
Fanstatic Documentation
Release 1.0.1.dev0

Fanstatic Developers

Feb 07, 2018





Contents

1 Introduction 3
1.1 Always the right resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Optimization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Smart Caching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Powerful Deployment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Compatible . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Quickstart 5
2.1 A simple WSGI application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Including resources without Fanstatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Including resources with Fanstatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.4 Wrapping your app with Fanstatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 Concepts 9
3.1 Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Resource inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Resource definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Resource requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Creating a Resource Library 11
4.1 Your project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 Making Fanstatic available in your project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.3 Adding the resource directory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.4 Declaring the Library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.5 Hooking it up to an entry point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.6 Declaring resources for inclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.7 Depending on resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.8 An example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.9 Bonus: shipping the library . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.10 Bonus: dependencies between resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.11 Bonus: a minified version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.12 Bonus: preprocessing resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.13 Bonus: bundling of resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Optimization 17

6 Compilers and Minifiers 19

i



6.1 Running compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
6.2 Configuring compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.3 Configuring minifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
6.4 Pre-packaged compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.5 Hiding source files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
6.6 Writing compilers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

7 Injector plugins 23

8 Configuration options 25
8.1 versioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
8.2 recompute_hashes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.3 bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.4 force_bottom . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
8.5 minified and debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.6 ignores . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.7 rollup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.8 base_url . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.9 publisher_signature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
8.10 bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.11 compile . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

9 Paste Deployment 29
9.1 Fanstatic WSGI component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.2 Injector WSGI component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.3 Publisher WSGI component . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.4 Combining the publisher and the injector . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Serf: A standalone Fanstatic WSGI application 33
10.1 Paste Deployment of Serf . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

11 API 35
11.1 WSGI components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
11.2 Python components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
11.3 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

12 Pre-packaged libraries 43

13 Integration 45

14 Community 47
14.1 Mailing list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
14.2 IRC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

15 Developing Fanstatic 49
15.1 Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15.2 Development install of Fanstatic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
15.3 Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
15.4 Test coverage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
15.5 pyflakes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
15.6 Building the documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
15.7 Python with Fanstatic on the sys.path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
15.8 Releases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
15.9 Pre-packaged libraries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

16 Indices and tables 53

ii



Python Module Index 55

iii



iv



Fanstatic Documentation, Release 1.0.1.dev0

Contents:

Contents 1



Fanstatic Documentation, Release 1.0.1.dev0

2 Contents



CHAPTER 1

Introduction

Fanstatic is a small but powerful framework for the automatic publication of resources on a web page. Think Javascript
and CSS. It just serves static content, but it does it really well.

Can you use it in your project? If you use Python, yes: Fanstatic is web-framework agnostic, and will work with any
web framework that supports WSGI. Fanstatic is issued under the BSD license.

Why would you need something like Fanstatic? Can’t you just add your static resources to some statically served
directory and forget about them? For small projects this is certainly sufficient. But so much more is possible and
useful in this modern Javascript-heavy world. Fanstatic is able to offer a lot of powerful features for projects both
small and large.

Fanstatic has a lot of cool features:

1.1 Always the right resources

• Import Javascript as easily as Python: Javascript dependencies are a Python import statement away. Importing
Python code is easy, why should it be harder to import Javascript code?

• Depend in the right place: do you have a lot of server-side code that assembles a web page? Want your
datetime widget to pull in a datetime Javascript library, but only when that widget is on the page? Fanstatic lets
you do that with one line of Python code.

• Dependency tracking: use a Javascript or CSS file that uses another one that in turn uses another one? Fanstatic
knows about dependencies and will make sure all dependencies will appear on your page automatically. Have
minified or rolled up versions available? Fanstatic can automatically serve those too.

• Declare dependencies: want to publish your own Javascript library? Have your own CSS? Does it depend on
other stuff? Fanstatic lets you declare dependencies with a few lines of Python code.

3

http://www.python.org
http://wsgi.org/wsgi/


Fanstatic Documentation, Release 1.0.1.dev0

1.2 Optimization

• Serve the right version: have alternative versions of your resource available? Want to serve minified versions
of your Javascript during deployment? Debug versions during development? It’s one configuration option away.

• Bundle up resources: roll up multiple resources into one and serve the combined resource to optimize page
load time. Bundled resources can be generated automatically, or can automatically served when available.

• Run compilers and minifiers: Fanstatic knows how to run compilers like CoffeeScript, SASS or LESS, as well
as minifiers like uglifyjs or cssmin on your resources. Just write your code in the language you prefer and let
Fanstatic take care of the rest.

• Optimize load times: Fanstatic knows about tricks to optimize the load time of your Javascript, for instance by
including script tags at the bottom of your web page instead of in the head section.

1.3 Smart Caching

• Infinite caching: Fanstatic can publish static resources on unique URLs, so that the cache duration can be set
to infinity. This means that browsers will hold on to your static resources: web server only gets that resource
request once per user and no more. If a front-end in cache is in use, you reduce that to once per resource; the
cache will handle all other hits.

• Automatic deployment cache invalidation: Fanstatic can automatically update all your resource URLs if new
versions of resources are released in an application update. No longer do you need to instruct your user to use
shift-reload in their application to refresh their resources.

• Automatic development cache invalidation: you can instruct Fanstatic to run in development mode. It will
automatically use new URLs whenever you change your code now. No longer do you as a developer need to do
shift-reload whenever you change a resource; just reload the page.

1.4 Powerful Deployment

• Automated deployment: no longer do you need to tell people in separate instructions to publish Javascript
libraries on a certain URL: Fanstatic can publish these for you automatically and transparently.

• Pre-packaged libraries: A lot of pre-packaged Javascript libraries are available on the PyPI and are maintained
by the Fanstatic community. This can be installed into your project right away using easy_install, pip or buildout.
No more complicated installation instructions, just reuse a Javascript library like you reuse Python libraries.

1.5 Compatible

• Fits your web framework: Fanstatic integrates with any WSGI-compliant Python web framework.

• Roll your own: Not happy with the details of how Fanstatic works? We’ve already split the Fanstatic WSGI
component into separately usable components so you can mix and match and roll your own.

4 Chapter 1. Introduction



CHAPTER 2

Quickstart

This quickstart will demonstrate how you can integrate Fanstatic with a WSGI-based web application.

In this example, we will use Python to hook up Fanstatic to your WSGI application, but you could also use a WSGI
configuration framework like Paste Deploy. For more information about this, see our Paste Deploy documentation.

2.1 A simple WSGI application

A simple WSGI application will stand in for your web application:

def app(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/html')])
return ['<html><head></head><body></body></html>']

As you can see, it simply produces the following web page, no matter what kind of request it receives:

<html><head></head><body></body></html>

You can also include some code to start and run the WSGI application. Python includes wsgiref, a WSGI server
implementation:

if __name__ == '__main__':
from wsgiref.simple_server import make_server
server = make_server('127.0.0.1', 8080, app)
server.serve_forever()

For real-world uses you would likely want to use a more capable WSGI server, such as Paste Deploy as mentioned
before, or for instance mod_wsgi.

2.2 Including resources without Fanstatic

Let’s say we want to start using jQuery in this application. The way to do this without Fanstatic would be:

5

http://pythonpaste.org/deploy/
https://code.google.com/p/modwsgi/


Fanstatic Documentation, Release 1.0.1.dev0

• download jQuery somewhere and publish it somewhere as a static resource. Alternatively use a URL to jQuery
already published somewhere on the web using a content distribution network (CDN).

• modify the <head> section of the HTML in your code to add a <script> tag that references jQuery, in all
HTML pages that need jQuery.

This is fine for simple requirements, but gets hairy once you have a lot of pages that need a variety of Javascript
libraries (which may change dynamically), or if you need a larger selection of Javascript libraries with a more involved
dependency structure. Soon you find yourself juggling HTML templates with lots of <script> tags, puzzling over
what depends on what, and organizing a large variety of static resources.

2.3 Including resources with Fanstatic

How would we do this with Fanstatic? Like this:

from js.jquery import jquery

def app(environ, start_response):
start_response('200 OK', [('Content-Type', 'text/html')])
jquery.need()
return ['<html><head></head><body></body></html>']

You need to make sure that js.jquery is available in your project using a familiar Python library installation system
such as pip, easy_install or buildout. This will automatically make the Javascript code available on your system.

2.4 Wrapping your app with Fanstatic

To use Fanstatic, you need to configure your application so that Fanstatic can do two things for you:

• automatically inject resource inclusion requirements (the <script> tag) into your web page.

• serve the static resources (such as jQuery.js) when a request to a resource is made.

Fanstatic provides a WSGI framework component called Fanstatic that does both of these things for you. Here is
how you use it:

from fanstatic import Fanstatic

fanstatic_app = Fanstatic(app)

When you use fanstatic_app, Fanstatic will take care of serving static resources for you, and will include them
on web pages when needed. You can import and need resources all through your application’s code, and Fanstatic
will make sure that they are served correctly and that the right script tags appear on your web page.

If you used wsgiref for instance, this is what you’d write to use the Fanstatic wrapped app:

if __name__ == '__main__':
from wsgiref.simple_server import make_server
server = make_server('127.0.0.1', 8080, fanstatic_app)
server.serve_forever()

The resulting HTML looks like this:

<html>
<head>

6 Chapter 2. Quickstart

http://pip.openplans.org/
http://packages.python.org/distribute/easy_install.html
http://buildout.org


Fanstatic Documentation, Release 1.0.1.dev0

<script type="text/javascript" src="/fanstatic/jquery/jquery.js"></script>
</head>
<body>
</body>

</html>

Now you’re off and running with Fanstatic!

2.4. Wrapping your app with Fanstatic 7



Fanstatic Documentation, Release 1.0.1.dev0

8 Chapter 2. Quickstart



CHAPTER 3

Concepts

To understand Fanstatic, it’s useful to understand the following concepts.

3.1 Library

Static resources are files that are used in the display of a web page, such as CSS files, Javascript files and images.
Often resources are packaged as a collection of resources; we call this a library of resources.

3.2 Resource inclusion

Resources can be included in a web page in several ways.

A common forms of inclusion in HTML are Javascript files, which are included using the script tag, for instance
like this:

<script type="text/javascript" src="/something.js"></script>

and CSS files, which are included using a link tag, like this:

<link rel="stylesheet" href="/something.css" type="text/css" />

A common way for Javascript and CSS to be included is in head section of a HTML page. Javascript can also be
included in script tags elsewhere on the page, such as at the bottom.

Fanstatic can generate these resource inclusions automatically for you and insert them into your web page.

Fanstatic doesn’t do anything special for the inclusion of image or file resources, which could be included by the img
or a tag. While Fanstatic can serve these resources for you, and also knows how to generate URLs to them, Fanstatic
does not automatically insert them into your web pages: that’s up to your application.

9



Fanstatic Documentation, Release 1.0.1.dev0

3.3 Resource definitions

Fanstatic lets you define resources and their dependencies to make the automated rendering of resource inclusions
possible.

You can see a resource inclusion as a Python import: when you import a module, you import a particular file in
a particular package, and a resource inclusion is the inclusion of a particular resource (.js file, .css file) in a
particular library.

A resource may depend on other resources. A Javascript resource may for instance require another Javascript resource.
An example of this is jQuery UI, which requires the inclusion of jQuery on the page as well in order to work.

Fanstatic takes care of inserting these resources inclusions on your web page for you. It makes sure that resources with
dependencies have their dependencies inserted as well.

3.4 Resource requirements

How do you tell Fanstatic that you’d like to include jQuery on a web page? You do this by making an resource
requirement in Python: you state you need a resource.

It is common to construct complex web pages on the server with cooperating components. A datetime widget may
for instance expect a particular datetime Javascript library to be loaded. Pages but also sub-page components on the
server may have inclusion requirements; you can effectively make resource requirements anywhere on the server side,
as long as the code is executed somewhere during the request that produces the page.

10 Chapter 3. Concepts



CHAPTER 4

Creating a Resource Library

We’ve seen how to reuse existing resources, but how do you publish your own resources using Fanstatic?

Here’s how:

4.1 Your project

So, you’re developing a Python project. It’s set up in the standard Python way, along these lines:

fooproject/
setup.py
foo/

__init__.py

4.2 Making Fanstatic available in your project

In order to be able to import from fanstatic in your project, you need to make it available first. The standard way
is to include it in setup.py, like this:

install_requires=[
'fanstatic',

]

4.3 Adding the resource directory

You need to place the resources in a subdirectory somewhere in your Python code.

Imagine you have some resources in a directory called bar_resources. You simply place this in your package:

11



Fanstatic Documentation, Release 1.0.1.dev0

fooproject/
setup.py
foo/

__init__.py
bar_resources/

a.css
b.js

Note that bar_resources isn’t a Python package, so it doesn’t have an __init__.py. It’s just a directory.

4.4 Declaring the Library

You need to declare a Library for bar. In __init__.py (or any module in the package), write the following:

from fanstatic import Library

bar_library = Library('bar', 'bar_resources')

Here we construct a fanstatic Library named bar, and we point to the subdirectory bar_resources to find them.

4.5 Hooking it up to an entry point

To let Fanstatic know that this library exists so it will automatically publish it, we need to add an entry point for the
library to your project’s setup.py. Add this to the setup() function:

entry_points={
'fanstatic.libraries': [

'bar = foo:bar_library',
],

},

This tells Fanstatic that there is a Library instance in the foo package. What if you had defined the library not in
__init__.py but in a module, such as foo.qux? You would have referred to it using foo.qux:bar_library.

At this stage, Fanstatic can serve the resources in your library. The default URLS are:

/fanstatic/bar/a.css

/fanstatic/bar/b.js

4.6 Declaring resources for inclusion

While now the resources can be served, we can’t actually yet .need() them, so that we can have Fanstatic include
them on web pages for us. For this, we need to create Resource instances. Let’s modify our original __init__.py
to read like this:

from fanstatic import Library, Resource

bar_library = Library('bar', 'bar_resources')

a = Resource(bar_library, 'a.css')

12 Chapter 4. Creating a Resource Library



Fanstatic Documentation, Release 1.0.1.dev0

b = Resource(bar_library, 'b.js')

Now we’re done!

4.7 Depending on resources

We can start using the resources in our code now. To make sure b.js is included in our web page, we can do this
anywhere in our code:

from foo import b

...

def somewhere_deep_in_our_code():
b.need()

4.8 An example

Need an example where it’s all put together? We maintain a Fanstatic package called js.jquery that wraps jQuery
this way:

http://bitbucket.org/fanstatic/js.jquery/src

It’s also available on PyPI:

http://pypi.python.org/pypi/js.jquery

4.9 Bonus: shipping the library

You can declare any number of libraries and resources in your application. What if you want to reuse a library in
multiple applications? That’s easy too: you just put your library, library entry point, resource definitions and resource
files in a separate Python project. You can then use this in your application projects. If it’s useful to other as well, you
can also publish it on PyPi! The various js.* projects that we are maintaining for Fanstatic, such as js.jquery,
are already examples of this.

4.10 Bonus: dependencies between resources

What if we really want to include a.css whenever we pull in b.js, as code in b.js depends on it? Change your
code to this:

from fanstatic import Library, Resource

bar_library = Library('bar', 'bar_resources')

a = Resource(bar_library, 'a.css')

b = Resource(bar_library, 'b.js', depends=[a])

4.7. Depending on resources 13

http://bitbucket.org/fanstatic/js.jquery/src
http://pypi.python.org/pypi/js.jquery
http://pypi.python.org


Fanstatic Documentation, Release 1.0.1.dev0

Whenever you .need() b now, you’ll also get a included on your page.

You can also use a Group to group Resources together:

from fanstatic import Group

c = Group([a, b])

4.11 Bonus: a minified version

What if you have a minified version of your b.js Javascript called b.min.js available in the bar_resources
directory and you want to let Fanstatic know about it? You just write this:

from fanstatic import Library, Resource

bar_library = Library('bar', 'bar_resources')

a = Resource(bar_library, 'a.css')

b = Resource(bar_library, 'b.js', minified='b.min.js')

If you now configure Fanstatic to use the minified mode, it will automatically pull in b.min.js instead of b.js
whenever you do b.need().

The minified files can also be created automatically, see Compilers and Minifiers for details on that.

4.12 Bonus: preprocessing resources

If you prefer, say, CoffeeScript to JavaScript, you can have Fanstatic run the coffeescript compiler automatically:

from fanstatic import Library, Resource

baz_library = Library('baz', 'baz_resources')

a = Resource(baz_library, 'a.js', compilers={'js': 'coffee'})

See Compilers and Minifiers for detailed information on that.

4.13 Bonus: bundling of resources

Bundling of resources minimizes the amount of HTTP requests from a web page. Resources from the same Library
can be bundled up into one, when they have the same renderer. Bundling is disabled by default. If you want bundling,
set bundle to True:

from fanstatic import Library, Resource, Inclusion

qux_library = Library('qux', 'qux_resources')

a = Resource(qux_library, 'a.css')
b = Resource(qux_library, 'b.css')

needed = fanstatic.init_needed()

14 Chapter 4. Creating a Resource Library

http://coffeescript.org


Fanstatic Documentation, Release 1.0.1.dev0

a.need()
b.need()

Inclusion(needed, bundle=True)

The resulting URL looks like this:

http://localhost/fanstatic/qux/:bundle:a.css;b.css

The fanstatic publisher knows about bundle URLs and serves a bundle of the two files.

If you don’t want your Resource to be bundled, give it the dont_bundle argument.:

c = Resource(qux_library, 'a.css', dont_bundle=True)

Resources are bundled based on their Library. This means that bundles don’t span Libraries. If we were to allow
bundles that span Libraries, we would get inefficient bundles. For an example look at the following example situation.:

from fanstatic import Library, Resource

foo = Library('foo', 'foo')
bar = Library('bar', 'bar')

a = Resource(foo, 'a.js')
b = Resource(bar, 'b.js', depends=[a])
c = Resource(bar, 'c.js', depends=[a])

If we need() resource b in page 1 of our application and would allow cross-library bundling, we would get a bundle of
a + b. If we then need only resource c in page 2 of our application, we would render a bundle of a + c. In this example
we see that cross-library bundling can lead to inefficient bundles, as the client downloads 2 * a + b + c. Fanstatic
doesn’t do cross-library bundling, so the client downloads a + b + c.

When bundling resources, things could go haywire with regard to relative URLs in CSS files. Fanstatic prevents this
by taking the dirname of the Resource into account:

from fanstatic import Library, Resource

foo = Library('foo', 'foo')

a = Resource(foo, 'a.css')
b = Resource(foo, 'sub/sub/b.css')

Fanstatic won’t bundle a and b, as b may have relative URLs that the browser would not be able to resolve. We could
rewrite the CSS and inject URLs to the proper resources in order to have more efficient bundles, but we choose to
leave the CSS unaltered.

4.13. Bonus: bundling of resources 15



Fanstatic Documentation, Release 1.0.1.dev0

16 Chapter 4. Creating a Resource Library



CHAPTER 5

Optimization

There are various optimizations for resource inclusion that Fanstatic supports. Because some optimizations can make
debugging more difficult, the optimizations are disabled by default.

We will summarize the optimization features that Fanstatic offers here. See the configuration section and the API
documentation for more details.

• minified resources. Resources can specify minified versions using the mode system. You can then configure
Fanstatic to preferentially serve resources in a certain mode, such as minified.

• rolling up of resources. Resource libraries can specify rollup resources that combine multiple resources into
one. This reduces the amount of server requests to be made by the web browser, and can help with caching.
This can be controlled with the rollup configuration parameter.

• bundling of resources. Resource bundles combine multiple resources into one. This reduces the amount of
server requests to be made by the web browser, and help with caching. This can be controlled with the bundle
configuration parameter.

• infinite caching. Fanstatic can serve resources declaring that they should be cached forever by the web browser
(or proxy cache), reducing the amount of hits on the server. Fanstatic makes this safe even when you up-
grade or modify resources by its versioning technology. This can be controlled with the versioning and
recompute_hashes configuration parameters.

• Javascript inclusions at the bottom of the web page. This can speed up the time web pages render, as the browser
can start displaying the web page before all Javascript resources are loaded. This can be controlled using the
bottom and force_bottom configuration parameters.

To find out more about these and other optimizations, please read this best practices article that describes some com-
mon optimizations to speed up page load times.

17

http://developer.yahoo.com/performance/rules.html


Fanstatic Documentation, Release 1.0.1.dev0

18 Chapter 5. Optimization



CHAPTER 6

Compilers and Minifiers

Fanstatic supports running external programs to create transformations of resource files. There are two use cases for
this: The first use case is compiling files written in languages like CoffeeScript or SASS into JavaScript and CSS,
respectively. The second use case is automatically generating minified versions of JS and CSS files. We call programs
for the first case compilers and those for the second case minifiers, and use compiling as the encompassing term.

6.1 Running compilers

There are two ways of running compilers, one is manually via the command-line program fanstatic-compile.
The other way is on-the-fly when processing a request: When the compile option is set to True (see Configuration
options), Fanstatic will check on each request whether the source file is older than the compiled file, and invoke the
compiler if needed.

Usage: fanstatic-compile my.package.name
Compiles and minifies all Resources declared in the given package.

Fanstatic also provides a hook into setuptools to run compilers during sdist creation, so you can package and deploy the
compiled resources and don’t need any of the compilers in the production environment. To use this, add the following
to the setup() call in your package’s setup.py:

setup(
...
cmdclass={'sdist': fanstatic.sdist_compile},
...

)

Then, run python setup.py sdist as usual to create your sdist.

Note: If you are using version control plugins (e.g. setuptools_hg) to collect the files to include in your sdist, and do
not check in the compiled/minified files, they will not be included in the sdist. In that case, you will need to create a
MANIFEST.in file to pick them up, for example:

19

http://pypi.python.org/pypi/setuptools
http://pypi.python.org/pypi/setuptools_hg


Fanstatic Documentation, Release 1.0.1.dev0

recursive-include src *.css *.js

6.2 Configuring compilers

Compilers work by creating the resource file from a source file. For example, the CoffeeScript compiler creates
foo.js from foo.coffee. This is configured like so:

from fanstatic import Library, Resource

js_library = Library('js', 'js_resources')

a = Resource(js_library, 'a.js', compiler='coffee', source='a.coffee')

When compilation is run and a.js is not present, or older than a.coffee, Fanstatic will run the CoffeeScript
compiler on a.coffee to produce a.js.

Compilers can have knowledge what the source files are typically named, so usually you don’t have to specify that
explicitly on each Resource (if you do specify a source that of course is used, overriding what the Compiler thought).

You can also configure compilers on the level of the Library, so they apply to all Resources with a given extension:

from fanstatic import Library, Resource

coffee_library = Library('coffee', 'coffee_resources',
compilers={'.js': 'coffee'})

a = Resource(coffee_library, 'b.js')
b = Resource(coffee_library, 'plain.js', compiler=None)

Note that individual Resources can override the compiler set on the Library.

6.3 Configuring minifiers

Minifiers work by creating a minified version of the resource file. For example, jsmin creates foo.min.js from
foo.js. This is configured like so:

from fanstatic import Library, Resource

js_library = Library('js', 'js_resources')

a = Resource(js_library, 'a.js', minified='a.min.js', minifier='jsmin')

Minifiers can have a built-in rule what the target filename looks like, so usually you don’t have to explicitly specify
minified=.

You can also configure minifiers on the level of the Library, so they apply to all Resources with a given extension:

from fanstatic import Library, Resource

js_library = Library('js', 'js_resources', minifiers={'.js': 'jsmin'})

a = Resource(js_library, 'a.js')
b = Resource(js_library, 'tricky.js', minifier=None, minified='tricky.min.js')

20 Chapter 6. Compilers and Minifiers



Fanstatic Documentation, Release 1.0.1.dev0

Note that individual Resources can override the minifier set on the Library.

6.4 Pre-packaged compilers

Fanstatic includes the following compilers:

coffee CoffeeScript, a little language that compiles to JavaScript, requires the coffee binary (npm
install -g coffeescript)

less LESS, the dynamic stylesheet language, requires the lessc binary (npm install -g less)

sass SASS, Syntactically Awesome Stylesheets, requires the sass binary (gem install sass)

Fanstatic includes the following minifiers:

cssmin cssmin, A Python port of the YUI CSS compression algorithm, requires the cssmin package.
Use the extras requirement fanstatic[cssmin] to install this dependency.

jsmin jsmin, A Python port of Douglas Crockford’s jsmin, requires the jsmin package. Use the extras
requirement fanstatic[jsmin] to install this dependency.

closure closure, A Python wrapper around the Google Closure Compiler. Use the extras requirement
fanstatic[closure] to install this dependency.

6.5 Hiding source files

You can prevent the Fanstatic publisher from serving the source files in by using the ignores configuration option.

6.6 Writing compilers

A compiler is a class that conforms to the following interface:

class fanstatic.compiler.Compiler
Generates a target file from a source file.

__call__(resource, force=False)
Perform compilation of resource.

Parameters force – If True, always perform compilation. If False (default), only perform
compilation if should_process returns True.

__weakref__
list of weak references to the object (if defined)

available
Whether this compiler is available, i.e. necessary dependencies like external commands or third-party
packages are installed.

should_process(source, target)
Determine whether to process the resource, based on the mtime of the target and source.

source_path(resource)
Return an absolute path to the source file (to use as input for compilation)

target_path(resource)
Return an absolute path to the target file (to use as output for compilation)

6.4. Pre-packaged compilers 21

http://coffeescript.org/
http://lesscss.org/
http://sass-lang.com/
http://pypi.python.org/pypi/cssmin
http://pypi.python.org/pypi/jsmin
http://pypi.python.org/pypi/closure
https://developers.google.com/closure/compiler/


Fanstatic Documentation, Release 1.0.1.dev0

Fanstatic provides generic base classes for both compilers and minifiers, as well as helper classes for compilers
that run external commands or depend on other Python packages (fanstatic.compiler.CommandlineBase,
fanstatic.compiler.PythonPackageBase).

To make a compiler or minifier known to Fanstatic, it needs to be declared as an entry point in its packages’ setup.
py:

entry_points={
'fanstatic.compilers': [

'coffee = fanstatic.compiler:COFFEE_COMPILER',
],

'fanstatic.minifiers': [
'jsmin = fanstatic.compiler:JSMIN_MINIFIER',
],

},

22 Chapter 6. Compilers and Minifiers



CHAPTER 7

Injector plugins

Fanstatic allows you to write your own injector plugins. Injector plugins take care of injecting the needed resources
into the HTML of the response.

The default injector plugin is the “TopBottomInjector”, which injects resources into the top (the head section) and
bottom (before the closing body tag) of the page.

To write your own injector plugin, you need to do the following:

from fanstatic.injector import InjectorPlugin

class MyInjector(InjectorPlugin):

name = 'mine'

def __init__(self, options):
"""Optionally, you can control the configuration of the injector
plugin here. The options are taken from the local_conf of the paste
deploy configuration. Don't forget to super()."""

def __call__(self, html, needed, request=None, response=None):
"""Render the needed resources into the html.

The request and response arguments are
webob Request and Response objects that may be relevant for how
you want to inject the resources.

You may want to group the resources in the needed resources.
For every group call self.make_inclusion(), which will return an
Inclusion object. Calling render() on an Inclusion object,
will return an html snippet, which you can then include in the
html.

"""
needed_html = self.make_inclusion(needed).render()
return html.replace('<head>', '<head>%s' % needed_html, 1)

After writing the plugin code, register the plugin through the “fanstatic.injectors” entry point.

23



Fanstatic Documentation, Release 1.0.1.dev0

An example of an injector plugin with configuration taken from paste deploy can be found in the sylva.fanstatic
package.

24 Chapter 7. Injector plugins

http://silvacms.org/getsilva/packages/silva_all/silva.fanstatic


CHAPTER 8

Configuration options

Fanstatic makes available a number of configuration options. These can be passed to the Fanstatic WSGI com-
ponent as keyword arguments. They can also be configured using Paste Deploy configuration patterns (see our Paste
Deploy documentation for more information on that).

8.1 versioning

If you turn on versioning, Fanstatic will automatically include a version identifier in the resource URLs it generates
and injects into web pages. This means that for each version of your Javascript resource its URL will be unique. The
Fanstatic publisher will set cache headers for versioned resource URLs so that they will be cached forever by web
browsers and caching proxies1.

By default, versioning is disabled, because it needs some extra explanation. We highly recommend you to en-
able it however, as the performance benefits are potentially huge and it’s usually entirely safe to do so. See also
recompute_hashes if you want to use versioning during development.

The benefit of versioning is that all resources will be cached forever by web browsers. This means that a web browser
will never talk to the server to request a resource again once it retrieved it once, as long as it is still in its cache. This
puts less load on your web application: it only needs to publish the resource once for a user, as long as the resource
remains in that user’s cache.

If you use a server-side cache such as Squid or Varnish, the situation is even better: these will hold on to the cached
resources as well, meaning that your web application needs to serve the resource exactly once. The cache will serve
them after that.

But what if you change a resource? Won’t users now get the wrong, old versions of the changed resource? No: with
versioning enabled, when you change a resource, a new URL to that resource will be automatically generated. You
never will have to instruct users of your web application to do a “shift-reload” to force all resources to reload – the
browser will see the resource URL has changed and will automatically load a new one.

How does this work? There are two schemes: explicit versioning and an automatically calculated hash-based version-
ing. An explicit version looks like this (from the js.jquery package):

1 Well, for 10 years into the future at least.

25

http://pythonpaste.org/deploy/
http://pypi.python.org/pypi/js.jquery


Fanstatic Documentation, Release 1.0.1.dev0

/fanstatic/jquery/:version:1.4.4/jquery.js

A hash-based version looks like this:

/fanstatic/my_library/:version:d41d8cd98f00b204e9800998ecf8427e/my_resource.js

The version of Resource depends on the version of the python package in which the Library is defined: it takes the
explicit version information from this. If no version information can be found or if the python package is installed
in development mode, we still want to be able to create a unique version that changes whenever the content of the
resources changes.

To this end, the most recent modification time from the files and directories in the Library directory is taken. Whenever
you make any changes to a resource in the library, the hash version will be automatically recalculated.

The benefit of calculating a hash for the Library directory is that resource URLs change when a referenced resource
changes; If resource A (i.e. logo.png) in a library that is referenced by resource B (i.e. style.css) changes, the
URL for resource A changes, not because A changed, but because the contents of the library to which A and B belong
has changed.

Fanstatic also provides an MD5-based algorithm for the Library version calculation. This algorithm is slower, but you
may use if you don’t trust your filesystem. Use it through the versioning_use_md5 parameter.

8.2 recompute_hashes

If you enable versioning, Fanstatic will automatically calculate a resource hash for each of the resource directories
for which no version is found.

During development you want the hashes to be recalculated each time you make a change, without having to restart the
application all the time, and having a little performance impact is no problem. The default behavior is to recompute
hashes for every request.

Calculating a resource hash is a relatively expensive operation, and in production you want Fanstatic to calculate the
resource hash only once per library, by setting recompute_hashes to false. Hashes will then only be recalculated
after you restart the application.

8.3 bottom

While CSS resources can only be included in the <head> section of a web page, Javascript resources can be included
in <script> tags anywhere on the web page. Sometimes it pays off to do so: by including Javascript resources at
the bottom of a web page (just before the </body> closing tag), the page can already load and partially render for
the user before the Javascript files have been loaded, and this may lead to a better user experience.

Not all Javascript files can be loaded at this time however: some depend on being included as early as possible. You
can mark a Resource as “bottom safe” if they are safe to load at the bottom of the web page. If you then enable
bottom, those Javascript resources will be loaded there. If bottom is turned off (the default), all Javascript resources
will be included in the <head> section.

8.4 force_bottom

If you enable force_bottom (default it’s disabled) then if you enable bottom, all Javascript resources will be
included at the bottom of a web page, even if they’re not marked “bottom safe”.

26 Chapter 8. Configuration options

http://peak.telecommunity.com/DevCenter/setuptools#develop


Fanstatic Documentation, Release 1.0.1.dev0

8.5 minified and debug

By default, the resource URLs included will be in the normal human-readable (and debuggable) format for that re-
source.

When creating Resource instances, you can specify alternative modes for the resource, such as minified and debug
versions. The argument to minified and debug are a resource path or resource that represents the resource in that
alternative mode.

You can configure Fanstatic so that it prefers a certain mode when creating resource URLs, such as minified. In
this case Fanstatic will preferentially serve minified alternatives for resources, if available. If no minified version is
available, the default resource will be served.

8.6 ignores

You can prevent the Fanstatic publisher from publishing certain files and directories by using the ignores option.
You can leave the source files of your graphics and client side logic near the result files without worrying about
Fanstatic ‘leaking’ this information. The ignores option accepts a list of glob patterns.

8.7 rollup

A performance optimization to reduce the amount of requests sent by a client is to roll up several resources into a
bundle, so that all those resources are retrieved in a single request. This way a whole collection of resources can be
served in one go.

You can create special Resource instances that declare they supersede a collection of other resources. If rollup
is enabled, Fanstatic will serve a combined resource if it finds out that all individual resources that it supersedes are
needed.

8.8 base_url

The base_url URL will be prefixed in front of all resource URLs. This can be useful if your web framework wants
the resources to be published on a sub-URL. By default, there is no base_url, and resources are served in the script
root.

Note that this can also be set using the set_base_url method on a NeededResources instance during run-time,
as this URL is generally not known when NeededResources is instantiated.

8.9 publisher_signature

The default publisher signature is fanstatic. What this means is that the Fanstatic() WSGI component will
look for the string /fanstatic/ in the URL path, and if it’s there, will take over to publish resources. If you would
like the root for resource publication to be something else in your application (such as resources), you can change
this to another string.

8.5. minified and debug 27



Fanstatic Documentation, Release 1.0.1.dev0

8.10 bundle

Bundling of resources minimizes HTTP requests from the client by finding efficient bundles of resources. In order to
configure bundling of resources, set the bundle argument to True.

8.11 compile

To automatically run compilers and minifiers when needed, set the compile argument to True. (This argu-
ment is only about running compilers automatically; you can always compile your resources manually via the
fanstatic-compile command-line program.)

28 Chapter 8. Configuration options



CHAPTER 9

Paste Deployment

Fanstatic has support for Paste Deployment, a system for configuring WSGI applications and servers. You can config-
ure the Fanstatic WSGI components using Paste Deploy.

9.1 Fanstatic WSGI component

If you have configured your application with Paste, you will already have a configuration .ini file, say deploy.
ini. You can now wrap your application in the Fanstatic() WSGI component:

[server:main]
use = egg:Paste#http

[app:my_application]
use = egg:myapplication

[pipeline:main]
pipeline = fanstatic my_application

[filter:fanstatic]
use = egg:fanstatic#fanstatic

The Fanstatic() WSGI framework component actually itself combines three separate WSGI components - the
Injector, the Delegator and the Publisher - into one convenient component.

The [filter:fanstatic] section accepts several configuration directives (see also the configuration documen-
tation):

Turn recomputing of hashes on or off with “true” or “false”:

recompute_hashes = true

To turn versioning on or off with “true” or “false”:

29

http://pythonpaste.org/deploy/


Fanstatic Documentation, Release 1.0.1.dev0

versioning = true

You can also configure the URL segment that is used in generating URLs to resources and to recognize “serve-able”
resource URLs:

publisher_signature = foo

To allow for bottom inclusion of resources:

bottom = true

To force all Javascript to be included at the bottom:

force_bottom = true

To serve minified resources where available:

minified = True

To serve debug resources where available:

debug = True

Use rolled up resources where possible and where they are available:

rollup = true

Use bundling of resources:

bundle = true

Use compilation or resources:

compile = true

Configure an injector plugin, by name:

injector = foo

A complete [filter:fanstatic] section could look like this:

[filter:fanstatic]
use = egg:fanstatic#fanstatic
recompute_hashes = false
versioning = true
bottom = true
minified = true

The Fanstatic WSGI component is all you should need for normal use cases. Next, we will go into the details of what
the sub-components that this component consists of. These should only be useful in particular use cases when you
want to take over some of the task of Fanstatic itself.

9.2 Injector WSGI component

If you don’t want to use the Publisher component as you want to serve the libraries yourself, you can still take care of
injecting URLs by configuring the Injector WSGI component separately:

30 Chapter 9. Paste Deployment



Fanstatic Documentation, Release 1.0.1.dev0

[server:main]
use = egg:Paste#http

[app:my_application]
use = egg:myapplication

[pipeline:main]
pipeline = injector my_application

[filter:injector]
use = egg:fanstatic#injector

The [filter:injector] section accepts the same set of configuration parameters as the
[filter:fanstatic] section. A complete section therefore could look like this:

[filter:injector]
use = egg:fanstatic#injector
recompute_hashes = false
versioning = false
bottom = true
minified = true

9.3 Publisher WSGI component

It is also possible to set up the Publisher component separately. The publisher framework component is actually
a combination of a Delegator and a Publisher component. The delegator is responsible for recognizing what
URLs are in fact URLs to “serve-able” resources, passing along all other URLs to be handled by your application.

The delegator recognizes URLs that contain the publisher_signature as a path segment are recognized as
“serve-able”. Configuring only the publisher component for your application implies that there is some other mecha-
nism that injects the correct resources URLs into, for example, web pages.

The publisher component accepts one configuration directive, the publisher_signature (default it’s set to
fanstatic):

[server:main]
use = egg:Paste#http

[app:my_application]
use = egg:myapplication

[pipeline:main]
pipeline = publisher my_application

[filter:publisher]
use = egg:fanstatic#publisher
publisher_signature = bar

9.4 Combining the publisher and the injector

As explained before, the Fanstatic() component combines the publisher and injector components. An equivalent
configuration using the separate components would look like this:

9.3. Publisher WSGI component 31



Fanstatic Documentation, Release 1.0.1.dev0

[server:main]
use = egg:Paste#http

[app:my_application]
use = egg:myapplication

[pipeline:main]
pipeline = publisher injector my_application

[filter:publisher]
use = egg:fanstatic#publisher
publisher_signature = baz

[filter:injector]
use = egg:fanstatic#injector
recompute_hashes = false
versioning = true
bottom = true
minified = true
publisher_signature = baz

32 Chapter 9. Paste Deployment



CHAPTER 10

Serf: A standalone Fanstatic WSGI application

During development of Javascript code it can be useful to test your Javascript code in a very simple HTML page.
Fanstatic contains a very simple WSGI application that allows you to do this: Serf.

The Serf class is a WSGI application that serves a very simple HTML page with a <head> and <body> section.
You can give the Serf class a single resource to include. If you wrap the Serf WSGI application in a Fanstatic
WSGI framework component, the resource and all its dependencies will be included on the web page.

10.1 Paste Deployment of Serf

Serf is mostly useful in combination with Paste Deployment, as this makes it very easy to configure a little test web
application. You configure Fanstatic as discussed in the our Paste Deploy documentation section. You then add a serf
app in a app: section and tell it what resource to include using the py:<dotted_name> notation.

A dotted name is a string that refers to a Python object. It consists of a packages, modules and objects joined together
by dots, much as you can write them in Python import statements. js.jquery.jquery for instance refers to
the jquery resource in the js.jquery package. This way you can refer to any package on your Python path
(controlled by buildout or virtualenv).

Finally, you also must include the Serf application in the WSGI pipeline.

Here is a full example which includes the jquery resource on a HTML page:

[server:main]
use = egg:Paste#http

[app:serf]
use = egg:fanstatic#serf
resource = py:js.jquery.jquery

[filter:fanstatic]
use = egg:fanstatic#fanstatic

[pipeline:main]
pipeline = fanstatic serf

33

http://pythonpaste.org/deploy/


Fanstatic Documentation, Release 1.0.1.dev0

34 Chapter 10. Serf: A standalone Fanstatic WSGI application



CHAPTER 11

API

11.1 WSGI components

fanstatic.Fanstatic(app, publisher_signature=’fanstatic’, injector=None, **config)
Fanstatic WSGI framework component.

Parameters

• app – The WSGI app to wrap with Fanstatic.

• publisher_signature – Optional argument to define the signature of the publisher in
a URL. The default is fanstatic.

• injector – A injector callable.

• **config – Optional keyword arguments. These are passed to NeededInclusions
when it is constructed.

fanstatic.Serf(resource)
Serf WSGI application.

Serve a very simple HTML page while needing a resource. Can be configured behind the Fanstatic()
WSGI framework component to let the resource be included.

Parameters resource – The Resource to include.

class fanstatic.Injector(app, injector=None, **config)
Fanstatic injector WSGI framework component.

This WSGI component takes care of injecting the proper resource inclusions into HTML when needed.

This WSGI component is used automatically by the Fanstatic() WSGI framework component, but can also
be used independently if you need more control.

Parameters

• app – The WSGI app to wrap with the injector.

35



Fanstatic Documentation, Release 1.0.1.dev0

• **config – Optional keyword arguments. These are passed to NeededResources
when it is constructed. It also makes sure that when initialized, it isn’t given any configura-
tion parameters that cannot be passed to NeededResources.

class fanstatic.Publisher(registry)
Fanstatic publisher WSGI application.

This WSGI application serves Fanstatic Library instances. Libraries are published as <library_name>/
<optional_version>/path/to/resource.js.

All static resources contained in the libraries will be published to the web. If a step prefixed with :version:
appears in the URL, this will be automatically skipped, and the HTTP response will indicate the resource can
be cached forever.

This WSGI component is used automatically by the Fanstatic() WSGI framework component, but can also
be used independently if you need more control.

Parameters registry – an instance of LibraryRegistry with those resource libraries that
should be published.

class fanstatic.LibraryPublisher(library)
Fanstatic directory publisher WSGI application.

This WSGI application serves a directory of static resources to the web.

This WSGI component is used automatically by the Fanstatic() WSGI framework component, but can also
be used independently if you need more control.

Parameters library – The fanstatic library instance.

class fanstatic.Delegator(app, publisher, publisher_signature=’fanstatic’)
Fanstatic delegator WSGI framework component.

This WSGI component recognizes URLs that point to Fanstatic libraries, and delegates them to the Publisher
WSGI application.

In order to recognize such URLs it looks for occurrences of the publisher_signature parameter as a
URL step. By default it looks for /fanstatic/.

This WSGI component is used automatically by the Fanstatic() WSGI framework component, but can also
be used independently if you need more control.

Parameters

• app – The WSGI app to wrap with the delegator.

• publisher – An instance of the Publisher component.

• publisher_signature – Optional argument to define the signature of the publisher in
a URL. The default is fanstatic.

11.2 Python components

class fanstatic.Library(name, rootpath, ignores=None, version=None, compilers=None, mini-
fiers=None)

The resource library.

This object defines which directory is published and can be referred to by Resource objects to describe these
resources.

Parameters

36 Chapter 11. API



Fanstatic Documentation, Release 1.0.1.dev0

• name – A string that uniquely identifies this library.

• rootpath – An absolute or relative path to the directory that contains the static resources
this library publishes. If relative, it will be relative to the directory of the module that
initializes the library.

• ignores – A list of globs used to determine which files and directories not to publish.

init_library_nr()
This can only be called once all resources are known.

i.e. once sort_resources is called this can be called. once library numbers are calculated once this will be
done very quickly.

path = None
The absolute path to the directory which contains the static resources this library publishes.

register(resource)
Register a Resource with this Library.

A Resource knows about its Library. After a Resource has registered itself with its Library, the Library
knows about the Resources associated to it.

signature(recompute_hashes=False, version_method=None)
Get a unique signature for this Library.

If a version has been defined, we return the version.

If no version is defined, a hash of the contents of the directory indicated by path is calculated. If
recompute_hashes is set to True, the signature will be recalculated each time, which is useful during
development when changing Javascript/css code and images.

class fanstatic.Resource(library, relpath, depends=None, supersedes=None, bottom=False,
renderer=None, debug=None, dont_bundle=False, minified=None,
minifier=<object object>, compiler=<object object>, source=None,
mode_parent=None)

A resource.

A resource specifies a single resource in a library so that it can be included in a web page. This is useful for
Javascript and CSS resources in particular. Some static resources such as images are not included in this way
and therefore do not have to be defined this way.

Parameters

• library – the Library this resource is in.

• relpath – the relative path (from the root of the library path) that indicates the actual
resource file.

• depends – optionally, a list of resources that this resource depends on. Entries in the list
are Resource instances.

• supersedes – optionally, a list of Resource instances that this resource supersedes
as a rollup resource. If all these resources are required for render a page, the superseding
resource will be included instead.

• bottom – indicate that this resource is “bottom safe”: it can be safely included on the bot-
tom of the page (just before </body>). This can be used to improve the performance
of page loads when Javascript resources are in use. Not all Javascript-based resources
can however be safely included that way, so you have to set this explicitly (or use the
force_bottom option on NeededResources).

11.2. Python components 37



Fanstatic Documentation, Release 1.0.1.dev0

• renderer – optionally, a callable that accepts an URL argument and returns a rendered
HTML snippet for this resource. If no renderer is provided, a renderer is looked up based
on the resource’s filename extension.

• dont_bundle – Don’t bundle this resource in any bundles (if bundling is enabled).

mode(mode)
Get Resource in another mode.

If the mode is None or if the mode cannot be found, this Resource instance is returned instead.

Parameters mode – a string indicating the mode, or None.

need(slots=None)
Declare that the application needs this resource.

If you call .need() on Resource sometime during the rendering process of your web page, this re-
source and all its dependencies will be inserted as inclusions into the web page.

Parameters slots – an optional dictionary mapping from Slot instances to Resource in-
stances. This dictionary describes how to fill in the slots that this resource might depend on
(directly or indirectly). If a slot is required, the dictionary must contain an entry for it.

class fanstatic.Slot(library, extension, depends=None, required=<object object>, default=None)
A resource slot.

Sometimes only the application has knowledge on how to fill in a dependency for a resource, and this cannot be
known at resource definition time. In this case you can define a slot, and make your resource depend on that.
This slot can then be filled in with a real resource by the application when you .need() that resource (or when
you need something that depends on the slot indirectly).

Parameters

• library – the Library this slot is in.

• ext – the extension of the slot, for instance ‘.js’. This determines what kind of resources
can be slotted in here.

• required – a boolean indicating whether this slot is required to be filled in when a re-
source that depends on a slot is needed, or whether it’s optional. By default filling in a slot
is required.

• depends – optionally, a list of resources that this slot depends on. Resources that are
slotted in here need to have the same dependencies as that of the slot, or a strict subset.

class fanstatic.Group(depends)
A resource used to group resources together.

It doesn’t define a resource file itself, but instead depends on other resources. When a Group is
depended on, all the resources grouped together will be included.

Parameters depends – a list of resources that this resource depends on. Entries in the list can be
Resource instances, or Group instances.

need(slots=None)
Need this group resource.

If you call .need() on Group sometime during the rendering process of your web page, all dependencies
of this group resources will be inserted into the web page.

Parameters slots – an optional dictionary mapping from Slot instances to Resource in-
stances. This dictionary describes how to fill in the slots that this resource might depend on
(directly or indirectly). If a slot is required, the dictionary must contain an entry for it.

38 Chapter 11. API



Fanstatic Documentation, Release 1.0.1.dev0

class fanstatic.NeededResources(versioning=False, versioning_use_md5=False, recom-
pute_hashes=True, base_url=None, script_name=None,
publisher_signature=’fanstatic’, resources=None)

The current selection of needed resources..

The NeededResources instance maintains a set of needed resources for a particular web page.

Parameters

• versioning – If True, Fanstatic will automatically include a version identifier in all
URLs pointing to resources. Since the version identifier will change when you update a
resource, the URLs can both be infinitely cached and the resources will always be up to
date. See also the recompute_hashes parameter.

• versioning_use_md5 – If True, Fanstatic will use and md5 algorithm instead of an
algorithm based on the last modification time of the Resource files to compute versions. Use
md5 if you don’t trust your filesystem.

• recompute_hashes – If True and versioning is enabled, Fanstatic will recalculate hash
URLs on the fly whenever you make changes, even without restarting the server. This is
useful during development, but slower, so should be turned off during deployment. If set to
False, the hash URLs will only be calculated once after server startup.

• base_url – This URL will be prefixed in front of all resource URLs. This can be useful
if your web framework wants the resources to be published on a sub-URL. By default, there
is no base_url, and resources are served in the script root. Note that this can also be set
with the set_base_url method on a NeededResources instance.

• script_name – The script_name is a fallback for computing library URLs. The base_url
parameter should be honoured if it is provided.

• publisher_signature – The name under which resource libraries should be served
in the URL. By default this is fanstatic, so URLs to resources will start with /
fanstatic/.

• resources – Optionally, a list of resources we want to include. Normally you specify
resources to include by calling .need() on them, or alternatively by calling .need() on
an instance of this class.

has_base_url()
Returns True if base_url has been set.

has_resources()
Returns True if any resources are needed.

library_url(library)
Construct URL to library.

This constructs a URL to a library, obey versioning and base_url configuration.

Parameters library – A Library instance.

need(resource, slots=None)
Add a particular resource to the needed resources.

This is an alternative to calling .need() on the resource directly.

Parameters

• resource – A Resource instance.

• slots – an optional dictionary mapping from Slot instances to Resource instances.
This dictionary describes how to fill in the slots that the given resource might depend on
(directly or indirectly). If a slot is required, the dictionary must contain an entry for it.

11.2. Python components 39



Fanstatic Documentation, Release 1.0.1.dev0

resources()
Retrieve the list of resources needed.

This returns the needed Resource instances. Resources are guaranteed to come earlier in the list than
those resources that depend on them.

Resources are also sorted by extension.

set_base_url(url)
Set the base_url. The base_url can only be set (1) if it has not been set in the NeededResources configura-
tion and (2) if it has not been set before using this method.

class fanstatic.LibraryRegistry(items=())
Bases: fanstatic.registry.Registry

A dictionary-like registry of libraries.

This is a dictionary that maintains libraries. A value is a Library instance, and a key is its library name.

Normally there is only a single global LibraryRegistry, obtained by calling get_library_registry().

Parameters libraries – a sequence of libraries

class fanstatic.ConfigurationError
Bases: exceptions.Exception

Impossible or illegal configuration.

class fanstatic.UnknownResourceError
Bases: exceptions.Exception

Resource refers to non-existent resource file.

class fanstatic.UnknownResourceExtensionError
Bases: exceptions.Exception

A resource has an unrecognized extension.

class fanstatic.LibraryDependencyCycleError
Bases: exceptions.Exception

Dependency cycles between libraries aren’t allowed.

A dependency cycle between libraries occurs when the file in one library depends on a file in another library,
while that library depends on a file in the first library.

class fanstatic.SlotError
Bases: exceptions.Exception

A slot was filled in incorrectly.

If a slot is required, it must be filled in by passing an extra dictionary parameter to the .needmethod, containing
a mapping from the required Slot to Resource.

When a slot is filled, the resource filled in should have the same dependencies as the slot, or a subset of the
dependencies of the slot. It should also have the same extension as the slot. If this is not the case, it is an error.

11.3 Functions

fanstatic.register_inclusion_renderer(self, extension, renderer, order=None)
Register a renderer function for a given filename extension.

Parameters

40 Chapter 11. API



Fanstatic Documentation, Release 1.0.1.dev0

• extension – the filename extension to register the renderer for.

• renderer – a callable that should accept a URL argument and return a rendered HTML
snippet for this resource.

• order – optionally, to control the order in which the snippets are included in the HTML
document. If no order is given, the resource will be included after all other resource inclu-
sions. The lower the order number, the earlier in the rendering the inclusion will appear.

fanstatic.set_resource_file_existence_checking(v)
Set resource file existence checking to True or False.

By default, this is set to True, so that resources that point to non-existent files will result in an error. We
recommend you keep it at this value when using Fanstatic. An UnknownResourceError will then be raised
if you accidentally refer to a non-existent resource.

When running tests it’s often useful to make fake resources that don’t really have a filesystem representation, so
this is set to False temporarily; for the Fanstatic tests this is done. Inside a test for this particular feature, this
can temporarily be set to True.

11.3. Functions 41



Fanstatic Documentation, Release 1.0.1.dev0

42 Chapter 11. API



CHAPTER 12

Pre-packaged libraries

A lot of pre-packaged CSS and Javascript libraries are available on the PyPI and are maintained by the Fanstatic
community. These can be installed into your project right away using easy_install, pip, buildout or by
specifying them in setup_requires in setup.py within your setuptools-compatible project. No more
complicated installation instructions, just reuse a CSS or Javascript library like you reuse Python libraries.

Here’s a list of currently available libraries:

package library source
css.css3githubbuttons CSS3 GitHub Buttons GitHub
js.ace Ajax.org Cloud9 Editor Bitbucket
js.amcharts amCharts GitHub
js.backbone Backbone GitHub
js.bootstrap Bootstrap, from Twitter GitHub
js.chosen Chosen ?
js.ckeditor CKEditor ?
js.classy Classy - Classes for JavaScript Bitbucket
js.d3 D3.js (Data Driven Documents) GitHub
js.d3_cloud D3-Cloud (Wordle-style layout for D3) GitHub
js.extjs ExtJS: http://www.sencha.com/products/js/ Bitbucket
js.galleriffic Galleriffic Bitbucket
js.leaflet Leaflet GitHub
js.jquery_datalink the jQuery plugin Datalink Bitbucket
js.jquery_datatables the jQuery plugin DataTable Bitbucket
js.jquery_expandbox jquery.expandBox Bitbucket
js.jquery_form the jQuery plugin Form Bitbucket
js.jquery_jcrop JCrop - Image Cropping Plugin for JQuery GitHub
js.jquery_jgrowl jGrowl Bitbucket
js.jquery_jqote2 jquery.jqote2 Bitbucket
js.jquery_json the jQuery plugin jquery-json Bitbucket
js.jquery_jstree the jQuery plugin JsTree Bitbucket
js.jquery_metadata jQuery Metadata Bitbucket

Continued on next page

43

http://pypi.python.org/pypi/css.css3githubbuttons
https://github.com/necolas/css3-github-buttons
https://github.com/davidjb/css.css3githubbuttons
http://pypi.python.org/pypi/js.ace
https://github.com/ajaxorg/ace
https://bitbucket.org/fanstatic/js.ace
http://pypi.python.org/pypi/js.amcharts
http://www.amcharts.com
https://github.com/securactive/js.amcharts
http://pypi.python.org/pypi/js.backbone
http://backbonejs.org/
https://github.com/podhmo/js.backbone
http://pypi.python.org/pypi/js.bootstrap
http://twitter.github.com/bootstrap/index.html
https://github.com/RedTurtle/js.bootstrap
http://pypi.python.org/pypi/js.chosen
http://harvesthq.github.com/chosen/
http://pypi.python.org/pypi/js.ckeditor
http://ckeditor.com/
http://pypi.python.org/pypi/js.classy
http://classy.pocoo.org/
https://bitbucket.org/fanstatic/js.classy
http://pypi.python.org/pypi/js.d3
http://d3js.org/
https://github.com/fanstatic/js.d3/
http://pypi.python.org/pypi/js.d3_cloud
http://www.jasondavies.com/wordcloud/
http://wordle.net
http://github.com/davidjb/js.d3_cloud/
http://pypi.python.org/pypi/js.extjs
http://www.sencha.com/products/js/
http://bitbucket.org/fanstatic/js.extjs
http://pypi.python.org/pypi/js.galleriffic
http://www.twospy.com/galleriffic
http://bitbucket.org/fanstatic/js.yui
http://pypi.python.org/pypi/js.leaflet
http://leafletjs.com/
https://github.com/davidjb/js.leaflet
http://pypi.python.org/pypi/js.jquery_datalink
https://github.com/nje/jquery-datalink
http://bitbucket.org/fanstatic/js.jquery_datalink
http://pypi.python.org/pypi/js.jquery_datatables
http://www.datatables.net
http://bitbucket.org/fanstatic/js.jquery_datatables
http://pypi.python.org/pypi/js.jquery_expandbox
http://projects.stephane-klein.info/jquery.expandBox/
https://bitbucket.org/fanstatic/js.jquery_expandbox
http://pypi.python.org/pypi/js.jquery_form
http://jquery.malsup.com/form
http://bitbucket.org/fanstatic/js.jquery_form
http://pypi.python.org/pypi/js.jquery_jcrop
http://deepliquid.com/content/Jcrop.html
https://github.com/davidjb/js.jquery_jcrop
http://pypi.python.org/pypi/js.jquery_jgrowl
http://stanlemon.net/projects/jgrowl.html
http://bitbucket.org/fanstatic/js.jquery_jgrowl
http://pypi.python.org/pypi/js.jquery_jqote2
https://github.com/aefxx/jQote2
https://bitbucket.org/fanstatic/js.jquery_jqote2
http://pypi.python.org/pypi/js.jquery_json
http://code.google.com/p/jquery-json/
http://bitbucket.org/fanstatic/js.jquery_json
http://pypi.python.org/pypi/js.jquery_jstree
http://www.jstree.com/
http://bitbucket.org/fanstatic/js.jquery_jstree
http://pypi.python.org/pypi/js.jquery_metadata
http://plugins.jquery.com/project/metadata
http://bitbucket.org/fanstatic/js.jquery_metadata


Fanstatic Documentation, Release 1.0.1.dev0

Table 12.1 – continued from previous page
js.jquery_qtip jquery.qTip Bitbucket
js.jquery_qunit the jQuery plugin QUnit Bitbucket
js.jquery_slimbox the jQuery plugin Slimbox Bitbucket
js.jquery_tablesorter the jQuery plugin tablesorter Bitbucket
js.jquery_textchildren the jQuery plugin Text Children Bitbucket
js.jquery_tinyscrollbar the jQuery plugin Tiny Scrollbar Bitbucket
js.jquery_tools jQuery tools Bitbucket
js.jquery_tooltip the jQuery plugin Tooltip Bitbucket
js.jquery_utils jQuery Utils Bitbucket
js.jquery jQuery Bitbucket
js.jqueryui jQuery UI Bitbucket
js.knockback Knockback.js Bitbucket
js.knockout Knockout Bitbucket
js.lesscss less.js Bitbucket
js.lightbox jquery lightbox GitHub
js.mochikit Mochikit Bitbucket
js.modernizr Modernizr ?
js.raphael Raphael ?
js.spin spin.js ?
js.sugar Sugar GitHub
js.tinymce TinyMCE Bitbucket
js.underscore underscore.js ?
js.yui the YUI Library Bitbucket

Follow the instructions in the development section to learn how to package your own library.

44 Chapter 12. Pre-packaged libraries

http://pypi.python.org/pypi/js.jquery_qtip
http://craigsworks.com/projects/qtip/
https://bitbucket.org/fanstatic/js.jquery_qtip
http://pypi.python.org/pypi/js.jquery_qunit
http://docs.jquery.com/Qunit
http://bitbucket.org/fanstatic/js.jquery_qunit
http://pypi.python.org/pypi/js.jquery_slimbox
http://www.digitalia.be/software/slimbox2
http://bitbucket.org/fanstatic/js.jquery_slimbox
http://pypi.python.org/pypi/js.jquery_tablesorter
http://tablesorter.com
http://bitbucket.org/fanstatic/js.jquery_tablesorter
http://pypi.python.org/pypi/js.jquery_textchildren
http://plugins.learningjquery.com/textchildren
http://bitbucket.org/fanstatic/js.jquery_textchildren
http://pypi.python.org/pypi/js.jquery_tinyscrollbar
http://baijs.nl/tinyscrollbar/
http://bitbucket.org/gocept/js.jquery_tinyscrollbar
http://pypi.python.org/pypi/js.jquery_tools
http://flowplayer.org/tools/index.html
http://bitbucket.org/fanstatic/js.jquery_tools
http://pypi.python.org/pypi/js.jquery_tooltip
http://bassistance.de/jquery-plugins/jquery-plugin-tooltip
http://bitbucket.org/fanstatic/js.jquery_tooltip
http://pypi.python.org/pypi/js.jquery_utils
http://code.google.com/p/jquery-utils/
http://bitbucket.org/fanstatic/js.jquery_utils
http://pypi.python.org/pypi/js.jquery
http://jquery.com
http://bitbucket.org/fanstatic/js.jquery
http://pypi.python.org/pypi/js.jqueryui
http://jqueryui.com
http://bitbucket.org/fanstatic/js.jqueryui
http://pypi.python.org/pypi/js.knockback
http://kmalakoff.github.com/knockback/
https://bitbucket.org/gocept/js.knockback
http://pypi.python.org/pypi/js.knockout
http://knockoutjs.com/
https://bitbucket.org/gocept/js.knockout
http://pypi.python.org/pypi/js.lesscss
http://lesscss.org/
https://bitbucket.org/fanstatic/js.lesscss
http://pypi.python.org/pypi/js.lightbox
http://leandrovieira.com/projects/jquery/lightbox/
https://github.com/amleczko/js.lightbox
http://pypi.python.org/pypi/js.mochikit
http://mochikit.org/
https://bitbucket.org/gocept/js.mochikit
http://pypi.python.org/pypi/js.modernizr
http://modernizr.com/
http://pypi.python.org/pypi/js.raphael
http://raphaeljs.com/
http://pypi.python.org/pypi/js.spin
http://fgnass.github.com/spin.js/
http://pypi.python.org/pypi/js.sugar
http://sugarjs.com/
https://github.com/disko/js.sugar
http://pypi.python.org/pypi/js.tinymce
http://tinymce.moxiecode.com
http://bitbucket.org/fanstatic/js.tinymce
http://pypi.python.org/pypi/js.underscore
http://documentcloud.github.com/underscore/
http://pypi.python.org/pypi/js.yui
http://developer.yahoo.com/yui
http://bitbucket.org/fanstatic/js.yui


CHAPTER 13

Integration

Fanstatic can be integrated with a number of web frameworks:

• Zope/Grok through zope.fanstatic

• Pyramid through pyramid_fanstatic

• Flask through Flask-Fanstatic

• Django through django_fanstatic.

In order to integrate Fanstatic with your web framework, make sure the following conditions are met:

• base_url: if your web framework supports virtual hosting, make sure to set the base_url attribute on the
NeededResources object.

• Error pages: if your web framework renders error pages, make sure to clear the NeededResources before
rendering the error page, in order to prevent resources from the original page ‘leaking’ onto the error page.

• URL calculation: Fanstatic can also serve non-JavaScript and non-CSS resources (such as images) that you
link to from the views in your application. In order to do so, we advise to support rendering URLs to resources
from the view/page templates in your web framework.

45

http://pypi.python.org/pypi/zope.fanstatic
http://pypi.python.org/pypi/pyramid_fanstatic
http://pypi.python.org/pypi/Flask-Fanstatic
http://bitbucket.org/fanstatic/django-fanstatic


Fanstatic Documentation, Release 1.0.1.dev0

46 Chapter 13. Integration



CHAPTER 14

Community

14.1 Mailing list

Please talk to us on the Fanstatic mailing list: fanstatic@googlegroups.com

You can subscribe here: https://groups.google.com/group/fanstatic

You can also participate in the discussions through the Gmane group: gmane.comp.python.wsgi.fanstatic

14.2 IRC

Come to the #fanstatic IRC channel on FreeNode.

47

mailto:fanstatic@googlegroups.com
https://groups.google.com/group/fanstatic
http://gmane.org
http://dir.gmane.org/gmane.comp.python.wsgi.fanstatic
http://freenode.net/


Fanstatic Documentation, Release 1.0.1.dev0

48 Chapter 14. Community



CHAPTER 15

Developing Fanstatic

You want to contribute to Fanstatic? Great!

Please talk to us our on our mailing list about your plans!

15.1 Sources

Fanstatic’s source code is maintained on bitbucket: http://bitbucket.org/fanstatic

You can check out fanstatic using Mercurial (hg); see the bitbucket documentation for more information as well.

Feel free to fork Fanstatic on bitbucket if you want to hack on it, and send us a pull request when you want us to merge
your improvements.

15.2 Development install of Fanstatic

Fanstatic requires Python 2.6. We believe that the Fanstatic development installation is a good example of how to
install a lot of useful tools into a project’s sandbox automatically; read on.

To install Fanstatic for development, first check it out, then run the buildout:

$ python bootstrap.py -d
$ bin/buildout

This uses Buildout. The buildout process will download and install all dependencies for Fanstatic, including develop-
ment tools.

Don’t worry, that’s all you need to know about buildout to get going – you only need to run bin/buildout again if
something changes in Fanstatic’s buildout.cfg or setup.py.

The -d option is to instruct buildout to use Distribute instead of Setuptools and is optional.

49

http://bitbucket.org/fanstatic
http://mercurial.selenic.com/
http://bitbucket.org
http://buildout.org
http://packages.python.org/distribute/
http://pypi.python.org/pypi/setuptools


Fanstatic Documentation, Release 1.0.1.dev0

15.3 Tests

To run the tests:

$ bin/py.test

This uses py.test. We love tests, so please write some if you want to contribute. There are many examples of tests in
the test_*.py modules.

15.4 Test coverage

To get a test coverage report:

$ bin/py.test --cov fanstatic

To get a report with more details:

bin/py.test --cov-report html --cov fanstatic

The results will be stored in a subdirectory htmlcov. You can point a web browser to its index.html to get a
detailed coverage report.

15.5 pyflakes

To run pyflakes, you can type:

$ bin/pyflakes fanstatic

15.6 Building the documentation

To build the documentation using Sphinx:

$ bin/sphinxbuilder

If you use this command, all the dependencies will have been set up for Sphinx so that the API documentation can be
automatically extracted from the Fanstatic source code. The docs source is in doc, the built documentation will be
available in doc/_build/html.

15.7 Python with Fanstatic on the sys.path

It’s often useful to have a project and its dependencies available for import on a Python prompt for experimentation:

$ bin/devpython

You can now import fanstatic:

>>> import fanstatic

50 Chapter 15. Developing Fanstatic

http://pytest.org/
http://divmod.org/trac/wiki/DivmodPyflakes
http://sphinx.pocoo.org/


Fanstatic Documentation, Release 1.0.1.dev0

You can also run your own scripts with this custom interpreter if you like:

$ bin/devpython somescript.py

This can be useful for quick experimentation. When you want to use Fanstatic in your own projects you would
normally include it in your project’s setup.py dependencies instead.

15.8 Releases

The buildout also installs zest.releaser which can be used to make automatic releases to PyPI (using bin/
fullrelease).

15.9 Pre-packaged libraries

If you want to make an existing JS library into a fanstatic package, use the fanstatic paster template from the fanstat-
ictemplate package.

The pre-packaged libraries live in the http://bitbucket.org/fanstatic account.

In order to add a new library, ask one of the fanstatic administrators to create a repository for you. In the new repository,
run fanstatictemplate and push your changes.

Register the newly created package on PyPI and add the fanstatic administrators (currently faassen, jw and janjaap-
driessen) as owners. After that, add your library to the list of Pre-packaged libraries.

15.8. Releases 51

http://pypi.python.org/pypi/zest.releaser
http://pypi.python.org/pypi/fanstatictemplate
http://pypi.python.org/pypi/fanstatictemplate
http://bitbucket.org/fanstatic
http://pypi.python.org/pypi/fanstatictemplate


Fanstatic Documentation, Release 1.0.1.dev0

52 Chapter 15. Developing Fanstatic



CHAPTER 16

Indices and tables

• genindex

• modindex

• search

53



Fanstatic Documentation, Release 1.0.1.dev0

54 Chapter 16. Indices and tables



Python Module Index

f
fanstatic, 33

55



Fanstatic Documentation, Release 1.0.1.dev0

56 Python Module Index



Index

Symbols
__call__() (fanstatic.compiler.Compiler method), 21
__weakref__ (fanstatic.compiler.Compiler attribute), 21

A
available (fanstatic.compiler.Compiler attribute), 21

C
Compiler (class in fanstatic.compiler), 21
ConfigurationError (class in fanstatic), 40

D
Delegator (class in fanstatic), 36

F
fanstatic (module), 11, 17, 19, 25, 29, 33, 35
Fanstatic() (in module fanstatic), 35

G
Group (class in fanstatic), 38

H
has_base_url() (fanstatic.NeededResources method), 39
has_resources() (fanstatic.NeededResources method), 39

I
init_library_nr() (fanstatic.Library method), 37
Injector (class in fanstatic), 35

L
Library (class in fanstatic), 36
library_url() (fanstatic.NeededResources method), 39
LibraryDependencyCycleError (class in fanstatic), 40
LibraryPublisher (class in fanstatic), 36
LibraryRegistry (class in fanstatic), 40

M
mode() (fanstatic.Resource method), 38

N
need() (fanstatic.Group method), 38
need() (fanstatic.NeededResources method), 39
need() (fanstatic.Resource method), 38
NeededResources (class in fanstatic), 38

P
path (fanstatic.Library attribute), 37
Publisher (class in fanstatic), 36

R
register() (fanstatic.Library method), 37
register_inclusion_renderer() (in module fanstatic), 40
Resource (class in fanstatic), 37
resources() (fanstatic.NeededResources method), 40

S
Serf() (in module fanstatic), 35
set_base_url() (fanstatic.NeededResources method), 40
set_resource_file_existence_checking() (in module

fanstatic), 41
should_process() (fanstatic.compiler.Compiler method),

21
signature() (fanstatic.Library method), 37
Slot (class in fanstatic), 38
SlotError (class in fanstatic), 40
source_path() (fanstatic.compiler.Compiler method), 21

T
target_path() (fanstatic.compiler.Compiler method), 21

U
UnknownResourceError (class in fanstatic), 40
UnknownResourceExtensionError (class in fanstatic), 40

57


	Introduction
	Always the right resources
	Optimization
	Smart Caching
	Powerful Deployment
	Compatible

	Quickstart
	A simple WSGI application
	Including resources without Fanstatic
	Including resources with Fanstatic
	Wrapping your app with Fanstatic

	Concepts
	Library
	Resource inclusion
	Resource definitions
	Resource requirements

	Creating a Resource Library
	Your project
	Making Fanstatic available in your project
	Adding the resource directory
	Declaring the Library
	Hooking it up to an entry point
	Declaring resources for inclusion
	Depending on resources
	An example
	Bonus: shipping the library
	Bonus: dependencies between resources
	Bonus: a minified version
	Bonus: preprocessing resources
	Bonus: bundling of resources

	Optimization
	Compilers and Minifiers
	Running compilers
	Configuring compilers
	Configuring minifiers
	Pre-packaged compilers
	Hiding source files
	Writing compilers

	Injector plugins
	Configuration options
	versioning
	recompute_hashes
	bottom
	force_bottom
	minified and debug
	ignores
	rollup
	base_url
	publisher_signature
	bundle
	compile

	Paste Deployment
	Fanstatic WSGI component
	Injector WSGI component
	Publisher WSGI component
	Combining the publisher and the injector

	Serf: A standalone Fanstatic WSGI application
	Paste Deployment of Serf

	API
	WSGI components
	Python components
	Functions

	Pre-packaged libraries
	Integration
	Community
	Mailing list
	IRC

	Developing Fanstatic
	Sources
	Development install of Fanstatic
	Tests
	Test coverage
	pyflakes
	Building the documentation
	Python with Fanstatic on the sys.path
	Releases
	Pre-packaged libraries

	Indices and tables
	Python Module Index

