \(s\).

\[
q(d) = \frac{1}{ds\sqrt{2\pi}} \exp \left[-0.5 \left(\frac{\ln(d/d\text{_characteristic})}{s} \right)^2 \right]
\]

Parameters

- \(d\) [float] Specified particle diameter, [m]
- \(d\text{_characteristic}\) [float] Characteristic particle diameter; often \(D[3, 3]\) is used for this purpose but not always, [m]
- \(s\) [float] Distribution standard deviation, [-]

Returns

- \(pdf\) [float] Lognormal probability density function, [-]

Notes

The characteristic diameter can be in terms of number density (denoted \(q_0(d)\)), length density \((q_1(d))\), surface area density \((q_2(d))\), or volume density \((q_3(d))\). Volume density is most often used. Interconversions among the distributions is possible but tricky.

The standard distribution (i.e. the one used in Scipy) can perform the same computation with \(d\text{_characteristic}\) as the value of \(scale\).

```python
>>> import scipy.stats
>>> scipy.stats.lognorm.pdf(x=1E-4, s=1.1, scale=1E-5)
405.5420921156425
```

Scipy’s calculation is over 300 times slower however, and this expression is numerically integrated so speed is required.

References

[1]

Examples

```python
>>> pdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
405.5420921156425
```

fluids.particle_size_distribution.cdf_lognormal \((d, \text{d_characteristic}, s)\)

Calculates the cumulative distribution function of a lognormal particle distribution given a particle diameter \(d\), characteristic particle diameter \(d\text{_characteristic}\), and distribution standard deviation \(s\).

\[
Q(d) = 0.5 \left(1 + \text{erf} \left(\frac{\ln(d/d\text{_characteristic})}{s\sqrt{2}} \right) \right)
\]
Parameters

d [float] Specified particle diameter, [m]

d_characteristic [float] Characteristic particle diameter; often D[3, 3] is used for this purpose but not always, [m]

s [float] Distribution standard deviation, [-]

Returns

cdf [float] Lognormal cumulative density function, [-]

Notes

The characteristic diameter can be in terms of number density (denoted \(q_0(d) \)), length density (\(q_1(d) \)), surface area density (\(q_2(d) \)), or volume density (\(q_3(d) \)). Volume density is most often used. Interconversions among the distributions is possible but tricky.

The standard distribution (i.e. the one used in Scipy) can perform the same computation with \(d_{\text{characteristic}} \) as the value of \(\text{scale} \).

```python
>>> import scipy.stats

>>> scipy.stats.lognorm.cdf(x=1E-4, s=1.1, scale=1E-5)
0.9818369875798177
```

Scipy’s calculation is over 100 times slower however.

References

[1]

Examples

```python
>>> cdf_lognormal(d=1E-4, d_characteristic=1E-5, s=1.1)
0.9818369875798
```

\[
\int d^n \cdot q(d) \, dd = \frac{1}{2} \exp \left(\frac{s^2 n^2}{2} \right) d^n \left(\frac{d}{d_{\text{characteristic}}} \right)^{-n} \text{erf} \left[\frac{s^2 n - \log(d/d_{\text{characteristic}})}{\sqrt{2s}} \right]
\]

This is the crucial integral required for interconversion between different bases such as number density (denoted \(q_0(d) \)), length density (\(q_1(d) \)), surface area density (\(q_2(d) \)), or volume density (\(q_3(d) \)).

Parameters

d [float] Specified particle diameter, [m]

d_characteristic [float] Characteristic particle diameter; often D[3, 3] is used for this purpose but not always, [m]

s [float] Distribution standard deviation, [-]
n [int] Exponent of the multiplied n

Returns

pdf_basis_integral [float] Integral of lognormal pdf multiplied by d^n, [-]

Notes

This integral has been verified numerically. This integral is itself integrated, so it is crucial to obtain an analytical form for at least this integral.

Note overflow or zero division issues may occur for very large values of s, larger than 10. No mathematical limit was able to be obtained with a CAS.

Examples

```python
>>> pdf_lognormal_basis_integral(d=1E-4, d_characteristic=1E-5, s=1.1, n=-2)
56228306549.26362
```

2.17.5 Helper functions: Gates Gaudin Schuhman Distribution

fluids.particle_size_distribution.pdf_Gates_Gaudin_Schuhman*(d, d_characteristic, m)***

Calculates the probability density of a particle distribution following the Gates, Gaudin and Schuhman (GGS) model given a particle diameter d, characteristic (maximum) particle diameter d_characteristic, and exponent m.

\[
q(d) = \frac{n}{d} \left(\frac{d}{d_{characteristic}} \right)^m \text{ if } d < d_{characteristic} \text{ else } 0
\]

Parameters

- **d** [float] Specified particle diameter, [m]
- **d_characteristic** [float] Characteristic particle diameter; in this model, it is the largest particle size diameter in the distribution, [m]
- **m** [float] Particle size distribution exponent, [-]

Returns

- **pdf** [float] GGS probability density function, [-]

Notes

The characteristic diameter can be in terms of number density (denoted q0(d)), length density (q1(d)), surface area density (q2(d)), or volume density (q3(d)). Volume density is most often used. Interconversions among the distributions is possible but tricky.

References

[1], [2]
Examples

```python
>>> pdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
283.835768512045
```

```
fluids.particle_size_distribution.cdf_Gates_Gaudin_Schuhman(d, d_characteristic, m)
```

Calculates the cumulative distribution function of a particle distribution following the Gates, Gaudin and Schuhman (GGS) model given a particle diameter \(d \), characteristic (maximum) particle diameter \(d_{\text{characteristic}} \), and exponent \(m \).

\[
Q(d) = \left(\frac{d}{d_{\text{characteristic}}} \right)^m \text{ if } d < d_{\text{characteristic}} \text{ else 1}
\]

Parameters

- \(d \) [float] Specified particle diameter, [m]
- \(d_{\text{characteristic}} \) [float] Characteristic particle diameter; in this model, it is the largest particle size diameter in the distribution, [m]
- \(m \) [float] Particle size distribution exponent, [-]

Returns

- \(cdf \) [float] GGS cumulative density function, [-]

Notes

The characteristic diameter can be in terms of number density (denoted \(q_0(d) \)), length density (\(q_1(d) \)), surface area density (\(q_2(d) \)), or volume density (\(q_3(d) \)). Volume density is most often used. Interconversions among the distributions is possible but tricky.

References

[1], [2]

```
>>> cdf_Gates_Gaudin_Schuhman(d=2E-4, d_characteristic=1E-3, m=2.3)
0.024681354508800397
```

```
fluids.particle_size_distribution.pdf_Gates_Gaudin_Schuhman_basis_integral(d, d_characteristic, m, n)
```

Calculates the integral of the multiplication of \(d^n \) by the Gates, Gaudin and Schuhman (GGS) model given a particle diameter \(d \), characteristic (maximum) particle diameter \(d_{\text{characteristic}} \), and exponent \(m \).

\[
\int d^n \cdot q(d) \, dd = \frac{m}{m+n} d^n \left(\frac{d}{d_{\text{characteristic}}} \right)^m
\]

Parameters

- \(d \) [float] Specified particle diameter, [m]
d_characteristic [float] Characteristic particle diameter; in this model, it is the largest particle size diameter in the distribution, [m]

m [float] Particle size distribution exponent, [-]

n [int] Exponent of the multiplied n, [-]

Returns

pdf_basis_integral [float] Integral of Rosin Rammler pdf multiplied by \(d^n\), [-]

Notes

This integral does not have any numerical issues as \(d\) approaches 0.

Examples

```python
>>> pdf_Gates_Gaudin_Schuhman_basis_integral(d=2E-4, d_characteristic=1E-3, m=2.3, n=-3)
-10136984887.543015
```

2.17.6 Helper functions: Rosin Rammler Distribution

fluids.particle_size_distribution.pdf_Rosin_Rammler \((d, k, m)\)

Calculates the probability density of a particle distribution following the Rosin-Rammler (RR) model given a particle diameter \(d\), and the two parameters \(k\) and \(m\).

\[q(d) = km d^{(m-1)} \exp(-kd^m) \]

Parameters

- **d** [float] Specified particle diameter, [m]
- **k** [float] Parameter in the model, [(1/m)^m]
- **m** [float] Parameter in the model, [-]

Returns

- **pdf** [float] RR probability density function, [-]

References

[1], [2]

Examples

```python
>>> pdf_Rosin_Rammler(1E-3, 200, 2)
0.3999200079994667
```

fluids.particle_size_distribution.cdf_Rosin_Rammler \((d, k, m)\)

Calculates the cumulative distribution function of a particle distribution following the Rosin-Rammler (RR) model given a particle diameter \(d\), and the two parameters \(k\) and \(m\).

\[Q(d) = 1 - \exp(-kd^m) \]
Parameters

d [float] Specified particle diameter, [m]

k [float] Parameter in the model, [(1/m)^m]

m [float] Parameter in the model, [-]

Returns

cdf [float] RR cumulative density function, [-]

Notes

The characteristic diameter can be in terms of number density (denoted \(q_0(d)\)), length density (\(q_1(d)\)), surface area density (\(q_2(d)\)), or volume density (\(q_3(d)\)). Volume density is most often used. Interconversions among the distributions is possible but tricky.

References

[1], [2]

Examples

```python
>>> cdf_Rosin_Rammler(5E-2, 200, 2)
0.3934693402873667
```

Calculates the integral of the multiplication of \(d^n\) by the Rosin Rammler (RR) pdf, given a particle diameter \(d\), and the two parameters \(k\) and \(m\).

\[
\int d^n \cdot q(d) \, dd = -d^{m+n}k(d^m k) - \frac{m+n}{m} \Gamma \left(\frac{m+n}{m} \right) \text{gammaincc} \left(\frac{m+n}{m}, kd^m \right)
\]

Parameters

d [float] Specified particle diameter, [m]

k [float] Parameter in the model, [(1/m)^m]

m [float] Parameter in the model, [-]

n [int] Exponent of the multiplied \(n\), [-]

Returns

pdf_basis_integral [float] Integral of Rosin Rammler pdf multiplied by \(d^n\), [-]

Notes

This integral was derived using a CAS, and verified numerically. The \(\text{gammaincc}\) function is that from scipy.special, and \(\text{gamma}\) from the same.

For very high powers of \(n\) or \(m\) when the diameter is very low, exceptions may occur.
2.17.7 Sieves

class fluids.particle_size_distribution.Sieve (designation, old_designation=None, opening=None, opening_inch=None, Y_variation_avg=None, X_variation_max=None, max_opening=None, compliance_samples=None, compliance_sd=None, inspection_samples=None, inspection_sd=None, calibration_samples=None, calibration_sd=None, d_wire=None, d_wire_min=None, d_wire_max=None)

Bases: object

Class for storing data on sieves. If a property is not available, it is set to None.

Attributes

designation [str] The standard name of the sieve - its opening’s length in units of millimeters

old_designation [str] The older, imperial-esque name of the sieve; in Numbers, or inches for large sieves

opening [float] The opening length of the sieve holes, [m]

opening_inch [float] The opening length of the sieve holes in the rounded inches as stated in common tables (not exactly equal to the opening), [inch]

Y_variation_avg [float] The allowable average variation in the Y direction of the sieve openings, [m]

X_variation_max [float] The allowable maximum variation in the X direction of the sieve openings, [m]

max_opening [float] The maximum allowable opening of the sieve, [m]

compliance_samples [float] The number of opening sample inspections required for compliance-type sieve openings (per 100 ft^2 of sieve material), [1/(ft^2)]

compliance_sd [float] The maximum standard deviation of compliance-type sieve openings, [-]

inspection_samples [float] The number of opening sample inspections required for inspection-type sieve openings (based on an 8-inch sieve), [-]

inspection_sd [float] The maximum standard deviation of inspection-type sieve openings, [-]

calibration_samples [float] The number of opening sample inspections required for calibration-type sieve openings (based on an 8-inch sieve), [-]

calibration_sd [float] The maximum standard deviation of calibration-type sieve openings, [-]

d_wire [float] Typical wire diameter of the specified sieve size, [m]

d_wire_min [float] Permissible minimum wire diameter of specified sieve size, [m]

Examples

>>> "{}".format(pdf_Rosin_Rammler_basis_integral(5E-2, 200, 2, 3))
'0.000452399'
d_wire_max [float] Permissible maximum wire diameter of specified sieve size, [m]

```python
fluids.particle_size_distribution.ASTM_E11_sieves = {'0.02': <Sieve, designation 0.02 mm, opening 2e-05 m>, ...}
```

Dictionary containing ASTM E-11 sieve series `Sieve` objects, indexed by their size in mm as a string.

References

[1]

```python
fluids.particle_size_distribution.ISO_3310_1_sieves = {'0.02': <Sieve, designation 0.02 mm, opening 2e-05 m>, ...}
```

Dictionary containing all of the individual `Sieve` objects, on the ISO 3310-1:2016 series, indexed by their size in mm as a string.

References

[1]

```python
fluids.particle_size_distribution.ISO_3310_1_R20 = [<Sieve, designation 125 mm, opening 0.125 m>, ...]
```

List containing all of the individual `Sieve` objects, on the ISO 3310-1:2016 R20 series only, ordered from largest openings to smallest.

References

[1]

```python
fluids.particle_size_distribution.ISO_3310_1_R20_3 = [<Sieve, designation 125 mm, opening 0.125 m>, ...]
```

List containing all of the individual `Sieve` objects, on the ISO 3310-1:2016 R20/3 series only, ordered from largest openings to smallest.

References

[1]

```python
fluids.particle_size_distribution.ISO_3310_1_R40_3 = [<Sieve, designation 125 mm, opening 0.125 m>, ...]
```

List containing all of the individual `Sieve` objects, on the ISO 3310-1:2016 R40/3 series only, ordered from largest openings to smallest.

References

[1]

```python
fluids.particle_size_distribution.ISO_3310_1_R10 = [<Sieve, designation 0.036 mm, opening 3.6e-05 m>, ...]
```

List containing all of the individual `Sieve` objects, on the ISO 3310-1:2016 R10 series only, ordered from largest openings to smallest.

References

[1]
2.17.8 Point Spacing

`fluids.particle_size_distribution.psd_spacing(d_min=None, d_max=None, pts=20, method='logarithmic')`

Create a particle spacing mesh in one of several ways for use in modeling discrete particle size distributions. The allowable meshes are ‘linear’, ‘logarithmic’, a geometric series specified by a Renard number such as ‘R10’, or the meshes available in one of several sieve standards.

Parameters

- **d_min** [float, optional] The minimum diameter at which the mesh starts, [m]
- **d_max** [float, optional] The maximum diameter at which the mesh ends, [m]
- **pts** [int, optional] The number of points to return for the mesh (note this is not respected by sieve meshes), [-]

Returns

- **ds** [list[float]] The generated mesh diameters, [m]

Notes

Note that when specifying a Renard series, only one of `d_min` or `d_max` can be respected! Provide only one of those numbers.

Note that when specifying a sieve standard the number of points is not respected!

References

[1], [2]

Examples

```python
>>> psd_spacing(d_min=5e-5, d_max=5e-4, method='ISO 3310-1 R20/3')
[6.3e-05, 9e-05, 0.000125, 0.00018, 0.00025, 0.000355, 0.0005]
```

2.18 Pipe schedules (fluids.piping)

`fluids.piping.nearest_pipe(Do=None, Di=None, NPS=None, schedule='40')`

Searches for and finds the nearest standard pipe size to a given specification. Acceptable inputs are:

- Nominal pipe size
- Nominal pipe size and schedule
- Outer diameter Do
- Outer diameter Do and schedule
- Inner diameter Di
- Inner diameter Di and schedule

Parameters

- **Di** [float] Pipe inner diameter, [m]
- **Do** [float] Pipe outer diameter, [m]
- **NPS** [float] Nominal pipe size, [-]
- **schedule** [str] String representing schedule size

Returns

- **Di** [float] Pipe inner diameter, [m]
- **Do** [float] Pipe outer diameter, [m]
- **NPS** [float] Nominal pipe size, [-]
- **t** [float] Pipe wall thickness, [m]

Notes

Internal units within this function are mm. The imperial schedules are not quite identical to these value, but all rounding differences happen in the sub-0.1 mm level.

References

[1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [11]

Examples

```python
closest_pipe(Di=0.021)
(1, 0.02664, 0.0334, 0.0033799999999999998)
closest_pipe(Do=.273, schedule='5S')
(10, 0.2663000000000004, 0.2731, 0.0034)
```

fluids.piping.gauge_from_t *(t, SI=True, schedule='BWG')*

Looks up the gauge of a given wire thickness of given schedule. Values are all non-linear, and tabulated internally.

Parameters

- **t** [float] Thickness, [m]
- **SI** [bool, optional] If False, requires that the thickness is given in inches not meters
schedule [str] Gauge schedule, one of ‘BWG’, ‘AWG’, ‘SWG’, ‘MWG’, ‘BSWG’, or ‘SSWG’

Returns

gauge [float-like] Wire Gauge, [-]

Notes

An internal variable, tol, is used in the selection of the wire gauge. If the next smaller wire gauge is within 10% of the difference between it and the previous wire gauge, the smaller wire gauge is selected. Accordingly, this function can return a gauge with a thickness smaller than desired in some circumstances.

- Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch).
- American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires.
- Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge.
- Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge.
- British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG).
- Stub’s Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch)

References

[1]

Examples

```python
>>> gauge_from_t(.5, SI=False, schedule='BWG')
0.2
```

fluids.piping.t_from_gauge (gauge, SI=True, schedule='BWG')

Looks up the thickness of a given wire gauge of given schedule. Values are all non-linear, and tabulated internally.

Parameters

- **gauge** [float-like] Wire Gauge, [-]
- **SI** [bool, optional] If False, will return a thickness in inches not meters
- **schedule** [str] Gauge schedule, one of ‘BWG’, ‘AWG’, ‘SWG’, ‘MWG’, ‘BSWG’, or ‘SSWG’

Returns

- **t** [float] Thickness, [m]

Notes

- Birmingham Wire Gauge (BWG) ranges from 0.2 (0.5 inch) to 36 (0.004 inch).
- American Wire Gauge (AWG) ranges from 0.167 (0.58 inch) to 51 (0.00099 inch). These are used for electrical wires.
• Steel Wire Gauge (SWG) ranges from 0.143 (0.49 inch) to 51 (0.0044 inch). Also called Washburn & Moen wire gauge, American Steel gauge, Wire Co. gauge, and Roebling wire gauge.

• Music Wire Gauge (MWG) ranges from 0.167 (0.004 inch) to 46 (0.18 inch). Also called Piano Wire Gauge.

• British Standard Wire Gage (BSWG) ranges from 0.143 (0.5 inch) to 51 (0.001 inch). Also called Imperial Wire Gage (IWG).

• Stub’s Steel Wire Gage (SSWG) ranges from 1 (0.227 inch) to 80 (0.013 inch)

References
[1]

Examples

```python
>>> t_from_gauge(.2, False, 'BWG')
0.5
```

2.19 Pump and motor sizing (fluids.pump)

`fluids.pump.VFD_efficiency(P, load=1)`

Returns the efficiency of a Variable Frequency Drive according to [1]. These values are generic, and not standardized as minimum values. Older VFDs often have much worse performance.

Parameters

- `P` [float] Power, [W]
- `load` [float, optional] Fraction of motor’s rated electrical capacity being used

Returns

- `efficiency` [float] VFD efficiency, [-]

Notes

The use of a VFD does change the characteristics of a pump curve’s efficiency, but this has yet to be quantified. The effect is small. This value should be multiplied by the product of the pump and motor efficiency to determine the overall efficiency.

Efficiency table is in units of hp, so a conversion is performed internally. If load not specified, assumed 1 - where maximum efficiency occurs. Table extends down to 3 hp and up to 400 hp; values outside these limits are rounded to the nearest known value. Values between standardized sizes are interpolated linearly. Load values extend down to 0.016.

The table used is for Pulse Width Modulation (PWM) VFDs.

References

[1]
Examples

```python
>>> VFD_efficiency(10*hp)
0.96
>>> VFD_efficiency(100*hp, load=0.2)
0.92
```

```
fluids.pump.CSA_motor_efficiency(P, closed=False, poles=2, high_efficiency=False)
```

Returns the efficiency of a NEMA motor according to [1]. These values are standards, but are only for full-load operation.

Parameters

- `P` [float] Power, [W]
- `closed` [bool, optional] Whether or not the motor is enclosed
- `poles` [int, optional] The number of poles of the motor
- `high_efficiency` [bool, optional] Whether or not to look up the high-efficiency value

Returns

- `efficiency` [float] Guaranteed full-load motor efficiency, [-]

Notes

Criteria for being required to meet the high-efficiency standard is:

- Designed for continuous operation
- Operates by three-phase induction
- Is a squirrel-cage or cage design
- Is NEMA type A, B, or C with T or U frame; or IEC design N or H
- Is designed for single-speed operation
- Has a nominal voltage of less than 600 V AC
- Has a nominal frequency of 60 Hz or 50/60 Hz
- Has 2, 4, or 6 pole construction
- Is either open or closed

Pretty much every motor is required to meet the low-standard efficiency table, however.

Several low-efficiency standard high power values were added to allow for easy programming; values are the last listed efficiency in the table.

References

[1]

Examples
 fluids.pump.**motor_efficiency_underloaded** *(P, load=0.5)*

Returns the efficiency of a motor operating under its design power according to [1]. These values are generic; manufacturers usually list 4 points on their product information, but full-scale data is hard to find and not regulated.

Parameters

- **P** [float] Power, [W]
- **load** [float, optional] Fraction of motor’s rated electrical capacity being used

Returns

- **efficiency** [float] Motor efficiency, [-]

Notes

If the efficiency returned by this function is unattractive, use a VFD. The curves used here are polynomial fits to [1]’s graph, and curves were available for the following motor power ranges: 0-1 hp, 1.5-5 hp, 10 hp, 15-25 hp, 30-60 hp, 75-100 hp. If above the upper limit of one range, the next value is returned.

References

[1]

Examples

```python
>>> motor_efficiency_underloaded(1*hp)
0.8705179600980149
>>> motor_efficiency_underloaded(10.1*hp, .1)
0.6728425932357025
```

Corripio_pump_efficiency *(Q)*

Estimates pump efficiency using the method in Corripio (1982) as shown in [1] and originally in [2]. Estimation only

\[
\eta_P = -0.316 + 0.24015 \ln(Q) - 0.01199 \ln(Q)^2
\]

Parameters

- **Q** [float] Volumetric flow rate, [m^3/s]

Returns

- **efficiency** [float] Pump efficiency, [-]

Notes

For Centrifugal pumps only. Range is 50 to 5000 GPM, but input variable is in metric. Values above this range and below this range will go negative, although small deviations are acceptable. Example 16.5 in [1].
Examples

```python
>>> Corripio_pump_efficiency(461.15850.323)
0.705888867095162
```

`fluids.pump.Corripio_motor_efficiency(P)`

\[
\eta_M = 0.8 + 0.0319 \ln(P_B) - 0.00182 \ln(P_B)^2
\]

Parameters
- **P** [float] Power, [W]

Returns
- **efficiency** [float] Motor efficiency, [-]

Notes
Example 16.5 in [1].

References
[1],[2]

Examples

```python
>>> Corripio_motor_efficiency(137*745.7)
0.9128920875679222
```

`fluids.pump.specific_speed(Q, H, n=3600.0)`
Returns the specific speed of a pump operating at a specified Q, H, and n.

\[
\nu_S = \frac{n \sqrt{Q}}{H^{0.75}}
\]

Parameters
- **Q** [float] Flow rate, [m^3/s]
- **H** [float] Head generated by the pump, [m]
- **n** [float, optional] Speed of pump [rpm]

Returns
- **nS** [float] Specific Speed, [rpm*m^0.75/s^0.5]
Notes

Defined at the BEP, with maximum fitting diameter impeller, at a given rotational speed.

References

[1]

Examples

Example from [1].

```python
>>> specific_speed(0.0402, 100, 3550)
22.50823182748925
```

fluids.pump.specific_diameter(\(Q, H, D\))

Returns the specific diameter of a pump operating at a specified \(Q\), \(H\), and \(D\).

\[
D_s = \frac{DH^{1/4}}{\sqrt{Q}}
\]

Parameters

- \(Q\) [float] Flow rate, \([m^3/s]\)
- \(H\) [float] Head generated by the pump, \([m]\)
- \(D\) [float] Pump impeller diameter \([m]\)

Returns

- \(D_s\) [float] Specific diameter, \([m^{0.25}/s^{0.5}]\)

Notes

Used in certain pump sizing calculations.

References

[1]

Examples

```python
>>> specific_diameter(Q=0.1, H=10., D=0.1)
0.5623413251903492
```

fluids.pump.speed_synchronous(\(f, poles=2, phase=3\))

Returns the synchronous speed of a synchronous motor according to [1].

\[
N_s = \frac{120f \cdot \text{phase}}{\text{poles}}
\]

Parameters

- \(f\) [float] Line frequency, \([Hz]\)
poles [int, optional] The number of poles of the motor

phase [int, optional] Line AC phase

Returns

Ns [float] Speed of synchronous motor, [rpm]

Notes

Synchronous motors have no slip. Large synchronous motors are not self-starting.

References

[1]

Examples

```python
>>> speed_synchronous(50, poles=12)
1500.0
>>> speed_synchronous(60, phase=1)
3600.0
```

fluids.pump.nema_sizes = [186.42496789556753, 248.5666238607567, 372.84993579113507, 559.2749036867026, 745.6998715822701, ... 186424.96789556753, 223709.96147468104, 260994.95505379455, 298279.94863290805, 335564.94221202156, 372849.93579113507]

list: all NEMA motor sizes in increasing order, in Watts.

fluids.pump.nema_sizes_hp = [0.25, 0.3333333333333333, 0.5, 0.75, 1.0, 1.5, 2.0, 3.0, 4.0, 5.0, 5.5, 7.5, 10.0, 15.0, 20.0, 25.0, 30.0, 40.0, 50.0, 60.0, 75.0, 100.0, 125.0, 150.0, 175.0, 200.0, 250.0, 300.0, 350.0, 400.0, 450.0, 500.0]

list: all NEMA motor sizes in increasing order, in horsepower.

fluids.pump.motor_round_size(P)

Rounds up the power for a motor to the nearest NEMA standard power. The returned power is always larger or equal to the input power.

Parameters

P [float] Power, [W]

Returns

P_actual [float] Actual power, equal to or larger than input [W]

Notes

An exception is raised if the power required is larger than any of the NEMA sizes. Larger motors are available, but are unstandardized.

References

[1]
Examples

```python
>>> motor_round_size(1E5)
111854.98073734052
```

`fluids.pump.current_ideal(P, V, phase=3, PF=1)`

Returns the current drawn by a motor of power \(P \) operating at voltage \(V \), with line AC of phase \(\text{phase} \) and power factor \(\text{PF} \) according to [1].

Single-phase power:

\[
I = \frac{P}{V \cdot \text{PF}}
\]

3-phase power:

\[
I = \frac{P}{V \cdot \text{PF} \sqrt{3}}
\]

Parameters

- \(P \) [float] Power, [W]
- \(V \) [float] Voltage, [V]
- \(\text{phase} \) [int, optional] Line AC phase, either 1 or 3
- \(\text{PF} \) [float, optional] Power factor of motor

Returns

- \(I \) [float] Power drawn by motor, [A]

Notes

Does not include power used by the motor’s fan, or startor, or internal losses. These are all significant.

References

[1]

Examples

```python
>>> current_ideal(V=120, P=1E4, PF=1, phase=1)
83.33333333333333
```

class fluids.pump.CountryPower(country, voltage, freq, plugs=None)

Bases: object

Class to hold information on the residential or electrical data of a country. Data from Wikipedia, obtained in 2017.

Parameters

- \(\text{plugs} \) [tuple(str)] Tuple of residential plug letter codes in use in the country, [-]
- \(\text{voltage} \) [float or tuple(float)] Voltage or voltages in common use of the country (residential data has one voltage; industrial data has multiple often), [V]
freq [float] The electrical frequency in use in the country, [Hz]
country [str] The name of the country, [-]

Attributes

country
freq
plugs
voltage

2.20 Safety/relief valve sizing (fluids.safety_valve)

fluids.safety_valve.API520_round_size(A)
Rounds up the area from an API 520 calculation to an API526 standard valve area. The returned area is always larger or equal to the input area.

Parameters

A [float] Minimum discharge area [m^2]

Returns

area [float] Actual discharge area [m^2]

Notes

To obtain the letter designation of an input area, lookup the area with the following:
API526_letters[API526_A.index(area)]
An exception is raised if the required relief area is larger than any of the API 526 sizes.

References

[1]

Examples

From [1], checked with many points on Table 8.

```python
>>> API520_round_size(1E-4)
0.0012645136
>>> API526_letters[API526_A.index(API520_round_size(1E-4))]
'E'
```
API520_C \((k) \)
Calculates coefficient \(C \) for use in API 520 critical flow relief valve sizing.
\[
C = 0.03948 \sqrt{k \left(\frac{2}{k + 1} \right)^{k+1}}
\]

Parameters
- \(k \) [float] Isentropic coefficient or ideal gas heat capacity ratio [-]

Returns
- \(C \) [float] Coefficient \(C \) [-]

Notes
If \(C \) cannot be established, assume a coefficient of 0.0239, the highest value possible for \(C \).
Although not dimensional, \(C \) varies with the units used.
If \(k \) is exactly equal to 1, the expression is undefined, and the formula must be simplified as follows from an application of L’Hopital’s rule.
\[
C = 0.03948 \frac{1}{e}
\]

References
[1]

Examples
From [1], checked with many points on Table 8.

```python
>>> API520\_C(1.35)
0.02669419967057233
```

API520_F2 \((k, P1, P2) \)
Calculates coefficient \(F2 \) for subcritical flow for use in API 520 subcritical flow relief valve sizing.
\[
F2 = \left(\frac{k}{k - 1} \right) r^2 \left[\frac{1 - r^{\frac{k-1}{k}}}{1 - r} \right]
\]
\[
r = \frac{P2}{P1}
\]

Parameters
- \(k \) [float] Isentropic coefficient or ideal gas heat capacity ratio [-]
- \(P1 \) [float] Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa]
- \(P2 \) [float] Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa]

Returns
- \(F2 \) [float] Subcritical flow coefficient \(F2 \) [-]
Notes

F2 is completely dimensionless.

References

[1]

Examples

From [1] example 2, matches.

```
>>> API520_F2(1.8, 1E6, 7E5)
0.8600724121105563
```

```
API520_F2(Re)
Calculates correction due to viscosity for liquid flow for use in API 520 relief valve sizing.

\[ K_v = \left( 0.9935 + \frac{2.878}{Re^{0.5}} + \frac{342.75}{Re^{1.5}} \right)^{-1} \]

Parameters

- Re [float] Reynolds number for flow out the valve [-]

Returns

- Kv [float] Correction due to viscosity [-]

Notes

Reynolds number in the standard is defined as follows, with Q in L/min, G1 as specific gravity, \( \mu \) in centipoise, and area in mm\(^2\):

\[ Re = \frac{Q(18800G_1)}{\mu \sqrt{A}} \]

It is unclear how this expression was derived with a constant of 18800; the following code demonstrates what the constant should be:

```
>>> from scipy.constants import *
>>> liter/minute*1000./(0.001*(milli**2)**0.5)
16666.666666666668
```

References

[1]

Examples

From [1], checked with example 5.
fluids.safety_valve.API520_N(P1)
Calculates correction due to steam pressure for steam flow for use in API 520 relief valve sizing.

\[ K_N = \frac{0.02764P_1 - 1000}{0.03324P_1 - 1061} \]

Parameters

- P1 [float] Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa]

Returns

- KN [float] Correction due to steam temperature [-]

Notes

Although not dimensional, KN varies with the units used.
For temperatures above 922 K or 22057 kPa, KN is not defined.
Internally, units of kPa are used to match the equation in the standard.

References

[1]

Examples

Custom example:

```python
>>> API520_N(1774700)
0.9490406958152466
```

fluids.safety_valve.API520_SH(T1, P1)
Calculates correction due to steam superheat for steam flow for use in API 520 relief valve sizing. 2D interpolation among a table with 28 pressures and 10 temperatures is performed.

Parameters

- T1 [float] Temperature of the fluid entering the valve [K]
- P1 [float] Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa]

Returns

- KSH [float] Correction due to steam superheat [-]

Notes

For P above 20679 kPag, use the critical flow model. Superheat cannot be above 649 degrees Celsius. If T1 is above 149 degrees Celsius, returns 1.
**References**

[1]

**Examples**

Custom example from table 9:

```python
>>> API520_SH(593+273.15, 1066.32E3)
0.7201800000000002
```

```python
fluids.safety_valve.API520_B(Pset, Pback, overpressure=0.1)
```

Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in vapor service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure. For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed.

**Parameters**

- **Pset** [float] Set pressure for relief [Pa]
- **Pback** [float] Backpressure, [Pa]
- **overpressure** [float, optional] The maximum fraction overpressure; one of 0.1, 0.16, or 0.21, [-]

**Returns**

- **Kb** [float] Correction due to vapor backpressure [-]

**Notes**

If the calculated gauge backpressure is less than 30%, 38%, or 50% for overpressures of 0.1, 0.16, or 0.21, a value of 1 is returned.

Percent gauge backpressure must be under 50%.

**References**

[1]

**Examples**

Custom examples from figure 30:

```python
>>> API520_B(1E6, 5E5)
0.7929945420944432
```

```python
fluids.safety_valve.API520_W(Pset, Pback)
```

Calculates capacity correction due to backpressure on balanced spring-loaded PRVs in liquid service. For pilot operated valves, this is always 1. Applicable up to 50% of the percent gauge backpressure. For use in API 520 relief valve sizing. 1D interpolation among a table with 53 backpressures is performed.

**Parameters**

- **Pset** [float] Set pressure for relief [Pa]
- **Pback** [float] Backpressure, [Pa]
Returns

KW [float] Correction due to liquid backpressure [-]

Notes
If the calculated gauge backpressure is less than 15%, a value of 1 is returned.

References

[1]

Examples

Custom example from figure 31:

```python
>>> API520_W(1E6, 3E5) # 22% overpressure
0.9511471848008564
```

Calculates required relief valve area for an API 520 valve passing a gas or a vapor, at either critical or sub-critical flow.

For critical flow:

\[
A = \frac{m}{CK_dKP_1KP_2} \sqrt{\frac{TZ}{M}}
\]

For sub-critical flow:

\[
A = \frac{17.9m}{F_2K_dKP_2} \sqrt{\frac{TZ}{MP_1(P_1 - P_2)}}
\]

Parameters

- **m** [float] Mass flow rate of vapor through the valve, [kg/s]
- **T** [float] Temperature of vapor entering the valve, [K]
- **Z** [float] Compressibility factor of the vapor, [-]
- **MW** [float] Molecular weight of the vapor, [g/mol]
- **k** [float] Isentropic coefficient or ideal gas heat capacity ratio [-]
- **P1** [float] Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa]
- **P2** [float, optional] Built-up backpressure; the increase in pressure during flow at the outlet of a pressure-relief device after it opens, [Pa]
- **Kd** [float, optional] The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1], []
- **Kb** [float, optional] Correction due to vapor backpressure [-]
- **Kc** [float, optional] Combination correction factor for installation with a rupture disk upstream of the PRV, []
Returns

A  [float] Minimum area for relief valve according to [1], [m^2]

Notes

Units are interally kg/hr, kPa, and mm^2 to match [1].

References

[1]

Examples

Example 1 from [1] for critical flow, matches:

```python
>>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1)
0.003699046064683441
```

Example 2 from [1] for sub-critical flow, matches:

```python
>>> API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, P2=532E3, Kd=0.975, Kb=1, Kc=1)
0.004248358775943481
```

The mass flux in (kg/(s*m^2)) can be found by dividing the specified mass flow by the calculated area:

```python
>>> (24270/3600.)/API520_A_g(m=24270/3600., T=348., Z=0.90, MW=51., k=1.11, P1=670E3, Kb=1, Kc=1)
1822.541960488834
```

```python
fluids.safety_valve.API520_A_steam(m, T, P1, Kd=0.975, Kb=1, Kc=1)
```

Calculates required relief valve area for an API 520 valve passing a steam, at either saturation or superheat but not partially condensed.

\[
A = \frac{190.5m}{P_1K_dK_bK_cK_NK_{SH}}
\]

Parameters

- **m**  [float] Mass flow rate of steam through the valve, [kg/s]
- **T**  [float] Temperature of steam entering the valve, [K]
- **P1**  [float] Upstream relieving pressure; the set pressure plus the allowable overpressure, plus atmospheric pressure, [Pa]
- **Kd**  [float, optional] The effective coefficient of discharge, from the manufacturer or for preliminary sizing, using 0.975 normally or 0.62 when used with a rupture disc as described in [1], []
- **Kb**  [float, optional] Correction due to vapor backpressure [-]
- **Kc**  [float, optional] Combination correction factor for installation with a rupture disk upstream of the PRV, []

Returns
Minimum area for relief valve according to [1], [m^2]

Notes

Units are interally kg/hr, kPa, and mm^2 to match [1]. With the provided temperature and pressure, the KN coefficient is calculated with the function API520_N; as is the superheat correction KSH, with the function API520_SH.

References

[1]

Examples

Example 4 from [1], matches:

```python
>>> API520_A_steam(m=69615/3600., T=592.5, P1=12236E3, Kd=0.975, Kb=1, Kc=1)
0.0011034712423692733
```

2.21 Liquid-Vapor Separators (fluids.separator)

**fluids.separator.v_Sounders_Brown(K, rhol, rhog)**

Calculates the maximum allowable vapor velocity in a two-phase separator to permit separation between entrained droplets and the gas using an empirical $K$ factor, named after Sounders and Brown [1]. This is a simplifying expression for terminal velocity and drag on particles.

$$v_{max} = K_{SB} \sqrt{\frac{\rho_l - \rho_g}{\rho_g}}$$

Parameters

- **K** [float] Sounders Brown $K$ factor for two-phase separator design, [m/s]
- **rhol** [float] Density of liquid phase [kg/m^3]
- **rhog** [float] Density of gas phase [kg/m^3]

Returns

- **v_max** [float] Maximum allowable vapor velocity in a two-phase separator to permit separation between entrained droplets and the gas, [m/s]
Notes

The Sounders Brown K factor is related to the terminal velocity as shown in the following expression.

\[ v_{\text{term}} = v_{\text{max}} = \sqrt{\frac{4gd_p(\rho_p - \rho_f)}{3C_D \rho_f}} \]

\[ v_{\text{term}} = \left(\frac{\rho_p - \rho_f}{\rho_f}\right)^{\frac{3}{2}} \sqrt{\frac{4gd_p}{3C_D}} \]

\[ v_{\text{term}} = K_{SB} \sqrt{\frac{4gd_p}{3C_D}} \]

Note this form corresponds to the Newton’s law range (Re > 500), but in reality droplets are normally in the intermediate or Stoke’s law region [2]. For this reason using the drag coefficient expression directly is cleaner, but identical results can be found with the Sounders Brown equation.

References

[1], [2]

Examples

```python
>>> v_Sounders_Brown(K=0.08, rhol=985.4, rhog=1.3)
2.2010906387516167
```

`fluids.separator.K_separator_Watkins(x, rhol, rhog, horizontal=False, method='spline')`

Calculates the Sounders-Brown K factor as used in determining maximum allowable gas velocity in a two-phase separator in either a horizontal or vertical orientation. This function approximates a graph published in [1] to determine K as used in the following equation:

\[ v_{\text{max}} = K_{SB} \sqrt{\frac{\rho_l - \rho_g}{\rho_g}} \]

The graph has K_{SB} on its y-axis, and the following as its x-axis:

\[ \frac{m_l}{m_g} \sqrt{\rho_g/\rho_l} = \frac{(1 - x)}{x} \sqrt{\rho_g/\rho_l} \]

Cubic spline interpolation is the default method of retrieving a value from the graph, which was digitized with Engauge-Digitizer.

Also supported are two published curve fits to the graph. The first is that of Blackwell (1984) [2], as follows:

\[ K_{SB} = \exp(-1.942936 - 0.814894 X - 0.179390 X^2 - 0.0123790 X^3 + 0.00386235 X^4 + 0.000259550 X^5) \]

\[ X = \log\left(\frac{(1 - x)}{x} \sqrt{\rho_g/\rho_l}\right) \]

The second is that of Branan (1999), as follows:

\[ K_{SB} = \exp(-1.877478097 - 0.81145804597 X - 0.1870744085 X^2 - 0.0145228667 X^3 - 0.00101148518 X^4) \]

\[ X = \log\left(\frac{(1 - x)}{x} \sqrt{\rho_g/\rho_l}\right) \]

Parameters

2.21. Liquid-Vapor Separators (fluids.separator) 393
Fluids Documentation, Release 0.1.86

\[ x \ [\text{float}] \text{ Quality of fluid entering separator, [-]} \]
\[ \text{rhol} \ [\text{float}] \text{ Density of liquid phase [kg/m}^3\text{]} \]
\[ \text{rhog} \ [\text{float}] \text{ Density of gas phase [kg/m}^3\text{]} \]
\[ \text{horizontal} \ [\text{bool, optional}] \text{ Whether to use the vertical or horizontal value; horizontal is 1.25 higher} \]
\[ \text{method} \ [\text{str}] \text{ One of ‘spline, ‘blackwell’, or ‘branan’} \]

Returns

\[ K \ [\text{float}] \text{ Sounders Brown horizontal or vertical } K \text{ factor for two-phase separator design only, [m/s]} \]

Notes

Both the ‘branan’ and ‘blackwell’ models are used frequently. However, the spline is much more accurate.

No limits checking is enforced. However, the x-axis spans only 0.006 to 5.4, and the function should not be used outside those limits.

References

[1], [2], [3]

Examples

```python
>>> K_separator_Watkins(0.88, 985.4, 1.3, horizontal=True)
0.07951613600476297
```

`fluids.separator.K_separator_demister_York(P, horizontal=False)`

Calculates the Sounders Brown \( K \) factor as used in determining maximum permissible gas velocity in a two-phase separator in either a horizontal or vertical orientation, with a demister. This function is a curve fit to [1] published in [2] and is widely used.

For \( 1 < P < 15 \) psia:

\[
K = 0.1821 + 0.0029P + 0.0460 \ln P
\]

For \( 15 \leq P \leq 40 \) psia:

\[
K = 0.35
\]

For \( P < 5500 \) psia:

\[
K = 0.430 - 0.023 \ln P
\]

In the above equations, \( P \) is in units of psia.

Parameters

\[ P \ [\text{float}] \text{ Pressure of separator, [Pa]} \]
\[ \text{horizontal} \ [\text{bool, optional}] \text{ Whether to use the vertical or horizontal value; horizontal is 1.25 times higher, [-]} \]
Returns

\( K \) [float] Sounders Brown Horizontal or vertical \( K \) factor for two-phase separator design with a demister, [m/s]

Notes

If the input pressure is under 1 psia, 1 psia is used. If the input pressure is over 5500 psia, 5500 psia is used.

References

[2], [1]

Examples

```python
>>> K_separator_demister_York(975*psi)
0.08281536035331669
```

`fluids.separator.K_Sounders_Brown_theoretical(D, Cd, g=9.80665)`

Converts a known drag coefficient into a Sounders-Brown \( K \) factor for two-phase separator design. This factor is the traditional way for separator diameters to be obtained although it is unnecessary and the theoretical drag coefficient method can be used instead.

\[
K_{SB} = \sqrt{\left(\frac{\rho_p - \rho_f}{\rho_f}\right)} = \sqrt{\frac{4gd_p^3}{3C_D}}
\]

Parameters

- \( D \) [float] Design diameter of the droplets, [m]
- \( Cd \) [float] Drag coefficient [-]
- \( g \) [float, optional] Acceleration due to gravity, [m/s^2]

Returns

\( K \) [float] Sounders Brown \( K \) factor for two-phase separator design, [m/s]

Notes

Drag coefficient is a function of velocity; so iteration is needed to obtain the most correct answer. The following example shows the use of iteration to obtain the final velocity:

```python
>>> from fluids import *

>>> V = 2.0
>>> D = 150E-6
>>> rho = 1.3
>>> rhoL = 700.
>>> mu = 1E-5
>>> for i in range(10):
... Re = Reynolds(V=V, rho=rho, mu=mu, D=D)
... Cd = drag_sphere(Re)
... K = K_Sounders_Brown_theoretical(D=D, Cd=Cd)
... V = v_Sounders_Brown(K, rhoL=rhoL, rhog=rho)
```

(continues on next page)
The use of Sounders-Brown constants can be replaced as follows (the \texttt{v\_terminal} method includes its own solver for terminal velocity):

```python
>>> from fluids.drag import v_terminal
>>> v_terminal(D=D, rhop=rhol, rho=rho, mu=mu)
0.4803932186998834
```

References

[1]

Examples

```python
>>> K_Sounders_Brown_theoretical(D=150E-6, Cd=0.5)
0.06263114241333939
```

## 2.22 Pneumatic conveying (fluids.saltation)

\texttt{fluids.saltation.Rizk}(mp, dp, rhog, D)

Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2] and many others.

$$
\mu = \left( \frac{1}{10^{1.440d_p+1.96}} \right) (Fr_s)^{1100d_p+2.5}
$$

$$
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
$$

$$
\mu = \frac{mp}{\frac{1}{4} D^2 V \rho f}
$$

Parameters

- \texttt{mp} [float] Solid mass flow rate, [kg/s]
- \texttt{dp} [float] Particle diameter, [m]
- \texttt{rhog} [float] Gas density, [kg/m\textsuperscript{3}]
- \texttt{D} [float] Diameter of pipe, [m]

Returns

- \texttt{V} [float] Saltation velocity of gas, [m/s]
Notes

Model is rearranged to be explicit in terms of saltation velocity internally.

References

[1], [2], [3]

Examples

Example is from [3].

```python
>>> Rizk(mp=0.25, dp=100E-6, rhog=1.2, D=.078)
9.883092829357
```

`fluids.saltation.Matsumoto_1974 (mp, rhop, dp, rhog, D, Vterminal=1)`

Calculates saltation velocity of the gas for pneumatic conveying, according to [1]. Also described in [2].

\[
\mu = 0.448 \left( \frac{\rho_p}{\rho_f} \right)^{0.50} \left( \frac{F_{rp}}{10} \right)^{-1.75} \left( \frac{F_{rs}}{10} \right)^{3}
\]

\[
F_{rs} = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
F_{rp} = \frac{V_{terminal}}{\sqrt{gd_p}}
\]

\[
\mu = \frac{m_p}{\frac{\pi}{4} D^2 V_f}
\]

Parameters

- `mp` [float] Solid mass flow rate, [kg/s]
- `rhop` [float] Particle density, [kg/m^3]
- `dp` [float] Particle diameter, [m]
- `rhog` [float] Gas density, [kg/m^3]
- `D` [float] Diameter of pipe, [m]
- `Vterminal` [float] Terminal velocity of particle settling in gas, [m/s]

Returns

- `V` [float] Saltation velocity of gas, [m/s]

Notes

Model is rearranged to be explicit in terms of saltation velocity internally. Result looks high, something may be wrong. For particles > 0.3 mm.

References

[1], [2]

2.22. Pneumatic conveying (fluids.saltation)
Example

```python
>>> Matsumoto_1974(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
19.583617317317895
```

Example

```python
>>> Matsumoto_1975(mp, rhop, dp, rhog, D, Vterminal)=1)
```

Calculates saltation velocity of the gas for pneumatic conveying, according to [1]. Also described in [2].

\[
\mu = 1.11 \left( \frac{\rho_p}{\rho_f} \right)^{0.55} \left( \frac{F_{r_p}}{10} \right)^{-2.3} \left( \frac{F_{r_s}}{10} \right)^{3}
\]

\[
F_{r_s} = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
F_{r_p} = \frac{V_{terminal}}{\sqrt{gD_p}}
\]

\[
\mu = \frac{m_p}{\frac{\pi}{4} D^2 V_f}
\]

Parameters

- **mp** [float] Solid mass flow rate, [kg/s]
- **rhop** [float] Particle density, [kg/m^3]
- **dp** [float] Particle diameter, [m]
- **rhog** [float] Gas density, [kg/m^3]
- **D** [float] Diameter of pipe, [m]
- **Vterminal** [float] Terminal velocity of particle settling in gas, [m/s]

Returns

- **V** [float] Saltation velocity of gas, [m/s]

Notes

Model is rearranged to be explicit in terms of saltation velocity internally. Result looks high, something may be wrong. For particles > 0.3 mm.

References

[1], [2]

Example

```python
>>> Matsumoto_1977(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
18.04523091703009
```

Calculates saltation velocity of the gas for pneumatic conveying, according to [1] and reproduced in [2], [3], and [4].
First equation is used if third equation yields $d^*$ higher than $dp$. Otherwise, use equation 2.

\[
\mu = 5560 \left( \frac{dp}{D} \right)^{1.43} \left( \frac{Fr_s}{10} \right)^4
\]

\[
\mu = 0.373 \left( \frac{\rho_p}{\rho_f} \right)^{1.06} \left( \frac{Fr_p}{10} \right)^{-3.7} \left( \frac{Fr_s}{10} \right)^{3.61}
\]

\[
\frac{d^*}{D} = 1.39 \left( \frac{\rho_p}{\rho_f} \right)^{-0.74}
\]

\[
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
Fr_p = \frac{V_{terminal}}{\sqrt{gd_p}}
\]

\[
\mu = \frac{m_p}{\frac{\pi}{4}D^2V_p}
\]

**Parameters**

- `mp` [float] Solid mass flow rate, [kg/s]
- `rhop` [float] Particle density, [kg/m^3]
- `dp` [float] Particle diameter, [m]
- `rhog` [float] Gas density, [kg/m^3]
- `D` [float] Diameter of pipe, [m]
- `Vterminal` [float] Terminal velocity of particle settling in gas, [m/s]

**Returns**

- `V` [float] Saltation velocity of gas, [m/s]

**Notes**

Model is rearranged to be explicit in terms of saltation velocity internally.

**References**

[1], [2], [3], [4]

**Examples**

Example is only a self-test.

Course routine, terminal velocity input is from example in [2].

```python
>>> Matsumoto_1977(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=5.24)
16.64284834446686
```
fluids.saltation.\texttt{Schade}(mp, rhop, dp, rhog, D)
Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2], [3], [4], and [5].

\[
Fr_s = \mu^{0.11} \left( \frac{D}{dp} \right)^{0.025} \left( \frac{\rho_p}{\rho_f} \right)^{0.34}
\]

\[
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
\mu = \frac{m_p}{\frac{\pi}{4} D^2 V \rho_f}
\]

Parameters

- \texttt{mp} [float] Solid mass flow rate, [kg/s]
- \texttt{rhop} [float] Particle density, [kg/m$^3$]
- \texttt{dp} [float] Particle diameter, [m]
- \texttt{rhog} [float] Gas density, [kg/m$^3$]
- \texttt{D} [float] Diameter of pipe, [m]

Returns

- \texttt{V} [float] Saltation velocity of gas, [m/s]

Notes

Model is rearranged to be explicit in terms of saltation velocity internally.

References

[1], [2], [3], [4], [5]

Examples

```python
>>> Schade(mp=1., rhop=1000., dp=1E-3, rhog=1.2, D=0.1)
13.697415809497912
```

fluids.saltation.\texttt{Weber_saltation}(mp, rhop, dp, rhog, D, Vterminal=4)
Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2], [3], [4], and [5].

If Vterminal is under 3 m/s, use equation 1; otherwise, equation 2.

\[
Fr_s = \left(7 + \frac{8}{3} V_{terminal} \right) \mu^{0.25} \left( \frac{dp}{D} \right)^{0.1}
\]

\[
Fr_s = 15 \mu^{0.25} \left( \frac{dp}{D} \right)^{0.1}
\]

\[
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
\mu = \frac{m_p}{\frac{\pi}{4} D^2 V \rho_f}
\]
Parameters

- **mp** [float] Solid mass flow rate, [kg/s]
- **rhog** [float] Gas density, [kg/m³]
- **D** [float] Diameter of pipe, [m]
- **Vterminal** [float] Terminal velocity of particle settling in gas, [m/s]

Returns

- **V** [float] Saltation velocity of gas, [m/s]

Notes

Model is rearranged to be explicit in terms of saltation velocity internally.

References

[1], [2], [3], [4], [5]

Examples

Examples are only a self-test.

```python
>>> Weber_saltation(mp=1, rhog=1000., dp=1E-3, rhog=1.2, D=0.1, Vterminal=4)
15.227445436331474
```

**fluids.saltation.Geldart_Ling** *(mp, rhog, D, mug)*  
Calculates saltation velocity of the gas for pneumatic conveying, according to [1] as described in [2] and [3].

if $Gs/D < 47000$, use equation 1, otherwise use equation 2.

\[
V_{salt} = 1.5G_s^{0.465}D^{-0.01} \mu^{0.055} \rho_f^{-0.42}
\]

\[
V_{salt} = 8.7G_s^{0.302}D^{0.153} \mu^{0.055} \rho_f^{-0.42}
\]

\[
Fr_s = 15\mu^{0.25} \left( \frac{d_p}{D} \right)^{0.1}
\]

\[
Fr_s = \frac{V_{salt}}{\sqrt{gD}}
\]

\[
\mu = \frac{m_p}{\pi D^2 V \rho_f}
\]

\[
Gs = \frac{m_p}{A}
\]

Parameters

- **mp** [float] Solid mass flow rate, [kg/s]
- **rhog** [float] Gas density, [kg/m³]
- **D** [float] Diameter of pipe, [m]
**mug** [float] Gas viscosity, [Pa*s]

**Returns**

V [float] Saltation velocity of gas, [m/s]

**Notes**

Model is rearranged to be explicit in terms of saltation velocity internally.

**References**

[1], [2], [3]

**Examples**

```python
geldart_ling(1., 1.2, 0.1, 2E-5)
```

7.467495862402707

### 2.23 Two phase flow (fluids.two_phase)

`fluids.two_phase.two_phase_dp(m, x, rhol, D, L=1.0, rhog=None, mul=None, mug=None, sigma=None, P=None, Pc=None, roughness=0.0, angle=None, Method=None)`

This function handles calculation of two-phase liquid-gas pressure drop for flow inside channels. 23 calculation methods are available, with varying input requirements. A correlation will be automatically selected if none is specified. The full list of correlation can be obtained with the `AvailableMethods` flag.

If no correlation is selected, the following rules are used, with the earlier options attempted first:

- If rhog, mul, mug, and sigma are specified, use the Kim_Mudawar model
- If rhog, mul, and mug are specified, use the Chisholm model
- If mul, P, and Pc are specified, use the Zhang_Webb model
- If rhog and sigma are specified, use the Lombardi_Pedrocchi model

**Parameters**

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Quality of fluid, [-]
- rhol [float] Liquid density, [kg/m^3]
- D [float] Diameter of pipe, [m]
- L [float, optional] Length of pipe, [m]
- rhog [float, optional] Gas density, [kg/m^3]
- mul [float, optional] Viscosity of liquid, [Pa*s]
- mug [float, optional] Viscosity of gas, [Pa*s]
- sigma [float, optional] Surface tension, [N/m]
**P** [float, optional] Pressure of fluid, [Pa]

**Pc** [float, optional] Critical pressure of fluid, [Pa]

**roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]

**angle** [float, optional] The angle of the pipe with respect to the horizontal, [degrees]

**Returns**

**dP** [float] Pressure drop of the two-phase flow, [Pa]

**Other Parameters**

**Method** [string, optional] A string of the function name to use, as in the dictionary `two_phase_correlations`.

**Notes**

These functions may be integrated over, with properties recalculated as the fluid’s quality changes.

This model considers only the frictional pressure drop, not that due to gravity or acceleration.

**Examples**

```python
>>> two_phase_dP(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ...
... sigma=0.0487, D=0.05, L=1.0)
840.4137796786074
```

`fluids.two_phase.two_phase_dP_methods(m, x, rhol, D, L=1.0, rhog=None, mul=None, mug=None, sigma=None, P=None, Pc=None, roughness=0.0, angle=0, check_ranges=False)`

This function returns a list of names of correlations for two-phase liquid-gas pressure drop for flow inside channels. 24 calculation methods are available, with varying input requirements.

**Parameters**

**m** [float] Mass flow rate of fluid, [kg/s]

**x** [float] Quality of fluid, [-]

**rhol** [float] Liquid density, [kg/m^3]

**D** [float] Diameter of pipe, [m]

**L** [float, optional] Length of pipe, [m]

**rhog** [float, optional] Gas density, [kg/m^3]

**mul** [float, optional] Viscosity of liquid, [Pa*s]

**mug** [float, optional] Viscosity of gas, [Pa*s]

**sigma** [float, optional] Surface tension, [N/m]

**P** [float, optional] Pressure of fluid, [Pa]

**Pc** [float, optional] Critical pressure of fluid, [Pa]

**roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]

**angle** [float, optional] The angle of the pipe with respect to the horizontal, [degrees]

**check_ranges** [bool, optional] Added for Future use only
Returns

methods [list] List of methods which can be used to calculate two-phase pressure drop with the given inputs.

Examples

```python
>>> len(two_phase_dP_methods(m=0.6, x=0.1, rho_l=915., rho_g=2.67, mu_l=180E-6,
 mu_g=14E-6, sigma=0.0487, D=0.05, L=1.0, angle=30.0, roughness=1e-4, P=1e5,
 Pc=1e6))
 24
```

```
fluids.two_phase.two_phase_dP_acceleration(m, D, xi, xo, alpha_i, alpha_o, rho_li, rho_gi,
 rho_lo=None, rho_go=None)
```

This function handles calculation of two-phase liquid-gas pressure drop due to acceleration for flow inside channels. This is a discrete calculation for a segment with a known difference in quality (and ideally known inlet and outlet pressures so density dependence can be included).

\[
\Delta P_{acc} = G^2 \left\{ \frac{(1-x_o)^2}{\rho_{l,o}(1-\alpha_o)} + \frac{x_o^2}{\rho_{g,o}\alpha_o} \right\} - \left\{ \frac{(1-x_i)^2}{\rho_{l,i}(1-\alpha_i)} + \frac{x_i^2}{\rho_{g,i}\alpha_i} \right\}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **D** [float] Diameter of pipe, [m]
- **xi** [float] Quality of fluid at inlet, [-]
- **xo** [float] Quality of fluid at outlet, [-]
- **alpha_i** [float] Void fraction at inlet (area of gas / total area of channel), [-]
- **alpha_o** [float] Void fraction at outlet (area of gas / total area of channel), [-]
- **rho_li** [float] Liquid phase density at inlet, [kg/m^3]
- **rho_gi** [float] Gas phase density at inlet, [kg/m^3]
- **rho_lo** [float, optional] Liquid phase density at outlet, [kg/m^3]
- **rho_go** [float, optional] Gas phase density at outlet, [kg/m^3]

Returns

- **dP** [float] Acceleration component of pressure drop for two-phase flow, [Pa]

Notes

The use of different gas and liquid phase densities at the inlet and outlet is optional; the outlet densities conditions will be assumed to be those of the inlet if they are not specified.

There is a continuous variant of this method which can be integrated over, at the expense of a speed. The differential form of this is as follows ([1], [3]):

\[
- \frac{dP}{dz}_{acc} = G^2 \frac{d}{dz} \left\{ \frac{(1-x)^2}{\rho_l(1-\alpha)} + \frac{x^2}{\rho_g\alpha} \right\}
\]

References

[1], [2], [3]
Examples

```python
>>> two_phase_dP_acceleration(m=1, D=0.1, xi=0.372, xo=0.557, rho_li=827.1,
... rho_gi=3.919, alpha_i=0.992, alpha_o=0.996)
706.8560377214725
```

`fluids.two_phase.two_phase_dP_dz_acceleration(m, D, x, rhol, rhog, dv_dP_l, dv_dP_g, dx_dp, dp_dL, da_dL)`

This function handles calculation of two-phase liquid-gas pressure drop due to acceleration for flow inside channels. This is a continuous calculation, providing the differential in pressure per unit length and should be called as part of an integration routine ([1], [2], [3]).

\[
-\left(\frac{\partial P}{\partial L}\right)_A = G^2 \left( \left( \frac{1}{\rho_g} - \frac{1}{\rho_l} \right) \frac{\partial P}{\partial L} \frac{\partial x}{\partial P} + \frac{\partial P}{\partial L} \left[ x \frac{\partial (1/\rho_g)}{\partial P} + (1-x) \frac{\partial (1/\rho_l)}{\partial P} \right] \right) - \frac{G^2}{\rho_{hom}} \frac{1}{A} \frac{\partial A}{\partial L}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **D** [float] Diameter of pipe, [m]
- **x** [float] Quality of fluid [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **dv_dP_l** [float] Derivative of mass specific volume of the liquid phase with respect to pressure, [m^3/(kg*Pa)]
- **dv_dP_g** [float] Derivative of mass specific volume of the gas phase with respect to pressure, [m^3/(kg*Pa)]
- **dx_dp** [float] Derivative of mass quality of the two-phase fluid with respect to pressure (numerical derivatives may be convenient for this), [1/Pa]
- **dp_dL** [float] Pressure drop per unit length of pipe, [Pa/m]
- **da_dL** [float] Change in area of pipe per unit length of pipe, [m^2/m]

Returns

- **dP_dz** [float] Acceleration component of pressure drop for two-phase flow, [Pa/m]

Notes

This calculation has the homogeneous model built in to it as its derivation is shown in [1]. The discrete calculation is more flexible as different void fractions may be used.

References

[1], [2], [3]

Examples

```python
>>> two_phase_dP_dz_acceleration(m=1, D=0.1, x=0.372, rho_l=827.1,
... rho_g=3.919, dv_dP_l=-5e-12, dv_dP_g=-4e-7, dx_dp=-2e-7, dp_dL=120.0,
... da_dL=0.0001)
20.137876617489034
```
This function handles calculation of two-phase liquid-gas pressure drop due to gravitation for flow inside channels. This is a discrete calculation for a segment with a known difference in elevation (and ideally known inlet and outlet pressures so density dependence can be included).

\[ -\Delta P_{\text{grav}} = g \sin \theta z \left\{ \alpha_o \rho_{g,o} + (1 - \alpha_o) \rho_{l,o} + \alpha_i \rho_{g,i} + (1 - \alpha_i) \rho_{l,i} \right\} \]

**Parameters**

- **angle** [float] The angle of the pipe with respect to the horizontal, [degrees]
- **z** [float] The total length of the pipe, [m]
- **alpha_i** [float] Void fraction at inlet (area of gas / total area of channel), [-]
- **rho_li** [float] Liquid phase density at inlet, [kg/m^3]
- **rho_gi** [float] Gas phase density at inlet, [kg/m^3]
- **alpha_o** [float, optional] Void fraction at outlet (area of gas / total area of channel), [-]
- **rho_lo** [float, optional] Liquid phase density at outlet, [kg/m^3]
- **rho_go** [float, optional] Gas phase density at outlet, [kg/m^3]
- **g** [float, optional] Acceleration due to gravity, [m/s^2]

**Returns**

- **dP** [float] Gravitational component of pressure drop for two-phase flow, [Pa]

**Notes**

The use of different gas and liquid phase densities and void fraction at the inlet and outlet is optional; the outlet densities and void fraction will be assumed to be those of the inlet if they are not specified. This does not add much accuracy.

There is a continuous variant of this method which can be integrated over, at the expense of a speed. The differential form of this is as follows ([1], [2]):

\[ -\left( \frac{dP}{dz} \right)_{\text{grav}} = \alpha \rho_g + (1 - \alpha) \rho_l g \sin \theta \]

**References**

[1], [2], [3]

**Examples**

Example calculation, page 13-2 from [3]:

```python
>>> two_phase_dP_gravitational(angle=90, z=2, alpha_i=0.9685, rho_li=1518.,
... rho_gi=2.6)
987.237416829999
```

The same calculation, but using average inlet and outlet conditions:
fluids.two_phase.twophasedP_gravitational(angle=90, z=2, alpha_i=0.9685, rho_1i=1518., ... rho_1i=2.6, alpha_o=0.968, rho_lo=1517.9, rho_go=2.59)
994.5416058829999

fluids.two_phase.twophasedP_dz_gravitational(angle, alpha, rho_1, rho_2, g=9.80665)

This function handles calculation of two-phase liquid-gas pressure drop due to gravitation for flow inside channels. This is a differential calculation for a segment with an infinitesimal difference in elevation for use in performing integration over a pipe as shown in [1] and [2].

\[-\left(\frac{dP}{dz}\right)_{grav} = [\alpha \rho_2 + (1 - \alpha) \rho_1] g \sin \theta\]

Parameters
angle [float] The angle of the pipe with respect to the horizontal, [degrees]
alpha [float] Void fraction (area of gas / total area of channel), [-]
rho_1 [float] Liquid phase density, [kg/m^3]
rho_2 [float] Gas phase density, [kg/m^3]
g [float, optional] Acceleration due to gravity, [m/s^2]

Returns
dP_dz [float] Gravitational component of pressure drop for two-phase flow, [Pa/m]

References
[1], [2]

Examples

```python
>>> two_phase_dP_dz_gravitational(angle=90, alpha=0.9685, rho_1=1518,
... rho_2=2.6)
493.6187084149995
```

fluids.two_phase.Beggs_Brill(m, x, rho_1, rho_2, mu_1, mu_2, sigma, P, D, angle, roughness=0.0, L=1.0, g=9.80665, acceleration=True)

Calculates the two-phase pressure drop according to the Beggs-Brill correlation ([1], [2], [3]).

Parameters
m [float] Mass flow rate of fluid, [kg/s]
x [float] Mass quality of fluid, [-]
rho_1 [float] Liquid density, [kg/m^3]
rho_2 [float] Gas density, [kg/m^3]
mu_1 [float] Viscosity of liquid, [Pa*s]
mu_2 [float] Viscosity of gas, [Pa*s]
sigma [float] Surface tension, [N/m]
P [float] Pressure of fluid (used only if acceleration=True), [Pa]
D [float] Diameter of pipe, [m]
angle [float] The angle of the pipe with respect to the horizontal, [degrees]
roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]
L  [float, optional] Length of pipe, [m]
g  [float, optional] Acceleration due to gravity, [m/s^2]
acceleration [bool] Whether or not to include the original acceleration component, [-]

Returns

dP  [float] Pressure drop of the two-phase flow, [Pa]

Notes

The original acceleration formula is fairly primitive and normally neglected. The model was developed assuming smooth pipe, so leaving roughness to zero may be wise.

Note this is a “mechanistic” pressure drop model - the gravitational pressure drop cannot be separated from the frictional pressure drop.

References

[1], [2], [3]

Examples

```python
>>> Beggs_Brill(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, P=1E7, D=0.05, angle=0, roughness=0.0, L=1.0)
686.9724506803469
```

`fluids.two_phase.Lockhart_Martinelli(m, x, rhol, rhog, mul, mug, D, L=1.0, Re_c=2000.0)`
Calculates two-phase pressure drop with the Lockhart and Martinelli (1949) correlation as presented in non-graphical form by Chisholm (1967).

\[
\Delta P = \Delta P_l \phi_l^2 \\
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2} \\
X^2 = \frac{\Delta P_l}{\Delta P_g}
\]

<table>
<thead>
<tr>
<th>Liquid</th>
<th>Gas</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbulent</td>
<td>Turbulent</td>
<td>20</td>
</tr>
<tr>
<td>Laminar</td>
<td>Turbulent</td>
<td>12</td>
</tr>
<tr>
<td>Turbulent</td>
<td>Laminar</td>
<td>10</td>
</tr>
<tr>
<td>Laminar</td>
<td>Laminar</td>
<td>5</td>
</tr>
</tbody>
</table>

This model has its own friction factor calculations, to be consistent with its Reynolds number transition and the procedure specified in the original work. The equation 64/Re is used up to Re_c, and above it the Blasius equation is used as follows:

\[
f_d = \frac{0.184}{Re^{0.2}}
\]
Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **D** [float] Diameter of pipe, [m]
- **L** [float, optional] Length of pipe, [m]
- **Re_c** [float, optional] Transition Reynolds number, used to decide which friction factor equation to use and which C value to use from the table above.

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

Notes

Developed for horizontal flow. Very popular. Many implementations of this model assume turbulent-turbulent flow.

The original model proposed that the transition Reynolds number was 1000 for laminar flow, and 2000 for turbulent flow; it proposed no model for Re_l < 1000 and Re_g between 1000 and 2000 and also Re_g < 1000 and Re_l between 1000 and 2000.

No correction is available in this model for rough pipe.

[3] examined the original data in [1] again, and fit more curves to the data, separating them into different flow regimes. There were 229 datum in the turbulent-turbulent regime, 9 in the turbulent-laminar regime, 339 in the laminar-turbulent regime, and 42 in the laminar-laminar regime. Errors from [3]'s curves were 13.4%, 3.5%, 14.3%, and 12.0% for the above regimes, respectively. [2]'s fits provide further error.

References

[1], [2], [3], [4]

Examples

```python
>>> Lockhart_Martinelli(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, L=1.0)
716.4695654888484
```

Calculates two-phase pressure drop with the Friedel correlation.

\[
\Delta P_{friction} = \Delta P_{lo} \phi_{lo}^2
\]

\[
\phi_{lo}^2 = E + \frac{3.24FH}{Fr^{0.0454}We^{0.035}}
\]
\[ H = \left( \frac{\rho_l}{\rho_g} \right)^{0.91} \left( \frac{\mu_g}{\mu_l} \right)^{0.19} \left( 1 - \frac{\mu_g}{\mu_l} \right)^{0.7} \]

\[ F = x^{0.78}(1-x)^{0.224} \]

\[ E = (1-x)^2 + x^2 \left( \frac{\rho_l f_{d,go}}{\rho_g f_{d,lo}} \right) \]

\[ Fr = \frac{G_{tp}^2}{gD\rho_H} \]

\[ We = \frac{G_{tp}^2 D}{\sigma \rho_H} \]

\[ \rho_H = \left( \frac{x}{\rho_g + 1 - \frac{\rho_l}{\rho_g}} \right)^{-1} \]

**Parameters**

- \( m \) [float] Mass flow rate of fluid, [kg/s]
- \( x \) [float] Quality of fluid, [-]
- \( \rho_{lo} \) [float] Liquid density, [kg/m\(^3\)]
- \( \rho_{go} \) [float] Gas density, [kg/m\(^3\)]
- \( \mu_l \) [float] Viscosity of liquid, [Pa*s]
- \( \mu_g \) [float] Viscosity of gas, [Pa*s]
- \( \sigma \) [float] Surface tension, [N/m]
- \( D \) [float] Diameter of pipe, [m]
- \( \text{roughness} \) [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- \( L \) [float, optional] Length of pipe, [m]

**Returns**

- \( dP \) [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

Applicable to vertical upflow and horizontal flow. Known to work poorly when \( \mu_l/\mu_g > 1000 \). Gives mean errors on the order of 40%. Tested on data with diameters as small as 4 mm.

The power of 0.0454 is given as 0.045 in [2], [3], [4], and [5]; [6] and [2] give 0.0454 and [2] also gives a similar correlation said to be presented in [1], so it is believed this 0.0454 was the original power. [6] also gives an expression for friction factor claimed to be presented in [1]; it is not used here.

**References**

[1], [2], [3], [4], [5], [6]

**Examples**

Example 4 in [6]:

---

**Fluids Documentation, Release 0.1.86**

---
Friedel(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
738.6500525002241

fluids.two_phase.Chisholm(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0, rough_correction=False)
Calculates two-phase pressure drop with the Chisholm (1973) correlation from [1], also in [2] and [3].

\[
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2
\]

\[
\phi_{ch}^2 = 1 + (\Gamma^2 - 1) \left\{ B x^{(2-n)/2} (1 - x)^{(2-n)/2} + x^{2-n} \right\}
\]

\[
\Gamma^2 = \frac{\left( \frac{\Delta P}{L} \right)_{go}}{\left( \frac{\Delta P}{L} \right)_{lo}}
\]

For Gamma < 9.5:

\[
B = \frac{55}{G_{tp}^{0.5}} \text{ for } G_{tp} > 1900
\]

\[
B = \frac{2400}{G_{tp}} \text{ for } 500 < G_{tp} < 1900
\]

\[
B = 4.8 \text{ for } G_{tp} < 500
\]

For 9.5 < Gamma < 28:

\[
B = \frac{520}{\Gamma G_{tp}^{0.5}} \text{ for } G_{tp} < 600
\]

\[
B = \frac{21}{\Gamma} \text{ for } G_{tp} > 600
\]

For Gamma > 28:

\[
B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}}
\]

If rough_correction is True, the following correction to B is applied:

\[
\frac{B_{rough}}{B_{smooth}} = \left[ 0.5 \left\{ 1 + \left( \frac{\mu_g}{\mu_l} \right)^2 + 10^{-600e/D} \right\} \right]^{0.25 - n}
\]

\[
n = \frac{\log f_{sl,lo}}{\log f_{sl,go}}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]

2.23. Two phase flow (fluids.two_phase)
D [float] Diameter of pipe, [m]

roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]

L [float, optional] Length of pipe, [m]

rough_correction [bool, optional] Whether or not to use the roughness correction proposed in the 1968 version of the correlation

Returns

dP [float] Pressure drop of the two-phase flow, [Pa]

Notes

Applicable for 0 < x < 1. n = 0.25, the exponent in the Blassius equation. Originally developed for smooth pipes, a roughness correction is included as well from the Chisholm’s 1968 work [4]. Neither [2] nor [3] have any mention of the correction however.

References

[1], [2], [3], [4]

Examples

```python
>>> Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
1084.1489922923738
```

`fluids.two_phase.Kim_Mudawar (m, x, rhol, rhog, mul, mug, sigma, D, L=1.0)`

Calculates two-phase pressure drop with the Kim and Mudawar (2012) correlation as in [1], also presented in [2].

\[
\Delta P = \Delta P_l \phi_l^2
\]

\[
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
\]

\[
X^2 = \frac{\Delta P_l}{\Delta P_g}
\]

For turbulent liquid, turbulent gas:

\[
C = 0.39 Re_l^{0.03} S_{u_{lg}}^{0.10} \left( \frac{\rho_l}{\rho_g} \right)^{0.35}
\]

For turbulent liquid, laminar gas:

\[
C = 8.7 \times 10^{-4} Re_l^{0.17} S_{u_{lg}}^{0.50} \left( \frac{\rho_l}{\rho_g} \right)^{0.14}
\]

For laminar liquid, turbulent gas:

\[
C = 0.0015 Re_l^{0.59} S_{u_{lg}}^{0.19} \left( \frac{\rho_l}{\rho_g} \right)^{0.36}
\]
For laminar liquid, laminar gas:

\[ C = 3.5 \times 10^{-5} Re_{lo}^{0.44} Su_{go}^{0.50} \left( \frac{\rho_l}{\rho_g} \right)^{0.48} \]

This model has its own friction factor calculations, to be consistent with its Reynolds number transition. As their model was regressed with these equations, more error is obtained when using any other friction factor calculation. The laminar equation 64/Re is used up to Re=2000, then the Blasius equation with a coefficient of 0.316, and above Re = 20000,

\[ f_d = \frac{0.184}{Re^{0.2}} \]

**Parameters**

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **sigma** [float] Surface tension, [N/m]
- **D** [float] Diameter of pipe, [m]
- **L** [float, optional] Length of pipe, [m]

**Returns**

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

The critical Reynolds number in this model is 2000, with a Reynolds number definition using actual liquid and gas flows. This model also requires liquid-only Reynolds number to be calculated.

No attempt to incorporate roughness into the model was made in [1].

The model was developed with hydraulic diameter from 0.0695 to 6.22 mm, mass velocities 4 to 8528 kg/m^2/s, flow qualities from 0 to 1, reduced pressures from 0.0052 to 0.91, superficial liquid Reynolds numbers up to 79202, superficial gas Reynolds numbers up to 253810, liquid-only Reynolds numbers up to 89798, 7115 data points from 36 sources and working fluids air, CO2, N2, water, ethanol, R12, R22, R134a, R236ea, R245fa, R404A, R407C, propane, methane, and ammonia.

**References**

[1], [2]

**Examples**

```python
>>> Kim_Mudawar(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
 ... sigma=0.0487, D=0.05, L=1.0)
840.4137796786074
```
fluids.two_phase.Baroczy_Chisholm(\(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0\))

Calculates two-phase pressure drop with the Baroczy (1966) model. It was presented in graphical form originally; Chisholm (1973) made the correlation non-graphical. The model is also shown in [3].

\[
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{ch}^2
\]

\[
\phi_{ch}^2 = 1 + (\Gamma^2 - 1) \left\{ B x^{(2-n)/2} (1 - x)^{(2-n)/2} + x^{2-n} \right\}
\]

\[
\Gamma^2 = \frac{\left( \frac{\Delta P}{L} \right)_{go}}{\left( \frac{\Delta P}{L} \right)_{lo}}
\]

For \( \Gamma < 9.5 \):

\[
B = \frac{55}{G_{tp}^{0.5}}
\]

For \( 9.5 < \Gamma < 28 \):

\[
B = \frac{520}{\Gamma G_{tp}^{0.5}}
\]

For \( \Gamma > 28 \):

\[
B = \frac{15000}{\Gamma^2 G_{tp}^{0.5}}
\]

**Parameters**

- \( m \) [float] Mass flow rate of fluid, [kg/s]
- \( x \) [float] Quality of fluid, [-]
- \( rhol \) [float] Liquid density, [kg/m^3]
- \( rhog \) [float] Gas density, [kg/m^3]
- \( mul \) [float] Viscosity of liquid, [Pa*s]
- \( mug \) [float] Viscosity of gas, [Pa*s]
- \( D \) [float] Diameter of pipe, [m]
- \( roughness \) [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- \( L \) [float, optional] Length of pipe, [m]

**Returns**

- \( \Delta P \) [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

Applicable for \( 0 < x < 1 \). \( n = 0.25 \), the exponent in the Blassius equation. The Chisholm.1973 function should be used in preference to this.

**References**

[1], [2], [3]
**Examples**

```python
>>> Baroczy_Chisholm(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
1084.1489922923738
```

`fluids.two_phase.Theissing(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0)`

Calculates two-phase pressure drop with the Theissing (1980) correlation as shown in [2] and [3].

\[
\Delta P_{tp} = \left[ \Delta P_{lo}^{1/n} (1 - x)^{1/\epsilon} + \Delta P_{go}^{1/(ne)} x^{1/\epsilon} \right]^{ne}
\]

\[
\epsilon = 3 - 2 \left( \frac{2 \sqrt{\rho_l/\rho_g}}{1 + \rho_l/\rho_g} \right)^{0.7/n}
\]

\[
n = n_1 + n_2 (\Delta P_g/\Delta P_l)^{0.1}
\]

\[
n_1 = \frac{\ln (\Delta P_l/\Delta P_{lo})}{\ln (1 - x)}
\]

\[
n_2 = \frac{\ln (\Delta P_g/\Delta P_{go})}{\ln x}
\]

**Parameters**

- `m` [float] Mass flow rate of fluid, [kg/s]
- `x` [float] Quality of fluid, [-]
- `rhol` [float] Liquid density, [kg/m^3]
- `rhog` [float] Gas density, [kg/m^3]
- `mul` [float] Viscosity of liquid, [Pa*s]
- `mug` [float] Viscosity of gas, [Pa*s]
- `D` [float] Diameter of pipe, [m]
- `roughness` [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- `L` [float, optional] Length of pipe, [m]

**Returns**

- `dP` [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

Applicable for 0 < x < 1. Notable, as it can be used for two-phase liquid-liquid flow as well as liquid-gas flow.

**References**

[1], [2], [3]

**Examples**

2.23. Two phase flow (fluids.two_phase) 415
calculates two-phase pressure drop with the Muller-Steinhagen and Heck (1986) correlation from [1], also in [2] and [3].

\[
\Delta P_{tp} = G_{MSH}(1-x)^{1/3} + \Delta P_{go}x^{3}
\]

\[
G_{MSH} = \Delta P_{lo} + 2[\Delta P_{go} - \Delta P_{lo}]x
\]

Parameters

- \texttt{m} [float] Mass flow rate of fluid, [kg/s]
- \texttt{x} [float] Quality of fluid, [-]
- \texttt{rhol} [float] Liquid density, [kg/m^3]
- \texttt{rhog} [float] Gas density, [kg/m^3]
- \texttt{mul} [float] Viscosity of liquid, [Pa*s]
- \texttt{mug} [float] Viscosity of gas, [Pa*s]
- \texttt{D} [float] Diameter of pipe, [m]
- \texttt{roughness} [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- \texttt{L} [float, optional] Length of pipe, [m]

Returns

- \texttt{dP} [float] Pressure drop of the two-phase flow, [Pa]

Notes

Applicable for \(0 < x < 1\). Developed to be easily integrated. The contribution of each term to the overall pressure drop can be understood in this model.

References

[1], [2], [3]

Examples

```python
>>> Theissing(m=0.6, x=.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
497.6156370699538
```

```
fluids.two_phase.Muller_Steinhagen_Heck(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0)
```

Calculates two-phase pressure drop with the Gronnerud correlation as presented in [2], [3], and [4].

\[
\Delta P_{friction} = \Delta P_{gd}\phi_{lo}^2
\]
\[
\phi_{gd} = 1 + \left( \frac{dP}{dL} \right)_{Fr} \left[ \frac{\rho_l}{\left( \frac{\mu_l}{\mu_g} \right)^{0.25}} - 1 \right]
\]

\[
\left( \frac{dP}{dL} \right)_{Fr} = f_{Fr} \left[ x + 4(x^{1.8} - x^{10}f_{Fr}^{0.5}) \right]
\]

\[
f_{Fr} = Fr_l^{0.3} + 0.0055 \left( \ln \frac{1}{Fr_l} \right)^2
\]

\[
Fr_l = \frac{G_{tp}^2}{gD\rho_l^2}
\]

**Parameters**

- \(m\) [float] Mass flow rate of fluid, [kg/s]
- \(x\) [float] Quality of fluid, [-]
- \(\rho_l\) [float] Liquid density, [kg/m\(^3\)]
- \(\rho_g\) [float] Gas density, [kg/m\(^3\)]
- \(\mu_l\) [float] Viscosity of liquid, [Pa*s]
- \(\mu_g\) [float] Viscosity of gas, [Pa*s]
- \(D\) [float] Diameter of pipe, [m]
- \(\text{roughness}\) [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- \(L\) [float, optional] Length of pipe, [m]

**Returns**

- \(dP\) [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

Developed for evaporators. Applicable from 0 < x < 1.

In the model, if \(Fr_l\) is more than 1, \(F_{Fr}\) is set to 1.

**References**

[1], [2], [3], [4]

**Examples**

```python
>>> Gronnerud(m=0.6, x=0.1, rho1=915., rho2=2.67, mu1=180E-6, mu2=14E-6,
... D=0.05, roughness=0.0, L=1.0)
384.12541144474085
```

**fluids.t слова_Pedrocchi**

Calculates two-phase pressure drop with the Lombardi-Pedrocchi (1972) correlation from [1] as shown in [2] and [3].

\[
\Delta P_{tp} = 0.83G_{tp}^{1.4}\sigma^{0.4}L
\]

\[
\frac{D^{1.2}\rho_{h}^{0.866}}
\]

### 2.23. Two phase flow (fluids.t слова_phase)
Parameters

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Quality of fluid, [-]
- rhol [float] Liquid density, [kg/m³]
- rhog [float] Gas density, [kg/m³]
- sigma [float] Surface tension, [N/m]
- D [float] Diameter of pipe, [m]
- L [float, optional] Length of pipe, [m]

Returns

- dP [float] Pressure drop of the two-phase flow, [Pa]

Notes

This is a purely empirical method. [3] presents a review of this and other correlations. It did not perform best, but there were also correlations worse than it.

References

[1], [2], [3]

Examples

```python
>>> Lombardi_Pedrocchi(m=0.6, x=0.1, rhol=915., rhog=2.67, sigma=0.045,
... D=0.05, L=1.0)
1567.328374498781
```

Calculates two-phase pressure drop with the Jung-Radermacher (1989) correlation, also shown in [2] and [3].

\[
\frac{\Delta P_{tp}}{\Delta P_{lo}} = \phi_{tp}^2
\]

\[
\phi_{tp}^2 = 12.82 \times t_t^{-1.47} (1 - x)^{1.8}
\]

Parameters

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Quality of fluid, [-]
- rhol [float] Liquid density, [kg/m³]
- rhog [float] Gas density, [kg/m³]
- mul [float] Viscosity of liquid, [Pa*s]
- mug [float] Viscosity of gas, [Pa*s]
- D [float] Diameter of pipe, [m]
- roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- L [float, optional] Length of pipe, [m]
Returns

\( dP \) [float] Pressure drop of the two-phase flow, [Pa]

Notes

Applicable for \( 0 < x < 1 \). Developed for the annular flow regime in turbulent-turbulent flow.

References

[1], [2], [3]

Examples

```python
>>> Jung_Radermacher(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, D=0.05, roughness=0.0, L=1.0)
552.0686123725568
```

Calculates two-phase pressure drop with the Tran (2000) correlation, also shown in [2] and [3].

\[
\Delta P = dP_\text{lo}\phi^2_{\text{lo}}
\]

\[
\phi^2_{\text{lo}} = 1 + (4.3\Gamma^2 - 1)[Co \cdot x^{0.875}(1 - x)^{0.875} + x^{1.75}]
\]

\[
\Gamma^2 = \frac{(\Delta P/L)_\text{lo}}{(\Delta P/L)_\text{go}}
\]

Parameters

\( m \) [float] Mass flow rate of fluid, [kg/s]

\( x \) [float] Quality of fluid, [-]

\( \text{rhol} \) [float] Liquid density, [kg/m\(^3\)]

\( \text{rhog} \) [float] Gas density, [kg/m\(^3\)]

\( \text{mul} \) [float] Viscosity of liquid, [Pa*s]

\( \text{mug} \) [float] Viscosity of gas, [Pa*s]

\( \text{sigma} \) [float] Surface tension, [N/m]

\( D \) [float] Diameter of pipe, [m]

\( \text{roughness} \) [float, optional] Roughness of pipe for use in calculating friction factor, [m]

\( L \) [float, optional] Length of pipe, [m]

Returns

\( dP \) [float] Pressure drop of the two-phase flow, [Pa]

Notes

Developed for boiling refrigerants in channels with hydraulic diameters of 2.4 mm to 2.92 mm.
References

[1], [2], [3]

Examples

```python
>>> Tran(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
423.2563312951232
```

`fluids.two_phase.Chen_Friedel(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0)`

Calculates two-phase pressure drop with the Chen modification of the Friedel correlation, as given in [1] and also shown in [2] and [3].

\[ \Delta P = \Delta P_{Friedel} \Omega \]

For \( Bo < 2.5 \):

\[ \Omega = \frac{0.0333Re_{lo}^{0.45}}{Re_{g}^{0.09}(1 + 0.4 \exp(-Bo))} \]

For \( Bo \geq 2.5 \):

\[ \Omega = \frac{We^{0.2}}{2.5 + 0.06Bo} \]

Parameters

- \( m \) [float] Mass flow rate of fluid, [kg/s]
- \( x \) [float] Quality of fluid, [-]
- \( rhol \) [float] Liquid density, [kg/m\(^3\)]
- \( rhog \) [float] Gas density, [kg/m\(^3\)]
- \( mul \) [float] Viscosity of liquid, [Pa*s]
- \( mug \) [float] Viscosity of gas, [Pa*s]
- \( sigma \) [float] Surface tension, [N/m]
- \( D \) [float] Diameter of pipe, [m]
- \( roughness \) [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- \( L \) [float, optional] Length of pipe, [m]

Returns

- \( dP \) [float] Pressure drop of the two-phase flow, [Pa]

Notes

Applicable ONLY to mini/microchannels; yields drastically too low pressure drops for larger channels. For more details, see the Friedel correlation.

It is not explicitly stated in [1] how to calculate the liquid mixture density for use in calculation of Weber number; the homogeneous model is assumed as it is used in the Friedel model.

The bond number used here is 1/4 the normal value, i.e.:

\[ Bo = \frac{g(\rho_l - \rho_g)D^2}{4\sigma} \]
References

[1], [2], [3]

Examples

```python
>>> Chen_Friedel(m=.0005, x=0.9, rho1=950., rhog=1.4, mul=1E-3, mug=1E-5,
... sigma=0.02, D=0.003, roughness=0.0, L=1.0)
6249.247540588871
```

`fluids.two_phase.Zhang_Webb(m, x, rho1, mul, Pc, D, roughness=0.0, L=1.0)`
Calculates two-phase pressure drop with the Zhang-Webb (2001) correlation as shown in [1] and also given in [2].

\[ \phi^2 = (1-x)^2 + 2.87x^2 \left( \frac{P}{P_c} \right)^{-1} + 1.68x^{0.8}(1-x)^{0.25} \left( \frac{P}{P_c} \right)^{-1.64} \]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rho1** [float] Liquid density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **P** [float] Pressure of fluid, [Pa]
- **Pc** [float] Critical pressure of fluid, [Pa]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

Notes

Applicable for 0 < x < 1. Corresponding-states method developed with R-134A, R-22 and R-404A in tubes of hydraulic diameters of 2.13 mm, 6.25 mm, and 3.25 mm. For the author’s 119 data points, the mean deviation was 11.5%. Recommended for reduced pressures larger than 0.2 and tubes of diameter 1-7 mm.

Does not require known properties for the gas phase.

References

[1], [2]
Examples

```python
>>> Zhang_Webb(m=0.6, x=0.1, rhol=915., mul=180E-6, P=2E5, Pc=4055000,
... D=0.05, roughness=0.0, L=1.0)
712.0999804205617
```

`fluids.two_phase.Xu_Fang(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0)`

Calculates two-phase pressure drop with the Xu and Fang (2013) correlation. Developed after a comprehensive review of available correlations, likely meaning it is quite accurate.

\[
\Delta P = \Delta P_{lo} \phi^2_{lo}
\]

\[
\phi^2_{lo} = Y^2 x^3 + (1 - x^{2.59})^{0.632}[1 + 2x^{1.17}(Y^2 - 1) + 0.00775x^{-0.475} F r_{tp}^{-0.535} W e_{tp}^{0.188}]
\]

\[
Y^2 = \frac{\Delta P_{go}}{\Delta P_{lo}}
\]

\[
F r_{tp} = \frac{G^2_{tp}}{g D \rho_{tp}^2}
\]

\[
W e_{tp} = \frac{G^2_{tp} D}{\sigma \rho_{tp}}
\]

\[
\frac{1}{\rho_{tp}} = \frac{1 - x}{\rho_l} + \frac{x}{\rho_g}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **sigma** [float] Surface tension, [N/m]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

References

[1]
Examples

```python
>>> Xu_Fang(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
604.0595632116267
```

**fluids.two_phase.Yu_France** *(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0)*


\[
\Delta P = \Delta P_l \phi_l^2 \\
\phi_l^2 = X^{-1.9} \\
X = 18.65 \left( \frac{\rho_g}{\rho_l} \right)^{0.5} \left( \frac{1 - x}{x} \right) \left( \frac{Re_g^{0.1}}{Re_l^{0.5}} \right)
\]

**Parameters**

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]

**Returns**

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

**References**

[1], [2], [3]

**Examples**

```python
>>> Yu_France(m=0.6, x=.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... D=0.05, roughness=0.0, L=1.0)
1146.9833225539571
```

**fluids.two_phase.Wang_Chiang_Lu** *(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0)*

Calculates two-phase pressure drop with the Wang, Chiang, and Lu (1997) correlation given in [1] and reviewed in [2] and [3].

\[
\Delta P = \Delta P_g \phi_g^2 \\
\phi_g^2 = 1 + 9.397X^{0.62} + 0.564X^{2.45} \text{ for } G \geq 200kg/m^2/s
\]

2.23. Two phase flow (fluids.two_phase) 423
\[ \phi_y^2 = 1 + CX + X^2 \text{ for lower mass fluxes} \]

\[ C = 0.000004566X^{0.128} Re_{1o}^{0.938} \left( \frac{\rho_l}{\rho_g} \right)^{-2.15} \left( \frac{\mu_l}{\mu_g} \right)^{5.1} \]

\[ X^2 = \frac{\Delta P_l}{\Delta P_g} \]

**Parameters**

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Quality of fluid, [-]
- rhoL [float] Liquid density, [kg/m³]
- rhoG [float] Gas density, [kg/m³]
- muL [float] Viscosity of liquid, [Pa*s]
- muG [float] Viscosity of gas, [Pa*s]
- D [float] Diameter of pipe, [m]
- roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- L [float, optional] Length of pipe, [m]

**Returns**

- dP [float] Pressure drop of the two-phase flow, [Pa]

**Examples**

```python
g = fluids.two_phase.Hwang_Kim(m=0.6, x=0.1, rhoL=915., rhoG=2.67, muL=180E-6, muG=14E-6, D=0.05, roughness=0.0, L=1.0)
dP = 448.29981978639137
```

**References**

[1], [2], [3]

**Calculates two-phase pressure drop with the Hwang and Kim (2006) correlation as in [1], also presented in [2] and [3].**

\[ \Delta P = \Delta P_l \phi_y^2 \]

\[ C = 0.227 Re_{1o}^{0.452} X^{-0.32} Co^{-0.82} \]

\[ \phi_y^2 = 1 + \frac{C}{X} + \frac{1}{X^2} \]

\[ X^2 = \frac{\Delta P_l}{\Delta P_g} \]

**Parameters**

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Quality of fluid, [-]
- rhoL [float] Liquid density, [kg/m³]
rhog  [float] Gas density, [kg/m\(^3\)]
mul  [float] Viscosity of liquid, [Pa·s]
mug  [float] Viscosity of gas, [Pa·s]
sigma [float] Surface tension, [N/m]
D  [float] Diameter of pipe, [m]

roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]
L  [float, optional] Length of pipe, [m]

**Returns**

\(dP\)  [float] Pressure drop of the two-phase flow, [Pa]

**Notes**

Developed with data for microtubes of diameter 0.244 mm and 0.792 mm only. Not likely to be suitable to larger diameters.

**References**

[1], [2], [3]

**Examples**

```python
>>> Hwang_Kim(m=0.0005, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6,
... sigma=0.0487, D=0.003, roughness=0.0, L=1.0)
798.302774184557
```

**flows**.two_phase.Zhang_Hibiki_Mishima\((m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0,\)
\(L=1.0, flowtype='adiabatic\ vapor')\)

Calculates two-phase pressure drop with the Zhang, Hibiki, Mishima and (2010) correlation as in [1], also presented in [2] and [3].

\[
\Delta P = \Delta P_l \phi_l^2
\]

\[
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
\]

\[
X^2 = \frac{\Delta P_l}{\Delta P_g}
\]

For adiabatic liquid-vapor two-phase flow:

\[
C = 21[1 - \exp(-0.142/Co)]
\]

For adiabatic liquid-gas two-phase flow:

\[
C = 21[1 - \exp(-0.674/Co)]
\]

For flow boiling:

\[
C = 21[1 - \exp(-0.358/Co)]
\]

2.23. Two phase flow (flows.two_phase)
Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **sigma** [float] Surface tension, [N/m]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]
- **flowtype** [str] One of ‘adiabatic vapor’, ‘adiabatic gas’, or ‘flow boiling’

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

Notes

Seems fairly reliable.

References

[1], [2], [3]

Examples

```python
>>> Zhang_Hibiki_Mishima(m=0.0005, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, sigma=0.0487, D=0.003, roughness=0.0, L=1.0)
444.9718476894804
```

**fluids.two_phase.Mishima_Hibiki** *(m, x, rhol, rhog, mul, mug, sigma, D, roughness=0.0, L=1.0)*

Calculates two-phase pressure drop with the Mishima and Hibiki (1996) correlation as in [1], also presented in [2] and [3].

\[
\Delta P = \Delta P_l \phi_l^2
\]

\[
C = 21[1 - \exp(-319D)]
\]

\[
\phi_l^2 = 1 + \frac{C}{X} + \frac{1}{X^2}
\]

\[
X^2 = \frac{\Delta P_l}{\Delta P_g}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
Fluids Documentation, Release 0.1.86

- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **sigma** [float] Surface tension, [N/m]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]

References

[1], [2], [3]

Examples

```python
>>> Mishima_Hibiki(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
... mug=14E-6, sigma=0.0487, D=0.05, roughness=0.0, L=1.0)
732.4268200606265
```

**fluids.two_phase.Bankoff** *(m, x, rhol, rhog, mul, mug, D, roughness=0.0, L=1.0)*

Calculates two-phase pressure drop with the Bankoff (1960) correlation, as shown in [2], [3], and [4].

\[
\Delta P_{tp} = \phi_l^{7/4} \Delta P_l \\
\phi_l = \frac{1}{1 - x} \left[ 1 - \gamma \left( 1 - \frac{\rho_g}{\rho_l} \right)^{3/7} \left[ 1 + x \left( \frac{\rho_l}{\rho_g} - 1 \right) \right] \right] \\
\gamma = \frac{0.71 + 2.35 \left( \frac{\rho_g}{\rho_l} \right)}{1 + \frac{1-x}{x} \frac{\rho_g}{\rho_l}}
\]

Parameters

- **m** [float] Mass flow rate of fluid, [kg/s]
- **x** [float] Quality of fluid, [-]
- **rhol** [float] Liquid density, [kg/m^3]
- **rhog** [float] Gas density, [kg/m^3]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]
- **D** [float] Diameter of pipe, [m]
- **roughness** [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- **L** [float, optional] Length of pipe, [m]

Returns

- **dP** [float] Pressure drop of the two-phase flow, [Pa]
Notes

This correlation is not actually shown in [1]. Its origin is unknown. The author recommends against using this.

References

[1], [2], [3], [4]

Examples

```python
>>> Bankoff(m=0.6, x=0.1, rho1=915., rho2=2.67, mu1=180E-6, mu2=14E-6,
... D=0.05, roughness=0.0, L=1.0)
4746.0594424533965
```

```
fluids.two_phase.Mandhane_Gregory_Aziz_regime(m, x, rho1, rho2, mu1, mu2, sigma, D)
```

Classifies the regime of a two-phase flow according to Mandhane, Gregory, and Azis (1974) flow map.


The parameters used are just the superficial liquid and gas velocity (i.e. if only the mass flow of that phase were flowing in the pipe).

**Parameters**

- `m` [float] Mass flow rate of fluid, [kg/s]
- `x` [float] Mass quality of fluid, [-]
- `rho1` [float] Liquid density, [kg/m^3]
- `rho2` [float] Gas density, [kg/m^3]
- `mu1` [float] Viscosity of liquid, [Pa*s]
- `mu2` [float] Viscosity of gas, [Pa*s]
- `sigma` [float] Surface tension, [N/m]
- `D` [float] Diameter of pipe, [m]

**Returns**

- `v_gs` [float] The superficial gas velocity in the pipe (x axis coordinate), [ft/s]
- `v_ls` [float] The superficial liquid velocity in the pipe (x axis coordinate), [ft/s]

Notes

[1] contains a Fortran implementation of this model, which this has been validated against. This is a very fast flow map as all transitions were spelled out with clean transitions.

References

[1]
Examples

```python
>>> Mandhane_Gregory_Aziz_regime(m=0.6, x=0.112, rhol=915.12, rhog=2.67,
... mul=180E-6, mug=14E-6, sigma=0.065, D=0.05)
('slug', 0.9728397701853173, 42.05456634236875)
```

`fluids.two_phase.Taitel_Dukler_regime(m, x, rhol, rhog, mul, mug, D, angle, roughness=0.0, g=9.80665)`

Classifies the regime of a two-phase flow according to Taitel and Dukler (1976) ([1], [2]).

The flow regimes in this method are ‘annular’, ‘bubbly’, ‘intermittent’, ‘stratified wavy’, and ‘stratified smooth’.

The four dimensionless parameters used are ‘X’, ‘T’, ‘F’, and ‘K’.

\[ X = \left( \frac{(dP/dL)_{l,s,f}}{(dP/dL)_{g,s,f}} \right)^{0.5} \]

\[ T = \left( \frac{(dP/dL)_{l,s,f}}{(\rho_l - \rho_g)g \cos \theta} \right)^{0.5} \]

\[ F = \sqrt{\frac{\rho_g}{(\rho_l - \rho_g)} \frac{v_{g,s}}{Dg \cos \theta}} \]

\[ K = F \left( \frac{Dv_{l,s}}{v_l} \right)^{0.5} = F \sqrt{Re_{l,s}} \]

Note that ‘l’ refers to liquid, ‘g’ gas, ‘f’ friction-only, and ‘s’ superficial (i.e. if only the mass flow of that phase were flowing in the pipe).

**Parameters**

- m [float] Mass flow rate of fluid, [kg/s]
- x [float] Mass quality of fluid, [-]
- rhol [float] Liquid density, [kg/m^3]
- rhog [float] Gas density, [kg/m^3]
- mul [float] Viscosity of liquid, [Pa*s]
- mug [float] Viscosity of gas, [Pa*s]
- D [float] Diameter of pipe, [m]
- angle [float] The angle of the pipe with respect to the horizontal, [degrees]
- roughness [float, optional] Roughness of pipe for use in calculating friction factor, [m]
- g [float, optional] Acceleration due to gravity, [m/s^2]

**Returns**

- X [float] X dimensionless group used in the calculation, [-]
- T [float] T dimensionless group used in the calculation, [-]
- F [float] F dimensionless group used in the calculation, [-]
- K [float] K dimensionless group used in the calculation, [-]
Notes

The original friction factor used in this model is that of Blasius.

References

[1], [2], [3]

Examples

```python
>>> Taitel_Dukler_regime(m=0.6, x=0.112, rhol=915.12, rhog=2.67,
... mui=180E-6, mug=14E-6, D=0.05, roughness=0.0, angle=0)[0]
'annular'
```

2.24 Two-phase flow voidage (fluids.two_phase Voidage)

`fluids.two_phase_voidage.Thom(x, rhol, rhog, mul, mug)`

Calculates void fraction in two-phase flow according to the model of [1] as given in [2].

\[
\alpha = \left[ 1 + \left( \frac{1-x}{x} \right) \left( \frac{\rho_g}{\rho_l} \right)^{0.89} \left( \frac{\mu_l}{\mu_g} \right)^{0.18} \right]^{-1}
\]

Parameters

- `x` [float] Quality at the specific tube interval []
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]
- `mul` [float] Viscosity of liquid [Pa*s]
- `mug` [float] Viscosity of gas [Pa*s]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

Notes

Based on experimental data for boiling of water. [3] presents a slightly different model. However, its results are almost identical. A comparison can be found in the unit tests. Neither expression was found in [1] in a brief review.

References

[1], [2], [3]

Examples
fluids\textunderscore two\_phase\_voidage.\texttt{Zivi}(x, rhol, rhog)
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \left[ 1 + \left( \frac{1 - x}{x} \right) \left( \frac{\rho_g}{\rho_l} \right)^{2/3} \right]^{-1}
\]

Parameters
\begin{itemize}
\item \texttt{x} [float] Quality at the specific tube interval []
\item \texttt{rhol} [float] Density of the liquid \([\text{kg/m}^3]\)
\item \texttt{rhog} [float] Density of the gas \([\text{kg/m}^3]\)
\end{itemize}

Returns
\begin{itemize}
\item \texttt{alpha} [float] Void fraction (area of gas / total area of channel), [-]
\end{itemize}

Notes
Based on experimental data for boiling of water. More complicated variants of this are also in [1].

References
[1], [2], [3]

Examples
\begin{verbatim}
>>> Zivi(.4, 800, 2.5)
0.9689339909056356
\end{verbatim}

fluids\textunderscore two\_phase\_voidage.\texttt{Smith}(x, rhol, rhog)
Calculates void fraction in two-phase flow according to the model of [1], also given in [2] and [3].

\[
\alpha = \left[ 1 + \left( \frac{1 - x}{x} \right) \left( \frac{\rho_g}{\rho_l} \right) \left[ K + \left( 1 - K \right) \left( \frac{\rho_l}{\rho_g} + K \left( \frac{1 - x}{x} \right) \right) \right] \right]^{-1}
\]

Parameters
\begin{itemize}
\item \texttt{x} [float] Quality at the specific tube interval []
\item \texttt{rhol} [float] Density of the liquid \([\text{kg/m}^3]\)
\item \texttt{rhog} [float] Density of the gas \([\text{kg/m}^3]\)
\end{itemize}

Returns
\begin{itemize}
\item \texttt{alpha} [float] Void fraction (area of gas / total area of channel), [-]
\end{itemize}

2.24. Two-phase flow voidage (fluids\textunderscore two\_phase\_voidage)
Notes

[1] is an easy to read paper and has been reviewed. The form of the expression here is rearranged somewhat differently than in [1] but has been verified to be numerically equivalent. The form of this in [3] is missing a square root on a bracketed term; this appears in multiple papers by the authors.

References

[1], [2], [3]

Examples

```python
>>> Smith(.4, 800, 2.5)
0.959981235534199
```

`fluids.two_phase_voidage.Fauske(x, rhol, rhog)`
Calculates void fraction in two-phase flow according to the model of [1], as given in [2] and [3].

\[
\alpha = \left[ 1 + \left( \frac{1-x}{x} \right) \left( \frac{\rho_g}{\rho_l} \right)^{0.5} \right]^{-1}
\]

Parameters

- **x** [float] Quality at the specific tube interval []
- **rhol** [float] Density of the liquid [kg/m^3]
- **rhog** [float] Density of the gas [kg/m^3]

Returns

- **alpha** [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has not been reviewed. However, both [2] and [3] present it the same way.

References

[1], [2], [3]

Examples

```python
>>> Fauske(.4, 800, 2.5)
0.9226347262627932
```

`fluids.two_phase_voidage.Chisholm_voidage(x, rhol, rhog)`
Calculates void fraction in two-phase flow according to the model of [1], as given in [2] and [3].

\[
\alpha = \left[ 1 + \left( \frac{1-x}{x} \right) \left( \frac{\rho_g}{\rho_l} \right) \sqrt{1-x \left( 1 - \frac{\rho_l}{\rho_g} \right)} \right]^{-1}
\]
Parameters

- `x` [float] Quality at the specific tube interval []
- `rhол` [float] Density of the liquid [kg/m^3]
- `rhог` [float] Density of the gas [kg/m^3]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has not been reviewed. However, both [2] and [3] present it the same way, if slightly differently rearranged.

References

[1], [2], [3]

Examples

```python
>>> Chisholm_voidage(.4, 800, 2.5)
0.949525900374774
```

`fluids.two_phase_voidage.Turner_Wallis(x, rhол, rhог, mul, mug)`

Calculates void fraction in two-phase flow according to the model of [1], as given in [2] and [3].

\[ \alpha = \left[ 1 + \left( \frac{1 - x}{x} \right) \left( \frac{\rho_{g}}{\rho_{l}} \right)^{0.4} \left( \frac{\mu_{l}}{\mu_{g}} \right)^{0.08} \right]^{-1} \]

Parameters

- `x` [float] Quality at the specific tube interval []
- `rhол` [float] Density of the liquid [kg/m^3]
- `rhог` [float] Density of the gas [kg/m^3]
- `mul` [float] Viscosity of liquid [Pa*s]
- `mug` [float] Viscosity of gas [Pa*s]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has not been reviewed. However, both [2] and [3] present it the same way, if slightly differently rearranged.

References

[1], [2], [3]
Examples

```python
>>> Turner_Wallis(.4, 800, 2.5, 1E-3, 1E-5)
0.8384824581634625
```

```python
fluids.two_phase_voidage.homogeneous(x, rhol, rhog)
Calculates void fraction in two-phase flow according to the homogeneous flow model, reviewed in [1], [2], and [3].

\[\alpha = \frac{1}{1 + \left(\frac{1-x}{x}\right) \frac{\rho_g}{\rho_l}} \]

Parameters
- `x` [float] Quality at the specific tube interval [
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]

Returns
- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

References
[1], [2], [3]

Examples

```python
>>> homogeneous(.4, 800, 2.5)
0.995334370139969
```

```python
fluids.two_phase_voidage.Chisholm_Armand(x, rhol, rhog)
Calculates void fraction in two-phase flow according to the model presented in [1] based on that of [2] as shown in [3], [4], and [5].

\[ \alpha = \frac{\alpha_h}{\alpha_h + (1 - \alpha_h)^{0.5}} \]

Parameters
- `x` [float] Quality at the specific tube interval [
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]

Returns
- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

References
[1], [2], [3], [4], [5]
Examples

```python
>>> Chisholm_Armand(.4, 800, 2.5)
0.9357814394262114
```

`fluids.two_phase_voidage.Arnand(x, rhol, rhog)`
Calculates void fraction in two-phase flow according to the model presented in [1] as shown in [2], [3], and [4].

\[ \alpha = 0.833 \alpha_h \]

Parameters

- `x` [float] Quality at the specific tube interval []
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

References

[1], [2], [3], [4]

Examples

```python
>>> Armand(.4, 800, 2.5)
0.8291135303265941
```

`fluids.two_phase_voidage.Nishino_Yamazaki(x, rhol, rhog)`
Calculates void fraction in two-phase flow according to the model presented in [1] as shown in [2].

\[ \alpha = 1 - \left( \frac{1 - x \rho_g}{x \rho_l} \right)^{0.5} \alpha_h^{0.5} \]

Parameters

- `x` [float] Quality at the specific tube interval []
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

Notes


[3] either shows this model as iterative in terms of voidage, or forgot to add a H subscript to its second voidage term; the second is believed more likely.
**References**

[1], [2], [3]

**Examples**

```python
>>> Nishino_Yamazaki(.4, 800, 2.5)
0.931694583962682
```

`fluids.two_phase_voidage.Guzhov(x, rhol, rhog, m, D)`

Calculates void fraction in two-phase flow according to the model in [1] as shown in [2] and [3].

\[
\alpha = 0.81 \left[ 1 - \exp\left( -2.2 \sqrt{F_{rt}} \right) \right] \alpha_h
\]

\[
F_{rt} = \frac{G^2}{2 \rho \rho_{tp}^2}
\]

\[
\rho_{tp} = \left( \frac{1 - x \rho_l + x \rho_g}{\rho_l} \right)^{-1}
\]

**Parameters**

- `x` [float] Quality at the specific tube interval
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]
- `m` [float] Mass flow rate of both phases, [kg/s]
- `D` [float] Diameter of the channel, [m]

**Returns**

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

**References**

[1], [2], [3]

**Examples**

```python
>>> Guzhov(.4, 800, 2.5, 1, .3)
0.7626030108534588
```

`fluids.two_phase_voidage.Kawahara(x, rhol, rhog, D)`

Calculates void fraction in two-phase flow according to the model presented in [1], also reviewed in [2] and [3]. This expression is for microchannels.

\[
\alpha = \frac{C_1 \alpha_h^{0.5}}{1 - C_2 \alpha_h^{0.8}}
\]

**Parameters**

- `x` [float] Quality at the specific tube interval
- `rhol` [float] Density of the liquid [kg/m^3]
- `rhog` [float] Density of the gas [kg/m^3]
D [float] Diameter of the channel, [m]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

C1 and C2 were constants for different diameters. Only diameters of 100 and 50 micrometers were studied in [1]. Here, the coefficients are distributed for three ranges, > 250 micrometers, 250-75 micrometers, and < 75 micrometers.

The Armand model is used for the first, C1 and C2 are 0.03 and 0.97 for the second, and C1 and C2 are 0.02 and 0.98 for the third.

References

[1], [2], [3]

Examples

```python
>>> Kawahara(.4, 800, 2.5, 100E-6)
0.9276148194410238
```

`fluids.two_phase_voidage.Baroczy(x, rhol, rhog, mul, mug)`

Calculates void fraction in two-phase flow according to the model of [1] as given in [2], [3], and [4].

\[
\alpha = 1 + \left( \frac{1 - x}{x} \right)^{0.74} \left( \frac{\rho_g}{\rho_l} \right)^{0.65} \left( \frac{\mu_l}{\mu_g} \right)^{0.13}
\]

Parameters

x [float] Quality at the specific tube interval []

rhol [float] Density of the liquid [kg/m^3]

rhog [float] Density of the gas [kg/m^3]

mul [float] Viscosity of liquid [Pa*s]

mug [float] Viscosity of gas [Pa*s]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

References

[1], [2], [3], [4]

Examples

```python
>>> Baroczy(.4, 800, 2.5, 1E-3, 1E-5)
0.9453544598460807
```
fluids.two_phase_voidage.Tandon_Varma_Gupta \( (x, rhol, rhog, mul, mug, m, D) \)
Calculates void fraction in two-phase flow according to the model of [1] also given in [2], [3], and [4].

For \( 50 < Rel < 1125 \):

\[
\alpha = 1 - 1.928Re^{-0.315}[F(X_{tt})]^{-1} + 0.9293Re^{-0.63}[F(X_{tt})]^{-2}
\]

For \( Rel > 1125 \):

\[
\alpha = 1 - 0.38Re^{-0.088}[F(X_{tt})]^{-1} + 0.0361Re^{-0.176}[F(X_{tt})]^{-2}
\]

\[
F(X_{tt}) = 0.15[X_{tt}^{-1} + 2.85X_{tt}^{-0.476}]
\]

**Parameters**

- \( x \) [float] Quality at the specific tube interval [\( \text{[]} \)]
- \( rhol \) [float] Density of the liquid [\( \text{kg/m}^3 \)]
- \( rhog \) [float] Density of the gas [\( \text{kg/m}^3 \)]
- \( mul \) [float] Viscosity of liquid [\( \text{Pa}\cdot\text{s} \)]
- \( mug \) [float] Viscosity of gas [\( \text{Pa}\cdot\text{s} \)]
- \( m \) [float] Mass flow rate of both phases, [\( \text{kg/s} \)]
- \( D \) [float] Diameter of the channel, [\( \text{m} \)]

**Returns**

- \( alpha \) [float] Void fraction (area of gas / total area of channel), [-]

**Notes**

[1] does not specify how it defines the liquid Reynolds number. [2] disagrees with [3] and [4]; the later variant was selected, with:

\[
Re_l = \frac{G_{tp}D}{\mu_l}
\]

The lower limit on Reynolds number is not enforced.

**References**

[1], [2], [3], [4]

**Examples**

```python
>>> Tandon_Varma_Gupta(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3)
0.9228265670341428
```

fluids.two_phase_voidage.Harms \( (x, rhol, rhog, mul, mug, m, D) \)
Calculates void fraction in two-phase flow according to the model of [1] also given in [2] and [3].

\[
\alpha = \left[ 1 - 10.06Re^{-0.875}(1.74 + 0.104Re^{0.5})^2 \left( 1.376 + \frac{7.242}{X_{tt}^{1.655}} \right)^{-0.57} \right]^2
\]

\[
Re_l = \frac{G_{tp}(1-x)D}{\mu_l}
\]
Parameters

- **x** [float] Quality at the specific tube interval []
- **rhol** [float] Density of the liquid [kg/m^3]
- **rhog** [float] Density of the gas [kg/m^3]
- **mul** [float] Viscosity of liquid [Pa*s]
- **mug** [float] Viscosity of gas [Pa*s]
- **m** [float] Mass flow rate of both phases, [kg/s]
- **D** [float] Diameter of the channel, [m]

Returns

- **alpha** [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has been reviewed.

References

[1], [2], [3]

Examples

```python
>>> Harms(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3)
0.9653289762907554
```

`fluids.two_phase_voidage.Domanski_Didion(x, rhol, rhog, mul, mug)`

Calculates void fraction in two-phase flow according to the model of [1] also given in [2] and [3].

if Xtt < 10:

\[
\alpha = (1 + X_{tt}^{0.8})^{-0.378}
\]

Otherwise:

\[
\alpha = 0.823 - 0.157 \ln(X_{tt})
\]
Notes

[1] has been reviewed. [2] gives an exponent of -0.38 instead of -0.378 as is in [1]. [3] describes only the novel half of the correlation. The portion for Xtt > 10 is novel; the other is said to be from their 31st reference, Wallis. 

There is a discontinuity at Xtt = 10.

References

[1], [2], [3]

Examples

```python
>>> Domanski_Didion(.4, 800, 2.5, 1E-3, 1E-5)
0.9355795597059169
```

Calculates void fraction in two-phase flow according to the model of [1] also given in [2] and [3].

\[
\alpha = 1 - \exp\{-1 - 0.3 \ln(Ft) - 0.0328[\ln(Ft)]^2\}
\]

\[
F_t = \left[ \frac{G_t^2 x^3}{(1-x) \rho_g^2 g D} \right]^{0.5}
\]

\[
\alpha = 0 \text{ for } F_t \leq 0.01032
\]

Parameters

- \(x\) [float] Quality at the specific tube interval []
- \(\rho_l\) [float] Density of the liquid [kg/m³]
- \(\rho_g\) [float] Density of the gas [kg/m³]
- \(\mu_l\) [float] Viscosity of liquid [Pa*s]
- \(\mu_g\) [float] Viscosity of gas [Pa*s]
- \(m\) [float] Mass flow rate of both phases, [kg/s]
- \(D\) [float] Diameter of the channel, [m]
- \(g\) [float, optional] Acceleration due to gravity, [m/s²]

Returns

- \(\alpha\) [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has been reviewed. [2] does not list that the expression is not real below a certain value of Ft.

References

[1], [2], [3]
## Examples

```python
>>> Graham(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3)
0.6403336287530644
```

`fluids.two_phase_voidage.Yashar(x, rhol, rhog, mul, mug, m, D, g=9.80665)`

Calculates void fraction in two-phase flow according to the model of [1] also given in [2] and [3].

\[
\alpha = \left[ 1 + \frac{1}{F_t} + X t_t \right]^{-0.321}
F_t = \left[ \frac{G_t^2 x^3}{(1 - x) \rho_g^2 g D} \right]^{0.5}
\]

### Parameters

- `x` [float] Quality at the specific tube interval
- `rhol` [float] Density of the liquid [kg/m³]
- `rhog` [float] Density of the gas [kg/m³]
- `mul` [float] Viscosity of liquid [Pa*s]
- `mug` [float] Viscosity of gas [Pa*s]
- `m` [float] Mass flow rate of both phases, [kg/s]
- `D` [float] Diameter of the channel, [m]
- `g` [float, optional] Acceleration due to gravity, [m/s²]

### Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

### Notes

[1] has been reviewed; both [2] and [3] give it correctly.

### References

[1], [2], [3]

## Examples

```python
>>> Yashar(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3)
0.7934893185789146
```

`fluids.two_phase_voidage.Huq_Loth(x, rhol, rhog)`

Calculates void fraction in two-phase flow according to the model of [1], also given in [2], [3], and [4].

\[
\alpha = 1 - \frac{2(1 - x)^2}{1 - 2x + \left[ 1 + 4x(1 - x) \left( \frac{\mu_l}{\rho_l} - 1 \right) \right]^{0.5}}
\]

### Parameters
fluids documentation, release 0.1.86

x [float] Quality at the specific tube interval []
rhol [float] Density of the liquid [kg/m^3]
rhog [float] Density of the gas [kg/m^3]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has been reviewed, and matches the expressions given in the reviews [2], [3], and [4]; the form of the expression is rearranged somewhat differently.

References

[1], [2], [3], [4]

Examples

```python
>>> Huq_Loth(.4, 800, 2.5)
0.9593868838476147
```

Calculates void fraction in two-phase flow according to the model of [1] also given in [2].

\[ \alpha = 1.045 - \exp\left\{-1 - 0.342 \ln(Ft) - 0.0268[\ln(Ft)]^2 + 0.00597[\ln(Ft)]^3\right\} \]

\[ Ft = \left[ \frac{G_{tp}^2 x^3}{(1 - x) \rho_g^2 g D} \right]^{0.5} \]

\[ \alpha = \alpha_h \text{ for } Ft \leq 0.044 \]

Parameters

x [float] Quality at the specific tube interval []
rhol [float] Density of the liquid [kg/m^3]
rhog [float] Density of the gas [kg/m^3]
mul [float] Viscosity of liquid [Pa*s]
mug [float] Viscosity of gas [Pa*s]
m [float] Mass flow rate of both phases, [kg/s]
D [float] Diameter of the channel, [m]
g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has been reviewed. If is recommended this expression not be used above Ft values of 454.
References

[1], [2]

Examples

```python
>>> Kopte_Newell_Chato(.4, 800, 2.5, 1E-3, 1E-5, m=1, D=0.3)
0.6864466770087425
```

```python
fluids.two_phase_voidage.Steiner(x, rhol, rhog, sigma, m, D, g=9.80665)
```

Calculates void fraction in two-phase flow according to the model of [1] also given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[ C_0 \left( \frac{x}{\rho_g} + \frac{1-x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[
v_{gm} = \frac{1.18(1-x)}{\rho_l^{0.5}} \left[ g \sigma (\rho_l - \rho_g) \right]^{0.25}
\]

\[
C_0 = 1 + 0.12(1-x)
\]

Parameters

- `x` [float] Quality at the specific tube interval [\(\frac{\text{area of gas}}{\text{area of total}}\)]
- `rho_l` [float] Density of the liquid [\(\text{kg/m}^3\)]
- `rho_g` [float] Density of the gas [\(\text{kg/m}^3\)]
- `sigma` [float] Surface tension of liquid [\(\text{N/m}\)]
- `m` [float] Mass flow rate of both phases, [\(\text{kg/s}\)]
- `D` [float] Diameter of the channel, [\(\text{m}\)]
- `g` [float, optional] Acceleration due to gravity, [\(\text{m/s}^2\)]

Returns

- `alpha` [float] Void fraction (area of gas / total area of channel), [-]

Notes

[1] has been reviewed.

References

[1], [2], [3]

Examples

```python
>>> Steiner(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3)
0.895950181381335
```
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[ C_0 \left( \frac{x}{\rho_g} + \frac{1-x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[
v_{gm} = \frac{1.18(1-x)}{\rho_l^{0.5}} [g\sigma(\rho_l - \rho_g)]^{0.25}
\]

\[
C_0 = 1 + 0.2(1-x)
\]

** Parameters **

- **x** [float] Quality at the specific tube interval []
- **rhod** [float] Density of the liquid [kg/m^3]
- **rhog** [float] Density of the gas [kg/m^3]
- **sigma** [float] Surface tension of liquid [N/m]
- **m** [float] Mass flow rate of both phases, [kg/s]
- **D** [float] Diameter of the channel, [m]
- **g** [float, optional] Acceleration due to gravity, [m/s^2]

** Returns **

- **alpha** [float] Void fraction (area of gas / total area of channel), [-]

** Notes **

The expression as quoted in [2] and [3] could not be found in [1].

** References **

[1], [2], [3]

** Examples **

```python
>>> Rouhani_1(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3)
0.8588420244136714
```

Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[ C_0 \left( \frac{x}{\rho_g} + \frac{1-x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[
v_{gm} = \frac{1.18(1-x)}{\rho_l^{0.5}} [g\sigma(\rho_l - \rho_g)]^{0.25}
\]

\[
C_0 = 1 + 0.2(1-x)(gD)^{0.25} \left( \frac{\rho_l}{G_{tp}} \right)^{0.5}
\]

** Parameters **

- **x** [float] Quality at the specific tube interval []
**fluids**.two_phase_voidage.\texttt{Nicklin\_Wilkes\_Davidson}(x, rhol, rhog, m, D, g=9.80665)
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[ C_0 \left( \frac{x}{\rho_g} + \frac{1-x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[
v_{gm} = 0.35 \sqrt{gD}
\]

\[
C_0 = 1.2
\]

**Parameters**
- \texttt{x} [float] Quality at the specific tube interval 
- \texttt{rhol} [float] Density of the liquid [kg/m$^3$]
- \texttt{rhog} [float] Density of the gas [kg/m$^3$]
- \texttt{m} [float] Mass flow rate of both phases, [kg/s]
- \texttt{D} [float] Diameter of the channel, [m]
- \texttt{g} [float, optional] Acceleration due to gravity, [m/s$^2$]

**Returns**
- \texttt{alpha} [float] Void fraction (area of gas / total area of channel), [-]
Examples

```python
>>> Nicklin_Wilkes_Davidson(0.4, 800., 2.5, m=1, D=0.3)
0.6798826626721431
```

```
fluids.two_phase_voidage.Gregory_Scott(x, rhol, rhog)
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[C_0 \left(\frac{x}{\rho_g} + \frac{1 - x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[v_{gm} = 0\]

\[C_0 = 1.19\]

Parameters

x [float] Quality at the specific tube interval []
rhol [float] Density of the liquid [kg/m^3]
rhog [float] Density of the gas [kg/m^3]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

References

[1], [2], [3]

Examples

```python
>>> Gregory_Scott(0.4, 800., 2.5)
0.8364154370924108
```

```
fluids.two_phase_voidage.Dix(x, rhol, rhog, sigma, m, D, g=9.80665)
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[ C_0 \left( \frac{x}{\rho_g} + \frac{1 - x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[v_{gm} = 2.9 \left( \frac{g \sigma \rho_l - \rho_g}{\rho_l^2} \right)^{0.25}\]

\[C_0 = \frac{v_{sg}}{v_m} \left[ 1 + \left( \frac{v_{sl}}{v_{sg}} \right) \left( \frac{\sigma}{\rho_l} \right)^{0.1} \right]\]

\[v_{gs} = \frac{m \rho_l}{\rho_g \frac{D^2}{4}}\]

\[v_{ls} = \frac{m (1 - x)}{\rho_l \frac{D^2}{4}}\]

\[v_m = v_{gs} + v_{ls}\]

Parameters

```
x [float] Quality at the specific tube interval []
rhol [float] Density of the liquid [kg/m^3]
rhog [float] Density of the gas [kg/m^3]
sigma [float] Surface tension of liquid [N/m]
m [float] Mass flow rate of both phases, [kg/s]
D [float] Diameter of the channel, [m]
g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

Has formed the basis for several other correlations.

References

[1], [2], [3]

Examples

```python
>>> Dix(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3)
0.8268737961156514
```

`fluids.two_phase_voidage.Sun_Duffey_Peng(x, rhol, rhog, sigma, m, D, P, Pc, g=9.80665)`
Calculates void fraction in two-phase flow according to the model of [1] as given in [2] and [3].

\[
\alpha = \frac{x}{\rho_g} \left[C_0 \left(\frac{x}{\rho_g} + \frac{1-x}{\rho_l} \right) + \frac{v_{gm}}{G} \right]^{-1}
\]

\[
v_{gm} = 1.41 \left[\frac{g\sigma (\rho_l - \rho_g)}{\rho_l^2} \right]^{0.25}
\]

\[
C_0 = \left(0.82 + 0.18 \frac{P}{P_c} \right)^{-1}
\]

Parameters

x [float] Quality at the specific tube interval []
rhol [float] Density of the liquid [kg/m^3]
rhog [float] Density of the gas [kg/m^3]
sigma [float] Surface tension of liquid [N/m]
m [float] Mass flow rate of both phases, [kg/s]
D [float] Diameter of the channel, [m]
P [float] Pressure of the fluid, [Pa]
Pc [float] Critical pressure of the fluid, [Pa]
g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

References

[1], [2], [3]

Examples

```python
>>> Sun_Duffey_Peng(0.4, 800., 2.5, sigma=0.02, m=1, D=0.3, P=1E5, Pc=7E6)
0.7696546506515833
```

`fluids.two_phase_voidage.Xu_Fang_voidage(x, rhol, rhog, m, D, g=9.80665)`

Calculates void fraction in two-phase flow according to the model developed in the review of [1].

\[
\alpha = \left[1 + \left(1 + 2Fr_{lo}^{-0.2} \alpha_h^3 \right) \left(\frac{1-x}{x} \right) \left(\frac{\rho_g}{\rho_l} \right) \right]^{-1}
\]

Parameters

- x [float] Quality at the specific tube interval []
- rhol [float] Density of the liquid [kg/m^3]
- rhog [float] Density of the gas [kg/m^3]
- m [float] Mass flow rate of both phases, [kg/s]
- D [float] Diameter of the channel, [m]
- g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

Claims an AARD of 5.0%, and suitability for any flow regime, mini and micro channels, adiabatic, evaporating, or condensing flow, and for Frlo from 0.02 to 145, rhog/rhol from 0.004-0.153, and x from 0 to 1.

References

[1]

Examples

```python
>>> Xu_Fang_voidage(0.4, 800., 2.5, m=1, D=0.3)
0.9414660089942093
```
fluids.two_phase_voidage.Woldesemayat_Ghajar(x, rhol, rhog, sigma, m, D, P, angle=0, g=9.80665)

Calculates void fraction in two-phase flow according to the model of [1].

\[\alpha = \frac{v_{gs}^2}{v_{gs}^2 \left(1 + \frac{v_{ls}}{v_{gs}} \left(\frac{v_{gs}}{v_{gs}}\right)^{0.1}\right)^2} + 2.9 \left[\frac{gD\sigma(1+\cos \theta)(\rho_l - \rho_g)}{\rho_g^2} \right]^{0.25} \left(1.22 + 1.22 \sin \theta \right) \frac{P}{\rho_{atm}} \]

\[v_{gs} = \frac{mx}{\rho_g \frac{\pi}{4} D^2} \]

\[v_{ls} = \frac{m(1-x)}{\rho_l \frac{\pi}{4} D^2} \]

Parameters

- x [float] Quality at the specific tube interval [-]
- rhol [float] Density of the liquid [kg/m^3]
- rhog [float] Density of the gas [kg/m^3]
- sigma [float] Surface tension of liquid [N/m]
- m [float] Mass flow rate of both phases, [kg/s]
- D [float] Diameter of the channel, [m]
- P [float] Pressure of the fluid, [Pa]
- angle [float] Angle of the channel with respect to the horizontal (vertical = 90), [degrees]
- g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

- alpha [float] Void fraction (area of gas / total area of channel), [-]

Notes

Strongly recommended.

References

[1]

Examples

```python
>>> Woldesemayat_Ghajar(0.4, 800., 2.5, sigma=0.2, m=1, D=0.3, P=1E6, angle=45)
0.76408215513429202
```

fluids.two_phase_voidage.Lockhart_Martinelli_Xtt(x, rhol, rhog, mul, mug, pow_x=0.9, pow_rho=0.5, pow_mu=0.1, n=None)

Calculates the Lockhart-Martinelli Xtt two-phase flow parameter in a general way according to [2]. [1] is said to describe this. However, very different definitions of this parameter have been used elsewhere. Accordingly,
the powers of each of the terms can be set. Alternatively, if the parameter \(n \) is provided, the powers for viscosity and phase fraction will be calculated from it as shown below.

\[
X_{tt} = \left(\frac{1-x}{x} \right)^{0.9} \left(\frac{\rho_g}{\rho_l} \right)^{0.5} \left(\frac{\mu_l}{\mu_g} \right)^{0.1}
\]

\[
X_{tt} = \left(\frac{1-x}{x} \right)^{(2-n)/2} \left(\frac{\rho_g}{\rho_l} \right)^{0.5} \left(\frac{\mu_l}{\mu_g} \right)^{n/2}
\]

Parameters

- \(x \) [float] Quality at the specific tube interval [-]
- \(\rho_l \) [float] Density of the liquid [kg/m^3]
- \(\rho_g \) [float] Density of the gas [kg/m^3]
- \(\mu_l \) [float] Viscosity of liquid [Pa*s]
- \(\mu_g \) [float] Viscosity of gas [Pa*s]
- \(\text{pow}_x \) [float, optional] Power for the phase ratio \((1-x)/x\), [-]
- \(\text{pow}_\rho \) [float, optional] Power for the density ratio \(\rho_g/\rho_l\), [-]
- \(\text{pow}_\mu \) [float, optional] Power for the viscosity ratio \(\mu_l/\mu_g\), [-]
- \(n \) [float, optional] Number to be used for calculating \(\text{pow}_x\) and \(\text{pow}_\mu\) if provided, [-]

Returns

- \(X_{tt} \) [float] \(X_{tt}\) Lockhart-Martinelli two-phase flow parameter [-]

Notes

\(X_{tt}\) is best regarded as an empirical parameter. If used, \(n \) is often 0.2 or 0.25.

References

[1], [2]

Examples

```python
>>> Lockhart_Martinelli_Xtt(0.4, 800, 2.5, 1E-3, 1E-5)
0.12761659240532292
```

\texttt{fluids.towphasevoidage.towphasevoidageexperimental}(\texttt{rho_lg, rho_l, rho_g})

Calculates the void fraction for two-phase liquid-gas pipeflow. If the weight of fluid in a pipe pipe could be measured and the volume of the pipe were known, an effective density of the two-phase mixture could be calculated. This is directly relatable to the void fraction of the pipe, a parameter used to predict the pressure drop. This function converts that measured effective two-phase density to void fraction for use in developing correlations.

\[
\alpha = \frac{\rho_m - \rho_l}{\rho_g - \rho_l}
\]

Parameters

- \(\rho_\text{lg} \) [float] Two-phase effective density [kg/m^3]
Parameters

- **alpha** [float] Void fraction (area of gas / total area of channel), [-]
- **rhol** [float] Density of the liquid [kg/m³]
- **rhog** [float] Density of the gas [kg/m³]

Returns

- **rho_lg** [float] Two-phase effective density [kg/m³]

Notes

THERE IS NO THERMODYNAMIC DEFINITION FOR THIS QUANTITY. DO NOT USE THIS VALUE IN SINGLE-PHASE CORRELATIONS.

Examples

```
>>> density_two_phase(.4, 800, 2.5)
481.0
```
fluids.two_phase_voidage.Beattie_Whalley \((x, \text{mul}, \text{mug}, \text{rhol}, \text{rhog})\)

Calculates a suggested definition for liquid-gas two-phase flow viscosity in internal pipe flow according to the form in [1] and shown in [2] and [3].

\[
\mu_m = \mu_l (1 - \alpha_m) (1 + 2.5\alpha_m) + \mu_g \alpha_m
\]

\[
\alpha_m = \frac{1}{1 + \left(\frac{1-x}{x}\right) \frac{\rho_g}{\rho_l}} \quad \text{(homogeneous model)}
\]

Parameters

- \(x\) [float] Quality of the gas-liquid flow, [-]
- \(\text{mul}\) [float] Viscosity of liquid, [Pa*s]
- \(\text{mug}\) [float] Viscosity of gas, [Pa*s]
- \(\text{rhol}\) [float] Density of the liquid [kg/m^3]
- \(\text{rhog}\) [float] Density of the gas [kg/m^3]

Returns

- \(\text{mu}_\text{lg}\) [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]

Notes

This model converges to the liquid or gas viscosity as the quality approaches either limits.

References

[1], [2], [3]

Examples

```python
>>> Beattie_Whalley(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
1.7363806909512365e-05
```

fluids.two_phase_voidage.McAdams \((x, \text{mul}, \text{mug})\)

Calculates a suggested definition for liquid-gas two-phase flow viscosity in internal pipe flow according to the form in [1] and shown in [2] and [3].

\[
\mu_m = \left(\frac{x}{\mu_g} + \frac{1-x}{\mu_l}\right)^{-1}
\]

Parameters

- \(x\) [float] Quality of the gas-liquid flow, [-]
- \(\text{mul}\) [float] Viscosity of liquid, [Pa*s]
- \(\text{mug}\) [float] Viscosity of gas, [Pa*s]

Returns

- \(\text{mu}_\text{lg}\) [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]
Notes

This model converges to the liquid or gas viscosity as the quality approaches either limits. [3] states this is the most common definition of two-phase liquid-gas viscosity.

References

[1], [2], [3]

Examples

```python
>>> McAdams(x=0.4, mul=1E-3, mug=1E-5)
2.4630541871921184e-05
```

`fluids.two_phase_voidage.Cicchitti(x, mul, mug)`

Calculates a suggested definition for liquid-gas two-phase flow viscosity in internal pipe flow according to the form in [1] and shown in [2] and [3].

\[
\mu_m = x\mu_g + (1 - x)\mu_l
\]

Parameters

- `x` [float] Quality of the gas-liquid flow, [-]
- `mul` [float] Viscosity of liquid, [Pa*s]
- `mug` [float] Viscosity of gas, [Pa*s]

Returns

- `mu_lg` [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]

Notes

This model converges to the liquid or gas viscosity as the quality approaches either limits.

References

[1], [2], [3]

Examples

```python
>>> Cicchitti(x=0.4, mul=1E-3, mug=1E-5)
0.0006039999999999999
```

`fluids.two_phase_voidage.Lin_Kwok(x, mul, mug)`

Calculates a suggested definition for liquid-gas two-phase flow viscosity in internal pipe flow according to the form in [1] and shown in [2] and [3].

\[
\mu_m = \frac{\mu_l\mu_g}{\mu_g + x^{1.4}(\mu_l - \mu_g)}
\]
Parameters

- **x** [float] Quality of the gas-liquid flow, [-]
- **mul** [float] Viscosity of liquid, [Pa*s]
- **mug** [float] Viscosity of gas, [Pa*s]

Returns

- **mu_lg** [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]

Notes

This model converges to the liquid or gas viscosity as the quality approaches either limits.

References

[1], [2]

Examples

```python
>>> Lin_Kwok(x=0.4, mul=1E-3, mug=1E-5)
3.515119398126066e-05
```

This model converges to the liquid or gas viscosity as the quality approaches either limits.

This was first expressed in the equivalent form as follows:

$$ \mu_m = \rho_m \left(\sqrt{x \nu_g} + \sqrt{(1-x)\nu_l} \right)^2 $$
References

[1], [2], [3]

Examples

```
>>> Fourar_Bories(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
2.127617150298565e-05
```

`fluids.two_phase_voidage.Duckler(x, mul, mug, rhol, rhog)`

Calculates a suggested definition for liquid-gas two-phase flow viscosity in internal pipe flow according to the form in [1] and shown in [2], [3], and [4].

\[\mu_m = \frac{x \mu_g}{\rho_g} + \frac{(1-x) \mu_l}{\rho_l} \]

Parameters

- `x` [float] Quality of the gas-liquid flow, [-]
- `mul` [float] Viscosity of liquid, [Pa*s]
- `mug` [float] Viscosity of gas, [Pa*s]
- `rhol` [float] Density of the liquid, [kg/m^3]
- `rhog` [float] Density of the gas, [kg/m^3]

Returns

- `mu_lg` [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]

Notes

This model converges to the liquid or gas viscosity as the quality approaches either limits.

This has also been expressed in the following form:

\[\mu_m = \rho_m \left[x \left(\frac{\mu_g}{\rho_g} \right) + (1-x) \left(\frac{\mu_l}{\rho_l} \right) \right] \]

According to the homogeneous definition of two-phase density.

References

[1], [2], [3], [4]

Examples

```
>>> Duckler(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2)
1.2092040385066917e-05
```
fluids.two_phase_voidage.liquid_gas_voidage(x, rhol, rhog, D=None, m=None, mul=None, mug=None, sigma=None, P=None, Pc=None, angle=0, g=9.80665, Method=None)

This function handles calculation of two-phase liquid-gas voidage for flow inside channels. 29 calculation methods are available, with varying input requirements. A correlation will be automatically selected if none is specified.

This function is used to calculate the (liquid) holdup as well, as:

\[
\text{holdup} = 1 - \text{voidage}
\]

If no correlation is selected, the following rules are used, with the earlier options attempted first:

- TODO: defaults

Parameters

- x [float] Quality of fluid, [-]
- rhol [float] Liquid density, [kg/m^3]
- rhog [float] Gas density, [kg/m^3]
- D [float, optional] Diameter of pipe, [m]
- m [float, optional] Mass flow rate of fluid, [kg/s]
- mul [float, optional] Viscosity of liquid, [Pa*s]
- mug [float, optional] Viscosity of gas, [Pa*s]
- sigma [float, optional] Surface tension, [N/m]
- P [float, optional] Pressure of fluid, [Pa]
- Pc [float, optional] Critical pressure of fluid, [Pa]
- angle [float, optional] Angle of the channel with respect to the horizontal (vertical = 90), [degrees]
- g [float, optional] Acceleration due to gravity, [m/s^2]

Returns

- alpha [float] Void fraction (area of gas / total area of channel), [-]

Other Parameters

- Method [string, optional] A string of the function name to use, as in the dictionary two_phase_voidage_correlations.

Examples

```python
>>> liquid_gas_voidage(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6, mug=14E-6, ...
... sigma=0.0487, D=0.05)
0.9744097632663492
```
fluids.two_phase_voidage.liquid_gas VOIDAGE METHODS(x, rhol, rhog, D=None,
m=None, mul=None, mug=None, sigma=None,
P=None, Pc=None, angle=0.0,
g=9.80665, check_ranges=False)

This function returns a list of liquid-gas voidage correlation names which can perform the calculation with the provided inputs. The holdup is for two-phase liquid-gas flow inside channels. 29 calculation methods are available, with varying input requirements.

Parameters

x [float] Quality of fluid, [-]

rhol [float] Liquid density, [kg/m^3]

rhog [float] Gas density, [kg/m^3]

D [float, optional] Diameter of pipe, [m]

m [float, optional] Mass flow rate of fluid, [kg/s]

mul [float, optional] Viscosity of liquid, [Pa*s]

mug [float, optional] Viscosity of gas, [Pa*s]

sigma [float, optional] Surface tension, [N/m]

P [float, optional] Pressure of fluid, [Pa]

Pc [float, optional] Critical pressure of fluid, [Pa]

angle [float, optional] Angle of the channel with respect to the horizontal (vertical = 90), [degrees]

g [float, optional] Acceleration due to gravity, [m/s^2]

check_ranges [bool, optional] Added for future use only

Returns

methods [list, only returned if AvailableMethods == True] List of methods which can be used to calculate two-phase liquid-gas voidage with the given inputs.

Examples

```python
>>> len(liquid_gas VOIDAGE METHODS(m=0.6, x=0.1, rhol=915., rhog=2.67, mul=180E-6,
→ mug=14E-6, sigma=0.0487, D=0.05))
27
```

fluids.two_phase_voidage.gas_liquid viscosity(x, mul, mug, rhol=None, rhog=None,
Method=None)

This function handles the calculation of two-phase liquid-gas viscosity. Six calculation methods are available; three of them require only x, mul, and mug; the other three require rhol and rhog as well.

The ‘McAdams’ method will be used if no method is specified. The full list of correlation can be obtained with the AvailableMethods flag.

ALL OF THESE METHODS ARE ONLY SUGGESTED DEFINITIONS, POTENTIALLY USEFUL FOR EMPIRICAL WORK ONLY!

Parameters

x [float] Quality of fluid, [-]
Fluids Documentation, Release 0.1.86

mul [float] Viscosity of liquid, [Pa*s]
mug [float] Viscosity of gas, [Pa*s]
rhol [float, optional] Liquid density, [kg/m^3]
rhog [float, optional] Gas density, [kg/m^3]

Returns

mu_lg [float] Liquid-gas viscosity (a suggested definition, potentially useful for empirical work only!) [Pa*s]

Other Parameters

Method [string, optional] A string of the function name to use, as in the dictionary liquid_gas_viscosity_correlations.

Notes

All of these models converge to the liquid or gas viscosity as the quality approaches either limits. Other definitions have been proposed, such as using only liquid viscosity.

These values cannot just be plugged into single phase correlations!

Examples

```python
>>> gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5, rhol=850, rhog=1.2, Method='Duckler')
1.2092040385066917e-05
>>> gas_liquid_viscosity(x=0.4, mul=1E-3, mug=1E-5)
2.4630541871921184e-05
```

fluids.two_phase_voidage.gas_liquid_viscosity_methods *(rhol=None, rhog=None, check_ranges=False)*

This function returns a list of methods which can be used for calculating two-phase liquid-gas viscosity. Six calculation methods are available; three of them require only \(x\), \(mul\), and \(mug\); the other three require \(rhol\) and \(rhog\) as well.

Parameters

rhol [float, optional] Liquid density, [kg/m^3]
rhog [float, optional] Gas density, [kg/m^3]
check_ranges [bool, optional] Added for compatibility only, never used

Returns

methods [list] List of methods which can be used to calculate two-phase liquid-gas viscosity with the given inputs.

Examples

```python
>>> gas_liquid_viscosity_methods()
['McAdams', 'Cicchitti', 'Lin Kwok']
>>> gas_liquid_viscosity_methods(rhol=1000, rhog=2)
['Beattie Whalley', 'Fourar Bories', 'Duckler', 'McAdams', 'Cicchitti', 'Lin Kwok']
```
2.25 Support for pint Quantities (fluids.units)

Basic module which wraps all fluids functions and classes to be compatible with the pint unit handling library. All other object - dicts, lists, etc - are not wrapped. Supports star imports; so the same objects exported when importing from the main library will be imported from here.

```python
>>> from fluids.units import *
```

There is no global unit registry in pint, and each registry must be a singleton. However, there is a default registry which is suitable for use in multiple modules at once.

This default registry should be imported in one of the following ways (it does not need to be called \texttt{u}; it can be imported from pint as \texttt{ureg} or any other name):

```python
>>> from pint import _DEFAULT_REGISTRY as u
```

Note that if the star import convention is used, the default unit registry be imported as \texttt{u} for you. Unlike the normal convention, this registry is already initialized. To repeat it again, you CANNOT do the following in your project and work with fluids.units.

```python
>>> from pint import UnitRegistry
>>> u = UnitRegistry() # doctest: +SKIP
```

All dimensional arguments to functions in fluids.units must be provided as Quantity objects.

```python
>>> Reynolds(V=3.5*u.m/u.s, D=2*u.m, rho=997.1*u.kg/u.m**3, mu=1E-3*u.Pa*u.s)
<Quantity(6979700.0, 'dimensionless')>
```

The result is always one or more Quantity objects, depending on the signature of the function called.

For arguments whose documentation specify they are dimensionless, they can optionally be passed in without making them dimensionless numbers with pint.

```python
>>> speed_synchronous(50*u.Hz, poles=12*u.dimensionless) # doctest: +SKIP
<Quantity(1500.0, 'revolutions_per_minute')>
>>> speed_synchronous(50*u.Hz, poles=12)
<Quantity(1500.0, 'revolutions_per_minute')>
```

It is good practice to use dimensionless quantities as follows, but it is optional.

```python
>>> K_separator_Watkins(0.88*u.dimensionless, 985.4*u.kg/u.m**3, 1.3*u.kg/u.m**3,
horizontal=True)
<Quantity(0.079516136, 'meter / second')>
```

Like all pint registries, the default unit system can be changed. However, all functions will still return the unit their documentation says they do. To convert to the new base units, use the method .to_base_units().

```python
>>> u.default_system = 'imperial'
>>> K_separator_Watkins(0.88*u.dimensionless, 985.4*u.kg/u.m**3, 1.3*u.kg/u.m**3,
horizontal=True).to_base_units()
<Quantity(0.0869599038, 'yard / second')>
>>> u.default_system = 'mks'
```

The order of the arguments to a function is the same as it is in the regular library; it won’t try to infer argument position from their units, an exception will be raised.
Support for classes is provided by wrapping each class by a proxy class which reads the docstrings of each method and the main class to determine the inputs and outputs. Properties, attributes, inputs, and units are all included.

```python
>>> T1 = TANK(L=3*u.m, D=150*u.cm, horizontal=True)
```
```python
>>> T1.V_total, T1.h_max
<Quantity(5.3014376, 'meter ** 3')>, <Quantity(1.5, 'meter')>
```
```python
>>> T1.V_from_h(0.1*u.m)
<Quantity(0.151783071, 'meter ** 3')>
```

Note that static methods cannot be used with the base class, only an instantiated class. This is because the proxy class wraps the methods only on creation of the object.

```python
>>> ATMOSPHERE_1976.thermal_conductivity(300*u.K) # doctest: +SKIP
AttributeError: type object 'ATMOSPHERE_1976' has no attribute 'thermal_conductivity'
```
```python
>>> ATMOSPHERE_1976(0*u.m).thermal_conductivity(300*u.K)
<Quantity(0.0262520008, 'watt / kelvin / meter')>
```

2.26 Support for numpy arrays (fluids.vectorized)

Basic module which wraps all fluids functions with numpy’s vectorize. All other object - dicts, classes, etc - are not wrapped. Supports star imports; so the same objects exported when importing from the main library will be imported from here.

```python
>>> from fluids.vectorized import *
```

Inputs do not need to be numpy arrays; they can be any iterable:

```python
>>> import fluids
>>> fluids.vectorized.friction_factor(Re=[100, 1000, 10000], eD=0)
array([0.64 , 0.064 , 0.03088295])
```

Note that because this needs to import fluids itself, fluids.vectorized needs to be imported separately; the following will cause an error:

```python
>>> import fluids
>>> fluids.vectorized # doctest: +SKIP
The correct syntax is as follows:
```
```python
>>> import fluids.vectorized # Necessary
>>> from fluids.vectorized import * # May be used without first importing fluids
```
A collection of problems from Crane TP 410 have been solved using the fluids library. These are industrially relevant problems. Crane TP 410 is used extensively as a source in fluids, although often there are better correlations that are implemented and chosen as default methods. All problems include a description of the problems, but Crane TP 410 includes schematics that are not included here. A copy can be obtained from your local library or bought here.

These problems often make use of thermo and pint so make sure you have them installed! More details on the unit handling library can be found at fluids.units.

3.1 7.1 Smooth Pipe (Plastic)

Water at 30 degrees Celsius flows through a 20 m length of 50 mm plastic (smooth wall) pipe, at a flow rate of 200 L/min.

Calculate the Reynolds number and friction factor.

```python
[1]: from fluids.units import *
   from thermo.units import Stream
   from math import *

   Q = 0.2*u.m**3/u.min
   T = 30*u.degC
   P = 2*u.bar # assumed
   water = Stream('water', T=T, P=P, Q=Q)

   NPS, Di, Do, t = nearest_pipe(Di=0.05*u.m)
   v = Q/(pi/4*Di**2)
   Re = Reynolds(D=Di, rho=water.rho, mu=water.mu, V=v)
   print('Reynolds number = $s' % Re)
   fd = friction_factor(Re=Re, eD=_roughness['Glass']/Di)
   print('Darcy friction factor = $s' % fd)

   Reynolds number = 101005.00473702731 dimensionless
   Darcy friction factor = 0.01810865785217491 dimensionless
```
The values presented in their solution are Re=100600; and fd=0.0179. The difference in values is due to the precision they used.

3.2 7.2 L, L over D and K from Kv for Conventional Type Valves

A 150 mm class 125 Y-pattern globe valve with a Kv=500 flow coefficient is given. Calculate the resistance coefficient K, L/D equivalent, and the length for complete turbulence in the flow. Use schedule 40, 150 mm pipe as a reference.

```
from fluids.units import *
D = .154*u.m
Kv = 500*u.m**3/u.hour
K = Kv_to_K(Kv, D)
L_D = L_equiv_from_K(K, fd=.015)
L = D*L_D
print('Loss coefficient = %s' % K)
print('Equivalent length = %s' % L_D)
print('Length for complete turbulence = %s' % L)
```

```
Loss coefficient = 3.5996713983999995 dimensionless
Equivalent length = 239.97809322666663 dimensionless
Length for complete turbulence = 36.95662635690666 meter
```

The results calculated in Crane TP 410M are 3.6, 240, and 37.0 respectively.

3.3 7.3 L, L over D, K, and Kv for Conventional Type Valves

A 100 mm class 600 steel angle valve, has a full area seat. Calculate its resistance coefficient K, flow coefficient Kv, the equivalent length of it L/D, and the length for complete turbulent L.

```
from fluids.units import *
NPS, Di, Do, t = nearest_pipe(Do=0.103*u.m, schedule='80')
fd = 0.0165 # provided - note equivalent length is proportional to this value
d = 0.0972*u.m # diameter of seat
K = K_angle_valve_Crane(D1=d, D2=Di, fd=fd, style=1)
Kv = K_to_Kv(K, d)
L_D = L_equiv_from_K(K, fd)
L = L_D*d
print('Loss coefficient = %s' % K)
print('Valve flow coefficient = %s' % Kv)
print('Equivalent length = %s' % L_D)
print('Length for complete turbulence = %s' % L)
```

```
Loss coefficient = 2.4729637821072443 dimensionless
Valve flow coefficient = 240.31652930826877 meter ** 3 / hour
Equivalent length = 149.8765928549845 dimensionless
Length for complete turbulence = 14.568004825504492 meter
```

The values given in the solution are K=2.475, Kv = 240.2, L/D=150, and L = 14.6.
3.4 7.4 Venturi Type Valves

A 150 by 100 mm class 600 steel gate valve, conically tapered ports, length 550 mm, back of seat ring ~150 mm. The valve is connected to 146 mm schedule 80 pipe. The angle can be calculated to be 13 degrees. The valve is specified to be operating in turbulent conditions.

```
from fluids.units import *
D1 = 100*u.mm
D2 = 146*u.mm
angle = 13.115*u.degrees
fd = friction_factor(Re=1E5, eD=.0018*u.inch/D1)

K2 = K_gate_valve_Crane(D1, D2, angle, fd)
L_D = L_equiv_from_K(K2, fd)
L = (L_D*D2).to(u.m)

print('Darcy friction factor = %s' %fd)
print('K2 = %s' %K2)
print('Equivalent length L_D = %s' %L_D)
print('Length for flow in complete turbulence = %s' %L)
```

Darcy friction factor = 0.02015036859256496 dimensionless
K2 = 1.333044971792424 dimensionless
Equivalent length L_D = 66.15486787096728 dimensionless
Length for flow in complete turbulence = 9.658610709161223 meter

The values calculated in the problem use a friction factor of 0.015; this is the source of the discrepancies. Their procedure for loss in valves and fittings is based around the roughness of commercial steel pipe with a roughness of 0.0018 inches, but in their examples they simply look their friction factors up in a table which does not consider the diameter of the pipe. Their calculated values are K2 = 1.22, L/D=81.3, and L = 11.9.

3.5 7.5 Lift Check Valves

A lift check valve of type globe (with a wing-guided disc) is added to a 80 mm Schedule 40 horizontal pipe carrying water at a flow rate of 300 L/min.

Calculate the check valve size, and pressure drop. The disc should be fully lifted at the specified flow.

```
from fluids.units import *
from math import *
Q = 300*u.L/u.min
D_80 = 77.9*u.mm
rho = 998.2*u.kg/u.m**3
# Try: schedule 40, 80 mm valve
D_60 = 62.7*u.mm
v_lift = v_lift_valve_Crane(rho=rho, D1=D_80, D2=D_80, style='lift check straight')
print('Minimum velocity = %s' %v_lift)

v = Q/(pi/4*D_80**2)
print('Velocity in 80 mm valve = %s' %v.to_base_units())

# v is lower than the lift velocity; try the 60 mm valve
v_lift = v_lift_valve_Crane(rho=rho, D1=D_60, D2=D_80, style='lift check straight')
print('Minimum velocity = %s' %v_lift)
```

(continues on next page)
v = Q/(pi/4*D_60**2)
print('Velocity in 60 mm valve = %s' %v.to_base_units())
The desired velocity is close enough

fd = 0.017 # given, 80 mm pipe upstream
K2 = K_lift_check_valve_Crane(D_60, D_80, fd=fd, angled=False)
print('Loss coefficient = %s' %K2)

v_pipe = Q/(pi/4*D_80**2)
dP = 0.5*rho*v_pipe**2*K2
print('Pressure drop = %s' %dP.to(u.Pa))

Minimum velocity = 1.5825637790011153 meter / second
Velocity in 80 mm valve = 1.0490717871198245 meter / second
Minimum velocity = 1.0252301935349282 meter / second
Velocity in 60 mm valve = 1.619360919636594 meter / second
Loss coefficient = 24.87967662305315 dimensionless
Pressure drop = 13666.040906803597 pascal

The values calculated in the example are K2 = 26.3 and pressure drop = 14450 Pa. Interestingly, the formula for minimum lift velocity used in their example does not use the ratio of diameters as the formula in their appendix shows. Otherwise the examples match.

3.6 7.6 Reduced Port Ball Valve

Water is discharged at 15 degrees Celsius from a tank with 7 m of head to atmosphere through:

- 60 meters of 80 mm schedule 40 pipe
- Six 80 mm standard 90 degree threaded elbows
- One 80 mm flanged ball valve, with a 60 mm diameter seat, 16 degree conical inlet and 30 degree conical outlet.
- The entrance is sharp-edged and flush with the tank

```
from thermo.units import Chemical
from fluids.units import *
from math import pi
water = Chemical('water', T=15*u.degC)
rho = water.rho
mu = water.mu

H = 7*u.m
L = 60*u.m
fd = 0.017  # assumed in their example
NPS, D_pipe, Do_pipe, t = nearest_pipe(Do=80*u.mm)

K = K_from_f(fd=fd, L=L, D=D_pipe)
K += entrance_sharp()
K += exit_normal()
K += 6*bend_rounded(D_pipe, angle=90*u.degrees, fd=fd, bend_diameters=0.65)
ball_valve_angle = 0.5*(15+30)*u.degrees  # use the average angle
K += K_ball_valve_Crane(D1=D_pipe, D2=60*u.mm, angle=ball_valve_angle, fd=fd)

v = (2*u.gravity*H/K)**0.5
```
print('Velocity = %s' %v.to_base_units())
Q = v*pi/4*D_pipe**2
print('Flow rate = %s' %Q.to(u.L/u.min))
Re = Reynolds(D=D_pipe, rho=rho, mu=mu, V=v)
fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_pipe)

Velocity = 2.770041323755228 meter / second
Flow rate = 792.5474399133158 liter / minute

The radius of curvature of the elbows was not specified; 0.65 bend diameters matches their results most closely. They modified the ball valve equation to support both an inlet and an outlet angle; the average value is used here.

Their calculated values are 2.74 m/s and flow rate of 781 L/min.

The calculation can be performed more accurately by iterating; a naive approach is shown below. A very different flow rate is obtained when the roughness of the pipe is considered in the friction factor calculation.

[2]: fd = 0.017
for i in range(7):
 K = K_from_f(fd=fd, L=L, D=D_pipe)
 K += entrance_sharp()
 K += exit_normal()
 K += 6*bend_rounded(D_pipe, angle=90*u.degrees, fd=fd, bend_diameters=0.65) # use the average angle
 ball_valve_angle = 0.5*(15+30)*u.degrees
 K += K_ball_valve_Crane(D1=D_pipe, D2=60*u.mm, angle=ball_valve_angle, fd=fd)

 v = (2*u.gravity*H/K)**0.5
 Q = v*pi/4*D_pipe**2
 print('Flow rate = %s' %Q.to(u.L/u.min))
Re = Reynolds(D=D_pipe, rho=rho, mu=mu, V=v)
fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_pipe)

Flow rate = 792.5474399133158 liter / minute
Flow rate = 748.2664116002655 liter / minute
Flow rate = 746.5628913428789 liter / minute
Flow rate = 746.4941928055326 liter / minute
Flow rate = 746.4914172120895 liter / minute
Flow rate = 746.491305062719 liter / minute
Flow rate = 746.4913005312487 liter / minute

3.7 7.7 Laminar flow in Valves, Fittings, and Pipe - System from Example 7.6

SAE oil is discharged at 15 degrees Celsius from a tank with 7 m of head to atmosphere through:

- 60 meters of 80 mm schedule 40 pipe
- 60 mm standard 90 degree threaded elbows
- One 80 mm flanged ball valve, with a 60 mm diameter seat, 16 degree conical inlet and 30 degree conical outlet.
- The entrance is sharp-edged and flush with the tank

This is the same problem as 7.6, except the properties of the fluid are sufficiently viscous to put it into the laminar regime although not by much.
from fluids.units import *
from math import pi
rho = 875.*u.kg/u.m**3
mu = 78*u.cP
H = 7*u.m
L = 60*u.m
NPS, D_pipe, Do Pipe, t = nearest_pipe(Do=80*u.mm)
fd = 0.017
Re = 1E5
for i in range(20):
 K = K_from_f(fd=fd, L=L, D=D_pipe)
 K += entrance_sharp()
 K += exit_normal()
 K += 6*bend_rounded(D_pipe, angle=90*u.degrees, fd=fd, bend_diameters=0.65)
 ball_valve_angle = 0.5*(15+30)*u.degrees # use the average angle
 K += K_ball_valve_Crane(D1=D_pipe, D2=60*u.mm, angle=ball_valve_angle, fd=fd)
 v = (2*u.gravity*H/K)**0.5
 Q = v*pi/4*D_pipe**2
 print('Flow rate = %s, Reynolds number = %s' %(Q.to(u.L/u.min), Re))
 Re = Reynolds(D=D_pipe, rho=rho, mu=mu, V=v)
 fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_pipe)

Flow rate = 792.5474399133158 liter / minute, Reynolds number = 100000.0
dimensionless
Flow rate = 494.99657487971655 liter / minute, Reynolds number = 2421.3002237645055
dimensionless
(continues on next page)
Flow rate = 544.3913083992766 liter / minute, Reynolds number = 1663.160897398391
→ dimensionless
Flow rate = 544.3914810429436 liter / minute, Reynolds number = 1663.1620146130185
→ dimensionless
Flow rate = 544.3915627198137 liter / minute, Reynolds number = 1663.162542054189
→ dimensionless

No solution is actually presented in the example; but the result of their initial guess of a velocity of 1.5 m/s gives 511.2 L/min.

3.8 7.8 Laminar flow in Valves, Fittings, and Pipe - SAE oil through a pipe and globe valve

S.A.E. 30 Oil at 40 degrees Celsius and a flow rate of 600 barrels/hour flows in a 60 m long 200 mm schedule 40 pipe and passes through a 200 mm globe valve, full area seat.

Calculate the pressure drop.

```python
from fluids.units import *
from thermo import Stream
from math import *
Q = 600*u.barrel/u.hour
L = 60*u.m
NPS, D_pipe, Do_pipe, t = nearest_pipe(Di=200*u.mm)
rho = 869.2*u.kg/u.m**3
mu = 130*u.cP
V = Q/(pi/4*D_pipe**2)
Re = Reynolds(D=D_pipe, V=V, rho=rho, mu=mu)
fd = friction_factor(Re=Re)
ft = friction_factor(Re=1E6, eD=0.0018*u.inch/D_pipe)
K = K_globe_valve_Crane(D1=D_pipe, D2=D_pipe, fd=ft)
K += K_from_f(fd=fd, L=L, D=D_pipe)
dP_from_K(K=K, V=V, rho=rho)
```

The example gives a pressure drop of 6382 Pa.

3.9 7.9 Laminar Flow in Valves, Fittings, and Pipe

SAE 30 oil at 100 deg F flows through a 5” schedule 40 pipe at 400 gal/min.

There is a sketch in the Crane document of the system.

Find the velocity in feet/second and the pressure drop.

```python
from fluids.units import *
from math import pi
from fluids.constants import g
g = g*u.m/u.s**2
```

(continues on next page)
\[\text{dH} = 50 \times \text{u.foot} \]
\[L = (175+50+75) \times \text{u.foot} \]
\[\mu = 130 \times \text{u.cP} \]
\[\rho = (62.364 \times 0.87) \times \text{u.lb/u.ft}^3 \]
\[\text{NPS, Di, Do, t} = \text{nearest_pipe(Do}=5 \times \text{u.inch, schedule='40')} \]
\[Q = 400 \times \text{u.gallon/u.min} \]
\[A = 0.25 \times \pi \times \text{Di}^2 \]
\[v = \frac{Q}{A} \]
\[\text{Re} = \rho \times v \times \text{Di} / \mu \]
\[\text{fd} = \text{friction_factor(Re=}\text{Re}, \text{eD}=0.0018 \times \text{u.inch/}\text{Di}) \]
\[\text{ft} = \text{ft_Crane(}\text{Di}) \]
\[\text{K_gate} = \text{K_gate_valve_Crane(}\text{Di=}\text{Di}, \text{D2=}\text{Di}, \text{fd=}\text{ft}, \text{angle=}0.0 \times \text{u.degrees}) \]
\[\text{K_angle} = \text{K_angle_valve_Crane(}\text{Di=}\text{Di}, \text{D2=}\text{Di}, \text{fd=}\text{ft}, \text{style=}1) \]
\[\text{K_elbow} = \text{bend_rounded(}\text{Di=}\text{Di}, \text{bend_diameters=}1, \text{angle=}90 \times \text{u.degrees}, \text{Re=}\text{Re}, \text{method=} \text{Crane}) \]
\[\text{K_tot} = \text{K_elbow} + \text{K_gate} + \text{K_angle} \]
\[\text{K_tot} += \text{K_from_f(}\text{fd=}\text{fd}, \text{L=}L, \text{D=}\text{Di}) \]
\[\text{dP} = \text{dP_from_K(}\text{K=}\text{K_tot}, \text{rho=}\rho, \text{V=}v) + \rho \times g \times \text{dH} \]
\[\text{dP_to(}\text{u.psi}), \text{v_to(}\text{u.foot/u.s}) \]

3.9.1 Intermediate calculations

1. \(K_{\text{gate}}/\text{ft}, K_{\text{angle}}/\text{ft}, K_{\text{elbow}}/\text{ft} \)

 - \((8.0 < \text{Unit('dimensionless')}, 150.0 < \text{Unit('dimensionless')}, 20.00000000000006 < \text{Unit('dimensionless')}) \)

2. \(K_{\text{tot}} \)

 - \(29.99124449003742 \text{ dimensionless} \)

3. \(v _\text{to(}\text{u.ft/u.s}) \)

 - \(6.414177533606955 \text{ foot / second} \)

4. \(\text{fd}, \text{ft} \)

 - \((0.0381948926809522 < \text{Unit('dimensionless')}, 0.01543941031464228 < \text{Unit('dimensionless')}) \)

3.9.2 Proof system is laminar

1. \(\text{Re_to(}\text{u.dimensionless}) \)

 - \(1675.616699190696 \text{ dimensionless} \)
3.10 7.10 Piping Systems - Steam

40 bar steam, 450 degrees Celsius flows though a 120 m long horizontal 150mm schedule 80 pipe at a rate of 40000 kg/hr.

There are three 90 degree weld elbows with rc=1.5, 1 fully open class 600 150mm x 100mm venturi class gate valve, one class 600 150 mm class y pattern globe valve with a seat diameter of 90% the inside pipe diameter (disc fully lifted).

Calculate the pressure drop through the system.

```python
[1]:
from math import *
from fluids.units import *
from thermo.units import Stream

m = 40000*u.kg/u.hr
T = 450*u.degC
P = 40*u.bar

steam = Stream('water', T=T, P=P, m=m)

rho = steam.rho
mu = steam.mu
print('Density = %s' % rho)
print('Viscosity = %s' % mu)

Density = 12.493325597325967 kilogram / meter ** 3
Viscosity = 2.655716090653184e-05 pascal * second

[2]:
L = 120*u.m
NPS, D_pipe, Do_pipe, t = nearest_pipe(Do=150*u.mm, schedule='80')
Q = m/rho
v = Q/(pi*D_pipe**2)
Re = Reynolds(rho=rho, mu=mu, D=D_pipe, V=v)
fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_pipe)
K_elbow = bend_rounded(Di=D_pipe, angle=90*u.degrees, fd=fd, bend_diameters=1.5)
K_fric = K_from_f(fd=fd, L=L, D=D_pipe)
K_globe_valve = K_globe_valve_Crane(D1=0.9*D_pipe, D2=D_pipe, fd=fd)
K_gate_valve = K_gate_valve_Crane(D1=100*u.mm, D2=D_pipe, angle=13.115*u.degrees, fd=fd)
K_tot = K_fric + K_globe_valve + 3*K_elbow

dP = dP_from_K(K=K_tot, rho=rho, V=v)

print('Crane elbow term = 0.63; calculated = %s' % (3*K_elbow))
print('Crane globe valve term = 1.44; calculated = %s' % (K_globe_valve))
print('Crane gate valve term = 1.22; calculated = %s' % (K_gate_valve))
print('Crane friction term = 12.3; calculated = %s' % (K_fric))
print('Darcy friction factor = %s' % fd)
print('Pressure drop = %s' % dP.to(u.Pa))

Crane elbow term = 0.63; calculated = 0.60592485416919 dimensionless
Crane globe valve term = 1.44; calculated = 1.171533441709392 dimensionless
Crane gate valve term = 1.22; calculated = 12.3; calculated = 12.522948325321591 dimensionless
Darcy friction factor = 0.015273822640783903 dimensionless
Pressure drop = 388771.6702516166 pascal
```
This compares terribly to the example, which calculates a pressure drop of 274800 Pa!

Two errors are apparent - their example uses a different coefficient (55) in the globe valve pressure drop equation than that shown in their appendix (340); and they re-use their prior calculated gate valve, despite the friction factor being different in this example. This, plus their use of a constant 0.015 friction factor, explains the difference.

The example below uses their calculated globe valve pressure drop and their friction factor. The result (268500 Pa) compares well with their calculation; the additional decimals and better physical properties explain the rest.

```python
L = 120*u.m
NPS, D_pipe, Do_pipe, t = nearest_pipe(Do=150*u.mm, schedule='80')
Q = m/rho
v = Q/(pi/4*D_pipe**2)
Re = Reynolds(rho=rho, mu=mu, D=D_pipe, V=v)
fd = 0.015
K_elbow = bend_rounded(Di=D_pipe, angle=90*u.degrees, fd=fd, bend_diameters=1.5)
K_friction = K_from_f(fd=fd, L=L, D=D_pipe)
K_globe_valve = 1.44
# Angle and inside diameter are taken from example 7.4,
K_gate_valve = K_gate_valve_Crane(D1=100*u.mm, D2=D_pipe, angle=13.115*u.degrees, fd=fd)
K_tot = K_gate_valve + K_globe_valve + 3*K_elbow + K_friction
dP = dP_from_K(K=K_tot, rho=rho, V=v)

print('Crane elbow term = 0.63; calculated = %s' % (3*K_elbow))
print('Crane globe valve term = 1.44; calculated = %s' % (K_globe_valve))
print('Crane gate valve term = 1.22; calculated = %s' % (K_gate_valve))
print('Crane friction term = 12.3; calculated = %s' % (K_friction))
print('Darcy friction factor = %s' % fd)
print('Pressure drop = %s' % dP.to(u.Pa))
```

Crane elbow term = 0.63; calculated = 0.5988647407128814 dimensionless
Crane globe valve term = 1.44; calculated = 1.44
Crane gate valve term = 1.22; calculated = 1.161481523531734 dimensionless
Crane friction term = 12.3; calculated = 12.29844219732167 dimensionless
Darcy friction factor = 0.015
Pressure drop = 270542.3833530189 pascal

3.11 7.11 Flat heating Coils - Water

Water at 80 degrees Celsius flows through a flat heating coil at a rate of 60 L/min. There are 7 180 degree bends in it. The coil is 8 m long, with 0.5 m of straight length on the inlet and exit. The r/D of the bends is 4. The pipe is schedule 40, 25 mm pipe.

```python
from math import *rom fluids.units import *from thermo.units import Chemical

water = Chemical('water', P=2*u.bar, T=80*u.degC) # P assumed
rho = water.rho
mu = water.mu

Q = 60*u.L/u.min
L = (1*8 + 0.5*2)*u.m
```

(continues on next page)
NPS, D_{pipe}, D_{o}, t = nearest_pipe(Di=25*u.mm)

v = Q/(pi/4*D_{pipe}**2)

Re = Reynolds(rho=rho, mu=mu, D=D_{pipe}, V=v)

fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_{pipe})

K_{elbow} = bend_rounded(Di=D_{pipe}, angle=180*u.degrees, fd=fd, bend_diameters=5)

K_{friction} = K_{from_f}(fd=fd, L=L, D=D_{pipe})

K_{tot} = 7*K_{elbow} + K_{friction}

dP = dP_{from_K}(K=K_{tot}, rho=rho, V=v)

print('Pressure drop = %s' %dP.to(u.Pa))

Pressure drop = 18501.7753353607 pascal

The value presented in the solution is 19609 Pa. They chose a constant friction factor of 0.024 in this calculation. If this were used, the result compares much better. Their friction factor can be obtained at a roughness of 0.05 mm.

fd = 0.024

K_{elbow} = bend_rounded(Di=D_{pipe}, angle=180*u.degrees, fd=fd, bend_diameters=5)

K_{friction} = K_{from_f}(fd=fd, L=L, D=D_{pipe})

K_{tot} = 7*K_{elbow} + K_{friction}

dP = dP_{from_K}(K=K_{tot}, rho=rho, V=v)

print('Pressure drop = %s' %dP.to(u.Pa))

Pressure drop = 18539.73002741304 pascal

3.12 7.12 Orifice Size for Given Pressure Drop and Velocity

A 12” schedule 40 steel pipe is 60 feet long; it serves to connect water from a reservoir to the atmosphere. The water is 60 deg F and the elevation distance of the pipe is 12 feet.

The pipe also contains a gate valve 10’ from the entrance. The entrance into the reservoir is at a distance from the wall.

Find the diameter of a standard orifice plate to make the flow velocity exactly 10 ft/s.

from fluids.units import *
from fluids.constants import g
from math import pi
from scipy.optimize import newton

g = g*u.m/u.s**2

dH = 12*u.foot
L = (60)*u.foot
mu = 1.1*u.cP
rho = 62.364*u.lb/u.ft**3

NPS, Di, Do, t = nearest_pipe(Do=12*u.inch, schedule='40')

v = 10*u.foot/u.s
A = 0.25*pi*Di**2
m = v*A*rho
Re = rho*v*Di/mu
Approximately match their friction factor, roughness not specified
fd = friction_factor(Re=Re, eD=0.0006*u.inch/Di)
ft = ft_Crane(Di)

K_entrance = entrance_distance(Di=Di, method='Crane')
K_exit = exit_normal()
K_gate = K_gate_valve_Crane(D1=Di, D2=Di, angle=0.0*u.degrees)

K_tot = K_entrance + K_exit + K_gate
K_tot += K_from_f(fd=fd, L=L, D=Di)

dP = dP_from_K(K=K_tot, rho=rho, V=v)
k = 1.33

dP_gravity = rho*g*dH
dP_meter = dP_gravity - dP

meter_type = 'ISO 5167 orifice'
orifice_taps = 'corner'

P2 is assumed - does have an impact but it is minimal
P2 = 1e6*u.Pa
P1 = (P2 + dP_meter*2.5)
print('Numerical solver progress:')
def to_solve(beta):
 # Do not know orifice measured dP or C, only actual dP
 D2 = Di*beta

 # Solve for upstream pressure given actual flow rate and guessed diameter
 P1 = differential_pressure_meter_solver(Di, rho, mu, k, D2=D2, P2=P2,
 meter_type=meter_type,
 taps=orifice_taps)

 # Calculate 'C'
 C, expansibility = differential_pressure_meter_C_epsilon(Di, D2, m, P1, P2, rho,
 mu, k,
 meter_type=meter_type,
 taps=orifice_taps)

 # Calculate what the guessed orifice actual dP is
 calc_dP = dP_orifice(D=Di, Do=D2, P1=P1, P2=P2, C=C)
 err = (calc_dP - dP_meter).to_base_units()
 print(err.magnitude, beta, C.magnitude)
 return err.magnitude

beta = newton(to_solve, .5, tol=1e-13)
print('Size is:')
print((Di*beta).to(u.inch))
The answer given in Crane is 7.94 inches, but only three iterations are performed there.

3.13 7.13 Flow given in English Units - Oil

Fuel oil at a specific gravity of 0.815 (kinematic viscosity of 2.7 centistokes) flows at 2 inch, schedule 40 steel pipe 100 foot long at a rate of 2 US gallons/second.

Calculate the pressure drop in bars and psi.

```
[1]: from math import *
    from fluids.units import *
    from thermo import *

    SG = 0.815
    rho = SG*999.1*u.kg/u.m**3
    nu = 2.7*u.centistokes
    mu = nu_mu_converter(rho, nu=nu)
    Q = 2*u.gal/u.s
    L = 100*u.foot

    NPS, D_pipe, Do_pipe, t = nearest_pipe(Di=2*u.inch)
    v = Q/(pi/4*D_pipe**2)
    Re = Reynolds(rho=rho, mu=mu, D=D_pipe, V=v)
    fd = friction_factor(Re=Re, eD=0.0018*u.inch/D_pipe)
    print('Darcy friction factor = %s' % fd)
    K_friction = K_from_f(fd=fd, L=L, D=D_pipe)
    dP = dP_from_K(K=K_friction, rho=rho, V=v)
    print('Pressure drop = %s' % dP.to(u.Pa))
    print('In imperial, pressure drop = %s' % dP.to(u.psi))

Darcy friction factor = 0.02270215687134065 dimensionless
Pressure drop = 65759.12280469094 pascal
In imperial, pressure drop = 9.537554406715385 pound_force_per_square_inch
```

The pressure drop calculated in the example is 66500 Pa (9.65 psi). The discrepancy is from their friction factor; they use 0.0230. The result is matched exactly if their friction factor is used.

```
[2]: fd = 0.023
    print('Darcy friction factor = %s' % fd)
    K_friction = K_from_f(fd=fd, L=L, D=D_pipe)
    dP = dP_from_K(K=K_friction, rho=rho, V=v)
    print('Pressure drop = %s' % dP.to(u.Pa))
    print('In imperial, pressure drop = %s' % dP.to(u.psi))

Darcy friction factor = 0.023
Pressure drop = 66621.85593551381 pascal
In imperial, pressure drop = 9.662683268274836 pound_force_per_square_inch
```
3.14 7.14 Bernoulli’s Theorem-Water

Water at 15 degrees Celsius is flowing through the piping system shown in Crane TP 410M’s example at 1500 L/min. Calculate the velocity in both 4 and 5 inch sizes; and the pressure drop.

Note: This problem suggests to handle the changing size elbow by adding on the result of a smooth expansion, which is also used here.

```
[1]:
    from math import *
    from fluids.units import *
    from thermo.units import Chemical

    water = Chemical('water', P=2*u.bar, T=15*u.degC)
    rho = water.rho
    mu = water.mu

    Q = 1500*u.L/u.min
    r_d = 1.5
    _, D1, _, _ = nearest_pipe(Di=100*u.mm)
    _, D2, _, _ = nearest_pipe(Di=125*u.mm)
    L1 = 34*u.m
    L2 = (22+45)*u.m
    dH = 22*u.m
    beta = D1/D2

    V1 = Q/(pi/4*D1**2)
    V2 = Q/(pi/4*D2**2)
    Re1 = Reynolds(rho=rho, mu=mu, V=V1, D=D1)
    Re2 = Reynolds(rho=rho, mu=mu, V=V2, D=D2)
    fd1 = friction_factor(Re=Re1, eD=0.0018*u.inch/D1)
    fd2 = friction_factor(Re=Re2, eD=0.0018*u.inch/D2)
    fd = (fd1+fd2)/2

    dP = rho*u.gravity*dH
    K_D1 = bend_rounded(Di=D1, angle=90*u.degrees, fd=fd, bend_diameters=r_d)
    K_D1 += diffuser_conical(D1, D2, angle=30*u.degrees, fd=fd)
    K_D1 += K_from_f(fd=fd1, L=L1, D=D1)

    K_D2 = bend_rounded(Di=D2, angle=90*u.degrees, fd=fd, bend_diameters=r_d)
    K_D2 += K_from_f(fd=fd2, L=L2, D=D2)
    dP += dP_from_K(K=K_D1, rho=rho, V=V1)
    dP += dP_from_K(K=K_D2, rho=rho, V=V2)
    dP.to(u.Pa)
```

The result calculated in Crane’s TP 410m is 26450 Pa. Their friction factor is 0.018. Again, it that value is used, the result calculated matches theirs - except this is off by an order of magnitude.

In this edition, the gravitational term was forgotten. The prior 8th edition lists a value of 2.6 bar as the result for this problem. If their friction factor is used with this model, the following calculates a pressure drop of 2.62 bar.

```
[2]:
    fd = fd1 = fd2 = .018
    dP = rho*u.gravity*dH

    K_D1 = bend_rounded(Di=D1, angle=90*u.degrees, fd=fd, bend_diameters=r_d)
```

(continues on next page)
Fluids Documentation, Release 0.1.86

(continued from previous page)

\[K_{D1} += \text{contraction_round}(D1, D2, r_d*D1) \]
\[K_{D1} += \text{K_from_f}(fd=fd1, L=L1, D=D1) \]
\[K_{D2} = \text{bend_rounded}(Di=D2, angle=90*\text{u.degrees}, fd=fd, bend_diameters=r_d) \]
\[K_{D2} += \text{K_from_f}(fd=fd2, L=L2, D=D2) \]
\[dP += \text{dP_from_K}(K=K_{D1}, \rho=\rho, V=V1) \]
\[dP += \text{dP_from_K}(K=K_{D2}, \rho=\rho, V=V2) \]
\[dP\text{.to(u.Pa)} \]

[2]: 262439.4308380222 pascal

3.15 7.15 Power Required for Pumping

Water at 70 deg F is pumped through a sketched system at a rate of 100 gal/min. Find the total discharge head brake horsepower for a pump with an efficiency of 70%.

\[\text{from fluids.units import *} \]
\[\text{from math import pi} \]
\[L = (30+100+70+300)*\text{u.foot} \]
\[dH = 400*\text{u.foot} \]
\[\text{efficiency} = 0.7 \]
\[Q = 100*\text{u.gallon/u.min} \]
\[\mu = 0.95*\text{u.cP} \]
\[\rho = 62.298*\text{u.lb/u.ft**3} \]

\[\text{NPS, Di, Do, t = nearest_pipe(Do=3*\text{u.inch, schedule='40'})} \]
\[\text{Di_reducer = nearest_pipe(Do=2.5*\text{u.inch, schedule='40'})[1]} \]
\[A = 0.25*\pi*\text{Di**2} \]
\[v = Q/A \]
\[\text{Re} = \rho*\text{v}*\text{Di}/\mu \]
\[\text{fd = friction_factor(Re=Re, eD=0.0022*\text{u.inch}/\text{Di})} \]
\[\text{K_exit = exit_normal()} \]
\[\text{K_gate = K_gate_valve_Crane(D1=Di, D2=Di, angle=0.0*\text{u.degrees})} \]
\[\text{K_elbow = bend_rounded(Di=Di, angle=90*\text{u.degrees}, Re=Re, method='Crane standard')} \]
\[\text{K_lift_valve = K_lift_check_valve_Crane(D1=Di_reducer, D2=Di, angled=False)} \]
\[\text{K_tot = K_exit + K_gate + 4*K_elbow + K_lift_valve} \]
\[\text{K_tot += K_from_f(fd=fd, L=L, D=Di)} \]
\[\text{dP = dP_from_K(K=K_tot, \rho=\rho, V=V) + \rho*dH*1*u.gravity} \]
\[\text{dP_to(u.psi), v_to(u.foot/u.s)} \]
\[\text{head = head_from_P(dP, rho).to(u.foot)} \]
\[\text{print('head = $s' %head)} \]
\[\text{power = Q*dP/\text{efficiency}} \]
\[\text{print('power = $s' %\{power_to(u.hp)\}}) \]

head = 420.3499305270172 foot
power = 15.154490724520906 horsepower
3.16 7.16 Air Lines

Air at 65 psig and 115 deg F flows through 75 feet of 1” schedule 40 pipe at a rate of 100 cubic feet/minute. Find the pressure drop in psi and the velocity in feet per minute at the inlet and the outlet.

```python
from fluids.units import *
from math import pi
P1 = 65*u.psi + 1*u.standard_atmosphere

# Take nitrogen-oxygen as air
from thermo import PRMIX
zs = [0.79, 0.21]
Tcs = [126.2, 154.58]
Pcs = [3394387.5, 5042945.25]
omegas = [0.04, 0.021]

eos_flowing = PRMIX(T=(115*u.degF).to(u.K).magnitude, P=P1.to(u.Pa).magnitude, zs=zs,
                    Tcs=Tcs, Pcs=Pcs, omegas=omegas)
eso_std = PRMIX(T=288.15, P=101325.0, zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas)
V_ratio = eos_flowing.V_g/eos_std.V_g
print('Ratio of actual to standard flow: %s' %V_ratio)
Ratio of actual to standard flow: 0.20407676712438672

NPS, Di, Do, t = nearest_pipe(NPS=1, schedule='40')
Q = V_ratio*100*u.ft**3/u.min
L = 75*u.ft
MW = 28.958*u.g/u.mol
Vm = eos_flowing.V_g*u.m**3/u.mol
rho = (Vm)**-1*MW
mu = 1.93e-5*u.Pa
A = 0.25*pi*Di**2
v0 = Q/A
m = v0*A*rho
Re = rho*v0*Di/mu
fd = friction_factor(Re=Re, eD=0.0018*u.inch/Di)
P2 = isothermal_gas(rho=rho, fd=fd, P1=P1, P2=None, L=L, D=Di, m=m)
print('pressure drop = %s' %(P1-P2))
print('upstream speed = %s' %(v0.to(u.ft/u.min)))
pressure drop = 2.714842967501866 pound_force_per_square_inch
upstream speed = 3401.458438219272 foot / minute

eos_end = PRMIX(T=(115*u.degF).to(u.K).magnitude, P=P2.to(u.Pa).magnitude, zs=zs,
                 Tcs=Tcs, Pcs=Pcs, omegas=omegas)
Vm2 = eos_end.V_g*u.m**3/u.mol
```

(continues on next page)
The answers given in Crane are 2.61 psi; and 3367 and 3484 ft/min respectively. A tabular method is used there of limited accuracy.

For compressible fluids, there is a benefit to breaking the problem up into sections and performing the calculation to each of them, preferably while including the JT effect and heat loss/gain.

3.17 7.17 Sizing of Pump for Oil Pipelines

Crude oil (30 degree API) at 15.6 C with a viscosity of 75 Universal Saybolt seconds flows down a 12” Schedule 30 steel pipe with a flow rate of 1900 barrels/hour.

The pipeline is 50 miles long, and the net elevation change is an increase of 2000 feet above the initial pump. The pump has an efficiency of 67%.

Calculate the brake horsepower of the pump.

```
from fluids.units import *
from math import pi
L = 50*u.miles
dH = 2000*u.foot
efficiency = 0.67

# Note in pint the default barrel is for US dry barrel
Q = 1900*u.oil_barrel/u.hour
mu = 12.5*u.cP
rho = 54.64*u.lb/u.ft**3

NPS, Di, Do, t = nearest_pipe(NPS=12, schedule='30')
A = 0.25*pi*Di**2
v = Q/A
Re = rho*v*Di/mu
print(Re.to_base_units())
fd = friction_factor(Re=Re, eD=0.0022*u.inch/Di)
print(fd)
K_tot = K_from_f(fd=fd, L=L, D=Di)
dP = dP_from_K(K=K_tot, rho=rho, V=v) + rho*dH*l.u.gravity
dP.to(u.psi), v.to(u.foot/u.s)
head = head_from_P(dP, rho).to(u.foot)
print('head = $s' %head)
power = Q*dP/efficiency
print('power = $s' %(power.to(u.hp)))

24364.090937022276 dimensionless
0.02511025708497868 dimensionless
head = 3413.763958141052 foot
power = 1499.9449484211073 horsepower
```

The listed values are 3406.5 feet and 1496 hp, however a shortcut formula is used there.
3.18 7.18 Gas

A natural gas pipeline (schedule 20 14"") is 100 miles long. Inlet pressure is 1300 psia, and outlet pressure is 300 psia. The average temperature is 40 deg F. The gas composition is 75% methane, 21% ethane, and 4% propane.

Find the flow rate in MMscfd.

```python
from fluids.units import *
from math import pi
P1 = 1300*u.psi
P2 = 300*u.psi
T = 40*u.degF
L = 100*u.miles
mu = 1.1e-5*u.Pa #
# mu = 1.915E-5*u.Pa # A more correct value, but hinders matching the problem
NPS, Di, Do, t = nearest_pipe(NPS=14, schedule='20')
A = 0.25*pi*Di**2

from thermo import *
from thermo import PRMIX
Tcs = [190.564, 305.32, 369.83]
Pcs = [4599000.0, 4872000.0, 4248000.0]
omegas = [0.008, 0.098, 0.152]
MWs = [16.04246, 30.06904, 44.09562]
zs = [0.75, 0.21, .04]
MW = sum(zs[i]*MWs[i] for i in range(3))*u.g/u.mol

eos_1 = PRMIX(T=T.to(u.K).magnitude, P=P1.to(u.Pa).magnitude, zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas)
eos_2 = PRMIX(T=T.to(u.K).magnitude, P=P2.to(u.Pa).magnitude, zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas)
eos_std = PRMIX(T=288.15, P=101325.0, zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas)

Vml = eos_1.V_g*u.m**3/u.mol
rho1 = (Vml)**-1*MW

Vm2 = eos_2.V_g*u.m**3/u.mol
rho2 = (Vm2)**-1*MW

Vm_std = eos_std.V_g*u.m**3/u.mol
rho_std = (Vm_std)**-1*MW

roughness = 0.0018*u.inch
rho = 0.5*(rho1 + rho2)

v = 10.0 # Initial guess for velocity
Re = rho*v*Di/mu
fd = friction_factor(Re=Re, eD=roughness/Di)

for i in range(8):
    # Solve for velocity with sequential substitution
    m = isothermal_gas(rho, fd, P1=P1, P2=P2, L=L, D=Di)
    v = m/(A*rho)
    Re = rho*v*Di/mu
```
(continues on next page)
Fluids Documentation, Release 0.1.86

(continued from previous page)

```python
fd = friction_factor(Re=Re, eD=roughness/Di)
Q = v*A
correction = rho_std/rho

# pint does not support mmscfd
mmscfd = Q.to(u.ft**3/u.day).magnitude/1e6/correction
print('According to the full isothermal equation, the flowrate is %g MMscfd' % (mmscfd))
# Q.to(u.m**3/u.s)
According to the full isothermal equation, the flowrate is 103.434 MMscfd
```

[4]: # Note Z_avg should be used in the Panhandle and Weymouth equations
 # However Crane omits them; they are not used here to match Crane.
 Z_avg = 0.5*(eos_1.Z_g + eos_2.Z_g)
 MW_air = 28.966*u.g/u.mol
 SG = MW/MW_air

[5]: # Crane does not use the efficiency term on Weymouth
 Q_Weymouth = Weymouth(SG, Tavg=T, L=L, D=Di, P1=P1, P2=P2, Zavg=1, E=1)
 mmscfd = Q_Weymouth.to(u.ft**3/u.day).magnitude/1e6
 print('According to the Weymouth equation, the flowrate is %g MMscfd' % (mmscfd))
 According to the Weymouth equation, the flowrate is 105.047 MMscfd

[6]: Q_panhandle = Panhandle_A(SG, Tavg=T, L=L, D=Di, P1=P1, P2=P2, Zavg=1, E=0.92)
 mmscfd = Q_panhandle.to(u.ft**3/u.day).magnitude/1e6
 print('According to the Panhandle A equation, the flowrate is %g MMscfd' % (mmscfd))
 According to the Panhandle A equation, the flowrate is 128.143 MMscfd

Besides the simplifications Crane makes, the methods are fair approximations. The values in Crane are 107.8, 105.1, and 128.2 mmscfd respectively. The isothermal calculation employed by Crane is a simplified one, explaining the difference - it does not account for expansion rigorously.

3.19 7.19 Water

Water at 60 deg F flows from a reservoir through a piping system according to a diagram in the book. The reservoir has a head of 11.5 feet.

The system is:

```
entrance
3" miter bend
standard gate valve open
10 feet of 3 inch pipe (sched 40)
sudden contraction
20 feet of 2 inch pipe (sched 40)
```

(continues on next page)
Find the flow rate in gallons/minute.

```python
from fluids.units import *
from math import pi

L1 = 10*u.foot
L2 = 20*u.foot

dH = 11.5*u.foot

mu = 1.1*u.cP
rho = 62.364*u.lb/u.ft**3

NPS1, Di1, Do1, t1 = nearest_pipe(NPS=3, schedule='40')
NPS2, Di2, Do2, t2 = nearest_pipe(NPS=2, schedule='40')

A1 = 0.25*pi*Di1**2
A2 = 0.25*pi*Di2**2

ft1 = ft_Crane(Di1)
ft2 = ft_Crane(Di2)

roughness = 0.0018*u.inch

dP = rho*dH*1*u.gravity

fd1 = fd2 = 0.018 # assumed; solve with sequential substitution
# Take the 3" diameter as the reference for K

for i in range(10):
    K_entrance = entrance_sharp(method='Crane')
    K_exit = change_K_basis(exit_normal(), 2*u.inch, 3*u.inch)
    K_gate = K_gate_valve_Crane(D1=Di1, D2=Di1, angle=0.0*u.degrees)
    K_elbow = bend_miter(Di=Di1, angle=90*u.degrees, method='Crane')
    K_contraction = change_K_basis(contraction_conical_Crane(3*u.inch, 2*u.inch, l=0*u.m), 2*u.inch, 3*u.inch)
    K_tot = K_entrance + K_elbow + K_gate + K_exit + K_contraction
    K_f1 = K_from_f(fd=fd1, L=L1, D=Di1)
    K_f2 = change_K_basis(K_from_f(fd=fd2, L=L2, D=Di2), 2*u.inch, 3*u.inch)
    K_tot += K_f1 + K_f2
    K_tot_basis2 = change_K_basis(K_tot, 3*u.inch, 2*u.inch)

    v1 = (2*dP/(K_tot*rho))**0.5
    v2 = (2*dP/(K_tot_basis2*rho))**0.5

    Re1 = rho*v1*Di1/mu
    Re2 = rho*v2*Di2/mu
    fd1 = friction_factor(Re=Re1, eD=roughness/Di1)
    fd2 = friction_factor(Re=Re2, eD=roughness/Di2)

Q = A1*v1
Q.to(u.gal/u.min)
```

The solution given in Crane where they also perform iterations is 137 gal/min.

3.20 7.20 Steam at Sonic Velocity

Given: A header contains 170 psi saturated steam which feeds a pulp stock digester through 30 feet of 2” schedule 40 pipe. It includes 1 standard 90 degree elbow, a fully open conventional plug type disc global valve. The initial pressure in the digester is atmospheric.

Find the initial flow rate in pounds/hour.

```python
from fluids.units import *
from math import pi
from CoolProp.CoolProp import PropsSI
P1 = 170*u.psi
P2_spec = P2 = 1*u.atm
L = 30*u.foot
NPS, D_pipe, Do_pipe, t = nearest_pipe(NPS=2, schedule=40)
A = 0.25*pi*D_pipe**2
fd = 0.019 # assumed, initial guess
Re = 1e6 # also assumed
mu = 1.8e-8*u.Pa*u.s
rho = 5.988612037578836*u.kg/u.m**3 # Density at inlet from steam tables
roughness = 0.0018*u.inch
for i in range(5):
    K = K_from_f(fd=fd, L=L, D=D_pipe)
    K += entrance_sharp()
    K += exit_normal()
    K += K_globe_valve_Crane(D1=D_pipe, D2=D.pipe)
    K += bend_rounded(Di=D_pipe, angle=90*u.degrees, fd=fd,
                      Re=Re, roughness=roughness, method='Crane')
# lump the losses together for the `isothermal_gas` function
fd_tot = f_from_K(L=L, D=D_pipe, K=K)
P2_choke = P_isothermal_critical_flow(P=P1, fd=fd_tot, D=D_pipe, L=L)
if P2_choke.to_base_units().magnitude > P2_spec.to_base_units().magnitude:
P2 = P2_choke
else:
P2 = P2_spec
m = isothermal_gas(rho=rho, fd=fd_tot, P1=P1, P2=P2, L=L, D=D_pipe)
Q = m/rho
v = Q/A
# update friction factor
Re = Reynolds(D=D_pipe, rho=rho, mu=mu, V=v)
fd = friction_factor(Re=Re, eD=roughness/D_pipe)
# choke pressure found to be 3 bar instead of 2.5 in Crane example
print('The mass flow rate is found to be %s' % (m.to(u.lb/u.hour)))
```

3.20. 7.20 Steam at Sonic Velocity
The mass flow rate is found to be 11626.328806003183 pound / hour

The values given in Crane are 11770 and 11160 lb/hour for the Darcy and the Sonic Velocity and Continuity equations.

3.21 7.21 Gases at Sonic Velocity

Coke oven gas has a specific gravity of 0.42, a header pressure of 125 psig, and is at 140 deg F. It flows through 20 feet of 3” schedule 40 pipe and is discharged to the atmosphere.

Find the flow rate in standard cubic feet per hour.

```python
[1]:
from fluids.units import *
from math import pi
SG = 0.42
P1 = 125*u.psi + 1.0*u.atmosphere
P2 = 1.0*u.atmosphere
roughness = 0.0018*u.inch
L = 20*u.foot
mu = 1.8e-5 # good guess

NPS, Di, Do, t = nearest_pipe(NPS=3, schedule='40')
A = 0.25*pi*Di**2
fd = 0.0175 # initial guess
P_choke = P_isothermal_critical_flow(P=P1, fd=fd, L=L, D=Di)*(1+1e-10)
P_rat_rho = (0.5*(P1 + P_choke)/(1.0*u.atmosphere)).to_base_units()
for i in range(5):
    rho = 1.2*u.kg/u.m**3*SG*P_rat_rho
    m = isothermal_gas(rho, fd, P1=P1, P2=P_choke, L=L, D=Di)
    Q_actual = (m/rho).to(u.ft**3/u.hour)
    Q_std = Q_actual*P_rat_rho # convert to SI
    v = Q_actual/A
    Re = rho*v*Di/mu
    fd = friction_factor(Re=Re, eD=roughness/Di)
    K = exit_normal() + entrance_sharp(method='Crane')

    # Increase fd so it accounts for all the extra losses
    fd += K*Di/L
    P_choke = P_isothermal_critical_flow(P=P1, fd=fd, L=L, D=Di)*(1+1e-10)
P_rat_rho = (0.5*(P1 + P_choke)/(1.0*u.atmosphere)).to_base_units()
print(Q_std)

1176795.8398551396 foot ** 3 / hour
922482.9941880251 foot ** 3 / hour
922210.5721001471 foot ** 3 / hour
922210.2011294398 foot ** 3 / hour
922210.2006241237 foot ** 3 / hour
```

The result given in Crane is 1028000 ft^3/hour, which is 10% higher than this result. The crane result assumes isentropic flow whereas this is for isothermal flow.

The most accurate answer that can be obtained for this case would be quite a bit better than either solution here. A thermodynamic calculation of the direct conditions of choke:
speed of sound of the fluid is the speed of the fluid energy is maintained

However, without the composition of the gas there is no point in trying to obtain a better result.

3.22 7.22 Compressible Fluids at Subsonic Velocity

Given that air is at a pressure of 19.3 psig and a temperature of 100 deg F and is flowing out of a 1/2” schedule 80 pipe into the atmosphere. Find the flow rate of air in standard cubic feet per hour.

```
[1]: from fluids.units import *
from math import pi
dP = 19.3*u.psi
P = dP + 1*u.atm
P2 = 1*u.atm
T = 100*u.degF
L = 10*u.foot
NPS, D_pipe, Do_pipe, t = nearest_pipe(NPS=0.5, schedule=80)
A = 0.25*pi*D_pipe**2
fd = 0.0275 # assumed, initial guess
mu = 1.8e-8*u.Pa*u.s

[2]: # Take nitrogen-oxygen as air, and find the density and ratio
from thermo import PRMIX, Vm_to_rho
zs = [0.79, 0.21]
Tcs = [126.2, 154.58]
Pcs = [3394387.5, 5042945.25]
omegas = [0.04, 0.021]
MWs = [28.0134, 31.9988]
MW = sum(MWs[i]*zs[i] for i in range(2))
eos_std = PRMIX(T=288.15, P=101325.0, zs=zs, Tcs=Tcs, Pcs=Pcs, omegas=omegas)
V_ratio = eos_flowing.V_g/eos_std.V_g
print('Ratio of actual to standard flow: %s $(V\_ratio)$
rho = Vm_to_rho(eos_flowing.V_g, MW)*u.kg/u.m**3
print('Air density: %s $(\text{kg/m}^3)$

Ratio of actual to standard flow: 0.4663198131346627
Air density: 2.618303870512124 kilogram / meter ** 3

[3]: for i in range(5):
    # Problem says to consider 1 exit, and compressible friction
    K = K_from_f(fd=fd, L=L, D=D_pipe)
    # lump the two losses together for the `isothermal_gas` function
    fd_tot = f_from_K(L=L, D=D_pipe, K=K)
    m = isothermal_gas(rho=rho, fd=fd_tot, P1=P, P2=P2, L=L, D=D_pipe)
    Q = m/rho
    v = Q/A
    # update friction factor
    Re = Reynolds(D=D_pipe, rho=rho, mu=mu, V=v)
```

(continues on next page)
The solution given in Crane is 3762 scfh. The solution there uses a simpler formula and does not iterate to converge the friction factor.

3.23 7.23 Flow Through Orifice Meters

A square edged orifice of 2” diameter is installed in a 4” schedule 40 pipe. A mercury manometer is connected between standard taps 1D upstream and 0.5D downstream.

a) Find the theoretical calibration constant for the meter when 60 deg F water flows through the pipe in the fully turbulent region.

b) Find the flow rate of 60 deg F water when the mercury deflection is 4.4”

```python
from fluids.units import *

P1 = 2*u.bar  # assumed
T = 60*u.degF

NPS, D_pipe, Do_pipe, t = nearest_pipe(NPS=4, schedule=40)
mu = 1.1e-3*u.Pa*u.s  # viscosity of water
rho = 62.364*u.lb/u.ft**3  # density of water
Do = 2*u.inch

# b)
dP = (4.4*u.inch_Hg - 4.4*u.inch_H2O_60F)
P2 = P1 - dP
m = differential_pressure_meter_solver(D=D_pipe, rho=rho, mu=mu, k=1e20, D2=Do,
    P1=P1, P2=P2,  # meter_type='ISO 5167 orifice', taps='D and D/2'
    meter_type='ISO 5167 orifice', taps='D and D/2'
    Q = (m/rho).to(u.gal/u.min)
Q

# a)
C, _ = differential_pressure_meter_C_epsilon(D=D_pipe, rho=rho, m=m, mu=mu, k=1e20,
    D2=Do, P1=P1, P2=P2,  # meter_type='ISO 5167 orifice', taps='D and D/2'
    meter_type='ISO 5167 orifice', taps='D and D/2'
    C, flow_coefficient(D_pipe, Do, C)

# 3: (0.6067029339232126 <Unit('dimensionless'>),
    0.6260667537160854 <Unit('dimensionless'>))
```

Crane TP 410 reports a flow coefficient of 0.625 and a flow rate of 106 gal/min, indicating the problem benefited from the iteration little.
3.24 7.24 Laminar Flow

3.24.1 Objective: Rate an orifice plate in laminar flow

Problem statement: calculate the Reynolds number to determine the type of fluid

Given: S.A.E. 10W oil flows through a 3” schedule 40 pipe. It has a measured delta P of 0.4 psi. The orifice plate has a 2.15” diameter bore, and is a standard sharp-edged orifice. Find the flow rate through the orifice in gallons/minute.

```python
from fluids.units import *
from math import pi

NPS, Di, Do, t = nearest_pipe(NPS=3, schedule='40')
A = 0.25*pi*Di*Di
D2 = 2.15*u.inch
mu = 40*u.cP  # given
rho = 53.6*u.lb/u.ft**3

# Assume an absolute pressure of 5 bar.
dP = 0.4*u.psi
P1 = 5*u.bar
P2 = P1-dP
k = 1.3  # assumed
```

Because the flow rate is laminar, outside the range of the ISO formula, we turn to another set of data - a set of CFD results developed for laminar flow by Hollingshead.

```python
# First calculate the orifice with the standard formula
m = differential_pressure_meter Solver(D=Di, rho=rho, mu=mu, k=k, D2=D2, P1=P1, P2=P2, m=None, meter_type='ISO 5167 orifice', taps='corner')
Q = (m/rho).to_base_units()
print('Flow rate is: %.2f gallons/minute' % Q.to(u.gal/u.min))
v = Q/A
Re = rho*v*Di/mu
Re.to_base_units()

Flow rate is: 88.01 gallons/minute
```

```python
# First calculate the orifice with the standard formula
m = differential_pressure_meter Solver(D=Di, rho=rho, mu=mu, k=k, D2=D2, P1=P1, P2=P2, m=None, meter_type='Hollingshead orifice')
Q = (m/rho).to_base_units()
print('Flow rate is: %.2f gallons/minute' % Q.to(u.gal/u.min))
v = Q/A
Re = rho*v*Di/mu
Re.to_base_units()

Flow rate is: 77.16 gallons/minute
```

The answer given in Crane is that a calibration for the meter must be provided. They assume a C of 0.75. The value of C according to Hollingshead is below.
3.25 7.25 Rectangular Duct - Application of Hydraulic Radius to Flow Problems

Given a rectangular concrete overflow aqueduct is 25 feet high and 16.5 feed wide. Its roughness is 0.01 feet. The height of the water in the reservoir is 200 feet, and the length of the aqueduct is 1000 feet.

Find the discharge rate (ft^3/s).

```
[1]: from fluids.units import *
    from math import pi
    rho = 62.364*u.lb/u.ft**3
    mu = 1.1*u.cP

    W = 16.5*u.foot
    Hw = 25*u.foot
    A = W*Hw
    Pw = Hw*2 + W*2

    Rh = A/Pw
    Dh = 4.0*Rh

    eD = .01*u.foot/Dh
    H = 200*u.foot
    L = 1000*u.foot

[2]: fd = 0.017 # assumed initial guess
    Re = 1E5
    for i in range(5):
        K = K_from_f(fd=fd, L=L, D=Dh)
        K += entrance_sharp()
        K += exit_normal()

        v = (2*u.gravity*H/K)**0.5
        Q = A*v
        print('Flow rate = %s %s' %(Q.to(u.ft**3/u.s)))
        Re = Reynolds(D=Dh, rho=rho, mu=mu, V=v)
        fd = friction_factor(Re=Re, eD=eD)
```

The solution given in Crane is 30600 ft^3/s, without iteration.

We can also solve the problem using the manning formula, designed for open flow. Different values of the manning \(n \) coefficient give different results, but a likely value for concrete yields a surprisingly different answer than the hydraulic radius approach.
3.26 7.26 Pipe Partially Filled with Flowing Water

Given a cast iron pipe is 2/3 filled with a steady, uniform flow of water at 60 deg F. The pipe has an inside diameter of 24" and a slope of .75"/foot

Find the flow rate in gallons/minute.

```python
from fluids.units import *
from math import pi
Di = 24*u.inch
depth = 2/3*Di
S = 0.75*u.inch/u.ft
rho = 62.364*u.lb/u.ft**3
mu = 1.1*u.cP
eD = 0.00036 # roughness not given in problem, only relative roughness

tank = TANK(D=Di, L=1e100*u.m, horizontal=True)
A = tank.SA_from_h(depth)/2 # wetted surface area of a paper thin tank - divide by two as there is only one side

Rh = A/P
Dh = 4*Rh
A, P, Rh, Dh
```

```python
(0.20670024467339204 <Unit('meter ** 2')>,
 1.1647220208174018 <Unit('meter')>,
 0.1774674480081778 <Unit('meter')>,
 0.7098697920327112 <Unit('meter')>)
```

```python
# 10 meter length basis assumed
L = 10.0*u.m
dH = L*S
dP = dH*rho*u.gravity
fd = .0155 # initial guess

for i in range(5):
    K = K_from_f(fd=fd, L=L, D=Dh)
    v = (2*dP/(K*rho))**0.5
    Q = A*v
    # update friction factor
    Re = Reynolds(D=Dh, rho=rho, mu=mu, V=v)
```

(continues on next page)
The solution given in Crane is 24500 gpm without iteration.

3.27 7.27 Sizing Control Valves for Liquid Service

Given 250 gpm of condensate from a pressurized condensate tank, is cooled from 225 deg F to 160 deg F in a heat exchanger, then pumped to a 50 psig heater.

The inlet and outlet pipe of the control valve is schedule 40, with no valves or fittings near the control valve. The system is located in a facility near sea level.

A single port globe style valve is to be added.

Find an appropriate size valve for the level control.

The valve options are 2", 2.5", 3", or 4": with Cvs of 41, 73, 114, and 175 respectively.

```python
from fluids.units import *

rho = 60.998*u.lb/u.ft**3
mu = 0.39*u.cP
Psat = 4.75*u.psi
Pc = 3198*u.psi
Q = 250*u.gal/u.min
P1 = 80.6*u.psi
P2 = 70.8*u.psi

NPS, D_pipe, Do_pipe, t = nearest_pipe(NPS=4, schedule=40)

Cvs = [41*u.gal/u.min, 73*u.gal/u.min, 114*u.gal/u.min, 175*u.gal/u.min]
D_valves = [2*u.inch, 2.5*u.inch, 3.0*u.inch, 4*u.inch]

for d, Cv in zip(D_valves, Cvs):
    Kv = size_control_valve_l(rho=rho, Psat=Psat, Pc=Pc, mu=mu, P1=P1, P2=P2, Q=Q, D1=D_pipe, D2=D_pipe, d=d, FL=0.9, Fd=1, allow_choked=True, allow_laminar=True, full_output=False)
    Cv_calc = Kv_to_Cv(Kv)
    if Cv > Cv_calc:
        print('Minimum size is %s' %d)
        break
print('Calculated Cv is %s' %(Cv_calc))

Minimum size is 3.0 inch
Calculated Cv is 80.00778994084568 gallon / minute
```

Crane reports a Cv of 79.94. No iteration is required in this problem, except in the control valve sizing function itself.
3.28 7.28 Checking for Choked Flow Conditions in a Control Valve

Given the data from example 7.27, with a FL of 0.9. Confirm that choke will not occur in the control valve.

```
from fluids.units import *
Psat = 4.75*u.psi
Pc = 3198*u.psi
P1 = 80.6*u.psi
P2 = 70.8*u.psi

P2_choke = control_valve_choke_P_l(Psat=Psat, Pc=Pc, FL=0.9, P1=P1)

ratio = (P2/P2_choke).to_base_units()
assert ratio.magnitude > 1
```

We can calculate the choke pressure directly thanks to the nice ISA equations. With `control_valve_choke_P_l`, we calculate the downstream pressure required for choke flow to form. So long as P2 is larger than the choke pressure, no choke will occur.

Crane gives two solutions, one complicated and not necessary, and one that works on the same equation as `control_valve_choke_P_l`. Crane calculates FLP to use with that equation but only FL is supposed to be used, so they get a choke pressure of 20.8 psi instead of 19 psi here.

3.29 7.29 Orifice Flow Rate Calculation

Given a differential pressure of 17 kPa is measured across taps located 1D upstream/0.5D downstream from the inlet face of a 50 mm ID orifice plate in an 80 mm schedule 80 steel pipe carrying water 15 deg C. Find the flow rate in gallons/minute.

```
from fluids.units import *
from thermo.units import Chemical

P1 = 2*u.bar # The full set of equations requires actual pressures not just the pressure difference, so an initial pressure of 2 bar is assumed.
P2 = P1 - 17*u.kPa
taps = 'D'
meter_type = 'ISO 5167 orifice'
Do = 50*u.mm

NPS, D, _, t_pipe = nearest_pipe(Do=80*u.mm, schedule=80)
```

We can calculate the choke pressure directly thanks to the nice ISA equations. With `control_valve_choke_P_l`, we calculate the downstream pressure required for choke flow to form. So long as P2 is larger than the choke pressure, no choke will occur.

Crane gives two solutions, one complicated and not necessary, and one that works on the same equation as `control_valve_choke_P_l`. Crane calculates FLP to use with that equation but only FL is supposed to be used, so they get a choke pressure of 20.8 psi instead of 19 psi here.
The answer given in TP410M is 478 gallons/minute; however the errata specifies this value is in units of liters/minute instead.

This calculation matches their result well, given they did not include expansivity in their calculations and read a value of C from a graph.

A calculator at flow of fluids, which also does not include expansivity, gives an answer of 476.777 L/min, along with 7.93916 kg/s (http://www.flowoffluids.com/calculators/flow-through-orifices.aspx).

3.30 7.30 Nozzle Sizing Calculations

3.30.1 Objective: Size a long-radius venturi nozzle flow meter

A system is designed with a flow rate of 225 gpm of water at 60 F flowing through 6” schedule 40 pipe. A long-radius nozzle flow has been requested. A measured head loss of 4 feet is the design measurement, with 1D upstream and 1/2D downstream taps.

Find the required diameter of the nozzle.
Nozzle diameter found to be 2.405956560384632 inch.

The solution given in Crane is 2.40 inches after two iterations and has an error of 0.4 gpm, whereas the answer above has almost zero theoretical error.

3.31 7.31 NPRD Calculations

The Non-recoverable pressure drop (NRPD) is the permanent pressure drop associated with the flow through the measurement device. Find the NPRD for example 7.30.

```python
C, epsilon = differential_pressure_meter_C_epsilon(D=Di, D2=Do, m=m, P1=P1, P2=P2, rho=rho, mu=mu, k=k, meter_type='long radius nozzle')
```

```python
dP = differential_pressure_meter_dP(D=Di, D2=Do, P1=P1, P2=P2, C=C, meter_type='long radius nozzle')
dP.to(u.psi)
```

The solution given in Crane is 1.272 psi.

3.32 7.32 NPSH Available Calculation

Given that a pump is located 30 feet above sea level, has a NPSHr of 20’ at a flow rate of 400 gpm, and is fed by a tank of 60 deg F water with a surface pressure of 5 psig and a liquid level 25’ below the suction of the pump.

The head losses in the suction pipeline are 6’.

Find the NPSH available and compare it to the NPSHr. A NPSHr margin ratio is required.

```python
from fluids.units import *
rho = 62.364*u.lb/u.ft**3
P_tank = 5*u.psi + 1*u.atm
Psat = 0.256*u.psi
H_tank = 5*u.foot
H_pipe = 30*u.foot
dH = H_pipe - H_tank
head_loss = 6*u.foot
NPSHa = ((P_tank-Psat)/rho/u.gravity) - dH - head_loss
(NPSHa).to(u.foot)
```

The NPSHa is beneath the NPSHr. The requested pressure can be calculated as follows:

```python
20*u.foot*1.3
```

```python
26.0 foot
```
3.33 7.33 Pump Affinity Rules

Given: For the 6" impeller trim on the curve below, the pump produces 126' of head and 400 gpm while running at 3500 rpm. The brake horsepower is 17.5 hp in that case.

Find the flow rate, head, and power of this operating point if the speed is changed to 1700 rpm.

```
[1]: from fluids.units import *
    head1 = 126*u.foot
    Q1 = 400*u.gal/u.min
    rpm1 = 3500*u.rpm
    power1 = 17.5*u.hp

    rpm2 = 1700*u.rpm

    Q2 = rpm2/rpm1*Q1
    head2 = head1*(rpm2/rpm1)**2
    power2 = power1*(rpm2/rpm1)**3

    Q2, head2, power2

[1]: (194.28571428571428 <Unit('gallon / minute')>,
   29.725714285714286 <Unit('foot')>,
   2.0053061224489794 <Unit('horsepower')>)
```

The values match those given in Crane.

3.34 7.34 Pump Power and Operating Cost

Given a pump provides 428 feet of head, pumps 700 gpm of 60 deg F water. The efficiencies of the pump, motor, and VSD are as follows: 70.7%, 95%, 96%.

Find the brake horsepower, electrical horsepower, and the operating cost (on an 8000 hour/year basis) given a power cost of $0.12/kWhr.

```
[1]: from fluids.units import *
    rho = 62.364*u.lb/u.ft**3
    head = 428*u.foot
    Q = 700*u.gal/u.min
    pump_efficiency = 0.707
    total_efficiency = .707*.95*.96
    dP = head*rho*u.gravity
    # unfortunately pint does not support currency, so we keep it dimensionless
    rate = 0.12/(u.kW*u.hour)

    bhp = Q*dP/pump_efficiency
    print('The brake power is $s' %(bhp.to(u.hp)))
    power = Q*dP/total_efficiency
    print('The power is $s' %(power.to(u.hp)))
    cost = power*rate
    cost = (cost*8000*u.hour).to_base_units()
    print('The cost is $%sdollars/year' %(cost))

    The brake power is 107.05591309130916 horsepower
    The power is 117.38586961766357 horsepower
    The cost is $84033.24278348622 dimensionless dollars/year
```
The value given in Crane is $83970.

3.35 7.35 Hydraulic Resistance of a Converging Tee

A 4” schedule 40 tee with equal leg diameters has 300 gpm of water at 60 deg F flowing into a straight leg, and 100 gpm converging in from the 90 degree branch leg.

Find the loss coefficients for the straight leg and the branch leg, and the head loss across each flow path.

```python
from fluids.units import *
from math import pi

NPS, Di, Do, t = nearest_pipe(NPS=4, schedule='40')

A = 0.25*pi*Di**2
beta = 1  # same diameters
rho = 998*u.kg/u.m**3
Q_tot = 400*u.gal/u.min
Q_main = 300*u.gal/u.min
Q_leg = 100*u.gal/u.min

v_combined = Q_tot/A
print('The combined velocity is %s' %(v_combined.to(u.ft/u.s)))

branch_flow_ratio = Q_leg/Q_tot
v_main = Q_main/A
v_leg = Q_leg/A

K_branch = K_branch_converging_Crane(D_run=Di, D_branch=Di, Q_run=Q_main, Q_branch=Q_leg, angle=90.0*u.degrees)
print('The branch loss coefficient is %s' %(K_branch))

K_run = K_run_converging_Crane(D_run=Di, D_branch=Di, Q_run=Q_main, Q_branch=Q_leg, angle=90.0*u.degrees)
print('The run loss coefficient is %s' %(K_run))

head_loss_branch = 0.5*rho*v_combined**2*K_branch/(1*u.gravity*rho)
print('The branch head loss is %s' %(head_loss_branch.to(u.ft)))

head_loss_run = 0.5*rho*v_combined**2*K_run/(1*u.gravity*rho)
print('The run head loss is %s' %(head_loss_run.to(u.ft)))
```

The combined velocity is 10.081042597997012 foot / second
The branch loss coefficient is -0.05552743198430656 dimensionless
The run loss coefficient is 0.325 dimensionless
The branch head loss is -0.06662833817657396 foot
The run head loss is 0.5132849755824956 foot

The values presented in crane match very nearly exactly; this type of a problem does not require any iteration, unless the density of the fluid is variable.

3.36 7.36 Hydraulic Resistance of a Diverging Wye

Given that 60 deg F water flows through a 6” sched 80 45 degree wye with equal leg diameters, 250 gpm flows through the branch leg and 400 gpm flows through the straight leg.
Find the loss coefficients for the straight leg, and the branch leg, as well as the loss coefficients for each flow path.

```python
from fluids.units import *
from math import pi

NPS, Di, Do, t = nearest_pipe(NPS=6, schedule='80')

A = 0.25*pi*Di**2  # same diameters

rho = 998*u.kg/u.m**3

Q_tot = (250+400)*u.gal/u.min
Q_straight = 400*u.gal/u.min
Q_branch = 250*u.gal/u.min

v_combined = Q_tot/A

branch_flow_ratio = Q_branch/Q_tot

v_main = Q_straight/A
v_leg = Q_branch/A

K_branch = K_branch_diverging_Crane(D_run=Di, D_branch=Di, Q_run=Q_straight, Q_branch=Q_branch, angle=45.0*u.degrees)

K_run = K_run_diverging_Crane(D_run=Di, D_branch=Di, Q_run=Q_straight, Q_branch=Q_branch, angle=45.0*u.degrees)

head_loss_branch = 0.5*rho*v_combined**2*K_branch/(1*u.gravity*rho)

head_loss_run = 0.5*rho*v_combined**2*K_run/(1*u.gravity*rho)
```

The combined velocity is 7.996972275001512 foot / second
The branch loss coefficient is 0.46461592374032235 dimensionless
The run loss coefficient is -0.06827492034592626 dimensionless
The branch head loss is 0.4617528263268458 foot
The run head loss is -0.06785419058213756 foot

The values presented in crane match very nearly exactly; this type of a problem does not require any iteration, unless the density of the fluid is variable.
4.1 Friction

4.1.1 Experimental friction factors

```python
import numpy as np
from fluids.friction import friction_factor, oregon_Res, oregon_fd_smooth
import matplotlib.pyplot as plt

Res = np.logspace(np.log10(oregon_Res[0]), np.log10(oregon_Res[-1]), 500)
fds_calc = [friction_factor(Re) for Re in Res]
plt.loglog(oregon_Res, oregon_fd_smooth, 'x', label='Oregon Data')
plt.loglog(Res, fds_calc, label='Colebrook')
plt.xlabel('Reynolds number')
plt.ylabel('Darcy friction factor')
plt.title("Experimental friction factor data for smooth pipe")
plt.legend()
plt.plot()
```

[1]: []

[2]:
```python
print(oregon_Res)
print(oregon_fd_smooth)
```
```python
[11.21, 20.22, 29.28, 43.19, 57.73, 64.58, 86.05, 113.3, 135.3, 157.5, 179.4, 206.4, 228.0, 270.9, 315.2, 358.9, 402.9, 450.2, 522.5, 583.1, 671.8, 789.8, 891.0, 1013.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0, 1197.0, 1300.0, 1390.0, 1669.0, 1994.0, 2227.0, 2554.0, 2868.0, 2903.0, 2926.0, 2955.0, 2991.0, 2997.0, 3047.0, 3080.0, 3264.0, 3980.0, 4835.0, 5959.0, 8162.0, 105000.0]
[5.537, 3.492, 2.329, 1.523, 1.173, 0.9863, 0.7826, 0.5709, 0.4815, 0.4182, 0.3655, 0.3237, 0.2884, 0.2433, 0.2077, 0.1834, 0.1656, 0.1475, 0.1245, 0.1126, 0.09917, 0.08501, 0.07722, 0.06707, 0.0588, 0.05328, 0.04815, 0.04304, 0.03739, 0.03405, 0.03091, 0.02804, 0.02312, 0.03846, 0.03363, 0.04124, 0.035, 0.03875, 0.04285, 0.0426, 0.03995, 0.03797, 0.0361, 0.03364, 0.03088, 0.02903, 0.0267, 0.02386, 0.02, 0.01805, 0.01686, 0.01594, 0.01511, 0.01462, 0.01365, 0.01313, 0.01244, 0.01198]  
```
4.1.2 Roughness data

```python
from fluids.friction import _roughness

# Material from Perry's handbook; roughness in meters.
_roughness

{'Brass': 1.52e-06,
 'Lead': 1.52e-06,
 'Glass': 1.52e-06,
 'Steel': 1.52e-06,
 'Asphalted cast iron': 0.000122,
 'Galvanized iron': 0.000152,
 'Cast iron': 0.000259,
 'Wood stave': 0.000183,
 'Rough wood stave': 0.000914,
 'Concrete': 0.000305,
 'Rough concrete': 0.00305,
 'Riveted steel': 0.000914,
 'Rough riveted steel': 0.00914}
```


```python
from fluids.friction import HHR_roughness

HHR_roughness

{'Rough channels in rock, Blast-hewed, little jointing': (0.1, 0.14, None),
 'Rough channels in rock, Blast-hewed, substantial jointing': (0.13, 0.5, None),
 'Rough channels in rock, Roughly cut or very uneven surface': (0.5, 1.5, None),
 'Unlined tunnels, Rocks, gneiss, diameter 3-13.5 m': (0.3, 0.7, None),
 'Unlined tunnels, Rocks, granite, diameter 3-9 m': (0.2, 0.7, None),
 'Unlined tunnels, Shale, diameter, diameter 9-12 m': (0.25, 0.65, None),
 'Unlined tunnels, Shale, quartz, quartzile, diameter 7-10 m': (0.2, 0.6, None),
 'Unlined tunnels, Shale, sedimentary, diameter 4-7 m': (None, None, 0.4),
 'Unlined tunnels, Shale, nephrite bearing, diameter 3-8 m': (None, None, 0.2),
 'Wood tubes, Boards, thoroughly dressed': (None, None, 0.00015),
 'Wood tubes, Boards, well dressed': (None, None, 0.0003),
 'Wood tubes, Boards, undressed but fitted': (None, None, 0.0007),
 'Wood tubes, Boards, undressed': (None, None, 0.001),
 'Wood tubes, Staved': (None, None, 0.0006),
 'Plywood tubes, Birch plywood, transverse grain, good quality': (None, None, 0.00012),
 'Plywood tubes, Birch plywood, longitudinal grain, good quality': (3e-05, 5e-05, None),
 'Glass tubes, Glass': (1.5e-06, 1e-05, None),
 'Concrete water conduits, no finish, New and finished with plater; excellent manufacture (joints aligned, prime coated and smoothed)': (5e-05, (continues on next page)
Concrete water conduits, no finish, Used and corroded; with a wavy surface and wooden framework: (0.001, 0.004, None),
Concrete water conduits, no finish, Old, poor fitting and manufacture; with an overgrown surface and deposits of sand and gravel: (0.001, 0.004, None),
Concrete water conduits, no finish, Very old; damaged surface, very overgrown: (0.0005, None, None),
Concrete water conduits, no finish, Water conduit, finished with smoothed plaster: (0.0005, None, None),
Concrete water conduits, no finish, Hand-smoothed cement finish and smoothed joints: (0.00015, 0.00035, None),
Concrete water conduits, no finish, Used, no deposits, moderately smooth, steel or wooden casing, joints prime coated but not smoothed: (0.0003, 0.0006, None),
Concrete water conduits, no finish, Used, prefabricated monoliths, cement plaster (wood floated), rough joints: (0.0005, 0.001, None),
Concrete water conduits, no finish, Conduits for water, sprayed surface of concrete: (0.0005, 0.001, None),
Concrete water conduits, no finish, Smoothed air-placed, either sprayed concrete or concrete on more concrete: (0.006, 0.017, None),
Concrete water conduits, no finish, Brushed air-placed, either sprayed concrete or concrete on more concrete: (None, None, 0.0023),
Concrete water conduits, no finish, Non-smoothed air-placed, either sprayed concrete or concrete or concrete on more concrete: (0.003, 0.006, None),
Reinforced concrete tubes, New: (0.00025, 0.00034, None),
Reinforced concrete tubes, Nonprocessed: (0.0025, None, None),
Asbestos cement tubes, New: (5e-05, 0.0001, None),
Asbestos cement tubes, Average: (0.0006, None, None),
Cement tubes, Smoothed: (0.0003, 0.0008, None),
Cement tubes, Non processed: (0.001, 0.002, None),
Cement tubes, Joints, non smoothed: (0.0019, 0.0064, None),

(continues on next page)
'Cement-mortar plaster channels, Plaster, cement, smoothed joints and protrusions, and a casing': (5e-05, 0.00022, None),
'Cement-mortar plaster channels, Steel trowled': (None, None, 0.0005),
'Other, Plaster over a screen': (0.01, 0.015, None),
'Other, Salt-glazed ceramic': (None, None, 0.0014),
'Other, Slag-concrete': (None, None, 0.0015),
'Other, Slag and alabaster-filling': (0.001, 0.0015, None),
'Seamless tubes made from brass, copper, lead, aluminum, Commercially smooth': (1.5e-06, 1e-05, None),
'Seamless steel tubes, New and unused': (2e-05, 0.0001, None),
'Seamless steel tubes, Cleaned, following years of use': (None, 4e-05, None),
'Seamless steel tubes, Bituminized': (None, 4e-05, None),
'Seamless steel tubes, Heating systems piping; either superheated steam pipes, or just water pipes of systems with deaerators and chemical treatment': (None, None, 0.0001),
'Seamless steel tubes, Following one year as a gas pipeline': (None, None, 0.00012),
'Seamless steel tubes, Following multiple year as a gas pipeline': (4e-05, 0.0002, None),
'Seamless steel tubes, Casings in gas wells, different conditions, several years of use': (6e-05, 0.00022, None),
'Seamless steel tubes, Heating systems, saturated steam ducts or water pipes (with minor water leakage < 0.5%, and balance water deaerated)': (None, None, 0.0002),
'Seamless steel tubes, Water heating system pipelines, any source': (None, None, 0.0002),
'Seamless steel tubes, Oil pipelines, intermediate operating conditions': (None, None, 0.0002),
'Seamless steel tubes, Corroded, moderately': (None, None, 0.0004),
'Seamless steel tubes, Scale, small depositions only': (None, None, 0.0004),
'Seamless steel tubes, Condensate pipes in open systems or periodically operated steam pipelines': (None, None, 0.0005),
'Seamless steel tubes, Compressed air piping': (None, None, 0.0008),
'Seamless steel tubes, Following multiple years of operation, generally corroded or with small amounts of scale': (0.00015, 0.001, None),
'Seamless steel tubes, Water heating piping without deaeration but with chemical treatment of water; leakage up to 3%; or condensate piping operated periodically': (None, None, 0.001),
'Seamless steel tubes, Used water piping': (0.0012, 0.0015, None),
4.1. Friction
0.004),
'Riveted steel tubes, Extremely poor surface; overlapping and uneven joints': (0.005, None, None),
'Roofing steel sheets, Oiled': (0.00015, 0.0011, None),
'Roofing steel sheets, Not Oiled': (2e-05, 4e-05, None),
'Galvanized steel tubes, Bright galvanization; new': (7e-05, 0.0001, None),
'Galvanized steel tubes, Ordinary galvanization': (0.0001, 0.00015, None),
'Galvanized sheet steel, New': (None, None, 0.00015),
'Galvanized sheet steel, Used previously for water': (None, None, 0.00018),
'Steel tubes, Glass enamel coat': (1e-06, 1e-05, None),
'Steel tubes, New': (0.00025, 0.001, None),
'Cast-iron tubes, New, bituminized': (0.0001, 0.00015, None),
'Cast-iron tubes, Coated with asphalt': (0.00012, 0.0003, None),
'Cast-iron tubes, Used water pipelines': (None, None, 0.0014),
'Cast-iron tubes, Deposits visible': (0.001, 0.0015, None),
'Cast-iron tubes, Deposits visible; new': (0.0002, 0.0004, None),
'Cast-iron tubes, Cleaned after extensive use': (0.0003, 0.0015, None),
'Cast-iron tubes, Severely corroded': (None, 0.003, None),
'Steel water conduits in generating stations, New, clean, seamless (without joints), well fitted': (1.5e-05, 4e-05, None),
'Steel water conduits in generating stations, New, clean, welded lengthwise and well fitted': (1.2e-05, 3e-05, None),
'Steel water conduits in generating stations, New, clean, welded lengthwise and well fitted, with transverse welded joints': (8e-05, 0.00017, None),
'Steel water conduits in generating stations, New, clean, coated, bituminized when manufactured': (1.4e-05, 1.8e-05, None),
'Steel water conduits in generating stations, New, clean, coated, bituminized when manufactured, with transverse welded joints': (0.0002, 0.0006, None),
'Steel water conduits in generating stations, New, clean, coated, galvanized': (0.0001, 0.0002, None),
'Steel water conduits in generating stations, New, clean, coated, roughly galvanized': (0.0004, 0.0007, None),
'Steel water conduits in generating stations, New, clean, coated, bituminized, curved': (0.0001, 0.0014, None),
'Steel water conduits in generating stations, Used, clean, slight corrosion': (0.0001, 0.0003, None),
'Steel water conduits in generating stations, Used, clean, moderate corrosion or slight deposits': (0.0003,
4.2 Sieve Sizes for Particle Size Distributions

[1]: from fluids.particle_size_distribution import ASTM_E11_sieves, ISO_3310_1_sieves
   import Sieve
   import pandas as pd
   pd.options.display.max_rows = 100000

4.2.1 ASTM E11 - 17 - Standard Specification for Woven Wire Test Sieve Cloth and Test Sieves.

[2]: # All units in SI, meters.
    dat = {}
    for name in Sieve.__slots__:
        vals = []
        for s in ASTM_E11_sieves.values():
            vals.append(getattr(s, name))
dat[name] = vals
pd.DataFrame(dat)

<table>
<thead>
<tr>
<th>designation</th>
<th>old_designation</th>
<th>opening</th>
<th>opening_inch</th>
<th>Y_variation_avg</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.02</td>
<td>No. 635</td>
<td>0.00020</td>
<td>8.000000e-07</td>
<td>0.000002</td>
</tr>
<tr>
<td>0.025</td>
<td>No. 500</td>
<td>0.00025</td>
<td>1.000000e-06</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.032</td>
<td>No. 450</td>
<td>0.00032</td>
<td>1.200000e-06</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.038</td>
<td>No. 400</td>
<td>0.00038</td>
<td>1.500000e-06</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.045</td>
<td>No. 325</td>
<td>0.00045</td>
<td>1.700000e-06</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.053</td>
<td>No. 270</td>
<td>0.00053</td>
<td>2.100000e-06</td>
<td>0.000003</td>
</tr>
<tr>
<td>0.063</td>
<td>No. 230</td>
<td>0.00063</td>
<td>2.500000e-06</td>
<td>0.000004</td>
</tr>
<tr>
<td>0.075</td>
<td>No. 200</td>
<td>0.00075</td>
<td>2.900000e-06</td>
<td>0.000004</td>
</tr>
<tr>
<td>0.09</td>
<td>No. 170</td>
<td>0.00090</td>
<td>3.500000e-06</td>
<td>0.000005</td>
</tr>
<tr>
<td>0.106</td>
<td>No. 140</td>
<td>0.00106</td>
<td>4.100000e-06</td>
<td>0.000005</td>
</tr>
<tr>
<td>0.125</td>
<td>No. 120</td>
<td>0.00125</td>
<td>4.900000e-06</td>
<td>0.000006</td>
</tr>
<tr>
<td>0.15</td>
<td>No. 100</td>
<td>0.00150</td>
<td>5.900000e-06</td>
<td>0.000007</td>
</tr>
<tr>
<td>0.18</td>
<td>No. 80</td>
<td>0.00180</td>
<td>7.000000e-06</td>
<td>0.000008</td>
</tr>
<tr>
<td>0.212</td>
<td>No. 70</td>
<td>0.00212</td>
<td>8.300000e-06</td>
<td>0.000009</td>
</tr>
<tr>
<td>0.25</td>
<td>No. 60</td>
<td>0.00250</td>
<td>9.800000e-06</td>
<td>0.000010</td>
</tr>
<tr>
<td>0.3</td>
<td>No. 50</td>
<td>0.00300</td>
<td>1.170000e-05</td>
<td>0.000012</td>
</tr>
<tr>
<td>0.355</td>
<td>No. 45</td>
<td>0.00355</td>
<td>1.390000e-05</td>
<td>0.000013</td>
</tr>
<tr>
<td>0.425</td>
<td>No. 40</td>
<td>0.00425</td>
<td>1.650000e-05</td>
<td>0.000016</td>
</tr>
<tr>
<td>0.5</td>
<td>No. 35</td>
<td>0.00500</td>
<td>1.970000e-05</td>
<td>0.000018</td>
</tr>
<tr>
<td>0.6</td>
<td>No. 30</td>
<td>0.00600</td>
<td>2.340000e-05</td>
<td>0.000021</td>
</tr>
<tr>
<td>0.71</td>
<td>No. 25</td>
<td>0.00710</td>
<td>2.780000e-05</td>
<td>0.000025</td>
</tr>
<tr>
<td>0.85</td>
<td>No. 20</td>
<td>0.00850</td>
<td>3.310000e-05</td>
<td>0.000029</td>
</tr>
<tr>
<td>1</td>
<td>No. 18</td>
<td>0.01000</td>
<td>3.940000e-05</td>
<td>0.000034</td>
</tr>
<tr>
<td>1.18</td>
<td>No. 16</td>
<td>0.01180</td>
<td>4.690000e-05</td>
<td>0.000040</td>
</tr>
<tr>
<td>1.4</td>
<td>No. 14</td>
<td>0.01400</td>
<td>5.550000e-05</td>
<td>0.000046</td>
</tr>
<tr>
<td>1.7</td>
<td>No. 12</td>
<td>0.01700</td>
<td>6.610000e-05</td>
<td>0.000056</td>
</tr>
<tr>
<td>10</td>
<td>4 in.</td>
<td>0.10000</td>
<td>4.000000e-03</td>
<td>0.000294</td>
</tr>
<tr>
<td>106</td>
<td>4.24 in.</td>
<td>0.10600</td>
<td>4.240000e-03</td>
<td>0.003120</td>
</tr>
<tr>
<td>11.2</td>
<td>7/16 in.</td>
<td>0.01120</td>
<td>4.380000e-04</td>
<td>0.000346</td>
</tr>
<tr>
<td>12.5</td>
<td>1/2 in.</td>
<td>0.01250</td>
<td>5.000000e-04</td>
<td>0.000385</td>
</tr>
<tr>
<td>12.5</td>
<td>5 in.</td>
<td>0.12500</td>
<td>5.000000e-03</td>
<td>0.003660</td>
</tr>
<tr>
<td>13.2</td>
<td>0.530 in.</td>
<td>0.01320</td>
<td>5.300000e-04</td>
<td>0.000406</td>
</tr>
<tr>
<td>16</td>
<td>5/8 in.</td>
<td>0.01600</td>
<td>6.250000e-04</td>
<td>0.000490</td>
</tr>
<tr>
<td>19</td>
<td>3/4 in.</td>
<td>0.01900</td>
<td>7.500000e-04</td>
<td>0.000579</td>
</tr>
<tr>
<td>2</td>
<td>No. 10</td>
<td>0.02000</td>
<td>7.870000e-05</td>
<td>0.000665</td>
</tr>
<tr>
<td>2.36</td>
<td>No. 8</td>
<td>0.02360</td>
<td>9.370000e-05</td>
<td>0.000760</td>
</tr>
<tr>
<td>2.8</td>
<td>No. 7</td>
<td>0.02800</td>
<td>1.100000e-04</td>
<td>0.000900</td>
</tr>
<tr>
<td>22.4</td>
<td>7/8 in.</td>
<td>0.02440</td>
<td>8.750000e-04</td>
<td>0.000681</td>
</tr>
<tr>
<td>25</td>
<td>1.00 in.</td>
<td>0.02500</td>
<td>1.000000e-03</td>
<td>0.000758</td>
</tr>
<tr>
<td>26.5</td>
<td>1.06 in.</td>
<td>0.02650</td>
<td>1.060000e-03</td>
<td>0.000802</td>
</tr>
<tr>
<td>3.35</td>
<td>No. 6</td>
<td>0.03350</td>
<td>1.320000e-04</td>
<td>0.000107</td>
</tr>
<tr>
<td>31.5</td>
<td>1 1/4 in.</td>
<td>0.03150</td>
<td>1.250000e-03</td>
<td>0.000950</td>
</tr>
<tr>
<td>37.5</td>
<td>1 1/2 in.</td>
<td>0.03750</td>
<td>1.500000e-03</td>
<td>0.001130</td>
</tr>
<tr>
<td>4</td>
<td>No. 5</td>
<td>0.04000</td>
<td>1.570000e-04</td>
<td>0.000127</td>
</tr>
<tr>
<td>4.75</td>
<td>No. 4</td>
<td>0.04750</td>
<td>1.870000e-04</td>
<td>0.000150</td>
</tr>
<tr>
<td>45</td>
<td>1 3/4 in.</td>
<td>0.04500</td>
<td>1.750000e-03</td>
<td>0.001350</td>
</tr>
<tr>
<td>5.6</td>
<td>No. 3 1/2</td>
<td>0.05600</td>
<td>2.230000e-04</td>
<td>0.000176</td>
</tr>
<tr>
<td>50</td>
<td>2 in.</td>
<td>0.05000</td>
<td>2.000000e-03</td>
<td>0.001490</td>
</tr>
<tr>
<td>53</td>
<td>2.12 in.</td>
<td>0.05300</td>
<td>2.120000e-03</td>
<td>0.001580</td>
</tr>
<tr>
<td>6.3</td>
<td>1/4 in.</td>
<td>0.06300</td>
<td>2.500000e-04</td>
<td>0.000197</td>
</tr>
<tr>
<td>6.7</td>
<td>0.265 in.</td>
<td>0.06700</td>
<td>2.650000e-04</td>
<td>0.000210</td>
</tr>
<tr>
<td>63</td>
<td>2 1/2 in.</td>
<td>0.06300</td>
<td>2.500000e-03</td>
<td>0.001870</td>
</tr>
<tr>
<td>75</td>
<td>3 in.</td>
<td>0.07500</td>
<td>3.000000e-03</td>
<td>0.002220</td>
</tr>
<tr>
<td>53</td>
<td>8</td>
<td>5/16 in.</td>
<td>0.008000</td>
<td>3.120000e-04</td>
</tr>
<tr>
<td>54</td>
<td>9.5</td>
<td>3/8 in.</td>
<td>0.009500</td>
<td>3.750000e-04</td>
</tr>
<tr>
<td>55</td>
<td>90</td>
<td>3 1/2 in.</td>
<td>0.090000</td>
<td>3.500000e-03</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>X_variation_max</th>
<th>max_opening</th>
<th>calibration_samples</th>
<th>compliance_sd</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000015</td>
<td>0.035</td>
<td>300.0</td>
</tr>
<tr>
<td>1</td>
<td>0.000016</td>
<td>0.041</td>
<td>300.0</td>
</tr>
<tr>
<td>2</td>
<td>0.000018</td>
<td>0.050</td>
<td>300.0</td>
</tr>
<tr>
<td>3</td>
<td>0.000020</td>
<td>0.058</td>
<td>300.0</td>
</tr>
<tr>
<td>4</td>
<td>0.000022</td>
<td>0.067</td>
<td>250.0</td>
</tr>
<tr>
<td>5</td>
<td>0.000024</td>
<td>0.077</td>
<td>250.0</td>
</tr>
<tr>
<td>6</td>
<td>0.000026</td>
<td>0.089</td>
<td>250.0</td>
</tr>
<tr>
<td>7</td>
<td>0.000029</td>
<td>0.104</td>
<td>250.0</td>
</tr>
<tr>
<td>8</td>
<td>0.000032</td>
<td>0.122</td>
<td>200.0</td>
</tr>
<tr>
<td>9</td>
<td>0.000035</td>
<td>0.141</td>
<td>200.0</td>
</tr>
<tr>
<td>10</td>
<td>0.000038</td>
<td>0.163</td>
<td>200.0</td>
</tr>
<tr>
<td>11</td>
<td>0.000043</td>
<td>0.193</td>
<td>200.0</td>
</tr>
<tr>
<td>12</td>
<td>0.000047</td>
<td>0.227</td>
<td>200.0</td>
</tr>
<tr>
<td>13</td>
<td>0.000052</td>
<td>0.264</td>
<td>160.0</td>
</tr>
<tr>
<td>14</td>
<td>0.000058</td>
<td>0.308</td>
<td>160.0</td>
</tr>
<tr>
<td>15</td>
<td>0.000065</td>
<td>0.365</td>
<td>160.0</td>
</tr>
<tr>
<td>16</td>
<td>0.000072</td>
<td>0.427</td>
<td>160.0</td>
</tr>
<tr>
<td>17</td>
<td>0.000081</td>
<td>0.506</td>
<td>120.0</td>
</tr>
<tr>
<td>18</td>
<td>0.000089</td>
<td>0.589</td>
<td>120.0</td>
</tr>
<tr>
<td>19</td>
<td>0.000101</td>
<td>0.701</td>
<td>100.0</td>
</tr>
<tr>
<td>20</td>
<td>0.000112</td>
<td>0.822</td>
<td>100.0</td>
</tr>
<tr>
<td>21</td>
<td>0.000127</td>
<td>0.977</td>
<td>80.0</td>
</tr>
<tr>
<td>22</td>
<td>0.000140</td>
<td>1.140</td>
<td>80.0</td>
</tr>
<tr>
<td>23</td>
<td>0.000160</td>
<td>1.340</td>
<td>80.0</td>
</tr>
<tr>
<td>24</td>
<td>0.000180</td>
<td>1.580</td>
<td>80.0</td>
</tr>
<tr>
<td>25</td>
<td>0.000200</td>
<td>1.900</td>
<td>50.0</td>
</tr>
<tr>
<td>26</td>
<td>0.003820</td>
<td>103.820</td>
<td>NaN</td>
</tr>
<tr>
<td>27</td>
<td>0.003990</td>
<td>109.990</td>
<td>NaN</td>
</tr>
<tr>
<td>28</td>
<td>0.000770</td>
<td>11.970</td>
<td>30.0</td>
</tr>
<tr>
<td>29</td>
<td>0.000830</td>
<td>13.330</td>
<td>30.0</td>
</tr>
<tr>
<td>30</td>
<td>0.004510</td>
<td>129.510</td>
<td>NaN</td>
</tr>
<tr>
<td>31</td>
<td>0.000860</td>
<td>14.060</td>
<td>30.0</td>
</tr>
<tr>
<td>32</td>
<td>0.000990</td>
<td>16.990</td>
<td>30.0</td>
</tr>
<tr>
<td>33</td>
<td>0.001130</td>
<td>20.130</td>
<td>30.0</td>
</tr>
<tr>
<td>34</td>
<td>0.000230</td>
<td>2.230</td>
<td>50.0</td>
</tr>
<tr>
<td>35</td>
<td>0.000250</td>
<td>2.610</td>
<td>40.0</td>
</tr>
<tr>
<td>36</td>
<td>0.000290</td>
<td>3.090</td>
<td>40.0</td>
</tr>
<tr>
<td>37</td>
<td>0.001270</td>
<td>23.670</td>
<td>NaN</td>
</tr>
<tr>
<td>38</td>
<td>0.001380</td>
<td>26.380</td>
<td>NaN</td>
</tr>
<tr>
<td>39</td>
<td>0.001440</td>
<td>27.940</td>
<td>NaN</td>
</tr>
<tr>
<td>40</td>
<td>0.000320</td>
<td>3.670</td>
<td>40.0</td>
</tr>
<tr>
<td>41</td>
<td>0.001630</td>
<td>33.130</td>
<td>NaN</td>
</tr>
<tr>
<td>42</td>
<td>0.001850</td>
<td>39.350</td>
<td>NaN</td>
</tr>
<tr>
<td>43</td>
<td>0.000370</td>
<td>4.370</td>
<td>30.0</td>
</tr>
<tr>
<td>44</td>
<td>0.000410</td>
<td>5.160</td>
<td>30.0</td>
</tr>
<tr>
<td>45</td>
<td>0.002120</td>
<td>47.120</td>
<td>NaN</td>
</tr>
<tr>
<td>46</td>
<td>0.000470</td>
<td>6.070</td>
<td>30.0</td>
</tr>
<tr>
<td>47</td>
<td>0.002290</td>
<td>52.290</td>
<td>NaN</td>
</tr>
<tr>
<td>48</td>
<td>0.002390</td>
<td>55.390</td>
<td>NaN</td>
</tr>
<tr>
<td>49</td>
<td>0.000510</td>
<td>6.810</td>
<td>30.0</td>
</tr>
<tr>
<td>50</td>
<td>0.000530</td>
<td>7.230</td>
<td>30.0</td>
</tr>
<tr>
<td>51</td>
<td>0.002710</td>
<td>65.710</td>
<td>NaN</td>
</tr>
</tbody>
</table>

(continues on next page)

4.2. Sieve Sizes for Particle Size Distributions
<table>
<thead>
<tr>
<th>inspection_samples</th>
<th>inspection_sd</th>
<th>calibration_sd</th>
<th>d_wire</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>100.0</td>
<td>4.510</td>
<td>4.750</td>
</tr>
<tr>
<td>1</td>
<td>100.0</td>
<td>4.820</td>
<td>5.060</td>
</tr>
<tr>
<td>2</td>
<td>100.0</td>
<td>5.420</td>
<td>5.710</td>
</tr>
<tr>
<td>3</td>
<td>100.0</td>
<td>5.990</td>
<td>6.310</td>
</tr>
<tr>
<td>4</td>
<td>100.0</td>
<td>6.560</td>
<td>6.840</td>
</tr>
<tr>
<td>5</td>
<td>100.0</td>
<td>7.130</td>
<td>7.440</td>
</tr>
<tr>
<td>6</td>
<td>100.0</td>
<td>7.760</td>
<td>8.090</td>
</tr>
<tr>
<td>7</td>
<td>100.0</td>
<td>8.640</td>
<td>9.020</td>
</tr>
<tr>
<td>8</td>
<td>100.0</td>
<td>9.530</td>
<td>9.800</td>
</tr>
<tr>
<td>9</td>
<td>100.0</td>
<td>10.470</td>
<td>10.770</td>
</tr>
<tr>
<td>10</td>
<td>100.0</td>
<td>11.410</td>
<td>11.740</td>
</tr>
<tr>
<td>11</td>
<td>100.0</td>
<td>12.930</td>
<td>13.300</td>
</tr>
<tr>
<td>12</td>
<td>100.0</td>
<td>14.240</td>
<td>14.650</td>
</tr>
<tr>
<td>13</td>
<td>80.0</td>
<td>15.590</td>
<td>16.080</td>
</tr>
<tr>
<td>14</td>
<td>80.0</td>
<td>17.440</td>
<td>17.990</td>
</tr>
<tr>
<td>15</td>
<td>80.0</td>
<td>19.660</td>
<td>20.290</td>
</tr>
<tr>
<td>16</td>
<td>80.0</td>
<td>21.950</td>
<td>22.640</td>
</tr>
<tr>
<td>17</td>
<td>60.0</td>
<td>24.200</td>
<td>25.080</td>
</tr>
<tr>
<td>18</td>
<td>60.0</td>
<td>26.850</td>
<td>27.820</td>
</tr>
<tr>
<td>19</td>
<td>50.0</td>
<td>30.140</td>
<td>31.320</td>
</tr>
<tr>
<td>20</td>
<td>50.0</td>
<td>33.820</td>
<td>35.140</td>
</tr>
<tr>
<td>21</td>
<td>40.0</td>
<td>37.730</td>
<td>39.360</td>
</tr>
<tr>
<td>22</td>
<td>40.0</td>
<td>0.042</td>
<td>0.044</td>
</tr>
<tr>
<td>23</td>
<td>40.0</td>
<td>0.049</td>
<td>0.051</td>
</tr>
<tr>
<td>24</td>
<td>40.0</td>
<td>0.055</td>
<td>0.057</td>
</tr>
<tr>
<td>25</td>
<td>25.0</td>
<td>0.059</td>
<td>0.062</td>
</tr>
<tr>
<td>26</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>27</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>28</td>
<td>15.0</td>
<td>0.256</td>
<td>0.274</td>
</tr>
<tr>
<td>29</td>
<td>15.0</td>
<td>0.283</td>
<td>0.302</td>
</tr>
<tr>
<td>30</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>31</td>
<td>15.0</td>
<td>0.296</td>
<td>0.316</td>
</tr>
<tr>
<td>32</td>
<td>15.0</td>
<td>0.354</td>
<td>0.378</td>
</tr>
<tr>
<td>33</td>
<td>15.0</td>
<td>0.418</td>
<td>0.446</td>
</tr>
<tr>
<td>34</td>
<td>25.0</td>
<td>0.068</td>
<td>0.072</td>
</tr>
<tr>
<td>35</td>
<td>20.0</td>
<td>0.073</td>
<td>0.077</td>
</tr>
<tr>
<td>36</td>
<td>20.0</td>
<td>0.085</td>
<td>0.090</td>
</tr>
<tr>
<td>37</td>
<td>15.0</td>
<td>0.493</td>
<td>NaN</td>
</tr>
<tr>
<td>38</td>
<td>15.0</td>
<td>0.553</td>
<td>NaN</td>
</tr>
<tr>
<td>39</td>
<td>15.0</td>
<td>0.584</td>
<td>NaN</td>
</tr>
<tr>
<td>40</td>
<td>20.0</td>
<td>0.097</td>
<td>0.103</td>
</tr>
<tr>
<td>41</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>42</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>43</td>
<td>15.0</td>
<td>0.108</td>
<td>0.115</td>
</tr>
<tr>
<td>44</td>
<td>15.0</td>
<td>0.123</td>
<td>0.131</td>
</tr>
<tr>
<td>45</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>46</td>
<td>15.0</td>
<td>0.142</td>
<td>0.151</td>
</tr>
<tr>
<td>47</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>48</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
</tr>
<tr>
<td>49</td>
<td>15.0</td>
<td>0.157</td>
<td>0.167</td>
</tr>
<tr>
<td>50</td>
<td>15.0</td>
<td>0.164</td>
<td>0.175</td>
</tr>
</tbody>
</table>

(continues on next page)
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>51</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>5.600000e-03</td>
<td></td>
</tr>
<tr>
<td>52</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>6.300000e-03</td>
<td></td>
</tr>
<tr>
<td>53</td>
<td>15.0</td>
<td>0.191</td>
<td>0.204</td>
<td>2.000000e-03</td>
<td></td>
</tr>
<tr>
<td>54</td>
<td>15.0</td>
<td>0.222</td>
<td>0.237</td>
<td>2.240000e-03</td>
<td></td>
</tr>
<tr>
<td>55</td>
<td>NaN</td>
<td>NaN</td>
<td>NaN</td>
<td>6.300000e-03</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d_wire_min</th>
<th>d_wire_max</th>
<th>compliance_samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>1</td>
<td>2.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>2</td>
<td>2.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>3</td>
<td>2.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>4</td>
<td>3.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>5</td>
<td>3.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>6</td>
<td>4.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>7</td>
<td>4.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>8</td>
<td>5.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>9</td>
<td>6.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>10</td>
<td>8.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>11</td>
<td>9.000000e-08</td>
<td>1000.0</td>
</tr>
<tr>
<td>12</td>
<td>1.100000e-07</td>
<td>1000.0</td>
</tr>
<tr>
<td>13</td>
<td>1.200000e-07</td>
<td>800.0</td>
</tr>
<tr>
<td>14</td>
<td>1.300000e-07</td>
<td>800.0</td>
</tr>
<tr>
<td>15</td>
<td>1.700000e-07</td>
<td>800.0</td>
</tr>
<tr>
<td>16</td>
<td>1.900000e-07</td>
<td>800.0</td>
</tr>
<tr>
<td>17</td>
<td>2.400000e-07</td>
<td>600.0</td>
</tr>
<tr>
<td>18</td>
<td>2.700000e-07</td>
<td>600.0</td>
</tr>
<tr>
<td>19</td>
<td>3.400000e-07</td>
<td>500.0</td>
</tr>
<tr>
<td>20</td>
<td>3.800000e-07</td>
<td>500.0</td>
</tr>
<tr>
<td>21</td>
<td>4.300000e-07</td>
<td>400.0</td>
</tr>
<tr>
<td>22</td>
<td>4.800000e-04</td>
<td>400.0</td>
</tr>
<tr>
<td>23</td>
<td>5.400000e-04</td>
<td>400.0</td>
</tr>
<tr>
<td>24</td>
<td>6.000000e-04</td>
<td>400.0</td>
</tr>
<tr>
<td>25</td>
<td>6.800000e-04</td>
<td>250.0</td>
</tr>
<tr>
<td>26</td>
<td>5.400000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>27</td>
<td>5.400000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>28</td>
<td>2.100000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>29</td>
<td>2.100000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>30</td>
<td>6.800000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>31</td>
<td>2.400000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>32</td>
<td>2.700000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>33</td>
<td>2.700000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>34</td>
<td>7.700000e-04</td>
<td>250.0</td>
</tr>
<tr>
<td>35</td>
<td>8.500000e-04</td>
<td>200.0</td>
</tr>
<tr>
<td>36</td>
<td>9.500000e-04</td>
<td>200.0</td>
</tr>
<tr>
<td>37</td>
<td>3.000000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>38</td>
<td>3.000000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>39</td>
<td>3.000000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>40</td>
<td>1.060000e-03</td>
<td>200.0</td>
</tr>
<tr>
<td>41</td>
<td>3.400000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>42</td>
<td>3.800000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>43</td>
<td>1.200000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>44</td>
<td>1.300000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>45</td>
<td>3.800000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>46</td>
<td>1.300000e-03</td>
<td>150.0</td>
</tr>
<tr>
<td>47</td>
<td>4.300000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>48</td>
<td>4.300000e-03</td>
<td>20.0</td>
</tr>
<tr>
<td>49</td>
<td>1.500000e-03</td>
<td>150.0</td>
</tr>
</tbody>
</table>

(continues on next page)

```python
All units in SI, meters.
dat = {}
for name in Sieve.__slots__:
 vals = []
 for s in ISO_3310_1_sieves.values():
 vals.append(getattr(s, name))
 dat[name] = vals
pd.DataFrame(dat).dropna(how='all', axis=1)
```
<table>
<thead>
<tr>
<th>Fluids Documentation, Release 0.1.86</th>
</tr>
</thead>
<tbody>
<tr>
<td>(continued from previous page)</td>
</tr>
<tr>
<td>35 0.56 0.000560 0.000018 0.000087 0.000032</td>
</tr>
<tr>
<td>36 0.6 0.000600 0.000019 0.000093 0.000034</td>
</tr>
<tr>
<td>37 0.63 0.000630 0.000022 0.000091 0.000038</td>
</tr>
<tr>
<td>38 0.71 0.000710 0.000025 0.000109 0.000042</td>
</tr>
<tr>
<td>39 0.8 0.000800 0.000026 0.000101 0.000044</td>
</tr>
<tr>
<td>40 0.85 0.000850 0.000028 0.000114 0.000044</td>
</tr>
<tr>
<td>41 0.9 0.000900 0.000030 0.000118 0.000046</td>
</tr>
<tr>
<td>42 1 0.001000 0.000030 0.000130 0.000049</td>
</tr>
<tr>
<td>43 1.12 0.001120 0.000030 0.000140 0.000053</td>
</tr>
<tr>
<td>44 1.18 0.001180 0.000030 0.000140 0.000056</td>
</tr>
<tr>
<td>45 1.25 0.001250 0.000040 0.000150 0.000058</td>
</tr>
<tr>
<td>46 1.4 0.001400 0.000040 0.000160 0.000063</td>
</tr>
<tr>
<td>47 1.6 0.001600 0.000050 0.000170 0.000070</td>
</tr>
<tr>
<td>48 1.7 0.001700 0.000050 0.000180 0.000073</td>
</tr>
<tr>
<td>49 1.8 0.001800 0.000050 0.000190 0.000076</td>
</tr>
<tr>
<td>50 10 0.010000 0.000280 0.000640 0.000307</td>
</tr>
<tr>
<td>51 100 0.100000 0.002650 0.003440 NaN</td>
</tr>
<tr>
<td>52 106 0.106000 0.002800 0.003590 NaN</td>
</tr>
<tr>
<td>53 11.2 0.011200 0.000310 0.000690 0.000339</td>
</tr>
<tr>
<td>54 112 0.112000 0.002960 0.003740 NaN</td>
</tr>
<tr>
<td>55 12.5 0.012500 0.000350 0.000750 0.000374</td>
</tr>
<tr>
<td>56 125 0.125000 0.003300 0.004060 NaN</td>
</tr>
<tr>
<td>57 13.2 0.013200 0.000370 0.000780 0.000392</td>
</tr>
<tr>
<td>58 14 0.014000 0.000390 0.000810 0.000413</td>
</tr>
<tr>
<td>59 16 0.016000 0.000440 0.000890 0.000467</td>
</tr>
<tr>
<td>60 18 0.018000 0.000490 0.000970 0.000520</td>
</tr>
<tr>
<td>61 19 0.019000 0.000520 0.001010 0.000548</td>
</tr>
<tr>
<td>62 2 0.002000 0.000060 0.000200 0.000083</td>
</tr>
<tr>
<td>63 2.24 0.002240 0.000070 0.000220 0.000090</td>
</tr>
<tr>
<td>64 2.36 0.002360 0.000070 0.000230 0.000094</td>
</tr>
<tr>
<td>65 2.5 0.002500 0.000070 0.000240 0.000098</td>
</tr>
<tr>
<td>66 2.8 0.002800 0.000080 0.000260 0.000108</td>
</tr>
<tr>
<td>67 20 0.020000 0.000550 0.001050 0.000575</td>
</tr>
<tr>
<td>68 22.4 0.022400 0.000610 0.001140 0.000641</td>
</tr>
<tr>
<td>69 25 0.025000 0.000680 0.001240 0.000713</td>
</tr>
<tr>
<td>70 26.5 0.026500 0.000720 0.001290 0.000757</td>
</tr>
<tr>
<td>71 28 0.028000 0.000760 0.001350 0.000801</td>
</tr>
<tr>
<td>72 3.15 0.003150 0.000090 0.000280 0.000118</td>
</tr>
<tr>
<td>73 3.35 0.003350 0.000100 0.000290 0.000124</td>
</tr>
<tr>
<td>74 3.55 0.003550 0.000100 0.000300 0.000130</td>
</tr>
<tr>
<td>75 31.5 0.031500 0.000850 0.001470 0.000905</td>
</tr>
<tr>
<td>76 35.5 0.035500 0.000960 0.001600 0.001000</td>
</tr>
<tr>
<td>77 37.5 0.037500 0.001010 0.001670 0.001000</td>
</tr>
<tr>
<td>78 4 0.004000 0.000110 0.000330 0.000143</td>
</tr>
<tr>
<td>79 4.5 0.004500 0.000130 0.000360 0.000157</td>
</tr>
<tr>
<td>80 4.75 0.004750 0.000140 0.000370 0.000164</td>
</tr>
<tr>
<td>81 40 0.040000 0.000180 0.000175 0.000100</td>
</tr>
<tr>
<td>82 45 0.045000 0.001210 0.001910 0.001000</td>
</tr>
<tr>
<td>83 5 0.005000 0.000140 0.000390 0.000171</td>
</tr>
<tr>
<td>84 5.6 0.005600 0.000160 0.000420 0.000188</td>
</tr>
<tr>
<td>85 50 0.050000 0.001340 0.002060 NaN</td>
</tr>
<tr>
<td>86 53 0.053000 0.001420 0.002150 NaN</td>
</tr>
<tr>
<td>87 56 0.056000 0.001500 0.002240 NaN</td>
</tr>
<tr>
<td>88 6.3 0.006300 0.000180 0.000460 0.000207</td>
</tr>
<tr>
<td>89 6.7 0.006700 0.000190 0.000480 0.000218</td>
</tr>
<tr>
<td>90 63 0.063000 0.001690 0.002440 NaN</td>
</tr>
<tr>
<td>91 7.1 0.007100 0.000200 0.000500 0.000229</td>
</tr>
</tbody>
</table>

(continues on next page)

4.2. Sieve Sizes for Particle Size Distributions

507
<table>
<thead>
<tr>
<th>92</th>
<th>71</th>
<th>0.071000</th>
<th>0.001890</th>
<th>0.002670</th>
<th>NaN</th>
</tr>
</thead>
<tbody>
<tr>
<td>93</td>
<td>75</td>
<td>0.075000</td>
<td>0.002000</td>
<td>0.002780</td>
<td>NaN</td>
</tr>
<tr>
<td>94</td>
<td>8</td>
<td>0.008000</td>
<td>0.000540</td>
<td>0.000254</td>
<td>0.000254</td>
</tr>
<tr>
<td>95</td>
<td>80</td>
<td>0.080000</td>
<td>0.002130</td>
<td>0.002910</td>
<td>NaN</td>
</tr>
<tr>
<td>96</td>
<td>9</td>
<td>0.090000</td>
<td>0.000590</td>
<td>0.000281</td>
<td></td>
</tr>
<tr>
<td>97</td>
<td>9.5</td>
<td>0.095000</td>
<td>0.000610</td>
<td>0.000294</td>
<td></td>
</tr>
<tr>
<td>98</td>
<td>90</td>
<td>0.090000</td>
<td>0.002390</td>
<td>0.003180</td>
<td>NaN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>d_wire</th>
<th>d_wire_min</th>
<th>d_wire_max</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000020</td>
<td>0.000023</td>
</tr>
<tr>
<td>1</td>
<td>0.000025</td>
<td>0.000029</td>
</tr>
<tr>
<td>2</td>
<td>0.000028</td>
<td>0.000033</td>
</tr>
<tr>
<td>3</td>
<td>0.000030</td>
<td>0.000035</td>
</tr>
<tr>
<td>4</td>
<td>0.000030</td>
<td>0.000035</td>
</tr>
<tr>
<td>5</td>
<td>0.000032</td>
<td>0.000037</td>
</tr>
<tr>
<td>6</td>
<td>0.000032</td>
<td>0.000037</td>
</tr>
<tr>
<td>7</td>
<td>0.000036</td>
<td>0.000041</td>
</tr>
<tr>
<td>8</td>
<td>0.000036</td>
<td>0.000041</td>
</tr>
<tr>
<td>9</td>
<td>0.000040</td>
<td>0.000046</td>
</tr>
<tr>
<td>10</td>
<td>0.000045</td>
<td>0.000052</td>
</tr>
<tr>
<td>11</td>
<td>0.000050</td>
<td>0.000058</td>
</tr>
<tr>
<td>12</td>
<td>0.000050</td>
<td>0.000058</td>
</tr>
<tr>
<td>13</td>
<td>0.000056</td>
<td>0.000064</td>
</tr>
<tr>
<td>14</td>
<td>0.000063</td>
<td>0.000072</td>
</tr>
<tr>
<td>15</td>
<td>0.000071</td>
<td>0.000082</td>
</tr>
<tr>
<td>16</td>
<td>0.000071</td>
<td>0.000082</td>
</tr>
<tr>
<td>17</td>
<td>0.000080</td>
<td>0.000092</td>
</tr>
<tr>
<td>18</td>
<td>0.000090</td>
<td>0.000104</td>
</tr>
<tr>
<td>19</td>
<td>0.000100</td>
<td>0.000115</td>
</tr>
<tr>
<td>20</td>
<td>0.000100</td>
<td>0.000115</td>
</tr>
<tr>
<td>21</td>
<td>0.000112</td>
<td>0.000130</td>
</tr>
<tr>
<td>22</td>
<td>0.000125</td>
<td>0.000150</td>
</tr>
<tr>
<td>23</td>
<td>0.000140</td>
<td>0.000170</td>
</tr>
<tr>
<td>24</td>
<td>0.000140</td>
<td>0.000170</td>
</tr>
<tr>
<td>25</td>
<td>0.000160</td>
<td>0.000190</td>
</tr>
<tr>
<td>26</td>
<td>0.000160</td>
<td>0.000190</td>
</tr>
<tr>
<td>27</td>
<td>0.000180</td>
<td>0.000210</td>
</tr>
<tr>
<td>28</td>
<td>0.000200</td>
<td>0.000230</td>
</tr>
<tr>
<td>29</td>
<td>0.000200</td>
<td>0.000230</td>
</tr>
<tr>
<td>30</td>
<td>0.000224</td>
<td>0.000260</td>
</tr>
<tr>
<td>31</td>
<td>0.000250</td>
<td>0.000290</td>
</tr>
<tr>
<td>32</td>
<td>0.000280</td>
<td>0.000320</td>
</tr>
<tr>
<td>33</td>
<td>0.000280</td>
<td>0.000320</td>
</tr>
<tr>
<td>34</td>
<td>0.000315</td>
<td>0.000360</td>
</tr>
<tr>
<td>35</td>
<td>0.000355</td>
<td>0.000410</td>
</tr>
<tr>
<td>36</td>
<td>0.000400</td>
<td>0.000460</td>
</tr>
<tr>
<td>37</td>
<td>0.000400</td>
<td>0.000460</td>
</tr>
<tr>
<td>38</td>
<td>0.000450</td>
<td>0.000520</td>
</tr>
<tr>
<td>39</td>
<td>0.000450</td>
<td>0.000520</td>
</tr>
<tr>
<td>40</td>
<td>0.000500</td>
<td>0.000580</td>
</tr>
<tr>
<td>41</td>
<td>0.000500</td>
<td>0.000580</td>
</tr>
<tr>
<td>42</td>
<td>0.000560</td>
<td>0.000640</td>
</tr>
<tr>
<td>43</td>
<td>0.000560</td>
<td>0.000640</td>
</tr>
<tr>
<td>44</td>
<td>0.000630</td>
<td>0.000720</td>
</tr>
<tr>
<td>45</td>
<td>0.000630</td>
<td>0.000720</td>
</tr>
<tr>
<td>46</td>
<td>0.000710</td>
<td>0.000820</td>
</tr>
<tr>
<td>47</td>
<td>0.000800</td>
<td>0.000920</td>
</tr>
</tbody>
</table>

(continues on next page)
<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>48</td>
<td>0.000800</td>
<td>0.000680</td>
<td>0.000920</td>
</tr>
<tr>
<td>49</td>
<td>0.000800</td>
<td>0.000680</td>
<td>0.000920</td>
</tr>
<tr>
<td>50</td>
<td>0.002500</td>
<td>0.002100</td>
<td>0.002900</td>
</tr>
<tr>
<td>51</td>
<td>0.006300</td>
<td>0.005400</td>
<td>0.007200</td>
</tr>
<tr>
<td>52</td>
<td>0.006300</td>
<td>0.005400</td>
<td>0.007200</td>
</tr>
<tr>
<td>53</td>
<td>0.002500</td>
<td>0.002100</td>
<td>0.002900</td>
</tr>
<tr>
<td>54</td>
<td>0.008000</td>
<td>0.006800</td>
<td>0.009200</td>
</tr>
<tr>
<td>55</td>
<td>0.002500</td>
<td>0.002100</td>
<td>0.002900</td>
</tr>
<tr>
<td>56</td>
<td>0.008000</td>
<td>0.006800</td>
<td>0.009200</td>
</tr>
<tr>
<td>57</td>
<td>0.002800</td>
<td>0.002400</td>
<td>0.003200</td>
</tr>
<tr>
<td>58</td>
<td>0.002800</td>
<td>0.002400</td>
<td>0.003200</td>
</tr>
<tr>
<td>59</td>
<td>0.003150</td>
<td>0.002700</td>
<td>0.003600</td>
</tr>
<tr>
<td>60</td>
<td>0.003150</td>
<td>0.002700</td>
<td>0.003600</td>
</tr>
<tr>
<td>61</td>
<td>0.003150</td>
<td>0.002700</td>
<td>0.003600</td>
</tr>
<tr>
<td>62</td>
<td>0.000900</td>
<td>0.000770</td>
<td>0.001040</td>
</tr>
<tr>
<td>63</td>
<td>0.000900</td>
<td>0.000770</td>
<td>0.001040</td>
</tr>
<tr>
<td>64</td>
<td>0.001000</td>
<td>0.000850</td>
<td>0.001150</td>
</tr>
<tr>
<td>65</td>
<td>0.001000</td>
<td>0.000850</td>
<td>0.001150</td>
</tr>
<tr>
<td>66</td>
<td>0.001120</td>
<td>0.000950</td>
<td>0.001300</td>
</tr>
<tr>
<td>67</td>
<td>0.003150</td>
<td>0.002700</td>
<td>0.003600</td>
</tr>
<tr>
<td>68</td>
<td>0.003350</td>
<td>0.003000</td>
<td>0.004100</td>
</tr>
<tr>
<td>69</td>
<td>0.003350</td>
<td>0.003000</td>
<td>0.004100</td>
</tr>
<tr>
<td>70</td>
<td>0.003350</td>
<td>0.003000</td>
<td>0.004100</td>
</tr>
<tr>
<td>71</td>
<td>0.003350</td>
<td>0.003000</td>
<td>0.004100</td>
</tr>
<tr>
<td>72</td>
<td>0.001250</td>
<td>0.001060</td>
<td>0.001500</td>
</tr>
<tr>
<td>73</td>
<td>0.001250</td>
<td>0.001060</td>
<td>0.001500</td>
</tr>
<tr>
<td>74</td>
<td>0.001250</td>
<td>0.001060</td>
<td>0.001500</td>
</tr>
<tr>
<td>75</td>
<td>0.004000</td>
<td>0.003400</td>
<td>0.004600</td>
</tr>
<tr>
<td>76</td>
<td>0.004000</td>
<td>0.003400</td>
<td>0.004600</td>
</tr>
<tr>
<td>77</td>
<td>0.004500</td>
<td>0.003800</td>
<td>0.005200</td>
</tr>
<tr>
<td>78</td>
<td>0.001400</td>
<td>0.001200</td>
<td>0.001700</td>
</tr>
<tr>
<td>79</td>
<td>0.001400</td>
<td>0.001200</td>
<td>0.001700</td>
</tr>
<tr>
<td>80</td>
<td>0.001600</td>
<td>0.001300</td>
<td>0.001900</td>
</tr>
<tr>
<td>81</td>
<td>0.004500</td>
<td>0.003800</td>
<td>0.005200</td>
</tr>
<tr>
<td>82</td>
<td>0.004500</td>
<td>0.003800</td>
<td>0.005200</td>
</tr>
<tr>
<td>83</td>
<td>0.001600</td>
<td>0.001300</td>
<td>0.001900</td>
</tr>
<tr>
<td>84</td>
<td>0.001600</td>
<td>0.001300</td>
<td>0.001900</td>
</tr>
<tr>
<td>85</td>
<td>0.005000</td>
<td>0.004300</td>
<td>0.005800</td>
</tr>
<tr>
<td>86</td>
<td>0.005000</td>
<td>0.004300</td>
<td>0.005800</td>
</tr>
<tr>
<td>87</td>
<td>0.005000</td>
<td>0.004300</td>
<td>0.005800</td>
</tr>
<tr>
<td>88</td>
<td>0.001800</td>
<td>0.001500</td>
<td>0.002100</td>
</tr>
<tr>
<td>89</td>
<td>0.001800</td>
<td>0.001500</td>
<td>0.002100</td>
</tr>
<tr>
<td>90</td>
<td>0.005600</td>
<td>0.004800</td>
<td>0.006400</td>
</tr>
<tr>
<td>91</td>
<td>0.001800</td>
<td>0.001500</td>
<td>0.002100</td>
</tr>
<tr>
<td>92</td>
<td>0.005600</td>
<td>0.004800</td>
<td>0.006400</td>
</tr>
<tr>
<td>93</td>
<td>0.006300</td>
<td>0.005400</td>
<td>0.007200</td>
</tr>
<tr>
<td>94</td>
<td>0.002000</td>
<td>0.001700</td>
<td>0.002300</td>
</tr>
<tr>
<td>95</td>
<td>0.006300</td>
<td>0.005400</td>
<td>0.007200</td>
</tr>
<tr>
<td>96</td>
<td>0.002240</td>
<td>0.001900</td>
<td>0.002600</td>
</tr>
<tr>
<td>97</td>
<td>0.002240</td>
<td>0.001900</td>
<td>0.002600</td>
</tr>
<tr>
<td>98</td>
<td>0.006300</td>
<td>0.005400</td>
<td>0.007200</td>
</tr>
</tbody>
</table>
4.3 Pipe Schedules

```python
from IPython.display import display, Markdown
import pandas as pd
from fluids.piping import schedule_lookup

dat = schedule_lookup['40']
```

```python
for name, values in schedule_lookup.items():
 display(Markdown("## Schedule %s" % (name)))
 to_df = {'NPS, dimensionless': values[0],
 'Inner diameter, mm': values[1],
 'Outer diameter, mm': values[2],
 'Thickness, mm': values[3]}
 display(pd.DataFrame(to_df))
```

### 4.3.1 Schedule 40

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>6.84</td>
<td>10.3</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>9.22</td>
<td>13.7</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>12.48</td>
<td>17.1</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>15.76</td>
<td>21.3</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>20.96</td>
<td>26.7</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>26.64</td>
<td>33.4</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>35.08</td>
<td>42.2</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>40.94</td>
<td>48.3</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>52.48</td>
<td>60.3</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>62.68</td>
<td>73.0</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>77.92</td>
<td>88.9</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>90.12</td>
<td>101.6</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>102.26</td>
<td>114.3</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>128.20</td>
<td>141.3</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>154.08</td>
<td>168.3</td>
</tr>
<tr>
<td>15</td>
<td>8.000</td>
<td>202.74</td>
<td>219.1</td>
</tr>
<tr>
<td>16</td>
<td>10.000</td>
<td>254.46</td>
<td>273.0</td>
</tr>
<tr>
<td>17</td>
<td>12.000</td>
<td>303.18</td>
<td>323.8</td>
</tr>
<tr>
<td>18</td>
<td>14.000</td>
<td>333.34</td>
<td>355.6</td>
</tr>
<tr>
<td>19</td>
<td>16.000</td>
<td>381.00</td>
<td>406.4</td>
</tr>
<tr>
<td>20</td>
<td>18.000</td>
<td>428.46</td>
<td>457.0</td>
</tr>
<tr>
<td>21</td>
<td>20.000</td>
<td>477.82</td>
<td>508.0</td>
</tr>
<tr>
<td>22</td>
<td>24.000</td>
<td>575.04</td>
<td>610.0</td>
</tr>
<tr>
<td>23</td>
<td>32.000</td>
<td>778.04</td>
<td>813.0</td>
</tr>
<tr>
<td>24</td>
<td>34.000</td>
<td>829.04</td>
<td>864.0</td>
</tr>
<tr>
<td>25</td>
<td>36.000</td>
<td>875.90</td>
<td>914.0</td>
</tr>
</tbody>
</table>

### 4.3.2 Schedule 5

(continues on next page)
### 4.3.3 Schedule 10

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>7.82</td>
<td>10.3</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>10.40</td>
<td>13.7</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>13.80</td>
<td>17.1</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>17.08</td>
<td>21.3</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>22.48</td>
<td>26.7</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>27.86</td>
<td>33.4</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>36.66</td>
<td>42.2</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>42.76</td>
<td>48.3</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>54.76</td>
<td>60.3</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>66.90</td>
<td>73.0</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>82.80</td>
<td>88.9</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>95.50</td>
<td>101.6</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>108.20</td>
<td>114.3</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>134.50</td>
<td>141.3</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>161.50</td>
<td>168.3</td>
</tr>
<tr>
<td>15</td>
<td>8.000</td>
<td>211.58</td>
<td>219.1</td>
</tr>
<tr>
<td>16</td>
<td>10.000</td>
<td>264.62</td>
<td>273.0</td>
</tr>
<tr>
<td>17</td>
<td>12.000</td>
<td>314.66</td>
<td>323.8</td>
</tr>
<tr>
<td>18</td>
<td>14.000</td>
<td>342.90</td>
<td>355.6</td>
</tr>
<tr>
<td>19</td>
<td>16.000</td>
<td>393.70</td>
<td>406.4</td>
</tr>
<tr>
<td>20</td>
<td>18.000</td>
<td>444.30</td>
<td>457.0</td>
</tr>
<tr>
<td>21</td>
<td>20.000</td>
<td>495.30</td>
<td>508.0</td>
</tr>
<tr>
<td>22</td>
<td>22.000</td>
<td>546.30</td>
<td>559.0</td>
</tr>
<tr>
<td>23</td>
<td>24.000</td>
<td>597.30</td>
<td>610.0</td>
</tr>
<tr>
<td>24</td>
<td>26.000</td>
<td>644.16</td>
<td>660.0</td>
</tr>
<tr>
<td>25</td>
<td>28.000</td>
<td>695.16</td>
<td>711.0</td>
</tr>
<tr>
<td>26</td>
<td>30.000</td>
<td>746.16</td>
<td>762.0</td>
</tr>
<tr>
<td>27</td>
<td>32.000</td>
<td>797.16</td>
<td>813.0</td>
</tr>
<tr>
<td>28</td>
<td>34.000</td>
<td>848.16</td>
<td>864.0</td>
</tr>
<tr>
<td>29</td>
<td>36.000</td>
<td>898.16</td>
<td>914.0</td>
</tr>
</tbody>
</table>

### 4.3.4 Schedule 20

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>206.40</td>
<td>219.1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>260.30</td>
<td>273.0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>311.10</td>
<td>323.8</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>339.76</td>
<td>355.6</td>
</tr>
</tbody>
</table>

(continues on next page)
4.3.5 Schedule 30

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.125</td>
<td>7.40</td>
<td>10.3</td>
<td>1.45</td>
</tr>
<tr>
<td>0.250</td>
<td>10.00</td>
<td>13.7</td>
<td>1.85</td>
</tr>
<tr>
<td>0.375</td>
<td>13.40</td>
<td>17.1</td>
<td>1.85</td>
</tr>
<tr>
<td>0.500</td>
<td>16.48</td>
<td>21.3</td>
<td>2.41</td>
</tr>
<tr>
<td>0.750</td>
<td>21.88</td>
<td>26.7</td>
<td>2.41</td>
</tr>
<tr>
<td>1.000</td>
<td>27.60</td>
<td>33.4</td>
<td>2.90</td>
</tr>
<tr>
<td>1.250</td>
<td>36.26</td>
<td>42.2</td>
<td>2.97</td>
</tr>
<tr>
<td>1.500</td>
<td>41.94</td>
<td>48.3</td>
<td>3.18</td>
</tr>
<tr>
<td>2.000</td>
<td>53.94</td>
<td>60.3</td>
<td>3.18</td>
</tr>
<tr>
<td>2.500</td>
<td>63.44</td>
<td>73.0</td>
<td>4.78</td>
</tr>
<tr>
<td>3.000</td>
<td>79.34</td>
<td>88.9</td>
<td>4.78</td>
</tr>
<tr>
<td>3.500</td>
<td>92.04</td>
<td>101.6</td>
<td>4.78</td>
</tr>
<tr>
<td>4.000</td>
<td>104.74</td>
<td>114.3</td>
<td>4.78</td>
</tr>
<tr>
<td>8.000</td>
<td>205.02</td>
<td>219.1</td>
<td>7.04</td>
</tr>
<tr>
<td>10.000</td>
<td>257.40</td>
<td>273.0</td>
<td>7.80</td>
</tr>
<tr>
<td>12.000</td>
<td>307.04</td>
<td>323.8</td>
<td>8.38</td>
</tr>
<tr>
<td>14.000</td>
<td>336.54</td>
<td>355.6</td>
<td>9.53</td>
</tr>
<tr>
<td>16.000</td>
<td>387.34</td>
<td>406.4</td>
<td>9.53</td>
</tr>
<tr>
<td>18.000</td>
<td>434.74</td>
<td>457.0</td>
<td>11.13</td>
</tr>
<tr>
<td>20.000</td>
<td>482.60</td>
<td>508.0</td>
<td>12.70</td>
</tr>
<tr>
<td>22.000</td>
<td>533.60</td>
<td>559.0</td>
<td>12.70</td>
</tr>
<tr>
<td>24.000</td>
<td>581.46</td>
<td>610.0</td>
<td>14.27</td>
</tr>
<tr>
<td>28.000</td>
<td>679.24</td>
<td>711.0</td>
<td>15.88</td>
</tr>
<tr>
<td>30.000</td>
<td>730.24</td>
<td>762.0</td>
<td>15.88</td>
</tr>
<tr>
<td>32.000</td>
<td>781.24</td>
<td>813.0</td>
<td>15.88</td>
</tr>
<tr>
<td>34.000</td>
<td>832.24</td>
<td>864.0</td>
<td>15.88</td>
</tr>
<tr>
<td>36.000</td>
<td>882.24</td>
<td>914.0</td>
<td>15.88</td>
</tr>
</tbody>
</table>

4.3.6 Schedule 60

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>198.48</td>
<td>219.1</td>
<td>10.31</td>
</tr>
<tr>
<td>10</td>
<td>247.60</td>
<td>273.0</td>
<td>12.70</td>
</tr>
<tr>
<td>12</td>
<td>295.26</td>
<td>323.8</td>
<td>14.27</td>
</tr>
<tr>
<td>14</td>
<td>325.42</td>
<td>355.6</td>
<td>15.09</td>
</tr>
<tr>
<td>16</td>
<td>373.08</td>
<td>406.4</td>
<td>16.66</td>
</tr>
<tr>
<td>18</td>
<td>418.90</td>
<td>457.0</td>
<td>19.05</td>
</tr>
<tr>
<td>20</td>
<td>466.76</td>
<td>508.0</td>
<td>20.62</td>
</tr>
<tr>
<td>22</td>
<td>514.54</td>
<td>559.0</td>
<td>22.23</td>
</tr>
<tr>
<td>24</td>
<td>560.78</td>
<td>610.0</td>
<td>24.61</td>
</tr>
</tbody>
</table>
### 4.3.7 Schedule 80

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.125</td>
<td>5.48</td>
<td>10.3</td>
<td>2.41</td>
</tr>
<tr>
<td>1 0.250</td>
<td>7.66</td>
<td>13.7</td>
<td>3.02</td>
</tr>
<tr>
<td>2 0.375</td>
<td>10.70</td>
<td>17.1</td>
<td>3.20</td>
</tr>
<tr>
<td>3 0.500</td>
<td>13.84</td>
<td>21.3</td>
<td>3.73</td>
</tr>
<tr>
<td>4 0.750</td>
<td>18.88</td>
<td>26.7</td>
<td>3.91</td>
</tr>
<tr>
<td>5 1.000</td>
<td>24.30</td>
<td>33.4</td>
<td>4.55</td>
</tr>
<tr>
<td>6 1.250</td>
<td>32.50</td>
<td>42.2</td>
<td>4.85</td>
</tr>
<tr>
<td>7 1.500</td>
<td>38.14</td>
<td>48.3</td>
<td>5.08</td>
</tr>
<tr>
<td>8 2.000</td>
<td>49.22</td>
<td>60.3</td>
<td>5.54</td>
</tr>
<tr>
<td>9 2.500</td>
<td>58.98</td>
<td>73.0</td>
<td>7.01</td>
</tr>
<tr>
<td>10 3.000</td>
<td>73.66</td>
<td>88.9</td>
<td>7.62</td>
</tr>
<tr>
<td>11 3.500</td>
<td>85.44</td>
<td>101.6</td>
<td>8.08</td>
</tr>
<tr>
<td>12 4.000</td>
<td>97.18</td>
<td>114.3</td>
<td>8.56</td>
</tr>
<tr>
<td>13 5.000</td>
<td>122.24</td>
<td>141.3</td>
<td>9.53</td>
</tr>
<tr>
<td>14 6.000</td>
<td>146.36</td>
<td>168.3</td>
<td>10.97</td>
</tr>
<tr>
<td>15 8.000</td>
<td>193.70</td>
<td>219.1</td>
<td>12.70</td>
</tr>
<tr>
<td>16 10.000</td>
<td>242.82</td>
<td>273.0</td>
<td>15.09</td>
</tr>
<tr>
<td>17 12.000</td>
<td>288.84</td>
<td>323.8</td>
<td>17.48</td>
</tr>
<tr>
<td>18 14.000</td>
<td>317.50</td>
<td>355.6</td>
<td>19.05</td>
</tr>
<tr>
<td>19 16.000</td>
<td>363.52</td>
<td>406.4</td>
<td>21.44</td>
</tr>
<tr>
<td>20 18.000</td>
<td>409.34</td>
<td>457.0</td>
<td>23.83</td>
</tr>
<tr>
<td>21 20.000</td>
<td>455.62</td>
<td>508.0</td>
<td>26.19</td>
</tr>
<tr>
<td>22 22.000</td>
<td>501.84</td>
<td>559.0</td>
<td>28.58</td>
</tr>
<tr>
<td>23 24.000</td>
<td>548.08</td>
<td>610.0</td>
<td>30.96</td>
</tr>
</tbody>
</table>

### 4.3.8 Schedule 100

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 8</td>
<td>188.92</td>
<td>219.1</td>
<td>15.09</td>
</tr>
<tr>
<td>1 10</td>
<td>236.48</td>
<td>273.0</td>
<td>18.26</td>
</tr>
<tr>
<td>2 12</td>
<td>280.92</td>
<td>323.8</td>
<td>21.44</td>
</tr>
<tr>
<td>3 14</td>
<td>307.94</td>
<td>355.6</td>
<td>23.83</td>
</tr>
<tr>
<td>4 16</td>
<td>354.02</td>
<td>406.4</td>
<td>26.19</td>
</tr>
<tr>
<td>5 18</td>
<td>398.28</td>
<td>457.0</td>
<td>29.36</td>
</tr>
<tr>
<td>6 20</td>
<td>442.92</td>
<td>508.0</td>
<td>32.54</td>
</tr>
<tr>
<td>7 22</td>
<td>489.14</td>
<td>559.0</td>
<td>34.93</td>
</tr>
<tr>
<td>8 24</td>
<td>532.22</td>
<td>610.0</td>
<td>38.89</td>
</tr>
</tbody>
</table>

### 4.3.9 Schedule 120

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 4</td>
<td>92.04</td>
<td>114.3</td>
<td>11.13</td>
</tr>
<tr>
<td>1 5</td>
<td>115.90</td>
<td>141.3</td>
<td>12.70</td>
</tr>
<tr>
<td>2 6</td>
<td>139.76</td>
<td>168.3</td>
<td>14.27</td>
</tr>
<tr>
<td>3 8</td>
<td>182.58</td>
<td>219.1</td>
<td>18.26</td>
</tr>
<tr>
<td>4 10</td>
<td>230.12</td>
<td>273.0</td>
<td>21.44</td>
</tr>
<tr>
<td>5 12</td>
<td>273.00</td>
<td>323.8</td>
<td>25.40</td>
</tr>
<tr>
<td>6 14</td>
<td>300.02</td>
<td>355.6</td>
<td>27.79</td>
</tr>
<tr>
<td>7 16</td>
<td>344.48</td>
<td>406.4</td>
<td>30.96</td>
</tr>
<tr>
<td>8 18</td>
<td>387.14</td>
<td>457.0</td>
<td>34.93</td>
</tr>
<tr>
<td>9 20</td>
<td>431.80</td>
<td>508.0</td>
<td>38.10</td>
</tr>
<tr>
<td>10 22</td>
<td>476.44</td>
<td>559.0</td>
<td>41.28</td>
</tr>
<tr>
<td>11 24</td>
<td>517.96</td>
<td>610.0</td>
<td>46.02</td>
</tr>
</tbody>
</table>
### 4.3.10 Schedule 140

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>177.86</td>
<td>219.1</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>222.20</td>
<td>273.0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>266.64</td>
<td>323.8</td>
</tr>
<tr>
<td>3</td>
<td>14</td>
<td>292.10</td>
<td>355.6</td>
</tr>
<tr>
<td>4</td>
<td>16</td>
<td>333.34</td>
<td>406.4</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>377.66</td>
<td>457.0</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>419.10</td>
<td>508.0</td>
</tr>
<tr>
<td>7</td>
<td>22</td>
<td>463.74</td>
<td>559.0</td>
</tr>
<tr>
<td>8</td>
<td>24</td>
<td>505.26</td>
<td>610.0</td>
</tr>
</tbody>
</table>

### 4.3.11 Schedule 160

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>11.74</td>
<td>21.3</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>15.58</td>
<td>26.7</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>20.70</td>
<td>33.4</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>29.50</td>
<td>42.2</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>34.02</td>
<td>48.3</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>42.82</td>
<td>60.3</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>53.94</td>
<td>73.0</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>66.64</td>
<td>88.9</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>87.32</td>
<td>114.3</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>109.54</td>
<td>141.3</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>131.78</td>
<td>168.3</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>173.08</td>
<td>219.1</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>215.84</td>
<td>273.0</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>257.16</td>
<td>323.8</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>284.18</td>
<td>355.6</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>325.42</td>
<td>406.4</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>366.52</td>
<td>457.0</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>407.98</td>
<td>508.0</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>451.04</td>
<td>559.0</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>490.92</td>
<td>610.0</td>
</tr>
</tbody>
</table>

### 4.3.12 Schedule STD

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>6.84</td>
<td>10.3</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>9.22</td>
<td>13.7</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>12.48</td>
<td>17.1</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>15.76</td>
<td>21.3</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>20.96</td>
<td>26.7</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>26.64</td>
<td>33.4</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>35.08</td>
<td>42.2</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>40.94</td>
<td>48.3</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>52.48</td>
<td>60.3</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>62.68</td>
<td>73.0</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>77.92</td>
<td>88.9</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>90.12</td>
<td>101.6</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>102.26</td>
<td>114.3</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>128.20</td>
<td>141.3</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>154.08</td>
<td>168.3</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.13 Schedule XS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>5.48</td>
<td>10.3</td>
<td>2.41</td>
</tr>
<tr>
<td>1</td>
<td>7.66</td>
<td>13.7</td>
<td>3.02</td>
</tr>
<tr>
<td>2</td>
<td>10.70</td>
<td>17.1</td>
<td>3.20</td>
</tr>
<tr>
<td>3</td>
<td>13.84</td>
<td>21.3</td>
<td>3.73</td>
</tr>
<tr>
<td>4</td>
<td>18.88</td>
<td>26.7</td>
<td>3.91</td>
</tr>
<tr>
<td>5</td>
<td>24.30</td>
<td>33.4</td>
<td>4.55</td>
</tr>
<tr>
<td>6</td>
<td>32.50</td>
<td>42.2</td>
<td>4.85</td>
</tr>
<tr>
<td>7</td>
<td>38.14</td>
<td>48.3</td>
<td>5.08</td>
</tr>
<tr>
<td>8</td>
<td>49.22</td>
<td>60.3</td>
<td>5.54</td>
</tr>
<tr>
<td>9</td>
<td>58.98</td>
<td>73.0</td>
<td>7.01</td>
</tr>
<tr>
<td>10</td>
<td>73.66</td>
<td>88.9</td>
<td>7.62</td>
</tr>
<tr>
<td>11</td>
<td>85.44</td>
<td>101.6</td>
<td>8.08</td>
</tr>
<tr>
<td>12</td>
<td>97.18</td>
<td>114.3</td>
<td>8.56</td>
</tr>
<tr>
<td>13</td>
<td>122.24</td>
<td>141.3</td>
<td>9.53</td>
</tr>
<tr>
<td>14</td>
<td>146.36</td>
<td>168.3</td>
<td>10.97</td>
</tr>
<tr>
<td>15</td>
<td>193.70</td>
<td>219.1</td>
<td>12.70</td>
</tr>
<tr>
<td>16</td>
<td>247.60</td>
<td>273.0</td>
<td>12.70</td>
</tr>
<tr>
<td>17</td>
<td>298.40</td>
<td>323.8</td>
<td>12.70</td>
</tr>
<tr>
<td>18</td>
<td>330.20</td>
<td>355.6</td>
<td>12.70</td>
</tr>
<tr>
<td>19</td>
<td>381.00</td>
<td>406.4</td>
<td>12.70</td>
</tr>
<tr>
<td>20</td>
<td>431.60</td>
<td>457.0</td>
<td>12.70</td>
</tr>
<tr>
<td>21</td>
<td>482.60</td>
<td>508.0</td>
<td>12.70</td>
</tr>
<tr>
<td>22</td>
<td>533.60</td>
<td>559.0</td>
<td>12.70</td>
</tr>
<tr>
<td>23</td>
<td>584.60</td>
<td>610.0</td>
<td>12.70</td>
</tr>
<tr>
<td>24</td>
<td>634.60</td>
<td>660.0</td>
<td>12.70</td>
</tr>
<tr>
<td>25</td>
<td>685.60</td>
<td>711.0</td>
<td>12.70</td>
</tr>
<tr>
<td>26</td>
<td>736.60</td>
<td>762.0</td>
<td>12.70</td>
</tr>
<tr>
<td>27</td>
<td>787.60</td>
<td>813.0</td>
<td>12.70</td>
</tr>
<tr>
<td>28</td>
<td>838.60</td>
<td>864.0</td>
<td>12.70</td>
</tr>
<tr>
<td>29</td>
<td>888.60</td>
<td>914.0</td>
<td>12.70</td>
</tr>
<tr>
<td>30</td>
<td>939.60</td>
<td>965.0</td>
<td>12.70</td>
</tr>
</tbody>
</table>
### 4.3.14 Schedule XXS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>6.36</td>
<td>21.3</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>11.06</td>
<td>26.7</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>15.22</td>
<td>33.4</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>22.80</td>
<td>42.2</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>28.00</td>
<td>48.3</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>38.16</td>
<td>60.3</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>44.96</td>
<td>73.0</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>58.42</td>
<td>88.9</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>80.06</td>
<td>114.3</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>103.20</td>
<td>141.3</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>124.40</td>
<td>168.3</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>174.64</td>
<td>219.1</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>222.20</td>
<td>273.0</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>273.00</td>
<td>323.8</td>
</tr>
</tbody>
</table>

### 4.3.15 Schedule 5S

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>18.00</td>
<td>21.3</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>23.40</td>
<td>26.7</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>30.10</td>
<td>33.4</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>38.90</td>
<td>42.2</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>45.00</td>
<td>48.3</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>57.00</td>
<td>60.3</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>68.78</td>
<td>73.0</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>84.68</td>
<td>88.9</td>
</tr>
<tr>
<td>8</td>
<td>3.50</td>
<td>97.38</td>
<td>101.6</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
<td>110.08</td>
<td>114.3</td>
</tr>
<tr>
<td>10</td>
<td>5.00</td>
<td>135.76</td>
<td>141.3</td>
</tr>
<tr>
<td>11</td>
<td>6.00</td>
<td>162.76</td>
<td>168.3</td>
</tr>
<tr>
<td>12</td>
<td>8.00</td>
<td>213.56</td>
<td>219.1</td>
</tr>
<tr>
<td>13</td>
<td>10.00</td>
<td>266.30</td>
<td>273.1</td>
</tr>
<tr>
<td>14</td>
<td>12.00</td>
<td>315.98</td>
<td>323.9</td>
</tr>
<tr>
<td>15</td>
<td>14.00</td>
<td>347.68</td>
<td>355.6</td>
</tr>
<tr>
<td>16</td>
<td>16.00</td>
<td>398.02</td>
<td>406.4</td>
</tr>
<tr>
<td>17</td>
<td>18.00</td>
<td>448.62</td>
<td>457.0</td>
</tr>
<tr>
<td>18</td>
<td>20.00</td>
<td>498.44</td>
<td>508.0</td>
</tr>
<tr>
<td>19</td>
<td>22.00</td>
<td>549.44</td>
<td>559.0</td>
</tr>
<tr>
<td>20</td>
<td>24.00</td>
<td>598.92</td>
<td>610.0</td>
</tr>
<tr>
<td>21</td>
<td>30.00</td>
<td>749.30</td>
<td>762.0</td>
</tr>
</tbody>
</table>

### 4.3.16 Schedule 10S

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>7.82</td>
<td>10.3</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>10.40</td>
<td>13.7</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.17 Schedule 40S

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.125</td>
<td>6.84</td>
<td>10.3</td>
<td>1.73</td>
</tr>
<tr>
<td>1 0.250</td>
<td>9.22</td>
<td>13.7</td>
<td>2.24</td>
</tr>
<tr>
<td>2 0.375</td>
<td>12.48</td>
<td>17.1</td>
<td>2.31</td>
</tr>
<tr>
<td>3 0.500</td>
<td>15.76</td>
<td>21.3</td>
<td>2.77</td>
</tr>
<tr>
<td>4 0.750</td>
<td>20.96</td>
<td>26.7</td>
<td>2.87</td>
</tr>
<tr>
<td>5 1.000</td>
<td>26.64</td>
<td>33.4</td>
<td>3.38</td>
</tr>
<tr>
<td>6 1.250</td>
<td>35.08</td>
<td>42.2</td>
<td>3.56</td>
</tr>
<tr>
<td>7 1.500</td>
<td>40.94</td>
<td>48.3</td>
<td>3.68</td>
</tr>
<tr>
<td>8 2.000</td>
<td>52.48</td>
<td>60.3</td>
<td>3.91</td>
</tr>
<tr>
<td>9 2.500</td>
<td>62.68</td>
<td>73.0</td>
<td>5.16</td>
</tr>
<tr>
<td>10 3.000</td>
<td>77.92</td>
<td>88.9</td>
<td>5.49</td>
</tr>
<tr>
<td>11 3.500</td>
<td>90.12</td>
<td>101.6</td>
<td>5.74</td>
</tr>
<tr>
<td>12 4.000</td>
<td>102.26</td>
<td>114.3</td>
<td>6.02</td>
</tr>
<tr>
<td>13 5.000</td>
<td>128.20</td>
<td>141.3</td>
<td>6.55</td>
</tr>
<tr>
<td>14 6.000</td>
<td>154.08</td>
<td>168.3</td>
<td>7.11</td>
</tr>
<tr>
<td>15 8.000</td>
<td>202.74</td>
<td>219.1</td>
<td>8.18</td>
</tr>
<tr>
<td>16 10.000</td>
<td>254.56</td>
<td>273.1</td>
<td>9.27</td>
</tr>
<tr>
<td>17 12.000</td>
<td>304.84</td>
<td>323.9</td>
<td>9.53</td>
</tr>
<tr>
<td>18 14.000</td>
<td>336.54</td>
<td>355.6</td>
<td>9.53</td>
</tr>
<tr>
<td>19 16.000</td>
<td>387.34</td>
<td>406.4</td>
<td>9.53</td>
</tr>
<tr>
<td>20 18.000</td>
<td>437.94</td>
<td>457.0</td>
<td>9.53</td>
</tr>
<tr>
<td>21 20.000</td>
<td>488.94</td>
<td>508.0</td>
<td>9.53</td>
</tr>
<tr>
<td>22 24.000</td>
<td>590.94</td>
<td>610.0</td>
<td>9.53</td>
</tr>
</tbody>
</table>

### 4.3.18 Schedule 80S

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.125</td>
<td>5.48</td>
<td>10.3</td>
<td>2.41</td>
</tr>
<tr>
<td>1 0.250</td>
<td>7.66</td>
<td>13.7</td>
<td>3.02</td>
</tr>
</tbody>
</table>

(continues on next page)
<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>6.8326</td>
<td>10.2870</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>9.2456</td>
<td>13.7160</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>12.5222</td>
<td>17.1450</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>15.7988</td>
<td>21.3360</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>20.9296</td>
<td>26.6700</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>26.6446</td>
<td>33.4010</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>33.5280</td>
<td>40.6400</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>40.8940</td>
<td>48.2600</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>52.5018</td>
<td>60.3250</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>62.7126</td>
<td>73.0250</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>77.9272</td>
<td>88.9000</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>90.1192</td>
<td>101.6000</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>102.2604</td>
<td>114.3000</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>128.1938</td>
<td>141.3002</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>154.0510</td>
<td>168.2750</td>
</tr>
<tr>
<td>15</td>
<td>8.000</td>
<td>202.7174</td>
<td>219.0750</td>
</tr>
<tr>
<td>16</td>
<td>10.000</td>
<td>254.5080</td>
<td>273.0500</td>
</tr>
<tr>
<td>17</td>
<td>12.000</td>
<td>303.2252</td>
<td>323.8500</td>
</tr>
</tbody>
</table>

4.3.20 Schedule 80D1527

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>5.4610</td>
<td>10.2870</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>7.6708</td>
<td>13.7160</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>10.7442</td>
<td>17.1450</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>13.8684</td>
<td>21.3360</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>18.4668</td>
<td>26.6700</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>24.3078</td>
<td>33.4010</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>30.9372</td>
<td>40.6400</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>38.1000</td>
<td>48.2600</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>49.2506</td>
<td>60.3250</td>
</tr>
</tbody>
</table>

(continues on next page)
<table>
<thead>
<tr>
<th></th>
<th>2.500</th>
<th>59.0042</th>
<th>73.0250</th>
<th>7.0104</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>3.000</td>
<td>73.6600</td>
<td>88.9000</td>
<td>7.6200</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>85.4456</td>
<td>101.6000</td>
<td>8.0772</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>97.1804</td>
<td>114.3000</td>
<td>8.5598</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>122.2502</td>
<td>141.3002</td>
<td>9.5250</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>146.3294</td>
<td>168.2750</td>
<td>10.9728</td>
</tr>
<tr>
<td>15</td>
<td>8.000</td>
<td>193.6750</td>
<td>219.0750</td>
<td>12.7000</td>
</tr>
<tr>
<td>16</td>
<td>10.000</td>
<td>242.9256</td>
<td>273.0500</td>
<td>15.0622</td>
</tr>
<tr>
<td>17</td>
<td>12.000</td>
<td>288.9504</td>
<td>323.8500</td>
<td>17.4498</td>
</tr>
</tbody>
</table>

### 4.3.21 Schedule ABSD2680

<table>
<thead>
<tr>
<th></th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>196.85</td>
<td>239.014</td>
<td>21.082</td>
</tr>
<tr>
<td>1</td>
<td>247.65</td>
<td>298.450</td>
<td>25.400</td>
</tr>
<tr>
<td>2</td>
<td>298.45</td>
<td>357.378</td>
<td>29.464</td>
</tr>
<tr>
<td>3</td>
<td>374.65</td>
<td>447.548</td>
<td>36.449</td>
</tr>
</tbody>
</table>

### 4.3.22 Schedule PVCD2680

<table>
<thead>
<tr>
<th></th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>196.85</td>
<td>239.014</td>
<td>21.082</td>
</tr>
<tr>
<td>1</td>
<td>247.65</td>
<td>298.450</td>
<td>25.400</td>
</tr>
<tr>
<td>2</td>
<td>298.45</td>
<td>357.378</td>
<td>29.464</td>
</tr>
<tr>
<td>3</td>
<td>374.65</td>
<td>447.548</td>
<td>36.449</td>
</tr>
</tbody>
</table>

### 4.3.23 Schedule DR25C900

<table>
<thead>
<tr>
<th></th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>112.14</td>
<td>121.9</td>
<td>4.88</td>
</tr>
<tr>
<td>1</td>
<td>161.28</td>
<td>175.3</td>
<td>7.01</td>
</tr>
<tr>
<td>2</td>
<td>211.52</td>
<td>229.9</td>
<td>9.19</td>
</tr>
<tr>
<td>3</td>
<td>259.34</td>
<td>281.9</td>
<td>11.28</td>
</tr>
<tr>
<td>4</td>
<td>308.48</td>
<td>335.3</td>
<td>13.41</td>
</tr>
</tbody>
</table>

### 4.3.24 Schedule DR18C900

<table>
<thead>
<tr>
<th></th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>108.34</td>
<td>121.9</td>
<td>6.78</td>
</tr>
<tr>
<td>1</td>
<td>155.84</td>
<td>175.3</td>
<td>9.73</td>
</tr>
<tr>
<td>2</td>
<td>204.34</td>
<td>229.9</td>
<td>12.78</td>
</tr>
<tr>
<td>3</td>
<td>250.56</td>
<td>281.9</td>
<td>15.67</td>
</tr>
<tr>
<td>4</td>
<td>298.06</td>
<td>335.3</td>
<td>18.62</td>
</tr>
</tbody>
</table>

### 4.3.25 Schedule DR14C900

<table>
<thead>
<tr>
<th></th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>104.48</td>
<td>121.9</td>
<td>8.71</td>
</tr>
<tr>
<td>1</td>
<td>150.26</td>
<td>175.3</td>
<td>12.52</td>
</tr>
<tr>
<td>2</td>
<td>197.08</td>
<td>229.9</td>
<td>16.41</td>
</tr>
<tr>
<td>3</td>
<td>241.62</td>
<td>281.9</td>
<td>20.14</td>
</tr>
<tr>
<td>4</td>
<td>287.40</td>
<td>335.3</td>
<td>23.95</td>
</tr>
</tbody>
</table>

### 4.3. Pipe Schedules
### 4.3.26 Schedule CIDR51C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>475.90</td>
<td>495.3</td>
</tr>
<tr>
<td>1</td>
<td>20</td>
<td>527.06</td>
<td>548.6</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>629.60</td>
<td>655.3</td>
</tr>
<tr>
<td>3</td>
<td>30</td>
<td>780.94</td>
<td>812.8</td>
</tr>
<tr>
<td>4</td>
<td>36</td>
<td>934.64</td>
<td>972.8</td>
</tr>
<tr>
<td>5</td>
<td>42</td>
<td>1086.00</td>
<td>1130.3</td>
</tr>
<tr>
<td>6</td>
<td>48</td>
<td>1239.70</td>
<td>1290.3</td>
</tr>
</tbody>
</table>

### 4.3.27 Schedule CIDR41C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>369.66</td>
<td>388.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>420.46</td>
<td>442.0</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>471.12</td>
<td>495.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>521.82</td>
<td>548.6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>623.34</td>
<td>655.3</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>773.18</td>
<td>812.8</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>925.36</td>
<td>972.8</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>1075.18</td>
<td>1130.3</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>1227.36</td>
<td>1290.3</td>
</tr>
</tbody>
</table>

### 4.3.28 Schedule CIDR325C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>364.68</td>
<td>388.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>414.82</td>
<td>442.0</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>464.82</td>
<td>495.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>514.82</td>
<td>548.6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>614.96</td>
<td>655.3</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>762.76</td>
<td>812.8</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>912.96</td>
<td>972.8</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>1060.76</td>
<td>1130.3</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>1210.90</td>
<td>1290.3</td>
</tr>
</tbody>
</table>

### 4.3.29 Schedule CIDR25C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>357.52</td>
<td>388.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>406.64</td>
<td>442.0</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>455.68</td>
<td>495.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>504.70</td>
<td>548.6</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>602.88</td>
<td>655.3</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>747.78</td>
<td>812.8</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>894.98</td>
<td>972.8</td>
</tr>
<tr>
<td>7</td>
<td>42</td>
<td>1039.88</td>
<td>1130.3</td>
</tr>
<tr>
<td>8</td>
<td>48</td>
<td>1187.08</td>
<td>1290.3</td>
</tr>
</tbody>
</table>

### 4.3.30 Schedule CIDR21C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>351.58</td>
<td>388.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>399.90</td>
<td>442.0</td>
</tr>
</tbody>
</table>

(continues on next page)
4.3.31 Schedule CIDR18C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>345.42</td>
<td>388.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>392.88</td>
<td>442.0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>440.28</td>
<td>495.3</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>487.64</td>
<td>548.6</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>582.50</td>
<td>655.3</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>722.48</td>
<td>812.8</td>
</tr>
</tbody>
</table>

4.3.32 Schedule CIDR14C905

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>333.08</td>
<td>388.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>378.86</td>
<td>442.0</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>424.54</td>
<td>495.3</td>
</tr>
</tbody>
</table>

4.3.33 Schedule IPSDR21

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>321.76</td>
<td>355.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>367.70</td>
<td>406.4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>413.66</td>
<td>457.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>459.64</td>
<td>508.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>551.54</td>
<td>609.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>689.46</td>
<td>762.0</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>827.32</td>
<td>914.4</td>
</tr>
</tbody>
</table>

4.3.34 Schedule IPSDR26

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>328.26</td>
<td>355.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>375.16</td>
<td>406.4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>422.04</td>
<td>457.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>468.94</td>
<td>508.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>562.72</td>
<td>609.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>703.38</td>
<td>762.0</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>844.04</td>
<td>914.4</td>
</tr>
</tbody>
</table>

4.3.35 Schedule IPSDR325

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>333.76</td>
<td>355.6</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>381.40</td>
<td>406.4</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>429.06</td>
<td>457.2</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>476.76</td>
<td>508.0</td>
</tr>
<tr>
<td></td>
<td>24</td>
<td>572.10</td>
<td>609.6</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td>715.12</td>
<td>762.0</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.36 Schedule IPSDR41

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>14</td>
<td>338.28</td>
<td>355.6</td>
</tr>
<tr>
<td>1</td>
<td>16</td>
<td>386.58</td>
<td>406.4</td>
</tr>
<tr>
<td>2</td>
<td>18</td>
<td>434.90</td>
<td>457.2</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>483.20</td>
<td>508.0</td>
</tr>
<tr>
<td>4</td>
<td>24</td>
<td>579.88</td>
<td>609.6</td>
</tr>
<tr>
<td>5</td>
<td>30</td>
<td>724.82</td>
<td>762.0</td>
</tr>
<tr>
<td>6</td>
<td>36</td>
<td>869.80</td>
<td>914.4</td>
</tr>
</tbody>
</table>

### 4.3.37 Schedule PS115F679

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>440.9186</td>
<td>475.0054</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>519.8110</td>
<td>559.9938</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>584.8350</td>
<td>629.9962</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>659.1046</td>
<td>710.0062</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>754.4816</td>
<td>812.8000</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>903.0716</td>
<td>972.8200</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>1049.2232</td>
<td>1130.3000</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>1197.7624</td>
<td>1290.3200</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>1357.1728</td>
<td>1462.0240</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>1452.6260</td>
<td>1564.8940</td>
</tr>
</tbody>
</table>

### 4.3.38 Schedule PS75F679

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>445.3382</td>
<td>475.0054</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>524.9926</td>
<td>559.9938</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>590.6262</td>
<td>629.9962</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>665.6070</td>
<td>710.0062</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>762.0000</td>
<td>812.8000</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>912.0124</td>
<td>972.8200</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>1059.6372</td>
<td>1130.3000</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>1209.6496</td>
<td>1290.3200</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>1370.6348</td>
<td>1462.0240</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>1467.0532</td>
<td>1564.8940</td>
</tr>
</tbody>
</table>

### 4.3.39 Schedule PS46F679

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18</td>
<td>449.6562</td>
<td>475.0054</td>
</tr>
<tr>
<td>1</td>
<td>21</td>
<td>530.1234</td>
<td>559.9938</td>
</tr>
<tr>
<td>2</td>
<td>24</td>
<td>596.4174</td>
<td>629.9962</td>
</tr>
<tr>
<td>3</td>
<td>27</td>
<td>672.1602</td>
<td>710.0062</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>769.4676</td>
<td>812.8000</td>
</tr>
<tr>
<td>5</td>
<td>36</td>
<td>920.9532</td>
<td>972.8200</td>
</tr>
<tr>
<td>6</td>
<td>42</td>
<td>1070.0004</td>
<td>1130.3000</td>
</tr>
<tr>
<td>7</td>
<td>48</td>
<td>1221.4860</td>
<td>1290.3200</td>
</tr>
<tr>
<td>8</td>
<td>54</td>
<td>1384.0460</td>
<td>1462.0240</td>
</tr>
<tr>
<td>9</td>
<td>60</td>
<td>1481.4296</td>
<td>1564.8940</td>
</tr>
</tbody>
</table>
### 4.3.40 Schedule PVCD2665

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.25</td>
<td>35.0520</td>
<td>42.164</td>
</tr>
<tr>
<td>1</td>
<td>1.50</td>
<td>40.8940</td>
<td>48.260</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>52.5018</td>
<td>60.325</td>
</tr>
<tr>
<td>3</td>
<td>3.00</td>
<td>77.9272</td>
<td>88.900</td>
</tr>
<tr>
<td>4</td>
<td>4.00</td>
<td>102.2604</td>
<td>114.300</td>
</tr>
<tr>
<td>5</td>
<td>6.00</td>
<td>154.0510</td>
<td>168.275</td>
</tr>
<tr>
<td>6</td>
<td>8.00</td>
<td>202.7174</td>
<td>219.075</td>
</tr>
<tr>
<td>7</td>
<td>10.00</td>
<td>254.5080</td>
<td>273.050</td>
</tr>
<tr>
<td>8</td>
<td>12.00</td>
<td>303.2252</td>
<td>323.850</td>
</tr>
<tr>
<td>9</td>
<td>14.00</td>
<td>333.7560</td>
<td>355.600</td>
</tr>
<tr>
<td>10</td>
<td>16.00</td>
<td>381.0000</td>
<td>406.400</td>
</tr>
<tr>
<td>11</td>
<td>18.00</td>
<td>428.6504</td>
<td>457.200</td>
</tr>
<tr>
<td>12</td>
<td>20.00</td>
<td>477.8756</td>
<td>508.000</td>
</tr>
<tr>
<td>13</td>
<td>24.00</td>
<td>574.7004</td>
<td>609.600</td>
</tr>
</tbody>
</table>

### 4.3.41 Schedule 40D1785

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>6.8326</td>
<td>10.2870</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>9.2456</td>
<td>13.7160</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>12.5222</td>
<td>17.1450</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>15.7988</td>
<td>21.3360</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>20.9296</td>
<td>26.6700</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>26.6446</td>
<td>33.4010</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>35.0520</td>
<td>42.1640</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>40.8940</td>
<td>48.2600</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>52.5018</td>
<td>60.3250</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>62.7126</td>
<td>73.0250</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>77.9272</td>
<td>88.9000</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>90.1192</td>
<td>101.6000</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>102.2604</td>
<td>114.3000</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>128.1938</td>
<td>141.3000</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>154.0510</td>
<td>168.2750</td>
</tr>
<tr>
<td>15</td>
<td>8.000</td>
<td>202.7174</td>
<td>219.0750</td>
</tr>
<tr>
<td>16</td>
<td>10.000</td>
<td>254.5080</td>
<td>273.0500</td>
</tr>
<tr>
<td>17</td>
<td>12.000</td>
<td>303.2252</td>
<td>323.8500</td>
</tr>
<tr>
<td>18</td>
<td>14.000</td>
<td>333.4004</td>
<td>355.6000</td>
</tr>
<tr>
<td>19</td>
<td>16.000</td>
<td>381.0000</td>
<td>406.4000</td>
</tr>
<tr>
<td>20</td>
<td>18.000</td>
<td>428.6504</td>
<td>457.2000</td>
</tr>
<tr>
<td>21</td>
<td>20.000</td>
<td>477.8756</td>
<td>508.0000</td>
</tr>
<tr>
<td>22</td>
<td>24.000</td>
<td>574.7004</td>
<td>609.6000</td>
</tr>
</tbody>
</table>

### 4.3.42 Schedule 80D1785

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>5.4610</td>
<td>10.2870</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>7.6708</td>
<td>13.7160</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>10.7442</td>
<td>17.1450</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>13.8684</td>
<td>21.3360</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>18.8468</td>
<td>26.6700</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>24.3078</td>
<td>33.4010</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>32.4612</td>
<td>42.1640</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.43 Schedule 120D1785

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>12.700</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>18.0340</td>
<td>26.6700</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>23.2410</td>
<td>33.4010</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>31.2420</td>
<td>42.1640</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>36.8300</td>
<td>48.2600</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>47.6250</td>
<td>60.3250</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>57.7850</td>
<td>73.0250</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>71.1200</td>
<td>88.9000</td>
</tr>
<tr>
<td>8</td>
<td>3.50</td>
<td>83.8200</td>
<td>101.6000</td>
</tr>
<tr>
<td>9</td>
<td>4.00</td>
<td>92.1004</td>
<td>114.3000</td>
</tr>
<tr>
<td>10</td>
<td>5.00</td>
<td>115.9002</td>
<td>141.3002</td>
</tr>
<tr>
<td>11</td>
<td>6.00</td>
<td>139.7254</td>
<td>168.2750</td>
</tr>
<tr>
<td>12</td>
<td>8.00</td>
<td>182.6006</td>
<td>219.0750</td>
</tr>
<tr>
<td>13</td>
<td>10.00</td>
<td>230.2256</td>
<td>273.0500</td>
</tr>
<tr>
<td>14</td>
<td>12.00</td>
<td>273.0500</td>
<td>323.8500</td>
</tr>
</tbody>
</table>

### 4.3.44 Schedule DR135D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.125</td>
<td>7.2390</td>
<td>10.2870</td>
</tr>
<tr>
<td>1</td>
<td>0.250</td>
<td>10.6680</td>
<td>13.7160</td>
</tr>
<tr>
<td>2</td>
<td>0.375</td>
<td>14.0970</td>
<td>17.1450</td>
</tr>
<tr>
<td>3</td>
<td>0.500</td>
<td>18.1864</td>
<td>21.3360</td>
</tr>
<tr>
<td>4</td>
<td>0.750</td>
<td>22.7076</td>
<td>26.6700</td>
</tr>
<tr>
<td>5</td>
<td>1.000</td>
<td>28.4734</td>
<td>33.4010</td>
</tr>
<tr>
<td>6</td>
<td>1.250</td>
<td>35.9156</td>
<td>42.1640</td>
</tr>
<tr>
<td>7</td>
<td>1.500</td>
<td>41.0972</td>
<td>48.2600</td>
</tr>
<tr>
<td>8</td>
<td>2.000</td>
<td>51.3842</td>
<td>60.3250</td>
</tr>
<tr>
<td>9</td>
<td>2.500</td>
<td>62.2046</td>
<td>73.0250</td>
</tr>
<tr>
<td>10</td>
<td>3.000</td>
<td>75.7429</td>
<td>88.9000</td>
</tr>
<tr>
<td>11</td>
<td>3.500</td>
<td>86.5632</td>
<td>101.6000</td>
</tr>
<tr>
<td>12</td>
<td>4.000</td>
<td>97.3836</td>
<td>114.3000</td>
</tr>
<tr>
<td>13</td>
<td>5.000</td>
<td>120.3706</td>
<td>141.3002</td>
</tr>
<tr>
<td>14</td>
<td>6.000</td>
<td>143.3322</td>
<td>168.2750</td>
</tr>
</tbody>
</table>
### 4.3.45 Schedule DR17D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.75</td>
<td>23.5204</td>
<td>26.6700</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>29.4894</td>
<td>33.4010</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>37.1856</td>
<td>42.1640</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>42.5704</td>
<td>48.2600</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
<td>53.2130</td>
<td>60.3250</td>
</tr>
<tr>
<td>5</td>
<td>2.50</td>
<td>64.4398</td>
<td>73.0250</td>
</tr>
<tr>
<td>6</td>
<td>3.00</td>
<td>78.4352</td>
<td>88.9000</td>
</tr>
<tr>
<td>7</td>
<td>3.50</td>
<td>89.6620</td>
<td>101.6000</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>100.8380</td>
<td>114.3000</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>124.6886</td>
<td>141.3002</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>148.4630</td>
<td>168.2750</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>193.2686</td>
<td>219.0750</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>240.9444</td>
<td>273.0500</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>285.7500</td>
<td>323.8500</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>313.7916</td>
<td>355.6000</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>358.5972</td>
<td>406.4000</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>403.4028</td>
<td>457.2000</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>448.2592</td>
<td>508.0000</td>
</tr>
<tr>
<td>18</td>
<td>24.00</td>
<td>537.8704</td>
<td>609.6000</td>
</tr>
<tr>
<td>19</td>
<td>30.00</td>
<td>672.3380</td>
<td>762.0000</td>
</tr>
<tr>
<td>20</td>
<td>36.00</td>
<td>806.8056</td>
<td>914.4000</td>
</tr>
</tbody>
</table>

### 4.3.46 Schedule DR21D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.75</td>
<td>23.6220</td>
<td>26.6700</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>30.2006</td>
<td>33.4010</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>38.1508</td>
<td>42.1640</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>43.6880</td>
<td>48.2600</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
<td>54.5846</td>
<td>60.3250</td>
</tr>
<tr>
<td>5</td>
<td>2.50</td>
<td>66.0654</td>
<td>73.0250</td>
</tr>
<tr>
<td>6</td>
<td>3.00</td>
<td>80.4164</td>
<td>88.9000</td>
</tr>
<tr>
<td>7</td>
<td>3.50</td>
<td>91.9480</td>
<td>101.6000</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>103.4288</td>
<td>114.3000</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>127.8382</td>
<td>141.3002</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>152.2222</td>
<td>168.2750</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>198.2470</td>
<td>219.0750</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>247.0912</td>
<td>273.0500</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>293.0652</td>
<td>323.8500</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>321.7672</td>
<td>355.6000</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>367.6904</td>
<td>406.4000</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>413.6644</td>
<td>457.2000</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>459.6384</td>
<td>508.0000</td>
</tr>
<tr>
<td>18</td>
<td>24.00</td>
<td>551.5356</td>
<td>609.6000</td>
</tr>
<tr>
<td>19</td>
<td>30.00</td>
<td>689.4576</td>
<td>762.0000</td>
</tr>
<tr>
<td>20</td>
<td>36.00</td>
<td>827.3288</td>
<td>914.4000</td>
</tr>
</tbody>
</table>

### 4.3.47 Schedule DR26D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>30.3530</td>
<td>33.4010</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>38.9128</td>
<td>42.1640</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.48 Schedule DR325D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.25</td>
<td>39.1160</td>
<td>42.1640</td>
</tr>
<tr>
<td>1</td>
<td>1.50</td>
<td>45.2120</td>
<td>48.2600</td>
</tr>
<tr>
<td>2</td>
<td>2.00</td>
<td>56.6166</td>
<td>60.3250</td>
</tr>
<tr>
<td>3</td>
<td>2.50</td>
<td>68.5546</td>
<td>73.0250</td>
</tr>
<tr>
<td>4</td>
<td>3.00</td>
<td>83.4136</td>
<td>88.9000</td>
</tr>
<tr>
<td>5</td>
<td>3.50</td>
<td>95.3516</td>
<td>101.6000</td>
</tr>
<tr>
<td>6</td>
<td>4.00</td>
<td>107.2896</td>
<td>114.3000</td>
</tr>
<tr>
<td>7</td>
<td>5.00</td>
<td>132.6134</td>
<td>141.3002</td>
</tr>
<tr>
<td>8</td>
<td>6.00</td>
<td>157.9118</td>
<td>168.2750</td>
</tr>
<tr>
<td>9</td>
<td>8.00</td>
<td>205.6130</td>
<td>219.0750</td>
</tr>
<tr>
<td>10</td>
<td>10.00</td>
<td>256.2352</td>
<td>273.0500</td>
</tr>
<tr>
<td>11</td>
<td>12.00</td>
<td>303.9364</td>
<td>323.8500</td>
</tr>
<tr>
<td>12</td>
<td>14.00</td>
<td>333.7560</td>
<td>355.6000</td>
</tr>
<tr>
<td>13</td>
<td>16.00</td>
<td>381.4064</td>
<td>406.4000</td>
</tr>
<tr>
<td>14</td>
<td>18.00</td>
<td>429.0568</td>
<td>457.2000</td>
</tr>
<tr>
<td>15</td>
<td>20.00</td>
<td>476.7580</td>
<td>508.0000</td>
</tr>
<tr>
<td>16</td>
<td>24.00</td>
<td>572.1096</td>
<td>609.6000</td>
</tr>
<tr>
<td>17</td>
<td>30.00</td>
<td>715.1116</td>
<td>762.0000</td>
</tr>
<tr>
<td>18</td>
<td>36.00</td>
<td>858.1136</td>
<td>914.4000</td>
</tr>
</tbody>
</table>

### 4.3.49 Schedule DR41D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.0</td>
<td>84.5820</td>
<td>88.9000</td>
</tr>
<tr>
<td>1</td>
<td>3.5</td>
<td>96.6216</td>
<td>101.6000</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>108.7120</td>
<td>114.3000</td>
</tr>
<tr>
<td>3</td>
<td>5.0</td>
<td>134.3914</td>
<td>141.3002</td>
</tr>
<tr>
<td>4</td>
<td>6.0</td>
<td>160.0454</td>
<td>168.2750</td>
</tr>
<tr>
<td>5</td>
<td>8.0</td>
<td>208.4070</td>
<td>219.0750</td>
</tr>
<tr>
<td>6</td>
<td>10.0</td>
<td>259.7404</td>
<td>273.0500</td>
</tr>
<tr>
<td>7</td>
<td>12.0</td>
<td>308.0512</td>
<td>323.8500</td>
</tr>
<tr>
<td>8</td>
<td>14.0</td>
<td>338.2772</td>
<td>355.6000</td>
</tr>
<tr>
<td>9</td>
<td>16.0</td>
<td>386.5880</td>
<td>406.4000</td>
</tr>
<tr>
<td>10</td>
<td>18.0</td>
<td>434.8988</td>
<td>457.2000</td>
</tr>
</tbody>
</table>
### 4.3.50 Schedule DR64D2241

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>110.7440</td>
<td>114.3000</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>136.8806</td>
<td>141.3002</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>162.9918</td>
<td>168.2750</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>212.2170</td>
<td>219.0750</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>264.5156</td>
<td>273.0500</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>313.7408</td>
<td>323.8500</td>
</tr>
</tbody>
</table>

### 4.3.51 Schedule DR21D2241CTS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1.00</td>
<td>25.5270</td>
<td>28.575</td>
</tr>
<tr>
<td>1</td>
<td>1.25</td>
<td>31.6230</td>
<td>34.925</td>
</tr>
<tr>
<td>2</td>
<td>1.50</td>
<td>37.3634</td>
<td>41.275</td>
</tr>
<tr>
<td>3</td>
<td>2.00</td>
<td>48.8442</td>
<td>53.975</td>
</tr>
</tbody>
</table>

### 4.3.52 Schedule DR17D2241CTS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.75</td>
<td>19.1770</td>
<td>22.225</td>
</tr>
<tr>
<td>1</td>
<td>1.00</td>
<td>25.2222</td>
<td>28.575</td>
</tr>
<tr>
<td>2</td>
<td>1.25</td>
<td>30.8102</td>
<td>34.925</td>
</tr>
<tr>
<td>3</td>
<td>1.50</td>
<td>36.3982</td>
<td>41.275</td>
</tr>
<tr>
<td>4</td>
<td>2.00</td>
<td>47.6250</td>
<td>53.975</td>
</tr>
</tbody>
</table>

### 4.3.53 Schedule DR135D2241CTS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>12.8270</td>
<td>15.875</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>18.9230</td>
<td>22.225</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>24.3586</td>
<td>28.575</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>29.7434</td>
<td>34.925</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>35.1790</td>
<td>41.275</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>45.9994</td>
<td>53.975</td>
</tr>
</tbody>
</table>

### 4.3.54 Schedule DR11D2241CTS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>12.8270</td>
<td>15.875</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>18.1610</td>
<td>22.225</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>23.3934</td>
<td>28.575</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>28.5750</td>
<td>34.925</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>33.7566</td>
<td>41.275</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>44.1706</td>
<td>53.975</td>
</tr>
</tbody>
</table>

### 4.3.55 Schedule DR21D2241PIP
### 4.3.56 Schedule DR26D2241PIP

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>358.7496</td>
<td>14.9352</td>
</tr>
<tr>
<td>1</td>
<td>18</td>
<td>438.4802</td>
<td>18.2626</td>
</tr>
<tr>
<td>2</td>
<td>21</td>
<td>516.9154</td>
<td>21.5392</td>
</tr>
<tr>
<td>3</td>
<td>24</td>
<td>581.5330</td>
<td>24.2316</td>
</tr>
<tr>
<td>4</td>
<td>27</td>
<td>655.3962</td>
<td>27.3050</td>
</tr>
</tbody>
</table>

(continues on next page)

### 4.3.57 Schedule DR325D2241PIP

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>146.3548</td>
<td>4.8006</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>194.5132</td>
<td>6.3754</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>243.1288</td>
<td>7.9756</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>291.7444</td>
<td>9.5758</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>364.6932</td>
<td>11.9634</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>445.7954</td>
<td>14.6050</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>525.5514</td>
<td>17.2212</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>591.2358</td>
<td>19.3802</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>666.3182</td>
<td>21.8440</td>
</tr>
</tbody>
</table>

### 4.3.58 Schedule DR35D2241PIP

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>148.3360</td>
<td>3.0480</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>197.1548</td>
<td>4.0640</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>246.4308</td>
<td>5.0800</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>295.7068</td>
<td>6.0960</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>369.6716</td>
<td>7.6200</td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>451.8406</td>
<td>9.4742</td>
</tr>
<tr>
<td>6</td>
<td>21</td>
<td>532.6634</td>
<td>11.5824</td>
</tr>
<tr>
<td>7</td>
<td>24</td>
<td>599.2622</td>
<td>13.6652</td>
</tr>
<tr>
<td>8</td>
<td>27</td>
<td>675.3606</td>
<td>15.3670</td>
</tr>
</tbody>
</table>

### 4.3.59 Schedule DR41D2241PIP

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
<td>149.8600</td>
<td>3.0480</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>199.1360</td>
<td>4.0640</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>248.9200</td>
<td>5.0800</td>
</tr>
<tr>
<td>3</td>
<td>12</td>
<td>298.7040</td>
<td>6.0960</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>373.3800</td>
<td>7.6200</td>
</tr>
</tbody>
</table>

(continues on next page)
5 18 456.4126 475.0054 9.2964
6 21 538.0482 559.9938 10.9728
7 24 605.3074 629.9962 12.3444
8 27 682.1678 710.0062 13.9192

4.3.61 Schedule DR81D2241PIP

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 6</td>
<td>152.0952</td>
<td>155.956</td>
<td>1.9304</td>
</tr>
<tr>
<td>1 8</td>
<td>202.1332</td>
<td>207.264</td>
<td>2.5654</td>
</tr>
<tr>
<td>2 10</td>
<td>252.6792</td>
<td>259.080</td>
<td>3.2004</td>
</tr>
<tr>
<td>3 12</td>
<td>303.2252</td>
<td>310.896</td>
<td>3.8354</td>
</tr>
<tr>
<td>4 15</td>
<td>379.0188</td>
<td>388.620</td>
<td>4.8006</td>
</tr>
</tbody>
</table>

4.3.62 Schedule S40F441IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.250</td>
<td>9.2456</td>
<td>13.7160</td>
<td>2.2352</td>
</tr>
<tr>
<td>1 0.375</td>
<td>12.5222</td>
<td>17.1450</td>
<td>2.3114</td>
</tr>
<tr>
<td>2 0.500</td>
<td>15.7988</td>
<td>21.3360</td>
<td>2.7686</td>
</tr>
<tr>
<td>3 0.750</td>
<td>20.9296</td>
<td>26.6700</td>
<td>2.8702</td>
</tr>
<tr>
<td>4 1.000</td>
<td>26.6446</td>
<td>33.4010</td>
<td>3.3782</td>
</tr>
<tr>
<td>5 1.250</td>
<td>35.0520</td>
<td>42.1640</td>
<td>3.5560</td>
</tr>
<tr>
<td>6 1.500</td>
<td>40.8940</td>
<td>48.2600</td>
<td>3.6830</td>
</tr>
<tr>
<td>7 2.000</td>
<td>52.5018</td>
<td>60.3250</td>
<td>3.9116</td>
</tr>
<tr>
<td>8 2.500</td>
<td>62.7126</td>
<td>73.0250</td>
<td>5.1562</td>
</tr>
<tr>
<td>9 3.000</td>
<td>77.9272</td>
<td>88.9000</td>
<td>5.4864</td>
</tr>
<tr>
<td>10 3.500</td>
<td>90.1192</td>
<td>101.6000</td>
<td>5.7404</td>
</tr>
<tr>
<td>11 4.000</td>
<td>102.2604</td>
<td>114.3000</td>
<td>6.0198</td>
</tr>
<tr>
<td>12 5.000</td>
<td>128.1938</td>
<td>141.3002</td>
<td>6.5532</td>
</tr>
<tr>
<td>13 6.000</td>
<td>154.0510</td>
<td>168.2750</td>
<td>7.1120</td>
</tr>
<tr>
<td>14 8.000</td>
<td>202.7174</td>
<td>219.0750</td>
<td>8.1788</td>
</tr>
<tr>
<td>15 10.000</td>
<td>254.5080</td>
<td>273.0500</td>
<td>9.2710</td>
</tr>
<tr>
<td>16 12.000</td>
<td>303.2252</td>
<td>323.8500</td>
<td>10.3124</td>
</tr>
<tr>
<td>17 14.000</td>
<td>333.4004</td>
<td>355.6000</td>
<td>11.0998</td>
</tr>
<tr>
<td>18 16.000</td>
<td>381.0000</td>
<td>406.4000</td>
<td>12.7000</td>
</tr>
</tbody>
</table>

4.3.63 Schedule S80F441IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.250</td>
<td>7.6708</td>
<td>13.7160</td>
<td>3.0226</td>
</tr>
<tr>
<td>1 0.375</td>
<td>10.7442</td>
<td>17.1450</td>
<td>3.2004</td>
</tr>
<tr>
<td>2 0.500</td>
<td>13.8684</td>
<td>21.3360</td>
<td>3.7338</td>
</tr>
<tr>
<td>3 0.750</td>
<td>18.8468</td>
<td>26.6700</td>
<td>3.9116</td>
</tr>
<tr>
<td>4 1.000</td>
<td>24.3078</td>
<td>33.4010</td>
<td>4.5466</td>
</tr>
<tr>
<td>5 1.250</td>
<td>32.4612</td>
<td>42.1640</td>
<td>4.8514</td>
</tr>
<tr>
<td>6 1.500</td>
<td>38.1000</td>
<td>48.2600</td>
<td>5.0800</td>
</tr>
<tr>
<td>7 2.000</td>
<td>49.2506</td>
<td>60.3250</td>
<td>5.5372</td>
</tr>
<tr>
<td>8 2.500</td>
<td>59.0042</td>
<td>73.0250</td>
<td>7.0104</td>
</tr>
<tr>
<td>9 3.000</td>
<td>73.6600</td>
<td>88.9000</td>
<td>7.6200</td>
</tr>
<tr>
<td>10 3.500</td>
<td>85.4456</td>
<td>101.6000</td>
<td>8.0772</td>
</tr>
<tr>
<td>11 4.000</td>
<td>97.1804</td>
<td>114.3000</td>
<td>8.5598</td>
</tr>
<tr>
<td>12 5.000</td>
<td>122.2502</td>
<td>141.3002</td>
<td>9.5250</td>
</tr>
<tr>
<td>13 6.000</td>
<td>146.3294</td>
<td>168.2750</td>
<td>10.9728</td>
</tr>
<tr>
<td>14 8.000</td>
<td>193.6750</td>
<td>219.0750</td>
<td>12.7000</td>
</tr>
</tbody>
</table>
## 4.3.64 Schedule S40F441SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>9.22</td>
<td>13.7</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>12.48</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>15.76</td>
<td>21.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>20.96</td>
<td>26.7</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>26.64</td>
<td>33.4</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>35.08</td>
<td>42.2</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>40.94</td>
<td>48.3</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>52.48</td>
<td>60.3</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>62.68</td>
<td>73.0</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>77.92</td>
<td>88.9</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>90.12</td>
<td>101.6</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>102.26</td>
<td>114.3</td>
</tr>
<tr>
<td>12</td>
<td>125</td>
<td>128.20</td>
<td>141.3</td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>154.08</td>
<td>168.3</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>202.74</td>
<td>219.1</td>
</tr>
<tr>
<td>15</td>
<td>250</td>
<td>254.56</td>
<td>273.1</td>
</tr>
<tr>
<td>16</td>
<td>300</td>
<td>303.28</td>
<td>323.9</td>
</tr>
<tr>
<td>17</td>
<td>350</td>
<td>333.40</td>
<td>355.6</td>
</tr>
<tr>
<td>18</td>
<td>400</td>
<td>381.00</td>
<td>406.4</td>
</tr>
</tbody>
</table>

## 4.3.65 Schedule S80F441SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>8</td>
<td>7.66</td>
<td>13.7</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>10.70</td>
<td>17.1</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>13.84</td>
<td>21.3</td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td>18.88</td>
<td>26.7</td>
</tr>
<tr>
<td>4</td>
<td>25</td>
<td>24.30</td>
<td>33.4</td>
</tr>
<tr>
<td>5</td>
<td>32</td>
<td>32.50</td>
<td>42.2</td>
</tr>
<tr>
<td>6</td>
<td>40</td>
<td>38.14</td>
<td>48.3</td>
</tr>
<tr>
<td>7</td>
<td>50</td>
<td>49.22</td>
<td>60.3</td>
</tr>
<tr>
<td>8</td>
<td>65</td>
<td>58.98</td>
<td>73.0</td>
</tr>
<tr>
<td>9</td>
<td>80</td>
<td>73.66</td>
<td>88.9</td>
</tr>
<tr>
<td>10</td>
<td>90</td>
<td>85.44</td>
<td>101.6</td>
</tr>
<tr>
<td>11</td>
<td>100</td>
<td>97.18</td>
<td>114.3</td>
</tr>
<tr>
<td>12</td>
<td>125</td>
<td>122.26</td>
<td>141.3</td>
</tr>
<tr>
<td>13</td>
<td>150</td>
<td>146.36</td>
<td>168.3</td>
</tr>
<tr>
<td>14</td>
<td>200</td>
<td>193.70</td>
<td>219.1</td>
</tr>
<tr>
<td>15</td>
<td>250</td>
<td>242.98</td>
<td>273.1</td>
</tr>
<tr>
<td>16</td>
<td>300</td>
<td>289.00</td>
<td>323.9</td>
</tr>
<tr>
<td>17</td>
<td>350</td>
<td>317.50</td>
<td>355.6</td>
</tr>
<tr>
<td>18</td>
<td>400</td>
<td>364.12</td>
<td>406.4</td>
</tr>
</tbody>
</table>

## 4.3.66 Schedule DR325F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>107.28</td>
<td>114.3</td>
</tr>
</tbody>
</table>

(continued on next page)
### 4.3.67 Schedule DR26F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>4</td>
<td>105.52</td>
<td>114.30</td>
</tr>
<tr>
<td>1</td>
<td>5</td>
<td>130.44</td>
<td>141.30</td>
</tr>
<tr>
<td>2</td>
<td>6</td>
<td>155.32</td>
<td>168.28</td>
</tr>
<tr>
<td>3</td>
<td>8</td>
<td>202.22</td>
<td>219.08</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>252.07</td>
<td>273.05</td>
</tr>
<tr>
<td>5</td>
<td>12</td>
<td>298.95</td>
<td>323.85</td>
</tr>
<tr>
<td>6</td>
<td>14</td>
<td>328.26</td>
<td>355.60</td>
</tr>
<tr>
<td>7</td>
<td>16</td>
<td>375.16</td>
<td>406.40</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>422.04</td>
<td>457.20</td>
</tr>
<tr>
<td>9</td>
<td>20</td>
<td>467.56</td>
<td>508.00</td>
</tr>
<tr>
<td>10</td>
<td>22</td>
<td>515.82</td>
<td>558.80</td>
</tr>
<tr>
<td>11</td>
<td>24</td>
<td>562.72</td>
<td>609.60</td>
</tr>
<tr>
<td>12</td>
<td>26</td>
<td>609.60</td>
<td>660.40</td>
</tr>
<tr>
<td>13</td>
<td>28</td>
<td>656.48</td>
<td>711.20</td>
</tr>
<tr>
<td>14</td>
<td>30</td>
<td>703.38</td>
<td>762.00</td>
</tr>
<tr>
<td>15</td>
<td>32</td>
<td>750.26</td>
<td>812.80</td>
</tr>
<tr>
<td>16</td>
<td>34</td>
<td>797.16</td>
<td>863.60</td>
</tr>
<tr>
<td>17</td>
<td>36</td>
<td>844.04</td>
<td>914.40</td>
</tr>
<tr>
<td>18</td>
<td>42</td>
<td>984.76</td>
<td>1066.80</td>
</tr>
<tr>
<td>19</td>
<td>48</td>
<td>1125.42</td>
<td>1219.20</td>
</tr>
<tr>
<td>20</td>
<td>54</td>
<td>1266.08</td>
<td>1371.60</td>
</tr>
<tr>
<td>21</td>
<td>63</td>
<td>1477.10</td>
<td>1600.20</td>
</tr>
<tr>
<td>22</td>
<td>65</td>
<td>1524.00</td>
<td>1651.00</td>
</tr>
</tbody>
</table>

### 4.3.68 Schedule DR21F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>2.5</td>
<td>66.07</td>
<td>70.03</td>
</tr>
<tr>
<td>1</td>
<td>3.0</td>
<td>80.42</td>
<td>88.90</td>
</tr>
<tr>
<td>2</td>
<td>4.0</td>
<td>103.42</td>
<td>114.30</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.69 Schedule DR17F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0.50</td>
<td>18.10</td>
<td>21.34</td>
<td>1.58</td>
</tr>
<tr>
<td>1 0.75</td>
<td>22.71</td>
<td>26.67</td>
<td>1.98</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.71 Schedule DR11F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>17.48</td>
<td>21.34</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>21.85</td>
<td>26.67</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>27.30</td>
<td>33.40</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>34.48</td>
<td>42.16</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>39.48</td>
<td>48.26</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>49.35</td>
<td>60.33</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>59.77</td>
<td>73.03</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>72.74</td>
<td>88.90</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>93.52</td>
<td>114.30</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>115.60</td>
<td>141.30</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>137.70</td>
<td>168.28</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>179.26</td>
<td>219.08</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>223.41</td>
<td>273.05</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>264.97</td>
<td>323.85</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>290.94</td>
<td>355.60</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>332.48</td>
<td>406.40</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>374.10</td>
<td>457.20</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>415.64</td>
<td>508.00</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>457.20</td>
<td>558.80</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>498.76</td>
<td>609.60</td>
</tr>
<tr>
<td>20</td>
<td>26.00</td>
<td>540.30</td>
<td>660.40</td>
</tr>
<tr>
<td>21</td>
<td>28.00</td>
<td>586.74</td>
<td>711.20</td>
</tr>
<tr>
<td>22</td>
<td>30.00</td>
<td>623.46</td>
<td>762.00</td>
</tr>
<tr>
<td>23</td>
<td>32.00</td>
<td>665.02</td>
<td>812.80</td>
</tr>
<tr>
<td>24</td>
<td>34.00</td>
<td>706.58</td>
<td>863.60</td>
</tr>
<tr>
<td>25</td>
<td>36.00</td>
<td>748.14</td>
<td>914.40</td>
</tr>
</tbody>
</table>
### 4.3.72 Schedule DR9F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>16.62</td>
<td>21.34</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>20.73</td>
<td>26.67</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>25.98</td>
<td>33.40</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>32.82</td>
<td>42.16</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>37.54</td>
<td>48.26</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>46.91</td>
<td>60.33</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>56.83</td>
<td>73.03</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>69.14</td>
<td>88.90</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>88.90</td>
<td>114.30</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>109.90</td>
<td>141.30</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>130.90</td>
<td>168.28</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>170.42</td>
<td>219.08</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>212.39</td>
<td>273.05</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>251.87</td>
<td>323.85</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>276.56</td>
<td>355.60</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>316.08</td>
<td>406.40</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>355.60</td>
<td>457.20</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>395.12</td>
<td>508.00</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>434.64</td>
<td>558.80</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>474.12</td>
<td>609.60</td>
</tr>
<tr>
<td>20</td>
<td>26.00</td>
<td>513.64</td>
<td>660.40</td>
</tr>
<tr>
<td>21</td>
<td>28.00</td>
<td>553.16</td>
<td>711.20</td>
</tr>
<tr>
<td>22</td>
<td>30.00</td>
<td>592.68</td>
<td>762.00</td>
</tr>
</tbody>
</table>

### 4.3.73 Schedule DR73F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>15.50</td>
<td>21.34</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>19.35</td>
<td>26.67</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>24.26</td>
<td>33.40</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>30.62</td>
<td>42.16</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>35.06</td>
<td>48.26</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>43.81</td>
<td>60.33</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>53.03</td>
<td>73.03</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>64.56</td>
<td>88.90</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>83.00</td>
<td>114.30</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>102.58</td>
<td>141.30</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>122.16</td>
<td>168.28</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>159.04</td>
<td>219.08</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>198.23</td>
<td>273.05</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>235.11</td>
<td>323.85</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>258.16</td>
<td>355.60</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>295.04</td>
<td>406.40</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>331.92</td>
<td>457.20</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>368.80</td>
<td>508.00</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>405.68</td>
<td>558.80</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>442.56</td>
<td>609.60</td>
</tr>
</tbody>
</table>

### 4.3.74 Schedule DR7F2619SI

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>15.24</td>
<td>21.34</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.75 Schedule DR325F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>107.2896</td>
<td>114.3000</td>
<td>3.5052</td>
</tr>
<tr>
<td>1</td>
<td>132.6134</td>
<td>141.3002</td>
<td>4.3434</td>
</tr>
<tr>
<td>2</td>
<td>157.9118</td>
<td>168.2750</td>
<td>5.1816</td>
</tr>
<tr>
<td>3</td>
<td>205.6130</td>
<td>219.0750</td>
<td>6.7310</td>
</tr>
<tr>
<td>4</td>
<td>256.2352</td>
<td>273.0500</td>
<td>8.4074</td>
</tr>
<tr>
<td>5</td>
<td>303.9364</td>
<td>323.8500</td>
<td>9.9568</td>
</tr>
<tr>
<td>6</td>
<td>333.7052</td>
<td>355.6000</td>
<td>10.9474</td>
</tr>
<tr>
<td>7</td>
<td>381.4064</td>
<td>406.4000</td>
<td>12.4968</td>
</tr>
<tr>
<td>8</td>
<td>429.0568</td>
<td>457.2000</td>
<td>14.0716</td>
</tr>
<tr>
<td>9</td>
<td>476.7580</td>
<td>508.0000</td>
<td>15.6210</td>
</tr>
<tr>
<td>10</td>
<td>524.4084</td>
<td>558.8000</td>
<td>17.1958</td>
</tr>
<tr>
<td>11</td>
<td>572.1096</td>
<td>609.6000</td>
<td>18.7452</td>
</tr>
<tr>
<td>12</td>
<td>619.7600</td>
<td>660.4000</td>
<td>20.3200</td>
</tr>
<tr>
<td>13</td>
<td>667.4104</td>
<td>711.2000</td>
<td>21.8948</td>
</tr>
<tr>
<td>14</td>
<td>715.1116</td>
<td>762.0000</td>
<td>23.4442</td>
</tr>
<tr>
<td>15</td>
<td>762.7620</td>
<td>812.8000</td>
<td>25.0190</td>
</tr>
<tr>
<td>16</td>
<td>810.4632</td>
<td>863.6000</td>
<td>26.5684</td>
</tr>
<tr>
<td>17</td>
<td>858.1136</td>
<td>914.4000</td>
<td>28.1432</td>
</tr>
<tr>
<td>18</td>
<td>1001.1664</td>
<td>1066.8000</td>
<td>32.8168</td>
</tr>
<tr>
<td>19</td>
<td>1144.1684</td>
<td>1219.2000</td>
<td>37.5158</td>
</tr>
<tr>
<td>20</td>
<td>1287.1704</td>
<td>1371.6000</td>
<td>42.2148</td>
</tr>
<tr>
<td>21</td>
<td>1501.7496</td>
<td>1600.2000</td>
<td>49.2252</td>
</tr>
<tr>
<td>22</td>
<td>1549.4000</td>
<td>1651.0000</td>
<td>50.8000</td>
</tr>
</tbody>
</table>

### 4.3.76 Schedule DR26F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>105.5116</td>
<td>114.3000</td>
<td>3.5052</td>
</tr>
<tr>
<td>1</td>
<td>130.4290</td>
<td>141.3002</td>
<td>4.3434</td>
</tr>
<tr>
<td>2</td>
<td>155.3210</td>
<td>168.2750</td>
<td>5.1816</td>
</tr>
<tr>
<td>3</td>
<td>180.2094</td>
<td>219.0750</td>
<td>6.7310</td>
</tr>
<tr>
<td>4</td>
<td>205.0696</td>
<td>273.0500</td>
<td>8.4074</td>
</tr>
<tr>
<td>5</td>
<td>230.9580</td>
<td>323.8500</td>
<td>9.9568</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.77 Schedule DR21F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  2.5</td>
<td>66.0654</td>
<td>73.0250</td>
<td>3.4798</td>
</tr>
<tr>
<td>1  3.0</td>
<td>80.4164</td>
<td>88.9000</td>
<td>4.2418</td>
</tr>
<tr>
<td>2  4.0</td>
<td>103.4288</td>
<td>114.3000</td>
<td>5.4356</td>
</tr>
<tr>
<td>3  5.0</td>
<td>127.8382</td>
<td>141.3002</td>
<td>6.7310</td>
</tr>
<tr>
<td>4  6.0</td>
<td>152.2730</td>
<td>168.2750</td>
<td>8.0010</td>
</tr>
<tr>
<td>5  8.0</td>
<td>198.1962</td>
<td>219.0750</td>
<td>10.4394</td>
</tr>
<tr>
<td>6  10.0</td>
<td>247.0404</td>
<td>273.0500</td>
<td>13.0048</td>
</tr>
<tr>
<td>7  12.0</td>
<td>293.0144</td>
<td>323.8500</td>
<td>15.4178</td>
</tr>
<tr>
<td>8  14.0</td>
<td>321.7164</td>
<td>355.6000</td>
<td>16.9418</td>
</tr>
<tr>
<td>9  16.0</td>
<td>367.6904</td>
<td>406.4000</td>
<td>19.3548</td>
</tr>
<tr>
<td>10 18.0</td>
<td>413.6644</td>
<td>457.2000</td>
<td>21.7678</td>
</tr>
<tr>
<td>11 20.0</td>
<td>459.6384</td>
<td>508.0000</td>
<td>24.1808</td>
</tr>
<tr>
<td>12 22.0</td>
<td>505.5616</td>
<td>558.8000</td>
<td>26.6192</td>
</tr>
<tr>
<td>13 24.0</td>
<td>551.5356</td>
<td>609.6000</td>
<td>29.0322</td>
</tr>
<tr>
<td>14 26.0</td>
<td>597.5096</td>
<td>660.4000</td>
<td>31.4452</td>
</tr>
<tr>
<td>15 28.0</td>
<td>643.4836</td>
<td>711.2000</td>
<td>33.8582</td>
</tr>
<tr>
<td>16 30.0</td>
<td>689.4068</td>
<td>762.0000</td>
<td>36.2966</td>
</tr>
<tr>
<td>17 32.0</td>
<td>735.3808</td>
<td>812.8000</td>
<td>38.7096</td>
</tr>
<tr>
<td>18 34.0</td>
<td>781.3548</td>
<td>863.6000</td>
<td>41.1226</td>
</tr>
<tr>
<td>19 36.0</td>
<td>827.3288</td>
<td>914.4000</td>
<td>43.5356</td>
</tr>
<tr>
<td>20 42.0</td>
<td>965.2000</td>
<td>1066.8000</td>
<td>50.8000</td>
</tr>
<tr>
<td>21 48.0</td>
<td>1103.0712</td>
<td>1219.2000</td>
<td>58.0644</td>
</tr>
<tr>
<td>22 54.0</td>
<td>1240.9932</td>
<td>1371.6000</td>
<td>65.3034</td>
</tr>
<tr>
<td>23 63.0</td>
<td>1447.8000</td>
<td>1600.2000</td>
<td>76.2000</td>
</tr>
<tr>
<td>24 65.0</td>
<td>1493.7740</td>
<td>1651.0000</td>
<td>78.6130</td>
</tr>
</tbody>
</table>

### 4.3.78 Schedule DR17F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0  2.0</td>
<td>53.2130</td>
<td>60.3250</td>
<td>3.5560</td>
</tr>
<tr>
<td>1  2.5</td>
<td>64.4398</td>
<td>73.0250</td>
<td>4.2926</td>
</tr>
<tr>
<td>2  3.0</td>
<td>78.4352</td>
<td>88.9000</td>
<td>5.2324</td>
</tr>
<tr>
<td>3  4.0</td>
<td>100.8380</td>
<td>114.3000</td>
<td>6.7310</td>
</tr>
<tr>
<td>4  5.0</td>
<td>124.6886</td>
<td>141.3002</td>
<td>8.3058</td>
</tr>
<tr>
<td>5  6.0</td>
<td>148.4630</td>
<td>168.2750</td>
<td>9.9060</td>
</tr>
</tbody>
</table>
### 4.3.79 Schedule DR135F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>18.1864</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>22.7076</td>
<td>26.6700</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>28.4734</td>
<td>33.4010</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>35.9156</td>
<td>42.1640</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>41.0972</td>
<td>48.2600</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>51.3842</td>
<td>60.3250</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>62.2046</td>
<td>73.0250</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>75.7428</td>
<td>88.9000</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>97.3836</td>
<td>114.3000</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>120.3706</td>
<td>141.3002</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>143.3222</td>
<td>168.2750</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>186.6138</td>
<td>219.0750</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>232.6132</td>
<td>273.0500</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>275.8948</td>
<td>323.8500</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>302.9204</td>
<td>355.6000</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>346.2020</td>
<td>406.4000</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>389.4836</td>
<td>457.2000</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>432.7652</td>
<td>508.0000</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>475.9960</td>
<td>558.8000</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>519.2776</td>
<td>609.6000</td>
</tr>
<tr>
<td>20</td>
<td>26.00</td>
<td>562.5592</td>
<td>660.4000</td>
</tr>
<tr>
<td>21</td>
<td>28.00</td>
<td>605.8408</td>
<td>711.2000</td>
</tr>
<tr>
<td>22</td>
<td>30.00</td>
<td>649.1224</td>
<td>762.0000</td>
</tr>
<tr>
<td>23</td>
<td>32.00</td>
<td>692.4040</td>
<td>812.8000</td>
</tr>
<tr>
<td>24</td>
<td>34.00</td>
<td>735.6348</td>
<td>863.6000</td>
</tr>
<tr>
<td>25</td>
<td>36.00</td>
<td>778.9164</td>
<td>914.4000</td>
</tr>
<tr>
<td>26</td>
<td>42.00</td>
<td>908.7612</td>
<td>1066.8000</td>
</tr>
</tbody>
</table>

### 4.3.80 Schedule DR11F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>17.4752</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>21.8440</td>
<td>26.6700</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>27.3050</td>
<td>33.4010</td>
</tr>
</tbody>
</table>

(continues on next page)
### 4.3.81 Schedule DR9F2619IPS

<table>
<thead>
<tr>
<th>NPS</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>16.6116</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>20.7264</td>
<td>26.6700</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>25.9842</td>
<td>33.4010</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>32.8168</td>
<td>42.1640</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>37.5412</td>
<td>48.2600</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>46.9138</td>
<td>60.3250</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>56.8198</td>
<td>73.0250</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>69.1388</td>
<td>88.9000</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>88.9000</td>
<td>114.3000</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>109.9058</td>
<td>141.3002</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>130.8862</td>
<td>168.2750</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>170.4086</td>
<td>219.0750</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>212.3948</td>
<td>273.0500</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>251.8664</td>
<td>323.8500</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>276.5552</td>
<td>355.6000</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>316.0776</td>
<td>406.4000</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>355.6000</td>
<td>457.2000</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>395.1224</td>
<td>508.0000</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>434.6448</td>
<td>558.8000</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>474.1164</td>
<td>609.6000</td>
</tr>
<tr>
<td>20</td>
<td>26.00</td>
<td>513.6388</td>
<td>660.4000</td>
</tr>
<tr>
<td>21</td>
<td>28.00</td>
<td>553.1612</td>
<td>711.2000</td>
</tr>
<tr>
<td>22</td>
<td>30.00</td>
<td>592.6836</td>
<td>762.0000</td>
</tr>
</tbody>
</table>

### 4.3.82 Schedule DR73F2619IPS

<table>
<thead>
<tr>
<th>NPS</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>15.4940</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>19.3548</td>
<td>26.6700</td>
</tr>
</tbody>
</table>
### 4.3.83 Schedule DR7F2619IPS

<table>
<thead>
<tr>
<th>NPS, dimensionless</th>
<th>Inner diameter, mm</th>
<th>Outer diameter, mm</th>
<th>Thickness, mm</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.50</td>
<td>15.2400</td>
<td>21.3360</td>
</tr>
<tr>
<td>1</td>
<td>0.75</td>
<td>19.0500</td>
<td>26.6700</td>
</tr>
<tr>
<td>2</td>
<td>1.00</td>
<td>23.8506</td>
<td>33.4010</td>
</tr>
<tr>
<td>3</td>
<td>1.25</td>
<td>30.1244</td>
<td>42.1640</td>
</tr>
<tr>
<td>4</td>
<td>1.50</td>
<td>34.4932</td>
<td>48.2600</td>
</tr>
<tr>
<td>5</td>
<td>2.00</td>
<td>43.1038</td>
<td>57.0000</td>
</tr>
<tr>
<td>6</td>
<td>2.50</td>
<td>52.1462</td>
<td>63.5000</td>
</tr>
<tr>
<td>7</td>
<td>3.00</td>
<td>63.5000</td>
<td>88.9000</td>
</tr>
<tr>
<td>8</td>
<td>4.00</td>
<td>81.6356</td>
<td>114.3000</td>
</tr>
<tr>
<td>9</td>
<td>5.00</td>
<td>100.9142</td>
<td>141.3002</td>
</tr>
<tr>
<td>10</td>
<td>6.00</td>
<td>120.2182</td>
<td>168.2750</td>
</tr>
<tr>
<td>11</td>
<td>8.00</td>
<td>156.4894</td>
<td>219.0750</td>
</tr>
<tr>
<td>12</td>
<td>10.00</td>
<td>195.0212</td>
<td>273.0500</td>
</tr>
<tr>
<td>13</td>
<td>12.00</td>
<td>231.3432</td>
<td>323.8500</td>
</tr>
<tr>
<td>14</td>
<td>14.00</td>
<td>254.0000</td>
<td>355.6000</td>
</tr>
<tr>
<td>15</td>
<td>16.00</td>
<td>290.2712</td>
<td>406.4000</td>
</tr>
<tr>
<td>16</td>
<td>18.00</td>
<td>326.5932</td>
<td>457.2000</td>
</tr>
<tr>
<td>17</td>
<td>20.00</td>
<td>362.8644</td>
<td>508.0000</td>
</tr>
<tr>
<td>18</td>
<td>22.00</td>
<td>399.1356</td>
<td>558.8000</td>
</tr>
<tr>
<td>19</td>
<td>24.00</td>
<td>435.4068</td>
<td>609.6000</td>
</tr>
</tbody>
</table>
The *fluids* project has grown to be:

- **Efficient**
  - Functions do only the work required.
  - Caching various values, precomputing others.
  - Using various macros and automated expressions to run code with Numba at its optimal speed.
  - Not using Numpy/SciPy most of the time, allowing PyPy to speed code up.

- **Capable of vectorized computation**
  - Wrapped with numpy’s np.vectorize.
  - Wrapped with numba’s ufunc machinery.

- **Comprehensive**
  - Most correlations taught at the undergrad level are included.
  - Most ancillary calculations such as atmospheric properties tank geometry are included.

- **Capable of handling units**
  - Pint interface.
  - All docstrings/code in base SI units.

There is no official road map, no full time developers, and no commercial support for this library - this is a hobby project primarily by Caleb Bell. Contributors are welcome! Fluid dynamics is really big field and one author can’t do everything.

### 5.1 Scope and Future Features

The following is a list of things that have crossed the author’s mind as that would be cool in *fluids* and might make it there at some point. The author has no immediate plans to do any of this. Work by the author happens when inspiration...
- and free time - happens. Please feel free to work on any of these items:

• More pipe schedules. The author has been asked for EN 10255 in https://github.com/CalebBell/fluids/issues/16 and ASTM A269/A270 in an email.
• More fitting types.
• More tee/wye/junction correlations.
• More models for compressible flow, such as: https://www.mathworks.com/help/aerotbx/gas-dynamics-1.html
• Multiphase fitting pressure drop. Literature data is sparse.
• Multiphase flow meter pressure drop. One correlation has been added but there are more available.
• More multiphase flow maps.
• Pump viscosity correction from Hydraulic Institute.
• Tool to download historical weather data to calculate average historical temperatures and weather to use for design. This is partly complete in a non-exposed module design_climate.py.
• Models for mixing efficiency.
• Additional FPI correlations.

5.2 Contributing

fluids has a lot of infrastructure that makes it attractive to add code to the project. Adding new functionality is possible without compromising load speed, RAM usage or maintainability. If you have a fluids engineering correlation, please feel free to open a PR and we can make any changes needed. There is no template - just do your best.

In an ideal world, new contributions would come with unit tests, docstrings, an addition to the tutorial if relevant.

5.3 Running Tests

From the root directory of the project you downloaded with git clone https://github.com/CalebBell/fluids.git, run the following command:

python3 -m pytest .

This will run all of the tests including the doctests.

The test suite can take some time to run; tests are marked with various markers to allow a fast subset of tests to run.

python3 -m pytest -m “not slow” .

This should only take a few seconds, and show red output if a test is broken. To keep the main test suite fast, pytest allows a flag which shows how long each test takes.

python3 -m pytest -m “not slow” -durations=100

If a test you added appears in this list, consider splitting it into a fast portion and a slow portion.

5.4 Docstrings

The docstrings follow Pep8, most of the numpydoc standard, More information about numpydoc can be found here

In addition to being documentation, the docstrings in fluids serve the following purposes:
• Contain LaTeX math formulas for implemented formulas. This makes it easy for the reader and authors to follow code. This is especially important when the code can be optimized by hand significantly, and end up not looking like the math formulas.

• Contain doctests for every public method. These examples often make debugging really easy since they can just be copy-pasted into Jupyter or an IDE/debugger.

• Contain type information for each variable, which is automatically parsed by the unit handling framework around `pint`.

• Contain the units of each argument, which is used by the unit handling framework around `pint`.

• Contain docstrings for every argument - these are checked by the unit tests programatically to avoid forgetting to add a description, which the author did often before the checker was added.

No automated style tool is ran on the docstrings at present, but the following command was used once to format the docstrings with the tool `docformatter`

```
python3 -m docformatter --wrap-summaries=80 --wrap-descriptions=80 --in-place --recursive .
```

This does not quite match numpydoc’s recommended 75 character limit.

## 5.5 Doctest

As anyone who has used doctest before knows, floating-point calculations have trivially different results across platforms. An example cause of this is that most compilers have different sin/cos implementations which are not identical. However, docstrings are checked bit-for-bit, so consistent output is important. Python is better than most languages at maintaining the same results between versions but it is still an issue.

Thanks to a fairly new pytest feature, numbers in doctests can be checked against the number of digits given, not against the real result. It is recommended to put numbers in doctests with 13 digits, instead of the full `repr()` string for a number.

## 5.6 Type Hints

The python ecosystem is gradually adding support for type information, which may allow static analyzers to help find bugs in code even before it is ran. The author has not found these helpful in Python yet - the tools are too slow, missing features, and most libraries do not contain type information. However, type hints might still be useful for your program that uses `fluids`!

For that reason `fluids` includes a set of type hints as stub files (.pyi extension). These are not generated by hand - they use the cool `MonkeyType` library. An included script `make_test_stubs` interfaces with this library, which runs the test suite and at the end generates the type hints including the types of every argument to every function seen in the test suite. This is another reason comprehensive test suite coverage is required.

Monkeytype on the `fluids` test suite takes ~15 minutes to run, and generates a ~1 GB database file which is deleted at the end of the run. Some manipulation of the result by hand may be required in the future, or MonkeyType may be replaced by making the type hints by hand. It is planned to incorporate the type stubs into the main file at some point in the future when the tooling is better, and Python 2 support has been dropped completely.

**If you are contributing, the main developer can do this step for your contribution.**
5.7 Supported Python Versions

There is no plan to drop Python 2.7 support at present, but you are advised to use Python 3.5 or later. Both NumPy and SciPy have dropped support for Python 2.7 and eventually a backwards-incompatible change may be needed.

Fluids targets Python 2.7 and up as well as PyPy2 and PyPy3. Additionally, fluids has been tested by the author to load in IronPython, Jython, and Micropython.

Unfortunately there is no CI infrastructure for these other Python implementations. For IronPython, Jython, and Micropython there is no NumPy/SciPy which means there is no hope of passing the whole test suite on them either; indeed pytest won’t load on any of them. If you have a need for a specific feature to work in an implementation, don’t hesitate to reach out to the author to discuss it.

It is intended for IronPython to support everything except functionality which has a hard dependency on NumPy or SciPy. IronPython is currently Python 2 only; with the Python 3 variant being most of the way there. This may lead to integration with other programs in the future as IronPython is often used as a scripting language.

Micropython is designed to run on limited RAM, and fluids is too large for most microprocessors. You will likely have to copy/paste the specific parts of fluids you want to use for this application.

Jython is not very popular, but please reach out of you are using fluids with it.

5.8 Packaging

The most up to date fluids can be obtained on GitHub, and new releases are pushed to PyPi whenever a new release is made. Fluids is available on Conda thanks to Diego Volpato and on Debian and thus Ubuntu thanks to Kurt Kremitzki. Conda updates more or less automatically but takes hours to build.

5.9 Code Formatting

Pep8 is loosely followed. Do your best to follow it if possible, otherwise don’t worry about it. Please don’t submit a PR for just style changes. Some arguments like Method or classes like TANK are unfortunately not pep8 for historical reasons.

5.10 Documentation

Sphinx is used with readthedocs. Readthedocs is configured to build whatever is on the release branch. From the root of the fluids project, the documentation can be built with the following command, which will output html files into a “_build” folder:

sphinx-build -b html docs _build

5.11 Sample Notebooks

The nbval pytest plugin can be used to check the results of running the notebooks against the stored notebooks.

On UNIX/Mac OS/WSL, the notebook results can be regenerated with the following shell command, from the directory with the notebooks:

for i in *.ipynb ; do python3 -m jupyter nbconvert --to notebook --inplace --execute “Si” ; done
5.12 Continuous Integration

Travis and Appveyor are presently used. They test only code in the *release* branch. Some tests, like those that download data from the internet, are not ran by design on their platforms. The same goes for testing *numba* online - getting an up to date version of numba is challenging.

5.13 Load Speed

On CPython, *fluids* will load Numpy on load if it is available and *SciPy* when it is needed. Numpy loads in ~150 ms. Fluids alone loads in ~10 ms. It is intended for this to increase only slowly.

5.14 RAM Usage

Loading fluids alone takes ~4 MB of RAM. Most of this is actually docstrings. About 200 KB of pipe schedules, 100 KB of pump information, and 200 KB of Sieve data is also included. Using fluids should not increase RAM except by the size of objects you initiate; the only things cached are very small.

Adding new data and methods is well worth the price of increasing RAM, but it is intended to keep RAM consumption small via lazy-loading any large data sets. Examples of this can be found in atmosphere.py - spa.py and nrlmsie00.py are lazy-loaded.

It is intended for RAM consumption of the library to increase only slowly.

5.15 Notes on Pint Integration Implementation

Units in square brackets in the docstrings are parsed for all function inputs and outputs. They are parsed by Pint directly.

In some cases, a function has a variable output unit, as in the case of solvers which can solve for different variables. In that case, the variable unit shouldn’t put anything in square brackets. Instead, in *units.py*, the variable `variable_output_unit_funcs` needs to have an entry for the new function. The return unit will be based on which variables are not provided as inputs to the function. True represents a present variable, and False represents a variable left as None. The number of variables the dispatch happens on can be less than the number of function arguments, and should be specified after the units signature.

5.16 Notes on PyPy

PyPy is really awesome!

It does have some drawbacks today:

- The C-API which is used by NumPy, SciPy get 2-3 times slower in PyPy. This is originally why *fluids* started implementing its own numerical methods sometimes, although now it is for custom features and increased speed. There is a project to solve this issue: https://github.com/pyhandle/hpy
- If running code only a few times, PyPy won’t be able to accelerate it as it is a Just In Time Compiler.
- Sometimes something gets speed up by PyPy some of the time, but not all of the time.
- Uses more memory, typically 1.5x.
• Not as good as Numba at generating vectorized, SIMD instructions for the CPU. PyPy also isn’t as good at inlining small functions.

The main pros of PyPy are:

• Really, really fast. Some functions literally save 98% of their time by running in PyPy, although 85% is more typical.
• Accelerates ALL of your code, not a little like numba.
• For scalar functions PyPy is typically quite a bit faster than numba.
• Doesn’t need special handling, does everything CPython can do.
• Doesn’t need a special coding style!

A few compromises in the library to make PyPy more performant were made:

• Use the \sqrt{} operator to compute powers as much as possible. \sqrt{} and a few multiplies is much cheaper than a power operator. This is not really noticeable on CPython, but you can tell in PyPy. CPUs have special hardware to make this computation very cheap.

5.17 Notes on Numba

The main pros of Numba are:

• Works with CPython.
• Pretty good at generating SIMD instructions.
• Fast. Gets all the benefits that LLVM gets. This means if you include a line of code that does nothing in your function, it probably won’t run once compiled with numba.

The main cons of Numba are:

• Doesn’t come close to supporting all of Python. This really hurts on things like dictionary lookups or functions that return dictionaries.
• Not available on many platforms, used to require Anaconda.
• Some code can be really, really slow to compile today. Compiling fluids with numba takes ~3 minutes today, after some optimizations.
• Can be a pain to work with. Has crashes, and still feels immature.

Quite a few compromises in the library were made to add Numba compatibility and in cases to make Numba even more performant:

• A series of numba pragmas were invented and are interpreted by a loader that recompiles the transformed source code of fluids.
• Functions that accept functions as arguments or use scipy.special functions are not compatible with Numba’s caching implementation at this time. To avoid having complaints about that, they are added to a list in numba.py.
• Numba does not support raising exceptions with dynamically created messages. Where possible, this means using a constant message.
• Sometimes the only way to do something is by changing the code directly. Append “# numba: delete” at the end of a line in a function to delete the line. Add a new commented out line, and append “# numba: uncomment” to it. Then put the name of that function in the variable to_change in numba.py, and the changes will be made when using the Numba interface.
• 1D arrays should be initialized like [0.0]*4, [my_thing]*my_count; and they put the function in the same to_change variable. This will transform them into the right type of array for Numba.

5.18 Things to Keep In Mind While Coding

1. Python is often ran with the -O or -OO flag. This reduces its memory use and increases performance a little. One of those optimizations is that any assert statements in python code are skipped. This means they should not be used to control a program’s flow. This is normally the equivalent of using a Release build vs. a Debug build in C++.

2. Numpy arrays and functions should be used with care. They will make that portion of the code not run on some implementations, and will add a dependency on NumPy for that function. If it is a vectorization issue, consider letting Numba or PyPy accelerate it for you. If it about using some fancy functionality like a fourier transform, then NumPy is the right choice!
Get the latest version of fluids from https://pypi.python.org/pypi/fluids/

If you have an installation of Python with pip, simple install it with:

$ pip install fluids

Alternatively, if you are using conda as your package management, you can simply install fluids in your environment from conda-forge channel with:

$ conda install -c conda-forge fluids

To get the git version, run:

$ git clone git://github.com/CalebBell/fluids.git
CHAPTER 7

Latest source code

The latest development version of fluids’s sources can be obtained at

https://github.com/CalebBell/fluids
Bug reports

To report bugs, please use the fluids's Bug Tracker at:

https://github.com/CalebBell/fluids/issues

If you have further questions about the usage of the library, feel free to contact the author at Caleb.Andrew.Bell@gmail.com.
Fluids is MIT licensed. See LICENSE.txt for full information on the terms & conditions for usage of this software, and a DISCLAIMER OF ALL WARRANTIES.

Although not required by the fluids license, if it is convenient for you, please cite fluids if used in your work. Please also consider contributing any changes you make back, such that they may be incorporated into the main library and all of us will benefit from them.
To cite fluids in publications use:

Caleb Bell (2016-2020). fluids: Fluid dynamics component of Chemical Engineering Design Library (ChEDL)
https://github.com/CalebBell/fluids.
CHAPTER 11

Indices and tables

- genindex
- modindex
- search


[1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft

[1] ISA-75.01.01-2007 (60534-2-1 Mod) Draft


[1] HI 1.3 Rotodynamic Centrifugal Pumps for Design and Applications


Bibliography


Python Module Index

f
fluids.atmosphere, 29
fluids.compressible, 43
fluids.control_valve, 65
fluids.core, 77
fluids.drag, 115
fluids.filters, 131
fluids.fittings, 134
fluids.flow_meter, 187
fluids.friction, 213
fluids.geometry, 259
fluids.jet_pump, 307
fluids.mixing, 310
fluids.open_flow, 317
fluids.packed_bed, 324
fluids.packed_tower, 339
fluids.particle_size_distribution, 348
fluids.piping, 375
fluids.pump, 378
fluids.safety_valve, 385
fluids.saltation, 396
fluids.separator, 392
fluids.two_phase, 402
fluids.two_phase_voidage, 430
A
A_cross_sectional() (fluids.geometry.TANK method), 262
A_cylinder() (in module fluids.geometry), 302
A_hollow_cylinder() (in module fluids.geometry), 303
A_multiple_hole_cylinder() (in module fluids.geometry), 304
A_partial_circle() (in module fluids.geometry), 290
a_torispherical() (in module fluids.geometry), 286
add_thickness() (fluids.geometry.TANK method), 263
agitator_time_homogeneous() (in module fluids.mixing), 310
AirCooledExchanger (class in fluids.geometry), 272
airmass() (in module fluids.atmosphere), 34
Almedeij() (in module fluids.drag), 129
Alshul_1952() (in module fluids.friction), 225
API520_A_g() (in module fluids.safety_valve), 390
API520_A_steam() (in module fluids.safety_valve), 391
API520_B() (in module fluids.safety_valve), 389
API520_C() (in module fluids.safety_valve), 385
API520_F2() (in module fluids.safety_valve), 386
API520_Kv() (in module fluids.safety_valve), 387
API520_N() (in module fluids.safety_valve), 388
API520_round_size() (in module fluids.safety_valve), 385
API520_SH() (in module fluids.safety_valve), 388
API520_W() (in module fluids.safety_valve), 389
Archimedes() (in module fluids.core), 101
Armand() (in module fluids.two_phase_voidage), 435
aspect_ratio() (in module fluids.geometry), 301
ASTM_E11_sieves (in module fluids.particle_size_distribution), 374
ATMOSPHERE_1976 (class in fluids.atmosphere), 29
ATMOSPHERE_NRLMSISE00 (class in fluids.atmosphere.ATMOSPHERE_NRLMSISE00 attribute), 34
Avci_Karagoz_2009() (in module fluids.friction), 238

B
Bankoff() (in module fluids.two_phase), 427
Barati() (in module fluids.drag), 120
Barati_high() (in module fluids.drag), 120
Baroczy() (in module fluids.two_phase_voidage), 437
Baroczy_Chisholm() (in module fluids.two_phase), 413
Barr_1981() (in module fluids.friction), 231
Beattie_Whalley() (in module fluids.two_phase), 451
Blasius() (in module fluids.friction), 241
Boiling() (in module fluids.core), 100
Biot() (in module fluids.core), 93
Brauer() (in module fluids.packed_bed), 329
Brkic_2011_1() (in module fluids.friction), 239
Brkic_2011_2() (in module fluids.friction), 240
Buzzelli_2008() (in module fluids.friction), 238

C
C2F() (in module fluids.core), 112
C2K() (in module fluids.core), 111
C2R() (in module fluids.core), 113
delta_cdf() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 350
density() (fluids_atmosphere.ATMOSPHERE_1976 static method), 31
density_two_phase() (in module fluids.two_phase_voidage), 451
di_power() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 359
diameter() (fluids.geometry.HyperbolicCoolingTower method), 272
diameter_ratio_cone_meter() (in module fluids.flow_meter), 200
diameter_ratio_wedge_meter() (in module fluids.flow_meter), 200
differential_pressure_meter_beta() (in module fluids.flow_meter), 208
differential_pressure_meter_C_epsilon() (in module fluids.flow_meter), 207
differential_pressure_meter_dp() (in module fluids.flow_meter), 191
differential_pressure_meter_solver() (in module fluids.flow_meter), 189
diffuser_conical() (in module fluids.fittings), 143
diffuser_conical_staged() (in module fluids.fittings), 146
diffuser_curved() (in module fluids.fittings), 146
diffuser_pipe_reducer() (in module fluids.fittings), 147
diffuser_sharp() (in module fluids.fittings), 142
Dis (fluids.particle_size_distribution.ParticleSizeDistributionContinuous attribute), 359
discharge_coefficient_to_K() (in module fluids.flow_meter), 193
Dix() (in module fluids.two_phase_voidage), 446
dn() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 350
Domanski_Didion() (in module fluids.two_phase_voidage), 439
dP_cone_meter() (in module fluids.flow_meter), 202
dP_demister_dry_Setekleiv_Svendsen() (in module fluids.packed_tower), 343
dP_demister_dry_Setekleiv_Svendsen_lit() (in module fluids.packed_tower), 344
dP_demister_wet_ELDesouky() (in module fluids.packed_tower), 345
dP_from_K() (in module fluids.core), 108
dP_orifice() (in module fluids.flow_meter), 194
dP_packed_bed() (in module fluids.packed_bed), 324
dP_packed_bed_methods() (in module fluids.packed_bed), 324
dP Reader_Harris_Gallagher_wet_venturi_tube() (in module fluids.flow_meter), 206
dP_venturi_tube() (in module fluids.flow_meter),

dP_wedge_meter() (in module fluids.flow_meter), 204
Drag() (in module fluids.core), 98
drag_sphere() (in module fluids.drag), 115
drag_sphere_methods() (in module fluids.drag),
ds_discrete() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 351
Duckler() (in module fluids.two_phase_voidage), 455

E
earthsun_distance() (in module fluids.atmosphere), 40
Eck_1973() (in module fluids.friction), 227
Eckert() (in module fluids.core), 95
Engelund_Hansen() (in module fluids.drag), 121
entranceangled() (in module fluids.fittings), 151
entrancebeveled() (in module fluids.fittings), 154
entrancebeveledorifice() (in module fluids.fittings), 156
entrancedistance() (in module fluids.fittings), 149
entrancedistance45_Miller() (in module fluids.fittings), 156
entrancerounded() (in module fluids.fittings), 151
entrancesharp() (in module fluids.fittings), 148
Eotvos() (in module fluids.core), 110
Erdim_Akgiray_Demir() (in module fluids.packed_bed), 331
Ergun() (in module fluids.packed_bed), 325
Euler() (in module fluids.core), 94
exitnormal() (in module fluids.fittings), 157

F
F2C() (in module fluids.core), 112
F2K() (in module fluids.core), 112
F2R() (in module fluids.core), 114
f_from_K() (in module fluids.core), 109
Fahien_Schriver() (in module fluids.packed_bed), 331
Fang_2011() (in module fluids.friction), 240
Fauske() (in module fluids.two_phase_voidage), 432
FF_critical_pressure_ratio_l() (in module fluids.control_valve), 68
fit() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 359
Flemmer_Banks() (in module fluids.drag), 124
flow_coefficient() (in module fluids.flow_meter), 195
flow_meter_discharge() (in module fluids.flow_meter), 191
fluids_atmosphere (module), 29
fluids.compressible (module), 43
fluids.control_valve (module), 65
fluids.core (module), 77
fluids.drag (module), 115
fluids.filters (module), 131
fluids.flow_meter (module), 187
fluids.friction (module), 213
fluids.geometry (module), 259
fluids.jet_pump (module), 307
fluids.mixing (module), 310
fluids.open_flow (module), 317
fluids.packed_bed (module), 324
fluids.packed_tower (module), 339
fluids.particle_size_distribution (module), 348
fluids.piping (module), 375
fluids.pump (module), 378
fluids.safety_valve (module), 385
fluids.saltation (module), 396
fluidsseparator (module), 392
fluids.two_phase (module), 402
fluids.two_phase_voidage (module), 430
Fourier_Bories() (in module fluids.two_phase_voidage), 454
Fourier_heat() (in module fluids.core), 84
Fourier_mass() (in module fluids.core), 85
fractions_discrete() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 352
freq (fluids.pump.CountryPower attribute), 385
friction_factor() (in module fluids.friction), 213
friction_factor_curved() (in module fluids.friction), 215
friction_factor_curved_methods() (in module fluids.friction), 217
friction_factor_methods() (in module fluids.friction), 214
friction_laminar() (in module fluids.friction), 219
friction_plate_Kumar() (in module fluids.friction), 258
friction_plate_Martin_1999() (in module fluids.friction), 256
friction_plate_Martin_VDI() (in module fluids.friction), 257
friction_plate_Muley_Manglik() (in module fluids.friction), 258
Friedel() (in module fluids.two_phase), 409
Fritzsche() (in module fluids.compressible), 50
from_two_specs() (fluids.geometry.TANK static method), 263
Froude() (in module fluids.core), 90
Froude_densimetric() (in module fluids.core), 91
ft_Crane() (in module fluids.friction), 243
G
gas_liquid_viscosity() (in module fluids.two_phase_voidage), 457
gas_liquid_viscosity_methods() (in module fluids.two_phase_voidage), 458
gauge_from_t() (in module fluids.piping), 376
Geldart_Ling() (in module fluids.saltation), 401
Graetz_heat() (in module fluids.core), 85
Graf() (in module fluids.drag), 123
Graham() (in module fluids.two_phase_voidage), 440
Grashof() (in module fluids.core), 79
gavity() (fluids.atmosphere.ATMOSPHERE_1976 static method), 31
gavity() (in module fluids.core), 106
Gregory_Scott() (in module fluids.two_phase_voidage), 446
Gronnerud() (in module fluids.two_phase), 416
Guo_Sun() (in module fluids.packed_bed), 336
Guzhov() (in module fluids.two_phase_voidage), 436
H
h_from_V() (fluids.geometry.TANK method), 264
Haaland() (in module fluids.friction), 233
Hagen() (in module fluids.core), 103
Haider_Levenspiel() (in module fluids.drag), 126
Harms() (in module fluids.two_phase_voidage), 438
Harrison_Brunner_Hecker() (in module fluids.packed_bed), 334
head_from_K() (in module fluids.core), 109
head_from_P() (in module fluids.core), 109
helical_laminar_fd_Mori_Nakayama() (in module fluids.friction), 245
helical_laminar_fd_Schmidt() (in module fluids.friction), 246
helical_laminar_fd_White() (in module fluids.friction), 245
helical_Re_crit() (in module fluids.friction), 216
helical_transition_Re_Ito() (in module fluids.friction), 253
helical_transition_Re_Kubair_Kuloor() (in module fluids.friction), 253
helical_transition_Re_Kutateladze_Borishanskii() (in module fluids.friction), 254
helical_transition_Re_Schmidt() (in module fluids.friction), 254
helical_transition_Re_Seth_Stahel() (in module fluids.friction), 252
helical_transition_Re_Srinivasan() (in module fluids.friction), 255
helical_turbulent_fd_Czop() (in module fluids.friction), 249
helical_turbulent_fd_Guo() (in module fluids.friction), 250
helical_turbulent_fd_Ju() (in module fluids.friction), 250
helical_turbulent_fd_Mandal_Nigam() (in module fluids.friction), 252
helical_turbulent_fd_Mori_Nakayama() (in module fluids.friction), 248
helical_turbulent_fd_Prasad() (in module fluids.friction), 248
helical_turbulent_fd_Schmidt() (in module fluids.friction), 247
helical_turbulent_fd_Srinivasan() (in module fluids.friction), 251
HelicalCoil (class in fluids.geometry), 265
helix() (in module fluids.fittings), 164
Hicks() (in module fluids.packed_bed), 328
homogeneous() (in module fluids.two_phase_voidage), 434
Hooper2K() (in module fluids.fittings), 166
Huq_Loth() (in module fluids.two_phase_voidage), 441
Hwang_Kim() (in module fluids.two_phase), 424
hwm14() (in module fluids.atmosphere), 42
hwm93() (in module fluids.atmosphere), 41
HyperbolicCoolingTower (class in fluids.geometry), 270
Idelchik() (in module fluids.packed_bed), 333
IGT() (in module fluids.compressible), 53
interpolate_drag_sphere() (in module fluids.drag), 117
interpolated(fluids.particle_size_distribution.ParticleSizeDistribution.attribute), 359
is_choked_turbulent_G() (in module fluids.control_valve), 69
is_choked_turbulent_L() (in module fluids.control_valve), 69
is_critical_flow() (in module fluids.compressible), 62
isentropic_efficiency() (in module fluids.compressible), 58
isentropic_T_rise_compression() (in module fluids.compressible), 59
isentropic_work_compression() (in module fluids.compressible), 57
ISO_3310_1_R10 (in module fluids.particle_size_distribution), 374
ISO_3310_1_R20 (in module fluids.particle_size_distribution), 374
ISO_3310_1_R20_3 (in module fluids.particle_size_distribution), 374
ISO_3310_1_R40_3 (in module fluids.particle_size_distribution), 374
ISO_3310_1_sieves (in module fluids.particle_size_distribution), 374
isothermal_gas() (in module fluids.compressible), 54
isothermal_work_compression() (in module fluids.compressible), 55
J
Jain_1976() (in module fluids.friction), 228
Jakob() (in module fluids.core), 96
Jones_Krier() (in module fluids.packed_bed), 327
Jung_Radermacher() (in module fluids.two_phase), 418
K
K2C() (in module fluids.core), 111
K2F() (in module fluids.core), 113
K2R() (in module fluids.core), 113
K_angle_stop_check_valve_Crane() (in module fluids.fittings), 177
K_angle_valve_Crane() (in module fluids.fittings), 173
K_ball_valve_Crane() (in module fluids.fittings), 178
K_branch_converging_Crane() (in module fluids.fittings), 182
K_branch_diverging_Crane() (in module fluids.fittings), 184
K_butterfly_valve_Crane() (in module fluids.fittings), 180
K_diaphragm_valve_Crane() (in module fluids.fittings), 179
K_foot_valve_Crane() (in module fluids.fittings), 180
K_from_f() (in module fluids.core), 106
K_from_L_equiv() (in module fluids.core), 107
K_gate_valve_Crane() (in module fluids.fittings), 172
K_globe_stop_check_valve_Crane() (in module fluids.fittings), 177
K_globe_valve_Crane() (in module fluids.fittings), 174
K_lift_check_valve_Crane() (in module fluids.fittings), 175
K_motionless_mixer() (in module fluids.mixing), 314
K_plug_valve_Crane() (in module fluids.fittings), 181
K_run_converging_Crane() (in module fluids.fittings), 183
K_run_diverging_Crane() (in module fluids.fittings), 185

Index
K_separator_demister_York() (in module fluids.separator), 394
K_separator_Watkins() (in module fluids.separator), 393
K_Sounders_Brown_theoretical() (in module fluids.separator), 395
K_swing_check_valve_Crane() (in module fluids.fittings), 174
K_tilting_disk_check_valve_Crane() (in module fluids.fittings), 176
K_to_Cv() (in module fluids.fittings), 171
K_to_discharge_coefficient() (in module fluids.flow_meter), 193
K_to_Kv() (in module fluids.fittings), 169
Kawahara() (in module fluids.two_phase_voidage), 436
Khan_Richardson() (in module fluids.drag), 124
Kim_Mudawar() (in module fluids.two_phase), 412
Knudsen() (in module fluids.core), 88
Kopte_Newell_Chato() (in module fluids.two_phase_voidage), 442
Kp_helical_ribbon_Rieger() (in module fluids_two_phase Voidage), 311
KTA() (in module fluids.packed_bed), 330
Kuo_Nydegger() (in module fluids.packed_bed), 326
Kv_to_Cv() (in module fluids.fittings), 167
Kv_to_K() (in module fluids.fittings), 168

L
L_equiv_from_K() (in module fluids.core), 107
L_from_K() (in module fluids.core), 108
LAMINAR_TRANSITIONPIPE (in module fluids.friction), 256
Lewis() (in module fluids.core), 86
Lin_Kwok() (in module fluids.two_phaseVoidage), 453
liquid_gas Voidage() (in module fluids.two_phaseVoidage), 455
liquid_gas Voidage_methods() (in module fluids_two_phase Voidage), 456
liquid_jet_pump() (in module fluids.jet_pump), 307
liquid_jet_pump_ancillary() (in module fluids.jet_pump), 309
Lockhart_Martinelli() (in module fluids.two_phase), 408
Lockhart_Martinelli_Xtt() (in module fluids_two_phaseVoidage), 449
Lombardi_Pedrocchi() (in module fluids_two_phase), 417
loss_coefficient_piping() (in module fluids.control Valve), 71

M
Mach() (in module fluids.core), 87
Manadilli_1997() (in module fluids.fricition), 235
Mandhane_Gregory_Aziz_regime() (in module fluids.two_phase), 428
material_roughness() (in module fluids.fricition), 223
Matsumoto_1974() (in module fluids.saltation), 397
Matsumoto_1975() (in module fluids.saltation), 398
Matsumoto_1977() (in module fluids.saltation), 398
McAdams() (in module fluids.two_phase_voidage), 452
mean_size() (fluids.particle_size_distribution.ParticleSizeDistribution method), 359
mean_size() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 352
mean_size() (fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 353
Mikhailov_Freire() (in module fluids.drag), 127
Mishima_Hibi1() (in module fluids.two_phase), 426
Montillet_Akkari_Comiti() (in module fluids.packed_bed), 335
Moody() (in module fluids.fricition), 225
Morrison() (in module fluids.drag), 130
Morsi_Alexander() (in module fluids.drag), 122
Morton() (in module fluids.core), 90
motor_efficiency_underloaded() (in module fluids.pump), 380
motor_round_size() (in module fluids.pump), 383
Muller() (in module fluids.compressible), 51
Muller_Steinhagen_Heck() (in module fluids_two_phase), 416
MWs (fluids.atmosphere.ATMOSPHERE_NRLMSISE00 attribute), 34

N
n_Manning_to_C_Chezy() (in module fluids.open_flow), 322
name (fluids.particle_size_distribution.ParticleSizeDistribution attribute), 362
name (fluids.particle_size_distribution.PSDCustom attribute), 366
name (fluids.particle_size_distribution.PSDGatesGaudinSchuhman attribute), 365
name (fluids.particle_size_distribution.PSDInterpolated attribute), 363
name (fluids.particle_size_distribution.PSDLognormal attribute), 364
name (fluids.particle_size_distribution.PSRosinRammel attribute), 366
nearest_material_roughness() (in module fluids.friction), 223
nearest_pipe() (in module fluids.piping), 375
nema_sizes (in module fluids.pump), 383
nema_sizes_hp (in module fluids.pump), 383
Nicklin_Wilkes_Davidson() (in module fluids.two_phase_voidage), 445
Nishino_Yamazaki() (in module fluids.two_phase_voidage), 435
nozzle_expansibility() (in module fluids.flow_meter), 196
nu_mu_converter() (in module fluids.core), 105
Nusselt() (in module fluids.core), 80

Ohnesorge() (in module fluids.core), 102
Oliphant() (in module fluids.compressible), 49
one_phase_dP() (in module fluids.friction), 220
one_phase_dP_acceleration() (in module fluids.friction), 222
one_phase_dP_dz_acceleration() (in module fluids.friction), 221
one_phase_dP_gravitational() (in module fluids.friction), 220
orifice_expansibility() (in module fluids.flow_meter), 192
orifice_expansibility_1989() (in module fluids.flow_meter), 198

P
P_critical_flow() (in module fluids.compressible), 60
P_from_head() (in module fluids.core), 110
P_isothermal_critical_flow() (in module fluids.compressible), 61
P_stagnation() (in module fluids.compressible), 63
Panhandle_A() (in module fluids.compressible), 43
Panhandle_B() (in module fluids.compressible), 44
Papaevangelo_2010() (in module fluids.friction), 239
ParticleSizeDistribution (class in module fluids.particle_size_distribution), 357
ParticleSizeDistributionContinuous (class in module fluids.particle_size_distribution), 348
pdf() (in module fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 355
pdf_Gates_Gaudin_Schuhman() (in module fluids.particle_size_distribution), 369
pdf_Gates_Gaudin_Schuhman_basis_integral() (in module fluids.particle_size_distribution), 370
pdf_lognormal() (in module fluids.particle_size_distribution), 367
pdf_lognormal_basis_integral() (in module fluids.particle_size_distribution), 368
pdf_Rosin_Rammler() (in module fluids.particle_size_distribution), 371
pdf_Rosin_Rammler_basis_integral() (in module fluids.particle_size_distribution), 372
Peclet_heat() (in module fluids.core), 82
Peclet_mass() (in module fluids.core), 83
pitch_angle_solver() (in module fluids.geometry), 305
plate_enlargement_factor() (in module fluids.geometry), 306
plate_exchanger_identifier (fluids.geometry.PlateExchanger attribute), 268
PlateExchanger (class in fluids.geometry), 267
plot() (in module fluids.geometry.HyperbolicCoolingTower method), 272
plot_cdf() (in module fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 355
plot_pdf() (in module fluids.particle_size_distribution.ParticleSizeDistributionContinuous method), 356
plugs (in module fluids.pump.CountryPower attribute), 385
points (in module fluids.particle_size_distribution.ParticleSizeDistributionContinuous attribute), 362
points (in module fluids.particle_size_distribution.PSDCustom attribute), 366
points (in module fluids.particle_size_distribution.PSDGatesGaudinSchuhman attribute), 365
points (in module fluids.particle_size_distribution.PSDInterpolated attribute), 363
points (in module fluids.particle_size_distribution.PSDLognormal attribute), 364
points (in module fluids.particle_size_distribution.PSDRosinRammler attribute), 366
polytropic_exponent() (in module fluids.compressible), 56
Power_number() (in module fluids.core), 96
Prandtl() (in module fluids.core), 78
Prandtl_von_Karman_Nikuradse() (in module fluids.friction), 242
pressure_integral() (in module fluids.atmosphere.ATMOSPHERE_1976 static method), 31
psd_spacing() (in module fluids.particle_size_distribution), 375
PSDCustom (class in module fluids.particle_size_distribution), 366
PSDGatesGaudinSchuhman (class in module fluids.particle_size_distribution), 364
PSDInterpolated (class in module fluids.particle_size_distribution), 362
PSDLognormal (class in module fluids.particle_size_distribution), 363
PSDRosinRammler  (class in fluids.particle_size_distribution), 365
Q
Q_weir_rectangular_full_Ackers() (in module fluids.open_flow), 319
Q_weir_rectangular_full_Kindsvater_Carter() (in module fluids.open_flow), 321
Q_weir_rectangular_full_Rehbock() (in module fluids.open_flow), 320
Q_weir_rectangular_full_SIA() (in module fluids.open_flow), 319
Q_weir_rectangular_Kindsvater_Carter() (in module fluids.open_flow), 317
Q_weir_rectangular_SIA() (in module fluids.open_flow), 318
Q_weir_V_Shen() (in module fluids.open_flow), 317
R
R2C() (in module fluids.core), 114
R2F() (in module fluids.core), 115
R2K() (in module fluids.core), 115
Rao_Kumar_2007() (in module fluids.friction), 237
Rayleigh() (in module fluids.core), 81
RectangularFinExchanger (class in fluids.geometry), 268
RectangularOffsetStripFinExchanger (class in fluids.geometry), 270
relative_roughness() (in module fluids.core), 105
Reynolds() (in module fluids.core), 77
Reynolds_factor() (in module fluids.control_valve), 71
Reynolds_valve() (in module fluids.control_valve), 70
Rizk() (in module fluids.saltation), 396
Robbins() (in module fluids.packed_tower), 339
Romeo_2002() (in module fluids.friction), 236
roughness_Farshad() (in module fluids.friction), 224
Rouhani_1() (in module fluids.two_phase_voidage), 443
Rouhani_2() (in module fluids.two_phase_voidage), 444
Round_1980() (in module fluids.friction), 230
round_edge_grill() (in module fluids.filters), 134
round_edge_open_mesh() (in module fluids.filters), 131
round_edge_screen() (in module fluids.filters), 131
Rouse() (in module fluids.drag), 121
S
SA_conical_head() (in module fluids.geometry), 287
SA_ellipsoidal_head() (in module fluids.geometry), 287
SA_from_h() (fluids.geometry.TANK method), 262
SA_from_h() (in module fluids.geometry), 299
SA_guppy_head() (in module fluids.geometry), 288
SA_partial_cylindrical_body() (in module fluids.geometry), 289
SA_partial_horiz_conical_head() (in module fluids.geometry), 290
SA_partial_horiz_ellipsoidal_head() (in module fluids.geometry), 290
SA_partial_horiz_guppy_head() (in module fluids.geometry), 292
SA_partial_horiz_spherical_head() (in module fluids.geometry), 291
SA_partial_horiz_torispherical_head() (in module fluids.geometry), 293
SA_partial_sphere() (in module fluids.geometry), 276
SA_partial_vertical_conical_head() (in module fluids.geometry), 294
SA_partial_vertical_ellipsoidal_head() (in module fluids.geometry), 296
SA_partial_vertical_spherical_head() (in module fluids.geometry), 295
SA_partial_vertical_torispherical_head() (in module fluids.geometry), 296
SA_tank() (in module fluids.geometry), 300
SA_torispheroideal() (in module fluids.geometry), 288
Schade() (in module fluids.saltation), 399
Schmidt() (in module fluids.core), 82
separation_demister_ELDescouky() (in module fluids.packed_tower), 346
Serghides_1() (in module fluids.friction), 233
Serghides_2() (in module fluids.friction), 234
set_chebyshev_approximators() (fluids.geometry.TANK method), 265
set_misc() (fluids.geometry.TANK method), 265
set_overall_geometry() (fluids.geometry.RectangularFinExchanger method), 270
set_table() (fluids.geometry.TANK method), 265
Shacham_1980() (in module fluids.friction), 231
Sherwood() (in module fluids.core), 80
Sieve (class in fluids.particle_size_distribution), 373
size_classes (fluids.particle_size_distribution.ParticleSizeDistribution attribute), 362
size_control_valve_g() (in module fluids.control_valve), 66
size_control_valve_l() (in module fluids.control_valve), 65
size_tee() (in module fluids.mixing), 312