
Flask Documentation (1.1.x)
Release 1.1.4

Pallets

Feb 21, 2022

CONTENTS

1 User’s Guide 3
1.1 Foreword . 3
1.2 Foreword for Experienced Programmers . 4
1.3 Installation . 4
1.4 Quickstart . 7
1.5 Tutorial . 21
1.6 Templates . 57
1.7 Testing Flask Applications . 60
1.8 Application Errors . 67
1.9 Debugging Application Errors . 70
1.10 Logging . 71
1.11 Configuration Handling . 74
1.12 Signals . 83
1.13 Pluggable Views . 86
1.14 The Application Context . 89
1.15 The Request Context . 91
1.16 Modular Applications with Blueprints . 95
1.17 Extensions . 99
1.18 Command Line Interface . 100
1.19 Development Server . 108
1.20 Working with the Shell . 108
1.21 Patterns for Flask . 110
1.22 Deployment Options . 156
1.23 Becoming Big . 167

2 API Reference 169
2.1 API . 169

3 Additional Notes 233
3.1 Design Decisions in Flask . 233
3.2 HTML/XHTML FAQ . 235
3.3 Security Considerations . 239
3.4 Unicode in Flask . 242
3.5 Flask Extension Development . 244
3.6 Pocoo Styleguide . 249
3.7 Upgrading to Newer Releases . 252
3.8 Changelog . 259
3.9 License . 275
3.10 How to contribute to Flask . 276

i

Python Module Index 279

Index 281

ii

Flask Documentation (1.1.x), Release 1.1.4

Welcome to Flask’s documentation. Get started with Installation and then get an overview with the Quickstart. There
is also a more detailed Tutorial that shows how to create a small but complete application with Flask. Common patterns
are described in the Patterns for Flask section. The rest of the docs describe each component of Flask in detail, with a
full reference in the API section.

Flask depends on the Jinja template engine and the Werkzeug WSGI toolkit. The documentation for these libraries
can be found at:

• Jinja documentation

• Werkzeug documentation

CONTENTS 1

https://palletsprojects.com/p/flask/
https://www.palletsprojects.com/p/jinja/
https://www.palletsprojects.com/p/werkzeug/
http://jinja.pocoo.org/docs
https://werkzeug.palletsprojects.com/

Flask Documentation (1.1.x), Release 1.1.4

2 CONTENTS

CHAPTER

ONE

USER’S GUIDE

This part of the documentation, which is mostly prose, begins with some background information about Flask, then
focuses on step-by-step instructions for web development with Flask.

1.1 Foreword

Read this before you get started with Flask. This hopefully answers some questions about the purpose and goals of
the project, and when you should or should not be using it.

1.1.1 What does “micro” mean?

“Micro” does not mean that your whole web application has to fit into a single Python file (although it certainly can),
nor does it mean that Flask is lacking in functionality. The “micro” in microframework means Flask aims to keep the
core simple but extensible. Flask won’t make many decisions for you, such as what database to use. Those decisions
that it does make, such as what templating engine to use, are easy to change. Everything else is up to you, so that
Flask can be everything you need and nothing you don’t.

By default, Flask does not include a database abstraction layer, form validation or anything else where different
libraries already exist that can handle that. Instead, Flask supports extensions to add such functionality to your appli-
cation as if it was implemented in Flask itself. Numerous extensions provide database integration, form validation,
upload handling, various open authentication technologies, and more. Flask may be “micro”, but it’s ready for pro-
duction use on a variety of needs.

1.1.2 Configuration and Conventions

Flask has many configuration values, with sensible defaults, and a few conventions when getting started. By conven-
tion, templates and static files are stored in subdirectories within the application’s Python source tree, with the names
templates and static respectively. While this can be changed, you usually don’t have to, especially when getting
started.

1.1.3 Growing with Flask

Once you have Flask up and running, you’ll find a variety of extensions available in the community to integrate your
project for production. The Flask core team reviews extensions and ensures approved extensions do not break with
future releases.

As your codebase grows, you are free to make the design decisions appropriate for your project. Flask will continue
to provide a very simple glue layer to the best that Python has to offer. You can implement advanced patterns in

3

Flask Documentation (1.1.x), Release 1.1.4

SQLAlchemy or another database tool, introduce non-relational data persistence as appropriate, and take advantage of
framework-agnostic tools built for WSGI, the Python web interface.

Flask includes many hooks to customize its behavior. Should you need more customization, the Flask class is built
for subclassing. If you are interested in that, check out the Becoming Big chapter. If you are curious about the Flask
design principles, head over to the section about Design Decisions in Flask.

Continue to Installation, the Quickstart, or the Foreword for Experienced Programmers.

1.2 Foreword for Experienced Programmers

1.2.1 Thread-Locals in Flask

One of the design decisions in Flask was that simple tasks should be simple; they should not take a lot of code and
yet they should not limit you. Because of that, Flask has a few design choices that some people might find surprising
or unorthodox. For example, Flask uses thread-local objects internally so that you don’t have to pass objects around
from function to function within a request in order to stay threadsafe. This approach is convenient, but requires a valid
request context for dependency injection or when attempting to reuse code which uses a value pegged to the request.
The Flask project is honest about thread-locals, does not hide them, and calls out in the code and documentation where
they are used.

1.2.2 Develop for the Web with Caution

Always keep security in mind when building web applications.

If you write a web application, you are probably allowing users to register and leave their data on your server. The
users are entrusting you with data. And even if you are the only user that might leave data in your application, you
still want that data to be stored securely.

Unfortunately, there are many ways the security of a web application can be compromised. Flask protects you against
one of the most common security problems of modern web applications: cross-site scripting (XSS). Unless you delib-
erately mark insecure HTML as secure, Flask and the underlying Jinja2 template engine have you covered. But there
are many more ways to cause security problems.

The documentation will warn you about aspects of web development that require attention to security. Some of these
security concerns are far more complex than one might think, and we all sometimes underestimate the likelihood that
a vulnerability will be exploited - until a clever attacker figures out a way to exploit our applications. And don’t think
that your application is not important enough to attract an attacker. Depending on the kind of attack, chances are that
automated bots are probing for ways to fill your database with spam, links to malicious software, and the like.

Flask is no different from any other framework in that you the developer must build with caution, watching for exploits
when building to your requirements.

1.3 Installation

1.3.1 Python Version

We recommend using the latest version of Python 3. Flask supports Python 3.5 and newer, Python 2.7, and PyPy.

4 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

1.3.2 Dependencies

These distributions will be installed automatically when installing Flask.

• Werkzeug implements WSGI, the standard Python interface between applications and servers.

• Jinja is a template language that renders the pages your application serves.

• MarkupSafe comes with Jinja. It escapes untrusted input when rendering templates to avoid injection attacks.

• ItsDangerous securely signs data to ensure its integrity. This is used to protect Flask’s session cookie.

• Click is a framework for writing command line applications. It provides the flask command and allows adding
custom management commands.

Optional dependencies

These distributions will not be installed automatically. Flask will detect and use them if you install them.

• Blinker provides support for Signals.

• SimpleJSON is a fast JSON implementation that is compatible with Python’s json module. It is preferred for
JSON operations if it is installed.

• python-dotenv enables support for Environment Variables From dotenv when running flask commands.

• Watchdog provides a faster, more efficient reloader for the development server.

1.3.3 Virtual environments

Use a virtual environment to manage the dependencies for your project, both in development and in production.

What problem does a virtual environment solve? The more Python projects you have, the more likely it is that you
need to work with different versions of Python libraries, or even Python itself. Newer versions of libraries for one
project can break compatibility in another project.

Virtual environments are independent groups of Python libraries, one for each project. Packages installed for one
project will not affect other projects or the operating system’s packages.

Python 3 comes bundled with the venv module to create virtual environments. If you’re using a modern version of
Python, you can continue on to the next section.

If you’re using Python 2, see Install virtualenv first.

Create an environment

Create a project folder and a venv folder within:

$ mkdir myproject
$ cd myproject
$ python3 -m venv venv

On Windows:

$ py -3 -m venv venv

If you needed to install virtualenv because you are using Python 2, use the following command instead:

1.3. Installation 5

https://palletsprojects.com/p/werkzeug/
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/markupsafe/
https://palletsprojects.com/p/itsdangerous/
https://palletsprojects.com/p/click/
https://pythonhosted.org/blinker/
https://simplejson.readthedocs.io/
https://github.com/theskumar/python-dotenv#readme
https://pythonhosted.org/watchdog/
https://docs.python.org/3/library/venv.html#module-venv

Flask Documentation (1.1.x), Release 1.1.4

$ python2 -m virtualenv venv

On Windows:

> \Python27\Scripts\virtualenv.exe venv

Activate the environment

Before you work on your project, activate the corresponding environment:

$. venv/bin/activate

On Windows:

> venv\Scripts\activate

Your shell prompt will change to show the name of the activated environment.

1.3.4 Install Flask

Within the activated environment, use the following command to install Flask:

$ pip install Flask

Flask is now installed. Check out the Quickstart or go to the Documentation Overview.

Living on the edge

If you want to work with the latest Flask code before it’s released, install or update the code from the master branch:

$ pip install -U https://github.com/pallets/flask/archive/master.tar.gz

1.3.5 Install virtualenv

If you are using Python 2, the venv module is not available. Instead, install virtualenv.

On Linux, virtualenv is provided by your package manager:

Debian, Ubuntu
$ sudo apt-get install python-virtualenv

CentOS, Fedora
$ sudo yum install python-virtualenv

Arch
$ sudo pacman -S python-virtualenv

If you are on Mac OS X or Windows, download get-pip.py, then:

$ sudo python2 Downloads/get-pip.py
$ sudo python2 -m pip install virtualenv

On Windows, as an administrator:

6 Chapter 1. User’s Guide

https://virtualenv.pypa.io/
https://bootstrap.pypa.io/get-pip.py

Flask Documentation (1.1.x), Release 1.1.4

> \Python27\python.exe Downloads\get-pip.py
> \Python27\python.exe -m pip install virtualenv

Now you can return above and Create an environment.

1.4 Quickstart

Eager to get started? This page gives a good introduction to Flask. It assumes you already have Flask installed. If you
do not, head over to the Installation section.

1.4.1 A Minimal Application

A minimal Flask application looks something like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def hello_world():

return 'Hello, World!'

So what did that code do?

1. First we imported the Flask class. An instance of this class will be our WSGI application.

2. Next we create an instance of this class. The first argument is the name of the application’s module or package.
If you are using a single module (as in this example), you should use __name__ because depending on if
it’s started as application or imported as module the name will be different ('__main__' versus the actual
import name). This is needed so that Flask knows where to look for templates, static files, and so on. For more
information have a look at the Flask documentation.

3. We then use the route() decorator to tell Flask what URL should trigger our function.

4. The function is given a name which is also used to generate URLs for that particular function, and returns the
message we want to display in the user’s browser.

Just save it as hello.py or something similar. Make sure to not call your application flask.py because this would
conflict with Flask itself.

To run the application you can either use the flask command or python’s -m switch with Flask. Before you can do
that you need to tell your terminal the application to work with by exporting the FLASK_APP environment variable:

$ export FLASK_APP=hello.py
$ flask run

* Running on http://127.0.0.1:5000/

If you are on Windows, the environment variable syntax depends on command line interpreter. On Command Prompt:

C:\path\to\app>set FLASK_APP=hello.py

And on PowerShell:

PS C:\path\to\app> $env:FLASK_APP = "hello.py"

Alternatively you can use python -m flask:

1.4. Quickstart 7

Flask Documentation (1.1.x), Release 1.1.4

$ export FLASK_APP=hello.py
$ python -m flask run

* Running on http://127.0.0.1:5000/

This launches a very simple builtin server, which is good enough for testing but probably not what you want to use in
production. For deployment options see Deployment Options.

Now head over to http://127.0.0.1:5000/, and you should see your hello world greeting.

Externally Visible Server

If you run the server you will notice that the server is only accessible from your own computer, not from any other
in the network. This is the default because in debugging mode a user of the application can execute arbitrary Python
code on your computer.

If you have the debugger disabled or trust the users on your network, you can make the server publicly available simply
by adding --host=0.0.0.0 to the command line:

$ flask run --host=0.0.0.0

This tells your operating system to listen on all public IPs.

1.4.2 What to do if the Server does not Start

In case the python -m flask fails or flask does not exist, there are multiple reasons this might be the case.
First of all you need to look at the error message.

Old Version of Flask

Versions of Flask older than 0.11 used to have different ways to start the application. In short, the flask command
did not exist, and neither did python -m flask. In that case you have two options: either upgrade to newer Flask
versions or have a look at the Development Server docs to see the alternative method for running a server.

Invalid Import Name

The FLASK_APP environment variable is the name of the module to import at flask run. In case that module is
incorrectly named you will get an import error upon start (or if debug is enabled when you navigate to the application).
It will tell you what it tried to import and why it failed.

The most common reason is a typo or because you did not actually create an app object.

1.4.3 Debug Mode

(Want to just log errors and stack traces? See Application Errors)

The flask script is nice to start a local development server, but you would have to restart it manually after each
change to your code. That is not very nice and Flask can do better. If you enable debug support the server will reload
itself on code changes, and it will also provide you with a helpful debugger if things go wrong.

To enable all development features (including debug mode) you can export the FLASK_ENV environment variable and
set it to development before running the server:

8 Chapter 1. User’s Guide

http://127.0.0.1:5000/

Flask Documentation (1.1.x), Release 1.1.4

$ export FLASK_ENV=development
$ flask run

(On Windows you need to use set instead of export.)

This does the following things:

1. it activates the debugger

2. it activates the automatic reloader

3. it enables the debug mode on the Flask application.

You can also control debug mode separately from the environment by exporting FLASK_DEBUG=1.

There are more parameters that are explained in the Development Server docs.

Attention

Even though the interactive debugger does not work in forking environments (which makes it nearly impossible to use
on production servers), it still allows the execution of arbitrary code. This makes it a major security risk and therefore
it must never be used on production machines.

Screenshot of the debugger in action:

1.4. Quickstart 9

Flask Documentation (1.1.x), Release 1.1.4

More information on using the debugger can be found in the Werkzeug documentation.

Have another debugger in mind? See Working with Debuggers.

1.4.4 Routing

Modern web applications use meaningful URLs to help users. Users are more likely to like a page and come back if
the page uses a meaningful URL they can remember and use to directly visit a page.

Use the route() decorator to bind a function to a URL.

@app.route('/')
def index():

return 'Index Page'

@app.route('/hello')
(continues on next page)

10 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/debug/#using-the-debugger

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def hello():
return 'Hello, World'

You can do more! You can make parts of the URL dynamic and attach multiple rules to a function.

Variable Rules

You can add variable sections to a URL by marking sections with <variable_name>. Your function then receives
the <variable_name> as a keyword argument. Optionally, you can use a converter to specify the type of the
argument like <converter:variable_name>.

from markupsafe import escape

@app.route('/user/<username>')
def show_user_profile(username):

show the user profile for that user
return 'User %s' % escape(username)

@app.route('/post/<int:post_id>')
def show_post(post_id):

show the post with the given id, the id is an integer
return 'Post %d' % post_id

@app.route('/path/<path:subpath>')
def show_subpath(subpath):

show the subpath after /path/
return 'Subpath %s' % escape(subpath)

Converter types:

string (default) accepts any text without a slash
int accepts positive integers
float accepts positive floating point values
path like string but also accepts slashes
uuid accepts UUID strings

Unique URLs / Redirection Behavior

The following two rules differ in their use of a trailing slash.

@app.route('/projects/')
def projects():

return 'The project page'

@app.route('/about')
def about():

return 'The about page'

The canonical URL for the projects endpoint has a trailing slash. It’s similar to a folder in a file system. If you
access the URL without a trailing slash, Flask redirects you to the canonical URL with the trailing slash.

The canonical URL for the about endpoint does not have a trailing slash. It’s similar to the pathname of a file.
Accessing the URL with a trailing slash produces a 404 “Not Found” error. This helps keep URLs unique for these
resources, which helps search engines avoid indexing the same page twice.

1.4. Quickstart 11

Flask Documentation (1.1.x), Release 1.1.4

URL Building

To build a URL to a specific function, use the url_for() function. It accepts the name of the function as its first
argument and any number of keyword arguments, each corresponding to a variable part of the URL rule. Unknown
variable parts are appended to the URL as query parameters.

Why would you want to build URLs using the URL reversing function url_for() instead of hard-coding them into
your templates?

1. Reversing is often more descriptive than hard-coding the URLs.

2. You can change your URLs in one go instead of needing to remember to manually change hard-coded URLs.

3. URL building handles escaping of special characters and Unicode data transparently.

4. The generated paths are always absolute, avoiding unexpected behavior of relative paths in browsers.

5. If your application is placed outside the URL root, for example, in /myapplication instead of /,
url_for() properly handles that for you.

For example, here we use the test_request_context() method to try out url_for().
test_request_context() tells Flask to behave as though it’s handling a request even while we use a
Python shell. See Context Locals.

from flask import Flask, url_for
from markupsafe import escape

app = Flask(__name__)

@app.route('/')
def index():

return 'index'

@app.route('/login')
def login():

return 'login'

@app.route('/user/<username>')
def profile(username):

return '{}\'s profile'.format(escape(username))

with app.test_request_context():
print(url_for('index'))
print(url_for('login'))
print(url_for('login', next='/'))
print(url_for('profile', username='John Doe'))

/
/login
/login?next=/
/user/John%20Doe

HTTP Methods

Web applications use different HTTP methods when accessing URLs. You should familiarize yourself with the HTTP
methods as you work with Flask. By default, a route only answers to GET requests. You can use the methods
argument of the route() decorator to handle different HTTP methods.

12 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

from flask import request

@app.route('/login', methods=['GET', 'POST'])
def login():

if request.method == 'POST':
return do_the_login()

else:
return show_the_login_form()

If GET is present, Flask automatically adds support for the HEAD method and handles HEAD requests according to the
HTTP RFC. Likewise, OPTIONS is automatically implemented for you.

1.4.5 Static Files

Dynamic web applications also need static files. That’s usually where the CSS and JavaScript files are coming from.
Ideally your web server is configured to serve them for you, but during development Flask can do that as well. Just
create a folder called static in your package or next to your module and it will be available at /static on the
application.

To generate URLs for static files, use the special 'static' endpoint name:

url_for('static', filename='style.css')

The file has to be stored on the filesystem as static/style.css.

1.4.6 Rendering Templates

Generating HTML from within Python is not fun, and actually pretty cumbersome because you have to do the HTML
escaping on your own to keep the application secure. Because of that Flask configures the Jinja2 template engine for
you automatically.

To render a template you can use the render_template() method. All you have to do is provide the name of the
template and the variables you want to pass to the template engine as keyword arguments. Here’s a simple example of
how to render a template:

from flask import render_template

@app.route('/hello/')
@app.route('/hello/<name>')
def hello(name=None):

return render_template('hello.html', name=name)

Flask will look for templates in the templates folder. So if your application is a module, this folder is next to that
module, if it’s a package it’s actually inside your package:

Case 1: a module:

/application.py
/templates

/hello.html

Case 2: a package:

1.4. Quickstart 13

https://www.ietf.org/rfc/rfc2068.txt
http://jinja.pocoo.org/

Flask Documentation (1.1.x), Release 1.1.4

/application
/__init__.py
/templates

/hello.html

For templates you can use the full power of Jinja2 templates. Head over to the official Jinja2 Template Documentation
for more information.

Here is an example template:

<!doctype html>
<title>Hello from Flask</title>
{% if name %}
<h1>Hello {{ name }}!</h1>

{% else %}
<h1>Hello, World!</h1>

{% endif %}

Inside templates you also have access to the request, session and g1 objects as well as the
get_flashed_messages() function.

Templates are especially useful if inheritance is used. If you want to know how that works, head over to the Template
Inheritance pattern documentation. Basically template inheritance makes it possible to keep certain elements on each
page (like header, navigation and footer).

Automatic escaping is enabled, so if name contains HTML it will be escaped automatically. If you can trust a variable
and you know that it will be safe HTML (for example because it came from a module that converts wiki markup to
HTML) you can mark it as safe by using the Markup class or by using the |safe filter in the template. Head over to
the Jinja 2 documentation for more examples.

Here is a basic introduction to how the Markup class works:

>>> from markupsafe import Markup
>>> Markup('Hello %s!') % '<blink>hacker</blink>'
Markup(u'Hello <blink>hacker</blink>!')
>>> Markup.escape('<blink>hacker</blink>')
Markup(u'<blink>hacker</blink>')
>>> Markup('Marked up » HTML').striptags()
u'Marked up \xbb HTML'

Changed in version 0.5: Autoescaping is no longer enabled for all templates. The following extensions for tem-
plates trigger autoescaping: .html, .htm, .xml, .xhtml. Templates loaded from a string will have autoescaping
disabled.

1.4.7 Accessing Request Data

For web applications it’s crucial to react to the data a client sends to the server. In Flask this information is provided
by the global request object. If you have some experience with Python you might be wondering how that object
can be global and how Flask manages to still be threadsafe. The answer is context locals:

Context Locals

Insider Information
1 Unsure what that g object is? It’s something in which you can store information for your own needs, check the documentation of that object

(g) and the Using SQLite 3 with Flask for more information.

14 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/templates/

Flask Documentation (1.1.x), Release 1.1.4

If you want to understand how that works and how you can implement tests with context locals, read this section,
otherwise just skip it.

Certain objects in Flask are global objects, but not of the usual kind. These objects are actually proxies to objects that
are local to a specific context. What a mouthful. But that is actually quite easy to understand.

Imagine the context being the handling thread. A request comes in and the web server decides to spawn a new
thread (or something else, the underlying object is capable of dealing with concurrency systems other than threads).
When Flask starts its internal request handling it figures out that the current thread is the active context and binds the
current application and the WSGI environments to that context (thread). It does that in an intelligent way so that one
application can invoke another application without breaking.

So what does this mean to you? Basically you can completely ignore that this is the case unless you are doing
something like unit testing. You will notice that code which depends on a request object will suddenly break because
there is no request object. The solution is creating a request object yourself and binding it to the context. The easiest
solution for unit testing is to use the test_request_context() context manager. In combination with the with
statement it will bind a test request so that you can interact with it. Here is an example:

from flask import request

with app.test_request_context('/hello', method='POST'):
now you can do something with the request until the
end of the with block, such as basic assertions:
assert request.path == '/hello'
assert request.method == 'POST'

The other possibility is passing a whole WSGI environment to the request_context() method:

from flask import request

with app.request_context(environ):
assert request.method == 'POST'

The Request Object

The request object is documented in the API section and we will not cover it here in detail (see Request). Here is a
broad overview of some of the most common operations. First of all you have to import it from the flask module:

from flask import request

The current request method is available by using the method attribute. To access form data (data transmitted in a
POST or PUT request) you can use the form attribute. Here is a full example of the two attributes mentioned above:

@app.route('/login', methods=['POST', 'GET'])
def login():

error = None
if request.method == 'POST':

if valid_login(request.form['username'],
request.form['password']):

return log_the_user_in(request.form['username'])
else:

error = 'Invalid username/password'
the code below is executed if the request method
was GET or the credentials were invalid
return render_template('login.html', error=error)

1.4. Quickstart 15

Flask Documentation (1.1.x), Release 1.1.4

What happens if the key does not exist in the form attribute? In that case a special KeyError is raised. You can
catch it like a standard KeyError but if you don’t do that, a HTTP 400 Bad Request error page is shown instead. So
for many situations you don’t have to deal with that problem.

To access parameters submitted in the URL (?key=value) you can use the args attribute:

searchword = request.args.get('key', '')

We recommend accessing URL parameters with get or by catching the KeyError because users might change the
URL and presenting them a 400 bad request page in that case is not user friendly.

For a full list of methods and attributes of the request object, head over to the Request documentation.

File Uploads

You can handle uploaded files with Flask easily. Just make sure not to forget to set the enctype="multipart/
form-data" attribute on your HTML form, otherwise the browser will not transmit your files at all.

Uploaded files are stored in memory or at a temporary location on the filesystem. You can access those files by
looking at the files attribute on the request object. Each uploaded file is stored in that dictionary. It behaves just
like a standard Python file object, but it also has a save()method that allows you to store that file on the filesystem
of the server. Here is a simple example showing how that works:

from flask import request

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
f = request.files['the_file']
f.save('/var/www/uploads/uploaded_file.txt')

...

If you want to know how the file was named on the client before it was uploaded to your application, you can access
the filename attribute. However please keep in mind that this value can be forged so never ever trust that value. If
you want to use the filename of the client to store the file on the server, pass it through the secure_filename()
function that Werkzeug provides for you:

from flask import request
from werkzeug.utils import secure_filename

@app.route('/upload', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
f = request.files['the_file']
f.save('/var/www/uploads/' + secure_filename(f.filename))

...

For some better examples, checkout the Uploading Files pattern.

Cookies

To access cookies you can use the cookies attribute. To set cookies you can use the set_cookie method of
response objects. The cookies attribute of request objects is a dictionary with all the cookies the client transmits. If
you want to use sessions, do not use the cookies directly but instead use the Sessions in Flask that add some security
on top of cookies for you.

Reading cookies:

16 Chapter 1. User’s Guide

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage.save
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage.filename
https://werkzeug.palletsprojects.com/en/2.0.x/utils/#werkzeug.utils.secure_filename

Flask Documentation (1.1.x), Release 1.1.4

from flask import request

@app.route('/')
def index():

username = request.cookies.get('username')
use cookies.get(key) instead of cookies[key] to not get a
KeyError if the cookie is missing.

Storing cookies:

from flask import make_response

@app.route('/')
def index():

resp = make_response(render_template(...))
resp.set_cookie('username', 'the username')
return resp

Note that cookies are set on response objects. Since you normally just return strings from the view functions Flask will
convert them into response objects for you. If you explicitly want to do that you can use the make_response()
function and then modify it.

Sometimes you might want to set a cookie at a point where the response object does not exist yet. This is possible by
utilizing the Deferred Request Callbacks pattern.

For this also see About Responses.

1.4.8 Redirects and Errors

To redirect a user to another endpoint, use the redirect() function; to abort a request early with an error code, use
the abort() function:

from flask import abort, redirect, url_for

@app.route('/')
def index():

return redirect(url_for('login'))

@app.route('/login')
def login():

abort(401)
this_is_never_executed()

This is a rather pointless example because a user will be redirected from the index to a page they cannot access (401
means access denied) but it shows how that works.

By default a black and white error page is shown for each error code. If you want to customize the error page, you can
use the errorhandler() decorator:

from flask import render_template

@app.errorhandler(404)
def page_not_found(error):

return render_template('page_not_found.html'), 404

Note the 404 after the render_template() call. This tells Flask that the status code of that page should be 404
which means not found. By default 200 is assumed which translates to: all went well.

1.4. Quickstart 17

Flask Documentation (1.1.x), Release 1.1.4

See Error handlers for more details.

1.4.9 About Responses

The return value from a view function is automatically converted into a response object for you. If the return value is a
string it’s converted into a response object with the string as response body, a 200 OK status code and a text/html
mimetype. If the return value is a dict, jsonify() is called to produce a response. The logic that Flask applies to
converting return values into response objects is as follows:

1. If a response object of the correct type is returned it’s directly returned from the view.

2. If it’s a string, a response object is created with that data and the default parameters.

3. If it’s a dict, a response object is created using jsonify.

4. If a tuple is returned the items in the tuple can provide extra information. Such tuples have to be in
the form (response, status), (response, headers), or (response, status, headers).
The status value will override the status code and headers can be a list or dictionary of additional header
values.

5. If none of that works, Flask will assume the return value is a valid WSGI application and convert that into a
response object.

If you want to get hold of the resulting response object inside the view you can use the make_response() function.

Imagine you have a view like this:

@app.errorhandler(404)
def not_found(error):

return render_template('error.html'), 404

You just need to wrap the return expression with make_response() and get the response object to modify it, then
return it:

@app.errorhandler(404)
def not_found(error):

resp = make_response(render_template('error.html'), 404)
resp.headers['X-Something'] = 'A value'
return resp

APIs with JSON

A common response format when writing an API is JSON. It’s easy to get started writing such an API with Flask. If
you return a dict from a view, it will be converted to a JSON response.

@app.route("/me")
def me_api():

user = get_current_user()
return {

"username": user.username,
"theme": user.theme,
"image": url_for("user_image", filename=user.image),

}

Depending on your API design, you may want to create JSON responses for types other than dict. In that case,
use the jsonify() function, which will serialize any supported JSON data type. Or look into Flask community
extensions that support more complex applications.

18 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

@app.route("/users")
def users_api():

users = get_all_users()
return jsonify([user.to_json() for user in users])

1.4.10 Sessions

In addition to the request object there is also a second object called session which allows you to store information
specific to a user from one request to the next. This is implemented on top of cookies for you and signs the cookies
cryptographically. What this means is that the user could look at the contents of your cookie but not modify it, unless
they know the secret key used for signing.

In order to use sessions you have to set a secret key. Here is how sessions work:

from flask import Flask, session, redirect, url_for, request
from markupsafe import escape

app = Flask(__name__)

Set the secret key to some random bytes. Keep this really secret!
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():

if 'username' in session:
return 'Logged in as %s' % escape(session['username'])

return 'You are not logged in'

@app.route('/login', methods=['GET', 'POST'])
def login():

if request.method == 'POST':
session['username'] = request.form['username']
return redirect(url_for('index'))

return '''
<form method="post">

<p><input type=text name=username>
<p><input type=submit value=Login>

</form>
'''

@app.route('/logout')
def logout():

remove the username from the session if it's there
session.pop('username', None)
return redirect(url_for('index'))

The escape() mentioned here does escaping for you if you are not using the template engine (as in this example).

How to generate good secret keys

A secret key should be as random as possible. Your operating system has ways to generate pretty random data based on
a cryptographic random generator. Use the following command to quickly generate a value for Flask.secret_key
(or SECRET_KEY):

$ python -c 'import os; print(os.urandom(16))'
b'_5#y2L"F4Q8z\n\xec]/'

1.4. Quickstart 19

Flask Documentation (1.1.x), Release 1.1.4

A note on cookie-based sessions: Flask will take the values you put into the session object and serialize them into
a cookie. If you are finding some values do not persist across requests, cookies are indeed enabled, and you are not
getting a clear error message, check the size of the cookie in your page responses compared to the size supported by
web browsers.

Besides the default client-side based sessions, if you want to handle sessions on the server-side instead, there are
several Flask extensions that support this.

1.4.11 Message Flashing

Good applications and user interfaces are all about feedback. If the user does not get enough feedback they will
probably end up hating the application. Flask provides a really simple way to give feedback to a user with the flashing
system. The flashing system basically makes it possible to record a message at the end of a request and access it on
the next (and only the next) request. This is usually combined with a layout template to expose the message.

To flash a message use the flash() method, to get hold of the messages you can use
get_flashed_messages() which is also available in the templates. Check out the Message Flashing for
a full example.

1.4.12 Logging

New in version 0.3.

Sometimes you might be in a situation where you deal with data that should be correct, but actually is not. For example
you may have some client-side code that sends an HTTP request to the server but it’s obviously malformed. This might
be caused by a user tampering with the data, or the client code failing. Most of the time it’s okay to reply with 400
Bad Request in that situation, but sometimes that won’t do and the code has to continue working.

You may still want to log that something fishy happened. This is where loggers come in handy. As of Flask 0.3 a
logger is preconfigured for you to use.

Here are some example log calls:

app.logger.debug('A value for debugging')
app.logger.warning('A warning occurred (%d apples)', 42)
app.logger.error('An error occurred')

The attached logger is a standard logging Logger, so head over to the official logging docs for more information.

Read more on Application Errors.

1.4.13 Hooking in WSGI Middleware

To add WSGI middleware to your Flask application, wrap the application’s wsgi_app attribute. For example, to
apply Werkzeug’s ProxyFix middleware for running behind Nginx:

from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app)

Wrapping app.wsgi_app instead of app means that app still points at your Flask application, not at the middle-
ware, so you can continue to use and configure app directly.

20 Chapter 1. User’s Guide

https://docs.python.org/3/library/logging.html#logging.Logger
https://docs.python.org/3/library/logging.html#module-logging
https://werkzeug.palletsprojects.com/en/2.0.x/middleware/proxy_fix/#werkzeug.middleware.proxy_fix.ProxyFix

Flask Documentation (1.1.x), Release 1.1.4

1.4.14 Using Flask Extensions

Extensions are packages that help you accomplish common tasks. For example, Flask-SQLAlchemy provides
SQLAlchemy support that makes it simple and easy to use with Flask.

For more on Flask extensions, have a look at Extensions.

1.4.15 Deploying to a Web Server

Ready to deploy your new Flask app? Go to Deployment Options.

1.5 Tutorial

1.5.1 Project Layout

Create a project directory and enter it:

$ mkdir flask-tutorial
$ cd flask-tutorial

Then follow the installation instructions to set up a Python virtual environment and install Flask for your project.

The tutorial will assume you’re working from the flask-tutorial directory from now on. The file names at the
top of each code block are relative to this directory.

A Flask application can be as simple as a single file.

Listing 1: hello.py

from flask import Flask

app = Flask(__name__)

@app.route('/')
def hello():

return 'Hello, World!'

However, as a project gets bigger, it becomes overwhelming to keep all the code in one file. Python projects use
packages to organize code into multiple modules that can be imported where needed, and the tutorial will do this as
well.

The project directory will contain:

• flaskr/, a Python package containing your application code and files.

• tests/, a directory containing test modules.

• venv/, a Python virtual environment where Flask and other dependencies are installed.

• Installation files telling Python how to install your project.

• Version control config, such as git. You should make a habit of using some type of version control for all your
projects, no matter the size.

• Any other project files you might add in the future.

1.5. Tutorial 21

https://git-scm.com/

Flask Documentation (1.1.x), Release 1.1.4

By the end, your project layout will look like this:

/home/user/Projects/flask-tutorial
flaskr/

__init__.py
db.py
schema.sql
auth.py
blog.py
templates/

base.html
auth/

login.html
register.html

blog/
create.html
index.html
update.html

static/
style.css

tests/
conftest.py
data.sql
test_factory.py
test_db.py
test_auth.py
test_blog.py

venv/
setup.py
MANIFEST.in

If you’re using version control, the following files that are generated while running your project should be ignored.
There may be other files based on the editor you use. In general, ignore files that you didn’t write. For example, with
git:

22 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Listing 2: .gitignore

venv/

*.pyc
__pycache__/

instance/

.pytest_cache/

.coverage
htmlcov/

dist/
build/

*.egg-info/

Continue to Application Setup.

1.5.2 Application Setup

A Flask application is an instance of the Flask class. Everything about the application, such as configuration and
URLs, will be registered with this class.

The most straightforward way to create a Flask application is to create a global Flask instance directly at the top of
your code, like how the “Hello, World!” example did on the previous page. While this is simple and useful in some
cases, it can cause some tricky issues as the project grows.

Instead of creating a Flask instance globally, you will create it inside a function. This function is known as the
application factory. Any configuration, registration, and other setup the application needs will happen inside the
function, then the application will be returned.

The Application Factory

It’s time to start coding! Create the flaskr directory and add the __init__.py file. The __init__.py serves
double duty: it will contain the application factory, and it tells Python that the flaskr directory should be treated as
a package.

$ mkdir flaskr

Listing 3: flaskr/__init__.py

import os

from flask import Flask

def create_app(test_config=None):
create and configure the app
app = Flask(__name__, instance_relative_config=True)
app.config.from_mapping(

SECRET_KEY='dev',
DATABASE=os.path.join(app.instance_path, 'flaskr.sqlite'),

)

(continues on next page)

1.5. Tutorial 23

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

if test_config is None:
load the instance config, if it exists, when not testing
app.config.from_pyfile('config.py', silent=True)

else:
load the test config if passed in
app.config.from_mapping(test_config)

ensure the instance folder exists
try:

os.makedirs(app.instance_path)
except OSError:

pass

a simple page that says hello
@app.route('/hello')
def hello():

return 'Hello, World!'

return app

create_app is the application factory function. You’ll add to it later in the tutorial, but it already does a lot.

1. app = Flask(__name__, instance_relative_config=True) creates the Flask instance.

• __name__ is the name of the current Python module. The app needs to know where it’s located to set up
some paths, and __name__ is a convenient way to tell it that.

• instance_relative_config=True tells the app that configuration files are relative to the instance
folder. The instance folder is located outside the flaskr package and can hold local data that shouldn’t
be committed to version control, such as configuration secrets and the database file.

2. app.config.from_mapping() sets some default configuration that the app will use:

• SECRET_KEY is used by Flask and extensions to keep data safe. It’s set to 'dev' to provide a convenient
value during development, but it should be overridden with a random value when deploying.

• DATABASE is the path where the SQLite database file will be saved. It’s under app.instance_path,
which is the path that Flask has chosen for the instance folder. You’ll learn more about the database in the
next section.

3. app.config.from_pyfile() overrides the default configuration with values taken from the config.py
file in the instance folder if it exists. For example, when deploying, this can be used to set a real SECRET_KEY.

• test_config can also be passed to the factory, and will be used instead of the instance configuration.
This is so the tests you’ll write later in the tutorial can be configured independently of any development
values you have configured.

4. os.makedirs() ensures that app.instance_path exists. Flask doesn’t create the instance folder auto-
matically, but it needs to be created because your project will create the SQLite database file there.

5. @app.route() creates a simple route so you can see the application working before getting into the rest of
the tutorial. It creates a connection between the URL /hello and a function that returns a response, the string
'Hello, World!' in this case.

Run The Application

Now you can run your application using the flask command. From the terminal, tell Flask where to find your
application, then run it in development mode. Remember, you should still be in the top-level flask-tutorial

24 Chapter 1. User’s Guide

https://docs.python.org/3/library/os.html#os.makedirs

Flask Documentation (1.1.x), Release 1.1.4

directory, not the flaskr package.

Development mode shows an interactive debugger whenever a page raises an exception, and restarts the server when-
ever you make changes to the code. You can leave it running and just reload the browser page as you follow the
tutorial.

For Linux and Mac:

$ export FLASK_APP=flaskr
$ export FLASK_ENV=development
$ flask run

For Windows cmd, use set instead of export:

> set FLASK_APP=flaskr
> set FLASK_ENV=development
> flask run

For Windows PowerShell, use $env: instead of export:

> $env:FLASK_APP = "flaskr"
> $env:FLASK_ENV = "development"
> flask run

You’ll see output similar to this:

* Serving Flask app "flaskr"

* Environment: development

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

* Restarting with stat

* Debugger is active!

* Debugger PIN: 855-212-761

Visit http://127.0.0.1:5000/hello in a browser and you should see the “Hello, World!” message. Congratulations, you’re
now running your Flask web application!

Continue to Define and Access the Database.

1.5.3 Define and Access the Database

The application will use a SQLite database to store users and posts. Python comes with built-in support for SQLite in
the sqlite3 module.

SQLite is convenient because it doesn’t require setting up a separate database server and is built-in to Python. How-
ever, if concurrent requests try to write to the database at the same time, they will slow down as each write happens
sequentially. Small applications won’t notice this. Once you become big, you may want to switch to a different
database.

The tutorial doesn’t go into detail about SQL. If you are not familiar with it, the SQLite docs describe the language.

Connect to the Database

The first thing to do when working with a SQLite database (and most other Python database libraries) is to create a
connection to it. Any queries and operations are performed using the connection, which is closed after the work is
finished.

1.5. Tutorial 25

http://127.0.0.1:5000/hello
https://sqlite.org/about.html
https://docs.python.org/3/library/sqlite3.html#module-sqlite3
https://sqlite.org/lang.html

Flask Documentation (1.1.x), Release 1.1.4

In web applications this connection is typically tied to the request. It is created at some point when handling a request,
and closed before the response is sent.

Listing 4: flaskr/db.py

import sqlite3

import click
from flask import current_app, g
from flask.cli import with_appcontext

def get_db():
if 'db' not in g:

g.db = sqlite3.connect(
current_app.config['DATABASE'],
detect_types=sqlite3.PARSE_DECLTYPES

)
g.db.row_factory = sqlite3.Row

return g.db

def close_db(e=None):
db = g.pop('db', None)

if db is not None:
db.close()

g is a special object that is unique for each request. It is used to store data that might be accessed by multiple functions
during the request. The connection is stored and reused instead of creating a new connection if get_db is called a
second time in the same request.

current_app is another special object that points to the Flask application handling the request. Since you used an
application factory, there is no application object when writing the rest of your code. get_db will be called when the
application has been created and is handling a request, so current_app can be used.

sqlite3.connect() establishes a connection to the file pointed at by the DATABASE configuration key. This file
doesn’t have to exist yet, and won’t until you initialize the database later.

sqlite3.Row tells the connection to return rows that behave like dicts. This allows accessing the columns by name.

close_db checks if a connection was created by checking if g.db was set. If the connection exists, it is closed.
Further down you will tell your application about the close_db function in the application factory so that it is called
after each request.

Create the Tables

In SQLite, data is stored in tables and columns. These need to be created before you can store and retrieve data. Flaskr
will store users in the user table, and posts in the post table. Create a file with the SQL commands needed to create
empty tables:

Listing 5: flaskr/schema.sql

DROP TABLE IF EXISTS user;
DROP TABLE IF EXISTS post;

(continues on next page)

26 Chapter 1. User’s Guide

https://docs.python.org/3/library/sqlite3.html#sqlite3.connect
https://docs.python.org/3/library/sqlite3.html#sqlite3.Row

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

CREATE TABLE user (
id INTEGER PRIMARY KEY AUTOINCREMENT,
username TEXT UNIQUE NOT NULL,
password TEXT NOT NULL

);

CREATE TABLE post (
id INTEGER PRIMARY KEY AUTOINCREMENT,
author_id INTEGER NOT NULL,
created TIMESTAMP NOT NULL DEFAULT CURRENT_TIMESTAMP,
title TEXT NOT NULL,
body TEXT NOT NULL,
FOREIGN KEY (author_id) REFERENCES user (id)

);

Add the Python functions that will run these SQL commands to the db.py file:

Listing 6: flaskr/db.py

def init_db():
db = get_db()

with current_app.open_resource('schema.sql') as f:
db.executescript(f.read().decode('utf8'))

@click.command('init-db')
@with_appcontext
def init_db_command():

"""Clear the existing data and create new tables."""
init_db()
click.echo('Initialized the database.')

open_resource() opens a file relative to the flaskr package, which is useful since you won’t necessarily know
where that location is when deploying the application later. get_db returns a database connection, which is used to
execute the commands read from the file.

click.command() defines a command line command called init-db that calls the init_db function and shows
a success message to the user. You can read Command Line Interface to learn more about writing commands.

Register with the Application

The close_db and init_db_command functions need to be registered with the application instance; otherwise,
they won’t be used by the application. However, since you’re using a factory function, that instance isn’t available
when writing the functions. Instead, write a function that takes an application and does the registration.

Listing 7: flaskr/db.py

def init_app(app):
app.teardown_appcontext(close_db)
app.cli.add_command(init_db_command)

app.teardown_appcontext() tells Flask to call that function when cleaning up after returning the response.

app.cli.add_command() adds a new command that can be called with the flask command.

1.5. Tutorial 27

https://click.palletsprojects.com/en/8.0.x/api/#click.command
https://click.palletsprojects.com/en/8.0.x/api/#click.Group.add_command

Flask Documentation (1.1.x), Release 1.1.4

Import and call this function from the factory. Place the new code at the end of the factory function before returning
the app.

Listing 8: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import db
db.init_app(app)

return app

Initialize the Database File

Now that init-db has been registered with the app, it can be called using the flask command, similar to the run
command from the previous page.

Note: If you’re still running the server from the previous page, you can either stop the server, or run this command
in a new terminal. If you use a new terminal, remember to change to your project directory and activate the env
as described in Activate the environment. You’ll also need to set FLASK_APP and FLASK_ENV as shown on the
previous page.

Run the init-db command:

$ flask init-db
Initialized the database.

There will now be a flaskr.sqlite file in the instance folder in your project.

Continue to Blueprints and Views.

1.5.4 Blueprints and Views

A view function is the code you write to respond to requests to your application. Flask uses patterns to match the
incoming request URL to the view that should handle it. The view returns data that Flask turns into an outgoing
response. Flask can also go the other direction and generate a URL to a view based on its name and arguments.

Create a Blueprint

A Blueprint is a way to organize a group of related views and other code. Rather than registering views and
other code directly with an application, they are registered with a blueprint. Then the blueprint is registered with the
application when it is available in the factory function.

Flaskr will have two blueprints, one for authentication functions and one for the blog posts functions. The code for
each blueprint will go in a separate module. Since the blog needs to know about authentication, you’ll write the
authentication one first.

28 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Listing 9: flaskr/auth.py

import functools

from flask import (
Blueprint, flash, g, redirect, render_template, request, session, url_for

)
from werkzeug.security import check_password_hash, generate_password_hash

from flaskr.db import get_db

bp = Blueprint('auth', __name__, url_prefix='/auth')

This creates a Blueprint named 'auth'. Like the application object, the blueprint needs to know where it’s
defined, so __name__ is passed as the second argument. The url_prefix will be prepended to all the URLs
associated with the blueprint.

Import and register the blueprint from the factory using app.register_blueprint(). Place the new code at
the end of the factory function before returning the app.

Listing 10: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import auth
app.register_blueprint(auth.bp)

return app

The authentication blueprint will have views to register new users and to log in and log out.

The First View: Register

When the user visits the /auth/register URL, the register view will return HTML with a form for them to
fill out. When they submit the form, it will validate their input and either show the form again with an error message
or create the new user and go to the login page.

For now you will just write the view code. On the next page, you’ll write templates to generate the HTML form.

Listing 11: flaskr/auth.py

@bp.route('/register', methods=('GET', 'POST'))
def register():

if request.method == 'POST':
username = request.form['username']
password = request.form['password']
db = get_db()
error = None

if not username:
error = 'Username is required.'

elif not password:
error = 'Password is required.'

elif db.execute(
'SELECT id FROM user WHERE username = ?', (username,)

(continues on next page)

1.5. Tutorial 29

https://developer.mozilla.org/docs/Web/HTML

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

).fetchone() is not None:
error = 'User {} is already registered.'.format(username)

if error is None:
db.execute(

'INSERT INTO user (username, password) VALUES (?, ?)',
(username, generate_password_hash(password))

)
db.commit()
return redirect(url_for('auth.login'))

flash(error)

return render_template('auth/register.html')

Here’s what the register view function is doing:

1. @bp.route associates the URL /register with the register view function. When Flask receives a
request to /auth/register, it will call the register view and use the return value as the response.

2. If the user submitted the form, request.method will be 'POST'. In this case, start validating the input.

3. request.form is a special type of dict mapping submitted form keys and values. The user will input their
username and password.

4. Validate that username and password are not empty.

5. Validate that username is not already registered by querying the database and checking if a result is returned.
db.execute takes a SQL query with ? placeholders for any user input, and a tuple of values to replace the
placeholders with. The database library will take care of escaping the values so you are not vulnerable to a SQL
injection attack.

fetchone() returns one row from the query. If the query returned no results, it returns None. Later,
fetchall() is used, which returns a list of all results.

6. If validation succeeds, insert the new user data into the database. For security, passwords should never be stored
in the database directly. Instead, generate_password_hash() is used to securely hash the password, and
that hash is stored. Since this query modifies data, db.commit() needs to be called afterwards to save the
changes.

7. After storing the user, they are redirected to the login page. url_for() generates the URL for the login view
based on its name. This is preferable to writing the URL directly as it allows you to change the URL later
without changing all code that links to it. redirect() generates a redirect response to the generated URL.

8. If validation fails, the error is shown to the user. flash() stores messages that can be retrieved when rendering
the template.

9. When the user initially navigates to auth/register, or there was a validation error, an HTML page with
the registration form should be shown. render_template() will render a template containing the HTML,
which you’ll write in the next step of the tutorial.

Login

This view follows the same pattern as the register view above.

30 Chapter 1. User’s Guide

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.execute
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.fetchone
https://docs.python.org/3/library/sqlite3.html#sqlite3.Cursor.fetchall
https://werkzeug.palletsprojects.com/en/2.0.x/utils/#werkzeug.security.generate_password_hash
https://docs.python.org/3/library/sqlite3.html#sqlite3.Connection.commit

Flask Documentation (1.1.x), Release 1.1.4

Listing 12: flaskr/auth.py

@bp.route('/login', methods=('GET', 'POST'))
def login():

if request.method == 'POST':
username = request.form['username']
password = request.form['password']
db = get_db()
error = None
user = db.execute(

'SELECT * FROM user WHERE username = ?', (username,)
).fetchone()

if user is None:
error = 'Incorrect username.'

elif not check_password_hash(user['password'], password):
error = 'Incorrect password.'

if error is None:
session.clear()
session['user_id'] = user['id']
return redirect(url_for('index'))

flash(error)

return render_template('auth/login.html')

There are a few differences from the register view:

1. The user is queried first and stored in a variable for later use.

2. check_password_hash() hashes the submitted password in the same way as the stored hash and securely
compares them. If they match, the password is valid.

3. session is a dict that stores data across requests. When validation succeeds, the user’s id is stored in a
new session. The data is stored in a cookie that is sent to the browser, and the browser then sends it back with
subsequent requests. Flask securely signs the data so that it can’t be tampered with.

Now that the user’s id is stored in the session, it will be available on subsequent requests. At the beginning of each
request, if a user is logged in their information should be loaded and made available to other views.

Listing 13: flaskr/auth.py

@bp.before_app_request
def load_logged_in_user():

user_id = session.get('user_id')

if user_id is None:
g.user = None

else:
g.user = get_db().execute(

'SELECT * FROM user WHERE id = ?', (user_id,)
).fetchone()

bp.before_app_request() registers a function that runs before the view function, no matter what URL is
requested. load_logged_in_user checks if a user id is stored in the session and gets that user’s data from
the database, storing it on g.user, which lasts for the length of the request. If there is no user id, or if the id doesn’t
exist, g.user will be None.

1.5. Tutorial 31

https://werkzeug.palletsprojects.com/en/2.0.x/utils/#werkzeug.security.check_password_hash
https://docs.python.org/3/library/stdtypes.html#dict

Flask Documentation (1.1.x), Release 1.1.4

Logout

To log out, you need to remove the user id from the session. Then load_logged_in_user won’t load a user
on subsequent requests.

Listing 14: flaskr/auth.py

@bp.route('/logout')
def logout():

session.clear()
return redirect(url_for('index'))

Require Authentication in Other Views

Creating, editing, and deleting blog posts will require a user to be logged in. A decorator can be used to check this for
each view it’s applied to.

Listing 15: flaskr/auth.py

def login_required(view):
@functools.wraps(view)
def wrapped_view(**kwargs):

if g.user is None:
return redirect(url_for('auth.login'))

return view(**kwargs)

return wrapped_view

This decorator returns a new view function that wraps the original view it’s applied to. The new function checks if a
user is loaded and redirects to the login page otherwise. If a user is loaded the original view is called and continues
normally. You’ll use this decorator when writing the blog views.

Endpoints and URLs

The url_for() function generates the URL to a view based on a name and arguments. The name associated with a
view is also called the endpoint, and by default it’s the same as the name of the view function.

For example, the hello() view that was added to the app factory earlier in the tutorial has the name 'hello' and
can be linked to with url_for('hello'). If it took an argument, which you’ll see later, it would be linked to
using url_for('hello', who='World').

When using a blueprint, the name of the blueprint is prepended to the name of the function, so the endpoint for the
login function you wrote above is 'auth.login' because you added it to the 'auth' blueprint.

Continue to Templates.

1.5.5 Templates

You’ve written the authentication views for your application, but if you’re running the server and try to go to any of
the URLs, you’ll see a TemplateNotFound error. That’s because the views are calling render_template(),
but you haven’t written the templates yet. The template files will be stored in the templates directory inside the
flaskr package.

32 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Templates are files that contain static data as well as placeholders for dynamic data. A template is rendered with
specific data to produce a final document. Flask uses the Jinja template library to render templates.

In your application, you will use templates to render HTML which will display in the user’s browser. In Flask, Jinja is
configured to autoescape any data that is rendered in HTML templates. This means that it’s safe to render user input;
any characters they’ve entered that could mess with the HTML, such as < and > will be escaped with safe values that
look the same in the browser but don’t cause unwanted effects.

Jinja looks and behaves mostly like Python. Special delimiters are used to distinguish Jinja syntax from the static data
in the template. Anything between {{ and }} is an expression that will be output to the final document. {% and %}
denotes a control flow statement like if and for. Unlike Python, blocks are denoted by start and end tags rather than
indentation since static text within a block could change indentation.

The Base Layout

Each page in the application will have the same basic layout around a different body. Instead of writing the entire
HTML structure in each template, each template will extend a base template and override specific sections.

Listing 16: flaskr/templates/base.html

<!doctype html>
<title>{% block title %}{% endblock %} - Flaskr</title>
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
<nav>
<h1>Flaskr</h1>

{% if g.user %}

{{ g.user['username'] }}
Log Out

{% else %}
Register
Log In

{% endif %}

</nav>
<section class="content">

<header>
{% block header %}{% endblock %}

</header>
{% for message in get_flashed_messages() %}
<div class="flash">{{ message }}</div>

{% endfor %}
{% block content %}{% endblock %}

</section>

g is automatically available in templates. Based on if g.user is set (from load_logged_in_user), either
the username and a log out link are displayed, or links to register and log in are displayed. url_for() is also
automatically available, and is used to generate URLs to views instead of writing them out manually.

After the page title, and before the content, the template loops over each message returned by
get_flashed_messages(). You used flash() in the views to show error messages, and this is the code
that will display them.

There are three blocks defined here that will be overridden in the other templates:

1. {% block title %} will change the title displayed in the browser’s tab and window title.

2. {% block header %} is similar to title but will change the title displayed on the page.

1.5. Tutorial 33

http://jinja.pocoo.org/docs/templates/
https://developer.mozilla.org/docs/Web/HTML

Flask Documentation (1.1.x), Release 1.1.4

3. {% block content %} is where the content of each page goes, such as the login form or a blog post.

The base template is directly in the templates directory. To keep the others organized, the templates for a blueprint
will be placed in a directory with the same name as the blueprint.

Register

Listing 17: flaskr/templates/auth/register.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Register{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">
<label for="username">Username</label>
<input name="username" id="username" required>
<label for="password">Password</label>
<input type="password" name="password" id="password" required>
<input type="submit" value="Register">

</form>
{% endblock %}

{% extends 'base.html' %} tells Jinja that this template should replace the blocks from the base template.
All the rendered content must appear inside {% block %} tags that override blocks from the base template.

A useful pattern used here is to place {% block title %} inside {% block header %}. This will set the
title block and then output the value of it into the header block, so that both the window and page share the same title
without writing it twice.

The input tags are using the required attribute here. This tells the browser not to submit the form until those
fields are filled in. If the user is using an older browser that doesn’t support that attribute, or if they are using something
besides a browser to make requests, you still want to validate the data in the Flask view. It’s important to always fully
validate the data on the server, even if the client does some validation as well.

Log In

This is identical to the register template except for the title and submit button.

Listing 18: flaskr/templates/auth/login.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Log In{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">
<label for="username">Username</label>
<input name="username" id="username" required>
<label for="password">Password</label>
<input type="password" name="password" id="password" required>
<input type="submit" value="Log In">

(continues on next page)

34 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

</form>
{% endblock %}

Register A User

Now that the authentication templates are written, you can register a user. Make sure the server is still running (flask
run if it’s not), then go to http://127.0.0.1:5000/auth/register.

Try clicking the “Register” button without filling out the form and see that the browser shows an error message. Try
removing the required attributes from the register.html template and click “Register” again. Instead of the
browser showing an error, the page will reload and the error from flash() in the view will be shown.

Fill out a username and password and you’ll be redirected to the login page. Try entering an incorrect username, or the
correct username and incorrect password. If you log in you’ll get an error because there’s no index view to redirect
to yet.

Continue to Static Files.

1.5.6 Static Files

The authentication views and templates work, but they look very plain right now. Some CSS can be added to add style
to the HTML layout you constructed. The style won’t change, so it’s a static file rather than a template.

Flask automatically adds a static view that takes a path relative to the flaskr/static directory and serves it.
The base.html template already has a link to the style.css file:

{{ url_for('static', filename='style.css') }}

Besides CSS, other types of static files might be files with JavaScript functions, or a logo image. They are all placed
under the flaskr/static directory and referenced with url_for('static', filename='...').

This tutorial isn’t focused on how to write CSS, so you can just copy the following into the flaskr/static/
style.css file:

Listing 19: flaskr/static/style.css

html { font-family: sans-serif; background: #eee; padding: 1rem; }
body { max-width: 960px; margin: 0 auto; background: white; }
h1 { font-family: serif; color: #377ba8; margin: 1rem 0; }
a { color: #377ba8; }
hr { border: none; border-top: 1px solid lightgray; }
nav { background: lightgray; display: flex; align-items: center; padding: 0 0.5rem; }
nav h1 { flex: auto; margin: 0; }
nav h1 a { text-decoration: none; padding: 0.25rem 0.5rem; }
nav ul { display: flex; list-style: none; margin: 0; padding: 0; }
nav ul li a, nav ul li span, header .action { display: block; padding: 0.5rem; }
.content { padding: 0 1rem 1rem; }
.content > header { border-bottom: 1px solid lightgray; display: flex; align-items:
→˓flex-end; }
.content > header h1 { flex: auto; margin: 1rem 0 0.25rem 0; }
.flash { margin: 1em 0; padding: 1em; background: #cae6f6; border: 1px solid #377ba8;
→˓}
.post > header { display: flex; align-items: flex-end; font-size: 0.85em; }
.post > header > div:first-of-type { flex: auto; }
.post > header h1 { font-size: 1.5em; margin-bottom: 0; }

(continues on next page)

1.5. Tutorial 35

http://127.0.0.1:5000/auth/register
https://developer.mozilla.org/docs/Web/CSS

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

.post .about { color: slategray; font-style: italic; }

.post .body { white-space: pre-line; }

.content:last-child { margin-bottom: 0; }

.content form { margin: 1em 0; display: flex; flex-direction: column; }

.content label { font-weight: bold; margin-bottom: 0.5em; }

.content input, .content textarea { margin-bottom: 1em; }

.content textarea { min-height: 12em; resize: vertical; }
input.danger { color: #cc2f2e; }
input[type=submit] { align-self: start; min-width: 10em; }

You can find a less compact version of style.css in the example code.

Go to http://127.0.0.1:5000/auth/login and the page should look like the screenshot below.

You can read more about CSS from Mozilla’s documentation. If you change a static file, refresh the browser page. If
the change doesn’t show up, try clearing your browser’s cache.

Continue to Blog Blueprint.

1.5.7 Blog Blueprint

You’ll use the same techniques you learned about when writing the authentication blueprint to write the blog blueprint.
The blog should list all posts, allow logged in users to create posts, and allow the author of a post to edit or delete it.

As you implement each view, keep the development server running. As you save your changes, try going to the URL
in your browser and testing them out.

36 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/1.1.4/examples/tutorial/flaskr/static/style.css
http://127.0.0.1:5000/auth/login
https://developer.mozilla.org/docs/Web/CSS

Flask Documentation (1.1.x), Release 1.1.4

The Blueprint

Define the blueprint and register it in the application factory.

Listing 20: flaskr/blog.py

from flask import (
Blueprint, flash, g, redirect, render_template, request, url_for

)
from werkzeug.exceptions import abort

from flaskr.auth import login_required
from flaskr.db import get_db

bp = Blueprint('blog', __name__)

Import and register the blueprint from the factory using app.register_blueprint(). Place the new code at
the end of the factory function before returning the app.

Listing 21: flaskr/__init__.py

def create_app():
app = ...
existing code omitted

from . import blog
app.register_blueprint(blog.bp)
app.add_url_rule('/', endpoint='index')

return app

Unlike the auth blueprint, the blog blueprint does not have a url_prefix. So the index view will be at /, the
create view at /create, and so on. The blog is the main feature of Flaskr, so it makes sense that the blog index
will be the main index.

However, the endpoint for the index view defined below will be blog.index. Some of the authentication views
referred to a plain index endpoint. app.add_url_rule() associates the endpoint name 'index'with the / url
so that url_for('index') or url_for('blog.index') will both work, generating the same / URL either
way.

In another application you might give the blog blueprint a url_prefix and define a separate index view in the
application factory, similar to the hello view. Then the index and blog.index endpoints and URLs would be
different.

Index

The index will show all of the posts, most recent first. A JOIN is used so that the author information from the user
table is available in the result.

Listing 22: flaskr/blog.py

@bp.route('/')
def index():

db = get_db()
posts = db.execute(

'SELECT p.id, title, body, created, author_id, username'
' FROM post p JOIN user u ON p.author_id = u.id'

(continues on next page)

1.5. Tutorial 37

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

' ORDER BY created DESC'
).fetchall()
return render_template('blog/index.html', posts=posts)

Listing 23: flaskr/templates/blog/index.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Posts{% endblock %}</h1>
{% if g.user %}
New

{% endif %}
{% endblock %}

{% block content %}
{% for post in posts %}
<article class="post">

<header>
<div>
<h1>{{ post['title'] }}</h1>
<div class="about">by {{ post['username'] }} on {{ post['created'].strftime(

→˓'%Y-%m-%d') }}</div>
</div>
{% if g.user['id'] == post['author_id'] %}
Edit</

→˓a>
{% endif %}

</header>
<p class="body">{{ post['body'] }}</p>

</article>
{% if not loop.last %}

<hr>
{% endif %}

{% endfor %}
{% endblock %}

When a user is logged in, the header block adds a link to the create view. When the user is the author of a post,
they’ll see an “Edit” link to the update view for that post. loop.last is a special variable available inside Jinja
for loops. It’s used to display a line after each post except the last one, to visually separate them.

Create

The create view works the same as the auth register view. Either the form is displayed, or the posted data is
validated and the post is added to the database or an error is shown.

The login_required decorator you wrote earlier is used on the blog views. A user must be logged in to visit these
views, otherwise they will be redirected to the login page.

Listing 24: flaskr/blog.py

@bp.route('/create', methods=('GET', 'POST'))
@login_required
def create():

if request.method == 'POST':

(continues on next page)

38 Chapter 1. User’s Guide

http://jinja.pocoo.org/docs/templates/#for
http://jinja.pocoo.org/docs/templates/#for

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

title = request.form['title']
body = request.form['body']
error = None

if not title:
error = 'Title is required.'

if error is not None:
flash(error)

else:
db = get_db()
db.execute(

'INSERT INTO post (title, body, author_id)'
' VALUES (?, ?, ?)',
(title, body, g.user['id'])

)
db.commit()
return redirect(url_for('blog.index'))

return render_template('blog/create.html')

Listing 25: flaskr/templates/blog/create.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}New Post{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">
<label for="title">Title</label>
<input name="title" id="title" value="{{ request.form['title'] }}" required>
<label for="body">Body</label>
<textarea name="body" id="body">{{ request.form['body'] }}</textarea>
<input type="submit" value="Save">

</form>
{% endblock %}

Update

Both the update and delete views will need to fetch a post by id and check if the author matches the logged in
user. To avoid duplicating code, you can write a function to get the post and call it from each view.

Listing 26: flaskr/blog.py

def get_post(id, check_author=True):
post = get_db().execute(

'SELECT p.id, title, body, created, author_id, username'
' FROM post p JOIN user u ON p.author_id = u.id'
' WHERE p.id = ?',
(id,)

).fetchone()

if post is None:
(continues on next page)

1.5. Tutorial 39

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

abort(404, "Post id {0} doesn't exist.".format(id))

if check_author and post['author_id'] != g.user['id']:
abort(403)

return post

abort() will raise a special exception that returns an HTTP status code. It takes an optional message to show with
the error, otherwise a default message is used. 404 means “Not Found”, and 403 means “Forbidden”. (401 means
“Unauthorized”, but you redirect to the login page instead of returning that status.)

The check_author argument is defined so that the function can be used to get a post without checking the author.
This would be useful if you wrote a view to show an individual post on a page, where the user doesn’t matter because
they’re not modifying the post.

Listing 27: flaskr/blog.py

@bp.route('/<int:id>/update', methods=('GET', 'POST'))
@login_required
def update(id):

post = get_post(id)

if request.method == 'POST':
title = request.form['title']
body = request.form['body']
error = None

if not title:
error = 'Title is required.'

if error is not None:
flash(error)

else:
db = get_db()
db.execute(

'UPDATE post SET title = ?, body = ?'
' WHERE id = ?',
(title, body, id)

)
db.commit()
return redirect(url_for('blog.index'))

return render_template('blog/update.html', post=post)

Unlike the views you’ve written so far, the update function takes an argument, id. That corresponds to the
<int:id> in the route. A real URL will look like /1/update. Flask will capture the 1, ensure it’s an int, and
pass it as the id argument. If you don’t specify int: and instead do <id>, it will be a string. To generate a URL to
the update page, url_for() needs to be passed the id so it knows what to fill in: url_for('blog.update',
id=post['id']). This is also in the index.html file above.

The create and update views look very similar. The main difference is that the update view uses a post object
and an UPDATE query instead of an INSERT. With some clever refactoring, you could use one view and template for
both actions, but for the tutorial it’s clearer to keep them separate.

40 Chapter 1. User’s Guide

https://docs.python.org/3/library/functions.html#int

Flask Documentation (1.1.x), Release 1.1.4

Listing 28: flaskr/templates/blog/update.html

{% extends 'base.html' %}

{% block header %}
<h1>{% block title %}Edit "{{ post['title'] }}"{% endblock %}</h1>

{% endblock %}

{% block content %}
<form method="post">
<label for="title">Title</label>
<input name="title" id="title"
value="{{ request.form['title'] or post['title'] }}" required>

<label for="body">Body</label>
<textarea name="body" id="body">{{ request.form['body'] or post['body'] }}</

→˓textarea>
<input type="submit" value="Save">

</form>
<hr>
<form action="{{ url_for('blog.delete', id=post['id']) }}" method="post">
<input class="danger" type="submit" value="Delete" onclick="return confirm('Are

→˓you sure?');">
</form>

{% endblock %}

This template has two forms. The first posts the edited data to the current page (/<id>/update). The other form
contains only a button and specifies an action attribute that posts to the delete view instead. The button uses some
JavaScript to show a confirmation dialog before submitting.

The pattern {{ request.form['title'] or post['title'] }} is used to choose what data appears in
the form. When the form hasn’t been submitted, the original post data appears, but if invalid form data was posted
you want to display that so the user can fix the error, so request.form is used instead. request is another
variable that’s automatically available in templates.

Delete

The delete view doesn’t have its own template, the delete button is part of update.html and posts to the /<id>/
delete URL. Since there is no template, it will only handle the POST method and then redirect to the index
view.

Listing 29: flaskr/blog.py

@bp.route('/<int:id>/delete', methods=('POST',))
@login_required
def delete(id):

get_post(id)
db = get_db()
db.execute('DELETE FROM post WHERE id = ?', (id,))
db.commit()
return redirect(url_for('blog.index'))

Congratulations, you’ve now finished writing your application! Take some time to try out everything in the browser.
However, there’s still more to do before the project is complete.

Continue to Make the Project Installable.

1.5. Tutorial 41

Flask Documentation (1.1.x), Release 1.1.4

1.5.8 Make the Project Installable

Making your project installable means that you can build a distribution file and install that in another environment,
just like you installed Flask in your project’s environment. This makes deploying your project the same as installing
any other library, so you’re using all the standard Python tools to manage everything.

Installing also comes with other benefits that might not be obvious from the tutorial or as a new Python user, including:

• Currently, Python and Flask understand how to use the flaskr package only because you’re running from
your project’s directory. Installing means you can import it no matter where you run from.

• You can manage your project’s dependencies just like other packages do, so pip install yourproject.
whl installs them.

• Test tools can isolate your test environment from your development environment.

Note: This is being introduced late in the tutorial, but in your future projects you should always start with this.

Describe the Project

The setup.py file describes your project and the files that belong to it.

Listing 30: setup.py

from setuptools import find_packages, setup

setup(
name='flaskr',
version='1.0.0',
packages=find_packages(),
include_package_data=True,
zip_safe=False,
install_requires=[

'flask',
],

)

packages tells Python what package directories (and the Python files they contain) to include. find_packages()
finds these directories automatically so you don’t have to type them out. To include other files, such as the static and
templates directories, include_package_data is set. Python needs another file named MANIFEST.in to tell
what this other data is.

Listing 31: MANIFEST.in

include flaskr/schema.sql
graft flaskr/static
graft flaskr/templates
global-exclude *.pyc

This tells Python to copy everything in the static and templates directories, and the schema.sql file, but to
exclude all bytecode files.

See the official packaging guide for another explanation of the files and options used.

42 Chapter 1. User’s Guide

https://packaging.python.org/tutorials/packaging-projects/

Flask Documentation (1.1.x), Release 1.1.4

Install the Project

Use pip to install your project in the virtual environment.

$ pip install -e .

This tells pip to find setup.py in the current directory and install it in editable or development mode. Editable mode
means that as you make changes to your local code, you’ll only need to re-install if you change the metadata about the
project, such as its dependencies.

You can observe that the project is now installed with pip list.

$ pip list

Package Version Location
-------------- --------- ----------------------------------
click 6.7
Flask 1.0
flaskr 1.0.0 /home/user/Projects/flask-tutorial
itsdangerous 0.24
Jinja2 2.10
MarkupSafe 1.0
pip 9.0.3
setuptools 39.0.1
Werkzeug 0.14.1
wheel 0.30.0

Nothing changes from how you’ve been running your project so far. FLASK_APP is still set to flaskr and flask
run still runs the application, but you can call it from anywhere, not just the flask-tutorial directory.

Continue to Test Coverage.

1.5.9 Test Coverage

Writing unit tests for your application lets you check that the code you wrote works the way you expect. Flask provides
a test client that simulates requests to the application and returns the response data.

You should test as much of your code as possible. Code in functions only runs when the function is called, and code in
branches, such as if blocks, only runs when the condition is met. You want to make sure that each function is tested
with data that covers each branch.

The closer you get to 100% coverage, the more comfortable you can be that making a change won’t unexpectedly
change other behavior. However, 100% coverage doesn’t guarantee that your application doesn’t have bugs. In partic-
ular, it doesn’t test how the user interacts with the application in the browser. Despite this, test coverage is an important
tool to use during development.

Note: This is being introduced late in the tutorial, but in your future projects you should test as you develop.

You’ll use pytest and coverage to test and measure your code. Install them both:

$ pip install pytest coverage

1.5. Tutorial 43

https://pytest.readthedocs.io/
https://coverage.readthedocs.io/

Flask Documentation (1.1.x), Release 1.1.4

Setup and Fixtures

The test code is located in the tests directory. This directory is next to the flaskr package, not inside it. The
tests/conftest.py file contains setup functions called fixtures that each test will use. Tests are in Python
modules that start with test_, and each test function in those modules also starts with test_.

Each test will create a new temporary database file and populate some data that will be used in the tests. Write a SQL
file to insert that data.

Listing 32: tests/data.sql

INSERT INTO user (username, password)
VALUES

('test', 'pbkdf2:sha256:50000$TCI4GzcX
→˓$0de171a4f4dac32e3364c7ddc7c14f3e2fa61f2d17574483f7ffbb431b4acb2f'),
('other', 'pbkdf2:sha256:50000$kJPKsz6N

→˓$d2d4784f1b030a9761f5ccaeeaca413f27f2ecb76d6168407af962ddce849f79');

INSERT INTO post (title, body, author_id, created)
VALUES

('test title', 'test' || x'0a' || 'body', 1, '2018-01-01 00:00:00');

The app fixture will call the factory and pass test_config to configure the application and database for testing
instead of using your local development configuration.

Listing 33: tests/conftest.py

import os
import tempfile

import pytest
from flaskr import create_app
from flaskr.db import get_db, init_db

with open(os.path.join(os.path.dirname(__file__), 'data.sql'), 'rb') as f:
_data_sql = f.read().decode('utf8')

@pytest.fixture
def app():

db_fd, db_path = tempfile.mkstemp()

app = create_app({
'TESTING': True,
'DATABASE': db_path,

})

with app.app_context():
init_db()
get_db().executescript(_data_sql)

yield app

os.close(db_fd)
os.unlink(db_path)

@pytest.fixture
(continues on next page)

44 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def client(app):
return app.test_client()

@pytest.fixture
def runner(app):

return app.test_cli_runner()

tempfile.mkstemp() creates and opens a temporary file, returning the file object and the path to it. The
DATABASE path is overridden so it points to this temporary path instead of the instance folder. After setting the
path, the database tables are created and the test data is inserted. After the test is over, the temporary file is closed and
removed.

TESTING tells Flask that the app is in test mode. Flask changes some internal behavior so it’s easier to test, and other
extensions can also use the flag to make testing them easier.

The client fixture calls app.test_client() with the application object created by the app fixture. Tests will
use the client to make requests to the application without running the server.

The runner fixture is similar to client. app.test_cli_runner() creates a runner that can call the Click
commands registered with the application.

Pytest uses fixtures by matching their function names with the names of arguments in the test functions. For example,
the test_hello function you’ll write next takes a client argument. Pytest matches that with the client fixture
function, calls it, and passes the returned value to the test function.

Factory

There’s not much to test about the factory itself. Most of the code will be executed for each test already, so if something
fails the other tests will notice.

The only behavior that can change is passing test config. If config is not passed, there should be some default config-
uration, otherwise the configuration should be overridden.

Listing 34: tests/test_factory.py

from flaskr import create_app

def test_config():
assert not create_app().testing
assert create_app({'TESTING': True}).testing

def test_hello(client):
response = client.get('/hello')
assert response.data == b'Hello, World!'

You added the hello route as an example when writing the factory at the beginning of the tutorial. It returns “Hello,
World!”, so the test checks that the response data matches.

Database

Within an application context, get_db should return the same connection each time it’s called. After the context, the
connection should be closed.

1.5. Tutorial 45

https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp

Flask Documentation (1.1.x), Release 1.1.4

Listing 35: tests/test_db.py

import sqlite3

import pytest
from flaskr.db import get_db

def test_get_close_db(app):
with app.app_context():

db = get_db()
assert db is get_db()

with pytest.raises(sqlite3.ProgrammingError) as e:
db.execute('SELECT 1')

assert 'closed' in str(e.value)

The init-db command should call the init_db function and output a message.

Listing 36: tests/test_db.py

def test_init_db_command(runner, monkeypatch):
class Recorder(object):

called = False

def fake_init_db():
Recorder.called = True

monkeypatch.setattr('flaskr.db.init_db', fake_init_db)
result = runner.invoke(args=['init-db'])
assert 'Initialized' in result.output
assert Recorder.called

This test uses Pytest’s monkeypatch fixture to replace the init_db function with one that records that it’s been
called. The runner fixture you wrote above is used to call the init-db command by name.

Authentication

For most of the views, a user needs to be logged in. The easiest way to do this in tests is to make a POST request to
the login view with the client. Rather than writing that out every time, you can write a class with methods to do that,
and use a fixture to pass it the client for each test.

Listing 37: tests/conftest.py

class AuthActions(object):
def __init__(self, client):

self._client = client

def login(self, username='test', password='test'):
return self._client.post(

'/auth/login',
data={'username': username, 'password': password}

)

def logout(self):
(continues on next page)

46 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

return self._client.get('/auth/logout')

@pytest.fixture
def auth(client):

return AuthActions(client)

With the auth fixture, you can call auth.login() in a test to log in as the test user, which was inserted as part
of the test data in the app fixture.

The register view should render successfully on GET. On POST with valid form data, it should redirect to the
login URL and the user’s data should be in the database. Invalid data should display error messages.

Listing 38: tests/test_auth.py

import pytest
from flask import g, session
from flaskr.db import get_db

def test_register(client, app):
assert client.get('/auth/register').status_code == 200
response = client.post(

'/auth/register', data={'username': 'a', 'password': 'a'}
)
assert 'http://localhost/auth/login' == response.headers['Location']

with app.app_context():
assert get_db().execute(

"select * from user where username = 'a'",
).fetchone() is not None

@pytest.mark.parametrize(('username', 'password', 'message'), (
('', '', b'Username is required.'),
('a', '', b'Password is required.'),
('test', 'test', b'already registered'),

))
def test_register_validate_input(client, username, password, message):

response = client.post(
'/auth/register',
data={'username': username, 'password': password}

)
assert message in response.data

client.get() makes a GET request and returns the Response object returned by Flask. Similarly, client.
post() makes a POST request, converting the data dict into form data.

To test that the page renders successfully, a simple request is made and checked for a 200 OK status_code. If
rendering failed, Flask would return a 500 Internal Server Error code.

headers will have a Location header with the login URL when the register view redirects to the login view.

data contains the body of the response as bytes. If you expect a certain value to render on the page, check that it’s in
data. Bytes must be compared to bytes. If you want to compare Unicode text, use get_data(as_text=True)
instead.

pytest.mark.parametrize tells Pytest to run the same test function with different arguments. You use it here

1.5. Tutorial 47

https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client.get
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client.post
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client.post

Flask Documentation (1.1.x), Release 1.1.4

to test different invalid input and error messages without writing the same code three times.

The tests for the login view are very similar to those for register. Rather than testing the data in the database,
session should have user_id set after logging in.

Listing 39: tests/test_auth.py

def test_login(client, auth):
assert client.get('/auth/login').status_code == 200
response = auth.login()
assert response.headers['Location'] == 'http://localhost/'

with client:
client.get('/')
assert session['user_id'] == 1
assert g.user['username'] == 'test'

@pytest.mark.parametrize(('username', 'password', 'message'), (
('a', 'test', b'Incorrect username.'),
('test', 'a', b'Incorrect password.'),

))
def test_login_validate_input(auth, username, password, message):

response = auth.login(username, password)
assert message in response.data

Using client in a with block allows accessing context variables such as session after the response is returned.
Normally, accessing session outside of a request would raise an error.

Testing logout is the opposite of login. session should not contain user_id after logging out.

Listing 40: tests/test_auth.py

def test_logout(client, auth):
auth.login()

with client:
auth.logout()
assert 'user_id' not in session

Blog

All the blog views use the auth fixture you wrote earlier. Call auth.login() and subsequent requests from the
client will be logged in as the test user.

The index view should display information about the post that was added with the test data. When logged in as the
author, there should be a link to edit the post.

You can also test some more authentication behavior while testing the index view. When not logged in, each page
shows links to log in or register. When logged in, there’s a link to log out.

Listing 41: tests/test_blog.py

import pytest
from flaskr.db import get_db

(continues on next page)

48 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def test_index(client, auth):
response = client.get('/')
assert b"Log In" in response.data
assert b"Register" in response.data

auth.login()
response = client.get('/')
assert b'Log Out' in response.data
assert b'test title' in response.data
assert b'by test on 2018-01-01' in response.data
assert b'test\nbody' in response.data
assert b'href="/1/update"' in response.data

A user must be logged in to access the create, update, and delete views. The logged in user must be the author
of the post to access update and delete, otherwise a 403 Forbidden status is returned. If a post with the
given id doesn’t exist, update and delete should return 404 Not Found.

Listing 42: tests/test_blog.py

@pytest.mark.parametrize('path', (
'/create',
'/1/update',
'/1/delete',

))
def test_login_required(client, path):

response = client.post(path)
assert response.headers['Location'] == 'http://localhost/auth/login'

def test_author_required(app, client, auth):
change the post author to another user
with app.app_context():

db = get_db()
db.execute('UPDATE post SET author_id = 2 WHERE id = 1')
db.commit()

auth.login()
current user can't modify other user's post
assert client.post('/1/update').status_code == 403
assert client.post('/1/delete').status_code == 403
current user doesn't see edit link
assert b'href="/1/update"' not in client.get('/').data

@pytest.mark.parametrize('path', (
'/2/update',
'/2/delete',

))
def test_exists_required(client, auth, path):

auth.login()
assert client.post(path).status_code == 404

The create and update views should render and return a 200 OK status for a GET request. When valid data is
sent in a POST request, create should insert the new post data into the database, and update should modify the
existing data. Both pages should show an error message on invalid data.

1.5. Tutorial 49

Flask Documentation (1.1.x), Release 1.1.4

Listing 43: tests/test_blog.py

def test_create(client, auth, app):
auth.login()
assert client.get('/create').status_code == 200
client.post('/create', data={'title': 'created', 'body': ''})

with app.app_context():
db = get_db()
count = db.execute('SELECT COUNT(id) FROM post').fetchone()[0]
assert count == 2

def test_update(client, auth, app):
auth.login()
assert client.get('/1/update').status_code == 200
client.post('/1/update', data={'title': 'updated', 'body': ''})

with app.app_context():
db = get_db()
post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
assert post['title'] == 'updated'

@pytest.mark.parametrize('path', (
'/create',
'/1/update',

))
def test_create_update_validate(client, auth, path):

auth.login()
response = client.post(path, data={'title': '', 'body': ''})
assert b'Title is required.' in response.data

The delete view should redirect to the index URL and the post should no longer exist in the database.

Listing 44: tests/test_blog.py

def test_delete(client, auth, app):
auth.login()
response = client.post('/1/delete')
assert response.headers['Location'] == 'http://localhost/'

with app.app_context():
db = get_db()
post = db.execute('SELECT * FROM post WHERE id = 1').fetchone()
assert post is None

Running the Tests

Some extra configuration, which is not required but makes running tests with coverage less verbose, can be added to
the project’s setup.cfg file.

Listing 45: setup.cfg

[tool:pytest]
testpaths = tests

(continues on next page)

50 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

[coverage:run]
branch = True
source =

flaskr

To run the tests, use the pytest command. It will find and run all the test functions you’ve written.

$ pytest

========================= test session starts ==========================
platform linux -- Python 3.6.4, pytest-3.5.0, py-1.5.3, pluggy-0.6.0
rootdir: /home/user/Projects/flask-tutorial, inifile: setup.cfg
collected 23 items

tests/test_auth.py [34%]
tests/test_blog.py [86%]
tests/test_db.py .. [95%]
tests/test_factory.py .. [100%]

====================== 24 passed in 0.64 seconds =======================

If any tests fail, pytest will show the error that was raised. You can run pytest -v to get a list of each test function
rather than dots.

To measure the code coverage of your tests, use the coverage command to run pytest instead of running it directly.

$ coverage run -m pytest

You can either view a simple coverage report in the terminal:

$ coverage report

Name Stmts Miss Branch BrPart Cover
--
flaskr/__init__.py 21 0 2 0 100%
flaskr/auth.py 54 0 22 0 100%
flaskr/blog.py 54 0 16 0 100%
flaskr/db.py 24 0 4 0 100%
--
TOTAL 153 0 44 0 100%

An HTML report allows you to see which lines were covered in each file:

$ coverage html

This generates files in the htmlcov directory. Open htmlcov/index.html in your browser to see the report.

Continue to Deploy to Production.

1.5.10 Deploy to Production

This part of the tutorial assumes you have a server that you want to deploy your application to. It gives an overview of
how to create the distribution file and install it, but won’t go into specifics about what server or software to use. You
can set up a new environment on your development computer to try out the instructions below, but probably shouldn’t

1.5. Tutorial 51

Flask Documentation (1.1.x), Release 1.1.4

use it for hosting a real public application. See Deployment Options for a list of many different ways to host your
application.

Build and Install

When you want to deploy your application elsewhere, you build a distribution file. The current standard for Python
distribution is the wheel format, with the .whl extension. Make sure the wheel library is installed first:

$ pip install wheel

Running setup.py with Python gives you a command line tool to issue build-related commands. The
bdist_wheel command will build a wheel distribution file.

$ python setup.py bdist_wheel

You can find the file in dist/flaskr-1.0.0-py3-none-any.whl. The file name is in the format of {project
name}-{version}-{python tag} -{abi tag}-{platform tag}.

Copy this file to another machine, set up a new virtualenv, then install the file with pip.

$ pip install flaskr-1.0.0-py3-none-any.whl

Pip will install your project along with its dependencies.

Since this is a different machine, you need to run init-db again to create the database in the instance folder.

$ export FLASK_APP=flaskr
$ flask init-db

When Flask detects that it’s installed (not in editable mode), it uses a different directory for the instance folder. You
can find it at venv/var/flaskr-instance instead.

Configure the Secret Key

In the beginning of the tutorial that you gave a default value for SECRET_KEY . This should be changed to some
random bytes in production. Otherwise, attackers could use the public 'dev' key to modify the session cookie, or
anything else that uses the secret key.

You can use the following command to output a random secret key:

$ python -c 'import os; print(os.urandom(16))'

b'_5#y2L"F4Q8z\n\xec]/'

Create the config.py file in the instance folder, which the factory will read from if it exists. Copy the generated
value into it.

Listing 46: venv/var/flaskr-instance/config.py

SECRET_KEY = b'_5#y2L"F4Q8z\n\xec]/'

You can also set any other necessary configuration here, although SECRET_KEY is the only one needed for Flaskr.

52 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Run with a Production Server

When running publicly rather than in development, you should not use the built-in development server (flask run).
The development server is provided by Werkzeug for convenience, but is not designed to be particularly efficient,
stable, or secure.

Instead, use a production WSGI server. For example, to use Waitress, first install it in the virtual environment:

$ pip install waitress

You need to tell Waitress about your application, but it doesn’t use FLASK_APP like flask run does. You need to
tell it to import and call the application factory to get an application object.

$ waitress-serve --call 'flaskr:create_app'

Serving on http://0.0.0.0:8080

See Deployment Options for a list of many different ways to host your application. Waitress is just an example, chosen
for the tutorial because it supports both Windows and Linux. There are many more WSGI servers and deployment
options that you may choose for your project.

Continue to Keep Developing!.

1.5.11 Keep Developing!

You’ve learned about quite a few Flask and Python concepts throughout the tutorial. Go back and review the tutorial
and compare your code with the steps you took to get there. Compare your project to the example project, which might
look a bit different due to the step-by-step nature of the tutorial.

There’s a lot more to Flask than what you’ve seen so far. Even so, you’re now equipped to start developing your
own web applications. Check out the Quickstart for an overview of what Flask can do, then dive into the docs
to keep learning. Flask uses Jinja, Click, Werkzeug, and ItsDangerous behind the scenes, and they all have their
own documentation too. You’ll also be interested in Extensions which make tasks like working with the database or
validating form data easier and more powerful.

If you want to keep developing your Flaskr project, here are some ideas for what to try next:

• A detail view to show a single post. Click a post’s title to go to its page.

• Like / unlike a post.

• Comments.

• Tags. Clicking a tag shows all the posts with that tag.

• A search box that filters the index page by name.

• Paged display. Only show 5 posts per page.

• Upload an image to go along with a post.

• Format posts using Markdown.

• An RSS feed of new posts.

Have fun and make awesome applications!

This tutorial will walk you through creating a basic blog application called Flaskr. Users will be able to register, log
in, create posts, and edit or delete their own posts. You will be able to package and install the application on other
computers.

1.5. Tutorial 53

https://docs.pylonsproject.org/projects/waitress/en/stable/
https://github.com/pallets/flask/tree/1.1.4/examples/tutorial
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/click/
https://palletsprojects.com/p/werkzeug/
https://palletsprojects.com/p/itsdangerous/

Flask Documentation (1.1.x), Release 1.1.4

It’s assumed that you’re already familiar with Python. The official tutorial in the Python docs is a great way to learn
or review first.

While it’s designed to give a good starting point, the tutorial doesn’t cover all of Flask’s features. Check out the
Quickstart for an overview of what Flask can do, then dive into the docs to find out more. The tutorial only uses
what’s provided by Flask and Python. In another project, you might decide to use Extensions or other libraries to make
some tasks simpler.

54 Chapter 1. User’s Guide

https://docs.python.org/3/tutorial/

Flask Documentation (1.1.x), Release 1.1.4

Flask is flexible. It doesn’t require you to use any particular project or code layout. However, when first starting, it’s
helpful to use a more structured approach. This means that the tutorial will require a bit of boilerplate up front, but it’s
done to avoid many common pitfalls that new developers encounter, and it creates a project that’s easy to expand on.
Once you become more comfortable with Flask, you can step out of this structure and take full advantage of Flask’s
flexibility.

1.5. Tutorial 55

Flask Documentation (1.1.x), Release 1.1.4

The tutorial project is available as an example in the Flask repository, if you want to compare your project with the
final product as you follow the tutorial.

Continue to Project Layout.

56 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/1.1.4/examples/tutorial

Flask Documentation (1.1.x), Release 1.1.4

1.6 Templates

Flask leverages Jinja2 as its template engine. You are obviously free to use a different template engine, but you still
have to install Jinja2 to run Flask itself. This requirement is necessary to enable rich extensions. An extension can
depend on Jinja2 being present.

This section only gives a very quick introduction into how Jinja2 is integrated into Flask. If you want information on
the template engine’s syntax itself, head over to the official Jinja2 Template Documentation for more information.

1.6.1 Jinja Setup

Unless customized, Jinja2 is configured by Flask as follows:

• autoescaping is enabled for all templates ending in .html, .htm, .xml as well as .xhtml when using
render_template().

• autoescaping is enabled for all strings when using render_template_string().

• a template has the ability to opt in/out autoescaping with the {% autoescape %} tag.

• Flask inserts a couple of global functions and helpers into the Jinja2 context, additionally to the values that are
present by default.

1.6.2 Standard Context

The following global variables are available within Jinja2 templates by default:

config
The current configuration object (flask.config)

Changed in version 0.10: This is now always available, even in imported templates.

New in version 0.6.

request
The current request object (flask.request). This variable is unavailable if the template was rendered
without an active request context.

session
The current session object (flask.session). This variable is unavailable if the template was rendered
without an active request context.

g
The request-bound object for global variables (flask.g). This variable is unavailable if the template was
rendered without an active request context.

url_for()
The flask.url_for() function.

get_flashed_messages()
The flask.get_flashed_messages() function.

The Jinja Context Behavior

These variables are added to the context of variables, they are not global variables. The difference is that by default
these will not show up in the context of imported templates. This is partially caused by performance considerations,
partially to keep things explicit.

1.6. Templates 57

http://jinja.pocoo.org/docs/templates/

Flask Documentation (1.1.x), Release 1.1.4

What does this mean for you? If you have a macro you want to import, that needs to access the request object you
have two possibilities:

1. you explicitly pass the request to the macro as parameter, or the attribute of the request object you are interested
in.

2. you import the macro “with context”.

Importing with context looks like this:

{% from '_helpers.html' import my_macro with context %}

1.6.3 Standard Filters

Flask provides the following Jinja2 filters in addition to the filters provided by Jinja2 itself:

tojson()
This function converts the given object into JSON representation. This is for example very helpful if you try to
generate JavaScript on the fly.

<script type=text/javascript>
doSomethingWith({{ user.username|tojson }});

</script>

It is also safe to use the output of |tojson in a single-quoted HTML attribute:

<button onclick='doSomethingWith({{ user.username|tojson }})'>
Click me

</button>

Note that in versions of Flask prior to 0.10, if using the output of |tojson inside script, make sure to
disable escaping with |safe. In Flask 0.10 and above, this happens automatically.

1.6.4 Controlling Autoescaping

Autoescaping is the concept of automatically escaping special characters for you. Special characters in the sense of
HTML (or XML, and thus XHTML) are &, >, <, " as well as '. Because these characters carry specific meanings in
documents on their own you have to replace them by so called “entities” if you want to use them for text. Not doing
so would not only cause user frustration by the inability to use these characters in text, but can also lead to security
problems. (see Cross-Site Scripting (XSS))

Sometimes however you will need to disable autoescaping in templates. This can be the case if you want to explicitly
inject HTML into pages, for example if they come from a system that generates secure HTML like a markdown to
HTML converter.

There are three ways to accomplish that:

• In the Python code, wrap the HTML string in a Markup object before passing it to the template. This is in
general the recommended way.

• Inside the template, use the |safe filter to explicitly mark a string as safe HTML ({{ myvariable|safe
}})

• Temporarily disable the autoescape system altogether.

To disable the autoescape system in templates, you can use the {% autoescape %} block:

58 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

{% autoescape false %}
<p>autoescaping is disabled here
<p>{{ will_not_be_escaped }}

{% endautoescape %}

Whenever you do this, please be very cautious about the variables you are using in this block.

1.6.5 Registering Filters

If you want to register your own filters in Jinja2 you have two ways to do that. You can either put them by hand into
the jinja_env of the application or use the template_filter() decorator.

The two following examples work the same and both reverse an object:

@app.template_filter('reverse')
def reverse_filter(s):

return s[::-1]

def reverse_filter(s):
return s[::-1]

app.jinja_env.filters['reverse'] = reverse_filter

In case of the decorator the argument is optional if you want to use the function name as name of the filter. Once
registered, you can use the filter in your templates in the same way as Jinja2’s builtin filters, for example if you have a
Python list in context called mylist:

{% for x in mylist | reverse %}
{% endfor %}

1.6.6 Context Processors

To inject new variables automatically into the context of a template, context processors exist in Flask. Context pro-
cessors run before the template is rendered and have the ability to inject new values into the template context. A
context processor is a function that returns a dictionary. The keys and values of this dictionary are then merged with
the template context, for all templates in the app:

@app.context_processor
def inject_user():

return dict(user=g.user)

The context processor above makes a variable called user available in the template with the value of g.user. This
example is not very interesting because g is available in templates anyways, but it gives an idea how this works.

Variables are not limited to values; a context processor can also make functions available to templates (since Python
allows passing around functions):

@app.context_processor
def utility_processor():

def format_price(amount, currency=u'C'):
return u'{0:.2f}{1}'.format(amount, currency)

return dict(format_price=format_price)

The context processor above makes the format_price function available to all templates:

1.6. Templates 59

Flask Documentation (1.1.x), Release 1.1.4

{{ format_price(0.33) }}

You could also build format_price as a template filter (see Registering Filters), but this demonstrates how to pass
functions in a context processor.

1.7 Testing Flask Applications

Something that is untested is broken.

The origin of this quote is unknown and while it is not entirely correct, it is also not far from the truth. Untested
applications make it hard to improve existing code and developers of untested applications tend to become pretty
paranoid. If an application has automated tests, you can safely make changes and instantly know if anything breaks.

Flask provides a way to test your application by exposing the Werkzeug test Client and handling the context locals
for you. You can then use that with your favourite testing solution.

In this documentation we will use the pytest package as the base framework for our tests. You can install it with pip,
like so:

$ pip install pytest

1.7.1 The Application

First, we need an application to test; we will use the application from the Tutorial. If you don’t have that application
yet, get the source code from the examples.

1.7.2 The Testing Skeleton

We begin by adding a tests directory under the application root. Then create a Python file to store our tests
(test_flaskr.py). When we format the filename like test_*.py, it will be auto-discoverable by pytest.

Next, we create a pytest fixture called client() that configures the application for testing and initializes a new
database:

import os
import tempfile

import pytest

from flaskr import flaskr

@pytest.fixture
def client():

db_fd, flaskr.app.config['DATABASE'] = tempfile.mkstemp()
flaskr.app.config['TESTING'] = True

with flaskr.app.test_client() as client:
with flaskr.app.app_context():

flaskr.init_db()
yield client

(continues on next page)

60 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client
https://docs.pytest.org/
https://github.com/pallets/flask/tree/1.1.4/examples/tutorial
https://docs.pytest.org/en/latest/fixture.html

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

os.close(db_fd)
os.unlink(flaskr.app.config['DATABASE'])

This client fixture will be called by each individual test. It gives us a simple interface to the application, where we can
trigger test requests to the application. The client will also keep track of cookies for us.

During setup, the TESTING config flag is activated. What this does is disable error catching during request handling,
so that you get better error reports when performing test requests against the application.

Because SQLite3 is filesystem-based, we can easily use the tempfile module to create a temporary database and
initialize it. The mkstemp() function does two things for us: it returns a low-level file handle and a random file
name, the latter we use as database name. We just have to keep the db_fd around so that we can use the os.close()
function to close the file.

To delete the database after the test, the fixture closes the file and removes it from the filesystem.

If we now run the test suite, we should see the following output:

$ pytest

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 0 items

=========== no tests ran in 0.07 seconds ============

Even though it did not run any actual tests, we already know that our flaskr application is syntactically valid,
otherwise the import would have died with an exception.

1.7.3 The First Test

Now it’s time to start testing the functionality of the application. Let’s check that the application shows “No entries
here so far” if we access the root of the application (/). To do this, we add a new test function to test_flaskr.py,
like this:

def test_empty_db(client):
"""Start with a blank database."""

rv = client.get('/')
assert b'No entries here so far' in rv.data

Notice that our test functions begin with the word test; this allows pytest to automatically identify the function as a
test to run.

By using client.get we can send an HTTP GET request to the application with the given path. The return value
will be a response_class object. We can now use the data attribute to inspect the return value (as string) from
the application. In this case, we ensure that 'No entries here so far' is part of the output.

Run it again and you should see one passing test:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 1 items

(continues on next page)

1.7. Testing Flask Applications 61

https://docs.python.org/3/library/tempfile.html#module-tempfile
https://docs.python.org/3/library/tempfile.html#tempfile.mkstemp
https://docs.python.org/3/library/os.html#os.close
https://docs.pytest.org/

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

tests/test_flaskr.py::test_empty_db PASSED

============= 1 passed in 0.10 seconds ==============

1.7.4 Logging In and Out

The majority of the functionality of our application is only available for the administrative user, so we need a way to
log our test client in and out of the application. To do this, we fire some requests to the login and logout pages with
the required form data (username and password). And because the login and logout pages redirect, we tell the client
to follow_redirects.

Add the following two functions to your test_flaskr.py file:

def login(client, username, password):
return client.post('/login', data=dict(

username=username,
password=password

), follow_redirects=True)

def logout(client):
return client.get('/logout', follow_redirects=True)

Now we can easily test that logging in and out works and that it fails with invalid credentials. Add this new test
function:

def test_login_logout(client):
"""Make sure login and logout works."""

rv = login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD'])
assert b'You were logged in' in rv.data

rv = logout(client)
assert b'You were logged out' in rv.data

rv = login(client, flaskr.app.config['USERNAME'] + 'x', flaskr.app.config[
→˓'PASSWORD'])

assert b'Invalid username' in rv.data

rv = login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD'] +
→˓'x')

assert b'Invalid password' in rv.data

1.7.5 Test Adding Messages

We should also test that adding messages works. Add a new test function like this:

def test_messages(client):
"""Test that messages work."""

login(client, flaskr.app.config['USERNAME'], flaskr.app.config['PASSWORD'])
rv = client.post('/add', data=dict(

title='<Hello>',

(continues on next page)

62 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

text='HTML allowed here'
), follow_redirects=True)
assert b'No entries here so far' not in rv.data
assert b'<Hello>' in rv.data
assert b'HTML allowed here' in rv.data

Here we check that HTML is allowed in the text but not in the title, which is the intended behavior.

Running that should now give us three passing tests:

$ pytest -v

================ test session starts ================
rootdir: ./flask/examples/flaskr, inifile: setup.cfg
collected 3 items

tests/test_flaskr.py::test_empty_db PASSED
tests/test_flaskr.py::test_login_logout PASSED
tests/test_flaskr.py::test_messages PASSED

============= 3 passed in 0.23 seconds ==============

1.7.6 Other Testing Tricks

Besides using the test client as shown above, there is also the test_request_context() method that can be
used in combination with the with statement to activate a request context temporarily. With this you can access the
request, g and session objects like in view functions. Here is a full example that demonstrates this approach:

import flask

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
assert flask.request.path == '/'
assert flask.request.args['name'] == 'Peter'

All the other objects that are context bound can be used in the same way.

If you want to test your application with different configurations and there does not seem to be a good way to do that,
consider switching to application factories (see Application Factories).

Note however that if you are using a test request context, the before_request() and after_request()
functions are not called automatically. However teardown_request() functions are indeed executed when the
test request context leaves the with block. If you do want the before_request() functions to be called as well,
you need to call preprocess_request() yourself:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
app.preprocess_request()
...

This can be necessary to open database connections or something similar depending on how your application was
designed.

1.7. Testing Flask Applications 63

Flask Documentation (1.1.x), Release 1.1.4

If you want to call the after_request() functions you need to call into process_response()which however
requires that you pass it a response object:

app = flask.Flask(__name__)

with app.test_request_context('/?name=Peter'):
resp = Response('...')
resp = app.process_response(resp)
...

This in general is less useful because at that point you can directly start using the test client.

1.7.7 Faking Resources and Context

New in version 0.10.

A very common pattern is to store user authorization information and database connections on the application context
or the flask.g object. The general pattern for this is to put the object on there on first usage and then to remove it
on a teardown. Imagine for instance this code to get the current user:

def get_user():
user = getattr(g, 'user', None)
if user is None:

user = fetch_current_user_from_database()
g.user = user

return user

For a test it would be nice to override this user from the outside without having to change some code. This can be
accomplished with hooking the flask.appcontext_pushed signal:

from contextlib import contextmanager
from flask import appcontext_pushed, g

@contextmanager
def user_set(app, user):

def handler(sender, **kwargs):
g.user = user

with appcontext_pushed.connected_to(handler, app):
yield

And then to use it:

from flask import json, jsonify

@app.route('/users/me')
def users_me():

return jsonify(username=g.user.username)

with user_set(app, my_user):
with app.test_client() as c:

resp = c.get('/users/me')
data = json.loads(resp.data)
self.assert_equal(data['username'], my_user.username)

64 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

1.7.8 Keeping the Context Around

New in version 0.4.

Sometimes it is helpful to trigger a regular request but still keep the context around for a little longer so that additional
introspection can happen. With Flask 0.4 this is possible by using the test_client() with a with block:

app = flask.Flask(__name__)

with app.test_client() as c:
rv = c.get('/?tequila=42')
assert request.args['tequila'] == '42'

If you were to use just the test_client() without the with block, the assert would fail with an error because
request is no longer available (because you are trying to use it outside of the actual request).

1.7.9 Accessing and Modifying Sessions

New in version 0.8.

Sometimes it can be very helpful to access or modify the sessions from the test client. Generally there are two ways
for this. If you just want to ensure that a session has certain keys set to certain values you can just keep the context
around and access flask.session:

with app.test_client() as c:
rv = c.get('/')
assert flask.session['foo'] == 42

This however does not make it possible to also modify the session or to access the session before a request was fired.
Starting with Flask 0.8 we provide a so called “session transaction” which simulates the appropriate calls to open a
session in the context of the test client and to modify it. At the end of the transaction the session is stored and ready to
be used by the test client. This works independently of the session backend used:

with app.test_client() as c:
with c.session_transaction() as sess:

sess['a_key'] = 'a value'

once this is reached the session was stored and ready to be used by the client
c.get(...)

Note that in this case you have to use the sess object instead of the flask.session proxy. The object however
itself will provide the same interface.

1.7.10 Testing JSON APIs

New in version 1.0.

Flask has great support for JSON, and is a popular choice for building JSON APIs. Making requests with JSON data
and examining JSON data in responses is very convenient:

from flask import request, jsonify

@app.route('/api/auth')
def auth():

json_data = request.get_json()

(continues on next page)

1.7. Testing Flask Applications 65

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

email = json_data['email']
password = json_data['password']
return jsonify(token=generate_token(email, password))

with app.test_client() as c:
rv = c.post('/api/auth', json={

'email': 'flask@example.com', 'password': 'secret'
})
json_data = rv.get_json()
assert verify_token(email, json_data['token'])

Passing the json argument in the test client methods sets the request data to the JSON-serialized object and sets the
content type to application/json. You can get the JSON data from the request or response with get_json.

1.7.11 Testing CLI Commands

Click comes with utilities for testing your CLI commands. A CliRunner runs commands in isolation and captures
the output in a Result object.

Flask provides test_cli_runner() to create a FlaskCliRunner that passes the Flask app to the CLI auto-
matically. Use its invoke() method to call commands in the same way they would be called from the command
line.

import click

@app.cli.command('hello')
@click.option('--name', default='World')
def hello_command(name):

click.echo(f'Hello, {name}!')

def test_hello():
runner = app.test_cli_runner()

invoke the command directly
result = runner.invoke(hello_command, ['--name', 'Flask'])
assert 'Hello, Flask' in result.output

or by name
result = runner.invoke(args=['hello'])
assert 'World' in result.output

In the example above, invoking the command by name is useful because it verifies that the command was correctly
registered with the app.

If you want to test how your command parses parameters, without running the command, use its make_context()
method. This is useful for testing complex validation rules and custom types.

def upper(ctx, param, value):
if value is not None:

return value.upper()

@app.cli.command('hello')
@click.option('--name', default='World', callback=upper)
def hello_command(name):

click.echo(f'Hello, {name}!')

(continues on next page)

66 Chapter 1. User’s Guide

https://click.palletsprojects.com/testing/
https://click.palletsprojects.com/en/8.0.x/api/#click.testing.CliRunner
https://click.palletsprojects.com/en/8.0.x/api/#click.testing.Result
https://click.palletsprojects.com/en/8.0.x/api/#click.BaseCommand.make_context

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def test_hello_params():
context = hello_command.make_context('hello', ['--name', 'flask'])
assert context.params['name'] == 'FLASK'

1.8 Application Errors

New in version 0.3.

Applications fail, servers fail. Sooner or later you will see an exception in production. Even if your code is 100%
correct, you will still see exceptions from time to time. Why? Because everything else involved will fail. Here are
some situations where perfectly fine code can lead to server errors:

• the client terminated the request early and the application was still reading from the incoming data

• the database server was overloaded and could not handle the query

• a filesystem is full

• a harddrive crashed

• a backend server overloaded

• a programming error in a library you are using

• network connection of the server to another system failed

And that’s just a small sample of issues you could be facing. So how do we deal with that sort of problem? By default
if your application runs in production mode, Flask will display a very simple page for you and log the exception to the
logger.

But there is more you can do, and we will cover some better setups to deal with errors.

1.8.1 Error Logging Tools

Sending error mails, even if just for critical ones, can become overwhelming if enough users are hitting the error and
log files are typically never looked at. This is why we recommend using Sentry for dealing with application errors.
It’s available as an Open Source project on GitHub and is also available as a hosted version which you can try for free.
Sentry aggregates duplicate errors, captures the full stack trace and local variables for debugging, and sends you mails
based on new errors or frequency thresholds.

To use Sentry you need to install the sentry-sdk client with extra flask dependencies:

$ pip install sentry-sdk[flask]

And then add this to your Flask app:

import sentry_sdk
from sentry_sdk.integrations.flask import FlaskIntegration

sentry_sdk.init('YOUR_DSN_HERE',integrations=[FlaskIntegration()])

The YOUR_DSN_HERE value needs to be replaced with the DSN value you get from your Sentry installation.

After installation, failures leading to an Internal Server Error are automatically reported to Sentry and from there you
can receive error notifications.

1.8. Application Errors 67

https://sentry.io/
https://github.com/getsentry/sentry
https://sentry.io/signup/

Flask Documentation (1.1.x), Release 1.1.4

Follow-up reads:

• Sentry also supports catching errors from your worker queue (RQ, Celery) in a similar fashion. See the Python
SDK docs for more information.

• Getting started with Sentry

• Flask-specific documentation.

1.8.2 Error handlers

You might want to show custom error pages to the user when an error occurs. This can be done by registering error
handlers.

An error handler is a normal view function that returns a response, but instead of being registered for a route, it is
registered for an exception or HTTP status code that would be raised while trying to handle a request.

Registering

Register handlers by decorating a function with errorhandler(). Or use register_error_handler() to
register the function later. Remember to set the error code when returning the response.

@app.errorhandler(werkzeug.exceptions.BadRequest)
def handle_bad_request(e):

return 'bad request!', 400

or, without the decorator
app.register_error_handler(400, handle_bad_request)

werkzeug.exceptions.HTTPException subclasses like BadRequest and their HTTP codes are inter-
changeable when registering handlers. (BadRequest.code == 400)

Non-standard HTTP codes cannot be registered by code because they are not known by Werkzeug. Instead, define a
subclass of HTTPException with the appropriate code and register and raise that exception class.

class InsufficientStorage(werkzeug.exceptions.HTTPException):
code = 507
description = 'Not enough storage space.'

app.register_error_handler(InsufficientStorage, handle_507)

raise InsufficientStorage()

Handlers can be registered for any exception class, not just HTTPException subclasses or HTTP status codes.
Handlers can be registered for a specific class, or for all subclasses of a parent class.

Handling

When an exception is caught by Flask while handling a request, it is first looked up by code. If no handler is registered
for the code, it is looked up by its class hierarchy; the most specific handler is chosen. If no handler is registered,
HTTPException subclasses show a generic message about their code, while other exceptions are converted to a
generic 500 Internal Server Error.

For example, if an instance of ConnectionRefusedError is raised, and a handler is registered for
ConnectionError and ConnectionRefusedError, the more specific ConnectionRefusedError han-
dler is called with the exception instance to generate the response.

68 Chapter 1. User’s Guide

https://docs.sentry.io/platforms/python/
https://docs.sentry.io/platforms/python/
https://docs.sentry.io/quickstart/?platform=python
https://docs.sentry.io/platforms/python/guides/flask/
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.BadRequest
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#ConnectionError
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError
https://docs.python.org/3/library/exceptions.html#ConnectionRefusedError

Flask Documentation (1.1.x), Release 1.1.4

Handlers registered on the blueprint take precedence over those registered globally on the application, assuming a
blueprint is handling the request that raises the exception. However, the blueprint cannot handle 404 routing errors
because the 404 occurs at the routing level before the blueprint can be determined.

Generic Exception Handlers

It is possible to register error handlers for very generic base classes such as HTTPException or even Exception.
However, be aware that these will catch more than you might expect.

An error handler for HTTPException might be useful for turning the default HTML errors pages into JSON, for
example. However, this handler will trigger for things you don’t cause directly, such as 404 and 405 errors during
routing. Be sure to craft your handler carefully so you don’t lose information about the HTTP error.

from flask import json
from werkzeug.exceptions import HTTPException

@app.errorhandler(HTTPException)
def handle_exception(e):

"""Return JSON instead of HTML for HTTP errors."""
start with the correct headers and status code from the error
response = e.get_response()
replace the body with JSON
response.data = json.dumps({

"code": e.code,
"name": e.name,
"description": e.description,

})
response.content_type = "application/json"
return response

An error handler for Exception might seem useful for changing how all errors, even unhandled ones, are presented
to the user. However, this is similar to doing except Exception: in Python, it will capture all otherwise un-
handled errors, including all HTTP status codes. In most cases it will be safer to register handlers for more specific
exceptions. Since HTTPException instances are valid WSGI responses, you could also pass them through directly.

from werkzeug.exceptions import HTTPException

@app.errorhandler(Exception)
def handle_exception(e):

pass through HTTP errors
if isinstance(e, HTTPException):

return e

now you're handling non-HTTP exceptions only
return render_template("500_generic.html", e=e), 500

Error handlers still respect the exception class hierarchy. If you register handlers for both HTTPException
and Exception, the Exception handler will not handle HTTPException subclasses because it the
HTTPException handler is more specific.

Unhandled Exceptions

When there is no error handler registered for an exception, a 500 Internal Server Error will be returned instead. See
flask.Flask.handle_exception() for information about this behavior.

1.8. Application Errors 69

Flask Documentation (1.1.x), Release 1.1.4

If there is an error handler registered for InternalServerError, this will be invoked. As of Flask 1.1.0, this
error handler will always be passed an instance of InternalServerError, not the original unhandled error. The
original error is available as e.original_exception. Until Werkzeug 1.0.0, this attribute will only exist during
unhandled errors, use getattr to get access it for compatibility.

@app.errorhandler(InternalServerError)
def handle_500(e):

original = getattr(e, "original_exception", None)

if original is None:
direct 500 error, such as abort(500)
return render_template("500.html"), 500

wrapped unhandled error
return render_template("500_unhandled.html", e=original), 500

1.8.3 Logging

See Logging for information on how to log exceptions, such as by emailing them to admins.

1.9 Debugging Application Errors

For production applications, configure your application with logging and notifications as described in Application
Errors. This section provides pointers when debugging deployment configuration and digging deeper with a full-
featured Python debugger.

1.9.1 When in Doubt, Run Manually

Having problems getting your application configured for production? If you have shell access to your host, verify that
you can run your application manually from the shell in the deployment environment. Be sure to run under the same
user account as the configured deployment to troubleshoot permission issues. You can use Flask’s builtin development
server with debug=True on your production host, which is helpful in catching configuration issues, but be sure to do
this temporarily in a controlled environment. Do not run in production with debug=True.

1.9.2 Working with Debuggers

To dig deeper, possibly to trace code execution, Flask provides a debugger out of the box (see Debug Mode). If you
would like to use another Python debugger, note that debuggers interfere with each other. You have to set some options
in order to use your favorite debugger:

• debug - whether to enable debug mode and catch exceptions

• use_debugger - whether to use the internal Flask debugger

• use_reloader - whether to reload and fork the process if modules were changed

debug must be True (i.e., exceptions must be caught) in order for the other two options to have any value.

If you’re using Aptana/Eclipse for debugging you’ll need to set both use_debugger and use_reloader to False.

A possible useful pattern for configuration is to set the following in your config.yaml (change the block as appropriate
for your application, of course):

70 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

FLASK:
DEBUG: True
DEBUG_WITH_APTANA: True

Then in your application’s entry-point (main.py), you could have something like:

if __name__ == "__main__":
To allow aptana to receive errors, set use_debugger=False
app = create_app(config="config.yaml")

use_debugger = app.debug and not(app.config.get('DEBUG_WITH_APTANA'))
app.run(use_debugger=use_debugger, debug=app.debug,

use_reloader=use_debugger, host='0.0.0.0')

1.10 Logging

Flask uses standard Python logging. Messages about your Flask application are logged with app.logger, which
takes the same name as app.name. This logger can also be used to log your own messages.

@app.route('/login', methods=['POST'])
def login():

user = get_user(request.form['username'])

if user.check_password(request.form['password']):
login_user(user)
app.logger.info('%s logged in successfully', user.username)
return redirect(url_for('index'))

else:
app.logger.info('%s failed to log in', user.username)
abort(401)

1.10.1 Basic Configuration

When you want to configure logging for your project, you should do it as soon as possible when the program starts.
If app.logger is accessed before logging is configured, it will add a default handler. If possible, configure logging
before creating the application object.

This example uses dictConfig() to create a logging configuration similar to Flask’s default, except for all logs:

from logging.config import dictConfig

dictConfig({
'version': 1,
'formatters': {'default': {

'format': '[%(asctime)s] %(levelname)s in %(module)s: %(message)s',
}},
'handlers': {'wsgi': {

'class': 'logging.StreamHandler',
'stream': 'ext://flask.logging.wsgi_errors_stream',
'formatter': 'default'

}},
'root': {

'level': 'INFO',

(continues on next page)

1.10. Logging 71

https://docs.python.org/3/library/logging.html#module-logging
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

'handlers': ['wsgi']
}

})

app = Flask(__name__)

Default Configuration

If you do not configure logging yourself, Flask will add a StreamHandler to app.logger automatically. During
requests, it will write to the stream specified by the WSGI server in environ['wsgi.errors'] (which is usually
sys.stderr). Outside a request, it will log to sys.stderr.

Removing the Default Handler

If you configured logging after accessing app.logger, and need to remove the default handler, you can import and
remove it:

from flask.logging import default_handler

app.logger.removeHandler(default_handler)

1.10.2 Email Errors to Admins

When running the application on a remote server for production, you probably won’t be looking at the log messages
very often. The WSGI server will probably send log messages to a file, and you’ll only check that file if a user tells
you something went wrong.

To be proactive about discovering and fixing bugs, you can configure a logging.handlers.SMTPHandler to
send an email when errors and higher are logged.

import logging
from logging.handlers import SMTPHandler

mail_handler = SMTPHandler(
mailhost='127.0.0.1',
fromaddr='server-error@example.com',
toaddrs=['admin@example.com'],
subject='Application Error'

)
mail_handler.setLevel(logging.ERROR)
mail_handler.setFormatter(logging.Formatter(

'[%(asctime)s] %(levelname)s in %(module)s: %(message)s'
))

if not app.debug:
app.logger.addHandler(mail_handler)

This requires that you have an SMTP server set up on the same server. See the Python docs for more information
about configuring the handler.

72 Chapter 1. User’s Guide

https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/sys.html#sys.stderr
https://docs.python.org/3/library/logging.handlers.html#logging.handlers.SMTPHandler

Flask Documentation (1.1.x), Release 1.1.4

1.10.3 Injecting Request Information

Seeing more information about the request, such as the IP address, may help debugging some errors. You can subclass
logging.Formatter to inject your own fields that can be used in messages. You can change the formatter for
Flask’s default handler, the mail handler defined above, or any other handler.

from flask import has_request_context, request
from flask.logging import default_handler

class RequestFormatter(logging.Formatter):
def format(self, record):

if has_request_context():
record.url = request.url
record.remote_addr = request.remote_addr

else:
record.url = None
record.remote_addr = None

return super().format(record)

formatter = RequestFormatter(
'[%(asctime)s] %(remote_addr)s requested %(url)s\n'
'%(levelname)s in %(module)s: %(message)s'

)
default_handler.setFormatter(formatter)
mail_handler.setFormatter(formatter)

1.10.4 Other Libraries

Other libraries may use logging extensively, and you want to see relevant messages from those logs too. The simplest
way to do this is to add handlers to the root logger instead of only the app logger.

from flask.logging import default_handler

root = logging.getLogger()
root.addHandler(default_handler)
root.addHandler(mail_handler)

Depending on your project, it may be more useful to configure each logger you care about separately, instead of
configuring only the root logger.

for logger in (
app.logger,
logging.getLogger('sqlalchemy'),
logging.getLogger('other_package'),

):
logger.addHandler(default_handler)
logger.addHandler(mail_handler)

Werkzeug

Werkzeug logs basic request/response information to the 'werkzeug' logger. If the root logger has no handlers
configured, Werkzeug adds a StreamHandler to its logger.

1.10. Logging 73

https://docs.python.org/3/library/logging.html#logging.Formatter
https://docs.python.org/3/library/logging.handlers.html#logging.StreamHandler

Flask Documentation (1.1.x), Release 1.1.4

Flask Extensions

Depending on the situation, an extension may choose to log to app.logger or its own named logger. Consult each
extension’s documentation for details.

1.11 Configuration Handling

Applications need some kind of configuration. There are different settings you might want to change depending on
the application environment like toggling the debug mode, setting the secret key, and other such environment-specific
things.

The way Flask is designed usually requires the configuration to be available when the application starts up. You can
hard code the configuration in the code, which for many small applications is not actually that bad, but there are better
ways.

Independent of how you load your config, there is a config object available which holds the loaded configuration
values: The config attribute of the Flask object. This is the place where Flask itself puts certain configuration
values and also where extensions can put their configuration values. But this is also where you can have your own
configuration.

1.11.1 Configuration Basics

The config is actually a subclass of a dictionary and can be modified just like any dictionary:

app = Flask(__name__)
app.config['TESTING'] = True

Certain configuration values are also forwarded to the Flask object so you can read and write them from there:

app.testing = True

To update multiple keys at once you can use the dict.update() method:

app.config.update(
TESTING=True,
SECRET_KEY=b'_5#y2L"F4Q8z\n\xec]/'

)

1.11.2 Environment and Debug Features

The ENV and DEBUG config values are special because they may behave inconsistently if changed after the app has
begun setting up. In order to set the environment and debug mode reliably, Flask uses environment variables.

The environment is used to indicate to Flask, extensions, and other programs, like Sentry, what context Flask is running
in. It is controlled with the FLASK_ENV environment variable and defaults to production.

Setting FLASK_ENV to development will enable debug mode. flask run will use the interactive debugger and
reloader by default in debug mode. To control this separately from the environment, use the FLASK_DEBUG flag.

Changed in version 1.0: Added FLASK_ENV to control the environment separately from debug mode. The develop-
ment environment enables debug mode.

To switch Flask to the development environment and enable debug mode, set FLASK_ENV:

74 Chapter 1. User’s Guide

https://docs.python.org/3/library/stdtypes.html#dict.update

Flask Documentation (1.1.x), Release 1.1.4

$ export FLASK_ENV=development
$ flask run

(On Windows, use set instead of export.)

Using the environment variables as described above is recommended. While it is possible to set ENV and DEBUG in
your config or code, this is strongly discouraged. They can’t be read early by the flask command, and some systems
or extensions may have already configured themselves based on a previous value.

1.11.3 Builtin Configuration Values

The following configuration values are used internally by Flask:

ENV
What environment the app is running in. Flask and extensions may enable behaviors based on the environment,
such as enabling debug mode. The env attribute maps to this config key. This is set by the FLASK_ENV
environment variable and may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

New in version 1.0.

DEBUG
Whether debug mode is enabled. When using flask run to start the development server, an interactive
debugger will be shown for unhandled exceptions, and the server will be reloaded when code changes. The
debug attribute maps to this config key. This is enabled when ENV is 'development' and is overridden by
the FLASK_DEBUG environment variable. It may not behave as expected if set in code.

Do not enable debug mode when deploying in production.

Default: True if ENV is 'development', or False otherwise.

TESTING
Enable testing mode. Exceptions are propagated rather than handled by the the app’s error handlers. Extensions
may also change their behavior to facilitate easier testing. You should enable this in your own tests.

Default: False

PROPAGATE_EXCEPTIONS
Exceptions are re-raised rather than being handled by the app’s error handlers. If not set, this is implicitly true
if TESTING or DEBUG is enabled.

Default: None

PRESERVE_CONTEXT_ON_EXCEPTION
Don’t pop the request context when an exception occurs. If not set, this is true if DEBUG is true. This allows
debuggers to introspect the request data on errors, and should normally not need to be set directly.

Default: None

TRAP_HTTP_EXCEPTIONS
If there is no handler for an HTTPException-type exception, re-raise it to be handled by the interactive
debugger instead of returning it as a simple error response.

Default: False

TRAP_BAD_REQUEST_ERRORS
Trying to access a key that doesn’t exist from request dicts like args and form will return a 400 Bad Request
error page. Enable this to treat the error as an unhandled exception instead so that you get the interactive

1.11. Configuration Handling 75

Flask Documentation (1.1.x), Release 1.1.4

debugger. This is a more specific version of TRAP_HTTP_EXCEPTIONS. If unset, it is enabled in debug
mode.

Default: None

SECRET_KEY
A secret key that will be used for securely signing the session cookie and can be used for any other security
related needs by extensions or your application. It should be a long random string of bytes, although unicode is
accepted too. For example, copy the output of this to your config:

$ python -c 'import os; print(os.urandom(16))'
b'_5#y2L"F4Q8z\n\xec]/'

Do not reveal the secret key when posting questions or committing code.

Default: None

SESSION_COOKIE_NAME
The name of the session cookie. Can be changed in case you already have a cookie with the same name.

Default: 'session'

SESSION_COOKIE_DOMAIN
The domain match rule that the session cookie will be valid for. If not set, the cookie will be valid for all
subdomains of SERVER_NAME. If False, the cookie’s domain will not be set.

Default: None

SESSION_COOKIE_PATH
The path that the session cookie will be valid for. If not set, the cookie will be valid underneath
APPLICATION_ROOT or / if that is not set.

Default: None

SESSION_COOKIE_HTTPONLY
Browsers will not allow JavaScript access to cookies marked as “HTTP only” for security.

Default: True

SESSION_COOKIE_SECURE
Browsers will only send cookies with requests over HTTPS if the cookie is marked “secure”. The application
must be served over HTTPS for this to make sense.

Default: False

SESSION_COOKIE_SAMESITE
Restrict how cookies are sent with requests from external sites. Can be set to 'Lax' (recommended) or
'Strict'. See Set-Cookie options.

Default: None

New in version 1.0.

PERMANENT_SESSION_LIFETIME
If session.permanent is true, the cookie’s expiration will be set this number of seconds in the future. Can
either be a datetime.timedelta or an int.

Flask’s default cookie implementation validates that the cryptographic signature is not older than this value.

Default: timedelta(days=31) (2678400 seconds)

SESSION_REFRESH_EACH_REQUEST
Control whether the cookie is sent with every response when session.permanent is true. Sending the

76 Chapter 1. User’s Guide

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation (1.1.x), Release 1.1.4

cookie every time (the default) can more reliably keep the session from expiring, but uses more bandwidth.
Non-permanent sessions are not affected.

Default: True

USE_X_SENDFILE
When serving files, set the X-Sendfile header instead of serving the data with Flask. Some web servers,
such as Apache, recognize this and serve the data more efficiently. This only makes sense when using such a
server.

Default: False

SEND_FILE_MAX_AGE_DEFAULT
When serving files, set the cache control max age to this number of seconds. Can either be a datetime.
timedelta or an int. Override this value on a per-file basis using get_send_file_max_age() on the
application or blueprint.

Default: timedelta(hours=12) (43200 seconds)

SERVER_NAME
Inform the application what host and port it is bound to. Required for subdomain route matching support.

If set, will be used for the session cookie domain if SESSION_COOKIE_DOMAIN is not set. Modern web
browsers will not allow setting cookies for domains without a dot. To use a domain locally, add any names that
should route to the app to your hosts file.

127.0.0.1 localhost.dev

If set, url_for can generate external URLs with only an application context instead of a request context.

Default: None

APPLICATION_ROOT
Inform the application what path it is mounted under by the application / web server. This is used for generating
URLs outside the context of a request (inside a request, the dispatcher is responsible for setting SCRIPT_NAME
instead; see Application Dispatching for examples of dispatch configuration).

Will be used for the session cookie path if SESSION_COOKIE_PATH is not set.

Default: '/'

PREFERRED_URL_SCHEME
Use this scheme for generating external URLs when not in a request context.

Default: 'http'

MAX_CONTENT_LENGTH
Don’t read more than this many bytes from the incoming request data. If not set and the request does not specify
a CONTENT_LENGTH, no data will be read for security.

Default: None

JSON_AS_ASCII
Serialize objects to ASCII-encoded JSON. If this is disabled, the JSON will be returned as a Unicode string, or
encoded as UTF-8 by jsonify. This has security implications when rendering the JSON into JavaScript in
templates, and should typically remain enabled.

Default: True

JSON_SORT_KEYS
Sort the keys of JSON objects alphabetically. This is useful for caching because it ensures the data is serialized
the same way no matter what Python’s hash seed is. While not recommended, you can disable this for a possible
performance improvement at the cost of caching.

1.11. Configuration Handling 77

https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation (1.1.x), Release 1.1.4

Default: True

JSONIFY_PRETTYPRINT_REGULAR
jsonify responses will be output with newlines, spaces, and indentation for easier reading by humans. Always
enabled in debug mode.

Default: False

JSONIFY_MIMETYPE
The mimetype of jsonify responses.

Default: 'application/json'

TEMPLATES_AUTO_RELOAD
Reload templates when they are changed. If not set, it will be enabled in debug mode.

Default: None

EXPLAIN_TEMPLATE_LOADING
Log debugging information tracing how a template file was loaded. This can be useful to figure out why a
template was not loaded or the wrong file appears to be loaded.

Default: False

MAX_COOKIE_SIZE
Warn if cookie headers are larger than this many bytes. Defaults to 4093. Larger cookies may be silently
ignored by browsers. Set to 0 to disable the warning.

Changed in version 1.0: LOGGER_NAME and LOGGER_HANDLER_POLICY were removed. See Logging for infor-
mation about configuration.

Added ENV to reflect the FLASK_ENV environment variable.

Added SESSION_COOKIE_SAMESITE to control the session cookie’s SameSite option.

Added MAX_COOKIE_SIZE to control a warning from Werkzeug.

New in version 0.11: SESSION_REFRESH_EACH_REQUEST, TEMPLATES_AUTO_RELOAD,
LOGGER_HANDLER_POLICY, EXPLAIN_TEMPLATE_LOADING

New in version 0.10: JSON_AS_ASCII, JSON_SORT_KEYS, JSONIFY_PRETTYPRINT_REGULAR

New in version 0.9: PREFERRED_URL_SCHEME

New in version 0.8: TRAP_BAD_REQUEST_ERRORS, TRAP_HTTP_EXCEPTIONS, APPLICATION_ROOT,
SESSION_COOKIE_DOMAIN, SESSION_COOKIE_PATH, SESSION_COOKIE_HTTPONLY,
SESSION_COOKIE_SECURE

New in version 0.7: PROPAGATE_EXCEPTIONS, PRESERVE_CONTEXT_ON_EXCEPTION

New in version 0.6: MAX_CONTENT_LENGTH

New in version 0.5: SERVER_NAME

New in version 0.4: LOGGER_NAME

1.11.4 Configuring from Files

Configuration becomes more useful if you can store it in a separate file, ideally located outside the actual applica-
tion package. This makes packaging and distributing your application possible via various package handling tools
(Deploying with Setuptools) and finally modifying the configuration file afterwards.

So a common pattern is this:

78 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

This first loads the configuration from the yourapplication.default_settings module and then overrides the values with
the contents of the file the YOURAPPLICATION_SETTINGS environment variable points to. This environment
variable can be set on Linux or OS X with the export command in the shell before starting the server:

$ export YOURAPPLICATION_SETTINGS=/path/to/settings.cfg
$ python run-app.py

* Running on http://127.0.0.1:5000/

* Restarting with reloader...

On Windows systems use the set builtin instead:

> set YOURAPPLICATION_SETTINGS=\path\to\settings.cfg

The configuration files themselves are actual Python files. Only values in uppercase are actually stored in the config
object later on. So make sure to use uppercase letters for your config keys.

Here is an example of a configuration file:

Example configuration
DEBUG = False
SECRET_KEY = b'_5#y2L"F4Q8z\n\xec]/'

Make sure to load the configuration very early on, so that extensions have the ability to access the configuration when
starting up. There are other methods on the config object as well to load from individual files. For a complete reference,
read the Config object’s documentation.

1.11.5 Configuring from Environment Variables

In addition to pointing to configuration files using environment variables, you may find it useful (or necessary) to
control your configuration values directly from the environment.

Environment variables can be set on Linux or OS X with the export command in the shell before starting the server:

$ export SECRET_KEY='5f352379324c22463451387a0aec5d2f'
$ export MAIL_ENABLED=false
$ python run-app.py

* Running on http://127.0.0.1:5000/

On Windows systems use the set builtin instead:

> set SECRET_KEY='5f352379324c22463451387a0aec5d2f'

While this approach is straightforward to use, it is important to remember that environment variables are strings – they
are not automatically deserialized into Python types.

Here is an example of a configuration file that uses environment variables:

import os

_mail_enabled = os.environ.get("MAIL_ENABLED", default="true")
MAIL_ENABLED = _mail_enabled.lower() in {"1", "t", "true"}

(continues on next page)

1.11. Configuration Handling 79

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

SECRET_KEY = os.environ.get("SECRET_KEY")

if not SECRET_KEY:
raise ValueError("No SECRET_KEY set for Flask application")

Notice that any value besides an empty string will be interpreted as a boolean True value in Python, which requires
care if an environment explicitly sets values intended to be False.

Make sure to load the configuration very early on, so that extensions have the ability to access the configuration when
starting up. There are other methods on the config object as well to load from individual files. For a complete reference,
read the Config class documentation.

1.11.6 Configuration Best Practices

The downside with the approach mentioned earlier is that it makes testing a little harder. There is no single 100%
solution for this problem in general, but there are a couple of things you can keep in mind to improve that experience:

1. Create your application in a function and register blueprints on it. That way you can create multiple instances
of your application with different configurations attached which makes unit testing a lot easier. You can use this
to pass in configuration as needed.

2. Do not write code that needs the configuration at import time. If you limit yourself to request-only accesses to
the configuration you can reconfigure the object later on as needed.

1.11.7 Development / Production

Most applications need more than one configuration. There should be at least separate configurations for the production
server and the one used during development. The easiest way to handle this is to use a default configuration that is
always loaded and part of the version control, and a separate configuration that overrides the values as necessary as
mentioned in the example above:

app = Flask(__name__)
app.config.from_object('yourapplication.default_settings')
app.config.from_envvar('YOURAPPLICATION_SETTINGS')

Then you just have to add a separate config.py file and export YOURAPPLICATION_SETTINGS=/path/to/
config.py and you are done. However there are alternative ways as well. For example you could use imports or
subclassing.

What is very popular in the Django world is to make the import explicit in the config file by adding from
yourapplication.default_settings import * to the top of the file and then overriding the changes
by hand. You could also inspect an environment variable like YOURAPPLICATION_MODE and set that to production,
development etc and import different hard-coded files based on that.

An interesting pattern is also to use classes and inheritance for configuration:

class Config(object):
DEBUG = False
TESTING = False
DATABASE_URI = 'sqlite:///:memory:'

class ProductionConfig(Config):
DATABASE_URI = 'mysql://user@localhost/foo'

(continues on next page)

80 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

class DevelopmentConfig(Config):
DEBUG = True

class TestingConfig(Config):
TESTING = True

To enable such a config you just have to call into from_object():

app.config.from_object('configmodule.ProductionConfig')

Note that from_object() does not instantiate the class object. If you need to instantiate the class, such as to access
a property, then you must do so before calling from_object():

from configmodule import ProductionConfig
app.config.from_object(ProductionConfig())

Alternatively, import via string:
from werkzeug.utils import import_string
cfg = import_string('configmodule.ProductionConfig')()
app.config.from_object(cfg)

Instantiating the configuration object allows you to use @property in your configuration classes:

class Config(object):
"""Base config, uses staging database server."""
DEBUG = False
TESTING = False
DB_SERVER = '192.168.1.56'

@property
def DATABASE_URI(self): # Note: all caps

return 'mysql://user@{}/foo'.format(self.DB_SERVER)

class ProductionConfig(Config):
"""Uses production database server."""
DB_SERVER = '192.168.19.32'

class DevelopmentConfig(Config):
DB_SERVER = 'localhost'
DEBUG = True

class TestingConfig(Config):
DB_SERVER = 'localhost'
DEBUG = True
DATABASE_URI = 'sqlite:///:memory:'

There are many different ways and it’s up to you how you want to manage your configuration files. However here a
list of good recommendations:

• Keep a default configuration in version control. Either populate the config with this default configuration or
import it in your own configuration files before overriding values.

• Use an environment variable to switch between the configurations. This can be done from outside the Python
interpreter and makes development and deployment much easier because you can quickly and easily switch
between different configs without having to touch the code at all. If you are working often on different projects
you can even create your own script for sourcing that activates a virtualenv and exports the development config-
uration for you.

1.11. Configuration Handling 81

Flask Documentation (1.1.x), Release 1.1.4

• Use a tool like fabric in production to push code and configurations separately to the production server(s). For
some details about how to do that, head over to the Deploying with Fabric pattern.

1.11.8 Instance Folders

New in version 0.8.

Flask 0.8 introduces instance folders. Flask for a long time made it possible to refer to paths relative to the application’s
folder directly (via Flask.root_path). This was also how many developers loaded configurations stored next to
the application. Unfortunately however this only works well if applications are not packages in which case the root
path refers to the contents of the package.

With Flask 0.8 a new attribute was introduced: Flask.instance_path. It refers to a new concept called the
“instance folder”. The instance folder is designed to not be under version control and be deployment specific. It’s the
perfect place to drop things that either change at runtime or configuration files.

You can either explicitly provide the path of the instance folder when creating the Flask application or you can let
Flask autodetect the instance folder. For explicit configuration use the instance_path parameter:

app = Flask(__name__, instance_path='/path/to/instance/folder')

Please keep in mind that this path must be absolute when provided.

If the instance_path parameter is not provided the following default locations are used:

• Uninstalled module:

/myapp.py
/instance

• Uninstalled package:

/myapp
/__init__.py

/instance

• Installed module or package:

$PREFIX/lib/python2.X/site-packages/myapp
$PREFIX/var/myapp-instance

$PREFIX is the prefix of your Python installation. This can be /usr or the path to your virtualenv. You can
print the value of sys.prefix to see what the prefix is set to.

Since the config object provided loading of configuration files from relative filenames we made it possible to change
the loading via filenames to be relative to the instance path if wanted. The behavior of relative paths in config
files can be flipped between “relative to the application root” (the default) to “relative to instance folder” via the
instance_relative_config switch to the application constructor:

app = Flask(__name__, instance_relative_config=True)

Here is a full example of how to configure Flask to preload the config from a module and then override the config from
a file in the instance folder if it exists:

app = Flask(__name__, instance_relative_config=True)
app.config.from_object('yourapplication.default_settings')
app.config.from_pyfile('application.cfg', silent=True)

82 Chapter 1. User’s Guide

https://www.fabfile.org/

Flask Documentation (1.1.x), Release 1.1.4

The path to the instance folder can be found via the Flask.instance_path. Flask also provides a shortcut to
open a file from the instance folder with Flask.open_instance_resource().

Example usage for both:

filename = os.path.join(app.instance_path, 'application.cfg')
with open(filename) as f:

config = f.read()

or via open_instance_resource:
with app.open_instance_resource('application.cfg') as f:

config = f.read()

1.12 Signals

New in version 0.6.

Starting with Flask 0.6, there is integrated support for signalling in Flask. This support is provided by the excellent
blinker library and will gracefully fall back if it is not available.

What are signals? Signals help you decouple applications by sending notifications when actions occur elsewhere in
the core framework or another Flask extensions. In short, signals allow certain senders to notify subscribers that
something happened.

Flask comes with a couple of signals and other extensions might provide more. Also keep in mind that signals
are intended to notify subscribers and should not encourage subscribers to modify data. You will notice that there are
signals that appear to do the same thing like some of the builtin decorators do (eg: request_started is very similar
to before_request()). However, there are differences in how they work. The core before_request()
handler, for example, is executed in a specific order and is able to abort the request early by returning a response. In
contrast all signal handlers are executed in undefined order and do not modify any data.

The big advantage of signals over handlers is that you can safely subscribe to them for just a split second. These
temporary subscriptions are helpful for unit testing for example. Say you want to know what templates were rendered
as part of a request: signals allow you to do exactly that.

1.12.1 Subscribing to Signals

To subscribe to a signal, you can use the connect() method of a signal. The first argument is the function that
should be called when the signal is emitted, the optional second argument specifies a sender. To unsubscribe from a
signal, you can use the disconnect() method.

For all core Flask signals, the sender is the application that issued the signal. When you subscribe to a signal, be sure
to also provide a sender unless you really want to listen for signals from all applications. This is especially true if you
are developing an extension.

For example, here is a helper context manager that can be used in a unit test to determine which templates were
rendered and what variables were passed to the template:

from flask import template_rendered
from contextlib import contextmanager

@contextmanager
def captured_templates(app):

recorded = []
def record(sender, template, context, **extra):

(continues on next page)

1.12. Signals 83

https://pypi.org/project/blinker/
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connect
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.disconnect

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

recorded.append((template, context))
template_rendered.connect(record, app)
try:

yield recorded
finally:

template_rendered.disconnect(record, app)

This can now easily be paired with a test client:

with captured_templates(app) as templates:
rv = app.test_client().get('/')
assert rv.status_code == 200
assert len(templates) == 1
template, context = templates[0]
assert template.name == 'index.html'
assert len(context['items']) == 10

Make sure to subscribe with an extra **extra argument so that your calls don’t fail if Flask introduces new arguments
to the signals.

All the template rendering in the code issued by the application app in the body of the with block will now be recorded
in the templates variable. Whenever a template is rendered, the template object as well as context are appended to it.

Additionally there is a convenient helper method (connected_to()) that allows you to temporarily subscribe a
function to a signal with a context manager on its own. Because the return value of the context manager cannot be
specified that way, you have to pass the list in as an argument:

from flask import template_rendered

def captured_templates(app, recorded, **extra):
def record(sender, template, context):

recorded.append((template, context))
return template_rendered.connected_to(record, app)

The example above would then look like this:

templates = []
with captured_templates(app, templates, **extra):

...
template, context = templates[0]

Blinker API Changes

The connected_to() method arrived in Blinker with version 1.1.

1.12.2 Creating Signals

If you want to use signals in your own application, you can use the blinker library directly. The most common use
case are named signals in a custom Namespace.. This is what is recommended most of the time:

from blinker import Namespace
my_signals = Namespace()

Now you can create new signals like this:

84 Chapter 1. User’s Guide

https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.connected_to
https://pythonhosted.org/blinker/index.html#blinker.base.Namespace

Flask Documentation (1.1.x), Release 1.1.4

model_saved = my_signals.signal('model-saved')

The name for the signal here makes it unique and also simplifies debugging. You can access the name of the signal
with the name attribute.

For Extension Developers

If you are writing a Flask extension and you want to gracefully degrade for missing blinker installations, you can do
so by using the flask.signals.Namespace class.

1.12.3 Sending Signals

If you want to emit a signal, you can do so by calling the send() method. It accepts a sender as first argument and
optionally some keyword arguments that are forwarded to the signal subscribers:

class Model(object):
...

def save(self):
model_saved.send(self)

Try to always pick a good sender. If you have a class that is emitting a signal, pass self as sender. If you are emitting
a signal from a random function, you can pass current_app._get_current_object() as sender.

Passing Proxies as Senders

Never pass current_app as sender to a signal. Use current_app._get_current_object() instead. The
reason for this is that current_app is a proxy and not the real application object.

1.12.4 Signals and Flask’s Request Context

Signals fully support The Request Context when receiving signals. Context-local variables are consistently available
between request_started and request_finished, so you can rely on flask.g and others as needed. Note
the limitations described in Sending Signals and the request_tearing_down signal.

1.12.5 Decorator Based Signal Subscriptions

With Blinker 1.1 you can also easily subscribe to signals by using the new connect_via() decorator:

from flask import template_rendered

@template_rendered.connect_via(app)
def when_template_rendered(sender, template, context, **extra):

print 'Template %s is rendered with %s' % (template.name, context)

1.12.6 Core Signals

Take a look at Signals for a list of all builtin signals.

1.12. Signals 85

https://pythonhosted.org/blinker/index.html#blinker.base.NamedSignal.name
https://pythonhosted.org/blinker/index.html#blinker.base.Signal.send

Flask Documentation (1.1.x), Release 1.1.4

1.13 Pluggable Views

New in version 0.7.

Flask 0.7 introduces pluggable views inspired by the generic views from Django which are based on classes instead
of functions. The main intention is that you can replace parts of the implementations and this way have customizable
pluggable views.

1.13.1 Basic Principle

Consider you have a function that loads a list of objects from the database and renders into a template:

@app.route('/users/')
def show_users(page):

users = User.query.all()
return render_template('users.html', users=users)

This is simple and flexible, but if you want to provide this view in a generic fashion that can be adapted to other models
and templates as well you might want more flexibility. This is where pluggable class-based views come into place. As
the first step to convert this into a class based view you would do this:

from flask.views import View

class ShowUsers(View):

def dispatch_request(self):
users = User.query.all()
return render_template('users.html', objects=users)

app.add_url_rule('/users/', view_func=ShowUsers.as_view('show_users'))

As you can see what you have to do is to create a subclass of flask.views.View and implement
dispatch_request(). Then we have to convert that class into an actual view function by using the as_view()
class method. The string you pass to that function is the name of the endpoint that view will then have. But this by
itself is not helpful, so let’s refactor the code a bit:

from flask.views import View

class ListView(View):

def get_template_name(self):
raise NotImplementedError()

def render_template(self, context):
return render_template(self.get_template_name(), **context)

def dispatch_request(self):
context = {'objects': self.get_objects()}
return self.render_template(context)

class UserView(ListView):

def get_template_name(self):
return 'users.html'

(continues on next page)

86 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def get_objects(self):
return User.query.all()

This of course is not that helpful for such a small example, but it’s good enough to explain the basic principle. When
you have a class-based view the question comes up what self points to. The way this works is that whenever the
request is dispatched a new instance of the class is created and the dispatch_request() method is called with
the parameters from the URL rule. The class itself is instantiated with the parameters passed to the as_view()
function. For instance you can write a class like this:

class RenderTemplateView(View):
def __init__(self, template_name):

self.template_name = template_name
def dispatch_request(self):

return render_template(self.template_name)

And then you can register it like this:

app.add_url_rule('/about', view_func=RenderTemplateView.as_view(
'about_page', template_name='about.html'))

1.13.2 Method Hints

Pluggable views are attached to the application like a regular function by either using route() or better
add_url_rule(). That however also means that you would have to provide the names of the HTTP methods
the view supports when you attach this. In order to move that information to the class you can provide a methods
attribute that has this information:

class MyView(View):
methods = ['GET', 'POST']

def dispatch_request(self):
if request.method == 'POST':

...
...

app.add_url_rule('/myview', view_func=MyView.as_view('myview'))

1.13.3 Method Based Dispatching

For RESTful APIs it’s especially helpful to execute a different function for each HTTP method. With the flask.
views.MethodView you can easily do that. Each HTTP method maps to a function with the same name (just in
lowercase):

from flask.views import MethodView

class UserAPI(MethodView):

def get(self):
users = User.query.all()
...

def post(self):

(continues on next page)

1.13. Pluggable Views 87

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

user = User.from_form_data(request.form)
...

app.add_url_rule('/users/', view_func=UserAPI.as_view('users'))

That way you also don’t have to provide the methods attribute. It’s automatically set based on the methods defined
in the class.

1.13.4 Decorating Views

Since the view class itself is not the view function that is added to the routing system it does not make much sense to
decorate the class itself. Instead you either have to decorate the return value of as_view() by hand:

def user_required(f):
"""Checks whether user is logged in or raises error 401."""
def decorator(*args, **kwargs):

if not g.user:
abort(401)

return f(*args, **kwargs)
return decorator

view = user_required(UserAPI.as_view('users'))
app.add_url_rule('/users/', view_func=view)

Starting with Flask 0.8 there is also an alternative way where you can specify a list of decorators to apply in the class
declaration:

class UserAPI(MethodView):
decorators = [user_required]

Due to the implicit self from the caller’s perspective you cannot use regular view decorators on the individual methods
of the view however, keep this in mind.

1.13.5 Method Views for APIs

Web APIs are often working very closely with HTTP verbs so it makes a lot of sense to implement such an API based
on the MethodView . That said, you will notice that the API will require different URL rules that go to the same
method view most of the time. For instance consider that you are exposing a user object on the web:

URL Method Description
/users/ GET Gives a list of all users
/users/ POST Creates a new user
/users/<id> GET Shows a single user
/users/<id> PUT Updates a single user
/users/<id> DELETE Deletes a single user

So how would you go about doing that with the MethodView? The trick is to take advantage of the fact that you can
provide multiple rules to the same view.

Let’s assume for the moment the view would look like this:

88 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

class UserAPI(MethodView):

def get(self, user_id):
if user_id is None:

return a list of users
pass

else:
expose a single user
pass

def post(self):
create a new user
pass

def delete(self, user_id):
delete a single user
pass

def put(self, user_id):
update a single user
pass

So how do we hook this up with the routing system? By adding two rules and explicitly mentioning the methods for
each:

user_view = UserAPI.as_view('user_api')
app.add_url_rule('/users/', defaults={'user_id': None},

view_func=user_view, methods=['GET',])
app.add_url_rule('/users/', view_func=user_view, methods=['POST',])
app.add_url_rule('/users/<int:user_id>', view_func=user_view,

methods=['GET', 'PUT', 'DELETE'])

If you have a lot of APIs that look similar you can refactor that registration code:

def register_api(view, endpoint, url, pk='id', pk_type='int'):
view_func = view.as_view(endpoint)
app.add_url_rule(url, defaults={pk: None},

view_func=view_func, methods=['GET',])
app.add_url_rule(url, view_func=view_func, methods=['POST',])
app.add_url_rule('%s<%s:%s>' % (url, pk_type, pk), view_func=view_func,

methods=['GET', 'PUT', 'DELETE'])

register_api(UserAPI, 'user_api', '/users/', pk='user_id')

1.14 The Application Context

The application context keeps track of the application-level data during a request, CLI command, or other activity.
Rather than passing the application around to each function, the current_app and g proxies are accessed instead.

This is similar to the The Request Context, which keeps track of request-level data during a request. A corresponding
application context is pushed when a request context is pushed.

1.14. The Application Context 89

Flask Documentation (1.1.x), Release 1.1.4

1.14.1 Purpose of the Context

The Flask application object has attributes, such as config, that are useful to access within views and CLI com-
mands. However, importing the app instance within the modules in your project is prone to circular import issues.
When using the app factory pattern or writing reusable blueprints or extensions there won’t be an app instance to
import at all.

Flask solves this issue with the application context. Rather than referring to an app directly, you use the
current_app proxy, which points to the application handling the current activity.

Flask automatically pushes an application context when handling a request. View functions, error handlers, and other
functions that run during a request will have access to current_app.

Flask will also automatically push an app context when running CLI commands registered with Flask.cli using
@app.cli.command().

1.14.2 Lifetime of the Context

The application context is created and destroyed as necessary. When a Flask application begins handling a request,
it pushes an application context and a request context. When the request ends it pops the request context then the
application context. Typically, an application context will have the same lifetime as a request.

See The Request Context for more information about how the contexts work and the full life cycle of a request.

1.14.3 Manually Push a Context

If you try to access current_app, or anything that uses it, outside an application context, you’ll get this error
message:

RuntimeError: Working outside of application context.

This typically means that you attempted to use functionality that
needed to interface with the current application object in some way.
To solve this, set up an application context with app.app_context().

If you see that error while configuring your application, such as when initializing an extension, you can push a context
manually since you have direct access to the app. Use app_context() in a with block, and everything that runs
in the block will have access to current_app.

def create_app():
app = Flask(__name__)

with app.app_context():
init_db()

return app

If you see that error somewhere else in your code not related to configuring the application, it most likely indicates
that you should move that code into a view function or CLI command.

1.14.4 Storing Data

The application context is a good place to store common data during a request or CLI command. Flask provides the g
object for this purpose. It is a simple namespace object that has the same lifetime as an application context.

90 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Note: The g name stands for “global”, but that is referring to the data being global within a context. The data on g
is lost after the context ends, and it is not an appropriate place to store data between requests. Use the session or a
database to store data across requests.

A common use for g is to manage resources during a request.

1. get_X() creates resource X if it does not exist, caching it as g.X.

2. teardown_X() closes or otherwise deallocates the resource if it exists. It is registered as a
teardown_appcontext() handler.

For example, you can manage a database connection using this pattern:

from flask import g

def get_db():
if 'db' not in g:

g.db = connect_to_database()

return g.db

@app.teardown_appcontext
def teardown_db(exception):

db = g.pop('db', None)

if db is not None:
db.close()

During a request, every call to get_db() will return the same connection, and it will be closed automatically at the
end of the request.

You can use LocalProxy to make a new context local from get_db():

from werkzeug.local import LocalProxy
db = LocalProxy(get_db)

Accessing db will call get_db internally, in the same way that current_app works.

If you’re writing an extension, g should be reserved for user code. You may store internal data on the context itself,
but be sure to use a sufficiently unique name. The current context is accessed with _app_ctx_stack.top. For
more information see Flask Extension Development.

1.14.5 Events and Signals

The application will call functions registered with teardown_appcontext() when the application context is
popped.

If signals_available is true, the following signals are sent: appcontext_pushed,
appcontext_tearing_down, and appcontext_popped.

1.15 The Request Context

The request context keeps track of the request-level data during a request. Rather than passing the request object to
each function that runs during a request, the request and session proxies are accessed instead.

1.15. The Request Context 91

https://werkzeug.palletsprojects.com/en/2.0.x/local/#werkzeug.local.LocalProxy

Flask Documentation (1.1.x), Release 1.1.4

This is similar to the The Application Context, which keeps track of the application-level data independent of a request.
A corresponding application context is pushed when a request context is pushed.

1.15.1 Purpose of the Context

When the Flask application handles a request, it creates a Request object based on the environment it received
from the WSGI server. Because a worker (thread, process, or coroutine depending on the server) handles only one
request at a time, the request data can be considered global to that worker during that request. Flask uses the term
context local for this.

Flask automatically pushes a request context when handling a request. View functions, error handlers, and other
functions that run during a request will have access to the request proxy, which points to the request object for the
current request.

1.15.2 Lifetime of the Context

When a Flask application begins handling a request, it pushes a request context, which also pushes an The Application
Context. When the request ends it pops the request context then the application context.

The context is unique to each thread (or other worker type). request cannot be passed to another thread, the other
thread will have a different context stack and will not know about the request the parent thread was pointing to.

Context locals are implemented in Werkzeug. See Context Locals for more information on how this works internally.

1.15.3 Manually Push a Context

If you try to access request, or anything that uses it, outside a request context, you’ll get this error message:

RuntimeError: Working outside of request context.

This typically means that you attempted to use functionality that
needed an active HTTP request. Consult the documentation on testing
for information about how to avoid this problem.

This should typically only happen when testing code that expects an active request. One option is to use the test
client to simulate a full request. Or you can use test_request_context() in a with block, and everything
that runs in the block will have access to request, populated with your test data.

def generate_report(year):
format = request.args.get('format')
...

with app.test_request_context(
'/make_report/2017', data={'format': 'short'}):

generate_report()

If you see that error somewhere else in your code not related to testing, it most likely indicates that you should move
that code into a view function.

For information on how to use the request context from the interactive Python shell, see Working with the Shell.

92 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/en/2.0.x/local/

Flask Documentation (1.1.x), Release 1.1.4

1.15.4 How the Context Works

The Flask.wsgi_app() method is called to handle each request. It manages the contexts during the request.
Internally, the request and application contexts work as stacks, _request_ctx_stack and _app_ctx_stack.
When contexts are pushed onto the stack, the proxies that depend on them are available and point at information from
the top context on the stack.

When the request starts, a RequestContext is created and pushed, which creates and pushes an AppContext first
if a context for that application is not already the top context. While these contexts are pushed, the current_app,
g, request, and session proxies are available to the original thread handling the request.

Because the contexts are stacks, other contexts may be pushed to change the proxies during a request. While this is
not a common pattern, it can be used in advanced applications to, for example, do internal redirects or chain different
applications together.

After the request is dispatched and a response is generated and sent, the request context is popped, which
then pops the application context. Immediately before they are popped, the teardown_request() and
teardown_appcontext() functions are executed. These execute even if an unhandled exception occurred during
dispatch.

1.15.5 Callbacks and Errors

Flask dispatches a request in multiple stages which can affect the request, response, and how errors are handled. The
contexts are active during all of these stages.

A Blueprint can add handlers for these events that are specific to the blueprint. The handlers for a blueprint will
run if the blueprint owns the route that matches the request.

1. Before each request, before_request() functions are called. If one of these functions return a value, the
other functions are skipped. The return value is treated as the response and the view function is not called.

2. If the before_request() functions did not return a response, the view function for the matched route is
called and returns a response.

3. The return value of the view is converted into an actual response object and passed to the after_request()
functions. Each function returns a modified or new response object.

4. After the response is returned, the contexts are popped, which calls the teardown_request() and
teardown_appcontext() functions. These functions are called even if an unhandled exception was raised
at any point above.

If an exception is raised before the teardown functions, Flask tries to match it with an errorhandler() function
to handle the exception and return a response. If no error handler is found, or the handler itself raises an exception,
Flask returns a generic 500 Internal Server Error response. The teardown functions are still called, and
are passed the exception object.

If debug mode is enabled, unhandled exceptions are not converted to a 500 response and instead are propagated to the
WSGI server. This allows the development server to present the interactive debugger with the traceback.

Teardown Callbacks

The teardown callbacks are independent of the request dispatch, and are instead called by the contexts when they are
popped. The functions are called even if there is an unhandled exception during dispatch, and for manually pushed
contexts. This means there is no guarantee that any other parts of the request dispatch have run first. Be sure to write
these functions in a way that does not depend on other callbacks and will not fail.

During testing, it can be useful to defer popping the contexts after the request ends, so that their data can be accessed
in the test function. Use the test_client() as a with block to preserve the contexts until the with block exits.

1.15. The Request Context 93

Flask Documentation (1.1.x), Release 1.1.4

from flask import Flask, request

app = Flask(__name__)

@app.route('/')
def hello():

print('during view')
return 'Hello, World!'

@app.teardown_request
def show_teardown(exception):

print('after with block')

with app.test_request_context():
print('during with block')

teardown functions are called after the context with block exits

with app.test_client() as client:
client.get('/')
the contexts are not popped even though the request ended
print(request.path)

the contexts are popped and teardown functions are called after
the client with block exits

Signals

If signals_available is true, the following signals are sent:

1. request_started is sent before the before_request() functions are called.

2. request_finished is sent after the after_request() functions are called.

3. got_request_exception is sent when an exception begins to be handled, but before an
errorhandler() is looked up or called.

4. request_tearing_down is sent after the teardown_request() functions are called.

1.15.6 Context Preservation on Error

At the end of a request, the request context is popped and all data associated with it is destroyed. If an error occurs
during development, it is useful to delay destroying the data for debugging purposes.

When the development server is running in development mode (the FLASK_ENV environment variable is set to
'development'), the error and data will be preserved and shown in the interactive debugger.

This behavior can be controlled with the PRESERVE_CONTEXT_ON_EXCEPTION config. As described above, it
defaults to True in the development environment.

Do not enable PRESERVE_CONTEXT_ON_EXCEPTION in production, as it will cause your application to leak
memory on exceptions.

94 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

1.15.7 Notes On Proxies

Some of the objects provided by Flask are proxies to other objects. The proxies are accessed in the same way for each
worker thread, but point to the unique object bound to each worker behind the scenes as described on this page.

Most of the time you don’t have to care about that, but there are some exceptions where it is good to know that this
object is actually a proxy:

• The proxy objects cannot fake their type as the actual object types. If you want to perform instance checks, you
have to do that on the object being proxied.

• The reference to the proxied object is needed in some situations, such as sending Signals or passing data to a
background thread.

If you need to access the underlying object that is proxied, use the _get_current_object() method:

app = current_app._get_current_object()
my_signal.send(app)

1.16 Modular Applications with Blueprints

New in version 0.7.

Flask uses a concept of blueprints for making application components and supporting common patterns within an
application or across applications. Blueprints can greatly simplify how large applications work and provide a central
means for Flask extensions to register operations on applications. A Blueprint object works similarly to a Flask
application object, but it is not actually an application. Rather it is a blueprint of how to construct or extend an
application.

1.16.1 Why Blueprints?

Blueprints in Flask are intended for these cases:

• Factor an application into a set of blueprints. This is ideal for larger applications; a project could instantiate an
application object, initialize several extensions, and register a collection of blueprints.

• Register a blueprint on an application at a URL prefix and/or subdomain. Parameters in the URL pre-
fix/subdomain become common view arguments (with defaults) across all view functions in the blueprint.

• Register a blueprint multiple times on an application with different URL rules.

• Provide template filters, static files, templates, and other utilities through blueprints. A blueprint does not have
to implement applications or view functions.

• Register a blueprint on an application for any of these cases when initializing a Flask extension.

A blueprint in Flask is not a pluggable app because it is not actually an application – it’s a set of operations which can
be registered on an application, even multiple times. Why not have multiple application objects? You can do that (see
Application Dispatching), but your applications will have separate configs and will be managed at the WSGI layer.

Blueprints instead provide separation at the Flask level, share application config, and can change an application object
as necessary with being registered. The downside is that you cannot unregister a blueprint once an application was
created without having to destroy the whole application object.

1.16. Modular Applications with Blueprints 95

https://werkzeug.palletsprojects.com/en/2.0.x/local/#werkzeug.local.LocalProxy._get_current_object

Flask Documentation (1.1.x), Release 1.1.4

1.16.2 The Concept of Blueprints

The basic concept of blueprints is that they record operations to execute when registered on an application. Flask as-
sociates view functions with blueprints when dispatching requests and generating URLs from one endpoint to another.

1.16.3 My First Blueprint

This is what a very basic blueprint looks like. In this case we want to implement a blueprint that does simple rendering
of static templates:

from flask import Blueprint, render_template, abort
from jinja2 import TemplateNotFound

simple_page = Blueprint('simple_page', __name__,
template_folder='templates')

@simple_page.route('/', defaults={'page': 'index'})
@simple_page.route('/<page>')
def show(page):

try:
return render_template('pages/%s.html' % page)

except TemplateNotFound:
abort(404)

When you bind a function with the help of the @simple_page.route decorator, the blueprint will record the
intention of registering the function show on the application when it’s later registered. Additionally it will prefix the
endpoint of the function with the name of the blueprint which was given to the Blueprint constructor (in this case
also simple_page). The blueprint’s name does not modify the URL, only the endpoint.

1.16.4 Registering Blueprints

So how do you register that blueprint? Like this:

from flask import Flask
from yourapplication.simple_page import simple_page

app = Flask(__name__)
app.register_blueprint(simple_page)

If you check the rules registered on the application, you will find these:

>>> app.url_map
Map([<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
<Rule '/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
<Rule '/' (HEAD, OPTIONS, GET) -> simple_page.show>])

The first one is obviously from the application itself for the static files. The other two are for the show function of the
simple_page blueprint. As you can see, they are also prefixed with the name of the blueprint and separated by a
dot (.).

Blueprints however can also be mounted at different locations:

app.register_blueprint(simple_page, url_prefix='/pages')

And sure enough, these are the generated rules:

96 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

>>> app.url_map
Map([<Rule '/static/<filename>' (HEAD, OPTIONS, GET) -> static>,
<Rule '/pages/<page>' (HEAD, OPTIONS, GET) -> simple_page.show>,
<Rule '/pages/' (HEAD, OPTIONS, GET) -> simple_page.show>])

On top of that you can register blueprints multiple times though not every blueprint might respond properly to that. In
fact it depends on how the blueprint is implemented if it can be mounted more than once.

1.16.5 Blueprint Resources

Blueprints can provide resources as well. Sometimes you might want to introduce a blueprint only for the resources it
provides.

Blueprint Resource Folder

Like for regular applications, blueprints are considered to be contained in a folder. While multiple blueprints can
originate from the same folder, it does not have to be the case and it’s usually not recommended.

The folder is inferred from the second argument to Blueprint which is usually __name__. This argument specifies
what logical Python module or package corresponds to the blueprint. If it points to an actual Python package that
package (which is a folder on the filesystem) is the resource folder. If it’s a module, the package the module is
contained in will be the resource folder. You can access the Blueprint.root_path property to see what the
resource folder is:

>>> simple_page.root_path
'/Users/username/TestProject/yourapplication'

To quickly open sources from this folder you can use the open_resource() function:

with simple_page.open_resource('static/style.css') as f:
code = f.read()

Static Files

A blueprint can expose a folder with static files by providing the path to the folder on the filesystem with the
static_folder argument. It is either an absolute path or relative to the blueprint’s location:

admin = Blueprint('admin', __name__, static_folder='static')

By default the rightmost part of the path is where it is exposed on the web. This can be changed with the
static_url_path argument. Because the folder is called static here it will be available at the url_prefix
of the blueprint + /static. If the blueprint has the prefix /admin, the static URL will be /admin/static.

The endpoint is named blueprint_name.static. You can generate URLs to it with url_for() like you
would with the static folder of the application:

url_for('admin.static', filename='style.css')

However, if the blueprint does not have a url_prefix, it is not possible to access the blueprint’s static folder. This
is because the URL would be /static in this case, and the application’s /static route takes precedence. Unlike
template folders, blueprint static folders are not searched if the file does not exist in the application static folder.

1.16. Modular Applications with Blueprints 97

Flask Documentation (1.1.x), Release 1.1.4

Templates

If you want the blueprint to expose templates you can do that by providing the template_folder parameter to the
Blueprint constructor:

admin = Blueprint('admin', __name__, template_folder='templates')

For static files, the path can be absolute or relative to the blueprint resource folder.

The template folder is added to the search path of templates but with a lower priority than the actual application’s
template folder. That way you can easily override templates that a blueprint provides in the actual application. This
also means that if you don’t want a blueprint template to be accidentally overridden, make sure that no other blueprint
or actual application template has the same relative path. When multiple blueprints provide the same relative template
path the first blueprint registered takes precedence over the others.

So if you have a blueprint in the folder yourapplication/admin and you want to render the template 'admin/
index.html' and you have provided templates as a template_folder you will have to create a file like this:
yourapplication/admin/templates/admin/index.html. The reason for the extra admin folder is to
avoid getting our template overridden by a template named index.html in the actual application template folder.

To further reiterate this: if you have a blueprint named admin and you want to render a template called index.html
which is specific to this blueprint, the best idea is to lay out your templates like this:

yourpackage/
blueprints/

admin/
templates/

admin/
index.html

__init__.py

And then when you want to render the template, use admin/index.html as the name to look up the template by. If
you encounter problems loading the correct templates enable the EXPLAIN_TEMPLATE_LOADING config variable
which will instruct Flask to print out the steps it goes through to locate templates on every render_template call.

1.16.6 Building URLs

If you want to link from one page to another you can use the url_for() function just like you normally would do
just that you prefix the URL endpoint with the name of the blueprint and a dot (.):

url_for('admin.index')

Additionally if you are in a view function of a blueprint or a rendered template and you want to link to another endpoint
of the same blueprint, you can use relative redirects by prefixing the endpoint with a dot only:

url_for('.index')

This will link to admin.index for instance in case the current request was dispatched to any other admin blueprint
endpoint.

1.16.7 Error Handlers

Blueprints support the errorhandler decorator just like the Flask application object, so it is easy to make
Blueprint-specific custom error pages.

Here is an example for a “404 Page Not Found” exception:

98 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

@simple_page.errorhandler(404)
def page_not_found(e):

return render_template('pages/404.html')

Most errorhandlers will simply work as expected; however, there is a caveat concerning handlers for 404 and 405
exceptions. These errorhandlers are only invoked from an appropriate raise statement or a call to abort in another
of the blueprint’s view functions; they are not invoked by, e.g., an invalid URL access. This is because the blueprint
does not “own” a certain URL space, so the application instance has no way of knowing which blueprint error handler
it should run if given an invalid URL. If you would like to execute different handling strategies for these errors based
on URL prefixes, they may be defined at the application level using the request proxy object:

@app.errorhandler(404)
@app.errorhandler(405)
def _handle_api_error(ex):

if request.path.startswith('/api/'):
return jsonify_error(ex)

else:
return ex

More information on error handling see Custom Error Pages.

1.17 Extensions

Extensions are extra packages that add functionality to a Flask application. For example, an extension might add
support for sending email or connecting to a database. Some extensions add entire new frameworks to help build
certain types of applications, like a REST API.

1.17.1 Finding Extensions

Flask extensions are usually named “Flask-Foo” or “Foo-Flask”. You can search PyPI for packages tagged with
Framework :: Flask.

1.17.2 Using Extensions

Consult each extension’s documentation for installation, configuration, and usage instructions. Generally, extensions
pull their own configuration from app.config and are passed an application instance during initialization. For
example, an extension called “Flask-Foo” might be used like this:

from flask_foo import Foo

foo = Foo()

app = Flask(__name__)
app.config.update(

FOO_BAR='baz',
FOO_SPAM='eggs',

)

foo.init_app(app)

1.17. Extensions 99

https://pypi.org/search/?c=Framework+%3A%3A+Flask

Flask Documentation (1.1.x), Release 1.1.4

1.17.3 Building Extensions

While the PyPI contains many Flask extensions, you may not find an extension that fits your need. If this is the case,
you can create your own. Read Flask Extension Development to develop your own Flask extension.

1.18 Command Line Interface

Installing Flask installs the flask script, a Click command line interface, in your virtualenv. Executed from the
terminal, this script gives access to built-in, extension, and application-defined commands. The --help option will
give more information about any commands and options.

1.18.1 Application Discovery

The flask command is installed by Flask, not your application; it must be told where to find your application in
order to use it. The FLASK_APP environment variable is used to specify how to load the application.

Unix Bash (Linux, Mac, etc.):

$ export FLASK_APP=hello
$ flask run

Windows CMD:

> set FLASK_APP=hello
> flask run

Windows PowerShell:

> $env:FLASK_APP = "hello"
> flask run

While FLASK_APP supports a variety of options for specifying your application, most use cases should be simple.
Here are the typical values:

(nothing) The file wsgi.py is imported, automatically detecting an app (app). This provides an easy way to create
an app from a factory with extra arguments.

FLASK_APP=hello The name is imported, automatically detecting an app (app) or factory (create_app).

FLASK_APP has three parts: an optional path that sets the current working directory, a Python file or dotted import
path, and an optional variable name of the instance or factory. If the name is a factory, it can optionally be followed
by arguments in parentheses. The following values demonstrate these parts:

FLASK_APP=src/hello Sets the current working directory to src then imports hello.

FLASK_APP=hello.web Imports the path hello.web.

FLASK_APP=hello:app2 Uses the app2 Flask instance in hello.

FLASK_APP="hello:create_app('dev')" The create_app factory in hello is called with the string
'dev' as the argument.

If FLASK_APP is not set, the command will try to import “app” or “wsgi” (as a “.py” file, or package) and try to
detect an application instance or factory.

100 Chapter 1. User’s Guide

https://pypi.org/search/?c=Framework+%3A%3A+Flask
https://click.palletsprojects.com/

Flask Documentation (1.1.x), Release 1.1.4

Within the given import, the command looks for an application instance named app or application, then any
application instance. If no instance is found, the command looks for a factory function named create_app or
make_app that returns an instance.

When calling an application factory, if the factory takes an argument named script_info, then the ScriptInfo
instance is passed as a keyword argument. If the application factory takes only one argument and no parentheses
follow the factory name, the ScriptInfo instance is passed as a positional argument. If parentheses follow the
factory name, their contents are parsed as Python literals and passes as arguments to the function. This means that
strings must still be in quotes.

1.18.2 Run the Development Server

The run command will start the development server. It replaces the Flask.run() method in most cases.

$ flask run

* Serving Flask app "hello"

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

Warning: Do not use this command to run your application in production. Only use the development server
during development. The development server is provided for convenience, but is not designed to be particularly
secure, stable, or efficient. See Deployment Options for how to run in production.

1.18.3 Open a Shell

To explore the data in your application, you can start an interactive Python shell with the shell command. An
application context will be active, and the app instance will be imported.

$ flask shell
Python 3.6.2 (default, Jul 20 2017, 03:52:27)
[GCC 7.1.1 20170630] on linux
App: example
Instance: /home/user/Projects/hello/instance
>>>

Use shell_context_processor() to add other automatic imports.

1.18.4 Environments

New in version 1.0.

The environment in which the Flask app runs is set by the FLASK_ENV environment variable. If not set it defaults
to production. The other recognized environment is development. Flask and extensions may choose to enable
behaviors based on the environment.

If the env is set to development, the flask command will enable debug mode and flask run will enable the
interactive debugger and reloader.

$ FLASK_ENV=development flask run

* Serving Flask app "hello"

* Environment: development

* Debug mode: on

* Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

(continues on next page)

1.18. Command Line Interface 101

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

* Restarting with inotify reloader

* Debugger is active!

* Debugger PIN: 223-456-919

Watch Extra Files with the Reloader

When using development mode, the reloader will trigger whenever your Python code or imported modules change.
The reloader can watch additional files with the --extra-files option, or the FLASK_RUN_EXTRA_FILES
environment variable. Multiple paths are separated with :, or ; on Windows.

$ flask run --extra-files file1:dirA/file2:dirB/
or
$ export FLASK_RUN_EXTRA_FILES=file1:dirA/file2:dirB/
$ flask run

* Running on http://127.0.0.1:8000/

* Detected change in '/path/to/file1', reloading

1.18.5 Debug Mode

Debug mode will be enabled when FLASK_ENV is development, as described above. If you want to control debug
mode separately, use FLASK_DEBUG. The value 1 enables it, 0 disables it.

1.18.6 Environment Variables From dotenv

Rather than setting FLASK_APP each time you open a new terminal, you can use Flask’s dotenv support to set
environment variables automatically.

If python-dotenv is installed, running the flask command will set environment variables defined in the files .env
and .flaskenv. This can be used to avoid having to set FLASK_APP manually every time you open a new terminal,
and to set configuration using environment variables similar to how some deployment services work.

Variables set on the command line are used over those set in .env, which are used over those set in .flaskenv.
.flaskenv should be used for public variables, such as FLASK_APP, while .env should not be committed to your
repository so that it can set private variables.

Directories are scanned upwards from the directory you call flask from to locate the files. The current working
directory will be set to the location of the file, with the assumption that that is the top level project directory.

The files are only loaded by the flask command or calling run(). If you would like to load these files when running
in production, you should call load_dotenv() manually.

Setting Command Options

Click is configured to load default values for command options from environment variables. The variables use the
pattern FLASK_COMMAND_OPTION. For example, to set the port for the run command, instead of flask run
--port 8000:

$ export FLASK_RUN_PORT=8000
$ flask run

* Running on http://127.0.0.1:8000/

These can be added to the .flaskenv file just like FLASK_APP to control default command options.

102 Chapter 1. User’s Guide

https://github.com/theskumar/python-dotenv#readme

Flask Documentation (1.1.x), Release 1.1.4

Disable dotenv

The flask command will show a message if it detects dotenv files but python-dotenv is not installed.

$ flask run

* Tip: There are .env files present. Do "pip install python-dotenv" to use them.

You can tell Flask not to load dotenv files even when python-dotenv is installed by setting the FLASK_SKIP_DOTENV
environment variable. This can be useful if you want to load them manually, or if you’re using a project runner that
loads them already. Keep in mind that the environment variables must be set before the app loads or it won’t configure
as expected.

$ export FLASK_SKIP_DOTENV=1
$ flask run

1.18.7 Environment Variables From virtualenv

If you do not want to install dotenv support, you can still set environment variables by adding them to the end of the
virtualenv’s activate script. Activating the virtualenv will set the variables.

Unix Bash, venv/bin/activate:

$ export FLASK_APP=hello

Windows CMD, venv\Scripts\activate.bat:

> set FLASK_APP=hello

It is preferred to use dotenv support over this, since .flaskenv can be committed to the repository so that it works
automatically wherever the project is checked out.

1.18.8 Custom Commands

The flask command is implemented using Click. See that project’s documentation for full information about writing
commands.

This example adds the command create-user that takes the argument name.

import click
from flask import Flask

app = Flask(__name__)

@app.cli.command("create-user")
@click.argument("name")
def create_user(name):

...

$ flask create-user admin

This example adds the same command, but as user create, a command in a group. This is useful if you want to
organize multiple related commands.

1.18. Command Line Interface 103

https://click.palletsprojects.com/

Flask Documentation (1.1.x), Release 1.1.4

import click
from flask import Flask
from flask.cli import AppGroup

app = Flask(__name__)
user_cli = AppGroup('user')

@user_cli.command('create')
@click.argument('name')
def create_user(name):

...

app.cli.add_command(user_cli)

$ flask user create demo

See Testing CLI Commands for an overview of how to test your custom commands.

Registering Commands with Blueprints

If your application uses blueprints, you can optionally register CLI commands directly onto them. When your blueprint
is registered onto your application, the associated commands will be available to the flask command. By default,
those commands will be nested in a group matching the name of the blueprint.

from flask import Blueprint

bp = Blueprint('students', __name__)

@bp.cli.command('create')
@click.argument('name')
def create(name):

...

app.register_blueprint(bp)

$ flask students create alice

You can alter the group name by specifying the cli_group parameter when creating the Blueprint object, or
later with app.register_blueprint(bp, cli_group='...'). The following are equivalent:

bp = Blueprint('students', __name__, cli_group='other')
or
app.register_blueprint(bp, cli_group='other')

$ flask other create alice

Specifying cli_group=None will remove the nesting and merge the commands directly to the application’s level:

bp = Blueprint('students', __name__, cli_group=None)
or
app.register_blueprint(bp, cli_group=None)

$ flask create alice

104 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Application Context

Commands added using the Flask app’s cli command() decorator will be executed with an application context
pushed, so your command and extensions have access to the app and its configuration. If you create a command using
the Click command() decorator instead of the Flask decorator, you can use with_appcontext() to get the same
behavior.

import click
from flask.cli import with_appcontext

@click.command()
@with_appcontext
def do_work():

...

app.cli.add_command(do_work)

If you’re sure a command doesn’t need the context, you can disable it:

@app.cli.command(with_appcontext=False)
def do_work():

...

1.18.9 Plugins

Flask will automatically load commands specified in the flask.commands entry point. This is useful for extensions
that want to add commands when they are installed. Entry points are specified in setup.py

from setuptools import setup

setup(
name='flask-my-extension',
...,
entry_points={

'flask.commands': [
'my-command=flask_my_extension.commands:cli'

],
},

)

Inside flask_my_extension/commands.py you can then export a Click object:

import click

@click.command()
def cli():

...

Once that package is installed in the same virtualenv as your Flask project, you can run flask my-command to
invoke the command.

1.18.10 Custom Scripts

When you are using the app factory pattern, it may be more convenient to define your own Click script. Instead of
using FLASK_APP and letting Flask load your application, you can create your own Click object and export it as a

1.18. Command Line Interface 105

https://click.palletsprojects.com/en/8.0.x/api/#click.command
https://packaging.python.org/tutorials/packaging-projects/#entry-points

Flask Documentation (1.1.x), Release 1.1.4

console script entry point.

Create an instance of FlaskGroup and pass it the factory:

import click
from flask import Flask
from flask.cli import FlaskGroup

def create_app():
app = Flask('wiki')
other setup
return app

@click.group(cls=FlaskGroup, create_app=create_app)
def cli():

"""Management script for the Wiki application."""

Define the entry point in setup.py:

from setuptools import setup

setup(
name='flask-my-extension',
...,
entry_points={

'console_scripts': [
'wiki=wiki:cli'

],
},

)

Install the application in the virtualenv in editable mode and the custom script is available. Note that you don’t need
to set FLASK_APP.

$ pip install -e .
$ wiki run

Errors in Custom Scripts

When using a custom script, if you introduce an error in your module-level code, the reloader will fail because it can
no longer load the entry point.

The flask command, being separate from your code, does not have this issue and is recommended in most cases.

1.18.11 PyCharm Integration

PyCharm Professional provides a special Flask run configuration. For the Community Edition, we need to configure
it to call the flask run CLI command with the correct environment variables. These instructions should be similar
for any other IDE you might want to use.

In PyCharm, with your project open, click on Run from the menu bar and go to Edit Configurations. You’ll be greeted
by a screen similar to this:

106 Chapter 1. User’s Guide

https://packaging.python.org/tutorials/packaging-projects/#console-scripts

Flask Documentation (1.1.x), Release 1.1.4

There’s quite a few options to change, but once we’ve done it for one command, we can easily copy the entire config-
uration and make a single tweak to give us access to other commands, including any custom ones you may implement
yourself.

Click the + (Add New Configuration) button and select Python. Give the configuration a name such as “flask run”. For
the flask run command, check “Single instance only” since you can’t run the server more than once at the same
time.

Select Module name from the dropdown (A) then input flask.

The Parameters field (B) is set to the CLI command to execute (with any arguments). In this example we use run,
which will run the development server.

You can skip this next step if you’re using Environment Variables From dotenv. We need to add an environment variable
(C) to identify our application. Click on the browse button and add an entry with FLASK_APP on the left and the
Python import or file on the right (hello for example). Add an entry with FLASK_ENV and set it to development.

Next we need to set the working directory (D) to be the folder where our application resides.

If you have installed your project as a package in your virtualenv, you may untick the PYTHONPATH options (E).
This will more accurately match how you deploy the app later.

Click Apply to save the configuration, or OK to save and close the window. Select the configuration in the main
PyCharm window and click the play button next to it to run the server.

Now that we have a configuration which runs flask run from within PyCharm, we can copy that configuration and
alter the Script argument to run a different CLI command, e.g. flask shell.

1.18. Command Line Interface 107

Flask Documentation (1.1.x), Release 1.1.4

1.19 Development Server

Starting with Flask 0.11 there are multiple built-in ways to run a development server. The best one is the flask
command line utility but you can also continue using the Flask.run() method.

1.19.1 Command Line

The flask command line script (Command Line Interface) is strongly recommended for development because it
provides a superior reload experience due to how it loads the application. The basic usage is like this:

$ export FLASK_APP=my_application
$ export FLASK_ENV=development
$ flask run

This enables the development environment, including the interactive debugger and reloader, and then starts the server
on http://localhost:5000/.

The individual features of the server can be controlled by passing more arguments to the run option. For instance the
reloader can be disabled:

$ flask run --no-reload

Note: Prior to Flask 1.0 the FLASK_ENV environment variable was not supported and you needed to enable debug
mode by exporting FLASK_DEBUG=1. This can still be used to control debug mode, but you should prefer setting the
development environment as shown above.

1.19.2 In Code

The alternative way to start the application is through the Flask.run() method. This will immediately launch a
local server exactly the same way the flask script does.

Example:

if __name__ == '__main__':
app.run()

This works well for the common case but it does not work well for development which is why from Flask 0.11 onwards
the flask method is recommended. The reason for this is that due to how the reload mechanism works there are
some bizarre side-effects (like executing certain code twice, sometimes crashing without message or dying when a
syntax or import error happens).

It is however still a perfectly valid method for invoking a non automatic reloading application.

1.20 Working with the Shell

New in version 0.3.

One of the reasons everybody loves Python is the interactive shell. It basically allows you to execute Python commands
in real time and immediately get results back. Flask itself does not come with an interactive shell, because it does not
require any specific setup upfront, just import your application and start playing around.

108 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

There are however some handy helpers to make playing around in the shell a more pleasant experience. The main
issue with interactive console sessions is that you’re not triggering a request like a browser does which means that g,
request and others are not available. But the code you want to test might depend on them, so what can you do?

This is where some helper functions come in handy. Keep in mind however that these functions are not only there for
interactive shell usage, but also for unit testing and other situations that require a faked request context.

Generally it’s recommended that you read the The Request Context chapter of the documentation first.

1.20.1 Command Line Interface

Starting with Flask 0.11 the recommended way to work with the shell is the flask shell command which does a
lot of this automatically for you. For instance the shell is automatically initialized with a loaded application context.

For more information see Command Line Interface.

1.20.2 Creating a Request Context

The easiest way to create a proper request context from the shell is by using the test_request_context method
which creates us a RequestContext:

>>> ctx = app.test_request_context()

Normally you would use the with statement to make this request object active, but in the shell it’s easier to use the
push() and pop() methods by hand:

>>> ctx.push()

From that point onwards you can work with the request object until you call pop:

>>> ctx.pop()

1.20.3 Firing Before/After Request

By just creating a request context, you still don’t have run the code that is normally run before a request. This might
result in your database being unavailable if you are connecting to the database in a before-request callback or the
current user not being stored on the g object etc.

This however can easily be done yourself. Just call preprocess_request():

>>> ctx = app.test_request_context()
>>> ctx.push()
>>> app.preprocess_request()

Keep in mind that the preprocess_request() function might return a response object, in that case just ignore
it.

To shutdown a request, you need to trick a bit before the after request functions (triggered by
process_response()) operate on a response object:

>>> app.process_response(app.response_class())
<Response 0 bytes [200 OK]>
>>> ctx.pop()

1.20. Working with the Shell 109

Flask Documentation (1.1.x), Release 1.1.4

The functions registered as teardown_request() are automatically called when the context is popped. So this
is the perfect place to automatically tear down resources that were needed by the request context (such as database
connections).

1.20.4 Further Improving the Shell Experience

If you like the idea of experimenting in a shell, create yourself a module with stuff you want to star import into your
interactive session. There you could also define some more helper methods for common things such as initializing the
database, dropping tables etc.

Just put them into a module (like shelltools) and import from there:

>>> from shelltools import *

1.21 Patterns for Flask

Certain features and interactions are common enough that you will find them in most web applications. For example,
many applications use a relational database and user authentication. They will open a database connection at the
beginning of the request and get the information for the logged in user. At the end of the request, the database
connection is closed.

These types of patterns may be a bit outside the scope of Flask itself, but Flask makes it easy to implement them.
Some common patterns are collected in the following pages.

1.21.1 Larger Applications

Imagine a simple flask application structure that looks like this:

/yourapplication
yourapplication.py
/static

style.css
/templates

layout.html
index.html
login.html
...

While this is fine for small applications, for larger applications it’s a good idea to use a package instead of a module.
The tutorial is structured to use the package pattern, see the example code.

Simple Packages

To convert that into a larger one, just create a new folder yourapplication inside the existing one and move
everything below it. Then rename yourapplication.py to __init__.py. (Make sure to delete all .pyc files
first, otherwise things would most likely break)

You should then end up with something like that:

110 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/1.1.4/examples/tutorial

Flask Documentation (1.1.x), Release 1.1.4

/yourapplication
/yourapplication

__init__.py
/static

style.css
/templates

layout.html
index.html
login.html
...

But how do you run your application now? The naive python yourapplication/__init__.py will not
work. Let’s just say that Python does not want modules in packages to be the startup file. But that is not a big problem,
just add a new file called setup.py next to the inner yourapplication folder with the following contents:

from setuptools import setup

setup(
name='yourapplication',
packages=['yourapplication'],
include_package_data=True,
install_requires=[

'flask',
],

)

In order to run the application you need to export an environment variable that tells Flask where to find the application
instance:

$ export FLASK_APP=yourapplication

If you are outside of the project directory make sure to provide the exact path to your application directory. Similarly
you can turn on the development features like this:

$ export FLASK_ENV=development

In order to install and run the application you need to issue the following commands:

$ pip install -e .
$ flask run

What did we gain from this? Now we can restructure the application a bit into multiple modules. The only thing you
have to remember is the following quick checklist:

1. the Flask application object creation has to be in the __init__.py file. That way each module can import it
safely and the __name__ variable will resolve to the correct package.

2. all the view functions (the ones with a route() decorator on top) have to be imported in the __init__.py
file. Not the object itself, but the module it is in. Import the view module after the application object is
created.

Here’s an example __init__.py:

from flask import Flask
app = Flask(__name__)

import yourapplication.views

1.21. Patterns for Flask 111

Flask Documentation (1.1.x), Release 1.1.4

And this is what views.py would look like:

from yourapplication import app

@app.route('/')
def index():

return 'Hello World!'

You should then end up with something like that:

/yourapplication
setup.py
/yourapplication

__init__.py
views.py
/static

style.css
/templates

layout.html
index.html
login.html
...

Circular Imports

Every Python programmer hates them, and yet we just added some: circular imports (That’s when two modules depend
on each other. In this case views.py depends on __init__.py). Be advised that this is a bad idea in general
but here it is actually fine. The reason for this is that we are not actually using the views in __init__.py and just
ensuring the module is imported and we are doing that at the bottom of the file.

There are still some problems with that approach but if you want to use decorators there is no way around that. Check
out the Becoming Big section for some inspiration how to deal with that.

Working with Blueprints

If you have larger applications it’s recommended to divide them into smaller groups where each group is implemented
with the help of a blueprint. For a gentle introduction into this topic refer to the Modular Applications with Blueprints
chapter of the documentation.

1.21.2 Application Factories

If you are already using packages and blueprints for your application (Modular Applications with Blueprints) there are
a couple of really nice ways to further improve the experience. A common pattern is creating the application object
when the blueprint is imported. But if you move the creation of this object into a function, you can then create multiple
instances of this app later.

So why would you want to do this?

1. Testing. You can have instances of the application with different settings to test every case.

2. Multiple instances. Imagine you want to run different versions of the same application. Of course you could
have multiple instances with different configs set up in your webserver, but if you use factories, you can have
multiple instances of the same application running in the same application process which can be handy.

So how would you then actually implement that?

112 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Basic Factories

The idea is to set up the application in a function. Like this:

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

from yourapplication.model import db
db.init_app(app)

from yourapplication.views.admin import admin
from yourapplication.views.frontend import frontend
app.register_blueprint(admin)
app.register_blueprint(frontend)

return app

The downside is that you cannot use the application object in the blueprints at import time. You can however use it
from within a request. How do you get access to the application with the config? Use current_app:

from flask import current_app, Blueprint, render_template
admin = Blueprint('admin', __name__, url_prefix='/admin')

@admin.route('/')
def index():

return render_template(current_app.config['INDEX_TEMPLATE'])

Here we look up the name of a template in the config.

Factories & Extensions

It’s preferable to create your extensions and app factories so that the extension object does not initially get bound to
the application.

Using Flask-SQLAlchemy, as an example, you should not do something along those lines:

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

db = SQLAlchemy(app)

But, rather, in model.py (or equivalent):

db = SQLAlchemy()

and in your application.py (or equivalent):

def create_app(config_filename):
app = Flask(__name__)
app.config.from_pyfile(config_filename)

from yourapplication.model import db
db.init_app(app)

Using this design pattern, no application-specific state is stored on the extension object, so one extension object can
be used for multiple apps. For more information about the design of extensions refer to Flask Extension Development.

1.21. Patterns for Flask 113

https://flask-sqlalchemy.palletsprojects.com/

Flask Documentation (1.1.x), Release 1.1.4

Using Applications

To run such an application, you can use the flask command:

$ export FLASK_APP=myapp
$ flask run

Flask will automatically detect the factory (create_app or make_app) in myapp. You can also pass arguments to
the factory like this:

$ export FLASK_APP="myapp:create_app('dev')"
$ flask run

Then the create_app factory in myapp is called with the string 'dev' as the argument. See Command Line
Interface for more detail.

Factory Improvements

The factory function above is not very clever, but you can improve it. The following changes are straightforward to
implement:

1. Make it possible to pass in configuration values for unit tests so that you don’t have to create config files on the
filesystem.

2. Call a function from a blueprint when the application is setting up so that you have a place to modify attributes
of the application (like hooking in before/after request handlers etc.)

3. Add in WSGI middlewares when the application is being created if necessary.

1.21.3 Application Dispatching

Application dispatching is the process of combining multiple Flask applications on the WSGI level. You can combine
not only Flask applications but any WSGI application. This would allow you to run a Django and a Flask application in
the same interpreter side by side if you want. The usefulness of this depends on how the applications work internally.

The fundamental difference from the module approach is that in this case you are running the same or different Flask
applications that are entirely isolated from each other. They run different configurations and are dispatched on the
WSGI level.

Working with this Document

Each of the techniques and examples below results in an application object that can be run with any WSGI server.
For production, see Deployment Options. For development, Werkzeug provides a builtin server for development
available at werkzeug.serving.run_simple():

from werkzeug.serving import run_simple
run_simple('localhost', 5000, application, use_reloader=True)

Note that run_simple is not intended for use in production. Use a full-blown WSGI server.

In order to use the interactive debugger, debugging must be enabled both on the application and the simple server.
Here is the “hello world” example with debugging and run_simple:

114 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/en/2.0.x/serving/#werkzeug.serving.run_simple
https://werkzeug.palletsprojects.com/en/2.0.x/serving/#werkzeug.serving.run_simple
https://werkzeug.palletsprojects.com/en/2.0.x/serving/#werkzeug.serving.run_simple

Flask Documentation (1.1.x), Release 1.1.4

from flask import Flask
from werkzeug.serving import run_simple

app = Flask(__name__)
app.debug = True

@app.route('/')
def hello_world():

return 'Hello World!'

if __name__ == '__main__':
run_simple('localhost', 5000, app,

use_reloader=True, use_debugger=True, use_evalex=True)

Combining Applications

If you have entirely separated applications and you want them to work next to each other in the same Python interpreter
process you can take advantage of the werkzeug.wsgi.DispatcherMiddleware. The idea here is that each
Flask application is a valid WSGI application and they are combined by the dispatcher middleware into a larger one
that is dispatched based on prefix.

For example you could have your main application run on / and your backend interface on /backend:

from werkzeug.middleware.dispatcher import DispatcherMiddleware
from frontend_app import application as frontend
from backend_app import application as backend

application = DispatcherMiddleware(frontend, {
'/backend': backend

})

Dispatch by Subdomain

Sometimes you might want to use multiple instances of the same application with different configurations. Assuming
the application is created inside a function and you can call that function to instantiate it, that is really easy to imple-
ment. In order to develop your application to support creating new instances in functions have a look at the Application
Factories pattern.

A very common example would be creating applications per subdomain. For instance you configure your webserver
to dispatch all requests for all subdomains to your application and you then use the subdomain information to create
user-specific instances. Once you have your server set up to listen on all subdomains you can use a very simple WSGI
application to do the dynamic application creation.

The perfect level for abstraction in that regard is the WSGI layer. You write your own WSGI application that looks at
the request that comes and delegates it to your Flask application. If that application does not exist yet, it is dynamically
created and remembered:

from threading import Lock

class SubdomainDispatcher(object):

def __init__(self, domain, create_app):
self.domain = domain
self.create_app = create_app

(continues on next page)

1.21. Patterns for Flask 115

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

self.lock = Lock()
self.instances = {}

def get_application(self, host):
host = host.split(':')[0]
assert host.endswith(self.domain), 'Configuration error'
subdomain = host[:-len(self.domain)].rstrip('.')
with self.lock:

app = self.instances.get(subdomain)
if app is None:

app = self.create_app(subdomain)
self.instances[subdomain] = app

return app

def __call__(self, environ, start_response):
app = self.get_application(environ['HTTP_HOST'])
return app(environ, start_response)

This dispatcher can then be used like this:

from myapplication import create_app, get_user_for_subdomain
from werkzeug.exceptions import NotFound

def make_app(subdomain):
user = get_user_for_subdomain(subdomain)
if user is None:

if there is no user for that subdomain we still have
to return a WSGI application that handles that request.
We can then just return the NotFound() exception as
application which will render a default 404 page.
You might also redirect the user to the main page then
return NotFound()

otherwise create the application for the specific user
return create_app(user)

application = SubdomainDispatcher('example.com', make_app)

Dispatch by Path

Dispatching by a path on the URL is very similar. Instead of looking at the Host header to figure out the subdomain
one simply looks at the request path up to the first slash:

from threading import Lock
from werkzeug.wsgi import pop_path_info, peek_path_info

class PathDispatcher(object):

def __init__(self, default_app, create_app):
self.default_app = default_app
self.create_app = create_app
self.lock = Lock()
self.instances = {}

def get_application(self, prefix):

(continues on next page)

116 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

with self.lock:
app = self.instances.get(prefix)
if app is None:

app = self.create_app(prefix)
if app is not None:

self.instances[prefix] = app
return app

def __call__(self, environ, start_response):
app = self.get_application(peek_path_info(environ))
if app is not None:

pop_path_info(environ)
else:

app = self.default_app
return app(environ, start_response)

The big difference between this and the subdomain one is that this one falls back to another application if the creator
function returns None:

from myapplication import create_app, default_app, get_user_for_prefix

def make_app(prefix):
user = get_user_for_prefix(prefix)
if user is not None:

return create_app(user)

application = PathDispatcher(default_app, make_app)

1.21.4 Implementing API Exceptions

It’s very common to implement RESTful APIs on top of Flask. One of the first things that developers run into is the
realization that the builtin exceptions are not expressive enough for APIs and that the content type of text/html
they are emitting is not very useful for API consumers.

The better solution than using abort to signal errors for invalid API usage is to implement your own exception type
and install an error handler for it that produces the errors in the format the user is expecting.

Simple Exception Class

The basic idea is to introduce a new exception that can take a proper human readable message, a status code for the
error and some optional payload to give more context for the error.

This is a simple example:

from flask import jsonify

class InvalidUsage(Exception):
status_code = 400

def __init__(self, message, status_code=None, payload=None):
Exception.__init__(self)
self.message = message
if status_code is not None:

self.status_code = status_code

(continues on next page)

1.21. Patterns for Flask 117

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

self.payload = payload

def to_dict(self):
rv = dict(self.payload or ())
rv['message'] = self.message
return rv

A view can now raise that exception with an error message. Additionally some extra payload can be provided as a
dictionary through the payload parameter.

Registering an Error Handler

At that point views can raise that error, but it would immediately result in an internal server error. The reason for this
is that there is no handler registered for this error class. That however is easy to add:

@app.errorhandler(InvalidUsage)
def handle_invalid_usage(error):

response = jsonify(error.to_dict())
response.status_code = error.status_code
return response

Usage in Views

Here is how a view can use that functionality:

@app.route('/foo')
def get_foo():

raise InvalidUsage('This view is gone', status_code=410)

1.21.5 Using URL Processors

New in version 0.7.

Flask 0.7 introduces the concept of URL processors. The idea is that you might have a bunch of resources with
common parts in the URL that you don’t always explicitly want to provide. For instance you might have a bunch of
URLs that have the language code in it but you don’t want to have to handle it in every single function yourself.

URL processors are especially helpful when combined with blueprints. We will handle both application specific URL
processors here as well as blueprint specifics.

Internationalized Application URLs

Consider an application like this:

from flask import Flask, g

app = Flask(__name__)

@app.route('/<lang_code>/')
def index(lang_code):

g.lang_code = lang_code

(continues on next page)

118 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

...

@app.route('/<lang_code>/about')
def about(lang_code):

g.lang_code = lang_code
...

This is an awful lot of repetition as you have to handle the language code setting on the g object yourself in every
single function. Sure, a decorator could be used to simplify this, but if you want to generate URLs from one function
to another you would have to still provide the language code explicitly which can be annoying.

For the latter, this is where url_defaults() functions come in. They can automatically inject values into a call
to url_for(). The code below checks if the language code is not yet in the dictionary of URL values and if the
endpoint wants a value named 'lang_code':

@app.url_defaults
def add_language_code(endpoint, values):

if 'lang_code' in values or not g.lang_code:
return

if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
values['lang_code'] = g.lang_code

The method is_endpoint_expecting() of the URL map can be used to figure out if it would make sense to
provide a language code for the given endpoint.

The reverse of that function are url_value_preprocessor()s. They are executed right after the request was
matched and can execute code based on the URL values. The idea is that they pull information out of the values
dictionary and put it somewhere else:

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code', None)

That way you no longer have to do the lang_code assignment to g in every function. You can further improve that
by writing your own decorator that prefixes URLs with the language code, but the more beautiful solution is using a
blueprint. Once the 'lang_code' is popped from the values dictionary and it will no longer be forwarded to the
view function reducing the code to this:

from flask import Flask, g

app = Flask(__name__)

@app.url_defaults
def add_language_code(endpoint, values):

if 'lang_code' in values or not g.lang_code:
return

if app.url_map.is_endpoint_expecting(endpoint, 'lang_code'):
values['lang_code'] = g.lang_code

@app.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code', None)

@app.route('/<lang_code>/')
def index():

...

(continues on next page)

1.21. Patterns for Flask 119

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Map.is_endpoint_expecting

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

@app.route('/<lang_code>/about')
def about():

...

Internationalized Blueprint URLs

Because blueprints can automatically prefix all URLs with a common string it’s easy to automatically do that for every
function. Furthermore blueprints can have per-blueprint URL processors which removes a whole lot of logic from the
url_defaults() function because it no longer has to check if the URL is really interested in a 'lang_code'
parameter:

from flask import Blueprint, g

bp = Blueprint('frontend', __name__, url_prefix='/<lang_code>')

@bp.url_defaults
def add_language_code(endpoint, values):

values.setdefault('lang_code', g.lang_code)

@bp.url_value_preprocessor
def pull_lang_code(endpoint, values):

g.lang_code = values.pop('lang_code')

@bp.route('/')
def index():

...

@bp.route('/about')
def about():

...

1.21.6 Deploying with Setuptools

Setuptools, is an extension library that is commonly used to distribute Python libraries and extensions. It extends
distutils, a basic module installation system shipped with Python to also support various more complex constructs that
make larger applications easier to distribute:

• support for dependencies: a library or application can declare a list of other libraries it depends on which will
be installed automatically for you.

• package registry: setuptools registers your package with your Python installation. This makes it possible to
query information provided by one package from another package. The best known feature of this system is the
entry point support which allows one package to declare an “entry point” that another package can hook into to
extend the other package.

• installation manager: pip can install other libraries for you.

If you have Python 2 (>=2.7.9) or Python 3 (>=3.4) installed from python.org, you will already have pip and setuptools
on your system. Otherwise, you will need to install them yourself.

Flask itself, and all the libraries you can find on PyPI are distributed with either setuptools or distutils.

In this case we assume your application is called yourapplication.py and you are not using a module, but a
package. If you have not yet converted your application into a package, head over to the Larger Applications pattern

120 Chapter 1. User’s Guide

https://pypi.org/project/setuptools/

Flask Documentation (1.1.x), Release 1.1.4

to see how this can be done.

A working deployment with setuptools is the first step into more complex and more automated deployment scenarios.
If you want to fully automate the process, also read the Deploying with Fabric chapter.

Basic Setup Script

Because you have Flask installed, you have setuptools available on your system. Flask already depends upon setup-
tools.

Standard disclaimer applies: you better use a virtualenv.

Your setup code always goes into a file named setup.py next to your application. The name of the file is only
convention, but because everybody will look for a file with that name, you better not change it.

A basic setup.py file for a Flask application looks like this:

from setuptools import setup

setup(
name='Your Application',
version='1.0',
long_description=__doc__,
packages=['yourapplication'],
include_package_data=True,
zip_safe=False,
install_requires=['Flask']

)

Please keep in mind that you have to list subpackages explicitly. If you want setuptools to lookup the packages for you
automatically, you can use the find_packages function:

from setuptools import setup, find_packages

setup(
...
packages=find_packages()

)

Most parameters to the setup function should be self explanatory, include_package_data and zip_safe
might not be. include_package_data tells setuptools to look for a MANIFEST.in file and install all the entries
that match as package data. We will use this to distribute the static files and templates along with the Python module
(see Distributing Resources). The zip_safe flag can be used to force or prevent zip Archive creation. In general
you probably don’t want your packages to be installed as zip files because some tools do not support them and they
make debugging a lot harder.

Tagging Builds

It is useful to distinguish between release and development builds. Add a setup.cfg file to configure these options.

[egg_info]
tag_build = .dev
tag_date = 1

[aliases]
release = egg_info -Db ''

1.21. Patterns for Flask 121

https://click.palletsprojects.com/en/8.0.x/quickstart/#virtualenv

Flask Documentation (1.1.x), Release 1.1.4

Running python setup.py sdistwill create a development package with “.dev” and the current date appended:
flaskr-1.0.dev20160314.tar.gz. Running python setup.py release sdistwill create a release
package with only the version: flaskr-1.0.tar.gz.

Distributing Resources

If you try to install the package you just created, you will notice that folders like static or templates are not
installed for you. The reason for this is that setuptools does not know which files to add for you. What you should do,
is to create a MANIFEST.in file next to your setup.py file. This file lists all the files that should be added to your
tarball:

recursive-include yourapplication/templates *
recursive-include yourapplication/static *

Don’t forget that even if you enlist them in your MANIFEST.in file, they won’t be installed for you unless you set
the include_package_data parameter of the setup function to True!

Declaring Dependencies

Dependencies are declared in the install_requires parameter as a list. Each item in that list is the name of a
package that should be pulled from PyPI on installation. By default it will always use the most recent version, but you
can also provide minimum and maximum version requirements. Here some examples:

install_requires=[
'Flask>=0.2',
'SQLAlchemy>=0.6',
'BrokenPackage>=0.7,<=1.0'

]

As mentioned earlier, dependencies are pulled from PyPI. What if you want to depend on a package that cannot be
found on PyPI and won’t be because it is an internal package you don’t want to share with anyone? Just do it as if
there was a PyPI entry and provide a list of alternative locations where setuptools should look for tarballs:

dependency_links=['http://example.com/yourfiles']

Make sure that page has a directory listing and the links on the page are pointing to the actual tarballs with their
correct filenames as this is how setuptools will find the files. If you have an internal company server that contains the
packages, provide the URL to that server.

Installing / Developing

To install your application (ideally into a virtualenv) just run the setup.py script with the install parameter. It
will install your application into the virtualenv’s site-packages folder and also download and install all dependencies:

$ python setup.py install

If you are developing on the package and also want the requirements to be installed, you can use the develop
command instead:

$ python setup.py develop

This has the advantage of just installing a link to the site-packages folder instead of copying the data over. You can
then continue to work on the code without having to run install again after each change.

122 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

1.21.7 Deploying with Fabric

Fabric is a tool for Python similar to Makefiles but with the ability to execute commands on a remote server. In
combination with a properly set up Python package (Larger Applications) and a good concept for configurations
(Configuration Handling) it is very easy to deploy Flask applications to external servers.

Before we get started, here a quick checklist of things we have to ensure upfront:

• Fabric 1.0 has to be installed locally. This tutorial assumes the latest version of Fabric.

• The application already has to be a package and requires a working setup.py file (Deploying with Setuptools).

• In the following example we are using mod_wsgi for the remote servers. You can of course use your own
favourite server there, but for this example we chose Apache + mod_wsgi because it’s very easy to setup and has
a simple way to reload applications without root access.

Creating the first Fabfile

A fabfile is what controls what Fabric executes. It is named fabfile.py and executed by the fab command. All the
functions defined in that file will show up as fab subcommands. They are executed on one or more hosts. These hosts
can be defined either in the fabfile or on the command line. In this case we will add them to the fabfile.

This is a basic first example that has the ability to upload the current source code to the server and install it into a
pre-existing virtual environment:

from fabric.api import *

the user to use for the remote commands
env.user = 'appuser'
the servers where the commands are executed
env.hosts = ['server1.example.com', 'server2.example.com']

def pack():
build the package
local('python setup.py sdist --formats=gztar', capture=False)

def deploy():
figure out the package name and version
dist = local('python setup.py --fullname', capture=True).strip()
filename = '%s.tar.gz' % dist

upload the package to the temporary folder on the server
put('dist/%s' % filename, '/tmp/%s' % filename)

install the package in the application's virtualenv with pip
run('/var/www/yourapplication/env/bin/pip install /tmp/%s' % filename)

remove the uploaded package
run('rm -r /tmp/%s' % filename)

touch the .wsgi file to trigger a reload in mod_wsgi
run('touch /var/www/yourapplication.wsgi')

Running Fabfiles

Now how do you execute that fabfile? You use the fab command. To deploy the current version of the code on the
remote server you would use this command:

1.21. Patterns for Flask 123

https://www.fabfile.org/

Flask Documentation (1.1.x), Release 1.1.4

$ fab pack deploy

However this requires that our server already has the /var/www/yourapplication folder created and /var/
www/yourapplication/env to be a virtual environment. Furthermore are we not creating the configuration or
.wsgi file on the server. So how do we bootstrap a new server into our infrastructure?

This now depends on the number of servers we want to set up. If we just have one application server (which the
majority of applications will have), creating a command in the fabfile for this is overkill. But obviously you can do
that. In that case you would probably call it setup or bootstrap and then pass the servername explicitly on the command
line:

$ fab -H newserver.example.com bootstrap

To setup a new server you would roughly do these steps:

1. Create the directory structure in /var/www:

$ mkdir /var/www/yourapplication
$ cd /var/www/yourapplication
$ virtualenv --distribute env

2. Upload a new application.wsgi file to the server and the configuration file for the application (eg:
application.cfg)

3. Create a new Apache config for yourapplication and activate it. Make sure to activate watching for
changes of the .wsgi file so that we can automatically reload the application by touching it. (See mod_wsgi
(Apache) for more information)

So now the question is, where do the application.wsgi and application.cfg files come from?

The WSGI File

The WSGI file has to import the application and also to set an environment variable so that the application knows
where to look for the config. This is a short example that does exactly that:

import os
os.environ['YOURAPPLICATION_CONFIG'] = '/var/www/yourapplication/application.cfg'
from yourapplication import app

The application itself then has to initialize itself like this to look for the config at that environment variable:

app = Flask(__name__)
app.config.from_object('yourapplication.default_config')
app.config.from_envvar('YOURAPPLICATION_CONFIG')

This approach is explained in detail in the Configuration Handling section of the documentation.

The Configuration File

Now as mentioned above, the application will find the correct configuration file by looking up the
YOURAPPLICATION_CONFIG environment variable. So we have to put the configuration in a place where the
application will able to find it. Configuration files have the unfriendly quality of being different on all computers, so
you do not version them usually.

124 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

A popular approach is to store configuration files for different servers in a separate version control repository and
check them out on all servers. Then symlink the file that is active for the server into the location where it’s expected
(eg: /var/www/yourapplication).

Either way, in our case here we only expect one or two servers and we can upload them ahead of time by hand.

First Deployment

Now we can do our first deployment. We have set up the servers so that they have their virtual environments and
activated apache configs. Now we can pack up the application and deploy it:

$ fab pack deploy

Fabric will now connect to all servers and run the commands as written down in the fabfile. First it will execute pack
so that we have our tarball ready and then it will execute deploy and upload the source code to all servers and install it
there. Thanks to the setup.py file we will automatically pull in the required libraries into our virtual environment.

Next Steps

From that point onwards there is so much that can be done to make deployment actually fun:

• Create a bootstrap command that initializes new servers. It could initialize a new virtual environment, setup
apache appropriately etc.

• Put configuration files into a separate version control repository and symlink the active configs into place.

• You could also put your application code into a repository and check out the latest version on the server and
then install. That way you can also easily go back to older versions.

• hook in testing functionality so that you can deploy to an external server and run the test suite.

Working with Fabric is fun and you will notice that it’s quite magical to type fab deploy and see your application
being deployed automatically to one or more remote servers.

1.21.8 Using SQLite 3 with Flask

In Flask you can easily implement the opening of database connections on demand and closing them when the context
dies (usually at the end of the request).

Here is a simple example of how you can use SQLite 3 with Flask:

import sqlite3
from flask import g

DATABASE = '/path/to/database.db'

def get_db():
db = getattr(g, '_database', None)
if db is None:

db = g._database = sqlite3.connect(DATABASE)
return db

@app.teardown_appcontext
def close_connection(exception):

db = getattr(g, '_database', None)
if db is not None:

db.close()

1.21. Patterns for Flask 125

Flask Documentation (1.1.x), Release 1.1.4

Now, to use the database, the application must either have an active application context (which is always true if there
is a request in flight) or create an application context itself. At that point the get_db function can be used to get the
current database connection. Whenever the context is destroyed the database connection will be terminated.

Note: if you use Flask 0.9 or older you need to use flask._app_ctx_stack.top instead of g as the flask.g
object was bound to the request and not application context.

Example:

@app.route('/')
def index():

cur = get_db().cursor()
...

Note: Please keep in mind that the teardown request and appcontext functions are always executed, even if a before-
request handler failed or was never executed. Because of this we have to make sure here that the database is there
before we close it.

Connect on Demand

The upside of this approach (connecting on first use) is that this will only open the connection if truly necessary. If
you want to use this code outside a request context you can use it in a Python shell by opening the application context
by hand:

with app.app_context():
now you can use get_db()

Easy Querying

Now in each request handling function you can access get_db() to get the current open database connection. To
simplify working with SQLite, a row factory function is useful. It is executed for every result returned from the
database to convert the result. For instance, in order to get dictionaries instead of tuples, this could be inserted into the
get_db function we created above:

def make_dicts(cursor, row):
return dict((cursor.description[idx][0], value)

for idx, value in enumerate(row))

db.row_factory = make_dicts

This will make the sqlite3 module return dicts for this database connection, which are much nicer to deal with. Even
more simply, we could place this in get_db instead:

db.row_factory = sqlite3.Row

This would use Row objects rather than dicts to return the results of queries. These are namedtuple s, so we can
access them either by index or by key. For example, assuming we have a sqlite3.Row called r for the rows id,
FirstName, LastName, and MiddleInitial:

>>> # You can get values based on the row's name
>>> r['FirstName']
John
>>> # Or, you can get them based on index

(continues on next page)

126 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

>>> r[1]
John
Row objects are also iterable:
>>> for value in r:
... print(value)
1
John
Doe
M

Additionally, it is a good idea to provide a query function that combines getting the cursor, executing and fetching the
results:

def query_db(query, args=(), one=False):
cur = get_db().execute(query, args)
rv = cur.fetchall()
cur.close()
return (rv[0] if rv else None) if one else rv

This handy little function, in combination with a row factory, makes working with the database much more pleasant
than it is by just using the raw cursor and connection objects.

Here is how you can use it:

for user in query_db('select * from users'):
print user['username'], 'has the id', user['user_id']

Or if you just want a single result:

user = query_db('select * from users where username = ?',
[the_username], one=True)

if user is None:
print 'No such user'

else:
print the_username, 'has the id', user['user_id']

To pass variable parts to the SQL statement, use a question mark in the statement and pass in the arguments as a
list. Never directly add them to the SQL statement with string formatting because this makes it possible to attack the
application using SQL Injections.

Initial Schemas

Relational databases need schemas, so applications often ship a schema.sql file that creates the database. It’s a good
idea to provide a function that creates the database based on that schema. This function can do that for you:

def init_db():
with app.app_context():

db = get_db()
with app.open_resource('schema.sql', mode='r') as f:

db.cursor().executescript(f.read())
db.commit()

You can then create such a database from the Python shell:

>>> from yourapplication import init_db
>>> init_db()

1.21. Patterns for Flask 127

https://en.wikipedia.org/wiki/SQL_injection

Flask Documentation (1.1.x), Release 1.1.4

1.21.9 SQLAlchemy in Flask

Many people prefer SQLAlchemy for database access. In this case it’s encouraged to use a package instead of a
module for your flask application and drop the models into a separate module (Larger Applications). While that is not
necessary, it makes a lot of sense.

There are four very common ways to use SQLAlchemy. I will outline each of them here:

Flask-SQLAlchemy Extension

Because SQLAlchemy is a common database abstraction layer and object relational mapper that requires a little bit
of configuration effort, there is a Flask extension that handles that for you. This is recommended if you want to get
started quickly.

You can download Flask-SQLAlchemy from PyPI.

Declarative

The declarative extension in SQLAlchemy is the most recent method of using SQLAlchemy. It allows you to define
tables and models in one go, similar to how Django works. In addition to the following text I recommend the official
documentation on the declarative extension.

Here’s the example database.py module for your application:

from sqlalchemy import create_engine
from sqlalchemy.orm import scoped_session, sessionmaker
from sqlalchemy.ext.declarative import declarative_base

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
db_session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

Base = declarative_base()
Base.query = db_session.query_property()

def init_db():
import all modules here that might define models so that
they will be registered properly on the metadata. Otherwise
you will have to import them first before calling init_db()
import yourapplication.models
Base.metadata.create_all(bind=engine)

To define your models, just subclass the Base class that was created by the code above. If you are wondering why we
don’t have to care about threads here (like we did in the SQLite3 example above with the g object): that’s because
SQLAlchemy does that for us already with the scoped_session.

To use SQLAlchemy in a declarative way with your application, you just have to put the following code into your
application module. Flask will automatically remove database sessions at the end of the request or when the application
shuts down:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):

db_session.remove()

Here is an example model (put this into models.py, e.g.):

128 Chapter 1. User’s Guide

https://www.sqlalchemy.org/
https://flask-sqlalchemy.palletsprojects.com/
https://pypi.org/project/Flask-SQLAlchemy/
https://docs.sqlalchemy.org/en/latest/orm/extensions/declarative/

Flask Documentation (1.1.x), Release 1.1.4

from sqlalchemy import Column, Integer, String
from yourapplication.database import Base

class User(Base):
__tablename__ = 'users'
id = Column(Integer, primary_key=True)
name = Column(String(50), unique=True)
email = Column(String(120), unique=True)

def __init__(self, name=None, email=None):
self.name = name
self.email = email

def __repr__(self):
return '<User %r>' % (self.name)

To create the database you can use the init_db function:

>>> from yourapplication.database import init_db
>>> init_db()

You can insert entries into the database like this:

>>> from yourapplication.database import db_session
>>> from yourapplication.models import User
>>> u = User('admin', 'admin@localhost')
>>> db_session.add(u)
>>> db_session.commit()

Querying is simple as well:

>>> User.query.all()
[<User u'admin'>]
>>> User.query.filter(User.name == 'admin').first()
<User u'admin'>

Manual Object Relational Mapping

Manual object relational mapping has a few upsides and a few downsides versus the declarative approach from above.
The main difference is that you define tables and classes separately and map them together. It’s more flexible but a
little more to type. In general it works like the declarative approach, so make sure to also split up your application into
multiple modules in a package.

Here is an example database.py module for your application:

from sqlalchemy import create_engine, MetaData
from sqlalchemy.orm import scoped_session, sessionmaker

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData()
db_session = scoped_session(sessionmaker(autocommit=False,

autoflush=False,
bind=engine))

def init_db():
metadata.create_all(bind=engine)

1.21. Patterns for Flask 129

Flask Documentation (1.1.x), Release 1.1.4

As in the declarative approach, you need to close the session after each request or application context shutdown. Put
this into your application module:

from yourapplication.database import db_session

@app.teardown_appcontext
def shutdown_session(exception=None):

db_session.remove()

Here is an example table and model (put this into models.py):

from sqlalchemy import Table, Column, Integer, String
from sqlalchemy.orm import mapper
from yourapplication.database import metadata, db_session

class User(object):
query = db_session.query_property()

def __init__(self, name=None, email=None):
self.name = name
self.email = email

def __repr__(self):
return '<User %r>' % (self.name)

users = Table('users', metadata,
Column('id', Integer, primary_key=True),
Column('name', String(50), unique=True),
Column('email', String(120), unique=True)

)
mapper(User, users)

Querying and inserting works exactly the same as in the example above.

SQL Abstraction Layer

If you just want to use the database system (and SQL) abstraction layer you basically only need the engine:

from sqlalchemy import create_engine, MetaData, Table

engine = create_engine('sqlite:////tmp/test.db', convert_unicode=True)
metadata = MetaData(bind=engine)

Then you can either declare the tables in your code like in the examples above, or automatically load them:

from sqlalchemy import Table

users = Table('users', metadata, autoload=True)

To insert data you can use the insert method. We have to get a connection first so that we can use a transaction:

>>> con = engine.connect()
>>> con.execute(users.insert(), name='admin', email='admin@localhost')

SQLAlchemy will automatically commit for us.

To query your database, you use the engine directly or use a connection:

130 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

>>> users.select(users.c.id == 1).execute().first()
(1, u'admin', u'admin@localhost')

These results are also dict-like tuples:

>>> r = users.select(users.c.id == 1).execute().first()
>>> r['name']
u'admin'

You can also pass strings of SQL statements to the execute() method:

>>> engine.execute('select * from users where id = :1', [1]).first()
(1, u'admin', u'admin@localhost')

For more information about SQLAlchemy, head over to the website.

1.21.10 Uploading Files

Ah yes, the good old problem of file uploads. The basic idea of file uploads is actually quite simple. It basically works
like this:

1. A <form> tag is marked with enctype=multipart/form-data and an <input type=file> is
placed in that form.

2. The application accesses the file from the files dictionary on the request object.

3. use the save() method of the file to save the file permanently somewhere on the filesystem.

A Gentle Introduction

Let’s start with a very basic application that uploads a file to a specific upload folder and displays a file to the user.
Let’s look at the bootstrapping code for our application:

import os
from flask import Flask, flash, request, redirect, url_for
from werkzeug.utils import secure_filename

UPLOAD_FOLDER = '/path/to/the/uploads'
ALLOWED_EXTENSIONS = {'txt', 'pdf', 'png', 'jpg', 'jpeg', 'gif'}

app = Flask(__name__)
app.config['UPLOAD_FOLDER'] = UPLOAD_FOLDER

So first we need a couple of imports. Most should be straightforward, the werkzeug.secure_filename()
is explained a little bit later. The UPLOAD_FOLDER is where we will store the uploaded files and the
ALLOWED_EXTENSIONS is the set of allowed file extensions.

Why do we limit the extensions that are allowed? You probably don’t want your users to be able to upload everything
there if the server is directly sending out the data to the client. That way you can make sure that users are not able
to upload HTML files that would cause XSS problems (see Cross-Site Scripting (XSS)). Also make sure to disallow
.php files if the server executes them, but who has PHP installed on their server, right? :)

Next the functions that check if an extension is valid and that uploads the file and redirects the user to the URL for the
uploaded file:

1.21. Patterns for Flask 131

https://www.sqlalchemy.org/
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage.save

Flask Documentation (1.1.x), Release 1.1.4

def allowed_file(filename):
return '.' in filename and \

filename.rsplit('.', 1)[1].lower() in ALLOWED_EXTENSIONS

@app.route('/', methods=['GET', 'POST'])
def upload_file():

if request.method == 'POST':
check if the post request has the file part
if 'file' not in request.files:

flash('No file part')
return redirect(request.url)

file = request.files['file']
if user does not select file, browser also
submit an empty part without filename
if file.filename == '':

flash('No selected file')
return redirect(request.url)

if file and allowed_file(file.filename):
filename = secure_filename(file.filename)
file.save(os.path.join(app.config['UPLOAD_FOLDER'], filename))
return redirect(url_for('uploaded_file',

filename=filename))
return '''
<!doctype html>
<title>Upload new File</title>
<h1>Upload new File</h1>
<form method=post enctype=multipart/form-data>

<input type=file name=file>
<input type=submit value=Upload>

</form>
'''

So what does that secure_filename() function actually do? Now the problem is that there is that principle called
“never trust user input”. This is also true for the filename of an uploaded file. All submitted form data can be forged,
and filenames can be dangerous. For the moment just remember: always use that function to secure a filename before
storing it directly on the filesystem.

Information for the Pros

So you’re interested in what that secure_filename() function does and what the problem is if you’re not using
it? So just imagine someone would send the following information as filename to your application:

filename = "../../../../home/username/.bashrc"

Assuming the number of ../ is correct and you would join this with the UPLOAD_FOLDER the user might have the
ability to modify a file on the server’s filesystem he or she should not modify. This does require some knowledge
about how the application looks like, but trust me, hackers are patient :)

Now let’s look how that function works:

>>> secure_filename('../../../../home/username/.bashrc')
'home_username_.bashrc'

Now one last thing is missing: the serving of the uploaded files. In the upload_file() we redirect the user to
url_for('uploaded_file', filename=filename), that is, /uploads/filename. So we write the
uploaded_file() function to return the file of that name. As of Flask 0.5 we can use a function that does that for

132 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/en/2.0.x/utils/#werkzeug.utils.secure_filename
https://werkzeug.palletsprojects.com/en/2.0.x/utils/#werkzeug.utils.secure_filename

Flask Documentation (1.1.x), Release 1.1.4

us:

from flask import send_from_directory

@app.route('/uploads/<filename>')
def uploaded_file(filename):

return send_from_directory(app.config['UPLOAD_FOLDER'],
filename)

Alternatively you can register uploaded_file as build_only rule and use the SharedDataMiddleware. This also
works with older versions of Flask:

from werkzeug.middleware.shared_data import SharedDataMiddleware
app.add_url_rule('/uploads/<filename>', 'uploaded_file',

build_only=True)
app.wsgi_app = SharedDataMiddleware(app.wsgi_app, {

'/uploads': app.config['UPLOAD_FOLDER']
})

If you now run the application everything should work as expected.

Improving Uploads

New in version 0.6.

So how exactly does Flask handle uploads? Well it will store them in the webserver’s memory if the files are reasonable
small otherwise in a temporary location (as returned by tempfile.gettempdir()). But how do you specify the
maximum file size after which an upload is aborted? By default Flask will happily accept file uploads to an unlimited
amount of memory, but you can limit that by setting the MAX_CONTENT_LENGTH config key:

from flask import Flask, Request

app = Flask(__name__)
app.config['MAX_CONTENT_LENGTH'] = 16 * 1024 * 1024

The code above will limit the maximum allowed payload to 16 megabytes. If a larger file is transmitted, Flask will
raise a RequestEntityTooLarge exception.

Connection Reset Issue

When using the local development server, you may get a connection reset error instead of a 413 response. You will
get the correct status response when running the app with a production WSGI server.

This feature was added in Flask 0.6 but can be achieved in older versions as well by subclassing the request object.
For more information on that consult the Werkzeug documentation on file handling.

Upload Progress Bars

A while ago many developers had the idea to read the incoming file in small chunks and store the upload progress in
the database to be able to poll the progress with JavaScript from the client. Long story short: the client asks the server
every 5 seconds how much it has transmitted already. Do you realize the irony? The client is asking for something it
should already know.

1.21. Patterns for Flask 133

https://docs.python.org/3/library/tempfile.html#tempfile.gettempdir
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.RequestEntityTooLarge

Flask Documentation (1.1.x), Release 1.1.4

An Easier Solution

Now there are better solutions that work faster and are more reliable. There are JavaScript libraries like jQuery that
have form plugins to ease the construction of progress bar.

Because the common pattern for file uploads exists almost unchanged in all applications dealing with uploads, there
is also a Flask extension called Flask-Uploads that implements a full fledged upload mechanism with white and
blacklisting of extensions and more.

1.21.11 Caching

When your application runs slow, throw some caches in. Well, at least it’s the easiest way to speed up things. What
does a cache do? Say you have a function that takes some time to complete but the results would still be good enough
if they were 5 minutes old. So then the idea is that you actually put the result of that calculation into a cache for some
time.

Flask itself does not provide caching for you, but Flask-Caching, an extension for Flask does. Flask-Caching supports
various backends, and it is even possible to develop your own caching backend.

1.21.12 View Decorators

Python has a really interesting feature called function decorators. This allows some really neat things for web applica-
tions. Because each view in Flask is a function, decorators can be used to inject additional functionality to one or more
functions. The route() decorator is the one you probably used already. But there are use cases for implementing
your own decorator. For instance, imagine you have a view that should only be used by people that are logged in. If a
user goes to the site and is not logged in, they should be redirected to the login page. This is a good example of a use
case where a decorator is an excellent solution.

Login Required Decorator

So let’s implement such a decorator. A decorator is a function that wraps and replaces another function. Since the
original function is replaced, you need to remember to copy the original function’s information to the new function.
Use functools.wraps() to handle this for you.

This example assumes that the login page is called 'login' and that the current user is stored in g.user and is
None if there is no-one logged in.

from functools import wraps
from flask import g, request, redirect, url_for

def login_required(f):
@wraps(f)
def decorated_function(*args, **kwargs):

if g.user is None:
return redirect(url_for('login', next=request.url))

return f(*args, **kwargs)
return decorated_function

To use the decorator, apply it as innermost decorator to a view function. When applying further decorators, always
remember that the route() decorator is the outermost.

@app.route('/secret_page')
@login_required

(continues on next page)

134 Chapter 1. User’s Guide

https://jquery.com/
https://pythonhosted.org/Flask-Uploads/
https://flask-caching.readthedocs.io/en/latest/
https://docs.python.org/3/library/functools.html#functools.wraps

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def secret_page():
pass

Note: The next value will exist in request.args after a GET request for the login page. You’ll have to pass it
along when sending the POST request from the login form. You can do this with a hidden input tag, then retrieve it
from request.form when logging the user in.

<input type="hidden" value="{{ request.args.get('next', '') }}"/>

Caching Decorator

Imagine you have a view function that does an expensive calculation and because of that you would like to cache the
generated results for a certain amount of time. A decorator would be nice for that. We’re assuming you have set up a
cache like mentioned in Caching.

Here is an example cache function. It generates the cache key from a specific prefix (actually a format string) and the
current path of the request. Notice that we are using a function that first creates the decorator that then decorates the
function. Sounds awful? Unfortunately it is a little bit more complex, but the code should still be straightforward to
read.

The decorated function will then work as follows

1. get the unique cache key for the current request based on the current path.

2. get the value for that key from the cache. If the cache returned something we will return that value.

3. otherwise the original function is called and the return value is stored in the cache for the timeout provided (by
default 5 minutes).

Here the code:

from functools import wraps
from flask import request

def cached(timeout=5 * 60, key='view/%s'):
def decorator(f):

@wraps(f)
def decorated_function(*args, **kwargs):

cache_key = key % request.path
rv = cache.get(cache_key)
if rv is not None:

return rv
rv = f(*args, **kwargs)
cache.set(cache_key, rv, timeout=timeout)
return rv

return decorated_function
return decorator

Notice that this assumes an instantiated cache object is available, see Caching for more information.

Templating Decorator

A common pattern invented by the TurboGears guys a while back is a templating decorator. The idea of that decorator
is that you return a dictionary with the values passed to the template from the view function and the template is

1.21. Patterns for Flask 135

Flask Documentation (1.1.x), Release 1.1.4

automatically rendered. With that, the following three examples do exactly the same:

@app.route('/')
def index():

return render_template('index.html', value=42)

@app.route('/')
@templated('index.html')
def index():

return dict(value=42)

@app.route('/')
@templated()
def index():

return dict(value=42)

As you can see, if no template name is provided it will use the endpoint of the URL map with dots converted to slashes
+ '.html'. Otherwise the provided template name is used. When the decorated function returns, the dictionary re-
turned is passed to the template rendering function. If None is returned, an empty dictionary is assumed, if something
else than a dictionary is returned we return it from the function unchanged. That way you can still use the redirect
function or return simple strings.

Here is the code for that decorator:

from functools import wraps
from flask import request, render_template

def templated(template=None):
def decorator(f):

@wraps(f)
def decorated_function(*args, **kwargs):

template_name = template
if template_name is None:

template_name = request.endpoint \
.replace('.', '/') + '.html'

ctx = f(*args, **kwargs)
if ctx is None:

ctx = {}
elif not isinstance(ctx, dict):

return ctx
return render_template(template_name, **ctx)

return decorated_function
return decorator

Endpoint Decorator

When you want to use the werkzeug routing system for more flexibility you need to map the endpoint as defined in
the Rule to a view function. This is possible with this decorator. For example:

from flask import Flask
from werkzeug.routing import Rule

app = Flask(__name__)
app.url_map.add(Rule('/', endpoint='index'))

@app.endpoint('index')
(continues on next page)

136 Chapter 1. User’s Guide

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def my_index():
return "Hello world"

1.21.13 Form Validation with WTForms

When you have to work with form data submitted by a browser view, code quickly becomes very hard to read. There
are libraries out there designed to make this process easier to manage. One of them is WTForms which we will handle
here. If you find yourself in the situation of having many forms, you might want to give it a try.

When you are working with WTForms you have to define your forms as classes first. I recommend breaking up the
application into multiple modules (Larger Applications) for that and adding a separate module for the forms.

Getting the most out of WTForms with an Extension

The Flask-WTF extension expands on this pattern and adds a few little helpers that make working with forms and
Flask more fun. You can get it from PyPI.

The Forms

This is an example form for a typical registration page:

from wtforms import Form, BooleanField, StringField, PasswordField, validators

class RegistrationForm(Form):
username = StringField('Username', [validators.Length(min=4, max=25)])
email = StringField('Email Address', [validators.Length(min=6, max=35)])
password = PasswordField('New Password', [

validators.DataRequired(),
validators.EqualTo('confirm', message='Passwords must match')

])
confirm = PasswordField('Repeat Password')
accept_tos = BooleanField('I accept the TOS', [validators.DataRequired()])

In the View

In the view function, the usage of this form looks like this:

@app.route('/register', methods=['GET', 'POST'])
def register():

form = RegistrationForm(request.form)
if request.method == 'POST' and form.validate():

user = User(form.username.data, form.email.data,
form.password.data)

db_session.add(user)
flash('Thanks for registering')
return redirect(url_for('login'))

return render_template('register.html', form=form)

Notice we’re implying that the view is using SQLAlchemy here (SQLAlchemy in Flask), but that’s not a requirement,
of course. Adapt the code as necessary.

Things to remember:

1.21. Patterns for Flask 137

https://wtforms.readthedocs.io/
https://flask-wtf.readthedocs.io/en/stable/
https://pypi.org/project/Flask-WTF/

Flask Documentation (1.1.x), Release 1.1.4

1. create the form from the request form value if the data is submitted via the HTTP POST method and args if
the data is submitted as GET.

2. to validate the data, call the validate() method, which will return True if the data validates, False
otherwise.

3. to access individual values from the form, access form.<NAME>.data.

Forms in Templates

Now to the template side. When you pass the form to the templates, you can easily render them there. Look at the
following example template to see how easy this is. WTForms does half the form generation for us already. To make
it even nicer, we can write a macro that renders a field with label and a list of errors if there are any.

Here’s an example _formhelpers.html template with such a macro:

{% macro render_field(field) %}
<dt>{{ field.label }}
<dd>{{ field(**kwargs)|safe }}
{% if field.errors %}
<ul class=errors>
{% for error in field.errors %}
{{ error }}

{% endfor %}

{% endif %}
</dd>

{% endmacro %}

This macro accepts a couple of keyword arguments that are forwarded to WTForm’s field function, which ren-
ders the field for us. The keyword arguments will be inserted as HTML attributes. So, for example, you can call
render_field(form.username, class='username') to add a class to the input element. Note that WT-
Forms returns standard Python unicode strings, so we have to tell Jinja2 that this data is already HTML-escaped with
the |safe filter.

Here is the register.html template for the function we used above, which takes advantage of the
_formhelpers.html template:

{% from "_formhelpers.html" import render_field %}
<form method=post>

<dl>
{{ render_field(form.username) }}
{{ render_field(form.email) }}
{{ render_field(form.password) }}
{{ render_field(form.confirm) }}
{{ render_field(form.accept_tos) }}

</dl>
<p><input type=submit value=Register>

</form>

For more information about WTForms, head over to the WTForms website.

1.21.14 Template Inheritance

The most powerful part of Jinja is template inheritance. Template inheritance allows you to build a base “skeleton”
template that contains all the common elements of your site and defines blocks that child templates can override.

138 Chapter 1. User’s Guide

https://wtforms.readthedocs.io/

Flask Documentation (1.1.x), Release 1.1.4

Sounds complicated but is very basic. It’s easiest to understand it by starting with an example.

Base Template

This template, which we’ll call layout.html, defines a simple HTML skeleton document that you might use for a
simple two-column page. It’s the job of “child” templates to fill the empty blocks with content:

<!doctype html>
<html>
<head>
{% block head %}
<link rel="stylesheet" href="{{ url_for('static', filename='style.css') }}">
<title>{% block title %}{% endblock %} - My Webpage</title>
{% endblock %}

</head>
<body>
<div id="content">{% block content %}{% endblock %}</div>
<div id="footer">
{% block footer %}
© Copyright 2010 by you.
{% endblock %}

</div>
</body>

</html>

In this example, the {% block %} tags define four blocks that child templates can fill in. All the block tag does is
tell the template engine that a child template may override those portions of the template.

Child Template

A child template might look like this:

{% extends "layout.html" %}
{% block title %}Index{% endblock %}
{% block head %}

{{ super() }}
<style type="text/css">
.important { color: #336699; }

</style>
{% endblock %}
{% block content %}

<h1>Index</h1>
<p class="important">
Welcome on my awesome homepage.

{% endblock %}

The {% extends %} tag is the key here. It tells the template engine that this template “extends” another template.
When the template system evaluates this template, first it locates the parent. The extends tag must be the first tag in
the template. To render the contents of a block defined in the parent template, use {{ super() }}.

1.21.15 Message Flashing

Good applications and user interfaces are all about feedback. If the user does not get enough feedback they will
probably end up hating the application. Flask provides a really simple way to give feedback to a user with the flashing
system. The flashing system basically makes it possible to record a message at the end of a request and access it next

1.21. Patterns for Flask 139

Flask Documentation (1.1.x), Release 1.1.4

request and only next request. This is usually combined with a layout template that does this. Note that browsers and
sometimes web servers enforce a limit on cookie sizes. This means that flashing messages that are too large for session
cookies causes message flashing to fail silently.

Simple Flashing

So here is a full example:

from flask import Flask, flash, redirect, render_template, \
request, url_for

app = Flask(__name__)
app.secret_key = b'_5#y2L"F4Q8z\n\xec]/'

@app.route('/')
def index():

return render_template('index.html')

@app.route('/login', methods=['GET', 'POST'])
def login():

error = None
if request.method == 'POST':

if request.form['username'] != 'admin' or \
request.form['password'] != 'secret':

error = 'Invalid credentials'
else:

flash('You were successfully logged in')
return redirect(url_for('index'))

return render_template('login.html', error=error)

And here is the layout.html template which does the magic:

<!doctype html>
<title>My Application</title>
{% with messages = get_flashed_messages() %}
{% if messages %}
<ul class=flashes>
{% for message in messages %}
{{ message }}

{% endfor %}

{% endif %}
{% endwith %}
{% block body %}{% endblock %}

Here is the index.html template which inherits from layout.html:

{% extends "layout.html" %}
{% block body %}

<h1>Overview</h1>
<p>Do you want to log in?

{% endblock %}

And here is the login.html template which also inherits from layout.html:

{% extends "layout.html" %}
{% block body %}

(continues on next page)

140 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

<h1>Login</h1>
{% if error %}
<p class=error>Error: {{ error }}

{% endif %}
<form method=post>
<dl>

<dt>Username:
<dd><input type=text name=username value="{{

request.form.username }}">
<dt>Password:
<dd><input type=password name=password>

</dl>
<p><input type=submit value=Login>

</form>
{% endblock %}

Flashing With Categories

New in version 0.3.

It is also possible to provide categories when flashing a message. The default category if nothing is provided is
'message'. Alternative categories can be used to give the user better feedback. For example error messages could
be displayed with a red background.

To flash a message with a different category, just use the second argument to the flash() function:

flash(u'Invalid password provided', 'error')

Inside the template you then have to tell the get_flashed_messages() function to also return the categories.
The loop looks slightly different in that situation then:

{% with messages = get_flashed_messages(with_categories=true) %}
{% if messages %}
<ul class=flashes>
{% for category, message in messages %}
<li class="{{ category }}">{{ message }}

{% endfor %}

{% endif %}
{% endwith %}

This is just one example of how to render these flashed messages. One might also use the category to add a prefix such
as Error: to the message.

Filtering Flash Messages

New in version 0.9.

Optionally you can pass a list of categories which filters the results of get_flashed_messages(). This is useful
if you wish to render each category in a separate block.

{% with errors = get_flashed_messages(category_filter=["error"]) %}
{% if errors %}
<div class="alert-message block-message error">

(continues on next page)

1.21. Patterns for Flask 141

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

×

{%- for msg in errors %}
{{ msg }}
{% endfor -%}

</div>
{% endif %}
{% endwith %}

1.21.16 AJAX with jQuery

jQuery is a small JavaScript library commonly used to simplify working with the DOM and JavaScript in general. It
is the perfect tool to make web applications more dynamic by exchanging JSON between server and client.

JSON itself is a very lightweight transport format, very similar to how Python primitives (numbers, strings, dicts and
lists) look like which is widely supported and very easy to parse. It became popular a few years ago and quickly
replaced XML as transport format in web applications.

Loading jQuery

In order to use jQuery, you have to download it first and place it in the static folder of your application and then ensure
it’s loaded. Ideally you have a layout template that is used for all pages where you just have to add a script statement
to the bottom of your <body> to load jQuery:

<script type=text/javascript src="{{
url_for('static', filename='jquery.js') }}"></script>

Another method is using Google’s AJAX Libraries API to load jQuery:

<script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script>
<script>window.jQuery || document.write('<script src="{{
url_for('static', filename='jquery.js') }}">\x3C/script>')</script>

In this case you have to put jQuery into your static folder as a fallback, but it will first try to load it directly from
Google. This has the advantage that your website will probably load faster for users if they went to at least one other
website before using the same jQuery version from Google because it will already be in the browser cache.

Where is My Site?

Do you know where your application is? If you are developing the answer is quite simple: it’s on localhost port
something and directly on the root of that server. But what if you later decide to move your application to a different
location? For example to http://example.com/myapp? On the server side this never was a problem because
we were using the handy url_for() function that could answer that question for us, but if we are using jQuery we
should not hardcode the path to the application but make that dynamic, so how can we do that?

A simple method would be to add a script tag to our page that sets a global variable to the prefix to the root of the
application. Something like this:

<script type=text/javascript>
$SCRIPT_ROOT = {{ request.script_root|tojson|safe }};

</script>

142 Chapter 1. User’s Guide

https://jquery.com/
https://developers.google.com/speed/libraries/

Flask Documentation (1.1.x), Release 1.1.4

The |safe is necessary in Flask before 0.10 so that Jinja does not escape the JSON encoded string with HTML rules.
Usually this would be necessary, but we are inside a script block here where different rules apply.

Information for Pros

In HTML the script tag is declared CDATA which means that entities will not be parsed. Everything until </
script> is handled as script. This also means that there must never be any </ between the script tags. |tojson
is kind enough to do the right thing here and escape slashes for you ({{ "</script>"|tojson|safe }} is
rendered as "<\/script>").

In Flask 0.10 it goes a step further and escapes all HTML tags with unicode escapes. This makes it possible for Flask
to automatically mark the result as HTML safe.

JSON View Functions

Now let’s create a server side function that accepts two URL arguments of numbers which should be added together
and then sent back to the application in a JSON object. This is a really ridiculous example and is something you
usually would do on the client side alone, but a simple example that shows how you would use jQuery and Flask
nonetheless:

from flask import Flask, jsonify, render_template, request
app = Flask(__name__)

@app.route('/_add_numbers')
def add_numbers():

a = request.args.get('a', 0, type=int)
b = request.args.get('b', 0, type=int)
return jsonify(result=a + b)

@app.route('/')
def index():

return render_template('index.html')

As you can see I also added an index method here that renders a template. This template will load jQuery as above
and have a little form where we can add two numbers and a link to trigger the function on the server side.

Note that we are using the get() method here which will never fail. If the key is missing a default value (here 0) is
returned. Furthermore it can convert values to a specific type (like in our case int). This is especially handy for code
that is triggered by a script (APIs, JavaScript etc.) because you don’t need special error reporting in that case.

The HTML

Your index.html template either has to extend a layout.html template with jQuery loaded and the $SCRIPT_ROOT
variable set, or do that on the top. Here’s the HTML code needed for our little application (index.html). Notice
that we also drop the script directly into the HTML here. It is usually a better idea to have that in a separate script file:

<script type=text/javascript>
$(function() {
$('a#calculate').bind('click', function() {
$.getJSON($SCRIPT_ROOT + '/_add_numbers', {

a: $('input[name="a"]').val(),
b: $('input[name="b"]').val()

}, function(data) {
$("#result").text(data.result);

(continues on next page)

1.21. Patterns for Flask 143

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.MultiDict.get

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

});
return false;

});
});

</script>
<h1>jQuery Example</h1>
<p><input type=text size=5 name=a> +

<input type=text size=5 name=b> =
?

<p>calculate server side

I won’t go into detail here about how jQuery works, just a very quick explanation of the little bit of code above:

1. $(function() { ... }) specifies code that should run once the browser is done loading the basic parts
of the page.

2. $('selector') selects an element and lets you operate on it.

3. element.bind('event', func) specifies a function that should run when the user clicked on the ele-
ment. If that function returns false, the default behavior will not kick in (in this case, navigate to the # URL).

4. $.getJSON(url, data, func) sends a GET request to url and will send the contents of the data object
as query parameters. Once the data arrived, it will call the given function with the return value as argument.
Note that we can use the $SCRIPT_ROOT variable here that we set earlier.

Check out the example source for a full application demonstrating the code on this page, as well as the same thing
using XMLHttpRequest and fetch.

1.21.17 Custom Error Pages

Flask comes with a handy abort() function that aborts a request with an HTTP error code early. It will also provide
a plain black and white error page for you with a basic description, but nothing fancy.

Depending on the error code it is less or more likely for the user to actually see such an error.

Common Error Codes

The following error codes are some that are often displayed to the user, even if the application behaves correctly:

404 Not Found The good old “chap, you made a mistake typing that URL” message. So common that even novices
to the internet know that 404 means: damn, the thing I was looking for is not there. It’s a very good idea to make
sure there is actually something useful on a 404 page, at least a link back to the index.

403 Forbidden If you have some kind of access control on your website, you will have to send a 403 code for disal-
lowed resources. So make sure the user is not lost when they try to access a forbidden resource.

410 Gone Did you know that there the “404 Not Found” has a brother named “410 Gone”? Few people actually
implement that, but the idea is that resources that previously existed and got deleted answer with 410 instead
of 404. If you are not deleting documents permanently from the database but just mark them as deleted, do the
user a favour and use the 410 code instead and display a message that what they were looking for was deleted
for all eternity.

500 Internal Server Error Usually happens on programming errors or if the server is overloaded. A terribly good
idea is to have a nice page there, because your application will fail sooner or later (see also: Application Errors).

144 Chapter 1. User’s Guide

https://github.com/pallets/flask/tree/1.1.4/examples/javascript

Flask Documentation (1.1.x), Release 1.1.4

Error Handlers

An error handler is a function that returns a response when a type of error is raised, similar to how a view is a function
that returns a response when a request URL is matched. It is passed the instance of the error being handled, which is
most likely a HTTPException. An error handler for “500 Internal Server Error” will be passed uncaught exceptions
in addition to explicit 500 errors.

An error handler is registered with the errorhandler() decorator or the register_error_handler()
method. A handler can be registered for a status code, like 404, or for an exception class.

The status code of the response will not be set to the handler’s code. Make sure to provide the appropriate HTTP status
code when returning a response from a handler.

A handler for “500 Internal Server Error” will not be used when running in debug mode. Instead, the interactive
debugger will be shown.

Here is an example implementation for a “404 Page Not Found” exception:

from flask import render_template

@app.errorhandler(404)
def page_not_found(e):

note that we set the 404 status explicitly
return render_template('404.html'), 404

When using the application factory pattern:

from flask import Flask, render_template

def page_not_found(e):
return render_template('404.html'), 404

def create_app(config_filename):
app = Flask(__name__)
app.register_error_handler(404, page_not_found)
return app

An example template might be this:

{% extends "layout.html" %}
{% block title %}Page Not Found{% endblock %}
{% block body %}

<h1>Page Not Found</h1>
<p>What you were looking for is just not there.
<p>go somewhere nice

{% endblock %}

Returning API errors as JSON

When using Flask for web APIs, you can use the same techniques as above to return JSON responses to API errors.
abort() is called with a description parameter. The errorhandler() will use that as the JSON error
message, and set the status code to 404.

from flask import abort, jsonify

@app.errorhandler(404)
def resource_not_found(e):

(continues on next page)

1.21. Patterns for Flask 145

https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

return jsonify(error=str(e)), 404

@app.route("/cheese")
def get_one_cheese():

resource = get_resource()

if resource is None:
abort(404, description="Resource not found")

return jsonify(resource)

1.21.18 Lazily Loading Views

Flask is usually used with the decorators. Decorators are simple and you have the URL right next to the function that is
called for that specific URL. However there is a downside to this approach: it means all your code that uses decorators
has to be imported upfront or Flask will never actually find your function.

This can be a problem if your application has to import quick. It might have to do that on systems like Google’s App
Engine or other systems. So if you suddenly notice that your application outgrows this approach you can fall back to
a centralized URL mapping.

The system that enables having a central URL map is the add_url_rule() function. Instead of using decorators,
you have a file that sets up the application with all URLs.

Converting to Centralized URL Map

Imagine the current application looks somewhat like this:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():

pass

@app.route('/user/<username>')
def user(username):

pass

Then, with the centralized approach you would have one file with the views (views.py) but without any decorator:

def index():
pass

def user(username):
pass

And then a file that sets up an application which maps the functions to URLs:

from flask import Flask
from yourapplication import views
app = Flask(__name__)
app.add_url_rule('/', view_func=views.index)
app.add_url_rule('/user/<username>', view_func=views.user)

146 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

Loading Late

So far we only split up the views and the routing, but the module is still loaded upfront. The trick is to actually load the
view function as needed. This can be accomplished with a helper class that behaves just like a function but internally
imports the real function on first use:

from werkzeug.utils import import_string, cached_property

class LazyView(object):

def __init__(self, import_name):
self.__module__, self.__name__ = import_name.rsplit('.', 1)
self.import_name = import_name

@cached_property
def view(self):

return import_string(self.import_name)

def __call__(self, *args, **kwargs):
return self.view(*args, **kwargs)

What’s important here is is that __module__ and __name__ are properly set. This is used by Flask internally to figure
out how to name the URL rules in case you don’t provide a name for the rule yourself.

Then you can define your central place to combine the views like this:

from flask import Flask
from yourapplication.helpers import LazyView
app = Flask(__name__)
app.add_url_rule('/',

view_func=LazyView('yourapplication.views.index'))
app.add_url_rule('/user/<username>',

view_func=LazyView('yourapplication.views.user'))

You can further optimize this in terms of amount of keystrokes needed to write this by having a function that calls into
add_url_rule() by prefixing a string with the project name and a dot, and by wrapping view_func in a LazyView
as needed.

def url(import_name, url_rules=[], **options):
view = LazyView('yourapplication.' + import_name)
for url_rule in url_rules:

app.add_url_rule(url_rule, view_func=view, **options)

add a single route to the index view
url('views.index', ['/'])

add two routes to a single function endpoint
url_rules = ['/user/','/user/<username>']
url('views.user', url_rules)

One thing to keep in mind is that before and after request handlers have to be in a file that is imported upfront to work
properly on the first request. The same goes for any kind of remaining decorator.

1.21.19 MongoDB with MongoEngine

Using a document database like MongoDB is a common alternative to relational SQL databases. This pattern shows
how to use MongoEngine, a document mapper library, to integrate with MongoDB.

1.21. Patterns for Flask 147

http://mongoengine.org

Flask Documentation (1.1.x), Release 1.1.4

A running MongoDB server and Flask-MongoEngine are required.

pip install flask-mongoengine

Configuration

Basic setup can be done by defining MONGODB_SETTINGS on app.config and creating a MongoEngine in-
stance.

from flask import Flask
from flask_mongoengine import MongoEngine

app = Flask(__name__)
app.config['MONGODB_SETTINGS'] = {

"db": "myapp",
}
db = MongoEngine(app)

Mapping Documents

To declare a model that represents a Mongo document, create a class that inherits from Document and declare each
of the fields.

import mongoengine as me

class Movie(me.Document):
title = me.StringField(required=True)
year = me.IntField()
rated = me.StringField()
director = me.StringField()
actors = me.ListField()

If the document has nested fields, use EmbeddedDocument to defined the fields of the embedded document and
EmbeddedDocumentField to declare it on the parent document.

class Imdb(me.EmbeddedDocument):
imdb_id = me.StringField()
rating = me.DecimalField()
votes = me.IntField()

class Movie(me.Document):
...
imdb = me.EmbeddedDocumentField(Imdb)

Creating Data

Instantiate your document class with keyword arguments for the fields. You can also assign values to the field attributes
after instantiation. Then call doc.save().

bttf = Movie(title="Back To The Future", year=1985)
bttf.actors = [

"Michael J. Fox",
"Christopher Lloyd"

(continues on next page)

148 Chapter 1. User’s Guide

https://flask-mongoengine.readthedocs.io

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

]
bttf.imdb = Imdb(imdb_id="tt0088763", rating=8.5)
bttf.save()

Queries

Use the class objects attribute to make queries. A keyword argument looks for an equal value on the field.

bttf = Movies.objects(title="Back To The Future").get_or_404()

Query operators may be used by concatenating them with the field name using a double-underscore. objects, and
queries returned by calling it, are iterable.

some_theron_movie = Movie.objects(actors__in=["Charlize Theron"]).first()

for recents in Movie.objects(year__gte=2017):
print(recents.title)

Documentation

There are many more ways to define and query documents with MongoEngine. For more information, check out the
official documentation.

Flask-MongoEngine adds helpful utilities on top of MongoEngine. Check out their documentation as well.

1.21.20 Adding a favicon

A “favicon” is an icon used by browsers for tabs and bookmarks. This helps to distinguish your website and to give it
a unique brand.

A common question is how to add a favicon to a Flask application. First, of course, you need an icon. It should be
16 × 16 pixels and in the ICO file format. This is not a requirement but a de-facto standard supported by all relevant
browsers. Put the icon in your static directory as favicon.ico.

Now, to get browsers to find your icon, the correct way is to add a link tag in your HTML. So, for example:

<link rel="shortcut icon" href="{{ url_for('static', filename='favicon.ico') }}">

That’s all you need for most browsers, however some really old ones do not support this standard. The old de-facto
standard is to serve this file, with this name, at the website root. If your application is not mounted at the root path of
the domain you either need to configure the web server to serve the icon at the root or if you can’t do that you’re out
of luck. If however your application is the root you can simply route a redirect:

app.add_url_rule('/favicon.ico',
redirect_to=url_for('static', filename='favicon.ico'))

If you want to save the extra redirect request you can also write a view using send_from_directory():

import os
from flask import send_from_directory

@app.route('/favicon.ico')
(continues on next page)

1.21. Patterns for Flask 149

http://mongoengine.org
https://flask-mongoengine.readthedocs.io

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def favicon():
return send_from_directory(os.path.join(app.root_path, 'static'),

'favicon.ico', mimetype='image/vnd.microsoft.icon')

We can leave out the explicit mimetype and it will be guessed, but we may as well specify it to avoid the extra guessing,
as it will always be the same.

The above will serve the icon via your application and if possible it’s better to configure your dedicated web server to
serve it; refer to the web server’s documentation.

See also

• The Favicon article on Wikipedia

1.21.21 Streaming Contents

Sometimes you want to send an enormous amount of data to the client, much more than you want to keep in memory.
When you are generating the data on the fly though, how do you send that back to the client without the roundtrip to
the filesystem?

The answer is by using generators and direct responses.

Basic Usage

This is a basic view function that generates a lot of CSV data on the fly. The trick is to have an inner function that uses
a generator to generate data and to then invoke that function and pass it to a response object:

from flask import Response

@app.route('/large.csv')
def generate_large_csv():

def generate():
for row in iter_all_rows():

yield ','.join(row) + '\n'
return Response(generate(), mimetype='text/csv')

Each yield expression is directly sent to the browser. Note though that some WSGI middlewares might break
streaming, so be careful there in debug environments with profilers and other things you might have enabled.

Streaming from Templates

The Jinja2 template engine also supports rendering templates piece by piece. This functionality is not directly exposed
by Flask because it is quite uncommon, but you can easily do it yourself:

from flask import Response

def stream_template(template_name, **context):
app.update_template_context(context)
t = app.jinja_env.get_template(template_name)
rv = t.stream(context)
rv.enable_buffering(5)
return rv

(continues on next page)

150 Chapter 1. User’s Guide

https://en.wikipedia.org/wiki/Favicon

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

@app.route('/my-large-page.html')
def render_large_template():

rows = iter_all_rows()
return Response(stream_template('the_template.html', rows=rows))

The trick here is to get the template object from the Jinja2 environment on the application and to call stream()
instead of render() which returns a stream object instead of a string. Since we’re bypassing the Flask template
render functions and using the template object itself we have to make sure to update the render context ourselves by
calling update_template_context(). The template is then evaluated as the stream is iterated over. Since each
time you do a yield the server will flush the content to the client you might want to buffer up a few items in the template
which you can do with rv.enable_buffering(size). 5 is a sane default.

Streaming with Context

New in version 0.9.

Note that when you stream data, the request context is already gone the moment the function executes. Flask 0.9
provides you with a helper that can keep the request context around during the execution of the generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

def generate():
yield 'Hello '
yield request.args['name']
yield '!'

return Response(stream_with_context(generate()))

Without the stream_with_context() function you would get a RuntimeError at that point.

1.21.22 Deferred Request Callbacks

One of the design principles of Flask is that response objects are created and passed down a chain of potential callbacks
that can modify them or replace them. When the request handling starts, there is no response object yet. It is created
as necessary either by a view function or by some other component in the system.

What happens if you want to modify the response at a point where the response does not exist yet? A common example
for that would be a before_request() callback that wants to set a cookie on the response object.

One way is to avoid the situation. Very often that is possible. For instance you can try to move that logic into a
after_request() callback instead. However, sometimes moving code there makes it more more complicated or
awkward to reason about.

As an alternative, you can use after_this_request() to register callbacks that will execute after only the
current request. This way you can defer code execution from anywhere in the application, based on the current
request.

At any time during a request, we can register a function to be called at the end of the request. For example you can
remember the current language of the user in a cookie in a before_request() callback:

from flask import request, after_this_request

@app.before_request
(continues on next page)

1.21. Patterns for Flask 151

https://jinja.palletsprojects.com/en/3.0.x/api/#jinja2.Template.stream
https://jinja.palletsprojects.com/en/3.0.x/api/#jinja2.Template.render
https://docs.python.org/3/library/exceptions.html#RuntimeError

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def detect_user_language():
language = request.cookies.get('user_lang')

if language is None:
language = guess_language_from_request()

when the response exists, set a cookie with the language
@after_this_request
def remember_language(response):

response.set_cookie('user_lang', language)
return response

g.language = language

1.21.23 Adding HTTP Method Overrides

Some HTTP proxies do not support arbitrary HTTP methods or newer HTTP methods (such as PATCH). In that case
it’s possible to “proxy” HTTP methods through another HTTP method in total violation of the protocol.

The way this works is by letting the client do an HTTP POST request and set the X-HTTP-Method-Override
header. Then the method is replaced with the header value before being passed to Flask.

This can be accomplished with an HTTP middleware:

class HTTPMethodOverrideMiddleware(object):
allowed_methods = frozenset([

'GET',
'HEAD',
'POST',
'DELETE',
'PUT',
'PATCH',
'OPTIONS'

])
bodyless_methods = frozenset(['GET', 'HEAD', 'OPTIONS', 'DELETE'])

def __init__(self, app):
self.app = app

def __call__(self, environ, start_response):
method = environ.get('HTTP_X_HTTP_METHOD_OVERRIDE', '').upper()
if method in self.allowed_methods:

environ['REQUEST_METHOD'] = method
if method in self.bodyless_methods:

environ['CONTENT_LENGTH'] = '0'
return self.app(environ, start_response)

To use this with Flask, wrap the app object with the middleware:

from flask import Flask

app = Flask(__name__)
app.wsgi_app = HTTPMethodOverrideMiddleware(app.wsgi_app)

152 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

1.21.24 Request Content Checksums

Various pieces of code can consume the request data and preprocess it. For instance JSON data ends up on the request
object already read and processed, form data ends up there as well but goes through a different code path. This seems
inconvenient when you want to calculate the checksum of the incoming request data. This is necessary sometimes for
some APIs.

Fortunately this is however very simple to change by wrapping the input stream.

The following example calculates the SHA1 checksum of the incoming data as it gets read and stores it in the WSGI
environment:

import hashlib

class ChecksumCalcStream(object):

def __init__(self, stream):
self._stream = stream
self._hash = hashlib.sha1()

def read(self, bytes):
rv = self._stream.read(bytes)
self._hash.update(rv)
return rv

def readline(self, size_hint):
rv = self._stream.readline(size_hint)
self._hash.update(rv)
return rv

def generate_checksum(request):
env = request.environ
stream = ChecksumCalcStream(env['wsgi.input'])
env['wsgi.input'] = stream
return stream._hash

To use this, all you need to do is to hook the calculating stream in before the request starts consuming data. (Eg: be
careful accessing request.form or anything of that nature. before_request_handlers for instance should
be careful not to access it).

Example usage:

@app.route('/special-api', methods=['POST'])
def special_api():

hash = generate_checksum(request)
Accessing this parses the input stream
files = request.files
At this point the hash is fully constructed.
checksum = hash.hexdigest()
return 'Hash was: %s' % checksum

1.21.25 Celery Background Tasks

If your application has a long running task, such as processing some uploaded data or sending email, you don’t want
to wait for it to finish during a request. Instead, use a task queue to send the necessary data to another process that will
run the task in the background while the request returns immediately.

1.21. Patterns for Flask 153

Flask Documentation (1.1.x), Release 1.1.4

Celery is a powerful task queue that can be used for simple background tasks as well as complex multi-stage programs
and schedules. This guide will show you how to configure Celery using Flask, but assumes you’ve already read the
First Steps with Celery guide in the Celery documentation.

Install

Celery is a separate Python package. Install it from PyPI using pip:

$ pip install celery

Configure

The first thing you need is a Celery instance, this is called the celery application. It serves the same purpose as the
Flask object in Flask, just for Celery. Since this instance is used as the entry-point for everything you want to do in
Celery, like creating tasks and managing workers, it must be possible for other modules to import it.

For instance you can place this in a tasks module. While you can use Celery without any reconfiguration with Flask,
it becomes a bit nicer by subclassing tasks and adding support for Flask’s application contexts and hooking it up with
the Flask configuration.

This is all that is necessary to properly integrate Celery with Flask:

from celery import Celery

def make_celery(app):
celery = Celery(

app.import_name,
backend=app.config['CELERY_RESULT_BACKEND'],
broker=app.config['CELERY_BROKER_URL']

)
celery.conf.update(app.config)

class ContextTask(celery.Task):
def __call__(self, *args, **kwargs):

with app.app_context():
return self.run(*args, **kwargs)

celery.Task = ContextTask
return celery

The function creates a new Celery object, configures it with the broker from the application config, updates the rest
of the Celery config from the Flask config and then creates a subclass of the task that wraps the task execution in an
application context.

An example task

Let’s write a task that adds two numbers together and returns the result. We configure Celery’s broker and backend to
use Redis, create a celery application using the factor from above, and then use it to define the task.

from flask import Flask

flask_app = Flask(__name__)
flask_app.config.update(

CELERY_BROKER_URL='redis://localhost:6379',

(continues on next page)

154 Chapter 1. User’s Guide

https://celery.readthedocs.io/en/latest/getting-started/first-steps-with-celery.html

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

CELERY_RESULT_BACKEND='redis://localhost:6379'
)
celery = make_celery(flask_app)

@celery.task()
def add_together(a, b):

return a + b

This task can now be called in the background:

result = add_together.delay(23, 42)
result.wait() # 65

Run a worker

If you jumped in and already executed the above code you will be disappointed to learn that .wait() will never
actually return. That’s because you also need to run a Celery worker to receive and execute the task.

$ celery -A your_application.celery worker

The your_application string has to point to your application’s package or module that creates the celery
object.

Now that the worker is running, wait will return the result once the task is finished.

1.21.26 Subclassing Flask

The Flask class is designed for subclassing.

For example, you may want to override how request parameters are handled to preserve their order:

from flask import Flask, Request
from werkzeug.datastructures import ImmutableOrderedMultiDict
class MyRequest(Request):

"""Request subclass to override request parameter storage"""
parameter_storage_class = ImmutableOrderedMultiDict

class MyFlask(Flask):
"""Flask subclass using the custom request class"""
request_class = MyRequest

This is the recommended approach for overriding or augmenting Flask’s internal functionality.

1.21.27 Single-Page Applications

Flask can be used to serve Single-Page Applications (SPA) by placing static files produced by your frontend framework
in a subfolder inside of your project. You will also need to create a catch-all endpoint that routes all requests to your
SPA.

The following example demonstrates how to serve an SPA along with an API:

from flask import Flask, jsonify

app = Flask(__name__, static_folder='app', static_url_path="/app")

(continues on next page)

1.21. Patterns for Flask 155

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

@app.route("/heartbeat")
def heartbeat():

return jsonify({"status": "healthy"})

@app.route('/', defaults={'path': ''})
@app.route('/<path:path>')
def catch_all(path):

return app.send_static_file("index.html")

1.22 Deployment Options

While lightweight and easy to use, Flask’s built-in server is not suitable for production as it doesn’t scale well.
Some of the options available for properly running Flask in production are documented here.

If you want to deploy your Flask application to a WSGI server not listed here, look up the server documentation about
how to use a WSGI app with it. Just remember that your Flask application object is the actual WSGI application.

1.22.1 Hosted options

• Deploying Flask on Heroku

• Deploying Flask on Google App Engine

• Deploying Flask on AWS Elastic Beanstalk

• Deploying on Azure (IIS)

• Deploying on PythonAnywhere

1.22.2 Self-hosted options

Standalone WSGI Containers

There are popular servers written in Python that contain WSGI applications and serve HTTP. These servers stand alone
when they run; you can proxy to them from your web server. Note the section on Proxy Setups if you run into issues.

Gunicorn

Gunicorn ‘Green Unicorn’ is a WSGI HTTP Server for UNIX. It’s a pre-fork worker model ported from Ruby’s
Unicorn project. It supports both eventlet and greenlet. Running a Flask application on this server is quite simple:

$ gunicorn myproject:app

Gunicorn provides many command-line options – see gunicorn -h. For example, to run a Flask application with
4 worker processes (-w 4) binding to localhost port 4000 (-b 127.0.0.1:4000):

$ gunicorn -w 4 -b 127.0.0.1:4000 myproject:app

156 Chapter 1. User’s Guide

https://devcenter.heroku.com/articles/getting-started-with-python
https://cloud.google.com/appengine/docs/standard/python3/runtime
https://docs.aws.amazon.com/elasticbeanstalk/latest/dg/create-deploy-python-flask.html
https://docs.microsoft.com/en-us/azure/app-service/containers/how-to-configure-python
https://help.pythonanywhere.com/pages/Flask/
https://gunicorn.org/
https://eventlet.net/
https://greenlet.readthedocs.io/en/latest/
https://gunicorn.org/

Flask Documentation (1.1.x), Release 1.1.4

The gunicorn command expects the names of your application module or package and the application instance
within the module. If you use the application factory pattern, you can pass a call to that:

$ gunicorn "myproject:create_app()"

uWSGI

uWSGI is a fast application server written in C. It is very configurable which makes it more complicated to setup than
gunicorn.

Running uWSGI HTTP Router:

$ uwsgi --http 127.0.0.1:5000 --module myproject:app

For a more optimized setup, see configuring uWSGI and NGINX.

Gevent

Gevent is a coroutine-based Python networking library that uses greenlet to provide a high-level synchronous API on
top of libev event loop:

from gevent.pywsgi import WSGIServer
from yourapplication import app

http_server = WSGIServer(('', 5000), app)
http_server.serve_forever()

Twisted Web

Twisted Web is the web server shipped with Twisted, a mature, non-blocking event-driven networking library. Twisted
Web comes with a standard WSGI container which can be controlled from the command line using the twistd
utility:

$ twistd web --wsgi myproject.app

This example will run a Flask application called app from a module named myproject.

Twisted Web supports many flags and options, and the twistd utility does as well; see twistd -h and twistd
web -h for more information. For example, to run a Twisted Web server in the foreground, on port 8080, with an
application from myproject:

$ twistd -n web --port tcp:8080 --wsgi myproject.app

Proxy Setups

If you deploy your application using one of these servers behind an HTTP proxy you will need to rewrite a few headers
in order for the application to work. The two problematic values in the WSGI environment usually are REMOTE_ADDR
and HTTP_HOST. You can configure your httpd to pass these headers, or you can fix them in middleware. Werkzeug
ships a fixer that will solve some common setups, but you might want to write your own WSGI middleware for specific
setups.

1.22. Deployment Options 157

https://uwsgi-docs.readthedocs.io/en/latest/
https://uwsgi-docs.readthedocs.io/en/latest/HTTP.html#the-uwsgi-http-https-router
http://www.gevent.org/
https://greenlet.readthedocs.io/en/latest/
http://software.schmorp.de/pkg/libev.html
https://twistedmatrix.com/trac/wiki/TwistedWeb
https://twistedmatrix.com/trac/

Flask Documentation (1.1.x), Release 1.1.4

Here’s a simple nginx configuration which proxies to an application served on localhost at port 8000, setting appro-
priate headers:

server {
listen 80;

server_name _;

access_log /var/log/nginx/access.log;
error_log /var/log/nginx/error.log;

location / {
proxy_pass http://127.0.0.1:8000/;
proxy_redirect off;

proxy_set_header Host $host;
proxy_set_header X-Real-IP $remote_addr;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;

}
}

If your httpd is not providing these headers, the most common setup invokes the host being set from
X-Forwarded-Host and the remote address from X-Forwarded-For:

from werkzeug.middleware.proxy_fix import ProxyFix
app.wsgi_app = ProxyFix(app.wsgi_app, x_proto=1, x_host=1)

Trusting Headers

Please keep in mind that it is a security issue to use such a middleware in a non-proxy setup because it will blindly
trust the incoming headers which might be forged by malicious clients.

If you want to rewrite the headers from another header, you might want to use a fixer like this:

class CustomProxyFix(object):

def __init__(self, app):
self.app = app

def __call__(self, environ, start_response):
host = environ.get('HTTP_X_FHOST', '')
if host:

environ['HTTP_HOST'] = host
return self.app(environ, start_response)

app.wsgi_app = CustomProxyFix(app.wsgi_app)

uWSGI

uWSGI is a deployment option on servers like nginx, lighttpd, and cherokee; see FastCGI and Standalone WSGI
Containers for other options. To use your WSGI application with uWSGI protocol you will need a uWSGI server first.
uWSGI is both a protocol and an application server; the application server can serve uWSGI, FastCGI, and HTTP
protocols.

158 Chapter 1. User’s Guide

https://nginx.org/
https://www.lighttpd.net/
http://cherokee-project.com/

Flask Documentation (1.1.x), Release 1.1.4

The most popular uWSGI server is uwsgi, which we will use for this guide. Make sure to have it installed to follow
along.

Watch Out

Please make sure in advance that any app.run() calls you might have in your application file are inside an if
__name__ == '__main__': block or moved to a separate file. Just make sure it’s not called because this will
always start a local WSGI server which we do not want if we deploy that application to uWSGI.

Starting your app with uwsgi

uwsgi is designed to operate on WSGI callables found in python modules.

Given a flask application in myapp.py, use the following command:

$ uwsgi -s /tmp/yourapplication.sock --manage-script-name --mount /
→˓yourapplication=myapp:app

The --manage-script-name will move the handling of SCRIPT_NAME to uwsgi, since it is smarter about that.
It is used together with the --mount directive which will make requests to /yourapplication be directed to
myapp:app. If your application is accessible at root level, you can use a single / instead of /yourapplication.
myapp refers to the name of the file of your flask application (without extension) or the module which provides app.
app is the callable inside of your application (usually the line reads app = Flask(__name__).

If you want to deploy your flask application inside of a virtual environment, you need to also add --virtualenv
/path/to/virtual/environment. You might also need to add --plugin python or --plugin
python3 depending on which python version you use for your project.

Configuring nginx

A basic flask nginx configuration looks like this:

location = /yourapplication { rewrite ^ /yourapplication/; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {

include uwsgi_params;
uwsgi_pass unix:/tmp/yourapplication.sock;

}

This configuration binds the application to /yourapplication. If you want to have it in the URL root its a bit
simpler:

location / { try_files $uri @yourapplication; }
location @yourapplication {

include uwsgi_params;
uwsgi_pass unix:/tmp/yourapplication.sock;

}

mod_wsgi (Apache)

If you are using the Apache webserver, consider using mod_wsgi.

1.22. Deployment Options 159

https://uwsgi-docs.readthedocs.io/en/latest/
https://httpd.apache.org/
https://github.com/GrahamDumpleton/mod_wsgi

Flask Documentation (1.1.x), Release 1.1.4

Watch Out

Please make sure in advance that any app.run() calls you might have in your application file are inside an if
__name__ == '__main__': block or moved to a separate file. Just make sure it’s not called because this will
always start a local WSGI server which we do not want if we deploy that application to mod_wsgi.

Installing mod_wsgi

If you don’t have mod_wsgi installed yet you have to either install it using a package manager or compile it yourself.
The mod_wsgi installation instructions cover source installations on UNIX systems.

If you are using Ubuntu/Debian you can apt-get it and activate it as follows:

$ apt-get install libapache2-mod-wsgi-py3

If you are using a yum based distribution (Fedora, OpenSUSE, etc..) you can install it as follows:

$ yum install mod_wsgi

On FreeBSD install mod_wsgi by compiling the www/mod_wsgi port or by using pkg_add:

$ pkg install ap24-py37-mod_wsgi

If you are using pkgsrc you can install mod_wsgi by compiling the www/ap2-wsgi package.

If you encounter segfaulting child processes after the first apache reload you can safely ignore them. Just restart the
server.

Creating a .wsgi file

To run your application you need a yourapplication.wsgi file. This file contains the code mod_wsgi is execut-
ing on startup to get the application object. The object called application in that file is then used as application.

For most applications the following file should be sufficient:

from yourapplication import app as application

If a factory function is used in a __init__.py file, then the function should be imported:

from yourapplication import create_app
application = create_app()

If you don’t have a factory function for application creation but a singleton instance you can directly import that one
as application.

Store that file somewhere that you will find it again (e.g.: /var/www/yourapplication) and make sure that
yourapplication and all the libraries that are in use are on the python load path. If you don’t want to install it system
wide consider using a virtual python instance. Keep in mind that you will have to actually install your application into
the virtualenv as well. Alternatively there is the option to just patch the path in the .wsgi file before the import:

import sys
sys.path.insert(0, '/path/to/the/application')

160 Chapter 1. User’s Guide

https://modwsgi.readthedocs.io/en/develop/installation.html
https://pypi.org/project/virtualenv/

Flask Documentation (1.1.x), Release 1.1.4

Configuring Apache

The last thing you have to do is to create an Apache configuration file for your application. In this example we are
telling mod_wsgi to execute the application under a different user for security reasons:

<VirtualHost *>
ServerName example.com

WSGIDaemonProcess yourapplication user=user1 group=group1 threads=5
WSGIScriptAlias / /var/www/yourapplication/yourapplication.wsgi

<Directory /var/www/yourapplication>
WSGIProcessGroup yourapplication
WSGIApplicationGroup %{GLOBAL}
Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: WSGIDaemonProcess isn’t implemented in Windows and Apache will refuse to run with the above configura-
tion. On a Windows system, eliminate those lines:

<VirtualHost *>
ServerName example.com
WSGIScriptAlias / C:\yourdir\yourapp.wsgi
<Directory C:\yourdir>

Order deny,allow
Allow from all

</Directory>
</VirtualHost>

Note: There have been some changes in access control configuration for Apache 2.4.

Most notably, the syntax for directory permissions has changed from httpd 2.2

Order allow,deny
Allow from all

to httpd 2.4 syntax

Require all granted

For more information consult the mod_wsgi documentation.

Troubleshooting

If your application does not run, follow this guide to troubleshoot:

Problem: application does not run, errorlog shows SystemExit ignored You have an app.run() call in your
application file that is not guarded by an if __name__ == '__main__': condition. Either remove that
run() call from the file and move it into a separate run.py file or put it into such an if block.

Problem: application gives permission errors Probably caused by your application running as the wrong user.
Make sure the folders the application needs access to have the proper privileges set and the application runs
as the correct user (user and group parameter to the WSGIDaemonProcess directive)

1.22. Deployment Options 161

https://httpd.apache.org/docs/trunk/upgrading.html
https://modwsgi.readthedocs.io/en/develop/index.html

Flask Documentation (1.1.x), Release 1.1.4

Problem: application dies with an error on print Keep in mind that mod_wsgi disallows doing anything with
sys.stdout and sys.stderr. You can disable this protection from the config by setting the WSGIRe-
strictStdout to off:

WSGIRestrictStdout Off

Alternatively you can also replace the standard out in the .wsgi file with a different stream:

import sys
sys.stdout = sys.stderr

Problem: accessing resources gives IO errors Your application probably is a single .py file you symlinked into the
site-packages folder. Please be aware that this does not work, instead you either have to put the folder into the
pythonpath the file is stored in, or convert your application into a package.

The reason for this is that for non-installed packages, the module filename is used to locate the resources and
for symlinks the wrong filename is picked up.

Support for Automatic Reloading

To help deployment tools you can activate support for automatic reloading. Whenever something changes the .wsgi
file, mod_wsgi will reload all the daemon processes for us.

For that, just add the following directive to your Directory section:

WSGIScriptReloading On

Working with Virtual Environments

Virtual environments have the advantage that they never install the required dependencies system wide so you have a
better control over what is used where. If you want to use a virtual environment with mod_wsgi you have to modify
your .wsgi file slightly.

Add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
execfile(activate_this, dict(__file__=activate_this))

For Python 3 add the following lines to the top of your .wsgi file:

activate_this = '/path/to/env/bin/activate_this.py'
with open(activate_this) as file_:

exec(file_.read(), dict(__file__=activate_this))

This sets up the load paths according to the settings of the virtual environment. Keep in mind that the path has to be
absolute.

FastCGI

FastCGI is a deployment option on servers like nginx, lighttpd, and cherokee; see uWSGI and Standalone WSGI
Containers for other options. To use your WSGI application with any of them you will need a FastCGI server first.
The most popular one is flup which we will use for this guide. Make sure to have it installed to follow along.

Watch Out

162 Chapter 1. User’s Guide

https://docs.python.org/3/library/sys.html#sys.stdout
https://docs.python.org/3/library/sys.html#sys.stderr
https://nginx.org/
https://www.lighttpd.net/
http://cherokee-project.com/
https://pypi.org/project/flup/

Flask Documentation (1.1.x), Release 1.1.4

Please make sure in advance that any app.run() calls you might have in your application file are inside an if
__name__ == '__main__': block or moved to a separate file. Just make sure it’s not called because this will
always start a local WSGI server which we do not want if we deploy that application to FastCGI.

Creating a .fcgi file

First you need to create the FastCGI server file. Let’s call it yourapplication.fcgi:

#!/usr/bin/python
from flup.server.fcgi import WSGIServer
from yourapplication import app

if __name__ == '__main__':
WSGIServer(app).run()

This is enough for Apache to work, however nginx and older versions of lighttpd need a socket to be explicitly passed
to communicate with the FastCGI server. For that to work you need to pass the path to the socket to the WSGIServer:

WSGIServer(application, bindAddress='/path/to/fcgi.sock').run()

The path has to be the exact same path you define in the server config.

Save the yourapplication.fcgi file somewhere you will find it again. It makes sense to have that in /var/
www/yourapplication or something similar.

Make sure to set the executable bit on that file so that the servers can execute it:

$ chmod +x /var/www/yourapplication/yourapplication.fcgi

Configuring Apache

The example above is good enough for a basic Apache deployment but your .fcgi file will appear in your application
URL e.g. example.com/yourapplication.fcgi/news/. There are few ways to configure your application
so that yourapplication.fcgi does not appear in the URL. A preferable way is to use the ScriptAlias and SetHandler
configuration directives to route requests to the FastCGI server. The following example uses FastCgiServer to start 5
instances of the application which will handle all incoming requests:

LoadModule fastcgi_module /usr/lib64/httpd/modules/mod_fastcgi.so

FastCgiServer /var/www/html/yourapplication/app.fcgi -idle-timeout 300 -processes 5

<VirtualHost *>
ServerName webapp1.mydomain.com
DocumentRoot /var/www/html/yourapplication

AddHandler fastcgi-script fcgi
ScriptAlias / /var/www/html/yourapplication/app.fcgi/

<Location />
SetHandler fastcgi-script

</Location>
</VirtualHost>

1.22. Deployment Options 163

Flask Documentation (1.1.x), Release 1.1.4

These processes will be managed by Apache. If you’re using a standalone FastCGI server, you can use the FastCgiEx-
ternalServer directive instead. Note that in the following the path is not real, it’s simply used as an identifier to other
directives such as AliasMatch:

FastCgiServer /var/www/html/yourapplication -host 127.0.0.1:3000

If you cannot set ScriptAlias, for example on a shared web host, you can use WSGI middleware to remove yourappli-
cation.fcgi from the URLs. Set .htaccess:

<IfModule mod_fcgid.c>
AddHandler fcgid-script .fcgi
<Files ~ (\.fcgi)>

SetHandler fcgid-script
Options +FollowSymLinks +ExecCGI

</Files>
</IfModule>

<IfModule mod_rewrite.c>
Options +FollowSymlinks
RewriteEngine On
RewriteBase /
RewriteCond %{REQUEST_FILENAME} !-f
RewriteRule ^(.*)$ yourapplication.fcgi/$1 [QSA,L]

</IfModule>

Set yourapplication.fcgi:

#!/usr/bin/python
#: optional path to your local python site-packages folder
import sys
sys.path.insert(0, '<your_local_path>/lib/python<your_python_version>/site-packages')

from flup.server.fcgi import WSGIServer
from yourapplication import app

class ScriptNameStripper(object):
def __init__(self, app):

self.app = app

def __call__(self, environ, start_response):
environ['SCRIPT_NAME'] = ''
return self.app(environ, start_response)

app = ScriptNameStripper(app)

if __name__ == '__main__':
WSGIServer(app).run()

Configuring lighttpd

A basic FastCGI configuration for lighttpd looks like that:

fastcgi.server = ("/yourapplication.fcgi" =>
((

"socket" => "/tmp/yourapplication-fcgi.sock",
"bin-path" => "/var/www/yourapplication/yourapplication.fcgi",

(continues on next page)

164 Chapter 1. User’s Guide

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

"check-local" => "disable",
"max-procs" => 1

))
)

alias.url = (
"/static/" => "/path/to/your/static/"

)

url.rewrite-once = (
"^(/static($|/.*))$" => "$1",
"^(/.*)$" => "/yourapplication.fcgi$1"

)

Remember to enable the FastCGI, alias and rewrite modules. This configuration binds the application to /
yourapplication. If you want the application to work in the URL root you have to work around a lighttpd
bug with the LighttpdCGIRootFix middleware.

Make sure to apply it only if you are mounting the application the URL root. Also, see the Lighty docs for more
information on FastCGI and Python (note that explicitly passing a socket to run() is no longer necessary).

Configuring nginx

Installing FastCGI applications on nginx is a bit different because by default no FastCGI parameters are forwarded.

A basic Flask FastCGI configuration for nginx looks like this:

location = /yourapplication { rewrite ^ /yourapplication/ last; }
location /yourapplication { try_files $uri @yourapplication; }
location @yourapplication {

include fastcgi_params;
fastcgi_split_path_info ^(/yourapplication)(.*)$;
fastcgi_param PATH_INFO $fastcgi_path_info;
fastcgi_param SCRIPT_NAME $fastcgi_script_name;
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

}

This configuration binds the application to /yourapplication. If you want to have it in the URL root it’s a bit
simpler because you don’t have to figure out how to calculate PATH_INFO and SCRIPT_NAME:

location / { try_files $uri @yourapplication; }
location @yourapplication {

include fastcgi_params;
fastcgi_param PATH_INFO $fastcgi_script_name;
fastcgi_param SCRIPT_NAME "";
fastcgi_pass unix:/tmp/yourapplication-fcgi.sock;

}

Running FastCGI Processes

Since nginx and others do not load FastCGI apps, you have to do it by yourself. Supervisor can manage FastCGI
processes. You can look around for other FastCGI process managers or write a script to run your .fcgi file at boot, e.g.
using a SysV init.d script. For a temporary solution, you can always run the .fcgi script inside GNU screen. See
man screen for details, and note that this is a manual solution which does not persist across system restart:

1.22. Deployment Options 165

https://redmine.lighttpd.net/projects/lighttpd/wiki/Docs_ModFastCGI
http://supervisord.org/configuration.html#fcgi-program-x-section-settings
http://supervisord.org/configuration.html#fcgi-program-x-section-settings

Flask Documentation (1.1.x), Release 1.1.4

$ screen
$ /var/www/yourapplication/yourapplication.fcgi

Debugging

FastCGI deployments tend to be hard to debug on most web servers. Very often the only thing the server log tells you
is something along the lines of “premature end of headers”. In order to debug the application the only thing that can
really give you ideas why it breaks is switching to the correct user and executing the application by hand.

This example assumes your application is called application.fcgi and that your web server user is www-data:

$ su www-data
$ cd /var/www/yourapplication
$ python application.fcgi
Traceback (most recent call last):

File "yourapplication.fcgi", line 4, in <module>
ImportError: No module named yourapplication

In this case the error seems to be “yourapplication” not being on the python path. Common problems are:

• Relative paths being used. Don’t rely on the current working directory.

• The code depending on environment variables that are not set by the web server.

• Different python interpreters being used.

CGI

If all other deployment methods do not work, CGI will work for sure. CGI is supported by all major servers but usually
has a sub-optimal performance.

This is also the way you can use a Flask application on Google’s App Engine, where execution happens in a CGI-like
environment.

Watch Out

Please make sure in advance that any app.run() calls you might have in your application file are inside an if
__name__ == '__main__': block or moved to a separate file. Just make sure it’s not called because this will
always start a local WSGI server which we do not want if we deploy that application to CGI / app engine.

With CGI, you will also have to make sure that your code does not contain any print statements, or that sys.
stdout is overridden by something that doesn’t write into the HTTP response.

Creating a .cgi file

First you need to create the CGI application file. Let’s call it yourapplication.cgi:

#!/usr/bin/python
from wsgiref.handlers import CGIHandler
from yourapplication import app

CGIHandler().run(app)

166 Chapter 1. User’s Guide

https://cloud.google.com/appengine/docs/

Flask Documentation (1.1.x), Release 1.1.4

Server Setup

Usually there are two ways to configure the server. Either just copy the .cgi into a cgi-bin (and use mod_rewrite
or something similar to rewrite the URL) or let the server point to the file directly.

In Apache for example you can put something like this into the config:

ScriptAlias /app /path/to/the/application.cgi

On shared webhosting, though, you might not have access to your Apache config. In this case, a file called .
htaccess, sitting in the public directory you want your app to be available, works too but the ScriptAlias
directive won’t work in that case:

RewriteEngine On
RewriteCond %{REQUEST_FILENAME} !-f # Don't interfere with static files
RewriteRule ^(.*)$ /path/to/the/application.cgi/$1 [L]

For more information consult the documentation of your webserver.

1.23 Becoming Big

Here are your options when growing your codebase or scaling your application.

1.23.1 Read the Source.

Flask started in part to demonstrate how to build your own framework on top of existing well-used tools Werkzeug
(WSGI) and Jinja (templating), and as it developed, it became useful to a wide audience. As you grow your codebase,
don’t just use Flask – understand it. Read the source. Flask’s code is written to be read; its documentation is published
so you can use its internal APIs. Flask sticks to documented APIs in upstream libraries, and documents its internal
utilities so that you can find the hook points needed for your project.

1.23.2 Hook. Extend.

The API docs are full of available overrides, hook points, and Signals. You can provide custom classes for things like
the request and response objects. Dig deeper on the APIs you use, and look for the customizations which are available
out of the box in a Flask release. Look for ways in which your project can be refactored into a collection of utilities and
Flask extensions. Explore the many Extensions in the community, and look for patterns to build your own extensions
if you do not find the tools you need.

1.23.3 Subclass.

The Flask class has many methods designed for subclassing. You can quickly add or customize behavior by sub-
classing Flask (see the linked method docs) and using that subclass wherever you instantiate an application class.
This works well with Application Factories. See Subclassing Flask for an example.

1.23.4 Wrap with middleware.

The Application Dispatching chapter shows in detail how to apply middleware. You can introduce WSGI middleware
to wrap your Flask instances and introduce fixes and changes at the layer between your Flask application and your
HTTP server. Werkzeug includes several middlewares.

1.23. Becoming Big 167

https://werkzeug.palletsprojects.com/middleware/

Flask Documentation (1.1.x), Release 1.1.4

1.23.5 Fork.

If none of the above options work, fork Flask. The majority of code of Flask is within Werkzeug and Jinja2. These
libraries do the majority of the work. Flask is just the paste that glues those together. For every project there is the
point where the underlying framework gets in the way (due to assumptions the original developers had). This is natural
because if this would not be the case, the framework would be a very complex system to begin with which causes a
steep learning curve and a lot of user frustration.

This is not unique to Flask. Many people use patched and modified versions of their framework to counter shortcom-
ings. This idea is also reflected in the license of Flask. You don’t have to contribute any changes back if you decide to
modify the framework.

The downside of forking is of course that Flask extensions will most likely break because the new framework has a
different import name. Furthermore integrating upstream changes can be a complex process, depending on the number
of changes. Because of that, forking should be the very last resort.

1.23.6 Scale like a pro.

For many web applications the complexity of the code is less an issue than the scaling for the number of users or data
entries expected. Flask by itself is only limited in terms of scaling by your application code, the data store you want
to use and the Python implementation and webserver you are running on.

Scaling well means for example that if you double the amount of servers you get about twice the performance. Scaling
bad means that if you add a new server the application won’t perform any better or would not even support a second
server.

There is only one limiting factor regarding scaling in Flask which are the context local proxies. They depend on
context which in Flask is defined as being either a thread, process or greenlet. If your server uses some kind of
concurrency that is not based on threads or greenlets, Flask will no longer be able to support these global proxies.
However the majority of servers are using either threads, greenlets or separate processes to achieve concurrency which
are all methods well supported by the underlying Werkzeug library.

1.23.7 Discuss with the community.

The Flask developers keep the framework accessible to users with codebases big and small. If you find an obstacle
in your way, caused by Flask, don’t hesitate to contact the developers on the mailing list or Discord server. The best
way for the Flask and Flask extension developers to improve the tools for larger applications is getting feedback from
users.

168 Chapter 1. User’s Guide

CHAPTER

TWO

API REFERENCE

If you are looking for information on a specific function, class or method, this part of the documentation is for you.

2.1 API

This part of the documentation covers all the interfaces of Flask. For parts where Flask depends on external libraries,
we document the most important right here and provide links to the canonical documentation.

2.1.1 Application Object

class flask.Flask(import_name, static_url_path=None, static_folder=’static’, static_host=None,
host_matching=False, subdomain_matching=False, template_folder=’templates’,
instance_path=None, instance_relative_config=False, root_path=None)

The flask object implements a WSGI application and acts as the central object. It is passed the name of the
module or package of the application. Once it is created it will act as a central registry for the view functions,
the URL rules, template configuration and much more.

The name of the package is used to resolve resources from inside the package or the folder the module is
contained in depending on if the package parameter resolves to an actual python package (a folder with an
__init__.py file inside) or a standard module (just a .py file).

For more information about resource loading, see open_resource().

Usually you create a Flask instance in your main module or in the __init__.py file of your package like
this:

from flask import Flask
app = Flask(__name__)

About the First Parameter

The idea of the first parameter is to give Flask an idea of what belongs to your application. This name is used to
find resources on the filesystem, can be used by extensions to improve debugging information and a lot more.

So it’s important what you provide there. If you are using a single module, __name__ is always the correct
value. If you however are using a package, it’s usually recommended to hardcode the name of your package
there.

For example if your application is defined in yourapplication/app.py you should create it with one of
the two versions below:

169

Flask Documentation (1.1.x), Release 1.1.4

app = Flask('yourapplication')
app = Flask(__name__.split('.')[0])

Why is that? The application will work even with __name__, thanks to how resources are looked up. However it
will make debugging more painful. Certain extensions can make assumptions based on the import name of your
application. For example the Flask-SQLAlchemy extension will look for the code in your application that trig-
gered an SQL query in debug mode. If the import name is not properly set up, that debugging information is lost.
(For example it would only pick up SQL queries in yourapplication.app and not yourapplication.views.frontend)

New in version 1.0: The host_matching and static_host parameters were added.

New in version 1.0: The subdomain_matching parameter was added. Subdomain matching needs to be
enabled manually now. Setting SERVER_NAME does not implicitly enable it.

New in version 0.11: The root_path parameter was added.

New in version 0.8: The instance_path and instance_relative_config parameters were added.

New in version 0.7: The static_url_path, static_folder, and template_folder parameters were added.

Parameters

• import_name – the name of the application package

• static_url_path – can be used to specify a different path for the static files on the
web. Defaults to the name of the static_folder folder.

• static_folder – The folder with static files that is served at static_url_path.
Relative to the application root_path or an absolute path. Defaults to 'static'.

• static_host – the host to use when adding the static route. Defaults to None. Required
when using host_matching=True with a static_folder configured.

• host_matching – set url_map.host_matching attribute. Defaults to False.

• subdomain_matching – consider the subdomain relative to SERVER_NAME when
matching routes. Defaults to False.

• template_folder – the folder that contains the templates that should be used by the
application. Defaults to 'templates' folder in the root path of the application.

• instance_path – An alternative instance path for the application. By default the folder
'instance' next to the package or module is assumed to be the instance path.

• instance_relative_config – if set to True relative filenames for loading the con-
fig are assumed to be relative to the instance path instead of the application root.

• root_path – Flask by default will automatically calculate the path to the root of the
application. In certain situations this cannot be achieved (for instance if the package is a
Python 3 namespace package) and needs to be manually defined.

add_template_filter(f, name=None)
Register a custom template filter. Works exactly like the template_filter() decorator.

Parameters name – the optional name of the filter, otherwise the function name will be used.

add_template_global(f, name=None)
Register a custom template global function. Works exactly like the template_global() decorator.

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

170 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

add_template_test(f, name=None)
Register a custom template test. Works exactly like the template_test() decorator.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

add_url_rule(rule, endpoint=None, view_func=None, provide_automatic_options=None, **op-
tions)

Connects a URL rule. Works exactly like the route() decorator. If a view_func is provided it will be
registered with the endpoint.

Basically this example:

@app.route('/')
def index():

pass

Is equivalent to the following:

def index():
pass

app.add_url_rule('/', 'index', index)

If the view_func is not provided you will need to connect the endpoint to a view function like so:

app.view_functions['index'] = index

Internally route() invokes add_url_rule() so if you want to customize the behavior via subclass-
ing you only need to change this method.

For more information refer to URL Route Registrations.

Changed in version 0.6: OPTIONS is added automatically as method.

Changed in version 0.2: view_func parameter added.

Parameters

• rule – the URL rule as string

• endpoint – the endpoint for the registered URL rule. Flask itself assumes the name of
the view function as endpoint

• view_func – the function to call when serving a request to the provided endpoint

• provide_automatic_options – controls whether the OPTIONS method should
be added automatically. This can also be controlled by setting the view_func.
provide_automatic_options = False before adding the rule.

• options – the options to be forwarded to the underlying Rule object. A change to
Werkzeug is handling of method options. methods is a list of methods this rule should be
limited to (GET, POST etc.). By default a rule just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly added and handled by the standard request
handling.

after_request(f)
Register a function to be run after each request.

Your function must take one parameter, an instance of response_class and return a new response
object or the same (see process_response()).

2.1. API 171

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule

Flask Documentation (1.1.x), Release 1.1.4

As of Flask 0.7 this function might not be executed at the end of the request in case an unhandled exception
occurred.

after_request_funcs = None
A dictionary with lists of functions that should be called after each request. The key of the dictionary is
the name of the blueprint this function is active for, None for all requests. This can for example be used
to close database connections. To register a function here, use the after_request() decorator.

app_context()
Create an AppContext. Use as a with block to push the context, which will make current_app
point at this application.

An application context is automatically pushed by RequestContext.push() when handling a re-
quest, and when running a CLI command. Use this to manually create a context outside of these situations.

with app.app_context():
init_db()

See The Application Context.

New in version 0.9.

app_ctx_globals_class
alias of flask.ctx._AppCtxGlobals

auto_find_instance_path()
Tries to locate the instance path if it was not provided to the constructor of the application class. It will
basically calculate the path to a folder named instance next to your main file or the package.

New in version 0.8.

before_first_request(f)
Registers a function to be run before the first request to this instance of the application.

The function will be called without any arguments and its return value is ignored.

New in version 0.8.

before_first_request_funcs = None
A list of functions that will be called at the beginning of the first request to this instance. To register a
function, use the before_first_request() decorator.

New in version 0.8.

before_request(f)
Registers a function to run before each request.

For example, this can be used to open a database connection, or to load the logged in user from the session.

The function will be called without any arguments. If it returns a non-None value, the value is handled as
if it was the return value from the view, and further request handling is stopped.

before_request_funcs = None
A dictionary with lists of functions that will be called at the beginning of each request. The key of the
dictionary is the name of the blueprint this function is active for, or None for all requests. To register a
function, use the before_request() decorator.

blueprints = None
all the attached blueprints in a dictionary by name. Blueprints can be attached multiple times so this
dictionary does not tell you how often they got attached.

New in version 0.7.

172 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

config = None
The configuration dictionary as Config. This behaves exactly like a regular dictionary but supports
additional methods to load a config from files.

config_class
alias of flask.config.Config

context_processor(f)
Registers a template context processor function.

create_global_jinja_loader()
Creates the loader for the Jinja2 environment. Can be used to override just the loader and keeping the rest
unchanged. It’s discouraged to override this function. Instead one should override the jinja_loader()
function instead.

The global loader dispatches between the loaders of the application and the individual blueprints.

New in version 0.7.

create_jinja_environment()
Create the Jinja environment based on jinja_options and the various Jinja-related methods of the app.
Changing jinja_options after this will have no effect. Also adds Flask-related globals and filters to
the environment.

Changed in version 0.11: Environment.auto_reload set in accordance with
TEMPLATES_AUTO_RELOAD configuration option.

New in version 0.5.

create_url_adapter(request)
Creates a URL adapter for the given request. The URL adapter is created at a point where the request
context is not yet set up so the request is passed explicitly.

Changed in version 1.0: SERVER_NAME no longer implicitly enables subdomain matching. Use
subdomain_matching instead.

Changed in version 0.9: This can now also be called without a request object when the URL adapter is
created for the application context.

New in version 0.6.

property debug
Whether debug mode is enabled. When using flask run to start the development server, an interactive
debugger will be shown for unhandled exceptions, and the server will be reloaded when code changes.
This maps to the DEBUG config key. This is enabled when env is 'development' and is overridden
by the FLASK_DEBUG environment variable. It may not behave as expected if set in code.

Do not enable debug mode when deploying in production.

Default: True if env is 'development', or False otherwise.

default_config = {'APPLICATION_ROOT': '/', 'DEBUG': None, 'ENV': None, 'EXPLAIN_TEMPLATE_LOADING': False, 'JSONIFY_MIMETYPE': 'application/json', 'JSONIFY_PRETTYPRINT_REGULAR': False, 'JSON_AS_ASCII': True, 'JSON_SORT_KEYS': True, 'MAX_CONTENT_LENGTH': None, 'MAX_COOKIE_SIZE': 4093, 'PERMANENT_SESSION_LIFETIME': datetime.timedelta(days=31), 'PREFERRED_URL_SCHEME': 'http', 'PRESERVE_CONTEXT_ON_EXCEPTION': None, 'PROPAGATE_EXCEPTIONS': None, 'SECRET_KEY': None, 'SEND_FILE_MAX_AGE_DEFAULT': datetime.timedelta(seconds=43200), 'SERVER_NAME': None, 'SESSION_COOKIE_DOMAIN': None, 'SESSION_COOKIE_HTTPONLY': True, 'SESSION_COOKIE_NAME': 'session', 'SESSION_COOKIE_PATH': None, 'SESSION_COOKIE_SAMESITE': None, 'SESSION_COOKIE_SECURE': False, 'SESSION_REFRESH_EACH_REQUEST': True, 'TEMPLATES_AUTO_RELOAD': None, 'TESTING': False, 'TRAP_BAD_REQUEST_ERRORS': None, 'TRAP_HTTP_EXCEPTIONS': False, 'USE_X_SENDFILE': False}
Default configuration parameters.

dispatch_request()
Does the request dispatching. Matches the URL and returns the return value of the view or error handler.
This does not have to be a response object. In order to convert the return value to a proper response object,
call make_response().

Changed in version 0.7: This no longer does the exception handling, this code was moved to the new
full_dispatch_request().

2.1. API 173

Flask Documentation (1.1.x), Release 1.1.4

do_teardown_appcontext(exc=<object object>)
Called right before the application context is popped.

When handling a request, the application context is popped after the request context. See
do_teardown_request().

This calls all functions decorated with teardown_appcontext(). Then the
appcontext_tearing_down signal is sent.

This is called by AppContext.pop().

New in version 0.9.

do_teardown_request(exc=<object object>)
Called after the request is dispatched and the response is returned, right before the request context is
popped.

This calls all functions decorated with teardown_request(), and Blueprint.
teardown_request() if a blueprint handled the request. Finally, the request_tearing_down
signal is sent.

This is called by RequestContext.pop(), which may be delayed during testing to maintain access
to resources.

Parameters exc – An unhandled exception raised while dispatching the request. Detected from
the current exception information if not passed. Passed to each teardown function.

Changed in version 0.9: Added the exc argument.

endpoint(endpoint)
A decorator to register a function as an endpoint. Example:

@app.endpoint('example.endpoint')
def example():

return "example"

Parameters endpoint – the name of the endpoint

env
What environment the app is running in. Flask and extensions may enable behaviors based on the envi-
ronment, such as enabling debug mode. This maps to the ENV config key. This is set by the FLASK_ENV
environment variable and may not behave as expected if set in code.

Do not enable development when deploying in production.

Default: 'production'

error_handler_spec = None
A dictionary of all registered error handlers. The key is None for error handlers active on the application,
otherwise the key is the name of the blueprint. Each key points to another dictionary where the key is the
status code of the http exception. The special key None points to a list of tuples where the first item is the
class for the instance check and the second the error handler function.

To register an error handler, use the errorhandler() decorator.

errorhandler(code_or_exception)
Register a function to handle errors by code or exception class.

A decorator that is used to register a function given an error code. Example:

174 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

@app.errorhandler(404)
def page_not_found(error):

return 'This page does not exist', 404

You can also register handlers for arbitrary exceptions:

@app.errorhandler(DatabaseError)
def special_exception_handler(error):

return 'Database connection failed', 500

New in version 0.7: Use register_error_handler() instead of modifying
error_handler_spec directly, for application wide error handlers.

New in version 0.7: One can now additionally also register custom exception types that do not necessarily
have to be a subclass of the HTTPException class.

Parameters code_or_exception – the code as integer for the handler, or an arbitrary ex-
ception

extensions = None
a place where extensions can store application specific state. For example this is where an extension
could store database engines and similar things. For backwards compatibility extensions should register
themselves like this:

if not hasattr(app, 'extensions'):
app.extensions = {}

app.extensions['extensionname'] = SomeObject()

The key must match the name of the extension module. For example in case of a “Flask-Foo” extension in
flask_foo, the key would be 'foo'.

New in version 0.7.

finalize_request(rv, from_error_handler=False)
Given the return value from a view function this finalizes the request by converting it into a response and
invoking the postprocessing functions. This is invoked for both normal request dispatching as well as error
handlers.

Because this means that it might be called as a result of a failure a special safe mode is available which can
be enabled with the from_error_handler flag. If enabled, failures in response processing will be logged
and otherwise ignored.

Internal

full_dispatch_request()
Dispatches the request and on top of that performs request pre and postprocessing as well as HTTP excep-
tion catching and error handling.

New in version 0.7.

get_send_file_max_age(filename)
Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from the configuration of
current_app.

Static file functions such as send_from_directory() use this function, and send_file() calls
this function on current_app when the given cache_timeout is None. If a cache_timeout is given in
send_file(), that timeout is used; otherwise, this method is called.

2.1. API 175

https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.HTTPException

Flask Documentation (1.1.x), Release 1.1.4

This allows subclasses to change the behavior when sending files based on the filename. For example, to
set the cache timeout for .js files to 60 seconds:

class MyFlask(flask.Flask):
def get_send_file_max_age(self, name):

if name.lower().endswith('.js'):
return 60

return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

property got_first_request
This attribute is set to True if the application started handling the first request.

New in version 0.8.

handle_exception(e)
Handle an exception that did not have an error handler associated with it, or that was raised from an error
handler. This always causes a 500 InternalServerError.

Always sends the got_request_exception signal.

If propagate_exceptions is True, such as in debug mode, the error will be re-raised so that the
debugger can display it. Otherwise, the original exception is logged, and an InternalServerError
is returned.

If an error handler is registered for InternalServerError or 500, it will be used. For consistency,
the handler will always receive the InternalServerError. The original unhandled exception is
available as e.original_exception.

Note: Prior to Werkzeug 1.0.0, InternalServerError will not always have an
original_exception attribute. Use getattr(e, "original_exception", None) to
simulate the behavior for compatibility.

Changed in version 1.1.0: Always passes the InternalServerError instance to the handler, setting
original_exception to the unhandled error.

Changed in version 1.1.0: after_request functions and other finalization is done even for the default
500 response when there is no handler.

New in version 0.3.

handle_http_exception(e)
Handles an HTTP exception. By default this will invoke the registered error handlers and fall back to
returning the exception as response.

Changed in version 1.0.3: RoutingException, used internally for actions such as slash redirects dur-
ing routing, is not passed to error handlers.

Changed in version 1.0: Exceptions are looked up by code and by MRO, so HTTPExcpetion subclasses
can be handled with a catch-all handler for the base HTTPException.

New in version 0.3.

handle_url_build_error(error, endpoint, values)
Handle BuildError on url_for().

handle_user_exception(e)
This method is called whenever an exception occurs that should be handled. A special case is
HTTPException which is forwarded to the handle_http_exception() method. This function
will either return a response value or reraise the exception with the same traceback.

176 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.InternalServerError

Flask Documentation (1.1.x), Release 1.1.4

Changed in version 1.0: Key errors raised from request data like form show the bad key in debug mode
rather than a generic bad request message.

New in version 0.7.

property has_static_folder
This is True if the package bound object’s container has a folder for static files.

New in version 0.5.

import_name = None
The name of the package or module that this app belongs to. Do not change this once it is set by the
constructor.

inject_url_defaults(endpoint, values)
Injects the URL defaults for the given endpoint directly into the values dictionary passed. This is used
internally and automatically called on URL building.

New in version 0.7.

instance_path = None
Holds the path to the instance folder.

New in version 0.8.

iter_blueprints()
Iterates over all blueprints by the order they were registered.

New in version 0.11.

jinja_env
The Jinja environment used to load templates.

The environment is created the first time this property is accessed. Changing jinja_options after that
will have no effect.

jinja_environment
alias of flask.templating.Environment

jinja_loader
The Jinja loader for this package bound object.

New in version 0.5.

jinja_options = {'extensions': ['jinja2.ext.autoescape', 'jinja2.ext.with_']}
Options that are passed to the Jinja environment in create_jinja_environment(). Changing these
options after the environment is created (accessing jinja_env) will have no effect.

Changed in version 1.1.0: This is a dict instead of an ImmutableDict to allow easier configuration.

json_decoder
alias of flask.json.JSONDecoder

json_encoder
alias of flask.json.JSONEncoder

log_exception(exc_info)
Logs an exception. This is called by handle_exception() if debugging is disabled and right before
the handler is called. The default implementation logs the exception as error on the logger.

New in version 0.8.

logger
A standard Python Logger for the app, with the same name as name.

2.1. API 177

https://docs.python.org/3/library/logging.html#logging.Logger

Flask Documentation (1.1.x), Release 1.1.4

In debug mode, the logger’s level will be set to DEBUG.

If there are no handlers configured, a default handler will be added. See Logging for more information.

Changed in version 1.1.0: The logger takes the same name as name rather than hard-coding "flask.
app".

Changed in version 1.0.0: Behavior was simplified. The logger is always named "flask.app". The
level is only set during configuration, it doesn’t check app.debug each time. Only one format is used,
not different ones depending on app.debug. No handlers are removed, and a handler is only added if no
handlers are already configured.

New in version 0.3.

make_config(instance_relative=False)
Used to create the config attribute by the Flask constructor. The instance_relative parameter is passed in
from the constructor of Flask (there named instance_relative_config) and indicates if the config should be
relative to the instance path or the root path of the application.

New in version 0.8.

make_default_options_response()
This method is called to create the default OPTIONS response. This can be changed through subclassing
to change the default behavior of OPTIONS responses.

New in version 0.7.

make_null_session()
Creates a new instance of a missing session. Instead of overriding this method we recommend replacing
the session_interface.

New in version 0.7.

make_response(rv)
Convert the return value from a view function to an instance of response_class.

Parameters rv – the return value from the view function. The view function must return a re-
sponse. Returning None, or the view ending without returning, is not allowed. The following
types are allowed for view_rv:

str (unicode in Python 2) A response object is created with the string encoded to UTF-8
as the body.

bytes (str in Python 2) A response object is created with the bytes as the body.

dict A dictionary that will be jsonify’d before being returned.

tuple Either (body, status, headers), (body, status), or (body,
headers), where body is any of the other types allowed here, status is a string
or an integer, and headers is a dictionary or a list of (key, value) tuples. If body
is a response_class instance, status overwrites the exiting value and headers
are extended.

response_class The object is returned unchanged.

other Response class The object is coerced to response_class.

callable() The function is called as a WSGI application. The result is used to create a
response object.

Changed in version 0.9: Previously a tuple was interpreted as the arguments for the response object.

178 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/wrappers/#werkzeug.wrappers.Response
https://docs.python.org/3/library/functions.html#callable

Flask Documentation (1.1.x), Release 1.1.4

make_shell_context()
Returns the shell context for an interactive shell for this application. This runs all the registered shell
context processors.

New in version 0.11.

name
The name of the application. This is usually the import name with the difference that it’s guessed from the
run file if the import name is main. This name is used as a display name when Flask needs the name of the
application. It can be set and overridden to change the value.

New in version 0.8.

open_instance_resource(resource, mode=’rb’)
Opens a resource from the application’s instance folder (instance_path). Otherwise works like
open_resource(). Instance resources can also be opened for writing.

Parameters

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – resource file opening mode, default is ‘rb’.

open_resource(resource, mode=’rb’)
Opens a resource from the application’s resource folder. To see how this works, consider the following
folder structure:

/myapplication.py
/schema.sql
/static

/style.css
/templates

/layout.html
/index.html

If you want to open the schema.sql file you would do the following:

with app.open_resource('schema.sql') as f:
contents = f.read()
do_something_with(contents)

Parameters

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – Open file in this mode. Only reading is supported, valid values are “r” (or “rt”)
and “rb”.

open_session(request)
Creates or opens a new session. Default implementation stores all session data in a signed cookie. This
requires that the secret_key is set. Instead of overriding this method we recommend replacing the
session_interface.

Parameters request – an instance of request_class.

permanent_session_lifetime
A timedelta which is used to set the expiration date of a permanent session. The default is 31 days
which makes a permanent session survive for roughly one month.

2.1. API 179

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation (1.1.x), Release 1.1.4

This attribute can also be configured from the config with the PERMANENT_SESSION_LIFETIME con-
figuration key. Defaults to timedelta(days=31)

preprocess_request()
Called before the request is dispatched. Calls url_value_preprocessors registered with the app
and the current blueprint (if any). Then calls before_request_funcs registered with the app and the
blueprint.

If any before_request() handler returns a non-None value, the value is handled as if it was the return
value from the view, and further request handling is stopped.

property preserve_context_on_exception
Returns the value of the PRESERVE_CONTEXT_ON_EXCEPTION configuration value in case it’s set,
otherwise a sensible default is returned.

New in version 0.7.

process_response(response)
Can be overridden in order to modify the response object before it’s sent to the WSGI server. By default
this will call all the after_request() decorated functions.

Changed in version 0.5: As of Flask 0.5 the functions registered for after request execution are called in
reverse order of registration.

Parameters response – a response_class object.

Returns a new response object or the same, has to be an instance of response_class.

property propagate_exceptions
Returns the value of the PROPAGATE_EXCEPTIONS configuration value in case it’s set, otherwise a
sensible default is returned.

New in version 0.7.

raise_routing_exception(request)
Exceptions that are recording during routing are reraised with this method. During debug we are not
reraising redirect requests for non GET, HEAD, or OPTIONS requests and we’re raising a different error
instead to help debug situations.

Internal

register_blueprint(blueprint, **options)
Register a Blueprint on the application. Keyword arguments passed to this method will override the
defaults set on the blueprint.

Calls the blueprint’s register() method after recording the blueprint in the application’s
blueprints.

Parameters

• blueprint – The blueprint to register.

• url_prefix – Blueprint routes will be prefixed with this.

• subdomain – Blueprint routes will match on this subdomain.

• url_defaults – Blueprint routes will use these default values for view arguments.

• options – Additional keyword arguments are passed to BlueprintSetupState.
They can be accessed in record() callbacks.

New in version 0.7.

180 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

register_error_handler(code_or_exception, f)
Alternative error attach function to the errorhandler() decorator that is more straightforward to use
for non decorator usage.

New in version 0.7.

request_class
alias of flask.wrappers.Request

request_context(environ)
Create a RequestContext representing a WSGI environment. Use a with block to push the context,
which will make request point at this request.

See The Request Context.

Typically you should not call this from your own code. A request context is automatically pushed by the
wsgi_app() when handling a request. Use test_request_context() to create an environment
and context instead of this method.

Parameters environ – a WSGI environment

response_class
alias of flask.wrappers.Response

root_path = None
Absolute path to the package on the filesystem. Used to look up resources contained in the package.

route(rule, **options)
A decorator that is used to register a view function for a given URL rule. This does the same thing as
add_url_rule() but is intended for decorator usage:

@app.route('/')
def index():

return 'Hello World'

For more information refer to URL Route Registrations.

Parameters

• rule – the URL rule as string

• endpoint – the endpoint for the registered URL rule. Flask itself assumes the name of
the view function as endpoint

• options – the options to be forwarded to the underlying Rule object. A change to
Werkzeug is handling of method options. methods is a list of methods this rule should be
limited to (GET, POST etc.). By default a rule just listens for GET (and implicitly HEAD).
Starting with Flask 0.6, OPTIONS is implicitly added and handled by the standard request
handling.

run(host=None, port=None, debug=None, load_dotenv=True, **options)
Runs the application on a local development server.

Do not use run() in a production setting. It is not intended to meet security and performance requirements
for a production server. Instead, see Deployment Options for WSGI server recommendations.

If the debug flag is set the server will automatically reload for code changes and show a debugger in case
an exception happened.

If you want to run the application in debug mode, but disable the code execution on the interactive debug-
ger, you can pass use_evalex=False as parameter. This will keep the debugger’s traceback screen
active, but disable code execution.

2.1. API 181

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule

Flask Documentation (1.1.x), Release 1.1.4

It is not recommended to use this function for development with automatic reloading as this is badly
supported. Instead you should be using the flask command line script’s run support.

Keep in Mind

Flask will suppress any server error with a generic error page unless it is in debug mode. As such to enable
just the interactive debugger without the code reloading, you have to invoke run() with debug=True
and use_reloader=False. Setting use_debugger to True without being in debug mode won’t
catch any exceptions because there won’t be any to catch.

Parameters

• host – the hostname to listen on. Set this to '0.0.0.0' to have the server available
externally as well. Defaults to '127.0.0.1' or the host in the SERVER_NAME config
variable if present.

• port – the port of the webserver. Defaults to 5000 or the port defined in the
SERVER_NAME config variable if present.

• debug – if given, enable or disable debug mode. See debug.

• load_dotenv – Load the nearest .env and .flaskenv files to set environment vari-
ables. Will also change the working directory to the directory containing the first file
found.

• options – the options to be forwarded to the underlying Werkzeug server. See
werkzeug.serving.run_simple() for more information.

Changed in version 1.0: If installed, python-dotenv will be used to load environment variables from .env
and .flaskenv files.

If set, the FLASK_ENV and FLASK_DEBUG environment variables will override env and debug.

Threaded mode is enabled by default.

Changed in version 0.10: The default port is now picked from the SERVER_NAME variable.

save_session(session, response)
Saves the session if it needs updates. For the default implementation, check open_session(). Instead
of overriding this method we recommend replacing the session_interface.

Parameters

• session – the session to be saved (a SecureCookie object)

• response – an instance of response_class

secret_key
If a secret key is set, cryptographic components can use this to sign cookies and other things. Set this to a
complex random value when you want to use the secure cookie for instance.

This attribute can also be configured from the config with the SECRET_KEY configuration key. Defaults
to None.

select_jinja_autoescape(filename)
Returns True if autoescaping should be active for the given template name. If no template name is given,
returns True.

New in version 0.5.

182 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/serving/#werkzeug.serving.run_simple

Flask Documentation (1.1.x), Release 1.1.4

send_file_max_age_default
A timedelta which is used as default cache_timeout for the send_file() functions. The default is
12 hours.

This attribute can also be configured from the config with the SEND_FILE_MAX_AGE_DEFAULT con-
figuration key. This configuration variable can also be set with an integer value used as seconds. Defaults
to timedelta(hours=12)

send_static_file(filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

session_cookie_name
The secure cookie uses this for the name of the session cookie.

This attribute can also be configured from the config with the SESSION_COOKIE_NAME configuration
key. Defaults to 'session'

session_interface = <flask.sessions.SecureCookieSessionInterface object>
the session interface to use. By default an instance of SecureCookieSessionInterface is used
here.

New in version 0.8.

shell_context_processor(f)
Registers a shell context processor function.

New in version 0.11.

shell_context_processors = None
A list of shell context processor functions that should be run when a shell context is created.

New in version 0.11.

should_ignore_error(error)
This is called to figure out if an error should be ignored or not as far as the teardown system is concerned.
If this function returns True then the teardown handlers will not be passed the error.

New in version 0.10.

property static_folder
The absolute path to the configured static folder.

property static_url_path
The URL prefix that the static route will be accessible from.

If it was not configured during init, it is derived from static_folder.

teardown_appcontext(f)
Registers a function to be called when the application context ends. These functions are typically also
called when the request context is popped.

Example:

ctx = app.app_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions are called just before the app
context moves from the stack of active contexts. This becomes relevant if you are using such constructs in
tests.

2.1. API 183

https://docs.python.org/3/library/datetime.html#datetime.timedelta

Flask Documentation (1.1.x), Release 1.1.4

Since a request context typically also manages an application context it would also be called when you
pop a request context.

When a teardown function was called because of an unhandled exception it will be passed an error object.
If an errorhandler() is registered, it will handle the exception and the teardown will not receive it.

The return values of teardown functions are ignored.

New in version 0.9.

teardown_appcontext_funcs = None
A list of functions that are called when the application context is destroyed. Since the application context
is also torn down if the request ends this is the place to store code that disconnects from databases.

New in version 0.9.

teardown_request(f)
Register a function to be run at the end of each request, regardless of whether there was an exception or
not. These functions are executed when the request context is popped, even if not an actual request was
performed.

Example:

ctx = app.test_request_context()
ctx.push()
...
ctx.pop()

When ctx.pop() is executed in the above example, the teardown functions are called just before the
request context moves from the stack of active contexts. This becomes relevant if you are using such
constructs in tests.

Generally teardown functions must take every necessary step to avoid that they will fail. If they do execute
code that might fail they will have to surround the execution of these code by try/except statements and
log occurring errors.

When a teardown function was called because of an exception it will be passed an error object.

The return values of teardown functions are ignored.

Debug Note

In debug mode Flask will not tear down a request on an exception immediately. Instead it will keep
it alive so that the interactive debugger can still access it. This behavior can be controlled by the
PRESERVE_CONTEXT_ON_EXCEPTION configuration variable.

teardown_request_funcs = None
A dictionary with lists of functions that are called after each request, even if an exception has occurred.
The key of the dictionary is the name of the blueprint this function is active for, None for all requests.
These functions are not allowed to modify the request, and their return values are ignored. If an exception
occurred while processing the request, it gets passed to each teardown_request function. To register a
function here, use the teardown_request() decorator.

New in version 0.7.

template_context_processors = None
A dictionary with list of functions that are called without argument to populate the template context.
The key of the dictionary is the name of the blueprint this function is active for, None for all requests.
Each returns a dictionary that the template context is updated with. To register a function here, use the
context_processor() decorator.

184 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

template_filter(name=None)
A decorator that is used to register custom template filter. You can specify a name for the filter, otherwise
the function name will be used. Example:

@app.template_filter()
def reverse(s):

return s[::-1]

Parameters name – the optional name of the filter, otherwise the function name will be used.

template_folder = None
Location of the template files to be added to the template lookup. None if templates should not be added.

template_global(name=None)
A decorator that is used to register a custom template global function. You can specify a name for the
global function, otherwise the function name will be used. Example:

@app.template_global()
def double(n):

return 2 * n

New in version 0.10.

Parameters name – the optional name of the global function, otherwise the function name will
be used.

template_test(name=None)
A decorator that is used to register custom template test. You can specify a name for the test, otherwise
the function name will be used. Example:

@app.template_test()
def is_prime(n):

if n == 2:
return True

for i in range(2, int(math.ceil(math.sqrt(n))) + 1):
if n % i == 0:

return False
return True

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

property templates_auto_reload
Reload templates when they are changed. Used by create_jinja_environment().

This attribute can be configured with TEMPLATES_AUTO_RELOAD. If not set, it will be enabled in debug
mode.

New in version 1.0: This property was added but the underlying config and behavior already existed.

test_cli_runner(**kwargs)
Create a CLI runner for testing CLI commands. See Testing CLI Commands.

Returns an instance of test_cli_runner_class, by default FlaskCliRunner. The Flask app
object is passed as the first argument.

New in version 1.0.

2.1. API 185

Flask Documentation (1.1.x), Release 1.1.4

test_cli_runner_class = None
The CliRunner subclass, by default FlaskCliRunner that is used by test_cli_runner(). Its
__init__ method should take a Flask app object as the first argument.

New in version 1.0.

test_client(use_cookies=True, **kwargs)
Creates a test client for this application. For information about unit testing head over to Testing Flask
Applications.

Note that if you are testing for assertions or exceptions in your application code, you must set app.
testing = True in order for the exceptions to propagate to the test client. Otherwise, the exception
will be handled by the application (not visible to the test client) and the only indication of an AssertionError
or other exception will be a 500 status code response to the test client. See the testing attribute. For
example:

app.testing = True
client = app.test_client()

The test client can be used in a with block to defer the closing down of the context until the end of the
with block. This is useful if you want to access the context locals for testing:

with app.test_client() as c:
rv = c.get('/?vodka=42')
assert request.args['vodka'] == '42'

Additionally, you may pass optional keyword arguments that will then be passed to the application’s
test_client_class constructor. For example:

from flask.testing import FlaskClient

class CustomClient(FlaskClient):
def __init__(self, *args, **kwargs):

self._authentication = kwargs.pop("authentication")
super(CustomClient,self).__init__(*args, **kwargs)

app.test_client_class = CustomClient
client = app.test_client(authentication='Basic')

See FlaskClient for more information.

Changed in version 0.11: Added **kwargs to support passing additional keyword arguments to the con-
structor of test_client_class.

New in version 0.7: The use_cookies parameter was added as well as the ability to override the client to
be used by setting the test_client_class attribute.

Changed in version 0.4: added support for with block usage for the client.

test_client_class = None
the test client that is used with when test_client is used.

New in version 0.7.

test_request_context(*args, **kwargs)
Create a RequestContext for a WSGI environment created from the given values. This is mostly
useful during testing, where you may want to run a function that uses request data without dispatching a
full request.

See The Request Context.

186 Chapter 2. API Reference

https://click.palletsprojects.com/en/8.0.x/api/#click.testing.CliRunner

Flask Documentation (1.1.x), Release 1.1.4

Use a with block to push the context, which will make request point at the request for the created
environment.

with test_request_context(...):
generate_report()

When using the shell, it may be easier to push and pop the context manually to avoid indentation.

ctx = app.test_request_context(...)
ctx.push()
...
ctx.pop()

Takes the same arguments as Werkzeug’s EnvironBuilder, with some defaults from the application.
See the linked Werkzeug docs for most of the available arguments. Flask-specific behavior is listed here.

Parameters

• path – URL path being requested.

• base_url – Base URL where the app is being served, which path is relative to. If
not given, built from PREFERRED_URL_SCHEME, subdomain, SERVER_NAME, and
APPLICATION_ROOT.

• subdomain – Subdomain name to append to SERVER_NAME.

• url_scheme – Scheme to use instead of PREFERRED_URL_SCHEME.

• data – The request body, either as a string or a dict of form keys and values.

• json – If given, this is serialized as JSON and passed as data. Also defaults
content_type to application/json.

• args – other positional arguments passed to EnvironBuilder.

• kwargs – other keyword arguments passed to EnvironBuilder.

testing
The testing flag. Set this to True to enable the test mode of Flask extensions (and in the future probably
also Flask itself). For example this might activate test helpers that have an additional runtime cost which
should not be enabled by default.

If this is enabled and PROPAGATE_EXCEPTIONS is not changed from the default it’s implicitly enabled.

This attribute can also be configured from the config with the TESTING configuration key. Defaults to
False.

trap_http_exception(e)
Checks if an HTTP exception should be trapped or not. By default this will return False for all exceptions
except for a bad request key error if TRAP_BAD_REQUEST_ERRORS is set to True. It also returns True
if TRAP_HTTP_EXCEPTIONS is set to True.

This is called for all HTTP exceptions raised by a view function. If it returns True for any exception the
error handler for this exception is not called and it shows up as regular exception in the traceback. This is
helpful for debugging implicitly raised HTTP exceptions.

Changed in version 1.0: Bad request errors are not trapped by default in debug mode.

New in version 0.8.

try_trigger_before_first_request_functions()
Called before each request and will ensure that it triggers the before_first_request_funcs and
only exactly once per application instance (which means process usually).

2.1. API 187

https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder

Flask Documentation (1.1.x), Release 1.1.4

Internal

update_template_context(context)
Update the template context with some commonly used variables. This injects request, session, config and
g into the template context as well as everything template context processors want to inject. Note that the
as of Flask 0.6, the original values in the context will not be overridden if a context processor decides to
return a value with the same key.

Parameters context – the context as a dictionary that is updated in place to add extra vari-
ables.

url_build_error_handlers = None
A list of functions that are called when url_for() raises a BuildError. Each function registered
here is called with error, endpoint and values. If a function returns None or raises a BuildError the
next function is tried.

New in version 0.9.

url_default_functions = None
A dictionary with lists of functions that can be used as URL value preprocessors. The key None here is
used for application wide callbacks, otherwise the key is the name of the blueprint. Each of these functions
has the chance to modify the dictionary of URL values before they are used as the keyword arguments
of the view function. For each function registered this one should also provide a url_defaults()
function that adds the parameters automatically again that were removed that way.

New in version 0.7.

url_defaults(f)
Callback function for URL defaults for all view functions of the application. It’s called with the endpoint
and values and should update the values passed in place.

url_map = None
The Map for this instance. You can use this to change the routing converters after the class was created but
before any routes are connected. Example:

from werkzeug.routing import BaseConverter

class ListConverter(BaseConverter):
def to_python(self, value):

return value.split(',')
def to_url(self, values):

return ','.join(super(ListConverter, self).to_url(value)
for value in values)

app = Flask(__name__)
app.url_map.converters['list'] = ListConverter

url_map_class
alias of werkzeug.routing.Map

url_rule_class
alias of werkzeug.routing.Rule

url_value_preprocessor(f)
Register a URL value preprocessor function for all view functions in the application. These functions will
be called before the before_request() functions.

The function can modify the values captured from the matched url before they are passed to the view. For
example, this can be used to pop a common language code value and place it in g rather than pass it to
every view.

188 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Map
https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Map
https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule

Flask Documentation (1.1.x), Release 1.1.4

The function is passed the endpoint name and values dict. The return value is ignored.

url_value_preprocessors = None
A dictionary with lists of functions that are called before the before_request_funcs functions. The
key of the dictionary is the name of the blueprint this function is active for, or None for all requests. To
register a function, use url_value_preprocessor().

New in version 0.7.

use_x_sendfile
Enable this if you want to use the X-Sendfile feature. Keep in mind that the server has to support this. This
only affects files sent with the send_file() method.

New in version 0.2.

This attribute can also be configured from the config with the USE_X_SENDFILE configuration key.
Defaults to False.

view_functions = None
A dictionary of all view functions registered. The keys will be function names which are also used to
generate URLs and the values are the function objects themselves. To register a view function, use the
route() decorator.

wsgi_app(environ, start_response)
The actual WSGI application. This is not implemented in __call__() so that middlewares can be
applied without losing a reference to the app object. Instead of doing this:

app = MyMiddleware(app)

It’s a better idea to do this instead:

app.wsgi_app = MyMiddleware(app.wsgi_app)

Then you still have the original application object around and can continue to call methods on it.

Changed in version 0.7: Teardown events for the request and app contexts are called even if an unhandled
error occurs. Other events may not be called depending on when an error occurs during dispatch. See
Callbacks and Errors.

Parameters

• environ – A WSGI environment.

• start_response – A callable accepting a status code, a list of headers, and an optional
exception context to start the response.

2.1.2 Blueprint Objects

class flask.Blueprint(name, import_name, static_folder=None, static_url_path=None, tem-
plate_folder=None, url_prefix=None, subdomain=None, url_defaults=None,
root_path=None, cli_group=<object object>)

Represents a blueprint, a collection of routes and other app-related functions that can be registered on a real
application later.

A blueprint is an object that allows defining application functions without requiring an application object ahead
of time. It uses the same decorators as Flask, but defers the need for an application by recording them for later
registration.

Decorating a function with a blueprint creates a deferred function that is called with BlueprintSetupState
when the blueprint is registered on an application.

2.1. API 189

Flask Documentation (1.1.x), Release 1.1.4

See Modular Applications with Blueprints for more information.

Changed in version 1.1.0: Blueprints have a cli group to register nested CLI commands. The cli_group
parameter controls the name of the group under the flask command.

New in version 0.7.

Parameters

• name – The name of the blueprint. Will be prepended to each endpoint name.

• import_name – The name of the blueprint package, usually __name__. This helps
locate the root_path for the blueprint.

• static_folder – A folder with static files that should be served by the blueprint’s static
route. The path is relative to the blueprint’s root path. Blueprint static files are disabled by
default.

• static_url_path – The url to serve static files from. Defaults to static_folder.
If the blueprint does not have a url_prefix, the app’s static route will take precedence,
and the blueprint’s static files won’t be accessible.

• template_folder – A folder with templates that should be added to the app’s template
search path. The path is relative to the blueprint’s root path. Blueprint templates are disabled
by default. Blueprint templates have a lower precedence than those in the app’s templates
folder.

• url_prefix – A path to prepend to all of the blueprint’s URLs, to make them distinct
from the rest of the app’s routes.

• subdomain – A subdomain that blueprint routes will match on by default.

• url_defaults – A dict of default values that blueprint routes will receive by default.

• root_path – By default, the blueprint will automatically this based on import_name.
In certain situations this automatic detection can fail, so the path can be specified manually
instead.

add_app_template_filter(f, name=None)
Register a custom template filter, available application wide. Like Flask.add_template_filter()
but for a blueprint. Works exactly like the app_template_filter() decorator.

Parameters name – the optional name of the filter, otherwise the function name will be used.

add_app_template_global(f, name=None)
Register a custom template global, available application wide. Like Flask.
add_template_global() but for a blueprint. Works exactly like the app_template_global()
decorator.

New in version 0.10.

Parameters name – the optional name of the global, otherwise the function name will be used.

add_app_template_test(f, name=None)
Register a custom template test, available application wide. Like Flask.add_template_test() but
for a blueprint. Works exactly like the app_template_test() decorator.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

add_url_rule(rule, endpoint=None, view_func=None, **options)
Like Flask.add_url_rule() but for a blueprint. The endpoint for the url_for() function is
prefixed with the name of the blueprint.

190 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

after_app_request(f)
Like Flask.after_request() but for a blueprint. Such a function is executed after each request,
even if outside of the blueprint.

after_request(f)
Like Flask.after_request() but for a blueprint. This function is only executed after each request
that is handled by a function of that blueprint.

app_context_processor(f)
Like Flask.context_processor() but for a blueprint. Such a function is executed each request,
even if outside of the blueprint.

app_errorhandler(code)
Like Flask.errorhandler() but for a blueprint. This handler is used for all requests, even if outside
of the blueprint.

app_template_filter(name=None)
Register a custom template filter, available application wide. Like Flask.template_filter() but
for a blueprint.

Parameters name – the optional name of the filter, otherwise the function name will be used.

app_template_global(name=None)
Register a custom template global, available application wide. Like Flask.template_global() but
for a blueprint.

New in version 0.10.

Parameters name – the optional name of the global, otherwise the function name will be used.

app_template_test(name=None)
Register a custom template test, available application wide. Like Flask.template_test() but for a
blueprint.

New in version 0.10.

Parameters name – the optional name of the test, otherwise the function name will be used.

app_url_defaults(f)
Same as url_defaults() but application wide.

app_url_value_preprocessor(f)
Same as url_value_preprocessor() but application wide.

before_app_first_request(f)
Like Flask.before_first_request(). Such a function is executed before the first request to the
application.

before_app_request(f)
Like Flask.before_request(). Such a function is executed before each request, even if outside of
a blueprint.

before_request(f)
Like Flask.before_request() but for a blueprint. This function is only executed before each
request that is handled by a function of that blueprint.

context_processor(f)
Like Flask.context_processor() but for a blueprint. This function is only executed for requests
handled by a blueprint.

endpoint(endpoint)
Like Flask.endpoint() but for a blueprint. This does not prefix the endpoint with the blueprint

2.1. API 191

Flask Documentation (1.1.x), Release 1.1.4

name, this has to be done explicitly by the user of this method. If the endpoint is prefixed with a . it will
be registered to the current blueprint, otherwise it’s an application independent endpoint.

errorhandler(code_or_exception)
Registers an error handler that becomes active for this blueprint only. Please be aware that routing does
not happen local to a blueprint so an error handler for 404 usually is not handled by a blueprint unless it is
caused inside a view function. Another special case is the 500 internal server error which is always looked
up from the application.

Otherwise works as the errorhandler() decorator of the Flask object.

get_send_file_max_age(filename)
Provides default cache_timeout for the send_file() functions.

By default, this function returns SEND_FILE_MAX_AGE_DEFAULT from the configuration of
current_app.

Static file functions such as send_from_directory() use this function, and send_file() calls
this function on current_app when the given cache_timeout is None. If a cache_timeout is given in
send_file(), that timeout is used; otherwise, this method is called.

This allows subclasses to change the behavior when sending files based on the filename. For example, to
set the cache timeout for .js files to 60 seconds:

class MyFlask(flask.Flask):
def get_send_file_max_age(self, name):

if name.lower().endswith('.js'):
return 60

return flask.Flask.get_send_file_max_age(self, name)

New in version 0.9.

property has_static_folder
This is True if the package bound object’s container has a folder for static files.

New in version 0.5.

import_name = None
The name of the package or module that this app belongs to. Do not change this once it is set by the
constructor.

jinja_loader
The Jinja loader for this package bound object.

New in version 0.5.

json_decoder = None
Blueprint local JSON decoder class to use. Set to None to use the app’s json_decoder.

json_encoder = None
Blueprint local JSON decoder class to use. Set to None to use the app’s json_encoder.

make_setup_state(app, options, first_registration=False)
Creates an instance of BlueprintSetupState() object that is later passed to the register callback
functions. Subclasses can override this to return a subclass of the setup state.

open_resource(resource, mode=’rb’)
Opens a resource from the application’s resource folder. To see how this works, consider the following
folder structure:

192 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

/myapplication.py
/schema.sql
/static

/style.css
/templates

/layout.html
/index.html

If you want to open the schema.sql file you would do the following:

with app.open_resource('schema.sql') as f:
contents = f.read()
do_something_with(contents)

Parameters

• resource – the name of the resource. To access resources within subfolders use forward
slashes as separator.

• mode – Open file in this mode. Only reading is supported, valid values are “r” (or “rt”)
and “rb”.

record(func)
Registers a function that is called when the blueprint is registered on the application. This function is
called with the state as argument as returned by the make_setup_state() method.

record_once(func)
Works like record() but wraps the function in another function that will ensure the function is only
called once. If the blueprint is registered a second time on the application, the function passed is not
called.

register(app, options, first_registration=False)
Called by Flask.register_blueprint() to register all views and callbacks registered on the
blueprint with the application. Creates a BlueprintSetupState and calls each record() callback
with it.

Parameters

• app – The application this blueprint is being registered with.

• options – Keyword arguments forwarded from register_blueprint().

• first_registration – Whether this is the first time this blueprint has been regis-
tered on the application.

register_error_handler(code_or_exception, f)
Non-decorator version of the errorhandler() error attach function, akin to the
register_error_handler() application-wide function of the Flask object but for error
handlers limited to this blueprint.

New in version 0.11.

root_path = None
Absolute path to the package on the filesystem. Used to look up resources contained in the package.

route(rule, **options)
Like Flask.route() but for a blueprint. The endpoint for the url_for() function is prefixed with
the name of the blueprint.

2.1. API 193

Flask Documentation (1.1.x), Release 1.1.4

send_static_file(filename)
Function used internally to send static files from the static folder to the browser.

New in version 0.5.

property static_folder
The absolute path to the configured static folder.

property static_url_path
The URL prefix that the static route will be accessible from.

If it was not configured during init, it is derived from static_folder.

teardown_app_request(f)
Like Flask.teardown_request() but for a blueprint. Such a function is executed when tearing
down each request, even if outside of the blueprint.

teardown_request(f)
Like Flask.teardown_request() but for a blueprint. This function is only executed when tearing
down requests handled by a function of that blueprint. Teardown request functions are executed when the
request context is popped, even when no actual request was performed.

template_folder = None
Location of the template files to be added to the template lookup. None if templates should not be added.

url_defaults(f)
Callback function for URL defaults for this blueprint. It’s called with the endpoint and values and should
update the values passed in place.

url_value_preprocessor(f)
Registers a function as URL value preprocessor for this blueprint. It’s called before the view functions are
called and can modify the url values provided.

2.1.3 Incoming Request Data

class flask.Request(environ, populate_request=True, shallow=False)
The request object used by default in Flask. Remembers the matched endpoint and view arguments.

It is what ends up as request. If you want to replace the request object used you can subclass this and set
request_class to your subclass.

The request object is a Request subclass and provides all of the attributes Werkzeug defines plus a few Flask
specific ones.

environ
The underlying WSGI environment.

path

full_path

script_root

url

base_url

url_root
Provides different ways to look at the current RFC 3987. Imagine your application is listening on the
following application root:

194 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/wrappers/#werkzeug.wrappers.Request
https://tools.ietf.org/html/rfc3987.html

Flask Documentation (1.1.x), Release 1.1.4

http://www.example.com/myapplication

And a user requests the following URI:

http://www.example.com/myapplication/%CF%80/page.html?x=y

In this case the values of the above mentioned attributes would be the following:

path u'//page.html'
full_path u'//page.html?x=y'
script_root u'/myapplication'
base_url u'http://www.example.com/myapplication//page.html'
url u'http://www.example.com/myapplication//page.html?x=y'
url_root u'http://www.example.com/myapplication/'

property accept_charsets
List of charsets this client supports as CharsetAccept object.

property accept_encodings
List of encodings this client accepts. Encodings in a HTTP term are compression encodings such as gzip.
For charsets have a look at accept_charset.

property accept_languages
List of languages this client accepts as LanguageAccept object.

property accept_mimetypes
List of mimetypes this client supports as MIMEAccept object.

access_control_request_headers
Sent with a preflight request to indicate which headers will be sent with the cross origin request. Set
access_control_allow_headers on the response to indicate which headers are allowed.

access_control_request_method
Sent with a preflight request to indicate which method will be used for the cross origin request. Set
access_control_allow_methods on the response to indicate which methods are allowed.

property access_route
If a forwarded header exists this is a list of all ip addresses from the client ip to the last proxy server.

classmethod application(f)
Decorate a function as responder that accepts the request as the last argument. This works like the
responder() decorator but the function is passed the request object as the last argument and the re-
quest object will be closed automatically:

@Request.application
def my_wsgi_app(request):

return Response('Hello World!')

As of Werkzeug 0.14 HTTP exceptions are automatically caught and converted to responses instead of
failing.

Parameters f – the WSGI callable to decorate

Returns a new WSGI callable

property args
The parsed URL parameters (the part in the URL after the question mark).

2.1. API 195

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.CharsetAccept
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.LanguageAccept
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.MIMEAccept

Flask Documentation (1.1.x), Release 1.1.4

By default an ImmutableMultiDict is returned from this function. This can be changed by setting
parameter_storage_class to a different type. This might be necessary if the order of the form data
is important.

property authorization
The Authorization object in parsed form.

property base_url
Like url but without the querystring See also: trusted_hosts.

property blueprint
The name of the current blueprint

property cache_control
A RequestCacheControl object for the incoming cache control headers.

close()
Closes associated resources of this request object. This closes all file handles explicitly. You can also use
the request object in a with statement which will automatically close it.

New in version 0.9.

content_encoding
The Content-Encoding entity-header field is used as a modifier to the media-type. When present, its value
indicates what additional content codings have been applied to the entity-body, and thus what decoding
mechanisms must be applied in order to obtain the media-type referenced by the Content-Type header
field.

New in version 0.9.

property content_length
The Content-Length entity-header field indicates the size of the entity-body in bytes or, in the case of the
HEAD method, the size of the entity-body that would have been sent had the request been a GET.

content_md5
The Content-MD5 entity-header field, as defined in RFC 1864, is an MD5 digest of the entity-body for the
purpose of providing an end-to-end message integrity check (MIC) of the entity-body. (Note: a MIC is
good for detecting accidental modification of the entity-body in transit, but is not proof against malicious
attacks.)

New in version 0.9.

content_type
The Content-Type entity-header field indicates the media type of the entity-body sent to the recipient or,
in the case of the HEAD method, the media type that would have been sent had the request been a GET.

property cookies
A dict with the contents of all cookies transmitted with the request.

property data
Contains the incoming request data as string in case it came with a mimetype Werkzeug does not handle.

date
The Date general-header field represents the date and time at which the message was originated, having
the same semantics as orig-date in RFC 822.

dict_storage_class
alias of werkzeug.datastructures.ImmutableMultiDict

property endpoint
The endpoint that matched the request. This in combination with view_args can be used to reconstruct
the same or a modified URL. If an exception happened when matching, this will be None.

196 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ImmutableMultiDict
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.RequestCacheControl
https://docs.python.org/3/library/stdtypes.html#dict
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ImmutableMultiDict

Flask Documentation (1.1.x), Release 1.1.4

property files
MultiDict object containing all uploaded files. Each key in files is the name from the <input
type="file" name="">. Each value in files is a Werkzeug FileStorage object.

It basically behaves like a standard file object you know from Python, with the difference that it also has a
save() function that can store the file on the filesystem.

Note that files will only contain data if the request method was POST, PUT or PATCH and the <form>
that posted to the request had enctype="multipart/form-data". It will be empty otherwise.

See the MultiDict / FileStorage documentation for more details about the used data structure.

property form
The form parameters. By default an ImmutableMultiDict is returned from this function. This can be
changed by setting parameter_storage_class to a different type. This might be necessary if the
order of the form data is important.

Please keep in mind that file uploads will not end up here, but instead in the files attribute.

Changed in version 0.9: Previous to Werkzeug 0.9 this would only contain form data for POST and PUT
requests.

form_data_parser_class
alias of werkzeug.formparser.FormDataParser

classmethod from_values(*args, **kwargs)
Create a new request object based on the values provided. If environ is given missing values are filled
from there. This method is useful for small scripts when you need to simulate a request from an URL.
Do not use this method for unittesting, there is a full featured client object (Client) that allows to create
multipart requests, support for cookies etc.

This accepts the same options as the EnvironBuilder.

Changed in version 0.5: This method now accepts the same arguments as EnvironBuilder. Because
of this the environ parameter is now called environ_overrides.

Returns request object

property full_path
Requested path as unicode, including the query string.

get_data(cache=True, as_text=False, parse_form_data=False)
This reads the buffered incoming data from the client into one bytestring. By default this is cached but that
behavior can be changed by setting cache to False.

Usually it’s a bad idea to call this method without checking the content length first as a client could send
dozens of megabytes or more to cause memory problems on the server.

Note that if the form data was already parsed this method will not return anything as form data pars-
ing does not cache the data like this method does. To implicitly invoke form data parsing function set
parse_form_data to True. When this is done the return value of this method will be an empty string if the
form parser handles the data. This generally is not necessary as if the whole data is cached (which is the
default) the form parser will used the cached data to parse the form data. Please be generally aware of
checking the content length first in any case before calling this method to avoid exhausting server memory.

If as_text is set to True the return value will be a decoded unicode string.

New in version 0.9.

get_json(force=False, silent=False, cache=True)
Parse data as JSON.

If the mimetype does not indicate JSON (application/json, see is_json()), this returns None.

2.1. API 197

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.MultiDict
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage.save
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.MultiDict
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.FileStorage
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ImmutableMultiDict
https://werkzeug.palletsprojects.com/en/2.0.x/http/#werkzeug.formparser.FormDataParser
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder

Flask Documentation (1.1.x), Release 1.1.4

If parsing fails, on_json_loading_failed() is called and its return value is used as the return value.

Parameters

• force – Ignore the mimetype and always try to parse JSON.

• silent – Silence parsing errors and return None instead.

• cache – Store the parsed JSON to return for subsequent calls.

property headers
The headers from the WSGI environ as immutable EnvironHeaders.

property host
Just the host including the port if available. See also: trusted_hosts.

property host_url
Just the host with scheme as IRI. See also: trusted_hosts.

property if_match
An object containing all the etags in the If-Match header.

Return type ETags

property if_modified_since
The parsed If-Modified-Since header as datetime object.

property if_none_match
An object containing all the etags in the If-None-Match header.

Return type ETags

property if_range
The parsed If-Range header.

New in version 0.7.

Return type IfRange

property if_unmodified_since
The parsed If-Unmodified-Since header as datetime object.

property is_json
Check if the mimetype indicates JSON data, either application/json or application/*+json.

is_multiprocess
boolean that is True if the application is served by a WSGI server that spawns multiple processes.

is_multithread
boolean that is True if the application is served by a multithreaded WSGI server.

is_run_once
boolean that is True if the application will be executed only once in a process lifetime. This is the case for
CGI for example, but it’s not guaranteed that the execution only happens one time.

property is_secure
True if the request is secure.

property json
The parsed JSON data if mimetype indicates JSON (application/json, see is_json()).

Calls get_json() with default arguments.

json_module = <module 'flask.json' from '/home/docs/checkouts/readthedocs.org/user_builds/flask/envs/1.1.x/lib/python3.7/site-packages/Flask-1.1.4-py3.7.egg/flask/json/__init__.py'>

198 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.EnvironHeaders
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ETags
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ETags
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.IfRange

Flask Documentation (1.1.x), Release 1.1.4

list_storage_class
alias of werkzeug.datastructures.ImmutableList

make_form_data_parser()
Creates the form data parser. Instantiates the form_data_parser_class with some parameters.

New in version 0.8.

property max_content_length
Read-only view of the MAX_CONTENT_LENGTH config key.

max_forwards
The Max-Forwards request-header field provides a mechanism with the TRACE and OPTIONS methods
to limit the number of proxies or gateways that can forward the request to the next inbound server.

method
The request method. (For example 'GET' or 'POST').

property mimetype
Like content_type, but without parameters (eg, without charset, type etc.) and always lowercase.
For example if the content type is text/HTML; charset=utf-8 the mimetype would be 'text/
html'.

property mimetype_params
The mimetype parameters as dict. For example if the content type is text/html; charset=utf-8
the params would be {'charset': 'utf-8'}.

on_json_loading_failed(e)
Called if get_json() parsing fails and isn’t silenced. If this method returns a value, it is used as the
return value for get_json(). The default implementation raises BadRequest.

origin
The host that the request originated from. Set access_control_allow_origin on the response to
indicate which origins are allowed.

parameter_storage_class
alias of werkzeug.datastructures.ImmutableMultiDict

property path
Requested path as unicode. This works a bit like the regular path info in the WSGI environment but will
always include a leading slash, even if the URL root is accessed.

property pragma
The Pragma general-header field is used to include implementation-specific directives that might apply
to any recipient along the request/response chain. All pragma directives specify optional behavior from
the viewpoint of the protocol; however, some systems MAY require that behavior be consistent with the
directives.

query_string
The URL parameters as raw bytestring.

property range
The parsed Range header.

New in version 0.7.

Return type Range

referrer
The Referer[sic] request-header field allows the client to specify, for the server’s benefit, the address (URI)
of the resource from which the Request-URI was obtained (the “referrer”, although the header field is
misspelled).

2.1. API 199

https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ImmutableList
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.BadRequest
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.ImmutableMultiDict
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.Range

Flask Documentation (1.1.x), Release 1.1.4

property remote_addr
The remote address of the client.

remote_user
If the server supports user authentication, and the script is protected, this attribute contains the username
the user has authenticated as.

routing_exception = None
If matching the URL failed, this is the exception that will be raised / was raised as part of the request
handling. This is usually a NotFound exception or something similar.

scheme
URL scheme (http or https).

New in version 0.7.

property script_root
The root path of the script without the trailing slash.

property stream
If the incoming form data was not encoded with a known mimetype the data is stored unmodified in this
stream for consumption. Most of the time it is a better idea to use data which will give you that data as a
string. The stream only returns the data once.

Unlike input_stream this stream is properly guarded that you can’t accidentally read past the length
of the input. Werkzeug will internally always refer to this stream to read data which makes it possible to
wrap this object with a stream that does filtering.

Changed in version 0.9: This stream is now always available but might be consumed by the form parser
later on. Previously the stream was only set if no parsing happened.

property url
The reconstructed current URL as IRI. See also: trusted_hosts.

property url_charset
The charset that is assumed for URLs. Defaults to the value of charset.

New in version 0.6.

property url_root
The full URL root (with hostname), this is the application root as IRI. See also: trusted_hosts.

url_rule = None
The internal URL rule that matched the request. This can be useful to inspect which methods are al-
lowed for the URL from a before/after handler (request.url_rule.methods) etc. Though if the
request’s method was invalid for the URL rule, the valid list is available in routing_exception.
valid_methods instead (an attribute of the Werkzeug exception MethodNotAllowed) because the
request was never internally bound.

New in version 0.6.

property user_agent
The current user agent.

property values
A werkzeug.datastructures.CombinedMultiDict that combines args and form.

view_args = None
A dict of view arguments that matched the request. If an exception happened when matching, this will be
None.

200 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.NotFound
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.MethodNotAllowed
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.CombinedMultiDict

Flask Documentation (1.1.x), Release 1.1.4

property want_form_data_parsed
Returns True if the request method carries content. As of Werkzeug 0.9 this will be the case if a content
type is transmitted.

New in version 0.8.

flask.request
To access incoming request data, you can use the global request object. Flask parses incoming request data for
you and gives you access to it through that global object. Internally Flask makes sure that you always get the
correct data for the active thread if you are in a multithreaded environment.

This is a proxy. See Notes On Proxies for more information.

The request object is an instance of a Request subclass and provides all of the attributes Werkzeug defines.
This just shows a quick overview of the most important ones.

2.1.4 Response Objects

class flask.Response(response=None, status=None, headers=None, mimetype=None, con-
tent_type=None, direct_passthrough=False)

The response object that is used by default in Flask. Works like the response object from Werkzeug but is
set to have an HTML mimetype by default. Quite often you don’t have to create this object yourself because
make_response() will take care of that for you.

If you want to replace the response object used you can subclass this and set response_class to your
subclass.

Changed in version 1.0: JSON support is added to the response, like the request. This is useful when testing to
get the test client response data as JSON.

Changed in version 1.0: Added max_cookie_size.

headers
A Headers object representing the response headers.

status
A string with a response status.

status_code
The response status as integer.

property data
A descriptor that calls get_data() and set_data().

get_json(force=False, silent=False, cache=True)
Parse data as JSON.

If the mimetype does not indicate JSON (application/json, see is_json()), this returns None.

If parsing fails, on_json_loading_failed() is called and its return value is used as the return value.

Parameters

• force – Ignore the mimetype and always try to parse JSON.

• silent – Silence parsing errors and return None instead.

• cache – Store the parsed JSON to return for subsequent calls.

property is_json
Check if the mimetype indicates JSON data, either application/json or application/*+json.

2.1. API 201

https://werkzeug.palletsprojects.com/en/2.0.x/wrappers/#werkzeug.wrappers.Request
https://werkzeug.palletsprojects.com/en/2.0.x/datastructures/#werkzeug.datastructures.Headers

Flask Documentation (1.1.x), Release 1.1.4

property max_cookie_size
Read-only view of the MAX_COOKIE_SIZE config key.

See max_cookie_size in Werkzeug’s docs.

property mimetype
The mimetype (content type without charset etc.)

set_cookie(key, value=”, max_age=None, expires=None, path=’/’, domain=None, secure=False,
httponly=False, samesite=None)

Sets a cookie. The parameters are the same as in the cookie Morsel object in the Python standard library
but it accepts unicode data, too.

A warning is raised if the size of the cookie header exceeds max_cookie_size, but the header will still
be set.

Parameters

• key – the key (name) of the cookie to be set.

• value – the value of the cookie.

• max_age – should be a number of seconds, or None (default) if the cookie should last
only as long as the client’s browser session.

• expires – should be a datetime object or UNIX timestamp.

• path – limits the cookie to a given path, per default it will span the whole domain.

• domain – if you want to set a cross-domain cookie. For example, domain=".
example.com" will set a cookie that is readable by the domain www.example.com,
foo.example.com etc. Otherwise, a cookie will only be readable by the domain that
set it.

• secure – If True, the cookie will only be available via HTTPS

• httponly – disallow JavaScript to access the cookie. This is an extension to the cookie
standard and probably not supported by all browsers.

• samesite – Limits the scope of the cookie such that it will only be attached to requests
if those requests are “same-site”.

2.1.5 Sessions

If you have set Flask.secret_key (or configured it from SECRET_KEY) you can use sessions in Flask applica-
tions. A session makes it possible to remember information from one request to another. The way Flask does this is
by using a signed cookie. The user can look at the session contents, but can’t modify it unless they know the secret
key, so make sure to set that to something complex and unguessable.

To access the current session you can use the session object:

class flask.session
The session object works pretty much like an ordinary dict, with the difference that it keeps track of modifica-
tions.

This is a proxy. See Notes On Proxies for more information.

The following attributes are interesting:

new
True if the session is new, False otherwise.

202 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

modified
True if the session object detected a modification. Be advised that modifications on mutable structures
are not picked up automatically, in that situation you have to explicitly set the attribute to True yourself.
Here an example:

this change is not picked up because a mutable object (here
a list) is changed.
session['objects'].append(42)
so mark it as modified yourself
session.modified = True

permanent
If set to True the session lives for permanent_session_lifetime seconds. The default is 31 days.
If set to False (which is the default) the session will be deleted when the user closes the browser.

2.1.6 Session Interface

New in version 0.8.

The session interface provides a simple way to replace the session implementation that Flask is using.

class flask.sessions.SessionInterface
The basic interface you have to implement in order to replace the default session interface which uses
werkzeug’s securecookie implementation. The only methods you have to implement are open_session()
and save_session(), the others have useful defaults which you don’t need to change.

The session object returned by the open_session() method has to provide a dictionary like interface plus
the properties and methods from the SessionMixin. We recommend just subclassing a dict and adding that
mixin:

class Session(dict, SessionMixin):
pass

If open_session() returns None Flask will call into make_null_session() to create a session that
acts as replacement if the session support cannot work because some requirement is not fulfilled. The default
NullSession class that is created will complain that the secret key was not set.

To replace the session interface on an application all you have to do is to assign flask.Flask.
session_interface:

app = Flask(__name__)
app.session_interface = MySessionInterface()

New in version 0.8.

get_cookie_domain(app)
Returns the domain that should be set for the session cookie.

Uses SESSION_COOKIE_DOMAIN if it is configured, otherwise falls back to detecting the domain based
on SERVER_NAME.

Once detected (or if not set at all), SESSION_COOKIE_DOMAIN is updated to avoid re-running the logic.

get_cookie_httponly(app)
Returns True if the session cookie should be httponly. This currently just returns the value of the
SESSION_COOKIE_HTTPONLY config var.

get_cookie_path(app)
Returns the path for which the cookie should be valid. The default implementation uses the value from the

2.1. API 203

Flask Documentation (1.1.x), Release 1.1.4

SESSION_COOKIE_PATH config var if it’s set, and falls back to APPLICATION_ROOT or uses / if it’s
None.

get_cookie_samesite(app)
Return 'Strict' or 'Lax' if the cookie should use the SameSite attribute. This currently just returns
the value of the SESSION_COOKIE_SAMESITE setting.

get_cookie_secure(app)
Returns True if the cookie should be secure. This currently just returns the value of the
SESSION_COOKIE_SECURE setting.

get_expiration_time(app, session)
A helper method that returns an expiration date for the session or None if the session is linked to the
browser session. The default implementation returns now + the permanent session lifetime configured on
the application.

is_null_session(obj)
Checks if a given object is a null session. Null sessions are not asked to be saved.

This checks if the object is an instance of null_session_class by default.

make_null_session(app)
Creates a null session which acts as a replacement object if the real session support could not be loaded
due to a configuration error. This mainly aids the user experience because the job of the null session is to
still support lookup without complaining but modifications are answered with a helpful error message of
what failed.

This creates an instance of null_session_class by default.

null_session_class
make_null_session() will look here for the class that should be created when a null session is
requested. Likewise the is_null_session() method will perform a typecheck against this type.

alias of NullSession

open_session(app, request)
This method has to be implemented and must either return None in case the loading failed because of a
configuration error or an instance of a session object which implements a dictionary like interface + the
methods and attributes on SessionMixin.

pickle_based = False
A flag that indicates if the session interface is pickle based. This can be used by Flask extensions to make
a decision in regards to how to deal with the session object.

New in version 0.10.

save_session(app, session, response)
This is called for actual sessions returned by open_session() at the end of the request. This is still
called during a request context so if you absolutely need access to the request you can do that.

should_set_cookie(app, session)
Used by session backends to determine if a Set-Cookie header should be set for this session cookie
for this response. If the session has been modified, the cookie is set. If the session is permanent and the
SESSION_REFRESH_EACH_REQUEST config is true, the cookie is always set.

This check is usually skipped if the session was deleted.

New in version 0.11.

class flask.sessions.SecureCookieSessionInterface
The default session interface that stores sessions in signed cookies through the itsdangerous module.

204 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

static digest_method()
the hash function to use for the signature. The default is sha1

key_derivation = 'hmac'
the name of the itsdangerous supported key derivation. The default is hmac.

open_session(app, request)
This method has to be implemented and must either return None in case the loading failed because of a
configuration error or an instance of a session object which implements a dictionary like interface + the
methods and attributes on SessionMixin.

salt = 'cookie-session'
the salt that should be applied on top of the secret key for the signing of cookie based sessions.

save_session(app, session, response)
This is called for actual sessions returned by open_session() at the end of the request. This is still
called during a request context so if you absolutely need access to the request you can do that.

serializer = <flask.json.tag.TaggedJSONSerializer object>
A python serializer for the payload. The default is a compact JSON derived serializer with support for
some extra Python types such as datetime objects or tuples.

session_class
alias of SecureCookieSession

class flask.sessions.SecureCookieSession(initial=None)
Base class for sessions based on signed cookies.

This session backend will set the modified and accessed attributes. It cannot reliably track whether a
session is new (vs. empty), so new remains hard coded to False.

accessed = False
header, which allows caching proxies to cache different pages for different users.

get(key, default=None)
Return the value for key if key is in the dictionary, else default.

modified = False
When data is changed, this is set to True. Only the session dictionary itself is tracked; if the session
contains mutable data (for example a nested dict) then this must be set to True manually when modifying
that data. The session cookie will only be written to the response if this is True.

setdefault(key, default=None)
Insert key with a value of default if key is not in the dictionary.

Return the value for key if key is in the dictionary, else default.

class flask.sessions.NullSession(initial=None)
Class used to generate nicer error messages if sessions are not available. Will still allow read-only access to the
empty session but fail on setting.

class flask.sessions.SessionMixin
Expands a basic dictionary with session attributes.

accessed = True
Some implementations can detect when session data is read or written and set this when that happens. The
mixin default is hard coded to True.

modified = True
Some implementations can detect changes to the session and set this when that happens. The mixin default
is hard coded to True.

2.1. API 205

Flask Documentation (1.1.x), Release 1.1.4

property permanent
This reflects the '_permanent' key in the dict.

Notice

The PERMANENT_SESSION_LIFETIME config key can also be an integer starting with Flask 0.8. Either catch this
down yourself or use the permanent_session_lifetime attribute on the app which converts the result to an
integer automatically.

2.1.7 Test Client

class flask.testing.FlaskClient(*args, **kwargs)
Works like a regular Werkzeug test client but has some knowledge about how Flask works to defer the cleanup
of the request context stack to the end of a with body when used in a with statement. For general information
about how to use this class refer to werkzeug.test.Client.

Changed in version 0.12: app.test_client() includes preset default environment, which can be set after instantia-
tion of the app.test_client() object in client.environ_base.

Basic usage is outlined in the Testing Flask Applications chapter.

open(*args, **kwargs)
Takes the same arguments as the EnvironBuilder class with some additions: You can provide a
EnvironBuilder or a WSGI environment as only argument instead of the EnvironBuilder ar-
guments and two optional keyword arguments (as_tuple, buffered) that change the type of the return value
or the way the application is executed.

Changed in version 0.5: If a dict is provided as file in the dict for the data parameter the content type has to
be called content_type now instead of mimetype. This change was made for consistency with werkzeug.
FileWrapper.

The follow_redirects parameter was added to open().

Additional parameters:

Parameters

• as_tuple – Returns a tuple in the form (environ, result)

• buffered – Set this to True to buffer the application run. This will automatically close
the application for you as well.

• follow_redirects – Set this to True if the Client should follow HTTP redirects.

session_transaction(*args, **kwargs)
When used in combination with a with statement this opens a session transaction. This can be used to
modify the session that the test client uses. Once the with block is left the session is stored back.

with client.session_transaction() as session:
session['value'] = 42

Internally this is implemented by going through a temporary test request context and since ses-
sion handling could depend on request variables this function accepts the same arguments as
test_request_context() which are directly passed through.

206 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client

Flask Documentation (1.1.x), Release 1.1.4

2.1.8 Test CLI Runner

class flask.testing.FlaskCliRunner(app, **kwargs)
A CliRunner for testing a Flask app’s CLI commands. Typically created using test_cli_runner().
See Testing CLI Commands.

invoke(cli=None, args=None, **kwargs)
Invokes a CLI command in an isolated environment. See CliRunner.invoke for full method docu-
mentation. See Testing CLI Commands for examples.

If the obj argument is not given, passes an instance of ScriptInfo that knows how to load the Flask
app being tested.

Parameters

• cli – Command object to invoke. Default is the app’s cli group.

• args – List of strings to invoke the command with.

Returns a Result object.

2.1.9 Application Globals

To share data that is valid for one request only from one function to another, a global variable is not good enough
because it would break in threaded environments. Flask provides you with a special object that ensures it is only valid
for the active request and that will return different values for each request. In a nutshell: it does the right thing, like it
does for request and session.

flask.g
A namespace object that can store data during an application context. This is an instance of Flask.
app_ctx_globals_class, which defaults to ctx._AppCtxGlobals.

This is a good place to store resources during a request. During testing, you can use the Faking Resources and
Context pattern to pre-configure such resources.

This is a proxy. See Notes On Proxies for more information.

Changed in version 0.10: Bound to the application context instead of the request context.

class flask.ctx._AppCtxGlobals
A plain object. Used as a namespace for storing data during an application context.

Creating an app context automatically creates this object, which is made available as the g proxy.

'key' in g
Check whether an attribute is present.

New in version 0.10.

iter(g)
Return an iterator over the attribute names.

New in version 0.10.

get(name, default=None)
Get an attribute by name, or a default value. Like dict.get().

Parameters

• name – Name of attribute to get.

• default – Value to return if the attribute is not present.

2.1. API 207

https://click.palletsprojects.com/en/8.0.x/api/#click.testing.CliRunner
https://click.palletsprojects.com/en/8.0.x/api/#click.testing.CliRunner.invoke
https://click.palletsprojects.com/en/8.0.x/api/#click.testing.Result
https://docs.python.org/3/library/stdtypes.html#dict.get

Flask Documentation (1.1.x), Release 1.1.4

New in version 0.10.

pop(name, default=<object object>)
Get and remove an attribute by name. Like dict.pop().

Parameters

• name – Name of attribute to pop.

• default – Value to return if the attribute is not present, instead of raise a KeyError.

New in version 0.11.

setdefault(name, default=None)
Get the value of an attribute if it is present, otherwise set and return a default value. Like dict.
setdefault().

Parameters name – Name of attribute to get.

Param default: Value to set and return if the attribute is not present.

New in version 0.11.

2.1.10 Useful Functions and Classes

flask.current_app
A proxy to the application handling the current request. This is useful to access the application without needing
to import it, or if it can’t be imported, such as when using the application factory pattern or in blueprints and
extensions.

This is only available when an application context is pushed. This happens automatically during requests and
CLI commands. It can be controlled manually with app_context().

This is a proxy. See Notes On Proxies for more information.

flask.has_request_context()
If you have code that wants to test if a request context is there or not this function can be used. For instance,
you may want to take advantage of request information if the request object is available, but fail silently if it is
unavailable.

class User(db.Model):

def __init__(self, username, remote_addr=None):
self.username = username
if remote_addr is None and has_request_context():

remote_addr = request.remote_addr
self.remote_addr = remote_addr

Alternatively you can also just test any of the context bound objects (such as request or g) for truthness:

class User(db.Model):

def __init__(self, username, remote_addr=None):
self.username = username
if remote_addr is None and request:

remote_addr = request.remote_addr
self.remote_addr = remote_addr

New in version 0.7.

208 Chapter 2. API Reference

https://docs.python.org/3/library/stdtypes.html#dict.pop
https://docs.python.org/3/library/stdtypes.html#dict.setdefault
https://docs.python.org/3/library/stdtypes.html#dict.setdefault

Flask Documentation (1.1.x), Release 1.1.4

flask.copy_current_request_context(f)
A helper function that decorates a function to retain the current request context. This is useful when working
with greenlets. The moment the function is decorated a copy of the request context is created and then pushed
when the function is called. The current session is also included in the copied request context.

Example:

import gevent
from flask import copy_current_request_context

@app.route('/')
def index():

@copy_current_request_context
def do_some_work():

do some work here, it can access flask.request or
flask.session like you would otherwise in the view function.
...

gevent.spawn(do_some_work)
return 'Regular response'

New in version 0.10.

flask.has_app_context()
Works like has_request_context() but for the application context. You can also just do a boolean check
on the current_app object instead.

New in version 0.9.

flask.url_for(endpoint, **values)
Generates a URL to the given endpoint with the method provided.

Variable arguments that are unknown to the target endpoint are appended to the generated URL as query argu-
ments. If the value of a query argument is None, the whole pair is skipped. In case blueprints are active you
can shortcut references to the same blueprint by prefixing the local endpoint with a dot (.).

This will reference the index function local to the current blueprint:

url_for('.index')

For more information, head over to the Quickstart.

Configuration values APPLICATION_ROOT and SERVER_NAME are only used when generating URLs outside
of a request context.

To integrate applications, Flask has a hook to intercept URL build errors through Flask.
url_build_error_handlers. The url_for function results in a BuildError when the current app
does not have a URL for the given endpoint and values. When it does, the current_app calls its
url_build_error_handlers if it is not None, which can return a string to use as the result of url_for
(instead of url_for’s default to raise the BuildError exception) or re-raise the exception. An example:

def external_url_handler(error, endpoint, values):
"Looks up an external URL when `url_for` cannot build a URL."
This is an example of hooking the build_error_handler.
Here, lookup_url is some utility function you've built
which looks up the endpoint in some external URL registry.
url = lookup_url(endpoint, **values)
if url is None:

External lookup did not have a URL.
Re-raise the BuildError, in context of original traceback.
exc_type, exc_value, tb = sys.exc_info()

(continues on next page)

2.1. API 209

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

if exc_value is error:
raise exc_type, exc_value, tb

else:
raise error

url_for will use this result, instead of raising BuildError.
return url

app.url_build_error_handlers.append(external_url_handler)

Here, error is the instance of BuildError, and endpoint and values are the arguments passed into url_for.
Note that this is for building URLs outside the current application, and not for handling 404 NotFound errors.

New in version 0.10: The _scheme parameter was added.

New in version 0.9: The _anchor and _method parameters were added.

New in version 0.9: Calls Flask.handle_build_error() on BuildError.

Parameters

• endpoint – the endpoint of the URL (name of the function)

• values – the variable arguments of the URL rule

• _external – if set to True, an absolute URL is generated. Server address can be changed
via SERVER_NAME configuration variable which falls back to the Host header, then to the
IP and port of the request.

• _scheme – a string specifying the desired URL scheme. The _external parameter must be
set to True or a ValueError is raised. The default behavior uses the same scheme as the
current request, or PREFERRED_URL_SCHEME from the app configuration if no request
context is available. As of Werkzeug 0.10, this also can be set to an empty string to build
protocol-relative URLs.

• _anchor – if provided this is added as anchor to the URL.

• _method – if provided this explicitly specifies an HTTP method.

flask.abort(status, *args, **kwargs)
Raises an HTTPException for the given status code or WSGI application.

If a status code is given, it will be looked up in the list of exceptions and will raise that exception. If passed a
WSGI application, it will wrap it in a proxy WSGI exception and raise that:

abort(404) # 404 Not Found
abort(Response('Hello World'))

flask.redirect(location, code=302, Response=None)
Returns a response object (a WSGI application) that, if called, redirects the client to the target location. Sup-
ported codes are 301, 302, 303, 305, 307, and 308. 300 is not supported because it’s not a real redirect and 304
because it’s the answer for a request with a request with defined If-Modified-Since headers.

New in version 0.10: The class used for the Response object can now be passed in.

New in version 0.6: The location can now be a unicode string that is encoded using the iri_to_uri()
function.

Parameters

• location – the location the response should redirect to.

• code – the redirect status code. defaults to 302.

210 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#ValueError

Flask Documentation (1.1.x), Release 1.1.4

• Response (class) – a Response class to use when instantiating a response. The default
is werkzeug.wrappers.Response if unspecified.

flask.make_response(*args)
Sometimes it is necessary to set additional headers in a view. Because views do not have to return response
objects but can return a value that is converted into a response object by Flask itself, it becomes tricky to add
headers to it. This function can be called instead of using a return and you will get a response object which you
can use to attach headers.

If view looked like this and you want to add a new header:

def index():
return render_template('index.html', foo=42)

You can now do something like this:

def index():
response = make_response(render_template('index.html', foo=42))
response.headers['X-Parachutes'] = 'parachutes are cool'
return response

This function accepts the very same arguments you can return from a view function. This for example creates a
response with a 404 error code:

response = make_response(render_template('not_found.html'), 404)

The other use case of this function is to force the return value of a view function into a response which is helpful
with view decorators:

response = make_response(view_function())
response.headers['X-Parachutes'] = 'parachutes are cool'

Internally this function does the following things:

• if no arguments are passed, it creates a new response argument

• if one argument is passed, flask.Flask.make_response() is invoked with it.

• if more than one argument is passed, the arguments are passed to the flask.Flask.
make_response() function as tuple.

New in version 0.6.

flask.after_this_request(f)
Executes a function after this request. This is useful to modify response objects. The function is passed the
response object and has to return the same or a new one.

Example:

@app.route('/')
def index():

@after_this_request
def add_header(response):

response.headers['X-Foo'] = 'Parachute'
return response

return 'Hello World!'

This is more useful if a function other than the view function wants to modify a response. For instance think of
a decorator that wants to add some headers without converting the return value into a response object.

New in version 0.9.

2.1. API 211

https://werkzeug.palletsprojects.com/en/2.0.x/wrappers/#werkzeug.wrappers.Response

Flask Documentation (1.1.x), Release 1.1.4

flask.send_file(filename_or_fp, mimetype=None, as_attachment=False, attachment_filename=None,
add_etags=True, cache_timeout=None, conditional=False, last_modified=None)

Sends the contents of a file to the client. This will use the most efficient method available and configured.
By default it will try to use the WSGI server’s file_wrapper support. Alternatively you can set the application’s
use_x_sendfile attribute to True to directly emit an X-Sendfile header. This however requires support
of the underlying webserver for X-Sendfile.

By default it will try to guess the mimetype for you, but you can also explicitly provide one. For extra security
you probably want to send certain files as attachment (HTML for instance). The mimetype guessing requires a
filename or an attachment_filename to be provided.

ETags will also be attached automatically if a filename is provided. You can turn this off by setting
add_etags=False.

If conditional=True and filename is provided, this method will try to upgrade the response stream to support
range requests. This will allow the request to be answered with partial content response.

Please never pass filenames to this function from user sources; you should use send_from_directory()
instead.

Changed in version 1.0: UTF-8 filenames, as specified in RFC 2231, are supported.

Changed in version 0.12: The filename is no longer automatically inferred from file objects. If you want to use
automatic mimetype and etag support, pass a filepath via filename_or_fp or attachment_filename.

Changed in version 0.12: The attachment_filename is preferred over filename for MIME-type detection.

Changed in version 0.9: cache_timeout pulls its default from application config, when None.

Changed in version 0.7: mimetype guessing and etag support for file objects was deprecated because it was
unreliable. Pass a filename if you are able to, otherwise attach an etag yourself. This functionality will be
removed in Flask 1.0

New in version 0.5: The add_etags, cache_timeout and conditional parameters were added. The default behavior
is now to attach etags.

New in version 0.2.

Changed in version 1.1: Filename may be a PathLike object.

New in version 1.1: Partial content supports BytesIO.

Changed in version 1.0.3: Filenames are encoded with ASCII instead of Latin-1 for broader compatibility with
WSGI servers.

Parameters

• filename_or_fp – the filename of the file to send. This is relative to the root_path
if a relative path is specified. Alternatively a file object might be provided in which case
X-Sendfile might not work and fall back to the traditional method. Make sure that the
file pointer is positioned at the start of data to send before calling send_file().

• mimetype – the mimetype of the file if provided. If a file path is given, auto detection
happens as fallback, otherwise an error will be raised.

• as_attachment – set to True if you want to send this file with a
Content-Disposition: attachment header.

• attachment_filename – the filename for the attachment if it differs from the file’s
filename.

• add_etags – set to False to disable attaching of etags.

• conditional – set to True to enable conditional responses.

212 Chapter 2. API Reference

https://tools.ietf.org/html/rfc2231#section-4
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/io.html#io.BytesIO

Flask Documentation (1.1.x), Release 1.1.4

• cache_timeout – the timeout in seconds for the headers. When None (default), this
value is set by get_send_file_max_age() of current_app.

• last_modified – set the Last-Modified header to this value, a datetime or
timestamp. If a file was passed, this overrides its mtime.

flask.send_from_directory(directory, filename, **options)
Send a file from a given directory with send_file(). This is a secure way to quickly expose static files from
an upload folder or something similar.

Example usage:

@app.route('/uploads/<path:filename>')
def download_file(filename):

return send_from_directory(app.config['UPLOAD_FOLDER'],
filename, as_attachment=True)

Sending files and Performance

It is strongly recommended to activate either X-Sendfile support in your webserver or (if no authentication
happens) to tell the webserver to serve files for the given path on its own without calling into the web application
for improved performance.

New in version 0.5.

Parameters

• directory – the directory where all the files are stored.

• filename – the filename relative to that directory to download.

• options – optional keyword arguments that are directly forwarded to send_file().

flask.safe_join(directory, *pathnames)
Safely join directory and zero or more untrusted pathnames components.

Example usage:

@app.route('/wiki/<path:filename>')
def wiki_page(filename):

filename = safe_join(app.config['WIKI_FOLDER'], filename)
with open(filename, 'rb') as fd:

content = fd.read() # Read and process the file content...

Parameters

• directory – the trusted base directory.

• pathnames – the untrusted pathnames relative to that directory.

Raises NotFound if one or more passed paths fall out of its boundaries.

flask.escape(s: Any)→ str

class flask.Markup

classmethod escape(s: Any)→ markupsafe.Markup
Escape a string. Calls escape() and ensures that for subclasses the correct type is returned.

2.1. API 213

https://docs.python.org/3/library/datetime.html#datetime.datetime
https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.NotFound

Flask Documentation (1.1.x), Release 1.1.4

striptags()→ str
unescape() the markup, remove tags, and normalize whitespace to single spaces.

>>> Markup("Main » About").striptags()
'Main » About'

unescape()→ str
Convert escaped markup back into a text string. This replaces HTML entities with the characters they
represent.

>>> Markup("Main » About").unescape()
'Main » About'

2.1.11 Message Flashing

flask.flash(message, category=’message’)
Flashes a message to the next request. In order to remove the flashed message from the session and to display it
to the user, the template has to call get_flashed_messages().

Changed in version 0.3: category parameter added.

Parameters

• message – the message to be flashed.

• category – the category for the message. The following values are recommended:
'message' for any kind of message, 'error' for errors, 'info' for information mes-
sages and 'warning' for warnings. However any kind of string can be used as category.

flask.get_flashed_messages(with_categories=False, category_filter=())
Pulls all flashed messages from the session and returns them. Further calls in the same request to the function
will return the same messages. By default just the messages are returned, but when with_categories is set to
True, the return value will be a list of tuples in the form (category, message) instead.

Filter the flashed messages to one or more categories by providing those categories in category_filter. This
allows rendering categories in separate html blocks. The with_categories and category_filter arguments are
distinct:

• with_categories controls whether categories are returned with message text (True gives a tuple, where
False gives just the message text).

• category_filter filters the messages down to only those matching the provided categories.

See Message Flashing for examples.

Changed in version 0.9: category_filter parameter added.

Changed in version 0.3: with_categories parameter added.

Parameters

• with_categories – set to True to also receive categories.

• category_filter – whitelist of categories to limit return values

2.1.12 JSON Support

Flask uses simplejson for the JSON implementation. Since simplejson is provided by both the standard library as
well as extension, Flask will try simplejson first and then fall back to the stdlib json module. On top of that it will
delegate access to the current application’s JSON encoders and decoders for easier customization.

214 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

So for starters instead of doing:

try:
import simplejson as json

except ImportError:
import json

You can instead just do this:

from flask import json

For usage examples, read the json documentation in the standard library. The following extensions are by default
applied to the stdlib’s JSON module:

1. datetime objects are serialized as RFC 822 strings.

2. Any object with an __html__ method (like Markup) will have that method called and then the return value
is serialized as string.

The htmlsafe_dumps() function of this json module is also available as a filter called |tojson in Jinja2. Note
that in versions of Flask prior to Flask 0.10, you must disable escaping with |safe if you intend to use |tojson
output inside script tags. In Flask 0.10 and above, this happens automatically (but it’s harmless to include |safe
anyway).

<script type=text/javascript>
doSomethingWith({{ user.username|tojson|safe }});

</script>

Auto-Sort JSON Keys

The configuration variable JSON_SORT_KEYS (Configuration Handling) can be set to false to stop Flask from auto-
sorting keys. By default sorting is enabled and outside of the app context sorting is turned on.

Notice that disabling key sorting can cause issues when using content based HTTP caches and Python’s hash random-
ization feature.

flask.json.jsonify(*args, **kwargs)
This function wraps dumps() to add a few enhancements that make life easier. It turns the JSON output into
a Response object with the application/json mimetype. For convenience, it also converts multiple
arguments into an array or multiple keyword arguments into a dict. This means that both jsonify(1,2,3)
and jsonify([1,2,3]) serialize to [1,2,3].

For clarity, the JSON serialization behavior has the following differences from dumps():

1. Single argument: Passed straight through to dumps().

2. Multiple arguments: Converted to an array before being passed to dumps().

3. Multiple keyword arguments: Converted to a dict before being passed to dumps().

4. Both args and kwargs: Behavior undefined and will throw an exception.

Example usage:

from flask import jsonify

@app.route('/_get_current_user')
def get_current_user():

return jsonify(username=g.user.username,

(continues on next page)

2.1. API 215

https://docs.python.org/3/library/json.html#module-json
https://tools.ietf.org/html/rfc822.html

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

email=g.user.email,
id=g.user.id)

This will send a JSON response like this to the browser:

{
"username": "admin",
"email": "admin@localhost",
"id": 42

}

Changed in version 0.11: Added support for serializing top-level arrays. This introduces a security risk in
ancient browsers. See JSON Security for details.

This function’s response will be pretty printed if the JSONIFY_PRETTYPRINT_REGULAR config parameter
is set to True or the Flask app is running in debug mode. Compressed (not pretty) formatting currently means
no indents and no spaces after separators.

New in version 0.2.

flask.json.dumps(obj, app=None, **kwargs)
Serialize obj to a JSON-formatted string. If there is an app context pushed, use the current app’s configured
encoder (json_encoder), or fall back to the default JSONEncoder.

Takes the same arguments as the built-in json.dumps(), and does some extra configuration based on the
application. If the simplejson package is installed, it is preferred.

Parameters

• obj – Object to serialize to JSON.

• app – App instance to use to configure the JSON encoder. Uses current_app if not
given, and falls back to the default encoder when not in an app context.

• kwargs – Extra arguments passed to json.dumps().

Changed in version 1.0.3: app can be passed directly, rather than requiring an app context for configuration.

flask.json.dump(obj, fp, app=None, **kwargs)
Like dumps() but writes into a file object.

flask.json.loads(s, app=None, **kwargs)
Deserialize an object from a JSON-formatted string s. If there is an app context pushed, use the current app’s
configured decoder (json_decoder), or fall back to the default JSONDecoder.

Takes the same arguments as the built-in json.loads(), and does some extra configuration based on the
application. If the simplejson package is installed, it is preferred.

Parameters

• s – JSON string to deserialize.

• app – App instance to use to configure the JSON decoder. Uses current_app if not
given, and falls back to the default encoder when not in an app context.

• kwargs – Extra arguments passed to json.loads().

Changed in version 1.0.3: app can be passed directly, rather than requiring an app context for configuration.

flask.json.load(fp, app=None, **kwargs)
Like loads() but reads from a file object.

216 Chapter 2. API Reference

https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/json.html#json.dumps
https://docs.python.org/3/library/json.html#json.loads
https://docs.python.org/3/library/json.html#json.loads

Flask Documentation (1.1.x), Release 1.1.4

class flask.json.JSONEncoder(*, skipkeys=False, ensure_ascii=True, check_circular=True, al-
low_nan=True, sort_keys=False, indent=None, separators=None,
default=None)

The default Flask JSON encoder. This one extends the default encoder by also supporting datetime, UUID,
dataclasses, and Markup objects.

datetime objects are serialized as RFC 822 datetime strings. This is the same as the HTTP date format.

In order to support more data types, override the default() method.

default(o)
Implement this method in a subclass such that it returns a serializable object for o, or calls the base
implementation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:

iterable = iter(o)
except TypeError:

pass
else:

return list(iterable)
return JSONEncoder.default(self, o)

class flask.json.JSONDecoder(*, object_hook=None, parse_float=None, parse_int=None,
parse_constant=None, strict=True, object_pairs_hook=None)

The default JSON decoder. This one does not change the behavior from the default simplejson decoder. Consult
the json documentation for more information. This decoder is not only used for the load functions of this
module but also Request.

Tagged JSON

A compact representation for lossless serialization of non-standard JSON types.
SecureCookieSessionInterface uses this to serialize the session data, but it may be useful in other
places. It can be extended to support other types.

class flask.json.tag.TaggedJSONSerializer
Serializer that uses a tag system to compactly represent objects that are not JSON types. Passed as the interme-
diate serializer to itsdangerous.Serializer.

The following extra types are supported:

• dict

• tuple

• bytes

• Markup

• UUID

• datetime

default_tags = [<class 'flask.json.tag.TagDict'>, <class 'flask.json.tag.PassDict'>, <class 'flask.json.tag.TagTuple'>, <class 'flask.json.tag.PassList'>, <class 'flask.json.tag.TagBytes'>, <class 'flask.json.tag.TagMarkup'>, <class 'flask.json.tag.TagUUID'>, <class 'flask.json.tag.TagDateTime'>]
Tag classes to bind when creating the serializer. Other tags can be added later using register().

dumps(value)
Tag the value and dump it to a compact JSON string.

2.1. API 217

https://docs.python.org/3/library/exceptions.html#TypeError
https://docs.python.org/3/library/json.html#module-json
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#bytes
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/datetime.html#datetime.datetime

Flask Documentation (1.1.x), Release 1.1.4

loads(value)
Load data from a JSON string and deserialized any tagged objects.

register(tag_class, force=False, index=None)
Register a new tag with this serializer.

Parameters

• tag_class – tag class to register. Will be instantiated with this serializer instance.

• force – overwrite an existing tag. If false (default), a KeyError is raised.

• index – index to insert the new tag in the tag order. Useful when the new tag is a special
case of an existing tag. If None (default), the tag is appended to the end of the order.

Raises KeyError – if the tag key is already registered and force is not true.

tag(value)
Convert a value to a tagged representation if necessary.

untag(value)
Convert a tagged representation back to the original type.

class flask.json.tag.JSONTag(serializer)
Base class for defining type tags for TaggedJSONSerializer.

check(value)
Check if the given value should be tagged by this tag.

key = None
The tag to mark the serialized object with. If None, this tag is only used as an intermediate step during
tagging.

tag(value)
Convert the value to a valid JSON type and add the tag structure around it.

to_json(value)
Convert the Python object to an object that is a valid JSON type. The tag will be added later.

to_python(value)
Convert the JSON representation back to the correct type. The tag will already be removed.

Let’s seen an example that adds support for OrderedDict. Dicts don’t have an order in Python or JSON, so to
handle this we will dump the items as a list of [key, value] pairs. Subclass JSONTag and give it the new key '
od' to identify the type. The session serializer processes dicts first, so insert the new tag at the front of the order since
OrderedDict must be processed before dict.

from flask.json.tag import JSONTag

class TagOrderedDict(JSONTag):
__slots__ = ('serializer',)
key = ' od'

def check(self, value):
return isinstance(value, OrderedDict)

def to_json(self, value):
return [[k, self.serializer.tag(v)] for k, v in iteritems(value)]

def to_python(self, value):
return OrderedDict(value)

(continues on next page)

218 Chapter 2. API Reference

https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/exceptions.html#KeyError
https://docs.python.org/3/library/collections.html#collections.OrderedDict

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

app.session_interface.serializer.register(TagOrderedDict, index=0)

copyright 2010 Pallets

license BSD-3-Clause

2.1.13 Template Rendering

flask.render_template(template_name_or_list, **context)
Renders a template from the template folder with the given context.

Parameters

• template_name_or_list – the name of the template to be rendered, or an iterable
with template names the first one existing will be rendered

• context – the variables that should be available in the context of the template.

flask.render_template_string(source, **context)
Renders a template from the given template source string with the given context. Template variables will be
autoescaped.

Parameters

• source – the source code of the template to be rendered

• context – the variables that should be available in the context of the template.

flask.get_template_attribute(template_name, attribute)
Loads a macro (or variable) a template exports. This can be used to invoke a macro from within Python code. If
you for example have a template named _cider.html with the following contents:

{% macro hello(name) %}Hello {{ name }}!{% endmacro %}

You can access this from Python code like this:

hello = get_template_attribute('_cider.html', 'hello')
return hello('World')

New in version 0.2.

Parameters

• template_name – the name of the template

• attribute – the name of the variable of macro to access

2.1.14 Configuration

class flask.Config(root_path, defaults=None)
Works exactly like a dict but provides ways to fill it from files or special dictionaries. There are two common
patterns to populate the config.

Either you can fill the config from a config file:

app.config.from_pyfile('yourconfig.cfg')

2.1. API 219

Flask Documentation (1.1.x), Release 1.1.4

Or alternatively you can define the configuration options in the module that calls from_object() or provide
an import path to a module that should be loaded. It is also possible to tell it to use the same module and with
that provide the configuration values just before the call:

DEBUG = True
SECRET_KEY = 'development key'
app.config.from_object(__name__)

In both cases (loading from any Python file or loading from modules), only uppercase keys are added to the
config. This makes it possible to use lowercase values in the config file for temporary values that are not added
to the config or to define the config keys in the same file that implements the application.

Probably the most interesting way to load configurations is from an environment variable pointing to a file:

app.config.from_envvar('YOURAPPLICATION_SETTINGS')

In this case before launching the application you have to set this environment variable to the file you want to
use. On Linux and OS X use the export statement:

export YOURAPPLICATION_SETTINGS='/path/to/config/file'

On windows use set instead.

Parameters

• root_path – path to which files are read relative from. When the config object is created
by the application, this is the application’s root_path.

• defaults – an optional dictionary of default values

from_envvar(variable_name, silent=False)
Loads a configuration from an environment variable pointing to a configuration file. This is basically just
a shortcut with nicer error messages for this line of code:

app.config.from_pyfile(os.environ['YOURAPPLICATION_SETTINGS'])

Parameters

• variable_name – name of the environment variable

• silent – set to True if you want silent failure for missing files.

Returns bool. True if able to load config, False otherwise.

from_json(filename, silent=False)
Updates the values in the config from a JSON file. This function behaves as if the JSON object was a
dictionary and passed to the from_mapping() function.

Parameters

• filename – the filename of the JSON file. This can either be an absolute filename or a
filename relative to the root path.

• silent – set to True if you want silent failure for missing files.

New in version 0.11.

from_mapping(*mapping, **kwargs)
Updates the config like update() ignoring items with non-upper keys.

New in version 0.11.

220 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

from_object(obj)
Updates the values from the given object. An object can be of one of the following two types:

• a string: in this case the object with that name will be imported

• an actual object reference: that object is used directly

Objects are usually either modules or classes. from_object() loads only the uppercase attributes of
the module/class. A dict object will not work with from_object() because the keys of a dict are
not attributes of the dict class.

Example of module-based configuration:

app.config.from_object('yourapplication.default_config')
from yourapplication import default_config
app.config.from_object(default_config)

Nothing is done to the object before loading. If the object is a class and has @property attributes, it
needs to be instantiated before being passed to this method.

You should not use this function to load the actual configuration but rather configuration defaults. The
actual config should be loaded with from_pyfile() and ideally from a location not within the package
because the package might be installed system wide.

See Development / Production for an example of class-based configuration using from_object().

Parameters obj – an import name or object

from_pyfile(filename, silent=False)
Updates the values in the config from a Python file. This function behaves as if the file was imported as
module with the from_object() function.

Parameters

• filename – the filename of the config. This can either be an absolute filename or a
filename relative to the root path.

• silent – set to True if you want silent failure for missing files.

New in version 0.7: silent parameter.

get_namespace(namespace, lowercase=True, trim_namespace=True)
Returns a dictionary containing a subset of configuration options that match the specified names-
pace/prefix. Example usage:

app.config['IMAGE_STORE_TYPE'] = 'fs'
app.config['IMAGE_STORE_PATH'] = '/var/app/images'
app.config['IMAGE_STORE_BASE_URL'] = 'http://img.website.com'
image_store_config = app.config.get_namespace('IMAGE_STORE_')

The resulting dictionary image_store_config would look like:

{
'type': 'fs',
'path': '/var/app/images',
'base_url': 'http://img.website.com'

}

This is often useful when configuration options map directly to keyword arguments in functions or class
constructors.

Parameters

2.1. API 221

Flask Documentation (1.1.x), Release 1.1.4

• namespace – a configuration namespace

• lowercase – a flag indicating if the keys of the resulting dictionary should be lowercase

• trim_namespace – a flag indicating if the keys of the resulting dictionary should not
include the namespace

New in version 0.11.

2.1.15 Stream Helpers

flask.stream_with_context(generator_or_function)
Request contexts disappear when the response is started on the server. This is done for efficiency reasons and to
make it less likely to encounter memory leaks with badly written WSGI middlewares. The downside is that if
you are using streamed responses, the generator cannot access request bound information any more.

This function however can help you keep the context around for longer:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

@stream_with_context
def generate():

yield 'Hello '
yield request.args['name']
yield '!'

return Response(generate())

Alternatively it can also be used around a specific generator:

from flask import stream_with_context, request, Response

@app.route('/stream')
def streamed_response():

def generate():
yield 'Hello '
yield request.args['name']
yield '!'

return Response(stream_with_context(generate()))

New in version 0.9.

2.1.16 Useful Internals

class flask.ctx.RequestContext(app, environ, request=None, session=None)
The request context contains all request relevant information. It is created at the beginning of the request and
pushed to the _request_ctx_stack and removed at the end of it. It will create the URL adapter and request object
for the WSGI environment provided.

Do not attempt to use this class directly, instead use test_request_context() and
request_context() to create this object.

When the request context is popped, it will evaluate all the functions registered on the application for teardown
execution (teardown_request()).

The request context is automatically popped at the end of the request for you. In debug mode the request context
is kept around if exceptions happen so that interactive debuggers have a chance to introspect the data. With

222 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

0.4 this can also be forced for requests that did not fail and outside of DEBUG mode. By setting 'flask.
_preserve_context' to True on the WSGI environment the context will not pop itself at the end of the
request. This is used by the test_client() for example to implement the deferred cleanup functionality.

You might find this helpful for unittests where you need the information from the context local around for a
little longer. Make sure to properly pop() the stack yourself in that situation, otherwise your unittests will leak
memory.

copy()
Creates a copy of this request context with the same request object. This can be used to move a request
context to a different greenlet. Because the actual request object is the same this cannot be used to move a
request context to a different thread unless access to the request object is locked.

Changed in version 1.1: The current session object is used instead of reloading the original data. This
prevents flask.session pointing to an out-of-date object.

New in version 0.10.

match_request()
Can be overridden by a subclass to hook into the matching of the request.

pop(exc=<object object>)
Pops the request context and unbinds it by doing that. This will also trigger the execution of functions
registered by the teardown_request() decorator.

Changed in version 0.9: Added the exc argument.

push()
Binds the request context to the current context.

flask._request_ctx_stack
The internal LocalStack that holds RequestContext instances. Typically, the request and session
proxies should be accessed instead of the stack. It may be useful to access the stack in extension code.

The following attributes are always present on each layer of the stack:

app the active Flask application.

url_adapter the URL adapter that was used to match the request.

request the current request object.

session the active session object.

g an object with all the attributes of the flask.g object.

flashes an internal cache for the flashed messages.

Example usage:

from flask import _request_ctx_stack

def get_session():
ctx = _request_ctx_stack.top
if ctx is not None:

return ctx.session

class flask.ctx.AppContext(app)
The application context binds an application object implicitly to the current thread or greenlet, similar to how the
RequestContext binds request information. The application context is also implicitly created if a request
context is created but the application is not on top of the individual application context.

pop(exc=<object object>)
Pops the app context.

2.1. API 223

https://werkzeug.palletsprojects.com/en/2.0.x/local/#werkzeug.local.LocalStack

Flask Documentation (1.1.x), Release 1.1.4

push()
Binds the app context to the current context.

flask._app_ctx_stack
The internal LocalStack that holds AppContext instances. Typically, the current_app and g proxies
should be accessed instead of the stack. Extensions can access the contexts on the stack as a namespace to store
data.

New in version 0.9.

class flask.blueprints.BlueprintSetupState(blueprint, app, options, first_registration)
Temporary holder object for registering a blueprint with the application. An instance of this class is created by
the make_setup_state() method and later passed to all register callback functions.

add_url_rule(rule, endpoint=None, view_func=None, **options)
A helper method to register a rule (and optionally a view function) to the application. The endpoint is
automatically prefixed with the blueprint’s name.

app = None
a reference to the current application

blueprint = None
a reference to the blueprint that created this setup state.

first_registration = None
as blueprints can be registered multiple times with the application and not everything wants to be registered
multiple times on it, this attribute can be used to figure out if the blueprint was registered in the past already.

options = None
a dictionary with all options that were passed to the register_blueprint() method.

subdomain = None
The subdomain that the blueprint should be active for, None otherwise.

url_defaults = None
A dictionary with URL defaults that is added to each and every URL that was defined with the blueprint.

url_prefix = None
The prefix that should be used for all URLs defined on the blueprint.

2.1.17 Signals

New in version 0.6.

signals.signals_available
True if the signaling system is available. This is the case when blinker is installed.

The following signals exist in Flask:

flask.template_rendered
This signal is sent when a template was successfully rendered. The signal is invoked with the instance of the
template as template and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
sender.logger.debug('Rendering template "%s" with context %s',

template.name or 'string template',
context)

(continues on next page)

224 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/local/#werkzeug.local.LocalStack
https://pypi.org/project/blinker/

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

from flask import template_rendered
template_rendered.connect(log_template_renders, app)

flask.before_render_template
This signal is sent before template rendering process. The signal is invoked with the instance of the template as
template and the context as dictionary (named context).

Example subscriber:

def log_template_renders(sender, template, context, **extra):
sender.logger.debug('Rendering template "%s" with context %s',

template.name or 'string template',
context)

from flask import before_render_template
before_render_template.connect(log_template_renders, app)

flask.request_started
This signal is sent when the request context is set up, before any request processing happens. Because the
request context is already bound, the subscriber can access the request with the standard global proxies such as
request.

Example subscriber:

def log_request(sender, **extra):
sender.logger.debug('Request context is set up')

from flask import request_started
request_started.connect(log_request, app)

flask.request_finished
This signal is sent right before the response is sent to the client. It is passed the response to be sent named
response.

Example subscriber:

def log_response(sender, response, **extra):
sender.logger.debug('Request context is about to close down. '

'Response: %s', response)

from flask import request_finished
request_finished.connect(log_response, app)

flask.got_request_exception
This signal is sent when an exception happens during request processing. It is sent before the standard exception
handling kicks in and even in debug mode, where no exception handling happens. The exception itself is passed
to the subscriber as exception.

Example subscriber:

def log_exception(sender, exception, **extra):
sender.logger.debug('Got exception during processing: %s', exception)

from flask import got_request_exception
got_request_exception.connect(log_exception, app)

flask.request_tearing_down
This signal is sent when the request is tearing down. This is always called, even if an exception is caused. Cur-

2.1. API 225

Flask Documentation (1.1.x), Release 1.1.4

rently functions listening to this signal are called after the regular teardown handlers, but this is not something
you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
session.close()

from flask import request_tearing_down
request_tearing_down.connect(close_db_connection, app)

As of Flask 0.9, this will also be passed an exc keyword argument that has a reference to the exception that
caused the teardown if there was one.

flask.appcontext_tearing_down
This signal is sent when the app context is tearing down. This is always called, even if an exception is caused.
Currently functions listening to this signal are called after the regular teardown handlers, but this is not some-
thing you can rely on.

Example subscriber:

def close_db_connection(sender, **extra):
session.close()

from flask import appcontext_tearing_down
appcontext_tearing_down.connect(close_db_connection, app)

This will also be passed an exc keyword argument that has a reference to the exception that caused the teardown
if there was one.

flask.appcontext_pushed
This signal is sent when an application context is pushed. The sender is the application. This is usually useful
for unittests in order to temporarily hook in information. For instance it can be used to set a resource early onto
the g object.

Example usage:

from contextlib import contextmanager
from flask import appcontext_pushed

@contextmanager
def user_set(app, user):

def handler(sender, **kwargs):
g.user = user

with appcontext_pushed.connected_to(handler, app):
yield

And in the testcode:

def test_user_me(self):
with user_set(app, 'john'):

c = app.test_client()
resp = c.get('/users/me')
assert resp.data == 'username=john'

New in version 0.10.

flask.appcontext_popped
This signal is sent when an application context is popped. The sender is the application. This usually falls in
line with the appcontext_tearing_down signal.

226 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

New in version 0.10.

flask.message_flashed
This signal is sent when the application is flashing a message. The messages is sent as message keyword
argument and the category as category.

Example subscriber:

recorded = []
def record(sender, message, category, **extra):

recorded.append((message, category))

from flask import message_flashed
message_flashed.connect(record, app)

New in version 0.10.

class signals.Namespace
An alias for blinker.base.Namespace if blinker is available, otherwise a dummy class that creates fake
signals. This class is available for Flask extensions that want to provide the same fallback system as Flask itself.

signal(name, doc=None)
Creates a new signal for this namespace if blinker is available, otherwise returns a fake signal that has a
send method that will do nothing but will fail with a RuntimeError for all other operations, including
connecting.

2.1.18 Class-Based Views

New in version 0.7.

class flask.views.View
Alternative way to use view functions. A subclass has to implement dispatch_request() which is called
with the view arguments from the URL routing system. If methods is provided the methods do not have to be
passed to the add_url_rule() method explicitly:

class MyView(View):
methods = ['GET']

def dispatch_request(self, name):
return 'Hello %s!' % name

app.add_url_rule('/hello/<name>', view_func=MyView.as_view('myview'))

When you want to decorate a pluggable view you will have to either do that when the view function is created
(by wrapping the return value of as_view()) or you can use the decorators attribute:

class SecretView(View):
methods = ['GET']
decorators = [superuser_required]

def dispatch_request(self):
...

The decorators stored in the decorators list are applied one after another when the view function is created. Note
that you can not use the class based decorators since those would decorate the view class and not the generated
view function!

2.1. API 227

https://pythonhosted.org/blinker/index.html#blinker.base.Namespace
https://docs.python.org/3/library/exceptions.html#RuntimeError

Flask Documentation (1.1.x), Release 1.1.4

classmethod as_view(name, *class_args, **class_kwargs)
Converts the class into an actual view function that can be used with the routing system. Internally
this generates a function on the fly which will instantiate the View on each request and call the
dispatch_request() method on it.

The arguments passed to as_view() are forwarded to the constructor of the class.

decorators = ()
The canonical way to decorate class-based views is to decorate the return value of as_view(). However
since this moves parts of the logic from the class declaration to the place where it’s hooked into the routing
system.

You can place one or more decorators in this list and whenever the view function is created the result is
automatically decorated.

New in version 0.8.

dispatch_request()
Subclasses have to override this method to implement the actual view function code. This method is called
with all the arguments from the URL rule.

methods = None
A list of methods this view can handle.

provide_automatic_options = None
Setting this disables or force-enables the automatic options handling.

class flask.views.MethodView
A class-based view that dispatches request methods to the corresponding class methods. For example, if you
implement a get method, it will be used to handle GET requests.

class CounterAPI(MethodView):
def get(self):

return session.get('counter', 0)

def post(self):
session['counter'] = session.get('counter', 0) + 1
return 'OK'

app.add_url_rule('/counter', view_func=CounterAPI.as_view('counter'))

dispatch_request(*args, **kwargs)
Subclasses have to override this method to implement the actual view function code. This method is called
with all the arguments from the URL rule.

2.1.19 URL Route Registrations

Generally there are three ways to define rules for the routing system:

1. You can use the flask.Flask.route() decorator.

2. You can use the flask.Flask.add_url_rule() function.

3. You can directly access the underlying Werkzeug routing system which is exposed as flask.Flask.
url_map.

Variable parts in the route can be specified with angular brackets (/user/<username>). By default a variable
part in the URL accepts any string without a slash however a different converter can be specified as well by using
<converter:name>.

Variable parts are passed to the view function as keyword arguments.

228 Chapter 2. API Reference

Flask Documentation (1.1.x), Release 1.1.4

The following converters are available:

string accepts any text without a slash (the default)
int accepts integers
float like int but for floating point values
path like the default but also accepts slashes
any matches one of the items provided
uuid accepts UUID strings

Custom converters can be defined using flask.Flask.url_map.

Here are some examples:

@app.route('/')
def index():

pass

@app.route('/<username>')
def show_user(username):

pass

@app.route('/post/<int:post_id>')
def show_post(post_id):

pass

An important detail to keep in mind is how Flask deals with trailing slashes. The idea is to keep each URL unique so
the following rules apply:

1. If a rule ends with a slash and is requested without a slash by the user, the user is automatically redirected to the
same page with a trailing slash attached.

2. If a rule does not end with a trailing slash and the user requests the page with a trailing slash, a 404 not found is
raised.

This is consistent with how web servers deal with static files. This also makes it possible to use relative link targets
safely.

You can also define multiple rules for the same function. They have to be unique however. Defaults can also be
specified. Here for example is a definition for a URL that accepts an optional page:

@app.route('/users/', defaults={'page': 1})
@app.route('/users/page/<int:page>')
def show_users(page):

pass

This specifies that /users/ will be the URL for page one and /users/page/N will be the URL for page N.

If a URL contains a default value, it will be redirected to its simpler form with a 301 redirect. In the above example,
/users/page/1 will be redirected to /users/. If your route handles GET and POST requests, make sure the
default route only handles GET, as redirects can’t preserve form data.

@app.route('/region/', defaults={'id': 1})
@app.route('/region/<int:id>', methods=['GET', 'POST'])
def region(id):

pass

Here are the parameters that route() and add_url_rule() accept. The only difference is that with the route
parameter the view function is defined with the decorator instead of the view_func parameter.

2.1. API 229

Flask Documentation (1.1.x), Release 1.1.4

rule the URL rule as string
end-
point

the endpoint for the registered URL rule. Flask itself assumes that the name of the view function is the name
of the endpoint if not explicitly stated.

view_functhe function to call when serving a request to the provided endpoint. If this is not provided one can specify
the function later by storing it in the view_functions dictionary with the endpoint as key.

de-
faults

A dictionary with defaults for this rule. See the example above for how defaults work.

sub-
do-
main

specifies the rule for the subdomain in case subdomain matching is in use. If not specified the default
subdomain is assumed.

**op-
tions

the options to be forwarded to the underlying Rule object. A change to Werkzeug is handling of method
options. methods is a list of methods this rule should be limited to (GET, POST etc.). By default a rule just
listens for GET (and implicitly HEAD). Starting with Flask 0.6, OPTIONS is implicitly added and handled
by the standard request handling. They have to be specified as keyword arguments.

2.1.20 View Function Options

For internal usage the view functions can have some attributes attached to customize behavior the view function would
normally not have control over. The following attributes can be provided optionally to either override some defaults
to add_url_rule() or general behavior:

• __name__: The name of a function is by default used as endpoint. If endpoint is provided explicitly this value
is used. Additionally this will be prefixed with the name of the blueprint by default which cannot be customized
from the function itself.

• methods: If methods are not provided when the URL rule is added, Flask will look on the view function object
itself if a methods attribute exists. If it does, it will pull the information for the methods from there.

• provide_automatic_options: if this attribute is set Flask will either force enable or disable the automatic im-
plementation of the HTTP OPTIONS response. This can be useful when working with decorators that want to
customize the OPTIONS response on a per-view basis.

• required_methods: if this attribute is set, Flask will always add these methods when registering a URL rule even
if the methods were explicitly overridden in the route() call.

Full example:

def index():
if request.method == 'OPTIONS':

custom options handling here
...

return 'Hello World!'
index.provide_automatic_options = False
index.methods = ['GET', 'OPTIONS']

app.add_url_rule('/', index)

New in version 0.8: The provide_automatic_options functionality was added.

2.1.21 Command Line Interface

class flask.cli.FlaskGroup(add_default_commands=True, create_app=None,
add_version_option=True, load_dotenv=True, set_debug_flag=True,
**extra)

Special subclass of the AppGroup group that supports loading more commands from the configured Flask app.

230 Chapter 2. API Reference

https://werkzeug.palletsprojects.com/en/2.0.x/routing/#werkzeug.routing.Rule

Flask Documentation (1.1.x), Release 1.1.4

Normally a developer does not have to interface with this class but there are some very advanced use cases for
which it makes sense to create an instance of this.

For information as of why this is useful see Custom Scripts.

Parameters

• add_default_commands – if this is True then the default run and shell commands will
be added.

• add_version_option – adds the --version option.

• create_app – an optional callback that is passed the script info and returns the loaded
app.

• load_dotenv – Load the nearest .env and .flaskenv files to set environment vari-
ables. Will also change the working directory to the directory containing the first file found.

• set_debug_flag – Set the app’s debug flag based on the active environment

Changed in version 1.0: If installed, python-dotenv will be used to load environment variables from .env and
.flaskenv files.

get_command(ctx, name)
Given a context and a command name, this returns a Command object if it exists or returns None.

list_commands(ctx)
Returns a list of subcommand names in the order they should appear.

main(*args, **kwargs)
This is the way to invoke a script with all the bells and whistles as a command line application. This will
always terminate the application after a call. If this is not wanted, SystemExit needs to be caught.

This method is also available by directly calling the instance of a Command.

New in version 3.0: Added the standalone_mode flag to control the standalone mode.

Parameters

• args – the arguments that should be used for parsing. If not provided, sys.argv[1:]
is used.

• prog_name – the program name that should be used. By default the program name is
constructed by taking the file name from sys.argv[0].

• complete_var – the environment variable that controls the bash completion support.
The default is "_<prog_name>_COMPLETE" with prog_name in uppercase.

• standalone_mode – the default behavior is to invoke the script in standalone mode.
Click will then handle exceptions and convert them into error messages and the function
will never return but shut down the interpreter. If this is set to False they will be propagated
to the caller and the return value of this function is the return value of invoke().

• extra – extra keyword arguments are forwarded to the context constructor. See
Context for more information.

class flask.cli.AppGroup(name=None, commands=None, **attrs)
This works similar to a regular click Group but it changes the behavior of the command() decorator so that it
automatically wraps the functions in with_appcontext().

Not to be confused with FlaskGroup.

command(*args, **kwargs)
This works exactly like the method of the same name on a regular click.Group but it wraps callbacks
in with_appcontext() unless it’s disabled by passing with_appcontext=False.

2.1. API 231

https://click.palletsprojects.com/en/8.0.x/api/#click.Group
https://click.palletsprojects.com/en/8.0.x/api/#click.Group

Flask Documentation (1.1.x), Release 1.1.4

group(*args, **kwargs)
This works exactly like the method of the same name on a regular click.Group but it defaults the group
class to AppGroup.

class flask.cli.ScriptInfo(app_import_path=None, create_app=None, set_debug_flag=True)
Helper object to deal with Flask applications. This is usually not necessary to interface with as it’s used internally
in the dispatching to click. In future versions of Flask this object will most likely play a bigger role. Typically
it’s created automatically by the FlaskGroup but you can also manually create it and pass it onwards as click
object.

app_import_path = None
Optionally the import path for the Flask application.

create_app = None
Optionally a function that is passed the script info to create the instance of the application.

data = None
A dictionary with arbitrary data that can be associated with this script info.

load_app()
Loads the Flask app (if not yet loaded) and returns it. Calling this multiple times will just result in the
already loaded app to be returned.

flask.cli.load_dotenv(path=None)
Load “dotenv” files in order of precedence to set environment variables.

If an env var is already set it is not overwritten, so earlier files in the list are preferred over later files.

Changes the current working directory to the location of the first file found, with the assumption that it is in the
top level project directory and will be where the Python path should import local packages from.

This is a no-op if python-dotenv is not installed.

Parameters path – Load the file at this location instead of searching.

Returns True if a file was loaded.

Changed in version 1.1.0: Returns False when python-dotenv is not installed, or when the given path isn’t a
file.

New in version 1.0.

flask.cli.with_appcontext(f)
Wraps a callback so that it’s guaranteed to be executed with the script’s application context. If callbacks are reg-
istered directly to the app.cli object then they are wrapped with this function by default unless it’s disabled.

flask.cli.pass_script_info(f)
Marks a function so that an instance of ScriptInfo is passed as first argument to the click callback.

flask.cli.run_command = <Command run>
Run a local development server.

This server is for development purposes only. It does not provide the stability, security, or performance of
production WSGI servers.

The reloader and debugger are enabled by default if FLASK_ENV=development or FLASK_DEBUG=1.

flask.cli.shell_command = <Command shell>
Run an interactive Python shell in the context of a given Flask application. The application will populate the
default namespace of this shell according to it’s configuration.

This is useful for executing small snippets of management code without having to manually configure the appli-
cation.

232 Chapter 2. API Reference

https://click.palletsprojects.com/en/8.0.x/api/#click.Group
https://github.com/theskumar/python-dotenv#readme

CHAPTER

THREE

ADDITIONAL NOTES

Design notes, legal information and changelog are here for the interested.

3.1 Design Decisions in Flask

If you are curious why Flask does certain things the way it does and not differently, this section is for you. This should
give you an idea about some of the design decisions that may appear arbitrary and surprising at first, especially in
direct comparison with other frameworks.

3.1.1 The Explicit Application Object

A Python web application based on WSGI has to have one central callable object that implements the actual applica-
tion. In Flask this is an instance of the Flask class. Each Flask application has to create an instance of this class
itself and pass it the name of the module, but why can’t Flask do that itself?

Without such an explicit application object the following code:

from flask import Flask
app = Flask(__name__)

@app.route('/')
def index():

return 'Hello World!'

Would look like this instead:

from hypothetical_flask import route

@route('/')
def index():

return 'Hello World!'

There are three major reasons for this. The most important one is that implicit application objects require that there
may only be one instance at the time. There are ways to fake multiple applications with a single application object, like
maintaining a stack of applications, but this causes some problems I won’t outline here in detail. Now the question is:
when does a microframework need more than one application at the same time? A good example for this is unit testing.
When you want to test something it can be very helpful to create a minimal application to test specific behavior. When
the application object is deleted everything it allocated will be freed again.

Another thing that becomes possible when you have an explicit object lying around in your code is that you can
subclass the base class (Flask) to alter specific behavior. This would not be possible without hacks if the object were
created ahead of time for you based on a class that is not exposed to you.

233

Flask Documentation (1.1.x), Release 1.1.4

But there is another very important reason why Flask depends on an explicit instantiation of that class: the package
name. Whenever you create a Flask instance you usually pass it __name__ as package name. Flask depends on that
information to properly load resources relative to your module. With Python’s outstanding support for reflection it
can then access the package to figure out where the templates and static files are stored (see open_resource()).
Now obviously there are frameworks around that do not need any configuration and will still be able to load templates
relative to your application module. But they have to use the current working directory for that, which is a very
unreliable way to determine where the application is. The current working directory is process-wide and if you are
running multiple applications in one process (which could happen in a webserver without you knowing) the paths
will be off. Worse: many webservers do not set the working directory to the directory of your application but to the
document root which does not have to be the same folder.

The third reason is “explicit is better than implicit”. That object is your WSGI application, you don’t have to remember
anything else. If you want to apply a WSGI middleware, just wrap it and you’re done (though there are better ways to
do that so that you do not lose the reference to the application object wsgi_app()).

Furthermore this design makes it possible to use a factory function to create the application which is very helpful for
unit testing and similar things (Application Factories).

3.1.2 The Routing System

Flask uses the Werkzeug routing system which was designed to automatically order routes by complexity. This means
that you can declare routes in arbitrary order and they will still work as expected. This is a requirement if you want to
properly implement decorator based routing since decorators could be fired in undefined order when the application is
split into multiple modules.

Another design decision with the Werkzeug routing system is that routes in Werkzeug try to ensure that URLs are
unique. Werkzeug will go quite far with that in that it will automatically redirect to a canonical URL if a route is
ambiguous.

3.1.3 One Template Engine

Flask decides on one template engine: Jinja2. Why doesn’t Flask have a pluggable template engine interface? You
can obviously use a different template engine, but Flask will still configure Jinja2 for you. While that limitation that
Jinja2 is always configured will probably go away, the decision to bundle one template engine and use that will not.

Template engines are like programming languages and each of those engines has a certain understanding about how
things work. On the surface they all work the same: you tell the engine to evaluate a template with a set of variables
and take the return value as string.

But that’s about where similarities end. Jinja2 for example has an extensive filter system, a certain way to do template
inheritance, support for reusable blocks (macros) that can be used from inside templates and also from Python code,
uses Unicode for all operations, supports iterative template rendering, configurable syntax and more. On the other
hand an engine like Genshi is based on XML stream evaluation, template inheritance by taking the availability of
XPath into account and more. Mako on the other hand treats templates similar to Python modules.

When it comes to connecting a template engine with an application or framework there is more than just rendering
templates. For instance, Flask uses Jinja2’s extensive autoescaping support. Also it provides ways to access macros
from Jinja2 templates.

A template abstraction layer that would not take the unique features of the template engines away is a science on its
own and a too large undertaking for a microframework like Flask.

Furthermore extensions can then easily depend on one template language being present. You can easily use your own
templating language, but an extension could still depend on Jinja itself.

234 Chapter 3. Additional Notes

Flask Documentation (1.1.x), Release 1.1.4

3.1.4 Micro with Dependencies

Why does Flask call itself a microframework and yet it depends on two libraries (namely Werkzeug and Jinja2). Why
shouldn’t it? If we look over to the Ruby side of web development there we have a protocol very similar to WSGI.
Just that it’s called Rack there, but besides that it looks very much like a WSGI rendition for Ruby. But nearly all
applications in Ruby land do not work with Rack directly, but on top of a library with the same name. This Rack
library has two equivalents in Python: WebOb (formerly Paste) and Werkzeug. Paste is still around but from my
understanding it’s sort of deprecated in favour of WebOb. The development of WebOb and Werkzeug started side by
side with similar ideas in mind: be a good implementation of WSGI for other applications to take advantage.

Flask is a framework that takes advantage of the work already done by Werkzeug to properly interface WSGI (which
can be a complex task at times). Thanks to recent developments in the Python package infrastructure, packages with
dependencies are no longer an issue and there are very few reasons against having libraries that depend on others.

3.1.5 Thread Locals

Flask uses thread local objects (context local objects in fact, they support greenlet contexts as well) for request, session
and an extra object you can put your own things on (g). Why is that and isn’t that a bad idea?

Yes it is usually not such a bright idea to use thread locals. They cause troubles for servers that are not based on
the concept of threads and make large applications harder to maintain. However Flask is just not designed for large
applications or asynchronous servers. Flask wants to make it quick and easy to write a traditional web application.

Also see the Becoming Big section of the documentation for some inspiration for larger applications based on Flask.

3.1.6 What Flask is, What Flask is Not

Flask will never have a database layer. It will not have a form library or anything else in that direction. Flask itself
just bridges to Werkzeug to implement a proper WSGI application and to Jinja2 to handle templating. It also binds to
a few common standard library packages such as logging. Everything else is up for extensions.

Why is this the case? Because people have different preferences and requirements and Flask could not meet those if
it would force any of this into the core. The majority of web applications will need a template engine in some sort.
However not every application needs a SQL database.

The idea of Flask is to build a good foundation for all applications. Everything else is up to you or extensions.

3.2 HTML/XHTML FAQ

The Flask documentation and example applications are using HTML5. You may notice that in many situations, when
end tags are optional they are not used, so that the HTML is cleaner and faster to load. Because there is much confusion
about HTML and XHTML among developers, this document tries to answer some of the major questions.

3.2.1 History of XHTML

For a while, it appeared that HTML was about to be replaced by XHTML. However, barely any websites on the
Internet are actual XHTML (which is HTML processed using XML rules). There are a couple of major reasons why
this is the case. One of them is Internet Explorer’s lack of proper XHTML support. The XHTML spec states that
XHTML must be served with the MIME type application/xhtml+xml, but Internet Explorer refuses to read
files with that MIME type. While it is relatively easy to configure Web servers to serve XHTML properly, few people
do. This is likely because properly using XHTML can be quite painful.

3.2. HTML/XHTML FAQ 235

Flask Documentation (1.1.x), Release 1.1.4

One of the most important causes of pain is XML’s draconian (strict and ruthless) error handling. When an XML
parsing error is encountered, the browser is supposed to show the user an ugly error message, instead of attempting to
recover from the error and display what it can. Most of the (X)HTML generation on the web is based on non-XML
template engines (such as Jinja, the one used in Flask) which do not protect you from accidentally creating invalid
XHTML. There are XML based template engines, such as Kid and the popular Genshi, but they often come with a
larger runtime overhead and are not as straightforward to use because they have to obey XML rules.

The majority of users, however, assumed they were properly using XHTML. They wrote an XHTML doctype at the
top of the document and self-closed all the necessary tags (
 becomes
 or
</br> in XHTML).
However, even if the document properly validates as XHTML, what really determines XHTML/HTML processing in
browsers is the MIME type, which as said before is often not set properly. So the valid XHTML was being treated as
invalid HTML.

XHTML also changed the way JavaScript is used. To properly work with XHTML, programmers have to use the
namespaced DOM interface with the XHTML namespace to query for HTML elements.

3.2.2 History of HTML5

Development of the HTML5 specification was started in 2004 under the name “Web Applications 1.0” by the Web
Hypertext Application Technology Working Group, or WHATWG (which was formed by the major browser vendors
Apple, Mozilla, and Opera) with the goal of writing a new and improved HTML specification, based on existing
browser behavior instead of unrealistic and backwards-incompatible specifications.

For example, in HTML4 <title/Hello/ theoretically parses exactly the same as <title>Hello</title>.
However, since people were using XHTML-like tags along the lines of <link />, browser vendors implemented the
XHTML syntax over the syntax defined by the specification.

In 2007, the specification was adopted as the basis of a new HTML specification under the umbrella of the W3C,
known as HTML5. Currently, it appears that XHTML is losing traction, as the XHTML 2 working group has been
disbanded and HTML5 is being implemented by all major browser vendors.

3.2.3 HTML versus XHTML

The following table gives you a quick overview of features available in HTML 4.01, XHTML 1.1 and HTML5.
(XHTML 1.0 is not included, as it was superseded by XHTML 1.1 and the barely-used XHTML5.)

236 Chapter 3. Additional Notes

Flask Documentation (1.1.x), Release 1.1.4

HTML4.01 XHTML1.1 HTML5

<tag/value/ == <tag>value</tag> 1

 supported 2

<script/> supported

should be served as text/html 3

should be served as application/xhtml+xml

strict error handling

inline SVG

inline MathML

<video> tag

<audio> tag

New semantic tags like <article>

3.2.4 What does “strict” mean?

HTML5 has strictly defined parsing rules, but it also specifies exactly how a browser should react to parsing errors
- unlike XHTML, which simply states parsing should abort. Some people are confused by apparently invalid syntax
that still generates the expected results (for example, missing end tags or unquoted attribute values).

Some of these work because of the lenient error handling most browsers use when they encounter a markup error,
others are actually specified. The following constructs are optional in HTML5 by standard, but have to be supported
by browsers:

• Wrapping the document in an <html> tag

• Wrapping header elements in <head> or the body elements in <body>

• Closing the <p>, , <dt>, <dd>, <tr>, <td>, <th>, <tbody>, <thead>, or <tfoot> tags.

• Quoting attributes, so long as they contain no whitespace or special characters (like <, >, ', or ").

• Requiring boolean attributes to have a value.

This means the following page in HTML5 is perfectly valid:

<!doctype html>
<title>Hello HTML5</title>
<div class=header>
<h1>Hello HTML5</h1>
<p class=tagline>HTML5 is awesome

</div>
<ul class=nav>
Index
Downloads
About

(continues on next page)

1 This is an obscure feature inherited from SGML. It is usually not supported by browsers, for reasons detailed above.
2 This is for compatibility with server code that generates XHTML for tags such as
. It should not be used in new code.
3 XHTML 1.0 is the last XHTML standard that allows to be served as text/html for backwards compatibility reasons.

3.2. HTML/XHTML FAQ 237

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

<div class=body>
<h2>HTML5 is probably the future</h2>
<p>
There might be some other things around but in terms of
browser vendor support, HTML5 is hard to beat.

<dl>
<dt>Key 1
<dd>Value 1
<dt>Key 2
<dd>Value 2

</dl>
</div>

3.2.5 New technologies in HTML5

HTML5 adds many new features that make Web applications easier to write and to use.

• The <audio> and <video> tags provide a way to embed audio and video without complicated add-ons like
QuickTime or Flash.

• Semantic elements like <article>, <header>, <nav>, and <time> that make content easier to under-
stand.

• The <canvas> tag, which supports a powerful drawing API, reducing the need for server-generated images to
present data graphically.

• New form control types like <input type="date"> that allow user agents to make entering and validating
values easier.

• Advanced JavaScript APIs like Web Storage, Web Workers, Web Sockets, geolocation, and offline applications.

Many other features have been added, as well. A good guide to new features in HTML5 is Mark Pilgrim’s soon-to-be-
published book, Dive Into HTML5. Not all of them are supported in browsers yet, however, so use caution.

3.2.6 What should be used?

Currently, the answer is HTML5. There are very few reasons to use XHTML considering the latest developments in
Web browsers. To summarize the reasons given above:

• Internet Explorer (which, sadly, currently leads in market share) has poor support for XHTML.

• Many JavaScript libraries also do not support XHTML, due to the more complicated namespacing API it re-
quires.

• HTML5 adds several new features, including semantic tags and the long-awaited <audio> and <video> tags.

• It has the support of most browser vendors behind it.

• It is much easier to write, and more compact.

For most applications, it is undoubtedly better to use HTML5 than XHTML.

238 Chapter 3. Additional Notes

https://diveintohtml5.info/

Flask Documentation (1.1.x), Release 1.1.4

3.3 Security Considerations

Web applications usually face all kinds of security problems and it’s very hard to get everything right. Flask tries to
solve a few of these things for you, but there are a couple more you have to take care of yourself.

3.3.1 Cross-Site Scripting (XSS)

Cross site scripting is the concept of injecting arbitrary HTML (and with it JavaScript) into the context of a website.
To remedy this, developers have to properly escape text so that it cannot include arbitrary HTML tags. For more
information on that have a look at the Wikipedia article on Cross-Site Scripting.

Flask configures Jinja2 to automatically escape all values unless explicitly told otherwise. This should rule out all XSS
problems caused in templates, but there are still other places where you have to be careful:

• generating HTML without the help of Jinja2

• calling Markup on data submitted by users

• sending out HTML from uploaded files, never do that, use the Content-Disposition: attachment
header to prevent that problem.

• sending out textfiles from uploaded files. Some browsers are using content-type guessing based on the first few
bytes so users could trick a browser to execute HTML.

Another thing that is very important are unquoted attributes. While Jinja2 can protect you from XSS issues by escaping
HTML, there is one thing it cannot protect you from: XSS by attribute injection. To counter this possible attack vector,
be sure to always quote your attributes with either double or single quotes when using Jinja expressions in them:

<input value="{{ value }}">

Why is this necessary? Because if you would not be doing that, an attacker could easily inject custom JavaScript
handlers. For example an attacker could inject this piece of HTML+JavaScript:

onmouseover=alert(document.cookie)

When the user would then move with the mouse over the input, the cookie would be presented to the user in an alert
window. But instead of showing the cookie to the user, a good attacker might also execute any other JavaScript code.
In combination with CSS injections the attacker might even make the element fill out the entire page so that the user
would just have to have the mouse anywhere on the page to trigger the attack.

There is one class of XSS issues that Jinja’s escaping does not protect against. The a tag’s href attribute can contain
a javascript: URI, which the browser will execute when clicked if not secured properly.

click here
click here

To prevent this, you’ll need to set the Content Security Policy (CSP) response header.

3.3.2 Cross-Site Request Forgery (CSRF)

Another big problem is CSRF. This is a very complex topic and I won’t outline it here in detail just mention what it is
and how to theoretically prevent it.

If your authentication information is stored in cookies, you have implicit state management. The state of “being logged
in” is controlled by a cookie, and that cookie is sent with each request to a page. Unfortunately that includes requests
triggered by 3rd party sites. If you don’t keep that in mind, some people might be able to trick your application’s users
with social engineering to do stupid things without them knowing.

3.3. Security Considerations 239

https://en.wikipedia.org/wiki/Cross-site_scripting

Flask Documentation (1.1.x), Release 1.1.4

Say you have a specific URL that, when you sent POST requests to will delete a user’s profile (say http://
example.com/user/delete). If an attacker now creates a page that sends a post request to that page with
some JavaScript they just have to trick some users to load that page and their profiles will end up being deleted.

Imagine you were to run Facebook with millions of concurrent users and someone would send out links to images of
little kittens. When users would go to that page, their profiles would get deleted while they are looking at images of
fluffy cats.

How can you prevent that? Basically for each request that modifies content on the server you would have to either use
a one-time token and store that in the cookie and also transmit it with the form data. After receiving the data on the
server again, you would then have to compare the two tokens and ensure they are equal.

Why does Flask not do that for you? The ideal place for this to happen is the form validation framework, which does
not exist in Flask.

3.3.3 JSON Security

In Flask 0.10 and lower, jsonify() did not serialize top-level arrays to JSON. This was because of a security
vulnerability in ECMAScript 4.

ECMAScript 5 closed this vulnerability, so only extremely old browsers are still vulnerable. All of these browsers have
other more serious vulnerabilities, so this behavior was changed and jsonify() now supports serializing arrays.

3.3.4 Security Headers

Browsers recognize various response headers in order to control security. We recommend reviewing each of the
headers below for use in your application. The Flask-Talisman extension can be used to manage HTTPS and the
security headers for you.

HTTP Strict Transport Security (HSTS)

Tells the browser to convert all HTTP requests to HTTPS, preventing man-in-the-middle (MITM) attacks.

response.headers['Strict-Transport-Security'] = 'max-age=31536000; includeSubDomains'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security

Content Security Policy (CSP)

Tell the browser where it can load various types of resource from. This header should be used whenever possible, but
requires some work to define the correct policy for your site. A very strict policy would be:

response.headers['Content-Security-Policy'] = "default-src 'self'"

• https://csp.withgoogle.com/docs/index.html

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

X-Content-Type-Options

Forces the browser to honor the response content type instead of trying to detect it, which can be abused to generate a
cross-site scripting (XSS) attack.

240 Chapter 3. Additional Notes

https://github.com/pallets/flask/issues/248#issuecomment-59934857
https://github.com/GoogleCloudPlatform/flask-talisman
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Strict-Transport-Security
https://csp.withgoogle.com/docs/index.html
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Content-Security-Policy

Flask Documentation (1.1.x), Release 1.1.4

response.headers['X-Content-Type-Options'] = 'nosniff'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options

X-Frame-Options

Prevents external sites from embedding your site in an iframe. This prevents a class of attacks where clicks in the
outer frame can be translated invisibly to clicks on your page’s elements. This is also known as “clickjacking”.

response.headers['X-Frame-Options'] = 'SAMEORIGIN'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options

X-XSS-Protection

The browser will try to prevent reflected XSS attacks by not loading the page if the request contains something that
looks like JavaScript and the response contains the same data.

response.headers['X-XSS-Protection'] = '1; mode=block'

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Set-Cookie options

These options can be added to a Set-Cookie header to improve their security. Flask has configuration options to
set these on the session cookie. They can be set on other cookies too.

• Secure limits cookies to HTTPS traffic only.

• HttpOnly protects the contents of cookies from being read with JavaScript.

• SameSite restricts how cookies are sent with requests from external sites. Can be set to 'Lax' (recom-
mended) or 'Strict'. Lax prevents sending cookies with CSRF-prone requests from external sites, such as
submitting a form. Strict prevents sending cookies with all external requests, including following regular
links.

app.config.update(
SESSION_COOKIE_SECURE=True,
SESSION_COOKIE_HTTPONLY=True,
SESSION_COOKIE_SAMESITE='Lax',

)

response.set_cookie('username', 'flask', secure=True, httponly=True, samesite='Lax')

Specifying Expires or Max-Age options, will remove the cookie after the given time, or the current time plus the
age, respectively. If neither option is set, the cookie will be removed when the browser is closed.

cookie expires after 10 minutes
response.set_cookie('snakes', '3', max_age=600)

For the session cookie, if session.permanent is set, then PERMANENT_SESSION_LIFETIME is used to set
the expiration. Flask’s default cookie implementation validates that the cryptographic signature is not older than this
value. Lowering this value may help mitigate replay attacks, where intercepted cookies can be sent at a later time.

3.3. Security Considerations 241

https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Content-Type-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-Frame-Options
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/X-XSS-Protection

Flask Documentation (1.1.x), Release 1.1.4

app.config.update(
PERMANENT_SESSION_LIFETIME=600

)

@app.route('/login', methods=['POST'])
def login():

...
session.clear()
session['user_id'] = user.id
session.permanent = True
...

Use itsdangerous.TimedSerializer to sign and validate other cookie values (or any values that need secure
signatures).

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie

HTTP Public Key Pinning (HPKP)

This tells the browser to authenticate with the server using only the specific certificate key to prevent MITM attacks.

Warning: Be careful when enabling this, as it is very difficult to undo if you set up or upgrade your key incorrectly.

• https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning

3.3.5 Copy/Paste to Terminal

Hidden characters such as the backspace character (\b, ^H) can cause text to render differently in HTML than how it
is interpreted if pasted into a terminal.

For example, import y\bose\bm\bi\bt\be\b renders as import yosemite in HTML, but the backspaces
are applied when pasted into a terminal, and it becomes import os.

If you expect users to copy and paste untrusted code from your site, such as from comments posted by users on a
technical blog, consider applying extra filtering, such as replacing all \b characters.

body = body.replace("\b", "")

Most modern terminals will warn about and remove hidden characters when pasting, so this isn’t strictly necessary.
It’s also possible to craft dangerous commands in other ways that aren’t possible to filter. Depending on your site’s
use case, it may be good to show a warning about copying code in general.

3.4 Unicode in Flask

Flask, like Jinja2 and Werkzeug, is totally Unicode based when it comes to text. Not only these libraries, also the
majority of web related Python libraries that deal with text. If you don’t know Unicode so far, you should probably read
The Absolute Minimum Every Software Developer Absolutely, Positively Must Know About Unicode and Character
Sets. This part of the documentation just tries to cover the very basics so that you have a pleasant experience with
Unicode related things.

242 Chapter 3. Additional Notes

https://developer.mozilla.org/en-US/docs/Web/HTTP/Cookies
https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/Set-Cookie
https://developer.mozilla.org/en-US/docs/Web/HTTP/Public_Key_Pinning
https://security.stackexchange.com/q/39118
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/
https://www.joelonsoftware.com/2003/10/08/the-absolute-minimum-every-software-developer-absolutely-positively-must-know-about-unicode-and-character-sets-no-excuses/

Flask Documentation (1.1.x), Release 1.1.4

3.4.1 Automatic Conversion

Flask has a few assumptions about your application (which you can change of course) that give you basic and painless
Unicode support:

• the encoding for text on your website is UTF-8

• internally you will always use Unicode exclusively for text except for literal strings with only ASCII character
points.

• encoding and decoding happens whenever you are talking over a protocol that requires bytes to be transmitted.

So what does this mean to you?

HTTP is based on bytes. Not only the protocol, also the system used to address documents on servers (so called URIs
or URLs). However HTML which is usually transmitted on top of HTTP supports a large variety of character sets and
which ones are used, are transmitted in an HTTP header. To not make this too complex Flask just assumes that if you
are sending Unicode out you want it to be UTF-8 encoded. Flask will do the encoding and setting of the appropriate
headers for you.

The same is true if you are talking to databases with the help of SQLAlchemy or a similar ORM system. Some
databases have a protocol that already transmits Unicode and if they do not, SQLAlchemy or your other ORM should
take care of that.

3.4.2 The Golden Rule

So the rule of thumb: if you are not dealing with binary data, work with Unicode. What does working with Unicode
in Python 2.x mean?

• as long as you are using ASCII code points only (basically numbers, some special characters of Latin letters
without umlauts or anything fancy) you can use regular string literals ('Hello World').

• if you need anything else than ASCII in a string you have to mark this string as Unicode string by prefixing it
with a lowercase u. (like u'Hänsel und Gretel')

• if you are using non-Unicode characters in your Python files you have to tell Python which encoding your file
uses. Again, I recommend UTF-8 for this purpose. To tell the interpreter your encoding you can put the # -*-
coding: utf-8 -*- into the first or second line of your Python source file.

• Jinja is configured to decode the template files from UTF-8. So make sure to tell your editor to save the file as
UTF-8 there as well.

3.4.3 Encoding and Decoding Yourself

If you are talking with a filesystem or something that is not really based on Unicode you will have to ensure that you
decode properly when working with Unicode interface. So for example if you want to load a file on the filesystem and
embed it into a Jinja2 template you will have to decode it from the encoding of that file. Here the old problem that text
files do not specify their encoding comes into play. So do yourself a favour and limit yourself to UTF-8 for text files
as well.

Anyways. To load such a file with Unicode you can use the built-in str.decode() method:

def read_file(filename, charset='utf-8'):
with open(filename, 'r') as f:

return f.read().decode(charset)

To go from Unicode into a specific charset such as UTF-8 you can use the unicode.encode() method:

3.4. Unicode in Flask 243

Flask Documentation (1.1.x), Release 1.1.4

def write_file(filename, contents, charset='utf-8'):
with open(filename, 'w') as f:

f.write(contents.encode(charset))

3.4.4 Configuring Editors

Most editors save as UTF-8 by default nowadays but in case your editor is not configured to do this you have to change
it. Here some common ways to set your editor to store as UTF-8:

• Vim: put set enc=utf-8 to your .vimrc file.

• Emacs: either use an encoding cookie or put this into your .emacs file:

(prefer-coding-system 'utf-8)
(setq default-buffer-file-coding-system 'utf-8)

• Notepad++:

1. Go to Settings -> Preferences . . .

2. Select the “New Document/Default Directory” tab

3. Select “UTF-8 without BOM” as encoding

It is also recommended to use the Unix newline format, you can select it in the same panel but this is not a
requirement.

3.5 Flask Extension Development

Flask, being a microframework, often requires some repetitive steps to get a third party library working. Many such
extensions are already available on PyPI.

If you want to create your own Flask extension for something that does not exist yet, this guide to extension devel-
opment will help you get your extension running in no time and to feel like users would expect your extension to
behave.

3.5.1 Anatomy of an Extension

Extensions are all located in a package called flask_something where “something” is the name of the library you
want to bridge. So for example if you plan to add support for a library named simplexml to Flask, you would name
your extension’s package flask_simplexml.

The name of the actual extension (the human readable name) however would be something like “Flask-SimpleXML”.
Make sure to include the name “Flask” somewhere in that name and that you check the capitalization. This is how
users can then register dependencies to your extension in their setup.py files.

But what do extensions look like themselves? An extension has to ensure that it works with multiple Flask application
instances at once. This is a requirement because many people will use patterns like the Application Factories pattern
to create their application as needed to aid unittests and to support multiple configurations. Because of that it is crucial
that your application supports that kind of behavior.

Most importantly the extension must be shipped with a setup.py file and registered on PyPI. Also the development
checkout link should work so that people can easily install the development version into their virtualenv without having
to download the library by hand.

244 Chapter 3. Additional Notes

https://pypi.org/search/?c=Framework+%3A%3A+Flask

Flask Documentation (1.1.x), Release 1.1.4

Flask extensions must be licensed under a BSD, MIT or more liberal license in order to be listed in the Flask Extension
Registry. Keep in mind that the Flask Extension Registry is a moderated place and libraries will be reviewed upfront
if they behave as required.

3.5.2 “Hello Flaskext!”

So let’s get started with creating such a Flask extension. The extension we want to create here will provide very basic
support for SQLite3.

First we create the following folder structure:

flask-sqlite3/
flask_sqlite3.py
LICENSE
README

Here’s the contents of the most important files:

setup.py

The next file that is absolutely required is the setup.py file which is used to install your Flask extension. The
following contents are something you can work with:

"""
Flask-SQLite3

This is the description for that library
"""
from setuptools import setup

setup(
name='Flask-SQLite3',
version='1.0',
url='http://example.com/flask-sqlite3/',
license='BSD',
author='Your Name',
author_email='your-email@example.com',
description='Very short description',
long_description=__doc__,
py_modules=['flask_sqlite3'],
if you would be using a package instead use packages instead
of py_modules:
packages=['flask_sqlite3'],
zip_safe=False,
include_package_data=True,
platforms='any',
install_requires=[

'Flask'
],
classifiers=[

'Environment :: Web Environment',
'Intended Audience :: Developers',
'License :: OSI Approved :: BSD License',
'Operating System :: OS Independent',

(continues on next page)

3.5. Flask Extension Development 245

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

'Programming Language :: Python',
'Topic :: Internet :: WWW/HTTP :: Dynamic Content',
'Topic :: Software Development :: Libraries :: Python Modules'

]
)

That’s a lot of code but you can really just copy/paste that from existing extensions and adapt.

flask_sqlite3.py

Now this is where your extension code goes. But how exactly should such an extension look like? What are the best
practices? Continue reading for some insight.

3.5.3 Initializing Extensions

Many extensions will need some kind of initialization step. For example, consider an application that’s currently
connecting to SQLite like the documentation suggests (Using SQLite 3 with Flask). So how does the extension know
the name of the application object?

Quite simple: you pass it to it.

There are two recommended ways for an extension to initialize:

initialization functions:

If your extension is called helloworld you might have a function called init_helloworld(app[,
extra_args]) that initializes the extension for that application. It could attach before / after handlers
etc.

classes:

Classes work mostly like initialization functions but can later be used to further change the behavior. For
an example look at how the OAuth extension works: there is an OAuth object that provides some helper
functions like OAuth.remote_app to create a reference to a remote application that uses OAuth.

What to use depends on what you have in mind. For the SQLite 3 extension we will use the class-based approach
because it will provide users with an object that handles opening and closing database connections.

When designing your classes, it’s important to make them easily reusable at the module level. This means the object
itself must not under any circumstances store any application specific state and must be shareable between different
applications.

3.5.4 The Extension Code

Here’s the contents of the flask_sqlite3.py for copy/paste:

import sqlite3
from flask import current_app, _app_ctx_stack

class SQLite3(object):
def __init__(self, app=None):

self.app = app
if app is not None:

self.init_app(app)

(continues on next page)

246 Chapter 3. Additional Notes

https://pythonhosted.org/Flask-OAuth/

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

def init_app(self, app):
app.config.setdefault('SQLITE3_DATABASE', ':memory:')
app.teardown_appcontext(self.teardown)

def connect(self):
return sqlite3.connect(current_app.config['SQLITE3_DATABASE'])

def teardown(self, exception):
ctx = _app_ctx_stack.top
if hasattr(ctx, 'sqlite3_db'):

ctx.sqlite3_db.close()

@property
def connection(self):

ctx = _app_ctx_stack.top
if ctx is not None:

if not hasattr(ctx, 'sqlite3_db'):
ctx.sqlite3_db = self.connect()

return ctx.sqlite3_db

So here’s what these lines of code do:

1. The __init__ method takes an optional app object and, if supplied, will call init_app.

2. The init_app method exists so that the SQLite3 object can be instantiated without requiring an app object.
This method supports the factory pattern for creating applications. The init_app will set the configuration for
the database, defaulting to an in memory database if no configuration is supplied. In addition, the init_app
method attaches the teardown handler.

3. Next, we define a connect method that opens a database connection.

4. Finally, we add a connection property that on first access opens the database connection and stores it on the
context. This is also the recommended way to handling resources: fetch resources lazily the first time they are
used.

Note here that we’re attaching our database connection to the top application context via _app_ctx_stack.
top. Extensions should use the top context for storing their own information with a sufficiently complex name.

So why did we decide on a class-based approach here? Because using our extension looks something like this:

from flask import Flask
from flask_sqlite3 import SQLite3

app = Flask(__name__)
app.config.from_pyfile('the-config.cfg')
db = SQLite3(app)

You can then use the database from views like this:

@app.route('/')
def show_all():

cur = db.connection.cursor()
cur.execute(...)

Likewise if you are outside of a request you can use the database by pushing an app context:

3.5. Flask Extension Development 247

Flask Documentation (1.1.x), Release 1.1.4

with app.app_context():
cur = db.connection.cursor()
cur.execute(...)

At the end of the with block the teardown handles will be executed automatically.

Additionally, the init_app method is used to support the factory pattern for creating apps:

db = SQLite3()
Then later on.
app = create_app('the-config.cfg')
db.init_app(app)

Keep in mind that supporting this factory pattern for creating apps is required for approved flask extensions (described
below).

Note on init_app

As you noticed, init_app does not assign app to self. This is intentional! Class based Flask extensions must
only store the application on the object when the application was passed to the constructor. This tells the extension: I
am not interested in using multiple applications.

When the extension needs to find the current application and it does not have a reference to it, it must either use the
current_app context local or change the API in a way that you can pass the application explicitly.

3.5.5 Using _app_ctx_stack

In the example above, before every request, a sqlite3_db variable is assigned to _app_ctx_stack.top. In a
view function, this variable is accessible using the connection property of SQLite3. During the teardown of a
request, the sqlite3_db connection is closed. By using this pattern, the same connection to the sqlite3 database is
accessible to anything that needs it for the duration of the request.

3.5.6 Learn from Others

This documentation only touches the bare minimum for extension development. If you want to learn more, it’s a very
good idea to check out existing extensions on the PyPI. If you feel lost there is still the mailinglist and the Discord
server to get some ideas for nice looking APIs. Especially if you do something nobody before you did, it might be a
very good idea to get some more input. This not only generates useful feedback on what people might want from an
extension, but also avoids having multiple developers working in isolation on pretty much the same problem.

Remember: good API design is hard, so introduce your project on the mailing list, and let other developers give you a
helping hand with designing the API.

The best Flask extensions are extensions that share common idioms for the API. And this can only work if collaboration
happens early.

3.5.7 Approved Extensions

Flask previously had the concept of approved extensions. These came with some vetting of support and compatibility.
While this list became too difficult to maintain over time, the guidelines are still relevant to all extensions maintained
and developed today, as they help the Flask ecosystem remain consistent and compatible.

248 Chapter 3. Additional Notes

https://pypi.org/search/?c=Framework+%3A%3A+Flask
https://mail.python.org/mailman/listinfo/flask
https://discord.gg/t6rrQZH
https://discord.gg/t6rrQZH

Flask Documentation (1.1.x), Release 1.1.4

0. An approved Flask extension requires a maintainer. In the event an extension author would like to move beyond
the project, the project should find a new maintainer and transfer access to the repository, documentation, PyPI,
and any other services. If no maintainer is available, give access to the Pallets core team.

1. The naming scheme is Flask-ExtensionName or ExtensionName-Flask. It must provide exactly one package or
module named flask_extension_name.

2. The extension must be BSD or MIT licensed. It must be open source and publicly available.

3. The extension’s API must have the following characteristics:

• It must support multiple applications running in the same Python process. Use current_app instead of
self.app, store configuration and state per application instance.

• It must be possible to use the factory pattern for creating applications. Use the ext.init_app()
pattern.

4. From a clone of the repository, an extension with its dependencies must be installable with pip install -e
..

5. It must ship a testing suite that can be invoked with tox -e py or pytest. If not using tox, the test depen-
dencies should be specified in a requirements.txt file. The tests must be part of the sdist distribution.

6. The documentation must use the flask theme from the Official Pallets Themes. A link to the documentation
or project website must be in the PyPI metadata or the readme.

7. For maximum compatibility, the extension should support the same versions of Python that Flask supports.
3.6+ is recommended as of 2020. Use python_requires=">= 3.6" in setup.py to indicate supported
versions.

3.6 Pocoo Styleguide

The Pocoo styleguide is the styleguide for all Pocoo Projects, including Flask. This styleguide is a requirement for
Patches to Flask and a recommendation for Flask extensions.

In general the Pocoo Styleguide closely follows PEP 8 with some small differences and extensions.

3.6.1 General Layout

Indentation: 4 real spaces. No tabs, no exceptions.

Maximum line length: 79 characters with a soft limit for 84 if absolutely necessary. Try to avoid too nested code by
cleverly placing break, continue and return statements.

Continuing long statements: To continue a statement you can use backslashes in which case you should align the
next line with the last dot or equal sign, or indent four spaces:

this_is_a_very_long(function_call, 'with many parameters') \
.that_returns_an_object_with_an_attribute

MyModel.query.filter(MyModel.scalar > 120) \
.order_by(MyModel.name.desc()) \
.limit(10)

If you break in a statement with parentheses or braces, align to the braces:

this_is_a_very_long(function_call, 'with many parameters',
23, 42, 'and even more')

3.6. Pocoo Styleguide 249

https://pypi.org/project/Pallets-Sphinx-Themes/
https://www.python.org/dev/peps/pep-0008

Flask Documentation (1.1.x), Release 1.1.4

For lists or tuples with many items, break immediately after the opening brace:

items = [
'this is the first', 'set of items', 'with more items',
'to come in this line', 'like this'

]

Blank lines: Top level functions and classes are separated by two lines, everything else by one. Do not use too many
blank lines to separate logical segments in code. Example:

def hello(name):
print 'Hello %s!' % name

def goodbye(name):
print 'See you %s.' % name

class MyClass(object):
"""This is a simple docstring"""

def __init__(self, name):
self.name = name

def get_annoying_name(self):
return self.name.upper() + '!!!!111'

3.6.2 Expressions and Statements

General whitespace rules:

• No whitespace for unary operators that are not words (e.g.: -, ~ etc.) as well on the inner side of paren-
theses.

• Whitespace is placed between binary operators.

Good:

exp = -1.05
value = (item_value / item_count) * offset / exp
value = my_list[index]
value = my_dict['key']

Bad:

exp = - 1.05
value = (item_value / item_count) * offset / exp
value = (item_value/item_count)*offset/exp
value=(item_value/item_count) * offset/exp
value = my_list[index]
value = my_dict ['key']

Yoda statements are a no-go: Never compare constant with variable, always variable with constant:

Good:

if method == 'md5':
pass

250 Chapter 3. Additional Notes

Flask Documentation (1.1.x), Release 1.1.4

Bad:

if 'md5' == method:
pass

Comparisons:

• against arbitrary types: == and !=

• against singletons with is and is not (eg: foo is not None)

• never compare something with True or False (for example never do foo == False, do not foo
instead)

Negated containment checks: use foo not in bar instead of not foo in bar

Instance checks: isinstance(a, C) instead of type(A) is C, but try to avoid instance checks in general.
Check for features.

3.6.3 Naming Conventions

• Class names: CamelCase, with acronyms kept uppercase (HTTPWriter and not HttpWriter)

• Variable names: lowercase_with_underscores

• Method and function names: lowercase_with_underscores

• Constants: UPPERCASE_WITH_UNDERSCORES

• precompiled regular expressions: name_re

Protected members are prefixed with a single underscore. Double underscores are reserved for mixin classes.

On classes with keywords, trailing underscores are appended. Clashes with builtins are allowed and must not be
resolved by appending an underline to the variable name. If the function needs to access a shadowed builtin, rebind
the builtin to a different name instead.

Function and method arguments:

• class methods: cls as first parameter

• instance methods: self as first parameter

• lambdas for properties might have the first parameter replaced with x like in display_name =
property(lambda x: x.real_name or x.username)

3.6.4 Docstrings

Docstring conventions: All docstrings are formatted with reStructuredText as understood by Sphinx. Depending on
the number of lines in the docstring, they are laid out differently. If it’s just one line, the closing triple quote is
on the same line as the opening, otherwise the text is on the same line as the opening quote and the triple quote
that closes the string on its own line:

def foo():
"""This is a simple docstring"""

def bar():
"""This is a longer docstring with so much information in there
that it spans three lines. In this case the closing triple quote

(continues on next page)

3.6. Pocoo Styleguide 251

Flask Documentation (1.1.x), Release 1.1.4

(continued from previous page)

is on its own line.
"""

Module header: The module header consists of a utf-8 encoding declaration (if non ASCII letters are used, but it is
recommended all the time) and a standard docstring:

-*- coding: utf-8 -*-
"""

package.module
~~~~~~~~~~~~~~

A brief description goes here.

:copyright: (c) YEAR by AUTHOR.
:license: LICENSE_NAME, see LICENSE_FILE for more details.

"""

Please keep in mind that proper copyrights and license files are a requirement for approved Flask extensions.

3.6.5 Comments

Rules for comments are similar to docstrings. Both are formatted with reStructuredText. If a comment is used to
document an attribute, put a colon after the opening pound sign (#):

class User(object):
#: the name of the user as unicode string
name = Column(String)
#: the sha1 hash of the password + inline salt
pw_hash = Column(String)

3.7 Upgrading to Newer Releases

Flask itself is changing like any software is changing over time. Most of the changes are the nice kind, the kind where
you don’t have to change anything in your code to profit from a new release.

However every once in a while there are changes that do require some changes in your code or there are changes that
make it possible for you to improve your own code quality by taking advantage of new features in Flask.

This section of the documentation enumerates all the changes in Flask from release to release and how you can change
your code to have a painless updating experience.

Use the pip command to upgrade your existing Flask installation by providing the --upgrade parameter:

$ pip install --upgrade Flask

3.7.1 Version 0.12

Changes to send_file

The filename is no longer automatically inferred from file-like objects. This means that the following code will no
longer automatically have X-Sendfile support, etag generation or MIME-type guessing:

252 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

response = send_file(open('/path/to/file.txt'))

Any of the following is functionally equivalent:

fname = '/path/to/file.txt'

# Just pass the filepath directly
response = send_file(fname)

# Set the MIME-type and ETag explicitly
response = send_file(open(fname), mimetype='text/plain')
response.set_etag(...)

# Set `attachment_filename` for MIME-type guessing
# ETag still needs to be manually set
response = send_file(open(fname), attachment_filename=fname)
response.set_etag(...)

The reason for this is that some file-like objects have an invalid or even misleading name attribute. Silently swallowing
errors in such cases was not a satisfying solution.

Additionally the default of falling back to application/octet-stream has been restricted. If Flask can’t guess
one or the user didn’t provide one, the function fails if no filename information was provided.

3.7.2 Version 0.11

0.11 is an odd release in the Flask release cycle because it was supposed to be the 1.0 release. However because there
was such a long lead time up to the release we decided to push out a 0.11 release first with some changes removed to
make the transition easier. If you have been tracking the master branch which was 1.0 you might see some unexpected
changes.

In case you did track the master branch you will notice that flask --app is removed now. You need to use the
environment variable to specify an application.

Debugging

Flask 0.11 removed the debug_log_format attribute from Flask applications. Instead the new
LOGGER_HANDLER_POLICY configuration can be used to disable the default log handlers and custom log handlers
can be set up.

Error handling

The behavior of error handlers was changed. The precedence of handlers used to be based on the decoration/call order
of errorhandler() and register_error_handler(), respectively. Now the inheritance hierarchy takes
precedence and handlers for more specific exception classes are executed instead of more general ones. See Error
handlers for specifics.

Trying to register a handler on an instance now raises ValueError.

Note: There used to be a logic error allowing you to register handlers only for exception instances. This was
unintended and plain wrong, and therefore was replaced with the intended behavior of registering handlers only using
exception classes and HTTP error codes.

3.7. Upgrading to Newer Releases 253

https://docs.python.org/3/library/exceptions.html#ValueError


Flask Documentation (1.1.x), Release 1.1.4

Templating

The render_template_string() function has changed to autoescape template variables by default. This better
matches the behavior of render_template().

Extension imports

Extension imports of the form flask.ext.foo are deprecated, you should use flask_foo.

The old form still works, but Flask will issue a flask.exthook.ExtDeprecationWarning for each extension
you import the old way. We also provide a migration utility called flask-ext-migrate that is supposed to automatically
rewrite your imports for this.

3.7.3 Version 0.10

The biggest change going from 0.9 to 0.10 is that the cookie serialization format changed from pickle to a specialized
JSON format. This change has been done in order to avoid the damage an attacker can do if the secret key is leaked.
When you upgrade you will notice two major changes: all sessions that were issued before the upgrade are invalidated
and you can only store a limited amount of types in the session. The new sessions are by design much more restricted
to only allow JSON with a few small extensions for tuples and strings with HTML markup.

In order to not break people’s sessions it is possible to continue using the old session system by using the Flask-
OldSessions extension.

Flask also started storing the flask.g object on the application context instead of the request context. This change
should be transparent for you but it means that you now can store things on the g object when there is no request context
yet but an application context. The old flask.Flask.request_globals_class attribute was renamed to
flask.Flask.app_ctx_globals_class.

3.7.4 Version 0.9

The behavior of returning tuples from a function was simplified. If you return a tuple it no longer defines the arguments
for the response object you’re creating, it’s now always a tuple in the form (response, status, headers)
where at least one item has to be provided. If you depend on the old behavior, you can add it easily by subclassing
Flask:

class TraditionalFlask(Flask):
def make_response(self, rv):

if isinstance(rv, tuple):
return self.response_class(*rv)

return Flask.make_response(self, rv)

If you maintain an extension that was using _request_ctx_stack before, please consider changing to
_app_ctx_stack if it makes sense for your extension. For instance, the app context stack makes sense for ex-
tensions which connect to databases. Using the app context stack instead of the request context stack will make
extensions more readily handle use cases outside of requests.

3.7.5 Version 0.8

Flask introduced a new session interface system. We also noticed that there was a naming collision between flask.
session the module that implements sessions and flask.session which is the global session object. With
that introduction we moved the implementation details for the session system into a new module called flask.
sessions. If you used the previously undocumented session support we urge you to upgrade.

254 Chapter 3. Additional Notes

https://github.com/pallets/flask-ext-migrate
https://pythonhosted.org/Flask-OldSessions/
https://pythonhosted.org/Flask-OldSessions/


Flask Documentation (1.1.x), Release 1.1.4

If invalid JSON data was submitted Flask will now raise a BadRequest exception instead of letting the default
ValueError bubble up. This has the advantage that you no longer have to handle that error to avoid an internal
server error showing up for the user. If you were catching this down explicitly in the past as ValueError you will
need to change this.

Due to a bug in the test client Flask 0.7 did not trigger teardown handlers when the test client was used in a with
statement. This was since fixed but might require some changes in your test suites if you relied on this behavior.

3.7.6 Version 0.7

In Flask 0.7 we cleaned up the code base internally a lot and did some backwards incompatible changes that make it
easier to implement larger applications with Flask. Because we want to make upgrading as easy as possible we tried
to counter the problems arising from these changes by providing a script that can ease the transition.

The script scans your whole application and generates a unified diff with changes it assumes are safe to apply. However
as this is an automated tool it won’t be able to find all use cases and it might miss some. We internally spread a lot of
deprecation warnings all over the place to make it easy to find pieces of code that it was unable to upgrade.

We strongly recommend that you hand review the generated patchfile and only apply the chunks that look good.

If you are using git as version control system for your project we recommend applying the patch with path -p1 <
patchfile.diff and then using the interactive commit feature to only apply the chunks that look good.

To apply the upgrade script do the following:

1. Download the script: flask-07-upgrade.py

2. Run it in the directory of your application:

$ python flask-07-upgrade.py > patchfile.diff

3. Review the generated patchfile.

4. Apply the patch:

$ patch -p1 < patchfile.diff

5. If you were using per-module template folders you need to move some templates around. Previously if you
had a folder named templates next to a blueprint named admin the implicit template path automatically
was admin/index.html for a template file called templates/index.html. This no longer is the case.
Now you need to name the template templates/admin/index.html. The tool will not detect this so you
will have to do that on your own.

Please note that deprecation warnings are disabled by default starting with Python 2.7. In order to see the deprecation
warnings that might be emitted you have to enabled them with the warnings module.

If you are working with windows and you lack the patch command line utility you can get it as part of various Unix
runtime environments for windows including cygwin, msysgit or ming32. Also source control systems like svn, hg or
git have builtin support for applying unified diffs as generated by the tool. Check the manual of your version control
system for more information.

Bug in Request Locals

Due to a bug in earlier implementations the request local proxies now raise a RuntimeError instead of an
AttributeError when they are unbound. If you caught these exceptions with AttributeError before, you
should catch them with RuntimeError now.

Additionally the send_file() function is now issuing deprecation warnings if you depend on functionality that
will be removed in Flask 0.11. Previously it was possible to use etags and mimetypes when file objects were passed.

3.7. Upgrading to Newer Releases 255

https://werkzeug.palletsprojects.com/en/2.0.x/exceptions/#werkzeug.exceptions.BadRequest
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/exceptions.html#ValueError
https://raw.githubusercontent.com/pallets/flask/0.12.3/scripts/flask-07-upgrade.py
https://docs.python.org/3/library/warnings.html#module-warnings
https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#AttributeError
https://docs.python.org/3/library/exceptions.html#RuntimeError


Flask Documentation (1.1.x), Release 1.1.4

This was unreliable and caused issues for a few setups. If you get a deprecation warning, make sure to update your
application to work with either filenames there or disable etag attaching and attach them yourself.

Old code:

return send_file(my_file_object)
return send_file(my_file_object)

New code:

return send_file(my_file_object, add_etags=False)

Upgrading to new Teardown Handling

We streamlined the behavior of the callbacks for request handling. For things that modify the response the
after_request() decorators continue to work as expected, but for things that absolutely must happen at the end
of request we introduced the new teardown_request() decorator. Unfortunately that change also made after-
request work differently under error conditions. It’s not consistently skipped if exceptions happen whereas previously
it might have been called twice to ensure it is executed at the end of the request.

If you have database connection code that looks like this:

@app.after_request
def after_request(response):

g.db.close()
return response

You are now encouraged to use this instead:

@app.teardown_request
def after_request(exception):

if hasattr(g, 'db'):
g.db.close()

On the upside this change greatly improves the internal code flow and makes it easier to customize the dispatching
and error handling. This makes it now a lot easier to write unit tests as you can prevent closing down of database
connections for a while. You can take advantage of the fact that the teardown callbacks are called when the response
context is removed from the stack so a test can query the database after request handling:

with app.test_client() as client:
resp = client.get('/')
# g.db is still bound if there is such a thing

# and here it's gone

Manual Error Handler Attaching

While it is still possible to attach error handlers to Flask.error_handlers it’s discouraged to do so and in
fact deprecated. In general we no longer recommend custom error handler attaching via assignments to the underly-
ing dictionary due to the more complex internal handling to support arbitrary exception classes and blueprints. See
Flask.errorhandler() for more information.

The proper upgrade is to change this:

256 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

app.error_handlers[403] = handle_error

Into this:

app.register_error_handler(403, handle_error)

Alternatively you should just attach the function with a decorator:

@app.errorhandler(403)
def handle_error(e):

...

(Note that register_error_handler() is new in Flask 0.7)

Blueprint Support

Blueprints replace the previous concept of “Modules” in Flask. They provide better semantics for various features
and work better with large applications. The update script provided should be able to upgrade your applications
automatically, but there might be some cases where it fails to upgrade. What changed?

• Blueprints need explicit names. Modules had an automatic name guessing scheme where the shortname for the
module was taken from the last part of the import module. The upgrade script tries to guess that name but it
might fail as this information could change at runtime.

• Blueprints have an inverse behavior for url_for(). Previously .foo told url_for() that it should look
for the endpoint foo on the application. Now it means “relative to current module”. The script will inverse all
calls to url_for() automatically for you. It will do this in a very eager way so you might end up with some
unnecessary leading dots in your code if you’re not using modules.

• Blueprints do not automatically provide static folders. They will also no longer automatically export templates
from a folder called templates next to their location however but it can be enabled from the constructor.
Same with static files: if you want to continue serving static files you need to tell the constructor explicitly the
path to the static folder (which can be relative to the blueprint’s module path).

• Rendering templates was simplified. Now the blueprints can provide template folders which are added to a
general template searchpath. This means that you need to add another subfolder with the blueprint’s name into
that folder if you want blueprintname/template.html as the template name.

If you continue to use the Module object which is deprecated, Flask will restore the previous behavior as good as pos-
sible. However we strongly recommend upgrading to the new blueprints as they provide a lot of useful improvement
such as the ability to attach a blueprint multiple times, blueprint specific error handlers and a lot more.

3.7.7 Version 0.6

Flask 0.6 comes with a backwards incompatible change which affects the order of after-request handlers. Previously
they were called in the order of the registration, now they are called in reverse order. This change was made so that
Flask behaves more like people expected it to work and how other systems handle request pre- and post-processing. If
you depend on the order of execution of post-request functions, be sure to change the order.

Another change that breaks backwards compatibility is that context processors will no longer override values passed
directly to the template rendering function. If for example request is as variable passed directly to the template, the
default context processor will not override it with the current request object. This makes it easier to extend context
processors later to inject additional variables without breaking existing template not expecting them.

3.7. Upgrading to Newer Releases 257



Flask Documentation (1.1.x), Release 1.1.4

3.7.8 Version 0.5

Flask 0.5 is the first release that comes as a Python package instead of a single module. There were a couple of internal
refactoring so if you depend on undocumented internal details you probably have to adapt the imports.

The following changes may be relevant to your application:

• autoescaping no longer happens for all templates. Instead it is configured to only happen on files ending with
.html, .htm, .xml and .xhtml. If you have templates with different extensions you should override the
select_jinja_autoescape() method.

• Flask no longer supports zipped applications in this release. This functionality might come back in future
releases if there is demand for this feature. Removing support for this makes the Flask internal code easier to
understand and fixes a couple of small issues that make debugging harder than necessary.

• The create_jinja_loader function is gone. If you want to customize the Jinja loader now, use the
create_jinja_environment() method instead.

3.7.9 Version 0.4

For application developers there are no changes that require changes in your code. In case you are developing on a
Flask extension however, and that extension has a unittest-mode you might want to link the activation of that mode to
the new TESTING flag.

3.7.10 Version 0.3

Flask 0.3 introduces configuration support and logging as well as categories for flashing messages. All these are
features that are 100% backwards compatible but you might want to take advantage of them.

Configuration Support

The configuration support makes it easier to write any kind of application that requires some sort of configuration.
(Which most likely is the case for any application out there).

If you previously had code like this:

app.debug = DEBUG
app.secret_key = SECRET_KEY

You no longer have to do that, instead you can just load a configuration into the config object. How this works is
outlined in Configuration Handling.

Logging Integration

Flask now configures a logger for you with some basic and useful defaults. If you run your application in production
and want to profit from automatic error logging, you might be interested in attaching a proper log handler. Also you can
start logging warnings and errors into the logger when appropriately. For more information on that, read Application
Errors.

258 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

Categories for Flash Messages

Flash messages can now have categories attached. This makes it possible to render errors, warnings or regular mes-
sages differently for example. This is an opt-in feature because it requires some rethinking in the code.

Read all about that in the Message Flashing pattern.

3.8 Changelog

3.8.1 Version 1.1.4

Released 2021-05-13

• Update static_folder to use _compat.fspath instead of os.fspath to continue supporting Python
< 3.6 #4050

3.8.2 Version 1.1.3

Released 2021-05-13

• Set maximum versions of Werkzeug, Jinja, Click, and ItsDangerous. #4043

• Re-add support for passing a pathlib.Path for static_folder. #3579

3.8.3 Version 1.1.2

Released 2020-04-03

• Work around an issue when running the flask command with an external debugger on Windows. #3297

• The static route will not catch all URLs if the Flask static_folder argument ends with a slash. #3452

3.8.4 Version 1.1.1

Released 2019-07-08

• The flask.json_available flag was added back for compatibility with some extensions. It will raise a
deprecation warning when used, and will be removed in version 2.0.0. #3288

3.8.5 Version 1.1.0

Released 2019-07-04

• Bump minimum Werkzeug version to >= 0.15.

• Drop support for Python 3.4.

• Error handlers for InternalServerError or 500 will always be passed an instance of
InternalServerError. If they are invoked due to an unhandled exception, that original exception is now
available as e.original_exception rather than being passed directly to the handler. The same is true if
the handler is for the base HTTPException. This makes error handler behavior more consistent. #3266

– Flask.finalize_request() is called for all unhandled exceptions even if there is no 500 error
handler.

3.8. Changelog 259

https://github.com/pallets/flask/issues/4050
https://github.com/pallets/flask/issues/4043
https://github.com/pallets/flask/pull/3579
https://github.com/pallets/flask/issues/3297
https://github.com/pallets/flask/issues/3452
https://github.com/pallets/flask/issues/3288
https://github.com/pallets/flask/pull/3266


Flask Documentation (1.1.x), Release 1.1.4

• Flask.logger takes the same name as Flask.name (the value passed as Flask(import_name). This
reverts 1.0’s behavior of always logging to "flask.app", in order to support multiple apps in the same
process. A warning will be shown if old configuration is detected that needs to be moved. #2866

• flask.RequestContext.copy() includes the current session object in the request context copy. This
prevents session pointing to an out-of-date object. #2935

• Using built-in RequestContext, unprintable Unicode characters in Host header will result in a HTTP 400 re-
sponse and not HTTP 500 as previously. #2994

• send_file() supports PathLike objects as described in PEP 0519, to support pathlib in Python 3.
#3059

• send_file() supports BytesIO partial content. #2957

• open_resource() accepts the “rt” file mode. This still does the same thing as “r”. #3163

• The MethodView.methods attribute set in a base class is used by subclasses. #3138

• Flask.jinja_options is a dict instead of an ImmutableDict to allow easier configuration. Changes
must still be made before creating the environment. #3190

• Flask’s JSONMixin for the request and response wrappers was moved into Werkzeug. Use Werkzeug’s version
with Flask-specific support. This bumps the Werkzeug dependency to >= 0.15. #3125

• The flask command entry point is simplified to take advantage of Werkzeug 0.15’s better reloader support.
This bumps the Werkzeug dependency to >= 0.15. #3022

• Support static_url_path that ends with a forward slash. #3134

• Support empty static_folder without requiring setting an empty static_url_path as well. #3124

• jsonify() supports dataclasses.dataclass objects. #3195

• Allow customizing the Flask.url_map_class used for routing. #3069

• The development server port can be set to 0, which tells the OS to pick an available port. #2926

• The return value from cli.load_dotenv() is more consistent with the documentation. It will return False
if python-dotenv is not installed, or if the given path isn’t a file. #2937

• Signaling support has a stub for the connect_via method when the Blinker library is not installed. #3208

• Add an --extra-files option to the flask run CLI command to specify extra files that will trigger the
reloader on change. #2897

• Allow returning a dictionary from a view function. Similar to how returning a string will produce a text/html
response, returning a dict will call jsonify to produce a application/json response. #3111

• Blueprints have a cli Click group like app.cli. CLI commands registered with a blueprint will be available
as a group under the flask command. #1357.

• When using the test client as a context manager (with client:), all preserved request contexts are popped
when the block exits, ensuring nested contexts are cleaned up correctly. #3157

• Show a better error message when the view return type is not supported. #3214

• flask.testing.make_test_environ_builder() has been deprecated in favour of a new class
flask.testing.EnvironBuilder. #3232

• The flask run command no longer fails if Python is not built with SSL support. Using the --cert option
will show an appropriate error message. #3211

• URL matching now occurs after the request context is pushed, rather than when it’s created. This allows custom
URL converters to access the app and request contexts, such as to query a database for an id. #3088

260 Chapter 3. Additional Notes

https://github.com/pallets/flask/issues/2866
https://github.com/pallets/flask/issues/2935
https://github.com/pallets/flask/pull/2994
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/pathlib.html#module-pathlib
https://github.com/pallets/flask/pull/3059
https://docs.python.org/3/library/io.html#io.BytesIO
https://github.com/pallets/flask/issues/2957
https://github.com/pallets/flask/issues/3163
https://github.com/pallets/flask/issues/3138
https://github.com/pallets/flask/pull/3190
https://github.com/pallets/flask/issues/3125
https://github.com/pallets/flask/issues/3022
https://github.com/pallets/flask/issues/3134
https://github.com/pallets/flask/pull/3124
https://github.com/pallets/flask/pull/3195
https://github.com/pallets/flask/pull/3069
https://github.com/pallets/flask/issues/2926
https://github.com/pallets/flask/issues/2937
https://github.com/pallets/flask/pull/3208
https://github.com/pallets/flask/issues/2897
https://github.com/pallets/flask/pull/3111
https://github.com/pallets/flask/issues/1357
https://github.com/pallets/flask/pull/3157
https://github.com/pallets/flask/issues/3214
https://github.com/pallets/flask/pull/3232
https://github.com/pallets/flask/issues/3211
https://github.com/pallets/flask/issues/3088


Flask Documentation (1.1.x), Release 1.1.4

3.8.6 Version 1.0.4

Released 2019-07-04

• The key information for BadRequestKeyError is no longer cleared outside debug mode, so error handlers
can still access it. This requires upgrading to Werkzeug 0.15.5. #3249

• send_file url quotes the “:” and “/” characters for more compatible UTF-8 filename support in some
browsers. #3074

• Fixes for PEP451 import loaders and pytest 5.x. #3275

• Show message about dotenv on stderr instead of stdout. #3285

3.8.7 Version 1.0.3

Released 2019-05-17

• send_file() encodes filenames as ASCII instead of Latin-1 (ISO-8859-1). This fixes compatibility with
Gunicorn, which is stricter about header encodings than PEP 3333. #2766

• Allow custom CLIs using FlaskGroup to set the debug flag without it always being overwritten based on
environment variables. #2765

• flask --version outputs Werkzeug’s version and simplifies the Python version. #2825

• send_file() handles an attachment_filename that is a native Python 2 string (bytes) with UTF-8
coded bytes. #2933

• A catch-all error handler registered for HTTPException will not handle RoutingException, which is
used internally during routing. This fixes the unexpected behavior that had been introduced in 1.0. #2986

• Passing the json argument to app.test_client does not push/pop an extra app context. #2900

3.8.8 Version 1.0.2

Released 2018-05-02

• Fix more backwards compatibility issues with merging slashes between a blueprint prefix and route. #2748

• Fix error with flask routes command when there are no routes. #2751

3.8.9 Version 1.0.1

Released 2018-04-29

• Fix registering partials (with no __name__) as view functions. #2730

• Don’t treat lists returned from view functions the same as tuples. Only tuples are interpreted as response data.
#2736

• Extra slashes between a blueprint’s url_prefix and a route URL are merged. This fixes some backwards
compatibility issues with the change in 1.0. #2731, #2742

• Only trap BadRequestKeyError errors in debug mode, not all BadRequest errors. This allows
abort(400) to continue working as expected. #2735

• The FLASK_SKIP_DOTENV environment variable can be set to 1 to skip automatically loading dotenv files.
#2722

3.8. Changelog 261

https://github.com/pallets/flask/issues/3249
https://github.com/pallets/flask/issues/3074
https://github.com/pallets/flask/issues/3275
https://github.com/pallets/flask/issues/3285
https://github.com/pallets/flask/issues/2766
https://github.com/pallets/flask/pull/2765
https://github.com/pallets/flask/pull/2825
https://github.com/pallets/flask/issues/2933
https://github.com/pallets/flask/pull/2986
https://github.com/pallets/flask/issues/2900
https://github.com/pallets/flask/pull/2748
https://github.com/pallets/flask/issues/2751
https://github.com/pallets/flask/pull/2730
https://github.com/pallets/flask/issues/2736
https://github.com/pallets/flask/issues/2731
https://github.com/pallets/flask/issues/2742
https://github.com/pallets/flask/issues/2735
https://github.com/pallets/flask/issues/2722


Flask Documentation (1.1.x), Release 1.1.4

3.8.10 Version 1.0

Released 2018-04-26

• Python 2.6 and 3.3 are no longer supported.

• Bump minimum dependency versions to the latest stable versions: Werkzeug >= 0.14, Jinja >= 2.10, itsdanger-
ous >= 0.24, Click >= 5.1. #2586

• Skip app.run when a Flask application is run from the command line. This avoids some behavior that was
confusing to debug.

• Change the default for JSONIFY_PRETTYPRINT_REGULAR to False. jsonify() returns a compact
format by default, and an indented format in debug mode. #2193

• Flask.__init__ accepts the host_matching argument and sets it on url_map. #1559

• Flask.__init__ accepts the static_host argument and passes it as the host argument when defining
the static route. #1559

• send_file() supports Unicode in attachment_filename. #2223

• Pass _scheme argument from url_for() to handle_url_build_error(). #2017

• add_url_rule() accepts the provide_automatic_options argument to disable adding the
OPTIONS method. #1489

• MethodView subclasses inherit method handlers from base classes. #1936

• Errors caused while opening the session at the beginning of the request are handled by the app’s error handlers.
#2254

• Blueprints gained json_encoder and json_decoder attributes to override the app’s encoder and decoder.
#1898

• Flask.make_response() raises TypeError instead of ValueError for bad response types. The error
messages have been improved to describe why the type is invalid. #2256

• Add routes CLI command to output routes registered on the application. #2259

• Show warning when session cookie domain is a bare hostname or an IP address, as these may not behave
properly in some browsers, such as Chrome. #2282

• Allow IP address as exact session cookie domain. #2282

• SESSION_COOKIE_DOMAIN is set if it is detected through SERVER_NAME. #2282

• Auto-detect zero-argument app factory called create_app or make_app from FLASK_APP. #2297

• Factory functions are not required to take a script_info parameter to work with the flask command. If
they take a single parameter or a parameter named script_info, the ScriptInfo object will be passed.
#2319

• FLASK_APP can be set to an app factory, with arguments if needed, for example FLASK_APP=myproject.
app:create_app('dev'). #2326

• FLASK_APP can point to local packages that are not installed in editable mode, although pip install -e
is still preferred. #2414

• The View class attribute provide_automatic_options is set in as_view(), to be detected by
add_url_rule(). #2316

• Error handling will try handlers registered for blueprint, code, app, code, blueprint,
exception, app, exception. #2314

262 Chapter 3. Additional Notes

https://github.com/pallets/flask/issues/2586
https://github.com/pallets/flask/pull/2193
https://github.com/pallets/flask/issues/1559
https://github.com/pallets/flask/issues/1559
https://github.com/pallets/flask/pull/2223
https://github.com/pallets/flask/pull/2017
https://github.com/pallets/flask/pull/1489
https://github.com/pallets/flask/pull/1936
https://github.com/pallets/flask/pull/2254
https://github.com/pallets/flask/pull/1898
https://github.com/pallets/flask/pull/2256
https://github.com/pallets/flask/pull/2259
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2282
https://github.com/pallets/flask/pull/2297
https://github.com/pallets/flask/pull/2319
https://github.com/pallets/flask/pull/2326
https://github.com/pallets/flask/pull/2414
https://github.com/pallets/flask/pull/2316
https://github.com/pallets/flask/pull/2314


Flask Documentation (1.1.x), Release 1.1.4

• Cookie is added to the response’s Vary header if the session is accessed at all during the request (and not
deleted). #2288

• test_request_context() accepts subdomain and url_scheme arguments for use when building the
base URL. #1621

• Set APPLICATION_ROOT to '/' by default. This was already the implicit default when it was set to None.

• TRAP_BAD_REQUEST_ERRORS is enabled by default in debug mode. BadRequestKeyError has a mes-
sage with the bad key in debug mode instead of the generic bad request message. #2348

• Allow registering new tags with TaggedJSONSerializer to support storing other types in the session
cookie. #2352

• Only open the session if the request has not been pushed onto the context stack yet. This allows
stream_with_context() generators to access the same session that the containing view uses. #2354

• Add json keyword argument for the test client request methods. This will dump the given object as JSON and
set the appropriate content type. #2358

• Extract JSON handling to a mixin applied to both the Request and Response classes. This adds the
is_json() and get_json() methods to the response to make testing JSON response much easier. #2358

• Removed error handler caching because it caused unexpected results for some exception inheritance hierarchies.
Register handlers explicitly for each exception if you want to avoid traversing the MRO. #2362

• Fix incorrect JSON encoding of aware, non-UTC datetimes. #2374

• Template auto reloading will honor debug mode even even if jinja_env was already accessed. #2373

• The following old deprecated code was removed. #2385

– flask.ext - import extensions directly by their name instead of through the flask.ext namespace.
For example, import flask.ext.sqlalchemy becomes import flask_sqlalchemy.

– Flask.init_jinja_globals - extend Flask.create_jinja_environment() instead.

– Flask.error_handlers - tracked by Flask.error_handler_spec, use Flask.
errorhandler() to register handlers.

– Flask.request_globals_class - use Flask.app_ctx_globals_class instead.

– Flask.static_path - use Flask.static_url_path instead.

– Request.module - use Request.blueprint instead.

• The Request.json property is no longer deprecated. #1421

• Support passing a EnvironBuilder or dict to test_client.open. #2412

• The flask command and Flask.run() will load environment variables from .env and .flaskenv files
if python-dotenv is installed. #2416

• When passing a full URL to the test client, the scheme in the URL is used instead of
PREFERRED_URL_SCHEME. #2430

• Flask.logger has been simplified. LOGGER_NAME and LOGGER_HANDLER_POLICY config was re-
moved. The logger is always named flask.app. The level is only set on first access, it doesn’t check
Flask.debug each time. Only one format is used, not different ones depending on Flask.debug. No
handlers are removed, and a handler is only added if no handlers are already configured. #2436

• Blueprint view function names may not contain dots. #2450

• Fix a ValueError caused by invalid Range requests in some cases. #2526

• The development server uses threads by default. #2529

3.8. Changelog 263

https://github.com/pallets/flask/pull/2288
https://github.com/pallets/flask/pull/1621
https://github.com/pallets/flask/pull/2348
https://github.com/pallets/flask/pull/2352
https://github.com/pallets/flask/pull/2354
https://github.com/pallets/flask/pull/2358
https://github.com/pallets/flask/pull/2358
https://github.com/pallets/flask/pull/2362
https://github.com/pallets/flask/pull/2374
https://github.com/pallets/flask/pull/2373
https://github.com/pallets/flask/issues/2385
https://github.com/pallets/flask/issues/1421
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.EnvironBuilder
https://werkzeug.palletsprojects.com/en/2.0.x/test/#werkzeug.test.Client.open
https://github.com/pallets/flask/pull/2412
https://github.com/pallets/flask/pull/2416
https://github.com/pallets/flask/pull/2430
https://github.com/pallets/flask/pull/2436
https://github.com/pallets/flask/pull/2450
https://github.com/pallets/flask/issues/2526
https://github.com/pallets/flask/pull/2529


Flask Documentation (1.1.x), Release 1.1.4

• Loading config files with silent=True will ignore ENOTDIR errors. #2581

• Pass --cert and --key options to flask run to run the development server over HTTPS. #2606

• Added SESSION_COOKIE_SAMESITE to control the SameSite attribute on the session cookie. #2607

• Added test_cli_runner() to create a Click runner that can invoke Flask CLI commands for testing.
#2636

• Subdomain matching is disabled by default and setting SERVER_NAME does not implicitly enable it. It can be
enabled by passing subdomain_matching=True to the Flask constructor. #2635

• A single trailing slash is stripped from the blueprint url_prefix when it is registered with the app. #2629

• Request.get_json() doesn’t cache the result if parsing fails when silent is true. #2651

• Request.get_json() no longer accepts arbitrary encodings. Incoming JSON should be encoded using
UTF-8 per RFC 8259, but Flask will autodetect UTF-8, -16, or -32. #2691

• Added MAX_COOKIE_SIZE and Response.max_cookie_size to control when Werkzeug warns about
large cookies that browsers may ignore. #2693

• Updated documentation theme to make docs look better in small windows. #2709

• Rewrote the tutorial docs and example project to take a more structured approach to help new users avoid
common pitfalls. #2676

3.8.11 Version 0.12.5

Released 2020-02-10

• Pin Werkzeug to < 1.0.0. #3497

3.8.12 Version 0.12.4

Released 2018-04-29

• Repackage 0.12.3 to fix package layout issue. #2728

3.8.13 Version 0.12.3

Released 2018-04-26

• Request.get_json() no longer accepts arbitrary encodings. Incoming JSON should be encoded using
UTF-8 per RFC 8259, but Flask will autodetect UTF-8, -16, or -32. #2692

• Fix a Python warning about imports when using python -m flask. #2666

• Fix a ValueError caused by invalid Range requests in some cases.

3.8.14 Version 0.12.2

Released 2017-05-16

• Fix a bug in safe_join on Windows.

264 Chapter 3. Additional Notes

https://docs.python.org/3/library/errno.html#errno.ENOTDIR
https://github.com/pallets/flask/pull/2581
https://github.com/pallets/flask/pull/2606
https://github.com/pallets/flask/pull/2607
https://github.com/pallets/flask/pull/2636
https://github.com/pallets/flask/pull/2635
https://github.com/pallets/flask/pull/2629
https://github.com/pallets/flask/issues/2651
https://tools.ietf.org/html/rfc8259.html
https://github.com/pallets/flask/pull/2691
https://github.com/pallets/flask/pull/2693
https://github.com/pallets/flask/pull/2709
https://github.com/pallets/flask/pull/2676
https://github.com/pallets/flask/issues/3497
https://github.com/pallets/flask/issues/2728
https://tools.ietf.org/html/rfc8259.html
https://github.com/pallets/flask/issues/2692
https://github.com/pallets/flask/issues/2666


Flask Documentation (1.1.x), Release 1.1.4

3.8.15 Version 0.12.1

Released 2017-03-31

• Prevent flask run from showing a NoAppException when an ImportError occurs within the im-
ported application module.

• Fix encoding behavior of app.config.from_pyfile for Python 3. #2118

• Use the SERVER_NAME config if it is present as default values for app.run. #2109, #2152

• Call ctx.auto_pop with the exception object instead of None, in the event that a BaseException such
as KeyboardInterrupt is raised in a request handler.

3.8.16 Version 0.12

Released 2016-12-21, codename Punsch

• The cli command now responds to --version.

• Mimetype guessing and ETag generation for file-like objects in send_file has been removed. #104, :pr‘1849‘

• Mimetype guessing in send_file now fails loudly and doesn’t fall back to application/
octet-stream. #1988

• Make flask.safe_join able to join multiple paths like os.path.join #1730

• Revert a behavior change that made the dev server crash instead of returning an Internal Server Error. #2006

• Correctly invoke response handlers for both regular request dispatching as well as error handlers.

• Disable logger propagation by default for the app logger.

• Add support for range requests in send_file.

• app.test_client includes preset default environment, which can now be directly set, instead of per
client.get.

• Fix crash when running under PyPy3. #1814

3.8.17 Version 0.11.1

Released 2016-06-07

• Fixed a bug that prevented FLASK_APP=foobar/__init__.py from working. #1872

3.8.18 Version 0.11

Released 2016-05-29, codename Absinthe

• Added support to serializing top-level arrays to flask.jsonify(). This introduces a security risk in ancient
browsers. See JSON Security for details.

• Added before_render_template signal.

• Added **kwargs to flask.Test.test_client() to support passing additional keyword arguments to
the constructor of flask.Flask.test_client_class.

3.8. Changelog 265

https://github.com/pallets/flask/issues/2118
https://github.com/pallets/flask/issues/2109
https://github.com/pallets/flask/pull/2152
https://github.com/pallets/flask/issues/104
https://github.com/pallets/flask/pull/1988
https://github.com/pallets/flask/pull/1730
https://github.com/pallets/flask/pull/2006
https://github.com/pallets/flask/pull/1814
https://github.com/pallets/flask/pull/1872


Flask Documentation (1.1.x), Release 1.1.4

• Added SESSION_REFRESH_EACH_REQUEST config key that controls the set-cookie behavior. If set to True
a permanent session will be refreshed each request and get their lifetime extended, if set to False it will only
be modified if the session actually modifies. Non permanent sessions are not affected by this and will always
expire if the browser window closes.

• Made Flask support custom JSON mimetypes for incoming data.

• Added support for returning tuples in the form (response, headers) from a view function.

• Added flask.Config.from_json().

• Added flask.Flask.config_class.

• Added flask.Config.get_namespace().

• Templates are no longer automatically reloaded outside of debug mode. This can be configured with the new
TEMPLATES_AUTO_RELOAD config key.

• Added a workaround for a limitation in Python 3.3’s namespace loader.

• Added support for explicit root paths when using Python 3.3’s namespace packages.

• Added flask and the flask.cli module to start the local debug server through the click CLI system. This
is recommended over the old flask.run() method as it works faster and more reliable due to a different
design and also replaces Flask-Script.

• Error handlers that match specific classes are now checked first, thereby allowing catching exceptions that are
subclasses of HTTP exceptions (in werkzeug.exceptions). This makes it possible for an extension author
to create exceptions that will by default result in the HTTP error of their choosing, but may be caught with a
custom error handler if desired.

• Added flask.Config.from_mapping().

• Flask will now log by default even if debug is disabled. The log format is now hardcoded but the default log
handling can be disabled through the LOGGER_HANDLER_POLICY configuration key.

• Removed deprecated module functionality.

• Added the EXPLAIN_TEMPLATE_LOADING config flag which when enabled will instruct Flask to explain
how it locates templates. This should help users debug when the wrong templates are loaded.

• Enforce blueprint handling in the order they were registered for template loading.

• Ported test suite to py.test.

• Deprecated request.json in favour of request.get_json().

• Add “pretty” and “compressed” separators definitions in jsonify() method. Reduces JSON response size when
JSONIFY_PRETTYPRINT_REGULAR=False by removing unnecessary white space included by default af-
ter separators.

• JSON responses are now terminated with a newline character, because it is a convention that UNIX text files
end with a newline and some clients don’t deal well when this newline is missing. This came up originally as a
part of https://github.com/postmanlabs/httpbin/issues/168. #1262

• The automatically provided OPTIONS method is now correctly disabled if the user registered an overriding rule
with the lowercase-version options. #1288

• flask.json.jsonify now supports the datetime.date type. #1326

• Don’t leak exception info of already caught exceptions to context teardown handlers. #1393

• Allow custom Jinja environment subclasses. #1422

• Updated extension dev guidelines.

266 Chapter 3. Additional Notes

https://github.com/postmanlabs/httpbin/issues/168
https://github.com/pallets/flask/pull/1262
https://github.com/pallets/flask/issues/1288
https://github.com/pallets/flask/pull/1326
https://github.com/pallets/flask/pull/1393
https://github.com/pallets/flask/pull/1422


Flask Documentation (1.1.x), Release 1.1.4

• flask.g now has pop() and setdefault methods.

• Turn on autoescape for flask.templating.render_template_string by default. #1515

• flask.ext is now deprecated. #1484

• send_from_directory now raises BadRequest if the filename is invalid on the server OS. #1763

• Added the JSONIFY_MIMETYPE configuration variable. #1728

• Exceptions during teardown handling will no longer leave bad application contexts lingering around.

• Fixed broken test_appcontext_signals() test case.

• Raise an AttributeError in flask.helpers.find_package() with a useful message explaining
why it is raised when a PEP 302 import hook is used without an is_package() method.

• Fixed an issue causing exceptions raised before entering a request or app context to be passed to teardown
handlers.

• Fixed an issue with query parameters getting removed from requests in the test client when absolute URLs were
requested.

• Made @before_first_request into a decorator as intended.

• Fixed an etags bug when sending a file streams with a name.

• Fixed send_from_directory not expanding to the application root path correctly.

• Changed logic of before first request handlers to flip the flag after invoking. This will allow some uses that are
potentially dangerous but should probably be permitted.

• Fixed Python 3 bug when a handler from app.url_build_error_handlers reraises the BuildError.

3.8.19 Version 0.10.1

Released 2013-06-14

• Fixed an issue where |tojsonwas not quoting single quotes which made the filter not work properly in HTML
attributes. Now it’s possible to use that filter in single quoted attributes. This should make using that filter with
angular.js easier.

• Added support for byte strings back to the session system. This broke compatibility with the common case of
people putting binary data for token verification into the session.

• Fixed an issue where registering the same method twice for the same endpoint would trigger an exception
incorrectly.

3.8.20 Version 0.10

Released 2013-06-13, codename Limoncello

• Changed default cookie serialization format from pickle to JSON to limit the impact an attacker can do if the
secret key leaks. See Version 0.10 for more information.

• Added template_test methods in addition to the already existing template_filter method family.

• Added template_global methods in addition to the already existing template_filter method family.

• Set the content-length header for x-sendfile.

• tojson filter now does not escape script blocks in HTML5 parsers.

• tojson used in templates is now safe by default due. This was allowed due to the different escaping behavior.

3.8. Changelog 267

https://github.com/pallets/flask/pull/1515
https://github.com/pallets/flask/pull/1484
https://github.com/pallets/flask/pull/1763
https://github.com/pallets/flask/pull/1728
https://docs.python.org/3/library/exceptions.html#AttributeError


Flask Documentation (1.1.x), Release 1.1.4

• Flask will now raise an error if you attempt to register a new function on an already used endpoint.

• Added wrapper module around simplejson and added default serialization of datetime objects. This allows much
easier customization of how JSON is handled by Flask or any Flask extension.

• Removed deprecated internal flask.session module alias. Use flask.sessions instead to get the
session module. This is not to be confused with flask.session the session proxy.

• Templates can now be rendered without request context. The behavior is slightly different as the request,
session and g objects will not be available and blueprint’s context processors are not called.

• The config object is now available to the template as a real global and not through a context processor which
makes it available even in imported templates by default.

• Added an option to generate non-ascii encoded JSON which should result in less bytes being transmitted over
the network. It’s disabled by default to not cause confusion with existing libraries that might expect flask.
json.dumps to return bytestrings by default.

• flask.g is now stored on the app context instead of the request context.

• flask.g now gained a get() method for not erroring out on non existing items.

• flask.g now can be used with the in operator to see what’s defined and it now is iterable and will yield all
attributes stored.

• flask.Flask.request_globals_class got renamed to flask.Flask.
app_ctx_globals_class which is a better name to what it does since 0.10.

• request, session and g are now also added as proxies to the template context which makes them available
in imported templates. One has to be very careful with those though because usage outside of macros might
cause caching.

• Flask will no longer invoke the wrong error handlers if a proxy exception is passed through.

• Added a workaround for chrome’s cookies in localhost not working as intended with domain names.

• Changed logic for picking defaults for cookie values from sessions to work better with Google Chrome.

• Added message_flashed signal that simplifies flashing testing.

• Added support for copying of request contexts for better working with greenlets.

• Removed custom JSON HTTP exception subclasses. If you were relying on them you can reintroduce them
again yourself trivially. Using them however is strongly discouraged as the interface was flawed.

• Python requirements changed: requiring Python 2.6 or 2.7 now to prepare for Python 3.3 port.

• Changed how the teardown system is informed about exceptions. This is now more reliable in case something
handles an exception halfway through the error handling process.

• Request context preservation in debug mode now keeps the exception information around which means that
teardown handlers are able to distinguish error from success cases.

• Added the JSONIFY_PRETTYPRINT_REGULAR configuration variable.

• Flask now orders JSON keys by default to not trash HTTP caches due to different hash seeds between different
workers.

• Added appcontext_pushed and appcontext_popped signals.

• The builtin run method now takes the SERVER_NAME into account when picking the default port to run on.

• Added flask.request.get_json() as a replacement for the old flask.request.json property.

268 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

3.8.21 Version 0.9

Released 2012-07-01, codename Campari

• The flask.Request.on_json_loading_failed() now returns a JSON formatted response by de-
fault.

• The flask.url_for() function now can generate anchors to the generated links.

• The flask.url_for() function now can also explicitly generate URL rules specific to a given HTTP
method.

• Logger now only returns the debug log setting if it was not set explicitly.

• Unregister a circular dependency between the WSGI environment and the request object when shutting down
the request. This means that environ werkzeug.request will be None after the response was returned to
the WSGI server but has the advantage that the garbage collector is not needed on CPython to tear down the
request unless the user created circular dependencies themselves.

• Session is now stored after callbacks so that if the session payload is stored in the session you can still modify
it in an after request callback.

• The flask.Flask class will avoid importing the provided import name if it can (the required first parameter),
to benefit tools which build Flask instances programmatically. The Flask class will fall back to using import on
systems with custom module hooks, e.g. Google App Engine, or when the import name is inside a zip archive
(usually a .egg) prior to Python 2.7.

• Blueprints now have a decorator to add custom template filters application wide, flask.Blueprint.
app_template_filter().

• The Flask and Blueprint classes now have a non-decorator method for adding custom tem-
plate filters application wide, flask.Flask.add_template_filter() and flask.Blueprint.
add_app_template_filter().

• The flask.get_flashed_messages() function now allows rendering flashed message categories in sep-
arate blocks, through a category_filter argument.

• The flask.Flask.run() method now accepts None for host and port arguments, using default val-
ues when None. This allows for calling run using configuration values, e.g. app.run(app.config.
get('MYHOST'), app.config.get('MYPORT')), with proper behavior whether or not a config file
is provided.

• The flask.render_template() method now accepts a either an iterable of template names or a single
template name. Previously, it only accepted a single template name. On an iterable, the first template found is
rendered.

• Added flask.Flask.app_context() which works very similar to the request context but only provides
access to the current application. This also adds support for URL generation without an active request context.

• View functions can now return a tuple with the first instance being an instance of flask.Response. This
allows for returning jsonify(error="error msg"), 400 from a view function.

• Flask and Blueprint now provide a get_send_file_max_age() hook for subclasses to override
behavior of serving static files from Flask when using flask.Flask.send_static_file() (used for
the default static file handler) and send_file(). This hook is provided a filename, which for example
allows changing cache controls by file extension. The default max-age for send_file and static files can
be configured through a new SEND_FILE_MAX_AGE_DEFAULT configuration variable, which is used in the
default get_send_file_max_age implementation.

• Fixed an assumption in sessions implementation which could break message flashing on sessions implementa-
tions which use external storage.

3.8. Changelog 269



Flask Documentation (1.1.x), Release 1.1.4

• Changed the behavior of tuple return values from functions. They are no longer arguments to the response
object, they now have a defined meaning.

• Added flask.Flask.request_globals_class to allow a specific class to be used on creation of the
g instance of each request.

• Added required_methods attribute to view functions to force-add methods on registration.

• Added flask.after_this_request().

• Added flask.stream_with_context() and the ability to push contexts multiple times without produc-
ing unexpected behavior.

3.8.22 Version 0.8.1

Released 2012-07-01

• Fixed an issue with the undocumented flask.sessionmodule to not work properly on Python 2.5. It should
not be used but did cause some problems for package managers.

3.8.23 Version 0.8

Released 2011-09-29, codename Rakija

• Refactored session support into a session interface so that the implementation of the sessions can be changed
without having to override the Flask class.

• Empty session cookies are now deleted properly automatically.

• View functions can now opt out of getting the automatic OPTIONS implementation.

• HTTP exceptions and Bad Request errors can now be trapped so that they show up normally in the traceback.

• Flask in debug mode is now detecting some common problems and tries to warn you about them.

• Flask in debug mode will now complain with an assertion error if a view was attached after the first request was
handled. This gives earlier feedback when users forget to import view code ahead of time.

• Added the ability to register callbacks that are only triggered once at the beginning of the first request. (Flask.
before_first_request())

• Malformed JSON data will now trigger a bad request HTTP exception instead of a value error which usually
would result in a 500 internal server error if not handled. This is a backwards incompatible change.

• Applications now not only have a root path where the resources and modules are located but also an instance path
which is the designated place to drop files that are modified at runtime (uploads etc.). Also this is conceptually
only instance depending and outside version control so it’s the perfect place to put configuration files etc. For
more information see Instance Folders.

• Added the APPLICATION_ROOT configuration variable.

• Implemented session_transaction() to easily modify sessions from the test environment.

• Refactored test client internally. The APPLICATION_ROOT configuration variable as well as SERVER_NAME
are now properly used by the test client as defaults.

• Added flask.views.View.decorators to support simpler decorating of pluggable (class-based) views.

• Fixed an issue where the test client if used with the “with” statement did not trigger the execution of the teardown
handlers.

• Added finer control over the session cookie parameters.

270 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

• HEAD requests to a method view now automatically dispatch to the getmethod if no handler was implemented.

• Implemented the virtual flask.ext package to import extensions from.

• The context preservation on exceptions is now an integral component of Flask itself and no longer of the test
client. This cleaned up some internal logic and lowers the odds of runaway request contexts in unittests.

• Fixed the Jinja2 environment’s list_templates method not returning the correct names when blueprints or
modules were involved.

3.8.24 Version 0.7.2

Released 2011-07-06

• Fixed an issue with URL processors not properly working on blueprints.

3.8.25 Version 0.7.1

Released 2011-06-29

• Added missing future import that broke 2.5 compatibility.

• Fixed an infinite redirect issue with blueprints.

3.8.26 Version 0.7

Released 2011-06-28, codename Grappa

• Added make_default_options_response() which can be used by subclasses to alter the default be-
havior for OPTIONS responses.

• Unbound locals now raise a proper RuntimeError instead of an AttributeError.

• Mimetype guessing and etag support based on file objects is now deprecated for flask.send_file() be-
cause it was unreliable. Pass filenames instead or attach your own etags and provide a proper mimetype by
hand.

• Static file handling for modules now requires the name of the static folder to be supplied explicitly. The previous
autodetection was not reliable and caused issues on Google’s App Engine. Until 1.0 the old behavior will
continue to work but issue dependency warnings.

• Fixed a problem for Flask to run on jython.

• Added a PROPAGATE_EXCEPTIONS configuration variable that can be used to flip the setting of exception
propagation which previously was linked to DEBUG alone and is now linked to either DEBUG or TESTING.

• Flask no longer internally depends on rules being added through the add_url_rule function and can now
also accept regular werkzeug rules added to the url map.

• Added an endpoint method to the flask application object which allows one to register a callback to an
arbitrary endpoint with a decorator.

• Use Last-Modified for static file sending instead of Date which was incorrectly introduced in 0.6.

• Added create_jinja_loader to override the loader creation process.

• Implemented a silent flag for config.from_pyfile.

3.8. Changelog 271

https://docs.python.org/3/library/exceptions.html#RuntimeError
https://docs.python.org/3/library/exceptions.html#AttributeError


Flask Documentation (1.1.x), Release 1.1.4

• Added teardown_request decorator, for functions that should run at the end of a request regardless of
whether an exception occurred. Also the behavior for after_request was changed. It’s now no longer
executed when an exception is raised. See Upgrading to new Teardown Handling

• Implemented flask.has_request_context()

• Deprecated init_jinja_globals. Override the create_jinja_environment() method instead to
achieve the same functionality.

• Added flask.safe_join()

• The automatic JSON request data unpacking now looks at the charset mimetype parameter.

• Don’t modify the session on flask.get_flashed_messages() if there are no messages in the session.

• before_request handlers are now able to abort requests with errors.

• It is not possible to define user exception handlers. That way you can provide custom error messages from
a central hub for certain errors that might occur during request processing (for instance database connection
errors, timeouts from remote resources etc.).

• Blueprints can provide blueprint specific error handlers.

• Implemented generic Pluggable Views (class-based views).

3.8.27 Version 0.6.1

Released 2010-12-31

• Fixed an issue where the default OPTIONS response was not exposing all valid methods in the Allow header.

• Jinja2 template loading syntax now allows “./” in front of a template load path. Previously this caused issues
with module setups.

• Fixed an issue where the subdomain setting for modules was ignored for the static folder.

• Fixed a security problem that allowed clients to download arbitrary files if the host server was a windows based
operating system and the client uses backslashes to escape the directory the files where exposed from.

3.8.28 Version 0.6

Released 2010-07-27, codename Whisky

• After request functions are now called in reverse order of registration.

• OPTIONS is now automatically implemented by Flask unless the application explicitly adds ‘OPTIONS’ as
method to the URL rule. In this case no automatic OPTIONS handling kicks in.

• Static rules are now even in place if there is no static folder for the module. This was implemented to aid GAE
which will remove the static folder if it’s part of a mapping in the .yml file.

• The config is now available in the templates as config.

• Context processors will no longer override values passed directly to the render function.

• Added the ability to limit the incoming request data with the new MAX_CONTENT_LENGTH configuration
value.

• The endpoint for the flask.Module.add_url_rule() method is now optional to be consistent with the
function of the same name on the application object.

• Added a flask.make_response() function that simplifies creating response object instances in views.

272 Chapter 3. Additional Notes



Flask Documentation (1.1.x), Release 1.1.4

• Added signalling support based on blinker. This feature is currently optional and supposed to be used by
extensions and applications. If you want to use it, make sure to have blinker installed.

• Refactored the way URL adapters are created. This process is now fully customizable with the
create_url_adapter() method.

• Modules can now register for a subdomain instead of just an URL prefix. This makes it possible to bind a whole
module to a configurable subdomain.

3.8.29 Version 0.5.2

Released 2010-07-15

• Fixed another issue with loading templates from directories when modules were used.

3.8.30 Version 0.5.1

Released 2010-07-06

• Fixes an issue with template loading from directories when modules where used.

3.8.31 Version 0.5

Released 2010-07-06, codename Calvados

• Fixed a bug with subdomains that was caused by the inability to specify the server name. The server name
can now be set with the SERVER_NAME config key. This key is now also used to set the session cookie cross-
subdomain wide.

• Autoescaping is no longer active for all templates. Instead it is only active for .html, .htm, .xml and
.xhtml. Inside templates this behavior can be changed with the autoescape tag.

• Refactored Flask internally. It now consists of more than a single file.

• flask.send_file() now emits etags and has the ability to do conditional responses builtin.

• (temporarily) dropped support for zipped applications. This was a rarely used feature and led to some confusing
behavior.

• Added support for per-package template and static-file directories.

• Removed support for create_jinja_loader which is no longer used in 0.5 due to the improved module
support.

• Added a helper function to expose files from any directory.

3.8.32 Version 0.4

Released 2010-06-18, codename Rakia

• Added the ability to register application wide error handlers from modules.

• after_request() handlers are now also invoked if the request dies with an exception and an error handling
page kicks in.

• Test client has not the ability to preserve the request context for a little longer. This can also be used to trigger
custom requests that do not pop the request stack for testing.

3.8. Changelog 273

https://pypi.org/project/blinker/


Flask Documentation (1.1.x), Release 1.1.4

• Because the Python standard library caches loggers, the name of the logger is configurable now to better support
unittests.

• Added TESTING switch that can activate unittesting helpers.

• The logger switches to DEBUG mode now if debug is enabled.

3.8.33 Version 0.3.1

Released 2010-05-28

• Fixed a error reporting bug with flask.Config.from_envvar()

• Removed some unused code from flask

• Release does no longer include development leftover files (.git folder for themes, built documentation in zip and
pdf file and some .pyc files)

3.8.34 Version 0.3

Released 2010-05-28, codename Schnaps

• Added support for categories for flashed messages.

• The application now configures a logging.Handler and will log request handling exceptions to that logger
when not in debug mode. This makes it possible to receive mails on server errors for example.

• Added support for context binding that does not require the use of the with statement for playing in the console.

• The request context is now available within the with statement making it possible to further push the request
context or pop it.

• Added support for configurations.

3.8.35 Version 0.2

Released 2010-05-12, codename J?germeister

• Various bugfixes

• Integrated JSON support

• Added get_template_attribute() helper function.

• add_url_rule() can now also register a view function.

• Refactored internal request dispatching.

• Server listens on 127.0.0.1 by default now to fix issues with chrome.

• Added external URL support.

• Added support for send_file()

• Module support and internal request handling refactoring to better support pluggable applications.

• Sessions can be set to be permanent now on a per-session basis.

• Better error reporting on missing secret keys.

• Added support for Google Appengine.

274 Chapter 3. Additional Notes

https://docs.python.org/3/library/logging.html#logging.Handler


Flask Documentation (1.1.x), Release 1.1.4

3.8.36 Version 0.1

Released 2010-04-16

• First public preview release.

3.9 License

3.9.1 Source License

This license applies to all files in the Flask repository and source distribution. This includes Flask’s source code, the
examples, and tests, as well as the documentation.

Copyright 2010 Pallets

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following
disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the follow-
ing disclaimer in the documentation and/or other materials provided with the distribution.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY
EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, IN-
CIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSI-
NESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CON-
TRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY
WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAM-
AGE.

3.9.2 Artwork License

This license applies to Flask’s logo.

Copyright 2010 Pallets

This logo or a modified version may be used by anyone to refer to the Flask project, but does not indicate endorsement
by the project.

Redistribution and use in source (SVG) and binary (renders in PNG, etc.) forms, with or without modification, are
permitted provided that the following conditions are met:

1. Redistributions of source code must retain the above copyright notice and this list of conditions.

3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote
products derived from this software without specific prior written permission.

We would appreciate that you make the image a link to https://palletsprojects.com/p/flask/ if you use it in a medium
that supports links.

3.9. License 275

https://palletsprojects.com/p/flask/


Flask Documentation (1.1.x), Release 1.1.4

3.10 How to contribute to Flask

Thank you for considering contributing to Flask!

3.10.1 Support questions

Please, don’t use the issue tracker for this. Use one of the following resources for questions about your own code:

• The #get-help channel on our Discord chat: https://discordapp.com/invite/t6rrQZH

– The IRC channel #pocoo on FreeNode is linked to Discord, but Discord is preferred.

• The mailing list flask@python.org for long term discussion or larger issues.

• Ask on Stack Overflow. Search with Google first using: site:stackoverflow.com flask {search
term, exception message, etc.}

3.10.2 Reporting issues

• Describe what you expected to happen.

• If possible, include a minimal reproducible example to help us identify the issue. This also helps check that the
issue is not with your own code.

• Describe what actually happened. Include the full traceback if there was an exception.

• List your Python, Flask, and Werkzeug versions. If possible, check if this issue is already fixed in the repository.

3.10.3 Submitting patches

• Use Black to autoformat your code. This should be done for you as a git pre-commit hook, which gets installed
when you run pip install -e .[dev]. You may also wish to use Black’s Editor integration.

• Include tests if your patch is supposed to solve a bug, and explain clearly under which circumstances the bug
happens. Make sure the test fails without your patch.

• Include a string like “Fixes #123” in your commit message (where 123 is the issue you fixed). See Closing
issues using keywords.

First time setup

• Download and install the latest version of git.

• Configure git with your username and email:

git config --global user.name 'your name'
git config --global user.email 'your email'

• Make sure you have a GitHub account.

• Fork Flask to your GitHub account by clicking the Fork button.

• Clone your GitHub fork locally:

git clone https://github.com/{username}/flask
cd flask

276 Chapter 3. Additional Notes

https://discordapp.com/invite/t6rrQZH
mailto:flask@python.org
https://stackoverflow.com/questions/tagged/flask?sort=linked
https://stackoverflow.com/help/minimal-reproducible-example
https://black.readthedocs.io
https://pre-commit.com
https://black.readthedocs.io/en/stable/editor_integration.html
https://help.github.com/articles/creating-a-pull-request/
https://help.github.com/articles/creating-a-pull-request/
https://git-scm.com/downloads
https://help.github.com/en/articles/setting-your-username-in-git
https://help.github.com/en/articles/setting-your-commit-email-address-in-git
https://github.com/join
https://github.com/pallets/flask/fork
https://help.github.com/en/articles/fork-a-repo#step-2-create-a-local-clone-of-your-fork


Flask Documentation (1.1.x), Release 1.1.4

• Add the main repository as a remote to update later:

git remote add pallets https://github.com/pallets/flask
git fetch pallets

• Create a virtualenv:

python3 -m venv env
. env/bin/activate
# or "env\Scripts\activate" on Windows

• Install Flask in editable mode with development dependencies:

pip install -e ".[dev]"

• Install the pre-commit framework.

• Install the pre-commit hooks:

pre-commit install --install-hooks

Start coding

• Create a branch to identify the issue you would like to work on. If you’re submitting a bug or documentation
fix, branch off of the latest “.x” branch:

git checkout -b your-branch-name origin/1.0.x

If you’re submitting a feature addition or change, branch off of the “master” branch:

git checkout -b your-branch-name origin/master

• Using your favorite editor, make your changes, committing as you go.

• Include tests that cover any code changes you make. Make sure the test fails without your patch. Run the tests..

• Push your commits to GitHub and create a pull request by using:

git push --set-upstream origin your-branch-name

• Celebrate

Running the tests

Run the basic test suite with:

pytest

This only runs the tests for the current environment. Whether this is relevant depends on which part of Flask you’re
working on. Travis-CI will run the full suite when you submit your pull request.

The full test suite takes a long time to run because it tests multiple combinations of Python and dependencies. You
need to have Python 2.7, 3.4, 3.5 3.6, and PyPy 2.7 installed to run all of the environments. Then run:

tox

3.10. How to contribute to Flask 277

https://pre-commit.com/#install
https://dont-be-afraid-to-commit.readthedocs.io/en/latest/git/commandlinegit.html#commit-your-changes
https://help.github.com/en/articles/creating-a-pull-request


Flask Documentation (1.1.x), Release 1.1.4

Running test coverage

Generating a report of lines that do not have test coverage can indicate where to start contributing. Run pytest using
coverage and generate a report on the terminal and as an interactive HTML document:

coverage run -m pytest
coverage report
coverage html
# then open htmlcov/index.html

Read more about coverage.

Running the full test suite with tox will combine the coverage reports from all runs.

Building the docs

Build the docs in the docs directory using Sphinx:

cd docs
pip install -r requirements.txt
make html

Open _build/html/index.html in your browser to view the docs.

Read more about Sphinx.

3.10.4 Caution: zero-padded file modes

This repository contains several zero-padded file modes that may cause issues when pushing this repository to git hosts
other than GitHub. Fixing this is destructive to the commit history, so we suggest ignoring these warnings. If it fails
to push and you’re using a self-hosted git service like GitLab, you can turn off repository checks in the admin panel.

These files can also cause issues while cloning. If you have

[fetch]
fsckobjects = true

or

[receive]
fsckObjects = true

set in your git configuration file, cloning this repository will fail. The only solution is to set both of the above settings
to false while cloning, and then setting them back to true after the cloning is finished.

278 Chapter 3. Additional Notes

https://coverage.readthedocs.io
https://www.sphinx-doc.org/en/master/


PYTHON MODULE INDEX

f
flask, 169
flask.json, 214
flask.json.tag, 217

279



Flask Documentation (1.1.x), Release 1.1.4

280 Python Module Index



INDEX

Symbols
_AppCtxGlobals (class in flask.ctx), 207
_app_ctx_stack (in module flask), 224
_request_ctx_stack (in module flask), 223

A
abort() (in module flask), 210
accept_charsets() (flask.Request property), 195
accept_encodings() (flask.Request property), 195
accept_languages() (flask.Request property), 195
accept_mimetypes() (flask.Request property), 195
access_control_request_headers

(flask.Request attribute), 195
access_control_request_method

(flask.Request attribute), 195
access_route() (flask.Request property), 195
accessed (flask.sessions.SecureCookieSession at-

tribute), 205
accessed (flask.sessions.SessionMixin attribute), 205
add_app_template_filter() (flask.Blueprint

method), 190
add_app_template_global() (flask.Blueprint

method), 190
add_app_template_test() (flask.Blueprint

method), 190
add_template_filter() (flask.Flask method), 170
add_template_global() (flask.Flask method), 170
add_template_test() (flask.Flask method), 170
add_url_rule() (flask.Blueprint method), 190
add_url_rule() (flask.blueprints.BlueprintSetupState

method), 224
add_url_rule() (flask.Flask method), 171
after_app_request() (flask.Blueprint method),

190
after_request() (flask.Blueprint method), 191
after_request() (flask.Flask method), 171
after_request_funcs (flask.Flask attribute), 172
after_this_request() (in module flask), 211
app (flask.blueprints.BlueprintSetupState attribute), 224
app_context() (flask.Flask method), 172
app_context_processor() (flask.Blueprint

method), 191

app_ctx_globals_class (flask.Flask attribute),
172

app_errorhandler() (flask.Blueprint method), 191
app_import_path (flask.cli.ScriptInfo attribute), 232
app_template_filter() (flask.Blueprint method),

191
app_template_global() (flask.Blueprint method),

191
app_template_test() (flask.Blueprint method),

191
app_url_defaults() (flask.Blueprint method), 191
app_url_value_preprocessor()

(flask.Blueprint method), 191
AppContext (class in flask.ctx), 223
appcontext_popped (in module flask), 226
appcontext_pushed (in module flask), 226
appcontext_tearing_down (in module flask), 226
AppGroup (class in flask.cli), 231
application() (flask.Request class method), 195
APPLICATION_ROOT (built-in variable), 77
args() (flask.Request property), 195
as_view() (flask.views.View class method), 227
authorization() (flask.Request property), 196
auto_find_instance_path() (flask.Flask

method), 172

B
base_url (flask.Request attribute), 194
base_url() (flask.Request property), 196
before_app_first_request() (flask.Blueprint

method), 191
before_app_request() (flask.Blueprint method),

191
before_first_request() (flask.Flask method),

172
before_first_request_funcs (flask.Flask at-

tribute), 172
before_request() (flask.Blueprint method), 191
before_request() (flask.Flask method), 172
before_request_funcs (flask.Flask attribute), 172
Blueprint (class in flask), 189

281



Flask Documentation (1.1.x), Release 1.1.4

blueprint (flask.blueprints.BlueprintSetupState at-
tribute), 224

blueprint() (flask.Request property), 196
blueprints (flask.Flask attribute), 172
BlueprintSetupState (class in flask.blueprints),

224

C
cache_control() (flask.Request property), 196
check() (flask.json.tag.JSONTag method), 218
close() (flask.Request method), 196
command() (flask.cli.AppGroup method), 231
Config (class in flask), 219
config (flask.Flask attribute), 172
config_class (flask.Flask attribute), 173
content_encoding (flask.Request attribute), 196
content_length() (flask.Request property), 196
content_md5 (flask.Request attribute), 196
content_type (flask.Request attribute), 196
context_processor() (flask.Blueprint method),

191
context_processor() (flask.Flask method), 173
cookies() (flask.Request property), 196
copy() (flask.ctx.RequestContext method), 223
copy_current_request_context() (in module

flask), 208
create_app (flask.cli.ScriptInfo attribute), 232
create_global_jinja_loader() (flask.Flask

method), 173
create_jinja_environment() (flask.Flask

method), 173
create_url_adapter() (flask.Flask method), 173
current_app (in module flask), 208

D
data (flask.cli.ScriptInfo attribute), 232
data() (flask.Request property), 196
data() (flask.Response property), 201
date (flask.Request attribute), 196
DEBUG (built-in variable), 75
debug() (flask.Flask property), 173
decorators (flask.views.View attribute), 228
default() (flask.json.JSONEncoder method), 217
default_config (flask.Flask attribute), 173
default_tags (flask.json.tag.TaggedJSONSerializer

attribute), 217
dict_storage_class (flask.Request attribute), 196
digest_method() (flask.sessions.SecureCookieSessionInterface

static method), 204
dispatch_request() (flask.Flask method), 173
dispatch_request() (flask.views.MethodView

method), 228
dispatch_request() (flask.views.View method),

228

do_teardown_appcontext() (flask.Flask method),
173

do_teardown_request() (flask.Flask method), 174
dump() (in module flask.json), 216
dumps() (flask.json.tag.TaggedJSONSerializer

method), 217
dumps() (in module flask.json), 216

E
endpoint() (flask.Blueprint method), 191
endpoint() (flask.Flask method), 174
endpoint() (flask.Request property), 196
ENV (built-in variable), 75
env (flask.Flask attribute), 174
environ (flask.Request attribute), 194
environment variable

FLASK_DEBUG, 74, 102, 182
FLASK_ENV, 74, 75, 78, 101, 102, 108, 174, 182
YOURAPPLICATION_SETTINGS, 79

error_handler_spec (flask.Flask attribute), 174
errorhandler() (flask.Blueprint method), 192
errorhandler() (flask.Flask method), 174
escape() (flask.Markup class method), 213
escape() (in module flask), 213
EXPLAIN_TEMPLATE_LOADING (built-in variable),

78
extensions (flask.Flask attribute), 175

F
files() (flask.Request property), 196
finalize_request() (flask.Flask method), 175
first_registration

(flask.blueprints.BlueprintSetupState attribute),
224

flash() (in module flask), 214
Flask (class in flask), 169
flask (module), 169
flask.json (module), 214
flask.json.tag (module), 217
FLASK_DEBUG, 74, 102, 182
FLASK_ENV, 74, 75, 78, 101, 102, 108, 174, 182
FlaskClient (class in flask.testing), 206
FlaskCliRunner (class in flask.testing), 207
FlaskGroup (class in flask.cli), 230
form() (flask.Request property), 197
form_data_parser_class (flask.Request at-

tribute), 197
from_envvar() (flask.Config method), 220
from_json() (flask.Config method), 220
from_mapping() (flask.Config method), 220
from_object() (flask.Config method), 220
from_pyfile() (flask.Config method), 221
from_values() (flask.Request class method), 197

282 Index



Flask Documentation (1.1.x), Release 1.1.4

full_dispatch_request() (flask.Flask method),
175

full_path (flask.Request attribute), 194
full_path() (flask.Request property), 197

G
g (in module flask), 207
get() (flask.ctx._AppCtxGlobals method), 207
get() (flask.sessions.SecureCookieSession method),

205
get_command() (flask.cli.FlaskGroup method), 231
get_cookie_domain()

(flask.sessions.SessionInterface method),
203

get_cookie_httponly()
(flask.sessions.SessionInterface method),
203

get_cookie_path() (flask.sessions.SessionInterface
method), 203

get_cookie_samesite()
(flask.sessions.SessionInterface method),
204

get_cookie_secure()
(flask.sessions.SessionInterface method),
204

get_data() (flask.Request method), 197
get_expiration_time()

(flask.sessions.SessionInterface method),
204

get_flashed_messages() (in module flask), 214
get_json() (flask.Request method), 197
get_json() (flask.Response method), 201
get_namespace() (flask.Config method), 221
get_send_file_max_age() (flask.Blueprint

method), 192
get_send_file_max_age() (flask.Flask method),

175
get_template_attribute() (in module flask),

219
got_first_request() (flask.Flask property), 176
got_request_exception (in module flask), 225
group() (flask.cli.AppGroup method), 231

H
handle_exception() (flask.Flask method), 176
handle_http_exception() (flask.Flask method),

176
handle_url_build_error() (flask.Flask method),

176
handle_user_exception() (flask.Flask method),

176
has_app_context() (in module flask), 209
has_request_context() (in module flask), 208

has_static_folder() (flask.Blueprint property),
192

has_static_folder() (flask.Flask property), 177
headers (flask.Response attribute), 201
headers() (flask.Request property), 198
host() (flask.Request property), 198
host_url() (flask.Request property), 198

I
if_match() (flask.Request property), 198
if_modified_since() (flask.Request property),

198
if_none_match() (flask.Request property), 198
if_range() (flask.Request property), 198
if_unmodified_since() (flask.Request property),

198
import_name (flask.Blueprint attribute), 192
import_name (flask.Flask attribute), 177
inject_url_defaults() (flask.Flask method), 177
instance_path (flask.Flask attribute), 177
invoke() (flask.testing.FlaskCliRunner method), 207
is_json() (flask.Request property), 198
is_json() (flask.Response property), 201
is_multiprocess (flask.Request attribute), 198
is_multithread (flask.Request attribute), 198
is_null_session() (flask.sessions.SessionInterface

method), 204
is_run_once (flask.Request attribute), 198
is_secure() (flask.Request property), 198
iter_blueprints() (flask.Flask method), 177

J
jinja_env (flask.Flask attribute), 177
jinja_environment (flask.Flask attribute), 177
jinja_loader (flask.Blueprint attribute), 192
jinja_loader (flask.Flask attribute), 177
jinja_options (flask.Flask attribute), 177
json() (flask.Request property), 198
JSON_AS_ASCII (built-in variable), 77
json_decoder (flask.Blueprint attribute), 192
json_decoder (flask.Flask attribute), 177
json_encoder (flask.Blueprint attribute), 192
json_encoder (flask.Flask attribute), 177
json_module (flask.Request attribute), 198
JSON_SORT_KEYS (built-in variable), 77
JSONDecoder (class in flask.json), 217
JSONEncoder (class in flask.json), 216
jsonify() (in module flask.json), 215
JSONIFY_MIMETYPE (built-in variable), 78
JSONIFY_PRETTYPRINT_REGULAR (built-in vari-

able), 78
JSONTag (class in flask.json.tag), 218

Index 283



Flask Documentation (1.1.x), Release 1.1.4

K
key (flask.json.tag.JSONTag attribute), 218
key_derivation (flask.sessions.SecureCookieSessionInterface

attribute), 205

L
list_commands() (flask.cli.FlaskGroup method),

231
list_storage_class (flask.Request attribute), 198
load() (in module flask.json), 216
load_app() (flask.cli.ScriptInfo method), 232
load_dotenv() (in module flask.cli), 232
loads() (flask.json.tag.TaggedJSONSerializer

method), 217
loads() (in module flask.json), 216
log_exception() (flask.Flask method), 177
logger (flask.Flask attribute), 177

M
main() (flask.cli.FlaskGroup method), 231
make_config() (flask.Flask method), 178
make_default_options_response()

(flask.Flask method), 178
make_form_data_parser() (flask.Request

method), 199
make_null_session() (flask.Flask method), 178
make_null_session()

(flask.sessions.SessionInterface method),
204

make_response() (flask.Flask method), 178
make_response() (in module flask), 211
make_setup_state() (flask.Blueprint method), 192
make_shell_context() (flask.Flask method), 178
Markup (class in flask), 213
match_request() (flask.ctx.RequestContext

method), 223
MAX_CONTENT_LENGTH (built-in variable), 77
max_content_length() (flask.Request property),

199
MAX_COOKIE_SIZE (built-in variable), 78
max_cookie_size() (flask.Response property), 201
max_forwards (flask.Request attribute), 199
message_flashed (in module flask), 227
method (flask.Request attribute), 199
methods (flask.views.View attribute), 228
MethodView (class in flask.views), 228
mimetype() (flask.Request property), 199
mimetype() (flask.Response property), 202
mimetype_params() (flask.Request property), 199
modified (flask.session attribute), 202
modified (flask.sessions.SecureCookieSession at-

tribute), 205
modified (flask.sessions.SessionMixin attribute), 205

N
name (flask.Flask attribute), 179
new (flask.session attribute), 202
null_session_class

(flask.sessions.SessionInterface attribute),
204

NullSession (class in flask.sessions), 205

O
on_json_loading_failed() (flask.Request

method), 199
open() (flask.testing.FlaskClient method), 206
open_instance_resource() (flask.Flask method),

179
open_resource() (flask.Blueprint method), 192
open_resource() (flask.Flask method), 179
open_session() (flask.Flask method), 179
open_session() (flask.sessions.SecureCookieSessionInterface

method), 205
open_session() (flask.sessions.SessionInterface

method), 204
options (flask.blueprints.BlueprintSetupState at-

tribute), 224
origin (flask.Request attribute), 199

P
parameter_storage_class (flask.Request at-

tribute), 199
pass_script_info() (in module flask.cli), 232
path (flask.Request attribute), 194
path() (flask.Request property), 199
permanent (flask.session attribute), 203
permanent() (flask.sessions.SessionMixin property),

205
PERMANENT_SESSION_LIFETIME (built-in vari-

able), 76
permanent_session_lifetime (flask.Flask at-

tribute), 179
pickle_based (flask.sessions.SessionInterface at-

tribute), 204
pop() (flask.ctx._AppCtxGlobals method), 208
pop() (flask.ctx.AppContext method), 223
pop() (flask.ctx.RequestContext method), 223
pragma() (flask.Request property), 199
PREFERRED_URL_SCHEME (built-in variable), 77
preprocess_request() (flask.Flask method), 180
PRESERVE_CONTEXT_ON_EXCEPTION (built-in vari-

able), 75
preserve_context_on_exception()

(flask.Flask property), 180
process_response() (flask.Flask method), 180
PROPAGATE_EXCEPTIONS (built-in variable), 75
propagate_exceptions() (flask.Flask property),

180

284 Index



Flask Documentation (1.1.x), Release 1.1.4

provide_automatic_options (flask.views.View
attribute), 228

push() (flask.ctx.AppContext method), 224
push() (flask.ctx.RequestContext method), 223
Python Enhancement Proposals

PEP 8, 249

Q
query_string (flask.Request attribute), 199

R
raise_routing_exception() (flask.Flask

method), 180
range() (flask.Request property), 199
record() (flask.Blueprint method), 193
record_once() (flask.Blueprint method), 193
redirect() (in module flask), 210
referrer (flask.Request attribute), 199
register() (flask.Blueprint method), 193
register() (flask.json.tag.TaggedJSONSerializer

method), 218
register_blueprint() (flask.Flask method), 180
register_error_handler() (flask.Blueprint

method), 193
register_error_handler() (flask.Flask method),

180
remote_addr() (flask.Request property), 199
remote_user (flask.Request attribute), 200
render_template() (in module flask), 219
render_template_string() (in module flask),

219
Request (class in flask), 194
request (in module flask), 201
request_class (flask.Flask attribute), 181
request_context() (flask.Flask method), 181
request_finished (in module flask), 225
request_started (in module flask), 225
request_tearing_down (in module flask), 225
RequestContext (class in flask.ctx), 222
Response (class in flask), 201
response_class (flask.Flask attribute), 181
RFC

RFC 3987, 194
RFC 822, 215
RFC 8259, 264

root_path (flask.Blueprint attribute), 193
root_path (flask.Flask attribute), 181
route() (flask.Blueprint method), 193
route() (flask.Flask method), 181
routing_exception (flask.Request attribute), 200
run() (flask.Flask method), 181
run_command (in module flask.cli), 232

S
safe_join() (in module flask), 213
salt (flask.sessions.SecureCookieSessionInterface at-

tribute), 205
save_session() (flask.Flask method), 182
save_session() (flask.sessions.SecureCookieSessionInterface

method), 205
save_session() (flask.sessions.SessionInterface

method), 204
scheme (flask.Request attribute), 200
script_root (flask.Request attribute), 194
script_root() (flask.Request property), 200
ScriptInfo (class in flask.cli), 232
SECRET_KEY (built-in variable), 76
secret_key (flask.Flask attribute), 182
SecureCookieSession (class in flask.sessions), 205
SecureCookieSessionInterface (class in

flask.sessions), 204
select_jinja_autoescape() (flask.Flask

method), 182
send_file() (in module flask), 211
SEND_FILE_MAX_AGE_DEFAULT (built-in variable),

77
send_file_max_age_default (flask.Flask at-

tribute), 182
send_from_directory() (in module flask), 213
send_static_file() (flask.Blueprint method), 193
send_static_file() (flask.Flask method), 183
serializer (flask.sessions.SecureCookieSessionInterface

attribute), 205
SERVER_NAME (built-in variable), 77
session (class in flask), 202
session_class (flask.sessions.SecureCookieSessionInterface

attribute), 205
SESSION_COOKIE_DOMAIN (built-in variable), 76
SESSION_COOKIE_HTTPONLY (built-in variable), 76
SESSION_COOKIE_NAME (built-in variable), 76
session_cookie_name (flask.Flask attribute), 183
SESSION_COOKIE_PATH (built-in variable), 76
SESSION_COOKIE_SAMESITE (built-in variable), 76
SESSION_COOKIE_SECURE (built-in variable), 76
session_interface (flask.Flask attribute), 183
SESSION_REFRESH_EACH_REQUEST (built-in vari-

able), 76
session_transaction() (flask.testing.FlaskClient

method), 206
SessionInterface (class in flask.sessions), 203
SessionMixin (class in flask.sessions), 205
set_cookie() (flask.Response method), 202
setdefault() (flask.ctx._AppCtxGlobals method),

208
setdefault() (flask.sessions.SecureCookieSession

method), 205
shell_command (in module flask.cli), 232

Index 285



Flask Documentation (1.1.x), Release 1.1.4

shell_context_processor() (flask.Flask
method), 183

shell_context_processors (flask.Flask at-
tribute), 183

should_ignore_error() (flask.Flask method), 183
should_set_cookie()

(flask.sessions.SessionInterface method),
204

signal() (flask.signals.Namespace method), 227
signals.Namespace (class in flask), 227
signals.signals_available (in module flask),

224
static_folder() (flask.Blueprint property), 194
static_folder() (flask.Flask property), 183
static_url_path() (flask.Blueprint property), 194
static_url_path() (flask.Flask property), 183
status (flask.Response attribute), 201
status_code (flask.Response attribute), 201
stream() (flask.Request property), 200
stream_with_context() (in module flask), 222
striptags() (flask.Markup method), 213
subdomain (flask.blueprints.BlueprintSetupState at-

tribute), 224

T
tag() (flask.json.tag.JSONTag method), 218
tag() (flask.json.tag.TaggedJSONSerializer method),

218
TaggedJSONSerializer (class in flask.json.tag),

217
teardown_app_request() (flask.Blueprint

method), 194
teardown_appcontext() (flask.Flask method), 183
teardown_appcontext_funcs (flask.Flask at-

tribute), 184
teardown_request() (flask.Blueprint method), 194
teardown_request() (flask.Flask method), 184
teardown_request_funcs (flask.Flask attribute),

184
template_context_processors (flask.Flask at-

tribute), 184
template_filter() (flask.Flask method), 184
template_folder (flask.Blueprint attribute), 194
template_folder (flask.Flask attribute), 185
template_global() (flask.Flask method), 185
template_rendered (in module flask), 224
template_test() (flask.Flask method), 185
TEMPLATES_AUTO_RELOAD (built-in variable), 78
templates_auto_reload() (flask.Flask property),

185
test_cli_runner() (flask.Flask method), 185
test_cli_runner_class (flask.Flask attribute),

185
test_client() (flask.Flask method), 186

test_client_class (flask.Flask attribute), 186
test_request_context() (flask.Flask method),

186
TESTING (built-in variable), 75
testing (flask.Flask attribute), 187
to_json() (flask.json.tag.JSONTag method), 218
to_python() (flask.json.tag.JSONTag method), 218
TRAP_BAD_REQUEST_ERRORS (built-in variable), 75
trap_http_exception() (flask.Flask method), 187
TRAP_HTTP_EXCEPTIONS (built-in variable), 75
try_trigger_before_first_request_functions()

(flask.Flask method), 187

U
unescape() (flask.Markup method), 214
untag() (flask.json.tag.TaggedJSONSerializer

method), 218
update_template_context() (flask.Flask

method), 188
url (flask.Request attribute), 194
url() (flask.Request property), 200
url_build_error_handlers (flask.Flask at-

tribute), 188
url_charset() (flask.Request property), 200
url_default_functions (flask.Flask attribute),

188
url_defaults (flask.blueprints.BlueprintSetupState

attribute), 224
url_defaults() (flask.Blueprint method), 194
url_defaults() (flask.Flask method), 188
url_for() (in module flask), 209
url_map (flask.Flask attribute), 188
url_map_class (flask.Flask attribute), 188
url_prefix (flask.blueprints.BlueprintSetupState at-

tribute), 224
url_root (flask.Request attribute), 194
url_root() (flask.Request property), 200
url_rule (flask.Request attribute), 200
url_rule_class (flask.Flask attribute), 188
url_value_preprocessor() (flask.Blueprint

method), 194
url_value_preprocessor() (flask.Flask method),

188
url_value_preprocessors (flask.Flask attribute),

189
USE_X_SENDFILE (built-in variable), 77
use_x_sendfile (flask.Flask attribute), 189
user_agent() (flask.Request property), 200

V
values() (flask.Request property), 200
View (class in flask.views), 227
view_args (flask.Request attribute), 200
view_functions (flask.Flask attribute), 189

286 Index



Flask Documentation (1.1.x), Release 1.1.4

W
want_form_data_parsed() (flask.Request prop-

erty), 200
with_appcontext() (in module flask.cli), 232
wsgi_app() (flask.Flask method), 189

Y
YOURAPPLICATION_SETTINGS, 79

Index 287


	User’s Guide
	Foreword
	Foreword for Experienced Programmers
	Installation
	Quickstart
	Tutorial
	Templates
	Testing Flask Applications
	Application Errors
	Debugging Application Errors
	Logging
	Configuration Handling
	Signals
	Pluggable Views
	The Application Context
	The Request Context
	Modular Applications with Blueprints
	Extensions
	Command Line Interface
	Development Server
	Working with the Shell
	Patterns for Flask
	Deployment Options
	Becoming Big

	API Reference
	API

	Additional Notes
	Design Decisions in Flask
	HTML/XHTML FAQ
	Security Considerations
	Unicode in Flask
	Flask Extension Development
	Pocoo Styleguide
	Upgrading to Newer Releases
	Changelog
	License
	How to contribute to Flask

	Python Module Index
	Index

