nVidia Hardware Documentation
Release git

Marcelina Koscielnicka

Apr 30, 2022

Contents

1 Notational conventions 3
.1 Introduction e e e e e 3
1.2 BItoperationS. o i e e e e e e e e e e e e e e e e 3
1.3 0 SIignextension i it e e e e e e e e e e e e e e e e e e 4
1.4 Bitfield extraction e e e e e e e 5
2 nVidia hardware documentation 7
2.1 nVidia GPU introduction o L e e e e e e e e e 7
22 GPUcChIps o o e 13
23 nVidiaPCliddatabase e e 28
2.4 PCI/PCIE/AGP bus interface and card management logic 77
2.5 Power, thermal, and clock management oL oL 81
2.6 GPUexternal device /O units o e e 99
2.7 Memory access and StIUCTUIEt i vt e e e e e e e e e e 102
2.8 PFIFO: command submission to €Xecution engines« v v v v v v v v v v v e e 142
2.9 PGRAPH: 2d/3d graphics and compute engine o v v v it i e e e 167
2.10 falcon MICIOPrOCESSOT . .« ¢ v v v v v v e e et i e e e e e e e e e e e e e 316
2.11 Video decoding, encoding, and processing oo 373
2.12 Performance COUNtEIS v ot v v ittt i e e e e e e e e e e 491
2.13 Display subsystem e e e e e e e e e 509
3 nVidia Resource Manager documentation 519
3.1 PMU Lo e 519
4 envydis and envyas documentation 543
4.1 Usingenvydisand envyas 543
5 TODO list 549
6 Indices and tables 685
Index 687

nVidia Hardware Documentation, Release git

Contents:

Contents 1

nVidia Hardware Documentation, Release git

2 Contents

CHAPTER 1

Notational conventions

Contents

* Notational conventions

— Introduction

Bit operations

Sign extension

Bitfield extraction

1.1 Introduction

Semantics of many operations are described in pseudocode. Here are some often used primitives.

1.2 Bit operations

In many places, the GPUs allow specifying arbitrary X-input boolean or bitwise operations, where X is 2, 3, or 4. They
are described by a 2+ xX-bit mask selecting the bit combinations for which the output should be true. For example,
2-input operation 0x4 (0b0100) is ~v1 & v2: only bit 2 (0b10) is set, so the only input combination (0, 1) results
in a true output. Likewise, 3-input operation Oxaa (Ob10101010) is simply a passthrough of first input: the bits set in
the mask are 1, 3, 5,7 (0b001, 0b011l, 0bl01l, 0bl11l), which corresponds exactly to the input combinations
which have the first input equal to 1.

The exact semantics of such operations are:

single-bit version
def bitop_single (op, =inputs):

(continues on next page)

nVidia Hardware Documentation, Release git

(continued from previous page)

first,
bitidx =
for idx,

construct mask bit index from the inputs
0
input in enumerate (inputs) :

if input:
bitidx
second,
return op >> bitidx & 1

1 << idx

def bitop(op, *inputs):
max_len = max (input.bit_length ()
res = 0

perform bitop_single operation on each bit

the result is the given bit of the mask

for input in inputs)

(+ 1 for sign bit)

for x in range (max_len + 1):
bitop_single (op,
all bits starting from max_len will be identical
return sext (res, max_len)

res =

* (input >> x & 1 for input in inputs))

<< x
- just what sext does

As further example, the 2-input operations on a, b are:

e 0x0: always 0
e 0xl:~a & ~b
* Ox2:a & ~b
e 0x3: ~b

* Ox4:~a & b
e 0x5: ~a

* Ox6:a "~ Db

e Ox7:~a | ~b
* O0x8:a & b

* 0x9:~a " b
* Oxa: a

e Oxb:a | ~b
e Oxc: b

e Oxd:~a | b

e Oxe:a | b

e Oxf: always 1

For further enlightenment, you can search for GDI raster operations, which correspond to 3-input bit operations.

1.3 Sign extension

An often used primitive is sign extension from a given bit. This operation is known as sext after xtensa instruction

of the same name and is formally defined as follows:

Chapter 1. Notational conventions

nVidia Hardware Documentation, Release git

def sext (val, bit):

mask with all bits up from #bit set

mask = -1 << bit

if val ¢ 1 << bit:
sign bit set, negative, set all upper bits
return val | mask

else:
sign bit not set, positive, clear all upper bits
return val & ~mask

1.4 Bitfield extraction

Another often used primitive is bitfield extraction. Extracting an unsigned bitfield of length 1 starting at position s in
val is denoted by extr (val, s, 1),andsignedonebyextrs(val, s, 1):

def extr(val, s, 1):
return val >> s & ((1 << 1) - 1)

def extrs(val, s, 1):
return sext (extrs(val, s, 1), 1 — 1)

1.4. Bitfield extraction 5

nVidia Hardware Documentation, Release git

6 Chapter 1. Notational conventions

CHAPTER 2

nVidia hardware documentation

Contents:

2.1 nVidia GPU introduction

Contents

e nVidia GPU introduction

Introduction

Card schematic

GPU schematic - NV3:G80

GPU schematic - G80:GF100

— GPU schematic - GF100-

2.1.1 Introduction

This file is a short introduction to nvidia GPUs and graphics cards. Note that the schematics shown here are simplified
and do not take all details into account - consult specific unit documentation when needed.

2.1.2 Card schematic

An nvidia-based graphics card is made of a main GPU chip and many supporting chips. Note that the following
schematic attempts to show as many chips as possible - not all of them are included on all cards.

nVidia Hardware Documentation, Release git

+——— + memory bus +-———————— + analog video Fm———— +
| VRAM |-——————————— \ === \
F———— + \ | I2C bus | VGA |
\ === \ \
Fomm e + \ \ Fomm +
| PCI/AGP/PCIE |-———————— \ \
Fom + \ | TMDS video to——— +
\ | === \ \
to—m———— + parallel | | analog video \ |
| BIOS ROM [-—————————— \ | ———— | DVI-I |
Fo———————— + or SPI | | I2C bus + GPIO | \
\ | = \ \
Fm— + I2C bus | | Fo——— +
| HDCP ROM |[-————————— \ \
to—————— + \ | videolink out Fo————— +
77777777777777777 external -
tmmmm - + VID GPIO | | I2C bus | TV == TV |
| voltage |-—————————- \ |————— | encoder | A=
| regulator | \ GPU | o +
e + \ \
\ I2C bus | |
- | | videolink in+out +-———— +
\ \ === | SLI |
o + | | GPIOs o +
| thermal | ALERT | |
| monitoring | ———————— | | ITU-R-656 +———————————— +
| +fan control | GPIO \ | ——————— | | A +
Fomm e + \ | I2C bus | TV decoder [--| TV in |
\ \ | === \ S +
\ \ \ tomm +
e + FAN GPIO | \
| fan |- \ | media port +-—————————————- +
- + \ | ——————— | MPEG decoder |
\ \ o +
Fom— = + HDMI bypass | \
| SPDIF |-————————————— \ \ o +
Fom + audio input | | ————— | configuration straps |
\ \ e +
Fom +

Note: while this schematic shows a TV output using an external encoder chip, newer cards have an internal TV
encoder and can connect the output directly to the GPU. Also, external encoders are not limitted to TV outputs -
they’re also used for TMDS, DisplayPort and LVDS outputs on some cards.

Note: in many cases, [2C buses can be shared between various devices even when not shown by the above schema.

In summary, a card contains:
* a GPU chip [see GPU chips for a list]
* a PCI, AGP, or PCI-Express host interface

¢ on-board GPU memory [aka VRAM] - depending on GPU, various memory types can be supported: VRAM,
EDO, SGRAM, SDR, DDR, DDR2, GDDR3, DDR3, GDDRS.

* a parallel or SPI-connected flash ROM containing the video BIOS. The BIOS image, in addition to standard

8 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

VGA BIOS code, contains information about the devices and connectors present on the card and scripts to boot
up and manage devices on the card.

* configuration straps - a set of resistors used to configure various functions of the card that need to be up before
the card is POSTed.

 a small [2C EEPROM with encrypted HDCP keys [optional, some G84:GT215, now discontinued in favor of
storing the keys in fuses on the GPU]

* a voltage regulator [starting with NV10 [?] family] - starting with roughly NV30 family, the target voltage
can be set via GPIO pins on the GPU. The voltage regulator may also have “power good” and “emergency
shutdown” signals connected to the GPU via GPIOs. In some rare cases, particularly on high-end cards, the
voltage regulator may also be accessible via 12C.

* optionally [usually on high-end cards], a thermal monitoring chip accessible via 12C, to supplement/replace the
bultin thermal sensor of the GPU. May or may not include autonomous fan control and fan speed measurement
capability. Usually has a “thermal alert” pin connected to a GPIO.

* afan - control and speed measurement done either by the thermal monitoring chip, or by the GPU via GPIOs.

e SPDIF input [rare, some G84:GT215] - used for audio bypass to HDMI-capable TMDS outputs, newer GPUs
include a builtin audio codec instead.

* on-chip video outputs - video output connectors connected directly to the GPU. Supported output types depend
on the GPU and include VGA, TV [composite, S-Video, or component], TMDS [ie. the protocol used in DVI
digital and HDMI], FPD-Link [aka LVDS], DisplayPort.

* external output encoders - usually found with older GPUs which don’t support TV, TMDS or FPD-Link outputs
directly. The encoder is connected to the GPU via a parallel data bus [“videolink™] and a controlling I2C bus.

¢ SLI connectors [optional, newer high-end cards only] - video links used to transmit video to display from slave
cards in SLI configuration to the master. Uses the same circuitry as outputs to external output encoders.

* TV decoder chip [sometimes with a tuner] connected to the capture port of the GPU and to an I12C bus - rare, on
old cards only

 external MPEG decoder chip connected to so-called mediaport on the GPU - alleged to exist on some
NV3/NV4/NV 10 cards, but never seen in the wild

In addition to normal cards, nvidia GPUs may be found integrated on motherboards - in this case they’re often missing
own BIOS and HDCP ROMs, instead having them intergrated with the main system ROM. There are also IGPs
[Integrated Graphics Processors], which are a special variant of GPU integrated into the main system chipset. They
don’t have on-board memory or memory controller, sharing the main system RAM instead.

2.1.3 GPU schematic - NV3:G80

PCI/AGP/PCIE bus +-————————- + o +
7777777777777777777 | PMC+PBUS |——+ | VRAM |
o + e +
\ \ \
\ | \
\ \ \
o + +——— + 4 + +
|PTIMER+PPMI | | | PFB | | PROM | | PSTRAPS |
o + +————= + - I +
\ \ \
SYSRAM | oo +
access bus | | VRAM
| = + | access bus

(continues on next page)

2.1. nVidia GPU introduction 9

nVidia Hardware Documentation, Release git

(continued from previous page)

t-———= | PFIFO |[-———— +
\ to—m— + \
\ [\
\ | +=—t \
\ \ \ | A= +
Fo————— + \ Fmm————— + | \ | video input |
| PCOUNTER | +--——=| PGRAPH |-——-- + Fm——m— - +
tomm + \ tommm + \ \
\ \ \ Fommm +
Fom + \ t————= + +-———| PMEDIA |
| therm | \ \ \ to———— +
| sensor | | - + | |
o + - | PVPE |-————- R +
Fo———— + | | MPEG decoder |
| A +
\
e + \ e + Fmm +
| PVIDEO |-——+-——| PCRTC |-——| I2C+GPIO |
e + - + - +
\ \
et o +
\ \
F———— + Fmm————— + Fm +
| PTV | | PRAMDAC | | PCLOCK+PCONTROL |
+——— + - + - +
\ \
\ \
e oA +
| TV out | | video output |
- + +— +
The GPU is made of:

* control circuitry:

— PMC: master control area

— PBUS: bus control and an area where “misc” registers are thrown in. Known to contain at least:
* HWSQ, a simple script engine, can poke card registers and sleep in a given sequence [NV 17+]
% a thermal sensor [NV30+]
% clock gating control [NV17+]
* indirect VRAM access from host circuitry [NV30+]
* ROM timings control
PWM controller for fans and panel backlight [NV17+]

PPMI: PCI Memory Interface, handles SYSRAM accesses from other units of the GPU

PTIMER: measures wall time and delivers alarm interrupts

PCLOCK+PCONTROL.: clock generation and distribution [contained in PRAMDAC on pre-NV40 GPUs]

— PFB: memory controller and arbiter

PROM: VBIOS ROM access

PSTRAPS: configuration straps access

10 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* processing engines:

— PFIFO: gathers processing commands from the command buffers prepared by the host and delivers them
to PGRAPH and PVPE engines in orderly manner

PGRAPH: memory copying, 2d and 3d rendering engine

PVPE: a trio of video decoding/encoding engines

* PMPEG: MPEG1 and MPEG2 mocomp and IDCT decoding engine [NV 17+]
* PME: motion estimation engine [NV40+]

% PVP1: VPI video processor [NV41+]

PCOUNTER: performance monitoring counters for the processing engines and memory controller
* display engines:

— PCRTC: generates display control signals and reads framebuffer data for display, present in two instances
on NV 11+ cards; also handles GPIO and I12C

PVIDEO: reads and preprocesses overlay video data

PRAMDAC: multiplexes PCRTC, PVIDEO and cursor image data, applies palette LUT, coverts to output
signals, present in two instances on NV 11+ cards; on pre-NV40 cards also deals with clock generation

— PTV: an on-chip TV encoder
* misc engines:
— PMEDIA: controls video capture input and the mediaport, acts as a DMA controller for them

Almost all units of the GPU are controlled through MMIO registers accessible by a common bus and visible through
PCI BARO [see PCI BARs and other means of accessing the GPU]. This bus is not shown above.

2.1.4 GPU schematic - G80:GF100

Fm +

PCIE bus +-—————————- + ==+ t———— +

——————————— | PMC+PBUS |-———| PFB |-——| VRAM | |

Fom + ===+ F———— +

\ Ll \

Fm————— + - + 1 memory \

| PTHERM | | | partition |

tom + | A \

| +-—| PGRAPH | |

Fom + e \

| PDAEMON |——+ | A +
o + \

[+ Fom +
to— + +-—| PFIFO |[--—-+ | PCOUNTER |
| PNVIO | o + | 4 +
S + \ \ |

| [+ | A +
| +-—| PCOPY | | | PFUSE |
Fom e R + | A +
| PDISPLAY |-+ |
Fmm +] A + | A +
| +-—| PVCOMP |--—+ | PKFUSE |
Fm I B + [+

(continues on next page)

2.1. nVidia GPU introduction 11

nVidia Hardware Documentation, Release git

(continued from previous page)

| PCODEC | | |
o + | +
+-—| video decoding, crypt |
fom—————— I B +
| PMEDIA |——+
o +
The GPU is made of:

* control circuitry:

— PMC: master control area

PBUS: bus control and an area where “misc” registers are thrown in. Known to contain at least:
+ HWSQ, a simple script engine, can poke card registers and sleep in a given sequence
% clock gating control

indirect VRAM access from host circuitry

PTIMER: measures wall time and delivers alarm interrupts

PCLOCK+PCONTROL.: clock generation and distribution

PTHERM: thermal sensor and clock throttling circuitry

PDAEMON: card management microcontroller
— PFB: memory controller and arbiter
* processing engines:

— PFIFO: gathers processing commands from the command buffers prepared by the host and delivers them
to PGRAPH and PVPE engines in orderly manner

— PGRAPH: memory copying, 2d and 3d rendering engine
— video decoding engines, see below
— PCOPY: asynchronous copy engine
— PVCOMP: video compositing engine
— PCOUNTER: performance monitoring counters for the processing engines and memory controller
* display and IO port units:
— PNVIO: deals with misc external devices
* GPIOs
* fan PWM controllers
* [2C bus controllers
* videolink controls
* ROM interface
* straps interface
x PNVIO/PDISPLAY clock generation
— PDISPLAY: a unified display engine
— PCODEC: audio codec for HDMI audio

12 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* misc engines:

— PMEDIA: controls video capture input and the mediaport, acts as a DMA controller for them

2.1.5 GPU schematic - GF100-

Todo: finish file

2.2 GPU chips

Contents

* GPU chips

— Introduction

— The GPU families
* NVI family: NVI
* NV3 (RIVA) family: NV3, NV3T
* NV4 (TNT) family: NV4, NV5
x Celsius family: NV10, NV15, NVIA, NV11, NV17, NVIE, NVI18
* Kelvin family: NV20, NV2A, NV25, NV2§
* Rankine family: NV30, NV35, NV31, NV36, NV34
* Curie family
x Tesla family
x Fermi/Kepler/Maxwell/Pascal/Volta/Turing family

— Comparison table

2.2.1 Introduction

Each nvidia GPU has several identifying numbers that can be used to determine supported features, the engines it
contains, and the register set. The most important of these numbers is an 8-bit number known as the “GPU id”. If two
cards have the same GPU id, their GPUs support identical features, engines, and registers, with very minor exceptions.
Such cards can however still differ in the external devices they contain: output connectors, encoders, capture chips,
temperature sensors, fan controllers, installed memory, supported clocks, etc. You can get the GPU id of a card by
reading from its PMC area.

The GPU id is usually written as NVxx, where xx is the id written as uppercase hexadecimal number. Note that, while
cards before NV 10 used another format for their ID register and don’t have the GPU id stored directly, they are usually
considered as NVI-NV5 anyway.

Nvidia uses “GPU code names” in their materials. They started out identical to the GPU id, but diverged midway
through the NV40 series and started using a different numbering. However, for the most part nvidia code names
correspond 1 to 1 with the GPU ids.

2.2. GPU chips 13

nVidia Hardware Documentation, Release git

The GPU id has a mostly one-to-many relationship with pci device ids. Note that the last few bits [0-6 depending on
GPU] of PCI device id are changeable through straps [see pstraps]. When pci ids of a GPU are listed in this file, the
following shorthands are used:

1234 PCI device id 0x1234

1234* PCI device ids 0x1234-0x1237, choosable by straps
123X PCI device ids 0x1230-0x 123X, choosable by straps
124X+ PCI device ids 0x1240-0x125X, choosable by straps
124X* PCI device ids 0x1240-0x127X, choosable by straps

2.2.2 The GPU families

The GPUs can roughly be grouped into a dozen or so families: NV1, NV3/RIVA, NV4/TNT, Celsius, Kelvin, Rankine,
Curie, Tesla, Fermi, Kepler, Maxwell, Pascal, Volta and Turing.

This aligns with big revisions of PGRAPH, the drawing engine of the card. While most functionality was introduced
in sync with PGRAPH revisions, some other functionality [notably video decoding hardware] gets added in GPUs
late in a GPU family and sometimes doesn’t even get to the first GPU in the next GPU family. For example, NV11
expanded upon the previous NV 15 chipset by adding dual-head support, while NV20 added new PGRAPH revision
with shaders, but didn’t have dual-head - the first GPU to feature both was NV25.

Also note that a bigger GPU id doesn’t always mean a newer card / card with more features: there were quite a few
places where the numbering actually went backwards. For example, NV11 came out later than NV15 and added
several features.

Nvidia’s card release cycle always has the most powerful high-end GPU first, subsequently filling in the lower-end
positions with new cut-down GPUs. This means that newer cards in a single sub-family get progressively smaller,
but also more featureful - the first GPUs to introduce minor changes like DX10.1 support or new video decoding are
usually the low-end ones.

Whenever a range of GPUs is mentioned in the documentation, it’s written as “NVxx:NVyy”. This is left-inclusive,
right-noninclusive range of GPU ids as sorted in the following list. For example, G200:GT218 means GPUs G200,
MCP77, MCP79, GT215, GT216. NV20:NV30 effectively means all NV20 family GPUs.

The full known GPU list, sorted roughly according to introduced features, is:
* NVI family: NV1
* NV3 (aka RIVA) family: NV3, NV3T
* NV4 (aka TNT) family: NV4, NV5
¢ Celsius family: NV10, NV15, NV1A, NVI11,NV17, NV1F, NV18
e Kelvin family: NV20, NV2A, NV25, NV28
» Rankine family: NV30, NV35, NV31, NV36, NV34
¢ Curie family:
NV40 subfamily: NV40, NV45, NV41, NV42, NV43, NV44, NV44A
G70 subfamily: G70, G71, G73, G72
the IGPs: C51, MCP61, MCP67, MCP68, MCP73

the special snowflake: RSX
* Tesla family:

— G80 subfamily: G80

14 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— G84 subfamily: G84, G86, G92, G94, G96, G98
— G200 subfamily: G200, MCP77, MCP79
— GT215 subfamily: GT215, GT216, GT218, MCP89
* Fermi family:
— GF100 subfamily: GF100, GF104, GF106, GF114, GF116, GF108, GF110
— GF119 subfamily: GF119, GF117
 Kepler family: GK104, GK107, GK106, GK110, GK110B, GK208, GK208B, GK20A, GK210
* Maxwell family: GM107, GM108, GM204, GM200, GM206, GM20B
* Pascal family: GP100, GP102, GP104, GP106, GP107, GP108
* Volta family: GV100
¢ Turing family: TU102, TU104, TU106, TU116, TU117

NV1 family: NV1

gpu—-gen NV1
The first generation of nVidia GPUs. Includes only one GPU — the NV1. It has semi-legendary status, as it’s
very rare and hard to get. The GPU is also known by its SGS-Thomson code number, STG-2000. The most
popular card using this GPU is Diamond EDGE 3D.

This GPU is unusual for multiple reasons:

* It has a builtin sound mixer with a MIDI synthetizer (aka PAUDIO). It is supposed to be paired with an
audio codec (AD1848) for full integrated soundcard functionality.

¢ Itis not fully VGA-compatible — there is some VGA emulation, but it’s quite rough and many features are
not supported.

* It has no integrated DAC or clock generators — it has to be paired with an accompanying external DAC,
the STG-1732 or STG-1764 that will convert raw framebuffer contents to display pixels. It is also charged
with generating the clocks for the GPU.

¢ The accompanying DAC chip also contains game port functionality, for a complete soundcard replacement.
* As if the game port was not enough, the DAC also supports two Sega Saturn controller ports.

* The so-called 3D engine renders textured quadratic surfaces, instead of triangles (as opposed to all later
GPUs). Rendering triangles with it is pretty much impossible.

The GPU was jointly manufactured by SGS-Thomson and nVidia, and uses SGS’ PCI vendor ID (there are
apparently variants using nVidia’s vendor id, but not much is known about these).

There’s also NV2, which has even more legendary status. It was supposed to be another card based on quadratic
surfaces, but it got stuck in development hell and never got released. Apparently it never got to the stage of
functioning silicon. The device id of NV2 was supposed to be 0x0010.

NV3 (RIVA) family: NV3, NV3T

gpu-gen NV3
The first [moderately] sane GPUs from nvidia, and also the first to use AGP bus. There are two chips in this
family, and confusingly both use GPU id NV3, but can be told apart by revision. The original NV3 is used in
RIVA 128 cards, while the revised NV3, known as NV3T, is used in RIVA 128 ZX. NV3 supports AGP 1x and a
maximum of 4MB of VRAM, while NV3T supports AGP 2x and 8MB of VRAM. NV3T also increased number

2.2. GPU chips 15

nVidia Hardware Documentation, Release git

of slots in PFIFO cache. These GPUs were also manufactured by SGS-Thomson and bear the code name of
STG-3000.

The NV3 GPU is made of the following functional blocks:

L]

host interface, connected to the host machine via PCI or AGP
two PLLs, to generate video pixel clock and memory clock

memory interface, connected to 2MB-8MB of external VRAM via 64-bit or 128-bit memory bus, shared
with an 8-bit parallel flash ROM

PFIFO, controlling command submission to PGRAPH and gathering commands through DMA to host
memory or direct MMIO submission

PGRAPH, the 2d/3d drawing engine, supporting windows GDI and Direct3D 5 acceleration

VGA-compatible CRTC, RAMDAC, and associated video output circuitry, enabling direct connection of
VGA analog displays and TV connection via an external AD722 encoder chip

i2c¢ bus to handle DDC and control mediaport devices
double-buffered video overlay and cursor circuitry in RAMDAC

mediaport, a proprietary interface with ITU656 compatibility mode, allowing connection of external video
capture or MPEG?2 decoding chip

NV3 introduced RAMIN, an area of memory at the end of VRAM used to hold various control structures for
PFIFO and PGRAPH. On NV3, RAMIN can be accessed in BARI at addresses starting from 0xc00000, while
later cards have it in BARO. It also introduced DMA objects, a RAMIN structure used to define a VRAM
or host memory area that PGRAPH is allowed to use when executing commands on behalf of an application.
These early DMA objects are limitted to linear VRAM and paged host memory objects, and have to be switched
manually by host. See NV3 DMA objects for details.

NV4 (TNT) family: NV4, NV5

gpu—gen NV4
Improved and somewhat redesigned NV3. Notable changes:

L]

AGP x4 support

redesigned and improved DMA command submission

separated core and memory clocks

DMA objects made more orthogonal, and switched automatically by card
redesigned PGRAPH objects, introducing the concept of object class in hardware
added BIOS ROM shadow in RAMIN

Direct3D 6 / multitexturing support in PGRAPH

bumped max supported VRAM to 16MB

[NV5] bumped max supported VRAM to 32MB

[NV5] PGRAPH 2d context object binding in hardware

This family includes the original NV4, used in RIVA TNT cards, and NV5 used in RIVA TNT?2 and Vanta cards.

16

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Celsius family: NV10, NV15, NV1A, NV11, NV17, NV1F, NV18

gpu—-gen Celsius
The notable changes in this generation are:

* NVI10:

redesigned memory controller

— max VRAM bumped to 128MB

— redesigned VRAM tiling, with support for multiple tiled regions

— greatly expanded 3d engine: hardware T&L, D3D7, and other features
— GPIO pins introduced for ???

— PFIFO: added REF_CNT and NONINC commands

— added PCOUNTER: the performance monitoring engine

— new and improved video overlay engine

redesigned mediaport
* NVI5:
— introduced vblank wait PGRAPH commands
— minor 3d engine additions [logic operation, ...]

NVIA:

— big endian mode
— PFIFO: semaphores and subroutines
e NVII:
— dual head support, meant for laptops with flat panel + external display

NVI17:

— builtin TV encoder

- ZCULL

— added VPE: MPEG?2 decoding engine
* NV18:

— AGP x8 support

— second straps set

Todo: what were the GPIOs for?

2.2. GPU chips 17

nVidia Hardware Documentation, Release git

pciid | GPU | pixel pipelines and | texture date notes
ROPs units

0100*] NV10| 4 4 11.10.1999 the first GeForce card [GeForce 256]

0150*% NV15| 4 8 26.04.2000 the high-end card of GeForce 2 lineup
[GeForce 2 Ti, ...]

01a0*| NVI1A| 2 4 04.06.2001 the IGP of GeForce 2 lineup [nForce]

0110*| NVI1| 2 4 28.06.2000 the low-end card of GeForce 2 lineup
[GeForce 2 MX]

017X | NV17| 2 4 06.02.2002 the low-end card of GeForce 4 lineup
[GeForce 4 MX]

01fX | NVIF| 2 4 01.10.2002 the IGP of GeForce 4 lineup [nForce 2]

018X | NV18| 2 4 25.09.2002 like NV 17, but with added AGP x8 support

NVI1A and NVIF are IGPs and lack VRAM, memory controller, mediaport, and ROM interface. They use the internal
interfaces of the northbridge to access an area of system memory set aside as fake VRAM and BIOS image.

Kelvin family: NV20, NV2A, NV25, NV28

gpu-gen Kelvin
The first cards of this family were actually developed before NV17, so they miss out on several features intro-
duced in NV17. The first card to merge NV20 and NV17 additions is NV25. Notable changes:

* NV20:

no dual head support again

no PTV, VPE
no ZCULL

a new memory controller with Z compression

RAMIN reversal unit bumped to 0x40 bytes

3d engine extensions:
programmable vertex shader support
% D3D8, shader model 1.1
— PGRAPH automatic context switching
* NV25:
— amerge of NV17 and NV20: has dual-head, ZCULL, ...
— still no VPE and PTV
e NV28:
— AGP x8 support
The GPUs are:

18 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

pciid | GPU | vertex pixel pipelines | texture date notes
shaders and ROPs units

0200% NV20| 1 4 8 27.02.2001the only GPU of GeForce 3 lineup
[GeForce 3 Ti, ...]

02a0 NV2A 2 4 8 15.11.2001the XBOX IGP [XGPU]

025X| NV25| 2 4 8 06.02.2002the high-end GPU of GeForce 4 lineup
[GeForce 4 Ti]

028X| NV2g| 2 4 8 20.01.2003like NV25, but with added AGP x8
support

NV2A is a GPU designed exclusively for the original xbox, and can’t be found anywhere else. Like NV1A and NV1F,
it’s an IGP.

Todo: verify all sorts of stuff on NV2A

Rankine family: NV30, NV35, NV31, NV36, NV34
gpu-gen Rankine
The infamous GeForce FX series. Notable changes:
* NV30:
— 2-stage PLLs introduced [still located in PRAMDAC]
max VRAM size bumped to 256MB

3d engine extensions:
programmable fragment shader support
x D3D9, shader model 2.0
added PEEPHOLE indirect memory access
return of VPE and PTV

new-style memory timings

NV35:

— 3d engine now supports depth bounds check
* NV3I:
— no NV35 changes, this GPU is derived from NV30
— 2-stage PLLs split into two registers
— VPE engine extended to work as a PFIFO engine
* NV36:
— amerge of NV31 and NV35 changes from NV30
NV34:

— acomeback of NV10 memory controller!
— NVI10-style mem timings again

— no Z compression again

2.2. GPU chips 19

nVidia Hardware Documentation, Release git

— RAMIN reversal unit back at 16 bytes

— 3d engine additions:

* 777

Todo: figure out NV34 3d engine changes

The GPUs are:
pciid | GPU | vertex pixel pipelines and | date notes
shaders ROPs

030X | NV30 | 2 8 27.01.2003 | high-end GPU [GeForce FX 5800]

033X | NV35| 3 8 12.05.2003 | very high-end GPU [GeForce FX
59X0]

031X | NV31 | 1 4 06.03.2003 | low-end GPU [GeForce FX 5600]

034X | NV36 4 23.10.2003 | middle-end GPU [GeForce FX 5700]

032X | NV34 | 1 4 06.03.2003 | low-end GPU [GeForce FX 5200]

The pci vendor id is 0x10de.

Curie family

gpu—-gen Curie
This family was the first to feature PCIE cards, and many fundamental areas got significant changes, which later
paved the way for G80. It is also the family where GPU ids started to diverge from nvidia code names. The
changes:

* NV40:
— RAMIN bumped in size to max 16MB, many structure layout changes
— RAMIN reversal unit bumped to 512kB
— 3d engine: support for shader model 3 and other additions
— Z compression came back
— PGRAPH context switching microcode
— redesigned clock setup
— separate clock for shaders
— rearranged PCOUNTER to handle up to 8 clock domains
— PFIFO cache bumped in size and moved location
— added independent PRMVIO for two heads
— second set of straps added, new strap override registers
— new PPCI PCI config space access window
— MPEG?2 encoding capability added to VPE
— FIFO engines now identify the channels by their context addresses, not chids
— BIOS uses all-new BIT structure to describe the card

— individually disablable shader and ROP units.

20 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— added PCONTROL area to... control... stuff?
— memory controller uses NV30-style timings again

e NV41:

introduced context switching to VPE

introduced PVP1, microcoded video processor

first natively PCIE card
added PCIE GART to memory controller
* NV43:

— added a thermal sensor to the GPU
NV44:
— anew PCIE GART page table format

— 3d engine: ?7?
e NV44A:
— like NV44, but AGP instead of PCIE

Todo: more changes

Todo: figure out 3d engine changes

The GPUs are:

pciid GPUid | GPU names | vertex pixel ROPg date notes

shaders shaders
004X 0x40/0x45 NV40/NV45/NV48 16 16 14.04.2004 AGP
021X
00cX 0x41/0x42 NV41/NV42 5 12 12 08.11.2004
014X 0x43 NV43 3 4 12.08.2004
016X 0x44 NV44 3 4 2 15.12.2004 TURBOCACHE
022X Ox4a NV44A 3 4 2 04.04.2005 AGP
009X 0x47 G70 8 24 16 22.06.2005
01dX 0x46 G72 3 4 2 18.01.2006 TURBOCACHE
029X 0x49 G71 8 24 16 09.03.2006
039X 0x4b G73 8 12 8 09.03.2006
024X Ox4e Cs1 1 2 1 20.10.20051GP, TURBOCACHE
03dX Ox4c MCP61 1 2 1 77.06.2006 IGP, TURBOCACHE
053X 0x67 MCP67 1 2 2 01.02.20061GP, TURBOCACHE
053X 0x68 MCP68 1 2 2 77.07.2007 IGP, TURBOCACHE
07eX 0x63 MCP73 1 2 2 72.07.2007 IGP, TURBOCACHE
- 0x4d RSX ? ? ? 11.11.2006FlexIO bus interface,

used in PS3

Todo: all geometry information unverified

2.2. GPU chips 21

nVidia Hardware Documentation, Release git

Todo: any information on the RSX?

It’s not clear how NV40 is different from NV45, or NV41 from NV42, or MCP67 from MCPG68 - they even share pciid
ranges.

The NV4x IGPs actually have a memory controller as opposed to earlier ones. This controller still accesses only host
memory, though.

As execution units can be disabled on NV40+ cards, these configs are just the maximum configs - a card can have just
a subset of them enabled.

Tesla family

gpu—-gen Tesla
The card where they redesigned everything. The most significant change was the redesigned memory subsystem,
complete with a paging MMU [see Tesla virtual memory].

* G80:
— anew VM subsystem, complete with redesigned DMA objects

— RAMIN is gone, all structures can be placed arbitrarily in VRAM, and usually host memory memory
as well

— all-new channel structure storing page tables, RAMFC, RAMHT, context pointers, and DMA objects
— PFIFO redesigned, PIO mode dropped

— PGRAPH redesigned: based on unified shader architecture, now supports running standalone compu-
tations, D3D10 support, unified 2d acceleration object

— display subsystem reinvented from scratch: a stub version of the old VGA-based one remains for VGA
compatibility, the new one is not VGA based and is controlled by PFIFO-like DMA push buffers

— memory partitions tied directly to ROPs
* G84:
— redesigned channel structure with a new layout

— gotrid of VP1 video decoding and VPE encoding support, but VPE decoder still exists

added VP2 xtensa-based programmable video decoding and BSP engines

removed restrictions on host memory access by rendering: rendering to host memory and using block-
linear textures from host are now ok

added VM stats write support to PCOUNTER
PEEPHOLE moved out of PBUS
PFIFO_BAR_FLUSH moved out of PFIFO

* (G98:

— introduced VP3 video decoding engines, and the falcon microcode with them
— got rid of VP2 video decoding
* G200:
— developped in parallel with G98
— VP2 again, no VP3

22 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— PGRAPH rearranged to make room for more MPs/TPCs

— streamout enhancements [ARB_transform_feedback?2]

— CUDA ISA 1.3: 64-bit g[] atomics, s[] atomics, voting, fp64 support
* MCP77:

— merged G200 and G98 changes: has both VP3 and new PGRAPH

— only CUDA ISA 1.2 now: fp64 support got cut out again
* GT215:
a new revision of the falcon ISA

a revision to VP3 video decoding, known as VP4. Adds MPEG-4 ASP support.

added PDAEMON, a falcon engine meant to do card monitoring and power maanagement

PGRAPH additions for D3D10.1 support

added HDA audio codec for HDMI sound support, on a separate PCI function

Added PCOPY, the dedicated copy engine
— Merged PSEC functionality into PVLD
* MCP89:
— added PVCOMP, the video compositor engine
The GPUs in this family are:

core hda | id name TPCs | MPs/TPC | PARTs | date notes
pciid pciid

019X - 0x50 | G80 8 2 6 08.11.2006

040X - 0x84 | G84 2 2 2 17.04.2007
042X - 0x86 | G86 1 2 2 17.04.2007
060X+ | - 0x92 | G92 8 2 4 29.10.2007
062X+ | - 0x94 | G94 4 2 4 29.07.2008
064X+ | - 0x96 | G96 2 2 2 29.07.2008
06eX+ | - 0x98 | G98 1 1 1 04.12.2007

05eX+ | - 0xa0 | G200 10 3 8 16.06.2008
084X+ | - Oxaa | MCP77/MCP78 | 1 1 1 77.06.2008 | IGP
086X+ | - Oxac | MCP79/MCP7A | 1 2 1 72.06.2008 | IGP
OcaX+ | Obed4 | Oxa3 | GT215 4 3 2 15.06.2009

0a2X+ | Obe2 | OxaS | GT216 2 3 2 15.06.2009
0a6X+ | Obe3 | Oxa8 | GT218 1 2 1 15.06.2009

08aX+ | - Oxaf | MCP89 2 3 2 01.04.2010 | IGP

Like NV40, these are just the maximal numbers.

Todo: geometry information not verified for G94, MCP77

Fermi/Kepler/Maxwell/Pascal/Volta/Turing family

gpu—-gen Fermi
The card where they redesigned everything again.

2.2. GPU chips 23

nVidia Hardware Documentation, Release git

* GF100:

redesigned PFIFO, now with up to 3 subfifos running in parallel
— redesigned PGRAPH:
split into a central HUB managing everything and several GPCs doing all actual work
GPCs further split into a common part and several TPCs
* using falcon for context switching
* D3DI11 support
— redesigned memory controller
* split into three parts:
- per-partition low-level memory controllers [PBFB]
- per-partition middle memory controllers: compression, ECC, ... [PMFB]
- a single “hub” memory controller: VM control, TLB control, ... [PFFB]

— memory partitions, GPCs, TPCs have independent register areas, as well as “broadcast” areas that can
be used to control all units at once

— second PCOPY engine

— redesigned PCOUNTER, now having multiple more or less independent subunits to monitor various
parts of GPU

— redesigned clock setting

e GF119:

a major revision to VP3 video decoding, now called VP5. vuc microcode removed.

another revision to the falcon ISA, allowing 24-bit PC
added PUNKI1C3 falcon engine

redesigned I2C bus interface

redesigned PDISPLAY

removed second PCOPY engine
e GF117:

— PGRAPH changes:
% 277

gpu—-gen Kepler
An upgrade to Fermi.

e GK104:

redesigned PCOPY: the falcon controller is now gone, replaced with hardware control logic, partially
in PFIFO

an additional PCOPY engine

PFIFO redesign - a channel can now only access a single engine selected on setup, with
PCOPY2+PGRAPH considered as one engine

PGRAPH changes:

24 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* GKI110:

*

*

subchannel to object assignments are now fixed

m2mf is gone and replaced by a new p2mf object that only does simple upload, other m2mf
functions are now PCOPY’s responsibility instead

the ISA requires explicit scheduling information now

lots of setup has been moved from methods/registers into memory structures

m

— PFIFO changes:

— PGRAPH changes:

*

m

ISA format change

*

m

Todo: figure out PGRAPH/PFIFO changes

gpu-gen
gpu-gen
gpu-gen
gpu-gen

Maxwell

Pascal

Volta

Turing

GPUs in Fermi/Kepler/Maxwell/Pascal/Volta/Turing families:

core hda | usb | id name GPCs | TPCs | PARTs | MCs | ZCULLs | PCOPYs | HEADs | UNK7 | P
pciid pciid | pciid /GPC /GPC /(
06cX+ | Obe5 | - 0xc0 GF100 4 4 6 [6] [4] [2] [2] - -
0e2X+ | Obeb | - Oxc4 GF104 2 4 4 [4] [4] 2] 2] - -
120X+ | 0eOc | - Oxce GF114 2 4 4 [4] [4] [2] [2] - -
0dcX+ | Obe9 | - 0xc3 GF106 1 4 3 [3] [4] [2] [2] - -
124X+ | Obee | - Oxcf GF116 1 4 3 [3] [4] [2] [2] - -
0deX+ | Obea | - Oxcl | GF108 1 2 1 2 4 2] 2] - -
108X+ | 0e09 | - 0xc8 GF110 4 4 6 [6] [4] 2] 2] - -
104X* | 0e08 | - 0xd9 GF119 1 1 1 1 4 1 2 - -
1140 - - 0xd7 GF117 1 2 1 1 4 1 -[4] - 1
118X* | OeOa | - Oxe4d GK104 4 2 4 4 4 3 4 - 1
OfcX* | Oelb | - Oxe7 GK107 1 2 2 2 4 3 4 - 1
11cX+ | 0eOb | - 0xe6 GK106 3 2 3 3 4 3 4 - 1
100X+ | Oela | - 0xf0 GK110 5 3 6 6 4 3 4 - 2
100X+ | Oela | - 0xf1 GK110B | 5 3 6 6 4 3 4 - 2
2777 227 | - 2777 GK210 ? ? ? ? ? ? ? - ?
128X+ | 0e0f | - 0x108 | GK208 1 2 1 1 4 3 4 - 1
128X+ | 0eOf | - 0x106 | GK208B | 1 2 1 1 4 3 4 - 1
- - - Oxea GK20A 1 1 1 1 4 3 -[4] - 1
138X+ | Ofbc | - 0x117 | GM107 1 5 2 2 4 3 4 1 2
134X+ | 72777 | - 0x118 | GM108 1 3 1 1 4 3 4 0 ?
13¢cX+ | Ofbb | - 0x124 | GM204 ? ? ? ? ? ? ? ? ?
2.2. GPU chips 25

nVidia Hardware Documentation, Release git

Table 1 — continued from previous page

core hda | usb | id name GPCs | TPCs | PARTs | MCs | ZCULLs | PCOPYs | HEADs | UNK7 | P
pciid pciid | pciid /GPC /GPC /(
17¢X+ | 0fb0 | - 0x120 | GM200 | ? ? ? ? ? ? ? ? ?
140X+ | Ofba | - 0x126 | GM206 ? ? ? ? ? ? ? ? ?
- - - 0x12b | GM20B | ? ? ? ? ? ? ? ? ?
158X# | 77?7? | - 0x130 | GP100 ? ? ? ? ? ? ? ? ?
1bOX# | 10ef | - 0x132 | GP102 ? ? ? ? ? ? ? ? ?
1b8X# | 10f0 | - 0x134 | GP104 4 5 4 4 4 4 4 2 ?
1cOX# | 10f1 | - 0x136 | GP106 ? ? ? ? ? ? ? ? ?
1c8X# | 0fb9 | - 0x137 | GP107 ? ? ? ? ? ? ? ? ?
1dOX# | Ofb8 | - 0x138 | GP108 ? ? ? ? ? ? ? ? ?
10e5* | - - 0x13b | GP10B ? ? ? ? ? ? ? ? ?
1d8X# | 10f2 | - 0x140 | GV100 6 7 ? ? ? ? ? ? ?
- - - 0x15b | GV11B ? ? ? ? ? ? ? ? ?
1e0X# | 10f7 | lad6 | 0x162 | TU102 6 6 ? ? ? ? ? ? ?
1e8X# | 10f8 | 1ad8 | 0x164 | TU104 6 4 ? ? ? ? ? ? ?
1fOX# | 10f9 | lada | 0x166 | TU106 3 6 ? ? ? ? ? ? ?
218X# | laeb | - 0x168 | TU116 3 4 ? ? ? ? ? ? ?
18 X# - 0x167 | TU117 2 4 ? ? ? ? ? ? ?

Todo: it is said that one of the GPCs [0th one] has only one TPC on GK106

Todo: what the fuck is GK110B? and GK208B?

Todo: GK210

Todo: GK20A

Todo: GM20x, GP10x

Todo: another design counter available on GM 107, another 4 on GP10x

Todo: TUI117 one of the GPCs has only three TPCs (so 7 in total, not 8)

2.2.3 Comparison table
Name GPU id | GPU generation | Release date [approximate] | Bus interface | PCIl vendorid | PCI device IDs | |
NV1 - NVI 09.1995 Pci 0x104a 0x0008-0x0009 | -

26 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Name GPU id | GPU generation | Release date [approximate] | Bus interface | PCl vendor id | PCI device IDs
NV3 - NV3 04.1997 Pci 0x12d2 0x0018-0x0019
NV3T - NV3 23.02.1998 Pci 0x12d2 0x0018-0x0019
NV4 - NV4 23.03.1998 Pci 0x10de 0x0020

NV5 - NV4 15.03.1999 Pci 0x10de 0x0028-0x002b
NV6 - NV4 15.03.1999 Pci 0x10de 0x002c-0x002f
NVA - NV4 08.09.1999 Pci 0x10de 0x00a0

NV10 0x010 Celsius 11.10.1999 Pci 0x10de 0x0100-0x0103
NVIi5 0x015 Celsius 26.04.2000 Pci 0x10de 0x0150-0x0153
NVI1A 0x01la Celsius 04.06.2001 Pci 0x10de 0x01a0-0x01a3
NVI11 0x011 Celsius 28.06.2000 Pci 0x10de 0x0110-0x0113
NV17 0x017 Celsius 06.02.2002 Pci 0x10de 0x0170-0x017f
NVIF 0x01f Celsius 01.10.2002 Pci 0x10de 0x01f0-0x01ff

NV18 0x018 Celsius 25.09.2002 Pci 0x10de 0x0180-0x018f
NV20 0x020 Kelvin 27.02.2001 Pci 0x10de 0x0200-0x0203
NV2A 0x02a Kelvin 15.11.2001 Pci 0x10de 0x02a0-0x02a3
NV25 0x025 Kelvin 06.02.2002 Pci 0x10de 0x0250-0x025f
NV28 0x028 Kelvin 20.01.2003 Pci 0x10de 0x0280-0x028f
NV30 0x030 Rankine 27.01.2003 Pci 0x10de 0x0300-0x030f
NV35 0x035 Rankine 12.05.2003 Pci 0x10de 0x0330-0x033f
NV31 0x031 Rankine 06.03.2003 Pci 0x10de 0x0310-0x031f
NV36 0x036 Rankine 23.10.2003 Pci 0x10de 0x0340-0x034f
NV34 0x034 Rankine 06.03.2003 Pci 0x10de 0x0320-0x032f
NV40 0x040 Curie 14.04.2004 Pci 0x10de 0x0040-0x004f
NV45 0x045 Curie 14.04.2004 Pci 0x10de 0x0040-0x004f
NV41 0x041 Curie 08.11.2004 Pcie 0x10de 0x00c0-0x00cf
NV42 0x042 Curie 08.11.2004 Pcie 0x10de 0x00c0-0x00cf

NV43 0x043 Curie 12.08.2004 Pcie 0x10de 0x0140-0x014f
NV44 0x044 Curie 15.12.2004 Pcie 0x10de 0x0160-0x016f
NV44A 0x04a Curie 04.04.2005 Pci 0x10de 0x0220-0x022f
G70 0x047 Curie 22.06.2005 Pcie 0x10de 0x0090-0x009f
G72 0x046 Curie 18.01.2006 Pcie 0x10de 0x01d0-0x01df
G71 0x049 Curie 09.03.2006 Pcie 0x10de 0x0290-0x029f
G73 0x04b Curie 09.03.2006 Pcie 0x10de 0x0390-0x039f
C51 0x04e Curie 20.10.2005 Igp 0x10de 0x0240-0x024f
MCP61 0x04c Curie 06.2006 Igp 0x10de 0x03d0-0x03df
MCP67 | 0x067 Curie 01.02.2006 Igp 0x10de 0x0530-0x053f
MCP68 0x068 Curie 07.2007 Igp 0x10de 0x0530-0x053f
MCP73 0x063 Curie 07.2007 Igp 0x10de 0x07e0-0x07ef

RSX 0x04d Curie 11.11.2006 FlexIO - -

G80 0x050 Tesla 08.11.2006 Pcie 0x10de 0x0190-0x019f
G84 0x084 Tesla 17.04.2007 Pcie 0x10de 0x0400-0x040f
G86 0x086 Tesla 17.04.2007 Pcie 0x10de 0x0420-0x042f
G92 0x092 Tesla 29.10.2007 Pcie 0x10de 0x0600-0x061f
GY%4 0x094 Tesla 29.07.2008 Pcie 0x10de 0x0620-0x063f
G96 0x096 Tesla 29.07.2008 Pcie 0x10de 0x0640-0x065f
G98 0x098 Tesla 04.12.2007 Pcie 0x10de 0x06e0-0x06ff

G200 0x0a0 Tesla 16.06.2008 Pcie 0x10de 0x05e0-0x05ff

MCP77 | Ox0aa Tesla 06.2008 Igp 0x10de 0x0840-0x085f
MCP79 | 0xOac Tesla 06.2008 Igp 0x10de 0x0860-0x087f

2.2. GPU chips

27

nVidia Hardware Documentation, Release git

Name GPU id | GPU generation | Release date [approximate] | Bus interface | PCl vendor id | PCl device IDs | |
GT215 0x0a3 Tesla 15.06.2009 Pcie 0x10de 0x0ca0-0x0cbf (
GT216 0x0a5 Tesla 15.06.2009 Pcie 0x10de 0x0a20-0x0a3f | (
GT218 0x0a8 Tesla 15.06.2009 Pcie 0x10de 0x0a60-0x0a7f (
MCP89 | OxOaf Tesla 01.04.2010 Igp 0x10de 0x08a0-0x08bf | -
GF100 0x0c0 Fermi 26.03.2010 Pcie 0x10de 0x06c0-0x06df | (
GF104 0x0c4 Fermi 12.07.2010 Pcie 0x10de 0x0e20-0x0e3f | (
GF114 0x0ce Fermi 25.01.2011 Pcie 0x10de 0x1200-0x121f | (
GF106 0x0c3 Fermi 03.09.2010 Pcie 0x10de 0x0dc0-0x0ddf | (
GF116 0x0cf Fermi 15.03.2011 Pcie 0x10de 0x1240-0x125f | (
GF108 0x0c1 Fermi 03.09.2010 Pcie 0x10de 0x0de0-0x0dff | (
GF110 0x0c8 Fermi 07.12.2010 Pcie 0x10de 0x1080-0x109f | (
GF119 0x0d9 Fermi 05.01.2011 Pcie 0x10de 0x1040-0x107f | (
GF117 0x0d7 Fermi 04.2012 Pcie 0x10de 0x1140-0x117f | -
GK104 0x0e4 Kepler 22.03.2012 Pcie 0x10de 0x1180-0x11bf | (
GK107 0x0e7 Kepler 24.04.2012 Pcie 0x10de 0x0fc0-0xOftf (
GK106 0x0e6 Kepler 22.04.2012 Pcie 0x10de 0x11c0-0x11ff (
GK110 | 0x0f0 Kepler 21.02.2013 Pcie 0x10de 0x1000-0x103f | (
GK110B | 0x0f1 Kepler 07.11.2013 Pcie 0x10de 0x1000-0x103f | (
GK210 ? Kepler ? Pcie 0x10de ? ‘
GK208 0x108 Kepler 19.02.2013 Pcie 0x10de 0x1280-0x12bf | (
GK208B | 0x106 Kepler ? Pcie 0x10de 0x1280-0x12bf | (
GK20A | OxOea Kepler ? Tegra - - -
GM107 | Ox117 Maxwell 18.02.2014 Pcie 0x10de 0x1380-0x13bf | (
GM108 0x118 Maxwell ? Pcie 0x10de 0x1340-0x137f | °
GM204 | 0x124 Maxwell ? Pcie 0x10de 0x13c0-0x13ff | (
GM200 0x120 Maxwell ? Pcie 0x10de 0x17c0-0x17ff (
GM206 0x126 Maxwell ? Pcie 0x10de 0x1400-0x143f | (
GM20B | 0x12b Maxwell ? Tegra - - -
GP100 0x130 Pascal ? Pcie 0x10de 0x1580-0x15ff ‘
GP102 0x132 Pascal ? Pcie 0x10de 0x1b00-0x1b7f | (
GP104 0x134 Pascal ? Pcie 0x10de 0x1b80-0x 1bff (
GP106 0x136 Pascal ? Pcie 0x10de 0x1c00-0x1c7f (
GP107 0x137 Pascal 10.25.2016 Pcie 0x10de 0x1c80-0x1cff (
GP108 0x138 Pascal ? Pcie 0x10de 0x1d00-0x1d7f | (
GP10B 0x13b Pascal 14.03.2017 Tegra 0x10de 0x10e5-0x1164 | -
GV100 | 0x140 Volta 12.07.2017 Pcie 0x10de 0x1d80-Ox1dff | (
GV11B 0x15b Volta 03.06.2018 Tegra - - -
TU102 0x162 Turing 27.09.2018 Pcie 0x10de 0x1e00-0x1e7f | (
TU104 0x164 Turing 20.09.2018 Pcie 0x10de 0x1e80-0x1eff (
TU106 0x166 Turing 17.10.2018 Pcie 0x10de 0x1f00-0x 1£7f (
TU116 0x168 Turing 22.02.2019 Pcie 0x10de 0x2180-0x21ff (
TU117 0x167 Turing 23.04.2019 Pcie 0x10de 0x1f80-0x 1fff (

2.3 nVidia PCI id database

Contents

e nVidia PCI id database

28

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— Introduction
- GPUs
* NV5
* NVI0
* NVIS5
* NVII
* NV20
* NVI7
* NVIS
* NVIF (GPU)
* NV25
* NV28
* NV30
* NV3I
* NV34
* NV35
* NV36
* NV40
x NV41/NV42
* NV43
* NV44
* NV44A
* C51 GPU
* G70
* G72
x G71
* G73
* MCP61 GPU
* MCP67 GPU
* MCP73 GPU
* G80
* G84
* G86
* G92

* G94

2.3. nVidia PCI id database 29

nVidia Hardware Documentation, Release git

* G96

* G98

x G200

x* MCP77 GPU
x* MCP79 GPU
* GT215

* GT216

* GT218

* MCP89 GPU
* GFI100

* GF104

* GFI114

* GF106

* GFI16

* GFI108

* GFI10

* GFI119

* GFI17

* GKI104

* GKI106

* GKI107

* GKI10/GKI110B
* GK208

* GM107

* GM108

x GM204

* GM206

* GP100

* GP102

* GP104

* GP106

* GP107

* GP108

* GVI100

* TUI02

30 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

%

*

%

*

TU104
TU106
TUI116
TU117

GPU HDA codecs
GPU USB controllers

- BR0O2

- BRO3

%

%

*

%

*

*

BRO4

Motherboard chipsets

NVIA [nForce 220 IGP /420 IGP /415 SPP]
NV2A [XGPU]
MCP

NVIF [nForce2 IGP/SPP]
MCP2

MCP2A

CK8

CKS8S

CK804

Ccil9

MCPO4

C51

MCP51

c55

MCP55
MCP61
MCP65
MCP67

Cc73

MCP73
MCP77
MCP79
MCP89

— Tegra

*

120

2.3. nVidia PCI id database

31

nVidia Hardware Documentation, Release git

2.3.1 Introduction

nVidia uses PCI vendor id of 0x10de, which covers almost all of their products. Other ids used for nVidia products
include 0x104a (SGS-Thompson) and 0x12d2 (SGS-Thompson/nVidia joint venture). The PCI device ids with

vendor id 0x104a related to nVidia are:

device id | product

0x0008 | NVI main function, DRAM version (SGS-Thompson branding)

0x0009 | NVI VGA function, DRAM version (SGS-Thompson branding)

The PCI device ids with vendor id 0x12d2 are:

device id | product

0x0018 | NV3[RIVA 128]

0x0019 | NV3T [RIVA 128 ZX]

All other nVidia PCI devices use vendor id 0x10de. This includes:

* GPUs
* motherboard chipsets

* BRO03 and NF200 PCIE switches

* the BRO2 transparent AGP/PCIE bridge

* GVI, the SDI input card

The PCI device ids with vendor id 0x10de are:

device id product

0x0008 NV 1 main function, VRAM version (nVidia branding)
0x0009 NV1 VGA function, VRAM version (nVidia branding)
0x0020 NV4 [RIVA TNT]

0x0028-0x002f | NV5

0x0030-0x003f | MCPO4

0x0040-0x004f | NV40

0x0050-0x005f | CK804

0x0060-0x006e | MCP2

0x006£f-0x007f | CI9

0x0080-0x008f | MCP2A

0x0090-0x009f | G70

0x00a0 NVA [Aladdin TNT2]
0x00b0 NVI8 Firewire
0x00b4 Cl9
0x00c0-0x00cft | NV41/NV42

Continued on next page

32

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 3 — continued from previous page

device id

product

0x00d0-0x00d2

CK8

0x00d3

CK804

0x00d4-0x00dd

CK8

0x00df-0x00ef

CKS8S

0x00£0-0x00f£f

BRO2

0x0100-0x0103

NVIO

0x0110-0x0113

NVII

0x0140-0x014f

NV43

0x0150-0x0153

NVI5

0x0160-0x016f

NV44

0x0170-0x017f

NVI7

0x0180-0x018f

NVI8

0x0190-0x019f

G80

0x01a0-0x01laf

NVIA

0x01b0-0x01b2

McCP

0x01b3

BRO3

0x01b4

McCP

0x01b7

NVIA, NV2A

0x01b8-0x01lcft

McCP

0x01d0-0x01df

G72

0x01e0-0x01£0

NVIF

0x01£f0-0x01ff

NVIF GPU

0x0200-0x0203

NV20

0x0210-0x021f

NV40?

0x0220-0x022f

NV44A

0x0240-0x024f

C51 GPU

0x0250-0x025€f

NV25

0x0260-0x0272

MCP51

0x027e-0x027f

C51

0x0280-0x028f

NV28

0x0290-0x029f

G71

0x02a0-0x02af

NV2A

0x02e0-0x02ef

BRO2

0x02£f0-0x02ff

C51

0x0300-0x030f

NV30

0x0310-0x031f

NV31

0x0320-0x032f

NV34

0x0330-0x033f

NV35

0x0340-0x034f

NV36

0x0360-0x037f

MCP55

0x0390-0x039f

G73

0x03a0-0x03bc

C55

0x03d0-0x03df

MCP61 GPU

0x03e0-0x03£7

MCP61

0x0400-0x040f

G84

0x0410-0x041f

G92 extra IDs

0x0420-0x042f

G86

0x0440-0x045f

MCP65

0x0530-0x053f

MCP67 GPU

Continued on next page

2.3. nVidia PCI id database

33

nVidia Hardware Documentation, Release git

Table 3 — continued from previous page

device id product
0x0540-0x0563 | MCP67
0x0568-0x0569 | MCP77
0x056a-0x056f | MCP73

0x0570-0x057f

MCP* ethernet alt ID

0x0580-0x058f

MCP#* SATA alt ID

0x0590-0x059f

MCP* HDA alt ID

0x05a0-0x05af

MCP#* IDE alt ID

0x05b0-0x05bf

BRO4

0x05e0-0x05ff | G200
0x0600-0x061f | G92
0x0620-0x063f | G9%4
0x0640-0x065f | G96
0x06c0-0x06df | GFI00
0x06e0-0x06ff | G98
0x0750-0x077f | MCP77
0x07c0-0x07df | MCP73
0x07e0-0x07ef | MCP73 GPU
0x07£f0-0x07fe | MCP73
0x0800-0x081a | C73
0x0840-0x085f | MCP77 GPU
0x0860-0x087f | MCP79 GPU
0x08a0-0x08bf | MCP89 GPU
0x0a20-0x0a3f | GT216
0x0a60-0x0a7f | G1218
0x0a80-0x0ac8 | MCP79
0x0ad0-0x0adb | MCP77
0x0be0-0x0bef | GPU HDA
0x0bf0-0x0bfl | 720
0x0cal0-0x0cbf | GT215
0x0d60-0x0d9d | MCP89
0x0dc0-0x0ddf | GFI06
0x0de0-0x0dff | GFI08
0x0e00 GVI SDI input
0x0e08-0x0e0f | GPU HDA
0x0el1l2-0x0el3 | Ti24
0x0ela-0x0elb | GPU HDA
0x0elc-0x0eld | T30
0x0e20-0x0e3f | GFI104
0x0f00-0x0f1f | GFI0S8 extraIDs
0x0fae-0x0faf | 7210
0x0fb0-0x0fbf | GPU HDA
0x0fc0-0x0fff | GKI07
0x1000-0x103f | GKI10/GKI110B
0x1040-0x107f | GFI119
0x1080-0x109f | GFII10
0x10c0-0x10df | GT218 extraIDs
0x10e5-0x10e6 | TI86
0x10ef-0x10£9 | GPU HDA
0x1140-0x117f | GFI117

Continued on next page

34

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 3 — continued from previous page
device id product
0x1180-0x11bf | GKI04
0x11c0-0x11ff | GKI06
0x1200-0x121f | GFl14
0x1240-0x125f | GFI116
0x1280-0x12bf | GK208
0x1340-0x137f | GMI108
0x1380-0x13bf | GMI107
0x13c0-0x13ff | GM204
0x1400-0x143f | GM206
0x1580-0x15ff | GPI00
0x1617-0x161a | GM204 extra IDs
0x1667 GM?204 extra ID
Oxlad0-0xladf | GPU USB
0x1b00-0x1b7f | GPI02
0x1b80-0x1bff | GPI04
0x1c00-0x1b7f | GP106
0x1c80-0xlcff | GPI07
0x1d00-0x1d7f | GPI0OS
0x1d80-0x1dff | GVIOO
0x1e00-0x1le7f | TUI02
0x1e80-0xleff | TUI04
0x1f00-0x1£7f | TUI06
0x2180-0x21ff | TUII6
0x1£80-0x1fff | TUII7

2.3.2 GPUs
NV5
device id | product
0x0028 NV5 [RIVA TNT2]
0x0029 NV5 [RIVA TNT?2 Ultra]
0x002c | NVS5 [Vanta]
0x002d | NV5 [RIVA TNT2 Model 64]
NV10

device id | product

0x0100 | NVI10 [GeForce 256 SDR]
0x0101 NV10 [GeForce 256 DDR]
0x0102 NV10 [GeForce 256 Ultra]
0x0103 NV10 [Quadro]

2.3. nVidia PCI id database 35

nVidia Hardware Documentation, Release git

NV15

device id | product

0x0150

NV15 [GeForce2 GTS/Pro]

0x0151

NV15 [GeForce2 Ti]

0x0152

NV15 [GeForce?2 Ultra]

0x0153

NV15 [Quadro2 Pro]

NV11

device id

product

0x0110

NV11 [GeForce2 MX/MX 400]

0x0111

NV11 [GeForce2 MX 100/200]

0x0112

NV11 [GeForce2 Go]

0x0113

NV11 [Quadro2 MXR/EX/Go]

NV20

device id | product

0x0200 NV20 [GeForce3]

0x0201 NV20 [GeForce3 Ti 200]

0x0202 | NV20 [GeForce3 Ti 500]

0x0203 NV20 [Quadro DCC]

NV17

device id

product

0x0170

NV17 [GeForce4 MX 460]

0x0171

NV17 [GeForce4 MX 440]

0x0172

NV17 [GeForce4 MX 420]

0x0173

NV17 [GeForce4 MX 440-SE]

0x0174

NV17 [GeForce4 440 Go]

0x0175

NV17 [GeForce4 420 Go]

0x0176

NV17 [GeForce4 420 Go 32M]

0x0177

NV17 [GeForce4 460 Go]

0x0178

NV17 [Quadro4 550 XGL)]

0x0179

NV17 [GeForce4 440 Go 64M]

0x017a

NV17 [Quadro NVS 100/200/400]

0x017b

NV17 [Quadro4 550 XGL]???

0x017c

NV17 [Quadro4 500 GoGL]

0x017d

NV17 [GeForce4 410 Go 16M]

36

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

NV18

device id | product

0x0181 | NVI18 [GeForce4 MX 440 AGP 8x]
0x0182 | NVI18 [GeForce4 MX 440-SE AGP 8x]
0x0183 | NVI18 [GeForce4 MX 420 AGP 8x]
0x0185 | NV18 [GeForce4 MX 4000]

0x0186 | NVI18 [GeForce4 448 Go]

0x0187 NV18 [GeForce4 488 Go]

0x0188 | NVI18 [Quadro4 580 XGL]

0x0189 | NVI18 [GeForced MX AGP 8x (Mac)]
0x018a | NVI18 [Quadro NVS 280 SD]
0x018b | NVI18 [Quadro4 380 XGL]

0x018c | NVI18 [Quadro NVS 50 PCI]
0x018d | NVI18 [GeForce4 448 Go]

0x00b0 NV18 Firewire controller

NV1F (GPU)

device id | product
0x01f0 NVIF GPU [GeForce4 MX IGP]

NV25

device id | product

0x0250 NV25 [GeForce4 Ti 4600]
0x0251 NV25 [GeForce4 Ti 4400]
0x0252 NV25 [GeForce4 Ti]
0x0253 | NV25 [GeForce4 Ti 4200]
0x0258 | NV25 [Quadro4 900 XGL]
0x0259 | NV25 [Quadro4 750 XGL]
0x025b | NV25 [Quadro4 700 XGL]

NV28

device id | product

0x0280 | NV28 [GeForce4 Ti 4800]
0x0281 | NV28 [GeForce4 Ti 4200 AGP 8x]
0x0282 | NV28 [GeForce4 Ti 4800 SE]
0x0286 NV28 [GeForce4 Ti 4200 Go]
0x0288 | NV28 [Quadro4 980 XGL]
0x0289 NV28 [Quadro4 780 XGL]
0x028c | NV28 [Quadro4 700 GoGL]

—|—=|— | —_ | —_ | —

2.3. nVidia PCI id database 37

nVidia Hardware Documentation, Release git

NV30

device id | product

0x0301 | NV30 [GeForce FX 5800 Ultra]
0x0302 NV30 [GeForce FX 5800]
0x0308 | NV35 [Quadro FX 2000]
0x0309 | NV35 [Quadro FX 1000]

NV31

device id | product

0x0311 NV31 [GeForce FX 5600 Ultra]
0x0312 NV31 [GeForce FX 5600]
0x0314 | NV3I1 [GeForce FX 5600XT]
0x031a | NV31 [GeForce FX Go5600]
0x031b NV31 [GeForce FX Go5650]
0x031c | NV31 [GeForce FX Go700]

NV34

device id | product

0x0320 | NV34 [GeForce FX 5200]

0x0321 | NV34 [GeForce FX 5200 Ultra]
0x0322 | NV34 [GeForce FX 5200]

0x0323 | NV34 [GeForce FX 5200LE]
0x0324 NV34 [GeForce FX Go5200]
0x0325 NV34 [GeForce FX Go5250]
0x0326 | NV34 [GeForce FX 5500]

0x0327 | NV34 [GeForce FX 5100]

0x0328 NV34 [GeForce FX Go5200 32M/64M]
0x0329 | NV34 [GeForce FX Go05200 (Mac)]
0x032a | NV34 [Quadro NVS 280 PCI]
0x032b | NV34 [Quadro FX 500/FX 600]
0x032c | NV34 [GeForce FX G05300/Go5350]
0x032d | NV34 [GeForce FX Go5100]

NV35

device id | product

0x0330 | NV35 [GeForce FX 5900 Ultra]
0x0331 NV35 [GeForce FX 5900]
0x0332 | NV35 [GeForce FX 5900XT]
0x0333 NV35 [GeForce FX 5950 Ultra]
0x0334 | NV35 [GeForce FX 5900ZT]
0x0338 NV35 [Quadro FX 3000]
0x033f | NV35 [Quadro FX 700]

38 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

NV36
device id | product
0x0341 NV36 [GeForce FX 5700 Ultra]
0x0342 | NV36 [GeForce FX 5700]
0x0343 | NV36 [GeForce FX 5700LE]
0x0344 | NV36 [GeForce FX 5700VE]
0x0347 NV36 [GeForce FX Go5700]
0x0348 NV36 [GeForce FX Go5700]
0x034c | NV36 [Quadro FX Go1000]
0x034e | NV36 [Quadro FX 1100]
NV40

device id | product

0x0040 NV40 [GeForce 6800 Ultra]
0x0041 NV40 [GeForce 6800]
0x0042 | NV40 [GeForce 6800 LE]
0x0043 | NV40 [GeForce 6800 XE]
0x0044 | NV40 [GeForce 6800 XT]
0x0045 | NV40 [GeForce 6800 GT]
0x0046 | NV40 [GeForce 6800 GT]
0x0047 NV40 [GeForce 6800 GS]
0x0048 | NV40 [GeForce 6800 XT]
0x004e | NV40 [Quadro FX 4000]
0x0211 NV40? [GeForce 6800]
0x0212 | NV40? [GeForce 6800 LE]
0x0215 | NV40? [GeForce 6800 GT]
0x0218 | NV40? [GeForce 6800 XT]

Todo: wtfis with that 0x21x ID?

NV41/NV42

device id | product

0x00c0 | NV41/NV42 [GeForce 6800 GS]

0x00cl NV41/NV42 [GeForce 6800]

0x00c2 NV41/NV42 [GeForce 6800 LE]

0x00c3 NV41/NV42 [GeForce 6800 XT]
0x00c8 NV41/NV42 [GeForce Go 6800]

0x00c9 NV41/NV42 [GeForce Go 6800 Ultra]
0x00cc | NV41/NV42 [Quadro FX Go1400]
0x00cd | NV41/NV42 [Quadro FX 3450/4000 SDI]
0x00ce | NV41/NV42 [Quadro FX 1400]

2.3. nVidia PCI id database 39

nVidia Hardware Documentation, Release git

NV43
device id | product
0x0140 | NV43 [GeForce 6600 GT]
0x0141 NV43 [GeForce 6600]
0x0142 | NV43 [GeForce 6600 LE]
0x0143 | NV43 [GeForce 6600 VE]
0x0144 NV43 [GeForce Go 6600]
0x0145 NV43 [GeForce 6610 XL]
0x0146 | NV43 [GeForce Go 6200 TE / 6660 TE]
0x0147 | NV43 [GeForce 6700 XL]
0x0148 NV43 [GeForce Go 6600]
0x0149 | NV43 [GeForce Go 6600 GT]
0x014a | NV43 [Quadro NVS 440]
0x014c | NV43 [Quadro FX 540M]
0x014d | NV43 [Quadro FX 550]
0x014e | NV43 [Quadro FX 540]
0x014f | NV43 [GeForce 6200]
NV44
device id | product
0x0160 NV44 [GeForce 6500]
0x0161 NV44 [GeForce 6200 TurboCache]
0x0162 | NV44 [GeForce 6200 SE TurboCache]
0x0163 | NV44 [GeForce 6200 LE]
0x0164 NV44 [GeForce Go 6200]
0x0165 | NV44 [Quadro NVS 285]
0x0166 NV44 [GeForce Go 6400]
0x0167 NV44 [GeForce Go 6200]
0x0168 NV44 [GeForce Go 6400]
0x0169 NV44 [GeForce 6250]
0x016a | NV44 [GeForce 7100 GS]
NV44A
device id | product
0x0221 | NV44A [GeForce 6200 (AGP)]
0x0222 | NV44A [GeForce 6200 A-LE (AGP)]
40 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

C51 GPU
device id | product
0x0240 C51 GPU [GeForce 6150]
0x0241 | C51 GPU [GeForce 6150 LE]
0x0242 C51 GPU [GeForce 6100]
0x0244 C51 GPU [GeForce Go 6150]
0x0245 | C51 GPU [Quadro NVS 210S / NVIDIA GeForce 6150LE]
0x0247 C51 GPU [GeForce Go 6100]
G70
device id | product
0x0090 | G70 [GeForce 7800 GTX]
0x0091 G70 [GeForce 7800 GTX]
0x0092 G70 [GeForce 7800 GT]
0x0093 G70 [GeForce 7800 GS]
0x0095 | G70 [GeForce 7800 SLI]
0x0098 G70 [GeForce Go 7800]
0x0099 G70 [GeForce Go 7800 GTX]
0x009d | G70 [Quadro FX 4500]
G72

device id | product

0x01d0 G72 [GeForce 7350 LE]

0x01d1 G72 [GeForce 7300 LE]

0x01d2 G72 [GeForce 7550 LE]

0x01d3 | G72 [GeForce 7300 SE/7200 GS]
0x01d6 G72 [GeForce Go 7200]

0x01d7 G72 [Quadro NVS 110M / GeForce Go 7300]
0x01d8 G72 [GeForce Go 7400]

0x01d9 G72 [GeForce Go 7450]

0x01lda | G72[Quadro NVS 110M]
0x01db | G72 [Quadro NVS 120M]
0x01dc | G72 [Quadro FX 350M]

0x01dd | G72 [GeForce 7500 LE]

0x01lde G72 [Quadro FX 350]

0x01df | G72 [GeForce 7300 GS]

2.3. nVidia PCI id database 41

nVidia Hardware Documentation, Release git

G71
device id | product
0x0290 G71 [GeForce 7900 GTX]
0x0291 | GT71 [GeForce 7900 GT/GTO]
0x0292 G71 [GeForce 7900 GS]
0x0293 | G71 [GeForce 7900 GX2]
0x0294 G71 [GeForce 7950 GX2]
0x0295 | G71 [GeForce 7950 GT]
0x0297 G71 [GeForce Go 7950 GTX]
0x0298 G71 [GeForce Go 7900 GS]
0x0299 | G71 [GeForce Go 7900 GTX]
0x029a | G71 [Quadro FX 2500M]
0x029b | G71 [Quadro FX 1500M]
0x029c | G71 [Quadro FX 5500]
0x029d | G71 [Quadro FX 3500]
0x029e G71 [Quadro FX 1500]
0x029f | G71 [Quadro FX 4500 X2]
G73
device id | product
0x0390 G73 [GeForce 7650 GS]
0x0391 G73 [GeForce 7600 GT]
0x0392 G73 [GeForce 7600 GS]
0x0393 | G73 [GeForce 7300 GT]
0x0394 G73 [GeForce 7600 LE]
0x0395 | G73 [GeForce 7300 GT]
0x0397 G73 [GeForce Go 7700]
0x0398 G73 [GeForce Go 7600]
0x0399 | G73 [GeForce Go 7600 GT]
0x039a | G73 [Quadro NVS 300M]
0x039b | G73 [GeForce Go 7900 SE]
0x039c | G73 [Quadro FX 560M]
0x039%e G73 [Quadro FX 560]
MCP61 GPU
device id | product
0x03d0 MCP61 GPU [GeForce 6150SE nForce 430]
0x03d1 MCP61 GPU [GeForce 6100 nForce 405]
0x03d2 MCP61 GPU [GeForce 6100 nForce 400]
0x03d5 MCP61 GPU [GeForce 6100 nForce 420]
0x03d6 | MCP61 GPU [GeForce 7025 / nForce 630a]
42 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

MCP67 GPU

device id | product
0x0531 MCP67 GPU [GeForce 7150M / nForce 630M]
0x0533 | MCP67 GPU [GeForce 7000M / nForce 610M]
0x053a | MCP67 GPU [GeForce 7050 PV / nForce 630a]
[
[

0x053b MCP67 GPU [GeForce 7050 PV / nForce 630a]
0x053e MCP67 GPU [GeForce 7025 / nForce 630a]

Note: mobile is apparently considered to be MCP67, desktop MCP68

MCP73 GPU
device id | product
0x07e0 MCP73 GPU [GeForce 7150 / nForce 630i]
0x07el | MCP73 GPU [GeForce 7100 / nForce 630i]
0x07e2 MCP73 GPU [GeForce 7050 / nForce 630i]
0x07e3 | MCP73 GPU [GeForce 7050 / nForce 610i]
0x07e5 MCP73 GPU [GeForce 7050 / nForce 620i]
G80

device id | product

0x0191 G80 [GeForce 8800 GTX]
0x0193 G80 [GeForce 8800 GTS]
0x0194 G80 [GeForce 8800 Ultra]
0x0197 G80 [Tesla C870]
0x019d | G80 [Quadro FX 5600]
0x019e | G80 [Quadro FX 4600]

2.3. nVidia PCI id database 43

nVidia Hardware Documentation, Release git

G84
device id | product
0x0400 G84 [GeForce 8600 GTS]
0x0401 | G84 [GeForce 8600 GT]
0x0402 | G84 [GeForce 8600 GT]
0x0403 G84 [GeForce 8600 GS]
0x0404 G84 [GeForce 8400 GS]
0x0405 | G84 [GeForce 9500M GS]
0x0406 G84 [GeForce 8300 GS]
0x0407 | G84 [GeForce 8600M GT]
0x0408 G84 [GeForce 9650M GS]
0x0409 | G84 [GeForce 8700M GT]
0x040a | G84 [Quadro FX 370]
0x040b | G84 [Quadro NVS 320M]
0x040c | G84 [Quadro FX 570M]
0x040d | G84 [Quadro FX 1600M]
0x040e G84 [Quadro FX 570]
0x040f | G84 [Quadro FX 1700]

G86
device id | product
0x0420 | G86 [GeForce 8400 SE]
0x0421 G86 [GeForce 8500 GT]
0x0422 G86 [GeForce 8400 GS]
0x0423 G86 [GeForce 8300 GS]
0x0424 G86 [GeForce 8400 GS]
0x0425 G86 [GeForce 8600M GS]
0x0426 G86 [GeForce 8400M GT]
0x0427 G86 [GeForce 8400M GS]
0x0428 G86 [GeForce 8400M G]
0x0429 | G86 [Quadro NVS 140M]
0x042a | G86 [Quadro NVS 130M]
0x042b | G86 [Quadro NVS 135M]
0x042c | G86 [GeForce 9400 GT]
0x042d | G86 [Quadro FX 360M]
0x042e G86 [GeForce 9300M G]
0x042f | G86 [Quadro NVS 290]

G92

device id | product
0x0410 G92 [GeForce GT 330]
0x0600 | G92 [GeForce 8800 GTS 512]
0x0601 G92 [GeForce 9800 GT]
0x0602 | G92 [GeForce 8800 GT]
Continued on next page

44 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 4 — continued from previous page
device id | product
0x0603 G92 [GeForce GT 230]
0x0604 | G92 [GeForce 9800 GX2]
0x0605 | G92 [GeForce 9800 GT]
0x0606 | G92 [GeForce 8800 GS]
0x0607 | G92 [GeForce GTS 240]
0x0608 | G92 [GeForce 9800M GTX]
0x0609 | G92 [GeForce 8800M GTS]
0x060a | G92 [GeForce GTX 280M]
0x060b | G92 [GeForce 9800M GT]
0x060c | G92 [GeForce 8800M GTX]
0x060f | G92 [GeForce GTX 285M]
0x0610 | G92 [GeForce 9600 GSO]
0x0611 G92 [GeForce 8800 GT]
0x0612 | G92 [GeForce 9800 GTX/9800 GTX+]
0x0613 | G92 [GeForce 9800 GTX+]
0x0614 G92 [GeForce 9800 GT]
0x0615 | G92 [GeForce GTS 250]
0x0617 | G92 [GeForce 9800M GTX]
0x0618 | G92 [GeForce GTX 260M]
0x0619 | G92 [Quadro FX 4700 X2]
0x061la | G92 [Quadro FX 3700]
0x061b | G92 [Quadro VX 200]
0x061c | G92 [Quadro FX 3600M]
0x061d | G92 [Quadro FX 2800M]
0x061e | G92 [Quadro FX 3700M]
0x061f | G92 [Quadro FX 3800M]

G94

device id | product
0x0621 G94 [GeForce GT 230]

0x0622 G94 [GeForce 9600 GT]

0x0623 G94 [GeForce 9600 GS]

0x0625 | G94 [GeForce 9600 GSO 512]
[

0x0626 G94 [GeForce GT 130]
0x0627 G94 [GeForce GT 140]
0x0628 G94 [GeForce 9800M GTS]
0x062a | G94 [GeForce 9700M GTS]
0x062b | G94 [GeForce 9800M GS]
0x062c | G94 [GeForce 9800M GTS]
0x062d | G94 [GeForce 9600 GT]
0x062e | G94 [GeForce 9600 GT]
0x0631 G94 [GeForce GTS 160M]
0x0635 | G94 [GeForce 9600 GSO]
0x0637 G94 [GeForce 9600 GT]
0x0638 | G94 [Quadro FX 1800]
0x063a | G94 [Quadro FX 2700M]

2.3. nVidia PCI id database 45

nVidia Hardware Documentation, Release git

G96
device id | product
0x0640 G96 [GeForce 9500 GT]
0x0641 G96 [GeForce 9400 GT]
0x0643 G96 [GeForce 9500 GT]
0x0644 G96 [GeForce 9500 GS]
0x0645 G96 [GeForce 9500 GS]
0x0646 G96 [GeForce GT 120]
0x0647 | G96 [GeForce 9600M GT]
0x0648 G96 [GeForce 9600M GS]
0x0649 | G96 [GeForce 9600M GT]
0x064a | G96 [GeForce 9700M GT]
0x064b | G96 [GeForce 9500M G]
0x064c | G96 [GeForce 9650M GT]
0x0651 | G96 [GeForce G 110M]
0x0652 G96 [GeForce GT 130M]
0x0653 | G96 [GeForce GT 120M]
0x0654 G96 [GeForce GT 220M]
0x0655 G96 [GeForce GT 120]
0x0656 | G96 [GeForce GT 120 |
0x0658 | G96 [Quadro FX 380]
0x0659 | G96 [Quadro FX 580]
0x065a | G96 [Quadro FX 1700M]
0x065b | G96 [GeForce 9400 GT]
0x065c | G96 [Quadro FX 770M]
0x065f | G96 [GeForce G210]

46 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

G98
device id | product
0x06e0 G98 [GeForce 9300 GE]
0x06el | G98 [GeForce 9300 GS]
0x06e2 G98 [GeForce 8400]
0x06e3 | GI98 [GeForce 8400 SE]
0x06e4 G98 [GeForce 8400 GS]
0x06e6 G98 [GeForce G100]
0x06e7 G98 [GeForce 9300 SE]
0x06e8 | GI98 [GeForce 9200M GS]
0x06e9 G98 [GeForce 9300M GS]
0x06ea | GI98 [Quadro NVS 150M]
0x06eb | GI98 [Quadro NVS 160M]
0x06ec | G98 [GeForce G 105M]
0x06ef | GI98 [GeForce G 103M]
0x06f1 G98 [GeForce G105M]
0x06£8 | G98 [Quadro NVS 420]
0x06£9 G98 [Quadro FX 370 LP]
0x06fa G98 [Quadro NVS 450]
0x06fb | G98 [Quadro FX 370M]
0x06fd | G98 [Quadro NVS 295]
0x06ff | G98 [HICx16 + Graphics]

G200

device id | product
0x05e0 | G200 [GeForce GTX 295]
0x05el G200 [GeForce GTX 280]
0x05e2 G200 [GeForce GTX 260]
0x05e3 G200 [GeForce GTX 285]
0x05e6 G200 [GeForce GTX 275]
0x05e7 | G200 [Tesla C1060]
0x05e9 G200 [Quadro CX]
[
[
[
[
[

0x05ea | G200 [GeForce GTX 260]
0x05eb | G200 [GeForce GTX 295]
0x05ed | G200 [Quadro FX 5800]
0x05ee | G200 [Quadro FX 4800]
0x05ef | G200 [Quadro FX 3800]

2.3. nVidia PCI id database 47

nVidia Hardware Documentation, Release git

MCP77 GPU
device id | product
0x0840 | MCP77 GPU [GeForce 8200M]
0x0844 | MCP77 GPU [GeForce 9100M G]
0x0845 MCP77 GPU [GeForce 8200M G]
0x0846 | MCP77 GPU [GeForce 9200]
0x0847 MCP77 GPU [GeForce 9100]
0x0848 | MCP77 GPU [GeForce 8300]
0x0849 | MCP77 GPU [GeForce 8200]
0x084a MCP77 GPU [nForce 730a]
0x084b | MCP77 GPU [GeForce 9200]
0x084c | MCP77 GPU [nForce 980a/780a SLI]
0x084d | MCP77 GPU [nForce 750a SLI]
0x084f | MCP77 GPU [GeForce 8100 / nForce 720a]

MCP79 GPU
device id | product
0x0860 | MCP79 GPU [GeForce 9400]
0x0861 MCP79 GPU [GeForce 9400]
0x0862 | MCP79 GPU [GeForce 9400M G]
0x0863 | MCP79 GPU [GeForce 9400M]
0x0864 | MCP79 GPU [GeForce 9300]
0x0865 | MCP79 GPU [ION]
0x0866 | MCP79 GPU [GeForce 9400M G]
0x0867 MCP79 GPU [GeForce 9400]
0x0868 | MCP79 GPU [nForce 760i SLI]
0x0869 MCP79 GPU [GeForce 9400]
0x086a | MCP79 GPU [GeForce 9400]
0x086c | MCP79 GPU [GeForce 9300 / nForce 730i]
0x086d | MCP79 GPU [GeForce 9200]
0x086e | MCP79 GPU [GeForce 9100M G]
0x086f | MCP79 GPU [GeForce 8200M G]
0x0870 | MCP79 GPU [GeForce 9400M]
0x0871 MCP79 GPU [GeForce 9200]
0x0872 | MCP79 GPU [GeForce G102M]
0x0873 | MCP79 GPU [GeForce G102M]
0x0874 | MCP79 GPU [ION]
0x0876 | MCP79 GPU [ION]
0x087a | MCP79 GPU [GeForce 9400]
0x087d4 | MCP79 GPU [ION]
0x087e | MCP79 GPU [ION LE]
0x087f | MCP79 GPU [ION LE]

48 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

GT215
device id | product
0x0cal GT215 [GeForce GT 330]
0x0ca2 | GT215 [GeForce GT 320]
0x0ca3 GT215 [GeForce GT 240]
O0x0ca4d | GT215 [GeForce GT 340]
0x0ca5 | GT215 [GeForce GT 220]
O0x0ca7 | GT215 [GeForce GT 330]
0x0ca9 | GT215 [GeForce GTS 250M]
Ox0cac | GT215 [GeForce GT 220]
0x0caf | GT215 [GeForce GT 335M]
0x0cb0 | GT215 [GeForce GTS 350M]
0x0cbl | GT215 [GeForce GTS 360M]
0x0cbc | GT215 [Quadro FX 1800M]

GT216

device id | product

0x0a20 | GT216 [GeForce GT 220]
0x0a22 GT216 [GeForce 315]
0x0a23 GT216 [GeForce 210]
0x0a26 GT216 [GeForce 405]
0x0a27 GT216 [GeForce 405]
0x0a28 GT216 [GeForce GT 230M]
0x0a29 | GT216 [GeForce GT 330M]
0x0a2a | GT216 [GeForce GT 230M]
0x0a2b | GT216 [GeForce GT 330M]
0x0a2c | GT216 [NVS 5100M]
0x0a2d | GT216 [GeForce GT 320M]
0x0a32 GT216 [GeForce GT 415]
0x0a34 GT216 [GeForce GT 240M]
0x0a35 | GT216 [GeForce GT 325M]
0x0a38 | GT216 [Quadro 400]
0x0a3c GT216 [Quadro FX 880M]

2.3. nVidia PCI id database 49

nVidia Hardware Documentation, Release git

GT218
device id | product
0x0a60 GT218 [GeForce G210]
0x0a62 GT218 [GeForce 205]
0x0a63 | GT218 [GeForce 310]
0x0a64 | GT218 [ION]
0x0a65 | GT218 [GeForce 210]
0x0a66 GT218 [GeForce 310]
0x0a67 GT218 [GeForce 315]
0x0a68 | GT218 [GeForce G105M]
0x0a69 | GT218 [GeForce G105M]
0x0a6a | GT218 [NVS 2100M]
0x0a6c | GT218 [NVS 3100M]
0x0abe GT218 [GeForce 305M]
0x0a6f | GT218 [ION]
0x0a70 GT218 [GeForce 310M]
0x0a71 | GT218 [GeForce 305M]
0x0a72 GT218 [GeForce 310M]
0x0a73 GT218 [GeForce 305M]
0x0a74 GT218 [GeForce G210M]
0x0a75 GT218 [GeForce 310M]
0x0a76 | GT218 [ION]
0x0a78 | GT218 [Quadro FX 380 LP]
0x0a7a | GT218 [GeForce 315M]
0x0a7c | GT218 [Quadro FX 380M]
0x10c0 GT218 [GeForce 9300 GS]
0x10c3 | GT218 [GeForce 8400GS]
0x10c5 GT218 [GeForce 405]
0x10d8 | GT218 [NVS 300]

MCP89 GPU

device id | product

0x08a0 MCP89 GPU [GeForce 320M
0x08a2 | MCP89 GPU [GeForce 320M
0x08a3 MCP89 GPU [GeForce 320M
0x08a4 | MCP89 GPU [GeForce 320M

]
]
]
]

50 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

GF100
device id | product
0x06c0 GF100 [GeForce GTX 480]
0x06c4 | GF100 [GeForce GTX 465]
0x06ca | GF100 [GeForce GTX 480M]
0x06cb | GF100 [GeForce GTX 480]
0x06cd | GF100 [GeForce GTX 470]
0x06d1 | GF100 [Tesla C2050 / C2070]
0x06d2 | GF100 [Tesla M2070]
0x06d8 | GF100 [Quadro 6000]
0x06d9 GF100 [Quadro 5000]
0x06da | GF100 [Quadro 5000M]
0x06dc | GF100 [Quadro 6000]
0x06dd | GF100 [Quadro 4000]
0x06de | GF100 [Tesla T20 Processor]
0x06df | GF100 [Tesla M2070-Q]
GF104
device id | product
0x0e22 | GF104 [GeForce GTX 460]
0x0e23 | GF104 [GeForce GTX 460 SE]
0x0e24 | GF104 [GeForce GTX 460 OEM]
0x0e30 | GF104 [GeForce GTX 470M]
0x0e31 | GF104 [GeForce GTX 485M]
0x0e3a | GF104 [Quadro 3000M]
0x0e3b | GF104 [Quadro 4000M]
GF114

device id | product

0x1200 | GF114 [GeForce GTX 560 Ti]
0x1201 GF114 [GeForce GTX 560]
0x1202 | GF114 [GeForce GTX 560 Ti OEM]
0x1203 | GF114 [GeForce GTX 460 SE v2]
0x1205 | GF114 [GeForce GTX 460 v2]
0x1206 GF114 [GeForce GTX 555]
0x1207 | GF114 [GeForce GT 645 OEM]
0x1208 GF114 [GeForce GTX 560 SE]
0x1210 | GF114 [GeForce GTX 570M]
0x1211 | GF114 [GeForce GTX 580M]
0x1212 | GF114 [GeForce GTX 675M]
0x1213 | GF114 [GeForce GTX 670M]

2.3. nVidia PCI id database 51

nVidia Hardware Documentation, Release git

GF106
device id | product
0x0dc0 GF106 [GeForce GT 440]
0x0dc4 | GF106 [GeForce GTS 450]
0x0dc5 GF106 [GeForce GTS 450]
0x0dc6 | GF106 [GeForce GTS 450]
0x0dcd | GF106 [GeForce GT 555M]
0x0dce | GF106 [GeForce GT 555M]
0x0dd1 GF106 [GeForce GTX 460M]
0x0dd2 | GF106 [GeForce GT 445M]
0x0dd3 | GF106 [GeForce GT 435M]
0x0dd6 | GF106 [GeForce GT 550M]
0x0dds8 GF106 [Quadro 2000]
0x0dda | GF106 [Quadro 2000M]

GF116

device id | product

0x1241 | GF116 [GeForce GT 545 OEM]
0x1243 GF116 [GeForce GT 545]
0x1244 | GF116 [GeForce GTX 550 Ti]
0x1245 | GF116 [GeForce GTS 450 Rev. 2]
0x1246 | GF116 [GeForce GT 550M]
0x1247 GF116 [GeForce GT 635M]
0x1248 | GF116 [GeForce GT 555M]
0x1249 | GF116 [GeForce GTS 450 Rev. 3]
0x124b | GF116 [GeForce GT 640 OEM]
0x124d | GF116 [GeForce GT 555M]
0x1251 GF116 [GeForce GTX 560M]

52 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

GF108
device id | product
0x0de0 GF108 [GeForce GT 440]
0x0del | GF108 [GeForce GT 430]
0x0de?2 GF108 [GeForce GT 420]
0x0de3 | GF108 [GeForce GT 635M]
0x0de4 GF108 [GeForce GT 520]
0x0de5 | GF108 [GeForce GT 530]
0x0de8 GF108 [GeForce GT 620M]
0x0de9 | GF108 [GeForce GT 630M]
0x0dea | GF108 [GeForce 610M]
0x0deb | GF108 [GeForce GT 555M]
0x0dec | GF108 [GeForce GT 525M]
0x0ded | GF108 [GeForce GT 520M]
0x0dee | GF108 [GeForce GT 415M]
0x0def | GF108 [NVS 5400M]
0x0df0 | GF108 [GeForce GT 425M]
0x0df1l GF108 [GeForce GT 420M]
0x0df2 | GF108 [GeForce GT 435M]
0x0df3 | GF108 [GeForce GT 420M]
0x0df4 | GF108 [GeForce GT 540M]
0x0df5 | GF108 [GeForce GT 525M]
0x0df6 | GF108 [GeForce GT 550M]
0x0df7 GF108 [GeForce GT 520M]
0x0df8 | GF108 [Quadro 600]
0x0df9 | GF108 [Quadro 500M]
0x0dfa | GF108 [Quadro 1000M]
0x0dfc | GF108 [NVS 5200M]
0x0£f00 | GF108 [GeForce GT 630]
0x0f01 GF108 [GeForce GT 620]

GF110

device id | product

0x1080 GF110 [GeForce GTX 580]
0x1081 | GF110 [GeForce GTX 570]
0x1082 | GF110 [GeForce GTX 560 Ti]
0x1084 | GF110 [GeForce GTX 560]
0x1086 GF110 [GeForce GTX 570]
0x1087 | GF110 [GeForce GTX 560 Ti]
0x1088 GF110 [GeForce GTX 590]
0x1089 | GF110 [GeForce GTX 580]
0x108b | GF110 [GeForce GTX 580]
0x1091 | GF110 [Tesla M2090]
0x109a | GF110 [Quadro 5010M]
0x109b | GF110 [Quadro 7000]

2.3. nVidia PCI id database 53

nVidia Hardware Documentation, Release git

GF119

GF117

GK104

device id

product

0x1040

GF119 [GeForce GT 520]

0x1042

GF119 [GeForce 510]

0x1048

GF119 [GeForce 605]

0x1049

GF119 [GeForce GT 620]

0x104a

GF119 [GeForce GT 610]

0x1050

GF119 [GeForce GT 520M]

0x1051

GF119 [GeForce GT 520MX]

0x1052

GF119 [GeForce GT 520M]

0x1054

GF119 [GeForce 410M]

0x1055

| === = = = = = —

GF119 [GeForce 410M]

0x1056

GF119 [NVS 4200M]

0x1057

GF119 [NVS 4200M]

0x1058

GF119 [GeForce 610M]

0x1059

GF119 [GeForce 610M]

0x105a

GF119 [GeForce 610M]

0x107d

GF119 [NVS 310]

device id

product

0x1140

GF117 [GeForce GT 620M]

device id

product

0x1180

GK104 [GeForce GTX 680]

0x1183

GK104 [GeForce GTX 660 Ti]

0x1185

GK104 [GeForce GTX 660]

0x1188

GK104 [GeForce GTX 690]

0x1189

GK104 [GeForce GTX 670]

0x1199

GK104 [GeForce GTX 870M]

0x119f

GK104 [GeForce GTX 780M]

0x11a0

GK104 [GeForce GTX 680M]

Ox1llal

GK104 [GeForce GTX 670MX]

Oxllaz

GK104 [GeForce GTX 675MX]

0x11la3

GK104 [GeForce GTX 680MX]

Ox1la’7

GK104 [GeForce GTX 675MX]

Ox1lba

GK104 [Quadro K5000]

O0x1lbc

GK104 [Quadro K5000M]

0x1llbd

GK104 [Quadro K4000M]

Ox1llbe

GK104 [Quadro K3000M]

Ox11lbf

GK104 [GRID K2]

54

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

GK106
device id | product
0x11cO GK106 [GeForce GTX 660]
0x11c6 | GK106 [GeForce GTX 650 Ti]
0x11le0 GK106 [GeForce GTX 770M]
0x11lfa | GK106 [Quadro K4000]
GK107
device id | product
0x0fcO GK107 [GeForce GT 640]
0x0fcl GK107 [GeForce GT 640]
0x0fc2 | GK107 [GeForce GT 630]
0x0fc6b GK107 [GeForce GTX 650]
0x0fdl | GKI107 [GeForce GT 650M]
0x0£d2 GK107 [GeForce GT 640M]
0x0fd3 | GKI107 [GeForce GT 640M LE]
0x0fd4 GK107 [GeForce GTX 660M]
0x0fd5 | GK107 [GeForce GT 650M]
0x0£fds GK107 [GeForce GT 640M]
0x0£fd9 | GKI107 [GeForce GT 645M]
0x0fel GK107 [GeForce GTX 660M]
0x0fe? GK107 [GeForce GT 750M Mac Edition]
0x0ff9 GK107 [Quadro K2000D]
0x0ffa | GK107 [Quadro K600]
0x0ffb | GK107 [Quadro K2000M]
0x0ffc | GK107 [Quadro K1000M]
0x0ffd | GK107 [NVS 510]
0x0ffe | GK107 [Quadro K2000]
0x0fff | GK107 [Quadro 410]
GK110/GK110B

device id | product

0x1003 | GK110 [GeForce GTX Titan LE]
0x1004 | GK110 [GeForce GTX 780]
0x1005 | GK110 [GeForce GTX Titan]
0x101f | GKI110 [Tesla K20]

0x1020 GK110 [Tesla K20X]

0x1021 | GK110 [Tesla K20Xm]

0x1022 GK110 [Tesla K20c]

0x1026 | GKI110 [Tesla K20s]

0x1028 GK110 [Tesla K20m]

2.3. nVidia PCI id database 55

nVidia Hardware Documentation, Release git

GK208

device id | product

0x1280 GK208 [GeForce GT 635]
0x1282 GK208 [GeForce GT 640 Rev. 2]
0x1284 GK208 [GeForce GT 630 Rev. 2]
0x1290 | GK208 [GeForce GT 730M]
0x1291 GK208 [GeForce GT 735M]
0x1292 | GK208 [GeForce GT 740M]
0x1293 GK208 [GeForce GT 730M]
0x1294 | GK208 [GeForce GT 740M]
0x1295 GK208 [GeForce 710M]
0x12b9 | GK208 [Quadro K610M]
0x12ba | GK208 [Quadro K510M]

GM107

device id | product
0x1381 GM107 [GeForce GTX 750]
0x1392 | GM107 [GeForce GTX 860M]
0x139%a | GM107 [GeForce GTX 950M]
[
[

0x139b | GM107 [GeForce GTX 960M]
0x13b0 | GM107 [Quadro M2000M]

GM108

device id | product

0x1340 GM108

0x1341 | GM108 [GeForce 840M]
0x1346 GM108 [GeForce 930M]
0x1347 | GM108 [GeForce 940M]
0x134d | GM108 [GeForce 940MX]

GM204

device id | product
0x13c0 GM204 [GeForce GTX 980]
0x13c2 GM204 [GeForce GTX 970]
0x13d7 GM204 [GeForce GTX 980M]
[
[

0x13d8 GM204 [GeForce GTX 970M]
0x13d9 GM204 [GeForce GTX 965M]

56 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

GM206
device id | product
0x1401 GM206 [GeForce GTX 960]
0x1407 | GM206 [GeForce GTX 750 v2]
0x1427 GM206 [GeForce GTX 965M v2]
GP100
device id | product
0x15f7 | GP100 [Tesla P100 PCIe 12GB]
0x15f8 | GP100 [Tesla P100 PCle 16GB]
0x15f9 | GP100 [Tesla P100 SXM2 16GB]
GP102
device id | product
0x1b00 | GP102 [GeForce TITAN X]
0x1b02 GP102 [GeForce TITAN Xp]
0x1b06 | GP102 [GeForce GTX 1080 Ti]
0x1b30 GP102 [Quadro P6000]
0x1b38 | GP102 [Tesla P40]
GP104

device id | product
0x1b80 | GP104 [GeForce GTX 1080]
0x1b81 GP104 [GeForce GTX 1070]
0x1b82 | GP104 [GeForce GTX 1070 Ti]
0x1b83 GP104 [GeForce GTX 1060 6GB]
0x1b84 | GP104 [GeForce GTX 1060 3GB]
0x1bal GP104 [GeForce GTX 1080 Mobile]
Ox1bal | GP104 [GeForce GTX 1070 Mobile]
Oxlba2 GP104 [GeForce GTX 1070 Mobile]

[

[

[

[

[

[

[

0x1bb0 | GP104 [Quadro P5000]

0x1bb3 | GP104 [Tesla P4]

0x1bb6 | GP104 [Quadro P5000 Mobile]
0x1bb7 GP104 [Quadro P4000 Mobile]
0x1bb8 GP104 [Quadro P3000 Mobile]
0x1bel GP104 [GeForce GTX 1080 Mobile]
Oxlbel GP104 [GeForce GTX 1070 Mobile]

2.3. nVidia PCI id database 57

nVidia Hardware Documentation, Release git

GP106
device id | product
0x1c02 GP106 [GeForce GTX 1060 3GB]
0x1c03 | GP106 [GeForce GTX 1060 6GB]
0x1c20 GP106 [GeForce GTX 1060 Mobile]
0x1c23 | GP106 [GeForce GTX 1060]
0x1c60 | GP106 [GeForce GTX 1060 Mobile]
0x1lcé6l GP106 [GeForce GTX 1050 Ti Mobile]
0x1lc62 GP106 [GeForce GTX 1050 Mobile]
GP107
device id | product
0x1c81 GP107 [GeForce GTX 1050]
0x1c82 | GP107 [GeForce GTX 1050 Ti]
0x1c83 GP107 [GeForce GTX 1050 3GB]
Ox1c8c GP107 [GeForce GTX 1050 Ti Mobile]
0x1c8d | GP107 [GeForce GTX 1050 Mobile]
0x1c8f | GP107 [GeForce GTX 1050 Ti Max-Q]
0x1c92 | GP107 [GeForce GTX 1050 Max-Q]
GP108
device id | product
0x1d01 GP108 [GeForce GT 1030]
0x1d10 GP108 [GeForce MX150]
0x1d12 GP108 [GeForce MX150]
GV100
device id | product
0x1d81 | GVI100 [TITAN V]
Ox1dbl | GVI100 [Tesla V100 SXM2 16GB]
O0x1db4 | GV100 [Tesla V100 PCIe 16GB]
0x1db5 | GV100 [Tesla V100 SXM?2 32GB]
0x1db6 | GV100 [Tesla V100 PCle 32GB]
Ox1ldba | GV100 [Quadro GV100]
58 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

TU102
device id | product
Ox1e02 | TU102 [TITAN RTX]
0x1e04 | TU102 [GeForce RTX 2080 Ti]
0x1e07 TU102 [GeForce RTX 2080 Ti]
0x1e30 | TU102 [Quadro RTX 8000] (0x10de 0x129¢)
0x1e30 | TUI102 [Quadro RTX 6000]
Oxle3c | TU102 [Quadro RTX 6000]
TU104
device id | product
Ox1e82 | TU104 [GeForce RTX 2080]
0xle87 TU104 [GeForce RTX 2080]
0x1e89 | TU104 [GeForce RTX 2060]
0x1e90 | TU104 [GeForce RTX 2080 Mobile]
Ox1leb0 | TU104 [Quadro RTX 5000]
Oxlebl | TU104 [Quadro RTX 4000]
Oxled0 | TU104 [GeForce RTX 2080 Mobile]
TU106
device id | product
0x1£f02 TU106 [GeForce RTX 2070]
0x1f07 | TU106 [GeForce RTX 2070]
0x1f08 TU106 [GeForce RTX 2060]
0x1f10 TU106 [GeForce RTX 2070 Mobile]
O0x1f11 | TU106 [GeForce RTX 2060 Mobile]
0x1£50 TU106 [GeForce RTX 2070 Mobile]
0x1£f51 | TU106 [GeForce RTX 2060 Mobile]
TU116
device id | product
0x2182 | TU116 [GeForce GTX 1660 Ti]
0x2184 | TUI116 [GeForce GTX 1660]
TU117

device id | product
0x1£82 | TU117 [GeForce GTX 1650]
0x1£f91 | TU117 [GeForce GTX 1650 Mobile]

2.3. nVidia PCI id database 59

nVidia Hardware Documentation, Release git

2.3.3 GPU HDA codecs

device id | product

0x0be2 | GT216 HDA
0x0be3 | GT218 HDA
O0x0bed4 | GT215 HDA
0x0be5 | GF100 HDA
0x0be9 | GF106 HDA
0x0bea | GF108 HDA
Ox0beb | GF104 HDA
0x0bee | GF116 HDA
0x0e08 | GF119 HDA
0x0e09 | GF110 HDA
0x0e0a | GKI104 HDA
0x0e0Ob | GK106 HDA
0x0e0Oc | GF114 HDA
0x0e0f | GK208 HDA
Ox0Oela | GKI110HDA
0x0elb | GK107 HDA
0x0fb0 | GM200 HDA
0x0fb8 | GP108 HDA
0x0fb9 | GP107 HDA
0x0fba | GM206 HDA
0x0fbb GM204 HDA
0x0fbc | GMI107 HDA
0x10ef | GP102 HDA
0x10f0 | GP104 HDA
0x10f1 | GP106 HDA
0x10f2 | GV100 HDA
0x10£f7 TU102 HDA
0x10£8 | TU104 HDA
0x10£9 | TU106 HDA
Oxlaeb | TU116 HDA
0x??2? | TU117 HDA

2.3.4 GPU USB controllers

device id | product

Oxladé | TU102 USB

0xlad? TU102 USB UCSI Controller
0Oxlad8 | TU104 USB

0x1ad9 | TU104 USB UCSI Controller
Oxlada | TU106 USB

Oxladb | TU106 USB UCSI Controller

2.3.5 BR02

The BRO2 aka HSI is a transparent PCI-Express - AGP bridge. It can be used to connect PCIE GPU to AGP bus, or
the other way around. Its PCI device id shadows the actual GPU’s device id.

60 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product

0x00f1 | BRO2+NV43 [GeForce 6600 GT]

0x00f2 BRO02+NV43 [GeForce 6600]

0x00£3 | BRO2+NV43 [GeForce 6200]

0x00f4 | BRO2+NV43 [GeForce 6600 LE]

0x00£5 | BR0O2+G71 [GeForce 7800 GS]

0x00f6 | BRO2+NV43 [GeForce 6800 GS/XT]

0x00£8 | BRO2+NV40 [Quadro FX 3400/4400]

0x00£9 BRO02+NV40 [GeForce 6800 Series GPU]

0x00fa | BRO24+4NV36 [GeForce PCX 5750]

0x00fb | BRO2+NV35 [GeForce PCX 5900]

0x00fc | BRO2+NV34 [GeForce PCX 5300 / Quadro FX 330]

0x00fd | BRO2+NV34 [Quadro FX 330]

0x00fe | BRO2+NV35 [Quadro FX 1300]

0x00£ff | BRO24NV18 [GeForce PCX 4300]

0x02e0 BR02+G73 [GeForce 7600 GT]

0x02el BR02+G73 [GeForce 7600 GS]

0x02e2 BR02+G73 [GeForce 7300 GT]

0x02e3 | BR0O2+G71 [GeForce 7900 GS]

0x02e4 BR02+G71 [GeForce 7950 GT]

2.3.6 BR03
The BR0O3 aka NF100 is a PCI-Express switch with 2 downstream 16x ports. It’s used on NV40 generation dual-GPU
cards.
device id | product
0x01b3 | BRO3 [GeForce 7900 GX2/7950 GX2]
2.3.7 BR04

The BR04 aka NF200 is a PCI-Express switch with 4 downstream 16x ports. It’s used on Tesla and Fermi generation

dual-GPU cards, as well as some SLI-capable motherboards.

device id | product

0x05bl BRO4 [motherboard]

0x05b8 BRO04 [GeForce GTX 295]

[
0x05b9 | BRO4 [GeForce GTX 590]
0x05be | BRO4 [GeForce 9800 GX2/Quadro Plex S4/Tesla S*]

2.3.8 Motherboard chipsets

NV1A [nForce 220 IGP / 420 IGP / 415 SPP]

The northbridge of nForcel chipset, paired with MCP.

2.3. nVidia PCI id database

61

nVidia Hardware Documentation, Release git

device id | product

0x01a0 | NVI1A GPU [GeForce2 MX IGP]
0x0l1la4 | NVI1A host bridge

0x01lab NV1A host bridge [?]

0x01la6 NV1A host bridge [?]

0x01a8 NV1A memory controller [?]
0x01a9 NVI1A memory controller [?]
0x0laa NV1A memory controller #3, 64-bit
0x0lab NVI1A memory controller #3, 128-bit
Ox0lac | NVIA memory controller #1
0x0lad | NVIA memory controller #2
0x01b7 | NVIA/NV2A AGP bridge

Note: 0x01b7 is also used on NV2A.

NV2A [XGPU]

The northbridge of xbox, paired with MCP.

device id | product

0x02a0 | NV2A GPU

0x02a5 | NV2A host bridge
0x02a6 | NV2A memory controller
0x01b7 | NVIA/NV2A AGP bridge

Note: 0x01b7 is also used on NV/A.

MCP

The southbridge of nForcel chipset and xbox, paired with NVIA or NV2A.

device id | product

0x01b0 MCP APU

0x01bl | MCP AC’97

0x01b2 | MCP LPC bridge
0x01b4 MCP SMBus controller
0x01b8 | MCP PCI bridge
0x01bc | MCP IDE controller
0x01lcl | MCPMC’97

0x01c2 MCP USB controller
0x01c3 MCP ethernet controller

NV1F [nForce2 IGP/SPP]

The northbridge of nForce?2 chipset, paired with MCP2 or MCP2A.

62 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product

0x01e0 | NVIF host bridge

0x01e8 | NVIF AGP bridge

0x0lea | NVIF memory controller #1
0x0leb | NVIF memory controller #1
0x0lec | NVIF memory controller #4
0x0led | NVIF memory controller #3
0x0lee | NVIF memory controller #2
0x0lef | NVIF memory controller #5

MCP2

The southbridge of nForce2 chipset, original revision. Paired with NVIF.

device id | product

0x0060 | MCP2 LPC bridge
0x0064 MCP2 SMBus controller
0x0065 | MCP2 IDE controller
0x0066 | MCP2 ethernet controller
0x0067 MCP2 USB controller
0x0068 | MCP2 USB 2.0 controller
0x0069 | MCP2 MC’97

0x006a | MCP2 AC’97

0x006b | MCP2 APU

0x006c | MCP2 PCI bridge
0x006d | MCP2 internal PCI bridge for 3com ethernet
0x006e | MCP2 Firewire controller

MCP2A

The southbridge of nForce2 400 chipset. Paired with NV/F.

device id | product

0x0080 | MCP2A LPC bridge

0x0084 MCP2A SMBus controller

0x0085 | MCP2A IDE controller

0x0086 | MCP2A ethernet controller (class 0200)
0x0087 MCP2A USB controller

0x0088 | MCP2A USB 2.0 controller

0x0089 | MCP2A MC’97

0x008a | MCP2A AC’97

0x008b | MCP2A PCI bridge

0x008c | MCP2A ethernet controller (class 0680)
0x008e | MCP2A SATA controller

CK8

The nforce3-150 chipset.

2.3. nVidia PCI id database 63

nVidia Hardware Documentation, Release git

device id | product

0x00d0 | CK8 LPC bridge
0x00d1l | CKS host bridge
0x00d2 | CK8 AGP bridge
0x00d4 CKS8 SMBus controller
0x00d5 CKS8 IDE controller
0x00d6 | CKS ethernet controller
0x00d7 CKS8 USB controller
0x00d8 CKS8 USB 2.0 controller
0x00d9 | CK8 MC’97

0x00da | CK8 AC’97

0x00dd | CKS8 PCI bridge

CK8S

The nforce3-250 chipset.

device id | product

0x00df | CKS8S ethernet controller (class 0680)
0x00e0 | CKS8S LPC bridge

0x00el | CKSS host bridge

0x00e2 | CK8S AGP bridge

0x00e3 | CKS8S SATA controller #1

0x00e4 CKS8S SMBus controller

0x00e5 | CKS8S IDE controller

0x00e6 CKSS ethernet controller (class 0200)
0x00e7 | CK8S USB controller

0x00e8 CK8S USB 2.0 controller

0x00e9 | CK8S MC’97

0x00ea | CKS8S AC97

0x00ec | CKS8S 7777 (class 0780)

0x00ed | CK8S PCI bridge

0x00ee | CKS8S SATA controller #0

CK804

The AMD nforce4 chipset, standalone or paired with C19 or C51 to make nforce4 SLI x16 chipset.

64 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product

0x0050 | CK804 LPC bridge

0x0051 | CK804 LPC bridge

0x0052 CK804 SMBus controller

0x0053 | CK804 IDE controller

0x0054 CK&804 SATA controller #0

0x0055 | CK804 SATA controller #1

0x0056 | CK804 ethernet controller (class 0200)
0x0057 CK804 ethernet controller (class 0680)
0x0058 | CK804 MC’97

0x0059 | CK804 AC’97

0x005a | CK804 USB controller

0x005b | CK804 USB 2.0 controller

0x005c | CK804 PCI subtractive bridge
0x005d | CK804 PCI-Express port

0x005e | CK804 memory controller #0

0x005f | CK804 memory controller #12
0x00d3 | CK804 memory controller #10

C19

The intel nforce4 northbridge, paired with MCP04 or CK804.

device id | product

0x006f | C19 memory controller #3
0x0070 | C19 host bridge

0x0071 | CI19 host bridge

0x0072 C19 host bridge [?]
0x0073 C19 host bridge [?]
0x0074 | C19 memory controller #1
0x0075 | C19 memory controller #2
0x0076 | C19 memory controller #10
0x0078 | C19 memory controller #11
0x0079 | C19 memory controller #12
0x007a | C19 memory controller #13
0x007b | C19 memory controller #14
0x007c | C19 memory controller #15
0x007d | C19 memory controller #16
0x007e | C19 PCI-Express port
0x007f | C19 memory controller #1
0x00b4 | C19 memory controller #4

MCP04

The intel nforce4 southbridge, paired with C19.

2.3. nVidia PCI id database 65

nVidia Hardware Documentation, Release git

device id | product

0x0030 | MCP04 LPC bridge

0x0034 MCP04 SMBus controller

0x0035 MCPO04 IDE controller

0x0036 | MCP04 SATA controller #0

0x0037 MCPO04 ethernet controller (class 0200)
0x0038 MCPO04 ethernet controller (class 0680)
0x0039 | MCP04 MC’97

0x003a | MCP04 AC’97

0x003b | MCP04 USB controller

0x003c | MCP04 USB 2.0 controller

0x003d | MCP04 PCI subtractive bridge
0x003e | MCP04 SATA controller #1

0x003f | MCP04 memory controller

C51

The AMD nforce4xx/nforce5xx northbridge, paired with CK804, MCP51, or MCP55.

device id | product

0x02£0 | C51 memory controller #0
0x02f1 | C51 memory controller #0
0x02£2 | C51 memory controller #0
0x02£3 | C51 memory controller #0
0x02f4 | C51 memory controller #0
0x02£5 | C51 memory controller #0
0x02£6 | C51 memory controller #0
0x02£7 | C51 memory controller #0
0x02£8 | C51 memory controller #3
0x02f9 | C51 memory controller #4
0x02fa | C51 memory controller #1
0x02fb | C51 PCI-Express x16 port
0x02fc | C51 PCI-Express x1 port #0
0x02fd | C51 PCI-Express x1 port #1
0x02fe | C51 memory controller #2
0x02ff | C51 memory controller #5
0x027e | C51 memory controller #7
0x027f | C51 memory controller #6

MCP51

The AMD nforce5xx southbridge, paired with C51 or C55.

66 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product

0x0260 | MCP51 LPC bridge

0x0261 | MCP51 LPC bridge

0x0262 | MCP51 LPC bridge [?]

0x0263 | MCP51 LPC bridge [?]

0x0264 MCP51 SMBus controller

0x0265 MCP51 IDE controller

0x0266 | MCP51 SATA controller #0

0x0267 MCP51 SATA controller #1

0x0268 | MCP51 ethernet controller (class 0200)
0x0269 MCP51 ethernet controller (class 0680)
0x026a | MCP51 MC’97

0x026b | MCP51 AC’97

0x026c | MCP51 HDA

0x026d | MCP51 USB controller

0x026e | MCP51 USB 2.0 controller

0x026f | MCPS51 PCI subtractive bridge
0x0270 | MCP51 memory controller #0

0x0271 | MCP51 SMU

0x0272 | MCP51 memory controller #12

C55

Paired with MCP51 or MCP55.

2.3. nVidia PCI id database

67

nVidia Hardware Documentation, Release git

device id | product

0x03a0 C55 host bridge [?]
0x03al | C55 host bridge

0x03a2 | C55 host bridge

0x03a3 | C55 host bridge

0x03a4 C55 host bridge [?]
0x03a5 C55 host bridge [?]
0x03a6 C55 host bridge [?]
0x03a7 C55 host bridge [?]
0x03a8 | C55 memory controller #5
0x03a9 | C55 memory controller #3
0x03aa | C55 memory controller #2
0x03ab | C55 memory controller #4
0x03ac | C55 memory controller #1
0x03ad | C55 memory controller #10
0x03ae | C55 memory controller #11
0x03af | C55 memory controller #12
0x03b0 | C55 memory controller #13
0x03bl | C55 memory controller #14
0x03b2 | C55 memory controller #15
0x03b3 | C55 memory controller #16
0x03b4 | C55 memory controller #7
0x03b5 | C55 memory controller #6
0x03b6 | C55 memory controller #20
0x03b7 | C55 PCI-Express x16/x8 port
0x03b8 | C55 PCI-Express x8 port
0x03b9 | C55 PCI-Express x1 port #0
0x03ba | C55 memory controller #22
0x03bb | C55 PCI-Express x1 port #1
0x03bc | C55 memory controller #21

Todo: shouldn’t 0x03b8 support x4 too?

MCP55

Standalone or paired with C51, C55 or C73.

68 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product

0x0360 | MCP55 LPC bridge

0x0361 | MCP55 LPC bridge

0x0362 | MCP55 LPC bridge

0x0363 | MCP55 LPC bridge

0x0364 | MCP55 LPC bridge

0x0365 | MCP55 LPC bridge [?]

0x0366 | MCP55 LPC bridge [?]

0x0367 | MCP55 LPC bridge [?]

0x0368 | MCP55 SMBus controller
0x0369 | MCPS55 memory controller #0
0x036a | MCP55 memory controller #12
0x036b | MCP55 SMU

0x036¢c | MCP55 USB controller

0x036d | MCP55 USB 2.0 controller
0x036e | MCP55 IDE controller

0x036f | MCP55 SATA [??7]

0x0370 | MCPS55 PCI subtractive bridge
0x0371 | MCP55 HDA

0x0372 | MCP55 ethernet controller (class 0200)
0x0373 MCPS55 ethernet controller (class 0680)
0x0374 | MCP55 PCI-Express x1/x4 port #0
0x0375 | MCP55 PCI-Express x1/x8 port
0x0376 | MCP55 PCI-Express x8 port
0x0377 | MCP55 PCI-Express x8/x16 port
0x0378 | MCPS55 PCI-Express x1/x4 port #1
0x037e | MCP55 SATA controller [?]
0x037f | MCP55 SATA controller

MCP61

Standalone.

2.3. nVidia PCI id database 69

nVidia Hardware Documentation, Release git

device id | product

0x03e0 | MCP61 LPC bridge

0x03el | MCP61 LPC bridge

0x03e2 | MCP61 memory controller #0
0x03e3 | MCP61 LPC bridge [?]
0x03e4 | MCP61 HDA [?]

0x03e5 MCP61 ethernet controller [?]
0x03e6 MCP61 ethernet controller [?]
0x03e7 MCP61 SATA controller [?]
0x03e8 | MCP61 PCI-Express x16 port
0x03e9 | MCP61 PCI-Express x1 port
0x03ea | MCP61 memory controller #0
0x03eb | MCP61 SMBus controller
0x03ec | MCP61 IDE controller
0x03ee | MCP61 ethernet controller [?]
0x03ef | MCP61 ethernet controller (class 0680)
0x03f0 | MCP61 HDA

0x03f1 | MCP61 USB controller
0x03f2 MCP61 USB 2.0 controller
0x03f3 | MCP61 PCI subtractive bridge
0x03f4 | MCP61 SMU

0x03£f5 | MCP61 memory controller #12
0x03f6 | MCP61 SATA controller
0x03f7 MCP61 SATA controller [?]

MCP65

Standalone.

device id | product

0x0440 | MCP65 LPC bridge [?]

0x0441 | MCP65 LPC bridge

0x0442 | MCP65 LPC bridge

0x0443 | MCP65 LPC bridge [?]

0x0444 | MCP65 memory controller #0

0x0445 | MCP65 memory controller #12

0x0446 | MCP65 SMBus controller

0x0447 MCP65 SMU

0x0448 | MCP65 IDE controller

0x0449 | MCP65 PCI subtractive bridge

0x044a | MCP65 HDA

0x044b | MCP65 HDA [?]

0x044c | MCP65 SATA controller (AHCI mode) [?]

0x044d | MCP65 SATA controller (AHCI mode)

0x044e | MCP65 SATA controller (AHCI mode) [?]

0x044f | MCP65 SATA controller (AHCI mode) [?]

0x0450 | MCP65 ethernet controller (class 0200)

0x0451 | MCP65 ethernet controller [?]

0x0452 | MCP65 ethernet controller (class 0680)
Continued on next page

70 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 6 — continued from previous page
device id | product
0x0453 | MCP65 ethernet controller [?]
0x0454 | MCP65 USB controller #0
0x0455 | MCP65 USB 2.0 controller #0
0x0456 | MCP65 USB controller #1
0x0457 | MCP65 USB 2.0 controller #1
0x0458 | MCP65 PCI-Express x8/x16 port
0x0459 | MCP65 PCI-Express x8 port
0x045a | MCP65 PCI-Express x1/x2 port
0x045b | MCP65 PCI-Express x2 port
0x045c | MCP65 SATA controller (compatibility mode) [?]
0x045d | MCP65 SATA controller (compatibility mode)
0x045e | MCP65 SATA controller (compatibility mode) [?]
0x045f | MCP65 SATA controller (compatibility mode) [?]

MCP67

Standalone.

device id | product

0x0541 | MCP67 memory controller #12

0x0542 MCP67 SMBus controller

0x0543 | MCP67 SMU

0x0547 | MCP67 memory controller #0

0x0548 | MCP67 LPC bridge

0x054c | MCP67 ethernet controller (class 0200)

0x054d | MCP67 ethernet controller [?]

0x054e MCP67 ethernet controller [?]

0x054f | MCP67 ethernet controller [?]

0x0550 | MCP67 SATA controller (compatibility mode)
0x0551 MCP67 SATA controller (compatibility mode) [?]
0x0552 | MCP67 SATA controller (compatibility mode) [?]
0x0553 MCP67 SATA controller (compatibility mode) [?]
0x0554 | MCP67 SATA controller (AHCI mode)

0x0555 | MCP67 SATA controller (AHCI mode) [?]
0x0556 | MCP67 SATA controller (AHCI mode) [?]
0x0557 MCP67 SATA controller (AHCI mode) [?]
0x0558 | MCP67 SATA controller (AHCI mode) [?]
0x0559 MCP67 SATA controller (AHCI mode) [?]
0x055a | MCP67 SATA controller (AHCI mode) [?]
0x055b | MCP67 SATA controller (AHCI mode) [?]
0x055¢c MCP67 HDA

0x055d | MCP67 HDA [?]

0x055e | MCP67 USB controller

0x055f | MCP67 USB 2.0 controller

0x0560 | MCP67 IDE controller

0x0561 | MCP67 PCI subtractive bridge

0x0562 | MCP67 PCI-Express x16 port

0x0563 | MCP67 PCI-Express x1 port

2.3. nVidia PCI id database 71

nVidia Hardware Documentation, Release git

C73

Paired with MCP55.
device id | product
0x0800 | C73 host bridge
0x0801 C73 host bridge [?]
0x0802 C73 host bridge [?]
0x0803 C73 host bridge [?]
0x0804 C73 host bridge [?]
0x0805 C73 host bridge [?]
0x0806 C73 host bridge [?]
0x0807 C73 host bridge [?]
0x0808 | C73 memory controller #1
0x0809 | C73 memory controller #2
0x080a | C73 memory controller #3
0x080b | C73 memory controller #4
0x080c | C73 memory controller #5
0x080d | C73 memory controller #6
0x080e | C73 memory controller #7/#17
0x080f | C73 memory controller #10
0x0810 | C73 memory controller #11
0x0811 | C73 memory controller #12
0x0812 | C73 memory controller #13
0x0813 | C73 memory controller #14
0x0814 | C73 memory controller #15
0x0815 | C73 PCI-Express x? port #0
0x0817 | C73 PCI-Express x? port #1
0x081a | C73 memory controller #16

MCP73

Standalone.

device id | product

0x056a | MCP73 USB 2.0 controller

0x056¢c | MCP73 IDE controller

0x056d | MCP73 PCI subtractive bridge

0x056e | MCP73 PCI-Express x16 port

0x056f | MCP73 PCI-Express x1 port

0x07c0 | MCP73 host bridge

0x07cl | MCP73 host bridge

0x07c2 MCP73 host bridge [?]

0x07c3 | MCP73 host bridge

0x07c4 MCP73 host bridge [?]

0x07c5 | MCP73 host bridge

0x07c6 | MCP73 host bridge [?]

0x07c7 | MCP73 host bridge

0x07c8 | MCP73 memory controller #34

0x07cb | MCP73 memory controller #1
Continued on next page

72 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 7 — continued from previous page

device id | product
0x07cd | MCP73 memory controller #10
0x07ce | MCP73 memory controller #11
0x07cf | MCP73 memory controller #12
0x07d0 | MCP73 memory controller #13
0x07d1 | MCP73 memory controller #14
0x07d2 | MCP73 memory controller #15
0x07d3 | MCP73 memory controller #16
0x07d6 | MCP73 memory controller #20
0x07d7 | MCP73 LPC bridge
0x07d8 | MCP73 SMBus controller
0x07d9 | MCP73 memory controller #32
0x07da | MCP73 SMU
0x07dc | MCP73 ethernet controller (class 0200)
0x07dd | MCP73 ethernet controller [?]
0x07de | MCP73 ethernet controller [?]
0x07df | MCP73 ethernet controller [?]
0x07£0 | MCP73 SATA controller (compatibility mode)
0x07£1 | MCP73 SATA controller (compatibility mode) [?]
0x07£2 | MCP73 SATA controller (compatibility mode) [?]
0x07£3 | MCP73 SATA controller (compatibility mode) [?]
0x07f£4 | MCP73 SATA controller (AHCI mode)
0x07£5 | MCP73 SATA controller (AHCI mode) [?]
0x07f6 | MCP73 SATA controller (AHCI mode) [?]
0x07£7 | MCP73 SATA controller (AHCI mode) [?]
0x07f£8 MCP73 SATA controller (RAID mode)
0x07£9 | MCP73 SATA controller (RAID mode) [?]
0x07fa | MCP73 SATA controller (RAID mode) [?]
0x07fb | MCP73 SATA controller (RAID mode) [?]
0x07fc | MCP73 HDA
0x07fd | MCP73 HDA [7]
0x07fe | MCP73 USB controller
MCP77
Standalone.

device id product

0x0568 MCP77 memory controller #14

0x0569 MCP77 IGP bridge

0x0570-0x057f

MCP* ethernet controller (class 0200 alt) [XXX]

0x0580-0x058f | MCP* SATA controller (alt ID) [XXX]

0x0590-0x059f | MCP* HDA (alt ID) [XXX]

0x05a0-0x05af | MCP* IDE (alt ID) [XXX]

0x0751

MCP77 memory controller #12

0x0752

MCP77 SMBus controller

0x0753

MCP77 SMU

0x0754

MCP77 memory controller #0

0x0755

MCP77 memory controller #0 [?]

Continued on next page

2.3. nVidia PCI id database

73

nVidia Hardware Documentation, Release git

MCP79

Standalone.

Table 8 — continued from previous page

device id product

0x0756 MCP77 memory controller #0 [?]
0x0757 MCP77 memory controller #0 [?]
0x0759 MCP77 IDE controller

0x075a MCP77 PCI subtractive bridge
0x075b MCP77 PCI-Express x1/x4 port
0x075¢c MCP77 LPC bridge

0x075d MCP77 LPC bridge

0x075e MCP77 LPC bridge

0x0760 MCP77 ethernet controller (class 0200)
0x0761 MCP77 ethernet controller [?]
0x0762 MCP77 ethernet controller [?]
0x0763 MCP77 ethernet controller [?]
0x0764 MCP77 ethernet controller (class 0680)
0x0765 MCP77 ethernet controller [?]
0x0766 MCP77 ethernet controller [?]
0x0767 MCP77 ethernet controller [?]
0x0774 MCP77 HDA

0x0775 MCP77 HDA [?]

0x0776 MCP77 HDA [?]

0x0777 MCP77 HDA [?]

0x0778 MCP77 PCI-Express 2.0 x8/x16 port
0x0779 MCP77 PCI-Express 2.0 x8 port
0x077a MCP77 PCI-Express x1 port
0x077b MCP77 USB controller #0

0x077¢c MCP77 USB 2.0 controller #0
0x077d MCP77 USB controller #1

0x077e MCP77 USB 2.0 controller #1

0x0ad0-0x0ad3

MCP77 SATA controller (compatibility mode)

0x0ad4-0x0ad?7

MCP77 SATA controller (AHCI mode)

0x0ad8-0x0adb

MCP77 SATA controller (RAID mode)

device id

product

0x0570-0x057f

MCP* ethernet controller (class 0200 alt) [XXX]

0x0580-0x058f

MCP* SATA controller (alt ID) [XXX]

0x0590-0x059f

MCP* HDA (alt ID) [XXX]

0x0a80 MCP79 host bridge

0x0a81 MCP79 host bridge [?]

0x0a82 MCP79 host bridge

0x0a83 MCP79 host bridge

0x0a84 MCP79 host bridge

0x0a85 MCP79 host bridge [?]

0x0a86 MCP79 host bridge

0x0a87 MCP79 host bridge [?]

0x0a88 MCP79 memory controller #1

Continued on next page
74 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Table 9 — continued from previous page

device id product

0x0a89 MCP79 memory controller #33
0x0a8d MCP79 memory controller #13
0x0a8e MCP79 memory controller #14
0x0a8f MCP79 memory controller #15
0x0a90 MCP79 memory controller #16
0x0a94 MCP79 memory controller #23
0x0a95 MCP79 memory controller #24
0x0a98 MCP79 memory controller #34
0x0aa0 MCP79 IGP bridge

O0x0aa2 MCP79 SMBus controller
O0x0aa3 MCP79 SMU

0x0aa4 MCP79 memory controller #31
O0x0aab MCP79 USB controller #0
0x0aab MCP79 USB 2.0 controller #0
O0x0aa’ MCP79 USB controller #1
Ox0aa8 MCP79 USB controller [?]
0x0aa9 MCP79 USB 2.0 controller #1
Ox0Oaaa MCP79 USB 2.0 controller [?]
O0x0aab MCP79 PCI subtractive bridge
Ox0aac MCP79 LPC bridge

Ox0aad MCP79 LPC bridge

Ox0aae MCP79 LPC bridge

Ox0aaf MCP79 LPC bridge

0x0ab0 MCP79 ethernet controller (class 0200)
Ox0abl MCP79 ethernet controller [?]
0x0ab2 MCP79 ethernet controller [?]
0x0ab3 MCP79 ethernet controller [?]

0x0ab4-0x0ab7

MCP79 SATA controller (compatibility mode)

0x0ab8-0x0abb

MCP79 SATA controller (AHCI mode)

O0x0abc-0x0abf

MCP79 SATA controller (RAID mode) [XXX: actually 0x0ab0-Oxabb are accepted by hw without trickery]

0x0acO MCP79 HDA
0x0acl MCP79 HDA [?]
Ox0ac2 MCP79 HDA [?]
0x0ac3 MCP79 HDA [?]
Ox0ac4 MCP79 PCI-Express 2.0 x16 port
0x0ach MCP79 PCI-Express 2.0 x4/x8 port
0x0ach6 MCP79 PCI-Express 2.0 x1/x4 port
O0x0ac? MCP79 PCI-Express 2.0 x1 port
Ox0ac8 MCP79 PCI-Express 2.0 x4 port
MCP89
Standalone.

2.3. nVidia PCI id database 75

nVidia Hardware Documentation, Release git

device id product
0x0580-0x058f | MCP* SATA controller (alt ID) [XXX]
0x0590-0x059f | MCP* HDA (alt ID) [XXX]

0x0d60 MCP89 host bridge

0x0d68 MCP89 memory controller #1
0x0d69 MCP89 memory controller #33
0x0de6d MCP89 memory controller #10
O0x0dee MCP89 memory controller #11
0x0d6f MCP89 memory controller #12
0x0d70 MCP89 memory controller #13
0x0d71 MCP89 memory controller #20
0x0d72 MCP89 memory controller #21
0x0d75 MCP89 memory controller #110
0x0d76 MCP89 IGP bridge

0x0d79 MCP89 SMBus controller
0x0d7a MCP89 SMU

0x0d7b MCP89 memory controller #31
0x0d7d MCPS89 ethernet controller (class 0200)
0x0d80 MCP89 LPC bridge

0x0d84-0x0d87 | MCP89 SATA controller (compatibility mode)
0x0d88-0x0d8b | MCP89 SATA controller (AHCI mode)
0x0d8c-0x0d8f | MCP89 SATA controller (RAID mode)
0x0d94-0x0d97 | MCP89 HDA [XXX: actually 1-0xf]

0x0d9a MCP89 PCI-Express x1 port #0
0x0d9b MCP89 PCI-Express x1 port #1
0x0d9c MCP89 USB controller
0x0d9d MCP89 USB 2.0 controller

2.3.9 Tegra
T20
device id | product
0x0bf0 | T20 PCI-Express x4 port
0x0bfl | T20 PCI-Express x2 port
T30
device id | product
O0x0elc | T30 PCI-Express x4 port
0x0eld | T30 PCI-Express x2 port
T124
Also known as Tegra K1.

76 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

device id | product
0x0el2 | T124 PCI-Express x4 port
0x0el3 | T124 PCI-Express x1 port

T210
Also known as Tegra X1.
device id | product
0x0fae | T210 PCI-Express x4 port
0x0faf | T210 PCI-Express x1 port
T186
Also known as Tegra X2.

device id | product
0x10e5 | T186 PCI-Express x4 port
0x10e6 | T186 PCI-Express x1 port

2.4 PCI/PCIE/AGP bus interface and card management logic

Contents:

2.4.1 PCI BARs and other means of accessing the GPU

Contents

* PCI BARs and other means of accessing the GPU

Nvidia GPU BARs, 10 ports, and memory areas
— PCI/PCIE configuration space

— BARO: MMIO registers

— BARI: VRAM aperture

— BAR2/BAR3: RAMIN aperture

— BAR2: NV3 indirect memory access

— BARS5: G80 indirect memory access

— BARG: PCI ROM aperture

— INTA: the card interrupt

— Legacy VGA 10 ports and memory

2.4. PCI/PCIE/AGP bus interface and card management logic 77

nVidia Hardware Documentation, Release git

Nvidia GPU BARs, 10 ports, and memory areas

The nvidia GPUs expose the following areas to the outside world through PCI:
* PCI configuration space / PCIE extended configuration space
e MMIO registers: BARO - memory, 0x1000000 bytes or more depending on card type
* VRAM aperture: BAR1 - memory, 0x1000000 bytes or more depending on card type [NV3+ only]
* indirect memory access IO ports: BAR2 - 0x100 bytes of IO port space [NV3 only]
* 777: BAR2 [only NV1x IGPs?]
* 777: BAR2 [only NV207?]
* RAMIN aperture: BAR2 or BAR3 - memory, 0x1000000 bytes or more depending on card type [NV40+]
* indirect memory access 1O ports: BARS - 0x80 bytes of 10 port space [G80+]
e PCI ROM aperture
e PCI INTA interrupt line
¢ legacy VGA IO ports: 0x3b0-0x3bb and 0x3c0-0x3df [can be disabled in PCI config]
¢ legacy VGA memory: 0xa0000-0xbffff [can be disabled in PCI config]

PCI/PCIE configuration space

Nvidia GPUs, like all PCI devices, have PCI configuration space. Its contents are described in pci.

BARO: MMIO registers

This is the main control space of the card - all engines are controlled through it, and it contains alternate means to
access most of the other spaces. This, along with the VRAM / RAMIN apertures, is everything that’s needed to fully
control the cards.

This space is a 16MB area of memory sparsely populated with areas representing individual engines, which in turn
are sparsely populated with registers. The list of engines depends on card type. While there are no known registers
outside 16MB range, the BAR itself can have a larger size on NV40+ cards if configured so by straps.

Its address is set up through PCI BAR 0. The BAR uses 32-bit addressing and is non-prefetchable memory.

The registers inside this BAR are 32-bit, with the exception of areas that are aliases of the byte-oriented VGA legacy
IO ports. They should be accessed through aligned 32-bit memory reads/writes. On pre-NV1A cards, the registers
are always little endian, on NV1A+ cards endianness of the whole area can be selected by a switch in PMC. The
endianness switch, however, only affects BARO accesses to the MMIO space - accesses from inside the card are
always little-endian.

A particularly important subarea of MMIO space is PMC, the card’s master control. This subarea is present on all
nvidia GPUs at addresses 0x000000 through 0x000fff. It contains GPU id information, Big Red Switches for engines
that can be turned off, and master interrupt control. It’s described in more detail in pmc.

For full list of MMIO areas, see mmio.

78 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

BAR1: VRAM aperture

This is an area of prefetchable memory that maps to the card’s VRAM. On native PCIE cards, it uses 64-bit addressing,
on native PCI/AGP ones it uses 32-bit addressing.

On non-TURBOCACHE pre-G80 cards and on G80+ cards with BAR1 VM disabled, BAR addresses map directly to
VRAM addresses. On TURBOCACHE cards, BAR1 is made of controllable VRAM and GART windows [see NV44
host memory interface]. G80+ cards have a mode where all BAR references go through the card’s VM subsystem, see
280-host-mem and gf100-host-mem.

On NV3 cards, this BAR also contains RAMIN access aperture at address 0xc00000 [see NV3 VRAM structure and
usage]

Todo: map out the BAR fully

the BAR size depends on card type:

NV3: 16MB [with RAMIN]

NV4: 16MB

NVS5: 32MB

NVI10:NV17: 128MB

NV17:G80: 64MB-512MB, set via straps
* G80-: 64MB-64GB, set via straps

Note that BAR size is independent from actual VRAM size, although on pre-NV30 cards the BAR is guaranteed not
to be smaller than VRAM. This means it may be impossible to map all of the card’s memory through the BAR on
NV30+ cards.

BAR2/BAR3: RAMIN aperture

RAMIN is, on pre-G80 cards, a special area at the end of VRAM that contains various control structures. RAMIN
starts from end of VRAM and the addresses go in reverse direction, thus it needs a special mapping to access it the
way it’ll be used. While pre-NV40 cards limitted its size to 1MB and could fit the mapping in BARO, or BAR1 for
NV3, NV40+ allow much bigger RAMIN addresses. RAMIN BAR provides such RAMIN mapping on NV40 family
cards.

G80 did away with a special RAMIN area, but it kept the BAR around. It works like BAR1, but is independent on
it and can use a distinct VM DMA object. As opposed to BAR1, all accesses done to BAR3 will be automatically
byte-swapped in 32-bit chunks like BARO if the big-endian switch is on. It’s commonly used to map control structures
for kernel use, while BAR1 is used to map user-accessible memory.

The BAR uses 64-bit addressing on native PCIE cards, 32-bit addressing on native PCI/AGP. It uses BAR2 slot on
native PCIE, BAR3 on native PCI/AGP. It is non-prefetchable memory on cards up to and including G200, prefetchable
memory on MCP77+. The size is at least 16MB and is set via straps.

BAR2: NV3 indirect memory access

An area of IO ports used to access BARO or BAR1 indirectly by real mode code that cannot map high memory
addresses. Present only on NV3.

Todo: RE it. or not.

2.4. PCI/PCIE/AGP bus interface and card management logic 79

nVidia Hardware Documentation, Release git

BARS5: G80 indirect memory access

An area of 10 ports used to access BARO, BAR1, and BAR3 indirectly by real mode code that cannot map high
memory addresses. Present on G80+ cards. On earlier cards, the indirect access feature of VGA 10 ports can be used
instead. This BAR can also be disabled via straps.

Todo: It’s present on some NV4x

This area is 0x80 bytes of IO ports, but only first 0x20 bytes are actually used; the rest are empty. The ports are all
treated as 32-bit ports. They are:

BARS+0x00: when read, signature: 0x2469fdb9. When written, master enable: write 1 to enable remaining ports, 0
to disable. Only bit O of the written value is taken into account. When remaining ports are disabled, they read
as Oxffffffee.

BARS+0x04: enable. if bit O is 1, the “data” ports are active, otherwise they’re inactive and merely store the last
written value.

BARS+0x08: BARO address port. bits 0-1 and 24-31 are ignored.

BARS+0x0c: BARO data port. Reads and writes are translated to BARO reads and writes at address specified by
BARO address port.

BARS+0x10: BARI address port. bits 0-1 are ignored.

BARS+0x14: BARI data port. Reads and writes are translated to BARI1 reads and writes at address specified by
BART1 address port.

BARS+0x18: BAR3 address port. bits 0-1 and 24-31 are ignored.

BARS+0x1c: BAR3 data port. Reads and writes are translated to BAR3 reads and writes at address specified by
BAR3 address port.

BARO addresses are masked to low 24 bits, allowing access to exactly 16MB of MMIO space. The BARI addresses
aren’t masked, and the window actually allows access to more BAR space than the BAR1 itself - up to 4GB of VRAM
or VM space can be accessed this way. BAR3 addresses, on the other hand, are masked to low 24 bits even though the
real BAR3 is larger.

BARG6: PCI ROM aperture

Todo: figure out size

Todo: figure out NV3

Todo: verify G80

The nvidia GPUs expose their BIOS as standard PCI ROM. The exposed ROM aliases either the actual BIOS EEP-
ROM, or the shadow BIOS in VRAM. This setting is exposed in PCI config space. If the “shadow enabled” PCI config
register is 0, the PROM MMIO area is enabled, and both PROM and the PCI ROM aperture will access the EEPROM.
Disabling the shadowing has a side effect of disabling video output on pre-G80 cards. If shadow is enabled, EEPROM
is disabled, PROM reads will return garbage, and PCI ROM aperture will access the VRAM shadow copy of BIOS.

80 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

On pre-G80 cards, the shadow BIOS is located at address 0 of RAMIN, on G80+ cards the shadow bios is pointed to
by PDISPLAY.VGA.ROM_WINDOW register - see g80-vga for details.

INTA: the card interrupt

Todo: MSI

The GPU reports all interrupts through the PCI INTA line. The interrupt enable and status registers are located in PMC
area - see pmc-intr.

Legacy VGA 10 ports and memory

The nvidia GPU cards are backwards compatible with VGA and expose the usual VGA ranges: 10 ports 0x3b0-0x3bb
and 0x3c0-0x3df, memory at 0xa0000-0xbffff. The VGA ranges can however be disabled in PCI config space. The
VGA registers and memory are still accessible through their aliases in BARO, and disabling the legacy ranges has no
effect on the operation of the card. The IO range contains an extra top-level register that allows indirect access to
the MMIO area for use by real mode code, as well as many nvidia-specific extra registers in the VGA subunits. For
details, see nv3-vga.

2.5 Power, thermal, and clock management

Contents:

2.5.1 Clock management

The nvidia GPUs, like most electronic devices, use clock signals to control their operation. Since they’re complicated
devices made of many subunits with different performance needs, there are multiple clock signals for various parts of
the GPU.

The set of available clocks and the method of setting them varies a lot with the card type.

Contents:

2.5.2 PDAEMON: card management microprocesor

Contents:

falcon parameters

Present on:
v0: GT215:MCP89
vl: MCP89:GF100
v2: GF100:GF119
v3: GF119:GK104
v4: GK104:GK110

2.5. Power, thermal, and clock management 81

nVidia Hardware Documentation, Release git

vS: GK110:GK208
v6: GK208:GM107
v7: GM107+
BARO address: 0x10a000
PMC interrupt line:
v0-vl: 18
v2+: 24
PMC enable bit:
v0-v1: none, use reg 0x22210 instead
v2+: 13
Version:
v0-v2: 3
v3,vd: 4
v5: 4.1
v6,v7: 5
Code segment size:
v0: 0x4000
v1:v7: 0x6000
v7: 0x8000
Data segment size:
v0: 0x3000
vl+: 0x6000
Fifo size:
v0-vl: 0x10
v2+: 3
Xfer slots:
v0-v2: 8
v3-v4: 0x10
Secretful:
v0:v7: no
v7: yes
Code TLB index bits:
v0-v2: 8
v3+: 9
Code ports: 1
Data ports: 4

82

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Version 4 unknown caps: 31, 27
Unified address space: yes [on v3+]
10 addressing type:
v0-v2: indexed
v3-v7: simple
Core clock:
v0-vl: gt215-clock-dclk
v2-v7: gf100-clock-dclk
Tesla VM engine: Oxe
Tesla VM client: 0x11
Tesla context DMA: [none]
Fermi VM engine: 0x17
Fermi VM client: HUB 0x12

Interrupts:
Line | Type | Presenton | Name Description
8 edge | GT215:GF100] MEMIF_PORT_INVALIID MEMIF port not initialised
9 edge | GT215:GF100] MEMIF_FAULT MEMIF VM fault
9 edge | GF100- MEMIF_BREAK MEMIF breakpoint
10 level | all PMC_DAEMON PMC interrupts routed directly to PDAEMON
11 level | all SUBINTR second-level interrupt
12 level | all THERM PTHERM subinterrupts routed to PDAEMON
13 level | all SIGNAL input signal rise/fall interrupts
14 level | all TIMER the timer interrupt
15 level | all IREDIR_PMC PMC interrupts redirected to PDAEMON by
IREDIR
Status bits:
Bit | Present on Name Description
0 all FALCON Falcon unit
1 all EPWR_GRAPH | PGRAPH engine power gating
2 all EPWR_VDEC video decoding engine power gating
3 all MEMIF Memory interface
4 GT215:MCP89 GF100- | USER User controlled
4 MCP89:GF100 EPWR_VCOMP | PVCOMP engine power gating
5 MCP89:GF100 USER User controlled

IO registers: pdaecmon-io

PCOUNTER signals

Todo: write me

2.5. Power, thermal, and clock management 83

nVidia Hardware Documentation, Release git

Todo: discuss mismatched clock thing

777

e IREDIR _STATUS

e IREDIR HOST_REQ

e IREDIR TRIGGER_DAEMON
e IREDIR TRIGGER_HOST
* IREDIR PMC

* IREDIR _INTR

« MMIO_BUSY

« MMIO_IDLE

* MMIO_DISABLED

* TOKEN_ALL USED

* TOKEN_NONE_USED

e TOKEN_FREE

e TOKEN_ALLOC

* FIFO_PUT_O0_WRITE

* FIFO_PUT_1_WRITE

e FIFO_PUT_2_WRITE

* FIFO_PUT _3_WRITE

e INPUT_CHANGE

* OUTPUT_2

* INPUT_2

e THERM_ACCESS_BUSY

Todo: figure out the first signal

Todo: document MMIO_* signals

Todo: document INPUT_*, OUTPUT_*

Second-level interrupts

Because falcon has space for only 8 engine interrupts and PDAEMON needs many more, a second-level interrupt
register was introduced:

MMIO 0x688 / I[0x1a200]: SUBINTR

84 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

e bit 0: H2D - host to PDAEMON scratch register written

e bit 1: FIFO - host to PDAEMON fifo pointer updated

* bit 2: EPWR_GRAPH - PGRAPH engine power control

¢ bit 3: EPWR_VDEC - video decoding engine power control
¢ bit 4: MMIO - indirect MMIO access error

¢ bit 5: IREDIR_ERR - interrupt redirection error

¢ bit 6: IREDIR_HOST_REQ - interrupt redirection request
e bit 7: 77?

e bit 8: 777 - goes to 0x670

e bit 9: EPWR_VCOMP [MCP89] - PVCOMP engine power control
e bit 13: ??? [GF119-] - goes to 0x888

Todo: figure out bits 7, 8

Todo: more bits in 10-12?

The second-level interrupts are merged into a single level-triggered interrupt and delivered to falcon interrupt line 11.
This line is asserted whenever any bit of SUBINTR register is non-0. A given SUBINTR bit is set to 1 whenever the
input second-level interrupt line is 1, but will not auto-clear when the input line goes back to 0 - only writing 1 to
that bit in SUBINTR will clear it. This effectively means that SUBINTR bits have to be cleared after the downstream
interrupt. Note that SUBINTR has no corresponding enable bit - if an interrupt needs to be disabled, software should
use the enable registers corresponding to individual second-level interrupts instead.

Note that IREDIR_HOST_REQ interrupt has special semantics when cleared - see IREDIR_TRIGGER documenta-
tion.

User busy indication

To enable the microcode to set the “PDAEMON is busy” flag without actually making any PDAEMON subunit perform
computation, bit 4 of the falcon status register is connected to a dummy unit whose busy status is controlled directly
by the user:

MMIO 0x420 / 1[0x10800]: USER_BUSY Read/write, only bit 0 is valid. If set, falcon status line 4 or 5 [USER] is
set to 1 [busy], otherwise it’s set to O [idle].

Todo: what could possibly use PDAEMON’s busy status?

Host <-> PDAEMON communication

Contents

e Host <-> PDAEMON communication

2.5. Power, thermal, and clock management 85

nVidia Hardware Documentation, Release git

Introduction

Submitting data to PDAEMON: FIFO

Submitting data to host: RFIFO

Host to PDAEMON scratch register: H2D

PDAEMON to host scratch register: D2H

Scratch registers: DSCRATCH

Introduction

There are 4 PDAEMON:-specific channels that can be used for communication between the host and PDAEMON:

e FIFO: data submission from host to PDAEMON on 4 independent FIFOs in data segment, with interrupts
generated whenever the PUT register is written

* RFIFO: data submission from PDAEMON to host on through a FIFO in data segment

* H2D: a single scratch register for host -> PDAEMON communication, with interrupts generated whenever it’s
written

* D2H: a single scratch register for PDAEMON -> host communication
* DSCRATCH: 4 scratch registers

Submitting data to PDAEMON: FIFO

These registers are meant to be used for submitting data from host to PDAEMON. The PUT register is FIFO head,
written by host, and GET register is FIFO tail, written by PDAEMON. Interrupts can be generated whenever the PUT
register is written. How exactly the data buffer works is software’s business. Note that due to very limitted special
semantics for FIFO uage, these registers may as well be used as [possibly interruptful] scratch registers.

MMIO 0x4a0+i*4 / I[0x12800+i*0x100], i<4: FIFO_PUT[i] The FIFO head pointer, effectively a 32-bit scratch
register. Writing it causes bit i of FIFO_INTR to be set.

MMIO 0x4b0+i*4 / I[0x12c00+i*0x100], i<4: FIFO_GET][i] The FIFO tail pointer, effectively a 32-bit scratch reg-
ister.

MMIO 0x4c0 / I[0x13000]: FIFO_INTR The status register for FIFO_PUT write interrupts. Write a bit with 1 to
clear it. Whenever a bit is set both in FIFO_INTR and FIFO_INTR_EN, the FIFO [#1] second-level interrupt
line to SUBINTR is asserted. Bit i corresponds to FIFO #i, and only bits 0-3 are valid.

MMIO 0x4c4 / 1[0x13100]: FIFO_INTR_EN The enable register for FIFO_PUT write interrupts. Read/write, only
4 low bits are valid. Bit assignment is the same as in FIFO_INTR.

In addition, the FIFO circuitry exports four signals to PCOUNTER:
e FIFO_PUT_0_WRITE: pulses for one cycle whenever FIFO_PUT[0] is written
e FIFO_PUT_1_WRITE: pulses for one cycle whenever FIFO_PUT][1] is written
e FIFO_PUT_2_WRITE: pulses for one cycle whenever FIFO_PUT][2] is written
FIFO_PUT_3_WRITE: pulses for one cycle whenever FIFO_PUT[3] is written

86 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Submitting data to host: RFIFO

The RFIFO is like one of the 4 FIFOs, except it’s supposed to go from PDAEMON to the host and doesn’t have the
interupt generation powers.

MMIO 0x4c8 / 1[0x13200]: RFIFO_PUT MMIO 0x4cc / I[0x13300]: RFIFO_GET

The RFIFO head and tail pointers. Both are effectively 32-bit scratch registers.

Host to PDAEMON scratch register: H2D

H2D is a scratch register supposed to be written by the host and read by PDAEMON. It generates an interrupt when
written.

MMIO 0x4d0 / I[0x13400]: H2D A 32-bit scratch register. Sets H2D_INTR when written.

MMIO 0x4d4 / 1[0x13500]: H2D_INTR The status register for H2D write interrupt. Only bit O is valid. Set when
H2D register is written, cleared when 1 is written to bit 0. When this and H2D_INTR_EN are both set, the H2D
[#0] second-level interrupt line to SUBINTR is asserted.

MMIO 0x4d8 / 1[0x13600]: H2D_INTR_EN The enable register for H2D write interrupt. Only bit O is valid.

PDAEMON to host scratch register: D2H

D2H is just a scratch register supposed to be written by PDAEMON and read by the host. It has no interrupt genration
powers.

MMIO 0x4dc / I[0x13700]: D2H A 32-bit scratch register.

Scratch registers: DSCRATCH

DSCRATCHYI] are just 4 32-bit scratch registers usable for PDAEMON<->HOST communication or any other pur-
poses.

MMIO 0x5d0+i*4 / I[0x17400+i*0x100], i<4: DSCRATCHIi] A 32-bit scratch register.

Hardware mutexes

The PDAEMON has hardware support for 16 busy-waiting mutexes accessed by up to 254 clients simultanously. The
clients may be anything able to read and write the PDAEMON registers - code running on host, on PDAEMON, or on
any other falcon engine with MMIO access powers.

The clients are identified by tokens. Tokens are 8-bit numbers in 0x01-Oxfe range. Tokens may be assigned to clients
statically by software, or dynamically by hardware. Only tokens 0x08-Oxfe will be dynamically allocated by hardware
- software may use statically assigned tokens 0x01-0x07 even if dynamic tokens are in use at the same time. The
registers used for dynamic token allocation are:

MMIO 0x488 / 1[0x12200]: TOKEN_ALLOC Read-only, each read to this register allocates a free token and gives
it as the read result. If there are no free tokens, Oxff is returned.

MMIO 0x48c / 1[0x12300]: TOKEN_FREE A write to this register will free a token, ie. return it back to the pool
used by TOKEN_ALLOC. Only low 8 bits of the written value are used. Attempting to free a token outside of
the dynamic allocation range [0x08-0xff] or a token already in the free queue will have no effect. Reading this
register will show the last written value, invalid or not.

2.5. Power, thermal, and clock management 87

nVidia Hardware Documentation, Release git

The free tokens are stored in a FIFO - the freed tokens will be used by TOKEN_ALLOC in the order of freeing. After
reset, the free token FIFO will contain tokens 0x08-0xfe in ascending order.

The actual mutex locking and unlocking is done by the MUTEX_TOKEN registers:

MMIO 0x580+i*4 / I[0x16000+i*0x100], i<16: MUTEX_TOKEN][i] The 16 mutices. A value of 0 means un-
locked, any other value means locked by the client holding the corresponding token. Only low 8 bits of the
written value are used. A write of O will unlock the mutex and will always succeed. A write of 0x01-Oxfe will
succeed only if the mutex is currently unlocked. A write of Oxff is invalid and will always fail. A failed write
has no effect.

The token allocation circuitry additionally exports four signals to PCOUNTER:

* TOKEN_ALL_USED: 1 iff all tokens are currently allocated [ie. a read from TOKEN_ALLOC would return
0xff]

« TOKEN_NONE_USED: 1 iff no tokens are currently allocated [ie. tokens 0x08-Oxfe are all in free tokens
queue]

* TOKEN_FREE: pulses for 1 cycle whenever TOKEN_FREE is written, even if with invalid value
* TOKEN_ALLOC: pulses for 1 cycle whenever TOKEN_ALLOC is read, even if allocation fails

CRC computation

The PDAEMON has a very simple CRC accelerator. Specifically, it can perform the CRC accumulation operation
on 32-bit chunks using the standard CRC-32 polynomial of 0xedb88320. The current CRC residual is stored in the
CRC_STATE register:

MMIO 0x494 / 1[0x12500]: CRC_STATE The current CRC residual. Read/write.
And the data to add to the CRC is written to the CRC_DATA register:

MMIO 0x490 / 1[0x12400]: CRC_DATA When written, appends the 32-bit LE value to the running CRC residual
in CRC_STATE. When read, returns the last value written. Write operation:

CRC_STATE "= value;
for (i = 0; i < 32; i++) {
if (CRC_STATE & 1) {
CRC_STATE >>= 1;
CRC_STATE "= 0xedb88320;
} else {
CRC_STATE >>= 1;
}
}

To compute a CRC:
1. Write the initial CRC residue to CRC_STATE
2. Write all data to CRC_DATA, in 32-bit chunks
3. Read CRC_STATE, xor its value with the final constant, use that as the CRC.

If the data block to CRC has size that is not a multiple of 32 bits, the extra bits at the end [or the beginning] have to be
handled manually.

88 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

The timer

Aside from the usual falcon timers, PDAEMON has its own timer. The timer can be configured as either one-shot or
periodic, can run on either daemon clock or PTIMER clock divided by 64, and generates interrupts. The following
registers deal with the timer:

MMIO 0x4e0 / I[0x13800]: TIMER_START The 32-bit count the timer starts counting down from. Read/write.
For periodic mode, the period will be equal to TIMER_START+1 source cycles.

MMIO 0x4e4 / 1[0x13900]: TIMER_TIME The current value of the timer, read only. If
TIMER_CONTROL.RUNNING is set, this will decrease by 1 on every rising edge of the source clock.
If such rising edge causes this register to become 0, the TIMER_INTR bit 8§ [TIMER] is set. The behavior
of rising edge when this register is already 0 depends on the timer mode: in ONESHOT mode, nothing will
happen. In PERIODIC mode, the timer will be reset to the value from TIMER_START. Note that interrupts
won’t be generated if the timer becomes 0 when copying the value from TIMER_START, whether caused
by starting the timer or beginning a new PERIODIC period. This means that using PERIODIC mode with
TIMER_START of 0 will never generate any interrupts.

MMIO 0x4e8 / I[0x13200]: TIMER_CTRL

* bit 0: RUNNING - when 0, the timer is stopped, when 1, the timer is runinng. Setting this bit to 1 when it
was previously 0 will also copy the TIMER_START value to TIMER_TIME.

* bit 4: SOURCE - selects the source clock
— 0: DCLK - daemon clock, effectively timer decrements by 1 on every daemon cycle

— 1: PTIMER_BS - PTIMER time bit 5 [ie. bit 10 of TIME_LOW]. Since timer decrements by 1 on
every rising edge of the clock, this effectively decrements the counter on every 64th PTIMER clock.

* bit 8: MODE - selects the timer mode
— 0: ONESHOT - timer will halt after reaching 0
— 1: PERIODIC - timer will restart from TIMER_START after reaching 0
MMIO 0x680 / I[0x1a000]: TIMER_INTR

* bit 8: TIMER - set whenever TIMER_TIME becomes 0 except by a copy from TIMER_START, write 1
to this bit to clear it. When this and bit 8 of TIMER_INTR_EN are set at the same time, falcon interrupt
line #14 [TIMER] is asserted.

MMIO 0x684 / I[0x1a100]: TIMER_INTR_EN

* bit 8: TIMER - when set, timer interupt delivery to falcon interrupt line 14 is enabled.

Channel switching

Todo: write me

PMC interrupt redirection

One of PDAEMON powers is redirecting the PMC INTR_HOST interrupt to itself. The redirection hw may be in one
of two states:

e HOST: PMC INTR_HOST output connected to PCI interrupt line [ORed with PMC INTR_NRHOST output],
PDAEMON falcon interrupt #15 disconnected and forced to 0

2.5. Power, thermal, and clock management 89

nVidia Hardware Documentation, Release git

* DAEMON: PMC INTR_HOST output connected to PDAEMON falcon interrupt #15 [IREDIR_PMC], PCI
interrupt line connected to INTR_NRHOST output only

In addition, there’s a capability enabling host to send “please turn redirect status back to HOST” interrupt with a
timeout mechanism that will execute the request in hardware if the PDAEMON fails to respond to the interrupt in a
given time.

Note that, as a side effect of having this circuitry, PMC INTR_HOST line will be delivered nowhere [falcon interrupt
line #15 will be 0, PCI interrupt line will be connected to INTR_NRHOST only] whenever the IREDIR circuitry is
in reset state, due to either whole PDAEMON reset through PMC.ENABLE / PDAEMON_ENABLE or DAEMON
circuitry reset via SUBENGINE_RESET with DAEMON set in the reset mask.

The redirection state may be read at:

MMIO 0x690 / I[0x1a400]: IREDIR_STATUS Read-only. Reads as 0 if redirect hw is in HOST state, 1 if it’s in
DAEMON state.

The redirection state may be controlled by:
MMIO 0x68c / I[0x1a300]: IREDIR_TRIGGER This register is write-only.

* bit 0: HOST_REQ - when written as 1, sends the “request redirect state change to HOST” interrupt, setting
SUBINTR bit #6 [IREDIR_HOST_REQ] to 1 and starting the timeout, if enabled. When written as 1 while
redirect hw is already in HOST state, will just cause HOST_REQ_REDUNDANT error instead.

¢ bit 4: DAEMON - when written as 1, sets the redirect hw state to DAEMON. If it was set to DAEMON
already, causes DAEMON_REDUNDANT error.

 bit 12: HOST - when written as 1, sets the redirect hw state to HOST. If it was set to HOST already, causes
HOST_REDUNDANT error. Does not clear IREDIR_HOST_REQ interrupt bit.

Writing a value with multiple bits set is not a good idea - one of them will cause an error.

The IREDIR_HOST_REQ interrupt state should be cleared by writing 1 to the corresponding SUBINTR bit. Once
this is done, the timeout counting stops, and redirect hw goes to HOST state if it wasn’t already.

The IREDIR_HOST_REQ timeout is controlled by the following registers:
MMIO 0x694 / 1[0x1a500]: IREDIR_TIMEOUT The timeout duration in daemon cycles. Read/write, 32-bit.

MMIO 0x6a4 / I[0x1a900]: IREDIR_TIMEOUT_ENABLE The timeout enable. Only bit O is valid. When set to
0, timeout mechanism is disabled, when set to 1, it’s active. Read/write.

When timeout mechanism is enabled and IREDIR_HOST_REQ interupt is triggered, a hidden counter starts counting
down. If IREDIR_TIMEOUT cycles go by without the interrupt being acked, the redirect hw goes to HOST state, the
interrupt is cleared, and HOST_REQ_TIMEOUT error is triggered.

The redirect hw errors will trigger the IREDIR_ERR interrupt, which is connected to SUBINTR bit #5. The registers
involved are:

MMIO 0x698 / I[0x1a600]: IREDIR_ERR_DETAIL Read-only, shows detailed error status. All bits are auto-
cleared when IREDIR_ERR_INTR is cleared

e bit 0: HOST_REQ_TIMEOUT - set when the IREDIR_HOST_REQ interrupt times out

* bit4: HOST_REQ_REDUNDANT - set when HOST_REQ is poked in IREDIR_TRIGGER while the hw
is already in HOST state

e bit 12: DAEMON_REDUNDANT - set when HOST is poked in IREDIR_TRIGGER while the hw is
already in DAEMON state

¢ bit 12: HOST_REDUNDANT - set when HOST is poked in IREDIR_TRIGGER while the hw is already
in HOST state

920 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

MMIO 0x69c / I[0x1a700]: IREDIR_ERR_INTR The status register for IREDIR_ERR interrupt. Only bit O is
valid. Set when any of the 4 errors happens, cleared [along with all IREDIR_ERR_DETAIL bits] when 1 is
written to bit 0. When this and IREDIR_ERR_INTR_EN are both set, the IREDIR_ERR [#5] second-level
interrupt line to SUBINTR is asserted.

MMIO 0x6a0 / I[0x1a800]: IREDIR_ERR_INTR_EN The enable register for IREDIR_ERR interrupt. Only bit O
is valid.

The interrupt redirection circuitry also exports the following signals to PCOUNTER:
* IREDIR_STATUS: current redirect hw status, like the IREDIR_STATUS reg.
e IREDIR_HOST_REQ: 1 if the IREDIR_HOST_REQ [SUBINTR #6] interrupt is pending

* IREDIR_TRIGGER_DAEMON: pulses for 1 cycle whenever INTR_TRIGGER.DAEMON is written as 1,
whether it results in an error or not

* IREDIR_TRIGGER_HOST: pulses for 1 cycle whenever INTR_TRIGGER.HOST is written as 1, whether it
results in an error or not

e IREDIR_PMC: 1 if the PMC INTR_HOST line is active and directed to DAEMON [ie. mirrors falcon interrupt
#15 input]

¢ IREDIR_INTR: 1 if any IREDIR interrupt is active - IREDIR_HOST_REQ, IREDIR_ERR, or IREDIR_PMC.
IREDIR_ERR does not count if IREDIR_ERR_INTR_EN is not set.

PTHERM interface

PDAEMON can access all PTHERM registers directly, without having to go through the generic MMIO access func-
tionality. The THERM range in the PDAEMON register space is mapped straight to PTHERM MMIO register range.

On GT215:GF119, PTHERM registers are mapped into the I[] space at addresses 0x20000:0x40000, with addresses
being shifted left by 6 bits wrt their address in PTHERM - PTHERM register 0x20000+x would be visible at [[0x20000
+ x * 0x40] by falcon, or at 0x10a800+x in MMIO [assuming it wouldn’t fall into the reserved Ox10afe0:0x10b000
range]. On GF119+, the PTHERM registers are instead mapped into the I[] space at addresses 0x1000:0x1800, without
shifting - PTHERM reg 0x20000+x is visible at I[0x1000+x]. On GF119+, the alias area is not visible via MMIO [just
access PTHERM registers directly instead].

Reads to the PTHERM-mapped area will always perform 32-bit reads to the corresponding PTHERM regs. Writes,
however, have their byte enable mask controlled via a PDAEMON register, enabling writes with sizes other than
32-bit:

MMIO 0x5f4 / 1[0x17d00]: THERM_BYTE_MASK Read/write, only low 4 bits are valid, initialised to Oxf on
reset. Selects the byte mask to use when writing the THERM range. Bit i corresponds to bits i*8..i*8+7 of the
written 32-bit value.

The PTHERM access circuitry also exports a signal to PCOUNTER:

e THERM_ACCESS_BUSY: 1 while a THERM range read/write is in progress - will light up for a dozen or so
cycles per access, depending on relative clock speeds.

In addition to direct register access to PTHERM, PDAEMON also has direct access to PTHERM interrupts - falcon
interrupt #12 [THERM] comes from PTHERM interrupt aggregator. PTHERM subinterrupts can be individually
assigned for PMC or PDAEMON delivery - see ptherm-intr for more information.

Idle counters

2.5. Power, thermal, and clock management 91

nVidia Hardware Documentation, Release git

Contents

e [dle counters

— Introduction

— MMIO Registers

Introduction

PDAEMON’s role is mostly about power management. One of the most effective way of lowering the power con-
sumption is to lower the voltage at which the processor is powered at. Lowering the voltage is also likely to require
lowering the clocks of the engines powered by this power domain. Lowering the clocks lowers the performance which
means it can only be done to engines that are under-utilized. This technique is called Dynamic Voltage/Frequency
Scaling (DVFS) and requires being able to read the activity-level/business of the engines clocked with every clock
domains.

PDAEMON could use PCOUNTER to read the business of the engines it needs to reclock but that would be a waste
of counters. Indeed, contrarily to PCOUNTER that needs to be able to count events, the business of an engine can be
polled at any frequency depending on the level of accuracy wanted. Moreover, doing the configuration of PCOUNTER
both in the host driver and in PDAEMON would likely require some un-wanted synchronization.

This is most likely why some counters were added to PDAEMON. Those counters are polling idle signals coming
from the monitored engines. A signal is a binary value that equals 1 when the associated engine is idle, and 0 if it is
active.

Todo: check the frequency at which PDAEMON is polling

MMIO Registers

On GT215:GF100, there were 4 counters while on GF100+, there are 8 of them. Each counter is composed of 3
registers, the mask, the mode and the actual count. There are two counting modes, the first one is to increment the
counter every time every bit of COUNTER_SIGNALS selected by the mask are set. The other mode only increments
when all the selected bits are cleared. It is possible to set both modes at the same time which results in incrementing
at every clock cycle. This mode is interesting because it allows dedicating a counter to time-keeping which eases
translating the other counters’ values to an idling percentage. This allows for aperiodical polling on the counters
without needing to store the last polling time.

The counters are not double-buffered and are independent. This means every counters need to be read then reset at
roughly the same time if synchronization between the counters is required. Resetting the counter is done by setting bit
31 of COUNTER_COUNT.

MMIO 0x500 / I[0x14000]: COUNTER_SIGNALS Read-only. Bitfield with each bit indicating the instantenous
state of the associated engines/blocks. When the bit is set, the engine/block is idle, when it is cleared, the
engine/block is active.

* bit 0: GR_IDLE

bit 4: PVLD_IDLE

bit 5: PPDEC_IDLE

bit 6: PPPP_IDLE

* bit 7: MC_IDLE [GF100-]

92 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* bit 8: MC_IDLE [GT215:GF100]
bit 19: PCOPYO_IDLE

bit 20: PCOPY1_IDLE [GF100-]
 bit 21: PCOPY2_IDLE [GK104-]

MMIO 0x504+i*10 / I[0x14100+i*0x400]: COUNTER_MASK The mask that will be applied on
COUNTER_SIGNALS before applying the logic set by COUNTER_MODE.

MMIO 0x508+i*10 / I[0x14100+i*0x400]: COUNTER_COUNT
* bit 0-30: COUNT

e bit 31: CLEAR_TRIGGER : Write-only, resets the counter.
MMIO 0x50c+i*10 / I[0x14300+i*0x400]: COUNTER_MODE
¢ bit O: INCR_IF_ALL : Increment the counter if all the masked bits are set
¢ bit 1: INCR_IF_NOT_ALL : Increment the counter if all the masked bits are cleared
* bit 2: UNK2 [GF119-]

General MMIO register access

PDAEMON can access the whole MMIO range through the 1O space.

To read from a MMIO address, poke the address into MMIO_ADDR then trigger a read by poking 0x100f1 to
MMIO_CTRL. Wait for MMIO_CTRL’s bits 12-14 to be cleared then read the value from MMIO_VALUE.

To write to a MMIO address, poke the address into MMIO_ADDR, poke the value to be written into MMIO_VALUE
then trigger a write by poking 0x100f2 to MMIO_CTRL. Wait for MMIO_CTRL’s bits 12-14 to be cleared if you want
to make sure the write has been completed.

Accessing an unexisting address will set MMIO_CTRL’s bit 13 after MMIO_TIMEOUT cycles have passed.

GF119 introduced the possibility to choose from which access point should the MMIO request be sent. ROOT can
access everything, IBUS accesses everything minus PMC, PBUS, PFIFO, PPCI and a few other top-level MMIO
range. On GF119+, accessing an un-existing address with the ROOT access point can lead to a hard-lock. XXX:
What'’s the point of this feature?

It is possible to get an interrupt when an error occurs by poking 1 to MMIO_INTR_EN. The interrupt will be fired on
line 11. The error is described in MMIO_ERR.

MMIO 0x7a0 / I[0x1e800]: MMIO_ADDR Specifies the MMIO address that will be written to/read from by
MMIO_CTRL.

On GT215:GF1109, this register only contains the address to be accessed.
On GF119, this register became a bitfield: bits 0-25: ADDR bit 27: ACCESS_POINT
0: ROOT 1: IBUS

MMIO 0x7a4 / 1[0x1e900]: MMIO_VALUE The value that will be written to / is read from MMIO_ADDR when
an operation is triggered by MMIO_CTRL.

MMIO 0x7a8 / I[0x1e900]: MMIO_TIMEOUT Specifies the timeout for MMIO access. XXX: Clock source?
PDAEMON’s core clock, PTIMER’s, Host’s?

MMIO 0x7ac / I[0x1eb00]: MMIO_CTRL Process the MMIO request with given params (MMIO_ADDR,
MMIO_VALUE). bits 0-1: request

0: XXX 1: read 2: write 3: XXX

2.5. Power, thermal, and clock management 93

nVidia Hardware Documentation, Release git

bits 4-7: BYTE_MASK bit 12: BUSY [RO] bit 13: TIMEOUT [RO] bit 14: FAULT [RO] bit 16: TRIGGER
MMIO 0x7b0 / I[0x1ec00] [MMIO_ERR]
Specifies the MMIO error status:
e TIMEOUT: ROOT/IBUS has not answered PDAEMON’s request
« CMD_WHILE_BUSY: a request has been fired while being busy
* WRITE: set if the request was a write, cleared if it was a read
¢ FAULT: No engine answered ROOT/IBUS’s request

On GT215:GF119, clearing MMIO_INTR’s bit 0 will also clear MMIO_ERR. On GF119+, clearing
MMIO_ERR is done by poking Oxffffffff.

GT215:GF100: bit 0: TIMEOUT bit 1: CMD_WHILE_BUSY bit 2: WRITE bits 3-31: ADDR
GF100:GF119: bit 0: TIMEOUT bit 1: CMD_WHILE_BUSY bit 2: WRITE bits 3-30: ADDR bit 31: FAULT

GF119+: bit 0: TIMEOUT_ROOT bit 1: TIMEOUT_IBUS bit 2: CMD_WHILE_BUSY bit 3: WRITE bits
4-29: ADDR bit 30: FAULT_ROOT bit 31: FAULT_IBUS

MMIO 0x7b4 / 1[0x1ed00] [MMIO_INTR] Specifies which MMIO interrupts are active. Clear the associated bit to
ACK. bit 0: ERR

Clearing this bit will also clear MMIO_ERR on GT215:GF119.

MMIO 0x7b8 / I[0x1ee00] [MMIO_INTR_EN] Specifies which MMIO interrupts are enabled. Interrupts will be
fired on SUBINTR #4. bit 0: ERR

Engine power gating

Todo: write me

Input/output signals

Contents

* Input/output signals

— Introduction

— Interrupts

Todo: write me

Introduction

Todo: write me

94 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Interrupts

Todo:

write me

Introduction

PDAEMON is a falcon-based engine introduced on GT215. Its main purpose is autonomous power and thermal man-
agement, but it can be used to oversee any part of GPU operation. The PDAEMON has many dedicated connections
to various parts of the GPU.

The PDAEMON is made of:

a falcon microprocessor core

standard falcon memory interface unit

a simple channel load interface, replacing the usual PFIFO interface
various means of communication betwen falcon and host

engine power gating controllers for the PFIFO-connected engines

“idle” signals from various engines and associated idle counters

misc simple input/output signals to various engines, with interrupt capability
a oneshot/periodic timer, using daemon clock or PTIMER as clock source
PMC interrupt redirection circuitry

indirect MMIO access circuitry

direct interface to all PTHERM registers

CRC computation hardware

Todo:

and unknown stuff.

There are 5 revisions of PDAEMON:

v0: GT215:MCP89 - the original revision

v1l: MCP89:GF100 - added a third instance of power gating controller for PVCOMP engine

v2: GF100:GF119 - removed PVCOMP support, added second set of input/output signals and ???
v3: GF119:GK104 - changed I[] space layout, added ???

v4: GK104- - a new version of engine power gating controller and ???

Todo:

figure out additions

Todo:

this file deals mostly with GT215 version now

2.5. Power, thermal, and clock management 95

nVidia Hardware Documentation, Release git

2.5.3 NV43:G80 thermal monitoring

Contents

* NV43:G80 thermal monitoring

Introduction

— MMIO register list

The ADC clock

Reading temperature

Setting up thresholds and interrupts
* Alarm

* Tempemmre range

Extended configuration

Introduction

THERM is an area present in PBUS on NV43:G80 GPUs. This area is reponsible for temperature monitoring, probably
on low-end and middle-range GPUs since high-end cards have been using LM89/ADT7473 for a long time. Beside
some configuration knobs, THERM can generate IRQs to the HOST when the temperature goes over a configurable
ALARM threshold or outside a configurable temperature range. This range has been replaced by PTHERM on G80+
GPUs.

THERM’s MMIO range is 0x15b0:0x15c0. There are two major variants of this range:
e NV43:G70
* G70:G80

MMIO register list

Address | Presenton | Name Description

0x0015b0 | all CFGO sensor enable / IRQ enable / ALARM configuration
0x0015b4 | all STATUS sensor state / ALARM state / ADC rate configuration
0x0015b8 | non-IGP CFGl1 misc. configuration

0x0015bc | all TEMP_RANGE | LOW and HIGH temperature thresholds

MMIO 0x15b0: CFG0 [NV43:G70]
* bits 0-7: ALARM_HIGH
e bits 16-23: SENSOR_OFFSET (signed integer)
* bit 24: DISABLE
* bit 28: ALARM_INTR_EN
MMIO 0x15b0: CFGO0 [G70:G80]
* bits 0-13: ALARM_HIGH
* bits 16-29: SENSOR_OFFSET (signed integer)

96 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* bit 30: DISABLE
* bit 31: ENABLE
MMIO 0x15b4: STATUS [NV43:G70]
¢ bits 0-7: SENSOR_RAW
* bit 8: ALARM_HIGH
* bits 25-31: ADC_CLOCK_XXX

Todo: figure out what divisors are available

MMIO 0x15b4: STATUS [G70:G80]
* bits 0-13: SENSOR_RAW
* bit 16: ALARM_HIGH

e bits 26-31: ADC_CLOCK_DIV The division is stored right-shifted 4. The possible division values range
from 32 to 2016 with the possibility to completely bypass the divider.

MMIO 0x15b8: CFG1 [NV43:G70]
* bit 17: ADC_PAUSE
* bit 23: CONNECT_SENSOR
MMIO 0x15bc: TEMP_RANGE [NV43:G70]
* bits 0-7: LOW
* bits 8-15: HIGH
MMIO 0x15bc: TEMP_RANGE [G70:G80]
* bits 0-13: LOW
* bits 16-29: HIGH

The ADC clock

The source clock for THERM’s ADC is:
* NV43:G70: the host clock
* G70:G80: constant (most likely hclck)
(most likely, since the rate doesn’t change when I change the HOST clock)
Before reaching the ADC, the clock source is divided by a fixed divider of 1024 and then by ADC_CLOCK_DIV.
MMIO 0x15b4: STATUS [NV43:G70]
* bits 25-31: ADC_CLOCK_DIV

Todo: figure out what divisors are available

MMIO 0x15b4: STATUS [G70:G80]

* bits 26-31: ADC_CLOCK_DIV The division is stored right-shifted 4. The possible division values range
from 32 to 2016 with the possibility to completely bypass the divider.

2.5. Power, thermal, and clock management 97

nVidia Hardware Documentation, Release git

The final ADC clock is:
ADC_clock = source_clock / ADC_CLOCK_DIV

The accuracy of the reading greatly depends on the ADC clock. A clock too fast will produce a lot of noise. A clock
too low may actually produce an offseted value. The ADC clock rate under 10 kHz is advised, based on limited testing
on a G73.

Todo: Make sure this clock range is safe on all cards

Anyway, it seems like it is clocked at an acceptable frequency at boot time, so, no need to worry too much about it.

Reading temperature

Temperature is read from:
MMIO 0x15b4: STATUS [NV43:G70] bits 0-7: SENSOR_RAW
MMIO 0x15b4: STATUS [G70:G80] bits 0-13: SENSOR_RAW
SENSOR_RAW is the result of the (signed) addition of the actual value read by the ADC and SENSOR_OFFSET:
MMIO 0x15b0: CFGO0 [NV43:G70]
¢ bits 16-23: SENSOR_OFFSET signed
MMIO 0x15b0: CFGO0 [G70:G80]
* bits 16-29: SENSOR_OFFSET signed
Starting temperature readouts requires to flip a few switches that are GPU-dependent:
MMIO 0x15b0: CFGO0 [NV43:G70]
* bit 24: DISABLE
MMIO 0x15b0: CFGO0 [G70:G80]
¢ bit 30: DISABLE - mutually exclusive with ENABLE
* bit 31: ENABLE - mutually exclusive with DISABLE
MMIO 0x15b8: CFG1 [NV43:G70]
* bit 17: ADC_PAUSE
¢ bit 23: CONNECT_SENSOR
Both DISABLE and ADC_PAUSE should be clear. ENABLE and CONNECT_SENSOR should be set.

Todo: There may be other switches.

Setting up thresholds and interrupts

Alarm

THERM features the ability to set up an alarm that will trigger interrupt PBUS #16 when SENSOR_RAW >
ALARM_HIGH. NV43-47 GPUs require ALARM_INTR_EN to be set in order to get the IRQ. You may need to

98 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

set bits 0x40001 in 0x15a0 and 1 in Ox15a4. Their purpose has not been understood yet even though they may be
releated to automatic downclocking.

MMIO 0x15b0: CFGO0 [NV43:G70]
* bits 0-7: ALARM_HIGH
* bit 28: ALARM_INTR_EN
MMIO 0x15b0: CFGO0 [G70:G80]
* bits 0-13: ALARM_HIGH
When SENSOR_RAW > ALARM_HIGH, STATUS.ALARM_HIGH is set.
MMIO 0x15b4: STATUS [NV43:G70]
 bit 8: ALARM_HIGH
MMIO 0x15b4: STATUS [G70:G80]
* bit 16: ALARM_HIGH
STATUS.ALARM_HIGH is unset as soon as SENSOR_RAW < ALARM_HIGH, without any hysteresis cycle.

Temperature range

THERM can check that temperature is inside a range. When the temperature goes outside this range, an interrupt is
sent. The range is defined in the register TEMP_RANGE where the thresholds LOW and HIGH are set.

MMIO 0x15bc: TEMP_RANGE [NV43:G70]
* bits 0-7: LOW
* bits 8-15: HIGH

MMIO 0x15bc: TEMP_RANGE [G70:G80]
* bits 0-13: LOW
* bits 16-29: HIGH

When SENSOR_RAW < TEMP_RANGE.LOW, interrupt PBUS #17 is sent. When SENSOR_RAW >
TEMP_RANGE.HIGH, interrupt PBUS #18 is sent.

There are no hyteresis cycles on these thresholds.

Extended configuration

Todo: Document reg 15b8

2.6 GPU external device I/O units

Contents:

2.6. GPU external device /0 units 99

nVidia Hardware Documentation, Release git

2.6.1 G80:GF119 GPIO lines

Contents

e G80:GF119 GPIO lines

Introduction

Interrupts
G80 GPIO NVIO specials
G84 GPIO NVIO specials

G94 GPIO NVIO specials

GT215 GPIO NVIO specials

Todo: write me

Introduction

Todo: write me

Interrupts

Todo: write me

G80 GPIO NVIO specials

This list applies to G80.

100 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Line | Output Input
0 PWM_0
1 -
2 -
3 tag 0x427?
4 SLI_SENSE_0?
3 -
6 -
7 - PTHERM_INPUT_0O
8 - PTHERM_INPUT 2
9 related to elbc and PTHERM?
10 -
11 SLI_SENSE_1?
12 tag 0x437?
13 tag 0xO0f?
14 -
G84 GPIO NVIO specials
This list applies to G84:G94.
Line | Output Input
4 PWM_0
8 THERM_SHUTDOWN? | PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
11 SLI_SENSE_0?
12 PTHERM_INPUT_2
13 tag 0x0f?
14 SLI_SENSE_1?

G94 GPIO NVIO specials

This list applies to G94:GT215.

Line | Output Input

1 AUXCH_HPD_0

4 PWM_O

8 THERM_SHUTDOWN? | PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
12 PTHERM_INPUT_2
15 AUXCH_HPD_2

20 AUXCH_HPD_1

21 AUXCH_HPD_3

GT215 GPIO NVIO specials

This list applies to GT215:GF119.

2.6. GPU external device /0 units 101

nVidia Hardware Documentation, Release git

Line | Output Input

1 AUXCH_HPD_0

3 SLI_SENSE?

8 THERM_SHUTDOWN? | PTHERM_INPUT_0
9 PWM_1 PTHERM_INPUT_1
11 SLI_SENSE?

12 PTHERM_INPUT_2
15 AUXCH_HPD_2

16 PWM_0O

19 AUXCH_HPD_1

21 AUXCH_HPD_3

22 tag 0x427?

23 tag 0x0f?

[any] | FAN_TACH

2.7 Memory access and structure

Contents:

2.7.1 Memory structure

Contents

* Memory structure

Introduction

Memory planes and banks

Memory banks, ranks, and subpartitions

Memory partitions and subpartitions

— Memory addressing

Introduction
While DRAM is often treated as a flat array of bytes, its internal structure is far more complicated. A good under-
standing of it is necessary for high-performance applications like GPUs.
Looking roughly from the bottom up, VRAM is made of:
1. Memory planes of R rows by C columns, with each cell being one bit

2. Memory banks made of 32, 64, or 128 memory planes used in parallel - the planes are usually spread across
several chips, with one chip containing 16 or 32 memory planes

3. Memory ranks made of several [2, 4 or 8] memory banks wired together and selected by address bits - all banks
for a given memory plane reside in the same chip

4. Memory subpartitions made of one or two memory ranks wired together and selected by chip select wires -
ranks behave similarly to banks, but don’t have to have uniform geometry, and are in separate chips

102 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

5. Memory partitions made of one or two somewhat independent subpartitions

6. The whole VRAM, made of several [1-8] memory partitions

Memory planes and banks

The most basic unit of DRAM is a memory plane, which is a 2d array of bits organised in so-called columns and rows:

[¢]
=

><><><><><><><><>—‘§
=}

0]
=

d o0 W N R OR
KX XXX X X X oaQ
HOXKX XX X X XN
KX XXX X X X w
KX XK XX X X X
KX XK XX X X X o
XX X XX X X X o
KX XXX X X X

buf

>
b
b
e
>
>
b
b

A memory plane contains a buffer, which holds a whole row. Internally, DRAM is read/written in row units via the
buffer. This has several consequences:

* before a bit can be operated on, its row must be loaded into the buffer, which is slow
* after a row is done with, it needs to be written back to the memory array, which is also slow
* accessing a new row is thus slow, and even slower when there already is an active row

* it’s often useful to preemptively close a row after some inactivity time - such operation is called “precharging”
a bank

* different columns in the same row, however, can be accessed quickly

Since loading column address itself takes more time than actually accessing a bit in the active buffer, DRAM is
accessed in bursts - a series of accesses to 1-8 neighbouring bits in the active row. Usually all bits in a burst have to be
located in a single aligned 8-bit group.

The amount of rows and columns in memory plane is always a power of two, and is measured by the count of row
selection and column selection bits [ie. log2 of the row/column count]. There are typically 8-10 column bits and 10-14
row bits.

The memory planes are organised in banks - groups of some power of two number of memory planes. The memory
planes are wired in parallel, sharing the address and control wires, with only the data / data enable wires separate.
This effectively makes a memory bank like a memory plane that’s composed of 32/64/128-bit memory cells instead of
single bits - all the rules that apply to a plane still apply to a bank, except larger units than a bit are operated on.

A single memory chip usually contains 16 or 32 memory planes for a single bank, thus several chips are often wired
together to make wider banks.

Memory banks, ranks, and subpartitions

A memory chip contains several [2, 4, or 8] banks, using the same data wires and multiplexed via bank select wires.
While switching between banks is slightly slower than switching between columns in a row, it’s much faster than
switching between rows in the same bank.

A memory rank is thus made of (MEMORY_CELL_SIZE / MEMORY_CELL_SIZE_PER_CHIP) memory chips.

2.7. Memory access and structure 103

nVidia Hardware Documentation, Release git

One or two memory ranks connected via common wires [including data] except a chip select wire make up a memory
subpartition. Switching between ranks has basically the same performance consequences as switching between banks
in a rank - the only differences are the physical implementation and the possibility of using different amount of row
selection bits for each rank [though bank count and column count have to match].

The consequences of existence of several banks/ranks:

* it’s important to ensure that data accessed together belongs to either the same row, or to different banks [to avoid
row switching]

* tiled memory layouts are designed so that a tile corresponds roughly to a row, and neighbouring tiles never share
a bank

Memory partitions and subpartitions

A memory subpartition has its own DRAM controller on the GPU. 1 or 2 subpartitions make a memory partition,
which is a fairly independent entity with its own memory access queue, own ZROP and CROP units, and own L2
cache on later cards. All memory partitions taken together with the crossbar logic make up the entire VRAM logic for
a GPU.

All subpartitions in a partition have to be configured identically. Partitions in a GPU are usually configured identically,
but don’t have to on newer cards.

The consequences of subpartition/partition existence:
* like banks, different partitions may be utilised to avoid row conflicts for related data

* unlike banks, bandwidth suffers if (sub)partitions are not utilised equally - load balancing is thus very important

Memory addressing

While memory addressing is highly dependent on GPU family, the basic approach is outlined here.
The bits of a memory address are, in sequence, assigned to:
* identifying a byte inside a memory cell - since whole cells always have to be accessed anyway
¢ several column selection bits, to allow for a burst

e partition/subpartition selection - in low bits to ensure good load balancing, but not too low to keep relatively
large tiles in a single partition for ROP’s benefit

* remaining column selection bits

¢ all/most of bank selection bits, sometimes a rank selection bit - so that immediately neighbouring addresses
never cause a row conflict

e row bits

* remaining bank bit or rank bit - effectively allows splitting VRAM into two areas, placing color buffer in one
and zeta buffer in the other, so that there are never row conflicts between them

2.7.2 NV1:G80 surface formats

Contents

* NVI:G80 surface formats

104 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— Introduction I

Todo: write me

Introduction

Todo: write me

2.7.3 NV3 VRAM structure and usage

Contents

* NV3 VRAM structure and usage

— Introduction

Todo: write me

Introduction

Todo: write me

2.7.4 NV3 DMA objects

Contents

* NV3 DMA objects

— Introduction

Todo: write me

Introduction

Todo: write me

2.7. Memory access and structure 105

nVidia Hardware Documentation, Release git

2.7.5 NV4:G80 DMA objects

Contents

* NV4:G80 DMA objects

— Introduction

Todo: write me

Introduction

Todo: write me

2.7.6 NV44 host memory interface

Contents

* NV44 host memory interface

— Introduction

— MMIO registers

Todo: write me

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.7 G80 surface formats

106 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Contents

* G80 surface formats

Introduction

Surface elements

Pitch surfaces

Blocklinear surfaces

Textures, mipmapping and arrays

Multisampled surfaces

Surface formats

*

Simple color surface formats

*

Shared exponent color format

*

YUV color formats

*

Zeta surface format

*

Compressed texture formats
* Bitmap surface format
— G8&80 storage types
* Blocklinear color storage types

* Zeta storage types

— GFI100 storage types

Introduction

This file deals with G80+ cards only. For older cards, see NVI:G80 surface formats.

A “surface” is a 2d or 3d array of elements. Surfaces are used for image storage, and can be bound to at least the
following slots on the engines:

* m2mf input and output buffers
¢ 2d source and destination surfaces

¢ 3d/compute texture units: the textures

3d color render targets

3d zeta render target

compute g[] spaces [G80:GF100]

e 3d/compute image units [GF100+]

PCOPY input and output buffers
PDISPLAY: the framebuffer

Todo: vdec stuff

2.7. Memory access and structure 107

nVidia Hardware Documentation, Release git

Todo: GF100 ZCULL?

Surfaces on G80+ cards come in two types: pitch and blocklinear. Pitch surfaces have a simple format, but they’re
are limited to 2 dimensions only, don’t support arrays nor mipmapping when used as textures, cannot be used for zeta
buffers, and have lower performance than blocklinear textures. Blocklinear surfaces can have up to three dimensions,
can be put into arrays and be mipmapped, and use custom element arrangement in memory. However, blocklinear
surfaces need to be placed in memory area with special storage type, depending on the surface format.

Blocklinear surfaces have two main levels of element rearrangement: high-level and low-level. Low-level rearrange-
ment is quite complicated, depends on surface’s storage type, and is hidden by the VM subsystem - if the surface is
accessed through VM with properly set storage type, only the high-level rearrangement is visible. Thus the low-level
rearrangement can only be seen when accessing blocklinear system RAM directly from CPU, or accessing blocklinear
VRAM with storage type set to 0. Also, low-level rearrangement for VRAM uses several tricks to distribute load
evenly across memory partitions, while rearrangement for system RAM skips them and merely reorders elements
inside a gob. High-level rearrangement, otoh, is relatively simple, and always visible to the user - its knowledge is
needed to calculate address of a given element, or to calculate the memory size of a surface.

Surface elements

A basic unit of surface is an “element”, which can be 1, 2, 4, 8, or 16 bytes long. element type is vital in selecting the
proper compressed storage type for a surface. For most surface formats, an element means simply a sample. This is
different for surfaces storing compressed textures - the elements are compressed blocks. Also, it’s different for bitmap
textures - in these, an element is a 64-bit word containing 8x8 block of samples.

While texture, RT, and 2d bindings deal only with surface elements, they’re ignored by some other binding points, like
PCOPY and m2mf - in these, the element size is ignored, and the surface is treated as an array of bytes. That is, a
16x16 surface of 4-byte elements is treated as a 64x16 surface of bytes.

Pitch surfaces

A pitch surface is a 2d array of elements, where each row is contiguous in memory, and each row starts at a fixed

9. 6

distance from start of the previous one. This distance is the surface’s “pitch”. Pitch surfaces always use storage type 0
[pitch].

The attributes defining a pitch surface are:
* address: 40-bit VM address, aligned to 64 bytes
* pitch: distance between subsequent rows in bytes - needs to be a multiple of 64
* element size: implied by format, or defaulting to 1 if binding point is byte-oriented
* width: surface width in elements, only used when bounds checking / size information is needed

* height: surface height in elements, only used when bounds checking / size information is needed

Todo: check pitch, width, height min/max values. this may depend on binding point. check if 64 byte alignment still
holds on GF100.

The address of element (x,y) is:

address + pitch % y + elem_size * x

Or, alternatively, the address of byte (x,y) is:

108 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

address + pitch » y + x

Blocklinear surfaces

A blocklinear surface is a 3d array of elements, stored in memory in units called “gobs” and “blocks”. There are two
levels of tiling. The lower-level unit is called a “gob” and has a fixed size. This size is 64 bytes x 4 x 1 on G80:GF100
cards, 64 bytes x 8 x 1 for GF100+ cards. The higher-level unit is called a “block™, and is of variable size between
Ix1x1 and 32x32x32 gobs.

The attributes defining a blocklinear surface are:
¢ address: 40-bit VM address, aligned to gob size [0x100 bytes on G80:GF100, 0x200 bytes on GF100]
* block width: 0-5, log2 of gobs per block in x dimension
* block height: 0-5, log2 of gobs per block in y dimension
* block depth: 0-5, log2 of gobs per block in z dimension
* element size: implied by format, or defaulting to 1 if the binding point is byte-oriented
¢ width: surface width [size in X dimension] in elements
* height: surface height [size in y dimension] in elements

¢ depth: surface depth [size in z dimension] in elements

Todo: check bounduaries on them all, check tiling on GF100.

Todo: PCOPY surfaces with weird gob size

It should be noted that some limits on these parameters are to some extent specific to the binding point. In particular,
block width greater than 0 is only supported by the render targets and texture units, with render targets only supporting
0 and 1. block height of 0-5 can be safely used with all blocklinear surface binding points, and block depth of 0-5 can
be used with binding points other than G80 g[] spaces, which only support 0.

The blocklinear format works as follows:

First, the block size is computed. This computation depends on the binding point: some binding points clamp the
effective block size in a given dimension to the smallest size that would cover the whole surfaces, some do not. The
ones that do are called “auto-sizing” binding points. One of such binding ports where it’s important is the texture unit:
since all mipmap levels of a texture use a single “block size” field in TIC, the auto-sizing is needed to ensure that small
mipmaps of a large surface don’t use needlessly large blocks. Pseudocode:

bytes_per_gob_x = 64;
if (gpu < GF100)
bytes_per_gob_y = 4;
else
bytes_per_gob_y = 8;
bytes_per_gob_z = 1;
eff _block_width = block_width;
eff_block_height = block_height;
eff_block_depth = block_depth;
if (auto_sizing) {
while (eff_block_width > 0 && (bytes_per_gob_x << (eff_block_width - 1)) >= width_
—+ element_size)

(continues on next page)

2.7. Memory access and structure 109

nVidia Hardware Documentation, Release git

(continued from previous page)

eff_block_width——;
while (eff_block_height > 0 && (bytes_per_gob_y << (eff_block_height - 1)) >=
—height)
eff_block_height-——;
while (eff_block_depth > 0 && (bytes_per_gob_z << (eff_block_depth - 1)) >= depth)
eff_block_depth——;

}

gobs_per_block_x = 1 << eff_block_width;

gobs_per_block_y = 1 << eff_block_height;

gobs_per_block_z = 1 << eff_block_depth;

bytes_per_block_x = bytes_per_gob_x % gobs_per_block_x;
bytes_per_block_y = bytes_per_gob_y * gobs_per_block_y;
bytes_per_block_z = bytes_per_gob_z % gobs_per_block_z;
elements_per_block_x = bytes_per_block_x / element_size;
gob_bytes = bytes_per_gob_x * bytes_per_gob_y * bytes_per_gob_z;
block_gobs = gobs_per_bigtils_x * gobs_per_block_y * gobs_per_block_z;
block_bytes = gob_bytes * block_gobs;

Due to the auto-sizing being present on some binding points, it’s a bad idea to use surfaces that have block size at
least two times bigger than the actual surface - they’ll be unusable on these binding points [and waste a lot of memory
anyway].

Once block size is known, the geometry and size of the surface can be determined. A surface is first broken down into
blocks. Each block convers a contiguous elements_per_block_x x bytes_per_block_y x bytes_per_block_z aligned
subarea of the surface. If the surface size is not a multiple of the block size in any dimension, the size is aligned up for
surface layout purposes and the remaining space is unused. The blocks making up a surface are stored sequentially in
memory first in x direction, then in y direction, then in z direction:

blocks_per_surface_x = ceil (width » element_size / bytes_per_block_x);
blocks_per_surface_y = ceil (height / bytes_per_block_y);
blocks_per_surface_z = ceil (depth / bytes_per_block_z);

surface_blocks = blocks_per_surface_x * blocks_per_surface_y x blocks_per_surface_z;
// total bytes in surface - surface resides at addresses [address, address+surface_
—bytes)

surface_bytes = surface_blocks » block_bytes;

block_address = address + floor (x_coord * element_size / bytes_per_block_x) * block_
—bytes

+ floor (y_coord / bytes_per_block_y) * block_bytes * blocks_per_surface_x;
+ floor (z_coord / bytes_per_block_z) » block_bytes * blocks_per_surface_x,
—* blocks_per_surface_y;
x_coord_in_block = (x_coord x element_size) % bytes_per_block_x;
y_coord_in_block = y_coord bytes_per_block_y;
z_coord_in_block z_coord bytes_per_block_z;

o
o]
o
°

Like blocks in the surface, gobs inside a block are stored ordered first by x coord, then by y coord, then by z coord:

gob_address = block_address
+ floor (x_coord_in_block / bytes_per_gob_x) % gob_bytes
+ floor(y_coord_in_block / bytes_per_gob_y) * gob_bytes * gobs_per_block_x
+ z_coord_in_block * gob_bytes x gobs_per_block_x * gobs_per_block_y; //.,
—bytes_per_gob_z always 1.
x_coord_in_gob = x_coord_in_block
y_coord_in_gob = y_coord_in_block

bytes_per_gob_x;
bytes_per_gob_y;

o
5
o
5

The elements inside a gob are likewise stored ordered first by x coordinate, and then by y:

110 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

element_address = gob_address + x_coord_in_gob + y_coord_in_gob * bytes_per_gob_x;

Note that the above is the higher-level rearrangement only - the element address resulting from the above pseudocode
is the address that user would see by looking through the card’s VM subsystem. The lower-level rearrangement is
storage type dependent, invisible to the user, and will be covered below.

As an example, let’s take a 13 x 17 x 3 surface with element size of 16 bytes, block width of 1, block height of 1, and
block depth of 1. Further, the card is assumed to be G80. The surface will be located in memory the following way:

* block size in bytes = 0x800 bytes

* block width: 128 bytes / 8 elements
block height: 8

block depth: 2

* surface width in blocks: 2
* surface height in blocks: 3
* surface depth in blocks: 2

* surface memory size: 0x6000 bytes

| - x element bounduary

|| — x gob bounduary

||| - x block bounduary

[no line] - y element bounduary
—-—— — y gob bounduary

=== - vy block bounduary

z == 0:

X ——>
e me e e s ot s e At e
(1 o1 1 21 31 41 51 6| 711l 81 9110 | 11 || 12 |
R e R e e B e B I e B s S R

V| 0/000010010]0020/0030]10100/011010120]0130]110800]0810/10820]10830|10900 |
110040/0050100601007011014010150/0160[0170	110840]10850[0860[0870] 0940					
2/0080[10090	00a0[00p0	1018010190]01a0	01b0][10880/0890[108a0	08b0]10980
3/00c0]00d0	00e0[00£f0	01c0]/01d0	01e0	01£0]]]08c0	08d0[08e0	08£0]109cO]
et e B it S e i 1 Sttt						
410200(1021010220(102301103001031010320/103301]110a00/0a10]0a20	0a30]]0b00					
5/02401025010260[0270	10340]1035010360]0370]110a40	0a50]0a60	0a70]	0b40		
61028010290[02a0[02b0	10380[10390/03a0[03b0		[0a80[0a90	0aal	0ab0]	
[7102c0]02d0/02e0[02£0	103c0]03d0[03e0	03£0]][0ac0	0ad0	0ael0	0af0]	0bcO
t==f====t====t====t====tt====f====t====f====t+tt====t====f====t====ff====1+						
8/1000(11010/1020(11030(1110011110]11201113011118001181011820(1830]11900]						
91104011050(1106011070	11140]111501116011170]1118401185011860[1870]1]1940					
[10/108011090|10a0[10b0|]1118011190]111a0|11b0]]11880]1890]118a0|18b0]|]1980]
[11]/10c0]10d0/10e0[10£f0|[11c0[11d0[11e0|11£0|][18c0|18d0[18e0|18£0][19cO]|
e T S S S e St
[12]112001121011220(1230|1130011310]1132011330]][1a00|1al0]1la20|1a30]|1b00]|
[13]11240(1125011260[1270(11340[11350[11360(1370]][1a40|1a50]1a60|1a70] |1b40]|
[1411280(11290112a0[12b0|[1380[11390[13a0|13b0||[1a80|1a%90|laal|lab0] |1b80|
[15]112c0]12d0|12e0[12£f0|[13c0[13d0[13e0|13f0||[lacO0|lad0|lae0|laf0] |1lbcO]|

(continues on next page)

2.7. Memory access and structure 111

nVidia Hardware Documentation, Release git

(continued from previous page)

x ——>
s R et o 2 et e s
(el o 1rr o290 31 41 51 e 71 81 9110 [11 || 12 |
e e e L e o T St

V| 0/0400(10410/0420(10430|10500[0510/052010530/10c00]/0c10]0c20]0c30]]0d00 |
| 110440(10450/0460[10470|105401055010560[10570]110c40|/0c50[0c60|0c70]10d40]
| 21048010490(04a0]04b0|10580[10590/105a0[05b0||[0c80[0c90|0cal|0cb0O]||0d80 |
| 3104c0/04d0[04e0[04£0|105c0]05d0/05e0[05£0]|[0cc0O0[0cd0|0cel|0cf0]||0dcO|
e T S A S e At S

410600106101062010630]10700/0710[0720|0730]110e00|0al0|0e20|0a30]||0£00 |

51064010650/1066010670110740[075010760[0770]|10e40]0a50]|0e60]0a70]|]0£40 |
6/1068010690|06a0[06b0|[078010790107a0]07b0]||[0e80|/0a90|0eal|0ab0]||[0£80]
7106c0]06d0|06e0[06£0]|07c0[07d0[07€0[07£0|||0ec0O0|0ad0|0ee0|0af0]||[0£fcO]|
t==t====t====t====f====tt====f===—=t====f====tfft====tf====f====tf====tt====1
| 8/1400(1141011420(11430(1150011510]1152011530]]11c00[1cl1l0[1c20|1c30]]1d00]|
| 9114401145011460[11470(1154011550]1156011570]]11c40|1c50]1c60|1c70]]1d40]
[101148011490[14a0[14b0|[1580[11590115a0[15b0||[1c80[1c90|1lcal|lcb0O||1d80|
[11]14c0[14d0|14e0[14£0|[15c0]15d0[15€0|15£0|][1lccO0|1lcdO|lce0|1lcfO] |1dcO]|

[1211600(1610(1162011630(11700(11710(1720[1730||]1e00]1el0|1e20|1e30||1£00]
[13]1164011650|1660[1670|117401175011760[1770]][1e40|1e50|1e60|1e70]||1£40]|
[141168011690[16a0[16b0|[1780[11790|17a0[17b0||[1e80]1e90|1leal|lebO||1£80]
[15116c0/16d0[16e0[16£0|[17c0[17d0|17e0[17£0||[lecO|led0|leel|lefO||1£fcO]

==t====t====f====t====144 + t====4====tff====t====f====t====t4====+
[16]2400124101242012430(125001251012520125301112c00(2c10[2c20(2c30]12d00]|
e s B e e Rt e S et B e
[z block bounduary here]
z == 2:
X ——>
yt—+—4———t ettt -ttt -+ ————+
[[o1 21 21 311 41 51 61 71 811 9110 | 11 || 12 |
|+——4————F——— e ———— 4

V| 0]13000[3010|3020(13030(13100(31101312013130/11380013810]1382013830]13900 |
| 113040|3050[13060[30701314013150|3160[3170]13840]13850(3860(3870] 3940
| 21308013090(30a0]30b0|(1318013190|31a0[31b0||[3880[13890|38a0|38b0||3980]
| 3130c0|30d0[30e0[30£0|[31c0[31d0|31e0[31£0||[38c0]38d0|38e0[38£0||39cO]

413200(1321013220(13230|13300[133101332013330||13a00[3a10|3a20|3a30]|3b00 |
5[1324013250(13260(1327013340(3350|3360[3370||13a40]3a50|3a60|3a70] |3b40 |
61328013290132a0(32b0||338013390(133a0|33b0]]]3a80|3a90|3aal|3ab0] |3b80]
7132c0132d0[32e0[32£033c0[33d0|33e0[33£f0]|||3ac0]3ad0|3ael0|3af0] |3bcO|
==t====t====t====t====++ + + t====+++ t====t====t====t+t====+
| 814000/40101402014030]14100141101412014130]114800148101482014830114900|
| 91404014050(1406014070|14140141501416014170]114840148501486014870114940|
[10]1408014090(140a0]40b0|1418014190141a0]41b0||1488014890|48a0|48b0] 14980 |
[11]140c0/40d0[40e0]40£f0|141c0]141d0|41e0]41£0||148c0148d0|48e0/48£0]149c0|
B T L R L Tt et I B i e
|121420014210142201423014300143101432014330||14a00]4a10|4a20|4a30]|4b00 |
|1314240142501426014270|14340143501436014370||14a40]14a50|4a60(4a70] |4b40 |
[141428014290(142a0(42b0 | 14380[4390(43a0(43b0||4a80]4a90|4aal0|4ab0] [4b80 |
[15]142c0142d0[42e042£f0| |43c0]43d0[43e0[43£f0]|||4ac0]4ad0|4ael0|4af0] |4bcO|

112 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Textures, mipmapping and arrays

A texture on G80/GF100 can have one of 9 types:
¢ 1D: made of 1 or more mip levels, each mip level is a blocklinear surface with height and depth forced to 1
* 2D: made of 1 or more mip levels, each mip level is a blocklinear surface with depth forced to 1
* 3D: made of 1 or more mip levels, each mip level is a blocklinear surface
* 1D_ARRAY: made of some number of subtextures, each subtexture is like a single 1D texture
* 2D_ARRAY: made of some number of subtextures, each subtexture is like a single 2D texture

* CUBE: made of 6 subtextures, each subtexture is like a single 2D texture - has the same layout as a 2D_ARRAY
with 6 subtextures, but different semantics

* BUFFER: a simple packed 1D array of elements - not a surface
* RECT: a single pitch surface, or a single blocklinear surface with depth forced to 1

* CUBE_ARRAY [GT215+]: like 2D_ARRAY, but subtexture count has to be divisible by 6, and groups of 6
subtextures behave like CUBE textures

Types other than BUFFER and RECT are made of subtextures, which are in turn made of mip levels, which are
blocklinear surfaces. For such textures, only the parameters of the first mip level of the first subtexture are specified -
parameters of the following mip levels and subtextures are calculated automatically.

Each mip level has each dimension 2 times smaller than the corresponding dimension of previous mip level, rounding
down unless it would result in size of 0. Since texture units use auto-sizing for the block size, the block sizes will be
different between mip levels. The surface for each mip level starts right after the previous one ends. Also, the total
size of the subtexture is rounded up to the size of the Oth mip level’s block size:

mip_address|[0] = subtexture_address;

mip_width[0] = texture_width;

mip_height [0] = texture_height;

mip_depth[0] = texture_depth;

mip_bytes[0] = calc_surface_bytes(mip[0]);

subtexture_bytes = mip_bytes[0];

for (i = 1; 1 <= max_mip_level; i++) {
mip_address[i] = mip_address[i-1] + mip_bytes[i-1];
mip_width[i] = max(l, floor (mip_width[i-1] / 2));
mip_height[i] = max(l, floor (mip_height[i-1] / 2));
mip_depth[i] = max(l, floor (mip_depth[i-1] / 2));
mip_bytes[i] = calc_surface_bytes (mip[1l]);

subtexture_bytes += mip_bytes[i];
}
subtexture_bytes = alignup (subtexture_bytes, calc_surface_block_bytes(mip[0]));

For 1D_ARRAY, 2D_ARRAY, CUBE and CUBE_ARRAY textures, the subtextures are stored sequentially:

for (i = 0; i < subtexture_count; i++) {
subtexture_address[i] = texture_address + 1 % subtexture_bytes;

For more information about textures, see graph/g80-texture.txt

Multisampled surfaces

Some surfaces are used as multisampled surfaces. This includes surfaces bound as color and zeta render targets when
multisampling type is other than 1X, as well as multisampled textures on GF100+.

2.7. Memory access and structure 113

nVidia Hardware Documentation, Release git

A multisampled surface contains several samples per pixel. A “sample” is a single set of RGBA or depth/stencil
values [depending on surface type]. These samples correspond to various points inside the pixel, called sample posi-
tions. When a multisample surface has to be displayed, it is downsampled to a normal surface by an operation called
“resolving”.

G80+ GPUs also support a variant of multisampling called “coverage sampling” or CSAA. When CSAA is used,
there are two sample types: full samples and coverage samples. Full samples behave as in normal multisampling.
Coverage samples have assigned positions inside a pixel, but their values are not stored in the render target surfaces
when rendering. Instead, a special component, called C or coverage, is added to the zeta surface, and for each coverage
sample, a bitmask of full samples with the same value is stored. During the resolve process, this bitmask is used to
assign different weights to the full samples depending on the count of coverage samples with matching values, thus
improving picture quality. Note that the C component conceptually belongs to a whole pixel, not to individual samples.
However, for surface layout purposes, its value is split into several parts, and each of the parts is stored together with
one of the samples.

For the most part, multisampling mode does not affect surface layout - in fact, a multisampled render target is bound
as a non-multisampled texture for the resolving process. However, multisampling mode is vital for CSAA zeta surface
layout, and for render target storage type selection if compression is to be used - the compression schema used is
directly tied to multisampling mode.

The following multisample modes exist:
e mode 0x0: MS1 [1x1] - no multisampling
— sample 0: (0x0.8, 0x0.8) [0,0]
e mode Ox1: MS2 [2x1]
— sample 0: (0x0.4, 0x0.4) [0,0]
— sample 1: (0x0.c, 0x0.c) [1,0]
¢ mode 0x2: MS4 [2x2]
sample 0: (0x0.6, 0x0.2) [0,0]
sample 1: (0x0.e, 0x0.6) [1,0]
sample 2: (0x0.2, 0x0.a) [0,1]
sample 3: (0x0.a, 0x0.e) [1,1]
* mode 0x3: MS8 [4x2]
sample 0: (0x0.1, 0x0.7) [0,0]
— sample 1: (0x0.5, 0x0.3) [1,0]
— sample 2: (0x0.3, 0x0.d) [0,1]
— sample 3: (0x0.7, 0x0.b) [1,1]
— sample 4: (0x0.9, 0x0.5) [2,0]
— sample 5: (0x0.f, 0x0.1) [3,0]
— sample 6: (0x0.b, 0x0.f) [2,1]
— sample 7: (0x0.d, 0x0.9) [3,1]
e mode 0x4: MS2_ALT [2x1] [GT215-]
— sample 0: (0x0.c, 0x0.c) [1,0]
— sample 1: (0x0.4, 0x0.4) [0,0]
* mode 0x5: MS8_ALT [4x2] [GT215-]

114 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

sample 0: (0x0.9, 0x0.5) [2,0]
sample 1: (0x0.7, 0x0.b) [1,1]
sample 2: (0x0.d, 0x0.9) [3,1]
sample 3: (0x0.5, 0x0.3) [1,0]
sample 4: (0x0.3, 0x0.d) [0,1]
sample 5: (0x0.1, 0x0.7) [0,0]
sample 6: (0x0.b, 0x0.f) [2,1]
sample 7: (0x0.f, 0x0.1) [3,0]

¢ mode 0x6: ?7?? [GF100-] [XXX]
* mode 0x8: MS4_CS4 [2x2]

sample 0: (0x0.6, 0x0.2) [0,0]
sample 1: (0x0.e, 0x0.6) [1,0]
sample 2: (0x0.2, 0x0.a) [0,1]
sample 3: (0x0.a, 0x0.e) [1,1]
coverage sample 4: (0x0.5, 0x0.7), belongs to 1, 3, 0, 2
coverage sample 5: (0x0.9, 0x0.4), belongs to 3, 2, 1, 0
coverage sample 6: (0x0.7, 0x0.c), belongs to 0, 1, 2, 3
coverage sample 7: (0x0.b, 0x0.9), belongs to 2, 0, 3, 1

C component is 16 bits per pixel, bitfields:

0-3: sample 4 associations: 0, 1, 2, 3
4-7: sample 5 associations: 0, 1, 2, 3
8-11: sample 6 associations: 0, 1,2, 3

12-15: sample 7 associations: 0, 1, 2, 3

¢ mode 0x9: MS4_CS12 [2x2]

sample 0: (0x0.6, 0x0.1) [0,0]

sample 1: (0x0.f, 0x0.6) [1,0]

sample 2: (0x0.1, 0x0.a) [0,1]

sample 3: (0x0.a, 0x0.f) [1,1]

coverage sample 4: (0x0.4, 0x0.e), belongs to 2, 3
coverage sample 5: (0x0.c, 0x0.3), belongs to 1, 0
coverage sample 6: (0x0.d, 0x0.d), belongs to 3, 1
coverage sample 7: (0x0.4, 0x0.4), belongs to 0, 2
coverage sample 8: (0x0.9, 0x0.5), belongs to 0, 1, 2
coverage sample 9: (0x0.7, 0x0.7), belongs to 0, 2, 1, 3
coverage sample a: (0x0.b, 0x0.8), belongs to 1, 3, 0
coverage sample b: (0x0.3, 0x0.8), belongs to 2, 0, 3

2.7. Memory access and structure

115

nVidia Hardware Documentation, Release git

C component is 32 bits per pixel, bitfields:

coverage sample c: (0x0.8, 0x0.c), belongs to 3, 2, 1
coverage sample d: (0x0.2, 0x0.2), belongs to 0, 2

coverage sample e: (0x0.5, 0x0.b), belongs to 2, 3, 0, 1

coverage sample f: (0x0.e, 0x0.9), belongs to 1, 3

0-1: sample 4 associations: 2, 3

2-3: sample 5 associations: 0, 1

4-5: sample 6 associations: 1, 3

6-7: sample 7 associations: 0, 2

8-10:

11-14: sample 9 associations: 0, 1, 2, 3
15-17:
18-20:
31-23:
24-25:
26-29:

30-31

sample 8 associations: 0, 1, 2

sample a associations: 0, 1, 3
sample b associations: 0, 2, 3
sample c associations: 1, 2, 3

sample d associations: 0, 2

: sample f associations: 1, 3

¢ mode Oxa: MS8_CSS8 [4x2]

— sample 0: (0x0.1, 0x0.3) [0,0]
sample 1: (0x0.6, 0x0.4) [1,0]
sample 2: (0x0.3, 0x0.f) [0,1]
sample 3: (0x0.4, 0x0.b) [1,1]
sample 4: (0x0.c, 0x0.1) [2,0]
sample 5: (0x0.e, 0x0.7) [3,0]
sample 6: (0x0.8, 0x0.8) [2,1]
sample 7: (0x0.f, 0x0.d) [3,1]

C component is 32 bits per pixel, bitfields:

— 0-3: sample 8 associations: 0, 1, 3, 6

sample e associations: 0, 1, 2, 3

coverage sample 8: (0x0.5, 0x0.7), belongs to 1, 6, 3, 0

coverage sample 9: (0x0.7, 0x0.2), belongs to 1, 0, 4, 6

coverage sample a: (0x0.b, 0x0.6), belongs to 5, 6, 1, 4

coverage sample b: (0x0.d, 0x0.3), belongs to 4, 5, 6, 1

coverage sample c: (0x0.2, 0x0.9), belongs to 3, 0, 2, 1

coverage sample d: (0x0.7, 0x0.c), belongs to 3, 2, 6, 7

coverage sample e: (0x0.a, 0x0.e), belongs to 7, 3, 2, 6

coverage sample f: (0x0.c, 0x0.a), belongs to 5, 6, 7, 3

116

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

4-7: sample 8 associations: 0, 1, 4, 6

8-11: sample 8 associations: 1,4, 5, 6
— 12-15: sample 8 associations: 1,4, 5, 6
— 16-19: sample 8 associations: 0, 1, 2, 3
— 20-23: sample 8 associations: 2, 3, 6, 7
— 24-27: sample 8 associations: 2, 3, 6, 7
— 28-31: sample 8 associations: 3, 5, 6, 7
* mode 0xb: MS8_CS24 [GF100-]

Todo: wtf is up with modes 4 and 5?

Todo: nail down MS8_CS24 sample positions

Todo: figure out mode 6

Todo: figure out MS8_CS24 C component

Note that MS8 and MS8_C* modes cannot be used with surfaces that have 16-byte element size due to a hardware
limitation. Also, multisampling is only possible with blocklinear surfaces.

Todo: check MS8/128bpp on GF100.

The sample ids are, for full samples, the values appearing in the sampleid register. The numbers in () are the geometric
coordinates of the sample inside a pixel, as used by the rasterization process. The dimensions in [] are dimensions of a
block represents a pixel in the surface - if it’s 4x2, each pixel is represented in the surface as a block 4 elements wide
and 2 elements tall. The numbers in [] after each full sample are the coordinates inside this block.

Each coverage sample “belongs to” several full samples. For every such pair of coverage sample and full sample,
the C component contains a bit that tells if the coverage sample’s value is the same as the full one’s, ie. if the last
rendered primitive that covered the full sample also covered the coverage sample. When the surface is resolved, each
sample will “contribute” to exactly one full sample. The full samples always contribute to themselves, while coverage
sample will contribute to the first full sample that they belong to, in order listed above, that has the relevant bit set in
C component of the zeta surface. If none of the C bits for a given coverage sample are set, the sample will default to
contributing to the first sample in its belongs list. Then, for each full sample, the number of samples contributing to it
is counted, and used as its weight when performing the downsample calculation.

Note that, while the belongs list orderings are carefully chosen based on sample locations and to even the weights, the
bits in C component don’t use this ordering and are sorted by sample id instead.

The C component is 16 or 32 bits per pixel, depending on the format. It is then split into 8-bit chunks, starting from
LSB, and each chunk is assigned to one of the full samples. For MS4_CS4 and MS8_CS8, only samples in the top
line of each block get a chunk assigned, for MS4_CS12 all samples get a chunk. The chunks are assigned to samples
ordered first by x coordinate of the sample, then by its y coordinate.

2.7. Memory access and structure 117

nVidia Hardware Documentation, Release git

Surface formats

A surface’s format determines the type of information it stores in its elements, the element size, and the element
layout. Not all binding points care about the format - m2mf and PCOPY treat all surfaces as arrays of bytes. Also,
format specification differs a lot between the binding points that make use of it - 2d engine and render targets use a
big enum of valid formats, with values specifying both the layout and components, while texture units decouple layout
specification from component assignment and type selection, allowing arbitrary swizzles.

There are 3 main enums used for specifying surface formats:
* texture format: used for textures, epecifies element size and layout, but not the component assignments nor type
* color format: used for color RTs and the 2d engine, specifies the full format

* zeta format: used for zeta RTs, specifies the full format, except the specific coverage sampling mode, if appli-
cable

The surface formats can be broadly divided into the following categories:

* simple color formats: elements correspond directly to samples. Each element has 1 to 4 bitfields corresponding
to R, G, B, A components. Usable for texturing, color RTs, and 2d engine.

* shared exponent color format: like above, but the components are floats sharing the exponent bitfield. Usable
for texturing only.

* YUV color formats: element corresponds to two pixels lying in the same horizontal line. The pixels have three
components, conventionally labeled as Y, U, V. U and V components are common for the two pixels making up
an element, but Y components are separate. Usable for texturing only.

* zeta formats: elements correspond to samples. There is a per-sample depth component, optionally a per-sample
stencil component, and optionally a per-pixel coverage value for CSAA surfaces. Usable for texturing and ZETA
RT.

» compressed texture formats: elements correspond to blocks of samples, and are decoded to RGBA color values
on the fly. Can be used only for texturing.

* bitmap texture format: each element corresponds to 8x8 block of samples, with 1 bit per sample. Has to be used
with a special texture sampler. Usable for texturing and 2d engine.

Todo: wtf is color format Ox1d?

Simple color surface formats

A simple color surface is a surface where each element corresponds directly to a sample, each sample has 4 components
known as R, G, B, A [in that order], and the bitfields in element correspond directly to components. There can be less
bitfields than components - the remaining components will be ignored on write, and get a default value on read, which
is 0 for R, G, B and 1 for A.

When bound to texture unit, the simple color formats are specified in three parts. First, the format is specified, which
is an enumerated value shared with other format types. This format specifies the format type and, for simple color
formats, element size, and location of bitfields inside the element. Then, the type [float/sint/uint/unorm/snorm] of each
element component is specified. Finally, a swizzle is specified: each of the 4 component outputs [R, G, B, A] from
the texture unit can be mapped to any of the components present in the element [called CO-C3], constant 0, integer
constant 1, or float constant 1.

Thanks to the swizzle capability, there’s no need to support multiple orderings in the format itself, and all simple color
texture formats have CO bitfield starting at LSB of the first byte, C1 [if present] at the first bit after CO, and so on.
Thus it’s enough to specify bitfield lengths to uniquely identify a texture type: for example 5_5_6 is a format with 3

118 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

components and element size of 2 bytes, CO at bits 0-4, C1 at bits 5-9, and C2 at bits 10-15. The element is always
treated as a little-endian word of the proper size, and bitfields are listed from LSB side. Also, in some cases the texture
format has bitfields used only for padding, and not usable as components: these will be listed in the name as X<size>.
For example, 32_8_X?24 is a format with element size of 8 bytes, where bits 0-31 are C0, 32-39 are C1, and 40-63 are
unusable. [XXX: what exactly happens to element layout in big-endian mode?]

However, when bound to RTs or the 2d engine, all of the format, including element size, element layout, component
types, component assignment, and SRGB flag, is specified by a single enumerated value. These formats have a many-
to-one relationship to texture formats, and are listed here below the corresponding one. The information listed here
for a format is CO-C3 assignments to actual components and component type, plus SRGB flag where applicable. The
components can be R, G, B, A, representing a bitfield corresponding directly to a single component, X representing
an unused bitfield, or Y representing a bitfield copied to all components on read, and filled with the R value on write.

The formats are:
Element size 16:

¢ texture format Ox01: 32 _32 32 32

color format 0xcO: RGBA, float

color format Oxcl: RGBA, sint

color format Oxc2: RGBA, uint
color format 0xc3: RGBX, float

color format Oxc4: RGBX, sint

color format 0Oxc5: RGBX, uint

Element size 8:

¢ texture format 0x03: 16_16_16_16

color format Oxc6: RGBA, unorm

color format 0xc7: RGBA, snorm

color format 0xc8: RGBA, sint

color format 0xc9: RGBA, uint

color format Oxca: RGBA, float

color format Oxce: RGBX, float

¢ texture format 0x04: 32_32
— color format Oxcb: RG, float
— color format Oxcc: RG, sint
— color format Oxcd: RG, uint
e texture format 0x05: 32_8_X24
Element size 4:

¢ texture format 0x07: 8_8 8 X8

Todo: htf do I determine if a surface format counts as 0x07 or 0x08?

¢ texture format 0x08: 8_8_8_8

— color format Oxcf: BGRA, unorm

2.7. Memory access and structure 119

nVidia Hardware Documentation, Release git

color format 0xdO0:
color format 0xd5:
color format 0xd6:
color format 0xd7:
color format 0xdS:
color format 0xd9:
color format Oxe6:
color format Oxe7:
color format 0xf9:
color format Oxfa:
color format Oxfd:

color format Oxfe:

BGRA, unorm, SRGB
RGBA, unorm
RGBA, unorm, SRGB
RGBA, snorm
RGBA, sint

RGBA, uint

BGRX, unorm
BGRX, unorm, SRGB
RGBX, unorm
RGBX, unorm, SRGB
BGRX, unorm [XXX]
BGRX, unorm [XXX]

e texture format 0x09: 10_10_10_2

— color format 0xd1: RGBA, unorm
— color format 0xd2: RGBA, uint

— color format Oxdf: BGRA, unorm

¢ texture format OxOc: 16_16

color format Oxda:
color format Oxdb:
color format Oxdc:
color format Oxdd:

color format Oxde:

RG, unorm
RG, snorm
RG, sint
RG, uint
RG, float

¢ texture format 0x0d: 24_8

¢ texture format OxOe: 8_24

e texture format OxO0f: 32

color format Oxe3:
color format Oxe4:

color format Oxe5:

color format Oxff:

R, sint

R, uint

R, float

Y, uint [XXX]

e texture format 0x21: 11_11_10

— color format 0xeO: RGB, float

Element size 2:

¢ texture format 0x12: 4_4_4_4

e texture format Ox13: 1.5 55

e texture format Ox14: 5_5_5_1

— color format 0xe9: BGRA, unorm

120

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— color format 0xf8: BGRX, unorm
— color format Oxfb: BGRX, unorm [XXX]
— color format Oxfc: BGRX, unorm [XXX]
¢ texture format Ox15: 5_6_5
— color format Oxe8: BGR, unorm
* texture format 0x16: 5_5_6
¢ texture format Ox18: 8 8

color format Oxea: RG, unorm

color format Oxeb: RG, snorm

color format Oxec: RG, uint

color format Oxed: RG, sint

¢ texture format Ox1b: 16

color format Oxee: R, unorm

color format Oxef: R, snorm

color format 0xf0: R, sint

color format Oxf1: R, uint

color format 0xf2: R, float

Element size 1:

e texture format Ox1d: 8

color format 0xf3: R, unorm

color format 0xf4: R, snorm

color format Oxf5: R, sint

color format 0xf6: R, uint

color format 0xf7: A, unorm

¢ texture format Oxle: 4_4

Todo: which component types are valid for a given bitfield size?

Todo: clarify float encoding for weird sizes

Shared exponent color format

A shared exponent color format is like a simple color format, but there’s an extra bitfield, called E, that’s used as a
shared exponent for CO-C2. The remaining three bitfields correspond to the mantissas of CO-C2, respectively. They
can be swizzled arbitrarily, but they have to use the float type.

Element size 4:

o texture format 0x20: 9_9 9 ES

2.7. Memory access and structure 121

nVidia Hardware Documentation, Release git

YUV color formats

These formats are also similar to color formats. However, The components are conventionally called Y, U, V: CO is
known as U, C1 is known as Y, and C2 is known as V. An element represents two pixels, and has 4 bitfields: YA
representing Y value for first pixel, YB representing Y value for second pixel, U representing U value for both pixels,
and V representing V value of both pixels. There are two YUV formats, differing in bitfield order:

Element size 4:
¢ texture format Ox21: U8_YA8_ V8 _YBS8
¢ texture format 0x22: YA8_U8_YB8_V8

Todo: verify I haven’t screwed up the ordering here

Zeta surface format

A zeta surface, like a simple color surface, has one element per sample. It contains up to three components: the depth
component [called Z], optionally the stencil component [called S], and if coverage sampling is in use, the coverage
component [called C].

The Z component can be a 32-bit float, a 24-bit normalized unsigned integer, or [on G200+] a 16-bit normalized
unsigned integer. The S component, if present, is always an 8-bit raw integer.

The C component is special: if present, it’s an 8-bit bitfield in each sample. However, semantically it is a per-pixel
value, and the values of the samples’ C components are stitched together to obtain a per-pixel value. This stitching
process depends on the multisample mode, thus it needs to be specified to bind a coverage sampled zeta surface as a
texture. It’s not allowed to use a coverage sampling mode with a zeta format without C component, or the other way
around.

Like with color formats, there are two different enums that specify zeta formats: texture formats and zeta formats.
However, this time the zeta formats have one-to-many relationship with texture formats: Texture format contains in-
formation about the specific coverage sampling mode used, while zeta format merely says whether coverage sampling
is in use, and the mode is taken from RT multisample configuration.

For textures, Z corresponds to CO, S to C1, and C to C2. However, C cannot be used together with Z and/or S in a
single sampler. Z and S sampling works normally, but when C is sampled, the sampler returns preprocessed weights
instead of the raw value - see graph/g80-texture.txt for more information about the sampling process.

The formats are:
Element size 2:
* zeta format 0x13: Z16 [G200+ only]
— texture format 0x3a: Z16 [G200+ only]
Element size 4:
* zeta format Ox0a: Z32
— texture format 0x2f
* zeta format Ox14: S8_724
— texture format 0x29
e zeta format 0x15: Z24_X8

— texture format 0x2b

122 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

e zeta format 0x16: Z24_S8
— texture format Ox2a

* zeta format Ox18: Z24_C8
— texture format Ox2c: MS4_CS4
— texture format 0x2d: MS8_CS8
— texture format Ox2e: MS4_CS12

Element size 8:

e zeta format 0x19: Z32_S8_X24
— texture format 0x30

* zeta format Ox1d: Z24_X8_S8_C8_X16
— texture format 0x31: MS4_CS4
— texture format 0x32: MS8_CS8
— texture format 0x37: MS4_CS12

e zeta format Oxle: Z32 X8 C8 X16
— texture format 0x33: MS4_CS4
— texture format 0x34: MS8_CS8
— texture format 0x38: MS4_CS12

e zeta format Ox1f: Z32_S8 C8 X16
— texture format 0x35: MS4_CS4
— texture format 0x36: MS8_CS8
— texture format 0x39: MS4_CS12

Todo: figure out the MS8_CS24 formats

Compressed texture formats

Todo: write me

Bitmap surface format

A bitmap surface has only one component, and the component has 1 bit per sample - that is, the component’s value can
be either O or 1 for each sample in the surface. The surface is made of 8-byte elements, with each element representing
8x8 block of samples. The element is treated as a 64-bit word, with each sample taking 1 bit. The bits start from LSB
and are ordered first by x coordinate of the sample, then by its y coordinate.

This format can be used for 2d engine and texturing. When used for texturing, it forces using a special “box” filter:
result of sampling is a percentage of “lit” area in WxH rectangle centered on the sampled location. See graph/g80-
texture.txt for more details.

2.7. Memory access and structure 123

nVidia Hardware Documentation, Release git

Todo: figure out more. Check how it works with 2d engine.

The formats are:
Element size 8:
* texture format Ox1f: BITMAP
— color format Ox1c: BITMAP

G80 storage types
On G80, the storage type is made of two parts: the storage type itself, and the compression mode. The storage type is
a 7-bit enum, the compression mode is a 2-bit enum.
The compression modes are:
* 0: NONE - no compression
* 1: SINGLE - 2 compression tag bits per gob, 1 tag cell per 64kB page
» 2: DOUBLE - 4 compression tag bits per gob, 2 tag cells per 64kB page

Todo: verify somehow.

The set of valid compression modes varies with the storage type. NONE is always valid.

As mentioned before, the low-level rearrangement is further split into two sublevels: short range reordering, rearrang-
ing bytes in a single gob, and long range reordering, rearranging gobs. Short range reordering is performed for both
VRAM and system RAM, and is highly dependent on the storage type. Long range reordering is done only for VRAM,
and has only three types:

* none [NONE] - no reordering, only used for storage type O [pitch]
» small scale [SSR] - gobs rearranged inside a single 4kB page, used for non-0 storage types

* large scale [LSR] - large blocks of memory rearranged, based on internal VRAM geometry. Boundaries between
VRAM areas using NONE/SSR and LSR need to be properly aligned in physical space to prevent conflicts.

Long range reordering is described in detail in G80:GF100 VRAM structure and usage.
The storage types can be roughly split into the following groups:

* pitch storage type: used for pitch surfaces and non-surface buffers

* blocklinear color storage types: used for non-zeta blocklinear surfaces

e zeta storage types: used for zeta surfaces

On the original G80, non-0 storage types can only be used on VRAM, on G84 and later cards they can also be used on
system RAM. Compression modes other than NONE can only be used on VRAM. However, due to the G80 limitation,
blocklinear surfaces stored in system RAM are allowed to use storage type 0, and will work correctly for texturing and
m2mf source/destination - rendering to them with 2d or 3d engine is impossible, though.

Correct storage types are only enforced by texture units and ROPs [ie. 2d and 3d engine render targets + CUDA
global/local/stack spaces], which have dedicated paths to memory and depend on the storage types for performance.
The other engines have storage type handling done by the common memory controller logic, and will accept any
storage type.

The pitch storage type is:

124 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

storage type 0x00: PITCH long range reordering: NONE valid compression modes: NONE There’s no short range
reordering on this storage type - the offset inside a gob is identical between the virtual and physical addresses.

Blocklinear color storage types

Todo: reformat

The following blocklinear color storage types exist:

storage type 0x70: BLOCKLINEAR long range reordering: SSR valid compression modes: NONE valid surface
formats: any non-zeta with element size of 1, 2, 4, or 8 bytes valid multisampling modes: any

storage type 0x72: BLOCKLINEAR_LSR long range reordering: LSR valid compression modes: NONE valid
surface formats: any non-zeta with element size of 1, 2, 4, or 8 bytes valid multisampling modes: any

storage type 0x76: BLOCKLINEAR_128_LSR long range reordering: LSR valid compression modes: NONE
valid surface formats: any non-zeta with element size of 16 bytes valid multisampling modes: any

[XXX]

storage type 0x74: BLOCKLINEAR_128 long range reordering: SSR valid compression modes: NONE valid sur-
face formats: any non-zeta with element size of 16 bytes valid multisampling modes: any

[XXX]

storage type 0x78: BLOCKLINEAR_32 MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes: MS1, MS2*,
MS4*

storage type 0x79: BLOCKLINEAR_32_MS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes: MS8*

storage type 0x7a: BLOCKLINEAR 32 MS4 _LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes:
MS1, MS2*, MS4*

storage type 0x7b: BLOCKLINEAR_32_MS8_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: any non-zeta with element size of 4 bytes valid multisampling modes:
MS8*

[XXX]

storage type 0x7c: BLOCKLINEAR_64_MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 8 bytes valid multisampling modes: MS1, MS2*,
MS4*

storage type 0x7d: BLOCKLINEAR_64_MSS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: any non-zeta with element size of 8 bytes valid multisampling modes: MS8*

[XXX]

storage type 0x44: BLOCKLINEAR_24 long range reordering: SSR valid compression modes: NONE valid sur-
face formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling modes: any

storage type 0x45: BLOCKLINEAR_24_MS4 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: texture format 8_8_8_ X8 and corresponding color formats valid multisampling
modes: MS1, MS2*, MS4*

2.7. Memory access and structure 125

nVidia Hardware Documentation, Release git

storage type 0x46: BLOCKLINEAR_24_MS8 long range reordering: SSR valid compression modes: NONE, SIN-
GLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling
modes: MS8*

storage type 0x4b: BLOCKLINEAR 24 LSR long range reordering: LSR valid compression modes: NONE valid
surface formats: texture format 8_8_8_X8 and corresponding color formats valid multisampling modes: any

storage type 0x4c: BLOCKLINEAR _24_MS4_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: texture format 8§_8_8_X8 and corresponding color formats valid multi-
sampling modes: MS1, MS2%*, MS4*

storage type 0x4d: BLOCKLINEAR 24 MS8_LSR long range reordering: LSR valid compression modes:
NONE, SINGLE valid surface formats: texture format 8_8_8_X8 and corresponding color formats valid multi-
sampling modes: MS8%*

[XXX]

Zeta storage types

Todo: write me

GF100 storage types

Todo: write me

2.7.8 Tesla virtual memory

Contents

* Tesla virtual memory
— Introduction
— VM users
— Channels
— DMA objects
— Page tables
— TLB flushes
— User vs supervisor accesses
— Storage types

— Compression modes

- VM faults

126 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Introduction

G80 generation cards feature an MMU that translates user-visible logical addresses to physical ones. The translation
has two levels: DMA objects, which behave like x86 segments, and page tables. The translation involves the following
address spaces:

logical addresses: 40-bit logical address + channel descriptor address + DMAobj address. Specifies an address
that will be translated by the relevant DM Aobj, and then by the page tables if DMAobj says so. All addresses
appearing in FIFO command streams are logical addresses, or eventually translated to logical addresses

virtual addresses: 40-bit virtual address + channel descriptor address, specifies an address that will be looked
up in the page tables of the relevant channel. Virtual addresses are always a result of logical address translation
and can never be specified directly.

linear addresses: 40-bit linear address + target specifier, which can be VRAM, SYSRAM_SNOOP, or SYS-
RAM_NOSNOOP. They can refer to:

— VRAM: 32-bit linear addresses - high 8 bits are ignored - on-board memory of the card. Supports LSR
and compression. See G80:GF100 VRAM structure and usage

— SYSRAM: 40-bit linear addresses - accessing this space will cause the card to invoke PCIE read/write
transactions to the given bus address, allowing it to access system RAM or other PCI devices’ memory.
SYSRAM_SNOOP uses normal PCIE transactions, SYSRAM_NOSNOOP uses PCIE transactions with
the “no snoop” bit set.

Mostly, linear addresses are a result of logical address translation, but some memory areas are specified directly
by their linear addresses.

12-bit tag addresses: select a cell in hidden compression tag RAM, used for compressed areas of VRAM. See
G80 VRAM compression

physical address: for VRAM, the partition/subpartition/row/bank/column coordinates of a memory cell; for
SYSRAM, the final bus address

Todo: kill this list in favor of an actual explanation

The VM’s job is to translate a logical address into its associated data:

linear address

target: VRAM, SYSRAM_SNOOP, or SYSRAM_NOSNOOP
read-only flag

supervisor-only flag

storage type: a special value that selects the internal structure of contained data and enables more efficient
accesses by increasing cache locality

compression mode: if set, write accesses will attempt to compress the written data and, if successful, write only
a fraction of the original write size to memory and mark the tile as compressed in the hidden tag memory. Read
accesses will transparently uncompress the data. Can only be used on VRAM.

compression tag address: the address of tag cell to be used if compression is enabled. Tag memory is addressed
by “cells”. Each cell is actually 0x200 tag bits. For SINGLE compression mode, every 0x10000 bytes of
compressed VRAM require 1 tag cell. For DOUBLE compression mode, every 0x10000 bytes of VRAM
require 2 tag cells.

partition cycle: either short or long, affecting low-level VRAM storage

encryption flag [G84+]: for SYSRAM, causes data to be encrypted with a simple cipher before being stored

2.7. Memory access and structure 127

nVidia Hardware Documentation, Release git

A VM access can also end unsuccessfully due to multiple reasons, like a non present page. When that happens, a
VM fault is triggered. The faulting access data is stored, and fault condition is reported to the requesting engine.
Consequences of a faulted access depend on the engine.

VM users

VM is used by several clients, which are identified by VM client id:

A related concept is VM engine, which is a group of clients that share TLBs and stay on the same channel at any single
moment. It’s possible for a client to be part of several VM engines. The engines are:

Client+engine combination doesn’t, however, fully identify the source of the access - to disambiguate that, DMA slot
ids are used. The set of DMA slot ids depends on both engine and client id. The DMA slots are [engine/client/slot]:

* 0/0/0: PGRAPH STRMOUT

* 0/3/0: PGRAPH context

* 0/3/1: PGRAPH NOTIFY

* 0/3/2: PGRAPH QUERY

* 0/3/3: PGRAPH COND

* 0/3/4: PGRAPH m2mf BUFFER_IN
* 0/3/5: PGRAPH m2mf BUFFER_OUT
¢ 0/3/6: PGRAPH m2mf BUFFER_NOTIFY
* 0/5/0: PGRAPH CODE_CB

* 0/5/1: PGRAPH TIC

* 0/5/2: PGRAPH TSC

* 0/7/0: PGRAPH CLIPID

* 0/9/0: PGRAPH VERTEX

* 0/a/0: PGRAPH TEXTURE / SRC2D
* 0/b/0-7: PGRAPH RT 0-7

* 0/b/8: PGRAPH ZETA

* 0/b/9: PGRAPH LOCAL

* 0/b/a: PGRAPH GLOBAL

* 0/b/b: PGRAPH STACK

* 0/b/c: PGRAPH DST2D

* 4/4/0: PEEPHOLE write

* 4/8/0: PEEPHOLE read

* 6/4/0: BARI1 write

* 6/8/0: BAR1 read

* 6/4/1: BAR3 write

* 6/8/1: BAR3 read

* 5/8/0: FIFO pushbuf read

128 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

5/4/1: FIFO semaphore write

5/8/1: FIFO semaphore read

¢/8/1: FIFO background semaphore read

1/6/8: PVP1 context [G80:G84]

7/6/4: PME context [G80:G84]

8/6/1: PMPEG CMD [G80:G98 G200:MCP77]

8/6/2: PMPEG DATA [G80:G98 G200:MCP77]

8/6/3: PMPEG IMAGE [G80:G98 G200:MCP77]
8/6/4: PMPEG context [G80:G98 G200:MCP77]
8/6/5: PMPEG QUERY [G84:G98 G200:MCP77]
b/f/0: PCOUNTER record buffer [G84:GF100]

1/c/0-f: PVP2 DMA ports 0-0xf [G84:G98 G200:MCP77]
9/d/0-f: PBSP DMA ports 0-0xf [G84:G98 G200:MCP77]
a/e/0: PCIPHER context [G84:G98 G200:MCP77]
a/e/1: PCIPHER SRC [G84:G98 G200:MCP77]

a/e/2: PCIPHER DST [G84:G98 G200:MCP77]

a/e/3: PCIPHER QUERY [G84:G98 G200:MCP77]
1/c¢/0-7: PPDEC falcon ports 0-7 [G98:G200 MCP77-]
8/6/0-7: PPPP falcon ports 0-7 [G98:G200 MCP77-]
9/d/0-7: PVLD falcon ports 0-7 [G98:G200 MCP77-]
a/e/0-7: PSEC falcon ports 0-7 [G98:GT215]
d/13/0-7: PCOPY falcon ports 0-7 [GT215-]

e/11/0-7: PDAEMON falcon ports 0-7 [GT215-]
7/14/0-7: PVCOMP falcon ports 0-7 [MCP89-]

Todo:

PVP1

Todo:

PME

Todo:

Move to engine doc?

Channels

All VM accesses are done on behalf of some “channel”. A VM channel is just a memory structure that contains the
DMA objects and page directory. VM channel can be also a FIFO channel, for use by PFIFO and fifo engines and
containing other data structures, or just a “bare” VM channel for use with non-fifo engines.

2.7. Memory access and structure

129

nVidia Hardware Documentation, Release git

A channel is identified by a “channel descriptor”, which is a 30-bit number that points to the base of the channel
memory structure:

* bits 0-27: bits 12-39 of channel memory structure linear address

* bits 28-29: the target specifier for channel memory structure - 0: VRAM - 1: invalid, do not use - 2: SYS-
RAM_SNOOP - 3: SYSRAM_NOSNOOP

The channel memory structure contains a few fixed-offset elements, as well as serving as a container for channel
objects, such as DMA objects, that can be placed anywhere inside the structure. Due to the channel objects inside it,
the channel structure has no fixed size, although the maximal address of channel objects is Oxffff0. Channel structure
has to be aligned to 0x1000 bytes.

The original G80 channel structure has the following fixed elements:
* 0x000-0x200: RAMEFC ([fifo channels only]
* 0x200-0x400: DMA objects for fifo engines’ contexts [fifo channels only]
* 0x400-0x1400: PFIFO CACHE [fifo channels only]
* 0x1400-0x5400: page directory

G84+ cards instead use the following structure:
¢ 0x000-0x200: DMA objects for fifo engines’ contexts [fifo channels only]
* 0x200-0x4200: page directory

The channel objects are specified by 16-bit offsets from start of the channel structure in 0x10-byte units.

DMA objects

The only channel object type that VM subsystem cares about is DMA objects. DMA objects represent contiguous
segments of either virtual or linear memory and are the first stage of VM address translation. DMA objects can be
paged or unpaged. Unpaged DMA objects directly specify the target space and all attributes, merely adding the base
address and checking the limit. Paged DMA objects add the base address, then look it up in the page tables. Attributes
can either come from page tables, or be individually overriden by the DMA object.

DMA objects are specifid by 16-bit “selectors”. In case of fifo engines, the RAMHT is used to translate from user-
visible 32-bit handles to the selectors [see RAMHT and the FIFO objects]. The selector is shifted left by 4 bits and
added to channel structure base to obtain address of DMAobj structure, which is 0x18 bytes long and made of 32-bit
LE words:

word 0:

* bits 0-15: object class. Ignored by VM, but usually validated by fifo engines - should be 0x2 [read-only],
0x3 [write-only], or 0x3d [read-write]

* bits 16-17: target specifier:

— 0: VM - paged object - the logical address is to be added to the base address to obtain a virtual address,
then the virtual address should be translated via the page tables

— 1: VRAM - unpaged object - the logical address should be added to the base address to directly obtain
the linear address in VRAM

2: SYSRAM_SNOOP - like VRAM, but gives SYSRAM address
3: SYSRAM_NOSNOOP - like VRAM, but gives SYSRAM address and uses nosnoop transactions

¢ bits 18-19: read-only flag
— 0: use read-only flag from page tables [paged objects only]

130 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— 1: read-only
— 2: read-write
* bits 20-21: supervisor-only flag
— 0: use supervisor-only flag from page tables [paged objects only]
— 1: user-supervisor
— 2: supervisor-only

* bits 22-28: storage type. If the value is 0x7f, use storage type from page tables, otherwise directly
specifies the storage type

e bits 29-30: compression mode

0: no compression
1: SINGLE compression
2: DOUBLE compression

3: use compression mode from page tables

* bit 31: if set, is a supervisor DMA object, user DMA object otherwise
word 1: bits 0-31 of limit address
word 2: bits 0-31 of base address

word 3:

e bits 0-7: bits 32-39 of base address

* bits 24-31: bits 32-39 of limit address
word 4:

* bits 0-11: base tag address

e bits 16-27: limit tag address
word 5:

bits 0-15: compression base address bits 16-31 [bits 0-15 are forced to 0]

bits 16-17: partition cycle
— 0: use partition cycle from page tables
— 1: short cycle
— 2: long cycle

bits 18-19 [G84-]: encryption flag

L]

— 0: not encrypted
— 1: encrypted
— 2: use encryption flag from page tables

First, DMA object selector is compared with 0. If the selector is 0, NULL_DMAOB]J fault happens. Then, the logical
address is added to the base address from DMA object. The resulting address is compared with the limit address from
DMA object and, if larger or equal, DMAOBJ_LIMIT fault happens. If DMA object is paged, the address is looked up
in the page tables, with read-only flag, supervisor-only flag, storage type, and compression mode optionally overriden
as specified by the DMA object. Otherwise, the address directly becomes the linear address. For compressed unpaged
VRAM objects, the tag address is computed as follows:

2.7. Memory access and structure 131

nVidia Hardware Documentation, Release git

* take the computed VRAM linear address and substract compression base address from it. if result is negative,
force compression mode to none

* shift result right by 16 bits
¢ add base tag address to the result
* if result <= limit tag addres, this is the tag address to use. Else, force compression mode to none.
Places where DMA objects are bound, that is MMIO registers or FIFO methods, are commonly called “DMA slots”.

Most engines cache the most recently bound DMA object. To flush the caches, it’s usually enough to rewrite the
selector register, or resubmit the selector method.

It should be noted that many engines require the DMA object’s base address to be of some specific alignment. The
alignment depends on the engine and slot.

The fifo engine context dmaobjs are a special set of DMA objects worth mentioning. They’re used by the fifo engines
to store per-channel state while given channel is inactive on the relevant engine. Their size and structure depend on
the engine. They have fixed selectors, and hence reside at fixed positions inside the channel structure. On the original
G80, the objects are:

Selector | Address | Engine
0x0020 0x00200 | PGRAPH
0x0022 0x00220 | PVP1
0x0024 0x00240 | PME
0x0026 0x00260 | PMPEG

On G84+ cards, they are:

Selector | Address | Presenton | Engine
0x0002 0x00020 | all PGRAPH
0x0004 0x00040 | VP2 PVP2
0x0004 0x00040 | VP3- PPDEC
0x0006 0x00060 | VP2 PMPEG
0x0006 0x00060 | VP3- PPPP
0x0008 0x00080 | VP2 PBSP
0x0008 0x00080 | VP3- PVLD
0x000a 0x000a0 | VP2 PCIPHER
0x000a 0x000a0 | VP3 PSEC
0x000a 0x000a0 | MCP89- PVCOMP
0x000c 0x000c0 | GT215- PCOPY

Page tables

If paged DMA object is used, the virtual address is further looked up in page tables. The page tables are two-level.
Top level is 0x800-entry page directory, where each entry covers 0x20000000 bytes of virtual address space. The page
directory is embedded in the channel structure. It starts at offset 0x1400 on the original G80, at 0x200 on G84+. Each
page directory entry, or PDE, is 8 bytes long. The PDEs point to page tables and specify the page table attributes. Each
page table can use either small, medium [GT215-] or large pages. Small pages are 0x1000 bytes long, medium pages
are 0x4000 bytes long, and large pages are 0x10000 bytes long. For small-page page tables, the size of page table can
be artificially limitted to cover only 0x2000, 0x4000, or 0x8000 pages instead of full 0x20000 pages - the pages over
this limit will fault. Medium- and large-page page tables always cover full 0x8000 or 0x2000 entries. Page tables of
both kinds are made of 8-byte page table entries, or PTEs.

132 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: verify GT215 transition for medium pages

The PDEs are made of two 32-bit LE words, and have the following format:
word 0:

* bits 0-1: page table presence and page size

0: page table not present

1: large pages [64kiB]
2: medium pages [16kiB] [GT215-]

3: small pages [4kiB]

* bits 2-3: target specifier for the page table itself
- 0: VRAM

1: invalid, do not use

2: SYSRAM_SNOOP

3: SYSRAM_NOSNOOP

bit 4: 7?7 [XXX: figure this out]

* bits 5-6: page table size [small pages only]
0: 0x20000 entries [full]

1: 0x8000 entries

2: 0x4000 entries

3: 0x2000 entries

* bits 12-31: page table linear address bits 12-31
word 1:
* bits 32-39: page table linear address bits 32-39
The page table start address has to be aligned to 0x1000 bytes.
The PTEs are made of two 32-bit LE words, and have the following format:
word 0:
* bit 0: page present
e bits 1-2: 7?77 [XXX: figure this out]
* bit 3: read-only flag
* bits 4-5: target specifier
- 0: VRAM
— 1: invalid, do not use
— 2: SYSRAM_SNOOP
- 3: SYSRAM_NOSNOOP
* bit 6: supervisor-only flag

* bits 7-9: log2 of contig block size in pages [see below]

2.7. Memory access and structure 133

nVidia Hardware Documentation, Release git

* bits 12-31: bits 12-31 of linear address [small pages]

* bits 14-31: bits 14-31 of linear address [medium pages]

* bits 16-31: bits 16-31 of linear address [large pages]
word 1:

¢ bits 32-39: bits 32-39 of linear address

bits 40-46: storage type

* bits 47-48: compression mode

bits 49-60: compression tag address
* bit 61: partition cycle
— 0: short cycle

— 1: long cycle

bit 62 [G84-]: encryption flag

Contig blocks are a special feature of PTEs used to save TLB space. When 2”0 adjacent pages starting on 2”0
page aligned bounduary map to contiguous linear addresses [and, if appropriate, contiguous tag addresses] and have
identical other attributes, they can be marked as a contig block of order o, where o is 0-7. To do this, all PTEs for that
range should have bits 7-9 set equal to o, and linear/tag address fields set to the linear/tag address of the first page in
the contig block [ie. all PTEs belonging to contig block should be identical]. The starting linear address need not be
aligned to contig block size, but virtual address has to be.

TLB flushes
The page table contents are cached in per-engine TLBs. To flush TLB contents, the TLB flush register 0x100c80
should be used:
MMIO 0x100c80:
e bit O: trigger. When set, triggers the TLB flush. Will auto-reset to O when flush is complete.
* bits 16-19: VM engine to flush

A flush consists of writing engine << 16 | 1 to this register and waiting until bit O becomes 0. However, note that
G86 PGRAPH has a bug that can result in a lockup if PGRAPH TLB flush is initiated while PGRAPH is running, see
graph/g80-pgraph.txt for details.

User vs supervisor accesses

Todo: write me

Storage types

Todo: write me

134 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Compression modes

Todo: write me

VM faults

Todo: write me

2.7.9 G80:GF100 VRAM structure and usage

Contents

* G80:GF100 VRAM structure and usage

— Introduction

Partition cycle

x Tag memory addressing

Subpartition cycle

Row/bank/column split

Bank cycle

Storage types

Introduction

The basic structure of G80 memory is similiar to other card generations and is described in Memory structure.

There are two sub-generations of G80 memory controller: the original G80 one and the GT215 one. The G80 memory
controller was designed for DDR2 and GDDR3 memory. It’s split into several [1-8] partitions, each of them having 64-
bit memory bus. The GT215 memory controller added support for DDR3 and GDDRS memory and split the partitions
into two subpartitions, each of them having 32-bit memory bus.

On G80, the combination of DDR2/GDDR3 [ie. 4n prefetch] memory with 64-bit memory bus results in 32-byte
minimal transfer size. For that reason, 32-byte units are called sectors. On GT215, DDR3/GDDRS [ie. 8n prefetch]
memory with 32-bit memory bus gives the same figure.

Next level of granularity for memory is 256-byte gobs. Memory is always assigned to partitions in units of whole gobs
- all addresses in a gob will stay in a single partition. Also, format dependent memory address reordering is applied
within a gob.

The final fixed level of VRAM granularity is a 0x10000-byte [64kiB] large page. While G80 VM supports using
smaller page sizes for VRAM, certain features [compression, long partition cycle] should only be enabled on per-large
page basis.

Apart from VRAM, the memory controller uses so-called tag RAM, which is used for compression. Compression is a
feature that allows a memory block to be stored in a more efficient manner [eg. using 2 sectors instead of the normal
8] if its contents are sufficiently regular. The tag RAM is used to store the compression information for each block:

2.7. Memory access and structure 135

nVidia Hardware Documentation, Release git

whether it’s compressed, and if so, in what way. Note that compression is only meant to save memory bandwidth, not
memory capacity: the sectors saved by compression don’t have to be transmitted over the memory link, but they’re still
assigned to that block and cannot be used for anything else. The tag RAM is allocated in units of tag cells, which have
varying size depending on the partition number, but always correspond to 1 or 2 large pages, depending on format.

VRAM is addressed by 32-bit linear addresses. Some memory attributes affecting low-level storage are stored together
with the linear address in the page tables [or linear DMA object]. These are:

* storage type: a 7-bit enumerated value that describes the memory purpose and low-level storage within a block,

and also selects whether normal or alternative bank cycle is used

» compression mode: a 2-bit field selecting whether the memory is:

— not compressed,
— compressed with 2 tag bits per block [1 tag cell per large page], or

— compressed with 4 tag bits per block [2 tag cells per large page]

» compression tag cell: a 12-bit index into the available tag memory, used for compressed memory

e partition cycle: a 1-bit field selecting whether the short [1 block] or long [4 blocks] partition cycle is used

The linear addresses are transformed in the following steps:

1.
2.

The address is split into the block index [high 24 bits], and the offset inside the block [low 8 bits].

The block index is transformed to partition id and partition block index. The process depends on whether the
storage type is blocklinear or pitch and the partition cycle selected. If compression is enabled, the tag cell index
is also translated to partition tag bit index.

[GT215+ only] The partition block index is translated into subpartition ID and subpartition block index. If
compression is enabled, partition tag bit index is also translated to subpartition tag bit index.

[Sub]partition block index is split into row/bank/column fields.

Row and bank indices are transformed according to the bank cycle. This process depends on whether the storage
type selects the normal or alternate bank cycle.

Depending on storage type and the compression tag contents, the offset in the block may refer to varying bytes
inside the block, and the data may be transformed due to compression. When the required transformed block
offsets have been determined, they’re split into the remaining low column bits and offset inside memory word.

Partition cycle

Partition cycle is the first address transformation. Its purpose is converting linear [global] addressing to partition index
and per-partition addressing. The inputs to this process are:

the block index [ie. bits 8-31 of linear VRAM address]

* partition cycle selected [short or long]

* pitch or blocklinear mode - pitch is used when storage type is PITCH, blocklinear for all other storage types

e partition count in the system [as selected by PBUS HWUNITS register]

The outputs of this process are:

* partition ID

e partition block index

136

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Partition pre-ID and ID adjust are intermediate values in this process.

On G80 [and G80 only], there are two partition cycles available: short one and long one. The short one switches
partitions every block, while the long one switches partitions roughly every 4 blocks. However, to make sure addresses
don’t “bleed” between large page bounduaries, long partition cycle reverts to switching partitions every block near
large page bounduaries:

if partition_cycle == LONG and gpu == G80:
round down to 4 * partition_count multiple
group_start = block_index / (4 * partition_count) * 4 % partition_count

group_end = group_start + 4 % partition_count - 1
check whether the group is entirely within one large page
use_long_cycle = (group_start & ~0xff) == (group_end & ~0xff)

else:
use_long_cycle = False

On G84+, long partition cycle is no longer supported - short cycle is used regardless of the setting.

Todo: verify it’s really the G84

When short partition cycle is selected, the partition pre-ID and partition block index are calculated by simple division.
The partition ID adjust is low 5 bits of partition block index:

if not use_long_cycle:
partition_preid = block_index % partition_count
partition_block_index = block_index / partition_count
partition_id_adjust = partition_block_index & 0x1f

When long partition cycle is selected, the same calculation is performed, but with bits 2-23 of block index, and the
resulting partition block index is merged back with bits 0-1 of block index:

if use_long_cycle:
quadblock_index = block_index >> 2
partition_preid = quadblock_index % partition_count
partition_quadblock_index = quadblock_index / partition_count
partition_id_adjust = partition_guadblock_index & Ox1f

partition_block_index = partition_qgquadblock_index << 2 | (block_index & 3)

Finally, the real partition ID is determined. For pitch mode, the partition ID is simply equal to the partition pre-ID. For
blocklinear mode, the partition ID is adjusted as follows:

e for 1, 3, 5, or 7-partition GPUs: no change [partition ID = partition pre-ID]

* for 2 or 6-partition GPUs: XOR together all bits of partition ID adjust, then XOR the partition pre-ID with the
resulting bit to get the partition ID

* for 4-partition GPUs: add together bits 0-1, bits 2-3, and bit 4 of partition ID adjust, substract it from partition
pre-ID, and take the result modulo 4. This is the partition ID.

* for 8-partition GPUs: add together bits 0-2 and bits 3-4 of partition ID adjust, substract it from partition pre-ID,
and take the result modulo 8. This is the partition ID.

In summary:

if blocklinear or partition_count in [1, 3, 5, 7]:
partition_id = partition_preid

elif partition_count in [2, 6]:
xor = 0

(continues on next page)

2.7. Memory access and structure 137

nVidia Hardware Documentation, Release git

(continued from previous page)

for bit in range (5):
xor "= partition_id_adjust >> bit & 1
partition_id = partition_preid ” xor
elif partition_count ==
sub = partition_id_adjust & 3
sub += partition_id_adjust >> 2 & 3
sub += partition_id_adjust >> 4 & 1
partition_id = (partition_preid - sub) % 4
elif partition_count == 8:
sub = partition_id_adjust & 7
sub += partition_id_adjust >> 3 & 3
partition_id = (partition_preid - sub) % 8

Tag memory addressing

Todo: write me

Subpartition cycle

On GT215+, once the partition block index has been determined, it has to be further transformed to subpartition ID and
subpartition block index. On G80, this step doesn’t exist - partitions are not split into subpartitions, and “subpartition”
in further steps should be taken to actually refer to a partition.

The inputs to this process are:
* partition block index
e subpartition select mask
* subpartition count
The outputs of this process are:
* subpartition ID
e subpartition block index
The subpartition configuration is stored in the following register:
MMIO 0x100268: [GT215-]
* bits 8-10: SELECT_MASK, a 3-bit value affecting subpartition ID selection.
* bits 16-17: 77?

* bits 28-29: ENABLE_MASK, a 2-bit mask of enabled subpartitions. The only valid values are 1 [only
subpartition 0 enabled] and 3 [both subpartitions enabled].

When only one subpartition is enabled, the subpartition cycle is effectively a NOP - subpartition ID is 0, and subparti-
tion block index is same as partition block index. When both subpartitions are enabled, The subpartition block index
is the partition block index shifted right by 1, and the subpartition ID is based on low 14 bits of partition block index:

if subpartition_count ==
subpartition_block_index = partition_block_index
subpartition_id = 0

else:

(continues on next page)

138 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

subpartition_block_index = partition_block_index >> 1

bit 0 and bits 4-13 of the partition block index always used for

subpartition ID selection

subpartition_select_bits = partition_block_index & O0x3ffl

bits 1-3 of partition block index only used if enabled by the select

mask

subpartition_select_bits |= partition_block_index & (subpartition_select_mask <<
1)

subpartition ID is a XOR of all the bits of subpartition_select_bits

subpartition_id = 0

for bit in range(14):
subpartition_id "= subpartition_select_bits >> bit & 1

Todo: tag stuff?

Row/bank/column split

Todo: write me

Bank cycle

Todo: write me

Storage types

Todo: write me

2.7.10 G80 VRAM compression

Contents

* G80 VRAM compression

— Introduction

Todo: write me

2.7. Memory access and structure 139

nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.7.11 G80:GF100 P2P memory access

Contents

* G80:GF100 P2P memory access

— Introduction

— MMIO registers

Todo: write me

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.12 G80:GF100 BAR1 remapper

Contents

* G80:GF100 BARI remapper

— Introduction

— MMIO registers

Todo: write me

140 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Introduction

Todo: write me

MMIO registers

Todo: write me

2.7.13 GF100 virtual memory

Contents

* GFI100 virtual memory

— Introduction

Todo: write me

Introduction

Todo: write me

2.7.14 GF100- VRAM structure and usage

Contents

* GF100- VRAM structure and usage

— Introduction

Todo: write me

Introduction

Todo: write me

2.7. Memory access and structure 141

nVidia Hardware Documentation, Release git

2.7.15 GF100 VRAM compression

Contents

* GFI100 VRAM compression

— Introduction

Todo: write me

Introduction

Todo: write me

2.8 PFIFO: command submission to execution engines

Contents:

2.8.1 FIFO overview

Contents

e FIFO overview

— Introduction

— Overall operation

Introduction

Commands to most of the engines are sent through a special engine called PFIFO. PFIFO maintains multiple fully
independent command queues, known as “channels” or “FIFO”s. Each channel is controlled through a “channel
control area”, which is a region of MMIO [pre-GF100] or VRAM [GF100+]. PFIFO intercepts all accesses to that
area and acts upon them.

PFIFO internally does time-sharing between the channels, but this is transparent to the user applications. The engines
that PFIFO controls are also aware of channels, and maintain separate context for each channel.

The context-switching ability of PFIFO depends on card generation. Since NV40, PFIFO is able to switch between
channels at essentially any moment. On older cards, due to lack of backing storage for the CACHE, a switch is only
possible when the CACHE is empty. The PFIFO-controlled engines are, however, much worse at switching: they can
only switch between commands. While this wasn’t a big problem on old cards, since the commands were guaranteed
to execute in finite time, introduction of programmable shaders with looping capabilities made it possible to effectively
hang the whole GPU by launching a long-running shader.

142 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: check if it still holds on GF100

On NV1:NV4, the only engine that PFIFO controls is PGRAPH, the main 2d/3d engine of the card. In addition, PFIFO
can submit commands to the SOFTWARE pseudo-engine, which will trigger an interrupt for every submitted method.

The engines that PFIFO controls on NV4:GF100 are:

Id | Presenton Name Description
0 | all SOFT- Not really an engine, causes interrupt for each command, can be used to execute
WARE | driver functions in sync with other commands.
1 all PGRAPH| Main engine of the card: 2d, 3d, compute.
2 | NV31:G98 PM- The PFIFO interface to VPE MPEG2 decoding engine.
G200:MCP77 PEG
3 | NV40:G84 PME VPE motion estimation engine.
4 | NV41:G84 PVPI VPE microcoded vector processor.
4 | VP2 PVP2 xtensa-microcoded vector processor.
5 | VP2 PCI- AES cryptography and copy engine.
PHER
6 | VP2 PBSP xtensa-microcoded bitstream processor.
2 | VP3- PPPP falcon-based video post-processor.
4 | VP3- PPDEC | falcon-based microcoded video decoder.
5 | VP3 PSEC falcon-based AES crypto engine. On VP4, merged into PVLD.
6 | VP3- PVLD falcon-based variable length decoder.
3 | GT215- PCOPY | falcon-based memory copy engine.
5 | MCP89:GF100 | PV- falcon-based video compositing engine.
COMP

The engines that PFIFO controls on GF100- are:

Id Id Id Id Id Present Name | Description
on
GF10@GK1046K20&K20AM107
1f 1f 1f 1f 1f all SOFT- | Not really an engine, causes interrupt for each command,
WARE | can be used to execute driver functions in sync with other
commands.
0 0 0 0 0 all PGRAPHMain engine of the card: 2d, 3d, compute.
1 1 1 ? - GF100:GMPPDYEC] falcon-based microcoded picture decoder.
2 2 2 ? - GF100:GNRPPP | falcon-based video post-processor.
3 3 3 ? - GF100:GNEMIZD | falcon-based variable length decoder.
45 | - - - - GF100:GKPO@PY| falcon-based memory copy engines.
- 6 5 ? 2 GK104: | PVEN(Q falcon-based H.264 encoding engine.
4,57 4,- | ? 4,- | GK104:| PCOPY Memory copy engines.
.6 .
- - - 1 GM107:| PVDE(Q falcon-based unified video decoding engine
- - - 3 GM107:| PSEC | falcon-based AES crypto engine, recycled

This file deals only with the user-visible side of the PFIFO. For kernel-side programming, see nv1-pfifo, nv4-pfifo,

g80-pfifo, or gf100-pfifo.

Note: GF100 information can still be very incomplete / not exactly true.

2.8. PFIFO: command submission to execution engines

143

nVidia Hardware Documentation, Release git

Overall operation

The PFIFO can be split into roughly 4 pieces:
* PFIFO pusher: collects user’s commands and injects them to
* PFIFO CACHE: a big queue of commands waiting for execution by
* PFIFO puller: executes the commands, passes them to the proper engine, or to the driver.

¢ PFIFO switcher: ticks out the time slices for the channels and saves / restores the state of the channels between
PFIFO registers and RAMFC memory.

A channel consists of the following:
¢ channel mode: PIO [NV1:GF100], DMA [NV4:GF100], or IB [G80-]
* PFIFO DMA pusher state [DMA and IB channels only]
* PFIFO CACHE state: the commands already accepted but not yet executed
* PFIFO puller state
* RAMEC: area of VRAM storing the above when channel is not currently active on PFIFO [not user-visible]

* RAMHT [pre-GF100 only]: a table of “objects” that the channel can use. The objects are identified by arbitrary
32-bit handles, and can be DMA objects [see NV3 DMA objects, NV4:G80 DMA objects, DMA objects] or
engine objects [see Puller - handling of submitted commands by FIFO and engine documentation]. On pre-G80
cards, individual objects can be shared between channels.

 vspace [G80+ only]: A hierarchy of page tables that describes the virtual memory space visible to engines while
executing commands for the channel. Multiple channels can share a vspace. [see Tesla virtual memory, GF100
virtual memory]

* engine-specific state

Channel mode determines the way of submitting commands to the channel. PIO mode is available on pre-GF100
cards, and involves poking the methods directly to the channel control area. It’s slow and fragile - everything breaks
down easily when more than one channel is used simultanously. Not recommended. See P/O submission to FIFOs for
details. On NV1:NV40, all channels support PIO mode. On NV40:G80, only first 32 channels support PIO mode. On
G80:GF100 only channel 0 supports PIO mode.

Todo: check PIO channels support on NV40:G80

NV1 PFIFO doesn’t support any DMA mode.

NV3 PFIFO introduced a hacky DMA mode that requires kernel assistance for every submitted batch of commands
and prevents channel switching while stuff is being submitted. See nv3-pfifo-dma for details.

NV4 PFIFO greatly enhanced the DMA mode and made it controllable directly through the channel control area.
Thus, commands can now be submitted by multiple applications simultaneously, without coordination with each other
and without kernel’s help. DMA mode is described in DMA submission to FIFOs on NV4.

G80 introduced IB mode. IB mode is a modified version of DMA mode that, instead of following a single stream
of commands from memory, has the ability to stitch together parts of multiple memory areas into a single command
stream - allowing constructs that submit commands with parameters pulled directly from memory written by earlier
commands. IB mode is described along with DMA mode in DMA submission to FIFOs on NV4.

GF100 rearchitectured the whole PFIFO, made it possible to have up to 3 channels executing simultaneously, and
introduced a new DMA packet format.

The commands, as stored in CACHE, are tuples of:

144 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* subchannel: 0-7

* method: 0-Ox1ffc [really 0-Ox7ff] pre-GF100, 0-Ox3ffc [really 0-Oxfff] GF100+
 parameter: 0-Oxffffffff

¢ submission mode [NV10+]: I or NI

Subchannel identifies the engine and object that the command will be sent to. The subchannels have no fixed assign-
ments to engines/objects, and can be freely bound/rebound to them by using method 0. The “objects” are individual
pieces of functionality of PFIFO-controlled engine. A single engine can expose any number of object types, though
most engines only expose one.

The method selects an individual command of the object bound to the selected subchannel, except methods 0-Oxfc
which are special and are executed directly by the puller, ignoring the bound object. Note that, traditionally, methods
are treated as 4-byte addressable locations, and hence their numbers are written down multiplied by 4: method 0x3f
thus is written as Oxfc. This is a leftover from PIO channels. In the documentation, whenever a specific method
number is mentioned, it’ll be written pre-multiplied by 4 unless specified otherwise.

The parameter is an arbitrary 32-bit value that accompanies the method.

The submission mode is I if the command was submitted through increasing DMA packet, or NI if the command was
submitted through non-increasing packet. This information isn’t actually used for anything by the card, but it’s stored
in the CACHE for certain optimisation when submitting PGRAPH commands.

Method execution is described in detail in DMA puller and engine-specific documentation.

Pre-NV1A, PFIFO treats everything as little-endian. NV 1A introduced big-endian mode, which affects pushbuffer/IB
reads and semaphores. On NV1A:G80 cards, the endianness can be selected per channel via the big_endian flag. On
G80+ cards, PFIFO endianness is a global switch.

Todo: look for GF100 PFIFO endian switch

The channel control area endianness is not affected by the big_endian flag or G80+ PFIFO endianness switch. Instead,
it follows the PMC MMIO endianness switch.

Todo: is it still true for GF100, with VRAM-backed channel control area?

2.8.2 PIO submission to FIFOs

Contents

e PIO submission to FIFOs
— Introduction
— MMIO areas

Channel submission area

Free space determination

- RAMRO

2.8. PFIFO: command submission to execution engines 145

nVidia Hardware Documentation, Release git

Todo: write me

Introduction

Todo: write me

MMIO areas

Todo: write me

Channel submission area

Todo: write me

Free space determination

Todo: write me

RAMRO

Todo: write me

2.8.3 DMA submission to FIFOs on NV4

Contents

o DMA submission to FIFOs on NV4

Introduction

Pusher state

Errors

Channel control area

NVA4-style mode
IB mode

146 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

The commands - pre-GF100 format

The commands

* NV4 method submission commands
* NV4 control flow commands
* NV4 SLI conditional command

— GF100 commands

The pusher pseudocode - pre-GF100

Introduction

There are two modes of DMA command submission: The NV4-style DMA mode and IB mode.

Both of them are based on a conception of “pushbuffer”: an area of memory that user fills with commands and tells
PFIFO to process. The pushbuffers are then assembled into a “command stream” consisting of 32-bit words that make
up “commands”. In NV4-style DMA mode, the pushbuffer is always read linearly and converted directly to command
stream, except when the “jump”, “return”, or “call” commands are encountered. In IB mode, the jump/call/return
commands are disabled, and command stream is instead created with use of an “IB buffer”. The IB buffer is a circular
buffer of (base,length) pairs describing areas of pushbuffer that will be stitched together to create the command stream.

NV4- style mode is available on NV4:GF100, IB mode is available on G80+.

Todo: check for NV4-style mode on GF100

In both cases, the command stream is then broken down to commands, which get executed. For most commands, the
execution consists of storing methods into CACHE for execution by the puller.

Pusher state

The following data makes up the DMA pusher state:

type name cards description

dmaobj dma_pushbuffer :GF100 " the pushbuffer and IB
DMA object

b32 dma_limit :GF100 12 pushbuffer size limit

b32 dma_put all pushbuffer current end ad-
dress

b32 dma_get all pushbuffer current read
address

b11/12 dma_state.mthd all Current method

b3 dma_state.subc all Current subchannel

b24 dma_state.mcnt all Current method count

b32 dcount_shadow NVS5: number of already-
processed methods in
cmd

bool dma_state.ni NV10+ Current command’s NI
flag

Continued on next page

2.8. PFIFO: command submission to execution engines 147

nVidia Hardware Documentation, Release git

Table 10 — continued from previous page

type name cards description

bool dma_state.lenp G80+ 5 Large NI command
length pending

b32 ref NV10+ reference counter [shared
with puller]

bool subr_active NVI1A+ 2 Subroutine active

b32 subr_return NV1A+ 2 subroutine return ad-
dress

bool big_endian NVI11:G80 ' pushbuffer endian
switch

bool sli_enable G80+ T'SLI cond command en-
abled

b12 sli_mask G380+ T'SLI cond mask

bool sli_active NV40+ SLI cond currently active

bool ib_enable G80+ T'IB mode enabled

bool nonmain G80+ 3 non-main pushbuffer ac-
tive

b8 dma_put_high G80+ extra 8 bits for dma_put

b8 dma_put_high_rs G80+ dma_put_high read
shadow

b8 dma_put_high_ws G80+ 2 dma_put_high write
shadow

b8 dma_get_high G80+ extra 8 bits for dma_get

b8 dma_get_high_rs G80+ dma_get_high read
shadow

b32 ib_put G80+ 3 IB current end position

b32 ib_get G80+ 3 IB current read position

b40 ib_address G80+ I3 1B address

b8 ib_order G80+ I3 1B size

b32 dma_mget G80+ > main pushbuffer last
read address

b8 dma_mget_high G80+ 3 extra 8 Dbits for
dma_mget

bool dma_mget_val G80+ 3 dma_mget valid flag

b8 dma_mget_high_rs G80+ 3 dma_mget_high read
shadow

bool dma_mget_val_rs G80+ 3 dma_mget_val read
shadow

Errors

On pre-GF100, whenever the DMA pusher encounters problems, it’ll raise a DMA_PUSHER error. There are 6 types
of DMA_PUSHER errors:

! means that this part of state can only be modified by kernel intervention and is normally set just once, on channel setup.
2 means that state only applies to NV4-style mode,
3 means that state only applies to IB mode.

148 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

id | name reason

1 CALL_SUBR_ACTIVE | call command while subroutine active

2 | INVALID_MTHD attempt to submit a nonexistent special method
3 RET_SUBR_INACTIVE | return command while subroutine inactive

4 | INVALID_CMD invalid command

5 | IB_LEMPTY attempt to submit zero-length IB entry

6 | MEM_FAULT failure to read from pushbuffer or IB

Apart from pusher state, the following values are available on NV5+ to aid troubleshooting:
* dma_get_jmp_shadow: value of dma_get before the last jump
¢ rsvd_shadow: the first word of last-read command

e data_shadow: the last-read data word

Todo: verify those

Todo: determine what happens on GF100 on all imaginable error conditions

Channel control area

The channel control area is used to tell card about submitted pushbuffers. The area is at least 0x1000 bytes long,
though it can be longer depending on the card generation. Everything in the area should be accessed as 32-bit integers,
like almost all of the MMIO space. The following addresses are usable:

addr | R/W | name description

0x40 | R’W | DMA_PUT dma_put, only writable when not in IB mode

0x44 | R DMA_GET dma_get

0x48 | R REF ref

Ox4c | R/W | DMA_PUT_HIGH | dma_put_high_rs/ws, only writable when not in IB

0x50 | R’'W | 27?7 GF100+ only

0x54 | R DMA_CGET 2 nv40+ only, connected to subr_return when subroutine active, dma_get
when inactive.

0x58 | R DMA_MGET dma_mget

0x5¢c | R DMA_MGET_HIGH dma_mget_high_rs, dma_mget_val_rs

0x60 | R DMA_GET_HIGH | dma_get_high_rs

0x88 | R IB_GET 3 ib_get

0x8c | R/'W | IB_PUT 3 ib_put

The channel control area is accessed in 32-bit chunks, but on G80+, DMA_GET, DMA_PUT and DMA_MGET are
effectively 40-bit quantities. To prevent races, the high parts of them have read and write shadows. When you read
the address corresponding to the low part, the whole value is atomically read. The low part is returned as the result of
the read, while the high part is copied to the corresponding read shadow where it can be read through a second access
to the other address. DMA_PUT also has a write shadow of the high part - when the low part address is written, it’s
assembled together with the write shadow and atomically written.

To summarise, when you want to read full DMA_PUT/GET/MGET, first read the low part, then the high part. Due to
the shadows, the value thus read will be correct. To write the full value of DMA_PUT, first write the high part, then
the low part.

2.8. PFIFO: command submission to execution engines 149

nVidia Hardware Documentation, Release git

Note, however, that two different threads reading these values simultanously can interfere with each other. For this
reason, the channel control area shouldn’t ever be accessed by more than one thread at once, even for reading.

On NV4:NV40 cards, the channel control area is in BARO at address 0x800000 + 0x10000 * channel ID. On NV40,
there are two BARO regions with channel control areas: the old-style is in BARO at 0x800000 + 0x10000 * channel
ID, supports channels 0-Ox1f, can do both PIO and DMA submission, but does not have DMA_CGET when used in
DMA mode. The new-style area is in BARO at 0xc0000 + 0x1000 * channel ID, supports only DMA mode, supports
all channels, and has DMA_CGET. On G80 cards, channel 0 supports PIO mode and has channel control area at
0x800000, while channels 1-126 support DMA mode and have channel control areas at 0xc00000 + 0x2000 * channel
ID. On GF100, the channel control areas are accessed through selectable addresses in BAR1 and are backed by VRAM
or host memory - see GF100+ PFIFO for more details.

Todo: check channel numbers

NV4-style mode

In NV4-style mode, whenever dma_get != dma_put, the card read a 32-bit word from the pushbuffer at the address
specified by dma_get, increments dma_get by 4, and treats the word as the next word in the command stream. dma_get
can also move through the control flow commands: jump [sets dma_get to param], call [copies dma_get to subr_return,
sets subr_active and sets dma_get to param], and return [unsets subr_active, copies subr_return to dma_get]. The calls
and returns are only available on NV1A+ cards.

The pushbuffer is accessed through the dma_pushbuffer DMA object. On NV4, the DMA object has to be located in
PCI or AGP memory. On NV5+, any DMA object is valid. At all times, dma_get has to be <= dma_limit. Going past
the limit or getting a VM fault when attempting to read from pushbuffer results in raising DMA_PUSHER error of
type MEM_FAULT.

On pre-NVI1A cards, the word read from pushbuffer is always treated as little-endian. On NV1A:G80 cards, the
endianness is determined by the big_endian flag. On G80+, the PFIFO endianness is a global switch.

Todo: What about GF100?

Note that pushbuffer addresses over Oxffffffff shouldn’t be used in NV4-style mode, even on G80 - they cannot be
expressed in jump commands, dma_limit, nor subr_return. Why dma_put writing supports it is a mystery.

The usual way to use NV4-style mode is:
1. Allocate a big circular buffer
2. [NV1A+] if you intend to use subroutines, allocate space for them and write them out
3. Point dma_pushbuffer to the buffer, set dma_get and dma_put to its start
4. To submit commands:

1. If there’s not enough space in the pushbuffer between dma_put and end to fit the command + a jump
command, submit a jump-to-beginning command first and set DMA_PUT to buffer start.

2. Read DMA_GET/DMA_CGET until you get a value that’s out of the range you’re going to write. If on
pre-NV40 and using subroutines, discard DMA_GET reads that are outside of the main buffer.

3. Write out the commands at current DMA_PUT address.

4. Set DMA_PUT to point right after the last word of commands you wrote.

150 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

IB mode

NV4-style mode, while fairly flexible, can only jump between parts of pushbuffer between commands. IB mode
decouples flow control from the command structure by using a second “master” buffer, called the IB buffer.

The IB buffer is a circular buffer of 8-byte structures called IB entries. The IB buffer is, like the pushbuffer, accessed
through dma_pushbuffer DMA object. The address of the IB buffer, along with its size, is normally specified on
channel creation. The size has to be a power of two and can be in range ?7?.

Todo: check the ib size range

There are two indices into the IB buffer: ib_get and ib_put. They’re both in range of 0..2"ib_order-1. Whenever no
pushbuffer is being processed [dma_put =dma_get], and there are unread entries in the IB buffer [ib_put!=ib_get], the
card will read an entry from IB buffer entry #ib_get and increment ib_get by 1. When ib_get would reach 2*ib_order,
it insteads wraps around to 0.

Failure to read IB entry due to VM fault will, like pushbuffer read fault, cause DMA_PUSHER error of type
MEM_FAULT.

The IB entry is made of two 32-bit words in PFIFO endianness. Their format is:
Word 0:
¢ bits 0-1: unused, should be 0
* bits 2-31: ADDRESS_LOW, bits 2-31 of pushbuffer start address
Word 1:
* bits 0-7: ADDRESS_HIGH, bits 32-39 of pushbuffer start address
bit 8: 77?
bit 9: NOT_MAIN, “not main pushbuffer” flag
bits 10-30: SIZE, pushbuffer size in 32-bit words
bit 31: NO_PREFETCH (probably; use for pushbuffer data generated by the GPU)

Todo: figure out bit 8 some day

When an IB entry is read, the pushbuffer is prepared for reading:

dma_get [2:39] = ADDRESS

dma_put = dma_get + SIZE x 4
nonmain = NOT_MAIN

if (!'nonmain) dma_mget = dma_get

Subsequently, just like in NV4-style mode, words from dma_get are read until it reaches dma_put. When that happens,
processing can move on to the next IB entry [or pause until user sends more commands]. If the nonmain flag is not
set, dma_get is copied to dma_mget whenever it’s advanced, and dma_mget_val flag is set to 1. dma_limit is ignored
in IB mode.

An attempt to submit IB entry with length zero will raise DMA_PUSHER error of type IB_EMPTY.

The nonmain flag is meant to help with a common case where pushbuffers sent through IB can come from two sources:
a “main” big circular buffer filled with immediately generated commands, and “external” buffers containing helper
data filled and managed through other means. DMA_MGET will then contain the address of the current position

2.8. PFIFO: command submission to execution engines 151

nVidia Hardware Documentation, Release git

in the “main” buffer without being affected by IB entries pulling data from other pushbuffers. It’s thus similiar to
DMA_CGET’s role in NV4-style mode.

The commands - pre-GF100 format

The command stream, as assembled by NV4-style or IB mode pushbuffer read, is then split into individual commands.
The command type is determined by its first word. The word has to match one of the following forms:

000CCCCCCCCCCCOOSSSMMMMMMMMMMMOO | increasing methods [NV4+]
000000000000000l MMMMMMMMMMMMXX00 SLI conditional [NV40+, if enabled]
00000000000000100000000000000000 return [NV1A+, NV4-style only]
0000000000000011SSSMMMMMMMMMMMO0 long non-increasing methods [IB only]
001J333JJ33333333111111131113J00 old jump [NV4+, NV4-style only]
010CCCCCCCCCCCOOSSSMMMMMMMMMMMOO | non-increasing methods [NV10+]
JJJJ3J33333333333333333333333301 jump [NV1A+, NV4-style only]
JJ111111333333333333333333333110 call [NVIA+, NV4-style only]

Todo: do an exhaustive scan of commands

If none of the forms matches, or if the one that matches cannot be used in current mode, the INVALID_CMD
DMA_PUSHER error is raised.

The commands

There are two command formats the DMA pusher can use: NV4 format and GF100 format. All cards support the NV4
format, while only GF100+ cards support the GF100 format.

NV4 method submission commands

000CCCCCCCCCCCOOSSSMMMMMMMMMMMOO0 | increasing methods [NV4+]
010CCCCCCCCCCCOOSSSMMMMMMMMMMMOO0 | non-increasing methods [NV 10+]
0000000000000011SSSMMMMMMMMMMMO0 long non-increasing methods [IB only]

These three commands are used to submit methods. the MM..M field selects the first method that will be submitted.
The SSS field selects the subchannel. The CC..C field is mthd_count and says how many words will be submitted.
With the “long non-increasing methods”” command, the method count is instead contained in low 24 bits of the next
word in the pushbuffer.

The subsequent mthd_count words after the first word [or second word in case of the long command] are the method
parameters to be submitted. If command type is increasing methods, the method number increases by 4 [ie. by 1
method] for each submitted word. If type is non-increasing, all words are submitted to the same method.

If sli_enable is set and sli_active is not set, the methods thus assembled will be discarded. Otherwise, they’ll be
appended to the CACHE.

Todo: didn’t mthd O work even if sli_active=0?

152 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

The pusher watches the submitted methods: it only passes methods 0x100+ and methods in 0..0xfc range that the
puller recognises. An attempt to submit invalid method in 0..0xfc range will cause a DMA_PUSHER error of type
INVALID_MTHD.

Todo: check pusher reaction on ACQUIRE submission: pause?

NV4 control flow commands

O CNRARARRRRRRRARARRRRRARRRRRRRIVY) old jump [NV4+]
RARARARRRARRRAARRRRARRRARRRRAR[O}E jump [NV1A+]
ARARRRRRARRRRRRRARRRRRRRAARRRANCY call [NVIA+]
00000000000000100000000000000000 | return [NVIA+]

For jumps and calls, J..J] is bits 2-28 or 2-31 of the target address. The remaining bits of target are forced to 0.

The jump commands simply set dma_get to the target - the next command will be read from there. There are two
commands, since NV4 originally supported only 29-bit addresses, and used high bits as command type. NVI1A
introduced the new jump command that instead uses low bits as type, and allows access to full 32 bits of address
range.

The call command copies dma_get to subr_return, sets subr_active to 1, and sets dma_get to the target. If subr_active
is already set before the call, the DMA_PUSHER error of type CALL_SUBR_ACTIVE is raised.

The return command copies subr_return to dma_get and clears subr_active. If subr_active isn’t set, it instead raises
DMA_PUSHER error of type RET_SUBR_INACTIVE.

NV4 SLI conditional command

| 000000000000000IMMMMMMMMMMMMXXO00 | SLI conditional [NV40+] |

NV40 introduced SLI functionality. One of the associated features is the SLI conditional command. In SLI mode,
sister channels are commonly created on all cards in SLI set using a common pushbuffer. Since most of the commands
set in SLI will be identical for all cards, this saves resources. However, some of the commands have to be sent only to
a single card, or to a subgroup of cards. The SLI conditional can be used for that purpose.

The sli_active flag determines if methods should be accepted at the moment: when it’s set, methods will be accepted.
Otherwise, they’ll be ignored. SLI conditional command takes the encoded mask, MM..M, ands it with the per-card
value of sli_mask, and sets sli_active flag to 1 if result if non-0, to O otherwise.

The sli_enable flag determines if the command is available. If it’s not set, the command effectively doesn’t exist. Note
that sli_enable and sli_mask exist on both NV40:G80 and G80+, but on NV40:G80 they have to be set uniformly for
all channels on the card, while G80+ allows independent settings for each channel.

The XX bits in the command are ignored.

GF100 commands

GF100 format follows the same idea, but uses all-new command encoding.

2.8. PFIFO: command submission to execution engines 153

nVidia Hardware Documentation, Release git

000CCCCCCCCCCCO0SSSMMMMMMMMMMMXX increasing methods [old]

000X XXXXXXXXXX0IMMMMMMMMMMMMXXXX | SLI conditional

000X XXXXXXXXXX10MMMMMMMMMMMMXXXX | SLI user mask store [new]

000X XXX XXX XXXXTIXXXXXXXXXXXXXXXX SLI conditional from user mask [new]
001CCCcCcceeececececcCSsSSXxMMMMMMMMMMMM increasing methods [new]
010CCCCCCCCCCCO0SSSMMMMMMMMMMMXX non-increasing methods [old]
011CCCCccceeececcecccCsSSXxMMMMMMMMMMMM non-increasing methods [new]
100VVVVVVVVVVVVVSSSXMMMMMMMMMMMM | inline method [new]
101CCCCCcceeeceecccSsSSXMMMMMMMMMMMM increase-once methods [new|
TTOXXX XXX XXX XXX XXX XXX XXX XXX XXXXX 77?7 [XXX] [new]

Todo: check bitfield bounduaries

Todo: check the extra SLI bits

Todo: look for other forms

Increasing and non-increasing methods work like on older cards. Increase-once methods is a new command that works
like the other methods commands, but sends the first data word to method M, second and all subsequent data words to
method M+4 [ie. the next method].

Inline method command is a single-word command that submits a single method with a short [12-bit] parameter
encoded in VV..V field.

GF100 also did away with the INVALID_MTHD error - invalid low methods are pushed into CACHE as usual, puller
will complain about them instead when it tries to execute them.

The pusher pseudocode - pre-GF100

while (1) |
if (dma_get != dma_put) {
/+ pushbuffer non-empty, read a word. =*/
b32 word;
try A

if (!ib_enable && dma_get >= dma_limit)

throw DMA_PUSHER (MEM_FAULT) ;
if (gpu < NV1A)

word = READ_DMAOBJ_32 (dma_pushbuffer, dma_get, LE);
else if (gpu G80)

word READ_DMAOBJ_32 (dma_pushbuffer, dma_get, big_

A

—~endian?BE:LE) ;
else

word READ_DMAOBJ_32 (dma_pushbuffer, dma_get, pfifo_
—endian) ;
dma_get += 4;
if (!'nonmain)
dma_mget = dma_get;
} catch (VM_FAULT) {
throw DMA_PUSHER (MEM_FAULT) ;

(continues on next page)

154 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

}
/% now,
if

x/

} else if

—state.ni);

} else {

see 1if we're in the middle of a command =/

(dma_state.lenp) {

/* second word of long non-inc methods command - method count_

dma_state.lenp = 0;

dma_state.mcnt = word & Oxffffff;
(dma_state.mcnt) {

/+ data word of methods command =*/
data_shadow = word;

if (!PULLER_KNOWS_MTHD (dma_state.mthd))
throw DMA_PUSHER (INVALID_MTHD) ;
if (!sli_enable || sli_active) {
CACHE_PUSH (dma_state.subc, dma_state.mthd,
}
if (!dma_state.ni)

dma_state.mthd++;
dma_state.mcnt——;
dcount_shadow++;

/+ no command active - this is the first
rsvd_shadow = word;
/+ match all forms =/

word, dma_

word of a new one %/

{

{

if ((word & 0xe0000003) == 0x20000000 && !ib_enable) {
/* old jump =*/
dma_get_Jjmp_shadow = dma_get;
dma_get = word & Ox1fffffff;

} else if ((word & 3) == 1 && !ib_enable && gpu >= NV1A)
/* Jump */
dma_get_jmp_shadow = dma_get;
dma_get = word & Oxfffffffc;

} else if ((word & 3) == 2 && !ib_enable && gpu >= NV1A)
/* call =/
if (subr_active)

throw DMA_PUSHER (CALL_SUBR_ACTIVE) ;

subr_return = dma_get;
subr_active = 1;
dma_get = word & Oxfffffffc;

} else if (word == 0x00020000 && 'ib_enable && gpu >= NV1A) {
/* return =/
if (!subr_active)

throw DMA_PUSHER (RET_SUBR_INACTIVE) ;

dma_get = subr_return;
subr_active = 0;

} else if ((word & 0xe0030003) == 0) {
/* increasing methods */
dma_state.mthd = (word >> 2) & O0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.mcnt = (word >> 18) & 0x7ff;
dma_state.ni = 0;
dcount_shadow = 0;

} else if ((word & 0xe0030003) == 0x40000000 && gpu >= NV10) {
/* non-increasing methods =x/
dma_state.mthd = (word >> 2) & O0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.mcnt = (word >> 18) & Ox7ff;

(continues on next page)

2.8. PFIFO: command submission to execution engines

155

nVidia Hardware Documentation, Release git

(continued from previous page)

dma_state.ni = 1;
dcount_shadow = 0;
} else if ((word & Oxffff0003) == 0x00030000 && ib_enable) {
/* long non-increasing methods =/
dma_state.mthd = (word >> 2) & O0x7ff;
dma_state.subc = (word >> 13) & 7;
dma_state.lenp = 1;
dma_state.ni = 1;
dcount_shadow = 0;
} else if ((word & OxXxffff0003) == 0x00010000 && sli_enable) {
if (sli_mask & ((word >> 4) & Oxfff))
sli_active = 1;
else
sli_active = 0;
} else {

throw DMA_PUSHER (INVALID_CMD) ;

}

} else if (ib_enable && ib_get != ib_put) {
/+ current pushbuffer empty, but we have more IB entries to read =/
b64 entry;
try {

entry_low = READ_DMAOBJ_32 (dma_pushbuffer, ib_address + ib_
—~get * 8, pfifo_endian);
entry_high = READ_DMAOBRJ_32 (dma_pushbuffer, ib_address + ib_
—~get « 8 + 4, pfifo_endian);
entry = entry_high << 32 | entry_low;
ib_get++;
if (ib_get == (1 << ib_order))
ib_get = 0;
} catch (VM_FAULT) {
throw DMA_PUSHER (MEM_FAULT) ;
}
len = entry >> 42 & Ox3fffff;
if (!len)
throw DMA_PUSHER (IB_EMPTY) ;
dma_get = entry & Oxfffffffffc;
dma_put = dma_get + len x 4;
if (entry & 1 << 41)

nonmain = 1;
else
nonmain = 0;
}
/* otherwise, pushbuffer empty and IB empty or nonexistent - nothing to do. x/

2.8.4 Puller - handling of submitted commands by FIFO

Contents

* Puller - handling of submitted commands by FIFO

— Introduction

156 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— RAMHT and the FIFO objects
* NV4:GFI100
* NV3
* NVI

Puller state

Engine objects

Puller builtin methods

* Syncing with host: reference counter

* Semaphores

* Misc puller methods

Introduction
PFIFO puller’s job is taking methods out of the CACHE and delivering them to the right place for execution, or
executing them directly.

Methods 0-Oxfc are special and executed by the puller. Methods 0x100 and up are forwarded to the engine object
currently bound to a given subchannel. The methods are:

Method Present on | Name Description

0x0000 all OBJECT Binds an engine object

0x0008 GF100- NOP Does nothing

0x0010 G84- SEMAPHORE_ADDRESS_HIGWew-style semaphore address high part

0x0014 G84- SEMAPHORE_ADDRESS_LOWew-style semaphore address low part

0x0018 G84- SEMAPHORE_SEQUENCE | New-style semaphore payload

0x001c G84- SEMAPHORE_TRIGGER New-style semaphore trigger

0x0020 G84- NOTIFY_INTR Triggers an interrupt

0x0024 G84- WRCACHE_FLUSH Flushes write post caches

0x0028 MCP89- 777 MM

0x002c MCP89- m m

0x0050 NV10- REF_CNT Writes the ref counter

0x0060 NV1A:GF100) DMA_SEMAPHORE DMA object for semaphores

0x0064 NVI1A- SEMAPHORE_OFFSET Old-style semaphore address

0x0068 NVI1A- SEMAPHORE_ACQUIRE Old-style semaphore acquire trigger and payload

0x006¢ NVI1A- SEMAPHORE_RELEASE Old-style semaphore release trigger and payload

0x0070 GF100- m m

0x0074 GF100- 7 MM

0x0078 GF100- m m

0x007c GF100- 7 M

0x0080 NV40- YIELD Yield PFIFO - force channel switch

0x0100:0x2000 NV1:NV4 Passed down to the engine

0x0100:0x018(0 NV4:GF100 Passed down to the engine

0x0180:0x0200 NV4:GF100 Passed down to the engine, goes through
RAMHT lookup

0x0200:0x2000 NV4:GF100 Passed down to the engine

0x0100:0x4000 GF100- Passed down to the engine

2.8. PFIFO: command submission to execution engines 157

nVidia Hardware Documentation, Release git

Todo: missing the GF100+ methods

RAMHT and the FIFO objects

As has been already mentioned, each channel has 8 “subchannels” which can be bound to engine objects. On pre-
GF100 GPUs, these objects and DMA objects are collectively known as “FIFO objects”. FIFO objects and RAMHT
don’t exist on GF100+ PFIFO.

The RAMHT is a big hash table that associates arbitrary 32-bit handles with FIFO objects and engine ids. Whenever
a method is mentioned to take an object handle, it means the parameter is looked up in RAMHT. When such lookup
fails to find a match, a CACHE_ERROR(NO_HASH) error is raised.

NV4:GF100

Internally, a FIFO object is a [usually small] block of data residing in “instance memory”. The instance memory is
RAMIN for pre-G80 GPUs, and the channel structure for G80+ GPUs. The first few bits of a FIFO object determine
its ‘class’. Class is 8 bits on NV4:NV25, 12 bits on NV25:NV40, 16 bits on NV40:GF100.

The data associated with a handle in RAMHT consists of engine id, which determines the object’s behavior when
bound to a subchannel, and its address in RAMIN [pre-G80] or offset from channel structure start [G80+].

Apart from method 0, the engine id is ignored. The suitability of an object for a given method is determined by
reading its class and checking if it makes sense. Most methods other than 0 expect a DMA object, although a couple
of pre-G80 graph objects have methods that expect other graph objects.

The following are commonly accepted object classes:
* 0x0002: DMA object for reading
* 0x0003: DMA object for writing
¢ 0x0030: NULL object - used to effectively unbind a previously bound object
* 0x003d: DMA object for reading/writing
Other object classes are engine-specific.

For more information on DMA objects, see NV3 DMA objects, NV4:GS80 DMA objects, or DMA objects.

NV3

NV3 also has RAMHT, but it’s only used for engine objects. While NV3 has DMA objects, they have to be bound
manually by the kernel. Thus, they’re not mentioned in RAMHT, and the 0x180-0x1fc methods are not implemented
in hardware - they’re instead trapped and emulated in software to behave like NV4+.

NV3 also doesn’t use object classes - the object type is instead a 7-bit number encoded in RAMHT along with engine
id and object address.

NV1

You don’t want to know how NV1 RAMHT works.

158 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Puller state
type name GPUs description
b24[8] ctx NVI1:NV4 objects bound to subchannels
b3 last_subc NVI1:NV4 last used subchannel
b5[8] engines NV4+ engines bound to subchannels
b5 last_engine NV4+ last used engine
b32 ref NV10+ reference counter [shared with pusher]
bool acquire_active NVIA+ semaphore acquire in progress
b32 acquire_timeout NVI1A+ semaphore acquire timeout
b32 acquire_timestamp NVIA+ semaphore acquire timestamp
b32 acquire_value NVI1A+ semaphore acquire value
dmaobj | dma_semaphore NVI11:GF100 | semaphore DMA object
b12/16 | semaphore_offset NVI11:GF100 | old-style ssmaphore address
bool semaphore_off_val G80:GF100 semaphore_offset valid
b40 semaphore_address G84+ new-style semaphore address
b32 semaphore_sequence | G84+ new-style semaphore value
bool acquire_source G84:GF100 semaphore acquire address selection
bool acquire_mode G84+ semaphore acquire mode

GF100 state is likely incomplete.

Engine objects
The main purpose of the puller is relaying methods to the engines. First, an engine object has to be bound to a
subchannel using method 0. Then, all methods >=0x100 on the subchannel will be forwarded to the relevant engine.

On pre-NV4, the bound objects’ RAMHT information is stored as part of puller state. The last used subchannel is
also remembered and each time the puller is requested to submit commands on subchannel different from the last one,
method 0 is submitted, or channel switch occurs, the information about the object will be forwarded to the engine

through its method 0. The information about an object is 24-bit, is known as object’s “context”, and has the following

fields:
* bits 0-15 [NV1]: object flags
e bits 0-15 [NV3]: object address
* bits 16-22: object type
* bit 23: engine id
The context for objects is stored directly in their RAMHT entries.

On NV4+ GPUs, the puller doesn’t care about bound objects - this information is supposed to be stored by the engine
itself as part of its state. The puller only remembers what engine each subchannel is bound to. On NV4:GF100 When
method 0 is executed, the puller looks up the object in RAMHT, getting engine id and object address in return. The
engine id is remembered in puller state, while object address is passed down to the engine for further processing.

GF100+ did away with RAMHT. Thus, method 0 now takes the object class and engine id directly as parameters:
* bits 0-15: object class. Not used by the puller, simply passed down to the engine.
* bits 16-20: engine id

The list of valid engine ids can be found on F/FO overview. The SOFTWARE engine is special: all methods submitted
to it, explicitely or implicitely by binding a subchannel to it, will cause a CACHE_ERROR(EMPTY_SUBCHANNEL)

2.8. PFIFO: command submission to execution engines 159

nVidia Hardware Documentation, Release git

interrupt. This interrupt can then be intercepted by the driver to implement a “software object”, or can be treated as an
actual error and reported.

The engines run asynchronously. The puller will send them commands whenever they have space in their input queues
and won’t wait for completion of a command before sending more. However, when engines are switched [ie. puller
has to submit a command to a different engine than last used by the channel], the puller will wait until the last used
engine is done with this channel’s commands. Several special puller methods will also wait for engines to go idle.

Todo: verify this on all card families.

On NV4:GF100 GPUs, methods 0x180-Ox1fc are treated specially: while other methods are forwarded directly to
engine without modification, these methods are expected to take object handles as parameters and will be looked up
in RAMHT by the puller before forwarding. Ie. the engine will get the object’s address found in RAMHT.

mthd 0x0000 / 0x000: OBJECT On NV1:GF100, takes the handle of the object that should be bound to the sub-
channel it was submitted on. On GF100+, it instead takes engine+class directly.

if (gpu < NV4) {
b24 newctx = RAMHT_LOOKUP (param) ;
if (newctx & 0x800000) {
/+ engine == PGRAPH */
if (ENGINE_CUR_CHANNEL (PGRAPH) != chan)
ENGINE_CHANNEL_SWITCH (PGRAPH, chan);
ENGINE_SUBMIT_MTHD (PGRAPH, subc, 0, newctx);

ctx[subc] = newctx;
last_subc = subc;

} else {
/* engine == SOFTWARE «*/

while (!ENGINE_IDLE (PGRAPH))
r
throw CACHE_ERROR (EMPTY_SUBCHANNEL) ;
}
} else {
/* NV4+ GPU x/
b5 engine; bl6 eparam;
if (gpu >= GF100) {
eparam = param & Oxffff;
engine = param >> 16 & Ox1f;
/x XXX: behavior with more bitfields? does it forward the whole thing?

%/
} else {
engine = RAMHT_LOOKUP (param) .engine;
eparam = RAMHT_LOOKUP (param) .addr;
}
if (engine != last_engine) {
while (ENGINE_CUR_CHANNEL (last_engine) == chan && !ENGINE_IDLE (last_
—engine))
7
}
if (engine == SOFTWARE) {
throw CACHE_ERROR (EMPTY_SUBCHANNEL) ;
} else {

if (ENGINE_CUR_CHANNEL (engine) !'= chan)
ENGINE_CHANNEL_SWITCH (engine, chan);

ENGINE_SUBMIT_MTHD (engine, subc, 0, eparam);

last_engine = engines[subc] = engine;

(continues on next page)

160 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

mthd 0x0100-0x3ffc / 0x040-0xfff: [forwarded to engine]

if (gpu < NV4) {
if (subc !'= last_subc) {
if (ctx[subc] & 0x800000) {
/% engine == PGRAPH =/
if (ENGINE_CUR_CHANNEL (PGRAPH) != chan)
ENGINE_CHANNEL_ SWITCH (PGRAPH, chan);
ENGINE_SUBMIT_MTHD (PGRAPH, subc, 0, ctx[subc]);
last_subc = subc;
} else {
/* engine == SOFTWARE «/
while (!ENGINE_IDLE (PGRAPH))
14

throw CACHE_ERROR (EMPTY_SUBCHANNEL) ;

}
if (ctx[subc] & 0x800000) {
/+ engine == PGRAPH */
if (ENGINE_CUR_CHANNEL (PGRAPH) != chan)
ENGINE_CHANNEL_SWITCH (PGRAPH, chan);
ENGINE_SUBMIT MTHD (PGRAPH, subc, mthd, param);

} else {

/* engine == SOFTWARE «*/

while (!ENGINE_IDLE (PGRAPH))

’

throw CACHE_ERROR (EMPTY_SUBCHANNEL) ;

}
} else {

/* NV4+ */

if (gpu < GF100 && mthd >= 0x180/4 && mthd < 0x200/4) {
param = RAMHT_LOOKUP (param) .addr;

if (engines[subc] != last_engine) {
while (ENGINE_CUR_CHANNEL (last_engine) == chan && !ENGINE_IDLE (last_
—engine))
}
if (engines([subc] == SOFTWARE) {

throw CACHE_ERROR (EMPTY_SUBCHANNEL) ;
} else {
if (ENGINE_CUR_CHANNEL (engine) != chan)
ENGINE_CHANNEL_SWITCH (engine, chan);
ENGINE_SUBMIT_MTHD (engine, subc, mthd, param);
last_engine = engines|[subc];

Todo: verify all of the pseudocode. . .

Puller builtin methods

2.8. PFIFO: command submission to execution engines 161

nVidia Hardware Documentation, Release git

Syncing with host: reference counter

NV10 introduced a “reference counter”. It’s a per-channel 32-bit register that is writable by the puller and readable
through the channel control area [see DMA submission to FIFOs on NV4]. It can be used to tell host which commands
have already completed: after every interesting batch of commands, add a method that will set the ref counter to
monotonically increasing values. The host code can then read the counter from channel control area and deduce which
batches are already complete.

The method to set the reference counter is REF_CNT, and it simply sets the ref counter to its parameter. When it’s
executed, it’ll also wait for all previously submitted commands to complete execution.

mthd 0x0050 / 0x014: REF_CNT [NV10:]

while (ENGINE_CUR_CHANNEL (last_engine) == chan && !ENGINE_IDLE (last_engine))
’
ref = param;

Semaphores

NVI1A PFIFO introduced a concept of “semaphores”. A semaphore is a 32-bit word located in memory. G84 also
introduced “long” semaphores, which are 4-word memory structures that include a normal semaphore word and a
timestamp.

The PFIFO semaphores can be “acquired” and “released”. Note that these operations are NOT the familiar P/V
semaphore operations, they’re just fancy names for “wait until value == X and “write X”.

There are two “versions” of the semaphore functionality. The “old-style” semaphores are implemented by
NV1A:GF100 GPUs. The “new-style” semaphores are supported by G84+ GPUs. The differences are:

Old-style semaphores

e limitted addressing range: 12-bit [NV1A:G80] or 16-bit [G80:GF100] offset in a DMA object. Thus a special
DMA object is required.

* release writes a single word
* acquire supports only “wait for value equal to X’ mode
New-style semaphores
* full 40-bit addressing range
* release writes word + timestamp, ie. long semaphore
* acquire supports “wait for value equal to X and “wait for value greater or equal X’ modes

Semaphores have to be 4-byte aligned. All values are stored with endianness selected by big_endian flag [NV1A:G80]
or by PFIFO endianness [G80+]

On pre-GF100, both old-style semaphores and new-style semaphores use the DMA object stored in dma_semaphore,
which can be set through DMA_SEMAPHORE method. Note that this method is buggy on pre-G80 GPUs and accepts
only write-only DMA objects of class 0x0002. You have to work around the bug by preparing such DMA objects [or
using a kernel that intercepts the error and does the binding manually].

Old-style semaphores read/write the location specified in semaphore_offset, which can be set by
SEMAPHORE_OFFSET method. The offset has to be divisible by 4 and fit in 12 bits [NV1A:G80] or 16 bits
[G80:GF100]. An acquire is triggered by using the SEMAPHORE_ACQUIRE mthd with the expected value as the
parameter - further command processing will halt until the memory location contains the selected value. A release is
triggered by using the SEMAPHORE_RELEASE method with the value as parameter - the value will be written into
the semaphore location.

162 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

New-style semaphores use the location specified in semaphore_address, whose low/high parts can be set
through SEMAPHORE_ADDRESS_HIGH and _LOW methods. The value for acquire/release is stored in
semaphore_sequence and specified by SEMAPHORE_SEQUENCE method. Acquire and release are triggered by
using the SEMAPHORE_TRIGGER method with the requested operation as parameter.

The new-style release operation writes the following 16-byte structure to memory at semaphore_address:
* 0x00: [32-bit] semaphore_sequence
e 0x04: [32-bit] O
e 0x08: [64-bit] PTIMER timestamp [see ptimer]

The new-style “acquire equal” operation behaves exactly like old-style acquire, but uses semaphore_address instead
of semaphore_offset and semaphore_sequence instead of SEMAPHORE_RELEASE param. The “acquire greater or
equal” operation, instead of waiting for the semaphore value to be equal to semaphore_sequence, it waits for value that
satisfies (int32_t)(val - semaphore_sequence) >= 0, ie. for a value that’s greater or equal to semaphore_sequence in
32-bit wrapping arithmetic. The “acquire mask” operation waits for a value that, ANDed with semaphore_sequence,
gives a non-0 result [GF100+ only].

Failures of semaphore-related methods will trigger the SEMAPHORE error. The SEMAPHORE error has several
subtypes, depending on card generation.

NVI1A:G80 SEMAPHORE error subtypes:
e 1: INVALID_OPERAND: wrong parameter to a method
e 2: INVALID_STATE: attempt to acquire/release without proper setup
G80:GF100 SEMAPHORE error subtypes:
e 1: ADDRESS_UNALIGNED: address not divisible by 4
e 2: INVALID_STATE: attempt to acquire/release without proper setup
* 3: ADDRESS_TOO_LARGE: attempt to set >40-bit address or >16-bit offset
* 4: MEM_FAULT: got VM fault when reading/writing semaphore
GF100 SEMAPHORE error subtypes:

Todo: figure this out

If the acquire doesn’t immediately succeed, the acquire parameters are written to puller state, and the read will be
periodically retried. Further puller processing will be blocked on current channel until acquire succeeds. Note that, on
G84+ GPUs, the retry reads are issued from SEMAPHORE_BG VM engine instead of the PFIFO VM engine. There’s
also apparently a timeout, but it’s not REd yet.

Todo: RE timeouts

mthd 0x0060 / 0x018: DMA_SEMAPHORE [O] [NV1A:GF100]

obj = RAMHT_LOOKUP (param) .addr;
if (gpu < G80) {

if (OBJECT_CLASS (obj) != 2)
throw SEMAPHORE (INVALID_OPERAND) ;
if (DMAOBJ_RIGHTS (obj) != WO)

throw SEMAPHORE (INVALID_OPERAND) ;
if (!DMAOBJ_PT_PRESENT (ob3j))

(continues on next page)

2.8. PFIFO: command submission to execution engines 163

nVidia Hardware Documentation, Release git

(continued from previous page)

throw SEMAPHORE (INVALID_OPERAND) ;
}
/+* G80 doesn't bother with verification =/
dma_semaphore = obj;

Todo: is there ANY way to make G80 reject non-DMA object classes?

mthd 0x0064 / 0x019: SEMAPHORE_OFFSET [NV1A-]

if (gpu < G80) {
if (param & ~0xffc)
throw SEMAPHORE (INVALID_OPERAND) ;
semaphore_offset = param;
} else if (gpu < GF100) {
if (param & 3)
throw SEMAPHORE (ADDRESS_UNALIGNED) ;
if (param & Oxf£££0000)
throw SEMAPHORE (ADDRESS_TOO_LARGE) ;

semaphore_offset = param;
semaphore_off_val = 1;

} else {
semaphore_address[0:31] = param;

mthd 0x0068 / 0x01a: SEMAPHORE_ACQUIRE [NV1A-]

if (gpu < G80 && !dma_semaphore)
/* unbound DMA object x/
throw SEMAPHORE (INVALID_STATE) ;
if (gpu >= G80 && !semaphore_off_wval)
throw SEMAPHORE (INVALID_STATE) ;
b32 word;
if (gpu < G80) {

} else {
try {
word = READ_DMAOBJ_32 (dma_semaphore, semaphore_offset, pfifo_
—endian) ;
} catch (VM_FAULT) ({
throw SEMAPHORE (MEM_FAULT) ;

}

if (word == param) {
/* already done x/
} else {
/* acquire_active will block further processing and schedule retries =/
acquire_active = 1;
acquire_value = param;
acquire_timestamp = ??7;

/* XXX: figure out timestamp/timeout business */
if (gpu >= G80) {

acquire_mode = 0;

acquire_source = 0;

word = READ_DMAOBJ_32 (dma_semaphore, semaphore_offset, big_endian?BE:LE);

164 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

mthd 0x006¢c / 0x01b: SEMAPHORE_RELEASE [NV1A-]

if (gpu < G80 && !dma_semaphore)

/% unbound DMA object =/

throw SEMAPHORE (INVALID_STATE) ;
if (gpu >= G80 && !semaphore_off_val)

throw SEMAPHORE (INVALID_STATE) ;
if (gpu < G80) {

} else {
try {
WRITE_DMAOBJ_32 (dma_semaphore, semaphore_offset, param, pfifo_
—endian);
} catch (VM_FAULT) {
throw SEMAPHORE (MEM_FAULT) ;
}

WRITE_DMAOBJ_32 (dma_semaphore, semaphore_offset, param, big_endian?BE:LE);

mthd 0x0010 / 0x004: SEMAPHORE_ADDRESS_HIGH [G84:]

if (param & Oxffff££00)
throw SEMAPHORE (ADDRESS_TOO_LARGE) ;
semaphore_address[32:39] = param;

mthd 0x0014 / 0x005: SEMAPHORE_ADDRESS_LOW [G84:]

if (param & 3)
throw SEMAPHORE (ADDRESS_UNALIGNED) ;
semaphore_address[0:31] = param;

mthd 0x0018 / 0x006: SEMAPHORE_SEQUENCE [G84:]

semaphore_sequence = param;

mthd 0x001c / 0x007: SEMAPHORE_TRIGGER [G84:]
bits 0-2: operation
* 1: ACQUIRE_EQUAL
e 2: WRITE_LONG
* 4: ACQUIRE_GEQUAL
* 8: ACQUIRE_MASK [GF100-]

Todo: bit 12 does something on GF100?

op = param & 7;
b64 timestamp = PTIMER_GETTIME () ;
if (param == 2) {
if (gpu < GF100) {
try {
WRITE_DMAOBJ_32 (dma_semaphore, semaphore_address+0x0,
—param, pfifo_endian);

WRITE_DMAOBJ_32 (dma_semaphore, semaphore_address+0x4, 0,
—pfifo_endian);
WRITE_DMAOBJ_64 (dma_semaphore, semaphore_address+0x8,
ESNE IV ESEEVE nfa £ P) .
timestampr—pfifo—endian)s {Continues on next page)
2.8. PFIFO: command submission to execution engines 165

nVidia Hardware Documentation, Release git

(continued from previous page)

} catch (VM_FAULT) {
throw SEMAPHORE (MEM_FAULT) ;
}
} else {
WRITE_VM_32 (semaphore_address+0x0, param, pfifo_endian);
WRITE_VM_32 (semaphore_address+0x4, 0, pfifo_endian);
WRITE_VM_64 (semaphore_address+0x8, timestamp, pfifo_endian);
}
} else {
b32 word;
if (gpu < GF100) {
try {
word = READ_DMAOBJ_32 (dma_semaphore, semaphore_address, |
—pfifo_endian);
} catch (VM_FAULT) {
throw SEMAPHORE (MEM_FAULT) ;
}

} else {
word = READ_VM_32 (semaphore_address, pfifo_endian);
t
if ((op == 1 && word == semaphore_sequence) || (op == 4 && (int32_t) (word,
—— semaphore_sequence) >= 0) || (op == 8 && word & semaphore_sequence)) {
/* already done =/
} else {
/* XXX GF100 =/
acquire_source = 1;
acquire_value = semaphore_sequence;
acquire_timestamp = ?27?7?;
if (op == 1) {
acquire_active = 1;
acquire_mode = 0;
} else if (op == 4) {
acquire_active = 1;
acquire_mode = 1;
} else {
/+ invalid combination - results in hang =/

Misc puller methods

NV40 introduced the YIELD method which, if there are any other busy channels at the moment, will cause PFIFO to
switch to another channel immediately, without waiting for the timeslice to expire.

mthd 0x0080 / 0x020: YIELD [NV40:]
:: PFIFO_YIELD();

G84 introduced the NOTIFY_INTR method, which simply raises an interrupt that notifies the host of its execution. It
can be used for sync primitives.

mthd 0x0020 / 0x008: NOTIFY_INTR [G84:]
:: PFIFO_NOTIFY_INTR();

166 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: check how this is reported on GF100

The G84+ WRCACHE_FLUSH method can be used to flush PFIFO’s write post caches. [see Tesla virtual memory]

mthd 0x0024 / 0x009: WRCACHE_FLUSH [G84:]
:: VM_WRCACHE_FLUSH(PFIFO);

The GF100+ NOP method does nothing:

mthd 0x0008 / 0x002: NOP [GF100:]

’/* do nothing */

2.9 PGRAPH: 2d/3d graphics and compute engine

Contents:

2.9.1 PGRAPH overview

Contents

e PGRAPH overview

Introduction

NVI/NV3 graph object types

NV4+ graph object classes

The NULL object

The graphics context
% Channel context
* Graph object options

x Volatile state

Notifiers
* NOTIFY method
* DMA_NOTIFY method

x NOP method

Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine

167

nVidia Hardware Documentation, Release git

Todo: WAIT_FOR_IDLE and PM_TRIGGER

NV1/NV3 graph object types

The following graphics objects exist on NV1:NV4:

id vari- name description
ants

0x01| all BETA sets beta factor for blending

0x02| all ROP sets raster operation

0x03| all CHROMA sets color for color key

0x04 | all PLANE sets the plane mask

0x05| all CLIP sets clipping rectangle

0x06| all PATTERN sets pattern, ie. a small repeating image used as one of the inputs to a raster
operation or blending

0x07| NV3:NV4 RECT renders solid rectangles

0x08| all POINT renders single points

0x09| all LINE renders solid lines

0x0a| all LIN renders solid lins [ie. lines missing a pixel on one end]

0x0b| all TRI renders solid triangles

0x0c| NVI:NV3 RECT renders solid rectangles

0x0c | NV3:NV4 GDI renders Windows 95 primitives: rectangles and characters, with font read from
a DMA object

0x0d| NVI:NV3 TEXLIN renders quads with linearly mapped textures

0x0d| NV3:NV4 M2MF copies data from one DMA object to another

0x0e | NVI:NV3 TEXQUAD renders quads with quadratically mapped textures

0x0e | NV3:NV4 SIFM Scaled Image From Memory, like NVI1’s IFM, but with scaling

0x10]| all BLIT copies rectangles of pixels from one place in framebuffer to another

Ox11| all IFC Image From CPU, uploads a rectangle of pixels via methods

0x12]| all BITMAP uploads and expands a bitmap [ie. 1bpp image] via methods

0x13| NVI:NV3 IFM Image From Memory, uploads a rectangle of pixels from a DMA object to
framebuffer

0x14| all I™ Image To Memory, downloads a rectangle of pixels to a DMA object from
framebuffer

0x15| NV3:NV4 SIFC Stretched Image From CPU, like IFC, but with image stretching

0x17| NV3:NV4 D3D Direct3D 5 textured triangles

0x18| NV3:NV4 ZPOINT renders single points to a surface with depth buffer

Oxlc| NV3:NV4 SURF sets rendering surface parameters

Ox1d| NVI:NV3 TEXLIN- renders lit quads with linearly mapped textures

BETA
Oxle| NVI:NV3 TEXQUAD- renders lit quads with quadratically mapped textures
BETA

Todo: check Direct3D version

168

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

NV4+ graph object classes

Not really graph objects, but usable as parameters for some object-bind methods [all NV4:GF100]:

class name description

0x0030 | NVI_NULL does nothing

0x0002 | NVI_DMA_R | DMA object for reading
0x0003 | NVI_DMA_W | DMA object for writing
0x003d | NV3_DMA read/write DMA object

Todo: document NV1_NULL

NV 1-style operation objects [all NV4:NVS5]:

class name description

0x0010 | NVI_OP_CLIP clipping

0x0011 | NV1_OP_BLEND_AND blending

0x0013 | NV1_OP_ROP_AND raster operation

0x0015 | NV1_OP_CHROMA color key

0x0064 | NV1_OP_SRCCOPY_AND source copy with 0-alpha discard
0x0065 | NV3_OP_SRCCOPY source copy

0x0066 | NV4_OP_SRCCOPY_PREMULT | pre-multiplying copy

0x0067 | NV4_OP_BLEND_PREMULT pre-multiplied blending

Memory to memory copy objects:

class variants name description

0x0039 | NV4:G80 NV3_M2MF copies data from one buffer to another
0x5039 | G80:GF100 G80_M2MF copies data from one buffer to another
0x9039 | GF100:GK104 GF100_M2MF | copies data from one buffer to another
0xa040 | GK104:GK110 GK20A | GK104_P2MF | copies data from FIFO to memory buffer
0xal40 | GK110:GK20A GM107- | GK110_P2MF | copies data from FIFO to memory buffer

Context objects:

2.9. PGRAPH: 2d/3d graphics and compute engine 169

nVidia Hardware Documentation, Release git

class variants name description

0x0012 | NV4:G84 NV1_BETA sets beta factor for blending

0x0017 | NV4:G80 NV1_CHROMA sets color for color key

0x0057 | NV4:G84 NV4_CHROMA sets color for color key

0x0018 | NV4:G80 NVI1_PATTERN sets pattern for raster op

0x0044 | NV4:G84 NV1_PATTERN sets pattern for raster op

0x0019 | NV4:G84 NVI1_CLIP sets user clipping rectangle

0x0043 | NV4:G84 NV1_ROP sets raster operation

0x0072 | NV4:G84 NV4_BETA4 sets component beta factors for pre-multiplied blending
0x0058 | NV4:G80 NV3_SURF_DST sets the 2d destination surface

0x0059 | NV4:G80 NV3_SURF_SRC sets the 2d blit source surface

0x005a | NV4:G80 NV3_SURF_COLOR | sets the 3d color surface

0x005b | NV4:G80 NV3_SURF_ZETA sets the 3d zeta surface

0x0052 | NV4:G80 NV4_SWZSURF sets 2d swizzled destination surface
0x009e | NV10:G80 NV10_SWZSURF sets 2d swizzled destination surface
0x039e | NV30:NV40 | NV30_SWZSURF sets 2d swizzled destination surface
0x309e | NV40:G80 NV30_SWZSURF sets 2d swizzled destination surface
0x0042 | NV4:G80 NV4_SURF2D sets 2d destination and source surfaces
0x0062 | NV10:G80 NVI10_SURF2D sets 2d destination and source surfaces
0x0362 | NV30:NV40 | NV30_SURF2D sets 2d destination and source surfaces
0x3062 | NV40:G80 NV30_SURF2D sets 2d destination and source surfaces
0x5062 | G80:G8&4 G80_SURF2D sets 2d destination and source surfaces
0x0053 | NV4:NV20 NV4_SURF3D sets 3d color and zeta surfaces

0x0093 | NV10:NV20 | NV10_SURF3D sets 3d color and zeta surfaces

Solids rendering objects:

class variants name description
0x001c | NV4:NV40 NV1_LIN renders a lin
0x005¢ | NV4:G80 NV4_LIN renders a lin
0x035¢c | NV30:NV40 | NV30_LIN renders a lin
0x305¢ | NV40:G84 NV30_LIN | renders a lin
0x001d | NV4:NV40 NV1_TRI renders a triangle
0x005d | NV4:G84 NV4_TRI renders a triangle
0x001e | NV4:NV40 NVI1_RECT | renders a rectangle
0x005e | NV4:NV40 NV4_RECT | renders a rectangle

Image upload from CPU objects:

170

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

class variants name description

0x0021 | NV4:NV40 NVI_IFC image from CPU

0x0061 | NV4:G80 NV4_IFC image from CPU

0x0065 | NV5:G80 NV5_IFC image from CPU

0x008a | NV10:G80 NVI10_IFC image from CPU

0x038a | NV30:NV40 | NV30_IFC image from CPU

0x308a | NV40:G84 NV40_IFC image from CPU

0x0036 | NV4:G80 NVI_SIFC stretched image from CPU
0x0076 | NV4:G80 NV4_SIFC stretched image from CPU
0x0066 | NV5:G80 NVS5_SIFC stretched image from CPU
0x0366 | NV30:NV40 | NV30_SIFC stretched image from CPU
0x3066 | NV40:G84 NV40_SIFC stretched image from CPU
0x0060 | NV4:G80 NV4_INDEX indexed image from CPU
0x0064 | NV5:G80 NVS5_INDEX indexed image from CPU
0x0364 | NV30:NV40 | NV30_INDEX indexed image from CPU
0x3064 | NV40:G84 NV40_INDEX indexed image from CPU
0x007b | NV10:G80 NVI10_TEXTURE | texture from CPU

0x037b | NV30:NV40 | NV30_TEXTURE | texture from CPU

0x307b | NV40:G80 NV40_TEXTURE | texture from CPU

Todo: figure out wtf is the deal with TEXTURE objects

Other 2d source objects:

class variants name description
0x001f | NV4:G80 NVI1_BLIT blits inside framebuffer
0x005f | NV4:G84 NV4_BLIT blits inside framebuffer
0x009f | NV15:G80 NVI15_BLIT | blits inside framebuffer
0x0037 | NV4:G80 NV3_SIFM | scaled image from memory
0x0077 | NV4:G80 NV4_SIFM | scaled image from memory
0x0063 | NV10:G80 NVS5_SIFM | scaled image from memory
0x0089 | NV10:NV40 | NV10_SIFM | scaled image from memory
0x0389 | NV30:NV40 | NV30_SIFM | scaled image from memory
0x3089 | NV40:G80 NV30_SIFM | scaled image from memory
0x5089 | G80:G84 G80_SIFM scaled image from memory
0x004b | NV4:NV40 NV3_GDI draws GDI primitives
0x004a | NV4:G80 NV4_GDI draws GDI primitives
YCbCr two-source blending objects:

class | variants name

0x0038 | NV4:G80 | NV4_DVD_SUBPICTURE

0x0088 | NV10:G80 | NV10_DVD_SUBPICTURE

Todo: find better name for these two

Unified 2d objects:

2.9. PGRAPH: 2d/3d graphics and compute engine 171

nVidia Hardware Documentation, Release git

class variants name
0x502d | G80:GF100 | G80_2D
0x902d | GF100- GF100_2D
NV3-style 3d objects:
class variants name description
0x0048 | NV4:NV15 NV3_D3D Direct3D textured triangles
0x0054 | NV4:NV20 NV4_D3D5 Direct3D 5 textured triangles
0x0094 | NV10:NV20 | NV10_D3D5 | Direct3D 5 textured triangles
0x0055 | NV4:NV20 NV4_D3D6 Direct3D 6 multitextured triangles
0x0095 | NV10:NV20 | NV10_D3D6 | Direct3D 6 multitextured triangles
Todo: check NV3_D3D version
NV10-style 3d objects:
class variants name description
0x0056 | NV10:NV30 NV10_3D Celsius Direct3D 7 engine
0x0096 | NV15:NV30 NV15_3D Celsius Direct3D 7 engine
0x0098 | NV17:NV20 NVI11_3D Celsius Direct3D 7 engine
0x0099 | NV17:NV20 NV17_3D Celsius Direct3D 7 engine
0x0097 | NV20:NV34 NV20_3D Kelvin Direct3D 8 SM 1 engine
0x0597 | NV25:NV40 NV25_3D Kelvin Direct3D 8 SM 1 engine
0x0397 | NV30:NV40 NV30_3D Rankine Direct3D 9 SM 2 engine
0x0497 | NV35:NV34 NV35_3D Rankine Direct3D 9 SM 2 engine
0x3597 | NV40:NV41 NV35_3D Rankine Direct3D 9 SM 2 engine
0x0697 | NV34:NV40 NV34_3D Rankine Direct3D 9 SM 2 engine
0x4097 | NV40:G80 !TC | NV40_3D Curie Direct3D 9 SM 3 engine
0x4497 | NV40:G80 TC NV44_3D Curie Direct3D 9 SM 3 engine
0x5097 | G80:G200 G80_3D Tesla Direct3D 10 engine
0x8297 | G84:G200 G84_3D Tesla Direct3D 10 engine
0x8397 | G200:GT215 G200_3D Tesla Direct3D 10 engine
0x8597 | GT215:MCP89 | GT215_3D | Tesla Direct3D 10.1 engine
0x8697 | MCP89:GF100 MCP89_3D | Tesla Direct3D 10.1 engine
0x9097 | GF100:GK104 GF100_3D | Fermi Direct3D 11 engine
0x9197 | GF108:GK104 GF108_3D | Fermi Direct3D 11 engine
0x9297 | GF110:GK104 GF110_3D | Fermi Direct3D 11 engine
0xa097 | GK104:GK110 | GK104_3D | Kepler Direct3D 11.1 engine
0xal97 | GK110:GK20A | GK110_3D | Kepler Direct3D 11.1 engine
0xa297 | GK20A:GM107 | GK20A_3D | Kepler Direct3D 11.1 engine
0xb097 | GM107- GM107_3D | Maxwell Direct3D 12 engine

And the compute objects:

172

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

class variants name description

0x50c0 | G80:GF100 G80_COMPUTE CUDA 1.x engine
0x85c0 | GT215:GF100 GT215_COMPUTE | CUDA I.x engine
0x90c0 | GF100:GK104 GF100_COMPUTE | CUDA 2.x engine
0x91c0 | GF110:GK104 GF110_COMPUTE | CUDA 2.x engine
0xa0cO | GK104:GK110 GK20A:GM107 | GK104_COMPUTE | CUDA 3.x engine
OxalcO | GK110:GK20A GK110_COMPUTE | CUDA 3.x engine
0xb0cO | GM107:GM204 GM107_COMPUTE | CUDA 4.x engine
OxblcO | GM204:- GM200_COMPUTE | CUDA 4.x engine

The NULL object

Todo: write me

The graphics context

Todo: write something here

Channel context

The following information makes up non-volatile graphics context. This state is per-channel and thus will apply to all
objects on it, unless software does trap-swap-restart trickery with object switches. It is guaranteed to be unaffected
by subchannel switches and object binds. Some of this state can be set by submitting methods on the context objects,
some can only be set by accessing PGRAPH context registers.

* the beta factor - set by BETA object

the 8-bit raster operation - set by ROP object

the AIR10G10B10 color for chroma key - set by CHROMA object

the AIR10G10B10 color for plane mask - set by PLANE object

the user clip rectangle - set by CLIP object:

-m

the pattern state - set by PATTERN object:
— shape: 8x8, 64x1, or 1x64
— 2x A8R10G10B10 pattern color
— the 64-bit pattern itself

the NOTIFY DMA object - pointer to DMA object used by NOTIFY methods. NV1 only - moved to graph
object options on NV3+. Set by direct PGRAPH access only.

the main DMA object - pointer to DMA object used by IFM and ITM objects. NV1 only - moved to graph
object options on NV3+. Set by direct PGRAPH access only.

On NV1, framebuffer setup - set by direct PGRAPH access only:

2.9. PGRAPH: 2d/3d graphics and compute engine 173

nVidia Hardware Documentation, Release git

-m

* On NV3+, rendering surface setup:

-7

There are 4 copies of this state, one for each surface used by PGRAPH:

DST - the 2d destination surface

SRC - the 2d source surface [used by BLIT object only]
COLOR - the 3d color surface

ZETA - the 3d depth surface

Note that the M2MF source/destination, ITM destination, IFM/SIFM source, and D3D texture don’t count as
surfaces - even though they may be configured to access the same data as surfaces on NV3+, they’re accessed
through the DMA circuitry, not the surface circuitry, and their setup is part of volatile state.

Todo: beta factor size

Todo: user clip state

Todo: NV1 framebuffer setup

Todo: NV3 surface setup

Todo: figure out the extra clip stuff, etc.

Todo: update for NV4+

Graph object options

In addition to the per-channel state, there is also per-object non-volatile state, called graph object options. This state
is stored in the RAMHT entry for the object [NV1], or in a RAMIN structure [NV3-]. On subchannel switches and
object binds, the PFIFO will send this state [NV1] or the pointer to this state [NV3-] to PGRAPH via method 0. On
NV1:NV4, this state cannot be modified by any object methods and requires RAMHT/RAMIN access to change. On
NV4+, PGRAPH can bind DMA objects on its own when requested via methods, and update the DMA object pointers
in RAMIN. On NV5+, PGRAPH can modify most of this state when requested via methods. All NV4+ automatic
options modification methods can be disabled by software, if so desired.

The graph options contain the following information:
* 2d pipeline configuration
* 2d color and mono format

e NOTIFY_VALID flag - if set, NOTIFY method will be enabled. If unset, NOTIFY method will cause an
interrupt. Can be used by the driver to emulate per-object DMA_NOTIFY setting - this flag will be set on

174 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

objects whose emulated DMA_NOTIFY value matches the one currently in PGRAPH context, and interrupt
will cause a switch of the PGRAPH context value followed by a method restart.

* SUBCONTEXT_ID - a single-bit flag that can be used to emulate more than one PGRAPH context on one
channel. When an object is bound and its SUBCONTEXT_ID doesn’t match PGRAPH’s current SUBCON-
TEXT_ID, a context switch interrupt is raised to allow software to load an alternate context.

Todo: NV3+

See nv1-pgraph for detailed format.

Volatile state

In addition to the non-volatile state described above, PGRAPH also has plenty of “volatile” state. This state deals
with the currently requested operation and may be destroyed by switching to a new subchannel or binding a new
object [though not by full channel switches - the channels are supposed to be independent after all, and kernel driver
is supposed to save/restore all state, including volatile state].

Volatile state is highly object-specific, but common stuff is listed here:

* the “notifier write pending” flag and requested notification type

Todo: more stuff?

Notifiers

The notifiers are 16-byte memory structures accessed via DMA objects, used for synchronization. Notifiers are written
by PGRAPH when certain operations are completed. Software can poll on the memory structure, waiting for it to be
written by PGRAPH. The notifier structure is:

base+0x0: 64-bit timestamp - written by PGRAPH with current PTIMER time as of the notifier write. The timestamp
is a concatenation of current values of TIME_LOW and TIME_HIGH registers When big-endian mode is in
effect, this becomes a 64-bit big-endian number as expected.

base+0x8: 32-bit word always set to 0 by PGRAPH. This field may be used by software to put a non-0 value for
software-written error-caused notifications.

base+0xc: 32-bit word always set to 0 by PGRAPH. This is used for synchronization - the software is supposed to
set this field to a non-0 value before submitting the notifier write request, then wait for it to become 0. Since the
notifier fields are written in order, it is guaranteed that the whole notifier structure has been written by the time
this field is set to 0.

Todo: verify big endian on non-G80

There are two types of notifiers: ordinary notifiers [NV1-] and M2MF notifiers [NV3-]. Normal notifiers are written
when explicitely requested by the NOTIFY method, M2MF notifiers are written on M2MF transfer completion. M2MF
notifiers cannot be turned off, thus it’s required to at least set up a notifier DMA object if M2MF is used, even if the
software doesn’t wish to use notifiers for synchronization.

Todo: figure out NV20 mysterious warning notifiers

2.9. PGRAPH: 2d/3d graphics and compute engine 175

nVidia Hardware Documentation, Release git

Todo: describe GF100+ notifiers

The notifiers are always written to the currently bound notifier DMA object. The M2MF notifiers share the DMA
object with ordinary notifiers. The layout of the DMA object used for notifiers is fixed:

* 0x00: ordinary notifier #0

¢ 0x10: M2MF notifier [NV3-]

¢ 0x20: ordinary notifier #2 [NV3:NV4 only]
* 0x30: ordinary notifier #3 [NV3:NV4 only]
* 0x40: ordinary notifier #4 [NV3:NV4 only]
* 0x50: ordinary notifier #5 [NV3:NV4 only]
¢ 0x60: ordinary notifier #6 [NV3:NV4 only]
* 0x70: ordinary notifier #7 [NV3:NV4 only]
* 0x80: ordinary notifier #8 [NV3:NV4 only]
* 0x90: ordinary notifier #9 [NV3:NV4 only]
* 0xa0: ordinary notifier #10 [NV3:NV4 only]
* 0xb0: ordinary notifier #11 [NV3:NV4 only]
* 0xc0: ordinary notifier #12 [NV3:NV4 only]
¢ 0xdO: ordinary notifier #13 [NV3:NV4 only]
* 0xe0: ordinary notifier #14 [NV3:NV4 only]
* 0xf0: ordinary notifier #15 [NV3:NV4 only]

Todo: 0x20 - NV20 warning notifier?

Note that the notifiers always have to reside at the very beginning of the DMA object. On NV1 and NV4+, this
effectively means that only 1 notifier of each type can be used per DMA object, requiring mulitple DMA objects
if more than one notifier per type is to be used, and likely requiring a dedicated DMA object for the notifiers. On
NV3:NV4, up to 15 ordinary notifiers may be used in a single DMA object, though that DMA object likely still needs
to be dedicated for notifiers, and only one of the notifiers supports interrupt generation.

NOTIFY method

Ordinary notifiers are requested via the NOTIFY method. Note that the NOTIFY method schedules a notifier write on
completion of the method following the NOTIFY - NOTIFY merely sets “a notifier write is pending” state.

It is an error if a NOTIFY method is followed by another NOTIFY method, a DMA_NOTIFY method, an object bind,
or a subchannel switch.

In addition to a notifier write, the NOTIFY method may also request a NOTIFY interrupt to be triggered on PGRAPH
after the notifier write.

mthd 0x104: NOTIFY [all NV1:GF100 graph objects] Requests a notifier write and maybe an interrupt. The
write/interrupt will be actually performed after the next method completes. Possible parameter values are:

176 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

0: WRITE - write ordinary notifier #0 1: WRITE_AND_AWAKEN - write ordinary notifier 0, then
trigger NOTIFY

interrupt [NV3-]

2: WRITE_2 - write ordinary notifier #2 [NV3:NV4] 3: WRITE_3 - write ordinary notifier #3
[NV3:NV4] [...] 15: WRITE_15 - write ordinary notifier #15 [NV3:NV4]

Operation::

if (cur_grobj.NOTIFY_VALID) { /* DMA notify object not set, or needs to be swapped in by sw */
throw(INVALID_NOTIFY);

} else if ((param > 0 && gpu == NV1)
Il (param > 15 && gpu >= NV3 && gpu < NV4) [l (param > 1 && gpu >= NV4)) {
/* XXX: what state is changed? */ throw(INVALID_VALUE);

} else if (NOTIFY_PENDING) { /* tried to do two NOTIFY methods in row // XXX: what state is changed?
*/ throw(DOUBLE_NOTIFY);

} else { NOTIFY_PENDING = 1; NOTIFY_TYPE = param;

1
After every method other than NOTIFY and DMA_NOTIFY, the following is done:

if (NOTIFY_PENDING) {
int idx = NOTIFY_TYPE;
if (idx == 1)
idx = 0;
dma_write64 (NOTIFY_DMA, 1dx+«0x10+0x0, PTIMER.TIME_HIGH << 32 | PTIMER.TIME_LOW) ;
dma_write32 (NOTIFY_DMA, i1dx+«0x10+0x8, 0);
dma_write32 (NOTIFY_DMA, idx*0x10+0xc, 0);
if (NOTIFY_TYPE ==)
irg _trigger (NOTIFY);
NOTIFY_PENDING = 0;
}

if a subchannel switch or object bind is done while NOTIFY_PENDING is set, CTXSW_NOTIFY error is raised.

NOTE: NV1 has a 1-bit NOTIFY_PENDING field, allowing it to do notifier writes with interrupts, but lacks support
for setting it via the NOTIFY method. This functionality thus has to be emulated by the driver if needed.

DMA_NOTIFY method

On NV4+, the notifier DMA object can be bound by submitting the DMA_NOTIFY method. This functionality can
be disabled by the driver in PGRAPH settings registers if not desired.

mthd 0x180: DMA_NOTIFY [all NV4:GF100 graph objects] Sets the notifier DMA object. When submitted
through PFIFO, this method will undergo handle -> address translation via RAMHT.

Operation::
if (DMA_METHODS_ENABLE) { /* XXX: list the validation checks */ NOTIFY_DMA = param;
} else { throw(INVALID_METHOD);

}

2.9. PGRAPH: 2d/3d graphics and compute engine 177

nVidia Hardware Documentation, Release git

NOP method

On NV4+ a NOP method was added to enable asking for a notifier write without having to submit an actual method
to the object. The NOP method does nothing, but still counts as a graph object method and will thus trigger a notifier
write/interrupt if one was previously requested.

mthd 0x100: NOP [all NV4+ graph objects] Does nothing.

Operation:: /* nothing */

Todo: figure out if this method can be disabled for NV1 compat

2.9.2 The memory copying objects

Contents

* The memory copying objects

— Introduction

M2MF objects

P2MF objects

Input/output setup

Operation

Introduction

Todo: write me

M2MF objects

Todo: write me

P2MF objects

Todo: write me

Input/output setup

178 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: write me

Operation

Todo: write me

2.9.3 2D pipeline

Contents:

Overview of the 2D pipeline

Contents

* Overview of the 2D pipeline

Introduction

The objects
* Connecting the objects - NV1 style

x Connecting the objects - NV5 style

Color and monochrome formats
* COLOR_FORMAT methods
* Color format conversions

* Monochrome formats

The pipeline
* Pipeline configuration: NVI
+ Clipping
* Source format conversion
+ Buffer read
* Bitwise operation
x Chroma key
+ The plane mask
* Blending
+ Dithering

* The framebuffer

- NVI canvas

2.9. PGRAPH: 2d/3d graphics and compute engine 179

nVidia Hardware Documentation, Release git

- NV3 surfaces

- Clip rectangles

— NVI-style operation objects

— Unified 2d objects

Introduction

On nvidia GPUs, 2d operations are done by PGRAPH engine [see graph/intro.txt]. The 2d engine is rather orthogonal
and has the following features:

e various data sources:

solid color shapes (points, lines, triangles, rectangles)

pixels uploaded directly through command stream, raw or expanded using a palette

text with in-memory fonts [NV3:G80]

rectangles blitted from another area of video memory

pixels read by DMA

linearly and quadratically textured quads [NV1:NV3]
¢ color format conversions
* chroma key
* clipping rectangles
* per-pixel operations between source, destination, and pattern:
— logic operations
— alpha and beta blending
— pre-multiplied alpha blending [NV4-]
* plane masking [NV1:NV4]
e dithering
* data output:
— to the framebuffer [NV1:NV3]
— to any surface in VRAM [NV3:G84]

— to arbirary memory [G84-]

The objects

The 2d engine is controlled by the user via PGRAPH objects. On NV1:G84, each piece of 2d functionality has its
own object class - a matching set of objects needs to be used together to perform an operation. G80+ have a unified
2d engine object that can be used to control all of the 2d pipeline in one place.

The non-unified objects can be divided into 3 classes:
* source objects: control the drawing operation, choose pixels to draw and their colors

* context objects: control various pipeline settings shared by other objects

180 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* operation objects: connect source and context objects together
The source objects are:
e POINT, LIN, LINE, TRI, RECT: drawing of solid color shapes
e [FC, BITMAP, SIFC, INDEX, TEXTURE: drawing of pixel data from CPU

* BLIT: copying rectangles from another area of video memory

IFM, SIFM: drawing pixel data from DMA

e GDI: Drawing solid rectangles and text fonts

e TEXLIN, TEXQUAD, TEXLINBETA, TEXQUADBETA: Drawing textured quads
The context objects are:

* BETA: blend factor

* ROP: logic operation

* CHROMA: color for chroma key

e PLANE: color for plane mask

* CLIP: clipping rectangle

PATTERN: repeating pattern image [graph/pattern.txt]
* BETA4: pre-multiplied blend factor
* SURF, SURF2D, SWZSURF: destination and blit source surface setup
The operation objects are:
e OP_CLIP: clipping operation
* OP_BLEND_AND: blending
* OP_ROP_AND: logic operation
* OP_CHROMA: color key
* OP_SRCCOPY_AND: source copy with 0-alpha discard
* OP_SRCCOPY: source copy
¢ OP_SRCCOPY_PREMULT: pre-multiplying copy
e OP_BLEND_PREMULT: pre-multiplied blending
The unified 2d engine objects are described below.
The objects that, although related to 2d operations, aren’t part of the usual 2d pipeline:
e |/TM: downloading framebuffer data to DMA
* M2MF: DMA to DMA copies
e DVD_SUBPICTURE: blending of YUV data

Note that, although multiple objects of a single kind may be created, there is only one copy of pipeline state data in
PGRAPH. There are thus two usage possibilities:

* aliasing: all objects on a channel access common pipeline state, making it mostly useless to create several
objects of single kind

» swapping: the kernel driver or some other piece of software handles PGRAPH interrupts, swapping pipeline
configurations as they’re needed, and marking objects valid/not valid according to currently loaded configuration

2.9. PGRAPH: 2d/3d graphics and compute engine 181

nVidia Hardware Documentation, Release git

Connecting the objects - NV1 style

The objects were originally intended and designed for connecting with so-called patchcords. A patchcord is a dummy
object that’s conceptually a wire carrying some sort of data. The patchcord types are:

* image patchcord: carries pixel color data

* beta patchcord: carries beta blend factor data
* zeta patchcord: carries pixel depth data

* rop patchcord: carries logic operation data

Each 2d object has patchcord “slots” representing its inputs and outputs. A slot is represented by an object methods.
Objects are connected together by creating a patchcord of appropriate type and writing its handle to the input slot
method on one object and the output slot method on the other object. For example:

* source objects have an output image patchcord slot [BLIT also has input image slot]
* BETA context object has an output beta slot
* OP_BLEND_AND has two image input slots, one beta input slot, and one image output slot

A valid set of objects, called a “patch” is constructed by connecting patchcords appropriately. Not all possible con-
nections ara valid, though. Only ones that map to the actual hardware pipeline are allowed: one of the source objects
must be at the beginning, connected via image patchcord to OP_BLEND_*, OP_ROP_AND, or OP_SRCCOPY_*,
optionally connected further through OP_CLIP and/or OP_CHROMA, then finally connected to a SURF object rep-
resenting the destination surface. Each of the OP_* objects and source objects that needs it must also be connected to
the appropriate extra inputs, like the CLIP rectangle, PATTERN or another SURF, or CHROMA key.

No GPU has ever supported connecting patchcords in hardware - the software must deal with all required processing
and state swapping. However, NV4:NV20 hardware knows of the methods reserved for these purpose, and raises a
special interrupt when they’re called. The OP_*, while lacking in any useful hardware methods, are also supported on
NV4:NVS5.

Connecting the objects - NV5 style

A new way of connecting objects was designed for NV5 [but can be used with earlier cards via software emulation].
Instead of treating a patch as a freeform set of objects, the patch is centered on the source object. While context
objects are still in use, operation objects are skipped - the set of operations to perform is specified at the source object,
instead of being implid by the patchcord topology. The context objects are now connected directly to the source object
by writing their handles to appropriate source object methods. The OP_CLIP and OP_CHROMA functionality is
replaced by CLIP and CHROMA methods on the source objects: enabling clipping/color keying is done by connecting
appropriate context object, while disabling is done by connecting a NULL object. The remaining operation objects
are replaced by OPERATION method, which takes an enum selecting the operation to perform.

NVS5 added support for the NV5-style connections in hardware - all methods can be processed without software
assistance as long as only one object of each type is in use [or they’re allowed to alias]. If swapping is required, it’s the
responsibility of software. The new methods can be globally disabled if NV 1-style connections are desired, however.
NV5-style connections can also be implemented for older GPUs simply by handling the relevant methods in software.

Color and monochrome formats

Todo: write me

182 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

COLOR_FORMAT methods

mthd 0x300: COLOR_FORMAT [NV1_CHROMA, NV1_PATTERN] [NV4-] Sets the color format using NV1
color enum.

Operation:

cur_grobj.COLOR_FORMAT = get_nvl_color_format (param);

Todo: figure out this enum

mthd 0x300: COLOR_FORMAT [NV4_CHROMA, NV4_PATTERN] Sets the color format using NV4 color
enum.

Operation:

cur_grobj.COLOR_FORMAT = get_nv4_color_format (param);

Todo: figure out this enum

Color format conversions

Todo: write me

Monochrome formats

Todo: write me

mthd 0x304: MONO_FORMAT [NV1_PATTERN] [NV4-] Sets the monochrome format.

Operation:

if (param != LE && param != CGA6)
throw (INVALID_ENUM) ;
cur_grobj.MONO_FORMAT = param;

Todo: check

The pipeline

The 2d pipeline consists of the following stages, in order:

1. Image source: one of the source objects, or one of the three source types on the unified 2d objects [SOLID,
SIFC, or BLIT] - see documentation of the relevant object

2.9. PGRAPH: 2d/3d graphics and compute engine 183

nVidia Hardware Documentation, Release git

2. Clipping

3. Source color conversion

4. One of:
1. Bitwise operation subpipeline, soncisting of:
1. Optionally, an arbitrary bitwise operation done on the source, the destination, and the pattern.
2. Optionally, a color key operation
3. Optionally, a plane mask operation [NV1:NV4]
2. Blending operation subpipeline, consisting of:
1. Blend factor calculation
2. Blending

5. Dithering

6. Destination write

In addition, the pipeline may be used in RGB mode [treating colors as made of R, G, B components], or index mode
[treating colors as 8-bit palette index]. The pipeline mode is determined automatically by the hardware based on
source and destination formats and some configuration bits.

The pixels are rendered to a destination buffer. On NV1:NV4, more than one destination buffer may be enabled at a
time. If this is the case, the pixel operations are executed separately for each buffer.

Pipeline configuration: NV1

The pipeline configuration is stored in graph options and other PGRAPH registers. It cannot be changed by user-visible
commands other than via rebinding objects. The following options are stored in the graph object:

* the operation, one of:

RPOP_DS - RPOP(DST, SRC)

— ROP_SDD - ROP(SRC, DST, DST)
— ROP_DSD - ROP(DST, SRC, DST)
— ROP_SSD - ROP(SRC, SRC, DST)
— ROP_DDS - ROP(DST, DST, SRC)
— ROP_SDS - ROP(SRC, DST, SRC)
— ROP_DSS - ROP(DST, SRC, SRC)
— ROP_SSS - ROP(SRC, SRC, SRC)
— ROP_SSS_ALT - ROP(SRC, SRC, SRC)
— ROP_PSS - ROP(PAT, SRC, SRC)
— ROP_SPS - ROP(SRC, PAT, SRC)
— ROP_PPS - ROP(PAT, PAT, SRC)
— ROP_SSP - ROP(SRC, SRC, PAT)
— ROP_PSP - ROP(PAT, SRC, PAT)
— ROP_SPP - ROP(SRC, PAT, PAT)

184 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— RPOP_SP - ROP(SRC, PAT)

— ROP_DSP - ROP(DST, SRC, PAT)

— ROP_SDP - ROP(SRC, DST, PAT)

— ROP_DPS - ROP(DST, PAT, SRC)

— ROP_PDS - ROP(PAT, DST, SRC)

— ROP_SPD - ROP(SRC, PAT, DST)

— ROP_PSD - ROP(PAT, SRC, DST)

— SRCCOPY - SRC [no operation]

— BLEND_DS_AA - BLEND(DST, SRC, SRC.ALPHA”2) [XXX check]
— BLEND_DS_AB - BLEND(DST, SRC, SRC.ALPHA * BETA)

— BLEND_DS_AIB - BLEND(DST, SRC, SRC.ALPHA * (1-BETA))
— BLEND_PS_B - BLEND(PAT, SRC, BETA)

— BLEND_PS_IB - BLEND(SRC, PAT, (1-BETA))

If the operation is set to one of the BLEND_* values, blending subpipeline will be active. Otherwise, the bitwise
operation subpipeline will be active. For bitwise operation pipeline, RPOP* and ROP* will cause the bitwise
operation stage to be enabled with the appropriate options, while the SRCCOPY setting will cause it to be
disabled and bypassed.

» chroma enable: if this is set to 1, and the bitwise operation subpipeline is active, the color key stage will be
enabled

* plane mask enable: if this is set to 1, and the bitwise operation subpipeline is active, the plane mask stage will
be enabled

* user clip enable: if set to 1, the user clip rectangle will be enabled in the clipping stage
* destination buffer mask: selects which destination buffers will be written
The following options are stored in other PGRAPH registers:
* palette bypass bit: determines the value of the palette bypass bit written to the framebuffer

* Y8 expand: determines piepline mode used with Y8 source and non-Y8 destination - if set, Y8 is upconverted
to RGB and the RGB mode is used, otherwise the index mode is used

* dither enable: if set, and several conditions are fullfilled, dithering stage will be enabled

* software mode: if set, all drawing operations will trap without touching the framebuffer, allowing software to
perform the operation instead

The pipeline mode is selected as follows:
« if blending subpipeline is used, RGB mode is selected [index blending is not supported]
* if bitwise operation subpipeline is used:
— if destination format is Y8, indexed mode is selected
— if destination format is DIRSG5BS5 or D1X1R10G10B10:
+ if source format is not Y8 or Y8 expand is enabled, RGB mode is selected

* if source format is Y8 and Y8 expand is not enabled, indexed mode is selected

2.9. PGRAPH: 2d/3d graphics and compute engine 185

nVidia Hardware Documentation, Release git

In RGB mode, the pipeline internally uses 10-bit components. In index mode, 8-bit indices are used.

See nv1-pgraph for more information on the configuration registers.

Clipping

Todo: write me

Source format conversion

Firstly, the source color is converted from its original format to the format used for operations.

Todo: figure out what happens on ITM, IFM, BLIT, TEX*BETA

On NV1, all operations are done on ASR10G10B10 or I8 format internally. In RGB mode, colors are converted using
the standard color expansion formula. In index mode, the index is taken from the low 8 bits of the color.

src.B = get_color_bl0 (cur_grobj, color);
src.G = get_color_gl0 (cur_grobj, color);
src.R = get_color_rl1l0 (cur_grobj, color);
src.A = get_color_a8(cur_grobj, color);
src.I = color[0:7];

In addition, pixels are discarded [all processing is aborted and the destination buffer is left untouched] if the alpha
component is 0 [even in index mode].

if (!src.n)
discard;

Todo: NV3+

Buffer read

In some blending and bitwise operation modes, the current contents of the destination buffer at the drawn pixel location
may be used as an input to the 2d pipeline.

Todo: document that and BLIT

Bitwise operation

Todo: write me

186 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Chroma key

Todo: write me

The plane mask

Todo: write me

Blending

Todo: write me

Dithering

Todo: write me

The framebuffer

Todo: write me

NV1 canvas

Todo: write me

NV3 surfaces

Todo: write me

Clip rectangles

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine

187

nVidia Hardware Documentation, Release git

NV1-style operation objects

Todo: write me

Unified 2d objects

Todo: write me

0100 NOP [graph/intro.txt] 0104 NOTIFY [G80_2D] [graph/intro.txt] [XXX: GF100 methods] 0110
WAIT_FOR_IDLE [graph/intro.txt] 0140 PM_TRIGGER [graph/intro.txt] 0180 DMA_NOTIFY [GS80_2D]
[graph/intro.txt] 0184 DMA_SRC [G80_2D] [XXX] 0188 DMA_DST [G80_2D] [XXX] 018c DMA_COND
[G80_2D] [XXX] [XXX: 0200-02ac] 02b0 PATTERN_OFFSET [graph/pattern.txt] 02b4 PATTERN_SELECT
[graph/pattern.txt] 02dc ??? [GF100_2D-] [XXX] 02e0 ??? [GF100_2D-] [XXX] 02e8 PAT-
TERN_COLOR_FORMAT [graph/pattern.txt] 02ec PATTERN_BITMAP_FORMAT [graph/pattern.txt] 02f0+i*4,
i<2 PATTERN_BITMAP_COLOR [graph/pattern.txt] 02f8+i*4, i<2 PATTERN_BITMAP [graph/pattern.txt]
0300+i*4, i<64 PATTERN_X8R8G8BS [graph/pattern.txt] 0400+i*4, i<32 PATTERN_RS5G6BS [graph/pattern.txt]
0480+i1*4, i<32 PATTERN_X1R5G5BS5 [graph/pattern.txt] 0500+i*4, i<16 PATTERN_YS [graph/pattern.txt] [XXX:
0540-08dc] 08e0+i*4, i<32 FIRMWARE [graph/intro.txt] [XXX: GF100 methods]

2D pattern

Contents

* 2D pattern

Introduction

PATTERN objects

Pattern selection

Pattern coordinates

Bitmap pattern

Color pattern

Introduction

One of the configurable inputs to the bitwise operation and, on NV1:NV4, the blending operation is the pattern. A
pattern is an infinitely repeating 8x8, 64x1, or 1x64 image. There are two types of patterns:

* bitmap pattern: an arbitrary 2-color 8x8, 64x1, or 1x64 2-color image
* color pattern: an aribtrary 8x8 R8G8BS8 image [NV4-]

The pattern can be set through the NV 1-style *_PATTERN context objects, or through the G80-style unified 2d objects.
For details on how and when the pattern is used, see 2D pattern.

The graph context used for pattern storage is made of:

188 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* pattern type selection: bitmap or color [NV4-]
* bitmap pattern state:

— shape selection: 8x8, 1x64, or 64x1

the bitmap: 2 32-bit words
2 colors: ASR10G10B10 format [NV1:NV4]

2 colors: 32-bit word + format selector each [NV4:G80]
2 colors: 32-bit word each [G80-]

color format selection [G80-]

bitmap format selection [G80-]
* color pattern state [NV4-]:

— 64 colors: R8G8BS format
e pattern offset: 2 6-bit numbers [G80-]

PATTERN objects

The PATTERN object family deals with setting up the pattern. The objects in this family are:
* objtype 0x06: NV1_PATTERN [NV1:NV4]
* class 0x0018: NV1_PATTERN [NV4:G80]
¢ class 0x0044: NV4_PATTERN [NV4:G84]

The methods for this family are:

0100 NOP [NV4-] [graph/intro.txt] 0104 NOTIFY [graph/intro.txt] 0110 WAIT_FOR_IDLE [G80-] [graph/intro.txt]
0140 PM_TRIGGER [NV40-?] [XXX] [graph/intro.txt] 0180 N DMA_NOTIFY [NV4-] [graph/intro.txt] 0200
O PATCH_IMAGE_OUTPUT [NV4:NV20] [see below] 0300 COLOR_FORMAT [NV4-] [see below] 0304
BITMAP_FORMAT [NV4-] [see below] 0308 BITMAP_SHAPE [see below] 030c TYPE [NV4_PATTERN] [see be-
low] 0310+i*4, i<2 BITMAP_COLOR [see below] 0318+i*4, i<2 BITMAP [see below] 0400+i*4, i<16 COLOR_Y8
[NV4_PATTERN] [see below] 0500+i*4, i<32 COLOR_R5G6B5 [NV4_PATTERN] [see below] 0600+i*4, i<32
COLOR_X1R5G5B5 [NV4_PATTERN] [see below] 0700+i*4, i<64 COLOR_X8R8G8B8 [NV4_PATTERN] [see
below]

mthd 0x200: PATCH_IMAGE_OUTPUT [*_PATTERN] [NV4:NV20] Reserved for plugging an image patch-
cord to output the pattern into.

Operation: throw(UNIMPLEMENTED_MTHD);

Pattern selection

With the *_PATTERN objects, the pattern type is selected using the TYPE and BITMAP_SHAPE methods:
mthd 0x030c: TYPE [NV4_PATTERN]

Sets the pattern type. One of: 1: BITMAP 2: COLOR
Operation::

if (NV4:G80) { PATTERN_TYPE = param;

2.9. PGRAPH: 2d/3d graphics and compute engine 189

nVidia Hardware Documentation, Release git

} else { SHADOW_COMP2D.PATTERN_TYPE = param; if (SHADOW_COMP2D.PATTERN_TYPE ==
COLOR)

PATTERN_SELECT = COLOR;
else PATTERN_SELECT = SHADOW_COMP2D.PATTERN_BITMAP_SHAPE;
}
mthd 0x308: BITMAP_SHAPE [*_PATTERN]
Sets the pattern shape. One of: 0: 8x8 1: 64x1 2: 1x64
On unified 2d objects, use the PATTERN_SELECT method instead.
Operation::
if (param > 2) throw(INVALID_ENUM);
if (NV1:G80) { PATTERN_BITMAP_SHAPE = param;

} else { SHADOW_COMP2D.PATTERN_BITMAP_SHAPE = param; if
(SHADOW_COMP2D.PATTERN_TYPE == COLOR)

PATTERN_SELECT = COLOR;
else PATTERN_SELECT = SHADOW_COMP2D.PATTERN_BITMAP_SHAPE;

}

With the unified 2d objects, the pattern type is selected along with the bitmap shape using the PATTERN_SELECT
method:

mthd 0x02bc: PATTERN_SELECT [*_2D]

Sets the pattern type and shape. One of: 0: BITMAP_8X8 1: BITMAP_64X1 2: BITMAP_1X64 3:
COLOR

Operation::
if (param < 4) PATTERN_SELECT = SHADOW_2D.PATTERN_SELECT = param;
else throw(INVALID_ENUM);

Pattern coordinates

The pattern pixel is selected according to pattern coordinates: px, py. On NV1:G80, the pattern coordinates are equal
to absolute [ie. not canvas-relative] coordinates in the destination surface. On G80+, an offset can be added to the
coordinates. The offset is set by the PATTERN_OFFSET method:

mthd 0x02b0: PATTERN_OFFSET [*_2D] Sets the pattern offset. bits 0-5: X offset bits 8-13: Y offset
Operation: PATTERN_OFFSET = param;

The offset values are added to the destination surface X, Y coordinates to obtain px, py coordinates.

Bitmap pattern

The bitmap pattern is made of three parts:
* two-color palette

* 64 bits of pattern: each bit describes one pixel of the pattern and selects which color to use

190 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* shape selector: determines whether the bitmap is 8x8, 64x1, or 1x64

The color to use for given pattern coordinates is selected as follows:

b6 bit;
if (shape == 8x8)
bit = (py&7) << 3 | (px&7);
else if (shape == 64x1)
bit = px & 0x3f;
else if (shape == 1x64)
bit = py & 0x3f;

bl pixel = PATTERN_BITMAP [bit[5]] [bit[0:4]];
color = PATTERN_BITMAP_COLOR[pixel];

On NVI1:NV4, the color is internally stored in ASR10G10B10 format and upconverted from the source format when
submitted. On NV4:G80, it’s stored in the original format it was submitted with, and is annotated with the format
information as of the submission. On G80+, it’s also stored as it was submitted, but is not annotated with format
information - the format used to interpret it is the most recent pattern color format submitted.

On NV1:G80, the color and bitmap formats are stored in graph options for the PATTERN object. On G80+, they’re
part of main graph state instead.

The methods dealing with bitmap patterns are:
mthd 0x300: COLOR_FORMAT [NV1_PATTERN] [NV4-]

Sets the color format used for subsequent bitmap pattern colors. One of: 1: X16A8Y8 2: X16A1R5G5B5
3: ASR8G8B8

Operation::

switch (param) { case 1: cur_grobj.color_format = X16A8Y8; break; case 2: cur_grobj.color_format
= XI16AIR5G5BS5; break; case 3: cur_grobj.color_format = A8R8G8BS; break; default:
throw(INVALID_ENUM);

}
mthd 0x300: COLOR_FORMAT [NV4_PATTERN]

Sets the color format used for subsequent bitmap pattern colors. One of: 1: A16R5G6B5 2:
X16A1R5G5B5 3: ABR8GSB8

Operation::
if (NV1:NV4) {

switch (param) { case 1: cur_grobj.color_format = A16R5G6BS; break; case 2: cur_grobj.color_format
= X16A1R5G5BS5; break; case 3: cur_grobj.color_format = A8R8GS8BS; break; default:
throw(INVALID_ENUM);

}
} else { SHADOW_COMP2D.PATTERN_COLOR_FORMAT = param; switch (param) {

case 1: PATTERN_COLOR_FORMAT = A16R5G6B5; break; case 2: PAT-
TERN_COLOR_FORMAT = X16A1R5G5BS5; break; case 3: PATTERN_COLOR_FORMAT =
A8R8G8BS; break; default: throw(INVALID_ENUM);

}
mthd 0x2e8: PATTERN_COLOR_FORMAT [G80_2D]

2.9. PGRAPH: 2d/3d graphics and compute engine 191

nVidia Hardware Documentation, Release git

Sets the color format used for bitmap pattern colors. One of: 0: A16R5G6B5 1: XI16A1IR5G5BS 2:
A8BR8GSBS8 3: X16A8Y8 4: 77?7 [XXX] 5: 77?7 [XXX]

Operation::
if (param < 6) PATTERN_COLOR_FORMAT = SHADOW_2D.PATTERN_COLOR_FORMAT = param;
else throw(INVALID_ENUM);
mthd 0x304: BITMAP_FORMAT [*_PATTERN] [NV4-]
Sets the bitmap format used for subsequent pattern bitmaps. One of: 1: LE 2: CGA6
Operation::
if (NV4:G80) {

switch (param) { case 1: cur_grobj.bitmap_format = LE; break; case 2: cur_grobj.bitmap_format =
CGAG,; break; default: throw(INVALID_ENUM);

1
} else {

switch (param) { case 1: PATTERN_BITMAP_FORMAT = LE; break; case 2: PAT-
TERN_BITMAP_FORMAT = CGAG6; break; default: throw(INVALID_ENUM);

}
mthd 0x2ec: PATTERN_BITMAP_FORMAT [*_PATTERN]

Sets the bitmap format used for pattern bitmaps. One of: 0: LE 1: CGA6
Operation::

if (param < 2) PATTERN_BITMAP_FORMAT = param;

else throw(INVALID_ENUM);

mthd 0x310+i*4, i<2: BITMAP_COLOR [*_PATTERN] mthd 0x2fO+i*4, i<2: PATTERN_BITMAP_COLOR
[*_2D]

Sets the colors used for bitmap pattern. i=0 sets the color used for pixels corresponding to ‘0’ bits in the
pattern, i=1 sets the color used for ‘1°.

Operation::

if (NV1:NV4) { PATTERN_BITMAP_COLOR[i].B = get_color_b10(cur_grobj, param); PAT-
TERN_BITMAP_COLOR[i].G = get_color_b10(cur_grobj, param); PATTERN_BITMAP_COLOR[i].R
= get_color_bl0(cur_grobj, param); PATTERN_BITMAP_COLORJ[i]. A = get_color_b8(cur_grobj,
param);

} else if (NV4:G80) { PATTERN_BITMAP_COLOR[i] = param; /¥ XXX: details */ CON-
TEXT_FORMAT.PATTERN_BITMAP_COLOR][i] = cur_grobj.color_format;

} else { PATTERN_BITMAP_COLOR([i] = param,;
}

mthd 0x318+i*4, i<2: BITMAP [*_PATTERN] mthd 0x2{8+i*4, i<2: PATTERN_BITMAP [*_2D]
Sets the pattern bitmap. i=0 sets bits 0-31, i=1 sets bits 32-63.

Operation:: tmp = param; if (cur_grobj.BITMAP_FORMAT == CGA6 && NV1:G80) { /* XXX: check if also
NV4+ #/

192 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

/* pattern stored internally in LE format - for CGAG6, reverse bits in all bytes */

tmp = (tmp & Oxaaaaaaaa) >> 1 | (tmp & 0x55555555) << 1; tmp = (tmp & Oxccceeeee) >> 2 | (tmp
& 0x33333333) << 2; tmp = (tmp & 0xfOfOfOf0) >> 4 | (tmp & 0x0f0f0f0f) << 4;

} PATTERN_BITMAP[i] = tmp;

Color pattern

The color pattern is always an 8x8 array of R8G8BS8 colors. It is stored and uploaded as an array of 64 cells in raster
scan - the color for pattern coordinates (px, py) is taken from PATTERN_COLOR[(py&7) << 3 | (px&7)]. There are
4 sets of methods that set the pattern, corresponding to various color formats. Each set of methods updates the same
state internally and converts the written values to R8G8BS if necessary. Color pattern is available on NV4+ only.

mthd 0x400+i*4, i<16: COLOR_Y8 [NV4_PATTERN] mthd 0x500+i*4, i<16: PATTERN_COLOR_Y8 [*_2D]

Sets 4 color pattern cells, from Y8 source. bits 0-7: color for pattern cell i*4+0 bits 8-15: color for pattern
cell i*4+1 bits 16-23: color for pattern cell i¥*4+2 bits 24-31: color for pattern cell i*4+3

Operation:: PATTERN_COLOR[4*i] = YS8_to_R8G8BS8(param[0:7]); PATTERN_COLOR[4*i+1] =
YS8_to_R8G8BS8(param[8:15]); PATTERN_COLOR[4%i+2] = Y8_to_R8G8B8(param[16:23]); PAT-
TERN_COLOR[4*i+3] = Y8_to_R8G8B8(param[24:31]);

mthd 0x500+i*4, i<32: COLOR_R5G6BS5 [NV4_PATTERN] mthd 0x400+i*4, i<32: PATTERN_COLOR_R5G6B5
[*_2D]

Sets 2 color pattern cells, from RSG6BS5 source. bits 0-15: color for pattern cell i*2+0 bits 16-31: color
for pattern cell i*2+1

Operation:: PATTERN_COLOR[2*i] = RS5G6B5_to_R8G8B8(param[0:15]); PATTERN_COLOR[2*i+1] =
R5G6B5_to_R8G8B8(param[16:31]);

mthd 0x600+i*4, i<32: COLOR_XI1R5G5B5 [NV4_PATTERN] mthd 0x480+i*4, i<32: PAT-
TERN_COLOR_XI1R5G5BS [*_2D]

Sets 2 color pattern cells, from X1R5G5B5 source. bits 0-15: color for pattern cell i*2+0 bits 16-31:
color for pattern cell i*2+1

Operation:: PATTERN_COLOR[2*i] = XIR5G5B5_to_R8G8B8(param[0:15]); PATTERN_COLOR[2%*i+1] =
X1R5G5B5_to_R8G8B8(param[16:31]);

mthd 0x700+i*4, i<64: COLOR_X8R8G8B8 [NV4_PATTERN] mthd 0x300+i*4, i<64: PAT-
TERN_COLOR_X8R8GS8BS8 [*_2D]

Sets a color pattern cell, from X8R8G8BS source.
Operation:: PATTERN_COLOR[i] = param[0:23];

Todo: precise upconversion formulas

Context objects

Contents

* Context objects

2.9. PGRAPH: 2d/3d graphics and compute engine 193

nVidia Hardware Documentation, Release git

Introducton

— BETA

- ROP

— CHROMA and PLANE
- CLIP

— BETA4

Surface setup
* SURF
* SURF2D
* SURF3D
x SWZSURF

Introducton

Todo: write m

BETA

The BETA object family deals with setting the beta factor for the BLEND operation. The objects in this family are:
* objtype 0x01: NV1_BETA [NVI1:NV4]
e class 0x0012: NV1_BETA [NV4:G84]

The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G8&80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_BETA_OUTPUT [NV4:NV20] 0300 BETA

mthd 0x300: BETA [NV1_BETA] Sets the beta factor. The parameter is a signed fixed-point number with a sign
bit and 31 fractional bits. Note that negative values are clamped to 0, and only 8 fractional bits are actually
implemented in hardware.

Operation:

if (param & 0x80000000) /* signed < 0 */
BETA = 0;

else
BETA = param & 0x7£800000;

mthd 0x200: PATCH_BETA_OUTPUT [NV1_BETA] [NV4:NV20] Reserved for plugging a beta patchcord to
output beta factor into.

Operation:: throw(UNIMPLEMENTED_MTHD);

194 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

ROP

The ROP object family deals with setting the ROP [raster operation]. The ROP value thus set is only used in the
ROP_* operation modes. The objects in this family are:

* objtype 0x02: NV1_ROP [NV1:NV4]
¢ class 0x0043: NV1_ROP [NV4:G84]
The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_ROP_OUTPUT [NV4:NV20] 0300 ROP

mthd 0x300: ROP [NV1_ROP] Sets the raster operation.

Operation:

if (param & ~0Oxff)
throw (INVALID_VALUE) ;
ROP = param;

mthd 0x200: PATCH_ROP_OUTPUT [NV1_ROP] [NV4:NV20] Reserved for plugging a ROP patchcord to out-
put the ROP into.

Operation:

throw (UNIMPLEMENTED_MTHD) ;

CHROMA and PLANE

The CHROMA object family deals with setting the color for the color key. The color key is only used when enabled
in options for a given graph object. The objects in this family are:

* objtype 0x03: NVI_CHROMA [NV1:NV4]
¢ class 0x0017: NV1_CHROMA [NV4:G80]
* class 0x0057: NV4_CHROMA [NV4:G84]

The PLANE object family deals with setting the color for plane masking. The plane mask operation is only done when
enabled in options for a given graph object. The objects in this family are:

* objtype 0x04: NV1_PLANE [NV1:NV4]
For both objects, colors are internally stored in AIR10G10B10 format. [XXX: check NV4+]
The methods for these families are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_IMAGE_OUTPUT [NV4:NV20] 0300 COLOR_FORMAT [NV4-] 0304
COLOR

mthd 0x304: COLOR [*_CHROMA, NV1_PLANE] Sets the color.

Operation:

struct {
int B : 10;
int G : 10;
int R : 10;

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine 195

nVidia Hardware Documentation, Release git

(continued from previous page)

int A : 1;
} tmp;
tmp.B = get_color_bl0 (cur_grobj, param);
tmp.G = get_color_gl0O(cur_grobj, param);
tmp.R = get_color_rl10(cur_grobj, param);
tmp.A = get_color_al (cur_grobj, param);
if (cur_grobj.type == NV1_PLANE)

PLANE = tmp;
else

CHROMA = tmp;

Todo: check NV3+

mthd 0x200: PATCH_IMAGE_OUTPUT [*_CHROMA, NV1_PLANE] [NV4:NV20] Reserved for plugging an
image patchcord to output the color into.

Operation:

throw (UNIMPLEMENTED_MTHD) ;

CLIP

The CLIP object family deals with setting up the user clip rectangle. The user clip rectangle is only used when enabled
in options for a given graph object. The objects in this family are:

* objtype 0x05: NV1_CLIP [NV1:NV4]
e class 0x0019: NV1_CLIP [NV4:G84]
The methods for this family are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_IMAGE_OUTPUT [NV4:NV20] 0300 CORNER 0304 SIZE

The clip rectangle state can be loaded in two ways:
* submit CORNER method twice, with upper-left and bottom-right corners
¢ submit CORNER method with upper-right corner, then SIZE method

To enable that, clip rectangle method operation is a bit unusual.

Todo: check if still applies on NV3+

Note that the clip rectangle state is internally stored relative to the absolute top-left corner of the framebuffer, while
coordinates used in methods are relative to top-left corner of the canvas.

mthd 0x300: CORNER [NV1_CLIP] Sets a corner of the clipping rectangle. bits 0-15: X coordinate bits 16-31: Y
coordinate

Operation:

ABS_UCLIP_XMIN = ABS_UCLIP_XMAX;
ABS_UCLIP_YMIN = ABS_UCLIP_YMAX;

(continues on next page)

196 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

ABS_UCLIP_XMAX = CANVAS_MIN.X + param.X;
ABS_UCLIP_YMAX CANVAS_MIN.Y + param.Y;

Todo: check NV3+

mthd 0x304: SIZE [NV1_CLIP] Sets the size of the clipping rectangle. bits 0-15: width bits 16-31: height

Operation:

ABS_UCLIP_XMIN = ABS_UCLIP_XMAX;
ABS_UCLIP_YMIN = ABS_UCLIP_YMAX;
ABS_UCLIP_XMAX += param.X;
ABS_UCLIP_YMAX += param.Y;

Todo: check NV3+

mthd 0x200: PATCH_IMAGE_OUTPUT [NV1_CLIP] [NV4:NV20] Reserved for plugging an image patchcord
to output the rectangle into.

Operation:

throw (UNIMPLEMENTED_MTHD) ;

BETA4

The BETA4 object family deals with setting the per-component beta factors for the BLEND_PREMULT and SRC-
COPY_PREMULT operations. The objects in this family are:

e class 0x0072: NV4_BETA4 [NV4:G84]
The methods are:

0100 NOP [NV4-] 0104 NOTIFY 0110 WAIT_FOR_IDLE [G80-] 0140 PM_TRIGGER [NV40-?] [XXX] 0180 N
DMA_NOTIFY [NV4-] 0200 O PATCH_BETA_OUTPUT [NV4:NV20] 0300 BETA4

mthd 0x300: BETA4 [NV4_BETA4] Sets the per-component beta factors. bits 0-7: B bits 8-15: G bits 16-23: R bits
24-31: A

Operation:

/+ XXX: figure it out =/

mthd 0x200: PATCH_BETA_OUTPUT [NV4_BETA4] [NV4:NV20] Reserved for plugging a beta patchcord to
output beta factors into.

Operation:

throw (UNIMPLEMENTED_MTHD) ;

Surface setup

2.9. PGRAPH: 2d/3d graphics and compute engine 197

nVidia Hardware Documentation, Release git

Todo: write me

SURF

Todo: write me

SURF2D

Todo: write me

SURF3D

Todo: write me

SWZSURF

Todo: write me

2D solid shape rendering

Contents

* 2D solid shape rendering

— Introduction

— Source objects
* Common methods
x POINT
* LINE/LIN
% TRI
* RECT

— Unified 2d object

— Rasterization rules

198 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* Points and rectangles
* Lines and lins

* Triangles

Introduction

One of 2d engine functions is drawing solid [single-color] primitives. The solid drawing functions use the usual 2D
pipeline as described in graph/2d.txt and are available on all cards. The primitives supported are:

* points [NV1:NV4 and G80+]
e lines [NV1:NV4]
e lins [half-open lines]
* triangles
* upright rectangles [edges parallel to X/Y axes]
The 2d engine is limitted to integer vertex coordinates [ie. all primitive vertices must lie in pixel centres].

On NV1:G84 cards, the solid drawing functions are exposed via separate source object types for each type of primitive.
On G804+, all solid drawing functionality is exposed via the unified 2d object.

Source objects

Each supported primitive type has its own source object class family on NV1:G80. These families are:
e POINT [NV1:NV4]

LINE [NVI:NV4]

LIN [NV1:G84]

TRI [NV1:G84]

* RECT [NV1:NV40]

Common methods

The common methods accepted by all solid source objects are:

0100 NOP [NV4-] [graph/intro.txt] 0104 NOTIFY [graph/intro.txt] 010c PATCH [NV4:?] [graph/2d.txt] 0110
WAIT_FOR_IDLE [G80-] [graph/intro.txt] 0140 PM_TRIGGER [NV40-?] [graph/intro.txt] 0180 N DMA_NOTIFY
[NV4-] [graph/intro.txt] 0184 N NVI1_CLIP [NV5-] [graph/2d.txt] 0188 N NVI1_PATTERN [NV5-] [NVI1_*]
[graph/2d.txt] 0188 N NV4_PATTERN [NV5-] [NV4_* and up] [graph/2d.txt] 018c N NVI_ROP [NV5-]
[graph/2d.txt] 0190 N NV1_BETA [NV5-] [graph/2d.txt] 0194 N NV3_SURFACE [NV5-] [NV1_#*] [graph/2d.txt]
0194 N NV4_BETA4 [NV5-] [NV4_* and up] [graph/2d.txt] 0198 N NV4_SURFACE [NV5-] [NV4_* and up]
[graph/2d.txt] 02fc N OPERATION [NV5-] [graph/2d.txt] 0300 COLOR_FORMAT [NV4-] [graph/solid.txt] 0304
COLOR [graph/solid.txt]

Todo: PM_TRIGGER?

2.9. PGRAPH: 2d/3d graphics and compute engine 199

nVidia Hardware Documentation, Release git

Todo: PATCH?

Todo: add the patchcord methods

Todo: document common methods

POINT

The POINT object family draws single points. The objects are:
* objtype 0x08: NV1_POINT [NV1:NV4]

The methods are:

0100:0400 [common solid rendering methods] 0400+i*4, i<32 POINT_XY 0480+i*8, i<16 POINT32_X 0484+i*8,
i<16 POINT32_Y 0500+i*8, i<16 CPOINT_COLOR 0504+i*8, i<16 CPOINT_XY

Todo: document point methods

LINE/LIN

The LINE/LIN object families draw lines/lins, respectively. The objects are:
* objtype 0x09: NV1_LINE [NV1:NV4]
* objtype 0x0a: NV1_LIN [NV1:NV4]
e class 0x001c: NV1_LIN [NV4:NV40]
e class 0x005¢c: NV4_LIN [NV4:G80]
e class 0x035c: NV30_LIN [NV30:NV40]
e class 0x305¢c: NV30_LIN [NV40:G84]

The methods are:

0100:0400 [common solid rendering methods] 0400+i*8, i<16 LINE_START_XY 0404+i*8, i<16 LINE_END_XY
0480+i*16, i<8 LINE32_START_X 0484+i*16, i<8 LINE32 START_Y 0488+i*16, i<8 LINE32 END_X
048c+i*16, i<8 LINE32_END_Y 0500+i*4, i<32 POLYLINE_XY 0580+i*8, i<16 POLYLINE32_X 0584+i*8, i<16
POLYLINE32_Y 0600+i*8, i<16 CPOLYLINE_COLOR 0604+i*8, i<16 CPOLYLINE_XY

Todo: document line methods

TRI

The TRI object family draws triangles. The objects are:
* objtype 0xOb: NV1_TRI [NV1:NV4]

200 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

e class 0x001d: NV1_TRI [NV4:NV40]
e class 0x005d: NV4_TRI [NV4:G84]
The methods are:

0100:0400 [common solid rendering methods] 0310+j*4, j<3 TRIANGLE_XY 0320+j*8, j<3 TRIANGLE32_X
0324+j*8, j<3 TRIANGLE32_Y 0400+i*4, i<32 TRIMESH_XY 0480+i*8, i<16 TRIMESH32_ X 0484+i*8,
i<16 TRIMESH32_Y 0500+i*16 CTRIANGLE_COLOR 0504+i*16+j*4, j<3 CTRIANGLE_XY 0580+i*8, i<16
CTRIMESH_COLOR 0584+i*8, i<16 CTRIMESH_XY

Todo: document tri methods

RECT

The RECT object family draws upright rectangles. Another object family that can also draw solid rectangles and
should be used instead of RECT on cards that don’t have RECT is GDI [graph/nv3-gdi.txt]. The objects are:

* objtype 0xOc: NV1_RECT [NV1:NV3]

* objtype 0x07: NV1_RECT [NV3:NV4]

e class 0x001le: NV1_RECT [NV4:NV40]

¢ class 0x005e: NV4_RECT [NV4:NV40]
The methods are:

0100:0400 [common solid rendering methods] 0400+i*8, i<16 RECT_POINT 0404+i*8, i<16 RECT_SIZE

Todo: document rect methods

Unified 2d object

Todo: document solid-related unified 2d object methods

Rasterization rules

This section describes exact rasterization rules for solids, ie. which pixels are considered to be part of a given solid.
The common variables appearing in the pseudocodes are:

e CLIP_MIN_X - the left bounduary of the final clipping rectangle. If user clipping rectangle [see graph/2d.txt]
is enabled, this is max(UCLIP_MIN_X, CANVAS_MIN_X). Otherwise, this is CANVAS_MIN_X.

e CLIP_MAX_X - the right bounduary of the final clipping rectangle. If user clipping rectangle is enabled, this is
min(UCLIP_MAX_X, CANVAS_MAX_X). Otherwise, this is CANVAS_MAX_X.

e CLIP_MIN_Y - the top bounduary of the final clipping rectangle, defined like CLIP_MIN_X
e CLIP_MAX_Y - the bottom bounduary of the final clipping rectangle, defined like CLIP_MAX_X

A pixel is considered to be inside the clipping rectangle if:

2.9. PGRAPH: 2d/3d graphics and compute engine 201

nVidia Hardware Documentation, Release git

e CLIP_MIN_X <=x < CLIP_MAX_ X and
e CLIP_MIN_Y <=y <CLIP_MAX_ Y

Points and rectangles

A rectangle is defined through the coordinates of its left-top corner [X, Y] and its width and height [W, H] in pixels.
A rectangle covers pixels that have x in [X, X+W) and y in [Y, Y+H) ranges.

void SOLID_RECT (int X, int Y, int W, int H) {
int L = max (X, CLIP_MIN_X);
int R = min (X+W, CLIP_MAX_ X);
int T = max (Y, CLIP_MIN_Y);

int B = min(Y+H, CLIP_MAX_Y);

int x

for (T; vy < Bj y++)

for (x = L; x < R; x++)
DRAW_PIXEL (x, y, SOLID_COLOR);

A point is defined through its X, Y coordinates and is rasterized as if it was a rectangle with W=H=1.

void SOLID_POINT (int X, int Y) {
SOLID_RECT (X, Y, 1, 1);

Lines and lins

Lines and lins are defined through the coordinates of two endpoints [X[2], Y[2]]. They are rasterized via a variant of
Bresenham’s line algorithm, with the following characteristics:

* rasterization proceeds in the direction of increasing x for y-major lines, and in the direction of increasing y for
x-major lines [ie. in the direction of increasing minor component]

» when presented with a tie in a decision whether to increase the minor coordinate or not, increase it.
* if rasterizing a lin, the X[1], Y[1] pixel is not rasterized, but calculations are otherwise unaffected
* pixels outside the clipping rectangle are not rasterized, but calculations are otherwise unaffected

Equivalently, the rasterized lines/lins match those constructed via the diamond-exit rule with the following character-
istics:

* apixel is rasterized if the diamond inside it intersects the line/lin, unless it’s a lin and the diamond also contains
the second endpoint

* pixels outside the clipping rectangle are not rasterized, but calculations are otherwise unaffected
* pixel centres are considered to be on integer coordinates
* the following coordinates are considered to be contained in the diamond for pixel X, Y:

— abs(x-X) + abs(x-Y) < 0.5 [ie. the inside of the diamond]

- x=X-0.5,y =Y [ie. top vertex of the diamond]

- x =X,y =Y-0.5 [ie. leftmost vertex of the diamond]

[note that the edges don’t matter, other than at the vertices - it’s impossible to create a line touching them without
intersecting them, due to integer endpoint coordinates]

202 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

void SOLID_LINE_LIN(int X[2], int Y[2], int is_1lin) {
/* determine minor/major direction */
int xmajor = abs(X[0] - X[1]) > abs(Y[0] - Y[1]);
int minO, minl, maj0, majl;
if (xmajor) {

maj0 = X[0];
majl = X[1];
min0O = Y[O0];
minl = Y[1];
} else {
majo = Y[O0];
majl = Y[1];
min0 = X[0];
minl = X[1];

}

if (minl < minO) {
/* order by increasing minor =/
swap (min0, minl);
swap (majo, majl);

}

/+ deltas =/

int dmin = minl - minO;

int dmaj = abs(majl - majo);

/+ major step direction */

int step = majl > majo 2 1 : -1;

int min, maj;

/+ scaled error - real error is err/(dmin x dmaj » 2) =*/

int err = 0;

for (min = min0O, maj majl0; maj != majl + step; maj += step) {

if (err >= dmaj) { /% error >= 1/(dmin=*2) x/
/* error too large, increase minor x/

min++;

err —= dmaj * 2; /x error —-= 1/dmin =/
}
int x = xmajor?maj:min;
int y = xmajor?min:maj;
/* 1f not the final pixel of a lin and inside the clipping

region, draw it =/
if ((!'is_lin || x !'= X[1] || y !'= Y[1l]) && in_clip(x, vy))

DRAW_PIXEL(x, y, SOLID_COLOR);
error += dmin * 2; /* error += 1/dmaj */

Triangles

Triangles are defined through the coordinates of three vertices [X[3], Y[3]]. A triangle is rasterized as an intersection
of three half-planes, corresponding to the three edges. For the purpose of triangle rasterization, half-planes are defined
as follows:

¢ the edges are (0, 1), (1, 2) and (2, 0)
* if the two vertices making an edge overlap, the triangle is degenerate and is not rasterized

* a pixel is considered to be in a half-plane corresponding to a given edge if it’s on the same side of that edge as
the third vertex of the triangle [the one not included in the edge]

2.9. PGRAPH: 2d/3d graphics and compute engine 203

nVidia Hardware Documentation, Release git

« if the third vertex lies on the edge, the triangle is degenerate and will not be rasterized

« if the pixel being considered for rasterization lies on the edge, it’s considered included in the half-plane if the
pixel immediately to its right is included in the half-plane

« if that pixel also lies on the edge [ie. edge is exactly horizontal], the original pixel is instead considered included
if the pixel immediately below it is included in the half-plane

Equivalently, a triangle will include exactly-horizontal top edges and left edges, but not exactly-horizontal bottom
edges nor right edges.

void SOLID_TRI (int X[3], int Y[3]) {

int cross = (X[1] - X[0]) = (Y[2] - Y[O0]) - (X[2] - X[O]) » (Y[1] - Y[O]);
if (cross == 0) /* degenerate triangle x/
return;

/* coordinates in CW order =/
if (cross < 0) {
swap (X[1], X[2]);
swap(Y[1], Y[2]);
}
int x, y, e;
for (y = CLIP_MIN_Y; y < CLIP_MAX_Y; y++)
for (x = CLIP_MIN X; x < CLIP_MAX_ X; x++) {
for (e = 0; e < 3; e++) {
int x0 = X[e];
int y0 = Y[e];
int x1 = X[(e+1)%3];
int y1 = Y[(et+l)%3];
/+ first attempt */
cross = (x1 - x0) = (y — yv0) - (x - x0) = (yl1 - yO0);
/* second attempt - pixel to the right =«/
if (cross == 0)

cross = (x1 — x0) = (y —y0) — (x + 1 - x0) % (y1 - y0);
/* third attempt - pixel below */
if (cross == 0)

cross = (x1 - x0) = (y + 1 - y0) - (x — x0) % (yl1 - yO0);

if (cross < 0)
goto out;
}
DRAW_PIXEL(x, y, SOLID_COLOR) ;
out:

2D image from CPU upload

Contents

* 2D image from CPU upload

Introduction

- IFC
BITMAP

SIFC

204 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

— INDEX
— TEXTURE

Introduction

Todo: write me

IFC

Todo: write me

BITMAP

Todo: write me

SIFC

Todo: write me

INDEX

Todo: write me

TEXTURE

Todo: write me

BLIT object

Contents

* BLIT object

2.9. PGRAPH: 2d/3d graphics and compute engine 205

nVidia Hardware Documentation, Release git

— Introduction
— Methods

— Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

Image to/from memory objects

Contents

* Image to/from memory objects

Introduction

Methods

IFM operation

— ITM operation

Introduction

Todo: write me

Methods

206 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: write me

IFM operation

Todo: write me

ITM operation

Todo: write me

NV1 textured quad objects

Contents

* NVI textured quad objects
— Introduction

The methods

Linear interpolation process

Quadratic interpolation process

Introduction

Todo: write me

The methods

Todo: write me

Linear interpolation process

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine

207

nVidia Hardware Documentation, Release git

Quadratic interpolation process

Todo: write me

GDI objects

Contents

* GDI objects

Introduction

Methods

Clipped rectangles

Unclipped rectangles

Unclipped transparent bitmaps

Clipped transparent bitmaps

Clipped two-color bitmaps

Introduction

Todo: write me

Methods

Todo: write me

Clipped rectangles

Todo: write me

Unclipped rectangles

Todo: write me

208 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Unclipped transparent bitmaps

Todo: write me

Clipped transparent bitmaps

Todo: write me

Clipped two-color bitmaps

Todo: write me

Scaled image from memory object

Contents

* Scaled image from memory object
— Introduction

— Methods

— Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 209

nVidia Hardware Documentation, Release git

YCbCr blending objects

Contents

* YCbCr blending objects
— Introduction

— Methods

— Operation

Introduction

Todo: write me

Methods

Todo: write me

Operation

Todo: write me

2.9.4 NV1 graphics engine

Contents:

2.9.5 NV3 graphics engine

Contents:

NV3 3D objects

Contents

* NV3 3D objects

— Introduction

210 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: write me

Introduction

Todo: write me

2.9.6 NV4 graphics engine

Contents:

NV4 3D objects

Contents

* NV4 3D objects

— Introduction

Todo: write me

Introduction

Todo: write me

2.9.7 NV10 Celsius graphics engine

Contents:

NV10 Celsius 3D objects

Contents

* NVI0 Celsius 3D objects

— Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 211

nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.9.8 NV20 Kelvin graphics engine

Contents:

NV20 Kelvin 3D objects

Contents

* NV20 Kelvin 3D objects

— Introduction

Todo: write me

Introduction

Todo: write me

2.9.9 NV30 Rankine graphics engine

Contents:

NV30 Rankine 3D objects

Contents

* NV30 Rankine 3D objects

— Introduction

Todo: write me

212

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Introduction

Todo: write me

2.9.10 NV40 Curie graphics engine

Contents:

NV40 Curie 3D objects

Contents

* NV40 Curie 3D objects

— Introduction

Todo: write me

Introduction

Todo: write me

2.9.11 G80 Tesla graphics and compute engine

Contents:

G80 PGRAPH context switching

Contents

* G80 PGRAPH context switching

— Introduction

Introduction

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine

213

nVidia Hardware Documentation, Release git

G80 Tesla 3D objects

Contents

* G80 Tesla 3D objects

— Introduction

Todo: write me

Introduction

Todo: write me

G80 Tesla compute objects

Contents

* G80 Tesla compute objects

— Introduction

Todo: write me

Introduction

Todo: write me

Tesla CUDA processors

Contents:

Tesla CUDA ISA

Contents

e Tesla CUDA ISA

— Introduction

214 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* Variants

*

Warps and thread types

*

Registers

*

Memory

* Other execution state and resources
— Instruction format

x Other fields

* Predicates

x $c destination field

* Memory addressing

* Shared memory access

* Destination fields

* Short source fields

* Long source fields

* Opcode map

— Instructions

Introduction

This file deals with description of Tesla CUDA instruction set. CUDA stands for Completely Unified Device Archi-
tecture and refers to the fact that all types of shaders (vertex, geometry, fragment, and compute) use nearly the same
ISA and execute on the same processors (called streaming multiprocessors).

The Tesla CUDA ISA is used on Tesla generation GPUs (G8x, G9x, G200, GT21x, MCP77, MCP79, MCP89). Older
GPUs have separate ISAs for vertex and fragment programs. Newer GPUs use Fermi, Kepler2, or Maxwell ISAs.

Variants

There are seversal variants of Tesla ISA (and the corresponding multiprocessors). The features added to the ISA after
the first iteration are:

breakpoints [G84:]

new barriers [G84:]

atomic operations on g[] space [G84:]

load from s[] instruction [G84:]

lockable s[] memory [G200:]
double-precision floating point [G200 only]
64-bit atomic add on g[] space [G200:]
vote instructions [G200:]

D3D10.1 additions [GT215:]: - $sampleid register (for sample shading) - texprep cube instruction (for cubemap
array access) - texquerylod instruction - texgather instruction

2.9.

PGRAPH: 2d/3d graphics and compute engine 215

nVidia Hardware Documentation, Release git

* preret and indirect bra instructions [GT215:]?

Todo: check variants for preret/indirect bra

Warps and thread types

Programs on Tesla MPs are executed in units called “warps”. A warp is a group of 32 individual threads executed
together. All threads in a warp share common instruction pointer, and always execute the same instruction, but have
otherwise independent state (ie. separate register sets). This doesn’t preclude independent branching: when threads in
a warp disagree on a branch condition, one direction is taken and the other is pushed onto a stack for further processing.
Each of the divergent execution paths is tagged with a “thread mask™: a bitmask of threads in the warp that satisfied
(or not) the branch condition, and hence should be executed. The MP does no work (and modifies no state) for threads
not covered by the current thread mask. Once the first path reaches completion, the stack is popped, restoring target
PC and thread mask for the second path, and execution continues.

Depending on warp type, the threads in a warp may be related to each other or not. There are 4 warp types, corre-
sponding to 4 program types:

* vertex programs: executed once for each vertex submitted to the 3d pipeline. They’re grouped into warps in a

rather uninteresting way. Each thread has read-only access to its vertex’ input attributes and write-only access
to its vertex’ output attributes.

geometry programs: if enabled, executed once for each geometry primitive submitted to the 3d pipeline. Also
grouped into warps in an uninteresting way. Each thread has read-only access to input attributes of its primitive’s
vertices and per-primitive attributes. Each thread also has write-only access to output vertex attributes and
instructions to emit a vertex and break the output primitive.

fragment programs: executed once for each fragment rendered by the 3d pipeline. Always dispatched in groups
of 4, called quads, corresponding to aligned 2x2 squares on the screen (if some of the fragments in the square
are not being rendered, the fragment program is run on them anyway, and its result discarded). This grouping
is done so that approximate screen-space derivatives of all intermediate results can be computed by exchanging
data with other threads in the quad. The quads are then grouped into warps in an uninteresting way. Each thread
has read-only access to interpolated attribute data and is expected to return the pixel data to be written to the
render output surface.

compute programs: dispatched in units called blocks. Blocks are submitted manually by the user, alone or in
so-called grids (basically big 2d arrays of blocks with identical parameters). The user also determines how many
threads are in a block. The threads of a block are sequentially grouped into warps. All warps of a block execute
in parallel on a single MP, and have access to so-called shared memory. Shared memory is a fast per-block area
of memory, and its size is selected by the user as part of block configuration. Compute warps also have random
R/W access to so-called global memory areas, which can be arbitrarily mapped to card VM by the user.

Registers

The registers in Tesla ISA are:

* up to 128 32-bit GPRs per thread: $r0-$r127. These registers are used for all calculations (with the exception of

some address calculations), whether integer or floating-point.

The amount of available GPRs per thread is chosen by the user as part of MP configuration, and can be selected
per program type. For example, if the user enables 16 registers, $r0-$r15 will be usable and $r16-$r127 will
be forced to 0. Since the MP has a rather limitted amount of storage for GPRs, this configuration parameter
determines how many active warps will fit simultanously on an MP.

216

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

If a 16-bit operation is to be performed, each GPR from $r0-$r63 range can be treated as a pair of 16-bit registers:
$rX1 (low half of $rX) and $rXh (high part of $rX).

If a 64-bit operation is to be performed, any naturally aligned pair of GPRs can be treated as a 64-bit register:
$rXd (which has the low half in $rX and the high half in $r(X+1), and X has to even). Likewise, if a 128-bit
operation is to be performed, any naturally aligned group of 4 registers can be treated as a 128-bit registers:
$rXq. The 32-bit chunks are assigned to $rX..(X+3) in order from lowest to highest.

* 4 16-bit address registers per thread: $al-$a4, and one additional register per warp ($a7). These registers are
used for addressing all memory spaces except global memory (which uses 32-bit addressing via $r register file).
In addition to the 4 per-thread registers and 1 per-warp register, there’s also $a0, which is always equal to 0.

Todo: wtf is up with $a7?

* 4 4-bit condition code registers per thread: $c0-$c3. These registers can be optionally set as a result of some
(mostly arithmetic) instructions and are made of 4 individual bits:

— bit 0: Z - zero flag. For integer operations, set when the result is equal to 0. For floating-point operations,
set when the result is O or NaN.

bit 1: S - sign flag. For integer operations, set when the high bit of the result is equal to 1. For floating-point
operations, set when the result is negative or NaN.

bit 2: C - carry flag. For integer addition, set when there is a carry out of the highest bit of the result.

bit 3: O - overflow flag. For integer addition, set when the true (infinite-precision) result doesn’t fit in the
destination (considered to be a signed number).

* A few read-only 32-bit special registers, $sr0-$sr8:
— $sr0 aka $physid: when read, returns the physical location of the current thread on the GPU:
* bits 0-7: thread index (inside a warp)
* bits 8-15: warp index (on an MP)
+ bits 16-19: MP index (on a TPC)
bits 20-23: TPC index

— $srl aka $clock: when read, returns the MP clock tick counter.

Todo: a bit more detail?

— $sr2: always 0?

Todo: perhaps we missed something?

— $sr3 aka $vstride: attribute stride, determines the spacing between subsequent attributes of a single vertex
in the input space. Useful only in geometry programs.

Todo: seems to always be 0x20. Is it really that boring, or does MP switch to a smaller/bigger stride
sometimes?

— $srd-$sr7 aka $pmO-$pm3: MP performance counters.

2.9. PGRAPH: 2d/3d graphics and compute engine 217

nVidia Hardware Documentation, Release git

— $sr8 aka $sampleid [GT215:]: the sample ID. Useful only in fragment programs when sample shading is
enabled.

Memory

The memory spaces in Tesla ISA are:

C[]: code space. 24-bit, byte-oriented addressing. The only way to access this space is by executing code from
it (there’s no “read from code space” instruction). There is one code space for each program type, and it’s
mapped to a 16MB range of VM space by the user. It has three levels of cache (global, TPC, MP) that need to
be manually flushed when its contents are modified by the user.

cO[]-c15[]: const spaces. 16-bit byte-oriented addressing. Read-only and accessible from any program type in
8, 16, and 32-bit units. Like C[], it has three levels of cache. Each of the 16 const spaces of each program type
can be independently bound to one of 128 global (per channel) const buffers. In turn, each of the const buffers
can be independently bound to a range of VM space (with length divisible by 256) or disabled by the user.

I[]: local space. 16-bit, byte-oriented addressing. Read-write and per-thread, accessible from any program type
in 8, 16, 32, 64, and 128-bit units. It’s directly mapped to VM space (although with heavy address mangling),
and hence slow. Its per-thread length can be set to any power of two size between 0x10 and 0x10000 bytes, or
to 0.

a[]: attribute space. 16-bit byte-oriented addressing. Read-only, per-thread, accessible in 32-bit units only
and only available in vertex and geometry programs. In vertex programs, contains input vertex attributes. In
geometry programs, contains pointers to vertices in p[] space and per-primitive attributes.

pll: primitive space. 16-bit byte oriented addressing. Read-only, per-MP, available only from geometry pro-
grams, accessed in 32-bit units. Contains input vertex attributes.

o[]: output space. 16-bit byte-oriented addressing. Write-only, per-thread. Available only from vertex and
geometry programs, accessed in 32-bit units. Contains output vertex attributes.

v[]: varying space. 16-bit byte-oriented addressing. Read-only, available only from fragment programs, ac-
cessed in 32-bit units. Contains interpolated input vertex attributs. It’s a “virtual” construct: there are really
three words stored in MP for each v[] word (base, dx, dy) and reading from v[] space will calculate the value
for the current fragment by evaluating the corresponding linear function.

s[]: shared space. 16-bit byte-oriented addressing. Read-write, per-block, available only from compute pro-
grams, accessible in 8, 16, and 32-bit units. Length per block can be selected by user in 0x40-byte increments
from 0 to 0x4000 bytes. On G200+, has a locked access feature: every warp can have one locked location in
s[], and all other warps will block when trying to access this location. Load with lock and store with unlock
instructions can thus be used to implement atomic operations.

g0[]-g15[]: global spaces. 32-bit byte-oriented addressing. Read-write, available only from compute programs,
accessible in 8, 16, 32, 64, and 128-bit units. Each global space can be configured in either linear or 2d mode.
When in linear mode, a global space is simply mapped to a range of VM memory. When in 2d mode, low 16
bits of gX[] address are the x coordinate, and high 16 bits are the y coordinate. The global space is then mapped
to a blocklinear 2d surface in VM space. On G84+, some atomic operations on global spaces are supported.

Todo:

when no-one’s looking, rename the a[], p[], v[] spaces to something sane.

Other execution state and resources

There’s also a fair bit of implicit state stored per-warp for control flow:

218

Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

e 22-bit PC (24-bit address with low 2 bits forced to 0): the current address in C[] space where instructions are
executed.

¢ 32-bit active thread mask: selects which threads are executed and which are not. If a bit is 1 here, instructions
will be executed for the given thread.

 32-bit invisible thread mask: useful only in fragment programs. If a bit is 1 here, the given thread is unused,
or corresponds to a pixel on the screen which won’t be rendered (ie. was just launched to fill a quad). Texture
instructions with “live” flag set won’t be run for such threads.

e 32%2-bit thread state: stores state of each thread:

0: active or branched off

1: executed the brk instruction

2: executed the ret instruction

3: executed the exit instruction

* Control flow stack. The stack is made of 64-bit entries, with the following fields:
- PC
— thread mask
— entry type:

% 1: branch

* 2: call

% 3: call with limit

*

4: prebreak
% 5: quadon

* 6: joinat

Todo: discard mask should be somewhere too?

Todo: call limit counter

Other resources available to CUDA code are:
o $t0-$t129: up to 130 textures per 3d program type, up to 128 for compute programs.

e $s0-$s17: up to 18 texture samplers per 3d program type, up to 16 for compute programs. Only used if linked
texture samplers are disabled.

» Up to 16 barriers. Per-block and available in compute programs only. A barrier is basically a warp counter: a
barrier can be increased or waited for. When a warp increases a barrier, its value is increased by 1. If a barrier
would be increased to a value equal to a given warp count, it’s set to 0 instead. When a barrier is waited for by
a warp, the warp is blocked until the barrier’s value is equal to 0.

Todo: there’s some weirdness in barriers.

2.9. PGRAPH: 2d/3d graphics and compute engine 219

nVidia Hardware Documentation, Release git

Instruction format

Instructions are stored in C[] space as 32-bit little-endian words. There are short (1 word) and long (2 words) instruc-
tions. The instruction type can be distinguished as follows:

word 0 | word 1 | instruction type

bits 0-1 | bits 0-1

0 - short normal

1 0 long normal

1 1 long normal with join
1 2 long normal with exit
1 3 long immediate

2 - short control

3 any long control

Todo: you sure of control instructions with non-0 w1b0-1?

Long instructions can only be stored on addresses divisible by 8 bytes (ie. on even word address). In other words,
short instructions usually have to be issued in pairs (the only exception is when a block starts with a short instruction
on an odd word address). This is not a problem, as all short instructions have a long equivalent. Attempting to execute
a non-aligned long instruction results in UNALIGNED_LONG_INSTRUCTION decode error.

Long normal instructions can have a join or exit instruction tacked on. In this case, the extra instruction is executed
together with the main instruction.

The instruction group is determined by the opcode fields:
» word 0 bits 28-31: primary opcode field
* word 1 bits 29-31: secondary opcode field (long instructions only)
Note that only long immediate and long control instructions always have the secondary opcode equal to 0.

The exact instruction of an instruction group is determined by group-specific encoding. Attempting to execute an
instruction whose primary/secondary opcode doesn’t map to a valid instruction group results in ILLEGAL_OPCODE
decode error.

Other fields

Other fields used in instructions are quite instruction-specific. However, some common bitfields exist. For short
normal instructions, these are:

¢ bits 0-1: O (select short normal instruction)
* bits 2-7: destination

* bit 8: modifier 1

* bits 9-14: source 1

* bit 15: modifier 2

* bits 16-21: source 2

* bit 22: modifier 3

* bit 23: source 2 type

220 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* bit 24: source 1 type

* bit 25: $a postincrement flag

bits 26-27: address register

bits 28-31: primary opcode
For long immediate instructions:

e word O:

bits 0-1: 1 (select long non-control instruction)
bits 2-7: destination
bit 8: modifier 1

bits 9-14: source 1
bit 15: modifier 2

bits 16-21: immediate low 6 bits
bit 22: modifier 3

— bit 23: unused

bit 24: source 1 type

bit 25: $a postincrement flag

bits 26-27: address register

bits 28-31: primary opcode

e word 1:

bits 0-1: 3 (select long immediate instruction)

bits 2-27: immediate high 26 bits

bit 28: unused
bits 29-31: always 0

For long normal instructions:

e word 0O:

bits 0-1: 1 (select long non-control instruction)

bits 2-8: destination

bits 9-15: source 1
bits 16-22: source 2

bit 23: source 2 type

bit 24: source 3 type

bit 25: $a postincrement flag

bits 26-27: address register low 2 bits

bits 28-31: primary opcode
e word 1:

— bits 0-1: 0 (no extra instruction), 1 (join), or 2 (exit)

2.9. PGRAPH: 2d/3d graphics and compute engine 221

nVidia Hardware Documentation, Release git

bit 2: address register high bit

bit 3: destination type

bits 4-5: destination $c register

bit 6: $c write enable

bits 7-11: predicate

bits 12-13: source $c register

bits 14-20: source 3

bit 21: source 1 type

bits 22-25: c[] space index
bit 26: modifier 1

bit 27: modifier 2

bit 28: unused

bits 29-31: secondary opcode

Note that short and long immediate instructions have 6-bit source/destination fields, while long normal instructions
have 7-bit ones. This means only half the registers can be accessed in such instructions ($r0-$r63, $r01-$r31h).

For long control instructions:
* word 0:
— bits 0-1: 3 (select long control instruction)
— bits 9-24: code address low 18 bits
— bits 28-31: primary opcode
e word 1:

bit 6: modifier 1

bits 7-11: predicate

bits 12-13: source $c register

bits 14-19: code address high 6 bits

Todo: what about other bits? ignored or must be 0?

Note that many other bitfields can be in use, depending on instruction. These are just the most common ones.

Whenever a half-register ($rX1 or $rXh) is stored in a field, bit 0 of that field selects high or low part (0 is low, 1 is
high), and bits 1 and up select $r index. Whenever a double register ($rXd) is stored in a field, the index of the low
word register is stored. If the value stored is not divisible by 2, the instruction is illegal. Likewise, for quad registers
($rXq), the lowest word register is stored, and the index has to be divisible by 4.

Predicates

Most long normal and long control instructions can be predicated. A predicated instruction is only executed if a
condition, computed based on a selected $c register, evaluates to 1. The instruction fields involved in predicates are:

» word 1 bits 7-11: predicate field - selects a boolean function of the $c register

222 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

» word 1 bits 12-13: $c source field - selects the $c register to use

The predicates are:

encoding | name description condition formula
0x00 never always false 0

0x01 1 less than S&-~Z)"N0O
0x02 e equal Z & ~S

0x03 le less than or equal SANZ10)
0x04 g greater than ~Z & ~(S™0)
0x05 1lg less or greater than ~Z

0x06 ge greater than or equal ~S§"0)
0x07 lge ordered ~Z1~S
0x08 u unordered &S

0x09 1lu less than or unordered S~0

0x0a eu equal or unordered Z

0x0b leu not greater than Z1(S™0)
0x0c gu greater than or unordered ~SAN(Z10)
0x0d lgu not equal to ~Z18S

0x0e geu not less than ~S1Z)y~0
0x0f always | always true 1

0x10 o overflow (0]

0x11 c carry / unsigned not below | C

0x12 a unsigned above ~2&C
0x13 S sign / negative S

Oxlc ns not sign / positive ~S

0x1d na unsigned not above Z1~C

Oxle nc not carry / unsigned below | ~C

Ox1f no no overflow ~0

Some instructions read $c registers directly. The operand CSRC refers to the $c register selected by the $c source field.
Note that, on such instructions, the $c register used for predicating is necessarily the same as the input register. Thus,
one must generally avoid predicating instructions with $c input.

$c destination field

Most normal long instructions can optionally write status information about their result to a $c register. The $c
destination is selected by $c destination field, located in word 1 bits 4-5, and $c destination enable field, located in
word 1 bit 6. The operands using these fields are:

e FCDST (forced condition destination): $c0-$c3, as selected by $c destination field.
e CDST (condition destination):
— if $c destination enable field is 0, no destination is used (condition output is discarded).

— if $c destination enable field is 1, same as FCDST.

Memory addressing

Some instructions can access one of the memory spaces available to CUDA code. There are two kinds of such
instructions:

2.9. PGRAPH: 2d/3d graphics and compute engine 223

nVidia Hardware Documentation, Release git

* Ordinary instructions that happen to be used with memory operands. They have very limitted direct address-
ing range (since they fit the address in 6 or 7 bits normally used for register selection) and may lack indirect
addressing capabilities.

* Dedicated load/store instructions. They have full 16-bit direct addressing range and have indirect addressing
capabilities.

The following instruction fields are involved in memory addressing:
* word 0 bit 25: autoincrement flag
* word 0 bits 26-27: $a low field
 word 1 bit 2: $a high field
» word 0 bits 9-16: long offset field (used for dedicated load/store instructions)
There are two operands used in memory addressing:
e SASRC (short address source): $a0-$a3, as selected by $a low field.
* LASRC (long address source): $a0-$a7, as selected by concatenation of $a low and high fields.

Every memory operand has an associated offset field and multiplication factor (a constant, usually equal to the access
size). Memory operands also come in two kinds: direct (no $a field) and indirect ($a field used).

For direct operands, the memory address used is simply the value of the offset field times the multiplication factor.
For indirect operands, the memory address used depends on the value of the autoincrement flag:

* if flag is 0, memory address used is $aX + offset » factor, where $aregister is selected by SASRC (for
short and long immediate instructions) or LASRC (for long normal instructions) operand. Note that using $a0
with this addressing mode can emulate a direct operand.

« if flag is 1, memory address used is simply $aX, but after the memory access is done, the $aX will be in-
creased by offset x factor. Attempting to use $a0 (or $a5/a6) with this addressing mode results in
ILLEGAL_POSTINCR decode error.

Todo: figure out where and how $a7 can be used. Seems to be a decode error more often than not. ..

Todo: what address field is used in long control instructions?

Shared memory access

Most instructions can use an s[] memory access as the first source operand. When s[] access is used, it can be used in
one of 4 modes:

* 0: u8 - read a byte with zero extension, multiplication factor is 1
e 1: ulé6 -read a half-word with zero extension, factor is 2

e 2: s16 - read a half-word with sign extension, factor is 2

e 3: b32 -read a word, factor is 4

The corresponding source 1 field is split into two subfields. The high 2 bits select s[] access mode, while the low 4 or
5 bits select the offset. Shared memory operands are always indirect operands. The operands are:

e SSSRC1 (short shared word source 1): use short source 1 field, all modes valid.

224 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

* LSSRC1 (long shared word source 1): use long source 1 field, all modes valid.

e SSHSRC1 (short shared halfword source 1): use short source 1 field, valid modes u8, ul6, s16.

* LSHSRC1 (long shared halfword source 1): use long source 1 field, valid modes u8, ul6, s16.

* SSUHSRCI (short shared unsigned halfword source 1): use short source 1 field, valid modes u8, ulé.
* LSUHSRCI (long shared unsigned halfword source 1): use long source 1 field, valid modes u8, ulé.
* SSSHSRC1 (short shared signed halfword source 1): use short source 1 field, valid modes u8, s16.

* LSSHSRC1 (long shared signed halfword source 1): use long source 1 field, valid modes u8, s16.

* LSBSRC1 (long shared byte source 1): use long source 1 field, only u8 mode valid.

Attempting to use b32 mode when it’s not valid (because source 1 has 16-bit width) results in ILLE-
GAL_MEMORY_SIZE decode error. Attempting to use ul6/s16 mode that is invalid because the sign is wrong
results in ILLEGAL_MEMORY_SIGN decode error. Attempting to use mode other than u8 for cvt instruction with
u8 source results in ILLEGAL_MEMORY_BYTE decode error.

Destination fields

Most short and long immediate instructions use the short destination field for selecting instruction destination. The
field is located in word 0 bits 2-7. There are two common operands using that field:

e SDST (short word destination): GPR $r0-$r63, as selected by the short destination field.
e SHDST (short halfword destination): GPR half $r01-$r31h, as selected by the short destination field.

Most normal long instructions use the long destination field for selecting instruction destination. The field is located
in word O bits 2-8. This field is usually used together with destination type field, located in word 1 bit 3. The common
operands using these fields are:

* LRDST (long register word destination): GPR $r0-$r127, as selected by the long destination field.
e LRHDST (long register halfword destination): GPR half $r01-$r63h, as selected by the long destination field.
* LDST (long word destination):

— if destination type field is 0, same as LRDST.

— if destination type field is 1, and long destination field is equal to 127, no destination is used (ie. operation
result is discarded). This is used on instructions that are executed only for their $c output.

— if destination type field is 1, and long destination field is not equal to 127, o[] space is written, as a direct
memory operand with long destination field as the offset field and multiplier factor 4.

Todo: verify the 127 special treatment part and direct addressing

e LHDST (long halfword destination):
— if destination type field is 0, same as LRHDST.

— if destination type field is 1, and long destination field is equal to 127, no destination is used (ie. operation
result is discarded).

— if destination type field is 1, and long destination field is not equal to 127, o[] space is written, as a direct
memory operand with long destination field as the offset field and multiplier factor 2. Since o[] can only
be written with 32-bit accesses, the address is rounded down to a multiple of 4, and the 16-bit result is
duplicated in both low and high half of the 32-bit value written in o[] space. This makes it pretty much
useless.

2.9. PGRAPH: 2d/3d graphics and compute engine 225

nVidia Hardware Documentation, Release git

* LDDST (long double destination): GPR pair $r0d-$r126d, as selected by the long destination field.

e LODST (long quad destination): GPR quad $r0g-$r124q, as selected by the long destination field.

Short source fields

Todo: write me

Long source fields

Todo: write me

Opcode map
Table 11: Opcode map
Pri- | short long | long long long long long long long long short long
mary| nor- im- nor- nor- nor- nor- nor- nor- nor- nor- con-| con-
op- | mal | me- | mal, mal, mal, mal, mal, mal, mal, mal, trol | trol
code di- | sec- sec- sec- sec- sec- sec- sec- sec-
ate | ondary | ondary | ondary | ondary | ondary | ondary | ondary | ondary
0 1 2 3 4 5 6 7
0x0 | - - ldal] mov mov mov stof] mov to | shl to | sts[] - dis-
from from from $c $a card
$c $a $sr
0x1 | mov | mov | mov ldc[] ld s[] vote - - - - - bra
0x2 | add/subdd/suladd/sub | - - - - - - - - call
0x3 | add/fubdd/sytadd/sub| - - set max min shl shr - ret
0x4 | mul | mul | mul - - - - - - - - pre-
brk
0x5 | sad | - sad - - - - - - - - brk
0x6 | mulHaddil+addul+add mul+add mul+add mul+add mul+add mul+add mul+add mul+add - quadpn
0x7 | mulHaddil+addul+add mul+add mul+add mul+add mul+add mul+add mul+add mul+add - quadt
pop
0x8 | in- | - interp - - - - - - - - bar
terp
0x9 | rep | - rep - rsqrt lg2 sin cos ex2 - trap | trap
Oxa | - - evti2i | cevti2i | evti2f | evti2f | evtf2i | cvif2i | evif2f | evtf2f | - Joinay
O0xb | fadd| fadd | fadd fadd - [set Jfmax Jfmin presin/preex2 brkpt brkpf
Oxc | fmul| fimul | fimul - fslct fslct quadop | - - - - bra
c[]
0xd | - logic | logic add $a | IdI[] stlf] ldgl] st gl] red g[] | atomic | - pre-
op op gl] ret
Oxe | fmultfhddl+fdddil+faddfmul+fadddfma dadd dmul dmin dmax dset - -
Oxf | fex- | - tex- texbias | texlod | tex texc- 77? emit/restartop/pmeyent | -
autoffetch | auto/fetdh misc saa/gather
226 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Instructions

The instructions are roughly divided into the following groups:
e Data movement instructions
* Integer arithmetic instructions
* Floating point instructions
* Transcendential instructions
* Double precision floating point instructions
e Control instructions
o Texture instructions

o Misc instructions

Data movement instructions

Contents

e Data movement instructions

— Introduction

Data movement: (h)mov

Condition registers
% Reading condition registers: mov (from $c)

= Writing condition registers: mov (to $c)

Address registers
% Reading address registers: mov (from $a)
x Writing address registers: shl (to $a)
% Increasing address registers: add ($a)
— Reading special registers: mov (from $sr)
— Memory space access
* Const space access: ld c[]
* Local space access: ld I[], stl[]
* Shared space access: Id s[], st s[]
+ Input space access: ld af |
* Qutput space access: st o[|
— Global space access
* Global load/stores: 1d g[], st g[]

* Global atomic operations: ld (addlincldeclmax\minlandlorlxor) g[], xchg g[], cas g[]

* Global reduction operations: (addlincldeclmaximinland\orxor) g[]

2.9. PGRAPH: 2d/3d graphics and compute engine 227

nVidia Hardware Documentation, Release git

Introduction

Todo: write me

Data movement: (h)mov

Todo: write me

[lanemask] mov b32/bl6 DST SRC
lanemask assumed 0Oxf for short and immediate versions.
if (lanemask & 1 << (laneid & 3)) DST = SRC;

Short: 0x10000000 base opcode
0x00008000 O0: bl6, 1: b32
operands: S*DST, S*SRC1/S*SHARED

Imm: 0x10000000 base opcode
0x00008000 0: ble, 1: b32
operands: LxDST, IMM

Long: 0x10000000 0x00000000 base opcode
0x00000000 0x04000000 0: bl6, 1: b32
0x00000000 0x0003c000 lanemask
operands: LL*DST, L*SRC1/L*SHARED

Condition registers

Reading condition registers: mov (from $c)

Todo: write me

mov DST COND
DST is 32-bit $r.
DST = COND;

Long: 0x00000000 0x20000000 base opcode
operands: LDST, COND

Writing condition registers: mov (to $c)

228 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Todo: write me

mov CDST SRC

SRC is 32-bit $r. Yes, the 0x40 $c write enable flag in second word is

actually ignored.
CDST = SRC;

Long: 0x00000000 0xa0000000 base opcode
operands: CDST, LSRC1l

Address registers

Reading address registers: mov (from $a)

Todo: write me

mov DST AREG

DST is 32-bit $r. Setting flag normally used for autoincrement mode doesn't
work, but still causes crash when using non-writable $a's.

DST = AREG;

Long: 0x00000000 0x40000000 base opcode
0x02000000 0x00000000 crashy flag
operands: LDST, AREG

Writing address registers: shl (to $a)

Todo: write me

shl ADST SRC SHCNT
SRC is 32-bit S$r.
ADST = SRC << SHCNT;

Long: 0x00000000 0xcO000000 base opcode
operands: ADST, LSRC1/LSHARED, HSHCNT

Increasing address registers: add ($a)

2.9. PGRAPH: 2d/3d graphics and compute engine

229

nVidia Hardware Documentation, Release git

Todo: write me

add ADST AREG OFFS

Like mov from $a, setting flag normally used for autoincrement mode doesn't
work, but still causes crash when using non-writable $a's.

ADST = AREG + OFFS;
Long: 0xd0000000 0x20000000 base opcode

0x02000000 0x00000000 crashy flag
operands: ADST, AREG, OFFS

Reading special registers: mov (from $sr)

Todo: write me

mov DST physid
mov DST clock
mov DST sreg2
mov DST sreg3
mov DST pmO
mov DST pml
mov DST pm2
mov DST pm3

~ oUW N O

DST is 32-bit Sr.
DST = SREG;
Long: 0x00000000 0x60000000 base opcode

0x00000000 0x0001c000 S
operands: LDST

Memory space access

Const space access: Id c[]

Todo: write me

Local space access: Id I[], st I[]

Todo: write me

230 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

Shared space access: Id s[], st s[]

Todo: write me

mov lock CDST DST s[]
Tries to lock a word of s[] memory and load a word from it. CDST tells
you if it was successfully locked+loaded, or no. A successfully locked
word can't be locked by any other thread until it is unlocked.

mov unlock s[] SRC

Stores a word to previously-locked s[] word and unlocks it.

Input space access: Id a[]

Todo: write me

Output space access: st 0[]

Todo: write me

Global space access

Global load/stores: Id g[], st g[]

Todo: write me

Global atomic operations: Id (add|inc|dec|max|min|and|or|xor) g[], xchg g[], cas g[]

Todo: write me

Global reduction operations: (add|inc|dec|max|min|jand|or|xor) g[]

Todo: write me

2.9. PGRAPH: 2d/3d graphics and compute engine 231

nVidia Hardware Documentation, Release git

Integer arithmetic instructions

Contents

* Integer arithmetic instructions
— Introduction

Addition/substraction: (h)add, (h)sub, (h)subr, (h)addc

Multiplication: mul(24)
Multiply-add: madd(24), msub(24), msubr(24), maddc(24)

Sum of absolute differences: sad, hsad

Min/max selection: (h)min, (h)max

Comparison: set, hset

— Bitwise operations: (h)and, (h)or, (h)xor, (h)mov2

— Bit shifts: (h)shl, (h)shr, (h)sar

Introduction

Todo: write me

S(x): 31th bit of x for 32-bit x, 15th for 16-bit x.
SEX (x): sign-extension of x
ZEX (x): zero—extension of x

Addition/substraction: (h)add, (h)sub, (h)subr, (h)addc

Todo: write me

add [sat] b32/bl6 [CDST] DST SRC1l SRC2 02=0, 01=0
sub [sat] b32/bl6 [CDST] DST SRC1l SRC2 02=0, 0l=1
subr [sat] b32/bl6 [CDST] DST SRC1 SRC2 02=1, 01=0
addc [sat] b32/bl6 [CDST] DST SRC1 SRC2 COND 02=1, 0Ol=1

All operands are 32-bit or 16-bit according to size specifier.

bl6/b32 sl1, s2;
bool c;
switch (OP) {
case add: sl = SRC1l, s2 = SRC2, c = 0; break;
case sub: sl = SRC1, s2 = ~SRC2, c = 1; break;
case subr: sl = ~SRC1l, s2 = SRC2, c = 1; break;
case addc: sl = SRC1l, s2 = SRC2, ¢ = COND.C; break;

(continues on next page)

232 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

res = sl+s2+c; // infinite precision

CDST.C = res >> (b32 2?2 32 : 106);

res = res & (b32 ? Oxffffffff : Oxffff);

CDST.O = (S(sl) == S(s2)) && (S(sl) != S(res));

if (sat && CDST.O)

if (S(res)) res = (b32 ? OxT7fffffff : Ox7fff);
else res = (b32 ? 0x80000000 : 0x8000);
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;
Short/imm: 0x20000000 base opcode

0x10000000 02 bit

0x00400000 O1 bit

0x00008000 0: bleo, 1: b32

0x00000100 sat flag

operands: S*DST, S*SRC1/S*SHARED, S*SRC2/S*CONST/IMM, $c0

Long: 0x20000000 0x00000000 base opcode
0x10000000 0x00000000 02 bit
0x00400000 0x00000000 O1 bit
0x00000000 0x04000000 0: bl6, 1: b32
0x00000000 0x08000000 sat flag
operands: MCDST, LL*DST, L*SRC1/L*SHARED, L*SRC3/L*CONST3,

COND

Multiplication: mul(24)

Todo: write me

mul [CDST] DST ul6/sl6 SRC1 ul6/slé6 SRC2
DST is 32-bit, SRC1l and SRC2 are 1l6-bit.

b32 sl1, s2;
if (srcl_signed)

sl = SEX(SRC1);
else

sl = ZEX(SRC1);
if (src2_signed)

s2 = SEX(SRC2);

else

s2 = ZEX(SRC2) ;
b32 res = sl*s2; // modulo 2732
CDST.O = 0;

CDST.C = 0;

CDST.S = S(res);
CDST.Z res == 0;
DST = res;

Short/imm: 0x40000000 base opcode
0x00008000 srcl is signed
0x00000100 src2 is signed
operands: SDST, SHSRC/SHSHARED, SHSRC2/SHCONST/IMM

(continues on next page)

2.9. PGRAPH: 2d/3d graphics and compute engine

233

nVidia Hardware Documentation, Release git

(continued from previous page)

Long: 0x40000000 0x00000000 base opcode
0x00000000 0x00008000 srcl is signed
0x00000000 0x00004000 src2 is signed
operands: MCDST, LLDST, LHSRC1/LHSHARED, LHSRC2/LHCONST2

mul [CDST] DST [high] u24/s24 SRC1 SRC2

All operands are 32-bit.

b48 sl1, s2;
if (signed) {
sl = SEX((b24)SRC1);
s2 = SEX((b24)SRC2);
} else {
sl = ZEX((b24)SRC1);
s2 = ZEX((b24)SRC2);
}
b48 m = sl*s2; // modulo 2748
b32 res = (high ? m >> 16 m & Oxffffffff);
CDST.O = 0;
CDST.C = 0;
CDST.S = S(res);
CDST.Z = res == 0;
DST = res;

Short/imm: 0x40000000 base opcode
0x00008000 src are signed
0x00000100 high
operands: SDST, SSRC/SSHARED, SSRC2/SCONST/IMM

Long: 0x40000000 0x00000000 base opcode
0x00000000 0x00008000 src are signed
0x00000000 0x00004000 high
operands: MCDST, LLDST, LSRC1/LSHARED, LSRC2/LCONST2

Multiply-add: madd(24), msub(24), msubr(24), maddc(24)

Todo: write me
addop [CDST] DST mul ulé SRC1 SRC2 SRC3 01=0 02=000 S2=0 S1=0
addop [CDST] DST mul sl6 SRC1 SRC2 SRC3 01=0 02=001 S2=0 Sl=1
addop sat [CDST] DST mul sl16 SRC1 SRC2 SRC3 01=0 02=010 S2=1 S1=0
addop [CDST] DST mul u24 SRC1 SRC2 SRC3 01=0 02=011 S2=1 Sl1=1
addop [CDST] DST mul s24 SRC1 SRC2 SRC3 01=0 02=100
addop sat [CDST] DST mul s24 SRC1 SRC2 SRC3 01=0 02=101
addop [CDST] DST mul high u24 SRC1 SRC2 SRC3 01=0 02=110
addop [CDST] DST mul high s24 SRC1 SRC2 SRC3 01=0 02=111
addop sat [CDST] DST mul high s24 SRC1 SRC2 SRC3 01=1 02=000
addop is one of:
(continues on next page)
234 Chapter 2. nVidia hardware documentation

nVidia Hardware Documentation, Release git

(continued from previous page)

add 03=00 S4=0 S3=0
sub 03=01 S4=0 S3=1
subr 03=10 S4=1 S3=0
addc 03=11 S4=1 S3=1

If addop is addc, insn also takes an additional COND parameter. DST and
SRC3 are always 32-bit, SRC1l and SRC2 are 1l6-bit for ulé6/slé variants,
32-bit for u24/s24 variants. Only a few of the variants are encodable as
short/immediate, and they're restricted to DST=SRC3.

if (u24 || s24) {
b48 sl1, s2;
if (s24) {
sl = SEX((b24)SRC1);

s2 = SEX((b24)SRC2);
} else {
sl = ZEX((b24)SRC1);

s2 = ZEX((b24)SRC2);

}
b48 m = sl*s2; // modulo 2748

b32 mres = (high ? m >> 16 : m & Oxffffffff);
} else {
b32 sl1, s2;
if (sle6) {
sl = SEX(SRC1);
s2 = SEX(SRC2);
} else {
sl = ZEX(SRC1);
s2 = ZEX(SRC2);

}
b32 mres = slxs2; // modulo 2732

}
b32 sl1, s2;

bool c;

switch (OP) {
case add: sl = mres, s2 = SRC3, c = 0; break;
case sub: sl = mres, s2 = ~SRC3, c¢ = 1; break;
case subr: sl = ~mres, s2 = SRC3, c = 1; break;

case addc: sl = mres, s2 = SRC3, c = COND.C; break;
}
res = sl+s2+c; // infinite precision
CDST.C = res >> 32;
res = res & Oxffffffff;
CDST.O = (S(sl) == (s2)) && (S(sl) !'= S(res));
if (sat && CDST.O)
if (S(res)) res = Ox7fffffff;
else re