CONTENTS

1 About dendograms 3

2 Documentation 5
 2.1 Installing astrodendro ... 5
 2.2 Core algorithm .. 5
 2.3 Computing and exploring dendrograms 19
 2.4 Plotting Dendrograms .. 22
 2.5 Computing Dendrogram Statistics 28
 2.6 Advanced topics .. 32
 2.7 Migration guide for previous users of astrodendro 33

3 Reporting issues 35

4 Developers 37

5 Acknowledgments 39

6 Public API 41
 6.1 astrodendro.dendrogram.Dendrogram 41
 6.2 astrodendro.structure.Structure 43
 6.3 astrodendro.plot.DendrogramPlotter 46
 6.4 astrodendro.analysis ... 47
The `astrodendro` package provides an easy way to compute dendrograms of observed or simulated Astronomical data in Python. This package is still under development, although a first release will be available in the near future. You can already try out the existing package, but we recommend that you get in contact with the developers to be kept up-to-date with changes and bug fixes.
ABOUT DENDROGRAMS

The easiest way to think of a dendrogram is to think of a tree that represents the hierarchy of the structures in your data. If you consider a two-dimensional map of a hierarchical structure that looks like:

the equivalent dendrogram/tree representation would look like:
A dendrogram is composed of two types of structures: *branches*, which are structures which split into multiple sub-structures, and *leaves*, which are structures that have no sub-structure. Branches can split up into branches and leaves, which allows hierarchical structures to be adequately represented. The term *trunk* is used to refer to a structure that has no parent structure.

Mapping these terms back onto the structure gives the following:

For an example of use of dendrograms on real data, see Goodman, A. et al (2009).
2.1 Installing astrodendro

2.1.1 Requirements

This package has the following dependencies:

- Python 2.6 or later (Python 3.x is supported)
- Numpy 1.4.1 or later
- Astropy 0.2.0 or later, optional (needed for reading/writing FITS files)
- h5py 0.2.0 or later, optional (needed for reading/writing HDF5 files)

2.1.2 Installation

At this time, there are no stable releases of the core dendrogram code, so you will need to install the package from the git repository:

```
git clone https://github.com/dendrograms/dendro-core.git
cd dendro-core
python setup.py install
```

You may need to add the `--user` option to the last line if you do not have root access.

2.2 Core algorithm

This page contains an explanation of the algorithm behind the Python dendrogram code. This is demonstrated with a step by step example of how the algorithm constructs the tree structure of a very simple one-dimensional dataset. Even though this dataset is very simple, what is described applies to datasets with any number of dimensions.

2.2.1 Basic example

The following diagram shows a one-dimensional dataset (with flux versus position) in the solid black line, with the corresponding dendrogram for that dataset overplotted in green:
In the rest of this document, we will refer to the individual points in this dataset as *pixels*.

The way the algorithm works is to construct the tree starting from the brightest pixels in the dataset, and progressively adding fainter and fainter pixels. We will illustrate this by showing the current value being considered, with the following blue dashed line:
Let’s now start moving this line down, starting from the peak pixel in the dataset. We create our first structure from this pixel. We then move to the pixel with the next largest value, and each time, we decide whether to join the pixel to an existing structure, or create a new structure. We only start a new structure if the value of the pixel is greater than its immediate neighbors, and therefore is a local maximum. The first structure being constructed is shown below:
We have now found a local maximum, so rather than add this pixel to the first structure, we create a new structure. As we move further down, both structures keep growing, until we reach a pixel that is not a local maximum, and is adjacent to both existing structures:
At this point, we merge the structures into a branch, which is shown by a green horizontal line. As we move down further, the branch continues to grow, and we very quickly find two more local maxima which cause new structures to be created:
These structures eventually merge, and we end up with a single tree:
2.2.2 Accounting for noise

Setting a minimum value (min_value)

Most real-life datasets are likely to contain some level of noise, and below a certain value, there is no point in constructing a tree since it will not be measuring anything physical. By default, the minimum value is set to minus infinity, which means all pixels are added to the tree. However, you will very likely want to change this so that only significant features above the noise are included.

Let’s go back to the original data. We have left the outline of the complete tree for reference. We now set a minimum value, which we show below with the purple line. This is controlled by the min_value option in compute().
The effect on the tree is simply to get rid of (or prune) any structure peaking below this minimum. In this case, the peak on the right is no longer part of the tree since it is below the minimum specified value.

Setting a minimum significance for structures (min_delta)

If our data are noisy, we also want to avoid including local maxima that - while above the minimum absolute value specified above - are simply due to the noise, so we can also define a minimum height required for a structure to be retained. This is the `min_delta` parameter in `compute()`. We show the value corresponding to the current value being considered plus this minimum height:
In this case, \texttt{min_delta} is set to 0.1. As we now move down in flux as before, the structure first appears red. This indicates that the structure is not yet part of the tree:
Once the height of the structure exceeds the minimum specified, the structure can now be considered part of the tree:
In this case, all structures that are above the minimum value are also all large enough to be significant, so the tree is the same as before:
We can now repeat this experiment, but this time, with a larger minimum height for structures to be retained (min_delta=0.25). Once we reach the point where the second peak would have been merged, we can see that it is not high enough above the merging point to be considered an independent structure:
and the pixels are then simply added to the first structure, rather than creating a branch:
We can now see that the final tree looks a little different to the original one, because the second largest peak was deemed insignificant:
2.2.3 Additional options

In addition to the minimum height of a structure, it is also possible to specify the minimum number of pixels that a structure should contain in order to remain an independent structure \((\text{min_npix})\), and in the future, it will be possible to specify arbitrary criteria, such as the proximity to a given point or set of coordinates.

2.3 Computing and exploring dendrograms

For a description of the actual algorithm used to compute dendrograms, see Core algorithm.

2.3.1 Computing a Dendrogram

Dendrograms can be computed from an n-dimensional array using:

```python
>>> from astrodendro import Dendrogram
>>> d = Dendrogram.compute(array)
```

where `array` is a Numpy array and `d` is then an instance of the `Dendrogram` class, which can be used to access the computed dendrogram (see Exploring the Dendrogram below). Where the `array` comes from is not important - for
example it can be read in from a FITS file, from an HDF5 file, or it can be generated in memory. If you are interested in making a dendrogram from data in a FITS file, you can do:

```python
>>> from astropy.io import fits
>>> array = fits.getdata('observations.fits')
>>> from astrodendro import Dendrogram
>>> d = Dendrogram.compute(array)
```

The computation may take anywhere between less than a second to several minutes depending on the size and complexity of the data. By default, the above command will compute a dendrogram where there are as many levels in the dendrograms as pixels, which is likely not what you are interested in. There are several options to control the computation of the dendrogram and can be passed to the `compute()` method:

- `min_value`: the minimum value to consider in the dataset - any value lower than this will not be considered in the dendrogram. If you are working with observations, it is likely that you will want to set this to the detection level, for example 3- or 5-sigma, so that only significant values are included in the dendrogram. By default, all values are used.

- `min_delta`: how significant a leaf a leaf has to have in order to be considered an independent entity. The significance is measure from the difference between its peak flux and the value at which it is being merged into the tree at. If you are working with observational data, then you could set this to e.g. 1-sigma, which means that any leaf that is less than 1-sigma tall is combined with its neighboring leaf or branch and is no longer considered a separate entity.

- `min_npix`: the minimum number of pixels/values needed for a leaf to be considered an independent entity. When the dendrogram is being computed, and when a leaf is about to be joined onto a branch or another leaf, if the leaf has fewer than this number of pixels, then it is combined with the branch or leaf it is being merged with and is no longer considered a separate entity. By default, this parameter is set to zero, so there is no minimum number of pixels required for leaves to remain independent entities.

These options are illustrated graphically in `Core algorithm`.

As an example, we can use a publicly available extinction map of the Perseus star-formation region from the The COordinated Molecular Probe Line Extinction Thermal Emission (COMPLETE) Survey of Star Forming Regions (PerA_Extn2MASS_F_Gal.fits, originally obtained from http://hdl.handle.net/10904/10080). The units of the map are magnitudes of extinction, and we want to make a dendrogram of all structures above a minimum value of 2 magnitudes, and we only consider leaves with at least 10 pixels and which have a peak to base different larger than one magnitude of extinction:

```python
>>> from astrodendro import Dendrogram
>>> from astropy.io import fits
>>> image = fits.getdata('PerA_Extn2MASS_F_Gal.fits')
>>> d = Dendrogram.compute(image, min_value=2.0, min_delta=1., min_npix=10)
```

By default, the computation will be silent, but for large dendrograms, it can be useful to have an idea of how long the computation will take:

```python
>>> d = Dendrogram.compute(image, min_value=2.0, min_delta=1., min_npix=10, verbose=True)
Generating dendrogram using 6,386 of 67,921 pixels (9% of data)
[================================================================]===> 64%
```

2.3.2 Exploring the Dendrogram

Once the dendrogram has been computed, you will want to explore/visualize it. At this time, there are no visualization tools included by default, but you can access the full tree from the computed dendrogram. Assuming that you have computed a dendrogram with:
>>> d = Dendrogram.compute(array, ...)

you can now access the full tree from the `d` variable.

The first place to start is the `trunk` of the tree (the `trunk` attribute), which is a list of all the structures at the lowest level. Unless you left `min_value` to the default setting which means that all values in the dataset are used, it’s possible that not all structures are connected. So the `trunk` is a collection of items at the lowest level, each of which could be a leaf or a branch (itself having leaves and branches). In the case of the Perseus extinction map, we get:

```python
>>> d.trunk
[<Structure type=leaf idx=101>,
 <Structure type=branch idx=2152>,
 <Structure type=leaf idx=733>,
 <Structure type=branch idx=303>]
```

In the above case, the trunk contains two leaves and two branches. Since `trunk` is just a list, you can access items in it with e.g.:

```python
>>> d.trunk[1]
<Structure type=branch idx=2152>
```

Branches have an `children` attribute which returns a list of all sub-structures, which can include branches and leaves. Thus, we can return the sub-structures of the above branch with:

```python
>>> d.trunk[1].children
[<Structure type=branch idx=1680>,
 <Structure type=branch idx=5771>]
```

which shows that the branch is composed of two more branches. We can therefore access the sub-structures of these branch with e.g.:

```python
>>> d.trunk[1].children[0].children
[<Structure type=leaf idx=1748>,
 <Structure type=leaf idx=1842>]
```

which shows this branch splitting into two leaves.

We can access the properties of leaves as follows:

```python
>>> leaf = d.trunk[1].children[0].children[0]
>>> leaf.indices
(array([143, 142, 142, 142, 139, 141, 141, 141, 143, 140, 140]),
>>> leaf.values
array([ 2.7043395 , 2.57071948, 3.4551146 , 3.29953575, 2.53844047,
 2.59633183, 3.11309052, 2.70936489, 2.81024122, 2.76864815,
 2.52840114], dtype=float32)
```

A full list of attributes and methods for leaves and branches (i.e. structures) is available from the `Structure` page, while a list of attributes and methods for the dendrogram itself is available from the `Dendrogram` page.

2.3.3 Saving the dendrogram

A `Dendrogram` object can be exported to an HDF5 file (requires h5py) or FITS file (requires astropy). To export the dendrogram to a file, use:

```python
>>> d.save_to('my_dendrogram.hdf5')
```

or:
d.save_to('my_dendrogram.fits')

and to load an existing dendrogram:

>>> d = Dendrogram.load_from('my_other_dendrogram.hdf5')

2.4 Plotting Dendrograms

Once you have computed a dendrogram, you will likely want to plot it as well as over-plot the structures on your original image.

2.4.1 Interactive Visualization

One you have computed your dendrogram, the easiest way to view it interactively is to use the `viewer()` method:

```python
D = Dendrogram.compute(...)  
d.viewer()
```

This will launch an interactive window showing the original data, and the dendrogram itself. Note that the viewer is only available for 2 or 3-d datasets. The main window will look like this:

![Interactive Viewer](image.png)

Within the viewer, you can:

Highlight structures: either click on structures in the dendrogram to highlight them, which will also show them in the image view on the left, or click on pixels in the image and have the corresponding structure be highlighted in the dendrogram plot. Clicking on a branch in the dendrogram plot or in the image will highlight that branch and all sub-structures.
Change the image stretch: use the v_{min} and v_{max} sliders above the image to change the lower and upper level of the image stretch.

Change slice in a 3-d cube: if you select a structure in the dendrogram for a 3-d cube, the cube will automatically change to the slice containing the peak pixel of the structure (including sub-structures). However, you can also change slice manually by using the slice slider.

View the selected structure ID: in a computed dendrogram, every structure has a unique integer ID (the `.idx` attribute) that can be used to recognize the identify the structure when computing catalogs or making plots manually (see below).

2.4.2 Making plots for publications

While the viewer is useful for exploring the dendrogram, it does not allow one to produce publication-quality plots. For this, you can use the non-interactive plotting interface. To do this, you can first use the `plotter()` method to provide a plotting tool:

```python
D = Dendrogram.compute(...)  
pl = D.plotter()
```

and then use this to make the plot you need. The following complete example shows how to make a plot of the dendrogram of the extinction map of the Perseus region (introduced in :doc:using) using the `plot_tree()`, highlighting two of the main branches:

```python
import matplotlib.pyplot as plt  
from astropy.io import fits  
from astrodendro import Dendrogram

image = fits.getdata('PerA_Ext2MASS_F_Gal.fits')  
D = Dendrogram.compute(image, min_value=2.0, min_delta=1., min_npix=10)  
pl = D.plotter()

fig = plt.figure()  
ax = fig.add_subplot(1, 1, 1)

# Plot the whole tree  
pl.plot_tree(ax, color='black')

# Highlight two branches  
pl.plot_tree(ax, structure=2077, color='red', lw=2, alpha=0.5)  
pl.plot_tree(ax, structure=3262, color='orange', lw=2, alpha=0.5)

# Add axis labels  
ax.set_xlabel("Structure")  
ax.set_ylabel("Flux")
```
You can find out the structure ID you need either from the interactive viewer presented above, or programmatically by accessing the \texttt{idx} attribute of a Structure.

A \texttt{plot_contour()} method is also provided to outline the contours of structures. Calling \texttt{plot_contour()} without any arguments results in a contour corresponding to the value of \texttt{min_value} used being shown.

```python
import matplotlib.pyplot as plt
from astropy.io import fits
from astrodendro import Dendrogram

image = fits.getdata('PerA_Extn2MASS_F_Gal.fits')
d = Dendrogram.compute(image, min_value=2.0, min_delta=1., min_npix=10)
p = d.plotter()

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.imshow(image, origin='lower', interpolation='nearest', cmap=plt.cm.Blues, vmax=4.0)

# Show contour for \texttt{"min_value"}
p.plot_contour(ax, color='black')

# Highlight two branches
p.plot_contour(ax, structure=2077, lw=3, colors='red')
p.plot_contour(ax, structure=3262, lw=3, colors='orange')
```
2.4.3 Plotting contours of structures in third-party packages

In some cases you may want to plot the contours in third party packages such as APLpy or DS9. For these cases, the best approach is to output FITS files with a mask of the structures to plot (one mask file per contour color you want to show).

Let’s first take the plot above and make a contour plot in APLpy outlining all the leaves. We can use the `get_mask()` method to retrieve the footprint of a given structure:

```python
import aplpy
import numpy as np
import matplotlib.pyplot as plt
from astropy.io import fits
from astrodendro import Dendrogram

hdu = fits.open('PerA_Extn2MASS_F_Gal.fits')[0]
d = Dendrogram.compute(hdu.data, min_value=2.0, min_delta=1., min_npix=10)

# Create empty mask. For each leaf we do an 'or' operation with the mask so that any pixel corresponding to a leaf is set to True.
mask = np.zeros(hdu.data.shape, dtype=bool)
for leaf in d.leaves:
    mask = mask | leaf.get_mask(mask.shape)
```

Now we create a FITS HDU object to contain this, with the correct header
mask_hdu = fits.PrimaryHDU(mask.astype(int), hdu.header)

We then use APLpy to make the final plot
fig = aplpy.FITSFigure(hdu, figsize=(8, 6))
fig.show_colorscale(cmap='Blues', vmax=4.0)
fig.show_contour(mask_hdu, colors='red', linewidths=0.5)
fig.tick_labels.set_xformat('dd')
fig.tick_labels.set_yformat('dd')

Now let's take the example from Making plots for publications and try and reproduce the same plot. As described there, one way to find interesting structures in the dendrogram is to use the Interactive Visualization tool. This tool will give the ID of a structure as an integer (which we call `idx`).

Because we are starting from this ID rather than a `Structure` object, we need to first get the structure, which can be done with:

structure = d[idx]

where `d` is a `Dendrogram` instance. We also want to create a different mask for each contour so as to have complete control over the colors:

```python
import aplpy
from astropy.io import fits
from astrodendro import Dendrogram

hdu = fits.open('PerA_Ext2MASS_F_Gal.fits')[0]
d = Dendrogram.compute(hdu.data, min_value=2.0, min_delta=1., min_npix=10)
```
Find the structures
structure_2077 = d[2077]
structure_3262 = d[3262]

Extract the masks
mask_2077 = structure_2077.get_mask(hdu.data.shape)
mask_3262 = structure_3262.get_mask(hdu.data.shape)

Create FITS HDU objects to contain the masks
mask_hdu_2077 = fits.PrimaryHDU(mask_2077.astype(int), hdu.header)
mask_hdu_3262 = fits.PrimaryHDU(mask_3262.astype(int), hdu.header)

Use APLpy to make the final plot
fig = aplpy.FITSFigure(hdu, figsize=(8, 6))
fig.show_colorscale(cmap='Blues', vmax=4.0)
fig.show_contour(hdu, levels=[2.0], colors='black', linewidths=0.5)
fig.show_contour(mask_hdu_2077, colors='red', linewidths=0.5)
fig.show_contour(mask_hdu_3262, colors='orange', linewidths=0.5)
fig.tick_labels.set_xformat('dd')
fig.tick_labels.set_yformat('dd')
2.5 Computing Dendrogram Statistics

For 2D position-position (PP) and 3D position-position-velocity (PPV) observational data, the `astrodendro.analysis` module can be used to compute basic properties for each Dendrogram structure. There are two ways to compute statistics - on a structure-by-structure basis, and as a catalog, both of which are described below.

2.5.1 Deriving statistics for individual structures

In order to derive statistics for a given structure, you will need to use the `PPStatistic` or the `PPVStatistic` classes from the `astrodendro.analysis` module, e.g.:

```python
>>> from astrodendro.analysis import PPStatistic
>>> stat = PPStatistic(structure)
```

where `structure` is a `Structure` instance from a dendrogram. The resulting object then has methods to compute various statistics. Using the example data from *Computing and exploring dendrograms*:

```python
>>> from astropy.io import fits
>>> image = fits.getdata('PerA_Extn2MASS_F_Gal.fits')
>>> d = Dendrogram.compute(image, min_value=2.0, min_delta=1., min_npix=10)
```

we can get statistics for the first structure in the trunk, which is a leaf:

```python
>>> from astrodendro.analysis import PPStatistic
>>> d.trunk[0]
<Structure type=leaf idx=101>
>>> stat = PPStatistic(d.trunk[0])
>>> stat.major_sigma
<Quantity 1.882980574564531 pix>
>>> stat.minor_sigma
<Quantity 1.4639300383020182 pix>
>>> stat.position_angle
<Quantity 134.61988014787443 deg>
```

Note that the objects returned are Astropy `Quantity` objects that are basically variables with units attached. For more information, see the Astropy Documentation.

2.5.2 Specifying meta-data when computing statistics

In some cases, meta-data can or should be specified. To demonstrate this, we will use a different data set which is a small section (`L1551_scuba_850mu.fits`) of a SCUBA 850 micron map from the SCUBA Legacy Catalog. This map has a pixel scale of 6 arcseconds per pixel, and a circular beam with a full-width at half maximum (FWHM) of 22.9 arcseconds. First, we compute the dendrogram as usual:

```python
>>> from astropy.io import fits
>>> from astrodendro import Dendrogram
>>> image = fits.getdata('L1551_scuba_850mu.fits')
>>> d = Dendrogram.compute(image, min_value=0.1, min_delta=0.02)
```

then we set up a Python dictionary containing the required meta-data:

```python
>>> from astropy import units as u
>>> metadata = {}
>>> metadata['data_unit'] = u.Jy / u.beam
>>> metadata['spatial_scale'] = 6 * u.arcsec
```
Note that the meta-data required depends on the units of the data and whether you are working in position-position or position-position-velocity (see Required metadata).

Finally, as before, we use the *PPStatistic* class to extract properties for the first structure:

```python
>>> from astrodendro.analysis import PPStatistic

stat = PPStatistic(d.trunk[0], metadata=metadata)
```

```
stat.major_sigma
<Quantity 20.34630778380526 arcsec>

stat.minor_sigma
<Quantity 8.15504176035544 arcsec>

stat.position_angle
<Quantity 85.14309012311242 deg>

stat.flux
<Quantity 0.24119688679751278 Jy>
```

Note that the major and minor sigma on the sky of the structures are now in arcseconds since the spatial scale was specified, and the flux (density) has been converted from Jy/beam to Jy.

2.5.3 Making a catalog

In order to produce a catalog of properties for all structures, it is also possible to make use of the *pp_catalog()* and *ppv_catalog()* functions. We demonstrate this using the same SCUBA data as used above:

```python
>>> from astropy.io import fits

image = fits.getdata('L1551_scuba_850mu.fits')

d = Dendrogram.compute(image, min_value=0.1, min_delta=0.02)

metadata = {}

metadata['data_unit'] = u.Jy / u.beam

metadata['spatial_scale'] = 6 * u.arcsec

metadata['beam_major'] = 22.9 * u.arcsec

metadata['beam_minor'] = 22.9 * u.arcsec

```

```
>>> cat = pp_catalog(d, metadata)
```

```
>>> cat.pprint(show_unit=True, max_lines=10)

<table>
<thead>
<tr>
<th>_idx</th>
<th>flux</th>
<th>major_sigma</th>
<th>minor_sigma</th>
<th>...</th>
<th>radius</th>
<th>x_cen</th>
<th>y_cen</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>0.241196886798</td>
<td>20.3463077838</td>
<td>8.15504176036</td>
<td>...</td>
<td>12.8811874315</td>
<td>168.053017504</td>
<td>3.98809714744</td>
</tr>
<tr>
<td>51</td>
<td>0.132470059814</td>
<td>14.2778133293</td>
<td>4.81100492125</td>
<td>...</td>
<td>8.2879810685</td>
<td>163.25495657</td>
<td>9.13394216473</td>
</tr>
<tr>
<td>60</td>
<td>0.0799106574322</td>
<td>9.66298008473</td>
<td>3.47364264736</td>
<td>...</td>
<td>5.79359471511</td>
<td>169.278409915</td>
<td>15.1884110291</td>
</tr>
<tr>
<td>1203</td>
<td>0.183438198239</td>
<td>22.7202518034</td>
<td>4.04690367115</td>
<td>...</td>
<td>9.58888264776</td>
<td>15.3760934458</td>
<td>100.13683462</td>
</tr>
<tr>
<td>1384</td>
<td>2.06217635837</td>
<td>38.1060171889</td>
<td>19.766115194</td>
<td>...</td>
<td>27.4466338168</td>
<td>136.429313911</td>
<td>107.190835447</td>
</tr>
<tr>
<td>1504</td>
<td>1.90767291972</td>
<td>8.64476839751</td>
<td>8.0907477357</td>
<td>...</td>
<td>8.36314946298</td>
<td>68.818705665</td>
<td>120.246719845</td>
</tr>
</tbody>
</table>
```

The catalog functions return an Astropy Table object.

Note that *pp_catalog()* and *ppv_catalog()* generate warnings if required meta-data is missing and sensible defaults can be assumed. If no sensible defaults can be assumed (e.g. for *data_unit*) then an exception is raised.
2.5.4 Available statistics

For a full list of available statistics for each type of statistic class, see `PPStatistic` and `PPVStatistic`. For more information on the quantities listed in these pages, consult the paper on Bias Free Measurements of Molecular Cloud Properties or the original dendrogram paper. In the terminology of the dendrogram paper, the quantities in `PPStatistic` and `PPVStatistic` adopt the “bijection” paradigm.

2.5.5 Required metadata

As described above, the metadata needed by the statistic routines depends on what statistics are required and on the units of the data. With the exception of `wcs`, all meta-data should be specified as Astropy Quantity objects (e.g. `3 * u.arcsec`):

- `data_unit` is required in order to compute the flux, so it is needed for both the `pp_catalog()` and `ppv_catalog()` functions, as well as for the `flux` attribute of the `PPStatistic` and `PPVStatistic` classes.
- `spatial_scale` is required if the data are in units of surface brightness (e.g. MJy/sr or Jy/beam) so as to be able to convert the surface brightness to the flux in each pixel. Even if the data are not in units a surface brightness, the `spatial_scale` can optionally be specified, causing any derived size (e.g. `major_sigma`) to be in the correct units instead of in pixels.
- `velocity_scale` can optionally be specified for PPV data, causing `v_rms` to be in the correct units instead of in pixels.
- `beam_major` and `beam_minor` are required if the data units depend on the beam (e.g. Jy/beam).
- `vaxis` can optionally be specified when using 3-dimensional data to indicate which dimension corresponds to the velocity. By default, this is 0, which corresponds to the third axis in e.g. a FITS file (because the dimensions are reversed in Numpy).
- `wavelength` is required if the data are in monochromatic flux densities per unit wavelength since the fluxes need to be converted to monochromatic flux densities per unit frequency.
- `wcs` can optionally be specified, and should be an WCS instance. If specified, it allows `x_cen`, `y_cen`, and `v_cen` to be in the correct world coordinates rather than in pixel coordinates.

2.5.6 Example

The following example shows how to combine the plotting functionality in `Plotting Dendrograms` and the analysis tools shown above, to overlay ellipses approximating the structures on top of the structures themselves:

```python
from astropy.io import fits
from astrodendro import Dendrogram
from astrodendro.analysis import PPStatistic
import matplotlib.pyplot as plt
from matplotlib.patches import Ellipse

hdu = fits.open('PerA_Extn2MASS_F_Gal.fits')[0]

d = Dendrogram.compute(hdu.data, min_value=2.0, min_delta=1., min_npix=10)
p = d.plotter()

fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
```
ax.imshow(hdu.data, origin='lower', interpolation='nearest',
 cmap=plt.cm.Blues, vmax=6.0)

for leaf in d.leaves:
 p.plot_contour(ax, structure=leaf, lw=3, colors='red')
 s = PPStatistic(leaf)
 ellipse = s.to_mpl_ellipse(edgecolor='orange', facecolor='none')
 ax.add_patch(ellipse)

ax.set_xlim(75., 170.)
a.set_ylim(120., 260.)

As shown above, the PPStatistic and PPVStatistic classes have a to_mpl_ellipse() method to convert the first and second moments of the structures into schematic ellipses.
2.6 Advanced topics

2.6.1 Specifying a custom structure merging strategy

By default, the decision about whether a leaf remains independent when merged is made based on the min_delta and min_npix parameters, but in some cases, you may want to use more specialized criteria. For example, you may want only leaves overlapping with a certain position, or you may want leaves with a certain spatial or velocity extent, or a minimum peak value, to be considered independent structures.

In order to accommodate this, the compute() method can optionally take an is_independent argument which should be a function with the following call signature:

```python
def is_independent(structure, index=None, value=None):
    ...
```

where structure is the Structure object that is being considered, and index and value are the pixel index and value of the pixel that is linking the structure to the rest of the tree. These last two values are only set when calling the is_independent function during the tree computation, but the is_independent function is also used at the end of the computation to prune leaves that are not attached to the tree, and in this case index and value are not set.

The following example compares the dendrogram obtained without and with a custom is_independent function:

```python
import matplotlib.pyplot as plt
from astropy.io import fits
from astrodendro import Dendrogram

image = fits.getdata('PerA_Extn2MASS_F_Gal.fits')

fig = plt.figure(figsize=(10,5))

# Default merging strategy

d1 = Dendrogram.compute(image, min_value=2.0)
p1 = d1.plotter()

ax = fig.add_subplot(1, 2, 1)
p1.plot_tree(ax, color='black')
ax.set_xlabel("Structure")
ax.set_ylabel("Flux")
ax.set_title("Default merging")

# Require minimum peak value

def custom_independent(structure, index=None, value=None):
    peak_index, peak_value = structure.get_peak()
    return peak_value > 3.5

d2 = Dendrogram.compute(image, min_value=2.0, is_independent=custom_independent)
p2 = d2.plotter()

ax = fig.add_subplot(1, 2, 2)
p2.plot_tree(ax, color='black')
ax.set_xlabel("Structure")
ax.set_ylabel("Flux")
ax.set_title("Custom merging")
```
2.7 Migration guide for previous users of astrodendro

The astrodendro package has been in development for a couple of years, and we have recently undertaken an effort to prepare the package for a first release, which involved tidying up the programming interface to the package, and re-writing large sections. This means that the present version of astrodendro will likely not work with scripts you had if you were using the original astrodendro packages from @astrofrog and @brandenmacdonald’s repositories. This page summarizes the main changes in the new code, and how to adapt your code to ensure that it will work correctly. This only covers changes that will break your code, but you are encouraged to look through the rest of the documentation to read about new features! Also, only the main backward-incompatible changes are mentioned, but for any questions on changes not mentioned here, please open an issue on GitHub.

2.7.1 Computing a dendrogram

Rather than computing a dendrogram using:

```python
d = Dendrogram(data)
d.compute(...)```

you should now use:

```python
d = Dendrogram.compute(data)```

In addition, the following options for compute have been renamed:

- `minimum_flux` is now `min_value` (since we expect dendrograms to be used not only for images, but also e.g. density fields).
- `minimum_delta` is now `min_delta`
- `minimum_npix` is now `min_npix`
2.7.2 Dendrogram methods and attributes

The following dendrogram methods have changed:

- `get_leaves()` has now been replaced by a `leaves` attribute (it is no longer a method.)
- the `to_hdf5()` and `from_hdf5()` methods have been replaced by `save_to()`

2.7.3 Leaf and Branch classes

The `Leaf` and `Branch` classes no longer exist, and have been replaced by a single `Structure` class that instead has `is_leaf` and `is_branch` attributes. Thus, if you were checking if something was a leaf by doing e.g.:

```python
if type(s) == Leaf:
    # code here
```

or:

```python
if isinstance(s, Leaf):
    # code here
```

then you will instead need to use:

```python
if s.is_leaf:
    # code here
```

2.7.4 Leaf and branch attributes

The following leaf and branch attributes have changed:

- `f` has been replaced by a method called `values()` that can take a `subtree=` option that indicates whether pixels in sub-structures should be included.
- `coords` has been replaced by a method called `indices()` that can take a `subtree=` option that indicates whether pixels in sub-structures should be included.
- `height` now has a different definition - it is `vmax` for a leaf, or the smallest `vmin` of the children for a branch - this is used when plotting the dendrogram, to know at what height to plot the structure.

2.7.5 Interactive visualization

Visualizing the results of the dendrogram is now much easier, and does not require the additional `astrocube` package. To launch the interactive viewer (which requires only Matplotlib), once the dendrogram has been computed, you can do:

```python
>>> d.viewer()
```

and the interactive viewer will launch. It will however no longer have the option to re-compute the dendrogram from the window, and will also no longer have an IPython terminal. For the latter, we recommend you consider using the `Glue` package.
REPORTING ISSUES

Please help us improve this package by reporting issues via GitHub.
This package was developed by:

- Thomas Robitaille
- Chris Beaumont
- Braden MacDonald
- Erik Rosolowsky
ACKNOWLEDGMENTS

Thanks to the following users for using early versions of this package and providing valuable feedback:

- Katharine Johnston
6.1 astrodendro.dendrogram.Dendrogram

class astrodendro.dendrogram.Dendrogram

This class is used to compute and represent a dendrogram for a given dataset. To create a dendrogram from an array, use the compute() class method:

```python
>>> from astrodendro import Dendrogram
>>> d = Dendrogram.compute(array)
```

Once the dendrogram has been computed, you can explore it programmatically using the trunk attribute, which allows you to access the base-level structures in the dendrogram:

```python
>>> d.trunk
[<Structure type=leaf idx=101>,
 <Structure type=branch idx=2152>,
 <Structure type=leaf idx=733>,
 <Structure type=branch idx=303>]
```

Structures can then be recursively explored. For more information on attributes and methods available for structures, see the Structure class.

The dendrogram can also be explored using an interactive viewer. To use this, use the viewer() method:

```python
>>> d.viewer()
```

and an interactive Matplotlib window should open.

Finally, the plotter() method can be used to facilitate the creation of plots:

```python
>>> p = d.plotter()
```

For more information on using the plotter and other aspects of the Dendrogram class, see the online documentation.

Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>trunk</td>
<td>A list of all structures that have no parent structure and form the base of the tree.</td>
</tr>
<tr>
<td>leaves</td>
<td>A flattened list of all leaves in the dendrogram</td>
</tr>
<tr>
<td>all_structures</td>
<td>Yields an iterator over all structures in the dendrogram, in prefix order.</td>
</tr>
</tbody>
</table>
Analysis

\begin{Verbatim}
\texttt{compute(data[, \text{min_value}, \text{min_delta}, ...])} \hspace{1em} \text{Compute a dendrogram from a Numpy array.}
\texttt{structure_at(indices)} \hspace{1em} \text{Get the structure at the specified pixel coordinate.}
\end{Verbatim}

Input/Output

\begin{Verbatim}
\texttt{save_to(filename[, format])} \hspace{1em} \text{Save the dendrogram to a file.}
\texttt{load_from(filename[, format])} \hspace{1em} \text{Load a previously computed dendrogram from a file.}
\end{Verbatim}

Visualization

\begin{Verbatim}
\texttt{plotter()} \hspace{1em} \text{Return a DendrogramPlotter instance that makes it easier to construct plots.}
\texttt{viewer()} \hspace{1em} \text{Launch an interactive viewer to explore the dendrogram.}
\end{Verbatim}

Methods (detail)

\begin{Verbatim}
\texttt{static compute(data, \text{min_value=-inf, min_delta=0, min_npix=0, is_independent=None, verbose=False})} \hspace{1em} \text{Compute a dendrogram from a Numpy array.}
\end{Verbatim}

Parameters
\begin{itemize}
\item \textbf{data} : \texttt{~numpy.ndarray}

 The n-dimensional array to compute the dendrogram for
\item \textbf{min_value} : float, optional

 The minimum data value to go down to when computing the dendrogram. Values below this threshold will be ignored.
\item \textbf{min_delta} : float, optional

 The minimum height a leaf has to have in order to be considered an independent entity.
\item \textbf{min_npix} : int, optional

 The minimum number of pixels/values needed for a leaf to be considered an independent entity.
\item \textbf{is_independent} : function, optional

 A custom function that can be specified that will determine if a leaf can be treated as an independent entity. The signature of the function should be \texttt{func(structure, index=None, value=None)} where \texttt{structure} is the structure under consideration, and \texttt{index} and \texttt{value} are optionally the pixel that is causing the structure to be considered for merging into/attaching to the tree.
\end{itemize}

Notes

More information about the above parameters is available from the online documentation at www.dendrograms.org.
Examples

The following example demonstrates how to compute a dendrogram from a dataset contained in a FITS file:

```python
>>> from astropy.io import fits
>>> array = fits.getdata('observations.fits')
>>> from astrodendro import Dendrogram
>>> d = Dendrogram.compute(array)
```

`structure_at(indices)`
- Get the structure at the specified pixel coordinate.
 - This will return None if no structure includes the specified pixel coordinates.

`save_to(filename, format=None)`
- Save the dendrogram to a file.
 - **Parameters**
 - `filename` : str
 - The name of the file to save the dendrogram to. By default, the file format will be automatically detected from the file extension. At this time, only HDF5 files (extension `.hdf5`) are supported.
 - `format` : str, optional
 - The format to use for the file. By default, this is not used and the format is auto-detected from the file extension. At this time, the only format supported is `hdf5`.

`static load_from(filename, format=None)`
- Load a previously computed dendrogram from a file.
 - **Parameters**
 - `filename` : str
 - The name of the file to load the dendrogram from. By default, the file format will be automatically detected from the file extension. At this time, only HDF5 files (extension `.hdf5`) are supported.
 - `format` : str, optional
 - The format to use to read the file. By default, this is not used and the format is auto-detected from the file extension. At this time, the only format supported is `hdf5`.

`plotter()`
- Return a `DendrogramPlotter` instance that makes it easier to construct plots.

`viewer()`
- Launch an interactive viewer to explore the dendrogram.
 - This functionality is only available for 2- or 3-d datasets.

6.2 astrodendro.structure.Structure

class `astrodendro.structure.Structure(indices, values, children=[], idx=None)`
- A structure in the dendrogram, for example a leaf or a branch.
 - A structure that is part of a dendrogram knows which other structures it is related to. For example, it is possible to get the parent structure containing the present structure s by using the `parent` attribute:
Likewise, the `children` attribute can be used to get a list of all sub-structures:

```python
>>> s.children
[<Structure type=branch idx=1680>, <Structure type=branch idx=5771>]
```

A number of attributes and methods are available to explore the structure in more detail, such as the `indices` and `values` methods, which return the indices and values of the pixels that are part of the structure. These and other methods have a `subtree` option, which if `True` (the default) returns the quantities related to structure and all sub-structures, and if `False` includes only the pixels that are part of the structure, but excluding any sub-structure.

Attributes

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>is_leaf</code></td>
<td>Whether the present structure is a leaf</td>
</tr>
<tr>
<td><code>is_branch</code></td>
<td>Whether the present structure is a branch</td>
</tr>
<tr>
<td><code>vmin</code></td>
<td>The minimum value of pixels belonging to the branch (excluding sub-structure)</td>
</tr>
<tr>
<td><code>vmax</code></td>
<td>The maximum value of pixels belonging to the branch (excluding sub-structure)</td>
</tr>
<tr>
<td><code>height</code></td>
<td></td>
</tr>
<tr>
<td><code>ancestor</code></td>
<td>Find the ancestor of this leaf/branch non-recursively.</td>
</tr>
<tr>
<td><code>parent</code></td>
<td>The parent structure containing the present structure.</td>
</tr>
<tr>
<td><code>children</code></td>
<td>A list of all the sub-structures contained in the present structure.</td>
</tr>
<tr>
<td><code>descendants</code></td>
<td>Get a flattened list of all child leaves and branches.</td>
</tr>
<tr>
<td><code>level</code></td>
<td>The level of the structure, i.e.</td>
</tr>
</tbody>
</table>

Methods

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>indices([subtree])</code></td>
<td>The indices of the pixels in this branch.</td>
</tr>
<tr>
<td><code>values([subtree])</code></td>
<td>The values of the pixels in this branch.</td>
</tr>
<tr>
<td><code>get_npix([subtree])</code></td>
<td>Return the number of pixels in this structure.</td>
</tr>
<tr>
<td><code>get_peak([subtree])</code></td>
<td>Return (index, value) for the pixel with maximum value.</td>
</tr>
<tr>
<td><code>get_sorted_leaves([sort_key, reverse, subtree])</code></td>
<td>Return a list of sorted leaves.</td>
</tr>
<tr>
<td><code>get_mask(shape[, subtree])</code></td>
<td>Return a boolean mask outlining the structure.</td>
</tr>
</tbody>
</table>

Methods (detail)

indices

```python
indices(subtree=True)
```

The indices of the pixels in this branch.

Parameters

- `subtree`: bool, optional

 Whether to recursively include all sub-structures

values

```python
values(subtree=True)
```

The values of the pixels in this branch.

Parameters

- `subtree`: bool, optional

 Whether to recursively include all sub-structures
get_npix \((subtree=\text{True})\)
Return the number of pixels in this structure.

Parameters subtree : bool, optional
Whether to recursively include all sub-structures when counting the pixels.

Returns n_pix : int
The number of pixels in this structure

get_peak \((subtree=\text{True})\)
Return \((\text{index}, \text{value})\) for the pixel with maximum value.

Parameters subtree : bool, optional
Whether to recursively include all sub-structures when searching for the peak.

Returns index : tuple
The n-dimensional index of the peak pixel
value : float
The value of the peak pixel

get_sorted_leaves \((\text{sort_key}=\langle \text{function <lambda> at 0x513d320>}, \text{reverse}=\text{False}, \text{subtree}=\text{True}\rangle)\)
Return a list of sorted leaves.

Parameters sort_key : function, optional
A function which given a structure will return a scalar that is then used for sorting.
By default, this is set to a function that returns the peak value of a structure (including descendants).

reverse : bool, optional
Whether to reverse the sorting.
subtree : bool, optional
Whether to recursively include all sub-structures in the list.

Returns leaves : list
A list of sorted leaves

get_mask \((\text{shape}, \text{subtree}=\text{True})\)
Return a boolean mask outlining the structure.

Parameters shape : tuple
The shape of the array upon which to compute the mask.

subtree : bool, optional
Whether to recursively include all sub-structures in the mask.

Returns mask : \sim{numpy.ndarray}
The mask outlining the structure (False values are used outside the structure, and True values inside).
6.3 astrodendro.plot.DendrogramPlotter

class astrodendro.plot.DendrogramPlotter(dendrogram)
A class to plot a dendrogram object

Methods

sort([sort_key, reverse]) Sort the position of the leaves for plotting.

Parameters sort_key : function, optional
This should be a function that takes a ~astrodendro.structure.Structure and returns a scalar that is then used to sort the leaves. If not specified, the leaves are sorted according to their peak value.

reverse : bool, optional
Whether to reverse the sorting

set_custom_positions(custom_position) Manually set the position on the structures for plotting

Parameters custom_position : function
This should be a function that takes a ~astrodendro.structure.Structure and returns the position of the leaves to use for plotting. If the dataset has more than one dimension, using this may cause lines to cross. If this is used, then `sort_key` and `reverse` are ignored.

plot_tree(ax[, structure, subtree, autoscale]) Plot the dendrogram tree or a substructure.

plot_contour(ax[, structure, subtree, slice]) Plot a contour outlining all pixels in the dendrogram, or a specific.

get_lines([structure]) Get a collection of lines to draw the dendrogram.

Methods (detail)

sort(sort_key=None, reverse=False) Sort the position of the leaves for plotting.

Parameters sort_key : function, optional
This should be a function that takes a ~astrodendro.structure.Structure and returns a scalar that is then used to sort the leaves. If not specified, the leaves are sorted according to their peak value.

reverse : bool, optional
Whether to reverse the sorting

set_custom_positions(custom_position) Manually set the position on the structures for plotting

Parameters custom_position : function
This should be a function that takes a ~astrodendro.structure.Structure and returns the position of the leaves to use for plotting. If the dataset has more than one dimension, using this may cause lines to cross. If this is used, then `sort_key` and `reverse` are ignored.

plot_tree(ax, structure=None, subtree=True, autoscale=True, **kwargs) Plot the dendrogram tree or a substructure.

Parameters ax : matplotlib.axes.Axes instance
The Axes inside which to plot the dendrogram

structure : int or ~astrodendro.structure.Structure, optional
If specified, only plot this structure. This can be either the structure object itself, or the ID (idx) of the structure.

subtree : bool, optional
If a structure is specified, by default the whole subtree will be plotted, but this can be disabled with this option.

autoscale : bool, optional
Whether to automatically adapt the window limits to the tree
Notes

Any additional keyword arguments are passed to ~matplotlib.collections.LineCollection and can be used to control the appearance of the plot.

plot_contour(ax, structure=None, subtree=True, slice=None, **kwargs)
Plot a contour outlining all pixels in the dendrogram, or a specific structure.

Parameters

- **ax**: matplotlib.axes.Axes instance
 The Axes inside which to plot the dendrogram
- **structure**: int or ~astrodendro.structure.Structure, optional
 If specified, only plot this structure. This can be either the structure object itself, or the ID (idx) of the structure.
- **subtree**: bool, optional
 If a structure is specified, by default the whole subtree will be plotted, but this can be disabled with this option.
- **slice**: int, optional
 If dealing with a 3-d cube, the slice at which to plot the contour. If not set, the slice containing the peak of the structure will be shown

Notes

Any additional keyword arguments are passed to ~matplotlib.axes.Axes.contour and can be used to control the appearance of the plot.

get_lines(structure=None, **kwargs)
Get a collection of lines to draw the dendrogram.

Parameters

- **structure**: ~astrodendro.structure.Structure
 The structure to plot. If not set, the whole tree will be plotted.

Returns

- **lines**: astrodendro.plot.StructureCollection
 The lines (sub-class of LineCollection) which can be directly used in Matplotlib

Notes

Any additional keyword arguments are passed to the ~matplotlib.collections.LineCollection class.

6.4 astrodendro.analysis

class astrodendro.analysis.PPStatistic(stat, metadata=None)
Compute properties of structures in a position-position (PP) cube.

Parameters

- **structure**: ~astrodendro.structure.Structure instance
 The structure to compute the statistics for
- **metadata**: dict
 Key-value pairs of metadata
Available statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flux</td>
<td>Integrated flux</td>
</tr>
<tr>
<td>major_sigma</td>
<td>Major axis of the projection onto the position-position (PP) plane, computed from the intensity weighted second moment in direction of greatest elongation in the PP plane.</td>
</tr>
<tr>
<td>minor_sigma</td>
<td>Minor axis of the projection onto the position-position (PP) plane, computed from the intensity weighted second moment perpendicular to the major axis in the PP plane.</td>
</tr>
<tr>
<td>position_angle</td>
<td>The position angle of sky_maj, sky_min in degrees counter-clockwise from the +x axis.</td>
</tr>
<tr>
<td>radius</td>
<td>Geometric mean of major_sigma and minor_sigma.</td>
</tr>
<tr>
<td>x_cen</td>
<td>The mean position of the structure in the x direction (in pixel coordinates, or in world coordinates if the WCS transformation is available in the meta-data).</td>
</tr>
<tr>
<td>y_cen</td>
<td>The mean position of the structure in the y direction (in pixel coordinates, or in world coordinates if the WCS transformation is available in the meta-data).</td>
</tr>
<tr>
<td>to_mpl_ellipse(kwargs)</td>
<td>Returns a Matplotlib ellipse representing the first and second moments of the structure.</td>
</tr>
</tbody>
</table>

Methods (detail)

PPStatistic.to_mpl_ellipse(**kwargs)**

Returns a Matplotlib ellipse representing the first and second moments of the structure.

Any keyword arguments are passed to `Ellipse`.

class astrodendro.analysis.PPVStatistic(stat, metadata=None)

Compute properties of structures in a position-position-velocity (PPV) cube.

Parameters

structure : ~astrodendro.structure.Structure instance

The structure to compute the statistics for.

metadata : dict

Key-value pairs of metadata.

Available statistics

<table>
<thead>
<tr>
<th>Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>flux</td>
<td>The integrated flux of the structure, in Jy.</td>
</tr>
<tr>
<td>major_sigma</td>
<td>Major axis of the projection onto the position-position (PP) plane, computed from the intensity weighted second moment in direction of greatest elongation in the PP plane.</td>
</tr>
<tr>
<td>minor_sigma</td>
<td>Minor axis of the projection onto the position-position (PP) plane, computed from the intensity weighted second moment perpendicular to the major axis in the PP plane.</td>
</tr>
<tr>
<td>position_angle</td>
<td>The position angle of sky_maj, sky_min in degrees counter-clockwise from the +x axis (note that this is the +x axis in pixel coordinates, which is the -x axis for conventional astronomy images).</td>
</tr>
<tr>
<td>radius</td>
<td>Geometric mean of major_sigma and minor_sigma.</td>
</tr>
<tr>
<td>x_cen</td>
<td>The mean position of the structure in the x direction.</td>
</tr>
<tr>
<td>y_cen</td>
<td>The mean position of the structure in the y direction.</td>
</tr>
<tr>
<td>v_cen</td>
<td>The mean velocity of the structure (where the velocity axis can be specified by the vaxis metadata parameter, which defaults to 0 following the Numpy convention - the third axis in the FITS convention).</td>
</tr>
<tr>
<td>v_rms</td>
<td>Intensity-weighted second moment of velocity (where the velocity axis can be specified by the vaxis metadata parameter, which defaults to 0 following the Numpy convention - the third axis in the FITS convention).</td>
</tr>
<tr>
<td>to_mpl_ellipse(kwargs)</td>
<td>Returns a Matplotlib ellipse representing the first and second moments of the structure.</td>
</tr>
</tbody>
</table>

Methods (detail)

PPStatistic.to_mpl_ellipse(**kwargs)**

Returns a Matplotlib ellipse representing the first and second moments of the structure.

Any keyword arguments are passed to `Ellipse`.

astrodendro.analysis.pp_catalog(structures, metadata=None, fields=fields, verbose=False)

Iterate over a collection of position-position (PP) structures, extracting several quantities from each, and building a catalog.

Parameters

structures : iterable of Structures
The structures to catalog (e.g., a dendrogram)

metadata : dict

The metadata used to compute the catalog

fields : list of strings, optional

The quantities to extract. If not provided, defaults to all PPV statistics

verbose : bool, optional

If True (the default), will generate warnings about missing metadata

Returns

table : a `Table` instance

The resulting catalog

```python
astrodendro.analysis.ppv_catalog(structures, metadata, fields=None, verbose=True)
```

Iterate over a collection of position-position-velocity (PPV) structures, extracting several quantities from each, and building a catalog

Parameters

structures : iterable of Structures

The structures to catalog (e.g., a dendrogram)

metadata : dict

The metadata used to compute the catalog

fields : list of strings, optional

The quantities to extract. If not provided, defaults to all PPV statistics

verbose : bool, optional

If True (the default), will generate warnings about missing metadata

Returns

table : a `Table` instance

The resulting catalog