Contents

1 Getting Started .. 3

2 Getting it .. 5

3 Compatibility with versions of Python and Django 7

4 Contents .. 9

4.1 Installation instructions 9

4.1.1 Installation .. 9

4.2 Current Command Extensions 10

4.3 Ideas for New Command Extensions 12

4.4 Command Signals ... 12

4.4.1 Basic Example ... 12

4.4.2 Custom Permissions For All Models 12

4.4.3 Using pre/post signals on your own commands 13

4.5 Current Admin Extensions 13

4.5.1 Depreciation ... 14

4.5.2 Known Issues .. 14

4.5.3 Example Usage .. 14

4.6 shell_plus ... 15

4.6.1 Interactive Python Shells 15

4.6.2 Configuration .. 16

4.6.3 Collision resolvers .. 17

4.6.4 Writing your custom collision resolver 19

4.6.5 Import Subclasses .. 20

4.6.6 IPython Notebook .. 20

4.6.7 Additional Imports .. 21

4.6.8 Database application signature 21

4.6.9 SQL queries .. 21

4.7 Debugger tags .. 22

4.7.1 Introduction .. 22

4.7.2 Usage .. 22

4.8 create_template_tags .. 22

4.8.1 Usage .. 22

4.9 delete_squashed_migrations 23

4.9.1 Example Usage .. 23

4.10 dumpscript .. 23
Django Extensions is a collection of custom extensions for the Django Framework.
These include management commands, additional database fields, admin extensions and much more.
The easiest way to figure out what Django Extensions are all about is to watch the excellent screencast by Eric Holscher (Direct Vimeo link). In a couple minutes Eric walks you through a half a dozen command extensions.
You can get Django Extensions by using pip:

```
$ pip install django-extensions
```

If you want to install it from source, grab the git repository and run setup.py:

```
$ git clone git://github.com/django-extensions/django-extensions.git
$ cd django-extensions
$ python setup.py install
```

For more detailed instructions check out our Installation instructions. Enjoy.
Compatibility with versions of Python and Django

We follow the Django guidelines for supported Python and Django versions. See more at Django Supported Versions. This might mean the django-extensions may work with older or unsupported versions but we do not guarantee it and most likely will not fix bugs related to incompatibilities with older versions.

At this time we test on and thrive to support valid combinations of Python 2.7, 3.5, 3.6, 3.7, pypy and pypy3 with Django versions 1.11 to 2.1.
4.1 Installation instructions

synopsis Installing django-extensions

4.1.1 Installation

For usage

You can use pip to install django-extensions for usage:

```sh
$ pip install django-extensions
```

For development

Django-extensions is hosted on github:

```url
https://github.com/django-extensions/django-extensions
```

Source code can be accessed by performing a Git clone.

Tracking the development version of *django command extensions* should be pretty stable and will keep you up-to-date with the latest fixes.

```sh
$ pip install -e https://github.com/django-extensions/django-extensions.git#egg=django-extensions
```

You find the sources in src/django-extensions now.

You can verify that the application is available on your PYTHONPATH by opening a python interpreter and entering the following commands:
>>> import django_extensions
>>> django_extensions.VERSION
(0, 8)

Keep in mind that the current code in the git repository may be different from the packaged release. It may contain bugs and backwards-incompatible changes but most likely also new goodies to play with.

Configuration

You will need to add the django_extensions application to the INSTALLED_APPS setting of your Django project settings.py file:

```
INSTALLED_APPS = (  
    ...  
    'django_extensions',  
)
```

This will make sure that Django finds the additional management commands provided by django-extensions.

The next time you invoke ./manage.py help you should be able to see all the newly available commands.

Some commands or options require additional applications or python libraries, for example:

- ‘export_emails’ will require the python vobject module to create vcard files.
- ‘graph_models’ requires pygraphviz to render directly to image file.

If the given application or python library is not installed on your system (or not in the python path) the executed command will raise an exception and inform you of the missing dependency.

4.2 Current Command Extensions

Synopsis Current Command Extensions

- *shell_plus* - An enhanced version of the Django shell. It will autoload all your models making it easy to work with the ORM right away.
- *admin_generator* - Generate automatic Django Admin classes by providing an app name. Outputs source code at STDOUT.
- *clean_pyc* - Remove all python bytecode compiled files from the project
- *create_command* - Creates a command extension directory structure within the specified application. This makes it easy to get started with adding a command extension to your application.
- *create_template_tags* - Creates a template tag directory structure within the specified application.
- *create_jobs* - Creates a Django jobs command directory structure for the given app name in the current directory. This is part of the impressive jobs system.
- *clear_cache* - Clear django cache, useful when testing or deploying.
- *compile_pyc* - Compile python bytecode files for the project.
- *describe_form* - Used to display a form definition for a model. Copy and paste the contents into your forms.py and you’re ready to go.
- *delete_squashed_migrations* - Deletes leftover migrations after squashing and converts squashed migration to a normal one.
• **dumpscript** - Generates a Python script that will repopulate the database using objects. The advantage of this approach is that it is easy to understand, and more flexible than directly populating the database, or using XML.

• **export_emails** - export the email addresses for your users in one of many formats. Currently supports Address, Google, Outlook, LinkedIn, and VCard formats.

• **find_template** - Finds the location of the given template by resolving its path

• **generate_secret_key** - Creates a new secret key that you can put in your settings.py module.

• **graph_models** - Creates a GraphViz dot file. You need to send this output to a file yourself. Great for graphing your models. Pass multiple application names to combine all the models into a single dot file.

• **mail_debug** - Starts a mail server which echos out the contents of the email instead of sending it.

• **merge_model_instances** - Merges duplicate model instances by reassigning related model references to a chosen primary model instance.

• **notes** - Show all annotations like TODO, FIXME, BUG, HACK, WARNING, NOTE or XXX in your py and HTML files.

• **passwd** - Makes it easy to reset a user’s password.

• **pipchecker** - Scan pip requirement file(s) for out-of-date packages. Similar to pip list -o which used installed packages in virtualenv instead of requirements file(s).

• **print_settings** - Similar to diffsettings but shows selected active Django settings or all if no args passed.

• **print_user_for_session** - Print the user information for the provided session key. This is very helpful when trying to track down the person who experienced a site crash. It seems this works only if setting SESSION_ENGINE is 'django.contrib.sessions.backends.db' (default value).

• **drop_test_database** - Drops the test database. Usefull when running Django test via some automated system (BuildBot, Jenkins, etc) and making sure that the test database is always dropped at the end.

• **reset_db** - Resets a database (currently sqlite3, mysql, postgres). Uses “DROP DATABASE” and “CREATE DATABASE”.

• **runjob** - Run a single maintenance job. Part of the jobs system.

• **runjobs** - Runs scheduled maintenance jobs. Specify hourly, daily, weekly, monthly. Part of the jobs system.

• **runprofileserver** - Starts runserver with hotshot/profiling tools enabled. I haven’t had a chance to check this one out, but it looks really cool.

• **runscript** - Runs a script in the django context.

• **runserver_plus** - The standard runserver stuff but with the Werkzeug debugger baked in. Requires Werkzeug. This one kicks ass.

• **set_fake_emails** - Give all users a new email based on their account data (“%(username)s@example.com” by default). Possible parameters are: username, first_name, last_name. DEBUG only

• **set_fake_passwords** - Sets all user passwords to a common value (password by default). DEBUG only.

• **show_template_tags** - Displays template tags and filters available in the current project.

• **show_urls** - Displays the url routes that are defined in your project. Very crude at this point.

• **sqldiff** - Prints the (approximated) difference between an app’s models and what is in the database. This is very nice, but also very experimental at the moment. It can not catch everything but it’s a great sanity check.

• **sqlcreate** - Generates the SQL to create your database for you, as specified in settings.py.

• **sqldsn** - Reads the Django settings and extracts the parameters needed to connect to databases using other programs.
• **sync_s3** - Copies files found in settings.MEDIA_ROOT to S3. Optionally can also gzip CSS and Javascript files and set the Content-Encoding header, and also set a far future expires header for browser caching.

• **syncdata** - Makes the current database have the same data as the fixture(s), no more, no less.

• **unreferenced_files** - Prints a list of all files in MEDIA_ROOT that are not referenced in the database.

• **update_permissions** - Reloads permissions for specified apps, or all apps if no args are specified.

• **validate_templates** - Validate templates on syntax and compile errors.

• **set_default_site** - Set parameters of the default django.contrib.sites Site using name and domain or system-fqdn.

4.3 Ideas for New Command Extensions

synopsis Here are some ideas for some future command extensions.

- create form/manager for App
- CSS and JS concatenation and minification scripts

4.4 Command Signals

synopsis Signals fired before and after a command is executed.

A signal is thrown pre/post each management command allowing your application to hook into each commands execution.

4.4.1 Basic Example

An example hooking into show_template_tags:

```python
from django_extensions.management.signals import pre_command, post_command
from django_extensions.management.commands.show_template_tags import Command

def pre_receiver(sender, args, kwargs):
    # I'm executed prior to the management command

def post_receiver(sender, args, kwargs, outcome):
    # I'm executed after the management command

pre_command.connect(pre_receiver, Command)
post_command.connect(post_receiver, Command)
```

4.4.2 Custom Permissions For All Models

You can use the post signal to hook into the update_permissions command so that you can add your own permissions to each model.

For instance, lets say you want to add list and view permissions to each model. You could do this by adding them to the permissions tuple inside your models Meta class but this gets pretty tedious.

An easier solution is to hook into the update_permissions call, as follows:
from django.db.models.signals import post_syncdb
from django.contrib.contenttypes.models import ContentType
from django.contrib.auth.models import Permission
from django_extensions.management.signals import post_command
from django_extensions.management.commands.update_permissions import Command as UpdatePermissionsCommand

def add_permissions(sender, **kwargs):
 ""
 Add view and list permissions to all content types.
 ""
 # for each of our content types
 for content_type in ContentType.objects.all():
 for action in ['view', 'list']:
 # build our permission slug
 codename = "%s_%s" % (action, content_type.model)

 try:
 Permission.objects.get(content_type=content_type, codename=codename)
 # Already exists, ignore
 except Permission.DoesNotExist:
 # Doesn't exist, add it
 Permission.objects.create(content_type=content_type, codename=codename, name="Can %s %s" % (action, content_type.name))

 print "Added %s permission for %s" % (action, content_type.name)

post_command.connect(add_permissions, UpdatePermissionsCommand)

Each time update_permissions is called add_permissions will be called which ensures there are view and list permissions to all content types.

4.4.3 Using pre/post signals on your own commands

The signals are implemented using a decorator on the handle method of a management command, thus using this functionality in your own application is trivial:

```python
from django_extensions.management.utils import signalcommand
class Command(BaseCommand):
    @signalcommand
def handle(self, *args, **kwargs):
        ...
        ...
```

4.5 Current Admin Extensions

synopsis Current Field Extensions

- ForeignKeyAutocompleteAdmin - ForeignKeyAutocompleteAdmin will enable the admin app to show ForeignKey fields with an search input field. The search field is rendered by the ForeignKeySearchInput form widget and uses jQuery to do configurable autocompletion.
• `ForeignKeyAutocompleteStackedInline`, `ForeignKeyAutocompleteTabularInline` - in the same fashion of the `ForeignKeyAutocompleteAdmin` these two classes enable a search input field for ForeignKey fields in AdminInline classes.

4.5.1 Depreciation

Django 2.0 now contains similar functionality as `ForeignKeyAutocompleteAdmin` therefor we are deprecated this extension and high encourage everybody to update to it.

This code will be removed in the near feature when support for Django older then 2.0 is dropped.

For more information see: https://docs.djangoproject.com/en/2.0/ref/contrib/admin/#django.contrib.admin.ModelAdmin.autocomplete_fields

4.5.2 Known Issues

• SECURITY ISSUE: Autocompletion does not check permissions nor the requested models on the autocompletion view. This can be used by users with access to the admin to expose data from other models. Please be aware and careful when using `ForeignKeyAutocompleteAdmin`.

• The current version of the `ForeignKeyAutocompleteAdmin` has issues with recent Django versions.

• We strongly suggest project using this extension to update to Django 2.0 and use the native `autocomplete_fields`.

4.5.3 Example Usage

To enable the Admin Autocomplete you can follow this code example in your admin.py file:

```python
from django.contrib import admin
from foo.models import Permission
from django_extensions.admin import ForeignKeyAutocompleteAdmin

class PermissionAdmin(ForeignKeyAutocompleteAdmin):
    # User is your FK attribute in your model
    # first_name and email are attributes to search for in the FK model
    related_search_fields = {
        'user': ('first_name', 'email'),
    }

    fields = ('user', 'avatar', 'is_active')

    ...

admin.site.register(Permission, PermissionAdmin)
```

If you are using django-reversion you should follow this code example:

```python
from django.contrib import admin
from foo.models import MyVersionModel
from reversion.admin import VersionAdmin
from django_extensions.admin import ForeignKeyAutocompleteAdmin

class MyVersionModelAdmin(VersionAdmin, ForeignKeyAutocompleteAdmin):
    # (continues on next page)
```
admin.site.register(MyVersionModel, MyVersionModelAdmin)

If you need to limit the autocomplete search, you can override the `get_related_filter` method of the admin. For example if you want to allow non-superusers to attach attachments only to articles they own you can use:

```python
class AttachmentAdmin(ForeignKeyAutocompleteAdmin):
    ...

def get_related_filter(self, model, request):
    user = request.user
    if not issubclass(model, Article) or user.is_superuser():
        return super(AttachmentAdmin, self).get_related_filter(model, request)
    return Q(owner=user)
```

Note that this does not protect your application from malicious attempts to circumvent it (e.g. sending fabricated requests via cURL).

4.6 shell_plus

synopsis Django shell with autoloading of the apps database models and subclasses of user-defined classes.

4.6.1 Interactive Python Shells

There is support for three different types of interactive python shells.

IPython:

```bash
$ ./manage.py shell_plus --ipython
```

bpython:

```bash
$ ./manage.py shell_plus --bpython
```

ptpython:

```bash
$ ./manage.py shell_plus --ptpython
```

Python:

```bash
$ ./manage.py shell_plus --plain
```

It is possible to directly add command line arguments to the underlying Python shell using --:

```bash
$ ./manage.py shell_plus --ipython -- --profile=foo
```

The default resolution order is: ptpython, bpython, ipython, python.

You can also set the configuration option SHELL_PLUS to explicitly specify which version you want.
It is also possible to use IPython Notebook, an interactive Python shell which uses a web browser as its user interface, as an alternative shell:

$./manage.py shell_plus --notebook

In addition to being savable, IPython Notebooks can be updated (while running) to reflect changes in a Django application’s code with the menu command Kernel > Restart.

4.6.2 Configuration

Sometimes, models from your own apps and other people’s apps have colliding names, or you may want to completely skip loading an app’s models. Here are some examples of how to do that.

Note: These settings are only used inside shell_plus and will not affect your environment.

Rename the automatic loaded module Messages in the app blog to blog_messages.

SHELL_PLUS_MODEL_ALIASES = {'blog': {'Messages': 'blog_messages'},}

Prefix all automatically loaded models in the app blog with myblog.

SHELL_PLUS_APP_PREFIXES = {'blog': 'myblog',}

Don’t load the ‘sites’ app, and skip the model ‘pictures’ in the app ‘blog’

SHELL_PLUS_DONT_LOAD = ['sites', 'blog.pictures']

Don’t load any models

SHELL_PLUS_DONT_LOAD = ['*']

You can also combine model_aliases and dont_load. When referencing nested modules, e.g. somepackage.someapp.models.somemodel, omit the package name and the reference to models. For example:

SHELL_PLUS_DONT_LOAD = ['someapp.somemodel',] # This works
SHELL_PLUS_DONT_LOAD = ['somepackage.someapp.models.somemodel',] # This does NOT...

It is possible to ignore autoloaded modules when using manage.py, like:

$./manage.py shell_plus --dont-load app1 --dont-load app2.module1

Command line parameters and settings in the configuration file are merged, so you can safely append modules to ignore from the commandline for one-time usage.

Other configuration options include:

| # Always use IPython for shell_plus |
| SHELL_PLUS = "ipython" |

SHELL_PLUS_PRINT_SQL = True

Truncate sql queries to this number of characters
SHELL_PLUS_PRINT_SQL_TRUNCATE = 1000

(continues on next page)
Specify sqlparse configuration options when printing sql queries to the console
SHELL_PLUS_SQLPARSE_FORMAT_KWARGS = dict(
 reindent_aligned=True,
 truncate_strings=500,
)

Specify Pygments formatter and configuration options when printing sql queries to the console
import pygments.formatters
SHELL_PLUS_PYGMENTS_FORMATTER = pygments.formatters.TerminalFormatter
SHELL_PLUS_PYGMENTS_FORMATTER_KWARGS = {}

Additional IPython arguments to use
IPYTHON_ARGUMENTS = []
IPYTHON_KERNEL_DISPLAY_NAME = "Django Shell-Plus"

Additional Notebook arguments to use
NOTEBOOK_ARGUMENTS = []
NOTEBOOK_KERNEL_SPEC_NAMES = ["python3", "python"]

4.6.3 Collision resolvers

You don’t have to worry about inaccessibility of models with conflicting names.

If you have conflicting model names, all conflicts can be resolved automatically. All models will be available under shell_plus, some of them with intuitive aliases.

This mechanism is highly configurable and you must only set SHELL_PLUS_MODEL_IMPORTS_RESOLVER. You should set full path to collision resolver class.

All predefined collision resolvers are in django_extensions.collision_resolvers module. Example:

```python
SHELL_PLUS_MODEL_IMPORTS_RESOLVER = 'django_extensions.collision_resolvers.FullPathCR'
```

All collision resolvers searches for models with the same name.

If conflict is detected they decides, which model to choose. Some of them are creating aliases for all conflicting models.

Example

Suppose that we have two apps:

- programming(with models Language and Framework)
- workers(with models Language and Worker)

'workers’ app is last in alphabetical order, but suppose that ‘programming’ app is occurs firstly in INSTALLED_APPS.

Collision resolvers won’t change aliases for models Framework and Worker, because their names are unique. There are several types of collision resolvers:

LegacyCR

Default collision resolver. Model from last application in alphabetical order is selected:

```python
from workers import Language
```
InstalledAppsOrderCR

Collision resolver which selects first model from INSTALLED_APPS. You can set your own app priorities list subclassing him and overwriting APP_PRIORITIES field.

This collision resolver will select model from first app on this list. If both app’s are absent on this list, resolver will choose model from first app in alphabetical order:

```python
from programming import Language
```

FullPathCR

Collision resolver which transform full model name to alias by changing dots to underscores. He also removes ‘models’ part of alias, because all models are in models.py files.

Model from last application in alphabetical order is selected:

```python
from programming import Language (as programming_Language)
from workers import Language, Language (as workers_Language)
```

AppNamePrefixCR

Collision resolver which transform pair (app name, model_name) to alias {app_name}_{model_name}. Model from last application in alphabetical order is selected.

Result is different than FullPathCR, when model has app_label other than current app:

```python
from programming import Language (as programming_Language)
from workers import Language, Language (as workers_Language)
```

AppNameSuffixCR

Collision resolver which transform pair (app name, model_name) to alias {model_name}_{app_name}

Model from last application in alphabetical order is selected:

```python
from programming import Language (as Language_programming)
from workers import Language, Language (as Language_workers)
```

AppNamePrefixCustomOrderCR

Collision resolver which is mixin of AppNamePrefixCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like AppNamePrefixCR, but sets default model using InstalledAppsOrderCR:

```python
from programming import Language, Language (as programming_Language)
from workers import Language (as workers_Language)
```

AppNameSuffixCustomOrderCR

Collision resolver which is mixin of AppNameSuffixCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like AppNameSuffixCR, but sets default model using InstalledAppsOrderCR:

```python
from programming import Language, Language (as programming_Language)
from workers import Language (as workers_Language)
```

FullPathCustomOrderCR

Collision resolver which is mixin of FullPathCR and InstalledAppsOrderCR.

In case of collisions he sets aliases like FullPathCR, but sets default model using InstalledAppsOrderCR:
from programming import Language, Language (as programming_Language)
from workers import Language (as workers_Language)

AppLabelPrefixCR
Collision resolver which transform pair (app_label, model_name) to alias `{app_label}_{model_name}`
This is very similar to AppNamePrefixCR but this may generate shorter names in case of apps nested into several
namespace (like Django’s auth app):

```python
# with AppNamePrefixCR
from django.contrib.auth.models import Group (as django_contrib_auth_Group)
# with AppLabelPrefixCR
from django.contrib.auth.models import Group (as auth_Group)
```

AppLabelSuffixCR
Collision resolver which transform pair (app_label, model_name) to alias `{model_name}_{app_label}`
Similar idea as the above, but based on AppNameSuffixCR:

```python
# with AppNamePrefixCR
from django.contrib.auth.models import Group (as Group_django_contrib_auth)
# with AppLabelSuffixCR
from django.contrib.auth.models import Group (as Group_auth)
```

4.6.4 Writing your custom collision resolver

You can customize models import behaviour by subclassing one of the abstract collision resolvers:

PathBasedCR
Abstract resolver which transforms full model name into alias. To use him you need to overwrite `transform_import`
function which should have one parameter.
It will be full model name. It should return valid alias as str instance.

AppNameCR
Abstract collision resolver which transform pair (app_name, model_name) to alias by changing dots to underscores.
You must define `MODIFICATION_STRING` which should be string to format with two keyword arguments:
app_name and model_name. For example: `{app_name}_{model_name}`.
Model from last application in alphabetical order is selected.
You can mix PathBasedCR or AppNameCR with InstalledAppsOrderCR, but InstalledAppsOrderCR should be second
base class.

BaseCR
Abstract base collision resolver. All collision resolvers needs to inherit from this class.
To write custom collision resolver you need to overwrite `resolve_collisions` function. It receives `Dict[str, List[str]]`
where key is model name and values are full model names (full model name means: module + model_name).
You should return `Dict[str, str]`, where key is model name and value is full model name.
4.6.5 Import Subclasses

If you want to load automatically all project subclasses of some base class, you can achieve this by setting `SHELL_PLUS_SUBCLASSES_IMPORT` option.

It must be list of either classes or strings containing paths to this classes.

For example if you want to load all your custom managers than you should provide:

```python
from django.db.models import Manager
SHELL_PLUS_SUBCLASSES_IMPORT = [Manager]
```

Than shell_plus will load all your custom managers:

```python
# Shell Plus Subclasses Imports
from utils.managers import AbstractManager
from myapp.managers import MyCustomManager
from somewhere.else import MyOtherManager
# django.db.models.Manager is not loaded because only project classes are.
```

By default all subclasses of your base class from all projects module will be loaded.

You can exclude some modules and all their submodules by passing `SHELL_PLUS_SUBCLASSES_IMPORT_MODULES_BLACKLIST` option:

```python
SHELL_PLUS_SUBCLASSES_IMPORT_MODULES_BLACKLIST = ['utils', 'somewhere.else']
```

Elements of this list must be strings containing full modules paths. If these modules are excluded only `MyCustomManager` from `myapp.managers` will be loaded.

If you are using `SHELL_PLUS_SUBCLASSES_IMPORT` shell_plus loads all project modules for finding subclasses. Sometimes it can lead to some errors (for example when we have old unused module which contains syntax errors).

Excluding these modules can help avoid shell_plus crashes in some situations. It is recommended to exclude all `setup.py` files.

4.6.6 IPython Notebook

There are two settings that you can use to pass your custom options to the IPython Notebook in your Django settings.

The first one is `NOTEBOOK_ARGUMENTS` that can be used to hold those options that available via:

```
$ ipython notebook -h
```

For example:

```python
NOTEBOOK_ARGUMENTS = [
    '--ip', 'x.x.x.x',
    '--port', 'xx',
]
```

Another one is `IPYTHON_ARGUMENTS` that for those options that available via:

```
$ ipython -h
```

The Django settings module and database models are auto-loaded into the interactive shell’s global namespace also for IPython Notebook.
Auto-loading is done by a custom IPython extension which is activated by default by passing the `--ext django_extensions.management.notebook_extension` argument to the Notebook. If you need to pass custom options to the IPython Notebook, you can override the default options in your Django settings using the `IPYTHON_ARGUMENTS` setting. For example:

```python
IPYTHON_ARGUMENTS = [
    ('--ext', 'django_extensions.management.notebook_extension'),
    ('--ext', 'myproject.notebook_extension'),
    ('--debug',)
]
```

To activate auto-loading, remember to either include the django-extensions’ default notebook extension or copy its auto-loading code into your own extension.

Note that the IPython Notebook feature doesn’t currently honor the `--dont-load` option.

4.6.7 Additional Imports

In addition to importing the models you can specify other items to import by default. These are specified in `SHELL_PLUS_PRE_IMPORTS` and `SHELL_PLUS_POST_IMPORTS`. The former is imported before any other imports (such as the default models import) and the latter is imported after any other imports. Both have similar syntax. So in your settings.py file:

```python
SHELL_PLUS_PRE_IMPORTS = [
    ('module.submodule1', ('class1', 'function2')),
    ('module.submodule2', 'function3'),
    ('module.submodule3', '*'),
    'module.submodule4'
]
```

The above example would directly translate to the following python code which would be executed before the automatic imports:

```python
from module.submodule1 import class1, function2
from module.submodule2 import function3
from module.submodule3 import *
import module.submodule4
```

These symbols will be available as soon as the shell starts.

4.6.8 Database application signature

If using PostgreSQL the application name is set by default to `django_shell` to help identify queries made under shell_plus.

4.6.9 SQL queries

If the configuration option `DEBUG` is set to True, it is possible to print SQL queries as they’re executed in shell_plus like:

```
$ ./manage.py shell_plus --print-sql
```

You can also set the configuration option `SHELL_PLUS_PRINT_SQL` to omit the above command line option.
4.7 Debugger tags

synopsis Allows you to use debugger breakpoints on Django templates.

4.7.1 Introduction

These templatetags make debugging Django templates easier. You can choose between ipdb, pdb or wdb filters.

4.7.2 Usage

Make sure that you load `debugger_tags`:

```python
{% load debugger_tags %}
```

Now, you’re ready to use debugger filters inside a template:

```python
{% for object in object_list %}
    {{ object|ipdb }}
{% endfor %}
```

When rendering the template an ipdb session will be started.

4.8 create_template_tags

synopsis Creates a template tag directory structure within the specified application.

4.8.1 Usage

Create templatetags directory for `foobar` app:

```
$ python manage.py create_template_tags foobar
```

it will create directory structure:

```
foobar/
    __init__.py
    models.py
    templatetags/
        __init__.py
        foobar_tags.py
```

you can pass custom tags filename by providing `--name` argument:

```
$ python manage.py create_template_tags foobar --name custom_tags
```
4.9 delete_squashed_migrations

synopsis Deletes leftover migrations after squashing and converts squashed migration to a normal one.

Deletes leftover migrations after squashing and converts squashed migration to a normal one by removing the replaces attribute. This automates the clean up procedure outlined at the end of the [Django migration squashing documentation](https://docs.djangoproject.com/en/3.2/topics/migrations/squashing/). Modifies your source tree! Use with care!

4.9.1 Example Usage

With *django-extensions* installed you cleanup squashed migrations using the `delete_squashed_migrations` command:

```
# Delete leftover migrations from the first squashed migration found in myapp
$ ./manage.py delete_squashed_migrations myapp

# As above but non-interactive
$ ./manage.py --noinput delete_squashed_migrations myapp

# Explicitly specify the squashed migration to clean up
$ ./manage.py delete_squashed_migrations myapp 0001_squashed
```

4.10 dumpscript

synopsis Generates a standalone Python script that will repopulate the database using objects.

The `dumpscript` command generates a standalone Python script that will repopulate the database using objects. The advantage of this approach is that it is easy to understand, and more flexible than directly populating the database, or using XML.

4.10.1 Why?

There are a few benefits to this:

- less drama with model evolution: foreign keys handled naturally without IDs, new and removed columns are ignored
- edit script to create 1,000s of generated entries using for loops, generated names, python modules etc.

For example, an edited script can populate the database with test data:

```python
for i in xrange(2000):
    poll = Poll()
    poll.question = "Question #{0}".format(i)
    poll.pub_date = date(2001,01,01) + timedelta(days=i)
    poll.save()
```

Real databases will probably be bigger and more complicated so it is useful to enter some values using the admin interface and then edit the generated scripts.

4.10.2 Features

- ForeignKey and ManyToManyFields (using python variables, not object IDs)
• Self-referencing $ForeignKey$ (and M2M) fields
• Sub-classed models
• $ContentType$ fields and generic relationships
• Recursive references
• $AutoFields$ are excluded
• Parent models are only included when no other child model links to it
• Individual models can be referenced

4.10.3 How?

To dump the data from all the models in a given Django app ($appname$):

```bash
$ ./manage.py dumpscript appname > scripts/testdata.py
```

To dump the data from just a single model ($appname.ModelName$):

```bash
$ ./manage.py dumpscript appname.ModelName > scripts/testdata.py
```

To reset a given app, and reload with the saved data:

```bash
$ ./manage.py reset appname
$ ./manage.py runscript testdata
```

Note: Runscript needs $scripts$ to be a module, so create the directory and a $__init__.py$ file.

4.10.4 Caveats

Naming conflicts

Please take care that when naming the output files these filenames do not clash with other names in your import path. For instance, if the $appname$ is the same as the script name, an $importerror$ can occur because rather than importing the application modules it tries to load the modules from the dumpscript file itself.

Examples:

```bash
# Wrong
$ ./manage.py dumpscript appname > dumps/appname.py

# Right
$ ./manage.py dumpscript appname > dumps/appname_all.py

# Right
$ ./manage.py dumpscript appname.Somemodel > dumps/appname_somemodel.py
```

4.11 RunScript

synopsis Runs a script in the django context.
4.11.1 Introduction

The runscript command lets you run an arbitrary set of python commands within the django context. It offers the same usability and functionality as running a set of commands in shell accessed by:

\$ python manage.py shell

4.11.2 Getting Started

This example assumes you have followed the tutorial for Django 1.8+, and created a polls app containing a `Question` model. We will create a script that deletes all of the questions from the database.

To get started create a scripts directory in your project root, next to manage.py:

\$ mkdir scripts
\$ touch scripts/__init__.py

Note: The `__init__.py` file is necessary so that the folder is picked up as a python package.

Next, create a python file with the name of the script you want to run within the scripts directory:

\$ touch scripts/delete_all_questions.py

This file must implement a `run()` function. This is what gets called when you run the script. You can import any models or other parts of your django project to use in these scripts.

For example:

```python
# scripts/delete_all_questions.py
from polls.models import Question

def run():
    # Fetch all questions
    questions = Question.objects.all()
    # Delete questions
    questions.delete()
```

Note: You can put a script inside a `scripts` folder in any of your apps too.

4.11.3 Usage

To run any script you use the command `runscript` with the name of the script that you want to run.

For example:

\$ python manage.py runscript delete_all_questions

Note: The command first checks for scripts in your apps i.e. `app_name/scripts` folder and runs them before checking for and running scripts in the `project_root/scripts` folder. You can have multiple scripts with the same name and they will all be run sequentially.
4.11.4 Passing arguments

You can pass arguments from the command line to your script by passing a space separated list of values with --script-args. For example:

```
$ python manage.py runscript delete_all_questions --script-args staleonly
```

The list of argument values gets passed as arguments to your run() function. For example:

```
# scripts/delete_all_questions.py
from datetime import timedelta
from django.utils import timezone
from polls.models import Question
def run(*args):
    # Get all questions
    questions = Question.objects.all()
    if 'staleonly' in args:
        # Only get questions more than 100 days old
        questions = questions.filter(pub_date__lt=timezone.now() - timedelta(days=100))
    # Delete questions
    questions.delete()
```

4.11.5 Setting execution directory

You can set scripts execution directory using --chdir option or settings.RUNSCRIPT_CHDIR. You can also set scripts execution directory policy using --dir-policy option or settings.RUNSCRIPT_CHDIR_POLICY.

It can be one of the following:

- **none** - start all scripts in current directory.
- **each** - start all scripts in their directories.
- **root** - start all scripts in BASE_DIR directory.

Assume this simplified directory structure:

```
django_project_dir/
    -first_app/
        -scripts/
            -first_script.py
    -second_app/
        -scripts/
            -second_script.py
    -manage.py
    -other_folder/
        -some_file.py
```

Assume you are in other_folder directory. You can set execution directory for both scripts using this command:

```
$ python ../manage.py runscript first_script second_script --chdir /django_project_dir/second_app
# scripts will be executed from second_app directory
```
You can run both scripts with **NONE** policy using this command:

```
$ python ../manage.py runscript first_script second_script --dir-policy none
  # scripts will be executed from other_folder directory
```

You can run both scripts with **EACH** policy using this command:

```
$ python ../manage.py runscript first_script second_script --dir-policy each
  # first_script will be executed from first_app and second_script will be executed
  # from second_app
```

You can run both scripts with **ROOT** policy using this command:

```
$ python ../manage.py runscript first_script second_script --dir-policy root
  # scripts will be executed from django_project_dir directory
```

4.11.6 Debugging

If an exception occurs you will not get a traceback by default. To get a traceback specify `--traceback`. For example:

```
$ python manage.py runscript delete_all_questions --traceback
```

4.12 export_emails

synopsis export the email addresses for your users in one of many formats

Most Django sites include a registered user base. There are times when you would like to import these e-mail addresses into other systems (generic mail program, Gmail, Google Docs invites, give edit permissions, LinkedIn Group pre-approved listing, etc.). The `export_emails` command extension gives you this ability. Exported users can be filtered by Group name association.

4.12.1 Example Usage

- # Export all the addresses in the "'First Last' <my@addr.com>;" format.
  ```
  $ ./manage.py export_emails > addresses.txt
  ```

- # Export users from the group 'Attendees' in the linked in pre-approve Group csv
  ```
  $ ./manage.py export_emails -g Attendees -f linkedin pycon08.csv
  ```

- # Create a csv file importable by Gmail or Google Docs
  ```
  $ ./manage.py export_emails --format=google google.csv
  ```

4.12.2 Supported Formats

address

This is the default basic text format. Each entry is on its own line in the format:
This can be used with all known mail programs (that I know about anyway).

google

A CSV (comma separated value) format which Google applications can import. This can be used to import directly into Gmail, a Gmail mailing group, Google Docs invite (to read), Google Docs grant edit permissions, Google Calendar invites, etc.

Only two columns are supplied. One for the person’s name and one for the email address. This is also nice for importing into spreadsheets.

outlook

A CSV (comma separated value) format which Outlook can parse and import. Supplies all the columns that Outlook ‘requires’, but only the name and email address are supplied.

linkedin

A CSV (comma separated value) format which can be imported by LinkedIn Groups to pre-approve a list of people for joining the group.

This supplies 3 columns: first name, last name, and email address. This is the best generic csv file for importing into spreadsheets as well.

vcard

A vCard format which Apple Address Book can parse and import.

4.13 Field Extensions

synopsis Current Field Extensions

4.13.1 Current Database Model Field Extensions

- **AutoSlugField** - AutoSlugfield will automatically create a unique slug incrementing an appended number on the slug until it is unique. Inspired by SmileyChris’ Unique Slugify snippet.

 AutoSlugField takes a `populate_from` argument that specifies which field, list of fields, or model method the slug will be populated from, for instance:

  ```python
  slug = AutoSlugField(populate_from=['title', 'description', 'get_author_name'])
  ```

 `populate_from` can traverse a ForeignKey relationship by using Django ORM syntax:

  ```python
  slug = AutoSlugField(populate_from=['related_model__title', 'related_model__get_readable_name'])
  ```
AutoSlugField uses Django’s `slugify` function by default to “slugify” `populate_from` field.

To provide custom “slugify” function you could either provide the function as an argument to `AutoSlugField` or define your `slugify_function` method within a model.

1. `slugify_function` as an argument to `AutoSlugField`

```python
# models.py
from django.db import models
from django_extensions.db.fields import AutoSlugField

def my_slugify_function(content):
    return content.replace('_', '-').lower()

class MyModel(models.Model):
    title = models.CharField(max_length=42)
    slug = AutoSlugField(populate_from='title', slugify_function=my_slugify_function)
```

2. `slugify_function` as a method within a model class.

```python
# models.py
from django.db import models
from django_extensions.db.fields import AutoSlugField

class MyModel(models.Model):
    title = models.CharField(max_length=42)
    slug = AutoSlugField(populate_from='title')
    def slugify_function(self, content):
        return content.replace('_', '-').lower()
```

Important. If you both provide `slugify_function` in a model class and pass `slugify_function` to `AutoSlugField` field, then model’s `slugify_function` method will take precedence.

- **RandomCharField** - `AutoRandomCharField` will automatically create a unique random character field with the specified length. By default upper/lower case and digits are included as possible characters. Given a length of 8 that yields 3.4 million possible combinations. A 12 character field would yield about 2 billion. Below are some examples:

```python
>>> RandomCharField(length=8, unique=True)
BVm9GEaE

>>> RandomCharField(length=4, include_alpha=False)
7097

>>> RandomCharField(length=12, include_punctuation=True)
k{ZS.TR,0LHO
```
• `CreationDateTimeField` - DateTimeField that will automatically set its date when the object is first saved to the database. Works in the same way as the auto_now_add keyword.

• `ModificationDateTimeField` - DateTimeField that will automatically set its date when an object is saved to the database. Works in the same way as the auto_now keyword. It is possible to preserve the current timestamp by setting update_modified to False:

```python
>>> example = MyTimeStampedModel.objects.get(pk=1)
>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)
>>> example.save(update_modified=False)
>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)
>>> example.save()
>>> print example.modified
datetime.datetime(2016, 4, 8, 14, 25, 43, 123456, tzinfo=<UTC>)
```

It is also possible to set the attribute directly on the model, for example when you don’t use the TimeStampedModel provided in this package, or when you are in a migration:

```python
>>> example = MyCustomModel.objects.get(pk=1)
>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)
>>> example.update_modified=False
>>> example.save()
>>> print example.modified
datetime.datetime(2016, 3, 18, 10, 3, 39, 740349, tzinfo=<UTC>)
```

• `EncryptedCharField` - CharField which transparently encrypts its value as it goes in and out of the database. Encryption is handled by Keyczar. To use this field you must have Keyczar installed, have generated a primary encryption key, and have `settings.ENCRYPTED_FIELD_KEYS_DIR` set to the full path of your keys directory.

• `EncryptedTextField` - CharField which transparently encrypts its value as it goes in and out of the database. Encryption is handled by Keyczar. To use this field you must have Keyczar installed, have generated a primary encryption key, and have `settings.ENCRYPTED_FIELD_KEYS_DIR` set to the full path of your keys directory.

• `ShortUUIDField` - CharField which transparently generates a UUID and pass it to base57. It result in shorter 22 characters values useful e.g. for concise, unambiguous URLs. It’s possible to get shorter values with length parameter: they are not Universal Unique any more but probability of collision is still low

• `JSONField` - a generic TextField that neatly serializes/unserializes JSON objects seamlessly. Django 1.9 introduces a native JSONField for PostgreSQL, which is preferred for PostgreSQL users on Django 1.9 and above.
4.14 generate_password

synopsis Generates a new password that can be used for a user password.

4.14.1 Introduction

This is a handy command to generate a new password which can be used for a user password. This uses Django core’s default password generator `django.contrib.auth.base_user.BaseUserManager.make_random_password()` to generate a password.

You can specify the length of password with the option `--length`. If you don’t specify `--length`, the default value of `make_random_password()` is applied.

4.14.2 Usage

Run

```bash
$ python manage.py generate_password [--length=<length>]
```

4.15 Graph models

synopsis Renders a graphical overview of your project or specified apps.

Creates a GraphViz dot file for the specified app names based on their models.py. You can pass multiple app names and they will all be combined into a single model. Output is usually directed to a dot file.

Several options are available: grouping models, including inheritance, excluding models and columns, and changing the layout when rendering to an output image.

With the latest revisions it’s also possible to specify an output file if pygraphviz is installed and render directly to an image or other supported file-type.

4.15.1 Selecting a library

You need to select the library to generate the image. You can do so by passing the `--pygraphviz` or `--pydot` parameter, depending on which library you want to use.

When neither of the command line parameters are given the default is to try and load pygraphviz or pydot (in that order) to generate the image.

To install pygraphviz you usually need to run this command:

```bash
$ pip install pygraphviz
```

It is possible you can’t install it because it needs some C extensions to build. In that case you can try other methods to install or you can use PyDot.

To install pydot you need to run this command:

```bash
$ pip install pyparsing pydot
```

Installation should be fast and easy. Remember to install this exact version of pyparsing, otherwise it’s possible you get this error:
Couldn’t import dot_parser, loading of dot files will not be possible.

4.15.2 Default Settings

The option `GRAPH_MODELS = {}` can be used in the settings file to specify default options:

```python
GRAPH_MODELS = {
    'all_applications': True,
    'group_models': True,
}
```

It uses the same names as on the command line only with the leading two dashes removed and the other dashes replaced by underscores.

4.15.3 Templates

Django templates are used to generate the dot code. This in turn can be drawn into a image by libraries like `pygraphviz` or `pydot`. You can extend or override the templates if needed.

Templates used:

- `django_extensions/graph_models/digraph.dot`
- `django_extensions/graph_models/label.dot`
- `django_extensions/graph_models/relation.dot`

Documentation on how to create dot files can be found here: http://www.graphviz.org/documentation/

Warning: Modifying Django’s default templates behaviour might break `graph_models`

Please be aware that if you use any `template_loaders` or extensions that change the way templates are rendered that this can cause `graph_models` to fail.

An example of this is the Django app `django-template-minifier` this automatically removed the newlines before/after template tags even for non-HTML templates which leads to a malformed file.

4.15.4 Example Usage

With `django-extensions` installed you can create a dot-file or an image by using the `graph_models` command:

```
# Create a dot file
$ ./manage.py graph_models -a > my_project.dot

# Create a PNG image file called my_project_visualized.png with application grouping
$ ./manage.py graph_models --pygraphviz -a -g -o my_project_visualized.png

# Same example but with explicit selection of pygraphviz or pydot
$ ./manage.py graph_models --pygraphviz -a -g -o my_project_visualized.png
$ ./manage.py graph_models --pydot -a -g -o my_project_visualized.png

# Create a dot file for only the 'foo' and 'bar' applications of your project
$ ./manage.py graph_models foo bar > my_project.dot
```
Create a graph for only certain models
$./manage.py graph_models -a -I Foo,Bar -o my_project_subsystem.png

Create a graph excluding certain models
$./manage.py graph_models -a -X Foo,Bar -o my_project_sans_foo_bar.png

Create a graph without showing its edges' labels
$./manage.py graph_models -a --hide-edge-labels -o my_project_sans_foo_bar.png

Create a graph with 'normal' arrow shape for relations
$./manage.py graph_models -a --arrow-shape normal -o my_project_sans_foo_bar.png

4.16 Jobs scheduling

Synopsis Documentation on creating/using jobs in Django-extensions

Creating jobs works much like management commands work in Django.

4.16.1 Setup

Run

$ python manage.py create_jobs <django_application>

to make a jobs directory inside of an application. The jobs directory will have the following tree:

```
jobs
  |-- daily
  |    |-- __init__.py
  |-- hourly
  |    |-- __init__.py
  |-- monthly
  |    |-- __init__.py
  |-- weekly
  |    |-- __init__.py
  |-- yearly
  |    |-- __init__.py
  |    |-- __init__.py
  |    |-- sample.py
```

4.16.2 Create a job

A job is a Python script with a mandatory BaseJob class which extends from MinutelyJob, QuarterHourlyJob, HourlyJob, DailyJob, WeeklyJob, MonthlyJob or Yearly. It has one method that must be implemented called execute, which is called when the job is run. The directories hourly, daily, monthly, weekly, and yearly are used only for organisation purpose.

Note: If you want to use QuarterHourlyJob or Minutely job, create python package with name quarter_hourly or minutely respectively (similar to hourly or daily package).
To create your first job you can start copying `sample.py`. Remember to replace `BaseJob` with `MinutelyJob`, `QuarterlyHourlyJob`, `HourlyJob`, `DailyJob`, `WeeklyJob`, `MonthlyJob` or `Yearly`. Some simple examples are provided by the `django_extensions.jobs` package.

Note that each job should be in a new python script (within respective directory) and the class implementing the cron should be named `Job`. Also, `__init__.py` file is not used for identifying jobs.

4.16.3 Run a job

The following commands are related to jobs:

- `create_jobs`, create the directory structure for jobs
- `runjob`, run a single job
- `runjobs`, run all hourly/daily/weekly/monthly jobs

Use “runjob(s) -l” to list all jobs recognized.

Jobs do not run automatically! You must either run a job manually specifying the exact time on which the command is to be run, or use crontab:

```bash
@hourly /path/to/my/project/manage.py runjobs hourly
```

```bash
@daily /path/to/my/project/manage.py runjobs daily
```

```bash
@weekly /path/to/my/project/manage.py runjobs weekly
```

```bash
@monthly /path/to/my/project/manage.py runjobs monthly
```

4.17 merge_model_instances

synopsis Merges duplicate model instances by reassigning related model references to a chosen primary model instance.

Note: This management command is in beta. Use with care, and make sure to test thoroughly before implementing.

Allows the user to choose a model to de-duplicate and a field on which to de-duplicate model instances. Provides an interactive session with the user to select the model to de-duplicate and the field on which to de-duplicate model instances. After merging model instances to one instance, deletes the merged model instances. Use with care!

4.17.1 Example Usage

With `django-extensions` installed you merge model instances using the `merge_model_instances` command:

```bash
# Delete leftover migrations from the first squashed migration found in myapp
$ ./manage.py merge_model_instances
```

4.18 Model extensions

synopsis Current Model Extensions
4.18.1 Introduction

Django Extensions provides you a set of Abstract Base Classes for models that implements commonly used patterns like holding the model’s creation and last modification dates.

4.18.2 Current Database Model Extensions

- **ActivatorModel** - Abstract Base Class that provides a `status`, `activate_date`, and `deactivate_date` fields.

 The `status` field is an `IntegerField` whose value is chosen from a tuple of choices - active and inactive - defaulting to active. This model also exposes a custom manager, allowing the user to easily query for active or inactive objects.

 E.g.: `Model.objects.active()` returns all instances of `Model` that have an active status.

- **TitleDescriptionModel** - This Abstract Base Class model provides `title` and `description` fields.

 The `title` field is `CharField` with a maximum length of 255 characters, non-nullable. `description`. On the other hand, `description` is a nullable `TextField`.

- **TimeStampedModel** - An Abstract Base Class model that provides self-managed `created` and `modified` fields.

 Both of the fields are customly defined in Django Extensions as `CreationDateTimeField` and `ModificationDateTimeField`. Those fields are subclasses of Django’s `DateTimeField` and will store the value of `django.utils.timezone.now()` on the model’s creation and modification, respectively.

- **TitleSlugDescriptionModel** - An Abstract Base Class model that, like the `TitleDescriptionModel`, provides `title` and `description` fields but also provides a self-managed `slug` field which populates from the `title`.

 That field’s class is a custom defined `AutoSlugField`, based on Django’s `SlugField`. By default, it uses - as a separator, is unique and does not accept blank values. It is possible to customize `slugify_function` by defining your custom function within a model:

  ```python
  # models.py
  from django.db import models
  from django_extensions.db.models import TitleSlugDescriptionModel

  class MyModel(TitleSlugDescriptionModel, models.Model):
      def slugify_function(self, content):
          ""
          This function will be used to slugify
          the title (default 'populate_from' field)
          ""
          return content.replace('_', '-').lower()
  
  See AutoSlugField docs for more details.
  
4.19 Namespace proposal

  synopsis  Namespace Proposal
4.19.1 Introduction

Please change / write your proposal for splitting django_extensions into namespaces here.

4.19.2 Proposal of a Namespace

Rough proposal for splitting into functional parts:

- `django_extensions.commands` (20% that everybody uses / production)
- `django_extensions.commands.development` (everything development)
- `django_extensions.commands.extra` (not fitting about category’s?)
- `django_extensions.db`
- `django_extensions.templates`
- `django_extensions.jobs`

The db part should be okay where it is right now. It’s only used when somebody explicitly imports:

```
from django_extensions.db.models import something
```

4.20 print_settings

**synopsis** Django management command similar to `diffsettings` but shows *selected* active Django settings or *all* if no args passed.

4.20.1 Introduction

Django comes with a `diffsettings` command that shows how your project’s settings differ from the Django defaults. Sometimes it is useful to just see the settings that are in effect for your project. This is particularly true if you have a more complex system for settings than just a single `settings.py` file. For example, you might have settings files that import other settings file, such as dev, test, and production settings files that source a base settings file.

This command also supports dumping the data in a few different formats.

4.20.2 More Info

The simplest way to run it is with no arguments:

```
$ python manage.py print_settings
```

Some variations:

```
$ python manage.py print_settings --format=json
$ python manage.py print_settings --format=yaml # Requires PyYAML
$ python manage.py print_settings --format=pprint
$ python manage.py print_settings --format=text
$ python manage.py print_settings --format=value
```

Show just selected settings:
4.21 RunProfileServer

We recommend that before you start profiling any language or framework you learn enough about it so that you feel comfortable with digging into its internals.

Without sufficient knowledge it will not only be (very) hard but you’re likely to make wrong assumptions (and fixes). As a rule of thumb, clean, well written code will help you a lot more than overzealous micro-optimizations will.

This document is work in progress. If you feel you can help with better/clearer or additional information about profiling Django please leave a comment.

4.21.1 Introduction

runprofileserver starts Django’s runserver command with hotshot/profiling tools enabled. It will save .prof files containing the profiling information into the --prof-path directory. Note that for each request made one profile data file is saved.

By default the profile-data-files are saved in /tmp use the --prof-path option to specify your own target directory. Saving the data in a meaningful directory structure helps to keep your profile data organized and keeps /tmp uncluttered. (Yes this probably malfunctions systems such as Windows where /tmp does not exist)

To define profile filenames use --prof-file option. Default format is “{path}.{duration:06d}ms.{time}” (Python Format Specification is used).

Examples:

- “{time}-{path}-{duration}ms” - to order profile-data-files by request time
• “{duration:06d}ms.{path}.{time}” - to order by request duration

4.21.2 Profiler choice

`runprofileserver` supports two profilers: `hotshot` and `cProfile`. Both come with the standard Python library but `cProfile` is more recent and may not be available on all systems. For this reason, `hotshot` is the default profiler.

However, `hotshot` is not maintained anymore and using `cProfile` is usually the recommended way. If it is available on your system, you can use it with the option `--use-cprofile`.

Example:

```
$ mkdir /tmp/my-profile-data
$./manage.py runprofileserver --use-cprofile --prof-path=/tmp/my-profile-data
```

If you used the default profiler but are not able to open the profiling results with the `pstats` module or with your profiling GUI of choice because of an error “`ValueError: bad marshal data (unknown type code)`”, try using `cProfile` instead.

4.21.3 KCacheGrind

Recent versions of `runprofileserver` have an option to save the profile data into a KCacheGrind compatible format. So you can use the excellent KCacheGrind tool for analyzing the profile data.

Example:

```
$ mkdir /tmp/my-profile-data
$./manage.py runprofileserver --kcachegrind --prof-path=/tmp/my-profile-data
Validating models...
0 errors found
Django version X.Y.Z, using settings 'complete_project.settings'
Development server is running at http://127.0.0.1:8000/
Quit the server with CONTROL-C.
[13/Nov/2008 06:29:38] "GET / HTTP/1.1" 200 41107
[13/Nov/2008 06:29:39] "GET /site_media/logo.png HTTP/1.1" 200 3474
[13/Nov/2008 06:29:39] "GET /site_media/jquery.js HTTP/1.1" 200 31033
[13/Nov/2008 06:29:39] "GET /site_media/heading.png HTTP/1.1" 200 247
[13/Nov/2008 06:29:39] "GET /site_media/base.js HTTP/1.1" 200 751
<ctrl-c>
$ kcachegrind /tmp/my-profile-data/root.12574391.592.prof
```

Here is a screenshot of how the above commands might look in KCacheGrind:

http://trbs.net/media/misc/django-runprofileserver-kcachegrind-full.jpg

4.21.4 Links

• http://code.djangoproject.com/wiki/ProfilingDjango
• http://www.rkblog.rk.edu.pl/w/p/django-profiling-hotshot-and-kcachegrind/
• http://code.djangoproject.com/browser/django/trunk/django/bin/profiling/gather_profile_stats.py
• http://www.oluyede.org/blog/2007/03/07/profiling-django/
4.22 RunServerPlus

**synopsis** RunServerPlus-typical runserver with Werkzeug debugger baked in

### 4.22.1 Introduction

This item requires that you have the Werkzeug WSGI utilities installed. Included with Werkzeug is a kick ass debugger that renders nice debugging tracebacks and adds an AJAX based debugger (which allows code execution in the context of the traceback’s frames). Additionally it provides a nice access view to the source code.

### 4.22.2 Getting Started

To get started we just use the `runserver_plus` command instead of the normal `runserver` command:

```
$ python manage.py runserver_plus

 * Running on http://127.0.0.1:8000/
 * Restarting with reloader...

Validating models...
0 errors found

Django version X.Y.Z, using settings 'screencasts.settings'
Development server is running at http://127.0.0.1:8000/
Using the Werkzeug debugger (http://werkzeug.pocoo.org/)
Quit the server with CONTROL-C.
```

Note: all normal runserver options apply. In other words, if you need to change the port number or the host information, you can do so like you would normally.

### 4.22.3 Usage

Instead of the default Django traceback page, the Werkzeug traceback page will be shown when an exception occurs.
Along with the typical traceback information we have a couple of options. These options appear when hovering over a particular traceback line. Notice that two buttons appear to the right:

The options are:

**View Source**

This displays the source underneath the traceback:

Being able to view the source file is handy because it provides more context information around the error. The actual traceback areas are highlighted so they are easy to spot.

One awkward aspect of the UI is that the page is not scrolled to the bottom. At first I thought nothing was happening because of this.
Interactive Debugging Console

Clicking on this button opens up a new pane under the traceback line you’re on. This is the money shot:

An ajax based console appears in the pane and you can start debugging. Notice in the screenshot above I did a `print environ` to see what was in the environment parameter coming into the function.

**WARNING:** This should never be used in any kind of production environment. Not even for a quick problem check. I cannot emphasize this enough. The interactive debugger allows you to evaluate python code right against the server. You’ve been warned.

**SSL**

runserver_plus also supports SSL, so that you can easily debug bugs that pop up when https is used. To use SSL simply provide a file name for certificates; a key and certificate file will be automatically generated:

```
$ python manage.py runserver_plus --cert-file cert.crt
Validating models...
0 errors found

Django version X.Y.Z, using settings 'mysite.settings'
Development server is running at http://127.0.0.1:8000/
Using the Werkzeug debugger (http://werkzeug.pocoo.org/)
Quit the server with CONTROL-C.
 * Running on https://127.0.0.1:8000/
 * Restarting with reloader
Validating models...
```
After running this command, your web application can be accessed through https://127.0.0.1:8000.

You will also find that two files are created in the current working directory: a key file and a certificate file. If you run the above command again, these certificate files will be reused so that you do not have to keep accepting the self-generated certificates from your browser every time. You can also provide a specific file for the certificate to be used if you already have one:

```bash
$ python manage.py runserver_plus --cert-file /tmp/cert.crt
```

Note that you need the OpenSSL library to use SSL, and Werkzeug 0.9 or later if you want to reuse existing certificates.

To install OpenSSL:

```bash
$ pip install pyOpenSSL
```

### Certificates paths

You can configure different paths to .crt and .key files. At least one of `--cert-file` or `--key-file` must be defined to use SSL.

You can set path to .crt file using `--cert-file` option or deprecated `--cert` option which is currently an alias for `--cert-file`. If this option is not set than runserver_plus assumes that, this file is in the same directory as file from `--key-file` option.

You can set path to .key file using `--key-file` option. If this option is not set than runserver_plus assumes that, this file is in the same directory as file from `--cert-file` option.

If you want to create new files, than you can pass file name without extension. Proper files with this name and .crt and .key extensions will be created.

### Configuration

The `RUNSERVERPLUS_SERVER_ADDRESS_PORT` setting can be configured to specify which address and port the development server should bind to.

If you find yourself frequently starting the server with:

```bash
$ python manage.py runserver_plus 0.0.0.0:8000
```

You can use settings to automatically default your development to an address/port:

```bash
RUNSERVERPLUS_SERVER_ADDRESS_PORT = '0.0.0.0:8000'
```

To ensure Werkzeug can log to the console, you may need to add the following to your settings:

```python
LOGGING = {
 ...
 'handlers': {
```

(continues on next page)
IO Calls and CPU Usage

As noted in gh625 runserver_plus can be seen to use a lot of CPU and generate many I/O when idle.

This is due to the way Werkzeug has implemented the auto reload capability. It supports two ways of doing auto reloading either via stat polling or file system events.

The stat polling approach is pretty brute force and continuously issues stat system calls which causes the CPU and IO load.

If possible try to install the Watchdog package, this should automatically cause Werkzeug to use file system events whenever possible.

You can read more about this in Werkzeug documentation.

You can also increase the poll interval when using stat polling from the default of 1 second. This will decrease the CPU load at the expense of file edits taking longer to pick up.

This can be set two ways, in the django settings file:

```
RUNSERVERPLUS_POLLER_RELOADER_INTERVAL = 5
```

or as a command line argument:

```
$ python manage.py runserver_plus --reloader-interval 5
```

4.22.4 Debugger PIN

The following text about the debugger PIN is taken verbatim from the Werkzeug documentation about its debugger PIN.

Starting with Werkzeug 0.11 the debugger is additionally protected by a PIN. This is a security helper to make it less likely for the debugger to be exploited in production as it has happened to people to keep the debugger active. The PIN based authentication is enabled by default.

When the debugger comes up, on first usage it will prompt for a PIN that is printed to the command line. The PIN is generated in a stable way that is specific to the project. In some situations it might be not possible to generate a stable PIN between restarts in which case an explicit PIN can be provided through the environment variable WERKZEUG_DEBUG_PIN. This can be set to a number and will become the PIN. This variable can also be set to the value off to disable the PIN check entirely.
The PIN can also be disabled by passing the argument `--nopin` when calling the `runserver_plus` command. If the PIN is entered too many times incorrectly the server needs to be restarted. **This feature is not supposed to entirely secure the debugger. It’s intended to make it harder for an attacker to exploit the debugger. Never enable the debugger in production.**

### 4.23 sync_s3

**synopsis** sync your MEDIA_ROOT and STATIC_ROOT folders to S3

Django command that scans all files in your settings.MEDIA_ROOT and settings.STATIC_ROOT folders, then uploads them to S3 with the same directory structure.

This command can optionally do the following but it is off by default:

- gzip compress any CSS and Javascript files it finds and adds the appropriate `Content-Encoding` header.
- set a far future `Expires` header for optimal caching.
- upload only media or static files.
- use any other provider compatible with Amazon S3.
- set other than ‘public-read’ ACL.

#### 4.23.1 Example Usage

```
Upload files to S3 into the bucket 'mybucket'
$./manage.py sync_s3 mybucket

Upload files to S3 into the bucket 'mybucket' and enable gzipping CSS/JS files and setting of a far future expires header
$./manage.py sync_s3 mybucket --gzip --expires

Upload only media files to S3 into the bucket 'mybucket'
$./manage.py sync_s3 mybucket --media-only # or --static-only

Upload only media files to a S3 compatible provider into the bucket 'mybucket' and set private file ACLs
$./manage.py sync_s3 mybucket --media-only --s3host=cs.example.com --acl=private
```

#### 4.23.2 Required libraries and settings

This management command requires the boto library and was tested with version 1.4c:

https://github.com/boto/boto

It also requires an account with Amazon Web Services (AWS) and the AWS S3 keys. Bucket name is required and cannot be empty. The keys and bucket name are added to your settings.py file, for example:

```
settings.py
AWS_ACCESS_KEY_ID = '
AWS_SECRET_ACCESS_KEY = '
AWS_BUCKET_NAME = 'bucket'
```
4.23.3 Optional settings

It is possible to customize sync_s3 directly from django settings file, for example:

```
settings.py
AWS_S3_HOST = 'cs.example.com'
AWS_DEFAULT_ACL = 'private'
SYNC_S3_PREFIX = 'some_prefix'
FILTER_LIST = 'dir1, dir2'
AWS_CLOUDFRONT_DISTRIBUTION = 'E27LVI50CSW06W'
SYNC_S3_RENAME_GZIP_EXT = '.gz'
```

4.24 syncdata

**synopsis**  Makes the current database have the same data as the fixture(s), no more, no less.

4.24.1 Introduction

Django command similar to ‘loaddata’ but also deletes. After ‘syncdata’ has run, the database will have the same data as the fixture - anything missing will of been added, anything different will of been updated, and anything extra will of been deleted.

4.24.2 Usage

**Tip:** Command will loop over fixtures inside installed apps and pathes defined in FIXTURE_DIRS.

Assuming that you’ve got sample.json under fixtures directory in one of your INSTALLED_APPS:

```
$ python manage.py syncdata sample.json
```

If you want to keep old records use --skip-remove option:

```
$ python manage syncdata sample.xml --skip-remove
```

You can provide full path to your fixtures file like:

```
$ python manage syncdata /var/fixtures/sample.json
```

4.25 sqldiff

**synopsis**  Prints the ALTER TABLE statements for the given appnames.

Django command that scans all models for the given appnames and compares their database schema with the real database tables.

It indicates how columns in the database are different from the SQL that would be generated by Django. This command is not a database migration tool, though it might certainly be of help during migrations. Its purpose is to show the current differences as a way to check or debug your models compared to the real database tables and columns.
4.25.1 Supported Databases

Currently the following databases are supported:

• PostgreSQL
• Sqlite3
• MySQL
• Oracle

Patches to support other databases are welcome! :-) 

4.25.2 Exit Codes

Exit status is 0 if inputs are the same, 1 if different, 2 if trouble.

4.25.3 Example Usage

```bash
View SQL differences for all installed applications
$./manage.py sqldiff -a

View SQL differences for all installed applications using text instead of SQL
$./manage.py sqldiff -a -t
```

4.26 sqlcreate

**synopsis** Helps you setup your database(s) more easily

4.26.1 Introduction

Stop creating databases by hand. Your settings.py file already contains the correct information, so DRY.

4.26.2 Usage

```bash
$ python manage.py sqlcreate [–router=<routername>] | <my_database_shell_command>
```

It will spit out SQL which you can review (if you want). Ultimately you want to pipe it into the database shell command of your choice.

If there were a good way to ensure that the user in the database settings had the proper permissions, we could submit the commands straight to the database. However, due to the nature of this portion of the project setup, that will never happen.

4.26.3 Example

**PostgreSQL**

```bash
$./manage.py sqlcreate [–router=<routername>] | psql -U <db_administrator> -W
```
MySQL

$ ./manage.py sqlcreate [-router=<routername>] | mysql -u <db_administrator> -p

4.26.4 Known Issues

• CREATE DATABASE is not SQL standard so might not work everywhere.
• When using fallback user is not created and password is not set. But it does try to do a GRANT to the database user.
• Missing options for tablespaces, etc.

4.27 sqldsn

    synopsis  Prints Data Source Name connection string on stdout

4.27.1 Supported Databases

Currently the following databases are supported:
• PostgreSQL (psycopg2 or postgis)
• Sqlite3
• MySQL

Patches to support other databases are welcome! :-)

4.27.2 Exit Codes

Exit status is 0

4.27.3 Example Usage

# Prints the DSN for the default database
$ ./manage.py sqldsn

# Prints the DSN for all databases
$ ./manage.py sqldsn --all

# Print the DSN for database named 'slave'
$ ./manage.py sqldsn --router=slave

# Print all DSN styles available for the default database
$ ./manage.py sqldsn --style=all

# Create .pgpass file for default database by using the quiet option
$ ./manage.py sqldsn -q --style=pgpass > .pgpass
4.28 validate_templates

**synopsis** Checks templates on syntax or compile errors.

### 4.28.1 Options

**verbosity**

A higher verbosity level will print out all the files that are processed instead of only the ones that contain errors.

**break**

Do not continue scanning other templates after the first failure.

**ignore_app**

Ignore this app (can be used multiple times).

**includes**

Use -i (can be used multiple times) to add directories to the TEMPLATE_DIRS.

**no_apps**

Do not automatically include app template directories.

### 4.28.2 Settings

**VALIDATE_TEMPLATES_IGNORE_APPS**

Ignore the following apps

**VALIDATE_TEMPLATES_IGNORES**

Ignore file names which matches these patterns. Matching is done via *fnmatch*.

**VALIDATE_TEMPLATES_EXTRA_TEMPLATE_DIRS**

You can use `VALIDATE_TEMPLATES_EXTRA_TEMPLATE_DIRS` to include a number of template dirs by default directly from the settings file. This can be useful for situations where TEMPLATE_DIRS is dynamically generated or switched in middleware, or when you have other template dirs for external applications like celery, and you want to check those as well.

### 4.28.3 Usage Example

```bash
./manage.py validate_templates
```
4.29 validators

**synopsis**  Validator extensions

### 4.29.1 Usage

Example:

```python
from django_extensions.validators import HexValidator

class UserKeys(models.Model):
 user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE)

 public_key = models.CharField(max_length=64, validators=[HexValidator(length=64)])
 private_key = models.CharField(max_length=128, validators=[HexValidator(length=128)])
```

### 4.29.2 Current Database Model Field Extensions

**NoControlCharactersValidator**

Validates that Control Characters like new lines or tabs are not allowed. Can optionally specify *whitelist* of control characters to allow.

**NoWhitespaceValidator**

Validates that leading and trailing whitespace is not allowed.

**HexValidator**

Validates that the string is a valid hex string. Can optionally also specify *length*, *min_length* and *max_length* parameters.
CHAPTER 5

Indices and tables

• search