CONTENTS:

1 Interface to the PARI library
 1.1 Guide to real precision in the PARI interface ... 2

2 The Gen class wrapping PARI’s GEN type ... 383

3 Memory management for Gens on the PARI stack or the heap 769

4 Convert Python functions to PARI closures ... 771

5 Handling PARI errors ... 773

6 Convert PARI objects to/from Python/C native types ... 775

7 Indices and tables ... 781

Python Module Index ... 783

Index ... 785
INTERFACE TO THE PARI LIBRARY

AUTHORS:

- William Stein (2006-03-01): updated to work with PARI 2.2.12-beta
- William Stein (2006-03-06): added newtonpoly
- Justin Walker: contributed some of the function definitions
- Gonzalo Tornaria: improvements to conversions; much better error handling.
- Robert Bradshaw, Jeroen Demeyer, William Stein (2010-08-15): Upgrade to PARI 2.4.3 (Sage ticket #9343)
- Jeroen Demeyer (2011-11-12): rewrite various conversion routines (Sage ticket #11611, Sage ticket #11854, Sage ticket #11952)
- Peter Bruin (2013-11-17): split off this file from gen.pyx (Sage ticket #15185)
- Jeroen Demeyer (2014-02-09): upgrade to PARI 2.7 (Sage ticket #15767)
- Jeroen Demeyer (2014-09-19): upgrade to PARI 2.8 (Sage ticket #16997)
- Jeroen Demeyer (2015-03-17): automatically generate methods from pari.desc (Sage ticket #17631 and Sage ticket #17860)
- Luca De Feo (2016-09-06): Separate Sage-specific components from generic C-interface in Pari (Sage ticket #20241)

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari("5! + 10/x")
(120*x + 10)/x
>>> pari("intnum(x=0,13,sin(x)+sin(x^2) + x)"
85.6215190762676
>>> f = pari("x^3 - 1")
>>> v = f.factor(); v
[x - 1, 1; x^2 + x + 1, 1]
>>> v[0]  # indexing is 0-based unlike in GP.
[x - 1, x^2 + x + 1]
>>> v[1]
[1, 1]
```

For most functions, you can call the function as method of pari or you can first create a Gen object and then call the function as method of that. In other words, the following two commands do the same:
Arithmetic operations cause all arguments to be converted to PARI:

```python
>>> type(pari(1) + 1)
<... 'cypari2.gen.Gen'>
>>> type(1 + pari(1))
<... 'cypari2.gen.Gen'>
```

1.1 Guide to real precision in the PARI interface

In the PARI interface, “real precision” refers to the precision of real numbers, so it is the floating-point precision. This is a non-trivial issue, since there are various interfaces for different things.

1.1.1 Internal representation of floating-point numbers in PARI

Real numbers in PARI have a precision associated to them, which is always a multiple of the CPU wordsize. So, it is a multiple of 32 or 64 bits. When converting a `float` from Python to PARI, the `float` has 53 bits of precision which is rounded up to 64 bits in PARI:

```python
>>> x = 1.0
>>> pari(x)
1.00000000000000
>>> pari(x).bitprecision()
64
```

It is possible to change the precision of a PARI object with the `Gen.bitprecision()` method:

```python
>>> p = pari(1.0)
>>> p.bitprecision()
64
>>> p = p.bitprecision(100)
>>> p.bitprecision()  # Rounded up to a multiple of the wordsize
128
```

Beware that these extra bits are just bogus. For example, this will not magically give a more precise approximation of `math.pi`:

```python
>>> import math
>>> p = pari(math.pi)
>>> pari("Pi") - p
1.225148... E-16
>>> p = p.bitprecision(1000)
>>> pari("Pi") - p
1.225148... E-16
```

Another way to create numbers with many bits is to use a string with many digits:
1.1.2 Output precision for printing

Even though PARI reals have a precision, not all significant bits are printed by default. The maximum number of digits when printing a PARI real can be set using the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`. Note that this will also change the input precision for strings, see Input precision for function calls.

We create a very precise approximation of pi and see how it is printed in PARI:

```python
>>> pi = pari.pi(precision=1024)
```

The default precision is 15 digits:

```python
>>> pi
3.14159265358979
```

With a different precision, we see more digits. Note that this does not affect the object `pi` at all, it only affects how it is printed:

```python
>>> _ = pari.set_real_precision(50)
>>> pi
3.1415926535897932384626433832795028841971693993751
```

Back to the default:

```python
>>> _ = pari.set_real_precision(15)
>>> pi
3.14159265358979
```

1.1.3 Input precision for function calls

When we talk about precision for PARI functions, we need to distinguish three kinds of calls:

1. Using the string interface, for example `pari("sin(1)")`.
2. Using the library interface with exact inputs, for example `pari.sin(1)`.
3. Using the library interface with inexact inputs, for example `pari.sin(1.0)`.

In the first case, the relevant precision is the one set by the methods `Pari.set_real_precision_bits()` or `Pari.set_real_precision()`:

```python
>>> pari.set_real_precision_bits(150)
>>> pari("sin(1)")
0.841470984807899622563061
>>> pari.set_real_precision_bits(53)
>>> pari("sin(1)")
0.841470984807899
```
In the second case, the precision can be given as the argument \texttt{precision} in the function call, with a default of 53 bits. The real precision set by \texttt{Pari.set_real_precision_bits()} or \texttt{Pari.set_real_precision()} does not affect the call (but it still affects printing).

As explained before, the precision increases to a multiple of the wordsize (and you should not assume that the extra bits are meaningful):

```python
>>> a = pari.sin(1, precision=180); a
0.8414709848078979732
>>> a.bitprecision()
192
>>> b = pari.sin(1, precision=40); b
0.8414709848078979732
>>> b.bitprecision()
64
>>> c = pari.sin(1); c
0.8414709848078979732
>>> c.bitprecision()
64
>>> pari.set_real_precision_bits(90)
>>> print(a); print(b); print(c)
0.841470984807896506652502322
0.8414709848078965067
0.8414709848078965067
```

In the third case, the precision is determined only by the inexact inputs and the \texttt{precision} argument is ignored:

```python
>>> pari.sin(1.0, precision=180).bitprecision()
64
>>> pari.sin(1.0, precision=40).bitprecision()
64
>>> pari.sin("1.0000000000000000000000000000000000000").bitprecision()
128
```

Tests:

Check that the documentation is generated correctly:

```python
>>> from inspect import getdoc
>>> getdoc(pari.Pi)
'The constant :math:`\pi` ...
```

Check that output from PARI's print command is actually seen by Python (Sage ticket #9636):

```python
>>> pari('print("test")')
test
```

Verify that \texttt{nfroots()} (which has an unusual signature with a non-default argument following a default argument) works:

```python
>>> pari.nfroots(x='x^4 - 1')
[-1, 1]
>>> pari.nfroots(pari.nfinit('t^2 + 1'), "x^4 - 1")
[-1, 1, Mod(-t, t^2 + 1), Mod(t, t^2 + 1)]
```

Reset default precision for the following tests:
>>> pari.set_real_precision_bits(53)

Test that interrupts work properly:

```python
>>> pari.allocatemem(8000000, 2**29)
PARI stack size set to 8000000 bytes, maximum size set to ...
>>> from cysignals.alarm import alarm, AlarmInterrupt
>>> for i in range(1, 11):
...     try:
...         alarm(i/11.0)
...         pari.binomial(2**100, 2**22)
...     except AlarmInterrupt:
...         pass
```

Test that changing the stack size using `default` works properly:

```python
>>> pari.default("parisizemax", 2**23)
>>> pari = cypari2.Pari()  # clear stack
>>> a = pari(1)
>>> pari.default("parisizemax", 2**29)
>>> a + a
2
>>> pari.default("parisizemax")
536870912
```

class cypari2.pari_instance.Pari

List(x)
Create an empty list or convert `x` to a list.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.List(range(5))
List([0, 1, 2, 3, 4])
>>> L = pari.List()
>>> L
List([])
>>> L.listput(42, 1)
42
>>> L
List([42])
>>> L.listinsert(24, 1)
24
>>> L
List([24, 42])
```

`allocatemem(s, sizemax, *, silent)`

Change the PARI stack space to the given size `s` (or double the current size if `s` is 0) and change the maximum stack size to `sizemax`.

PARI tries to use only its current stack (the size which is set by `s`), but it will increase its stack if needed up to the maximum size which is set by `sizemax`.
The PARI stack is never automatically shrunk. You can use the command `pari.allocatemem(10^6)` to reset the size to \(10^6\), which is the default size at startup. Note that the results of computations using `cypari` are copied to the Python heap, so they take up no space in the PARI stack. The PARI stack is cleared after every computation.

It does no real harm to set this to a small value as the PARI stack will be automatically enlarged when we run out of memory.

INPUT:

- `s` - an integer (default: 0). A non-zero argument is the size in bytes of the new PARI stack. If `s` is zero, double the current stack size.
- `sizemax` - an integer (default: 0). A non-zero argument is the maximum size in bytes of the PARI stack. If `sizemax` is 0, the maximum of the current maximum and `s` is taken.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.allocatemem(10**7, 10**7)
PARI stack size set to 10000000 bytes, maximum size set to 10000000000
>>> pari.allocatemem() # Double the current size
PARI stack size set to 20000000 bytes, maximum size set to 20000000000
>>> pari.stacksize()
20000000
>>> pari.allocatemem(10**6)
PARI stack size set to 1000000 bytes, maximum size set to 20000000000
```

The following computation will automatically increase the PARI stack size:

```python
>>> a = pari('2^100000000')
a is now a Python variable on the Python heap and does not take up any space on the PARI stack. The PARI stack is still large because of the computation of `a`:

```python
>>> pari.stacksize() > 10**6
True
```

Setting a small maximum size makes this fail:

```python
>>> pari.allocatemem(10**6, 2**22)
PARI stack size set to 1000000 bytes, maximum size set to 4194304
>>> a = pari('2^100000000')
Traceback (most recent call last):
 ...
PariError: _^s: the PARI stack overflows (current size: 1000000; maximum size: \(2^{22}\))
You can use `pari.allocatemem()` to change the stack size and try again
```

**Tests:**

Do the same without using the string interface and starting from a very small stack size:

```python
>>> pari.allocatemem(1, 2**26)
PARI stack size set to 1024 bytes, maximum size set to 67108864
>>> a = pari(2)**100000000
```

(continues on next page)
>>> pari.stacksize() > 10**6
True

We do not allow sizemax less than s:

>>> pari.alloccatemem(10**7, 10**6)
Traceback (most recent call last):
...
ValueError: the maximum size (1000000) should be at least the stack size (1000000)

complex(re, im)
Create a new complex number, initialized from re and im.

degugstack()
Print the internal PARI variables top (top of stack), avma (available memory address, think of this as the stack pointer), bot (bottom of stack).

euler(precision)
Euler’s constant \( \gamma \approx 0.57721 \ldots \). Note that Euler is one of the few reserved names which cannot be used for user variables.

factorial_int(n)
Return the factorial of the integer n as a PARI gen. Give result as an integer.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.factorial_int(0)
1
>>> pari.factorial_int(1)
1
>>> pari.factorial_int(5)
120
>>> pari.factorial_int(25)
15511210043330985984000000
```

genus2red(P, p)
Let \( P \) be a polynomial with integer coefficients. Determines the reduction of the (proper, smooth) genus 2 curve \( C/QQ \), defined by the hyperelliptic equation \( y^2 = P \). The special syntax genus2red([P,Q]) is also allowed, where the polynomials \( P \) and \( Q \) have integer coefficients, to represent the model \( y^2 + Q(x)y = P(x) \).

If the second argument \( p \) is specified, it must be a prime. Then only the local information at \( p \) is computed and returned.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> x = pari('x')
>>> pari.genus2red([-5*x**5, x**3 - 2*x**2 - 2*x + 1])
[1416875, [2, -1; 5, 4; 2267, 1], ..., [[2, [2, [Mod(1, 2)]]], [], [5, [1, []]], ...
```
CyPari2 Documentation, Release 2.1.3

get_debug_level()

Set the debug PARI C library variable.

get_real_precision()

Returns the current PARI default real precision.

This is used both for creation of new objects from strings and for printing. It is the number of digits \textit{in decimal} in which real numbers are printed. It also determines the precision of objects created by parsing strings (e.g. pari('1.2')), which is \textit{not} the normal way of creating new PARI objects in CyPari2. It has \textit{no} effect on the precision of computations within the pari library.

See also:

\texttt{get_real_precision_bits()} to get the precision in bits.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.get_real_precision()
15
```

get_real_precision_bits()

Return the current PARI default real precision in bits.

This is used both for creation of new objects from strings and for printing. It determines the number of digits in which real numbers numbers are printed. It also determines the precision of objects created by parsing strings (e.g. pari('1.2')), which is \textit{not} the normal way of creating new PARI objects using cypari. It has \textit{no} effect on the precision of computations within the PARI library.

See also:

\texttt{get_real_precision()} to get the precision in decimal digits.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.get_real_precision_bits()
53
```

init_primes(M)

Recompute the primes table including at least all primes up to M (but possibly more).

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.init_primes(200000)
```

We make sure that ticket Sage ticket #11741 has been fixed:
```
>>> pari.init_primes(2**30)
Traceback (most recent call last):
...
ValueError: Cannot compute primes beyond 436273290
```

**matrix**(m, n, entries)

matrix(long m, long n, entries=None): Create and return the m x n PARI matrix with given list of entries.

Examples:
```
>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.matrix(3, 3, range(9))
[0, 1, 2; 3, 4, 5; 6, 7, 8]
```

**new_with_bits_prec**(s, precision)

`pari.new_with_bits_prec(self, s, precision)` creates s as a PARI Gen with (at most) precision bits of precision.

**one()**

Examples:
```
>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.one()
1
```

**static pari_version()**

Return a string describing the version of PARI/GP.
```
>>> from cypari2 import Pari

>>> Pari.pari_version()
'GP/PARI CALCULATOR Version ...
```

**pi**(precision)

The constant π (3.14159...). Note that Pi is one of the few reserved names which cannot be used for user variables.

**polchebyshev**(n, v)

Chebyshev polynomial of the first kind of degree n, in the variable v.

Examples:
```
>>> import cypari2

>>> pari = cypari2.Pari()

>>> pari.polchebyshev(7)
64*x^7 - 112*x^5 + 56*x^3 - 7*x

>>> pari.polchebyshev(7, 'z')
64*z^7 - 112*z^5 + 56*z^3 - 7*z

>>> pari.polchebyshev(0)
1
```

**polsubcyclo**(n, d, v=x): return the pari list of polynomial(s)

defining the sub-abelian extensions of degree d of the cyclotomic field QQ(zeta_n), where d divides phi(n).

Examples:
>>> import cypari2
>>> pari = cypari2.Pari()

```python
>>> pari.polsubcyclo(8, 4)
[x^4 + 1]
>>> pari.polsubcyclo(8, 2, 'z')
z^2 + 2, z^2 - 2, z^2 + 1
>>> pari.polsubcyclo(8, 1)
x - 1
>>> pari.polsubcyclo(8, 3)
[]
```

**primes(n, end)**

Return a pari vector containing the first $n$ primes, the primes in the interval $[n, end]$, or the primes up to $end$.

**INPUT:**

Either

- $n$ – integer

or

- $n$ – list or tuple $[a, b]$ defining an interval of primes

or

- $n$, end – start and end point of an interval of primes

or

- end – end point for the list of primes

**OUTPUT:** a PARI list of prime numbers

**Examples:**

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.primes(3)
[2, 3, 5]
>>> pari.primes(10)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> pari.primes(20)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71]
>>> len(pari.primes(1000))
1000
>>> pari.primes((11,29))
[11, 13, 17, 19, 23, 29]
>>> pari.primes((11,29))
[11, 13, 17, 19, 23, 29]
>>> pari.primes(end=29)
[2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
>>> pari.primes(10**30, 10**30 + 100)
[1000000000000000000000000000057, 1000000000000000000000000000099]
```

Tests:
set_debug_level(level)
Set the debug PARI C library variable.

set_real_precision(n)
Sets the PARI default real precision in decimal digits.
This is used both for creation of new objects from strings and for printing. It is the number of digits \texttt{IN DECIMAL} in which real numbers are printed. It also determines the precision of objects created by parsing strings (e.g. pari('1.2')), which is \texttt{not} the normal way of creating new PARI objects in CyPari2. It has \texttt{no} effect on the precision of computations within the pari library.

Returns the previous PARI real precision.

See also:
set_real_precision_bits() to set the precision in bits.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.set_real_precision(60)
15
>>> pari('1.2')
1.200
>>> pari.set_real_precision(15)
60
```

set_real_precision_bits(n)
Sets the PARI default real precision in bits.
This is used both for creation of new objects from strings and for printing. It determines the number of digits in which real numbers numbers are printed. It also determines the precision of objects created by parsing strings (e.g. pari('1.2')), which is \texttt{not} the normal way of creating new PARI objects using cypari. It has \texttt{no} effect on the precision of computations within the PARI library.

See also:
set_real_precision() to set the precision in decimal digits.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.set_real_precision_bits(200)
>>> pari('1.2')
```

(continues on next page)
1.20000000000000000000000000000000000000000000000000000000000

>>> pari.set_real_precision_bits(53)

**setrand**(seed)

Sets PARI’s current random number seed.

**INPUT:**

- seed – either a strictly positive integer or a GEN of type `t_VECSMALL` as output by `getrand()`

**Examples:**

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.setrand(50)
>>> a = pari.getrand()
>>> pari.setrand(a)
>>> a == pari.getrand()
True
```

**Tests:**

Check that invalid inputs are handled properly:

```python
>>> pari.setrand("foobar")
Traceback (most recent call last):
...
PariError: incorrect type in setrand (t_POL)
```

**stacksize()**

Return the current size of the PARI stack, which is $10^6$ by default. However, the stack size is automatically increased when needed up to the given maximum stack size.

**See also:**

- `stacksizemax()` to get the maximum stack size
- `allocatemem()` to change the current or maximum stack size

**Examples:**

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.stacksize()
8000000
>>> pari.allocatemem(2**18, silent=True)
>>> pari.stacksize()
262144
```

**stacksizemax()**

Return the maximum size of the PARI stack, which is determined at startup in terms of available memory. Usually, the PARI stack size is (much) smaller than this maximum but the stack will be increased up to this maximum if needed.

**See also:**
- `stacksize()` to get the current stack size
- `allocatemem()` to change the current or maximum stack size

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.allocatemem(2**18, 2**26, silent=True)
>>> pari.stacksizemax()
67108864
```

`vector(n, entries)`

`vector(long n, entries=None)`: Create and return the length n PARI vector with given list of entries.

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.vector(5, [1, 2, 5, 4, 3])
[1, 2, 5, 4, 3]
>>> pari.vector(2, ['x', 1])
x
[1]
>>> pari.vector(2, ['x', 1, 5])
Traceback (most recent call last):
...
IndexError: length of entries (=3) must equal n (=2)
```

`version()`

Return the PARI version as tuple with 3 or 4 components: (major, minor, patch) or (major, minor, patch, VCSversion).

Examples:

```python
>>> from cypari2 import Pari
>>> Pari().version() >= (2, 9, 0)
True
```

`zero()`

Examples:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> pari.zero()
0
```

**class cypari2.pari_instance.Pari_auto**

Part of the `Pari` class containing auto-generated functions.

You must never use this class directly (in fact, Python may crash if you do), use the derived class `Pari` instead.

**Catalan**

Catalan’s constant $G = \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)^2} = 0.91596...$. Note that Catalan is one of the few reserved names which cannot be used for user variables.
\textbf{Col}(x, n)

Transforms the object \(x\) into a column vector. The dimension of the resulting vector can be optionally specified via the extra parameter \(n\).

If \(n\) is omitted or 0, the dimension depends on the type of \(x\); the vector has a single component, except when \(x\) is

- a vector or a quadratic form (in which case the resulting vector is simply the initial object considered as a row vector),
- a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for power series only the significant coefficients are taken into account, but this time by increasing order of degree. In this last case, \texttt{Vec} is the reciprocal function of \texttt{Pol} and \texttt{Ser} respectively,
- a matrix (the column of row vector comprising the matrix is returned),
- a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), \(n\) is meaningless and must be omitted or an error is raised. Otherwise, if \(n\) is given, 0 entries are appended at the end of the vector if \(n > 0\), and prepended at the beginning if \(n < 0\). The dimension of the resulting vector is \(\|n\|\).

See \texttt{??Vec} for examples.

\textbf{Colrev}(x, n)

As \texttt{Col}(x, -n), then reverse the result. In particular, \texttt{Colrev} is the reciprocal function of \texttt{Polrev}: the coefficients of the vector start with the constant coefficient of the polynomial and the others follow by increasing degree.

\textbf{Euler}(\texttt{precision})

Euler’s constant \(\gamma = 0.57721\ldots\). Note that \texttt{Euler} is one of the few reserved names which cannot be used for user variables.

\textbf{I()}

The complex number \(\sqrt{-1}\).

\textbf{List}(x)

Transforms a (row or column) vector \(x\) into a list, whose components are the entries of \(x\). Similarly for a list, but rather useless in this case. For other types, creates a list with the single element \(x\).

\textbf{Map}(x)

A “Map” is an associative array, or dictionary: a data type composed of a collection of (key, value) pairs, such that each key appears just once in the collection. This function converts the matrix \([a_1, b_1; a_2, b_2; \ldots; a_n, b_n]\) to the map \(a_i : \rightarrow b_i\).

\begin{verbatim}
? M = Map(factor(13!));
? mapget(M,3)
%2 = 5
\end{verbatim}

If the argument \(x\) is omitted, creates an empty map, which may be filled later via \texttt{mapput}.

\textbf{Mat}(x)

Transforms the object \(x\) into a matrix. If \(x\) is already a matrix, a copy of \(x\) is created. If \(x\) is a row (resp. column) vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row) vectors of the same length, in which case the vectors are concatenated sideways and the attached big matrix is returned. If \(x\) is a binary quadratic form, creates the attached 2x2 matrix. Otherwise, this creates a 1x1 matrix containing \(x\).
? Mat(x + 1)
%1 =
[x + 1]
? Vec(matid(3))
%2 = [[1, 0, 0]
, [0, 1, 0]
, [0, 0, 1]]
? Mat(%)
%3 =
[1 0 0]
[0 1 0]
[0 0 1]
? Col([1,2;3,4])
%4 = [[1, 2]
, [3, 4]]
? Mat(%)
%5 =
[1 2]
[3 4]
? Mat(Qfb(1,2,3))
%6 =
[1 1]
[1 3]

Mod(a, b)
In its basic form, create an intmod or a polmod (amodb); b must be an integer or a polynomial. We then obtain a t_INTMOD and a t_POLMOD respectively:

? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)

If a\%b makes sense and yields a result of the appropriate type (t_INT or scalar/t_POL), the operation succeeds as well:

? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-x, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)

If a is a complex object, “base change” it to \( \mathbb{Z}/b\mathbb{Z} \) or \( \mathbb{K}[x]/(b) \), which is equivalent to, but faster than, multiplying it by \( \text{Mod}(1,b) \):

? Mod([1,2;3,4], 2)
%8 =
This function is not the same as \( x \% y \), the result of which has no knowledge of the intended modulus \( y \). Compare

\[
\texttt{? x = 4 \% 5; x + 1}
\]
\[
%11 = 5
\]
\[
\texttt{? x = Mod(4,5); x + 1}
\]
\[
%12 = \text{Mod}(0,5)
\]

Note that such “modular” objects can be lifted via \texttt{lift} or \texttt{centerlift}. The modulus of a \texttt{t_INTMOD} or \texttt{t_POLMOD} \( z \) can be recovered via \texttt{:math:`z.mod`}.

\textbf{Pi} (precision)

The constant \( \pi \) (3.14159...). Note that \texttt{Pi} is one of the few reserved names which cannot be used for user variables.

\textbf{Pol} \((t, v)\)

Transforms the object \( t \) into a polynomial with main variable \( v \). If \( t \) is a scalar, this gives a constant polynomial. If \( t \) is a power series with nonnegative valuation or a rational function, the effect is similar to \texttt{truncate}, i.e. we chop off the \( O(X^k) \) or compute the Euclidean quotient of the numerator by the denominator, then change the main variable of the result to \( v \).

The main use of this function is when \( t \) is a vector: it creates the polynomial whose coefficients are given by \( t \), with \( t[1] \) being the leading coefficient (which can be zero). It is much faster to evaluate \texttt{Pol} on a vector of coefficients in this way, than the corresponding formal expression \( a_n X^n + \ldots + a_0 \), which is evaluated naively exactly as written (linear versus quadratic time in \( n \)). \texttt{Polrev} can be used if one wants \( x[1] \) to be the constant coefficient:

\[
\texttt{? Pol([1,2,3])}
\]
\[
%1 = x^2 + 2*x + 3
\]
\[
\texttt{? Polrev([1,2,3])}
\]
\[
%2 = 3*x^2 + 2*x + 1
\]

The reciprocal function of \texttt{Pol} (resp. \texttt{Polrev}) is \texttt{Vec} (resp. \texttt{Vecrev}).

\[
\texttt{? Vec(Pol([1,2,3]))}
\]
\[
%1 = [1, 2, 3]
\]
\[
\texttt{? Vecrev(Polrev([1,2,3]))}
\]
\[
%2 = [1, 2, 3]
\]

\textbf{Warning}. This is not a substitution function. It will not transform an object containing variables of higher priority than \( v \).

\[
\texttt{? Pol(x + y, y)}
\]
\[
*** \text{ at top-level: Pol(x+y,y)}
\]
\[
*** \text{ --------}
\]
\[
*** \text{ Pol: variable must have higher priority in gtopoly.}
\]
Polrev(t, v)
Transform the object t into a polynomial with main variable v. If t is a scalar, this gives a constant polynomial. If t is a power series, the effect is identical to truncate, i.e. it chops off the $O(X^k)$.

The main use of this function is when t is a vector: it creates the polynomial whose coefficients are given by t, with t[1] being the constant term. Pol can be used if one wants t[1] to be the leading coefficient:

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>? Polrev([[1,2,3]])</td>
<td>%1 = 3<em>x^2 + 2</em>x + 1</td>
</tr>
<tr>
<td>? Pol([1,2,3])</td>
<td>%2 = x^2 + 2*x + 3</td>
</tr>
</tbody>
</table>

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

Qfb(a, b, c, D, precision)
Creates the binary quadratic form $ax^2 + bxy + cy^2$. If $b^2 - 4ac > 0$, initialize Shanks’ distance function to D. Negative definite forms are not implemented, use their positive definite counterpart instead.

Ser(s, v, d, serprec)
Transforms the object s into a power series with main variable v (x by default) and precision (number of significant terms) equal to $d \geq 0$ ($d = \text{seriesprecision}$ by default). If $s$ is a scalar, this gives a constant power series in $v$ with precision $d$. If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed.

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>? \ps seriesprecision = 16 significant terms</td>
<td></td>
</tr>
<tr>
<td>? Ser(1) \ \ 16 terms by default</td>
<td></td>
</tr>
<tr>
<td>%1 = 1 + 0(x^16)</td>
<td></td>
</tr>
<tr>
<td>? Ser(1, 'y, 5)</td>
<td></td>
</tr>
<tr>
<td>%2 = 1 + 0(y^5)</td>
<td></td>
</tr>
<tr>
<td>? Ser(x^2,, 5)</td>
<td></td>
</tr>
<tr>
<td>%3 = x^2 + 0(x^7)</td>
<td></td>
</tr>
<tr>
<td>? T \ = \ polcyclo(100)</td>
<td></td>
</tr>
<tr>
<td>%4 = x^40 - x^30 + x^20 - x^10 + 1</td>
<td></td>
</tr>
<tr>
<td>? Ser(T, 'x, 11)</td>
<td></td>
</tr>
<tr>
<td>%5 = 1 - x^10 + 0(x^11)</td>
<td></td>
</tr>
</tbody>
</table>

The function is more or less equivalent with multiplication by $1 + O(v^d)$ in these cases, only faster.

For the remaining types, vectors and power series, we first explain what occurs if $d$ is omitted. In this case, the function uses exactly the amount of information given in the input:

- If s is already a power series in v, we return it verbatim;
- If s is a vector, the coefficients of the vector are understood to be the coefficients of the power series starting from the constant term (as in Polrev(x)); in other words we convert t_VEC / t_COL to the power series whose significant terms are exactly given by the vector entries.

On the other hand, if $d$ is explicitly given, we abide by its value and return a series, truncated or extended with zeros as needed, with $d$ significant terms.

<table>
<thead>
<tr>
<th>Command</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>? v = [1,2,3];</td>
<td></td>
</tr>
<tr>
<td>? Ser(v, t) \ \ 3 terms: seriesprecision is ignored!</td>
<td></td>
</tr>
<tr>
<td>%7 = 1 + 2<em>t + 3</em>t^2 + 0(t^3)</td>
<td></td>
</tr>
<tr>
<td>? Ser(v, t, 7) \ \ 7 terms as explicitly requested</td>
<td></td>
</tr>
<tr>
<td>%8 = 1 + 2<em>t + 3</em>t^2 + 0(t^7)</td>
<td></td>
</tr>
<tr>
<td>? s = 1+x+0(x^2);</td>
<td></td>
</tr>
<tr>
<td>? Ser(s)</td>
<td></td>
</tr>
</tbody>
</table>

(continues on next page)
\%10 = 1 + x + O(x^{2}) \ \ \ 2 \text{ terms: seriesprecision is ignored}
\?
Ser(s, x, 7) \ \ \ \text{extend to 7 terms}
\%11 = 1 + x + O(x^{7})
\?
Ser(s, x, 1) \ \ \ \text{truncate to 1 term}
\%12 = 1 + O(x)

The warning given for \texttt{Pol} also applies here: this is not a substitution function.

\textbf{Set}(x)

Converts $x$ into a set, i.e. into a row vector, with strictly increasing entries with respect to the (somewhat arbitrary) universal comparison function \texttt{cmp}. Standard container types \texttt{t_VEC}, \texttt{t_COL}, \texttt{t_LIST} and \texttt{t_VECSMALL} are converted to the set with corresponding elements. All others are converted to a set with one element.

\?
Set([1,2,4,2,1,3])
\%1 = [1, 2, 3, 4]
\?
Set(x)
\%2 = [x]
\?
Set(Vecsmall([1,3,2,1,3]))
\%3 = [1, 2, 3]

\textbf{Strchr}(x)

Deprecated alias for \texttt{strchr}.

\textbf{Vec}(x, n)

Transforms the object $x$ into a row vector. The dimension of the resulting vector can be optionally specified via the extra parameter $n$. If $n$ is omitted or 0, the dimension depends on the type of $x$; the vector has a single component, except when $x$ is

- a vector or a quadratic form: returns the initial object considered as a row vector,
- a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for power series only the significant coefficients are taken into account, but this time by increasing order of degree. In particular the valuation is ignored (which makes the function useful for series of negative valuation):

\?
Vec(3*x^{2} + x)
\%1 = [3, 1, 0]
\?
Vec(x^{2} + 3*x^{3} + O(x^{5}))
\%2 = [1, 3, 0]
\?
Vec(x^{-2} + 3*x^{-1} + O(x))
\%3 = [1, 3, 0]

\texttt{Vec} is the reciprocal function of \texttt{Pol} for a polynomial and of \texttt{Ser} for power series of valuation 0.

- a matrix: returns the vector of columns comprising the matrix,

\?
m = [1,2,3;4,5,6]
\%4 =
[1 2 3]
[4 5 6]
\?
Vec(m)
• a character string: returns the vector of individual characters,

```plaintext
? Vec("PARI")
%6 = ["P", "A", "R", "I"]
```

• a map: returns the vector of the domain of the map,

• an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), \( n \) is meaningless and must be omitted or an error is raised. Otherwise, if \( n \) is given, 0 entries are appended at the end of the vector if \( n > 0 \), and prepended at the beginning if \( n < 0 \). The dimension of the resulting vector is \( \|n\| \). This allows to write a conversion function for series that takes positive valuations into account:

```plaintext
? serVec(s) = Vec(s, -serprec(s,variable(s)));
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [0, 0, 1, 3, 0]
```

(That function is not intended for series of negative valuation.)

**Vecrev**\( (x, n) \)

As \( Vec(x, -n) \), then reverse the result. In particular, Vecrev is the reciprocal function of Polrev: the coefficients of the vector start with the constant coefficient of the polynomial and the others follow by increasing degree.

**Vecsmall**\( (x, n) \)

Transforms the object \( x \) into a row vector of type t_VECSMALL. The dimension of the resulting vector can be optionally specified via the extra parameter \( n \).

This acts as \( Vec(x, n) \), but only on a limited set of objects: the result must be representable as a vector of small integers. If \( x \) is a character string, a vector of individual characters in ASCII encoding is returned (strchr yields back the character string).

**abs**\( (x, precision) \)

Absolute value of \( x \) (modulus if \( x \) is complex). Rational functions are not allowed. Contrary to most transcendental functions, an exact argument is not converted to a real number before applying abs and an exact result is returned if possible.

```plaintext
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
```

If \( x \) is a polynomial, returns \(-x\) if the leading coefficient is real and negative else returns \( x \). For a power series, the constant coefficient is considered instead.

**acos**\( (x, precision) \)

Principal branch of \( \cos^{-1}(x) = -i \log(x + i \sqrt{1 - x^2}) \). In particular, \( \Re(acos(x)) \in [0, \pi] \) and if \( x \in \mathbb{R} \) and \( \|x\| > 1 \), then \( acos(x) \) is complex. The branch cut is in two pieces: \([ -oo, -1 \] , continuous with quadrant II, and \([1, +oo[ , continuous with quadrant IV. We have \( acos(x) = \pi/2 - asin(x) \) for all \( x \).

**acosh**\( (x, precision) \)

Principal branch of \( \cosh^{-1}(x) = 2 \log(\sqrt{(x+1)/2} + \sqrt{(x-1)/2}) \). In particular, \( \Re(acosh(x)) \geq 0 \) and \( \Im(acosh(x)) \in ]-\pi, \pi[ \); if \( x \in \mathbb{R} \) and \( x < 1 \), then \( acosh(x) \) is complex.
CyPari2 Documentation, Release 2.1.3

**addhelp** *(sym, str)*

Changes the help message for the symbol sym. The string str is expanded on the spot and stored as the online help for sym. It is recommended to document global variables and user functions in this way, although gp will not protest if you don’t.

You can attach a help text to an alias, but it will never be shown: aliases are expanded by the ? help operator and we get the help of the symbol the alias points to. Nothing prevents you from modifying the help of built-in PARI functions. But if you do, we would like to hear why you needed it!

Without addhelp, the standard help for user functions consists of its name and definition.

```gp
? f(x) = x^2;
? ?f
f = (x)->x^2
```

Once addhelp is applied to f, the function code is no longer included. It can still be consulted by typing the function name:

```gp
? addhelp(f, "Square")
? ?f
Square
? f
%2 = (x)->x^2
```

**addprimes**(x)

Adds the integers contained in the vector x (or the single integer x) to a special table of “user-defined primes”, and returns that table. Whenever factor is subsequently called, it will trial divide by the elements in this table. If x is empty or omitted, just returns the current list of extra primes.

```gp
? addprimes(37975227936943673922808872755445627854565536638199)
? factor(15226050279225333605356183781326374297180681149613806\ 88657908494580122963258952897654000350692006139)
%2 = [37975227936943673922808872755445627854565536638199 1]
[40094690950920881030683735292761468389214899724061 1]
? ##
*** last result computed in 0 ms.
```

The entries in x must be primes: there is no internal check, even if the factor_proven default is set. To remove primes from the list use removeprimes.

**agm**(x, y, precision)

Arithmetic-geometric mean of x and y. In the case of complex or negative numbers, the optimal AGM is returned (the largest in absolute value over all choices of the signs of the square roots). p-adic or power series arguments are also allowed. Note that a p-adic agm exists only if x/y is congruent to 1 modulo p (modulo 16 for p = 2). x and y cannot both be vectors or matrices.

**airy**(z, precision)

Airy [Ai, Bi] functions of argument z.

```gp
? [A,B] = airy(1);
? A
```
algadd\((al, x, y)\)
Given two elements \(x\) and \(y\) in \(al\), computes their sum \(x + y\) in the algebra \(al\).

```
? A = alginit(nfinit(y), [-1,1]);
? algadd(A, [1,0]~, [1,2]~)
%2 = [2, 2]~
```

Also accepts matrices with coefficients in \(al\).

algalgtobasis\((al, x)\)
Given an element \(x\) in the central simple algebra \(al\) output by \texttt{alginit}, transforms it to a column vector on the integral basis of \(al\). This is the inverse function of \texttt{algbasistoalg}.

```
? A = alginit(nfinit(y^2-5), [2,y]);
? algalgtobasis(A, [y,1]~)
%2 = [0, 2, 0, -1, 2, 0, 0, 0]~
? algbasistoalg(A, algalgtobasis(A, [y,1]~))
%3 = [Mod(Mod(y, y^2 - 5), x^2 - 2), 1]~
```

algaut\((al)\)
Given a cyclic algebra \(al = (L/K, \sigma, b)\) output by \texttt{alginit}, returns the automorphism \(\sigma\).

```
? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf, [3, [[p,p2],[1/3,2/3]], [0]]);
? algaut(A)
%5 = -1/3*x^2 + 1/3*x + 26/3
```

algb\((al)\)
Given a cyclic algebra \(al = (L/K, \sigma, b)\) output by \texttt{alginit}, returns the element \(b \in K\).

```
? nf = nfinit(y);
? p = idealprimedec(nf,7)[1];
? p2 = idealprimedec(nf,11)[1];
? A = alginit(nf, [3, [[p,p2],[1/3,2/3]], [0]]);
? algb(A)
%5 = Mod(-77, y)
```

algbasis\((al)\)
Given a central simple algebra \(al\) output by \texttt{alginit}, returns a \(\mathbb{Z}\)-basis of the order \(O_0\) stored in \(al\) with respect to the natural order in \(al\). It is a maximal order if one has been computed.

```
A = alginit(nfinit(y), [-1,-1]);
? algbasis(A)
%2 = [1 0 0 1/2]
```
algbasistoalg(al, x)

Given an element x in the central simple algebra al output by alginit, transforms it to its algebraic representation in al. This is the inverse function of algalgtobasis.

? A = alginit(nfinit(y^2-5), [2,y]);
? z = algbasistoalg(A, [0,1,0,0,2,-3,0,0]~);
? liftall(z)
%3 = \((-1/2*y - 2)*x + (-1/4*y + 5/4), -3/4*y + 7/4\)~
? algalgtobasis(A, z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~

algcenter(al)

If al is a table algebra output by algtableinit, returns a basis of the center of the algebra al over its prime field (Q or \(\mathbb{F}_p\)). If al is a central simple algebra output by alginit, returns the center of al, which is stored in al.

A simple example: the \(2\times2\) upper triangular matrices over \(\mathbb{Q}\), generated by \(I_2\), \(a = [0, 1; 0, 0]\) and \(b = [0, 0; 0, 1]\), such that \(a^2 = 0, ab = a, ba = 0, b^2 = b\): the diagonal matrices form the center.

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt);
? algcenter(A) \\(\equiv\) (I_2)
%3 = [1]
[0]
[0]

An example in the central simple case:

? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algcenter(A).pol
%3 = y^3 - y + 1

algcentralproj(al, z, maps)

Given a table algebra al output by algtableinit and a \(\text{t}_\text{VEC} z = \{z_1, ..., z_n\}\) of orthogonal central idempotents, returns a \(\text{t}_\text{VEC} [a_1, ..., a_n]\) of algebras such that \(a_i = z_i al\). If maps = 1, each \(a_i\) is a \(\text{t}_\text{VEC} \{\text{quo, proj, lift}\}\) where \(\text{quo}\) is the quotient algebra, \(\text{proj}\) is a \(\text{t}_\text{MAT}\) representing the projection onto this quotient and \(\text{lift}\) is a \(\text{t}_\text{MAT}\) representing a lift.

A simple example: \(\mathbb{F}_2 x \mathbb{F}_4\), generated by \(1 = (1,1)\), \(e = (1,0)\) and \(x\) such that \(x^2 + x + 1 = 0\). We have \(e^2 = e, x^2 = x + 1\) and \(ex = 0\).

? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt, 2);
\(\text{algchar}(al)\)

Given an algebra \(al\) output by \text{alginit} or \text{algtableinit}, returns the characteristic of \(al\).

\[\text{algchar}(\text{mt}, 13) = 13\]

\(\text{algcharpoly}(al, b, v, \text{abs})\)

Given an element \(b\) in \(al\), returns its characteristic polynomial as a polynomial in the variable \(v\). If \(al\) is a table algebra output by \text{algtableinit} or if \(\text{abs} = 1\), returns the absolute characteristic polynomial of \(b\), which is an element of \(\mathbb{F}_p[v]\) or \(\mathbb{Q}[v]\); if \(al\) is a central simple algebra output by \text{alginit} and \(\text{abs} = 0\), returns the reduced characteristic polynomial of \(b\), which is an element of \(K[v]\) where \(K\) is the center of \(al\).

\(\text{algdegree}(al)\)

Given a central simple algebra \(al\) output by \text{alginit}, returns the degree of \(al\).

\(\text{algdep}(z, k, \text{flag})\)

\(z\) being real/complex, or \(p\)-adic, finds a polynomial (in the variable \(x\)) of degree at most \(k\), with integer coefficients, having \(z\) as approximate root. Note that the polynomial which is obtained is not necessarily the “correct” one. In fact it is not even guaranteed to be irreducible. One can check the closeness either by
a polynomial evaluation (use subst), or by computing the roots of the polynomial given by algdep (use polroots or polrootspadic).

Internally, lindep([1, z, ..., z^k], flag) is used. A nonzero value of flag may improve on the default behavior if the input number is known to a huge accuracy, and you suspect the last bits are incorrect: if flag \( > 0 \) the computation is done with an accuracy of flag decimal digits; to get meaningful results, the parameter flag should be smaller than the number of correct decimal digits in the input. But default values are usually sufficient, so try without flag first:

\[
\begin{align*}
? \ \text{\bf \p200} \\
? z = 2^{(1/6)}+3^{(1/5)}; \\
? \text{algdep}(z, 30); \ \&\ \text{right in 280ms} \\
? \text{algdep}(z, 30, 100); \ \&\ \text{wrong in 169ms} \\
? \text{algdep}(z, 30, 170); \ \&\ \text{right in 288ms} \\
? \text{algdep}(z, 30, 200); \ \&\ \text{wrong in 320ms} \\
? \ \text{\bf \p250} \\
? z = 2^{(1/6)}+3^{(1/5)}; \ \&\ \text{recompute to new, higher, accuracy !} \\
? \text{algdep}(z, 30); \ \&\ \text{right in 329ms} \\
? \text{algdep}(z, 30, 200); \ \&\ \text{right in 324ms} \\
? \ \text{\bf \p500} \\
? \text{algdep}(2^{(1/6)}+3^{(1/5)}, 30); \ \&\ \text{right in 677ms} \\
? \ \text{\bf \p1000} \\
? \text{algdep}(2^{(1/6)}+3^{(1/5)}, 30); \ \&\ \text{right in 1.5s}
\end{align*}
\]

The changes in realprecision only affect the quality of the initial approximation to \( 2^{1/6} + 3^{1/5} \), algdep itself uses exact operations. The size of its operands depend on the accuracy of the input of course: more accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, algdep with default flag produces its first correct result at 195 digits, and from then on a steady stream of correct results:

\[
\begin{align*}
\&\ \text{assume T contains the correct result, for comparison forstep(d=100, 250, 5, localprec(d);\} \\
\&\ \text{print(d, \ " \", algdep(2^{(1/6)}+3^{(1/5)},30) == T))}
\end{align*}
\]

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Applications of integer relation algorithms, Discrete Math., 217, p. 65–82. The version of PARI tested there was 1.39, which succeeded reliably from precision 265 on, in about 200 as much time as the current version.

\( \text{algdim(al, abs)} \)

If \( al \) is a table algebra output by algtableinit or if \( abs = 1 \), returns the dimension of \( al \) over its prime subfield (\( \mathbb{Q} \) or \( \mathbb{F}_p \)). If \( al \) is a central simple algebra output by alginit and \( abs = 0 \), returns the dimension of \( al \) over its center.

\[
\begin{align*}
? nf = \text{nfinit}(y^3-y+1); \\
? A = \text{alginit}(nf, [-1,-1]); \\
? \text{algdim}(A) \\
%3 = 4 \\
? \text{algdim}(A,1) \\
%4 = 12
\end{align*}
\]

\( \text{algdisc(al)} \)

Given a central simple algebra \( al \) output by alginit, computes the discriminant of the order \( O_0 \) stored in \( al \), that is the determinant of the trace form \( \text{Tr} : O_0 \times O_0 \to \mathbb{Z} \).
CyPari2 Documentation, Release 2.1.3

? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A)
%3 = [[2, [2, 0]~, 1, 2, 1], [3, [3, 0]~, 1, 2, 1]], Vecsmall([0, 1])
? n = algdegree(A);
? D = algdim(A,1);
? h = vector(#h, i, n - gcd(n,h[i]));
n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000

algdivl(al, x, y)
Given two elements \( x \) and \( y \) in \( al \), computes their left quotient \( x \setminus y \) in the algebra \( al \): an element \( z \) such that \( xz = y \) (such an element is not unique when \( x \) is a zerodivisor). If \( x \) is invertible, this is the same as \( x^{-1}y \). Assumes that \( y \) is left divisible by \( x \) (i.e. that \( z \) exists). Also accepts matrices with coefficients in \( al \).

algdivr(al, x, y)
Given two elements \( x \) and \( y \) in \( al \), returns \( xy^{-1} \). Also accepts matrices with coefficients in \( al \).

alggroup(gal, p)
Initializes the group algebra \( K[G] \) over \( K = \mathbb{Q} \) (\( p \) omitted) or \( F_p \) where \( G \) is the underlying group of the galoisinit structure \( gal \). The input \( gal \) is also allowed to be a t_VEC of permutations that is closed under products.

Example:

? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0

alggroupcenter(gal, p, cc)
Initializes the center \( Z(K[G]) \) of the group algebra \( K[G] \) over \( K = \mathbb{Q} \) (\( p \) = 0 or omitted) or \( F_p \) where \( G \) is the underlying group of the galoisinit structure \( gal \). The input \( gal \) is also allowed to be a t_VEC of permutations that is closed under products. Sets \( cc \) to a t_VEC \([elts, conjclass, rep, flag] \) where \( elts \) is a sorted t_VEC containing the list of elements of \( G \), \( conjclass \) is a t_VECSMALL of the same length as \( elts \) containing the index of the conjugacy class of the corresponding element (an integer between 1 and the number of conjugacy classes), and \( rep \) is a t_VECSMALL of length the number of conjugacy classes giving for each conjugacy class the index in \( elts \) of a representative of this conjugacy class. Finally \( flag \) is 1 if and only if the permutation representation of \( G \) is transitive, in which case the \( i \)-th element of \( elts \) is characterized by \( g[1] = i \); this is always the case when \( gal \) is a galoisinit structure. The basis of \( Z(K[G]) \) as output consists of the indicator functions of the conjugacy classes in the ordering given by \( cc \). Example:

? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K); \\ S4
? al = alggroupcenter(gal,,&cc);
? algiscommutative(al)

(continues on next page)

1.1. Guide to real precision in the PARI interface
alghasse(al, pl)

Given a central simple algebra \( al \) output by \texttt{alginit} and a prime ideal or an integer between 1 and \( r_1 + r_2 \), returns a \texttt{t_FRAC} \( h \) : the local Hasse invariant of \( al \) at the place specified by \( pl \).

\begin{verbatim}
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0
\end{verbatim}

alghassef(al)

Given a central simple algebra \( al \) output by \texttt{alginit}, returns a \texttt{t_VEC} \([PR, hf]\) describing the local Hasse invariants at the finite places of the center: \( PR \) is a \texttt{t_VEC} of primes and \( hf \) is a \texttt{t_VECSMALL} of integers modulo the degree \( d \) of \( al \). The Hasse invariant of \( al \) at the primes outside \( PR \) is 0, but \( PR \) can include primes at which the Hasse invariant is 0.

\begin{verbatim}
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~], 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])
\end{verbatim}

alghassei(al)

Given a central simple algebra \( al \) output by \texttt{alginit}, returns a \texttt{t_VECSMALL} \( h_i \) of \( r_1 \) integers modulo the degree \( d \) of \( al \), where \( r_1 \) is the number of real places of the center: the local Hasse invariants of \( al \) at infinite places.

\begin{verbatim}
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
\end{verbatim}

algindex(al, pl)

Returns the index of the central simple algebra \( A \) over \( K \) (as output by \texttt{alginit}), that is the degree \( e \) of the unique central division algebra \( D \) over \( K \) such that \( A \) is isomorphic to some matrix algebra \( M_k(D) \). If \( pl \)
is set, it should be a prime ideal of \( K \) or an integer between 1 and \( r_1 + r_2 \), and in that case return the local index at the place \( pl \) instead.

```pari
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2
```

\textbf{alginit}(B, C, v, \text{maxord})

Initializes the central simple algebra defined by data \( B, C \) and variable \( v \), as follows.

- (multiplication table) \( B \) is the base number field \( K \) in \text{nfinit} form, \( C \) is a “multiplication table” over \( K \). As a \( K \)-vector space, the algebra is generated by a basis \( (e_1 = 1, \ldots, e_n) \); the table is given as a \text{t_VEC} of \( n \) matrices in \( M_n(K) \), giving the left multiplication by the basis elements \( e_i \), in the given basis. Assumes that \( e_1 = 1 \), that the multiplication table is integral, and that \( (\bigoplus_{i=1}^n K e_i, C) \) describes a central simple algebra over \( K \).

```pari
{ mi = [0,-1,0, 0;
 1, 0,0, 0;
 0, 0,0,-1;
 0, 0,1, 0];
 mj = [0, 0,-1,0;
 0, 0, 0,1;
 1, 0, 0,0;
 0,-1, 0,0];
 mk = [0, 0, 0, 0;
 0, 0,-1, 0;
 0, 1, 0, 0;
 1, 0, 0,-1];
 A = alginit(nfinit(y), [matid(4), mi,mj,mk], 0); }
```

represents (in a complicated way) the quaternion algebra \((-1, -1)\mathbb{Q}\). See below for a simpler solution.

- (cyclic algebra) \( B \) is an \text{rnf} structure attached to a cyclic number field extension \( L/K \) of degree \( d \), \( C \) is a \text{t_VEC} [sigma,b] with 2 components: sigma is a \text{t_POLMOD} representing an automorphism generating \( Gal(L/K) \), \( b \) is an element in \( K^* \). This represents the cyclic algebra \((L/K, \sigma, b)\). Currently the element \( b \) has to be integral.

```pari
? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfninit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);
```

defines the cyclic algebra \((L/\mathbb{Q}, \sigma, 3)\), where \( L = \mathbb{Q}(\zeta_5) \) and \( \sigma : \zeta : -- - > \zeta^2 \) generates \( Gal(L/\mathbb{Q}) \).

- (quaternion algebra, special case of the above) \( B \) is an \text{nf} structure attached to a number field \( K \), \( C = [a, b] \) is a vector containing two elements of \( K^* \) with \( a \) not a square in \( K \), returns the quaternion algebra \((a, b)K \). The variable \( v \) (’x by default) must have higher priority than the variable of \( K \cdot \text{pol} \) and is used to represent elements in the splitting field \( L = K[x]/(x^2 - a) \).

1.1. Guide to real precision in the PARI interface
• (algebra/$K$ defined by local Hasse invariants) $B$ is an \texttt{nf} structure attached to a number field $K$, $C = [d, [PR, h_f], h_i]$ is a triple containing an integer $d > 1$, a pair $[PR, h_f]$ describing the Hasse invariants at finite places, and $h_i$ the Hasse invariants at archimedean (real) places. A local Hasse invariant belongs to $(1/d)\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}$, and is given either as a \texttt{t_FRAC} (lift to $(1/d)\mathbb{Z}$), a \texttt{t_INT} or \texttt{t_INTMOD} modulo $d$ (lift to $\mathbb{Z}/d\mathbb{Z}$); a whole vector of local invariants can also be given as a \texttt{t_VECSMALL}, whose entries are handled as \texttt{t_INT}s.

PR is a list of prime ideals (\texttt{prid} structures), and $h_f$ is a vector of the same length giving the local invariants at those maximal ideals. The invariants at infinite real places are indexed by the real roots $K.\text{roots}$: if the Archimedean place $v$ is attached to the $j$-th root, the value of $h_v$ is given by $h_i[j]$, must be 0 or 1/2 (or $d/2$ modulo $d$), and can be nonzero only if $d$ is even.

By class field theory, provided the local invariants $h_v$ sum to 0, up to Brauer equivalence, there is a unique central simple algebra over $K$ with given local invariants and trivial invariant elsewhere. In particular, up to isomorphism, there is a unique such algebra $A$ of degree $d$.

We realize $A$ as a cyclic algebra through class field theory. The variable $v$ ('x by default) must have higher priority than the variable of $K.\text{pol}$ and is used to represent elements in the (cyclic) splitting field extension $L/K$ for $A$.

? nf = nfinit(y^2+1);
? PR = idealprimedec(nf,5); #PR
%2 = 2
? hi = [];
? hf = [PR, [1/3,-1/3]];
? A = alginit(nf, [3,hf,hi]);
? algsplittingfield(A).pol
%6 = x^3 - 21*x + 7

• (matrix algebra, toy example) $B$ is an \texttt{nf} structure attached to a number field $K$, $C = d$ is a positive integer. Returns a cyclic algebra isomorphic to the matrix algebra $M_d(K)$.

In all cases, this function computes a maximal order for the algebra by default, which may require a lot of time. Setting \texttt{maxord} = 0 prevents this computation.

The pari object representing such an algebra $A$ is a \texttt{t_VEC} with the following data:

• A splitting field $L$ of $A$ of the same degree over $K$ as $A$, in \texttt{rnfinit} format, accessed with \texttt{algsplittingfield}.

• The Hasse invariants at the real places of $K$, accessed with \texttt{alghassei}.

• The Hasse invariants of $A$ at the finite primes of $K$ that ramify in the natural order of $A$, accessed with \texttt{alghassef}.

• A basis of an order $O_0$ expressed on the basis of the natural order, accessed with \texttt{algbasis}.

• A basis of the natural order expressed on the basis of $O_0$, accessed with \texttt{alginvbasis}.

• The left multiplication table of $O_0$ on the previous basis, accessed with \texttt{almultable}.

• The characteristic of $A$ (always 0), accessed with \texttt{algchar}.

• The absolute traces of the elements of the basis of $O_0$.

• If $A$ was constructed as a cyclic algebra $(L/K, \sigma, b)$ of degree $d$, a \texttt{t_VEC} $[\sigma, \sigma^2, ..., \sigma^{d-1}]$. The function \texttt{algaut} returns $\sigma$.

• If $A$ was constructed as a cyclic algebra $(L/K, \sigma, b)$, the element $b$, accessed with \texttt{algb}.
• If \( A \) was constructed with its multiplication table \( mt \) over \( K \), the \( \text{t}_\text{VEC} \) of \( \text{t}_\text{MAT} \) \( mt \), accessed with \( \text{algremlmutable} \).

• If \( A \) was constructed with its multiplication table \( mt \) over \( K \), a \( \text{t}_\text{VEC} \) with three components: a \( \text{t}_\text{COL} \) representing an element of \( A \) generating the splitting field \( L \) as a maximal subfield of \( A \), a \( \text{t}_\text{MAT} \) representing an \( L \)-basis \( B \) of \( A \) expressed on the \( \mathbb{Z} \)-basis of \( O_0 \), and a \( \text{t}_\text{MAT} \) representing the \( \mathbb{Z} \)-basis of \( O_0 \) expressed on \( B \). This data is accessed with \( \text{algsplittingdata} \).

\textbf{alginv}(al, x)

Given an element \( x \) in \( al \), computes its inverse \( x^{-1} \) in the algebra \( al \). Assumes that \( x \) is invertible.

\begin{verbatim}
? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~
\end{verbatim}

Also accepts matrices with coefficients in \( al \).

\textbf{alginvbasis}(al)

Given an central simple algebra \( al \) output by \( \text{alginit} \), returns a \( \mathbb{Z} \)-basis of the natural order in \( al \) with respect to the order \( O_0 \) stored in \( al \).

\begin{verbatim}
A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 2]
\end{verbatim}

\textbf{algisassociative}(mt, p)

Returns 1 if the multiplication table \( mt \) is suitable for \( \text{algtableinit}(mt, p) \), 0 otherwise. More precisely, \( mt \) should be a \( \text{t}_\text{VEC} \) of \( n \) matrices in \( M_n(K) \), giving the left multiplications by the basis elements \( e_1, ..., e_n \) (structure constants). We check whether the first basis element \( e_1 \) is 1 and \( e_i(e_j e_k) = (e_i e_j) e_k \) for all \( i, j, k \).

\begin{verbatim}
? mt = [matid(3), [0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1
\end{verbatim}

May be used to check a posteriori an algebra: we also allow \( mt \) as output by \( \text{algtableinit} \) (\( p \) is ignored in this case).

\textbf{algiscommutative}(al)

\( al \) being a table algebra output by \( \text{algtableinit} \) or a central simple algebra output by \( \text{alginit} \), tests whether the algebra \( al \) is commutative.

\begin{verbatim}
? mt = [matid(3), [0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
? algiscommutative(A)
%3 = 0
? mt = [matid(3), [0,0,0;1,1,0;0,0,0],[0,0,1;0,0,0;1,0,1]];
? A = algtableinit(mt,2);
\end{verbatim}

(continues on next page)
algisdivision\((al, \text{pl})\)
Given a central simple algebra \(al\) output by \text{alginit}, tests whether \(al\) is a division algebra. If \(pl\) is set, it should be a prime ideal of \(K\) or an integer between 1 and \(r_1 + r_2\), and in that case tests whether \(al\) is locally a division algebra at the place \(pl\) instead.

\[
\begin{align*}
? \ algiscommutative(A) \\
%6 &= 1
\end{align*}
\]

\textbf{algisdivision} \((al, pl)\)

Given a central simple algebra \(al\) output by \text{alginit}, tests whether \(al\) is a division algebra. If \(pl\) is set, it should be a prime ideal of \(K\) or an integer between 1 and \(r_1 + r_2\), and in that case tests whether \(al\) is locally a division algebra at the place \(pl\) instead.

\[
\begin{align*}
? \ nf = \text{nfinit}(y^2-5); \\
? \ A = \text{alginit}(nf, [-1,y]); \\
? \ \text{algisdivision}(A, 1) \\
%3 &= 1 \\
? \ \text{algisdivision}(A, 2) \\
%4 &= 0 \\
? \ \text{algisdivision}(A, \text{idealprimedec}(nf,2)[1]) \\
%5 &= 1 \\
? \ \text{algisdivision}(A, \text{idealprimedec}(nf,5)[1]) \\
%6 &= 0 \\
? \ \text{algisdivision}(A) \\
%7 &= 1
\end{align*}
\]

\textbf{algisdivl} \((al, x, y, z)\)
Given two elements \(x\) and \(y\) in \(al\), tests whether \(y\) is left divisible by \(x\), that is whether there exists \(z\) in \(al\) such that \(xz = y\), and sets \(z\) to this element if it exists.

\[
\begin{align*}
? \ A = \text{alginit}(\text{nfinit}(y), [-1,1]); \\
? \ \text{algisdivl}(A, [x+2,-x-2]~, [x,1]~) \\
%2 &= 0 \\
? \ \text{algisdivl}(A, [x+2,-x-2]~, [-x,x]~, &z) \\
%3 &= 1 \\
? \ z \\
%4 &= [\text{Mod}(-2/5^*x - 1/5, x^2 + 1), 0]~
\end{align*}
\]

Also accepts matrices with coefficients in \(al\).

\textbf{algisinv} \((al, x, ix)\)
Given an element \(x\) in \(al\), tests whether \(x\) is invertible, and sets \(ix\) to the inverse of \(x\).

\[
\begin{align*}
? \ A = \text{alginit}(\text{nfinit}(y), [-1,1]); \\
? \ \text{algisinv}(A, [-1,1]~) \\
%2 &= 0 \\
? \ \text{algisinv}(A, [1,2]~, &ix) \\
%3 &= 1 \\
? \ ix \\
%4 &= [\text{Mod}(\text{Mod}(-1/3, y), x^2 + 1), \text{Mod}(\text{Mod}(2/3, y), x^2 + 1)]~
\end{align*}
\]

Also accepts matrices with coefficients in \(al\).

\textbf{algisramified} \((al, pl)\)
Given a central simple algebra \(al\) output by \text{alginit}, tests whether \(al\) is ramified, i.e. not isomorphic to a matrix algebra over its center. If \(pl\) is set, it should be a prime ideal of \(K\) or an integer between 1 and \(r_1 + r_2\), and in that case tests whether \(al\) is locally ramified at the place \(pl\) instead.
? nf = nfinit(y^2-5);  \& A = alginit(nf, [-1,y]);  
? algisramified(A, 1)  
%3 = 1  
? algisramified(A, 2)  
%4 = 0  
? algisramified(A, idealprimedec(nf,2)[1])  
%5 = 1  
? algisramified(A, idealprimedec(nf,5)[1])  
%6 = 0  
? algisramified(A)  
%7 = 1 

algissemisimple(al)

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests whether the algebra al is semisimple.

? mt = [matid(3),[0,0,0;1,0,0;0,0,0],[0,0,0;0,0,0;1,0,0],[0,0,0;0,0,0;0,1,0]];  
? A = algtableinit(mt);  
? algissemisimple(A)  
%3 = 0  
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0]; \ quaternion algebra (-1,-1)  
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];  
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0,0;0,0,1,0];  
? mt = [matid(4), m_i, m_j, m_k];  
? A = algtableinit(mt);  
? algissemisimple(A)  
%9 = 1

algissimple(al, ss)

al being a table algebra output by algtableinit or a central simple algebra output by alginit, tests whether the algebra al is simple. If ss = 1, assumes that the algebra al is semisimple without testing it.

? mt = [matid(3),[0,0,0;1,0,0;0,0,0],[0,0,0;0,0,0;0,1,0]];  
? A = algtableinit(mt); \ matrices [*,*; 0,*]  
? algissimple(A)  
%3 = 0  
? algissimple(A,1) \ incorrectly assume that A is semisimple  
%4 = 1  
? m_i=[0,-1,0,0;1,0,0,0;0,0,0,-1;0,0,1,0];  
? m_j=[0,0,-1,0;0,0,0,1;1,0,0,0;0,-1,0,0];  
? m_k=[0,0,0,-1;0,0,-1,0;0,1,0;0,0,1,0];  
? mt = [matid(4), m_i, m_j, m_k];  
? A = algtableinit(mt); \ quaternion algebra (-1,-1)  
? algissimple(A)  
%10 = 1  
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];  
? A = algtableinit(mt,2); \ direct product F_4 x F_2  
? algissimple(A)  
%13 = 0 

algissplit(al, pl)

Given a central simple algebra al output by alginit, tests whether al is split, i.e. isomorphic to a matrix
algebra over its center. If \( pl \) is set, it should be a prime ideal of \( K \) or an integer between 1 and \( r_1 + r_2 \), and in that case tests whether \( al \) is locally split at the place \( pl \) instead.

```plaintext
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0
```

**alglatadd** \((al, lat1, lat2, ptinter)\)

Given an algebra \( al \) and two lattices \( lat1 \) and \( lat2 \) in \( al \), computes the sum \( lat1 + lat2 \). If \( ptinter \) is present, set it to the intersection \( lat1 \cap lat2 \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al, [1,1,0,0,0,0,0,0]~);
? lat2 = alglatnf(al, [1,0,1,0,0,0,0,0]~);
? latsum = alglatadd(al, lat1, lat2, &latinter);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
```

**alglatcontains** \((al, lat, x, ptc)\)

Given an algebra \( al \), a lattice \( lat \) and \( x \) in \( al \), tests whether \( x \in lat \). If \( ptc \) is present, sets it to the \( t\_COL \) of coordinates of \( x \) in the basis of \( lat \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? al = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglatnf(al, a1);
? alglatcontains(al, lat1, a1, &c)
%4 = 1
? c
%5 = [-1, -2, -1, 1, 2, 0, 1, 1]~
```

**alglatelement** \((al, lat, c)\)

Given an algebra \( al \), a lattice \( lat \) and a \( t\_COL \) \( c \), returns the element of \( al \) whose coordinates on the \( \mathbb{Z} \)-basis of \( lat \) are given by \( c \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? al = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglatnf(al, a1);
? c = [1..8]~;
? elt = alglatelement(al, lat1, c);
? alglatcontains(al, lat1, elt, &c2)
%6 = 1
? c==c2
%7 = 1
```
**alglatnfnf** \((al, m, d)\)

Given an algebra \(al\) and a matrix \(m\) with columns representing elements of \(al\), returns the lattice \(L\) generated by the columns of \(m\). If provided, \(d\) must be a rational number such that \(L\) contains \(d\) times the natural basis of \(al\). The argument \(m\) is also allowed to be a t_VEC of t_MAT, in which case \(m\) is replaced by the concatenation of the matrices, or a t_COL, in which case \(m\) is replaced by its left multiplication table as an element of \(al\).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1,1/3,-1,1,1]~;
? mt = algmatrix(al,a,1);
? lat = alglatnfnf(al,mt);
? lat[2]
%5 = 1/6
```

**alglatindex** \((al, lat1, lat2)\)

Given an algebra \(al\) and two lattices \(lat1\) and \(lat2\) in \(al\), computes the generalized index of \(lat1\) relative to \(lat2\), i.e. \(\|lat2/lat1 ∩ lat2\|/\|lat1/lat1 ∩ lat2\|\).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnfnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglatnfnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,lat1,lat2) %4 = 1
? lat1==lat2
%5 = 0
```

**alglatinter** \((al, lat1, lat2, ptsum)\)

Given an algebra \(al\) and two lattices \(lat1\) and \(lat2\) in \(al\), computes the intersection \(lat1 ∩ lat2\). If \(ptsum\) is present, sets it to the sum \(lat1 + lat2\).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnfnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglatnfnf(al,[1,0,1,0,0,0,0,0]~);
? latinter = alglatinter(al,lat1,lat2,&latsum);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
```

**alglatlefttransporter** \((al, lat1, lat2)\)

Given an algebra \(al\) and two lattices \(lat1\) and \(lat2\) in \(al\), computes the left transporter from \(lat1\) to \(lat2\), i.e. the set of \(x \in al\) such that \(x.lat1 ⊂ lat2\).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnfnf(al,[1,-1,0,1,2,0,5,2]~);
? lat2 = alglatnfnf(al,[0,1,-2,-1,0,0,0,0]~);
? tr = alglatlefttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,1,0]~);
? alglatsubset(al,alglatmul(al,a,lat1),lat2)
%6 = 1
? alglatsubset(al,alglatmul(al,lat1,a),lat2)
%7 = 0
```
\textbf{alglatmul}(al, lat1, lat2)

Given an algebra \textit{al} and two lattices \textit{lat1} and \textit{lat2} in \textit{al}, computes the lattice generated by the products of elements of \textit{lat1} and \textit{lat2}. One of \textit{lat1} and \textit{lat2} is also allowed to be an element of \textit{al}; in this case, computes the product of the element and the lattice.

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? al = [1, -1, 0, 1, 2, 0, 1, 2];
? lat1 = alglatnf(al, a1);
? lat2 = alglatnf(al, a2);
? lat3 = alglatmul(al, lat1, lat2);
? matdet(lat3[1])
%7 = 29584
? lat3 == alglatnf(al, algmul(al, a1, a2))
%8 = 0
? lat3 == alglatmul(al, lat1, a2)
%9 = 0
? lat3 == alglatmul(al, a1, lat2)
%10 = 0
\end{verbatim}

\textbf{alglatrighttransporter}(al, lat1, lat2)

Given an algebra \textit{al} and two lattices \textit{lat1} and \textit{lat2} in \textit{al}, computes the right transporter from \textit{lat1} to \textit{lat2}, i.e. the set of $x \in al$ such that $\text{lat1}.x \subseteq \text{lat2}$.

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al, matdiagonal([1,3,7,1,2,8,5,2]));
? lat2 = alglatnf(al, matdiagonal([5,3,8,1,9,8,7,1]));
? tr = alglatrighttransporter(al, lat1, lat2);
? a = alglatelement(al, tr, [0,0,0,0,0,0,0,1]-);
? alglatsubset(al, alglatmul(al, a, lat1), lat2)
%6 = 1
? alglatsubset(al, alglatmul(al, lat1, a), lat2)
%7 = 0
\end{verbatim}

\textbf{alglatsubset}(al, lat1, lat2, ptindex)

Given an algebra \textit{al} and two lattices \textit{lat1} and \textit{lat2} in \textit{al}, tests whether $\text{lat1} \subseteq \text{lat2}$. If it is true and \textit{ptindex} is present, sets it to the index of \textit{lat1} in \textit{lat2}.

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al, [1,1,0,0,0,0,0,0]-);
? lat2 = alglatnf(al, [1,0,1,0,0,0,0,0]-);
? alglatsubset(al, lat1, lat2)
%4 = 0
? latsum = alglatadd(al, lat1, lat2);
? alglatsubset(al, lat1, latsum, &index)
%6 = 1
? index
%7 = 4
\end{verbatim}

\textbf{algmakeintegral}(mt, maps)

\textit{mt} being a multiplication table over $\mathbb{Q}$ in the same format as the input of \textbf{algtableinit}, computes an integral multiplication table $mt2$ for an isomorphic algebra. When \textit{maps} = 1, returns a tVEC $[mt2, S, T]$ where $S$ and $T$ are matrices respectively representing the map from the algebra defined by \textit{mt} to the one defined by \textit{mt2} and its inverse.
```plaintext
? mt = [matid(2),[0,-1/4;1,0]];
? algtableinit(mt);
*** at top-level: algtableinit(mt)
*** ^--------------
*** algtableinit: domain error in algtableinit: denominator(mt) != 1

? mt2 = algmakeintegral(mt);
? al = algtableinit(mt2);
? algisassociative(al)
%4 = 1
? [mt2, S, T] = algmakeintegral(mt,1);
? S
%6 =
[1 0]
[0 1/4]
? T
%7 =
[1 0]
[0 4]

? vector(#mt, i, S * (mt * T[,i]) * T) == mt2
%8 = 1

algmul(al, x, y)

Given two elements \(x\) and \(y\) in \(al\), computes their product \(xy\) in the algebra \(al\).

```
algneg(al, x)
Given an element x in al, computes its opposite \(-x\) in the algebra al.

```
? A = alginit(nfinit(y), [-1,-1]);
? algneg(A,[1,1,0,0]~)
%2 = [-1, -1, 0, 0]~
```

Also accepts matrices with coefficients in al.

algnorm(al, x, abs)
Given an element x in al, computes its norm. If al is a table algebra output by algtableinit or if abs = 1, returns the absolute norm of x, which is an element of \(\mathbb{F}_p\) of \(\mathbb{Q}\); if al is a central simple algebra output by alginit and abs = 0 (default), returns the reduced norm of x, which is an element of the center of al.

```
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1];
? A = algtableinit(mt,19);
? algnorm(A,[0,-2,3]~)
%3 = 18
```

Also accepts a square matrix with coefficients in al.

algpoleval(al, T, b)
Given an element b in al and a polynomial T in \(K[X]\), computes \(T(b)\) in al. Also accepts as input a \(\text{t_VEC} [b, mb]\) where mb is the left multiplication table of b.

```
? nf = nfinit(y^2-5);
? al = alginit(nf,[y,-1]);
? b = [1..8]~;
? pol = algcharpoly(al,b,,1);
? algpoleval(al,pol,b)==\0
%5 = 1
```

algpow(al, x, n)
Given an element x in al and an integer n, computes the power \(x^n\) in the algebra al.
Also accepts a square matrix with coefficients in al.

\textbf{algprimesubalg}(al)

\textit{al} being the output of \texttt{algtableinit} representing a semisimple algebra of positive characteristic, returns a basis of the prime subalgebra of \textit{al}. The prime subalgebra of \textit{al} is the subalgebra fixed by the Frobenius automorphism of the center of \textit{al}. It is abstractly isomorphic to a product of copies of \(\mathbb{F}_p\).

\texttt{? mt = \begin{bmatrix} \text{matid}(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1] \end{bmatrix};
? A = \text{algtableinit}(mt,2);
? alprimesubalg(A)}
\%
\texttt{3 = \begin{bmatrix} [1 \ 0] \\
[0 \ 1] \\
[0 \ 0] \end{bmatrix}}

\textbf{algquotient}(al, I, maps)

\textit{al} being a table algebra output by \texttt{algtableinit} and \textit{I} being a basis of a two-sided ideal of \textit{al} represented by a matrix, returns the quotient \(\textit{al}/\textit{I}\). When \texttt{maps = 1}, returns a \texttt{t_VEC} \([\textit{al}/\textit{I}, \text{proj}, \text{lift}]\) where \texttt{proj} and \text{lift} are matrices respectively representing the projection map and a section of it.

\texttt{? mt = \begin{bmatrix} \text{matid}(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1] \end{bmatrix};
? A = \text{algtableinit}(mt,2);
? AQ = \text{algquotient}(A, [0;1;0]);
? algdim(AQ)}
\%
\texttt{4 = 2}

\textbf{algradical}(al)

\textit{al} being a table algebra output by \texttt{algtableinit}, returns a basis of the Jacobson radical of the algebra \textit{al} over its prime field (\(\mathbb{Q}\) or \(\mathbb{F}_p\)).

Here is an example with \(A = \mathbb{Q}[x]/(x^2)\), with the basis \((1, x)\):

\texttt{? mt = \begin{bmatrix} \text{matid}(2), [0,0;1,0] \end{bmatrix};
? A = \text{algtableinit}(mt);
? algradical(A) \ \ \texttt{\textbackslash \textbackslash} = \texttt{(x)}
\%
\texttt{3 = \begin{bmatrix} [0] \\
[1] \end{bmatrix}}

Another one with \(2\times2\) upper triangular matrices over \(\mathbb{Q}\), with basis \(I_2, a = [0,1;0,0]\) and \(b = [0,0;0,1]\), such that \(a^2 = 0, ab = a, ba = 0, b^2 = b\):

\texttt{? mt = \begin{bmatrix} \text{matid}(3), [0,0,0;1,0;0,0], [0,0;0,0;0,1,0,1] \end{bmatrix};
? A = \text{algtableinit}(mt);
? algradical(A) \ \ \texttt{\textbackslash \textbackslash} = \texttt{(a)}
\%
\texttt{6 = \begin{bmatrix} [0] \end{bmatrix}}

\texttt{(continues on next page)}
algramifiedplaces(al)

Given a central simple algebra $al$ output by alginit, returns a t_VEC containing the list of places of the center of $al$ that are ramified in $al$. Each place is described as an integer between 1 and $r_1$ or as a prime ideal.

```plaintext
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0]~, 1, 2, 1]]
```

algrandom(al, b)

Given an algebra $al$ and an integer $b$, returns a random element in $al$ with coefficients in $[-b, b]$.

algrelmultable(al)

Given a central simple algebra $al$ output by alginit defined by a multiplication table over its center (a number field), returns this multiplication table.

```plaintext
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
 1,0,0,0;
 0,0,0,a;
 0,0,1,0];}
? {m_j = [0, 0,b, 0;
 0, 0,0,-b;
 1, 0,0, 0;
 0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
 0, 0,b, 0;
 0,-a,0, 0;
 1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);
? M[2] == m_i
%8 = 1
? M[3] == m_j
%9 = 1
? M[4] == m_k
%10 = 1
```

algsimpledec(al, maps)

$al$ being the output of algtableinit, returns a t_VEC $[J, [al_1, al_2, ..., al_n]]$ where $J$ is a basis of the Jacobson radical of $al$ and $al/J$ is isomorphic to the direct product of the simple algebras $al_i$. When $maps = 1$, each $al_i$ is replaced with a t_VEC $[al_i, proj_i, lift_i]$ where $proj_i$ and $lift_i$ are matrices respectively representing the projection map $al \to al_i$ and a section of it. Modulo $J$, the images of the $lift_i$ form a direct sum in $al/J$, so that the images of $1_i$ under $lift_i$ are central primitive idempotents of $al/J$. The factors are sorted by increasing dimension, then increasing dimension of the center. This ensures that the ordering of the isomorphism classes of the factors is deterministic over finite fields, but not necessarily over $\mathbb{Q}$.
algsplit(al, v)

If \( al \) is a table algebra over \( \mathbb{F}_p \), output by algtableinit that represents a simple algebra, computes an isomorphism between \( al \) and a matrix algebra \( M_d(\mathbb{F}_{p^n}) \) where \( N = nd^2 \) is the dimension of \( al \). Returns a \( t{\text{\_VEC}} \) \([\text{map}, \text{mapi}]\), where:

- \( \text{map} \) is a \( t{\text{\_VEC}} \) of \( N \) matrices of size \( d \times d \) with \( t{\text{\_FFELT}} \) coefficients using the variable \( v \), representing the image of the basis of \( al \) under the isomorphism.
- \( \text{mapi} \) is an \( N \times N \) matrix with \( t{\text{\_INT}} \) coefficients, representing the image in \( al \) by the inverse isomorphism of the basis \( (b_i) \) of \( M_d(\mathbb{F}_p[\alpha]) \) (where \( \alpha \) has degree \( n \) over \( \mathbb{F}_p \)) defined as follows: let \( E_{i,j} \) be the matrix having all coefficients 0 except the \( (i,j) \)-th coefficient equal to \( 1 \), and define

\[
b_{i_3+n(i_2+d_i+1)} = E_{i_1+1,i_2+1}(\alpha^{i_3}),
\]

where : \( \text{math} : '0 < i_1, i_2 < d' \) and : \( \text{math} : '0 < i_3 < n' \).

Example:

```pari
? al0 = alginit(nfinit(y^2+7), [-1,-1]);
? al = algtableinit(algmultable(al0), 3); \ \ isomorphic to M_2(\mathbb{F}_9)
? [map, mapi] = algsplit(al, 'a);
? x = [1,2,1,0,0,0,0,0]~; fx = map*x
%4 =
[2*a 0]
[0 2]
? y = [0,0,0,0,1,0,0,1]~; fy = map*y
%5 =
[1 2*a]
[2 a + 2]
? map*algmul(al,x,y) == fx*fy
%6 = 1
? map*mapi[,6]
%7 =
[0 0]
[a 0]

Warning. If \(al \) is not simple, algsplit(al) can trigger an error, but can also run into an infinite loop. Example:

```pari
? al = alginit(nfinit(y),[-1,-1]); \ \ ramified at 2
? al2 = algtableinit(algmultable(al),2); \ \ maximal order modulo 2
? algsplit(al2); \ \ not semisimple, infinite loop
```

algsplittingdata(al)

Given a central simple algebra \(al \) output by alginit defined by a multiplication table over its center \(K \) (a number field), returns data stored to compute a splitting of \(al \) over an extension. This data is a \(t{\text{_VEC}} \) \([t,Lbas,Lbasinv] \) with 3 components:

- an element \(t \) of \(al \) such that \(L = K(t) \) is a maximal subfield of \(al \);
- a matrix \(Lbas \) expressing a \(L \)-basis of \(al \) (given an \(L \)-vector space structure by multiplication on the right) on the integral basis of \(al \);
- a matrix \(Lbasinv \) expressing the integral basis of \(al \) on the previous \(L \)-basis.
CyPari2 Documentation, Release 2.1.3

nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
1,0,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0,0,b,0;
0,0,0,-b;
1,0,0,0;
0,-1,0,0];}
? {m_k = [0,0,0,-a*b;
0,0,b,0;
0,-a,0,0;
1,0,0,0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
algsplittingfield(A).pol
%8 = x^2 - y

algsplittingfield(al)

Given a central simple algebra \(al \) output by \texttt{alginit}, returns an \texttt{rnf} structure: the splitting field of \(al \) that is stored in \(al \), as a relative extension of the center.

\[
\begin{align*}
nf & = nfinit(y^3-5); \\
a & = y; \ b = y^2; \\
{m_i} & = [0,a,0,0; 1,0,0,0; 0,0,0,a; 0,0,1,0]; \\
{m_j} & = [0,0,b,0; 0,0,0,-b; 1,0,0,0; 0,-1,0,0]; \\
{m_k} & = [0,0,0,-a*b; 0,0,b,0; 0,-a,0,0; 1,0,0,0]; \\
mt & = [matid(4), m_i, m_j, m_k]; \\
A & = alginit(nf,mt,'x); \\
algsplittingfield(A).pol \\
%8 & = x^2 - y
\end{align*}
\]

\(\text{algsqr}(\text{al}, x) \)

Given an element \(x \) in \(al \), computes its square \(x^2 \) in the algebra \(al \).

? A = alginit(nfinit(y), [-1,-1]);
? algsqr(A,[1,0,2,0]~)
%2 = [-3, 0, 4, 0]~

Also accepts a square matrix with coefficients in \(al \).
algsub\((a_l, x, y) \)**

Given two elements \(x\) and \(y\) in \(a_l\), computes their difference \(x - y\) in the algebra \(a_l\).

```plaintext
? A = alginit(nfinit(y), [-1,-1]);
? algsub(A,[1,1,0,0]~,[1,0,1,0]~)
%2 = [0, 1, -1, 0]~
```

Also accepts matrices with coefficients in \(a_l\).

algsualg\((a_l, B) \)**

\(a_l\) being a table algebra output by **algtableinit** and \(B\) being a basis of a subalgebra of \(a_l\) represented by a matrix, computes an algebra \(a_l2\) isomorphic to \(B\). Returns \([a_l2, B2]\) where \(B2\) is a possibly different basis of the subalgebra \(a_l2\), with respect to which the multiplication table of \(a_l2\) is defined.

```plaintext
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? B = algsualg(A,[1,0; 0,0; 0,1]);
? algdim(A)
%4 = 3
? algdim(B[1])
%5 = 2
? m = matcompanion(x^4+1);
? mt = [m^i | i <- [0..3]];
? al = algtableinit(mt);
? B = [1,0;0,0;0,1/2;0,0];
? a2l = algsualg(al,B);
? algdim(a2l[1])
? a2l[2]
%13 =
[1 0]
[0 0]
[0 1]
[0 0]
```

algtableinit\((mt, p) \)**

Initializes the associative algebra over \(K = \mathbb{Q}\) (\(p\) omitted) or \(\mathbb{F}_p\) defined by the multiplication table \(mt\). As a \(K\)-vector space, the algebra is generated by a basis \((e_1, e_2, ..., e_n)\); the table is given as a \text{t_VEC} of \(n\) matrices in \(M_n(K)\), giving the left multiplication by the basis elements \(e_i\), in the given basis. Assumes that \(e_1 = 1\), that \(Ke_1 \oplus ... \oplus Ke_n\) describes an associative algebra over \(K\), and in the case \(K = \mathbb{Q}\) that the multiplication table is integral. If the algebra is already known to be central and simple, then the case \(K = \mathbb{F}_p\) is useless, and one should use **alginit** directly.

The point of this function is to input a finite dimensional \(K\)-algebra, so as to later compute its radical, then to split the quotient algebra as a product of simple algebras over \(K\).

The pari object representing such an algebra \(A\) is a \text{tVEC} with the following data:

- The characteristic of \(A\), accessed with **algchar**.
- The multiplication table of \(A\), accessed with **algmultable**.
- The traces of the elements of the basis.
A simple example: the 2×2 upper triangular matrices over \mathbb{Q}, generated by I_2, $a = [0; 1; 0, 0]$ and $b = [0, 0; 0, 1]$, such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$:

```
? mt = [matid(3),[0,0,0;1,1,1;0,0,0],[0,0,0,0,0,0;1,0,1,0,1,0]];  
? A = algtableinit(mt);  
? algradical(A) \ \ = (a)  
\%6 =  
[0]  
[1]  
[0]  
\%7 =  
[1]  
[0]  
[0]  
```

`algtensor(all1, all2, maxord)`

Given two algebras `all1` and `all2`, computes their tensor product. Computes a maximal order by default. Prevent this computation by setting `maxord = 0`.

Currently only implemented for cyclic algebras of coprime degree over the same center K, and the tensor product is over K.

`algtomatrix(all, x, abs)`

Given an element x in `all`, returns the image of x under a homomorphism to a matrix algebra. If `all` is a table algebra output by `algtableinit` or if `abs = 1`, returns the left multiplication table on the integral basis; if `all` is a central simple algebra and `abs = 0`, returns $\phi(x)$ where $\phi : A \otimes_K L \rightarrow M_d(L)$ (where d is the degree of the algebra and L is an extension of L with $[L : K] = d$) is an isomorphism stored in `all`. Also accepts a square matrix with coefficients in `all`.

```
? A = alginit(nfinit(y), [-1,-1]);  
? algtomatrix(A,[0,0,0,2]~)  
\%2 =  
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]  
[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]  
\%2 =  
[0 -1 1 0]  
[1 0 1 1]  
[0 0 1 1]  
[0 0 -2 -1]  
\%3 =  
[-1 0 0 -1]  
[-1 0 1 0]  
(continues on next page)
Also accepts matrices with coefficients in \( al \).

**algtrace(al, x, abs)**

Given an element \( x \) in \( al \), computes its trace. If \( al \) is a table algebra output by `algtableinit` or if \( abs = 1 \), returns the absolute trace of \( x \), which is an element of \( \mathbb{F}_p \) or \( \mathbb{Q} \); if \( al \) is the output of `alginit` and \( abs = 0 \) (default), returns the reduced trace of \( x \), which is an element of the center of \( al \).

```plaintext
? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
 %2 = 11
? algtrace(A,[5,0,0,1]~,1)
 %3 = 22
? nf = nfinit(y^2-5);
? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*y]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? t = algtrace(A,a)
 %7 = Mod(2*y + 2, y^2 - 5)
? algtrace(A,a,1)
 %8 = 8
? algdegree(A)*nfelttrace(nf,t)
 %9 = 8
```

Also accepts a square matrix with coefficients in \( al \).

**algtype(al)**

Given an algebra \( al \) output by `alginit` or by `algtableinit`, returns an integer indicating the type of algebra:

- 0: not a valid algebra.
- 1: table algebra output by `algtableinit`.
- 2: central simple algebra output by `alginit` and represented by a multiplication table over its center.
- 3: central simple algebra output by `alginit` and represented by a cyclic algebra.

```plaintext
? algtype([])
 %1 = 0
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
 %4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0; 0,0,a; 1,0,0]~};
? {m_j = [0, 0,b, 0; 0,0,1,0]~};
? {m_j = [0, 0,b, 0; 0,0,-b];
```
\begin{verbatim}
1, 0,0, 0;
0, -1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3
\end{verbatim}

apply($f, A$)

Apply the \texttt{t\_CLOSURE} $f$ to the entries of $A$.

- If $A$ is a scalar, return $f(A)$.
- If $A$ is a polynomial or power series $\sum a_i x^i (+O(x^N))$, apply $f$ on all coefficients and return $\sum f(a_i)x^i (+O(x^N))$.
- If $A$ is a vector or list $[a_1, \ldots, a_n]$, return the vector or list $[f(a_1), \ldots, f(a_n)]$. If $A$ is a matrix, return the matrix whose entries are the $f(A[i,j])$.

\begin{verbatim}
? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x+ 2)
%3 = 16*x^2 + 9*x + 4
? apply(sign, 2 - 3* x + 4*x^2 + O(x^3))
%4 = 1 - x + x^2 + O(x^3)
\end{verbatim}

Note that many functions already act componentwise on vectors or matrices, but they almost never act on lists; in this case, \texttt{apply} is a good solution:

\begin{verbatim}
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^--------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
\end{verbatim}

Remark. For $v$ a \texttt{t\_VEC}, \texttt{t\_COL}, \texttt{t\_VECSMALL}, \texttt{t\_LIST} or \texttt{t\_MAT}, the alternative set-notations

\begin{verbatim}
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
\end{verbatim}

are available as shortcuts for
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))

respectively:

? L = List([Mod(1,3), Mod(2,4)]);
? [ lift(x) | x<-L ]
%2 = [1, 2]

arg(x, precision)
Argument of the complex number $x$, such that $-\pi < \arg(x) \leq \pi$.

arity(C)
Return the arity of the closure $C$, i.e., the number of its arguments.

? f1(x,y=0)=x+y;
? arity(f1)
%1 = 2
? f2(t,s[..])=print(t,";",s);
? arity(f2)
%2 = 2

Note that a variadic argument, such as $s$ in $f2$ above, is counted as a single argument.

asin(x, precision)
Principal branch of $\sin^{-1}(x) = -i\log(ix + \sqrt{1-x^2})$. In particular, $\Re(asin(x)) \in [-\pi/2, \pi/2]$ and if $x \in \mathbb{R}$ and $|x| > 1$ then $asin(x)$ is complex. The branch cut is in two pieces: $]-oo,-1]$, continuous with quadrant II, and $[1,+oo[ \text{ continuous with quadrant IV.}$ The function satisfies $iasin(x) = asinh(ix)$.

asinh(x, precision)
Principal branch of $\sinh^{-1}(x) = \log(x + \sqrt{1+x^2})$. In particular $\Im(asinh(x)) \in [-\pi/2, \pi/2]$. The branch cut is in two pieces: $]-oo,-i]$, continuous with quadrant III and $[+i,+oo[ \text{ continuous with quadrant I.}$

asympnum(expr, alpha, precision)
Asymptotic expansion of $expr$, corresponding to a sequence $u(n)$, assuming it has the shape

$$u(n) \sum_{i>0} a_i n^{-i\alpha}$$

with rational coefficients $a_i$ with reasonable height; the algorithm is heuristic and performs repeated calls to limitnum, with alpha as in limitnum. As in limitnum, $u(n)$ may be given either by a closure $n : \dots u(n) >$ or as a closure $N : \dots u(n) > [u(1), ..., u(N)]$, the latter being often more efficient.

? f(n) = n! / (n^n*exp(-n)*sqrt(n));
? asympnum(f)
%2 = [] \ failure !
? localprec(57); l = limitnum(f)
%3 = 2.5066282746310005024157652848110452530
? asympnum(n->f(n)/l) \ normalize
%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880, 5246819/75246796800]

and we indeed get a few terms of Stirling’s expansion. Note that it definitely helps to normalize with a limit computed to higher accuracy (as a rule of thumb, multiply the bit accuracy by 1.612):

1.1. Guide to real precision in the PARI interface 45
We treat again the example of the Motzkin numbers \( M_n \) given in \texttt{limitnum}:

\[
\frac{[M_k, M_{k+2}, \ldots, M_{k+N}]}{(3^n / n^{3/2})}
\]

\begin{verbatim}
? vM(N, k = 1) =
{ my(q = k*N, V);
  if (q == 1, return ([1/3]));
  V = vector(q); V[1] = V[2] = 1;
  for(n = 2, q - 1,
    V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
  f = (n -> 3^n / n^(3/2));
  return (vector(N, n, V[n*k] / f(n*k)));}
? localprec(100); l = limitnum(n->vM(n,10)); \ 3/sqrt(12*Pi)
? \p38
? asympnum(n->vM(n,10)/l)
%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]
\end{verbatim}

If alpha is not a rational number, loss of accuracy is expected, so it should be precomputed to double accuracy, say:

\begin{verbatim}
? \p38
? asympnum(n->log(1+1/n^Pi), Pi)
%1 = [0, 1, -1/2, 1/3, -1/4, 1/5]
? localprec(76); a = Pi;
? asympnum(n->log(1+1/n^Pi), a) \ more terms
%3 = [0, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]
? asympnum(n->log(1+1/sqrt(n)), 1/2) \ many more terms
%4 = 49
\end{verbatim}

The expression is evaluated for \( n = 1, 2, \ldots, N \) for an \( N = O(B) \) if the current bit accuracy is \( B \). If it is not defined for one of these values, translate or rescale accordingly:

\begin{verbatim}
? asympnum(n->log(1-1/n)) \ can't evaluate at n = 1 !
*** at top-level: asympnum(n->log(1-1/n))
*** ^-------------------------------
*** in function asympnum: log(1-1/n)
*** ^-----
*** log: domain error in log: argument = 0
? asympnum(n->log(1-1/(2^n)))
%5 = [0, 1/2, 1/8, 1/24, ...]
? asympnum(n->log(1-1/(n+1)))
%6 = [0, 1, -1/2, 1/3, -1/4, ...]
\end{verbatim}

\texttt{asympnumraw(expr, N, alpha, precision)}

Return the \( N + 1 \) first terms of asymptotic expansion of \( expr \), corresponding to a sequence \( u(n) \), as floating point numbers. Assume that the expansion has the shape

\[
u(n) \sum_{i=0}^\alpha a_i n^{-i\alpha}
\]

and return approximation of \([a_0, a_1, \ldots, a_N]\). The algorithm is heuristic and performs repeated calls to
limitnum, with alpha as in limitnum. As in limitnum, \( u(n) \) may be given either by a closure \( n \rightarrow u(n) \) or as a closure \( N : n \rightarrow [u(1), ..., u(N)] \), the latter being often more efficient. This function is related to, but more flexible than, asympnum, which requires rational asymptotic expansions.

\[
\text{? } f(n) = n! / (n^n \exp(-n) \sqrt{n})
\]
\[
\text{? } \text{asympnum}(f)
\]
\[
\%2 = [] \backslash \text{ failure !}
\]
\[
\text{? } v = \text{asympnumraw}(f, 10);
\]
\[
\%4 = 0.E-37
\]
\[
\text{? } \text{bestappr}(v / v[1], 2^60)
\]
\[
\%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880,...]
\]

and we indeed get a few terms of Stirling’s expansion (the first 9 terms are correct). If \( u(n) \) has an asymptotic expansion in \( n^{-\alpha} \) with \( \alpha \) not an integer, the default \( \alpha = 1 \) is inaccurate:

\[
\text{? } f(n) = (1+1/n^{7/2})^{n^{7/2}}
\]
\[
\text{? } v1 = \text{asympnumraw}(f,10);
\]
\[
\%8 = 4.62... E-12
\]
\[
\text{? } v2 = \text{asympnumraw}(f,10,7/2);
\]
\[
\%7 \ 0.E-37
\]

As in \text{asympnum}, if \( \alpha \) is not a rational number, loss of accuracy is expected, so it should be precomputed to double accuracy, say.

\text{atan}(x, \text{precision})

Principal branch of \( \tan^{-1}(x) = \log((1 + ix)/(1 - ix))/2i \). In particular the real part of \( \text{atan}(x) \) belongs to \([-\pi/2, \pi/2]\). The branch cut is in two pieces: \([-i\infty, -i], \text{continuous with quadrant IV, and } [i, +i\infty]\) continuous with quadrant II. The function satisfies \( \text{atan}(x) = -i \text{atanh}(ix) \) for all \( x \neq i \).

\text{atanh}(x, \text{precision})

Principal branch of \( \tanh^{-1}(x) = \log((1 + x)/(1 - x))/2 \). In particular the imaginary part of \( \text{atanh}(x) \) belongs to \([-\pi/2, \pi/2]\); if \( x \in \mathbb{R} \) and \( |x| > 1 \) then \( \text{atanh}(x) \) is complex.

\text{bernfraction}(n)

Bernoulli number \( B_n \), where \( B_0 = 1, B_1 = -1/2, B_2 = 1/6, ... \), expressed as a rational number. The argument \( n \) should be a nonnegative integer. The function \text{bervec} creates a cache of successive Bernoulli numbers which greatly speeds up later calls to \text{bernfraction}:

\[
\text{? } \text{bernfraction}(20000);\text{time } = 107 \text{ ms.}
\]
\[
\text{? } \text{bervec}(10000); \backslash \text{ cache B_0, B_2, ..., B_20000}
\]
\[
\text{time } = 35,957 \text{ ms.}
\]
\[
\text{? } \text{bernfraction}(20000); \backslash \text{ now instantaneous}
\]

\text{bernpol}(n, v)

Bernoulli polynomial \( B_n \) in variable \( v \).

\[
\text{? } \text{bernpol}(1)
\]
\[
\%1 = x - 1/2
\]
\[
\text{? } \text{bernpol}(3)
\]
\[
\%2 = x^3 - 3/2*x^2 + 1/2*x
\]
bernreal(n, precision)

Bernoulli number $B_n$, as bernfrac, but $B_n$ is returned as a real number (with the current precision). The argument $n$ should be a nonnegative integer. The function slows down as the precision increases:

\begin{verbatim}
\p1000
? bernreal(200000);
time = 5 ms.
\p1000
? bernreal(200000);
time = 18 ms.
? \p10000
? bernreal(200000);
time = 84 ms.
\end{verbatim}

bernvec(n)

Returns a vector containing, as rational numbers, the Bernoulli numbers $B_0, B_2, \ldots, B_{2n}$:

\begin{verbatim}
? bernvec(5) \ B_0, B_2..., B_10
%1 = [1, 1/6, -1/30, 1/42, -1/30, 5/66]
\end{verbatim}

This routine uses a lot of memory but is much faster than repeated calls to bernfrac:

\begin{verbatim}
? forstep(n = 2, 10000, 2, bernfrac(n))
time = 18,245 ms.
? bernvec(5000);
time = 1,338 ms.
\end{verbatim}

The computed Bernoulli numbers are stored in an incremental cache which makes later calls to bernfrac and bernreal instantaneous in the cache range: re-running the same previous bernfrac s after the bernvec call gives:

\begin{verbatim}
? forstep(n = 2, 10000, 2, bernfrac(n))
time = 1 ms.
\end{verbatim}

The time and space complexity of this function are $O(n^2)$; in the feasible range $n \leq 10^5$ (requires about two hours), the practical time complexity is closer to $O(n \log_2 n)$.

besselh1(nu, x, precision)

$H^1$-Bessel function of index $nu$ and argument $x$.

besselh2(nu, x, precision)

$H^2$-Bessel function of index $nu$ and argument $x$.

besseli(nu, x, precision)

$I$-Bessel function of index $nu$ and argument $x$. If $x$ converts to a power series, the initial factor $(x/2)^\nu/\Gamma(\nu + 1)$ is omitted (since it cannot be represented in PARI when $\nu$ is not integral).

besselj(nu, x, precision)

$J$-Bessel function of index $nu$ and argument $x$. If $x$ converts to a power series, the initial factor $(x/2)^\nu/\Gamma(\nu + 1)$ is omitted (since it cannot be represented in PARI when $\nu$ is not integral).

besseljh(n, x, precision)

$J$-Bessel function of half integral index. More precisely, besseljh(n, x) computes $J_{n+1/2}(x)$ where $n$
must be of type integer, and \( x \) is any element of \( \mathbb{C} \). In the present version 2.13.3, this function is not very accurate when \( x \) is small.

**besselk\((nu, x, precision)\)**

\( K \)-Bessel function of index \( nu \) and argument \( x \).

**besseln\((nu, x, precision)\)**

Deprecated alias for \( \text{bessely} \).

**bessely\((nu, x, precision)\)**

\( Y \)-Bessel function of index \( nu \) and argument \( x \).

**bestappr\((x, B)\)**

Using variants of the extended Euclidean algorithm, returns a rational approximation \( a/b \) to \( x \), whose denominator is limited by \( B \), if present. If \( B \) is omitted, returns the best approximation affordable given the input accuracy; if you are looking for true rational numbers, presumably approximated to sufficient accuracy, you should first try that option. Otherwise, \( B \) must be a positive real scalar (impose \( 0 < b <= B \)).

- If \( x \) is a \( \text{t_REAL} \) or a \( \text{t_FRAC} \), this function uses continued fractions.

```plaintext
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
```

By definition, \( a/b \) is the best rational approximation to \( x \) if \( \|bx - a\| < \|vx - u\| \) for all integers \((u, v)\) with \( 0 < v <= B \). (Which implies that \( n/d \) is a convergent of the continued fraction of \( x \).)

- If \( x \) is a \( \text{t_INTMOD} \) modulo \( N \) or a \( \text{t_PADIC} \) of precision \( N = p^k \), this function performs rational modular reconstruction modulo \( N \). The routine then returns the unique rational function \( a/b \) in coprime polynomials \( \|a\| < N/2B \) and \( b <= B \) which is congruent to \( x \) modulo \( N \). Omitting \( B \) amounts to choosing it of the order of \( \sqrt{N/2} \). If rational reconstruction is not possible (no suitable \( a/b \) exists), returns \([\ ]\).

```plaintext
? bestappr(Mod(18526731858, 11^10))
%1 = 1/7
? bestappr(Mod(18526731858, 11^20))
%2 = []
? bestappr(3 + 5 + 3*5^2 + 5^3 + 3*5^4 + 5^5 + 3*5^6 + O(5^7))
%3 = -1/3
```

In most concrete uses, \( B \) is a prime power and we performed Hensel lifting to obtain \( x \).

The function applies recursively to components of complex objects (polynomials, vectors,...). If rational reconstruction fails for even a single entry, returns \([\ ]\).

**bestapprPade\((x, B)\)**

Using variants of the extended Euclidean algorithm (Padé approximants), returns a rational function approximation \( a/b \) to \( x \), whose denominator is limited by \( B \), if present. If \( B \) is omitted, return the best approximation affordable given the input accuracy; if you are looking for true rational functions, presumably approximated to sufficient accuracy, you should first try that option. Otherwise, \( B \) must be a nonnegative real (impose \( 0 <= \text{degree}(b) <= B \)).

- If \( x \) is a \( \text{t_POLMOD} \) modulo \( N \) this function performs rational modular reconstruction modulo \( N \). The routine then returns the unique rational function \( a/b \) in coprime polynomials, with \( \text{degree}(b) <= B \) and \( \text{degree}(a) \) minimal, which is congruent to \( x \) modulo \( N \). Omitting \( B \) amounts to choosing it equal
to the floor of \( \text{degree}(N)/2 \). If rational reconstruction is not possible (no suitable \( a/b \) exists), returns \([]\).

\[
? \ T = \text{Mod}(x^3 + x^2 + x + 3, x^4 - 2);
\]
\[
\text{bestapprPade}(T)
\]
\[
%2 = (2*x - 1)/(x - 1)
\]
\[
? \ U = \text{Mod}(1 + x + x^2 + x^3 + x^5, x^9);
\]
\[
\text{bestapprPade}(U) \ \ \text{// internally chooses } B = 4
\]
\[
%3 = []
\]
\[
\text{bestapprPade}(U, 5) \ \ \text{// with } B = 5, \text{ a solution exists}
\]
\[
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
\]

• If \( x \) is a \texttt{t\_SER}, we implicitly convert the input to a \texttt{t\_POLMOD} modulo \( N = t^k \) where \( k \) is the series absolute precision.

\[
? \ T = 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + \text{O}(t^7); \ \ \text{// mod } t^7
\]
\[
? \ \text{bestapprPade}(T)
\]
\[
%1 = 1/(-t + 1)
\]

• If \( x \) is a \texttt{t\_RFRAC}, we implicitly convert the input to a \texttt{t\_POLMOD} modulo \( N = t^k \) where \( k = 2B + 1 \). If \( B \) was omitted, we return \( x \):

\[
? \ T = (4*t^2 + 2*t + 3)/(t+1)^10;
\]
\[
? \ \text{bestapprPade}(T,1)
\]
\[
%2 = [] \ \ \text{// impossible}
\]
\[
? \ \text{bestapprPade}(T,2)
\]
\[
%3 = 27/(337*t^2 + 84*t + 9)
\]
\[
? \ \text{bestapprPade}(T,3)
\]
\[
%4 = (4253*t - 3345)/(-39007*t^3 - 28519*t^2 - 8989*t - 1115)
\]

The function applies recursively to components of complex objects (polynomials, vectors, ...). If rational reconstruction fails for even a single entry, return \([]\).

\textbf{bestapprnf}\((V, T, \text{rootT}, \text{precision})\)

\( T \) being an integral polynomial and \( V \) being a scalar, vector, or matrix with complex coefficients, return a reasonable approximation of \( V \) with polmods modulo \( T \). \( T \) can also be any number field structure, in which case the minimal polynomial attached to the structure (:math:`\`T`\pol`) is used. The \text{rootT} argument, if present, must be an element of \text{polroots}(:math:`\`T`\pol`) (or :math:`\`T`\pol`), i.e. a complex root of \( T \) fixing an embedding of \( \mathbb{Q}[x]/(T) \) into \( \mathbb{C} \).

\[
? \ \text{bestapprnf}(\sqrt{5}, \text{polcyclo}(5))
\]
\[
%1 = \text{Mod}(-2*x^3 - 2*x^2 - 1, x^4 + x^3 + x^2 + x + 1)
\]
\[
? \ \text{bestapprnf}(\sqrt{5}, \text{polcyclo}(5), \exp(4*\text{I}*\text{Pi}/5))
\]
\[
%2 = \text{Mod}(2*x^3 + 2*x^2 + 1, x^4 + x^3 + x^2 + x + 1)
\]

When the output has huge rational coefficients, try to increase the working \texttt{realbitprecision}: if the answer does not stabilize, consider that the reconstruction failed. Beware that if \( T \) is not Galois over \( \mathbb{Q} \), some embeddings may not allow to reconstruct \( V \):

\[
? \ T = x^3-2; \ \text{vT} = \text{polroots}(T); \ \text{z} = 3*2^(1/3)+1
\]
\[
? \ \text{bestapprnf}(z, T, \text{vT}[1])
\]
\[
%2 = \text{Mod}(3*x + 1, x^3 - 2)
\]
\begin{verbatim}
? bestapprnf(z, T, vT[2])
%3 = 4213714286230872/186454048314072 \ close to 3*2^(1/3) + 1
\end{verbatim}

\textbf{bezout}(x, y)

Deprecated alias for \texttt{gcdext}

\textbf{bezoutres}(A, B, v)

Deprecated alias for \texttt{polresultantext}

\textbf{bigomega}(x)

Number of prime divisors of the integer \(|x|\) counted with multiplicity:

\begin{verbatim}
? factor(392)
%1 = 
[2 3]
[7 2]
? bigomega(392)
%2 = 5; \ \ close to 3+2
? omega(392)
%3 = 2; \ \ without multiplicity
\end{verbatim}

\textbf{binary}(x)

Outputs the vector of the binary digits of \(|x|\). Here \(x\) can be an integer, a real number (in which case the result has two components, one for the integer part, one for the fractional part) or a vector/matrix.

\begin{verbatim}
? binary(10)
%1 = [1, 0, 1, 0]

? binary(3.14)
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, [...]]

? binary([1,2])
%3 = [[1], [1, 0]]
\end{verbatim}

For integer \(x \geq 1\), the number of bits is \(\logint(x, 2) + 1\). By convention, 0 has no digits:

\begin{verbatim}
? binary(0)
%4 = []
\end{verbatim}

\textbf{binomial}(x, k)

\textit{binomial coefficient} \(\binom{x}{k}\). Here \(k\) must be an integer, but \(x\) can be any PARI object.

\begin{verbatim}
? binomial(4,2)
%1 = 6

? n = 4; vector(n+1, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]
\end{verbatim}

The argument \(k\) may be omitted if \(x = n\) is a nonnegative integer; in this case, return the vector with \(n + 1\) components whose \(k + 1\)-th entry is \(\binom{n}{k}\)
CyPari2 Documentation, Release 2.1.3

| ? binomial(4) | %3 = [1, 4, 6, 4, 1] |

bitand(x, y)	Bitwise and of two integers x and y, that is the integer
	\[ \sum_i (x_i \text{ and } y_i)2^i \]
	Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of bitand\((x_n, y_n)\), where \(x_n\) and \(y_n\) are nonnegative integers tending to \(x\) and \(y\) respectively. (The result is an ordinary integer, possibly negative.)
? bitand(5, 3)	%1 = 1
? bitand(-5, 3)	%2 = 3
? bitand(-5, -3)	%3 = -7

bitneg(x, n)	bitwise negation of an integer x, truncated to n bits, \(n \geq 0\), that is the integer
	\[ \sum_{i=0}^{n-1} \text{not}(x_i)2^i. \]
	The special case \(n = -1\) means no truncation: an infinite sequence of leading 1 is then represented as a negative number.
	See bitand (in the PARI manual) for the behavior for negative arguments.

bitnegimply(x, y)	Bitwise negated imply of two integers x and y (or \(\text{not } (x \implies y)\)), that is the integer
	\[ \sum_i (x_i \text{ andnot}(y_i))2^i \]
	See bitand (in the PARI manual) for the behavior for negative arguments.

bitor(x, y)	bitwise (inclusive) or of two integers x and y, that is the integer
	\[ \sum_i (x_i \text{ or } y_i)2^i \]
	See bitand (in the PARI manual) for the behavior for negative arguments.

bitprecision(x, n)	The function behaves differently according to whether n is present or not. If n is missing, the function returns the (floating point) precision in bits of the PARI object \(x\).
	If \(x\) is an exact object, the function returns \(+oo\).
? bitprecision(exp(1e-100))	%1 = 512 \ \ \ 512 bits
? bitprecision( [ exp(1e-100), 0.5 ] )	%2 = 128 \ \ \ minimal accuracy among components
? bitprecision(2 + x)	%3 = +oo \ \ \ exact object
Use `getlocalbitprec()` to retrieve the working bit precision (as modified by possible `localbitprec` statements).

If \( n \) is present and positive, the function creates a new object equal to \( x \) with the new bit-precision roughly \( n \). In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than or equal to \( n \).

For \( x \) a vector or a matrix, the operation is done componentwise; for series and polynomials, the operation is done coefficientwise. For real \( x, n \) is the number of desired significant bits. If \( n \) is smaller than the precision of \( x \), \( x \) is truncated, otherwise \( x \) is extended with zeros. For exact or non-floating-point types, no change.

```
? bitprecision(Pi, 10) \ \ actually 64 bits \ ~ 19 decimal digits
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)
```

\textit{bittest}(\( x, n \))

Outputs the \( n - \text{th} \) bit of \( x \) starting from the right (i.e. the coefficient of \( 2^n \) in the binary expansion of \( x \)). The result is 0 or 1. For \( x > 1 \), the highest 1-bit is at \( n = \log_2(x) \) (and bigger \( n \) gives 0).

```
? bittest(7, 0)
%1 = 1 \ \ \ \ \ the bit 0 is 1
? bittest(7, 2)
%2 = 1 \ \ \ \ \ the bit 2 is 1
? bittest(7, 3)
%3 = 0 \ \ \ \ \ the bit 3 is 0
```

See \textit{bitand} (in the PARi manual) for the behavior at negative arguments.

\textit{bitxor}(\( x, y \))

Bitwise (exclusive) or of two integers \( x \) and \( y \), that is the integer

\[ \sum (x_i \ xor \ y_i)2^i \]

See \textit{bitand} (in the PARi manual) for the behavior for negative arguments.

\textit{bnfcertify}(\( \text{bnf, flag} \))

\( \text{bnf} \) being as output by \textit{bnfinit}, checks whether the result is correct, i.e. whether it is possible to remove the assumption of the Generalized Riemann Hypothesis. It is correct if and only if the answer is 1. If it is incorrect, the program may output some error message, or loop indefinitely. You can check its progress by increasing the debug level. The \( \text{bnf} \) structure must contain the fundamental units:

```
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^------------------
*** bnfcertify: precision too low in makeunits [use bnfinit(,1)].
? K = bnfinit(x^3+2^2^3+1, 1); \ \ \ include units
? bnfcertify(K)
%3 = 1
```

If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general); likewise, the computed units may form a subgroup of the full unit group. In this variant, the units are no longer needed:

1.1. Guide to real precision in the PARi interface
? K = bnfinit(x^3+2^2^3+1); bnf certify(K, 1)
%4 = 1

bnf decod emodule(nf, m)
If m is a module as output in the first component of an extension given by bnr disclist, outputs the true module.

? K = bnfinit(x^2+23); L = bnr dis clist(K, 10); s = L[2]
%1 = [[[Vecsmall([8]), Vecsmall([1])], [[0, 0, 0]]],
    [[[Vecsmall([9]), Vecsmall([1])], [[0, 0, 0]]]]
? bnf de codemodule(K, s[1][1])
%2 =
[2 0]
[0 1]
? bnf de codemodule(K, s[2][1])
%3 =
[2 1]
[0 1]

bnfinit(P, flag, tech, precision)
Initializes a bnf structure. Used in programs such as bnf prin cipal, bnf unit or bfn narrow. By default, the results are conditional on the GRH, see GRH bnf (in the PARI manual). The result is a 10-component vector bnf.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a system of fundamental units of the general algebraic number field K defined by the irreducible polynomial P with integer coefficients. The meaning of flag is as follows:

• flag = 0 (default). This is the historical behavior, kept for compatibility reasons and speed. It has severe drawbacks but is likely to be a little faster than the alternative, twice faster say, so only use it if speed is paramount, you obtain a useful speed gain for the fields under consideration, and you are only interested in the field invariants such as the class group structure or its regulator. The computations involve exact algebraic numbers which are replaced by floating point embeddings for the sake of speed. If the precision is insufficient, gp may not be able to compute fundamental units, nor to solve some discrete logarithm problems. It may be possible to increase the precision of the bnf structure using nf new prec but this may fail, in particular when fundamental units are large. In short, the resulting bnf structure is correct and contains useful information but later function calls to bnf prin cipal or bnr class field may fail.

When flag = 1, we keep an exact algebraic version of all floating point data and this allows to guarantee that functions using the structure will always succeed, as well as to compute the fundamental units exactly. The units are computed in compact form, as a product of small S-units, possibly with huge exponents. This flag also allows bnf prin c ipal to compute generators of principal ideals in factored form as well. Be warned that expanding such products explicitly can take a very long time, but they can easily be mapped to floating point or ℓ-adic embeddings of bounded accuracy, or to $K^*/(K^*)^\ell$, and this is enough for applications. In short, this flag should be used by default, unless you have a very good reason for it, for instance building massive tables of class numbers, and you do not care about units or the effect large units would have on your computation.

tech is a technical vector (empty by default, see GRH bnf (in the PARI manual)). Careful use of this parameter may speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf are technical. In fact: never access a component directly, always use a proper member function. However, for the sake of completeness and internal documentation, their description is
as follows. We use the notations explained in the book by H. Cohen, *A Course in Computational Algebraic Number Theory*, Graduate Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

\[ bnf[1] \] contains the matrix \( W \), i.e. the matrix in Hermite normal form giving relations for the class group on prime ideal generators \((p_i)_{1 \leq i \leq r}\).

\[ bnf[2] \] contains the matrix \( B \), i.e. the matrix containing the expressions of the prime ideal factorbase in terms of the \( p_i \). It is an \( r \times c \) matrix.

\[ bnf[3] \] contains the complex logarithmic embeddings of the system of fundamental units which has been found. It is an \((r_1 + r_2)x(r_1 + r_2 - 1)\) matrix.

\[ bnf[4] \] contains the matrix \( M^C \) of Archimedean components of the relations of the matrix \((W||B)\).

\[ bnf[5] \] contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

\[ bnf[6] \] contains a dummy 0.

\[ bnf[7] \] or \[^{\text{emphasis}}\text{'bnf.nf'}\] is equal to the number field data \( nf \) as would be given by \( nfinit \).

\[ bnf[8] \] is a vector containing the classgroup \[^{\text{emphasis}}\text{'bnf.clgp'}\] as a finite abelian group, the regulator \[^{\text{emphasis}}\text{'bnf.reg'}\], the number of roots of unity and a generator \[^{\text{emphasis}}\text{'bnf.tu'}\], the fundamental units in expanded form \[^{\text{emphasis}}\text{'bnf.fu'}\]. If the fundamental units were omitted in the \( bnf \), \[^{\text{emphasis}}\text{'bnf.fu'}\] returns the sentinel value 0. If \( flag = 1 \), this vector contain also algebraic data corresponding to the fundamental units and to the discrete logarithm problem (see \( bnfisprincipal \)). In particular, if \( flag = 1 \) we may only know the units in factored form: the first call to \[^{\text{emphasis}}\text{'bnf.fu'}\] expands them, which may be very costly, then caches the result.

\[ bnf[9] \] is a vector used in \( bnfisprincipal \) only and obtained as follows. Let \( D = UWV \) obtained by applying the Smith normal form algorithm to the matrix \( W \) (= \( bnf[1] \)) and let \( U_r \) be the reduction of \( U \) modulo \( D \). The first elements of the factorbase are given (in terms of \( bnf.gen \)) by the columns of \( U_r \), with Archimedean component \( g_a \); let also \( GD_a \) be the Archimedean components of the generators of the (principal) ideals defined by the \( bnf.gen[i]^bnf.cyc[i] \). Then \( bnf[9] = [U_r, g_a, GD_a] \), followed by technical exact components which allow to recompute \( g_a \) and \( GD_a \) to higher accuracy.

\[ bnf[10] \] is by default unused and set equal to 0. This field is used to store further information about the field as it becomes available, which is rarely needed, hence would be too expensive to compute during the initial \( nfinit \) call. For instance, the generators of the principal ideals \( bnf.gen[i]^bnf.cyc[i] \) (during a call to \( bnisprincipal \)), or those corresponding to the relations in \( W \) and \( B \) (when the \( bnf \) internal precision needs to be increased).

**bnfisintnorm(bnf, x)**

Computes a complete system of solutions (modulo units of positive norm) of the absolute norm equation \( \text{Norm}(a) = x \), where \( a \) is an integer in \( bnf \). If \( bnf \) has not been certified, the correctness of the result depends on the validity of GRH.

See also \( bnfisnorm \).

**bnfisnorm(bnf, x, flag)**

Tries to tell whether the rational number \( x \) is the norm of some element \( y \) in \( bnf \). Returns a vector \([a, b]\) where \( x = \text{Norm}(a) \ast b \). Looks for a solution which is an \( S \)-unit, with \( S \) a certain set of prime ideals containing (among others) all primes dividing \( x \). If \( bnf \) is known to be Galois, you may set \( flag = 0 \) (in this case, \( x \) is a norm iff \( b = 1 \)). If \( flag \) is nonzero the program adds to \( S \) the following prime ideals, depending on the sign of \( flag \). If \( flag > 0 \), the ideals of norm less than \( flag \). And if \( flag < 0 \) the ideals dividing \( flag \).

Assuming GRH, the answer is guaranteed (i.e. \( x \) is a norm iff \( b = 1 \)), if \( S \) contains all primes less than \( 12 \log(\text{disc}(Bnf))^2 \), where \( Bnf \) is the Galois closure of \( bnf \).

See also \( bnfisintnorm \).
\textbf{bnfisprincipal}(\textit{bnf}, \textit{x}, \textit{flag})

\textit{bnf} being the number field data output by \textit{bnfinit}, and \textit{x} being an ideal, this function tests whether the ideal is principal or not. The result is more complete than a simple true/false answer and solves a general discrete logarithm problem. Assume the class group is $\oplus(\mathbb{Z}/d_i\mathbb{Z})g_i$ (where the generators $g_i$ and their orders $d_i$ are respectively given by \textit{bnf.gen} and \textit{bnf.cyc}). The routine returns a row vector $[e, t]$, where $e$ is a vector of exponents $0 \leq e_i < d_i$, and $t$ is a number field element such that

$$x = (t) \prod_i g_i^{e_i}.$$

For given $g_i$ (i.e. for a given \textit{bnf}), the $e_i$ are unique, and $t$ is unique modulo units.

In particular, $x$ is principal if and only if $e$ is the zero vector. Note that the empty vector, which is returned when the class number is 1, is considered to be a zero vector (of dimension 0).

\begin{verbatim}
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \ \ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \ \ a prime ideal above 3
? v = bnfisprincipal(K, P)
%5 = [[2]~, [3/4, 1/4]~
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 =
[3 0]
[0 1]
? % == idealhnf(K, P)
%7 = 1
\end{verbatim}

The binary digits of \textit{flag} mean:

- 1: If set, outputs $[e, t]$ as explained above, otherwise returns only $e$, which is much easier to compute.
  The following idiom only tests whether an ideal is principal:

\begin{verbatim}
is_principal(bnf, x) = !bnfisprincipal(bnf,x,0);
\end{verbatim}

- 2: It may not be possible to recover $t$, given the initial accuracy to which the \textit{bnf} structure was computed. In that case, a warning is printed and $t$ is set equal to the empty vector $[]$~. If this bit is set, increase the precision and recompute needed quantities until $t$ can be computed. Warning: setting this may induce lengthy computations and you should consider using flag 4 instead.

- 4: Return $t$ in factored form (compact representation), as a small product of $S$-units for a small set of finite places $S$, possibly with huge exponents. This kind of result can be cheaply mapped to $K^*/(K^*)^\ell$ or to $\mathbb{C}$ or $\mathbb{Q}_p$ to bounded accuracy and this is usually enough for applications. Explicitly expanding such a compact representation is possible using \textit{nffactorback} but may be very costly. The algorithm is guaranteed to succeed if the \textit{bnf} was computed using \textit{bnfinit}(,1). If not, the algorithm may fail to compute a huge generator in this case (and replace it by $[]$~). This is orders of magnitude faster than flag 2 when the generators are indeed large.

\textbf{bnfissunit}(\textit{bnf}, \textit{sfu}, \textit{x})

This function is obsolete, use \textit{bnfisunit}.
\textbf{bnfisunit}(\textit{bnf}, \textit{x}, \textit{U})

\textit{bnf} being the number field data output by \texttt{bnfinit} and \textit{x} being an algebraic number (type integer, rational or polmod), this outputs the decomposition of \textit{x} on the fundamental units and the roots of unity if \textit{x} is a unit, the empty vector otherwise. More precisely, if \(u_1, \ldots, u_r\) are the fundamental units, and \(\zeta\) is the generator of the group of roots of unity (\texttt{bnf.tu}), the output is a vector \([x_1, \ldots, x_r, x_{r+1}]\) such that \(x = u_1^{x_1} \cdots u_r^{x_r} \cdot \zeta^{x_{r+1}}\). The \(x_i\) are integers but the last one \((i = r + 1)\) is only defined modulo the order \(w\) of \(\zeta\) and is guaranteed to be in \([0, w]\).

Note that \textit{bnf} need not contain the fundamental units explicitly: it may contain the placeholder 0 instead:

\begin{verbatim}
? setrand(1); bnf = bnfinit(x^2-x-100000);
? bnf.fu
%2 = 0
? u = [119836165644250789990462835950022871665178127611316131167, \n379554884019013781006303254896369154068336082609238336]~;
? bnfisunit(bnf, u)
%3 = [-1, 0]~
\end{verbatim}

The given \(u\) is \(1/u_1\), where \(u_1\) is the fundamental unit implicitly stored in \textit{bnf}. In this case, \(u_1\) was not computed and stored in algebraic form since the default accuracy was too low. Re-run the \texttt{bnfinit} command at v1 or higher to see such diagnostics.

This function allows \(x\) to be given in factored form, but it then assumes that \(x\) is an actual unit. (Because it is generally too costly to check whether this is the case.)

\begin{verbatim}
? { v = [2, 85; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66; \n[-86, 1]~, 86; [-241, 1]~, -20; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11; \n[-214, 1]~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104; \n[-168, 1]~, 2; [-167, -1]~, -8]; }
? bnfisunit(bnf,v)
%5 = [1, 0]~
\end{verbatim}

Note that \(v\) is the fundamental unit of \textit{bnf} given in compact (factored) form.

If the argument \(U\) is present, as output by \texttt{bnfunits}(\textit{bnf}, \textit{S}), then the function decomposes \(x\) on the \textit{S}-units generators given in \texttt{U[1]}.

\begin{verbatim}
? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign
%2 = [0, 2]
? S = idealprimedec(bnf,5); #S
%3 = 2
? US = bnfunits(bnf,S);
? g = US[1]; #g \ #S = #g, four S-units generators, in factored form
%5 = 4
? g[1]
%6 = [[6, -3, -2, -2]~ 1]
? g[2]
%7 =
[[4, -2, -1, -1]~ 1]
? [nffactorback(bnf, x) | x <- g]
%8 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, \n[1, -1, 0, 0]~]
\end{verbatim}

(continues on next page)
? a = bnfisunit(bnf, u, US)
%9 = [2, 0, 1, 4]~
? nffactorback(bnf, g, a) \ prod_i g[i]^a[i] still in factored form
%10 =
[[6, -3, -2, -2]~ 2]
[[0, 0, -1, -1]~ 1]
[[2, -1, -1, 0]~ -2]
[[1, 1, 0, 0]~ 2]
[[1, -1, 0, 0]~ 4]
? nffactorback(bnf,%) \ u = prod_i g[i]^a[i]
%11 = [10, -40, 24, 11]~

\textbf{bnflog}(bnf, l)

Let \( bnf \) be a \( bnf \) structure attached to the number field \( F \) and let \( \ell \) be a prime number (hereafter denoted \( \ell \) for typographical reasons). Return the logarithmic \( \ell \)-class group \( Cl_F \) of \( F \). This is an abelian group, conjecturally finite (known to be finite if \( F/Q \) is abelian). The function returns if and only if the group is indeed finite (otherwise it would run into an infinite loop). Let \( S = \mathcal{P}_1, ..., \mathcal{P}_k \) be the set of \( \ell \)-adic places (maximal ideals containing \( \ell \)). The function returns \( [D, G(\ell), G'] \), where

- \( D \) is the vector of elementary divisors for \( Cl_F \).
- \( G(\ell) \) is the vector of elementary divisors for the (conjecturally finite) abelian group

\[ \mathcal{P}_i \] are the \( \ell \)-adic places of \( F \); this is a subgroup of \( Cl \).

\( G' \) is the vector of elementary divisors for the \( \ell \)-Sylow \( Cl' \) of the \( S \)-class group of \( F \); the group \( Cl \) maps to \( Cl' \) with a simple co-kernel.

\textbf{bnfloddegree}(nf, A, l)

Let \( nf \) be a \( nf \) structure attached to a number field \( F \), and let \( \ell \) be a prime number (hereafter denoted \( \ell \) ). The \( \ell \)-adified group of \( id \setminus [e] \) les of \( F \) quotiented by the group of logarithmic units is identified to the \( \ell \)-group of logarithmic divisors \( \oplus \mathbb{Z}_\ell [p] \), generated by the maximal ideals of \( F \).

The degree map \( \deg_F \) is additive with values in \( \mathbb{Z}_\ell \), defined by \( \deg_F p = f_p \deg_{\ell} p \), where the integer \( f_p \) is as in \( \text{bnflod} \) and \( \deg_{\ell} p \) is \( \log_{\ell} p \) for \( p \neq \ell \), \( \log_{\ell}(1 + \ell) \) for \( p = \ell \) \( = 2 \) and \( \log_{\ell}(1 + 2^2) \) for \( p = \ell = 2 \).

Let \( A = \prod p^{n_p} \) be an ideal and let \( A = \sum n_p[p] \) be the attached logarithmic divisor. Return the exponential of the \( \ell \)-adic logarithmic degree \( \deg_F A \), which is a natural number.

\textbf{bnflogf}(nf, pr)

Let \( nf \) be a \( nf \) structure attached to a number field \( F \) and let \( pr \) be a \( prid \) structure attached to a maximal ideal \( p/p \). Return \( [e(F_p/Q_p), f(F_p/Q_p)] \) the logarithmic ramification and residue degrees. Let \( Q_p^c/Q_p \) be the cyclotomic
$\mathbb{Z}_p$-extension, then $e = [F_p : F_p \cap \mathbb{Q}_p]$ and $f = [F_p \cap \mathbb{Q}_p : \mathbb{Q}_p]$. Note that $e f = e(p/p) f(p/p)$, where $e(p/p)$ and $f(p/p)$ denote the usual ramification and residue degrees.

```
? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]
```

```c
bnfnarrow(bnf)

bnf as output by bnfnit, computes the narrow class group of bnf. The output is a 3-component row vector v analogous to the corresponding class group component :emphasis:`bnf.clgp`: the first component is the narrow class number :math:`v.no`, the second component is a vector containing the SNF cyclic components :math:`v.cyc` of the narrow class group, and the third is a vector giving the generators of the corresponding :math:`v.gen` cyclic groups. Note that this function is a special case of bnrinit; the bnf need not contain fundamental units.

```c
bnfsignunit(bnf)

bnf as output by bnfnit, this computes an $r_1 x (r_1 + r_2 - 1)$ matrix having 1 components, giving the signs of the real embeddings of the fundamental units. The following functions compute generators for the totally positive units:

```c
/* exponents of totally positive units generators on K.tu, K.fu */
tpuexpo(K)=
{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));
 \ \ m = K.r1, n = r1+r2-1
 S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
 S = concat(vectorv(m,i,1), S); \ \ add sign(-1)
 M = matkermod(S, 2);
 if (M, mathnfmodid(M, 2), 2*matid(n+1))
}

/* totally positive fundamental units of bnf K */
tpu(K)=
{ my(ex = tpuexpo(K)[,^1]); \ \ remove ex[,1], corresponds to 1 or -1
 my(v = concat(K.tu[2], K.fu));
 [nffactorback(K, v, c) | c <- ex];
}
```

```
bnfsunit(bnf, S, precision)

Computes the fundamental S-units of the number field bnf (output by bnfnit), where S is a list of prime ideals (output by idealprimedec). The output is a vector v with 6 components.

$v[1]$ gives a minimal system of (integral) generators of the S-unit group modulo the unit group.

$v[3]$ is an obsoleted component, now the empty vector.

$v[4]$ is the S-regulator (this is the product of the regulator, the S-class number and the natural logarithms of the norms of the ideals in S).

$v[5]$ gives the S-class group structure, in the usual abelian group format: a vector whose three components give in order the S-class number, the cyclic components and the generators.

$v[6]$ is a copy of S.
```
bnfunits(bnf, S)

Return the fundamental units of the number field bnf output by bnfinit; if S is present and is a list of prime ideals, compute fundamental S-units instead. The first component of the result contains independent integral S-units generators: first nonunits, then \( r_1 + r_2 - 1 \) fundamental units, then the torsion unit. The result may be used as an optional argument to bnfisunit. The units are given in compact form: no expensive computation is attempted if the bnf does not already contain units.

```plaintext
? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign \ r1 + r2 - 1 = 1
%2 = [0, 2]
? U = bnfunits(bnf); u = U[1];
? #u \ r1 + r2 = 2 units
%5 = 2;
? u[1] \ fundamental unit as factorization matrix
%6 =
[[0, 0, -1, -1]~ 1]
[[2, -1, -1, 0]~ -2]
[[1, 1, 0, 0]~ 2]
[[-1, 1, 1, 1]~ -1]
? u[2] \ torsion unit as factorization matrix
%7 =
[[1, -1, 0, 0]~ 1]
? [nffactorback(bnf, z) | z <- u] \ same units in expanded form
%8 = [[-1, 1, -1, 0]~, [1, -1, 0, 0]~]
```

Now an example involving S-units for a nontrivial S:

```plaintext
? S = idealprimedec(bnf, 5); #S
%9 = 2
? US = bnfunits(bnf, S); uS = US[1];
? g = [nffactorback(bnf, z) | z <- uS] \ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, [1, -1, 0, 0]~]
%12 = [] \ not a unit
%13 = [2, 0, 1, 4]~ \ ...but an S-unit
? nffactorback(bnf, g, e)
%14 = [10, -40, 24, 11]~
? nffactorback(bnf, uS, e) \ in factored form
%15 =
[[6, -3, -2, -2]~ 2]
[[0, 0, -1, -1]~ 1]
[[2, -1, -1, 0]~ -2]
[[1, 1, 0, 0]~ 2]
[[-1, 1, 1, 1]~ -1]
[[1, -1, 0, 0]~ 4]
```
Note that in more complicated cases, any `nffactorback` fully expanding an element in factored form could be very expensive. On the other hand, the final example expands a factorization whose components are themselves in factored form, hence the result is a factored form: this is a cheap operation.

### `bnrL1(bnr, H, flag, precision)`

Let `bnr` be the number field data output by `bnrinit` and `H` be a square matrix defining a congruence subgroup of the ray class group corresponding to `bnr` (the trivial congruence subgroup if omitted). This function returns, for each character `χ` of the ray class group which is trivial on `H`, the value at `s = 1` (or `s = 0`) of the abelian `L`-function attached to `χ`. For the value at `s = 0`, the function returns in fact for each `χ` a vector `[r_χ, c_χ]` where

\[ L(s, \chi) = c.s^r + O(s^{r+1}) \]

near 0.

The argument `flag` is optional, its binary digits mean 1: compute at `s = 0` if unset or `s = 1` if set, 2: compute the primitive `L`-function attached to `χ` if unset or the `L`-function with Euler factors at prime ideals dividing the modulus of `bnr` removed if set (that is \( L_S(s, \chi) \), where `S` is the set of infinite places of the number field together with the finite prime ideals dividing the modulus of `bnr`), 3: return also the character if set.

```plaintext
K = bnfinit(x^2-229);
bnr = bnrinit(K,1);
bnrL1(bnr)
```

returns the order and the first nonzero term of \( L(s, \chi) \) at `s = 0` where `χ` runs through the characters of the class group of `K = \mathbb{Q}(\sqrt{229})`. Then

```plaintext
bnr2 = bnrinit(K,2);
bnrL1(bnr2,2)
```

returns the order and the first nonzero terms of \( L_S(s, \chi) \) at `s = 0` where `χ` runs through the characters of the class group of `K` and `S` is the set of infinite places of `K` together with the finite prime 2. Note that the ray class group modulo 2 is in fact the class group, so `bnrL1(bnr2,0)` returns the same answer as `bnrL1(bnr,0)`.

This function will fail with the message

```plaintext
*** bnrL1: overflow in zeta_get_N0 [need too many primes].
```

if the approximate functional equation requires us to sum too many terms (if the discriminant of `K` is too large).

### `bnrchar(bnr, g, v)`

Returns all characters `χ` on `bnr.clgp` such that `χ(g_i) = e(v_i)`, where `e(x) = \exp(2i\pi x)`. If `v` is omitted, returns all characters that are trivial on the `g_i`. Else the vectors `g` and `v` must have the same length, the `g_i` must be ideals in any form, and each `v_i` is a rational number whose denominator must divide the order of `g_i` in the ray class group. For convenience, the vector of the `g_i` can be replaced by a matrix whose columns give their discrete logarithm, as given by `bnrisprincipal`; this allows to specify abstractly a subgroup of the ray class group.

```plaintext
? bnr = bnrinit(bnfinit(x), \[160,[1]\], 1); /* (Z/160Z)^* */
? bnr.cyc
%2 = \[8, 4, 2\]
? g = bnr.gen;
? bnrchar(bnr, g, \[1/2,0,0\])
%4 = \[[4, 0, 0] \ \ a unique character
? bnrchar(bnr, \[g[1],g[3]\]) \ \ all characters trivial on g[1] and g[3]
%5 = \[[0, 1, 0], [0, 2, 0], [0, 3, 0], [0, 0, 0]]
? bnrchar(bnr, \[1,0,0;0,1,0;0,0,2\])
%6 = \[[0, 0, 1], [0, 0, 0]] \ \ characters trivial on given subgroup
```
bnrclassfield(bnr, subgp, flag, precision)

bnr being as output by bnrinit, returns a relative equation for the class field corresponding to the congruence group defined by (bnr, subgp) (the full ray class field if subgp is omitted). The subgroup can also be a t_INT n, meaning n.Clf. The function also handles a vector of subgroup, e.g. from subgrouplist and returns the vector of individual results in this case.

If flag = 0, returns a vector of polynomials such that the compositum of the corresponding fields is the class field; if flag = 1 returns a single polynomial; if flag = 2 returns a single absolute polynomial.

\[
? bnf = bnfninit(y^3+14*y-1); bnf.cyc
%1 = [4, 2]
? pol = bnrclassfield(bnf,,1) // Hilbert class field
%2 = x^8 - 2*x^7 + ... + Mod(11*y^2 - 82*y + 116, y^3 + 14*y - 1)
? rnfdisc(bnf,pol)[1]
%3 = 1
? bnr = bnrinit(bnf,3*5*7); bnr.cyc
%4 = [24, 12, 12, 2]
? bnrclassfield(bnr,2) // maximal 2-elementary subextension
%5 = [x^2 + (-21*y - 105), x^2 + (-5*y - 25), x^2 + (-y - 5), x^2 + (-y - 1)]
\quad \text{\textbackslash\textbackslash quadratic extensions of maximal conductor}
? bnrclassfield(bnr, subgrouplist(bnr,[2]))
%6 = [[x^2 - 105], [x^2 + (-105*y^2 - 1260)], [x^2 + (-105*y - 525)],
[x^2 + (-105*y - 105)]
? #bnrclassfield(bnr,subgrouplist(bnr,[2],1)) \text{\textbackslash\textbackslash all quadratic extensions}
%7 = 15
\]

When the subgroup contains nClf, where n is fixed, it is advised to directly compute the bnr modulo n to avoid expensive discrete logarithms:

\[
? bnf = bnfninit(y^2-5); p = 1594287814679644276013;
? bnr = bnrinit(bnf,p); \text{\textbackslash\textbackslash very slow}
time = 24,146 ms.
? bnrclassfield(bnr, 2) \text{\textbackslash\textbackslash ... even though the result is trivial}
%3 = [x^2 - 1594287814679644276013]
? bnr2 = bnrinit(bnf,p,,2); \text{\textbackslash\textbackslash now fast}
time = 1 ms.
? bnrclassfield(bnr2, 2)
%5 = [x^2 - 1594287814679644276013]
\]

This will save a lot of time when the modulus contains a maximal ideal whose residue field is large.

bnrclassno(A, B, C)

Let A, B, C define a class field L over a ground field K (of type [:emphasis:`bnr`], [:emphasis:`bnr, subgroup`], or [:emphasis:`bnf, modulus`], or [:emphasis:`bnf, modulus:emph:subgroup`], CFT (in the PARI manual)); this function returns the relative degree [L : K].

In particular if A is a bnf (with units), and B a modulus, this function returns the corresponding ray class number modulo B. One can input the attached bid (with generators if the subgroup C is non trivial) for B instead of the module itself, saving some time.

This function is faster than bnrinit and should be used if only the ray class number is desired. See bnrclassnolist if you need ray class numbers for all moduli less than some bound.

bnrclassnolist(bnf, list)

bnf being as output by bnfninit, and list being a list of moduli (with units) as output by ideallist or
ideallistarch, outputs the list of the class numbers of the corresponding ray class groups. To compute a single class number, bnrclassno is more efficient.

```
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
%4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
%5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
```

The weird `l[i].mod[1]` is the first component of `l[i].mod`, i.e. the finite part of the conductor. (This is cosmetic: since by construction the Archimedean part is trivial, I do not want to see it). This tells us that the ray class groups modulo the ideals of norm 98 (printed as `%5`) have respectively order 1, 3 and 1. Indeed, we may check directly:

```
? bnrclassno(bnf, ids[2])
%6 = 3
```

**bnrconductor**(*A, B, C, flag*)

Conductor *f* of the subfield of a ray class field as defined by [*A, B, C*] (of type `:`emphasis:`bung`, `:`emphasis:`bnr, subgroup`], [`:`emphasis:`bung, modulus`] or `:`emphasis:`bung, modulus, subgroup`], CFT (in the PARI manual))

If `flag = 0`, returns *f*.

If `flag = 1`, returns [*f, Clf, H*], where *Clf* is the ray class group modulo *f*, as a finite abelian group; finally *H* is the subgroup of *Clf* defining the extension.

If `flag = 2`, returns [*f, bnr(f), H*], as above except *Clf* is replaced by a bnr structure, as output by `bnrinit(f)`, without generators unless the input contained a bnr with generators.

In place of a subgroup *H*, this function also accepts a character *chi* = (*a*<sub>j</sub>), expressed as usual in terms of the generators `bnr.gen`: χ(*g*<sub>j</sub>) = exp(2iπ*a*<sub>j</sub>/d<sub>j</sub>), where *g*<sub>j</sub> has order d<sub>j</sub> = `bnr.cyc[j]`. In which case, the function returns respectively

If `flag = 0`, the conductor *f* of Kerχ.

If `flag = 1`, [*f, Clf, χf*], where χ<sub>f</sub> is χ expressed on the minimal ray class group, whose modulus is the conductor.

If `flag = 2`, [*f, bnr(f), χf*].

**Note.** Using this function with `flag! = 0` is usually a bad idea and kept for compatibility and convenience only: `flag = 1` has always been useless, since it is no faster than `flag = 2` and returns less information; `flag = 2` is mostly OK with two subtle drawbacks:

- it returns the full *bnr* attached to the full ray class group, whereas in applications we only need *Clf* modulo *N*-th powers, where *N* is any multiple of the exponent of *Clf/H*. Computing directly the conductor, then calling `bnrinit` with optional argument *N* avoids this problem.

- computing the *bnr* needs only be done once for each conductor, which is not possible using this function.

For maximal efficiency, the recommended procedure is as follows. Starting from data (character or congruence subgroups) attached to a modulus *m*, we can first compute the conductors using this function with default `flag = 0`. Then for all data with a common conductor *f||m*, compute (once!) the *bnr* attached to *f* using `bnrinit` (modulo *N*-th powers for a suitable *N*!) and finally map original data to the new *bnr* using `bnrmap`.

**bnrconductorofchar**(*bnr, chi*)

This function is obsolete, use `bnrconductor`.

1.1. Guide to real precision in the PARI interface 63
bnrdisc($A$, $B$, $C$, flag)

$A$, $B$, $C$ defining a class field $L$ over a ground field $K$ (of type {[}bnr{]}, {[}bnr subgroup{]}, {[}bnr character{]}, {[}bnf modulus{]} or {[}bnf modulus subgroup{]}), CFT (in the PARI manual), outputs data $[N, r_1, D]$ giving the discriminant and signature of $L$, depending on the binary digits of flag:

- 1: if this bit is unset, output absolute data related to $L/\mathbb{Q}$: $N$ is the absolute degree $[L : \mathbb{Q}]$, $r_1$ the number of real places of $L$, and $D$ the discriminant of $L/\mathbb{Q}$. Otherwise, output relative data for $L/K$: $N$ is the relative degree $[L : K]$, $r_1$ is the number of real places of $K$ unramified in $L$ (so that the number of real places of $L$ is equal to $r_1$ times $N$), and $D$ is the relative discriminant ideal of $L/K$.
- 2: if this bit is set and if the modulus is not the conductor of $L$, only return 0.

bnrdisclist($bnf$, bound, arch)

$bnf$ being as output by bnfinit (with units), computes a list of discriminants of Abelian extensions of the number field by increasing modulus norm up to bound bound. The ramified Archimedean places are given by arch; all possible values are taken if arch is omitted.

The alternative syntax bnrdisclist($bnf$, list) is supported, where list is as output by ideallistarch (with units), in which case arch is disregarded.

The output $v$ is a vector, where $v[k]$ is itself a vector $w$, whose length is the number of ideals of norm $k$.

- We consider first the case where arch was specified. Each component of $w$ corresponds to an ideal $m$ of norm $k$, and gives invariants attached to the ray class field $L$ of $bnf$ of conductor $[m, arch]$. Namely, each contains a vector $[m, d, r, D]$ with the following meaning: $m$ is the prime ideal factorization of the modulus, $d = [L : \mathbb{Q}]$ is the absolute degree of $L$, $r$ is the number of real places of $L$, and $D$ is the factorization of its absolute discriminant. We set $d = r = D = 0$ if $m$ is not the finite part of a conductor.
- If arch was omitted, all $t = 2^c$ possible values are taken and a component of $w$ has the form $[m, [d_1, r_1, D_1], ..., [d_t, r_t, D_t]]$, where $m$ is the finite part of the conductor as above, and $[d_i, r_i, D_i]$ are the invariants of the ray class field of conductor $[m, v_i]$, where $v_i$ is the i-th Archimedean component, ordered by inverse lexicographic order; so $v_1 = [0, ..., 0]$, $v_2 = [1, 0, ..., 0]$, etc. Again, we set $d_i = r_i = D_i = 0$ if $[m, v_i]$ is not a conductor.

Finally, each prime ideal $p = [p, \alpha, e, f, \beta]$ in the prime factorization $m$ is coded as the integer $p.n^2 + (f - 1).n + (j - 1)$, where $n$ is the degree of the base field and $j$ is such that $pr = \text{idealprimedec}(:\text{nf}, p)[j]$.

$m$ can be decoded using bnfdecodemodule.

Note that to compute such data for a single field, either bnrclassno or bnrdisc are (much) more efficient.

bnrgaloisapply($bnr$, mat, $H$)

Apply the automorphism given by its matrix mat to the congruence subgroup $H$ given as a HNF matrix. The matrix mat can be computed with bnrgaloisimatrix.

bnrgaloisimatrix($bnr$, aut)

Return the matrix of the action of the automorphism aut of the base field bnf.nf on the generators of the ray class field bnr.gen. aut can be given as a polynomial, an algebraic number, or a vector of automorphisms or a Galois group as output by galoisinit, in which case a vector of matrices is returned (in the later case, only for the generators aut.gen).

The generators bnr.gen need not be explicitly computed in the input bnr, which saves time: the result is well defined in this case also.

? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]

(continues on next page)
? G = nfgaloisconj(K)
%2 = [-a, a, -1/503*a^3 + 3/503*a, 1/503*a^3 - 3/503*a]
? bnrgaloismatrix(B, G[2]) \ \ G[2] = Id ...
%3 =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
? bnrgaloismatrix(B, G[3]) \ \ automorphism of order 2
%4 =
[799 0 0 2800]
[ 0 7 0 4]
[ 4 0 5 2]
[0 0 0 2]
? M = %^2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \ \ acts on ray class group as automorphism of order 2
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]

See bnrisgalois for further examples.

\textbf{bnrinit}(\textit{bnf, f, flag, cycmod})

\textit{bnf} is as output by \textit{bnfinit} (including fundamental units), \textit{f} is a modulus, initializes data linked to the ray class group structure corresponding to this module, a so-called \textit{bnr} structure. One can input the attached \textit{bid} with generators for \textit{f} instead of the module itself, saving some time. (As in idealstar, the finite part of the conductor may be given by a factorization into prime ideals, as produced by idealfactor.)

If the positive integer cycmod is present, only compute the ray class group modulo cycmod, which may save a lot of time when some maximal ideals in \textit{f} have a huge residue field. In applications, we are given a congruence subgroup \textit{H} and study the class field attached to \textit{Cl}_f/\textit{H}. If that finite Abelian group has an exponent which divides cycmod, then we have changed nothing theoretically, while trivializing expensive discrete logs in residue fields (since computations can be made modulo cycmod-th powers). This is useful in \textit{bnrclassfield}, for instance when computing \textit{p}-elementary extensions.

The following member functions are available on the result: \textit{.bnf} is the underlying \textit{bnf}, \textit{.mod} the modulus, \textit{.bid} the \textit{bid} structure attached to the modulus; finally, \textit{.clgp}, \textit{.no}, \textit{.cyc}, \textit{.gen} refer to the ray class group (as a finite abelian group), its cardinality, its elementary divisors, its generators (only computed if \textit{flag} = 1).

The last group of functions are different from the members of the underlying \textit{bnf}, which refer to the class group; use \textit{.emphasis:`bnr.bnf`}:\textit{.emphasis:`xxx`} to access these, e.g. \textit{.emphasis:`bnr.bnf.cyc`} to get the cyclic decomposition of the class group.

They are also different from the members of the underlying \textit{bid}, which refer to \((\mathbb{Z}_K/f)^*\); use \textit{.emphasis:`bnr.bid`}:\textit{.emphasis:`xxx`} to access these, e.g. \textit{.emphasis:`bnr.bid.no`} to get \(\phi(f)\).
If \( flag = 0 \) (default), the generators of the ray class group are not explicitly computed, which saves time. Hence, \textbf{emphasis:} \texttt{bnr.gen} would produce an error. Note that implicit generators are still fixed and stored in the \texttt{bnr} (and guaranteed to be the same for fixed \texttt{bnf} and \texttt{bid} inputs), in terms of \texttt{bnr.bnf.gen} and \texttt{bnr.bid.gen}. The computation which is not performed is the expansion of such products in the ray class group so as to fix explicit ideal representatives.

If \( flag = 1 \), as the default, except that generators are computed.

\textbf{bnrisconductor}(A, B, C)

Fast variant of \texttt{bnrconductor}(A, B, C); \( A, B, C \) represent an extension of the base field, given by class field theory (see CFT (in the PARI manual)). Outputs 1 if this modulus is the conductor, and 0 otherwise. This is slightly faster than \texttt{bnrconductor} when the character or subgroup is not primitive.

\textbf{bnrisgalois}(bnr, gal, H)

Check whether the class field attached to the subgroup \( H \) is Galois over the subfield of \texttt{bnr.nf} fixed by the group \texttt{gal}, which can be given as output by \texttt{galoisinit}, or as a matrix or a vector of matrices as output by \texttt{bnrgaloismatrix}, the second option being preferable, since it saves the recomputation of the matrices. Note: The function assumes that the ray class field attached to \texttt{bnr} is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most 3 of the ray class field of conductor 9 which are Galois over the rationals.

\begin{verbatim}
? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); G = galoisinit(K);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,G,H)]
time = 160 ms.
? M = bnrgaloismatrix(B,G);
? [H | H<-subgrouplist(B,3), bnrisgalois(B,M,H)]
time = 1 ms.
\end{verbatim}

The second computation is much faster since \texttt{bnrgaloismatrix(B,G)} is computed only once.

\textbf{bnrisprincipal}(bnr, x, flag)

Let \texttt{bnr} be the ray class group data output by \texttt{bnrinit(,1)} and let \( x \) be an ideal in any form, coprime to the modulus \( f = \texttt{bnr.mod} \). Solves the discrete logarithm problem in the ray class group, with respect to the generators \texttt{bnr.gen}, in a way similar to \texttt{bnfisprincipal}. If \( x \) is not coprime to the modulus of \texttt{bnr} the result is undefined. Note that \texttt{bnr} need not contain the ray class group generators, i.e. it may be created with \texttt{bnrinit(,0)}; in that case, although \texttt{bnr.gen} is undefined, we can still fix natural generators for the ray class group (in terms of the generators in \texttt{bnr.bnf.gen} and \texttt{bnr.bid.gen}) and compute with respect to them.

The binary digits of \texttt{flag} (default \texttt{flag} = 1) mean:

- \textbf{1:} If set returns a 2-component vector \([e, \alpha]\) where \( e \) is the vector of components of \( x \) on the ray class group generators, \( \alpha \) is an element congruent to \( 1 \mod f \) such that \( x = \alpha \prod_i g_i^e \). If unset, returns only \( e \).

- \textbf{4:} If set, returns \([e, \alpha]\) where \( \alpha \) is given in factored form (compact representation). This is orders of magnitude faster.

\begin{verbatim}
? K = bnfinit(x^2 - 30); bnr = bnrinit(K, [4, [1,1]]);
? bnr.clgp \ ray class group is isomorphic to Z/4 x Z/2 x Z/2
%2 = [16, [4, 2, 2]]
? P = idealprimedec(K, 3)[1]; \ the ramified prime ideal above 3
? bnrisprincipal(bnr,P) \ bnr.gen undefined !
%5 = [[[3, 0, 0]~}, 9]
? bnrisprincipal(bnr,P, 0) \ omit principal part
%5 = [[3, 0, 0]~]
? bnr = bnrinit(bnr, bnr.bid, 1); \ include explicit generators
\end{verbatim}

(continues on next page)
It may be surprising that the generator $\alpha$ is different although the underlying bnf and bid are the same. This defines unique generators for the ray class group as ideal classes, whether we use bnrinit(,0) or bnrinit(,1). But the actual ideal representatives (implicit if the flag is 0, computed and stored in the bnr if the flag is 1) are in general different and this is what happens here. Indeed, the implicit generators are naturally expressed in terms of bnr.bnf.gen and bnr.bid.gen and then expanded and simplified (in the same ideal class) so that we obtain ideal representatives for bnr.gen which are as simple as possible. And indeed the quotient of the two $\alpha$ found is 1 modulo the conductor (and positive at the infinite places it contains), and this is the only guaranteed property.

Beware that, when bnr is generated using bnrinit(, cycmod), the results are given in $\mathcal{C}l_f$ modulo cycmod-th powers:

```
? bnr2 = bnrinit(K, bnr.mod,, 2); \ modulo squares
? bnr2.clgp
%9 = [8, [2, 2, 2]] \ bnr.clgp tensored by Z/2Z
? bnrisprincipal(bnr2,P, 0)
%10 = [1, 0, 0]~
```

\textbf{bnrmap}(A, B)

This function has two different uses:

- if $A$ and $B$ are bnr structures for the same bnf attached to moduli $m_A$ and $m_B$ with $m_B||m_A$, return the canonical surjection from $A$ to $B$, i.e. from the ray class group modulo $m_A$ to the ray class group modulo $m_B$. The map is coded by a triple $[M, \text{cyc}_A, \text{cyc}_B]$; $M$ gives the image of the fixed ray class group generators of $A$ in terms of the ones in $B$, $\text{cyc}_A$ and $\text{cyc}_B$ are the cyclic structures $A_{\text{cyc}}$ and $B_{\text{cyc}}$ respectively. Note that this function does not need $A$ or $B$ to contain explicit generators for the ray class groups: they may be created using bnrinit(,0).

If $B$ is only known modulo $N$-th powers (from bnrinit(,N)), the result is correct provided $N$ is a multiple of the exponent of $A$.

- if $A$ is a projection map as above and $B$ is either a congruence subgroup $H$, or a ray class character $\chi$, or a discrete logarithm (from bnrisprincipal) modulo $m_A$ whose conductor divides $m_B$, return the image of the subgroup (resp. the character, the discrete logarithm) as defined modulo $m_B$. The main use of this variant is to compute the primitive subgroup or character attached to a bnr modulo their conductor. This is more efficient than bnrconductor in two respects: the bnr attached to the conductor need only be computed once and, most importantly, the ray class group can be computed modulo $N$-th powers, where $N$ is a multiple of the exponent of $\mathcal{C}l_{m_A}/H$ (resp. of the order of $\chi$). Whereas bnrconductor is specified to return a bnr attached to the full ray class group, which may lead to untractable discrete logarithms in the full ray class group instead of a tiny quotient.

\textbf{bnrrootnumber}(bnr, chi, flag, precision)

If $\chi = \text{chi}$ is a character over bnr, not necessarily primitive, let $L(s, \chi) = \sum_{id} \chi(id)N(id)^{-s}$ be the attached Artin L-function. Returns the so-called Artin root number, i.e. the complex number $W(\chi)$ of modulus 1 such that

$$\Lambda(1-s, \chi) = W(\chi)\Lambda(s, \overline{\chi})$$

where $\Lambda(s, \chi) = A(\chi)^{s/2} \gamma(s) L(s, \chi)$ is the enlarged L-function attached to $L$.

You can set $\text{flag} = 1$ if the character is known to be primitive. Example:
returns the root number of the character $\chi$ of $\text{Cl}_{7,0,0,0,2}(\mathbb{Q}(\sqrt{229}))$ defined by $\chi(g_1 a_1^b g_2 b_2) = \zeta_1^{a_1} \zeta_2^{b_2}$. Here $g_1, g_2$ are the generators of the ray-class group given by $\text{bnr}.\text{gen}$ and $\zeta_1 = e^{2i\pi/N_1}$, $\zeta_2 = e^{2i\pi/N_2}$ where $N_1, N_2$ are the orders of $g_1$ and $g_2$ respectively ($N_1 = 6$ and $N_2 = 3$ as $\text{bnr}.\text{cyc}$ readily tells us).

$b\text{n}\text{r}\text{s}\text{t}\text{a}\text{r}\text{k}(\text{bnr}, \text{subgroup}, \text{precision})$

$\text{bnr}$ being as output by $\text{bnr}\text{i}\text{n}\text{i}\text{t}$, finds a relative equation for the class field corresponding to the modulus in $\text{bnr}$ and the given congruence subgroup (as usual, omit $\text{subgroup}$ if you want the whole ray class group).

The main variable of $\text{bnr}$ must not be $x$, and the ground field and the class field must be totally real. When the base field is $\mathbb{Q}$, the vastly simpler $\text{galoissubcyclo}$ is used instead. Here is an example:

```
$\text{bnf} = \text{bnfinit}(y^2 - 3);
\text{bnr} = \text{bnrinit}(\text{bnf}, 5);
\text{bnrstark}(\text{bnr})$
```

returns the ray class field of $\mathbb{Q}(\sqrt{3})$ modulo 5. Usually, one wants to apply to the result one of

```
\text{rnfpolredbest}(\text{bnf}, \text{pol}) \ \ \text{// compute a reduced relative polynomial}
\text{rnfpolredbest}(\text{bnf}, \text{pol}, 2) \ \ \text{// compute a reduced absolute polynomial}
```

The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not exist when the class field is not cyclic over the base. In this case $\text{bnrstark}$ is allowed to return a vector of polynomials defining independent relative extensions, whose compositum is the requested class field. We decided that it was useful to keep the extra information thus made available, hence the user has to take the compositum herself, see $\text{nfcompositum}$.

Even if it exists, the auxiliary conductor may be so large that later computations become unfeasible. (And of course, Stark's conjecture may simply be wrong.) In case of difficulties, try $\text{bnrclassfield}$:

```
? \text{bnr} = \text{bnrinit}(\text{bnfinit}(y^8 - 12*y^6 + 36*y^4 - 36*y^2 + 9, 1), 2);
? \text{bnrstark}(\text{bnr})
*** at top-level: \text{bnrstark}(\text{bnr})
*** ^-----------
*** \text{bnrstark}: need 3919350809720744 coefficients in initzeta.
*** Computation impossible.
? \text{bnrclassfield}(\text{bnr})
time = 20 ms.
%2 = \left[x^2 + (-2/3*y^6 + 7*y^4 - 14*y^2 + 3) \right]
```

call($f, A$)

$A = [a_1, \ldots, a_n]$ being a vector and $f$ being a function, returns the evaluation of $f(a_1, \ldots, a_n)$. $f$ can also be the name of a built-in GP function. If $\#A = 1$, $\text{call}(f, A) = \text{apply}(f, A)[1]$. If $f$ is variadic, the variadic arguments must grouped in a vector in the last component of $A$.

This function is useful

• when writing a variadic function, to call another one:

```
\text{fprintf}(\text{file}, \text{format}, \text{args}[..]) = \text{write}(\text{file}, \text{call}(\text{strprintf}, [\text{format}, \text{args}]))
```

• when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:

```
memo=Map();
memoize(f,A[..])=
{
 my(res);
 if(!mapisdefined(memo, [f,A], &res),
 res = call(f,A);
 mapput(memo,[f,A],res);
 res;
}

for example:

? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075

• to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

ceil(x)
Ceiling of x. When x is in \mathbb{R}, the result is the smallest integer greater than or equal to x. Applied to a rational function, $\text{ceil}(x)$ returns the Euclidean quotient of the numerator by the denominator.

centerlift(x, v)
Same as lift, except that t_INTMOD and t_PADIC components are lifted using centered residues:
• for a $t_\text{INTMOD} x \in \mathbb{Z}/n\mathbb{Z}$, the lift y is such that $-n/2 < y <= n/2$.
• a $t_\text{PADIC} x$ is lifted in the same way as above (modulo $p^{\text{padicprec}(x)}$) if its valuation v is nonnegative; if not, returns the fraction $p^v \text{centerlift}(x p^{-v})$; in particular, rational reconstruction is not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

characteristic(x)
Returns the characteristic of the base ring over which x is defined (as defined by t_INTMOD and t_FFELT components). The function raises an exception if incompatible primes arise from t_FFELT and t_PADIC components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6

charconj(cyc, chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. (d_j) represents $\sum_{j\leq k} \mathbb{Z}/d_j\mathbb{Z}$ with
$d_k | ... |d_1$; any object which has a `.cyc` method is also allowed, e.g. the output of `znstar` or `bnrinit`. A character on this group is given by a row vector $\chi = [a_1, ..., a_n]$ such that $\chi(\prod g_j^{a_j}) = \exp(2\pi i \sum a_j n_j / d_j)$, where g_j denotes the generator (of order d_j) of the j-th cyclic component.

This function returns the conjugate character.

```
? cyc = [15, 5]; chi = [1, 1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]
```

For Dirichlet characters (when `cyc` is `znstar(q,1)`), characters in Conrey representation are available, see `dirichletchar` (in the PARI manual) or `??character`:

```
? G = znstar(8, 1); \ (Z/8Z)^*
? charorder(G, 3) \ Conrey label
%2 = 2
? chi = znconreylog(G, 3);
? charorder(G, chi) \ Conrey logarithm
%4 = 2
```

`chardiv(cyc, a, b)`

Let `cyc` represent a finite abelian group by its elementary divisors, i.e. (d_j) represents $\sum_{j=1}^{\infty} \mathbb{Z}/d_j \mathbb{Z}$ with $d_k | ... |d_1$; any object which has a `.cyc` method is also allowed, e.g. the output of `znstar` or `bnrinit`. A character on this group is given by a row vector $a = [a_1, ..., a_n]$ such that $\chi(\prod g_j^{a_j}) = \exp(2\pi i \sum a_j n_j / d_j)$, where g_j denotes the generator (of order d_j) of the j-th cyclic component.

Given two characters a and b, return the character $a/b = a \cdot b$.

```
? cyc = [15, 5]; a = [1, 1]; b = [2, 4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]
```

For Dirichlet characters on $(\mathbb{Z}/N\mathbb{Z})^*$, additional representations are available (Conrey labels, Conrey logarithm), see `dirichletchar` (in the PARI manual) or `??character`. If the two characters are in the same format, the result is given in the same format, otherwise a Conrey logarithm is used.

```
? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \ usual representation for characters
? b = 7; \ Conrey label;
? c = znconreylog(G, 11); \ Conrey log
? chardiv(G, b,b)
%6 = 1 \ Conrey label
? chardiv(G, a,b)
```

(continues on next page)
chareval(G, chi, x, z)

Let \(G \) be an abelian group structure affording a discrete logarithm method, e.g. \(G = \text{znstar}(N, 1) \) for \((\mathbb{Z}/N\mathbb{Z})^*\) or a bnr structure, let \(x \) be an element of \(G \) and let \(\text{chi} \) be a character of \(G \) (see the note below for details). This function returns the value of \(\chi \) at \(x \).

Note on characters. Let \(G \) be an abelian group, let \(\chi : G \rightarrow K^* \) be a character of finite order and let \(o \) be a multiple of the character order such that \(\chi(n) = \zeta^{c(n)} \) for some fixed \(\zeta \in K^* \) of multiplicative order \(o \) and a unique morphism \(c : G \rightarrow (\mathbb{Z}/o\mathbb{Z}, +) \). Our usual convention is to write

\[
G = (\mathbb{Z}/o_1\mathbb{Z})g_1 \oplus \ldots \oplus (\mathbb{Z}/o_d\mathbb{Z})g_d
\]

for some generators \((g_i)\) of respective order \(d_i \), where the group has exponent \(o := \text{lcm}(o_i) \). Since \(\zeta^o = 1 \), the vector \((c_i)\) in \([1](\mathbb{Z}/o_i\mathbb{Z}) \) defines a character \(\chi \) on \(G \) via \(\chi(g_i) = \zeta^{c_i(o/o_i)} \) for all \(i \). Classical Dirichlet characters have values in \(K = \mathbb{C} \) and we can take \(\zeta = \exp(2\iota\pi/o) \).

Note on Dirichlet characters. In the special case where \(\text{bid} \) is attached to \(G = (\mathbb{Z}/q\mathbb{Z})^* \) (as per \(G = \text{znstar}(q, 1) \)), the Dirichlet character \(\text{chi} \) can be written in one of the usual 3 formats: a \text{t_VEC} in terms of \text{bid}.\text{gen} as above, a \text{t_COL} in terms of the Conrey generators, or a \text{t_INT} (Conrey label); see \text{dirichletchar} (in the PARI manual) or \text{??character}.

The character value is encoded as follows, depending on the optional argument \(z \):

- If \(z \) is omitted: return the rational number \(c(x)/o \) for \(x \) coprime to \(q \), where we normalize \(0 \leq c(x) < o \). If \(x \) can not be mapped to the group (e.g. \(x \) is not coprime to the conductor of a Dirichlet or Hecke character) we return the sentinel value \(-1\).

- If \(z \) is an integer \(o \), then we assume that \(o \) is a multiple of the character order and we return the integer \(c(x) \) when \(x \) belongs to the group, and the sentinel value \(-1\) otherwise.

- \(z \) can be of the form \([\text{zeta}, o] \), where \(\text{zeta} \) is an \(o\)-th root of 1 and \(o \) is a multiple of the character order. We return \(\zeta^{c(x)} \) if \(x \) belongs to the group, and the sentinel value \(\text{0} \) otherwise. (Note that this coincides with the usual extension of Dirichlet characters to \(\mathbb{Z} \), or of Hecke characters to general ideals.)

- Finally, \(z \) can be of the form \([v\text{zeta}, o] \), where \(v\text{zeta} \) is a vector of powers \(\zeta^0, \ldots, \zeta^{o-1} \) of some \(o\)-th root of 1 and \(o \) is a multiple of the character order. As above, we return \(\zeta^{c(x)} \) after a table lookup. Or the sentinel value \(\text{0} \).

chargalois(cyc, ORD)

Let \(\text{cyc} \) represent a finite abelian group by its elementary divisors (any object which has a .\text{cyc} method is also allowed, i.e. the output of \text{znstar} or \text{bnrinit}). Return a list of representatives for the Galois orbits of complex characters of \(G \). If \(\text{ORD} \) is present, select characters depending on their orders:

- if \(\text{ORD} \) is a \text{t_INT}, restrict to orders less than this bound;

- if \(\text{ORD} \) is a \text{t_VEC} or \text{t_VECSMALL}, restrict to orders in the list.

```
%7 = [0, 5] \~ \\ Conrey log
? chareval(G, a, c)
%7 = [0, 14] \~ \\ Conrey log
```

```
%7 = [0, 5] \~ \\ Conrey log
%2 = 16
? chargalois(G,4) \~ order less than 4
%3 = 12
? chargalois(G,[1,4]) \~ order 1 or 4; 5 orbits
%4 = [[0, 0, 0], [2, 0, 0], [2, 1, 0], [2, 0, 1], [2, 1, 1]]
```
Given a character \(\chi \), of order \(n \) (\texttt{charorder(G, chi)}) , the elements in its orbit are the \(\phi(n) \) characters \(\chi^i, (i, n) = 1 \).

\textbf{charker(cyc, chi)}

Let \(\text{cyc} \) represent a finite abelian group by its elementary divisors, i.e. \((d_j) \) represents \(\sum_{j<k} \mathbb{Z}/d_j\mathbb{Z} \) with \(d_k \ldots | d_1 \); any object which has a \texttt{.cyc} method is also allowed, e.g. the output of \texttt{znstar} or \texttt{bnrinit} . A character on this group is given by a row vector \(\chi = [a_1, \ldots, a_n] \) such that \(\chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j / d_j) \), where \(g_j \) denotes the generator (of order \(d_j \)) of the \(j \)-th cyclic component.

This function returns the kernel of \(\chi \), as a matrix \(K \) in HNF which is a left-divisor of \texttt{matdiagonal(d)} . Its columns express in terms of the \(g_j \) the generators of the subgroup. The determinant of \(K \) is the kernel index.

``` pari
\[ \texttt{charker(cyc, chi)} \]
```

``` pari
? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
\%2 =

\[ \begin{bmatrix} 15 & 12 \\ 0 & 1 \end{bmatrix} \]

? bnf = bnfinit(x^2+23);
? bnf.cyc
\%4 = \[3\]
? charker(bnf, [1])
\%5 =

\[ \begin{bmatrix} 3 \end{bmatrix} \]
```

Note that for Dirichlet characters (when \(\text{cyc} \) is \texttt{znstar(q, 1)}), characters in Conrey representation are available, see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

``` pari
\[ \texttt{charker(G, 1)} \]
```

``` pari
? G = znstar(8, 1); \ \ (Z/8Z)^*
\[ \text{\textbackslash (Z}/8\text{Z)}^* \]
? charker(G, 1) \ \ Conrey label for trivial character
\%2 =

\[ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \]
```

\textbf{charmul(cyc, a, b)}

Let \(\text{cyc} \) represent a finite abelian group by its elementary divisors, i.e. \((d_j) \) represents \(\sum_{j<k} \mathbb{Z}/d_j\mathbb{Z} \) with \(d_k \ldots | d_1 \); any object which has a \texttt{.cyc} method is also allowed, e.g. the output of \texttt{znstar} or \texttt{bnrinit} . A character on this group is given by a row vector \(a = [a_1, \ldots, a_n] \) such that \(\chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j / d_j) \), where \(g_j \) denotes the generator (of order \(d_j \)) of the \(j \)-th cyclic component.

Given two characters \(a \) and \(b \), return the product character \(ab \).

``` pari
? cyc = [15,5]; a = [1,1]; b = [2,4];
? charmul(cyc, a,b)
\%2 = \[3, 0\]
? bnf = bnfinit(x^2+23);
? bnf.cyc
\%4 = \[3\]
? charmul(bnf, [1], [2])
\%5 = \[0\]
```

For Dirichlet characters on \(\mathbb{Z}/N\mathbb{Z}^* \), additional representations are available (Conrey labels, Conrey logarithm), see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character} . If the two characters are in the same format, their product is given in the same format, otherwise a Conrey logarithm is used.
? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \ \ \ usual representation for characters
? b = 7; \ \ \ Conrey label;
? c = znconreylog(G, 11); \ \ \ Conrey log
? charmul(G, b,b)
%6 = 49 \ \ \ Conrey label
? charmul(G, a,b)
%7 = [0, 15]~ \ \ \ Conrey log
? charmul(G, a,c)
%7 = [0, 6]~ \ \ \ Conrey log

charorder *(cyc, chi)*

Let cyc represent a finite abelian group by its elementary divisors, i.e. *(d_j)* represents \(\sum_{j=0}^{k} \mathbb{Z}/d_j \mathbb{Z} \) with \(d_k | ... | d_1 \); any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector \(\chi = [a_1, ..., a_n] \) such that \(\chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j/d_j) \), where \(g_j \) denotes the generator (of order \(d_j \)) of the \(j \)-th cyclic component.

This function returns the order of the character chi.

? cyc = [15,5]; chi = [1,1];
? charorder(cyc, chi)
%2 = 15

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see dirichletchar (in the PARI manual) or ??character:

? G = znstar(100, 1); \ \ \ (Z/100Z)**
? charorder(G, 7) \ \ \ Conrey label
%2 = 4

charpoly *(A, v, flag)*

Characteristic polynomial of \(A \) with respect to the variable \(v \), i.e. determinant of \(v * I - A \) if \(A \) is a square matrix.

? charpoly([1,2;3,4]);
%1 = x^2 - 5*x - 2
? charpoly([1,2;3,4],..,'t')
%2 = t^2 - 5*t - 2

If \(A \) is not a square matrix, the function returns the characteristic polynomial of the map “multiplication by \(A \)” if \(A \) is a scalar:

? charpoly(Mod(x+2, x^3-2))
%1 = x^3 - 6*x^2 + 12*x - 10
? charpoly(1)
%2 = x^2 + 1
? charpoly(quadgen(5))

(continues on next page)
%3 = x^2 - x - 1
? charpoly(ffgen(ffinit(2,4)))
%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)

The value of flag is only significant for matrices, and we advise to stick to the default value. Let \(n \) be the dimension of \(A \).

If flag = 0, same method (Le Verrier’s) as for computing the adjoint matrix, i.e. using the traces of the powers of \(A \). Assumes that \(n! \) is invertible; uses \(O(n^4) \) scalar operations.

If flag = 1, uses Lagrange interpolation which is usually the slowest method. Assumes that \(n! \) is invertible; uses \(O(n^4) \) scalar operations.

If flag = 2, uses the Hessenberg form. Assumes that the base ring is a field. Uses \(O(n^3) \) scalar operations, but suffers from coefficient explosion unless the base field is finite or \(\mathbb{R} \).

If flag = 3, uses Berkowitz’s division free algorithm, valid over any ring (commutative, with unit). Uses \(O(n^4) \) scalar operations.

If flag = 4, \(x \) must be integral. Uses a modular algorithm: Hessenberg form for various small primes, then Chinese remainders.

If flag = 5 (default), uses the “best” method given \(x \). This means we use Berkowitz unless the base ring is \(\mathbb{Z} \) (use flag = 4) or a field where coefficient explosion does not occur, e.g. a finite field or the reals (use flag = 2).

\texttt{charpow(cyc, a, n)}

Let \(\text{cyc} \) represent a finite abelian group by its elementary divisors, i.e. \((d_j) \) represents \(\sum_{j<k} \mathbb{Z}/d_j\mathbb{Z} \) with \(d_k | \ldots | d_1 \); any object which has a .cyc method is also allowed, e.g. the output of \texttt{znstar} or \texttt{bnrinit}. A character on this group is given by a row vector \(a = [a_1, \ldots, a_n] \) such that \(\chi(\prod_j g_j^{a_j}) = \exp(2\pi i \sum a_j n_j / d_j) \), where \(g_j \) denotes the generator (of order \(d_j \)) of the \(j \)-th cyclic component.

Given \(n \in \mathbb{Z} \) and a character \(a \), return the character \(a^n \).

? cyc = [15,5]; a = [1,1];
? charpow(cyc, a, 3)
%2 = [3, 3]
? charpow(cyc, a, 5)
%2 = [5, 0]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charpow(bnf, [1], 3)
%5 = [0]

For Dirichlet characters on \((\mathbb{Z}/N\mathbb{Z})^*\), additional representations are available (Conrey labels, Conrey logarithm), see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character} and the output uses the same format as the input.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \ \ standard representation for characters
? b = 7; \ \ Conrey label;
? c = znconreylog(G, 11); \ \ Conrey log
? charpow(G, a,3)
?6 = [10, 1] \ \ standard representation
? charpow(G, b,3)
%7 = 43 \ \ Conrey label
? charpow(G, c,3)
%8 = [1, 8]~ \ \ Conrey log

\textbf{chinese}(x, y)

If \(x\) and \(y\) are both \texttt{intmods} or both \texttt{polmods}, creates (with the same type) a \(z\) in the same residue class as \(x\) and in the same residue class as \(y\), if it is possible.

\begin{verbatim}
? chinese(Mod(1,2), Mod(2,3))
%1 = Mod(5, 6)
? chinese(Mod(x,x^2-1), Mod(x+1,x^2+1))
%2 = Mod(-1/2*x^2 + x + 1/2, x^4 - 1)
\end{verbatim}

This function also allows vector and matrix arguments, in which case the operation is recursively applied to each component of the vector or matrix.

\begin{verbatim}
? chinese([Mod(1,2),Mod(1,3)], [Mod(1,5),Mod(2,7)])
%3 = [Mod(1, 10), Mod(16, 21)]
\end{verbatim}

For polynomial arguments in the same variable, the function is applied to each coefficient; if the polynomials have different degrees, the high degree terms are copied verbatim in the result, as if the missing high degree terms in the polynomial of lowest degree had been \texttt{Mod(0, 1)}. Since the latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of the same length first:

\begin{verbatim}
? P = x+1; Q = x^2+2*x+1;
? chinese(P*Mod(1,2), Q*Mod(1,3))
%4 = Mod(1, 3)*x + Mod(6, 1)*x + Mod(3, 6)
? chinese(Vec(P,3)*Mod(1,2), Vec(Q,3)*Mod(1,3))
%5 = [Mod(1, 6), Mod(5, 6), Mod(4, 6)]
? Pol(%)
%6 = Mod(1, 6)*x^2 + Mod(5, 6)*x + Mod(4, 6)
\end{verbatim}

If \(y\) is omitted, and \(x\) is a vector, \texttt{chinese} is applied recursively to the components of \(x\), yielding a residue belonging to the same class as all components of \(x\).

Finally \(\text{chinese}(x, x) = x\) regardless of the type of \(x\); this allows vector arguments to contain other data, so long as they are identical in both vectors.

\textbf{cmp}(x, y)

Gives the result of a comparison between arbitrary objects \(x\) and \(y\) (as \(-1, 0\) or \(1\)). The underlying order relation is transitive, the function returns 0 if and only if \(x =\equiv y\). It has no mathematical meaning but satisfies the following properties when comparing entries of the same type:

- two \texttt{t_INT} s compare as usual (i.e. \texttt{cmp}(x, y) < 0 if and only if \(x < y\));
- two \texttt{t_VECSMALL} s of the same length compare lexicographically;
- two \texttt{t_STR} s compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we have matrix \(>\) vector \(>\) scalar. For example:

\begin{verbatim}
? cmp(1, 2)
%1 = -1
\end{verbatim}
This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if \(v \) is a vector, the construction \(\text{vecsort}(v, \text{cmp}) \) is equivalent to \(\text{Set}(v) \).

component \((x, n)\)

Extracts the \(n \)-th-component of \(x \). This is to be understood as follows: every PARI type has one or two initial code words. The components are counted, starting at 1, after these code words. In particular if \(x \) is a vector, this is indeed the \(n \)-th-component of \(x \), if \(x \) is a matrix, the \(n \)-th column, if \(x \) is a polynomial, the \(n \)-th coefficient (i.e. of degree \(n - 1 \)), and for power series, the \(n \)-th significant coefficient.

For polynomials and power series, one should rather use \(\text{polcoeff} \), and for vectors and matrices, the \([\]\) operator. Namely, if \(x \) is a vector, then \(x[n] \) represents the \(n \)-th component of \(x \). If \(x \) is a matrix, \(x[m,n] \) represents the coefficient of row \(m \) and column \(n \) of the matrix, \(x[m,\] \) represents the \(m \)-th row of \(x \), and \(x[,n] \) represents the \(n \)-th column of \(x \).

Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should almost never be used directly. Some useful exceptions:

```python
? x = 3 + O(3^5);
? component(x, 2)
%2 = 81 \ \ p^4(p-adic accuracy)
? component(x, 1)
%3 = 3 \ \ p
? q = Qfb(1,2,3);
? component(q, 1)
%5 = 1
```

concat \((x, y)\)

Concatenation of \(x \) and \(y \). If \(x \) or \(y \) is not a vector or matrix, it is considered as a one-dimensional vector. All types are allowed for \(x \) and \(y \), but the sizes must be compatible. Note that matrices are concatenated horizontally, i.e. the number of rows stays the same. Using transpositions, one can concatenate them vertically, but it is often simpler to use \(\text{matconcat} \).

```python
? x = matid(2); y = 2*matid(2);
? concat(x,y)
%2 =
[1 0 2 0]
[0 1 0 2]
? concat(x~,y~)~
%3 =
[1 0]
[0 1]
[2 0]
```
To concatenate vectors sideways (i.e. to obtain a two-row or two-column matrix), use `Mat` instead, or `matconcat`:

\[
\begin{array}{c}
\text{? } x = [1,2]; \\
\text{? } y = [3,4]; \\
\text{? } \text{concat}(x,y) \\
\text{%3} = [1, 2, 3, 4] \\
\text{? } \text{Mat}([x,y]~) \\
\text{%4} = \\
[1 2] \\
[3 4] \\
\text{? } \text{matconcat}([x;y]) \\
\text{%5} = \\
[1 2] \\
[3 4]
\end{array}
\]

Concatenating a row vector to a matrix having the same number of columns will add the row to the matrix (top row if the vector is \(x\), i.e. comes first, and bottom row otherwise).

The empty matrix `[]` is considered to have a number of rows compatible with any operation, in particular concatenation. (Note that this is \textit{not} the case for empty vectors `[]` or `[]~`.)

If \(y\) is omitted, \(x\) has to be a row vector or a list, in which case its elements are concatenated, from left to right, using the above rules.

\[
\begin{array}{c}
\text{? } \text{concat}([[1,2], [3,4]]) \\
\text{%1} = [1, 2, 3, 4] \\
\text{? } a = [[1,2]~, [3,4]~]; \text{concat}(a) \\
\text{%2} = \\
[1 3] \\
[2 4] \\
\text{? } \text{concat}([1,2; 3,4], [5,6]~) \\
\text{%3} = \\
[1 2 5] \\
[3 4 6] \\
\text{? } \text{concat}([%, [7,8]~, [1,2,3,4]]) \\
\text{%5} =
\end{array}
\]
conj (x)
Conjugate of x. The meaning of this is clear, except that for real quadratic numbers, it means conjugation in
the real quadratic field. This function has no effect on integers, reals, intmods, fractions or p-adics. The only
forbidden type is polmod (see conjvec for this).

conjvec (z, precision)
Conjugate vector representation of z. If z is a polmod, equal to Mod(a, T), this gives a vector of length degree(T)
containing:
• the complex embeddings of z if T has rational coefficients, i.e. the a(r[i]) where r = polroots(T);
• the conjugates of z if T has some intmod coefficients;
if z is a finite field element, the result is the vector of conjugates [z, z^p, z^{p^2}, ..., z^{p^{n-1}}] where n = degree(T).
If z is an integer or a rational number, the result is z. If z is a (row or column) vector, the result is a matrix whose
columns are the conjugate vectors of the individual elements of z.

content (x, D)
Computes the gcd of all the coefficients of x, when this gcd makes sense. This is the natural definition if x is a
polynomial (and by extension a power series) or a vector/matrix. This is in general a weaker notion than the ideal
generated by the coefficients:

? content(2*x+y)
%1 = 1 \ = \gcd(2,y) over \Q[y]

If x is a scalar, this simply returns the absolute value of x if x is rational (t_INT or t_FRAC), and either 1 (inexact
input) or x (exact input) otherwise; the result should be identical to gcd(x, 0).

The content of a rational function is the ratio of the contents of the numerator and the denominator. In recursive
structures, if a matrix or vector coefficient x appears, the gcd is taken not with x, but with its content:

? f = x + 1/y + 1/2;
? content(f) \ \ \ as \ a \ t_POL \ in \ x
%2 = 1/(2*y)
? content(f, 1) \ \ \ Q-content
%3 = 1/2
? content(f, y) \ \ \ as \ a \ rational \ function \ in \ y
%4 = 1/2

The content of a t_VECSMALL is computed assuming the entries are signed integers.

The optional argument D allows to control over which ring we compute and get a more predictable behaviour:
• 1: we only consider the underlying \Q-structure and the denominator is a (positive) rational number
• a simple variable, say 'x: all entries are considered as rational functions in K(x) for some field K and the
content is an element of K.

? f = x + 1/y + 1/2;
? content(f) \ \ \ as \ a \ t_POL \ in \ x
%2 = 1/(2*y)
? content(f, 1) \ \ \ Q-content
%3 = 1/2
? content(f, y) \ \ \ as \ a \ rational \ function \ in \ y
%4 = 1/2

(continues on next page)
\? g = x^2*y + y^2*x;
\? content(g, x)
%6 = y
\? content(g, y)
%7 = x

\texttt{contfrac}(x, b, nmax)

Returns the row vector whose components are the partial quotients of the continued fraction expansion of \(x\). In other words, a result \([a_0, ..., a_n]\) means that \(x a_0 + 1/(a_1 + ... + 1/a_n)\). The output is normalized so that \(a_n! = 1\) (unless we also have \(n = 0\)).

The number of partial quotients \(n + 1\) is limited by \(n\text{max}\). If \(n\text{max}\) is omitted, the expansion stops at the last significant partial quotient.

\? \p19
\texttt{realprecision} = 19 significant digits
\? \texttt{contfrac}(\texttt{Pi})
%1 = \[3, 7, 15, 1, 292, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2\]
\? \texttt{contfrac}(\texttt{Pi},, 3) \\ \n = 2
%2 = \[3, 7, 15\]

\(x\) can also be a rational function or a power series.

If a vector \(b\) is supplied, the numerators are equal to the coefficients of \(b\), instead of all equal to 1 as above; more precisely, \(x (1/b_0)(a_0 + b_1/(a_1 + ... + b_n/a_n))\); for a numerical continued fraction (\(x\) real), the \(a_i\) are integers, as large as possible; if \(x\) is a rational function, they are polynomials with \(\text{deg} a_i = \text{deg} b_i + 1\). The length of the result is then equal to the length of \(b\), unless the next partial quotient cannot be reliably computed, in which case the expansion stops. This happens when a partial remainder is equal to zero (or too small compared to the available significant digits for \(x\) a t_REAL).

A direct implementation of the numerical continued fraction \texttt{contfrac}(x,b) described above would be

\begin{verbatim}
\"greedy\" generalized continued fraction
cf(x, b) =
{ my(a= vector(#b), t);
 x *= b[1];
 for (i = 1, #b,
 a[i] = floor(x);
 t = x - a[i]; if (!t || i == #b, break);
 x = b[i+1] / t;
); a;
}
\end{verbatim}

There is some degree of freedom when choosing the \(a_i\); the program above can easily be modified to derive variants of the standard algorithm. In the same vein, although no builtin function implements the related Engel expansion (a special kind of Egyptian fraction decomposition: \(x = 1/a_1 + 1/(a_1 a_2) + ...\)), it can be obtained as follows:

\begin{verbatim}
\"n terms of the Engel expansion of x\nengel(x, n = 10) =
{ my(u = x, a = vector(n));
 for (k = 1, n,
 a[k] = ceil(1/u);
); a;
}
\end{verbatim}
u = u*a[k] - 1;
if (!u, break);
); a
}

Obsoletion hack. (don’t use this): if b is an integer, nmax is ignored and the command is understood as contfrac(:math:`x, b`).

contfraceval *(CF, t, lim)*

Given a continued fraction CF output by contfracinit, evaluate the first lim terms of the continued fraction at t (all terms if lim is negative or omitted; if positive, lim must be less than or equal to the length of CF).

contfracinit *(M, lim)*

Given M representing the power series \(S = \sum_{n=0}^{\infty} M[n+1]z^n \), transform it into a continued fraction in Euler form, using the quotient-difference algorithm; restrict to \(n \leq \text{lim} \) if latter is nonnegative. M can be a vector, a power series, a polynomial; if the limiting parameter lim is present, a rational function is also allowed (and converted to a power series of that accuracy).

contfracpnqn *(x, n)*

When x is a vector or a one-row matrix, x is considered as the list of partial quotients \([a_0, a_1, ..., a_n]\) of a rational number, and the result is the 2 by 2 matrix \([p_n, q_n; q_{n-1}, p_{n-1}]\) in the standard notation of continued fractions, so \(p_n/q_n = a_0 + 1/(a_1 + ... + 1/a_n) \). If x is a matrix with two rows \([b_0, b_1, ..., b_n]\) and \([a_0, a_1, ..., a_n]\), this is then considered as a generalized continued fraction and we have similarly \(p_n/q_n = (1/b_0)(a_0 + b_1/(a_1 + ... + b_n/a_n)). \)

Note that in this case one usually has \(b_0 = 1 \).

If \(n \geq 0 \) is present, returns all convergents from \(p_0/q_0 \) up to \(p_n/q_n \). (All convergents if x is too small to compute the \(n + 1 \) requested convergents.)

```plaintext
? a = contfrac(Pi, 10)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 3]
? allpnqn(x) = contfracpnqn(x, #x) \ \ all convergents
? allpnqn(a)
%3 =
[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpnqn(a) \ \ last two convergents
%4 =
[1146408 312689]

[364913 99532]
? contfracpnqn(a, 3) \ \ first three convergents
%5 =
[3 22 333 355]

[1 7 106 113]
```

core *(n, flag)*

If n is an integer written as \(n = df^2 \) with d squarefree, returns d. If flag is nonzero, returns the two-element row vector \([d, f] \). By convention, we write \(0 = 0x1^2 \), so core(0, 1) returns \([0, 1] \).
coredisc \((n, \text{flag}) \)

A fundamental discriminant is an integer of the form \(t = 1 \mod 4 \) or \(4t = 8, 12 \mod 16 \), with \(t \) squarefree (i.e. 1 or the discriminant of a quadratic number field). Given a nonzero integer \(n \), this routine returns the (unique) fundamental discriminant \(d \) such that \(n = df^2 \), \(f \) a positive rational number. If \(\text{flag} \) is nonzero, returns the two-element row vector \([d, f] \). If \(n \) is congruent to 0 or 1 modulo 4, \(f \) is an integer, and a half-integer otherwise.

By convention, \(\text{coredisc}(0, 1) \) returns \([0, 1]\).

Note that \(\text{quaddisc}(n) \) returns the same value as \(\text{coredisc}(n) \), and also works with rational inputs \(n \in \mathbb{Q}^* \).

cos \((x, \text{precision}) \)

Cosine of \(x \). Note that, for real \(x \), cosine and sine can be obtained simultaneously as

\[
\text{cs}(x) = \text{my}(z = \exp(I\times x)); \ [\text{real}(z), \ \text{imag}(z)];
\]

and for general complex \(x \) as

\[
\text{cs2}(x) = \text{my}(z = \exp(I\times x), \ u = 1/z); \ [(z+u)/2, \ (z-u)/2];
\]

Note that the latter function suffers from catastrophic cancellation when \(z^2 \approx 1 \).

cosh \((x, \text{precision}) \)

Hyperbolic cosine of \(x \).

cotan \((x, \text{precision}) \)

Cotangent of \(x \).

cotanh \((x, \text{precision}) \)

Hyperbolic cotangent of \(x \).

default \((\text{key}, \text{val}) \)

Returns the default corresponding to keyword \(\text{key} \). If \(\text{val} \) is present, sets the default to \(\text{val} \) first (which is subject to string expansion first). Typing \(\text{default()} \) (or \(\text{d} \)) yields the complete default list as well as their current values. See \(\text{defaults} \) (in the PARI manual) for an introduction to GP defaults, \(\text{gp_defaults} \) (in the PARI manual) for a list of available defaults, and \(\text{meta} \) (in the PARI manual) for some shortcut alternatives. Note that the shortcuts are meant for interactive use and usually display more information than \(\text{default} \).

denominator \((f, D) \)

Denominator of \(f \). The meaning of this is clear when \(f \) is a rational number or function. If \(f \) is an integer or a polynomial, it is treated as a rational number or function, respectively, and the result is equal to 1. For polynomials, you probably want to use

\[
\text{denominator(content(f))}
\]

instead. As for modular objects, \(\text{t_INTMOD} \) and \(\text{t_PADIC} \) have denominator 1, and the denominator of a \(\text{t_POLMOD} \) is the denominator of its lift.

If \(f \) is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its components (a common denominator) is computed. This also applies for \(\text{t_COMPLEX} \) s and \(\text{t_QUAD} \) s.

Warning. Multivariate objects are created according to variable priorities, with possibly surprising side effects (\(x/y \) is a polynomial, but \(y/x \) is a rational function). See \(\text{priority} \) (in the PARI manual).

The optional argument \(D \) allows to control over which ring we compute the denominator and get a more predictable behaviour:

- **1:** we only consider the underlying \(\mathbb{Q} \)-structure and the denominator is a (positive) rational integer
- **a simple variable, say ‘x:** all entries as rational functions in \(K(x) \) and the denominator is a polynomial in \(x \).
\fbox{
\begin{verbatim}
? f = x + 1/y + 1/2;
? denominator(f) \ a t_POL in x
%2 = 1
? denominator(f, 1) \ Q-denominator
%3 = 2
? denominator(f, x) \ as a t_POL in x, seen above
%4 = 1
? denominator(f, y) \ as a rational function in y
%5 = 2*y
\end{verbatim}
}

deriv(x, v)

Derivative of \(x \) with respect to the main variable if \(v \) is omitted, and with respect to \(v \) otherwise. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use \(x' \) as a shortcut if the derivative is with respect to the main variable of \(x \); and also use \(x'' \), etc., for multiple derivatives although deriv is often preferrable.

By definition, the main variable of a \(\text{t}_\text{POLMOD} \) is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of \(R[\mathcal{X}]/(T(\mathcal{X})) \), the variable \(\mathcal{X} \) is a mute variable and the derivative is taken with respect to the main variable used in the base ring \(R \).

\fbox{
\begin{verbatim}
? f = (x/y)^5;
? deriv(f)
%2 = 5/y^5*x^4
? f'
%3 = 5/y^5*x^4
? deriv(f, 'x) \ same since 'x is the main variable
%4 = 5/y^5*x^4
? deriv(f, 'y)
%5 = -5/y^6*x^5
\end{verbatim}
}

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing a numerical differentiation as per derivnum:

\fbox{
\begin{verbatim}
? f(x) = x^2;
? g = deriv(f)
? g(1)
%3 = 2.000000000000000000000000000000000000000
? f(x) = sin(exp(x));
? deriv(f)(0)
%5 = 0.54030230586813971740093660744297660373
? cos(1)
%6 = 0.54030230586813971740093660744297660373
\end{verbatim}
}

derivn(x, n, v)

\(n \)-th derivative of \(x \) with respect to the main variable if \(v \) is omitted, and with respect to \(v \) otherwise; the integer \(n \) must be nonnegative. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use \(x', x'' \), etc., as a shortcut if the derivative is with respect to the main variable of \(x \).

By definition, the main variable of a \(\text{t}_\text{POLMOD} \) is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of \(R[\mathcal{X}]/(T(\mathcal{X})) \), the variable \(\mathcal{X} \) is a mute variable and the derivative is taken with respect to the main variable used in the base ring \(R \).
This function also operates on closures, in which case the variable must be omitted. It returns a closure performing a numerical differentiation as per derivnum:

```plaintext
? f(x) = x^10;
? g = derivn(f, 5)
? g(1)
%3 = 30240.000000000000000000000000000000000

? derivn(zeta, 2)(0)
%4 = -2.0063564559085848512101000267299604382
?

diffop(x, v, d, n)
Let \( v \) be a vector of variables, and \( d \) a vector of the same length, return the image of \( x \) by the \( n \)-power (1 if \( n \) is not given) of the differential operator \( D \) that assumes the value \( d[i] \) on the variable \( v[i] \). The value of \( D \) on a scalar type is zero, and \( D \) applies componentwise to a vector or matrix. When applied to a \( \text{t}_{\text{POLMOD}} \), if no value is provided for the variable of the modulus, such value is derived using the implicit function theorem.

**Examples.** This function can be used to differentiate formal expressions: if \( E = \exp(X^2) \) then we have \( E' = 2 \cdot X \cdot E \). We derive \( X \cdot \exp(X^2) \) as follows:

```plaintext
? diffop(E*X,[X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
```

Let \( \sin \) and \( \cos \) be two function such that \( \sin^2 + \cos^2 = 1 \) and \( \cos' = -\sin \). We can differentiate \( \sin/\cos \) as follows, PARI inferring the value of \( \sin' \) from the equation:

```plaintext
? diffop(Mod('Sin/'Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])
%1 = Mod(1/Cos^2, Sin^2 + (Cos^2 - 1))
```

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

```plaintext
Bell(k,n=-1)=
{ my(x, v, dv, var = i->eval(Str("X",i)));
 v = vector(k, i, if (i==1, 'E, var(i-1)));
 dv = vector(k, i, if (i==1, 'X*var(1)*'E, var(i)));
 x = diffop('E,v,dv,k) / 'E;
 if (n < 0, subst(x,'X,1), polcoef(x,n,'X));
}
```

digits(x, b)
Outputs the vector of the digits of \( ||x|| \) in base \( b \), where \( x \) and \( b \) are integers (\( b = 10 \) by default). For \( x > 1 \), the number of digits is \( \logint(x,b) + 1 \). See fromdigits for the reverse operation.
By convention, 0 has no digits:

```
? digits(0)
%3 []
```

dilog$(x, \text{precision})$

Principal branch of the dilogarithm of $x$, i.e. analytic continuation of the power series $\log_2(x) = \sum_{n=1}^{\infty} x^n / n^2$.

dirdiv$(x, y)$

$x$ and $y$ being vectors of perhaps different lengths but with $y[1]! = 0$ considered as Dirichlet series, computes the quotient of $x$ by $y$, again as a vector.

dirmul$(x, y)$

$x$ and $y$ being vectors of perhaps different lengths representing the Dirichlet series $\sum_n x_n n^{-s}$ and $\sum_n y_n n^{-s}$, computes the product of $x$ by $y$, again as a vector.

```
? dirmul(vector(10,n,1), vector(10,n,moebius(n)))
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
```

The product length is the minimum of $\# x \ast v(y)$ and $\# y \ast v(x)$, where $v(x)$ is the index of the first nonzero coefficient.

```
? dirmul([0,1], [0,1]);
%2 = [0, 0, 0, 1]
```

dirpowers$(n, x, \text{precision})$

For nonnegative $n$ and complex number $x$, return the vector with $n$ components $[1^x, 2^x, \ldots, n^x]$.

```
? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? dirpowers(5, 1/2)
%2 = [1, 1.414..., 1.732..., 2.000..., 2.236...]
```

When $n \leq 0$, the function returns the empty vector $[]$.

dirpowerssum$(n, x, \text{precision})$

For positive integer $n$ and complex number $x$, return the sum $1^x + 2^x + \ldots + n^x$. This is the same as vecsum(dirpowers$(n, x)$), but faster and using only $O(\sqrt{n})$ memory instead of $O(n)$.

```
? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? vecsum(%)
%2 = 55
? dirpowerssum(5, 2)
%3 = 55
? \p200
? dirpowerssum(10^7, 1/2 + I * sqrt(3));
 time = 29,884 ms.
```

(continues on next page)
The penultimate command works with default stack size, the last one requires a
stacksize of at least 5GB.

When $n \leq 0$, the function returns 0.

dirzetak($nf$, $b$)

Gives as a vector the first $b$ coefficients of the Dedekind zeta function of the
number field $nf$ considered as a
Dirichlet series.

divisors($x$, $flag$)

Creates a row vector whose components are the divisors of $x$. The factorization of $x$ (as
output by factor) can be used instead. If $flag = 1$, return pairs $[d, factor(d)]$.

By definition, these divisors are the products of the irreducible factors of $n$, as
produced by factor($n$), raised to
appropriate powers (no negative exponent may occur in the factorization). If $n$ is an integer, they are the positive
divisors, in increasing order.

\[
? \text{divisors}(12)
\]

%1 = [1, 2, 3, 4, 6, 12]

? \text{divisors}(12, 1) \ \backslash \text{ include their factorization}

%2 = [[1, matrix(0,2)], [2, Mat([2, 1])], [3, Mat([3, 1])],
    [4, Mat([2, 2])], [6, [2, 1; 3, 1]], [12, [2, 2; 3, 1]]]

This function requires a lot of memory if $x$ has many divisors. The following idiom runs through all divisors
using very little memory, in no particular order this time:

\[
F = \text{factor}(x); P = F[,1]; E = F[,2];
\text{forvec}(e = \text{vectorv(#E,1,0,E[i])), d = \text{factorback}(P,e); ...}
\]

If the factorization of $d$ is also desired, then $[P,e]$ almost provides it but not quite: $e$ may contain 0
exponents, which are not allowed in factorizations. These must be sieved out as in:

\[
\text{tofact}(P,E) =
\text{my}(v = \text{select}(x->x, E, 1)); \text{Mat}([\text{vecextract}(P,v), \text{vecextract}(E,v)]);
\]

\[
? \text{tofact}([2,3,5,7]~, [4,0,2,0]~)
%4 =
[2 4]
[5 2]
\]

We can then run the above loop with tofact($P,e$) instead of, or together with, factorback.

divisorslenstra($N$, $r$, $s$)

Given three integers $N > s > r \geq 0$ such that ($r,s$) = 1 and $s^3 > N$, find all divisors $d$ of $N$ such that
d = r($mod$s). There are at most 11 such divisors (Lenstra).

\[
? N = 245784; r = 19; s = 65 ;
? \text{divisorslenstra}(N, r, s)
\]
When the preconditions are not met, the result is undefined:

```plaintext
? N = 4484075232; r = 7; s = 1303; s^3 > N
%4 = 0
? divisorslenstra(N, r, s)
? [d | d <- divisors(N), d % s == r]
%6 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]
```

(Divisors were missing but \( s^3 < N \).)

**`divrem(x, y, v)`**

Creates a column vector with two components, the first being the Euclidean quotient (:math:`x \div y`), the second the Euclidean remainder (:math:`x - (x \div y) \times y`), of the division of \( x \) by \( y \). This avoids the need to do two divisions if one needs both the quotient and the remainder. If \( v \) is present, and \( x, y \) are multivariate polynomials, divide with respect to the variable \( v \).

Beware that `divrem(:math:`\`x,\`y)` is in general not the same as :math:`x \% y`; no GP operator corresponds to it:

```plaintext
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^-------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
```

**`eint1(x, n, precision)`**

Exponential integral \( \int_x^\infty \frac{o(e^{-t})}{t} dt = \text{ingam}(0, x) \), where the latter expression extends the function definition from real \( x > 0 \) to all complex \( x! = 0 \).

If \( n \) is present, we must have \( x > 0 \); the function returns the \( n \)-dimensional vector \([eint1(x), ..., eint1(nx)]\). Contrary to other transcendental functions, and to the default case (\( n \) omitted), the values are correct up to a bounded absolute, rather than relative, error \( 10^{-n} \), where \( n \) is `precision(x)` if \( x \) is a \( t_REAL \) and defaults to `realprecision` otherwise. (In the most important application, to the computation of \( L \)-functions via approximate functional equations, those values appear as weights in long sums and small individual relative errors are less useful than controlling the absolute error.) This is faster than repeatedly calling `eint1(:math:`\`i \times x)` but less precise.

**`ellE(k, precision)`**

Complete elliptic integral of the second kind

\[
E(k) = \int_0^{\pi/2} (1 - k^2 \sin(t)^2)^{1/2} dt
\]

for the complex parameter \( k \) using the agm.
ellK\((k, \text{precision})\)

Complete elliptic integral of the first kind

\[ K(k) = \int_{0}^{\pi/2} (1 - k^2 \sin(t)^2)^{-1/2} dt \]

for the complex parameter \(k\) using the agm.

ellL1\((E, r, \text{precision})\)

Returns the value at \(s = 1\) of the derivative of order \(r\) of the \(L\)-function of the elliptic curve \(E\).

<table>
<thead>
<tr>
<th>E = ellinit(&quot;11a1&quot;); \ order of vanishing is 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ellL1(E)</td>
</tr>
<tr>
<td>%2 = 0.253841860855906843377589233</td>
</tr>
<tr>
<td>E = ellinit(&quot;389a1&quot;); \ order of vanishing is 2</td>
</tr>
<tr>
<td>ellL1(E)</td>
</tr>
<tr>
<td>%4 = -5.384067311837218089235032414 E-29</td>
</tr>
<tr>
<td>ellL1(E, 1)</td>
</tr>
<tr>
<td>%5 = 0</td>
</tr>
<tr>
<td>ellL1(E, 2)</td>
</tr>
<tr>
<td>%6 = 1.51863300057685354060385214</td>
</tr>
</tbody>
</table>

The main use of this function, after computing at low accuracy the order of vanishing using ellanalyticrank, is to compute the leading term at high accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture:

? \p18
   realprecision = 18 significant digits
? E = ellinit("5077a1"); ellanalyticrank(E)
   time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
   realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
   time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797[...]

elladd\((E, z1, z2)\)

Sum of the points \(z1\) and \(z2\) on the elliptic curve corresponding to \(E\).

ellak\((E, n)\)

Computes the coefficient \(a_n\) of the \(L\)-function of the elliptic curve \(E/Q\), i.e. coefficients of a newform of weight 2 by the modularity theorem (Taniyama-Shimura-Weil conjecture). \(E\) must be an ell structure over \(Q\) as output by ellinit. \(E\) must be given by an integral model, not necessarily minimal, although a minimal model will make the function faster.

? E = ellinit([1,-1,0,4,3]);
? ellak(E, 10)
%2 = -3
? e = ellchangecurve(E, [1/5,0,0,0]); \ made not minimal at 5
? ellak(e, 10) \ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \ now minimal
? ellak(E, 5)
%5 = -3
If the model is not minimal at a number of bad primes, then the function will be slower on those $n$ divisible by the bad primes. The speed should be comparable for other $n$:

```
? for(i=1,10^6, ellak(E,5))
time = 699 ms.
? for(i=1,10^6, ellak(e,5)) \ 5 is bad, markedly slower
time = 1,079 ms.
? for(i=1,10^5,ellak(E,5*i))
time = 1,477 ms.
? for(i=1,10^5,ellak(e,5*i)) \ still slower but not so much on average
 time = 1,569 ms.
```

**ellan**($E, n$)

Computes the vector of the first $n$ Fourier coefficients $a_k$ corresponding to the elliptic curve $E$ defined over a number field. If $E$ is defined over $\mathbb{Q}$, the curve may be given by an arbitrary model, not necessarily minimal, although a minimal model will make the function faster. Over a more general number field, the model must be locally minimal at all primes above 2 and 3.

**ellanalyticrank**($E, eps, precision$)

Returns the order of vanishing at $s = 1$ of the $L$-function of the elliptic curve $E$ and the value of the first nonzero derivative. To determine this order, it is assumed that any value less than $eps$ is zero. If $eps$ is omitted, $2^{-b/2}$ is used, where $b$ is the current bit precision.

```
? E = ellinit("11a1"); \ rank 0
? ellanalyticrank(E)
%2 = [0, 0.25384186085591068437357589233]
? E = ellinit("37a1"); \ rank 1
? ellanalyticrank(E)
%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389a1"); \ rank 2
? ellanalyticrank(E)
%6 = [2, 1.518633000576853540460385214]
? E = ellinit("5077a1"); \ rank 3
? ellanalyticrank(E)
%8 = [3, 10.39109940071580413875185035]
```

**ellap**($E, p$)

Let $E$ be an ell structure as output by `ellinit`, attached to an elliptic curve $E/K$. If the field $K = \mathbb{F}_q$ is finite, return the trace of Frobenius $t$, defined by the equation $\#E(\mathbb{F}_q) = q + 1 - t$.

For other fields of definition and $p$ defining a finite residue field $\mathbb{F}_q$, return the trace of Frobenius for the reduction of $E$: the argument $p$ is best left omitted if $K = \mathbb{Q}_p$ (else we must have $p = l$) and must be a prime number ($K = \mathbb{Q}$) or prime ideal ($K$ a general number field) with residue field $\mathbb{F}_q$ otherwise. The equation need not be minimal or even integral at $p$; of course, a minimal model will be more efficient.

For a number field $K$, the trace of Frobenius is the $a_p$ coefficient in the Euler product defining the curve $L$-series, whence the function name:

$$L(E/K, s) = \prod_{badp} (1 - a_p(Np)^{-s})^{-1} \prod_{goodp} (1 - a_p(Np)^{-s} + (Np)^{1-2s})^{-1}.$$  

When the characteristic of the finite field is large, the availability of the `seadata` package will speed up the computation.
If the curve is defined over a more general number field than \( \mathbb{Q} \), the maximal ideal \( p \) must be explicitly given in `idealprimedec` format. There is no assumption of local minimality at \( p \).

```
\begin{verbatim}
? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \ \ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \ \ same, starting from a nonminimal model
\end{verbatim}
```

**Algorithms used.** If \( E/\mathbb{F}_q \) has CM by a principal imaginary quadratic order we use a fast explicit formula (involving essentially Kronecker symbols and Cornacchia’s algorithm), in \( O(\log q)^2 \) bit operations. Otherwise, we use Shanks-Mestre’s baby-step/giant-step method, which runs in time \( O(q^{1.4}) \) using \( O(q^{1/4}) \) storage, hence
becomes unreasonable when \( q \) has about 30 digits. Above this range, the SEA algorithm becomes available, heuristically in \( O(\log q)^4 \), and primes of the order of 200 digits become feasible. In small characteristic we use Mestre’s (\( p = 2 \)), Kohel’s (\( p = 3,5,7,13 \)), Satoh-Harley (all in \( O(p^2 n^2) \)) or Kedlaya’s (in \( O(pn^3) \)) algorithms.

\[
\text{ellbil}(E, z1, z2, \text{precision})
\]

Deprecated alias for \( \text{ellheight}(E, P, Q) \).

\[
\text{ellbsd}(E, \text{precision})
\]

The object \( E \) being an elliptic curve over a number field, returns a real number \( c \) such that the BSD conjecture predicts that \( L^{(r)}_E(1)/r! = cRS \) where \( r \) is the rank, \( R \) the regulator and \( S \) the cardinal of the Tate-Shafarevich group.

\[
\begin{align*}
? & e = \text{ellinit}([0,-1,1,-10,-20]) \; \text{\textbackslash{} rank 0} \\
? & \text{ellbsd}(e) \\
%2 &= 0.25384186085591068433775892335090946105 \\
? & \text{lfunc}(e, 1) \\
%3 &= 0.25384186085591068433775892335090946104 \\
? & e = \text{ellinit}([0,0,1,-1,0]) \; \text{\textbackslash{} rank 1} \\
? & P = \text{ellheegner}(e) \\
? & \text{ellbsd}(e)^*\text{ellheight}(e,P) \\
%6 &= 0.30599977383405230182048368332167647445 \\
? & \text{lfunc}(e, 1, 1) \\
%7 &= 0.30599977383405230182048368332167647445 \\
? & e = \text{ellinit}([1+a,0,1,0,0], \text{nfiniit}(a^2+1)); \; \text{\textbackslash{} rank 0} \\
? & \text{ellbsd}(e) \\
%9 &= 0.42521832235345764503001271536611593310 \\
? & \text{lfunc}(e, 1, 1) \\
%10 &= 0.42521832235345764503001271536611593309
\end{align*}
\]

\[
\text{ellcard}(E, p)
\]

Let \( E \) be an ell structure as output by \text{ellinit}, attached to an elliptic curve \( E/K \). If \( K = \mathbb{F}_q \) is finite, return the order of the group \( E(\mathbb{F}_q) \).

\[
? E = \text{ellinit}([-3,1], 5); \text{ellcard}(E) \\
%1 = 7 \\
? t = \text{ffgen}(3^5, 't'); E = \text{ellinit}([t,t^2+1]); \text{ellcard}(E) \\
%2 = 217
\]

For other fields of definition and \( p \) defining a finite residue field \( \mathbb{F}_q \), return the order of the reduction of \( E \): the argument \( p \) is best left omitted if \( K = \mathbb{Q}_\ell \) (else we must have \( p = \ell \)) and must be a prime number (\( K = \mathbb{Q} \)) or prime ideal (\( K \) a general number field) with residue field \( \mathbb{F}_q \) otherwise. The equation need not be minimal or even integral at \( p \); of course, a minimal model will be more efficient. The function considers the group of nonsingular points of the reduction of a minimal model of the curve at \( p \), so also makes sense when the curve has bad reduction.

\[
? E = \text{ellinit}([-3,1]); \text{factor}(E.\text{disc}) \\
%2 = \\
[2 \; 4] \\
[3 \; 4] \\
? \text{ellcard}(E, 5) \; \text{\textbackslash{} as above !} \\
%3 = 7
\]
ellcard(E, 2) \ additive reduction
\%4 = 2

When the characteristic of the finite field is large, the availability of the seadata package will speed the computation. See also ellap for the list of implemented algorithms.

**ellchangecurve**\((E, v)\)
Changes the data for the elliptic curve \(E\) by changing the coordinates using the vector \(v = [u, r, s, t]\), i.e. if \(x'\) and \(y'\) are the new coordinates, then \(x = u^2x' + r\), \(y = u^3y' + su^2x' + t\). \(E\) must be an ell structure as output by ellinit. The special case \(v = 1\) is also used instead of \([1, 0, 0, 0]\) to denote the trivial coordinate change.

**ellchangepoint**\((x, v)\)
Changes the coordinates of the point or vector of points \(x\) using the vector \(v = [u, r, s, t]\), i.e. if \(x'\) and \(y'\) are the new coordinates, then \(x = u^2x' + r\), \(y = u^3y' + su^2x' + t\) (see also ellchangecurve).

```
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
\%3 = [-2, 3]
? ellisoncurve(E, P)
\%4 = 1
? ellchangepointinv(P,v)
\%5 = [0, 1]
```

**ellchangepointinv**\((x, v)\)
Changes the coordinates of the point or vector of points \(x\) using the inverse of the isomorphism attached to \(v = [u, r, s, t]\), i.e. if \(x'\) and \(y'\) are the old coordinates, then \(x = u^2x' + r\), \(y = u^3y' + su^2x' + t\) (inverse of ellchangepoint).

```
? E0 = ellinit([1,1]); P0 = [0,1]; v = [1,2,3,4];
? E = ellchangecurve(E0, v);
? P = ellchangepoint(P0,v)
\%3 = [-2, 3]
? ellisoncurve(E, P)
\%4 = 1
? ellchangepointinv(P,v)
\%5 = [0, 1] \ we get back P0
```

**ellconvertname**\((name)\)
Converts an elliptic curve name, as found in the elldata database, from a string to a triplet \([\text{conductor}, \text{isogeny class}, \text{index}]\). It will also convert a triplet back to a curve name. Examples:

```
? ellconvertname("123b1")
\%1 = [123, 1, 1]
? ellconvertname(%)
\%2 = "123b1"
```

**elldivpol**\((E, n, v)\)
\(n\)-division polynomial \(f_n\) for the curve \(E\) in the variable \(v\). In standard notation, for any affine point \(P = (X, Y)\) on the curve and any integer \(n >= 0\), we have

\[[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)\]
for some polynomials $\phi_n, \omega_n, \psi_n$ in $\mathbb{Z}[a_1, a_2, a_3, a_4, a_6][X, Y]$. We have $f_n(X) = \psi_n(X)$ for $n$ odd, and $f_n(X) = \psi_n(X, Y)(2Y + a_1X + a_3)$ for $n$ even. We have
\[
  f_0 = 0, \quad f_1 = 1, \quad f_2 = 4X^3 + b_2X^2 + 2b_4X + b_6, \quad f_3 = 3X^4 + b_2X^3 + 3b_4X^2 + 3b_6X + b_8,
\]
\[
  f_4 = f_2(2X^6 + b_2X^5 + 5b_4X^4 + 10b_6X^3 + 10b_8X^2 + (b_2b_8 - b_4b_6)X + (b_6b_8 - b_6^2)),
\]
When $n$ is odd, the roots of $f_n$ are the $X$-coordinates of the affine points in the $n$-torsion subgroup $E[n]$; when $n$ is even, the roots of $f_n$ are the $X$-coordinates of the affine points in $E[n] E[2]$ when $n > 2$, resp. in $E[2]$ when $n = 2$. For $n < 0$, we define $f_n := -f_{-n}$.

**elleisnum**($w, k, \text{flag}, \text{precision}$)

$k$ being an even positive integer, computes the numerical value of the Eisenstein series of weight $k$ at the lattice $w$, as given by **ellperiods**, namely
\[
(2i\pi/\omega_2)^k(1 + 2/\zeta(1 - k) \sum_{n \geq 1} n^{k-1}q^n/(1 - q^n)),
\]
where $q = \exp(2i\pi x)$ and $\tau := \omega_1/\omega_2$ belongs to the complex upper half-plane. It is also possible to directly input $w = [\omega_1, \omega_2]$, or an elliptic curve $E$ as given by **ellinit**.

```
? w = ellperiods([1,1]);
? elleisnum(w, 4)
%2 = 2268.872645508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4)
%5 = -48.000000000000000000000000000000000000
```

When **flag** is nonzero and $k = 4$ or 6, returns the elliptic invariants $g_2$ or $g_3$, such that
\[
y^2 = 4x^3 - g_2x - g_3
\]
is a Weierstrass equation for $E$.

```
? g2 = elleisnum(E, 4, 1)
%6 = -4.000000000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\~ 0
%7 = 0.E-114 - 3.909948178422242682 E-57*I
```

**elleta**($w, \text{precision}$)

Returns the quasi-periods $[\eta_1, \eta_2]$ attached to the lattice basis $w = [\omega_1, \omega_2]$. Alternatively, $w$ can be an elliptic curve $E$ as output by **ellinit**, in which case, the quasi periods attached to the period lattice basis :math:`'E.\omega_m`' (namely, :math:`'E.\eta_m`') are returned.

```
? elleta([1, 1])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
```

**ellformaldifferential**($E, \text{serprec}, n$)

Let $\omega := dx/(2y + a_1x + a_3)$ be the invariant differential form attached to the model $E$ of some elliptic curve (ellinit form), and $\eta := x(t)\omega$. Return $n$ terms (serprec by default) of $f(t), g(t)$ two power series in the formal parameter $t = -x/y$ such that $\omega = f(t)dt, \eta = g(t)dt$:
\[
f(t) = 1 + a_1t + (a_1^2 + a_2)t^2 + ..., g(t) = t^{-2} + ...
\]
ellformalexp(\(E, \text{serprec}, n\))

The elliptic formal exponential \(\text{Exp}\) attached to \(E\) is the isomorphism from the formal additive law to the formal group of \(E\). It is normalized so as to be the inverse of the elliptic logarithm (see ellformallog): \(\text{Exp} L = \text{Id}\). Return \(n\) terms of this power series:

```plaintext
? E = ellinit([-1,1/4]); \text{Exp} = \text{ellformalexp}(E, 10, 'z);
%1 = z + 2/5* z^5 - 3/28* z^7 + 2/15* z^9 + O(z^11)
```

ellformallog(\(E, \text{serprec}, n\))

The formal elliptic logarithm is a series \(L\) in \(tK[[t]]\) such that \(dL = \omega = dx/(2y + a_1 x + a_3)\), the canonical invariant differential attached to the model \(E\). It gives an isomorphism from the formal group of \(E\) to the additive formal group.

```plaintext
? E = ellinit([-1,1/4]); \text{L} = \text{ellformallog}(E, 9, 't);
%1 = t - 2/5* t^5 + 3/28* t^7 + 2/3* t^9 + O(t^10)
```

ellformalpoint(\(E, \text{serprec}, n\))

If \(E\) is an elliptic curve, return the coordinates \(x(t), y(t)\) in the formal group of the elliptic curve \(E\) in the formal parameter \(t = -x/y\) at \(\infty\):

\[
x = t^{-2} - a_1 t^{-1} - a_2 - a_3 t + ... \\
y = -t^{-3} - a_1 t^{-2} - a_2 t^{-1} - a_3 + ...
\]

Return \(n\) terms (\text{seriesprecision} by default) of these two power series, whose coefficients are in \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6]\).

```plaintext
? E = ellinit([0,1,0,-1,0]); \[x,y\] = ellformalpoint(E, 8, 't);
? x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
? y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
```

ellformalw(\(E, \text{serprec}, n\))

Return the formal power series \(w\) attached to the elliptic curve \(E\), in the variable \(t\):

\[
w(t) = t^3 (1 + a_1 t + (a_2 + a_1^2) t^2 + ... + O(t^n)),
\]

which is the formal expansion of \(-1/y\) in the formal parameter \(t := -x/y\) at \(\infty\) (take \(n = \text{seriesprecision}\) if \(n\) is omitted). The coefficients of \(w\) belong to \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6]\).
ellfromeqn(\(P\))

Given a genus 1 plane curve, defined by the affine equation \(f(x, y) = 0\), return the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of a Weierstrass equation for its Jacobian. This allows to recover a Weierstrass model for an elliptic curve given by a general plane cubic or by a binary quartic or biquadratic model. The function implements the \(\tilde{f} : --- > f^*\) formulae of Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366–382).

In the example below, the function is used to convert between twisted Edwards coordinates and Weierstrass coordinates.

? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]

ellfromj(\(j\))

Returns the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of a fixed elliptic curve with \(j\)-invariant \(j\).

ellgenerators(\(E\))

If \(E\) is an elliptic curve over the rationals, return a \(\mathbb{Z}\)-basis of the free part of the Mordell-Weil group attached to \(E\). This relies on the elldata database being installed and referencing the curve, and so is only available for curves over \(\mathbb{Z}\) of small conductors. If \(E\) is an elliptic curve over a finite field \(\mathbb{F}_q\) as output by ellinit, return a minimal set of generators for the group \(E(\mathbb{F}_q)\).

Caution. When the group is not cyclic, of shape \(\mathbb{Z}/d_1\mathbb{Z} \times \mathbb{Z}/d_2\mathbb{Z}\) with \(d_2||d_1\), the points \([P, Q]\) returned by ellgenerators need not have order \(d_1\) and \(d_2\): it is true that \(P\) has order \(d_1\), but we only know that \(Q\) is a generator of \(E(\mathbb{F}_q)\)/ \(< P >\) and that the Weil pairing \(w(P, Q)\) has order \(d_2\). If you need generators \([P, R]\) with \(R\) of order \(d_2\), find \(x\) such that \(R = Q - [x]P\) has order \(d_2\) by solving the discrete logarithm problem \([d_2]Q = [x]([d_2]P)\) in a cyclic group of order \(d_1/d_2\). This will be very expensive if \(d_1/d_2\) has a large prime factor.

ellglobalred(\(E\))

Let \(E\) be an ell structure as output by ellinit attached to an elliptic curve defined over a number field. This function calculates the arithmetic conductor and the global Tamagawa number \(c\). The result \([N, v, c, F, L]\) is slightly different if \(E\) is defined over \(\mathbb{Q}\) (domain \(D = 1\) in ellinit) or over a number field (domain \(D\) is a number field structure, including nfinit(x) representing \(\mathbb{Q}\)).
• \(N\) is the arithmetic conductor of the curve,
• \(v\) is an obsolete field, left in place for backward compatibility. If \(E\) is defined over \(\mathbb{Q}\), \(v\) gives the coordinate change for \(E\) to the standard minimal integral model (\texttt{ellminimalmodel} provides it in a cheaper way); if \(E\) is defined over another number field, \(v\) gives a coordinate change to an integral model (\texttt{ellintegralmodel} provides it in a cheaper way).
• \(c\) is the product of the local Tamagawa numbers \(c_p\), a quantity which enters in the Birch and Swinnerton-Dyer conjecture,
• \(F\) is the factorization of \(N\),
• \(L\) is a vector, whose \(i\)-th entry contains the local data at the \(i\)-th prime ideal divisor of \(N\), i.e. \(L[i] = \texttt{ellocalred}(E,F[i,1])\).

\texttt{ellgroup}(E, \(p, \text{flag}\))

Let \(E\) be an ell structure as output by \texttt{ellinit}, attached to an elliptic curve \(E/K\). We first describe the function when the field \(K = \mathbb{F}_q\) is finite, it computes the structure of the finite abelian group \(E(\mathbb{F}_q)\):
• if \(\text{flag} = 0\), return the structure \([\text{trivial group}]\) or \([d_1]\) (nontrivial cyclic group) or \([d_1, d_2]\) (noncyclic group) of \(E(\mathbb{F}_q) \cong \mathbb{Z}/d_1 \mathbb{Z} \times \mathbb{Z}/d_2 \mathbb{Z}\), with \(d_2 \mid d_1\).
• if \(\text{flag} = 1\), return a triple \([h, \text{cyc}, \text{gen}]\), where \(h\) is the curve cardinality, cyc gives the group structure as a product of cyclic groups (as per \(\text{flag} = 0\)). More precisely, if \(d_2 > 1\), the output is \([d_1 d_2, [d_1, d_2], [P, Q]]\) where \(P\) is of order \(d_1\) and \([P, Q]\) generates the curve. \textbf{Caution.} It is not guaranteed that \(Q\) has order \(d_2\), which in the worst case requires an expensive discrete log computation. Only that \texttt{ellweilpairing}(\(E, P, Q, d_1\)) has order \(d_2\).

For other fields of definition and \(p\) defining a finite residue field \(\mathbb{F}_q\), return the structure of the reduction of \(E\): the argument \(p\) is best left omitted if \(K = \mathbb{Q}_\ell\) (else we must have \(p = \ell\)) and must be a prime number (\(K = \mathbb{Q}\)) or prime ideal (\(K\) a general number field) with residue field \(\mathbb{F}_q\) otherwise. The curve is allowed to have bad reduction at \(p\) and in this case we consider the (cyclic) group of nonsingular points for the reduction of a minimal model at \(p\).

If \(\text{flag} = 0\), the equation not be minimal or even integral at \(p\); of course, a minimal model will be more efficient.

If \(\text{flag} = 1\), the requested generators depend on the model, which must then be minimal at \(p\), otherwise an exception is thrown. Use \texttt{ellintegralmodel} and/or \texttt{ellocalred} first to reduce to this case.

```
? E = ellinit([0,1]); \ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \ Z/6 x Z/2, noncyclic
? E = ellinit([0,1] * Mod(1,11)); \ defined over F_11
? ellgroup(E) \ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \ ... but it also works
%5 = [12]
? ellgroup(E, 13) \ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
*** ^-------------
*** ellgroup: inconsistent moduli in Rg_to_Fp:
11
13
? ellgroup(E, 7, 1)
%6 = [12, [6, 2], [[Mod(2, 7), Mod(4, 7)], [Mod(4, 7), Mod(4, 7)]]]
```
Let us now consider curves of bad reduction, in this case we return the structure of the (cyclic) group of nonsingular points, satisfying \( \#E_{ns}(\mathbb{F}_p) = p - a_p \):

```pari
? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \ additve reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \ nonsplit multiplicative reduction at 7
```

**ellheegner**(\( E \))

Let \( E \) be an elliptic curve over the rationals, assumed to be of (analytic) rank 1. This returns a nontorsion rational point on the curve, whose canonical height is equal to the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is proportional to the product of the square root of the conductor and the height of the point (thus, it is preferable to apply it to strong Weil curves).

```pari
? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
6964897998256949425458225/166136231668185267540804
538962435089604615078004307258785218335/677168165560774599228495435742408
? ellheegner(ellinit([0,1])) \ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^----------------------
*** ellheegner: The curve has even analytic rank.
```

**ellheight**(\( E, P, Q, \text{precision} \))

Let \( E \) be an elliptic curve defined over \( K = \mathbb{Q} \) or a number field, as output by \texttt{ellinit}; it needs not be given by a minimal model although the computation will be faster if it is.

- Without arguments \( P, Q \), returns the Faltings height of the curve \( E \) using Deligne normalization. For a rational curve, the normalization is such that the function returns \(-(1/2)\log(\text{ellminimalmodel}(E).area)\).
- If the argument \( P \in E(K) \) is present, returns the global Néron-Tate height \( h(P) \) of the point, using the normalization in Cremona’s *Algorithms for modular elliptic curves*.
- If the argument \( Q \in E(K) \) is also present, computes the value of the bilinear form \((h(P+Q) - h(P-Q))/4\).

**ellheightmatrix**(\( E, x, \text{precision} \))

\( x \) being a vector of points, this function outputs the Gram matrix of \( x \) with respect to the Néron-Tate height, in other words, the \((i,j)\) component of the matrix is equal to \texttt{ellbil(E,x[i],x[j])}. The rank of this matrix, at least in some approximate sense, gives the rank of the set of points, and if \( x \) is a basis of the Mordell-Weil group of \( E \), its determinant is equal to the regulator of \( E \). Note our height normalization follows Cremona’s *Algorithms for modular elliptic curves*: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s normalizations.
ellidentify(E)
Look up the elliptic curve $E$, defined by an arbitrary model over $\mathbb{Q}$, in the \texttt{elldata} database. Return $[[N, M, G], C]$ where $N$ is the curve name in Cremona’s elliptic curve database, $M$ is the minimal model, $G$ is a $\mathbb{Z}$-basis of the free part of the Mordell-Weil group $E(\mathbb{Q})$ and $C$ is the change of coordinates from $E$ to $M$, suitable for \texttt{ellchangecurve}.

ellinit(x, D, precision)
Initialize an \texttt{ell} structure, attached to the elliptic curve $E$. $E$ is either
- a 5-component vector $[a_1, a_2, a_3, a_4, a_6]$ defining the elliptic curve with Weierstrass equation
  \[ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6, \]
- a 2-component vector $[a_4, a_6]$ defining the elliptic curve with short Weierstrass equation
  \[ Y^2 = X^3 + a_4 X + a_6, \]
- a character string in Cremona’s notation, e.g. "11a1", in which case the curve is retrieved from the \texttt{elldata} database if available.

The optional argument $D$ describes the domain over which the curve is defined:
- the \texttt{t\_INT} 1 (default): the field of rational numbers $\mathbb{Q}$.
- a \texttt{t\_INT} $p$, where $p$ is a prime number: the prime finite field $\mathbb{F}_p$.
- an \texttt{t\_INTMOD Mod(a,p)}, where $p$ is a prime number: the prime finite field $\mathbb{F}_p$.
- a \texttt{t\_FFELT}, as returned by \texttt{ffgen}: the corresponding finite field $\mathbb{F}_q$.
- a \texttt{t\_PADIC}, $O(p^n)$: the field $\mathbb{Q}_p$, where $p$-adic quantities will be computed to a relative accuracy of $n$ digits. We advise to input a model defined over $\mathbb{Q}$ for such curves. In any case, if you input an approximate model with \texttt{t\_PADIC} coefficients, it will be replaced by a lift to $\mathbb{Q}$ (an exact model “close” to the one that was input) and all quantities will then be computed in terms of this lifted model, at the given accuracy.
- a \texttt{t\_REAL} $x$: the field $\mathbb{C}$ of complex numbers, where floating point quantities are by default computed to a relative accuracy of \texttt{precision(x)}. If no such argument is given, the value of \texttt{realprecision} at the time \texttt{ellinit} is called will be used.
- a number field $K$, given by a \texttt{nf} or \texttt{bnf} structure; a \texttt{bnf} is required for \texttt{ellminimalmodel}.
- a prime ideal $p$, given by a \texttt{prid} structure; valid if $x$ is a curve defined over a number field $K$ and the equation is integral and minimal at $p$.

This argument $D$ is indicative: the curve coefficients are checked for compatibility, possibly changing $D$; for instance if $D = 1$ and an \texttt{t\_INTMOD} is found. If inconsistencies are detected, an error is raised:

? ellinit([1 + O(5), 1], 0(7));
*** at top-level: ellinit([1+O(5),1],0)
*** ^-------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5

If the curve coefficients are too general to fit any of the above domain categories, only basic operations, such as point addition, will be supported later.

If the curve (seen over the domain $D$) is singular, fail and return an empty vector $[]$.

? E = ellinit([0,0,0,0,1]); \ \ \ y^2 = x^3 + 1, over $\mathbb{Q}$
? E = ellinit([0,1]); \ \ \ the same curve, short form
? E = ellinit("36a1"); \ \ \ sill the same curve, Cremona's notations
? E = ellinit([0,1], 2) \ \ \ over $\mathbb{F}_2$: singular curve

(continues on next page)
The result of `ellinit` is an *ell* structure. It contains at least the following information in its components:

\[ a_1, a_2, a_3, a_4, a_6, b_2, b_4, b_6, c_4, c_6, \Delta, j. \]

All are accessible via member functions. In particular, the discriminant is `:math:`E.disc`, and the $j$-invariant is `:math:`E.j`.

```
? E = ellinit([a4, a6]);
? E.disc
%2 = -64*a4^3 - 432*a6^2
? E.j
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
```

Further components contain domain-specific data, which are in general dynamic: only computed when needed, and then cached in the structure.

```
? E = ellinit([2,3], 10^60+7); \ \ E over F_p, p large
? ellap(E)
time = 4,440 ms.
%2 = -1376268269510579884904540406082
? ellcard(E); \ \ now instantaneous !
time = 0 ms.
? ellgenerators(E);
time = 5,965 ms.
? ellgenerators(E); \ \ second time instantaneous
time = 0 ms.
```

See the description of member functions related to elliptic curves at the beginning of this section.

**ellintegralmodel** $(E, v)$

Let $E$ be an *ell* structure over a number field $K$ or $\mathbb{Q}_p$. This function returns an integral model. If $v$ is present, sets $v = [u, 0, 0, 0]$ to the corresponding change of variable: the return value is identical to that of `ellchangecurve(E, v)`.

```
? e = ellinit([1/17, 1/42]);
? e = ellintegralmodel(e, &v);
? e[1..5]
%3 = [0, 0, 0, 15287762448, 3154568630095008]
? v
%4 = [1/714, 0, 0, 0]
```

**ellisdivisible** $(E, P, n, Q)$

Given $E/K$ a number field and $P$ in $E(K)$ return 1 if $P = [n]R$ for some $R$ in $E(K)$ and set $Q$ to one such $R$; and return 0 otherwise. The integer $n \geq 0$ may be given as `ellxn(E, n)`, if many points need to be tested.

```
? K = nfinit(polcyclo(11,t));
? E = ellinit([0,-1,1,0,0], K);
? P = [0,0];
? ellorder(E,P)
%4 = 5
```
The algebraic complexity of the underlying algorithm is in $O(n^4)$, so it is advisable to first factor $n$, then use a chain of checks attached to the prime divisors of $n$: the function will do it itself unless $n$ is given in ellxn form.

\section*{ellisogeny $(E, G, \text{only\_image}, x, y)$}

Given an elliptic curve $E$, a finite subgroup $G$ of $E$ is given either as a generating point $P$ (for a cyclic $G$) or as a polynomial whose roots vanish on the $x$-coordinates of the nonzero elements of $G$ (general case and more efficient if available). This function returns the $[a_1, a_2, a_3, a_4, a_6]$ invariants of the quotient elliptic curve $E/G$ and (if only\_image is zero (the default)) a vector of rational functions $[f, g, h]$ such that the isogeny $E \rightarrow E/G$ is given by $(x, y) \mapsto (f(x)/h(x)^2, (x, y)/h(x)^3)$.

\section*{ellisogenyapply $(f, g)$}

Given an isogeny of elliptic curves $f : E' \rightarrow E$ (being the result of a call to ellisogeny), apply $f$ to $g$:

- if $g$ is a point $P$ in the domain of $f$, return the image $f(P)$;
- if $g : E'' \rightarrow E'$ is a compatible isogeny, return the composite isogeny $f \circ g : E'' \rightarrow E$.

\section*{ellisomat $(E, p, f)$}

Given an elliptic curve $E$ defined over a number field $K$, compute representatives of the isomorphism classes of elliptic curves defined over $K$ and $K$-isogenous to $E$. We assume that $E$ does not have CM over $K$ (otherwise that set would be infinite). For any such curve $E_i$, let $f_i : E \rightarrow E_i$ be a rational isogeny of minimal degree and let $q_i : E_i \rightarrow E$ be the dual isogeny; and let $M$ be the matrix such that $M_{i, j}$ is the minimal degree for an isogeny $E_i \rightarrow E_j$. 

\section{1.1. Guide to real precision in the PARI interface}
The function returns a vector $[L, M]$ where $L$ is a list of triples $[E_i, f_i, g_i]$ (flag = 0), or simply the list of $E_i$ (flag = 1, which saves time). The curves $E_i$ are given in $[a_4, a_6]$ form and the first curve $E_1$ is isomorphic to $E$ by $f_1$.

If $p$ is set, it must be a prime number; in this case only isogenies of degree a power of $p$ are considered.

Over a number field, the possible isogeny degrees are determined by Billerey algorithm.

```plaintext
? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \ \ list of curves
%3 = [[215/48,-5291/864],[-675/16,6831/32],[-8185/48,-742643/864],
[-1705/48,-57707/32],[-131065/48,-47449331/864]]
? L[2][2] \ \ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \ \ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
-1/18*x^4+(1/27*y-1/3)*x^3+(1/12*y+87/16)*x^2+(49/16*y-48)*x
+(3601/64*y+16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
```

**ellisoncurve**($E, z$)

Gives 1 (i.e. true) if the point $z$ is on the elliptic curve $E$, 0 otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to take this into account, i.e. an imprecise equality is checked, not a precise one. It is allowed for $z$ to be a vector of points in which case a vector (of the same type) is returned.

**ellisotree**($E$)

Given an elliptic curve $E$ defined over $\mathbb{Q}$ or a set of $\mathbb{Q}$-isogenous curves as given by ellisomat, return a pair $[L, M]$ where

- $L$ lists the minimal models of the isomorphism classes of elliptic curves $\mathbb{Q}$-isogenous to $E$ (or in the set of isogenous curves),
- $M$ is the adjacency matrix of the prime degree isogenies tree: there is an edge from $E_i$ to $E_j$ if there is an isogeny $E_i \rightarrow E_j$ of prime degree such that the Néron differential forms are preserved.

```plaintext
? E = ellinit("14a1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 3 2 0 0]
```

(continues on next page)
\[
\begin{bmatrix}
3 & 0 & 0 & 0 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 0 & 3 \\
0 & 0 & 0 & 3 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
\end{bmatrix}
\]

? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =
[0 2]

[0 0]

? [L3,M3] = ellisotree(ellisomat(E,3,1));
? M3
%6 =
[0 0 3]

[3 0 0]

[0 0 0]

Compare with the result of ellisomat.

? [L,M]=ellisomat(E,,1);
? M
%7 =
[1 3 3 2 6 6]

[3 1 9 6 2 18]

[3 9 1 6 18 2]

[2 6 6 1 3 3]

[6 2 18 3 1 9]

[6 18 2 3 9 1]

\textit{ellissupersingular}(E, p)

Return 1 if the elliptic curve \( E \) defined over a number field, \( \mathbb{Q}_p \) or a finite field is supersingular at \( p \), and 0 otherwise. If the curve is defined over a number field, \( p \) must be explicitly given, and must be a prime number, resp. a maximal ideal, if the curve is defined over \( \mathbb{Q} \), resp. a general number field: we return 1 if and only if \( E \) has supersingular good reduction at \( p \).

Alternatively, \( E \) can be given by its \( j \)-invariant in a finite field. In this case \( p \) must be omitted.

? setrand(1); \ \ \ \ \ \ \make the choice of \( g \) deterministic
? g = ffprimroot(ffgen(7^5))
%1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6

? [g^n | n <- [1 .. 7^5 - 1], ellissupersingular(g^n)]
(continues on next page)
ellj(x, precision)

Elliptic j-invariant. x must be a complex number with positive imaginary part, or convertible into a power series or a p-adic number with positive valuation.

elllocalred(E, p)

Calculates the Kodaira type of the local fiber of the elliptic curve E at p. E must be an ell structure as output by ellinit, over Q (p better left omitted, else equal to ℓ) over Q (p a rational prime) or a number field K (p a maximal ideal given by a prid structure). The result is a 4-component vector \([f, kod, v, c]\). Here \(f\) is the exponent of \(p\) in the arithmetic conductor of \(E\), and \(kod\) is the Kodaira type which is coded as follows:

1 means good reduction (type I:math: \(I_0\)), 2, 3 and 4 mean types II, III and IV respectively, \(4+\nu\) with \(\nu > 0\) means type I:math: \(4^\nu\); finally the opposite values \(-1\), \(-2\), etc. refer to the starred types I:math: \(I^\ast\), II:math: \(II^\ast\), etc. The third component \(v\) is itself a vector \([u, r, s, t]\) giving the coordinate changes done during the local reduction; \(u = 1\) if and only if the given equation was already minimal at \(p\). Finally, the last component \(c\) is the local Tamagawa number \(c_p\).

elllog(E, P, G, o)

Given two points \(P\) and \(G\) on the elliptic curve \(E/F_q\), returns the discrete logarithm of \(P\) in base \(G\), i.e. the smallest nonnegative integer \(n\) such that \(P = [n]G\). See znlog for the limitations of the underlying discrete log algorithms. If present, \(o\) represents the order of \(G\), see DLfun (in the PARI manual); the preferred format for this parameter is \([N, \ factor(N)]\), where \(N\) is the order of \(G\).

If no \(o\) is given, assume that \(G\) generates the curve. The function also assumes that \(P\) is a multiple of \(G\).

ellseries(E, s, A, precision)

This function is deprecated, use lfun(E, s) instead.

\(E\) being an elliptic curve, given by an arbitrary model over \(\mathbb{Q}\) as output by ellinit, this function computes the value of the \(L\)-series of \(E\) at the (complex) point \(s\). This function uses an \(O(N^{1/2})\) algorithm, where \(N\) is the conductor.

The optional parameter \(A\) fixes a cutoff point for the integral and is best left omitted; the result must be independent of \(A\), up to realprecision, so this allows to check the function’s accuracy.
ellminimaldisc(E)

E being an elliptic curve defined over a number field output by ellinit, return the minimal discriminant ideal of E.

ellminimalmodel(E, v)

Let E be an ell structure over a number field K. This function determines whether E admits a global minimal integral model. If so, it returns it and sets v = [u, r, s, t] to the corresponding change of variable: the return value is identical to that of ellchangecurve(E, v).

Else return the (nonprincipal) Weierstrass class of E, i.e. the class of \( \prod p^{(\epsilon_p \Delta - \delta_p)/12} \) where \( \Delta = E.\text{disc} \) is the model’s discriminant and \( p^\epsilon_p \) is the local minimal discriminant. This function requires either that E be defined over the rational field \( \mathbb{Q} \) (with domain \( D = 1 \) in ellinit), in which case a global minimal model always exists, or over a number field given by a bnf structure. The Weierstrass class is given in bnfisprincipal format, i.e. in terms of the K.gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients \( a_1 \) and \( a_3 \) are reduced modulo 2 (in terms of the fixed integral basis K.zk) and \( a_2 \) is reduced modulo 3. Over \( \mathbb{Q} \), we further require that \( a_1 \) and \( a_3 \) be 0 or 1, that \( a_2 \) be 0 or 1 and that \( u > 0 \) in the change of variable: both the model and the change of variable \( v \) are then unique.

\[
\begin{align*}
? e & = \text{ellinit}([6,6,12,55,233]); ~\text{\( \backslash \) over Q} \\
? E & = \text{ellminimalmodel}(e, &v); \\
? E[1..5] \\
%3 & = [0, 0, 0, 1, 1] \\
? v \\
%4 & = [2, -5, -3, 9]
\end{align*}
\]

ellminimaltwist(E, flag)

Let E be an elliptic curve defined over \( \mathbb{Q} \), return a discriminant D such that the twist of E by D is minimal among all possible quadratic twists, i.e. if \( flag = 0 \), its minimal model has minimal discriminant, or if \( flag = 1 \), it has minimal conductor.

In the example below, we find a curve with \( j \)-invariant 3 and minimal conductor.

\[
\begin{align*}
? E & = \text{ellminimalmodel}(\text{ellinit}(\text{ellfromj}(3))); \\
? \text{ellglobalred}(E)[1] \\
%2 & = 357075 \\
? D & = \text{ellminimaltwist}(E,1) \\
%3 & = -15 \\
? E2 & = \text{ellminimalmodel}(\text{ellinit}(\text{elltwist}(E,D))); \\
? \text{ellglobalred}(E2)[1] \\
%5 & = 14283
\end{align*}
\]

In the example below, \( flag = 0 \) and \( flag = 1 \) give different results.

\[
\begin{align*}
? E & = \text{ellinit}([1,0]); \\
? D0 & = \text{ellminimaltwist}(E,0)
\end{align*}
\]

(continues on next page)
\%7 = 1
? D1 = ellminimaltwist(E,1)
\%8 = 8
? E0 = ellminimalmodel(ellinit(elltwist(E,D0)));
? [E0.disc, ellglobalred(E0)[1]]
\%10 = [-64, 64]
? E1 = ellminimalmodel(ellinit(elltwist(E,D1)));
? [E1.disc, ellglobalred(E1)[1]]
\%12 = [-4096, 32]

ellmoddegree(e)
e being an elliptic curve defined over \( \mathbb{Q} \) output by \texttt{ellinit}, compute the modular degree of \( e \) divided by the square of the Manin constant \( c \). It is conjectured that \( c = 1 \) for the strong Weil curve in the isogeny class (optimal quotient of \( J_0(N) \)) and this can be proven using \texttt{ellweilcurve} when the conductor \( N \) is moderate.

? E = ellinit("11a1"); \ \texttt{\textbackslash \slash} \ from Cremona table: strong Weil curve and \( c = 1 \)
? [v,smith] = ellweilcurve(E); smith \ \texttt{\textbackslash \slash} \ proof of the above
\%2 = [[1, 1], [5, 1], [1, 1/5]]
? ellmoddegree(E)
\%3 = 1
? [ellidentify(e)[1][1] | e<-v]
\%4 = ["11a1", "11a2", "11a3"]
? ellmoddegree(ellinit("11a2"))
\%5 = 5
? ellmoddegree(ellinit("11a3"))
\%6 = 1/5

The modular degree of 11a1 is 1 (because \texttt{ellweilcurve} or Cremona's table prove that the Manin constant is 1 for this curve); the output of \texttt{ellweilcurve} also proves that the Manin constants of 11a2 and 11a3 are 1 and 5 respectively, so the actual modular degree of both 11a2 and 11a3 is 5.

ellmodulareqn(N, x, y)Given a prime \( N < 500 \), return a vector \([P, t]\) where \( P(x, y) \) is a modular equation of level \( N \), i.e. a bivariate polynomial with integer coefficients; \( t \) indicates the type of this equation: either canonical \((t = 0)\) or Atkin \((t = 1)\). This function requires the \texttt{seadata} package and its only use is to give access to the package contents. See \texttt{polmodular} for a more general and more flexible function.

Let \( j \) be the \( j \)-invariant function. The polynomial \( P \) satisfies the functional equation,

\[
P(f, j) = P(f||W_N, j||W_N) = 0
\]

for some modular function \( f = f_N \) (hand-picked for each fixed \( N \) to minimize its size, see below), where \( W_N(\tau) = -1/(N\tau) \) is the Atkin-Lehner involution. These two equations allow to compute the values of the classical modular polynomial \( \Phi_N \), such that \( \Phi_N(j(\tau), j(N\tau)) = 0 \), while being much smaller than the latter. More precisely, we have \( j(W_N(\tau)) = j(N\tau) \); the function \( f \) is invariant under \( \Gamma_0(N) \) and also satisfies

- for Atkin type: \( f||W_N = f \);
- for canonical type: let \( s = 12/\text{gcd}(12, N-1) \), then \( f||W_N = N^s/f \). In this case, \( f \) has a simple definition: \( f(\tau) = N^s(\eta(N\tau)/\eta(\tau))^{2s} \), where \( \eta \) is Dedekind's eta function.

The following GP function returns values of the classical modular polynomial by eliminating \( f_N(\tau) \) in the above functional equation, for \( N <= 31 \) or \( N \in \{41, 47, 59, 71\} \).
\begin{verbatim}
classicaleqn(N, X='X, Y='Y)=
{ 
  my([P,t] = ellmodulareqn(N), Q, d);
  if (poldegree(P, 'y) > 2, error("level unavailable in classicaleqn");
  if (t == 0, \ Canonical
    my(s = 12/gcd(12,N-1));
    Q = 'x^(N+1) * substvec(P,[['x,'y],[N^s/x,Y]);
    d = N^(s*(2*N+1)) * (-1)^(N+1);
    \ Atkin
    Q = subst(P, 'y,Y);
    d = (X-Y)^(N+1));
  polresultant(subst(P,'y,X), Q) / d;
}
\end{verbatim}

\textbf{ellmul}(E, z, n)

Computes \([n]z\), where \(z\) is a point on the elliptic curve \(E\). The exponent \(n\) is in \(\mathbb{Z}\), or may be a complex quadratic integer if the curve \(E\) has complex multiplication by \(n\) (if not, an error message is issued).

\begin{verbatim}
? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \ Ei has complex multiplication by \mathbb{Z}[i]
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^--------
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
\end{verbatim}

The simple-minded algorithm for the CM case assumes that we are in characteristic \(0\), and that the quadratic order to which \(n\) belongs has small discriminant.

\textbf{ellneg}(E, z)

Opposite of the point \(z\) on elliptic curve \(E\).

\textbf{ellnoningularmultiple}(E, P)

Given an elliptic curve \(E/\mathbb{Q}\) (more precisely, a model defined over \(\mathbb{Q}\) of a curve) and a rational point \(P \in E(\mathbb{Q})\), returns the pair \([R, n]\), where \(n\) is the least positive integer such that \(R := [n]P\) has good reduction at every prime. More precisely, its image in a minimal model is everywhere nonsingular.

\begin{verbatim}
? e = ellinit("57a1"); P = [2,-2];
? ellnoningularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R,n] = ellnoningularmultiple(e, P);
? n
%5 = 12
\end{verbatim}

\textbf{ellorder}(E, z, o)

Gives the order of the point \(z\) on the elliptic curve \(E\), defined over a finite field or a number field. Return (the
impossible value) zero if the point has infinite order.

```plaintext
? E = ellinit([-157^2,0]); \ the "157-is-congruent" curve
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \ infinite order
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 1461501637330902918203686560289225285992592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
```

The parameter \(o\), is now mostly useless, and kept for backward compatibility. If present, it represents a nonzero multiple of the order of \(z\), see \texttt{DLfun} (in the PARI manual); the preferred format for this parameter is \([\text{ord, factor(ord)}]\), where \text{ord} is the cardinality of the curve. It is no longer needed since PARI is now able to compute it over large finite fields (was restricted to small prime fields at the time this feature was introduced), and caches the result in \(E\) so that it is computed and factored only once. Modifying the last example, we see that including this extra parameter provides no improvement:

```plaintext
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
```

ellordinate(\(E, x, \text{precision}\))

Gives a 0, 1 or 2-component vector containing the \(y\)-coordinates of the points of the curve \(E\) having \(x\) as \(x\)-coordinate.

ellpadicL(\(E, p, n, s, r, D\))

Returns the value (or \(r\)-th derivative) on a character \(\chi^s\) of \(\mathbb{Z}_p^*\) of the \(p\)-adic \(L\)-function of the elliptic curve \(E/\mathbb{Q}\), twisted by \(D\), given modulo \(p^n\).

**Characters.** The set of continuous characters of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\) is identified to \(\mathbb{Z}_p^*\) via the cyclotomic character \(\chi\) with values in \(\mathbb{Q}_p^*\). Denote by \(\tau: \mathbb{Z}_p^* \to \mathbb{Z}_p^*\) the Teichmüller character, with values in the \((p-1)\)-th roots of 1 for \(p! = 2\), and \(-1,1\) for \(p = 2\); finally, let \(< \chi >= \chi \tau^{-1}\), with values in \(1 + 2p\mathbb{Z}_p\). In GP, the continuous character of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\) given by \(< \chi >^s\) \(\tau^s\) is represented by the pair of integers \(s = (s_1, s_2)\), with \(s_1 \in \mathbb{Z}_p\) and \(s_2 \text{mod } p - 1\) for \(p > 2\), (resp. mod 2 for \(p = 2\)); \(s\) may be also an integer, representing \((s, s)\) or \(\chi^s\).

The :math:`p`-adic \(L\) function. The \(p\)-adic \(L\) function \(L_p\) is defined on the set of continuous characters of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\), as \(\int_{\mathbb{Z}_p^*} x^\alpha d\mu\) for a certain \(p\)-adic distribution \(\mu\) on \(\mathbb{Z}_p^*\). The derivative is given by

\[
L_p^{(r)}(E, \chi^s) = \int_{\mathbb{Z}_p^*} \log_p(a) \chi^s(a) d\mu(a).
\]

More precisely:

- When \(E\) has good supersingular reduction, \(L_p\) takes its values in \(D := H^1_dR(E/\mathbb{Q}) \otimes \mathbb{Q}_p\) and satisfies

The function returns the components of $L_p^{(r)}(E, \chi^\alpha)$ in the basis $(\omega, F\omega)$.

- When $E$ has ordinary good reduction, this method only defines the projection of $L_p(E, \chi^\alpha)$ on the $\alpha$-eigenspace, where $\alpha$ is the unit eigenvalue for $F$. This is what the function returns. We have

$$
(1 - \alpha^{-1})^{-2} L_{p,\alpha}(E, \chi^0) = L(E, 1)/\Omega.
$$

Two supersingular examples:

```
? cxL(e) = bestappr(ellL1(e) / e.omega[1]);
? e = ellinit("17a1"); p=3; \\ supersingular, a3 = 0
? L = ellpadicL(e,p,4);
? F = [0,-p;1,ellap(e,p)]; \\ Frobenius matrix in the basis (omega,F(omega))
? (1-p^(-1)*F)^-2 * L / cxL(e)
%5 = [1 + O(3^5), O(3^5)]~ \
%5 = [1, 0]~

? e = ellinit("116a1"); p=3; \\ supersingular, a3 != 0~
? L = ellpadicL(e,p,4); \
? F = [0,-p; 1,ellap(e,p)]; \
? (1-p^(-1)*F)^-2*L~ / cxL(e)
%9 = [1 + O(3^4), O(3^5)]~
```

Good ordinary reduction:

```
? e = ellinit("17a1"); p=5; ap = ellap(e,p)
%1 = -2 \\ ordinary
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? al = padicappr(x^2 - ap*x + p, ap + O(p^7))[1];
? (1-al^(-1))^(-2) * L / cxL(e)
%4 = 1 + O(5^4)
```

Twist and Teichmüller:

```
? e = ellinit("17a1"); p=5; \\ ordinary
\ \ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)
```

We give an example of non split multiplicative reduction (see ellpadicbsd for more examples).

```
? e=ellinit("15a1"); p=3; n=5;
? L = ellpadicL(e,p,n)
%2 = 2 + 3 + 3*2 + 3*3 + 3*4 + O(3^5)
? (1 - ellap(e,p))^(-1) * L / cxL(e)
%3 = 1 + O(3^5)
```

This function is a special case of mspadicL and it also appears as the first term of mspadicseries:

```
? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
```

(continues on next page)
These are more cumbersome than ellpadicL but allow to compute at different characters, or successive derivatives, or to twist by a quadratic character essentially for the cost of a single call to ellpadicL due to precomputations.

**elladicbsd**\((E, p, n, D)\)

Given an elliptic curve \(E\) over \(\mathbb{Q}\), its quadratic twist \(E_D\) and a prime number \(p\), this function is a \(p\)-adic analog of the complex functions ellanalyticrank and ellbsd. It calls ellpadicL with initial accuracy \(p^n\) and may increase it internally; it returns a vector \([r, L_p]\) where

- \(L_p\) is a \(p\)-adic number (resp. a pair of \(p\)-adic numbers if \(E\) has good supersingular reduction) defined modulo \(p^N\), conjecturally equal to \(R_p S\), where \(R_p\) is the \(p\)-adic regulator as given by ellpadicregulator (in the basis \((\omega, F \omega)\)) and \(S\) is the cardinal of the Tate-Shafarevich group for the quadratic twist \(E_D\).

- \(r\) is an upper bound for the analytic rank of the \(p\)-adic \(L\)-function attached to \(E_D\): we know for sure that the \(i\)-th derivative of \(L_p(E_D, \chi^0)\) at \(\chi^0\) is \(O(p^N)\) for all \(i < r\) and that its \(r\)-th derivative is nonzero; it is expected that the true analytic rank is equal to the rank of the Mordell-Weil group \(E_D(\mathbb{Q})\), plus 1 if the reduction of \(E_D\) at \(p\) is split multiplicative; if \(r = 0\), then both the analytic rank and the Mordell-Weil rank are unconditionally 0.

Recall that the \(p\)-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi, Perrin-Riou) predicts an explicit link between \(R_p S\) and

\[(1 - p^{-1} F)^{-2} L_p^{(r)}(E_D, \chi^0)/r!\]

where \(r\) is the analytic rank of the \(p\)-adic \(L\)-function attached to \(E_D\) and \(F\) is the Frobenius on \(H_{dR}^1\); see elladicL for definitions.
%9 = \[2, 2*7 + 7^2 + 5*7^3 + O(7^4)\]
? ellpadicregulator(E, p, n, E.gen)
%10 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
? [rC, LC] = ellanalyticrank(E);
? [r, rC]
%12 = \[2, 1\] \ r = rC+1 because of split multiplicative reduction

? E = ellinit("53a1"); p = 5; n = 5; \ \ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
? r
%15 = 1
? Lp
%16 = \[3*5 + 2*5^2 + 2*5^5 + O(5^6), \ 5 + 3*5^2 + 4*5^3 + 2*5^4 + 5^5 + O(5^6)\]
\ expect Lp = R*#Sha, hence (conjecturally) #Sha = 1

? E = ellinit("84a1"); p = 11; n = 6; D = -443;
? [r,Lp] = ellpadicbsd(E, 11, 6, D) \ Mordell-Weil rank 0, no regulator
%19 = \[0, 3 + 2*11 + O(11^6)\]
? lift(Lp) \ expected cardinal for Sha is 5^2
%20 = 25

\ellpadicfrobenius\((E, p, n)\)

If \( p > 2 \) is a prime and \( E \) is an elliptic curve on \( \mathbb{Q} \) with good reduction at \( p \), return the matrix of the Frobenius endomorphism \( \phi \) on the crystalline module \( D_p(E) = \mathbb{Q}_p \otimes H^1_{dR}(E/\mathbb{Q}) \) with respect to the basis of the given model \( (\omega, \eta = x\omega) \), where \( \omega = dx/(2y + a_1x + a_3) \) is the invariant differential. The characteristic polynomial of \( \phi \) is \( x^2 - a_p x + p \). The matrix is computed to absolute \( p \)-adic precision \( p^n \).

? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
? lift(F)
%3 =
[120 29]
[ 55  5]
? charpoly(F)
%4 = x^2 + O(5^3)*x + (5 + O(5^3))
? ellap(E, 5)
%5 = 0

\ellpadicheight\((E, p, n, P, Q)\)

Cyclotomic \( p \)-adic height of the rational point \( P \) on the elliptic curve \( E \) (defined over \( \mathbb{Q} \)), given to \( n \) \( p \)-adic digits. If the argument \( Q \) is present, computes the value of the bilinear form \( (h(P + Q) - h(P - Q))/4 \).

Let \( D := H^1_{dR}(E) \otimes_{\mathbb{Q}} \mathbb{Q}_p \) be the \( \mathbb{Q}_p \) vector space spanned by \( \omega \) (invariant differential \( dx/(2y + a_1x + a3) \) related to the given model) and \( \eta = x\omega \). Then the cyclotomic \( p \)-adic height \( h_E \) associates to \( P \in E(\mathbb{Q}) \) an element \( f\omega + g\eta \) in \( D \). This routine returns the vector \([f, g] \) to \( n \) \( p \)-adic digits. If \( P \in E(\mathbb{Q}) \) is in the kernel of reduction
mod $p$ and if its reduction at all finite places is non singular, then $g = -(\log_{E} P)^2$, where $\log_{E}$ is the logarithm for the formal group of $E$ at $p$.

If furthermore the model is of the form $Y^2 = X^3 + ax + b$ and $P = (x, y)$, then

$$f = \log_{p}(\text{denominator}(x)) - 2\log_{p}(\sigma(P))$$

where $\sigma(P)$ is given by $\text{ellsigma}(E, P)$.

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height function over the complex numbers is of the form

$$\lambda(z) = -\log(\|E.\text{disc}\|)/6 + \Re(z\eta(z)) - 2\log(\sigma(z)).$$

(N.B. our normalization for local and global heights is twice that of Silverman’s).

```
? E = ellinit([1,-1,1,0,0]); P = [0,0];
? ellpadicheight(E,5,3, P)
%2 = [3*5 + 5^2 + 2*5^3 + O(5^4), 5^2 + 4*5^4 + O(5^5)]
? E = ellinit("11a1"); P = [5,5]; \ torsion point
? ellpadicheight(E,19,6, P)
%4 = [0, 0]
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadicheight(E,3,3, P)
%6 = [2*3^2 + 2*3^3 + 3^4 + 0(3^5), 2*3^2 + 3^4 + 0(3^5)]
? ellpadicheight(E,3,5, P, elladd(E,P,P))
%7 = [3^2 + 2*3^3 + 0(3^7), 3^2 + 3^3 + 2*3^4 + 3^5 + O(3^7)]
```

- When $E$ has good ordinary reduction at $p$ or non split multiplicative reduction, the “canonical” $p$-adic height is given by

$$s_2 = \text{ellpadics2}(E,p,n);
\text{ellpadicheight}(E, p, n, P) * [1,-s_2]~$$

Since $s_2$ does not depend on $P$, it is preferable to compute it only once:

```
? E = ellinit("5077a1"); p = 5; n = 7; \ rank 3
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
? matdet(M) \ p-adic regulator on the points in E.gen
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7)
```

- When $E$ has split multiplicative reduction at $p$ (Tate curve), the “canonical” $p$-adic height is given by

```
Ep = ellinit(E[1..5], O(p^(n))); \ E seen as a Tate curve over Qp
[u2,u,q] = Ep.tate;
ellpadicheight(E, p, n, P) * [1,-s2 + 1/log(q)/u2]~
```

where $s_2$ is as above. For example,

```
? E = ellinit("91b1"); P =[-1, 3]; p = 7; n = 5;
? Ep = ellinit(E[1..5], O(p^(n)));
? s2 = ellpadics2(E,p,n);
? [u2,u,q] = Ep.tate;
```
These normalizations are chosen so that $p$-adic BSD conjectures are easy to state, see `ellpadicbsd`.

`ellpadicheightmatrix(E, p, n, Q)`

$Q$ being a vector of points, this function returns the “Gram matrix” $[F, G]$ of the cyclotomic $p$-adic height $h_E$ with respect to the basis $(\omega, \eta)$ of $D = H^n_{\text{lift}}(E) \otimes \mathbb{Q}_p$ given to $n$ $p$-adic digits. In other words, if $\text{ellpadicheight}(E, p, n, Q[i], Q[j]) = [f, g]$, corresponding to $f \omega + g \eta$ in $D$, then $F[i, j] = f$ and $G[i, j] = g$.

```pari
? E = ellinit([0,0,1,-7,6]); Q = [[-2,3],[-1,3]]; p = 5; n = 5;
? [F,G] = ellpadicheightmatrix(E,p,n,Q);
? lift(F) \ p-adic entries, integral approximation for readability
%3 =
[2364 3100]
[3100 3119]

? G
%4 =
[25225 46975]
[46975 61850]

? [F,G] * [1,-ellpadics2(E,p,n)]~
%5 =
[4 + 2*5 + 4*5^2 + 3*5^3 + O(5^5) 4*5^2 + 4*5^3 + 5^4 + O(5^5)]
[4*5^2 + 4*5^3 + 5^4 + O(5^5) 4 + 3*5 + 4*5^2 + 4*5^3 + 5^4 + O(5^5)]
```

`elladiclambdamu(E, p, D, i)`

Let $p$ be a prime number and let $E/\mathbb{Q}$ be a rational elliptic curve with good or bad multiplicative reduction at $p$. Return the Iwasawa invariants $\lambda$ and $\mu$ for the $p$-adic $L$ function $L_p(E)$, twisted by $(D/.)$ and the $i$-th power of the Teichmüller character $\tau$, see `ellpadicL` for details about $L_p(E)$.

Let $\chi$ be the cyclotomic character and choose $\gamma$ in $\text{Gal}(\mathbb{Q}_p(\mu_{p^n})/\mathbb{Q}_p)$ such that $\chi(\gamma) = 1 + 2p$. Let $L^{(i),D} \in \mathbb{Q}_p[[X]] \otimes D_{\text{cris}}$ such that

$$(< \chi >^s \tau^i)(L^{(i),D}(\gamma - 1)) = L_p(E, < \chi >^s \tau^i(D/)).$$

- When $E$ has good ordinary or bad multiplicative reduction at $p$. By Weierstrass’s preparation theorem the series $L^{(i),D}$ can be written $p^\mu(X^\lambda + pG(X))$ up to a $p$-adic unit, where $G(X) \in \mathbb{Z}_p[X]$. The function returns $[\lambda, \mu]$.

- When $E$ has good supersingular reduction, we define a sequence of polynomials $P_n$ in $\mathbb{Q}_p[X]$ of degree $< p^n$ (and bounded denominators), such that

$$L^{(i),D} = P_n \varphi^{n+1} \omega_E - \xi_n P_{n-1} \varphi^{n+2} \omega_E \text{mod}((1 + X)^p - 1) \mathbb{Q}_p[X] \otimes D_{\text{cris}},$$

where: `math : `\xi_n = polcyclo(p^n, 1 + X)`. Let: `math : `\lambda_n, \mu_n` bethe invariants sof : `math : `P_n`. We find that

- $\mu_n$ is nonnegative and decreasing for $n$ of given parity hence $\mu_{2n}$ tends to a limit $\mu^+$ and $\mu_{2n+1}$ tends to a limit $\mu^-$ (both conjecturally 0).

- there exists integers $\lambda^+, \lambda^-$ in $\mathbb{Z}$ (denoted with `a` in the reference below) such that

1.1. Guide to real precision in the PARI interface
\[ \lim_{n \to \infty} \lambda_{2n} + 1/(p+1) = \lambda^+ \text{ and } \lim_{n \to \infty} \lambda_{2n+1} + p/(p+1) = \lambda^- . \]

The function returns: \texttt{math: '[[\lambda^+, \lambda^-], [\mu^+, \mu^-]]'}. 


\texttt{ellpadiclog(E, p, n, P)}

Given \( E \) defined over \( K = \mathbb{Q} \) or \( p \), and \( P = [x, y] \) on \( E(K) \) in the kernel of reduction mod \( p \), let \( t(P) = -x/y \) be the formal group parameter; this function returns \( L(t) \), where \( L \) denotes the formal logarithm (mapping the formal group of \( E \) to the additive formal group) attached to the canonical invariant differential: \( dL = dx/(2y + a_1x + a_3) \).

\begin{verbatim}
? E = ellinit([0,0,1,-4,2]); P = [-2,1]; ellorder(Ep,P) \ the order of P on (E mod p) is 2
%5 = 2
? p=3; Ep = ellinit(E,p); \ E mod p
? E = ellinit([17,42]); %2 = 2 + 2^3 + 2^8 + 2^9 + 2^10 + O(2^11)
? ellpadiclog(E,2,10,P)
%9 = 7 + 7*3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 2*3^8 + 3^9 + 2*3^10 + O(3^11)
\end{verbatim}

\texttt{ellpadicregulator(E, p, n, S)}

Let \( E/\mathbb{Q} \) be an elliptic curve. Return the determinant of the Gram matrix of the vector of points \( S = (S_1, ..., S_r) \) with respect to the “canonical” cyclotomic \( p \)-adic height on \( E \), given to \( n \) \((p\text{-adic})\) digits.

When \( E \) has ordinary reduction at \( p \), this is the expected Gram determinate in \( \mathbb{Q}_p \).

In the case of supersingular reduction of \( E \) at \( p \), the definition requires care: the regulator \( R \) is an element of \( D := H^1_{dR}(E) \otimes_{\mathbb{Q}} \mathbb{Q}_p \), which is a two-dimensional \( \mathbb{Q}_p \)-vector space spanned by \( \omega \) and \( \eta = x\omega \) (which are defined over \( \mathbb{Q} \)) or equivalently but now over \( \mathbb{Q}_p \), by \( \omega \) and \( F\omega \), where \( F \) is the Frobenius endomorphism on \( D \) as defined in \texttt{ellpadicfrobenius}. On \( D \) we define the cyclotomic height \( h_E = f\omega + g\eta \) (see \texttt{ellpadicheight}) and a canonical alternating bilinear form \([\ldots]/D \) such that \( [\omega, \eta]_D = 1 \).

For any \( \nu \in D \), we can define a height \( h_\nu := [h_E, \nu]_D \) from \( E(\mathbb{Q}) \) to \( \mathbb{Q}_p \) and \( < \ldots >_\nu \) the attached bilinear form. In particular, if \( h_E = f\omega + g\eta \), then \( h_\eta = [h_E, \eta]_D = f \) and \( h_\omega = [h_E, \omega]_D = -g \) hence \( h_E = h_\eta\omega - h_\omega\eta \). Then, \( R \) is the unique element of \( D \) such that

\[ [\omega, \nu]_D^{-1}[R, \nu]_D = \det(< S_i, S_j >_\nu) \]

for all \( \nu \in D \) not in \( \mathbb{Q}_p\omega \). The \texttt{elladicregulator} function returns \( R \) in the basis \( (\omega, F\omega) \), which was chosen so that \( p \)-adic BSD conjectures are easy to state, see \texttt{ellpadicbsd}.

Note that by definition

\[ [R, \eta]_D = \det(< S_i, S_j >_\eta) \]

and

\[ [R, \omega + \eta]_D = \det(< S_i, S_j >_{\omega + \eta}) . \]

\texttt{ellpadics2(E, p, n)}

If \( p > 2 \) is a prime and \( E/\mathbb{Q} \) is an elliptic curve with ordinary good reduction at \( p \), returns the slope of the unit eigenvector of \texttt{ellpadicfrobenius(E,p,n)}, i.e., the action of Frobenius \( \varphi \) on the crystalline module \( D_p(E) = \mathbb{Q}_p \otimes H^1_{dR}(E/\mathbb{Q}) \) in the basis of the given model \( (\omega, \eta = x\omega) \), where \( \omega \) is the invariant differential \( dx/(2y + a_1x + a_3) \). In other words, \( \eta + s_2\omega \) is an eigenvector for the unit eigenvalue of \( \varphi \).
e = ellinit([17, 42]);
ellpadics2(e, 13, 4)

%2 = 10 + 2*13 + 6*13^3 + O(13^4)

This slope is the unique $c \in \mathbb{Z}_p$ such that the odd solution $\sigma(t) = t + O(t^2)$ of

$$-d((1)/(\sigma(d\sigma)/(\omega))) = (x(t) + c)\omega$$

is in $t\mathbb{Z}_p[[t]]$.

It is equal to $b_2/12 - E_2/12$ where $E_2$ is the value of the Katz $p$-adic Eisenstein series of weight 2 on $(E, \omega)$. This is used to construct a canonical $p$-adic height when $E$ has good ordinary reduction at $p$ as follows

s2 = ellpadics2(E, p, n);
h(E, p, n, P, s2) = ellpadicheight(E, [p, [1, -s2]], n, P);

Since $s_2$ does not depend on the point $P$, we compute it only once.

ellperiods(w, flag, precision)

Let $w$ describe a complex period lattice ($w = [w_1, w_2]$ or an ellinit structure). Returns normalized periods $[W_1, W_2]$ generating the same lattice such that $\tau := W_1/W_2$ has positive imaginary part and lies in the standard fundamental domain for $SL_2(\mathbb{Z})$.

If $\text{flag} = 1$, the function returns $[[W_1, W_2], [\eta_1, \eta_2]]$, where $\eta_1$ and $\eta_2$ are the quasi-periods attached to $[W_1, W_2]$, satisfying $\eta_2 W_1 - \eta_1 W_2 = 2i\pi$.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta, ellsigma or elliessnum. Quasi-periods are needed by ellzeta and ellsigma only.

ellpointtoz(E, P, precision)

If $E/C \subset \Lambda$ is a complex elliptic curve ($\Lambda = E.\omega$), computes a complex number $z$, well-defined modulo the lattice $\Lambda$, corresponding to the point $P$; i.e. such that $P = [\wp(\Lambda)(z), \wp'(\Lambda)(z)]$ satisfies the equation

$$y^2 = 4x^3 - g_2x - g_3,$$

where $g_2, g_3$ are the elliptic invariants.

If $E$ is defined over $\mathbb{R}$ and $P \in E(\mathbb{R})$, we have more precisely, $0 \leq \Re(t) < w1$ and $0 \leq \Im(t) < \Im(w2)$, where $(w1, w2)$ are the real and complex periods of $E$. 

? E = ellinit([0, 1]); P = [2, 3];
? z = ellpointtoz(E, P)
? ellwp(E, z)
? ellztopoint(E, z) - P

(continues on next page)
If $E$ is defined over a general number field, the function returns the values corresponding to the various complex embeddings of the curve and of the point, in the same order as $E.nf.roots$:

```plaintext
? E = ellinit([-22032-15552*x,0], nfinit(x^2-2));
? P = [-72*x-108,0];
? ellisoncurve(E,P)
%3 = 1
? ellpointtoz(E,P)
%4 = [-0.52751724240790530394437835702346995884*I, -0.090507650025885335533571758708283389896*I]
? E.nf.roots
%5 = [-1.4142135623730950488016887242096980786, x-> -sqrt(2) 1.4142135623730950488016887242096980786] \ x-> sqrt(2)
```

If $E/\mathbb{Q}_p$ has multiplicative reduction, then $E/\overline{\mathbb{Q}}_p$ is analytically isomorphic to $\overline{\mathbb{Q}}_p^*/q$ (Tate curve) for some $p$-adic integer $q$. The behavior is then as follows:

- If the reduction is split ($E.tate[2]$ is a t_PADIC), we have an isomorphism $\phi : E(\mathbb{Q}_p) \overline{\mathbb{Q}}_p^*/q$ and the function returns $\phi(P) \in \overline{\mathbb{Q}}_p$.
- If the reduction is not split ($E.tate[2]$ is a t_POLMOD), we only have an isomorphism $\phi : E(K) K^*/q$ over the unramified quadratic extension $K/\mathbb{Q}_p$. In this case, the output $\phi(P) \in K$ is a t_POLMOD.

```plaintext
? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \ P has order 5
%3 = [0]
? z = ellpointtoz(E, [0,0])
%4 = 3 + 11*2 +2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? z^5
%5 = 1 + O(11^9)
? E = ellinit(ellfromj(1/4), O(2^6)); x = 1/2; y = ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \ t_POLMOD of t_POL with t_PADIC coeffs
? liftint(z) \ lift all p-adics
%8 = Mod(8*u + 7, u^2 + 437)
```

ellpow($E, z, n$)

Deprecated alias for ellmul.

ellratpoints($E, h, flag$)

$E$ being an integral model of elliptic curve, return a vector containing the affine rational points on the curve of naive height less than $h$. If $flag = 1$, stop as soon as a point is found; return either an empty vector or a vector containing a single point. See hyperellratpoints for how $h$ can be specified.

```plaintext
? E = ellinit([-25,1]);
? ellratpoints(E,10)
%2 = [[-5,1],[-5,-1],[-3,7],[-3,-7],[-1,5],[-1,-5], [0,1],[0,-1],[5,1],[5,-1],[7,13],[7,-13]]
? ellratpoints(E,10,1)
%3 = [[-5,1]]
```
ellrootno\((E, p)\)

\(E\) being an ell structure over \(\mathbb{Q}\) as output by ellinit, this function computes the local root number of its \(L\)-series at the place \(p\) (at the infinite place if \(p = 0\)). If \(p\) is omitted, return the global root number and in this case the curve can also be defined over a number field.

Note that the global root number is the sign of the functional equation and conjecturally is the parity of the rank of the Mordell-Weil group. The equation for \(E\) needs not be minimal at \(p\), but if the model is already minimal the function will run faster.

ellsea\((E, \text{tors})\)

Let \(E\) be an ell structure as output by ellinit, defined over a finite field \(\mathbb{F}_q\). This low-level function computes the order of the group \(E(\mathbb{F}_q)\) using the SEA algorithm; compared to the high-level function ellcard, which includes SEA among its choice of algorithms, the tors argument allows to speed up a search for curves having almost prime order and whose quadratic twist may also have almost prime order. When tors is set to a nonzero value, the function returns 0 as soon as it detects that the order has a small prime factor not dividing tors; SEA considers modular polynomials of increasing prime degree \(\ell\) and we return 0 as soon as we hit an \(\ell\) (coprime to tors) dividing \(#E(\mathbb{F}_q)\):

```plaintext
? ellsea(ellinit([1,1], 2^56+3477), 1)
%1 = 72057594135613381
? forprime(p=2^128,oo, q = ellcard(ellinit([1,1],p)); if(isprime(q),break))
time = 6,571 ms.
? forprime(p=2^128,oo, q = ellsea(ellinit([1,1],p),1);if(isprime(q),break))
time = 522 ms.
```

In particular, set tors to 1 if you want a curve with prime order, to 2 if you want to allow a cofactor which is a power of two (e.g. for Edwards’s curves), etc. The early exit on bad curves yields a massive speedup compared to running the cardinal algorithm to completion.

When tors is negative, similar checks are performed for the quadratic twist of the curve.

The following function returns a curve of prime order over \(\mathbb{F}_p\).

```plaintext
cryptocurve(p) =
{
 while(1,
 my(E, N, j = Mod(random(p), p));
 E = ellinit(ellfromj(j));
 N = ellsea(E, 1); if (!N, continue);
 if (isprime(N), return(E));
 \ \ try the quadratic twist for free
 if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
);
}
? p = randomprime([2^255, 2^256]);
? E = cryptocurve(p); \ \ insist on prime order
%2 = 47,447ms
```

The same example without early abort (using ellcard\((E)\) instead of ellsea\((E, 1)\)) runs for about 5 minutes before finding a suitable curve.

The availability of the seadata package will speed up the computation, and is strongly recommended. The generic function ellcard should be preferred when you only want to compute the cardinal of a given curve without caring about it having almost prime order:

- If the characteristic is too small \((p \leq 7)\) or the field cardinality is tiny \((q \leq 523)\) the generic algorithm ellcard is used instead and the tors argument is ignored. (The reason for this is that SEA is not
implemented for \( p \leq 7 \) and that if \( q \leq 523 \) it is likely to run into an infinite loop.)

- If the field cardinality is smaller than about \( 2^{50} \), the generic algorithm will be faster.
- Contrary to \texttt{ellcard}, \texttt{ellsea} does not store the computed cardinality in \( E \).

\texttt{ellsearch}(\( N \))

This function finds all curves in the \texttt{elldata} database satisfying the constraint defined by the argument \( N \):

- if \( N \) is a character string, it selects a given curve, e.g. "\texttt{11a1}" or curves in the given isogeny class, e.g. "\texttt{11a}" or curves with given conductor, e.g. "\texttt{11}";
- if \( N \) is a vector of integers, it encodes the same constraints as the character string above, according to the \texttt{ellconvertname} correspondance, e.g. \( [11, 0, 1] \) for "\texttt{11a1}"; \( [11, 0] \) for "\texttt{11a}" and \( [11] \) for "\texttt{11}";
- if \( N \) is an integer, curves with conductor \( N \) are selected.

If \( N \) codes a full curve name, for instance "\texttt{11a1}" or \( [11, \emptyset] \), the output format is \( [N, a_1, a_2, a_3, a_4, a_6, G] \) where \( [a_1, a_2, a_3, a_4, a_6] \) are the coefficients of the Weierstrass equation of the curve and \( G \) is a \( \mathbb{Z} \)-basis of the free part of the Mordell-Weil group attached to the curve.

\texttt{ellsigma}(\( L, \omega, \text{flag}, \text{precision} \))

Computes the value at \( \omega \) of the Weierstrass \( \sigma \) function attached to the lattice \( L \) as given by \texttt{ellperiods}([1]): including quasi-periods is useful, otherwise there are recomputed from scratch for each new \( \omega \).

\[ \sigma(z, L) = z \prod_{\omega \in L^{*}} (1 - (z)/\omega) \exp((z)/\omega) + (z^2)/(2\omega^2). \]

It is also possible to directly input \( L = [\omega_1, \omega_2] \), or an elliptic curve \( E \) as given by \texttt{ellinit} \( (L = E.\omega) \).

\texttt{ellsub}(\( E, z_1, z_2 \))

Difference of the points \( z_1 \) and \( z_2 \) on the elliptic curve corresponding to \( E \).

\texttt{elltamagawa}(\( E \))

The object \( E \) being an elliptic curve over a number field, returns the global Tamagawa number of the curve (including the factor at infinite places).
? e = ellinit([1, -1, 1, -3002, 63929]); \ curve "90c6" from elldata
? elltamagawa(e)
%2 = 288
? [elllocalred(e,p)[4] | p<-[2,3,5]]
%3 = [6, 4, 6]
? vecprod(%) \ since e.disc > 0 the factor at infinity is 2
%4 = 144

elltaniyama(E, serprec)
Computes the modular parametrization of the elliptic curve \( E/\mathbb{Q} \), where \( E \) is an \ell1 structure as output by ellinit. This returns a two-component vector \([u, v]\) of power series, given to \( n \) significant terms (\texttt{seriesprecision} by default), characterized by the following two properties. First the point \((u, v)\) satisfies the equation of the elliptic curve. Second, let \( N \) be the conductor of \( E \) and \( \Phi : X_0(N) \to E \) be a modular parametrization; the pullback by \( \Phi \) of the Néron differential \( \frac{du}{2v + a_1 u + a_3} \) is equal to \( 2i\pi f(z)dz \), a holomorphic differential form. The variable used in the power series for \( u \) and \( v \) is \( x \), which is implicitly understood to be equal to \( \exp(2i\pi z) \).

The algorithm assumes that \( E \) is a \textit{strong} Weil curve and that the Manin constant is equal to 1: in fact, \( f(x) = \sum_{n>0} \ell\text{ellak}(E, n)x^n \).

elltatepairing(E, P, Q, m)
Let \( E \) be an elliptic curve defined over a finite field \( k \) and \( m > 1 \) be an integer. This function computes the (nonreduced) Tate pairing of the points \( P \) and \( Q \) on \( E \), where \( P \) is an \( m \)-torsion point. More precisely, let \( f_{m, P} \) denote a Miller function with divisor \( m[P] - m[O_E] \); the algorithm returns \( f_{m, P}(Q) \in k^*/(k^*)^m \).

elltors(E)
If \( E \) is an elliptic curve defined over a number field or a finite field, outputs the torsion subgroup of \( E \) as a 3-component vector \([t, v_1, v_2]\), where \( t \) is the order of the torsion group, \( v_1 \) gives the structure of the torsion group as a product of cyclic groups (sorted by decreasing order), and \( v_2 \) gives generators for these cyclic groups. \( E \) must be an \ell1 structure as output by ellinit.

? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]

Here, the torsion subgroup is isomorphic to \( \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \), with generators \([0, 0]\) and \([1, 0]\).

elltwist(E, P)
Returns the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of the twist of the elliptic curve \( E \) by the quadratic extension of the coefficient ring defined by \( P \) (when \( P \) is a polynomial) or \texttt{quadpoly(P)} when \( P \) is an integer. If \( E \) is defined over a finite field, then \( P \) can be omitted, in which case a random model of the unique nontrivial twist is returned. If \( E \) is defined over a number field, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant \(-3\):

? elltwist(ellinit([0,a2,0,a4,a6]),-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]

Twist by the Artin-Schreier extension given by \( x^2 + x + T \) in characteristic 2:

? lift(elltwist(ellinit([a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]

Twist of an elliptic curve defined over a finite field:

1.1. Guide to real precision in the PARI interface
ellweilcurve \((E, ms)\)
If \(E'\) is an elliptic curve over \(\mathbb{Q}\), let \(L_{E'}\) be the sub-\(\mathbb{Z}\)-module of \(\text{Hom}_{\Gamma_0(N)}(\Delta_0, \mathbb{Q})\) attached to \(E'\) (It is given by \(x[3]\) if \([M, x] = \text{msfromell}(E')\)).

On the other hand, if \(N\) is the conductor of \(E\) and \(f\) is the modular form for \(\Gamma_0(N)\) attached to \(E\), let \(L_f\) be the lattice of the \(f\)-component of \(\text{Hom}_{\Gamma_0(N)}(\Delta_0, \mathbb{Q})\) given by the elements \(\phi\) such that \(\phi(0, \gamma^{-1}) \in \mathbb{Z}\) for all \(\gamma \in \Gamma_0(N)\) (see \text{mslattice}).

Let \(E'\) run through the isomorphism classes of elliptic curves isogenous to \(E\) as given by \text{ellisomat} (and in the same order). This function returns a pair \([vE, vS]\) where \(vE\) contains minimal models for the \(E'\) and \(vS\) contains the list of Smith invariants for the lattices \(L_{E'}\) in \(L_f\). The function also accepts the output of \text{ellisomat}, i.e. the isogeny class. If the optional argument \(ms\) is present, it contains the output of \text{msfromell}(vE, 0), i.e. the new modular symbol space \(M\) of level \(N\) and a vector of triples \([x^+, x^-, L]\) attached to each curve \(E'\).

In particular, the strong Weil curve amongst the curves isogenous to \(E\) is the one whose Smith invariants are \([c, c]\), where \(c\) is the Manin constant, conjecturally equal to 1.

ellweilpairing \((E, P, Q, m)\)
Let \(E\) be an elliptic curve defined over a finite field and \(m \geq 1\) be an integer. This function computes the Weil pairing of the two \(m\)-torsion points \(P\) and \(Q\) on \(E\), which is an alternating bilinear map. More precisely, let \(f_{m,R}\) denote a Miller function with divisor \(m[R] - m[O_E]\); the algorithm returns the \(m\)-th root of unity

\[\varepsilon(P, Q)^m.f_{m,P}(Q)/f_{m,Q}(P),\]

where \(f(R)\) is the extended evaluation of \(f\) at the divisor \([R] - [O_E]\) and \(\varepsilon(P, Q) \in 1\) is given by Weil reciprocity: \(\varepsilon(P, Q) = 1\) if and only if \(P, Q, O_E\) are not pairwise distinct.

ellwp \((w, z, flag, precision)\)
Computes the value at \(z\) of the Weierstrass \(\wp\) function attached to the lattice \(w\) as given by \text{ellperiods}. It is also possible to directly input \(w = [\omega_1, \omega_2]\), or an elliptic curve \(E\) as given by \text{ellinit}(w = E.omega).
\begin{verbatim}
? w = ellperiods([1,I]);
? ellwp(w, 1/2)
%2 = 6.8751858180203728274900957798105571978
? E = ellinit([1,1]);
? ellwp(E, 1/2)
%4 = 3.9413112427016474646048282462709151389

One can also compute the series expansion around \( z = 0 \):

? E = ellinit([1,0]);
? ellwp(E) \x\ F  \x\ F implicit at default seriesprecision
%5 = x^-2 - 1/5*x^2 + 1/75*x^6 - 2/4875*x^10 + O(x^14)
? ellwp(E, x + O(x^12)) \x\ F  \x\ F explicit precision
%6 = x^-2 - 1/5*x^2 + 1/75*x^6 + O(x^9)

Optional flag means 0 (default): compute only \( \wp(z) \), 1: compute \( [\wp(z), \wp'(z)] \).

For instance, the Dickson elliptic functions \( sm \) and \( sn \) can be implemented as follows

\begin{verbatim}
smcm(z) = { my(a, b, E = ellinit([0,-1/(4*27)])); \x\ F  \x\ F ell. invariants (g2,g3)=(0,1/27)
[a,b] = ellwp(E, z, 1);
[6*a / (1-3*b), (3*b+1)/(3*b-1)];
}
? [s,c] = smcm(0.5);
? s
%2 = 0.4898258757782682170733218609
? c
%3 = 0.9591820206453842491187464098
? s^3+c^3
%4 = 1.000000000000000000000000000

? smcm('x + O('x^11))
%5 = [x - 1/6*x^4 + 2/63*x^7 - 13/2268*x^10 + O(x^11),
1 - 1/3*x^3 + 1/18*x^6 - 23/2268*x^9 + O(x^10)]
\end{verbatim}

**ellxn** \((E, n, v)\)

For any affine point \( P = (t, u) \) on the curve \( E \), we have

\[
[n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3)
\]

for some \( \phi_n, \omega_n, \psi_n \) in \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][t, u] \) modulo the curve equation. This function returns a pair \([A, B]\) of polynomials in \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][v] \) such that \([A(t), B(t)] = [\phi_n(P), \psi_n(P)^3] \) in the function field of \( E \), whose quotient give the abscissa of \([n]P \). If \( P \) is an \( n \)-torsion point, then \( B(t) = 0 \).

\begin{verbatim}
? E = ellinit([17,42]); [t,u] = [114,1218];
? T = ellxn(E, 2, 'X')
%2 = [X^4 - 34*X^2 - 336*X + 289, 4*X^3 + 68*X + 168]
? [a,b] = subst(T,'X,t);
%3 = [168416137, 5934096]
? a / b == ellmul(E, [t,u], 2)[1]
%4 = 1
\end{verbatim}

**ellzeta** \((w, z, \text{precision})\)

Computes the value at \( z \) of the Weierstrass \( \zeta \) function attached to the lattice \( w \) as given by \text{ellperiods}(1,1):

\begin{verbatim}
\end{verbatim}

1.1. Guide to real precision in the PARI interface 119
including quasi-periods is useful, otherwise there are recomputed from scratch for each new \( z \).

\[
\zeta(z, L) = (1)/(z) + z^2 \sum_{\omega \in L^*} (1)/(\omega^2(z - \omega)).
\]

It is also possible to directly input \( w = [\omega_1, \omega_2] \), or an elliptic curve \( E \) as given by \texttt{ellinit} \((w = E.omega)\). The quasi-periods of \( \zeta \), such that

\[
\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2
\]

for integers \( a \) and \( b \) are obtained as \( \eta_i = 2\zeta(\omega_i/2) \). Or using directly \texttt{elleta}.

\begin{verbatim}
? w = ellperiods([1,1],1);
? ellzeta(w, 1/2)
%2 = 1.5707963267948966192313216916397514421
? E = ellinit([1,0]);
? ellzeta(E, E.omega[1]/2)
%4 = 0.84721308479397908660649912348219163647
\end{verbatim}

One can also compute the series expansion around \( z = 0 \) (the quasi-periods are useless in this case):

\begin{verbatim}
? E = ellinit([0,1]);
? ellzeta(E) \at 'x, implicitly at default seriesprecision
%4 = x^-1 + 1/35*x^5 - 1/7007*x^11 + O(x^15)
? ellzeta(E, x + O(x^20)) \explicit precision
%5 = x^-1 + 1/35*x^5 - 1/7007*x^11 + 1/1440257*x^17 + O(x^18)
\end{verbatim}

\texttt{ellztopoint} \((E,z,\text{precision})\)

\( E \) being an \texttt{ell} as output by \texttt{ellinit}, computes the coordinates \([x, y]\) on the curve \( E \) corresponding to the complex or \( p \)-adic parameter \( z \). Hence this is the inverse function of \texttt{ellpointtoz}.

- If \( E \) is defined over a \( p \)-adic field and has multiplicative reduction, then \( z \) is understood as an element on the Tate curve \( Q_p^*/q^2 \).

\begin{verbatim}
? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]
? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \ nonsplit: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))
\end{verbatim}

- If \( E \) is defined over the complex numbers (for instance over \( \mathbb{Q} \)), \( z \) is understood as a complex number in \( \mathbb{C}/\Lambda_E \). If the short Weierstrass equation is \( y^2 = 4x^3 - g_2x - g_3 \), then \([x, y]\) represents the Weierstrass \( \wp \)-function and its derivative. For a general Weierstrass equation we have

\[
x = \wp(z) - b_2/12, y = \wp'(z)/2 - (a_1x + a_3)/2.
\]

If : \texttt{math} : `z`isinthelaticedefining : \texttt{math} : `E`over : \texttt{math} : `C`, thereisresultthepointatinfinitly : \texttt{math} : `0`. 

120 Chapter 1. Interface to the PARI library
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \ point at infinity

erfc(x, precision)

Complementary error function, analytic continuation of \( \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-t^2} dt = \text{sign}(x) \text{incgam}(1/2, x^2)/\sqrt{\pi} \) for real \( x! = 0 \). The latter expression extends the function definition from real \( x \) to complex \( x \) with positive real part (or zero real part and positive imaginary part). This is extended to the whole complex plane by the functional equation \( \text{erfc}(-x) = 2 - \text{erfc}(x) \).

? erfc(0)
%1 = 1.0000000000000000000000000000000000000
? erfc(1)
%2 = 0.15729920705028513065877936491739074071
? erfc(1+I)
%3 = -0.31615128169794764488027108024367036903 - 0.1904534692378346862844*I

errname(E)

Returns the type of the error message \( E \) as a string.

? iferr(1 / 0, E, print(errname(E)))
e_INV
? ?? e_INV
[...]
* "e_INV". Tried to invert a noninvertible object \( x \) in function \( s \).
[...]

eta(z, flag, precision)

Variants of Dedekind’s \( \eta \) function. If \( flag = 0 \), return \( \prod_{n=1}^{\infty} o(1 - q^n) \), where \( q \) depends on \( x \) in the following way:

- \( q = e^{2i\pi x} \) if \( x \) is a complex number (which must then have positive imaginary part); notice that the factor \( q^{1/24} \) is missing!
- \( q = x \) if \( x \) is a t_PADIC, or can be converted to a power series (which must then have positive valuation).

If \( flag \) is nonzero, \( x \) is converted to a complex number and we return the true \( \eta \) function, \( q^{1/24} \prod_{n=1}^{\infty} o(1 - q^n) \), where \( q = e^{2i\pi x} \).

eulerfrac(n)

Euler number \( E_n \), where \( E_0 = 1, E_1 = 0, E_2 = -1, \ldots \), are integers such that

\[
\frac{(1)}{(\cosh t)} = \sum_{n\geq0} (E_n)/(n!) t^n.
\]

The argument \( n \) should be a nonnegative integer.
CyPari2 Documentation, Release 2.1.3

? vector(10,i,eulerfrac(i))
%1 = [0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521]
? eulerfrac(20000);
? sizedigit(%))
%3 = 73416

eulerianpol(n, v)
Eulerian polynomial $A_n$ in variable $v$.

? eulerianpol(2)
%1 = x + 1
? eulerianpol(5, 't)
%2 = t^4 + 26*t^3 + 66*t^2 + 26*t + 1

eulerphi(x)
Euler's φ (totient) function of the integer $\|x\|$, in other words $\|(\mathbb{Z}/x\mathbb{Z})^*\|$.

? eulerphi(40)
%1 = 16

According to this definition we let $\phi(0) := 2$, since $\mathbb{Z}^* = -1, 1$; this is consistent with znstar(0): we have znstar:math:`(n).no = eulerphi(n)` for all $n \in \mathbb{Z}$.

eulerpol(n, v)
Euler polynomial $E_n$ in variable $v$.

? eulerpol(1)
%1 = x - 1/2
? eulerpol(3)
%2 = x^3 - 3/2*x^2 + 1/4

eulervec(n)
Returns a vector containing, as rational numbers, the nonzero Euler numbers $E_0, E_2, \ldots, E_{2n}$:

? eulervec(5) \ E_0, E_2..., E_10
%1 = [1, -1, 5, -61, 1385, -50521]
? eulerfrac(10)
%2 = -50521

This routine uses more memory but is a little faster than repeated calls to eulerfrac:

? forstep(n = 2, 8000, 2, eulerfrac(n))
time = 46,851 ms.
? eulervec(4000);
time = 30,588 ms.

exp(x, precision)
Exponential of $x$. $p$-adic arguments with positive valuation are accepted.

expm1(x, precision)
Return $\exp(x) - 1$, computed in a way that is also accurate when the real part of $x$ is near 0. A naive direct computation would suffer from catastrophic cancellation; PARI's direct computation of $\exp(x)$ alleviates this well known problem at the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small. Using expm1 is recommended instead:
CyPari2 Documentation, Release 2.1.3

As the example above shows, when \( x \) is near 0, \( \text{expm1} \) is more accurate than \( \exp(x)-1 \).

\textbf{exponent}(x)

When \( x \) is a \texttt{t_REAL}, the result is the binary exponent \( e \) of \( x \). For a nonzero \( x \), this is the unique integer \( e \) such that \( 2^e \leq \|x\| < 2^{e+1} \). For a real 0, this returns the PARI exponent \( e \) attached to \( x \) (which may represent any floating-point number less than \( 2^e \) in absolute value).

\begin{verbatim}
? exponent(Pi)
%1 = 1
? exponent(4.0)
%2 = 2
? exponent(0.0)
%3 = -128
? default(realbitprecision)
%4 = 128
\end{verbatim}

This definition extends naturally to nonzero integers, and the exponent of an exact 0 is \( -\infty \) by convention.

For convenience, we define the exponent of a \texttt{t_FRAC} \( a/b \) as the difference of \texttt{exponent}(\( a \)) and \texttt{exponent}(\( b \)); note that, if \( e' \) denotes the exponent of \( :math:`a/b * 1.0` \), then the exponent \( e \) we return is either \( e' \) or \( e' + 1 \), thus \( 2^e+1 \) is an upper bound for \( \|a/b\| \).

\begin{verbatim}
? [ exponent(9), exponent(10), exponent(9/10), exponent(9/10*1.) ]
%5 = [3, 3, 0, -1]
\end{verbatim}

For a PARI object of type \texttt{t_COMPLEX}, \texttt{t_POL}, \texttt{t_SER}, \texttt{t_VEC}, \texttt{t_COL}, \texttt{t_MAT} this returns the largest exponent found among the components of \( x \). Hence \( 2^{e+1} \) is a quick upper bound for the sup norm of real matrices or polynomials; and \( 2^{e+(3/2)} \) for complex ones.

\begin{verbatim}
? exponent(3*x^2 + 15*x - 100)
%5 = 6
? exponent(0)
%6 = -oo
\end{verbatim}

\textbf{exportall()}

Declare all current dynamic variables as exported variables. Such variables are visible inside parallel sections in place of global variables.

\begin{verbatim}
? fun(x)=x^2+1;
? parvector(10,i,fun(i))
*** mt: please use export(fun).
? exportall()
\end{verbatim}

(continues on next page)
? parvector(10,i,fun(i))
%4 = [2, 5, 10, 17, 26, 37, 50, 65, 82, 101]

extern(str)

The string str is the name of an external command (i.e. one you would type from your UNIX shell prompt). This command is immediately run and its output fed into gp, just as if read from a file.

externstr(str)

The string str is the name of an external command (i.e. one you would type from your UNIX shell prompt). This command is immediately run and its output is returned as a vector of GP strings, one component per output line.

factor(x, D)

Factor x over domain D; if D is omitted, it is determined from x. For instance, if x is an integer, it is factored in \(\mathbb{Z}\), if it is a polynomial with rational coefficients, it is factored in \(\mathbb{Q}[x]\), etc., see below for details. The result is a two-column matrix: the first contains the irreducibles dividing x (rational or Gaussian primes, irreducible polynomials), and the second the exponents. By convention, 0 is factored as \(0^1\).

\[x \in \mathbb{Q}\]. See \texttt{factorint} for the algorithms used. The factorization includes the unit \(-1\) when \(x < 0\) and all other factors are positive; a denominator is factored with negative exponents. The factors are sorted in increasing order.

? factor(-7/106)
%1 =
[ -1 1 ]
[  2 -1 ]
[  7 1 ]
[53 -1 ]

By convention, 1 is factored as \texttt{matrix(\emptyset, 2)} (the empty factorization, printed as \([;])\).

Large rational “primes” > \(2^{64}\) in the factorization are in fact \textit{pseudoprimes} (see \texttt{ispseudoprime}), a priori not rigorously proven primes. Use \texttt{isprime} to prove primality of these factors, as in

? fa = factor(2^2^7 + 1)
%2 =
[59649589127497217 1 ]
[5704689200685129054721 1 ]

? isprime( fa[\[1\] ] )
%3 = [1, 1]~ \ \ both entries are proven primes

Another possibility is to globally set the default \texttt{factor_proven}, which will perform a rigorous primality proof for each pseudoprime factor but will slow down PARI.

A \texttt{t_INT} argument D can be added, meaning that we only trial divide by all primes \(p < D\) and the \texttt{addprimes} entries, then skip all expensive factorization methods. The limit D must be nonnegative. In this case, one entry in the factorization may be a composite number: all factors less than \(D^2\) and primes from the \texttt{addprimes} table are actual primes. But (at most) one entry may not verify this criterion, and it may be prime or composite: it is only known to be coprime to all other entries and not a pure power.
? factor(2^2^7 +1, 10^5)
%4 =
\[340282366920938463463374607431768211457 1\]

**Deprecated feature.** Setting \( D = 0 \) is the same as setting it to \( \text{primelimit} + 1 \).

This routine uses trial division and perfect power tests, and should not be used for huge values of \( D \) (at most \( 10^9 \), say): `factorint(, 1 + 8)` will in general be faster. The latter does not guarantee that all small prime factors are found, but it also finds larger factors and in a more efficient way.

? F = (2^2^7 + 1) * 1009 * (10^5+3); factor(F, 10^5) \ fast, incomplete
 time = 0 ms.
%5 =
[1009 1]
\[34029257539194609161727850866999116450334371 1\]

? factor(F, 10^9) \ slow
 time = 3,260 ms.
%6 =
[1009 1]
[100003 1]
\[340282366920938463463374607431768211457 1\]

? factorint(F, 1 + 8) \ much faster and all small primes were found
 time = 8 ms.
%7 =
[1009 1]
[100003 1]
\[340282366920938463463374607431768211457 1\]

? factor(F) \ complete factorization
 time = 60 ms.
%8 =
[1009 1]
[100003 1]
\[59649589127497217 1\]
\[5704689200685129054721 1\]

Setting \( D = I \) will factor in the Gaussian integers \( \mathbb{Z}[i] \):

**math:** `x in mathbb{Q} (i)`  

The factorization is performed with Gaussian primes in \( \mathbb{Z}[i] \) and includes Gaussian units in \( 1, i \); factors are sorted by increasing norm. Except for a possible leading unit, the Gaussian factors are normalized: rational factors are positive and irrational factors have positive imaginary part (a canonical represneta.

Unless `factor_proven` is set, large factors are actually pseudoprimes, not proven primes; a rational factor is prime if less than \( 2^{64} \) and an irrational one if its norm is less than \( 2^{64} \).

1.1. Guide to real precision in the PARI interface 125
One can force the factorization of a rational number by setting the domain $D = I$:

```plaintext
? factor(-5, I)
%10 =
[I 1]
[2 + I 1]
[1 + 2*I 1]
```

\[ \text{Univariate polynomials and rational functions.} \] PARI can factor univariate polynomials in $K[t]$. The following base fields $K$ are currently supported: $\mathbb{Q}$, $\mathbb{R}$, $\mathbb{C}$, $\mathbb{Q}_p$, finite fields and number fields. See \texttt{factormod} and \texttt{factorff} for the algorithms used over finite fields and \texttt{nffactor} for the algorithms over number fields. The irreducible factors are sorted by increasing degree and normalized: they are monic except when $K = \mathbb{Q}$ where they are primitive in $\mathbb{Z}[t]$.

The content is not included in the factorization, in particular \texttt{factorback} will in general recover the original $x$ only up to multiplication by an element of $K^*$: when $K = \mathbb{Q}$, this scalar is \texttt{pollead}(x) (since irreducible factors are monic); and when $K = \mathbb{Q}$ you can either ask for the $\mathbb{Q}$-content explicitly or use \texttt{factorback}:

```plaintext
? P = t^2 + 5*t/2 + 1; F = factor(P)
%12 =
[t + 2 1]
[2*t + 1 1]
```

\[ \text{You can specify } K \text{ using the optional “domain” argument } D \text{ as follows}\]

- $K = \mathbb{Q}: D$ a rational number (\texttt{t_INT} or \texttt{t_FRAC}),
- $K = \mathbb{Z}/p\mathbb{Z}$ with $p$ prime: $D$ a \texttt{t_INTMOD} modulo $p$; factoring modulo a composite number is not supported.
- $K = \mathbb{F}_q: D$ a \texttt{t_FFELT} encoding the finite field; you can also use a \texttt{t_POLMOD} of \texttt{t_INTMOD} modulo a prime $p$ but this is usually less convenient;
- $K = \mathbb{Q}[X]/(T)$ a number field: $D$ a \texttt{t_POLMOD} modulo $T$,
- $K = \mathbb{Q}(i)$ (alternate syntax for special case): $D = I$,
- $K = \mathbb{Q}(w)$ a quadratic number field (alternate syntax for special case): $D$ a \texttt{t_QUAD},
- $K = \mathbb{R}: D$ a real number (\texttt{t_REAL}); truncate the factorization at accuracy \texttt{precision}(D). If $x$ is inexact and \texttt{precision}(x) is less than \texttt{precision}(D), then the precision of $x$ is used instead.
• \( K = \mathbb{C} : D \) a complex number with a \( \text{t\_REAL} \) component, e.g. \( I \times 1. \); truncate the factorization as for \( K = \mathbb{R} \),

• \( K = \mathbb{Q}_p : D \) a \( \text{t\_PADIC} \); truncate the factorization at \( p \)-adic accuracy \( \text{padicprec}(D) \), possibly less if \( x \) is inexact with insufficient \( p \)-adic accuracy:

```
? T = x^2+1;
? factor(T, 1); \\ over Q
? factor(T, Mod(1,3)) \\ over F_3
? factor(T, ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T, Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T, O(3^6)) \\ over Q_3, precision 6
? factor(T, 1.) \\ over R, current precision
? factor(T, I*1.) \\ over C
? factor(T, Mod(1, y^3-2)) \\ over Q(2^{1/3})
```

In most cases, it is possible and simpler to call a specialized variant rather than use the above scheme:

```
? factormod(T, 3) \\ over F_3
? factormod(T, [t^2+t+2, 3]) \\ over F_{3^2}
? factormod(T, ffgen(3^2, 't)) \\ over F_{3^2}
? factorpadic(T, 3,6) \\ over Q_3, precision 6
? nffactor(y^3-2, T) \\ over Q(2^{1/3})
? polroots(T) \\ over C
? polrootsreal(T) \\ over R (real polynomial)
```

It is also possible to let the routine use the smallest field containing all coefficients, taking into account quotient structures induced by \( \text{t\_INTMOD} \)s and \( \text{t\_POLMOD} \)s (e.g. if a coefficient in \( \mathbb{Z}/n\mathbb{Z} \) is known, all rational numbers encountered are first mapped to \( \mathbb{Z}/n\mathbb{Z} \); different moduli will produce an error):

```
? T = x^2+1;
? factor(T); \\ over Q
? factor(T*Mod(1,3)) \\ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \\ over F_{3^2}
? factor(T*Mod(Mod(1,3), t^2+t+2)) \\ over F_{3^2}, again
? factor(T*(1 + O(3^6)) \\ over Q_3, precision 6
? factor(T*1.) \\ over R, current precision
? factor(T*1.+0.*I) \\ over C
? factor(T*Mod(1, y^3-2)) \\ over Q(2^{1/3})
```

Multiplying by a suitable field element equal to \( 1 \in K \) in this way is error-prone and is not recommended. Factoring existing polynomials with obvious fields of coefficients is fine, the domain argument \( D \) should be used instead ad hoc conversions.

**Note on inexact polynomials.** Polynomials with inexact coefficients (e.g. floating point or \( p \)-adic numbers) are first rounded to an exact representation, then factored to (potentially) infinite accuracy and we return a truncated approximation of that virtual factorization. To avoid pitfalls, we advise to only factor *exact* polynomials:

```
? factor(x^2-1+O(2^2)) \\ rounded to x^2 + 3, irreducible in Q_2
%1 = [(1 + O(2^2))*x^2 + O(2^2)*x + (1 + 2 + O(2^2)) 1]
? factor(x^2-1+O(2^3)) \\ rounded to x^2 + 7, reducible!
%2 = [(1 + O(2^3))*x + (1 + 2 + O(2^3)) 1]
```

(continues on next page)
[(1 + O(2^3))*x + (1 + 2^2 + O(2^3)) 1]

? factor(x^2-1, O(2^2)) \ \ no ambiguity now
%3 =
[ (1 + O(2^2))*x + (1 + O(2^2)) 1]
[(1 + O(2^2))*x + (1 + 2 + O(2^2)) 1]

Note about inseparable polynomials. Polynomials with inexact coefficients are considered to be squarefree: indeed, there exist a squarefree polynomial arbitrarily close to the input, and they cannot be distinguished at the input accuracy. This means that irreducible factors are repeated according to their apparent multiplicity. On the contrary, using a specialized function such as factorpadic with an exact rational input yields the correct multiplicity when the (now exact) input is not separable. Compare:

? factor(z^2 + O(5^2))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]
[(1 + O(5^2))*z + O(5^2) 1]
? factor(z^2, O(5^2))
%2 =
[1 + O(5^2))*z + O(5^2) 2]

Multivariate polynomials and rational functions. PARI recursively factors multivariate polynomials in $\mathbb{K}[t_1, \ldots, t_d]$ for the same fields $\mathbb{K}$ as above and the argument $D$ is used in the same way to specify $\mathbb{K}$. The irreducible factors are sorted by their main variable (least priority first) then by increasing degree.

? factor(x^2 + y^2, Mod(1,5))
%1 =
[ x + Mod(2, 5)*y 1]
[Mod(1, 5)*x + Mod(3, 5)*y 1]
? factor(x^2 + y^2, O(5^2))
%2 =
[(1 + O(5^2))*x + (O(5^2)*y^2 + (2 + 5 + O(5^2))*y + O(5^2)) 1]
[(1 + O(5^2))*x + (O(5^2)*y^2 + (3 + 3*5 + O(5^2))*y + O(5^2)) 1]
? lift(%)
%3 =
[ x + 7*y 1]
[x + 18*y 1]

Note that the implementation does not really support inexact real fields ($\mathbb{R}$ or $\mathbb{C}$) and usually misses factors even if the input is exact:

? factor(x^2 + y^2, I) \ \ over Q(i)
%4 =
[x - I*y 1]
\begin{verbatim}
[x + I*y 1]
\end{verbatim}

\begin{verbatim}
? factor(x^2 + y^2, I*1.) \ \ \ \text{\textbackslash over C}
\end{verbatim}

\begin{verbatim}
%5 = [x^2 + y^2 1]
\end{verbatim}

\textbf{factorback}(f, e)

Gives back the factored object corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If $e$ is present, $e$ and $f$ must be vectors of the same length ($e$ being integral), and the corresponding factorization is the product of the $f[i]^{e[i]}$.

If not, and $f$ is vector, it is understood as in the preceding case with $e$ a vector of 1s: we return the product of the $f[i]$. Finally, $f$ can be a regular factorization, as produced with any \texttt{factor} command. A few examples:

\begin{verbatim}
? factor(12)
%1 = [2 2]
[3 1]

? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \ \ \ \text{\textbackslash 2^3 * 3^1}
%3 = 12
? factorback([5,2,3])
%4 = 30
\end{verbatim}

\textbf{factorcantor}(x, p)

This function is obsolete, use \texttt{factormod}.

\textbf{factorff}(x, p, a)

Obsolete, kept for backward compatibility: use \texttt{factormod}.

\textbf{factorial}(x, precision)

Factorial of $x$. The expression $x!$ gives a result which is an integer, while \texttt{factorial}(x) gives a real number.

\textbf{factorint}(x, flag)

Factors the integer $n$ into a product of pseudoprimes (see \texttt{ispseudoprime}), using a combination of the Shanks SQUFOF and Pollard Rho method (with modifications due to Brent), Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted from the LiDIA code with the kind permission of the LiDIA maintainers), as well as a search for pure powers. The output is a two-column matrix as for \texttt{factor}: the first column contains the “prime” divisors of $n$, the second one contains the (positive) exponents.

By convention 0 is factored as $0^1$, and 1 as the empty factorization; also the divisors are by default not proven primes if they are larger than $2^{64}$, they only failed the BPSW compositeness test (see \texttt{ispseudoprime}). Use \texttt{isprime} on the result if you want to guarantee primality or set the \texttt{factor_proven} default to 1. Entries of the private prime tables (see \texttt{addprimes}) are also included as is.

This gives direct access to the integer factoring engine called by most arithmetical functions. \texttt{flag} is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid Rho and SQUFOF, 8: don’t run final ECM (as a result, a huge composite may be declared to be prime). Note that a (strong) probabilistic primality test is used; thus composites might not be detected, although no example is known.

\subsection*{1.1. Guide to real precision in the PARI interface}

129
You are invited to play with the flag settings and watch the internals at work by using gp’s debug default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above show an increasing amount of internal details).

\[ \text{fakemod}(f, D, \text{flag}) \]

Factors the polynomial \( f \) over the finite field defined by the domain \( D \) as follows:

- \( D = p \) a prime: factor over \( \mathbb{F}_p \);
- \( D = [T, p] \) for a prime \( p \) and \( T(y) \) an irreducible polynomial over \( \mathbb{F}_p \): factor over \( \mathbb{F}_p[y]/(T) \) (as usual the main variable of \( T \) must have lower priority than the main variable of \( f \));
- \( D \) a \text{t}_\text{FFELT}: factor over the attached field;
- \( D \) omitted: factor over the field of definition of \( f \), which must be a finite field.

The coefficients of \( f \) must be operation-compatible with the corresponding finite field. The result is a two-column matrix, the first column being the irreducible polynomials dividing \( f \), and the second the exponents. By convention, the 0 polynomial factors as \( 0^1 \); a nonzero constant polynomial has empty factorization, a \( 0 \times 2 \) matrix. The irreducible factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls or sessions.

```gp
? factormod(x^2 + 1, 3) \over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall(factormod(x^2 + 1, [t^2+1, 3])) \over F_9
%2 =
[x + t 1]
[x + 2*t 1]
\same, now letting GP choose a model
? T = ffinit(3,2,'t)
%3 = Mod(1, 3)*t^2 + Mod(1, 3)*t + Mod(2, 3)
? liftall(factormod(x^2 + 1, [T, 3]))
%4 = \t is a root of T!
[x + (t + 2) 1]
[x + (2*t + 1) 1]
? t = ffgen(t^2+Mod(1,3)); factormod(x^2 + t^0) \same using t_FFELT
%5 =
[x + t 1]
[x + 2*t 1]
? factormod(x^2+Mod(1,3))
%6 =
[Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall(factormod(x^2 + Mod(1,3), y^2+1))
%7 =
[x + y 1]
[x + 2*y 1]
```

If \( \text{flag} \) is nonzero, outputs only the degrees of the irreducible polynomials (for example to compute an \( L \)-function). By convention, a constant polynomial (including the 0 polynomial) has empty factorization. The degrees appear in increasing order but need not correspond to the ordering with \( \text{flag} = 0 \) when multiplicities are present.
? \( f = x^3 + 2x^2 + x + 2; \)
? \( \text{factormod}(f, 5) \ \% (x+2)^2 \cdot (x+3) \)
\%1 = 
[Mod(1, 5) \cdot x + Mod(2, 5) \cdot 2]
[Mod(1, 5) \cdot x + Mod(3, 5) \cdot 1]
\%2 =
[1 1]
[1 2]

\textbf{\texttt{factormodDDF}}(f, D)

Distinct-degree factorization of the squarefree polynomial \( f \) over the finite field defined by the domain \( D \) as follows:

- \( D = p \) a prime: factor over \( \mathbb{F}_p \);
- \( D = [T, p] \) for a prime \( p \) and \( T \) an irreducible polynomial over \( \mathbb{F}_p \): factor over \( \mathbb{F}_p[x]/(T) \);
- \( D \) a \texttt{t_FFELT}: factor over the attached field;
- \( D \) omitted: factor over the field of definition of \( f \), which must be a finite field.

This is somewhat faster than full factorization. The coefficients of \( f \) must be operation-compatible with the corresponding finite field. The result is a two-column matrix:

- the first column contains monic (squarefree) pairwise coprime polynomials dividing \( f \), all of whose irreducible factors have degree \( d \);
- the second column contains the degrees of the irreducible factors.

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls or sessions.

? \( f = (x^2 + 1) \cdot (x^2 - 1); \)
? \( \text{factormodSQF}(f, 3) \ \% \) squarefree over \( \mathbb{F}_3 \)
\%2 =
[Mod(1, 3) \cdot x^4 + Mod(2, 3) \cdot 1]
\%3 =
[Mod(1, 3) \cdot x^2 + Mod(2, 3) \cdot 1] \ \% \) two degree 1 factors
[Mod(1, 3) \cdot x^2 + Mod(1, 3) \cdot 2] \ \% \) irred of degree 2
\%4 =
[1 1] \ \% \) product of two degree 1 factors

? \texttt{t = ffgen(t^2 + Mod(1, 3)); factormodDDF(x^2 + t^0)} \ \% \) same using \texttt{t_FFELT}
\%7 =
(continues on next page)
\[ x^2 + 1 \]

? \text{factormodDDF}(x^2 - \text{Mod}(1, 3))
%8 =
[\text{Mod}(1, 3) \times x^2 + \text{Mod}(2, 3) \times 1]

\text{factormodSQF}(f, D)

Squarefree factorization of the polynomial \( f \) over the finite field defined by the domain \( D \) as follows:

- \( D = p \) a prime: factor over \( \mathbb{F}_p \);
- \( D = [T, p] \) for a prime \( p \) and \( T \) an irreducible polynomial over \( \mathbb{F}_p \): factor over \( \mathbb{F}_p[x]/(T) \);
- \( D \) a \text{t\textunderscore FFELT}: factor over the attached field;
- \( D \) omitted: factor over the field of definition of \( f \), which must be a finite field.

This is somewhat faster than full factorization. The coefficients of \( f \) must be operation-compatible with the corresponding finite field. The result is a two-column matrix:

- the first column contains monic squarefree pairwise coprime polynomials dividing \( f \);
- the second column contains the power to which the polynomial in column 1 divides \( f \);

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls or sessions.

\[ x^2 + 1 \]

? \text{factormodSQF}((x^2 + 1)^3, [3, t^2 + 1]) \ \text{over} \ \mathbb{F}_9
%4 =
[x^2 + 1 \times 3]

? \text{t = ffgen}(t^2 + \text{Mod}(1, 3)); \text{factormodSQF}((x^2 + t^0)^3) \ \text{same using} \ \text{t\textunderscore FFELT}
%5 =
[x^2 + 1 \times 3]

? \text{factornf}(x, t)
This function is obsolete, use \text{nffactor}. 
factorization of the univariate polynomial $x$ over the number field defined by the (univariate) polynomial $t$. $x$ may have coefficients in $\mathbb{Q}$ or in the number field. The algorithm reduces to factorization over $\mathbb{Q}$ (Trager’s trick). The direct approach of \texttt{nffactor}, which uses van Hoeij’s method in a relative setting, is in general faster.

The main variable of $t$ must be of lower priority than that of $x$ (see priority in the PARI manual). However if nonrational number field elements occur (as polmods or polynomials) as coefficients of $x$, the variable of these polmods must be the same as the main variable of $t$. For example

```plaintext
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
\text{\textbackslash \ these two are OK}
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
 *** at top-level: factornf(x^2+Mod(z,z
 *** ^---------------------
 *** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
 *** at top-level: factornf(x^2+z,y^2+1
 *** ^---------------------
 *** factornf: incorrect variable in rnf function.
```

\textbf{factorpadic}(pol, p, r)

$p$-adic factorization of the polynomial $pol$ to precision $r$, the result being a two-column matrix as in \texttt{factor}. Note that this is not the same as a factorization over $\mathbb{Z}/p^r\mathbb{Z}$ (polynomials over that ring do not form a unique factorization domain, anyway), but approximations in $\mathbb{Q}/p^r\mathbb{Z}$ of the true factorization in $\mathbb{Q}_p[X]$.

```plaintext
? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + T 3^5)\cdot x^2 + 0\cdot 3^5\cdot x + (3^2 + 0\cdot 3^5)]
1
? factorpadic(x^2 + 1, 5,3)
%2 =
[(1 + 0\cdot 5^3)\cdot x + (2 + 5 + 2\cdot 5^2 + 0\cdot 5^3)]
1
[(1 + 0\cdot 5^3)\cdot x + (3 + 3\cdot 5 + 2\cdot 5^2 + 0\cdot 5^3)]
1
```

The factors are normalized so that their leading coefficient is a power of $p$. The method used is a modified version of the round 4 algorithm of Zassenhaus.

If $pol$ has inexact \texttt{t\_PADIC} coefficients, this is not always well-defined; in this case, the polynomial is first made integral by dividing out the $p$-adic content, then lifted to $\mathbb{Z}$ using \texttt{truncate} coefficientwise. Hence we actually factor exactly a polynomial which is only $p$-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with exact rational coefficients.

\textbf{ffcompmopmap}(f, g)

Let $k$, $l$, $m$ be three finite fields and $f$ a (partial) map from $l$ to $m$ and $g$ a (partial) map from $k$ to $l$, return the (partial) map $fog$ from $k$ to $m$.

```plaintext
a = ffgen([3,5], 'a); b = ffgen([3,10], 'b); c = ffgen([3,20], 'c); m = ffembed(a, b); n = ffembed(b, c); rm = ffinvmap(m); rn = ffinvmap(n); nm = ffcompmopmap(n,m); ffmap(n,ffmap(m,a)) == ffmap(nm, a)
%5 = 1
ffcompmopmap(rm, rn) == ffinvmap(nm)
%6 = 1
```

\textbf{ffembed}(a, b)

1.1. Guide to real precision in the PARI interface 133
Given two finite fields elements $a$ and $b$, return a map embedding the definition field of $a$ to the definition field of $b$. Assume that the latter contains the former.

```plaintext
? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? A = ffmap(m, a);
? minpoly(A) == minpoly(a)
%5 = 1
```

**ffextend**($a$, $P$, $v$)

Extend the field $K$ of definition of $a$ by a root of the polynomial $P \in K[X]$ assumed to be irreducible over $K$. Return $[r, m]$ where $r$ is a root of $P$ in the extension field $L$ and $m$ is a map from $K$ to $L$, see **ffmap**. If $v$ is given, the variable name is used to display the generator of $L$, else the name of the variable of $P$ is used. A generator of $L$ can be recovered using $b = ffgen(r)$. The image of $P$ in $L[X]$ can be recovered using $PL = ffmap(m, P)$.

```plaintext
? a = ffgen([3,5], 'a);
? P = x^2-a; polisirreducible(P)
%2 = 1
? [r,m] = ffextend(a, P, 'b);
? r
%3 = b^9+2*b^8+b^7+2*b^6+b^4+1
? subst(ffmap(m, P), x, r)
%4 = 0
? ffgen(r)
%5 = b
```

**fffrobenius**($m$, $n$)

Return the $n$-th power of the Frobenius map over the field of definition of $m$.

```plaintext
? a = ffgen([3,5], 'a);
? f = fffrobenius(a);
? ffmap(f, a) == a^3
%3 = 1
? g = fffrobenius(a, 5);
? ffmap(g, a) == a
%5 = 1
? h = fffrobenius(a, 2);
? h == ffcompomap(f, f)
%7 = 1
```

**ffgen**($k$, $v$)

Return a generator for the finite field $k$ as a **t_FFELT**. The field $k$ can be given by

- its order $q$
- the pair $[p, f]$ where $q = p^f$
- a monic irreducible polynomial with **t_INTMOD** coefficients modulo a prime.
- a **t_FFELT** belonging to $k$.

If $v$ is given, the variable name is used to display $g$, else the variable of the polynomial or the **t_FFELT** is used, else $x$ is used.
When only the order is specified, the function uses the polynomial generated by `ffinit` and is deterministic: two calls to the function with the same parameters will always give the same generator.

For efficiency, the characteristic is not checked to be prime; similarly if a polynomial is given, we do not check whether it is irreducible.

To obtain a multiplicative generator, call `ffprimroot` on the result.

```plaintext
? g = ffgen(16, 't);
? g.mod \ recover the underlying polynomial.
%2 = t^4+t^3+t^2+t+1
? g.pol \ lift g as a t_POL
%3 = t
? g.p \ recover the characteristic
%4 = 2
? fforder(g) \ g is not a multiplicative generator
%5 = 5
? a = ffprimroot(g) \ recover a multiplicative generator
%6 = t^3+t^2+t
? fforder(a)
%7 = 15
```

`ffinit(p, n, v)`
Computes a monic polynomial of degree \( n \) which is irreducible over \( \mathbb{F}_p \), where \( p \) is assumed to be prime. This function uses a fast variant of Adleman and Lenstra’s algorithm.

It is useful in conjunction with `ffgen`: for instance if \( P = \text{ffinit}(3^2) \), you can represent elements in \( \mathbb{F}_{3^2} \) in terms of \( g = \text{ffgen}(P, 't) \). This can be abbreviated as \( g = \text{ffgen}(3^2, 't) \), where the defining polynomial \( P \) can be later recovered as \( g.\text{mod} \).

`ffinvmap(m)`
\( m \) being a map from \( K \) to \( L \) two finite fields, return the partial map \( p \) from \( L \) to \( K \) such that for all \( k \in K \), \( p(m(k)) = k \).

```plaintext
? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? p = ffinvmap(m);
? u = random(a);
? v = ffmap(m, u);
? ffmap(p, v^2+v+2) == u^2+u+2
%7 = 1
? ffmap(p, b)
%8 = []
```

`fflog(x, g, o)`
Discrete logarithm of the finite field element \( x \) in base \( g \), i.e. an \( e \) in \( \mathbb{Z} \) such that \( g^e = o \). If present, \( o \) represents the multiplicative order of \( g \), see `DLfun` (in the PARI manual); the preferred format for this parameter is \([\text{ord}, \text{factor(ord)}]\), where \( \text{ord} \) is the order of \( g \). It may be set as a side effect of calling `ffprimroot`. The result is undefined if \( e \) does not exist. This function uses

- a combination of generic discrete log algorithms (see `znlog`)
- a cubic sieve index calculus algorithm for large fields of degree at least 5.
- Coppersmith’s algorithm for fields of characteristic at most 5.
```plaintext
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \not a primitive root.
? fflog(t^10,t)
%3 = 10
? fflog(t^10,t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g*10000, g, o)
%8 = 10000

ffmap(m, x)
Given a (partial) map m between two finite fields, return the image of x by m. The function is applied recursively to the component of vectors, matrices and polynomials. If m is a partial map that is not defined at x, return[].

? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? P = x^2+a*x+1;
? Q = ffmap(m,P);
? ffmap(m,poldisc(P)) == poldisc(Q)
%6 = 1

ffmaprel(m, x)
Given a (partial) map m between two finite fields, express x as an algebraic element over the codomain of m in a way which is compatible with m. The function is applied recursively to the component of vectors, matrices and polynomials.

? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? mi= ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b^2+(a+1)*b+(a^2+2*a+2))

In particular, this function can be used to compute the relative minimal polynomial, norm and trace:

```plaintext
? minpoly(R)
%6 = x^2+(a+1)*x+(a^2+2*a+2)
? trace(R)
%7 = 2*a+2
? norm(R)
%8 = a^2+2*a+2
```

ffnbirred(q, n, fl)
Computes the number of monic irreducible polynomials over \(\mathbb{F}_q \) of degree exactly n, (flag = 0 or omitted) or at most n (flag = 1).

fforder(x, o)
Multiplicative order of the finite field element x. If o is present, it represents a multiple of the order of the
element, see DLfun (in the PARI manual); the preferred format for this parameter is \([N, \text{factor}(N)]\), where \(N\) is the cardinality of the multiplicative group of the underlying finite field.

\[
\begin{align*}
? \ t = \text{ffgen}(\text{ffinit}(\text{nextprime}(10^8), 5)); \\
? \ g = \text{ffprimroot}(t, &o); \ \backslash \ \o \text{ will be useful!} \\\n? \ \text{fforder}(g^\text{1000000}, o) \\
\text{time} = 0 \text{ ms.} \\
\%
\end{align*}
\]

\[
\begin{align*}
? \ \text{fforder}(g^\text{1000000}) \\
\text{time} = 16 \text{ ms.} \ \backslash \ \text{noticeably slower, same result of course} \\
\%
\end{align*}
\]

ffprimroot(*x*, *o*)

Return a primitive root of the multiplicative group of the definition field of the finite field element \(x\) (not necessarily the same as the field generated by \(x\)). If present, \(o\) is set to a vector \([\text{ord}, \text{fa}]\), where \(\text{ord}\) is the order of the group and \(\text{fa}\) its factorization \(\text{factor}(\text{ord})\). This last parameter is useful in \(\text{fflog}\) and \(\text{fforder}\), see DLfun (in the PARI manual).

\[
\begin{align*}
? \ t = \text{ffgen}(\text{ffinit}(\text{nextprime}(10^7), 5)); \\
? \ g = \text{ffprimroot}(t, &o); \\
? \ o[1] \\
\%
\end{align*}
\]

\[
\begin{align*}
? \ o[2] \\
\%
\end{align*}
\]

\[
\begin{align*}
? \ \text{fflog}(g^\text{1000000}, g, o) \\
\text{time} = 1,312 \text{ ms.} \\
\%
\end{align*}
\]

fft(*w*, *P*)

Let \(w = [1, z, ..., z^{N-1}]\) from some primitive \(N\)-roots of unity \(z\) where \(N\) is a power of 2, and \(P\) be a polynomial \(< N\), return the unnormalized discrete Fourier transform of \(P\), \(P(w[i]), 1 <= i <= N\). Also allow \(P\) to be a vector \([p_0, ..., p_n]\) representing the polynomial \(\sum p_i X^i\). Composing \(\text{fft}\) and \(\text{fftinv}\) returns \(N\) times the original input coefficients.

\[
\begin{align*}
? \ w = \text{rootsof1}(4); \ \text{fft}(w, x^3+x+1) \\
\text{(continues on next page)}
\end{align*}
\]
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%)/4
%3 = x^3 + x + 1
? w = powers(znprimroot(5),3); fft(w, x^3+x+1)
%4 = [Mod(3,5),Mod(1,5),Mod(4,5),Mod(1,5)]
? fftinv(w, %)
%5 = [Mod(4,5),Mod(4,5),Mod(0,5),Mod(4,5)]

fftinv(w, P)
Let \(w = [1, z, \ldots, z^{N-1}] \) from some primitive \(N \)-roots of unity \(z \) where \(N \) is a power of 2, and \(P \) be a polynomial < \(N \), return the unnormalized discrete Fourier transform of \(P(1/w[i]), 1 \leq i \leq N \). Also allow \(P \) to be a vector \([p_0, \ldots, p_n]\) representing the polynomial \(\sum p_i X^i \). Composing fft and fftinv returns \(N \) times the original input coefficients.

? w = rootsofl(4); fft(w, x^3+x+1)
%1 = [3, 1, -1, 1]
? fftinv(w, %)
%2 = [4, 4, 0, 4]
? Polrev(%)/4
%3 = x^3 + x + 1

? N = 512; w = rootsofl(N); T = random(1000 * x^(N-1));
? U = fft(w, T);
time = 3 ms.
? V = vector(N, i, subst(T,'x,w[i]));
time = 65 ms.
? exponent(V - U)
%7 = -97
? round(Polrev(fftinv(w,U)/N)) == T
%8 = 1

fibonacci(x)
\(x - \)th Fibonacci number.

fileclose(n)
Close the file descriptor \(n \), created via fileopen or fileextern. Finitely many files can be opened at a given time, closing them recycles file descriptors and avoids running out of them:

? n = 0; while(n++, fileopen("/tmp/test", "w"))
*** at top-level: n=0;while(n++,fileopen("/tmp/test","w"))
*** ^-------------------------------
*** fileopen: error opening requested file: `/tmp/test'.
*** Break loop: type 'break' to go back to GP prompt
break> n
65533

This is a limitation of the operating system and does not depend on PARI: if you open too many files in gp without closing them, the operating system will also prevent unrelated applications from opening files. Independently, your operating system (e.g. Windows) may prevent other applications from accessing or deleting your file while it is opened by gp. Quitting gp implicitly calls this function on all opened file descriptors.

138 Chapter 1. Interface to the PARI library
On files opened for writing, this function also forces a write of all buffered data to the file system and completes all pending write operations. This function is implicitly called for all open file descriptors when exiting gp but it is cleaner and safer to call it explicitly, for instance in case of a gp crash or general system failure, which could cause data loss.

```plaintext
? n = fileopen("./here");
? while(l = fileread(n), print(l));
? fileclose(n);

? n = fileopen("./there", "w");
? for (i = 1, 100, filewrite(n, i^2+1))
? fileclose(n)
```

Until a fileclose, there is no guarantee that the file on disk contains all the expected data from previous filewrite s. (And even then the operating system may delay the actual write to hardware.)

Closing a file twice raises an exception:

```plaintext
? n = fileopen("/tmp/test");
? fileclose(n)
? fileclose(n)
*** at top-level: fileclose(n)
*** ^-------------
*** fileclose: invalid file descriptor 0
```

fileextern(str)

The string str is the name of an external command, i.e. one you would type from your UNIX shell prompt. This command is immediately run and the function returns a file descriptor attached to the command output as if it were read from a file.

```plaintext
? n = fileextern("ls -l");
? while(l = filereadstr(n), print(l))
? fileclose(n)
```

If the secure default is set, this function will raise an exception.

fileflush(n)

Flushes the file descriptor n, created via fileopen or fileextern. On files opened for writing, this function forces a write of all buffered data to the file system and completes all pending write operations. This function is implicitly called by fileclose but you may want to call it explicitly at synchronization points, for instance after writing a large result to file and before printing diagnostics on screen. (In order to be sure that the file contains the expected content on inspection.)

If n is omitted, flush all descriptors to output streams.

```plaintext
? n = fileopen("./here", "w");
? for (i = 1, 10^5, \filewrite(n, i^2+1); \if (i % 10000 == 0, fileflush(n)))
```

Until a fileflush or fileclose, there is no guarantee that the file contains all the expected data from previous filewrite s.

fileopen(path, mode)

Open the file pointed to by ‘path’ and return a file descriptor which can be used with other file functions.

The mode can be
• "r" (default): open for reading; allow fileread and filereadstr.
• "w": open for writing, discarding existing content; allow fwrite, filewritel.
• "a": open for writing, appending to existing content; same operations allowed as "w".

Eventually, the file should be closed and the descriptor recycled using fileclose.

```
? n = fileopen("./here"); \ "r" by default
? while (l = filereadstr(n), print(l)) \ print successive lines
? fileclose(n) \ done
```

In read mode, raise an exception if the file does not exist or the user does not have read permission. In write mode, raise an exception if the file cannot be written to. Trying to read or write to a file that was not opened with the right mode raises an exception.

```
? n = fileopen("./read", "r");
? fwrite(n, "test") \ not open for writing
*** at top-level: fwrite(n,"test")
*** ^---------------
*** fwrite: invalid file descriptor 0
```

fileread(n)

Read a logical line from the file attached to the descriptor n, opened for reading with fileopen. Return 0 at end of file.

A logical line is a full command as it is prepared by gp’s preprocessor (skipping blanks and comments or assembling multiline commands between braces) before being fed to the interpreter. The function filereadstr would read a raw line exactly as input, up to the next carriage return \n.

Compare raw lines

```
? n = fileopen("examples/bench.gp");
? while(l = filereadstr(n), print(l));
{ u=v=p=q=1;
  for (k=1, 2000,
    [u,v] = [v,u+v];
    p *= v; q = lcm(q,v);
    if (k%50 == 0,
      print(k, " ", log(p)/log(q))
    )
  )
}
```

and logical lines

```
? n = fileopen("examples/bench.gp");
? while(l = fileread(n), print(l));
u=v=p=q=1;for(k=1,2000,[u,v]=[v,u+v];p*=v;q=lcm(q,v);[...]
```

filereadstr(n)

Read a raw line from the file attached to the descriptor n, opened for reading with fileopen, discarding the terminating newline. In other words the line is read exactly as input, up to the next carriage return \n. By comparison, fileread would read a logical line, as assembled by gp’s preprocessor (skipping blanks and comments for instance).
filewrite\((n, s)\)

Write the string \(s\) to the file attached to descriptor \(n\), ending with a newline. The file must have been opened with fileopen in "w" or "a" mode. There is no guarantee that \(s\) is completely written to disk until fileclose: math:`(n)` is executed, which is automatic when quitting gp.

If the newline is not desired, use filewrite1.

Variant. The high-level function write is expensive when many consecutive writes are expected because it cannot use buffering. The low-level interface fileopen / filewrite / fileclose is more efficient:

```gp
? f = "/tmp/bigfile";
? for (i = 1, 10^5, write(f, i^2+1))
  time = 240 ms.

? v = vector(10^5, i, i^2+1);
  time = 10 ms. \ computing the values is fast
? write("/tmp/bigfile2",v)
  time = 12 ms. \ writing them in one operation is fast

? n = fileopen("/tmp/bigfile", "w");
? for (i = 1, 10^5, filewrite(n, i^2+1))
  time = 24 ms. \ low-level write is ten times faster
? fileclose(n);
```

In the final example, the file needs not be in a consistent state until the ending fileclose is evaluated, e.g. some lines might be half-written or not present at all even though the corresponding filewrite was executed already. Both a single high-level write and a succession of low-level filewrite(s) achieve the same efficiency, but the latter is often more natural. In fact, concatenating naively the entries to be written is quadratic in the number of entries, hence much more expensive than the original write operations:

```gp
? v = []; for (i = 1, 10^5, v = concat(v,i))
  time = 1 min, 41,456 ms.
```

filewrite1\((n, s)\)

Write the string \(s\) to the file attached to descriptor \(n\). The file must have been opened with fileopen in "w" or "a" mode.

If you want to append a newline at the end of \(s\), you can use Str\((s,"\n")\) or filewrite.

floor\((x)\)

Floor of \(x\). When \(x\) is in \(\mathbb{R}\), the result is the largest integer smaller than or equal to \(x\). Applied to a rational function, floor\((x)\) returns the Euclidean quotient of the numerator by the denominator.

fold\((f, A)\)

Apply the t_CLOSURE \(f\) of arity 2 to the entries of \(A\), in order to return \(f(...f(f(A[1],A[2]),A[3])..., A[#A]).\n
```gp
? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[1, 2, 3, 4]]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
```

(continues on next page)
frac(x)

Fractional part of x. Identical to \(x - \text{floor}(x) \). If x is real, the result is in \([0, 1]\).

fromdigits(x, b)

Gives the integer formed by the elements of x seen as the digits of a number in base b (b = 10 by default). This is the reverse of digits:

```
? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234
```

By convention, 0 has no digits:

```
? fromdigits([])
%3 = 0
```

galoischardet(gal, chi, o)

Let \(G \) be the group attached to the galoisinit structure gal, and let \(\chi \) be the character of some representation \(\rho \) of the group \(G \), where a polynomial variable is to be interpreted as an \(o \)-th root of 1. For instance, if \([T,o] = \text{galoischartable}(gal) \) the characters \(\chi \) are input as the columns of \(T \).

Return the degree-1 character \(\text{det} \rho \) as the list of \(\text{det} \rho(g) \), where \(g \) runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same ordering.

```
? P = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(P)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(P);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
? chi = T[,1]; \\ trivial character
? galoischardet(gal, chi, o)
%7 = [1, 1, 1, 1-]
? [galoischardet(gal, T[,i], o) | i <- [1..#T]] \\ all characters
%8 = [[1, 1, 1, 1-], [1, 1, -1, 1-], [1, 1, -1, 1-], [1, 1, -1, 1-]]
```

galoischarpoly(gal, chi, o)

Let \(G \) be the group attached to the galoisinit structure gal, and let \(\chi \) be the character of some representation \(\rho \) of the group \(G \), where a polynomial variable is to be interpreted as an \(o \)-th root of 1, e.g., if \([T,o] = \text{galoischartable}(gal) \) and \(\chi \) is a column of \(T \). Return the list of characteristic polynomials \(\text{det}(1 - \rho(g)T) \), where \(g \) runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same ordering.

```
? T = x^5 - x^4 - 5*x^3 + 4*x^2 + 3*x - 1;
? polgalois(T)
%2 = [10, 1, 1, "D(5) = 5:2"]
? K = nfsplitting(T);
? gal = galoisinit(K); \\ dihedral of order 10
? [T,o] = galoischartable(gal);
```

(continues on next page)
```plaintext
? o
%5 = 5
? galoischarpoly(gal, T[,1], o) \ " T[,1] is the trivial character
%6 = [-x + 1, -x + 1, -x + 1, -x + 1]
? galoischarpoly(gal, T[,3], o)
%7 = [x^2 - 2*x + 1, x^2 + (y^3 + y^2 + 1)*x + 1, -x^2 + 1, x^2 + (-y^3 - y^2)*x + 1]
```

`galoischartable(gal)`

Compute the character table of G, where G is the underlying group of the `galoisinit` structure `gal`. The input `gal` is also allowed to be a `t_VEC` of permutations that is closed under products. Let N be the number of conjugacy classes of G. Return a `t_VEC [M, e]` where $e \geq 1$ is an integer and M is a square `t_MAT` of size N giving the character table of G.

- Each column corresponds to an irreducible character; the characters are ordered by increasing dimension and the first column is the trivial character (hence contains only 1’s).
- Each row corresponds to a conjugacy class; the conjugacy classes are ordered as specified by `galoisconjclasses(gal)`, in particular the first row corresponds to the identity and gives the dimension $\chi(1)$ of the irreducible representation attached to the successive characters χ.

The value $M[i, j]$ of the character j at the conjugacy class i is represented by a polynomial in y whose variable should be interpreted as an e-th root of unity, i.e. as the lift of $\text{Mod}(y, \text{polcyclo}(e, 'y))$

(Note that M is the transpose of the usual orientation for character tables.)

The integer e divides the exponent of the group G and is chosen as small as possible; for instance $e = 1$ when the characters are all defined over \mathbb{Q}, as is the case for S_n. Examples:

```plaintext
? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K);
? [M, e] = galoischartable(gal);
? M~ \ " take the transpose to get the usual orientation
%4 =
[1 1 1 1 1]
[1 -1 -1 1 1]
[2 0 0 -1 2]
[3 -1 1 0 -1]
[3 1 -1 0 -1]
? e
%5 = 1
? {G = [Vecsmall([1, 2, 3, 4, 5]), Vecsmall([1, 5, 4, 3, 2]), Vecsmall([2, 1, 5, 4, 3]), Vecsmall([2, 3, 4, 5, 1]), Vecsmall([3, 2, 1, 5, 4]), Vecsmall([3, 4, 5, 1, 2]), Vecsmall([4, 3, 2, 1, 5]), Vecsmall([4, 5, 1, 2, 3]), Vecsmall([5, 1, 2, 3, 4]), Vecsmall([5, 4, 3, 2, 1])];}
```

(continues on next page)

1.1. Guide to real precision in the PARI interface
\[G = D_{10} \]

? \([M, e] = \text{galoischartable}(G); \)
? \(M \)

\[
\begin{bmatrix}
1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 \\
2 & 0 & -y^3 & -y^2 - 1 \\
2 & 0 & y^3 + y^2 & -y^3 - y^2 - 1
\end{bmatrix}
\]

? \(e \)
\%9 = 5

\[\text{galoisconjclasses}(\text{gal}) \]

\(\text{gal} \) being output by \text{galoisinit}, return the list of conjugacy classes of the underlying group. The ordering of the classes is consistent with \text{galoischartable} and the trivial class comes first.

? \(G = \text{galoisinit}(x^6+108); \)
? \(\text{galoisidentify}(G) \)
\%2 = \[6, 1 \] \(\backslash S_3 \)
? \(S = \text{galoisconjclasses}(G) \)
\%3 = \[
[\text{Vecsmall}(1,2,3,4,5,6)], \\
[\text{Vecsmall}(3,1,2,6,4,5), \text{Vecsmall}(2,3,1,5,6,4)], \\
[\text{Vecsmall}(6,5,4,3,2,1), \text{Vecsmall}(5,4,6,2,1,3)], \\
\text{Vecsmall}(4,6,5,1,3,2)]
\]

? \([[\text{permorder}(c[1]), \#c] \mid c \leftarrow S] \)
\%4 = \[\[1,1\], \[3,2\], \[2,3\] \]

This command also accepts subgroups returned by \text{galoissubgroups}:

? \(\text{subs} = \text{galoissubgroups}(G); H = \text{subs}[5]; \)
? \(\text{galoisidentify}(H) \)
\%2 = \[2, 1 \] \(\backslash Z/2 \)
? \(S = \text{galoisconjclasses}(\text{subgroups_of}_G[5]); \)
? \([[\text{permorder}(c[1]), \#c] \mid c \leftarrow S] \)
\%4 = \[\[1,1\], \[2,1\] \]

\[\text{galoisexport}(\text{gal}, \text{flag}) \]

\(\text{gal} \) being a Galois group as output by \text{galoisinit}, export the underlying permutation group as a string suitable for (no flags or \text{flag} = 0) GAP or (\text{flag} = 1) Magma. The following example compute the index of the underlying abstract group in the GAP library:

? \(G = \text{galoisinit}(x^6+108); \)
? \(s = \text{galoisexport}(G) \)
\%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? \(\text{extern("echo \"IdGroup("s")\" | gap -q")} \)
\%3 = \[6, 1 \]
? \(\text{galoisidentify}(G) \)
\%4 = \[6, 1 \]

This command also accepts subgroups returned by \text{galoissubgroups}.
To import a GAP permutation into gp (for galoissubfields for instance), the following GAP function may be useful:

```gap
PermToGP := function(p, n)
    return Permuted([1..n], p);
end;
```

```gap
    (16,22)(18,28)(19,20)(21,29)(23,31)(25,30);
gap> PermToGP(p, 32);
[ 26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19,
  29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4 ]
```

galoisfixedfield\(gal, perm, flag, v\)

\(gal\) being be a Galois group as output by galoisinit and \(perm\) an element of \(gal\)\(\cdot\)\(group\), a vector of such elements or a subgroup of \(gal\) as returned by galoissubgroups, computes the fixed field of \(gal\) by the automorphism defined by the permutations \(perm\) of the roots \(gal\)\(\cdot\)\(roots\). \(P\) is guaranteed to be squarefree modulo \(gal\)\(\cdot\)\(p\).

If no flags or \(flag = 0\), output format is the same as for nfsubfield, returning \([P, x]\) such that \(P\) is a polynomial defining the fixed field, and \(x\) is a root of \(P\) expressed as a polmod in \(gal\)\(\cdot\)\(pol\).

If \(flag = 1\) return only the polynomial \(P\).

If \(flag = 2\) return \([P, x, F]\) where \(P\) and \(x\) are as above and \(F\) is the factorization of \(gal\)\(\cdot\)\(pol\) over the field defined by \(P\), where variable \(v\) (\(y\) by default) stands for a root of \(P\). The priority of \(v\) must be less than the priority of the variable of \(gal\)\(\cdot\)\(pol\) (see priority (in the PARI manual)). In this case, \(P\) is also expressed in the variable \(v\) for compatibility with \(F\). Example:

```gap
? G = galoisinit(x^4+1);
? galoisfixedfield(G, G.group[2], 2)
%2 = [y^2 - 2, Mod(- x^3 + x, x^4 + 1), [x^2 - y*x + 1, x^2 + y*x + 1]]
```

computes the factorization \(x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1)\)

galoisgetgroup\(a, b\)

Query the galpol package for a group of order \(a\) with index \(b\) in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien.

The current version of galpol supports groups of order \(a \leq 143\). If \(b\) is omitted, return the number of isomorphism classes of groups of order \(a\).

galoisgetname\(a, b\)

Query the galpol package for a string describing the group of order \(a\) with index \(b\) in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien. The strings were generated using the GAP4 function StructureDescription. The command below outputs the names of all abstract groups of order 12:

```gap
? o = 12; N = galoisgetgroup(o); \ // # of abstract groups of order 12
? for(i=1, N, print(i, ". ", galoisgetname(o,i)))
1. C3 : C4
2. C12
3. A4
4. D12
5. C6 x C2
```

The current version of galpol supports groups of order \(a \leq 143\). For \(a > 16\), it is possible for different groups to have the same name:
\begin{verbatim}
? o = 20; N = galoisgetgroup(o);
? for(i=1, N, print(i, " . ", galoisgetname(o,i)))
1. C5 : C4
2. C20
3. C5 : C4
4. D20
5. C10 x C2
\end{verbatim}

\textbf{galoisgetpol}(a, b, s)

Query the \texttt{galpol} package for a polynomial with Galois group isomorphic to \texttt{GAP4}(a,b), totally real if \(s = 1 \) (default) and totally complex if \(s = 2 \). The current version of \texttt{galpol} supports groups of order \(a \leq 143 \). The output is a vector \([\text{pol}, \text{den}]\) where

- \text{pol} is the polynomial of degree \(a \)
- \text{den} is the denominator of \texttt{nfgaloisconj}(\text{pol}). Pass it as an optional argument to \texttt{galoisinit} or \texttt{nfgaloisconj} to speed them up:

\begin{verbatim}
? [pol,den] = galoisgetpol(64,4,1);
? G = galoisinit(pol);
\end{verbatim}

If \(b \) and \(s \) are omitted, return the number of isomorphism classes of groups of order \(a \).

\textbf{galoisidentify}(gal)

\texttt{gal} being be a Galois group as output by \texttt{galoisinit}, output the isomorphism class of the underlying abstract group as a two-components vector \([o, i]\), where \(o \) is the group order, and \(i \) is the group index in the \texttt{GAP4} Small Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by \texttt{galoissubgroups}.

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders are also supported.

The output is similar to the output of the function \texttt{IdGroup} in \texttt{GAP4}. Note that \texttt{GAP4 IdGroup} handles all groups of order less than 2000 except 1024, so you can use \texttt{galoisexport} and \texttt{GAP4} to identify large Galois groups.

\textbf{galoisinit}(pol, den)

Computes the Galois group and all necessary information for computing the fixed fields of the Galois extension \(K/\mathbb{Q} \) where \(K \) is the number field defined by \text{pol} (monic irreducible polynomial in \(\mathbb{Z}[X] \) or a number field as output by \texttt{nfinit}). The extension \(K/\mathbb{Q} \) must be Galois with Galois group “weakly” super-solvable, see below; returns 0 otherwise. Hence this permits to quickly check whether a polynomial of order strictly less than 48 is Galois or not.

The algorithm used is an improved version of the paper “An efficient algorithm for the computation of Galois automorphisms”, Bill Allombert, Math. Comp. vol. 73, 245, 2001, pp. 359–375.

A group \(G \) is said to be “weakly” super-solvable if there exists a normal series

\[1 = H_0 \triangleleft H_1 \triangleleft \cdots \triangleleft H_{n-1} \triangleleft H_n \]

such that each \(H_i \) is normal in \(G \) and for \(i < n \), each quotient group \(H_{i+1}/H_i \) is cyclic, and either \(H_n = G \) (then \(G \) is super-solvable) or \(G/H_n \) is isomorphic to either \(A_4 \), \(S_4 \) or the group \((3x3) : 4 \) (\texttt{GAP4}(36,9)) then \([o_1, \ldots, o_d]\) ends by \([3, 3, 4]\).
In practice, almost all small groups are WKSS, the exceptions having order 48(2), 56(1), 60(1), 72(3), 75(1), 80(1), 96(10), 112(1), 120(3) and \(\geq 144 \).

This function is a prerequisite for most of the \texttt{galois.xxx} routines. For instance:

```
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i]))
```

The output is an 8-component vector \(\texttt{gal} \).

\(\texttt{gal[1]} \) contains the polynomial \(\texttt{pol} \) (:emphasis:`\texttt{gal.pol}`).

\(\texttt{gal[2]} \) is a three-components vector \([p, e, q]\) where \(p \) is a prime number (:emphasis:`\texttt{gal.p}`) such that \(\texttt{pol} \) totally split modulo \(p \), \(e \) is an integer and \(q = p^e \) (:emphasis:`\texttt{gal.mod}`) is the modulus of the roots in :emphasis:`\texttt{gal.roots}`.

\(\texttt{gal[3]} \) is a vector \(L \) containing the \(p \)-adic roots of \(\texttt{pol} \) as integers implicitly modulo :emphasis:`\texttt{gal.mod}`. (:emphasis:`\texttt{gal.roots}`).

\(\texttt{gal[4]} \) is the inverse of the Vandermonde matrix of the \(p \)-adic roots of \(\texttt{pol} \), multiplied by \(\texttt{gal[5]} \).

\(\texttt{gal[5]} \) is a multiple of the least common denominator of the automorphisms expressed as polynomial in a root of \(\texttt{pol} \).

\(\texttt{gal[6]} \) is the Galois group \(G \) expressed as a vector of permutations of \(L \) (:emphasis:`\texttt{gal.group}`).

\(\texttt{gal[7]} \) is a generating subset \(S = [s_1, ..., s_g] \) of \(G \) expressed as a vector of permutations of \(L \) (:emphasis:`\texttt{gal.gen}`).

\(\texttt{gal[8]} \) contains the relative orders \([o_1, ..., o_g]\) of the generators of \(S \) (:emphasis:`\texttt{gal.orders}`).

Let \(H_n \) be as above, we have the following properties:

* if \(G/H_n \ A_4 \) then \([o_1, ..., o_g]\) ends by \([2, 2, 3]\).
* if \(G/H_n \ S_4 \) then \([o_1, ..., o_g]\) ends by \([2, 2, 3, 2]\).
* if \(G/H_n \ (3x3) : 4 \) (GAP4(36, 9)) then \([o_1, ..., o_g]\) ends by \([3, 3, 4]\).

* for \(1 \leq i \leq g \) the subgroup of \(G \) generated by \([s_1, ..., s_i]\) is normal, with the exception of \(i = g - 2 \) in the \(A_4 \) case and of \(i = g - 3 \) in the \(S_4 \) case.
* the relative order \(o_i \) of \(s_i \) is its order in the quotient group \(G/\langle s_1, ..., s_{i-1} \rangle \), with the same exceptions.
* for any \(x \in G \) there exists a unique family \([e_1, ..., e_g]\) such that (no exceptions):

 - for \(1 \leq i \leq g \) we have \(0 \leq e_i < o_i \)
 - \(x = g_1^{e_1} g_2^{e_2} ... g_n^{e_n} \)

If present \(\texttt{den} \) must be a suitable value for \(\texttt{gal[5]} \).

\texttt{galoisisabelian(gal, flag)}

\(\texttt{gal} \) being as output by \texttt{galoisinit}, return 0 if \(\texttt{gal} \) is not an abelian group, and the HNF matrix of \(\texttt{gal} \) over \(\texttt{gal.gen} \) if \(\texttt{flag} = 0 \), 1 if \(\texttt{flag} = 1 \), and the SNF matrix of \(\texttt{gal} \) if \(\texttt{flag} = 2 \).

This command also accepts subgroups returned by \texttt{galoissubgroups}.

\texttt{galoisisnormal(gal, subgrp)}

\(\texttt{gal} \) being as output by \texttt{galoisinit}, and \(\texttt{subgrp} \) a subgroup of \(\texttt{gal} \) as output by \texttt{galoissubgroups}, return 1 if \(\texttt{subgrp} \) is a normal subgroup of \(\texttt{gal} \), else return 0.
This command also accepts subgroups returned by `galoissubgroups`.

galoispermtopol(gal, perm)

`gal` being a Galois group as output by `galoisinit` and `perm` a element of `gal.group`, return the polynomial defining the Galois automorphism, as output by `nfgaloisconj`, attached to the permutation `perm` of the roots `gal.roots`. `perm` can also be a vector or matrix, in this case, `galoispermtopol` is applied to all components recursively.

Note that

```
G = galoisinit(pol);
galoispermtopol(G, G[6])
```

is equivalent to `nfgaloisconj(pol)`, if degree of `pol` is greater or equal to 2.

galoissubcyclo(N, H, fl, v)

Computes the subextension of \(\mathbb{Q}(\zeta_n)\) fixed by the subgroup \(H \subset (\mathbb{Z}/n\mathbb{Z})^*\). By the Kronecker-Weber theorem, all abelian number fields can be generated in this way (uniquely if \(n\) is taken to be minimal).

The pair \((n, H)\) is deduced from the parameters \((N, H)\) as follows

- \(n\) an integer: then \(n = N\); \(H\) is a generator, i.e. an integer or an integer modulo \(n\); or a vector of generators.
- \(n\) the output of `znstar(n)` or `znstar(n, 1)`. \(H\) as in the first case above, or a matrix, taken to be a HNF left divisor of the SNF for \((\mathbb{Z}/n\mathbb{Z})^*\) (`:math:` `N.cyc` `)` , giving the generators of \(H\) in terms of `N.gen`.
- \(n\) the output of `bnrinit(bnfinit(y), :math:` `m` `)` , where \(m\) is a module. \(H\) as in the first case, or a matrix taken to be a HNF left divisor of the SNF for the ray class group modulo \(m\) (of type `:math:` `N.cyc` `)` , giving the generators of \(H\) in terms of `N.bid.gen` (= `:math:` `N` `.gen` if \(N\) includes generators).

In this last case, beware that \(H\) is understood relatively to \(N\); in particular, if the infinite place does not divide the module, e.g if \(m\) is an integer, then it is not a subgroup of \((\mathbb{Z}/n\mathbb{Z})^*\), but of its quotient by \(1\).

If \(fl = 0\), compute a polynomial (in the variable \(v\)) defining the subfield of \(\mathbb{Q}(\zeta_n)\) fixed by the subgroup \(H\) of \((\mathbb{Z}/n\mathbb{Z})^*\).

If \(fl = 1\), compute only the conductor of the abelian extension, as a module.

If \(fl = 2\), output \([pol, N]\), where `pol` is the polynomial as output when \(fl = 0\) and \(N\) the conductor as output when \(fl = 1\).

The following function can be used to compute all subfields of \(\mathbb{Q}(\zeta_n)\) (of exact degree \(d\), if \(d\) is set):

```
subcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
  IndexBound = if (d < 0, n, [d]);
  bnr = bnrinit(bnfinit(y), [n,[1]]);
  L = subgrouplist(bnr, IndexBound, 1);
  vector(#L,i, galoissubcyclo(bnr,L[i]));
}
```

Setting \(L = \text{subgrouplist}(bnr, \text{IndexBound})\) would produce subfields of exact conductor \(n\)\(oo\).

galoissubfields(G, flag, v)

Outputs all the subfields of the Galois group \(G\), as a vector. This works by applying `galoisfixedfield` to all subgroups. The meaning of `flag` is the same as for `galoisfixedfield`.

galoissubgroups(G)

Outputs all the subgroups of the Galois group \(G\). A subgroup is a vector `[gen, orders]`, with the same meaning as for `gal.gen` and `gal.orders`. Hence `gen` is a vector of permutations generating the subgroup, and `orders` is the
relatives orders of the generators. The cardinality of a subgroup is the product of the relative orders. Such sub-
group can be used instead of a Galois group in the following command: \texttt{galoisisabelian}, \texttt{galoissubgroups},
galoisexport and \texttt{galoisidentify}.

To get the subfield fixed by a subgroup \textit{sub} of \textit{gal}, use

\begin{verbatim}
galoisfixedfield(gal,sub[1])
\end{verbatim}

\texttt{gamma(s, precision)}

For \(s \) a complex number, evaluates Euler's gamma function

\[\Gamma(s) = \int_0^\infty t^{s-1} \exp(-t) dt. \]

Error if \(s \) is a nonpositive integer, where \(\Gamma \) has a pole.

For \(s \) a \texttt{t_PADIC}, evaluates the Morita gamma function at \(s \), that is the unique continuous \(p \)-adic function on the \(p \)-adic integers extending \(\Gamma_p(k) = (-1)^k \prod'_{j<k} j \), where the prime means that \(p \) does not divide \(j \).

\begin{verbatim}
? gamma(1/4 + O(5^10))
%1 = 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algep(%4,4)
%2 = x^4 + 4*x^2 + 5
\end{verbatim}

\texttt{gammah(x, precision)}

Gamma function evaluated at the argument \(x + 1/2 \).

\texttt{gammamellininv(G, t, m, precision)}

Returns the value at \(t \) of the inverse Mellin transform \(G \) initialized by \texttt{gammamellininvinit}. If the optional parameter \(m \) is present, return the \(m \)-th derivative \(G^{(m)}(t) \).

\begin{verbatim}
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
\end{verbatim}

The shortcut

\texttt{gammamellininv(A,t,m)}

for

\texttt{gammamellininv(gammamellininvinit(A,m), t)}

is available.

\texttt{gammamellininvasymp(A, serprec, n)}

Return the first \(n \) terms of the asymptotic expansion at infinity of the \(m \)-th derivative \(K^{(m)}(t) \) of the inverse Mellin transform of the function

\[f(s) = \Gamma_R(s + a_1) \ldots \Gamma_R(s + a_d), \]

where \(A \) is the vector \([a_1, \ldots, a_d]\) and \(\Gamma_R(s) = \pi^{-s/2} \Gamma(s/2) \) (Euler’s gamma). The result is a vector \([M[1], M[2], \ldots, M[n]]\) with \(M[1] = 1 \), such that

\[K^{(m)}(t) = \sqrt{2^{d+1}/d^a(m^{2/d} - 1)} e^{-d \pi t^2/d} \sum_{n \geq 0} M[n + 1] (\pi t^{2/d})^{-n} \]

with \(a = (1 - d + \sum_{1 \leq j \leq d} a_j)/d \). We also allow \(A \) to be the output of \texttt{gammamellininvinit}.

1.1. Guide to real precision in the PARI interface
gammamellininvinit(A, m, precision)

Initialize data for the computation by gammamellininv of the \(m \)-th derivative of the inverse Mellin transform of the function

\[
 f(s) = \Gamma_R(s + a_1) \ldots \Gamma_R(s + a_d)
\]

where \(A \) is the vector \([a_1, \ldots, a_d]\) and \(\Gamma_R(s) = \pi^{-s/2} \Gamma(s/2) \) (Euler's gamma). This is the special case of Meijer's \(G \) functions used to compute \(L \)-values via the approximate functional equation. By extension, \(A \) is allowed to be an \texttt{Ldata} or an \texttt{Linit}, understood as the inverse Mellin transform of the \(L \)-function gamma factor.

\textbf{Caveat.} Contrary to the PARI convention, this function guarantees an \textit{absolute} (rather than relative) error bound.

For instance, the inverse Mellin transform of \(\Gamma_R(s) \) is \(2 \exp(-\pi z^2) \):

\[
 \texttt{? G = gammamellininvinit(\[0\]);}
 \texttt{? gammamellininv(G, 2) - 2*exp(-Pi*2^2)}
 \texttt{\%2 = -4.484155085839414627 E-44}
\]

The inverse Mellin transform of \(\Gamma_R(s + 1) \) is \(2z \exp(-\pi z^2) \), and its second derivative is \(4\pi z \exp(-\pi z^2)(2\pi z^2 - 3) \):

\[
 \texttt{? G = gammamellininvinit(\[1\], 2);} \\
 \texttt{? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);} \\
 \texttt{? b(z) = gammamellininv(G,z);} \\
 \texttt{? t(z) = b(z) - a(z);} \\
 \texttt{? t(3/2)}
 \texttt{\%3 = -1.4693679385278593850 E-39}
\]

gcd(x, y)

Creates the greatest common divisor of \(x \) and \(y \). If you also need the \(u \) and \(v \) such that \(x * u + y * v = \text{gcd}(x, y) \), use the \texttt{gcdext} function. \(x \) and \(y \) can have rather quite general types, for instance both rational numbers. If \(y \) is omitted and \(x \) is a vector, returns the \texttt{gcd} of all components of \(x \), i.e. this is equivalent to \texttt{content(x)}.

When \(x \) and \(y \) are both given and one of them is a vector/matrix type, the GCD is again taken recursively on each component, but in a different way. If \(y \) is a vector, resp. matrix, then the result has the same type as \(y \), and components equal to \texttt{gcd(x, y[i]), resp. gcd(x, y[,i])}. Else if \(x \) is a vector/matrix the result has the same type as \(x \) and an analogous definition. Note that for these types, \texttt{gcd} is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

- integers: use modified right-shift binary (“plus-minus” variant).
- univariate polynomials with coefficients in the same number field (in particular rational): use modular \texttt{gcd} algorithm.
- general polynomials: use the subresultant algorithm if coefficient explosion is likely (non modular coefficients).

If \(u \) and \(v \) are polynomials in the same variable with \textit{inexact} coefficients, their \texttt{gcd} is defined to be scalar, so that

\[
 \texttt{? a = x + 0.0;} \quad \texttt{gcd(a,a)}
 \texttt{\%1 = 1}
 \texttt{? b = y*x + O(y);} \quad \texttt{gcd(b,b)}
 \texttt{\%2 = y}
 \texttt{? c = 4*x + O(2^3);} \quad \texttt{gcd(c,c)}
 \texttt{\%3 = 4}
\]
A good quantitative check to decide whether such a gcd “should be” nontrivial, is to use \texttt{polresultant}: a value close to 0 means that a small deformation of the inputs has nontrivial gcd. You may also use \texttt{gcdext}, which does try to compute an approximate gcd d and provides u, v to check whether $ux + vy$ is close to d.

\texttt{gcdext}(x, y)

Returns $[u, v, d]$ such that d is the gcd of x, y, $x * u + y * v = \gcd(x, y)$, and u and v minimal in a natural sense. The arguments must be integers or polynomials.

\begin{verbatim}
? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
\end{verbatim}

If x, y are polynomials in the same variable and inexact coefficients, then compute u, v, d such that $x*u + y*v = d$, where d approximately divides both and x and y; in particular, we do not obtain $\gcd(x,y)$ which is defined to be a scalar in this case:

\begin{verbatim}
? a = x + 0.0; gcd(a,a)
%1 = 1
? gcdext(a,a)
%2 = [0, 1, x + 0.E-28]
? gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
\end{verbatim}

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit polynomials to check whether the approximation is close enough for your needs.

\texttt{genus2red}(PQ, p)

Let PQ be a polynomial P, resp. a vector $[P, Q]$ of polynomials, with rational coefficients. Determines the reduction at $p > 2$ of the (proper, smooth) genus 2 curve C/\mathbb{Q}, defined by the hyperelliptic equation $y^2 = P(x)$, resp. $y^2 + Q(x)*y = P(x)$. (The special fiber X_p of the minimal regular model X of C over \mathbb{Z}.)

If p is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu’s algorithm by Cohen and Liu (1994), \texttt{genus2reduction-0.3}, see http://www.math.u-bordeaux.fr/~liu/G2R/.

\textbf{CAVEAT.} The function interface may change: for the time being, it returns $[N, FaN, T, V]$ where N is either the local conductor at p or the global conductor, FaN is its factorization, $y^2 = T$ defines a minimal model over $\mathbb{Z}[1/2]$ and V describes the reduction type at the various considered p. Unfortunately, the program is not complete for $p = 2$, and we may return the odd part of the conductor only: this is the case if the factorization includes the (impossible) term 2^{-1}; if the factorization contains another power of 2, then this is the exact local conductor at 2 and N is the global conductor.

\begin{verbatim}
? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: ["III(9)"] page 184, [3, 3], f = 10
%1 = [59649, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []], ["III(9)"] page 184"], [3, [3, [3]]])
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \ \ X_1(13), global reduction
p = 13
\end{verbatim}

(continues on next page)
(potential) stable reduction: \([5, [\text{Mod}(0, 13), \text{Mod}(0, 13)]]\)
reduction at \(p\): \([\text{I\{0\}-II-0}]\) page 159, [], \(f = 2\)

\(?\) N
\%3 = 169
\(?\) FnN
\%4 = Mat([[13, 2]]) \ \ in particular, good reduction at 2 !
\(?\) T
\%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
\(?\) V
\%6 = [[13, [5, [\text{Mod}(0, 13), \text{Mod}(0, 13)]]], ["[\text{I\{0\}-II-0}]\) page 159", []]]

We now first describe the format of the vector \(V = V_p\) in the case where \(p\) was specified (local reduction at \(p\)): it is a triple \([p, \text{stable}, \text{red}]\). The component \(\text{stable} = [\text{type}, \text{vecj}]\) contains information about the stable reduction after a field extension; depending on \(\text{type}\), the stable reduction is

- **1**: smooth (i.e. the curve has potentially good reduction). The Jacobian \(J(C)\) has potentially good reduction.
- **2**: an elliptic curve \(E\) with an ordinary double point; \(\text{vecj}\) contains \(j \mod p\), the modular invariant of \(E\). The (potential) semi-abelian reduction of \(J(C)\) is the extension of an elliptic curve (with modular invariant \(j \mod p\)) by a torus.
- **3**: a projective line with two ordinary double points. The Jacobian \(J(C)\) has potentially multiplicative reduction.
- **4**: the union of two projective lines crossing transversally at three points. The Jacobian \(J(C)\) has potentially multiplicative reduction.
- **5**: the union of two elliptic curves \(E_1\) and \(E_2\) intersecting transversally at one point; \(\text{vecj}\) contains their modular invariants \(j_1\) and \(j_2\), which may live in a quadratic extension of \(\mathbb{F}_p\), and need not be distinct. The Jacobian \(J(C)\) has potentially good reduction, isomorphic to the product of the reductions of \(E_1\) and \(E_2\).
- **6**: the union of an elliptic curve \(E\) and a projective line which has an ordinary double point, and these two components intersect transversally at one point; \(\text{vecj}\) contains \(j \mod p\), the modular invariant of \(E\). The (potential) semi-abelian reduction of \(J(C)\) is the extension of an elliptic curve (with modular invariant \(j \mod p\)) by a torus.
- **7**: as in type 6, but the two components are both singular. The Jacobian \(J(C)\) has potentially multiplicative reduction.

The component \(\text{red} = [\text{NUtype}, \text{neron}]\) contains two data concerning the reduction at \(p\) without any ramified field extension.

The \text{NUtype} is a t_STR describing the reduction at \(p\) of \(C\), following Namikawa-Ueno, *The complete classification of fibers in pencils of curves of genus two*, Manuscripta Math., vol. 9, (1973), pages 143-186. The reduction symbol is followed by the corresponding page number or page range in this article.

The second datum \text{neron} is the group of connected components (over an algebraic closure of \(\mathbb{F}_p\)) of the Néron model of \(J(C)\), given as a finite abelian group (vector of elementary divisors).

If \(p = 2\), the \text{red} component may be omitted altogether (and replaced by [], in the case where the program could not compute it. When \(p\) was not specified, \(V\) is the vector of all \(V_p\), for all considered \(p\).

Notes about Namikawa-Ueno types.

- A lower index is denoted between braces: for instance, \([\text{I\{2\}-II-5}]\) means \([\text{I}_2-\text{II}-5]\).
- If \(K\) and \(K'\) are Kodaira symbols for singular fibers of elliptic curves, then \([^:\text{math:'K-K'-m}][^:\text{math:'K'-K-m}]\) are the same.
We define a total ordering on Kodaira symbol by fixing \(I < I^* < II < II^* < \ldots \). If the reduction type is the same, we order by the number of components, e.g. \(I_2 < I_4 \), etc. Then we normalize our output so that \(K < K' \).

- \([\text{:math:`K-K'`}]\) is \([\text{:math:`K-K'`}]\) in the notation of Namikawa-Ueno.
- The figure [2I_0-m] in Namikawa-Ueno, page 159, must be denoted by [2I_0-(m+1)].

\textbf{getabstime()}

Returns the CPU time (in milliseconds) elapsed since gp startup. This provides a reentrant version of \texttt{gettime}:

```plaintext
my (t = getabstime());
...
print("Time: ", strtime(getabstime() - t));
```

For a version giving wall-clock time, see \texttt{getwalltime}.

\textbf{getcache()}

Returns information about various auto-growing caches. For each resource, we report its name, its size, the number of cache misses (since the last extension), the largest cache miss and the size of the cache in bytes.

The caches are initially empty, then set automatically to a small inexpensive default value, then grow on demand up to some maximal value. Their size never decreases, they are only freed on exit.

The current caches are

- Hurwitz class numbers \(H(D) \) for \(\|D\| \leq N \), computed in time \(O(N^{3/2}) \) using \(O(N) \) space.
- Factorizations of small integers up to \(N \), computed in time \(O(N^{1+\varepsilon}) \) using \(O(N \log N) \) space.
- Divisors of small integers up to \(N \), computed in time \(O(N^{1+\varepsilon}) \) using \(O(N \log N) \) space.
- Coredisc’s of negative integers down to \(-N\), computed in time \(O(N^{1+\varepsilon}) \) using \(O(N) \) space.
- Primitive dihedral forms of weight 1 and level up to \(N \), computed in time \(O(N^{2+\varepsilon}) \) and space \(O(N^2) \).

```plaintext
? getcache() \ / on startup, all caches are empty
%1 =
[ "Factors" 0 0 0 0 ]
[ "Divisors" 0 0 0 0 ]
[ "H" 0 0 0 0 ]
["CorediscF" 0 0 0 0 ]
[ "Dihedral" 0 0 0 0 ]
? mfdim([500,1,0],0); \ / nontrivial computation
time = 540 ms.
? getcache()
%3 =
[ "Factors" 50000 0 0 4479272 ]
["Divisors" 50000 1 100000 5189808 ]
[ "H" 50000 0 0 400008 ]
["Dihedral" 1000 0 0 2278208 ]
```
getenv(s)
Return the value of the environment variable s if it is defined, otherwise return 0.

getheap()
Returns a two-component row vector giving the number of objects on the heap and the amount of memory they occupy in long words. Useful mainly for debugging purposes.

getlocalbitprec(precision)
Returns the current dynamic bit precision.

getlocalprec(precision)
Returns the current dynamic precision, in decimal digits.

getrand()
Returns the current value of the seed used by the pseudo-random number generator random. Useful mainly for debugging purposes, to reproduce a specific chain of computations. The returned value is technical (reproduces an internal state array), and can only be used as an argument to setrand.

getstack()
Returns the current value of top − avma, i.e. the number of bytes used up to now on the stack. Useful mainly for debugging purposes.

gettime()
Returns the CPU time (in milliseconds) used since either the last call to gettime, or to the beginning of the containing GP instruction (if inside gp), whichever came last.

For a reentrant version, see getabstime.

For a version giving wall-clock time, see getwalltime.

getwalltime()
Returns the time (in milliseconds) elapsed since 00:00:00 UTC Thursday 1, January 1970 (the Unix epoch).

```asciidoc
my (t = getwalltime());
...
print("Time: ", strtime(getwalltime() - t));
```

halfgcd(x, y)
Let inputs x and y be both integers, or both polynomials in the same variable. Return a vector [M, [a,b]~], where M is an invertible 2x2 matrix such that M*[x,y]~ = [a,b]~, where b is small. More precisely,

- polynomial case: det M has degree 0 and we have
 \[\deg a \geq \text{ceilmax}(\deg x, \deg y)/2 > \deg b. \]
- integer case: det M = 1 and we have

hammingweight(x)
If x is a t_INT, return the binary Hamming weight of \|x\|. Otherwise x must be of type t_POL, t_VEC, t_COL, t_VECSMALL, or t_MAT and the function returns the number of nonzero coefficients of x.
hilbert(x, y, p)

Hilbert symbol of x and y modulo the prime p, p = 0 meaning the place at infinity (the result is undefined if p! = 0 is not prime).

It is possible to omit p, in which case we take p = 0 if both x and y are rational, or one of them is a real number. And take p = q if one of x, y is a t_INTMOD modulo q or a q-adic. (Incompatible types will raise an error.)

hyperellcharpoly(X)

X being a nonsingular hyperelliptic curve defined over a finite field, return the characteristic polynomial of the Frobenius automorphism. X can be given either by a squarefree polynomial P such that X : y^2 = P(x) or by a vector [P, Q] such that X : y^2 + Q(x)y = P(x) and Q^2 + 4P is squarefree.

hyperellpadicfrobenius(Q, q, n)

Let X be the curve defined by y^2 = Q(x), where Q is a polynomial of degree d over Q and q >= d is a prime such that X has good reduction at q. Return the matrix of the Frobenius endomorphism ϕ on the crystalline module \(D_p(X) = \mathbb{Q}_p \otimes H_{dR}^1(X/\mathbb{Q}) \) with respect to the basis of the given model \((\omega, x\omega, ..., x^{d-1}\omega)\), where \(\omega = dx/(2y) \) is the invariant differential, where q is the genus of X (either d = 2g + 1 or d = 2g + 2). The characteristic polynomial of ϕ is the numerator of the zeta-function of the reduction of the curve X modulo q. The matrix is computed to absolute q-adic precision q^n.

Alternatively, q may be of the form \([T, p]\) where p is a prime, T is a polynomial with integral coefficients whose projection to \(\mathbb{F}_p[t] \) is irreducible, X is defined over \(\mathbb{K} = \mathbb{Q}[t]/(T) \) and has good reduction to the finite field \(\mathbb{F}_q = \mathbb{F}_p[t]/(T) \). The matrix of ϕ on \(D_q(X) = \mathbb{Q}_q \otimes H_{dR}^1(X/\mathbb{K}) \) is computed to absolute p-adic precision p^n.

hyperellratpoints(X, h, flag)

X being a nonsingular hyperelliptic curve given by an rational model, return a vector containing the affine rational points on the curve of naive height less than h. If flag = 1, stop as soon as a point is found; return either an empty vector or a vector containing a single point.

X is given either by a squarefree polynomial P such that X : y^2 = P(x) or by a vector [P, Q] such that X : y^2 + Q(x)y = P(x) and Q^2 + 4P is squarefree.

The parameter h can be
• an integer H: find the points $[n/d, y]$ whose abscissas $x = n/d$ have naive height ($= \max(∥n∥, d)$) less than H;

• a vector $[N, D]$ with $D \leq N$: find the points $[n/d, y]$ with $∥n∥ \leq N, d \leq D$.

• a vector $[N, [D_1, D_2]]$ with $D_1 < D_2 \leq N$ find the points $[n/d, y]$ with $∥n∥ \leq N$ and $D_1 < d \leq D_2$.

`hypergeom(N, D, z, precision)`

General hypergeometric function, where N and D are the vector of parameters in the numerator and denominator respectively, evaluated at the complex argument z.

This function implements hypergeometric functions

$$ pF_q((a_1)_{1 \leq i \leq p}, (b_j)_{1 \leq j \leq q}; z) = \sum_{n=0}^{\infty} \frac{\prod_{1 \leq i \leq p} (a_i)_n}{\prod_{1 \leq j \leq q} (b_j)_n} (z^n)/(n!), $$

where $(a)_n = a(a+1)\ldots(a+n-1)$ is the rising Pochhammer symbol. For this to make sense, none of the b_j must be a negative or zero integer. The corresponding general GP command is

```
hypergeom([a1,a2,...,ap], [b1,b2,...,bq], z)
```

Whenever $p = 1$ or $q = 1$, a one-element vector can be replaced by the element it contains. Whenever $p = 0$ or $q = 0$, an empty vector can be omitted. For instance `hypergeom(b,z)` computes $_0F_1(; b; z)$.

We distinguish three kinds of such functions according to their radius of convergence R:

• $q \geq p$: $R = oo$.

• $q = p - 1$: $R = 1$. Nonetheless, by integral representations, pF_q can be analytically continued outside the disc of convergence.

• $q \leq p - 2$: $R = 0$. By integral representations, one can make sense of the function in a suitable domain.

The list of implemented functions and their domain of validity in our implementation is as follows:

F01: `hypergeom(a,z)` (or [a]). This is essentially a Bessel function and computed as such. $R = oo$.

F10: `hypergeom(a, z)` This is $(1 - z)^{-a}$.

F11: `hypergeom(a, b, z)` is the Kummer confluent hypergeometric function, computed by summing the series. $R = oo$

F20: `hypergeom([a,b], z)`. $R = 0$, computed as

$$(1)/\Gamma(a) \int_0^\infty t^{a-1} (1-zt)^{-b} e^{-t} dt.$$

F21: `hypergeom([a,b], c, z)` (or [c]). $R = 1$, extended by

$$(\Gamma(c))/\Gamma(b \Gamma(c-b)) \int_0^1 t^{b-1} (1-t)^{c-b-1} (1-zt)^a dt.$$

This is Gauss’s Hypergeometric function, and almost all of the implementation work is done for this function.

F31: `hypergeom([a,b,c], d, z)` (or [d]). $R = 0$, computed as

$$(1)/\Gamma(a) \int_0^\infty t^{a-1} e^{-t} F_1(b, c; d; tz) dt.$$

F32: `hypergeom([a,b,c], [d,e], z)`. $R = 1$, extended by

$$(\Gamma(c))/\Gamma(e \Gamma(e-c)) \int_0^1 t^{e-1} (1-t)^{e-1} F_1(a, b; d; tz) dt.$$

For other inputs: if $R = oo$ or $R = 1$ and $∥z∥ < 1 - \varepsilon$ is not too close to the circle of convergence, we simply sum the series.
This identity is due to Bercu.

hyperu \(a, b, z, \text{precision})

\(U\)-confluent hypergeometric function with complex parameters \(a, b, z\). Note that \(2F0(a, b, z) = (-z)^{-a}U(a, a+1-b, 1/z)\).

```pari
? hyperu(1, 3/2, I)
%1 = 0.23219... - 0.80952...*I
? -I * hypergeom([1, 1+1-3/2], [], -1/I)
%2 = 0.23219... - 0.80952...*I
```

idealadd \((nf, x, y)\)

Sum of the two ideals \(x\) and \(y\) in the number field \(nf\). The result is given in HNF.

```pari
? K = nfinit(x^2 + 1);
? a = idealadd(K, 2, x + 1) \ ideagenerated by 2 and 1+I
%2 =
[2 1]
[0 1]
? pr = idealprimedec(K, 5)[1]; \ a prime ideal above 5
? idealadd(K, a, pr) \ coprime, as expected
%4 =
[1 0]
[0 1]
```

This function cannot be used to add arbitrary \(\mathbb{Z}\)-modules, since it assumes that its arguments are ideals:

```pari
? b = Mat([1,0]~);
? idealadd(K, b, b) \ only square t_MATs represent ideals
*** idealadd: nonsquare t_MAT in idealtyp.
? c = [2, 0; 2, 0]; idealadd(K, c, c) \ nonsense
%6 =
[2 0]
[0 1]
? d = [1, 0; 0, 2]; idealadd(K, d, d) \ nonsense
%7 =
[1 0]
[0 1]
```

1.1. Guide to real precision in the PARI interface
In the last two examples, we get wrong results since the matrices c and d do not correspond to an ideal: the \mathbb{Z}-span of their columns (as usual interpreted as coordinates with respect to the integer basis $K \cdot \mathbf{z}$) is not an O_K-module. To add arbitrary \mathbb{Z}-modules generated by the columns of matrices A and B, use $\text{mathnf} \left(\text{concat}(A, B) \right)$.

idealaddtoone (nf, x, y)

x and y being two co-prime integral ideals (given in any form), this gives a two-component row vector $[a, b]$ such that $a \in x$, $b \in y$ and $a + b = 1$.

The alternative syntax $\text{idealaddtoone} \left(nf, v \right)$, is supported, where v is a k-component vector of ideals (given in any form) which sum to \mathbb{Z}_K. This outputs a k-component vector e such that $e[i] \in x[i]$ for $1 <= i <= k$ and $\sum_{1<=i<=k} e[i] = 1$.

idealappr ($nf, x, flag$)

If x is a fractional ideal (given in any form), gives an element α in nf such that for all prime ideals p such that the valuation of x at p is nonzero, we have $v_p(\alpha) = v_p(x)$, and $v_p(\alpha) >= 0$ for all other p.

The argument x may also be given as a prime ideal factorization, as output by idealfactor, but allowing zero exponents. This yields an element α such that for all prime ideals p occurring in x, $v_p(\alpha) = v_p(x)$; for all other prime ideals, $v_p(\alpha) > 0$.

flag is deprecated (ignored), kept for backward compatibility.

idealchinese (nf, x, y)

x being a prime ideal factorization (i.e. a 2-columns matrix whose first column contains prime ideals and the second column contains integral exponents), y a vector of elements in nf indexed by the ideals in x, computes an element b such that

\[v_p(b - y_p) >= v_p(x) \text{ for all prime ideals in } x \text{ and } v_p(b) >= 0 \text{ for all other } p. \]

The argument x may also be of the form $[x, s]$ where the first component is as above and s is a vector of signs, with r_1 components s_i in $-1, 0, 1$: if σ_i denotes the i-th real embedding of the number field, the element b returned satisfies further $\text{sign}(\sigma_i(b)) = s_i$ for all i such that $s_i = 1$. In other words, the sign is fixed to s_i at the i-th embedding whenever s_i is nonzero.

If y is omitted, return a data structure which can be used in place of x in later calls and allows to solve many chinese remainder problems for a given x more efficiently.

(continues on next page)
\begin{verbatim}
? for(i=1,10^4, idealchinese(K,C,y)) \ ... but faster !
time = 80 ms.
? for(i=1,10^4, idealchinese(K,[x,[1,1]],y))
time = 224 ms.

Finally, this structure is itself allowed in place of x, the new s overriding the one already present in the structure. This allows to initialize for different sign conditions more efficiently when the underlying ideal factorization remains the same.

\begin{verbatim}
? D = idealchinese(K, [C, [1,-1]]); \ \text{\textbackslash \ \textbackslash replaces [1,1]
? idealchinese(K, D, y)
%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))
time = 40 ms. \ \text{\textbackslash \ \textbackslash faster than starting from scratch
? for(i=1,10^4,idealchinese(K,[x,[1,-1]]))
time = 128 ms.
\end{verbatim}

\textbf{idealcoprime}(nf, x, y)

Given two integral ideals x and y in the number field nf, returns a β in the field, such that $\beta.x$ is an integral ideal coprime to y.

\textbf{idealdiv}(nf, x, y, flag)

Quotient $x.y^{-1}$ of the two ideals x and y in the number field nf. The result is given in HNF.

If \textit{flag} is nonzero, the quotient $x.y^{-1}$ is assumed to be an integral ideal. This can be much faster when the norm of the quotient is small even though the norms of x and y are large. More precisely, the algorithm cheaply removes all maximal ideals above rational primes such that $v_p(Nx) = v_p(Ny)$.

\textbf{idealdown}(nf, x)

Let nf be a number field as output by \textit{nfinit}, and x a fractional ideal. This function returns the nonnegative rational generator of $x \cap \mathbb{Q}$. If x is an extended ideal, the extended part is ignored.

\begin{verbatim}
? nf = nfinit(y^2+1);
? idealdown(nf, -1/2)
%2 = 1/2
? idealdown(nf, (y+1)/3)
%3 = 2/3
%4 = 125
? x = idealprimedec(nf, 2)[1]; idealdown(nf, x)
%5 = 2
? idealdown(nf, [130, 94; 0, 2])
%6 = 130
\end{verbatim}

\textbf{idealfactor}(nf, x, lim)

Factors into prime ideal powers the ideal x in the number field nf. The output format is similar to the \textit{factor} function, and the prime ideals are represented in the form output by the \textbf{idealprimedec} function. If \textit{lim} is set, return partial factorization, including only prime ideals above rational primes $< \textit{lim}$.

\begin{verbatim}
? nf = nfinit(x^3-2);
? idealfactor(nf, x) \ \textbackslash \ a prime ideal above 2
%2 = [[2, [0, 1, 0]~, 3, 1, ...] 1]
\end{verbatim}

(continues on next page)
idealfactorback(nf, f, e, flag)

Gives back the ideal corresponding to a factorization. The integer 1 corresponds to the empty factorization. If e is present, e and f must be vectors of the same length (e being integral), and the corresponding factorization is the product of the $f[i]^e[i]$. If not, and f is vector, it is understood as in the preceding case with e a vector of 1s: we return the product of the $f[i]$. Finally, f can be a regular factorization, as produced by idealfactor.

? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]

? % == idealhnf(nf, 4 + 2*y)
%4 = 1

If flag is nonzero, perform ideal reductions (idealred) along the way. This is most useful if the ideals involved are all extended ideals (for instance with trivial principal part), so that the principal parts extracted by idealred are not lost. Here is an example:
The extended ideal returned in %6 is the trivial ideal 1, extended with a principal generator given in factored form. We use nffactorback to recover it in standard form.

```plaintext
? f = vector(#f, i, [f[i], [i]]); \ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %2)
%7 = [4, 2]~
```

The extended ideal return in %6 is the trivial ideal 1, extended with a principal generator given in factored form. We use nffactorback to recover it in standard form.

idealfrobenius(*nf*, *gal*, *pr*)

Let K be the number field defined by n and assume K/\mathbb{Q} be a Galois extension with Galois group given $gal = galoisinit(nf)$, and that pr is an unramified prime ideal p in prid format. This function returns a permutation of gal.group which defines the Frobenius element $Frob_p$ attached to p. If p is the unique prime number in p, then $Frob(x) = x^p \mod p$ for all $x \in \mathbb{Z}_K$.

```plaintext
? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galispermtopol(gal,g)
%5 = x^8
```

This is correct since $101 = 8 \mod 31$.

idealhnf(*nf*, *u*, *v*)

Gives the Hermite normal form of the ideal $u\mathbb{Z}_K + v\mathbb{Z}_K$, where u and v are elements of the number field K defined by nf.

```plaintext
? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]
? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
```

If b is omitted, returns the HNF of the ideal defined by u: u may be an algebraic number (defining a principal ideal), a maximal ideal (as given by idealprimedec or idealfactor), or a matrix whose columns give generators for the ideal. This last format is a little complicated, but useful to reduce general modules to the canonical form once in a while:

- if strictly less than $N = [K : \mathbb{Q}]$ generators are given, u is the \mathbb{Z}_K-module they generate,
- if N or more are given, it is assumed that they form a \mathbb{Z}-basis of the ideal, in particular that the matrix has maximal rank N. This acts as mathnf since the \mathbb{Z}_K-module structure is (taken for granted hence) not taken into account in this case.

1.1. Guide to real precision in the PARI interface
Finally, when K is quadratic with discriminant D_K, we allow $u = \text{Qfb}(a, b, c)$, provided $b^2 - 4ac = D_K$. As usual, this represents the ideal $a\mathbb{Z} + (1/2)(-b + \sqrt{D_K})\mathbb{Z}$.

```
? K = nfinit(x^2 - 60); K.disc
%1 = 60
? idealhnf(K, qfbprimeform(60,2))
%2 =
[2 1]
[0 1]
? idealhnf(K, Qfb(1,2,3))
*** at top-level: idealhnf(K,Qfb(1,2,3)
*** ^-------------------
*** idealhnf: Qfb(1, 2, 3) has discriminant != 60 in idealhnf.
```

idealintersect(nf, A, B)

Intersection of the two ideals A and B in the number field nf. The result is given in HNF.

```
? nf = nfinit(x^2+1);
? idealintersect(nf, 2, x+1)
%2 =
[2 0]
[0 2]
```

This function does not apply to general \mathbb{Z}-modules, e.g. orders, since its arguments are replaced by the ideals they generate. The following script intersects \mathbb{Z}-modules A and B given by matrices of compatible dimensions with integer coefficients:

```
ZM_intersect(A,B) =
{ my(Ker = matkerint(concat(A,B)));
  mathnf( A * Ker[1..#A,] )
}
```

idealinv(nf, x)

Inverse of the ideal x in the number field nf, given in HNF. If x is an extended ideal, its principal part is suitably updated: i.e. inverting $[I, t]$, yields $[I^{-1}, 1/t]$.
idealismaximal(nf, x)

Given nf a number field as output by nfinit and an ideal x, return 0 if x is not a maximal ideal. Otherwise return a prid structure nf attached to the ideal. This function uses ispsoprime and may return a wrong result in case the underlying rational pseudoprime is not an actual prime number: apply isprime(pr.p) to guarantee correctness. If x is an extended ideal, the extended part is ignored.

? K = nfinit(y^2 + 1);
? idealismaximal(K, 3) \ 3 is inert
%2 = [3, [3, 0]~, 1, 2, 1]
? idealismaximal(K, 5) \ 5 is not
%3 = 0
? pr = idealprimedec(K,5)[1] \ already a prid
%4 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? idealismaximal(K, pr) \ trivial check
%5 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? x = idealhnf(K, pr)
%6 =
[5 3]
[0 1]
? idealismaximal(K, x) \ converts from matrix form to prid
%7 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]

This function is noticeably faster than idealfactor since it never involves an actually factorization, in particular when x \cap \mathbb{Z} is not a prime number.

idealispower(nf, A, n, B)

Let nf be a number field and n > 0 be a positive integer. Return 1 if the fractional ideal A = B^n is an n-th power and 0 otherwise. If the argument B is present, set it to the n-th root of A, in HNF.

? K = nfinit(x^3 - 2);
? A = [46875, 30966, 9573; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3, &B)
%3 = 1
? B
%4 =
[75 22 41]
[0 1 0]
[0 0 1]

? A = [9375, 2841, 198; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3)
%5 = 0

ideallist(nf, bound, flag)

Computes the list of all ideals of norm less or equal to bound in the number field nf. The result is a row vector with exactly bound components. Each component is itself a row vector containing the information about ideals of a given norm, in no specific order, depending on the value of flag:

The possible values of flag are:

0: give the bid attached to the ideals, without generators.
1: as 0, but include the generators in the bid.

1.1. Guide to real precision in the PARI interface 163
2: in this case, \(nf \) must be a \(bnf \) with units. Each component is of the form \([bid, U]\), where \(bid \) is as case 0 and \(U \) is a vector of discrete logarithms of the units. More precisely, it gives the \(\text{ideallog} \)s with respect to \(bid \) of \((\zeta, u_1, ..., u_r)\) where \(\zeta \) is the torsion unit generator \(bnf.tu[2] \) and \((u_i)\) are the fundamental units in \(bnf.fu \). This structure is technical, and only meant to be used in conjunction with \(\text{bnrclassnolist} \) or \(\text{bnrdisclist} \).

3: as 2, but include the generators in the \(bid \).

4: give only the HNF of the ideal.

```plaintext
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \ A single ideal of norm 1
? #L[65]
%4 = 4 \ There are 4 ideals of norm 4 in Z[i]
```

If one wants more information, one could do instead:

```plaintext
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[20, [20]], [16, [4, 4]], [20, [20]]]
? l[1].mod
%4 = [[25, 18; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
```

where we ask for the structures of the \((\mathbb{Z}[i]/I)^*\) for all three ideals of norm 25. In fact, for all moduli with finite part of norm 25 and trivial Archimedean part, as the last 3 commands show. See \(\text{ideallistarch} \) to treat general moduli.

ideallistarch\((nf, list, arch)\)

\(list \) is a vector of vectors of bid's, as output by \(\text{ideallist} \) with flag 0 to 3. Return a vector of vectors with the same number of components as the original \(list \). The leaves give information about moduli whose finite part is as in original list, in the same order, and Archimedean part is now \(arch \) (it was originally trivial). The information contained is of the same kind as was present in the input; see \(\text{ideallist} \), in particular the meaning of \(flag \).

```plaintext
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \ two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \ add them to the modulus
? l = La[98]; vector(#l, i, l[i].clgp)
%6 = [[168, [42, 2, 2]], [144, [6, 6, 2, 2]], [168, [42, 2, 2]]]
```

Of course, the results above are obvious: adding \(t \) places at infinity will add \(t \) copies of \(\mathbb{Z}/2\mathbb{Z} \) to \((\mathbb{Z}_K/f)^*\). The following application is more typical:

```plaintext
? L = ideallist(bnf, 100, 2); \ units are required now
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
```

(continues on next page)
idealog(nf, x, bid)

nf is a number field, bid is as output by idealstar(nf, D,...) and x an element of nf which must have valuation equal to 0 at all prime ideals in the support of D and need not be integral. This function computes the discrete logarithm of x on the generators given in :emphasis:`bid.gen`. In other words, if gi are these generators, of orders di respectively, the result is a column vector of integers (xi) such that 0 <= xi < di

\[x = \prod_i g_i^{x_i} (mod D). \]

Note that when the support of D contains places at infinity, this congruence implies also sign conditions on the attached real embeddings. See znlog for the limitations of the underlying discrete log algorithms.

When nf is omitted, take it to be the rational number field. In that case, x must be a t_INT and bid must have been initialized by znstar(N,1).

idealmin(nf, ix, vdir)

This function is useless and kept for backward compatibility only, use :literal:`idealred`. Computes a pseudo-minimum of the ideal ix in the direction vdir in the number field nf.

idealmul(nf, x, y, flag)

Ideal multiplication of the ideals x and y in the number field nf; the result is the ideal product in HNF. If either x or y are extended ideals, their principal part is suitably updated: i.e. multiplying \([I, t]\), \([J, u]\) yields \([IJ, tu]\); multiplying I and \([J, u]\) yields \([IJ, u]\).

\[
\begin{align*}
? \text{nfs} &= \text{nfin}it(x^2 + 1); \\
? \text{idealm}ul(nf, 2, x+1) \\
%2 &= \\
[4, 2] \\
\end{align*}
\]

\[
\begin{align*}
? \text{idealm}ul(nf, [2, x], x+1) \ \ \text{\textbackslash \textbackslash \ extended \ ideal} \ast \ \text{ideal} \\
%3 &= [[4, 2; 0, 2], x] \\
? \text{idealm}ul(nf, [2, x], [x+1, x]) \ \ \text{\textbackslash \textbackslash \ two \ extended \ ideals} \\
%4 &= [[4, 2; 0, 2], [-1, 0]]
\end{align*}
\]

If flag is nonzero, reduce the result using idealred.

idealnorm(nf, x)

Computes the norm of the ideal x in the number field nf.

idealnumden(nf, x)

Returns \([A, B]\), where A, B are coprime integer ideals such that \(x = A/B\), in the number field nf.

\[
\begin{align*}
? \text{nfs} &= \text{nfin}it(x^2+1); \\
? \text{idealnum}den(nf, (x+1)/2) \\
%2 &= [[1, 0; 0, 1], [2, 1; 0, 1]]
\end{align*}
\]

idealpow(nf, x, k, flag)

Computes the k-th power of the ideal x in the number field nf; \(k \in \mathbb{Z}\). If x is an extended ideal, its principal part is suitably updated: i.e. raising \([I, t]\) to the k-th power, yields \([I^k, t^k]\).

If flag is nonzero, reduce the result using idealred, throughout the (binary) powering process; in particular, this is not the same as idealpow(nf, x, k) followed by reduction.
idealprimedec(nf, p, f)

Computes the prime ideal decomposition of the (positive) prime number p in the number field K represented by nf. If a nonprime p is given the result is undefined. If f is present and nonzero, restrict the result to primes of residue degree $\leq f$.

The result is a vector of prid structures, each representing one of the prime ideals above p in the number field nf. The representation $pr = [p, a, e, f, mb]$ of a prime ideal means the following: a is an algebraic integer in the maximal order \mathbb{Z}_K and the prime ideal is equal to $p = p\mathbb{Z}_K + a\mathbb{Z}_K$; e is the ramification index; f is the residual index; finally, mb is the multiplication table attached to the algebraic integer b such that $p^{-1} = Z_K + b/pZ_K$, which is used internally to compute valuations. In other words if p is inert, then mb is the integer 1, and otherwise it is a square t_MAT whose j-th column is $b.nf.zk[j]$.

The algebraic number a is guaranteed to have a valuation equal to 1 at the prime ideal (this is automatic if $e > 1$).

The components of pr should be accessed by member functions: $pr.p$, $pr.e$, $pr.f$, and $pr.gen$ (returns the vector $[p, a]$):

```plaintext
? K = nfinit(x^3-2);
? P = idealprimedec(K, 5);
? #P \ \ \ \ \ \ \ \ \ | 2 primes above 5 in Q(2^(1/3))
%3 = 2
? [p1,p2] = P;
? [p1.e, p1.f] \ \ \ | the first is unramified of degree 1
%5 = [1, 1]
? [p2.e, p2.f] \ \ \ | the second is unramified of degree 2
%6 = [1, 2]
? p1.gen
%7 = [5, [2, 1, 0]~]
? nfbasistoalg(K, %2) \ \ \ \ \ | a uniformizer for p1
%8 = Mod(x + 2, x^3 - 2)
? #idealprimedec(K, 5, 1) \ \ \ \ | restrict to f = 1
%9 = 1 \ \ \ \ \ \ \ | now only p1
```

idealprincipalunits(nf, pr, k)

Given a prime ideal in idealprimedec format, returns the multiplicative group $(1 + pr)/(1 + pr^k)$ as an abelian group. This function is much faster than idealstar when the norm of pr is large, since it avoids (useless) work in the multiplicative group of the residue field.

```plaintext
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1];
? G = idealprincipalunits(K, P, 20);
? G.cyc
%4 = [512, 256, 4] \ \ \ \ \ | Z/512 x Z/256 x Z/4
? G.gen
%5 = [[-1, -2], 1021, [0, -1]] \ \ \ \ \ | minimal generators of given order
```

idealramgroups(nf, gal, pr)

Let K be the number field defined by nf and assume that K/Q is Galois with Galois group G given by $gal = galoisinit(nf)$. Let pr be the prime ideal P in prid format. This function returns a vector g of subgroups of gal as follows:

- $g[1]$ is the decomposition group of P,
- $g[2]$ is $G_0(P)$, the inertia group of P,

and for $i >= 2$, 166 Chapter 1. Interface to the PARI library
• \(g[i]\) is \(G_{i-2}(P)\), the \(i-2\)-th ramification group of \(P\).

The length of \(g\) is the number of nontrivial groups in the sequence, thus is 0 if \(e = 1\) and \(f = 1\), and 1 if \(f > 1\) and \(e = 1\). The following function computes the cardinality of a subgroup of \(G\), as given by the components of \(g\):

\[
\text{card}(H) = \text{my}(o=H[2]); \prod(i=1, \#o, o[i]);
\]

\[
? \text{nf}=\text{nfini}(x^6+3); \text{gal}=\text{galoisinit}(\text{nf}); \text{pr}=\text{idealprimedec}(\text{nf}, 3)[1];
? g = \text{idealramgroups}(\text{nf}, \text{gal}, \text{pr});
? \text{apply}(\text{card}, g)
\]

\[
%3 = [6, 6, 3, 3, 3] \quad \text{\textbackslash{} cardinalities of the } G_i
\]

\[
? \text{nf} = \text{nfini}(x^6+108); \text{gal}=\text{galoisinit}(\text{nf}); \text{pr}=\text{idealprimedec}(\text{nf}, 2)[1];
? \text{iso}=\text{idealramgroups}(\text{nf}, \text{gal}, \text{pr})[2]
\]

\[
%5 = [[\text{Vecsmall}([2, 3, 1, 5, 6, 4])], \text{Vecsmall}([3])]
\]

\[
%6 = -3
\]

The field fixed by the inertia group of 2 is not ramified at 2.

\textbf{idealred}(\text{nf, I, v})

LLL reduction of the ideal \(I\) in the number field \(K\) attached to \(nf\), along the direction \(v\). The \(v\) parameter is best left omitted, but if it is present, it must be an \(nf.r1 + nf.r2\)-component vector of nonnegative integers. (What counts is the relative magnitude of the entries: if all entries are equal, the effect is the same as if the vector had been omitted.)

This function finds an \(a \in K^*\) such that \(J = (a)I\) is “small” and integral (see the end for technical details). The result is the Hermite normal form of the “reduced” ideal \(J\).

\[
? K = \text{nfini}(y^2+1);
? P = \text{idealprimedec}(K, 5)[1];
? \text{idealred}(K, P)
\]

\[
%3 =
[1 \ 0]
[0 \ 1]
\]

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way to check if ideals are principal, but it is not a necessary condition: a nontrivial result does not prove that the ideal is nonprincipal. For guaranteed results, see \text{bnfisprincipal}, which requires the computation of a full \text{bnf} structure.

If the input is an extended ideal \([I, s]\), the output is \([J, sa]\); in this way, one keeps track of the principal ideal part:

\[
? \text{idealred}(K, [P, 1])
\]

\[
%5 = [[1, 0; 0, 1], [2, -1]~]
\]

meaning that \(P\) is generated by \([2, -1]\). The number field element in the extended part is an algebraic number in any form or a factorization matrix in terms of number field elements, not ideals!). In the latter case, elements stay in factored form, which is a convenient way to avoid coefficient explosion; see also \text{idealpow}.

\textbf{Technical note}. The routine computes an LLL-reduced basis for the lattice \(I^{-1}\) equipped with the quadratic form

\[
\sum_{i=1}^{r_1+r_2} 2^{e_i} \varepsilon_i \sigma_i(x)^2,
\]
where as usual the \(\sigma_i \) are the (real and) complex embeddings and \(\varepsilon_i = 1 \), resp. 2, for a real, resp. complex place.

The element \(a \) is simply the first vector in the LLL basis. The only reason you may want to try to change some directions and set some \(v_i = 0 \) is to randomize the elements found for a fixed ideal, which is heuristically useful in index calculus algorithms like \texttt{bnfinit} and \texttt{bnfisprincipal}.

\textbf{Even more technical note.} In fact, the above is a white lie. We do not use \(||.|| \), exactly but a rescaled rounded variant which gets us faster and simpler LLLs. There's no harm since we are not using any theoretical property of \(a \) after all, except that it belongs to \(I^{-1} \) and that \(aI \) is “expected to be small”.

\texttt{idealredmodpower}(\(nf, x, n, B \))

Let \(nf \) be a number field, \(x \) an ideal in \(nf \) and \(n > 0 \) be a positive integer. Return a number field element \(b \) such that \(xb^n = v \) is small. If \(x \) is integral, then \(v \) is also integral.

More precisely, \texttt{idealnumden} reduces the problem to \(x \) integral. Then, factoring out the prime ideals dividing a rational prime \(p \leq B \), we rewrite \(x = IJ^n \) where the ideals \(I \) and \(J \) are both integral and \(I \) is \(B \)-smooth. Then we return a small element \(b \) in \(J^{-1} \).

The bound \(B \) avoids a costly complete factorization of \(x \); as soon as the \(n \)-core of \(x \) is \(B \)-smooth (i.e., as soon as \(I \) is \(n \)-power free), then \(J \) is as large as possible and so is the expected reduction.

```
? T = x^6+108; nf = nfinit(T); a = Mod(x,T);
? setrand(1); u = (2*a^2+a+3)*random(2^1000*x^6)^6;
? sizebyte(u)
%3 = 4864
? b = idealredmodpower(nf,u,2);
? v2 = nfeltmul(nf,u, nfeltpow(nf,b,2))
%5 = [34, 47, 15, 35, 9, 3]~
? b = idealredmodpower(nf,u,6);
? v6 = nfeltmul(nf,u, nfeltpow(nf,b,6))
%7 = [3, 0, 2, 6, -7, 1]~
```

The last element \(v6 \), obtained by reducing modulo 6-th powers instead of squares, looks smaller than \(v2 \) but its norm is actually a little larger:

```
? idealnorm(nf,v2)
%8 = 81309
? idealnorm(nf,v6)
%9 = 731781
```

\texttt{idealstar}(\(nf, N, flag, cycmod \))

Outputs a \texttt{bid} structure, necessary for computing in the finite abelian group \(G = (\mathbb{Z}_K/N)^* \). Here, \(nf \) is a number field and \(N \) is a \texttt{modulus}: either an ideal in any form, or a row vector whose first component is an ideal and whose second component is a row vector of \(r_1 \) 0 or 1. Ideals can also be given by a factorization into prime ideals, as produced by \texttt{idealfactor}.

If the positive integer \texttt{cycmod} is present, only compute the group modulo \texttt{cycmod}-th powers, which may save a lot of time when some maximal ideals in the modulus have a huge residue field. Whereas you might only be interested in quadratic or cubic residuosity; see also \texttt{bnrinit} for applications in class field theory.

This \texttt{bid} is used in \texttt{ideallog} to compute discrete logarithms. It also contains useful information which can be conveniently retrieved as \texttt{:emphasis:`bid.mod` (the modulus)}, \texttt{:emphasis:`bid.clgp` (\(G \) as a finite abelian group)}, \texttt{:emphasis:`bid.no` (the cardinality of \(G \))}, \texttt{:emphasis:`bid.cyc` (elementary divisors)} and \texttt{:emphasis:`bid.gen` (generators)}.

If \texttt{flag} = 1 (default), the result is a \texttt{bid} structure without generators: they are well defined but not explicitly computed, which saves time.

If \texttt{flag} = 2, as \texttt{flag} = 1, but including generators.
If \(\text{flag} = 0 \), only outputs \((\mathbb{Z}_K/N)^*\) as an abelian group, i.e. as a 3-component vector \([h, d, g]\): \(h \) is the order, \(d \) is the vector of SNF cyclic components and \(g \) the corresponding generators.

If \(\text{nf} \) is omitted, we take it to be the rational number fields, \(N \) must be an integer and we return the structure of \((\mathbb{Z}/N\mathbb{Z})^*\). In other words \text{idealstar}(\text{nf}, N, \text{flag})\) is short for

\[
\text{idealstar(nfinit(x), N, flag)}
\]

but faster. The alternative syntax \text{znstar}(N, \text{flag})\) is also available for an analogous effect but, due to an unfortunate historical oversight, the default value of \(\text{flag} \) is different in the two functions (\text{znstar} does not initialize by default, you probably want \text{znstar}(N,1)).

\text{idealtwoelt}(\text{nf}, x, \alpha)\

Computes a two-element representation of the ideal \(x \) in the number field \(\text{nf} \), combining a random search and an approximation theorem; \(x \) is an ideal in any form (possibly an extended ideal, whose principal part is ignored)

- When called as \text{idealtwoelt}(\text{nf}, x)\), the result is a row vector \([a, \alpha]\) with two components such that \(x = a\mathbb{Z}_K + \alpha\mathbb{Z}_K \) and \(a \) is chosen to be the positive generator of \(x \cap \mathbb{Z} \), unless \(x \) was given as a principal ideal in which case we may choose \(a = 0 \). The algorithm uses a fast lazy factorization of \(x \cap \mathbb{Z} \) and runs in randomized polynomial time.

\[
\begin{align*}
\text{K} &= \text{nfinit}(t^5-23); \\
\text{x} &= \text{idealhnf}(\text{K}, t^2*(t+1), t^3*(t+1)) \\
\%2 &= \text{\textbackslash\ some random ideal of norm 552*23} \\
&= \begin{bmatrix} 552 & 23 & 23 & 529 & 23 \\ 0 & 23 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix} \\
\%3 &= \text{\textbackslash\ [552, [23, 0, 1, 0, 0]~]} \\
\text{nfbasistoalg}(\text{K}, \text{alpha}) \\
\%4 &= \text{Mod}(t^2 + 23, t^5 - 23)
\end{align*}
\]

- When called as \text{idealtwoelt}(\text{nf}, x, a)\) with an explicit nonzero \(\alpha \) supplied as third argument, the function assumes that \(a \in x \) and returns \(\alpha \in x \) such that \(x = a\mathbb{Z}_K + \alpha\mathbb{Z}_K \). Note that we must factor \(a \) in this case, and the algorithm is generally slower than the default variant and gives larger generators:

\[
\begin{align*}
\%5 &= [-161, -161, -183, -207, 0]~ \\
\%6 &= \text{idealhnf}(552, \alpha2) = x \\
\%6 &= 1
\end{align*}
\]

Note that, in both cases, the return value is not recognized as an ideal by GP functions; one must use \text{idealhnf} as above to recover a valid ideal structure from the two-element representation.

\text{idealval}(\text{nf}, x, pr)\

Gives the valuation of the ideal \(x \) at the prime ideal \(pr \) in the number field \(\text{nf} \), where \(pr \) is in \text{idealprimedec} format. The valuation of the 0 ideal is \(+\infty\).

1.1. Guide to real precision in the PARI interface
imag(x)

Imaginary part of x. When x is a quadratic number, this is the coefficient of ω in the “canonical” integral basis $(1, \omega)$.

```plaintext
? imag(3 + I)
%1 = 1
? x = 3 + quadgen(-23);
? imag(x) \ \\ as a quadratic number
%3 = 1
? imag(x * 1.) \ \\ as a complex number
%4 = 2.3979157616563597707987190320813469600
```

incgam($s, x, g\ precision$)

Incomplete gamma function $\int_0^x te^{-t} dt$, extended by analytic continuation to all complex x, s not both 0. The relative error is bounded in terms of the precision of s (the accuracy of x is ignored when determining the output precision). When g is given, assume that $g = \Gamma(s)$. For small $\|x\|$, this will speed up the computation.

incgmc($s, x, \ precision$)

Complementary incomplete gamma function. The arguments x and s are complex numbers such that s is not a pole of Γ and $\|x\|/\|s\| + 1$ is not much larger than 1 (otherwise the convergence is very slow). The result returned is $\int_0^x e^{-t} t^{s-1} dt$.

input()

Reads a string, interpreted as a GP expression, from the input file, usually standard input (i.e. the keyboard). If a sequence of expressions is given, the result is the result of the last expression of the sequence. When using this instruction, it is useful to prompt for the string by using the print1 function. Note that in the present version 2.19 of pari.el, when using gp under GNU Emacs (see emacs (in the PARI manual)) one must prompt for the string, with a string which ends with the same prompt as any of the previous ones (a "? " will do for instance).

install($name, code, gpname, lib$)

Loads from dynamic library lib the function $name$. Assigns to it the name $gpname$ in this gp session, with prototype code (see below). If $gpname$ is omitted, uses $name$. If lib is omitted, all symbols known to gp are available: this includes the whole of libpari.so and possibly others (such as libc.so).

Most importantly, install gives you access to all nonstatic functions defined in the PARI library. For instance, the function

```plaintext
GEN addii(GEN x, GEN y)
```

adds two PARI integers, and is not directly accessible under gp (it is eventually called by the + operator of course):

```plaintext
? install("addii", "GG")
? addii(1, 2)
%1 = 3
```

It also allows to add external functions to the gp interpreter. For instance, it makes the function system obsolete:

```plaintext
? install(system, vs, sys,/*omitted*/)
? sys("ls gp")
gp.c gp.h gp_r1.c
```

This works because system is part of libc.so, which is linked to gp. It is also possible to compile a shared library yourself and provide it to gp in this way: use gp2c, or do it manually (see the modules_build variable in pari.cfg for hints).
Re-installing a function will print a warning and update the prototype code if needed. However, it will not reload a symbol from the library, even if the latter has been recompiled.

Prototype. We only give a simplified description here, covering most functions, but there are many more possibilities. The full documentation is available in `libpari.dvi`, see ??prototype

- First character i, l, u, v: return type int / long / ulong / void. (Default: GEN)
- One letter for each mandatory argument, in the same order as they appear in the argument list: G (GEN), & (GEN*), L (long), U (ulong), s (char *), n (variable).
- p to supply realprecision (usually long prec in the argument list), b to supply realbitprecision (usually long bitprec), P to supply seriesprecision (usually long precdl).

We also have special constructs for optional arguments and default values:

- DG (optional GEN, NULL if omitted),
- D& (optional GEN*, NULL if omitted),
- Dn (optional variable, -1 if omitted),

For instance the prototype corresponding to

```
long issquareall(GEN x, GEN *n = NULL)
```

is lGD&.

Caution. This function may not work on all systems, especially when gp has been compiled statically. In that case, the first use of an installed function will provoke a Segmentation Fault (this should never happen with a dynamically linked executable). If you intend to use this function, please check first on some harmless example such as the one above that it works properly on your machine.

intformal(x, v)

formal integration of \(x \) with respect to the variable \(v \) (wrt. the main variable if \(v \) is omitted). Since PARI cannot represent logarithmic or arctangent terms, any such term in the result will yield an error:

```
? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^--------------
*** intformal: domain error in intformal: residue(series, pole) != 0
```

The argument \(x \) can be of any type. When \(x \) is a rational function, we assume that the base ring is an integral domain of characteristic zero.

By definition, the main variable of a \texttt{t_POLMOD} is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of \(R[X]/(T(X)) \), the variable \(X \) is a mute variable and the integral is taken with respect to the main variable used in the base ring \(R \). In particular, it is meaningless to integrate with respect to the main variable of \(x \mod \):

```
? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x
```
intnumgaussinit(n, precision)

Initialize tables for n-point Gauss-Legendre integration of a smooth function f on a compact interval $[a, b]$. If n is omitted, make a default choice $n B/4$, where B is `realbitprecision`, suitable for analytic functions on $[-1, 1]$. The error is bounded by

$$
\frac{(b-a)^{2n+1}(n!)^2}{((2n+1)!(2n)!(f(2n)))!/((2n)!)^4}(\xi), a < \xi < b.
$$

If r denotes the distance of the nearest pole to the interval $[a, b]$, then this is of the order of $(b-a)/(4r)^{2n}$. In particular, the integral must be subdivided if the interval length $b-a$ becomes close to $4r$. The default choice $n B/4$ makes this quantity of order 2^{-B} when $b-a = r$, as is the case when integrating $1/(1+t)$ on $[0, 1]$ for instance. If the interval length increases, n should be increased as well.

Specifically, the function returns a pair of vectors $[x, w]$, where x contains the nonnegative roots of the n-th Legendre polynomial P_n and w the corresponding Gaussian integration weights $Q_n(x_j)/P_n'(x_j) = 2/(1-x_j^2)P_n'(x_j)^2$ such that

$$
\int_{-1}^{1} f(t) dt \; w_j f(x_j).
$$

```plaintext
? T = intnumgaussinit();
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,(1+t^2), T) - Pi/2 \ b - a = 2r
%3 = -9.490148553624725335 E-22 \ ... loses half the accuracy
?
? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,exp(t), T) - exp(1)+exp(-1)
%1 = -5.877471754111437540 E-39
? intnumgauss(t=-10,10,exp(t), T) - exp(10)+exp(-10)
%2 = -8.358367809712546836 E-35
? intnumgauss(t=-1,1,exp(t), T) - Pi/2 \ b - a = 2r
%3 = -9.490148553624725335 E-22 \ ... loses half the accuracy
?
? T = intnumgaussinit(50);
? intnumgauss(t=-1,1,(1+t^2), T) - Pi/2
%5 = -1.1754943508222875080 E-38
? intnumgauss(t=-5,5,exp(t), T) - 2*atan(5)
%6 = -1.2[...E-8
```

On the other hand, we recommend to split the integral and change variables rather than increasing n too much, see `intnumgauss`.

intnuminit(a, b, m, precision)

Initialize tables for integration from a to b, where a and b are coded as in `intnum`. Only the compactness, the possible existence of singularities, the speed of decrease or the oscillations at infinity are taken into account, and not the values. For instance `intnuminit(-1,1)` is equivalent to `intnuminit(0,Pi)`, and `intnuminit([0,-1/2],oo)` is equivalent to `intnuminit([-1,-1/2], -oo)`; on the other hand, the order matters and `intnuminit([0,-1/2], [1,-1/3])` is not equivalent to `intnuminit([0,-1/3], [1,-1/2])`!

If m is present, it must be nonnegative and we multiply the default number of sampling points by 2^m (increasing the running time by a similar factor).

The result is technical and liable to change in the future, but we document it here for completeness. Let $x = \phi(t)$, $t \in [-\infty, \infty]$ be an internally chosen change of variable, achieving double exponential decrease of the integrand at infinity. The integrator `intnum` will compute

$$
\int h \sum_{||n||<N} \phi'(nh)F(\phi(nh))
$$

for some integration step h and truncation parameter N. In basic use, let
\[[h, x0, w0, xp, wp, xm, wm] = \text{intnuminit}(a, b); \]

- \(h \) is the integration step
- \(x_0 = \phi(0) \) and \(w_0 = \phi'(0) \),
- \(xp \) contains the \(\phi(nh), 0 < n < N \),
- \(xm \) contains the \(\phi(nh), 0 < -n < N \), or is empty.
- \(wp \) contains the \(\phi'(nh), 0 < n < N \),
- \(wm \) contains the \(\phi'(nh), 0 < -n < N \), or is empty.

The arrays \(xm \) and \(wm \) are left empty when \(\phi \) is an odd function. In complicated situations, \text{intnuminit} may return up to 3 such arrays, corresponding to a splitting of up to 3 integrals of basic type.

If the functions to be integrated later are of the form \(F = f(t)k(t, z) \) for some kernel \(k \) (e.g. Fourier, Laplace, Mellin,...), it is useful to also precompute the values of \(f(\phi(nh)) \), which is accomplished by \text{intfuncinit}. The hard part is to determine the behavior of \(F \) at endpoints, depending on \(z \).

\text{isfundamental}(D)

True (1) if \(D \) is equal to 1 or to the discriminant of a quadratic field, false (0) otherwise. \(D \) can be input in factored form as for arithmetic functions:

\`
? isfundamental(factor(-8))
%1 = 1
\`

\text{ispolygonal}(x, s, N)

True (1) if the integer \(x \) is an \(s \)-gonal number, false (0) if not. The parameter \(s > 2 \) must be a \text{t_INT}. If \(N \) is given, set it to \(n \) if \(x \) is the \(n \)-th \(s \)-gonal number.

\`
? ispolygonal(36, 3, &N)
%1 = 1
? N
\`

\text{ispower}(x, k, n)

If \(k \) is given, returns true (1) if \(x \) is a \(k \)-th power, false (0) if not. What it means to be a \(k \)-th power depends on the type of \(x \); see \text{issquare} for details.

If \(k \) is omitted, only integers and fractions are allowed for \(x \) and the function returns the maximal \(k \geq 2 \) such that \(x = n^k \) is a perfect power, or 0 if no such \(k \) exist; in particular \text{ispower(-1)}, \text{ispower(0)}, and \text{ispower(1)} all return 0.

If a third argument \(n \) is given and \(x \) is indeed a \(k \)-th power, sets \(n \) to a \(k \)-th root of \(x \).

For a \text{t_FFELT} \(x \), instead of omitting \(k \) (which is not allowed for this type), it may be natural to set

\`
k = (x.p ^ x.f - 1) / \text{fforder}(x)
\`
ispowerful\((x) \)

True (1) if \(x \) is a powerful integer, false (0) if not; an integer is powerful if and only if its valuation at all primes dividing \(x \) is greater than 1.

\[
\begin{array}{l}
\text{? ispowerful}(50) \\
\%1 = 0 \\
\text{? ispowerful}(100) \\
\%2 = 1 \\
\text{? ispowerful}(5^3*(10^{1000}+1)^2) \\
\%3 = 1 \\
\end{array}
\]

isprime\((x, \text{flag}) \)

True (1) if \(x \) is a prime number, false (0) otherwise. A prime number is a positive integer having exactly two distinct divisors among the natural numbers, namely 1 and itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow when \(x \) is indeed a large prime integer. For instance a 1000 digits prime should require 15 to 30 minutes with default algorithms. Use ispseudoprime to quickly check for compositeness. Use primecert in order to obtain a primality proof instead of a yes/no answer; see also factor.

The function accepts vector/matrices arguments, and is then applied componentwise.

If \(\text{flag} = 0 \), use a combination of
- Baillie-Pomerance-Selfridge-Wagstaff compositeness test (see ispseudoprime),
- Selfridge “\(p - 1 \)” test if \(x - 1 \) is smooth enough,
- Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general medium-sized \(x \) (less than 1500 bits),
- Atkin-Morain’s Elliptic Curve Primality Prover (ECPP) for general large \(x \).

If \(\text{flag} = 1 \), use Selfridge-Pocklington-Lehmer “\(p - 1 \)” test; this requires partially factoring various auxilliary integers and is likely to be very slow.

If \(\text{flag} = 2 \), use APRCL only.

If \(\text{flag} = 3 \), use ECPP only.

isprimepower\((x, n) \)

If \(x = p^k \) is a prime power (\(p \) prime, \(k > 0 \)), return \(k \), else return 0. If a second argument \(n \) is given and \(x \) is indeed the \(k \)-th power of a prime \(p \), sets \(n \) to \(p \).

ispseudoprime\((x, \text{flag}) \)

True (1) if \(x \) is a strong pseudo prime (see below), false (0) otherwise. If this function returns false, \(x \) is not prime; if, on the other hand it returns true, it is only highly likely that \(x \) is a prime number. Use isprime (which is of course much slower) to prove that \(x \) is indeed prime. The function accepts vector/matrices arguments, and is then applied componentwise.

If \(\text{flag} = 0 \), checks whether \(x \) has no small prime divisors (up to 101 included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for base 2, followed by a Lucas test for the sequence \((P, 1)\), where \(P >= 3 \) is the smallest odd integer such that \(P^2 - 4 \) is not a square mod \(x \). (Technically, we are using an “almost extra strong Lucas test” that checks whether \(V_n \) is 2, without computing \(U_n \).)

There are no known composite numbers passing the above test, although it is expected that infinitely many such numbers exist. In particular, all composites \(< 2^{64}\) are correctly detected (checked using http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html).

If \(\text{flag} > 0 \), checks whether \(x \) is a strong Miller-Rabin pseudo prime for \(\text{flag} \) randomly chosen bases (with end-matching to catch square roots of \(-1\)).
ispseudoprimepower(x, n)

If $x = p^k$ is a pseudo-prime power (p pseudo-prime as per ispseudoprimew, $k > 0$), return k, else return 0. If a second argument n is given and x is indeed the k-th power of a prime p, sets n to p.

More precisely, k is always the largest integer such that $x = n^k$ for some integer n and, when $n \leq 2^{64}$ the function returns $k > 0$ if and only if n is indeed prime. When $n > 2^{64}$ is larger than the threshold, the function may return 1 even though n is composite: it only passed an ispseudoprimew(n) test.

issquare(x, n)

True (1) if x is a square, false (0) if not. What “being a square” means depends on the type of x: all t_COMPLEX are squares, as well as all nonnegative t_REAL; for exact types such as t_INT, t_FRAC and t_INTMOD, squares are numbers of the form s^2 with s in \mathbb{Z}, \mathbb{Q} and $\mathbb{Z}/N\mathbb{Z}$ respectively.

```plaintext
? issquare(3) \ as an integer
%1 = 0
? issquare(3.) \ as a real number
%2 = 1
? issquare(Mod(7, 8)) \ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \ \ in Q_{13}
%4 = 0
```

If n is given, a square root of x is put into n.

```plaintext
? issquare(4, &n)
%1 = 1
? n
%2 = 2
```

For polynomials, either we detect that the characteristic is 2 (and check directly odd and even-power monomials) or we assume that 2 is invertible and check whether squaring the truncated power series for the square root yields the original input.

For t_POLMOD x, we only support t_POLMOD s of t_INTMOD s encoding finite fields, assuming without checking that the intmod modulus p is prime and that the polmod modulus is irreducible modulo p.

```plaintext
? issquare(Mod(Mod(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mod(Mod(2, 3)*x, Mod(1, 3)*x^2 + Mod(1, 3))
```

issquarefree(x)

True (1) if x is squarefree, false (0) if not. Here x can be an integer or a polynomial with coefficients in an integral domain.

```plaintext
? issquarefree(12)
%1 = 0
? issquarefree(6)
%2 = 1
? issquarefree(x^3+x^2)
%3 = 0
? issquarefree(Mod(1,4)*(x^2+x+1)) \ \ Z/4Z is not a domain !
*** at top-level: issquarefree(Mod(1,4)*(x^2+x+1))
*** ^------------------------
*** issquarefree: impossible inverse in Fp_inv: Mod(2, 4).
```
A polynomial is declared squarefree if $\gcd(x, x')$ is 1. In particular a nonzero polynomial with inexact coefficients is considered to be squarefree. Note that this may be inconsistent with factor, which first rounds the input to some exact approximation before factoring in the appropriate domain; this is correct when the input is not close to an inseparable polynomial (the resultant of x and x' is not close to 0).

An integer can be input in factored form as in arithmetic functions.

```
? issquarefree(factor(6))
%1 = 1
\ count squarefree integers up to 10^8
? c = 0; for(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 3min, 2,590 ms.
%2 = 60792694
? c = 0; forfactored(d = 1, 10^8, if (issquarefree(d), c++)); c
time = 45,348 ms. \ \ faster !
%3 = 60792694
```

`istotient(x, N)`

True (1) if $x = \phi(n)$ for some integer n, false (0) if not.

```
? istotient(14)
%1 = 0
? istotient(100)
%2 = 0
```

If N is given, set $N = n$ as well.

```
? istotient(4, &n)
%1 = 1
? n
%2 = 10
```

`kill(sym)`

Restores the symbol sym to its “undefined” status, and deletes any help messages attached to sym using addhelp. Variable names remain known to the interpreter and keep their former priority: you cannot make a variable “less important” by killing it!

```
? z = y = 1; y
%1 = 1
? kill(y)
? y \ \ restored to `\undefined'' status
%2 = y
? variable()
%3 = [x, y, z] \ \ but the variable name y is still known, with y > z !
```

For the same reason, killing a user function (which is an ordinary variable holding a t_CLOSURE) does not remove its name from the list of variable names.

If the symbol is attached to a variable — user functions being an important special case —, one may use the quote operator a = 'a to reset variables to their starting values. However, this will not delete a help message attached to a, and is also slightly slower than kill(a).

```
? x = 1; addhelp(x, "foo"); x
%1 = 1
? x = 'x; x \ \ same as 'kill', except we don't delete help.
```
On the other hand, `kill` is the only way to remove aliases and installed functions.

```plaintext
? alias(fun, sin);
? kill(fun);

? install(addii, GG);
? kill(addii);
```

kronecker\((x, y)\)

Kronecker symbol \((x||y)\), where \(x\) and \(y\) must be of type integer. By definition, this is the extension of Legendre symbol to \(\mathbb{Z}/\mathbb{Z}\) by total multiplicativity in both arguments with the following special rules for \(y = 0, -1\) or 2:

- \((x||0) = 1\) if \(x = 1\) and 0 otherwise.
- \((x||-1) = 1\) if \(x > 0\) and -1 otherwise.
- \((x||2) = 0\) if \(x\) is even and 1 if \(x = 1, -1 mod 8\) and -1 if \(x = 3, -3 mod 8\).

lambertw\((y, \text{precision})\)

Lambert \(W\) function, solution of the implicit equation \(xe^x = y\), for a positive real number \(y\). This is the restriction to the positive reals of the complex principal branch \(W_0\), which is not implemented outside of \(\mathbb{R}_+^\ast\). Other branches \(W_k\) for \(k \neq 0\) are not implemented either.

laurantseries\((f, \text{serprec}, M, \text{precision})\)

Expand \(f\) as a Laurent series around \(x = 0\) to order \(M\). This function computes \(f(x + O(x^n))\) until \(n\) is large enough: it must be possible to evaluate \(f\) on a power series with 0 constant term.

```plaintext
? laurentseries(t->sin(t)/(1-cos(t)), 5)
%1 = 2*x^-1 - 1/6*x - 1/360*x^3 - 1/15120*x^5 + O(x^6)

? laurentseries(log)
*** at top-level: laurentseries(log)
*** ^------------------
*** in function laurentseries: log
*** ^---
*** log: domain error in log: series valuation != 0
```

Note that individual Laurent coefficients of order <= \(M\) can be retrieved from \(s = \text{laurantseries}(f, M)\) via `polcoef(s, i)` for any \(i \leq M\). The series \(s\) may occasionally be more precise that the required \(O(x^{M+1})\).

With respect to successive calls to `derivnum`, `laurantseries` is both faster and more precise:

```plaintext
? laurentseries(t->log(3+t),1)
%1 = 1.0986122886681096913952452369225257047 + 1/3*x - 1/18*x^2 + O(x^3)

? derivnum(t=0,log(3+t),1)
%2 = 0.33333333333333333333333333333333333

? derivnum(t=0,log(3+t),2)
%3 = -0.1111111111111111111111111111111111

? f = x->sin(exp(x));
? polcoef(laurantseries(x->f(x+2), 1), 1)
%5 = 3.312929423104339804683687620360224365
```

(continues on next page)
CyPari2 Documentation, Release 2.1.3

(continued from previous page)

? exp(2) * cos(exp(2));
%6 = 3.3129294231043339804683687620360224365
? derivnum(x = 2, f(x))
%7 = 3.3129294231043339804683687620360224364 \ 1 ulp off

? default(realprecision,115);
? for(i=1,10^4, laurentseries(x->f(x+2),1))
time = 279 ms.
? for(i=1,10^4, derivnum(x=2,f(x))) \ ... and slower
time = 1,134 ms.

\lc m(x, y)

Least common multiple of \(x \) and \(y \), i.e. such that \(\text{lcm}(x, y) \times \gcd(x, y) = x \times y \), up to units. If \(y \) is omitted and \(x \) is a vector, returns the \(\text{lcm} \) of all components of \(x \). For integer arguments, return the nonnegative \(\text{lcm} \).

When \(x \) and \(y \) are both given and one of them is a vector/matrix type, the LCM is again taken recursively on each component, but in a different way. If \(y \) is a vector, resp. matrix, then the result has the same type as \(y \), and components equal to \(\text{lcm}(x, y[i]) \), resp. \(\text{lcm}(x, y[,i]) \). Else if \(x \) is a vector/matrix the result has the same type as \(x \) and an analogous definition. Note that for these types, \(\text{lcm} \) is not commutative.

Note that \(\text{lcm}(v) \) is quite different from

\[l = v[1]; \text{for} \ (i = 1, \#v, l = \text{lcm}(l, v[i])) \]

Indeed, \(\text{lcm}(v) \) is a scalar, but \(l \) may not be (if one of the \(v[i] \) is a vector/matrix). The computation uses a divide-conquer tree and should be much more efficient, especially when using the GMP multiprecision kernel (and more subquadratic algorithms become available):

? v = vector(10^5, i, random);
? lcm(v);
time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
time = 4,561 ms.

\length(x)

Length of \(x \); \# is a shortcut for \(\text{length}(x) \). This is mostly useful for

- vectors: dimension (0 for empty vectors),
- lists: number of entries (0 for empty lists),
- maps: number of entries (0 for empty maps),
- matrices: number of columns,
- character strings: number of actual characters (without trailing \(\backslash 0 \), should you expect it from \(C \ \text{char}^* \)).

? "a string"
%1 = 8
? #[3,2,1]
%2 = 3
? []
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L

(continues on next page)
The routine is in fact defined for arbitrary GP types, but is awkward and useless in other cases: it returns the number of non-code words in \(x\), e.g. the effective length minus 2 for integers since the \(\text{t_INT}\) type has two code words.

\(\text{lex}(x, y)\)

Gives the result of a lexicographic comparison between \(x\) and \(y\) (as \(-1, 0\) or \(1\)). This is to be interpreted in quite a wide sense: it is admissible to compare objects of different types (scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of different lengths; finally, when comparing two scalars, a complex number \(a + I \cdot b\) is interpreted as a vector \([a, b]\) and a real number \(a\) as \([a, 0]\). The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For example:

\[
\begin{align*}
? \text{lex}([1,3], [1,2,5]) \\
%1 & = 1 \\
? \text{lex}([1,3], [1,3,-1]) \\
%2 & = -1 \\
? \text{lex}([1], [[1]]) \\
%3 & = -1 \\
? \text{lex}([1], [1]~) \\
%4 & = 0 \\
? \text{lex}(2 - I, 1) \\
%5 & = 1 \\
? \text{lex}(2 - I, 2) \\
%6 & = 2
\end{align*}
\]

lfun\((L, s, D, \text{precision})\)

Compute the \(L\)-function value \(L(s)\), or if \(D\) is set, the derivative of order \(D\) at \(s\). The parameter \(L\) is either an \(L\text{math}\), an \(L\text{data}\) (created by \text{lfuncreate}, or an \(L\text{init}\) (created by \text{lfuninit}), preferably the latter if many values are to be computed.

The argument \(s\) is also allowed to be a power series; for instance, if \(s = \alpha + x + O(x^n)\), the function returns the Taylor expansion of order \(n\) around \(\alpha\). The result is given with absolute error less than \(2^{-B}\), where \(B = \text{realbitprecision}\).

Caveat. The requested precision has a major impact on runtimes. It is advised to manipulate precision via \text{realbitprecision} as explained above instead of \text{realprecision} as the latter allows less granularity: \text{realprecision} increases by increments of 64 bits, i.e. 19 decimal digits at a time.
%5 = [14.134725[...], 21.022039[...]]
? z = 1/2 + I*T[1];
? abs(lfun(L, z))
%7 = 8.7066865533412207420780392991125136196 E-39
? abs(lfun(L, z, 1))
%8 = 0.79316043335650611601389756527435211412 \ simple zero

lfunabelianrelinit(bnfL, bnfK, polrel, sdom, der, precision)
Returns the Linit structure attached to the Dedekind zeta function of the number field L (see lfuninit), given a subfield K such that L/K is abelian. Here polrel defines L over K, as usual with the priority of the variable of bnfK lower than that of polrel. sdom and der are as in lfuninit.

? D = -47; K = bnfinit(y^2-D);
? rel = quadhilbert(D); T = rnfequation(K.pol, rel); \ degree 10
? L = lfunabelianrelinit(T,K,rel, [2,0,0]); \ at 2
time = 84 ms.
? lfun(L, 2)
%4 = 1.015421339440244392988066689468182656
? lfun(T, 2) \ using parissize > 300MB
time = 652 ms.
%5 = 1.015421339440244392988066689468182656

As the example shows, using the (abelian) relative structure is more efficient than a direct computation. The difference becomes drastic as the absolute degree increases while the subfield degree remains constant.

lfunan(L, n, precision)
Compute the first n terms of the Dirichlet series attached to the L-function given by L (Lmath, Ldata or Linit).

? lfunan(1, 10) \ Riemann zeta
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \ Dirichlet L-function for kronecker(5,.)
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]

lfunartin(nf, gal, rho, n, precision)
Returns the Ldata structure attached to the Artin L-function provided by the representation ρ of the Galois group of the extension K/Q, defined over the cyclotomic field Q(ζₙ), where nf is the nfinit structure attached to K, gal is the galoisinit structure attached to K/Q, and rho is given either
• by the values of its character on the conjugacy classes (see galoisconjclasses and galoischartable)
• or by the matrices that are the images of the generators :emphasis:`gal.gen`.

Cyclotomic numbers in rho are represented by polynomials, whose variable is understood as the complex number exp(2iπ/n).

In the following example we build the Artin L-functions attached to the two irreducible degree 2 representations of the dihedral group D₁₀ defined over Q(ζ₅), for the extension H/Q where H is the Hilbert class field of Q(√-47). We show numerically some identities involving Dedekind ζ functions and Hecke L series.

? P = quadhilbert(-47)
%1 = x^5 + 2*x^4 + 2*x^3 + x^2 - 1
? N = nfinit(nfsplitting(P));
? G = galoisinit(N); \ D₁₀
? [T,n] = galoischartable(G);
? T \ columns give the irreducible characters
%5 =
[1 1 2 2]
[1 -1 0 0]
[1 1 -y^3 - y^2 - 1 y^3 + y^2]
[1 1 y^3 + y^2 -y^3 - y^2 - 1]
? n
%6 = 5
? L2 = lfunartin(N,G, T[,2], n);
? L3 = lfunartin(N,G, T[,3], n);
? L4 = lfunartin(N,G, T[,4], n);
? s = 1 + x + 0(x^4);
? lfun(-47,s) - lfun(L2,s)
%11 ~ 0
? lfun(1,s)*lfun(-47,s)*lfun(L3,s)^2*lfun(L4,s)^2 - lfun(N,s)
%12 ~ 0
? lfun(1,s)*lfun(L3,s)*lfun(L4,s) - lfun(P,s)
%13 ~ 0
? bnr = bnrinit(bnfinit(x^2+47),1,1);
? bnr.cyc
%15 = [5] \ \ Z/5Z: 4 nontrivial ray class characters
? lfun([bnr,[1]], s) - lfun(L3, s)
%16 ~ 0
? lfun([bnr,[2]], s) - lfun(L4, s)
%17 ~ 0
? lfun([bnr,[3]], s) - lfun(L3, s)
%18 ~ 0
? lfun([bnr,[4]], s) - lfun(L4, s)
%19 ~ 0

The first identity identifies the nontrivial abelian character with $(-47, .)$; the second is the factorization of the regular representation of D_{10}; the third is the factorization of the natural representation of $D_{10} \subset S_5$; and the final four are the expressions of the degree 2 representations as induced from degree 1 representations.

lfuncheckfeq(L, t, precision)

Given the data attached to an L-function (Lmath, Ldata or Limit), check whether the functional equation is satisfied. This is most useful for an Ldata constructed “by hand”, via lfuncreate, to detect mistakes.

If the function has poles, the polar part must be specified. The routine returns a bit accuracy b such that $\|w - \overline{w}\| < 2^b$, where w is the root number contained in data, and

$$w = \theta(1/t) t^{-k} / \overline{\theta}(t)$$

is a computed value derived from the assumed functional equation. If the parameter t is omitted, we try random samples on the real line in the segment $[1, 1.25]$. Of course, a large negative value of the order of realbitprecision is expected but if $\overline{\theta}$ is very small all over the sampled segment, you should first increase realbitprecision by $- \log_2 \|\overline{\theta}(t)\|$ (which is positive if $\overline{\theta}$ is small) to get a meaningful result.

If t is given, it should be close to the unit disc for efficiency and such that $\overline{\theta}(t)! = 0$. We then check the functional equation at that t. Again, if $\overline{\theta}(t)$ is very small, you should first increase realbitprecision to get a useful result.

1.1. Guide to real precision in the PARI interface
i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating the root number from all other given quantities. Checking away from the unit disc will either fail with a precision error, or give disappointing results (if \(\theta(1/\tau) \) is large it will be computed with a large absolute error)

\[
\begin{align*}
? & \text{lfuncheckfeq}(L, 2+\mathbf{i}) \\
& \%4 = -115 \\
? & \text{lfuncheckfeq}(L, 10) \\
& \text{*** at top-level: lfuncheckfeq}(L, 10) \\
& \text{*** ^------------------} \\
& \text{*** lfuncheckfeq: precision too low in lfuncheckfeq.}
\end{align*}
\]

\texttt{lfunconductor}(L, setN, flag, precision)

Compute the conductor of the given \(L \)-function (if the structure contains a conductor, it is ignored). Two methods are available, depending on what we know about the conductor, encoded in the \texttt{setN} parameter:

- \texttt{setN} is a scalar: we know nothing but expect that the conductor lies in the interval \([1, setN]\).

If \texttt{flag} is 0 (default), give either the conductor found as an integer, or a vector (possibly empty) of conductors found. If \texttt{flag} is 1, same but give the computed floating point approximations to the conductors found, without rounding to integers. If \texttt{flag} is 2, give all the conductors found, even those far from integers.

\textbf{Caveat.} This is a heuristic program and the result is not proven in any way:

\[
\begin{align*}
? & \text{lfuncreate}(857); \ \text{\textbackslash \ textbackslash Dirichlet L function for kronecker(857,.)} \\
? & \text{\textbackslash p19} \\
& \text{realprecision = 19 significant digits} \\
? & \text{lfunconductor}(L) \\
& \%2 = [17, 857] \\
? & \text{lfunconductor}(L,,1) \ \text{\textbackslash don't round} \\
& \%3 = [16.99999999999999999, 857.0000000000000000] \\
? & \text{\textbackslash p38} \\
& \text{realprecision = 38 significant digits} \\
? & \text{lfunconductor}(L) \\
& \%4 = 857
\end{align*}
\]

Increasing \texttt{setN} or increasing \texttt{realbitprecision} slows down the program but gives better accuracy for the result. This algorithm should only be used if the primes dividing the conductor are unknown, which is uncommon.

- \texttt{setN} is a vector of possible conductors; for instance of the form \(D_1 \ast \text{divisors}(D_2) \), where \(D_1 \) is the known part of the conductor and \(D_2 \) is a multiple of the contribution of the bad primes.

In that case, \texttt{flag} is ignored and the routine uses \texttt{lfuncheckfeq}. It returns \([N, e]\) where \(N \) is the best conductor in the list and \(e \) is the value of \texttt{lfuncheckfeq} for that \(N \). When no suitable conductor exist or there is a tie among best potential conductors, return the empty vector \([]\).

\[
\begin{align*}
? & \text{E = ellinit([0,0,0,4,0]); \ /* Elliptic curve } y^2 = x^3+4x */ \\
? & \text{E.dic} \ \text{\textbackslash dic E} = 2^4 12
\end{align*}
\]

(continues on next page)
The above code assumed that root number was 1; had we set it to \(-1\), none of the \lfuncheckf\ values would have been acceptable:

\begin{verbatim}
? L2 = lfuncreate([n->ellan(E,n), 0, [0,1], 2, 0, -1]);
? lfunconductor(L2, divisors(E.disc))
%7 = []
\end{verbatim}

\lfuncost(L, sd\text{om}, der, precision)

Estimate the cost of running \lfuninit(L, sd\text{om}, der) at current bit precision. Returns \([t, b]\), to indicate that \(t\) coefficients \(a_n\) will be computed, as well as \(t\) values of \text{gammamellininv}, all at bit accuracy \(b\). A subsequent call to \lfun at \(s\) evaluates a polynomial of degree \(t\) at \(\exp(hs)\) for some real parameter \(h\), at the same bit accuracy \(b\). If \(L\) is already an \text{Linit}, then \(sd\text{om}\) and \(der\) are ignored and are best left omitted; the bit accuracy is also inferred from \(L\): in short we get an estimate of the cost of using that particular \text{Linit}.

\begin{verbatim}
? \pb 128
? lfuncost(1, [100]) \ \ for zeta(1/2+I*t), \ |t| < 100
%1 = [7, 242] \ \ 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \ \ for zeta(s) in the critical strip, \ |Im s| < 100
%2 = [7, 246] \ \ now 246 bits
? lfuncost(1, [100], 10) \ \ for zeta(1/2+I*t), \ |t| < 100
%3 = [8, 263] \ \ 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \ \ larger imaginary part: huge accuracy increase
\end{verbatim}

1.1. Guide to real precision in the PARI interface
In fact, some L functions can be factorized algebraically by the \lfuninit call, e.g. the Dedekind zeta function of abelian fields, leading to much faster evaluations than the above upper bounds. In that case, the function returns a vector of costs as above for each individual function in the product actually evaluated:

```plaintext
? L = lfuncreate(polcyclo(5)); \ Dedekind zeta for $\mathbb{Q}(\zeta_5)$
? lfuncost(L, [100]) \ a priori cost
%2 = [11457, 582]

? L = lfuninit(L, [100]); \ actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]
```

The Dedekind function of this abelian quartic field is the product of four Dirichlet L-functions attached to the trivial character, a nontrivial real character and two complex conjugate characters. The nontrivial characters happen to have the same conductor (hence same evaluation costs), and correspond to two evaluations only since the two conjugate characters are evaluated simultaneously. For a total of three L-functions evaluations, which explains the three components above. Note that the actual cost is much lower than the a priori cost in this case.

\lfuncreate(obj)

This low-level routine creates Ldata structures, needed by \lfun functions, describing an L-function and its functional equation. We advise using a high-level constructor when one is available, see \??lfun, and this function accepts them:

```plaintext
? L = lfuncreate(1); \ Riemann zeta
? L = lfuncreate(5); \ Dirichlet $L$-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \ Dedekind zeta for $\mathbb{Q}(i)$
? L = lfuncreate(ellinit([0,1])); \ $L$-function of $E/\mathbb{Q}$: $y^2=x^3+1$
```

One can then use, e.g., \lfun(L,s) to directly evaluate the respective L-functions at s, or \lfuninit(L, [c,w,h]) to initialize computations in the rectangular box $\Re(s-c) <= w, \Im(s) <= h$.

We now describe the low-level interface, used to input nonbuilt-in L-functions. The input is now a 6 or 7 component vector $V = [a, a_{star}, V_{ga}, k, N, eps, poles]$, whose components are as follows:

- $V[1] = a$ encodes the Dirichlet series coefficients (a_n). The preferred format is a closure of arity 1: $n \rightarrow \text{vector}(n,i,a(i))$ giving the vector of the first n coefficients. The closure is allowed to return a vector of more than n coefficients (only the first n will be considered) or even less than n, in which case loss of accuracy will occur and a warning that $\#an$ is less than expected is issued. This allows to precompute and store a fixed large number of Dirichlet coefficients in a vector v and use the closure $n \rightarrow v$, which does not depend on n. As a shorthand for this latter case, you can input the vector v itself instead of the closure.

```plaintext
? z = lfuncreate([n->vector(n,i,1), 1, [0], 1, 1, 1, 1]); \ Riemann zeta
? lfun(z,2) - Pi^2/6
%2 = -5.877471754111437540 E-39
```

A second format is limited to L-functions affording an Euler product. It is a closure of arity 2 $(p,d) \rightarrow F(p)$ giving the local factor $L_p(X)$ at p as a rational function, to be evaluated at p^{-s} as in \direuler; d is set to $\logint(n,p) + 1$, where n is the total number of Dirichlet coefficients $(a_1, ..., a_n)$ that will be computed. In other words, the smallest integer d such that $p^d > n$. This parameter d allows to compute only part of L_p when p is large and L_p expensive to compute: any polynomial (or \t_SER) congruent to L_p modulo X^d is acceptable since only the coefficients of $X^0, ..., X^{d-1}$ are needed to expand the Dirichlet series. The closure can of course ignore this parameter.
One can describe separately the generic local factors coefficients and the bad local factors by setting \(\text{dir} = [F, \text{Lbad}], \) were \(\text{Lbad} = [p_1, L_{p_1}, \ldots, [p_k, L_{p_k}]] \), where \(F \) describes the generic local factors as above, except that when \(p = p_i \) for some \(i \leq k \), the coefficient \(a_p \) is directly set to \(L_{p_i} \) instead of calling \(F \).

Of course, in this case, \(\text{lfuncreate}(E) \) is preferable!

- \(V[2] = \text{astar} \) is the Dirichlet series coefficients of the dual function, encoded as a above. The sentinel values 0 and 1 may be used for the special cases where \(a = a^* \) and \(a = \overline{a}^* \), respectively.

- \(V[3] = \text{Vga} \) is the vector of \(\alpha_j \) such that the gamma factor of the \(L \)-function is equal to

\[
\mathcal{L}(s) = \pi^{-s/2} \Gamma(s/2) \Gamma(s) \prod_{j=1}^{r} \frac{1}{\Gamma(s-\alpha_j)}.\]

- \(V[4] = k \) is a positive integer \(k \). The functional equation relates values at \(s \) and \(k - s \). For instance, for an Artin \(L \)-series such as a Dedekind zeta function we have \(k = 1 \), for an elliptic curve \(k = 2 \), and for a modular form, \(k \) is its weight. For motivic \(L \)-functions, the motivic weight \(w \) is \(w = k - 1 \).

By default we assume that \(a_0 = O_{\epsilon}(a^{k_1 + \epsilon}) \), where \(k_1 = w \) and even \(k_1 = w/2 \) when the \(L \) function has no pole (Ramanujan-Petersson). If this is not the case, you can replace the \(k \) argument by a vector \([k, k_1]\), where \(k_1 \) is the upper bound you can assume.

- \(V[5] = N \) is the conductor, an integer \(N \geq 1 \), such that \(L(s) = N^{s/2} \Lambda(s) L(s) \) with \(\Lambda(s) \) as above.

- \(V[6] = \text{eps} \) is the root number \(\epsilon \), i.e., the complex number (usually of modulus 1) such that \(\Lambda(a, k - s) = \epsilon \Lambda(a^*, s) \).

The last optional component \(V[7] = \text{poles} \) encodes the poles of the \(L \) or \(\Lambda \)-functions, and is omitted if they have no poles. A polar part is given by a list of 2-component vectors \([\beta, P_\beta(x)]\), where \(\beta \) is a pole and the power series \(P_\beta(x) \) describes the attached polar part, such that \(L(s) - P_\beta(s - \beta) \) is holomorphic in a neighbourhood of \(\beta \). For instance \(P_\beta = r/x + O(1) \) for a simple pole at \(\beta \) or \(r_1/x^2 + r_2/x + O(1) \) for a double pole. The type of the list describing the polar part allows to distinguish between \(L \) and \(\Lambda \): a \(\text{t_VEC} \) is attached to \(L \), and a \(\text{t_COL} \) is attached to \(\Lambda \). Unless \(a = \overline{a}^* \) (coded by \text{astar} equal to 0 or 1), it is mandatory to specify the polar part of \(\Lambda \) rather than those of \(L \) since the poles of \(L^* \) cannot be inferred from the latter!

Whereas the functional equation allows to deduce the polar part of \(\Lambda^* \) from the polar part of \(\Lambda \).

Finally, if \(a = \overline{a}^* \), we allow a shortcut to describe the frequent situation where \(L \) has at most simple pole, at \(s = k \), with residue \(r \) a complex scalar: you may then input \(\text{poles} = r \). This value \(r \) can be set to 0 if unknown and it will be computed.

\textbf{When one component is not exact.} Alternatively, \text{obj} can be a closure of arity 0 returning the above vector to the current real precision. This is needed if some components are not available exactly but only through floating point approximations. The closure allows algorithms to recompute them to higher accuracy when needed. Compare
The accuracy lost in \(L_d2 \) is due to the root number being given to an insufficient precision. To see what happens try

```
? Ld3() = printf("prec needed: %ld bits",getlocalbitprec());Ld1()
? L3 = lfuncreate(Ld3);
prec needed: 64 bits
? z3 = lfun(L3,1/2+I*200)
prec needed: 384 bits
%16 = 0.559439251303166778569800756*I
```

\section*{\texttt{lfundiv}(\(L_1, L_2, \text{precision}\))}

Creates the \texttt{Ldata} structure (without initialization) corresponding to the quotient of the Dirichlet series \(L_1 \) and \(L_2 \) given by \(L_1 \) and \(L_2 \). Assume that \(v_z(L_1) \geq v_z(L_2) \) at all complex numbers \(z \): the construction may not create new poles, nor increase the order of existing ones.

\section*{\texttt{lfundual}(\(L, \text{precision}\))}

Creates the \texttt{Ldata} structure (without initialization) corresponding to the dual \(L \)-function \(L \) of \(L \). If \(k \) and \(\varepsilon \) are respectively the weight and root number of \(L \), then the following formula holds outside poles, up to numerical errors:

\[\Lambda(L, s) = \varepsilon \Lambda(L, k - s). \]

\section*{\texttt{lfunetaquo}(\(M\))}

Returns the \texttt{Ldata} structure attached to the \(L \) function attached to the modular form \(\tilde{f} : - - - \rightarrow \prod_{n=1}^{\infty} \eta(M(n)z)^{M(n)} \). It is currently assumed that \(f \) is a self-dual cuspidal form on \(\Gamma_0(N) \) for some \(N \). For instance, the \(L \)-function \(\sum \tau(n)n^{-s} \) attached to Ramanujan's \(\Delta \) function is encoded as follows

```
? L = lfunetaquo(Mat([[1,24]]));
? lfunan(L, 100) \\ first 100 values of tau(n)
```

For convenience, a \texttt{t_VEC} is also accepted instead of a factorization matrix with a single row.
1.1. Guide to real precision in the PARI interface

\texttt{lfunhardy(L, t, precision)}

Variant of the Hardy Z-function given by \(L \), used for plotting or locating zeros of \(L(k/2 + it) \) on the critical line. The precise definition is as follows: let \(k/2 \) be the center of the critical strip, \(d \) be the degree, \(\gamma a = (\alpha_j)_{j=1}^d \) given the gamma factors, and \(\varepsilon \) be the root number; we set \(s = k/2 + it = \rho e^{it} \) and \(2E = d(k/2 -1) + \Re(\sum_{1<j<d} \alpha_j) \). Assume first that \(\Lambda \) is self-dual, then the computed function at \(t \) is equal to

\[
Z(t) = \varepsilon^{-1/2} \Lambda(s). \rho^{-E} e^{4it/2},
\]

which is a real function of \(t \) vanishing exactly when \(L(k/2 + it) \) does on the critical line. The normalizing factor \(||s||^{-E} e^{4it/2} \) compensates the exponential decrease of \(\gamma_A(s) \) as \(t \to +\infty \) so that \(Z(t) \) 1. For non-self-dual \(\Lambda \), the definition is the same except we drop the \(\varepsilon^{-1/2} \) term (which is not well defined since it depends on the chosen dual sequence \(a^*(n) \)): \(Z(t) \) is still of the order of 1 and still vanishes where \(L(k/2 + it) \) does, but it needs no longer be real-valued.

\texttt{\p 19} \ \noindent \texttt{\% no need for large accuracy}

\texttt{? \lfunhardy(L, t)}

Using \texttt{lfuninit} is critical for this particular applications since thousands of values are computed. Make sure to initialize up to the maximal \(t \) needed: otherwise expect to see many warnings for unsufficient initialization and suffer major slowdowns.

\texttt{lfuninit(L, sdom, der, precision)}

Initialization function for all functions linked to the computation of the \(L \)-function \(L(s) \) encoded by \(L \), where \(s \) belongs to the rectangular domain \(\text{sdom} = [\text{center}, w, h] \) centered on the real axis, \(||\Re(s) - \text{center}|| < w \), \(||3(s)|| < h \), where all three components of \(\text{sdom} \) are real and \(w, h \) are nonnegative. \(\text{der} \) is the maximum order of derivation that will be used. The subdomain \([k/2, 0, h] \) on the critical line (up to height \(h \)) can be encoded as \([h] \) for brevity. The subdomain \([k/2, w, h] \) centered on the critical line can be encoded as \([w, h] \) for brevity.

The argument \(L \) is an \texttt{Lmath}, an \texttt{Ldata} or an \texttt{Linit}. See \texttt{??Ldata} and \texttt{??lfuncreate} for how to create it.

The height \(h \) of the domain is a crucial parameter: if you only need \(L(s) \) for real \(s \), set \(h \) to 0. The running time is roughly proportional to

\[
(B/d + \pi h/4)^{d/2 + 3} N^{1/2} ,
\]

where \(B \) is the default bit accuracy, \(d \) is the degree of the \(L \)-function, and \(N \) is the conductor (the exponent \(d/2 + 3 \) is reduced to \(d/2 + 2 \) when \(d = 1 \) and \(d = 2 \)). There is also a dependency on \(w \), which is less crucial, but make sure to use the smallest rectangular domain that you need.

\texttt{\% Riemann zeta}

\texttt{? L0 = lfuncreate(1); \ \% Riemann zeta}

\texttt{? L = lfuninit(L0, [1/2, 0, 100]); \ \% for zeta(1/2+it), |t| < 100}

\texttt{\% for zeta(1/2+it), |t| < 100}

\texttt{? lfun(L, 1/2 + I)}

\texttt{? L = lfuninit(L0, [100]); \ \% same as above !}
lfunlambda(L, s, D, precision)

Compute the completed L-function $\Lambda(s) = N^{s/2} \gamma(s) L(s)$, or if D is set, the derivative of order D at s. The parameter L is either an Lmath, an Ldata (created by `lfuncreate`), or an Linit (created by `lfuninit`), preferably the latter if many values are to be computed.

The result is given with absolute error less than $2^{-B} \| \gamma(s) N^{s/2} \|$, where $B = \text{realbitprecision}$.

lfunmf(mf, F, precision)

If F is a modular form in mf, output the L-functions corresponding to its $[\mathbb{Q}(F) : \mathbb{Q}(\chi)]$ complex embeddings, ready for use with the `lfun` package. If F is omitted, output the L-functions attached to all eigenforms in the new space; the result is a vector whose length is the number of Galois orbits of newforms. Each entry contains the vector of L-functions corresponding to the d complex embeddings of an orbit of dimension d over $\mathbb{Q}(\chi)$.

```plaintext
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]
? f = mfeigenbasis(mf)[2]; mfparams(f) \ orbit of dimension two
%2 = [35, 2, 1, y^2 - y - 4, t - 1]
? [L1,L2] = lfunmf(mf, f); \ Two L-functions
? lfun(L1,1)
%4 = 0.810184618494601617543387474558
? lfun(L2,1)
%5 = 0.4600763520489531454843589346419369804
? [ lfun(L1,1) | L <- concat(lfunmf(mf)) ]
%6 = [0.70291..., 0.81018..., 0.46007...]
```

The `concat` instruction concatenates the vectors corresponding to the various (here two) orbits, so that we obtain the vector of all the L-functions attached to eigenforms.

lfunmfspec(L, precision)

Let L be the L-function attached to a modular eigenform f of weight k, as given by `lfunmf`. In even weight, returns $[\text{ve}, \text{vo}, \text{om}, \text{op}]$, where ve (resp., vo) is the vector of even (resp., odd) periods of f and om and op the corresponding real numbers ω^- and ω^+ normalized in a noncanonical way. In odd weight $\text{om} = \text{op}$ and we return $[\text{v}, \text{op}]$ where v is the vector of all periods.

```plaintext
? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);
? [ve, vo, om, op] = lfunmfspec(L)
%2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],
    0.007415420929896130589006427745900287248,
    0.0050835121083933145481345893464149369804]
? [ lfun(L,1) | L <- concat(lfunmf(mf)) ]
%6 = [0.70291..., 0.81018..., 0.46007...]
```

lfunmul(L1, L2, precision)

Creates the Ldata structure (without initialization) corresponding to the product of the Dirichlet series given by $L1$ and $L2$.

lfunorderzero(L, m, precision)

Computes the order of the possible zero of the L-function at the center $k/2$ of the critical strip; return 0 if $L(k/2)$
does not vanish.

If \(m \) is given and has a nonnegative value, assumes the order is at most \(m \). Otherwise, the algorithm chooses a sensible default:

- if the \(L \) argument is an \(\text{Linit} \), assume that a multiple zero at \(s = k/2 \) has order less than or equal to the maximal allowed derivation order.
- else assume the order is less than 4.

You may explicitly increase this value using optional argument \(m \); this overrides the default value above. (Possibly forcing a recomputation of the \(\text{Linit} \)).

\(\text{lfunqf} \)(\(Q \), \text{precision})

Returns the LData structure attached to the \(\Theta \) function of the lattice attached to the primitive form proportional to the definite positive quadratic form \(Q \).

\[
\text{? } L = \text{lfunqf(matid(2))}; \\
\text{? } \text{lfunqf}(L, 2) \\
\text{%2} = \text{6.0268120396919401235462601927282855839} \\
\text{? } \text{lfun}(x^2+1, 2)*4 \\
\text{%3} = \text{6.0268120396919401235462601927282855839}
\]

The following computes the Madelung constant:

\[
\text{? } L1=\text{lfunqf(matdiagonal([1,1,1]))}; \\
\text{? } L2=\text{lfunqf(matdiagonal([4,1,1]))}; \\
\text{? } L3=\text{lfunqf(matdiagonal([4,4,1]))}; \\
\text{? } F(s)=6*\text{lfun}(L2,s)-12*\text{lfun}(L3,s)-\text{lfun}(L1,s)*(1-8/4^s); \\
\text{? } F(1/2) \\
\text{%5} = \text{-1.7475645946331821906362120355443974035}
\]

\(\text{lfunrootres} \)(\(\text{data} \), \text{precision})

Given the LData attached to an \(L \)-function (or the output of \(\text{lfunthetainit} \)), compute the root number and the residues.

The output is a 3-component vector \([[a_1, r_1], ..., [a_n, r_n], [b_1, R_1], ..., [b_m, R_m]], w] \), where \(r_i \) is the polar part of \(L(s) \) at \(a_i \), \(R_i \) is the polar part of \(\Lambda(s) \) at \(b_i \) or \([0, 0, r] \) if there is no pole, and \(w \) is the root number. In the present implementation,

- either the polar part must be completely known (and is then arbitrary): the function determines the root number,

\[
\text{? } L = \text{lfunnul}(1,1); \ \zeta^2 \\
\text{? } [r,R,w] = \text{lfunrootres}(L); \\
\text{? } r \ \ \text{single pole at 1, double} \\
\text{%3} = [[1, 1.\ldots]x^2 - 2 + 1.1544[\ldots]x^1 + O(x^0)] \\
\text{? } w \\
\text{%4} = 1 \\
\text{? } R \ \ \text{double pole at 0 and 1} \\
\text{%5} = [[1,\ldots], [0,\ldots]]~
\]

- or at most a single pole is allowed: the function computes both the root number and the residue (0 if no pole).

\(\text{lfunshift} \)(\(L, d, \text{flag}, \text{precision} \))

Creates the LData structure (without initialization) corresponding to the shift of \(L \) by \(d \), that is to the function \(L_d \) such that \(L_d(s) = L(s - d) \). If \(\text{flag} = 1 \), return the product \(LxL_d \) instead.
CyPari2 Documentation, Release 2.1.3

\[Z = lfuncreate(1); \ \backslash \ \text{zeta}(s) \]
\[L = lfunshift(Z,1); \ \backslash \ \text{zeta}(s-1) \]
\[\text{normlp(Vec(lfunlambda(L,s)-lfunlambda(L,3-s)))} \]
\%3 = 0.E-38 \ \text{\(\text{\text{'seriesprecision}} \)} \]
\[\text{lfun}(L,1) \]
\%4 = -0.50000000000000000000000000000000000000 \ \text{zeta}(0) \]
\[M = lfunshift(Z,1,1); \ \text{zeta}(s)\text{zeta}(s-1) \]
\[\text{normlp(Vec(lfunlambda(M,s)-lfunlambda(M,2-s)))} \]
\%6 = 2.350988701644575016 E-38 \ %7 = 1.6449340668482264364724151666460251892*x^-1+O(x^0) \]

\textbf{lfunsympow}(E, m)

Returns the Ldata structure attached to the \(L \) function attached to the \(m \)-th symmetric power of the elliptic curve \(E \) defined over the rationals.

\textbf{lfuntheta(data, t, m, precision)}

Compute the value of the \(m \)-th derivative at \(t \) of the theta function attached to the \(L \)-function given by data. data can be either the standard \(L \)-function data, or the output of \texttt{lfunthetainit}. The result is given with absolute error less than \(2^{-B} \), where \(B = \text{realbitprecision} \).

The theta function is defined by the formula \(\Theta(t) = \sum_{n > 1} a(n)K(nt/\sqrt(N)) \), where \(a(n) \) are the coefficients of the Dirichlet series, \(N \) is the conductor, and \(K \) is the inverse Mellin transform of the gamma product defined by the Vga component. Its Mellin transform is equal to \(\Lambda(s) - P(s) \), where \(\Lambda(s) \) is the completed \(L \)-function and the rational function \(P(s) \) its polar part. In particular, if the \(L \)-function is the \(L \)-function of a modular form \(f(\tau) = \sum_{n > 0} a(n)q^n \) with \(q = \exp(2\pi i\tau) \), we have \(\Theta(t) = 2(f(it/\sqrt(N)) - a(0)) \). Note that \(a(0) = -L(f,0) \) in this case.

\textbf{lfunthetacost}(L, tdom, m, precision)

This function estimates the cost of running \texttt{lfunthetainit}(L,tdom,m) at current bit precision. Returns the number of coefficients \(a_n \) that would be computed. This also estimates the cost of a subsequent evaluation \texttt{lfuntheta}, which must compute that many values of \texttt{gammamellininv} at the current bit precision. If \(L \) is already an \texttt{Linit}, then \texttt{tdom} and \texttt{m} are ignored and are best left omitted: we get an estimate of the cost of using that particular \texttt{Linit}.

? \backslash pb 1000
? L = lfuncreate(1); \ \text{\textbackslash \ Riemann \ zeta} \]
? lfunthetacost(L); \ \text{\textbackslash \ \text{cost \ for \ theta}(t), \ t \ \text{real} >= 1} \]
%1 = 15 \%
? lfunthetacost(L, 1 + I); \ \text{\textbackslash \ \text{cost \ for \ theta}(1+I). \ Domain \ error!} \%
*** \text{at top-level:} \ \text{lfunthetacost}(1,1+I) \%
*** \text{\textasciitilde\textasciitilde\textasciitilde} \%
*** \text{\texttt{lfunthetacost}: \ domain \ error \ in \ \texttt{lfunthetaneed}: \ arg \ \text{t} > 0.785} \%
? lfunthetacost(L, 1 + I/2) \ \text{\textbackslash \ \text{for \ theta}(1+I/2).} \%
%2 = 23 \%
? lfunthetacost(L, 1 + I/2, 10) \ \text{\textbackslash \ \text{for \ theta^4((10))(1+I/2).} \%
%3 = 24 \%
? lfunthetacost(L, [2, 1/10]) \ \text{\textbackslash \ \text{cost \ for \ theta}(t), \ |t| \ >= 2, \ |\text{arg}(t)| < 1/10} \%
%4 = 8 \%
? L = lfuncreate(ellinit([1,1])); \%
? lfunthetacost(L) \ \text{\textbackslash \ \text{for \ t} >= 1} \%
%6 = 2471

190 Chapter 1. Interface to the PARI library
\textbf{lfunthetainit}(L, tdom, m, precision)

Initialization function for evaluating the \(m\)-th derivative of theta functions with argument \(t\) in domain \(tdom\). By default (\(tdom\) omitted), \(t\) is real, \(t \geq 1\). Otherwise, \(tdom\) may be

- a positive real scalar \(\rho\): \(t\) is real, \(t \geq \rho\).
- a nonreal complex number: compute at this particular \(t\); this allows to compute \(\theta(z)\) for any complex \(z\) satisfying \(\|z\| \geq \|t\|\) and \(\|\arg z\| \leq \|\arg t\|\); we must have \(\|2 \arg z/d\| < \pi/2\), where \(d\) is the degree of the \(\Gamma\) factor.
- a pair \([\rho, \alpha]\): assume that \(\|t\| \geq \rho\) and \(\|\arg t\| \leq \alpha\); we must have \(\|2\alpha/d\| < \pi/2\), where \(d\) is the degree of the \(\Gamma\) factor.

\begin{verbatim}
? \p500
? L = lfuncreate(1); \\ Riemann zeta
? t = 1+I/2;
? lfuntheta(L, t); \\ direct computation
time = 30 ms.
? T = lfunthetainit(L, 1+I/2);
time = 30 ms.
? lfuntheta(T, t); \\ instantaneous
\end{verbatim}

The \(T\) structure would allow to quickly compute \(\theta(z)\) for any \(z\) in the cone delimited by \(t\) as explained above. On the other hand

\begin{verbatim}
? lfuntheta(T,I)
*** at top-level: lfuntheta(T,I)
*** ^--------------
*** lfuntheta: domain error in lfunthetaneed: arg t > 0.785398163397448
\end{verbatim}

The initialization is equivalent to

\begin{verbatim}
? lfunthetainit(L, [abs(t), arg(t)])
\end{verbatim}

\textbf{lfuntwist}(L, chi, precision)

Creates the Ldata structure (without initialization) corresponding to the twist of \(L\) by the primitive character attached to the Dirichlet character \(chi\). The conductor of the character must be coprime to the conductor of the \(L\)-function \(L\).

\textbf{lfunzeros}(L, lim, divz, precision)

\(lim\) being either a positive upper limit or a nonempty real interval, computes an ordered list of zeros of \(L(s)\) on the critical line up to the given upper limit or in the given interval. Use a naive algorithm which may miss some zeros: it assumes that two consecutive zeros at height \(T \geq 1\) differ at least by \(2\pi/\omega\), where

\[
\omega := \text{divz}.(d \log(T/2\pi) + d + 2 \log(N/(\pi/2)^d)).
\]

To use a finer search mesh, set \texttt{divz} to some integral value larger than the default \((= 8)\).

\begin{verbatim}
? lfunzeros(1, 30) \\ zeros of Riemann zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4
\end{verbatim}

The algorithm also assumes that all zeros are simple except possibly on the real axis at \(s = k/2\) and that there are no poles in the search interval. (The possible zero at \(s = k/2\) is repeated according to its multiplicity.)
If you pass an \texttt{Linit} to the function, the algorithm assumes that a multiple zero at $s = k/2$ has order less than or equal to the maximal derivation order allowed by the \texttt{Linit}. You may increase that value in the \texttt{Linit} but this is costly: only do it for zeros of low height or in \texttt{lfunorderzero} instead.

\texttt{lift}(x, v)

If v is omitted, \texttt{lift} lifts intmods from $\mathbb{Z}/n\mathbb{Z}$ in \mathbb{Z}, p-adics from \mathbb{Q}_p to \mathbb{Q} (as \texttt{truncate}), and \texttt{polmod}s to polynomials. Otherwise, \texttt{lift} only \texttt{polmod}s whose modulus has main variable v. \texttt{t_FFELT} are not lifted, nor are List elements: you may convert the latter to vectors first, or use \texttt{apply(lift, L)}. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

\begin{verbatim}
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x
\end{verbatim}

Lifts are performed recursively on an object components, but only by one level: once a \texttt{t_POLMOD} is lifted, the components of the result are not lifted further.

\begin{verbatim}
? lift(x * Mod(1,3) + Mod(2,3))
%4 = x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3))
%5 = y^2 + 3*x + 2
? lift(x * Mod(y,y^2+1) + Mod(2,3), 'x)
%6 = Mod(y, y^2 + 1)*x + Mod(Mod(2, 3), y^2 + 1)
? lift(%5, y)
%7 = y^2 + 3*x + Mod(2, 3)
\end{verbatim}

To recursively lift all components not only by one level, but as long as possible, use \texttt{liftall}. To lift only \texttt{t_INTMOD} s and \texttt{t_PADIC} s components, use \texttt{liftint}. To lift only \texttt{t_POLMOD} s components, use \texttt{liftpol}.

Finally, \texttt{centerlift} allows to lift \texttt{t_INTMOD} s and \texttt{t_PADIC} s using centered residues (lift of smallest absolute value).

\texttt{liftall}(x)

Recursively lift all components of x from $\mathbb{Z}/n\mathbb{Z}$ to \mathbb{Z}, from \mathbb{Q}_p to \mathbb{Q} (as \texttt{truncate}), and \texttt{polmod}s to polynomials. \texttt{t_FFELT} are not lifted, nor are List elements: you may convert the latter to vectors first, or use \texttt{apply(liftall, L)}.

More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

\begin{verbatim}
? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y^2 + 3*x + 2*z
\end{verbatim}

\texttt{liftint}(x)

Recursively lift all components of x from $\mathbb{Z}/n\mathbb{Z}$ to \mathbb{Z} and from \mathbb{Q}_p to \mathbb{Q} (as \texttt{truncate}). \texttt{t_FFELT} are not lifted, nor are List elements: you may convert the latter to vectors first, or use \texttt{apply(liftint, L)}.

More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

\begin{verbatim}
? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2
? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
\end{verbatim}
\textbf{liftpol}(x)

Recursively lift all components of \(x\) which are polmods to polynomials. \texttt{t_FFELT} are not lifted, nor are List elements: you may convert the latter to vectors first, or use \texttt{apply(liftpol,L)}. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

\begin{verbatim}
? liftpol(x * (1 + O(3)) + Mod(2,3))
\%1 = (1 + O(3))*x + Mod(2, 3)
? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
\%2 = y*x + Mod(2, 3)*z
\end{verbatim}

\textbf{limitnum}(expr, alpha, precision)

Lagrange-Zagier numerical extrapolation of \(expr\), corresponding to a sequence \(u_n\), either given by a closure \(n->u(n)\). I.e., assuming that \(u_n\) tends to a finite limit \(\ell\), try to determine \(\ell\).

The routine assume that \(u_n\) has an asymptotic expansion in \(n^{-\alpha}\):

\[u_n = \ell + \sum_{i=1} a_i n^{-i\alpha} \]

for some \(a_i\). It is purely numerical and heuristic, thus may or may not work on your examples. The expression will be evaluated for \(n = 1, 2, \ldots, N\) for an \(N = O(B)\) at a bit accuracy bounded by \(1.612B\).

\begin{verbatim}
? limitnum(n -> n*sin(1/n))
\%1 = 1.0000000000000000000000000000000000000

? limitnum(n -> (1+1/n)^n) - exp(1)
\%2 = 0.E-37

? limitnum(n -> 2^(4*n+1)*(n!)^4 / (2*n)! /(2*n+1)!) - Pi
\%3 = 0.E -37
\end{verbatim}

It is not mandatory to specify \(\alpha\) when the \(u_n\) have an asymptotic expansion in \(n^{-1}\). However, if the series in \(n^{-1}\) is lacunary, specifying \(\alpha\) allows faster computation:

\begin{verbatim}
? \p1000
? limitnum(n->(1+1/n^(7/2))^(n^(7/2))) - exp(1)
\time = lmin, 44,681 ms.
\%4 = 0.E-1001

? limitnum(n->(1+1/n*(n^2))^(n/2)) - exp(1)
\time = 982 ms.
\%5 = 4.13[...] E-12

? limitnum(n->(1+1/n^3)^n) - exp(1)
\time = 16,745 ms.
\%6 = 0.E-57

? limitnum(n->1/n^2)^n) - exp(1)
\time = 105 ms.
\%7 = 0.E-57
\end{verbatim}

When \(u_n\) has an asymptotic expansion in \(n^{-\alpha}\) with \(\alpha\) not an integer, leaving \(\alpha\) unspecified will bring an inexact limit. Giving a satisfying optional argument improves precision; the program runs faster when the optional argument gives non lacunary series.

\begin{verbatim}
? \p50
? limitnum(n->(1+1/n^7/2)^(n^(7/2)))/exp(1)
\time = 982 ms.
\%6 = 4.13[...] E-12

? limitnum(n->(1+1/n^(7/2))^n) - exp(1)
\time = 16,745 ms.
\%7 = 0.E-57

? limitnum(n->(1+1/n^(7/2))^n) - exp(1)
\time = 105 ms.
\%8 = 0.E-57
\end{verbatim}

1.1. Guide to real precision in the PARI interface
Alternatively, u_n may be given by a closure $N : \cdots \rightarrow [u_1, \ldots, u_N]$ which can often be programmed in a more efficient way, for instance when u_{n+1} is a simple function of the preceding terms:

```plaintext
? \p2000
? \limitnum{n \to 2^\left(4^n+1\right) \cdot \left(n!\right)^4 / \left(2^n \cdot \left(2^n+1\right)\right) - \Pi
```

All sums and recursions can be handled in the same way. In the above it is essential that u_n be defined as a closure because it must be evaluated at a higher precision than the one expected for the limit. Make sure that the closure does not depend on a global variable which would be computed at a priori fixed accuracy. For instance, precomputing $v_1 = 8.0/3$ first and using v_1 in vu above would be wrong because the resulting vector of values will use the accuracy of $v1$ instead of the ambient accuracy at which `limitnum` will call it.

Alternatively, and more clumsily, u_n may be given by a vector of values: it must be long and precise enough for the extrapolation to make sense. Let B be the current realbitprecision, the vector length must be at least $1.102B$ and the values computed with bit accuracy $1.612B$.

```plaintext
? \limitnum{\text{vector}(10,n, (1+1/n)^n)}
```

Because of the above problems, the preferred format is thus a closure, given either a single value or the vector of values $[u_1, \ldots, u_N]$. The function distinguishes between the two formats by evaluating the closure at $N! = 1$ and 1 and checking whether it yields vectors of respective length N and 1 or not.

Warning. The expression is evaluated for $n = 1, 2, \ldots, N$ for an $N = O(B)$ if the current bit accuracy is B. If it is not defined for one of these values, translate or rescale accordingly:

```plaintext
? \limitnum{n \to \log(1-1/n)) \ \ \text{\textbackslash can't evaluate at n = 1 !}
```
We conclude with a complicated example. Since the function is heuristic, it is advisable to check whether it produces the same limit for $u_n, u_{2n}, ... u_{kn}$ for a suitable small multiplier k. The following function implements the recursion for the Motzkin numbers M_n which count the number of ways to draw non-intersecting chords between n points on a circle:

$$M_n = M_{n-1} + \sum_{i<n} M_i M_{n-2-i} = ((n + 1)M_{n-1} + (3n - 3)M_{n-2})/(n + 2).$$

It is known that $M_n (3^{n+1})/(\sqrt{12\pi n^3})$.

```
\[
{ \text{vM}(N, k = 1) = }
\{ \text{my(q = k*N, V);}
  \text{if (q == 1, return ([1/3]));}
  \text{V = vector(q); V[1] = V[2] = 1;}
  \text{for(n = 2, q - 1,}
    \text{V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));}
  \text{f = (n -> 3^n / n^(3/2));}
  \text{return (vector(N, n, V[n*k] / f(n*k)));}
\}
?
\text{limitnum(vM) - 3/sqrt(12*Pi) \ \ \ complete junk}
%1 = 35540390.753542730306769615276452646
?
\text{limitnum(N->vM(N,5)) - 3/sqrt(12*Pi) \ \ M_{5n}: better}
%2 = 4.130710262178469860 E-25
?
\text{limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \ \ M_{10n}: perfect}
%3 = 0.E-38
?
\text{\p2000}
?
\text{limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \ \ also at high accuracy}
\text{time = 409 ms.}
%4 = 1.1048895470044788191 E-2004
```

In difficult cases such as the above a multiplier of 5 to 10 is usually sufficient. The above example is typical: a good multiplier usually remains sufficient when the requested precision increases!

lindep(v, flag)

finds a small nontrivial integral linear combination between components of v. If none can be found return an empty vector.

If v is a vector with real/complex entries we use a floating point (variable precision) LLL algorithm. If $flag = 0$ the accuracy is chosen internally using a crude heuristic. If $flag > 0$ the computation is done with an accuracy of $flag$ decimal digits. To get meaningful results in the latter case, the parameter $flag$ should be smaller than the number of correct decimal digits in the input.

```
? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~
```

If v is p-adic, $flag$ is ignored and the algorithm LLL-reduces a suitable (dual) lattice.
If \(v \) is a matrix (or a vector of column vectors, or a vector of row vectors), \(\text{flag} \) is ignored and the function returns a non trivial kernel vector if one exists, else an empty vector.

\[
\begin{align*}
? \text{lindep}([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)]) \\
%2 &= [1, -2]~
\end{align*}
\]

If \(v \) contains polynomials or power series over some base field, finds a linear relation with coefficients in the field.

\[
\begin{align*}
? \text{lindep}([[1,0], [2,0]]) \\
%4 &= [2, -1]~
\end{align*}
\]

For better control, it is preferable to use \(t_\text{POL} \) rather than \(t_\text{SER} \) in the input, otherwise one gets a linear combination which is \(t \)-adically small, but not necessarily 0. Indeed, power series are first converted to the minimal absolute accuracy occurring among the entries of \(v \) (which can cause some coefficients to be ignored), then truncated to polynomials:

\[
\begin{align*}
? v = [t^2+O(t^4), 1+O(t^2)]; L=\text{lindep}(v) \\
%1 &= [1, 0]~
\end{align*}
\]

\[
\begin{align*}
? v * L \\
%2 &= t^2+O(t^4) \ \ \text{small but not } 0
\end{align*}
\]

listinsert\((x, n, _\text{arg3})\)

Inserts the object \(x \) at position \(n \) in \(L \) (which must be of type \(t_\text{LIST} \)). This has complexity \(O(#L - n + 1) \); all the remaining elements of \(list \) (from position \(n + 1 \) onwards) are shifted to the right. If \(n \) is greater than the list length, appends \(x \).

\[
\begin{align*}
? L = \text{List}([1,2,3]); \\
? \text{listput}(-L, 4); L \ \ \text{listput inserts at end} \\
%4 &= \text{List}([1, 2, 3, 4]) \\
? \text{listinsert}(-L, 5, 1); L \ \ \text{insert at position 1} \\
%5 &= \text{List}([5, 1, 2, 3, 4]) \\
? \text{listinsert}(-L, 6, 1000); L \ \ \text{trying to insert beyond position #L} \\
%6 &= \text{List}([5, 1, 2, 3, 4, 6]) \ \ \text{... inserts at the end}
\end{align*}
\]

Note the \(~ L \): this means that the function is called with a \textit{reference} to \(L \) and changes \(L \) in place.

listkill\(_{_\text{arg1}}\)

Obsolete, retained for backward compatibility. Just use \(L = \text{List}() \) instead of \(\text{listkill}(L) \). In most cases, you won’t even need that, e.g. local variables are automatically cleared when a user function returns.

listpop\((n, _\text{arg2})\)

Removes the \(n \)-th element of the list \(list \) (which must be of type \(t_\text{LIST} \)). If \(n \) is omitted, or greater than the list current length, removes the last element. If the list is already empty, do nothing. This runs in time \(O(#L - n + 1) \).

\[
\begin{align*}
? L = \text{List}([1,2,3,4]); \\
? \text{listpop}(-L); L \ \ \text{remove last entry} \\
%2 &= \text{List}([1, 2, 3])
\end{align*}
\]
listpop(\$L, 1); \ remove first entry
%3 = List([2, 3])

Note the \$L: this means that the function is called with a reference to \$L and changes \$L in place.

listput(x, n, _arg3)

Sets the \$n-th element of the list \$list (which must be of type t_LIST) equal to \$x. If \$n is omitted, or greater than the list length, appends \$x. The function returns the inserted element.

? \$L = List();
? listput(\$L, 1)
%2 = 1
? listput(\$L, 2)
%3 = 2
? \$L
%4 = List([1, 2])

Note the \$L: this means that the function is called with a reference to \$L and changes \$L in place.

You may put an element into an occupied cell (not changing the list length), but it is easier to use the standard \$list[n] = \$x construct.

? listput(\$L, 3, 1) \ insert at position 1
%5 = 3
? \$L
%6 = List([3, 2])
? \$L[2] = 4 \ simpler
%7 = List([3, 4])
? \$L[10] = 1 \ can't insert beyond the end of the list
*** at top-level: \$L[10]=1
*** ^-----
*** nonexistent component: index > 2
? listput(\$L, 1, 10) \ but listput can
%8 = 1
? \$L
%9 = List([3, 2, 1])

This function runs in time \(O(#L)\) in the worst case (when the list must be reallocated), but in time \(O(1)\) on average: any number of successive listput s run in time \(O(#L)\), where \(#L\) denotes the list final length.

listsort(flag, _arg2)

Sorts the t_LIST list in place, with respect to the (somewhat arbitrary) universal comparison function cmp. In particular, the ordering is the same as for sets and setsearch can be used on a sorted list. No value is returned. If flag is nonzero, suppresses all repeated coefficients.

? \$L = List([1, 2, 4, 1, 3, -1]); listsort(\$L); \$L
%1 = List([-1, 1, 1, 2, 3, 4])
? setsearch(\$L, 4)
%2 = 6
? setsearch(\$L, -2)
%3 = 0
? listsort(\$L, 1); \ remove duplicates
%4 = List([-1, 1, 2, 3, 4])
Note the ~ L: this means that the function is called with a reference to L and changes L in place: this is faster than the vecsort command since the list is sorted in place and we avoid unnecessary copies.

```plaintext
? v = vector(100,i,random); L = List(v);
? for(i=1,10^4, vecsort(v))
  time = 162 ms.
? for(i=1,10^4, vecsort(L))
  time = 162 ms.
? for(i=1,10^4, listsort(~L))
  time = 63 ms.
```

lngamma(x, precision)

Principal branch of the logarithm of the gamma function of x. This function is analytic on the complex plane with nonpositive integers removed, and can have much larger arguments than gamma itself.

For x a power series such that x(0) is not a pole of gamma, compute the Taylor expansion. (PARI only knows about regular power series and can’t include logarithmic terms.)

```plaintext
? lngamma(1+x+O(x^2))
%1 = -0.577215664901532860665129008240243104^x + O(x^2)
? lngamma(x+O(x^2))
 *** at top-level: lngamma(x+O(x^2))
 *** ^--------------
 *** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
 *** lngamma: Warning: normalizing a series with 0 leading term.
 *** at top-level: lngamma(-1+x+O(x^2))
 *** ^--------------
 *** lngamma: domain error in intformal: residue(series, pole) != 0
```

localbitprec(p)

Set the real precision to p bits in the dynamic scope. All computations are performed as if realbitprecision was p: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact data use p bits, as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or intnum). But realbitprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In effect, this is similar to

```plaintext
my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);
```

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs, realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as expected. Beware that localbitprec follows the semantic of local, not my: a subroutine called from localbitprec scope uses the local accuracy:

```plaintext
? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
```
Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a 32-bit machine) so we get 1024 instead of the expected 1000; localbitprec bounds the relative error exactly as specified in functions that support that granularity (e.g. lfun), and rounded to the next multiple of 64 (resp. 32) everywhere else.

Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of localbitprec and localprec. Think about the realprecision and realbitprecision defaults as interactive commands for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising results:

```plaintext
? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
  realprecision = 1001 significant digits (1000 digits displayed)
```

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And when we leave the localprec scope, realprecision only regains precedence, it is not “restored” to the original value.

localprec(p)

Set the real precision to p in the dynamic scope and return p. All computations are performed as if realprecision was p: transcendental constants (e.g. Pi) and conversions from exact to floating point inexact data use p decimal digits, as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or intnum). But realprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In effect, this is similar to

```plaintext
my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);
```

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs, realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected. Beware that localprec follows the semantic of local, not my: a subroutine called from localprec scope uses the local accuracy:

```plaintext
? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19
```

Warning. Changing realprecision itself in programs is now deprecated in favor of localprec. Think about the realprecision default as an interactive command for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising results:

```plaintext
? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793239
? \p
  realprecision = 115 significant digits (100 digits displayed)
```
Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And when we leave localprec scope, realprecision only regains precedence, it is not “restored” to the original value.

log(x, precision)

Principal branch of the natural logarithm of \(x \in \mathbb{C}^* \), i.e. such that \(\Im(\log(x)) \in]-\pi, \pi[\). The branch cut lies along the negative real axis, continuous with quadrant 2, i.e. such that \(\lim_{b \to 0^+} \log(a + bi) = \log a \) for \(a \in \mathbb{R}^* \). The result is complex (with imaginary part equal to \(\pi \)) if \(x \in \mathbb{R} \) and \(x < 0 \). In general, the algorithm uses the formula

\[
\log(x) (\pi)/(2 \text{agm}(1, 4/s)) - m \log 2,
\]

if \(s = x 2^m \) is large enough. (The result is exact to \(B \) bits provided \(s > 2^{B/2} \).) At low accuracies, the series expansion near 1 is used.

\(p \)-adic arguments are also accepted for \(x \), with the convention that \(\log(p) = 0 \). Hence in particular \(\exp(\log(x))/x \) is not in general equal to 1 but to a \((p - 1)\)-th root of unity (or 1 if \(p = 2 \)) times a power of \(p \).

log1p(x, precision)

Return \(\log(1 + x) \), computed in a way that is also accurate when the real part of \(x \) is near 0. This is the reciprocal function of \(\expm1(x) = \exp(x) - 1 \).

```
? default(realprecision, 10000); x = Pi*1e-100;
? (expm1(log1p(x)) - x) / x
%2 = -7.668242895059371866 E-10019
? (log1p(expm1(x)) - x) / x
%3 = -7.668242895059371866 E-10019
```

When \(x \) is small, this function is both faster and more accurate than \(\log(1 + x) \):

```
? \p38
? x = 1e-20;
? localprec(100); c = log1p(x); \\ reference point
? a = log1p(x); abs((a - c)/c)
%6 = 0.E-38
? b = log(1+x); abs((b - c)/c) \ \ slightly less accurate
%7 = 1.5930919111324522770 E-38
? for (i=1,10^5,log1p(x))
time = 81 ms.
? for (i=1,10^5,log(1+x))
time = 100 ms. \ \ slower, too
```

logint(x, b, z)

Return the largest integer \(e \) so that \(b^e \leq x \), where the parameters \(b > 1 \) and \(x > 0 \) are both integers. If the parameter \(z \) is present, set it to \(b^e \).

```
? logint(1000, 2)
%1 = 9
? 2^%9
%2 = 512
? logint(1000, 2, &z)
%3 = 9
? z
%4 = 512
```

The number of digits used to write \(b \) in base \(x \) is \(1 + \logint(x,b) \):
This function may conveniently replace

\[
\text{floor}\left(\frac{\log(x)}{\log(b)} \right)
\]

which may not give the correct answer since PARI does not guarantee exact rounding.

mapdelete(x, _arg2)

Removes \(x \) from the domain of the map \(M \).

\[
\begin{align*}
? \ M = \text{Map}\left(["a",1; \ "b",3; \ "c",7]\right); \\
? \ \text{mapdelete}(M,"b"); \\
? \ \text{Mat}(M) \\
\end{align*}
\]

\[
\begin{align*}
["a" \ 1] \\
["c" \ 7]
\end{align*}
\]

mapget(M, x)

Returns the image of \(x \) by the map \(M \).

\[
\begin{align*}
? \ M=\text{Map}\left(["a",23;\ "b",43]\right); \\
? \ \text{mapget}(M,"a") \\
\%2 = 23 \\
? \ \text{mapget}(M,"b") \\
\%3 = 43
\end{align*}
\]

Raises an exception when the key \(x \) is not present in \(M \).

\[
? \ \text{mapget}(M,"c")
\]

```
*** at top-level: \text{mapget}(M,"c")
*** ^--------------
*** \text{mapget}: nonexistent component in mapget: index not in map
```

mapisdefined(M, x, z)

Returns true (1) if \(x \) has an image by the map \(M \), false (0) otherwise. If \(z \) is present, set \(z \) to the image of \(x \), if it exists.

\[
\begin{align*}
? \ M1 = \text{Map}(\left[[1, 10; \ 2, 20]\right]); \\
? \ \text{mapisdefined}(M1,3) \\
\%1 = 0 \\
? \ \text{mapisdefined}(M1, 1, &z) \\
\%2 = 1 \\
? \ z \\
\%3 = 10
\end{align*}
\]

\[
\begin{align*}
? \ M2 = \text{Map}(); \ N = 19; \\
? \ \text{for} \ (\text{a}=0, \ N-1, \ \text{mapput}(M2, \ a^3\%N, \ a)) \\
\text{for} \ (\text{a}=0, \ N-1, \\
\text{if} \ (\text{mapisdefined}(M2, \ a, &b),
\end{align*}
\]
printf("%d is the cube of %d mod %d\n",a,b,N));}

0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19

\textbf{mapput}(x, y, _\texttt{arg} 3)

Associates x to y in the map M. The value y can be retrieved with \texttt{mapget}.

\begin{verbatim}
? M = Map();
? mapput(M, "foo", 23);
? mapput(M, 7718, "bill");
? mapget(M, "foo")
%4 = 23
? mapget(M, 7718)
%5 = "bill"
? Vec(M) \&\& keys
%6 = [7718, "foo"]
? Mat(M)
%7 =
[7718 "bill"]
["foo" 23]
\end{verbatim}

\textbf{matadjoint}(M, flag)

Adjoint matrix of M, i.e. a matrix N of cofactors of M, satisfying $M * N = \det(M) * \text{Id}$. M must be a (not necessarily invertible) square matrix of dimension n. If \texttt{flag} is 0 or omitted, we try to use Leverrier-Faddeev’s algorithm, which assumes that $n!$ invertible. If it fails or $\texttt{flag} = 1$, compute $T = \text{charpoly}(M)$ independently first and return $(-1)^{n-1}(T(x) - T(0))/x$ evaluated at M.

\begin{verbatim}
? a = [1,2,3;3,4,5;6,7,8] * Mod(1,4);
? matadjoint(a)
%2 =
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]
[Mod(2, 4) Mod(2, 4) Mod(0, 4)]
[Mod(1, 4) Mod(1, 4) Mod(2, 4)]
\end{verbatim}

Both algorithms use $O(n^4)$ operations in the base ring. Over a field, they are usually slower than computing the characteristic polynomial or the inverse of M directly.

\textbf{matalgtobasis}(nf, x)

This function is deprecated, use \texttt{apply}.

nf being a number field in \texttt{nfinit} format, and x a (row or column) vector or matrix, apply \texttt{nfalgtobasis} to each entry of x.

\textbf{matbasistoalg}(nf, x)

This function is deprecated, use \texttt{apply}.

202 Chapter 1. Interface to the PARI library
nf being a number field in nfinit format, and \(x \) a (row or column) vector or matrix, apply nfbasistoalg to each entry of \(x \).

matcompanion(\(x \))

The left companion matrix to the nonzero polynomial \(x \).

matconcat(\(v \))

Returns a t_MAT built from the entries of \(v \), which may be a t_VEC (concatenate horizontally), a t_COL (concatenate vertically), or a t_MAT (concatenate vertically each column, and concatenate vertically the resulting matrices). The entries of \(v \) are always considered as matrices: they can themselves be t_VEC (seen as a row matrix), a t_COL (seen as a column matrix), a t_MAT, or a scalar (seen as an 1x1 matrix).

```pари
? A=[1,2;3,4]; B=[5,6]~; C=[7,8]; D=9;
? matconcat([A, B]) \ horizontal
%1 =
[1 2 5]
[3 4 6]
? matconcat([A, C]~) \ vertical
%2 =
[1 2]
[3 4]
[7 8]
? matconcat([A, B; C, D]) \ block matrix
%3 =
[1 2 5]
[3 4 6]
[7 8 9]
```

If the dimensions of the entries to concatenate do not match up, the above rules are extended as follows:

- each entry \(v_{i,j} \) of \(v \) has a natural length and height: 1x1 for a scalar, 1xn for a t_VEC of length \(n \), nx1 for a t_COL, m\(\times \)n for an m\(\times \)n t_MAT
- let \(H_i \) be the maximum over \(j \) of the lengths of the \(v_{i,j} \), let \(L_j \) be the maximum over \(i \) of the heights of the \(v_{i,j} \). The dimensions of the \((i,j) \)-th block in the concatenated matrix are \(H_i \times L_j \).
- a scalar \(s = v_{i,j} \) is considered as \(s \) times an identity matrix of the block dimension \(\min(H_i, L_j) \)
- blocks are extended by 0 columns on the right and 0 rows at the bottom, as needed.

```pари
? matconcat([[1, [2,3]~], [4,5,6]~]) \ horizontal
%4 =
[1 2 4]
[0 3 5]
[0 0 6]
? matconcat([[1, [2,3], [4,5,6]~]) \ vertical
%5 =
[1 0 0]
```

(continues on next page)
\[
\begin{bmatrix}
2 & 3 & 0 \\
4 & 5 & 6
\end{bmatrix}
\]

? matconcat([B, C; A, D]) \ \ block matrix
%6 =
[5 0 7 8]
[6 0 0 0]
[1 2 9 0]
[3 4 0 9]

? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \ \ block diagonal
%7 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]

\textbf{matdet}\ (x, \textit{flag})

Determinant of the square matrix \(x\).

If \textit{flag} = 0, uses an appropriate algorithm depending on the coefficients:

- integer entries: modular method due to Dixon, Pernet and Stein.
- real or \(p\)-adic entries: classical Gaussian elimination using maximal pivot.
- intmod entries: classical Gaussian elimination using first nonzero pivot.
- other cases: Gauss-Bareiss.

If \textit{flag} = 1, uses classical Gaussian elimination with appropriate pivoting strategy (maximal pivot for real or \(p\)-adic coefficients). This is usually worse than the default.

\textbf{matdetint}\ (B)

Let \(B\) be an \(m \times n\) matrix with integer coefficients. The determinant \(D\) of the lattice generated by the columns of \(B\) is the square root of \(\det(B^T B)\) if \(B\) has maximal rank \(m\), and 0 otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive multiple of \(D\). When \(B\) is square, the function actually returns \(D = \| \det B \|\).

This function is useful in conjunction with \texttt{mathnfmod}, which needs to know such a multiple. If the rank is maximal but the matrix is nonsquare, you can obtain \(D\) exactly using

\[
\texttt{matdet(mathnfmod(B, matdetint(B)))}
\]

Note that as soon as one of the dimensions gets large (\(m\) or \(n\) is larger than 20, say), it will often be much faster to use \texttt{mathnf(B, 1)} or \texttt{mathnf(B, 4)} directly.
\textbf{matdetmod}(x, d)

Given a matrix \(x\) with \texttt{t_INT} entries and \(d\) an arbitrary positive integer, return the determinant of \(x\) modulo \(d\).

\begin{verbatim}
? A = [4,2,3; 4,5,6; 7,8,9]
? matdetmod(A,27)
%2 = 9
\end{verbatim}

Note that using the generic function \texttt{matdet} on a matrix with \texttt{t_INTMOD} entries uses Gaussian reduction and will fail in general when the modulus is not prime.

\begin{verbatim}
? matdet(A * Mod(1,27))
*** at top-level: matdet(A*Mod(1,27))
*** ^------------------
*** matdet: impossible inverse in Fl_inv: Mod(3, 27).
\end{verbatim}

\textbf{matdiagonal}(x)

\(x\) being a vector, creates the diagonal matrix whose diagonal entries are those of \(x\).

\begin{verbatim}
? matdiagonal([1,2,3]);
%1 =
[1 0 0]
[0 2 0]
[0 0 3]
\end{verbatim}

Block diagonal matrices are easily created using \texttt{matconcat}:

\begin{verbatim}
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
\end{verbatim}

\textbf{mateigen}(x, flag, precision)

Returns the (complex) eigenvectors of \(x\) as columns of a matrix. If \texttt{flag} = 1, return \([L, H]\), where \(L\) contains the eigenvalues and \(H\) the corresponding eigenvectors; multiple eigenvalues are repeated according to the eigenspace dimension (which may be less than the eigenvalue multiplicity in the characteristic polynomial).

This function first computes the characteristic polynomial of \(x\) and approximates its complex roots (\(\lambda_i\)), then tries to compute the eigenspaces as kernels of the \(x - \lambda_i\). This algorithm is ill-conditioned and is likely to miss kernel vectors if some roots of the characteristic polynomial are close, in particular if it has multiple roots.

\begin{verbatim}
? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]
\end{verbatim}
\[
\begin{bmatrix}
1 & 1 \\
\end{bmatrix}
\]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 = [-1/2 2/5]
\[
\begin{bmatrix}
1 & 1 \\
\end{bmatrix}
\]
? A * H == H * matdiagonal(L)
%5 = 1

For symmetric matrices, use \texttt{qfjacobi} instead; for Hermitian matrices, compute

\begin{verbatim}
A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);
\end{verbatim}

and apply \texttt{qfjacobi} to \(y\).

\textbf{matfrobenius}(M, flag, v)

Returns the Frobenius form of the square matrix \(M\). If \(\texttt{flag} = 1\), returns only the elementary divisors as a vector of polynomials in the variable \(v\). If \(\texttt{flag} = 2\), returns a two-components vector \([F,B]\) where \(F\) is the Frobenius form and \(B\) is the basis change so that \(M = B^{-1}FB\).

\textbf{mathess}(x)

Returns a matrix similar to the square matrix \(x\), which is in upper Hessenberg form (zero entries below the first subdiagonal).

\textbf{mathilbert}(n)

\(x\) being a \texttt{long}, creates the Hilbert matrix of order \(x\), i.e. the matrix whose coefficient \((i; math;j)\) is \(1/(i+j-1)\).

\textbf{mathnf}(M, flag)

Let \(R\) be a Euclidean ring, equal to \(\mathbb{Z}\) or to \(K[X]\) for some field \(K\). If \(M\) is a (not necessarily square) matrix with entries in \(R\), this routine finds the upper triangular Hermite normal form of \(M\). If the rank of \(M\) is equal to its number of rows, this is a square matrix. In general, the columns of the result form a basis of the \(R\)-module spanned by the columns of \(M\).

The values of \(\texttt{flag}\) are:

- 0 (default): only return the Hermite normal form \(H\)
- 1 (complete output): return \([H, U]\), where \(H\) is the Hermite normal form of \(M\), and \(U\) is a transformation matrix such that \(MU = [0|H]\). The matrix \(U\) belongs to \(GL(R)\). When \(M\) has a large kernel, the entries of \(U\) are in general huge.

For these two values, we use a naive algorithm, which behaves well in small dimension only. Larger values correspond to different algorithms, are restricted to \texttt{integer} matrices, and all output the unimodular matrix \(U\). From now on all matrices have integral entries.

- 4, returns \([H, U]\) as in “complete output” above, using a variant of LLL reduction along the way. The matrix \(U\) is provably small in the \(L_2\) sense, and often close to optimal; but the reduction is in general slow, although provably polynomial-time.
If flag = 5, uses Batut’s algorithm and output \([H, U, P]\), such that \(H\) and \(U\) are as before and \(P\) is a permutation of the rows such that \(P\) applied to \(MU\) gives \(H\). This is in general faster than flag = 4 but the matrix \(U\) is usually worse; it is heuristically smaller than with the default algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say), flag = 4 will be fastest. When \(M\) has maximal rank, then

\[
H = \text{mathnfmod}(M, \text{matdetint}(M))
\]

will be even faster. You can then recover \(U\) as \(M^{-1}H\).

```pari
? M = matrix(3,4,i,j,random([-5,5]));
? [H,U] = mathnf(M, 1);
? U
\%3 =
[0 5 3 2]
[0 3 1 1]
[1 0 0 0]
? H
\%5 =
[19 9 7]
[0 9 1]
[0 0 1]
? M*U
\%6 =
[0 19 9 7]
[0 0 9 1]
[0 0 0 1]
```

For convenience, \(M\) is allowed to be a t_VEC, which is then automatically converted to a t_MAT, as per the Mat function. For instance to solve the generalized extended gcd problem, one may use

```pari
? v = [116085838, 181081878, 314252913,10346840];
? [H,U] = mathnf(v, 1);
? U
\%2 =
[103 -603 15 -88]
```

(continues on next page)
This also allows to input a matrix as a \texttt{tVEC} of \texttt{tCOL}s of the same length (which \texttt{Mat} would concatenate to the \texttt{tMAT} having those columns):

\begin{verbatim}
? v = [[1,0,4]~, [3,3,4]~, [0,-4,-5]~]; mathnf(v)
%1 = [47 32 12]

[0 1 0]
[0 0 1]
\end{verbatim}

\texttt{mathnfmod}(x, d)

If \(x \) is a (not necessarily square) matrix of maximal rank with integer entries, and \(d \) is a multiple of the (nonzero) determinant of the lattice spanned by the columns of \(x \), finds the \textit{upper triangular} Hermite normal form of \(x \).

If the rank of \(x \) is equal to its number of rows, the result is a square matrix. In general, the columns of the result form a basis of the lattice spanned by the columns of \(x \). Even when \(d \) is known, this is in general slower than \texttt{mathnf} but uses much less memory.

\texttt{mathnfmodid}(x, d)

Outputs the (upper triangular) Hermite normal form of \(x \) concatenated with the diagonal matrix with diagonal \(d \). Assumes that \(x \) has integer entries. Variant: if \(d \) is an integer instead of a vector, concatenate \(d \) times the identity matrix.
mathouseholder(Q, v)

applies a sequence Q of Householder transforms, as returned by `matqr(M, 1)` to the vector or matrix v.

```plaintext
? m = [2,1; 3,2]; \ some random matrix
? [Q,R] = matqr(m);
? Q
%3 = [-0.554... -0.832...]
[-0.832... 0.554...]

? R
%4 =
[-3.605... -2.218...]
[0 0.277...]

? v = [1, 2]^~; \ some random vector
? Q * v
%6 = [-2.218..., 0.277...]~

? [q,r] = matqr(m, 1);
? exponent(r - R) \ r is the same as R
%8 = -128
? q \ but q has a different structure
%9 = [[0.0494..., [5.605..., 3]]]
? mathouseholder(q, v) \ applied to v
%10 = [-2.218..., 0.277...]~
```

The point of the Householder structure is that it efficiently represents the linear operator $v : v \rightarrow Qv$ in a more stable way than expanding the matrix Q:

```plaintext
? m = mathilbert(20); v = vectorv(20,i,i^2+1);
? [Q,R] = matqr(m);
? [q,r] = matqr(m, 1);
? \p100
? [q2,r2] = matqr(m, 1); \ recompute at higher accuracy
? exponent(R - r)
%5 = -127
? exponent(R - r2)
%6 = -127
? exponent(mathouseholder(q,v) - mathouseholder(q2,v))
%7 = -119
? exponent(Q*v - mathouseholder(q2,v))
%8 = 9
```

We see that R is OK with or without a flag to `matqr` but that multiplying by Q is considerably less precise than applying the sequence of Householder transforms encoded by q.

matid(n)

Creates the $n \times n$ identity matrix.
matimage(x, flag)
Gives a basis for the image of the matrix x as columns of a matrix. A priori the matrix can have entries of any type. If flag = 0, use standard Gauss pivot. If flag = 1, use matsupplement (much slower: keep the default flag!).

matimagecompl(x)
Gives the vector of the column indices which are not extracted by the function matimage, as a permutation (t_VECSMALL). Hence the number of components of matimagecompl(x) plus the number of columns of matimage(x) is equal to the number of columns of the matrix x.

matimagemod(x, d, U)
Gives a Howell basis (unique representation for submodules of \((\mathbb{Z}/d\mathbb{Z})^n\)) for the image of the matrix x modulo d as columns of a matrix H. The matrix x must have t_INT entries, and d can be an arbitrary positive integer. If U is present, set it to a matrix such that A*U = H.

```
? A = [2,1;0,2];
? matimagemod(A,6,&U)
%2 =
[1 0]
[0 2]
?
? U
%3 =
[5 1]
[3 4]
?
(A*U)%6
%4 =
[1 0]
[0 2]
```

Caveat. In general the number of columns of the Howell form is not the minimal number of generators of the submodule. Example:

```
? matimagemod([1;2],4)
%5 =
[2 1]
[0 2]
```

Caveat 2. In general the matrix U is not invertible, even if A and H have the same size. Example:

```
? matimagemod([4,1;0,4],8,&U)
%6 =
[2 1]
[0 4]
?
U
%7 =
[0 0]
```
matindexrank(M)

M being a matrix of rank r, returns a vector with two t_VECSMALL components y and z of length r giving a list of rows and columns respectively (starting from 1) such that the extracted matrix obtained from these two vectors using $\text{vecextract}(M, y, z)$ is invertible. The vectors y and z are sorted in increasing order.

matintersect(x, y)

x and y being two matrices with the same number of rows each of whose columns are independent, finds a basis of the vector space equal to the intersection of the spaces spanned by the columns of x and y respectively. The faster function idealintersect can be used to intersect fractional ideals (projective \mathbb{Z}_K modules of rank 1); the slower but more general function nfhnf can be used to intersect general \mathbb{Z}_K-modules.

matinverseimage(x, y)

Given a matrix x and a column vector or matrix y, returns a preimage z of y by x if one exists (i.e. such that $xz = y$), an empty vector or matrix otherwise. The complete inverse image is $z + \text{Ker}x$, where a basis of the kernel of x may be obtained by matker.

``` pari
? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \ no solution
? matinverseimage(M, [1,3;6;2,6;12])
%4 =
[ 1 3 6]
[ 0 0 0]
? matinverseimage(M, [1,2;3,4])
%5 = [] \ no solution
? K = matker(M)
%6 =
[-2]
[ 1]
```

matinvmod(x, d)

Computes a left inverse of the matrix x modulo d. The matrix x must have t_INT entries, and d can be an arbitrary positive integer.

``` pari
? A = [3,1,2;1,2,1;3,1,1];
? U = matinvmod(A,6)
%2 =
[1 1 3]
[2 3 5]
[1 0 5]
? (U*A)%6
%3 =
```

(continues on next page)
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\? matinvmod(A,5)
*** at top-level: matinvmod(A,5)
*** ^--------------
*** matinvmod: impossible inverse in gen_inv: 0.

\texttt{matisdiagonal}(x)

Returns true (1) if \(x \) is a diagonal matrix, false (0) if not.

\texttt{matker}(x, \texttt{flag})

Gives a basis for the kernel of the matrix \(x \) as columns of a matrix. The matrix can have entries of any type, provided they are compatible with the generic arithmetic operations (+, \(x \) and /).

If \(x \) is known to have integral entries, set \texttt{flag} = 1.

\texttt{matkerint}(x, \texttt{flag})

Gives an LLL-reduced \(\mathbb{Z} \)-basis for the lattice equal to the kernel of the matrix \(x \) with rational entries. \texttt{flag} is deprecated, kept for backward compatibility.

\texttt{matkermod}(x, d, \texttt{im})

Gives a Howell basis (unique representation for submodules of \((\mathbb{Z}/d\mathbb{Z})^n\), cf. \texttt{matimagemod}) for the kernel of the matrix \(x \) modulo \(d \) as columns of a matrix. The matrix \(x \) must have t_\texttt{INT} entries, and \(d \) can be an arbitrary positive integer. If \texttt{im} is present, set it to a basis of the image of \(x \) (which is computed on the way).

\? A = [1,2,3;5,1,4]
\%1 =
[1 2 3]

[5 1 4]

\? K = matkermod(A,6)
\%2 =
[2 1]
[2 1]
[0 3]

\? (A*K)%6
\%3 =
[0 0]
[0 0]

\texttt{matmuldiagonal}(x, d)

Product of the matrix \(x \) by the diagonal matrix whose diagonal entries are those of the vector \(d \). Equivalent to, but much faster than \(x * \texttt{matdiagonal}(d) \).

\texttt{matmultodiagonal}(x, y)

Product of the matrices \(x \) and \(y \) assuming that the result is a diagonal matrix. Much faster than \(x * y \) in that case.
The result is undefined if \(x \neq y \) is not diagonal.

\matpascal(n, q)

Creates as a matrix the lower triangular Pascal triangle of order \(x + 1 \) (i.e. with binomial coefficients up to \(x \)). If \(q \) is given, compute the \(q \)-Pascal triangle (i.e. using \(q \)-binomial coefficients).

\matpermanent(x)

Permanent of the square matrix \(x \) using Ryser’s formula in Gray code order.

\[
? n = 20; m = \text{matrix}(n,n,i,j, i!=j);
? \text{matpermanent}(m)
\]
\[
%2 = 895014631192902121
\]
\[
? n! * \text{sum}(i=0,n, (-1)^i/i!)
\]
\[
%3 = 895014631192902121
\]

This function runs in time \(O(2^n n) \) for a matrix of size \(n \) and is not implemented for \(n \) large.

\matqrfact(M, flag, precision)

Returns \([Q, R]\), the QR-decomposition of the square invertible matrix \(M \) with real entries: \(Q \) is orthogonal and \(R \) upper triangular. If \(flag = 1 \), the orthogonal matrix is returned as a sequence of Householder transforms: applying such a sequence is stabler and faster than multiplication by the corresponding \(Q \) matrix. More precisely, if

\[
[Q,R] = \text{matqr}(M);
[q,r] = \text{matqr}(M, 1);
\]

then \(r = R \) and \text{mathouseholder}(q, M) \(\) is (close to) \(R \); furthermore

\[
\text{mathouseholder}(q, \text{matid}(#M)) == Q~
\]

the inverse of \(Q \). This function raises an error if the precision is too low or \(x \) is singular.

\matrank(x)

Rank of the matrix \(x \).

\matreduce(m)

Let \(m \) be a factorization matrix, i.e., a 2-column matrix whose columns contains arbitrary “generators” and integer “exponents” respectively. Returns the canonical form of \(m \): the first column is sorted with unique elements and the second one contains the merged “exponents” (exponents of identical entries in the first column of \(m \) are added, rows attached to 0 exponents are deleted). The generators are sorted with respect to the universal \text{cmp} routine; in particular, this function is the identity on true integer factorization matrices, but not on other factorizations (in products of polynomials or maximal ideals, say). It is idempotent.

For convenience, this function also allows a vector \(m \), which is handled as a factorization with all exponents equal to 1, as in \text{factorback}.
matrixqz\((A, p)\)

\(A\) being an \(mxn\) matrix in \(M_{m,n}(\mathbb{Q})\), let \(Im_{\mathbb{Q}}A\) (resp. \(Im_{\mathbb{Z}}A\)) the \(\mathbb{Q}\)-vector space (resp. the \(\mathbb{Z}\)-module) spanned by the columns of \(A\). This function has varying behavior depending on the sign of \(p\):

If \(p \geq 0\), \(A\) is assumed to have maximal rank \(n \leq m\). The function returns a matrix \(B \in M_{m,n}(\mathbb{Z})\), with \(Im_{\mathbb{Q}}B = Im_{\mathbb{Q}}A\), such that the GCD of all its \(nxn\) minors is coprime to \(p\); in particular, if \(p = 0\) (default), this GCD is 1.

If \(p = -1\), returns a basis of the lattice \(\mathbb{Z}^n \cap Im_{\mathbb{Z}}A\).

If \(p = -2\), returns a basis of the lattice \(\mathbb{Z}^n \cap Im_{\mathbb{Q}}A\).

Caveat. \((p = -1\) or \(-2\)) For efficiency reason, we do not compute the HNF of the resulting basis.
matsize(x)

x being a vector or matrix, returns a row vector with two components, the first being the number of rows (1 for a row vector), the second the number of columns (1 for a column vector).

matsnf(X, flag)

If X is a (singular or nonsingular) matrix outputs the vector of elementary divisors of X, i.e. the diagonal of the Smith normal form of X, normalized so that \(d_n \| d_{n-1} \| \ldots \| d_1\). X must have integer or polynomial entries; in the latter case, X must be a square matrix.

The binary digits of flag mean:

1 (complete output): if set, outputs \([U, V, D]\), where U and V are two unimodular matrices such that \(UXV\) is the diagonal matrix D. Otherwise output only the diagonal of D. If X is not a square matrix, then D will be a square diagonal matrix padded with zeros on the left or the top.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1 will be deleted, i.e. outputs a shortened vector \(D'\) instead of D. If complete output was required, returns \([U', V', D']\) so that \(U'XV' = D'\) holds. If this flag is set, X is allowed to be of the form vector of elementary divisors' or \(\mathbb{U}, \mathbb{V}, \mathbb{D}\) as would normally be output with the cleanup flag unset.

matsolve(M, B)

Let M be a left-invertible matrix and B a column vector such that there exists a solution X to the system of linear equations \(MX = B\); return the (unique) solution X. This has the same effect as, but is faster, than \(M^{-1} * B\).

Uses Dixon p-adic lifting method if M and B are integral and Gaussian elimination otherwise. When there is no solution, the function returns an X such that \(MX - B\) is nonzero although it has at least #M zero entries:

\[
\begin{bmatrix}
1 & 2 \\
3 & 4 \\
5 & 6
\end{bmatrix}
\begin{bmatrix}
4 & 6 & 8
\end{bmatrix}
=
\begin{bmatrix}
-2 & 3
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 2 \\
3 & 4
\end{bmatrix}
\begin{bmatrix}
0 & 1/2
\end{bmatrix}
=
\begin{bmatrix}
0 & 0 & -1
\end{bmatrix}
\]

matsolvemod(M, D, B, flag)

M being any integral matrix, D a column vector of nonnegative integer moduli, and B an integral column vector, gives an integer solution to the system of congruences \(\sum_i m_{i,j} x_j = b_i (mod d_i)\) if one exists, otherwise returns zero. Shorthand notation: B (resp. D) can be given as a single integer, in which case all the \(b_i\) (resp. \(d_i\)) above are taken to be equal to B (resp. D).
\[
\begin{align*}
M &= [1,2;3,4]; \\
\text{matsolvemod}(M, [3,4]~, [1,2]~) \\
% &= [10, 0]~ \\
\text{matsolvemod}(M, 3, 1) \quad \text{\(X = [1,1]~\) over \(\mathbb{F}_3\)} \\
% &= [2, 1]~ \\
\text{matsolvemod}(M, [3,0]~, [1,2]~) \quad \text{\(x + 2y = 1 \pmod{3}\), \(3x + 4y = 2 \pmod{\mathbb{Z}}\)} \\
% &= [6, -4]~
\end{align*}
\]

If \(flag = 1\), all solutions are returned in the form of a two-component row vector \([x, u]\), where \(x\) is an integer solution to the system of congruences and \(u\) is a matrix whose columns give a basis of the homogeneous system (so that all solutions can be obtained by adding \(x\) to any linear combination of columns of \(u\)). If no solution exists, returns zero.

matsupplement \((x)\)

Assuming that the columns of the matrix \(x\) are linearly independent (if they are not, an error message is issued), finds a square invertible matrix whose first columns are the columns of \(x\), i.e. supplement the columns of \(x\) to a basis of the whole space.

\[
\begin{align*}
\text{matsupplement}([1;2]) \\
% &= [1 0] \\
% &= [2 1]
\end{align*}
\]

Raises an error if \(x\) has 0 columns, since (due to a long standing design bug), the dimension of the ambient space (the number of rows) is unknown in this case:

\[
\begin{align*}
\text{matsupplement(matrix(2,0))} \\
*** \text{at top-level: matsupplement(matrix} \\
*** \text{------------------------} \\
*** \text{matsupplement: sorry, suppl [empty matrix] is not yet implemented.}
\end{align*}
\]

mattranspose \((x)\)

Transpose of \(x\) (also \(x\)). This has an effect only on vectors and matrices.

max \((x, y)\)

Creates the maximum of \(x\) and \(y\) when they can be compared.

mfDelta()

Mf structure corresponding to the Ramanujan Delta function \(\Delta\).

\[
\begin{align*}
\text{mfcoefs(mfDelta(),4)} \\
% &= [0, 1, -24, 252, -1472]
\end{align*}
\]

mfEH \((k)\)

\(k\) being in \(1/2 + \mathbb{Z}_{>0}\), return the mf structure corresponding to the Cohen-Eisenstein series \(H_k\) of weight \(k\) on \(\Gamma_0(4)\).

\[
\begin{align*}
H &= \text{mfEH}(13/2); \text{mfcoefs(H,4)} \\
% &= [691/32760, -1/252, 0, 0, -2017/252]
\end{align*}
\]

The coefficients of \(H\) are given by the Cohen-Hurwitz function \(H(k - 1/2, N)\) and can be obtained for moderately large values of \(N\) (the algorithm uses \(O(N)\) time):
\(\text{mfcoef}(H, 10^5 + 1)\)

\(\text{time} = 55\text{ ms.}\)

\(\%2 = -12514802881532791504208348\)

\(\text{mfcoef}(H, 10^7 + 1)\)

\(\text{time} = 6,044\text{ ms.}\)

\(\%3 = -125143341600987745521267259325104476\)

\(\text{mfEk}(k)\)

K being an even nonnegative integer, return the mf structure corresponding to the standard Eisenstein series \(E_k\).

\(\text{mfcoefs(mfEk(8), 4)}\)

\(\%1 = [1, 480, 61920, 1050240, 7926240]\)

\(\text{mfTheta}(\psi)\)

The unary theta function corresponding to the primitive Dirichlet character \(\psi\). Its level is \(4F(\psi)^2\) and its weight is \(1 - \psi(-1)/2\).

\(\text{Ser(mfcoefs(mfTheta(), 30))}\)

\(\%1 = 1 + 2x + 2x^4 + 2x^9 + 2x^{16} + 2x^{25} + O(x^{31})\)

\(\text{f = mfTheta(8); Ser(mfcoefs(f, 30))}\)

\(\%2 = 2x - 2x^9 - 2x^{25} + O(x^{31})\)

\(\text{mfparams(f)}\)

\(\%3 = [256, 1/2, 8, y, t + 1]\)

\(\text{g = mfTheta(-8); Ser(mfcoefs(g, 30))}\)

\(\%4 = 2x + 6x^9 - 10x^{25} + O(x^{31})\)

\(\text{mfparams(g)}\)

\(\%5 = [256, 3/2, 8, y, t + 1]\)

\(\text{h = mfTheta(Mod(2, 5)); mfparams(h)}\)

\(\%6 = [100, 3/2, Mod(7, 20), y, t^2 + 1]\)

\(\text{mfatkin}(\text{mfatk}, f)\)

Given a \text{mfatk} output by \text{mfatk} = \text{mfatkininit}(\text{mf}, Q) and a modular form \(f\) belonging to the pace \(\text{mf}\), returns the modular form \(g = Cx^f||W_Q\), where \(C = \text{mfatk}[3]\) is a normalizing constant such that \(g\) has the same field of coefficients as \(f\); \text{mfatk}[3] gives the constant \(C\), and \text{mfatk}[1] gives the modular form space to which \(g\) belongs (or is set to 0 if it is \text{mf}).

\(\text{mf = mfinit([35, 2], 0); [f] = mfbasis(mf); mfcoefs(f, 4)}\)

\(\%2 = [0, 3, -1, 0, 3]\)

\(\text{mfatk = mfatkininit(mf, 7);}\)

\(\text{g = mfatk(mfatkin(mfatk, f); mfcoefs(g, 4)}\)

\(\%4 = [0, 1, -1, -2, 7]\)

\(\text{mfatk = mfatkininit(mfatk, 35);}\)

\(\text{g = mfatk(mfatkin(mfatk, f); mfcoefs(g, 4)}\)

\(\%6 = [0, -3, 1, 0, -3]\)

\(\text{mfatkineigenvalues}(\text{mf}, Q, \text{precision})\)

Given a modular form space \(\text{mf}\) of integral weight \(k\) and a primitive divisor \(Q\) of the level \(N\) of \(\text{mf}\), outputs the Atkin-Lehner eigenvalues of \(w_Q\) on the new space, grouped by orbit. If the Nebentypus \(\chi\) of \(\text{mf}\) is a (trivial or) quadratic character defined modulo \(N/Q\), the result is rounded and the eigenvalues are \(i^k\).

1.1. Guide to real precision in the PARI interface 217
\[
\text{finit}([35,2],0) ; \text{mfields}(mf)
\]
\%1 = \{y, y^2 - y - 4\} \quad \text{two orbits, dimension 1 and 2}
\text{fatkineigenvalues}(mf,5)
\%2 = \{[1], [-1, -1]\}
\text{finit}([12,7,\text{Mod}(3,4)],0)
\text{fatkineigenvalues}(mf,3)
\%4 = \{[I, -I, -I, I, -I]\} \quad \text{one orbit}

To obtain the eigenvalues on a larger space than the new space, e.g., the full space, you can directly call \([mfB, M,C] = \text{mfatkininit}\) and compute the eigenvalues as the roots of the characteristic polynomial of \(M/C\), by dividing the roots of \(\text{charpoly}(M)\) by \(C\). Note that the characteristic polynomial is computed exactly since \(M\) has coefficients in \(\mathbb{Q}(\chi)\), whereas \(C\) may be given by a complex number. If the coefficients of the characteristic polynomial are polmods modulo \(T\) they must be embedded to \(\mathbb{C}\) first using \(\text{subst(lift(), t, exp(2*I*Pi/n)})\), when \(T = \text{poliscyclo(n)}\); note that \(T = mf\mod\).

\text{mfatkininit}(mf, Q, \text{precision})

Given a modular form space with parameters \(N,k,\chi\) and a primitive divisor \(Q\) of the level \(N\), initializes data necessary for working with the Atkin-Lehner operator \(W_Q\), for now only the function \(\text{mfatkin}\). We write \(\chi Q\chi N/Q\) where the two characters are primitive with (coprime) conductors dividing \(Q\) and \(N/Q\) respectively. For \(F \in M_k(\Gamma_0(N),\chi)\), the form \(F\|W_Q\) still has level \(N\) and weight \(k\) but its Nebentypus may no longer be \(\chi\); it becomes \(\chi Q\chi N/Q\) if \(k\) is integral and \(\chi Q\chi N/Q)(4Q/.)\) if not.

The result is a technical 4-component vector \([mfB, M, C, mf]\), where

- \(mfB\) encodes the modular form space to which \(F\|W_Q\) belongs when \(F \in M_k(\Gamma_0(N),\chi)\): an \text{mfinit} corresponding to a new Nebentypus or the integer 0 when the character does not change. This does not depend on \(F\).
- \(M\) is the matrix of \(W_Q\) on the bases of \(mf\) and \(mfB\) multiplied by a normalizing constant \(C(k,\chi,Q)\). This matrix has polmod coefficients in \(\mathbb{Q}(\chi)\).
- \(C\) is the complex constant \(C(k,\chi,Q)\). For \(k\) integral, let \(A(k,\chi,Q) = Q^e/g(\chi_Q)\), where \(e = 0\) for \(k\) even and \(1/2\) for \(k\) odd and where \(g(\chi_Q)\) is the Gauss sum attached to \(\chi_Q\). (A similar, more complicated, definition holds in half-integral weight depending on the parity of \(k - 1/2\).) Then if \(M\) denotes the matrix of \(W_Q\) on the bases of \(mf\) and \(mfB\), \(A,M\) has coefficients in \(\mathbb{Q}(\chi)\). If \(A\) is rational, we let \(C = 1\) and \(C = A\) as a floating point complex number otherwise, and finally \(MC := M.C\).

\section*{218 Chapter 1. Interface to the PARI library}

\begin{verbatim}
? mf=mfinit([32,4],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%1 = [5/16 11/2 55/8]
\ [1/8 \ 0 -5/4]
\ [1/32 -1/4 11/16]

? C
%2 = 1

? mf=mfinit([32,4,8],0); [mfB,MC,C]=mfatkininit(mf,32); MC
%3 = [1/8 -7/4]
\ [-1/16 -1/8]

? C
%4 = 0.35355339059327376220042218105242451964

? algdep(C,2) \ \ C = 1/sqrt(8)
\end{verbatim}

(continues on next page)
%5 = 8*x^2 - 1

mfbasis(NK, space)

If NK = \([N, k, CHI]\) as in mfinit, gives a basis of the corresponding subspace of \(M_k(\Gamma_0(N), \chi)\). NK can also be the output of mfinit, in which case space can be omitted. To obtain the eigenforms, use mfeigenbasis.

If space is a full space \(M_k\), the output is the union of first, a basis of the space of Eisenstein series, and second, a basis of the cuspidal space.

```plaintext
? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see( mfbasis(mf) )
%2 = [[0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis(mf) )
%3 = [[0, 1, 0, 1], [Mod(0, z^2 - z - 4), Mod(1, z^2 - z - 4), \
    Mod(-z, z^2 - z - 4), Mod(z - 1, z^2 - z - 4)]]
? mf = mfinit([35,2]);
? see( mfbasis(mf) )
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], \
    [0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see( mfeigenbasis([48,4],0) )
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]
```

mfbd(F, d)

\(F\) being a generalized modular form, return \(B(d)(F)\), where \(B(d)\) is the expanding operator \(\tau: \ldots \rightarrow d\tau\).

```plaintext
? D2=mfbd(mfDelta(),2); mfcoefs(D2, 6)
%1 = [0, 0, 1, 0, -24, 0, 252]
```

mfbasis(F, G, m)

Compute the \(m\)-th Rankin-Cohen bracket of the generalized modular forms \(F\) and \(G\).

```plaintext
? E4 = mfEk(4); E6 = mfEk(6);
? D1 = mfbasis(E4,E4,2); mfcoefs(D1,5)/4800
%2 = [0, 1, -24, 252, -1472, 4830]
? D2 = mfbasis(E4,E6,1); mfcoefs(D2,10)/(-3456)
%3 = [0, 1, -24, 252, -1472, 4830]
```

mfcoef(F, n)

Compute the \(n\)-th Fourier coefficient \(a(n)\) of the generalized modular form \(F\). Note that this is the \(n + 1\)-st component of the vector mfcoefs(F, n) as well as the second component of mfcoefs(F,1,n).

```plaintext
? mfcoef(mfDelta(),10)
%1 = -115920
```

mfcoefs(F, n, d)

Compute the vector of Fourier coefficients \([a[0], a[d], \ldots, a[nd]]\) of the generalized modular form \(F\); \(d\) must be positive and \(d = 1\) by default.

```plaintext
? D = mfDelta();
? mfcoefs(D,10)
%2 = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920]
```

1.1. Guide to real precision in the PARI interface
This function also applies when F is a modular form space as output by `mfinit`; it then returns the matrix whose columns give the Fourier expansions of the elements of `mfbasis(F):

```plaintext
? mf = mfinit([1,12]);
? mfcoefs(mf,5)
%2 =
[691/65520 0]
[ 1 1]
[2049 -24]
[177148 252]
[4196353 -1472]
[48828126 4830]
```

mfconductor(mf, F)

`mf` being output by `mfinit` for the cuspidal space and F a modular form, gives the smallest level at which F is defined. In particular, if F is cuspidal and we write $F = \sum_j B(d_j)f_j$ for new forms f_j of level N_j (see `mftonew`), then its conductor is the least common multiple of the d_jN_j.

```plaintext
? mf=mfinit([96,6],1); vF = mfbasis(mf); mfdim(mf)
%1 = 72
? vector(10,i, mfconductor(mf, vF[i]))
%2 = [3, 6, 12, 24, 48, 96, 4, 8, 12, 16]
```

mfcosets(N)

Let N be a positive integer. Return the list of right cosets of $\Gamma_0(N)$, i.e., matrices $\gamma_j \in \Gamma$ such that $\Gamma = \bigsqcup_j \Gamma \gamma_j$. The γ_j are chosen in the form $[a, b; c, d]$ with $c \parallel N$.

```plaintext
? mfcosets(4)
%1 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],
[1, 0; 2, 1], [1, 0; 4, 1]]
```

We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

```plaintext
? M = mfinit([4,12,1],0); mfcosets(M)
%2 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],
[1, 0; 2, 1], [1, 0; 4, 1]]
```

Warning. In the present implementation, the trivial coset is represented by $[1, 0; N, 1]$ and is the last in the list.

mfcuspisregular(NK, $cusp$)

In the space defined by $\mathbb{N}K = [N, k, \text{CHI}]$ or $\mathbb{N}K = \text{mf}$, determine if $cusp$ in canonical format (oo or denominator dividing N) is regular or not.
mfcusps(N)
Let N be a positive integer. Return the list of cusps of $\Gamma_0(N)$ in the form a/b with $b \parallel N$.

```plaintext
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]
```

We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

```plaintext
? M = mfinit([4, 12, 1], 0); mfcusps(M)
%2 = [0, 1/2, 1/4]
```

mfcuspval(mf, F, cusp, precision)
Valuation of modular form F in the space mf at cusp, which can be either oo or any rational number. The result is either a rational number or oo if F is zero. Let χ be the Nebentypus of the space mf; if $\mathbb{Q}(F) = \mathbb{Q}(\chi)$, return the vector of valuations attached to the $[\mathbb{Q}(F) : \mathbb{Q}(\chi)]$ complex embeddings of F.

```plaintext
? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? apply(x->mfcuspval(mf,T,x), %1)
%2 = [0, 1/4, 0, 0, 1/4, 0]
```

mfcuspwidth(N, cusp)
Width of cusp in $\Gamma_0(N)$.

```plaintext
? mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? [mfcuspwidth(12,c) | c <- mfcusps(12)]
%2 = [12, 3, 4, 3, 1, 1]
```

We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

```plaintext
? M = mfinit([4, 12, 1], 0); mfcuspswidth(M, 1/2)
%4 = 1
```

mfderiv(F, m)

1.1. Guide to real precision in the PARI interface 221
m-th formal derivative of the power series corresponding to the generalized modular form F, with respect to the differential operator qd/dq (default $m = 1$).

\[
\begin{align*}
\text{? } &D=\text{mfDelta}(); \\
\text{? } &\text{mfcoefs}(D, 4) \\
\text{? } &\text{mfcoefs}(\text{mfderiv}(D), 4)
\end{align*}
\]

$\text{mfderivE2}(F, m)$

Compute the Serre derivative $(q.d/dq)F - kE_2F/12$ of the generalized modular form F, which has weight $k+2$; if F is a true modular form, then its Serre derivative is also modular. If $m > 1$, compute the m-th iterate, of weight $k + 2m$.

\[
\begin{align*}
\text{? } &\text{mfcoefs}(\text{mfderivE2}(\text{mfEk}(4)), 5)^*(-3) \\
\text{? } &\text{mfcoefs}(\text{mfEk}(6), 5)
\end{align*}
\]

$\text{mfdescribe}(F, G)$

Gives a human-readable description of F, which is either a modular form space or a generalized modular form.

The address of G is given, puts into G the vector of parameters of the outermost operator defining F; this vector is empty if F is a leaf (an atomic object such as \text{mfDelta}(), not defined in terms of other forms) or a modular form space.

\[
\begin{align*}
\text{? } &E1 = \text{mfeisenstein}(4,-3,-4); \text{mfdescribe}(E1) \\
\text{? } &E2 = \text{mfeisenstein}(3,5,-7); \text{mfdescribe}(E2) \\
\text{? } &E3 = \text{mfderivE2}(\text{mfmul}(E1,E2), 3); \text{mfdescribe}(E3,\&G) \\
\text{? } &\text{mfdescribe}(G[1][1]) \\
\text{? } &G[2] \\
\text{? } &for (i = 0, 4, \text{mf} = \text{mfinit}([37,4],i); \text{print}(\text{mfdescribe}(\text{mf}))) \\
\text{? } &S_4^\text{new}(G_0(37, 1)) \\
\text{? } &S_4(G_0(37, 1)) \\
\text{? } &S_4^\text{old}(G_0(37, 1)) \\
\text{? } &E_4(G_0(37, 1)) \\
\text{? } &M_4(G_0(37, 1))
\end{align*}
\]

$\text{mfdim}(NK, \text{space})$

If $NK = [N, k, CHI]$ as in \text{mfinit}, gives the dimension of the corresponding subspace of $M_k(\Gamma_0(N), \chi)$. NK can also be the output of \text{mfinit}, in which case space must be omitted.

The subspace is described by the small integer space: 0 for the newspace $S_k^{\text{new}}(\Gamma_0(N), \chi)$, 1 for the cuspidal space S_k, 2 for the oldspace S_k^{old}, 3 for the space of Eisenstein series E_k and 4 for the full space M_k.

Wildcards. As in \text{mfinit}, CHI may be the wildcard 0 (all Galois orbits of characters); in this case, the output is a vector of $[\text{order, conrey, dim, dimdir}]$ corresponding to the nontrivial spaces, where

- order is the order of the character,
- conrey its Conrey label from which the character may be recovered via znchar(conrey).

222 Chapter 1. Interface to the PARI library

- \textit{dim} the dimension of the corresponding space,
- \textit{dimdih} the dimension of the subspace of dihedral forms corresponding to Hecke characters if \(k = 1 \) (this is not implemented for the old space and set to \(-1\) for the time being) and 0 otherwise.

The spaces are sorted by increasing order of the character; the characters are taken up to Galois conjugation and the Conrey number is the minimal one among Galois conjugates. In weight 1, this is only implemented when the space is 0 (newspace), 1 (cusp space), 2(old space) or 3(Eisenstein series).

Wildcards for sets of characters. \textit{CHI} may be a set of characters, and we return the set of \([\text{dim}, \text{dimdih}]\).

Wildcard for :math:`\text{}/\text{grave.ts1}` \textit{M}_k(\Gamma_1(N)). Additionally, the wildcard \textit{CHI} = \(-1\) is available in which case we output the total dimension of the corresponding subspace of \(\text{M}_k(\Gamma_1(N)) \). In weight 1, this is not implemented when the space is 4 (fullspace).

```plaintext
? mfdim([23,2], 0) \ \ new space
%1 = 2
? mfdim([96,6], 0)
%2 = 10
? mfdim([10^9,4], 3) \ \ Eisenstein space
%1 = 400000
? mfdim([10^9+7,4], 3)
%2 = 2
? mfdim([68,1,-1],0)
%3 = 3
? mfdim([68,1,0],0)
%4 = [[2, Mod(67, 68), 1, 1], [4, Mod(47, 68), 1, 1]]
? mfdim([124,1,0],0)
%5 = [[6, Mod(67, 124), 2, 0]]
```

This last example shows that there exists a nondihedral form of weight 1 in level 124.

\texttt{mfdiv}(F,G)

Given two generalized modular forms \(F \) and \(G \), compute \(F/G \) assuming that the quotient will not have poles at infinity. If this is the case, use \texttt{mfshift} before doing the division.

```plaintext
? D = mfDelta(); \ \ Delta
? H = mfpow(mfEk(4), 3);
? J = mfdiv(H, D)
*** at top-level: J=mfdiv(H,mfdeltac
*** ^--------------
*** mfdiv: domain error in mfdiv: ord(G) > ord(F)
? J = mfdiv(H, mfshift(D,1));
? mfcoefs(J, 4)
%4 = [1, 744, 196884, 21493760, 864299970]
```

\texttt{mfeigenbasis}(mf)

Vector of the eigenforms for the space \texttt{mf}. The initial basis of forms computed by \texttt{mfinit} before splitting is also available via \texttt{mfbasis}.

```plaintext
? mf = mfinit([26,2],0);
? see(L) = for(i=1,#L,print(mfcoefs(L[i],6)));
? see( mfeigenbasis(mf) )
[0, 1, -1, 1, 1, -3, -1]
[0, 1, 1, -3, 1, -1, -3]
? see( mfbasis(mf) )
```

(continues on next page)
The eigenforms are internally expressed as (algebraic) linear combinations of \(\text{mfbasis}(\text{mf}) \) and it is very inefficient to compute many coefficients of those forms individually: you should rather use \(\text{mfcoefs}(\text{mf}) \) to expand the basis once and for all, then multiply by \(\text{mftobasis}(\text{mf}, f) \) for the forms you’re interested in:

\[
\text{mf} = \text{mfinit}([96,6], 0); \ B = \text{mfeigenbasis}(\text{mf}); \ #B
\%
1 = 8;
? \text{vector}(#B, i, \text{mfcoefs}(B[i], 1000)); \ \text{\textbackslash \\ expanded \ individually: \ slow}
\text{time} = 7,881 \text{ ms}.
? \ M = \text{mfcoefs}(\text{mf}, 1000); \ \text{\textbackslash \\ initialize \ once}
\text{time} = 982 \text{ ms}.
? \text{vector}(#B, i, M * \text{mftobasis}(\text{mf}, B[i])); \ \text{\textbackslash \\ then \ expand: \ much \ faster}
\text{time} = 623 \text{ ms}.
\]

When the eigenforms are defined over an extension field of \(\mathbb{Q}(\chi) \) for a nonrational character, their coefficients are hard to read and you may want to lift them or to express them in an absolute number field. In the construction below \(T \) defines \(\mathbb{Q}(f) \) over \(\mathbb{Q} \), \(a \) is the image of the generator \(\text{Mod}(t, t^2 + t + 1) \) of \(\mathbb{Q}(\chi) \) in \(\mathbb{Q}(f) \) and \(y - ka \) is the image of the root \(y \) of \(f \mod \):

\[
\text{mf} = \text{mfinit}([31, 2, \text{Mod}(25,31)], 0); \ [f] = \text{mfeigenbasis}(\text{mf});
\%
? \ f \mod
\%2 = \text{Mod}(1, t^2 + t + 1) * y^2 + \text{Mod}(2^*t + 2, t^2 + t + 1)
? \ v = \text{liftpol}(\text{mfcoefs}(f, 5))
\%3 = [0, 1, (-t - 1)*y - 1, t*y + (t + 1), (2^*t + 2)*y + 1, t]
? \ [T, a, k] = \text{rnfequation}(\text{mf.mod}, f.mod, 1)
\%4 = [y^4 + 2*y^2 + 4, \text{Mod}(-1/2*y^2 - 1, y^4 + 2*y^2 + 4), 0]
? \ \text{liftpol}(\text{substvec}(v, [t, y], [a, y-k*a]))
\%5 = [0, 1, 1/2*y^3 - 1, -1/2*y^3 - 1/2*y^2 - y, -y^3 + 1, -1/2*y^2 - 1]
\]

Beware that the meaning of \(y \) has changed in the last line is different: it now represents root of \(T \), no longer of \(f \mod \) (the notions coincide if \(k = 0 \) as here but it will not always be the case). This can be avoided with an extra variable substitution, for instance:

\[
? \ [T, a, k] = \text{rnfequation}(\text{mf.mod}, \text{subst}(f.mod, 'y', 'x'), 1)
\%6 = [x^4 + 2*x^2 + 4, \text{Mod}(-1/2*x^2 - 1, x^4 + 2*x^2 + 4), 0]
? \ \text{liftpol}(\text{substvec}(v, [t, y], [a, x-k*a]))
\%7 = [0, 1, 1/2*x^3 - 1, -1/2*x^3 - 1/2*x^2 - x, -x^3 + 1, -1/2*x^2 - 1]
\]

\textbf{mfeigensearch}(NK, AP)

Search for a normalized rational eigen cuspform with quadratic character given restrictions on a few initial coefficients. The meaning of the parameters is as follows:

- \(NK \) governs the limits of the search: it is of the form \([N, k]\): search for given level \(N \), weight \(k \) and quadratic character; note that the character \((D/.) \) is uniquely determined by \((N, k) \). The level \(N \) can be replaced by a vector of allowed levels.

- \(AP \) is the search criterion, which can be omitted: a list of pairs \([..., [p, a_p], ...]\), where \(p \) is a prime number and \(a_p \) is either a \(\text{t_INT} \) (the \(p \)-th Fourier coefficient must match \(a_p \) exactly) or a \(\text{t_INTMOD} \) \(\text{Mod}(a, b) \) (the \(p \)-th coefficient must be congruent to \(a \) modulo \(b \)).

The result is a vector of newforms \(f \) matching the search criteria, sorted by increasing level then increasing \(\|D\| \).
The output of the given code snippet is as follows:

```
mfeigensearch([1..80],2), [[2,2],[3,-1]])  
%1 = 1

%mfeigensearch([1..80],2), [[2,2],[5,2]])  
%2 = 1

v = mfeigensearch([1..20],2), [[3,Mod(2,3)],[7,Mod(5,7)]];  
%3 = 1

F = v[1];  
[mfparams(F)[1], mfcoefs(F,15)]  
%4 = [11, [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1]]
```

The `mfeigensearch` function is used to find Eisenstein series. The code snippet demonstrates how to call this function with different parameters and how to process the results. The output shows the coefficients of the Eisenstein series.

The `mfeisenstein` function is defined as follows:

```
mfeisenstein(k, CHI1, CHI2)
```

It creates the Eisenstein series $E_k(\chi_1, \chi_2)$, where $k \geq 1$, χ_1 and χ_2 are Dirichlet characters and an omitted character is considered as trivial. This form belongs to $E_k(\Gamma_0(N), \chi)$ with $\chi = \chi_1 \chi_2$ and N is the product of the conductors of χ_1 and χ_2.

```
? CHI = Mod(3,4);
? E = mfeisenstein(3, CHI);
? mfcoefs(E, 6)
%2 = [-1/4, 1, 1, -8, 1, 26, -8]

? CHI2 = Mod(4,5);
? mfcoefs(mfeisenstein(3,CHI,CHI2), 6)
%3 = [0, 1, 0, -28, 0, 126, 0]

? mfcoefs(mfeisenstein(4,CHI,CHI), 6)
%4 = [0, 1, 0, -28, 0, 126, 0]

? mfcoefs(mfeisenstein(4), 6)
%5 = [1/240, 1, 9, 28, 73, 126, 252]
```

Note that `mfeisenstein(k)` is 0 for k odd and $-B_k/(2k).E_k$ for k even, where

$$E_k(q) = 1 - (2k/B_k) \sum_{n \geq 1} \sigma_{k-1}(n)q^n$$

is the standard Eisenstein series. In other words, it is normalized so that its linear coefficient is 1.

Important note. This function is currently implemented only when $\mathbb{Q}(\chi)$ is the field of definition of $E_k(\chi_1, \chi_2)$. If it is a strict subfield, an error is raised:

```
? mfeisenstein(6, Mod(7,9), Mod(4,9));
*** at top-level: mfeisenstein(6,Mod(7,9),Mod(4,9))
*** A-------------
*** mfeisenstein: sorry, mfeisenstein for these characters is not
*** yet implemented.
```

The reason for this is that each modular form is attached to a modular form space $M_k(\Gamma_0(N), \chi)$. This is a \mathbb{C}-vector space, but it allows a basis of forms defined over $\mathbb{Q}(\chi)$ and is only implemented as a $\mathbb{Q}(\chi)$-vector space: there is in general no mechanism to take linear combinations of forms in the space with coefficients belonging to a larger field. (Due to their importance, eigenforms are the single exception to this restriction; for an eigenform F, $\mathbb{Q}(F)$ is built on top of $\mathbb{Q}(\chi)$.) When the property $\mathbb{Q}(\chi) = \mathbb{Q}(E_k(\chi_1, \chi_2))$ does not hold, we cannot express E as a $\mathbb{Q}(\chi)$-linear combination of the basis forms and many operations will fail. For this reason, the construction is currently disabled.

```
mfembed(f, v, precision)
```

Let f be a generalized modular form with parameters $[N, k, \chi, P]$ (see `mfparams`, we denote $\mathbb{Q}(\chi)$ the subfield of \mathbb{C} generated by the values of χ and $\mathbb{Q}(f)$ the field of definition of f. In this context $\mathbb{Q}(\chi)$ has a single canonical complex embedding given by $s : Mod(t, polycyclo(n, t)) : \rightarrow \exp(2i\pi/n)$ and the number field $\mathbb{Q}(f)$ has

1.1. Guide to real precision in the PARI interface 225
\[\mathbb{Q}(f) : \mathbb{Q}(\chi) \] induced embeddings attached to the complex roots of the polynomial \(s(P) \). If \(\mathbb{Q}(f) \) is strictly larger than \(\mathbb{Q}(\chi) \) we only allow an \(f \) which is an eigenform, produced by \texttt{mfeigenbasis}.

This function is meant to create embeddings of \(\mathbb{Q}(f) \) and/or apply them to the object \(v \), typically a vector of Fourier coefficients of \(f \) from \texttt{mfcoefs}.

- If \(v \) is omitted and \(f \) is a modular form as above, we return the embedding of \(\mathbb{Q}(\chi) \) if \(\mathbb{Q}(\chi) = \mathbb{Q}(f) \) and a vector containing \([\mathbb{Q}(f) : \mathbb{Q}(\chi)] \) embeddings of \(\mathbb{Q}(f) \) otherwise.

- If \(v \) is given, it must be a scalar in \(\mathbb{Q}(f) \), or a vector/matrix of such, we apply the embeddings coefficientwise and return either a single result if \(\mathbb{Q}(f) = \mathbb{Q}(\chi) \) and a vector of \([\mathbb{Q}(f) : \mathbb{Q}(\chi)] \) results otherwise.

- Finally \(f \) can be replaced by a single embedding produced by \texttt{mfembed}(\(f \)) (\(v \) was omitted) and we apply that particular embedding to \(v \).

```plaintext
? mf = mfinit([35,2,Mod(11,35)], 0);
? [f] = mfbasis(mf);
? f.mod \ Q (chi) = Q (zeta_3)
%3 = t^2 + t + 1
? v = mfcoefs(f,5); lift(v) \ coefficients in Q (chi)
%4 = [0, 2, -2*t - 2, 2*t, 2*t, -2*t - 2]
? mfembed(f, v) \ single embedding
%5 = [0, 2, -1 - 1.7320...*I, -1 + 1.73205...*I, -1 + 1.7320...*I, ...]

? [F] = mfeigenbasis(mf);
? mffields(mf)
%7 = [y^2 + Mod(-2*t, t^2 + t + 1)] \ [Q (f):Q (chi)] = 2
? V = liftpol( mfcoefs(F,5) );
%8 = [0, 1, y + (-t - 1), (t + 1)*y + t, (-2*t - 2)*y + t, -t - 1]
? vall = mfembed(F, V); #vall
%9 = 2 \ 2 embeddings, both applied to V
? vall[1] \ the first
%10 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
? vall[2] \ and the second one
%11 = [0, 1, 0.2071... + 0.3587...*I, -1.2071... + 2.0907...*I, ...]

? vE = mfembed(F); #vE \ same 2 embeddings
%12 = 2
? mfembed(vE[1], V) \ apply first embedding to V
%13 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]

For convenience, we also allow a modular form space from \texttt{mfinit} instead of \( f \), corresponding to the single embedding of \( \mathbb{Q}(\chi) \).

```
\[\text{mfeval}(mf, F, \nu tau, \text{precision})\]

Computes the numerical value of the modular form \(F\), belonging to \(mf\), at the complex number \(\nu \tau\) or the vector \(\nu \tau\) of complex numbers in the completed upper-half plane. The result is given with absolute error less than \(2^{-B}\), where \(B = \text{realbitprecision}\).

If the field of definition \(\mathbb{Q}(F)\) is larger than \(\mathbb{Q}(\chi)\) then \(F\) may be embedded into \(\mathbb{C}\) in \(d = [\mathbb{Q}(F) : \mathbb{Q}(\chi)]\) ways, in which case a vector of the \(d\) results is returned.

\begin{verbatim}
? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfparams(F)
%1 = [11, 2, 1, y, t-1] \ \ Q(F) = Q(\chi) = Q
? mfeval(mf,F,I/2)
%2 = 0.039405471130100890402470386372028382117

? mf = mfinit([35,2],0); F = mfeigenbasis(mf)[2]; mfparams(F)
%3 = [35, 2, 1, y^2 - y - 4, t - 1] \ \ [Q(F) : Q(\chi)] = 2
? mfeval(mf,F,I/2)
%4 = [0.045..., 0.0385...] \ \ sigma_1(F) and sigma_2(F) at I/2

? T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,oo])
%1 = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]
\end{verbatim}

mffields\((mf)\)

Given \(mf\) as output by \text{mfinit} with parameters \((N,k,\chi)\), returns the vector of polynomials defining each Galois orbit of newforms over \(\mathbb{Q}(\chi)\).

\begin{verbatim}
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]
\end{verbatim}

Here the character is trivial so \(\mathbb{Q}(\chi) = \mathbb{Q}\) and there are 3 newforms: one is rational (corresponding to \(y\)), the other two are conjugate and defined over the quadratic field \(\mathbb{Q}[y]/(y^2 - y - 4)\).

\begin{verbatim}
? [G,chi] = znchar(Mod(3,35));
? zncharconductor(G,chi)
%2 = 35
? charorder(G,chi)
%3 = 12
? mf = mfinit([35, 2, [G,chi]],0); mffields(mf)
%4 = [y, y]
\end{verbatim}

Here the character is primitive of order 12 and the two newforms are defined over \(\mathbb{Q}(\chi) = \mathbb{Q}(\zeta_{12})\).

\begin{verbatim}
? mf = mfinit([35, 2, Mod(13,35)],0); mffields(mf)
%3 = [y^2 + Mod(5*t, t^2 + 1)]
\end{verbatim}

This time the character has order 4 and there are two conjugate newforms over \(\mathbb{Q}(\chi) = \mathbb{Q}(i)\).
mffromell(E)

E being an elliptic curve defined over Q given by an integral model in *ellinit* format, computes a 3-component vector $[mf,F,v]$, where F is the newform corresponding to E by modularity, mf is the newspace to which F belongs, and v gives the coefficients of F on *mfbasis*(mf).

```plaintext
? E = ellinit("26a1");
? [mf,F,co] = mffromell(E);
? co
%2 = [3/4, 1/4]~
? mfcoefs(F, 5)
%3 = [0, 1, -1, 1, 1, -3]
? ellan(E, 5)
%4 = [1, -1, 1, 1, -3]
```

mffrometaquo($\eta, flag$)

Modular form corresponding to the eta quotient matrix η. If the valuation v at infinity is fractional, return 0. If the eta quotient is not holomorphic but simply meromorphic, return 0 if $flag = 0$; return the eta quotient (divided by q to the power $-v$ if $v < 0$, i.e., with valuation 0) if flag is set.

```plaintext
? mffrometaquo(Mat([1,1]),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,24])),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [16, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))
%6 = 0
? f = mffrometaquo(Mat([1,-24]),1); mfcoefs(f,6)
%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]
```

For convenience, a `t_VEC` is also accepted instead of a factorization matrix with a single row:

```plaintext
? f = mffrometaquo([1,24]); \ \ also \ valid
```

mffromlfun(L, precision)

Let L being an L-function in any of the `lfun` formats representing a self-dual modular form (for instance an eigenform). Return $[NK,space,v]$ when $mf = mfinit(NK,space)$ is the modular form space containing the form and *mftobasis*(mf, v) will represent it on the space basis. If L has rational coefficients, this will be enough to recognize the modular form in mf:

```plaintext
? L = lfuncreate(x^2+1);
? lfunan(L,10)
%2 = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
? [NK,space,v] = mffromlfun(L); NK
%4 = [4, 1, -4]
? mf=mfinit(NK,space); w = mftobasis(mf,v)
%5 = [1.0000000000000000000000000000000000000]
? [f] = mfbasis(mf); mfcoefs(f,10) \ \ includes \ a_0 !
%6 = [1/4, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
```
If \(L \) has inexact complex coefficients, one can for instance compute an eigenbasis for \(mf \) and check whether one of the attached \(L \)-function is reasonably close to \(L \). In the example, we cheat by producing the \(L \) function from an eigenform in a known space, but the function does not use this information:

```pari
? mf = mfinit([32,6,Mod(5,32)],0);
? [poldegree(K) | K<-mffields(mf)]
%2 = [19] \\ one orbit, \( [Q(F) : Q(chi)] = 19 \)
? L = lfunmf(mf)[1][1]; \\ one of the 19 \( L \) -functions attached to \( F \)
? lfunan(L,3)
%4 = [1, 5.654... - 0.1812...*I, -7.876... - 19.02...*I]
? [NK,space,v] = mffromlfun(L); NK
%5 = [32, 6, Mod(5, 32)]
? vL = concat(lfunmf(mf)); \\ \( L \) functions for all cuspidal eigenforms
? an = lfunan(L,10);
? for (i = 1, #vL, if (normlp(lfunan(vL[i],10) - an, oo) < 1e-10, print(i)); 1

\textbf{mffromqf}(Q, P)

\( Q \) being an even integral positive definite quadratic form and \( P \) a homogeneous spherical polynomial for \( Q \), computes a 3-component vector \([mf, F, v]\), where \( F \) is the theta function corresponding to \((Q, P)\), \( mf \) is the corresponding space of modular forms (from \texttt{mfinit}), and \( v \) gives the coefficients of \( F \) on \texttt{mfbasis(mf)}.

```pari
? [mf,F,v] = mffromqf(2*matid(10)); v
%1 = [64/5, 4/5, 32/5]~
? mfcoefs(F, 5)
%2 = [1, 20, 180, 960, 3380, 8424]
? mfcoefs(F, 10000) \\ number of ways of writing 10000 as sum of 10 squares
%3 = 128205250571893636
? mfcoefs(F, 100000); \\ fast !
\text{time = 220ms}
? [mf,F,v] = mffromqf([2,0;0,2],x^4-6*x^2*y^2+y^4);
? mfcoefs(F,10)
%6 = [0, 4, -16, 0, 64, -56, 0, -256, 324, 224]
? mfcoefs(F,100000) \\ instantaneous
%7 = 41304367104

Odd dimensions are supported, corresponding to forms of half-integral weight:

```pari
? [mf,F,v] = mffromqf(2*matid(3));
? mfisequal(F, mfpow(mfTheta(),3))
%2 = 1
? mfcoefs(F, 32) \\ illustrate Legendre's 3-square theorem
%3 = [ 1, 6, 12, 8, 6, 24, 24, 0, 12, 30, 24, 24, 8, 24, 48, 0, 6, 48, 36, 24, 24, 48, 24, 0, 24, 30, 72, 32, 0, 72, 48, 0, 12]

\textbf{mfgaloisprojrep}(mf, F, precision)

\( mf \) being an \texttt{mf} output by \texttt{mfinit} in weight 1, return a polynomial defining the field fixed by the kernel of the projective Artin representation attached to \( F \) (by Deligne-Serre). Currently only implemented for projective image \( A_4 \) and \( S_4 \).

1.1. Guide to real precision in the PARI interface 229
\ \ A4 example
? mf = mfinit([4*31, 1, Mod(87, 124)], 0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf, F)
%3 = -12
? pol = mfgaloisprojrep(mf, F)
%4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096
? G = galoisinit(pol); galoisidentify(G)
%5 = [12, 3] \ \ A4
? pol4 = polredbest(galoisfixedfield(G, G.gen[3], 1))
%6 = x^4 + 7*x^2 - 2*x + 14
? polgalois(pol4)
%7 = [12, 1, 1, "A4"]
? factor(nfdisc(pol4))
%8 = [2 4]
\ \ [31 2]
\ \ S4 example
? mf = mfinit([4*37, 1, Mod(105, 148)], 0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf, F)
%11 = -24
? pol = mfgaloisprojrep(mf, F)
%12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256
? G = galoisinit(pol); galoisidentify(G)
%13 = [24, 12] \ \ S4
? pol4 = polredbest(galoisfixedfield(G, G.gen[3..4], 1))
%14 = x^4 - x^3 + 5*x^2 - 7*x + 12
? polgalois(pol4)
%15 = [24, -1, 1, "S4"]
? factor(nfdisc(pol4))
%16 = [2 2]
\ \ [37 3]

mfgaloistype(NK, F)
NK being either \ [N, 1, CHI] or an mf output by mfinit in weight 1, gives the vector of types of Galois representations attached to each cuspidal eigenform, unless the modular form \ F \ is specified, in which case only for \ F \ (note that it is not tested whether \ F \ belongs to the correct modular form space, nor whether it is a cuspidal eigenform). Types \ A_4, S_4, A_5 \ are represented by minus their cardinality \ -12, -24, or -60, and type \ D_n \ is represented by its cardinality, the integer \ 2n: 

? mfgaloistype([124, 1, Mod(67, 124)]) \ \ A4
%1 = [-12]
? mfgaloistype([148, 1, Mod(105, 148)]) \ \ S4
%2 = [-24]
? mfgaloistype([633, 1, Mod(71, 633)]) \ \ D10, A5
%3 = [10, -60]
? mfgaloistype([239, 1, -239]) \ \ D6, D10, D30
%4 = [6, 10, 30]

(continues on next page)
? mfgaloistype([71,1, -71])
%5 = [14]
? mf = mfinit([239,1, -239],0); F = mfeigenbasis(mf)[2];
? mfgaloistype(mf, F)
%7 = 10

The function may also return 0 as a type when it failed to determine it; in this case the correct type is either −12 or −60, and most likely −12.

mfhecke(mf, F, n)

\( F \) being a modular form in modular form space \( mf \), returns \( T(n)F \), where \( T(n) \) is the \( n \)-th Hecke operator.

**Warning.** If \( F \) is of level \( M < N \), then \( T(n)F \) is in general not the same in \( M_k(\Gamma_0(M), \chi) \) and in \( M_k(\Gamma_0(N), \chi) \). We take \( T(n) \) at the same level as the one used in \( mf \).

? mf = mfinit([26,2],0); F = mfbasis(mf)[1]; mftobasis(mf,F)
%1 = [1, 0]~
? G2 = mfhecke(mf,F,2); mftobasis(mf,G2)
%2 = [0, 1]~
? G5 = mfhecke(mf,F,5); mftobasis(mf,G5)
%3 = [-2, 1]~

Modular forms of half-integral weight are supported, in which case \( n \) must be a perfect square, else \( T_n \) will act as 0 (the operator \( T_p \) for \( p \| N \) is not supported yet):

? F = mfpow(mfTheta(),3); mf = mfinit(F);
? mfisequal(mfhecke(mf,F,3^10), mflinear([F],[4]))
%2 = 1

(\( F \) is an eigenvector of all \( T_p^2 \), with eigenvalue \( p + 1 \) for odd \( p \).)

**Warning.** When \( n \) is a large composite, resp. the square of a large composite in half-integral weight, it is in general more efficient to use mfheckemat on the mftobasis coefficients:

? mfcos(mfHECKE(mf,F,3^10), 10)
time = 917 ms.
%3 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
? M = mfHECKE(mf,3^10) \ \ instantaneous
%4 = [324]
? G = mflinear(mf, M*mftobasis(mf,F));
? mfcos(G, 10) \ \ instantaneous
%6 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]

mfheckemat(mf, vecn)

If vecn is an integer, matrix of the Hecke operator \( T(n) \) on the basis formed by mfbasis(mf). If it is a vector, vector of such matrices, usually faster than calling each one individually.

? mf=mfini([32,4],0); mfheckemat(mf,3)
%1 =
[0 44 0]
[1 0 -10]

(continues on next page)
mfinit(NK, space)
Create the space of modular forms corresponding to the data contained in NK and space. NK is a vector which can be either \([N, k]\) (N level, k weight) corresponding to a subspace of \(M_k(\Gamma_0(N))\), or \([N, k, \text{CHI}]\) (CHI a character) corresponding to a subspace of \(M_k(\Gamma_0(N))\). Alternatively, it can be a modular form \(F\) or modular form space, in which case we use mfparams to define the space parameters.

The subspace is described by the small integer space: 0 for the newspace \(S_{new}^k(\Gamma_0(N))\), 1 for the cuspidal space \(S_k^c\), 2 for the oldspace \(S_{old}^k\), 3 for the space of Eisenstein series \(E_k\) and 4 for the full space \(M_k\).

Wildcards. For a given level and weight, it is advantageous to compute simultaneously spaces attached to different Galois orbits of characters, especially in weight 1. The parameter CHI may be set to 0 (wildcard), in which case we return a vector of all mfinit(s) of non trivial spaces in \(S_k(\Gamma_1(N))\), one for each Galois orbit (see znchargalois). One may also set CHI to a vector of characters and we return a vector of all mfinit(s) of subspaces of \(M_k(\Gamma_0(N), \chi)\) for \(\chi\) in the list, in the same order. In weight 1, only \(S_{new}^1, S_1^c\) and \(E_1^c\) support wildcards.

The output is a technical structure \(S\), or a vector of structures if CHI was a wildcard, which contains the following information: \([N, k, \chi]\) is given by mfparams(S), the space dimension is mfdim(S) and a C-basis for the space is mfbasis(S). The structure is entirely algebraic and does not depend on the current realbitprecision.

mfisCM(F)
Tests whether the eigenform \(F\) is a CM form. The answer is 0 if it is not, and if it is, either the unique negative discriminant of the CM field, or the pair of two negative discriminants of CM fields, this latter case occurring only in weight 1 when the projective image is \(D_2 = C_2 x C_2\), i.e., coded 4 by mfgaloistype.

mfisequal(F, G, lim)
Checks whether the modular forms \(F\) and \(G\) are equal. If \(\text{lim}\) is nonzero, only check equality of the first \(\text{lim} + 1\)
Fourier coefficients and the function then also applies to generalized modular forms.

```
? D = mfDelta(); F = mfderiv(D);
? G = mfmul(mfEk(2), D);
? mfisequal(F, G)
%2 = 1
```

**mfisetaquo** *(f, flag)*

If the generalized modular form *f* is a holomorphic eta quotient, return the eta quotient matrix, else return 0. If *flag* is set, also accept meromorphic eta quotients: check whether \( f = q^{-v(g)} g(q) \) for some eta quotient \( g \); if so, return the eta quotient matrix attached to \( g \), else return 0. See **mffrometaquo**.

```
? mfisetaquo(mfDelta())
%1 = [1 24]
? f = mffrometaquo([1,1;23,1]);
? mfisetaquo(f)
%3 = [1 1]

[23 1]
? f = mffrometaquo([1,-24], 1);
? mfisetaquo(f) \ // nonholomorphic
%5 = 0
? mfisetaquo(f,1)
%6 = [1 -24]
```

**mfkohnenbasis** *(mf)*

*mf* being a cuspidal space of half-integral weight \( k \geq 3/2 \) with level \( N \) and character \( \chi \), gives a basis \( B \) of the Kohnen \( +\)-space of \( mf \) as a matrix whose columns are the coefficients of \( B \) on the basis of \( mf \). The conductor of either \( \chi \) or \( \chi.(-4./) \) must divide \( N/4 \).

```
? mf = mfinit([36,5/2],1); K = mfkohnenbasis(mf); K~
%1 = [-1 0 0 2 0 0]

[0 0 0 0 1 0]
? (mfcoefs(mf,20) * K)~
%4 = [0 -1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 -6 0 0 8 0 0 0 0]

[0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 0 0 0 1 0 0 2]

? mf = mfinit([40,3/2,8],1); mfkohnenbasis(mf)
*** at top-level: mfkohnenbasis(mf)
*** ^--------------
*** mfkohnenbasis: incorrect type in mfkohnenbasis [incorrect CHI] (t_VEC).
```

In the final example both \( \chi = (8./) \) and \( \chi.(-4./) \) have conductor 8, which does not divide \( N/4 = 10 \).

**mfkohnenbijection** *(mf)*

*mf* being a cuspidal space of half-integral weight, returns \([mf2,M,K,shi]\), where \( M \) is a matrix giving a Hecke-module isomorphism from the cuspidal space \( mf2 \) giving \( S_{2k-1}(\Gamma_0(N),\chi^2) \) to the Kohnen \( +\)-space.
$S^+_k(\Gamma_0(4N), \chi),$ $K$ represents a basis $B$ of the Kohnen $+\text{-}s$pace as a matrix whose columns are the coefficients of $B$ on the basis of $mf$; $shi$ is a vector of pairs $(t_i, n_i)$ gives the linear combination of Shimura lifts giving $M^{-1}$: $t_i$ is a squarefree positive integer and $n_i$ is a small nonzero integer.

\begin{verbatim}
? mf=mfinit([60,5/2],1); [mf2,M,K,shi]=mfkohnenbijection(mf); M
%2 = [-3 0 5/2 7/2; 1 -1/2 -7 -7; 1 1/2 0 -3; 0 0 5/2 5/2]
? shi
%2 = [[1, 1], [2, 1]]
\end{verbatim}

This last command shows that the map giving the bijection is the sum of the Shimura lift with $t = 1$ and the one with $t = 2$.

Since it gives a bijection of Hecke modules, this matrix can be used to transport modular form data from the easily computed space of level $N$ and weight $2k - 1$ to the more difficult space of level $4N$ and weight $k$: matrices of Hecke operators, new space, splitting into eigenspaces and eigenforms. Examples:

\begin{verbatim}
? K^(-1)*mfheckemat(mf,121)*K /* matrix of $T_{11}^2$ on $K$. Slowish. */
time = 1,280 ms.
%1 = [ 48 24 24 24; 0 32 0 -20; -48 -72 -40 -72; 0 0 0 52]
? M*mfheckemat(mf2,11)*M^(-1) /* instantaneous via $T_{11}$ on $S_{2k-1}$ */
time = 0 ms.
%2 = [ 48 24 24 24; 0 32 0 -20; -48 -72 -40 -72; 0 0 0 52]
? mf20=mfinit(mf2,0); [mftobasis(mf2,b) | b<-mfbasis(mf20)]
%3 = [[0, 0, 1, 0]~, [0, 0, 0, 1]~]
? F1=M*[0,0,1,0]~
%4 = [1/2, 1/2, -3/2, -1/2]~
? F2=M*[0,0,0,1]~
%5 = [3/2, 1/2, -9/2, -1/2]
? K*F1
%6 = [1, 0, 0, 1, 1, 0, 1, -3, 0, 0, -3, 0, 0]~
? K*F2
%7 = [3, 0, 0, 3, 1, 0, 0, 1, -9, 0, 0, -3, 0, 0]~
\end{verbatim}
This gives a basis of the new space of $S_{5/2}^+(\Gamma_0(60))$ expressed on the initial basis of $S_{5/2}(\Gamma_0(60))$. If we want the eigenforms, we write instead:

```
? BE=mfeigenbasis(mf20);[E1,E2]=apply(x->K*M*mftobasis(mf2,x),BE)
%1 = \[
[[1, 0, 0, 1, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, -3, 0, 0, 0]]
\]
? E11 = mflinear(mf, E1); E12=mflinear(mf, E2);
```

These are the two eigenfunctions in the space $mf$, the first (resp., second) will have Shimura image a multiple of $BE[1]$ (resp., $BE[2]$). The function mfkohneneigenbasis does this directly.

`mfkohneneigenbasis` $(mf, bij)$

$mf$ being a cuspidal space of half-integral weight $k \geq 3/2$ and $bij$ being the output of mfkohnenbijection($mf$), outputs a 3-component vector $[mf0,BNEW,BEIGEN]$, where $BNEW$ and $BEIGEN$ are two matrices whose columns are the coefficients of a basis of the Kohnen new space and of the eigenforms on the basis of $mf$ respectively, and $mf0$ is the corresponding new space of integral weight $2k - 1$.

```
? mf=mfinit([44,5/2],1);bij=mfkohnenbijection(mf);
? [mf0,BN,BE]=mfkohneneigenbasis(mf,bij);
? BN~
%2 =
[2 0 0 -2 2 0 -8]
[2 0 0 4 14 0 -32]

? BE~
%3 = [1 0 0 Mod(y-1, y^2-3) Mod(2*y+1, y^2-3) 0 Mod(-4*y-4, y^2-3)]
? lift(mfcoefs(mf,20)*BE[,1])
%4 = [0, 1, 0, 0, y - 1, 2*y + 1, 0, 0, 0, -4*y - 4, 0, 0, -5*y + 3, 0, 0, 0, -6, 0, 0, 7*y + 9]
```

`mflinear` $(vF, v)$

$vF$ being a vector of generalized modular forms and $v$ a vector of coefficients of same length, compute the linear combination of the entries of $vF$ with coefficients $v$. **Note.** Use this in particular to subtract two forms $F$ and $G$ (with $vF = [F, G]$ and $v = [1, -1]$), or to multiply an form by a scalar $\lambda$ (with $vF = [F]$ and $v = [\lambda]$).

```
? D = mfDelta(); G = mflinear([D],[-3]);
? mfcoefs(G,4)
%2 = [0, -3, 72, -756, 4416]
```

For user convenience, we allow

- a modular form space $mf$ as a $vF$ argument, which is understood as mfbasis($mf$);
- in this case, we also allow a modular form $f$ as $v$, which is understood as mftobasis($mf$, $f$).

```
? T = mfpow(mfTheta(),7); F = mfShimura(T,-3); \ Shimura lift for D=-3
? mfcoefs(F,8)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
? mf=mfinit(F); G = mflinear(mf,F);
? mfcoefs(G,8)
%4 = [-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000]
```

This last construction allows to replace a general modular form by a simpler linear combination of basis functions, which is often more efficient:
? T10=mfpow(mfTheta(),10); mfcoef(T10, 10^4) \ direct evaluation
time = 399 ms.
%5 = 128205250571893636
? mf=mfinit(T10); F=mflinear(mf,T10); \ instantaneous
? mfcoef(F, 10^4) \ after linearization
time = 67 ms.
%7 = 128205250571893636

mfmanin\((FS, precision)\)

Given the modular symbol \(FS\) associated to an eigenform \(F\) by \(\text{mfsymbol}(mf,F)\), computes the even and odd special polynomials as well as the even and odd periods \(\omega^+\) and \(\omega^-\) as a vector \([P^+,P^-],[\omega^+,\omega^-,r]\), where \(r = \Im(\omega^+\omega^-)/\langle F,F \rangle\). If \(F\) has several embeddings into \(\mathbb{C}\), give the vector of results corresponding to each embedding.

? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D);
? \([\text{pols},\text{oms}]\)=mfmanin(DS); \text{pols}
%2 = \[4\times x^9 - 25\times x^7 + 42\times x^5 - 25\times x^3 + 4\times x,\]
\[-36\times x^10 + 691\times x^8 - 2073\times x^6 + 2073\times x^4 - 691\times x^2 + 36]\n? \text{oms}
%3 = \[0.018538552324740326472516069364750571812,\]
\[-0.00033105361053212432321308691198949874026*I, 4096/691]\n? \text{mf=mfinit([11,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);}
? \[\text{[pols,oms]}=mfmanin(FS);\text{pols}\]
%5 = \[0, 0, 0, 1, 1, 0, 0, -1, -1, 0, 0, 0, 2, 0, 10, 5, -5, -10, -5, 5, 10, 0, -2]\n? \text{oms[3]}
%6 = 24/5

mfmul\((F, G)\)

Multiply the two generalized modular forms \(F\) and \(G\).

? E4 = mfEk(4); G = mfmul(mfmul(E4,E4),E4);
? mfcoeffs(G, 4)
%2 = \[1, 720, 179280, 16954560, 396974160]\n? \text{mfcoeffs(mfpow(E4,3), 4)}
%3 = \[1, 720, 179280, 16954560, 396974160]\n
mfnumcusps\((N)\)

Number of cusps of \(\Gamma_0(N)\)

? mfnumcusps(24)
%1 = 8
? \text{mfcusps(24)}
%1 = \[0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24\]

mfparams\((F)\)

If \(F\) is a modular form space, returns \([N,k,\text{CHI,space,:\text{math:Phi}\text{\textquoteleft\textquoteleft}}, \text{level, weight, character \chi, and space code; where \Phi is the cyclotomic polynomial defining the field of values of CHI. If F is a generalized modular form, returns \([N,k,\text{CHI,P,:math:Phi}\text{\textquoteleft\textquoteleft}}, where \text{P is the polynomial giving the field of definition of F as a relative extension of the cyclotomic field Q(\chi) = Q[t]/(\Phi)): in that case the level N may be a multiple of the level of F and the polynomial P may define a larger field than Q(F). If you want the true level of F from this result, use mfcconductormfinit(F,F). The polynomial P defines an extension of Q(\chi) = Q[t]/(\Phi(t)); it has coefficients in that number field (polmods in t).\]
In contrast with \texttt{mfparams(F)}[4] which always gives the polynomial \( P \) defining the relative extension \( \mathbb{Q}(F)/\mathbb{Q}(\chi) \), the member function \texttt:`F.mod` returns the polynomial used to define \( \mathbb{Q}(F) \) over \( \mathbb{Q} \) (either a cyclotomic polynomial or a polynomial with cyclotomic coefficients).

```plaintext
? E1 = mfeisenstein(4,-3,-4); E2 = mfeisenstein(3,5,-7); E3 = mfmul(E1,E2);
? apply(mfparams, [E1,E2,E3])
%2 = [[12, 4, 12, y, t-1], [35, 3, -35, y, t-1], [420, 7, -420, y, t-1]]

? mf = mfinit([36,2,Mod(13,36)],0); \[f\] = mfeigenbasis(mf);
mfparams(mf)
%3 = [36, 2, Mod(13, 36), 0, t^2 + t + 1]
? mfparams(f)
%4 = [36, 2, Mod(13, 36), y, t^2 + t + 1]
? f.mod
%5 = t^2 + t + 1

? mf = mfinit([36,4,Mod(13,36)],0); \[f\] = mfeigenbasis(mf);
lift(mfparams(f))
%7 = [36, 4, 13, y^3 + (2*t-2)*y^2 + (-4*t+6)*y + (10*t-1), t^2+t+1]
```

\textbf{mfperiodpol}(\textit{mf}, \textit{f}, \textit{flag}, \textit{precision})

Period polynomial of the cuspidal part of the form \( f \), in other words
\[ \int_0^{100} (X - \tau)^{k-2} f(\tau) d\tau. \] If \textit{flag} is 0, ordinary period polynomial. If it is 1 or \(-1\), even or odd part of that polynomial. \textit{f} can also be the modular symbol output by \texttt{mfsymbol}(mf,f).

```plaintext
? D = mfDelta(); mf = mfinit(D,0);
? PP = mfperiodpol(mf, D, -1); PP/=polcoef(PP, 1); bestappr(PP)
%1 = x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1
? PM = mfperiodpol(mf, D, 1); PM/=polcoef(PM, 0); bestappr(PM)
%2 = -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1
```

\textbf{mfperiodpolbasis}(\textit{k}, \textit{flag})

Basis of period polynomials for weight \( k \). If \textit{flag} = 1 or \(-1\), basis of odd or even period polynomials.

```plaintext
? mfperiodpolbasis(12,1)
%1 = [x^8 - 3*x^6 + 3*x^4 - x^2, x^10 - 1]
? mfperiodpolbasis(12,-1)
%2 = [4*x^9 - 25*x^7 + 42*x^5 - 25*x^3 + 4*x]
```

\textbf{mfpetersson}(\textit{fs}, \textit{gs})

Petersson scalar product of the modular forms \( f \) and \( g \) belonging to the same modular form space \textit{mf}, given by the corresponding “modular symbols” \textit{fs} and \textit{gs} output by \texttt{mfsymbol} (also in weight 1 and half-integral weight, where symbols do not exist). If \textit{gs} is omitted it is understood to be equal to \textit{fs}. The scalar product is normalized by the factor \( 1/|\Gamma : \Gamma_0(N)| \). Note that \( f \) and \( g \) can both be noncuspidal, in which case the program returns an error if the product is divergent. If the fields of definition \( \mathbb{Q}(f) \) and \( \mathbb{Q}(g) \) are equal to \( \mathbb{Q}(\chi) \) the result is a scalar. If \( |\mathbb{Q}(f) : \mathbb{Q}(\chi)| = d > 1 \) and \( |\mathbb{Q}(g) : \mathbb{Q}(\chi)| = e > 1 \) the result is a \( dxe \) matrix corresponding to all the embeddings of \( f \) and \( g \). In the intermediate cases \( d = 1 \) or \( e = 1 \) the result is a row or column vector.

```plaintext
? D=mfDelta(); mf=mfinit(D,0); mfpetersson(DS)
%1 = 1.03536205680432092234781681225164532 E-6
? mf=mfinit([11,6],0);B=mfeigenbasis(mf);BS=vector(#B,i,mfsymbol(mf,B[i]));
mfpetersson(BS[1])
%3 = 1.61901206522098813911708455305245466 E-5
? mfpetersson(BS[1],BS[2])
```

(continues on next page)
%4 = [-3.826479006582967148 E-42 - 2.80154739538557702 E-41*I, \ 
1.6661127341163336125 E-41 + 1.1734725972345985061 E-41*I, \ 
0.E-42 - 6.352626992842664490 E-41*I]~
? mfpetersson(BS[2])
%5 =
[ 2.7576133733... E-5 2.0... E-42 6.3... E-43 ]
[-4.1... E-42 6.77837030070... E-5 3.3...E-42 ]
[-6.32...E-43 3.6... E-42 2.27268958069... E-5]
? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F);
? mfpetersson(FS)
%5 =
[0.0039488965740025031688548076498662860143 -3.56 ... E-40]
[-3.5... E-40 0.0056442542987647835101583821368582485396]

Noncuspidal example:

? E1=mfeisenstein(5,1,-3);E2=mfeisenstein(5,-3,1);
? mf=mfinit([12,5,-3]); cusps=mfcusps(12);
? apply(x->mfcuspval(mf,E1,x),cusps)
%3 = [0, 0, 1, 0, 1, 1]
? apply(x->mfcuspval(mf,E2,x),cusps)
%4 = [1/3, 1/3, 0, 1/3, 0, 0]
? E1S=mfsymbol(mf,E1);E2S=mfsymbol(mf,E2);
? mfpetersson(E1S,E2S)
%6 = -1.884821671646... E-5 - 1.9... E-43*I

Weight 1 and 1/2-integral weight example:

? mf=mfinit([23,1,-23],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%2 = 0.035149946790370230814006345508484787443
? mf=mfinit([4,9/2],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%4 = 0.00015577084407139192774373662467908966030

mfpow(F, n)

Compute \( F^n \), where \( n \) is an integer and \( F \) is a generalized modular form:

? G = mfpow(mfEk(4), 3); \\ E4^3
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]

mfsearch(NK, V, space)

NK being of the form \([N,k] \) with \( k \) possibly half-integral, search for a modular form with rational coefficients, of weight \( k \) and level \( N \), whose initial coefficients \( a(0) \ldots \) are equal to \( V \); space specifies the modular form spaces in which to search, in \texttt{mfinit} or \texttt{mfdim} notation. The output is a list of matching forms with that given level and weight. Note that the character is of the form \((D/.)\), where \( D \) is a (positive or negative) fundamental discriminant dividing \( N \). The forms are sorted by increasing \( ||D|| \).
The parameter $N$ can be replaced by a vector of allowed levels, in which case the list of forms is sorted by increasing level, then increasing $\|D\|$. If a form is found at level $N$, any multiple of $N$ with the same $D$ is not considered. Some useful possibilities are

- $[\text{math}:'N_1..\text{math}:N_2']$: all levels between $N_1$ and $N_2$, endpoints included;
- $\text{math}:F [N_1..\text{math}:N_2']$: same but levels divisible by $F$;
- $\text{divisors}(N_0)$: all levels dividing $N_0$.

Note that this is different from mfeigensearch, which only searches for rational eigenforms.

\[
\begin{align*}
? F = \text{mfsearch}([[1..40], 2], [0,1,2,3,4], 1); \#F \\
%1 = 3 \\
? [ \text{mfparams}(f)[1..3] | f <- F ] \\
%2 = [[[38, 2, 1], [40, 2, 8], [40, 2, 40]]
\end{align*}
\]

\textbf{mfshift}($F$, $s$)

Divide the generalized modular form $F$ by $q^s$, omitting the remainder if there is one. One can have $s < 0$.

\[
\begin{align*}
? D = \text{mfDelta}(); \text{mfcoefs}(\text{mfshift}(D, 1), 4) \\
%1 = [1, -24, 252, -1472, 4830] \\
? \text{mfcoefs}(\text{mfshift}(D, 2), 4) \\
%2 = [-24, 252, -1472, 4830, -6048] \\
? \text{mfcoefs}(\text{mfshift}(D, -1), 4) \\
%3 = [0, 0, 1, -24, 252]
\end{align*}
\]

\textbf{mfshimura}($mf$, $F$, $D$)

$F$ being a modular form of half-integral weight $k > 3/2$ and $t$ a positive squarefree integer, returns the Shimura lift $G$ of weight $2k - 1$ corresponding to $D$. This function returns $[mf2, G, v]$ where $mf2$ is a modular form space containing $G$ and $v$ expresses $G$ in terms of $\text{mfbasis}(mf2)$; so that $G$ is $\text{mflinear}(mf2, v)$.

\[
\begin{align*}
? F = \text{mfpow}(\text{mfTheta}(), 7); mf = \text{mfinit}(F) \\
? [mf2, G, v] = \text{mfshimura}(mf, F, 3); \text{mfcoefs}(G, 5) \\
%2 = [-5/9, 280, 9240, 68320, 295960, 875280] \\
? \text{mfparams}(G) \setminus \text{the level may be lower than expected} \\
%3 = [1, 6, 1, y, t - 1] \\
? \text{mfparams}(mf2) \\
%4 = [2, 6, 1, 4, t - 1] \\
? v \\
%5 = [280, 0]~ \\
? \text{mfcoefs}(mf2, 5) \\
%6 = \\
\begin{bmatrix}
-1/504 & -1/504 \\
1 & 0 \\
33 & 1 \\
244 & 0 \\
1057 & 33
\end{bmatrix}
\end{align*}
\]

(continues on next page)
Let \( mf \) be a modular form space in level \( N \), \( f \) a modular form belonging to \( mf \) and let \( g \) be in \( M_+^+(\mathbb{Q}) \). This function computes the Fourier expansion of \( f \| k g \) to \( n \) terms. We first describe the behaviour when \( flrat \) is 0: the result is a vector \( v \) of floating point complex numbers such that

\[
 f \| k g(\tau) = q^\alpha \sum_{m > 0} v[m + 1] q^{m/w},
\]

where \( q = e(\tau) \), \( w \) is the width of the cusp \( g(i\infty) \) (namely \((N/(c^2, N)\) if \( g \) is integral) and \( \alpha \) is a rational number. If \( params \) is given, it is set to the parameters \([\alpha, w, \text{matid}(2)]\).

If \( flrat \) is 1, the program tries to rationalize the expression, i.e., to express the coefficients as rational numbers or polmods. We write \( g = \lambda. M. A \) where \( \lambda \in \mathbb{Q}^* \), \( M \in SL_2(\mathbb{Z}) \) and \( A = [a, b; 0, d] \) is upper triangular, integral and primitive with \( a > 0 \), \( d > 0 \) and \( 0 < b < d \). Let \( \alpha \) and \( w \) by the parameters attached to the expansion of \( F := f \| k M \) as above, i.e.

\[
 F(\tau) = q^\alpha \sum_{m > 0} v[m + 1] q^{m/w}.
\]

The function returns the expansion \( v \) of \( F = f \| k M \) and sets the parameters to \([\alpha, w, A]\). Finally, the desired expansion is \((a/d)^k/2 F(\tau + b/d)\). The latter is identical to the returned expansion when \( A \) is the identity, i.e. when \( g \in PSL_2(\mathbb{Z}) \). If this is not the case, the expansion differs from \( v \) by the multiplicative constant \((a/d)^k/2 e(ab/(dw))\) and a twist by a root of unity \( q^{1/w} \rightarrow e(b/(dw))q^{1/w} \). The complications introduced by this extra matrix \( A \) allow to recognize the coefficients in a much smaller cyclotomic field, hence to obtain a simpler description overall. (Note that this rationalization step may result in an error if the program cannot perform it.)
If \( \mathbb{Q}(f) : \mathbb{Q}(\chi) > 1 \), the coefficients may be polynomials in \( y \), where \( y \) is any root of the polynomial giving the field of definition of \( f \) (\( \text{f.mod} \) or \( \text{mfparams}(f)[4] \)).

| ? mf=mfini([23,2],0);f=mfeigenbasis(mf)[1];  |
| ? mfeigenbasis(mf)[1]; |  |
| ? mfcoefs(f,5) | %1 = [Mod(0, y^2 - y - 1), Mod(1, y^2 - y - 1), Mod(-y, y^2 - y - 1), \  |
| Mod(2*y - 1, y^2 - y - 1), Mod(y - 1, y^2 - y - 1), Mod(-2*y, y^2 - y - 1)]  |
| ? mflasheception(mf,f,[1,0;0,1],5,1) | %2 = [0, 1, -y, 2*y - 1, y - 1, -2*y]  |
| ? mflasheception(mf,f,[0,-1;1,0],5,1) | %3 = [0, -1/23, 1/23*y, -2/23*y + 1/23, -1/23*y + 1/23, 2/23*y]  |

Caveat. In half-integral weight, we define the “slash” operation as

\[
(f \| g)(\tau) := ((c \tau + d)^{-1/2})^{2k} f(g.\tau),
\]

with the principal determination of the square root. In particular, the standard cocycle condition is no longer satisfied and we only have \( f \| (g g') = (f \| g) \| g' \).

mfspace(\(m, f\))

Identify the modular space \(m\), resp. the modular form \(f\) in \(m\) if present, as the flag given to mfini. Returns 0 (newspace), 1 (cuspidal space), 2 (old space), 3 (Eisenstein space) or 4 (full space).

| ? mf = mfini([1,12],1); mfeigenbasis(mf)  |
| ? mfeigenbasis(mf) | %1 = 1  |
| ? mfspace(mf, mfDelta()) | %2 = 0 \ new space  |

This function returns \(-1\) when the form \(f\) is modular but does not belong to the space.

| ? mf = mfini([1,2]; mfspace(mf, mfEk(2))  |
| ? mfspace(mf, mfEk(2)) | %3 = -1  |

When \(f\) is not modular and is for instance only quasi-modular, the function returns nonsense:

| ? M6 = mfini([1,6]);  |
| ? dE4 = mfderv(mfEk(4)); not modular !  |
| ? mfspace(M6,dE4) \ not asserts (wrongly) that E4' belongs to new space  |
| %3 = 0  |

mfsplit(\(m, \text{dimlim}, \text{flag}\))

\(m\) from mfini with integral weight containing the new space (either the new space itself or the cuspidal space or the full space), and preferably the newspace itself for efficiency, split the space into Galois orbits of eigenforms of the newspace, satisfying various restrictions.

The functions return \([vF, vK]\), where \(vF\) gives (Galois orbit of) eigenforms and \(vK\) is a list of polynomials defining each Galois orbit. The eigenforms are given in mftobasis format, i.e. as a matrix whose columns give the forms with respect to mfbasis(mx).

If \(\text{dimlim}\) is set, only the Galois orbits of dimension \(<= \text{dimlim}\) are computed (i.e. the rational eigenforms if \(\text{dimlim} = 1\) and the character is real). This can considerably speed up the function when a Galois orbit is defined over a large field.

\(\text{flag}\) speeds up computations when the dimension is large: if \(\text{flag} = d > 0\), when the dimension of the eigenspace is \(> d\), only the Galois polynomial is computed.
Note that the function `mfeigenbasis` returns all eigenforms in an easier to use format (as modular forms which can be input as is in other functions); `mfsplit` is only useful when you can restrict to orbits of small dimensions, e.g. rational eigenforms.

```
? mf=mfinit([11,2],0); f=mfeigenbasis(mf)[1]; mffcoefs(f,16)
%1 = [0, 1, -2, -1, ...]
? mf=mfinit([23,2],0); f=mfeigenbasis(mf)[1]; mffcoefs(f,16)
%2 = [Mod(0, z^2 - z - 1), Mod(1, z^2 - z - 1), Mod(-z, z^2 - z - 1), ...]
? mf=mfinit([179,2],0); apply(poldegree, mffields(mf))
%3 = [1, 3, 11]
? mf=mfinit([719,2],0);
? [vF,vK] = mfsplit(mf, 5); \ fast when restricting to small orbits
 time = 192 ms.
? #vF \ \ a single orbit
%5 = 1
? poldegree(vK[1]) \ \ of dimension 5
%6 = 5
? [vF,vK] = mfsplit(mf); \ \ general case is slow
 time = 2,104 ms.
? apply(poldegree,vK)
%8 = [5, 10, 45] \ \ because degree 45 is large...
```

### mfsturm(NK)

Gives the Sturm bound for modular forms on $\Gamma_0(N)$ and weight $k$, i.e., an upper bound for the order of the zero at infinity of a nonzero form. NK is either

- a pair $[N,k]$, in which case the bound is the floor of $(kN/12) \cdot \prod p | N (1 + 1/p)$;
- or the output of `mfinit` in which case the exact upper bound is returned.

```
? NK = [96,6]; mfsturm(NK)
%1 = 97
? mf=mfinit(NK,1); mfsturm(mf)
%2 = 76
? mf=
```

### mfsymbol(mf,f,precision)

Initialize data for working with all period polynomials of the modular form $f$: this is essential for efficiency for functions such as `mfsymboleval`, `mfmanin`, and `mfpetersson`. An `mfsymbol` contains an `mf` structure and can always be used whenever an `mf` would be needed.

```
? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1];
? FS=mfsymbol(mf,F);
? mfsymboleval(FS,[0,0o])
%3 = [8.762565143790690142 E-39 + 0.08779078743...*I,
-5.617375463602574564 E-39 + 0.07168010315...*I]
? mfpetersson(FS)
%4 =
[0.0039488965748025031688548076498662860143 1.278972111175127425 E-40]
[1.2630501762985554269 E-40 0.0056442542987647835101583821368582485396]
```

By abuse of language, initialize data for working with `mfpetersson` in weight 1 and half-integral weight (where no symbol exist); the `mf` argument may be an `mfsymbol` attached to a form on the space, which avoids recomputing
For simplicity, we also allow `mfsymbol(f)` instead of `mfsymbol(mfinit(f), f):

```
mfsymboleval(fs, path, ga, precision)
```

Evaluation of the modular symbol \( f_s \) (corresponding to the modular form \( f \)) output by `mfsymbol` on the given path `path`, where `path` is either a vector \([s_1, s_2]\) or an integral matrix \([a, b; c, d]\) representing the path \([a/c, b/d]\). In both cases \( s_1 \) or \( s_2 \) (or \( a/c \) or \( b/d \)) can also be elements of the upper half-plane. To avoid possibly lengthy `mfsymbol` computations, the program also accepts \( f_s \) of the form \([mf, F]\), but in that case \( s_1 \) and \( s_2 \) are limited to \( oo \) and elements of the upper half-plane. The result is the polynomial equal to

\[
\int_{s_1}^{s_2} (X - \tau)^{k-2} F(\tau) d\tau, \quad \text{the integral being computed along a geodesic joining} \ s_1 \ \text{and} \ s_2.
\]

If \( ga \) in \( GL_2(Q) \) is given, replace \( F \) by \( F || \gamma \). Note that if the integral diverges, the result will be a rational function. If the field of definition \( Q(f) \) is larger than \( Q(\chi) \) then \( f \) can be embedded into \( C \) in \( d = [Q(f) : Q(\chi)] \) ways, in which case a vector of the \( d \) results is returned.

```
? mf=mfini([35,2],1);f=mfbasis(mf)[1];fs=mfsymbol(mf,f);
? mfsymboleval(fs,[0,oo])
%1 = -0.1429696291... - 0.2619975641...*I
? mfsymboleval(fs,[I,2*I])
%2 = -1.00000...*x^2 + 1.00000...*x - 0.50000...)/(x^2 - x)
```

The rational function which is given in case the integral diverges is easy to interpret. For instance:

```
? E4=mfe(4);mf=mfini(E4);ES=mfsymbol(mf,E4);
? mfsymboleval(ES,[0,1])
%2 = 1/3*x^3 - 0.928067...*x^2 - 0.833333...*x + 0.234978...*I
? mfsymboleval(ES,[a,1])
%3 = (-0.234978...*I*x^3 - 0.833333...*x^2 + 0.928067...*I*x + 0.333333...)/x
```

`mfsymboleval(ES,[a,oo])` is the limit as \( T \to oo \) of

\[
\int_a^{iT} (X - \tau)^{k-2} F(\tau) d\tau + a(0)(X - iT)^{k-1}/(k - 1),
\]

where \( a(0) \) is the \( 0 \) at infinity. Similarly, `mfsymboleval(ES,[0,a])` is the limit as \( T \to oo \) of

\[
\int_0^{a/T} (X - \tau)^{k-2} F(\tau) d\tau + b(0)(1 + iT)^{k-1}/(k - 1),
\]
where \( b(0) \) is the 0 at infinity.

**mftaylor\((F, n, \text{flreal}, \text{precision})\)**

\( F \) being a form in \( M_k(SL(2,\mathbb{Z})) \), computes the first \( n + 1 \) canonical Taylor expansion of \( F \) around \( \tau = I \). If \( \text{flreal} = 0 \), computes only an algebraic equivalence class. If \( \text{flreal} \) is set, compute \( p_n \) such that for \( \tau \) close enough to \( I \) we have

\[
f(\tau) = \left(2I / (\tau + I)\right)^k \sum_{n \geq 0} p_n \left(\left(\tau - I\right) / (\tau + I)\right)^n.
\]

```plaintext
? D = mfDelta();
? mftaylor(D, 8)
%2 = [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312]
```

**mftobasis\((\text{mf}, F, \text{flag})\)**

Coefficients of the form \( F \) on the basis given by \text{mfbasis}(\text{mf}). A \( q \)-expansion or vector of coefficients can also be given instead of \( F \), but in this case an error message may occur if the expansion is too short. An error message is also given if \( F \) does not belong to the modular form space. If \( \text{flag} \) is set, instead of error messages the output is an affine space of solutions if a \( q \)-expansion or vector of coefficients is given, or the empty column otherwise.

```plaintext
? mf = mfinit([26, 2], 0); mfdim(mf)
%1 = 2
? F = mflinear(mf, [a, b]); mftobasis(mf, F)
%2 = [a, b]~

A \(q \)-expansion or vector of coefficients can also be given instead of \(F \).

```plaintext
? Th = 1 + 2*sum(n=1, 8, q^(n^2), O(q^80));
? mf = mfinit([4, 5, Mod(3, 4)]);
? mftobasis(mf, Th^10)
%3 = [64/5, 4/5, 32/5]~

If \( F \) does not belong to the corresponding space, the result is incorrect and simply matches the coefficients of \( F \) up to some bound, and the function may either return an empty column or an error message. If \( \text{flag} \) is set, there are no error messages, and the result is an empty column if \( F \) is a modular form; if \( F \) is supplied via a series or vector of coefficients which does not contain enough information to force a unique (potential) solution, the function returns \([v, K]\) where \( v \) is a solution and \( K \) is a matrix of maximal rank describing the affine space of potential solutions \( v + K \cdot x \).

```plaintext
? mf = mfinit([4, 12], 1);
? mftobasis(mf, q-24*q^2+O(q^3), 1)
%2 = [[43/64, -63/8, 800, 21/64]~, [1, 0, 24, 0; 2048, 768, -1, 0]]
? mftobasis(mf, [0, 1, -24, 252], 1)
%3 = [[1, 0, 1472, 0], [0, 0, 768, 0]]
? mftobasis(mf, [0, 1, -24, 252, -1472], 1)
%4 = [1, 0, 0, 0]~ \ \ now uniquely determined
? mftobasis(mf, [0, 1, -24, 252, -1472, 0], 1)
%5 = [1, 0, 0, 0]~ \ \ wrong result: no such form exists
? mftobasis(mflinear(mf, %), 5) \ \ double check
%6 = [0, 1, -24, 252, -1472, 4830]
? mftobasis(mf, [0, 1, -24, 252, -1472, 0])
*** at top-level: mftobasis(mf, [0, 1, 0, 0, 0, 0])
*** ^-------------------------------
*** mftobasis: domain error in mftobasis: form does not belong to space
```

(continues on next page)
mftobasis(mf, mfEk(10))
*** at top-level: mftobasis(mf,mfEk(
*** ^-------------------
*** mftobasis: domain error in mftobasis: form does not belong to space

mftobasis(mf, mfEk(10), 1)
%7 = []

mftocoset(N, M, Lcosets)

$M$ being a matrix in $SL_2(\mathbb{Z})$ and $Lcosets$ being $mfcosets(N)$, a list of right cosets of $\Gamma_0(N)$, find the coset to which $M$ belongs. The output is a pair $[\gamma, i]$ such that $M = \gamma Lcosets[i]$, $\gamma \in \Gamma_0(N)$.

? N = 4; L = mfcosets(N);
? mftocoset(N, [1,1;2,3], L)
%2 = [[-1, 1; -4, 3], 5]

mftonew(mf, F)

$mf$ being being a full or cuspidal space with parameters $[N, k, \chi]$ and $F$ a cusp form in that space, returns a vector of 3-component vectors $[M, d, G]$, where $f(\chi)[M][N, d]/N/M$, and $G$ is a form in $S_n^\text{new}(\Gamma_0(M), \chi)$ such that $F$ is equal to the sum of the $B(d)(G)$ over all these 3-component vectors.

? mf = mfinit([96,6],1); F = mfbasis(mf)[60]; s = mftonew(mf,F); #s
%1 = 1
? [M,d,G] = s[1]; [M,d]
%2 = [48, 2]
? mfcoefs(F,10)
%3 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]
? mfcoefs(G,10)
%4 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]

mftraceform(NK, space)

If $NK = [N, k, CHI, ...]$ as in mfinit with $k$ integral, gives the trace form in the corresponding subspace of $S_k(\Gamma_0(N), \chi)$. The supported values for space are 0: the newspace (default), 1: the full cuspidal space.

? F = mftraceform([23,2]); mfcoefs(F,16)
%1 = [0, 2, -1, 0, -1, -2, -5, 2, 0, 4, 6, -6, 5, 6, 4, -10, -3]
? F = mftraceform([23,1,-23]); mfcoefs(F,16)
%2 = [0, 1, -1, -1, 0, 0, 1, 0, 1, 0, 0, 0, 0, -1, 0, 0, -1]

mftwist(F, D)

$F$ being a generalized modular form, returns the twist of $F$ by the integer $D$, i.e., the form $G$ such that $mfcoef(G, n) = \text{\texttt{(D/n)}}mfcoef(F,n)$, where $(D/n)$ is the Kronecker symbol.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfcoefs(F, 5)
%1 = [0, 1, -2, -1, 2, 1]
? G = mftwist(F,-3); mfcoefs(G, 5)
%2 = [0, 1, 2, 0, 2, -1]
? mf2 = mfinit([99,2],0); mftobasis(mf2, G)
%3 = [1/3, 0, 1/3, 0]

Note that twisting multiplies the level by $D^2$. In particular it is not an involution:

1.1. Guide to real precision in the PARI interface 245
\[ H = \text{mftwist}(G, -3); \text{mfcoefs}(H, 5) \]
\[ \%4 = [0, 1, -2, 0, 2, 1] \]
\[ ? \text{mfparams}(G) \]
\[ \%5 = [99, 2, 1, y, t - 1] \]

\textbf{min}(x, y)

Creates the maximum of \( x \) and \( y \) when they can be compared.

\textbf{minpoly}(A, v)

minimal polynomial of \( A \) with respect to the variable \( v \), i.e. the monic polynomial \( P \) of minimal degree (in the variable \( v \)) such that \( P(A) = 0 \).

\textbf{modreverse}(z)

Let \( z = Mod(A, T) \) be a polmod, and \( Q \) be its minimal polynomial, which must satisfy \( \deg(Q) = \deg(T) \). Returns a “reverse polmod” \( Mod(B, Q) \), which is a root of \( T \).

This is quite useful when one changes the generating element in algebraic extensions:

\[ ? u = Mod(x, x^3 - x -1); \ v = u^5; \]
\[ ? w = \text{modreverse}(v) \]
\[ \%2 = Mod(x^2 - 4*x + 1, x^3 - 5*x^2 + 4*x - 1) \]

which means that \( x^3 - 5x^2 + 4x - 1 \) is another defining polynomial for the cubic field

\[ \mathbb{Q}(u) = \mathbb{Q}[x]/(x^3 - x -1) = \mathbb{Q}[x]/(x^3 - 5x^2 + 4x - 1) = \mathbb{Q}(v), \]

and that \( u \to v^2 - 4v + 1 \) gives an explicit isomorphism. From this, it is easy to convert elements between the \( A(u) \in \mathbb{Q}(u) \) and \( B(v) \in \mathbb{Q}(v) \) representations:

\[ ? A = u^2 + 2*u + 3; \ \text{subst}(\text{lift}(A), 'x, w) \]
\[ \%3 = Mod(x^2 - 3*x + 3, x^3 - 5*x^2 + 4*x - 1) \]
\[ ? B = v^2 + v + 1; \ \text{subst}(\text{lift}(B), 'x, v) \]
\[ \%4 = Mod(26*x^2 + 31*x + 26, x^3 - x - 1) \]

If the minimal polynomial of \( z \) has lower degree than expected, the routine fails

\[ ? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1) \]
\[ ? \text{modreverse}(u) \]
\[ *** \text{modreverse}: \text{domain error in modreverse: deg(minpoly(z)) < 4} \]
\[ *** \text{Break loop: type 'break' to go back to GP prompt} \]

\textbf{moebius}(x)

Moebius \( \mu \)-function of \( ||x|| \); \( x \) must be a nonzero integer.

\textbf{msatkinlehner}(M, Q, H)

Let \( M \) be a full modular symbol space of level \( N \), as given by \texttt{msinit}, let \( Q \| N, (Q, N/Q) = 1 \), and let \( H \) be a subspace stable under the Atkin-Lehner involution \( w_Q \). Return the matrix of \( w_Q \) acting on \( H \) (\( M \) if omitted).
? M = msinit(36,2); \ M_2(\text{Gamma}_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? #w \ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \ M_2(\text{Gamma}_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? #w
%6 = 4

mscosets(gen, inh)

gen being a system of generators for a group \( G \) and \( H \) being a subgroup of finite index in \( G \), return a list of right cosets of \( H \) and the right action of \( G \) on \( H \). The subgroup \( H \) is given by a criterion \( \text{inh} \) (closure) deciding whether an element of \( G \) belongs to \( H \). The group \( G \) is restricted to types handled by generic multiplication (*) and inversion \( (g^\text{-1}) \), such as matrix groups or permutation groups.

Let \( gens = [g_1, ..., g_r] \). The function returns \( [C, M] \) where \( C \) lists the \( h = [G : H] \) representatives \( [\gamma_1, ..., \gamma_h] \) for the right cosets \( H\gamma_1, ..., H\gamma_h \); \( \gamma_1 \) is always the neutral element in \( G \). For all \( i <= h, j <= r \), if \( M[i][j] = k \) then \( H\gamma_i g_j = H\gamma_k \).

? PSL2 = [[0,1;-1,0], [1,1;0,1]]; \ S and T
\ \ \ \ G = PSL2, H = \text{Gamma}0(2)
? [C, M] = mscosets(PSL2, g->g[2,1] % 2 == 0);
? C
%3 = [[1, 0; 0, 1], [0, 1; -1, 0], [0, 1; -1, -1]]
? M
%4 = [Vecsmall([2, 1]), Vecsmall([1, 3]), Vecsmall([3, 2])]

Looking at \( M[1] \) we see that \( S \) belongs to the second coset and \( T \) to the first (trivial) coset.

muscuspidal(M, flag)

\( M \) being a full modular symbol space, as given by \text{msinit}, return its cuspidal part \( S \). If \( flag = 1 \), return \([S, E]\) its decomposition into cuspidal and Eisenstein parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \( \mathbb{Q} \)-basis of the subspace.

? M = msinit(2,8, 1); \ M_8(\text{Gamma}_0(2))^+
? [S,E] = muscuspidal(M, 1);
? E[1] \ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]

? S[1] \ 1-dimensional
%4 =
[3]

(continues on next page)
msdim(M)

M being a full modular symbol space or subspace, for instance as given by msinit or mscuspidal, return its dimension as a \( \mathbb{Q} \)-vector space.

```plaintext
? M = msinit(11,4); msdim(M)
%1 = 6
? M = msinit(11,4,1); msdim(M)
%2 = 4 \text{ \textbackslash \ textsl{dimension of the '+'} part}
? [S,E] = mscuspidal(M,1);
? [msdim(S), msdim(E)]
%4 = [2, 2]
```

Note that \texttt{mfdim([N,k])} is going to be much faster if you only need the dimension of the space and not really to work with it. This function is only useful to quickly check the dimension of an existing space.

mseisenstein(M)

M being a full modular symbol space, as given by msinit, return its Eisenstein subspace. A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \( \mathbb{Q} \)-basis of the subspace. This is the same basis as given by the second component of mscuspidal(M,1).

```plaintext
? M = msinit(2,8, 1); \text{\textbackslash \textsl{M_8(Gamma_0(2))^+}}
? E = mseisenstein(M);
? E[1] \text{ \textsl{2-dimensional}}
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]

? E == mscuspidal(M,1)[2]
%4 = 1
```

mseval(M, s, p)

Let \( \Delta_0 := Div^0(\mathbb{P}^1(\mathbb{Q})) \). Let M be a full modular symbol space, as given by msinit, let s be a modular symbol from M, i.e. an element of Hom\(_G(\Delta_0, V)\), and let \( p = [a, b] \in \Delta_0 \) be a path between two elements in \( \mathbb{P}^1(\mathbb{Q}) \), return \( s(p) \in V \). The path extremities \( a \) and \( b \) may be given as \texttt{t_INT}, \texttt{t_FRAC} or \( oo = (1 : 0) \); it is also possible to describe the path by a 2x2 integral matrix whose columns give the two cusps. The symbol \( s \) is either

- a \texttt{t_COL} coding a modular symbol in terms of the fixed basis of Hom\(_G(\Delta_0, V)\) chosen in M; if M was initialized with a nonzero \texttt{sign} (+ or −), then either the basis for the full symbol space or the -part can be used (the dimension being used to distinguish the two).

- a \texttt{t_MAT} whose columns encode modular symbols as above. This is much faster than evaluating individual symbols on the same path \( p \) independently.
a \texttt{t_VEC} \((v_i)\) of elements of \(V\), where the \(v_i = s(g_i)\) give the image of the generators \(g_i\) of \(\Delta_0\), see \texttt{mspathgens}. We assume that \(s\) is a proper symbol, i.e. that the \(v_i\) satisfy the \texttt{mspathgens} relations.

If \(p\) is omitted, convert a single symbol \(s\) to the second form: a vector of the \(s(g_i)\). A \texttt{t_MAT} is converted to a vector of such.

```plaintext
? M = msinit(2,8,1); \ M_8(Gamma_0(2))^{+} +
? g = mspathgens(M)[1]
%2 = [[+oo, 0], [0, 1]]
? N = msnew(M)[1]; #N \ Q-basis of new subspace, dimension 1
%3 = 1
? s = N[,1] \ t_COL representation
%4 = [-3, 6, -8]~
? S = mseval(M, s) \ t_VEC representation
%5 = [64*x^6 - 272*x^4 + 136*x^2 - 8, 384*x^5 + 960*x^4 + 192*x^3 - 672*x^2 - 432*x - 72]
? mselval(M, s, g[1])
%6 = 64*x^6 - 272*x^4 + 136*x^2 - 8
? mselval(M, S, g[1])
%7 = 64*x^6 - 272*x^4 + 136*x^2 - 8
```

Note that the symbol should have values in \(V = \mathbb{Q}[x, y]_{k-2}\), we return the de-homogenized values corresponding to \(y = 1\) instead.

**\texttt{msfarey}(F, \texttt{inH}, CM)**

\(F\) being a Farey symbol attached to a group \(G\) contained in \(PSL_2(\mathbb{Z})\) and \(H\) a subgroup of \(G\), return a Farey symbol attached to \(H\). The subgroup \(H\) is given by a criterion \texttt{inH} (closure) deciding whether an element of \(G\) belongs to \(H\). The symbol \(F\) can be created using

- \texttt{mspolygon}: \(G = \Gamma_0(N)\), which runs in time \(O(N)\);
- \texttt{msfarey} itself, which runs in time \(O([G : H]^2)\).

If present, the argument \texttt{CM} is set to \texttt{mscosets(F[3])}, giving the right cosets of \(H\) and the action of \(G\) by right multiplication. Since \texttt{msfarey}'s algorithm is quadratic in the index \([G : H]\), it is advisable to construct subgroups by a chain of inclusions if possible.

```plaintext
\ Gamma_0(N)
G0(N) = mspolygon(N);

\ Gamma_1(N): direct construction, slow
G1(N) = msfarey(mspolygon(1), g -> my(a = g[1,1]%N, c = g[2,1]%N);
 c == 0 && (a == 1 || a == N-1));
\ Gamma_1(N) via Gamma_0(N): much faster
G1(N) = msfarey(G0(N), g -> my(a=g[1,1]%N); a==1 || a==N-1));

\ Gamma(N)
G(N) = msfarey(G1(N), g -> g[1,2]%N==0);
G_00(N) = msfarey(G0(N), x -> x[1,2]%N==0);
G1_00(N1,N2) = msfarey(G0(1), x -> x[2,1]%N1==0 && x[1,2]%N2==0);

\ Gamma_0(91) has 4 elliptic points of order 3, Gamma_1(91) has none
D0 = mspolygon(G0(91), 2)[4];
D1 = mspolygon(G1(91), 2)[4];
write("F.tex","\documentclass{article}\usepackage{tikz}\begin{document}",
 D0, "\n", D1, "\end{document}");
```

1.1. Guide to real precision in the PARI interface
msfromcusp($M, c$)

Returns the modular symbol attached to the cusp $c$, where $M$ is a modular symbol space of level $N$, attached to $G = \Gamma_0(N)$. The cusp $c$ in $\mathbb{P}^1(\mathbb{Q})/G$ is given either as $\infty = (1 : 0)$ or as a rational number $a/b (= (a : b))$. The attached symbol maps the path $[b] - [a] \in \text{Div}^0(\mathbb{P}^1(\mathbb{Q}))$ to $E_c(b) - E_c(a)$, where $E_c(r)$ is 0 when $r! = c$ and $X^{k-2}\gamma_r$ otherwise, where $\gamma_r = (1 : 0)$. These symbols span the Eisenstein subspace of $M$.

In case $M$ was initialized with a nonzero sign, the symbol is given in terms of the fixed basis of the whole symbol space, not the $+$ or $-$ part (to which it need not belong).

msfromell($E, sign$)

Let $E/\mathbb{Q}$ be an elliptic curve of conductor $N$. For $\varepsilon = 1$, we define the (cuspidal, new) modular symbol $x^\varepsilon$ in $H^1_c(X_0(N), \mathbb{Q})^\varepsilon$ attached to $E$. For all primes $p$ not dividing $N$ we have $T_p(x^\varepsilon) = a_p x^\varepsilon$, where $a_p = p + 1 - #E(\mathbb{F}_p)$.

Let $\Omega^+ = E.\Omega_0[1]$ be the real period of $E$ (integration of the Néron differential $dx/(2y + a_1 x + a_3)$ on the connected component of $E(\mathbb{R})$, i.e. the generator of $H_1(E, \mathbb{Z})^+$) normalized by $\Omega^+ > 0$. Let $i\Omega^-$ the integral on a generator of $H_1(E, \mathbb{Z})^-$ with $\Omega^- \in \mathbb{R}_{>0}$. If $c_{oo}$ is the number of connected components of $E(\mathbb{R})$, $\Omega^-$ is
equal to \((-2/c_o)x_{\text{imag}}(E.\text{omega}[2])\). The complex modular symbol is defined by

\[ F : \delta \to 2i\pi \int_{\delta} f(z)dz \]

The modular symbols \(x^\varepsilon\) are normalized so that \(F = x^+\Omega^+ + x^{-i}\Omega^-\). In particular, we have

\[ x^+([0] - [oo]) = L(E,1)/\Omega^+ \]

which defines \(x\) unless \(L(E,1) = 0\). Furthermore, for all fundamental discriminants \(D\) such that \(\varepsilon.D > 0\), we also have

\[ \sum_{0<\varepsilon<||D||} (D||a)x^\varepsilon([a/||D||] - [oo]) = L(E,(D||.),1)/\Omega^\varepsilon \]

where \((D||.)\) is the Kronecker symbol. The period \(\Omega^-\) is also \(2/c_o ox\) the real period of the twist \(E(-4) = \text{elltwist}(E, -4)\).

This function returns the pair \([M, x]\), where \(M\) is \(msinit(N,2)\) and \(x\) is \(x^{sign}\) as above when \(sign = 1\), and \(x = [x^+, x^-, L_E]\) when \(sign = 0\), where \(L_E\) is a matrix giving the canonical \(\mathbb{Z}\)-lattice attached to \(E\) in the sense of \(mslattice\) applied to \(\mathbb{Q}x^+ + \mathbb{Q}x^-\). Explicitly, it is generated by \((x^+, x^-)\) when \(E(\mathbb{R})\) has two connected components and by \((x^+ - x^-, 2x^-)\) otherwise.

The modular symbols \(x\) are given as a \(t_{\text{COL}}\) (in terms of the fixed basis of \(\text{Hom}_G(\Delta_0, \mathbb{Q})\) chosen in \(M\)).

instead of a single curve \(E\), one may use instead a vector of isogenous curves. The function then returns \(M\) and the vector of attached modular symbols.

\textbf{msfromhecke}(\(M, v, H\))

Given a \(msinit\) \(M\) and a vector \(v\) of pairs \([p, P]\) (where \(p\) is prime and \(P\) is a polynomial with integer coefficients), return a basis of all modular symbols such that \(P(T_p)(s) = 0\). If \(H\) is present, it must be a Hecke-stable subspace and we restrict to \(s \in H\). When \(T_p\) has a rational eigenvalue and \(P(x) = x - a_p\) has degree 1, we also accept the integer \(a_p\) instead of \(P\).
mshecke($M$, $p$, $H$)

$M$ being a full modular symbol space, as given by `msinit`, $p$ being a prime number, and $H$ being a Hecke-stable subspace ($M$ if omitted) return the matrix of $T_p$ acting on $H$ ($U_p$ if $p$ divides $N$). Result is undefined if $H$ is not stable by $T_p$ (resp. $U_p$).

```plaintext
? M = msinit(11,2); \ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3 0 0]
[1 -2 0]
[1 0 -2]
? M = msinit(11,2, 1); \ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[3 0]
```

msgetlevel($M$)

$M$ being a full modular symbol space, as given by `msinit`, return its level $N$.

msgetsign($M$)

$M$ being a full modular symbol space, as given by `msinit`, return its sign: 1 or 0 (unset).

```plaintext
? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0
```

msgetweight($M$)

$M$ being a full modular symbol space, as given by `msinit`, return its weight $k$.

```plaintext
? M = msinit(11,4);
? msgetweight(M)
%2 = 4
```
? N = msnew(M)[1] \ Q-basis of new cuspidal subspace
%5 = [-2]

? p = 1009; mshecke(M, p, N) \ action of T_1009 on N
%6 = [-10]

? ellap(ellinit("11a1"), p)
%7 = -10

\textbf{msinit}(G, V, \text{sign})

Given \( G \) a finite index subgroup of \( SL(2, \mathbb{Z}) \) and a finite dimensional representation \( V \) of \( GL(2, \mathbb{Q}) \), creates a space of modular symbols, the \( G \)-module \( \text{Hom}_G(\text{Div}^0(\mathbb{P}^1(\mathbb{Q})), V) \). This is canonically isomorphic to \( H^1_c(X(G), V) \), and allows to compute modular forms for \( G \). If \textit{sign} is present and nonzero, it must be 1 and we consider the subspace defined by \( \text{Ker}(\sigma - \text{sign}) \), where \( \sigma \) is induced by \([-1, 0; 0, 1]\). Currently the only supported groups are the \( \Gamma_0(N) \), coded by the integer \( N > 0 \). The only supported representation is \( V_k = \mathbb{Q}[X, Y]_{k-2} \), coded by the integer \( k \geq 2 \).

? M = msinit(11, 2); msdim(M) \ Gamma0(11), weight 2
%1 = 3

? mshecke(M, 2) \ T_2 acting on M
%2 = [3 1 1]  
[0 -2 0]

? msstar(M) \ * involution
%3 = [1 0 0]  
[0 1]

? Mp = msinit(11, 2, 1); msdim(Mp) \ + part
%4 = 2

? mshecke(Mp, 2) \ T_2 action on M^+
%5 = [3 2]  
[0 -2]

? msstar(Mp)
%6 = [1 0]

[0 1]
\texttt{msissymbol}(M, s) \\
\textit{M} being a full modular symbol space, as given by \texttt{msinit}, check whether \textit{s} is a modular symbol attached to \textit{M}. If \textit{A} is a matrix, check whether its columns represent modular symbols and return a 0 – 1 vector.

\begin{verbatim}
? M = msinit(7,8, 1); \ M_8(Gamma_0(7))^+ \\
? A = msnew(M)[1]; \\
? s = A[,1]; \\
? msissymbol(M, s) \%4 = 1 \\
? msissymbol(M, A) \%5 = [1, 1, 1] \\
? S = mseval(M,s); \\
? msissymbol(M, S) \%7 = 1 \\
? [g,R] = mspathgens(M); g \%8 = [+oo, 0], [0, 1/2], [1/2, 1]
\end{verbatim}

\texttt{mslattice}(M, \textit{H})

Let \( \Delta_0 := Div(P^1(Q)) \) and \( V_k = Q[x, y]_{k-2} \). Let \textit{M} be a full modular symbol space, as given by \texttt{msinit} and let \textit{H} be a subspace, e.g. as given by \texttt{mscuspidal}. This function returns a canonical \( Z \)-structure on \textit{H} defined as follows. Consider the map \( c : M = \text{Hom}_{\Gamma_0(N)}(\Delta_0, V_k) \rightarrow H^1(\Gamma_0(N), V_k) \) given by \( \phi : \cdots \rightarrow \text{class}(\gamma \rightarrow \phi(0, \gamma^{-1}0)) \). Let \( L_k = Z[x, y]_{k-2} \) be the natural \( Z \)-structure of \( V_k \). The result of \texttt{mslattice} is a \( Z \)-basis of the inverse image by \textit{c} of \( H^1(\Gamma_0(N), L_k) \) in the space of modular symbols generated by \textit{H}.

For user convenience, \textit{H} can be defined by a matrix representing the \( Q \)-basis of \textit{H} (in terms of the canonical \( Q \)-basis of \textit{M} fixed by \texttt{msinit} and used to represent modular symbols).

If omitted, \textit{H} is the cuspidal part of \textit{M} as given by \texttt{mscuspidal}. The Eisenstein part \( \text{Hom}_{\Gamma_0(N)}(\text{Div}(P^1(Q)), V_k) \) is in the kernel of \textit{c}, so the result has no meaning for the Eisenstein part \textit{H}.

\begin{verbatim}
? M=msinit(11,2); \\
? [S,E] = mscuspidal(M,1); S[1] \ a primitive Q-basis of S \\
%2 = \\
[ 1 1] \\
[-5 0] \\
? mslattice(M,S) \%3 = \\
[-1/5 -1/5] \\
[ 1 0] \\
[ 0 1] \\
? mslattice(M,E) \%4 = \\
[1] \\
[0] \\
[0] \\
? M=msinit(5,4); \\
? S=mscuspidal(M); S[1]
\end{verbatim}

(continues on next page)
mslattice(M,S)

M being a full modular symbol space, as given by msinit, return the new part of its cuspidal subspace. A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a $\mathbb{Q}$-basis of the subspace.

msnew(M)

Return the new part of its cuspidal subspace.

msomseval(Mp, PHI, path)

Return the vectors of moments of the $p$-adic distribution attached to the path path by the overconvergent modular symbol PHI.

mspadicL(mu, s, r)

Returns the value (or $r$-th derivative) on a character $\chi^s$ of $\mathbb{Z}_p^*$ of the $p$-adic $L$-function attached to $\mu$.

Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigenvector for $T_N(p)$ for the eigenvalue $a_p$). Then $L_p(\Phi, \chi^s) = L_p(\mu, s)$ is the $p$-adic $L$ function defined by

$$L_p(\Phi, \chi^s) = \int_{\mathbb{Z}_p^*} \chi^s(z)d\mu(z)$$

where $\mu$ is the distribution on $\mathbb{Z}_p^*$ defined by the restriction of $\Phi([oo] - [0])$ to $\mathbb{Z}_p^*$. The $r$-th derivative is taken in direction $< \chi >$:

$$L_p^{(r)}(\Phi, \chi^s) = \int_{\mathbb{Z}_p^*} \chi^s(z)(\log z)^r d\mu(z).$$

In the argument list,

- $\mu$ is as returned by mspadicmoments (distributions attached to $\Phi$ by restriction to discs $a + p^n\mathbb{Z}_p$, $(a, p) = 1$).

1.1. Guide to real precision in the PARI interface

255
• \( s = [s_1, s_2] \) with \( s_1 \in \mathbb{Z} \subset \mathbb{Z}_p \) and \( s_2 \mod p - 1 \) or \( s_2 \mod 2 \) for \( p = 2 \), encoding the \( p \)-adic character \( \chi^s := \chi^{\tau^{s_2}} \) here \( \chi \) is the cyclotomic character from \( \text{Gal}(\mathbb{Q}_p(\mu_{p^\infty})/\mathbb{Q}_p) \) to \( \mathbb{Z}_p^* \), and \( \tau \) is the Teichmüller character (for \( p > 2 \) and the character of order 2 on \((\mathbb{Z}/4\mathbb{Z})^* \) if \( p = 2 \)); for convenience, the character \([s, s]\) can also be represented by the integer \( s \).

When \( a_p \) is a \( p \)-adic unit, \( L_p \) takes its values in \( \mathbb{Q}_p \). When \( a_p \) is not a unit, it takes its values in the two-dimensional \( \mathbb{Q}_p \)-vector space \( D_{\text{cris}}(M(\phi)) \) where \( M(\phi) \) is the “motive” attached to \( \phi \), and \( \phi \) return the two \( p \)-adic components with respect to some fixed \( \mathbb{Q}_p \)-basis.

\[
\begin{align*}
\text{\texttt{? M = msinit(3,6,1); phi=[5, -3, -1]~;}} \\
\text{\texttt{? msissymbol(M,phi)}} \\
\text{\texttt{\%2 = 1}} \\
\text{\texttt{? Mp = mspadicinit(M, 5, 4);}} \\
\text{\texttt{? mu = mspadicmoments(Mp, phi); \ \\ no twist}} \\
\text{\texttt{\ \ \ End of initializations}} \\
\text{\texttt{? mspadicL(mu,0) \ \ L_p(\chi^0)}} \\
\text{\texttt{\%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...}} \\
\text{\texttt{? mspadicl(mu,1) \ \ L_p(\chi), zero for parity reasons}} \\
\text{\texttt{\%6 = [0(5^13)]~}} \\
\text{\texttt{? mspadicl(mu,2) \ \ L_p(\chi^2)}} \\
\text{\texttt{\%7 = 3 + 4*5 + 4*5^2 + 3*5^5 + ...}} \\
\text{\texttt{? mspadicl(mu,[0,2]) \ \ L_p(\tau^2)}} \\
\text{\texttt{\%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...}} \\
\text{\texttt{? mspadicl(mu, [1,0]) \ \ L_p(<\chi>)}} \\
\text{\texttt{\%9 = 3*5 + 2*5^2 + 5^3 + 2*5^7 + 5^8 + 5^10 + 2*5^11 + O(5^13)}} \\
\text{\texttt{? mspadicl(mu,0,1) \ \ L_p'(\chi^0)}} \\
\text{\texttt{\%10 = 2*5 + 4*5^2 + 3*5^3 + ...}} \\
\text{\texttt{? mspadicl(mu, 2, 1) \ \ L_p'(\chi^2)}} \\
\text{\texttt{\%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...}} \\
\end{align*}
\]

Now several quadratic twists: mstooms is indicated.

\[
\begin{align*}
\text{\texttt{? PHI = mstooms(Mp,phi);}} \\
\text{\texttt{? mu = mspadicmoments(Mp, PHI, 12); \ \ \ twist by 12}} \\
\text{\texttt{? mspadicl(mu)}} \\
\text{\texttt{\%14 = 5 + 5^2 + 5^3 + 2*5^4 + ...}} \\
\text{\texttt{? mu = mspadicmoments(Mp, PHI, 8); \ \ \ twist by 8}} \\
\text{\texttt{? mspadicl(mu)}} \\
\text{\texttt{\%16 = 2 + 3*5 + 3*5^2 + 2*5^4 + ...}} \\
\text{\texttt{? mu = mspadicmoments(Mp, PHI, -3); \ \ \ twist by -3 < 0}} \\
\text{\texttt{? mspadicl(mu)}} \\
\text{\texttt{\%18 = 0(5^13) \ \ always 0, phi is in the + part and D < 0}} \\
\end{align*}
\]

One can locate interesting symbols of level \( N \) and weight \( k \) with msnew and mssplit. Note that instead of a symbol, one can input 1-dimensional Hecke-subspace from mssplit: the function will automatically use the underlying basis vector.

\[
\begin{align*}
\text{\texttt{? M=msinit(5,4,1); \ \ M.4(Gamma_0(5))^+}} \\
\text{\texttt{? L = mssplit(M, msnew(M)); \ \ \ list of irreducible Hecke-subspaces}} \\
\text{\texttt{? phi = L[1]; \ \ \ one Galois orbit of newforms}} \\
\text{\texttt{? #phi[1] \ \ \ ... this one is rational}} \\
\text{\texttt{\%4 = 1}} \\
\text{\texttt{? Mp = mspadicinit(M, 3, 4);}} \\
\end{align*}
\]
?? mu = mspadicmoments(Mp, phi);
?? mspadicl(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

?? M = msinit(11,8, 1); \ M_8(Gamma_0(11))^{++}
?? Mp = mspadicinit(M, 3, 4);
?? L = mssplit(M, msnuew(M));
?? phi = L[1]; #phi[1] \ ... this one is two-dimensional
%11 = 2
?? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,phi)
*** ^---------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]

mspadicinit(M, p, n, flag)

M being a full modular symbol space, as given by msinit, and p a prime, initialize technical data needed to compute with overconvergent modular symbols, modulo $p^n$. If flag is unset, allow all symbols; else initialize only for a restricted range of symbols depending on flag: if flag = 0 restrict to ordinary symbols, else restrict to symbols $\phi$ such that $T_p(\phi) = a_p \phi$, with $v_p(a_p) >= flag$, which is faster as flag increases. (The fastest initialization is obtained for flag = 0 where we only allow ordinary symbols.) For supersingular eigensymbols, such that $p|a_p$, we must further assume that $p$ does not divide the level.

?? E = ellinit("11a1");
?? [M,phi] = msfromell(E,1);
?? ellap(E,3)
%3 = -1
?? Mp = mspadicinit(M, 3, 10, 0); \ commit to ordinary symbols
?? PHI = mstooms(Mp,phi);

If we restrict the range of allowed symbols with flag (for faster initialization), exceptions will occur if $v_p(a_p)$ violates this bound:

?? E = ellinit("15a1");
?? [M,phi] = msfromell(E,1);
?? ellap(E,7)
%7 = 0
?? Mp = mspadicinit(M,7,5,0); \ restrict to ordinary symbols
?? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
?? Mp = mspadicinit(M,7,5); \ no restriction
?? PHI = mstooms(Mp,phi);

This function uses $O(N^2(n + k)^2 p)$ memory, where $N$ is the level of $M$.

mspadicmoments(Mp, PHI, D)

Given $Mp$ from mspadicinit, an overconvergent eigensymbol $PHI$ from mstooms and a fundamental discriminant $D$ coprime to $p$, let $PHI^D$ denote the twisted symbol. This function computes the distribution $\mu = PHI^D((0] - oo))|Z_p^*$ restricted to $Z_p^*$. More precisely, it returns the moments of the $p - 1$ distributions $PHI^D((0] - oo))((a + pZ_p), 0 < a < p$. We also allow PHI to be given as a classical symbol, which is then lifted to an overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.

1.1. Guide to real precision in the PARI interface
The returned data $\mu$ ($p$-adic distributions attached to PHI) can then be used in mspadicL or mspadicseries. This precomputation allows to quickly compute derivatives of different orders or values at different characters.

```plaintext
? M = msinit(3,6, 1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \ \ eigenvector of T_5, a_5 = 6
%4 = [30, -18, -6]
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...
```

**mspadicseries($mu, i$)**

Let $\Phi$ be the $p$-adic distribution-valued overconvergent symbol attached to a modular symbol $\phi$ for $\Gamma_0(N)$ (eigen-vector for $T_N(p)$ for the eigenvalue $a_p$). If $\mu$ is the distribution on $\mathbb{Z}_p^*$ defined by the restriction of $\Phi([oo] - [0])$ to $\mathbb{Z}_p^*$, let

$$L_p(\mu, \tau^i)(x) = \int_{\mathbb{Z}_p^*} \tau^i(t)(1 + x)^{\log_p(t)/\log_p(u)} \, d\mu(t)$$

Here, $\tau$ is the Teichmüller character and $u$ is a specific multiplicative generator of $1 + 2p\mathbb{Z}_p$. (Namely 1 + $p$ if $p > 2$ or 5 if $p = 2$.) To explain the formula, let $G_o := Gal(\mathbb{Q}(\mu_p^oo)/\mathbb{Q})$, let $\chi : G_o \to \mathbb{Z}_p^*$ be the cyclotomic character (isomorphism) and $\gamma$ the element of $G_o$ such that $\chi(\gamma) = u$; then $\chi(\gamma)^{\log_p(t)/\log_p(u)} = t$.

The $p$-adic precision of individual terms is maximal given the precision of the overconvergent symbol $\mu$.

```plaintext
? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5, 7);
? mu = mspadicmoments(Mp, phi, 1); \ overconvergent symbol
? mspadicseries(mu)
%4 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5*5^5 + 4*5^6 + 3*5^7 + O(5^9)) \ + (3 + 3*5 + 5*2 + 5*3 + 2*5^4 + 5*6 + O(5*7))*x \ + (2 + 3*5 + 5*2 + 4*5^3 + 2*5^4 + O(5*5))*x^2 \ + (3 + 4*5 + 4*5^2 + O(5^3))*x^3 \ + (3 + O(5))*x^4 + O(x^5)
```

An example with nonzero Teichmüller:

```plaintext
? [M,phi] = msfromell(ellinit("11a1"),1);
? Mp = mspadicinit(M, 3, 10);
? mu = mspadicmoments(Mp, phi, 1);
? mspadicseries(mu, 2)
%4 = (2 + 3 + 3*2 + 2*3^3 + 2*3^5 + 5*6 + 3*7 + 3*10 + 3*11 + O(3^12)) \ + (1 + 3 + 2*3^2 + 3*3 + 3^5 + 2*3^6 + 2*3^8 + O(3^9))*x \ + (1 + 2*3 + 3^4 + 2*3^5 + O(3^6))*x^2 \ + (3 + 0(3*2))*x^3 + O(x^4)
```

Supersingular example (not checked)
Example with a twist:

? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? Mp = mspadicinit(M, 3,10);
? mu = mspadicmoments(Mp, phi,5); \ twist by 5
? L = mspadicseries(mu)
%5 = (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \  
   + (2*3^2 + 2*3^6 + 3^7 + 3^8 + O(3^9))*x \  
   + (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4)

?mspadicL(mu)
%6 = \[2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)\] ~
? ellpadicL(E,3,10,,5)
%7 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)

mspathgens(M)

Let $\Delta_0 := Div_0(\mathbb{P}^1(\mathbb{Q}))$. Let $M$ be a full modular symbol space, as given by msinit, return a set of $\mathbb{Z}[G]$-generators for $\Delta_0$. The output is $[g, R]$, where $g$ is a minimal system of generators and $R$ the vector of $\mathbb{Z}[G]$-relations between the given generators. A relation is coded by a vector of pairs $[a_i, i]$ with $a_i \in \mathbb{Z}[G]$ and $i$ the index of a generator, so that $\sum a_i g[i] = 0$.

An element $[u] - [v]$ in $\Delta_0$ is coded by the "path" $[u, v]$, where oo denotes the point at infinity $(1 : 0)$ on the projective line. An element of $\mathbb{Z}[G]$ is either an integer $n (= n[id_2])$ or a "factorization matrix": the first column contains distinct elements $g_i$ of $G$ and the second integers $n_i$ and the matrix codes $\sum n_i [g_i]$:

? M = msinit(11,8); \ \ M_8(\Gamma_0(11))
? [g,R] = mspathgens(M);
? g
%3 = [[+oo, 0], [0, 1/3], [1/3, 1/2]] \ \ 3 paths
? #R \ \ a single relation
%4 = 1
? r = R[1]; #r \ \ ...involving all 3 generators
%5 = 3
? r[1]
%6 = [[1, 1; [1, 1; 0, 1], -1], 1]
? r[2]
%7 = [[1, 1; [7, -2; 11, -3], -1], 2]
? r[3]
%8 = [[1, 1; [8, -3; 11, -4], -1], 3]
The given relation is of the form \( \sum_i (1 - \gamma_i)g_i = 0 \), with \( \gamma_i \in \Gamma_0(11) \). There will always be a single relation involving all generators (corresponding to a round trip along all cusps), then relations involving a single generator (corresponding to 2 and 3-torsion elements in the group):

\[
\begin{align*}
\? M &= \text{msinit}(2,8); \ \M_8(\Gamma_0(2)) \\
\? [g,R] &= \text{mspathgens}(M); \\
\? g \\
\%3 &= [[[+oo, 0], [0, 1]]]
\end{align*}
\]

Note that the output depends only on the group \( G \), not on the representation \( V \).

**mspathlog** \((M, p)\)

Let \( \Delta_0 := \text{Div}^0(P^1(\mathbb{Q})) \). Let \( M \) being a full modular symbol space, as given by \text{msinit}, encoding fixed \( \mathbb{Z}[G] \)-generators \( (g_i) \) of \( \Delta_0 \) (see \text{mspathgens}). A path \( p = [a, b] \) between two elements in \( P^1(\mathbb{Q}) \) corresponds to \( [b] - [a] \in \Delta_0 \). The path extremities \( a \) and \( b \) may be given as \text{t_INT}, \text{t_FRAC} or \text{oo} = (1 : 0). Finally, we also allow to input a path as a \( 2 \times 2 \) integer matrix, whose first and second column give \( a \) and \( b \) respectively, with the convention \( [x, y] = (x : y) \) in \( P^1(\mathbb{Q}) \).

Returns \( (p_i) \) in \( \mathbb{Z}[G] \) such that \( p = \sum_i p_i g_i \).

\[
\begin{align*}
\? M &= \text{msinit}(2,8); \ \M_8(\Gamma_0(2)) \\
\? [g,R] &= \text{mspathgens}(M); \\
\? g \\
\%3 &= [[[+oo, 0], [0, 1]]] \\
\? p &= \text{mspathlog}(M, [1/2, 2/3]); \\
\? p[1] \\
\%5 &= [[1, 0; 2, 1] 1] \\
\? p[2] \\
\%6 &= [[1, 0; 0, 1] 1] \\
& \quad [[3, -1; 4, -1] 1] \\
\? \text{mspathlog}(M, [1,2;2,3]) &= p \ \M \text{ give path via a 2x2 matrix} \\
\%7 &= 1
\end{align*}
\]

Note that the output depends only on the group \( G \), not on the representation \( V \).

**mspetersson** \((M, F, G)\)

\( M \) being a full modular symbol space for \( \Gamma = \Gamma_0(N) \), as given by \text{msinit}, calculate the intersection product \( F.G \) of modular symbols \( F \) and \( G \) on \( M = \text{Hom}_\Gamma(\Delta_0, V_k) \) extended to an hermitian bilinear form on \( M \otimes \mathbb{C} \) whose radical is the Eisenstein subspace of \( M \).

Suppose that \( f_1 \) and \( f_2 \) are two parabolic forms. Let \( F_1 \) and \( F_2 \) be the attached modular symbols

\[
F_i(\delta) = \int_\delta f_i(z).((zX + Y)^{k-2}dz)
\]

and let \( F_1^\Re, F_2^\Re \) be the attached real modular symbols

\[
F_i^\Re(\delta) = \int_\delta \Re(f_i(z).((zX + Y)^{k-2}dz)
\]

Then we have
\[ -2 (2i)^{\kappa - 2} \langle f_1, f_2 \rangle_{\text{Petersson}} \]

and

\[ F_1, \bar{F}_2 = (2i)^{\kappa - 2} \langle f_1, f_2 \rangle_{\text{Petersson}} \]

In weight 2, the intersection product \( F, G \) has integer values on the \( \mathbb{Z} \)-structure on \( M \) given by \text{mslattice} and defines a Riemann form on \( H^1_{\text{par}}(\Gamma, \mathbb{R}) \).

For user convenience, we allow \( F \) and \( G \) to be matrices and return the attached Gram matrix. If \( F \) is omitted: treat it as the full modular space attached to \( M \); if \( G \) is omitted, take it equal to \( F \).


The coefficient 3 in the matrix is the degree of the modular parametrization.

**mspolygon**(\( M, \text{flag} \))

\( M \) describes a subgroup \( G \) of finite index in the modular group \( PSL_2(\mathbb{Z}) \), as given by \text{msinit} or a positive integer \( N \) (encoding the group \( G = \Gamma_0(N) \)), or by \text{msfarey} (arbitrary subgroup). Return an hyperbolic polygon (Farey symbol) attached to \( G \). More precisely:

- Its vertices are an ordered list in \( \mathbb{P}^1(\mathbb{Q}) \) and contain a representatives of all cusps.
- Its edges are hyperbolic arcs joining two consecutive vertices; each edge \( e \) is labelled by an integer \( \mu(e) \in \{0, 2, 3\} \).
- Given a path \((a, b)\) between two elements of \( \mathbb{P}^1(\mathbb{Q}) \), let \([a, b] = (b, a)\) be the opposite path. There is an involution \( e \rightarrow e^* \) on the edges. We have \( \mu(e) = 0 \) if and only if \( e! = e^* \); when \( \mu(e)! = 3 \), \( e \) is \( G \)-equivalent to \( e^* \), i.e. there exists \( \gamma_e \in G \) such that \( e = \gamma_e e^* \); if \( \mu(e) = 3 \) there exists \( \gamma_e \in G \) of order 3 such that the hyperbolic triangle \((e, \gamma_e e, \gamma_e^2 e)\) is invariant by \( \gamma_e \). In all cases, to each edge we have attached \( \gamma_e \in G \) of order \( \mu(e) \).

The polygon is given by a triple \([E, A, g]\)

- The list \( E \) of its consecutive edges as matrices in \( M_2(\mathbb{Z}) \).
- The permutation \( A \) attached to the involution: if \( e = E[i] \) is the \( i \)-th edge, then \( A[i] \) is the index of \( e^* \) in \( E \).
The list $g$ of pairing matrices $g_e$. Remark that $g_e^* = g_e^{-1}$ if $\mu(e)! = 3$, i.e., $g_i^{-1} = g[A[i]]$ whenever $\mu(e) = 1$ or $\mu(g_i) = 2$ ($g[i]^2 = 1$). Modulo these trivial relations, the pairing matrices form a system of independent generators of $G$. Note that $g_e$ is elliptic if and only if $e^* = e$.

The above data yields a fundamental domain for $G$ acting on Poincaré’s half-plane: take the convex hull of the polygon defined by

- The edges $e$ such that $e^* = e$ or $e^* = e$, where the pairing matrix $g_e$ has order 2;
- The edges $(r, t)$ and $(t, s)$ where the edge $e = (r, s) \in E$ is such that $e = e^*$ and $g_e$ has order 3 and the triangle $(r, t, s)$ is the image of $(0, \exp(2i\pi/3), oo)$ by some element of $PSL_2(\mathbb{Q})$ formed around the edge.

Binary digits of flag mean:

1: return a normalized hyperbolic polygon if set, else a polygon with unimodular edges (matrices of determinant 1). A polygon is normalized in the sense of compact orientable surfaces if the distance $d(a, a^*)$ between an edge $a$ and its image by the involution $a^*$ is less than 2, with equality if and only if $a$ is linked with another edge $b$ ($a, b, a^* \text{ and } b^*$ appear consecutively in $E$ up to cyclic permutation). In particular, the vertices of all edges such that $d(a, a^*)! = 1$ (distance is 0 or 2) are all equivalent to 0 modulo $G$. The external vertices of $aa^*$ such that $d(a, a^*) = 1$ are also equivalent to 0; the internal vertices $a \cap a^*$ (a single point), together with 0, form a system of representatives of the cusps of $G$.

2: add graphical representations (in LaTeX form) for the hyperbolic polygon in Poincaré’s half-space and the involution $a \rightarrow a^*$ of the Farey symbol. The corresponding character strings can be included in a LaTeX document provided the preamble contains \usepackage{tikz}.

```plaintext
? [V,A,g] = mspolygon(3);
? V
%2 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 1]]
? A
%3 = Vecsmall([2, 1, 3])
? g
%4 = [[-1, -1; 0, -1], [1, -1; 0, 1], [1, -1; 3, -2]]
? [V,A,g,D1,D2] = mspolygon(11,2); \ D1 and D2 contain pictures
? {write("F.tex","\documentclass{article}\usepackage{tikz}\begin{document}
D1, "\n", D2,
"\end{document}";
D1, "\n", D2,
"\end{document}";)}

? [V1,A1] = mspolygon(6,1); \ normalized
? V1
%8 = [[-1, 1; -1, 0], [1, 0; 0, 1], [0, 1; -1, 3],
[-2; 3, -5], [-2; 1, -5, 2], [1, -1; 2, -1]]
? A1
%9 = Vecsmall([2, 1, 4, 3, 6, 5])

? [V0,A0] = mspolygon(6); \ not normalized V[3]^* = V[6], d(V[3],V[6]) = 3
? A0
%11 = Vecsmall([2, 1, 6, 5, 4, 3])

? [V,A] = mspolygon(14,1);
? A
%13 = Vecsmall([2, 1, 4, 3, 6, 5, 9, 10, 7, 8])
```
One can see from this last example that the (normalized) polygon has the form

\[(a_1, a'_1, a_2, a'_2, a_3, a'_3, a_4, a'_4, a_5, a'_5),\]

that \(X_0(14)\) is of genus 1 (in general the genus is the number of blocks of the form \(aba'^*\)), has no elliptic points (\(A\) has no fixed point) and 4 cusps (number of blocks of the form \(aa'^*\) plus 1). The vertices of edges \(a_4\) and \(a_5\) all project to 0 in \(X_0(14)\): the paths \(a_4\) and \(a_5\) project as loops in \(X_0(14)\) and give a symplectic basis of the homology \(H_1(X_0(14), \mathbb{Z})\).

\[\textbf{msqexpansion}(M, \text{proj}H, \text{serprec})\]

\(M\) being a full modular symbol space, as given by \text{msinit}, and \(\text{proj}H\) being a projector on a Hecke-simple subspace (as given by \text{mssplit}), return the Fourier coefficients \(a_n, n \leq B\) of the corresponding normalized newform. If \(B\) is omitted, use \text{seriesprecision}.

This function uses a naive \(O(B^2d^3)\) algorithm, where \(d = O(kN)\) is the dimension of \(M_k(\Gamma_0(N))\).

\[\textbf{mssplit}(M, H, \text{dimlim})\]

Let \(M\) denote a full modular symbol space, as given by \text{msinit}(N, k, 1) or \text{msinit}(N, k, -1) and let \(H\) be a Hecke-stable subspace of \text{msnew}(M) (the full new subspace if \(H\) is omitted). This function splits \(H\) into Hecke-simple subspaces. If \(\text{dimlim}\) is present and positive, restrict to subspaces of dimension \(< dimlim\). A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \(\mathbb{Q}\)-basis of the subspace.

1.1. Guide to real precision in the PARI interface
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
?
g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744

To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, defined over a number field. In the above example, we printed the polynomials defining the said fields, as well as the first 5 Fourier coefficients (at the infinite cusp) of one such form.

**msstar**($M, H$)

$M$ being a full modular symbol space, as given by `msinit`, return the matrix of the $^*$ involution, induced by complex conjugation, acting on the (stable) subspace $H$ ($M$ if omitted).

? M = msinit(11,2); \ \ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1

**mstooms**($Mp, phi$)

Given $Mp$ from `mspadicinit`, lift the (classical) eigen symbol $phi$ to a $p$-adic distribution-valued overconvergent symbol in the sense of Pollack and Stevens. More precisely, let $phi$ belong to the space $W$ of modular symbols of level $N$, $v_p(N) \leq 1$, and weight $k$ which is an eigenvector for the Hecke operator $T_N(p)$ for a nonzero eigenvalue $a_p$ and let $N_0 = lcm(N, p)$.

Under the action of $T_{N_0}(p)$, $phi$ generates a subspace $W_{phi}$ of dimension 1 (if $p\|N$) or 2 (if $p$ does not divide $N$) in the space of modular symbols of level $N_0$.

Let $V_p = [p, 0: 0, 1]$ and $C_p = [a_p, p^{k-1}; -1, 0]$. When $p$ does not divide $N$ and $a_p$ is divisible by $p$, `mstooms` returns the lift $Phi$ of $(phi, phi \| k V_p)$ such that

$T_{N_0}(p)Phi = C_p Phi$

When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, `mstooms` returns the lift $Phi$ of $phi - \alpha^{-1}phi \| k V_p$ which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue where $\alpha^2 - a_p\alpha + p^{k-1} = 0$.

The resulting overconvergent eigensymbol can then be used in `mspadicmoments`, then `mspadicL` or `mspadicseries`.

? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 = [x - 3126 2]

[ x - 6 1]
?
phi = matker(Tp - 6)[,1] \ \ generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
?
Mp = mspadicinit(M, p, 10, 0); \ \ restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...
\begin{verbatim}
? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 = [x - 244 3]
[ x + 12 1]
? phi = matker(Tp + 12) \ \ a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);

newtonpoly(x, p)
Gives the vector of the slopes of the Newton polygon of the polynomial \( x \) with respect to the prime number \( p \). The \( n \) components of the vector are in decreasing order, where \( n \) is equal to the degree of \( x \). Vertical slopes occur if the constant coefficient of \( x \) is zero and are denoted by \( +\infty \).

nextprime(x)
 Finds the smallest pseudoprime (see ispseudoprime) greater than or equal to \( x \). \( x \) can be of any real type. Note that if \( x \) is a pseudoprime, this function returns \( x \) and not the smallest pseudoprime strictly larger than \( x \). To rigorously prove that the result is prime, use isprime.

nfalgtobasis(nf, x)
 Given an algebraic number \( x \) in the number field \( nf \), transforms it to a column vector on the integral basis \( \textbf{nf}.zk \).

? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~

This is the inverse function of nfbasistoalg.

nfbasis(T, dK)
 Let \( T(X) \) be an irreducible polynomial with integral coefficients. This function returns an integral basis of the number field defined by \( T \), that is a \( \mathbb{Z} \)-basis of its maximal order. If present, \( dK \) is set to the discriminant of the returned order. The basis elements are given as elements in \( K = \mathbb{Q}[X]/(T) \), in Hermite normal form with respect to the \( \mathbb{Q} \)-basis \( (1, X, \ldots, X^{\deg T-1}) \) of \( K \), lifted to \( \mathbb{Q}[X] \). In particular its first element is always \( 1 \) and its \( i \)-th element is a polynomial of degree \( i-1 \) whose leading coefficient is the inverse of an integer: the product of those integers is the index of \( \mathbb{Z}[X]/(T) \) in the maximal order \( \mathbb{Z}_K \):

? nfbasis(x^2 + 4) \ \ Z[X]/(T) has index 2 in Z_K
%1 = [1, x/2]
\end{verbatim}
This function uses a modified version of the round 4 algorithm, due to David Ford, Sebastian Pauli and Xavier Roblot.

**Local basis, orders maximal at certain primes.**

Obtaining the maximal order is hard: it requires factoring the discriminant $D$ of $T$. Obtaining an order which is maximal at a finite explicit set of primes is easy, but it may then be a strict suborder of the maximal order. To specify that we are interested in a given set of places only, we can replace the argument $T$ by an argument $[T, listP]$, where $listP$ encodes the primes we are interested in: it must be a factorization matrix, a vector of integers or a single integer.

- **Vector:** we assume that it contains distinct prime numbers.
- **Matrix:** we assume that it is a two-column matrix of a (partial) factorization of $D$; namely the first column contains distinct primes and the second one the valuation of $D$ at each of these primes.
- **Integer $B$**: this is replaced by the vector of primes up to $B$. Note that the function will use at least $O(B)$ time: a small value, about $10^5$, should be enough for most applications. Values larger than $2^{32}$ are not supported.

In all these cases, the primes may or may not divide the discriminant $D$ of $T$. The function then returns a $\mathbb{Z}$-basis of an order whose index is not divisible by any of these prime numbers. The result may actually be a global integral basis, in particular if all the prime divisors of the field discriminant are included, but this is not guaranteed! Note that `nfinit` has built-in support for such a check:

```plaintext
? K = nfinit([T, listP]);
? nfcertify(K) \ we computed an actual maximal order
%2 = [];
```

The first line initializes a number field structure incorporating `nfbasis([T, listP])` in place of a proven integral basis. The second line certifies that the resulting structure is correct. This allows to create an `nf` structure attached to the number field $K = \mathbb{Q}[X]/(T)$, when the discriminant of $T$ cannot be factored completely, whereas the prime divisors of $\text{disc } K$ are known. If present, the argument `dK` is set to the discriminant of the returned order, and is equal to the field discriminant if and only if the order is maximal.

Of course, if `listP` contains a single prime number $p$, the function returns a local integral basis for $\mathbb{Z}_p[X]/(T)$:

```plaintext
? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
%2 = [1, x]
```

The following function computes the index $i_T$ of $\mathbb{Z}[X]/(T)$ in the order generated by the $\mathbb{Z}$-basis $B$:

```plaintext
nfbasisindex(T, B) = vecprod([denominator(pollead(Q)) | Q <- B]);
```

In particular, $B$ is a basis of the maximal order if and only if $\text{poldisc}(T)/i_T^2$ is equal to the field discriminant. More generally, this formula gives the square of index of the order given by $B$ in $\mathbb{Z}_K$. For instance, assume that $P$ is a vector of prime numbers containing (at least) all prime divisors of the field discriminant, then the following construct allows to provably compute the field discriminant and to check whether the returned basis is actually a basis of the maximal order.
The variable \( dK \) contains the field discriminant and the last command returns 1 if and only if \( B \) is a \( \mathbb{Z} \)-basis of the maximal order. Of course, the \( \text{nfinit} / \text{nfcertify} \) approach is simpler, but it is also more costly.

**The Buchmann-Lenstra algorithm.**

We now complicate the picture: it is in fact allowed to include *composite* numbers instead of primes in \( \text{listP} \) (Vector or Matrix case), provided they are pairwise coprime. The result may still be a correct integral basis if the field discriminant factors completely over the actual primes in the list; again, this is not guaranteed. Adding a composite \( C \) such that \( C^2 \) divides \( D \) may help because when we consider \( C \) as a prime and run the algorithm, two good things can happen: either we succeed in proving that no prime dividing \( C \) can divide the index (without actually needing to find those primes), or the computation exhibits a nontrivial zero divisor, thereby factoring \( C \) and we go on with the refined factorization. (Note that including a \( C \) such that \( C^2 \) does not divide \( D \) is useless.) If neither happen, then the computed basis need not generate the maximal order. Here is an example:

\[
? B = 10^5;
? \text{listP} = \text{factor}(\text{poldisc}(T), B); \quad \text{\textbackslash \ backslash primes} \leq B \text{ dividing } D + \text{cofactor}
? \text{basis} = \text{nfbasis}([T, \text{listP}], &D)
\]

If the computed discriminant \( D \) factors completely over the primes less than \( B \) (together with the primes contained in the \text{addprimes} table), then everything is certified: \( D \) is the field discriminant and \( \text{basis} \) generates the maximal order. This can be tested as follows:

\[
\text{F} = \text{factor}(D, B); \text{P} = \text{F}[,1]; \text{E} = \text{F}[,2];
\text{for (i = 1, \#P,}
\text{if (P[i] > B && !\text{isprime}(P[i]), \text{warning} \("\text{nfbasis may be incorrect} \")});
\]

This is a sufficient but not a necessary condition, hence the warning, instead of an error.

The function \( \text{nfcertify} \) speeds up and automates the above process:

\[
? B = 10^5;
? \text{nf} = \text{nfinit}([T, B]);
? \text{nfcertify}(\text{nf})
%3 = [] \quad \text{nf is unconditionally correct}
? [\text{basis}, \text{disc}] = [\text{nf.zk}, \text{nf.disc}];
\]

\text{nfbasistoalg}(nf, x)

Given an algebraic number \( x \) in the number field \( \text{nf} \), transforms it into \( \text{t}_{\text{POLMOD}} \) form.

\[
? \text{nf} = \text{nfinit}(y^2 + 4);
? \text{nf.zk}
%2 = [1, 1/2*y]
? \text{nfbasistoalg}(\text{nf}, [1,1]~)
%3 = \text{Mod}(1/2*y + 1, y^2 + 4)
? \text{nfbasistoalg}(\text{nf}, y)
%4 = \text{Mod}(y, y^2 + 4)
? \text{nfbasistoalg}(\text{nf}, \text{Mod}(y, y^2+4))
%5 = \text{Mod}(y, y^2 + 4)
\]

This is the inverse function of \( \text{nfalgtobasis} \).
nfcertify(nf)

nf being as output by nfinit, checks whether the integer basis is known unconditionally. This is in particular useful when the argument to nfinit was of the form \([T, listP]\), specifying a finite list of primes when \(p\)-maximality had to be proven, or a list of coprime integers to which Buchmann-Lenstra algorithm was to be applied.

The function returns a vector of coprime composite integers. If this vector is empty, then nf.zk and nf.disc are correct. Otherwise, the result is dubious. In order to obtain a certified result, one must completely factor each of the given integers, then addprime each of their prime factors, then check whether nfdisc(nf.pol) is equal to nf.disc.

nfcompositum(nf, P, Q, flag)

Let nf be a number field structure attached to the field \(K\) and let \(P\) and \(Q\) be squarefree polynomials in \(K[X]\) in the same variable. Outputs the simple factors of the étale \(K\)-algebra \(A = K[X,Y]/(P(X), Q(Y))\). The factors are given by a list of polynomials \(R\) in \(K[X]\), attached to the number field \(K[X]/(R)\), and sorted by increasing degree (with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where \(P\) and \(Q\) are irreducible first. The routine will not perform this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case, there will be a single factor \(R\) if and only if the number fields defined by \(P\) and \(Q\) are linearly disjoint (their intersection is \(K\)).

The binary digits of flag mean

1: outputs a vector of 4-component vectors \([R, a, b, k]\), where \(R\) ranges through the list of all possible compositums as above, and \(a\) (resp. \(b\)) expresses the root of \(P\) (resp. \(Q\)) as an element of \(K[X]/(R)\). Finally, \(k\) is a small integer such that \(b + ka = X\) modulo \(R\).

2: assume that \(P\) and \(Q\) define number fields that are linearly disjoint: both polynomials are irreducible and the corresponding number fields have no common subfield besides \(K\). This allows to save a costly factorization over \(K\). In this case return the single simple factor instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work. Here is an example involving the field \(K(\zeta_5, 5^{1/10})\), \(K = \mathbb{Q}(\sqrt{5})\):

```plaintext
? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \ list of [R,a,b,k]
? [R, a] = L[1]; \ pick the single factor, extract R,a (ignore b,k)
? lift(R) \ defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 + \ (-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 + \ (-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \ \ a fifth root of y
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \ \ simpler defining polynomial for K[x]/(R)
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \ \ root of R in K[x]/(T(x))
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \ \ a in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
```
The main variables of $P$ and $Q$ must be the same and have higher priority than that of $nf$ (see varhigher and varlower).

**nfdetint($nf$, $x$)**

Given a pseudo-matrix $x$, computes a nonzero ideal contained in (i.e. multiple of) the determinant of $x$. This is particularly useful in conjunction with nfhnfmod.

**nfdisc($T$)**

Field discriminant of the number field defined by the integral, preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of the number field $\mathbb{Q}[X]/(T)$, using the Round 4 algorithm.

**Local discriminants, valuations at certain primes.**

As in nfbasis, the argument $T$ can be replaced by $[T, listP]$, where listP is as in nfbasis: a vector of pairwise coprime integers (usually distinct primes), a factorization matrix, or a single integer. In that case, the function returns the discriminant of an order whose basis is given by nfbasis(T,listP), which need not be the maximal order, and whose valuation at a prime entry in listP is the same as the valuation of the field discriminant.

In particular, if listP is $[p]$ for a prime $p$, we can return the $p$-adic discriminant of the maximal order of $\mathbb{Z}_p[X]/(T)$, as a power of $p$, as follows:

```plaintext
? padicdisc(T, p) = p^valuation(nfdisc([T, [p]]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3
```

The following function computes the discriminant of the maximal order under the assumption that $P$ is a vector of prime numbers containing (at least) all prime divisors of the field discriminant:

```plaintext
globaldisc(T, P) =
{ my (D = nfdisc([T, P]));
 sign(D) * vecprod([p^valuation(D, p) | p <-P]);
}
```

**nfdiscfactors($T$)**

Given a polynomial $T$ with integer coefficients, return $[D, faD]$ where $D$ is nfdisc($T$) and $faD$ is the factorization of $||D||$. All the variants $[T, listP]$ are allowed (see ??nfdisc), in which case $faD$ is the factorization of the discriminant underlying order (which need not be maximal at the primes not specified by listP) and the factorization may contain large composites.

```plaintext
? T = x^3 - 6021021*x^2 + 1207221007769*x - 8092423140177664432;
? [D, faD] = nfdiscfactors(T); print(faD); D
[3, 3; 500009, 2]
%2 = -6750243002187

? T = x^3 + 9*x^2 + 27*x - 12501425069643346789780229390526092263790263725;
? [D, faD] = nfdiscfactors(T); print(faD); D
[3, 3; 1000003, 2]
%4 = -27000162000243
```

(continues on next page)
In the final example, we only get a partial factorization, which is only guaranteed correct at primes \( \leq 10^3 \).

The function also accept number field structures, for instance as output by \texttt{nfinit}, and returns the field discriminant and its factorization:

```plaintext
? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? nf = nfinit(T); [D, faD] = nfdiscfactors(T); print(faD); D
%2 = -27000162000243
? nf.disc
%3 = -27000162000243
```

\textbf{nfeltadd}(nf, x, y)\newline
Given two elements \( x \) and \( y \) in \( nf \), computes their sum \( x + y \) in the number field \( nf \).

\textbf{nfeltdiv}(nf, x, y)\newline
Given two elements \( x \) and \( y \) in \( nf \), computes their quotient \( x/y \) in the number field \( nf \).

\textbf{nfeltdivmodpr}(nf, x, y, pr)\newline
This function is obsolete, use \texttt{nfmodpr}.

Given two elements \( x \) and \( y \) in \( nf \) and \( pr \) a prime ideal in \texttt{modpr} format (see \texttt{nfmodprinit}), computes their quotient \( x/y \) modulo the prime ideal \( pr \).

\textbf{nfeltdivrem}(nf, x, y)\newline
Given two elements \( x \) and \( y \) in \( nf \), gives a two-element row vector \([q, r]\) such that \( x = qy + r \), \( q \) is an algebraic integer in \( nf \), and the components of \( r \) are reasonably small.

\textbf{nfeltembed}(nf, x, pl, precision)\newline
Given an element \( x \) in the number field \( nf \), return the (real or) complex embeddings of \( x \) specified by optional argument \( pl \), at the current \texttt{realprecision}:

- \( pl \) omitted: return the vector of embeddings at all \( r_1 + r_2 \) places;
- \( pl \) an integer between 1 and \( r_1 + r_2 \): return the \( i \)-th embedding of \( x \), attached to the \( i \)-th root of \( nf.pol \), i.e. \texttt{nf.roots}:math:`[i]`;
- \( pl \) a vector or \texttt{t_VECSMALL}: return the vector of embeddings; the \( i \)-th entry gives the embedding at the place attached to the \( pl[i] \)-th real root of \( nf.pol \).

```plaintext
? nf = nfinit('y^3 - 2);
? nf.sign
%2 = [1, 1]
? nfeltembed(nf, 'y)
%3 = [1.25992[...], -0.62996[...] + 1.09112[...]*I]
? nfeltembed(nf, 'y, 1)
```
Given two elements \(x\) and \(y\) in \(nf\), computes an element \(r\) of \(nf\) of the form \(r = x - qy\) with \(q\) and algebraic integer, and such that \(r\) is small. This is functionally identical to

\[
x - nfmul(nf, round(nfdiv(nf, x, y)), y).
\]

**nfeltmul** \((nf, x, y)\)

Given two elements \(x\) and \(y\) in \(nf\), computes their product \(x \cdot y\) in the number field \(nf\).

**nfeltmulmodpr** \((nf, x, y, pr)\)

This function is obsolete, use **nfmodpr**.

Given two elements \(x\) and \(y\) in \(nf\) and \(pr\) a prime ideal in \(modpr\) format (see **nfmodprinit**), computes their product \(x \cdot y\) modulo the prime ideal \(pr\).

**nfeltnorm** \((nf, x)\)

Returns the absolute norm of \(x\).

**nfeltpow** \((nf, x, k)\)

Given an element \(x\) in \(nf\), and a positive or negative integer \(k\), computes \(x^k\) in the number field \(nf\).

**nfeltpowmodpr** \((nf, x, k, pr)\)

This function is obsolete, use **nfmodpr**.

Given an element \(x\) in \(nf\), an integer \(k\) and a prime ideal \(pr\) in \(modpr\) format (see **nfmodprinit**), computes \(x^k\) modulo the prime ideal \(pr\).

**nfeltreduce** \((nf, a, id)\)

Given an ideal \(id\) in Hermite normal form and an element \(a\) of the number field \(nf\), finds an element \(r\) in \(nf\) such that \(a - r\) belongs to the ideal and \(r\) is small.

**nfeltreducemodpr** \((nf, x, pr)\)

This function is obsolete, use **nfmodpr**.

Given an element \(x\) of the number field \(nf\) and a prime ideal \(pr\) in \(modpr\) format compute a canonical representative for the class of \(x\) modulo \(pr\).

**nfeltsign** \((nf, x, pl)\)

Given an element \(x\) in the number field \(nf\), returns the signs of the real embeddings of \(x\) specified by optional argument \(pl\):

- \(pl\) omitted: return the vector of signs at all \(r_1\) real places;
- \(pl\) an integer between 1 and \(r_1\): return the sign of the \(i\)-th embedding of \(x\), attached to the \(i\)-th real root of \(nf.pol\), i.e. \(nf.roots:\math:`[i]'\);
- \(pl\) a vector or \(t\_VECSMALL\): return the vector of signs; the \(i\)-th entry gives the sign at the real place attached to the \(pl[i]\)-th real root of \(nf.pol\).
nfelttrace\(\text{(nf, x)}\)

Returns the absolute trace of \(x\).

nfeltval\(\text{(nf, x, pr, y)}\)

Given an element \(x\) in \(nf\) and a prime ideal \(pr\) in the format output by idealprimedec, computes the valuation \(v\) at \(pr\) of the element \(x\). The valuation of 0 is +\(\infty\).

For instance if \(x = \prod x_i^{e_i}\) is known to be coprime to \(pr\), where the \(x_i\) are algebraic integers and \(e_i \in \mathbb{Z}\) then, if \(v_i = nfeltval\text{(nf, x_i, pr, y_i)}\), we still have \(x = \prod y_i^{e_i}\), where the \(y_i\) are still algebraic integers but now all of them are coprime to \(pr\). They can then be mapped to the residue field of \(pr\) more efficiently than if the product had been expanded beforehand: we can reduce mod \(pr\) after each ring operation.

nffactor\(\text{(nf, T)}\)

Factorization of the univariate polynomial (or rational function) \(T\) over the number field \(nf\) given by \text{nfininit}; \(T\) has coefficients in \(nf\) (i.e. either scalar, polmod, polynomial or column vector). The factors are sorted by increasing degree.

The main variable of \(nf\) must be of lower priority than that of \(T\), see \text{priority} (in the PARI manual). However if the polynomial defining the number field occurs explicitly in the coefficients of \(T\) as modulus of a \text{t\_POLMOD} or as a \text{t\_POL} coefficient, its main variable must be the same as the main variable of \(T\). For example,
It is possible to input a defining polynomial for \texttt{nf} instead, but this is in general less efficient since parts of an \texttt{nf} structure will then be computed internally. This is useful in two situations: when you do not need the \texttt{nf} elsewhere, or when you cannot initialize an \texttt{nf} due to integer factorization difficulties when attempting to compute the field discriminant and maximal order. In all cases, the function runs in polynomial time using Belabas’s variant of van Hoeij’s algorithm, which copes with hundreds of modular factors.

\textbf{Caveat.} \texttt{nffactorback}(\texttt{nf}, \texttt{f}, \texttt{e})

Gives back the \texttt{nf} element corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If \texttt{e} is present, \texttt{e} and \texttt{f} must be vectors of the same length (\texttt{e} being integral), and the corresponding factorization is the product of the \texttt{f[i]^e[i]}.

If not, and \texttt{f} is vector, it is understood as in the preceding case with \texttt{e} a vector of 1s: we return the product of the \texttt{f[i]}. Finally, \texttt{f} can be a regular factorization matrix.

\begin{verbatim}
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
\end{verbatim}

\texttt{nffactormod}(\texttt{nf}, \texttt{Q}, \texttt{pr})

This routine is obsolete, use \texttt{nfmodpr} and \texttt{factormod}.

Factors the univariate polynomial \texttt{Q} modulo the prime ideal \texttt{pr} in the number field \texttt{nf}. The coefficients of \texttt{Q} belong to the number field (scalar, polmod, polynomial, even column vector) and the main variable of \texttt{nf} must be of lower priority than that of \texttt{Q} (see \texttt{priority} (in the PARI manual)). The prime ideal \texttt{pr} is either in \texttt{idealprimedec} or (preferred) \texttt{modprinit} format. The coefficients of the polynomial factors are lifted to elements of \texttt{nf}:

\begin{verbatim}
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? nffactormod(K, x^2 + y*x + 18*y+1, P)
%3 = [x + (2*y + 1) 1]
[x + (2*y + 2) 1]
? P = nfmodprinit(K, P); \ convert to nfmodprinit format
? nffactormod(K, x^2 + y*x + 18*y+1)
%5 = [x + (2*y + 1) 1]
[x + (2*y + 2) 1]
\end{verbatim}

Same result, of course, here about 10\% faster due to the precomputation.

\texttt{nfgaloisapply}(\texttt{nf}, \texttt{aut}, \texttt{x})

Let \texttt{nf} be a number field as output by \texttt{nffinit}, and let \texttt{aut} be a Galois automorphism of \texttt{nf} expressed by its image on the field generator (such automorphisms can be found using \texttt{nfgaloisconj}). The function computes the action of the automorphism \texttt{aut} on the object \texttt{x} in the number field; \texttt{x} can be a number field element, or an ideal (possibly extended). Because of possible confusion with elements and ideals, other vector or matrix arguments are forbidden.

\section{Guide to real precision in the PARI interface}

273
? nf = nfinit(x^2+1);
? L = nfalgtobasis(nf, aut); /* an automorphism in algtobasis form */
%4 = [16, -6, 5]~
? v = [1, 2, 3]~; nfalgtobasis(nf, aut, v) == nfalgtobasis(nf, AUT, v)
%4 = 1 \ \ \ \ \ \ \ \ \same result...
? for (i=1,10^5, nfalgtobasis(nf, aut, v))
time = 463 ms.
? for (i=1,10^5, nfalgtobasis(nf, AUT, v))
time = 343 ms. \ \ but the latter is faster

nfalgtobasis(nf, flag, d, precision)

nf being a number field as output by nfinit, computes the conjugates of a root r of the nonconstant polynomial x = nf[1] expressed as polynomials in r. This also makes sense when the number field is not Galois since some conjugates may lie in the field. nf can simply be a polynomial.

If no flags or flag = 0, use a combination of flag 4 and 1 and the result is always complete. There is no point whatsoever in using the other flags.

If flag = 1, use nfroots: a little slow, but guaranteed to work in polynomial time.

If flag = 4, use galoisinit: very fast, but only applies to (most) Galois fields. If the field is Galois with weakly super-solvable Galois group (see galoisinit), return the complete list of automorphisms, else only the identity element. If present, d is assumed to be a multiple of the least common denominator of the conjugates expressed as polynomial in a root of pol.

This routine can only compute \mathbb{Q}-automorphisms, but it may be used to get \mathbb{K}-automorphism for any base field \mathbb{K} as follows:

rnfgaloisconj(nfK, R) = \ \ \ K-automorphisms of L = \mathbb{K}[X] / (R)
{
my(polabs, N, al, S, ala, k, vR);
R *= Mod(1, nfK.pol); \ \ \ \ convert coeffs to polmod elts of K
vR = variable(R);

(continues on next page)
al = Mod(variable(nfK.pol),nfK.pol);
[polabs,ala,k] = rnfequation(nfK, R, 1);
Rt = if(k==0,R,subst(R,vR,vR-al*k));
N = nfgaloisconj(polabs) % Rt; \ Q-automorphisms of L
S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);
if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));
}
K = nfinit(y^2 + 7);
rnfaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \ K-automorphisms of L

nfgrunwaldwang(nf, Lpr, Ld, pl, v)
Given nf a number field in nf or bnf format, a t_VEC Lpr of primes of nf and a t_VEC Ld of positive integers
of the same length, a t_VEC pl of length r1 the number of real places of nf, computes a polynomial with
coefficients in nf defining a cyclic extension of nf of minimal degree satisfying certain local conditions:
• at the prime Lpr[i], the extension has local degree a multiple of Ld[i];
• at the i-th real place of nf, it is complex if pl[i] = −1 (no condition if pl[i] = 0).
The extension has degree the LCM of the local degrees. Currently, the degree is restricted to be a prime power
for the search, and to be prime for the construction because of the rnfkummer restrictions.
When nf is Q, prime integers are accepted instead of prid structures. However, their primality is not checked
and the behavior is undefined if you provide a composite number.

Warning. If the number field nf does not contain the n-th roots of unity where n is the degree of the extension
to be computed, the function triggers the computation of the bnf of nf(ζ_n), which may be costly.

? nf = nfinit(y^2-5);
? pr = idealprimedec(nf,13)[1];
? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)
%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)

nfhilbert(nf, a, b, pr)
If pr is omitted, compute the global quadratic Hilbert symbol (a, b) in nf, that is 1 if x^2 − ay^2 − bz^2 has a non
trivial solution (x, y, z) in nf, and −1 otherwise. Otherwise compute the local symbol modulo the prime ideal
pr, as output by idealprimedec.

nfhnf(nf, x, flag)
Given a pseudo-matrix (A, I), finds a pseudo-basis (B, J) in Hermite normal form of the module it generates. If
flag is nonzero, also return the transformation matrix U such that AU = [0‖B].

nfhnmod(nf, x, detx)
Given a pseudo-matrix (A, I) and an ideal detx which is contained in (read integral multiple of) the determinant
of (A, I), finds a pseudo-basis in Hermite normal form of the module generated by (A, I). This avoids coefficient
explosion. detx can be computed using the function nfdetint.

nfinit(pol, flag, precision)
pol being a nonconstant irreducible polynomial in Q[X], preferably monic and integral, initializes a number field
structure (nf) attached to the field K defined by pol. As such, it’s a technical object passed as the first argument to
most nfXXX functions, but it contains some information which may be directly useful. Access to this information
via member functions is preferred since the specific data organization given below may change in the future.
Currently, nf is a row vector with 9 components:

1.1. Guide to real precision in the PARI interface 275
\texttt{nf[2]} contains \([r1, r2]\): the number of real and complex places of \(K\).

\texttt{nf[3]} contains the discriminant \(d(K)\) of \(K\).

\texttt{nf[4]} contains the index of \texttt{nf[1]}, i.e. \([Z_K : \mathbb{Z}[\theta]]\), where \(\theta\) is any root of \texttt{nf[1]}.

\texttt{nf[5]} is a vector containing 7 matrices \(M, G, \text{round}G, T, MD, TI, MDI\) and a vector \(vP\) defined as follows:
* \(M\) is the \((r1 + r2) \times n\) matrix whose columns represent the numerical values of the conjugates of the elements of the integral basis.
* \(G\) is an \(n \times n\) matrix such that \(T^2 = ^tGG\), where \(T^2\) is the quadratic form \(T_2(x) = \sum ||\sigma(x)||^2, \sigma\) running over the embeddings of \(K\) into \(\mathbb{C}\).
  * \text{round}G\ is a rescaled copy of \(G\), rounded to nearest integers.
  * \(T\) is the \(n \times n\) matrix whose coefficients are \(Tr(\omega_i\omega_j)\) where the \(\omega_i\) are the elements of the integral basis. Note also that \(\det(T)\) is equal to the discriminant of the field \(K\). Also, when understood as an ideal, the matrix \(T^{-1}\) generates the codifferent ideal.
  * The columns of \(MD\) express a \(\mathbb{Z}\)-basis of the different of \(K\) on the integral basis.
  * \(TI\) is equal to the primitive part of \(T^{-1}\), which has integral coefficients.
  * \(MDI\) is a two-element representation (for faster ideal product) of \(d(K)\) times the codifferent ideal.
* \(vP\) is the list of prime divisors of the field discriminant, i.e., the ramified primes of \(\mathbb{Q}[x]/(x^3 - 12)\); \texttt{nfdiscfactors(nf)} is the preferred way to access that information.

\texttt{nf[6]} is the vector containing the \(r1 + r2\) roots of \(\mathbb{Q}[x]/(x^3 - 12)\) corresponding to the \(r1 + r2\) embeddings of the number field into \(\mathbb{C}\) (the first \(r1\) components are real, the next \(r2\) have positive imaginary part).

\texttt{nf[7]} is a \(\mathbb{Z}\)-basis for \(d\mathbb{Z}_K\), where \(d = [\mathbb{Z}_K : \mathbb{Z}[\theta]]\), expressed on the powers of \(\theta\). The multiplication by \(d\) ensures that all polynomials have integral coefficients and \(\texttt{nf[7]} / d\) is an integral basis for \(\mathbb{Z}_K\). Its first element is guaranteed to be 1. This basis is LLL-reduced with respect to \(T_2\) (strictly speaking, it is a permutation of such a basis, due to the condition that the first element be 1).

\texttt{nf[8]} is the \(n \times n\) integral matrix expressing the power basis in terms of the integral basis, and finally \texttt{nf[9]} is the \(n \times n^2\) matrix giving the multiplication table of the integral basis.

If a non monic or non integral polynomial is input, \texttt{nfinit} will transform it, and return a structure attached to the new (monic integral) polynomial together with the attached change of variables, see \texttt{flag = 3}. It is allowed, though not very useful given the existence of \texttt{nfnewprec}, to input a \texttt{nf} or a \texttt{bnf} instead of a polynomial. It is also allowed to input a \texttt{rnf}, in which case an \texttt{nf} structure attached to the absolute defining polynomial \texttt{polabs} is returned (\texttt{flag} is then ignored).

\begin{verbatim}
? nf = nfinit(x^3 - 12); \ initialize number field Q[X] / (X^3 - 12)
? nf.pol \ \ \ defining polynomial
%2 = x^3 - 12
? nf.disc \ \ \ field discriminant
%3 = -972
? nf.index \ \ \ index of power basis order in maximal order
%4 = 2
? nf.zk \ \ \ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \ \ \ signature
%6 = [1, 1]
? factor(abs(nf.disc )) \ \ \ determines ramified primes
\end{verbatim}
Huge discriminants, helping `nfdisc`.

In case `pol` has a huge discriminant which is difficult to factor, it is hard to compute from scratch the maximal order. The following special input formats are also accepted:

- `[pol, B]` where `pol` is a monic integral polynomial and `B` is the lift of an integer basis, as would be computed by `nfbasis`: a vector of polynomials with first element 1 (implicitly modulo `pol`). This is useful if the maximal order is known in advance.
- `[pol, B, P]` where `pol` and `B` are as above (a monic integral polynomial and the lift of an integer basis), and `P` is the list of ramified primes in the extension.
- `[pol, listP]` where `pol` is a rational polynomial and `listP` specifies a list of primes as in `nfbasis`. Instead of the maximal order, `nfinit` then computes an order which is maximal at these particular primes as well as the primes contained in the private prime table, see `addprimes`. The result has a good chance of being correct when the discriminant `nf.disc` factors completely over this set of primes but this is not guaranteed. The function `nfcertify` automates this:

```plaintext
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit([pol, 10^3]);
? nfcertify(nf)
%3 = []
```

A priori, `nf.zk` defines an order which is only known to be maximal at all primes $\leq 10^3$ (no prime $\leq 10^3$ divides `nf.index`). The certification step proves the correctness of the computation. Had it failed, that particular `nf` structure could not have been trusted and may have caused routines using it to fail randomly. One particular function that remains trustworthy in all cases is `idealprimedec` when applied to a prime included in the above list of primes or, more generally, a prime not dividing any entry in `nfcertify` output.

If `flag = 2`: `pol` is changed into another polynomial $P$ defining the same number field, which is as simple as can easily be found using the `polredbest` algorithm, and all the subsequent computations are done using this new polynomial. In particular, the first component of the result is the modified polynomial.

If `flag = 3`, apply `polredbest` as in case 2, but outputs `[nf, Mod(a, P)]`, where `nf` is as before and $\text{Mod}(a, P) = \text{Mod}(x, pol)$ gives the change of variables. This is implicit when `pol` is not monic or not integral: first a linear change of variables is performed, to get a monic integral polynomial, then `polredbest`.

`nfisideal(nf, x)`

Returns 1 if `x` is an ideal in the number field `nf`, 0 otherwise.

`nfisincl(f, g, flag)`

Let `f` and `g` define number fields, where `f` and `g` are irreducible polynomials in $\mathbb{Q}[X]$ and `nf` structures as output by `nfinit`. Tests whether the number field `f` is conjugate to a subfield of the field `g`. If they are not, the output is the integer 0. If they are, the output is a vector of polynomials (`flag = 0`, default) or a single polynomial (`flag = 1`, each polynomial `a` representing an embedding i.e. being such that $g \rightarrow \text{foa}$). If either `f` or `g` is not irreducible, the result is undefined.
\[ T = x^6 + 3x^4 - 6x^3 + 3x^2 + 18x + 10; \]
\[ U = x^3 + 3x^2 + 3x - 2 \]

\[ v = \text{nfincl}(U, T); \]
\[ \%2 = \left[ \frac{24}{179}x^5 - \frac{27}{179}x^4 + \frac{80}{179}x^3 - \frac{234}{179}x^2 + \frac{380}{179}x + \frac{94}{179} \right] \]

\[ \text{subst}(U, x, \text{Mod}(v[1], T)) \]
\[ \%3 = \text{Mod}(0, x^6 + 3x^4 - 6x^3 + 3x^2 + 18x + 10) \]
\[ \text{#nfincl}(x^2+1, T) \text{ \// two embeddings} \]
\[ \%4 = 2 \]

\[ \text{\text{\textbackslash \ two result with \text{nfs} \ \text{structures}} \}
\]
\[ \text{nfincl}(U, L = \text{nfinit}(T)) == v \]
\[ \%5 = 1 \]
\[ \text{nfincl}(K = \text{nfinit}(U), T) == v \]
\[ \%6 = 1 \]
\[ \text{nfincl}(K, L) == v \]
\[ \%7 = 1 \]

\[ \text{\text{\textbackslash \ \comparative \ \text{bench: an \text{nfs} \ is \ a \ little \ faster, esp. for the subfield}} \}
\]
\[ \text{B = 10^3}; \]
\[ \text{\text{for (i=1, B, nfincl(U,T))}} \]
\[ \text{time = 712 ms.} \]

\[ \text{\text{for (i=1, B, nfincl(K,T))}} \]
\[ \text{time = 485 ms.} \]

\[ \text{\text{for (i=1, B, nfincl(U,L))}} \]
\[ \text{time = 704 ms.} \]

\[ \text{\text{for (i=1, B, nfincl(K,L))}} \]
\[ \text{time = 465 ms.} \]

Using an \text{nfs} structure for the potential subfield is faster if the structure is already available. On the other hand, the gain in \text{nfincl} is usually not sufficient to make it worthwhile to initialize only for that purpose.

\[ \text{\text{\textbackslash for (i=1, B, nfinit(U))}} \]
\[ \text{time = 308 ms.} \]

\text{nfincl}(f, g)
As \text{nfincl}, but tests for isomorphism. More efficient if \( f \) or \( g \) is a number field structure.

\[ f = x^6 + 30x^5 + 495x^4 + 1870x^3 + 16317x^2 - 22560x + 59648; \]
\[ g = x^6 + 42x^5 + 999x^4 + 8966x^3 + 36117x^2 + 21768x + 159332; \]
\[ h = x^6 + 30x^5 + 351x^4 + 2240x^3 + 10311x^2 + 35466x + 58321; \]

\[ \text{#nfincl}(f,g) \text{ \// two isomorphisms} \]
\[ \%3 = 2 \]
\[ \text{nfincl}(f,h) \text{ \// not isomorphic} \]
\[ \%4 = 0 \]

\[ \text{\text{\textbackslash comparative bench}} \]
\[ K = \text{nfinit}(f); L = \text{nfinit}(g); B = 10^3; \]
\[ \text{for (i=1, B, nfincl(f,g))} \]

(continues on next page)
The function is usually very fast when the fields are nonisomorphic, whenever the fields can be distinguished via a simple invariant such as degree, signature or discriminant. It may be slower when the fields share all invariants, but still faster than computing actual isomorphisms:

\[
\text{\textbackslash \ usually very fast when the answer is 'no':}\n\]
\[
? \text{for (i=1, B, nfisisom(f,h))}
\]
\[
\text{time = 32 ms.}
\]
\[
\text{\textbackslash \ but not always}\n\]
\[
? u = x^6 + 12*x^5 + 6*x^4 - 377*x^3 - 714*x^2 + 5304*x + 15379
\]
\[
? v = x^6 + 12*x^5 + 60*x^4 + 166*x^3 + 708*x^2 + 6600*x + 23353
\]
\[
? nfisisom(u,v)
\]
\[
%13 = 0
\]
\[
? \text{polsturm(u) == polsturm(v)}
\]
\[
%14 = 1
\]
\[
? \text{nfdisc(u) == nfdisc(v)}
\]
\[
%15 = 1
\]
\[
? \text{for(i=1,B, nfisisom(u,v))}
\]
\[
\text{time = 1,821 ms.}
\]
\[
? K = \text{nffinit(u);} \ L = \text{nffinit(v)};
\]
\[
? \text{for(i=1,B, nfisisom(K,L))}
\]
\[
\text{time = 232 ms.}
\]

\textbf{nfislocalpower}(nf, pr, a, n)

Let \(nf\) be a \(nf\) structure attached to a number field \(K\), let \(a \in K\) and let \(pr\) be a \texttt{prid} structure attached to a maximal ideal \(v\). Return 1 if \(a\) is an \(n\)-th power in the completed local field \(K_v\), and 0 otherwise.

\[
? K = \text{nffinit(y^2+1)};
\]
\[
? P = \text{idealprimedec(K,2)[1];} \quad \text{the ramified prime above 2}
\]
\[
? \text{nfislocalpower(K,P,-1, 2)} \quad \text{-1 is a square}
\]
\[
%3 = 1
\]
\[
? \text{nfislocalpower(K,P,-1, 4)} \quad \text{... but not a 4-th power}
\]
\[
%4 = 0
\]
\[
? \text{nfislocalpower(K,P,2, 2)} \quad \text{2 is not a square}
\]
\[
%5 = 0
\]
\[
? Q = \text{idealprimedec(K,5)[1];} \quad \text{a prime above 5}
\]
\[
? \text{nfislocalpower(K,Q, [0, 32]-, 30)} \quad \text{32*I is locally a 30-th power}
\]
\[
%7 = 1
\]

\textbf{nfkermodpr}(nf, x, pr)

This function is obsolete, use \texttt{nfmodpr}.

Kernel of the matrix \(a\) in \(\mathbb{Z}_K/pr\), where \(pr\) is in \texttt{modpr} format (see \texttt{nfmodprinit}).
\textbf{nfmodpr}(nf, x, pr)

Map \(x\) to a \texttt{t\_FFELT} in the residue field modulo \(pr\). The argument \(pr\) is either a maximal ideal in \texttt{idealprimedec} format or, preferably, a \texttt{modpr} structure from \texttt{nfmodprinit}. The function \texttt{nfmodprlift} allows to lift back to \(\mathbb{Z}_K\).

Note that the function applies to number field elements and not to vector / matrices / polynomials of such. Use \texttt{apply} to convert recursive structures.

\begin{verbatim}
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125
\end{verbatim}

For clarity, we represent elements in the residue field \(F_5[t]/(T)\) as polynomials in the variable \(t\). Whenever the underlying rational prime does not divide \(K.\text{index}\), it is actually the case that \(t\) is the reduction of \(y\) in \(\mathbb{Q}[y]/(K.\text{pol})\) modulo an irreducible factor of \(K.\text{pol}\) over \(F_p\). In the above example, 5 divides the index and \(t\) is actually the reduction of \(y/5\).

\textbf{nfmodprinit}(nf, pr, v)

Transforms the prime ideal \(pr\) into \texttt{modpr} format necessary for all operations modulo \(pr\) in the number field \(nf\). The functions \texttt{nfmodpr} and \texttt{nfmodprlift} allow to project to and lift from the residue field. The variable \(v\) is used to display finite field elements (see \texttt{ffgen}).

\begin{verbatim}
? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125
\end{verbatim}

For clarity, we represent elements in the residue field \(F_5[t]/(T)\) as polynomials in the variable \(t\). Whenever the underlying rational prime does not divide \(K.\text{index}\), it is actually the case that \(t\) is the reduction of \(y\) in \(\mathbb{Q}[y]/(K.\text{pol})\) modulo an irreducible factor of \(K.\text{pol}\) over \(F_p\). In the above example, 5 divides the index and \(t\) is actually the reduction of \(y/5\).

\textbf{nfmodprlift}(nf, x, pr)

Lift the \texttt{t\_FFELT} \(x\) (from \texttt{nfmodpr}) in the residue field modulo \(pr\) to the ring of integers. Vectors and matrices are also supported. For polynomials, use \texttt{apply} and the present function.

The argument \(pr\) is either a maximal ideal in \texttt{idealprimedec} format or, preferably, a \texttt{modpr} structure from \texttt{nfmodprinit}. There are no compatibility checks to try and decide whether \(x\) is attached the same residue field as defined by \(pr\): the result is undefined if not.

The function \texttt{nfmodpr} allows to reduce to the residue field.
CyPari2 Documentation, Release 2.1.3

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K,P);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, y, 2*y + 1]
? nfmodprlift(K, %, modP)
%6 = [1, 1/5*y, 2/5*y + 1]
? nfeltval(K, %[3] - K.zk[3], P)
%7 = 1

nfnewprec(nf, precision)
Transforms the number field nf into the corresponding data using current (usually larger) precision. This function works as expected if nf is in fact a bnf or a bnr (update structure to current precision). If the original bnf structure was not computed by bnfinit(), then this may be quite slow and even fail: many generators of principal ideals have to be computed and the algorithm may fail because the accuracy is not sufficient to bootstrap the required generators and fundamental units.

nfpolsturm(nf, T, pl)
Given a polynomial T with coefficients in the number field nf, returns the number of real roots of the s(T) where s runs through the real embeddings of the field specified by optional argument pl:

• pl omitted: all r_1 real places;
• pl an integer between 1 and r_1: the embedding attached to the i-th real root of nf.pol, i.e. nf.roots:math:`^i`;
• pl a vector or t_VECSMALL: the embeddings attached to the pl[i]-th real roots of nf.pol.

? nf = nfinit('y^2 - 2);
? nf.sign
%2 = [2, 0]
? nf.roots
%3 = [-1.414..., 1.414...]
? T = x^2 + y;
? nfpolsturm(nf, T, 1) \ subst(T,y,sqrt(2)) has two real roots
%5 = 2
? nfpolsturm(nf, T, 2) \ subst(T,y,-sqrt(2)) has no real root
%6 = 0
? nfpolsturm(nf, T) \ all embeddings together
%7 = [2, 0]
? nfpolsturm(nf, T, [2,1]) \ second then first embedding
%8 = [0, 2]
? nfpolsturm(nf, x^3) \ number of distinct roots !
%9 = [1, 1]
? nfpolsturm(nf, x, 6) \ there are only 2 real embeddings !
*** at top-level: nfpolsturm(nf,x,6)
*** ^-----------------
*** nfpolsturm: domain error in nfpolsturm: index > 2

nfroots(nf, x)
Roots of the polynomial x in the number field nf given by nfinit without multiplicity (in Q if nf is omitted). x has coefficients in the number field (scalar, polmod, polynomial, column vector). The main variable of nf must be of lower priority than that of x (see priority (in the PARI manual)). However if the coefficients of the

1.1. Guide to real precision in the PARI interface 281
number field occur explicitly (as polmods) as coefficients of \( x \), the variable of these polmods must be the same as the main variable of \( t \) (see \texttt{nffactor}).

It is possible to input a defining polynomial for \texttt{nf} instead, but this is in general less efficient since parts of an \texttt{nf} structure will then be computed internally. This is useful in two situations: when you do not need the \texttt{nf} elsewhere, or when you cannot initialize an \texttt{nf} due to integer factorization difficulties when attempting to compute the field discriminant and maximal order.

\textbf{Caveat.} \texttt{nfinit([T, listP])} allows to compute in polynomial time a conditional \texttt{nf} structure, which sets \texttt{nfzK} to an order which is not guaranteed to be maximal at all primes. Always either use \texttt{nfcertify} first (which may not run in polynomial time) or make sure to input \texttt{nf.pol} instead of the conditional \texttt{nf}: \texttt{nfruntos} is able to recover in polynomial time in this case, instead of potentially missing a factor.

\texttt{nfruntos} (\( \texttt{nf} \))

Returns a two-component vector \([w, z]\) where \( w \) is the number of roots of unity in the number field \( \texttt{nf} \), and \( z \) is a primitive \( w \)-th root of unity. It is possible to input a defining polynomial for \( \texttt{nf} \) instead.

\begin{verbatim}
? K = nfinit(polcyclo(11));
? nfruntos(K)
%2 = [22, [0, 0, 0, 0, -1, 0, 0, 0]~]
? z = nfbasistoalg(K, %2[2]) \ in algebraic form
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(entr^11), lift(entr^2)] \ proves that the order of z is 22
%5 = [1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]
\end{verbatim}

This function guesses the number \( w \) as the gcd of the \( \#k(v)^* \) for unramified \( v \) above odd primes, then computes the roots in \( \texttt{nf} \) of the \( w \)-th cyclotomic polynomial. The algorithm is polynomial time with respect to the field degree and the bitsize of the multiplication table in \( \texttt{nf} \) (both of them polynomially bounded in terms of the size of the discriminant). Fields of degree up to 100 or so should require less than one minute.

\texttt{nfsnf} (\( \texttt{nf}, x, \texttt{flag} \))

Given a torsion \( \mathbb{Z}_K \)-module \( x \) attached to the square integral invertible pseudo-matrix \((A, I, J)\), returns an ideal list \( D = [d_1, ..., d_n] \) which is the Smith normal form of \( x \). In other words, \( x \) is isomorphic to \( \mathbb{Z}_K/d_1 \oplus ... \oplus \mathbb{Z}_K/d_n \) and \( d_i \) divides \( d_{i-1} \) for \( i >= 2 \). If \( \texttt{flag} \) is nonzero return \([D, U, V]\), where \( UAV \) is the identity.

See \texttt{ZKmodules} (in the PARI manual) for the definition of integral pseudo-matrix; briefly, it is input as a 3-component row vector \([A, I, J]\) where \( I = [b_1, ..., b_n] \) and \( J = [a_1, ..., a_n] \) are two ideal lists, and \( A \) is a square \( n \times n \) matrix with columns \((A_1, ..., A_n)\), seen as elements in \( K^n \) (with canonical basis \((e_1, ..., e_n)\)). This data defines the \( \mathbb{Z}_K \) module \( x \) given by

\[
(b_1 e_1 \oplus ... \oplus b_n e_n)/(a_1 A_1 \oplus ... \oplus a_n A_n).
\]

The integrality condition is \( a_{i,j} \in \mathbb{Z} \) for all \( i, j \). If it is not satisfied, then the \( d_i \) will not be integral. Note that every finitely generated torsion module is isomorphic to a module of this form and even with \( b_i = Z_K \) for all \( i \).

\texttt{nfsolve} (\( \texttt{modpr} \))

This function is obsolete, use \texttt{nfmodpr}.

Let \( P \) be a prime ideal in \texttt{modpr} format (see \texttt{nfmodprinit}), let \( a \) be a matrix, invertible over the residue field, and let \( b \) be a column vector or matrix. This function returns a solution of \( ax = b \); the coefficients of \( x \) are lifted to \( \texttt{nf} \) elements.

\begin{verbatim}
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfnfsolve(K, a, b, P)
%5 = [1, 2]~
\end{verbatim}
nfsplitting($P,d$)

Defining polynomial over $\mathbb{Q}$ for the splitting field of $P \in \mathbb{Q}[x]$, that is the smallest field over which $P$ is totally split. If irreducible, the polynomial $P$ can also be given by a nf structure, which is more efficient. If $d$ is given, it must be a multiple of the splitting field degree. Note that if $P$ is reducible the splitting field degree can be smaller than the degree of $P$.

```plaintext
? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
? S = nfsplitting(x^6-8) \// reducible
%4 = x^4+2*x^2+4
? lift(nfroots(subst(S,x,a),x^6-8))
%5 = [-a,a,-1/2*a^3-a,-1/2*a^3,1/2*a^3,1/2*a^3+a]
```

Specifying the degree of the splitting field can make the computation faster.

```plaintext
? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.
```

The complexity of the algorithm is polynomial in the degree $d$ of the splitting field and the bitsize of $T$; if $d$ is large the result will likely be unusable, e.g. nfinit will not be an option:

```plaintext
? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
```

nfsubfields($\text{pol}, d, \text{fl}$)

Finds all subfields of degree $d$ of the number field defined by the (monic, integral) polynomial $\text{pol}$ (all subfields if $d$ is null or omitted). The result is a vector of subfields, each being given by $[g, h]$ (default) or simply $g$ (flag = 1), where $g$ is an absolute equation and $h$ expresses one of the roots of $g$ in terms of the root $x$ of the polynomial defining $\text{nf}$. This routine uses

• Allombert’s galoiissubfields when $\text{nf}$ is Galois (with weakly supersolvable Galois group).

• Klüners’s or van Hoeij-Klüners-Novocin algorithm in the general case. The latter runs in polynomial time and is generally superior unless there exists a small unramified prime $p$ such that $\text{pol}$ has few irreducible factors modulo $p$.

An input of the form $[\text{nf}, \text{fa}]$ is also allowed, where $\text{fa}$ is the factorisation of $\text{nf.pol}$ over $\text{nf}$, expressed as a famat of polynomials with coefficients in the variable of $\text{nf}$, in which case the van Hoeij-Klüners-Novocin algorithm is used.

```plaintext
? pol = x^4 - x^3 - x^2 + x + 1;
? nfsubfields(pol)
%2 = [[x, 0], [x^2 - x + 1, x^3 - x^2 + 1], [x^4 - x^3 - x^2 + x + 1, x]]
? nfsubfields(pol,,1)
```

(continues on next page)
%2 = [x, x^2 - x + 1, x^4 - x^3 - x^2 + x + 1]
? y=varhigher("y"); fa = nffactor(pol,subst(pol,x,y));
? #nfsubfields([pol,fa])
%5 = 3

nfsubfieldscm(nf,fl)
Compute the maximal CM subfield of nf. Return 0 if nf does not have a CM subfield, otherwise return [g, h] (default) or g (flag = 1) where g is an absolute equation and h expresses a root of g in terms of the generator of nf. Moreover, the CM involution is given by Xmodg(X) : −−− −−− Xmodg(X), i.e. Xmodg(X) is a totally imaginary element.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also allowed to be a monic defining polynomial for the number field.

? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfsubfieldscm(nf)
%2 = [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol, subst(pol,y,x));
? nfsubfieldscm([pol,fa])
%5 = [y^8 + ... , ...

nfsubfieldsmax(nf,fl)
Compute the list of maximal subfields of nf. The result is a vector as in nfsubfields.

An input of the form [nf, fa] is also allowed, where fa is the factorisation of nf.pol over nf, and nf is also allowed to be a monic defining polynomial for the number field.

? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfsubfieldsmax(nf)
%2 = [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol, subst(pol,y,x));
? nfsubfieldsmax([pol,fa])
%5 = [y^8 + ... , ...]

norm(x)
Algebraic norm of x, i.e. the product of x with its conjugate (no square roots are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise and hence is not the L^2-norm (see norml2). Note that the norm of an element of R is its square, so as to be compatible with the complex norm.

norml2(x)
Square of the L^2-norm of x. More precisely, if x is a scalar, norml2(x) is defined to be the square of the complex modulus of x (real t_QUAD s are not supported). If x is a polynomial, a (row or column) vector or a matrix, norml2(:math:`x`) is defined recursively as \( \max_i \|x_i\|^2 \) (resp. \( \max_i \|x_i,j\|^2 \)) if x is a polynomial or vector (resp. matrix) with complex components.

? norml2( [ 1, 2, 3 ] ) \vector
%1 = 14
? norml2( [ 1, 2; 3, 4 ] ) \matrix
%2 = 30
? norml2( 2*I + x )
%3 = 5
? norml2( [ [1,2], [3,4], 5, 6 ] ) \recursively defined
%4 = 91

normlp(x, p, precision)
L^p-norm of x; sup norm if p is omitted or +oo. More precisely, if x is a scalar, normlp(x, p) is defined to be abs(x). If x is a polynomial, a (row or column) vector or a matrix:

• if p is omitted or +oo, then normlp(:math:`x`) is defined recursively as \( \max_i \|x_i\|^p \), where (x_i)
run through the components of $x$. In particular, this yields the usual sup norm if $x$ is a polynomial or vector with complex components.

- otherwise, \( \text{normlp}(x, p) \) is defined recursively as \( (\sum_i \text{normlp}(x_i, p))^1/p \). In particular, this yields the usual \( (\sum_i |x_i|^p)^{1/p} \) if $x$ is a polynomial or vector with complex components.

```plaintext
? v = [1,-2,3]; normlp(v) \vector
%1 = 3
? normlp(v, +oo) \same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \recursively defined
%5 = 6

? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786
```

numbpart\((n)\)

Gives the number of unrestricted partitions of $n$, usually called $p(n)$ in the literature; in other words the number of nonnegative integer solutions to $a + 2b + 3c + ... = n$. $n$ must be of type integer and $n < 10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and $p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula. To explicitly enumerate them, see partitions.

numdiv\((x)\)

Number of divisors of $\|x\|$. $x$ must be of type integer.

numerator\((f, D)\)

Numerator of $f$. This is defined as \( f \ast \text{denominator}(f, D) \), see denominator for details. The optional argument $D$ allows to control over which ring we compute the denominator:

- 1: we only consider the underlying $\mathbb{Q}$-structure and the denominator is a (positive) rational integer
- a simple variable, say 'x: all entries as rational functions in $K(x)$ and the denominator is a polynomial in $x$.

```plaintext
? f = x + 1/y + 1/2;
? numerator(f) \a t_POL in x
%2 = x + ((y + 2)/(2*y))
? numerator(f, 1) \Q-denominator is 2
%3 = x + ((y + 2)/y)
? numerator(f, y) \as a rational function in y
%5 = 2*y*x + (y + 2)

numtoperm\((n, k)\)

Generates the \(k \)-th permutation (as a row vector of length \(n \)) of the numbers 1 to \(n \). The number \(k \) is taken modulo \(n! \), i.e. inverse function of permtonum. The numbering used is the standard lexicographic ordering, starting at 0.

omega\((x)\)

Number of distinct prime divisors of $\|x\|$. x must be of type integer.

1.1. Guide to real precision in the PARI interface
? factor(392)
%1 = [2 3]
 [7 2]
? omega(392)
%2 = 2; \ without multiplicity
? bigomega(392)
%3 = 5; \ = 3+2, with multiplicity

oo()

Returns an object meaning +oo, for use in functions such as intnum. It can be negated (-oo represents -oo), and compared to real numbers (t_INT, t_FRAC, t_REAL), with the expected meaning: +oo is greater than any real number and -oo is smaller.

padicappr(pol, a)

Vector of p-adic roots of the polynomial pol congruent to the p-adic number a modulo p, and with the same p-adic precision as a. The number a can be an ordinary p-adic number (type t_PADIC, i.e. an element of Zp) or can be an integral element of a finite unramified extension Qp[X]/(T) of Qp, given as a t_POLMOD Mod(A, T) at least one of whose coefficients is a t_PADIC and T irreducible modulo p. In this case, the result is the vector of roots belonging to the same extension of Qp as a. The polynomial pol should have exact coefficients; if not, its coefficients are first rounded to Q or Q[X]/(T) and this is the polynomial whose roots we consider.

padicfields(p, N, flag)

Returns a vector of polynomials generating all the extensions of degree N of the field Qp of p-adic rational numbers; N is allowed to be a 2-component vector [n, d], in which case we return the extensions of degree n and discriminant p^d.

The list is minimal in the sense that two different polynomials generate nonisomorphic extensions; in particular, the number of polynomials is the number of classes of nonisomorphic extensions. If P is a polynomial in this list, α is any root of P and K = Qp(α), then α is the sum of a uniformizer and a (lift of a) generator of the residue field of K; in particular, the powers of α generate the ring of p-adic integers of K.

If flag = 1, replace each polynomial P by a vector [P, e, f, d, c] where e is the ramification index, f the residual degree, d the valuation of the discriminant, and c the number of conjugate fields. If flag = 2, only return the number of extensions in a fixed algebraic closure (Krasner’s formula), which is much faster.

padicprec(x, p)

Returns the absolute p-adic precision of the object x; this is the minimum precision of the components of x. The result is +oo if x is an exact object (as a p-adic):

? padicprec((1 + O(2^5)) * x + (2 + O(2^4)), 2)
%1 = 4
? padicprec(x + 2, 2)
%2 = +oo
? padicprec(2 + x + O(x^2), 2)
%3 = +oo

The function raises an exception if it encounters an object incompatible with p-adic computations:

? padicprec(0(3), 2)
*** at top-level: padicprec(0(3),2)
*** ^-----------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2
(continues on next page)
parapply(f, x)

Parallel evaluation of f on the elements of x. The function f must not access global variables or variables declared with local(), and must be free of side effects.

```parapply(factor, [2^{256} + 1, 2^{193} - 1])
```

factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.

```{my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^{200})));
  parapply(p->ellcard(E,p), V)
}
```

computes the order of $E(F_p)$ for 12 random primes of 200 bits.

pareval(x)

Parallel evaluation of the elements of x, where x is a vector of closures. The closures must be of arity 0, must not access global variables or variables declared with local and must be free of side effects.

Here is an artificial example explaining the MOV attack on the elliptic discrete log problem (by reducing it to a standard discrete log over a finite field):

```{my(q = 2^30 + 3, m = 40 * q; p = 1 + m^2); \ p, q are primes
  my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
  my([P, Q] = ellgenerators(E)); \ E(F_p) \sim Z/m P + Z/m Q and the order of the
  \ Weil pairing <P,Q> in (Z/p)^\times is m
  my(F = [m,factor(m)], e = random(m), R, wR, wQ);
  R = ellpow(E, Q, e);
  wR = ellweilpairing(E,P,R,m);
  wQ = ellweilpairing(E,P,Q,m); \ wR = wQ^e
  pareval([()-->znlog(wR,wQ,F), ()-->elllog(E,R,Q), ()-->e])
}
```

Note the use of my to pass “arguments” to the functions we need to evaluate while satisfying the listed requirements: closures of arity 0 and no global variables (another possibility would be to use export). As a result, the final three statements satisfy all the listed requirements and are run in parallel. (Which is silly for this computation but illustrates the use of pareval.) The function parfor is more powerful but harder to use.

parselect($f, A, flag$)

Selects elements of A according to the selection function f, done in parallel. If flag is 1, return the indices of those elements (indirect selection) The function f must not access global variables or variables declared with local(), and must be free of side effects.

partitions(k, a, n)

Returns the vector of partitions of the integer k as a sum of positive integers (parts); for $k < 0$, it returns the empty set [], and for $k = 0$ the trivial partition (no parts). A partition is given by a t_VECSMALL, where parts are sorted in nondecreasing order.
correspond to $3, 1 + 2$ and $1 + 1 + 1$. The number of (unrestricted) partitions of k is given by `numbpart`:

```plaintext
? #partitions(50)
%1 = 204226
? numbpart(50)
%2 = 204226
```

Optional parameters n and a are as follows:
- $n = nmax$ (resp. $n = \lfloor nmin, nmax \rfloor$) restricts partitions to length less than $nmax$ (resp. length between $nmin$ and $nmax$), where the length is the number of nonzero entries.
- $a = amax$ (resp. $a = \lfloor amin, amax \rfloor$) restricts the parts to integers less than $amax$ (resp. between $amin$ and $amax$).

```plaintext
? partitions(4, 2) \ \ parts bounded by 2
%1 = [Vecsmall([2, 2]), Vecsmall([1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(4, [0,3], 2) \ \ at most 2 parts
%2 = [Vecsmall([4]), Vecsmall([1, 3]), Vecsmall([2, 2])]
? partitions(4, [0,3], [2,4]) \ \ no partition with 2 to 4 nonzero parts
%3 = []
```

By default, parts are positive and we remove zero entries unless $amin <= 0$, in which case $nmin$ is ignored and we fix $#X = nmax$:

```plaintext
? partitions(4, [0,3]) \ \ parts between 0 and 3
%1 = [Vecsmall([0, 0, 1, 3]), Vecsmall([0, 0, 2, 2]),
     Vecsmall([0, 1, 1, 2]), Vecsmall([1, 1, 1, 1])]
? partitions(1, [0,3], [2,4]) \ \ no partition with 2 to 4 nonzero parts
%2 = []
```

permcycles

Given a permutation x on n elements, return the orbits of $1, \ldots, n$ under the action of x as cycles.

```plaintext
? permcycles(Vecsmall([1,2,3]))
%1 = [Vecsmall([1]), Vecsmall([2]), Vecsmall([3])]
? permcycles(Vecsmall([2,3,1]))
%2 = [Vecsmall([1,2,3])]
? permcycles(Vecsmall([2,1,3]))
%3 = [Vecsmall([1,2]), Vecsmall([3])]```

**permorder**

Given a permutation $x$ on $n$ elements, return its order.

```plaintext
? p = Vecsmall([3,1,4,2,5]);
? p^2
%2 = Vecsmall([4,3,2,1,5])
? p^4
%3 = Vecsmall([1,2,3,4,5])
? permorder(p)
%4 = 4
```
permsign(x)
Given a permutation x on n elements, return its signature.

? p = Vecsmall([3,1,4,2,5]);
? permsign(p)
%2 = -1
? permsign(p^2)
%3 = 1

permtonum(x)
Given a permutation x on n elements, gives the number k such that x = numtoperm(n,k), i.e. inverse function of numtoperm. The numbering used is the standard lexicographic ordering, starting at 0.

plotbox(w, x2, y2, filled)
Let (x1, y1) be the current position of the virtual cursor. Draw in the rectwindow w the outline of the rectangle which is such that the points (x1, y1) and (x2, y2) are opposite corners. Only the part of the rectangle which is in w is drawn. The virtual cursor does not move. If filled = 1, fill the box.

plotclip(w)
clips' the content of rectwindow :math:`w`, i.e remove all parts of the drawing that would not be visible on the screen. Together with plotcopy this function enables you to draw on a scratchpad before committing the part you’re interested in to the final picture.

plotcolor(w, c)
Set default color to c in rectwindow w. Return [R,G,B] value attached to color. Possible values for c are
- a t_VEC or t_VECSMALL [R, G, B] giving the color RGB value (all 3 values are between 0 and 255), e.g. [250,235,215] or equivalently [0xfa, 0xeb, 0xd7] for antiquewhite;
- a t_STR giving a valid colour name (see the rgb.txt file in X11 distributions), e.g. "antiquewhite" or an RGV value given by a # followed by 6 hexadecimal digits, e.g. "#faebd7" for antiquewhite;
- a t_INT, an index in the graph colormap default, factory setting are 1 = black, 2 = blue, 3 = violetred, 4 = red, 5 = green, 6 = grey, 7 = gainsborough.

but this can be extended if needed.

? plotinit(0,100,100);
? plotcolor(0, "turquoise")
%2 = [64, 224, 208]
? plotbox(0, 50,50,1);
? plotmove(0, 50,50);
? plotcolor(0, 2) \ blue
%4 = [0, 0, 255]
? plotbox(0, 50,50,1);
? plotdraw(0);

plotcopy(sourcew, destw, dx, dy, flag)
Copy the contents of rectwindow sourcew to rectwindow destw with offset (dx,dy). If flag’s bit 1 is set, dx and dy express fractions of the size of the current output device, otherwise dx and dy are in pixels. dx and dy are relative positions of northwest corners if other bits of flag vanish, otherwise of: 2: southwest, 4: southeast, 6: northeast corners

plotcursor(w)
Give as a 2-component vector the current (scaled) position of the virtual cursor corresponding to the rectwindow w.

1.1. Guide to real precision in the PARI interface
plotdraw\((w, flag)\)

Physically draw the rectwindow \(w\). More generally, \(w\) can be of the form \([w_1, x_1, y_1, w_2, x_2, y_2, \ldots]\) (number of components must be divisible by 3; the windows \(w_1, w_2, \ldots\) are physically placed with their upper left corner at physical position \((x_1, y_1), (x_2, y_2), \ldots\) respectively, and are then drawn together. Overlapping regions will thus be drawn twice, and the windows are considered transparent. Then display the whole drawing in a window on your screen. If \(flag! = 0\), \(x_1, y_1\) etc. express fractions of the size of the current output device.

plotexport\((fmt, list, flag)\)

Draw list of rectwindows as in plotdraw\((list, flag)\), returning the resulting picture as a character string which can then be written to a file. The format \(fmt\) is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics).

```plaintext
? plotinit(0, 100, 100);
? plotbox(0, 50, 50);
? plotcolor(0, 2);
? plotbox(0, 30, 30);
? plotdraw(0); \ watch result on screen
? s = plotexport("svg", 0);
? write("graph.svg", s); \ dump result to file
```

plothraw\((X, Y, flag)\)

Given \(X\) and \(Y\) two vectors of equal length, plots (in high precision) the points whose \((x, y)\)-coordinates are given in \(X\) and \(Y\). Automatic positioning and scaling is done, but with the same scaling factor on \(x\) and \(y\). If \(flag\) is 1, join points, other nonzero flags toggle display options and should be combinations of bits \(2^k\), \(k >= 3\) as in ploth.

plothrawexport\((fmt, X, Y, flag)\)

Given \(X\) and \(Y\) two vectors of equal length, plots (in high precision) the points whose \((x, y)\)-coordinates are given in \(X\) and \(Y\), returning the resulting picture as a character string which can then be written to a file. The format \(fmt\) is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics).

Automatic positioning and scaling is done, but with the same scaling factor on \(x\) and \(y\). If \(flag\) is 1, join points, other nonzero flags toggle display options and should be combinations of bits \(2^k\), \(k >= 3\) as in ploth.

plothsizes\((flag)\)

Return data corresponding to the output window in the form of a 8-component vector: window width and height, sizes for ticks in horizontal and vertical directions (this is intended for the gnuplot interface and is currently not significant), width and height of characters, width and height of display, if applicable. If display has no sense, e.g. for svg plots or postscript plots, then width and height of display are set to 0.

If \(flag = 0\), sizes of ticks and characters are in pixels, otherwise are fractions of the screen size.

plotinit\((w, x, y, flag)\)

Initialize the rectwindow \(w\), destroying any rect objects you may have already drawn in \(w\). The virtual cursor is set to \((0, 0)\). The rectwindow size is set to width \(x\) and height \(y\); omitting either \(x\) or \(y\) means we use the full size of the device in that direction. If \(flag = 0\), \(x\) and \(y\) represent pixel units. Otherwise, \(x\) and \(y\) are understood as fractions of the size of the current output device (hence must be between 0 and 1) and internally converted to pixels.

The plotting device imposes an upper bound for \(x\) and \(y\), for instance the number of pixels for screen output. These bounds are available through the plothsizes function. The following sequence initializes in a portable way (i.e independent of the output device) a window of maximal size, accessed through coordinates in the \([0, 1000]x[0, 1000]\) range:
CyPari2 Documentation, Release 2.1.3

s = plotshsize();
plotinit(0, s[1]-1, s[2]-1);
plotscale(0, 0, 1000, 0, 1000);

plotkill(w)
Erase rectwindow w and free the corresponding memory. Note that if you want to use the rectwindow w again, you have to use plotinit first to specify the new size. So it’s better in this case to use plotinit directly as this throws away any previous work in the given rectwindow.

plotlines(w, X, Y, flag)
Draw on the rectwindow w the polygon such that the (x,y)-coordinates of the vertices are in the vectors of equal length X and Y. For simplicity, the whole polygon is drawn, not only the part of the polygon which is inside the rectwindow. If flag is nonzero, close the polygon. In any case, the virtual cursor does not move.

X and Y are allowed to be scalars (in this case, both have to). There, a single segment will be drawn, between the virtual cursor current position and the point (X, Y). And only the part thereof which actually lies within the boundary of w. Then move the virtual cursor to (X, Y), even if it is outside the window. If you want to draw a line from (x1, y1) to (x2, y2) where (x1, y1) is not necessarily the position of the virtual cursor, use plotmove(w, x1, y1) before using this function.

plotlinetype(w, type)
This function is obsolete and currently a no-op.

Change the type of lines subsequently plotted in rectwindow w. type −2 corresponds to frames, −1 to axes, larger values may correspond to something else. w = −1 changes highlevel plotting.

plotmove(w, x, y)
Move the virtual cursor of the rectwindow w to position (x, y).

plotpoints(w, X, Y)
Draw on the rectwindow w the points whose (x,y)-coordinates are in the vectors of equal length X and Y and which are inside w. The virtual cursor does not move. This is basically the same function as plothraw, but either with no scaling factor or with a scale chosen using the function plotscale.

As was the case with the plotlines function, X and Y are allowed to be (simultaneously) scalar. In this case, draw the single point (X, Y) on the rectwindow w (if it is actually inside w), and in any case move the virtual cursor to position (x, y).

If you draw few points in the rectwindow, they will be hard to see; in this case, you can use filled boxes instead. Compare:

```
? plotinit(0, 100, 100); plotpoints(0, 50, 50);
? plotdraw(0)
? plotinit(1, 100, 100); plotmove(1, 48, 48); plotrbox(1, 4, 4, 1);
? plotdraw(1)
```

plotpointsize(w, size)
This function is obsolete. It is currently a no-op.

Changes the “size” of following points in rectwindow w. If w = −1, change it in all rectwindows.

plotpointtype(w, type)
This function is obsolete and currently a no-op.

change the type of points subsequently plotted in rectwindow w. type = −1 corresponds to a dot, larger values may correspond to something else. w = −1 changes highlevel plotting.
plotrbox$(w, dx, dy, filled)$

Draw in the rectwindow $w$ the outline of the rectangle which is such that the points $(x_1, y_1)$ and $(x_1 + dx, y_1 + dy)$ are opposite corners, where $(x_1, y_1)$ is the current position of the cursor. Only the part of the rectangle which is in $w$ is drawn. The virtual cursor does not move. If $filled = 1$, fill the box.

plotrectraw$(w, data, flags)$

Plot graph(s) for $data$ in rectwindow $w$; $flag$ has the same meaning here as in $plot$, though recursive plot is no longer significant.

The argument $data$ is a vector of vectors, each corresponding to a list a coordinates. If parametric plot is set, there must be an even number of vectors, each successive pair corresponding to a curve. Otherwise, the first one contains the $x$ coordinates, and the other ones contain the $y$-coordinates of curves to plot.

plotline$(w, dx, dy)$

Draw in the rectwindow $w$ the part of the segment $(x_1, y_1) - (x_1 + dx, y_1 + dy)$ which is inside $w$, where $(x_1, y_1)$ is the current position of the virtual cursor, and move the virtual cursor to $(x_1 + dx, y_1 + dy)$ (even if it is outside the window).

plotrmove$(w, dx, dy)$

Move the virtual cursor of the rectwindow $w$ to position $(x_1 + dx, y_1 + dy)$, where $(x_1, y_1)$ is the initial position of the cursor (i.e. to position $(dx, dy)$ relative to the initial cursor).

plotrpoint$(w, dx, dy)$

Draw the point $(x_1 + dx, y_1 + dy)$ on the rectwindow $w$ (if it is inside $w$), where $(x_1, y_1)$ is the current position of the cursor, and in any case move the virtual cursor to position $(x_1 + dx, y_1 + dy)$.

If you draw few points in the rectwindow, they will be hard to see; in this case, you can use filled boxes instead. Compare:

```
? plotinit(0, 100, 100); plotrpoint(0, 50, 50); plotrpoint(0, 10, 10);
? plotdraw(0)

? thickpoint(w,x,y)= plotmove(w,x-2,y-2); plotrbox(w,4,4,1);
? plotinit(1, 100, 100); thickpoint(1, 50, 50); thickpoint(1, 60, 60);
? plotdraw(1)
```

plotscale$(w, x1, x2, y1, y2)$

Scale the local coordinates of the rectwindow $w$ so that $x$ goes from $x1$ to $x2$ and $y$ goes from $y1$ to $y2$ ($x2 < x1$ and $y2 < y1$ being allowed). Initially, after the initialization of the rectwindow $w$ using the function $plotinit$, the default scaling is the graphic pixel count, and in particular the $y$ axis is oriented downwards since the origin is at the upper left. The function $plotscale$ allows to change all these defaults and should be used whenever functions are graphed.

plotstring$(w, x, flags)$

Draw on the rectwindow $w$ the String $x$ (see strings (in the PARI manual)), at the current position of the cursor.

$flag$ is used for justification: bits 1 and 2 regulate horizontal alignment: left if 0, right if 2, center if 1. Bits 4 and 8 regulate vertical alignment: bottom if 0, top if 8, v-center if 4. Can insert additional small gap between point and string: horizontal if bit 16 is set, vertical if bit 32 is set (see the tutorial for an example).

polchebyshev$(n, flag, a)$

Returns the $n$ th Chebyshev polynomial of the first kind $T_n$ ($flag = 1$) or the second kind $U_n$ ($flag = 2$), evaluated at $a$ (*x by default). Both series of polynomials satisfy the 3-term relation

$$P_{n+1} = 2xP_n - P_{n-1},$$
and are determined by the initial conditions \( U_0 = T_0 = 1, T_1 = x, U_1 = 2x \). In fact \( T'_n = nU_{n-1} \) and, for all complex numbers \( z \), we have \( T_n(\cos z) = \cos(nz) \) and \( U_{n-1}(\cos z) = \sin(nz)/\sin z \). If \( n \geq 0 \), then these polynomials have degree \( n \). For \( n < 0 \), \( T_n \) is equal to \( T_{-n} \) and \( U_n \) is equal to \(-U_{-2-n}\). In particular, \( U_{-1} = 0 \).

**polclass\((D, \text{inv}, x)\)**

Return a polynomial in \( \mathbb{Z}[x] \) generating the Hilbert class field for the imaginary quadratic discriminant \( D \). If \text{inv} is 0 (the default), use the modular \( j \)-function and return the classical Hilbert polynomial, otherwise use a class invariant. The following invariants correspond to the different values of \text{inv}, where \( f \) denotes Weber’s function \( \text{weber} \), and \( w_{p,q} \) the double eta quotient given by \( w_{p,q} = (\eta(x/p)\eta(x/q))/\eta(x)\eta(x/pq) \)

The invariants \( w_{p,q} \) are not allowed unless they satisfy the following technical conditions ensuring they do generate the Hilbert class field and not a strict subfield:

- if \( p! = q \), we need them both noninert, prime to the conductor of \( \mathbb{Z}[^{1}/\sqrt{D}] \). Let \( P, Q \) be prime ideals above \( p \) and \( q \); if both are unramified, we further require that \( P^1Q^1 \) be all distinct in the class group of \( \mathbb{Z}[^{1}/\sqrt{D}] \); if both are ramified, we require that \( PQ! = 1 \) in the class group.

- if \( p = q \), we want it split and prime to the conductor and the prime ideal above it must have order \( ! = 1, 2, 4 \) in the class group.

Invariants are allowed under the additional conditions on \( D \) listed below.

- \( 0: j \)
- \( 1: f, D = 1 \mod 8 \) and \( D = 1, 2 \mod 3; \)
- \( 2: f^2, D = 1 \mod 8 \) and \( D = 1, 2 \mod 3; \)
- \( 3: f^3, D = 1 \mod 8; \)
- \( 4: f^4, D = 1 \mod 8 \) and \( D = 1, 2 \mod 3; \)
- \( 5: \gamma_2 = j^{1/3}, D = 1, 2 \mod 3; \)
- \( 6: w_{2,3}, D = 1 \mod 8 \) and \( D = 1, 2 \mod 3; \)
- \( 8: f^8, D = 1 \mod 8 \) and \( D = 1, 2 \mod 3; \)
- \( 9: w_{3,3}, D = 1 \mod 2 \) and \( D = 1, 2 \mod 3; \)
- \( 10: w_{2,5}, D! = 60 \mod 80 \) and \( D = 1, 2 \mod 3; \)
- \( 14: w_{2,7}, D = 1 \mod 8; \)
- \( 15: w_{3,5}, D = 1, 2 \mod 3; \)
- \( 21: w_{3,7}, D = 1 \mod 2 \) and \( 21 \) does not divide \( D \)
- \( 23: w_{2,3}^2, D = 1, 2 \mod 3; \)
- \( 24: w_{2,5}^2, D = 1, 2 \mod 3; \)
- \( 26: w_{2,13}, D! = 156 \mod 208; \)
- \( 27: w_{2,7}^2, D! = 28 \mod 112; \)
- \( 28: w_{3,3}^2, D = 1, 2 \mod 3; \)
- \( 35: w_{5,7}, D = 1, 2 \mod 3; \)
- \( 39: w_{3,13}, D = 1 \mod 2 \) and \( D = 1, 2 \mod 3; \)

The algorithm for computing the polynomial does not use the floating point approach, which would evaluate a precise modular function in a precise complex argument. Instead, it relies on a faster Chinese remainder based approach modulo small primes, in which the class invariant is only defined algebraically by the modular polynomial relating the modular function to \( j \). So in fact, any of the several roots of the modular polynomial may actually be the class invariant, and more precise assertions cannot be made.
For instance, while `polclass(D)` returns the minimal polynomial of \( j(\tau) \) with \( \tau \) (any) quadratic integer for the

discriminant \( D \), the polynomial returned by `polclass(D, 5)` can be the minimal polynomial of any of \( \gamma_2(\tau) \),
\( \zeta_4 \gamma_2(\tau) \) or \( \zeta_2^2 \gamma_2(\tau) \), the three roots of the modular polynomial \( j = \gamma_2^3 \), in which \( j \) has been specialised to \( j(\tau) \).

The modular polynomial is given by \( j = ((f^{24} - 16)^3)/(f^{24}) \) for Weber’s function \( f \).

For the double eta quotients of level \( N = pq \), all functions are covered such that the modular curve \( X^+_0(N) \),
the function field of which is generated by the functions invariant under \( \Gamma^0(N) \) and the Fricke-Atkin-Lehner
involution, is of genus 0 with function field generated by (a power of) the double eta quotient \( \omega \). This ensures
that the full Hilbert class field (and not a proper subfield) is generated by class invariants from these double eta
quotients. Then the modular polynomial is of degree 2 in \( j \), and of degree \( \psi(N) = (p + 1)(q + 1) \) in \( \omega \).

```
? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, , 'z)
? polclass(-151,1)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1)
```

```
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
```

`polcoef(x, n, v)`

Coefficient of degree \( n \) of the polynomial \( x \), with respect to the main variable if \( v \) is omitted, with respect to \( v \)
otherwise. If \( n \) is greater than the degree, the result is zero.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose denominator is a
monomial. It also applies to power series: if \( n \) is less than the valuation, the result is zero. If it is greater than the
largest significant degree, then an error message is issued.

`polcoeff(x, n, v)`

Deprecated alias for `polcoef`.

`polcompositum(P, Q, flag)`

\( P \) and \( Q \) being squarefree polynomials in \( \mathbb{Z}[X] \) in the same variable, outputs the simple factors of the étale \( \mathbb{Q} \)-
algebra \( A = \mathbb{Q}(X,Y)/(P(X), Q(Y)) \). The factors are given by a list of polynomials \( R \) in \( \mathbb{Z}[X] \), attached to the
number field \( \mathbb{Q}(X)/(R) \), and sorted by increasing degree (with respect to lexicographic ordering for factors of
equal degrees). Returns an error if all of the polynomials are not squarefree.

Note that it is more efficient to reduce to the case where \( P \) and \( Q \) are irreducible first. The routine will not perform
this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case,
there will be a single factor \( R \) if and only if the number fields defined by \( P \) and \( Q \) are linearly disjoint (their
intersection is \( \mathbb{Q} \)).

Assuming \( P \) is irreducible (of smaller degree than \( Q \) for efficiency), it is in general much faster to proceed as follows

```
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
```

to obtain the same result. If you are only interested in the degrees of the simple factors, the `rnfequation` instruction can be replaced by a trivial `poldegree(P) * poldegree(L[i])`.

The binary digits of \( flag \) mean

1: outputs a vector of 4-component vectors \([R, a, b, k]\), where \( R \) ranges through the list of all possible compositums
as above, and \( a \) (resp. \( b \)) expresses the root of \( P \) (resp. \( Q \)) as an element of \( \mathbb{Q}(X)/(R) \). Finally, \( k \) is a small
integer such that \( b + ka = X \) modulo \( R \).

2: assume that \( P \) and \( Q \) define number fields which are linearly disjoint: both polynomials are irreducible and
the corresponding number fields have no common subfield besides \( \mathbb{Q} \). This allows to save a costly factorization
over \( \mathbb{Q} \). In this case return the single simple factor instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work. Here is an example involving the field \(\mathbb{Q}(\zeta_5, 5^{1/5})\):

\[
? L = \text{polcompositum}(x^5 - 5, \text{polcyclo}(5), 1); \ // \text{list of } [R,a,b,k] \\
? [R, a] = L[1]; \ // \text{pick the single factor, extract } R,a \ (\text{ignore } b,k) \\
? R \ \text{defines the compositum} \\
%3 = x^{20} + 5x^{19} + 15x^{18} + 35x^{17} + 70x^{16} + 141x^{15} + 260x^{14} \\
+ 355x^{13} + 95x^{12} - 1460x^{11} - 3279x^{10} - 3660x^9 - 2005x^8 - 7270x^7 \\
+ 9210x^6 + 13506x^5 + 7145x^4 - 2740x^3 + 1040x^2 - 320x + 256 \\
? a^5 - 5 \ // \ a \text{ a fifth root of 5} \\
%4 = 0 \\
? [T, X] = \text{polredbest}(R, 1); \\
? T \ // \ simpler \text{ defining polynomial for } \mathbb{Q}[x]/(R) \\
%6 = x^{20} + 25x^{10} + 5 \\
? X \ // \ root \ of \ R \ in \ \mathbb{Q}[y]/(T(y)) \\
%7 = \text{Mod}(-1/11x^{15} - 11x^{14} + 122x^{10} - 4722x^5 - 2911x^4 + 722, \\
x^{20} + 25x^{10} + 5) \\
? a = \text{subst}(a.pol, 'x, X) \ // \ a \ in \ the \ new \ coordinates \\
%8 = \text{Mod}(1/11x^{14} + 2911x^4, x^{20} + 25x^{10} + 5) \\
? a^5 - 5 \\
%9 = 0
\]

In the above example, \(x^5 - 5\) and the 5-th cyclotomic polynomial are irreducible over \(\mathbb{Q}\); they have coprime degrees so define linearly disjoint extensions and we could have started by

\[
? [R,a] = \text{polcompositum}(x^5 - 5, \text{polcyclo}(5), 3); \ // \ [R,a,b,k]
\]

\textbf{polcyclo}(n, a)

\(n\)-th cyclotomic polynomial, evaluated at \(a\) (’\(x\) by default). The integer \(n\) must be positive.

Algorithm used: reduce to the case where \(n\) is squarefree; to compute the cyclotomic polynomial, use \(\Phi_{np}(x) = \Phi_n(x^p)/\Phi(x)\); to compute it evaluated, use \(\Phi_n(x) = \prod_{d|n}(x^d - 1)^{\mu(n/d)}\). In the evaluated case, the algorithm assumes that \(a^d - 1\) is either 0 or invertible, for all \(d|n\). If this is not the case (the base ring has zero divisors), use \(\text{subst}(\text{polcyclo}(n),x,a)\).

\textbf{polcyclofactors}(f)

Returns a vector of polynomials, whose product is the result of distinct cyclotomic polynomials dividing \(f\).

\[
? f = x^{10}+5x^8-x^7+8x^6-4x^5+8x^4-3x^3+7x^2+3; \\
? v = \text{polcyclofactors}(f) \\
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1] \\
? \text{apply}(\text{poliscycloprod}, v) \\
%3 = [1, 1, 1] \\
? \text{apply}(\text{poliscyclo}, v) \\
%4 = [4, 3, 10]
\]

In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

\[
? g = x^8+2x^7+6x^6+9x^5+12x^4+11x^3+10x^2+6x^3; \\
? \text{polcyclofactors}(g) \\
%2 = [x^6 + 2x^5 + 3x^4 + 3x^3 + 3x^2 + 2x + 1] \\
? \text{factor}(%[1]) \\
%3 =
\]

(continues on next page)
poldegree($x, v$

Degree of the polynomial $x$ in the main variable if $v$ is omitted, in the variable $v$ otherwise.

The degree of 0 is $-\infty$. The degree of a nonzero scalar is 0. Finally, when $x$ is a nonzero polynomial or rational function, returns the ordinary degree of $x$. Raise an error otherwise.

poldisc($pol, v$

Discriminant of the polynomial $pol$ in the main variable if $v$ is omitted, in $v$ otherwise. Uses a modular algorithm over $\mathbb{Z}$ or $\mathbb{Q}$, and the subresultant algorithm otherwise.

? T = x^4 + 2*x + 1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0
For convenience, the function also applies to types t_QUAD and t_QFI/t_QFR:

? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8

poldiscfactors($T, flag$

Given a polynomial $T$ with integer coefficients, return $[D, faD]$ where $D$ is the discriminant of $T$ and $faD$ is a cheap partial factorization of $|D|$: entries in its first column are coprime and not perfect powers but need not be primes. The factors are obtained by a combination of trial division, testing for perfect powers, factorizations in coprimes, and computing Euclidean remainder sequences for $(T, T')$ modulo composite factors $d$ of $D$ (which is likely to produce 0-divisors in $\mathbb{Z}/d\mathbb{Z}$). If $flag$ is 1, finish the factorization using factorint.

? T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = poldiscfactors(T); print(faD); D
[3, 3; 7, 2; 373, 2; 500009, 2; 24639061, 2]
%2 = -2793710862586859018515540967767467

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = poldiscfactors(T); print(faD)
[2, 6; 3, 3; 125007125141751093502187, 4]
? [D,faD] = poldiscfactors(T, 1); print(faD)
[2, 6; 3, 3; 500009, 12; 1000003, 4]

poldiscreduced($f$

Reduced discriminant vector of the (integral, monic) polynomial $f$. This is the vector of elementary divisors of $\mathbb{Z}[\alpha]/f'\alpha\mathbb{Z}[\alpha]$, where $\alpha$ is a root of the polynomial $f$. The components of the result are all positive, and their product is equal to the absolute value of the discriminant of $f$.

polgalois($T, precision$

Galois group of the nonconstant polynomial $T \in \mathbb{Q}[X]$. In the present version 2.13.3, $T$ must be irreducible and
the degree $d$ of $T$ must be less than or equal to 7. If the \texttt{galdata} package has been installed, degrees 8, 9, 10 and 11 are also implemented. By definition, if $K = \mathbb{Q}[x]/(T)$, this computes the action of the Galois group of the Galois closure of $K$ on the $d$ distinct roots of $T$, up to conjugacy (corresponding to different root orderings).

The output is a 4-component vector $[n, s, k, name]$ with the following meaning: $n$ is the cardinality of the group, $s$ is its signature ($s = 1$ if the group is a subgroup of the alternating group $A_d$, $s = -1$ otherwise) and name is a character string containing name of the transitive group according to the GAP 4 transitive groups library by Alexander Hulpke.

$k$ is more arbitrary and the choice made up to version 2.2.3 of PARI is rather unfortunate: for $d > 7$, $k$ is the numbering of the group among all transitive subgroups of $S_d$, as given in “The transitive groups of degree up to eleven”, G. Butler and J. McKay, \textit{Communications in Algebra}, vol. 11, 1983, pp. 863–911 (group $k$ is denoted $T_k$ there). And for $d <= 7$, it was ad hoc, so as to ensure that a given triple would denote a unique group. Specifically, for polynomials of degree $d <= 7$, the groups are coded as follows, using standard notations

In degree 1: $S_1 = [1, 1, 1]$.

In degree 2: $S_2 = [2, -1, 1]$.

In degree 3: $A_3 = C_3 = [3, 1, 1], S_3 = [6, -1, 1]$.

In degree 4: $C_4 = [4, -1, 1], V_4 = [4, 1, 1], D_4 = [8, -1, 1], A_4 = [12, 1, 1], S_4 = [24, -1, 1]$.

In degree 5: $C_5 = [5, 1, 1], D_5 = [10, 1, 1], M_{20} = [20, -1, 1], A_5 = [60, 1, 1], S_5 = [120, -1, 1]$.

In degree 6: $C_6 = [6, -1, 1], S_6 = [6, -1, 2], D_6 = [12, -1, 1], A_4 = [12, 1, 1], G_{18} = [18, -1, 1], S_4^{-} = [24, -1, 1], A_4xA_2C_2 = [24, -1, 2], S_4^{+} = [24, 1, 1], G_{30} = [36, -1, 1], G_{36}^{+} = [36, 1, 1], S_4xA_2C_2 = [48, -1, 1], A_5 = PSL_2(5) = [60, 1, 1], G_{72} = [72, -1, 1], S_5 = PGL_2(5) = [120, -1, 1], A_6 = [360, 1, 1], S_6 = [720, -1, 1]$.

In degree 7: $C_7 = [7, 1, 1], D_7 = [14, -1, 1], M_{21} = [21, 1, 1], M_{42} = [42, -1, 1], PSL_2(7) = PSL_3(2) = [168, 1, 1], A_7 = [2520, 1, 1], S_7 = [5040, -1, 1]$.

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change this behavior yet. So you can use the default \texttt{new_galois_format} to switch to a consistent naming scheme, namely $k$ is always the standard numbering of the group among all transitive subgroups of $S_n$. If this default is in effect, the above groups will be coded as:

In degree 1: $S_1 = [1, 1, 1]$.

In degree 2: $S_2 = [2, -1, 1]$.

In degree 3: $A_3 = C_3 = [3, 1, 1], S_3 = [6, -1, 2]$.

In degree 4: $C_4 = [4, -1, 1], V_4 = [4, 1, 2], D_4 = [8, -1, 3], A_4 = [12, 1, 4], S_4 = [24, -1, 5]$.

In degree 5: $C_5 = [5, 1, 1], D_5 = [10, 1, 2], M_{20} = [20, -1, 3], A_5 = [60, 1, 4], S_5 = [120, -1, 5]$.

In degree 6: $C_6 = [6, -1, 1], S_6 = [6, -1, 2], D_6 = [12, -1, 3], A_4 = [12, 1, 4], G_{18} = [18, -1, 5], A_4xA_2C_2 = [24, -1, 6], S_4^{+} = [24, 1, 7], S_4^{-} = [24, -1, 8], G_{30} = [36, -1, 9], G_{36}^{+} = [36, 1, 10], S_4xA_2C_2 = [48, -1, 11], A_5 = PSL_2(5) = [60, 1, 12], G_{72} = [72, -1, 13], S_5 = PGL_2(5) = [120, -1, 14], A_6 = [360, 1, 15], S_6 = [720, -1, 16]$.

In degree 7: $C_7 = [7, 1, 1], D_7 = [14, -1, 2], M_{21} = [21, 1, 3], M_{42} = [42, -1, 4], PSL_2(7) = PSL_3(2) = [168, 1, 5], A_7 = [2520, 1, 6], S_7 = [5040, -1, 7]$.

\textbf{Warning.} The method used is that of resolvent polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not sufficient.

\texttt{polglaeffe(f)}

Returns the Graeffe transform $g$ of $f$, such that $g(x^2) = f(x)f(-x)$.
polhensellift\((A, B, p, e)\)

Given a prime \(p\), an integral polynomial \(A\) whose leading coefficient is a \(p\)-unit, a vector \(B\) of integral polynomials that are monic and pairwise relatively prime modulo \(p\), and whose product is congruent to \(A/\text{lcm}(A)\) modulo \(p\), lift the elements of \(B\) to polynomials whose product is congruent to \(A\) modulo \(p^e\).

More generally, if \(T\) is an integral polynomial irreducible mod \(p\), and \(B\) is a factorization of \(A\) over the finite field \(\mathbb{F}_p[t]/(T)\), you can lift it to \(\mathbb{Z}_p[t]/(T, p^e)\) by replacing the \(p\) argument with \([p, T]\):

```plaintext
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
 B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
 r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall(r[1] * r[2] * Mod(Mod(1,p^6),T))
%2 = x^2 + (t + 1)
```

polhermite\((n, a, \text{flag})\)

\(n\)th Hermite polynomial \(H_n\) evaluated at \(a\) ('x by default), i.e.

\[H_n(x) = (-1)^n e^{x^2} (d^n)/(dx^n) e^{-x^2}.
\]

If \(\text{flag}\) is nonzero and \(n > 0\), return \([H_{n-1}(a), H_n(a)]\).

```plaintext
? polhermite(5)
%1 = 32*x^5 - 160*x^3 + 120*x
? polhermite(5, -2) \// H_5(-2)
%2 = 16
? polhermite(5,,1)
%3 = [16*x^4 - 48*x^2 + 12, 32*x^5 - 160*x^3 + 120*x]
? polhermite(5,-2,1)
%4 = [76, 16]
```

polinterpolate\((X, Y, t, e)\)

Given the data vectors \(X\) and \(Y\) of the same length \(n\) (\(X\) containing the \(x\)-coordinates, and \(Y\) the corresponding \(y\)-coordinates), this function finds the interpolating polynomial \(P\) of minimal degree passing through these points and evaluates it at \(t\). If \(Y\) is omitted, the polynomial \(P\) interpolates the \((i, X[i])\).

```plaintext
? v = [1, 2, 4, 8, 11, 13];
? P = polinterpolate(v) \// formal interpolation
%1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
? [subst(P,'x,a) | a <- [1..6]]
%2 = [1, 2, 4, 8, 11, 13]
? P = polinterpolate(v,, 10) \// evaluate at 10
%3 = 508
? subst(P, x, 10)
%4 = 508

? P = polinterpolate([1,2,4], [9,8,7])
%5 = 1/6*x^2 - 3/2*x + 31/3
? [subst(P,'x,a) | a <- [1,2,4]]
%6 = [9, 8, 7]
? P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3
```

If the goal is to extrapolate a function at a unique point, it is more efficient to use the \(t\) argument rather than interpolate formally then evaluate:
? x0 = 1.5;
? v = vector(20, i, random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
  time = 352 ms.
? for(i=1,10^3, polinterpolate(v,,x0))
  time = 111 ms.

? v = vector(40, i, random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
  time = 3,035 ms.
? for(i=1,10^3, polinterpolate(v,, x0))
  time = 436 ms.

The threshold depends on the base field. Over small prime finite fields, interpolating formally first is more efficient

? bench(p, N, T = 10^3) =
  { my (v = vector(N, i, random(Mod(0,p))));
    my (x0 = Mod(3, p), t1, t2);
    gettime();
    for(i=1, T, subst(polinterpolate(v), 'x, x0));
    t1 = gettime();
    for(i=1, T, polinterpolate(v,, x0));
    t2 = gettime(); [t1, t2];
  }
? p = 101;
? bench(p, 4, 10^4) \ both methods are equivalent
%3 = [39, 40]
? bench(p, 40) \ with 40 points formal is much faster
%4 = [45, 355]

As the cardinality increases, formal interpolation requires more points to become interesting:

? p = nextprime(2^128);
? bench(p, 4) \ formal is slower
%3 = [16, 9]
? bench(p, 10) \ formal has become faster
%4 = [61, 70]
? bench(p, 100) \ formal is much faster
%5 = [1682, 9081]

? p = nextprime(10^500);
? bench(p, 4) \ formal is slower
%7 = [72, 354]
? bench(p, 20) \ formal is still slower
%8 = [1287, 962]
? bench(p, 40) \ formal has become faster
%9 = [3717, 4227]
? bench(p, 100) \ faster but relatively less impressive
%10 = [16237, 32335]

If \( t \) is a complex numeric value and \( e \) is present, \( e \) will contain an error estimate on the returned value. More precisely, let \( P \) be the interpolation polynomial on the given \( n \) points; there exist a subset of \( n - 1 \) points and \( Q \) the attached interpolation interpolation polynomial such that \( e = \text{exponent}(P(t) - Q(t)) \) (Neville’s algorithm).
\[ f(x) = \frac{1}{1 + 25x^2}; \]
\[ x_0 = \frac{975}{1000}; \]
\[ \text{test}(X) = \]
\[ \{ \text{my}(P, e); \]
\[ P = \text{polinterpolate}(X, [f(x) \mid x \leftarrow X], x_0, &e); \]
\[ [\text{exponent}(P - f(x_0)), e]; \]
\[ \} \]
\[ \text{equidistant nodes vs. Chebyshev nodes} \]
\[ \text{test}(\text{[-10..10] / 10}) \]
\[ \%4 = [6, 5] \]
\[ \text{test}(\text{polrootsreal(polchebyshev(21)))} \]
\[ \%5 = [-15, -10] \]
\[ \text{test}(\text{[-100..100] / 100}) \]
\[ \%7 = [93, 97] \]
\[ \text{P(x0) is way different from f(x0)} \]
\[ \text{test}(\text{polrootsreal(polchebyshev(201))}) \]
\[ \%8 = [-60, -55] \]

This is an example of Runge’s phenomenon: increasing the number of equidistant nodes makes extrapolation much worse. Note that the error estimate is not a guaranteed upper bound (cf %4), but is reasonably tight in practice.

**poliscyclo(f)**

Returns 0 if \( f \) is not a cyclotomic polynomial, and \( n > 0 \) if \( f = \Phi_n \), the \( n \)-th cyclotomic polynomial.

\[
\text{? poliscyclo}(x^4-x^2+1) \\
\%1 = 12 \\
\text{? polycyclo}(12) \\
\%2 = x^4 - x^2 + 1 \\
\text{? poliscyclo}(x^4-x^2-1) \\
\%3 = 0
\]

**poliscycloprod(f)**

Returns 1 if \( f \) is a product of cyclotomic polynomial, and 0 otherwise.

\[
\text{? f = x^6+x^5-x^3+x+1;} \\
\text{? poliscycloprod(f)} \\
\%2 = 1 \\
\text{? factor(f)} \\
\%3 = [x^2 + x + 1] \\
[ x^4 - x^2 + 1 ] \\
\text{? [ poliscyclo(T) \mid T <- %[1] ]} \\
\%4 = [3, 12] \\
\text{? polycyclo(3) * polycyclo(12)} \\
\%5 = x^6 + x^5 - x^3 + x + 1
\]

**polisirreducible(pol)**

\( pol \) being a polynomial (univariate in the present version 2.13.3), returns 1 if \( pol \) is nonconstant and irreducible, 0 otherwise. Irreducibility is checked over the smallest base field over which \( pol \) seems to be defined.

**pollaguerre(n, a, b, flag)**
\( n - \text{th} \) Laguerre polynomial \( L_n^{(a)} \) of degree \( n \) and parameter \( a \) evaluated at \( b \) (\( 'x \) by default), i.e.

\[
L_n^{(a)}(x) = \frac{(x^{-a}e^x)/(n!)(dx^n)/e^{-x}x^n+a)}{dx^n}(e^{-x}x^n+a).
\]

If flag is 1, return \([L_{n-1}(b), L_n^{(a)}(b)]\).

**pollead**(x, v)

Leading coefficient of the polynomial or power series \( x \). This is computed with respect to the main variable of \( x \) if \( v \) is omitted, with respect to the variable \( v \) otherwise.

**pollegendre**(n, a, flag)

\( n - \text{th} \) Legendre polynomial \( P_n \) evaluated at \( a \) (\( 'x \) by default), where

\[
P_n(x) = (1)/(2^n n!)(dx^n)(x^2 - 1)^n.
\]

If flag is 1, return \([P_{n-1}(a), P_n(a)]\).

**polmodular**(L, inv, x, y, derivs)

Return the modular polynomial of prime level \( L \) in variables \( x \) and \( y \) for the modular function specified by \( \text{inv} \). If \( \text{inv} \) is 0 (the default), use the modular \( j \) function, if \( \text{inv} \) is 1 use the Weber-\( f \) function, and if \( \text{inv} \) is 5 use \( \gamma_2 = \sqrt{j} \). See \text{polclass} for the full list of invariants. If \( x \) is given as \( \text{Mod}(j, p) \) or an element \( j \) of a finite field (as a \( \text{t_FFELT} \)), then return the modular polynomial of level \( L \) evaluated at \( j \). If \( j \) is from a finite field and \( \text{derivs} \) is nonzero, then return a triple where the last two elements are the first and second derivatives of the modular polynomial evaluated at \( j \).

? polmodular(3)
%1 = x^4 + (-y^3 + 2232*y^2 - 1069956*y + 36864000)*x^3 + ...
? polmodular(7, 1, , 'j)
%2 = x^8 - 3*j^7*x^7 + 7*j^4*x^4 - 8*j*x + j^8
? polmodular(7, 5, 7*ffgen(19)^0, 'j)
%3 = j^8 + 4*j^7 + 4*j^6 + 8*j^5 + j^4 + 12*j^2 + 18*j + 18
? polmodular(7, 5, Mod(7,19), 'j)
%4 = Mod(1, 19)*j^8 + Mod(4, 19)*j^7 + Mod(4, 19)*j^6 + ...

? u = ffgen(5)^0; T = polmodular(3,0,'j)*u;
? polmodular(3, 0, u,'j,1)
%6 = [j^4 + 3*j^2 + 4*j + 1, 3*j^2 + 2*j + 4, 3*j^3 + 4*j^2 + 4*j + 2]
? subst(T,x,u)
%7 = j^4 + 3*j^2 + 4*j + 1
? subst(T',x,u)
%8 = 3*j^2 + 2*j + 4
? subst(T'',x,u)
%9 = 3*j^3 + 4*j^2 + 4*j + 2

**polrecip**(pol)

Reciprocal polynomial of \( \text{pol} \) with respect to its main variable, i.e. the coefficients of the result are in reverse order; \( \text{pol} \) must be a polynomial.

? polrecip(x^2 + 2*x + 3)
%1 = 3*x^2 + 2*x + 1
? polrecip(2*x + y)
%2 = y*x + 2

**polred**(T, flag, _arg3)

This function is deprecated, use \text{polredbest} instead. Finds polynomials with reasonably small coefficients.

1.1. Guide to real precision in the PARI interface
defining subfields of the number field defined by \( T \). One of the polynomials always defines \( \mathbb{Q} \) (hence has degree 1), and another always defines the same number field as \( T \) if \( T \) is irreducible.

All \( T \) accepted by \texttt{nfinit} are also allowed here; in particular, the format \([T, \text{listP}]\) is recommended, e.g. with \( \text{listP} = 10^5 \) or a vector containing all ramified primes. Otherwise, the maximal order of \( \mathbb{Q}[x]/(T) \) must be computed.

The following binary digits of \( \text{flag} \) are significant:

1: Possibly use a suborder of the maximal order. The primes dividing the index of the order chosen are larger than \( \text{primelimit} \) or divide integers stored in the \text{addprimes} table. This flag is deprecated, the \([T, \text{listP}]\) format is more flexible.

2: gives also elements. The result is a two-column matrix, the first column giving primitive elements defining these subfields, the second giving the corresponding minimal polynomials.

\[
\begin{align*}
? M &= \text{polred}(x^4 + 8, 2) \\
&= \begin{bmatrix} 1 & x - 1 \end{bmatrix} \\
&\begin{bmatrix} 1/2^*x^2 + 1 & x^2 - 2^*x + 3 \end{bmatrix} \\
&\begin{bmatrix} -1/2^*x^2 + 1 & x^2 - 2^*x + 3 \end{bmatrix} \\
&\begin{bmatrix} 1/2^*x^2 & x^2 + 2 \end{bmatrix} \\
&\begin{bmatrix} 1/4^*x^3 & x^4 + 2 \end{bmatrix}
\end{align*}
\]

\[
? \text{minpoly(Mod(M[2,1], x^4+8))} \\
&= x^2 + 2
\]

\textbf{polredabs}(\(T, \text{flag}\))

Returns a canonical defining polynomial \( P \) for the number field \( \mathbb{Q}[X]/(T) \) defined by \( T \), such that the sum of the squares of the modulus of the roots (i.e. the \( T_2 \)-norm) is minimal. Different \( T \) defining isomorphic number fields will yield the same \( P \). All \( T \) accepted by \texttt{nfinit} are also allowed here, e.g. nonmonic polynomials, or pairs \([T, \text{listP}]\) specifying that a nonmaximal order may be used. For convenience, any number field structure (\texttt{nf}, \texttt{bnf},...) can also be used instead of \( T \).

\[
? \text{polredabs}(x^2 + 16) \\
&= x^2 + 1 \\
? K = \text{bnfinit}(x^2 + 16); \text{polredabs}(K) \\
&= x^2 + 1
\]

\textbf{Warning 1.} Using a \texttt{t_POL} \( T \) requires computing and fully factoring the discriminant \( d_K \) of the maximal order which may be very hard. You can use the format \([T, \text{listP}]\), where \text{listP} encodes a list of known coprime divisors of \text{disc}(T) (see \texttt{??nfbasis}), to help the routine, thereby replacing this part of the algorithm by a polynomial time computation But this may only compute a suborder of the maximal order, when the divisors are not squarefree or do not include all primes dividing \( d_K \). The routine attempts to certify the result independently of this order computation as per \texttt{nfcertify}: we try to prove that the computed order is maximal. If the certification fails, the routine then fully factors the integers returned by \texttt{nfcertify}. You can also use \texttt{polredbest} to avoid this factorization step; in this case, the result is small but no longer canonical.

\textbf{Warning 2.} Apart from the factorization of the discriminant of \( T \), this routine runs in polynomial time for a \textit{fixed} degree. But the complexity is exponential in the degree: this routine may be exceedingly slow when the number field has many subfields, hence a lot of elements of small \( T_2 \)-norm. If you do not need a canonical polynomial, the function \texttt{polredbest} is in general much faster (it runs in polynomial time), and tends to return polynomials with smaller discriminants.
The binary digits of *flag* mean

1: outputs a two-component row vector \([P, a]\), where \(P\) is the default output and \(\text{Mod}(a, \ P)\) is a root of the original \(T\).

4: gives *all* polynomials of minimal \(T_2\) norm; of the two polynomials \(P(x)\) and \(P(-x)\), only one is given.

16: (OBSOLETE) Possibly use a suborder of the maximal order, *without* attempting to certify the result as in Warning 1. This makes \(\text{polredabs}\) behave like \(\text{polredbest}\). Just use the latter.

```plaintext
\begin{verbatim}
? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 \\
 - 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T); \\
? [norml2(polroots(T1)), norml2(polroots(T2))]
%4 = [88.0000000, 120.0000000]
? [sizedigit(poldisc(T1)), sizedigit(poldisc(T2))]
%5 = [75, 67]
\end{verbatim}
```

The precise definition of the output of \(\text{polredabs}\) is as follows.

- Consider the finite list of characteristic polynomials of primitive elements of \(K\) that are in \(\mathbb{Z}_K\) and minimal for the \(T_2\) norm; now remove from the list the polynomials whose discriminant do not have minimal absolute value. Note that this condition is restricted to the original list of polynomials with minimal \(T_2\) norm and does not imply that the defining polynomial for the field with smallest discriminant belongs to the list!

- To a polynomial \(P(x) = x^n + ... + a_n \in \mathbb{R}[x]\) we attach the sequence \(S(P)\) given by \(||a_1||, a_1, ..., ||a_n||, a_n\). Order the polynomials \(P\) by the lexicographic order on the coefficient vectors \(S(P)\). Then the output of \(\text{polredabs}\) is the smallest polynomial in the above list for that order. In other words, the monic polynomial which is lexicographically smallest with respect to the absolute values of coefficients, favouring negative coefficients to break ties, i.e. choosing \(x^3 - 2\) rather than \(x^3 + 2\).

\(\text{polredbest}(T, \text{flag})\)

Finds a polynomial with reasonably small coefficients defining the same number field as \(T\). All \(T\) accepted by \(\text{nfinit}\) are also allowed here (e.g. nonmonic polynomials, \(\text{nf}, \text{bnf}, [T,Z_K\_basis]\)). Contrary to \(\text{polredabs}\), this routine runs in polynomial time, but it offers no guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for an order in \(\mathbb{Q}[\overline{X}]/(T)\), then examines small linear combinations of the basis vectors, computing their characteristic polynomials. It returns the *separable* polynomial \(P\) of smallest discriminant, the one with lexicographically smallest \(\text{abs}(\text{Vec}(P))\) in case of ties. This is a good candidate for subsequent number field computations since it guarantees that the denominators of algebraic integers, when expressed in the power basis, are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better polynomials, until it stabilizes:

```plaintext
\begin{verbatim}
? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%3 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%5 = 8.8704 E44
\end{verbatim}
```

In this example, the initial polynomial \(P\) is the one returned by \(\text{polredabs}\), and the last one is stable.

If \(\text{flag} = 1\): outputs a two-component row vector \([P, a]\), where \(P\) is the default output and \(\text{Mod}(a, \ P)\) is a root of the original \(T\).
In particular, the map $\mathbb{Q}[x]/(T) \rightarrow \mathbb{Q}[x]/(P)$, $x : \rightarrow > Mod(a, P)$ defines an isomorphism of number fields, which can be computed as

\begin{verbatim}
subst(lift(Q), 'x, a)
\end{verbatim}

if $Q$ is a t_POLMOD modulo $T$; $b = \text{modreverse}(a)$ returns a t_POLMOD giving the inverse of the above map (which should be useless since $\mathbb{Q}[x]/(P)$ is a priori a better representation for the number field and its elements).

\section*{polredord(x)}
This function is obsolete, use \text{polredbest}.

\section*{polresultant(x, y, v, flag)}
Resultant of the two polynomials $x$ and $y$ with exact entries, with respect to the main variables of $x$ and $y$ if $v$ is omitted, with respect to the variable $v$ otherwise. The algorithm assumes the base ring is a domain. If you also need the $u$ and $v$ such that $x \cdot u + y \cdot v = \text{Res}(x, y)$, use the \text{polresultantext} function.

If $\text{flag} = 0$ (default), uses the algorithm best suited to the inputs, either the subresultant algorithm (Lazard/Ducos variant, generic case), a modular algorithm (inputs in $\mathbb{Q}[X]$) or Sylvester's matrix (inexact inputs).

If $\text{flag} = 1$, uses the determinant of Sylvester’s matrix instead; this should always be slower than the default.

If $x$ or $y$ are multivariate with a huge polynomial content, it is advisable to remove it before calling this function. Compare:

\begin{verbatim}
? a = polcyclo(7) * ((t+1)/(t+2))^100;
? b = polcyclo(11)* ((t+2)/(t+3))^100);
? polresultant(a,b);
time = 3,833 ms.
? ca = content(a); cb = content(b); \ polresultant(a/ca,b/cb)*ca^poldegree(b)*cb*poldegree(a); \ \ instantaneou
\end{verbatim}

The function only removes rational denominators and does not compute automatically the content because it is generically small and potentially very expensive (e.g. in multivariate contexts). The choice is yours, depending on your application.

\section*{polresultantext(A, B, v)}
Finds polynomials $U$ and $V$ such that $A \cdot U + B \cdot V = R$, where $R$ is the resultant of $U$ and $V$ with respect to the main variables of $A$ and $B$ if $v$ is omitted, and with respect to $v$ otherwise. Returns the row vector $[U, V, R]$. The algorithm used (subresultant) assumes that the base ring is a domain.

\begin{verbatim}
? A = x*y; B = (x+y)^2;
? [U,V,R] = polresultantext(A, B)
%2 = [-y^2*x - 2*y^2, y^2, y^4]
? A^*U + B^*V
%3 = y^4
? [U,V,R] = polresultantext(A, B, y)
%4 = [-2*x^2 - y*x, x^2, x^4]
? A^*U+B^*V
%5 = x^4
\end{verbatim}
polroots(T, precision)
Complex roots of the polynomial T, given as a column vector where each root is repeated according to its multiplicity and given as floating point complex numbers at the current realprecision:

```plaintext
polroots(x^2)
%1 = [0.E-38 + 0.E-38*I, 0.E-38 + 0.E-38*I]
```

```plaintext
polroots(x^3+1)
%2 = [-1.00... + 0.E-38*I, 0.50... - 0.866...*I, 0.50... + 0.866...*I]
```

The algorithm used is a modification of Schönhage’s root-finding algorithm, due to and originally implemented by Gourdon. It runs in polynomial time in \( \deg(T) \) and the precision. If furthermore \( T \) has rational coefficients, roots are guaranteed to the required relative accuracy. If the input polynomial \( T \) is exact, then the ordering of the roots does not depend on the precision: they are ordered by increasing \( \|\Im z\| \), then by increasing \( \Re z \); in case of tie (conjugates), the root with negative imaginary part comes first.

polrootsbound(T, tau)
Return a sharp upper bound \( B \) for the modulus of the largest complex root of the polynomial \( T \) with complex coefficients with relative error \( \tau \). More precisely, we have \( \|z\| \leq B \) for all roots and there exist one root such that \( \|z_0\| > B \exp(-2\tau) \). Much faster than either polroots or polrootsreal.

```plaintext
T=poltchebi(500);
? vecmax(abs(polroots(T)))
time = 5,706 ms.
%2 = 0.99999506520185816611184481744870013191
? vecmax(abs(polrootsreal(T)))
time = 1,972 ms.
%3 = 0.99999506520185816611184481744870013191
? polrootsbound(T)
time = 217 ms.
%4 = 1.0098792554165905155
? polrootsbound(T, log(2)/2) \ allow a factor 2, much faster
time = 51 ms.
%5 = 1.4065759938190154354
? polrootsbound(T, 1e-4)
time = 504 ms.
%6 = 1.0000920717983847741
? polrootsbound(T, 1e-6)
time = 810 ms.
%7 = 0.99999628901692905
? polrootsbound(T, 1e-10)
time = 1,351 ms.
%8 = 0.9999950652993869760
```

polrootsff(x, p, a)
Obsolete, kept for backward compatibility: use factormod.

polrootsmod(f, D)
Vector of roots of the polynomial \( f \) over the finite field defined by the domain \( D \) as follows:

- \( D = p \) a prime: factor over \( \mathbb{F}_p \);
- \( D = [T, p] \) for a prime \( p \) and \( T(y) \) an irreducible polynomial over \( \mathbb{F}_p \): factor over \( \mathbb{F}_p[y]/(T) \) (as usual the main variable of \( T \) must have lower priority than the main variable of \( f \));
- \( D \) a t_FFELT: factor over the attached field;

1.1. Guide to real precision in the PARI interface
• $D$ omitted: factor over the field of definition of $f$, which must be a finite field.

Multiple roots are not repeated.

```
? polrootsmod(x^2-1, 2)
%1 = [Mod(1, 2)]
? polrootsmod(x^2+1, 3)
%2 = []
? polrootsmod(x^2+1, [y^2+1, 3])
%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3)),
 Mod(Mod(2, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3))]
? polrootsmod(x^2 + Mod(1, 3))
%4 = []
? liftall(polrootsmod(x^2 + Mod(Mod(1, 3), y^2+1)))
%5 = [y, 2*y]
? t = ffgen(y^2+Mod(1, 3)); polrootsmod(x^2 + t^0)
%6 = [y, 2*y]
```

\textbf{polrootspadic} $(f, p, r)$

Vector of $p$-adic roots of the polynomial $pol$, given to $p$-adic precision $r$; the integer $p$ is assumed to be a prime. Multiple roots are not repeated. Note that this is not the same as the roots in $\mathbb{Z}/p^r\mathbb{Z}$, rather it gives approximations in $\mathbb{Z}/p^r\mathbb{Z}$ of the true roots living in $\mathbb{Q}_p$:

```
? polrootspadic(x^3 - x^2 + 64, 2, 4)
%1 = [2^3 + O(2^4), 2^3 + O(2^4), 1 + O(2^4)]
? polrootspadic(x^3 - x^2 + 64, 2, 5)
%2 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]
```

As the second commands show, the first two roots are distinct in $\mathbb{Q}_p$, even though they are equal modulo $2^4$.

More generally, if $T$ is an integral polynomial irreducible mod $p$ and $f$ has coefficients in $\mathbb{Q}[[t]]/(T)$, the argument $p$ may be replaced by the vector $[T, p]$; we then return the roots of $f$ in the unramified extension $\mathbb{Q}_p[[t]]/(T)$.

```
? polrootspadic(x^3 - x^2 + 64*y, [y^2+y+1, 2], 5)
%3 = [Mod((2^3 + 2^4 + O(2^5))*y + (2^3 + 2^4 + 0(2^5)), y^2 + y + 1),
 Mod((2^3 + 2^4 + 0(2^5))*y + (2^3 + 2^4 + 0(2^5)), y^2 + y + 1),
 Mod(1 + 0(2^5), y^2 + y + 1)]
```

If $pol$ has inexact \texttt{t\_PADIC} coefficients, this need not well-defined; in this case, the polynomial is first made integral by dividing out the $p$-adic content, then lifted to $\mathbb{Z}$ using \texttt{truncate} coefficientwise. Hence the roots given are approximations of the roots of an exact polynomial which is $p$-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with exact rational coefficients.

\textbf{polrootsreal} $(T, ab, \text{precision})$

Real roots of the polynomial $T$ with real coefficients, multiple roots being included according to their multiplicity. If the polynomial does not have rational coefficients, it is first rescaled and rounded. The roots are given to a relative accuracy of \texttt{realprecision}. If argument $ab$ is present, it must be a vector $[a, b]$ with two components (of type \texttt{t\_INT}, \texttt{t\_FRAC} or \texttt{t\_INFINITY}) and we restrict to roots belonging to that closed interval.

```
? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]
? polrootsreal(x^2-2, [1,+oo])
%2 = [1.41421356]
? polrootsreal(x^2-2, [2,3])
```

(continues on next page)
The algorithm used is a modification of Uspensky’s method (relying on Descartes’s rule of sign), following Rouillier and Zimmerman’s article “Efficient isolation of a polynomial real roots” (http://hal.inria.fr/inria-00072518/). Barring bugs, it is guaranteed to converge and to give the roots to the required accuracy.

**Remark.** If the polynomial \( T \) is of the form \( Q(x^h) \) for some \( h \geq 2 \) and \( ab \) is omitted, the routine will apply the algorithm to \( Q \) (restricting to nonnegative roots when \( h \) is even), then take \( h \)-th roots. On the other hand, if you want to specify \( ab \), you should apply the routine to \( Q \) yourself and a suitable interval \([a', b']\) using approximate \( h \)-th roots adapted to your problem: the function will not perform this change of variables if \( ab \) is present.

**polsturm** \((T, ab, \_\_arg3)\)

Number of distinct real roots of the real polynomial \( T \). If the argument \( ab \) is present, it must be a vector \([a, b]\) with two real components (of type \( t\_INT \), \( t\_REAL \), \( t\_FRAC \) or \( t\_INFINITY \)) and we count roots belonging to that closed interval.

If possible, you should stick to exact inputs, that is avoid \( t\_REAL \)s in \( T \) and the bounds \( a, b \): the result is then guaranteed and we use a fast algorithm (Uspensky’s method, relying on Descartes’s rule of sign, see \( \text{polrootsreal} \)). Otherwise, the polynomial is rescaled and rounded first and the result may be wrong due to that initial error. If only \( a \) or \( b \) is inexact, on the other hand, the interval is first thickened using rational endpoints and the result remains guaranteed unless there exist a root very close to a nonrational endpoint (which may be missed or unduly included).

```plaintext
? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2,+oo])
%4 = 3
? polsturm(T, [1, Pi]) \ Pi inexact: not recommended !
%5 = 3
? polsturm(T*1., [0, 4]) \ T*1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \ not squarefree: roots are not repeated!
%7 = 3
```

**polsubcyclo** \((n, d, v)\)

Gives polynomials (in variable \( v \)) defining the sub-Abelian extensions of degree \( d \) of the cyclotomic field \( \mathbb{Q}(\zeta_n) \), where \( d|\phi(n) \).

If there is exactly one such extension the output is a polynomial, else it is a vector of polynomials, possibly empty. To get a vector in all cases, use \( \text{concat(}, \_\_\_\_\_\_\_\text{polsubcyclo}(n,d)) \).

The function \( \text{galoissubcyclo} \) allows to specify exactly which sub-Abelian extension should be computed.

**polsylvestermatrix** \((x, y)\)

Forms the Sylvester matrix corresponding to the two polynomials \( x \) and \( y \), where the coefficients of the polynomials are put in the columns of the matrix (which is the natural direction for solving equations afterwards). The use of this matrix can be essential when dealing with polynomials with inexact entries, since polynomial Euclidean division doesn't make much sense in this case.

**polsym** \((x, n)\)


Creates the column vector of the symmetric powers of the roots of the polynomial \( x \) up to power \( n \), using Newton’s formula.

\texttt{polchebi}(n, v)

Deprecated alias for \texttt{polchebyshev}

\texttt{polteichmuller}(T, p, r)

Given \( T \in \mathbb{F}_p[X] \) return the polynomial \( P \in \mathbb{Z}_p[X] \) whose roots (resp. leading coefficient) are the Teichmuller lifts of the roots (resp. leading coefficient) of \( T \), to \( p \)-adic precision \( r \). If \( T \) is monic, \( P \) is the reduction modulo \( p^r \) of the unique monic polynomial congruent to \( T \) modulo \( p \) such that \( P(X^p) = 0(\text{mod}P(X), p^r) \).

\begin{verbatim}
? T = ffinit(3, 3, 't)
%1 = Mod(1,3)*t^3 + Mod(1,3)*t^2 + Mod(1,3)*t + Mod(2,3)
? P = polteichmuller(T,3,5)
%1 = Mod(1,3)*t^3 + Mod(1,3)*t^2 + Mod(1,3)*t + Mod(2,3)
? subst(P, t, t^3) % (P*Mod(1,3^5))
%2 = t^3 + 166*t^2 + 52*t + 242

When \( T \) is monic and irreducible mod \( p \), this provides a model \( \mathbb{Q}_p[X]/(P) \) of the unramified extension \( \mathbb{Q}_p[X]/(T) \) where the Frobenius has the simple form \( X^{modP} : - - - > X^{p modP} \).

\texttt{poltschirnhaus}(x)

Applies a random Tschirnhausen transformation to the polynomial \( x \), which is assumed to be nonconstant and separable, so as to obtain a new equation for the étale algebra defined by \( x \). This is for instance useful when computing resolvents, hence is used by the \texttt{polgalois} function.

\texttt{polylog}(m, x, flag, precision)

One of the different polylogarithms, depending on \texttt{flag}:

If \( \text{flag} = 0 \) or is omitted: \( m - th \) polylogarithm of \( x \), i.e. analytic continuation of the power series \( Li_m(x) = \sum_{n \geq 1} x^n/n^m (x < 1) \). Uses the functional equation linking the values at \( x \) and \( 1/x \) to restrict to the case \( \|x\| < 1 \), then the power series when \( \|x\|^2 < 1/2 \), and the power series expansion in \( \log(x) \) otherwise.

Using \texttt{flag}, computes a modified \( m - th \) polylogarithm of \( x \). We use Zagier’s notations; let \( \mathcal{R}_m \) denote \( \Re \) or \( \Im \) depending on whether \( m \) is odd or even:

If \( \text{flag} = 1 \): compute \( D_m(x) \), defined for \( \|x\| < 1 \) by

\[
\mathcal{R}_m\left(\sum_{k=0}^{m-1} \frac{(-\log \|x\|)^k}{(k!) Li_{m-k}(x) + ((-\log \|x\|)^{m-1}/(m!) \log (1-x))}\right).
\]

If \( \text{flag} = 2 \): compute \( D_m(x) \), defined for \( \|x\| < 1 \) by

\[
\mathcal{R}_m\left(\sum_{k=0}^{m-1} \frac{(-\log \|x\|)^k}{(k!) Li_{m-k}(x) - (1)/((\log \|x\|)^m)/\text{|log}\|x\||\text{m})}\right).
\]

If \( \text{flag} = 3 \): compute \( P_m(x) \), defined for \( \|x\| < 1 \) by

\[
\mathcal{R}_m\left(\sum_{k=0}^{m-1} \frac{2^k B_k}{(k!) (\log \|x\|)^k Li_{m-k}(x) - (2^{m-1} B_m)/(\text{|log}\|x\||\text{m})}\right).
\]

These three functions satisfy the functional equation \( f_m(1/x) = (-1)^{m-1} f_m(x) \).
polylogmult\((s, z, t, \text{precision})\)

For \(s\) a vector of positive integers and \(z\) a vector of complex numbers of the same length, returns the multiple polylogarithm value (MPV)

\[
\zeta(s_1, \ldots, s_r; z_1, \ldots, z_r) = \sum_{n_1 > \ldots > n_r > 0} \prod_{1 \leq i \leq r} z_i^{n_i}/n_i^{s_i}.
\]

If \(z\) is omitted, assume \(z = [1, \ldots, 1]\), i.e., Multiple Zeta Value. More generally, return Yamamoto’s interpolation between ordinary multiple polylogarithms \((t = 0)\) and star polylogarithms \((t = 1)\), using the condition \(n_1 > \ldots > n_r > 0\), evaluated at \(t\).

We must have \(\|z_1 \ldots z_i\| < 1\) for all \(i\), and if \(s_1 = 1\) we must have \(z_1! = 1\).

\[
? 8*polylogmult([2,1],[[-1,1]]) - zeta(3)
\]

\[
%1 = 0.E-38
\]

Warning. The algorithm used converges when the \(z_i\) are 1. It may not converge as some \(z_i! = 1\) becomes too close to 1, even at roots of 1 of moderate order:

\[
? polylogmult([2,1], (99+20*I)/101 * [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
\]

\[
? polylogmult([2,1], exp(I*Pi/20)* [1,1])
*** polylogmult: sorry, polylogmult in this range is not yet implemented.
\]

More precisely, if \(y_i := 1/(z_1 \ldots z_i)\) and

\[
v := \min_{i < j; y_i = 1} \|(1 - y_i)y_j\| > 1/4
\]

then the algorithm computes the value up to a \(2^{-b}\) absolute error in \(O(k^2 N)\) operations on floating point numbers of \(O(N)\) bits, where \(k = \sum_i s_i\) is the weight and \(N = b/\log_2(4v)\).

polzagier\((n, m)\)

Creates Zagier’s polynomial \(P_n^{(m)}\) used in the functions sumalt and sumpos (with flag = 1), see “Convergence acceleration of alternating series”, Cohen et al., Experiment. Math., vol. 9, 2000, pp. 3–12.

If \(m < 0\) or \(m > n\), \(P_n^{(m)} = 0\). We have \(P_n := P_n^{(0)}\) is \(T_n(2x - 1)\), where \(T_n\) is the Legendre polynomial of the second kind. For \(n > m > 0\), \(P_n^{(m)}\) is the \(m\)-th difference with step 2 of the sequence \(n^{m+1}P_n\); in this case, it satisfies

\[
2P_n^{(m)}(\sin^2 t) = (d^{m+1})/(dt^{m+1})(\sin(2t)^m \sin(2(n-m)t)).
\]

powers\((x, n, x0)\)

For nonnegative \(n\), return the vector with \(n+1\) components \([1, x, \ldots, x^n]\) if \(x0\) is omitted, and \([x0, x_0*x, \ldots, x_0*x^n]\) otherwise.

\[
? powers(Mod(3,17), 4)
%1 = [Mod(1, 17), Mod(3, 17), Mod(9, 17), Mod(10, 17), Mod(13, 17)]
? powers(Mat([1,2;3,4]), 3)
%2 = [[1, 0; 0, 1], [1, 2; 3, 4], [7, 10; 15, 22], [37, 54; 81, 118]]
? powers(3, 5, 2)
%3 = [2, 6, 18, 54, 162, 486]
\]

When \(n < 0\), the function returns the empty vector \([]\).

1.1. Guide to real precision in the PARI interface
**precision**(\(x, n\))

The function behaves differently according to whether \(n\) is present or not. If \(n\) is missing, the function returns the floating point precision in decimal digits of the PARI object \(x\). If \(x\) has no floating point component, the function returns \(+oo\).

```plaintext
? precision(exp(1e-100))
%1 = 154 \154 significant decimal digits
? precision(2 + x)
%2 = +oo \ exact object
? precision(0.5 + O(x))
%3 = 38 \ floating point accuracy, NOT series precision
? precision([exp(1e-100), 0.5])
%4 = 38 \ minimal accuracy among components
```

Using `getlocalprec()` allows to retrieve the working precision (as modified by possible `localprec` statements).

If \(n\) is present, the function creates a new object equal to \(x\) with a new floating point precision \(n\): \(n\) is the number of desired significant decimal digits. If \(n\) is smaller than the precision of a \(t\_REAL\) component of \(x\), it is truncated, otherwise it is extended with zeros. For non-floating-point types, no change.

**precprime**(\(x\))

Finds the largest pseudoprime (see `ispseudoprime`) less than or equal to \(x\). \(x\) can be of any real type. Returns 0 if \(x < 1\). Note that if \(x\) is a prime, this function returns \(x\) and not the largest prime strictly smaller than \(x\). To rigorously prove that the result is prime, use `isprime`.

**prime**(\(n\))

The \(n\)\(-th\) prime number

```plaintext
? prime(10^9)
%1 = 22801763489
```

Uses checkpointing and a naive \(O(n)\) algorithm. Will need about 30 minutes for \(n\) up to \(10^{11}\). Make sure to start `gp` with `primelimit` at least \(\sqrt{n}\), e.g. the value \(\sqrt{n \log(n \log n)}\) is guaranteed to be sufficient.

**primecert**(\(N, \text{flag}\))

If \(N\) is a prime, return a PARI Primality Certificate for the prime \(N\), as described below. Otherwise, return 0. A Primality Certificate \(c\) can be checked using `primecertisvalid(c)`.

If \(\text{flag} = 0\) (default), return an ECPP certificate (Atkin-Morain)

A PARI ECPP Primality Certificate for the prime \(N\) is either a prime integer \(N < 2^{64}\) or a vector \(C\) of length \(\ell\) whose \(i\) is a vector \([N_i, t_i, s_i, a_i, P_i]\) of length 5 where \(N_1 = N\). It is said to be valid if for each \(i = 1, \ldots, \ell\), all of the following conditions are satisfied

- \(N_i\) is a positive integer
- \(t_i\) is an integer such that \(t_i^2 < 4N_i\)
- \(s_i\) is a positive integer which divides \(m_i = N_i + 1 - t_i\)
- If we set \(q_i = (m_i)/(s_i)\), then
  - \(q_i > (N_i^{1/4} + 1)^2\)
  - \(q_i = N_{i+1}\) if \(1 <= i < \ell\)
  - \(q_\ell <= 2^{64}\) is prime
- \(a_i\) is an integer
1.1. Guide to real precision in the PARI interface

* $P[i]$ is a vector of length 2 representing the affine point $P_i = (x_i, y_i)$ on the elliptic curve $E : y^2 = x^3 + ax + b$ modulo $N_i$ where $b_i = y_i^2 - x_i^3 - a; x_i$ satisfying the following:

* $m_i P_i = oo$
* $s_i P_i! = oo$

Using the following theorem, the data in the vector $C$ allows to recursively certify the primality of $N$ (and all the $q_i$) under the single assumption that $q_i$ be prime.

**Theorem.** If $N$ is an integer and there exist positive integers $m, q$ and a point $P$ on the elliptic curve $E : y^2 = x^3 + ax + b$ defined modulo $N$ such that $q > (N^{1/4} + 1)^2$, $q$ is a prime divisor of $m$, $mP = oo$ and $(m)/(q)P! = oo$, then $N$ is prime.

\[
\begin{align*}
? \text{primecert}(10^35 + 69) \\
%1 &= [[10000000000000000000000000000000000069, 568679110354] \\
52074, 29635046683911148, 0, [6073979324046450274283740674] \\
208692, 24368673584839493121227731392450025]], [3374383076] \\
4501150277, -11610830419, 734208843, 0, [26740412237402652] \\
72 4, [63671911198198901665]], [45359444779, 299597, 2331, 0] \\
, [18022351516, 9326882 51]
\end{align*}
\]

\[
\begin{align*}
? \text{primecert}(\text{nextprime}(2^64)) \\
%2 &= [[18446744073709551629, -8423788454, 160388, 1, [1059] \\
8342506117936052, 2225259013356795550]]
\end{align*}
\]

? primecert(6)
%3 = \$
?
? primecert(41)
%4 = 41

If $flag = 1$ (very slow), return an $N - 1$ certificate (Pocklington Lehmer)

A PARI $N - 1$ Primality Certificate for the prime $N$ is either a prime integer $N < 2^{64}$ or a pair $[N, C]$, where $C$ is a vector with $\ell$ elements which are either a single integer $p_i < 2^{64}$ or a triple $[p_i, a_i, C_i]$ with $p_i > 2^{64}$ satisfying the following properties:

* $p_i$ is a prime divisor of $N - 1$;
* $a_i$ is an integer such that $a_i^{N-1} \equiv 1 (mod N)$ and $a_i^{(N-1)/p_i} - 1$ is coprime with $N$;
* $C_i$ is an $N - 1$ Primality Certificate for $p_i$
* The product $F$ of the $p_i a_i^{(N-1)/p_i}$ is strictly larger than $N^{1/3}$. Provided that all $p_i$ are indeed primes, this implies that any divisor of $N$ is congruent to 1 modulo $F$.
* The Billhart, Lehmer, Selfridge criterion is satisfied: when we write $N = 1 + c_1 F + c_2 F^2$ in base $F$ the polynomial $1 + c_1 X + c_2 X^2$ is irreducible over $\mathbb{Z}$, i.e. $c_1^2 - 4c_2$ is not a square. This implies that $N$ is prime.

This algorithm requires factoring partially $p - 1$ for various prime integers $p$ with an unfactored parted $<= p^{2/3}$ and this may be exceedingly slow compared to the default.

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely and well worth a bug report. Note that if you monitor the algorithm at a high enough debug level, you may see warnings about untested integers being declared primes. This is normal: we ask for partial factorizations (sufficient to prove primality if the unfactored part is not too large), and $\text{factor}$ warns us that the cofactor hasn’t been tested. It may or may not be tested later, and may or may not be prime. This does not affect the validity of the whole Primality Certificate.

$\text{primecertexport(cert, format)}$

Returns a string suitable for print/write to display a primality certificate from $\text{primecert}$, the format of which depends on the value of format:
• 0 (default): Human-readable format. See `??primecert` for the meaning of the successive \(N, t, s, a, m, q, E, P\). The integer \(D\) is the negative fundamental discriminant \(\text{coredisc}(t^2 - 4N)\).

• 1: Primo format 4.
• 2: MAGMA format.

Currently, only ECPP Primality Certificates are supported.

```plaintext
? cert = primecert(10^35+69);
? s = primecertexport(cert); \ Human-readable
? print(s)

\[1\]
N = 10000000000000000000000000000000069
 t = 546867911035452074
 s = 2963504668391148
 a = 0
 D = -3
 m = 99999999999999999513208896457996
 q = 33743830764501150277
 E = [0, 1]
P = [2156786168249326346435353707814204, 4916783950192314784963942529116352]

\[2\]
N = 33743830764501150277
 t = -11610830419
 s = 734208843
 a = 0
 D = -3
 m = 33743830776111980697
 q = 4595944779
 E = [0, 25895956964997806805]
P = [29257172487394218479, 367859196085668324]

\% Primo format
? s = primecertexport(cert,1); write("cert.out", s);

\% Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);

? cert = primecert(10^35+69, 1); \ N-1 certificate
? primecertexport(cert)
*** at top-level: primecertexport(cert)
*** ^--------------
*** primecertexport: sorry, N-1 certificate is not yet implemented.
```

`primecertisvalid(cert)`

Verifies if cert is a valid PARI ECPP Primality certificate, as described in `??primecert`.

```plaintext
? cert = primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354],
 52074, 2963504668391148, 0, [6073797324046450274283740674,
 208692, 243686735848394931227731392450025], [3374383076,
 4501150277, -11610830419, 734208843, 0, [26740412374402652,
 72 4, 636719111981801665]], [4595944779, 299597, 2331, 0

(continues on next page)
primepi(x)

The prime counting function. Returns the number of primes p, $p \leq x$.

```plaintext
? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813
```

Uses checkpointing and a naive $O(x)$ algorithm; make sure to start gp with `primelimit` at least \sqrt{x}.

primes(n)

Creates a row vector whose components are the first n prime numbers. (Returns the empty vector for $n \leq 0$.) A `t_VEC` $n = [a, b]$ is also allowed, in which case the primes in $[a, b]$ are returned.

```plaintext
? primes(10) \ the first 10 primes
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \ the primes up to 29
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]
```

prodeulerrat$(F, s, a, precision)$

$\prod_{p > a} F(p^s)$, where the product is taken over prime numbers and F is a rational function.

```plaintext
? prodeulerrat(1+1/q^3,1)
%1 = 1.1815649490102569125693997341604542605
? zeta(3)/zeta(6)
%2 = 1.1815649490102569125693997341604542606
```

prodnumrat$(F, a, precision)$

$\prod_{n > a} F(n)$, where $F - 1$ is a rational function of degree less than or equal to -2.

```plaintext
? prodnumrat(1+1/x^2,1)
%1 = 3.676077910374977206956974920282606665
```

psdraw$(list, flag)$

This function is obsolete, use `plotexport` and write the result to file.

psi$(x, precision)$

The ψ-function of x, i.e. the logarithmic derivative $\Gamma'(x)/\Gamma(x)$.

1.1. Guide to real precision in the PARI interface
psplothraw\((\text{list}_x, \text{list}_y, \text{flag})\)
This function is obsolete, use plothrawexport and write the result to file.

\textbf{qfauto}(\(G, \text{fl}\))

\(G\) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs the automorphism group of the associate lattice. Since this requires computing the minimal vectors, the computations can become very lengthy as the dimension grows. \(G\) can also be given by a qfisomininit structure. See qfisomininit for the meaning of \(\text{fl}\).

The output is a two-components vector \([o, g]\) where \(o\) is the group order and \(g\) is the list of generators (as a vector).

For each generator \(H\), the equality \(G = t H G H\) holds.

The interface of this function is experimental and will likely change in the future.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

\textbf{qfautoexport}(\(\text{qfa}, \text{flag}\))
\(\text{qfa}\) being an automorphism group as output by qfauto, export the underlying matrix group as a string suitable for (no flags or \(\text{flag} = 0\)) GAP or (\(\text{flag} = 1\)) Magma. The following example computes the size of the matrix group using GAP:

\begin{verbatim}
? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[[1, 1], [0, -1]]])"
? extern("echo "Order("s")\;\" | gap -q")
%3 = 12
\end{verbatim}

\textbf{qfbclassno}(\(D, \text{flag}\))

Ordinary class number of the quadratic order of discriminant \(D\), for “small” values of \(D\).

- if \(D > 0\) or \(\text{flag} = 1\), use a \(O(\|D\|^1/2)\) algorithm (compute \(L(1, \chi_D)\) with the approximate functional equation). This is slower than quadclassunit as soon as \(\|D\| > 10^2\) or so and is not meant to be used for large \(D\).

- if \(D < 0\) and \(\text{flag} = 0\) (or omitted), use a \(O(\|D\|^1/4)\) algorithm (Shanks’s baby-step/giant-step method). It should be faster than quadclassunit for small values of \(D\), say \(\|D\| < 10^{18}\).

Important warning. In the latter case, this function only implements part of Shanks’s method (which allows to speed it up considerably). It gives unconditionally correct results for \(\|D\| < 2.10^{10}\), but may give incorrect results for larger values if the class group has many cyclic factors. We thus recommend to double-check results using the function quadclassunit, which is about 2 to 3 times slower in the range \(\|D\| \in [10^{10}, 10^{18}]\), assuming GRH. We currently have no counter-examples but they should exist: we would appreciate a bug report if you find one.

Warning. Contrary to what its name implies, this routine does not compute the number of classes of binary primitive forms of discriminant \(D\), which is equal to the narrow class number. The two notions are the same when \(D < 0\) or the fundamental unit \(\varepsilon\) has negative norm; when \(D > 0\) and \(N\varepsilon > 0\), the number of classes of forms is twice the ordinary class number. This is a problem which we cannot fix for backward compatibility reasons. Use the following routine if you are only interested in the number of classes of forms:

\begin{verbatim}
QFBclassno(D) = qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
\end{verbatim}

Here are a few examples:
See also qfbhclassno.

qfbcompraw \((x, y)\)

Composition of the binary quadratic forms \(x\) and \(y\), without reduction of the result. This is useful e.g. to compute a generating element of an ideal. The result is undefined if \(x\) and \(y\) do not have the same discriminant.

\[\text{composition of the binary quadratic forms } x \text{ and } y, \text{ without reduction of the result. This is useful e.g. to compute a generating element of an ideal. The result is undefined if } x \text{ and } y \text{ do not have the same discriminant.} \]

qfbhclassno \((x)\)

Hurwitz class number of \(x\), when \(x\) is nonnegative and congruent to 0 or 3 modulo 4, and 0 for other values. For \(x > 5 \times 10^5\), we assume the GRH, and use \quadclassunit with default parameters.

\[\text{Hurwitz class number of } x, \text{ when } x \text{ is nonnegative and congruent to 0 or 3 modulo 4, and 0 for other values. For } x > 5 \times 10^5, \text{ we assume the GRH, and use } \quadclassunit with default parameters.} \]

qfbil \((x, y, q)\)

This function is obsolete, use qfeval.

qfbnucomp \((x, y, L)\)

Composition of the primitive positive definite binary quadratic forms \(x\) and \(y\) (type \texttt{t_QFI}) using the NUCOMP and NUDUPL algorithms of Shanks, à la Atkin. \(L\) is any positive constant, but for optimal speed, one should take \(L = \sqrt{|D/4|}^{1/4}\), i.e. \texttt{sqrtnint(abs(D) >> 2,4)}, where \(D\) is the common discriminant of \(x\) and \(y\). When \(x\) and \(y\) do not have the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small \(D\), and becomes faster when \(D\) has about 45 bits.

qfbmupow \((x, n, L)\)

\(n\)-th power of the primitive positive definite binary quadratic form \(x\) using Shanks’s NUCOMP and NUDUPL algorithms; if set, \(L\) should be equal to \texttt{sqrtnint(abs(D) >> 2,4)}, where \(D < 0\) is the discriminant of \(x\).

The current implementation is slower than the generic routine for small discriminant \(D\), and becomes faster for \(D > 2^{45}\).

qfbpowraw \((x, n)\)

\(n\)-th power of the binary quadratic form \(x\), computed without doing any reduction (i.e. using \texttt{qfbcompraw}). Here \(n\) must be nonnegative and \(n < 2^{31}\).
qfbprimeform\((x, p, \text{precision})\)

Prime binary quadratic form of discriminant \(x\) whose first coefficient is \(p\), where \(\|p\|\) is a prime number. By abuse of notation, \(p = 1\) is also valid and returns the unit form. Returns an error if \(x\) is not a quadratic residue mod \(p\), or if \(x < 0\) and \(p < 0\). (Negative definite \(t\)QFI are not implemented.) In the case where \(x > 0\), the “distance” component of the form is set equal to zero according to the current precision.

qfbred\((x, \text{flag}, d, isd, sd)\)

Reduces the binary quadratic form \(x\) (updating Shanks’s distance function if \(x\) is indefinite). The binary digits of \(\text{flag}\) are toggles meaning

1: perform a single reduction step
2: don’t update Shanks’s distance

The arguments \(d, isd, sd\), if present, supply the values of the discriminant, \(\text{floor}\sqrt{d}\), and \(\sqrt{d}\) respectively (no checking is done of these facts). If \(d < 0\) these values are useless, and all references to Shanks’s distance are irrelevant.

qfbredsl2\((x, data)\)

Reduction of the (real or imaginary) binary quadratic form \(x\), return \([y, g]\) where \(y\) is reduced and \(g\) in \(SL(2, \mathbb{Z})\) is such that \(g.x = y\); \(data\), if present, must be equal to \([D, \text{sqrtint}(D)]\), where \(D > 0\) is the discriminant of \(x\). In case \(x\) is a \(t\)QFR, the distance component is unaffected.

qfbsolve\((Q, n, \text{flag})\)

Solve the equation \(Q(x, y) = n\) in coprime integers \(x\) and \(y\) (primitive solutions), where \(Q\) is a binary quadratic form and \(n\) an integer, up to the action of the special orthogonal group \(G = SO(Q, \mathbb{Z})\), which is isomorphic to the group of units of positive norm of the quadratic order of discriminant \(D = \text{disc}Q\). If \(D > 0\), \(G\) is infinite. If \(D < -4\), \(G\) is of order 2, if \(D = -3\), \(G\) is of order 6 and if \(D = -4\), \(G\) is of order 4.

Binary digits of \(\text{flag}\) mean: 1: return all solutions if set, else a single solution; return \([]\) if a single solution is wanted (bit unset) but none exist. 2: also include imprimitive solutions.

When \(\text{flag} = 2\) (return a single solution, possibly imprimitive), the algorithm returns a solution with minimal content; in particular, a primitive solution exists if and only if one is returned.

The integer \(n\) can be given by its factorization matrix :emphasis:`fa = factor(n)` or by the pair \([n, fa]\).

```
? qfbsolve(Qfb(1,0,2), 603) \a a single primitive solution
%1 = [5, 17]

? qfbsolve(Qfb(1,0,2), 603, 1) \a all primitive solutions
%2 = [[5, 17], [-19, -11], [19, -11], [5, -17]]

? qfbsolve(Qfb(1,0,2), 603, 2) \a a single, possibly imprimitive solution
%3 = [5, 17] \a actually primitive

? qfbsolve(Qfb(1,0,2), 603, 3) \a all solutions
%4 = [[5, 17], [-19, -11], [19, -11], [5, -17], [-21, 9], [-21, -9]]

? N = 2*128+1; F = factor(N);
? qfbsolve(Qfb(1,0,1), [N,F], 1)
%3 = [[-16382350221535464479, 8479443857936402504],
    [18446744073709551616, -1], [-18446744073709551616, -1],
    [16382350221535464479, 8479443857936402504]]
```

For fixed \(Q\), assuming the factorisation of \(n\) is given, the algorithm runs in probabilistic polynomial time in \(\log p\), where \(p\) is the largest prime divisor of \(n\), through the computation of square roots of \(D\) modulo \(4p\). The dependency on \(Q\) is more complicated: polynomial time in \(\log |D|\) if \(Q\) is imaginary, but exponential time if \(Q\)
is real (through the computation of a full cycle of reduced forms). In the latter case, note that \texttt{bnfisprincipal} provides a solution in heuristic subexponential time assuming the GRH.

\texttt{qfeval}(q, x, y)

Evaluate the quadratic form \(q \) (given by a symmetric matrix) at the vector \(x \); if \(y \) is present, evaluate the polar form at \((x, y)\); if \(q \) omitted, use the standard Euclidean scalar product, corresponding to the identity matrix.

Roughly equivalent to \(x^\top \times q \times y \), but a little faster and more convenient (does not distinguish between column and row vectors):

\begin{verbatim}
? x = [1,2,3]~; y = [-1,3,1]~; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x~*q*y)
time = 697ms
\end{verbatim}

The speedup is noticeable for the quadratic form, compared to \(x^\top \times q \times x \), since we save almost half the operations:

\begin{verbatim}
? for(i=1,10^6, qfeval(q,x))
time = 487ms
\end{verbatim}

The special case \(q = Id \) is handled faster if we omit \(q \) altogether:

\begin{verbatim}
? qfeval(,x,y)
%6 = 8
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x~*y)
time = 274 ms.
\end{verbatim}

We also allow \texttt{t_MAT}s of compatible dimensions for \(x \), and return \(x^\top \times q \times x \) in this case as well:

\begin{verbatim}
? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) \ \ Gram matrix
%5 =
[66 78 90]
[78 93 108]
[90 108 126]
? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M~*q*M)
time = 2,368 ms.
? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.
\end{verbatim}

(continues on next page)
If \(q\) is a \(\text{t}_Q\text{FI}\) or \(\text{t}_Q\text{FR}\), it is implicitly converted to the attached symmetric \(\text{t}_\text{MAT}\). This is done more efficiently than by direct conversion, since we avoid introducing a denominator 2 and rational arithmetic:

```plaintext
? q = Qfb(2,3,4); x = [2,3];
? qfeval(q, x)
%2 = 62
? Q = Mat(q)
%3 =

[ 2 3/2]
[3/2 4]

? qfeval(Q, x)
%4 = 62
? for (i=1, 10^6, qfeval(q, x))
time = 758 ms.
? for (i=1, 10^6, qfeval(Q, x))
time = 1,110 ms.
```

Finally, when \(x\) is a \(\text{t}_\text{MAT}\) with integral coefficients, we allow a \(\text{t}_Q\text{FI}\) or \(\text{t}_Q\text{FR}\) for \(q\) and return the binary quadratic form \(qoM\). Again, the conversion to \(\text{t}_\text{MAT}\) is less efficient in this case:

```plaintext
? q = Qfb(2,3,4); Q = Mat(q); x = [1,2;3,4];
? qfeval(q, x)
%2 = Qfb(47, 134, 96)
? qfeval(Q, x)
%3 =

[47 67]
[67 96]

? for (i=1, 10^6, qfeval(q, x))
time = 701 ms.
? for (i=1, 10^6, qfeval(Q, x))
time = 1,639 ms.
```

\textbf{qfgaussred}(\(q\))

decomposition into squares of the quadratic form represented by the symmetric matrix \(q\). The result is a matrix whose diagonal entries are the coefficients of the squares, and the off-diagonal entries on each line represent the bilinear forms. More precisely, if \((a_{ij})\) denotes the output, one has

\[q(x) = \sum_i a_{ii}x_i^2 + \sum_{j \neq i} a_{ij}x_i x_j \]

```plaintext
? qfgaussred([[0,1;1,0]])
%1 =

[1/2 1]
[-1 -1/2]
```

This means that \(2xy = (1/2)(x + y)^2 - (1/2)(x - y)^2\). Singular matrices are supported, in which case some diagonal coefficients will vanish:
\texttt{qfgaussred([1,1;1,1])}
\begin{verbatim}
%1 =
[1 1]
[1 0]
\end{verbatim}
This means that $x^2 + 2xy + y^2 = (x + y)^2$.

\textbf{qfisom}(G, H, fl, grp)

G, H being square and symmetric matrices with integer entries representing positive definite quadratic forms, return an invertible matrix S such that $G = S H S$. This defines an isomorphism between the corresponding lattices. Since this requires computing the minimal vectors, the computations can become very lengthy as the dimension grows. See \texttt{qfisomininit} for the meaning of fl. If grp is given it must be the automorphism group of H. It will be used to speed up the computation.

G can also be given by a \texttt{qfisomininit} structure which is preferable if several forms H need to be compared to G.

This function implements an algorithm of Plesken and Souvignier, following Souvignier's implementation.

\textbf{qfisomininit}(G, fl, m)

G being a square and symmetric matrix with integer entries representing a positive definite quadratic form, return an \texttt{isom} structure allowing to compute isomorphisms between G and other quadratic forms faster.

The interface of this function is experimental and will likely change in future release.

If present, the optional parameter fl must be a \texttt{t_VEC} with two components. It allows to specify the invariants used, which can make the computation faster or slower. The components are

If present, m must be the set of vectors of norm up to the maximal of the diagonal entry of G, either as a matrix or as given by \texttt{qfminim}. Otherwise this function computes the minimal vectors so it become very lengthy as the dimension of G grows.

\textbf{qfjacobi}(A, precision)

Apply Jacobi's eigenvalue algorithm to the real symmetric matrix A. This returns $[L, V]$, where

- L is the vector of (real) eigenvalues of A, sorted in increasing order,
- V is the corresponding orthogonal matrix of eigenvectors of A.

\begin{verbatim}
? \p19
? A = [1,2;2,1]; mateigen(A)
%1 =
[1 1]
[1 1]
? [L, H] = qfjacobi(A);
? L
%3 = [-1.000000000000000000, 3.000000000000000000]~
? H
%4 =
[0.7071067811865475245 0.7071067811865475244]
[0.7071067811865475244 0.7071067811865475245]
\end{verbatim}
qflll(x, flag)

LLL algorithm applied to the columns of the matrix x. The columns of x may be linearly dependent. The result is by default a unimodular transformation matrix \(T \) such that \(x.T \) is an LLL-reduced basis of the lattice generated by the column vectors of \(x \). Note that if \(x \) is not of maximal rank \(T \) will not be square. The LLL parameters are \((0.51, 0.99)\), meaning that the Gram-Schmidt coefficients for the final basis satisfy \(\|\mu_{i,j}\| \leq 0.51 \), and the Lovász’s constant is 0.99.

If flag = 0 (default), assume that \(x \) has either exact (integral or rational) or real floating point entries. The matrix is rescaled, converted to integers and the behavior is then as in flag = 1.

If flag = 1, assume that \(x \) is integral. Computations involving Gram-Schmidt vectors are approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s algorithm and Stehlé’s code (fplll-1.3).

If flag = 2, \(x \) should be an integer matrix whose columns are linearly independent. Returns a partially reduced basis for \(x \), using an unpublished algorithm by Peter Montgomery: a basis is said to be partially reduced if \(\|v_i v_j\| > \|v_i\| \) for any two distinct basis vectors \(v_i, v_j \). This is faster than flag = 1, esp. when one row is huge compared to the other rows (knapsack-style), and should quickly produce relatively short vectors. The resulting basis is not LLL-reduced in general. If LLL reduction is eventually desired, avoid this partial reduction: applying LLL to the partially reduced matrix is significantly slower than starting from a knapsack-type lattice.

If flag = 3, as flag = 1, but the reduction is performed in place: the routine returns \(x.T \). This is usually faster for knapsack-type lattices.

If flag = 4, as flag = 1, returning a vector \([K, T]\) of matrices: the columns of \(K \) represent a basis of the integer kernel of \(x \) (not LLL-reduced in general) and \(T \) is the transformation matrix such that \(x.T \) is an LLL-reduced \(\mathbb{Z} \)-basis of the image of the matrix \(x \).

If flag = 5, case as case 4, but \(x \) may have polynomial coefficients.

If flag = 8, same as case 0, but \(x \) may have polynomial coefficients.

```plaintext
? \p500
realprecision = 500 significant digits
? a = 2*cos(2*Pi/97);
? C = 10^450;
? v = powers(a,48); b = round(matconcat([matid(48),C*v]~));
? p = b * qflll(b)[,1]; \% tiny linear combination of powers of 'a'
time = 4,470 ms.
? exponent(v * p / C)
%5 = -1418
? p3 = qflll(b,3)[,1]; \% compute in place, faster
time = 3,790 ms.
? p3 == p \% same result
%7 = 1
? p2 = b * qflll(b,2)[,1]; \% partial reduction: faster, not as good
time = 343 ms.
? exponent(v * p2 / C)
%9 = -1190
```
qflllgram(G, flag)

Same as qflll, except that the matrix $G = x \ast x$ is the Gram matrix of some lattice vectors x, and not the coordinates of the vectors themselves. In particular, G must now be a square symmetric real matrix, corresponding to a positive quadratic form (not necessarily definite: x needs not have maximal rank). The result is a unimodular transformation matrix T such that $x.T$ is an LLL-reduced basis of the lattice generated by the column vectors of x. See qflll for further details about the LLL implementation.

If flag = 0 (default), assume that G has either exact (integral or rational) or real floating point entries. The matrix is rescaled, converted to integers and the behavior is then as in flag = 1.

If flag = 1, assume that G is integral. Computations involving Gram-Schmidt vectors are approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s algorithm and Stehlé’s code (fplll-1.3).

flag = 4: G has integer entries, gives the kernel and reduced image of x.

flag = 5: same as 4, but G may have polynomial coefficients.

qfminim(x, B, m, flag, precision)

x being a square and symmetric matrix of dimension d representing a positive definite quadratic form, this function deals with the vectors of x whose norm is less than or equal to B, enumerated using the Fincke-Pohst algorithm, storing at most m pairs of vectors: only one vector is given for each pair v. There is no limit if m is omitted: beware that this may be a huge vector! The vectors are returned in no particular order.

The function searches for the minimal nonzero vectors if B is omitted. The behavior is undefined if x is not positive definite (a “precision too low” error is most likely, although more precise error messages are possible). The precise behavior depends on flag.

- If flag = 0 (default), return $[N, M, V]$, where N is the number of vectors enumerated (an even number, possibly larger than $2m$), $M \leq B$ is the maximum norm found, and V is a matrix whose columns are found vectors.

- If flag = 1, ignore m and return $[M, v]$, where v is a nonzero vector of length $M \leq B$. If no nonzero vector has length $\leq B$, return []. If no explicit B is provided, return a vector of smallish norm, namely the vector of smallest length (usually the first one but not always) in an LLL-reduced basis for x.

In these two cases, x must have integral small entries: more precisely, we definitely must have $d.\|x\|_o^2 < 2^{53}$ but even that may not be enough. The implementation uses low precision floating point computations for maximal speed and gives incorrect results when x has large entries. That condition is checked in the code and the routine raises an error if large rounding errors occur. A more robust, but much slower, implementation is chosen if the following flag is used:

- If flag = 2, x can have non integral real entries, but this is also useful when x has large integral entries. Return $[N, M, V]$ as in case flag = 0, where M is returned as a floating point number. If x is inexact and B is omitted, the “minimal” vectors in V only have approximately the same norm (up to the internal working accuracy). This version is very robust but still offers no hard and fast guarantee about the result: it involves floating point operations performed at a high floating point precision depending on your input, but done without rigorous tracking of roundoff errors (as would be provided by interval arithmetic for instance).

No example is known where the input is exact but the function returns a wrong result.

```
? x = matid(2);
? qfminim(x) \ 4 minimal vectors of norm 1: ±[0,1], ±[1,0]
%2 = [4, 1, [0, 1; 1, 0]]
? { x = \ The Leech lattice
 [4, 2, 0, 0, 0,-2, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1, 0,-1, 0, 0, 0,-2;
 2, 4,-2,-2, 0,-2, 0, 0, 0, 0, 0, 0,-1, 0, 0, 0, 0,-1, 0, 1,-1,-1;
 0,-2, 4, 0,-2, 0, 0, 0, 0, 0, 0,-1, 1, 0, 0, 1, 0, 1,-1,-1, 0, 0;
 0,-2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1,-1, 0, 0, 0, 1,-1, 0, 1,-1, 0;

(continues on next page)
```
\[\begin{bmatrix} 0, 0, -2, 0, 0, 4, 0, 0, 0, 1, -1, 0, 0, 1, 0, 0, -2, 0, 0, -1, 1, 1, 0, 0; \\
-2, -2, 0, 0, 0, 4, -2, 0, -1, 0, 0, 0, 0, 0, 1, 1, 0, -1, 1, 1, 0; \\
0, 0, 0, 0, 0, -2, 4, -2, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, 1, 1, 0, 0; \\
0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, -1, -1, 1, 0, 0, 0; \\
0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 4, 0, 1, 1, -1, 1, 0, 0, 0, 0, 1, 0, 0; \\
0, 0, 0, 0, 0, 0, 0, -2, 0, 4, -2, 0, -1, 0, 0, 0, 1, -1, 0, 0, 0, 0; \\
0, 0, 0, 0, 0, 0, 0, 0, -2, 0, -2, 4, -1, 1, 0, 0, -1, 1, 0, 1, 1, -1, 0; \\
1, 0, -1, 1, 1, 0, 0, -1, 1, 1, 0, -1, 4, 0, 1, 0, 1, 0, 1, 0, 1, -1; \\
-1, -1, 1, 0, 0, 0, 1, 0, 1, 1, -1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1; \\
0, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0; \\
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 1, 1, 0, 4, 1, 1, 1, 0, 1; \\
1, 0, 0, 0, 0, 0, -1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0; \\
0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0; \\
-1, -1, 1, 0, 0, -1, 0, 1, -1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 4, 0, 0, 0, 0; \\
0, -1, 1, 1, 0, 0, -1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0; \\
0, 0, -1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0; \\
-2, -1, 0, 0, 0, 0, 0, 0, 0, -1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1; \\
\end{bmatrix} \]

\[qfminim(x, 0) \text{ don't store minimal vectors} \]
\[\text{time} = 121 \text{ ms.} \]
\[%4 = [196560, 4, []] \text{ \textbar{} 196560 minimal vectors of norm 4} \]
\[qfminim(x) \text{ store all minimal vectors!} \]
\[\text{time} = 821 \text{ ms.} \]
\[qfminim(x, 0, 2); \text{ safe algorithm. Slower and unnecessary here.} \]
\[\text{time} = 5,540 \text{ ms.} \]
\[%6 = [196560, 4.0000061035156250000, []] \]
\[qfminim(x, 2); \text{ safe algorithm; store all minimal vectors} \]
\[\text{time} = 6,602 \text{ ms.} \]

In this example, storing 0 vectors limits memory use: storing all of them requires a \texttt{parisize} about 50MB. All minimal vectors are nevertheless enumerated in both cases of course, which means the speedup is likely to be marginal.

\[
qfnorm(x, q)
\]

This function is obsolete, use \texttt{qfeval}.

\[
qforbits(G, V)
\]

Return the orbits of \(V \) under the action of the group of linear transformations generated by the set \(G \). It is assumed that \(G \) contains minus identity, and only one vector in \(v, -v \) should be given. If \(G \) does not stabilize \(V \), the function return 0.

In the example below, we compute representatives and lengths of the orbits of the vectors of norm \(\leq 3 \) under the automorphism of the lattice \(\mathbb{Z}^6 \).

\[Q = \text{matid}(6) ; \]
\[G = \text{qfauto}(Q) ; \]
\[V = \text{qfminim}(Q, 3) ; \]
\[\text{apply}(x \rightarrow [x[1], \#x], \text{qforbits}(G, V)) \]
\[%2 = [[[0, 0, 0, 0, 0, 0], -6], [[0, 0, 0, 0, 1, -1], -30], [[0, 0, 0, 1, -1, -1], -80]] \]

\[
qfparam(G, sol, flag)
\]

Coefficients of binary quadratic forms that parametrize the solutions of the ternary quadratic form \(G \), using the particular solution \(sol \). \texttt{flag} is optional and can be 1, 2, or 3, in which case the \texttt{flag}-th form is reduced. The default is \texttt{flag} = 0 (no reduction).
Indeed, the solutions can be parametrized as

\[(3x^2 - 10xy - 3y^2)^2 + (-5x^2 - 6xy + 5y^2)^2 - 34(x^2 + y^2)^2 = 0.\]

qfperfection \((G)\)

\(G\) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs the perfection rank of the form. That is, gives the rank of the family of the \(s\) symmetric matrices \(vv^t\), where \(v\) runs through the minimal vectors.

The algorithm computes the minimal vectors and its runtime is exponential in the dimension of \(x\).

qfrep \((q, B, flag)\)

\(q\) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, count the vectors representing successive integers.

- If \(flag = 0\), count all vectors. Outputs the vector whose \(i\)-th entry, \(1 \leq i \leq B\) is half the number of vectors \(v\) such that \(q(v) = i\).
- If \(flag = 1\), count vectors of even norm. Outputs the vector whose \(i\)-th entry, \(1 \leq i \leq B\) is half the number of vectors such that \(q(v) = 2i\).

This routine uses a naive algorithm based on \(qfminim\), and will fail if any entry becomes larger than \(2^{31}\) (or \(2^{63}\)).

qfsign \((x)\)

Returns \([p, m]\) the signature of the quadratic form represented by the symmetric matrix \(x\). Namely, \(p\) (resp. \(m\)) is the number of positive (resp. negative) eigenvalues of \(x\). The result is computed using Gaussian reduction.

qfsolve \((G)\)

Given a square symmetric matrix \(G\) of dimension \(n \geq 1\), solve over \(\mathbb{Q}\) the quadratic equation \(X^tGX = 0\). The matrix \(G\) must have rational coefficients. The solution might be a single nonzero vector (vectorv) or a matrix (whose columns generate a totally isotropic subspace).

If no solution exists, returns an integer, that can be a prime \(p\) such that there is no local solution at \(p\), or \(-1\) if there is no real solution, or \(-2\) if \(n = 2\) and \(-\det G\) is positive but not a square (which implies there is a real solution, but no local solution at some \(p\) dividing \(\det G\)).
? G = [1,0,0;0,1,0;0,0,-34];
? qfsolve(G)
%1 = [-3, -5, 1]~
? qfsolve([1,0; 0,2])
%2 = -1 \ no real solution
? qfsolve([1,0,0;0,3,0; 0,0,-2])
%3 = 3 \ no solution in \mathbb{Q}_3
? qfsolve([1,0; 0,-2])
%4 = -2 \ no solution, n = 2

quadclassunit(D, flag, tech, precision)

Buchmann-McCurley’s sub-exponential algorithm for computing the class group of a quadratic order of discriminant D.

This function should be used instead of qfbclassno or quadregulator when $D < -10^{25}$, $D > 10^{10}$, or when the structure is wanted. It is a special case of bnfinit, which is slower, but more robust.

The result is a vector v whose components should be accessed using member functions:

- $\text{\texttt{\textasciitilde v.no}}$: the class number
- $\text{\texttt{\textasciitilde v.cyc}}$: a vector giving the structure of the class group as a product of cyclic groups;
- $\text{\texttt{\textasciitilde v.gen}}$: a vector giving generators of those cyclic groups (as binary quadratic forms).
- $\text{\texttt{\textasciitilde v.reg}}$: the regulator, computed to an accuracy which is the maximum of an internal accuracy determined by the program and the current default (note that once the regulator is known to a small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The flag is obsolete and should be left alone. In older versions, it supposedly computed the narrow class group when $D > 0$, but this did not work at all; use the general function bnfnar.

Optional parameter tech is a row vector of the form $[c_1, c_2]$, where $c_1 <= c_2$ are nonnegative real numbers which control the execution time and the stack size, see GRHbnf (in the PARI manual). The parameter is used as a threshold to balance the relation finding phase against the final linear algebra. Increasing the default c_1 means that relations are easier to find, but more relations are needed and the linear algebra will be harder. The default value for c_1 is 0 and means that it is taken equal to c_2. The parameter c_2 is mostly obsolete and should not be changed, but we still document it for completeness: we compute a tentative class group by generators and relations using a factorbase of prime ideals $<= c_1 (\log ||D||)^2$, then prove that ideals of norm $<= c_2 (\log ||D||)^2$ do not generate a larger group. By default an optimal c_2 is chosen, so that the result is provably correct under the GRH — a famous result of Bach states that $c_2 = 6$ is fine, but it is possible to improve on this algorithmically. You may provide a smaller c_2, it will be ignored (we use the provably correct one); you may provide a larger c_2 than the default value, which results in longer computing times for equally correct outputs (under GRH).

quaddisc(x)

Discriminant of the étale algebra $\mathbb{Q}(\sqrt{x})$, where $x \in \mathbb{Q}^*$. This is the same as coredisc(d) where d is the integer squarefree part of x, so $x = df^2$ with $f \in \mathbb{Q}^*$ and $d \in \mathbb{Z}$. This returns 0 for $x = 0$, 1 for x square and the discriminant of the quadratic field $\mathbb{Q}(\sqrt{x})$ otherwise.

? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7

quadgen(D, v)

Creates the quadratic number $\omega = (a + \sqrt{D})/2$ where $a = 0$ if $D = 0 \mod 4$, $a = 1$ if $D = 1 \mod 4$, so that $(1, \omega)$
is an integral basis for the quadratic order of discriminant D. D must be an integer congruent to 0 or 1 modulo 4, which is not a square. If v is given, the variable name is used to display g else ‘w’ is used.

```plaintext
? w = quadgen(5, 'w); w^2 - w - 1
%1 = 0
? w = quadgen(0, 'w)
*** at top-level: w=quadgen(0)
*** ^----------
*** quadgen: domain error in quadpoly: issquare(disc) = 1
```

quadhilbert(D, precision)

Relative equation defining the Hilbert class field of the quadratic field of discriminant D.

If $D < 0$, uses complex multiplication (Schertz’s variant).

If $D > 0$ Stark units are used and (in rare cases) a vector of extensions may be returned whose compositum is the requested class field. See bnrstark for details.

quadpoly(D, v)

Creates the “canonical” quadratic polynomial (in the variable v) corresponding to the discriminant D, i.e. the minimal polynomial of $\text{quadgen}(D)$. D must be an integer congruent to 0 or 1 modulo 4, which is not a square.

```plaintext
? quadpoly(5,'y)
%1 = y^2 - y - 1
? quadpoly(0,'y)
*** at top-level: quadpoly(0,'y)
*** ^-------------
*** quadpoly: domain error in quadpoly: issquare(disc) = 1
```

quadray(D, f, precision)

Relative equation for the ray class field of conductor f for the quadratic field of discriminant D using analytic methods. A bnf for $x^2 - D$ is also accepted in place of D.

For $D < 0$, uses the σ function and Schertz’s method.

For $D > 0$, uses Stark’s conjecture, and a vector of relative equations may be returned. See bnrstark for more details.

quadregulator(x, precision)

Regulator of the quadratic field of positive discriminant x. Returns an error if x is not a discriminant (fundamental or not) or if x is a square. See also quadclassunit if x is large.

quadunit(D, v)

Fundamental unit u of the real quadratic field $\mathbb{Q}(\sqrt{D})$ where D is the positive discriminant of the field. If D is not a fundamental discriminant, this probably gives the fundamental unit of the corresponding order. D must be an integer congruent to 0 or 1 modulo 4, which is not a square; the result is a quadratic number (see quadgen in the PARI manual). If v is given, the variable name is used to display u else ‘w’ is used. The algorithm computes the continued fraction of $(1 + \sqrt{D})/2$ or $\sqrt{D}/2$ (see GTM 138, algorithm 5.7.2). Although the continued fraction length is only $O(\sqrt{D})$, the function still runs in time $O(D)$, in part because the output size is not polynomially bounded in terms of $\log D$. See bnfinit and bnfunits for a better alternative for large D, running in time subexponential in $\log D$ and returning the fundamental units in compact form (as a short list of S-units of size $O(\log D)^3$ raised to possibly large exponents).

ramanujantau(n)

Compute the value of Ramanujan’s tau function at an individual n, assuming the truth of the GRH (to compute quickly class numbers of imaginary quadratic fields using quadclassunit). Algorithm in $O(n^{1/2})$ using
\(O(\log n) \) space. If all values up to \(N \) are required, then
\[
\sum \tau(n) q^n = q \prod (1 - q^n)^{24}
\]
will produce them in time \(O(N) \), against \(O(N^{3/2}) \) for individual calls to \texttt{ramanujantau}; of course the space complexity then becomes \(O(N) \).

\begin{verbatim}
? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \ \much \ slower !
time = 13,190 ms.
? v == w
%4 = 1
\end{verbatim}

\texttt{random}(\(N \))

Returns a random element in various natural sets depending on the argument \(N \).

- \texttt{t_INT}: returns an integer uniformly distributed between 0 and \(N - 1 \). Omitting the argument is equivalent to \texttt{random(2^31)}.
- \texttt{t_REAL}: returns a real number in \([0, 1]\] with the same accuracy as \(N \) (whose mantissa has the same number of significant words).
- \texttt{t_INTMOD}: returns a random intmod for the same modulus.
- \texttt{t_FFELT}: returns a random element in the same finite field.
- \texttt{t_VEC} of length 2, \(N = \[a, b] \): returns an integer uniformly distributed between \(a \) and \(b \).
- \texttt{t_VEC} generated by \texttt{ellinit} over a finite field \(k \) (coefficients are \texttt{t_INTMOD} s modulo a prime or \texttt{t_FFELT} s): returns a “random” \(k \)-rational affine point on the curve. More precisely if the curve has a single point (at infinity!) we return it; otherwise we return an affine point by drawing an abscissa uniformly at random until \texttt{ellordinate} succeeds. Note that this is definitely not a uniform distribution over \(E(k) \), but it should be good enough for applications.
- \texttt{t_POL} return a random polynomial of degree at most the degree of \(N \). The coefficients are drawn by applying \texttt{random} to the leading coefficient of \(N \).

\begin{verbatim}
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*a^0); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
\end{verbatim}

These variants all depend on a single internal generator, and are independent from your operating system’s random number generators. A random seed may be obtained via \texttt{getrand}, and reset using \texttt{setrand}: from a given seed, and given sequence of \texttt{random} s, the exact same values will be generated. The same seed is used at each startup,
reseed the generator yourself if this is a problem. Note that internal functions also call the random number generator; adding such a function call in the middle of your code will change the numbers produced.

Technical note. Up to version 2.4 included, the internal generator produced pseudo-random numbers by means of linear congruences, which were not well distributed in arithmetic progressions. We now use Brent’s XORGEN algorithm, based on Feedback Shift Registers, see http://wwwmaths.anu.edu.au/~brent/random.html. The generator has period $2^{4096} - 1$, passes the Crush battery of statistical tests of L’Ecuyer and Simard, but is not suitable for cryptographic purposes: one can reconstruct the state vector from a small sample of consecutive values, thus predicting the entire sequence.

randomprime(N, q)

Returns a strong pseudo prime (see ispseudoprime) in $[2, N - 1]$. A t_VEC $N = [a, b]$ is also allowed, with $a <= b$ in which case a pseudo prime $a <= p <= b$ is returned; if no prime exists in the interval, the function will run into an infinite loop. If the upper bound is less than 2^{64} the pseudo prime returned is a proven prime.

```
? randomprime(100)
%1 = 71
? randomprime([3,100])
%2 = 61
? randomprime([1,1])
*** at top-level: randomprime([1,1])
*** ^------------------
*** randomprime: domain error in randomprime:
*** floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \ infinite loop
```

If the optional parameter q is an integer, return a prime congruent to $1 \ mod q$; if q is an intmod, return a prime in the given congruence class. If the class contains no prime in the given interval, the function will raise an exception if the class is not invertible, else run into an infinite loop

```
? randomprime(100, 4) \ 1 mod 4
%1 = 71
? randomprime(100, 4)
%2 = 13
? randomprime([10,100], Mod(2,5))
%3 = 47
? randomprime(100, Mod(0,2)) \ silly but works
%4 = 2
? randomprime([3,100], Mod(0,2)) \ not invertible
*** at top-level: randomprime([3,100],Mod(0,2))
*** ^------------------
*** randomprime: elements not coprime in randomprime:
0
2
? randomprime(100, 97) \ infinite loop
```

read($filename$)

Reads in the file $filename$ (subject to string expansion). If $filename$ is omitted, re-reads the last file that was fed into gp. The return value is the result of the last expression evaluated.

If a GP binary file is read using this command (see writebin (in the PARI manual)), the file is loaded and the last object in the file is returned.

In case the file you read in contains an allocatemem statement (to be generally avoided), you should leave read instructions by themselves, and not part of larger instruction sequences.
Variants. `readvec` allows to read a whole file at once; `fileopen` followed by either `fileread` (evaluated lines) or `filereadstr` (lines as nonevaluated strings) allows to read a file one line at a time.

`readstr(filename)`

Reads in the file `filename` and return a vector of GP strings, each component containing one line from the file. If `filename` is omitted, re-reads the last file that was fed into `gp`.

`readvec(filename)`

Reads in the file `filename` (subject to string expansion). If `filename` is omitted, re-reads the last file that was fed into `gp`. The return value is a vector whose components are the evaluation of all sequences of instructions contained in the file. For instance, if `file` contains

```
1
2
3
```

then we will get:

```
? \r a
%1 = 1
%2 = 2
%3 = 3
? read(a)
%4 = 3
? readvec(a)
%5 = [1, 2, 3]
```

In general a sequence is just a single line, but as usual braces and `\` may be used to enter multiline sequences.

`real(x)`

Real part of `x`. When `x` is a quadratic number, this is the coefficient of `1` in the “canonical” integral basis `(1, \omega)`.

```
? real(3 + I)
%1 = 3
? x = 3 + quadgen(-23);
? real(x) \ \ as \ a \ quadratic \ number
%3 = 3
? real(x * 1.) \ \ as \ a \ complex \ number
%4 = 3.5000000000000000000000000000000000000
```

`removeprimes(x)`

Removes the primes listed in `x` from the prime number table. In particular `removeprimes(addprimes())` empties the extra prime table. `x` can also be a single integer. List the current extra primes if `x` is omitted.

`rnfalgtobasis(rnf, x)`

Expresses `x` on the relative integral basis. Here, `rnf` is a relative number field extension `L/K` as output by `rnfinit`, and `x` an element of `L` in absolute form, i.e. expressed as a polynomial or polmod with polmod coefficients, not on the relative integral basis.

`rnfbasis(bnf, M)`

Let `K` the field represented by `bnf`, as output by `bnfinit`. `M` is a projective `\mathbb{Z}_K`-module of rank `n` (`M \otimes K` is an `n`-dimensional `K`-vector space), given by a pseudo-basis of size `n`. The routine returns either a true `\mathbb{Z}_K`-basis of `M` (of size `n`) if it exists, or an `n + 1`-element generating set of `M` if not.

It is allowed to use a monic irreducible polynomial `P` in `K[X]` instead of `M`, in which case, `M` is defined as the ring of integers of `K[X]/(P)`, viewed as a `\mathbb{Z}_K`-module.
Huge discriminants, helping rnfdisc. The format \([T, B]\) is also accepted instead of \(T\) and computes an order which is maximal at all maximal ideals specified by \(B\), see ??rnfinit: the valuation of \(D\) is then correct at all such maximal ideals but may be incorrect at other primes.

rnfbasistoalg(rnf, x)
Computes the representation of \(x\) as a polmod with polmods coefficients. Here, \(rnf\) is a relative number field extension \(L/K\) as output by rnfinit, and \(x\) an element of \(L\) expressed on the relative integral basis.

rnfcharpoly(nf, T, a, var)
Characteristic polynomial of \(a\) over \(nf\), where \(a\) belongs to the algebra defined by \(T\) over \(nf\), i.e. \(nf[X]/(T)\). Returns a polynomial in variable \(v\) (\(x\) by default).

```plaintext
? nf = nfninit(y^2+1);
? rnfcharpoly(nf, x^2+y*x+1, x+y)
\%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
```

rnfconductor(bnf, T, flag)
Given a bnf structure attached to a number field \(K\), as produced by bnfinit, and \(T\) an irreducible polynomial in \(K[x]\) defining an Abelian extension \(L = K[x]/(T)\), computes the class field theory conductor of this Abelian extension. If \(T\) does not define an Abelian extension over \(K\), the result is undefined; it may be the integer 0 (in which case the extension is definitely not Abelian) or a wrong result.

The result is a 3-component vector \([f, bnr, H]\), where \(f\) is the conductor of the extension given as a 2-component row vector \([f_0, f_oo]\), \(bnr\) is the attached bnr structure and \(H\) is a matrix in HNF defining the subgroup of the ray class group on the ray class group generators bnr.gen; in particular, it is a left divisor of the diagonal matrix attached to bnr.cyc and \(|\det H| = N = \deg T\).

If flag is set, return \([f, bnrmod, H]\), where \(bnrmod\) is now attached to \(Cl_f/Cl_f^N\), and \(H\) is as before since it contains the \(N\)-th powers. This is useful when \(f\) contains a maximal ideal with huge residue field, since the corresponding tough discrete logarithms are trivialized: in the quotient group, all elements have small order dividing \(N\). This allows to work in \(Cl_f/H\) but no longer in \(Cl_f\).

Huge discriminants, helping rnfdisc. The format \([T, B]\) is also accepted instead of \(T\) and computes the conductor of the extension provided it factors completely over the maximal ideals specified by \(B\), see ??rnfinit: the valuation of \(f_0\) is then correct at all such maximal ideals but may be incorrect at other primes.

rnfdedekind(nf, pol, pr, flag)
Given a number field \(K\) coded by \(nf\) and a monic polynomial \(P \in \mathbb{Z}_K[X]\), irreducible over \(K\) and thus defining a relative extension \(L\) of \(K\), applies Dedekind’s criterion to the order \(\mathbb{Z}_K[X]/(P)\), at the prime ideal \(pr\). It is possible to set \(pr\) to a vector of prime ideals (test maximality at all primes in the vector), or to omit altogether, in which case maximality at all primes is tested; in this situation flag is automatically set to 1.

The default historic behavior (flag is 0 or omitted and \(pr\) is a single prime ideal) is not so useful since rnfpsuedobasis gives more information and is generally not that much slower. It returns a 3-component vector \([max, basis, v]\):

- **basis** is a pseudo-basis of an enlarged order \(O\) produced by Dedekind’s criterion, containing the original order \(\mathbb{Z}_K[X]/(P)\) with index a power of \(pr\). Possibly equal to the original order.

- **max** is a flag equal to 1 if the enlarged order \(O\) could be proven to be \(pr\)-maximal and to 0 otherwise; it may still be maximal in the latter case if \(pr\) is ramified in \(L\),

- **v** is the valuation at \(pr\) of the order discriminant.

If flag is nonzero, on the other hand, we just return 1 if the order \(\mathbb{Z}_K[X]/(P)\) is \(pr\)-maximal (resp. maximal at all relevant primes, as described above), and 0 if not. This is much faster than the default, since the enlarged order is not computed.
In this example, `pr3` is the ramified ideal above 3, and the order generated by the cube roots of y is already `pr3`-maximal. The order-discriminant has valuation 8. On the other hand, the order is not maximal at the prime above 2:

```
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]], 2]
```

The enlarged order is not proven to be `pr2`-maximal yet. In fact, it is; it is in fact the maximal order:

```
? B = rnfpseudobasis(nf, P)
%8 = [[1, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2
```

It is possible to use this routine with nonmonic $P = \sum_{i=0}^{n} p_i X^i \in \mathbb{Z}_K[X]$ if `flag` = 1; in this case, we test maximality of Dedekind’s order generated by

$$1, p_0 \alpha, p_0 \alpha^2 + p_{n-1} \alpha, \ldots, p_0 \alpha^{n-1} + p_{n-1} \alpha^{n-2} + \ldots + p_1 \alpha.$$

The routine will fail if P vanishes on the projective line over the residue field \mathbb{Z}_K/pr (FIXME).

rnfdet (*nf*, *M*)

Given a pseudo-matrix *M* over the maximal order of *nf*, computes its determinant.

rnfdisc (*nf*, *T*)

Given an *nf* structure attached to a number field *K*, as output by *nfinit*, and a monic irreducible polynomial $T \in K[x]$ defining a relative extension $L = K[x]/(T)$, compute the relative discriminant of L. This is a vector $[D, d]$, where D is the relative ideal discriminant and d is the relative discriminant considered as an element of K^*/K^{*2}. The main variable of *nf* must be of lower priority than that of T, see priority (in the PARI manual).

Huge discriminants, helping rnfdisc. The format $[T, B]$ is also accepted instead of T and computes an order which is maximal at all maximal ideals specified by B, see ??rnfini: the valuation of D is then correct at all such maximal ideals but may be incorrect at other primes.

rnfeltabstorel (*rnf*, *x*)

Let *rnf* be a relative number field extension L/K as output by *rnfini* and let *x* be an element of L expressed as a polynomial modulo the absolute equation: emphasis: ‘*rnf.pol*’, or in terms of the absolute \mathbb{Z}-basis for \mathbb{Z}_L if *rnf* contains one (as in *rnfini*(nf,pol,1), or after a call to *nfinit*(rnf)). Computes *x* as an element of the relative extension L/K as a polmod with polmod coefficients.

```
? K = nfinit(y^2+1); L = rnfini(K, x^2-y);
? L.polabs
%2 = x^4 + 1
```
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \ \ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^--------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinits(L); \ \ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))

rnfeltabstorel(rnf, x, flag)

rnf being a relative number field extension _L/K_ as output by rnfinit and _x_ being an element of _L_ expressed as a polynomial or polmod with polmod coefficients (or as a t_COL on nfinits(rnf).zk), computes _x_ as an element of _K_ as a t_POLMOD if _flag_ = 0 and as a t_COL otherwise. If _x_ is not in _K_, a domain error occurs.

? K = nfinits(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltabstorel(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltabstorel(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltabstorel(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltabstorel(L, Mod(x, L.pol))
*** at top-level: rnfeltabstorel(L,Mod(x,x
*** ^--------------------
*** rnfeltabstorel: element not in the base field
? rnfeltabstorel(L, Mod(y, x^2-y), 1) \ \ as a t_COL
%7 = [0, 1]~
? rnfeltabstorel(L, [0,1,0,0]~) \ \ not allowed without absolute nf struct
*** rnfeltabstorel: incorrect type in rnfeltabstorel (t_COL).
? nfinits(L); \ \ add absolute nf structure to _L_
? rnfeltabstorel(L, [0,1,0,0]~) \ \ now OK
%8 = Mod(y, y^2 + 1)

If we had started with _L_ = rnfinit(K, x^2-y, 1), then the final would have worked directly.

rnfeltabstorel(rnf, x)

rnf being a relative number field extension _L/K_ as output by rnfinit and _x_ being an element of _L_, returns the relative norm _N_{L/K}(x)_ as an element of _K_.

? K = nfinits(y^2+1); L = rnfinit(K, x^2-y);
? rnfeltabstorel(L, Mod(x, L.pol))
%2 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltnorm(L, 2)
%3 = 4
? rnfeltnorm(L, Mod(x, x^2-y))

rnfeltnorm(rnf, x)

rnf being a relative number field extension *L/K* as output by *rnfinit* and *x* being an element of *L* expressed as a polynomial or polmod with polmod coefficients, computes *x* as an element of the absolute extension *L/Q* as a polynomial modulo the absolute equation :emphasis:`\`rnf.pol\`.

```plaintext
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltnorm(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltnorm(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
? rnfeltnorm(L, Mod(y,K.pol))
%5 = Mod(x^2, x^4 + 1)
```

rnfeltreltoabs(rnf, x)

rnf being a relative number field extension *L/K* as output by *rnfinit* and *x* being an element of *L*, expressed asapolynomialorpolmodwithpolmodcoefficients,computes *x* as an element of the absolute extension *L/Q* as a polynomial modulo the absolute equation :emphasis:`\`rnf.pol\`.

```plaintext
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltreltoabs(L, Mod(x, L.pol))
%3 = Mod(x, x^4 + 1)
? rnfeltreltoabs(L, Mod(y, x^2-y))
%4 = Mod(x^2, x^4 + 1)
```

rnfelttrace(rnf, x)

rnf being a relative number field extension *L/K* as output by *rnfinit* and *x* being an element of *L*, returns the relative trace *Tr*_{*L/K*}(*x*) as an element of *K*.

```plaintext
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? rnfelttrace(L, Mod(x, L.pol))
%2 = 0
? rnfelttrace(L, 2)
%3 = 4
? rnfelttrace(L, Mod(x, x^2-y))
```

rnfeltup(rnf, x, flag)

rnf being a relative number field extension *L/K* as output by *rnfinit* and *x* being an element of *K*, computes *x* as an element of the absolute extension *L/Q*. As a t_POLMOD modulo :emphasis:`\`rnf.pol\` if flag = 0 and as a t_COL on the absolute field integer basis if flag = 1.

```plaintext
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeltup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeltup(L, [1,2]~) \ `\ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeltup(L, y, 1) \ `\ in terms of nfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeltup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~
```

rnfequation(nf, pol, flag)

Given a number field *nf* as output by *nfinit* (or simply a polynomial) and a polynomial *pol* with coefficients in *nf* defining a relative extension *L* of *nf*, computes an absolute equation of *L* over *Q*.

```plaintext
```
The main variable of \(nf \) must be of lower priority than that of \(pol \) (see priority (in the PARiM manual)). Note that for efficiency, this does not check whether the relative equation is irreducible over \(nf \), but only if it is squarefree. If it is reducible but squarefree, the result will be the absolute equation of the étale algebra defined by \(pol \). If \(pol \) is not squarefree, raise an \texttt{e_DOMAIN} exception.

\[
\texttt{? \ rnfequation(y^2+1, x^2 - y)}
\]
\[
\texttt{\%1 = x^4 + 1}
\]
\[
\texttt{? \ T = y^3-2; \ rnfequation(nfinit(T), (x^3-2)/(x-Mod(y,T)))}
\]
\[
\texttt{\%2 = x^6 + 108} \ \text{\textbackslash\ Galois closure of } \mathbb{Q}(2^{1/3})
\]

If \texttt{flag} is nonzero, outputs a 3-component row vector \([z, a, k]\), where

- \(z \) is the absolute equation of \(L \) over \(\mathbb{Q} \), as in the default behavior,
- \(a \) expresses as a \texttt{t_POLMOD} modulo \(z \) a root \(\alpha \) of the polynomial defining the base field \(nf \),
- \(k \) is a small integer such that \(\theta = \beta + k\alpha \) is a root of \(z \), where \(\beta \) is a root of \(pol \). It is guaranteed that \(k = 0 \) whenever \(\mathbb{Q}(\beta) = L \).

\[
\texttt{? \ T = y^3-2; \ pol = x^2 +x*y + y^2;}
\]
\[
\texttt{? \ [z,a,k] = rnfequation(T, pol, 1);}
\]
\[
\texttt{? \ z}
\]
\[
\texttt{\%3 = x^6 + 108}
\]
\[
\texttt{? \ subst(T, y, a)}
\]
\[
\texttt{\%4 = 0}
\]
\[
\texttt{? \ alpha= Mod(y, T);}
\]
\[
\texttt{? \ beta = Mod(x*Mod(1,T), pol);}
\]
\[
\texttt{? \ subst(z, x, beta + k*alpha)}
\]
\[
\texttt{\%7 = 0}
\]

\texttt{rnfhnfbasis(bnf, x)}

Given \(bnf \) as output by \texttt{bnfinit}, and either a polynomial \(x \) with coefficients in \(bnf \) defining a relative extension \(L \) of \(bnf \), or a pseudo-basis \(x \) of such an extension, gives either a true \(bnf \)-basis of \(L \) in upper triangular Hermite normal form, if it exists, and returns 0 otherwise.

\texttt{rnfidealabstorel(rnf, x)}

Let \(rnf \) be a relative number field extension \(L/K \) as output by \texttt{rnfinit} and let \(x \) be an ideal of the absolute extension \(L/\mathbb{Q} \). Returns the relative pseudo-matrix in HNF giving the ideal \(x \) considered as an ideal of the relative extension \(L/K \), i.e. as a \(\mathbb{Z}_K \)-module.

Let \(Labs \) be an (absolute) \texttt{nf} structure attached to \(L \), obtained via \texttt{Labs = nfinit(rnf)}). Then \(rnf \) “knows” about \(Labs \) and \(x \) may be given in any format attached to \(Labs \), e.g. a prime ideal or an ideal in HNF wrt. \(Labs.zk \):

\[
\texttt{? \ K = nfinit(y^2+1); \ rnf = rnfinit(K, x^2-y); \ Labs = nfinit(rnf);}
\]
\[
\texttt{? \ m = idealhnf(Labs, 17, x^3+2); \ \textbackslash\ some \ ideal \ in \ HNF \ wrt. \ Labs.zk}
\]
\[
\texttt{? \ B = rnfidealabstorel(rnf, m)}
\]
\[
\texttt{\%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \ \textbackslash\ pseudo-basis \ for \ m \ as \ \mathbb{Z}_K\text{-module}
\]
\[
\texttt{? \ A = rnfidealreltoabs(rnf, B)}
\]
\[
\texttt{\%4 = [17, x^2 + 4, x + 8, x^4 + 8*x^2] \ \textbackslash\ Z\text{-basis \ for \ m \ in \ } \mathbb{Q}[x]/(rnf.polabs)
\]
\[
\texttt{? \ mathnf(matalgtobasis(Labs, A)) == m}
\]
\[
\texttt{\%5 = 1}
\]

If on the other hand, we do not have a \(Labs \) at hand, because it would be too expensive to compute, but we nevertheless have a \(\mathbb{Z} \)-basis for \(x \), then we can use the function with this basis as argument. The entries of \(x \) may be given either modulo \(rnf.polabs \) (absolute form, possibly lifted) or modulo \(rnf.pol \) (relative form as \texttt{t_POLMOD}):

1.1. Guide to real precision in the PARi interface
? K = nfinit(y^2+1); rnf = rnfninit(K, x^2-y);
? rnfidealabstorel(rnf, [17, x^2 + 4, x + 8, x^3 + 8*x^2])
%2 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
? rnfidealabstorel(rnf, Mod([17, y + 4, x + 8, y*x + 8*y], x^2-y))
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]

rnfidealabstorel(rnf, x)

Let rnf be a relative number field extension L/K as output by `rnfninit`, and x an ideal of L, given either in relative form or by a \mathbb{Z}-basis of elements of L (see `rnfidealabstorel` in the PARI manual). This function returns the ideal of K below x, i.e. the intersection of x with K.

? rnf = rnfninit(nfinit(y^2+1), x^2-y+1);
? rnfidealabstorel(rnf, y+1) \ \ P_2^2
%2 = \[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 2\]

? rnfidealabstorel(rnf, x) \ \ P_2
%3 = \[[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 1\]

? L = nfinit(rnf);
? id = idealhlf(L, idealhlf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealabstorel(rnf, id)
%6 = 1

Note that ideals of the base field K must be explicitly lifted to L via `rnfidealup` before they can be factored.

rnfidealhnf(rnf, x)

rnf being a relative number field extension L/K as output by `rnfninit` and x being a relative ideal (which can be, as in the absolute case, of many different types, including of course elements), computes the HNF pseudo-matrix attached to x, viewed as a \mathbb{Z}_K-module.

? rnf = rnfninit(nfinit(y^2+1), x^2-y+1);
? rnfidealabstorel(rnf, y+1) \ \ P_2^2
%2 = [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 2]

? rnfidealabstorel(rnf, x) \ \ P_2
%3 = [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 1]

? L = nfinit(rnf);
? id = idealhlf(L, idealhlf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealabstorel(rnf, id)
%6 = 1

rnfidealmul(rnf, x, y)

rnf being a relative number field extension L/K as output by `rnfninit` and x and y being ideals of the relative extension L/K given by pseudo-matrices, outputs the ideal product, again as a relative ideal.

rnfidealnormabs(rnf, x)

Let rnf be a relative number field extension L/K as output by `rnfninit` and let x be a relative ideal (which can be, as in the absolute case, of many different types, including of course elements). This function computes the norm of the x considered as an ideal of the absolute extension L/\mathbb{Q}. This is identical to

```plaintext```
\texttt{idealnorm(rnf, rnfidealnormrel(rnf, x))}
```

but faster.

rnfidealnormrel(rnf, x)

Let rnf be a relative number field extension L/K as output by `rnfninit` and let x be a relative ideal (which can be, as in the absolute case, of many different types, including of course elements). This function computes the relative norm of x as an ideal of K in HNF.
The argument \(pr \) is also allowed to be a prime number \(p \), in which case the function returns a pair of vectors \([SK, SL]\), where \(SK \) contains the primes of \(K \) above \(p \) and \(SL[i] \) is the vector of primes of \(L \) above \(SK[i] \).

```pARI
? [SK,SL] = rnfidealdec(rnf, 5);
? [SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, [2, 2]]]
```

rnfidealreltoabs(\(rnf, x, flag \))

Let \(rnf \) be a relative number field extension \(L/K \) as output by \texttt{rnfinit} and let \(x \) be a relative ideal, given as a \(\mathbb{Z}_K \)-module by a pseudo matrix \([A, I]\). This function returns the ideal \(x \) as an absolute ideal of \(L/Q \). If \(flag = 0 \), the result is given by a vector of \(\mathbb{t}_\text{POLMOD} \)s modulo \(rnf.pol \), forming a \(\mathbb{Z} \)-basis; if \(flag = 1 \), it is given in HNF in terms of the fixed \(\mathbb{Z} \)-basis for \(\mathbb{Z}_L \), see \texttt{rnfinit} (in the PARI manual).

```pARI
? K = nfini(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K, 2)[1];
? Prel = rnfidealhnf(rnf, P)
? rnfidealreltoabs(rnf,Prel)
%6 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
```

The reason why we do not return by default (\(flag = 0 \)) the customary HNF in terms of a fixed \(\mathbb{Z} \)-basis for \(\mathbb{Z}_L \) is precisely because a \(rnf \) does not contain such a basis by default. Completing the structure so that it contains a \(nf \) structure for \(L \) is polynomial time but costly when the absolute degree is large, thus it is not done by default. Note that setting \(flag = 1 \) will complete the \(rnf \).

rnfidealtwoelt(\(rnf, x \))

\(rnf \) being a relative number field extension \(L/K \) as output by \texttt{rnfinit} and \(x \) being an ideal of the relative extension \(L/K \) given by a pseudo-matrix, gives a vector of two generators of \(x \) over \(\mathbb{Z}_L \) expressed as \texttt{polmods} with \texttt{polmod} coefficients.

rnfidealup(\(rnf, x, flag \))

Let \(rnf \) be a relative number field extension \(L/K \) as output by \texttt{rnfinit} and let \(x \) be an ideal of \(K \). This function returns the ideal \(x\mathbb{Z}_L \) as an absolute ideal of \(L/Q \), in the form of a \(\mathbb{Z} \)-basis. If \(flag = 0 \), the result is given by a
vector of polynomials (modulo \texttt{rnf.pol}); if \texttt{flag} = 1, it is given in HNF in terms of the fixed \(\mathbb{Z}\)-basis for \(\mathbb{Z}_L\), see \texttt{rnfinit} (in the PARI manual).

\begin{verbatim}
? K = nfinit(y^2+1); rnf = rnfini(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
\end{verbatim}

The reason why we do not return by default (\texttt{flag} = 0) the customary HNF in terms of a fixed \(\mathbb{Z}\)-basis for \(\mathbb{Z}_L\) is precisely because a \texttt{rnf} does not contain such a basis by default. Completing the structure so that it contains a \texttt{nf} structure for \(\mathbb{Z}_L\) is polynomial time but costly when the absolute degree is large, thus it is not done by default. Note that setting \texttt{flag} = 1 will complete the \texttt{rnf}.

\texttt{rnfinit}(\texttt{nf, T, flag})

Given an \texttt{nf} structure attached to a number field \(K\), as output by \texttt{nfinit}, and a monic irreducible polynomial \(T\) in \(\mathbb{Z}_K[x]\) defining a relative extension \(L = K[x]/(T)\), this computes data to work in \(L/K\) The main variable of \(T\) must be of higher priority (see \texttt{priority} (in the PARI manual)) than that of \texttt{nf}, and the coefficients of \(T\) must be in \(\mathbb{K}\).

The result is a row vector, whose components are technical. We let \(m = |K : \mathbb{Q}|\) the degree of the base field, \(n = [L : K]\) the relative degree, \(r_1\) and \(r_2\) the number of real and complex places of \(K\). Access to this information via \texttt{member functions} is preferred since the specific data organization specified below will change in the future.

If \texttt{flag} = 1, add an \texttt{nf} structure attached to \(L\) to \texttt{rnf}. This is likely to be very expensive if the absolute degree \(mn\) is large, but fixes an integer basis for \(\mathbb{Z}_L\) as a \(\mathbb{Z}\)-module and allows to input and output elements of \(L\) in absolute form: as \texttt{t_COL} for elements, as \texttt{t_MAT} in HNF for ideals, as \texttt{prid} for prime ideals. Without such a call, elements of \(L\) are represented as \texttt{t_POLMOD}, etc. Note that a subsequent \texttt{nfinit(rnf)} will also explicitly add such a component, and so will the following functions \texttt{rnfidealmul}, \texttt{rnfidealtoelt}, \texttt{rnfindalprunedec}, \texttt{rnfindalup} (with flag 1) and \texttt{rnfidealreltoabs} (with flag 1). The absolute \texttt{nf} structure attached to \(L\) can be recovered using \texttt{nfinit(rnf)}.

\texttt{rnf}[1]) contains the relative polynomial \(T\).

\texttt{rnf}[2] contains the integer basis \([A, d]\) of \(K\), as (integral) elements of \(L/\mathbb{Q}\). More precisely, \(A\) is a vector of polynomial with integer coefficients, \(d\) is a denominator, and the integer basis is given by \(A/d\).

\texttt{rnf}[3] (\texttt{rnf.disc}) is a two-component row vector \([d(L/K), s]\) where \(d(L/K)\) is the relative ideal discriminant of \(L/K\) and \(s\) is the discriminant of \(L/K\) viewed as an element of \(K^*/(K^*)^2\), in other words it is the output of \texttt{rnfdisc}.

\texttt{rnf}[4]) is the ideal index \(i\), i.e. such that \(d(T)\mathbb{Z}_K = f^2d(L/K)\).

\texttt{rnf}[5]) is the list of rational primes dividing the norm of the relative discriminant ideal.

\texttt{rnf}[7] (\texttt{rnf.zk}) is the pseudo-basis \((A, I)\) for the maximal order \(\mathbb{Z}_L\) as a \(\mathbb{Z}_K\)-module: \(A\) is the relative integral pseudo basis expressed as polynomials (in the variable of \(T\)) with polmod coefficients in \texttt{nf}, and the second component \(I\) is the ideal list of the pseudobasis in HNF.

\texttt{rnf}[8] is the inverse matrix of the integral basis matrix, with coefficients polmods in \texttt{nf}.
\textit{rnf}[9] is currently unused.
\textit{rnf}[10] (\texttt{rnf.nf}) is \textit{nf}.
\textit{rnf}[11] is an extension of \texttt{rnfequation}(\textit{K}, \textit{T}, 1). Namely, a vector \([P, a, k, \textit{K.pol}, \textit{T}]\) describing the \textit{absolute} extension \(\mathbb{L}/\mathbb{Q}\): \(P\) is an absolute equation, more conveniently obtained as \texttt{rnf.polabs}; \(a\) expresses the generator \(\alpha = y \mod \textit{K.pol}\) of the number field \(\textit{K}\) as an element of \(\mathbb{L}\), i.e. a polynomial modulo the absolute equation \(P\);
\(k\) is a small integer such that, if \(\beta\) is an abstract root of \(T\) and \(\alpha\) the generator of \(\textit{K}\) given above, then \(P(\beta + k\alpha) = 0\). It is guaranteed that \(k = 0\) if \(\mathbb{Q}(\beta) = \mathbb{L}\).

\textbf{Caveat.} Be careful if \(k! = 0\) when dealing simultaneously with absolute and relative quantities since \(\mathbb{L} = \mathbb{Q}(\beta + k\alpha) = \mathbb{K}(\alpha)\), and the generator chosen for the absolute extension is not the same as for the relative one. If this happens, one can of course go on working, but we advise to change the relative polynomial so that its root becomes \(\beta + k\alpha\). Typical GP instructions would be

\begin{verbatim}
[P,a,k] = rnfequation(K, T, 1);
if (k, T = subst(T, x, x - k*Mod(y, K.pol)));
L = rnfinitial(K, T);
\end{verbatim}

\textit{rnf}[12] is by default unused and set equal to 0. This field is used to store further information about the field as it becomes available (which is rarely needed, hence would be too expensive to compute during the initial \texttt{rnfinitial} call).

\textbf{Huge discriminants, helping \texttt{rnfdisc}.} When \(T\) has a discriminant which is difficult to factor, it is hard to compute \(\mathbb{Z}_L\). As in \texttt{nfinit}, the special input format \([T, B]\) is also accepted, where \(T\) is a polynomial as above and \(B\) specifies a list of maximal ideals. The following formats are recognized for \(B\):

\begin{itemize}
 \item an integer: the list of all maximal ideals above a rational prime \(p < B\).
 \item a vector of rational primes or prime ideals: the list of all maximal ideals dividing an element in the list.
\end{itemize}

Instead of \(\mathbb{Z}_L\), this produces an order which is maximal at all such maximal ideals primes. The result may actually be a complete and correct \textit{rnf} structure if the relative ideal discriminant factors completely over this list of maximal ideals but this is not guaranteed. In general, the order may not be maximal at primes \(p\) not in the list such that \(p^2\) divides the relative ideal discriminant.

\textbf{rnfisabelian}(\textit{nf}, \textit{T})

\(T\) being a relative polynomial with coefficients in \textit{nf}, return 1 if it defines an abelian extension, and 0 otherwise.

\begin{verbatim}
? K = nfinit(y^2 + 23);
? rnfinitial(K, x^3 - 3*x - y)
\end{verbatim}

\textbf{rnfisfree}(\textit{bnf}, \textit{x})

Given \textit{bnf} as output by \texttt{bnfinit}, and either a polynomial \(x\) with coefficients in \textit{bnf} defining a relative extension \(\mathbb{L}\) of \textit{bnf}, or a pseudo-basis \(x\) of such an extension, returns true (1) if \(\mathbb{L}/\textit{bnf}\) is free, false (0) if not.

\textbf{rnfislocalcyclo}(\textit{rnf})

Let \textit{rnf} be a relative number field extension \(\mathbb{L}/\mathbb{K}\) as output by \texttt{rnfinitial} whose degree \([\mathbb{L} : \mathbb{K}]\) is a power of a prime \(\ell\). Return 1 if the \(\ell\)-extension is locally cyclotomic (locally contained in the cyclotomic \(\mathbb{Z}_\ell\)-extension of \(\mathbb{K}\) at all places \(v\|\ell\)), and 0 if not.

\begin{verbatim}
? K = nfinit(y^2 + y + 1);
? L = rnfinitial(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfinitialcyclo(L)
\end{verbatim}

we expect 3-adic continuity by Krasner's lemma

(continues on next page)
rnfnorm(T, a, flag)

Similar to bnfnorm but in the relative case. T is as output by rnfnorminit applied to the extension \(L/K \). This tries to decide whether the element \(a \) in \(K \) is the norm of some \(x \) in the extension \(L/K \).

The output is a vector \([x, q]\), where \(a = \text{Norm}(x) \times q \). The algorithm looks for a solution \(x \) which is an \(S \)-integer, with \(S \) a list of places of \(K \) containing at least the ramified primes, the generators of the class group of \(L \), as well as those primes dividing \(a \). If \(L/K \) is Galois, then this is enough but you may want to add more primes to \(S \) to produce different elements, possibly smaller; otherwise, \(flag \) is used to add more primes to \(S \): all the places above the primes \(p \leq flag \) (resp. \(p||flag \)) if \(flag > 0 \) (resp. \(flag < 0 \)).

The answer is guaranteed (i.e. \(a \) is a norm iff \(q = 1 \)) if the field is Galois, or, under GRH, if \(S \) contains all primes less than \(12 \log^2 \|\text{disc}(M)\| \), where \(M \) is the normal closure of \(L/K \).

If rnfnorminit has determined (or was told) that \(L/K \) is Galois, and \(flag != 0 \), a Warning is issued (so that you can set \(flag = 1 \) to check whether \(L/K \) is known to be Galois, according to \(T \)). Example:

```pari
? rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]
```

rnfisnorminit
If \(\text{flag} > 0 \), do not care whether \(L/K \) is Galois or not.
If \(\text{flag} = 1 \), \(L/K \) is assumed to be Galois (unchecked), which speeds up rnfisnorm.
If \(\text{flag} = 2 \), let the routine determine whether \(L/K \) is Galois.

rnfkummer(bnr, subgp, precision)
This function is deprecated, use bnrclassfield.

rnflllgram(nf, pol, order, precision)
Given a polynomial \(pol \) with coefficients in \(nf \) defining a relative extension \(L \) and a suborder \(order \) of \(L \) (of maximal rank), as output by rnfpseudobasis(\(nf \), \(pol \)) or similar, gives \([\text{neworder}], U \) where \(\text{neworder} \) is a reduced order and \(U \) is the unimodular transformation matrix.

rnfnormgroup(bnr, pol)
\(bnr \) being a big ray class field as output by bnrinit and \(pol \) a relative polynomial defining an Abelian extension, computes the norm group (alias Artin or Takagi group) corresponding to the Abelian extension of \(bnf = bnr \). \(bnf \) defined by \(pol \), where the module corresponding to \(bnr \) is assumed to be a multiple of the conductor (i.e. \(pol \) defines a subextension of \(bnr \)). The result is the HNF defining the norm group on the given generators of \(bnr \). \(\text{gen} \). Note that neither the fact that \(pol \) defines an Abelian extension nor the fact that the module is a multiple of the conductor is checked. The result is undefined if the assumption is not correct, but the function will return the empty matrix \([;] \) if it detects a problem; it may also not detect the problem and return a wrong result.
rnfpolred(nf, pol, precision)

This function is obsolete: use rnfpolredbest instead. Relative version of polred. Given a monic polynomial `pol` with coefficients in `nf`, finds a list of relative polynomials defining some subfields, hopefully simpler and containing the original field. In the present version 2.13.3, this is slower and less efficient than rnfpolredbest.

Remark. This function is based on an incomplete reduction theory of lattices over number fields, implemented by rnflllgram, which deserves to be improved.

rnfpolredabs(nf, pol, flag)

Relative version of polredabs. Given an irreducible monic polynomial `pol` with coefficients in the maximal order of `nf`, finds a canonical relative polynomial defining the same field, hopefully with small coefficients. Note that the equation is only canonical for a fixed `nf`, using a different defining polynomial in the `nf` structure will produce a different relative equation.

The binary digits of `flag` correspond to: 1: add information to convert elements to the new representation, 2: absolute polynomial, instead of relative, 16: possibly use a suborder of the maximal order. More precisely:

0: default, return `P`
1: returns `[P, a]` where `P` is the default output and `a`, a t_POLMOD modulo `P`, is a root of `pol`.
2: returns `Pabs`, an absolute, instead of a relative, polynomial. This polynomial is canonical and does not depend on the `nf` structure. Same as but faster than

\[
\text{polredabs(rnfequation(nf, pol))}
\]

3: returns `[Pabs, a, b]`, where `Pabs` is an absolute polynomial as above, `a, b` are t_POLMOD modulo `Pabs,` roots of `nf.pol` and `pol` respectively.
16: (OBSELETE) possibly use a suborder of the maximal order. This makes rnfpolredabs behave as rnfpolredbest. Just use the latter.

Warning. The complexity of rnfpolredabs is exponential in the absolute degree. The function rnfpolredbest runs in polynomial time, and tends to return polynomials with smaller discriminants. It also supports polynomials with arbitrary coefficients in `nf`, neither integral nor necessarily monic.

rnfpolredbest(nf, pol, flag)

Relative version of polredbest. Given a polynomial `pol` with coefficients in `nf`, finds a simpler relative polynomial `P` defining the same field. As opposed to rnfpolredabs this function does not return a smallest (canonical) polynomial with respect to some measure, but it does run in polynomial time.

The binary digits of `flag` correspond to: 1: add information to convert elements to the new representation, 2: absolute polynomial, instead of relative. More precisely:

0: default, return `P`
1: returns `[P, a]` where `P` is the default output and `a`, a t_POLMOD modulo `P`, is a root of `pol`.
2: returns `Pabs`, an absolute, instead of a relative, polynomial. Same as but faster than

\[
\text{rnfquation(nf, rnfpolredbest(nf,pol))}
\]

3: returns `[Pabs, a, b]`, where `Pabs` is an absolute polynomial as above, `a, b` are t_POLMOD modulo `Pabs,` roots of `nf.pol` and `pol` respectively.

? K = nfinit(y^3-2); pol = x^2 + x*y + y^2;
? [P, a] = rnfpolredbest(K,pol,1);
? P
%3 = x^2 - x + Mod(y - 1, y^3 - 2)
\begin{verbatim}
? a
%4 = Mod(Mod(2*y^2+3*y+4,y^3-2)*x + Mod(-y^2-2*y-2,y^3-2),
x^2 - x + Mod(y-1,y^3-2))
? subst(K.pol,y,a)
%5 = 0
? [Pabs, a, b] = rnfpolredbest(K,pol,3);
? Pabs
%7 = x^6 - 3*x^5 + 5*x^3 - 3*x + 1
? a
%8 = Mod(-x^2+x+1, x^6-3*x^5+5*x^3-3*x+1)
? b
%9 = Mod(2*x^5-5*x^4-3*x^3+10*x^2+5*x-5, x^6-3*x^5+5*x^3-3*x+1)
? subst(K.pol,y,a)
%10 = 0
? substvec(pol,[x,y],[a,b])
%11 = 0
\end{verbatim}

\textbf{rnfpseudobasis}(nf, T)

Given an \texttt{nf} structure attached to a number field \(K \), as output by \texttt{nfinit}, and a monic irreducible polynomial \(T \) in \(\mathbb{Z}_K[x] \) defining a relative extension \(L = K[x]/(T) \), computes the relative discriminant of \(L \) and a pseudo-basis \((A, J)\) for the maximal order \(\mathbb{Z}_L \) viewed as a \(\mathbb{Z}_K \)-module. This is output as a vector \([A, J, D, d]\), where \(D \) is the relative ideal discriminant and \(d \) is the relative discriminant considered as an element of \(K^*/K^{*2} \).

\begin{verbatim}
? K = nfinit(y^2+1);
? [A,J,D,d] = rnfpseudobasis(K, x^2+y);
? A
%3 =
[1 0]
[0 1]

? J
%4 = [1, 1]
? D
%5 = [0, -4]~
? d
%6 = [0, -1]~
\end{verbatim}

\textbf{Huge discriminants, helping \texttt{rnfdisc}}. The format \([T, B]\) is also accepted instead of \(T \) and produce an order which is maximal at all prime ideals specified by \(B \), see \texttt{??rnfinit}.

\begin{verbatim}
? p = 585403248812100232206609398101;
? q = 711171340236468512951957953369;
? T = x^2 + 3*(p*q)^2;
? [A,J,D,d] = V = rnfpseudobasis(K, T); D
time = 22,178 ms.
%10 = 3
? [A,J,D,d] = W = rnfpseudobasis(K, [T,100]); D
time = 5 ms.
%11 = 3
? V == W
%12 = 1
\end{verbatim}
In this example, the results are identical since $D \cap \mathbb{Z}$ factors over primes less than 100 (and in fact, over 3). Had it not been the case, the order would have been guaranteed maximal at primes $p \mid p$ for $p \leq 100$ only (resp. $p \mid 3$). And might have been nonmaximal at any other prime ideal p such that $p \mid 2$ divided D.

rnfsteinitz(*nf*, *x*)

Given a number field nf as output by `nfinit` and either a polynomial x with coefficients in nf defining a relative extension L of nf, or a pseudo-basis x of such an extension as output for example by `rnfpseudobasis`, computes another pseudo-basis (A, I) (not in HNF in general) such that all the ideals of I except perhaps the last one are equal to the ring of integers of nf, and outputs the four-component row vector $[A, I, D, d]$ as in `rnfpseudobasis`. The name of this function comes from the fact that the ideal class of the last ideal of I, which is well defined, is the Steinitz class of the \mathbb{Z}_K-module \mathbb{Z}_L (its image in $SK_0(\mathbb{Z}_K)$).

rootsof1(*N*, *precision*)

Return the column vector v of all complex N-th roots of 1, where N is a positive integer. In other words, $v[k] = \exp(2i(k - 1)\pi/N)$ for $k = 1, ..., N$. Rational components (e.g., the roots 1 and i) are given exactly, not as floating point numbers:

```pari
def rootsof1(N, precision)
def
```

```pari
? rootsof1(4) %1 = [1, I, -1, -I]~
? rootsof1(3) %2 = [1, -1/2 + 0.866025...*I, -1/2 - 0.866025...*I]~
```

round(*x*, *e*)

If x is in \mathbb{R}, rounds x to the nearest integer (rounding to $+\infty$ in case of ties), then and sets e to the number of error bits, that is the binary exponent of the difference between the original and the rounded value (the “fractional part”). If the exponent of x is too large compared to its precision (i.e. $e > 0$), the result is undefined and an error occurs if e was not given.

Important remark. Contrary to the other truncation functions, this function operates on every coefficient at every level of a PARI object. For example

\[
\text{truncate}((2.4 * X^2 - 1.7)/(X)) = 2.4 * X,
\]

whereas

\[
\text{round}((2.4 * X^2 - 1.7)/(X)) = (2 * X^2 - 2)/(X).
\]

An important use of `round` is to get exact results after an approximate computation, when theory tells you that the coefficients must be integers.

select(*f*, *A*, *flag*)

We first describe the default behavior, when `flag` is 0 or omitted. Given a vector or list A and a t_CLOSURE f, `select` returns the elements x of A such that $f(x)$ is nonzero. In other words, f is seen as a selection function returning a boolean value.

```pari
? select(x->isprime(x), vector(50,i,i^2+1)) %1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
? select(x->(x<100), %) %2 = [2, 5, 17, 37]
```
returns the primes of the form \(i^2 + 1 \) for some \(i \leq 50 \), then the elements less than 100 in the preceding result.

The `select` function also applies to a matrix \(A \), seen as a vector of columns, i.e. it selects columns instead of entries, and returns the matrix whose columns are the selected ones.

Remark. For \(v \) a \texttt{t_VEC}, \texttt{t_COL}, \texttt{t_VECSMALL}, \texttt{t_LIST} or \texttt{t_MAT}, the alternative set-notations

\[
\begin{align*}
& \{ g(x) \mid x \leftarrow v, f(x) \} \\
& \{ x \mid x \leftarrow v, f(x) \} \\
& \{ g(x) \mid x \leftarrow v \}
\end{align*}
\]

are available as shortcuts for

\[
\begin{align*}
& \text{apply}(g, \text{select}(f, \text{Vec}(v))) \\
& \text{select}(f, \text{Vec}(v)) \\
& \text{apply}(g, \text{Vec}(v))
\end{align*}
\]

respectively:

\[
? \ \{ x \mid x \leftarrow \text{vector}(50, i, i^2+1), \text{isprime}(x) \}
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
\]

If `flag = 1`, this function returns instead the *indices* of the selected elements, and not the elements themselves (indirect selection):

\[
? V = \text{vector}(50, i, i^2+1); \\
? \text{select}(x->\text{isprime}(x), V, 1)
%2 = \text{Vecsmall}([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
\]

The following function lists the elements in \((\mathbb{Z}/N\mathbb{Z})^*\):

\[
? \text{invertibles}(N) = \text{select}(x->\text{gcd}(x,N) == 1, [1..N])
\]

Finally

\[
? \text{select}(x->x, M)
\]

selects the nonzero entries in \(M \). If the latter is a \texttt{t_MAT}, we extract the matrix of nonzero columns. Note that *removing* entries instead of selecting them just involves replacing the selection function \(f \) with its negation:

\[
? \text{select}(x->!\text{isprime}(x), \text{vector}(50, i, i^2+1))
\]

self()

Return the calling function or closure as a \texttt{t_CLOSURE} object. This is useful for defining anonymous recursive functions.

\[
? (n -> \text{if}(n==0,1,n*\text{self()}(n-1)))(5)
%1 = 120 \ \\ 5!
\]

\[
? (n -> \text{if}(n<1, n, \text{self()}(n-1)+\text{self()}(n-2)))(20)
%2 = 6765 \ \\ \text{Fibonacci}(20)
\]

seralgdep\((s, p, r)\)

finds a linear relation between powers \((1, s, \ldots, s^p)\) of the series \(s \), with polynomial coefficients of degree \(\leq r \). In case no relation is found, return 0.
s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + O(y^6);
seralgdep(s, 2, 2)
%2 = -x^2 + (8*y^2 + 20*y + 1)
subst(%2, x, s)
%3 = O(y^6)
seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
seralgdep(s, 1, 2)
%5 = 0

The series main variable must not be \(x \), so as to be able to express the result as a polynomial in \(x \).

serchop \((s, n)\)

Remove all terms of degree strictly less than \(n \) in series \(s \). When the series contains no terms of degree \(< n \), return \(O(x^n) \).

\[
\begin{align*}
 \text{? } s &= 1/x + x + 2*x^2 + O(x^3); \\
 \text{? } \text{serchop}(s) \\
 \%2 &= x + 2*x^3 + O(x^3) \\
 \text{? } \text{serchop}(s, 2) \\
 \%3 &= 2*x^2 + O(x^3) \\
 \text{? } \text{serchop}(s, 100) \\
 \%4 &= O(x^{100})
\end{align*}
\]

serconvol \((x, y)\)

Convolution (or Hadamard product) of the two power series \(x \) and \(y \); in other words if \(x = \sum a_k * X^k \) and \(y = \sum b_k * X^k \) then \(\text{serconvol}(x, y) = \sum a_k * b_k * X^k \).

serlaplace \((x)\)

\(x \) must be a power series with nonnegative exponents or a polynomial. If \(x = \sum (a_k/k!) * X^k \) then the result is \(\sum a_k * X^k \).

serprec \((x, v)\)

Returns the absolute precision of \(x \) with respect to power series in the variable \(v \); this is the minimum precision of the components of \(x \). The result is \(+\infty\) if \(x \) is an exact object (as a series in \(v \)).

\[
\begin{align*}
 \text{? } \text{serprec}(x + O(y^2), y) \\
 \%1 &= 2 \\
 \text{? } \text{serprec}(x + 2, x) \\
 \%2 &= +\infty \\
 \text{? } \text{serprec}(2 + x + O(x^2), y) \\
 \%3 &= +\infty
\end{align*}
\]

serreverse \((s)\)

Reverse power series of \(s \), i.e. the series \(t \) such that \(t(s) = x \); \(s \) must be a power series whose valuation is exactly equal to one.

\[
\begin{align*}
 \text{? } \text{ps 8} \\
 \text{? } t &= \text{serreverse}(\tan(x)) \\
 \%2 &= x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8) \\
 \text{? } \tan(t) \\
 \%3 &= x + O(x^8)
\end{align*}
\]
setbinop(f, X, Y)

The set whose elements are the $f(x,y)$, where x,y run through X,Y respectively. If Y is omitted, assume that $X = Y$ and that f is symmetric: $f(x,y) = f(y,x)$ for all x,y in X.

```
? X = [1,2,3]; Y = [2,3,4];
? setbinop((x,y)->x+y, X,Y) \ set X + Y
%2 = [3, 4, 5, 6, 7]
? setbinop((x,y)->x-y, X,Y) \ set X - Y
%3 = [-3, -2, -1, 0, 1]
? setbinop((x,y)->x+y, X) \ set 2X = X + X
%2 = [2, 3, 4, 5, 6]
```

setintersect(x, y)

Intersection of the two sets x and y (see setisset). If x or y is not a set, the result is undefined.

```
? a = [3, 1, 1, 2];
? setisset(a)
%2 = 0
? Set(a)
%3 = [1, 2, 3]
```

setminus(x, y)

Difference of the two sets x and y (see setisset), i.e. set of elements of x which do not belong to y. If x or y is not a set, the result is undefined.

```
setrand($n$)

Reseeds the random number generator using the seed $n$. No value is returned. The seed is a small positive integer $0 < n < 2^{64}$ used to generate deterministically a suitable state array. All gp session start by an implicit setrand(1), so resetting the seed to this value allows to replay all computations since the session start. Alternatively, running a randomized computation starting by setrand ($n$) twice with the same $n$ will generate the exact same output.

In the other direction, including a call to setrand(getwalltime()) from your gprc will cause GP to produce different streams of random numbers in each session. (Unix users may want to use /dev/urandom instead of getwalltime.)

For debugging purposes, one can also record a particular random state using getrand (the value is encoded as a huge integer) and feed it to setrand:

```
? state = getrand(); \ record seed
...
? setrand(state); \ we can now replay the exact same computations
```

setsearch($S, x, flag$)

Determines whether $x$ belongs to the set $S$ (see setisset).

We first describe the default behavior, when $flag$ is zero or omitted. If $x$ belongs to the set $S$, returns the index $j$ such that $S[j] = x$, otherwise returns 0.
\begin{verbatim}
? T = [7,2,3,5]; S = Set(T);
? setsearch(S, 2)
%2 = 1
? setsearch(S, 4) \ not found
%3 = 0
? setsearch(T, 7) \ search in a randomly sorted vector
%4 = 0 \ WRONG !

If \( S \) is not a set, we also allow sorted lists with respect to the \texttt{cmp} sorting function, without repeated entries, as per \texttt{lists\rq{}rt(L, 1)}; otherwise the result is undefined.
\end{verbatim}

\begin{verbatim}
? L = List([1,4,2,3,2]); setsearch(L, 4)
%1 = 0 \ WRONG !
? list\rq{}rt(L, 1); L \ sort L first
%2 = List([1, 2, 3, 4])
? setsearch(L, 4)
%3 = 4 \ now correct

If \texttt{flag} is nonzero, this function returns the index \( j \) where \( x \) should be inserted, and 0 if it already belongs to \( S \). This is meant to be used for dynamically growing (sorted) lists, in conjunction with \texttt{listinsert}.
\end{verbatim}

\begin{verbatim}
? L = List([1,5,2,3,2]); list\rq{}rt(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \ 4 should have been inserted at index \( j \)
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])

\texttt{setunion}(x, y)

Union of the two sets \( x \) and \( y \) (see \texttt{setisset}). If \( x \) or \( y \) is not a set, the result is undefined.

\texttt{shift}(x, n)

Shifts \( x \) componentwise left by \( n \) bits if \( n \geq 0 \) and right by \( \|n\| \) bits if \( n < 0 \). May be abbreviated as \( x \cdot \text{literal:} \ll \lln \) or \( x \cdot \text{literal:} \gg \ggn \). A left shift by \( n \) corresponds to multiplication by \( 2^n \). A right shift of an integer \( x \) by \( \|n\| \) corresponds to a Euclidean division of \( x \) by \( 2^{\|n\|} \) with a remainder of the same sign as \( x \), hence is not the same (in general) as \( x \cdot 2^n \).

\texttt{shiftmul}(x, n)

Multiplies \( x \) by \( 2^n \). The difference with \texttt{shift} is that when \( n < 0 \), ordinary division takes place, hence for example if \( x \) is an integer the result may be a fraction, while for shifts Euclidean division takes place when \( n < 0 \) hence if \( x \) is an integer the result is still an integer.

\texttt{sigma}(x, k)

Sum of the \( k-th \) powers of the positive divisors of \( \|x\| . \) \( x \) and \( k \) must be of type integer.

\texttt{sign}(x)

\( \text{sign} (0, 1 \text{ or } -1) \) of \( x \), which must be of type integer, real or fraction; \texttt{t\_quad} with positive discriminants and \texttt{t\_infinity} are also supported.

\texttt{simplify}(x)

This function simplifies \( x \) as much as it can. Specifically, a complex or quadratic number whose imaginary part is the integer 0 (i.e. not \texttt{Mod(0,2)} or \texttt{.E-28}) is converted to its real part, and a polynomial of degree 0 is converted to its constant term. Simplifications occur recursively.

This function is especially useful before using arithmetic functions, which expect integer arguments:
\end{verbatim}
Note that GP results are simplified as above before they are stored in the history. (Unless you disable automatic simplification with \backslash y that is.) In particular

```
? type(%1)
%4 = "t_INT"

\sin(x, precision)
Sine of \(x\). Note that, for real \(x\), cosine and sine can be obtained simultaneously as

\[
\text{cs}(x) = \text{my}(z = \exp(I \times x)); \ [\text{real}(z), \text{imag}(z)];
\]

and for general complex \(x\) as

\[
\text{cs2}(x) = \text{my}(z = \exp(I \times x), \ u = 1/z); \ [(z+u)/2, \ (z-u)/2];
\]

Note that the latter function suffers from catastrophic cancellation when \(z^2 1\).

\\sinc(x, precision)
Cardinal sine of \(x\), i.e. \(\sin(x)/x\) if \(x! = 0\), 1 otherwise. Note that this function also allows to compute

\[
(1 - \cos(x))/x^2 = \sinc(x/2)^2/2
\]

accurately near \(x = 0\).

\sinh(x, precision)
Hyperbolic sine of \(x\).

\sizebyte(x)
Outputs the total number of bytes occupied by the tree representing the PARI object \(x\).

\sizedigit(x)
This function is DEPRECATED, essentially meaningless, and provided for backwards compatibility only. Don’t use it!

outputs a quick upper bound for the number of decimal digits of (the components of) \(x\), off by at most 1. More precisely, for a positive integer \(x\), it computes (approximately) the ceiling of

\[
\text{floor}(1 + \log_2 x) \log_{10} 2,
\]

To count the number of decimal digits of a positive integer \(x\), use \#digits(x). To estimate (recursively) the size of \(x\), use normlp(x).

\sqr(x)
Square of \(x\). This operation is not completely straightforward, i.e. identical to \(x \times x\), since it can usually be computed more efficiently (roughly one-half of the elementary multiplications can be saved). Also, squaring a 2-adic number increases its precision. For example,
Note that this function is also called whenever one multiplies two objects which are known to be identical, e.g. they are the value of the same variable, or we are computing a power.

```
? x = (1 + O(2^4)); x * x
%3 = 1 + O(2^5)

? (1 + O(2^4))^4
%4 = 1 + O(2^6)
```

(note the difference between %2 and %3 above).

\textbf{sqrt}(x, \textit{precision})

Principal branch of the square root of \(x\), defined as \(\sqrt{x} = \exp(\log x/2)\). In particular, we have \(\text{Arg}(\sqrt{x}) \in]-\pi/2, \pi/2]\), and if \(x \in \mathbb{R}\) and \(x < 0\), then the result is complex with positive imaginary part.

Intmod a prime \(p\), \text{t_PADIC} and \text{t_FFELT} are allowed as arguments. In the first 2 cases (\text{t_INTMOD}, \text{t_PADIC}), the square root (if it exists) which is returned is the one whose first \(p\)-adic digit is in the interval \([0, p/2]\). For other arguments, the result is undefined.

```
? sqrtn(Mod(2,7), 2)
%1 = Mod(3, 7)

? sqrtn(Mod(2,7), 2, &z); z
%2 = Mod(6, 7)

? sqrtn(Mod(2,7), 3)
*** at top-level: sqrtn(Mod(2,7),3)
*** ^-----------------
*** sqrtn: nth-root does not exist in gsqrtn.

? sqrtn(Mod(2,7), 3, &z)
%2 = 0
? z
%3 = 0
```
The following script computes all roots in all possible cases:

```plaintext
sqrtnall(x,n)=
{ my(V,r,z,r2);
  r = sqrtn(x,n, &z);
  if (!z, error("Impossible case in sqrtn");)
  if (type(x) == "t_INTMOD" || type(x)="t_PADIC",
      r2 = r*z; n = 1;
      while (r2!=r, r2*=z;n++));
  V = vector(n); V[1] = r;
  for(i=2, n, V[i] = V[i-1]*z);
  V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
```

sqrtnint(x, n)

Returns the integer n-th root of x, i.e. the largest integer y such that \(y^n \leq x\), where x is a nonnegative integer.

```plaintext
? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^((1/5))
%2 = 164.63140849829660842958614676939677391
```

The special case \(n = 2\) is \(\text{sqrtint}\)

stirling(n, k, flag)

Stirling number of the first kind \(s(n, k)\) (flag = 1, default) or of the second kind \(S(n, k)\) (flag = 2), where \(n, k\) are nonnegative integers. The former is \((-1)^{n-k}\) times the number of permutations of \(n\) symbols with exactly \(k\) cycles; the latter is the number of ways of partitioning a set of \(n\) elements into \(k\) nonempty subsets. Note that if all \(s(n, k)\) are needed, it is much faster to compute

\[
\sum_{k} s(n, k)x^k = x(x - 1)...(x - n + 1).
\]

Similarly, if a large number of \(S(n, k)\) are needed for the same \(k\), one should use

\[
\sum_{n} S(n, k)x^n = (x^k)/(1 - x)...(1 - kx)).
\]

(Should be implemented using a divide and conquer product.) Here are simple variants for \(n\) fixed:

```plaintext
/* list of s(n,k), k = 1..n */
vecstirling(n) = Vec( factorback(vector(n-1,i,1-i*'x)) )

/* list of S(n,k), k = 1..n */
vecstirling2(n) =
{ my(Q = x^(n-1), t);
  vector(n, i, t = divrem(Q, x-i); Q=t[1]; simplify(t[2]));
}

/* Bell numbers, B_n = B[n+1] = sum(k = 0, n, S(n,k)) , n = 0..N */
vecbell(N)=
{ my (B = vector(N+1));
  for (n = 2, N,
```
my (C = binomial(n-1));
B[n+1] = sum(k = 1, n, C[k]*B[k]);
); B;
}

strchr(x)
Converts integer or vector of integers \(x \) to a string, translating each integer (in the range \([1, 255]\)) into a character using ASCII encoding.

```plaintext
? strchr(97)
%1 = "a"
? Vecsmall("hello world")
? strchr(%)
%3 = "hello world"
```

strjoin(v, p)
Joins the strings in vector \(v \), separating them with delimiter \(p \). The reverse operation is strsplit.

```plaintext
? v = ["abc", "def", "ghi"]
? strjoin(v, "/")
%2 = "abc/def/ghi"
? strjoin(v)
%3 = "abcdefghi"
```

strsplit(s, p)
Splits the string \(s \) into a vector of strings, with \(p \) acting as a delimiter. If \(p \) is empty or omitted, split the string into characters.

```plaintext
? strsplit("abc::def::ghi", ":")
%1 = ["abc", "def", "ghi"]
? strsplit("abc", ")
%2 = ["a", "b", "c"]
? strsplit("aba", "a")
```

If \(s \) starts (resp. ends) with the pattern \(p \), then the first (resp. last) entry in the vector is the empty string:

```plaintext
? strsplit("aba", "a")
%3 = ["", "b", "]
```

strtime(t)
Return a string describing the time \(t \) in milliseconds in the format used by the GP timer.

```plaintext
? print(strtime(12345678))
3h, 25min, 45,678 ms
? {
    my(t=getabstime());
    F=factor(2^256+1);t=getabstime()-t;
    print("factor(2^256+1) took ",strtime(t));
} factor(2^256+1) took 1,320 ms
```
subgrouplist(cyc, bound, flag)

cyc being a vector of positive integers giving the cyclic components for a finite Abelian group G (or any object which has a .cyc method), outputs the list of subgroups of G. Subgroups are given as HNF left divisors of the SNF matrix corresponding to G.

If flag = 0 (default) and cyc is a bnr structure output by bnrinit, gives only the subgroups whose modulus is the conductor. Otherwise, all subgroups are given.

If bound is present, and is a positive integer, restrict the output to subgroups of index less than bound. If bound is a vector containing a single positive integer B, then only subgroups of index exactly equal to B are computed.

For instance

? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
[1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],3) \ index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]

? subgrouplist([6,2],[3]) \ index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);

In the last example, L corresponds to the 24 subfields of \(\mathbb{Q}(\zeta_{120}) \), of degree 8 and conductor 120 (by setting flag, we see there are a total of 43 subgroups of degree 8).

? vector(#L, i, galoissubcyclo(bnr, L[i]))

will produce their equations. (For a general base field, you would have to rely on bnrstark, or bnrclassfield.)

Warning. This function requires factoring the exponent of G. If you are only interested in subgroups of index n (or dividing n), you may considerably speed up the function by computing the subgroups of \(G/G^n \), whose cyclic components are \(\text{apply}(x \rightarrow \gcd(n,x), C) \) (where \(C \) gives the cyclic components of \(G \)). If you want the bnr variant, now is a good time to use bnrinit(,, n) as well, to directly compute the ray class group modulo \(n \)-th powers.

 subst(x, y, z)

Replace the simple variable y by the argument z in the “polynomial” expression x. If z is a vector, return the vector of the evaluated expressions subst(x, y, z[i]).

Every type is allowed for x, but if it is not a genuine polynomial (or power series, or rational function), the substitution will be done as if the scalar components were polynomials of degree zero. In particular, beware that:

? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]

? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1]))
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.

If x is a power series, z must be either a polynomial, a power series, or a rational function. If x is a vector, matrix or list, the substitution is applied to each individual entry.
Use the function substvec to replace several variables at once, or the function substpol to replace a polynomial expression.

substpol(x, y, z)

Replace the “variable” \(y \) by the argument \(z \) in the “polynomial” expression \(x \). Every type is allowed for \(x \), but the same behavior as subst above apply.

The difference with subst is that \(y \) is allowed to be any polynomial here. The substitution is done moding out all components of \(x \) (recursively) by \(y - t \), where \(t \) is a new free variable of lowest priority. Then substituting \(t \) by \(z \) in the resulting expression. For instance

```plaintext
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
```

substvec(x, v, w)

\(v \) being a vector of monomials of degree 1 (variables), \(w \) a vector of expressions of the same length, replace in the expression \(x \) all occurrences of \(v_i \) by \(w_i \). The substitutions are done simultaneously; more precisely, the \(v_i \) are first replaced by new variables in \(x \), then these are replaced by the \(w_i \):

```plaintext
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y,x+y])
%2 = [y, x + y] \ not [y, 2*y]
```

sumdedekind(h, k)

Returns the Dedekind sum attached to the integers \(h \) and \(k \), corresponding to a fast implementation of

\[
s(h,k) = \sum_{n = 1}^{k-1} \left(\frac{n}{k}\right) (\text{frac}(h\cdot n/k) - 1/2)
\]

sumdigits(n, B)

Sum of digits in the integer \(\| n \| \), when written in base \(B > 1 \).

```plaintext
? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%2 = 16
```

Note that the sum of bits in \(n \) is also returned by hammingweight. This function is much faster than vecsum(digits(n,B)) when \(B \) is 10 or a power of 2, and only slightly faster in other cases.

sumeulerrat(F, s, a, precision)

\[
\sum_{p > a} F(p^s), \text{ where the sum is taken over prime numbers and } F \text{ is a rational function.}
\]

```plaintext
? sumeulerrat(1/p^2)
%1 = 0.45224742004106549850654336483224793417
? sumeulerrat(1/p, 2)
%2 = 0.45224742004106549850654336483224793417
```

sumformal(f, v)

formal sum of the polynomial expression \(f \) with respect to the main variable if \(v \) is omitted, with respect to the variable \(v \) otherwise; it is assumed that the base ring has characteristic zero. In other words, considering \(f \) as
a polynomial function in the variable \(v \), returns \(F \), a polynomial in \(v \) vanishing at 0, such that \(F(b) - F(a) = \sum_{k=a+1}^{b} f(v) \):

\[
\begin{align*}
? \text{sumformal}(n) & \quad 1 + \ldots + n \\
\text{sumformal}(n) = \sum_{k=1}^{n} k &= 1/2n^2 + 1/2n \\
? f(n) &= n^3 + n^2 + 1; \\
? F &= \text{sumformal}(f(n)) \quad 1/4n^4 + 5/6n^3 + 3/4n^2 + 7/6n \\
? \text{sum}(n=1, 2000, f(n)) &= \text{subst}(F(n), n, 2000) \\
\text{sum}(n=1, 2000, f(n)) &= 1/2n^2 + 1/2n \\
%3 &= 1/4n^4 + 5/6n^3 + 3/4n^2 + 7/6n \\
? \text{sum}(n=1001, 2000, f(n)) &= \text{subst}(F(n), n, 2000) - \text{subst}(F(n), n, 1000) \\
%4 &= 1 \\
? \text{sum}(n=1001, 2000, f(n)) &= \text{subst}(F(n), n, 2000) - \text{subst}(F(n), n, 1000) \\
%5 &= 1 \\
? \text{sumformal}(x^2 + x*y + y^2, y) &= y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y) \\
? x^2 * y + x * \text{sumformal}(y) + \text{sumformal}(y^2) &= 1 \\
%6 &= y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y) \\
%7 &= 1
\end{align*}
\]

\textbf{sumnumapinit}(asymp, precision)

Initialize tables for Abel-Plana summation of a series \(\sum f(n) \), where \(f \) is holomorphic in a right half-plane. If given, \(\text{asymp} \) is of the form \([+oo, \alpha]\), as in \text{inrnum} and indicates the decrease rate at infinity of functions to be summed. A positive \(\alpha > 0 \) encodes an exponential decrease of type \(\exp(-\alpha n) \) and a negative \(-2 < \alpha < -1\) encodes a slow polynomial decrease of type \(n^\alpha \).

\[
\begin{align*}
? \p200 \\
? \text{sumnumap}(n=1, n^{-2}) &= 1/2n^2 + 1/2n \\
\text{time} &= 163 \text{ ms.} \\
? \text{tab} &= \text{sumnumapinit}(); \\
\text{time} &= 160 \text{ ms.} \\
? \text{sumnumap}(n=1, n^{-2}, \text{tab}) &= \text{fast} \\
\text{time} &= 7 \text{ ms.} \\
? \text{tab} &= \text{sumnumapinit}([+oo, \log(2)]) \quad \text{decrease like } 2^n \\
\text{time} &= 164 \text{ ms.} \\
? \text{sumnumap}(n=1, 2^n-n, \text{tab}) &= 1 \\
\text{time} &= 36 \text{ ms.} \\
%5 &= 3.0127431466707723218 E-282 \\
? \text{tab} &= \text{sumnumapinit}([+oo, -4/3]) \quad \text{decrease like } n^{(-4/3)} \\
\text{time} &= 166 \text{ ms.} \\
? \text{sumnumap}(n=1, n^{(-4/3)}, \text{tab}) &= 1 \\
\text{time} &= 181 \text{ ms.}
\end{align*}
\]

\textbf{sumnuminit}(asymp, precision)

Initialize tables for Euler-MacLaurin delta summation of a series positive terms. If given, \(\text{asymp} \) is of the form \([+oo, \alpha]\), as in \text{inrnum} and indicates the decrease rate at infinity of functions to be summed. A positive \(\alpha > 0 \) encodes an exponential decrease of type \(\exp(-\alpha n) \) and a negative \(-2 < \alpha < -1\) encodes a slow polynomial decrease of type \(n^\alpha \).

\[
\begin{align*}
? \p200 \\
? \text{sumnum}(n=1, n^{-2}) &= 1/2n^2 + 1/2n \\
\text{time} &= 200 \text{ ms.} \\
? \text{tab} &= \text{sumnuminit}(); \\
\text{time} &= 188 \text{ ms.}
\end{align*}
\]

(continues on next page)
? sumnum(n=1, n^-2, tab); \ faster
 time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \ decrease like 2^-n
 time = 200 ms.
? sumnum(n=1, 2^-n, tab)
 time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \ decrease like n^(-4/3)
 time = 200 ms.
? sumnum(n=1, n^(-4/3), tab);
 time = 221 ms.

\begin{verbatim}
sumnumlagrangeinit(asymp, c1, precision)
\end{verbatim}
Initialize tables for Lagrange summation of a series. By default, assume that the remainder \(R(n) = \sum_{m=n} f(m) \) has an asymptotic expansion
\[
R(n) = \sum_{m=n} f(n) \sum_{i=1} a_i / n^i
\]
at infinity. The argument \texttt{asymp} allows to specify different expansions:

\begin{itemize}
\item a real number \(\beta \) means
\[
R(n) = n^{-\beta} \sum_{i=1} a_i / n^i
\]
\item a \texttt{t_CLOSURE} \(g \) means
\[
R(n) = g(n) \sum_{i=1} a_i / n^i
\]
\end{itemize}

(\texttt{The_preceeding_case_corresponds_to: \texttt{math} : \texttt{‘g(n) = n^{-\beta}.}})

\begin{itemize}
\item a pair \([\alpha, \beta]\) where \(\beta \) is as above and \(\alpha \in 2, 1, 1/2, 1/3, 1/4 \). We let \(R_2(n) = R(n) - f(n)/2 \) and \(R_\alpha(n) = R(n) \) for \(\alpha! = 2 \). Then
\[
R_\alpha(n) = g(n) \sum_{i=1} a_i / n^{i\alpha}
\]
\end{itemize}

\texttt{Note that the initialization times increase considerably for the \texttt{math} : \texttt{‘\alpha\text_ith_this_list: \texttt{math} : \texttt{‘1/4\text_being_th_slowest}.}}

The constant \(c1 \) is technical and computed by the program, but can be set by the user: the number of interpolation steps will be chosen close to \(c1.B \), where \(B \) is the bit accuracy.

? \p2000
? sumnumlagrange(n=1, n^-2);
 time = 173 ms.
? tab = sumnumlagrangeinit();
 time = 172 ms.
? sumnumlagrange(n=1, n^-2, tab);
 time = 4 ms.

? \p115
? sumnumlagrange(n=1, n^(-4/3)) - zeta(4/3);

\textit{(continues on next page)}
The final example with $\zeta(4/3)$, the remainder $R_1(n)$ is of the form $n^{-1/3} \sum_{i \geq 0} a_i/n^i$, i.e. $n^{2/3} \sum_{i \geq 1} a_i/n^i$. This explains the wrong result for $\beta = 1/3$ and the correction with $\beta = -2/3$.

sumnummonieninit(asymp, w, n0, precision)

Initialize tables for Monien summation of a series $\sum_{n \geq n_0} f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex) neighbourhood of the segment $[0, 1]$.

By default, assume that $f(n) \approx O(n^{-2})$ and has a nonzero asymptotic expansion

$$f(n) = \sum_{i \geq 2} a_i/n^i$$

at infinity. Note that the sum starts at $i = 2$. The argument *asymp* allows to specify different expansions:

- a real number $\beta > 0$ means

 $$f(n) = \sum_{i \geq 1} a_i/n^{i+\beta}$$

 (Now the summation starts at $i=1$.)

- a vector $[\alpha, \beta]$ of reals, where we must have $\alpha > 0$ and $\alpha + \beta > 1$ to ensure convergence, means that

 $$f(n) = \sum_{i \geq 1} a_i/n^{\alpha i+\beta}$$

 Note that: $\text{math}:: \text{asymp} = [1, \beta]\text{isequivalentto : math}:: \text{asymp} = \beta$;
(As a matter of fact, in the above summation, the result given by \texttt{sumnum} at \texttt{p38} is slightly incorrect, so we had to increase the accuracy to \texttt{p57}.)

The argument \(w\) is used to sum expressions of the form
\[
\sum_{n > n_0} f(n)w(n),
\]
for varying \(f\) as above, and fixed weight function \(w\), where we further assume that the auxiliary sums
\[
g_w(m) = \sum_{n > n_0} w(n)/n^{\alpha m + \beta}
\]
converge for all \(m \geq 1\). Note that for nonnegative integers \(k\), and weight \(w(n) = (\log n)^k\), the function \(g_w(m) = \zeta^{(k)}(\alpha m + \beta)\) has a simple expression; for general weights, \(g_w\) is computed using \texttt{sumnum}. The following variants are available

- an integer \(k \geq 0\), to code \(w(n) = (\log n)^k\);
- a \texttt{t_CLOSURE} computing the values \(w(n)\), where we assume that \(w(n) = O(n^\epsilon)\) for all \(\epsilon > 0\);
- a vector \([w, \text{fast}]\), where \(w\) is a closure as above and \text{fast} is a scalar; we assume that \(w(n) = O(n^{\text{fast}+\epsilon})\); note that \(w = [w, 0]\) is equivalent to \(w = w\). Note that if \(w\) decreases exponentially, \texttt{suminf} should be used instead.

The subsequent calls to \texttt{sumnummonien} must use the same value of \(n_0\) as was used here.

\begin{verbatim}
? \p300
? sumnummonien(n = 1, n^2-2*log(n)) + zeta'(2)
time = 328 ms.
%1 = -1.323[...E-6 \ \ completely wrong, f does not satisfy hypotheses !
? tab = sumnummonieninit(, 1); \ \ codes w(n) = log(n)
time = 3,993 ms.
? sumnummonien(n = 1, n^2-2, tab) + zeta'(2)
time = 41 ms.
%3 = -5.562684646268003458 E-309 \ \ now perfect
? tab = sumnummonieninit(, n->log(n)); \ \ generic, slower
time = 9,808 ms.
? sumnummonien(n = 1, n^2-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \ \ identical result
\end{verbatim}

\textbf{sumnumrat}(\(F, a, \text{precision}\))

\[
\sum_{n > a} F(n), \text{ where } F \text{ is a rational function of degree less than or equal to } -2 \text{ and where poles of } F \text{ at integers } \geq a \text{ are omitted from the summation. The argument } a \text{ must be a } \texttt{t_INT} \text{ or } -\infty.
\]

\begin{verbatim}
? sumnumrat(1/(x^2+1)^2,0)
%1 = 1.3068369754229086939178621382829073480
? sumnumrat(1/x^2, -oo) \ \ value at x=0 is discarded
%2 = 3.289868133696452872944830332920503784
? 2*zeta(2)
%3 = 3.289868133696452872944830332920503784
\end{verbatim}

When \(\deg F = -1\), we define
\[
\sum_{-\infty}^{\infty} F(n) := \sum_{n > 0} (F(n) + F(-1 - n)) :
\]
? sumnumrat(1/x, -oo)
%4 = 0.E-38

system(str)

str is a string representing a system command. This command is executed, its output written to the standard output (this won’t get into your logfile), and control returns to the PARI system. This simply calls the C system command.

tan(x, precision)

Tangent of x.

tanh(x, precision)

Hyperbolic tangent of x.

taylor(x, t, serprec)

Taylor expansion around 0 of x with respect to the simple variable t. x can be of any reasonable type, for example a rational function. Contrary to Ser, which takes the valuation into account, this function adds $O(t^d)$ to all components of x.

? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + O(y^5)

\[\text{\texttt{Ser}}(x/(1+y), y, 5)\]
\[\text{\texttt{Ser}}: \text{main variable must have higher priority in gtoser.}\]

teichmuller(x, tab)

Teichmüller character of the \(p \)-adic number x, i.e. the unique \((p - 1) \)-th root of unity congruent to \(x/p^{\nu(x)} \) modulo \(p \). If \(x \) is of the form \([p, n] \), for a prime \(p \) and integer \(n \), return the lifts to \(\mathbb{Z} \) of the images of \(i + O(p^n) \) for \(i = 1, \ldots, p - 1 \), i.e. all roots of 1 ordered by residue class modulo \(p \). Such a vector can be fed back to teichmuller, as the optional argument tab, to speed up later computations.

? z = teichmuller(2 + O(101^5))
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
? z^100
%2 = 1 + O(101^5)
? T = teichmuller([101, 5]);
? teichmuller(2 + O(101^5), T)
%4 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

As a rule of thumb, if more than

\[p/2(\log_2(p) + \text{hammingweight}(p)) \]

values of teichmuller are to be computed, then it is worthwhile to initialize:

? p = 101; n = 100; T = teichmuller([p,n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n))))
time = 1,293 ms.
? 1 + 2*(log(p)/log(2) + hammingweight(p))
%8 = 22.316[...]
Here the precomputation induces a speedup by a factor $1293/60 21.5$.

Caveat. If the accuracy of `tab` (the argument n above) is lower than the precision of x, the `former` is used, i.e. the cached value is not refined to higher accuracy. If the accuracy of `tab` is larger, then the precision of x is used:

```plaintext
? Tlow = teichmuller([101, 2]); % lower accuracy!
? teichmuller(2 + O(101^5), Tlow)
%10 = 2 + 83*101 + O(101^5) % no longer a root of 1

? Thigh = teichmuller([101, 10]); % higher accuracy
? teichmuller(2 + O(101^5), Thigh)
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
```

theta($q, z, precision$)

Jacobi sine theta-function

$$\theta_1(z, q) = 2q^{1/4} \sum_{n \geq 0} (-1)^n q^{n(n+1)} \sin((2n + 1)z).$$

thetanullk($q, k, precision$)

k-th derivative at $z = 0$ of $\theta(q, z)$.

thue(tnf, a, sol)

Returns all solutions of the equation $P(x, y) = a$ in integers x and y, where tnf was created with `thueinit(P)`. If present, `sol` must contain the solutions of $\text{Norm}(x) = a$ modulo units of positive norm in the number field defined by P (as computed by `bnfinintnorm`). If there are infinitely many solutions, an error is issued.

It is allowed to input directly the polynomial P instead of a tnf, in which case, the function first performs `thueinit(P, 0)`. This is very wasteful if more than one value of a is required.

If tnf was computed without assuming GRH (flag 1 in `thueinit`), then the result is unconditional. Otherwise, it depends in principle of the truth of the GRH, but may still be unconditionally correct in some favorable cases. The result is conditional on the GRH if $a! = 1$ and P has a single irreducible rational factor, whose attached tentative class number h and regulator R (as computed assuming the GRH) satisfy

- $h > 1$,
- $R/0.2 > 1.5$.

Here’s how to solve the Thue equation $x^{13} - 5y^{13} = -4$:

```plaintext
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
```

In this case, one checks that `bnfinint(x^13 - 5).no` is 1. Hence, the only solution is $(x, y) = (1, 1)$ and the result is unconditional. On the other hand:

```plaintext
? P = x^3 - 2*x^2 + 3*x - 17; tnf = thueinit(P);
? thue(tnf, -15)
%2 = [[1, 1]] \ a priori conditional on the GRH.
? K = bnfinit(P); K.no
%3 = 3
? K.reg
%4 = 2.8682185139262873674706034475498755834
```

This time the result is conditional. All results computed using this particular tnf are likewise conditional, except for a right-hand side of 1. The above result is in fact correct, so we did not just disprove the GRH:
Note that reducible or nonmonic polynomials are allowed:

```plaintext
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
```

Reducible polynomials are in fact much easier to handle.

Note. When \(P \) is irreducible without a real root, the default strategy is to use brute force enumeration in time \(\|a\|^{1/\deg P} \) and avoid computing a tough \(bnf \) attached to \(P \), see \texttt{thueinit}. Besides reusing a quantity you might need for other purposes, the default argument \(sol \) can also be used to use a different strategy and prove that there are no solutions; of course you need to compute a \(bnf \) on your own to obtain \(sol \). If there are solutions this won’t help unless \(P \) is quadratic, since the enumeration will be performed in any case.

thueinit \((P, flag, precision)\)

Initializes the \(tnf \) corresponding to \(P \), a nonconstant univariate polynomial with integer coefficients. The result is meant to be used in conjunction with \texttt{thue} to solve Thue equations \(P(X/Y)^{\deg P} = a \), where \(a \) is an integer. Accordingly, \(P \) must either have at least two distinct irreducible factors over \(\mathbb{Q} \), or have one irreducible factor \(T \) with degree > 2 or two conjugate complex roots: under these (necessary and sufficient) conditions, the equation has finitely many integer solutions.

```plaintext
? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]
? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-----------------
*** thueinit: domain error in thueinit: P = t + 1
```

The hardest case is when \(\deg P > 2 \) and \(P \) is irreducible with at least one real root. The routine then uses Bilu-Hanrot’s algorithm.

If \(flag \) is nonzero, certify results unconditionally. Otherwise, assume GRH, this being much faster of course. In the latter case, the result may still be unconditionally correct, see \texttt{thue}. For instance in most cases where \(P \) is reducible (not a pure power of an irreducible), or conditional computed class groups are trivial or the right hand side is 1, then results are unconditional.

Note. The general philosophy is to disprove the existence of large solutions then to enumerate bounded solutions naively. The implementation will overflow when there exist huge solutions and the equation has degree > 2 (the quadratic imaginary case is special, since we can stick to \texttt{bnfisintnorm}, there are no fundamental units):

```plaintext
? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.
? thue(x^2+2, 10^30) \& \ \text{quadratic case much easier}
%1 = [[-1000000000000000000, 0], [1000000000000000000, 0]]
```

Note. It is sometimes possible to circumvent the above, and in any case obtain an important speed-up, if you can write \(P = Q(x^d) \) for some \(d > 1 \) and \(Q \) still satisfying the \texttt{thueinit} hypotheses. You can then solve the equation attached to \(Q \) then eliminate all solutions \((x, y)\) such that either \(x \) or \(y \) is not a \(d \)-th power.
The last 2 commands use less than 20ms.

Note. When \(P \) is irreducible without a real root, the equation can be solved unconditionally in time \(\|a\|^{1/d_{eg} P} \). When this latter quantity is huge and the equation has no solutions, this fact may still be ascertained via arithmetic conditions but this now implies solving norm equations, computing a \textit{bnf} and possibly assuming the GRH. When there is no real root, the code does not compute a \textit{bnf} (with certification if \texttt{flag} = 1) if it expects this to be an “easy” computation (because the result would only be used for huge values of \(a \)). See \texttt{thue} for a way to compute an expensive \textit{bnf} on your own and still get a result where this default cheap strategy fails.

\texttt{trace}(x)

This applies to quite general \(x \). If \(x \) is not a matrix, it is equal to the sum of \(x \) and its conjugate, except for polmods where it is the trace as an algebraic number.

For \(x \) a square matrix, it is the ordinary trace. If \(x \) is a nonsquare matrix (but not a vector), an error occurs.

\texttt{truncate}(x, e)

Truncates \(x \) and sets \(e \) to the number of error bits. When \(x \) is in \(\mathbb{R} \), this means that the part after the decimal point is chopped away, \(e \) is the binary exponent of the difference between the original and the truncated value (the “fractional part”). If the exponent of \(x \) is too large compared to its precision (i.e. \(e > 0 \)), the result is undefined and an error occurs if \(e \) was not given. The function applies componentwise on vector / matrices; \(e \) is then the maximal number of error bits. If \(x \) is a rational function, the result is the “integer part” (Euclidean quotient of numerator by denominator) and \(e \) is not set.

Note a very special use of \texttt{truncate}: when applied to a power series, it transforms it into a polynomial or a rational function with denominator a power of \(X \), by chopping away the \(O(X^k) \). Similarly, when applied to a \(p \)-adic number, it transforms it into an integer or a rational number by chopping away the \(O(p^k) \).

\texttt{type}(x)

This is useful only under \texttt{gp}. Returns the internal type name of the PARI object \(x \) as a string. Check out existing type names with the metacommand \texttt{\t}. For example \texttt{type(1)} will return “\textit{t_INT}”.

\texttt{unexportall}()

Empty the list of variables exported to the parallel world.

\texttt{valuation}(x, p)

Computes the highest exponent of \(p \) dividing \(x \). If \(p \) is of type integer, \(x \) must be an integer, an intmod whose modulus is divisible by \(p \), a fraction, a \(q \)-adic number with \(q = p \), or a polynomial or power series in which case the valuation is the minimum of the valuation of the coefficients.

If \(p \) is of type polynomial, \(x \) must be of type polynomial or rational function, and also a power series if \(x \) is a monomial. Finally, the valuation of a vector, complex or quadratic number is the minimum of the component valuations.

If \(x = 0 \), the result is \(+oo\) if \(x \) is an exact object. If \(x \) is a \(p \)-adic numbers or power series, the result is the exponent of the zero. Any other type combinations gives an error.

\texttt{varhigher}(name, v)

Return a variable \textit{name} whose priority is higher than the priority of \(v \) (of all existing variables if \(v \) is omitted). This is a counterpart to \texttt{varlower}.
This routine is useful since new GP variables directly created by the interpreter always have lower priority than existing GP variables. When some basic objects already exist in a variable that is incompatible with some function requirement, you can now create a new variable with a suitable priority instead of changing variables in existing objects:

```gp
? K = nfinit(x^2+1);
? rnfequation(K,y^2-2)
```

Caution 1. The name is an arbitrary character string, only used for display purposes and need not be related to the GP variable holding the result, nor to be a valid variable name. In particular the name can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

```gp
? x = varhigher("#");
? x^2
%2 = #^2
```

Caution 2. There are a limited number of variables and if no existing variable with the given display name has the requested priority, the call to varhigher uses up one such slot. Do not create new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose sensible priority requirements: if you only need a variable with higher priority than x, state so rather than creating a new variable with highest priority.

```gp
\ \ quickly use up all variables
? n = 0; while(1, varhigher("tmp"); n++)
```

```gp
\ \ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1, varhigher("tmp", x); n++)
```

variable(x)

Gives the main variable of the object x (the variable with the highest priority used in x), and p if x is a p-adic number. Return 0 if x has no variable attached to it.

```gp
? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
```
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0

The construction

```plaintext
if (!variable(x),...)
```

can be used to test whether a variable is attached to x.

If x is omitted, returns the list of user variables known to the interpreter, by order of decreasing priority. (Highest priority is initially x, which come first until \texttt{varhigher} is used.) If \texttt{varhigher} or \texttt{varlower} are used, it is quite possible to end up with different variables (with different priorities) printed in the same way: they will then appear multiple times in the output:

```plaintext
? varhigher("y");  
? varlower("y");  
? variable()  
%4 = [y, x, y]
```

Using $v = \text{variable}()$ then $v[1], v[2]$, etc. allows to recover and use existing variables.

\texttt{variables}(x)

Returns the list of all variables occurring in object x (all user variables known to the interpreter if x is omitted), sorted by decreasing priority.

```plaintext
? variables([x^2 + y*z + O(t), a+x])  
%1 = [x, y, z, t, a]
```

The construction

```plaintext
if (!variables(x),...)
```

can be used to test whether a variable is attached to x.

If \texttt{varhigher} or \texttt{varlower} are used, it is quite possible to end up with different variables (with different priorities) printed in the same way: they will then appear multiple times in the output:

```plaintext
? y1 = varhigher("y");  
? y2 = varlower("y");  
? variables(y*y1*y2)  
%4 = [y, y, y]
```

\texttt{varlower}(\textit{name}, \textit{v})

Return a variable \textit{name} whose priority is lower than the priority of \textit{v} (of all existing variables if \textit{v} is omitted). This is a counterpart to \texttt{varhigher}.

New GP variables directly created by the interpreter always have lower priority than existing GP variables, but it is not easy to check whether an identifier is currently unused, so that the corresponding variable has the expected priority when it's created! Thus, depending on the session history, the same command may fail or succeed:

```plaintext
? t; z; \\ now t > z  
? rnfequation(t^2+1,z^2-t)
```
It is quite annoying for package authors, when trying to define a base ring, to notice that the package may fail for some users depending on their session history. The safe way to do this is as follows:

```gp
c? z; t; \ \ now z > t
c? rnfequation(t^2+1,z^2-t)
c%2 = z^4 - 2*z^2 + 9
c? variable()
c%3 = [x, y, z, t]
```

Now both constructions succeed. Note that in the first case, `varlower` is essentially a no-op, the existing variable `t` has correct priority. While in the second case, two different variables are displayed as `t`, one with higher priority than `z` (created in the first line) and another one with lower priority (created by `varlower`).

Caution 1. The `name` is an arbitrary character string, only used for display purposes and need not be related to the GP variable holding the result, nor to be a valid variable name. In particular the `name` can not be used to retrieve the variable, it is not even present in the parser’s hash tables.

```gp
c? x = varlower("#");
c? x^2
c%2 = #^2
```

Caution 2. There are a limited number of variables and if no existing variable with the given display name has the requested priority, the call to `varlower` uses up one such slot. Do not create new variables in this way unless it’s absolutely necessary, reuse existing names instead and choose sensible priority requirements: if you only need a variable with higher priority than `x`, state so rather than creating a new variable with highest priority.

```gp\
\ quickly use up all variables
? n = 0; while(1,varlower("x"); n++)
 *** at top-level: n=0;while(1,varlower("x");n++)
 *** ^--------------
 *** varlower: no more variables available.
 *** Break loop: type 'break' to go back to GP prompt
break> n
```
\ infinite loop: here we reuse the same 'tmp'
? n = 0; while(1, varlower("tmp", x); n++)

\vecextract(x, y, z)

Extraction of components of the vector or matrix \(x \) according to \(y \). In case \(x \) is a matrix, its components are the columns of \(x \). The parameter \(y \) is a component specifier, which is either an integer, a string describing a range, or a vector.

If \(y \) is an integer, it is considered as a mask: the binary bits of \(y \) are read from right to left, but correspond to taking the components from left to right. For example, if \(y = 13 = (1101)_2 \) then the components 1, 3 and 4 are extracted.

If \(y \) is a vector \((t_VEC, t_COL or t_VECSMALL)\), which must have integer entries, these entries correspond to the component numbers to be extracted, in the order specified.

If \(y \) is a string, it can be
- a single (nonzero) index giving a component number (a negative index means we start counting from the end).
- a range of the form "\(:math:`^a..b`\)", where \(:math:`^a \) and \(b \) are indexes as above. Any of \(a \) and \(b \) can be omitted; in this case, we take as default values \(a = 1 \) and \(b = -1 \), i.e. the first and last components respectively. We then extract all components in the interval \([a, b]\), in reverse order if \(b < a \).

In addition, if the first character in the string is \(^\^\), the complement of the given set of indices is taken.

If \(z \) is not omitted, \(x \) must be a matrix. \(y \) is then the row specifier, and \(z \) the column specifier, where the component specifier is as explained above.

\? v = [a, b, c, d, e];
\? vecextract(v, 5) \ \ mask
\ %1 = [a, c]
\? vecextract(v, [4, 2, 1]) \ \ component list
\ %2 = [d, b, a]
\? vecextract(v, "2..4") \ \ interval
\ %3 = [b, c, d]
\? vecextract(v, "-1..-3") \ \ interval + reverse order
\ %4 = [e, d, c]
\? vecextract(v, "^2") \ \ complement
\ %5 = [a, c, d, e]
\? vecextract(matid(3), "2..", ".").
\ %6 =
\ [0 1 0]
\ [0 0 1]

The range notations \(v[i..j] \) and \(v[^i] \) (for \(t_VEC \) or \(t_COL \)) and \(M[i..j, k..l] \) and friends (for \(t_MAT \)) implement a subset of the above, in a simpler and faster way, hence should be preferred in most common situations. The following features are not implemented in the range notation:
- reverse order,
- omitting either \(a \) or \(b \) in \(:math:`^a..b`\).

\vecmax(x, v)

If \(x \) is a vector or a matrix, returns the largest entry of \(x \), otherwise returns a copy of \(x \). Error if \(x \) is empty.
If v is given, set it to the index of a largest entry (indirect maximum), when x is a vector. If x is a matrix, set v to coordinates $[i, j]$ such that $x[i, j]$ is a largest entry. This flag is ignored if x is not a vector or matrix.

```plaintext
? vecmax([10, 20, -30, 40])
%1 = 40
? vecmax([10, 20, -30, 40], &v); v
%2 = 4
? vecmax([10, 20; -30, 40], &v); v
%3 = [2, 2]
```

vecmin(x, v)

If x is a vector or a matrix, returns the smallest entry of x, otherwise returns a copy of x. Error if x is empty.

If v is given, set it to the index of a smallest entry (indirect minimum), when x is a vector. If x is a matrix, set v to coordinates $[i, j]$ such that $x[i, j]$ is a smallest entry. This is ignored if x is not a vector or matrix.

```plaintext
? vecmin([10, 20, -30, 40])
%1 = -30
? vecmin([10, 20, -30, 40], &v); v
%2 = 3
? vecmin([10, 20; -30, 40], &v); v
%3 = [2, 1]
```

vecprod(v)

Return the product of the components of the vector v. Return 1 on an empty vector.

```plaintext
? vecprod([1,2,3])
%1 = 6
? vecprod([])
%2 = 1
```

vecsearch(v, x, cmpf)

Determines whether x belongs to the sorted vector or list v: return the (positive) index where x was found, or 0 if it does not belong to v.

If the comparison function cmpf is omitted, we assume that v is sorted in increasing order, according to the standard comparison function `lex`, thereby restricting the possible types for x and the elements of v (integers, fractions, reals, and vectors of such). We also transparently allow a t_VECSMALL x in this case, for the natural ordering of the integers.

If cmpf is present, it is understood as a comparison function and we assume that v is sorted according to it, see vecsort for how to encode comparison functions.

```plaintext
? v = [1,3,4,5,7];
? vecsearch(v, 3)
%2 = 2
? vecsearch(v, 6)
%3 = 0 \ \ not in the list
? vecsearch([7,6,5], 5) \ \ unsorted vector: result undefined
%4 = 0
```

Note that if we are sorting with respect to a key which is expensive to compute (e.g. a discriminant), one should rather precompute all keys, sort that vector and search in the vector of keys, rather than searching in the original vector with respect to a comparison function.
By abuse of notation, \(x \) is also allowed to be a matrix, seen as a vector of its columns; again by abuse of notation, a \(\text{t}_\text{VEC} \) is considered as part of the matrix, if its transpose is one of the matrix columns.

\[
\begin{align*}
\text{vecsort}(x, \text{cmpf}, \text{flag})
\end{align*}
\]

Sorts the vector \(x \) in ascending order, using a mergesort method. \(x \) must be a list, vector or matrix (seen as a vector of its columns). Note that mergesort is stable, hence the initial ordering of “equal” entries (with respect to the sorting criterion) is not changed.

If \(\text{cmpf} \) is omitted, we use the standard comparison function \(\text{lex} \), thereby restricting the possible types for the elements of \(x \) (integers, fractions or reals and vectors of those). We also transparently allow a \(\text{t}_\text{VECSMALL} \) \(x \) in this case, for the standard ordering on the integers.

If \(\text{cmpf} \) is present, it is understood as a comparison function and we sort according to it. The following possibilities exist:

- an integer \(k \): sort according to the value of the \(k \)-th subcomponents of the components of \(x \).
- a vector: sort lexicographically according to the components listed in the vector. For example, if \(\text{cmpf} = [2,1,3] \), sort with respect to the second component, and when these are equal, with respect to the first, and when these are equal, with respect to the third.
- a comparison function: \(\text{t}_\text{CLOSURE} \) with two arguments \(x \) and \(y \), and returning a real number which is \(< 0\), \(> 0 \) or \(= 0 \) if \(x < y \), \(x > y \) or \(x = y \) respectively.
- a key: \(\text{t}_\text{CLOSURE} \) with one argument \(x \) and returning the value \(f(x) \) with respect to which we sort.

\[
\begin{align*}
\text{vecsort}([3,0,2; 1,0,2]) \ \&\ \text{sort columns according to lex order} \\
%1 = \\
[0 \ 2 \ 3] \\
[0 \ 2 \ 1] \\
\text{vecsort}(v, [3,1]~) \\
%2 = 3 \\
\text{vecsearch}(v, [3,1]) \ \&\ \text{can search for x or x~} \\
%3 = 3 \\
\text{vecsearch}(v, [1,2]) \\
%4 = 0 \ \&\ \text{not in the list}
\end{align*}
\]

The \(\text{abs} \) and \(\text{cmpf} \) examples show how to use a named function instead of an anonymous function. It is preferable to use a \(\text{key} \) whenever possible rather than include it in the comparison function as above since the key is evaluated \(O(n) \) times instead of \(O(n \log n) \), where \(n \) is the number of entries.

A direct approach is also possible and equivalent to using a sorting key:
? T = [abs(poldisc(x)) | x<-v];
? perm = vecsort(T,,1); // indirect sort
? vecextract(v, perm)

This also provides the vector T of all keys, which is interesting for instance in later vecsearch calls: it is more efficient to sort T ($T = \text{vecextract}(T, \text{perm})$) then search for a key in T rather than to search in v using a comparison function or a key. Note also that mapisdefined is often easier to use and faster than vecsearch.

The binary digits of flag mean:

- 1: indirect sorting of the vector x, i.e. if x is an n-component vector, returns a permutation of $[1,2,...,n]$ which applied to the components of x sorts x in increasing order. For example, $\text{vecextract}(x, \text{vecsort}(x,,1))$ is equivalent to $\text{vecsort}(x)$.
- 4: use descending instead of ascending order.
- 8: remove “duplicate” entries with respect to the sorting function (keep the first occurring entry). For example:

```plaintext
? vecsort([\Pi, \text{Mod}(1,2), z], (x,y)->0, 8) \ \make everything compare equal
%1 = [3.141592653589793238462643383]  
? vecsort([[2,3],[\emptyset,1],[\emptyset,3]], 2, 8)
%2 = [[\emptyset,1], [2,3]]
```

vecsum(v)

Return the sum of the components of the vector v. Return 0 on an empty vector.

```plaintext
? vecsum([1,2,3])
%1 = 6
? vecsum([[]])
%2 = 0
```

version()

Returns the current version number as a t_VEC with three integer components (major version number, minor version number and patchlevel); if your sources were obtained through our version control system, this will be followed by further more precise arguments, including e.g. a git commit hash.

This function is present in all versions of PARI following releases 2.3.4 (stable) and 2.4.3 (testing). Unless you are working with multiple development versions, you probably only care about the 3 first numeric components. In any case, the lex function offers a clever way to check against a particular version number, since it will compare each successive vector entry, numerically or as strings, and will not mind if the vectors it compares have different lengths:

```plaintext
if (lex(version(), [2,3,5]) >= 0,  
  \\ code to be executed if we are running 2.3.5 or more recent.
  ,  
  \\ compatibility code
);  
```

On a number of different machines, version() could return either of

```plaintext
%1 = [2,3,4] \ \released version, stable branch  
%1 = [2,4,3] \ \released version, testing branch  
%1 = [2,6,1,15174, "505ab9b"] \ \development
```
In particular, if you are only working with released versions, the first line of the gp introductory message can be emulated by

```plaintext
[M,m,p] = version();
printf("GP/PARI CALCULATOR Version \%s.\%s.\%s", M,m,p);
```

If you are working with many development versions of PARI/GP, the 4th and/or 5th components can be profitably included in the name of your logfiles, for instance.

Technical note. For development versions obtained via `git`, the 4th and 5th components are liable to change eventually, but we document their current meaning for completeness. The 4th component counts the number of reachable commits in the branch (analogous to `svn`'s revision number), and the 5th is the `git` commit hash. In particular, `lex` comparison still orders correctly development versions with respect to each others or to released versions (provided we stay within a given branch, e.g. `master`).

weber\((x, \text{flag}, \text{precision})\)

One of Weber's three \(f\) functions. If \(\text{flag} = 0\), returns

\[
 f(x) = \exp(-i\pi/24)\eta((x + 1)/2)\eta(x) \text{suchthat} j = (f^{24} - 16)^3/f^{24},
\]

where \(j\) is the elliptic \(j\)-invariant (see the function `ellj`). If \(\text{flag} = 1\), returns

\[
 f_1(x) = \eta(x/2)\eta(x) \text{suchthat} j = (f_1^{24} + 16)^3/f_1^{24}.
\]

Finally, if \(\text{flag} = 2\), returns

\[
 f_2(x) = \sqrt{2}\eta(2x)\eta(x) \text{suchthat} j = (f_2^{24} + 16)^3/f_2^{24}.
\]

Note the identities \(f^8 = f_1^8 + f_2^8\) and \(ff_1 f_2 = \sqrt{2}\).

writebin\((\text{filename}, x)\)

Writes (appends) to `filename` the object \(x\) in binary format. This format is not human readable, but contains the exact internal structure of \(x\), and is much faster to save/load than a string expression, as would be produced by `write`. The binary file format includes a magic number, so that such a file can be recognized and correctly input by the regular `read` or `\r` function. If saved objects refer to polynomial variables that are not defined in the new session, they will be displayed as `t:math:` `n` for some integer \(n\) (the attached variable number). Installed functions and history objects can not be saved via this function.

If \(x\) is omitted, saves all user variables from the session, together with their names. Reading such a “named object” back in a `gp` session will set the corresponding user variable to the saved value. E.g after

```plaintext
x = 1; writebin("log")
```

reading `log` into a clean session will set \(x\) to 1. The relative variables priorities (see `priority` in the PARI manual) of new variables set in this way remain the same (preset variables retain their former priority, but are set to the new value). In particular, reading such a session log into a clean session will restore all variables exactly as they were in the original one.

Just as a regular input file, a binary file can be compressed using `gzip`, provided the file name has the standard `.gz` extension.

In the present implementation, the binary files are architecture dependent and compatibility with future versions of `gp` is not guaranteed. Hence binary files should not be used for long term storage (also, they are larger and harder to compress than text files).

zeta\((s, \text{precision})\)

For \(s! = 1\) a complex number, Riemann's zeta function \(\zeta(s) = \sum_{n \geq 1} n^{-s}\), computed using the Euler-Maclaurin summation formula, except when \(s\) is of type integer, in which case it is computed using Bernoulli numbers for \(s \leq 0\) or \(s > 0\) and even, and using modular forms for \(s > 0\) and odd. Power series are also allowed:
For \(s! = 1 \) a \(p \)-adic number, Kubota-Leopoldt zeta function at \(s \), that is the unique continuous \(p \)-adic function on the \(p \)-adic integers that interpolates the values of \((1 - p^{-k})\zeta(k)\) at negative integers \(k \) such that \(k = 1 (mod p - 1) \) (resp. \(k \) is odd) if \(p \) is odd (resp. \(p = 2 \)). Power series are not allowed in this case.

\[
\zeta(-3 + O(5^{10}))
\]
\[
%1 = 4*5^{-1} + 4 + 3*5 + 4*5^3 + 4*5^5 + 4*5^7 + O(5^9)))))
\]
\[
%2 = zeta(-3)
\]
\[
%3 = -31/30
\]
\[
%4 = 0(5^9)
\]

zetahurwitz(\(s, x, \text{der}, \text{precision} \))

Hurwitz zeta function \(\zeta(s, x) = \sum_{n>0}(n + x)^{-s} \) and analytically continued, with \(s! = 1 \) and \(x \) not a negative or zero integer. Note that \(\zeta(s, 1) = \zeta(s) \). \(s \) can also be a polynomial, rational function, or power series. If \(\text{der} \) is positive, compute the \(\text{der} \)'th derivative with respect to \(s \). Note that the derivative with respect to \(x \) is simply \(-s\zeta(s + 1, x)\).

\[
\zeta(1+x+O(x^3))
\]
\[
%2 = 1.0000000000000000000000000000000000000*x^-1 + 0.57721564901532860651209008240243104 + O(x)
\]

zetamult(\(s, t, \text{precision} \))

For \(s \) a vector of positive integers such that \(s[1] >= 2 \), returns the multiple zeta value (MZV)

\[
\zeta(s_1, ..., s_k) = \sum_{n_1 > ... > n_k > 0} n_1^{-s_1} \ldots n_k^{-s_k}
\]

of length \(k \) and weight \(\sum s_i \). More generally, return Yamamoto's \(t \)-MZV interpolation evaluated at \(t \): for \(t = 0 \), this is the ordinary MZV; for \(t = 1 \), we obtain the MZSV star value, with \(>= \) instead of strict inequalities; and of course, for \(t = x \) we obtain Yamamoto's one-variable polynomial.
? zetamult([2,1]) - zeta(3) \ Euler's identity
%1 = 0.E-38
? zetamult([2,1], 1) \ star value
%2 = 2.4041138063191885707994763230228999815
? zetamult([2,1], 'x)
%3 = 1.20205*[...]*x + 1.20205[...]

If the bit precision is \(B \), this function runs in time \(O(k(B + k)^2) \) if \(t = 0 \), and \(O(kB^3) \) otherwise.

In addition to the above format (avec), the function also accepts a binary word format evec (each \(s_i \) is replaced by \(s_i \) bits, all of them 0 but the last one) giving the MZV representation as an iterated integral, and an index format (if \(e \) is the positive integer attached the evec vector of bits, the index is the integer \(e + 2^k - 2 \)). The function zetamultconvert allows to pass from one format to the other; the function zetamultall computes simultaneously all MZVs of weight \(\sum_{i\leq k} s_i \) up to \(n \).

zetamultall\((k, \text{flag}, \text{precision}) \)

List of all multiple zeta values (MZVs) for weight \(s_1 + \ldots + s_r \) up to \(k \). Binary digits of flag mean: 0 = star values if set; 1 = values up to to duality if set (see zetamultdual, ignored if star values); 2 = values of weight \(k \) if set (else all values up to weight \(k \); 3 = return the 2-component vector \([Z, M] \), where \(M \) is the vector of the corresponding indices \(m \), i.e., such that zetamult(M[i]) = Z[i]. Note that it is necessary to use zetamultconvert to have the corresponding avec \((s_1, \ldots, s_r) \).

With default flag flag = 0, the function returns a vector with \(2^k - 1 \) components whose \(i \)-th entry is the MZV of index \(i \) (see zetamult). If the bit precision is \(B \), this function runs in time \(O(2^k B^2) \) for an output of size \(O(2^k B) \).

? Z = zetamultall(5); #Z \ 2^4 - 1 MZVs of weight <= 5
%1 = 15
? Z[10]
%2 = 0.22881039760335375976874614894168879193
? zetamultconvert(10)
%3 = Vecsmall([3, 2]) \ index 10 corresponds to zeta (3,2)
? zetamult(%3) \ double check
%4 = 0.22881039760335375976874614894168879193
? zetamult(10) \ we can use the index directly
%5 = 0.22881039760335375976874614894168879193

If we use flag bits 1 and 2, we avoid unnecessary computations and copying, saving a potential factor 4: half the values are in lower weight and computing up to duality save another rough factor 2. Unfortunately, the indexing now no longer corresponds to the new shorter vector of MZVs:

? Z = zetamultall(5, 2); #Z \ up to duality
%6 = 9
? Z = zetamultall(5, 2); #Z \ only weight 5
%7 = 8
? Z = zetamultall(5, 2 + 4); #Z \ both
%8 = 4

So how to recover the value attached to index 10 ? Flag bit 3 returns the actual indices used:

? [Z, M] = zetamultall(5, 2 + 8); M \ other indices were not included
%9 = Vecsmall([1, 2, 4, 5, 6, 8, 9, 10, 12])
? Z[8] \ index m = 10 is now in M[8]
%10 = 0.22881039760335375976874614894168879193

(continues on next page)
The following construction automates the above programmatically, looking up the MZVs of index 10 (= \(\zeta(3, 2)\)) in all cases, without inspecting the various index sets \(M\) visually:

\[
\text{? } Z[\text{vecsearch}(M, 10)] \text{ \textbackslash \ works in all the above settings}
\]

\%
13 = 0.22881039760335375976874614894168879193

\textbf{zetamultconvert}(a, fl)

\(a\) being either an \texttt{evec}, \texttt{avec}, or index \(m\), converts into \texttt{evec} (\(fl = 0\)), \texttt{avec} (\(fl = 1\)), or index \(m\) (\(fl = 2\)).

\[
\text{? } \text{zetamultconvert}(10)
\]
\%
1 = Vecsmall([3, 2])
\%
2 = Vecsmall([2, 2, 1])
\%
3 = Vecsmall([0, 0, 1, 0, 1])
\%
4 = Vecsmall([1, 0, 1, 1])

The last two lines imply that \([3, 2]\) and \([2, 2, 1]\) are dual (reverse order of bits and swap 0 and 1 in \texttt{evec} form). Hence they have the same zeta value:

\[
\text{? } \text{zetamult}([3,2])
\]
\%
5 = 0.22881039760335375976874614894168879193
\%
6 = 0.22881039760335375976874614894168879193

\textbf{zetamultdual}(s)

\(s\) being either an \texttt{evec}, \texttt{avec}, or index \(m\), return the dual sequence in \texttt{avec} format. The dual of a sequence of length \(r\) and weight \(k\) has length \(k - r\) and weight \(k\). Duality is an involution and zeta values attached to dual sequences are the same:

\[
\text{? } \text{zetamultdual}([4])
\]
\%
1 = Vecsmall([2, 1, 1])
\%
2 = Vecsmall([0, 0, 1, 0, 1])
\%
3 = 0.E-38

In \texttt{evec} form, duality simply reverses the order of bits and swaps 0 and 1:

\[
\text{? } \text{zetamultconvert}([4], 0)
\]
\%
4 = Vecsmall([0, 0, 0, 1])
\%
5 = Vecsmall([0, 1, 0, 1])

\textbf{znchar}(D)

Given a datum \(D\) describing a group \((\mathbb{Z}/N\mathbb{Z})^*\) and a Dirichlet character \(\chi\), return the pair \([G, \ \text{chi}]\), where \(G\) is \texttt{znstar}(\(N, 1\)) and \(\text{chi}\) is a GP character.
The following possibilities for D are supported

- a nonzero t_INT congruent to 0, 1 modulo 4, return the real character modulo D given by the Kronecker symbol (D/\cdot);
- a $t_\text{INTMOD} \text{ Mod}(m, N)$, return the Conrey character modulo N of index m (see znconreylog).
- a modular form space as per $\text{mfinit}(\lfloor N, k, \chi \rfloor)$ or a modular form for such a space, return the underlying Dirichlet character χ (which may be defined modulo a divisor of N but need not be primitive).

In the remaining cases, G is initialized by $\text{znstar}(N, 1)$.

- a pair $[G, \chi]$, where χ is a standard GP Dirichlet character $c = (c_j)$ on G (generic character t_VEC or Conrey characters t_COL or t_INT); given generators $G = \oplus(Z/d_j\mathbb{Z})g_j$, $\chi(g_j) = e(c_j/d_j)$.
- a pair $[G, \chi\text{n}]$, where χn is a normalized representation $[n, c]$ of the Dirichlet character c; $\chi(g_j) = e(c_j/n)$ where n is minimal (order of χ).

```plaintext
? [G,chi] = znchar(-3);
? G.cyc
%2 = [2]
? chareval(G, chi, 2)
%3 = 1/2
? kronecker(-3,2)
%4 = -1
? znchartokronecker(G,chi)
%5 = -3
? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]
%7 = [7, [2, ]
? [G,chi] = znchar(f); chi
%8 = [28, [0, 2, ]
```

$\text{zncharconductor}(G, \chi)$

Let G be attached to $(\mathbb{Z}/q\mathbb{Z})^\ast$ (as per $G = \text{znstar}(q, 1)$) and χ be a Dirichlet character on $(\mathbb{Z}/q\mathbb{Z})^\ast$ (see dirichletchar (in the PARI manual) or ??character). Return the conductor of χ:

```plaintext
? G = znstar(126000, 1);
? zncharconductor(G,11) \ primitive
%2 = 126000
? zncharconductor(G,1) \ trivial character, not primitive!
%3 = 1
? zncharconductor(G,1009) \ character mod 5^3
%4 = 125
```

$\text{znchardecompose}(G, \chi, Q)$

Let $N = \prod_{p} p^{r_p}$ and a Dirichlet character χ, we have a decomposition $\chi = \prod_{p} \chi_p$ into character modulo N where the conductor of χ_p divides p^{r_p}; it equals p^{r_p} for all p if and only if χ is primitive.

Given a znstar G describing a group $(\mathbb{Z}/N\mathbb{Z})^\ast$, a Dirichlet character χ and an integer Q, return $\prod_{p \mid (Q,N)} \chi_p$. For instance, if $Q = p$ is a prime divisor of N, the function returns χ_p (as a character modulo N), given as a Conrey character (t_COL).

```plaintext
? G = znstar(40, 1);
? G.cyc
%2 = [4, 2, 2]
? chi = [2, 1, 1];
```

(continues on next page)
CyPari2 Documentation, Release 2.1.3

\[? \text{chi2} = \text{znchardecompose}(G, \text{chi}, 2) \]
\[%4 = [1, 1, 0]~ \]
\[? \text{chi5} = \text{znchardecompose}(G, \text{chi}, 5) \]
\[%5 = [0, 0, 2]~ \]
\[? \text{znchardecompose}(G, \text{chi}, 3) \]
\[%6 = [0, 0, 0]~ \]
\[? \text{c} = \text{charmul}(G, \text{chi2}, \text{chi5}) \]
\[%7 = [1, 1, 2]~ \quad \text{t_COL: in terms of Conrey generators!} \]
\[? \text{znconreychar}(G, \text{c}) \]
\[%8 = [2, 1, 1] \quad \text{t_VEC: in terms of SNF generators} \]

znchargauss \((G, \chi, a, \text{precision})\)

Given a Dirichlet character \(\chi\) on \(G = (\mathbb{Z}/N\mathbb{Z})^*\) (see \text{znchar}), return the complex Gauss sum

\[
g(\chi, a) = \sum_{n=1}^{N} \chi(n)e(an/N)\]

\[? [G,\text{chi}] = \text{znchar}(-3); \quad \text{\textbackslash{}\textbackslash{} quadratic Gauss sum: I*sqrt(3)} \]
\[? \text{znchargauss}(G,\text{chi}) \]
\[%2 = 1.732050807568877293523415058723670*I \]
\[? [G,\text{chi}] = \text{znchar}(5); \]
\[? \text{znchargauss}(G,\text{chi}) \quad \text{\textbackslash{}sqrt(5)} \]
\[%2 = 2.2360679774997896964091736687312762354 \]
\[? G = \text{znstar}(300,1); \text{chi} = [1,1,12]~; \]
\[? \text{znchargauss}(G,\text{chi}) / \text{sqrt}(300) - \exp(2*I*Pi*11/25) \quad \text{\textbackslash{}\textbackslash{}= 0} \]
\[%4 = 2.350988701644575016 E-38 + 1.4693679385278593850 E-39*I \]
\[? \text{lfuntheta}([G,\text{chi}], 1) \quad \text{\textbackslash{}\textbackslash{}= 0} \]
\[%5 = -5.79[...] E-39 - 2.71[...] E-40*I \]

zncharinduce \((G, \chi, N)\)

Let \(G\) be attached to \((\mathbb{Z}/q\mathbb{Z})^*\) (as per \(G = \text{znstar}(q,1)\)) and let \(\chi\) be a Dirichlet character on \((\mathbb{Z}/q\mathbb{Z})^*\), given by

- a \text{t_VEC}: a standard character on \text{bid.gen},
- a \text{t_INT} or a \text{t_COL}: a Conrey index in \((\mathbb{Z}/q\mathbb{Z})^*\) or its Conrey logarithm; see \text{dirichletchar} (in the PARI manual) or ??character.

Let \(N\) be a multiple of \(q\), return the character modulo \(N\) extending \(\chi\). As usual for arithmetic functions, the new modulus \(N\) can be given as a \text{t_INT}, via a factorization matrix or a pair \([N, \text{factor}(N)]\), or by \text{znstar}(N,1).

\[? G = \text{znstar}(4, 1); \]
\[? \text{chi} = \text{znconreylog}(G,1); \quad \text{\textbackslash{}\textbackslash{} trivial character mod 4} \]
\[? \text{zncharinduce}(G, \text{chi}, 80) \quad \text{\textbackslash{}\textbackslash{} now mod 80} \]
\[%3 = [0, 0, 0]~ \]
\[? \text{zncharinduce}(G, 1, 80) \quad \text{\textbackslash{}\textbackslash{} same using directly Conrey label} \]
\[%4 = [0, 0, 0]~ \]
\[? G2 = \text{znstar}(80, 1); \]
\[? \text{zncharinduce}(G, 1, G2) \quad \text{\textbackslash{}\textbackslash{} same} \]
\[%4 = [0, 0, 0]~ \]
\[? \text{chi} = \text{zncharinduce}(G, 3, G2) \quad \text{\textbackslash{}\textbackslash{} extend the nontrivial character mod 4} \]
Here is a larger example:

```pari
? G = znstar(126000, 1);
? label = 1009;
? chi = znconreylog(G, label)
%3 = [0, 0, 0, 14, 0]~
? [G0, chi0] = znchartoprin\(\text{tive}(G, label); \ \backslash \ \text{works also with 'chi'}
? G0.mod
%5 = 125
? chi0 \ \text{\(\backslash\} \ \text{primitive character mod 5^3 attached to chi}
%6 = [14]~
? G0 = znstar(N0, 1);
? zncharinduce(G0, chi0, G) \ \text{\(\backslash\} \ \text{induce back}
%8 = [0, 0, 0, 14, 0]~
? znconreyexp(G, %)
%9 = 1009
```

\text{\texttt{zncharisodd}}(\text{\textit{G}}, \text{\textit{chi}})

Let G be attached to $(\mathbb{Z}/N\mathbb{Z})^*$ (as per $G = \text{znstar}(N,1)$) and let χ be a Dirichlet character on $(\mathbb{Z}/N\mathbb{Z})^*$, given by

- a \textit{t_VEC}: a standard character on \texttt{G.gen},
- a \textit{t_INT} or a \textit{t_COL}: a Conrey index in $(\mathbb{Z}/q\mathbb{Z})^*$ or its Conrey logarithm; see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

Return 1 if and only if $\chi(-1) = -1$ and 0 otherwise.

```pari
? G = znstar(8, 1);
? \text{\texttt{zncharisodd}}(G, 1) \ \text{\(\backslash\} \ \text{trivial character}
%2 = 0
? \text{\texttt{zncharisodd}}(G, 3)
%3 = 1
? \text{\texttt{chareval}}(G, 3, -1)
%4 = 1/2
```

\text{\texttt{znchartokronecker}}(\text{\textit{G}}, \text{\textit{chi}}, \text{\textit{flag}})

Let G be attached to $(\mathbb{Z}/N\mathbb{Z})^*$ (as per $G = \text{znstar}(N,1)$) and let χ be a Dirichlet character on $(\mathbb{Z}/N\mathbb{Z})^*$, given by

- a \textit{t_VEC}: a standard character on \texttt{bid.gen},
- a \textit{t_INT} or a \textit{t_COL}: a Conrey index in $(\mathbb{Z}/q\mathbb{Z})^*$ or its Conrey logarithm; see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

If \texttt{flag} = 0, return the discriminant D if χ is real equal to the Kronecker symbol $(D/.)$ and 0 otherwise. The discriminant D is fundamental if and only if χ is primitive.

If \texttt{flag} = 1, return the fundamental discriminant attached to the corresponding primitive character.
CyPari2 Documentation, Release 2.1.3

?- G = znstar(8,1); CHARS = [1,3,5,7]; \ Conrey labels
?- apply(t->znchartokronecker(G,t), CHARS)
%2 = [4, -8, 8, -4]
?- apply(t->znchartokronecker(G,t,1), CHARS)
%3 = [1, -8, 8, -4]

znchartoprimitive(G, chi)

Let G be attached to $\mathbb{Z}/q\mathbb{Z}^*$ (as per $G = \text{znstar}(q, 1)$) and χ be a Dirichlet character on $\mathbb{Z}/q\mathbb{Z}^*$, of conductor $q_0\|q$.

?- G = znstar(126000, 1);
?- [G0,chi0] = znchartoprimitive(G,11)
%3 = 126000
? chi0
%4 = 11
?- [G0,chi0] = znchartoprimitive(G,1); \ trivial character, not primitive!
%6 = 1
? chi0
%7 = []~
?- [G0,chi0] = znchartoprimitive(G,1009)
%4 = 125
? chi0
%5 = [14]~

Note that znconreyconductor is more efficient since it can return χ_0 and its conductor q_0 without needing to initialize G_0. The price to pay is a more cryptic format and the need to initialize G_0 later, but that needs to be done only once for all characters with conductor q_0.

znconreychar(G, m)

Given a $\text{znstar} G$ attached to $\mathbb{Z}/q\mathbb{Z}^*$ (as per $G = \text{znstar}(q, 1)$), this function returns the Dirichlet character attached to $m \in \mathbb{Z}/q\mathbb{Z}^*$ via Conrey's logarithm, which establishes a “canonical” bijection between $\mathbb{Z}/q\mathbb{Z}^*$ and its dual.

Let $q = \prod p^{e_p}$ be the factorization of q into distinct primes. For all odd p with $e_p > 0$, let g_p be the element in $\mathbb{Z}/q\mathbb{Z}^*$ which is

- congruent to 1 mod q/p^{e_p},
- congruent mod p^{e_p} to the smallest positive integer that generates $(\mathbb{Z}/p^2\mathbb{Z})^*$.

For $p = 2$, we let g_4 (if $2^{e_2} \geq 4$) and g_8 (if furthermore $2^{e_2} \geq 8$) be the elements in $(\mathbb{Z}/q\mathbb{Z})^*$ which are

- congruent to 1 mod $q/2^{e_2}$,
- $g_4 = -1 \text{mod} 2^{e_2}$,
- $g_8 = 5 \text{mod} 2^{e_2}$.

Then the g_p (and the extra g_4 and g_8 if $2^{e_2} > 2$) are independent generators of $(\mathbb{Z}/q\mathbb{Z})^*$, i.e. every m in $(\mathbb{Z}/q\mathbb{Z})^*$ can be written uniquely as $\prod g_p^{m_p}$, where m_p is defined modulo the order o_p of g_p and $p \in S_q$, the set of prime divisors of q together with 4 if 4\|q and 8 if 8\|q. Note that the g_p are in general not SNF generators as produced by znstar whenever $\omega(q) \geq 2$, although their number is the same. They however allow to handle the finite abelian group $(\mathbb{Z}/q\mathbb{Z})^*$ in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)
The Conrey logarithm of m is the vector $(m_p)_{p \in S_q}$, obtained via znconreylog. The Conrey character $\chi_q(m, .)$ attached to $m \mod q$ maps each g_p, $p \in S_q$ to $e(m_p/\phi_p)$, where $e(x) = \exp(2i\pi x)$. This function returns the Conrey character expressed in the standard PARI way in terms of the SNF generators G.gen.

```pari
? G = znstar(8,1);
? G.cyc
%2 = [2, 2] \ \ \ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \ \ 1 is always the trivial character
%4 = \ [0, 0]
? znconreychar(G,2) \ \ 2 is not coprime to 8 !!!
\ *** at top-level: znconreychar(G,2)
\ *** ^--------------
\ *** znconreychar: elements not coprime in Zideallog:
\ 2
\ 8
\ *** Break loop: type 'break' to go back to GP prompt
break>

\ ? znconreychar(G,3)
\ %5 = \ [0, 1]
\ ? znconreychar(G,5)
\ %6 = \ [1, 1]
\ ? znconreychar(G,7)
\ %7 = \ [1, 0]

We indeed get all 4 characters of $(\mathbb{Z}/8\mathbb{Z})^*$.

For convenience, we allow to input the Conrey logarithm of $m$ instead of $m$:

```pari
? G = znstar(55, 1);
? znconreychar(G, znconreylog(G,7))
%2 = \ [7, 0]
```

\[\text{znconreyconductor}(G, \chi, \chi0)\]

Let $G$ be attached to $(\mathbb{Z}/q\mathbb{Z})^*$ (as per $G = \text{znstar}(q, 1)$) and $\chi$ be a Dirichlet character on $(\mathbb{Z}/q\mathbb{Z})^*$, given by

- a t_VEC: a standard character on $bid$.gen,
- a t_INT or a t_COL: a Conrey index in $(\mathbb{Z}/q\mathbb{Z})^*$ or its Conrey logarithm; see dirichletchar (in the PARI manual) or ??character.

Return the conductor of $\chi$, as the t_INT bid.mod if $\chi$ is primitive, and as a pair $[N, \ \text{faN}]$ (with $\text{faN}$ the factorization of $N$) otherwise.

If $\chi0$ is present, set it to the Conrey logarithm of the attached primitive character.

```pari
? G = znstar(126000, 1);
? znconreyconductor(G,11) \ \ primitive
%2 = \ 126000
? znconreyconductor(G,1) \ \ trivial character, not primitive!
%3 = \ [1, matrix(0,2)]
```

(continues on next page)
\[ N \alpha = \text{znconreyconductor}(G, 1009, &chi_0) \quad \text{\textbackslash\ character mod } 5^3 \]
\[ \%4 = [125, \text{Mat([5, 3]])] \]
\[ ? \chi_0 \]
\[ \%5 = [14]~ \]
\[ ? G_0 = \text{znstar}(N_0, 1); \quad \text{\textbackslash\ format } [N, \text{factor}(N)] \text{ accepted} \]
\[ ? \text{znconreyexp}(G_0, \chi_0) \]
\[ \%7 = 9 \]
\[ ? \text{znconreyconductor}(G_0, \chi_0) \quad \text{\textbackslash now primitive, as expected} \]
\[ \%8 = 125 \]

The group \( G_0 \) is not computed as part of \text{znconreyconductor} because it needs to be computed only once per conductor, not once per character.

\text{znconreyexp}(G, \chi) \]

Given a \text{znstar} \( G \) attached to \((\mathbb{Z}/q\mathbb{Z})^*\) (as per \( G = \text{znstar}(q, 1) \)), this function returns the Conrey exponential of the character \( \chi \): it returns the integer \( m \in (\mathbb{Z}/q\mathbb{Z})^* \) such that \text{znconreylog}(G, \mathbb{m}) \ is \( \chi \).

The character \( \chi \) is given either as a

- tVEC: in terms of the generators \( G.\text{gen} \);
- tCOL: a Conrey logarithm.

\[ ? G = \text{znstar}(126000, 1) \]
\[ ? \text{znconreylog}(G, 1) \]
\[ \%2 = [0, 0, 0, 0, 0]~ \]
\[ ? \text{znconreyexp}(G, \%3) \]
\[ \%4 = [1, 2, 2, 2, 2] \]
\[ ? \chi = [100, 1, 0, 1, 0]; \quad \text{\textbackslash some random character on SNF generators} \]
\[ ? \text{znconreylog}(G, \chi) \quad \text{\textbackslash in terms of Conrey generators} \]
\[ \%6 = [0, 3, 3, 0, 2]~ \]
\[ ? \text{znconreyexp}(G, \%7) \quad \text{\textbackslash apply to a Conrey log} \]
\[ \%8 = 18251 \]
\[ ? \text{znconreyexp}(G, \chi) \quad \text{\textbackslash ... or a char on SNF generators} \]
\[ \%9 = [100, 1, 0, 1, 0] \]

\text{znconreylog}(G, m) \]

Given a \text{znstar} attached to \((\mathbb{Z}/q\mathbb{Z})^*\) (as per \( G = \text{znstar}(q, 1) \)), this function returns the Conrey logarithm of \( m \in (\mathbb{Z}/q\mathbb{Z})^* \).

Let \( q = \prod p^e_p \) be the factorization of \( q \) into distinct primes, where we assume \( e_2 = 0 \) or \( e_2 \geq 2 \). (If \( e_2 = 1 \), we can ignore \( 2 \) from the factorization, as if we replaced \( q \) by \( q/2 \), since \((\mathbb{Z}/q\mathbb{Z})^*/(\mathbb{Z}/(q/2)\mathbb{Z})^*)\).

For all odd \( p \) with \( e_p > 0 \), let \( g_p \) be the element in \((\mathbb{Z}/q\mathbb{Z})^*\) which is

- congruent to \( 1 \) mod \( q/p^e_p \),
- congruent \( mod p^e_p \) to the smallest positive integer that generates \((\mathbb{Z}/p^e_p\mathbb{Z})^*\).

For \( p = 2 \), we let \( g_4 \) (if \( 2^{e_2} \geq 4 \)) and \( g_8 \) (if furthermore \( 2^{e_2} \geq 8 \)) be the elements in \((\mathbb{Z}/q\mathbb{Z})^*\) which are

- congruent to \( 1 \) mod \( q/2^{e_2} \),
- \( g_4 = -1 \text{mod } 2^{e_2} \).
• $g_8 = 5 \mod 2^{e_2}$.

Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2} \geq 2$) are independent generators of $\mathbb{Z}/q\mathbb{Z}^*$, i.e. every $m$ in $(\mathbb{Z}/q\mathbb{Z})^*$ can be written uniquely as $\prod p g_p^{m_p}$, where $m_p$ is defined modulo the order $o_p$ of $g_p$ and $p \in S_q$, the set of prime divisors of $q$ together with $4$ if $4 \parallel q$ and $8$ if $8 \parallel q$. Note that the $g_p$ are in general not SNF generators as produced by `znstar` whenever $\omega(q) > 2$, although their number is the same. They however allow to handle the finite abelian group $(\mathbb{Z}/q\mathbb{Z})^*$ in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)

The Conrey logarithm of $m$ is the vector $(m_p)_{p \in S_q}$. The inverse function `znconreyexp` recovers the Conrey label $m$ from a character.

```
? G = znstar(126000, 1);
? znconreylog(G, 1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G, 2) \ \ %2 is not coprime to modulus !!!
*** at top-level: znconreylog(G, 2)
*** ^-----------------
*** znconreylog: elements not coprime in Zideallog:
2 126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G, 11) \ \ wrt. Conrey generators
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \ \ wrt. SNF generators
%5 = [178, 3, -75, 1, 0]~
```

For convenience, we allow to input the ordinary discrete log of $m$, `ideallog(m, bid)`, which allows to convert discrete logs from `bid.gen` generators to Conrey generators.

```
? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~
```

We also allow a character (`t_VEC`) on `bid.gen` and return its representation on the Conrey generators.

```
? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]
```

`zn_coppersmith(P, N, X, B)`

Coppersmith’s algorithm. $N$ being an integer and $P \in \mathbb{Z}[t]$, finds in polynomial time in $\log(N)$ and $d = \deg(P)$ all integers $x$ with $||x|| \leq X$ such that

$$\gcd(N, P(x)) \geq B.$$ 

This is a famous application of the LLL algorithm meant to help in the factorization of $N$. Notice that $P$ may be reduced modulo $N\mathbb{Z}[t]$ without affecting the situation. The parameter $X$ must not be too large: assume for now
that the leading coefficient of $P$ is coprime to $N$, then we must have

$$d \log X \log N < \log^2 B,$$

i.e., $X < N^{1/d}$ when $B = N$. Let now $P_0$ be the gcd of the leading coefficient of $P$ and $N$. In applications to factorization, we should have $P_0 = 1$; otherwise, either $P_0 = N$ and we can reduce the degree of $P$, or $P_0$ is a non trivial factor of $N$. For completeness, we nevertheless document the exact conditions that $X$ must satisfy in this case: let $p := \log_N P_0, b := \log_N B, x := \log_N X$, then

- either $p \geq d/(2d - 1)$ is large and we must have $xD < 2b - 1$;
- or $p < d/(2d - 1)$ and we must have both $p < b < 1 - p + p/d$ and $xd + p(1 - 2d) < (b - p)^2$. Note that this reduces to $xD < b^2$ when $p = 0$, i.e., the condition described above.

Some $x$ larger than $X$ may be returned if you are very lucky. The routine runs in polynomial time in $\log N$ and $d$ but the smaller $B$, or the larger $X$, the slower. The strength of Coppersmith method is the ability to find roots modulo a general composite $N$: if $N$ is a prime or a prime power, polrootsmod or polrootspadic will be much faster.

We shall now present two simple applications. The first one is finding nontrivial factors of $N$, given some partial information on the factors; in that case $B$ must obviously be smaller than the largest nontrivial divisor of $N$.

```plaintext
setrand(1); \ to make the example reproducible
[a, b] = [10^30, 10^31]; D = 20;
p = randomprime([a, b]);
q = randomprime([a, b]); N = p*q;
\ assume we know 0) p \mid N; 1) p in [a, b]; 2) the last D digits of p
p0 = p % 10^D;
\ L = zncoppersmith(10^D*x + p0, N, b \ 10^D, a)
time = lms.
\%6 = [738281386540]
? \gcd(L[1] \times 10^D + p0, N) == p
\%7 = 1
```

and we recovered $p$, faster than by trying all possibilities $x < 10^{11}$.

The second application is an attack on RSA with low exponent, when the message $x$ is short and the padding $P$ is known to the attacker. We use the same RSA modulus $N$ as in the first example:

```plaintext
setrand(1);
P = random(N); \ known padding
e = 3; \ small public encryption exponent
X = floor(N^0.3); \ N^{1/e - epsilon}
x0 = random(X); \ unknown short message
C = lift((Mod(x0,N) + P)^e); \ known ciphertext, with padding P
\znccoppersmith((P + x)^3 - C, N, X)
\%14 = [2679982004001230401]
? \[1] == x0
\%15 = 1
```

We guessed an integer of the order of $10^{18}$, almost instantly.

**znlog**($x, g, o$)

This functions allows two distinct modes of operation depending on $g$:
if \( g \) is the output of \texttt{znstar} (with initialization), we compute the discrete logarithm of \( x \) with respect to the generators contained in the structure. See \texttt{ideallog} for details.

else \( g \) is an explicit element in \((\mathbb{Z}/N\mathbb{Z})^*\), we compute the discrete logarithm of \( x \) in \((\mathbb{Z}/N\mathbb{Z})^*\) in base \( g \). The rest of this entry describes the latter possibility.

The result is [] when \( x \) is not a power of \( g \), though the function may also enter an infinite loop in this case.

If present, \( o \) represents the multiplicative order of \( g \), see \texttt{DLfun} (in the PARI manual); the preferred format for this parameter is \([\text{ord, factor(ord)}]\), where \text{ord} is the order of \( g \). This provides a definite speedup when the discrete log problem is simple:

```plaintext
? p = nextprime(10^4); g = znprimroot(p); o = [p-1, factor(p-1)];
? for(i=1,10^4, znlog(i, g, o))
time = 163 ms.
? for(i=1,10^4, znlog(i, g))
time = 200 ms. \ \ a little slower
```

The result is undefined if \( g \) is not invertible mod \( N \) or if the supplied order is incorrect.

This function uses

- a combination of generic discrete log algorithms (see below).
- in \((\mathbb{Z}/N\mathbb{Z})^*\) when \( N \) is prime: a linear sieve index calculus method, suitable for \( N < 10^{50} \), say, is used for large prime divisors of the order.

The generic discrete log algorithms are:

- Pohlig-Hellman algorithm, to reduce to groups of prime order \( q \), where \( q \mid p - 1 \) and \( p \) is an odd prime divisor of \( N \),
- Shanks baby-step/giant-step (\( q < 2^{32} \) is small),
- Pollard rho method (\( q > 2^{32} \)).

The latter two algorithms require \( O(\sqrt{q}) \) operations in the group on average, hence will not be able to treat cases where \( q > 10^{40} \), say. In addition, Pollard rho is not able to handle the case where there are no solutions: it will enter an infinite loop.

```plaintext
? g = znprimroot(101)
%1 = Mod(2,101)
? znlog(5, g)
%2 = 24
? g^24
%3 = Mod(5, 101)

? G = znprimroot(2 * 101^10)
%4 = Mod(110462212541120451003, 220924425082240902002)
? znlog(5, G)
%5 = 76210072736547066624
? G^% == 5
%6 = 1

? N = 2^4*3^2*5^3*7^4*11; g = Mod(13, N); znlog(g^110, g)
%7 = 110
?
? znlog(6, Mod(2,3)) \ \ no solution
%8 = []
```

For convenience, \( g \) is also allowed to be a \( p \)-adic number.
? g = 3+O(5^10); znlog(2, g)
%1 = 1015243
? g^%
%2 = 2 + O(5^10)

\textbf{znorder}(x, o)

\(x\) must be an integer mod \(n\), and the result is the order of \(x\) in the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\). Returns an error if \(x\) is not invertible. The parameter \(o\), if present, represents a nonzero multiple of the order of \(x\), see \texttt{DLfun} (in the PARI manual); the preferred format for this parameter is \([\text{ord, factor(\text{ord})}]\), where \(\text{ord} = \text{eulerphi}(n)\) is the cardinality of the group.

\textbf{znprimroot}(n)

Returns a primitive root (generator) of \((\mathbb{Z}/n\mathbb{Z})^*\), whenever this latter group is cyclic \((n = 4 \text{ or } n = 2p^k \text{ or } n = p^k, \text{ where } p \text{ is an odd prime and } k \geq 0)\). If the group is not cyclic, the result is undefined. If \(n\) is a prime power, then the smallest positive primitive root is returned. This may not be true for \(n = 2p^k, p \text{ odd}\).

Note that this function requires factoring \(p − 1\) for \(p\) as above, in order to determine the exact order of elements in \((\mathbb{Z}/n\mathbb{Z})^*\): this is likely to be costly if \(p\) is large.

\textbf{znstar}(n, flag)

Gives the structure of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\). The output \(G\) depends on the value of \(flag\):

- \(flag = 0\) (default), an abelian group structure \([h, d, g]\), where \(h = \phi(n)\) is the order (\(G\).no), \(d\) (\(G\).cyc) is a \(k\)-component row-vector \(d\) of integers \(d_i\) such that \(d_i > 1, d_i|d_{i−1}\) for \(i \geq 2\) and

\[(\mathbb{Z}/n\mathbb{Z})^* \simeq \prod_{i=1}^k (\mathbb{Z}/d_i\mathbb{Z})\]

- \(flag = 1\) the result is a bid structure; this allows computing discrete logarithms using \texttt{znlog} (also in the noncyclic case!).

? G = znstar(40)
%1 = [16, [4, 2, 2], [Mod(17, 40), Mod(21, 40), Mod(11, 40)]]
? G.no \ \ eulerphi(40)
%2 = 16
? G.cyc \ \ cycle structure
%3 = [4, 2, 2]
? G.gen \ \ generators for the cyclic components
%4 = [Mod(17, 40), Mod(21, 40), Mod(11, 40)]
? apply(znorder, G.gen)
%5 = [4, 2, 2]

For user convenience, we define \texttt{znstar(0)} as \([2, [2], [-1]]\), corresponding to \(\mathbb{Z}^*\), but \(flag = 1\) is not implemented in this trivial case.

\textbf{cy pari2.pari_instance.default_bitprec()}

Return the default precision in bits.

Examples:

```python
>>> from cy pari2.pari_instance import default_bitprec
>>> default_bitprec()
64
```
cypari2.pari_instance.prec_bits_to_dec(prec_in_bits)

Convert from precision expressed in bits to precision expressed in decimal.

Examples:

```python
>>> from cypari2.pari_instance import prec_bits_to_dec
>>> prec_bits_to_dec(53)
15
>>> [(32*n, prec_bits_to_dec(32*n)) for n in range(1, 9)]
[(32, 9), (64, 19), (96, 28), (128, 38), (160, 48), (192, 57), (224, 67), (256, 77)]
```

cypari2.pari_instance.prec_bits_to_words(prec_in_bits)

Convert from precision expressed in bits to pari real precision expressed in words. Note: this rounds up to the nearest word, adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

```python
>>> from cypari2.pari_instance import prec_bits_to_words
>>> import sys

>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_bits_to_words(70) == (5 if bitness == '32' else 4)
True

>>> ans32 = [(32, 3), (64, 4), (96, 5), (128, 6), (160, 7), (192, 8), (224, 9), ...
 (256, 10)]
>>> ans64 = [(32, 3), (64, 3), (96, 4), (128, 4), (160, 5), (192, 5), (224, 6), ...
 (256, 6)]
>>> [(32*n, prec_bits_to_words(32*n)) for n in range(1, 9)] == (ans32 if bitness == '32' else ans64)
True
```

cypari2.pari_instance.prec_dec_to_bits(prec_in_dec)

Convert from precision expressed in decimal to precision expressed in bits.

Examples:

```python
>>> from cypari2.pari_instance import prec_dec_to_bits
>>> prec_dec_to_bits(15)
50
>>> [(n, prec_dec_to_bits(n)) for n in range(10, 100, 10)]
[(10, 34), (20, 67), (30, 100), (40, 133), (50, 167), (60, 200), (70, 233), (80, ...
 266), (90, 299)]
```

cypari2.pari_instance.prec_dec_to_words(prec_in_dec)

Convert from precision expressed in decimal to precision expressed in words. Note: this rounds up to the nearest word, adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

```python
>>> from cypari2.pari_instance import prec_dec_to_words
>>> import sys

>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_dec_to_words(38) == (6 if bitness == '32' else 4)
True
```
>>> ans32 = [(10, 4), (20, 5), (30, 6), (40, 7), (50, 8), (60, 9), (70, 10), (80, 11)]
>>> ans64 = [(10, 3), (20, 4), (30, 4), (40, 5), (50, 5), (60, 6), (70, 6), (80, 7)] # 64-bit
>>> [(n, prec_dec_to_words(n)) for n in range(10, 90, 10)] == (ans32 if bitness == '32' else ans64)
True

```
cypari2.pari_instance.prec_words_to_bits(prec_in_words)
```

Convert from pari real precision expressed in words to precision expressed in bits. Note: this adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

```python
>>> from cypari2.pari_instance import prec_words_to_bits
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_words_to_bits(10) == (256 if bitness == '32' else 512)
True
```

```
cypari2.pari_instance.prec_words_to_dec(prec_in_words)
```

Convert from precision expressed in words to precision expressed in decimal. Note: this adjusts for the two codewords of a pari real, and is architecture-dependent.

Examples:

```python
>>> from cypari2.pari_instance import prec_words_to_dec
>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> prec_words_to_dec(5) == (28 if bitness == '32' else 57)
True
```
class cypari2.gen.Gen

Wrapper for a PARI GEN with memory management.

This wraps PARI objects which live either on the PARI stack or on the PARI heap. Results from PARI computations appear on the PARI stack and we try to keep them there. However, when the stack fills up, we copy (“clone” in PARI speak) all live objects from the stack to the heap. This happens transparently for the user.

Ser(v, precision)

Return a power series or Laurent series in the variable v constructed from the object f.

INPUT:

• f – PARI gen
• v – PARI variable (default: x)
• precision – the desired relative precision (default: the value returned by pari.get_series_precision()). This is the absolute precision minus the v-adic valuation.
• PARI object of type t_SER

The series is constructed from \( f \) in the following way:

• If \( f \) is a scalar, a constant power series is returned.
• If \( f \) is a polynomial, it is converted into a power series in the obvious way.
• If \( f \) is a rational function, it will be expanded in a Laurent series around \( v = 0 \).
• If \( f \) is a vector, its coefficients become the coefficients of the power series, starting from the constant term. This is the convention used by the function \texttt{Polrev()}, and the reverse of that used by \texttt{Pol()}.  

**Warning:** This function will not transform objects containing variables of higher priority than \( v \).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(2).Ser()
2 + O(x^16)

>>> pari('Mod(0, 7)').Ser()
Mod(0, 7)*x^15 + O(x^16)

>>> x = pari([1, 2, 3, 4, 5])
>>> x.Ser()
1 + 2*x + 3*x^2 + 4*x^3 + 5*x^4 + O(x^16)

>>> f = x.Ser('v'); print(f)
1 + 2*v + 3*v^2 + 4*v^3 + 5*v^4 + O(v^16)

>>> pari(1)/f
1 - 2*v + v^2 + 6*v^5 - 17*v^6 + 16*v^7 - 5*v^8 + 36*v^10 - 132*v^11 + 181*v^12...
..., 110*v^13 + 25*v^14 + 216*v^15 + O(v^16)

>>> pari('x^5').Ser(precision=20)
x^5 + O(x^25)

>>> pari('1/x').Ser(precision=1)
x^-1 + O(x^0)
```

\texttt{Str()}

\texttt{Str(self): Return the print representation of self as a PARI object.}

INPUT:

• \texttt{self} - gen

OUTPUT:

• \texttt{gen} - a PARI Gen of type t_STR, i.e., a PARI string

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```
>>> pari([1,2,['abc',1]]).Str()
"[1, 2, [abc, 1]]"
>>> pari([1,1, 1.54]).Str()
"[1, 1, 1.54000000000000]"
>>> pari(1).Str()  # 1 is automatically converted to string rep
"1"
>>> x = pari('x')  # PARI variable "x"
>>> x.Str()  # is converted to string rep.
"x"
>>> x.Str().type()
't_STR'

**Strexpand()**

Concatenate the entries of the vector $x$ into a single string, then perform tilde expansion and environment variable expansion similar to shells.

**INPUT:**

- $x$ – PARI gen. Either a vector or an element which is then treated like $\{x\}$.

**OUTPUT:**

- PARI string (type $t_{STR}$)

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari("~/subdir").Strexpand()
"...
>>> pari("$SHELL").Strexpand()
"...
```

**Tests:**

```python
>>> a = pari("$HOME")
>>> a.Strexpand() != a
True
```

**Strtex()**

Strtex($x$): Translates the vector $x$ of PARI gens to TeX format and returns the resulting concatenated strings as a PARI $t_{STR}$.

**INPUT:**

- $x$ – PARI gen. Either a vector or an element which is then treated like $\{x\}$.

**OUTPUT:**

- PARI string (type $t_{STR}$)

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```
>>> v = pari('x^2')
>>> v.Strtex()
"x^2"
>>> v = pari([['1/x^2', 'x']])
>>> v.Strtex()
"\frac{1}{x^2}x"
>>> v = pari([['1 + 1/x + 1/(y+1)', 'x-1']])
>>> v.Strtex()
"\frac{ \left(y + 2\right) \* x \* \left(y + 1\right) }{ \left(y + 1\right) \* x}x - 1"

Zn_issquare(n)
Return True if self is a square modulo n, False if not.

INPUT:
- self – integer
- n – integer or factorisation matrix

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3).Zn_issquare(4)
False
>>> pari(4).Zn_issquare(pari(30).factor())
True

Zn_sqrt(n)
Return a square root of self modulo n, if such a square root exists; otherwise, raise a ValueError.

INPUT:
- self – integer
- n – integer or factorisation matrix

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3).Zn_sqrt(4)
Traceback (most recent call last):
...
ValueError: 3 is not a square modulo 4
>>> pari(4).Zn_sqrt(pari(30).factor())
22

allocatemem(*args)
Do not use this. Use pari.allocatemem() instead.

Tests:
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(2**10).allocatemem(2**20)
Traceback (most recent call last):
... 
NotImplementedError: the method allocatemem() should not be used; use pari.
→ allocatemem() instead

arity()

Return the number of arguments of this t_CLOSURE.

>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari("() -> 42").arity()
0
>>> pari("(x) -> x").arity()
1
>>> pari("(x,y,z) -> x+y+z").arity()
3

bernfrac()

The Bernoulli number \(B_x\), where \(B_0 = 1, B_1 = -1/2, B_2 = 1/6, \ldots\), expressed as a rational number.
The argument \(x\) should be of type integer.

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(18).bernfrac()
43867/798
>>> [pari(n).bernfrac() for n in range(10)]
[1, -1/2, 1/6, 0, -1/30, 0, 1/42, 0, -1/30, 0]

bernreal(precision)

The Bernoulli number \(B_x\), as for the function bernfrac, but \(B_x\) is returned as a real number (with the current precision).

Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(18).bernreal()
54.9711779448622

besselk(x, precision)

nu.besselk(x): K-Bessel function (modified Bessel function of the second kind) of index nu, which can be complex, and argument x.

If \(nu\) or \(x\) is an exact argument, it is first converted to a real or complex number using the optional parameter precision (in bits). If the arguments are inexact (e.g. real), the smallest of their precisions is used in the computation, and the parameter precision is ignored.

INPUT:
• \text{nu} - a complex number
• \text{x} - real number (positive or negative)

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```

```python
>>> pari(complex(2, 1)).besselk(3)
0.0455907718407551 + 0.0289192946582081*I
```

```python
>>> pari(complex(2, 1)).besselk(-3)
-4.34870874986752 - 5.38744882697109*I
```

```python
>>> pari(complex(2, 1)).besselk(300)
3.74224603319728 E-132 + 2.49071062641525 E-134*I
```

\textbf{bid\_get\_cyc()}

Returns the structure of the group \((O_K/I)^*\), where \(I\) is the ideal represented by \text{self}.

\textbf{NOTE:} \text{self} must be a “big ideal” (bid) as returned by \text{idealstar} for example.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```

```python
>>> i = pari('i')
>>> K = (i**2 + 1).bnfinit()
>>> J = K.idealstar(4*i + 2)
>>> J.bid_get_cyc()
[4, 2]
```

\textbf{bid\_get\_gen()}

Returns a vector of generators of the group \((O_K/I)^*\), where \(I\) is the ideal represented by \text{self}.

\textbf{NOTE:} \text{self} must be a “big ideal” (bid) with generators, as returned by \text{idealstar} with flag = 2.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```

```python
>>> i = pari('i')
>>> K = (i**2 + 1).bnfinit()
>>> J = K.idealstar(4*i + 2)
>>> J.bid_get_gen()
[7, [-2, -1]~]
```

We get an exception if we do not supply flag = 2 to \text{idealstar}:

```python
>>> J = K.idealstar(3)
>>> J.bid_get_gen()
Traceback (most recent call last):
```
bittest(n)

bittest(x, long n): Returns bit number n (coefficient of $2^n$ in binary) of the integer x. Negative numbers behave as if modulo a big power of 2.

**INPUT:**
- x - Gen (Pari integer)

**OUTPUT:**
- bool - a Python bool

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari(6)
>>> x.bittest(0)
False
>>> x.bittest(1)
True
>>> x.bittest(2)
True
>>> x.bittest(3)
False
>>> pari(-3).bittest(0)
True
>>> pari(-3).bittest(1)
False
>>> [pari(-3).bittest(n) for n in range(10)]
[True, False, True, True, True, True, True, True, True, True]
```

bnf_get_cyc()

Returns the structure of the class group of this number field as a vector of SNF invariants.

**NOTE:** self must be a “big number field” (bnf).

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> K.bnf_get_cyc()
[4, 2]
```

bnf_get_fu()

Return the fundamental units

**Examples:**
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> (x**2 - 65).bnfinit().bnf_get_fu()
\[[\text{Mod}(x - 8, x^2 - 65)]\]

>>> (x**4 - x**2 + 1).bnfinit().bnf_get_fu()
\[[\text{Mod}(x - 1, x^4 - x^2 + 1)]\]

>>> p = x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576
>>> len(p.bnfinit().bnf_get_fu())
7

**bnf_get_gen()**

Returns a vector of generators of the class group of this number field.

NOTE: *self* must be a “big number field” (bnf).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> G = K.bnf_get_gen(); G
[[3, 2; 0, 1], [2, 1; 0, 1]]
```

**bnf_get_no()**

Returns the class number of *self*, a “big number field” (bnf).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 + 65).bnfinit()
>>> K.bnf_get_no()
8
```

**bnf_get_reg()**

Returns the regulator of this number field.

NOTE: *self* must be a “big number field” (bnf).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**2 - 65).bnfinit()
>>> K.bnf_get_reg()
(continues on next page)```
K.bnf_get_reg()
2.66089858019037...

bnf_get_tu()
Return the torsion unit
Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> for p in [x**2 - 65, x**4 - x**2 + 1, x**8 - 40*x**6 + 352*x**4 - 960*x**2 + 576]:
... bnf = p.bnfinit()
... n, z = bnf.bnf_get_tu()
... if pari.version() < (2,11,0) and z.lift().poldegree() == 0: z = z.lift()
... print([p, n, z])

[x^2 - 65, 2, -1]
[x^4 - x^2 + 1, 12, Mod(x, x^4 - x^2 + 1)]
[x^8 - 40*x^6 + 352*x^4 - 960*x^2 + 576, 2, -1]

bnfunit()
Deprecated in cypari 2.1.2
Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')

>>> import warnings
>>> with warnings.catch_warnings(record=True) as w:
... warnings.simplefilter('always')
... funits = (x**2 - 65).bnfinit().bnfunit()
... assert len(w) == 1
... assert issubclass(w[0].category, DeprecationWarning)

>>> funits
[Mod(x - 8, x^2 - 65)]

change_variable_name(var)
In self, which must be a t_POL or t_SER, set the variable to var. If the variable of self is already var, then return self.

Warning: You should be careful with variable priorities when applying this on a polynomial or series of which the coefficients have polynomial components. To be safe, only use this function on polynomials with integer or rational coefficients. For a safer alternative, use subst().

Examples:
```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> f = pari('x^3 + 17*x + 3')
>>> f.change_variable_name("y")
y^3 + 17*y + 3
>>> f = pari('1 + 2*y + O(y^10)')
>>> f.change_variable_name("q")
1 + 2*q + O(q^10)
>>> f.change_variable_name("y") is f
True
```

In PARI, \texttt{I} refers to the square root of -1, so it cannot be used as variable name. Note the difference with \texttt{subst()}:

```python
>>> f = pari('x^2 + 1')
>>> f.change_variable_name("I")
Traceback (most recent call last):
  ...
PariError: I already exists with incompatible valence
```

\texttt{cmp(right)}

Compare \texttt{self} and \texttt{right}.

This uses PARI's \texttt{cmp_universal()} routine, which defines a total ordering on the set of all PARI objects (up to the indistinguishability relation given by \texttt{gidentical()}).

Warning: This comparison is only mathematically meaningful when comparing 2 integers. In particular, when comparing rationals or reals, this does not correspond to the natural ordering.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(5).cmp(pari(5))
0
''
```

(continues on next page)
>>> f = pari("0*ffgen(ffinit(29, 10))")
>>> pari(0).cmp(f)
-1
>>> pari("x").cmp(f)
1
>>> pari("x").cmp(0)
Traceback (most recent call last):
... TypeError: Cannot convert int to cypari2.gen.Gen_base

debug

Show the internal structure of self (like the \x command in gp).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('([1/2, 1 + 1.0*I])').debug()
[&=...] VEC(lg=3):...
  1st component = [&=...] FRAC(lg=3):...
    num = [&=...] INT(lg=3):... (+,lgefint=3):...
    den = [&=...] INT(lg=3):... (+,lgefint=3):...
  2nd component = [&=...] COMPLEX(lg=3):...
    real = [&=...] INT(lg=3):... (+,lgefint=3):...
    imag = [&=...] REAL(lg=...):... (+,expo=0):...
```

disc()

Return the discriminant of this object.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.disc()
-161051
>>> _.factor()
[-1, 1; 11, 5]
```

eint1(n, precision)

x.eint1(n): exponential integral E1(x):

\[
\int_{x}^{\infty} \frac{e^{-t}}{t} \, dt
\]

If n is present, output the vector [eint1(x), eint1(2*t), ..., eint1(n*t)]. This is faster than repeatedly calling eint1(i*t).

If x is an exact argument, it is first converted to a real or complex number using the optional parameter precision (in bits). If x is inexact (e.g. real), its own precision is used in the computation, and the parameter precision is ignored.

REFERENCE:
• See page 262, Prop 5.6.12, of Cohen’s book “A Course in Computational Algebraic Number Theory”.

Examples:

`ellan(n, python_ints)`

Return the first n Fourier coefficients of the modular form attached to this elliptic curve. See ellak for more details.

INPUT:

- `n` - a long integer
- `python_ints` - bool (default is False); if True, return a list of Python ints instead of a PARI Gen wrapper.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.ellan(3)
[1, -2, -1]
>>> e.ellan(20)
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1, -4, -2, 4, 0, 2]
>>> e.ellan(-1)
[]
>>> v = e.ellan(10, python_ints=True); v
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
>>> type(v)
<...

ellaplist(n, python_ints)`

e.ellaplist(n): Returns a PARI list of all the prime-indexed coefficients $a_p$ (up to $n$) of the $L$-function of the elliptic curve $e$, i.e. the Fourier coefficients of the newform attached to $e$.

INPUT:

- `self` – an elliptic curve
- `n` – a long integer
- `python_ints` – bool (default is False); if True, return a list of Python ints instead of a PARI Gen wrapper.

**Warning:** The curve $e$ must be a medium or long vector of the type given by ellinit. For this function to work for every $n$ and not just those prime to the conductor, $e$ must be a minimal Weierstrass equation. If this is not the case, use the function ellminimalmodel first before using ellaplist (or you will get INCORRECT RESULTS!)

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```
>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> v = e.ellaplist(10); v
[-2, -1, 1, -2]
>>> type(v)
... 'cypari2.gen.Gen'>
>>> v.type()
't_VEC'
>>> e.ellan(10)
[1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
>>> v = e.ellaplist(10, python_ints=True); v
[-2, -1, 1, -2]
>>> type(v)
... 'list'
>>> type(v[0])
... 'int'

Tests:

>>> v = e.ellaplist(1)
>>> v, type(v)
([], <... 'cypari2.gen.Gen'>)
>>> v = e.ellaplist(1, python_ints=True)
>>> v, type(v)
([], <... 'list'>)

e.ellisoncurve(x)
e.ellisoncurve(x): return True if the point x is on the elliptic curve e, False otherwise.
If the point or the curve have inexact coefficients, an attempt is made to take this into account.
Examples:

>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0,1,1,-2,0]).ellinit()
>>> e.ellisoncurve([1,0])
True
>>> e.ellisoncurve([1,1])
False
>>> e.ellisoncurve([1,0.00000000000000001])
False
>>> e.ellisoncurve([1,0.000000000000000001])
True
>>> e.ellisoncurve([0])
True

e.ellimalmodel()  
e.ellimalmodel(e): return the standard minimal integral model of the rational elliptic curve e and the  
corresponding change of variables. INPUT:
  • e - Gen (that defines an elliptic curve)  
OUTPUT:
  • gen - minimal model
• gen - change of coordinates

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([1,2,3,4,5]).ellinit()
>>> F, ch = e.ellminimalmodel()
>>> F[:5]
[1, -1, 0, 4, 3]
>>> ch
[1, -1, 0, -1]
>>> e.ellchangecurve(ch)[:5]
[1, -1, 0, 4, 3]
```

**elltors()**

Return information about the torsion subgroup of the given elliptic curve.

**INPUT:**

• e - elliptic curve over \( \mathbb{Q} \)

**OUTPUT:**

• gen - the order of the torsion subgroup, a.k.a. the number of points of finite order
• gen - vector giving the structure of the torsion subgroup as a product of cyclic groups, sorted in non-increasing order
• gen - vector giving points on e generating these cyclic groups

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([1,0,1,-19,26]).ellinit()
>>> e.elltors()
[12, [6, 2], [[1, 2], [3, -2]]]
```

**ellwp(z, n, flag, precision)**

Return the value or the series expansion of the Weierstrass \( P \)-function at \( z \) on the lattice \( \text{self} \) (or the lattice defined by the elliptic curve \( \text{self} \)).

**INPUT:**

• self – an elliptic curve created using \( \text{ellinit} \) or a list \([\text{om1, om2}]\) representing generators for a lattice.
• z – (default: \( \text{z}' \)) a complex number or a variable name (as string or PARI variable).
• n – (default: 20) if \( \text{z}' \) is a variable, compute the series expansion up to at least \( O(z^n) \).
• flag – (default = 0): If \( \text{flag} \) is 0, compute only \( P(z) \). If \( \text{flag} \) is 1, compute \( [P(z), P'(z)] \).

**OUTPUT:**

• \( P(z) \) (if \( \text{flag} \) is 0) or \( [P(z), P'(z)] \) (if \( \text{flag} \) is 1).
Examples:

We first define the elliptic curve $X_0(11)$:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> E = pari([0,-1,1,-10,-20]).ellinit()
```

Compute $P(1)$:

```python
>>> E.ellwp(1)
13.9658695257485
```

Compute $P(1+i)$, where $i = \sqrt{-1}$:

```python
>>> E.ellwp(pari(complex(1, 1)))
-1.11510682565555 + 2.33419052307470*I

>>> E.ellwp(complex(1, 1))
-1.11510682565555 + 2.33419052307470*I
```

The series expansion, to the default $O(z^{20})$ precision:

```python
>>> E.ellwp()
```

The series expansion, to the default $O(z^{20})$ precision:

```python
z^{-2} + 31/15*z^2 + 2501/756*z^4 + 961/675*z^6 + 77531/41580*z^8 + 1202285717/928746000*z^{10} + ... + 0(z^{20})
```

Compute the series for $wp$ to lower precision:

```python
>>> E.ellwp(n=4)
z^{-2} + 31/15*z^2 + O(z^4)
```

Next we use the version where the input is generators for a lattice:

```python
>>> pari([1.2692, complex(0.63, 1.45)]).ellwp(1)
13.9656146936689 + 0.000644829272810...*I
```

With $\text{flag}=1$, compute the pair $P(z)$ and $P'(z)$:

```python
>>> E.ellwp(1, flag=1)
[13.9658695257485, 101.123860176015]
```

`eval(*args, **kwds)`

Evaluate `self` with the given arguments.

This is currently implemented in 3 cases:

- univariate polynomials, rational functions, power series and Laurent series (using a single unnamed argument or keyword arguments),
- any PARI object supporting the PARI function ` pari:substvec` (in particular, multivariate polynomials) using keyword arguments,
- objects of type `t_CLOSURE` (functions in GP bytecode form) using unnamed arguments.
In no case is mixing unnamed and keyword arguments allowed.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> f = pari('x^2 + 1')
>>> f.type()
't_POL'
>>> f.eval(pari('I'))
0
>>> f.eval(x=2)
5
>>> (1/f).eval(x=1)
1/2
```

The notation \( f(x) \) is an alternative for \( f.eval(x) \):

```python
>>> f(3) == f.eval(3)
True
```

```python
>>> f = pari('Mod(x^2 + x + 1, 3)')
>>> f(2)
Mod(1, 3)
```

Evaluating a power series:

```python
>>> f = pari('1 + x + x^3 + O(x^7)')
>>> f(2*pari('y'))**2
1 + 2*y^2 + 8*y^6 + O(y^14)
```

Substituting zero is sometimes possible, and trying to do so in illegal cases can raise various errors:

```python
>>> pari('1 + O(x^3)').eval(0)
1
>>> pari('1/x').eval(0)
Traceback (most recent call last):
 ... PariError: impossible inverse in gdiv: 0
>>> pari('1/x + O(x^2)').eval(0)
Traceback (most recent call last):
 ... PariError: impossible inverse in gsubst: 0
>>> pari('1/x + O(x^2)').eval(pari('O(x^3)'))
Traceback (most recent call last):
 ... PariError: impossible inverse in ...
>>> pari('O(x^0)').eval(0)
Traceback (most recent call last):
 ... PariError: forbidden substitution t_SER , t_INT
```

Evaluating multivariate polynomials:
```python
>>> f = pari('y^2 + x^3')
>>> f(1) # Dangerous, depends on PARI variable ordering
y^2 + 1
>>> f(x=1) # Safe
y^2 + 1
>>> f(y=1)
x^3 + 1
>>> f(1, 2)
Traceback (most recent call last):
...
TypeError: evaluating PARI t_POL takes exactly 1 argument (2 given)

It’s not an error to substitute variables which do not appear:

```python
>>> f.eval(z=37)
x^3 + y^2
```python
```python
>>> pari(42).eval(t=0)
42
```

We can define and evaluate closures as follows:

```python
>>> T = pari('n -> n + 2')
>>> T.type()
't_CLOSURE'
>>> T.eval(3)
5

>>> T = pari('() -> 42')
>>> T()
42

>>> pr = pari('s -> print(s)')
>>> pr.eval("hello world")
hello world

>>> f = pari('myfunc(x,y) = x*y')
>>> f.eval(5, 6)
30
```

Default arguments work, missing arguments are treated as zero (like in GP):

```python
>>> f = pari("(x, y, z=1.0) -> [x, y, z]"
>>> f(1, 2, 3)
[1, 2, 3]
>>> f(1, 2)
[1, 2, 1.00000000000000]
>>> f(1)
[1, 0, 1.00000000000000]
```
Variadic closures are supported as well (Sage ticket #18623):

```python
>>> f = pari("(v[..])->length(v)"
>>> f('a', 'f')
2
>>> g = pari("(x,y,z[..])->[x,y,z]"
>>> g(), g(1), g(1,2), g(1,2,3), g(1,2,3,4)
([0, 0, []], [1, 0, []], [1, 2, []], [1, 2, [3]], [1, 2, [3, 4]])
```

Using keyword arguments, we can substitute in more complicated objects, for example a number field:

```python
>>> nf = pari("x^2 + 1").nfinit()
>>> nf
[x^2 + 1, [0, 1], -4, 1, [Mat([1, 0.E-38 + 1.00000000000000*I]), [1, 1.
˓→00000000000000; 1, -1.00000000000000], ...], [2, 0; 0, -2], [2, 0; 0, 2], [1,˓→0; 0, -1], [1, [0, -1; 1, 0]], [2]], [0.E-38 + 1.00000000000000*I], [1, x],˓→[1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]]
>>> nf(x='y')
[y^2 + 1, [0, 1], -4, 1, [Mat([1, 0.E-38 + 1.00000000000000*I]), [1, 1.
˓→00000000000000; 1, -1.00000000000000], ...], [2, 0; 0, -2], [2, 0; 0, 2], [1,˓→0; 0, -1], [1, [0, -1; 1, 0]], [2]], [0.E-38 + 1.00000000000000*I], [1, y],˓→[1, 0; 0, 1], [1, 0, 0, -1; 0, 1, 1, 0]]
```

Tests:

```python
>>> T = pari("n -> 1/n")
>>> T.type()
't_CLOSURE'
>>> T(0)
Traceback (most recent call last):
...
PariError: _/_: impossible inverse in gdiv: 0
>>> pari('() -> 42')(1,2,3)
Traceback (most recent call last):
...
PariError: too many parameters in user-defined function call
>>> pari('n -> 1/n')(n=2)
Traceback (most recent call last):
...
TypeError: cannot evaluate a PARI closure using keyword arguments
>>> pari("x + y")('4', y='1')
Traceback (most recent call last):
...
TypeError: mixing unnamed and keyword arguments not allowed when evaluating a˓→PARI object
>>> pari("12345")('4')
Traceback (most recent call last):
...
TypeError: cannot evaluate PARI t_INT using unnamed arguments
```
factor\((limit, proof)\)

Return the factorization of \(x\).

INPUT:

- **limit** – (default: -1) is optional and can be set whenever \(x\) is of (possibly recursive) rational type. If limit is set, return partial factorization, using primes up to limit.

- **proof** – optional flag. If False (not the default), returned factors larger than \(2^{64}\) may only be pseudoprimes. If True, always check primality. If not given, use the global PARI default factor_proven which is True by default in cypari.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('x^10-1').factor()
[x - 1, 1; x + 1, 1; x^4 - x^3 + x^2 - x + 1, 1; x^4 + x^3 + x^2 + x + 1, 1]

>>> pari(2**100-1).factor()
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1; 8101, 1; 268501, 1]

>>> pari(2**100-1).factor(proof=True)
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1; 8101, 1; 268501, 1]

>>> pari(2**100-1).factor(proof=False)
[3, 1; 5, 3; 11, 1; 31, 1; 41, 1; 101, 1; 251, 1; 601, 1; 1801, 1; 4051, 1; 8101, 1; 268501, 1]

We illustrate setting a limit:

```python
>>> pari(pari(10**50).nextprime()*pari(10**60).nextprime()*pari(10**4).nextprime()).factor(limit=10**5)
[10007, 1; 10001510001057, 1]
```

Setting a limit is invalid when factoring polynomials:

```python
>>> pari('x^11 + 1').factor(limit=17)
Traceback (most recent call last):
 ...
PariError: incorrect type in boundfact (t_POL)
```

factorpadic\((p, r)\)

\(p\)-adic factorization of the polynomial \(pol\) to precision \(r\).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pol = pari('x^2 - 1')**2
>>> pari(pol).factorpadic(5)
[(1 + O(5^20))*x + (1 + O(5^20)), 2; (1 + O(5^20))*x + (4 + 4*5 + 4*5^2 + 4*5^3 + 4*5^3, 1)]
```
ffprimroot()

Return a primitive root of the multiplicative group of the definition field of the given finite field element.

**INPUT:**

- `self` – a PARI finite field element (FFELT)

**OUTPUT:**

- A generator of the multiplicative group of the finite field generated by `self`.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> b = pari(9).ffgen().ffprimroot()
>>> b.fforder()
8
```

fibonacci()

Return the Fibonacci number of index x.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(18).fibonacci()
2584
>>> [pari(n).fibonacci() for n in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```

galoissubfields(flag, v)

List all subfields of the Galois group `self`.

This wraps the `galoissubfields` function from PARI.

This method is essentially the same as applying `galoisfixedfield()` to each group returned by `galoissubgroups()`.

**INPUT:**

- `self` – A Galois group as generated by `galoisinit()`.
- `flag` – Has the same meaning as in `galoisfixedfield()`.
- `v` – Has the same meaning as in `galoisfixedfield()`.

**OUTPUT:**

A vector of all subfields of this group. Each entry is as described in the `galoisfixedfield()` method.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(18).fibonacci()
2584
>>> [pari(n).fibonacci() for n in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
```
```python
>>> from cypari2 import Pari

>>> pari = Pari()

>>> G = pari('x^6 + 108').galoisinit()

>>> G.galoissubfields(flag=1)
[x, x^2 + 972, x^3 + 54, x^3 + 864, x^3 - 54, x^6 + 108]

>>> G = pari('x^4 + 1').galoisinit()

>>> G.galoissubfields(flag=2, v='z')[3]
[...^2 + 2, Mod(x^3 + x, x^4 + 1), [x^2 - z*x - 1, x^2 + z*x - 1]]
```

gequal(b)

Check whether \( a \) and \( b \) are equal using PARI's `gequal`.

Examples:

```python
>>> from cypari2 import Pari

>>> pari = Pari()

>>> a = pari(1); b = pari(1.0); c = pari('"some_string"')

>>> a.gequal(a)
True

>>> b.gequal(b)
True

>>> c.gequal(c)
True

>>> a.gequal(b)
True

>>> a.gequal(c)
False
```

WARNING: this relation is not transitive:

```python
>>> a = pari('[0]'); b = pari(0); c = pari('[0,0]')

>>> a.gequal(b)
True

>>> b.gequal(c)
True

>>> a.gequal(c)
False
```

gequal0()

Check whether \( a \) is equal to zero.

Examples:

```python
>>> from cypari2 import Pari

>>> pari = Pari()

>>> pari(0).gequal0()
True

>>> pari(1).gequal0()
False

>>> pari(1e-100).gequal0()
```

(continues on next page)


gequal_long \( (b) \)

Check whether \( a \) is equal to the \texttt{long int} \( b \) using PARI's \texttt{gequalsg}.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> a = pari(1); b = pari(2.0); c = pari('3*matid(3)')
>>> a.gequal_long(1)
True
>>> a.gequal_long(-1)
False
>>> a.gequal_long(0)
False
>>> b.gequal_long(2)
True
>>> b.gequal_long(-2)
False
>>> c.gequal_long(3)
True
>>> c.gequal_long(-3)
False
```

ggetattr \( (attr) \)

Return the PARI attribute with the given name.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari('nfinit(x^2 - x - 1)')
>>> K.getattr("pol")
x^2 - x - 1
>>> K.getattr("disc")
5

>>> K.getattr("reg")
Traceback (most recent call last):
 ...
PariError: _.reg: incorrect type in reg (t_VEC)
```
**Idealmoddivisor**

Return a ‘small’ ideal equivalent to ideal in the ray class group that the bnr structure self encodes.

**INPUT:**
- self – a bnr structure as outputted from bnrinit.
- ideal – an ideal in the underlying number field of the bnr structure.

**OUTPUT:** An ideal representing the same ray class as ideal but with ‘small’ generators. If ideal is not coprime to the modulus of the bnr, this results in an error.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> i = pari('i')
>>> K = (i**4 - 2).bnfinit()
>>> R = K.bnrinit(5,1)
>>> R.idealmoddivisor(K[6][6][1])
[[2, 0, 0, 0; 0, 1, 0, 0; 0, 0, 1, 0; 0, 0, 0, 1]]
>>> R.idealmoddivisor(K.idealhnf(5))
Traceback (most recent call last):
 ...
PariError: elements not coprime in idealaddtoone:
 [5, 0, 0, 0; 0, 5, 0, 0; 0, 0, 5, 0; 0, 0, 0, 5]
 [5, 0, 0, 0; 0, 5, 0, 0; 0, 0, 5, 0; 0, 0, 0, 5]
```

**Ispower**

Determine whether or not self is a perfect k-th power. If k is not specified, find the largest k so that self is a k-th power.

**INPUT:**
- k - int (optional)

**OUTPUT:**
- power - int, what power it is
- g - what it is a power of

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).ispower()
(2, 3)
>>> pari(17).ispower()
(1, 17)
>>> pari(17).ispower(2)
(False, None)
>>> pari(17).ispower(1)
(1, 17)
>>> pari(2).ispower()
(1, 2)
```

**Isperson**

Return True if x is a PROVEN prime number, and False otherwise.
**isprime()**

Check whether \texttt{self} is a prime (a positive integer).

**INPUT:**

- \texttt{flag} – If \texttt{flag} is 0 or omitted, use a combination of algorithms. If \texttt{flag} is 1, the primality is certified by the Pocklington-Lehmer Test. If \texttt{flag} is 2, the primality is certified using the APRCL test. If \texttt{flag} is 3, use ECPP.

**OUTPUT:** bool

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).isprime()
False
>>> pari(17).isprime()
True
>>> n = pari(561) # smallest Carmichael number
>>> n.isprime() # not just a pseudo-primality test!
False
>>> n.isprime(1)
False
>>> n.isprime(2)
False
>>> n = pari(2**31-1)
>>> n.isprime(1)
True
```

**isprimepower()**

Check whether \texttt{self} is a prime power (with an exponent \(\geq 1\)).

**INPUT:**

- \texttt{self} - A PARI integer

**OUTPUT:**

A tuple \((k, p)\) where \(k\) is a Python integer and \(p\) a PARI integer.

- If the input was a prime power, \(p\) is the prime and \(k\) the power.
- Otherwise, \(k = 0\) and \(p\) is \texttt{self}.

**See also:**

If you don’t need a proof that \(p\) is prime, you can use \texttt{ispseudoprimepower()} instead.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).isprimepower()
(2, 3)
>>> pari(17).isprimepower()
(1, 17)
>>> pari(18).isprimepower()
(0, 18)
>>> pari(3**12345).isprimepower()
(12345, 3)
```
ispseudoprime(flag)

ispseudoprime(x, flag=0): Returns True if x is a pseudo-prime number, and False otherwise.

INPUT:

- **flag** - int 0 (default): checks whether x is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime
  (strong Rabin-Miller pseudo prime for base 2, followed by strong Lucas test for the sequence (P, -1),
  P smallest positive integer such that $P^2 - 4$ is not a square mod x). 0: checks whether x is a strong
  Miller-Rabin pseudo prime for flag randomly chosen bases (with end-matching to catch square roots
  of -1).

OUTPUT:

- **bool** - True or False, or when flag=1, either False or a tuple (True, cert) where cert is a primality
certificate.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
>>> pari(9).ispseudoprime()
False
>>> pari(17).ispseudoprime()
True
>>> n = pari(561) # smallest Carmichael number
>>> n.ispseudoprime(2)
False
```

ispseudoprimepower()

Check whether self is the power (with an exponent >= 1) of a pseudo-prime.

INPUT:

- **self** - A PARI integer

OUTPUT:

A tuple ($k$, $p$) where $k$ is a Python integer and $p$ a PARI integer.

- If the input was a pseudoprime power, $p$ is the pseudoprime and $k$ the power.
- Otherwise, $k = 0$ and $p$ is self.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(3**12345).ispseudoprimepower()
(12345, 3)
>>> p = pari(2**1500 + 1465) # nextprime(2^1500)
>>> (p**11).ispseudoprimepower()[0] # very fast
11
```

issquare(find_root)

issquare(x,n): True if x is a square, False if not. If find_root is given, also returns the exact square root.
issquarefree()

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).issquarefree()
True
>>> pari(20).issquarefree()
False
```

j()

Return the j-invariant of this object.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.j()
-122023936/161051
>>> _.factor()
[-1, 1; 2, 12; 11, -5; 31, 3]
```

lift_centered(v)

Same as lift, except that t_INTMOD and t_PADIC components are lifted using centered residues:

- for a t_INTMOD \( x \in \mathbb{Z}/n\mathbb{Z} \), the lift \( y \) is such that \(-n/2 < y < n/2\).
- a t_PADIC \( x \) is lifted in the same way as above (modulo \( p^{\text{padicprec}(x)} \)) if its valuation \( v \) is nonnegative; if not, returns the fraction \( p^v \text{centerlift}(xp^{-v}) \); in particular, rational reconstruction is not attempted. Use bestappr for this.

For backward compatibility, centerlift(x,'v) is allowed as an alias for lift(x,'v).

list()

Convert self to a Python list with Gen components.

Examples:

A PARI vector becomes a Python list:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> L = pari("vector(10,i,i^2)").list()
>>> L
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
>>> type(L)
<... 'list'>
>>> type(L[0])
<... 'cypari2.gen.Gen'>
```

For polynomials, list() returns the list of coefficients:
```python
>>> pol = pari("x^3 + 5/3*x"); pol.list()
[0, 5/3, 0, 1]
```

For power series or Laurent series, we get all coefficients starting from the lowest degree term. This includes trailing zeros:

```python
>>> pari('x^2 + O(x^8)').list()
[1, 0, 0, 0, 0, 0]
>>> pari('x^-2 + O(x^0)').list()
[1, 0]
```

For matrices, we get a list of columns:

```python
>>> M = pari.matrix(3,2,[[1,4,2,5,3,6]]); M
[[1, 4; 2, 5; 3, 6]]
>>> M.list()
[[[1, 2, 3]~, [4, 5, 6]~]]
```

**log_gamma**

Principal branch of the logarithm of the gamma function of $x$. This function is analytic on the complex plane with nonpositive integers removed, and can have much larger arguments than `gamma` itself.

For $x$ a power series such that $x(0)$ is not a pole of `gamma`, compute the Taylor expansion. (PARI only knows about regular power series and can’t include logarithmic terms.)

```python
? lngamma(1+x+O(x^2))
%1 = -0.57721566490153286060651209008240243104*x + O(x^2)
? lngamma(x+O(x^2))
*** at top-level: lngamma(x+O(x^2))
*** ^-----------------
*** lngamma: domain error in lngamma: valuation != 0
? lngamma(-1+x+O(x^2))
*** lngamma: Warning: normalizing a series with 0 leading term.
*** at top-level: lngamma(-1+x+O(x^2))
*** ^-------------------
*** lngamma: domain error in intformal: residue(series, pole) != 0
```

**matkerint**

Return the integer kernel of a matrix.

This is the LLL-reduced Z-basis of the kernel of the matrix $x$ with integral entries.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('[2,1;2,1]').matkerint()
[1; -2]
```
...  
```
assert issubclass(w[0].category, DeprecationWarning)
```

```
mattranspose()
Transpose of the matrix self.

Examples:
```
>>> from cy pari2 import Pari
>>> pari = Pari()
>>> pari('[1,2,3; 4,5,6; 7,8,9]').mattranspose()
[1, 4, 7; 2, 5, 8; 3, 6, 9]
```

Unlike PARI, this always returns a matrix:
```
>>> pari('[1,2,3]').mattranspose()
[1; 2; 3]
>>> pari('[1,2,3]~').mattranspose()
Mat([1, 2, 3])
```

```
mod()
Given an INTMOD or POLMOD Mod(a,m), return the modulus m.

Examples:
```
>>> from cy pari2 import Pari
>>> pari = Pari()
>>> pari(4).Mod(5).mod()
5
>>> pari("Mod(x, x^2)").mod()
y^2x
>>> pari("[Mod(4,5)]").mod()
Traceback (most recent call last):
 ...
TypeError: Not an INTMOD or POLMOD in mod()
```

```
multiplicative_order(o)
x must be an integer mod n, and the result is the order of x in the multiplicative group (\(\mathbb{Z}/n\mathbb{Z}\))^\times. Returns an error if x is not invertible. The parameter o, if present, represents a nonzero multiple of the order of x, see Dlfun (in the PARI manual); the preferred format for this parameter is [ord, factor(ord)], where ord = eulerphi(n) is the cardinality of the group.
```

```
ncols()
Return the number of columns of self.

Examples:
```
>>> from cy pari2 import Pari
>>> pari = Pari()
```
>>> pari('matrix(19,8)').ncols()
8

nextprime(add_one)

nextprime(x): smallest pseudoprime greater than or equal to x. If add_one is non-zero, return the smallest pseudoprime strictly greater than x.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(1).nextprime()
2
>>> pari(2).nextprime()
2
>>> pari(2).nextprime(add_one = 1)
3
>>> pari(2**100).nextprime()
1267650600228229401496703205653
```

nf_get_diff()

Returns the different of this number field as a PARI ideal.

INPUT:

• self – A PARI number field being the output of nfinit(), bnfinit() or bnrinit().

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).nfinit()
>>> K.nf_get_diff()
[12, 0, 0, 0; 0, 12, 8, 0; 0, 0, 4, 0; 0, 0, 0, 4]
```

nf_get_pol()

Returns the defining polynomial of this number field.

INPUT:

• self – A PARI number field being the output of nfinit(), bnfinit() or bnrinit().

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).bnfinit()
>>> bnr = K.bnrinit(2*x)
```

(continues on next page)
For relative number fields, this returns the relative polynomial:

```plaintext
>>> y = pari('y').varhigher()
>>> L = K.rnfinit(y**2 - 5)
>>> L.nf_get_pol()
```

```plaintext
y^2 - 5
```

An error is raised for invalid input:

```plaintext
>>> pari('[[0]]').nf_get_pol()
Traceback (most recent call last):
...
PariError: incorrect type in pol (t_VEC)
```

nf_get_sign()

Returns a Python list \([r1, r2]\), where \(r1\) and \(r2\) are Python ints representing the number of real embeddings and pairs of complex embeddings of this number field, respectively.

INPUT:

- \(\textbf{self} - \) A PARI number field being the output of `nfinit()`, `bnfinit()` or `bnrinit()`.

Examples:

```plaintext
>>> from cypari2 import Pari
>>> pari = Pari()

>>> x = pari('x')
>>> K = (x**4 - 4*x**2 + 1).nfinit()
>>> s = K.nf_get_sign(); s
\[4, 0\]

>>> type(s); type(s[0])
\'<... 'list'>
\'<... 'int'>

>>> pari.polcyclo(15).nfinit().nf_get_sign()
\[0, 4\]
```

nf_get_zk()

Returns a vector with a \(\mathbb{Z}Z\)-basis for the ring of integers of this number field. The first element is always \(l\).

INPUT:

- \(\textbf{self} - \) A PARI number field being the output of `nfinit()`, `bnfinit()` or `bnrinit()`.

Examples:

```plaintext
>>> from cypari2 import Pari
>>> pari = Pari()
```


nf_subst(z)

Given a PARI number field \texttt{self}, return the same PARI number field but in the variable \texttt{z}.

INPUT:

- \texttt{self} – A PARI number field being the output of \texttt{nfinit()}, \texttt{bnfinit()} or \texttt{bnrinit()}.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari('y^2 + 5').nfinit()
We can substitute in a PARI \texttt{nf} structure:

```python
 >>> K.nf_get_pol()
y^2 + 5
 >>> L = K.nf_subst('a')
 >>> L.nf_get_pol()
a^2 + 5
```

We can also substitute in a PARI \texttt{bnf} structure:

```python
>>> K = pari('y^2 + 5').bnfinit()
>>> K.nf_get_pol()
y^2 + 5
>>> K.bnf_get_cyc() # Structure of class group
[2]
>>> L = K.nf_subst('a')
>>> L.nf_get_pol()
a^2 + 5
>>> L.bnf_get_cyc() # We still have a \texttt{bnf} after substituting
[2]
```

nfbasis(flag, fa)

Integral basis of the field \( \mathbb{Q}[\alpha] \), where \( \alpha \) is a root of the polynomial \( x \).

**INPUT:**

- \texttt{flag}: if set to 1 and \texttt{fa} is not given: assume that no square of a prime > 500000 divides the discriminant of \( x \).
- \texttt{fa}: If present, encodes a subset of primes at which to check for maximality. This must be one of the three following things:
  - an integer: check all primes up to \texttt{fa} using trial division.
  - a vector: a list of primes to check.
  - a matrix: a partial factorization of the discriminant of \( x \).
Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('x^3 - 17').nfbasis()
[1, x, 1/3*x^2 - 1/3*x + 1/3]
```

We test flag = 1, noting it gives a wrong result when the discriminant \((-4*p^2*q^2)\) in the example below has a big square factor:

```python
>>> p = pari(10**10).nextprime(); q = (p+1).nextprime()
>>> x = pari('x'); f = x**2 + p**2*q
>>> pari(f).nfbasis(1) # Wrong result
[1, x]
>>> pari(f).nfbasis() # Correct result
[1, 1/10000000019*x]
>>> pari(f).nfbasis(fa=10**6) # Check primes up to 10^6: wrong result
[1, x]
>>> pari(f).nfbasis(fa="[2,2; %s]"%p) # Correct result and faster
[1, 1/10000000019*x]
>>> pari(f).nfbasis(fa=[2,p]) # Equivalent with the above
[1, 1/10000000019*x]
```

The following alternative syntax closer to PARI/GP can be used:

```python
>>> pari(nfbasis([f, 1]))
[1, x]
>>> pari(nfbasis(f))
[1, 1/10000000019*x]
>>> pari(nfbasis([f, 10**6]))
[1, x]
>>> pari(nfbasis([f, "[2,2; %s]"%p]))
[1, 1/10000000019*x]
>>> pari(nfbasis([f, [2,p]])) # Equivalent with the above
[1, 1/10000000019*x]
```

**nfbasis_d(flag, fa)**

Like `nfbasis()`, but return a tuple \((B, D)\) where \(B\) is the integral basis and \(D\) the discriminant.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> F = pari('x^3 - 2').nfinit()
>>> F[0].nfbasis_d()
([1, x, x^2], -108)

>>> G = pari('x^5 - 11').nfinit()
>>> G[0].nfbasis_d()
([1, x, x^2, x^3, x^4], 45753125)
```
```python
>>> pari([-2,0,0,1]).Polrev().nfbasis_d()
([1, x, x^2], -108)
```

**nfbasistoalg_lift(x)**

Transforms the column vector \( x \) on the integral basis into a polynomial representing the algebraic number.

**INPUT:**

- \( \text{n}f \) – a number field
- \( x \) – a column of rational numbers of length equal to the degree of \( \text{n}f \) or a single rational number

**OUTPUT:**

- \( \text{n}f.\text{nfbasistoalg}(x).\text{lift()} \)

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> K = pari('x^3 - 17').nfinit()
>>> K.nf_get_zk()
[1, 1/3*x^2 - 1/3*x + 1/3, x]
>>> K.nfbasistoalg_lift(42)
42
>>> K.nfbasistoalg_lift("[3/2, -5, 0]~")
-5/3*x^2 + 5/3*x - 1/6
>>> K.nf_get_zk() * pari("[3/2, -5, 0]~")
-5/3*x^2 + 5/3*x - 1/6
```

**nfeltval(x, p)**

Return the valuation of the number field element \( x \) at the prime \( p \).

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> nf = pari('x^2 + 1').nfinit()
>>> p = nf.idealprimedec(5)[0]
>>> nf.nfeltval('50 - 25*x', p)
3
```

**nrows()**

Return the number of rows of self.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('matrix(19,8)').nrows()
19
```
omega()

Return the basis for the period lattice of this elliptic curve.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> e = pari([0, -1, 1, -10, -20]).ellinit()
>>> e.omega()
[1.26920930427955, 0.634604652139777 - 1.45881661693850*I]
```

The precision is determined by the ellinit call:

```python
>>> e = pari([0, -1, 1, -10, -20]).ellinit(precision=256)
>>> e.omega().bitprecision()
256
```

This also works over quadratic imaginary number fields:

```python
>>> e = pari.ellinit([0, -1, 1, -10, -20], "nfinit(y^2 - 2)"
>>> if pari.version() >= (2, 10, 1):
... w = e.omega()
```

padicprime()

The uniformizer of the p-adic ring this element lies in, as a t_INT.

INPUT:
• x - gen, of type t_PADIC

OUTPUT:
• p - gen, of type t_INT

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> y = pari('11^-10 + 5*11^-7 + 11^-6 + O(11)')
>>> y.padicprime()
11
>>> y.padicprime().type()
't_INT'
```

polinterpolate(ya, x)

self.polinterpolate(ya,x,e): polynomial interpolation at x according to data vectors self, ya (i.e. return P such that P(self[i]) = ya[i] for all i). Also return an error estimate on the returned value.

polred(*args, **kwds)

This function is deprecated, use polredbest() instead.

polylog(m, flag, precision)

x.polylog(m,flag=0): m-th polylogarithm of x. flag is optional, and can be 0: default, 1: D_m -modified m-th polylog of x, 2: D_m-modified m-th polylog of x, 3: P_m-modified m-th polylog of x.
If $x$ is an exact argument, it is first converted to a real or complex number using the optional parameter precision (in bits). If $x$ is inexact (e.g. real), its own precision is used in the computation, and the parameter precision is ignored.

TODO: Add more explanation, copied from the PARI manual.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).polylog(3)
5.64181141475134 - 8.32820207698027*I
>>> pari(10).polylog(3,0)
5.64181141475134 - 8.32820207698027*I
>>> pari(10).polylog(3,1)
0.523778453502411
>>> pari(10).polylog(3,2)
-0.400459056163451
```

**pr_get_e()**

Returns the ramification index (over $QQ$) of this prime ideal.

NOTE: `self` must be a PARI prime ideal (as returned by `idealprimedec` for example).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> K.idealprimedec(2)[0].pr_get_e()
2
>>> K.idealprimedec(3)[0].pr_get_e()
1
>>> K.idealprimedec(5)[0].pr_get_e()
1
```

**pr_get_f()**

Returns the residue class degree (over $QQ$) of this prime ideal.

NOTE: `self` must be a PARI prime ideal (as returned by `idealprimedec` for example).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> K.idealprimedec(2)[0].pr_get_f()
1
>>> K.idealprimedec(3)[0].pr_get_f()
2
(continues on next page)
```
pr_get_gen()

Returns the second generator of this PARI prime ideal, where the first generator is self.pr_get_p().

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> g = K.idealprimedec(2)[0].pr_get_gen(); g
[1, 1]~
>>> g = K.idealprimedec(3)[0].pr_get_gen(); g
[3, 0]~
>>> g = K.idealprimedec(5)[0].pr_get_gen(); g
[-2, 1]~
```

pr_get_p()

Returns the prime of \( \mathbb{Z} \) lying below this prime ideal.

NOTE: self must be a PARI prime ideal (as returned by idealprimedec for example).

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> i = pari('i')
>>> K = (i**2 + 1).nfinit()
>>> F = K.idealprimedec(5); F
[[5, [-2, 1]~, 1, 1, [2, -1; 1, 2]], [5, [2, 1]~, 1, 1, [-2, -1; 1, -2]]]
>>> F[0].pr_get_p()
5
```

python()

Return the closest Python equivalent of the given PARI object.

See gen_to_python() for more informations.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('1.2').python()
1.2
>>> pari('389/17').python()
Fraction(389, 17)
```
**python_list()**

Return a Python list of the PARI gens. This object must be of type t_VEC or t_COL.

**INPUT:** None

**OUTPUT:**

- list - Python list whose elements are the elements of the input gen.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> v = pari([1, 2, 3, 10, 102, 10])
>>> w = v.python_list()
>>> w
[1, 2, 3, 10, 102, 10]
>>> type(w[0])
<... 'cypari2.gen.Gen'>
>>> pari("[1,2,3]").python_list()
[1, 2, 3]
```

**python_list_small()**

Return a Python list of the PARI gens. This object must be of type t_VECSMALL, and the resulting list contains python `int`'s.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> v = pari([1, 2, 3, 10, 102, 10]).Vecsmall()
>>> w = v.python_list_small()
>>> w
[1, 2, 3, 10, 102, 10]
>>> type(w[0])
<... 'int'>
```

**qfrep(B, flag)**

Vector of (half) the number of vectors of norms from 1 to \(B\) for the integral and definite quadratic form \(self\). Binary digits of flag mean 1: count vectors of even norm from 1 to \(2B\), 2: return a t_VECSMALL instead of a t_VEC (which is faster).

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> M = pari("[5,1,1;1,3,1;1,1,1]")
>>> M.qfrep(20)
[1, 1, 2, 2, 2, 4, 4, 3, 3, 4, 2, 4, 6, 0, 4, 6, 4, 5, 6, 4]
```
round($estimate$)

round($x$, $estimate$=False): If $x$ is a real number, returns $x$ rounded to the nearest integer (rounding up). If the optional argument $estimate$ is True, also returns the binary exponent $e$ of the difference between the original and the rounded value (the “fractional part”) (this is the integer ceiling of $\log_2$($error$)).

When $x$ is a general PARI object, this function returns the result of rounding every coefficient at every level of PARI object. Note that this is different than what the truncate function does (see the example below).

One use of round is to get exact results after a long approximate computation, when theory tells you that the coefficients must be integers.

INPUT:

• $x$ - gen
• $estimate$ - (optional) bool, False by default

OUTPUT:

• if $estimate$ is False, return a single gen.
• if $estimate$ is True, return rounded version of $x$ and error estimate in bits, both as gens.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('1.5').round()
2
>>> pari('1.5').round(True)
(2, -1)
>>> pari('1.5 + 2.1*I').round()
2 + 2*I
>>> pari('1.0001').round(True)
(1, -14)
>>> pari('(2.4*x^2 - 1.7)/x').round()
(2*x^2 - 2)/x
>>> pari('(2.4*x^2 - 1.7)/x').truncate()
2.40000000000000*x
```

sage($locals$)

Return the closest SageMath equivalent of the given PARI object.

INPUT:

• $locals$ – optional dictionary used in fallback cases that involve sage_eval

See gen_to_sage() for more information.

sizebyte()

Return the total number of bytes occupied by the complete tree of the object $x$. Note that this number depends on whether the computer is 32-bit or 64-bit.
INPUT:

• x - gen

OUTPUT: int (a Python int)

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> pari('1').sizebyte() == (12 if bitness == '32' else 24)
True
```

`sizeword()`

Return the total number of machine words occupied by the complete tree of the object x. A machine word is 32 or 64 bits, depending on the computer.

INPUT:

• x - gen

OUTPUT: int (a Python int)

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('0').sizeword()
2
>>> pari('1').sizeword()
3
>>> pari('1000000').sizeword()
3

>>> import sys
>>> bitness = '64' if sys.maxsize > (1 << 32) else '32'
>>> pari('10^100').sizeword() == (13 if bitness == '32' else 8)
True
>>> pari(1.0).sizeword() == (4 if bitness == '32' else 3)
True

>>> pari('x + 1').sizeword()
10
>>> pari('[x + 1, 1]').sizeword()
16
```

`sqrtn(n, precision)`

x.sqrtn(n): return the principal branch of the n-th root of x, i.e., the one such that $\arg(\sqrt[n]{x}) \in (-\pi/n, \pi/n]$. Also returns a second argument which is a suitable root of unity allowing one to recover all the other roots. If it was not possible to find such a number, then this second return value is 0. If the argument is present and no square root exists, return 0 instead of raising an error.
If \( x \) is an exact argument, it is first converted to a real or complex number using the optional parameter precision (in bits). If \( x \) is inexact (e.g. real), its own precision is used in the computation, and the parameter precision is ignored.

**Note:** intmods (modulo a prime) and \( p \)-adic numbers are allowed as arguments.

**INPUT:**

- \( x \) - gen
- \( n \) - integer

**OUTPUT:**

- \( \text{gen} \) - principal \( n \)-th root of \( x \)
- \( \text{gen} \) - root of unity \( z \) that gives the other roots

**Examples:**

```python
from cypari2 import Pari

pari = Pari()

s, z = pari(2).sqrtn(5)

z
0.309016994374947 + 0.951056516295154*I

s
1.14869835499704

s**5
2.00000000000000

(s*z)**5
2.00000000000000 + 0.E-19*I
```

```python
import sys

bitness = '64' if sys.maxsize > (1 << 32) else '32'

s = str(z**5)

s == ('1.00000000000000 - 2.710505431 E-20*I' if bitness == '32' else '1.00000000000000 - 2.71050543121376 E-20*I')
True
```

**sumdiv()**

Return the sum of the divisors of \( n \).

**Examples:**

```python
from cypari2 import Pari

pari = Pari()

pari(10).sumdiv()
18
```

**sumdivk(k)**

Return the sum of the \( k \)-th powers of the divisors of \( n \).

**Examples:**
```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(10).sumdivk(2)
130
```

### truncate(estimate)

`truncate(x, estimate=False)`: Return the truncation of `x`. If `estimate` is `True`, also return the number of error bits.

When `x` is in the real numbers, this means that the part after the decimal point is chopped away. `e` is the binary exponent of the difference between the original and truncated value (the “fractional part”). If `x` is a rational function, the result is the integer part (Euclidean quotient of numerator by denominator) and if requested the error estimate is 0.

When `truncate` is applied to a power series (in `X`), it transforms it into a polynomial or a rational function with denominator a power of `X`, by chopping away the `O(X^k)`. Similarly, when applied to a p-adic number, it transforms it into an integer or a rational number by chopping away the `O(p^k)`.

**INPUT:**
- `x` - gen
- `estimate` - (optional) bool, which is False by default

**OUTPUT:**
- if `estimate` is False, return a single gen.
- if `estimate` is True, return rounded version of `x` and error estimate in bits, both as gens.

**Examples:**

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari('(x^2+1)/x').round()
(x^2 + 1)/x
>>> pari('(x^2+1)/x').truncate()
x
>>> pari('1.043').truncate()
1
>>> pari('1.043').truncate(True)
(1, -5)
>>> pari('1.6').truncate()
1
>>> pari('1.6').round()
2
>>> pari('1/3 + 2 + 3*x^2 + O(3^3)').truncate()
34/3
>>> pari('sin(x+0(x^10))').truncate()
1/362880*x^9 - 1/5040*x^7 + 1/120*x^5 - 1/6*x^3 + x
>>> pari('sin(x+0(x^10))').round() # each coefficient has abs < 1
x + 0(x^10)
```

### type()

Return the PARI type of self as a string.
Note: In Cython, it is much faster to simply use `typ(self.g)` for checking PARI types.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari(7).type()
't_INT'
>>> pari('x').type()
't_POL'
>>> pari('oo').type()
't_INFINITY'
```

vecmax()

Return the maximum of the elements of the vector/matrix $x$.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari([[1, '-5/3', 8.0]].vecmax()
8.00000000000000
```

vecmin()

Return the minimum of the elements of the vector/matrix $x$.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()

>>> pari([[1, '-5/3', 8.0]].vecmin()
-5/3
```

class cypari2.gen.Gen_base

Wrapper for a PARI GEN containing auto-generated methods.

This class does not manage the GEN inside in any way. It is just a dumb wrapper. In particular, it might be invalid if the GEN is on the PARI stack and the PARI stack has been garbage collected.

You almost certainly want to use one of the derived class Gen instead. That being said, Gen_base can be used by itself to pass around a temporary GEN within Python where we cannot use C calls.

Col(n)

Transforms the object $x$ into a column vector. The dimension of the resulting vector can be optionally specified via the extra parameter $n$.

If $n$ is omitted or 0, the dimension depends on the type of $x$; the vector has a single component, except when $x$ is

- a vector or a quadratic form (in which case the resulting vector is simply the initial object considered as a row vector),
• a polynomial or a power series. In the case of a polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for power series only the significant coefficients are taken into account, but this time by increasing order of degree. In this last case, \texttt{Vec} is the reciprocal function of \texttt{Pol} and \texttt{Ser} respectively,

• a matrix (the column of row vector comprising the matrix is returned),

• a character string (a vector of individual characters is returned).

In the last two cases (matrix and character string), \( n \) is meaningless and must be omitted or an error is raised. Otherwise, if \( n \) is given, 0 entries are appended at the end of the vector if \( n > 0 \), and prepended at the beginning if \( n < 0 \). The dimension of the resulting vector is \( \| n \| \).

See \texttt{??Vec} for examples.

\texttt{Colrev}(n)

As \texttt{Col}(x, -n), then reverse the result. In particular, \texttt{Colrev} is the reciprocal function of \texttt{Polrev}: the coefficients of the vector start with the constant coefficient of the polynomial and the others follow by increasing degree.

\texttt{List}()

Transforms a (row or column) vector \( x \) into a list, whose components are the entries of \( x \). Similarly for a list, but rather useless in this case. For other types, creates a list with the single element \( x \).

\texttt{Map}()

A “Map” is an associative array, or dictionary: a data type composed of a collection of (key, value) pairs, such that each key appears just once in the collection. This function converts the matrix \[ [a_1, b_1; a_2, b_2; \ldots; a_n, b_n] \] to the map \( a_i : > b_i \).

\begin{verbatim}
? M = Map(factor(13!));
? mapget(M,3)
%2 = 5
\end{verbatim}

If the argument \( x \) is omitted, creates an empty map, which may be filled later via \texttt{mapput}.

\texttt{Mat}()

Transforms the object \( x \) into a matrix. If \( x \) is already a matrix, a copy of \( x \) is created. If \( x \) is a row (resp. column) vector, this creates a 1-row (resp. 1-column) matrix, unless all elements are column (resp. row) vectors of the same length, in which case the vectors are concatenated sideways and the attached big matrix is returned. If \( x \) is a binary quadratic form, creates the attached \( 2 \times 2 \) matrix. Otherwise, this creates a \( 1 \times 1 \) matrix containing \( x \).

\begin{verbatim}
? Mat(x + 1)
%1 =
[ x + 1 ]
? Vec(matid(3))
%2 = [[1, 0, 0]~, [0, 1, 0]~, [0, 0, 1]~]
? Mat(%)
%3 =
[ 1 0 0 ]
[ 0 1 0 ]
[ 0 0 1 ]
? Col( [1,2; 3,4] )
%4 = [[1, 2], [3, 4]]~
? Mat(%)
\end{verbatim}

(continues on next page)
%5 =
[1 2]
[3 4]
\texttt{Mat(Qfb(1,2,3))}
%6 =
[1 1]
[1 3]

\texttt{Mod(b)}

In its basic form, create an intmod or a polmod (\texttt{amodb}); \(b\) must be an integer or a polynomial. We then obtain a \texttt{t\_INTMOD} and a \texttt{t\_POLMOD} respectively:

\begin{verbatim}
? t = Mod(2,17); t^8
%1 = Mod(1, 17)
? t = Mod(x,x^2+1); t^2
%2 = Mod(-1, x^2+1)
\end{verbatim}

If \(a \bmod b\) makes sense and yields a result of the appropriate type (\texttt{t\_INT} or scalar/\texttt{t\_POL}), the operation succeeds as well:

\begin{verbatim}
? Mod(1/2, 5)
%3 = Mod(3, 5)
? Mod(7 + O(3^6), 3)
%4 = Mod(1, 3)
? Mod(Mod(1,12), 9)
%5 = Mod(1, 3)
? Mod(1/x, x^2+1)
%6 = Mod(-x, x^2+1)
? Mod(exp(x), x^4)
%7 = Mod(1/6*x^3 + 1/2*x^2 + x + 1, x^4)
\end{verbatim}

If \(a\) is a complex object, “base change” it to \(\mathbb{Z}/b\mathbb{Z}\) or \(K[x]/(b)\), which is equivalent to, but faster than, multiplying it by \(\texttt{Mod(1,b)}\):

\begin{verbatim}
? Mod([1,2;3,4], 2)
%8 =
[Mod(1, 2) Mod(0, 2)]
[Mod(1, 2) Mod(0, 2)]
? Mod(3*x+5, 2)
%9 = Mod(1, 2)*x + Mod(1, 2)
? Mod(x^2 + y*x + y^3, y^2+1)
%10 = Mod(1, y^2 + 1)*x^2 + Mod(y, y^2 + 1)*x + Mod(-y, y^2 + 1)
\end{verbatim}

This function is not the same as \(x \bmod y\), the result of which has no knowledge of the intended modulus \(y\). Compare

\begin{verbatim}
? x = 4 \% 5; x + 1
%11 = 5
? x = Mod(4,5); x + 1
%12 = Mod(0,5)
\end{verbatim}
Note that such “modular” objects can be lifted via lift or centerlift. The modulus of a t\_INTMOD or t\_POLMOD $z$ can be recovered via $:math:`\text{z.mod}`$.

**Pol($v$)**

Transforms the object $t$ into a polynomial with main variable $v$. If $t$ is a scalar, this gives a constant polynomial. If $t$ is a power series with nonnegative valuation or a rational function, the effect is similar to truncate, i.e. we chop off the $O(X^k)$ or compute the Euclidean quotient of the numerator by the denominator, then change the main variable of the result to $v$.

The main use of this function is when $t$ is a vector: it creates the polynomial whose coefficients are given by $t$, with $t[1]$ being the leading coefficient (which can be zero). It is much faster to evaluate Pol on a vector of coefficients in this way, than the corresponding formal expression $a_n X^n + ... + a_0$, which is evaluated naively exactly as written (linear versus quadratic time in $n$). Polrev can be used if one wants $x[1]$ to be the constant coefficient:

```
? Pol([1,2,3])
%1 = x^2 + 2*x + 3
? Polrev([1,2,3])
%2 = 3*x^2 + 2*x + 1
```

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

```
? Vec(Pol([1,2,3]))
%1 = [1, 2, 3]
? Vecrev(Polrev([1,2,3]))
%2 = [1, 2, 3]
```

**Warning.** This is *not* a substitution function. It will not transform an object containing variables of higher priority than $v$.

```
? Pol(x + y, y)
*** at top-level: Pol(x+y,y)
*** ^--------
*** Pol: variable must have higher priority in gtopoly.
```

**Polrev($v$)**

Transform the object $t$ into a polynomial with main variable $v$. If $t$ is a scalar, this gives a constant polynomial. If $t$ is a power series, the effect is identical to truncate, i.e. it chops off the $O(X^k)$.

The main use of this function is when $t$ is a vector: it creates the polynomial whose coefficients are given by $t$, with $t[1]$ being the constant term. Pol can be used if one wants $t[1]$ to be the leading coefficient:

```
? Polrev([1,2,3])
%1 = 3*x^2 + 2*x + 1
? Pol([1,2,3])
%2 = x^2 + 2*x + 3
```

The reciprocal function of Pol (resp. Polrev) is Vec (resp. Vecrev).

**Qfb($b, c, D, precision$)**

Creates the binary quadratic form $ax^2 + bxy + cy^2$. If $b^2 - 4ac > 0$, initialize Shanks' distance function to $D$. Negative definite forms are not implemented, use their positive definite counterpart instead.

**Ser($v, d, serprec$)**

Transforms the object $s$ into a power series with main variable $v$ ($x$ by default) and precision (number of significant terms) equal to $d >= 0$ ($d = \text{seriesprecision}$ by default). If $s$ is a scalar, this gives a constant power series in $v$ with precision $d$. If $s$ is a polynomial, the polynomial is truncated to $d$ terms if needed
The function is more or less equivalent with multiplication by $1 + O(v^d)$ in these cases, only faster.

For the remaining types, vectors and power series, we first explain what occurs if $d$ is omitted. In this case, the function uses exactly the amount of information given in the input:

- If $s$ is already a power series in $v$, we return it verbatim;
- If $s$ is a vector, the coefficients of the vector are understood to be the coefficients of the power series starting from the constant term (as in \texttt{Polrev(x)}); in other words we convert \texttt{t_VEC / t_COL} to the power series whose significant terms are exactly given by the vector entries.

On the other hand, if $d$ is explicitly given, we abide by its value and return a series, truncated or extended with zeros as needed, with $d$ significant terms.

The warning given for \texttt{Pol} also applies here: this is not a substitution function.

\textbf{Set()}

Converts $x$ into a set, i.e. into a row vector, with strictly increasing entries with respect to the (somewhat arbitrary) universal comparison function \texttt{cmp}. Standard container types \texttt{t_VEC, t_COL, t_LIST} and \texttt{t_VECSMALL} are converted to the set with corresponding elements. All others are converted to a set with one element.
Strchr()  
Deprecated alias for strchr.

Vec(n)  
Transforms the object $x$ into a row vector. The dimension of the resulting vector can be optionally specified via the extra parameter $n$. If $n$ is omitted or 0, the dimension depends on the type of $x$; the vector has a single component, except when $x$ is

- a vector or a quadratic form: returns the initial object considered as a row vector,
- a polynomial or a power series: returns a vector consisting of the coefficients. In the case of a polynomial, the coefficients of the vector start with the leading coefficient of the polynomial, while for power series only the significant coefficients are taken into account, but this time by increasing order of degree. In particular the valuation is ignored (which makes the function useful for series of negative valuation):

```plaintext
? Vec(3*x^2 + x)
%1 = [3, 1, 0]
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [1, 3, 0]
? Vec(x^-2 + 3*x^-1 + O(x))
%3 = [1, 3, 0]
```

Vec is the reciprocal function of Pol for a polynomial and of Ser for power series of valuation 0.

- a matrix: returns the vector of columns comprising the matrix,

```plaintext
? m = [1,2,3;4,5,6]
%4 =
[1 2 3]
[4 5 6]
? Vec(m)
%5 = [[1, 4]~, [2, 5]~, [3, 6]~]
```

- a character string: returns the vector of individual characters,

```plaintext
? Vec("PARI")
%6 = ["P", "A", "R", "I"]
```

- a map: returns the vector of the domain of the map,
- an error context (t_ERROR): returns the error components, see iferr.

In the last four cases (matrix, character string, map, error), $n$ is meaningless and must be omitted or an error is raised. Otherwise, if $n$ is given, 0 entries are appended at the end of the vector if $n > 0$, and prepended at the beginning if $n < 0$. The dimension of the resulting vector is $\|n\|$. This allows to write a conversion function for series that takes positive valuations into account:

```plaintext
? serVec(s) = Vec(s, -serprec(s, variable(s)));
? Vec(x^2 + 3*x^3 + O(x^5))
%2 = [0, 0, 1, 3, 0]
```

(That function is not intended for series of negative valuation.)
Vecrev($n$)
As $Vec(x, -n)$, then reverse the result. In particular, Vecrev is the reciprocal function of Polrev: the coefficients of the vector start with the constant coefficient of the polynomial and the others follow by increasing degree.

Vecsmall($n$)
Transforms the object $x$ into a row vector of type t_VECSMALL. The dimension of the resulting vector can be optionally specified via the extra parameter $n$.

This acts as Vec($x, n$), but only on a limited set of objects: the result must be representable as a vector of small integers. If $x$ is a character string, a vector of individual characters in ASCII encoding is returned (strchr yields back the character string).

abs($precision$)
Absolute value of $x$ (modulus if $x$ is complex). Rational functions are not allowed. Contrary to most transcendental functions, an exact argument is not converted to a real number before applying abs and an exact result is returned if possible.

```
? abs(-1)
%1 = 1
? abs(3/7 + 4/7*I)
%2 = 5/7
? abs(1 + I)
%3 = 1.414213562373095048801688724
```

If $x$ is a polynomial, returns $-x$ if the leading coefficient is real and negative else returns $x$. For a power series, the constant coefficient is considered instead.

acos($precision$)
Principal branch of $cos^{-1}(x) = -i \log(x + i\sqrt{1 - x^2})$. In particular, $\Re(acos(x)) \in [0, \pi]$ and if $x \in \mathbb{R}$ and $\|x\| > 1$, then acos($x$) is complex. The branch cut is in two pieces: $]-oo, -1[\}$, continuous with quadrant II, and $[1, +oo[\}$, continuous with quadrant IV. We have $acos(x) = \pi/2 - asin(x)$ for all $x$.

acosh($precision$)
Principal branch of $cosh^{-1}(x) = 2 \log(\sqrt(x + 1)/2 + \sqrt(x - 1)/2)$. In particular, $\Re(acosh(x)) \geq 0$ and $\Im(acosh(x)) \in [-\pi, \pi]$; if $x \in \mathbb{R}$ and $x < 1$, then acosh($x$) is complex.

addprimes()
Adds the integers contained in the vector $x$ (or the single integer $x$) to a special table of "user-defined primes", and returns that table. Whenever factor is subsequently called, it will trial divide by the elements in this table. If $x$ is empty or omitted, just returns the current list of extra primes.

```
? addprimes(379752279369436739228088727554562785456536638199)
\8865790849580122963258952897654000350692006139)
%2 =
[379752279369436739228088727554562785456536638199 1]
[40094690950920881030683735292761468389214899724061 1]
? ##
*** last result computed in 0 ms.
```

The entries in $x$ must be primes: there is no internal check, even if the factor_proven default is set. To remove primes from the list use removeprimes.
agm \((y, \text{precision})\)

Arithmetic-geometric mean of \(x\) and \(y\). In the case of complex or negative numbers, the optimal AGM is returned (the largest in absolute value over all choices of the signs of the square roots). \(p\)-adic or power series arguments are also allowed. Note that a \(p\)-adic agm exists only if \(x/y\) is congruent to 1 modulo \(p\) (modulo 16 for \(p = 2\)). \(x\) and \(y\) cannot both be vectors or matrices.

airy \((\text{precision})\)

Airy \([Ai, Bi]\) functions of argument \(z\).

\[
\begin{align*}
? \ [A, B] &= \text{airy}(1); \\
? \ A &= 0.13529241631288141552414742351546630617 \\
? \ B &= 1.2074235949528712594363788170282869954
\end{align*}
\]

algadd \((x, y)\)

Given two elements \(x\) and \(y\) in \(al\), computes their sum \(x + y\) in the algebra \(al\).

\[
\begin{align*}
? \ A &= \text{alginit}(\text{nffinit}(y), [-1, 1]); \\
? \ \text{algadd}(A, [1, 0]~, [1, 2]~) \\
%2 &= [2, 2]~
\end{align*}
\]

Also accepts matrices with coefficients in \(al\).

algalgtobasis \((x)\)

Given an element \(x\) in the central simple algebra \(al\) output by \text{alginit}, transforms it to a column vector on the integral basis of \(al\). This is the inverse function of \text{algbasistoalg}.

\[
\begin{align*}
? \ A &= \text{alginit}(\text{nffinit}(y^2 - 5), [2, y]); \\
? \ \text{algalgtobasis}(A, [y, 1]~) \\
%2 &= [0, 2, 0, -1, 2, 0, 0, 0]~ \\
? \ \text{algbasistoalg}(A, \text{algalgtobasis}(A, [y, 1]~)) \\
%3 &= [\text{Mod}(\text{Mod}(y, y^2 - 5), x^2 - 2), 1]~
\end{align*}
\]

algaut \()

Given a cyclic algebra \(al = (L/K, \sigma, b)\) output by \text{alginit}, returns the automorphism \(\sigma\).

\[
\begin{align*}
? \ \text{nf} &= \text{nffinit}(y); \\
? \ p &= \text{idealprimedec}(\text{nf}, 7)[1]; \\
? \ p2 &= \text{idealprimedec}(\text{nf}, 11)[1]; \\
? \ A &= \text{alginit}(\text{nf}, [3, [[p, p2], [1/3, 2/3]], [0]]); \\
? \ \text{algaut}(A) \\
%5 &= -1/3*x^2 + 1/3*x + 26/3
\end{align*}
\]

algb \()

Given a cyclic algebra \(al = (L/K, \sigma, b)\) output by \text{alginit}, returns the element \(b \in K\).

\[
\begin{align*}
\text{nf} &= \text{nffinit}(y); \\
? \ p &= \text{idealprimedec}(\text{nf}, 7)[1]; \\
? \ p2 &= \text{idealprimedec}(\text{nf}, 11)[1]; \\
? \ A &= \text{alginit}(\text{nf}, [3, [[p, p2], [1/3, 2/3]], [0]]); \\
? \ \text{algb}(A) \\
%5 &= \text{Mod}(-77, y)
\end{align*}
\]
algbasis()  
Given a central simple algebra \( al \) output by alginit, returns a \( \mathbb{Z} \)-basis of the order \( O_0 \) stored in \( al \) with respect to the natural order in \( al \). It is a maximal order if one has been computed.

\[
A = \text{alginit}(\text{nfinit}(y), [-1,-1]);
? \text{algbasis}(A)
%2 =
\begin{bmatrix}
1 & 0 & 0 & 1/2 \\
0 & 1 & 0 & 1/2 \\
0 & 0 & 1 & 1/2 \\
0 & 0 & 0 & 1/2 \\
\end{bmatrix}
\]

algbasistoalg(\( x \))  
Given an element \( x \) in the central simple algebra \( al \) output by alginit, transforms it to its algebraic representation in \( al \). This is the inverse function of algalgtobasis.

\[
? A = \text{alginit}(\text{nfinit}(y^2-5),[2,y]);
? z = \text{algbasistoalg}(A,[0,1,0,0,2,-3,0,0]~);
? \text{liftall}(z)
%3 = \begin{bmatrix}
(-1/2*y - 2)*x + (-1/4*y + 5/4) \\
-3/4*y + 7/4 \\
\end{bmatrix}~
? \text{algalgtobasis}(A,z)
%4 = [0, 1, 0, 0, 2, -3, 0, 0]~
\]

algcenter()  
If \( al \) is a table algebra output by algtableinit, returns a basis of the center of the algebra \( al \) over its prime field (\( \mathbb{Q} \) or \( \mathbb{F}_p \)). If \( al \) is a central simple algebra output by alginit, returns the center of \( al \), which is stored in \( al \).

A simple example: the \( 2 \times 2 \) upper triangular matrices over \( \mathbb{Q} \), generated by \( I_2 \), \( a = [0,1;0,0] \) and \( b = [0,0;0,1] \), such that \( a^2 = 0 \), \( ab = a \), \( ba = 0 \), \( b^2 = b \): the diagonal matrices form the center.

\[
? \text{mt} = \begin{bmatrix}
\text{matid}(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]]
\end{bmatrix}~
? A = \text{algtableinit}(\text{mt});
? \text{algcenter}(A) \\setminus \setminus = (I_2)
%3 =
\begin{bmatrix}
1 \\
0 \\
0 \\
\end{bmatrix}
\]

An example in the central simple case:

\[
? \text{nf} = \text{nfinit}(y^3-y+1);
? A = \text{alginit}(\text{nf}, [-1,-1]);
? \text{algcenter}(A).\text{pol}
%3 = y^3 - y + 1
\]

algcentralproj(\( z, \text{maps} \))  
Given a table algebra \( al \) output by algtableinit and a \( \text{t_VEC} z = [z_1, ..., z_n] \) of orthogonal central idempotents, returns a \( \text{t_VEC} [al_1, ..., al_n] \) of algebras such that \( al_i = z_i al \). If \( maps = 1 \), each \( al_i \) is a
t_VEC [quo, proj, lift] where quo is the quotient algebra, proj is a t_MAT representing the projection onto this quotient and lift is a t_MAT representing a lift.

A simple example: \( \mathbb{F}_2 x \mathbb{F}_4 \), generated by 1 = (1, 1), \( e = (1, 0) \) and \( x \) such that \( x^2 + x + 1 = 0 \). We have \( e^2 = e, x^2 = x + 1 \) and \( ex = 0 \).

```
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? e = [0,1,0]~;
? e2 = algsub(A,[1,0,0]~,e);
? [a,a2] = algcentralproj(A,[e,e2]);
? algdim(a)
 %6 = 1
? algdim(a2)
 %7 = 2
```

algchar()
Given an algebra \( al \) output by alginit or algtableinit, returns the characteristic of \( al \).

```
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,13);
? algchar(A)
 %3 = 13
```

algcharpoly(\( b, v, abs \))
Given an element \( b \) in \( al \), returns its characteristic polynomial as a polynomial in the variable \( v \). If \( al \) is a table algebra output by algtableinit or if \( abs = 1 \), returns the absolute characteristic polynomial of \( b \), which is an element of \( \mathbb{F}_p[v] \) or \( \mathbb{Q}[v] \); if \( al \) is a central simple algebra output by alginit and \( abs = 0 \), returns the reduced characteristic polynomial of \( b \), which is an element of \( K[v] \) where \( K \) is the center of \( al \).

```
? al = alginit(nfinit(y), [-1,-1]); \((-1,-1)_Q\)
? algcharpoly(al, [0,1]~)
 %2 = x^2 + 1
? algcharpoly(al, [0,1]~,1)
 %3 = x^4 + 2*x^2 + 1
? nf = nfinit(y^2-5);
? a = [y,1+x]~*Mod(1,y^2-5)*Mod(1,x^2+1);
? P = lift(algcharpoly(al,a))
 %7 = x^2 - 2*y*x + (-2*y^2 + 5)
? algcharpoly(al,a,1)
 %8 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
? lift(P*subst(P,y,-y)*Mod(1,y^2-5))^2
 %9 = x^8 - 20*x^6 - 80*x^5 + 110*x^4 + 800*x^3 + 1500*x^2 - 400*x + 25
```

Also accepts a square matrix with coefficients in \( al \).

algdegree()
Given a central simple algebra \( al \) output by alginit, returns the degree of \( al \).

```
? nf = nfinit(y^3-y+1);
? A = alginit(nf, [-1,-1]);
? algdegree(A)
 %3 = 2
```
The changes in \texttt{realprecision} only affect the quality of the initial approximation to $2^{1/6} + 3^{1/5}$, \texttt{algdep} itself uses exact operations. The size of its operands depend on the accuracy of the input of course: more accurate input means slower operations.

Proceeding by increments of 5 digits of accuracy, \texttt{algdep} with default flag produces its first correct result at 195 digits, and from then on a steady stream of correct results:

\begin{verbatim}
\texttt{\%3 = 4 }
\texttt{\%4 = 12}
\end{verbatim}

The above example is the test case studied in a 2000 paper by Borwein and Lisonek: Applications of integer relation algorithms, \textit{Discrete Math.}, \textbf{217}, p. 65–82. The version of \texttt{PARI} tested there was 1.39, which succeeded reliably from precision 265 on, in about 200 as much time as the current version.

\texttt{algdim(abs)}

If \texttt{al} is a table algebra output by \texttt{algtableinit} or if \texttt{abs = 1}, returns the dimension of \texttt{al} over its prime subfield ($\mathbb{Q}$ or $\mathbb{F}_p$). If \texttt{al} is a central simple algebra output by \texttt{alginit} and \texttt{abs = 0}, returns the dimension of \texttt{al} over its center.
**algdisc()**

Given a central simple algebra \(al\) output by \(alginit\), computes the discriminant of the order \(O_0\) stored in \(al\), that is the determinant of the trace form \(\text{Tr} : O_0 \times O_0 \to \mathbb{Z}\).

```plaintext
? nf = nfinit(y^2-5);
? A = alginit(nf, [-3,1-y]);
? [PR,h] = alghassef(A)
%3 = [[[[2, [2, 0], 1, 2, 1], [3, [3, 0], 1, 2, 1]], Vecsmall([0, 1])]
? n = algdegree(A);
? D = algdim(A,1);
? h = vector(#h, i, n - gcd(n,h[i]));
? n^D * nf.disc^(n^2) * idealnorm(nf, idealfactorback(nf,PR,h))^n
%4 = 12960000
? algdisc(A)
%5 = 12960000
```

**algdivl\((x, y)\)**

Given two elements \(x\) and \(y\) in \(al\), computes their left quotient \(x \backslash y\) in the algebra \(al\): an element \(z\) such that \(xz = y\) (such an element is not unique when \(x\) is a zerodivisor). If \(x\) is invertible, this is the same as \(x^{-1}y\). Assumes that \(y\) is left divisible by \(x\) (i.e. that \(z\) exists). Also accepts matrices with coefficients in \(al\).

**algdivr\((x, y)\)**

Given two elements \(x\) and \(y\) in \(al\), returns \(xy^{-1}\). Also accepts matrices with coefficients in \(al\).

**alggroup\((p)\)**

Initializes the group algebra \(K[G]\) over \(K = \mathbb{Q}\) (\(p\) omitted) or \(F_p\) where \(G\) is the underlying group of the \(galoisinit\) structure \(gal\). The input \(gal\) is also allowed to be a \(\text{t_VEC}\) of permutations that is closed under products.

Example:

```plaintext
? K = nfsplitting(x^3-x+1);
? gal = galoisinit(K);
? al = alggroup(gal);
? algissemisimple(al)
%4 = 1
? G = [Vecsmall([1,2,3]), Vecsmall([1,3,2])];
? al2 = alggroup(G, 2);
? algissemisimple(al2)
%8 = 0
```

**alggroupcenter\((p, cc)\)**

Initializes the center \(Z(K[G])\) of the group algebra \(K[G]\) over \(K = \mathbb{Q}\) (\(p = 0\) or omitted) or \(F_p\), where \(G\) is the underlying group of the \(galoisinit\) structure \(gal\). The input \(gal\) is also allowed to be a \(\text{t_VEC}\) of permutations that is closed under products. Sets \(cc\) to a \(\text{t_VEC}\) \([\text{elts}, \text{conjclass}, \text{rep}, \text{flag}]\) where \(\text{elts}\) is a sorted \(\text{t_VEC}\) containing the list of elements of \(G\), \(\text{conjclass}\) is a \(\text{t_VECSMALL}\) of the same length as \(\text{elts}\) containing the index of the conjugacy class of the corresponding element (an integer between 1 and the number of conjugacy classes), and \(\text{rep}\) is a \(\text{t_VECSMALL}\) of length the number of conjugacy classes giving for each conjugacy class the index in \(\text{elts}\) of a representative of this conjugacy class. Finally \(\text{flag}\) is 1 if and only if the permutation representation of \(G\) is transitive, in which case the \(i\)-th element of \(\text{elts}\) is characterized by \(g[1] = i\); this is always the case when \(gal\) is a \(galoisinit\) structure. The basis of \(Z(K[G])\) as output consists of the indicator functions of the conjugacy classes in the ordering given by \(cc\). Example:
? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K); \ \ S4
? al = alggroupcenter(gal,,&cc);
? algiscommutative(al)
%4 = 1
? #cc[3] \ \ number of conjugacy classes of S4
%5 = 5
? gal = [Vecsmall([1,2,3]),Vecsmall([1,3,2])]; \ \ C2
? al = alggroupcenter(gal,,&cc);
? cc[3]
%8 = Vecsmall([1, 2])
%9 = 0

alghasse \( pl \)
Given a central simple algebra \( al \) output by \texttt{alginit} and a prime ideal or an integer between 1 and \( r_1 + r_2 \), returns a \texttt{t\_FRAC} \( h \) : the local Hasse invariant of \( al \) at the place specified by \( pl \).

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghasse(A, 1)
%3 = 1/2
? alghasse(A, 2)
%4 = 0
? alghasse(A, idealprimedec(nf,2)[1])
%5 = 1/2
? alghasse(A, idealprimedec(nf,5)[1])
%6 = 0

alghassef()
Given a central simple algebra \( al \) output by \texttt{alginit}, returns a \texttt{t\_VEC} \( [PR, hf] \) describing the local Hasse invariants at the finite places of the center: \( PR \) is a \texttt{t\_VEC} of primes and \( hf \) is a \texttt{t\_VECSMALL} of integers modulo the degree \( d \) of \( al \). The Hasse invariant of \( al \) at the primes outside \( PR \) is 0, but \( PR \) can include primes at which the Hasse invariant is 0.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,2*y-1]);
? [PR,hf] = alghassef(A);
? PR
%4 = [[19, [10, 2]~, 1, 1, [-8, 2; 2, -10]], [2, [2, 0]~, 1, 2, 1]]
? hf
%5 = Vecsmall([1, 0])

alghassei()
Given a central simple algebra \( al \) output by \texttt{alginit}, returns a \texttt{t\_VECSMALL} \( h_1 \) of \( r_1 \) integers modulo the degree \( d \) of \( al \), where \( r_1 \) is the number of real places of the center: the local Hasse invariants of \( al \) at infinite places.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? alghassei(A)
%3 = Vecsmall([1, 0])
\textbf{algindex}(p)\hfill

Returns the index of the central simple algebra $A$ over $K$ (as output by \texttt{alginit}), that is the degree $e$ of the unique central division algebra $D$ over $K$ such that $A$ is isomorphic to some matrix algebra $M_k(D)$. If $p$ is set, it should be a prime ideal of $K$ or an integer between $1$ and $r_1 + r_2$, and in that case return the local index at the place $pl$ instead.

\begin{verbatim}
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algindex(A, 1)
%3 = 2
? algindex(A, 2)
%4 = 1
? algindex(A, idealprimedec(nf,2)[1])
%5 = 2
? algindex(A, idealprimedec(nf,5)[1])
%6 = 1
? algindex(A)
%7 = 2
\end{verbatim}

\textbf{alginit}(C, v, maxord)\hfill

Initializes the central simple algebra defined by data $B$, $C$ and variable $v$, as follows.

- (multiplication table) $B$ is the base number field $K$ in \texttt{nfinit} form, $C$ is a “multiplication table” over $K$. As a $K$-vector space, the algebra is generated by a basis $(e_1 = 1, \ldots, e_n)$; the table is given as a \texttt{t_VEC} of $n$ matrices in $M_n(K)$, giving the left multiplication by the basis elements $e_i$, in the given basis. Assumes that $e_1 = 1$, that the multiplication table is integral, and that $(\bigoplus_{i=1}^n K e_i, C)$ describes a central simple algebra over $K$.

\begin{verbatim}
{ mi = [0,-1,0, 0;
  1, 0,0, 0;
  0, 0,0,-1;
  0, 0,1, 0];
 mj = [0, 0,-1,0;
  0, 0, 0,1;
  1, 0, 0,0;
  0,-1, 0,0];
 mk = [0, 0, 0, 0;
  0, 0,-1, 0;
  0, 1, 0, 0;
  1, 0, 0,-1];
 A = alginit(nfinit(y), [matid(4), mi,mj,mk], 0); }
\end{verbatim}

represents (in a complicated way) the quaternion algebra $(-1,-1)_Q$. See below for a simpler solution.

- (cyclic algebra) $B$ is an \texttt{rnf} structure attached to a cyclic number field extension $L/K$ of degree $d$, $C$ is a \texttt{t_VEC} [$\sigma$, $b$] with 2 components: $\sigma$ is a \texttt{t_POLMOD} representing an automorphism generating $\text{Gal}(L/K)$, $b$ is an element in $K^*$. This represents the cyclic algebra $(L/K, \sigma, b)$. Currently the element $b$ has to be integral.

\begin{verbatim}
? Q = nfinit(y); T = polcyclo(5, 'x); F = rnfninit(Q, T);
? A = alginit(F, [Mod(x^2,T), 3]);
\end{verbatim}

defines the cyclic algebra $(L/Q, \sigma, 3)$, where $L = \mathbb{Q}(\zeta_5)$ and $\sigma : \zeta : - - - > \zeta^2$ generates $\text{Gal}(L/\mathbb{Q})$.

- (quaternion algebra, special case of the above) $B$ is an \texttt{nf} structure attached to a number field $K$, $C = [a, b]$ is a vector containing two elements of $K^*$ with $a$ not a square in $K$, returns the quaternion
algebra \((a, b)_K\). The variable \(v\) (‘\(x\) by default) must have higher priority than the variable of \(K\).pol and is used to represent elements in the splitting field \(L = K[x]/(x^2 - a)\).

? Q = nfinit(y); A = alginit(Q, \([-1,-1]\)); \((-1,-1)_Q

- \((\text{algebra}/K \text{ defined by local Hasse invariants})\) \(B\) is an \texttt{nf} structure attached to a number field \(K\), \(C = [d, [PR, h_f], h_i]\) is a triple containing an integer \(d > 1\), a pair \([PR, h_f]\) describing the Hasse invariants at finite places, and \(h_i\) the Hasse invariants at archimedean (real) places. A local Hasse invariant belongs to \((1/d)\mathbb{Z}/\mathbb{Z} \subset \mathbb{Q}/\mathbb{Z}\), and is given either as a \texttt{t_FRAC} (lift to \((1/d)\mathbb{Z}\)), a \texttt{t_INT} or \texttt{t_INTMOD} modulo \(d\) (lift to \(\mathbb{Z}/d\mathbb{Z}\)); a whole vector of local invariants can also be given as a \texttt{t_VECSMALL}, whose entries are handled as \texttt{t_INT}s. \(PR\) is a list of prime ideals (\texttt{prid} structures), and \(h_f\) is a vector of the same length giving the local invariants at those maximal ideals. The invariants at infinite real places are indexed by the real roots \(K.\text{roots}\): if the Archimedean place \(v\) is attached to the \(j\)-th root, the value of \(h_v\) is given by \(h_i[j]\), must be 0 or \(1/2\) (or \(d/2\) modulo \(d\)), and can be nonzero only if \(d\) is even.

By class field theory, provided the local invariants \(h_v\) sum to 0, up to Brauer equivalence, there is a unique central simple algebra over \(K\) with given local invariants and trivial invariant elsewhere. In particular, up to isomorphism, there is a unique such algebra \(A\) of degree \(d\).

We realize \(A\) as a cyclic algebra through class field theory. The variable \(v\) (‘\(x\) by default) must have higher priority than the variable of \(K\).pol and is used to represent elements in the (cyclic) splitting field extension \(L/K\) for \(A\).

? nf = nfinit(y^2+1);  
? PR = idealprimedec(nf,5); #PR  
%2 = 2  
? hi = [];  
? hf = [PR, [1/3,-1/3]];  
? A = alginit(nf, [3,hf,hi]);  
? algsplittingfield(A).pol  
%6 = x^3 - 21*x + 7

- \((\text{matrix algebra, toy example})\) \(B\) is an \texttt{nf} structure attached to a number field \(K\), \(C = d\) is a positive integer. Returns a cyclic algebra isomorphic to the matrix algebra \(M_d(K)\).

In all cases, this function computes a maximal order for the algebra by default, which may require a lot of time. Setting \texttt{maxord = 0} prevents this computation.

The \pari object representing such an algebra \(A\) is a \texttt{t_VEC} with the following data:

- A splitting field \(L\) of \(A\) of the same degree over \(K\) as \(A\), in \texttt{rnfinit} format, accessed with \texttt{algsplittingfield}.
- The Hasse invariants at the real places of \(K\), accessed with \texttt{alghassei}.
- The Hasse invariants of \(A\) at the finite primes of \(K\) that ramify in the natural order of \(A\), accessed with \texttt{alghassef}.
- A basis of an order \(O_0\) expressed on the basis of the natural order, accessed with \texttt{algbasis}.
- A basis of the natural order expressed on the basis of \(O_0\), accessed with \texttt{alginvbasis}.
- The left multiplication table of \(O_0\) on the previous basis, accessed with \texttt{algmultable}.
- The characteristic of \(A\) (always 0), accessed with \texttt{algchar}.
- The absolute traces of the elements of the basis of \(O_0\).
• If $A$ was constructed as a cyclic algebra $(L/K, \sigma, b)$ of degree $d$, a t_VEC $[\sigma, \sigma^2, \ldots, \sigma^{d-1}]$. The function algaut returns $\sigma$.

• If $A$ was constructed as a cyclic algebra $(L/K, \sigma, b)$, the element $b$, accessed with algb.

• If $A$ was constructed with its multiplication table $mt$ over $K$, the t_VEC of t_MAT $mt$, accessed with algrelmultable.

• If $A$ was constructed with its multiplication table $mt$ over $K$, a t_VEC with three components: a t_COL representing an element of $A$ generating the splitting field $L$ as a maximal subfield of $A$, a t_MAT representing an $L$-basis $B$ of $A$ expressed on the $\mathbb{Z}$-basis of $O_0$, and a t_MAT representing the $\mathbb{Z}$-basis of $O_0$ expressed on $B$. This data is accessed with algsplittingdata.

alginv($x$)
Given an element $x$ in $al$, computes its inverse $x^{-1}$ in the algebra $al$. Assumes that $x$ is invertible.

? A = alginit(nfinit(y), [-1,-1]);
? alginv(A,[1,1,0,0]~)
%2 = [1/2, 1/2, 0, 0]~

Also accepts matrices with coefficients in $al$.
alginvbasis()
Given an central simple algebra $al$ output by alginit, returns a $\mathbb{Z}$-basis of the natural order in $al$ with respect to the order $O_0$ stored in $al$.

A = alginit(nfinit(y), [-1,-1]);
? alginvbasis(A)
%2 =
[1 0 0 -1]
[0 1 0 -1]
[0 0 1 -1]
[0 0 0 2]
algisassociative($p$)
Returns 1 if the multiplication table $mt$ is suitable for algtableinit($mt$, $p$). 0 otherwise. More precisely, $mt$ should be a t_VEC of $n$ matrices in $M_n(K)$, giving the left multiplications by the basis elements $e_1, \ldots, e_n$ (structure constants). We check whether the first basis element $e_1$ is 1 and $e_i(e_j e_k) = (e_i e_j) e_k$ for all $i, j, k$.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? algisassociative(mt)
%2 = 1

May be used to check a posteriori an algebra: we also allow $mt$ as output by algtableinit ($p$ is ignored in this case).
algiscommutative()
$al$ being a table algebra output by algtableinit or a central simple algebra output by alginit, tests whether the algebra $al$ is commutative.

? mt = [matid(3),[0,0,0;1,0,1;0,0,0],[0,0,0;0,0,0;1,0,1]];
? A = algtableinit(mt);
algiscommutative(A)
%3 = 0

mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
A = algtableinit(mt,2);
algiscommutative(A)
%6 = 1

algisdivision(pl)
Given a central simple algebra \( al \) output by \texttt{alginit}, tests whether \( al \) is a division algebra. If \( pl \) is set, it should be a prime ideal of \( K \) or an integer between 1 and \( r_1 + r_2 \), and in that case tests whether \( al \) is locally a division algebra at the place \( pl \) instead.

\[
\begin{align*}
\text{? nf} & = \text{nffinit}(y^2-5); \\
\text{? A} & = \text{alginit}(\text{nffinit}(y), [-1,y]); \\
\text{? algisdivision}(A, 1) & = 1 \\
\text{? algisdivision}(A, 2) & = 0 \\
\text{? algisdivision}(A, \text{idealprimedec}(\text{nffinit}(y),2)[1]) & = 1 \\
\text{? algisdivision}(A, \text{idealprimedec}(\text{nffinit}(y),5)[1]) & = 0
\end{align*}
\]

Also accepts matrices with coefficients in \( al \).

algisdivl(x, y, z)
Given two elements \( x \) and \( y \) in \( al \), tests whether \( y \) is left divisible by \( x \), that is whether there exists \( z \) in \( al \) such that \( xz = y \), and sets \( z \) to this element if it exists.

\[
\begin{align*}
\text{? A} & = \text{alginit}(\text{nffinit}(y), [-1,1]); \\
\text{? algisdivl}(A,[x+2,-x-2],[x,1]) & = 0 \\
\text{? algisdivl}(A,[x+2,-x-2],[-x,x],&z) & = 1 \\
\text{? z} & = [\text{Mod}(-2/5^*x - 1/5, x^2 + 1), 0]
\end{align*}
\]

Also accepts matrices with coefficients in \( al \).

algisinv(x, ix)
Given an element \( x \) in \( al \), tests whether \( x \) is invertible, and sets \( ix \) to the inverse of \( x \).

\[
\begin{align*}
\text{? A} & = \text{alginit}(\text{nffinit}(y), [-1,1]); \\
\text{? algisinv}(A,[-1,1]) & = 0 \\
\text{? algisinv}(A,[1,2],&ix) & = 1 \\
\text{? ix} & = [\text{Mod}(\text{Mod}(-1/3, y), x^2 + 1), \text{Mod}(\text{Mod}(2/3, y), x^2 + 1)]
\end{align*}
\]

Also accepts matrices with coefficients in \( al \).

algisramified(pl)
Given a central simple algebra \( al \) output by \texttt{alginit}, tests whether \( al \) is ramified, i.e. not isomorphic to a
matrix algebra over its center. If \( pl \) is set, it should be a prime ideal of \( K \) or an integer between 1 and \( r_1 + r_2 \), and in that case tests whether \( al \) is locally ramified at the place \( pl \) instead.

\[
\begin{align*}
? \text{nf} &= \text{nfini}(y^2-5); \\
? \text{A} &= \text{alginit}(\text{nf}, [-1,y]); \\
? \text{algisramified}(\text{A}, 1) \\
%3 &= 1 \\
? \text{algisramified}(\text{A}, 2) \\
%4 &= 0 \\
? \text{algisramified}(\text{A}, \text{idealprimedec}(\text{nf},2)[1]) \\
%5 &= 1 \\
? \text{algisramified}(\text{A}, \text{idealprimedec}(\text{nf},5)[1]) \\
%6 &= 0 \\
? \text{algisramified} (\text{A}) \\
%7 &= 1
\end{align*}
\]

\text{algissemisimple}()

\( al \) being a table algebra output by \text{algentableinit} or a central simple algebra output by \text{alginit}, tests whether the algebra \( al \) is semisimple.

\[
\begin{align*}
? \text{mt} &= \text{[matid}(3), [0,0,0; 1,0,1; 0,0,0], [0,0,0; 0,0,0; 1,0,1]]; \\
? \text{A} &= \text{algentableinit}(\text{mt}); \\
? \text{algissemisimple}(\text{A}) \\
%3 &= 0 \\
? \text{m}_i &= [0,-1,0,0; 1,0,0,0; 0,0,0,0,0,1; 0,0,0,1,0,1]; \quad \text{} \quad \text{quaternion algebra (-1,-1)} \\
? \text{m}_j &= [0,0,-1,0; 0,0,0,1; 1,0,0,0,0,0,0,0,0,0]; \\
? \text{m}_k &= [0,0,0,-1; 0,0,-1,0; 0,1,0,0,0,0,0]; \\
? \text{mt} &= \text{[matid}(4), \text{m}_i, \text{m}_j, \text{m}_k]; \\
? \text{A} &= \text{algentableinit}(\text{mt}); \\
? \text{algissemisimple}(\text{A}) \\
%9 &= 1
\end{align*}
\]

\text{algissemisimple}(ss)

\( al \) being a table algebra output by \text{algentableinit} or a central simple algebra output by \text{alginit}, tests whether the algebra \( al \) is simple. If \( ss = 1 \), assumes that the algebra \( al \) is semisimple without testing it.

\[
\begin{align*}
? \text{mt} &= \text{[matid}(3), [0,0,0; 1,0,1; 0,0,0], [0,0,0; 0,0,0; 1,0,1]]; \\
? \text{A} &= \text{algentableinit}(\text{mt}); \quad \text{matrices \([*,*; *,*]\)} \\
? \text{algissemisimple}(\text{A}) \\
%3 &= 0 \\
? \text{algissemisimple}(\text{A}, 1) \quad \text{incorrectly assume that A is semisimple} \\
%4 &= 1 \\
? \text{m}_i &= [0,-1,0,0; 1,0,0,0; 0,0,0,0,0,0,1,0,1]; \\
? \text{m}_j &= [0,0,-1,0; 0,0,0,1; 1,0,0,0,0,0,0,0,0,0]; \\
? \text{m}_k &= [0,0,0,-1; 0,0,-1,0; 0,1,0,0,0,0,1,0,0,0]; \\
? \text{mt} &= \text{[matid}(4), \text{m}_i, \text{m}_j, \text{m}_k]; \\
? \text{A} &= \text{algentableinit}(\text{mt}); \quad \text{quaternion algebra (-1,-1)} \\
? \text{algissemisimple}(\text{A}) \\
%10 &= 1 \\
? \text{mt} &= \text{[matid}(3), [0,0,0; 1,0,0; 0,0,0], [0,0,0; 0,0,0; 1,0,0,1,0,1]]; \\
? \text{A} &= \text{algentableinit}(\text{mt}, 2); \quad \text{direct product F_4 x F_2} \\
? \text{algissemisimple}(\text{A}) \\
%13 &= 0
\end{align*}
\]
algissplit(pl)
Given a central simple algebra \( al \) output by \( \text{alginit} \), tests whether \( al \) is split, i.e. isomorphic to a matrix algebra over its center. If \( pl \) is set, it should be a prime ideal of \( K \) or an integer between 1 and \( r_1 + r_2 \), and in that case tests whether \( al \) is locally split at the place \( pl \) instead.

```plaintext
? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algissplit(A, 1)
%3 = 0
? algissplit(A, 2)
%4 = 1
? algissplit(A, idealprimedec(nf,2)[1])
%5 = 0
? algissplit(A, idealprimedec(nf,5)[1])
%6 = 1
? algissplit(A)
%7 = 0
```

alglatadd(lat1, lat2, ptinter)
Given an algebra \( al \) and two lattices \( lat1 \) and \( lat2 \) in \( al \), computes the sum \( lat1 + lat2 \). If \( ptinter \) is present, set it to the intersection \( lat1 \cap lat2 \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglatnf(al,[1,0,1,0,0,0,0,0]~);
? latsum = alglatadd(al,lat1,lat2,&latinter);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
```

alglatcontains(lat, x, ptc)
Given an algebra \( al \), a lattice \( lat \) and \( x \) in \( al \), tests whether \( x \in lat \). If \( ptc \) is present, sets it to the \( t\_COL \) of coordinates of \( x \) in the basis of \( lat \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? al = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglatnf(al,al);
? alglatcontains(al,lat1,al,&c)
%4 = 1
? c
%5 = [-1, -2, -1, 1, 2, 0, 1, 1]~
```

alglatelement(lat, c)
Given an algebra \( al \), a lattice \( lat \) and a \( t\_COL \) \( c \), returns the element of \( al \) whose coordinates on the \( \mathbb{Z} \)-basis of \( lat \) are given by \( c \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? al = [1,-1,0,1,2,0,1,2]~;
? lat1 = alglatnf(al,al);
? c = [1..8]~;
? elt = alglatelement(al,lat1,c);
? alglatcontains(al,lat1,elt,&c)
```
%6 = 1
\? c==c2
%7 = 1

\textbf{alglathnf}(m, d)

Given an algebra \texttt{al} and a matrix \texttt{m} with columns representing elements of \texttt{al}, returns the lattice \( L \) generated by the columns of \texttt{m}. If provided, \( d \) must be a rational number such that \( L \) contains \( d \) times the natural basis of \texttt{al}. The argument \texttt{m} is also allowed to be a \texttt{t_VEC} of \texttt{t_MAT}, in which case \texttt{m} is replaced by the concatenation of the matrices, or a \texttt{t_COL}, in which case \texttt{m} is replaced by its left multiplication table as an element of \texttt{al}.

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a = [1,1,-1/2,1/1,1,1/3,-1,1]~;
? mt = algtomatrix(al,a,1);
? lat = alglathnf(al,mt);
? lat[2]
%5 = 1/6
\end{verbatim}

\textbf{alglatindex}(lat1, lat2)

Given an algebra \texttt{al} and two lattices \texttt{lat1} and \texttt{lat2} in \texttt{al}, computes the generalized index of \texttt{lat1} relative to \texttt{lat2}, i.e. \( \frac{\|\text{lat2}/\text{lat1} \cap \text{lat2}\|}{\|\text{lat1}/\text{lat1} \cap \text{lat2}\|} \).

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? alglatindex(al,lat1,lat2)
%4 = 1
? lat1==lat2
%5 = 0
\end{verbatim}

\textbf{alglatinter}(lat1, lat2, ptsum)

Given an algebra \texttt{al} and two lattices \texttt{lat1} and \texttt{lat2} in \texttt{al}, computes the intersection \( \text{lat1} \cap \text{lat2} \). If \texttt{ptsum} is present, sets it to the sum \( \text{lat1} + \text{lat2} \).

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,1,0,0,0,0,0,0]~);
? lat2 = alglathnf(al,[1,0,1,0,0,0,0,0]~);
? latinter = alglatinter(al,lat1,lat2,&latsum);
? matdet(latsum[1])
%5 = 4
? matdet(latinter[1])
%6 = 64
\end{verbatim}

\textbf{alglatlefttransporter}(lat1, lat2)

Given an algebra \texttt{al} and two lattices \texttt{lat1} and \texttt{lat2} in \texttt{al}, computes the left transporter from \texttt{lat1} to \texttt{lat2}, i.e. the set of \( x \in \texttt{al} \) such that \( x.\text{lat1} \subset \text{lat2} \).

\begin{verbatim}
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglathnf(al,[1,-1,0,1,2,0,5,2]~);
? lat2 = alglathnf(al,[0,1,-2,-1,0,0,3,1]~);
? tr = alglatlefttransporter(al,lat1,lat2);
? a = alglatelement(al,tr,[0,0,0,0,0,0,0,1,0]~);
\end{verbatim}
alglatsubset(al, lat1, lat2)

Given an algebra \( al \) and two lattices \( lat1 \) and \( lat2 \) in \( al \), computes whether \( lat1 \subset lat2 \). If it is true and \( ptindex \) is present, sets it to the index of \( lat1 \) in \( lat2 \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al, [1,1,0,0,0,0,0,0]~);
? lat2 = alglatnf(al, [1,0,1,0,0,0,0,0]~);
? alglatsubset(al, lat1, lat2)
%4 = 0
? alglatsubset(al, lat1, latsum, &index)
%6 = 1
```

alglatmul(lat1, lat2)

Given an algebra \( al \) and two lattices \( lat1 \) and \( lat2 \) in \( al \), computes the lattice generated by the products of elements of \( lat1 \) and \( lat2 \). One of \( lat1 \) and \( lat2 \) is also allowed to be an element of \( al \); in this case, computes the product of the element and the lattice.

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? a1 = [1,-1,0,1,2,0,1,2]~;
? a2 = [0,1,2,-1,0,0,3,1]~;
? lat1 = alglatnf(al, a1);
? lat2 = alglatnf(al, a2);
? lat3 = alglatmul(al, lat1, lat2);
? matdet(lat3[1])
%7 = 29584
? lat3 == alglatnf(al, algmul(al, a1, a2))
%8 = 0
? lat3 == alglatmul(al, lat1, a2)
%9 = 0
? lat3 == alglatmul(al, a1, lat2)
%10 = 0
```

alglatrighttransporter(lat1, lat2)

Given an algebra \( al \) and two lattices \( lat1 \) and \( lat2 \) in \( al \), computes the right transporter from \( lat1 \) to \( lat2 \), i.e. the set of \( x \in al \) such that \( lat1.x \subset lat2 \).

```plaintext
? al = alginit(nfinit(y^2+7), [-1,-1]);
? lat1 = alglatnf(al, matdiagonal([1,3,7,1,2,8,5,2]));
? lat2 = alglatnf(al, matdiagonal([5,3,8,1,9,8,7,1]));
? tr = alglatrighttransporter(al, lat1, lat2);
? a = alglatelement(al, tr, [0,0,0,0,0,0,0,1]~);
? alglatsubset(al, alglatmul(al, lat1, a), lat2)
%6 = 1
```

(continues on next page)
algmakeintegral\((\text{maps})\)

\(mt\) being a multiplication table over \(\mathbb{Q}\) in the same format as the input of \text{algtableinit}, computes an integral multiplication table \(mt2\) for an isomorphic algebra. When \(\text{maps} = 1\), returns a \text{t_VEC} \([mt2, S, T]\) where \(S\) and \(T\) are matrices respectively representing the map from the algebra defined by \(mt\) to the one defined by \(mt2\) and its inverse.

\begin{verbatim}
? mt = [matid(2),[0,-1/4;1,0]]; 
? algtableinit(mt); 
*** at top-level: algtableinit(mt) 
*** ^---------------- 
*** algtableinit: domain error in algtableinit: denominator(mt) != 1 
? mt2 = algmakeintegral(mt); 
? al = algtableinit(mt2); 
? algisassociative(al) 
%4 = 1 
? [mt2, S, T] = algmakeintegral(mt,1); 
? S 
%6 = 
[1 0] 
[0 1/4] 
? T 
%7 = 
[1 0] 
[0 4] 
? vector(#mt, i, S * (mt * T[,i]) * T) == mt2 
%8 = 1
\end{verbatim}

\text{algmul}\((x, y)\)

Given two elements \(x\) and \(y\) in \(al\), computes their product \(xy\) in the algebra \(al\).

\begin{verbatim}
? A = alginit(nfinit(y), [-1,-1]); 
? algmul(A,[1,1,0,0]~,[0,0,2,1]~) 
%2 = [2, 3, 5, -4]~ 
\end{verbatim}

Also accepts matrices with coefficients in \(al\).

\text{algmultable}()

Returns a multiplication table of \(al\) over its prime subfield (\(\mathbb{Q}\) or \(\mathbb{F}_p\)), as a \text{t_VEC} of \text{t_MAT}: the left multiplication tables of basis elements. If \(al\) was output by \text{algtableinit}, returns the multiplication table used to define \(al\). If \(al\) was output by \text{alginit}, returns the multiplication table of the order \(O_0\) stored in \(al\).

\begin{verbatim}
? A = alginit(nfinit(y), [-1,-1]); 
? M = algmultable(A); 
? #M 
%3 = 4 
? M[1] \\ multiplication by e_1 = 1 
%4 = 
\end{verbatim}
algneg$(x)$
Given an element $x$ in $al$, computes its opposite $-x$ in the algebra $al$.

```pari
? A = alginit(nfinit(y), [-1,-1]);
? algneg(A, [1,1,0,0]~)
%2 = [-1, -1, 0, 0]~
```

Also accepts matrices with coefficients in $al$.

algnorm$(x, abs)$
Given an element $x$ in $al$, computes its norm. If $al$ is a table algebra output by `algtableinit` or if $abs = 1$, returns the absolute norm of $x$, which is an element of $\mathbb{F}_p$ of $\mathbb{Q}$; if $al$ is a central simple algebra output by `alginit` and $abs = 0$ (default), returns the reduced norm of $x$, which is an element of the center of $al$.

```pari
? mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1];
? A = algtableinit(mt, 19);
? algnorm(A, [0,-2,3]~)
%3 = 18
? nf = nfinit(y^2-5);
? B = alginit(nf, [-1,y]);
? b = [x,1]~;
? n = algnorm(B, b)
%7 = Mod(-y + 1, y^2 - 5)
? algnorm(B, b, 1)
%8 = 16
? nfeltnorm(nf, n)^algdegree(B)
%9 = 16
```

Also accepts a square matrix with coefficients in $al$.

algpoleval$(T, b)$
Given an element $b$ in $al$ and a polynomial $T$ in $K[X]$, computes $T(b)$ in $al$. Also accepts as input a `t_VEC` $[b, mb]$ where $mb$ is the left multiplication table of $b$.

```pari
```

continued from previous page

(aligned)
\texttt{nf = nfinit(y^2-5);}  
\texttt{al = alginit(nf,[y,-1]);}  
\texttt{b = [1..8]~;}  
\texttt{pol = algcharpoly(al,b,,1);}  
\texttt{algpoleval(al,pol,b)==0}  
\%5 = 1  
\texttt{mb = algtomatrix(al,b,1);}  
\texttt{algpoleval(al,pol,[b,mb])==0}  
\%7 = 1

\textbf{algpow}(x, n)

Given an element $x$ in $al$ and an integer $n$, computes the power $x^n$ in the algebra $al$.

\texttt{A = alginit(nfinit(y), [-1,-1]);}  
\texttt{algpow(A,[1,1,0,0]~,7)}  
\%2 = [8, -8, 0, 0]~

Also accepts a square matrix with coefficients in $al$.

\textbf{algprimesubalg}()

$al$ being the output of \texttt{algtableinit} representing a semisimple algebra of positive characteristic, returns a basis of the prime subalgebra of $al$. The prime subalgebra of $al$ is the subalgebra fixed by the Frobenius automorphism of the center of $al$. It is abstractly isomorphic to a product of copies of $\mathbb{F}_p$.

\texttt{mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];}  
\texttt{A = algtableinit(mt,2);}  
\texttt{algprimesubalg(A)}  
\%3 =  
[1 0]  
[0 1]  
[0 0]

\textbf{algquotient}(I, maps)

$al$ being a table algebra output by \texttt{algtableinit} and $I$ being a basis of a two-sided ideal of $al$ represented by a matrix, returns the quotient $al/I$. When $maps = 1$, returns a \texttt{t_VEC} $[al/I, proj, lift]$ where \texttt{proj} and \texttt{lift} are matrices respectively representing the projection map and a section of it.

\texttt{mt = [matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];}  
\texttt{A = algtableinit(mt,2);}  
\texttt{AQ = algquotient(A,[0;1;0]);}  
\texttt{algdim(AQ)}  
\%4 = 2

\textbf{algradical}()

$al$ being a table algebra output by \texttt{algtableinit}, returns a basis of the Jacobson radical of the algebra $al$ over its prime field ($\mathbb{Q}$ or $\mathbb{F}_p$).

Here is an example with $A = \mathbb{Q}[x]/(x^2)$, with the basis $(1, x)$:

\texttt{mt = [matid(2),[0,0;1,0]];}  
\texttt{A = algtableinit(mt);}  

(continues on next page)
? algradical(A) \ = (x)
%3 =
[0]
[1]

Another one with $2 \times 2$ upper triangular matrices over $\mathbb{Q}$, with basis $I_2$, $a = [0, 1; 0, 0]$ and $b = [0, 0; 0, 1]$, such that $a^2 = 0$, $ab = a$, $ba = 0$, $b^2 = b$:

? mt = [matid(3), [0, 0, 0; 1, 0, 1; 0, 0, 0], [0, 0, 0, 0; 0, 0, 0, 1; 0, 1, 0, 1]];
? A = algtableinit(mt);
? algradical(A) \ = (a)
%6 =
[0]
[1]
[0]

\textbf{algramifiedplaces()}

Given a central simple algebra $A$ output by \texttt{alginit}, returns a \texttt{t_VEC} containing the list of places of the center of $A$ that are ramified in $A$. Each place is described as an integer between 1 and $r_1$ or as a prime ideal.

? nf = nfinit(y^2-5);
? A = alginit(nf, [-1,y]);
? algramifiedplaces(A)
%3 = [1, [2, [2, 0], 1, 2, 1]]

\textbf{algrandom($b$)}

Given an algebra $A$ and an integer $b$, returns a random element in $A$ with coefficients in $[-b, b]$.

\textbf{algrelmultable()}

Given a central simple algebra $A$ output by \texttt{alginit} defined by a multiplication table over its center (a number field), returns this multiplication table.

? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
 1,0,0,0;
 0,0,0,a;
 0,0,1,0];}
? {m_j = [0, 0,b, 0;
 0, 0,0,-b;
 1, 0,0, 0;
 0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
 0, 0,b, 0;
 0,-a,0, 0;
 1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? M = algrelmultable(A);

(continues on next page)
algsimpledec(maps)

al being the output of algtableinit, returns a t_VEC \([J, [al_1, al_2, ..., al_n]]\) where J is a basis of the Jacobson radical of al and al/J is isomorphic to the direct product of the simple algebras al_i. When maps = 1, each al_i is replaced with a t_VEC \([al_i, proj_i, lift_i]\) where proj_i and lift_i are matrices respectively representing the projection map \(al \rightarrow al_i\) and a section of it. Modulo J, the images of the lift_i form a direct sum in al/J, so that the images of 1_i under lift_i are central primitive idempotents of al/J. The factors are sorted by increasing dimension, then increasing dimension of the center. This ensures that the ordering of the isomorphism classes of the factors is deterministic over finite fields, but not necessarily over \(\mathbb{Q}\).

algsplit(v)

If al is a table algebra over \(\mathbb{F}_p\), output by algtableinit that represents a simple algebra, computes an isomorphism between al and a matrix algebra \(M_d(\mathbb{F}_p^n)\) where \(N = nd^2\) is the dimension of al. Returns a t_VEC \([map, mapi]\), where:

- map is a t_VEC of N matrices of size \(d \times d\) with t_FFELT coefficients using the variable v, representing the image of the basis of al under the isomorphism.
- mapi is an \(N \times N\) matrix with t_INT coefficients, representing the image in al by the inverse isomorphism of the basis \(b_i\) of \(M_d(\mathbb{F}_p^n)\) (where \(\alpha\) has degree \(n\) over \(\mathbb{F}_p\)) defined as follows: let \(E_{i,j}\) be the matrix having all coefficients 0 except the \((i, j)\)-th coefficient equal to 1, and define

\[
b_{i_3+n(i_2+di_1)+1} = E_{i_1+1,i_2+1}^{i_3},
\]

where \(\text{math} : '0 < i_1, i_2 < d' \text{ and } \text{math} : '0 < i_3 < n'\).

Example:

? al0 = alginit(nfinit(y^2+7), [-1,-1]);
? al = algtableinit(algmultable(al0), 3); \\ isomorphic to M_2(F_9)
? [map,mpi] = algsplit(al, 'a);
? x = [1,2,1,0,0,0,0,0]~; fx = map*x
%4 =
  [2*a 0]
  [ 0 2]
? y = [0,0,0,0,1,0,0,1]~; fy = map*y
%5 =
  [1 2*a]
  [2 a + 2]
? map*algmul(al,x,y) == fx*fy
%6 = 1
? map*mpi[,6]
%7 =
  [0 0]
  [a 0]
**Warning.** If $al$ is not simple, algsplit(al) can trigger an error, but can also run into an infinite loop.

Example:

```plaintext
? al = alginit(nfinit(y),[-1,-1]); \ \ ramified at 2
? al2 = algtableinit(algmultable(al),2); \ \ maximal order modulo 2
? algsplit(al2); \ \ not semisimple, infinite loop
```

**algsplittingdata()**

Given a central simple algebra $al$ output by alginit defined by a multiplication table over its center $K$ (a number field), returns data stored to compute a splitting of $al$ over an extension. This data is a $\text{t}_\text{VEC}$ $[t,Lbas,Lbasinv]$ with 3 components:

- an element $t$ of $al$ such that $L = K(t)$ is a maximal subfield of $al$;
- a matrix $Lbas$ expressing a $L$-basis of $al$ (given an $L$-vector space structure by multiplication on the right) on the integral basis of $al$;
- a matrix $Lbasinv$ expressing the integral basis of $al$ on the previous $L$-basis.

```plaintext
? nf = nfinit(y^3-5); a = y; b = y^2;
? {m_i = [0,a,0,0;
0,0,0,a;
0,0,1,0];}
? {m_j = [0, 0,b, 0;
0, 0,0,-b;
1, 0,0, 0;
0,-1,0, 0];}
? {m_k = [0, 0,0,-a*b;
0, 0,b, 0;
0,-a,0, 0;
1, 0,0, 0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? [t,Lb,Lbi] = algsplittingdata(A);
? t
%8 = [0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0]~;
? matsize(Lb)
%9 = [12, 2]
? matsize(Lbi)
%10 = [2, 12]
```

**algsplittingfield()**

Given a central simple algebra $al$ output by alginit, returns an $\text{rnf}$ structure: the splitting field of $al$ that is stored in $al$, as a relative extension of the center.

```plaintext
nf = nfinit(y^3-5);
a = y; b = y^2;
{m_i = [0,a,0,0;
1,0,0,0;
0,0,1,0];}
{m_j = [0, 0,b, 0;
0, 0,-b;
1, 0,0, 0;}
{m_k = [0, 0,0,-a*b;
0, 0,a, 0;
0,-a,0, 0;
1, 0,0, 0];}
```
\[ m_k = \begin{bmatrix} 0, 0,0,-a\cdot b; \\
0, 0,b, 0; \\
0,-a,0, 0; \\
1, 0,0, 0; \end{bmatrix}; \]
\[ mt = \text{matid}(4), m_i, m_j, m_k; \]
\[ A = \text{alginit}(nf, mt, \text{'x}); \]
\[ \text{algsplittingfield}(A).\text{pol} \]
\%8 = \text{x}^2 - y

\text{algsqr}(x)

Given an element \( x \) in \( al \), computes its square \( x^2 \) in the algebra \( al \).

\[
\begin{verbatim}
? A = \text{alginit}(n\text{finit}(y), [-1,-1]);
? \text{algsqr}(A,\begin{bmatrix} 1,0,2,0 \end{bmatrix}~)
%2 = \begin{bmatrix} -3, 0, 4, 0 \end{bmatrix}~
\end{verbatim}
\]

Also accepts a square matrix with coefficients in \( al \).

\text{algsub}(x, y)

Given two elements \( x \) and \( y \) in \( al \), computes their difference \( x - y \) in the algebra \( al \).

\[
\begin{verbatim}
? A = \text{alginit}(n\text{finit}(y), [-1,-1]);
? \text{algsub}(A,\begin{bmatrix} 1,1,0,0 \end{bmatrix}~,\begin{bmatrix} 1,0,1,0 \end{bmatrix}~)
%2 = \begin{bmatrix} 0, 1, -1, 0 \end{bmatrix}~
\end{verbatim}
\]

Also accepts matrices with coefficients in \( al \).

\text{algsubalg}(B)

\( al \) being a table algebra output by \text{algtableinit} and \( B \) being a basis of a subalgebra of \( al \) represented by a matrix, computes an algebra \( al2 \) isomorphic to \( B \).

Returns \([al2, B2]\) where \( B2 \) is a possibly different basis of the subalgebra \( al2 \), with respect to which the multiplication table of \( al2 \) is defined.

\[
\begin{verbatim}
? mt = \text{matid}(3), \begin{bmatrix} 0,0,0; 1,1,0; 0,0,0 \end{bmatrix}, \begin{bmatrix} 0,0,1; 0,0,0; 1,0,1 \end{bmatrix};
? A = \text{algtableinit}(mt,2);
? B = \text{algsubalg}(A,\begin{bmatrix} 1,0; 0,0; 0,1 \end{bmatrix});
? \text{algdim}(A)
%4 = 3
? \text{algdim}(B[1])
%5 = 2
? m = \text{matcompanion}(x^4+1);
? mt = \text{mat\_i} \mid i \leftarrow [0..3];
? al = \text{algtableinit}(mt);
? B = \begin{bmatrix} 1,0;0,0;0,1/2;0,0 \end{bmatrix};
? al2 = \text{algsubalg}(al,B);
? \text{algdim}(al2[1])
? al2[2]
%13 =
\begin{bmatrix} 1 & 0 \\
0 & 0 \end{bmatrix}
\end{verbatim}
\]
algtensor(al1, maxord)

Given two algebras al1 and al2, computes their tensor product. Computes a maximal order by default. Prevent this computation by setting maxord = 0.

Currently only implemented for cyclic algebras of coprime degree over the same center K, and the tensor product is over K.

algtomatrix(x, abs)

Given an element x in al, returns the image of x under a homomorphism to a matrix algebra. If al is a table algebra output by algtableinit or if abs = 1, returns the left multiplication table on the integral basis; if al is a central simple algebra and abs = 0, returns \( \phi(x) \) where \( \phi : A \otimes_K L \to M_d(L) \) (where d is the
degree of the algebra and $L$ is an extension of $L$ with $[L : K] = d$ is an isomorphism stored in $al$. Also accepts a square matrix with coefficients in $al$.

```plaintext
? A = alginit(nfinit(y), [-1,-1]);
? algmatomatrix(A,[0,0,0,2]~)
%2 =
[Mod(x + 1, x^2 + 1) Mod(Mod(1, y)*x + Mod(-1, y), x^2 + 1)]

[Mod(x + 1, x^2 + 1) Mod(-x + 1, x^2 + 1)]
? algmatomatrix(A,[0,1,0,0]~)
%2 =
[0 -1 1 0]
[1 0 1 1]
[0 0 1 1]
[0 0 -2 -1]
? algmatomatrix(A,[0,x]~)
%3 =
[-1 0 0 -1]
[-1 0 1 0]
[-1 -1 0 -1]
[2 0 0 1]

Also accepts matrices with coefficients in al.

algtrace(x, abs)

Given an element x in al, computes its trace. If al is a table algebra output by algtableinit or if $abs = 1$, returns the absolute trace of x, which is an element of \mathbb{F}_p or \mathbb{Q}; if al is the output of alginit and $abs = 0$ (default), returns the reduced trace of x, which is an element of the center of al.

```plaintext
? A = alginit(nfinit(y), [-1,-1]);
? algtrace(A,[5,0,0,1]~)
%2 = 11
? algtrace(A,[5,0,0,1]~)
%3 = 22

? nf = nfinit(y^2-5);
? A = alginit(nf,[-1,y]);
? a = [1+x+y,2*y]~%Mod(1,y^2-5)*Mod(1,x^2+1);
? t = algtrace(A,a)
%7 = Mod(2*y + 2, y^2 - 5)
? algtrace(A,a,1)
%8 = 8
? algdegree(A)*nfelttrace(nf,t)
%9 = 8

Also accepts a square matrix with coefficients in $al$.

**algtype**()

Given an algebra $al$ output by alginit or by algtableinit, returns an integer indicating the type of algebra:
• 0: not a valid algebra.
• 1: table algebra output by algtableinit.
• 2: central simple algebra output by alginit and represented by a multiplication table over its center.
• 3: central simple algebra output by alginit and represented by a cyclic algebra.

? algtype([])
%1 = 0
? mt = [[matid(3), [0,0,0; 1,1,0; 0,0,0], [0,0,1; 0,0,0; 1,0,1]];
? A = algtableinit(mt,2);
? algtype(A)
%4 = 1
? nf = nfinit(y^3-5);
? a = y; b = y^2;
? {m_i = [0,a,0,0; 1,0,0,0; 0,0,0,a; 0,0,1,0];}
? {m_j = [0,0,b,0; 0,0,0,-b; 1,0,0,0; 0,-1,0,0];}
? {m_k = [0,0,0,-a*b; 0,0,b,0; 0,-a,0,0; 1,0,0,0];}
? mt = [matid(4), m_i, m_j, m_k];
? A = alginit(nf,mt,'x);
? algtype(A)
%12 = 2
? A = alginit(nfinit(y), [-1,-1]);
? algtype(A)
%14 = 3

apply(A)
Apply the t_CLOSURE f to the entries of A.
• If A is a scalar, return f(A).
• If A is a polynomial or power series \( \sum a_i x^i (+O(x^N)) \), apply f on all coefficients and return \( \sum f(a_i) x^i (+O(x^N)) \).
• If A is a vector or list \([a_1, ..., a_n]\), return the vector or list \([f(a_1), ..., f(a_n)]\). If A is a matrix, return the matrix whose entries are the \( f(A[i,j]) \).

? apply(x->x^2, [1,2,3,4])
%1 = [1, 4, 9, 16]
? apply(x->x^2, [1,2;3,4])
%2 =
[1 4]
[9 16]
? apply(x->x^2, 4*x^2 + 3*x + 2)
%4 = 16*x^2 + 9*x + 4
(continues on next page)
Note that many functions already act componentwise on vectors or matrices, but they almost never act on lists; in this case, apply is a good solution:

```
? L = List([Mod(1,3), Mod(2,4)]);
? lift(L)
*** at top-level: lift(L)
*** ^-------
*** lift: incorrect type in lift.
? apply(lift, L);
%2 = List([1, 2])
```

**Remark.** For \( v \) a \( \text{t_VEC}, \text{t_COL}, \text{t_VECSMALL}, \text{t_LIST} \) or \( \text{t_MAT} \), the alternative set-notations

\[
[g(x) \mid x \leftarrow v, f(x)]
\]

\[
[x \mid x \leftarrow v, f(x)]
\]

\[
[g(x) \mid x \leftarrow v]
\]

are available as shortcuts for

```
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
```

respectively:

```
? L = List([Mod(1,3), Mod(2,4)]);
? [lift(x) | x<-L]
%2 = [1, 2]
```

**arg** *(precision)*

Argument of the complex number \( x \), such that \( -\pi < \text{arg}(x) \leq \pi \).

**arity()**

Return the arity of the closure \( C \), i.e., the number of its arguments.

```
? f1(x,y=0)=x+y;
? arity(f1)
%1 = 2
? f2(t,s[.])=print(t,":",s);
? arity(f2)
%2 = 2
```

Note that a variadic argument, such as \( s \) in \( f2 \) above, is counted as a single argument.

**asin** *(precision)*

Principal branch of \( \sin^{-1}(x) = -i\log(ix + \sqrt{1 - x^2}) \). In particular, \( \Re(asin(x)) \in [-\pi/2, \pi/2] \) and if \( x \in \mathbb{R} \) and \(|x| > 1\) then \( asin(x) \) is complex. The branch cut is in two pieces: \( ]-\infty, 1] \) continuous with quadrant II, and \( ]1, +\infty[ \) continuous with quadrant IV. The function satisfies \( iasin(x) = asinh(ix) \).

**asinh** *(precision)*

Principal branch of \( \sinh^{-1}(x) = \log(x + \sqrt{1 + x^2}) \). In particular \( \Im(asinh(x)) \in [-\pi/2, \pi/2] \). The
branch cut is in two pieces: $]-i\infty,-i]$, continuous with quadrant III and $[+i,+i\infty]$, continuous with quadrant I.

\textbf{asympnum}(\textit{alpha, precision})

Asymptotic expansion of \textit{expr}, corresponding to a sequence \textit{u}(\textit{n}), assuming it has the shape

$$u(n) \sum_{i>0} a_in^{-i\alpha}$$

with rational coefficients \(a_i\) with reasonable height; the algorithm is heuristic and performs repeated calls to \texttt{limitnum}, with \textit{alpha} as in \texttt{limitnum}. As in \texttt{limitnum}, \textit{u}(\textit{n}) may be given either by a closure \(n : \ldots > \textit{u}(\textit{n})\) or as a closure \(N : \ldots > [\textit{u}(1), \ldots, \textit{u}(\textit{N})]\), the latter being often more efficient.

\begin{verbatim}
? \texttt{f(n) = n! / (n^n*exp(-n)*sqrt(n));}
? \texttt{asympnum(f)}
%2 = [] \ \failure !
? \texttt{localprec(57); l = limitnum(f)}
%3 = 2.5066282746310005024157652848110452530
? \texttt{asympnum(n->f(n)/l) \ \normalize}
%4 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880, 5246819/75246796800]
\end{verbatim}

and we indeed get a few terms of Stirling's expansion. Note that it definitely helps to normalize with a limit computed to higher accuracy (as a rule of thumb, multiply the bit accuracy by 1.612):

\begin{verbatim}
? \texttt{l = limitnum(f)}
? \texttt{asympnum(n->f(n) / l) \ \failure again !!!}
%6 = []
\end{verbatim}

We treat again the example of the Motzkin numbers \textit{M}_n, given in \texttt{limitnum}:

\begin{verbatim}
\% [M_k, M_{k*2}, \ldots, M_{k*N}] / (3^n / n^{3/2})
? \texttt{vM(N, k = 1) =}
  \{ \texttt{my(q = k*N, V);}
    \texttt{if (q == 1, return ([1/3]));}
    \texttt{V = vector(q); V[1] = V[2] = 1;}
    \texttt{for(n = 2, q - 1,}
      \texttt{V[n+1] = ((2*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));}
    \texttt{f = (n -> 3^n / n^{3/2});}
    \texttt{return (vector(N, n, V[n*k] / f(n*k)));}
  \}
? \texttt{localprec(100); l = limitnum(n->vM(n,10)); \ \3/sqrt(12*Pi)}
? \texttt{\p38}
? \texttt{asympnum(n->vM(n,10)/l)}
%2 = [1, -3/32, 101/10240, -1617/1638400, 505659/5242880000, ...]
\end{verbatim}

If \textit{alpha} is not a rational number, loss of accuracy is expected, so it should be precomputed to double accuracy, say:

\begin{verbatim}
? \texttt{\p38}
? \texttt{asympnum(n->log(1+1/n^Pi),Pi)}
%1 = [0, 1, -1/2, 1/3, -1/4, 1/5]
? \texttt{localprec(76); a = Pi;}
? \texttt{asympnum(n->log(1+1/n^Pi), a) \ \more terms}
%3 = [0, 1, -1/2, 1/3, -1/4, 1/5, -1/6, 1/7, -1/8, 1/9, -1/10, 1/11, -1/12]
\end{verbatim}
The expression is evaluated for $n = 1, 2, ..., N$ for an $N = O(B)$ if the current bit accuracy is $B$. If it is not defined for one of these values, translate or rescale accordingly:

\[ \text{asympnum}(n \to \log(1+1/n)), 1/2) \backslash\backslash \text{many more terms} \]

\[ \%4 = 49 \]

\[ \text{asympnum}(n \to \log(1-1/n)) \backslash\backslash \text{can't evaluate at } n = 1 ! \]

\[ \text{asympnum}(n \to \log(1-1/n)) \]

\[ \%5 = [0, 1/2, 1/8, 1/24, ...] \]

\[ \text{asympnum}(n \to -\log(1-1/(2*n))) \]

\[ \%6 = [0, 1, -1/2, 1/3, -1/4, ...] \]

\[ \text{asympnumraw}(N, \alpha, \text{precision}) \]

Return the $N+1$ first terms of asymptotic expansion of $expr$, corresponding to a sequence $u(n)$, as floating point numbers. Assume that the expansion has the shape

\[ u(n) \sum_{i=0}^{\infty} a_i n^{-i\alpha} \]

and return approximation of $[a_0, a_1, ..., a_N]$. The algorithm is heuristic and performs repeated calls to \text{limitnum}, with $\alpha$ as in \text{limitnum}. As in \text{limitnum}, $u(n)$ may be given either by a closure $n \mapsto u(n)$ or as a closure $N \mapsto [u(1), ..., u(N)]$, the latter being often more efficient. This function is related to, but more flexible than, \text{asympnum}, which requires rational asymptotic expansions.

\[ f(n) = n! / (n^n \exp(-n) \sqrt{n}) \]

\[ \%2 = [] \backslash\backslash \text{failure !} \]

\[ \%4 = 0.E-37 \]

\[ \text{bestappr}(v / v[1], 2^60) \]

\[ \%5 = [1, 1/12, 1/288, -139/51840, -571/2488320, 163879/209018880, ...] \]

\[ f(n) = (1+1/n^{(7/2)})^{n^{(7/2)}} \]

\[ \%8 = 4.62... \ E-12 \]

\[ \%7 \ 0.E-37 \]

and we indeed get a few terms of Stirling’s expansion (the first 9 terms are correct). If $u(n)$ has an asymptotic expansion in $n^{-\alpha}$ with $\alpha$ not an integer, the default $\alpha = 1$ is inaccurate:

\[ f(n) = (1+1/n^{(7/2)})^{n^{(7/2)}} \]

\[ \%8 = 4.62... \ E-12 \]

\[ \%7 \ 0.E-37 \]

As in \text{asympnum}, if $\alpha$ is not a rational number, loss of accuracy is expected, so it should be precomputed to double accuracy, say.

\[ \text{atan}(\text{precision}) \]

Principal branch of $\tan^{-1}(x) = \log((1 + ix)/(1 - ix))/2i$. In particular the real part of $\text{atan}(x)$ belongs
to $]-\pi/2, \pi/2[$. The branch cut is in two pieces: $]-i\infty, -i[,$ continuous with quadrant IV, and $]i, +i\infty[,$ continuous with quadrant II. The function satisfies $\tan(x) = -i\tanh(ix)$ for all $x! = i$.

**atanh** *(precision)*

Principal branch of $\tanh^{-1}(x) = \log((1 + x)/(1 - x))/2$. In particular the imaginary part of $\atanh(x)$ belongs to $]-\pi/2, \pi/2[; \text{if } x \in \mathbb{R} \text{ and } ||x|| > 1 \text{ then } \atanh(x) \text{ is complex.}*

**besselh1**(x, precision)

$H^1$-Bessel function of index $nu$ and argument $x$.

**besselh2**(x, precision)

$H^2$-Bessel function of index $nu$ and argument $x$.

**besselh**(x, precision)

$I$-Bessel function of index $nu$ and argument $x$. If $x$ converts to a power series, the initial factor $(x/2)^\nu/\Gamma(\nu + 1)$ is omitted (since it cannot be represented in PARI when $\nu$ is not integral).

**besselj**(x, precision)

$J$-Bessel function of index $nu$ and argument $x$. If $x$ converts to a power series, the initial factor $(x/2)^\nu/\Gamma(\nu + 1)$ is omitted (since it cannot be represented in PARI when $\nu$ is not integral).

**besseljhb**(x, precision)

$J$-Bessel function of half integral index. More precisely, $\text{besselj}(n, x)$ computes $J_{n+1/2}(x)$ where $n$ must be of type integer, and $x$ is any element of $\mathbb{C}$. In the present version 2.13.3, this function is not very accurate when $x$ is small.

**besselk**(x, precision)

$K$-Bessel function of index $nu$ and argument $x$.

**besseln**(x, precision)

Depreciated alias for besselh.

**bessely**(x, precision)

$Y$-Bessel function of index $nu$ and argument $x$.

**bestappr**(B)

Using variants of the extended Euclidean algorithm, returns a rational approximation $a/b$ to $x$, whose denominator is limited by $B$, if present. If $B$ is omitted, returns the best approximation affordable given the input accuracy; if you are looking for true rational numbers, presumably approximated to sufficient accuracy, you should first try that option. Otherwise, $B$ must be a positive real scalar (impose $0 < b <= B$).

- If $x$ is a t_REAL or a t_FRAC, this function uses continued fractions.

```
? bestappr(Pi, 100)
%1 = 22/7
? bestappr(0.1428571428571428571428571428571429)
%2 = 1/7
? bestappr([Pi, sqrt(2) + 'x], 10^3)
%3 = [355/113, x + 1393/985]
```

By definition, $a/b$ is the best rational approximation to $x$ if $\|bx - a\| < \|vx - u\|$ for all integers $(u,v)$ with $0 < v <= B$. (Which implies that $n/d$ is a convergent of the continued fraction of $x$.)

- If $x$ is a t_INTMOD modulo $N$ or a t_PADIC of precision $N = p^k$, this function performs rational modular reconstruction modulo $N$. The routine then returns the unique rational number $a/b$ in coprime integers $\|a\| < N/2B$ and $b <= B$ which is congruent to $x$ modulo $N$. Omitting $B$ amounts to choosing it of the order of $\sqrt{N}/2$. If rational reconstruction is not possible (no suitable $a/b$ exists), returns $[]$. 
In most concrete uses, $B$ is a prime power and we performed Hensel lifting to obtain $x$.

The function applies recursively to components of complex objects (polynomials, vectors,...). If rational reconstruction fails for even a single entry, returns $[]$.

**bestapprPade($B$)**

Using variants of the extended Euclidean algorithm (Padé approximants), returns a rational function approximation $a/b$ to $x$, whose denominator is limited by $B$, if present. If $B$ is omitted, return the best approximation affordable given the input accuracy; if you are looking for true rational functions, presumably approximated to sufficient accuracy, you should first try that option. Otherwise, $B$ must be a nonnegative real (impose $0 <\leq\text{degree}(b) <\leq B$).

- If $x$ is a `t_POLMOD` modulo $N$ this function performs rational modular reconstruction modulo $N$. The routine then returns the unique rational function $a/b$ in coprime polynomials, with $\text{degree}(b) <\leq B$ and $\text{degree}(a)$ minimal, which is congruent to $x$ modulo $N$. Omitting $B$ amounts to choosing it equal to the floor of $\text{degree}(N)/2$. If rational reconstruction is not possible (no suitable $a/b$ exists), returns $[]$.

```
? T = Mod(x^3 + x^2 + x + 3, x^4 - 2);
? bestapprPade(T)
%2 = (2*x - 1)/(x - 1)

? U = Mod(1 + x + x^2 + x^3 + x^5, x^9);
? bestapprPade(U) \ internally chooses B = 4
%3 = []
? bestapprPade(U, 5) \ with B = 5, a solution exists
%4 = (2*x^4 + x^3 - x - 1)/(-x^5 + x^3 + x^2 - 1)
```

- If $x$ is a `t_SER`, we implicitly convert the input to a `t_POLMOD` modulo $N = t^k$ where $k$ is the series absolute precision.

```
? T = 1 + t + t^2 + t^3 + t^4 + t^5 + t^6 + O(t^7); \ mod t^7
? bestapprPade(T)
%1 = 1/(-t + 1)
```

- If $x$ is a `t_RFRAC`, we implicitly convert the input to a `t_POLMOD` modulo $N = t^k$ where $k = 2B + 1$.
  If $B$ was omitted, we return $x$:

```
? T = (4*t^2 + 2*t + 3)/(t+1)^10;
? bestapprPade(T,1)
%2 = [] \ impossible
? bestapprPade(T,2)
%3 = 27/(337*t^2 + 84*t + 9)
? bestapprPade(T,3)
%4 = (4253*t - 3345)/(-39007*t^3 - 28519*t^2 - 8989*t - 1115)
```
The function applies recursively to components of complex objects (polynomials, vectors, ...). If rational reconstruction fails for even a single entry, return $[]$.

**bestapprnf**($T$, $rootT$, $precision$)

$T$ being an integral polynomial and $V$ being a scalar, vector, or matrix with complex coefficients, return a reasonable approximation of $V$ with polmods modulo $T$. $T$ can also be any number field structure, in which case the minimal polynomial attached to the structure (:

\[ \text{math: `T`.pol} \] is used. The $rootT$ argument, if present, must be an element of polroots(:

\[ \text{math: `T`} \] (or :

\[ \text{math: `T`.pol} \], i.e. a complex root of $T$ fixing an embedding of $\mathbb{Q}[x]/(T)$ into $\mathbb{C}$.

\[
? \text{bestapprnf}(\text{sqrt}(5), \text{polcyclo}(5))
\]

\[
%1 = \text{Mod}(-2^*x^3 - 2^*x^2 - 1, x^4 + x^3 + x^2 + x + 1)
\]

\[
? \text{bestapprnf}(\text{sqrt}(5), \text{polcyclo}(5), \text{exp}(4^*\text{I}*\text{Pi}/5))
\]

\[
%2 = \text{Mod}(2^*x^3 + 2^*x^2 + 1, x^4 + x^3 + x^2 + x + 1)
\]

When the output has huge rational coefficients, try to increase the working realbitprecision: if the answer does not stabilize, consider that the reconstruction failed. Beware that if $T$ is not Galois over $\mathbb{Q}$, some embeddings may not allow to reconstruct $V$:

\[
? T = x^3 - 2; \ V T = \text{polroots}(T); \ Z = 3^*2^{(1/3)} + 1;
\]

\[
? \text{bestapprnf}(Z, T, v T[1])
\]

\[
%2 = \text{Mod}(3^*x + 1, x^3 - 2)
\]

\[
? \text{bestapprnf}(Z, T, v T[2])
\]

\[
%3 = 4213714286230872/186454048314072 \ \text{\(\backslash\) close to } 3^*2^{(1/3)} + 1
\]

**bezout**($y$)

Deprecated alias for gcdext

**bezoutres**($B$, $v$)

Deprecated alias for polresultantext

**bigomega**()

Number of prime divisors of the integer $||x||$ counted with multiplicity:

\[
? \text{factor}(392)
\]

\[
%1 = [2 \ 3]
\]

\[
[7 \ 2]
\]

\[
? \text{bigomega}(392)
\]

\[
%2 = 5; \ \text{\(\backslash\) close to } 3+2
\]

\[
? \text{omega}(392)
\]

\[
%3 = 2; \ \text{\(\backslash\) without multiplicity}
\]

**binary**()

Outputs the vector of the binary digits of $||x||$. Here $x$ can be an integer, a real number (in which case the result has two components, one for the integer part, one for the fractional part) or a vector/matrix.

\[
? \text{binary}(10)
\]

\[
%1 = [1, 0, 1, 0]
\]

\[
? \text{binary}(3.14)
\]

\[
%2 = [[1, 1], [0, 0, 1, 0, 0, 0, \ldots]]
\]

(continues on next page)
For integer $x \geq 1$, the number of bits is $\logint(x, 2) + 1$. By convention, 0 has no digits:

```pari
? binary(0)
%4 = []
```

**binomial($k$)**

binomial coefficient $\text{binom}x^k$. Here $k$ must be an integer, but $x$ can be any PARI object.

```pari
? binomial(4, 2)
%1 = 6

? n = 4; vector(n+1, k, binomial(n,k-1))
%2 = [1, 4, 6, 4, 1]
```

The argument $k$ may be omitted if $x = n$ is a nonnegative integer; in this case, return the vector with $n + 1$ components whose $k + 1$-th entry is $\text{binomial}(n, k)$

```pari
? binomial(4)
%3 = [1, 4, 6, 4, 1]
```

**bitand($y$)**

Bitwise and of two integers $x$ and $y$, that is the integer

$$\sum_i (x_i \text{ and } y_i)2^i$$

Negative numbers behave 2-adically, i.e. the result is the 2-adic limit of $\text{bitand}(x_n, y_n)$, where $x_n$ and $y_n$ are nonnegative integers tending to $x$ and $y$ respectively. (The result is an ordinary integer, possibly negative.)

```pari
? bitand(5, 3)
%1 = 1

? bitand(-5, 3)
%2 = 3

? bitand(-5, -3)
%3 = -7
```

**bitneg($n$)**

bitwise negation of an integer $x$, truncated to $n$ bits, $n \geq 0$, that is the integer

$$\sum_{i=0}^{n-1} \text{not}(x_i)2^i.$$  

The special case $n = -1$ means no truncation: an infinite sequence of leading 1 is then represented as a negative number.

See bitand (in the PARI manual) for the behavior for negative arguments.

**bitnegimply($y$)**

Bitwise negated imply of two integers $x$ and $y$ (or $\text{not } (x => y)$), that is the integer

$$\sum (x_i \text{ andnot}(y_i))2^i$$
See bitand (in the PARI manual) for the behavior for negative arguments.

\textbf{bitor}(y)

bitwise (inclusive) or of two integers $x$ and $y$, that is the integer

$$\sum (x_i \text{ or } y_i)2^i$$

See bitand (in the PARI manual) for the behavior for negative arguments.

\textbf{bitprecision}(n)

The function behaves differently according to whether $n$ is present or not. If $n$ is missing, the function returns the (floating point) precision in bits of the PARI object $x$.

If $x$ is an exact object, the function returns $+\infty$.

```
? bitprecision(exp(1e-100))
%1 = 512 \ \ \ \ \ \ \text{512 bits}
? bitprecision([exp(1e-100), 0.5])
%2 = 128 \ \ \ \ \ \ \text{minimal accuracy among components}
? bitprecision(2 + x)
%3 = +oo \ \ \ \ \ \ \text{exact object}
```

Use getlocalbitprec() to retrieve the working bit precision (as modified by possible localbitprec statements).

If $n$ is present and positive, the function creates a new object equal to $x$ with the new bit-precision roughly $n$. In fact, the smallest multiple of 64 (resp. 32 on a 32-bit machine) larger than or equal to $n$.

For $x$ a vector or a matrix, the operation is done componentwise; for series and polynomials, the operation is done coefficientwise. For real $x$, $n$ is the number of desired significant bits. If $n$ is smaller than the precision of $x$, $x$ is truncated, otherwise $x$ is extended with zeros. For exact or non-floating-point types, no change.

```
? bitprecision(Pi, 10) \ \ \ \ \ \ \text{actually 64 bits \ ~ 19 decimal digits}
%1 = 3.141592653589793239
? bitprecision(1, 10)
%2 = 1
? bitprecision(1 + O(x), 10)
%3 = 1 + O(x)
? bitprecision(2 + O(3^5), 10)
%4 = 2 + O(3^5)
```

\textbf{bittest}(n)

Outputs the $n-th$ bit of $x$ starting from the right (i.e. the coefficient of $2^n$ in the binary expansion of $x$). The result is 0 or 1. For $x >= 1$, the highest 1-bit is at $n = \logint(x)$ (and bigger $n$ gives 0).

```
? bittest(7, 0)
%1 = 1 \ \ \ \ \ \ \text{the bit 0 is 1}
? bittest(7, 2)
%2 = 1 \ \ \ \ \ \ \text{the bit 2 is 1}
? bittest(7, 3)
%3 = 0 \ \ \ \ \ \ \text{the bit 3 is 0}
```

See bitand (in the PARI manual) for the behavior at negative arguments.
**CyPari2 Documentation, Release 2.1.3**

**bitxor** *(y)*

Bitwise (exclusive) or of two integers \( x \) and \( y \), that is the integer

\[
\sum (x_i \text{ xor } y_i)2^i
\]

See bitand (in the PARI manual) for the behavior for negative arguments.

**bnfcertify** *(flag)*

*bnf* being as output by bnfinit, checks whether the result is correct, i.e. whether it is possible to remove the assumption of the Generalized Riemann Hypothesis. It is correct if and only if the answer is 1. If it is incorrect, the program may output some error message, or loop indefinitely. You can check its progress by increasing the debug level. The *bnf* structure must contain the fundamental units:

```plaintext
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K)
*** at top-level: K=bnfinit(x^3+2^2^3+1);bnfcertify(K)
*** ^-------------
*** bnfcertify: precision too low in makeunits [use bnfinit(,1)].
? K = bnfinit(x^3+2^2^3+1, 1); \ include units
? bnfcertify(K)
%3 = 1
```

If flag is present, only certify that the class group is a quotient of the one computed in bnf (much simpler in general); likewise, the computed units may form a subgroup of the full unit group. In this variant, the units are no longer needed:

```plaintext
? K = bnfinit(x^3+2^2^3+1); bnfcertify(K, 1)
%4 = 1
```

**bnfdecodemodule** *(m)*

If \( m \) is a module as output in the first component of an extension given by bnrdiscclist, outputs the true module.

```plaintext
? K = bnfinit(x^2+23); L = bnrdiscclist(K, 10); s = L[2]
%1 = [[[Vecsmall([8]), Vecsmall([1])]], [[0, 0, 0]],
 [[Vecsmall([9]), Vecsmall([1])]], [[0, 0, 0]]]
? bnfdecodemodule(K, s[1][1])
%2 =
 [2 0]
 [0 1]
? bnfdecodemodule(K, s[2][1])
%3 =
 [2 1]
 [0 1]
```

**bnfinit** *(flag, tech, precision)*

Initializes a *bnf* structure. Used in programs such as bnfisprincipal, bnfisunit or bnfisnarrow. By default, the results are conditional on the GRH, see GRHbnf (in the PARI manual). The result is a 10-component vector *bnf*.

This implements Buchmann’s sub-exponential algorithm for computing the class group, the regulator and a system of fundamental units of the general algebraic number field \( K \) defined by the irreducible polynomial \( P \) with integer coefficients. The meaning of *flag* is as follows:
• flag = 0 (default). This is the historical behavior, kept for compatibility reasons and speed. It has severe drawbacks but is likely to be a little faster than the alternative, twice faster say, so only use it if speed is paramount, you obtain a useful speed gain for the fields under consideration, and you are only interested in the field invariants such as the class group structure or its regulator. The computations involve exact algebraic numbers which are replaced by floating point embeddings for the sake of speed.

If the precision is insufficient, gp may not be able to compute fundamental units, nor to solve some discrete logarithm problems. It may be possible to increase the precision of the bnf structure using nfnewprec but this may fail, in particular when fundamental units are large. In short, the resulting bnf structure is correct and contains useful information but later function calls to bnfisprincipal or bnrclassfield may fail.

When flag = 1, we keep an exact algebraic version of all floating point data and this allows to guarantee that functions using the structure will always succeed, as well as to compute the fundamental units exactly. The units are computed in compact form, as a product of small \( S \)-units, possibly with huge exponents. This flag also allows bnfisprincipal to compute generators of principal ideals in factored form as well. Be warned that expanding such products explicitly can take a very long time, but they can easily be mapped to floating point or \( \ell \)-adic embeddings of bounded accuracy, or to \( K^*/(K^*)^\ell \), and this is enough for applications. In short, this flag should be used by default, unless you have a very good reason for it, for instance building massive tables of class numbers, and you do not care about units or the effect large units would have on your computation.

`tech` is a technical vector (empty by default, see `GRHbnf` in the PARI manual). Careful use of this parameter may speed up your computations, but it is mostly obsolete and you should leave it alone.

The components of a bnf are technical. In fact: never access a component directly, always use a proper member function. However, for the sake of completeness and internal documentation, their description is as follows. We use the notations explained in the book by H. Cohen, A Course in Computational Algebraic Number Theory, Graduate Texts in Maths 138, Springer-Verlag, 1993, Section 6.5, and subsection 6.5.5 in particular.

`bnf[1]` contains the matrix \( W \), i.e. the matrix in Hermite normal form giving relations for the class group on prime ideal generators \( (p_i)_{1 \leq i \leq r} \).

`bnf[2]` contains the matrix \( B \), i.e. the matrix containing the expressions of the prime ideal factorbase in terms of the \( p_i \). It is an \( r \times c \) matrix.

`bnf[3]` contains the complex logarithmic embeddings of the system of fundamental units which has been found. It is an \( (r_1 + r_2)x(r_1 + r_2 - 1) \) matrix.

`bnf[4]` contains the matrix \( M^\prime C \) of Archimedean components of the relations of the matrix \( (W||B) \).

`bnf[5]` contains the prime factor base, i.e. the list of prime ideals used in finding the relations.

`bnf[6]` contains a dummy 0.

`bnf[7]` or `emphasis:` `bnf.nf` is equal to the number field data \( nf \) as would be given by `nfinit`.

`bnf[8]` is a vector containing the classgroup `emphasis:` `bnf.clgp` as a finite abelian group, the regulator `emphasis:` `bnf.reg`, the number of roots of unity and a generator `emphasis:` `bnf.fu`, the fundamental units in expanded form `emphasis:` `bnf.fu`. If the fundamental units were omitted in the `bnf`, `emphasis:` `bnf.fu` returns the sentinel value 0. If `flag` = 1, this vector contain also algebraic data corresponding to the fundamental units and to the discrete logarithm problem (see `bnfisprincipal`). In particular, if `flag` = 1 we may only know the units in factored form: the first call to `emphasis:` `bnf.fu` expands them, which may be very costly, then caches the result.

`bnf[9]` is a vector used in `bnfisprincipal` only and obtained as follows. Let \( D = UWV \) obtained by applying the Smith normal form algorithm to the matrix \( W (= bnf[1]) \) and let \( U_r \) be the reduction of \( U \) modulo \( D \). The first elements of the factorbase are given (in terms of `bnf.gen`) by the columns of \( U_r \), with Archimedean component \( g_a \); let also \( GD_u \) be the Archimedean components of the generators of the
(principal) ideals defined by the \texttt{bnf.gen[i]}^\texttt{bnf.cyc[i]}. Then \( \texttt{bnf[9]} = [U_r, g_a, GD_a] \), followed by technical exact components which allow to recompute \( g_a \) and \( GD_a \) to higher accuracy.

\( \texttt{bnf[10]} \) is by default unused and set equal to 0. This field is used to store further information about the field as it becomes available, which is rarely needed, hence would be too expensive to compute during the initial \texttt{bnfinit} call. For instance, the generators of the principal ideals \( \texttt{bnf.gen[i]}^\texttt{bnf.cyc[i]} \) (during a call to \texttt{bnrprincipal}), or those corresponding to the relations in \( W \) and \( B \) (when the \texttt{bnf} internal precision needs to be increased).

\textbf{bnfisintnorm}(x)

Computes a complete system of solutions (modulo units of positive norm) of the absolute norm equation \( \text{Norm}(a) = x \), where \( a \) is an integer in \( \texttt{bnf} \). If \( \texttt{bnf} \) has not been certified, the correctness of the result depends on the validity of GRH.

See also \texttt{bnfisnorm}.

\textbf{bnfisnorm}(x, flag)

Tries to tell whether the rational number \( x \) is the norm of some element \( y \) in \( \texttt{bnf} \). Returns a vector \([a, b]\) where \( x = \text{Norm}(a) \cdot b \). Looks for a solution which is an \( S \)-unit, with \( S \) a certain set of prime ideals containing (among others) all primes dividing \( x \). If \( \texttt{bnf} \) is known to be Galois, you may set \( \text{flag} = 0 \) (in this case, \( x \) is a norm iff \( b = 1 \)). If \( \text{flag} \) is nonzero the program adds to \( S \) the following prime ideals, depending on the sign of \( \text{flag} \). If \( \text{flag} > 0 \), the ideals of norm less than \( \text{flag} \). And if \( \text{flag} < 0 \) the ideals dividing \( \text{flag} \).

Assuming GRH, the answer is guaranteed (i.e. \( x \) is a norm iff \( b = 1 \)), if \( S \) contains all primes less than \( 12 \log(\text{disc}(\text{Bnf}))^2 \), where \( \text{Bnf} \) is the Galois closure of \( \texttt{bnf} \).

See also \texttt{bnfisintnorm}.

\textbf{bnfisprincipal}(x, flag)

\( \texttt{bnf} \) being the number field data output by \texttt{bnfinit}, and \( x \) being an ideal, this function tests whether the ideal is principal or not. The result is more complete than a simple true/false answer and solves a general discrete logarithm problem. Assume the class group is \( \oplus(\mathbb{Z}/d_i\mathbb{Z})g_i \) (where the generators \( g_i \) and their orders \( d_i \) are respectively given by \texttt{bnf.gen} and \texttt{bnf.cyc}). The routine returns a row vector \([e, t]\), where \( e \) is a vector of exponents \( 0 < e_i < d_i \), and \( t \) is a number field element such that

\[ x = (t) \prod_i g_i^{e_i}. \]

For given \( g_i \) (i.e. for a given \( \texttt{bnf} \)), the \( e_i \) are unique, and \( t \) is unique modulo units.

In particular, \( x \) is principal if and only if \( e \) is the zero vector. Note that the empty vector, which is returned when the class number is 1, is considered to be a zero vector (of dimension 0).

\begin{verbatim}
? K = bnfinit(y^2+23);
? K.cyc
%2 = [3]
? K.gen
%3 = [[2, 0; 0, 1]] \ \ a prime ideal above 2
? P = idealprimedec(K,3)[1]; \ \ a prime ideal above 3
? v = bnfisprincipal(K, P)
? idealmul(K, v[2], idealfactorback(K, K.gen, v[1]))
%6 = [3 0]
[0 1]
\end{verbatim}

(continues on next page)
The binary digits of flag mean:

- 1: If set, outputs \([e, t]\) as explained above, otherwise returns only \(e\), which is much easier to compute.
- 2: It may not be possible to recover \(t\), given the initial accuracy to which the \(bnf\) structure was computed. In that case, a warning is printed and \(t\) is set equal to the empty vector \([],\). If this bit is set, increase the precision and recompute needed quantities until \(t\) can be computed. Warning: setting this may induce lengthy computations and you should consider using flag 4 instead.
- 4: Return \(t\) in factored form (compact representation), as a small product of \(S\)-units for a small set of finite places \(S\), possibly with huge exponents. This kind of result can be cheaply mapped to \(K^*/(K^*)^t\) or to \(\mathbb{C}\) or \(\mathbb{Q}_p\) to bounded accuracy and this is usually enough for applications. Explicitly expanding such a compact representation is possible using \texttt{nffactorback} but may be very costly. The algorithm is guaranteed to succeed if the \(bnf\) was computed using \texttt{bnfinit(,1)}. If not, the algorithm may fail to compute a huge generator in this case (and replace it by \([],\)). This is orders of magnitude faster than flag 2 when the generators are indeed large.

\texttt{bnfissunit}(sfu, x)

This function is obsolete, use \texttt{bnfisunit}.

\texttt{bnfisunit}(x, U)

\(bnf\) being the number field data output by \texttt{bnfinit} and \(x\) being an algebraic number (type integer, rational or \texttt{polmod}), this outputs the decomposition of \(x\) on the fundamental units and the roots of unity if \(x\) is a unit, the empty vector otherwise. More precisely, if \(u_1, \ldots, u_r\) are the fundamental units, and \(\zeta\) is the generator of the group of roots of unity (\(bnf.tu\)), the output is a vector \([x_1, \ldots, x_r, x_{r+1}]\) such that \(x = u_1^{x_1} \cdots u_r^{x_r} \zeta^{x_{r+1}}\). The \(x_i\) are integers but the last one \((i = r + 1)\) is only defined modulo the order \(w\) of \(\zeta\) and is guaranteed to be in \([0, w]\).

Note that \(bnf\) need not contain the fundamental units explicitly: it may contain the placeholder \(0\) instead:

\texttt{? setrand(1); bnf = bnfinit(x^2-x-100000);}  
\texttt{? bnf.fu}  
\texttt{\%2 = 0}  
\texttt{? u = [1198361656442507899904628359500228716651781276113161311167, \}  
37955488401901378100630325489636915406836082609238336\);  
\texttt{? bnfisunit(bnf, u)}  
\texttt{\%3 = [-1, 0]}~

The given \(u\) is \(1/u_1\), where \(u_1\) is the fundamental unit implicitly stored in \(bnf\). In this case, \(u_1\) was not computed and stored in algebraic form since the default accuracy was too low. Re-run the \texttt{bnfinit} command at \(\texttt{g1}\) or higher to see such diagnostics.

This function allows \(x\) to be given in factored form, but it then assumes that \(x\) is an actual unit. (Because it is general too costly to check whether this is the case.)

\texttt{? \{ v = [2, 85; 5, -71; 13, -162; 17, -76; 23, -37; 29, -104; [224, 1]~, -66; \}  
[-86, 1]~, 86; [-241, 1]~, -29; [44, 1]~, 30; [124, 1]~, 11; [125, -1]~, -11; \}  
[-214, 1]~, 33; [-213, -1]~, -33; [189, 1]~, 74; [190, -1]~, 104;  
(continues on next page)
Note that \( v \) is the fundamental unit of \( \text{bnf} \) given in compact (factored) form.

If the argument \( U \) is present, as output by \( \text{bnfunits}(\text{bnf}, S) \), then the function decomposes \( x \) on the \( S \)-units generators given in \( U[1] \).

\[
? \text{bnf} = \text{bnfinit}(x^4 - x^3 + 4x^2 + 3x + 9, 1);
? \text{bnf.sign}
%2 = [0, 2]
? S = \text{idealprimedec}(\text{bnf}, 5); #S
%3 = 2
? US = \text{bnfunits}(\text{bnf}, S);
? g = US[1]; #g \text{ \textbackslash \#} S = #g, four S-units generators, in factored form
%5 = 4
? g[1]
%6 = [[6, -3, -2, -2]~ 1]
? g[2]
%7 = [[-1, 1/2, -1/2, -1/2]~ 1]

? nffactorback(\text{bnf}, x | x <- g)
%8 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~,
    [1, -1, 0, 0]~]

? a = \text{bnfisunit}(\text{bnf}, u, US)
%9 = [2, 0, 1, 4]~
? nffactorback(\text{bnf}, g, a) \text{ \textbackslash \prod_i} g[i]^a[i] \text{ still in factored form}
%10 = [[6, -3, -2, -2]~ 2]

? nffactorback(\text{bnf},%) \text{ \textbackslash u =} \text{prod_i} g[i]^a[i]
%11 = [10, -40, 24, 11]~

\text{bnflog}(l)

Let \( \text{bnf} \) be a \( \text{bnf} \) structure attached to the number field \( F \) and let \( l \) be a prime number (hereafter denoted \( \ell \) for typographical reasons). Return the logarithmic \( \ell \)-class group \( Cl_F \) of \( F \). This is an abelian group, conjecturally finite (known to be finite if \( F/\mathbb{Q} \) is abelian). The function returns if and only if the group is indeed finite (otherwise it would run into an infinite loop). Let \( S = p_1, \ldots, p_k \) be the set of \( \ell \)-adic places
(maximal ideals containing \( \ell \)). The function returns \([D, G(\ell), G']\), where

- \( D \) is the vector of elementary divisors for \( Cl_F \).
- \( G(\ell) \) is the vector of elementary divisors for the (conjecturally finite) abelian group

where the :math:`p_i` are the \( \ell \)-adic places of \( F \) quoted by the group of logarithmic units is identified to the \( \ell \)-group of logarithmic divisors \( \mathbb{Z}_\ell[p] \), generated by the maximal ideals of \( F \).

bnflogdegree(A, l)

Let \( nf \) be a \( nf \) structure attached to a number field \( F \), and let \( l \) be a prime number (hereafter denoted \( \ell \)). The \( \ell \)-adified group of id\{e\}les of \( F \) quotiented by the group of logarithmic units is identified to the \( \ell \)-group of logarithmic divisors \( \mathbb{Z}_\ell[p] \), generated by the maximal ideals of \( F \).

The degree map \( \text{deg}_F \) is additive with values in \( \mathbb{Z}_\ell \), defined by \( \text{deg}_F p = f_p \text{deg}_\ell p \), where the integer \( f_p \) is as in \( \text{bnflogef} \) and \( \text{deg}_p \) is \( \log_\ell p \) for \( p^k \equiv 1 \pmod{\ell} \) and \( \log_\ell (1 + 2^2) \) for \( p = \ell = 2 \).

Let \( A = \prod p^{n_p} \) be an ideal and let \( A = \sum n_p[p] \) be the attached logarithmic divisor. Return the exponential of the \( \ell \)-adic logarithmic degree \( \text{deg}_F A \), which is a natural number.

bnflogef(pr)

Let \( nf \) be a \( nf \) structure attached to a number field \( F \) and let \( pr \) be a prid structure attached to a maximal ideal \( p/p \). Return \([e(F_p/\mathbb{Q}_p), f(F_p/\mathbb{Q}_p)]\) the logarithmic ramification and residue degrees. Let \( \mathbb{Q}_p^c/\mathbb{Q}_p \) be the cyclotomic \( \mathbb{Z}_p \)-extension, then \( e = [F_p : F_p \cap \mathbb{Q}_p^c] \) and \( f = [F_p : \mathbb{Q}_p^c : \mathbb{Q}_p] \). Note that \( e f = e(p/p)f(p/p) \), where \( e(p/p) \) and \( f(p/p) \) denote the usual ramification and residue degrees.

```plaintext
? F = nfinit(y^6 - 3*y^5 + 5*y^3 - 3*y + 1);
? bnflogef(F, idealprimedec(F,2)[1])
%2 = [6, 1]
? bnflogef(F, idealprimedec(F,5)[1])
%3 = [1, 2]
```

bnfnarrow()

\( bnf \) being as output by \( \text{bnfinit} \), computes the narrow class group of \( bnf \). The output is a 3-component row vector \( v \) analogous to the corresponding class group component :emphasis:`\bnfclgp` : the first component is the narrow class number :math:`v.no`, the second component is a vector containing the SNF cyclic components :math:`v.cyc` of the narrow class group, and the third is a vector giving the generators of the corresponding :math:`v.gen` cyclic groups. Note that this function is a special case of \( bmrinit \); the \( bnf \) need not contain fundamental units.

bnfsignunit()

\( bnf \) being as output by \( \text{bnfinit} \), this computes an \( r_1x(r_1 + r_2 - 1) \) matrix having 1 components, giving the signs of the real embeddings of the fundamental units. The following functions compute generators for the totally positive units:

```plaintext
/* exponents of totally positive units generators on K.tu, K.fu */
tpexpo(K)=
{ my(M, S = bnfsignunit(K), [m,n] = matsize(S));
 \; m = K.r1, n = r1+r2-1
 S = matrix(m,n, i,j, if (S[i,j] < 0, 1,0));
}
```
S = concat(vectorv(m,i,1), S); \ add sign(-1)
M = matkermod(S, 2);
if (M, mathnfmodid(M, 2), 2*matid(n+1))
}
/* totally positive fundamental units of bnf K */

// totally positive fundamental units of bnf K */

tpu(K)=
{ my(ex = tpuexpo(K)[,1]); \ remove ex[,1], corresponds to 1 or -1
my(v = concat(K.tu[2], K.fu));
[ nffactorback(K, v, c) | c <- ex];
}

bnfsunit(S, precision)
Computes the fundamental $S$-units of the number field $b$nf (output by bnfinit), where $S$ is a list of prime ideals (output by idealprimedec). The output is a vector $v$ with 6 components.

$v[1]$ gives a minimal system of (integral) generators of the $S$-unit group modulo the unit group.


$v[3]$ is an obsoleted component, now the empty vector.

$v[4]$ is the $S$-regulator (this is the product of the regulator, the $S$-class number and the natural logarithms of the norms of the ideals in $S$).

$v[5]$ gives the $S$-class group structure, in the usual abelian group format: a vector whose three components give in order the $S$-class number, the cyclic components and the generators.

$v[6]$ is a copy of $S$.

bnfunits(S)
Return the fundamental units of the number field bnf output by bnfinit; if $S$ is present and is a list of prime ideals, compute fundamental $S$-units instead. The first component of the result contains independent integral $S$-units generators: first nonunits, then $r_1 + r_2 - 1$ fundamental units, then the torsion unit. The result may be used as an optional argument to bnfissunit. The units are given in compact form: no expensive computation is attempted if the bnf does not already contain units.

? bnf = bnfinit(x^4 - x^3 + 4*x^2 + 3*x + 9, 1);
? bnf.sign \ r1 + r2 - 1 = 1
%2 = [0, 2]
? U = bnfunits(bnf); u = U[1];
? #u \ r1 + r2 = 2 units
%5 = 2;
? u[1] \ fundamental unit as factorization matrix
%6 =
[[0, 0, -1, -1| -1]
[[2, -1, -1, 0| -2]
[ [1, 1, 0, 0] 2]
[ [-1, 1, 1| -1]
? u[2] \ torsion unit as factorization matrix
%7 =
[[1, -1, 0, 0| 1]
(continues on next page)
Now an example involving $S$-units for a nontrivial $S$:

\begin{verbatim}
? S = idealprimedec(bnf,5); #S
%9 = 2
? US = bnfunits(bnf, S); uS = US[1];
? g = [nffactorback(bnf, z) | z <- uS] \ \ now 4 units
%11 = [[6, -3, -2, -2]~, [-5, 5, 0, 0]~, [-1, 1, -1, 0]~, [1, -1, 0, 0]~]
? bnfsunit(bnf,[10, -40, 24,11]~)
%12 = [] ~ \ \ not a unit
%13 = [2, 0, 1, 4]~ \ \ ...but an $S$-unit
? nffactorback(bnf, g, e)
%14 = [10, -40, 24, 11]~
? nffactorback(bnf, uS, e) \ \ in factored form
%15 =
[[6, -3, -2, -2]~ 2]
[ [0, 0, -1, -1]~ 1]
[ [2, -1, -1, 0]~ -2]
[ [1, 1, 0, 0]~ 2]
[ [-1, 1, 1]~ -1]
[ [1, -1, 0, 0]~ 4]
\end{verbatim}

Note that in more complicated cases, any `nffactorback` fully expanding an element in factored form could be very expensive. On the other hand, the final example expands a factorization whose components are themselves in factored form, hence the result is a factored form: this is a cheap operation.

**bnrL1($H$, flag, precision)**

Let `bnr` be the number field data output by `bnrinit` and $H$ be a square matrix defining a congruence subgroup of the ray class group corresponding to $bnr$ (the trivial congruence subgroup if omitted). This function returns, for each character $\chi$ of the ray class group which is trivial on $H$, the value at $s = 1$ (or $s = 0$) of the abelian $L$-function attached to $\chi$. For the value at $s = 0$, the function returns in fact for each $\chi$ a vector $[r_{\chi}, c_{\chi}]$ where

$$L(s, \chi) = c.s^r + O(s^{r+1})$$

near 0.

The argument `flag` is optional, its binary digits mean 1: compute at $s = 0$ if unset or $s = 1$ if set, 2: compute the primitive $L$-function attached to $\chi$ if unset or the $L$-function with Euler factors at prime ideals dividing the modulus of $bnr$ removed if set (that is $L_S(s, \chi)$, where $S$ is the set of infinite places of the number field together with the finite prime ideals dividing the modulus of $bnr$), 3: return also the character if set.

\begin{verbatim}
K = bnfinit(x^2-229);
bnr = bnrinit(K,1);
bnrL1(bnr)
\end{verbatim}

returns the order and the first nonzero term of $L(s, \chi)$ at $s = 0$ where $\chi$ runs through the characters of the class group of $K = \mathbb{Q}(\sqrt{229})$. Then
returns the order and the first nonzero terms of \( L_S(s, \chi) \) at \( s = 0 \) where \( \chi \) runs through the characters of the class group of \( K \) and \( S \) is the set of infinite places of \( K \) together with the finite prime 2. Note that the ray class group modulo 2 is in fact the class group, so \( \text{bnrL1(bnr2, 0)} \) returns the same answer as \( \text{bnrL1(bnr, 0)} \).

This function will fail with the message

```
*** bnrL1: overflow in zeta_get_N0 [need too many primes].
```

if the approximate functional equation requires us to sum too many terms (if the discriminant of \( K \) is too large).

\textbf{bnrchar}(g, v)

Returns all characters \( \chi \) on \( \text{bnr.clgp} \) such that \( \chi(g_i) = e(v_i) \), where \( e(x) = \exp(2i\pi x) \). If \( v \) is omitted, returns all characters that are trivial on the \( g_i \). Else the vectors \( g \) and \( v \) must have the same length, the \( g_i \) must be ideals in any form, and each \( v_i \) is a rational number whose denominator must divide the order of \( g_i \) in the ray class group.

For convenience, the vector of the \( g_i \) can be replaced by a matrix whose columns give their discrete logarithm, as given by \( \text{bnrisprincipal} \); this allows to specify abstractly a subgroup of the ray class group.

\textbf{bnrclassfield}(subgp, flag, precision)

\( bnr \) being as output by \( \text{bnrinit} \), returns a relative equation for the class field corresponding to the congruence group defined by \( (bnr, subgp) \) (the full ray class field if \( subgp \) is omitted). The subgroup can also be a \texttt{t_INT} \( n \), meaning \( n.Cl_f \). The function also handles a vector of subgroup, e.g. from \( \text{subgrouplist} \) and returns the vector of individual results in this case.

If \( flag = 0 \), returns a vector of polynomials such that the compositum of the corresponding fields is the class field; if \( flag = 1 \) returns a single polynomial; if \( flag = 2 \) returns a single absolute polynomial.
When the subgroup contains $n\mathcal{Cl}_f$, where $n$ is fixed, it is advised to directly compute the $\text{bnr}$ modulo $n$ to avoid expensive discrete logarithms:

```plaintext
? bnf = bnfinit(y^2-5); p = 1594287814679644276013;
? bnr = bnrinit(bnf, p); \ very slow
 time = 24,146 ms.
? bnrclassfield(bnr, 2) \ ... even though the result is trivial
 %3 = [x^2 - 1594287814679644276013]
? bnr2 = bnrinit(bnf, p,,2); \ now fast
 time = 1 ms.
? bnrclassfield(bnr2, 2)
 %5 = [x^2 - 1594287814679644276013]
```

This will save a lot of time when the modulus contains a maximal ideal whose residue field is large.

### $\text{bnrclassno}(B, C)$

Let $A$, $B$, $C$ define a class field $L$ over a ground field $K$ (of type `:emphasis:`$\text{bnr}$`, `:emphasis:`$\text{bnr, subgroup}$`, or `:emphasis:`$\text{bnf, modulus}$`, or `:emphasis:`$\text{bnf, modulus, emphasis:subgroup}$`, CFT (in the PARI manual)); this function returns the relative degree $[L : K]$.

In particular if $A$ is a $\text{bnf}$ (with units), and $B$ a modulus, this function returns the corresponding ray class number modulo $B$. One can input the attached bid (with generators if the subgroup $C$ is non trivial) for $B$ instead of the module itself, saving some time.

This function is faster than $\text{bnrinit}$ and should be used if only the ray class number is desired. See $\text{bnrclassnolist}$ if you need ray class numbers for all moduli less than some bound.

### $\text{bnrclassnolist}(list)$

$\text{bnf}$ being as output by $\text{bnfinit}$, and $\text{list}$ being a list of moduli (with units) as output by $\text{ideallist}$ or $\text{ideallistarch}$, outputs the list of the class numbers of the corresponding ray class groups. To compute a single class number, $\text{bnrclassno}$ is more efficient.

```plaintext
? bnf = bnfinit(x^2 - 2);
? L = ideallist(bnf, 100, 2);
? H = bnrclassnolist(bnf, L);
? H[98]
 %4 = [1, 3, 1]
? l = L[1][98]; ids = vector(#l, i, l[i].mod[1])
? H[98]
 %5 = [[98, 88; 0, 1], [14, 0; 0, 7], [98, 10; 0, 1]]
```

The weird $l[i].\text{mod}[1]$, is the first component of $l[i].\text{mod}$, i.e. the finite part of the conductor. (This is cosmetic: since by construction the Archimedean part is trivial, I do not want to see it). This tells us that the ray class groups modulo the ideals of norm 98 (printed as %5) have respectively order 1, 3 and 1. Indeed, we may check directly:

```plaintext
? bnrclassno(bnf, ids[2])
 %6 = 3
```

### $\text{bnrconductor}(B, C, \text{flag})$

Conductor $f$ of the subfield of a ray class field as defined by $[A, B, C]$ (of type `:emphasis:`$\text{bnr}$`, `:emphasis:`$\text{bnr, subgroup}$`, `:emphasis:`$\text{bnf, modulus}$` or `:emphasis:`$\text{bnf, modulus, subgroup}$`, CFT (in the PARI manual))
If flag = 0, returns f.

If flag = 1, returns [f, Cl,f, H], where Cl,f is the ray class group modulo f, as a finite abelian group; finally H is the subgroup of Cl,f defining the extension.

If flag = 2, returns [f, bnr(f), H], as above except Cl,f is replaced by a bnr structure, as output by bnrinit(f), without generators unless the input contained a bnr with generators.

In place of a subgroup H, this function also accepts a character chi = (aj), expressed as usual in terms of the generators bnr.gen: \( \chi(g_j) = \exp(2\pi i a_j/d_j) \), where \( g_j \) has order \( d_j = bnr.cyc[j] \). In which case, the function returns respectively

If flag = 0, the conductor f of Ker\( \chi \).

If flag = 1, [f, Cl,f, \( \chi_f \)], where \( \chi_f \) is \( \chi \) expressed on the minimal ray class group, whose modulus is the conductor.

If flag = 2, [f, bnr(f), \( \chi_f \)].

Note. Using this function with flag! = 0 is usually a bad idea and kept for compatibility and convenience only: flag = 1 has always been useless, since it is no faster than flag = 2 and returns less information; flag = 2 is mostly OK with two subtle drawbacks:

- it returns the full bnr attached to the full ray class group, whereas in applications we only need Cl,f modulo \( N \)-th powers, where \( N \) is any multiple of the exponent of Cl,f/H. Computing directly the conductor, then calling bnrinit with optional argument \( N \) avoids this problem.

- computing the bnr needs only be done once for each conductor, which is not possible using this function.

For maximal efficiency, the recommended procedure is as follows. Starting from data (character or congruence subgroups) attached to a modulus \( m \), we can first compute the conductors using this function with default flag = 0. Then for all data with a common conductor \( f \parallel m \), compute (once!) the bnr attached to \( f \) using bnrinit (modulo \( N \)-th powers for a suitable \( N \))! and finally map original data to the new bnr using bnrmap.

\textbf{bnrconductorofchar}(chi)

This function is obsolete, use bnrconductor.

\textbf{bnrdisc}(B, C, flag)

A, B, C defining a class field \( L \) over a ground field \( K \) (of type [bmr], [bmr, subgroup], [bmr, character], [bnf, modulus] or [bnf, modulus, subgroup], CFT (in the PARI manual)), outputs data \([N, r_1, D]\) giving the discriminant and signature of \( L \), depending on the binary digits of flag:

- 1: if this bit is unset, output absolute data related to \( L/Q \): \( N \) is the absolute degree \([L : Q]\), \( r_1 \) the number of real places of \( L \), and \( D \) the discriminant of \( L/Q \). Otherwise, output relative data for \( L/K \): \( N \) is the relative degree \([L : K]\), \( r_1 \) is the number of real places of \( K \) unramified in \( L \) (so that the number of real places of \( L \) is equal to \( r_1 \) times \( N \)), and \( D \) is the relative discriminant ideal of \( L/K \).

- 2: if this bit is set and if the modulus is not the conductor of \( L \), only return 0.

\textbf{bnrdisclist}(bound, arch)

bnf being as output by bnfinit (with units), computes a list of discriminants of Abelian extensions of the number field by increasing modulus norm up to bound bound. The ramified Archimedean places are given by arch; all possible values are taken if arch is omitted.

The alternative syntax bnrlist(bnf, list) is supported, where list is as output by ideallist or ideallistarch (with units), in which case arch is disregarded.

The output \( v \) is a vector, where \( v[k] \) is itself a vector \( w \), whose length is the number of ideals of norm \( k \).

- We consider first the case where arch was specified. Each component of \( w \) corresponds to an ideal \( m \) of norm \( k \), and gives invariants attached to the ray class field \( L \) of bnf of conductor \([m, arch]\). Namely, each
contains a vector \([m, d, r, D]\) with the following meaning: \(m\) is the prime ideal factorization of the modulus, \(d = [L : \mathbb{Q}]\) is the absolute degree of \(L\), \(r\) is the number of real places of \(L\), and \(D\) is the factorization of its absolute discriminant. We set \(d = r = D = 0\) if \(m\) is not the finite part of a conductor.

- If \(arch\) was omitted, all \(t = 2^r\) possible values are taken and a component of \(w\) has the form \([m, [d_1, r_1, D_1], ..., [d_t, r_t, D_t]]\), where \(m\) is the finite part of the conductor as above, and \([d_i, r_i, D_i]\) are the invariants of the ray class field of conductor \([m, v_i]\), where \(v_i\) is the \(i\)-th Archimedean component, ordered by inverse lexicographic order; so \(v_1 = [0, ..., 0], v_2 = [1, 0, ..., 0], \) etc. Again, we set \(d_i = r_i = D_i = 0\) if \([m, v_i]\) is not a conductor.

Finally, each prime ideal \(p_r = [p, \alpha, e, f, \beta]\) in the prime factorization \(m\) is coded as the integer \(p.n^2 + (f - 1).n + (j - 1)\), where \(n\) is the degree of the base field and \(j\) is such that

\[pr = \text{idealprimedec}(\text{nf}.'p')\].

\(m\) can be decoded using \text{bnfdecodemodule}.

Note that to compute such data for a single field, either \text{bnrclassno} or \text{bnrdisc} are (much) more efficient.

\text{bnrgaloisapply} (\text{mat}, \text{H})

Apply the automorphism given by its matrix \text{mat} to the congruence subgroup \(H\) given as a HNF matrix. The matrix \text{mat} can be computed with \text{bnrgaloismatrix}.

\text{bnrgaloismatrix} (\text{aut})

Return the matrix of the action of the automorphism \(\text{aut}\) of the base field \text{bnf.nf} on the generators of the ray class field \(\text{bnr.gen}\); \(\text{aut}\) can be given as a polynomial, an algebraic number, or a vector of automorphisms or a Galois group as output by \text{galoisinit}, in which case a vector of matrices is returned (in the later case, only for the generators \text{aut.gen}).

The generators \text{bnr.gen} need not be explicitly computed in the input \text{bnr}, which saves time: the result is well defined in this case also.

\begin{verbatim}
? K = bnfinit(a^4-3*a^2+253009); B = bnrinit(K,9); B.cyc
%1 = [8400, 12, 6, 3]
? G = nfgaloisconj(K)
%2 = [-a, a, -1/503*a^3 + 3/503*a, 1/503*a^3 - 3/503*a]
? bnrgaloismatrix(B, G[2]) \ G[2] = Id ...
%3 =
[1 0 0 0]
[0 1 0 0]
[0 0 1 0]
[0 0 0 1]
? bnrgaloismatrix(B, G[3]) \ automorphism of order 2
%4 =
[799 0 0 2800]
[0 7 0 4]
[4 0 5 2]
[0 0 0 2]
? M = %2; for (i=1, #B.cyc, M[i,] %= B.cyc[i]); M
%5 = \ acts on ray class group as automorphism of order 2
[1 0 0 0]
\end{verbatim}
bnrinit\( (f, \text{flag}, \text{cycmod}) \)

\(bnf\) is as output by \texttt{bnfinit} (including fundamental units), \(f\) is a modulus, initializes data linked to the ray class group structure corresponding to this module, a so-called \texttt{bnr} structure. One can input the attached \texttt{bid} with generators for \(f\) instead of the module itself, saving some time. (As in \texttt{idealstar}, the finite part of the conductor may be given by a factorization into prime ideals, as produced by \texttt{idealfactor}.)

If the positive integer \texttt{cycmod} is present, only compute the ray class group modulo \texttt{cycmod}, which may save a lot of time when some maximal ideals in \(f\) have a huge residue field. In applications, we are given a congruence subgroup \(H\) and study the class field attached to \(Cl_{f}/H\). If that finite Abelian group has an exponent which divides \texttt{cycmod}, then we have changed nothing theoretically, while trivializing expensive discrete logs in residue fields (since computations can be made modulo \texttt{cycmod}-th powers). This is useful in \texttt{bnrclassfield}, for instance when computing \(p\)-elementary extensions.

The following member functions are available on the result: \texttt{.bnf} is the underlying \(bnf\), \texttt{.mod} the modulus, \texttt{.bid} the \texttt{bid} structure attached to the modulus; finally, \texttt{.clgp}, \texttt{.no}, \texttt{.cyc}, \texttt{.gen} refer to the ray class group (as a finite abelian group), its cardinality, its elementary divisors, its generators (only computed if \texttt{flag} = 1).

The last group of functions are different from the members of the underlying \texttt{bid}, which refer to \((\mathbb{Z}_K/f)^*\); use \texttt{.bnr.bid.clgp} to access these, e.g.:\texttt{.bnr.bid.no} to get \(\phi(f)\).

If \texttt{flag} = 0 (default), the generators of the ray class group are not explicitly computed, which saves time. Hence \texttt{.bnr.gen} would produce an error. Note that implicit generators are still fixed and stored in the \texttt{bnr} (and guaranteed to be the same for fixed \texttt{bnf} and \texttt{bid} inputs), in terms of \texttt{bnr.bnngen} and \texttt{bnr.bid.gen}. The computation which is not performed is the expansion of such products in the ray class group so as to fix explicit ideal representatives.

If \texttt{flag} = 1, as the default, except that generators are computed.

bnrisconductor\((B, C)\)

Fast variant of \texttt{bnrconductor}(\(A, B, C\)); \(A, B, C\) represent an extension of the base field, given by class field theory (see \texttt{CFT} (in the PARI manual)). Outputs 1 if this modulus is the conductor, and 0 otherwise. This is slightly faster than \texttt{bnrconductor} when the character or subgroup is not primitive.

bnrisgalois\((gal, H)\)

Check whether the class field attached to the subgroup \(H\) is Galois over the subfield of \texttt{bnr.nf} fixed by the group \(gal\), which can be given as output by \texttt{galoisisinit}, or as a matrix or a vector of matrices as output by \texttt{bnrgaloismatrix}, the second option being preferable, since it saves the recomputation of the matrices. Note: The function assumes that the ray class field attached to \texttt{bnr} is Galois, which is not checked.

In the following example, we lists the congruence subgroups of subextension of degree at most 3 of the ray class field of conductor 9 which are Galois over the rationals.

\[
\begin{bmatrix}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{bmatrix}
\]

See \texttt{bnrisgalois} for further examples.
\$ K = \text{bnfinit}(a^4-3*a^2+253009); B = \text{bnrinit}(K,9); G = \text{galoisinit}(K); \$
\$ [H \mid H<\text{-subgrouplist}(B,3), \text{bnrisgalois}(B,G,H)]; \$
\text{time} = 160 \text{ ms.}
\$ \ M = \text{bngaloismatrix}(B,G); \$
\$ [H \mid H<\text{-subgrouplist}(B,3), \text{bnrisgalois}(B,M,H)] \$
\text{time} = 1 \text{ ms.}

The second computation is much faster since \text{bngaloismatrix}(B,G) is computed only once.

\textbf{bnrisprincipal}(x, \text{flag})

Let \text{bnr} be the ray class group data output by \text{bnrinit}(,1) and let \(x\) be an ideal in any form, coprime to the modulus \(f = \text{bnr.mod}\). Solves the discrete logarithm problem in the ray class group, with respect to the generators \text{bnr.gen}, in a way similar to \text{bnfisprincipal}. If \(x\) is not coprime to the modulus of \text{bnr} the result is undefined. Note that \text{bnr} need not contain the ray class group generators, i.e. it may be created with \text{bnrinit}(,0); in that case, although \text{bnr.gen} is undefined, we can still fix natural generators for the ray class group (in terms of the generators in \text{bnr.bnf.gen} and \text{bnr.bid.gen}) and compute with respect to them.

The binary digits of \textit{flag} (default \textit{flag} = 1) mean:

- \(1\): If set returns a 2-component vector \([e, \alpha]\) where \(e\) is the vector of components of \(x\) on the ray class group generators, \(\alpha\) is an element congruent to 1 mod \(f\) such that \(x = \alpha \prod_i q_i^{e_i}\). If unset, returns only \(e\).
- \(4\): If set, returns \([e, \alpha]\) where \(\alpha\) is given in factored form (compact representation). This is orders of magnitude faster.

\$ K = \text{bnfinit}(x^2 - 30); bnr = \text{bnrinit}(K, [4, [1,1]]); \$
\$ \text{bnr.clgp} \ \ \text{ray class group is isomorphic to } \mathbb{Z}/4 \times \mathbb{Z}/2 \times \mathbb{Z}/2 \$
\%2 = [16, [4, 2, 2]]
\$ \text{P} = \text{idealprimedec}(K, 3)[1]; \ \ \text{the ramified prime ideal above } 3 \$
\$ \text{bnrisprincipal}(\text{bnr}, \text{P}) \ \ \text{bnr.gen undefined!} \$
\%5 = [[[3, 0, 0]~, 9]
\$ \text{bnrisprincipal}(\text{bnr}, \text{P}, 0) \ \ \text{omit principal part} \$
\%5 = [3, 0, 0]~
\$ \text{bnr} = \text{bnrinit}(\text{bnr}, \text{bnr.bid}, 1); \ \ \text{include explicit generators} \$
\$ \text{bnrisprincipal}(\text{bnr}, \text{P}) \ \ \text{... alpha is different!} \$
\%7 = [[[3, 0, 0]~, 1/128625]

It may be surprising that the generator \(\alpha\) is different although the underlying \textit{bnf} and \textit{bid} are the same. This defines unique generators for the ray class group as ideal classes, whether we use \text{bnrinit}(,0) or \text{bnrinit}(,1). But the actual ideal representatives (implicit if the flag is 0, computed and stored in the \textit{bnr} if the flag is 1) are in general different and this is what happens here. Indeed, the implicit generators are naturally expressed as components of \text{bnr.bnf.gen} and \text{bnr.bid.gen} and then expanded and simplified (in the same ideal class) so that we obtain ideal representatives for \text{bnr.gen} which are as simple as possible. And indeed the quotient of the two \(\alpha\) found is 1 modulo the conductor (and positive at the infinite places it contains), and this is the only guaranteed property.

Beware that, when \text{bnr} is generated using \text{bnrinit}(, \text{cycmod}), the results are given in \(Cl_f\) modulo \text{cycmod-th} powers:

\$ \text{bnr2} = \text{bnrinit}(K, \text{bnr.mod}, 2); \ \ \text{modulo squares} \$
\$ \text{bnr2.clgp} \$
\%9 = [8, [2, 2, 2]] \ \ \text{bnr.clgp tensored by } \mathbb{Z}/2\mathbb{Z} \$
\$ \text{bnrisprincipal}(\text{bnr2}, \text{P}) \$
\%10 = [1, 0, 0]~
\textbf{bnrmap}(B)

This function has two different uses:

- if \( A \) and \( B \) are \textit{bnr} structures for the same \textit{bnf} attached to moduli \( m_A \) and \( m_B \) with \( m_B || m_A \), return the canonical surjection from \( A \) to \( B \), i.e. from the ray class group modulo \( m_A \) to the ray class group modulo \( m_B \). The map is coded by a triple \([M, \text{cyc}_A, \text{cyc}_B]\): \( M \) gives the image of the fixed ray class group generators of \( A \) in terms of the ones in \( B \), \( \text{cyc}_A \) and \( \text{cyc}_B \) are the cyclic structures \( A \cdot \text{cyc} \) and \( B \cdot \text{cyc} \) respectively. Note that this function does not need \( A \) or \( B \) to contain explicit generators for the ray class groups: they may be created using \texttt{bnrinit(,0)}.

If \( B \) is only known modulo \( N \)-th powers (from \texttt{bnrinit(,N)}), the result is correct provided \( N \) is a multiple of the exponent of \( A \).

- if \( A \) is a projection map as above and \( B \) is either a congruence subgroup \( H \), or a ray class character \( \chi \), or a discrete logarithm (from \texttt{bnrisprincipal}) modulo \( m_A \) whose conductor divides \( m_B \), return the image of the subgroup (resp. the character, the discrete logarithm) as defined modulo \( m_B \). The main use of this variant is to compute the primitive subgroup or character attached to a \textit{bnr} modulo their conductor. This is more efficient than \texttt{bnrconductor} in two respects: the \textit{bnr} attached to the conductor need only be computed once and, most importantly, the ray class group can be computed modulo \( N \)-th powers, where \( N \) is a multiple of the exponent of \( C_{\Gamma m_A}/H \) (resp. of the order of \( \chi \)). Whereas \texttt{bnrconductor} is specified to return a \textit{bnr} attached to the full ray class group, which may lead to untractable discrete logarithms in the full ray class group instead of a tiny quotient.

\textbf{bnrrootnumber}(\textit{chi}, \textit{flag}, \textit{precision})

If \( \chi = \text{chi} \) is a character over \textit{bnr}, not necessarily primitive, let \( L(s, \chi) = \sum_{id} \chi(id) N(id)^{-s} \) be the attached Artin L-function. Returns the so-called Artin root number, i.e. the complex number \( W(\chi) \) of modulus 1 such that

\[
\Lambda(1-s, \chi) = W(\chi) \Lambda(s, \chi^{-1})
\]

where \( \Lambda(s, \chi) = A(\chi)^{s/2} \gamma(s) L(s, \chi) \) is the enlarged L-function attached to \( L \).

You can set \textit{flag} = 1 if the character is known to be primitive. Example:

```plaintext
bnf = bnfinit(x^2 - x - 57);
bnr = bnrinit(bnf, [7,[1,1]]);
bnrrootnumber(bnr, [2,1])
```

returns the root number of the character \( \chi \) of \( C\Gamma_{mod,oo2}(Q(\sqrt{229})) \) defined by \( \chi(g_1^a g_2^b) = \zeta_1^{2a \gamma} \zeta_2^{b} \). Here \( g_1, g_2 \) are the generators of the ray-class group given by \textit{bnr}.
\texttt{gen} and \( \zeta_1 = e^{2\pi i / N_1}, \zeta_2 = e^{2\pi i / N_2} \) where \( N_1, N_2 \) are the orders of \( g_1 \) and \( g_2 \) respectively (\( N_1 = 6 \) and \( N_2 = 3 \) as \textit{bnr}.
\texttt{cyc} readily tells us).

\textbf{bnrstark}(\textit{subgroup}, \textit{precision})

\textit{bnr} being as output by \texttt{bnrinit}, finds a relative equation for the class field corresponding to the modulus in \textit{bnr} and the given congruence subgroup (as usual, omit \textit{subgroup} if you want the whole ray class group).

The main variable of \textit{bnr} must not be \( x \), and the ground field and the class field must be totally real. When the base field is \( Q \), the vastly simpler \texttt{galoissubcyclo} is used instead. Here is an example:

```plaintext
bnf = bnfinit(y^2 - 3);
bnr = bnrinit(bnf, 5);
bnrstark(bnr)
```

returns the ray class field of \( Q(\sqrt{3}) \) modulo 5. Usually, one wants to apply to the result one of

\texttt{rnfpolredbest(bnf, pol) /\ compute a reduced relative polynomial}
\texttt{rnfpolredbest(bnf, pol, 2) /\ compute a reduced absolute polynomial}
The routine uses Stark units and needs to find a suitable auxiliary conductor, which may not exist when the class field is not cyclic over the base. In this case `bnrstark` is allowed to return a vector of polynomials defining *independent* relative extensions, whose compositum is the requested class field. We decided that it was useful to keep the extra information thus made available, hence the user has to take the compositum herself, see `nfcompositum`.

Even if it exists, the auxiliary conductor may be so large that later computations become unfeasible. (And of course, Stark's conjecture may simply be wrong.) In case of difficulties, try `bnrclassfield`:

```
? bnr = bnrinit(bnfinit(y^8-12*y^6+36*y^4-36*y^2+9,1), 2);
? bnrstark(bnr)
*** at top-level: bnrstark(bnr)
*** ^-------------
*** bnrstark: need 3913935089720744 coefficients in initzeta.
*** Computation impossible.
? bnrclassfield(bnr)
time = 20 ms.
%2 = [x^2 + (-2/3*y^6 + 7*y^4 - 14*y^2 + 3)]
```

call(A)

$A = [a_1, ..., a_n]$ being a vector and $f$ being a function, returns the evaluation of $f(a_1, ..., a_n)$. $f$ can also be the name of a built-in GP function. If $\# A = 1$, `call(f, A) = apply(f, A)[1]`. If $f$ is variadic, the variadic arguments must grouped in a vector in the last component of $A$.

This function is useful

• when writing a variadic function, to call another one:

```
ffprintf(file, format, args[..]) = write(file, call(strprintf, [format, args]))
```

• when dealing with function arguments with unspecified arity

The function below implements a global memoization interface:

```gp
memo=Map();
memoize(f,A[..])=
{
 my(res);
 if(!mapisdefined(memo, [f,A], &res),
 res = call(f,A);
 mapput(memo,[f,A],res));
 res;
}
```

for example:

```
? memoize(factor,2^128+1)
%3 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 76 ms.
? memoize(factor,2^128+1)
%4 = [59649589127497217,1;5704689200685129054721,1]
? ##
*** last result computed in 0 ms.
? memoize(ffinit,3,3)
%5 = Mod(1,3)*x^3+Mod(1,3)*x^2+Mod(1,3)*x+Mod(2,3)
```

(continues on next page)
? fibo(n)=if(n==0,0,n==1,1,memoize(fibo,n-2)+memoize(fibo,n-1));
? fibo(100)
%7 = 354224848179261915075

• to call operators through their internal names without using alias

matnbelts(M) = call("_*_",matsize(M))

ceil()
Ceiling of $x$. When $x$ is in $\mathbb{R}$, the result is the smallest integer greater than or equal to $x$. Applied to a rational function, $\text{ceil}(x)$ returns the Euclidean quotient of the numerator by the denominator.

centerlift(v)
Same as $\text{lift}$, except that $\text{t_INTMOD}$ and $\text{t_PADIC}$ components are lifted using centered residues:

- for a $\text{t_INTMOD}$ $x \in \mathbb{Z}/n\mathbb{Z}$, the lift $y$ is such that $-n/2 < y \leq n/2$.
- a $\text{t_PADIC}$ $x$ is lifted in the same way as above (modulo $p^{\text{padicprec}(x)}$) if its valuation $v$ is nonnegative; if not, returns the fraction $p^v \text{centerlift}(x p^{-v})$; in particular, rational reconstruction is not attempted. Use $\text{bestappr}$ for this.

For backward compatibility, $\text{centerlift}(x, 'v)$ is allowed as an alias for $\text{lift}(x, 'v)$.

characteristic()
Returns the characteristic of the base ring over which $x$ is defined (as defined by $\text{t_INTMOD}$ and $\text{t_FFELT}$ components). The function raises an exception if incompatible primes arise from $\text{t_FFELT}$ and $\text{t_PADIC}$ components.

? characteristic(Mod(1,24)*x + Mod(1,18)*y)
%1 = 6

charconj(chi)
Let cyc represent a finite abelian group by its elementary divisors, i.e. $(d_j)$ represents $\sum_{j=1}^{k} \mathbb{Z}/d_j \mathbb{Z}$ with $d_k | ... | d_1$; any object which has a .cyc method is also allowed, e.g. the output of $\text{znstar}$ or $\text{bnrinit}$. A character on this group is given by a row vector $\chi = [a_1, ..., a_n]$ such that $\chi(\prod g_j^{a_j}) = \exp(2\pi i \sum a_j n_j / d_j)$, where $g_j$ denotes the generator (of order $d_j$) of the $j$-th cyclic component.

This function returns the conjugate character.

? cyc = [15,5]; chi = [1,1];
? charconj(cyc, chi)
%2 = [14, 4]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? charconj(bnf, [1])
%5 = [2]

For Dirichlet characters (when cyc is $\text{znstar}(q,1)$), characters in Conrey representation are available, see $\text{dirichletchar}$ (in the PARI manual) or ??character:

? G = znstar(8, 1); \ \ \ (\mathbb{Z}/8\mathbb{Z})^*
? charorder(G, 3) \ \ \ \ \text{Conrey label}
%2 = 2
? chi = znconreylog(G, 3);

(continues on next page)
? charorder(G, chi) \ Conrey logarithm
%4 = 2

chardiv(a, b)
Let cyc represent a finite abelian group by its elementary divisors, i.e. \((d_j)\) represents \(\sum_{j \leq k} \mathbb{Z}/d_j\mathbb{Z}\) with \(d_k | \ldots | d_1\); any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrint. A character on this group is given by a row vector \(\mathbf{a} = [a_1, \ldots, a_n]\) such that \(\chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j / d_j)\), where \(g_j\) denotes the generator (of order \(d_j\)) of the \(j\)-th cyclic component.

Given two characters \(a\) and \(b\), return the character \(a/b = ab\).

? cyc = [15, 5]; a = [1, 1]; b = [2, 4];
? chardiv(cyc, a,b)
%2 = [14, 2]
? bnf = bnfinit(x^2+23);
? bnf.cyc
%4 = [3]
? chardiv(bnf, [1], [2])
%5 = [2]

For Dirichlet characters on \((\mathbb{Z}/N\mathbb{Z})^*\), additional representations are available (Conrey labels, Conrey logarithm), see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, the result is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);
? G.cyc
%2 = [20, 2]
? a = [10, 1]; \ Conrey label;
? b = 7; \ Conrey label;
? c = znconreylog(G, 11); \ Conrey log
? chardiv(G, b,b)
%6 = 1 \ Conrey label
? chardiv(G, a,b)
? chardiv(G, a,c)
? chardiv(G, a,c)
%7 = [0, 14]~ \ Conrey log

chareval(chi, x, z)
Let \(G\) be an abelian group structure affording a discrete logarithm method, e.g. \(G = \text{znstar}(N, 1)\) for \((\mathbb{Z}/N\mathbb{Z})^*\) or a bnr structure, let \(x\) be an element of \(G\) and let \(chi\) be a character of \(G\) (see the note below for details). This function returns the value of \(chi\) at \(x\).

Note on characters. Let \(K\) be some field. If \(G\) is an abelian group, let \(\chi : G \to K^*\) be a character of finite order and let \(o\) be a multiple of the character order such that \(\chi(n) = \zeta^{c(n)}\) for some fixed \(\zeta \in K^*\) of multiplicative order \(o\) and a unique morphism \(c : G \to (\mathbb{Z}/o\mathbb{Z}, +)\). Our usual convention is to write

\[ G = (\mathbb{Z}/o_1\mathbb{Z})g_1 \oplus \ldots \oplus (\mathbb{Z}/o_d\mathbb{Z})g_d \]

for some generators \((g_i)\) of respective order \(d_i\), where the group has exponent \(o := \text{lcm}_i o_i\). Since \(\zeta^o = 1\), the vector \((c_i)\) in \(\prod (\mathbb{Z}/o_i\mathbb{Z})\) defines a character \(\chi\) on \(G\) via \(\chi(g_i) = \zeta^{c_i(o_i)}\) for all \(i\). Classical Dirichlet characters have values in \(K = \mathbb{C}\) and we can take \(\zeta = \exp(2i\pi / o)\).

Note on Dirichlet characters. In the special case where \(bid\) is attached to \(G = (\mathbb{Z}/q\mathbb{Z})^*\) (as per \(G = \text{znstar}(q, 1)\)), the Dirichlet character \(chi\) can be written in one of the usual 3 formats: a t_VEC in terms of \text{bid}.gen as...
above, a \texttt{t\_COL} in terms of the Conrey generators, or a \texttt{t\_INT} (Conrey label); see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

The character value is encoded as follows, depending on the optional argument \( z \):

- If \( z \) is omitted: return the rational number \( c(x)/o \) for \( x \) coprime to \( q \), where we normalize \( 0 \leq c(x) < o \). If \( x \) can not be mapped to the group (e.g. \( x \) is not coprime to the conductor of a Dirichlet or Hecke character) we return the sentinel value \(-1\).
- If \( x \) cannot be mapped to the group (e.g. \( x \) is not coprime to the conductor of a Dirichlet or Hecke character) we return the sentinel value \(-1\).
- If \( z \) is an integer \( o \), then we assume that \( o \) is a multiple of the character order and we return the integer \( c(x) \) when \( x \) belongs to the group, and the sentinel value \(-1\) otherwise.
- \( z \) can be of the form \([\zeta, o]\), where \( \zeta \) is an \( o \)-th root of \( 1 \) and \( o \) is a multiple of the character order. We return \( \zeta^{c(x)} \) if \( x \) belongs to the group, and the sentinel value \( 0 \) otherwise. (Note that this coincides with the usual extension of Dirichlet characters to \( \mathbb{Z} \), or of Hecke characters to general ideals.)
- Finally, \( z \) can be of the form \([v\zeta, o]\), where \( v\zeta \) is a vector of powers \( \zeta^0, ..., \zeta^{o-1} \) of some \( o \)-th root of \( 1 \) and \( o \) is a multiple of the character order. As above, we return \( \zeta^{c(x)} \) after a table lookup. Or the sentinel value \( 0 \).

\texttt{chargalois(ORD)}

Let \texttt{cyc} represent a finite abelian group by its elementary divisors (any object which has a \texttt{.cyc} method is also allowed, i.e. the output of \texttt{znstar} or \texttt{bnrinit}). Return a list of representatives for the Galois orbits of complex characters of \( G \). If \texttt{ORD} is present, select characters depending on their orders:

- if \texttt{ORD} is a \texttt{t\_INT}, restrict to orders less than this bound;
- if \texttt{ORD} is a \texttt{t\_VEC} or \texttt{t\_VECSMALL}, restrict to orders in the list.

```plaintext
? G = znstar(96);
? #chargalois(G) \ 16 orbits of characters mod 96
%2 = 16
? #chargalois(G,4) \ order less than 4
%3 = 12
? chargalois(G,[1,4]) \ order 1 or 4; 5 orbits
%4 = [[0, 0, 0], [2, 0, 0], [2, 1, 0], [2, 0, 1], [2, 1, 1]]
```

Given a character \( \chi \), of order \( n \) (\texttt{charorder(G, chi)}), the elements in its orbit are the \( \phi(n) \) characters \( \chi^i, (i, n) = 1 \).

\texttt{charker(Chi)}

Let \texttt{cyc} represent a finite abelian group by its elementary divisors, i.e. \( (d_j) \) represents \( \sum_{j \leq k} \mathbb{Z}/d_j\mathbb{Z} \) with \( d_k|...|d_1 \); any object which has a \texttt{.cyc} method is also allowed, e.g. the output of \texttt{znstar} or \texttt{bnrinit}. A character on this group is given by a row vector \( \chi = [a_1, ..., a_n] \) such that \( \chi\left(\prod g_j^{n_j}\right) = \exp(2\pi i \sum a_j n_j / d_j) \), where \( g_j \) denotes the generator (of order \( d_j \)) of the \( j \)-th cyclic component.

This function returns the kernel of \( \chi \), as a matrix \( K \) in HNF which is a left-divisor of \texttt{matdiagonal(d)}. Its columns express in terms of the \( g_j \) the generators of the subgroup. The determinant of \( K \) is the kernel index.

```plaintext
? cyc = [15,5]; chi = [1,1];
? charker(cyc, chi)
%2 = [15 12] [[0 1]]
? bnf = bnfinit(x^4+23);
? bnf.cyc
```

(continues on next page)
Note that for Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see dirichletchar (in the PARI manual) or ??character.

? G = znstar(8, 1); \ \ (Z/8Z)^*  
? charker(G, 1) \ \ Conrey label for trivial character  
%2 =  
[1 0]  
[0 1]

charmul(a, b)  
Let cyc represent a finite abelian group by its elementary divisors, i.e. \( (d_j) \) represents \( \sum_{j<k} \mathbb{Z}/d_j\mathbb{Z} \) with \( d_k \ldots \ldots d_1 \); any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector \( a = [a_1, \ldots, a_n] \) such that \( \chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j/d_j) \), where \( g_j \) denotes the generator (of order \( d_j \)) of the \( j \)-th cyclic component.

Given two characters \( a \) and \( b \), return the product character \( ab \).

? cyc = [15,5]; a = [1,1]; b = [2,4];  
? charmul(cyc, a,b)  
%2 = [3, 0]  
? bnf = bnfinit(x^2+23);  
? bnf.cyc  
%4 = [3]  
? charmul(bnf, [1], [2])  
%5 = [0]

For Dirichlet characters on \((\mathbb{Z}/N\mathbb{Z})^*\), additional representations are available (Conrey labels, Conrey logarithm), see dirichletchar (in the PARI manual) or ??character. If the two characters are in the same format, their product is given in the same format, otherwise a Conrey logarithm is used.

? G = znstar(100, 1);  
? G.cyc  
%2 = [20, 2]  
? a = [10, 1]; \ \ usual representation for characters  
? b = 7; \ \ Conrey label;  
? c = znconreylog(G, 11); \ \ Conrey log  
? charmul(G, b,b)  
%6 = 49 \ \ Conrey label  
? charmul(G, a,b)  
%7 = [0, 15]~ \ \ Conrey log  
? charmul(G, a,c)  
%7 = [0, 6]~ \ \ Conrey log

charorder(chi)  
Let cyc represent a finite abelian group by its elementary divisors, i.e. \( (d_j) \) represents \( \sum_{j<k} \mathbb{Z}/d_j\mathbb{Z} \) with \( d_k \ldots \ldots d_1 \); any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector \( \chi = [a_1, \ldots, a_n] \) such that \( \chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j/d_j) \), where \( g_j \) denotes the generator (of order \( d_j \)) of the \( j \)-th cyclic component.
This function returns the order of the character chi.

```plaintext
\% cyc = [15,5]; chi = [1,1];
\% charorder(cyc, chi)
\%2 = 15
\% bnf = bnfinit(x^2+23);
\% bnf.cyc
\%4 = [3]
\% charorder(bnf, [1])
\%5 = 3
```

For Dirichlet characters (when cyc is znstar(q, 1)), characters in Conrey representation are available, see `dirichletchar` (in the PARI manual) or ??character:

```plaintext
\% G = znstar(100, 1); \% (Z/100Z)^*
\% charorder(G, 7) \% Conrey label
\%2 = 4
```

`charpoly(v, flag)`

characteristic polynomial of $A$ with respect to the variable $v$, i.e. determinant of $v*I - A$ if $A$ is a square matrix.

```plaintext
\% charpoly([1,2;3,4]);
\%1 = x^2 - 5*x - 2
\% charpoly([1,2;3,4], 't')
\%2 = t^2 - 5*t - 2
```

If $A$ is not a square matrix, the function returns the characteristic polynomial of the map “multiplication by $A$” if $A$ is a scalar:

```plaintext
\% charpoly(Mod(x+2, x^3-2))
\%1 = x^3 - 6*x^2 + 12*x - 10
\% charpoly(1)
\%2 = x^2 + 1
\% charpoly(quadgen(5))
\%3 = x^2 - x - 1
\% charpoly(ffgen(ffinit(2,4)))
\%4 = Mod(1, 2)*x^4 + Mod(1, 2)*x^3 + Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2)
```

The value of `flag` is only significant for matrices, and we advise to stick to the default value. Let $n$ be the dimension of $A$.

If `flag = 0`, same method (Le Verrier’s) as for computing the adjoint matrix, i.e. using the traces of the powers of $A$. Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.

If `flag = 1`, uses Lagrange interpolation which is usually the slowest method. Assumes that $n!$ is invertible; uses $O(n^4)$ scalar operations.

If `flag = 2`, uses the Hessenberg form. Assumes that the base ring is a field. Uses $O(n^3)$ scalar operations, but suffers from coefficient explosion unless the base field is finite or $\mathbb{R}$.

If `flag = 3`, uses Berkowitz’s division free algorithm, valid over any ring (commutative, with unit). Uses $O(n^4)$ scalar operations.

If `flag = 4`, $x$ must be integral. Uses a modular algorithm: Hessenberg form for various small primes, then Chinese remainders.

If `flag = 5` (default), uses the “best” method given $x$. This means we use Berkowitz unless the base ring is $\mathbb{Z}$ (use `flag = 4`) or a field where coefficient explosion does not occur, e.g. a finite field or the reals (use `flag = 2`).
charpow\((a, n)\)
Let \(cyc\) represent a finite abelian group by its elementary divisors, i.e. \((d_j)\) represents \(\sum_{j<k} \mathbb{Z}/d_j\mathbb{Z}\) with \(d_k|...|d_1\); any object which has a .cyc method is also allowed, e.g. the output of znstar or bnrinit. A character on this group is given by a row vector \(a = [a_1, ..., a_n]\) such that \(\chi(\prod g_j^{n_j}) = \exp(2\pi i \sum a_j n_j / d_j)\), where \(g_j\) denotes the generator (of order \(d_j\)) of the \(j\)-th cyclic component.

Given \(n \in \mathbb{Z}\) and a character \(a\), return the character \(a^n\).

For Dirichlet characters on \((\mathbb{Z}/N\mathbb{Z})^*\), additional representations are available (Conrey labels, Conrey logarithm), see dirichletchar (in the PARI manual) or ??character and the output uses the same format as the input.

cinese\((y)\)
If \(x\) and \(y\) are both intmods or both polmods, creates (with the same type) a \(z\) in the same residue class as \(x\) and in the same residue class as \(y\), if it is possible.

For polynomial arguments in the same variable, the function is applied to each coefficient; if the polynomials have different degrees, the high degree terms are copied verbatim in the result, as if the missing high degree terms in the polynomial of lowest degree had been \(\text{Mod}(0,1)\). Since the latter behavior is usually not the desired one, we propose to convert the polynomials to vectors of the same length first:
If \( y \) is omitted, and \( x \) is a vector, \texttt{chinese} is applied recursively to the components of \( x \), yielding a residue belonging to the same class as all components of \( x \).

Finally \texttt{chinese}(\( x, x \)) = \( x \) regardless of the type of \( x \); this allows vector arguments to contain other data, so long as they are identical in both vectors.

\texttt{cmp}(y)

Gives the result of a comparison between arbitrary objects \( x \) and \( y \) (as \( -1, 0 \) or \( 1 \)). The underlying order relation is transitive, the function returns 0 if and only if \( x \ == \ y \). It has no mathematical meaning but satisfies the following properties when comparing entries of the same type:

- two \texttt{t\_INT} s compare as usual (i.e. \texttt{cmp}(\( x, y \)) < 0 if and only if \( x < y \));
- two \texttt{t\_VECSMALL} s of the same length compare lexicographically;
- two \texttt{t\_STR} s compare lexicographically.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For example:

\begin{verbatim}
? cmp(1, 2)
%1 = -1
? cmp(2, 1)
%2 = 1
? cmp(1, 1.) \// note that 1 == 1.0, but (1==1.0) is false.
%3 = -1
? cmp(x + Pi, [])
%4 = -1
\end{verbatim}

This function is mostly useful to handle sorted lists or vectors of arbitrary objects. For instance, if \( v \) is a vector, the construction \texttt{vecsor}(\texttt{v, cmp}) is equivalent to \texttt{Set}(\texttt{v}).

\texttt{component}(n)

Extracts the \( n - \text{th} \)-component of \( x \). This is to be understood as follows: every PARI type has one or two initial code words. The components are counted, starting at 1, after these code words. In particular if \( x \) is a vector, this is indeed the \( n - \text{th} \)-component of \( x \), if \( x \) is a matrix, the \( n - \text{th} \) column, if \( x \) is a polynomial, the \( n - \text{th} \) coefficient (i.e. of degree \( n - 1 \)), and for power series, the \( n - \text{th} \) significant coefficient.

For polynomials and power series, one should rather use \texttt{polcoeff}, and for vectors and matrices, the \[ \] operator. Namely, if \( x \) is a vector, then \texttt{x[n]} represents the \( n - \text{th} \) component of \( x \). If \( x \) is a matrix, \texttt{x[m,n]} represents the coefficient of row \( m \) and column \( n \) of the matrix, \texttt{X[m,]} represents the \( m - \text{th} \) row of \( x \), and \texttt{x[,]} represents the \( n - \text{th} \) column of \( x \).

Using of this function requires detailed knowledge of the structure of the different PARI types, and thus it should almost never be used directly. Some useful exceptions:
concat(...)  
Concatenation of \( x \) and \( y \). If \( x \) or \( y \) is not a vector or matrix, it is considered as a one-dimensional vector. All types are allowed for \( x \) and \( y \), but the sizes must be compatible. Note that matrices are concatenated horizontally, i.e. the number of rows stays the same. Using transpositions, one can concatenate them vertically, but it is often simpler to use `matconcat`.

```pari
def x = matid(2); y = 2*matid(2);
def concat(x, y)
def %2 =
[1 0 2 0]
[0 1 0 2]
def concat(x~, y~)
def %3 =
[1 0]
[0 1]
[2 0]
[0 2]
def matconcat([x; y])
def %4 =
[1 0]
[0 1]
[2 0]
[0 2]
```
Concatenating a row vector to a matrix having the same number of columns will add the row to the matrix (top row if the vector is \(x\), i.e. comes first, and bottom row otherwise).

The empty matrix \([;]\) is considered to have a number of rows compatible with any operation, in particular concatenation. (Note that this is not the case for empty vectors \([\ ]\) or \([\ ]~\).)

If \(y\) is omitted, \(x\) has to be a row vector or a list, in which case its elements are concatenated, from left to right, using the above rules.

```pari
c? concat([1,2], [3,4]) %1 = [1, 2, 3, 4]
c? a = [[1,2]~, [3,4]~]; concat(a) %2 =
[1 3]
[2 4]
c? concat([1,2; 3,4], [5,6]~) %3 =
[1 2 5]
[3 4 6]
c? concat(%[, [7,8]~, [1,2,3,4]]) %5 =
[1 2 5 7]
[3 4 6 8]
[1 2 3 4]
```

**conj()**

Conjugate of \(x\). The meaning of this is clear, except that for real quadratic numbers, it means conjugation in the real quadratic field. This function has no effect on integers, reals, intmods, fractions or \(p\)-adics. The only forbidden type is polmod (see *conjvec* for this).

**conjvec** (**precision**)

Conjugate vector representation of \(z\). If \(z\) is a polmod, equal to \(\text{Mod}(a, T)\), this gives a vector of length \(\text{degree}(T)\) containing:

- the complex embeddings of \(z\) if \(T\) has rational coefficients, i.e. the \(a(r[i])\) where \(r = \text{polroots}(T)\);
- the conjugates of \(z\) if \(T\) has some intmod coefficients;

If \(z\) is a finite field element, the result is the vector of conjugates \([z, z^p, z^{p^2}, ..., z^{p^{n-1}}]\) where \(n = \text{degree}(T)\).

If \(z\) is an integer or a rational number, the result is \(z\). If \(z\) is a (row or column) vector, the result is a matrix whose columns are the conjugate vectors of the individual elements of \(z\).

**content** (**D**)

Computes the gcd of all the coefficients of \(x\), when this gcd makes sense. This is the natural definition if \(x\) is a polynomial (and by extension a power series) or a vector/matrix. This is in general a weaker notion than the *ideal* generated by the coefficients:
If \( x \) is a scalar, this simply returns the absolute value of \( x \) if \( x \) is rational (\texttt{t\_INT} or \texttt{t\_FRAC}), and either 1 (inexact input) or \( x \) (exact input) otherwise; the result should be identical to \( \gcd(x, 0) \).

The content of a rational function is the ratio of the contents of the numerator and the denominator. In recursive structures, if a matrix or vector coefficient \( x \) appears, the \( \gcd \) is taken not with \( x \), but with its content:

```plaintext
? content([[2], 4*matid(3)])
%1 = 2
```

The content of a \texttt{t\_VECSMALL} is computed assuming the entries are signed integers.

The optional argument \( D \) allows to control over which ring we compute and get a more predictable behaviour:

- 1: we only consider the underlying \( \mathbb{Q} \)-structure and the denominator is a (positive) rational number
- a simple variable, say 'x: all entries are considered as rational functions in \( K(x) \) for some field \( K \) and the content is an element of \( K \).

```plaintext
? f = x + 1/y + 1/2;
? content(f) \ \ as \ a \ t_POL \ in \ x
%2 = 1/(2*y)
? content(f, 1) \ \ Q-content
%3 = 1/2
? content(f, y) \ \ as \ a \ rational \ function \ in \ y
%4 = 1/2
? g = x^2*y + y^2*x;
? content(g, x)
%6 = y
? content(g, y)
%7 = x
```

\texttt{contfrac}(b, nmax)

Returns the row vector whose components are the partial quotients of the continued fraction expansion of \( x \). In other words, a result \([a_0, ..., a_n]\) means that \( x = a_0 + 1/(a_1 + ... + 1/a_n) \). The output is normalized so that \( a_n! = 1 \) (unless we also have \( n = 0 \)).

The number of partial quotients \( n + 1 \) is limited by \( n\text{max} \). If \( n\text{max} \) is omitted, the expansion stops at the last significant partial quotient.

```plaintext
? \p19
realprecision = 19 significant digits
? contfrac(Pi)
%1 = [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 2, 1, 1, 2, 2]
? contfrac(Pi,, 3) \ \ n = 2
%2 = [3, 7, 15]
```

\( x \) can also be a rational function or a power series.

If a vector \( b \) is supplied, the numerators are equal to the coefficients of \( b \), instead of all equal to 1 as above; more precisely, \( x(1/b_0)(a_0 + b_1/(a_1 + ... + b_n/a_n)) \); for a numerical continued fraction (\( x \) real), the \( a_i \) are integers, as large as possible; if \( x \) is a rational function, they are polynomials with \( \deg a_i = \deg b_i + 1 \). The length of the result is then equal to the length of \( b \), unless the next partial quotient cannot be reliably computed, in which case the expansion stops. This happens when a partial remainder is equal to zero (or too small compared to the available significant digits for \( x \) a \texttt{t\_REAL}.

488 Chapter 2. The Gen class wrapping PARI’s GEN type
A direct implementation of the numerical continued fraction \( \text{contfrac}(x, b) \) described above would be

```plaintext
// "greedy" generalized continued fraction
cf(x, b) = { my(a = vector(#b), t);
 x *= b[1];
 for (i = 1, #b, a[i] = floor(x);
 t = x - a[i]; if (!t || i == #b, break);
 x = b[i+1] / t;
); a; }
```

There is some degree of freedom when choosing the \( a_i \); the program above can easily be modified to derive variants of the standard algorithm. In the same vein, although no built-in function implements the related Engel expansion (a special kind of Egyptian fraction decomposition: \( x = 1/a_1 + 1/(a_1a_2) + \ldots \)), it can be obtained as follows:

```plaintext
// n terms of the Engel expansion of x
engel(x, n = 10) = { my(u = x, a = vector(n));
 for (k = 1, n, a[k] = ceil(1/u);
 u = u*a[k] - 1;
 if (!u, break);
); a }
```

**Obsolete hack.** (don’t use this): if \( b \) is an integer, \( nmax \) is ignored and the command is understood as \( \text{contfrac}(:math:`x, b`) \).

\( \text{contfraceval}(t, \text{lim}) \)

Given a continued fraction \( \text{CF} \) output by \( \text{contfracinit} \), evaluate the first \( \text{lim} \) terms of the continued fraction at \( t \) (all terms if \( \text{lim} \) is negative or omitted; if positive, \( \text{lim} \) must be less than or equal to the length of \( \text{CF} \).

\( \text{contfracinit}(\text{lim}) \)

Given \( M \) representing the power series \( S = \sum_{n \geq 0} M[n + 1]z^n \), transform it into a continued fraction in Euler form, using the quotient-difference algorithm; restrict to \( n <= \text{lim} \) if latter is nonnegative. \( M \) can be a vector, a power series, a polynomial; if the limiting parameter \( \text{lim} \) is present, a rational function is also allowed (and converted to a power series of that accuracy).


\( \text{contfracpnqn}(n) \)

When \( x \) is a vector or a one-row matrix, \( x \) is considered as the list of partial quotients \([a_0, a_1, \ldots, a_n]\) of a rational number, and the result is the 2 by 2 matrix \([p_n, p_{n-1}; q_n, q_{n-1}]\) in the standard notation of continued fractions, so \( p_n/q_n = a_0 + 1/(a_1 + \ldots + 1/a_n) \). If \( x \) is a matrix with two rows \([b_0, b_1, \ldots, b_n]\) and \([a_0, a_1, \ldots, a_n]\), this is then considered as a generalized continued fraction and we have similarly \( p_n/q_n = (1/b_0)(a_0 + b_1/(a_1 + \ldots + b_n/a_n)) \). Note that in this case one usually has \( b_0 = 1 \).

If \( n >= 0 \) is present, returns all convergents from \( p_0/q_0 \) up to \( p_n/q_n \). (All convergents if \( x \) is too small to compute the \( n + 1 \) requested convergents.)
? a = contfrac(Pi,10)
%1 = [3, 7, 15, 1, 292, 1, 1, 3]
? allpnqn(x) = contfracpnqn(x,#x) \ all convergents
? allpnqn(a)
%3 =
[3 22 333 355 103993 104348 208341 312689 1146408]

[1 7 106 113 33102 33215 66317 99532 364913]
? contfracpnqn(a) \ last two convergents
%4 =
[364913 99532]

[1146408 312689]
? contfracpnqn(a,3) \ first three convergents
%5 =
[3 22 333 355]

[1 7 106 113]

core(flag)

If \( n \) is an integer written as \( n = df^2 \) with \( d \) squarefree, returns \( d \). If \( flag \) is nonzero, returns the two-element row vector \([d, f] \). By convention, we write \( 0 = 0x1^2 \), so \( \text{core}(0, 1) \) returns \([0, 1] \).

coredisc(flag)

A fundamental discriminant is an integer of the form \( t = 1 \mod 4 \) or \( 4t = 8, 12 \mod 16 \), with \( t \) squarefree (i.e. 1 or the discriminant of a quadratic number field). Given a nonzero integer \( n \), this routine returns the (unique) fundamental discriminant \( d \) such that \( n = df^2 \), \( f \) a positive rational number. If \( flag \) is nonzero, returns the two-element row vector \([d, f] \). If \( n \) is congruent to 0 or 1 modulo 4, \( f \) is an integer, and a half-integer otherwise.

By convention, \( \text{coredisc}(0, 1) \) returns \([0, 1] \).

Note that \( \text{quaddisc}(n) \) returns the same value as \( \text{coredisc}(n) \), and also works with rational inputs \( n \in \mathbb{Q}^* \).

cos(precision)

Cosine of \( x \). Note that, for real \( x \), cosine and sine can be obtained simultaneously as

\[
\text{cs}(x) = \text{my}(z = \exp(I^x)); [\text{real}(z), \text{imag}(z)];
\]

and for general complex \( x \) as

\[
\text{cs2}(x) = \text{my}(z = \exp(I^x), u = 1/z); [(z+u)/2, (z-u)/2];
\]

Note that the latter function suffers from catastrophic cancellation when \( z^2 \ 1 \).

cosh(precision)

Hyperbolic cosine of \( x \).

cotan(precision)

Cotangent of \( x \).

cotanh(precision)

Hyperbolic cotangent of \( x \).
denominator($D$)

Denominator of $f$. The meaning of this is clear when $f$ is a rational number or function. If $f$ is an integer or a polynomial, it is treated as a rational number or function, respectively, and the result is equal to 1. For polynomials, you probably want to use

\[
\text{denominator( content(f) )}
\]

instead. As for modular objects, t\_INTMOD and t\_PADIC have denominator 1, and the denominator of a t\_POLMOD is the denominator of its lift.

If $f$ is a recursive structure, for instance a vector or matrix, the lcm of the denominators of its components (a common denominator) is computed. This also applies for t\_COMPLEX s and t\_QUAD s.

**Warning.** Multivariate objects are created according to variable priorities, with possibly surprising side effects ($x/y$ is a polynomial, but $y/x$ is a rational function). See priority (in the PARI manual).

The optional argument $D$ allows to control over which ring we compute the denominator and get a more predictable behaviour:

- 1: we only consider the underlying $\mathbb{Q}$-structure and the denominator is a (positive) rational integer
- a simple variable, say 'x: all entries as rational functions in $K(x)$ and the denominator is a polynomial in $x$.

```plaintext
? f = x + 1/y + 1/2;
? denominator(f) \ \text{a t_POL in x}
%2 = 1
? denominator(f, 1) \ \text{Q-denominator}
%3 = 2
? denominator(f, x) \ \text{as a t_POL in x, seen above}
%4 = 1
? denominator(f, y) \ \text{as a rational function in y}
%5 = 2*y
```

deriv($v$)

Derivative of $x$ with respect to the main variable if $v$ is omitted, and with respect to $v$ otherwise. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use $x'$ as a shortcut if the derivative is with respect to the main variable of $x$; and also use $x''$, etc., for multiple derivatives although deriv is often preferrable.

By definition, the main variable of a t\_POLMOD is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of $R[\mathcal{X}]/(T(\mathcal{X}))$, the variable $\mathcal{X}$ is a mute variable and the derivative is taken with respect to the main variable used in the base ring $R$.

```plaintext
? f = (x/y)^5;
? deriv(f)
%2 = 5/y^5*x^4
? f'
%3 = 5/y^5*x^4
? deriv(f, 'x) \ \text{same since 'x is the main variable}
%4 = 5/y^5*x^4
? deriv(f, 'y)
%5 = -5/y^6*x^5
```

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing a numerical differentiation as per derivnum:
? f(x) = x^2;
? g = deriv(f)
? g(1)
  %3 = 2.0000000000000000000000000000000000000
? f(x) = sin(exp(x));
? deriv(f)(0)
  %5 = 0.54030230586813971740093660744297660373
? cos(1)
  %6 = 0.54030230586813971740093660744297660373

\text{derivn}(n, v)

The \( n \)-th derivative of \( x \) with respect to the main variable if \( v \) is omitted, and with respect to \( v \) otherwise; the integer
\( n \) must be nonnegative. The derivative of a scalar type is zero, and the derivative of a vector or matrix is done componentwise. One can use \( x', x'' \), etc., as a shortcut if the derivative is with respect to the main variable of \( x \).

By definition, the main variable of a \( \text{t}_\text{POLMOD} \) is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of \( R[X]/(T(X)) \), the variable \( X \) is a mute variable and the derivative is taken with respect to the main variable used in the base ring \( R \).

? f = (x/y)^5;
? derivn(f, 2)
  %2 = 20/y^5*x^3
? f''
  %3 = 20/y^5*x^3
? derivn(f, 2, 'x) \ \text{\textbackslash same since} \ 'x \ \text{is the main variable}
  %4 = 20/y^5*x^3
? derivn(f, 2, 'y)
  %5 = 30/y^7*x^5

This function also operates on closures, in which case the variable must be omitted. It returns a closure performing a numerical differentiation as per \text{derivnum}:

? f(x) = x^10;
? g = derivn(f, 5)
? g(1)
  %3 = 30240.0000000000000000000000000000000

? derivn(zeta, 2)(0)
  %4 = -2.0063564559085848512101000267299604382
? zeta'\( (0)\)
  %5 = -2.0063564559085848512101000267299604382

\text{diffop}(v, d, n)

Let \( v \) be a vector of variables, and \( d \) a vector of the same length, return the image of \( x \) by the \( n \)-power (1 if \( n \) is not given) of the differential operator \( D \) that assumes the value \( d[i] \) on the variable \( v[i] \). The value of \( D \) on a scalar type is zero, and \( D \) applies componentwise to a vector or matrix. When applied to a \( \text{t}_\text{POLMOD} \), if no value is provided for the variable of the modulus, such value is derived using the implicit function theorem.

\textbf{Examples.} This function can be used to differentiate formal expressions: if \( E = \exp(X^2) \) then we have \( E' = 2 * X * E \). We derivate \( X * \exp(X^2) \) as follows:

? diffop(E*X, [X,E],[1,2*X*E])
%1 = (2*X^2 + 1)*E
Let \( \text{Sin} \) and \( \text{Cos} \) be two function such that \( \text{Sin}^2 + \text{Cos}^2 = 1 \) and \( \text{Cos}' = -\text{Sin} \). We can differentiate \( \text{Sin}/\text{Cos} \) as follows, PARI inferring the value of \( \text{Sin}' \) from the equation:

\[
? \text{diffop(Mod('Sin'/Cos,'Sin^2+'Cos^2-1),['Cos],[-'Sin])}
%1 = \text{Mod}(1/\text{Cos}^2, \text{Sin}^2 + (\text{Cos}^2 - 1))
\]

Compute the Bell polynomials (both complete and partial) via the Faa di Bruno formula:

\[
\text{Bell}(k,n=-1) =
\{ \text{my}(x, v, dv, \text{var} = i->\text{eval(Str("X",i))});
\quad v = \text{vector}(k, i, \text{if}(i==1, 'E, \text{var}(i-1)));
\quad dv = \text{vector}(k, i, \text{if}(i==1, 'X*\text{var}(1)*'E, \text{var}(i)));
\quad x = \text{diffop('E,v,dv,k) / 'E};
\quad \text{if}(n < 0, \text{subst}(x, 'X,1), \text{polcoef}(x,n, 'X));\}
\]

digits(b)

Outputs the vector of the digits of \( |x| \) in base \( b \), where \( x \) and \( b \) are integers (\( b = 10 \) by default). For \( x > 1 \), the number of digits is \( \logint(x,b) + 1 \). See fromdigits for the reverse operation.

\[
? \text{digits}(1230)
%1 = [1, 2, 3, 0]
\]

\[
? \text{digits}(10, 2) \ \ \text{\textbackslash \textbackslash \ base \ 2}
%2 = [1, 0, 1, 0]
\]

By convention, 0 has no digits:

\[
? \text{digits}(0)
%3 = []
\]

dilog(precision)

Principal branch of the dilogarithm of \( x \), i.e. analytic continuation of the power series \( \log_2(x) = \sum_{n \geq 1} \frac{x^n}{n^2} \).

dirdiv(y)

\( x \) and \( y \) being vectors of perhaps different lengths but with \( y[1]! = 0 \) considered as Dirichlet series, computes the quotient of \( x \) by \( y \), again as a vector.

dirmul(y)

\( x \) and \( y \) being vectors of perhaps different lengths representing the Dirichlet series \( \sum_n \frac{x_n n^{-s}}{n^{-s}} \) and \( \sum_n y_n n^{-s} \), computes the product of \( x \) by \( y \), again as a vector.

\[
? \text{dirmul(vector(10,n,1), vector(10,n,moebius(n)))}
%1 = [1, 0, 0, 0, 0, 0, 0, 0, 0, 0]
\]

The product length is the minimum of \# \( x \times v(y) \) and \# \( y \times v(x) \), where \( v(x) \) is the index of the first nonzero coefficient.

\[
? \text{dirmul([0,1], [0,1])};
%2 = [0, 0, 0, 1]
\]

dirpowerssum(x, precision)

For positive integer \( n \) and complex number \( x \), return the sum \( 1^x + 2^x + ... + n^x \). This is the same as \( \text{vecsum(dirpowers(n,x))} \), but faster and using only \( O(\sqrt{n}) \) memory instead of \( O(n) \).
? dirpowers(5, 2)
%1 = [1, 4, 9, 16, 25]
? vecsum(%)
%2 = 55
? dirpowerssum(5, 2)
%3 = 55
? \p200
? dirpowerssum(10^7, 1/2 + I * sqrt(3));
time = 29,884 ms.
? vecsum(dirpowers(10^7, 1/2 + I * sqrt(3)))
time = 41,894 ms.

The penultimate command works with default stack size, the last one requires a stack size of at least 5GB.

When $n \leq 0$, the function returns 0.

dirzetak$(b)$

Gives as a vector the first $b$ coefficients of the Dedekind zeta function of the number field $nf$ considered as a Dirichlet series.

divisors$(flag)$

Creates a row vector whose components are the divisors of $x$. The factorization of $x$ (as output by \texttt{factor}) can be used instead. If $flag = 1$, return pairs $[d, factor(d)]$.

By definition, these divisors are the products of the irreducible factors of $n$, as produced by \texttt{factor(n)}, raised to appropriate powers (no negative exponent may occur in the factorization). If $n$ is an integer, they are the positive divisors, in increasing order.

? divisors(12)
%1 = [1, 2, 3, 4, 6, 12]
? divisors(12, 1) \ include their factorization
%2 = [[1, matrix(0,2)], [2, Mat([[2, 1]])], [3, Mat([3, 1])],
[4, Mat([[2, 2]])], [6, [2, 1; 3, 1]], [12, [2, 2; 3, 1]]]

? divisors(x^4 + 2*x^3 + x^2) \ also works for polynomials
%3 = [1, x, x^2, x + 1, x^2 + x, x^3 + x^2, x^2 + 2*x + 1,
\  x^3 + 2*x^2 + x, x^4 + 2*x^3 + x^2]

This function requires a lot of memory if $x$ has many divisors. The following idiom runs through all divisors using very little memory, in no particular order this time:

\begin{verbatim}
F = factor(x); P = F[,1]; E = F[,2];
forvec(e = vectorv(#E,i,[0,E[i]]), d = factorback(P,e); ...)
\end{verbatim}

If the factorization of $d$ is also desired, then $[P,e]$ almost provides it but not quite: $e$ may contain 0 exponents, which are not allowed in factorizations. These must be sieved out as in:

\begin{verbatim}
tofact(P,E) =
my(v = select(x->x, E, 1)); Mat([[vecextract(P,v), vecextract(E,v)])];
\end{verbatim}

? tofact([2,3,5,7]~, [4,0,2,0]~)
%4 = [2 4]
\[5 2\]
We can then run the above loop with `tofact(P, e)` instead of, or together with, `factorback`.

**divisorslenstra(r, s)**

Given three integers $N > s > r \geq 0$ such that $(r, s) = 1$ and $s^3 > N$, find all divisors $d$ of $N$ such that $d = r(\text{mod} s)$. There are at most 11 such divisors (Lenstra).

```plaintext
? N = 245784; r = 19; s = 65;
? divisorslenstra(N, r, s)
%2 = [19, 84, 539, 1254, 3724, 245784]
? [d | d <- divisors(N), d % s == r] \%3 = [19, 84, 539, 1254, 3724, 245784]
```

When the preconditions are not met, the result is undefined:

```plaintext
? N = 4484075232; r = 7; s = 1303; s^3 > N
%4 = 0
? divisorslenstra(N, r, s)
%5 = [7, 2613, 9128, 19552, 264516, 3407352, 344928864]
```

(Divisors were missing but $s^3 < N$.)

**divrem(y, v)**

Creates a column vector with two components, the first being the Euclidean quotient ($\div x y$), the second the Euclidean remainder ($\mod x y$), of the division of $x$ by $y$. This avoids the need to do two divisions if one needs both the quotient and the remainder. If $v$ is present, and $x$, $y$ are multivariate polynomials, divide with respect to the variable $v$.

Beware that `divrem(x, y)[2]` is in general not the same as `x % y`; no GP operator corresponds to it:

```plaintext
? divrem(1/2, 3)[2]
%1 = 1/2
? (1/2) % 3
%2 = 2
? divrem(Mod(2,9), 3)[2]
*** at top-level: divrem(Mod(2,9),3)[2
*** ^------------------------
*** forbidden division t_INTMOD \ t_INT.
? Mod(2,9) % 6
%3 = Mod(2,3)
```

**eint1(n, precision)**

Exponential integral $\int_{x}^{\infty} e^{-t} / t dt = \text{incgam}(0, x)$, where the latter expression extends the function definition from real $x > 0$ to all complex $x! = 0$.

If $n$ is present, we must have $x > 0$; the function returns the $n$-dimensional vector $[eint1(x), ..., eint1(nx)]$. Contrary to other transcendental functions, and to the default case ($n$ omitted), the values are correct up to a bounded absolute, rather than relative, error $10^{-n}$, where $n$ is `precision(x)` if $x$ is a t_REAL and defaults to `realprecision` otherwise. (In the most important application, to the computation of $L$-functions via approximate functional equations, those values appear as weights in long sums and small individual relative errors are less useful than controlling the absolute error.) This is faster than repeatedly calling `eint1(x)` but less precise.
ellE(\text{precision})

Complete elliptic integral of the second kind

\[ E(k) = \int_0^{\pi/2} (1 - k^2 \sin(t)^2)^{1/2} dt \]

for the complex parameter \( k \) using the agm.

eLLK(\text{precision})

Complete elliptic integral of the first kind

\[ K(k) = \int_0^{\pi/2} (1 - k^2 \sin(t)^2)^{-1/2} dt \]

for the complex parameter \( k \) using the agm.

eLL1(\text{r, precision})

Returns the value at \( s = 1 \) of the derivative of order \( r \) of the \( L \)-function of the elliptic curve \( E \).

\begin{verbatim}
? E = ellinit("11a1"); \ order of vanishing is 0
? ellL1(E)
%2 = 0.2538418608559106843377589233
? E = ellinit("389a1"); \ order of vanishing is 2
? ellL1(E)
%4 = -5.384067311837218089235032414 E-29
? ellL1(E, 1)
%5 = 0
? ellL1(E, 2)
%6 = 1.518633000576853540460385214
\end{verbatim}

The main use of this function, after computing at low accuracy the order of vanishing using ellanalyticrank, is to compute the leading term at high accuracy to check (or use) the Birch and Swinnerton-Dyer conjecture:

\begin{verbatim}
? \p18
  realprecision = 18 significant digits
? E = ellinit("5077a1"); ellanalyticrank(E)
time = 8 ms.
%1 = [3, 10.3910994007158041]
? \p200
  realprecision = 202 significant digits (200 digits displayed)
? ellL1(E, 3)
time = 104 ms.
%3 = 10.3910994007158041387518505103609170697263563756570092797[...]
\end{verbatim}

elladd(\(z_1, z_2\))

Sum of the points \( z_1 \) and \( z_2 \) on the elliptic curve corresponding to \( E \).

eLLak(\text{n})

Computes the coefficient \( a_n \) of the \( L \)-function of the elliptic curve \( E/\mathbb{Q} \), i.e. coefficients of a newform of weight 2 by the modularity theorem (Taniyama-Shimura-Weil conjecture). \( E \) must be an ell structure over \( \mathbb{Q} \) as output by ellinit. \( E \) must be given by an integral model, not necessarily minimal, although a minimal model will make the function faster.

\begin{verbatim}
? E = ellinit([[1,-1,0,4,3]]);
? ellak(E, 10)
\end{verbatim}
%2 = -3
? e = ellchangecurve(E, [1/5,0,0,0]); \ made not minimal at 5
? ellak(e, 10) \ wasteful but works
%3 = -3
? E = ellminimalmodel(e); \ now minimal
? ellak(E, 5)
%5 = -3

If the model is not minimal at a number of bad primes, then the function will be slower on those $n$ divisible by the bad primes. The speed should be comparable for other $n$:

? for(i=1,10^6, ellak(E,5))
time = 699 ms.
? for(i=1,10^6, ellak(e,5)) \ 5 is bad, markedly slower
time = 1,079 ms.
? for(i=1,10^5,ellak(E,5*i))
time = 1,477 ms.
? for(i=1,10^5,ellak(e,5*i)) \ still slower but not so much on average
time = 1,569 ms.

ellan($n$)
Computes the vector of the first $n$ Fourier coefficients $a_k$ corresponding to the elliptic curve $E$ defined over a number field. If $E$ is defined over $\mathbb{Q}$, the curve may be given by an arbitrary model, not necessarily minimal, although a minimal model will make the function faster. Over a more general number field, the model must be locally minimal at all primes above 2 and 3.

ellanalyticrank($eps$, precision)
Returns the order of vanishing at $s = 1$ of the $L$-function of the elliptic curve $E$ and the value of the first nonzero derivative. To determine this order, it is assumed that any value less than $eps$ is zero. If $eps$ is omitted, $2^{-b/2}$ is used, where $b$ is the current bit precision.

? E = ellinit("11a1"); \ rank 0
? ellanalyticrank(E)
%2 = [0, 0.2538418608559106843377589233]
? E = ellinit("37a1"); \ rank 1
? ellanalyticrank(E)
%4 = [1, 0.3059997738340523018204836835]
? E = ellinit("389a1"); \ rank 2
? ellanalyticrank(E)
%6 = [2, 1.518633000576853540460358214]
? E = ellinit("5077a1"); \ rank 3
? ellanalyticrank(E)
%8 = [3, 10.39109940071580413875185035]

ellap($p$)
Let $E$ be an ell structure as output by ellinit, attached to an elliptic curve $E/K$. If the field $K = \mathbb{F}_q$ is finite, return the trace of Frobenius $t$, defined by the equation $#E(\mathbb{F}_q) = q + 1 - t$.

For other fields of definition and $p$ defining a finite residue field $\mathbb{F}_q$, return the trace of Frobenius for the reduction of $E$: the argument $p$ is best left omitted if $K = \mathbb{Q}_p$ (else we must have $p = p$) and must be a prime number ($K = \mathbb{Q}$) or prime ideal ($K$ a general number field) with residue field $\mathbb{F}_q$ otherwise. The equation need not be minimal or even integral at $p$; of course, a minimal model will be more efficient.
For a number field $K$, the trace of Frobenius is the $a_p$ coefficient in the Euler product defining the curve $L$-series, whence the function name:

$$L(E/K, s) = \prod_{badp} (1 - a_p(Np)^{-s})^{-1} \prod_{goodp} (1 - a_p(Np)^{-s} + (Np)^{1-2s})^{-1}.$$ 

When the characteristic of the finite field is large, the availability of the seadata package will speed up the computation.

```plaintext
? E = ellinit([0,1]); \ \ y^2 = x^3 + 0.x + 1, defined over Q
? ellap(E, 7) \ \ 7 necessary here
%2 = -4 \ \ #E(F_7) = 7+1-(-4) = 12
? ellcard(E, 7)
%3 = 12 \ \ OK

? E = ellinit([0,1], 11); \ \ defined over F_11
? ellap(E) \ \ no need to repeat 11
%4 = 0
? ellap(E, 11) \ \ ... but it also works
%5 = 0
? ellgroup(E, 13) \ \ ouch, inconsistent input!
*** at top-level: ellap(E,13)
*** ^-----------
*** ellap: inconsistent moduli in Rg_to_Fp:
11
13
? a = ffgen(ffinit(11,3), 'a); \ \ defines F_q := F_{11^3}
? E = ellinit([1+a,a]); \ \ y^2 = x^3 + (a+1)x + a, defined over F_q
? ellap(E)
%8 = -3
```

If the curve is defined over a more general number field than $\mathbb{Q}$, the maximal ideal $p$ must be explicitly given in idealprimedec format. There is no assumption of local minimality at $p$.

```plaintext
? K = nfinit(a^2+1); E = ellinit([1+a,0,1,0,0], K);
? fa = idealfactor(K, E.disc)
%2 =
[[5, [-2, 1]~, 1, 1, [2, -1; 1, 2]] 1]
[[13, [5, 1]~, 1, 1, [-5, -1; 1, -5]] 2]
? ellap(E, fa[1,1])
%3 = -1 \ \ nonsplit multiplicative reduction
? ellap(E, fa[2,1])
%4 = 1 \ \ split multiplicative reduction
? P17 = idealprimedec(K,17)[1];
? ellap(E, P17)
%6 = 6 \ \ good reduction
? E2 = ellchangecurve(E, [17,0,0,0]);
? ellap(E2, P17)
%8 = 6 \ \ same, starting from a nonmiminal model

? P3 = idealprimedec(K,3)[1];
? ellap(E, P3) \ \ OK: E is minimal at P3
%10 = -2
? E3 = ellchangecurve(E, [3,0,0,0]);
```

(continues on next page)
 Algorithms used. If $E/F_q$ has CM by a principal imaginary quadratic order we use a fast explicit formula (involving essentially Kronecker symbols and Cornacchia’s algorithm), in $O(\log q)^2$ bit operations. Otherwise, we use Shanks-Mestre’s baby-step/giant-step method, which runs in time $O(q^{1/4})$ using $O(q^{1/4})$ storage, hence becomes unreasonable when $q$ has about 30 digits. Above this range, the SEA algorithm becomes available, heuristically in $O(\log q)^4$, and primes of the order of 200 digits become feasible. In small characteristic we use Mestre’s ($p = 2$), Kohel’s ($p = 3, 5, 7, 13$), Satoh-Harley (all in $O(p^2n^2)$) or Kedlaya’s (in $O(pn^3)$) algorithms.

deprecated alias for ellheight(E,P,Q).

ellbsd(precision)

The object $E$ being an elliptic curve over a number field, returns a real number $c$ such that the BSD conjecture predicts that $L_E^{(r)}(1) / r! = cRS$ where $r$ is the rank, $R$ the regulator and $S$ the cardinal of the Tate-Shafarevich group.

ellcard($p$)

Let $E$ be an ell structure as output by ellinit, attached to an elliptic curve $E/K$. If $K = \mathbb{F}_q$ is finite, return the order of the group $E(\mathbb{F}_q)$.

For other fields of definition and $p$ defining a finite residue field $\mathbb{F}_q$, return the order of the reduction of $E$: the argument $p$ is best left omitted if $K = \mathbb{Q}_p$ (else we must have $p = \ell$) and must be a prime number ($K = \mathbb{Q}$) or prime ideal ($K$ a general number field) with residue field $\mathbb{F}_q$ otherwise. The equation need not be minimal or even integral at $p$; of course, a minimal model will be more efficient. The function considers the group of nonsingular points of the reduction of a minimal model of the curve at $p$, so also makes sense when the curve has bad reduction.
? E = ellinit([-3,1]);
? factor(E.disc)
%2 =
[2 4]
[3 4]
? ellcard(E, 5) \ as above !
%3 = 7
? ellcard(E, 2) \ additive reduction
%4 = 2

When the characteristic of the finite field is large, the availability of the seadata package will speed the computation. See also ellap for the list of implemented algorithms.

ellchangecurve(v)
Changes the data for the elliptic curve \( E \) by changing the coordinates using the vector \( v = [u,r,s,t] \), i.e. if \( x' \) and \( y' \) are the new coordinates, then \( x = u^2x' + r, y = u^3y' + su^2x' + t \). \( E \) must be an \texttt{ell} structure as output by \texttt{ellinit}. The special case \( v = 1 \) is also used instead of \([1,0,0,0]\) to denote the trivial coordinate change.

ellchangepoint(v)
Changes the coordinates of the point or vector of points \( x \) using the vector \( v = [u,r,s,t] \), i.e. if \( x' \) and \( y' \) are the new coordinates, then \( x = u^2x' + r, y = u^3y' + su^2x' + t \) (see also \texttt{ellchangecurve}).

ellchangepointinv(v)
Changes the coordinates of the point or vector of points \( x \) using the inverse of the isomorphism attached to \( v = [u,r,s,t] \), i.e. if \( x' \) and \( y' \) are the old coordinates, then \( x = u^2x' + r, y = u^3y' + su^2x' + t \) (inverse of \texttt{ellchangepoint}).

ellconvertname()
Converts an elliptic curve name, as found in the elldata database, from a string to a triplet [ conductor, isogenyclass, index]. It will also convert a triplet back to a curve name. Examples:

? ellconvertname("123b1")
%1 = [123, 1, 1]
? ellconvertname(%)
%2 = "123b1"
elldivpol\( (n, v) \)

\( n \)-division polynomial \( f_n \) for the curve \( E \) in the variable \( v \). In standard notation, for any affine point \( P = (X,Y) \) on the curve and any integer \( n > 0 \), we have

\[ [n]P = (\phi_n(P)\psi_n(P) : \omega_n(P) : \psi_n(P)^3) \]

for some polynomials \( \phi_n, \omega_n, \psi_n \) in \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][X,Y] \). We have \( f_n(X) = \psi_n(X) \) for \( n \) odd, and \( f_n(X) = \psi_n(X,Y)(2Y + a_1X + a_3) \) for \( n \) even. We have

\[
\begin{align*}
    f_0 &= 0, \quad f_1 = 1, f_2 = 4X^3 + b_2X^2 + 2b_4X + b_6, f_3 = 3X^4 + b_2X^3 + 3b_4X^2 + 3b_6X + b_8, \\
    f_4 &= f_2(2X^6 + b_2X^5 + 5b_4X^4 + 10b_6X^3 + 10b_8X^2 + (b_2b_8 - b_4b_6)X + (b_8b_4 - b_6^2)), \\
\end{align*}
\]

When \( n \) is odd, the roots of \( f_n \) are the \( X \)-coordinates of the affine points in the \( n \)-torsion subgroup \( E[n] \); when \( n \) is even, the roots of \( f_n \) are the \( X \)-coordinates of the affine points in \( E[n] \) \( E[2] \) when \( n > 2 \), resp. in \( E[2] \) when \( n = 2 \). For \( n < 0 \), we define \( f_n := -f_{-n} \).

elleisnum\( (k, \text{flag}, \text{precision}) \)

\( k \) being an even positive integer, computes the numerical value of the Eisenstein series of weight \( k \) at the lattice \( \omega \), as given by ellperiods, namely

\[
(2i\pi/\omega)^k(1 + 2/\zeta(1 - k) \sum_{n > 1} n^{k-1}q^n/(1 - q^n)),
\]

where \( q = \exp(2i\pi\tau) \) and \( \tau := \omega_1/\omega_2 \) belongs to the complex upper half-plane. It is also possible to directly input \( w = [\omega_1, \omega_2] \), or an elliptic curve \( E \) as given by ellinit.

```plaintext
? w = ellperiods([1,1]);
? elleisnum(w, 4)
%2 = 2268.8726415508062275167367584190557607
? elleisnum(w, 6)
%3 = -3.977978632282564763 E-33
? E = ellinit([1, 0]);
? elleisnum(E, 4)
%5 = -48.00000000000000000000000000000000
```

When \( \text{flag} \) is nonzero and \( k = 4 \) or 6, returns the elliptic invariants \( g_2 \) or \( g_3 \), such that

\[
g^2 = 4x^3 - g_2x - g_3
\]

is a Weierstrass equation for \( E \).

```plaintext
? g2 = elleisnum(E, 4, 1)
%6 = -4.00000000000000000000000000000000
? g3 = elleisnum(E, 6, 1) \\ ~ \ 0
%7 = 0.E-114 - 3.9099481784222462822242682 E-57*I
```

elleleta\( (\text{precision}) \)

Returns the quasi-periods \([\eta_1, \eta_2] \) attached to the lattice basis \( w = [\omega_1, \omega_2] \). Alternatively, \( w \) can be an elliptic curve \( E \) as output by ellinit, in which case, the quasi periods attached to the period lattice basis :math:`\omega_1` (namely, :math:`\omega_2`) are returned.

```plaintext
? elleleta([1,1])
%1 = [3.141592653589793238462643383, 9.424777960769379715387930149*I]
```
ellformaldifferential(serprec, n)
Let $\omega := \frac{dx}{2y + a_1x + a_3}$ be the invariant differential form attached to the model $E$ of some elliptic curve (ellinit form), and $\eta := x(t)\omega$. Return $n$ terms (seriesprecision by default) of $f(t)$, $g(t)$ two power series in the formal parameter $t = -x/y$ such that $\omega = f(t)dt$, $\eta = g(t)dt$:

$$f(t) = 1 + a_1t + (a_1^2 + a_2)t^2 + ..., g(t) = t^{-2} + ...$$

```pari
def E = ellinit([-1,1/4]); [f,g] = ellformaldifferential(E,7,'t);
def f
%2 = 1 - 2*t^4 + 3/4*t^6 + O(t^7)
def g
%3 = t^-2 - t^2 + 1/2*t^4 + O(t^5)
```

ellformalexp(serprec, n)
The elliptic formal exponential $\text{Exp}$ attached to $E$ is the isomorphism from the formal additive law to the formal group of $E$. It is normalized so as to be the inverse of the elliptic logarithm (see ellformallog): $\text{Exp} \circ L = \text{Id}$. Return $n$ terms of this power series:

```pari
def E = ellinit([-1,1/4]); Exp = ellformalexp(E,10,'z)
def L = ellformallog(E,10,'t)
def subst(Exp,z,L)
%3 = t + O(t^11)
```

ellformallog(serprec, n)
The formal elliptic logarithm is a series $L$ in $tK[[t]]$ such that $dL = \omega = \frac{dx}{2y + a_1x + a_3}$, the canonical invariant differential attached to the model $E$. It gives an isomorphism from the formal group of $E$ to the additive formal group.

```pari
def E = ellinit([-1,1/4]); L = ellformallog(E, 9, 't)
def [f,g] = ellformaldifferential(E,8,'t);
def L'
%3 = 0(t^8)
```

ellformalpoint(serprec, n)
If $E$ is an elliptic curve, return the coordinates $x(t), y(t)$ in the formal group of the elliptic curve $E$ in the formal parameter $t = -x/y$ at $\infty$:

$$x = t^{-2} - a_1t^{-1} - a_2 - a_3t + ...$$
$$y = -t^{-3} - a_1t^{-2} - a_2t^{-1} - a_3 + ...$$

Return $n$ terms (seriesprecision by default) of these two power series, whose coefficients are in $\mathbb{Z}[a_1, a_2, a_3, a_4, a_6]$.

```pari
def E = ellinit([0,0,1,-1,0]); [x,y] = ellformalpoint(E,8,'t);
def x
%2 = t^-2 - t + t^2 - t^4 + 2*t^5 + O(t^6)
def y
%3 = -t^-3 + 1 - t + t^3 - 2*t^4 + O(t^5)
def E = ellinit([0,1/2]); ellformalpoint(E,7)
def [x,y] = [x^-2 - 1/2*x^4 + O(x^5), -x^-3 + 1/2*x^3 + O(x^4)]
```

Chapter 2. The Gen class wrapping PARI’s GEN type
ellformalw(serprec, n)

Return the formal power series \( w \) attached to the elliptic curve \( E \), in the variable \( t \):

\[
w(t) = t^3(1 + a_1 t + (a_2 + a_2^2) t^2 + \ldots + O(t^n)),
\]

which is the formal expansion of \(-1/y\) in the formal parameter \( t := -x/y \) at \( oo \) (take \( n = \text{seriesprecision} \) if \( n \) is omitted). The coefficients of \( w \) belong to \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6] \).

```plaintext
? E=ellinit([3,2,-4,-2,5]); ellformalw(E, 5, 't)
%1 = t^3 + 3*t^4 + 11*t^5 + 35*t^6 + 101*t^7 + O(t^8)
```

ellfromeqn()

Given a genus 1 plane curve, defined by the affine equation \( f(x, y) = 0 \), return the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of a Weierstrass equation for its Jacobian. This allows to recover a Weierstrass model for an elliptic curve given by a general plane cubic or by a binary quartic or biquadratic model. The function implements the \( f : - - - > f^* \) formulae of Artin, Tate and Villegas (Advances in Math. 198 (2005), pp. 366–382).

In the example below, the function is used to convert between twisted Edwards coordinates and Weierstrass coordinates.

```plaintext
? e = ellfromeqn(a*x^2+y^2 - (1+d*x^2*y^2))
%1 = [0, -a - d, 0, -4*d*a, 4*d*a^2 + 4*d^2*a]
? E = ellinit(ellfromeqn(y^2-x^2 - 1 +(121665/121666*x^2*y^2)),2^255-19);
? isprime(ellcard(E) / 8)
%3 = 1
```

The elliptic curve attached to the sum of two cubes is given by

```plaintext
? ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]
```

Congruent number problem. Let \( n \) be an integer, if \( a^2 + b^2 = c^2 \) and \( ab = 2n \), then by substituting \( b \) by \( 2n/a \) in the first equation, we get \(((a^2 + (2n/a)^2) - c^2)a^2 = 0 \). We set \( x = a, y = ac \).

```plaintext
? En = ellfromeqn((x^2 + (2*n/x)^2 - (y/x)^2)*x^2)
%1 = [0, 0, 0, -16*n^2, 0]
```

For example 23 is congruent since the curve has a point of infinite order, namely:

```plaintext
? ellheegner(ellinit(subst(En, n, 23)))
%2 = [168100/289, 68053440/4913]
```

eellfromj()

Returns the coefficients \([a_1, a_2, a_3, a_4, a_6]\) of a fixed elliptic curve with \( j \)-invariant \( j \).

eellgenerators()

If \( E \) is an elliptic curve over the rationals, return a \( \mathbb{Z} \)-basis of the free part of the Mordell-Weil group attached to \( E \). This relies on the \texttt{elldata} database being installed and referencing the curve, and so is only available for curves over \( \mathbb{Z} \) of small conductors. If \( E \) is an elliptic curve over a finite field \( \mathbb{F}_q \) as output by \texttt{ellinit}, return a minimal set of generators for the group \( E(\mathbb{F}_q) \).

Caution. When the group is not cyclic, of shape \( \mathbb{Z}/d_1 \mathbb{Z} \times \mathbb{Z}/d_2 \mathbb{Z} \) with \( d_2 \| d_1 \), the points \([P, Q]\) returned by \texttt{eellgenerators} need not have order \( d_1 \) and \( d_2 \); it is true that \( P \) has order \( d_1 \), but we only know that \( Q \) is a generator of \( E(\mathbb{F}_q)/<P> \) and that the Weil pairing \( w(P, Q) \) has order \( d_2 \), see \texttt{ellgroup}. If you need generators \([P, R]\) with \( R \) of order \( d_2 \), find \( x \) such that \( R = Q - [x]P \) has order \( d_2 \) by solving the discrete logarithm problem \([d_2]Q = [x]([d_2]P) \) in a cyclic group of order \( d_1/d_2 \). This will be very expensive if \( d_1/d_2 \) has a large prime factor.
ellglobalred()

Let $E$ be an ell structure as output by ellinit attached to an elliptic curve defined over a number field. This function calculates the arithmetic conductor and the global Tamagawa number $c$. The result $[N, v, c, F, L]$ is slightly different if $E$ is defined over $\mathbb{Q}$ (domain $D = 1$ in ellinit) or over a number field (domain $D$ is a number field structure, including nfinit(x) representing $\mathbb{Q}$!):

- $N$ is the arithmetic conductor of the curve,
- $v$ is an obsolete field, left in place for backward compatibility. If $E$ is defined over $\mathbb{Q}$, $v$ gives the coordinate change for $E$ to the standard minimal integral model (ellminimalmodel provides it in a cheaper way); if $E$ is defined over another number field, $v$ gives a coordinate change to an integral model (ellintegralmodel provides it in a cheaper way).
- $c$ is the product of the local Tamagawa numbers $c_p$, a quantity which enters in the Birch and Swinnerton-Dyer conjecture,
- $F$ is the factorization of $N$,
- $L$ is a vector, whose $i$-th entry contains the local data at the $i$-th prime ideal divisor of $N$, i.e. $L[i] = elllocalred(E, F[i,1])$. If $E$ is defined over $\mathbb{Q}$, the local coordinate change has been deleted and replaced by a 0; if $E$ is defined over another number field the local coordinate change to a local minimal model is given relative to the integral model afforded by $v$ (so either start from an integral model so that $v$ be trivial, or apply $v$ first).

ellgroup($p$, flag)

Let $E$ be an ell structure as output by ellinit, attached to an elliptic curve $E/K$. We first describe the function when the field $K = \mathbb{F}_q$ is finite, it computes the structure of the finite abelian group $E(\mathbb{F}_q)$:

- if $flag = 0$, return the structure $[]$ (trivial group) or $[d_1]$ (nontrivial cyclic group) or $[d_1, d_2]$ (noncyclic group) of $E(\mathbb{F}_q)/d_1\mathbb{Z}/d_2\mathbb{Z}$, with $d_2\|d_1$.
- if $flag = 1$, return a triple $[h, cyc, gen]$, where $h$ is the curve cardinality, $cyc$ gives the group structure as a product of cyclic groups (as per $flag = 0$). More precisely, if $d_2 > 1$, the output is $[d_1d_2, [d_1, d_2], [P, Q]]$ where $P$ is of order $d_1$ and $[P, Q]$ generates the curve. Caution. It is not guaranteed that $Q$ has order $d_2$, which in the worst case requires an expensive discrete log computation. Only that ellweilpairing($E, P, Q, d_1$) has order $d_2$.

For other fields of definition and $p$ defining a finite residue field $\mathbb{F}_q$, return the structure of the reduction of $E$; the argument $p$ is best left omitted if $K = \mathbb{Q}_p$ (else we must have $p = \ell$) and must be a prime number ($K = \mathbb{Q}$) or prime ideal ($K$ a general number field) with residue field $\mathbb{F}_q$ otherwise. The curve is allowed to have bad reduction at $p$ and in this case we consider the (cyclic) group of nonsingular points for the reduction of a minimal model at $p$.

If $flag = 0$, the equation not be minimal or even integral at $p$; of course, a minimal model will be more efficient.

If $flag = 1$, the requested generators depend on the model, which must then be minimal at $p$, otherwise an exception is thrown. Use ellintegralmodel and/or elllocalred first to reduce to this case.

```plaintext
? E = ellinit([0,1]); \ y^2 = x^3 + 0.x + 1, defined over Q
? ellgroup(E, 7)
%2 = [6, 2] \ Z/6 x Z/2, noncyclic
? E = ellinit([0,1] * Mod(1,11)); \ defined over F_11
? ellgroup(E) \ no need to repeat 11
%4 = [12]
? ellgroup(E, 11) \ ... but it also works
%5 = [12]
? ellgroup(E, 13) \ ouch, inconsistent input!
*** at top-level: ellgroup(E,13)
```

(continues on next page)
Let us now consider curves of bad reduction, in this case we return the structure of the (cyclic) group of nonsingular points, satisfying \#E_{ns}(\mathbb{F}_p) = p - a_p:

```pari
? E = ellinit([0,5]);
? ellgroup(E, 5, 1)
%2 = [5, [5], [[Mod(4, 5), Mod(2, 5)]]]
? ellap(E, 5)
%3 = 0 \ additive reduction at 5
? E = ellinit([0,-1,0,35,0]);
? ellgroup(E, 5, 1)
%5 = [4, [4], [[Mod(2, 5), Mod(2, 5)]]]
? ellap(E, 5)
%6 = 1 \ split multiplicative reduction at 5
? ellgroup(E, 7, 1)
%7 = [8, [8], [[Mod(3, 7), Mod(5, 7)]]]
? ellap(E, 7)
%8 = -1 \ nonsplit multiplicative reduction at 7
```

**ellheegner()**

Let \(E\) be an elliptic curve over the rationals, assumed to be of (analytic) rank 1. This returns a nontorsion rational point on the curve, whose canonical height is equal to the product of the elliptic regulator by the analytic Sha.

This uses the Heegner point method, described in Cohen GTM 239; the complexity is proportional to the product of the square root of the conductor and the height of the point (thus, it is preferable to apply it to strong Weil curves).

```pari
? E = ellinit([-157^2,0]);
? u = ellheegner(E); print(u[1], "\n", u[2])
696489709825964925458225/166136231668185267540804
53896243508604615078004037258785218335/6771681655607745599228495435742408
? ellheegner(ellinit([0,1])) \ E has rank 0 !
*** at top-level: ellheegner(E=ellinit
*** ^-----------------------
*** ellheegner: The curve has even analytic rank.
```

**ellheight(\(P, Q, \text{precision}\))**

Let \(E\) be an elliptic curve defined over \(K = \mathbb{Q}\) or a number field, as output by `ellinit`; it needs not be given by a minimal model although the computation will be faster if it is.

- Without arguments \(P, Q\), returns the Faltings height of the curve \(E\) using Deligne normalization. For a rational curve, the normalization is such that the function returns \(-(1/2)\log(\text{ellminimalmodel}(E).area)\).
- If the argument \(P \in E(K)\) is present, returns the global Néron-Tate height \(h(P)\) of the point, using the normalization in Cremona's Algorithms for modular elliptic curves.
- If the argument \(Q \in E(K)\) is also present, computes the value of the bilinear form \((h(P+Q)−h(P−Q))/4\).
ellheightmatrix($x$, $\text{precision}$)

$x$ being a vector of points, this function outputs the Gram matrix of $x$ with respect to the Néron-Tate height, in other words, the $(i,j)$ component of the matrix is equal to $\text{ellbil}(\mathbb{E}, x[i], x[j])$. The rank of this matrix, at least in some approximate sense, gives the rank of the set of points, and if $x$ is a basis of the Mordell-Weil group of $\mathbb{E}$, its determinant is equal to the regulator of $\mathbb{E}$. Note our height normalization follows Cremona’s Algorithms for modular elliptic curves: this matrix should be divided by 2 to be in accordance with, e.g., Silverman’s normalizations.

ellidentify()

Look up the elliptic curve $\mathbb{E}$, defined by an arbitrary model over $\mathbb{Q}$, in the elldata database. Return $[[N, \mathbb{M}, G], C]$ where $N$ is the curve name in Cremona’s elliptic curve database, $\mathbb{M}$ is the minimal model, $G$ is a $\mathbb{Z}$-basis of the free part of the Mordell-Weil group $\mathbb{E}(\mathbb{Q})$ and $C$ is the change of coordinates from $\mathbb{E}$ to $\mathbb{M}$, suitable for ellchangecurve.

ellinit($D$, $\text{precision}$)

Initialize an ell structure, attached to the elliptic curve $\mathbb{E}$. $\mathbb{E}$ is either

- a 5-component vector $[a_1, a_2, a_3, a_4, a_6]$ defining the elliptic curve with Weierstrass equation
  \[ Y^2 + a_1 XY + a_3 Y = X^3 + a_2 X^2 + a_4 X + a_6, \]
- a 2-component vector $[a_4, a_6]$ defining the elliptic curve with short Weierstrass equation
  \[ Y^2 = X^3 + a_4 X + a_6, \]
- a character string in Cremona’s notation, e.g. "11a1", in which case the curve is retrieved from the elldata database if available.

The optional argument $D$ describes the domain over which the curve is defined:

- the t_INT 1 (default): the field of rational numbers $\mathbb{Q}$.
- a t_INT $p$, where $p$ is a prime number: the prime finite field $\mathbb{F}_p$.
- an t_INTMOD $\text{Mod}(a, p)$, where $p$ is a prime number: the prime finite field $\mathbb{F}_p$.
- a t_FFELT, as returned by $\text{ffgen}$: the corresponding finite field $\mathbb{F}_q$.
- a t_PADIC, $O(p^n)$: the field $\mathbb{Q}_p$, where $p$-adic quantities will be computed to a relative accuracy of $n$ digits. We advise to input a model defined over $\mathbb{Q}$ for such curves. In any case, if you input an approximate model with t_PADIC coefficients, it will be replaced by a lift to $\mathbb{Q}$ (an exact model “close” to the one that was input) and all quantities will then be computed in terms of this lifted model, at the given accuracy.
- a t_REAL $x$: the field $\mathbb{C}$ of complex numbers, where floating point quantities are by default computed to a relative accuracy of $\text{precision}(x)$. If no such argument is given, the value of realprecision at the time ellinit is called will be used.
  - a number field $K$, given by a nf or bnf structure; a bnf is required for ellminimalmodel.
  - a prime ideal $p$, given by a prid structure; valid if $x$ is a curve defined over a number field $K$ and the equation is integral and minimal at $p$.

This argument $D$ is indicative: the curve coefficients are checked for compatibility, possibly changing $D$; for instance if $D = 1$ and an t_INTMOD is found. If inconsistencies are detected, an error is raised:

? ellinit([[1 + O(5), 1], 0(7))
*** at top-level: ellinit([1+O(5),1],0
*** ^--------------------
*** ellinit: inconsistent moduli in ellinit: 7 != 5

506 Chapter 2. The Gen class wrapping PARI’s GEN type
If the curve coefficients are too general to fit any of the above domain categories, only basic operations, such as point addition, will be supported later.

If the curve (seen over the domain \( D \)) is singular, fail and return an empty vector \([]\).

\[
\begin{align*}
? E = \text{ellinit}([0,0,0,0,1]); & \text{ y}^2 = x^3 + 1, \text{ over } \mathbb{Q} \\
? E = \text{ellinit}([0,1]); & \text{ the same curve, short form} \\
? E = \text{ellinit}("36a1"); & \text{ still the same curve, Cremona's notations} \\
? E = \text{ellinit}([0,1], 2) & \text{ over } \mathbb{F}_2: \text{ singular curve} \\
%4 = [] \\
? E = \text{ellinit}([`a4,`a6] \mod(1,5)); & \text{ over } \mathbb{F}_5[a4,a6], \text{ basic support !}
\end{align*}
\]

The result of \text{ellinit} is an \text{ell} structure. It contains at least the following information in its components:

\[a_1, a_2, a_3, a_4, a_6, b_2, b_4, b_6, c_4, c_6, \Delta, j.\]

All are accessible via member functions. In particular, the discriminant is :math:`E.\text{disc}`, and the \( j \)-invariant is :math:`E.j`.

\[
\begin{align*}
? E = \text{ellinit}([a4, a6]); \\
? E.\text{disc} \\
%2 = -64*a4^3 - 432*a6^2 \\
? E.j \\
%3 = -6912*a4^3/(-4*a4^3 - 27*a6^2)
\end{align*}
\]

Further components contain domain-specific data, which are in general dynamic: only computed when needed, and then cached in the structure.

\[
\begin{align*}
? E = \text{ellinit}([2,3], 10^60+7); & \text{ over } \mathbb{F}_p, p \text{ large} \\
? \text{ellap}(E) \\
\text{time} = 4,440 \text{ ms.} \\
%2 = -1376268269510579884904540406082 \\
? \text{ellcard}(E); & \text{ now instantaneous !} \\
\text{time} = 0 \text{ ms.} \\
? \text{ellgenerators}(E); \\
\text{time} = 5,965 \text{ ms.} \\
? \text{ellgenerators}(E); & \text{ second time instantaneous} \\
\text{time} = 0 \text{ ms.}
\end{align*}
\]

See the description of member functions related to elliptic curves at the beginning of this section.

\text{ellintegralmodel}(v)

Let \( E \) be an \text{ell} structure over a number field \( K \) or \( \mathbb{Q}_p \). This function returns an integral model. If \( v \) is present, sets \( v = [u, 0, 0, 0] \) to the corresponding change of variable: the return value is identical to that of \text{ellchangecurve}(E, v).

\[
\begin{align*}
? e = \text{ellinit}([1/17,1/42]); \\
? e = \text{ellintegralmodel}(e,&v); \\
? e[1..5] \\
%3 = [0, 0, 0, 15287762448, 3154568630095008] \\
? v \\
%4 = [1/714, 0, 0, 0]
\end{align*}
\]

\text{ellisdivisible}(P, n, Q)

Given \( E/K \) a number field and \( P \) in \( E(K) \) return 1 if \( P = [n]R \) for some \( R \) in \( E(K) \) and set \( Q \) to one such \( R \); and return 0 otherwise. The integer \( n >= 0 \) may be given as \text{ellxn}(E,n), if many points need to be tested.
The algebraic complexity of the underlying algorithm is in \( O(n^4) \), so it is advisable to first factor \( n \), then use a chain of checks attached to the prime divisors of \( n \): the function will do it itself unless \( n \) is given in \texttt{ellxn} form.

\texttt{ellisogeny}(G, only\_image, x, y)

Given an elliptic curve \( E \), a finite subgroup \( G \) of \( E \) is given either as a generating point \( P \) (for a cyclic \( G \)) or as a polynomial whose roots vanish on the \( x \)-coordinates of the nonzero elements of \( G \) (general case and more efficient if available). This function returns the \([a_1, a_2, a_3, a_4, a_6]\) invariants of the quotient elliptic curve \( E/G \) and (if \( only\_image \) is zero (the default)) a vector of rational functions \([f, g, h]\) such that the isogeny \( E \rightarrow E/G \) is given by \((x, y) : \rightarrow (f(x)/h(x)^2, g(x, y)/h(x)^3)\).

\texttt{ellisogenyapply}(g)

Given an isogeny of elliptic curves \( f : E' \rightarrow E \) (being the result of a call to \texttt{ellisogeny}), apply \( f \) to \( g \):

- if \( g \) is a point \( P \) in the domain of \( f \), return the image \( f(P) \);
- if \( g : E'' \rightarrow E' \) is a compatible isogeny, return the composite isogeny \( fog : E'' \rightarrow E \).

\texttt{ellisomat}(p, fl)

Given an elliptic curve \( E \) defined over a number field \( K \), compute representatives of the isomorphism classes of elliptic curves defined over \( K \) and \( K \)-isogenous to \( E \). We assume that \( E \) does not have CM over \( K \) (otherwise
that set would be infinite). For any such curve $E_i$, let $f_i : E \rightarrow E_i$ be a rational isogeny of minimal degree and let $g_i : E_i \rightarrow E$ be the dual isogeny; and let $M$ be the matrix such that $M_{i,j}$ is the minimal degree for an isogeny $E_i \rightarrow E_j$.

The function returns a vector $[L, M]$ where $L$ is a list of triples $[E_i, f_i, g_i]$ (flag = 0), or simply the list of $E_i$ (flag = 1, which saves time). The curves $E_i$ are given in $[a_4, a_6]$ form and the first curve $E_1$ is isomorphic to $E$ by $f_1$.

If $p$ is set, it must be a prime number; in this case only isogenies of degree a power of $p$ are considered.

Over a number field, the possible isogeny degrees are determined by Billerey algorithm.

```
? E = ellinit("14a1");
? [L,M] = ellisomat(E);
? LE = apply(x->x[1], L) \ list of curves
%3 = [[215/48,-5291/864],[675/16,6831/32],[8185/48,-74263/864],
 [-1705/48,-57707/864],[-13635/16,306207/32],[-131065/48,-4749331/864]]
? L[2][2] \ isogeny f_2
%4 = [x^3+3/4*x^2+19/2*x-311/12,
 1/2*x^4+(y+1)*x^3+(y-4)*x^2+(-9*y+23)*x+(55*y+55/2),x+1/3]
? L[2][3] \ dual isogeny g_2
%5 = [1/9*x^3-1/4*x^2-141/16*x+5613/64,
 -1/18*x^4+(1/27*y-1/3)*x^3+(-1/12*y+87/16)*x^2+(49/16*y-48)*x
 +(3601/64*y-16947/512),x-3/4]
? apply(E->ellidentify(ellinit(E))[1][1], LE)
%6 = ["14a1","14a4","14a3","14a2","14a6","14a5"]
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
```

**ellisoncurve(z)**

Gives 1 (i.e. true) if the point $z$ is on the elliptic curve $E$, 0 otherwise. If $E$ or $z$ have imprecise coefficients, an attempt is made to take this into account, i.e. an imprecise equality is checked, not a precise one. It is allowed for $z$ to be a vector of points in which case a vector (of the same type) is returned.

**ellisotree()**

Given an elliptic curve $E$ defined over $\mathbb{Q}$ or a set of $\mathbb{Q}$-isogenous curves as given by `ellisomat`, return a pair $[L, M]$ where

- $L$ lists the minimal models of the isomorphism classes of elliptic curves $\mathbb{Q}$-isogenous to $E$ (or in the set of isogenous curves),
- $M$ is the adjacency matrix of the prime degree isogenies tree: there is an edge from $E_i$ to $E_j$ if there is an isogeny $E_i \rightarrow E_j$ of prime degree such that the Néron differential forms are preserved.
\begin{verbatim}
? E = ellinit("14a1");
? [L,M] = ellisotree(E);
? M
%3 =
[0 0 3 2 0 0]
[3 0 0 2 0]
[0 0 0 0 2]
[0 0 0 0 0 3]
[0 0 0 3 0 0]
[0 0 0 0 0 0]
? [L2,M2] = ellisotree(ellisomat(E,2,1));
%4 =
[0 2]
[0 0]
? [L3,M3] = ellisotree(ellisomat(E,3,1));
? M3
%6 =
[0 0 3]
[3 0 0]
[0 0 0]

Compare with the result of ellisomat.

? [L,M]=ellisomat(E,,1);
? M
%7 =
[1 3 3 2 6 6]
[3 1 9 6 2 18]
[3 9 1 6 18 2]
[2 6 6 1 3 3]
[6 2 18 3 1 9]
[6 18 2 3 9 1]
\end{verbatim}

`ellissupersingular(p)`

Return 1 if the elliptic curve $E$ defined over a number field, $\mathbb{Q}_p$, or a finite field is supersingular at $p$, and 0 otherwise. If the curve is defined over a number field, $p$ must be explicitly given, and must be a prime number, resp. a maximal ideal, if the curve is defined over $\mathbb{Q}$, resp. a general number field: we return 1 if and only if $E$ has supersingular good reduction at $p$.

Alternatively, $E$ can be given by its $j$-invariant in a finite field. In this case $p$ must be omitted.

510 Chapter 2. The Gen class wrapping PARI's GEN type
? setrand(1); \ make the choice of g deterministic
\? g = ffprimroot(ffgen(7^5))
\%1 = 4*x^4 + 5*x^3 + 6*x^2 + 5*x + 6
? \[g^n | n \in [1 .. 7^5 - 1], ellissupersingular(g^n)\]
\%2 = [6]

? K = nfinit(y^3-2); P = idealprimedec(K, 2)[1];
? E = ellinit([y,1], K);
? ellissupersingular(E, P)
\%5 = 1
? Q = idealprimedec(K,5)[1];
? ellissupersingular(E, Q)
\%6 = 0

ellj(precision)
Elliptic \( j \)-invariant. \( x \) must be a complex number with positive imaginary part, or convertible into a power series or a \( p \)-adic number with positive valuation.

elllocalred(\( p \))
Calculates the Kodaira type of the local fiber of the elliptic curve \( E \) at \( p \). \( E \) must be an ell structure as output by ellinit, over \( \mathbb{Q} \) (\( p \) better left omitted, else equal to \( \ell \)) over \( \mathbb{Q} \) (\( p \) a rational prime) or a number field \( K \) (\( p \) a maximal ideal given by a prid structure). The result is a 4-component vector \([f, kod, v, c]\). Here \( f \) is the exponent of \( p \) in the arithmetic conductor of \( E \), and \( kod \) is the Kodaira type which is coded as follows:

1 means good reduction (type I:math: \( _0 \)), 2, 3 and 4 mean types II, III and IV respectively, \( 4+\nu \) with \( \nu > 0 \) means type I:math: \( _\nu \); finally the opposite values \(-1, -2\), etc. refer to the starred types I:math: \( _0^* \), II:math: \( ^* \), etc. The third component \( v \) is itself a vector \([u, r, s, t]\) giving the coordinate changes done during the local reduction; \( u = 1 \) if and only if the given equation was already minimal at \( p \). Finally, the last component \( c \) is the local Tamagawa number \( c_p \).

elllog(\( P, G, o \))
Given two points \( P \) and \( G \) on the elliptic curve \( E/\mathbb{F}_p \), returns the discrete logarithm of \( P \) in base \( G \), i.e. the smallest nonnegative integer \( n \) such that \( P = [n]G \). See znlog for the limitations of the underlying discrete log algorithms. If present, \( o \) represents the order of \( G \), see DLfun (in the PARI manual); the preferred format for this parameter is \([N, \text{factor}(N)]\), where \( N \) is the order of \( G \).

If no \( o \) is given, assume that \( G \) generates the curve. The function also assumes that \( P \) is a multiple of \( G \).

ellseries(\( s, A, \text{precision} \))
This function is deprecated, use lfun(E, s) instead.

\( E \) being an elliptic curve, given by an arbitrary model over \( \mathbb{Q} \) as output by ellinit, this function computes the value of the \( L \)-series of \( E \) at the (complex) point \( s \). This function uses an \( O(N^{1/2}) \) algorithm, where \( N \) is the...
The optional parameter $A$ fixes a cutoff point for the integral and is best left omitted; the result must be independent of $A$, up to real precision, so this allows to check the function’s accuracy.

**ellminimaldisc()**

$E$ being an elliptic curve defined over a number field output by `ellinit`, return the minimal discriminant ideal of $E$.

**ellminimalmodel(v)**

Let $E$ be an elliptic curve over a number field $K$. This function determines whether $E$ admits a global minimal integral model. If so, it returns it and sets $v = [u, r, s, t]$ to the corresponding change of variable: the return value is identical to that of `ellchangecurve(E, v)`.

Else return the (nonprincipal) Weierstrass class of $E$, i.e. the class of $\prod p^\nu p^\varphi\Delta^{-\delta_p}/12$ where $\Delta = E.d\text{isc}$ is the model’s discriminant and $p^\varphi\delta_p$ is the local minimal discriminant. This function requires either that $E$ be defined over the rational field $\mathbb{Q}$ (with domain $D = 1$ in `ellinit`), in which case a global minimal model always exists, or over a number field given by a `bnf` structure. The Weierstrass class is given in `bnfisprincipal` format, i.e. in terms of the $K$.gen generators.

The resulting model has integral coefficients and is everywhere minimal, the coefficients $a_1$ and $a_3$ are reduced modulo 2 (in terms of the fixed integral basis $K.zk$) and $a_2$ is reduced modulo 3. Over $\mathbb{Q}$, we further require that $a_1$ and $a_3$ be 0 or 1, that $a_2$ be 0 or 1 and that $u > 0$ in the change of variable: both the model and the change of variable $v$ are then unique.

```plaintext
? e = ellinit([6,6,12,55,233]); \ over \mathbb{Q}
? E = ellminimalmodel(e, &v);
? E[1..5]
%3 = [0, 0, 0, 1, 1]
? v
%4 = [2, -5, -3, 9]

? K = bnfinit(a^2-65); \ over a nonprincipal number field
? K.cyc
%2 = [2]
? u = Mod(8+a, K.pol);
? E = ellinit([1,40*u+1,0,25*u^2,0], K);
? ellminimalmodel(E) \ no global minimal model exists over \mathbb{Z}_K
%6 = [1]~
```

**ellminimaltwist(flag)**

Let $E$ be an elliptic curve defined over $\mathbb{Q}$, return a discriminant $D$ such that the twist of $E$ by $D$ is minimal among all possible quadratic twists, i.e. if $flag = 0$, its minimal model has minimal discriminant, or if $flag = 1$, it has minimal conductor.

In the example below, we find a curve with $j$-invariant 3 and minimal conductor.

```plaintext
? E = ellminimalmodel(ellinit(ellfromj(3)));
? ellglobalred(E)[1]
%2 = 357075
? D = ellminimaltwist(E,1)
%3 = -15
? E2 = ellminimalmodel(ellinit(elltwist(E,D)));
? ellglobalred(E2)[1]
%5 = 14283
```

In the example below, $flag = 0$ and $flag = 1$ give different results.
ellmoddegree()

\( e \) being an elliptic curve defined over \( \mathbb{Q} \) output by `ellinit`, compute the modular degree of \( e \) divided by the square of the Manin constant \( c \). It is conjectured that \( c = 1 \) for the strong Weil curve in the isogeny class (optimal quotient of \( J_0(N) \)) and this can be proven using `ellweilcurve` when the conductor \( N \) is moderate.

```plaintext
? E = ellinit("11a1"); \ \ from Cremona table: strong Weil curve and c = 1
? [v,smith] = ellweilcurve(E); smith \ \ proof of the above
%2 = [[[1, 1], [5, 1], [1, 1/5]]
? ellmoddegree(E)
%3 = 1
? [ellidentify(e)[1][1] | e<-v]
%4 = ["11a1", "11a2", "11a3"]
? ellmoddegree(ellinit("11a2"))
%5 = 5
? ellmoddegree(ellinit("11a3"))
%6 = 1/5
```

The modular degree of 11a1 is 1 (because `ellweilcurve` or Cremona’s table prove that the Manin constant is 1 for this curve); the output of `ellweilcurve` also proves that the Manin constants of 11a2 and 11a3 are 1 and 5 respectively, so the actual modular degree of both 11a2 and 11a3 is 5.

ellmul(\( z, n \))

Computes \([n]z\), where \( z \) is a point on the elliptic curve \( E \). The exponent \( n \) is in \( \mathbb{Z} \), or may be a complex quadratic integer if the curve \( E \) has complex multiplication by \( n \) (if not, an error message is issued).

```
? Ei = ellinit([1,0]); z = [0,0];
? ellmul(Ei, z, 10)
%2 = [0] \ \ unsurprising: z has order 2
? ellmul(Ei, z, I)
%3 = [0, 0] \ \ Ei has complex multiplication by \(\mathbb{Z}[i] \)
? ellmul(Ei, z, quadgen(-4))
%4 = [0, 0] \ \ an alternative syntax for the same query
? Ej = ellinit([0,1]); z = [-1,0];
? ellmul(Ej, z, I)
*** at top-level: ellmul(Ej,z,I)
*** ^_____________
*** ellmul: not a complex multiplication in ellmul.
? ellmul(Ej, z, 1+quadgen(-3))
%6 = [1 - w, 0]
```

The simple-minded algorithm for the CM case assumes that we are in characteristic 0, and that the quadratic order to which \( n \) belongs has small discriminant.
ellneg(z)

Opposite of the point \( z \) on elliptic curve \( E \).

ellnonsingularmultiple(P)

Given an elliptic curve \( E/\mathbb{Q} \) (more precisely, a model defined over \( \mathbb{Q} \) of a curve) and a rational point \( P \in E(\mathbb{Q}) \), returns the pair \([R, n]\), where \( n \) is the least positive integer such that \( R := [n]P \) has good reduction at every prime. More precisely, its image in a minimal model is everywhere nonsingular.

```pARI
? e = ellinit("57a1"); P = [2, -2];
? ellnonsingularmultiple(e, P)
%2 = [[1, -1], 2]
? e = ellinit("396b2"); P = [35, -198];
? [R, n] = ellnonsingularmultiple(e, P);
? n
%5 = 12
```

ellorder(z, o)

Gives the order of the point \( z \) on the elliptic curve \( E \), defined over a finite field or a number field. Return (the impossible value) zero if the point has infinite order.

```pARI
? E = ellinit([-157^2, 0]); \ \text{\"157-is-congruent\" curve}
? P = [2,2]; ellorder(E, P)
%2 = 2
? P = ellheegner(E); ellorder(E, P) \ \text{\"infinite order}
%3 = 0
? K = nfinit(polcyclo(11,t)); E=ellinit("11a3", K); T = elltors(E);
? ellorder(E, T.gen[1])
%5 = 25
? E = ellinit(ellfromj(ffgen(5^10)));
? ellcard(E)
%7 = 9762580
? P = random(E); ellorder(E, P)
%8 = 4881290
? p = 2^160+7; E = ellinit([1,2], p);
? N = ellcard(E)
%9 = 146150163733090291820368656028922528592592471152
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E)))
time = 260 ms.
```

The parameter \( o \), is now mostly useless, and kept for backward compatibility. If present, it represents a nonzero multiple of the order of \( z \), see DLfun (in the PARI manual); the preferred format for this parameter is \([\text{ord}, \text{factor(ord)}]\), where \( \text{ord} \) is the cardinality of the curve. It is no longer needed since PARI is now able to compute it over large finite fields (was restricted to small prime fields at the time this feature was introduced), and caches the result in \( E \) so that it is computed and factored only once. Modifying the last example, we see that including this extra parameter provides no improvement:

```pARI
? o = [N, factor(N)];
? for(i=1,100, ellorder(E,random(E),o))
time = 260 ms.
```

ellordinate(x, precision)

Gives a 0, 1 or 2-component vector containing the \( y \)-coordinates of the points of the curve \( E \) having \( x \) as \( x \)-coordinate.
ellpadicL(\(p, n, s, r, D\))

Returns the value (or \(r\)-th derivative) on a character \(\chi^s\) of \(\mathbb{Z}_p^*\) of the \(p\)-adic \(L\)-function of the elliptic curve \(E/\mathbb{Q}\), twisted by \(D\), given modulo \(p^n\).

**Characters.** The set of continuous characters of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\) is identified to \(\mathbb{Z}_p^*\) via the cyclotomic character \(\chi\) with values in \(\mathbb{Q}_p^*/\mathbb{Z}_p^*\). Denote by \(\tau: \mathbb{Z}_p^* \to \mathbb{Z}_p^*\) the Teichmüller character, with values in the \((p-1)\)-th roots of 1 for \(p=2\), and \(-1, 1\) for \(p=2\); finally, let \(\chi_\tau = \chi\tau^{-1}\), with values in \(1 + 2p\mathbb{Z}_p\). In GP, the continuous character of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\) given by \(\chi_\tau = \chi\tau^{-1}\) is represented by the pair of integers \(s = (s_1, s_2)\), with \(s_1 \in \mathbb{Z}_p\) and \(s_2 \text{mod} p - 1\) for \(p > 2\); \(s\) may be also an integer, representing \((s, s)\) or \(\chi^s\).

The :math:`p`-adic \(L\) function: The \(p\)-adic \(L\) function \(L_p\) is defined on the set of continuous characters of \(\text{Gal}(\mathbb{Q}(\mu_{p^n})/\mathbb{Q})\), as \(\int_{\mathbb{Z}_p^*} \chi^s \, d\mu\) for a certain \(p\)-adic distribution \(\mu\) on \(\mathbb{Z}_p^*\). The derivative is given by

\[
L_p^{(r)}(E, \chi^s) = \int_{\mathbb{Z}_p^*} \log_p(a)\chi^s(a) d\mu(a).
\]

More precisely:

- When \(E\) has good supersingular reduction, \(L_p\) takes its values in \(D := H^1_{dR}(E/\mathbb{Q}) \otimes_{\mathbb{Q}} \mathbb{Q}_p\) and satisfies

\[
L_p(E, \chi^s) = \frac{1}{2} \log_p(1 + 2p \mathbb{Z}_p) = \frac{1}{2} \log_p(1 + 2p \mathbb{Z}_p)\cdot \chi^s(1).
\]


The function returns the components of \(L_p^{(r)}(E, \chi^s)\) in the basis \((\omega, F\omega)\).

- When \(E\) has ordinary good reduction, this method only defines the projection of \(L_p(E, \chi^s)\) on the \(\alpha\)-eigenspace, where \(\alpha\) is the unit eigenvalue for \(F\). This is what the function returns. We have

\[
(1 - \alpha^{-1})^{-2} L_p,\alpha(E, \chi^0) = L(E, 1)/\Omega.
\]

Two supersingular examples:

```
? e = ellinit("17a1"); \(\text{p}=3; \text{ supersingular, a3 = 0}\)
? L = ellpadicL(e,p,4);
? F = [\{0,-p;1,ellap(e,p)\}]; \(\text{Frobenius matrix in the basis (omega,F(omega))}\)
? (1-p^\{(-1)\}*F)^\{ -2 \} * L / cxL(e)
%5 = [1 + O(3^5), 0(3^5)]~ \(\begin{bmatrix} 1 & 0(3^5) \end{bmatrix}\)~

? e = ellinit("116a1"); \(\text{p}=3; \text{ supersingular, a3 = 0}\)
? L = ellpadicL(e,p,4);
? F = [\{0,-p;1,ellap(e,p)\}];
? (1-p^\{(-1)\}*F)^\{ -2 \}~ / cxL(e)
%9 = [1 + O(3^4), 0(3^5)]~
```

Good ordinary reduction:

```
? e = ellinit("17a1"); \(\text{p}=5; \text{ ap = ellap(e,p)}\)
%1 = -2 \(\text{ ordinary}\)
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5*2 + 2*5*3 + 0(5^4)
? al = padicappr(x^2 - ap*x + p, ap + 0(p^7))[1];
? (1-al^\{(-1)\})^\{(-2)\} * L / cxL(e)
%4 = 1 + O(5^4)
```
Twist and Teichmüller:

```plaintext
? e = ellinit("17a1"); p=5; \ ordinary
\ 2nd derivative at tau^1, twist by -7
? ellpadicL(e, p, 4, [0,1], 2, -7)
%2 = 2*5^2 + 5^3 + O(5^4)
```

We give an example of non split multiplicative reduction (see ellpadicbsd for more examples).

```plaintext
? e=ellinit("15a1"); p=3; n=5;
? L = ellpadicL(e,p,n)
%2 = 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)
? (1 - ellap(e,p))^(-1) * L / cxL(e)
%3 = 1 + O(3^5)
```

This function is a special case of mspadicL and it also appears as the first term of mspadicseries:

```plaintext
? e = ellinit("17a1"); p=5;
? L = ellpadicL(e,p,4)
%2 = 4 + 3*5 + 4*5^2 + 2*5^3 + O(5^4)
? [M,phi] = msfromell(e, 1);
? Mp = mspadicinit(M, p, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%6 = 4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + O(5^6)
? mspadicseries(mu)
%7 = (4 + 3*5 + 4*5^2 + 2*5^3 + 2*5^4 + 5^5 + O(5^6))
+ (3 + 3*5 + 5*2 + 5^3 + 0(5^4))x^3
+ (2 + 3*5 + 5*2 + 0(5^3))x^2
+ (3 + 4*5 + 4*5^2 + 0(5^3))x^3
+ (3 + 2*5 + 0(5^2))x^4 + O(x^5)
```

These are more cumbersome than ellpadicL but allow to compute at different characters, or successive derivatives, or to twist by a quadratic character essentially for the cost of a single call to ellpadicL due to precomputations.

**ellpadicbsd(p, n, D)**

Given an elliptic curve $E$ over $\mathbb{Q}$, its quadratic twist $E_D$ and a prime number $p$, this function is a $p$-adic analog of the complex functions ellanalyticrank and ellbsd. It calls ellpadicL with initial accuracy $p^n$ and may increase it internally; it returns a vector $[r, L_p]$ where

- $L_p$ is a $p$-adic number (resp. a pair of $p$-adic numbers if $E$ has good supersingular reduction) defined modulo $p^N$, conjecturally equal to $R_pS$, where $R_p$ is the $p$-adic regulator as given by ellpadicregulator (in the basis $(\omega, F\omega)$) and $S$ is the cardinal of the Tate-Shafarevich group for the quadratic twist $E_D$.

- $r$ is an upper bound for the analytic rank of the $p$-adic $L$-function attached to $E_D$: we know for sure that the $i$-th derivative of $L_p(E_D, s)$ at $\chi^0$ is $O(p^N)$ for all $i < r$ and that its $r$-th derivative is nonzero; it is expected that the true analytic rank is equal to the rank of the Mordell-Weil group $E_D(\mathbb{Q})$, plus 1 if the reduction of $E_D$ at $p$ is split multiplicative; if $r = 0$, then both the analytic rank and the Mordell-Weil rank are unconditionally 0.

Recall that the $p$-adic BSD conjecture (Mazur, Tate, Teitelbaum, Bernardi, Perrin-Riou) predicts an explicit link between $R_pS$ and

$$(1 - p^{-1}F)^{-2}.L_p^{(r)}(E_D, \chi^0)/r!$$
where $r$ is the analytic rank of the $p$-adic $L$-function attached to $E_D$ and $F$ is the Frobenius on $H^1_{dR}$; see \texttt{ellpadicL} for definitions.

```pari
? E = ellinit("11a1"); p = 7; n = 5; \ good ordinary
? ellpadicbsd(E, 7, 5) \ rank 0,
%2 = [0, 1 + O(7^5)]

? E = ellinit("91a1"); p = 7; n = 5; \ non split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%5 = [1, 2*7 + 6*7^2 + 3*7^3 + 7^4 + O(7^5)]
? R = ellpadicregulator(E, p, n, E.gen)
%6 = 2*7 + 6*7^2 + 3*7^3 + 7^4 + 5*7^5 + O(7^6)
? sha = Lp/R
%7 = 1 + O(7^4)

? E = ellinit("91b1"); p = 7; n = 5; \ split multiplicative
? [r,Lp] = ellpadicbsd(E, p, n)
%9 = [2, 2*7 + 7^2 + 5*7^3 + O(7^4)]
? ellpadicregulator(E, p, n, E.gen)
%10 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)
? [rC, LC] = ellanalyticrank(E);
? [r, rC]
%12 = [2, 1] \ r = rC+1 because of split multiplicative reduction

? E = ellinit("53a1"); p = 5; n = 5; \ supersingular
? [r, Lp] = ellpadicbsd(E, p, n);
? r
%15 = 1
? Lp
%16 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), \
 5 + 3*5^2 + 4*5^3 + 2*5^4 + O(5^6)]
? R = ellpadicregulator(E, p, n, E.gen)
%17 = [3*5 + 2*5^2 + 2*5^5 + O(5^6), 5 + 3*5^2 + 4*5^3 + 2*5^4 + O(5^5)]
\ expect Lp = R*#Sha, hence (conjecturally) #Sha = 1

? E = ellinit("84a1"); p = 11; n = 6; D = -443;
? [r,Lp] = ellpadicbsd(E, 11, 6, D) \ Mordell-Weil rank 0, no regulator
%19 = [0, 3 + 2*11 + O(11^6)]
? lift(Lp) \ expected cardinal for Sha is 5^2
%20 = 25
? ellpadicbsd(E, 3, 12, D) \ at 3
%21 = [1, 1 + 2*3 + 2*3^2 + O(3^8)]
? ellpadicbsd(E, 7, 8, D) \ and at 7
%22 = [0, 4 + 3*7 + O(7^8)]
```

\texttt{ellpadicfrobenius}(p, n)

If $p > 2$ is a prime and $E$ is an elliptic curve on $\mathbb{Q}$ with good reduction at $p$, return the matrix of the Frobenius endomorphism $\varphi$ on the crystalline module $D_p(E) = \mathbb{Q}_p \otimes H^1_{dR}(E/\mathbb{Q})$ with respect to the basis of the given model $(\omega, \eta = x\omega)$, where $\omega = dx/(2y + a_1x + a_3)$ is the invariant differential. The characteristic polynomial of $\varphi$ is $x^2 - a_p x + p$. The matrix is computed to absolute $p$-adic precision $p^n$.

```pari
? E = ellinit([1,-1,1,0,0]);
? F = ellpadicfrobenius(E,5,3);
```
ellpadicheight\((p, n, P, Q)\)

Cyclotomic \(p\)-adic height of the rational point \(P\) on the elliptic curve \(E\) (defined over \(\mathbb{Q}\)), given to \(n\) \(p\)-adic digits. If the argument \(Q\) is present, computes the value of the bilinear form \((h(P + Q) - h(P - Q))/4\).

Let \(D := H^1_{\text{dir}}(E) \otimes_{\mathbb{Q}} \mathbb{Q}_p\) be the \(\mathbb{Q}_p\) vector space spanned by \(\omega\) (invariant differential \(dx/(2y + a_1x + a_3)\) related to the given model) and \(\eta = x\omega\). Then the cyclotomic \(p\)-adic height \(h_E\) associates to \(P \in E(\mathbb{Q})\) an element \(f\omega + g\eta\) in \(D\). This routine returns the vector \([f, g]\) to \(n\) \(p\)-adic digits. If \(P \in E(\mathbb{Q})\) is in the kernel of reduction \(\mod p\) and if its reduction at all finite places is non-singular, then \(g = -((\log_E P)^2,\) where \(\log_E\) is the logarithm for the formal group of \(E\) at \(p\).

If furthermore the model is of the form \(Y^2 = X^3 + aX + b\) and \(P = (x, y)\), then

\[f = \log_p(\text{denominator}(x)) - 2\log_p(\sigma(P))\]

where \(\sigma(P)\) is given by \(\text{ellsigma}(E, P)\).

Recall (Advanced topics in the arithmetic of elliptic curves, Theorem 3.2) that the local height function over the complex numbers is of the form

\[\lambda(z) = -\log(||E.discriminant||)/6 + \Re(z\eta(z)) - 2\log(\sigma(z)).\]

(N.B. our normalization for local and global heights is twice that of Silverman’s).

When \(E\) has good ordinary reduction at \(p\) or non-split multiplicative reduction, the “canonical” \(p\)-adic height is given by

\[s_2 = \text{ellpadics2}(E, p, n);\]
\[
\text{ellpadicheight}(E, p, n, P) \times [1, -s_2]^{-1}
\]

Since \(s_2\) does not depend on \(P\), it is preferable to compute it only once.
? E = ellinit("5077a1"); p = 5; n = 7; \ \ rank 3
? s2 = ellpadics2(E,p,n);
? M = ellpadicheightmatrix(E,p, n, E.gen) * [1,-s2]~;
? matdet(M) \ \ p-adic regulator on the points in E.gen
%4 = 5 + 5^2 + 4*5^3 + 2*5^4 + 2*5^5 + 2*5^6 + O(5^7)

• When $E$ has split multiplicative reduction at $p$ (Tate curve), the “canonical” $p$-adic height is given by

\[
\text{Ep} = \text{ellinit}(E[1..5], 0(p^n)); \ \ \text{E seen as a Tate curve over Qp}
\]
\[
[u2,u,q] = \text{Ep.tate};
\]
\[
\text{ellpadicheight}(E, p, n, P) \ast [1,-s2 + 1/\log(q)/u2]~
\]
where $s2$ is as above. For example,

? E = ellinit("91b1"); P =[-1, 3]; p = 7; n = 5;
? Ep = ellinit(E[1..5], 0(p^n));
? s2 = ellpadics2(E,p,n);
? [u2,u,q] = Ep.tate;
? H = ellpadicheight(E, p, n, P) * [1,-s2 + 1/\log(q)/u2]~
%5 = 2*7 + 7^2 + 5*7^3 + 6*7^4 + 2*7^5 + O(7^6)

These normalizations are chosen so that $p$-adic BSD conjectures are easy to state, see ellpadicbsd.

**ellpadicheightmatrix**(p, n, Q)

$Q$ being a vector of points, this function returns the “Gram matrix” $[F, G]$ of the cyclotomic $p$-adic height $h_E$ with respect to the basis $(\omega, \eta)$ of $D = H^1_{tor}(E) \otimes \mathbb{Q}_p$ given to $n$ $p$-adic digits. In other words, if $\text{ellpadicheight}(E, p, n, Q[i], Q[j]) = [f, g]$, corresponding to $f \omega + g \eta$ in $D$, then $F[i, j] = f$ and $G[i, j] = g$.

? E = ellinit([0,0,1,-7,6]); Q = [[-2,3],[-1,3]]; p = 5; n = 5;
? [F,G] = ellpadicheightmatrix(E,p,n,Q);
? lift(F) \ \ p-adic entries, integral approximation for readability
%3 =
[2364 3100]
[3100 3119]

? G
%4 =
[25225 46975]
[46975 61850]

? [F,G] * [1,-ellpadics2(E,p,n)]~
%5 =
[4 + 2*5 + 4*5^2 + 3*5^3 + 0(5^5) 4*5^2 + 4*5^3 + 5^4 + 0(5^5)]
[4*5^2 + 4*5^3 + 5^4 + 0(5^5) 4 + 3*5 + 4*5^2 + 4*5^3 + 5^4 + 0(5^5)]

**ellpadiclambda** (p, D, i)

Let $p$ be a prime number and let $E/Q$ be a rational elliptic curve with good or bad multiplicative reduction at $p$. Return the Iwasawa invariants $\lambda$ and $\mu$ for the $p$-adic $L$ function $L_p(E)$, twisted by $(D/\cdot)$ and the $i$-th power of the Teichmüller character $\tau$, see ellpadicL for details about $L_p(E)$.
Let \( \chi \) be the cyclotomic character and choose \( \gamma \) in \( \text{Gal}(\mathbb{Q}_p(\mu_{p^n})/\mathbb{Q}_p) \) such that \( \chi(\gamma) = 1 + 2p \). Let \( L^{(i),D} \in \mathbb{Q}_p[[X]] \otimes D_{cris} \) such that

\[
(< \chi >^s \tau^1)^{L^{(i),D}}(\gamma - 1) = L_p(E, < \chi >^s \tau^1(D/))
\]

- When \( E \) has good ordinary or bad multiplicative reduction at \( p \). By Weierstrass’s preparation theorem the series \( L^{(i),D} \) can be written \( p^n(X^\lambda + pG(X)) \) up to a \( p \)-adic unit, where \( G(X) \in \mathbb{Z}_p[X] \). The function returns \([\lambda, \mu]\).

- When \( E \) has good supersingular reduction, we define a sequence of polynomials \( P_n \) in \( \mathbb{Q}_p[X] \) of degree \(< p^n \) (and bounded denominators), such that

\[
L^{(i),D} = P_n \varphi^{n+1}\omega_E - \xi_n P_{n-1} \varphi^{n+2}\omega_{E,mod((1 + X)p^n - 1)\mathbb{Q}_p[X]} \otimes D_{cris},
\]

where : \text{math} : '\xi_n = \text{polcyclo}(p^n, 1 + X)^t'. Let : \text{math} : '\lambda_n, \mu_n' be the invariants of \( \text{math} : 'P_n^t' \). We find that

- \( \mu_n \) is nonnegative and decreasing for \( n \) of given parity hence \( \mu_{2n} \) tends to a limit \( \mu^+ \) and \( \mu_{2n+1} \) tends to a limit \( \mu^- \) (both conjecturally 0).

- there exists integers \( \lambda^+ \), \( \lambda^- \) in \( \mathbb{Z} \) (denoted with a in the reference below) such that

\[
\lim_{n \to \infty} \lambda_{2n} + 1/(p + 1) = \lambda^+ \text{and} \lim_{n \to \infty} \lambda_{2n+1} + p/(p + 1) = \lambda^-.
\]

The function returns : \text{math} : '([\lambda^+, \lambda^-], [\mu^+, \mu^-])'.


\section*{ellpadiclog}(\( p, n, P \))

Given \( E \) defined over \( K = \mathbb{Q} \) or \( \mathbb{Q}_p \) and \( P = [x, y] \) on \( E(K) \) in the kernel of reduction mod \( p \), let \( t(P) = -x/y \) be the formal group parameter; this function returns \( L(t) \), where \( L \) denotes the formal logarithm (mapping the formal group of \( E \) to the additive formal group) attached to the canonical invariant differential: \( dL = dx/(2y + a_1x + a_3) \).

\begin{verbatim}
? E = ellinit([0,0,1,-4,2]); P = [-2,1];
? ellpadiclog(E,2,10,P)
%2 = 2 + 2*3 + 2*8 + 2*9 + 2*10 + O(2^11)
? E = ellinit([17,42]);
? p=3; Ep = ellinit(E,p); \ \ \ // E mod p
? P=[114,1218]; ellorder(Ep,P) \ \ \ // the order of P on (E mod p) is 2
%5 = 2
? Q = ellmul(E,P,2) \ \ \ // we need a point of the form 2*P
%6 = [200257/7056, 90637343/592704]
? ellpadiclog(E,3,10,Q)
%7 = 3 + 2*3^2 + 3^3 + 3^4 + 3^5 + 3^6 + 2*3^8 + 3^9 + 2*3^10 + O(3^11)
\end{verbatim}

\section*{ellpadicregulator}(\( p, n, S \))

Let \( E/\mathbb{Q} \) be an elliptic curve. Return the determinant of the Gram matrix of the vector of points \( S = (S_1, ..., S_r) \) with respect to the “canonical” cyclotomic \( p \)-adic height on \( E \), given to \( n \) \( (p \)-adic \) digits.

When \( E \) has ordinary reduction at \( p \), this is the expected Gram determinant in \( \mathbb{Q}_p \).

In the case of supersingular reduction of \( E \) at \( p \), the definition requires care: the regulator \( R \) is an element of \( D := H^1_{DR}(E) \otimes \mathbb{Q}_p \), which is a two-dimensional \( \mathbb{Q}_p \)-vector space spanned by \( \omega \) and \( \eta = x\omega \) (which are defined over \( \mathbb{Q}_p \)) or equivalently but now over \( \mathbb{Q}_p \) by \( \omega \) and \( F\omega \) where \( F \) is the Frobenius endomorphism on \( D \) as defined in \text{ellpadicfrobenius}. On \( D \) we define the cyclotomic height \( h_E = f\omega + g\eta \) (see \text{ellpadicheight}) and a canonical alternating bilinear form \([\cdot, \cdot]_D \) such that \([\omega, \eta]_D = 1 \).
For any $\nu \in D$, we can define a height $h_\nu := [h_E, \nu]_D$ from $E(\mathbb{Q})$ to $\mathbb{Q}_p$ and $<.,.>\nu$ the attached bilinear form. In particular, if $h_E = f\omega + g\eta$, then $h_\eta = [h_E, \eta]_D = f$ and $h_\omega = [h_E, \omega]_D = -g$ hence $h_E = h_\eta\omega - h_\omega\eta$. Then, $R$ is the unique element of $D$ such that

$$[\omega, \nu]_D^{-1}[R, \nu]_D = \det(<S_i, S_j>_\nu)$$

for all $\nu \in D$ not in $\mathbb{Q}_p\omega$. The ellpadicregulator function returns $R$ in the basis $(\omega, F\omega)$, which was chosen so that $p$-adic BSD conjectures are easy to state, see ellpadicbsd.

Note that by definition

$$[R, \eta]_D = \det(<S_i, S_j>_\eta)$$

and

$$[R, \omega + \eta]_D = \det(<S_i, S_j>_{\omega + \eta})$$

ellpadics2($p, n$)

If $p > 2$ is a prime and $E/\mathbb{Q}$ is an elliptic curve with ordinary good reduction at $p$, returns the slope of the unit eigenvector of ellpadicfrobenius$(E, p, n)$, i.e., the action of Frobenius $\varphi$ on the crystalline module $D_p(E) = \mathbb{Q}_p \otimes H^1_{cris}(E/\mathbb{Q})$ in the basis of the given model $(\omega, \eta = x\omega)$, where $\omega$ is the invariant differential $dx/(2y + a_1x + a_3)$. In other words, $\eta + s_2\omega$ is an eigenvector for the unit eigenvalue of $\varphi$.

? e=ellinit([17,42]);
? ellpadics2(e,13,4)
%2 = 10 + 2*13 + 6*13^3 + 0(13^4)

This slope is the unique $c \in 3^{-1}\mathbb{Z}_p$ such that the odd solution $\sigma(t) = t + O(t^2)$ of

$$-d((1)/\sigma)(d\sigma)/(\omega)) = (x(t) + c)\omega$$

is in $t\mathbb{Z}_p[[t]]$.

It is equal to $b_2/12 - E_2/12$ where $E_2$ is the value of the Katz $p$-adic Eisenstein series of weight 2 on $(E, \omega)$. This is used to construct a canonical $p$-adic height when $E$ has good ordinary reduction at $p$ as follows

s2 = ellpadics2(E,p,n);  
he(E,p,n, P, s2) = ellpadicheight(E, [p,[1,-s2]],n, P);

Since $s_2$ does not depend on the point $P$, we compute it only once.

ellperiods($flag$, precision)

Let $w$ describe a complex period lattice ($w = [w_1, w_2]$ or an ellinit structure). Returns normalized periods $[W_1, W_2]$ generating the same lattice such that $\tau := W_1/W_2$ has positive imaginary part and lies in the standard fundamental domain for $SL_2(\mathbb{Z})$.

If $flag = 1$, the function returns $[[W_1, W_2], [\eta_1, \eta_2]]$, where $\eta_1$ and $\eta_2$ are the quasi-periods attached to $[W_1, W_2]$, satisfying $\eta_2W_1 - \eta_1W_2 = 2\pi i\tau$.

The output of this function is meant to be used as the first argument given to ellwp, ellzeta, ellsigma or elleisnum. Quasi-periods are needed by ellzeta and ellsigma only.

? L = ellperiods([1,1],I);
? [w1,w2] = L[1]; [e1,e2] = L[2];
? e2*w1 - e1*w2
%3 = 6.283185307179586476925286766559057684*I
ellpointtoz(P, precision)

If $E/C \mathbb{C}/\Lambda$ is a complex elliptic curve ($\Lambda = E.\omega$), computes a complex number $z$, well-defined modulo the lattice $\Lambda$, corresponding to the point $P$; i.e. such that $P = [\wp_{\Lambda}(z), \wp'_{\Lambda}(z)]$ satisfies the equation

$$y^2 = 4x^3 - g_2x - g_3,$$

where $g_2, g_3$ are the elliptic invariants.

If $E$ is defined over $\mathbb{R}$ and $P \in E(\mathbb{R})$, we have more precisely, $0 \leq \Re(t) < w1$ and $0 < \Im(t) < \Im(w2)$, where $(w1, w2)$ are the real and complex periods of $E$.

? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.5054552633136356529375476976257353387

ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000

? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]

ellpointtoz(E, [0]) \ the point at infinity
%5 = 0

If $E$ is defined over a general number field, the function returns the values corresponding to the various complex embeddings of the curve and of the point, in the same order as $E.nf.roots$:

? E=ellinit([-22032-15552*x,0], nfinit(x^2-2));
? P=[-72*x-108,0];
? ellisoncurve(E,P)
%3 = 1

? ellpointtoz(E,P)
%4 = [-0.52751724240790530394437835702346995884*I, -0.0905076500258853355335571758708283389896*I]

? E.nf.roots
%5 = [-1.4142135623730950488016887242096980786, \ x-> -sqrt(2)
1.4142135623730950488016887242096980786] \ x-> sqrt(2)

If $E/\mathbb{Q}_p$ has multiplicative reduction, then $E/\mathbb{Q}_p$ is analytically isomorphic to $\mathbb{Q}^*_p/q^*Z$ (Tate curve) for some $p$-adic integer $q$. The behavior is then as follows:

- If the reduction is split ($E.tate[2]$ is a t_PADIC), we have an isomorphism $\phi : E(\mathbb{Q}_p) \mathbb{Q}^*_p/q^*Z$ and the function returns $\phi(P) \in \mathbb{Q}_p$.
- If the reduction is not split ($E.tate[2]$ is a t_POLMOD), we only have an isomorphism $\phi : E(K) K^*/q^*Z$ over the unramified quadratic extension $K/Q_p$. In this case, the output $\phi(P) \in K$ is a t_POLMOD.

? E = ellinit([0,-1,1,0,0], O(11^5)); P = [0,0];
? [u2,u,q] = E.tate; type(u) \\ split multiplicative reduction
%2 = "t_PADIC"
? ellmul(E, P, 5) \ P has order 5
%3 = [0]
\texttt{ellpointtoz}(E, [0,0])
\begin{align*}
%4 &= 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8) \\
%5 &= 1 + 0(11^9) \\
%5 &= \text{ellpointtoz}(E, [0,0]) \\
%5 &= 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8) \\
%5 &= \text{ellpointtoz}(E, [0,0])
\end{align*}

\texttt{ellpow}(z, n)

Deprecated alias for \texttt{ellmul}.

\texttt{ellratpoints}(h, flag)

\(E\) being an integral model of elliptic curve, return a vector containing the affine rational points on the curve of naive height less than \(h\). If \(flag = 1\), stop as soon as a point is found; return either an empty vector or a vector containing a single point. See \texttt{hyperellratpoints} for how \(h\) can be specified.

\begin{align*}
? E &= \text{ellinit}([-25,1]); \\
? \text{ellratpoints}(E, 10) \\
%2 &= \begin{bmatrix}[-5,1], [-5,-1], [-3,7], [-3,-7], [-1,5], [-1,-5], \\
&[0,1], [0,-1], [5,1], [5,-1], [7,13], [7,-13] \end{bmatrix} \\
? \text{ellratpoints}(E, 10, 1) \\
%3 &= \begin{bmatrix}[-5,1] \end{bmatrix}
\end{align*}

\texttt{ellrootno}(p)

\(E\) being an \texttt{ell} structure over \(\mathbb{Q}\) as output by \texttt{ellinit}, this function computes the local root number of its \(L\)-series at the place \(p\) (at the infinite place if \(p = 0\)). If \(p\) is omitted, return the global root number and in this case the curve can also be defined over a number field.

Note that the global root number is the sign of the functional equation and conjecturally is the parity of the rank of the Mordell-Weil group. The equation for \(E\) needs not be minimal at \(p\), but if the model is already minimal the function will run faster.

\texttt{ellsea}(tors)

Let \(E\) be an \texttt{ell} structure as output by \texttt{ellinit}, defined over a finite field \(\mathbb{F}_q\). This low-level function computes the order of the group \(E(\mathbb{F}_q)\) using the SEA algorithm; compared to the high-level function \texttt{ellcard}, which includes SEA among its choice of algorithms, the \texttt{tors} argument allows to speed up a search for curves having almost prime order and whose quadratic twist may also have almost prime order. When \texttt{tors} is set to a nonzero value, the function returns 0 as soon as it detects that the order has a small prime factor not dividing \texttt{tors}; SEA considers modular polynomials of increasing prime degree \(\ell\) and we return 0 as soon as we hit an \(\ell\) (coprime to \texttt{tors}) dividing \#\(E(\mathbb{F}_q)\):

\begin{align*}
? \text{ellsea}(\text{ellinit}([1,1], 2^{56}+3477), 1) \\
%1 &= 72057594135613381 \\
? \text{forprime}(p=2^{128}, oo, q = \text{ellcard}(\text{ellinit}([1,1],p)); \text{if}(\text{isprime}(q), \text{break})) \\
\text{time} &= 6,571 \text{ ms.} \\
? \text{forprime}(p=2^{128}, oo, q = \text{ellsea}(\text{ellinit}([1,1],p),1); \text{if}(\text{isprime}(q), \text{break})) \\
\text{time} &= 522 \text{ ms.}
\end{align*}

In particular, set \texttt{tors} to 1 if you want a curve with prime order, to 2 if you want to allow a cofactor which is a power of two (e.g. for Edwards’s curves), etc. The early exit on bad curves yields a massive speedup compared to running the cardinal algorithm to completion.

When \texttt{tors} is negative, similar checks are performed for the quadratic twist of the curve.
The following function returns a curve of prime order over $\mathbb{F}_p$.

```plaintext
cryptocurve(p) =
{
 while(1,
 my(E, N, j = Mod(random(p), p));
 E = ellinit(ellfromj(j));
 N = ellsea(E, 1); if (!N, continue);
 if (isprime(N), return(E));
 \ try the quadratic twist for free
 if (isprime(2*p+2 - N), return(ellinit(elltwist(E))));
);
}
```

```plaintext?
p = randomprime([2^255, 2^256]);
E = cryptocurve(p); \ insist on prime order
%2 = 47,447ms
```

The same example without early abort (using `ellcard(E)` instead of `ellsea(E, 1)`) runs for about 5 minutes before finding a suitable curve.

The availability of the `seadata` package will speed up the computation, and is strongly recommended. The generic function `ellcard` should be preferred when you only want to compute the cardinal of a given curve without caring about it having almost prime order:

- If the characteristic is too small ($p <= 7$) or the field cardinality is tiny ($q <= 523$) the generic algorithm `ellcard` is used instead and the `tors` argument is ignored. (The reason for this is that SEA is not implemented for $p <= 7$ and that if $q <= 523$ it is likely to run into an infinite loop.)
- If the field cardinality is smaller than about $2^{50}$, the generic algorithm will be faster.
- Contrary to `ellcard`, `ellsea` does not store the computed cardinality in $E$.

### `ellsearch()`

This function finds all curves in the `elldata` database satisfying the constraint defined by the argument $N$:

- if $N$ is a character string, it selects a given curve, e.g. "11a1", or curves in the given isogeny class, e.g. "11a", or curves with given conductor, e.g. "11":
- if $N$ is a vector of integers, it encodes the same constraints as the character string above, according to the `ellconvertname` correspondence, e.g. [11,0,1] for "11a1", [11,0] for "11a" and [11] for "11";
- if $N$ is an integer, curves with conductor $N$ are selected.

If $N$ codes a full curve name, for instance "11a1" or [11,0,1], the output format is $[N, [a_1, a_2, a_3, a_4, a_6], G]$ where $[a_1, a_2, a_3, a_4, a_6]$ are the coefficients of the Weierstrass equation of the curve and $G$ is a $\mathbb{Z}$-basis of the free part of the Mordell-Weil group attached to the curve.

```plaintext
? ellsearch("11a3")
%1 = ["11a3", [0, -1, 1, 0, 0], []]
? ellsearch([11,0,3])
%2 = ["11a3", [0, -1, 1, 0, 0], []]
```

If $N$ is not a full curve name, then the output is a vector of all matching curves in the above format:

```plaintext
? ellsearch("11a")
%1 = [["11a1", [0, -1, 1, -10, -20], []],
["11a2", [0, -1, 1, -7820, -263580], []],
["11a3", [0, -1, 1, 0, 0], []]]
```
? ellsearch("11b")
%2 = []

ellsigma(z, flag, precision)
Computes the value at z of the Weierstrass \( \sigma \) function attached to the lattice \( L \) as given by ellperiods(1,1):
including quasi-periods is useful, otherwise there are recomputed from scratch for each new \( z \).

\[
\sigma(z, L) = z \prod_{\omega \in L^*} (1 - (z)/(\omega))e^{(z)/(\omega) + (z^2)/(2\omega^2)}.
\]

It is also possible to directly input \( L = [\omega_1, \omega_2] \), or an elliptic curve \( E \) as given by ellinit \((L = E.omega)\).

? w = ellperiods([1,I], 1);
? ellsigma(w, 1/2)
%2 = 0.47494937998792065033250463632798296855
? E = ellinit([1,0]);
? ellsigma(E) \ at 'x, implicitly at default seriesprecision
%4 = x + 1/60*x^5 - 1/10080*x^9 - 23/259459200*x^13 + O(x^17)

If \( flag = 1 \), computes an arbitrary determination of \( \log(\sigma(z)) \).

ellsub(z1, z2)
Difference of the points \( z_1 \) and \( z_2 \) on the elliptic curve corresponding to \( E \).

elltaniyama(serprec)
Computes the modular parametrization of the elliptic curve \( E/\mathbb{Q} \), where \( E \) is an ell structure as output by ellinit. This returns a two-component vector \([u, v]\) of power series, given to \( n \) significant terms (seriesprecision by default), characterized by the following two properties. First the point \((u, v)\) satisfies the equation of the elliptic curve. Second, let \( N \) be the conductor of \( E \) and \( \Phi : X_0(N) \to E \) be a modular parametrization; the pullback by \( \Phi \) of the Néron differential \( du/(2v + a_1u + a_3) \) is equal to \( 2\pi f(z)dz \), a holomorphic differential form. The variable used in the power series for \( u \) and \( v \) is \( x \), which is implicitly understood to be equal to \( \exp(2\pi i z) \).

The algorithm assumes that \( E \) is a strong Weil curve and that the Manin constant is equal to 1: in fact, \( f(x) = \sum_{n>0} \text{ellak}(E, n)x^n \).

elltatepairing(P, Q, m)
Let \( E \) be an elliptic curve defined over a finite field \( k \) and \( m \geq 1 \) be an integer. This function computes the (nonreduced) Tate pairing of the points \( P \) and \( Q \) on \( E \), where \( P \) is an \( m \)-torsion point. More precisely, let \( f_{m,P} \) denote a Miller function with divisor \( m[P] - m[O_E] \); the algorithm returns \( f_{m,P}(Q) \in k^*/(k^*)^m \).
elltors()  
If $E$ is an elliptic curve defined over a number field or a finite field, outputs the torsion subgroup of $E$ as a 3-component vector $[t, v_1, v_2]$, where $t$ is the order of the torsion group, $v_1$ gives the structure of the torsion group as a product of cyclic groups (sorted by decreasing order), and $v_2$ gives generators for these cyclic groups. $E$ must be an ell structure as output by ellinit.

```plaintext
? E = ellinit([-1,0]);
? elltors(E)
%1 = [4, [2, 2], [[0, 0], [1, 0]]]
```

Here, the torsion subgroup is isomorphic to $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$, with generators $[0, 0]$ and $[1, 0]$.

elltwist($P$)  
Returns the coefficients $[a_1, a_2, a_3, a_4, a_6]$ of the twist of the elliptic curve $E$ by the quadratic extension of the coefficient ring defined by $P$ (when $P$ is a polynomial) or quadpoly($P$) when $P$ is an integer. If $E$ is defined over a finite field, then $P$ can be omitted, in which case a random model of the unique nontrivial twist is returned. If $E$ is defined over a number field, the model should be replaced by a minimal model (if one exists).

Example: Twist by discriminant $-3$:

```plaintext
? elltwist(ellinit([[0,a2,0,a4,a6]],-3)
%1 = [0,-3*a2,0,9*a4,-27*a6]
```

Twist by the Artin-Schreier extension given by $x^2 + x + T$ in characteristic 2:

```plaintext
? lift(elltwist(ellinit([[a1,a2,a3,a4,a6]*Mod(1,2)),x^2+x+T))
%1 = [a1,a2+a1^2*T,a3,a4,a6+a3^2*T]
```

Twist of an elliptic curve defined over a finite field:

```plaintext
? E=ellinit([1,7]*Mod(1,19));lift(elltwist(E))
%1 = [0,0,0,11,12]
```

ellweilcurve($ms$)  
If $E'$ is an elliptic curve over $\mathbb{Q}$, let $L_{E'}$ be the sub-$\mathbb{Z}$-module of $\text{Hom}_{\Gamma_0(N)}(\Delta_0, \mathbb{Q})$ attached to $E'$ (It is given by $x[3]$ if $[M, x] = msfromell(E')$.)

On the other hand, if $N$ is the conductor of $E$ and $f$ is the modular form for $\Gamma_0(N)$ attached to $E$, let $L_f$ be the lattice of the $f$-component of $\text{Hom}_{\Gamma_0(N)}(\Delta_0, \mathbb{Q})$ given by the elements $\phi$ such that $\phi(0, \gamma^{-1} 0) \in \mathbb{Z}$ for all $\gamma \in \Gamma_0(N)$ (see mslattice).

Let $E'$ run through the isomorphism classes of elliptic curves isogenous to $E$ as given by ellisomat (and in the same order). This function returns a pair $[vE, vS]$ where $vE$ contains minimal models for the $E'$ and $vS$ contains the list of Smith invariants for the lattices $L_{E'}$ in $L_f$. The function also accepts the output of ellisomat, i.e. the isogeny class. If the optional argument $ms$ is present, it contains the output of msfromell($vE$, $\theta$), i.e. the new modular symbol space $M$ of level $N$ and a vector of triples $[x^+, x^-, L]$ attached to each curve $E'$.

In particular, the strong Weil curve amongst the curves isogenous to $E$ is the one whose Smith invariants are $[c, c]$, where $c$ is the Manin constant, conjecturally equal to 1.

```plaintext
? E = ellinit("11a3");
? [vE, vS] = ellweilcurve(E);
? [n] = [i | i<-[1..#vS], vS[i]==[1,1]] \ \ lattice with invariant [1,1]
%3 = [2]
? ellidentify(vE[n]) \ \ ... corresponds to strong Weil curve
%4 = [["11a1", [0, -1, 1, -10, -20], []], [1, 0, 0, 0]]
```
ellweilcurve(E, &ms); \ vE,vS are as above
? [M, vx] = ms; msdim(M) \ ... but ms contains more information
%6 = 3
? #vx
%7 = 3
? vx[1]
%8 = [[1/25, -1/10, -1/10]~, [0, 1/2, -1/2]~, [1/25, 0; -3/5,1; 2/5,-1]]
? forell(E, 11,11, print(msfromell(ellinit(E[1]), 1)[2]))
[1/5, -1/2, -1/2]~
[1, -5/2, -5/2]~
[1/25, -1/10, -1/10]~

The last example prints the modular symbols $x^+$ in $M^+$ attached to the curves 11a1, 11a2 and 11a3.

ellweilpairing($P, Q, m$)

Let $E$ be an elliptic curve defined over a finite field and $m \geq 1$ be an integer. This function computes the Weil pairing of the two $m$-torsion points $P$ and $Q$ on $E$, which is an alternating bilinear map. More precisely, let $f_{m,R}$ denote a Miller function with divisor $m[R] - m[O_E]$; the algorithm returns the $m$-th root of unity

$$\varepsilon(P, Q)^m \cdot f_{m,R}(Q)/f_{m,R}(P),$$

where $f(R)$ is the extended evaluation of $f$ at the divisor $[R] - [O_E]$ and $\varepsilon(P, Q) \in \mathbb{1}$ is given by Weil reciprocity: $\varepsilon(P, Q) = 1$ if and only if $P, Q, O_E$ are not pairwise distinct.

ellwp($z$, flag, precision)

Computes the value at $z$ of the Weierstrass $\wp$ function attached to the lattice $w$ as given by ellperiods. It is also possible to directly input $w = \{\omega_1, \omega_2\}$, or an elliptic curve $E$ as given by ellinit ($w = E.omega$).

One can also compute the series expansion around $z = 0$:

Optional flag means 0 (default): compute only $\wp(z)$, 1: compute $[\wp(z), \wp'(z)]$.

For instance, the Dickson elliptic functions $sm$ and $sn$ can be implemented as follows

\[
\text{smcm}(z) = \\
\{ \text{my}(a, b, E = \text{ellinit}([0,-1/(4*27)])); \ \text{ell. invariants } (g2,g3)=(0,1/27)\\
[a,b] = \text{ellwp}(E, z, 1);\\
[6*a / (1-3*b), (3*b+1)/(3*b-1)];\\
\}
\]

? [s,c] = smcm(0.5);
ellxn\( (n, v) \)

For any affine point \( P = (t, u) \) on the curve \( E \), we have

\[
[n]P = (\phi_n(P) : \psi_n(P) : \omega_n(P) : \psi_n(P)^3)
\]

for some \( \phi_n, \omega_n, \psi_n \) in \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][t, u] \) modulo the curve equation. This function returns a pair \([A, B]\) of polynomials in \( \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][v] \) such that \([A(t), B(t)] = [\phi_n(P), \psi_n(P)^2] \) in the function field of \( E \), whose quotient give the abscissa of \([n]P\). If \( P \) is an \( n \)-torsion point, then \( B(t) = 0 \).

ellzeta\( (z, \text{precision}) \)

Computes the value at \( z \) of the Weierstrass \( \zeta \) function attached to the lattice \( w \) as given by \( \text{ellperiods}(w, 1) \): including quasi-periods is useful, otherwise there are recomputed from scratch for each new \( z \).

\[
\zeta(z, L) = (1)/(z) + z^2 \sum_{\omega \in L^*} (1)/(\omega^2(z - \omega)).
\]

It is also possible to directly input \( w = [\omega_1, \omega_2] \), or an elliptic curve \( E \) as given by \( \text{ellinit}(w = E.\omega) \). The quasi-periods of \( \zeta \), such that

\[
\zeta(z + a\omega_1 + b\omega_2) = \zeta(z) + a\eta_1 + b\eta_2
\]

for integers \( a \) and \( b \) are obtained as \( \eta_i = 2\zeta(\omega_i/2) \). Or using directly \( \text{elleta} \).

One can also compute the series expansion around \( z = 0 \) (the quasi-periods are useless in this case):

\[
E = \text{ellinit}([0, 1]);
\]

\[
\text{ellzeta}(E) \text{ \&\& at } 'x', \text{ implicitly at default seriesprecision}
\]

\[
E = \text{ellinit}([0, 1]);
\]

\[
\text{ellzeta}(E, x + 0(x^20)) \text{ \&\& explicit precision}
\]
ellztopoint$(z, \text{precision})$

$E$ being an ell as output by ellinit, computes the coordinates $[x, y]$ on the curve $E$ corresponding to the complex or $p$-adic parameter $z$. Hence this is the inverse function of ellpointtoz.

- If $E$ is defined over a $p$-adic field and has multiplicative reduction, then $z$ is understood as an element on the Tate curve $\bar{Q}_p/\mathbb{Z}_p$.

```plaintext
? E = ellinit([0,-1,1,0,0], O(11^5));
? [u2,u,q] = E.tate; type(u)
%2 = "t_PADIC" \ \ split multiplicative reduction
? z = ellpointtoz(E, [0,0])
%3 = 3 + 11^2 + 2*11^3 + 3*11^4 + 6*11^5 + 10*11^6 + 8*11^7 + O(11^8)
? ellztopoint(E,z)
%4 = [O(11^9), O(11^9)]

? E = ellinit(ellfromj(1/4), O(2^6)); x=1/2; y=ellordinate(E,x)[1];
? z = ellpointtoz(E,[x,y]); \ \ nonsplit: t_POLMOD with t_PADIC coefficients
? P = ellztopoint(E, z);
? P[1] \ \ \ \ y coordinate is analogous, more complicated
%8 = Mod(O(2^4)*x + (2^-1 + O(2^5)), x^2 + (1 + 2^2 + 2^4 + 2^5 + O(2^7)))
```

- If $E$ is defined over the complex numbers (for instance over $\mathbb{Q}$), $z$ is understood as a complex number in $\mathbb{C}/\Lambda_E$. If the short Weierstrass equation is $y^2 = 4x^3 - g_2x - g_3$, then $[x, y]$ represents the Weierstrass $\wp$-function and its derivative. For a general Weierstrass equation we have

$$x = \wp(z) - b_2/12, y = \wp'(z)/2 - (a_1x + a_3)/2.$$  

If $\text{math} : \{z\text{isinthelatticedefining} : \text{math} : \{E\text{over} : \text{math} : \{C\}, \text{theresultisthepointat} \infty \text{inity} : \text{math} : \{0\}^3$.

```plaintext
? E = ellinit([0,1]); P = [2,3];
? z = ellpointtoz(E, P)
%2 = 3.505455263313635629375476976257353387
? ellwp(E, z)
%3 = 2.0000000000000000000000000000000000000
? ellztopoint(E, z) - P
%4 = [2.548947057811923643 E-57, 7.646841173435770930 E-57]
? ellztopoint(E, 0)
%5 = [0] \ \ \ \ point at \ \ \ infinity
```

erfc$(\text{precision})$

Complementary error function, analytic continuation of $(2/\sqrt{\pi}) \int_x^\infty e^{-t^2} dt = \text{sign} (x) \text{incgam}(1/2, x^2)/\sqrt{\pi}$ for real $x! = 0$. The latter expression extends the function definition from real $x$ to complex $x$ with positive real part (or zero real part and positive imaginary part). This is extended to the whole complex plane by the functional equation \( \text{erfc}(-x) = 2 - \text{erfc}(x) \).

```plaintext
? erfc(0)
%1 = 1.0000000000000000000000000000000000000
? erfc(1)
%2 = 0.15729920705028513065877936491739074071
? erfc(1+I)
%3 = -0.31615128169794764488027108024367936903
- 0.1904534692378468284088619616244244*I
```
errname()  
Returns the type of the error message E as a string.

```pari
? iferr(1 / 0, E, print(errname(E)))
e_INV
? ?? e_INV
[...]
* "e_INV". Tried to invert a noninvertible object x in function s.
[...]
```

eta(flag, precision)  
Variants of Dedekind’s $\eta$ function. If flag = 0, return $\prod_{n=1}^{\infty} o(1 - q^n)$, where $q$ depends on $x$ in the following way:
- $q = e^{2\pi x}$ if $x$ is a complex number (which must then have positive imaginary part); notice that the factor $q^{1/24}$ is missing!
- $q = x$ if $x$ is a $\text{t_PADIC}$, or can be converted to a power series (which must then have positive valuation).

If flag is nonzero, $x$ is converted to a complex number and we return the true $\eta$ function, $q^{1/24} \prod_{n=1}^{\infty} o(1 - q^n)$, where $q = e^{2\pi x}$.

eulerphi()  
Euler’s $\phi$ (totient) function of the integer $\|x\|$, in other words $\|(\mathbb{Z}/x\mathbb{Z})^*\|$.  

```pari
? eulerphi(40)
%1 = 16

According to this definition we let $\phi(0) := 2$, since $\mathbb{Z}^* = \{1, -1\}$; this is consistent with znstar(0): we have znstar:math:`\(n).no = eulerphi(n)\` for all $n \in \mathbb{Z}$.
```

exp(precision)  
Exponential of $x$. $p$-adic arguments with positive valuation are accepted.

exp1(precision)  
Return $\exp(x) - 1$, computed in a way that is also accurate when the real part of $x$ is near 0. A naive direct computation would suffer from catastrophic cancellation; PARI’s direct computation of $\exp(x)$ alleviates this well known problem at the expense of computing $\exp(x)$ to a higher accuracy when $x$ is small. Using exp1 is recommended instead:

```pari
? default(realprecision, 10000); x = 1e-100;
? a = exp1(x);
time = 4 ms.
? b = exp(x)-1;
time = 4 ms.
? default(realprecision, 10040); x = 1e-100;
? c = exp1(x); \ \ reference point
? abs(a-c)/c \ \ relative error in exp1(x)
%7 = 1.4027986153764843997 E-10019
? abs(b-c)/c \ \ relative error in exp(x)-1
%8 = 1.7907031188259675794 E-9919
```

As the example above shows, when $x$ is near 0, exp1 is more accurate than $\exp(x) - 1$.

exponent()  
When $x$ is a $\text{t_REAL}$, the result is the binary exponent $e$ of $x$. For a nonzero $x$, this is the unique integer $e$ such
that $2^e \leq \|x\| < 2^{e+1}$. For a real 0, this returns the PARI exponent $e$ attached to $x$ (which may represent any floating-point number less than $2^e$ in absolute value).

This definition extends naturally to nonzero integers, and the exponent of an exact 0 is $-\infty$ by convention.

For convenience, we define the exponent of a $\mathfrak{t}_{\text{FRAC}} \frac{a}{b}$ as the difference of $\text{exponent}(a)$ and $\text{exponent}(b)$; note that if $e'$ denotes the exponent of $\frac{a}{b} * 1.0$, then the exponent $e$ we return is either $e'$ or $e' + 1$, thus $2^{e+1}$ is an upper bound for $\|a/b\|$. For a PARI object of type $\mathfrak{t}_{\text{COMPLEX}}, \mathfrak{t}_{\text{POL}}, \mathfrak{t}_{\text{SER}}, \mathfrak{t}_{\text{COL}}, \mathfrak{t}_{\text{MAT}}$ this returns the largest exponent found among the components of $x$. Hence $2^{e+1}$ is a quick upper bound for the sup norm of real matrices or polynomials; and $2^{e+(3/2)}$ for complex ones.

`factor(D)`

Factor $x$ over domain $D$; if $D$ is omitted, it is determined from $x$. For instance, if $x$ is an integer, it is factored in $\mathbb{Z}$, if it is a polynomial with rational coefficients, it is factored in $\mathbb{Q}[x]$, etc., see below for details. The result is a two-column matrix: the first contains the irreducibles dividing $x$ (rational or Gaussian primes, irreducible polynomials), and the second the exponents. By convention, 0 is factored as $0^1$.

See `factorint` for the algorithms used. The factorization includes the unit $-1$ when $x < 0$ and all other factors are positive; a denominator is factored with negative exponents. The factors are sorted in increasing order.

Large rational “primes” $> 2^{64}$ in the factorization are in fact pseudoprimes (see `ispseudoprime`), a priori not rigorously proven primes. Use `isprime` to prove primality of these factors, as in
Another possibility is to globally set the default factor_proven, which will perform a rigorous primality proof for each pseudoprime factor but will slow down PARI.

A t_INT argument $D$ can be added, meaning that we only trial divide by all primes $p < D$ and the addprimes entries, then skip all expensive factorization methods. The limit $D$ must be nonnegative. In this case, one entry in the factorization may be a composite number: all factors less than $D^2$ and primes from the addprimes table are actual primes. But (at most) one entry may not verify this criterion, and it may be prime or composite: it is only known to be coprime to all other entries and not a pure power.

### Deprecated feature

Setting $D = 0$ is the same as setting it to primelimit + 1.

This routine uses trial division and perfect power tests, and should not be used for huge values of $D$ (at most $10^9$, say): factorint($F$ + 8) will in general be faster. The latter does not guarantee that all small prime factors are found, but it also finds larger factors and in a more efficient way.
time = 60 ms.
%8 =
[1009 1]
[100003 1]
[59649589127497217 1]
[5704689200685129054721 1]

Setting $D = I$ will factor in the Gaussian integers $\mathbb{Z}[i]$:

*:math: x in \mathbb{Q}(i) :*

The factorization is performed with Gaussian primes in $\mathbb{Z}[i]$ and includes Gaussian units in $1, i$; factors are sorted by increasing norm. Except for a possible leading unit, the Gaussian factors are normalized: rational factors are positive and irrational factors have positive imaginary part (a canonical represneta.

Unless `factor_proven` is set, large factors are actually pseudoprimes, not proven primes; a rational factor is prime if less than $2^{64}$ and an irrational one if its norm is less than $2^{64}$.

? factor(5*I)
%9 =
[ 2 + I 1]
[1 + 2*I 1]

One can force the factorization of a rational number by setting the domain $D = I$:

? factor(-5, I)
%10 =
[ I 1]
[ 2 + I 1]
[1 + 2*I 1]
? factorback(%)
%11 = -5

Univariate polynomials and rational functions. PARI can factor univariate polynomials in $K[t]$. The following base fields $K$ are currently supported: $\mathbb{Q}, \mathbb{R}, \mathbb{C}, \mathbb{Q}_p$, finite fields and number fields. See `factormod` and `factorff` for the algorithms used over finite fields and `nffactor` for the algorithms over number fields. The irreducible factors are sorted by increasing degree and normalized: they are monic except when $K = \mathbb{Q}$ where they are primitive in $\mathbb{Z}[t]$.

The content is not included in the factorization, in particular `factorback` will in general recover the original $x$ only up to multiplication by an element of $K^*$: when $K = \mathbb{Q}$, this scalar is `pollead(x)` (since irreducible factors are monic); and when $K = \mathbb{Q}$ you can either ask for the $\mathbb{Q}$-content explicitly of use `factorback`:

? P = t^2 + 5*t/2 + 1; F = factor(P)
%12 =
[t + 2 1]
[2*t + 1 1]
? content(P, 1) \ / \ Q-content

(continues on next page)
You can specify $K$ using the optional “domain” argument $D$ as follows:

- $K = \mathbb{Q}$: $D$ a rational number ($t\text{\_INT}$ or $t\text{\_FRAC}$).
- $K = \mathbb{Z}/p\mathbb{Z}$ with $p$ prime: $D$ a $t\text{\_INTMOD}$ modulo $p$; factoring modulo a composite number is not supported.
- $K = \mathbb{F}_q$: $D$ a $t\text{\_FFELT}$ encoding the finite field; you can also use a $t\text{\_POLMOD}$ of $t\text{\_INTMOD}$ modulo a prime $p$ but this is usually less convenient;
- $K = \mathbb{Q}[X]/(T)$ a number field: $D$ a $t\text{\_POLMOD}$ modulo $T$.
- $K = \mathbb{Q}(i)$ (alternate syntax for special case): $D = I$,
- $K = \mathbb{Q}(w)$ a quadratic number field (alternate syntax for special case): $D$ a $t\text{\_QUAD}$,
- $K = \mathbb{R}$: $D$ a real number ($t\text{\_REAL}$); truncate the factorization at accuracy $\text{precision}(D)$. If $x$ is inexact and $\text{precision}(x)$ is less than $\text{precision}(D)$, then the precision of $x$ is used instead.
- $K = \mathbb{C}$: $D$ a complex number with a $t\text{\_REAL}$ component, e.g. $I * 1.$; truncate the factorization as for $K = \mathbb{R}$,
- $K = \mathbb{Q}_p$: $D$ a $t\text{\_PADIC}$; truncate the factorization at $p$-adic accuracy $\text{padicprec}(D)$, possibly less if $x$ is inexact with insufficient $p$-adic accuracy;

```plaintext
? T = x^2+1;
? factor(T, 1); \ over Q
? factor(T, Mod(1,3)) \ over F_3
? factor(T, ffgen(ffinit(3,2,'t))^0) \ over F_{3^2}
? factor(T, Mod(Mod(1,3), t^2+t+2)) \ over F_{3^2}, again
? factor(T, O(3^6)) \ over Q_3, precision 6
? factor(T, 1.) \ over R, current precision
? factor(T, I*1.) \ over C
? factor(T, Mod(1, y^3-2)) \ over Q(2^{1/3})
```

In most cases, it is possible and simpler to call a specialized variant rather than use the above scheme:

```plaintext
? factormod(T, 3) \ over F_3
? factormod(T, [t^2+t+2, 3]) \ over F_{3^2}
? factormod(T, ffgen(ffinit(3,2,'t))^0) \ over F_{3^2}
? factorpadic(T, 3,6) \ over Q_3, precision 6
? nfactor(y^3-2, T) \ over Q(2^{1/3})
? polroots(T) \ over C
? polrootsreal(T) \ over R (real polynomial)
```

It is also possible to let the routine use the smallest field containing all coefficients, taking into account quotient structures induced by $t\text{\_INTMOD}$s and $t\text{\_POLMOD}$s (e.g. if a coefficient in $\mathbb{Z}/n\mathbb{Z}$ is known, all rational numbers encountered are first mapped to $\mathbb{Z}/n\mathbb{Z}$; different moduli will produce an error):

```plaintext
? T = x^2+1;
? factor(T); \ over Q
? factor(T*Mod(1,3)) \ over F_3
? factor(T*ffgen(ffinit(3,2,'t))^0) \ over F_{3^2}
```
Multiplying by a suitable field element equal to $1 \in K$ in this way is error-prone and is not recommended. Factoring existing polynomials with obvious fields of coefficients is fine, the domain argument $D$ should be used instead ad hoc conversions.

**Note on inexact polynomials.** Polynomials with inexact coefficients (e.g. floating point or $p$-adic numbers) are first rounded to an exact representation, then factored to (potentially) infinite accuracy and we return a truncated approximation of that virtual factorization. To avoid pitfalls, we advise to only factor *exact* polynomials:

```plaintext
? factor(x^2-1+O(2^2)) \ rounded to x^2 + 3, irreducible in Q_2
%1 =
[(1 + O(2^2))*x^2 + O(2^2)*x + (1 + 2 + O(2^2)) 1]

? factor(x^2-1+O(2^3)) \ rounded to x^2 + 7, reducible !
%2 =
[(1 + O(2^3))*x + (1 + 2 + O(2^3)) 1]
[(1 + O(2^3))*x + (1 + 2^2 + O(2^3)) 1]

? factor(x^2-1, O(2^2)) \ no ambiguity now
%3 =
[(1 + O(2^2))*x + (1 + O(2^2)) 1]
[(1 + O(2^2))*x + (1 + 2 + O(2^2)) 1]
```

**Note about inseparable polynomials.** Polynomials with inexact coefficients are considered to be squarefree: indeed, there exist a squarefree polynomial arbitrarily close to the input, and they cannot be distinguished at the input accuracy. This means that irreducible factors are repeated according to their apparent multiplicity. On the contrary, using a specialized function such as `factorpadic` with an exact rational input yields the correct multiplicity when the (now exact) input is not separable. Compare:

```plaintext
? factor(z^2 + O(5^2)))
%1 =
[(1 + O(5^2))*z + O(5^2) 1]
[(1 + O(5^2))*z + O(5^2) 1]

? factor(z^2, O(5^2))
%2 =
[(1 + O(5^2))*z + O(5^2) 2]
```

**Multivariate polynomials and rational functions.** PARI recursively factors multivariate polynomials in $K[t_1, ..., t_d]$ for the same fields $K$ as above and the argument $D$ is used in the same way to specify $K$. The irreducible factors are sorted by their main variable (least priority first) then by increasing degree.

```plaintext
? factor(x^2 + y^2, Mod(1,5))
%1 =
[x + Mod(2, 5)*y 1]
```

(continues on next page)
Note that the implementation does not really support inexact real fields (\(\mathbb{R}\) or \(\mathbb{C}\)) and usually misses factors even if the input is exact:

```plaintext
? factor(x^2 + y^2, I) \ \over Q(i)
%4 =
[x - I*y 1]
[x + I*y 1]

? factor(x^2 + y^2, I*1.) \ \over C
%5 =
[x^2 + y^2 1]
```

**factorback(e)**

Gives back the factored object corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If \(e\) is present, \(e\) and \(f\) must be vectors of the same length (\(e\) being integral), and the corresponding factorization is the product of the \(f[i][e[i]]\).

If not, and \(f\) is vector, it is understood as in the preceding case with \(e\) a vector of 1s: we return the product of the \(f[i]\). Finally, \(f\) can be a regular factorization, as produced with any \texttt{factor} command. A few examples:

```plaintext
? factor(12)
%1 =
[2 2]
[3 1]

? factorback(%)
%2 = 12
? factorback([2,3], [2,1]) \ \2^3 * 3^1
%3 = 12
? factorback([5,2,3])
%4 = 30
```

**factorcantor(p)**

This function is obsolete, use \texttt{factormod}.

---

536 Chapter 2. The Gen class wrapping PARI’s GEN type
factorff\((p, a)\)

Obsolete, kept for backward compatibility: use factormod.

factorint\((\text{flag})\)

Factors the integer \(n\) into a product of pseudoprimes (see ispseudoprime), using a combination of the Shanks SQUFOF and Pollard Rho method (with modifications due to Brent), Lenstra’s ECM (with modifications by Montgomery), and MPQS (the latter adapted from the LiDIA code with the kind permission of the LiDIA maintainers), as well as a search for pure powers. The output is a two-column matrix as for factor: the first column contains the “prime” divisors of \(n\), the second one contains the (positive) exponents.

By convention \(0\) is factored as \(0^1\), and \(1\) as the empty factorization; also the divisors are by default not proven primes if they are larger than \(2^{64}\), they only failed the BPSW compositeness test (see ispseudoprime). Use isprime on the result if you want to guarantee primality or set the factor_proven default to 1. Entries of the private prime tables (see addprimes) are also included as is.

This gives direct access to the integer factoring engine called by most arithmetical functions. \text{flag} is optional; its binary digits mean 1: avoid MPQS, 2: skip first stage ECM (we may still fall back to it later), 4: avoid Rho and SQUFOF, 8: don’t run final ECM (as a result, a huge composite may be declared to be prime). Note that a (strong) probabilistic primality test is used; thus composites might not be detected, although no example is known.

You are invited to play with the flag settings and watch the internals at work by using gp’s debug default parameter (level 3 shows just the outline, 4 turns on time keeping, 5 and above show an increasing amount of internal details).

factormod\((D, \text{flag})\)

Factors the polynomial \(f\) over the finite field defined by the domain \(D\) as follows:

- \(D = p\) a prime: factor over \(\mathbb{F}_p\);
- \(D = [T, p]\) for a prime \(p\) and \(T(y)\) an irreducible polynomial over \(\mathbb{F}_p\): factor over \(\mathbb{F}_p[y]/(T)\) (as usual the main variable of \(T\) must have lower priority than the main variable of \(f\));
- \(D\) a \texttt{t_FFELT}: factor over the attached field;
- \(D\) omitted: factor over the field of definition of \(f\), which must be a finite field.

The coefficients of \(f\) must be operation-compatible with the corresponding finite field. The result is a two-column matrix, the first column being the irreducible polynomials dividing \(f\), and the second the exponents. By convention, the 0 polynomial factors as \(0^1\); a nonzero constant polynomial has empty factorization, a \(0\times 2\) matrix. The irreducible factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls or sessions.

\[
\begin{align*}
? \text{factormod}(x^2 + 1, 3) & \quad \text{over } \mathbb{F}_3 \\
%1 = & \quad [\text{Mod}(1, 3) \times x^2 + \text{Mod}(1, 3) \ 1] \\
? \text{liftall}( \text{factormod}(x^2 + 1, [t^2+1, 3]) ) & \quad \text{over } \mathbb{F}_9 \\
%2 = & \quad [ \ x + t \ 1] \\
& \quad [x + 2 \times t \ 1] \\
\end{align*}
\]

\[
\begin{align*}
\text{\textbackslash same, now letting GP choose a model} \\
? T = \text{ffinit}(3,2,'t) \\
%3 = \text{Mod}(1, 3) \times t^2 + \text{Mod}(1, 3) \times t + \text{Mod}(2, 3) \\
? \text{liftall}( \text{factormod}(x^2 + 1, [T, 3]) ) \\
%4 = \quad t \text{ is a root of } T! \\
& \quad [ \ x + (t + 2) \ 1] \\
& \quad [x + (2 \times t + 1) \ 1] \\
\end{align*}
\]

(continues on next page)
? t = ffgen(t^2+Mod(1,3)); factormod(x^2 + t^0) \ same using t_FFELT
%5 = [ x + t 1]
[x + 2*t 1]
? factormod(x^2+Mod(1,3))
%6 = [Mod(1, 3)*x^2 + Mod(1, 3) 1]
? liftall( factormod(x^2 + Mod(Mod(1,3), y^2+1)) )
%7 = [ x + y 1]
[x + 2*y 1]

If flag is nonzero, outputs only the degrees of the irreducible polynomials (for example to compute an L-function). By convention, a constant polynomial (including the 0 polynomial) has empty factorization. The degrees appear in increasing order but need not correspond to the ordering with flag = 0 when multiplicities are present.

? f = x^3 + 2*x^2 + x + 2;
? factormod(f, 5) \ (x+2)^2 * (x+3)
%1 = [Mod(1, 5)*x + Mod(2, 5) 2]
[Mod(1, 5)*x + Mod(3, 5) 1]
? liftall( factormod(x^2 + Mod(Mod(1,3), y^2+1)) )
%7 = [ x + y 1]
[x + 2*y 1]

factormodDDF(D)

Distinct-degree factorization of the squarefree polynomial f over the finite field defined by the domain D as follows:

• D = p a prime: factor over \( \mathbb{F}_p \);
• D = [T, p] for a prime p and T an irreducible polynomial over \( \mathbb{F}_p \): factor over \( \mathbb{F}_p[x]/(T) \);
• D a t_FFELT: factor over the attached field;
• D omitted: factor over the field of definition of f, which must be a finite field.

This is somewhat faster than full factorization. The coefficients of f must be operation-compatible with the corresponding finite field. The result is a two-column matrix:

• the first column contains monic (squarefree) pairwise coprime polynomials dividing f, all of whose irreducible factors have degree d;
• the second column contains the degrees of the irreducible factors.

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls or sessions.

? f = (x^2 + 1) * (x^2-1);
? factormodSQF(f,3) \ squarefree over \( \mathbb{F}_3 \)
%2 =
[Mod(1, 3)*x^4 + Mod(2, 3) 1]

? factormodDDF(f, 3)
%3 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1] \ two degree 1 factors
[Mod(1, 3)*x^2 + Mod(1, 3) 2] \ irred of degree 2

? for(i=1,10^5,factormodDDF(f,3))
time = 424 ms.
? for(i=1,10^5,factormod(f,3)) \ full factorization is slower
time = 464 ms.

? liftall( factormodDDF(x^2 + 1, [3, t^2+1]) ) \ over F_9
%6 =
[x^2 + 1 1] \ product of two degree 1 factors

? t = ffgen(t^2+Mod(1,3)); factormodDDF(x^2 + t^0) \ same using t_FFELT
%7 =
[x^2 + 1 1]

? factormodDDF(x^2-Mod(1,3))
%8 =
[Mod(1, 3)*x^2 + Mod(2, 3) 1]

factormodSQF(D)
Squarefree factorization of the polynomial $f$ over the finite field defined by the domain $D$ as follows:
• $D = p$ a prime: factor over $\mathbb{F}_p$;
• $D = [T, p]$ for a prime $p$ and $T$ an irreducible polynomial over $\mathbb{F}_p$: factor over $\mathbb{F}_p[x]/(T)$;
• $D$ a t_FFELT: factor over the attached field;
• $D$ omitted: factor over the field of definition of $f$, which must be a finite field.

This is somewhat faster than full factorization. The coefficients of $f$ must be operation-compatible with the
corresponding finite field. The result is a two-column matrix:
• the first column contains monic squarefree pairwise coprime polynomials dividing $f$;
• the second column contains the power to which the polynomial in column 1 divides $f$;

The factors are ordered by increasing degree and the result is canonical: it will not change across multiple calls
or sessions.

? f = (x^2 + 1)^3 * (x^2-1)^2;
? factormodSQF(f, 3) \ over F_3
%1 =
[Mod(1, 3)*x^2 + Mod(2, 3) 2]
[Mod(1, 3)*x^2 + Mod(1, 3) 3]

? for(i=1,10^5,factormodSQF(f,3))
time = 192 ms.
\begin{Verbatim}
? for(i=1,10^5,factormod(f,3)) \ \ / full factorization is slower
time = 409 ms.

? liftall( factormodSQF((x^2 + 1)^3, [3, t^2+1]) ) \ \ / over F_9
%4 =
[x^2 + 1 3]

? t = ffgen(t^2+Mod(1,3)); factormodSQF((x^2 + t^0)^3) \ \ / same using t_FFELT
%5 =
[x^2 + 1 3]

? factormodSQF(x^8 + x^7 + x^6 + x^2 + x + Mod(1,2))
%6 =
[ Mod(1, 2)*x + Mod(1, 2) 2]
[Mod(1, 2)*x^2 + Mod(1, 2)*x + Mod(1, 2) 3]
\end{Verbatim}

**factornf**

This function is obsolete, use \texttt{nffactor}.

Factorization of the univariate polynomial \(x\) over the number field defined by the (univariate) polynomial \(t\). \(x\) may have coefficients in \(Q\) or in the number field. The algorithm reduces to factorization over \(Q\) (Trager’s trick). The direct approach of \texttt{nffactor}, which uses van Hoeij’s method in a relative setting, is in general faster.

The main variable of \(t\) must be of lower priority than that of \(x\) (see \texttt{priority} in the PARI manual). However if nonrational number field elements occur (as polmods or polynomials) as coefficients of \(x\), the variable of these polmods must be the same as the main variable of \(t\). For example

\begin{Verbatim}
? factornf(x^2 + Mod(y, y^2+1), y^2+1);
? factornf(x^2 + y, y^2+1); \ \ / these two are OK
? factornf(x^2 + Mod(z,z^2+1), y^2+1)
*** at top-level: factornf(x^2+Mod(z,z
*** ^-------------------
*** factornf: inconsistent data in rnf function.
? factornf(x^2 + z, y^2+1)
*** at top-level: factornf(x^2+z,y^2+1
*** ^-------------------
*** factornf: incorrect variable in rnf function.
\end{Verbatim}

**factorpadic**

\(p\)-adic factorization of the polynomial \texttt{pol} to precision \(r\), the result being a two-column matrix as in \texttt{factor}.

Note that this is not the same as a factorization over \(Z/p^rZ\) (polynomials over that ring do not form a unique factorization domain, anyway), but approximations in \(Q/p^rZ\) of the true factorization in \(Q_p[X]\).

\begin{Verbatim}
? factorpadic(x^2 + 9, 3,5)
%1 =
[(1 + O(3^5))*x^2 + O(3^5)*x + (3^2 + O(3^5)) 1]
? factorpadic(x^2 + 1, 5,3)
%2 =
[(1 + O(5^3))*x + (2 + 5 + 2*5^2 + O(5^3)) 1]
[(1 + O(5^3))*x + (3 + 3*5 + 2*5^2 + O(5^3)) 1]
\end{Verbatim}
The factors are normalized so that their leading coefficient is a power of \( p \). The method used is a modified version of the round 4 algorithm of Zassenhaus.

If \( \text{pol} \) has inexact \texttt{t_PADIC} coefficients, this is not always well-defined; in this case, the polynomial is first made integral by dividing out the \( p \)-adic content, then lifted to \( \mathbb{Z} \) using \texttt{truncate} coefficientwise. Hence we actually factor exactly a polynomial which is only \( p \)-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with exact rational coefficients.

\texttt{ffcompomap}(g)

Let \( k, l, m \) be three finite fields and \( f \) a (partial) map from \( l \) to \( m \) and \( g \) a (partial) map from \( k \) to \( l \), return the (partial) map \( fog \) from \( k \) to \( m \).

\begin{verbatim}
  a = ffgen([3,5], 'a); b = ffgen([3,10], 'b); c = ffgen([3,20], 'c);
  m = ffmembed(a, b); n = ffmembed(b, c);
  rm = fffinvmap(m); rn = fffinvmap(n);
  nm = ffcompomap(n,m);
  ffmap(n,ffmap(m,a)) == ffmap(nm, a)
  \%5 = 1
  ffcompomap(rm, rn) == ffinvmap(nm)
  \%6 = 1
\end{verbatim}

\texttt{ffembed}(b)

Given two finite fields elements \( a \) and \( b \), return a map embedding the definition field of \( a \) to the definition field of \( b \). Assume that the latter contains the former.

\begin{verbatim}
? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffmembed(a, b);
? A = ffmmap(m, a);
? minpoly(A) == minpoly(a)
\%5 = 1
\end{verbatim}

\texttt{ffextend}(P, v)

Extend the field \( K \) of definition of \( a \) by a root of the polynomial \( P \in K[X] \) assumed to be irreducible over \( K \). Return \([r, m]\) where \( r \) is a root of \( P \) in the extension field \( L \) and \( m \) is a map from \( K \) to \( L \), see \texttt{ffmap}. If \( v \) is given, the variable name is used to display the generator of \( L \), else the name of the variable of \( P \) is used. A generator of \( L \) can be recovered using \( b = ffgen(r) \). The image of \( P \) in \( L[X] \) can be recovered using \( PL = ffmmap(m, P) \).

\begin{verbatim}
? a = ffgen([3,5], 'a);
? P = x^2-a; polisirreducible(P)
\%2 = 1
? [r,m] = ffextend(a, P, 'b);
? r
\%3 = b^9+2*b^8+b^7+2*b^6+b^4+1
? subst(ffmap(m, P), x, r)
\%4 = 0
? ffgen(r)
\%5 = b
\end{verbatim}

\texttt{fffrobenius}(n)

Return the \( n \)-th power of the Frobenius map over the field of definition of \( m \).

\begin{verbatim}
? a = ffgen([3,5], 'a);
? f = ffffrobenius(a);
\end{verbatim}
ffgen\( (v) \)

Return a generator for the finite field \( k \) as a t_FFELT. The field \( k \) can be given by

- its order \( q \)
- the pair \([p, f]\) where \( q = p^f \)
- a monic irreducible polynomial with t_INTMOD coefficients modulo a prime.
- a t_FFELT belonging to \( k \).

If \( v \) is given, the variable name is used to display \( g \), else the variable of the polynomial or the t_FFELT is used, else \( x \) is used.

When only the order is specified, the function uses the polynomial generated by ffinit and is deterministic: two calls to the function with the same parameters will always give the same generator.

For efficiency, the characteristic is not checked to be prime; similarly if a polynomial is given, we do not check whether it is irreducible.

To obtain a multiplicative generator, call ffprimroot on the result.

```plaintext
? g = ffgen(16, 't);
? g.mod \ recovering the underlying polynomial.
%2 = t^4+t^3+t^2+t+1
? g.pol \ lift g as a t_POL
%3 = t
? g.p \ recovering the characteristic
%4 = 2
? fforder(g) \ g is not a multiplicative generator
%5 = 5
? a = ffprimroot(g) \ recovering a multiplicative generator
%6 = t^3+t^2+t
? fforder(a)
%7 = 15
```

ffinit\( (n, v) \)

Computes a monic polynomial of degree \( n \) which is irreducible over \( \mathbb{F}_p \), where \( p \) is assumed to be prime. This function uses a fast variant of Adleman and Lenstra's algorithm.

It is useful in conjunction with ffgen; for instance if \( P = ffinit(3, 2) \), you can represent elements in \( \mathbb{F}_{3^2} \) in term of \( g = ffgen(P, 't) \). This can be abbreviated as \( g = ffgen(3^2, 't) \). where the defining polynomial \( P \) can be later recovered as \( g.mod \).

ffinvmap()

\( m \) being a map from \( K \) to \( L \) two finite fields, return the partial map \( p \) from \( L \) to \( K \) such that for all \( k \in K \), \( p(m(k)) = k \).
```plaintext
? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? p = ffinvmap(m);
? u = random(a);
? v = ffmap(m, u);
? ffmap(p, v^2+v+2) == u^2+u+2
%7 = 1
? ffmap(p, b)
%8 = []
```

**fflog** \((g, o)\)

Discrete logarithm of the finite field element \(x\) in base \(g\), i.e. an \(e\) in \(\mathbb{Z}\) such that \(g^e = o\). If present, \(o\) represents the multiplicative order of \(g\), see DLfun (in the PARI manual); the preferred format for this parameter is \([\text{ord}, \text{factor(ord)}]\), where \text{ord} is the order of \(g\). It may be set as a side effect of calling \texttt{ffprimroot}. The result is undefined if \(e\) does not exist. This function uses

- a combination of generic discrete log algorithms (see \texttt{znlog})
- a cubic sieve index calculus algorithm for large fields of degree at least 5.
- Coppersmith’s algorithm for fields of characteristic at most 5.

```plaintext
? t = ffgen(ffinit(7,5));
? o = fforder(t)
%2 = 5602 \ \ not a primitive root.
? fflog(t^10, t)
%3 = 10
? fflog(t^10, t, o)
%4 = 10
? g = ffprimroot(t, &o);
? o \ \ order is 16806, bundled with its factorization matrix
%6 = [16806, [2, 1; 3, 1; 2801, 1]]
? fforder(g, o)
%7 = 16806
? fflog(g^10000, g, o)
%8 = 10000
```

**ffmap** \((x)\)

Given a (partial) map \(m\) between two finite fields, return the image of \(x\) by \(m\). The function is applied recursively to the component of vectors, matrices and polynomials. If \(m\) is a partial map that is not defined at \(x\), return 

```plaintext
? a = ffgen([3,5], 'a);
? b = ffgen([3,10], 'b);
? m = ffembed(a, b);
? P = x^2+a*x+1;
? Q = ffmap(m, P);
? ffmap(m, poldisc(P)) == poldisc(Q)
%6 = 1
```

**ffmaprel** \((x)\)

Given a (partial) map \(m\) between two finite fields, express \(x\) as an algebraic element over the codomain of \(m\) in a way which is compatible with \(m\). The function is applied recursively to the component of vectors, matrices and polynomials.
CyPari2 Documentation, Release 2.1.3

```plaintext
? a = ffgen([3,5],'a);
? b = ffgen([3,10],'b);
? m = ffembed(a, b);
? mi = ffinvmap(m);
? R = ffmaprel(mi,b)
%5 = Mod(b,b^2+(a+1)*b+(a^2+2*a+2))

In particular, this function can be used to compute the relative minimal polynomial, norm and trace:

```plaintext
? minpoly(R)
%6 = x^2+(a+1)*x+(a^2+2*a+2)
? trace(R)
%7 = 2*a+2
? norm(R)
%8 = a^2+2*a+2
```

ffnbirred(n, f)

Computes the number of monic irreducible polynomials over \(\mathbb{F}_q \) of degree exactly \(n \), \((\text{flag} = 0 \text{ or omitted})\) or at most \(n \) \((\text{flag} = 1)\).

fforder(o)

Multiplicative order of the finite field element \(x \). If \(o \) is present, it represents a multiple of the order of the element, see DLfun in the PARI manual; the preferred format for this parameter is \([N, \text{factor}(N)]\), where \(N \) is the cardinality of the multiplicative group of the underlying finite field.

```plaintext
? t = ffgen(ffinit(nextprime(10^8), 5));
? g = ffprimroot(t, &o); \ \& o will be useful!
? fforder(g^1000000, o)
time = 0 ms.
%5 = 5000001750000245000017150000600250008403
? fforder(g^1000000)
time = 16 ms. \ \& noticeably slower, same result of course
%6 = 5000001750000245000017150000600250008403
```

ffprimroot(o)

Return a primitive root of the multiplicative group of the definition field of the finite field element \(x \) (not necessarily the same as the field generated by \(x \)). If present, \(o \) is set to a vector \([\text{ord, fa}]\), where \text{ord} is the order of the group and \text{fa} its factorization \text{factor(ord)}. This last parameter is useful in \text{fflog} and \text{fforder}, see DLfun in the PARI manual.

```plaintext
? t = ffgen(ffinit(nextprime(10^7), 5));
? g = ffprimroot(t, &o);
? o[1]
%3 = 100000095000361000685900651652476098
? o[2]
%4 =
[2 1]
[7 2]
[31 1]
[41 1]
```

(continues on next page)
fft(P)
Let $w = [1, z, ..., z^{N-1}]$ from some primitive N-roots of unity z where N is a power of 2, and P be a polynomial $< N$, return the unnormalized discrete Fourier transform of P, $P(w[i]), 1 <= i <= N$. Also allow P to be a vector $[p_0, ..., p_n]$ representing the polynomial $\sum p_i X^i$. Composing \texttt{fft} and \texttt{fftinv} returns N times the original input coefficients.

\texttt{fft(w, x^3+x+1)}
\%1 = [3, 1, -1, 1]
\%2 = [4, 4, 0, 4]
\%3 = x^3 + x + 1
\%4 = [\text{Mod}(3,5), \text{Mod}(1,5), \text{Mod}(4,5), \text{Mod}(1,5)]
\%5 = [\text{Mod}(4,5), \text{Mod}(4,5), \text{Mod}(0,5), \text{Mod}(4,5)]

fftinv(P)
Let $w = [1, z, ..., z^{N-1}]$ from some primitive N-roots of unity z where N is a power of 2, and P be a polynomial $< N$, return the unnormalized discrete Fourier transform of P, $P(1/w[i]), 1 <= i <= N$. Also allow P to be a vector $[p_0, ..., p_n]$ representing the polynomial $\sum p_i X^i$. Composing \texttt{fft} and \texttt{fftinv} returns N times the original input coefficients.

\texttt{fft(w, x^3+x+1)}
\%1 = [3, 1, -1, 1]
\%2 = [4, 4, 0, 4]
\%3 = x^3 + x + 1
\%4 = [\text{Mod}(3,5), \text{Mod}(1,5), \text{Mod}(4,5), \text{Mod}(1,5)]
\%5 = [\text{Mod}(4,5), \text{Mod}(4,5), \text{Mod}(0,5), \text{Mod}(4,5)]
fileflush()

Flushes the file descriptor \(n \), created via fileopen or fileextern. On files opened for writing, this function forces a write of all buffered data to the file system and completes all pending write operations. This function is implicitly called by fileclose but you may want to call it explicitly at synchronization points, for instance after writing a large result to file and before printing diagnostics on screen. (In order to be sure that the file contains the expected content on inspection.)

If \(n \) is omitted, flush all descriptors to output streams.

```plaintext
? n = fileopen("./here", "w");
? for (i = 1, 10^5, 
    filewrite(n, i^2+1); \
    if (i % 10000 == 0, fileflush(n)))
```

Until a fileflush or fileclose, there is no guarantee that the file contains all the expected data from previous filewrite s.

floor()

Floor of \(x \). When \(x \) is in \(\mathbb{R} \), the result is the largest integer smaller than or equal to \(x \). Applied to a rational function, \(\text{floor}(x) \) returns the Euclidean quotient of the numerator by the denominator.

fold(A)

Apply the \(\text{t}_\text{CLOSURE} f \) of arity 2 to the entries of \(A \), in order to return \(f(...f(f(A[1],A[2]),A[3])...,
\)
\(A[#A]) \).

```plaintext
? fold((x,y)->x*y, [1,2,3,4])
%1 = 24
? fold((x,y)->[x,y], [1,2,3,4])
%2 = [[1, 2], [3], 4]
? fold((x,f)->f(x), [2,sqr,sqr,sqr])
%3 = 256
? fold((x,y)->(x+y)/(1-x*y),[1..5])
%4 = -9/19
? bestappr(tan(sum(i=1,5,atan(i))))
%5 = -9/19
```

frac()

Fractional part of \(x \). Identical to \(x - \text{floor}(x) \). If \(x \) is real, the result is in \([0, 1]\).[36]

fromdigits(b)

Gives the integer formed by the elements of \(x \) seen as the digits of a number in base \(b \) (\(b = 10 \) by default). This is the reverse of digits:

```plaintext
? digits(1234,5)
%1 = [1,4,4,1,4]
? fromdigits([1,4,4,1,4],5)
%2 = 1234
```

By convention, 0 has no digits:
galoischardet(\(chi, o\))

Let \(G\) be the group attached to the galoisinit structure \(gal\), and let \(\chi\) be the character of some representation \(\rho\) of the group \(G\), where a polynomial variable is to be interpreted as an \(o\)-th root of 1. For instance, if \([T, o] = galoischartable(gal)\) the characters \(\chi\) are input as the columns of \(T\).

Return the degree-1 character \(\det \rho\) as the list of \(\det \rho (g)\), where \(g\) runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same ordering.

\[
\begin{align*}
\text{? } P &= x^5 - x^4 - 5x^3 + 4x^2 + 3x - 1; \\
\text{? } \text{polgalois}(P) \\
%2 &= [10, 1, 1, "D(5) = 5:2"] \\
\text{? } \text{gal} &= \text{nfsplitting}(P); \\
\text{? } \text{galoisinit}(\text{K}); \text{ \textbackslash \ dihedral of order 10} \\
\text{? } \text{T, o} &= \text{galoischartable(gal)}; \\
\text{? } \text{chi} &= \text{T[,1]; \text{ \textbar \ trivial character} \\
\text{? } \text{galoischardet(gal, chi, o)} \\
%7 &= [1, 1, 1, 1]~ \\
\text{? } \text{[galoischardet(gal, T[,i], o) \mid i < [1..\#T]] \text{ \textbar \ all characters} \\
%8 &= [[1, 1, 1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~, [1, 1, -1, 1]~]
\end{align*}
\]

\(\text{galoischarpoly}(\chi, o)\)

Let \(G\) be the group attached to the galoisinit structure \(gal\), and let \(\chi\) be the character of some representation \(\rho\) of the group \(G\), where a polynomial variable is to be interpreted as an \(o\)-th root of 1, e.g., if \([T, o] = galoischartable(gal)\) and \(\chi\) is a column of \(T\). Return the list of characteristic polynomials \(\det (1 - \rho (g) T)\), where \(g\) runs through representatives of the conjugacy classes in galoisconjclasses(gal), with the same ordering.

\[
\begin{align*}
\text{? } T &= x^5 - x^4 - 5x^3 + 4x^2 + 3x - 1; \\
\text{? } \text{polgalois}(T) \\
%2 &= [10, 1, 1, "D(5) = 5:2"] \\
\text{? } \text{gal} &= \text{nfsplitting}(T); \\
\text{? } \text{galoisinit}(\text{K}); \text{ \textbackslash \ dihedral of order 10} \\
\text{? } \text{T, o} &= \text{galoischartable(gal)}; \\
\text{? } \text{o} \\
%5 &= 5 \\
\text{? } \text{galoischarpoly(gal, T[,1], o) \text{ \textbackslash T[,1] is the trivial character} \\
\text{? } %6 &= [\text{-x + 1, -x + 1, -x + 1, -x + 1}]~ \\
\text{? } \text{galoischarpoly(gal, T[,3], o)} \\
\text{? } %7 &= [x^2 - 2x^2 + 1, \\
x^2 + (y^3 + y^2 + 1)*x + 1, \\
\text{-x}^2 + 1, \\
x^2 + (y^3 - y^2)*x + 1]~
\end{align*}
\]

\(\text{galoischartable()}\)

Compute the character table of \(G\), where \(G\) is the underlying group of the galoisinit structure \(gal\). The input \(gal\) is also allowed to be a t_VEC of permutations that is closed under products. Let \(N\) be the number of conjugacy classes of \(G\). Return a t_VEC \([M, e]\) where \(e \geq 1\) is an integer and \(M\) is a square t_MAT of size \(N\) giving the character table of \(G\).

* Each column corresponds to an irreducible character; the characters are ordered by increasing dimension and the first column is the trivial character (hence contains only 1’s).
• Each row corresponds to a conjugacy class; the conjugacy classes are ordered as specified by `galoisconjclasses(gal)`, in particular the first row corresponds to the identity and gives the dimension $\chi(1)$ of the irreducible representation attached to the successive characters χ.

The value $M[i, j]$ of the character j at the conjugacy class i is represented by a polynomial in y whose variable should be interpreted as an e-th root of unity, i.e. as the lift of

$$\text{Mod}(y, \text{polcyclo}(e,'y))$$

(Note that M is the transpose of the usual orientation for character tables.)

The integer e divides the exponent of the group G and is chosen as small as possible; for instance $e = 1$ when the characters are all defined over \mathbb{Q}, as is the case for S_n. Examples:

```
? K = nfsplitting(x^4+x+1);
? gal = galoisinit(K);
? [M,e] = galoischartable(gal);
? M~ \text{ \textbackslash \ take the transpose to get the usual orientation }
%4 =
[1 1 1 1 1]
[1 -1 -1 1 1]
[2 0 0 -1 2]
[3 -1 1 0 -1]
[3 1 -1 0 -1]
? e
%5 = 1
? \{G = [Vecsmall([1, 2, 3, 4, 5]), Vecsmall([1, 5, 4, 3, 2]),
Vecsmall([2, 1, 5, 4, 3]), Vecsmall([2, 3, 4, 5, 1]),
Vecsmall([3, 2, 1, 5, 4]), Vecsmall([3, 4, 5, 1, 2]),
Vecsmall([4, 3, 2, 1, 5]), Vecsmall([4, 5, 1, 2, 3]),
Vecsmall([5, 1, 2, 3, 4]), Vecsmall([5, 4, 3, 2, 1])];
\} \text{ \textbackslash \ G = D10}
? [M,e] = galoischartable(G);
? M~
%8 =
[1 1 1 1 1]
[1 -1 1 1]
[2 0 -y^3 - y^2 - 1 y^3 + y^2]
[2 0 y^3 + y^2 -y^3 - y^2 - 1]
? e
%9 = 5
```

galoisconjclasses()

gal being output by galoisinit, return the list of conjugacy classes of the underlying group. The ordering of the classes is consistent with galoischartable and the trivial class comes first.
%2 = [6, 1] \ S_3
? S = galoisconjclasses(G)
%3 = [[Vecsmall([1,2,3,4,5,6])],
 [Vecsmall([3,1,2,6,4,5])], Vecsmall([2,3,1,5,6,4])],
 [Vecsmall([6,5,4,3,2,1]), Vecsmall([5,4,6,2,1,3]),
 Vecsmall([4,6,5,1,3,2])]]
? [[permorder(c[1]),#c] | c <- S]
%4 = [[1,1], [3,2], [2,3]]

This command also accepts subgroups returned by galoissubgroups:

? subs = galoissubgroups(G); H = subs[5];
? galoisidentify(H)
%2 = [2, 1] \ Z/2
? S = galoisconjclasses(subgroups_of_G[5]);
? [[permorder(c[1]),#c] | c <- S]
%4 = [[1,1], [2,1]]

galoisexport(flag)
gal being be a Galois group as output by galoisinit, export the underlying permutation group as a string suitable for (no flags or flag = 0) GAP or (flag = 1) Magma. The following example compute the index of the underlying abstract group in the GAP library:

? G = galoisinit(x^6+108);
? s = galoisexport(G)
%2 = "Group((1, 2, 3)(4, 5, 6), (1, 4)(2, 6)(3, 5))"
? extern("echo "IdGroup("s");" | gap -q")
%3 = [6, 1]
? galoisidentify(G)
%4 = [6, 1]

This command also accepts subgroups returned by galoissubgroups.

To import a GAP permutation into gp (for galoissubfields for instance), the following GAP function may be useful:

PermToGP := function(p, n)
 return Permute([1..n],p);
end;

gap> PermToGP(p,32);
[26, 5, 17, 32, 2, 9, 11, 24, 6, 13, 7, 15, 10, 27, 12, 22, 3, 28, 20, 19, 29, 16, 31, 8, 30, 1, 14, 18, 21, 25, 23, 4]

galoisfixedfield(perm,flag,v)
gal being be a Galois group as output by galoisinit and perm an element of gal.group, a vector of such elements or a subgroup of gal as returned by galoissubgroups, computes the fixed field of gal by the automorphism defined by the permutations perm of the roots gal.roots. P is guaranteed to be squarefree modulo gal.p.

If no flags or flag = 0, output format is the same as for nfsubfield, returning [P,x] such that P is a polynomial defining the fixed field, and x is a root of P expressed as a polmod in gal.pol.

If flag = 1 return only the polynomial P.
If \(\text{flag} = 2 \) return \([P, x, F]\) where \(P \) and \(x \) are as above and \(F \) is the factorization of \(\text{gal.pol} \) over the field defined by \(P \), where variable \(v \) (by default) stands for a root of \(P \). The priority of \(v \) must be less than the priority of the variable of \(\text{gal.pol} \) (see priority (in the PARI manual)). In this case, \(P \) is also expressed in the variable \(v \) for compatibility with \(F \). Example:

```plaintext
? G = galoisinit(x^4+1);
? galoisfixedfield(G,G.group[2],2)
%2 = [y^2 - 2, Mod(- x^3 + x, x^4 + 1), [x^2 - y*x + 1, x^2 + y*x + 1]]
```

computes the factorization \(x^4 + 1 = (x^2 - \sqrt{2}x + 1)(x^2 + \sqrt{2}x + 1) \)

galoisidentify()

\(\text{gal} \) being be a Galois group as output by \(\text{galoisinit} \), output the isomorphism class of the underlying abstract group as a two-components vector \([o, i]\), where \(o \) is the group order, and \(i \) is the group index in the GAP4 Small Group library, by Hans Ulrich Besche, Bettina Eick and Eamonn O’Brien.

This command also accepts subgroups returned by \(\text{galoissubgroups} \).

The current implementation is limited to degree less or equal to 127. Some larger “easy” orders are also supported.

The output is similar to the output of the function \(\text{IdGroup} \) in GAP4. Note that GAP4 \(\text{IdGroup} \) handles all groups of order less than 2000 except 1024, so you can use \(\text{galoisexport} \) and GAP4 to identify large Galois groups.

galoisinit(\text{den})

Computes the Galois group and all necessary information for computing the fixed fields of the Galois extension \(K/Q \) where \(K \) is the number field defined by \(\text{pol} \) (monic irreducible polynomial in \(\mathbb{Z}[X] \) or a number field as output by \(\text{nfinit} \)). The extension \(K/Q \) must be Galois with Galois group “weakly” super-solvable, see below; returns 0 otherwise. Hence this permits to quickly check whether a polynomial of order strictly less than 48 is Galois or not.

A group \(G \) is said to be “weakly” super-solvable if there exists a normal series

\[
1 = H_0 \leq H_1 \leq \ldots \leq H_{n-1} \leq H_n
\]

such that each \(H_i \) is normal in \(G \) and for \(i < n \), each quotient group \(H_{i+1}/H_i \) is cyclic, and either \(H_n = G \) (then \(G \) is super-solvable) or \(G/H_n \) is isomorphic to either \(A_4 \), \(S_4 \) or the group \(\langle 3x3 \rangle : 4 \) (GAP4(36,9)) then \([o_1, \ldots, o_q]\) ends by \([3, 3, 4]\).

In practice, almost all small groups are WKSS, the exceptions having order 48(2), 56(1), 60(1), 72(3), 75(1), 80(1), 96(10), 112(1), 120(3) and \(\geq 144 \).

This function is a prerequisite for most of the \text{galois.xxx} routines. For instance:

```plaintext
P = x^6 + 108;
G = galoisinit(P);
L = galoissubgroups(G);
vector(#L, i, galoisisabelian(L[i],1))
vector(#L, i, galoisidentify(L[i])**)
```

The output is an 8-component vector \(\text{gal} \).

\(\text{gal}[1] \) contains the polynomial \(\text{pol} \) (:emphasis:`gal.pol`).

\(\text{gal}[2] \) is a three-components vector \([p, e, q]\) where \(p \) is a prime number (:emphasis:`gal.p`) such that \(\text{pol} \) totally split modulo \(p \), \(e \) is an integer and \(q = p^e \) (:emphasis:`gal.mod`) is the modulus of the roots in (:emphasis:`gal.roots`).
`gal[3]` is a vector L containing the p-adic roots of `pol` as integers implicitly modulo :emphasis:`gal.mod`

(`:emphasis:`gal.roots`).

`gal[5]` is a multiple of the least common denominator of the automorphisms expressed as polynomial in a root of `pol`.

`gal[6]` is the Galois group G expressed as a vector of permutations of L (:emphasis:`gal.group`).

`gal[7]` is a generating subset $S = [s_1, ..., s_g]$ of G expressed as a vector of permutations of L (:emphasis:`gal.gen`).

`gal[8]` contains the relative orders $[o_1, ..., o_g]$ of the generators of S (:emphasis:`gal.orders`).

Let H_n be as above, we have the following properties:

* if $G/H_n A_4$ then $[o_1, ..., o_g]$ ends by $[2, 2, 3]$.
* if $G/H_n S_4$ then $[o_1, ..., o_g]$ ends by $[2, 2, 3, 2]$.
* if $G/H_n (3x3) : 4$ (GAP4(36, 9)) then $[o_1, ..., o_g]$ ends by $[3, 3, 4]$.
* for $1 < i <= g$ the subgroup of G generated by $[s_1, ..., s_i]$ is normal, with the exception of $i = g - 2$ in the A_4 case and of $i = g - 3$ in the S_4 case.
* the relative order o_i of s_i is its order in the quotient group $G / < s_1, ..., s_{i-1} >$, with the same exceptions.
* for any $x \in G$ there exists a unique family $[e_1, ..., e_g]$ such that (no exceptions):
 - for $1 <= i <= g$ we have $0 <= e_i < o_i$
 - $x = g_1^{e_1} g_2^{e_2} ... g_g^{e_g}$

If present `den` must be a suitable value for `gal[5]`.

`galoisisabelian(flag)`

`gal` being as output by `galoisinit`, return 0 if `gal` is not an abelian group, and the HNF matrix of `gal` over `gal.gen` if `flag = 0`, 1 if `flag = 1`, and the SNF matrix of `gal` if `flag = 2`.

This command also accepts subgroups returned by `galoissubgroups`.

`galoisisnormal(subgrp)`

`gal` being as output by `galoisinit`, and `subgrp` a subgroup of `gal` as output by `galoissubgroups`,return 1 if `subgrp` is a normal subgroup of `gal`, else return 0.

This command also accepts subgroups returned by `galoissubgroups`.

`galoispermtopol(perm)`

`gal` being a Galois group as output by `galoisinit` and `perm` a element of `gal.group`, return the polynomial defining the Galois automorphism, as output by `nfgaloisconj`, attached to the permutation `perm` of the roots `gal.roots`. `perm` can also be a vector or matrix, in this case, `galoispermtopol` is applied to all components recursively.

Note that

```
G = galoisinit(pol);
galoispermtopol(G, G[6])~
```

is equivalent to `nfgaloisconj(pol)`, if degree of `pol` is greater or equal to 2.
galoissubcyclo(H, f, v)
Computes the subextension of $\mathbb{Q}(\zeta_n)$ fixed by the subgroup $H \subset (\mathbb{Z}/n\mathbb{Z})^\ast$. By the Kronecker-Weber theorem, all abelian number fields can be generated in this way (uniquely if n is taken to be minimal).

The pair (n, H) is deduced from the parameters (N, H) as follows

- N an integer: then $n = N$; H is a generator, i.e. an integer or an integer modulo n; or a vector of generators.
- N the output of $\text{znstar}(n)$ or $\text{znstar}(n, 1)$. H as in the first case above, or a matrix, taken to be a HNF left divisor of the SNF for $(\mathbb{Z}/n\mathbb{Z})^\ast$ (:math:`\mathbb{N}.cyc`), giving the generators of H in terms of :math:`\mathbb{N}.gen`.
- N the output of $\text{bnrinit}(\text{bnfinit}(y), m)$ where m is a module. H as in the first case, or a matrix taken to be a HNF left divisor of the SNF for the ray class group modulo m (of type :math:`\mathbb{N}.cyc`), giving the generators of H in terms of :math:`\mathbb{N}.bid.gen` (= :math:`\mathbb{N}.gen` if N includes generators).

In this last case, beware that H is understood relatively to N; in particular, if the infinite place does not divide the module, e.g if m is an integer, then it is not a subgroup of $(\mathbb{Z}/n\mathbb{Z})^\ast$, but of its quotient by 1.

If $fl = 0$, compute a polynomial (in the variable v) defining the subfield of $\mathbb{Q}(\zeta_n)$ fixed by the subgroup H of $(\mathbb{Z}/n\mathbb{Z})^\ast$.

If $fl = 1$, compute only the conductor of the abelian extension, as a module.

If $fl = 2$, output $[\text{pol}, N]$, where pol is the polynomial as output when $fl = 0$ and N the conductor as output when $fl = 1$.

The following function can be used to compute all subfields of $\mathbb{Q}(\zeta_n)$ (of exact degree d, if d is set):

```pascal
subcyclo(n, d = -1)=
{ my(bnr,L,IndexBound);
  IndexBound = if (d < 0, n, [d]);
  bnr = bnrinit(bnfinit(y), [n,[1]]);
  L = subgrouplist(bnr, IndexBound, 1);
  vector(#L,i, galoissubcyclo(bnr,L[i]));
}
```

Setting $L = \text{subgrouplist}(\text{bnr}, \text{IndexBound})$ would produce subfields of exact conductor n_0.

galoissubfields($flag, v$)
Outputs all the subfields of the Galois group G, as a vector. This works by applying galoisfixedfield to all subgroups. The meaning of $flag$ is the same as for galoisfixedfield.

galoissubgroups()
Outputs all the subgroups of the Galois group gal. A subgroup is a vector $[\text{gen}, \text{orders}]$, with the same meaning as for $gal.gen$ and $gal.orders$. Hence gen is a vector of permutations generating the subgroup, and orders is the relatives orders of the generators. The cardinality of a subgroup is the product of the relative orders. Such subgroup can be used instead of a Galois group in the following command: galoisisabelian, galoissubgroups, galoisexport and galoisidentify.

To get the subfield fixed by a subgroup sub of gal, use

```pascal
\text{galoisfixedfield}(gal, sub[1])
```

gamma($precision$)
For s a complex number, evaluates Euler’s gamma function

$$\Gamma(s) = \int_0^\infty t^{s-1} \exp(-t)dt.$$
Error if s is a nonpositive integer, where Γ has a pole.
For s a t_PADIC, evaluates the Morita gamma function at s, that is the unique continuous p-adic function on the p-adic integers extending $\Gamma_p(k) = (-1)^k \prod_{j<k} j$, where the prime means that p does not divide j.

```
? gamma(1/4 + O(5^10))
%1 = 1 + 4*5 + 3*5^4 + 5^6 + 5^7 + 4*5^9 + O(5^10)
? algdep(%4, 4)
%2 = x^4 + 4*x^2 + 5
```

\texttt{gammah} \texttt{(precision)}

Gamma function evaluated at the argument $x + 1/2$.

\texttt{gammamellininv} \texttt{(t, m, precision)}

Returns the value at t of the inverse Mellin transform G initialized by \texttt{gammamellininvinit}. If the optional parameter m is present, return the m-th derivative $G^{(m)}(t)$.

```
? G = gammamellininvinit([0]);
? gammamellininv(G, 2) - 2*exp(-Pi*2^2)
%2 = -4.484155085839414627 E-44
```

The shortcut

\texttt{gammamellininv(A,t,m)}

for

\texttt{gammamellininv(gammamellininvinit(A,m), t)}

is available.

\texttt{gammamellininvasymp} \texttt{(serprec, n)}

Return the first n terms of the asymptotic expansion at infinity of the m-th derivative $K^{(m)}(t)$ of the inverse Mellin transform of the function

$$f(s) = \Gamma_R(s + a_1) ... \Gamma_R(s + a_d),$$

where A is the vector $[a_1, ..., a_d]$ and $\Gamma_R(s) = \pi^{-s/2} \Gamma(s/2)$ (Euler's gamma). The result is a vector $[M[1] ... M[n]]$ with $M[1] = 1$, such that

$$K^{(m)}(t) = \sqrt{2^{d+1}/d!}^{a_m - m(2/d - 1)} e^{-d \pi t^2/d} \sum_{n>0} M[n + 1](\pi t^2/d)^{-n}$$

with $a = (1 - d + \sum_{1 \leq j \leq d} a_j)/d$. We also allow A to be the output of \texttt{gammamellininvinit}.

\texttt{gammamellininvinit} \texttt{(m, precision)}

Initialize data for the computation by \texttt{gammamellininv} of the m-th derivative of the inverse Mellin transform of the function

$$f(s) = \Gamma_R(s + a_1) ... \Gamma_R(s + a_d)$$

where A is the vector $[a_1, ..., a_d]$ and $\Gamma_R(s) = \pi^{-s/2} \Gamma(s/2)$ (Euler's gamma). This is the special case of Meijer's G functions used to compute L-values via the approximate functional equation. By extension, A is allowed to be an Ldata or an Linit, understood as the inverse Mellin transform of the L-function gamma factor.

\textbf{Caveat.} Contrary to the PARI convention, this function guarantees an \textit{absolute} (rather than relative) error bound.

For instance, the inverse Mellin transform of $\Gamma_R(s)$ is $2 \exp(-\pi z^2)$:
The inverse Mellin transform of $\Gamma(s+1)$ is $2z \exp(-\pi z^2)$, and its second derivative is $4\pi z \exp(-\pi z^2)(2\pi z^2 - 3)$:

```plaintext
? G = gammamellininvinit([1], 2);
? a(z) = 4*Pi*z*exp(-Pi*z^2)*(2*Pi*z^2-3);
? b(z) = gammamellininv(G,z);
? t(z) = b(z) - a(z);
? t(3/2)
%3 = -1.4693679385278593850 E-39
```

gcd(y)

Creates the greatest common divisor of x and y. If you also need the u and v such that $x \cdot u + y \cdot v = \text{gcd}(x, y)$, use the \text{gcdext} function. x and y can have rather quite general types, for instance both rational numbers. If y is omitted and x is a vector, returns the gcd of all components of x, i.e. this is equivalent to \text{content}(x).

When x and y are both given and one of them is a vector/matrix type, the GCD is again taken recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result has the same type as y, and components equal to $\text{gcd}(x, y[i])$, resp. $\text{gcd}(x, y[,i])$. Else if x is a vector/matrix the result has the same type as x and an analogous definition. Note that for these types, gcd is not commutative.

The algorithm used is a naive Euclid except for the following inputs:

- integers: use modified right-shift binary ("plus-minus" variant).
- univariate polynomials with coefficients in the same number field (in particular rational): use modular gcd algorithm.
- general polynomials: use the subresultant algorithm if coefficient explosion is likely (non modular coefficients).

If u and v are polynomials in the same variable with inexact coefficients, their gcd is defined to be scalar, so that

```plaintext
? a = x + 0.0; gcd(a,a)
%1 = 1
? b = y*x + O(y); gcd(b,b)
%2 = y
? c = 4*x + O(2^3); gcd(c,c)
%3 = 4
```

A good quantitative check to decide whether such a gcd "should be" nontrivial, is to use \text{polresultant}: a value close to 0 means that a small deformation of the inputs has nontrivial gcd. You may also use \text{gcdext}, which does try to compute an approximate gcd d and provides u, v to check whether $ux + vy$ is close to d.

gcdext(y)

Returns $[u, v, d]$ such that d is the gcd of $x, y, x \cdot u + y \cdot v = \text{gcd}(x, y)$, and u and v minimal in a natural sense. The arguments must be integers or polynomials.

```plaintext
? [u, v, d] = gcdext(32,102)
%1 = [16, -5, 2]
? d
%2 = 2
? gcdext(x^2-x, x^2+x-2)
%3 = [-1/2, 1/2, x - 1]
```
If \(x, y \) are polynomials in the same variable and inexact coefficients, then compute \(u, v, d \) such that \(x u + y v = d \), where \(d \) approximately divides both and \(x \) and \(y \); in particular, we do not obtain \(\gcd(x, y) \) which is defined to be a scalar in this case:

\[
? a = x + 0.0; \gcd(a,a)
%1 = 1
?
gcdext(a,a)
%2 = [0, 1, x + 0.E-28]
?
gcdext(x-Pi, 6*x^2-zeta(2))
%3 = [-6*x - 18.8495559, 1, 57.5726923]
\]

For inexact inputs, the output is thus not well defined mathematically, but you obtain explicit polynomials to check whether the approximation is close enough for your needs.

\textbf{genus2red}(p)

Let \(P \), \(Q \) be a polynomial \(P \), resp. a vector \([P, Q]\) of polynomials, with rational coefficients. Determines the reduction at \(p > 2 \) of the (proper, smooth) genus 2 curve \(C/\mathbb{Q} \), defined by the hyperelliptic equation \(y^2 = P(x) \), resp. \(y^2 + Q(x) = P(x) \). (The special fiber \(X_p \) of the minimal regular model \(X \) of \(C \) over \(\mathbb{Z} \).)

If \(p \) is omitted, determines the reduction type for all (odd) prime divisors of the discriminant.

This function was rewritten from an implementation of Liu's algorithm by Cohen and Liu (1994), genus2reduction-0.3, see http://www.math.u-bordeaux.fr/~liu/G2R/.

\textbf{CAVEAT.} The function interface may change: for the time being, it returns \([N, FaN, T, V]\) where \(N \) is either the local conductor at \(p \) or the global conductor, \(FaN \) is its factorization, \(y^2 = T \) defines a minimal model over \(\mathbb{Z}[1/2] \) and \(V \) describes the reduction type at the various considered \(p \). Unfortunately, the program is not complete for \(p = 2 \), and we may return the odd part of the conductor only: this is the case if the factorization includes the (impossible) term \(2^{-1} \); if the factorization contains another power of 2, then this is the exact local conductor at 2 and \(N \) is the global conductor.

\[
? default(debuglevel, 1);
? genus2red(x^6 + 3*x^3 + 63, 3)
(potential) stable reduction: [1, []]
reduction at p: [III(9)] page 184, [3, 3], f = 10
%1 = [59049, Mat([3, 10]), x^6 + 3*x^3 + 63, [3, [1, []], "[III(9)] page 184", [3, 3]]]
? [N, FaN, T, V] = genus2red(x^3-x^2-1, x^2-x); \ // X_1(13), global reduction
p = 13
(potential) stable reduction: [5, [Mod(0, 13), Mod(0, 13)]]
reduction at p: [I{0}-II-0] page 159, [], f = 2
? N
%3 = 169
? FaN
%4 = Mat([13, 2]) \ // in particular, good reduction at 2 !
? T
%5 = x^6 + 58*x^5 + 1401*x^4 + 18038*x^3 + 130546*x^2 + 503516*x + 808561
? V
%6 = [[13, [5, [Mod(0, 13), Mod(0, 13)]], "[I{0}-II-0] page 159", []]]
\]

We now first describe the format of the vector \(V = V_p \) in the case where \(p \) was specified (local reduction at \(p \)): it is a triple \([p, stable, red]\). The component \(stable = [type, vecj] \) contains information about the stable reduction after a field extension; depending on \(type \), the stable reduction is

- \(1 \): smooth (i.e. the curve has potentially good reduction). The Jacobian \(J(C) \) has potentially good reduction.
- 2: an elliptic curve E with an ordinary double point; $vecj$ contains $j \mod p$, the modular invariant of E. The (potential) semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with modular invariant $j \mod p$) by a torus.

- 3: a projective line with two ordinary double points. The Jacobian $J(C)$ has potentially multiplicative reduction.

- 4: the union of two projective lines crossing transversally at three points. The Jacobian $J(C)$ has potentially multiplicative reduction.

- 5: the union of two elliptic curves E_1 and E_2 intersecting transversally at one point; $vecj$ contains their modular invariants j_1 and j_2, which may live in a quadratic extension of \mathbb{F}_p and need not be distinct. The Jacobian $J(C)$ has potentially good reduction, isomorphic to the product of the reductions of E_1 and E_2.

- 6: the union of an elliptic curve E and a projective line which has an ordinary double point, and these two components intersect transversally at one point; $vecj$ contains $j \mod p$, the modular invariant of E. The (potential) semi-abelian reduction of $J(C)$ is the extension of an elliptic curve (with modular invariant $j \mod p$) by a torus.

- 7: as in type 6, but the two components are both singular. The Jacobian $J(C)$ has potentially multiplicative reduction.

The component $red = [NUtype, neron]$ contains two data concerning the reduction at p without any ramified field extension.

The $NUtype$ is a t_STR describing the reduction at p of C, following Namikawa-Ueno, *The complete classification of fibers in pencils of curves of genus two*, Manuscripta Math., vol. 9, (1973), pages 143-186. The reduction symbol is followed by the corresponding page number or page range in this article.

The second datum $neron$ is the group of connected components (over an algebraic closure of \mathbb{F}_p) of the Néron model of $J(C)$, given as a finite abelian group (vector of elementary divisors).

If $p = 2$, the red component may be omitted altogether (and replaced by [], in the case where the program could not compute it. When p was not specified, V is the vector of all V_p, for all considered p.

Notes about Namikawa-Ueno types.

- A lower index is denoted between braces: for instance, $[I\{2\}-II-5]$ means $[I_2-II-5]$.

- If K and K' are Kodaira symbols for singular fibers of elliptic curves, then $[\text{math}: 'K-K'-m]$ and $[\text{math}: 'K'-K'-m]$ are the same.

We define a total ordering on Kodaira symbol by fixing $I < I* < II < II*,$. If the reduction type is the same, we order by the number of components, e.g. $I_2 < I_4$, etc. Then we normalize our output so that $K <= K'$.

- $[\text{math}: 'K-K'-1]$ is $[\text{math}: 'K'-K'-\alpha]$ in the notation of Namikawa-Ueno.

- The figure $[2I_0-m]$ in Namikawa-Ueno, page 159, must be denoted by $[2I_0-(m+1)]$.

halfgcd(y)

Let inputs x and y be both integers, or both polynomials in the same variable. Return a vector $[M, [a,b]~]$, where M is an invertible 2×2 matrix such that $M^* [x,y]~ = [a,b]~$, where b is small. More precisely,

- polynomial case: $\det M$ has degree 0 and we have $\deg a >= \text{cei} \text{l}(\deg x, \deg y))/2 > \deg b$.

- integer case: $\det M = 1$ and we have

$$\text{Assuming : math : 'x' and : math : 'y' are nonnegative, then : math : 'M^{-1} has nonnegative coefficients, and : math : 'c}$$
hammingweight()
If \(x \) is a \(t_\text{INT} \), return the binary Hamming weight of \(\| x \| \). Otherwise \(x \) must be of type \(t_\text{POL}, t_\text{VEC}, t_\text{COL}, t_\text{VECSMALL} \), or \(t_\text{MAT} \) and the function returns the number of nonzero coefficients of \(x \).

```
? hammingweight(15)  
%1 = 4
? hammingweight(x^100 + 2^x + 1)
%2 = 3
? hammingweight([Mod(1,2), 2, Mod(0,3)])
%3 = 2
? hammingweight(matid(100))
%4 = 100
```

hilbert(\(y, p \))
Hilbert symbol of \(x \) and \(y \) modulo the prime \(p = 0 \) meaning the place at infinity (the result is undefined if \(p \neq 0 \) is not prime).

It is possible to omit \(p \), in which case we take \(p = 0 \) if both \(x \) and \(y \) are rational, or one of them is a real number. And take \(p = q \) if one of \(x, y \) is a \(t_\text{INTMOD} \) modulo \(q \) or a \(q\)-adic. (Incompatible types will raise an error.)

hyperellcharpoly()
\(X \) being a nonsingular hyperelliptic curve defined over a finite field, return the characteristic polynomial of the Frobenius automorphism. \(X \) can be given either by a squarefree polynomial \(P \) such that \(X: y^2 = P(x) \) or by a vector \([P, Q]\) such that \(X: y^2 + Q(x)y = P(x) \) and \(Q^2 + 4P \) is squarefree.

hyperellpadicfrobenius(\(q, n \))
Let \(X \) be the curve defined by \(y^2 = Q(x) \), where \(Q \) is a polynomial of degree \(d \) over \(\mathbb{Q} \) and \(q \gg d \) is a prime such that \(X \) has good reduction at \(q \). Return the matrix of the Frobenius endomorphism \(\varphi \) on the crystalline module \(D_p(X) = \mathbb{Q}_p \otimes H^1_\text{dR}(X/\mathbb{Q}) \) with respect to the basis of the given model \((\omega, x\omega, ..., x^{g-1}\omega)\), where \(\omega = dx/(2y) \) is the invariant differential, where \(g \) is the genus of \(X \) (either \(d = 2g + 1 \) or \(d = 2g + 2 \)). The characteristic polynomial of \(\varphi \) is the numerator of the zeta-function of the reduction of the curve \(X \) modulo \(q \). The matrix is computed to absolute \(q\)-adic precision \(q^n \).

Alternatively, \(q \) may be of the form \([T, p]\) where \(p \) is a prime. \(T \) is a polynomial with integral coefficients whose projection to \(\mathbb{F}_p[t] \) is irreducible, \(X \) is defined over \(K = \mathbb{Q}[t]/(T) \) and has good reduction to the finite field \(\mathbb{F}_q = \mathbb{F}_p[t]/(T) \). The matrix of \(\varphi \) on \(D_q(X) = \mathbb{Q}_q \otimes H^1_\text{dR}(X/K) \) is computed to absolute \(p\)-adic precision \(p^n \).

```
? M=hyperellpadicfrobenius(x^5+'a'*x+1,['a^2+1',3],10);  
? liftall(M)
[48107*a + 38874 9222*a + 54290 41941*a + 8931 39672*a + 28651]
[ 21458*a + 4763 3652*a + 22205 31111*a + 42559 39834*a + 40207]
[ 13329*a + 4140 45270*a + 25803 1377*a + 32931 55980*a + 21267]
[15086*a + 26714 33424*a + 4898 41830*a + 48013 5913*a + 24088]
? centerlift(simplify(liftpol(charpoly(M))))
%8 = x^4+4*x^2+81
? hyperellcharpoly((x^5+Mod(a,a^2+1)*x+1)*Mod(1,3))
%9 = x^4+4*x^2+81
```

hyperellratpoints(\(h, \text{flag} \))
\(X \) being a nonsingular hyperelliptic curve given by an rational model, return a vector containing the affine rational points on the curve of naive height less than \(h \). If \(\text{flag} = 1 \), stop as soon as a point is found; return either an empty vector or a vector containing a single point.

557
X is given either by a squarefree polynomial P such that $X : y^2 = P(x)$ or by a vector $[P, Q]$ such that $X : y^2 + Q(x)y = P(x)$ and $Q^2 + 4P$ is squarefree.

The parameter h can be

- an integer H: find the points $[n/d, y]$ whose abscissas $x = n/d$ have naive height ($\leq \max(\|n\|, d)$) less than H;
- a vector $[N, D]$ with $D \leq N$: find the points $[n/d, y]$ with $\|n\| \leq N, d \leq D$.
- a vector $[N, [D_1, D_2]]$ with $D_1 < D_2 \leq N$ find the points $[n/d, y]$ with $\|n\| \leq N$ and $D_1 \leq d \leq D_2$.

\text{hypergeom}(D, z, \text{precision})

General hypergeometric function, where \mathbb{N} and \mathbb{D} are the vector of parameters in the numerator and denominator respectively, evaluated at the complex argument z.

This function implements hypergeometric functions

$$
\genfrac{[}{]}{0pt}{}{p}{q}((a_1)_{1 \leq i \leq p}, (b_j)_{1 \leq j \leq q}; z) = \sum_{n \geq 0} \left(\prod_{1 \leq i \leq p} (a_i)_n \right) / \left(\prod_{1 \leq j \leq q} (b_j)_n \right) (z^n) / (n!)
$$

where $(a)_n = a(a+1)...(a+n-1)$ is the rising Pochhammer symbol. For this to make sense, none of the b_j must be a negative or zero integer. The corresponding general GP command is

\text{hypergeom}([a_1, a_2, \ldots, a_p], [b_1, b_2, \ldots, b_q], z)

Whenever $p = 1$ or $q = 1$, a one-element vector can be replaced by the element it contains. Whenever $p = 0$ or $q = 0$, an empty vector can be omitted. For instance \text{hypergeom}(b, z)$ computes $\genfrac{[}{]}{0pt}{}{0}{1}(b; z)$.

We distinguish three kinds of such functions according to their radius of convergence R:

- $q > p$: $R = \infty$.
- $q = p - 1$: $R = 1$. Nonetheless, by integral representations, $\genfrac{[}{]}{0pt}{}{p}{q}$ can be analytically continued outside the disc of convergence.
- $q < p - 2$: $R = 0$. By integral representations, one can make sense of the function in a suitable domain.

The list of implemented functions and their domain of validity in our implementation is as follows:

\textbf{F01: } \text{hypergeom}, a, z \text{ (or } [a]) \text{. This is essentially a Bessel function and computed as such. } R = \infty.

\textbf{F10: } \text{hypergeom}, a, z \text{ (or } [a]) \text{. This is } (1 - z)^{-a}.

\textbf{F11: } \text{hypergeom}, a, b, z \text{ (or } [a, b]) \text{. This is the Kummer confluent hypergeometric function, computed by summing the series. } R = \infty \text{ (or } [a, b]) \text{.}

\textbf{F20: } \text{hypergeom}, a, b, z \text{. } R = 0 \text{, computed as}

$$(1) / (\Gamma(a)) \int_0^{\infty} ot^{a-1} (1 - zt)^{-b} e^{-t} dt.$$
F32: hypergeom([a, b, c], [d, e], z). \(R = 1 \), extended by

\[(\Gamma(e))/(\Gamma(d)\Gamma(e-d)) \int_0^1 t^{e-1}(1-t)^{e-d-1}F_1(a; b; d; tz)dt. \]

For other inputs: if \(R = oo \) or \(R = 1 \) and \(\|z\| < 1 - \varepsilon \) is not too close to the circle of convergence, we simply sum the series.

\[
\text{hyperu}(b, z, \text{precision})
\]

\(U \)-confluent hypergeometric function with complex parameters \(a, b, z \). Note that \(2F_{0}(a, b, z) = (-z)^{-a}U(a, a + 1 - b, -1/z), \)

\[
\text{idealadd}(x, y)
\]

Sum of the two ideals \(x \) and \(y \) in the number field \(n f \). The result is given in HNF.

This function cannot be used to add arbitrary \(Z \)-modules, since it assumes that its arguments are ideals:
\[[0 \ 2] \]
\[? d = [1, \ 0; \ 0, 2]; \text{idealadd}(K, d, d) \ \ \ \text{nonsense} \]
\[\%7 = \]
\[[1 \ 0] \]
\[[0 \ 1] \]

In the last two examples, we get wrong results since the matrices \(c \) and \(d \) do not correspond to an ideal: the \(\mathbb{Z} \)-span of their columns (as usual interpreted as coordinates with respect to the integer basis \(K.zk \)) is not an \(O_K \)-module.

To add arbitrary \(\mathbb{Z} \)-modules generated by the columns of matrices \(A \) and \(B \), use \texttt{mathnf(concat(A, B))}.

\texttt{idealaddtoone}(\(x \), \(y \))
\(x \) and \(y \) being two co-prime integral ideals (given in any form), this gives a two-component row vector \([a, b]\) such that \(a \in x, b \in y \) and \(a + b = 1 \).

The alternative syntax \texttt{idealaddtoone(nf, v)}, is supported, where \(v \) is a \(k \)-component vector of ideals (given in any form) which sum to \(\mathbb{Z}_K \). This outputs a \(k \)-component vector \(e \) such that \(e[1] \in x[1] \) for \(1 \leq i \leq k \) and \(\sum_{1 \leq i \leq k} e[i] = 1 \).

\texttt{idealappr}(\(x \), \texttt{flag})
If \(x \) is a fractional ideal (given in any form), gives an element \(\alpha \) in \(nf \) such that for all prime ideals \(p \) such that the valuation of \(x \) at \(p \) is nonzero, we have \(v_p(\alpha) = v_p(x) \), and \(v_p(\alpha) >= 0 \) for all other \(p \).

The argument \(x \) may also be given as a prime ideal factorization, as output by \texttt{idealfactor}, but allowing zero exponents. This yields an element \(\alpha \) such that for all prime ideals \(p \) occurring in \(x \), \(v_p(\alpha) = v_p(x) \); for all other prime ideals, \(v_p(\alpha) >= 0 \).

\texttt{flag} is deprecated (ignored), kept for backward compatibility.

\texttt{idealchinese}(\(x \), \(y \))
\(x \) being a prime ideal factorization (i.e. a 2-columns matrix whose first column contains prime ideals and the second column contains integral exponents), \(y \) a vector of elements in \(nf \) indexed by the ideals in \(x \), computes an element \(b \) such that \(v_p(b - y_p) >= v_p(x) \) for all prime ideals in \(x \) and \(v_p(b) >= 0 \) for all other \(p \).

\[? K = \text{nfinit}(t^2-2); \]
\[? x = \text{idealfactor}(K, 2^2*3) \]
\[\%2 = \]
\[[[2, [0, 1]~, 2, 1, [0, 2; 1, 0]] 4] \]
\[[[3, [3, 0]~, 1, 2, 1] 1] \]
\[? y = [t, 1]; \]
\[? \text{idealchinese}(K, x, y) \]
\[\%4 = [4, -3]~ \]

The argument \(x \) may also be of the form \([x, s]\) where the first component is as above and \(s \) is a vector of signs, with \(r_1 \) components \(s_i \) in \(-1, 0, 1\): if \(\sigma_i \) denotes the \(i \)-th real embedding of the number field, the element \(b \) returned satisfies further \(\text{sign}(\sigma_i(b)) = s_i \) for all \(i \) such that \(s_i = 1 \). In other words, the sign is fixed to \(s_i \) at the \(i \)-th embedding whenever \(s_i \) is nonzero.

\[? \text{idealchinese}(K, [x, [1,1]], y) \]
\[\%5 = [16, -3]~ \]
\[? \text{idealchinese}(K, [x, [-1,-1]], y) \]

(continues on next page)
\%6 = [-20, -3]~
? idealchinese(K, [x, [1,-1]], y)
\%7 = [4, -3]~

If \(y\) is omitted, return a data structure which can be used in place of \(x\) in later calls and allows to solve many Chinese remainder problems for a given \(x\) more efficiently.

\%9 = [16, -3]~
? for(i=1,10^4, idealchinese(K,C,y)) \ as above
\%13 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[x,[1,1]],y))

Finally, this structure is itself allowed in place of \(x\), the new \(s\) overriding the one already present in the structure. This allows to initialize for different sign conditions more efficiently when the underlying ideal factorization remains the same.

\%19 = [4, -3]~
? D = idealchinese(K, [C, [1,-1]]); \ replaces [1,1]
? idealchinese(K, D, y)
\%23 = [4, -3]~
? for(i=1,10^4,idealchinese(K,[C,[1,-1]]))

\textbf{idealcoprime}(x, y)

Given two integral ideals \(x\) and \(y\) in the number field \(n\), returns a \(\beta\) in the field, such that \(\beta.x\) is an integral ideal coprime to \(y\).

\textbf{idealdiv}(x, y, flag)

Quotient \(x.y^{-1}\) of the two ideals \(x\) and \(y\) in the number field \(n\). The result is given in HNF.

If \(flag\) is nonzero, the quotient \(x.y^{-1}\) is assumed to be an integral ideal. This can be much faster when the norm of the quotient is small even though the norms of \(x\) and \(y\) are large. More precisely, the algorithm cheaply removes all maximal ideals above rational primes such that \(v_p(Nx) = v_p(Ny)\).

\textbf{idealdown}(x)

Let \(n\) be a number field as output by \textbf{nfinit}, and \(x\) a fractional ideal. This function returns the nonnegative rational generator of \(x \cap \mathbb{Q}\). If \(x\) is an extended ideal, the extended part is ignored.

? nf = nfinit(y^2+1);
? idealdown(nf, -1/2)
\%2 = 1/2
? idealdown(nf, (y+1)/3)
\%3 = 2/3
\%4 = 125
? x = idealprimedec(nf, 2)[1]; idealdown(nf, x)
\%5 = 2
? idealdown(nf, [130, 94; 0, 2])
\%6 = 130
idealfactor\((x, \text{lim})\)

Factors into prime ideal powers the ideal \(x\) in the number field \(nf\). The output format is similar to the \texttt{factor} function, and the prime ideals are represented in the form output by the \texttt{idealprimedec} function. If \texttt{lim} is set, return partial factorization, including only prime ideals above rational primes < \texttt{lim}.

\begin{verbatim}
? nf = nfinit(x^3-2);
? idealfactor(nf, x) \ \ a prime ideal above 2
%2 =
[[2, [0, 1, 0]~, 3, 1, ...] 1]

? A = idealhnf(nf, 6*x, 4+2*x+x^2)
%3 =
[6 0 4]
[0 6 2]
[0 0 1]

? idealfactor(nf, A)
%4 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]
[[3, [1, 1, 0]~, 3, 1, ...] 2]

? idealfactor(nf, A, 3) \ \ restrict to primes above p < 3
%5 =
[[2, [0, 1, 0]~, 3, 1, ...] 2]
\end{verbatim}

idealfactorback\((f, e, \text{flag})\)

Gives back the ideal corresponding to a factorization. The integer 1 corresponds to the empty factorization. If \(e\) is present, \(e\) and \(f\) must be vectors of the same length (\(e\) being integral), and the corresponding factorization is the product of the \(f[i]^{e[i]}\).

If not, and \(f\) is vector, it is understood as in the preceding case with \(e\) a vector of 1s: we return the product of the \(f[i]\). Finally, \(f\) can be a regular factorization, as produced by \texttt{idealfactor}.

\begin{verbatim}
? nf = nfinit(y^2+1); idealfactor(nf, 4 + 2*y)
%1 =
[[2, [1, 1]~, 2, 1, [1, 1]~] 2]
[[5, [2, 1]~, 1, 1, [-2, 1]~] 1]

? idealfactorback(nf, %)
%2 =
[10 4]
[0 2]

? f = %1[,1]; e = %1[,2]; idealfactorback(nf, f, e)
%3 =
[10 4]
[0 2]
\end{verbatim}
If `flag` is nonzero, perform ideal reductions (`idealred`) along the way. This is most useful if the ideals involved are all extended ideals (for instance with trivial principal part), so that the principal parts extracted by `idealred` are not lost. Here is an example:

```pari
t? f = vector(#f, i, [f[i], [;]]); \ transform to extended ideals
? idealfactorback(nf, f, e, 1)
%6 = [[1, 0; 0, 1], [2, 1; [2, 1]~, 1]]
? nffactorback(nf, %[2])
%7 = [4, 2]~
```

The extended ideal returned in `%6` is the trivial ideal 1, extended with a principal generator given in factored form. We use `nffactorback` to recover it in standard form.

`idealfrobenius(gal, pr)`

Let K be the number field defined by nf and assume K/Q be a Galois extension with Galois group given `gal = galoisinit(nf)`, and that `pr` is an unramified prime ideal p in prid format. This function returns a permutation of `gal.group` which defines the Frobenius element Frob_p attached to p. If p is the unique prime number in p, then $\text{Frob}(x) = x^p \mod p$ for all $x \in \mathbb{Z}_K$.

```pari
t? nf = nfinit(polcyclo(31));
? gal = galoisinit(nf);
? pr = idealprimedec(nf,101)[1];
? g = idealfrobenius(nf,gal,pr);
? galoispermtopol(gal,g)
%5 = x^8
```

This is correct since $101 = 8 \mod 31$.

`idealhnf(u, v)`

Gives the Hermite normal form of the ideal $u\mathbb{Z}_K + v\mathbb{Z}_K$, where u and v are elements of the number field K defined by nf.

```pari
t? nf = nfinit(y^3 - 2);
? idealhnf(nf, 2, y+1)
%2 =
[1 0 0]
[0 1 0]
[0 0 1]

? idealhnf(nf, y/2, [0,0,1/3]~)
%3 =
[1/3 0 0]
[0 1/6 0]
[0 0 1/6]
```

If b is omitted, returns the HNF of the ideal defined by u: u may be an algebraic number (defining a principal ideal), a maximal ideal (as given by `idealprimedec` or `idealfactor`), or a matrix whose columns give generators for
the ideal. This last format is a little complicated, but useful to reduce general modules to the canonical form once in a while:

- if strictly less than \(N = [K : \mathbb{Q}] \) generators are given, \(u \) is the \(\mathbb{Z}_K \)-module they generate,
- if \(N \) or more are given, it is assumed that they form a \(\mathbb{Z} \)-basis of the ideal, in particular that the matrix has maximal rank \(N \). This acts as \texttt{mathnf} since the \(\mathbb{Z}_K \)-module structure is (taken for granted hence) not taken into account in this case.

\[
\text{idealhnf}(\text{nf}, \text{idealprimedec}(\text{nf}, 2)[1])
\]
\[
\begin{bmatrix}
2 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

\[
\text{idealhnf}(\text{nf}, [1, 2; 2, 3; 3, 4])
\]
\[
\begin{bmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\]

Finally, when \(K \) is quadratic with discriminant \(D_K \), we allow \(u = \text{Qfb}(a, b, c) \), provided \(b^2 - 4ac = D_K \). As usual, this represents the ideal \(a\mathbb{Z} + (1/2)(-b + \sqrt{D_K})\mathbb{Z} \).

\[
\text{idealhnf}(\text{K}, \text{qfbprimeform}(60, 2))
\]
\[
\begin{bmatrix}
0 & 1 \\
0 & 1
\end{bmatrix}
\]

\[
\text{idealhnf}(\text{K}, \text{Qfb}(1, 2, 3))
\]

*** at top-level: \text{idealhnf}(\text{K}, \text{Qfb}(1, 2, 3)

*** \text{idealhnf}: Qfb(1, 2, 3) has discriminant != 60 in \text{idealhnf}.

\texttt{idealintersect}(A, B)

Intersection of the two ideals \(A \) and \(B \) in the number field \(n\text{f} \). The result is given in HNF.

\[
\text{idealintersect}(\text{nf}, 2, x+1)
\]
\[
\begin{bmatrix}
2 & 0 \\
0 & 2
\end{bmatrix}
\]

This function does not apply to general \(\mathbb{Z} \)-modules, e.g. orders, since its arguments are replaced by the ideals they generate. The following script intersects \(\mathbb{Z} \)-modules \(A \) and \(B \) given by matrices of compatible dimensions with integer coefficients:

\[
\text{ZM_intersect}(A, B) = \\
\{ \text{my(Ker = matkerint(concat(A, B))}); \
\}
\]
mathnf(A * Ker[1..#A,])

\textbf{idealinv}(x)

Inverse of the ideal \(x \) in the number field \(nf \), given in HNF. If \(x \) is an extended ideal, its principal part is suitably updated: i.e. inverting \([I,t]\), yields \([I^{-1},1/t]\).

\textbf{idealismaximal}(x)

Given \(nf \) a number field as output by \texttt{nfinit} and an ideal \(x \), return 0 if \(x \) is not a maximal ideal. Otherwise return a \texttt{prid} structure \(nf \) attached to the ideal. This function uses \texttt{ispseudoprime} and may return a wrong result in case the underlying rational pseudoprime is not an actual prime number: apply \texttt{isprime(pr.p)} to guarantee correctness. If \(x \) is an extended ideal, the extended part is ignored.

\begin{verbatim}
? K = nfinit(y^2 + 1);
? idealismaximal(K, 3) \\ \ 3 is inert
%2 = [3, [3, 0]~, 1, 2, 1]
? idealismaximal(K, 5) \\ \ 5 is not
%3 = [5, [2, 1]~, 1, 1, [2, -1; 1, 2]]
? pr = idealprimedec(K,5)[1] \\ already a prid
%4 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? idealismaximal(K, pr) \\ trivial check
%5 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
? x = idealhnf(K, pr)
%6 =
[5 3]
[\0 \1]
? idealismaximal(K, x) \\ converts from matrix form to prid
%7 = [5, [-2, 1]~, 1, 1, [2, -1; 1, 2]]
\end{verbatim}

This function is noticeably faster than \texttt{idealfactor} since it never involves an actually factorization, in particular when \(x \cap \mathbb{Z} \) is not a prime number.

\textbf{idealispower}(A, n, B)

Let \(nf \) be a number field and \(n > 0 \) be a positive integer. Return 1 if the fractional ideal \(A = B^n \) is an \(n \)-th power and 0 otherwise. If the argument \(B \) is present, set it to the \(n \)-th root of \(A \), in HNF.

\begin{verbatim}
? K = nfinit(x^3 - 2);
? A = [46875, 30966, 9573; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3, &B)
%3 = 1
? B
%4 =
[75 22 41]
[\0 \1 \0]
[\0 \0 \1]
? A = [9375, 2841, 198; 0, 3, 0; 0, 0, 3];
? idealispower(K, A, 3)
%5 = 0
\end{verbatim}
ideallist\((\text{bound}, \text{flag}) \)

Computes the list of all ideals of norm less or equal to \text{bound} in the number field \text{nf}. The result is a row vector with exactly \text{bound} components. Each component is itself a row vector containing the information about ideals of a given norm, in no specific order, depending on the value of \text{flag}:

The possible values of \text{flag} are:

0: give the \text{bid} attached to the ideals, without generators.
1: as 0, but include the generators in the \text{bid}.
2: in this case, \text{nf} must be a \text{bnf} with units. Each component is of the form \([\text{bid}, U]\), where \text{bid} is as case 0 and \(U\) is a vector of discrete logarithms of the units. More precisely, it gives the \text{ideallog}s with respect to \text{bid} of \((\zeta, u_1, \ldots, u_r)\) where \(\zeta\) is the torsion unit generator \text{bnf}.tu[2] and \((u_i)\) are the fundamental units in \text{bnf}.fu. This structure is technical, and only meant to be used in conjunction with \text{bnrclassnolist} or \text{bnrdiscnlist}.
3: as 2, but include the generators in the \text{bid}.
4: give only the HNF of the ideal.

\begin{verbatim}
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100);
? L[1]
%3 = [[1, 0; 0, 1]] \ \ A single ideal of norm 1
? #L[65]
%4 = 4 \ \ There are 4 ideals of norm 4 in \mathbb{Z}[i]
\end{verbatim}

If one wants more information, one could do instead:

\begin{verbatim}
? nf = nfinit(x^2+1);
? L = ideallist(nf, 100, 0);
? l = L[25]; vector(#l, i, l[i].clgp)
%3 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? l[1].mod
%4 = [[25, 7; 0, 1], []]
? l[2].mod
%5 = [[5, 0; 0, 5], []]
? l[3].mod
%6 = [[25, 7; 0, 1], []]
\end{verbatim}

where we ask for the structures of the \((\mathbb{Z}[i]/I)^*\) for all three ideals of norm 25. In fact, for all moduli with finite part of norm 25 and trivial Archimedean part, as the last 3 commands show. See \text{ideallistarch} to treat general moduli.

\text{ideallistarch}\((\text{list}, \text{arch}) \)

\text{list} is a vector of vectors of \text{bid}'s, as output by \text{ideallist} with flag 0 to 3. Return a vector of vectors with the same number of components as the original \text{list}. The leaves give information about moduli whose finite part is as in original list, in the same order, and Archimedean part is now \text{arch} (it was originally trivial). The information contained is of the same kind as was present in the input; see \text{ideallist}, in particular the meaning of \text{flag}.

\begin{verbatim}
? bnf = bnfinit(x^2-2);
? bnf.sign
%2 = [2, 0] \ \ two places at infinity
? L = ideallist(bnf, 100, 0);
? l = L[98]; vector(#l, i, l[i].clgp)
%4 = [[42, [42]], [36, [6, 6]], [42, [42]]]
? La = ideallistarch(bnf, L, [1,1]); \ \ add them to the modulus
\end{verbatim}

(continues on next page)
Of course, the results above are obvious: adding t places at infinity will add t copies of $\mathbb{Z}/2\mathbb{Z}$ to $(\mathbb{Z}_K/f)^\ast$. The following application is more typical:

```plaintext
? L = ideallist(bnf, 100, 2); \ \text{\textbackslash \\ textbackslash \ units are required now}
? La = ideallistarch(bnf, L, [1,1]);
? H = bnrclassnolist(bnf, La);
? H[98];
%4 = [2, 12, 2]
```

```plaintext
\textbf{ideallog}(x, \text{\textit{bid}})

\textit{nf} is a number field, \textit{bid} is as output by \textbf{idealstar}(\textit{nf}, \textit{D}, \ldots) and \textit{x} an element of \textit{nf} which must have valuation equal to 0 at all prime ideals in the support of \textit{D} and need not be integral. This function computes the discrete logarithm of \textit{x} on the generators given in \textbf{\textit{bid}.}\textbf{\textit{.gen}}\textbackslash ts1. In other words, if \textit{g}_i are these generators, of orders \textit{d}_i respectively, the result is a column vector of integers \((\textit{x}_i)\) such that \(0 < \textit{x}_i < \textit{d}_i\) and

\[
x = \prod_i g_i^{x_i} (\text{mod}^\ast \textit{D}).
\]

Note that when the support of \textit{D} contains places at infinity, this congruence implies also sign conditions on the attached real embeddings. See \textbf{znlog} for the limitations of the underlying discrete log algorithms.

When \textit{nf} is omitted, take it to be the rational number field. In that case, \textit{x} must be a \texttt{t_INT} and \textit{bid} must have been initialized by \textbf{znstar}(\textit{N}, 1).

```plaintext
\textbf{idealmin}(\textit{ix}, vdir)

This function is useless and kept for backward compatibility only, use :literal:`idealred`. Computes a pseudo-minimum of the ideal \textit{x} in the direction \textit{vdir} in the number field \textit{nf}.

```plaintext
\textbf{idealmul}(\textit{x}, \textit{y}, \text{\textit{flag}})

Ideal multiplication of the ideals \textit{x} and \textit{y} in the number field \textit{nf}; the result is the ideal product in HNF. If either \textit{x} or \textit{y} are extended ideals, their principal part is suitably updated: i.e. multiplying \([I, t]\), \([J, u]\) yields \([IJ, tu]\); multiplying \(I\) and \([J, u]\) yields \([IJ, u]\).

```plaintext
? nf = nfinit(x^2 + 1);
? idealmul(nf, 2, x+1)
%2 = [4, 2]

[0, 2]
? idealmul(nf, [2, x], x+1) \ \text\textbackslash \ extended ideal * ideal
%3 = [[4, 2; 0, 2], x]

? idealmul(nf, [2, x], [x+1, x]) \ \text\textbackslash \ two extended ideals
%4 = [[4, 2; 0, 2], [-1, 0]~]
```

If \textit{flag} is nonzero, reduce the result using \textbf{idealred}.

```plaintext
\textbf{idealnorm}(\textit{x})

Computes the norm of the ideal \textit{x} in the number field \textit{nf}.

```plaintext
\textbf{idealnumden}(\textit{x})

Returns \([A, B]\), where \(A, B\) are coprime integer ideals such that \(x = A/B\), in the number field \textit{nf}.

```
idealpow($x, k, flag$)

Computes the k-th power of the ideal x in the number field nf; $k \in \mathbb{Z}$. If x is an extended ideal, its principal part is suitably updated: i.e. raising $[I, t]$ to the k-th power, yields $[I^k, t^k]$.

If $flag$ is nonzero, reduce the result using idealred, throughout the (binary) powering process; in particular, this is not the same as idealpow(nf, x, k) followed by reduction.

idealprimedec(p, f)

Computes the prime ideal decomposition of the (positive) prime number p in the number field K represented by nf. If a nonprime p is given the result is undefined. If f is present and nonzero, restrict the result to primes of residue degree $\leq f$.

The result is a vector of $prid$ structures, each representing one of the prime ideals above p in the number field nf. The representation $pr = [p, a, e, f, mb]$ of a prime ideal means the following: a is an algebraic integer in the maximal order \mathbb{Z}_K and the prime ideal is equal to $p = p\mathbb{Z}_K + a\mathbb{Z}_K$; e is the ramification index; f is the residual index; finally, mb is the multiplication table attached to the algebraic integer b is such that $p^{-1} = \mathbb{Z}_K + b/p\mathbb{Z}_K$, which is used internally to compute valuations. In other words if p is inert, then mb is the integer 1, and otherwise it is a square t_{MAT} whose j-th column is $b.nf.z[k][j]$.

The algebraic number a is guaranteed to have a valuation equal to 1 at the prime ideal (this is automatic if $e > 1$).

The components of pr should be accessed by member functions: $pr.p$, $pr.e$, $pr.f$, and $pr.gen$ (returns the vector $[p, a]$):

idealprincipalunits(pr, k)

Given a prime ideal in idealprimedec format, returns the multiplicative group $(1 + pr)/(1 + pr^k)$ as an abelian group. This function is much faster than idealstar when the norm of pr is large, since it avoids (useless) work in the multiplicative group of the residue field.
idealramgroups\((gal, pr)\)

Let \(K \) be the number field defined by \(nf \) and assume that \(K/\mathbb{Q} \) is Galois with Galois group \(G \) given by \(gal = \text{galoisinit}(nf) \). Let \(pr \) be the prime ideal \(P \) in prid format. This function returns a vector \(g \) of subgroups of \(gal \) as follows:

- \(g[1] \) is the decomposition group of \(P \),
- \(g[2] \) is \(G_0(P) \), the inertia group of \(P \),

and for \(i \geq 2 \),

- \(g[i] \) is \(G_{i-2}(P) \), the \(i-2 \)-th ramification group of \(P \).

The length of \(g \) is the number of nontrivial groups in the sequence, thus is 0 if \(e = 1 \) and \(f = 1 \), and 1 if \(f > 1 \) and \(e = 1 \). The following function computes the cardinality of a subgroup of \(G \), as given by the components of \(g \):

\[
\text{card}(H) = \prod_{i} o[i]
\]

The field fixed by the inertia group of 2 is not ramified at 2.

idealred\((I, v)\)

LLL reduction of the ideal \(I \) in the number field \(K \) attached to \(nf \), along the direction \(v \). The \(v \) parameter is best left omitted, but if it is present, it must be an \(nf.r1 + nf.r2 \)-component vector of nonnegative integers. (What counts is the relative magnitude of the entries: if all entries are equal, the effect is the same as if the vector had been omitted.)

This function finds an \(a \in K^* \) such that \(J = (a)I \) is “small” and integral (see the end for technical details). The result is the Hermite normal form of the “reduced” ideal \(J \).

More often than not, a principal ideal yields the unit ideal as above. This is a quick and dirty way to check if ideals are principal, but it is not a necessary condition: a nontrivial result does not prove that the ideal is nonprincipal. For guaranteed results, see \texttt{bnfisprincipal}, which requires the computation of a full \texttt{bnf} structure.
If the input is an extended ideal \([I, s]\), the output is \([J, sa]\); in this way, one keeps track of the principal ideal part:

```plaintext
? idealred(K, [P, 1])
%5 = [[1, 0; 0, 1], [2, -1]]~
```

meaning that \(P\) is generated by \([2, -1]\). The number field element in the extended part is an algebraic number in any form or a factorization matrix (in terms of number field elements, not ideals!). In the latter case, elements stay in factored form, which is a convenient way to avoid coefficient explosion; see also `idealpow`.

Technical note. The routine computes an LLL-reduced basis for the lattice \(I^{-1}\) equipped with the quadratic form

\[
\|\|x\|\|^2 = \sum_{i=1}^{r_1+r_2} 2^{r_i} \varepsilon_i \|\sigma_i(x)\|_2,
\]

where as usual the \(\sigma_i\) are the (real and) complex embeddings and \(\varepsilon_i = 1\), resp. 2, for a real, resp. complex place. The element \(a\) is simply the first vector in the LLL basis. The only reason you may want to try to change some directions and set some \(v_i = 0\) is to randomize the elements found for a fixed ideal, which is heuristically useful in index calculus algorithms like `bnfinit` and `bnfisprincipal`.

Even more technical note. In fact, the above is a white lie. We do not use \(\|\|\cdot\|\|\), exactly but a rescaled rounded variant which gets us faster and simpler LLLs. There’s no harm since we are not using any theoretical property of \(a\) after all, except that it belongs to \(I^{-1}\) and that \(aI\) is “expected to be small”.

`idealredmodpower(x, n, B)`

Let \(nf\) be a number field, \(x\) an ideal in \(nf\) and \(n > 0\) be a positive integer. Return a number field element \(b\) such that \(xb^n\) is small. If \(x\) is integral, then \(v\) is also integral.

More precisely, `idealnumden` reduces the problem to \(x\) integral. Then, factoring out the prime ideals dividing a rational prime \(p \leq B\), we rewrite \(x = IJ^n\) where the ideals \(I\) and \(J\) are both integral and \(I\) is \(B\)-smooth. Then we return a small element \(b\) in \(J^{-1}\).

The bound \(B\) avoids a costly complete factorization of \(x\); as soon as the \(n\)-core of \(x\) is \(B\)-smooth (i.e., as soon as \(I\) is \(n\)-power free), then \(J\) is as large as possible and so is the expected reduction.

```plaintext
? T = x^6+108; nf = nfinit(T); a = Mod(x,T);
? setrand(1); u = (2*a^2+a+3) * random(2^1000*x^6)^6;
? sizebyte(u)
%3 = 4864
? b = idealredmodpower(nf,u,2);
? v2 = nfeltmul(nf,u, nfeltpow(nf,b,2))
%5 = [34, 47, 15, 35, 9, 3]~
? b = idealredmodpower(nf,u,6);
? v6 = nfeltmul(nf,u, nfeltpow(nf,b,6))
%7 = [3, 0, 2, 6, -7, 1]~
```

The last element \(v6\), obtained by reducing modulo 6-th powers instead of squares, looks smaller than \(v2\) but its norm is actually a little larger:

```plaintext
? idealnorm(nf,v2)
%8 = 81309
? idealnorm(nf,v6)
%9 = 731781
```

`idealstar(N, flag, cycmod)`

Outputs a b id structure, necessary for computing in the finite abelian group \(G = (\mathbb{Z}_N^K)^*\). Here, \(nf\) is a number field and \(N\) is a modulus: either an ideal in any form, or a row vector whose first component is an ideal and whose
second component is a row vector of r_1 0 or 1. Ideals can also be given by a factorization into prime ideals, as produced by *idealfactor*.

If the positive integer cyclicmod is present, only compute the group modulo cyclicmod-th powers, which may save a lot of time when some maximal ideals in the modulus have a huge residue field. Whereas you might only be interested in quadratic or cubic residuosity; see also *bnrinit* for applications in class field theory.

This *bid* is used in *ideallog* to compute discrete logarithms. It also contains useful information which can be conveniently retrieved as: :emphasis:`bid.mod` (the modulus), :emphasis:`bid.clgp` (G as a finite abelian group), :emphasis:`bid.no` (the cardinality of G), :emphasis:`bid.cyc` (elementary divisors) and :emphasis:`bid.gen` (generators).

If *flag* = 1 (default), the result is a *bid* structure without generators: they are well defined but not explicitly computed, which saves time.

If *flag* = 2, as *flag* = 1, but including generators.

If *flag* = 0, only outputs $(\mathbb{Z}_K/N)^*$ as an abelian group, i.e as a 3-component vector $[h, d, g]$: h is the order, d is the vector of SNF cyclic components and g the corresponding generators.

If *nf* is omitted, we take it to be the rational number fields, N must be an integer and we return the structure of $(\mathbb{Z}/N\mathbb{Z})^*$. In other words *idealstar*(, N, *flag*) is short for

```plaintext
idealstar(nfinit(x), N, flag)
```

but faster. The alternative syntax *znstar*(N, *flag*) is also available for an analogous effect but, due to an unfortunate historical oversight, the default value of *flag* is different in the two functions (*znstar* does not initialize by default, you probably want *znstar*(N, 1)).

idealtwoelt(x, *a*)

Computes a two-element representation of the ideal x in the number field *nf*, combining a random search and an approximation theorem; x is an ideal in any form (possibly an extended ideal, whose principal part is ignored)

- When called as *idealtwoelt*(nf, x), the result is a row vector $[a, \alpha]$ with two components such that $x = a\mathbb{Z}_K + \alpha\mathbb{Z}_K$ and a is chosen to be the positive generator of $x \cap \mathbb{Z}$, unless x was given as a principal ideal in which case we may choose $a = 0$. The algorithm uses a fast lazy factorization of $x \cap \mathbb{Z}$ and runs in randomized polynomial time.

```plaintext
? K = nfinit(t^5-23);
? x = idealhnf(K, t^2*(t+1), t^3*(t+1))
%2 = \ some random ideal of norm 552*23
[552 23 23 529 23]
[0 23 0 0 0]
[0 0 1 0 0]
[0 0 0 1 0]
[0 0 0 0 1]

? [a,alpha] = idealtwoelt(K, x)
%3 = [552, [23, 0, 1, 0, 0]~]
? nfbasistoalg(K, alpha)
%4 = Mod(t^2 + 23, t^5 - 23)
```

- When called as *idealtwoelt*(nf, x, *a*) with an explicit nonzero *a* supplied as third argument, the function assumes that $a \in x$ and returns $\alpha \in x$ such that $x = a\mathbb{Z}_K + \alpha\mathbb{Z}_K$. Note that we must factor a in this case,
and the algorithm is generally slower than the default variant and gives larger generators:

```plaintext
? alpha2 = idealtwoelt(K, x, 552)
%5 = [-161, -161, -183, -207, 0]
? idealhnf(K, 552, alpha2) == x
%6 = 1
```

Note that, in both cases, the return value is not recognized as an ideal by GP functions; one must use `idealhnf` as above to recover a valid ideal structure from the two-element representation.

idealval(x, pr)

Gives the valuation of the ideal x at the prime ideal pr in the number field nf, where pr is in `idealprimedec` format. The valuation of the 0 ideal is $+\infty$.

```plaintext
? x = 3 + quadgen(-23);
? idealval(x, 1)
%1 = 1
```

imag() (x, pr)

Gives the imaginary part of x. When x is a quadratic number, this is the coefficient of ω in the “canonical” integral basis $(1, \omega)$.

```plaintext
? imag(3 + I)
%1 = 1
? x = 3 + quadgen(-23);
? imag(x) \ as a quadratic number
%3 = 1
? imag(x * 1.) \ as a complex number
%4 = 2.3979157616563597707987190320813469600
```

incgam(x, g, precision)

Incomplete gamma function $\int_x^\infty e^{-t}t^{s-1}dt$, extended by analytic continuation to all complex x, s not both 0. The relative error is bounded in terms of the precision of s (the accuracy of x is ignored when determining the output precision). When g is given, assume that $g = \Gamma(s)$. For small $\|x\|$, this will speed up the computation.

```plaintext
incgamc(x, precision)
```

Complementary incomplete gamma function. The arguments x and s are complex numbers such that s is not a pole of Γ and $\|x\|/\|s\| + 1)$ is not much larger than 1 (otherwise the convergence is very slow). The result returned is $\int_x^\infty e^{-t}t^{s-1}dt$.

intformal(v)

Formal integration of x with respect to the variable v (wrt. the main variable if v is omitted). Since PARI cannot represent logarithmic or arctangent terms, any such term in the result will yield an error:

```plaintext
? intformal(x^2)
%1 = 1/3*x^3
? intformal(x^2, y)
%2 = y^2*x^2
? intformal(1/x)
*** at top-level: intformal(1/x)
*** ^---------------
*** intformal: domain error in intformal: residue(series, pole) != 0
```

The argument x can be of any type. When x is a rational function, we assume that the base ring is an integral domain of characteristic zero.

By definition, the main variable of a `t_POLMOD` is the main variable among the coefficients from its two polynomial components (representative and modulus); in other words, assuming a polmod represents an element of $R[X]/(T(X))$, the variable X is a mute variable and the integral is taken with respect to the main variable used in the base ring R. In particular, it is meaningless to integrate with respect to the main variable of $x\mod$:

572 Chapter 2. The Gen class wrapping PARI's GEN type
? intformal(Mod(1,x^2+1), 'x)
*** intformal: incorrect priority in intformal: variable x = x

\textbf{intnuminit}(b, m, precision)

Initialize tables for integration from \(a\) to \(b\), where \(a\) and \(b\) are coded as in \texttt{intnum}. Only the compactness, the possible existence of singularities, the speed of decrease or the oscillations at infinity are taken into account, and not the values. For instance \texttt{intnuminit(-1,1)} is equivalent to \texttt{intnuminit(0,Pi)}, and \texttt{intnuminit([0,-1/2],oo)} is equivalent to \texttt{intnuminit([-1,-1/2], -oo)}; on the other hand, the order matters and \texttt{intnuminit([0,-1/2], [1,-1/3])} is \textit{not} equivalent to \texttt{intnuminit([0,-1/3], [1,-1/2])}!

If \(m\) is present, it must be nonnegative and we multiply the default number of sampling points by \(2^m\) (increasing the running time by a similar factor).

The result is technical and liable to change in the future, but we document it here for completeness. Let \(x = \phi(t), t \in]-\infty,\infty[\) be an internally chosen change of variable, achieving double exponential decrease of the integrand at infinity. The integrator \texttt{intnum} will compute

\[h \sum_{|n| < N} \phi'(nh)F(\phi(nh)) \]

for some integration step \(h\) and truncation parameter \(N\). In basic use, let

\[
[h, x0, w0, xp, wp, xm, wm] = \texttt{intnuminit}(a,b);
\]

- \(h\) is the integration step
- \(x_0 = \phi(0)\) and \(w_0 = \phi'(0)\),
- \(xp\) contains the \(\phi(nh), 0 < n < N\),
- \(xm\) contains the \(\phi(nh), 0 < -n < N\), or is empty.
- \(wp\) contains the \(\phi'(nh), 0 < n < N\),
- \(wm\) contains the \(\phi'(nh), 0 < -n < N\), or is empty.

The arrays \(xm\) and \(wm\) are left empty when \(\phi\) is an odd function. In complicated situations, \texttt{intnuminit} may return up to 3 such arrays, corresponding to a splitting of up to 3 integrals of basic type.

If the functions to be integrated later are of the form \(F = f(t)k(t,z)\) for some kernel \(k\) (e.g. Fourier, Laplace, Mellin,...), it is useful to also precompute the values of \(f(\phi(nh))\), which is accomplished by \texttt{intfuncinit}. The hard part is to determine the behavior of \(F\) at endpoints, depending on \(z\).

\textbf{isfundamental}()

True (1) if \(D\) is equal to 1 or to the discriminant of a quadratic field, false (0) otherwise. \(D\) can be input in factored form as for arithmetic functions:

? isfundamental(factor(-8))
%1 = 1
\% count fundamental discriminants up to 10^8
? c = 0; forfactored(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 40,840 ms.
%2 = 30396325
? c = 0; for(d = 1, 10^8, if (isfundamental(d), c++)); c
time = 1min, 33,593 ms. \% slower !
%3 = 30396325
ispolygonal(s, N)
True (1) if the integer x is an s-gonal number, false (0) if not. The parameter $s > 2$ must be a t_INT. If N is given, set it to n if x is the n-th s-gonal number.

? ispolygonal(36, 3, &N)
%1 = 1
? N
ispower(k, n)
If k is given, returns true (1) if x is a k-th power, false (0) if not. What it means to be a k-th power depends on the type of x; see issquare for details.

If k is omitted, only integers and fractions are allowed for x and the function returns the maximal $k \geq 2$ such that $x = n^k$ is a perfect power, or 0 if no such k exist; in particular ispower(-1), ispower(0), and ispower(1) all return 0.

If a third argument n is given and x is indeed a k-th power, sets n to a k-th root of x.

For a t_FFELT x, instead of omitting k (which is not allowed for this type), it may be natural to set

$$k = \frac{(x.p ^ x.f - 1)}{fforder(x)}$$

ispowerful()
True (1) if x is a powerful integer, false (0) if not; an integer is powerful if and only if its valuation at all primes dividing x is greater than 1.

? ispowerful(50)
%1 = 0
? ispowerful(100)
%2 = 1
? ispowerful(5^3*(10^1000+1)^2)
%3 = 1

isprime($flag$)
True (1) if x is a prime number, false (0) otherwise. A prime number is a positive integer having exactly two distinct divisors among the natural numbers, namely 1 and itself.

This routine proves or disproves rigorously that a number is prime, which can be very slow when x is indeed a large prime integer. For instance a 1000 digits prime should require 15 to 30 minutes with default algorithms. Use ispseudoprime to quickly check for compositeness. Use primecert in order to obtain a primality proof instead of a yes/no answer; see also factor.

The function accepts vector/matrices arguments, and is then applied componentwise.

If $flag = 0$, use a combination of

• Baillie-Pomerance-Selfridge-Wagstaff compositeness test (see ispseudoprime),
• Selfridge "$p - 1$" test if $x - 1$ is smooth enough,
• Adleman-Pomerance-Rumely-Cohen-Lenstra (APRCL) for general medium-sized x (less than 1500 bits),
• Atkin-Morain’s Elliptic Curve Primality Prover (ECPP) for general large x.

If $flag = 1$, use Selfridge-Pocklington-Lehmer “$p - 1$” test; this requires partially factoring various auxiliary integers and is likely to be very slow.

If $flag = 2$, use APRCL only.
If $flag = 3$, use ECPP only.
isprimepower\((n) \)
If \(x = p^k \) is a prime power (\(p \) prime, \(k > 0 \)), return \(k \), else return 0. If a second argument \(n \) is given and \(x \) is indeed the \(k \)-th power of a prime \(p \), sets \(n \) to \(p \).

ispseudoprime\((\text{flag}) \)
True (1) if \(x \) is a strong pseudo prime (see below), false (0) otherwise. If this function returns false, \(x \) is not prime; if, on the other hand it returns true, it is only highly likely that \(x \) is a prime number. Use isprime (which is of course much slower) to prove that \(x \) is indeed prime. The function accepts vector/matrices arguments, and is then applied componentwise.

If \(flag = 0 \), checks whether \(x \) has no small prime divisors (up to 101 included) and is a Baillie-Pomerance-Selfridge-Wagstaff pseudo prime. Such a pseudo prime passes a Rabin-Miller test for base 2, followed by a Lucas test for the sequence \((P, 1) \), where \(P >= 3 \) is the smallest odd integer such that \(P^2 - 4 \) is not a square mod \(x \). (Technically, we are using an “almost extra strong Lucas test” that checks whether \(V_n \) is 2, without computing \(U_n \).)

There are no known composite numbers passing the above test, although it is expected that infinitely many such numbers exist. In particular, all composites \(<= 2^{64} \) are correctly detected (checked using http://www.cecm.sfu.ca/Pseudoprimes/index-2-to-64.html).

If \(flag > 0 \), checks whether \(x \) is a strong Miller-Rabin pseudo prime for \(flag \) randomly chosen bases (with end-matching to catch square roots of \(-1\)).

ispseudoprimepower\((n) \)
If \(x = p^k \) is a pseudo-prime power (\(p \) pseudo-prime as per ispseudoprime, \(k > 0 \)), return \(k \), else return 0. If a second argument \(n \) is given and \(x \) is indeed the \(k \)-th power of a prime \(p \), sets \(n \) to \(p \).

More precisely, \(k \) is always the largest integer such that \(x = n^k \) for some integer \(n \) and, when \(n <= 2^{64} \) the function returns \(k > 0 \) if and only if \(n \) is indeed prime. When \(n > 2^{64} \) is larger than the threshold, the function may return 1 even though \(n \) is composite: it only passed an ispseudoprime\((n) \) test.

issquare\((n) \)
True (1) if \(x \) is a square, false (0) if not. What “being a square” means depends on the type of \(x \): all \(\text{t_COMPLEX} \) are squares, as well as all nonnegative \(\text{t_REAL} \); for exact types such as \(\text{t_INT}, \text{t_FRAC} \) and \(\text{t_INTMOD} \), squares are numbers of the form \(s^2 \) with \(s \) in \(\mathbb{Z}, \mathbb{Q} \) and \(\mathbb{Z}/N\mathbb{Z} \) respectively.

```
? issquare(3) \ \ as an integer
%1 = 0
? issquare(3.) \ \ as a real number
%2 = 1
? issquare(Mod(7, 8)) \ \ in Z/8Z
%3 = 0
? issquare( 5 + O(13^4) ) \ \ in Q_13
%4 = 0
```

If \(n \) is given, a square root of \(x \) is put into \(n \).

```
? issquare(4, &n)
%1 = 1
? n
%2 = 2
```

For polynomials, either we detect that the characteristic is 2 (and check directly odd and even-power monomials) or we assume that 2 is invertible and check whether squaring the truncated power series for the square root yields the original input.

For \(\text{t_POLMOD} \ x \), we only support \(\text{t_POLMOD} \) s of \(\text{t_INTMOD} \) s encoding finite fields, assuming without checking that the intmod modulus \(p \) is prime and that the polmod modulus is irreducible modulo \(p \).
? issquare(Mo3d(2,3), x^2+1), &n)
%1 = 1
? n
%2 = Mo3d(2, 3)*x, Mo3d(1, 3)*x^2 + Mo3d(1, 3))

issquarefree()

True (1) if \(x\) is squarefree, false (0) if not. Here \(x\) can be an integer or a polynomial with coefficients in an integral domain.

A polynomial is declared squarefree if \(\gcd(x, x') = 1\). In particular a nonzero polynomial with inexact coefficients is considered to be squarefree. Note that this may be inconsistent with factor, which first rounds the input to some exact approximation before factoring in the appropriate domain; this is correct when the input is not close to an inseparable polynomial (the resultant of \(x\) and \(x'\) is not close to 0).

An integer can be input in factored form as in arithmetic functions.

\[\text{istotient}(N)\]

True (1) if \(x = \phi(n)\) for some integer \(n\), false (0) if not.

\[\text{kronecker}(y)\]

Kronecker symbol \((x|y)\), where \(x\) and \(y\) must be of type integer. By definition, this is the extension of Legendre
symbol to $\mathbb{Z} \times \mathbb{Z}$ by total multiplicativity in both arguments with the following special rules for $y = 0, -1$ or 2:

- $(x||0) = 1$ if $|x| = 1$ and 0 otherwise.
- $(x||-1) = 1$ if $x >= 0$ and -1 otherwise.
- $(x||2) = 0$ if x is even and 1 if $x = 1, -1 \mod 8$ and -1 if $x = 3, -3 \mod 8$.

lambertw(precision)

Lambert W function, solution of the implicit equation $x e^x = y$, for a positive real number y. This is the restriction to the positive reals of the complex principal branch W_0, which is not implemented outside of \mathbb{R}_+. Other branches W_k for $k! = 0$ are not implemented either.

laurentseries(serprec, M, precision)

Expand f as a Laurent series around $x = 0$ to order M. This function computes $f(x + O(x^n))$ until n is large enough: it must be possible to evaluate f on a power series with 0 constant term.

```plaintext
? laurentseries(t->sin(t)/(1-cos(t)), 5)
%1 = 2*x^-1 - 1/6*x - 1/360*x^3 - 1/15120*x^5 + O(x^6)
? laurentseries(log)
*** at top-level: laurentseries(log)
*** ^--------------------
*** in function laurentseries: log
*** ^---
*** log: domain error in log: series valuation != 0
```

Note that individual Laurent coefficients of order $<= M$ can be retrieved from $s = laurentseries(f, M)$ via `polcoef(s, i)` for any $i <= M$. The series s may occasionally be more precise than the required $O(x^{M+1})$.

With respect to successive calls to `derivnum`, `laurentseries` is both faster and more precise:

```plaintext
? laurentseries(t->log(3+t),1)
%1 = 1.0986122886868106913952452369225257047 + 1/3*x - 1/18*x^2 + O(x^3)
? derivnum(t=0,log(3+t),1)
%2 = 0.33333333333333333333333333333333333333
? derivnum(t=0,log(3+t),2)
%3 = -0.11111111111111111111111111111111111111

? f = x->sin(exp(x));
? polcoef(laurentseries(x->f(x+2), 1), 1)
%5 = 3.312929423104339804683687620360224365
? exp(2) * cos(exp(2));
%6 = 3.312929423104339804683687620360224365
? derivnum(x = 2, f(x))
%7 = 3.312929423104339804683687620360224364 \ 1 ulp off

? default(realprecision,115);
? for(i=1,10^4, laurentseries(x->f(x+2),1))
time = 279 ms.
? for(i=1,10^4, derivnum(x=2,f(x))) \ ... and slower
time = 1,134 ms.
```

lcm(y)

Least common multiple of x and y, i.e. such that $\text{lcm}(x, y) * \text{gcd}(x, y) = x * y$, up to units. If y is omitted and x is a vector, returns the lcm of all components of x. For integer arguments, return the nonnegative lcm.
When x and y are both given and one of them is a vector/matrix type, the LCM is again taken recursively on each component, but in a different way. If y is a vector, resp. matrix, then the result has the same type as y, and components equal to $\text{lcm}(x, y[i])$, resp. $\text{lcm}(x, y[,i])$. Else if x is a vector/matrix the result has the same type as x and an analogous definition. Note that for these types, lcm is not commutative.

Note that $\text{lcm}(v)$ is quite different from

```
l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
```

Indeed, $\text{lcm}(v)$ is a scalar, but l may not be (if one of the $v[i]$ is a vector/matrix). The computation uses a divide-conquer tree and should be much more efficient, especially when using the GMP multiprecision kernel (and more subquadratic algorithms become available):

```
? v = vector(10^5, i, random);
? lcm(v);
  time = 546 ms.
? l = v[1]; for (i = 1, #v, l = lcm(l, v[i]))
  time = 4,561 ms.
```

length()

Length of x; $\#x$ is a shortcut for $\text{length}(x)$. This is mostly useful for

- vectors: dimension (0 for empty vectors),
- lists: number of entries (0 for empty lists),
- maps: number of entries (0 for empty maps),
- matrices: number of columns,
- character strings: number of actual characters (without trailing \0, should you expect it from C char*).

```
? #"a string"
%1 = 8
? #[3,2,1]
%2 = 3
? #[]
%3 = 0
? #matrix(2,5)
%4 = 5
? L = List([1,2,3,4]); #L
%5 = 4
? M = Map([a,b; c,d; e,f]); #M
%6 = 3
```

The routine is in fact defined for arbitrary GP types, but is awkward and useless in other cases: it returns the number of non-code words in x, e.g. the effective length minus 2 for integers since the t_INT type has two code words.

lex(y)

Gives the result of a lexicographic comparison between x and y (as -1, 0 or 1). This is to be interpreted in quite a wide sense: it is admissible to compare objects of different types (scalars, vectors, matrices), provided the scalars can be compared, as well as vectors/matrices of different lengths; finally, when comparing two scalars, a complex number $a + I \cdot b$ is interpreted as a vector $[a, b]$ and a real number a as $[a, 0]$. The comparison is recursive.

In case all components are equal up to the smallest length of the operands, the more complex is considered to be larger. More precisely, the longest is the largest; when lengths are equal, we have matrix > vector > scalar. For example:
? lex([1,3], [1,2,5])
%1 = 1
? lex([1,3], [1,3,-1])
%2 = -1
? lex([1], [[1]])
%3 = -1
? lex([1], [1]~)
%4 = 0
? lex(2 - I, 1)
%5 = 1
? lex(2 - I, 2)
%6 = 2

\textbf{lfun}(s, D, \text{precision})

Compute the L-function value \(L(s) \), or if \(D \) is set, the derivative of order \(D \) at \(s \). The parameter \(L \) is either an \(\text{Lmath} \), an \(\text{Ldata} \) (created by \text{lfuncreate}), or an \(\text{Linit} \) (created by \text{lfuninit}), preferably the latter if many values are to be computed.

The argument \(s \) is also allowed to be a power series; for instance, if \(s = \alpha + x + O(x^n) \), the function returns the Taylor expansion of order \(n \) around \(\alpha \). The result is given with absolute error less than \(2^{-B} \), where \(B = \text{realbitprecision} \).

\textbf{Caveat.} The requested precision has a major impact on runtimes. It is advised to manipulate precision via \text{realbitprecision} as explained above instead of \text{realprecision} as the latter allows less granularity: \text{realprecision} increases by increments of 64 bits, i.e. 19 decimal digits at a time.

\textbf{lfunabelianrelinit}(\text{bnfK}, \text{polrel}, \text{sdom}, \text{der}, \text{precision})

Returns the Linit structure attached to the Dedekind zeta function of the number field \(L \) (see \text{lfuninit}), given a subfield \(K \) such that \(L/K \) is abelian. Here \text{polrel} defines \(L \) over \(K \), as usual with the priority of the variable of \text{bnfK} lower than that of \text{polrel}. \text{sdom} and \text{der} are as in \text{lfuninit}.

\textbf{(continues on next page)}
As the example shows, using the (abelian) relative structure is more efficient than a direct computation. The difference becomes drastic as the absolute degree increases while the subfield degree remains constant.

\texttt{lfunan}(n, \textit{precision})

Compute the first \(n \) terms of the Dirichlet series attached to the \(L \)-function given by \(L \) (\texttt{Lmath}, \texttt{Ldata} or \texttt{Linit}).

\begin{verbatim}
? lfunan(1, 10) \ \ \ \text{\texttt{\textit{Riemann zeta}}}
%1 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]
? lfunan(5, 10) \ \ \ \text{\texttt{Dirichlet \textit{L}-function for \texttt{kronecker}(5,.)}}
%2 = [1, -1, -1, 1, 0, 1, -1, -1, 1, 0]
\end{verbatim}

\texttt{lfunartin}(\textit{gal}, \textit{rho}, \textit{n}, \textit{precision})

Returns the \texttt{Ldata} structure attached to the Artin \(L \)-function provided by the representation \(\rho \) of the Galois group of the extension \(K/\mathbb{Q} \), defined over the cyclotomic field \(\mathbb{Q}(\zeta_n) \), where \texttt{nf} is the \texttt{nfini}t structure attached to \(K \), \texttt{gal} is the \texttt{galoisini}t structure attached to \(K/\mathbb{Q} \), and \texttt{rho} is given either

- by the values of its character on the conjugacy classes (see \texttt{galoiscon}jclasses and \texttt{galoischartable})
- or by the matrices that are the images of the generators \texttt{\textit{\textbackslash{quote}gal.gen\textit{\textbackslash{quote}}}.

Cyclotomic numbers in \texttt{rho} are represented by polynomials, whose variable is understood as the complex number \(\exp(2\pi i/n) \).

In the following example we build the Artin \(L \)-functions attached to the two irreducible degree 2 representations of the dihedral group \(D_{10} \) defined over \(\mathbb{Q}(\zeta_5) \), for the extension \(H/\mathbb{Q} \) where \(H \) is the Hilbert class field of \(\mathbb{Q}(\sqrt{-47}) \). We show numerically some identities involving Dedekind \(\zeta \) functions and Hecke \(L \) series.

\begin{verbatim}
? P = quadhilbert(-47)
%1 = x^5 + 2*x^4 + 2*x^3 + x^2 - 1
? N = nfinit(nfsplitting(P));
? G = galoisinit(N); \ \ \ \texttt{\textbackslash{\textit{D}}_10}
? [T,n] = galoischartable(G);
? T \ \ \ \texttt{columns give the irreducible characters}
%5 =
[1 1 2 2]
[1 -1 0 0]
[1 1 -y^3 - y^2 - 1 y^3 + y^2]
[1 1 y^3 + y^2 -y^3 - y^2 - 1]
? n
%6 = 5
? L2 = lfunartin(N,G, T[,2], n);
? L3 = lfunartin(N,G, T[,3], n);
? L4 = lfunartin(N,G, T[,4], n);
? s = 1 + x + O(x^4);
? lfun(-47,s) - lfun(L2,s)
%11 ~ 0
? lfun(1,s)*lfun(-47,s)*lfun(L3,s)^2*lfun(L4,s)^2 - lfun(N,s)
\end{verbatim}
The first identity identifies the nontrivial abelian character with \((-47, .)\); the second is the factorization of the regular representation of \(D_{10}\); the third is the factorization of the natural representation of \(D_{10} \subset S_5\); and the final four are the expressions of the degree 2 representations as induced from degree 1 representations.

\textbf{lfuncheckfeq}(t, precision)

Given the data attached to an \(L\)-function (\Lmath, \Ldata or \Linit), check whether the functional equation is satisfied. This is most useful for an \Ldata constructed “by hand”, via \lfuncreate, to detect mistakes.

If the function has poles, the polar part must be specified. The routine returns a bit accuracy \(b\) such that \(\|w - \bar{w}\| < 2^b\), where \(w\) is the root number contained in data, and

\[
 w = \theta(1/t)t^{-k}/\bar{\theta}(t)
\]

is a computed value derived from the assumed functional equation. If the parameter \(t\) is omitted, we try random samples on the real line in the segment \([1, 1.25]\). Of course, a large negative value of the order of \texttt{realbitprecision} is expected but if \(\bar{\theta}\) is very small all over the sampled segment, you should first increase \texttt{realbitprecision} by \(-\log_2 \|\bar{\theta}(t)\|\) (which is positive if \(\theta\) is small) to get a meaningful result.

If \(t\) is given, it should be close to the unit disc for efficiency and such that \(\bar{\theta}(1/t) != 0\). We then check the functional equation at that \(t\). Again, if \(\bar{\theta}(t)\) is very small, you should first increase \texttt{realbitprecision} to get a useful result.

\[
\begin{align*}
\text{\texttt{\(\%12 \sim 0\)}} & \\
? \lfun(1,s)*\lfun(L3,s)*\lfun(L4,s) - \lfun(P,s) & \%13 \sim 0 \\
\text{\texttt{\(\%15 = [5] \setminus \mathbb{Z}/5\mathbb{Z}\): 4 nontrivial ray class characters}} & \\
? \lfun([bnr,[1]], s) - \lfun(L3, s) & \%16 \sim 0 \\
? \lfun([bnr,[2]], s) - \lfun(L4, s) & \%17 \sim 0 \\
? \lfun([bnr,[3]], s) - \lfun(L3, s) & \%18 \sim 0 \\
? \lfun([bnr,[4]], s) - \lfun(L4, s) & \%19 \sim 0
\end{align*}
\]

i.e. the given data is consistent to within 4 bits for the particular check consisting of estimating the root number from all other given quantities. Checking away from the unit disc will either fail with a precision error, or give disappointing results (if \(\bar{\theta}(1/t)\) is large it will be computed with a large absolute error)

\[
\begin{align*}
? \lfuncheckfeq(L, 2+i) & \\
%4 = -115 \\
? \lfuncheckfeq(L,10) & \text{*** at top-level: lfuncheckfeq(L,10)} \\
& \text{*** A~~~~~~~~~~~~~~~} \\
& \text{*** lfuncheckfeq: precision too low in lfuncheckfeq.}
\end{align*}
\]
lfunconductor \((\text{setN}, \text{flag}, \text{precision}) \)

Compute the conductor of the given \(L \)-function (if the structure contains a conductor, it is ignored). Two methods are available, depending on what we know about the conductor, encoded in the \text{setN} parameter:

- \text{setN} is a scalar: we know nothing but expect that the conductor lies in the interval \([1, \text{setN}]\).

If \text{flag} is 0 (default), give either the conductor found as an integer, or a vector (possibly empty) of conductors found. If \text{flag} is 1, same but give the computed floating point approximations to the conductors found, without rounding to integers. If \text{flag} is 2, give all the conductors found, even those far from integers.

\textbf{Caveat.} This is a heuristic program and the result is not proven in any way:

\begin{verbatim}
? L = lfuncreate(857); \ \ Dirichlet L function for kronecker(857,.)
? \p19
 realprecision = 19 significant digits
? lfunconductor(L)
%2 = [17, 857]
? lfunconductor(L,,1) \ \ don't round
%3 = [16.99999999999999999, 857.0000000000000000]
? \p38
 realprecision = 38 significant digits
? lfunconductor(L)
%4 = 857
\end{verbatim}

Increasing \text{setN} or increasing \text{realbitprecision} slows down the program but gives better accuracy for the result. This algorithm should only be used if the primes dividing the conductor are unknown, which is uncommon.

- \text{setN} is a vector of possible conductors; for instance of the form \(D_1 \cdot \text{divisors}(D_2) \), where \(D_1 \) is the known part of the conductor and \(D_2 \) is a multiple of the contribution of the bad primes.

In that case, \text{flag} is ignored and the routine uses \text{lfuncheckfeq}. It returns \([N, e]\) where \(N \) is the best conductor in the list and \(e \) is the value of \text{lfuncheckfeq} for that \(N \). When no suitable conductor exist or there is a tie among best potential conductors, return the empty vector [].

\begin{verbatim}
? E = ellinit([0,0,0,4,0]); /* Elliptic curve y^2 = x^3+4x */
? E.disc \ \ |disc E| = 2^{12}
%2 = -4096
\ \ create Ldata by hand. Guess that root number is 1 and conductor N
? L(N) = lfuncreate([n->ellan(E,n), 0, [0,1], 2, N, 1]);
\ \ lfunconductor ignores conductor = 1 in Ldata !
? lfunconductor(L(1), \text{divisors}(E.disc))
%5 = [32, -127]
? fordiv(E.disc, d, print(d,": ",lfuncheckfeq(L(d)))) \ \ direct check
 1: 0
 2: 0
 4: -1
 8: -2
 16: -3
 32: -127
 64: -3
 128: -2
 256: -2
 512: -1
1024: -1
\end{verbatim}

(continues on next page)
The above code assumed that root number was 1; had we set it to −1, none of the lfuncheckf and values would have been acceptable:

```
? L2 = lfuncreate([n->ellan(E,n), 0, [0,1], 2, 0, -1]);
? lfunconductor(L2, divisors(E.disc))
%7 = []
```

lfuncost(sdom, der, precision)

Estimate the cost of running lfuninit(L,sdom,der) at current bit precision. Returns \([t, b]\), to indicate that \(t\) coefficients \(a_n\) will be computed, as well as \(t\) values of \(\text{gammamellin}^{-1}\), all at bit accuracy \(b\). A subsequent call to lfun at \(s\) evaluates a polynomial of degree \(t\) at \(\exp(hs)\) for some real parameter \(h\), at the same bit accuracy \(b\). If \(L\) is already an Linit, then \(sdom\) and \(der\) are ignored and are best left omitted; the bit accuracy is also inferred from \(L\): in short we get an estimate of the cost of using that particular Linit.

```
? \pb 128
? lfuncost(1, [100]) \ // for zeta(1/2+I*t), |t| < 100
%1 = [7, 242] \ // 7 coefficients, 242 bits
? lfuncost(1, [1/2, 100]) \ // for zeta(s) in the critical strip, |Im s| < 100
%2 = [7, 246] \ // now 246 bits
? lfuncost(1, [100], 10) \ // for zeta(1/2+I^4*t), |t| < 100
%3 = [8, 263] \ // 10th derivative increases the cost by a small amount
? lfuncost(1, [10^5])
%3 = [158, 113438] \ // larger imaginary part: huge accuracy increase

? L = lfuncreate(polcyclo(5)); \ // Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \ // a priori cost
%5 = [11457, 582]
? lfuncost(L, [200]) \ // twice higher
%6 = [36294, 1035]
? lfuncost(L, [10^4]) \ // much higher: very costly !
%7 = [70256473, 45452]
? \pb 256
? lfuncost(L, [100]); \ // doubling bit accuracy
%8 = [17080, 710]
```

In fact, some \(L\) functions can be factorized algebraically by the lfuninit call, e.g. the Dedekind zeta function of abelian fields, leading to much faster evaluations than the above upper bounds. In that case, the function returns a vector of costs as above for each individual function in the product actually evaluated:

```
? L = lfuncreate(polcyclo(5)); \ // Dedekind zeta for Q(zeta_5)
? lfuncost(L, [100]) \ // a priori cost
%2 = [11457, 582]
? L = lfuninit(L, [100]); \ // actually perform all initializations
? lfuncost(L)
%4 = [[16, 242], [16, 242], [7, 242]]
```

The Dedekind function of this abelian quartic field is the product of four Dirichlet \(L\)-functions attached to the trivial character, a nontrivial real character and two complex conjugate characters. The nontrivial characters happen to have the same conductor (hence same evaluation costs), and correspond to two evaluations only since the two conjugate characters are evaluated simultaneously. For a total of three \(L\)-functions evaluations, which
explains the three components above. Note that the actual cost is much lower than the a priori cost in this case.

lfuncreate()

This low-level routine creates Ldata structures, needed by `lfun` functions, describing an L-function and its functional equation. We advise using a high-level constructor when one is available, see ??lfun, and this function accepts them:

```plaintext
? L = lfuncreate(1); \ Riemann zeta
? L = lfuncreate(5); \ Dirichlet L-function for quadratic character (5/.)
? L = lfuncreate(x^2+1); \ Dedekind zeta for Q(i)
? L = lfuncreate(ellinit([0,1])); \ L-function of E/Q: y^2=x^3+1
```

One can then use, e.g., `lfun(L, s)` to directly evaluate the respective L-functions at s, or `lfuninit(L, [c,w,h]` to initialize computations in the rectangular box \(\Re(s - c) \leq w, \Im(s) \leq h \).

We now describe the low-level interface, used to input nonbuiltin L-functions. The input is now a 6 or 7 component vector \(V = [a, \astar, V\, \text{ga}, k, N, \epsilon, \text{poles}] \), whose components are as follows:

- \(V[1] = a \) encodes the Dirichlet series coefficients \((a_n)\). The preferred format is a closure of arity 1: \(n \rightarrow \text{vector}(n,i,a(i)) \) giving the vector of the first \(n \) coefficients. The closure is allowed to return a vector of more than \(n \) coefficients (only the first \(n \) will be considered) or even less than \(n \), in which case loss of accuracy will occur and a warning that \#an is less than expected is issued. This allows to precompute and store a fixed large number of Dirichlet coefficients in a vector \(v \) and use the closure \(n \rightarrow v \), which does not depend on \(n \). As a shorthand for this latter case, you can input the vector \(v \) itself instead of the closure.

```plaintext
? z = lfuncreate([n->vector(n,i,1), 1, [0], 1, 1, 1, 1]); \ Riemann zeta
? lfun(z,2) - Pi^2/6
%2 = -5.877471754111437540 E-39
```

A second format is limited to L-functions affording an Euler product. It is a closure of arity 2 \((p,d) \rightarrow F(p) \) giving the local factor \(L_p(X) \) at \(p \) as a rational function, to be evaluated at \(p^{-s} \) as in `direuler`; \(d \) is set to \(\logint(n,p) + 1 \), where \(n \) is the total number of Dirichlet coefficients \((a_1, ..., a_n)\) that will be computed. In other words, the smallest integer \(d \) such that \(p^d > n \). This parameter \(d \) allows to compute only part of \(L_p \) when \(p \) is large and \(L_p \) expensive to compute: any polynomial (or t_SER) congruent to \(L_p \) modulo \(X^d \) is acceptable since only the coefficients of \(X^0, ..., X^{d-1} \) are needed to expand the Dirichlet series. The closure can of course ignore this parameter:

```plaintext
? z = lfuncreate([(p,d)->1/(1-x), 1, [0], 1, 1, 1, 1]); \ Riemann zeta
? lfun(z,2) - Pi^2/6
%4 = -5.877471754111437540 E-39
```

One can describe separately the generic local factors coefficients and the bad local factors by setting \(\text{dir} = [F, Lbad], \) were \(L_{bad} = [[[p_1, L_{p_1}], ..., [p_k, L_{p_k}]]], \) where \(F \) describes the generic local factors as above, except that when \(p = p_i \) for some \(i \leq k \), the coefficient \(a_p \) is directly set to \(L_{p_i} \) instead of calling \(F \).

```plaintext
N = 15;
E = ellinit([1, 1, 1, -10, -10]); \ = "15a1"
F(p,d) = 1 / (1 - ellap(E,p)*t+x + p*p\times^2);
Lbad = [[[3, 1/(1+x)], [5, 1/(1-x)]];
L = lfuncreate([F,Lbad], 0, [0,1], 2, N, ellrootno(E)));
```

Of course, in this case, `lfuncreate(E)` is preferable!

- \(V[2] = \astar \) is the Dirichlet series coefficients of the dual function, encoded as above. The sentinel values 0 and 1 may be used for the special cases where \(a = a^* \) and \(a = \overline{a}^* \), respectively.
- \(V[3] = \text{Vga} \) is the vector of \(\alpha_j \) such that the gamma factor of the L-function is equal to
where: \(\mathfrak{T}_\Re(s) = \pi^{-s/2}\Gamma(s/2) \). This same syntax is used in the literal `gammamellininv` functions. In particular:

- \(V[4] = k \) is a positive integer \(k \). The functional equation relates values at \(s \) and \(k - s \). For instance, for an Artin \(L \)-series such as a Dedekind zeta function we have \(k = 1 \), for an elliptic curve \(k = 2 \), and for a modular form, \(k \) is its weight.

By default we assume that \(a_n = O_e(n^{k_1+\varepsilon}) \), where \(k_1 = w \) and even \(k_1 = w/2 \) when the \(L \) function has no pole (Ramanujan-Petersson). If this is not the case, you can replace the \(k \) argument by a vector \([k, k_1] \), where \(k_1 \) is the upper bound you can assume.

- \(V[5] = N \) is the conductor, an integer \(N \geq 1 \), such that \(\Lambda(s) = N^{s/2}\gamma_A(s)L(s) \) with \(\gamma_A(s) \) as above.

- \(V[6] = \text{eps} \) is the root number \(\varepsilon \), i.e., the complex number (usually of modulus 1) such that \(\Lambda(a, k - s) = \varepsilon\Lambda(a^*, s) \).

- The last optional component \(V[7] = \text{poles} \) encodes the poles of the \(L \) or \(\Lambda \)-functions, and is omitted if they have no poles. A polar part is given by a list of 2-component vectors \([\beta, P_\beta(x)]\), where \(\beta \) is a pole and the power series \(P_\beta(x) \) describes the attached polar part, such that \(L(s) - P_\beta(s - \beta) \) is holomorphic in a neighbourhood of \(\beta \). For instance \(P_\beta = r/x + O(1) \) for a simple pole at \(\beta \) or \(r_1/x^2 + r_2/x + O(1) \) for a double pole. The type of the list describing the polar part allows to distinguish between \(L \) and \(\Lambda \): a \texttt{t_VEC} is attached to \(L \), and a \texttt{t_COL} is attached to \(\Lambda \). Unless \(a = \overline{a^\tau} \) (coded by \texttt{astar} equal to 0 or 1), it is mandatory to specify the polar part of \(\Lambda \) rather than those of \(L \) since the poles of \(L^* \) cannot be inferred from the latter!

 Whereas the functional equation allows to deduce the polar part of \(\Lambda^* \) from the polar part of \(\Lambda \).

Finally, if \(a = \overline{a^\tau} \), we allow a shortcut to describe the frequent situation where \(L \) has at most simple pole, at \(s = k \), with residue \(r \) a complex scalar: you may then input \(\text{poles} = r \). This value \(r \) can be set to 0 if unknown and it will be computed.

\textbf{When one component is not exact.} Alternatively, \texttt{obj} can be a closure of arity 0 returning the above vector to the current real precision. This is needed if some components are not available exactly but only through floating point approximations. The closure allows algorithms to recompute them to higher accuracy when needed. Compare

\begin{verbatim}
? Ld1() = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^1/6];
? Ld2 = [n->lfunan(Mod(2,7),n),1,[0],1,7,((-13-3*sqrt(-3))/14)^1/6];
? L1 = lfunccreate(Ld1);
? L2 = lfunccreate(Ld2);
? lfun(L1,1/2+I*200) \[OK\]
%5 = 0.55943925130316677665287870224047183265 -
 0.4249266223174071305478563967365980756*I
? lfun(L2,1/2+I*200) \[all accuracy lost\]
%6 = 0.E-38 + 0.E-38*I
\end{verbatim}

The accuracy lost in \(Ld2 \) is due to the root number being given to an insufficient precision. To see what happens try

\begin{verbatim}
? Ld3() = printf("prec needed: %ld bits",getlocalbitprec());Ld1()
? L3 = lfunccreate(Ld3);
prec needed: 64 bits
? z3 = lfun(L3,1/2+I*200)
prec needed: 384 bits
%16 = 0.55943925130316677665287870224047183265 -
 0.4249266223174071305478563967365980756*I
\end{verbatim}

\texttt{lfundiv}(<\texttt{L2}, precision>)

Creates the \(\text{Ldata} \) structure (without initialization) corresponding to the quotient of the Dirichlet series \(L_1 \) and
Given by L_1 and L_2. Assume that $v_z(L_1) \geq v_z(L_2)$ at all complex numbers z: the construction may not create new poles, nor increase the order of existing ones.

1fundual(\text{precision})

Creates the Ldata structure (without initialization) corresponding to the dual L-function L of L. If k and ε are respectively the weight and root number of L, then the following formula holds outside poles, up to numerical errors:

$$\Lambda(L, s) = \varepsilon\Lambda(L, k-s).$$

\begin{verbatim}
? L = lfunqf(matdiagonal([1,2,3,4]));
? eps = lfunrootres(L)[3]; k = L[4];
? M = lfundual(L); lfuncheckfeq(M)
%3 = -127
? s = 1+Pi*I;
? a = lfunlambda(L, s);
? b = eps * lfunlambda(M, k-s);
? exponent(a - b)
%7 = -130
\end{verbatim}

1funetaquo()

Returns the Ldata structure attached to the L function attached to the modular form $z: - - - > \prod_{i=1}^{d} \eta(M_i z)^{M_i/2}$. It is currently assumed that f is a self-dual cuspidal form on $\Gamma_0(N)$ for some N. For instance, the L-function $\sum \tau(n)$ attached to Ramanujan’s Δ function is encoded as follows.

\begin{verbatim}
? L = lfunetaquo(Mat([1,24]));
? lfunan(L, 100) \ first 100 values of \tau(n)
\end{verbatim}

For convenience, a t_VEC is also accepted instead of a factorization matrix with a single row:

\begin{verbatim}
? L = lfunetaquo([1,24]); \ same as above
\end{verbatim}

1fungenus2()

Returns the Ldata structure attached to the L function attached to the genus-2 curve defined by $y^2 = F(x)$ or $y^2 + Q(x)y = P(x)$ if $F = [P, Q]$. Currently, the model needs to be minimal at 2, and if the conductor is even, its valuation at 2 might be incorrect (a warning is issued).

1funhardy(\text{t}, \text{precision})

Variant of the Hardy Z-function given by L, used for plotting or locating zeros of $L(k/2 + it)$ on the critical line. The precise definition is as follows: let $k/2$ be the center of the critical strip, d be the degree, $V_{ga} = (\alpha_j)_{j \leq d}$ be the gamma factors, and ε be the root number; we set $s = k/2 + it = pe^{i\theta}$ and $2E = d(k/2 - 1) + \Re(\sum_{1 \leq j \leq d} \alpha_j)$. Assume first that Λ is self-dual, then the computed function at t is equal to

$$Z(t) = e^{-1/2} \Lambda(s) e^{E e^{i\theta}/2},$$

which is a real function of t vanishing exactly when $L(k/2 + it)$ does on the critical line. The normalizing factor $e^{-E e^{i\theta}/2}$ compensates the exponential decrease of $\gamma_{\Lambda}(s)$ as $t \to \infty$ so that $Z(t)$ 1. For non-self-dual Λ, the definition is the same except we drop the $e^{-1/2}$ term (which is not well defined since it depends on the chosen dual sequence $a^*(n)$): $Z(t)$ is still of the order of 1 and still vanishes where $L(k/2 + it)$ does, but it needs no longer be real-valued.

\begin{verbatim}
? T = 100; \ maximal height
? L = lfuninit(1, [T]); \ initialize for zeta(1/2+it), |t|<T
? \p19 \ no need for large accuracy
? ploth(t = 0, T, lfunhardy(L,t))
\end{verbatim}
Using \texttt{lfuninit} is critical for this particular application since thousands of values are computed. Make sure to initialize up to the maximal \(t \) needed: otherwise expect to see many warnings for insufficient initialization and suffer major slowdowns.

\textbf{lfuninit}(sdom, der, precision)

Initialization function for all functions linked to the computation of the \(L \)-function \(L(s) \) encoded by \(L \), where \(s \) belongs to the rectangular domain \(sdom = \{ \text{center}, w, h \} \) centered on the real axis, \(||\Re(s) - \text{center}|| \leq w, ||\Im(s)|| \leq h \), where all three components of \(sdom \) are real and \(w, h \) are nonnegative. \(\text{der} \) is the maximum order of derivation that will be used. The subdomain \([k/2, 0, h] \) on the critical line (up to height \(h \)) can be encoded as \([h] \) for brevity. The subdomain \([k/2, w, h] \) centered on the critical line can be encoded as \([w, h] \) for brevity.

The argument \(L \) is an \texttt{Lmath}, an \texttt{Ldata} or an \texttt{Linit}. See \texttt{??Ldata} and \texttt{??lfuncreate} for how to create it.

The height \(h \) of the domain is a crucial parameter: if you only need \(L(s) \) for real \(s \), set \(h \) to 0. The running time is roughly proportional to

\[
(B/d + \pi h/4)^{d/2+3} N^{1/2},
\]

where \(B \) is the default bit accuracy, \(d \) is the degree of the \(L \)-function, and \(N \) is the conductor (the exponent \(d/2+3 \) is reduced to \(d/2 + 2 \) when \(d = 1 \) and \(d = 2 \)). There is also a dependency on \(w \), which is less crucial, but make sure to use the smallest rectangular domain that you need.

\begin{verbatim}
? L0 = lfuncreate(1); \ \ Riemann zeta
? L = lfuninit(L0, [1/2, 0, 100]); \ \ for zeta(1/2+it), |t| < 100
? lfun(L, 1/2 + I)
\end{verbatim}

\textbf{lfunlambda}(s, D, precision)

Compute the completed \(L \)-function \(\Lambda(s) = N^{s/2} \gamma(s)L(s) \), or if \(D \) is set, the derivative of order \(D \) at \(s \). The parameter \(L \) is either an \texttt{Lmath}, an \texttt{Ldata} (created by \texttt{lfuncreate}), or an \texttt{Linit} (created by \texttt{lfuninit}), preferably the latter if many values are to be computed.

The result is given with absolute error less than \(2^{-B}||\gamma(s)N^{s/2}|| \), where \(B = \text{realbitprecision} \).

\textbf{lfunmf}(F, precision)

If \(F \) is a modular form in \texttt{mf}, output the \(L \)-functions corresponding to its \([\mathbb{Q}(F) : \mathbb{Q}(\chi)] \) complex embeddings, ready for use with the \texttt{lfun} package. If \(F \) is omitted, output the \(L \)-functions attached to all eigenforms in the new space; the result is a vector whose length is the number of Galois orbits of newforms. Each entry contains the vector of \(L \)-functions corresponding to the \(d \) complex embeddings of an orbit of dimension \(d \) over \(\mathbb{Q}(\chi) \).

\begin{verbatim}
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]
? f = mfeigenbasis(mf)[2]; mfparams(f) \ \ orbit of dimension two
%2 = [35, 2, 1, y^2 - y - 4, t - 1]
? [L1,L2] = lfunmf(mf, f); \ \ Two L-functions
? lfun(L1,1)
%4 = 0.81018461849460161754947375433874745585
? lfun(L2,1)
%5 = 0.46007635204895314548435893464149369804
? [lfun(L,1) | L <- concat(lfunmf(mf))]
%6 = [0.70291..., 0.81018..., 0.46007...]
\end{verbatim}

The \texttt{concat} instruction concatenates the vectors corresponding to the various (here two) orbits, so that we obtain the vector of all the \(L \)-functions attached to eigenforms.
lfunmfspec(precision)

Let \(L \) be the \(L \)-function attached to a modular eigenform \(f \) of weight \(k \), as given by \texttt{lfunmf}. In even weight, returns \([ve, vo, om, op]\), where \(ve \) (resp., \(vo \)) is the vector of even (resp., odd) periods of \(f \) and \(om \) and \(op \) the corresponding real numbers \(\omega^- \) and \(\omega^+ \) normalized in a noncanonical way. In odd weight \ominus \) is the same as \(op \) and we return \([v, op]\) where \(v \) is the vector of all periods.

```plaintext
? D = mfDelta(); mf = mfinit(D); L = lfunmf(mf, D);
? [ve, vo, om, op] = lfunmfspec(L)
%2 = [[1, 25/48, 5/12, 25/48, 1], [1620/691, 1, 9/14, 9/14, 1, 1620/691],
0.007415420929896130589006277459002287248,\n0.005083512868604942901374387473226]
? DS = mfsymbol(mf, D); bestappr(om*op / mfpetersson(DS), 10^8)
%3 = 8192/225
? mf = mfinit([4, 9, -4], 0);
? F = mfeigenbasis(mf)[1]; L = lfunmf(mf, F);
? [v, om] = lfunmfspec(L)
%6 = [[1, 10/21, 5/18, 5/24, 5/24, 5/18, 10/21, 1],
1.130264319203497485238782258424100608]
? FS = mfsymbol(mf, F); bestappr(om^2 / mfpetersson(FS), 10^8)
%7 = 113246208/325
```

lfunmul(L2, precision)

Creates the \texttt{Ldata} structure (without initialization) corresponding to the product of the Dirichlet series given by \(L1 \) and \(L2 \).

lfunorderzero(m, precision)

Computes the order of the possible zero of the \(L \)-function at the center \(k/2 \) of the critical strip; return 0 if \(L(k/2) \) does not vanish.

If \(m \) is given and has a nonnegative value, assumes the order is at most \(m \). Otherwise, the algorithm chooses a sensible default:

- if the \(L \) argument is an \texttt{Linit}, assume that a multiple zero at \(s = k/2 \) has order less than or equal to the maximal allowed derivation order.
- else assume the order is less than 4.

You may explicitly increase this value using optional argument \(m \); this overrides the default value above. (Possibly forcing a recomputation of the \texttt{Linit}.)

lfunqf(precision)

Returns the \texttt{Ldata} structure attached to the \(\Theta \) function of the lattice attached to the primitive form proportional to the definite positive quadratic form \(Q \).

```plaintext
? L = lfunqf(matid(2));
? 1funqf(L,2)
%2 = 6.026812039691940123546260192728285839
? 1fun(x^2+1,2)*4
%3 = 6.026812039691940123546260192728285839
```

The following computes the Madelung constant:

```plaintext
? L1=lfunqf(matdiagonal([1,1,1]));
? L2=lfunqf(matdiagonal([4,1,1]));
? L3=lfunqf(matdiagonal([4,4,1]));
? F(s)=6*1fun(L2,s)-12*1fun(L3,s)-1fun(L1,s)*(1-8/4^s);
```

(continues on next page)
Given the Ldata attached to an L-function (or the output of lfunthetainit), compute the root number and the residues.

The output is a 3-component vector \([[[a_1, r_1], ..., [a_n, r_n]], [[b_1, R_1], ..., [b_m, R_m]], w]\), where \(r_i\) is the polar part of \(L(s)\) at \(a_i\), \(R_i\) is the polar part of \(\Lambda(s)\) at \(b_i\) or \([0, 0, r]\) if there is no pole, and \(w\) is the root number. In the present implementation,

- either the polar part must be completely known (and is then arbitrary): the function determines the root number,

\[? L = lfunmul(1,1); \quad \text{\(\zeta^2\)}\]
\[? [r,R,w] = lfunrootres(L);\]
\[? r \quad \text{single pole at 1, double}\]
\[%3 = [[[1, 1,...]*x^-2 + 1.1544[...]*x^-1 + O(x^0)]]\]
\[? w\]
\[%4 = 1\]
\[? R \quad \text{double pole at 0 and 1}\]
\[%5 = [[[1,[...]], [0,[...]]]]~\]

- or at most a single pole is allowed: the function computes both the root number and the residue (0 if no pole).

\[? Z = lfuncreate(1); \quad \text{\(\zeta(s)\)}\]
\[? L = lfunshift(Z,1); \quad \text{\(\zeta(s-1)\)}\]
\[? normlp(Vec(lfunlambda(L,s)-lfunlambda(L,3-s)))\]
\[%3 = 0.E-38 \quad \text{the expansions coincide to 'seriesprecision'}\]
\[? lfun(L,1)\]
\[%4 = -0.50000000000000000000000000000000000000 \quad \text{\(\zeta(0)\)}\]
\[? M = lfunshift(Z,1,1); \quad \text{\(\zeta(s)*\zeta(s-1)\)}\]
\[? normlp(Vec(lfunlambda(M,s)-lfunlambda(M,2-s)))\]
\[%6 = 2.350988701644575016 \quad E-38\]
\[? lfun(M,2) \quad \text{simple pole at 2, residue \(\zeta(2)\)}\]
\[%7 = 1.6449340668482264364724151666460251892*x^-1+O(x^0)\]

1funsympow\((m)\)

Returns the Ldata structure attached to the \(L\) function attached to the \(m\)-th symmetric power of the elliptic curve \(E\) defined over the rationals.

1funtheta\((t, m, precision)\)

Compute the value of the \(m\)-th derivative at \(t\) of the theta function attached to the \(L\)-function given by data. data can be either the standard \(L\)-function data, or the output of lfunthetainit. The result is given with absolute error less than \(2^{-B}\), where \(B = \text{realbitprecision}\).

The theta function is defined by the formula \(\Theta(t) = \sum_{n \geq 1} a(n)K(nt/\sqrt{N})\), where \(a(n)\) are the coefficients of the Dirichlet series, \(N\) is the conductor, and \(K\) is the inverse Mellin transform of the gamma product defined by the Vga component. Its Mellin transform is equal to \(\Lambda(s) - P(s)\), where \(\Lambda(s)\) is the completed \(L\)-function and the rational function \(P(s)\) its polar part. In particular, if the \(L\)-function is the \(L\)-function of a modular form...
\[f(\tau) = \sum_{n > 0} a(n)q^n \text{ with } q = \exp(2\pi i \tau), \text{we have } \Theta(t) = 2(f(it/\sqrt{N}) - a(0)). \text{Note that } a(0) = -L(f,0) \text{ in this case.} \]

lfunthetacost \((tdom, m, \text{precision})\)

This function estimates the cost of running \(lfunthetainit(L, tdom, m)\) at current bit precision. Returns the number of coefficients \(a_n\) that would be computed. This also estimates the cost of a subsequent evaluation \(lfuntheta\), which must compute that many values of \(\text{gammamellininv}\) at the current bit precision. If \(L\) is already an \(Linit\), then \(tdom\) and \(m\) are ignored and are best left omitted: we get an estimate of the cost of using that particular \(Linit\).

\[
? \ \backslash pb \ 1000
? L = lfuncreate(1); \ \backslash Riemann \ zeta
? lfunthetacost(L); \ \backslash cost \ for \ theta(t), \ t \ real >= 1
\%
\%
? lfunthetacost(L, 1 + I); \ \backslash cost \ for \ theta(1+I). \ Domain \ error !
*** at top-level: lfunthetacost(1,1+I)
*** ^-----------------------
*** lfunthetacost: domain error in lfunthetaneed: arg t > 0.785
? lfunthetacost(L, 1 + I/2) \ \backslash for \ theta(1+I/2).
\%
\%
? lfunthetacost(L, 1 + I/2, 10) \ \backslash for \ theta^((10))(1+I/2).
\%
\%
? lfunthetacost(L, [2, 1/10]) \ \backslash cost \ for \ theta(t), |t| >= 2, |arg(t)| < 1/10
\%
\%
? L = lfuncreate(ellinit([1,1]));
? lfunthetacost(L) \ \backslash for \ t >= 1
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
\%
The initialization is equivalent to

```plaintext
? lfunthetainit(L, [abs(t), arg(t)])
```

`lfuntwist(chi, precision)`

Creates the Ldata structure (without initialization) corresponding to the twist of L by the primitive character attached to the Dirichlet character chi. The conductor of the character must be coprime to the conductor of the L-function L.

`lfunzeros(lim, divz, precision)`

lim being either a positive upper limit or a nonempty real interval, computes an ordered list of zeros of L(s) on the critical line up to the given upper limit or in the given interval. Use a naive algorithm which may miss some zeros: it assumes that two consecutive zeros at height T \geq 1 differ at least by 2\pi/\omega, where

\[
\omega := \text{divz}(d \log(T/2\pi) + d + 2 \log(N/(\pi/2)^d)).
\]

To use a finer search mesh, set divz to some integral value larger than the default (= 8).

```plaintext
? lfunzeros(1, 30) \\ zeros of Riemann zeta up to height 30
%1 = [14.134[...], 21.022[...], 25.010[...]]
? #lfunzeros(1, [100,110]) \\ count zeros with 100 <= Im(s) <= 110
%2 = 4
```

The algorithm also assumes that all zeros are simple except possibly on the real axis at s = k/2 and that there are no poles in the search interval. (The possible zero at s = k/2 is repeated according to its multiplicity.)

If you pass an Linit to the function, the algorithm assumes that a multiple zero at s = k/2 has order less than or equal to the maximal derivation order allowed by the Linit. You may increase that value in the Linit but this is costly: only do it for zeros of low height or in `lfunorderzero` instead.

`lift(v)`

If v is omitted, lifts intmods from \Z/n\Z\ in \Z, p-adics from \Q_p\ to \Q\ (as `truncate`), and polmods to polynomials. Otherwise, lifts only polmods whose modulus has main variable v. t_FFELT are not lifted, nor are List elements: you may convert the latter to vectors first, or use `apply(lift,L)`. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

```plaintext
? lift(Mod(5,3))
%1 = 2
? lift(3 + O(3^9))
%2 = 3
? lift(Mod(x,x^2+1))
%3 = x
? lift(Mod(x,x^2+1))
%4 = x
```

Lifts are performed recursively on an object components, but only by one level: once a t_POLMOD is lifted, the components of the result are not lifted further.
To recursively lift all components not only by one level, but as long as possible, use `liftall`. To lift only \(t\text{\textunderscore}\text{INTMOD} \) s and \(t\text{\textunderscore}\text{PADIC} \) s components, use `liftint`. To lift only \(t\text{\textunderscore}\text{POLMOD} \) s components, use `liftpol`. Finally, `centerlift` allows to lift \(t\text{\textunderscore}\text{INTMOD} \) s and \(t\text{\textunderscore}\text{PADIC} \) s using centered residues (lift of smallest absolute value).

`liftall()`

Recursively lift all components of \(x \) from \(\mathbb{Z}/n\mathbb{Z} \) to \(\mathbb{Z} \), from \(\mathbb{Q}_p \) to \(\mathbb{Q} \) (as \(\text{truncate} \)), and polmods to polynomials. \(t\text{\textunderscore}\text{FFELT} \) are not lifted, nor are List elements: you may convert the latter to vectors first, or use `apply(liftall, L)`. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

```plaintext
? liftall(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2

? liftall(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + 2*z
```

`liftint()`

Recursively lift all components of \(x \) from \(\mathbb{Z}/n\mathbb{Z} \) to \(\mathbb{Z} \) and from \(\mathbb{Q}_p \) to \(\mathbb{Q} \) (as \(\text{truncate} \)). \(t\text{\textunderscore}\text{FFELT} \) are not lifted, nor are List elements: you may convert the latter to vectors first, or use `apply(liftint, L)`. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

```plaintext
? liftint(x * (1 + O(3)) + Mod(2,3))
%1 = x + 2

? liftint(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = Mod(y, y^2 + 1)*x + Mod(Mod(2*z, z^2), y^2 + 1)
```

`liftpol()`

Recursively lift all components of \(x \) which are polmods to polynomials. \(t\text{\textunderscore}\text{FFELT} \) are not lifted, nor are List elements: you may convert the latter to vectors first, or use `apply(liftpol, L)`. More generally, components for which such lifts are meaningless (e.g. character strings) are copied verbatim.

```plaintext
? liftpol(x * (1 + O(3)) + Mod(2,3))
%1 = (1 + O(3))*x + Mod(2, 3)

? liftpol(x * Mod(y,y^2+1) + Mod(2,3)*Mod(z,z^2))
%2 = y*x + Mod(2, 3)*z
```

`limitnum(alpha, precision)`

Lagrange-Zagier numerical extrapolation of \(expr \), corresponding to a sequence \(u_n \), either given by a closure \(n \rightarrow u(n) \). I.e., assuming that \(u_n \) tends to a finite limit \(\ell \), try to determine \(\ell \).

The routine assume that \(u_n \) has an asymptotic expansion in \(n^{-\alpha} \):

\[
u_n = \ell + \sum_{i=1} a_i n^{-i\alpha}
\]

for some \(a_i \). It is purely numerical and heuristic, thus may or may not work on your examples. The expression will be evaluated for \(n = 1, 2, ..., N \) for an \(N = O(B) \) at a bit accuracy bounded by \(1.612B \).
It is not mandatory to specify α when the u_n have an asymptotic expansion in n^{-1}. However, if the series in n^{-1} is lacunary, specifying α allows faster computation:

```
? \p1000
? limitnum(n->(1+1/n^2)^(n^2)) - exp(1)
time = 1min, 44,681 ms.
%4 = 0.E-1001
? limitnum(n->(1+1/n^2)^(n^2), 2) - exp(1)
time = 27,271 ms.
%5 = 0.E-1001 \ still perfect, 4 times faster
```

When u_n has an asymptotic expansion in $n^{-\alpha}$ with α not an integer, leaving α unspecified will bring an inexact limit. Giving a satisfactory optional argument improves precision; the program runs faster when the optional argument gives non-lacunary series.

```
? \p50
? limitnum(n->(1+1/n^(7/2))^(n^(7/2))) - exp(1)
time = 982 ms.
%6 = 4.13[...]* E-12
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 1/2) - exp(1)
time = 16,745 ms.
%7 = 0.E-57
? limitnum(n->(1+1/n^(7/2))^(n^(7/2)), 7/2) - exp(1)
time = 105 ms.
%8 = 0.E-57
```

Alternatively, u_n may be given by a closure $N : \ldots \rightarrow [u_1, \ldots, u_N]$ which can often be programmed in a more efficient way, for instance when u_{n+1} is a simple function of the preceding terms:

```
? \p2000
? limitnum(n -> 2^((4*n+1)*/(n)!^4 / (2*n)!/(2*n+1)!)) - Pi
\time = 1,755 ms.
%9 = 0.E-2003
? vu(N) = \ \ \ \ \ \ \ \ \ \ \ \ \ exploit hypergeometric property
\{ my(v = vector(N)); v[1] = 8./3;
\ for (n=2, N, my(q = 4*n^2); v[n] = v[n-1]*q/(q-1));
\ return(v);
\}
? limitnum(vu) - Pi \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ much faster
\time = 106 ms.
%11 = 0.E-2003
```

All sums and recursions can be handled in the same way. In the above it is essential that u_n be defined as a closure because it must be evaluated at a higher precision than the one expected for the limit. Make sure that the closure does not depend on a global variable which would be computed at a priori fixed accuracy. For instance,
precomputing \(v_1 = 8.0/3 \) first and using \(v_1 \) in \(v_u \) above would be wrong because the resulting vector of values will use the accuracy of \(v_1 \) instead of the ambient accuracy at which \texttt{limitnum} will call it.

Alternatively, and more clumsily, \(u_n \) may be given by a vector of values: it must be long and precise enough for the extrapolation to make sense. Let \(B \) be the current \texttt{realbitprecision}, the vector length must be at least \(1.102B \) and the values computed with bit accuracy \(1.612B \).

\begin{verbatim}
? limitnum(vector(10,n,(1+1/n)^n))
 *** ^-----------------------
 *** limitnum: nonexistent component in limitnum: index < 43
\ at this accuracy, we must have at least 43 values
? limitnum(vector(43,n,(1+1/n)^n)) - exp(1)
%12 = 0.E-37

? v = vector(43);
? s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%15 = -1.57[...] E-16

? v = vector(43);
\ \ ~ 128 bit * 1.612
? localbitprec(207);
 s = 0; for(i=1,#v, s += 1/i; v[i]= s - log(i));
? limitnum(v) - Euler
%18 = 0.E-38
\end{verbatim}

Because of the above problems, the preferred format is thus a closure, given either a single value or the vector of values \([u_1, \ldots, u_N]\). The function distinguishes between the two formats by evaluating the closure at \(N! = 1 \) and 1 and checking whether it yields vectors of respective length \(N \) and 1 or not.

Warning. The expression is evaluated for \(n = 1, 2, \ldots, N \) for an \(N = O(B) \) if the current bit accuracy is \(B \). If it is not defined for one of these values, translate or rescale accordingly:

\begin{verbatim}
? limitnum(n->log(1-1/n)) \ \ can‘t evaluate at n = 1 !
 *** at top-level: limitnum(n->log(1-1/n))
 *** ^-----------------------
 *** in function limitnum: log(1-1/n)
 *** ^-------------
 *** log: domain error in log: argument = 0
? limitnum(n->-log(1-1/(2*n)))
%19 = -6.11[...] E-58
\end{verbatim}

We conclude with a complicated example. Since the function is heuristic, it is advisable to check whether it produces the same limit for \(u_n, u_{2n}, \ldots u_{kn} \) for a suitable small multiplier \(k \). The following function implements the recursion for the Motzkin numbers \(M_n \) which count the number of ways to draw non intersecting chords between \(n \) points on a circle:

\[
M_n = M_{n-1} + \sum_{i<n-1} M_i M_{n-2-i} = ((n+1)M_{n-1} + (3n-3)M_{n-2})/(n+2).
\]

It is known that \(M_n \sim (3^{n+1})/(\sqrt{12\pi n^3}) \).

\begin{verbatim}
\[\texttt{vM(N, k = 1)} = \texttt{\{ my(q = k*N, V);} \]
\end{verbatim}

(continues on next page)
if (q == 1, return ([1/3]));
V = vector(q); V[1] = V[2] = 1;
for(n = 2, q - 1,
V[n+1] = ((2^n*n + 1)*V[n] + 3*(n - 1)*V[n-1]) / (n + 2));
f = (n -> 3^n / n^(3/2));
return (vector(N, n, V[n*k] / f(n*k)));
}
? limitnum(vM) - 3/sqrt(12*Pi) \ \ complete junk
%1 = 35540390.753542730306762369615276452646
? limitnum(N->vM(N,5)) - 3/sqrt(12*Pi) \ \ M_{5n}: better
%2 = 4.130710262178469860 E-25
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \ \ M_{10n}: perfect
%3 = 0.E-38
? \p2000
? limitnum(N->vM(N,10)) - 3/sqrt(12*Pi) \ \ also at high accuracy
time = 409 ms.
%4 = 1.1048895470044788191 E-2004

In difficult cases such as the above a multiplier of 5 to 10 is usually sufficient. The above example is typical: a
good multiplier usually remains sufficient when the requested precision increases!

lindep(flag)

finds a small nontrivial integral linear combination between components of v. If none can be found return an empty vector.

If v is a vector with real/complex entries we use a floating point (variable precision) LLL algorithm. If flag = 0 the accuracy is chosen internally using a crude heuristic. If flag > 0 the computation is done with an accuracy of flag decimal digits. To get meaningful results in the latter case, the parameter flag should be smaller than the number of correct decimal digits in the input.

? lindep([sqrt(2), sqrt(3), sqrt(2)+sqrt(3)])
%1 = [-1, -1, 1]~

If v is p-adic, flag is ignored and the algorithm LLL-reduces a suitable (dual) lattice.

? lindep([1, 2 + 3 + 3^2 + 3^3 + 3^4 + O(3^5)])
%2 = [1, -2]~

If v is a matrix (or a vector of column vectors, or a vector of row vectors), flag is ignored and the function returns a non trivial kernel vector if one exists, else an empty vector.

? lindep([1,2,3;4,5,6;7,8,9])
%3 = [1, -2, 1]~
? lindep([[[1,0], [2,0]])
%4 = [2, -1]~
? lindep([[1,0], [0,1]])
%5 = []~

If v contains polynomials or power series over some base field, finds a linear relation with coefficients in the field.

? lindep([x*y, x^2 + y, x^2*y + x*y^2, 1])
%4 = [y, y, -1, -y^2]~

For better control, it is preferable to use t_POL rather than t_SER in the input, otherwise one gets a linear combination which is t-adically small, but not necessarily 0. Indeed, power series are first converted to the minimal
absolute accuracy occurring among the entries of \(v \) (which can cause some coefficients to be ignored), then truncated to polynomials:

```plaintext
? v = [t^2+O(t^4), 1+O(t^2)]; L=lindep(v)
%1 = [1, 0]~
? v*L
%2 = t^2+O(t^4) \ \ small but not 0
```

listinsert\((n, _arg2)\)

Inserts the object \(x \) at position \(n \) in \(L \) (which must be of type \(\text{t_LIST} \)). This has complexity \(O(\#L - n + 1) \): all the remaining elements of list (from position \(n + 1 \) onwards) are shifted to the right. If \(n \) is greater than the list length, appends \(x \).

```plaintext
? L = List([1,2,3]);
? listput(~L, 4); L \ \ listput inserts at end
%4 = List([1, 2, 3, 4])
? listinsert(~L, 5, 1); L \ \ insert at position 1
%5 = List([5, 1, 2, 3, 4])
? listinsert(~L, 6, 1000); L \ \ trying to insert beyond position \#L
%6 = List([5, 1, 2, 3, 4, 6]) \ \ ... inserts at the end
```

Note the \(\sim \) \(L \): this means that the function is called with a reference to \(L \) and changes \(L \) in place.

listkill()

Obsolete, retained for backward compatibility. Just use \(L = \text{List}() \) instead of \(\text{listkill}(L) \). In most cases, you won’t even need that, e.g. local variables are automatically cleared when a user function returns.

listpop\(__arg1\)

Removes the \(n \)-th element of the list \(\text{list} \) (which must be of type \(\text{t_LIST} \)). If \(n \) is omitted, or greater than the list current length, removes the last element. If the list is already empty, do nothing. This runs in time \(O(\#L - n + 1) \).

```plaintext
? L = List([1,2,3,4]);
? listpop(~L); L \ \ remove last entry
%2 = List([1, 2, 3])
? listpop(~L, 1); L \ \ remove first entry
%3 = List([2, 3])
```

Note the \(\sim \) \(L \): this means that the function is called with a reference to \(L \) and changes \(L \) in place.

listput\(_n, _arg2\)

Sets the \(n \)-th element of the list \(\text{list} \) (which must be of type \(\text{t_LIST} \)) equal to \(x \). If \(n \) is omitted, or greater than the list length, appends \(x \). The function returns the inserted element.

```plaintext
? L = List();
? listput(~L, 1)
%2 = 1
? listput(~L, 2)
%3 = 2
? L
%4 = List([1, 2])
```

Note the \(\sim \) \(L \): this means that the function is called with a reference to \(L \) and changes \(L \) in place.

You may put an element into an occupied cell (not changing the list length), but it is easier to use the standard \(\text{list}[n] = x \) construct.
This function runs in time \(O(\#L)\) in the worst case (when the list must be reallocated), but in time \(O(1)\) on average: any number of successive \texttt{listput}s run in time \(O(\#L)\), where \(\#L\) denotes the list final length.

\textbf{listsort}(_arg_1)

Sorts the \texttt{t_LIST} list in place, with respect to the (somewhat arbitrary) universal comparison function \texttt{cmp}. In particular, the ordering is the same as for sets and \texttt{setsearch} can be used on a sorted list. No value is returned. If \texttt{flag} is nonzero, suppresses all repeated coefficients.

Note the ~ \texttt{L}: this means that the function is called with a \textit{reference} to \texttt{L} and changes \texttt{L} in place: this is faster than the \texttt{vecsort} command since the list is sorted in place and we avoid unnecessary copies.

\textbf{lngamma}(\texttt{precision})

Principal branch of the logarithm of the gamma function of \(x\). This function is analytic on the complex plane with nonpositive integers removed, and can have much larger arguments than \texttt{gamma} itself.

For \(x\) a power series such that \(x(0)\) is not a pole of \texttt{gamma}, compute the Taylor expansion. (PARI only knows about regular power series and can't include logarithmic terms.)
localbitprec()
Set the real precision to \(p \) bits in the dynamic scope. All computations are performed as if realbitprecision was \(p \): transcendental constants (e.g. \(\Pi \)) and conversions from exact to floating point inexact data use \(p \) bits, as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or intnum). But realbitprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In effect, this is similar to

```plaintext
my(bit = default(realbitprecision));
default(realbitprecision,p);
...
default(realbitprecision, bit);
```

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs, realbitprecision will not be restored as intended.

Such localbitprec statements can be nested, the innermost one taking precedence as expected. Beware that localbitprec follows the semantic of local, not my: a subroutine called from localbitprec scope uses the local accuracy:

```plaintext
? f()=bitprecision(1.0);
? f()
%2 = 128
? localbitprec(1000); f()
%3 = 1024
```

Note that the bit precision of data (1.0 in the above example) increases by steps of 64 (32 on a 32-bit machine) so we get 1024 instead of the expected 1000; localbitprec bounds the relative error exactly as specified in functions that support that granularity (e.g. lfun), and rounded to the next multiple of 64 (resp. 32) everywhere else.

Warning. Changing realbitprecision or realprecision in programs is deprecated in favor of localbitprec and localprec. Think about the realprecision and realbitprecision defaults as interactive commands for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising results:

```plaintext
? \p38
? localprec(19); default(realprecision,1000); Pi
%1 = 3.141592653589793239
? \p
  realprecision = 1001 significant digits (1000 digits displayed)
```

Indeed, realprecision itself is ignored within localprec scope, so \(\Pi \) is computed to a low accuracy. And when we leave the localprec scope, realprecision only regains precedence, it is not “restored” to the original value.
localprec()

Set the real precision to \(p \) in the dynamic scope and return \(p \). All computations are performed as if realprecision was \(p \); transcendental constants (e.g. \(\pi \)) and conversions from exact to floating point inexact data use \(p \) decimal digits, as well as iterative routines implicitly using a floating point accuracy as a termination criterion (e.g. solve or intnum). But realprecision itself is unaffected and is “unmasked” when we exit the dynamic (not lexical) scope. In effect, this is similar to

```
my(prec = default(realprecision));
default(realprecision,p);
...
default(realprecision, prec);
```

but is both less cumbersome, cleaner (no need to manipulate a global variable, which in fact never changes and is only temporarily masked) and more robust: if the above computation is interrupted or an exception occurs, realprecision will not be restored as intended.

Such localprec statements can be nested, the innermost one taking precedence as expected. Beware that localprec follows the semantic of local, not my: a subroutine called from localprec scope uses the local accuracy:

```
? f()=precision(1.);
? f()
%2 = 38
? localprec(19); f()
%3 = 19
```

Warning. Changing realprecision itself in programs is now deprecated in favor of localprec. Think about the realprecision default as an interactive command for the gp interpreter, best left out of GP programs. Indeed, the above rules imply that mixing both constructs yields surprising results:

```
? \p38
? localprec(19); default(realprecision,100); Pi
%1 = 3.141592653589793238462643383
? \p
    realprecision = 115 significant digits (100 digits displayed)
```

Indeed, realprecision itself is ignored within localprec scope, so Pi is computed to a low accuracy. And when we leave localprec scope, realprecision only regains precedence, it is not “restored” to the original value.

`log`(precision)

Principal branch of the natural logarithm of \(x \in \mathbb{C}^* \), i.e. such that \(\Im(\log(x)) \in]-\pi, \pi] \). The branch cut lies along the negative real axis, continuous with quadrant 2, i.e. such that \(\lim_{y \to 0^-} \log(a + bi) = \log a \) for \(a \in \mathbb{R}^* \). The result is complex (with imaginary part equal to \(\pi \)) if \(x \in \mathbb{R} \) and \(x < 0 \). In general, the algorithm uses the formula

\[
\log(x) \left(\pi/(2 \text{agm}(1, 4/s)) \right) - m \log 2,
\]

if \(s = x^{2^m} \) is large enough. (The result is exact to \(B \) bits provided \(s > 2^B/2 \).) At low accuracies, the series expansion near 1 is used.

\(p \)-adic arguments are also accepted for \(x \), with the convention that \(\log(p) = 0 \). Hence in particular \(\exp(\log(x))/x \) is not in general equal to 1 but to a \((p - 1)\)-th root of unity (or 1 if \(p = 2 \)) times a power of \(p \).

`log1p`(precision)

Return \(\log(1 + x) \), computed in a way that is also accurate when the real part of \(x \) is near 0. This is the reciprocal function of \(\expm1(x) = \exp(x) - 1 \).
When \(x \) is small, this function is both faster and more accurate than \(\log(1 + x) \):

\[
\text{\texttt{\%6 = 0.E-38}}
\]

\[
\text{\texttt{\%7 = 1.5930919111324522770 E-38}}
\]

\[
\text{\texttt{\%8 = 100 ms.}}
\]

```
? \p38
? x = 1e-20;
? localprec(100); c = log1p(x); \// reference point
? a = log1p(x); abs((a - c)/c)
\%6 = 0.E-38
? b = log(1+x); abs((b - c)/c) \// slightly less accurate
\%7 = 1.5930919111324522770 E-38
? for (i=1,10^5,log1p(x))
time = 81 ms.
? for (i=1,10^5,log(1+x))
time = 100 ms. \// slower, too
```

logint \((b, z)\)

Return the largest integer \(e \) so that \(b^e \leq x \), where the parameters \(b > 1 \) and \(x > 0 \) are both integers. If the parameter \(z \) is present, set it to \(b^e \).

```
? logint(1000, 2)
\%1 = 9
? 2^9
\%2 = 512
? logint(1000, 2, &z)
\%3 = 9
? z
\%4 = 512
```

The number of digits used to write \(b \) in base \(x \) is \(1 + \logint(x, b) \):

```
? #digits(1000!, 10)
\%5 = 2568
? logint(1000!, 10)
\%6 = 2567
```

This function may conveniently replace

```
floor( \log(x) / \log(b) )
```

which may not give the correct answer since PARI does not guarantee exact rounding.

mapdelete \(_\text{arg1}\)

Removes \(x \) from the domain of the map \(M \).

```
? M = Map(["a",1; "b",3; "c",7]);
? mapdelete(M,"b");
? Mat(M)
["a" 1]
```
mapget(x)

Returns the image of \(x \) by the map \(M \).

\[
? M = \text{Map}(["a", 23; "b", 43]);
? \text{mapget}(M, "a")
\%2 = 23
? \text{mapget}(M, "b")
\%3 = 43
\]

Raises an exception when the key \(x \) is not present in \(M \).

\[
? \text{mapget}(M, "c")
*** at top-level: mapget(M,"c")
*** ^----------------
*** mapget: nonexistent component in mapget: index not in map
\]

mapisdefined(x, z)

Returns true (1) if \(x \) has an image by the map \(M \), false (0) otherwise. If \(z \) is present, set \(z \) to the image of \(x \), if it exists.

\[
? M1 = \text{Map}([1, 10; 2, 20]);
? \text{mapisdefined}(M1, 3)
\%1 = 0
? \text{mapisdefined}(M1, 1, &z)
\%2 = 1
? z
\%3 = 10
\]

\[
? M2 = \text{Map}(); \ N = 19;
? \text{for} (a = 0, N-1, \text{mapput}(M2, a^3 \% N, a));
? \{ \text{for} (a = 0, N-1,
\text{if} (\text{mapisdefined}(M2, a, &b),
\text{printf}("%d is the cube of %d mod %d\n", a, b, N));\})
\]

0 is the cube of 0 mod 19
1 is the cube of 11 mod 19
7 is the cube of 9 mod 19
8 is the cube of 14 mod 19
11 is the cube of 17 mod 19
12 is the cube of 15 mod 19
18 is the cube of 18 mod 19

mapput(y, _arg2)

Associates \(x \) to \(y \) in the map \(M \). The value \(y \) can be retrieved with mapget.

\[
? M = \text{Map}();
? \text{mapput}(M, "foo", 23);
? \text{mapput}(M, 7718, "bill");
? \text{mapget}(M, "foo")
\%4 = 23
\]
matadjoint(\texttt{\texttt{flag}})

adjoint matrix of \(M \), i.e. a matrix \(N \) of cofactors of \(M \), satisfying \(M \cdot N = \det(M) \cdot \text{Id} \). \(M \) must be a (not necessarily invertible) square matrix of dimension \(n \). If \texttt{flag} is 0 or omitted, we try to use Leverrier-Faddeev’s algorithm, which assumes that \(n! \) invertible. If it fails or \texttt{flag} = 1, compute \(T = \text{charpoly}(M) \) independently first and return \((-1)^{n-1}(T(x) - T(0))/x \) evaluated at \(M \).

\[\begin{align*}
? a &= [1,2,3;3,4,5;6,7,8] \mod(1,4); \\
? \text{matadjoint}(a)
\end{align*} \]

Both algorithms use \(O(n^3) \) operations in the base ring. Over a field, they are usually slower than computing the characteristic polynomial or the inverse of \(M \) directly.

matalgtobasis(\texttt{x})

This function is deprecated, use apply.

\(\texttt{n\text{f}} \) being a number field in \texttt{nfinit} format, and \(\texttt{x} \) a (row or column) vector or matrix, apply \texttt{nfalgtobasis} to each entry of \(\texttt{x} \).

matbasistoalg(\texttt{x})

This function is deprecated, use apply.

\(\texttt{n\text{f}} \) being a number field in \texttt{nfinit} format, and \(\texttt{x} \) a (row or column) vector or matrix, apply \texttt{nfbasistoalg} to each entry of \(\texttt{x} \).

matcompanion()

The left companion matrix to the nonzero polynomial \(x \).

matconcat()

Returns a \texttt{t_MAT} built from the entries of \(v \), which may be a \texttt{t_VEC} (concatenate horizontally), a \texttt{t_COL} (concatenate vertically), or a \texttt{t_MAT} (concatenate vertically each column, and concatenate vertically the resulting matrices). The entries of \(v \) are always considered as matrices: they can themselves be \texttt{t_VEC} (seen as a row matrix), a \texttt{t_COL} seen as a column matrix), a \texttt{t_MAT}, or a scalar (seen as an \(1 \times 1 \) matrix).

\[\begin{align*}
? A &= [1,2;3,4]; B = [5,6]~; \ C = [7,8]; \ D = 9; \\
? \text{matconcat}([A, B]) \ \text{\textbackslash\ textbackslash \ horizontal}
\end{align*} \]
If the dimensions of the entries to concatenate do not match up, the above rules are extended as follows:

- each entry $v_{i,j}$ of v has a natural length and height: 1x1 for a scalar, 1xn for a t_VEC of length n, nx1 for a t_COL, mxn for an m xn t_MAT

- let H_i be the maximum over j of the lengths of the $v_{i,j}$, let L_j be the maximum over i of the heights of the $v_{i,j}$. The dimensions of the (i,j)-th block in the concatenated matrix are $H_i \times L_j$.

- a scalar $s = v_{i,j}$ is considered as s times an identity matrix of the block dimension $\min(H_i, L_j)$

- blocks are extended by 0 columns on the right and 0 rows at the bottom, as needed.

```plaintext
? matconcat([1, [2,3]~, [4,5,6]~]) \ vertical
%4 =
[1 2 4]
[0 3 5]

[0 0 6]
? matconcat([1, [2,3], [4,5,6]~]) \ vertical
%5 =
[1 0 0]
[2 3 0]

[4 5 6]
? matconcat([B, C; A, D]) \ block matrix
%6 =
[5 0 7 8]
[6 0 0 0]
[1 2 9 0]

[3 4 0 9]
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V])) \ block diagonal
%7 =
```

(continues on next page)
matdet(flag)

Determinant of the square matrix \(x \).

If \(flag = 0 \), uses an appropriate algorithm depending on the coefficients:

- integer entries: modular method due to Dixon, Pernet and Stein.
- real or \(p \)-adic entries: classical Gaussian elimination using maximal pivot.
- intmod entries: classical Gaussian elimination using first nonzero pivot.
- other cases: Gauss-Bareiss.

If \(flag = 1 \), uses classical Gaussian elimination with appropriate pivoting strategy (maximal pivot for real or \(p \)-adic coefficients). This is usually worse than the default.

matdetint()

Let \(B \) be an \(m \times n \) matrix with integer coefficients. The determinant \(D \) of the lattice generated by the columns of \(B \) is the square root of \(\det(B^T B) \) if \(B \) has maximal rank \(m \), and 0 otherwise.

This function uses the Gauss-Bareiss algorithm to compute a positive multiple of \(D \). When \(B \) is square, the function actually returns \(D = \| \det B \| \).

This function is useful in conjunction with \texttt{mathnfmod}, which needs to know such a multiple. If the rank is maximal but the matrix is nonsquare, you can obtain \(D \) exactly using

\[
\text{matdet(mathnfmod(B, matdetint(B)))}
\]

Note that as soon as one of the dimensions gets large (\(m \) or \(n \) is larger than 20, say), it will often be much faster to use \texttt{mathnf(B, 1)} or \texttt{mathnf(B, 4)} directly.

matdetmod(d)

Given a matrix \(x \) with \(t _ \text{INT} \) entries and \(d \) an arbitrary positive integer, return the determinant of \(x \) modulo \(d \).

\[
? A = \begin{bmatrix} 4, 2, \ldots, 7, 8, 9 \end{bmatrix}
\]

\[
? \text{matdetmod}(A, 27)
\]

\[
\%2 = 9
\]

Note that using the generic function \texttt{matdet} on a matrix with \(t _ \text{INTMOD} \) entries uses Gaussian reduction and will fail in general when the modulus is not prime.

\[
? \text{matdet}(A \times \text{Mod}(1, 27))
\]

\[
*** \text{at top-level: matdet(A*Mod(1,27))}
*** ^------------------
*** matdet: impossible inverse in Fl_inv: Mod(3, 27).
\]
\textbf{matdiagonal()}\texttt{\textbackslash}\texttt{	extbackslash(\texttt{\textbackslash(\textbackslash)}}\texttt{\textbackslash)}\texttt{\textbackslash)}

\textit{x} being a vector, creates the diagonal matrix whose diagonal entries are those of \textit{x}.

\begin{verbatim}
? matdiagonal([1,2,3]);
%1 =
[1 0 0]
[0 2 0]
[0 0 3]
\end{verbatim}

Block diagonal matrices are easily created using \texttt{matconcat}:

\begin{verbatim}
? U=[1,2;3,4]; V=[1,2,3;4,5,6;7,8,9];
? matconcat(matdiagonal([U, V]))
%1 =
[1 2 0 0 0]
[3 4 0 0 0]
[0 0 1 2 3]
[0 0 4 5 6]
[0 0 7 8 9]
\end{verbatim}

\textbf{mateigen}(\texttt{flag}, \texttt{precision})

Returns the (complex) eigenvectors of \textit{x} as columns of a matrix. If \texttt{flag} = 1, return \([L, H]\), where \(L\) contains the eigenvalues and \(H\) the corresponding eigenvectors; multiple eigenvalues are repeated according to the eigenspace dimension (which may be less than the eigenvalue multiplicity in the characteristic polynomial).

This function first computes the characteristic polynomial of \textit{x} and approximates its complex roots \((\lambda_i)\), then tries to compute the eigenspaces as kernels of the \(x - \lambda_i\). This algorithm is ill-conditioned and is likely to miss kernel vectors if some roots of the characteristic polynomial are close, in particular if it has multiple roots.

\begin{verbatim}
? A = [13,2; 10,14]; mateigen(A)
%1 =
[-1/2 2/5]
[1 1]
? [L,H] = mateigen(A, 1);
? L
%3 = [9, 18]
? H
%4 =
[-1/2 2/5]
[1 1]
? A * H == H * matdiagonal(L)
%5 = 1
\end{verbatim}

For symmetric matrices, use \texttt{qfjacobi} instead; for Hermitian matrices, compute
\begin{verbatim}
A = real(x);
B = imag(x);
y = matconcat([A, -B; B, A]);
\end{verbatim}

and apply \texttt{qfjacobi} to \(y\).

\texttt{matfrobenius}(\texttt{flag}, \texttt{v})

Returns the Frobenius form of the square matrix \(M\). If \texttt{flag} = 1, returns only the elementary divisors as a vector of polynomials in the variable \(v\). If \texttt{flag} = 2, returns a two-components vector \([F, B]\) where \(F\) is the Frobenius form and \(B\) is the basis change so that \(M = B^{-1}FB\).

\texttt{mathess}()

Returns a matrix similar to the square matrix \(x\), which is in upper Hessenberg form (zero entries below the first subdiagonal).

\texttt{mathnf}(\texttt{flag})

Let \(R\) be a Euclidean ring, equal to \(\mathbb{Z}\) or to \(K[X]\) for some field \(K\). If \(M\) is a (not necessarily square) matrix with entries in \(R\), this routine finds the upper triangular Hermite normal form of \(M\). If the rank of \(M\) is equal to its number of rows, this is a square matrix. In general, the columns of the result form a basis of the \(R\)-module spanned by the columns of \(M\).

The values of \texttt{flag} are:

- 0 (default): only return the Hermite normal form \(H\)
- 1 (complete output): return \([H, U]\), where \(H\) is the Hermite normal form of \(M\), and \(U\) is a transformation matrix such that \(MU = [0\|H]\). The matrix \(U\) belongs to \(GL(R)\). When \(M\) has a large kernel, the entries of \(U\) are in general huge.

For these two values, we use a naive algorithm, which behaves well in small dimension only. Larger values correspond to different algorithms, are restricted to integer matrices, and all output the unimodular matrix \(U\). From now on all matrices have integral entries.

- \texttt{flag} = 4, returns \([H, U]\) as in “complete output” above, using a variant of LLL reduction along the way. The matrix \(U\) is provably small in the \(L_2\) sense, and often close to optimal; but the reduction is in general slow, although provably polynomial-time.

If \texttt{flag} = 5, uses Batut’s algorithm and output \([H, U, P]\), such that \(H\) and \(U\) are as before and \(P\) is a permutation of the rows such that \(P\) applied to \(MU\) gives \(H\). This is in general faster than \texttt{flag} = 4 but the matrix \(U\) is usually worse; it is heuristically smaller than with the default algorithm.

When the matrix is dense and the dimension is large (bigger than 100, say), \texttt{flag} = 4 will be fastest. When \(M\) has maximal rank, then

\[
H = \text{mathnfmod}(M, \text{matdetint}(M))
\]

will be even faster. You can then recover \(U\) as \(M^{-1}H\).

\begin{verbatim}
? M = matrix(3,4,i,j,random([-5,5]))
%1 =
 [0 2 3 0]
 [-5 3 -5 -5]
 [4 3 -5 4]
? [H,U] = mathnf(M, 1);
\end{verbatim}
For convenience, M is allowed to be a `t_VEC`, which is then automatically converted to a `t_MAT`, as per the `Mat` function. For instance to solve the generalized extended gcd problem, one may use

```plaintext
? v = [116085838, 181081878, 314252913, 10346840];
? [H,U] = mathnf(v, 1);
? U
%2  =
[-103 -603 15 -88]
[-146 13 -1208 352]
[ 58 220 678 -167]
[-362 -144 381 -101]
? v*U
%3  = [0, 0, 0, 1]
```

This also allows to input a matrix as a `t_VEC` of `t_COL`s of the same length (which `Mat` would concatenate to the `t_MAT` having those columns):

```plaintext
? v = [[1, 0, 4], [3, 3, 4], [0, -4, -5]]; mathnf(v)
%1  =
[47 32 12]
[ 0 1 0]
[ 0 0 1]
```
\texttt{mathnfmod}(d)

If x is a (not necessarily square) matrix of maximal rank with integer entries, and d is a multiple of the (nonzero) determinant of the lattice spanned by the columns of x, finds the \textit{upper triangular} Hermite normal form of x.

If the rank of x is equal to its number of rows, the result is a square matrix. In general, the columns of the result form a basis of the lattice spanned by the columns of x. Even when d is known, this is in general slower than \texttt{mathnf} but uses much less memory.

\texttt{mathnfmodid}(d)

Outputs the (upper triangular) Hermite normal form of x concatenated with the diagonal matrix with diagonal d. Assumes that x has integer entries. Variant: if d is an integer instead of a vector, concatenate d times the identity matrix.

\begin{verbatim}
? m=[0,7;-1,0;-1,-1]
%1 =
[0 7]
[-1 0]
[-1 -1]
? mathnfmodid(m, [6,2,2])
%2 =
[2 1 1]
[0 1 0]
[0 0 1]
? mathnfmodid(m, 10)
%3 =
[10 7 3]
[0 1 0]
[0 0 1]
\end{verbatim}

\texttt{mathhouseholder}(v)

applies a sequence Q of Householder transforms, as returned by \texttt{matqr}(M, 1) to the vector or matrix v.

\begin{verbatim}
? m = [2,1; 3,2]; \ some random matrix
? [Q,R] = matqr(m);
? Q
%3 =
[-0.554... -0.832...]
[-0.832... 0.554...]
? R
%4 =
[-3.605... -2.218...]
[0 0.277...]
? v = [1, 2]~; \ some random vector
? Q * v
\end{verbatim}
%6 = [-2.218..., 0.277...]~

? [q,r] = matqr(m, 1);
? exponent(r - R) \ \ r is the same as R
%8 = -128
? q \ \ but q has a different structure
%9 = [[0.0494..., [5.605..., 3]]]
? mathouseholder(q, v) \ \ applied to v
%10 = [-2.218..., 0.277...]~

The point of the Householder structure is that it efficiently represents the linear operator $v \rightarrow Qv$ in a more stable way than expanding the matrix Q:

? m = mathilbert(20); v = vectorv(20,i,i^2+1);
? [Q,R] = matqr(m);
? [q,r] = matqr(m, 1);
? \p100
? [q2,r2] = matqr(m, 1); \ \ recompute at higher accuracy
? exponent(R - r)
%5 = -127
? exponent(R - r2)
%6 = -127
? exponent(mathouseholder(q,v) - mathouseholder(q2,v))
%7 = -119
? exponent(Q*v - mathouseholder(q2,v))
%8 = 9

We see that R is OK with or without a flag to matqr but that multiplying by Q is considerably less precise than applying the sequence of Householder transforms encoded by q.

\textbf{matimage}(\textit{flag})

Gives a basis for the image of the matrix x as columns of a matrix. A priori the matrix can have entries of any type. If \textit{flag} = 0, use standard Gauss pivot. If \textit{flag} = 1, use matsupplement (much slower: keep the default flag!).

\textbf{matimagecompl}()

Gives the vector of the column indices which are not extracted by the function matimage, as a permutation (t_VECSMALL). Hence the number of components of matimagecompl(x) plus the number of columns of matimage(x) is equal to the number of columns of the matrix x.

\textbf{matimagemod}(\textit{d}, \textit{U})

Gives a Howell basis (unique representation for submodules of $(\mathbb{Z}/d\mathbb{Z})^n$) for the image of the matrix x modulo d as columns of a matrix H. The matrix x must have \textit{t_INT} entries, and d can be an arbitrary positive integer. If U is present, set it to a matrix such that $AU = H$.

? A = [2,1;0,2];
? matimagemod(A,6,&U)
%2 =
[1 0]

[0 2]

? U
%3 =
[5 1]
[3 4]

? (A*U)%6
%4 =
[1 0]
[0 2]

Caveat. In general the number of columns of the Howell form is not the minimal number of generators of the submodule. Example:

? matimagemod([1;2],4)
%5 =
[2 1]
[0 2]

Caveat 2. In general the matrix U is not invertible, even if A and H have the same size. Example:

? matimagemod([4,1;0,4],8,&U)
%6 =
[2 1]
[0 4]

? U
%7 =
[0 0]
[2 1]

matindexrank()

M being a matrix of rank r, returns a vector with two t_VECSMALL components y and z of length r giving a list of rows and columns respectively (starting from 1) such that the extracted matrix obtained from these two vectors using `vecextract(M, y, z)` is invertible. The vectors y and z are sorted in increasing order.

matintersect(y)

x and y being two matrices with the same number of rows each of whose columns are independent, finds a basis of the vector space equal to the intersection of the spaces spanned by the columns of x and y respectively. The faster function `idealintersect` can be used to intersect fractional ideals (projective \mathbb{Z}_K modules of rank 1); the slower but more general function `nfhnf` can be used to intersect general \mathbb{Z}_K-modules.

matinverseimage(y)

Given a matrix x and a column vector or matrix y, returns a preimage z of y by x if one exists (i.e such that $xz = y$), an empty vector or matrix otherwise. The complete inverse image is $z + \ker x$, where a basis of the kernel of x may be obtained by `matker`.

? M = [1,2;2,4];
? matinverseimage(M, [1,2]~)
%2 = [1, 0]~
? matinverseimage(M, [3,4]~)
%3 = []~ \no solution

? matinverseimage(M, [1,3,6;2,6,12])
%4 =
[1 3 6]
[0 0 0]

? matinverseimage(M, [1,2;3,4])
%5 = [:] \no solution

? K = matker(M)
%6 =
[-2]
[1]

\textbf{matinvmod}(d)

Computes a left inverse of the matrix x modulo d. The matrix x must have t_INT entries, and d can be an arbitrary positive integer.

? A = [3,1,2;1,2,1;3,1,1];
? U = matinvmod(A,6)
%2 =
[1 1 3]
[2 3 5]
[1 0 5]

? (U*A)%6
%3 =
[1 0 0]
[0 1 0]
[0 0 1]

? matinvmod(A,5)
*** at top-level: matinvmod(A,5)
*** ^---------------
*** matinvmod: impossible inverse in \text{gen}_\text{inv}: 0.

\textbf{matisdiagonal}()

Returns true (1) if x is a diagonal matrix, false (0) if not.

\textbf{matker}(\text{flag})

Gives a basis for the kernel of the matrix x as columns of a matrix. The matrix can have entries of any type, provided they are compatible with the generic arithmetic operations ($+,$ \times and $/$).

If x is known to have integral entries, set $\text{flag} = 1$.

\textbf{matkerint}(\text{flag})

Gives an LLL-reduced \mathbb{Z}-basis for the lattice equal to the kernel of the matrix x with rational entries. flag is deprecated, kept for backward compatibility.
\textbf{matkermod}(d, im)

Gives a Howell basis (unique representation for submodules of \((\mathbb{Z}/d\mathbb{Z})^n\), cf. \texttt{matimagemod}) for the kernel of the matrix \(x\) modulo \(d\) as columns of a matrix. The matrix \(x\) must have \texttt{t_INT} entries, and \(d\) can be an arbitrary positive integer. If \(im\) is present, set it to a basis of the image of \(x\) (which is computed on the way).

\begin{verbatim}
? A = [1,2,3;5,1,4]
%1 =
[1 2 3]
[5 1 4]

? K = matkermod(A,6)
%2 =
[2 1]
[2 1]
[0 3]

? (A*K)%6
%3 =
[0 0]
[0 0]
\end{verbatim}

\textbf{matmuldiagonal}(d)

Product of the matrix \(x\) by the diagonal matrix whose diagonal entries are those of the vector \(d\). Equivalent to, but much faster than \(x \ast \texttt{matdiagonal}(d)\).

\textbf{matmultodiagonal}(y)

Product of the matrices \(x\) and \(y\) assuming that the result is a diagonal matrix. Much faster than \(x \ast y\) in that case. The result is undefined if \(x \ast y\) is not diagonal.

\textbf{matpermanent}()

Permanent of the square matrix \(x\) using Ryser’s formula in Gray code order.

\begin{verbatim}
? n = 20; m = matrix(n,n,i,j, i!=j);
? matpermanent(m)
%2 = 895014631192902121

? n! * sum(i=0,n, (-1)^i/i!)
%3 = 895014631192902121
\end{verbatim}

This function runs in time \(O(2^n n)\) for a matrix of size \(n\) and is not implemented for \(n\) large.

\textbf{matqr}(flag, precision)

Returns \([Q,R]\), the QR-decomposition of the square invertible matrix \(M\) with real entries: \(Q\) is orthogonal and \(R\) upper triangular. If \(flag = 1\), the orthogonal matrix is returned as a sequence of Householder transforms: applying such a sequence is stabler and faster than multiplication by the corresponding \(Q\) matrix. More precisely, if

\begin{verbatim}
[Q,R] = matqr(M);
[q,r] = matqr(M, 1);
\end{verbatim}

then \(r = R\) and \texttt{mathouseholder}(q, M) is (close to) \(R\); furthermore
the inverse of Q. This function raises an error if the precision is too low or x is singular.

matrank()

Rank of the matrix x.

matreduce()

Let m be a factorization matrix, i.e., a 2-column matrix whose columns contains arbitrary “generators” and integer “exponents” respectively. Returns the canonical form of m: the first column is sorted with unique elements and the second one contains the merged “exponents” (exponents of identical entries in the first column of m are added, rows attached to 0 exponents are deleted). The generators are sorted with respect to the universal cmp routine; in particular, this function is the identity on true integer factorization matrices, but not on other factorizations (in products of polynomials or maximal ideals, say). It is idempotent.

For convenience, this function also allows a vector m, which is handled as a factorization with all exponents equal to 1, as in factorback.

``` pari
? A=[x,2; y,4]; B=[x,-2; y,3; 3, 4]; C=matconcat([A,B]~)
%1 =
[ x  2 ]
[ y  4 ]
[ x  -2 ]
[ y  3 ]
[ 3  4 ]

[ ]
? matreduce(C)
%2 =
[ 3  4 ]
[ y  7 ]

? matreduce([x,x,y,x,z,x,y]) \ \ vector argument
%3 =
[ x  4 ]
[ y  2 ]
[ z  1 ]
```

matrixqz(p)

A being an mxn matrix in $M_{m,n}(Q)$, let Im_QA (resp. Im_ZA) the Q-vector space (resp. the Z-module) spanned by the columns of A. This function has varying behavior depending on the sign of p:

If $p >= 0$, A is assumed to have maximal rank $n <= m$. The function returns a matrix $B \in M_{m,n}(Z)$, with $Im_QB = Im_QA$, such that the GCD of all its nxn minors is coprime to p; in particular, if $p = 0$ (default), this GCD is 1.

If $p = -1$, returns a basis of the lattice $Z^n \cap Im_ZA$.

If $p = -2$, returns a basis of the lattice $Z^n \cap Im_QA$.

Caveat. ($p = -1$ or -2) For efficiency reason, we do not compute the HNF of the resulting basis.
? minors(x) = vector(#x[,1], i, matdet(x[^i,]));
? A = [3,1/7; 5,3/7; 7,5/7]; minors(A)
%1 = [4/7, 8/7, 4/7] \ determinants of all 2x2 minors
? B = matrixqz(A)
%2 =
[3 1]
[5 2]
[7 3]
? minors(%)
%3 = [1, 2, 1] \ B integral with coprime minors
? matrixqz(A,-1)
%4 =
[3 1]
[5 3]
[7 5]
? matrixqz(A,-2)
%5 =
[3 1]
[5 2]
[7 3]

matsize()

`x` being a vector or matrix, returns a row vector with two components, the first being the number of rows (1 for a row vector), the second the number of columns (1 for a column vector).

matsnf(flag)

If `X` is a (singular or nonsingular) matrix outputs the vector of elementary divisors of `X`, i.e. the diagonal of the Smith normal form of `X`, normalized so that \(d_n \parallel d_{n-1} \parallel ... \parallel d_1\). `X` must have integer or polynomial entries; in the latter case, `X` must be a square matrix.

The binary digits of `flag` mean:

1 (complete output): if set, outputs \([U, V, D]\), where `U` and `V` are two unimodular matrices such that `UXV` is the diagonal matrix `D`. Otherwise output only the diagonal of `D`. If `X` is not a square matrix, then `D` will be a square diagonal matrix padded with zeros on the left or the top.

4 (cleanup): if set, cleans up the output. This means that elementary divisors equal to 1 will be deleted, i.e. outputs a shortened vector `D'` instead of `D`. If complete output was required, returns \([U', V', D']\) so that `U'XV' = D'` holds. If this flag is set, `X` is allowed to be of the form `vector of elementary divisors` or \(\text{math: } [U,V,D]\) as would normally be output with the cleanup flag unset.

matsolve(B)

Let `M` be a left-invertible matrix and `B` a column vector such that there exists a solution `X` to the system of linear equations `MX = B`; return the (unique) solution `X`. This has the same effect as, but is faster, than `M^{-1} * B`. Uses Dixon \(p\)-adic lifting method if `M` and `B` are integral and Gaussian elimination otherwise. When there is no solution, the function returns an `X` such that `MX - B` is nonzero although it has at least \(#M\) zero entries.
? \text{M} = \begin{bmatrix} 1,2;3,4;5,6 \end{bmatrix};
? \text{B} = \begin{bmatrix} 4,6,8 \end{bmatrix}; \text{X} = \text{matsolve}(\text{M}, \text{B})
%2 = [-2, 3]~
? \text{M}^*\text{X} == \text{B}
%3 = 1
? \text{B} = \begin{bmatrix} 1,2,4 \end{bmatrix}; \text{X} = \text{matsolve}(\text{M}, [1,2,4]~)
%4 = [0, 1/2]~
? \text{M}^*\text{X} - \text{B}
%5 = [0, 0, -1]~

Raises an exception if \(M \) is not left-invertible, even if there is a solution:

? \text{M} = \begin{bmatrix} 1,1;1,1 \end{bmatrix}; \text{matsolve}(\text{M}, [1,1]~)
*** at top-level: \text{matsolve}(\text{M},[1,1]~)
*** ~~~~~~~~~~~~~
*** \text{matsolve}: impossible inverse in gauss: [1, 1; 1, 1].

The function also works when \(B \) is a matrix and we return the unique matrix solution \(X \) provided it exists.

\text{matsolvemod}(D, B, flag)

\(M \) being any integral matrix, \(D \) a column vector of nonnegative integer moduli, and \(B \) an integral column vector, gives an integer solution to the system of congruences \(\sum_i m_{i,j} x_j = b_i (mod d_i) \) if one exists, otherwise returns zero. Shorthand notation: \(B \) (resp. \(D \)) can be given as a single integer, in which case all the \(b_i \) (resp. \(d_i \)) above are taken to be equal to \(B \) (resp. \(D \)).

? \text{M} = \begin{bmatrix} 1,2;3,4 \end{bmatrix};
? \text{matsolvemod} (\text{M}, [3,4]~, [1,2]~)
%2 = [10, 0]~
? \text{matsolvemod} (\text{M}, [3, 1] \setminus \text{M} \text{X} = [1,1]~ \text{over} \text{F}_3
%3 = [2, 1]~
? \text{matsolvemod} (\text{M}, [3,0]~, [1,2]~) \setminus \text{x} + 2\text{y} = 1 \text{ (mod 3)}, 3\text{x} + 4\text{y} = 2 \text{ (in Z)}
%4 = [6, -4]~

If \(flag = 1 \), all solutions are returned in the form of a two-component row vector \([x, u]\), where \(x \) is an integer solution to the system of congruences and \(u \) is a matrix whose columns give a basis of the homogeneous system (so that all solutions can be obtained by adding \(x \) to any linear combination of columns of \(u \)). If no solution exists, returns zero.

\text{matsupplement}()

Assuming that the columns of the matrix \(x \) are linearly independent (if they are not, an error message is issued), finds a square invertible matrix whose first columns are the columns of \(x \), i.e. supplement the columns of \(x \) to a basis of the whole space.

? \text{matsupplement} ([1;2])
%1 =
[1 0]
[2 1]

Raises an error if \(x \) has 0 columns, since (due to a long standing design bug), the dimension of the ambient space (the number of rows) is unknown in this case:

? \text{matsupplement} (\text{matrix}(2,0))
*** at top-level: \text{matsupplement}(\text{matrix} (continues on next page)
mattranspose()

Transpose of \(x \) (also \(x \)). This has an effect only on vectors and matrices.

max(y)

Creates the maximum of \(x \) and \(y \) when they can be compared.

mfEH()

\(k \) being in \(1/2 + \mathbb{Z}_{>0} \), return the \(mf \) structure corresponding to the Cohen-Eisenstein series \(H_k \) of weight \(k \) on \(\Gamma_0(4) \).

```
? H = mfEH(13/2); mfcoefs(H,4)
%1 = \[691/32760, -1/252, 0, 0, -2017/252\]
```

The coefficients of \(H \) are given by the Cohen-Hurwitz function \(H(k-1/2, N) \) and can be obtained for moderately large values of \(N \) (the algorithm uses \(O(N) \) time):

```
? mfcoef(H,10^5+1)
time = 55 ms.
%2 = -12514802881532791504208348
? mfcoef(H,10^7+1)
time = 6,044 ms.
%3 = -1251433416009877455212672599325104476
```

mfTheta()

The unary theta function corresponding to the primitive Dirichlet character \(\psi \). Its level is \(4F(\psi)^2 \) and its weight is \(1 - \psi(-1)/2 \).

```
? Ser(mfcoefs(mfTheta(),30))
%1 = 1 + 2*x + 2*x^4 + 2*x^9 + 2*x^16 + 2*x^25 + O(x^31)

? f = mfTheta(8); Ser(mfcoefs(f,30))
%2 = 2*x - 2*x^9 - 2*x^25 + O(x^31)
? mfparams(f)
%3 = [256, 1/2, 8, y, t + 1]

? g = mfTheta(-8); Ser(mfcoefs(g,30))
%4 = 2*x + 6*x^9 - 10*x^25 + O(x^31)
? mfparams(g)
%5 = [256, 3/2, 8, y, t + 1]

? h = mfTheta(Mod(2,5)); mfparams(h)
%6 = [100, 3/2, Mod(7, 20), y, t^2 + 1]
```

mfatkin(f)

Given a \(mfatk \) output by \(mfatk = mfatkininit(mf,0) \) and a modular form \(f \) belonging to the pace \(mf \), returns the modular form \(g = C x f || W_Q \), where \(C = mfatk[3] \) is a normalizing constant such that \(g \) has the same field of coefficients as \(f \); \(mfatk[3] \) gives the constant \(C \), and \(mfatk[1] \) gives the modular form space to which \(g \) belongs (or is set to 0 if it is \(mf \)).
CyPari2 Documentation, Release 2.1.3

\[mf = \text{mfinit}([35,2],0); [f] = \text{mfbasis}(mf); \]
\[mfcoefs(f, 4) \]
\[\%2 = [0, 3, -1, 0, 3] \]
\[mfcoefs(f, 4) \]
\[\%4 = [0, 1, -1, -2, 7] \]
\[mfcoefs(f, 4) \]
\[\%6 = [0, -3, 1, 0, -3] \]

\(\text{mfatkineigenvalues}(Q, \text{precision}) \)

Given a modular form space \(mf \) of integral weight \(k \) and a primitive divisor \(Q \) of the level \(N \) of \(mf \), outputs the Atkin-Lehner eigenvalues of \(w_Q \) on the new space, grouped by orbit. If the Nebentypus \(\chi \) of \(mf \) is a (trivial or) quadratic character defined modulo \(N/Q \), the result is rounded and the eigenvalues are \(i^k \).

\[\%2 = [\text{orbit1}, \text{orbit2}, \ldots] \]

\(\text{mfatkininit}(Q, \text{precision}) \)

Given a modular form space \(mf \) with parameters \(N, k, \chi \) and a primitive divisor \(Q \) of the level \(N \), initializes data necessary for working with the Atkin-Lehner operator \(W_Q \), for now only the function \(\text{mfatkin} \). We write \(\chi \chi_Q \chi_{N/Q} \) where the two characters are primitive with (coprime) conductors dividing \(Q \) and \(N/Q \) respectively. For \(F \in M_k(\Gamma_0(N), \chi) \), the form \(F|W_Q \) still has level \(N \) and weight \(k \) but its Nebentypus may no longer be \(\chi \): it becomes \(\chi_Q \chi_{N/Q} \) if \(k \) is integral and \(\chi_Q \chi_{N/Q} \) otherwise.

The result is a technical 4-component vector \([\text{mfB}, M, C, mf] \)

- \(\text{mfB} \) encodes the modular form space to which \(F|W_Q \) belongs when \(F \in M_k(\Gamma_0(N), \chi) \): an \text{mfinit} corresponding to a new Nebentypus or the integer 0 when the character does not change. This does not depend on \(F \).
- \(M \) is the matrix of \(W_Q \) on the bases of \(mf \) and \(mfB \) multiplied by a normalizing constant \(C(k, \chi, Q) \). This matrix has polmod coefficients in \(\mathbb{Q}(\chi) \).
- \(C \) is the complex constant \(C(k, \chi, Q) \). For \(k \) integral, let \(A(k, \chi, Q) = Q^\varepsilon/g(\chi_Q) \), where \(\varepsilon = 0 \) for \(k \) even and \(1/2 \) for \(k \) odd and where \(g(\chi_Q) \) is the Gauss sum attached to \(\chi_Q \). (A similar, more complicated, definition holds in half-integral weight depending on the parity of \(k-1/2 \)). Then if \(M \) denotes the matrix of \(W_Q \) on the bases of \(mf \) and \(mfB \), \(A.M \) has coefficients in \(\mathbb{Q}(\chi) \). If \(A \) is rational, we let \(C = 1 \) and \(C = A \) as a floating point complex number otherwise, and finally \(MC := M.C \).
If \(NK = [N, k, CHI] \) as in \texttt{mfinit}, gives a basis of the corresponding subspace of \(M_k(\Gamma_0(N), \chi) \). \(NK \) can also be the output of \texttt{mfinit}, in which case \texttt{space} can be omitted. To obtain the eigenforms, use \texttt{mfeigenbasis}.

If \texttt{space} is a full space \(M_k \), the output is the union of first, a basis of the space of Eisenstein series, and second, a basis of the cuspidal space.

\begin{verbatim}
? see(L) = apply(f->mfcoefs(f,3), L);
? mf = mfinit([35,2],0);
? see(mfbasis(mf))
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], [0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see(mfeigenbasis(mf))
%5 = [[1/6, 1, 3, 4], [1/4, 1, 3, 4], [17/12, 1, 3, 4], [0, 3, -1, 0], [0, -1, 9, -8], [0, 0, -8, 10]]
? see(mfbasis([48,4],0))
%6 = [[0, 3, 0, -3], [0, -3, 0, 27], [0, 2, 0, 30]]
\end{verbatim}

\texttt{mfbd}(d)

\(F \) being a generalized modular form, return \(B(d)(F) \), where \(B(d) \) is the expanding operator \(\tau: \cdots \to d\tau \).

\begin{verbatim}
? D2=mfbd(mfDelta(),2); mfcoefs(D2, 6)
%1 = [0, 0, 1, 0, -24, 0, 252]
\end{verbatim}

\texttt{mfbracket}(G, m)

Compute the \(m \)-th Rankin-Cohen bracket of the generalized modular forms \(F \) and \(G \).

\begin{verbatim}
? E4 = mfEk(4); E6 = mfEk(6);
? D1 = mfbracket(E4,E4,2); mfcoefs(D1,5)/4800
%2 = [0, 1, -24, 252, -1472, 4830]
? D2 = mfbracket(E4,E6,1); mfcoefs(D2,10)/(-3456)
%3 = [0, 1, -24, 252, -1472, 4830]
\end{verbatim}
\textbf{mfcoef}(n) \\
Compute the \(n \)-th Fourier coefficient \(a(n) \) of the generalized modular form \(F \). Note that this is the \(n + 1 \)-st component of the vector \(\text{mfcoefs}(F,n) \) as well as the second component of \(\text{mfcoefs}(F,1,n) \).

\begin{verbatim}
? mfcoef(mfDelta(),10)
%1 = -115920
\end{verbatim}

\textbf{mfcoefs}(n, d) \\
Compute the vector of Fourier coefficients \([a[0], a[d], \ldots, a[nd]]\) of the generalized modular form \(F \); \(d \) must be positive and \(d = 1 \) by default.

\begin{verbatim}
? D = mfDelta();
? mfcoefs(D,10)
%2 = [0, 1, -24, 252, -1472, 4830, -6048, -16744, 84480, -113643, -115920]

? mfcoefs(D,5,2)
%3 = [0, -24, -1472, -6048, 84480, -115920]

? mfcoef(D,10)
%4 = -115920
\end{verbatim}

This function also applies when \(F \) is a modular form space as output by \texttt{mfinit}; it then returns the matrix whose columns give the Fourier expansions of the elements of \texttt{mfbasis}(\(F \)).

\begin{verbatim}
? mf = mfinit([1,12]);
? mfcoefs(mf,5)
%2 = [[691/65520 0]
 [1 1]
 [2049 -24]
 [177148 252]
 [4196353 -1472]
 [48828126 4830]]
\end{verbatim}

\textbf{mfconductor}(F) \\
\texttt{mf} being output by \texttt{mfinit} for the cuspidal space and \(F \) a modular form, gives the smallest level at which \(F \) is defined. In particular, if \(F \) is cuspidal and we write \(F = \sum_j B(d_j) f_j \) for new forms \(f_j \) of level \(N_j \) (see \texttt{mftonew}), then its conductor is the least common multiple of the \(d_j N_j \).

\begin{verbatim}
? mf=mfinit([96,6],1); vF = mfbasis(mf); mfdim(mf)
%1 = 72
? vector(10,i, mfconductor(mf, vF[i]))
%2 = [3, 6, 12, 24, 48, 96, 4, 8, 12, 16]
\end{verbatim}

\textbf{mfcosets}() \\
Let \(N \) be a positive integer. Return the list of right cosets of \(\Gamma_0(N) \) \textit{Gamma}, i.e., matrices \(\gamma_j \in \Gamma \) such that \(\Gamma = \bigsqcup_j \Gamma_0(N) \gamma_j \). The \(\gamma_j \) are chosen in the form \([a, b; c, d] \) with \(c || N \).

\begin{verbatim}
? mfcosets(4)
%1 = [[[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],
 [1, 0; 2, 1], [1, 0; 4, 1]]
\end{verbatim}
We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

```plaintext
? M = mfinit([4, 12, 1], 0); mfcosets(M)
%2 = [[0, -1; 1, 0], [1, 0; 1, 1], [0, -1; 1, 2], [0, -1; 1, 3],
     [1, 0; 2, 1], [1, 0; 4, 1]]
```

Warning. In the present implementation, the trivial coset is represented by $[1,0;N,1]$ and is the last in the list.

mfcuspsregular(cusp)

In the space defined by $N=[N,k,CHI]$ or $N=mf$, determine if cusp in canonical format (oo or denominator dividing N) is regular or not.

```plaintext
? mfcuspsregular([4,3,-4],1/2)
%1 = 0
```

mfcusps()

Let N be a positive integer. Return the list of cusps of $\Gamma_0(N)$ in the form a/b with $b\|N$.

```plaintext
? mfcusps(24)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]
```

We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

```plaintext
? M = mfinit([4, 12, 1], 0); mfcusps(M)
%2 = [0, 1/2, 1/4]
```

mfcuspval(F, cusp, precision)

Valuation of modular form F in the space mf at cusp, which can be either oo or any rational number. The result is either a rational number or oo if F is zero. Let χ be the Nebentypus of the space mf; if $Q(F)! = Q(\chi)$, return the vector of valuations attached to the $[Q(F) : Q(\chi)]$ complex embeddings of F.

```plaintext
? T=mfTheta(); mf=mfinit([12,1/2]); mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
? apply(x->mfcuspval(mf,T,x), %1)
%2 = [0, 1/4, 0, 0, 1/4, 0]
? mf=mfinit([12,6,12],1); F=mfbasis(mf)[5];
? apply(x->mfcuspval(mf,F,x),%1)
%4 = [1/12, 1/6, 1/2, 2/3, 1/2, 2]
? mf=mfinit([12,3,-4],1); F=mfbasis(mf)[1];
? apply(x->mfcuspval(mf,F,x),%1)
%6 = [1/12, 1/6, 1/4, 2/3, 1/2, 1]
```

mfcuspwidth(cusp)

Width of cusp in $\Gamma_0(N)$.

```plaintext
? mfcusps(12)
%1 = [0, 1/2, 1/3, 1/4, 1/6, 1/12]
```
We also allow the argument N to be a modular form space, in which case it is replaced by the level of the space:

? $M = \text{mfinit}([4, 12, 1], \emptyset); \text{mfcuspwidth}(M, 1/2)$

$\%4 = 1$

mfderiv(m)

m-th formal derivative of the power series corresponding to the generalized modular form F, with respect to the differential operator qd/dq (default $m = 1$).

? $D = \text{mfDelta}();$
? $\text{mfcoefs}(D, 4)$

$\%2 = [0, 1, -24, 252, -1472]$
? $\text{mfcoefs}(\text{mfderiv}(D), 4)$

$\%3 = [0, 1, -48, 756, -5888]$

mfderivE2(m)

Compute the Serre derivative $(q.d/dq)F - kE_2F/12$ of the generalized modular form F, which has weight $k+2$; if F is a true modular form, then its Serre derivative is also modular. If $m > 1$, compute the m-th iterate, of weight $k + 2m$.

? $\text{mfcoefs}(\text{mfderivE2}(\text{mfEkm}(4)), 5)*(-3)$

$\%1 = [1, -504, -16632, -122976, -532728]$
? $\text{mfcoefs}(\text{mfEkm}(6), 5)$

$\%2 = [1, -504, -16632, -122976, -532728]$

mfdescribe(G)

Gives a human-readable description of F, which is either a modular form space or a generalized modular form. If the address of G is given, puts into G the vector of parameters of the outermost operator defining F; this vector is empty if F is a leaf (an atomic object such as mfDelta(), not defined in terms of other forms) or a modular form space.

? $E_1 = \text{mfeisenstein}(4, -3, 4); \text{mfdescribe}(E_1)$

$\%1 = \text{"F}_4(-3, -4)\text{"}$
? $E_2 = \text{mfeisenstein}(3, 5, -7); \text{mfdescribe}(E_2)$

$\%2 = \text{"F}_3(5, -7)\text{"}$
? $E_3 = \text{mfderivE2}(\text{mfmul}(E_1, E_2), 3); \text{mfdescribe}(E_3, &G)$

$\%3 = \text{"DERE2}^3(\text{MUL}(\text{F}_4(-3, -4), \text{F}_3(5, -7)))\text{"}$
? $\text{mfdescribe}(G[1][1])$

$\%4 = \text{"MUL}(\text{F}_4(-3, -4), \text{F}_3(5, -7))\text{"}$
? $G[2]$

$\%5 = 3$

? $\text{for}(i = 0, 4, m = \text{mfinit}([37, 4], i); \text{print}(\text{mfdescribe}(m));$

S_4*new(G_0(37, 1))
S_4(G_0(37, 1))
S_4*old(G_0(37, 1))
E_4(G_0(37, 1))
M_4(G_0(37, 1))

621
mfdim *(space)*

If \(NK = [N, k, CHI] \) as in \texttt{mfinit}, gives the dimension of the corresponding subspace of \(M_k(\Gamma_0(N), \chi) \). \(NK \) can also be the output of \texttt{mfinit}, in which case \texttt{space} must be omitted.

The subspace is described by the small integer \texttt{space}: 0 for the newspace \(S^\text{new}_k(\Gamma_0(N), \chi) \), 1 for the cuspidal space \(S_k \), 2 for the oldspace \(S^\text{old}_k \), 3 for the space of Eisenstein series \(E_k \) and 4 for the full space \(M_k \).

Wildcards. As in \texttt{mfinit}, \(CHI \) may be the wildcard 0 (all Galois orbits of characters); in this case, the output is a vector of \([\text{order}, \text{conrey}, \text{dim}, \text{dimdih}]\) corresponding to the nontrivial spaces, where

- \(\text{order} \) is the order of the character,
- \(\text{conrey} \) its Conrey label from which the character may be recovered via \texttt{znchar(conrey)},
- \(\text{dim} \) the dimension of the corresponding space,
- \(\text{dimdih} \) the dimension of the subspace of dihedral forms corresponding to Hecke characters if \(k = 1 \) (this is not implemented for the old space and set to \(-1\) for the time being) and 0 otherwise.

The spaces are sorted by increasing order of the character; the characters are taken up to Galois conjugation and the Conrey number is the minimal one among Galois conjugates. In weight 1, this is only implemented when the space is 0 (newspace), 1 (cusp space), 2 (old space) or 3 (Eisenstein series).

Wildcards for sets of characters. \(CHI \) may be a set of characters, and we return the set of \([\text{dim}, \text{dimdih}]\).

Wildcard for :math:`\frac{M_k(\Gamma_1(N))}{\Gamma_0(N)}`. Additionally, the wildcard \(CHI = -1 \) is available in which case we output the total dimension of the corresponding subspace of \(M_k(\Gamma_1(N)) \). In weight 1, this is not implemented when the space is 4 (fullspace).

```plaintext
? mfdim([23,2], 0) \new space
%1 = 2
? mfdim([96,6], 0)
%2 = 10
? mfdim([10^9,4], 3) \Eisenstein space
%1 = 40000
? mfdim([10^9+7,4], 3)
%2 = 2
? mfdim([68,1,-1],0)
%3 = 3
? mfdim([68,1,0],0)
%4 = [[2, Mod(67, 68), 1, 1], [4, Mod(47, 68), 1, 1]]
? mfdim([124,1,0],0)
%5 = [[6, Mod(67, 124), 2, 0]]
```

This last example shows that there exists a nondihedral form of weight 1 in level 124.

mfdiv *(G)*

Given two generalized modular forms \(F \) and \(G \), compute \(F/G \) assuming that the quotient will not have poles at infinity. If this is the case, use \texttt{mfshift} before doing the division.

```plaintext
? D = mfDelta(); \Delta
? H = mfpow(mfEk(4), 3);
? J = mfdiv(H, D)
*** at top-level: J=mfdiv(H,mfdeltac
*** ^------------------
*** mfdiv: domain error in mfdiv: ord(G) > ord(F)
? J = mfdiv(H, mfshift(D,1));
? mfcoefs(J, 4)
%4 = [1, 744, 196884, 21493760, 864299970]
```
mfeigenbasis()

Vector of the eigenforms for the space \(\text{mf} \). The initial basis of forms computed by \text{mfinit} before splitting is also available via \text{mfbasis}.

```plaintext
? mf = mfinit([26,2],0);
? see(L) = for(i=1,#L,print(mfcoefs(L[i],6)));
? see( mfeigenbasis(mf) )
[0, 1, -1, 1, -3, -1]
[0, 1, 1, -3, 1, -1, -3]
? see( mfbasis(mf) )
[0, 2, 0, -2, 2, -4, -4]
[0, -2, -4, 10, -2, 0, 8]
```

The eigenforms are internally expressed as (algebraic) linear combinations of \text{mfbasis}(\text{mf}) and it is very inefficient to compute many coefficients of those forms individually: you should rather use \text{mfcoefs}(\text{mf}) to expand the basis once and for all, then multiply by \text{mftobasis}(\text{mf}, f) for the forms you're interested in:

```plaintext
? mf = mfinit([96,6],0); B = mfeigenbasis(mf); #B
%1 = 8;
? vector(#B, i, mfcoefs(B[i],1000)); \ \% \text{expanded individually: slow}
time = 7,881 ms.
? M = mfcoefs(mf, 1000); \ \% \text{initialize once}
time = 982 ms.
? vector(#B, i, M * mftobasis(mf,B[i])); \ \% \text{then expand: much faster}
time = 623 ms.
```

When the eigenforms are defined over an extension field of \(\mathbb{Q}(\chi) \) for a nonrational character, their coefficients are hard to read and you may want to lift them or to express them in an absolute number field. In the construction below \(T \) defines \(\mathbb{Q}(f) \) over \(\mathbb{Q} \), \(a \) is the image of the generator \text{Mod}(t, t^2 + t + 1) of \(\mathbb{Q}(\chi) \) in \(\mathbb{Q}(f) \) and \(y - ka \) is the image of the root \(y \) of \(f.mod \):

```plaintext
? mf = mfinit([31, 2, Mod(25,31)], 0); [f] = mfeigenbasis(mf);
? f.mod
%2 = Mod(1, t^2 + t + 1)*y^2 + Mod(2*t + 2, t^2 + t + 1)
? v = liftpol(mfcoefs(f,5))
%3 = [0, 1, (-t - 1)*y - 1, t*y + (t + 1), (2*t + 2)*y + 1, t]
? [T,a,k] = rnfequation(mf.mod, f.mod, 1)
%4 = [y^4 + 2*y^2 + 4, Mod(-1/2*y^2 - 1, y^4 + 2*y^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, y-k*a]))
%5 = [0, 1, 1/2*y^3 - 1, -1/2*y^3 - 1/2*y^2 - y, -y^3 + 1, -1/2*y^2 - 1]
```

Beware that the meaning of \(y \) has changed in the last line is different: it now represents of root of \(T \), no longer of \(f.mod \) (the notions coincide if \(k = 0 \) as here but it will not always be the case). This can be avoided with an extra variable substitution, for instance

```plaintext
? [T,a,k] = rnfequation(mf.mod, subst(f.mod,'y','x), 1)
%6 = [x^4 + 2*x^2 + 4, Mod(-1/2*x^2 - 1, x^4 + 2*x^2 + 4), 0]
? liftpol(substvec(v, [t,y], [a, x-k*a]))
%7 = [0, 1, 1/2*x^3 - 1, -1/2*x^3 - 1/2*x^2 - x, -x^3 + 1, -1/2*x^2 - 1]
```

mfeigensearch(\(AP \))

Search for a normalized rational eigen cuspform with quadratic character given restrictions on a few initial coefficients. The meaning of the parameters is as follows:

- \(NK \) governs the limits of the search: it is of the form \([N,k]\): search for given level \(N \), weight \(k \) and quadratic
character; note that the character \((D/.)\) is uniquely determined by \((N, k)\). The level \(N\) can be replaced by a vector of allowed levels.

- AP is the search criterion, which can be omitted: a list of pairs \([..., [p, a_p], ...]\), where \(p\) is a prime number and \(a_p\) is either a \(t_\text{INT}\) (the \(p\)-th Fourier coefficient must match \(a_p\) exactly) or a \(t_\text{INTMOD Mod}(a, b)\) (the \(p\)-th coefficient must be congruent to \(a\) modulo \(b\)).

The result is a vector of newforms \(f\) matching the search criteria, sorted by increasing level then increasing \(\|D\|\).

```plaintext
? #mfeigensearch([[1..80],2], [[2,2],[3,-1]])
%1 = 1
? #mfeigensearch([[1..80],2], [[2,2],[5,2]])
%2 = 1
? v = mfeigensearch([[1..20],2], [[3,Mod(2,3)],[7,Mod(5,7)]]); #v
%3 = 1
? F=v[1]; [mfparams(F)[1], mfcoefs(F,15)]
%4 = [11, [0, 1, -2, -1, 2, 1, 2, -2, 0, -2, -2, 1, -2, 4, 4, -1]]
```

mfembed\((v,\text{precision})\)

Let \(f\) be a generalized modular form with parameters \([N, k, \chi, P]\) (see \textsf{mfparams}, we denote \(Q(\chi)\) the subfield of \(\mathbb{C}\) generated by the values of \(\chi\) and \(Q(f)\) the field of definition of \(f\). In this context \(Q(\chi)\) has a single canonical complex embedding given by \(s : \text{Mod}(t, \text{polcyclo}(n, t)) : \xrightarrow{\text{---}} \exp(2\pi i/n)\) and the number field \(Q(f)\) has \([Q(f) : Q(\chi)]\) induced embeddings attached to the complex roots of the polynomial \(s(P)\). If \(Q(f)\) is strictly larger than \(Q(\chi)\) we only allow an \(f\) which is an eigenform, produced by \textsf{mfeigenbasis}.

This function is meant to create embeddings of \(Q(f)\) and/or apply them to the object \(v\), typically a vector of Fourier coefficients of \(f\) from \textsf{mfcoefs}.

- If \(v\) is omitted and \(f\) is a modular form as above, we return the embedding of \(Q(\chi)\) if \(Q(\chi) = Q(f)\) and a vector containing \([Q(f) : Q(\chi)]\) embeddings of \(Q(f)\) otherwise.
- If \(v\) is given, it must be a scalar in \(Q(f)\), or a vector/matrix of such, we apply the embeddings coefficientwise and return either a single result if \(Q(f) = Q(\chi)\) and a vector of \([Q(f) : Q(\chi)]\) results otherwise.
- Finally \(f\) can be replaced by a single embedding produced by \textsf{mfembed}(\(f\)) (\(v\) was omitted) and we apply that particular embedding to \(v\).

```plaintext
? mf = mfinit([35,2,Mod(11,35)], 0);
? [f] = mfbasis(mf);
? f.mod \% Q (chi) = Q (zeta_3)  
%3 = t^2 + t + 1
? v = mfcoefs(f,5); lift(v) \% coefficients in Q (chi)  
%4 = [0, 2, -2*t - 2, 2*t, 2*t, -2*t - 2]
? mfembed(f, v) \% single embedding  
%5 = [0, 1, -1 - 1.7320...*I, -1 + 1.73205...*I, -1 + 1.7320...*I, ...]
? [F] = mfeigenbasis(mf);
? mfields(mf)
%7 = [y^2 + Mod(-2*t, t^2 + t + 1)] \% [Q (f):Q (chi)] = 2
? V = liftpol( mfcoefs(F,5) );
%8 = [0, 1, y + (-t - 1), (t + 1)*y + t, (-2*t - 2)*y + t, -t - 1]
? vall = mfembed(F, V); #vall
%9 = 2 \% 2 embeddings, both applied to V
? vall[1] \% the first  
%10 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]
? vall[2] \% and the second one
```

(continues on next page)
%11 = [0, 1, 0.2071... + 0.3587...*I, -1.2071... + 2.0907...*I, ...]

? vE = mfembed(F); #vE \same 2 embeddings
%12 = 2

? mfembed(vE[1], V) \apply first embedding to V
%13 = [0, 1, -1.2071... - 2.0907...*I, 0.2071... - 0.3587...*I, ...]

For convenience, we also allow a modular form space from mfinit instead of \(f \), corresponding to the single embedding of \(\mathbb{Q}(\chi) \).

? [mfB,MC,C] = mfatkininit(mf,7); MC \coefs in \mathbb{Q}(\chi)
%13 =
[Mod(2/7*t, t^2 + t + 1) Mod(-1/7*t - 2/7, t^2 + t + 1)]
[Mod(-1/7*t - 2/7, t^2 + t + 1) Mod(2/7*t, t^2 + t + 1)]

? C \normalizing constant
%14 = 0.33863... - 0.16787*I

? M = mfembed(mf, MC) / C \true matrix for the action of \(w_7 \)
[[-0.6294... + 0.4186...*I -0.3625... - 0.5450...*I]
[[-0.3625... - 0.5450...*I -0.6294... + 0.4186...*I]]

? exponent(M*conj(M) - 1) \M * \conj(M) is close to 1
%16 = -126

mfeval \((F, \text{tau}, \text{precision}) \)
Computes the numerical value of the modular form \(F \), belonging to \(mf \), at the complex number \(\text{tau} \) or the vector \(\text{tau} \) of complex numbers in the completed upper-half plane. The result is given with absolute error less than \(2^{-B} \), where \(B = \text{realbitprecision} \).

If the field of definition \(\mathbb{Q}(F) \) is larger than \(\mathbb{Q}(\chi) \) then \(F \) may be embedded into \(\mathbb{C} \) in \(d = [\mathbb{Q}(F) : \mathbb{Q}(\chi)] \) ways, in which case a vector of the \(d \) results is returned.

? mf = mfinit([11,2],0); F = mfbasis(mf)[1]; mfparams(F)
%1 = [11, 2, 1, y, t-1] \Q(F) = Q(\chi) = Q

? mfeval(mf,F,1/2)
%2 = 0.03940547113010089040247038637202832117

? mf = mfinit([35,2],0); F = mfeigenbasis(mf)[2]; mfparams(F)
%3 = [35, 2, 1, y^2 - y - 4, t - 1] \Q(F) : Q(\chi)] = 2

? mfeval(mf,F,1/2)
%4 = [0.045..., 0.0385...] \sigma_1(F) and \sigma_2(F) at I/2

? mf = mfinit([12,4],1); F = mfbasis(mf)[1];
? mfeval(mf, F, 0.318+10^(-7)*I)
%6 = 3.379... E-21 + 6.531... E-21*I \instantaneous!

In order to maximize the imaginary part of the argument, the function computes \((f\|_{k,\gamma})(\gamma^{-1}.\tau) \) for a suitable \(\gamma \) not necessarily in \(\Gamma_0(N) \) (in which case \(f\|_k \gamma \) is evaluated using mfslashexpansion).

? T = mfTheta(); mf = mfinit(T); mfeval(mf,T,[0,1/2,1,00])
%1 = [1/2 - 1/2*I, 0, 1/2 - 1/2*I, 1]

mffields()
Given \(\mathbf{mf} \) as output by \texttt{mfinit} with parameters \((N, k, \chi)\), returns the vector of polynomials defining each Galois orbit of newforms over \(\mathbb{Q}(\chi) \).

\begin{verbatim}
? mf = mfinit([35,2],0); mffields(mf)
%1 = [y, y^2 - y - 4]
\end{verbatim}

Here the character is trivial so \(\mathbb{Q}(\chi) = \mathbb{Q} \) and there are 3 newforms: one is rational (corresponding to \(y \)), the other two are conjugate and defined over the quadratic field \(\mathbb{Q}(y) / (y^2 - y - 4) \).

\begin{verbatim}
? [G,chi] = znchar(Mod(3,35));
? zncharconductor(G,chi)
%2 = 35
? charorder(G,chi)
%3 = 12
? mf = mfinit([35, 2, [G,chi]],0); mffields(mf)
%4 = [y, y]
\end{verbatim}

Here the character is primitive of order 12 and the two newforms are defined over \(\mathbb{Q}(\chi) = \mathbb{Q}(\zeta_{12}) \).

\begin{verbatim}
? mf = mfinit([35, 2, Mod(13,35)],0); mffields(mf)
%3 = [y^2 + Mod(5*t, t^2 + 1)]
\end{verbatim}

This time the character has order 4 and there are two conjugate newforms over \(\mathbb{Q}(\chi) = \mathbb{Q}(i) \).

\texttt{mffromell()}

\(E \) being an elliptic curve defined over \(\mathbb{Q} \) given by an integral model in \texttt{ellinit} format, computes a 3-component vector \([\mathbf{mf}, \mathbf{F}, \mathbf{v}] \), where \(\mathbf{F} \) is the newform corresponding to \(E \) by modularity, \(\mathbf{mf} \) is the newspace to which \(\mathbf{F} \) belongs, and \(\mathbf{v} \) gives the coefficients of \(\mathbf{F} \) on \texttt{mfbasis(mf)}.

\begin{verbatim}
? E = ellinit("26a1");
? [mf,F,co] = mffromell(E);
? co
%2 = [3/4, 1/4]~
? mfcoefs(F, 5)
%3 = [0, 1, -1, 1, 1, -3]
? ellan(E, 5)
%4 = [1, -1, 1, 1, -3]
\end{verbatim}

\texttt{mffrometaquo(flag)}

Modular form corresponding to the eta quotient matrix \(\texttt{eta} \). If the valuation \(v \) at infinity is fractional, return 0. If the eta quotient is not holomorphic but simply meromorphic, return 0 if \(\texttt{flag} = 0 \); return the eta quotient (divided by \(q \) to the power \(-v \) if \(v < 0 \), i.e., with valuation 0) if \(\texttt{flag} \) is set.

\begin{verbatim}
? mfcoefs(mffrometaquo(Mat([1,1]),1),1)
%1 = 0
? mfcoefs(mffrometaquo(Mat([1,1],24))),6)
%2 = [0, 1, -24, 252, -1472, 4830, -6048]
? mfcoefs(mffrometaquo([1,1;23,1]),10)
%3 = [0, 1, -1, -1, 0, 0, 1, 0, 0, 0]
? F = mffrometaquo([1,2;2,-1]); mfparams(F)
%4 = [10, 1/2, 1, y, t - 1]
? mfcoefs(F,10)
%5 = [1, -2, 0, 0, 2, 0, 0, 0, -2, 0]
? mffrometaquo(Mat([1,-24]))
\end{verbatim}
\%6 = 0
? \!f = \textit{mffrometaquo}(\text{Mat}([1,-24]),1); \text{mfcoefs}(f,6)
\%7 = [1, 24, 324, 3200, 25650, 176256, 1073720]

For convenience, a \texttt{t_VEC} is also accepted instead of a factorization matrix with a single row:

\? \!f = \textit{mffrometaquo}([[1,24]]); \quad \text{\textbackslash\textbackslash also valid}

\textbf{mffromlfun}(\textit{precision})

Let \(L\) being an \(L\)-function in any of the \texttt{lfun} formats representing a self-dual modular form (for instance an eigenform). Return \([\text{NK}, \text{space}, v]\) when \(mf = \text{mfinit}(\text{NK}, \text{space})\) is the modular form space containing the form and \text{mftobasis}(mf, v) will represent it on the space basis. If \(L\) has rational coefficients, this will be enough to recognize the modular form in \(mf\):

\? \!L = \textit{lfuncreate}(x^2+1);
\? \!lfunan(L,10)
\%2 = [1, 1, 0, 1, 2, 0, 0, 1, 1, 2]
\? \!\!\![\text{NK}, \text{space}, v] = \textit{mffromlfun}(L); \text{NK}
\%4 = [4, 1, -4]
\? \!mf=mfinit(\text{NK},\text{space}); \text{w = mftobasis}(mf,v)
\%5 = [1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000, 1.0000000000000000000000000000000000000]
\? \!\!\![f] = \textit{mfbasis}(mf); \text{mfcoefs}(f,10) \quad \text{\textbackslash\textbackslash includes a}_0\!
\%6 = [1/4, 1, 1, 0, 1, 2, 0, 0, 1, 1, 2]

If \(L\) has inexact complex coefficients, one can for instance compute an eigenbasis for \(mf\) and check whether one of the attached \(L\)-function is reasonably close to \(L\). In the example, we cheat by producing the \(L\) function from an eigenform in a known space, but the function does not use this information:

\? \!mf = \textit{mfinit}([32,6,\text{Mod}(5,32)],0);
\? \!\![\text{poldegree}(K) \mid K<-\text{mffields}(mf)]
\%2 = [19] \quad \text{\textbackslash\textbackslash one orbit, } [\text{Q}(F) : \text{Q}(\chi)] = 19
\? \!L = \textit{lfumf}(\text{mf}[1][1]); \quad \text{\textbackslash\textbackslash one of the 19 } L\text{-functions attached to } F
\? \!lfunan(L,3)
\%4 = [1, 5.654\ldots - 0.1812\ldots*I, -7.876\ldots - 19.072\ldots*I]
\? \!\![\text{NK}, \text{space}, v] = \textit{mffromlfun}(L); \text{NK}
\%5 = [32, 6, \text{Mod}(5, 32)]
\? \!vL = \text{concat}(\text{lfumf}(\text{mf})); \quad \text{\textbackslash\textbackslash L functions for all cuspidal eigenforms}
\? \!\!\!\!\!\!\text{an = lfunan(L,10)};
\? \!\!\!\!\!\!\text{for (i = 1, \#vL, if (normlp(lfunan(vL[i],10) - an, oo) < 1e-10, print(i)));
1

\textbf{mffromqf}(\textit{P})

\(Q\) being an even integral positive definite quadratic form and \(P\) a homogeneous spherical polynomial for \(Q\), computes a 3-component vector \([mf, F, v]\), where \(F\) is the theta function corresponding to \((Q, P)\), \(mf\) is the corresponding space of modular forms (from \text{mfinit}), and \(v\) gives the coefficients of \(F\) on \text{mfbasis}(mf).

\? \!\![mf,F,v] = \textit{mffromqf}(2*\text{matid}(10)); \text{v}
\%1 = [64/5, 4/5, 32/5]
\? \!\!\!\!\!\!\text{mfcoefs}(F, 5)
\%2 = [1, 20, 180, 960, 3380, 8424]
\? \!\!\!\!\!\!\text{mfcoef}(F, 10000) \quad \text{\textbackslash\textbackslash number of ways of writing 10000 as sum of 10 squares}
\%3 = 128205250571893636

(continues on next page)
\[\text{mfcoefs}(F, 10000); \quad \text{\textbackslash fast!} \]
\begin{verbatim}
 time = 220ms
? \[[mf,F,v] = mffromqf([2,0;0,2],x^4-6*x^2*y^2+y^4);
? mfcoefs(F,10)
%6 = [0, 4, -16, 0, 64, -56, 0, 0, -256, 324, 224]
? mfcoef(F,100000) \quad \text{\textbackslash instantaneous}
%7 = 41304367104
\end{verbatim}

Odd dimensions are supported, corresponding to forms of half-integral weight:

\begin{verbatim}
? \[[mf,F,v] = mffromqf(2*matid(3));
? mfisequal(F, mfpow(mfTheta(),3))
%2 = 1
? mfcoefs(F, 32) \quad \text{\textbackslash illustrate Legendre's 3-square theorem}
%3 = [1,
6, 12, 8, 6, 24, 24, 0, 12,
30, 24, 24, 8, 24, 48, 0, 6,
48, 36, 24, 24, 48, 24, 0, 24,
30, 72, 32, 0, 72, 48, 0, 12]
\end{verbatim}

\texttt{mfgaloisprojrep}(F, \text{\textbackslash precision})

\emph{mf} being an \texttt{mf} output by \texttt{mfinit} in weight 1, return a polynomial defining the field fixed by the kernel of the projective Artin representation attached to \textit{F} (by Deligne-Serre). Currently only implemented for projective image \textit{A}_4 and \textit{S}_4.

\begin{verbatim}
\quad \text{\textbackslash A4 example}
? mf = mfinit([4*31,1,Mod(87,124)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%3 = -12
? pol = mfgaloisprojrep(mf,F)
%4 = x^12 + 68*x^10 + 4808*x^8 + ... + 4096
? G = galoisinit(pol); galoisidentify(G)
%5 = [12,3] \quad \text{\textbackslash A4}
? pol4 = polredbest(galoisfixedfield(G,G.gen[3], 1))
%6 = x^4 + 7*x^2 - 2*x + 14
? polgalois(pol4)
%7 = [12, 1, 1, "A4"]
? factor(nfdisc(pol4))
%8 =
[2 4]
[31 2]
\quad \text{\textbackslash S4 example}
? mf = mfinit([4*37,1,Mod(105,148)],0);
? F = mfeigenbasis(mf)[1];
? mfgaloistype(mf,F)
%11 = -24
? pol = mfgaloisprojrep(mf,F)
%12 = x^24 + 24*x^22 + 256*x^20 + ... + 255488256
? G = galoisinit(pol); galoisidentify(G)
\end{verbatim}
%13 = [24, 12] \ S4
? pol4 = polredbest(galoisfixedfield(G, G.gen[3..4], 1))
%14 = x^4 - x^3 + 5*x^2 - 7*x + 12
? polgalois(pol4)
%15 = [24, -1, 1, "S4"]
? factor(nfdisc(pol4))
%16 =
[2 2]
[37 3]

mfgaloistype(F)

NK being either [N,1,CHI] or an mf output by mfinits in weight 1, gives the vector of types of Galois representations attached to each cuspidal eigenform, unless the modular form F is specified, in which case only for F (note that it is not tested whether F belongs to the correct modular form space, nor whether it is a cuspidal eigenform). Types A_4, S_4, A_5 are represented by minus their cardinality -12, -24, or -60, and type D_n is represented by its cardinality, the integer $2n$:

? mfgaloistype([124,1, Mod(67,124)]) \ A4
%1 = [-12]
? mfgaloistype([148,1, Mod(105,148)]) \ S4
%2 = [-24]
? mfgaloistype([633,1, Mod(71,633)]) \ D10, A5
%3 = [10, -60]
? mfgaloistype([239,1, -239]) \ D6, D10, D30
%4 = [6, 10, 30]
? mfgaloistype([71,1, -71])
%5 = [14]
? mf = mfinits([239,1, -239],0); F = mfeigenbasis(mf)[2];
? mfgaloistype(mf, F)
%7 = 10

The function may also return 0 as a type when it failed to determine it; in this case the correct type is either -12 or -60, and most likely -12.

mfhecke(F, n)

F being a modular form in modular form space mf, returns $T(n)F$, where $T(n)$ is the n-th Hecke operator.

Warning. If F is of level $M < N$, then $T(n)F$ is in general not the same in $M_k(\Gamma_0(M), \chi)$ and in $M_k(\Gamma_0(N), \chi)$. We take $T(n)$ at the same level as the one used in mf.

? mf = mfinits([26,2],0); F = mfbasis(mf)[1]; mftobasis(mf,F)
%1 = [1, 0]~
? G2 = mfhecke(mf,F,2); mftobasis(mf,G2)
%2 = [0, 1]~
? G5 = mfhecke(mf,F,5); mftobasis(mf,G5)
%3 = [-2, 1]~

Modular forms of half-integral weight are supported, in which case n must be a perfect square, else T_n will act as 0 (the operator T_p for $p\|N$ is not supported yet):

? F = mfpow(mfTheta(),3); mf = mfinits(F);
? mfisequal(mfhecke(mf,F,9), mffinear([F],[4]))
%2 = 1
(\(F\) is an eigenvector of all \(T_p^2\), with eigenvalue \(p + 1\) for odd \(p\).)

Warning. When \(n\) is a large composite, resp. the square of a large composite in half-integral weight, it is in general more efficient to use `mfheckemat` on the `mftobasis` coefficients:

```plaintext
? mfcoefs(mfhecke(mf,F,3^10), 10)
time = 917 ms.
%3 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]

? M = mfheckemat(mf,3^10) \ instantanneous
%4 = [324]

? G = mflinear(mf, M*mftobasis(mf,F));
? mfcoefs(G, 10) \ instantaneous
%6 = [324, 1944, 3888, 2592, 1944, 7776, 7776, 0, 3888, 9720, 7776]
```

mfheckemat(`vecn`)

If `vecn` is an integer, matrix of the Hecke operator \(T(n)\) on the basis formed by `mfbasis(mf)`. If it is a vector, vector of such matrices, usually faster than calling each one individually.

```plaintext
? mf=mfinit([32,4],0); mfheckemat(mf,3)
%1 =
[ 0 44 0]
[ 1 0 -10]
[ 0 -2 0]

? mfheckemat(mf,[5,7])
%2 = [[0, 0, 220; 0, -10, 0; 1, 0, 12], [0, 88, 0; 2, 0, -20; 0, -4, 0]]
```

mfinit(`space`)

Create the space of modular forms corresponding to the data contained in `NK` and `space`. `NK` is a vector which can be either \([N, k]\) (\(N\) level, \(k\) weight) corresponding to a subspace of \(M_k(\Gamma_0(N))\), or \([N, k, CHI]\) (\(CHI\) a character) corresponding to a subspace of \(M_k(\Gamma_0(N), \chi)\). Alternatively, it can be a modular form \(F\) or modular form space, in which case we use `mfparams` to define the space parameters.

The subspace is described by the small integer `space`:
- 0 for the newspace \(S^n_k(\Gamma_0(N), \chi)\),
- 1 for the cuspidal space \(S_k\),
- 2 for the oldspace \(S^o_k\),
- 3 for the space of Eisenstein series \(E_k\),
- 4 for the full space \(M_k\).

Wildcards. For given level and weight, it is advantageous to compute simultaneously spaces attached to different Galois orbits of characters, especially in weight 1. The parameter `CHI` may be set to 0 (wildcard), in which case we return a vector of all `mfinit` (s) of non trivial spaces in \(S_k(\Gamma_1(N))\), one for each Galois orbit (see `znchargalois`). One may also set `CHI` to a vector of characters and we return a vector of all `mfinit`s of subspaces of \(M_k(\Gamma_0(N), \chi)\) for \(\chi\) in the list, in the same order. In weight 1, only \(S^{new}_1\), \(S_1\) and \(E_1\) support wildcards.

The output is a technical structure \(S\), or a vector of structures if `CHI` was a wildcard, which contains the following information: \([N, k, \chi]\) is given by `mfparams(S)`, the space dimension is `mfdim(S)` and a \(\mathbb{C}\)-basis for the space is `mfbasis(S)`. The structure is entirely algebraic and does not depend on the current real bit precision.

```plaintext
? S = mfinit([36,2], 0); \ new space
? mfdim(S)
%2 = 1
? mfparams
%3 = [36, 2, 1, y] \ trivial character
? f = mfbasis(S)[1]; mfcoefs(f,10)
%4 = [0, 1, 0, 0, 0, 0, 0, -4, 0, 0, 0]
```
? vS = mfinit([36,2,0],0); \ with wildcard
? #vS
%6 = 4 \ 4 non trivial spaces (mod Galois action)
? apply(mfdim,vS)
%7 = [1, 2, 1, 4]
? mfdim([36,2,0], 0)
%8 = [[1, Mod(1, 36), 1, 0], [2, Mod(35, 36), 2, 0], [3, Mod(13, 36), 1, 0],
[6, Mod(11, 36), 4, 0]]

mfisCM()
Tests whether the eigenform \(F \) is a CM form. The answer is 0 if it is not, and if it is, either the unique negative
discriminant of the CM field, or the pair of two negative discriminants of CM fields, this latter case occurring
only in weight 1 when the projective image is \(D_2 = C_2 \times C_2 \), i.e., coded 4 by mfgaloistype.

? F = mffromell(ellinit([0,1]))[2]; mfisCM(F)
%1 = -3
? mf = mfinit([39,1,-39],0); F=mfeigenbasis(mf)[1]; mfisCM(F)
%2 = Vecsmall([-3, -39])
? mfgaloistype(mf)
%3 = [4]

mfisequal(\(G, lim \))
Checks whether the modular forms \(F \) and \(G \) are equal. If \(lim \) is nonzero, only check equality of the first \(lim + 1 \)
Fourier coefficients and the function then also applies to generalized modular forms.

? D = mfDelta(); F = mfderiv(D);
? G = mfmul(mfEk(2), D);
? mfisequal(F, G)
%2 = 1

mfisetaquo(flag)
If the generalized modular form \(f \) is a holomorphic eta quotient, return the eta quotient matrix, else return 0. If
\(flag \) is set, also accept meromorphic eta quotients: check whether \(f = q^{-\nu(g)} g(q) \) for some eta quotient \(g \); if so,
return the eta quotient matrix attached to \(g \), else return 0. See mffrometaquo.

? mfisetaquo(mfDelta())
%1 =
[1 24]
? f = mffrometaquo([1,1;23,1]);
? mfisetaquo(f)
%3 =
[1 1]
[23 1]
? f = mffrometaquo([1,-24], 1);
? mfisetaquo(f) \ nonholomorphic
%5 = 0
? mfisetaquo(f,1)
%6 =
[1 -24]
mfkohnenbasis()

mf being a cuspidal space of half-integral weight \(k \geq 3/2 \) with level \(N \) and character \(\chi \), gives a basis \(B \) of the Kohnen \(+\)-space of \(mf \) as a matrix whose columns are the coefficients of \(B \) on the basis of \(mf \). The conductor of either \(\chi \) or \(\chi(-4./) \) must divide \(N/4 \).

```plaintext
? mf = mfininit([36,5/2],1); K = mfkohnenbasis(mf); K~
%1 =
[-1 0 0 2 0 0]
[ 0 0 0 1 0]

? (mfcoefs(mf,20) * K)~
%4 =
[0 -1 0 2 0 0 0 0 0 0 -6 0 0 8 0 0 0]
[0 0 0 0 0 1 0 0 -2 0 0 0 0 0 0 0 1 0 0 2]

? mf = mfininit([40,3/2,8],1); mfkohnenbasis(mf)
*** at top-level: mfkohnenbasis(mf)
*** ^-----------------
*** mfkohnenbasis: incorrect type in mfkohnenbasis [incorrect CHI] (t_VEC).
```

In the final example both \(\chi = (8./) \) and \(\chi(-4./) \) have conductor 8, which does not divide \(N/4 = 10 \).

mfkohnenbijection()

mf being a cuspidal space of half-integral weight, returns \([mf2,M,K,shi]\), where \(M \) is a matrix giving a Hecke-module isomorphism from the cuspidal space \(mf2 \) giving \(S_{2k-1}(\Gamma_0(N),\chi^2) \) to the Kohnen \(+\)-space \(S_k^+(\Gamma_0(4N),\chi) \), \(K \) represents a basis \(B \) of the Kohnen \(+\)-space as a matrix whose columns are the coefficients of \(B \) on the basis of \(mf \); \(shi \) is a vector of pairs \((t_i, n_i)\) gives the linear combination of Shimura lifts giving \(M^{-1} \): \(t_i \) is a squarefree positive integer and \(n_i \) is a small nonzero integer.

```plaintext
? mf=mfininit([60,5/2],1); [mf2,M,K,shi]=mfkohnenbijection(mf); M
%2 =
[-3 0 5/2 7/2]
[ 1 -1/2 -7 -7]
[ 1 1/2 0 -3]
[ 0 0 5/2 5/2]

? shi
%2 = [[1, 1], [2, 1]]
```

This last command shows that the map giving the bijection is the sum of the Shimura lift with \(t = 1 \) and the one with \(t = 2 \).

Since it gives a bijection of Hecke modules, this matrix can be used to transport modular form data from the easily computed space of level \(N \) and weight \(2k - 1 \) to the more difficult space of level \(4N \) and weight \(k \): matrices of Hecke operators, new space, splitting into eigenspaces and eigenforms. Examples:

```plaintext
? K^(-1)*mfheckemat(mf,121)*K /* matrix of T_11^2 on K. Slowish. */
time = 1,280 ms.
%1 =
[ 48 24 24 24]
```

(continues on next page)
[0 32 0 -20]
[-48 -72 -40 -72]

This gives a basis of the new space of \(S_{5/2}(\Gamma_0(60)) \) expressed on the initial basis of \(S_{5/2}(\Gamma_0(60)) \). If we want the eigenforms, we write instead:

\[
? \text{BE} = \text{mfeigenbasis}(\text{mf20}); \text{[E1}, \text{E2}] = \text{apply}(x \rightarrow \text{K} \times \text{M} \times \text{mftobasis} (\text{mf2}, x), \text{BE})
\]

\[
\text{[1, 0, 0, 1, 0, 0, 0, 0, -3, 0, 0, 0, 0, 0, 0]} - 3, 0, 0, 0, 0, 0, 0, 0\]

These are the two eigenfunctions in the space \(\text{mf} \), the first (resp., second) will have Shimura image a multiple of \(\text{BE}[1] \) (resp., \(\text{BE}[2] \)). The function \text{mfkohneneigenbasis} does this directly.

mfkohneneigenbasis (bij)

\(\text{mf} \) being a cuspidal space of half-integral weight \(k \geq 3/2 \) and \(\text{bij} \) being the output of \text{mfkohnenbijection}(\text{mf}), outputs a 3-component vector \[\text{[mf0}, \text{BNEW}, \text{BEIGEN}]\], where \text{BNEW} and \text{BEIGEN} are two matrices whose columns are the coefficients of a basis of the Kohnen new space and of the eigenforms on the basis of \(\text{mf} \) respectively, and \text{mf0} is the corresponding new space of integral weight \(2k - 1 \).

\[
? \text{mf} = \text{mfinit}([44, 5/2], 1); \text{bij} = \text{mfkohnenbijection}(\text{mf})
\]

\[
? \text{[mf0}, \text{BN}, \text{BE}] = \text{mfkohneneigenbasis}(\text{mf}, \text{bij})
\]
%3 = \[1 \ 0 \ 0 \ \text{Mod}(y-1, y^2-3) \ \text{Mod}(2y+1, y^2-3) \ \text{Mod}(-4y-4, y^2-3)\]
? \text{lift}(\text{mfcoefs}(\text{mf}, 20) \ast \text{BE}[, 1])
%4 = \[0, 1, 0, 0, y - 1, 2y + 1, 0, 0, -4y - 4, 0, 0, -5y + 3, 0, 0, 0, 0, 0, 0, 7y + 9\]~

mflinear(v)

vF being a vector of generalized modular forms and v a vector of coefficients of same length, compute the linear combination of the entries of vF with coefficients v. \textbf{Note.} Use this in particular to subtract two forms F and G (with vF = [F, G] and v = [1, -1]), or to multiply an form by a scalar \(\lambda\) (with vF = [F] and v = [\lambda]).

? D = mfDelta(); G = mflinear([D], [-3]);
? \text{mfcoefs}(G, 4)
%2 = \[0, -3, 72, -756, 4416\]

For user convenience, we allow

- a modular form space \(\text{mf}\) as a vF argument, which is understood as \(\text{mfbasis}(\text{mf})\);
- in this case, we also allow a modular form \(f\) as v, which is understood as \(\text{mftobasis}(\text{mf}, f)\).

? T = mfpow(mfTheta(), 7); F = mfShimura(T, -3); \ \text{// Shimura lift for D=-3}
? \text{mfcoefs}(F, 8)
%2 = \[-5/9, 280, 9240, 68320, 295960, 875280, 2254560, 4706240, 9471000\]
?

This last construction allows to replace a general modular form by a simpler linear combination of basis functions, which is often more efficient:

? T10 = mfpow(mfTheta(), 10); \text{mfcoef}(T10, 10^4) \ \text{// direct evaluation}
\text{time = 399 ms.}
%5 = 128205250571893636
?

mfmanin(precision)

Given the modular symbol \(FS\) associated to an eigenform \(F\) by \(\text{mfsymbol}(\text{mf}, F)\), computes the even and odd special polynomials as well as the even and odd periods \(\omega^+\) and \(\omega^-\) as a vector \([\omega^+, \omega^-, r]\), where \(r = \Im(\omega^+ \omega^-)/<F, F>\). If \(F\) has several embeddings into \(\mathbb{C}\), give the vector of results corresponding to each embedding.

? D = mfDelta(); \text{mf}=mfinit(D); DS=\text{mfsymbol}(\text{mf}, D);
? \text{[pols, oms]}=\text{mfmanin}(DS); \text{pols}
%2 = \[[4\times x^9 - 25\times x^7 + 42\times x^5 - 25\times x^3 + 4\times x],\]
\[-36\times x^10 + 691\times x^8 - 2073\times x^6 + 2073\times x^4 - 691\times x^2 + 36]\]
? oms
%3 = \[0.018538552324703247516069364750571812,\]
\[-0.00033105361053212432521308691198949874026\ast i, 4096/691]\n?

(continues on next page)
mfmul\((G) \)

Multiply the two generalized modular forms \(F \) and \(G \).

\[
\begin{align*}
? E4 &= \text{mfEk}(4); G = \text{mfmul}(E4,E4,E4);
? \text{mfcoefs}(G, 4)
\end{align*}
\]

\[
\begin{align*}
%2 &= [1, 720, 179280, 16954560, 396974160]
\end{align*}
\]

\[
\begin{align*}
? \text{mfcoefs}(\text{mfpow}(E4,3), 4)
\end{align*}
\]

\[
\begin{align*}
%3 &= [1, 720, 179280, 16954560, 396974160]
\end{align*}
\]

\[
\begin{align*}
? \text{mfnumcusps}(24)
\end{align*}
\]

\[
\begin{align*}
%1 &= 8
\end{align*}
\]

\[
\begin{align*}
? \text{mfnumsps}(24)
\end{align*}
\]

\[
\begin{align*}
%1 &= [0, 1/2, 1/3, 1/4, 1/6, 1/8, 1/12, 1/24]
\end{align*}
\]

mfparams\(() \)

If \(F \) is a modular form space, returns \([N, k, \text{CHI}, \text{space}, \text{math: Phi}]\), level, weight, character \(\chi \), and space code; where \(\Phi \) is the cyclotomic polynomial defining the field of values of \(\text{CHI} \). If \(F \) is a generalized modular form, returns \([N, k, \text{CHI}, P, \text{math: Phi}]\), where \(P \) is the (polynomial giving the) field of definition of \(F \) as a relative extension of the cyclotomic field \(\mathbb{Q}(\chi) = \mathbb{Q}[t]/(\Phi) \); in that case the level \(N \) may be a multiple of the level of \(F \) and the polynomial \(P \) may define a larger field than \(\mathbb{Q}(F) \). If you want the true level of \(F \) from this result, use \text{mfconductor}(\text{mfinit}(F), F)\). The polynomial \(P \) defines an extension of \(\mathbb{Q}(\chi) = \mathbb{Q}[t]/(\Phi(t)) \); it has coefficients in that number field (polmods in \(t \)).

In contrast with \text{mfparams}(F)[4] which always gives the polynomial \(P \) defining the relative extension \(\mathbb{Q}(F)/\mathbb{Q}(\chi) \), the member function \text{math: 'F.mod'} returns the polynomial used to define \(\mathbb{Q}(F) \) over \(\mathbb{Q} \) (either a cyclotomic polynomial or a polynomial with cyclotomic coefficients).

\[
\begin{align*}
? E1 &= \text{mfeisenstein}(4,-3,-4); E2 = \text{mfeisenstein}(3,5,-7); E3 = \text{mfmul}(E1,E2);
? \text{apply(mfparams, [E1,E2,E3])}
\end{align*}
\]

\[
\begin{align*}
%2 &= [[12, 4, 12, y, t-1], [35, 3, -35, y, t-1], [420, 7, -420, y, t-1]]
\end{align*}
\]

\[
\begin{align*}
? \text{mfinit}([36,2,\text{Mod}(13,36)],0); [f] = \text{mfeigenbasis}(mf); \text{mfparams}(mf)
\end{align*}
\]

\[
\begin{align*}
%3 &= [36, 2, \text{Mod}(13, 36), 0, t^2 + t + 1]
\end{align*}
\]

\[
\begin{align*}
? \text{mfparams}(f)
\end{align*}
\]

\[
\begin{align*}
%4 &= [36, 2, \text{Mod}(13, 36), y, t^2 + t + 1]
\end{align*}
\]

\[
\begin{align*}
? f.\text{mod}
\end{align*}
\]

\[
\begin{align*}
%5 &= t^2 + t + 1
\end{align*}
\]

\[
\begin{align*}
? \text{mfinit}([36,4,\text{Mod}(13,36)],0); [f] = \text{mfeigenbasis}(mf);
? \text{lift(mfparams}(f))
\end{align*}
\]

\[
\begin{align*}
%7 &= [36, 4, 13, y^3 + (2*t-2)*y^2 + (-4*t+6)*y + (10*t-1), t^2+t+1]
\end{align*}
\]

mfperiodpol\((f, \text{flag}, \text{precision})\)

Period polynomial of the cuspidal part of the form \(f \), in other words \(\int_0^{100} (X - \tau)^{k-2} f(\tau) d\tau \). If \(\text{flag} \) is 0,
ordinary period polynomial. If it is 1 or \(-1\), even or odd part of that polynomial. \(f\) can also be the modular symbol output by \texttt{mfsymbol}(mf,f).

```plaintext
? D = mfDelta(); mf = mfinit(D,0);
? PP = mfperiodpol(mf, D, -1); PP/=polcoef(PP, 1); bestappr(PP)
%1 = x^9 - 25/4*x^7 + 21/2*x^5 - 25/4*x^3 + x
? PM = mfperiodpol(mf, D, 1); PM/=polcoef(PM, 0); bestappr(PM)
%2 = -x^10 + 691/36*x^8 - 691/12*x^6 + 691/12*x^4 - 691/36*x^2 + 1
```

\texttt{mfpetersson(gs)}

Petersson scalar product of the modular forms \(f\) and \(g\) belonging to the same modular form space \(mf\), given by the corresponding “modular symbols” \(fs\) and \(gs\) output by \texttt{mfsymbol} (also in weight 1 and half-integral weight, where symbols do not exist). If \(gs\) is omitted it is understood to be equal to \(fs\). The scalar product is normalized by the factor \(1/[\Gamma : \Gamma_0(N)]\). Note that \(f\) and \(g\) can both be noncuspidal, in which case the program returns an error if the product is divergent. If the fields of definition \(Q(f):Q(\chi)\) and \(Q(g):Q(\chi)\) are equal to \(Q(\chi)\) the result is a scalar. If \([Q(f):Q(\chi)]=d>1\) and \([Q(g):Q(\chi)]=e>1\) the result is a \(d\times e\) matrix corresponding to all the embeddings of \(f\) and \(g\). In the intermediate cases \(d=1\) or \(e=1\) the result is a row or column vector.

```plaintext
? D=mfDelta(); mf=mfinit(D); DS=mfsymbol(mf,D); mfpetersson(DS)
%1 = 1.035362056804320922347816812221645932 E-6
? mf=mfinit([11,6],0);B=mfeigenbasis(mf);BS=vector(#B,i,mfsymbol(mf,B[i]));
? mfpetersson(BS[1])
%3 = 1.6190120685220988139111708455305245466 E-5
? mfpetersson(BS[1],BS[2])
%4 = [-3.826479006582967148 E-42 - 2.801547395385577002 E-41*I,
     1.6661127341163336125 E-41 + 1.1734725972345985061 E-41*I,
     0.E-42 - 6.352626992842664490 E-42*I]
? mfpetersson(BS[2])
%5 =
[  2.7576133733... E-5  2.0... E-42  6.3... E-43 ]
[ -4.1... E-42  6.77837030070... E-5  3.3...E-42 ]
[ -6.32...E-43  3.6... E-42  2.27268958069... E-5]
? mf=mfinit([23,2],0); F=mfeigenbasis(mf)[1]; FS=mfsymbol(mf,F); mfpetersson(FS)
%5 =
[ 0.0039488965740025031688548076498662860143 -3.56 ... E-40]
[ -3.5... E-40  0.0056442542987647835101583821368582485396]
```

Noncuspidal example:

```plaintext
? E1=mfeisenstein(5,1,-3);E2=mfeisenstein(5,-3,1);
? mf=mfinit([12,5,-3]); cusps=mfcusps(12);
? apply(x->mfcuspval(mf,E1,x),cusps)
%3 = [0, 0, 1, 0, 1, 1]
? apply(x->mfcuspval(mf,E2,x),cusps)
%4 = [1/3, 1/3, 0, 1/3, 0, 0]
? E1S=mfsymbol(mf,E1);E2S=mfsymbol(mf,E2);
? mfpetersson(E1S,E2S)
%6 = -1.884821671646... E-5 - 1.9... E-43*I
```

Weight 1 and 1/2-integral weight example:

```plaintext

```
? mf=mfini([23,1,-23],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(mf,FS)
%2 = 0.035149946790370230814006345508484787443

? mf=mfini([4,9/2],1);F=mfbasis(mf)[1];FS=mfsymbol(mf,F);
? mfpetersson(FS)
%4 = 0.000155770844071391927743736624679089966030

mfpow \(n \)

Compute \(F^n \), where \(n \) is an integer and \(F \) is a generalized modular form:

? G = mfpow(mfEk(4), 3); \(\text{E}4^3 \)
? mfcoefs(G, 4)
%2 = [1, 720, 179280, 16954560, 396974160]

mfsearch \((V, space)\)

\(\mathbb{N} \) \(K \) being of the form \([N,k]\) with \(k \) possibly half-integral, search for a modular form with rational coefficients, of weight \(k \) and level \(N \), whose initial coefficients \(a(0),... \) are equal to \(V \); space specifies the modular form spaces in which to search, in mfinit or mfdim notation. The output is a list of matching forms with that given level and weight. Note that the character is of the form \((D/.)\), where \(D \) is a (positive or negative) fundamental discriminant dividing \(N \). The forms are sorted by increasing \(||D|| \).

The parameter \(N \) can be replaced by a vector of allowed levels, in which case the list of forms is sorted by increasing level, then increasing \(||D|| \). If a form is found at level \(N \), any multiple of \(N \) with the same \(D \) is not considered. Some useful possibilities are

- \([:\text{math:`N_1`...:\text{math:`N_2`}}]\): all levels between \(N_1 \) and \(N_2 \), endpoints included;
- \(F * [\text{math:`N_1`...:\text{math:`N_2`}}]\): same but levels divisible by \(F \);
- \text{divisors}(N_0): all levels dividing \(N_0 \).

Note that this is different from mfeigensearch, which only searches for rational eigenforms.

? F = mfsearch([[1..40], 2], [0,1,2,3,4], 1); #F
%1 = 3
? [mfparams(f)[1..3] | f <- F]
%2 = [[[38, 2, 1], [40, 2, 8], [40, 2, 40]]
? mfcoefs(F[1],10)
%3 = [0, 1, 2, 3, 4, -5, -8, 1, -7, -5, 7]

mfshift \(s \)

Divide the generalized modular form \(F \) by \(q^s \), omitting the remainder if there is one. One can have \(s < 0 \).

? D=mfDelta(); mfcoefs(mfshift(D,1), 4)
%1 = [1, -24, 252, -1472, 4830]
? mfcoefs(mfshift(D,2), 4)
%2 = [-24, 252, -1472, 4830, -6048]
? mfcoefs(mfshift(D,-1), 4)
%3 = [0, 0, 1, -24, 252]

mfshimura \((F, D)\)

\(F \) being a modular form of half-integral weight \(k \geq 3/2 \) and \(t \) a positive squarefree integer, returns the Shimura lift \(G \) of weight \(2k-1 \) corresponding to \(D \). This function returns \([mf2,G,v]\) where \(mf2 \) is a modular form space containing \(G \) and \(v \) expresses \(G \) in terms of mfbasis(mf2); so that \(G \) is mflinear(mf2,v).
? F = mfpow(mfTheta(), 7); mf = mfinit(F);
? [mf2, G, v] = mfshimura(mf, F, 3); mfcoefs(G,5)
%2 = [-5/9, 280, 9240, 68320, 295960, 875280]
? mfparams(G) \ the level may be lower than expected
%3 = [1, 6, 1, y, t - 1]
? mfparams(mf2)
%4 = [2, 6, 1, 4, t - 1]
? v
%5 = [280, 0]~
? mfcoefs(mf2, 5)
%6 =
[-1/504 -1/504]
[1 0]
[33 1]
[244 0]
[1057 33]
[3126 0]
? mf = mfinit([60,5/2],1); F = mflinear(mf,mfkohnenbasis(mf)[,1]);
? mfparams(mfshimura(mf,F)[2])
%8 = [15, 4, 1, y, t - 1]
? mfparams(mfshimura(mf,F,6)[2])
%9 = [15, 4, 1, y, t - 1]

mfslashexpansion(f, g, n, flrat, params, precision)

Let mf be a modular form space in level N, f a modular form belonging to mf and let g be in M_{2k}^+(Q). This function computes the Fourier expansion of f ||_{k} g to n terms. We first describe the behaviour when flrat is 0: the result is a vector v of floating point complex numbers such that

\[f||_{k} g(\tau) = q^\alpha \sum_{m>0} v[m+1] q^{m/w}, \]

where \(q = e(\tau), w \) is the width of the cusp g(ioo) (namely \(N/(c^2, N) \) if g is integral) and \(\alpha \) is a rational number. If params is given, it is set to the parameters \([\alpha, w, matid(2)]\).

If flrat is 1, the program tries to rationalize the expression, i.e., to express the coefficients as rational numbers or polmods. We write \(g = \lambda M.A \) where \(\lambda \in \mathbb{Q}^*, M \in SL_2(\mathbb{Z}) \) and \(A = [a, b; 0, d] \) is upper triangular, integral and primitive with \(a > 0, d > 0 \) and \(0 < b < d \). Let \(\alpha \) and \(w \) by the parameters attached to the expansion of \(F := f||_{k} M \) as above, i.e.

\[F(\tau) = q^\alpha \sum_{m>0} v[m+1] q^{m/w}. \]

The function returns the expansion v of \(F = f||_{k} M \) and sets the parameters to \([\alpha, w, A]\). Finally, the desired expansion is \((a/d)^k/2 F(\tau + b/d)\). The latter is identical to the returned expansion when \(A \) is the identity, i.e. when \(g \in PSL_2(\mathbb{Z}) \). If this is not the case, the expansion differs from \(v \) by the multiplicative constant \((a/d)^k/2 e(ab/(dw))\) and a twist by a root of unity \(q^{1/w} \rightarrow e(b/(dw)) q^{1/w} \). The complications introduced by this extra matrix \(A \) allow to recognize the coefficients in a much smaller cyclotomic field, hence to obtain a simpler description overall. (Note that this rationalization step may result in an error if the program cannot perform it.)
```plaintext
? mf = mfinit([32,4],0); f = mfbasis(mf)[1];
? mfcoefs(f,10)
%2 = [0, 3, 0, 0, 2, 0, 0, 0, 47, 0]
? mfatk = mfatkininit(mf,32); mfcoefs(mfatkin(mfatk,f),10) / mfatk[3]
%3 = [0, 1, 0, 16, 0, 22, 0, 32, 0, -27, 0]
? params
%4 = [0, 3, [1, 0; 0, 1]]

? mf = mfinit([12,8],0); f = mfbasis(mf)[1];
? mfslashexpansion(mf,f,[1,0;0,1],5,1) * 32^(4/2)
%5 = [0, 1, -y, 2*y - 1, y - 1, -2*y]
? params
%6 = [0, 3, [1, 0; 0, 1]]

If \([\mathbb{Q}(f) : \mathbb{Q}(\chi)] > 1\), the coefficients may be polynomials in \(y\), where \(y\) is any root of the polynomial giving the field of definition of \(f\) (\(f\).mod or mfparams(f)[4]).

```
? M6 = mfinit([1,6]);
? dE4 = mfderiv(mfEk(4)); \ not modular!
? mfspace(M6,dE4) \ asserts (wrongly) that E4' belongs to new space
%3 = 0

mfsplit(dimlim, flag)

From mfinit with integral weight containing the new space (either the new space itself or the cuspidal space or the full space), and preferably the newspace itself for efficiency, split the space into Galois orbits of eigenforms of the newspace, satisfying various restrictions.

The function returns \([vF, vK]\), where \(vF\) gives (Galois orbit of) eigenforms and \(vK\) is a list of polynomials defining each Galois orbit. The eigenforms are given in \texttt{mftobasis} format, i.e. as a matrix whose columns give the forms with respect to \texttt{mfbasis}(mf).

If \texttt{dimlim} is set, only the Galois orbits of dimension \(\leq \texttt{dimlim}\) are computed (i.e. the rational eigenforms if \(\texttt{dimlim} = 1\) and the character is real). This can considerably speed up the function when a Galois orbit is defined over a large field.

\texttt{flag} speeds up computations when the dimension is large: if \(\texttt{flag} = d > 0\), when the dimension of the eigenspace is \(> d\), only the Galois polynomial is computed.

Note that the function \texttt{mfeigenbasis} returns all eigenforms in an easier to use format (as modular forms which can be input as in other functions); \texttt{mfsplit} is only useful when you can restrict to orbits of small dimensions, e.g. rational eigenforms.

? mf=mfinit([11,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%1 = [0, 1, -2, -1, ...]
? mf=mfinit([23,2],0); f=mfeigenbasis(mf)[1]; mfcoefs(f,16)
%2 = [Mod(0, z^2 - z - 1), Mod(1, z^2 - z - 1), Mod(-z, z^2 - z - 1), ...]
? mf=mfinit([179,2],0); apply(poldegree, mffields(mf))
%3 = [1, 3, 11]
? mf=mfinit([719,2],0);
? [vF,vK] = mfsplit(mf, 5); \ fast when restricting to small orbits
time = 192 ms.
? #vF \ a single orbit
%5 = 1
? poldegree(vK[1]) \ of dimension 5
%6 = 5
? [vF,vK] = mfsplit(mf); \ general case is slow
time = 2,104 ms.
? apply(poldegree,vK)
%8 = [5, 10, 45] \ because degree 45 is large...

mfsturm()

Gives the Sturm bound for modular forms on \(\Gamma_0(N)\) and weight \(k\), i.e., an upper bound for the order of the zero at infinity of a nonzero form. \(NK\) is either

- a pair \([N,k]\), in which case the bound is the floor of \((kN/12). \prod_{p|N}(1 + 1/p)\);
- or the output of \texttt{mfinit} in which case the exact upper bound is returned.

? NK = [96,6]; mfsturm(NK)
%1 = 97
? mf=mfinit(NK,1); mfsturm(mf)
%2 = 76

(continues on next page)
? mfdim(NK,0) \ new space
%3 = 72

mfsymbol(f, precision)
Initialize data for working with all period polynomials of the modular form f: this is essential for efficiency for functions such as mfsymboleval, mfmanin, and mfpetersson. An mfsymbol contains an mf structure and can always be used whenever an mf would be needed.

? mf=mfinit([23,2],0);F=mfeigenbasis(mf)[1];
? FS=mfsymbol(mf,F);
? mfsymboleval(FS,[0,oo])
%3 = [8.762565143790690142 E-39 + 0.0877907874...*I,
-5.617375463602574564 E-39 + 0.0716801031...*I]
? mfpetersson(FS)
%4 =
[0.0039488965740025031688548076498662860143 1.2789721111175127425 E-40]
[1.2630501762985554269 E-40 0.0056442542987643813688582485396]

By abuse of language, initialize data for working with mfpetersson in weight 1 and half-integral weight (where no symbol exist); the mf argument may be an mfsymbol attached to a form on the space, which avoids recomputing data independent of the form.

? mf=mfinit([12,9/2],1); F=mfbasis(mf);
? time = 476 ms
? fs=mfsymbol(mf,F[1]);
? mfpetersson(fs)
%2 = 1.972243751949201468204769273275406145 E-5
? fs2 = mfsymbol(mf,F[2]);
? time = 484 ms.
? mfpetersson(fs2)
%4 = 1.2142222531326333658647877864573002476 E-5
? gs = mfsymbol(fs,F[2]); \ re-use existing symbol, a little faster
? time = 430 ms.
? mfpetersson(gs) == %4 \ same value
%6 = 1

For simplicity, we also allow mfsymbol(f) instead of mfsymbol(mfinit(f), f):

mfsymboleval(path, ga, precision)
Evaluation of the modular symbol fs (corresponding to the modular form f) output by mfsymbol on the given path path, where path is either a vector [s1, s2] or an integral matrix [a, b; c, d] representing the path [a/c, b/d]. In both cases s1 or s2 (or a/c or b/d) can also be elements of the upper half-plane. To avoid possibly lengthy mfsymbol computations, the program also accepts fs of the form [mf,F], but in that case s1 and s2 are limited to oo and elements of the upper half-plane. The result is the polynomial equal to \(\int_{s_2}^{s_1} (X - \tau)^{k-2} F(\tau) d\tau \), the integral being computed along a geodesic joining s1 and s2. If ga in \(GL_2^{+}(Q) \) is given, replace F by F||ga·γ. Note that if the integral diverges, the result will be a rational function. If the field of definition \(Q(f) \) is larger than \(Q(\chi) \) then f can be embedded into \(C \) in \(d = |Q(f) : Q(\chi)| \) ways, in which case a vector of the d results is returned.

? mf=mfinit([35,2],1);f=mfbasis(mf)[1];fs=mfsymbol(mf,f);
? mfsymboleval(fs,[0,oo])
%1 = 0.31404011074188471664161704390256378537*I
\begin{verbatim}
? mfsymboleval(fs,[1,3;2,5])
%2 = -0.1429696291... - 0.2619975641...*I
? mfsymboleval(fs,[I,2*I])
%3 = 0.0008896956302873989363170003749116258378*I
? E2=mfEk(2);E22=mflinear([E2,mfbd(E2,2)],[1,-2]);mf=mfin}

The rational function which is given in case the integral diverges is easy to interpret. For instance:

? E4=mfEk(4);mf=mfin(E4);ES=mfsymbol(mf,E4);
? mfsymboleval(ES,[0,I])
%3 = (-0.234978...*I*x^3 - 0.833333...*x^2 + 0.928067...*I*x + 0.333333...)/x

\text{mfsymboleval(ES,[a,oo])} \text{is the limit as}\ T \to \infty \text{of}
\int_a^{iT} (X - \tau)^{k-2}F(\tau)d\tau + a(0)(X - iT)^{k-1}/(k - 1),
where a(0) is the 0 at infinity. Similarly, \text{mfsymboleval(ES,[0,a])} \text{is the limit as}\ T \to \infty \text{of}
\int_{iT}^a (X - \tau)^{k-2}F(\tau)d\tau + b(0)(1 + iTX)^{k-1}/(k - 1),
where b(0) is the 0 at infinity.

\text{mftaylor(n,flreal,precision)}
F \text{being a form in}\ M_k(\text{SL}_2(\mathbb{Z})), \text{computes the first}\ n + 1 \text{canonical Taylor expansion of}\ F \text{around}\ \tau = I. \text{If}\ flreal = 0, \text{computes only an algebraic equivalence class. If}\ flreal\ \text{is set, compute}\ p_n\ \text{such that for}\ \tau\ \text{close enough to}\ I\ \text{we have}
\begin{equation}
f(\tau) = (2I/(\tau + I))^k \sum_{n \geq 0} p_n((\tau - I)/(\tau + I))^n.
\end{equation}

? D=mfdelta();
? mftaylor(D,8)
%2 = [1/1728, 0, -1/20736, 0, 1/165888, 0, 1/497664, 0, -11/3981312]

\text{mftobasis}(F,flag)
\text{Coefficients of the form}\ F \text{on the basis given by}\ mfbasis(mf). \text{A}\ q\text{-expansion or vector of coefficients can also be given instead of}\ F, \text{but in this case an error message may occur if the expansion is too short. An error message is also given if}\ F\ \text{does not belong to the modular form space. If}\ flag\ \text{is set, instead of error messages the output is an affine space of solutions if a}\ q\text{-expansion or vector of coefficients is given, or the empty column otherwise.}

? mf = mfin([26,2],0); mfdim(mf)
%1 = 2
? F = mflinear(mf,[a,b]); mftobasis(mf,F)
%2 = [a, b]~

A\ q\text{-expansion or vector of coefficients can also be given instead of}\ F.
\end{verbatim}
If F does not belong to the corresponding space, the result is incorrect and simply matches the coefficients of F up to some bound, and the function may either return an empty column or an error message. If flag is set, there are no error messages, and the result is an empty column if F is a modular form; if F is supplied via a series or vector of coefficients which does not contain enough information to force a unique (potential) solution, the function returns $[v, K]$ where v is a solution and K is a matrix of maximal rank describing the affine space of potential solutions $v + Kx$.

\begin{verbatim}
? mf = mfini([4,12],1);
? mftobasis(mf, q-24*q^2+O(q^3), 1)
%2 = [[43/64, -63/8, 800, 21/64], [1, 0; 24, 0; 2048, 768; -1, 0]]
? mftobasis(mf, [0,1,-24,252], 1)
%3 = [1, 0, 1472, 0; 0; 768; 0]
? mftobasis(mf, [0,1,-24,252,-1472], 1)
%4 = [1, 0, 0, 0]

\end{verbatim}

\textbf{mftobasis(F)}

F being being a full or cuspidal space with parameters $[N, k, \chi]$ and F a cusp form in that space, returns a vector of 3-component vectors $[M, d, G]$, where $f(\chi)||M||N, d||N/M$, and G is a form in $S_{n_{\text{new}}}(\Gamma_0(M), \chi)$ such that F is equal to the sum of the $B(d)(G)$ over all these 3-component vectors.

\begin{verbatim}
? mf = mfini([96,6],1); F = mfbasis(mf)[60]; s = mftobasis(mf,F); #s
%1 = 1
? [M,d,G] = s[1]; [M,d]
%2 = [48, 2]
? mfcfcoefs(F,10)
%3 = [0, 0, -160, 0, 0, 0, 0, 0, 0, 0, -14400]

\end{verbatim}

\textbf{mftonew(F)}

\textbf{mftraceform(space)}

If $NK = [N, k, CHI, \ldots]$ as in \texttt{mfini} with k integral, gives the trace form in the corresponding subspace of $S_k(\Gamma_0(N), \chi)$. The supported values for space are 0: the newspace (default), 1: the full cuspidal space.
F being a generalized modular form, returns the twist of F by the integer D, i.e., the form G such that mfcoef(G, n) = (D/n)mfcoef(F,n), where (D/n) is the Kronecker symbol.

Note that twisting multiplies the level by D^2. In particular it is not an involution:

\begin{verbatim}
? H = mftwist(G,-3); mfcoefs(H, 5)
%4 = [0, 1, -2, 0, 2, 1]
? mfparams(G)
%5 = [99, 2, 1, y, t - 1]
\end{verbatim}

min(y)

Creates the maximum of x and y when they can be compared.

\begin{verbatim}
? A = u^2 + 2*u + 3; subst(lift(A), 'x, w)
%3 = Mod(x^2 + 2*x + 3, x^3 - 5*x^2 + 4*x - 1)
\end{verbatim}

If the minimal polynomial of z has lower degree than expected, the routine fails.
? u = Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)
? modreverse(u)

*** modreverse: domain error in modreverse: deg(minpoly(z)) < 4
*** Break loop: type 'break' to go back to GP prompt
break> Vec(dbg_err()) \ ask for more info
["e_DOMAIN", "modreverse", "deg(minpoly(z))", ",", 4,
Mod(-x^3 + 9*x, x^4 - 10*x^2 + 1)]

break> minpoly(u)
\[x^2 - 8\]

moebius()

Moebius \(\mu \)-function of \(|x|\); \(x \) must be a nonzero integer.

msatkinlehner(\(Q, H \))

Let \(M \) be a full modular symbol space of level \(N \), as given by \texttt{msinit}, let \(Q \parallel N \). \((Q, N/Q) = 1 \), and let \(H \) be a subspace stable under the Atkin-Lehner involution \(w_Q \). Return the matrix of \(w_Q \) acting on \(H \) (\(M \) if omitted).

? M = msinit(36,2); \(\backslash \backslash \) M_2(Gamma_0(36))
? w = msatkinlehner(M,4); w^2 == 1
%2 = 1
? \#w \ backslash \ involution acts on a 13-dimensional space
%3 = 13
? M = msinit(36,2, -1); \(\backslash \backslash \) M_2(Gamma_0(36))^-
? w = msatkinlehner(M,4); w^2 == 1
%5 = 1
? \#w
%6 = 4

mscosets(\(inH \))

\texttt{gen} being a system of generators for a group \(G \) and \(H \) being a subgroup of finite index in \(G \), return a list of right cosets of \(H \) and the right action of \(G \) on \(H \). The subgroup \(H \) is given by a criterion \texttt{inH} (closure) deciding whether an element of \(G \) belongs to \(H \). The group \(G \) is restricted to types handled by generic multiplication (*) and inversion (\(g^{-1} \)), such as matrix groups or permutation groups.

Let \(\texttt{gens} = \{g_1, \ldots, g_r\} \). The function returns \(\{C, M\} \) where \(C \) lists the \(h = [G : H] \) representatives \(\{\gamma_1, \ldots, \gamma_h\} \) for the right cosets \(H\gamma_1, \ldots, H\gamma_h \); \(\gamma_1 \) is always the neutral element in \(G \). For all \(i <= h, j <= r \), if \(M[i][j] = k \) then \(H\gamma_i g_j = H\gamma_k \).

? PSL2 = [[0,1;-1,0], [1,1;0,1]]; \(\backslash \) S and T
\(\backslash \) G = PSL2, H = Gamma0(2)
? [C, M] = mscosets(PSL2, g->g[2,1] % 2 == 0);
? C \(\backslash \) three cosets
%3 = [[1, 0; 0, 1], [0, 1; -1, 0], [0, 1; -1, -1]]
? M
%4 = [Vecsmall([2, 1]), Vecsmall([1, 3]), Vecsmall([3, 2])]

Looking at \(M[1] \) we see that \(S \) belongs to the second coset and \(T \) to the first (trivial) coset.

mscuspidal(\(flag \))

\(M \) being a full modular symbol space, as given by \texttt{msinit}, return its cuspidal part \(S \). If \(flag = 1 \), return \([S, E] \) its decomposition into cuspidal and Eisenstein parts.

A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \(\mathbb{Q} \)-basis of the subspace.
```plaintext
? M = msinit(2,8, 1); \ M_8(Gamma_0(2))^+
? [S,E] = mscuspidal(M, 1);
? E[1] \ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
[1 0]
? S[1] \ 1-dimensional
%4 =
[3]
[30]
[6]
[-8]
```

msdim()

* M* being a full modular symbol space or subspace, for instance as given by *msinit* or *mscuspidal*, return its dimension as a \(\mathbb{Q} \)-vector space.

```plaintext
? M = msinit(11,4); msdim(M)
%1 = 6
? M = msinit(11,4,1); msdim(M)
%2 = 4 \  dimension of the ' +' part
? [S,E] = mscuspidal(M,1);
? [msdim(S), msdim(E)]
%4 = [2, 2]
```

Note that *mfdim([N,k])* is going to be much faster if you only need the dimension of the space and not really to work with it. This function is only useful to quickly check the dimension of an existing space.

mseisenstein()

* M* being a full modular symbol space, as given by *msinit*, return its Eisenstein subspace. A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \(\mathbb{Q} \)-basis of the subspace. This is the same basis as given by the second component of *mscuspidal*(M,1).

```plaintext
? M = msinit(2,8, 1); \ M_8(Gamma_0(2))^+
? E = mseisenstein(M);
? E[1] \ 2-dimensional
%3 =
[0 -10]
[0 -15]
[0 -3]
```

(continues on next page)
\[\begin{bmatrix} 1 & 0 \end{bmatrix} \]

? E == mscuspidal(M,1)[2]
%4 = 1

\textit{mseval}(s, p)

Let \(\Delta_0 := Div_0(P_1(Q)) \). Let \(M \) be a full modular symbol space, as given by \textit{msinit}, let \(s \) be a modular symbol from \(M \), i.e. an element of \(Hom_G(\Delta_0, V) \), and let \(p = [a, b] \in \Delta_0 \) be a path between two elements in \(\mathbb{P}^1(Q) \), return \(s(p) \in V \). The path extremities \(a \) and \(b \) may be given as \(t_{\text{INT}}, t_{\text{FRAC}} \) or \(oo = (1 : 0) \); it is also possible to describe the path by a \(2 \times 2 \) integral matrix whose columns give the two cusps. The symbol \(s \) is either

- a \textit{t_COL} coding a modular symbol in terms of the fixed basis of \(Hom_G(\Delta_0, V) \) chosen in \(M \); if \(M \) was initialized with a nonzero \textit{sign} (+ or −), then either the basis for the full symbol space or the -part can be used (the dimension being used to distinguish the two).
- a \textit{t_MAT} whose columns encode modular symbols as above. This is much faster than evaluating individual symbols on the same path \(p \) independently.
- a \textit{t_VEC} \((v_i) \) of elements of \(V \), where the \(v_i = s(g_i) \) give the image of the generators \(g_i \) of \(\Delta_0 \), see \textit{mspathgens}. We assume that \(s \) is a proper symbol, i.e. that the \(v_i \) satisfy the \textit{mspathgens} relations.

If \(p \) is omitted, convert a single symbol \(s \) to the second form: a vector of the \(s(g_i) \). A \textit{t_MAT} is converted to a \textit{vector} of such.

\textbf{msfarey}(\textit{inH}, \textit{CM})

\(F \) being a Farey symbol attached to a group \(G \) contained in \(PSL_2(\mathbb{Z}) \) and \(H \) a subgroup of \(G \), return a Farey symbol attached to \(H \). The subgroup \(H \) is given by a criterion \(\textit{inH} \) (closure) deciding whether an element of \(G \) belongs to \(H \). The symbol \(F \) can be created using

- \textit{mspolygon}: \(G = \Gamma_0(N) \), which runs in time \(O(N) \);
- \textit{msfarey} itself, which runs in time \(O([G : H]^2) \).

If present, the argument \textit{CM} is set to \textit{mscosets}(F[3]), giving the right cosets of \(H \) and the action of \(G \) by right multiplication. Since \textit{msfarey}’s algorithm is quadratic in the index \([G : H] \), it is advisable to construct subgroups by a chain of inclusions if possible.
\[\Gamma_1(N) : \text{direct construction, slow} \]
\[
G_1(N) = \text{msfarey(mspolygon(1), g -> my(a = g[1,1]\%N, c = g[2,1]\%N);
\[c == 0 \&\& (a == 1 || a == N-1)); \]
\]
\[\Gamma_1(N) \text{ via } \Gamma_0(N) : \text{much faster} \]
\[
G_1(N) = \text{msfarey}(G_0(N), g \rightarrow \text{my}(a = g[1,1]\%N); a==1 || a==N-1));
\]
\[\Gamma(N) \]
\[
G(N) = \text{msfarey}(G_1(N), g \rightarrow g[1,2]\%N==0);
\]
\[G_00(N) = \text{msfarey}(G_0(N), x \rightarrow x[1,2]\%N==0); \]
\[G_1_0(N1,N2) = \text{msfarey}(G_0(1), x \rightarrow x[2,1]\%N1==0 \&\& x[1,2]\%N2==0); \]
\[\Gamma_0(91) \text{ has 4 elliptic points of order 3, } \Gamma_1(91) \text{ has none} \]
\[
D_0 = \text{mspolygon}(G_0(91), 2)[4];
\]
\[D_1 = \text{mspolygon}(G_1(91), 2)[4]; \]
\[\text{write}("F.tex","\\documentclass{article}\\usepackage{tikz}\\begin{document}","\ D_0","\n","\ D_1","\\end{document}"); \]

\textbf{msfromcusp}(c)

Returns the modular symbol attached to the cusp \(c \), where \(M \) is a modular symbol space of level \(N \), attached to \(G = \Gamma_0(N) \). The cusp \(c \) in \(\mathbb{P}^1(\mathbb{Q})/G \) is given either as \(\infty \) (\((1 : 0) \)) or as a rational number \(a/b \) (\((a : b) \)).

The attached symbol maps the path \([b] - [a] \in Div^0(\mathbb{P}^1(\mathbb{Q}))\) to \(E_c(b) - E_c(a) \), where \(E_c(r) \) is 0 when \(r! = c \) and \(X^{k-2}\gamma_r \) otherwise, where \(\gamma_r.r = (1 : 0) \). These symbols span the Eisenstein subspace of \(M \).

? \(M = \text{msinit}(2,8); \) \(M_8(\Gamma_0(2)) \)
? \(E = \text{mseisenstein}(M); \)
? \(E[1] \) \(\text{two-dimensional} \)
%3 =
\[
[0 -10]
\]
\[
[0 -15]
\]
\[
[0 -3]
\]
\[
[1 0]
\]
? \(s = \text{msfromcusp}(M,\infty) \)
%4 = [0, 0, 0, 1]~
? \(\text{mseval}(M, s) \)
%5 = [1, 0]
? \(s = \text{msfromcusp}(M,1) \)
%6 = [-5/16, -15/32, -3/32, 0]~
? \(\text{mseval}(M, s) \)
%7 = [-x^6, -6*x^5 - 15*x^4 - 20*x^3 - 15*x^2 - 6*x - 1]

In case \(M \) was initialized with a nonzero \textit{sign}, the symbol is given in terms of the fixed basis of the whole symbol space, not the + or − part (to which it need not belong).

? \(M = \text{msinit}(2,8, 1); \) \(M_8(\Gamma_0(2))^+ \)
? \(E = \text{mseisenstein}(M); \)
? \(E[1] \) \(\text{still two-dimensional, in a smaller space} \)
%3 =
[0 -10]
[0 3]
[-1 0]

? s = msfromcusp(M,oo) \ in terms of the basis for \(M_8(\Gamma_0(2)) \)
%4 = [0, 0, 0, 1]~

? mseval(M, s) \ same symbol as before
%5 = [1, 0]

\textbf{msfromell}(\textit{sign})

Let \(E/\mathbb{Q} \) be an elliptic curve of conductor \(N \). For \(\varepsilon = 1 \), we define the (cuspidal, new) modular symbol \(x^\varepsilon \) in \(H^1(X_0(N),\mathbb{Q})^\varepsilon \) attached to \(E \). For all primes \(p \) not dividing \(N \) we have \(T_p(x^\varepsilon) = a_p x^\varepsilon \), where \(a_p = p + 1 - \# E(\mathbb{F}_p) \).

Let \(\Omega^+ = E.omega[1] \) be the real period of \(E \) (integration of the Néron differential \(dx/(2y + ax + a3) \) on the connected component of \(E(\mathbb{R}) \), i.e. the generator of \(H_1(E,\mathbb{Z})^+ \)) normalized by \(\Omega^+ > 0 \). Let \(i\Omega^- \) the integral on a generator of \(H_1(E,\mathbb{Z})^- \) with \(\Omega^- \in \mathbb{R}_{>0} \). If \(c_o \) is the number of connected components of \(E(\mathbb{R}) \), \(\Omega^- \) is equal to \((-2/c_o)x\text{imag}(E.omega[2])\). The complex modular symbol is defined by

\[
F : \delta \rightarrow 2i\pi \int_{\delta} f(z)dz
\]

The modular symbols \(x^\varepsilon \) are normalized so that \(F = x^+\Omega^+ + x^-i\Omega^- \). In particular, we have

\[
x^+([0] - [oo]) = L(E,1)/\Omega^+;
\]

which defines \(x \) unless \(L(E,1) = 0 \). Furthermore, for all fundamental discriminants \(D \) such that \(\varepsilon.D > 0 \), we also have

\[
\sum_{0 < a < \|D\|} \langle D\|a\rangle x^+([a/\|D\|] - [oo]) = L(E,\langle D\|\rangle,1)/\Omega^2;
\]

where \(\langle D\|\rangle \) is the Kronecker symbol. The period \(\Omega^- \) is also \(2/c_o x \text{real} \) the real period of the twist \(E(-4) = \text{elltwist}(E,-4) \).

This function returns the pair \([M, x] \), where \(M = \text{msinit}(N,2) \) and \(x \) is \(x^{\textit{sign}} \) as above when \(\textit{sign} = 1 \), and \(x = [x^+, x^-, L_E] \) when \(\textit{sign} = 0 \), where \(L_E \) is a matrix giving the canonical \(\mathbb{Z} \)-lattice attached to \(E \) in the sense of \(\text{mslattice} \) applied to \(\mathbb{Q}x^+ + \mathbb{Q}x^- \). Explicitly, it is generated by \((x^+ - x^-, 2x^-) \) when \(E(\mathbb{R}) \) has two connected components and by \((x^+ - x^-, 2x^-) \) otherwise.

The modular symbols \(x \) are given as a \textit{t_COL} (in terms of the fixed basis of \(\text{Hom}_G(\Delta_0, \mathbb{Q}) \) chosen in \(M \)).

? E=ellinit([0,-1,1,-10,-20]); \ X_0(11)
? [M,xp]= msfromell(E,1);
? xp
%3 = [1/5, -1/2, -1/2]~
? [M,x]= msfromell(E);
? x \ \ x^+, x^- and L_E
%5 = [[1/5, -1/2, -1/2]~, [0, 1/2, -1/2]~, [1/5, 0; -1, 1, 0; -1]]
? p = 23; (mshecke(M,p) - ellap(E,p))*x[1]
%6 = [0, 0, 0]~ \ \ true at all primes, including p = 11; same for x[2]
? (mshecke(M,p) - ellap(E,p))*x[3] == 0
%7 = 1
Instead of a single curve E, one may use instead a vector of isogenous curves. The function then returns M and the vector of attached modular symbols.

\textbf{msfromhecke}(v, H)

Given a msinit M and a vector v of pairs $[p, P]$ (where p is prime and P is a polynomial with integer coefficients), return a basis of all modular symbols such that $P(T_p)(s) = 0$. If H is present, it must be a Hecke-stable subspace and we restrict to $s \in H$. When T_p has a rational eigenvalue and $P(x) = x - a_p$ has degree 1, we also accept the integer a_p instead of P.

\begin{Verbatim}
? E = ellinit([0,-1,1,-10,-20]) \n11a1
? ellap(E,2)
%2 = -2
? ellap(E,3)
%3 = -1
? M = msinit(11,2);
? S = msfromhecke(M, [[2,-2],[3,-1]])
%5 =
[1 1]
[-5 0]
[0 -5]
? mshecke(M, 2, S)
%6 =
[-2 0]
[0 -2]

? M = msinit(23,4);
? S = msfromhecke(M, [[5, x^4-14*x^3-244*x^2+4832*x-19904]]);
? factor(charpoly(mshecke(M,5,S)))
%9 =
[x^4 - 14*x^3 - 244*x^2 + 4832*x - 19904 2]
\end{Verbatim}

\textbf{msgetlevel}()

M being a full modular symbol space, as given by \texttt{msinit}, return its level N.

\textbf{msgetsign}()

M being a full modular symbol space, as given by \texttt{msinit}, return its sign: 1 or 0 (unset).

\begin{Verbatim}
? M = msinit(11,4, 1);
? msgetsign(M)
%2 = 1
? M = msinit(11,4);
? msgetsign(M)
%4 = 0
\end{Verbatim}

\textbf{msgetweight}()

M being a full modular symbol space, as given by \texttt{msinit}, return its weight k.

\begin{Verbatim}
? M = msinit(11,4);
? msgetweight(M)
%2 = 4
\end{Verbatim}
mshecke(p, H)

M being a full modular symbol space, as given by msinit, p being a prime number, and H being a Hecke-stable subspace (M if omitted) return the matrix of T_p acting on H (U_p if p divides N). Result is undefined if H is not stable by T_p (resp. U_p).

```
? M = msinit(11,2); \ M_2(Gamma_0(11))
? T2 = mshecke(M,2)
%2 =
[3   0   0]
[1 -2   0]
[1   0 -2]

? M = msinit(11,2, 1); \ M_2(Gamma_0(11))^+
? T2 = mshecke(M,2)
%4 =
[3   0]
[-1  -2]

? N = msnew(M)[1] \ Q-basis of new cuspidal subspace
%5 =
[-2]
[-5]

? p = 1009; mshecke(M, p, N) \ action of T_1009 on N
%6 =
[-10]

? ellap(ellinit("11a1"), p)
%7 = -10
```

msinit($V, sign$)

Given G a finite index subgroup of $SL(2,\mathbb{Z})$ and a finite dimensional representation V of $GL(2,\mathbb{Q})$, creates a space of modular symbols, the G-module $\text{Hom}_G(Div^0(P^1(\mathbb{Q})), V)$. This is canonically isomorphic to $H^1(X(G), V)$, and allows to compute modular forms for G. If $sign$ is present and nonzero, it must be 1 and we consider the subspace defined by $Ker(\sigma - sign)$, where σ is induced by $[-1,\theta;\theta,1]$. Currently the only supported groups are the $\Gamma_0(N)$, coded by the integer $N > 0$. The only supported representation is $V_k = \mathbb{Q}[X,Y]_{k-2}$, coded by the integer $k > 2$.

```
? M = msinit(11,2); msdim(M) \ Gamma0(11), weight 2
%1 = 3

? mshecke(M,2) \ T_2 acting on M
%2 =
[3   1   1]
[0  -2   0]
[0   0  -2]

? msstar(M) \ * involution
%3 =
[1   0   0]
```

(continues on next page)
\[\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \]

\[
\text{? Mp = msinit(11,2, 1); msdim(Mp) \ \\ \ \ + part} \\
\text{%4 = 2} \\
\text{? mshecke(Mp,2) \ \\ \ \ T_2 action on M^+} \\
\text{%5 = [3, 2], [3, 2] } \\
\text{? msstar(Mp) } \\
\text{%6 = [1, 0, 1]} \\
\text{? msissymbol(M, s)} \\
\text{\textbf{msissymbol}}(s)
\]

\[\begin{array}{c}
\text{\textbf{msissymbol}}(s) \\
\text{\textit{M} being a full modular symbol space, as given by \textbf{msinit}, check whether } s \text{ is a modular symbol attached to } M. \\
\text{If } A \text{ is a matrix, check whether its columns represent modular symbols and return a } 0 \rightarrow 1 \text{ vector.}
\end{array} \]

\[
\text{? M = msinit(7,8, 1); } \ \\ M_8(\Gamma_0(7))^+ \\
\text{? A = msnew(M)[1];} \\
\text{? s = A[,1];} \\
\text{? msissymbol(M, s) } \\
\text{%4 = 1} \\
\text{? msissymbol(M, A) } \\
\text{%5 = [1, 1, 1]} \\
\text{? S = mseval(M,s);} \\
\text{? msissymbol(M, S) } \\
\text{%7 = 1} \\
\text{? [g,R] = mspathgens(M); g} \\
\text{%8 = [[+oo, 0], [0, 1/2], [1/2, 1]]} \\
\text{? #R \ \\ \ 3 relations among the generators } g_i \\
\text{%9 = 3} \\
\text{? T = S; T[3]++; \ \\ \ randomly perturb S(g_3)} \\
\text{? msissymbol(M, T) } \\
\text{%11 = 0 \ \\ \ no longer satisfies the relations}
\]

\[
\text{\textbf{mslattice}}(H)
\]

\[\begin{array}{c}
\text{\textbf{mslattice}}(H) \\
\text{Let } \Delta_0 := Div^0(P^1(\mathbb{Q})) \text{ and } V_k = \mathbb{Q}[x,y]_{k-2}. \text{ Let } M \text{ be a full modular symbol space, as given by \textbf{msinit} and} \\
\text{let } H \text{ be a subspace, e.g. as given by \textbf{mscuspidal}. This function returns a canonical } \mathbb{Z} \text{ structure on } H \text{ defined as} \\
\text{follows. Consider the map } c : M = Hom_{\Gamma_0(N)}(\Delta_0, V_k) \rightarrow H^1(\Gamma_0(N), V_k) \text{ given by } \phi : -\rightarrow > \text{ class}(\gamma \rightarrow \phi(0, \gamma^{-1}0)). \text{ Let } L_k = \mathbb{Z}[x,y]_{k-2} \text{ be the natural } \mathbb{Z}-\text{structure of } V_k. \text{ The result of \textbf{mslattice} is a } \mathbb{Z}-\text{basis of the} \\
\text{inverse image by } c \text{ of } H^1(\Gamma_0(N), L_k) \text{ in the space of modular symbols generated by } H. \\
\text{For user convenience, } H \text{ can be defined by a matrix representing the } \mathbb{Q}\text{-basis of } H \text{ (in terms of the canonical} \\
\text{\mathbb{Q}\text{-basis of } M \text{ fixed by \textbf{msinit} and used to represent modular symbols).}
\end{array} \]

\[\begin{array}{c}
\text{If omitted, } H \text{ is the cuspidal part of } M \text{ as given by \textbf{mscuspidal}. The Eisenstein part} \\
\text{Hom}_{\Gamma_0(N)}(Div(P^1(\mathbb{Q})), V_k) \text{ is in the kernel of } c \text{, so the result has no meaning for the Eisenstein part } H.
\end{array} \]
msnew()
M being a full modular symbol space, as given by msinit, return the new part of its cuspidal subspace. A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \mathbb{Q}-basis of the subspace.

```
? M = msinit(11,8,1); \ M_8(Gamma_0(11))^+  
? N = msnew(M);  
? #N[1] \ 6-dimensional  
%3 = 6
```

msomseval($PHI, path$)
Return the vectors of moments of the p-adic distribution attached to the path path by the overconvergent modular symbol PHI.

```
? M = msinit(3,6,1);  
? Mp= mspadicinit(M,5,10);  
? PHI = mstooms(Mp,phi);  
? ME = msomseval(Mp,PHI,[oo, 0]);
```

mspadicL(s, r)
Returns the value (or \(r \)-th derivative) on a character \(\chi^s \) of \(\mathbb{Z}_p^* \) of the \(p \)-adic \(L \)-function attached to \(\mu \).

Let \(\Phi \) be the \(p \)-adic distribution-valued overconvergent symbol attached to a modular symbol \(\phi \) for \(\Gamma_0(N) \) (eigen-vector for \(T_N(p) \) for the eigenvalue \(a_p \)). Then \(L_p(\Phi, \chi^s) = L_p(\mu, s) \) is the \(p \)-adic \(L \)-function defined by

\[
L_p(\Phi, \chi^s) = \int_{\mathbb{Z}_p^*} \chi^s(z) d\mu(z)
\]

where \(\mu \) is the distribution on \(\mathbb{Z}_p^* \) defined by the restriction of \(\Phi([0] - [0]) \) to \(\mathbb{Z}_p^* \). The \(r \)-th derivative is taken in direction \(< \chi > \):

\[
L_p^{(r)}(\Phi, \chi^s) = \int_{\mathbb{Z}_p^*} \chi^s(z)(\log z)^r d\mu(z).
\]

In the argument list,

- \(\mu \) is as returned by \text{msadicmoments} (distributions attached to \(\Phi \) by restriction to discs \(a + p^r\mathbb{Z}_p \), \((a, p) = 1 \)).
- \(s = [s_1, s_2] \) with \(s_1 \in \mathbb{Z} \subset \mathbb{Z}_p \) and \(s_2 \bmod p - 1 \) or \(s_2 \bmod 2p \) for \(p = 2 \), encoding the \(p \)-adic character \(\chi^s := < \chi >^{s_1} \tau^{s_2} \); here \(\chi \) is the cyclotomic character from \(\text{Gal}(\mathbb{Q}_p(\mu_{p^r})/\mathbb{Q}_p) \) to \(\mathbb{Z}_p^* \), and \(\tau \) is the Teichmüller character (for \(p > 2 \) and the character of order 2 on \((\mathbb{Z}/4\mathbb{Z})^* \) if \(p = 2 \); for convenience, the character \([s, s] \) can also be represented by the integer \(s \).

When \(a_p \) is a \(p \)-adic unit, \(L_p \) takes its values in \(\mathbb{Q}_p \). When \(a_p \) is not a unit, it takes its values in the two-dimensional \(\mathbb{Q}_p \)-vector space \(D_{\text{cris}}(M(\phi)) \) where \(M(\phi) \) is the “motive” attached to \(\phi \), and \(\phi \) return the two \(p \)-adic components with respect to some fixed \(\mathbb{Q}_p \)-basis.

? M = msinit(3,6,1); phi=[5, -3, -1]~;
? msissymbol(M,phi)
%2 = 1
? Mp = msadicinit(M, 5, 4);
? mu = msadicmoments(Mp, phi); \ no twist
\ End of initializations

? msadicL(mu,0) \ L_p(chi^0)
%5 = 5 + 2*5^2 + 2*5^3 + 2*5^4 + ...
? msadicl(mu,1) \ L_p(chi), zero for parity reasons
%6 = [0(5^13)]~
? msadicl(mu,2) \ L_p(chi^2)
%7 = 3 + 4*5 + 4*5^2 + 3*5^3 + ...
? msadicl(mu,[0,2]) \ L_p(tau^2)
%8 = 3 + 5 + 2*5^2 + 2*5^3 + ...
? msadicl(mu, [1,0]) \ L_p(<chi>)
%9 = 3*5 + 2*5^2 + 5*3 + 2*5^7 + 5*8 + 5*10 + 2*5^11 + O(5^13)
? msadicl(mu,0,1) \ L_p'(chi^0)
%10 = 2*5 + 4*5^2 + 3*5^3 + ...
? msadicl(mu, 2, 1) \ L_p'(chi^2)
%11 = 4*5 + 3*5^2 + 5^3 + 5^4 + ...

Now several quadratic twists: \text{msstools} is indicated.

? PHI = mstools(Mp,phi);
? mu = msadicmoments(Mp, PHI, 12); \ twist by 12
? msadicl(mu)
%14 = 5 + 5*2 + 5*3 + 2*5^4 + ...

(continues on next page)
One can locate interesting symbols of level \(N \) and weight \(k \) with \texttt{msnew} and \texttt{mssplit}. Note that instead of a symbol, one can input a 1-dimensional Hecke-subspace from \texttt{mssplit}: the function will automatically use the underlying basis vector.

\begin{verbatim}
? M=msinit(5,4,1); \ M_4(Gamma_0(5))^+
? L = mssplit(M, msnew(M)); \ list of irreducible Hecke-subspaces
? phi = L[1]; \ one Galois orbit of newforms
? #phi[1] \... this one is rational
%4 = 1
? Mp = mspadicinit(M, 3, 4);
? mu = mspadicmoments(Mp, phi);
? mspadicL(mu)
%7 = 1 + 3 + 3^3 + 3^4 + 2*3^5 + 3^6 + O(3^9)

? M = msinit(11,8, 1); \ M_8(Gamma_0(11))^+
? Mp = mspadicinit(M, 3, 4);
? L = mssplit(M, msnew(M));
? phi = L[1]; #phi[1] \... this one is two-dimensional
%11 = 2
? mu = mspadicmoments(Mp, phi);
*** at top-level: mu=mspadicmoments(Mp,phi)
*** ^-----------------------------
*** mspadicmoments: incorrect type in mstooms [dim_Q (eigenspace) > 1]
\end{verbatim}

\texttt{mspadicinit}(\(p, n, \text{flag} \))

\(M \) being a full modular symbol space, as given by \texttt{msinit}, and \(p \) a prime, initialize technical data needed to compute with overconvergent modular symbols, modulo \(p^n \). If \texttt{flag} is unset, allow all symbols; else initialize only for a restricted range of symbols depending on \texttt{flag}: if \texttt{flag} = 0 restrict to ordinary symbols, else restrict to symbols \(\phi \) such that \(T_p(\phi) = a_p\phi \), with \(v_p(a_p) \geq \text{flag} \), which is faster as \texttt{flag} increases. (The fastest initialization is obtained for \texttt{flag} = 0 where we only allow ordinary symbols.) For supersingular eigensymbols, such that \(p\| a_p \), we must further assume that \(p \) does not divide the level.

\begin{verbatim}
? E = ellinit("11a1");
? [M,phi] = msfromell(E,1);
? ellap(E,3)
%3 = -1
? Mp = mspadicinit(M, 3, 10, 0); \ commit to ordinary symbols
? PHI = mstooms(Mp,phi);
\end{verbatim}

If we restrict the range of allowed symbols with \texttt{flag} (for faster initialization), exceptions will occur if \(v_p(a_p) \) violates this bound:

\begin{verbatim}
? E = ellinit("15a1");
? [M,phi] = msfromell(E,1);
? ellap(E,7)
\end{verbatim}

(continues on next page)
%3 = 0
? Mp = mspadicinit(M,7,5,0); \ restrict to ordinary symbols
? PHI = mstooms(Mp,phi)
*** at top-level: PHI=mstooms(Mp,phi)
*** ^---------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,7,5); \ no restriction
? PHI = mstooms(Mp,phi);

This function uses $O(N^2(n + k)^2p)$ memory, where N is the level of M.

mspadicmoments(PHI, D)

Given Mp from mspadicinit, an overconvergent eigensymbol PHI from mstooms and a fundamental discriminant D coprime to p, let PHI^D denote the twisted symbol. This function computes the distribution $\mu = PHI^D([0] - [oo])|\Z^*_p$ restricted to \Z^*_p. More precisely, it returns the moments of the $p - 1$ distributions $PHI^D([0] - [oo])(a + p\Z_p)$, $0 < a < p$. We also allow PHI to be given as a classical symbol, which is then lifted to an overconvergent symbol by mstooms; but this is wasteful if more than one twist is later needed.

The returned data μ (p-adic distributions attached to PHI) can then be used in mspadicL or mspadicseries. This precomputation allows to quickly compute derivatives of different orders or values at different characters.

? M = msinit(3,6,1);
? phi = [5,-3,-1]~;
? msissymbol(M, phi)
%3 = 1
? p = 5; mshecke(M,p) * phi \ eigenvector of T_5, $a_5 = 6$
%4 = [30, -18, -6]~
? Mp = mspadicinit(M, p, 10, 0); \ restrict to ordinary symbols, mod p^{10}
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%8 = 5 + 2*5^2 + 2*5^3 + ...
? mu = mspadicmoments(Mp, PHI, 12); \ twist by 12
? mspadicL(mu)
%10 = 5 + 5^2 + 5^3 + 2*5^4 + ...

mspadicseries(i)

Let Φ be the p-adic distribution-valued overconvergent symbol attached to a modular symbol ϕ for $\Gamma_0(N)$ (eigenvector for $T_N(p)$) for the eigenvalue a_p). If μ is the distribution on \Z^*_p defined by the restriction of $\Phi([oo] - [0])$ to \Z^*_p, let

$$L_p(\mu, \tau^i)(x) = \int_{\Z^*_p} \tau^i(t)(1 + x)^{\log_p(t)/\log_p(u)} d\mu(t)$$

Here, τ is the Teichmüller character and u is a specific multiplicative generator of $1 + 2p\Z_p$. (Namely $1 + p$ if $p > 2$ or 5 if $p = 2$.) To explain the formula, let $G_{o,0} := Gal(\Q(\mu_{p^{oo}})/\Q)$, let $\chi : G_{o,0} \rightarrow \Z^*_p$ be the cyclotomic character (isomorphism) and γ the element of $G_{o,0}$ such that $\chi(\gamma) = u$; then $\chi(\gamma)^{\log_p(t)/\log_p(u)} = < t >$.

The p-adic precision of individual terms is maximal given the precision of the overconvergent symbol μ.

? [M,phi] = msfromell(ellinit("17a1"),1);
? Mp = mspadicinit(M, 5,7);
? mu = mspadicmoments(Mp, phi,1); \ \overconvergent symbol
An example with nonzero Teichmüller:

```pari
c? [M, phi] = msfromell(ellinit("11a1"), 1);
c? Mp = mspadicinit(M, 3, 10);
c? mu = mspadicsicmoms(Mp, phi, 1);
c? mspadicseries(mu, 2)
%4 = (2 + 3 + 3^2 + 2*3^3 + 3^4 + 3^5 + 3^6 + 3^7 + 3^10 + 3^11 + O(3^12)) \
   + (1 + 3 + 2*3^2 + 3^3 + 3^5 + 2*3^6 + 2*3^8 + 0(3^9))*x \
   + (1 + 2*3 + 3^4 + 2*3^5 + 0(3^6))*x^2 \
   + (3 + O(3^2))*x^3 + O(x^4)
```

Supersingular example (not checked):

```pari
c? E = ellinit("17a1"); ellap(E, 3)
%1 = 0
c? [M, phi] = msfromell(E, 1);
c? Mp = mspadicinit(M, 3, 7);
c? mu = mspadicmoments(Mp, phi, 1);
c? mspadicseries(mu)
%5 = [(2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
   + (2 + 3^3 + O(3^5))*x \
   + (3^3 + O(3^6))*x^2 + O(3^2)*x^3 + O(x^4) \n```

Example with a twist:

```pari
c? E = ellinit("11a1");
c? [M, phi] = msfromell(E, 1);
c? Mp = mspadicinit(M, 3, 10);
c? mu = mspadicmoments(Mp, phi, 5); \ twist by 5
c? L = mspadicseries(mu)
%5 = [(2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12)) \
 + (2*3^2 + 2*3^4 + 3^5 + 3^6 + 2*3^7 + 2*3^10 + O(3^12))]~
c? msadicL(mu)
%6 = 2 + 2*3^2 + 3^3 + 2*3^4 + 2*3^5 + 3^6 + 2*3^7 + O(3^10)
? mspadicseries(mu, 1) \ must be 0
%8 = 0(3^12) + O(3^9)*x + O(3^6)*x^2 + O(3^2)*x^3 + O(x^4)
```

mspahngens()  
Let $\Delta_0 := Div_0^0(P^1(Q))$. Let $M$ being a full modular symbol space, as given by msinit, return a set of $\mathbb{Z}[G]$-generators for $\Delta_0$. The output is $[g, R]$, where $g$ is a minimal system of generators and $R$ the vector of $\mathbb{Z}[G]$-
relations between the given generators. A relation is coded by a vector of pairs \([a_i, i]\) with \(a_i \in \mathbb{Z}[G]\) and \(i\) the index of a generator, so that \(\sum a_i g[i] = 0\).

An element \([v] - [u]\) in \(\Delta_0\) is coded by the “path” \([u, v]\), where \(\infty\) denotes the point at infinity \((1 : 0)\) on the projective line. An element of \(\mathbb{Z}[G]\) is either an integer \(n = n[i d_2]\) or a “factorization matrix”: the first column contains distinct elements \(g_i\) of \(G\) and the second integers \(n_i\) and the matrix codes \(\sum n_i g_i\):

\[
\begin{bmatrix}
1 & 1 \\
2 & 1 \\
3 & 1 \\
\end{bmatrix}
\]

The given relation is of the form \(\sum_i (1 - \gamma_i)g_i = 0\), with \(\gamma_i \in \Gamma_0(11)\). There will always be a single relation involving all generators (corresponding to a round trip along all cusps), then relations involving a single generator (corresponding to 2 and 3-torsion elements in the group):

\[
\begin{bmatrix}
1 & 0 \\
2 & 1 \\
3 & 1 \\
\end{bmatrix}
\]

Note that the output depends only on the group \(G\), not on the representation \(V\).

**mspathlog**

Let \(\Delta_0 := Div^0(\mathbb{P}^1(\mathbb{Q}))\). Let \(M\) being a full modular symbol space, as given by \texttt{msinit}, encoding fixed \(\mathbb{Z}[G]\)-generators \((g_i)\) of \(\Delta_0\) (see \texttt{mspathgens}). A path \(p = [a, b]\) between two elements in \(\mathbb{P}^1(\mathbb{Q})\) corresponds to \([b] - [a] \in \Delta_0\). The path extremities \(a\) and \(b\) may be given as \texttt{t_INT}, \texttt{t_FRAC} or \(\infty = (1 : 0)\). Finally, we also allow to input a path as a \(2 \times 2\) integer matrix, whose first and second column give \(a\) and \(b\) respectively, with the convention \([x, y] = (x : y)\) in \(\mathbb{P}^1(\mathbb{Q})\).

Returns \((p_i)\) in \(\mathbb{Z}[G]\) such that \(p = \sum_i p_i g_i\).
Note that the output depends only on the group $G$, not on the representation $V$.

**mspetersson**($F, G$)

$M$ being a full modular symbol space for $\Gamma = \Gamma_0(N)$, as given by `msinit`, calculate the intersection product $F, G$ of modular symbols $F$ and $G$ on $M = \text{Hom}_\Gamma(\Delta_0, V_k)$ extended to an hermitian bilinear form on $M \otimes \mathbb{C}$ whose radical is the Eisenstein subspace of $M$.

Suppose that $f_1$ and $f_2$ are two parabolic forms. Let $F_1$ and $F_2$ be the attached modular symbols

$$F_i(\delta) = \int_\delta f_i(z). (zX + Y)^{k-2} dz$$

and let $F_i^\mathbb{R}, F_2^\mathbb{R}$ be the attached real modular symbols

$$F_i^\mathbb{R}(\delta) = \int_\delta \Re(f_i(z). (zX + Y)^{k-2} dz)$$

Then we have

$$= -2 (2i)^{k-2} \Im(<f_1, f_2>_{\text{Peterson}})$$

and

$$F_1, F_2 = (2i)^{k-2} <f_1, f_2>_{\text{Peterson}}$$

In weight 2, the intersection product $F, G$ has integer values on the $\mathbb{Z}$-structure on $M$ given by `mslattice` and defines a Riemann form on $H^1_{par}(\Gamma, \mathbb{R})$.

For user convenience, we allow $F$ and $G$ to be matrices and return the attached Gram matrix. If $F$ is omitted: treat it as the full modular space attached to $M$; if $G$ is omitted, take it equal to $F$.

```
? M = msinit(37,2);
? C = mscuspidal(M)[1];
? mspetersson(M, C)
%3 =
[[3, -1; 4, -1] 1]
? mspathlog(M, [1,2;2,3]) == p \ give path via a 2x2 matrix
%7 = 1
```

(continues on next page)
The coefficient 3 in the matrix is the degree of the modular parametrization.

**mspolygon**(flag)

*M* describes a subgroup *G* of finite index in the modular group *PSL₂(ℤ)*, as given by *msinit* or a positive integer *N* (encoding the group *G* = *Γ₀(*N*)), or by *msfarey* (arbitrary subgroup). Return an hyperbolic polygon (Farey symbol) attached to *G*. More precisely:

- Its vertices are an ordered list in ℙ¹(ℚ) and contain a representatives of all cusps.
- Its edges are hyperbolic arcs joining two consecutive vertices; each edge *e* is labelled by an integer μ(*e*) ∈ oo, 2, 3.
- Given a path (*a*, *b*) between two elements of ℙ¹(ℚ), let ([*a*, *b*]) = (*b*, *a*) be the opposite path. There is an involution *e* → *e*\(^*\) on the edges. We have μ(*e*) = oo if and only if *e*! = *e*\(^*\); when μ(*e*)! = 3, *e* is *G*-equivalent to *e*\(^*\), i.e. there exists γ\(_e\) ∈ *G* such that *e* = γ\(_e\)γ\(_e\)\(^*\). If μ(*e*) = 3 there exists γ\(_e\) ∈ *G* of order 3 such that the hyperbolic triangle (*e*, γ\(_e\)γ\(_e\)\(^*\)) is invariant by γ\(_e\). In all cases, to each edge we have attached γ\(_e\) ∈ *G* of order μ(*e*).

The polygon is given by a triple [*E*, *A*, *g*]

- The list *E* of its consecutive edges as matrices in *M*₂(ℤ).
- The permutation *A* attached to the involution: if *e* = *E*[i] is the *i*-th edge, then *A*[i] is the index of *e*\(^*\) in *E*.
- The list *g* of pairing matrices γ\(_e\). Remark that γ\(_e\)\(^*\) = γ\(_e\)\(^{-1}\) if μ(*e*)! = 3, i.e., *g*[i]! = *g*[j]! = *g*[i] *A*[i] whenever *i*! = *A*[i]! (*g*[i]! = *g*[j]! = 2 (*g*[i]^2 = 1). Modulo these trivial relations, the pairing matrices form a system of independent generators of *G*. Note that γ\(_e\) is elliptic if and only if *e*\(^*\) = *e*.

The above data yields a fundamental domain for *G* acting on Poincaré’s half-plane: take the convex hull of the polygon defined by

- The edges in *E* such that *e*! = *e*\(^*\) or *e*\(^*\) = *e*, where the pairing matrix γ\(_e\) has order 2;
- The edges (*r*, *t*) and (*t*, *s*) where the edge *e* = (*r*, *s*) ∈ *E* is such that *e* = *e*\(^*\) and γ\(_e\) has order 3 and the triangle (*r*, *t*, *s*) is the image of (0, exp(2*i*π/3), oo) by some element of *PSL*₂(ℚ) formed around the edge.

Binary digits of flag mean:

1: return a normalized hyperbolic polygon if set, else a polygon with unimodular edges (matrices of determinant 1). A polygon is normalized in the sense of compact orientable surfaces if the distance *d*(*a*, *a*\(^*\)) between an edge *a* and its image by the involution *a*\(^*\) is less than 2, with equality if and only if *a* is linked with another edge *b* (*a*, *b*, *a*\(^*\) et *b*\(^*\) appear consecutively in *E* up to cyclic permutation). In particular, the vertices of all edges such that that *d*(*a*, *a*\(^*\))! = 1 (distance is 0 or 2) are all equivalent to 0 modulo *G*. The external vertices of *aa*\(^*\) such that *d*(*a*, *a*\(^*\)) = 1 are also equivalent to 0; the internal vertices *a* ∩ *a*\(^*\) (a single point), together with 0, form a system of representatives of the cusps of *G* mathbb P¹(ℚ). This is useful to compute the homology group *H*₁(*G*, ℤ) as it gives a symplectic basis for the intersection pairing. In this case, the number of parabolic matrices (trace 2) in the system of generators *G* is 2(*t* − 1), where *t* is the number of non equivalent cusps for *G*. This is currently only implemented for *G* = *Γ₀(*N*).

2: add graphical representations (in LaTeX form) for the hyperbolic polygon in Poincaré’s half-space and the involution *a* → *a*\(^*\) of the Farey symbol. The corresponding character strings can be included in a LaTeX document provided the preamble contains \usepackage{ tikz}. 

```
[0 -3]
[3 0]
? ellmoddegree(E)
%8 = [3, -126]
```
One can see from this last example that the (normalized) polygon has the form

\[(a_1, a_1^*, a_2, a_2^*, a_3, a_3^*, a_4, a_5, a_4^*, a_5^*)\],

that \(X_0(14)\) is of genus 1 (in general the genus is the number of blocks of the form \(aba^*b^*\)), has no elliptic points (\(A\) has no fixed point) and 4 cusps (number of blocks of the form \(aa^*\) plus 1). The vertices of edges \(a_4\) and \(a_5\) all project to 0 in \(X_0(14)\): the paths \(a_4\) and \(a_5\) project as loops in \(X_0(14)\) and give a symplectic basis of the homology \(H_1(X_0(14), \mathbb{Z})\).

\begin{verbatim}
 ? [V,A] = mspolygon(15);  
 ? apply(matdet, V) \ \ all unimodular  
%2 = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1]  
 ? [V,A] = mspolygon(15,1);  
 ? apply(matdet, V) \ \ normalized polygon but no longer unimodular edges  
%4 = [1, 1, 1, 1, 2, 2, 47, 11, 47, 11]
\end{verbatim}

\texttt{msqexpansion(projH, serprec)}

\(M\) being a full modular symbol space, as given by \texttt{msinit}, and \texttt{projH} being a projector on a Hecke-simple subspace (as given by \texttt{mssplit}), return the Fourier coefficients \(a_n, n \leq B\) of the corresponding normalized newform. If \(B\) is omitted, use \texttt{seriesprecision}.

This function uses a naive \(O(B^2d^3)\) algorithm, where \(d = O(kN)\) is the dimension of \(M_{k_0}(\Gamma_0(N))\).
The shortcut \texttt{msqexpansion(M, s, B)} is available for a symbol \(s\), provided it is a Hecke eigenvector:

\begin{verbatim}
? E = ellinit("11a1");
? [M,S] = msfromell(E); [sp,sm] = S;
? msqexpansion(M,sp,10) \ in the + eigenspace
%3 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? msqexpansion(M,sm,10) \ in the - eigenspace
%4 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
? ellan(E, 10)
%5 = [1, -2, -1, 2, 1, 2, -2, 0, -2, -2]
\end{verbatim}

\textbf{mssplit}(\(H, \text{dimlim}\))

Let \(M\) denote a full modular symbol space, as given by \texttt{msinit(\(N, k, 1\))} or \texttt{msinit(\(N, k, -1\))} and let \(H\) be a Hecke-stable subspace of \texttt{msnew(M)} (the full new subspace if \(H\) is omitted). This function splits \(H\) into Hecke-simple subspaces. If \(\text{dimlim}\) is present and positive, restrict to subspaces of dimension \(<= \text{dimlim}\). A subspace is given by a structure allowing quick projection and restriction of linear operators; its first component is a matrix with integer coefficients whose columns form a \(\mathbb{Q}\)-basis of the subspace.

\begin{verbatim}
? M = msinit(11,8, 1); \ M_8(Gamma_0(11))^+
? L = mssplit(M); \ split msnew(M)
? #L
%3 = 2
? f = msqexpansion(M,L[1],5); f[1].mod
%4 = x^2 + 8*x - 44
? lift(f)
%5 = [1, x, -6*x - 27, -8*x - 84, 20*x - 155]
? g = msqexpansion(M,L[2],5); g[1].mod
%6 = x^4 - 558*x^2 + 140*x + 51744
\end{verbatim}

To a Hecke-simple subspace corresponds an orbit of (normalized) newforms, defined over a number field. In the above example, we printed the polynomials defining the said fields, as well as the first 5 Fourier coefficients (at the infinite cusp) of one such form.

\textbf{msstar}(\(H\))

\(M\) being a full modular symbol space, as given by \texttt{msinit}, return the matrix of the * involution, induced by complex conjugation, acting on the (stable) subspace \(H\) (\(M\) if omitted).

\begin{verbatim}
? M = msinit(11,2); \ M_2(Gamma_0(11))
? w = msstar(M);
? w^2 == 1
%3 = 1
\end{verbatim}

\textbf{mstooms}(\(\phi\))

Given \(\phi\) from \texttt{mspadicinit}, lift the (classical) eigen symbol \(\phi\) to a \(p\)-adic distribution-valued overconvergent symbol in the sense of Pollack and Stevens. More precisely, let \(\phi\) belong to the space \(W\) of modular symbols of level \(N, v_p(N) <= 1\), and weight \(k\) which is an eigenvector for the Hecke operator \(T_N(p)\) for a nonzero eigenvalue \(a_p\) and let \(N_0 = \text{lcm}(N, p)\).

Under the action of \(T_{N_0}(p)\), \(\phi\) generates a subspace \(W_\phi\) of dimension 1 (if \(p\mid N\)) or 2 (if \(p\) does not divide \(N\)) in the space of modular symbols of level \(N_0\).
Let $V_p = [p, 0; 0, 1]$ and $C_p = [a_p, p^{k-1}; -1, 0]$. When $p$ does not divide $N$ and $a_p$ is divisible by $p$, mstooms returns the lift $\Phi$ of $(\phi, \phi \|_{kV_p})$ such that

$$T_{N_0}(p)\Phi = C_p \Phi$$

When $p$ does not divide $N$ and $a_p$ is not divisible by $p$, mstooms returns the lift $\Phi$ of $\phi - \alpha^{-1}\phi \|_{kV_p}$ which is an eigenvector of $T_{N_0}(p)$ for the unit eigenvalue where $\alpha^2 - a_p \alpha + p^{k-1} = 0$.

The resulting overconvergent eigensymbol can then be used in mspadicmoments, then mspadicL or mspadicseries.

```plaintext
? M = msinit(3,6, 1); p = 5;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 = [x - 3126 2]
[x - 6 1]
? phi = matker(Tp - 6)[,1] \n generator of p-Eigenspace, a_p = 6
%3 = [5, -3, -1]~
? Mp = mspadicinit(M, p, 10, 0); \n restrict to ordinary symbols, mod p^10
? PHI = mstooms(Mp, phi);
? mu = mspadicmoments(Mp, PHI);
? mspadicL(mu)
%7 = 5 + 2*5^2 + 2*5^3 + ...

A non ordinary symbol.

? M = msinit(4,6,1); p = 3;
? Tp = mshecke(M, p); factor(charpoly(Tp))
%2 = [x - 244 3]
[x + 12 1]
? phi = matker(Tp + 12)[,1] \n generator of p-Eigenspace, a_p = -12 is divisible by p = 3
%3 = [-1/32, -1/4, -1/32, 1]~
? msissymbol(M,phi)
%4 = 1
? Mp = mspadicinit(M,3,5,0);
? PHI = mstooms(Mp,phi);
*** at top-level: PHI=mstooms(Mp,phi)
*** ^-----------------
*** mstooms: incorrect type in mstooms [v_p(ap) > mspadicinit flag] (t_VEC).
? Mp = mspadicinit(M,3,5,1);
? PHI = mstooms(Mp,phi);
```

**newtonpoly($p$)**

Gives the vector of the slopes of the Newton polygon of the polynomial $x$ with respect to the prime number $p$. The $n$ components of the vector are in decreasing order, where $n$ is equal to the degree of $x$. Vertical slopes occur if the constant coefficient of $x$ is zero and are denoted by $\pm\infty$.

**nextprime()**

Finds the smallest pseudoprime (see ispseudoprime) greater than or equal to $x$. $x$ can be of any real type. Note that if $x$ is a pseudoprime, this function returns $x$ and not the smallest pseudoprime strictly larger than $x$. To rigorously prove that the result is prime, use isprime.
nfalgtobasis($x$)

Given an algebraic number $x$ in the number field $nf$, transforms it to a column vector on the integral basis:

```pari
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfalgtobasis(nf, [1,1]~)
%3 = [1, 1]~
? nfalgtobasis(nf, y)
%4 = [0, 2]~
? nfalgtobasis(nf, Mod(y, y^2+4))
%5 = [0, 2]~
```

This is the inverse function of nfbasistoalg.

nfbasis($dK$)

Let $T(X)$ be an irreducible polynomial with integral coefficients. This function returns an integral basis of the number field defined by $T$, that is a $\mathbb{Z}$-basis of its maximal order. If present, $dK$ is set to the discriminant of the returned order. The basis elements are given as elements in $\mathbb{K} = \mathbb{Q}[X]/(T)$, in Hermite normal form with respect to the $\mathbb{Q}$-basis $(1, X, ..., X^{\deg T-1})$ of $K$, lifted to $\mathbb{Q}[X]$. In particular its first element is always 1 and its $i$-th element is a polynomial of degree $i - 1$ whose leading coefficient is the inverse of an integer: the product of those integers is the index of $\mathbb{Z}[X]/(T)$ in the maximal order $\mathbb{Z}_K$:

```pari
? nfbasis(x^2 + 4) \ \ Z[X]/(T) has index 2 in Z_K
%1 = [1, x/2]
? nfbasis(x^2 + 4, &D)
%2 = [1, x/2]
? D
%3 = -4
```

This function uses a modified version of the round 4 algorithm, due to David Ford, Sebastian Pauli and Xavier Roblot.

**Local basis, orders maximal at certain primes.**

Obtaining the maximal order is hard: it requires factoring the discriminant $D$ of $T$. Obtaining an order which is maximal at a finite explicit set of primes is easy, but it may then be a strict suborder of the maximal order. To specify that we are interested in a given set of places only, we can replace the argument $T$ by an argument $[T, listP]$, where $listP$ encodes the primes we are interested in: it must be a factorization matrix, a vector of integers or a single integer.

- **Vector**: we assume that it contains distinct `prime` numbers.
- **Matrix**: we assume that it is a two-column matrix of a (partial) factorization of $D$: namely the first column contains distinct `primes` and the second one the valuation of $D$ at each of these primes.
- **Integer $B$**: this is replaced by the vector of primes up to $B$. Note that the function will use at least $O(B)$ time: a small value, about $10^5$, should be enough for most applications. Values larger than $2^{32}$ are not supported.

In all these cases, the primes may or may not divide the discriminant $D$ of $T$. The function then returns a $\mathbb{Z}$-basis of an order whose index is not divisible by any of these prime numbers. The result may actually be a global integral basis, in particular if all the prime divisors of the `field` discriminant are included, but this is not guaranteed! Note that `nfinit` has built-in support for such a check:
The first line initializes a number field structure incorporating \texttt{nfbasis([T, listP])} in place of a proven integral basis. The second line certifies that the resulting structure is correct. This allows to create an \texttt{nf} structure attached to the number field $K = \mathbb{Q}[X]/(T)$, when the discriminant of $T$ cannot be factored completely, whereas the prime divisors of $\text{disc}_K$ are known. If present, the argument \texttt{dK} is set to the discriminant of the returned order, and is equal to the field discriminant if and only if the order is maximal.

Of course, if \texttt{listP} contains a single prime number $p$, the function returns a local integral basis for $\mathbb{Z}_p[X]/(T)$:

```plaintext
? nfbasis(x^2+x-1001)
%1 = [1, 1/3*x - 1/3]
? nfbasis([x^2+x-1001, [2]])
%2 = [1, x]
```

The following function computes the index $i_T$ of $\mathbb{Z}[X]/(T)$ in the order generated by the $\mathbb{Z}$-basis $B$:

```
nfbasisindex(T, B) = vecprod([denominator(pollead(Q)) | Q <- B]);
```

In particular, $B$ is a basis of the maximal order if and only if $\text{poldisc}(T)/i_T^2$ is equal to the field discriminant. More generally, this formula gives the square of index of the order given by $B$ in $\mathbb{Z}_K$. For instance, assume that $P$ is a vector of prime numbers containing (at least) all prime divisors of the field discriminant, then the following construct allows to provably compute the field discriminant and to check whether the returned basis is actually a basis of the maximal order

```plaintext
? B = nfbasis([T, P], &D);
? dK = sign(D) * vecprod([p^valuation(D,p) | p<-P]);
? dK * nfbasisindex(T, B)^2 == poldisc(T)
```

The variable \texttt{dK} contains the field discriminant and the last command returns 1 if and only if $B$ is a $\mathbb{Z}$-basis of the maximal order. Of course, the \texttt{nfinit/nfcertify} approach is simpler, but it is also more costly.

**The Buchmann-Lenstra algorithm.**

We now complicate the picture: it is in fact allowed to include composite numbers instead of primes in \texttt{listP} (Vector or Matrix case), provided they are pairwise coprime. The result may still be a correct integral basis if the field discriminant factors completely over the actual primes in the list; again, this is not guaranteed. Adding a composite $C$ such that $C^2$ divides $D$ may help because when we consider $C$ as a prime and run the algorithm, two good things can happen: either we succeed in proving that no prime dividing $C$ can divide the index (without actually needing to find those primes), or the computation exhibits a nontrivial zero divisor, thereby factoring $C$ and we go on with the refined factorization. (Note that including a $C$ such that $C^2$ does not divide $D$ is useless.) If neither happen, then the computed basis need not generate the maximal order. Here is an example:

```plaintext
? B = 10^5;
? listP = factor(poldisc(T), B); \ primes <= B dividing D + cofactor
? basis = nfbasis([T, listP], &D)
```

If the computed discriminant $D$ factors completely over the primes less than $B$ (together with the primes contained in the \texttt{addprimes} table), then everything is certified: $D$ is the field discriminant and \texttt{basis} generates the maximal order. This can be tested as follows:

```
F = factor(D, B); P = F[,1]; E = F[,2];
for (i = 1, #P,
 if (P[i] > B && !isprime(P[i]), warning("nf may be incorrect"));
```
This is a sufficient but not a necessary condition, hence the warning, instead of an error.

The function \texttt{nfcertify} speeds up and automates the above process:

```plaintext
? B = 10^5;
? nf = nfinit([T, B]);
? nfcertify(nf)
%3 = [] \ \ nf is unconditionally correct
? [basis, disc] = [nf.zk, nf.disc];
```

\texttt{nfbasistoalg}(x)

Given an algebraic number $x$ in the number field \texttt{nf}, transforms it into \texttt{t_POLMOD} form.

```plaintext
? nf = nfinit(y^2 + 4);
? nf.zk
%2 = [1, 1/2*y]
? nfbasistoalg(nf, [1,1]~)
%3 = Mod(1/2*y + 1, y^2 + 4)
? nfbasistoalg(nf, y)
%4 = Mod(y, y^2 + 4)
? nfbasistoalg(nf, Mod(y, y^2+4))
%5 = Mod(y, y^2 + 4)
```

This is the inverse function of \texttt{nfalgtobasis}.

\texttt{nfcertify}()

\texttt{nf} being as output by \texttt{nffinit}, checks whether the integer basis is known unconditionally. This is in particular useful when the argument to \texttt{nffinit} was of the form $[T, \text{listP}]$, specifying a finite list of primes when $p$-maximality had to be proven, or a list of coprime integers to which Buchmann-Lenstra algorithm was to be applied.

The function returns a vector of coprime composite integers. If this vector is empty, then \texttt{nf.zk} and \texttt{nf.disc} are correct. Otherwise, the result is dubious. In order to obtain a certified result, one must completely factor each of the given integers, then \texttt{addprime} each of their prime factors, then check whether \texttt{nfdisc(nf.pol)} is equal to \texttt{nf.disc}.

\texttt{ncompositum}(P, Q, flag)

Let \texttt{nf} be a number field structure attached to the field $K$ and let $P$ and $Q$ be squarefree polynomials in $K[X]$ in the same variable. Outputs the simple factors of the étale $K$-algebra $A = K[X,Y]/(P(X), Q(Y))$. The factors are given by a list of polynomials $R$ in $K[X]$, attached to the number field $K[X]/(R)$, and sorted by increasing degree (with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where $P$ and $Q$ are irreducible first. The routine will not perform this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case, there will be a single factor $R$ if and only if the number fields defined by $P$ and $Q$ are linearly disjoint (their intersection is $K$).

The binary digits of \texttt{flag} mean

1: outputs a vector of 4-component vectors $[R, a, b, k]$, where $R$ ranges through the list of all possible compositums as above, and $a$ (resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of $K[X]/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo $R$.

2: assume that $P$ and $Q$ define number fields that are linearly disjoint: both polynomials are irreducible and the corresponding number fields have no common subfield besides $K$. This allows to save a costly factorization over $K$. In this case return the single simple factor instead of a vector with one element.
A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work. Here is an example involving the field $K(\zeta_5, 5^{1/10})$, $K = \mathbb{Q}(\sqrt{5})$:

```plaintext
? K = nfinit(y^2-5);
? L = nfcompositum(K, x^5 - y, polcyclo(5), 1); \ list of [R,a,b,k]
? [R, a] = L[1]; \ pick the single factor, extract R,a (ignore b,k)
? lift(R) \ defines the compositum
%4 = x^10 + (-5/2*y + 5/2)*x^9 + (-5*y + 20)*x^8 + (-20*y + 30)*x^7 +
 (-45/2*y + 145/2)*x^6 + (-71/2*y + 121/2)*x^5 + (-20*y + 60)*x^4 +
 (-25*y + 5)*x^3 + 45*x^2 + (-5*y + 15)*x + (-2*y + 6)
? a^5 - y \ a fifth root of y
%5 = 0
? [T, X] = rnfpolredbest(K, R, 1);
? lift(T) \ simpler defining polynomial for K[x]/(R)
%7 = x^10 + (-11/2*y + 25/2)
? liftall(X) \ root of R in K[x]/(T(x))
%8 = (3/4*y + 7/4)*x^7 + (-1/2*y - 1)*x^5 + 1/2*x^2 + (1/4*y - 1/4)
? a = subst(a.pol, 'x, X); \ a in the new coordinates
? liftall(a)
%10 = (-3/4*y - 7/4)*x^7 - 1/2*x^2
? a^5 - y
%11 = 0
```

The main variables of $P$ and $Q$ must be the same and have higher priority than that of $nf$ (see `varhigher` and `varlower`).

**nfdetint(x)**

Given a pseudo-matrix $x$, computes a nonzero ideal contained in (i.e. multiple of) the determinant of $x$. This is particularly useful in conjunction with `nfhnfmod`.

**nfdisc()**

Field discriminant of the number field defined by the integral, preferably monic, irreducible polynomial $T(X)$. Returns the discriminant of the number field $\mathbb{Q}[X]/(T)$, using the Round 4 algorithm.

**Local discriminants, valuations at certain primes.**

As in `nfbasis`, the argument $T$ can be replaced by $[T, listP]$, where `listP` is as in `nfbasis`: a vector of pairwise coprime integers (usually distinct primes), a factorization matrix, or a single integer. In that case, the function returns the discriminant of an order whose basis is given by `nfbasis(T, listP)`, which need not be the maximal order, and whose valuation at a prime entry in `listP` is the same as the valuation of the field discriminant.

In particular, if `listP` is $[p]$ for a prime $p$, we can return the $p$-adic discriminant of the maximal order of $\mathbb{Z}_p[X]/(T)$, as a power of $p$, as follows:

```plaintext
? padicdisc(T,p) = p^valuation(nfdisc([T,[p]]), p);
? nfdisc(x^2 + 6)
%2 = -24
? padicdisc(x^2 + 6, 2)
%3 = 8
? padicdisc(x^2 + 6, 3)
%4 = 3
```

The following function computes the discriminant of the maximal order under the assumption that $P$ is a vector of prime numbers containing (at least) all prime divisors of the field discriminant:
CyPari2 Documentation, Release 2.1.3

```plaintext
globaldisc(T, P) =
{ my (D = nfdisc([T, P]));
 sign(D) * vecprod([p^valuation(D,p) | p <-P]);
}
? globaldisc(x^2 + 6, [2, 3, 5])
%1 = -24

nfdiscfactors()
Given a polynomial T with integer coefficients, return \([D, faD]\) where D is nfdisc(T) and faD is the factorization of \(|D|\). All the variants \([T, listP]\) are allowed (see ??nfdisc), in which case faD is the factorization of the discriminant underlying order (which need not be maximal at the primes not specified by listP) and the factorization may contain large composites.

```plaintext?
T = x^3 - 6021021*x^2 + 12072210077769*x - 8092423140177664432;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 500009, 2]
%2 = -6750243002187

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = nfdiscfactors(T); print(faD); D
[3, 3; 1000003, 2]
%4 = -27000162000243

? [D,faD] = nfdiscfactors([T, 10^3]); print(faD)
[3, 3; 125007125141751093502187, 2]
In the final example, we only get a partial factorization, which is only guaranteed correct at primes \( \leq 10^3 \).

The function also accept number field structures, for instance as output by nfininit, and returns the field discriminant and its factorization:

```plaintext?
T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? nf = nfininit(T); [D,faD] = nfdiscfactors(T); print(faD); D
%2 = -27000162000243
? nf.disc
%3 = -27000162000243

nfeltadd(x, y)
Given two elements x and y in nf, computes their sum \(x + y \) in the number field nf.

```plaintext?
? nf = nfininit(1+x^2);
? nfeltadd(nf, 1, x) \\ 1 + I
%2 = [1, 1]~

nfeldiv(x, y)  
Given two elements x and y in nf, computes their quotient \( x/y \) in the number field nf.

nfeldiveuc(x, y)  
Given two elements x and y in nf, computes an algebraic integer q in the number field nf such that the components of \( x - qy \) are reasonably small. In fact, this is functionally identical to round(nfdiv(\texttt{nf},x,y)).

nfeldivmodpr(x, y, pr)  
This function is obsolete, use nfmodpr.

Chapter 2. The Gen class wrapping PARI’s GEN type

668
Given two elements \( x \) and \( y \) in \( nf \) and \( pr \) a prime ideal in \texttt{modpr} format (see \texttt{nfmodprinit}), computes their quotient \( x/y \) modulo the prime ideal \( pr \).

\texttt{nfeltdivrem}(x, y)

Given two elements \( x \) and \( y \) in \( nf \), gives a two-element row vector \([q, r]\) such that \( x = qy + r \), \( q \) is an algebraic integer in \( nf \), and the components of \( r \) are reasonably small.

\texttt{nfeltembed}(x, pl, precision)

Given an element \( x \) in the number field \( nf \), return the (real or) complex embeddings of \( x \) specified by optional argument \( pl \), at the current \texttt{realprecision}:

- \( pl \) omitted: return the vector of embeddings at all \( r_1 + r_2 \) places;
- \( pl \) an integer between 1 and \( r_1 + r_2 \): return the \( i \)-th embedding of \( x \), attached to the \( i \)-th root of \( nf\texttt{.pol} \), i.e. \texttt{nf.roots}:

\[ \texttt{nf.roots:math} \[i\] \]
- \( pl \) a vector or \texttt{t_VECsmall}: return the vector of embeddings; the \( i \)-th entry gives the embedding at the place attached to the \( pl[i] \)-th real root of \( nf\texttt{.pol} \).

\begin{verbatim}
? nf = nfinit('y^3 - 2);
? nf.sign
%2 = [1, 1]
? nfeltembed(nf, 'y)
%3 = [1.25992[...], -0.62996[...]+1.09112[...]*I]
? nfeltembed(nf, 'y, 1)
%4 = 1.25992[...

? nfeltembed(nf, 'y, 3) \<< there are only 2 arch. places
*** at top-level: nfeltembed(nf,'y,3)
*** ^-----------------
*** nfeltembed: domain error in nfeltembed: index > 2
\end{verbatim}

\texttt{nfeltmod}(x, y)

Given two elements \( x \) and \( y \) in \( nf \), computes an element \( r \) of \( nf \) of the form \( r = x - qy \) with \( q \) and algebraic integer, and such that \( r \) is small. This is functionally identical to

\[
x - nfmul(nf, round(nfdiv(nf,x,y)), y).
\]

\texttt{nfeltmul}(x, y)

Given two elements \( x \) and \( y \) in \( nf \), computes their product \( x \ast y \) in the number field \( nf \).

\texttt{nfeltmulmodpr}(x, y, \texttt{pr})

This function is obsolete, use \texttt{nfmodpr}.

Given two elements \( x \) and \( y \) in \( nf \) and \( pr \) a prime ideal in \texttt{modpr} format (see \texttt{nfmodprinit}), computes their product \( x \ast y \) modulo the prime ideal \( pr \).

\texttt{nfeltnorm}(x)

Returns the absolute norm of \( x \).

\texttt{nfeltpow}(x, k)

Given an element \( x \) in \( nf \), and a positive or negative integer \( k \), computes \( x^k \) in the number field \( nf \).

\texttt{nfeltpowmodpr}(x, k, \texttt{pr})

This function is obsolete, use \texttt{nfmodpr}.

Given an element \( x \) in \( nf \), an integer \( k \) and a prime ideal \( pr \) in \texttt{modpr} format (see \texttt{nfmodprinit}), computes \( x^k \) modulo the prime ideal \( pr \).
**nfeltreduce** \((a, id)\)
Given an ideal \(id\) in Hermite normal form and an element \(a\) of the number field \(nf\), finds an element \(r\) in \(nf\) such that \(a - r\) belongs to the ideal and \(r\) is small.

**nfeltreducemodpr** \((x, pr)\)
This function is obsolete, use \(nfmodpr\).

Given an element \(x\) of the number field \(nf\) and a prime ideal \(pr\) in \(modpr\) format compute a canonical representative for the class of \(x\) modulo \(pr\).

**nfeltsign** \((x, pl)\)
Given an element \(x\) in the number field \(nf\), returns the signs of the real embeddings of \(x\) specified by optional argument \(pl\):
- \(pl\) omitted: return the vector of signs at all \(r_1\) real places;
- \(pl\) an integer between 1 and \(r_1\): return the sign of the \(i\)-th embedding of \(x\), attached to the \(i\)-th real root of \(nf.pol\), i.e. \(nf.roots:math: `[i]`;
- \(pl\) a vector or \(t\_VECSMALL\): return the vector of signs; the \(i\)-th entry gives the sign at the real place attached to the \(pl[i]\)-th real root of \(nf.pol\).

```plaintext
? nf = nfinit(polsubcyclo(11,5,'y')); \ \ Q(cos(2 pi/11))
? nf.sign
%2 = [5, 0]
? x = Mod('y, nf.pol);
? nfeltsign(nf, x)
%4 = [-1, -1, -1, 1, 1]
? nfeltsign(nf, x, 1)
%5 = -1
? nfeltsign(nf, x, [1..4])
%6 = [-1, -1, -1, 1]
? nfeltsign(nf, x, 6) \ \ there are only 5 real embeddings
*** at top-level: nfeltsign(nf,x,6)
*** ^-----------------
*** nfeltsign: domain error in nfeltsign: index > 5
```

**nfelttrace** \((x)\)
Returns the absolute trace of \(x\).

**nfeltval** \((x, pr, y)\)
Given an element \(x\) in \(nf\) and a prime ideal \(pr\) in the format output by \(idealprimedec\), computes the valuation \(v\) at \(pr\) of the element \(x\). The valuation of 0 is +oo.

```plaintext
? nf = nfinit(x^2 + 1);
? P = idealprimedec(nf, 2)[1];
? nfeltval(nf, x+1, P)
%3 = 1
```

This particular valuation can also be obtained using \(idealval Công:\ `nf,x,Cong:prime:pr\)\), since \(x\) is then converted to a principal ideal.

If the \(y\) argument is present, sets \(y = xτ\), where \(τ\) is a fixed “anti-uniformizer” for \(pr\); its valuation at \(pr\) is \(-1\); its valuation is 0 at other prime ideals dividing \(prime:pr\) and nonnegative at all other primes. In other words \(y\) is the part of \(x\) coprime to \(pr\). If \(x\) is an algebraic integer, so is \(y\).
\begin{verbatim}
? nfeltval(nf, x+1, P, &y); y
%4 = [0, 1]~
\end{verbatim}

For instance if \( x = \prod_i x_i^{e_i} \) is known to be coprime to \( pr \), where the \( x_i \) are algebraic integers and \( e_i \in \mathbb{Z} \) then, if \( v_i = nfeltval(nf, x_i, pr, y_i) \), we still have \( x = \prod_i y_i^{e_i} \), where the \( y_i \) are still algebraic integers but now all of them are coprime to \( pr \). They can then be mapped to the residue field of \( pr \) more efficiently than if the product had been expanded beforehand: we can reduce mod \( pr \) after each ring operation.

**nffactor**(\( T \))

Factorization of the univariate polynomial (or rational function) \( T \) over the number field \( nf \) given by \texttt{nffinit}; \( T \) has coefficients in \( nf \) (i.e. either scalar, polmod, polynomial or column vector). The factors are sorted by increasing degree.

The main variable of \( nf \) must be of lower priority than that of \( T \), see \texttt{priority} (in the PARI manual). However if the polynomial defining the number field occurs explicitly in the coefficients of \( T \) as modulus of a \texttt{t_POLMOD} or as a \texttt{t_POL} coefficient, its main variable must be the same as the main variable of \( T \). For example,

\begin{verbatim}
? nf = nfinit(y^2 + 1);
? nffactor(nf, x^2 + y); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ OK
? nffactor(nf, x^2 + Mod(y, y^2+1)); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ OK
? nffactor(nf, x^2 + Mod(z, z^2+1)); \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ WRONG
\end{verbatim}

It is possible to input a defining polynomial for \( nf \) instead, but this is in general less efficient since parts of an \( nf \) structure will then be computed internally. This is useful in two situations: when you do not need the \( nf \) elsewhere, or when you cannot initialize an \( nf \) due to integer factorization difficulties when attempting to compute the field discriminant and maximal order. In all cases, the function runs in polynomial time using Belabas’s variant of van Hoeij’s algorithm, which copes with hundreds of modular factors.

**Caveat.** \texttt{nffactor([T, listP])} allows to compute in polynomial time a conditional \( nf \) structure, which sets \texttt{nf.zk} to an order which is not guaranteed to be maximal at all primes. Always either use \texttt{nfcertify} first (which may not run in polynomial time) or make sure to input \texttt{nf.pol} instead of the conditional \texttt{nf}: \texttt{nffactor} is able to recover in polynomial time in this case, instead of potentially missing a factor.

**nffactorback**(\( f, e \))

Gives back the \( nf \) element corresponding to a factorization. The integer 1 corresponds to the empty factorization.

If \( e \) is present, \( e \) and \( f \) must be vectors of the same length (\( e \) being integral), and the corresponding factorization is the product of the \( f[i]^{e[i]} \).

If not, and \( f \) is vector, it is understood as in the preceding case with \( e \) a vector of 1s: we return the product of the \( f[i] \). Finally, \( f \) can be a regular factorization matrix.

\begin{verbatim}
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
\end{verbatim}

**nffactormod**(\( Q, pr \))

This routine is obsolete, use \texttt{nfmodpr} and \texttt{factormod}.

Factors the univariate polynomial \( Q \) modulo the prime ideal \( pr \) in the number field \( nf \). The coefficients of \( Q \) belong to the number field (scalar, polmod, polynomial, even column vector) and the main variable of \( nf \) must be of lower priority than that of \( Q \) (see \texttt{priority} (in the PARI manual)). The prime ideal \( pr \) is either in \texttt{idealprimedec} or (preferred) \texttt{modprinit} format. The coefficients of the polynomial factors are lifted to elements of \( nf \):

\begin{verbatim}
? nf = nfinit(y^2+1);
? nffactorback(nf, [3, y+1, [1,2]~], [1, 2, 3])
%2 = [12, -66]~
? 3 * (I+1)^2 * (1+2*I)^3
%3 = 12 - 66*I
\end{verbatim}
\[ K = \text{nfinit}(y^2 + 1); \]
\[ P = \text{idealprimedec}(K, 3)[1]; \]
\[ \text{nffactor}(K, x^2 + y^2 + 18y + 1, P) \]
\[ \%3 = \]
\[ [x + (2y + 1), 1] \]
\[ [x + (2y + 2), 1] \]
\[ \text{P = nfmodprinit}(K, P); \quad \text{convert to nfmodprinit format} \]
\[ \text{nffactor}(K, x^2 + y^2 + 18y + 1) \]
\[ \%5 = \]
\[ [x + (2y + 1), 1] \]
\[ [x + (2y + 2), 1] \]

Same result, of course, here about 10% faster due to the precomputation.

\text{nfgaloisapply}(\text{aut}, \text{x})

Let \( n/f \) be a number field as output by \text{nfini}, and let \text{aut} be a Galois automorphism of \( n/f \) expressed by its image on the field generator (such automorphisms can be found using \text{nfgaloisconj}). The function computes the action of the automorphism \text{aut} on the object \( x \) in the number field; \( x \) can be a number field element, or an ideal (possibly extended). Because of possible confusion with elements and ideals, other vector or matrix arguments are forbidden.

\[ \% NF = \text{nfini}(x^2 + 1); \]
\[ \% L = \text{nfgaloisconj}(NF) \]
\[ \% 2 = [-x, x]^{\sim} \]
\[ \% AUT = L[1]; /* the nontrivial automorphism */ \]
\[ \% \text{nfgaloisapply}(NF, AUT, x) \]
\[ \% 4 = \text{Mod}(-x, x^2 + 1) \]
\[ \% P = \text{idealprimedec}(NF, 5); /* prime ideals above 5 */ \]
\[ \% nfgaloisapply(NF, AUT, P[2]) == P[1] \]
\[ \% 6 = \emptyset \quad \text{!!!} \]
\[ \% \text{idealval}(NF, nfgaloisapply(NF, AUT, P[2]), P[1]) \]
\[ \% 7 = 1 \]

The surprising failure of the equality test (\%7) is due to the fact that although the corresponding prime ideals are equal, their representations are not. (A prime ideal is specified by a uniformizer, and there is no guarantee that applying automorphisms yields the same elements as a direct \text{idealprimedec} call.)

The automorphism can also be given as a column vector, representing the image of \text{Mod}(x, nf.pol) as an algebraic number. This last representation is more efficient and should be preferred if a given automorphism must be used in many such calls.

\[ \% NF = \text{nfini}(x^3 - 37x^2 + 74x - 37); \]
\[ \% AUT = \text{nfgaloisconj}(NF)[2]; \quad \text{an automorphism in basistoalg form} \]
\[ \% 2 = -31/11*x^2 + 1109/11*x - 925/11 \]
\[ \% AUT = \text{nfgaloisconj}(NF)[2]; \quad \text{same in algtobasis form} \]
\[ \% 3 = [16, -6, 5]^{\sim} \]
\[ \% v = [1, 2, 3]^{\sim}; \quad \text{nfgaloisapply}(NF, AUT, v) == \text{nfgaloisapply}(NF, AUT, v) \]
\[ \% 4 = 1 \quad \text{same result...} \]
\[ \% \text{for } (i=1, 10^5, \text{nfgaloisapply}(NF, AUT, v)) \]
\[ \quad \text{time} = 463 \text{ ms.} \]
\[ \% \text{for } (i=1, 10^5, \text{nfgaloisapply}(NF, AUT, v)) \]
\[ \quad \text{time} = 343 \text{ ms.} \quad \text{but the latter is faster} \]
nfgaloisconj (flag, d, precision)

nf being a number field as output by nfinit, computes the conjugates of a root \( r \) of the nonconstant polynomial \( x = nf[1] \) expressed as polynomials in \( r \). This also makes sense when the number field is not Galois since some conjugates may lie in the field. \( nf \) can simply be a polynomial.

If no flags or \( flag = 0 \), use a combination of flag 4 and 1 and the result is always complete. There is no point whatsoever in using the other flags.

If \( flag = 1 \), use nfroots: a little slow, but guaranteed to work in polynomial time.

If \( flag = 4 \), use galoisinit: very fast, but only applies to (most) Galois fields. If the field is Galois with weakly super-solvable Galois group (see galoisinit), return the complete list of automorphisms, else only the identity element. If present, \( d \) is assumed to be a multiple of the least common denominator of the conjugates expressed as polynomial in a root of \( pol \).

This routine can only compute \( \mathbb{Q} \)-automorphisms, but it may be used to get \( K \)-automorphism for any base field \( K \) as follows:

\[
\text{rnfgaloisconj}(\text{nK}, R) = \{ \text{K-automorphisms of } L = K[X] / (R) \}
\]

\[
\{ \text{my(polabs, N, al, S, ala, k, vR);} \\text{R *= Mod(1, nK.pol); // convert coeffs to polmod elts of K} \\text{vR = variable(R);} \\text{al = Mod(variable(nK.pol),nK.pol);} \\text{[polabs,ala,k] = rnfequation(nK, R, 1);} \\text{Rt = if(k==0,R,subst(R,vR,vR-al*k));} \\text{N = nfgaloisconj(polabs) % Rt; \{ Q-automorphisms of L} \\text{S = select(s->subst(Rt, vR, Mod(s,Rt)) == 0, N);} \\text{if (k==0, S, apply(s->subst(s,vR,vR+k*al)-k*al,S));}
\}
\]

\[
K = \text{nfinit}(y^2 + 7); \\text{rnfgaloisconj(K, x^4 - y*x^3 - 3*x^2 + y*x + 1) \{ K-automorphisms of L} \}
\]

nfgrunwaldwang (Lpr, Ld, pl, v)

Given \( nf \) a number field in \( nf \) or \( bnf \) format, a \text{t_VEC} \( Lpr \) of primes of \( nf \) and a \text{t_VEC} \( Ld \) of positive integers of the same length, a \text{t_VECSMALL} \( pl \) of length \( r_1 \) the number of real places of \( nf \), computes a polynomial with coefficients in \( nf \) defining a cyclic extension of \( nf \) of minimal degree satisfying certain local conditions:

- at the prime \( Lpr[i] \), the extension has local degree a multiple of \( Ld[i] \);
- at the \( i \)-th real place of \( nf \), it is complex if \( pl[i] = -1 \) (no condition if \( pl[i] = 0 \)).

The extension has degree the LCM of the local degrees. Currently, the degree is restricted to be a prime power for the search, and to be prime for the construction because of the \text{rnfkummer} restrictions.

When \( nf \) is \( \mathbb{Q} \), prime integers are accepted instead of prid structures. However, their primality is not checked and the behavior is undefined if you provide a composite number.

**Warning.** If the number field \( nf \) does not contain the \( n \)-th roots of unity where \( n \) is the degree of the extension to be computed, the function triggers the computation of the bnf of \( nf(\zeta_n) \), which may be costly.

\[
? nf = \text{nfinit}(y^2-5); \\text{? pr = idealprimedec(nf,13)[1];} \\text{? pol = nfgrunwaldwang(nf, [pr], [2], [0,-1], 'x)} \\text{\%3 = x^2 + Mod(3/2*y + 13/2, y^2 - 5)}
\]

nfhilbert (a, b, pr)

If \( pr \) is omitted, compute the global quadratic Hilbert symbol \((a, b)\) in \( nf \), that is 1 if \( x^2 - ay^2 - bz^2 \) has a non
trivial solution \((x, y, z)\) in \(n f\), and \(-1\) otherwise. Otherwise compute the local symbol modulo the prime ideal \(p r\), as output by \texttt{idealprimedec}.

\texttt{nfhnf}(x, \texttt{flag})

Given a pseudo-matrix \((A, I)\), finds a pseudo-basis \((B, J)\) in Hermite normal form of the module it generates. If \texttt{flag} is nonzero, also return the transformation matrix \(U\) such that \(AU = [0] B\).

\texttt{nfhnmod}(x, \texttt{dext})

Given a pseudo-matrix \((A, I)\) and an ideal \texttt{dext} which is contained in (read integral multiple of) the determinant of \((A, I)\), finds a pseudo-basis in Hermite normal form of the module generated by \((A, I)\). This avoids coefficient explosion. \texttt{dext} can be computed using the function \texttt{nfdetint}.

\texttt{nfinite}(\texttt{flag}, \texttt{precision})

\texttt{pol}\ being a nonconstant irreducible polynomial in \(\mathbb{Q}[X]\), preferably monic and integral, initializes a \textit{number field} structure \((n f)\) attached to the field \(K\) defined by \texttt{pol}. As such, it’s a technical object passed as the first argument to most \texttt{nfxxx} functions, but it contains some information which may be directly useful. Access to this information via \textit{member functions} is preferred since the specific data organization given below may change in the future. Currently, \(n f\) is a row vector with 9 components:

- \texttt{nf[1]} contains the polynomial \texttt{pol} (:emphasis:`nf.pol`).
- \texttt{nf[2]} contains \([r1, r2]` (:emphasis:`nf.sign`, :emphasis:`nf.r1`, :emphasis:`nf.r2`), the number of real and complex places of \(K\).
- \texttt{nf[3]} contains the discriminant \(d(K)` (:emphasis:`nf.disc`) of \(K\).
- \texttt{nf[4]} contains the index of \texttt{nf[1]}` (:emphasis:`nf.index`), i.e. \([Z_K : Z[\theta]]\), where \(\theta\) is any root of \texttt{nf[1]}.
- \texttt{nf[5]} is a vector containing 7 matrices \(M, G, \text{roundG}, T, MD, TI, MDI\) and a vector \(vP\) defined as follows:
  - *\(M\) is the \((r1 + r2) \times n\) matrix whose columns represent the numerical values of the conjugates of the elements of the integral basis.\
  - *\(G\) is an \(n \times n\) matrix such that \(T2 = T^T G\), where \(T2\) is the quadratic form \(T2(x) = \sum \|\sigma(x)\|^2, \sigma\) running over the embeddings of \(K\) into \(\mathbb{C}\).\
  - *\text{roundG}\) is a rescaled copy of \(G\), rounded to nearest integers.\
  - *\(T\) is the \(n \times n\) matrix whose coefficients are \(Tr(\omega_i \omega_j)\) where the \(\omega_i\) are the elements of the integral basis. Note also that \(det(T)\) is equal to the discriminant of the field \(K\). Also, when understood as an ideal, the matrix \(T^{-1}\) generates the codifferent ideal.\
  - *The columns of \(MD` (:emphasis:`nf.diff`) express a \(Z\)-basis of the different of \(K\) on the integral basis.\
  - *\(TI\) is equal to the primitive part of \(T^{-1}\), which has integral coefficients.\
  - *\(MDI\) is a two-element representation (for faster ideal product) of \(d(K)\) times the codifferent ideal (:emphasis:`nf.diff`; `*nf.codiff`, which is an integral ideal). This is used in \texttt{idealinv}.\
  - *\(vP\) is the list of prime divisors of the field discriminant, i.e. the ramified primes (:emphasis:`nf.p`); \texttt{nfdiscfactors(nf)} is the preferred way to access that information.
- \texttt{nf[6]} is the vector containing the \(r1 + r2\) roots (:emphasis:`nf.roots`) of \texttt{nf[1]} corresponding to the \(r1 + r2\) embeddings of the number field into \(\mathbb{C}\) (the first \(r1\) components are real, the next \(r2\) have positive imaginary part).
- \texttt{nf[7]} is a \(Z\)-basis for \(dZ_K\), where \(d = [Z_K : Z[\theta]]\), expressed on the powers of \(\theta\). The multiplication by \(d\) ensures that all polynomials have integral coefficients and \texttt{nf[7]/d` (:emphasis:`nf.zk`) is an integral basis for \(Z_K\). Its first element is guaranteed to be 1. This basis is LLL-reduced with respect to \(T2\) (strictly speaking, it is a permutation of such a basis, due to the condition that the first element be 1).\
- \texttt{nf[8]} is the \(n \times n\) integral matrix expressing the power basis in terms of the integral basis, and finally\n- \texttt{nf[9]} is the \(n \times n^2\) matrix giving the multiplication table of the integral basis.
If a non monic or non integral polynomial is input, `nfinit` will transform it, and return a structure attached to the new (monic integral) polynomial together with the attached change of variables, see `flag = 3`. It is allowed, though not very useful given the existence of `nfnewprec`, to input a `nf` or a `bnf` instead of a polynomial. It is also allowed to input a `rnf`, in which case an `nf` structure attached to the absolute defining polynomial `polabs` is returned (`flag` is then ignored).

```pari
? nf = nfinit(x^3 - 12); \\ initialize number field Q[X] / (X^3 - 12)
? nf.pol \\ defining polynomial
%2 = x^3 - 12
? nf.disc \\ field discriminant
%3 = -972
? nf.index \\ index of power basis order in maximal order
%4 = 2
? nf.zk \\ integer basis, lifted to Q[X]
%5 = [1, x, 1/2*x^2]
? nf.sign \\ signature
%6 = [1, 1]
? factor(abs(nf.disc)) \\ determines ramified primes
%7 =
[2 2]
[3 5]
? idealfactor(nf, 2)
%8 =
[[2, [0, 0, -1]^~], 3, 1, [0, 1, 0]^~] 3 \\ p_2^3
```

### Huge discriminants, helping `nfdisc`.

In case `pol` has a huge discriminant which is difficult to factor, it is hard to compute from scratch the maximal order. The following special input formats are also accepted:

- `[pol, B]` where `pol` is a monic integral polynomial and `B` is the lift of an integer basis, as would be computed by `nfbasis`: a vector of polynomials with first element 1 (implicitly modulo `pol`). This is useful if the maximal order is known in advance.

- `[pol, B, P]` where `pol` and `B` are as above (a monic integral polynomial and the lift of an integer basis), and `P` is the list of ramified primes in the extension.

- `[pol, listP]` where `pol` is a rational polynomial and `listP` specifies a list of primes as in `nfbasis`. Instead of the maximal order, `nfinit` then computes an order which is maximal at these particular primes as well as the primes contained in the private prime table, see `addprimes`. The result has a good chance of being correct when the discriminant `nf.disc` factors completely over this set of primes but this is not guaranteed. The function `nfcertify` automates this:

```pari
? pol = polcompositum(x^5 - 101, polcyclo(7))[1];
? nf = nfinit([pol, 10^3]);
? nfcertify(nf)
%3 = []
```

A priori, `nf.zk` defines an order which is only known to be maximal at all primes $\leq 10^3$ (no prime $\leq 10^3$ divides `nf.index`). The certification step proves the correctness of the computation. Had it failed, that particular `nf` structure could not have been trusted and may have caused routines using it to fail randomly. One particular function that remains trustworthy in all cases is `idealprimedec` when applied to a prime included in the above list of primes or, more generally, a prime not dividing any entry in `nfcertify` output.

If `flag = 2`: `pol` is changed into another polynomial `P` defining the same number field, which is as simple as can easily be found using the `polredbest` algorithm, and all the subsequent computations are done using this new
polynomial. In particular, the first component of the result is the modified polynomial.

If \( \text{flag} = 3 \), apply \texttt{polredbest} as in case 2, but outputs \([\text{n}f, \text{Mod}(a, P)]\), where \( \text{n}f \) is as before and \( \text{Mod}(a, P) = \text{Mod}(x, \text{pol}) \) gives the change of variables. This is implicit when \( \text{pol} \) is not monic or not integral: first a linear change of variables is performed, to get a monic integral polynomial, then \texttt{polredbest}.

\texttt{nfisideal}(x)

Returns 1 if \( x \) is an ideal in the number field \( n\text{f} \), 0 otherwise.

\texttt{nfisincl}(g, \text{flag})

Let \( f \) and \( g \) define number fields, where \( f \) and \( g \) are irreducible polynomials in \( \mathbb{Q}[X] \) and \( n\text{f} \) structures as output by \texttt{nfinit}. Tests whether the number field \( f \) is conjugate to a subfield of the field \( g \). If they are not, the output is the integer 0. If they are, the output is a vector of polynomials (\( \text{flag} = 0 \), default) or a single polynomial \( \text{flag} = 1 \), each polynomial \( a \) representing an embedding i.e. being such that \( g \| f \circ a \). If either \( f \) or \( g \) is not irreducible, the result is undefined.

\[
\begin{align*}
\text{?} & \quad T = x^6 + 3x^4 - 6x^3 + 3x^2 + 18x + 10; \\
\text{?} & \quad U = x^3 + 3x^2 + 3x - 2 \\
\text{?} & \quad v = \text{nfisincl}(U, T); \\
\text{?} & \quad v = [24/179*x^5-27/179*x^4+80/179*x^3-234/179*x^2+380/179*x+94/179] \\
\text{?} & \quad \text{subst}(U, x, \text{Mod}(v[1],T)) \\
\text{?} & \quad \text{Mod}(0, x^6 + 3x^4 - 6x^3 + 3x^2 + 18x + 10) \\
\text{?} & \quad \#\text{nfisincl}(x^2+1, T) \, \text{\textbackslash\backslash\ two\ embeddings} \\
\text{?} & \quad 4 = 2 \\
\text{\textbackslash\backslash\ same\ result\ with\ nf\ structures} \\
\text{?} & \quad \text{nfisincl}(U, L = \text{nfinit}(T)) == v \\
\text{?} & \quad 5 = 1 \\
\text{?} & \quad \text{nfisincl}(K = \text{nfinit}(U), T) == v \\
\text{?} & \quad 6 = 1 \\
\text{?} & \quad \text{nfisincl}(K, L) == v \\
\text{?} & \quad 7 = 1 \\
\text{\textbackslash\backslash\ comparative\ bench:\ an\ nf\ is\ a\ little\ faster,\ esp.\ for\ the\ subfield} \\
\text{?} & \quad B = 10^3; \\
\text{?} & \quad \text{for}(i=1, B, \text{nfisincl}(U,T)) \\
\text{?} & \quad \text{time = 712 ms.} \\
\text{?} & \quad \text{for}(i=1, B, \text{nfisincl}(K,T)) \\
\text{?} & \quad \text{time = 485 ms.} \\
\text{?} & \quad \text{for}(i=1, B, \text{nfisincl}(U,L)) \\
\text{?} & \quad \text{time = 704 ms.} \\
\text{?} & \quad \text{for}(i=1, B, \text{nfisincl}(K,L)) \\
\text{?} & \quad \text{time = 465 ms.} \\
\end{align*}
\]

Using an \( n\text{f} \) structure for the potential subfield is faster if the structure is already available. On the other hand, the gain in \texttt{nfisincl} is usually not sufficient to make it worthwhile to initialize only for that purpose.

\[
\begin{align*}
\text{?} & \quad \text{for}(i=1, B, \text{nfini}(U)) \\
\text{?} & \quad \text{time = 308 ms.} \\
\end{align*}
\]
nfisisom($g$)  
As nfisincl, but tests for isomorphism. More efficient if $f$ or $g$ is a number field structure.

```
? f = x^6 + 30*x^5 + 495*x^4 + 1870*x^3 + 16317*x^2 - 22560*x + 59648;
? g = x^6 + 42*x^5 + 999*x^4 + 8966*x^3 + 36117*x^2 + 21768*x + 159332;
? h = x^6 + 30*x^5 + 351*x^4 + 2240*x^3 + 10311*x^2 + 35466*x + 58321;

? #nfisisom(f,g) \ \two isomorphisms
%3 = 2
? nfisisom(f,h) \ \not isomorphic
%4 = 0
```

\begin{verbatim}
\ \comparative bench
? K = nfinit(f); L = nfinit(g); B = 10^3;
? for (i=1, B, nfisisom(f,g))
  time = 6,124 ms.
? for (i=1, B, nfisisom(K,g))
  time = 3,356 ms.
? for (i=1, B, nfisisom(f,L))
  time = 3,204 ms.
? for (i=1, B, nfisisom(K,L))
  time = 3,173 ms.
\end{verbatim}

The function is usually very fast when the fields are nonisomorphic, whenever the fields can be distinguished via a simple invariant such as degree, signature or discriminant. It may be slower when the fields share all invariants, but still faster than computing actual isomorphisms:

```
\ \usually very fast when the answer is \ 'no':
? for (i=1, B, nfisisom(f,h))
 time = 32 ms.
\ \but not always
? u = x^6 + 12*x^5 + 6*x^4 - 377*x^3 - 714*x^2 + 5304*x + 15379
? v = x^6 + 12*x^5 + 60*x^4 + 166*x^3 + 708*x^2 + 6600*x + 23353
? nfisisom(u,v)
%13 = 0
? polsturm(u) == polsturm(v)
%14 = 1
? nfdisc(u) == nfdisc(v)
%15 = 1
? for(i=1,B, nfisisom(u,v))
 time = 1,821 ms.
? K = nfinit(u); L = nfinit(v);
? for(i=1,B, nfisisom(K,v))
 time = 232 ms.
```

nfislocalpower($pr, a, n$)

Let $nf$ be a $nf$ structure attached to a number field $K$, let $a \in K$ and let $pr$ be a $prid$ structure attached to a maximal ideal $v$. Return 1 if $a$ is an $n$-th power in the completed local field $K_v$, and 0 otherwise.

```
? K = nfinit(y^2+1);
? P = idealprimedec(K,2)[1]; \ \the ramified prime above 2
? nfislocalpower(K,P,-1, 2) \ \ -1 is a square
%3 = 1
```

(continues on next page)
? nfislocalpower(K,P,-1, 4) \ ... but not a 4-th power
%4 = 0
? nfislocalpower(K,P,2, 2) \ 2 is not a square
%5 = 0
? Q = idealprimedec(K,5)[1]; \ a prime above 5
? nfislocalpower(K,Q, [0, 32], 30) \ 32*I is locally a 30-th power
%7 = 1

\textbf{nfkermodpr}(x, pr)

This function is obsolete, use \texttt{nfmodpr}.

Kernel of the matrix $a$ in $\mathbb{Z}_K/pr$, where $pr$ is in \texttt{modpr} format (see \texttt{nfmodprinit}).

\textbf{nfmodpr}(x, pr)

Map $x$ to a \texttt{t\_FFELT} in the residue field modulo $pr$. The argument $pr$ is either a maximal ideal in \texttt{idealprimedec} format or, preferably, a \texttt{modpr} structure from \texttt{nfmodprinit}. The function \texttt{nfmodprlift} allows to lift back to $\mathbb{Z}_K$.

Note that the function applies to number field elements and not to vector / matrices / polynomials of such. Use \texttt{apply} to convert recursive structures.

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
? K.index
%7 = 125

For clarity, we represent elements in the residue field $\mathbb{F}_5[t]/(T)$ as polynomials in the variable $t$. Whenever the underlying rational prime does not divide $K.index$, it is actually the case that $t$ is the reduction of $y$ in $\mathbb{Q}[y]/(K.pol)$ modulo an irreducible factor of $K.pol$ over $\mathbb{F}_p$. In the above example, 5 divides the index and $t$ is actually the reduction of $y/5$.

\textbf{nfmodprinit}(pr, v)

Transforms the prime ideal $pr$ into \texttt{modpr} format necessary for all operations modulo $pr$ in the number field $nf$. The functions \texttt{nfmodpr} and \texttt{nfmodprlift} allow to project to and lift from the residue field. The variable $v$ is used to display finite field elements (see \texttt{ffgen}).

? K = nfinit(y^3-250);
? P = idealprimedec(K, 5)[2];
? modP = nfmodprinit(K, P, 't);
? K.zk
%4 = [1, 1/5*y, 1/25*y^2]
? apply(t->nfmodpr(K,t,modP), K.zk)
%5 = [1, t, 2*t + 1]
? %[1].mod
%6 = t^2 + 3*t + 4
For clarity, we represent elements in the residue field \( \mathbb{F}_5[t]/(T) \) as polynomials in the variable \( t \). Whenever the underlying rational prime does not divide \( K.index \), it is actually the case that \( t \) is the reduction of \( y \) in \( \mathbb{Q}[y]/(K.pol) \) modulo an irreducible factor of \( K.pol \) over \( \mathbb{F}_p \). In the above example, \( 5 \) divides the index and \( t \) is actually the reduction of \( y/5 \).

\[
\text{nfmodprlift}(x, pr)
\]

Lift the \( t\_\text{FFELT} \) \( x \) (from \( \text{nfmodpr} \)) in the residue field modulo \( pr \) to the ring of integers. Vectors and matrices are also supported. For polynomials, use \text{apply} \) and the present function.

The argument \( pr \) is either a maximal ideal in \( \text{idealprimedec} \) format or, preferably, a \( \text{modpr} \) structure from \( \text{nfmodprinit} \). There are no compatibility checks to try and decide whether \( x \) is attached the same residue field as defined by \( pr \): the result is undefined if not.

The function \( \text{nfmodpr} \) allows to reduce to the residue field.

\[
\text{nfnewprec}(\text{precision})
\]

Transforms the number field \( nf \) into the corresponding data using current (usually larger) precision. This function works as expected if \( nf \) is in fact a \( \text{bnf} \) or a \( \text{bnr} \) (update structure to current precision). If the original \( \text{bnf} \) structure was \textit{not} computed by \( \text{bnfinit}(,1) \), then this may be quite slow and even fail: many generators of principal ideals have to be computed and the algorithm may fail because the accuracy is not sufficient to bootstrap the required generators and fundamental units.

\[
\text{nfpolsturm}(T, pl)
\]

Given a polynomial \( T \) with coefficients in the number field \( nf \), returns the number of real roots of the \( s(T) \) where \( s \) runs through the real embeddings of the field specified by optional argument \( pl \):

- \( pl \) omitted: all \( r_1 \) real places;
- \( pl \) an integer between 1 and \( r_1 \): the embedding attached to the \( i \)-th real root of \( nf.pol \), i.e. \( nf.\text{roots}[\mathbb{R}^i] \);
- \( pl \) a vector or \( t\_\text{VECSMALL} \): the embeddings attached to the \( pl[i] \)-th real roots of \( nf.pol \).

\[
\text{nfnewprec(2)}
\]

\[
\text{nfpolsturm(nf, T, 1) \ \text{\&\&\& \ subst(T,y,sqrt(2)) has two real roots}
\]

(continues on next page)
%5 = 2
? nfpolsturm(nf, T, 2) \ subst(T,y,-sqrt(2)) has no real root
%6 = 0
? nfpolsturm(nf, T) \ all embeddings together
%7 = [2, 0]
? nfpolsturm(nf, T, [2,1]) \ second then first embedding
%8 = [0, 2]
? nfpolsturm(nf, x^3) \ number of distinct roots !
%9 = [1, 1]
? nfpolsturm(nf, x, 6) \ there are only 2 real embeddings !
*** at top-level: nfpolsturm(nf,x,6)
*** ^-----------------
*** nfpolsturm: domain error in nfpolsturm: index > 2

nfroots(x)

Roots of the polynomial $x$ in the number field $nf$ given by $nfinit$ without multiplicity (in $\mathbb{Q}$ if $nf$ is omitted). $x$ has coefficients in the number field (scalar, polmod, polynomial, column vector). The main variable of $nf$ must be of lower priority than that of $x$ (see priority (in the PARI manual)). However if the coefficients of the number field occur explicitly (as polmods) as coefficients of $x$, the variable of these polmods must be the same as the main variable of $t$ (see $nffactor$).

It is possible to input a defining polynomial for $nf$ instead, but this is in general less efficient since parts of an $nf$ structure will then be computed internally. This is useful in two situations: when you do not need the $nf$ elsewhere, or when you cannot initialize an $nf$ due to integer factorization difficulties when attempting to compute the field discriminant and maximal order.

Caveat. $nfinit([T, listP])$ allows to compute in polynomial time a conditional $nf$ structure, which sets $nf$. $zk$ to an order which is not guaranteed to be maximal at all primes. Always either use $nfcertify$ first (which may not run in polynomial time) or make sure to input $nf.pol$ instead of the conditional $nf$: $nfroots$ is able to recover in polynomial time in this case, instead of potentially missing a factor.

nfroots1()

Returns a two-component vector $[w, z]$ where $w$ is the number of roots of unity in the number field $nf$, and $z$ is a primitive $w$-th root of unity. It is possible to input a defining polynomial for $nf$ instead.

? K = nfinit(polcyclo(11));
? nfroots1(K)
%2 = [22, [0, 0, 0, 0, 0, -1, 0, 0, 0, 0]~]
%3 = Mod(-x^5, x^10 + x^9 + x^8 + x^7 + x^6 + x^5 + x^4 + x^3 + x^2 + x + 1)
? [lift(z^11), lift(z^2)] \ proves that the order of z is 22
%4 = [-1, -x^9 - x^8 - x^7 - x^6 - x^5 - x^4 - x^3 - x^2 - x - 1]

This function guesses the number $w$ as the gcd of the $\#k(v)^+$ for unramified $v$ above odd primes, then computes the roots in $nf$ of the $w$-th cyclotomic polynomial. The algorithm is polynomial time with respect to the field degree and the bitsize of the multiplication table in $nf$ (both of them polynomially bounded in terms of the size of the discriminant). Fields of degree up to 100 or so should require less than one minute.

nfnsnf(x, flag)

Given a torsion $\mathbb{Z}_K$-module $x$ attached to the square integral invertible pseudo-matrix $(A, I, J)$, returns an ideal list $D = [d_1, \ldots, d_n]$ which is the Smith normal form of $x$. In other words, $x$ is isomorphic to $\mathbb{Z}_K/d_1 \oplus \ldots \oplus \mathbb{Z}_K/d_n$ and $d_i$ divides $d_{i-1}$ for $i > 2$. If flag is nonzero return $[D, U, V]$, where $UAV$ is the identity.

See $\mathbb{Z}$modules (in the PARI manual) for the definition of integral pseudo-matrix; briefly, it is input as a 3-component row vector $[A, I, J]$ where $I = [b_1, \ldots, b_n]$ and $J = [a_1, \ldots, a_n]$ are two ideal lists, and $A$ is a square
$n \times n$ matrix with columns $(A_1, ..., A_n)$, seen as elements in $K^n$ (with canonical basis $(e_1, ..., e_n)$). This data defines the $\mathbb{Z}_K$ module $x$ given by

$$(b_1 e_1 \oplus ... \oplus b_n e_n) / (a_1 A_1 \oplus ... \oplus a_n A_n),$$

The integrality condition is $a_{i,j} \in b_i a_j^{-1}$ for all $i,j$. If it is not satisfied, then the $d_i$ will not be integral. Note that every finitely generated torsion module is isomorphic to a module of this form and even with $b_i = \mathbb{Z}_K$ for all $i$.

**nfsolvemodpr**($a, b, P$)

This function is obsolete, use **nfmodpr**.

Let $P$ be a prime ideal in **modpr** format (see **nfmodprinit**), let $a$ be a matrix, invertible over the residue field, and let $b$ be a column vector or matrix. This function returns a solution of $a.x = b$; the coefficients of $x$ are lifted to *nf* elements.

```plaintext
? K = nfinit(y^2+1);
? P = idealprimedec(K, 3)[1];
? P = nfmodprinit(K, P);
? a = [y+1, y; y, 0]; b = [1, y]~
? nfsolvemodpr(K, a,b, P)
%5 = [1, 2]~
```

**nfsplitting**($d$)

Defining polynomial over $\mathbb{Q}$ for the splitting field of $P \in \mathbb{Q}[x]$, that is the smallest field over which $P$ is totally split. If irreducible, the polynomial $P$ can also be given by a **nf** structure, which is more efficient. If $d$ is given, it must be a multiple of the splitting field degree. Note that if $P$ is reducible the splitting field degree can be smaller than the degree of $P$.

```plaintext
? K = nfinit(x^3-2);
? nfsplitting(K)
%2 = x^6 + 108
? nfsplitting(x^8-2)
%3 = x^16 + 272*x^8 + 64
? S = nfsplitting(x^6-8) // reducible
%4 = x^4+2*x^2+4
? lift(nfroots(subst(S,x,a),x^6-8))
%5 = [-a,a,-1/2*a^3-a,-1/2*a^3,1/2*a^3,1/2*a^3+a]
```

Specifying the degree of the splitting field can make the computation faster.

```plaintext
? nfsplitting(x^17-123);
time = 3,607 ms.
? poldegree(%)
%2 = 272
? nfsplitting(x^17-123,272);
time = 150 ms.
? nfsplitting(x^17-123,273);
*** nfsplitting: Warning: ignoring incorrect degree bound 273
time = 3,611 ms.
```

The complexity of the algorithm is polynomial in the degree $d$ of the splitting field and the bitsize of $T$; if $d$ is large the result will likely be unusable, e.g. **nfinit** will not be an option:

```plaintext
? nfsplitting(x^6-x-1)
[... degree 720 polynomial deleted ...]
time = 11,020 ms.
```
nfssubfields\((d, fl)\)

Finds all subfields of degree \(d\) of the number field defined by the (monic, integral) polynomial \(pol\) (all subfields if \(d\) is null or omitted). The result is a vector of subfields, each being given by \([g, h]\) (default) or simply \(g\) (\(flag = 1\)), where \(g\) is an absolute equation and \(h\) expresses one of the roots of \(g\) in terms of the root \(x\) of the polynomial defining \(nf\). This routine uses

- Allombert’s \texttt{galoissubfields} when \(nf\) is Galois (with weakly supersolvable Galois group).
- Klüners’s or van Hoeij-Klüners-Novocin algorithm in the general case. The latter runs in polynomial time and is generally superior unless there exists a small unramified prime \(p\) such that \(pol\) has few irreducible factors modulo \(p\).

An input of the form \([nf, fa]\) is also allowed, where \(fa\) is the factorisation of \(nf.pol\) over \(nf\), expressed as a famat of polynomials with coefficients in the variable of \(nf\), in which case the van Hoeij-Klüners-Novocin algorithm is used.

```pARI
? pol = x^4 - x^3 - x^2 + x + 1;
? nfssubfields(pol)
%2 = [[x, 0], [x^2 - x + 1, x^3 - x^2 + 1], [x^4 - x^3 - x^2 + x + 1, x]]
? nfssubfields(pol,,1)
%2 = [x, x^2 - x + 1, x^4 - x^3 - x^2 + x + 1]
? y=varhigher("y"); fa = nffactor(pol,subst(pol,x,y));
? #nfssubfields([pol,fa])
%5 = 3
```

nfssubfieldscm\(/fl/\)

Compute the maximal CM subfield of \(nf\). Return 0 if \(nf\) does not have a CM subfield, otherwise return \([g, h]\) (default) or \(g\) (\(flag = 1\)) where \(g\) is an absolute equation and \(h\) expresses a root of \(g\) in terms of the generator of \(nf\). Moreover, the CM involution is given by \(X \mod g(X) : \sigma \rightarrow -\sigma \mod g(X)\), i.e. \(X \mod g(X)\) is a totally imaginary element.

An input of the form \([nf, fa]\) is also allowed, where \(fa\) is the factorisation of \(nf.pol\) over \(nf\), and \(nf\) is also allowed to be a monic defining polynomial for the number field.

```pARI
? nf = nfinit(x^8 + 20*x^6 + 10*x^4 - 4*x^2 + 9);
? nfssubfieldscm(nf)
%2 = [[x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x], [x^4 + 4480*x^2 + 3612672, 3*x^5 + 58*x^3 + 5*x]]
? pol = y^16-8*y^14+29*y^12-60*y^10+74*y^8-48*y^6+8*y^4+4*y^2+1;
? fa = nffactor(pol,subst(pol,y,x));
? nfssubfieldscm([pol,fa])
%5 = [y^8 + ... , ...]
```

nfssubfieldsmax\(/fl/\)

Compute the list of maximal subfields of \(nf\). The result is a vector as in \texttt{nfssubfields}.

An input of the form \([nf, fa]\) is also allowed, where \(fa\) is the factorisation of \(nf.pol\) over \(nf\), and \(nf\) is also allowed to be a monic defining polynomial for the number field.

norm()

Algebraic norm of \(x\), i.e. the product of \(x\) with its conjugate (no square roots are taken), or conjugates for polmods. For vectors and matrices, the norm is taken componentwise and hence is not the \(L^2\)-norm (see \texttt{norml2}). Note that the norm of an element of \(\mathbb{R}\) is its square, so as to be compatible with the complex norm.

norml2()

Square of the \(L^2\)-norm of \(x\). More precisely, if \(x\) is a scalar, \(\text{norml2}(x)\) is defined to be the square of the complex modulus of \(x\) (real \texttt{t_QUAD} s are not supported). If \(x\) is a polynomial, a (row or column) vector or a matrix, \(\text{norml2}(:\text{math:}\_\text{x})\) is defined recursively as \(\sum_i \text{norml2}(x_i)\), where \((x_i)\) run through the components.
of $x$. In particular, this yields the usual $\sum \|x_i\|^2$ (resp. $\sum \|x_{i,j}\|^2$) if $x$ is a polynomial or vector (resp. matrix) with complex components.

| ? norml2([1, 2, 3]) \vector
%1 = 14
? norml2([1, 2; 3, 4]) \matrix
%2 = 30
? norml2(2*I + x)
%3 = 5
? norml2([[1,2], [3,4], 5, 6]) \recursively defined
%4 = 91 |

**normlp($p$, precision)**

$L^p$-norm of $x$; sup norm if $p$ is omitted or $+\infty$. More precisely, if $x$ is a scalar, $\text{normlp}(x, p)$ is defined to be $\text{abs}(x)$. If $x$ is a polynomial, a (row or column) vector or a matrix:

- if $p$ is omitted or $+\infty$, then \text{normlp}(\text{math}: 'x') is defined recursively as $\max_i \text{normlp}(x_i)$, where $(x_i)$ run through the components of $x$. In particular, this yields the usual sup norm if $x$ is a polynomial or vector with complex components.

- otherwise, \text{normlp}(\text{math}: 'x', p)$ is defined recursively as $(\sum_i \text{normlp}(x_i, p))^{1/p}$. In particular, this yields the usual $(\sum \|x_i\|^p)^{1/p}$ if $x$ is a polynomial or vector with complex components.

| ? v = [1,-2,3]; normlp(v) \vector
%1 = 3
? normlp(v, +oo) \same, more explicit
%2 = 3
? M = [1,-2;-3,4]; normlp(M) \matrix
%3 = 4
? T = (1+I) + I*x^2; normlp(T)
%4 = 1.4142135623730950488016887242096980786
? normlp([[1,2], [3,4], 5, 6]) \recursively defined
%5 = 6 |

| ? normlp(v, 1)
%6 = 6
? normlp(M, 1)
%7 = 10
? normlp(T, 1)
%8 = 2.4142135623730950488016887242096980786 |

**numbpart()**

Gives the number of unrestricted partitions of $n$, usually called $p(n)$ in the literature; in other words the number of nonnegative integer solutions to $a + 2b + 3c + ... = n$. $n$ must be of type integer and $n < 10^{15}$ (with trivial values $p(n) = 0$ for $n < 0$ and $p(0) = 1$). The algorithm uses the Hardy-Ramanujan-Rademacher formula. To explicitly enumerate them, see partitions.

**numdiv()**

Number of divisors of $\|x\|$. $x$ must be of type integer.

**numerator($D$)**

Numerator of $f$. This is defined as $f \times \text{denominator}(f,D)$, see denominator for details. The optional argument $D$ allows to control over which ring we compute the denominator:

- 1: we only consider the underlying $\mathbb{Q}$-structure and the denominator is a (positive) rational integer

- a simple variable, say 'x: all entries as rational functions in $K(x)$ and the denominator is a polynomial in $x$. 683
\[
\]
The function raises an exception if it encounters an object incompatible with $p$-adic computations:

```plaintext
? padicprec(O(3), 2)
*** at top-level: padicprec(O(3), 2)
*** ^---------------
*** padicprec: inconsistent moduli in padicprec: 3 != 2

? padicprec(1.0, 2)
*** at top-level: padicprec(1.0,2)
*** ^----------------
*** padicprec: incorrect type in padicprec (t_REAL).
```

**parapply**

Parallel evaluation of $f$ on the elements of $x$. The function $f$ must not access global variables or variables declared with `local()`, and must be free of side effects.

```plaintext
parapply(factor,[2^256 + 1, 2^193 - 1])
```

factors $2^{256} + 1$ and $2^{193} - 1$ in parallel.

```plaintext
{ my(E = ellinit([1,3]), V = vector(12,i,randomprime(2^200)));
 parapply(p->ellcard(E,p), V)
}
```

computes the order of $E(F_p)$ for 12 random primes of 200 bits.

**pareval**

Parallel evaluation of the elements of $x$, where $x$ is a vector of closures. The closures must be of arity 0, must not access global variables or variables declared with `local` and must be free of side effects.

Here is an artificial example explaining the MOV attack on the elliptic discrete log problem (by reducing it to a standard discrete log over a finite field):

```plaintext
{ my(q = 2^30 + 3, m = 40 * q; p = 1 + m^2); \ \ p, q are primes
 my(E = ellinit([0,0,0,1,0] * Mod(1,p)));
 my([P, Q] = ellgenerators(E));
 \ \ \ \ \ Weil pairing <P,Q> in (Z/p)^* is m
 my(F = [m,factor(m)], e = random(m), R, wR, wQ);
 R = ellpow(E, Q, e);
 wR = ellweilpairing(E,P,R,m);
 wQ = ellweilpairing(E,P,Q,m); \ \ \ \ \ \ wR = wQ^e
 pareval([()->znlog(wR,wQ,F), ()->elllog(E,R,Q), ()->e])
}
```

Note the use of `my` to pass “arguments” to the functions we need to evaluate while satisfying the listed requirements: closures of arity 0 and no global variables (another possibility would be to use `export`). As a result, the final three statements satisfy all the listed requirements and are run in parallel. (Which is silly for this computation but illustrates the use of pareval.) The function `parfor` is more powerful but harder to use.

**parselect $(A,\ \text{flag})$**

Selects elements of $A$ according to the selection function $f$, done in parallel. If `flag` is 1, return the indices of those elements (indirect selection) The function $f$ must not access global variables or variables declared with `local()`, and must be free of side effects.
permcycles()

Given a permutation \( x \) on \( n \) elements, return the orbits of \( 1, \ldots, n \) under the action of \( x \) as cycles.

```plaintext
? permcycles(Vecsmall([1,2,3]))
%1 = [Vecsmall([1]), Vecsmall([2]), Vecsmall([3])]
? permcycles(Vecsmall([2,3,1]))
%2 = [Vecsmall([1,2,3])]
? permcycles(Vecsmall([2,1,3]))
%3 = [Vecsmall([1,2]), Vecsmall([3])]
```

permorder()

Given a permutation \( x \) on \( n \) elements, return its order.

```plaintext
? p = Vecsmall([3,1,4,2,5]);
? p^2
%2 = Vecsmall([4,3,2,1,5])
? p^4
%3 = Vecsmall([1,2,3,4,5])
? permorder(p)
%4 = 4
```

permsign()

Given a permutation \( x \) on \( n \) elements, return its signature.

```plaintext
? p = Vecsmall([3,1,4,2,5]);
? permsign(p)
%2 = -1
? permsign(p^2)
%3 = 1
```

permtonum()

Given a permutation \( x \) on \( n \) elements, gives the number \( k \) such that \( x = \text{numtoperm}(n, k) \), i.e. inverse function of \text{numtoperm}. The numbering used is the standard lexicographic ordering, starting at 0.

plotdraw(flag)

Physically draw the rectwindow \( w \). More generally, \( w \) can be of the form \([w_1, x_1, y_1, w_2, x_2, y_2, \ldots]\) (number of components must be divisible by 3; the windows \( w_1, w_2, \) etc. are physically placed with their upper left corner at physical position \((x_1, y_1), (x_2, y_2), \ldots\) respectively, and are then drawn together. Overlapping regions will thus be drawn twice, and the windows are considered transparent. Then display the whole drawing in a window on your screen. If \( flag \neq 0 \), \( x_1, y_1 \) etc. express fractions of the size of the current output device.

plotexport(list, flag)

Draw list of rectwindows as in plotdraw(list, flag), returning the resulting picture as a character string which can then be written to a file. The format \text{fmt} is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics).

```plaintext
? plotinit(0, 100, 100);
? plotbox(0, 50, 50);
? plotcolor(0, 2);
? plotbox(0, 30, 30);
? plotdraw(0); \ watch result on screen
? s = plotexport("svg", 0);
? write("graph.svg", s); \ dump result to file
```
\textbf{plothraw}(Y, flag)

Given \( X \) and \( Y \) two vectors of equal length, plots (in high precision) the points whose \((x, y)\)-coordinates are given in \( X \) and \( Y \). Automatic positioning and scaling is done, but with the same scaling factor on \( x \) and \( y \). If \textit{flag} is 1, join points, other nonzero flags toggle display options and should be combinations of bits \( 2^k, k \geq 3 \) as in \texttt{ploth}.

\textbf{plothrawexport}(X, Y, flag)

Given \( X \) and \( Y \) two vectors of equal length, plots (in high precision) the points whose \((x, y)\)-coordinates are given in \( X \) and \( Y \), returning the resulting picture as a character string which can then be written to a file. The format \texttt{fmt} is either "ps" (PostScript output) or "svg" (Scalable Vector Graphics). Automatic positioning and scaling is done, but with the same scaling factor on \( x \) and \( y \). If \textit{flag} is 1, join points, other nonzero flags toggle display options and should be combinations of bits \( 2^k, k \geq 3 \) as in \texttt{ploth}.

\textbf{polclass}(inv, x)

Return a polynomial in \( \mathbb{Z}[x] \) generating the Hilbert class field for the imaginary quadratic discriminant \( D \). If \textit{inv} is 0 (the default), use the modular \( j \)-function and return the classical Hilbert polynomial, otherwise use a class invariant. The following invariants correspond to the different values of \textit{inv}, where \( f \) denotes Weber’s function \texttt{weber}, and \( w_{p,q} \) the double eta quotient given by \( w_{p,q} = (\eta(x/p)\eta(x/q))/ (\eta(x)\eta(x/pq)) \)

The invariants \( w_{p,q} \) are not allowed unless they satisfy the following technical conditions ensuring they do generate the Hilbert class field and not a strict subfield:

- if \( p! = q \), we need them both noninert, prime to the conductor of \( \mathbb{Z}[\sqrt{D}] \). Let \( P, Q \) be prime ideals above \( p \) and \( q \); if both are unramified, we further require that \( P^4Q^4 \) be all distinct in the class group of \( \mathbb{Z}[\sqrt{D}] \); if both are ramified, we require that \( PQ! = 1 \) in the class group.
- if \( p = q \), we want it split and prime to the conductor and the prime ideal above it must have order \( ! = 1, 2, 4 \) in the class group.

Invariants are allowed under the additional conditions on \( D \) listed below.

- 0 : \( j \)
- 1 : \( f, D = 1 \text{mod} 8 \) and \( D = 1, 2 \text{mod} 3 \);
- 2 : \( f^2, D = 1 \text{mod} 8 \) and \( D = 1, 2 \text{mod} 3 \);
- 3 : \( f^3, D = 1 \text{mod} 8 \);
- 4 : \( f^4, D = 1 \text{mod} 8 \) and \( D = 1, 2 \text{mod} 3 \);
- 5 : \( \gamma_2 = j^{1/3}, D = 1, 2 \text{mod} 3 \);
- 6 : \( w_{2,3}, D = 1 \text{mod} 8 \) and \( D = 1, 2 \text{mod} 3 \);
- 8 : \( f^8, D = 1 \text{mod} 8 \) and \( D = 1, 2 \text{mod} 3 \);
- 9 : \( w_{3,3}, D = 1 \text{mod} 2 \) and \( D = 1, 2 \text{mod} 3 \);
- 10 : \( w_{2,5}, D! = 60 \text{mod} 80 \) and \( D = 1, 2 \text{mod} 3 \);
- 14 : \( w_{2,7}, D = 1 \text{mod} 8 \);
- 15 : \( w_{3,5}, D = 1, 2 \text{mod} 3 \);
- 21 : \( w_{3,7}, D = 1 \text{mod} 2 \) and 21 does not divide \( D \)
- 23 : \( w_{2,3}^2, D = 1, 2 \text{mod} 3 \);
- 24 : \( w_{2,5}^2, D = 1, 2 \text{mod} 3 \);
- 26 : \( w_{2,13}, D! = 156 \text{mod} 208 \);
- 27 : \( w_{2,7}^2, D! = 28 \text{mod} 112 \);
The algorithm for computing the polynomial does not use the floating point approach, which would evaluate a precise modular function in a precise complex argument. Instead, it relies on a faster Chinese remainder based approach modulo small primes, in which the class invariant is only defined algebraically by the modular polynomial relating the modular function to $j$. So in fact, any of the several roots of the modular polynomial may actually be the class invariant, and more precise assertions cannot be made.

For instance, while \texttt{polclass(D)} returns the minimal polynomial of $j(\tau)$ with $\tau$ (any) quadratic integer for the discriminant $D$, the polynomial returned by \texttt{polclass(D, 5)} can be the minimal polynomial of any of $\gamma_2^2(\tau)$ or $\zeta_6^2(\tau)$, the three roots of the modular polynomial $j = \gamma_2^3$, in which $j$ has been specialised to $j(\tau)$.

The modular polynomial is given by $j = ((f^{24} - 163))^{(f^{24})}$ for Weber’s function $f$.

For the double eta quotients of level $N = pq$, all functions are covered such that the modular curve $X^+_0(N)$, the function field of which is generated by the functions invariant under $\Gamma^0(N)$ and the Fricke-Atkin-Lehner involution, is of genus 0 with function field generated by (a power of) the double eta quotient $w$. This ensures that the full Hilbert class field (and not a proper subfield) is generated by class invariants from these double eta quotients. Then the modular polynomial is of degree 2 in $j$, and of degree $\varphi(N) = (p + 1)(q + 1)$ in $w$.

\begin{verbatim}
? polclass(-163)
%1 = x + 262537412640768000
? polclass(-51, z)
%2 = z^2 + 5541101568*z + 6262062317568
? polclass(-151,1
x^7 - x^6 + x^5 + 3*x^3 - x^2 + 3*x + 1
\end{verbatim}

\textbf{polcoefficient(n, v)}

Coefficient of degree $n$ of the polynomial $x$, with respect to the main variable if $v$ is omitted, with respect to $v$ otherwise. If $n$ is greater than the degree, the result is zero.

Naturally applies to scalars (polynomial of degree 0), as well as to rational functions whose denominator is a monomial. It also applies to power series: if $n$ is less than the valuation, the result is zero. If it is greater than the largest significant degree, then an error message is issued.

\textbf{polcoefficient(n, v)}

Deprecated alias for polcoefficient.

\textbf{polcompositum(Q, flag)}

$P$ and $Q$ being squarefree polynomials in $\mathbb{Z}[X]$ in the same variable, outputs the simple factors of the étale $\mathbb{Q}$-algebra $A = \mathbb{Q}(X, Y)/(P(X), Q(Y))$. The factors are given by a list of polynomials $R$ in $\mathbb{Z}[X]$, attached to the number field $\mathbb{Q}(X)/(R)$, and sorted by increasing degree (with respect to lexicographic ordering for factors of equal degrees). Returns an error if one of the polynomials is not squarefree.

Note that it is more efficient to reduce to the case where $P$ and $Q$ are irreducible first. The routine will not perform this for you, since it may be expensive, and the inputs are irreducible in most applications anyway. In this case, there will be a single factor $R$ if and only if the number fields defined by $P$ and $Q$ are linearly disjoint (their intersection is $\mathbb{Q}$).

Assuming $P$ is irreducible (of smaller degree than $Q$ for efficiency), it is in general much faster to proceed as follows

\begin{verbatim}
nf = nfinit(P); L = nffactor(nf, Q)[,1];
vector(#L, i, rnfequation(nf, L[i]))
\end{verbatim}
to obtain the same result. If you are only interested in the degrees of the simple factors, the \texttt{rnf\textbackslash{}equation} instruction can be replaced by a trivial \texttt{pol\textbackslash{}degree}(P) * \texttt{pol\textbackslash{}degree}(L[i]).

The binary digits of flag mean

1: outputs a vector of 4-component vectors $[R, a, b, k]$, where $R$ ranges through the list of all possible compositums as above, and $a$ (resp. $b$) expresses the root of $P$ (resp. $Q$) as an element of $\mathbb{Q}(X)/(R)$. Finally, $k$ is a small integer such that $b + ka = X$ modulo $R$.

2: assume that $P$ and $Q$ define number fields which are linearly disjoint: both polynomials are irreducible and the corresponding number fields have no common subfield besides $\mathbb{Q}$. This allows to save a costly factorization over $\mathbb{Q}$. In this case return the single simple factor instead of a vector with one element.

A compositum is often defined by a complicated polynomial, which it is advisable to reduce before further work. Here is an example involving the field $\mathbb{Q}(\zeta_5, 5^{1/5})$:

```
? L = polcompositum(x^5 - 5, polcyclo(5), 1); \ list of [R,a,b,k]
? [R, a] = L[1]; \ pick the single factor, extract R,a (ignore b,k)
? R \ defines the compositum
%3 = x^20 + 5*x^19 + 15*x^18 + 35*x^17 + 70*x^16 + 141*x^15 + 260*x^14
+ 355*x^13 + 95*x^12 - 1460*x^11 - 3279*x^10 - 3660*x^9 - 2005*x^8 \\
+ 705*x^7 + 9218*x^6 + 13506*x^5 + 7145*x^4 - 2740*x^3 + 1040*x^2 \\
- 320*x + 256
? a^5 - 5 \ \ a fifth root of 5
%4 = 0
? [T, X] = polredbest(R, 1);
? T \ \ simpler defining polynomial for \mathbb{Q}[x]/(R)
%6 = x^20 + 25*x^10 + 5
? X \ \ root of R in \mathbb{Q}[y]/(T(y))
%7 = Mod(-1/11*x^15 - 1/11*x^14 + 1/22*x^10 - 47/22*x^5 - 29/11*x^4 + 7/22,
\ x^20 + 25*x^10 + 5)
? a = subst(a.pol, 'x, X) \ \ a in the new coordinates
%8 = Mod(1/11*x^15 + 29/11*x^4, x^20 + 25*x^10 + 5)
? a^5 - 5
%9 = 0
```

In the above example, $x^5 - 5$ and the 5-th cyclotomic polynomial are irreducible over $\mathbb{Q}$; they have coprime degrees so define linearly disjoint extensions and we could have started by

```
? [R,a] = polcompositum(x^5 - 5, polcyclo(5), 3); \ [R,a,b,k]
```

\texttt{pol\textbackslash{}cyclo\textbackslash{}factors()} Returns a vector of polynomials, whose product is the product of distinct cyclotomic polynomials dividing $f$.

```
? f = x^10+5*x^8-x^7+8*x^6-4*x^5+8*x^4-3*x^3+7*x^2+3;
? v = polcyclo\textbackslash{}factors(f)
%2 = [x^2 + 1, x^2 + x + 1, x^4 - x^3 + x^2 - x + 1]
? apply(poliscyclo\textbackslash{}prod, v)
%3 = [1, 1, 1]
? apply(poliscyclo, v)
%4 = [4, 3, 10]
```

In general, the polynomials are products of cyclotomic polynomials and not themselves irreducible:

```
? g = x^8+2*x^7+6*x^6+9*x^5+12*x^4+11*x^3+10*x^2+6*x+3;
? polcyclo\textbackslash{}factors(g)
```

(continues on next page)
%2 = [x^6 + 2*x^5 + 3*x^4 + 3*x^3 + 3*x^2 + 2*x + 1]
? factor(%[1])
%3 =
[ x^2 + x + 1 1]
[ x^4 + x^3 + x^2 + x + 1 1]

poldegree(v)

Degree of the polynomial \( x \) in the main variable if \( v \) is omitted, in the variable \( v \) otherwise.

The degree of 0 is \(-\infty\). The degree of a nonzero scalar is 0. Finally, when \( x \) is a nonzero polynomial or rational function, returns the ordinary degree of \( x \). Raise an error otherwise.

poldisc(v)

Discriminant of the polynomial \( pol \) in the main variable if \( v \) is omitted, in \( v \) otherwise. Uses a modular algorithm over \( \mathbb{Z} \) or \( \mathbb{Q} \), and the subresultant algorithm otherwise.

? T = x^4 + 2*x+1;
? poldisc(T)
%2 = -176
? poldisc(T^2)
%3 = 0

For convenience, the function also applies to types \texttt{t\_QUAD} and \texttt{t\_QFI/t\_QFR}:

? z = 3*quadgen(8) + 4;
? poldisc(z)
%2 = 8
? q = Qfb(1,2,3);
? poldisc(q)
%4 = -8

poldiscfactors(flag)

Given a polynomial \( T \) with integer coefficients, return \([D,fuD]\) where \( D \) is the discriminant of \( T \) and \( fuD \) is a cheap partial factorization of \(|D|\): entries in its first column are coprime and not perfect powers but need not be primes. The factors are obtained by a combination of trial division, testing for perfect powers, factorizations in coprimes, and computing Euclidean remainder sequences for \((T,T')\) modulo composite factors \( d \) of \( D \) (which is likely to produce 0-divisors in \( \mathbb{Z}/d\mathbb{Z} \)). If \( flag \) is 1, finish the factorization using \texttt{factorint}.

? T = x^3 + 9*x^2 + 27*x - 125014250689643346789780229390526092263790263725;
? [D,faD] = poldiscfactors(T); print(faD)
[2, 6; 3, 3; 500009, 12; 1000003, 4]

poldiscreduced()

Reduced discriminant vector of the (integral, monic) polynomial \( f \). This is the vector of elementary divisors of \( \mathbb{Z}[\alpha]/f'(\alpha)\mathbb{Z}[\alpha] \), where \( \alpha \) is a root of the polynomial \( f \). The components of the result are all positive, and their product is equal to the absolute value of the discriminant of \( f \).
Galois group of the nonconstant polynomial \( T \in \mathbb{Q}[X] \). In the present version \textbf{2.13.3}, \( T \) must be irreducible and the degree \( d \) of \( T \) must be less than or equal to 7. If the \texttt{galdata} package has been installed, degrees 8, 9, 10 and 11 are also implemented. By definition, if \( K = \mathbb{Q}[x]/(T) \), this computes the action of the Galois group of the Galois closure of \( K \) on the \( d \) distinct roots of \( T \), up to conjugacy (corresponding to different root orderings).

The output is a 4-component vector \([n, s, k, \text{name}]\) with the following meaning: \( n \) is the cardinality of the group, \( s \) is its signature (\( s = 1 \) if the group is a subgroup of the alternating group \( A_d \), \( s = -1 \) otherwise) and \text{name} is a character string containing name of the transitive group according to the GAP 4 transitive groups library by Alexander Hulpke.

\[ k \] is more arbitrary and the choice made up to version 2.2.3 of PARi is rather unfortunate: for \( d > 7 \), \( k \) is the numbering of the group among all transitive subgroups of \( S_d \), as given in “The transitive groups of degree up to eleven”, G. Butler and J. McKay, \textit{Communications in Algebra}, vol. 11, 1983, pp. 863–911 (group \( k \) is denoted \( T_k \) there). And for \( d <= 7 \), it was ad hoc, so as to ensure that a given triple would denote a unique group. Specifically, for polynomials of degree \( d <= 7 \), the groups are coded as follows, using standard notations

In degree 1: \( S_1 = [1, 1, 1] \).

In degree 2: \( S_2 = [2, -1, 1] \).

In degree 3: \( A_3 = C_3 = [3, 1, 1] \), \( S_3 = [6, -1, 1] \).

In degree 4: \( C_4 = [4, -1, 1] \), \( V_4 = [4, 1, 1] \), \( D_4 = [8, -1, 1] \), \( A_4 = [12, 1, 1] \), \( S_4 = [24, -1, 1] \).

In degree 5: \( C_5 = [5, 1, 1] \), \( D_5 = [10, 1, 1] \), \( M_{20} = [20, -1, 1] \), \( A_5 = [60, 1, 1] \), \( S_5 = [120, -1, 1] \).

In degree 6: \( C_6 = [6, -1, 1] \), \( S_3 = [6, -1, 2] \), \( D_6 = [12, -1, 1] \), \( A_4 = [12, 1, 1] \), \( G_{18} = [18, -1, 1] \), \( S_4^- = [24, -1, 1] \), \( A_4 x C_2 = [24, -1, 2] \), \( S_4^+ = [24, 1, 1] \), \( G_{36}^- = [36, -1, 1] \), \( G_{36}^+ = [36, 1, 1] \), \( S_4 x C_2 = [48, -1, 1] \), \( A_5 = PSL_2(5) = [60, 1, 1] \), \( G_{72} = [72, -1, 1] \), \( S_5 = PGL_2(5) = [120, -1, 1] \), \( A_6 = [360, 1, 1] \), \( S_6 = [720, -1, 1] \).

In degree 7: \( C_7 = [7, 1, 1] \), \( D_7 = [14, -1, 1] \), \( M_{21} = [21, 1, 1] \), \( M_{42} = [42, -1, 1] \), \( PSL_2(7) = PSL_3(2) = [168, 1, 1] \), \( A_7 = [2520, 1, 1] \), \( S_7 = [5040, -1, 1] \).

This is deprecated and obsolete, but for reasons of backward compatibility, we cannot change this behavior yet. So you can use the default \texttt{new_galois_format} to switch to a consistent naming scheme, namely \( k \) is always the standard numbering of the group among all transitive subgroups of \( S_n \). If this default is in effect, the above groups will be coded as:

In degree 1: \( S_1 = [1, 1, 1] \).

In degree 2: \( S_2 = [2, -1, 1] \).

In degree 3: \( A_3 = C_3 = [3, 1, 1] \), \( S_3 = [6, -1, 2] \).

In degree 4: \( C_4 = [4, -1, 1] \), \( V_4 = [4, 1, 2] \), \( D_4 = [8, -1, 3] \), \( A_4 = [12, 1, 4] \), \( S_4 = [24, -1, 5] \).

In degree 5: \( C_5 = [5, 1, 1] \), \( D_5 = [10, 1, 2] \), \( M_{20} = [20, -1, 3] \), \( A_5 = [60, 1, 4] \), \( S_5 = [120, -1, 5] \).

In degree 6: \( C_6 = [6, -1, 1] \), \( S_3 = [6, -1, 2] \), \( D_6 = [12, -1, 3] \), \( A_4 = [12, 1, 4] \), \( G_{18} = [18, -1, 5] \), \( A_4 x C_2 = [24, -1, 6] \), \( S_4^- = [24, 1, 7] \), \( S_4^+ = [24, -1, 8] \), \( G_{36}^- = [36, -1, 9] \), \( G_{36}^+ = [36, 1, 10] \), \( S_4 x C_2 = [48, -1, 11] \), \( A_5 = PSL_2(5) = [60, 1, 12] \), \( G_{72} = [72, -1, 13] \), \( S_5 = PGL_2(5) = [120, -1, 14] \), \( A_6 = [360, 1, 15] \), \( S_6 = [720, -1, 16] \).

In degree 7: \( C_7 = [7, 1, 1] \), \( D_7 = [14, -1, 2] \), \( M_{21} = [21, 1, 3] \), \( M_{42} = [42, -1, 4] \), \( PSL_2(7) = PSL_3(2) = [168, 1, 5] \), \( A_7 = [2520, 1, 6] \), \( S_7 = [5040, -1, 7] \).

\textbf{Warning.} The method used is that of resolvent polynomials and is sensitive to the current precision. The precision is updated internally but, in very rare cases, a wrong result may be returned if the initial precision was not sufficient.
polgraeffe()

Returns the Graeffe transform $g$ of $f$, such that $g(x^2) = f(x)f(-x)$.

polhensellift($B$, $p$, $e$)

Given a prime $p$, an integral polynomial $A$ whose leading coefficient is a $p$-unit, a vector $B$ of integral polynomials that are monic and pairwise relatively prime modulo $p$, and whose product is congruent to $A/\text{lcm}(A)$ modulo $p$, lift the elements of $B$ to polynomials whose product is congruent to $A$ modulo $p^e$.

More generally, if $T$ is an integral polynomial irreducible mod $p$, and $B$ is a factorization of $A$ over the finite field $\mathbb{F}_p[t]/(T)$, you can lift it to $\mathbb{Z}_p[t]/(T, p^e)$ by replacing the $p$ argument with $[p, T]$:

\begin{verbatim}
? { T = t^3 - 2; p = 7; A = x^2 + t + 1;
   B = [x + (3*t^2 + t + 1), x + (4*t^2 + 6*t + 6)];
   r = polhensellift(A, B, [p, T], 6) }
%1 = [x + (20191*t^2 + 50604*t + 75783), x + (97458*t^2 + 67045*t + 41866)]
? liftall( r[1] * r[2] * Mod(Mod(1,p^6),T) )
%2 = x^2 + (t + 1)
\end{verbatim}

polinterpolate($Y$, $t$, $e$)

Given the data vectors $X$ and $Y$ of the same length $n$ ($X$ containing the $x$-coordinates, and $Y$ the corresponding $y$-coordinates), this function finds the interpolating polynomial $P$ of minimal degree passing through these points and evaluates it at $t$. If $Y$ is omitted, the polynomial $P$ interpolates the $(i, X[i])$.

\begin{verbatim}
? v = [1, 2, 4, 8, 11, 13];
? P = polinterpolate(v) \ formal interpolation
%1 = 7/120*x^5 - 25/24*x^4 + 163/24*x^3 - 467/24*x^2 + 513/20*x - 11
? [ subst(P,'x,a) | a <- [1..6] ]
%2 = [1, 2, 4, 8, 11, 13]
? polinterpolate(v,, 10) \ evaluate at 10
%3 = 508
? subst(P, x, 10)
%4 = 508

? P = polinterpolate([1,2,4], [9,8,7])
%5 = 1/6*x^2 - 3/2*x + 31/3
? [ subst(P, 'x, a) | a <- [1,2,4] ]
%6 = [9, 8, 7]
? P = polinterpolate([1,2,4], [9,8,7], 0)
%7 = 31/3
\end{verbatim}

If the goal is to extrapolate a function at a unique point, it is more efficient to use the $t$ argument rather than interpolate formally then evaluate:

\begin{verbatim}
? x0 = 1.5;
? v = vector(20, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
time = 352 ms.
? for(i=1,10^3, polinterpolate(v,,x0))
time = 111 ms.

? v = vector(40, i,random([-10,10]));
? for(i=1,10^3, subst(polinterpolate(v), 'x, x0))
time = 3,035 ms.
? for(i=1,10^3, polinterpolate(v,, x0))
time = 436 ms.
\end{verbatim}
The threshold depends on the base field. Over small prime finite fields, interpolating formally first is more efficient.

```plaintext
? bench(p, N, T = 10^3) =
{ my (v = vector(N, i, random(Mod(0,p))));
 my (x0 = Mod(3, p), t1, t2);
 gettime();
 for(i=1, T, subst(polinterpolate(v), 'x, x0));
 t1 = gettime();
 for(i=1, T, polinterpolate(v,, x0));
 t2 = gettime(); [t1, t2];
}

? p = 101;
? bench(p, 4, 10^4) \ both methods are equivalent
%3 = [39, 40]
? bench(p, 40) \ with 40 points formal is much faster
%4 = [45, 355]
```

As the cardinality increases, formal interpolation requires more points to become interesting:

```plaintext
? p = nextprime(2^128);
? bench(p, 4) \ formal is slower
%3 = [16, 9]
? bench(p, 10) \ formal has become faster
%4 = [61, 70]
? bench(p, 100) \ formal is much faster
%5 = [1682, 9081]

? p = nextprime(10^500);
? bench(p, 4) \ formal is slower
%7 = [72, 354]
? bench(p, 20) \ formal is still slower
%8 = [1287, 962]
? bench(p, 40) \ formal has become faster
%9 = [3717, 4227]
? bench(p, 100) \ faster but relatively less impressive
%10 = [16237, 32335]
```

If \( t \) is a complex numeric value and \( e \) is present, \( e \) will contain an error estimate on the returned value. More precisely, let \( P \) be the interpolation polynomial on the given \( n \) points; there exist a subset of \( n - 1 \) points and \( Q \) the attached interpolation interpolation polynomial such that \( e = exponent(P(t) - Q(t)) \) (Neville’s algorithm).

```plaintext
? f(x) = 1 / (1 + 25*x^2);
? x0 = 975/1000;
? test(X) =
{ my (P, e);
 P = polinterpolate(X, [f(x) | x <- X], x0, &e);
 [exponent(P - f(x0)), e];
}
\ \ equidistant nodes vs. Chebyshev nodes
? test([-10..10] / 10)
%4 = [6, 5]
? test(polrootsreal(polchebyshev(21)))
%5 = [-15, -10]
```

(continues on next page)
This is an example of Runge's phenomenon: increasing the number of equidistant nodes makes extrapolation much worse. Note that the error estimate is not a guaranteed upper bound (cf %4), but is reasonably tight in practice.

**poliscyclo()**

Returns 0 if \( f \) is not a cyclotomic polynomial, and \( n > 0 \) if \( f = \Phi_n \), the \( n \)-th cyclotomic polynomial.

```
? poliscyclo(x^4-x^2+1)
%1 = 12
? polycyclo(12)
%2 = x^4 - x^2 + 1
? poliscyclo(x^4-x^2-1)
%3 = 0
```

**poliscycloprod()**

Returns 1 if \( f \) is a product of cyclotomic polynomial, and 0 otherwise.

```
? f = x^6+x^5-x^3+x+1;
? poliscycloprod(f)
%2 = 1
? factor(f)
%3 =
[x^2 + x + 1 1]
[x^4 - x^2 + 1 1]
? [poliscyclo(T) | T <- %[,1]]
%4 = [3, 12]
? polycyclo(3) * polycyclo(12)
%5 = x^6 + x^5 - x^3 + x + 1
```

**polisirreducible()**

\( \text{pol} \) being a polynomial (univariate in the present version 2.13.3), returns 1 if \( \text{pol} \) is nonconstant and irreducible, 0 otherwise. Irreducibility is checked over the smallest base field over which \( \text{pol} \) seems to be defined.

**pollead(\( v \))**

Leading coefficient of the polynomial or power series \( x \). This is computed with respect to the main variable of \( x \) if \( v \) is omitted, with respect to the variable \( v \) otherwise.

**polrecip()**

Reciprocal polynomial of \( \text{pol} \) with respect to its main variable, i.e. the coefficients of the result are in reverse order; \( \text{pol} \) must be a polynomial.

```
? polrecip(x^2 + 2*x + 3)
%1 = 3*x^2 + 2*x + 1
? polrecip(2*x + y)
%2 = y*x + 2
```

**polred(flag, _arg2)**

This function is deprecated, use polredbest instead. Finds polynomials with reasonably small coefficients
defining subfields of the number field defined by \( T \). One of the polynomials always defines \( \mathbb{Q} \) (hence has degree 1), and another always defines the same number field as \( T \) if \( T \) is irreducible.

All \( T \) accepted by \texttt{nfinit} are also allowed here; in particular, the format \([T, \text{listP}]\) is recommended, e.g. with \( \text{listP} = 10^5 \) or a vector containing all ramified primes. Otherwise, the maximal order of \( \mathbb{Q}[x]/(T) \) must be computed.

The following binary digits of \texttt{flag} are significant:

1: Possibly use a suborder of the maximal order. The primes dividing the index of the order chosen are larger than \texttt{primelimit} or divide integers stored in the \texttt{addprimes} table. This flag is \textit{deprecated}, the \([T, \text{listP}]\) format is more flexible.

2: gives also elements. The result is a two-column matrix, the first column giving primitive elements defining these subfields, the second giving the corresponding minimal polynomials.

```plaintext
? M = polred(x^4 + 8, 2)
%1 =
[1 x - 1]
[1/2*x^2 + 1 x^2 - 2*x + 3]
[-1/2*x^2 + 1 x^2 - 2*x + 3]
[1/2*x^2 x^2 + 2]
[1/4*x^3 x^4 + 2]
? minpoly(Mod(M[2,1], x^4+8))
%2 = x^2 + 2
```

\textbf{polredabs}(\texttt{flag})

Returns a canonical defining polynomial \( P \) for the number field \( \mathbb{Q}[X]/(T) \) defined by \( T \), such that the sum of the squares of the modulus of the roots (i.e. the \( T_2 \)-norm) is minimal. Different \( T \) defining isomorphic number fields will yield the same \( P \). All \( T \) accepted by \texttt{nfinit} are also allowed here, e.g. nonmonic polynomials, or pairs \([T, \text{listP}]\) specifying that a nonmaximal order may be used. For convenience, any number field structure (\texttt{nf}, \texttt{bnf},...) can also be used instead of \( T \).

```plaintext
? polredabs(x^2 + 16)
%1 = x^2 + 1
? K = bnfinit(x^2 + 16); polredabs(K)
%2 = x^2 + 1
```

\textbf{Warning 1.} Using a \texttt{t_POL} \( T \) requires computing and fully factoring the discriminant \( d_K \) of the maximal order which may be very hard. You can use the format \([T, \text{listP}]\), where \text{listP} encodes a list of known coprime divisors of \( \text{disc}(T) \) (see ??\texttt{nfbasis}), to help the routine, thereby replacing this part of the algorithm by a polynomial time computation But this may only compute a suborder of the maximal order, when the divisors are not squarefree or do not include all primes dividing \( d_K \). The routine attempts to certify the result independently of this order computation as per \texttt{nfcertify}: we try to prove that the computed order is maximal. If the certification fails, the routine then fully factors the integers returned by \texttt{nfcertify}. You can also use \texttt{polredbest} to avoid this factorization step; in this case, the result is small but no longer canonical.

\textbf{Warning 2.} Apart from the factorization of the discriminant of \( T \), this routine runs in polynomial time for a \textit{fixed} degree. But the complexity is exponential in the degree: this routine may be exceedingly slow when the number field has many subfields, hence a lot of elements of small \( T_2 \)-norm. If you do not need a canonical polynomial, the function \texttt{polredbest} is in general much faster (it runs in polynomial time), and tends to return polynomials with smaller discriminants.
The binary digits of flag mean

1: outputs a two-component row vector \([P, a]\), where \(P\) is the default output and \(\text{Mod}(a, P)\) is a root of the original \(T\).

4: gives all polynomials of minimal \(T_2\) norm; of the two polynomials \(P(x)\) and \(P(-x)\), only one is given.

16: (OBSOLETE) Possibly use a suborder of the maximal order, without attempting to certify the result as in Warning 1. This makes polredabs behave like polredbest. Just use the latter.

```plaintext
\begin{verbatim}
? T = x^16 - 136*x^14 + 6476*x^12 - 141912*x^10 + 1513334*x^8 - 7453176*x^6 + 13950764*x^4 - 5596840*x^2 + 46225
? T1 = polredabs(T); T2 = polredbest(T);
? [norml2(polroots(T1)), norml2(polroots(T2))]
%3 = [88.00000000, 120.000000]
? [sizedigit(poldisc(T1)), sizedigit(poldisc(T2))]
%4 = [75, 67]
\end{verbatim}
```

The precise definition of the output of polredabs is as follows.

- Consider the finite list of characteristic polynomials of primitive elements of \(K\) that are in \(\mathbb{Z}_K\) and minimal for the \(T_2\) norm; now remove from the list the polynomials whose discriminant do not have minimal absolute value. Note that this condition is restricted to the original list of polynomials with minimal \(T_2\) norm and does not imply that the defining polynomial for the field with smallest discriminant belongs to the list!

- To a polynomial \(P(x) = x^n + \ldots + a_n \in \mathbb{R}[x]\) we attach the sequence \(S(P)\) given by \(\|a_1\|, a_1, \ldots, \|a_n\|, a_n\). Order the polynomials \(P\) by the lexicographic order on the coefficient vectors \(S(P)\). Then the output of polredabs is the smallest polynomial in the above list for that order. In other words, the monic polynomial which is lexicographically smallest with respect to the absolute values of coefficients, favouring negative coefficients to break ties, i.e. choosing \(x^3 - 2\) rather than \(x^3 + 2\).

polredbest(flag)

Finds a polynomial with reasonably small coefficients defining the same number field as \(T\). All \(T\) accepted by nfinit are also allowed here (e.g. nonmonic polynomials, nf, bnf, [\(T, Z_K\_basis\)]). Contrary to polredabs, this routine runs in polynomial time, but it offers no guarantee as to the minimality of its result.

This routine computes an LLL-reduced basis for an order in \(\mathbb{Q}[X]/(T)\), then examines small linear combinations of the basis vectors, computing their characteristic polynomials. It returns the separable polynomial \(P\) of smallest discriminant, the one with lexicographically smallest abs(Vec(P)) in case of ties. This is a good candidate for subsequent number field computations since it guarantees that the denominators of algebraic integers, when expressed in the power basis, are reasonably small. With no claim of minimality, though.

It can happen that iterating this functions yields better and better polynomials, until it stabilizes:

```plaintext
\begin{verbatim}
? \p5
? P = X^12+8*X^8-50*X^6+16*X^4-3069*X^2+625;
? poldisc(P)*1.
%2 = 1.2622 E55
? P = polredbest(P);
? poldisc(P)*1.
%4 = 2.9012 E51
? P = polredbest(P);
? poldisc(P)*1.
%6 = 8.8704 E44
\end{verbatim}
```

In this example, the initial polynomial \(P\) is the one returned by polredabs, and the last one is stable.

If flag = 1: outputs a two-component row vector \([P, a]\), where \(P\) is the default output and \(\text{Mod}(a, P)\) is a root of the original \(T\).
In particular, the map \( \mathbb{Q}[x]/(T) \to \mathbb{Q}[x]/(P) \), \( x : - - - > \text{Mod}(a, P) \) defines an isomorphism of number fields, which can be computed as

\[
\text{subst(lift(Q), } 'x, a) \]

if \( Q \) is a \texttt{t_POLMOD} modulo \( T \); \( b = \text{modreverse(a)} \) returns a \texttt{t_POLMOD} giving the inverse of the above map (which should be useless since \( \mathbb{Q}[x]/(P) \) is a priori a better representation for the number field and its elements).

\textbf{polredord()}

This function is obsolete, use \textbf{polredbest}.

\textbf{polresultant}(y, v, flag)

Resultant of the two polynomials \( x \) and \( y \) with exact entries, with respect to the main variables of \( x \) and \( y \) if \( v \) is omitted, with respect to the variable \( v \) otherwise. The algorithm assumes the base ring is a domain. If you also need the \( u \) and \( v \) such that \( x \cdot u + y \cdot v = \text{Res}(x, y) \), use the \textbf{polresultantext} function.

If \( flag = 0 \) (default), uses the algorithm best suited to the inputs, either the subresultant algorithm (Lazard/Ducos variant, generic case), a modular algorithm (inputs in \( \mathbb{Q}[X] \)) or Sylvester’s matrix (inexact inputs).

If \( flag = 1 \), uses the determinant of Sylvester’s matrix instead; this should always be slower than the default.

If \( x \) or \( y \) are multivariate with a huge polynomial content, it is advisable to remove it before calling this function. Compare:

\[
? a = \text{polcyclo}(7) * ((t+1)/(t+2))^100; \\
? b = \text{polcyclo}(11)* ((t+2)/(t+3))^100); \\
? \text{polresultant}(a,b); \\
time = 3,833 \text{ ms.} \\
? \text{ca = content(a); cb = content(b); } \backslash \\
 \text{polresultant(a/ca,b/cb)*ca^poldegree(b)*cb^poldegree(a); } \backslash \text{ instantaneous}
\]

The function only removes rational denominators and does not compute automatically the content because it is generically small and potentially very expensive (e.g. in multivariate contexts). The choice is yours, depending on your application.

\textbf{polresultantext}(B, v)

Finds polynomials \( U \) and \( V \) such that \( A \cdot U + B \cdot V = R \), where \( R \) is the resultant of \( U \) and \( V \) with respect to the main variables of \( A \) and \( B \) if \( v \) is omitted, and with respect to \( v \) otherwise. Returns the row vector \( [U, V, R] \).

The algorithm used (subresultant) assumes that the base ring is a domain.

\[
? A = x\cdot y; B = (x+y)^2; \\
? [U,V,R] = \text{polresultantext}(A, B) \\
%2 = [-y^2x - 2*y^2, y^2, y^4] \\
? A^*U + B^*V \\
%3 = y^4 \\
? [U,V,R] = \text{polresultantext}(A, B, y) \\
%4 = [-2*x^2 - y^2, x^2, x^4] \\
? A^*U+B^*V \\
%5 = x^4
\]
polroots\textit{(precision)}

Complex roots of the polynomial $T$, given as a column vector where each root is repeated according to its multiplicity and given as floating point complex numbers at the current realprecision:

\begin{verbatim}
? polroots(x^2)
%1 = [0.E-38 + 0.E-38*I, 0.E-38 + 0.E-38*I]

? polroots(x^3+1)
%2 = [-1.00... + 0.E-38*I, 0.50... - 0.866...*I, 0.50... + 0.866...*I]
\end{verbatim}

The algorithm used is a modification of Schönhage's root-finding algorithm, due to and originally implemented by Gourdon. It runs in polynomial time in $\deg(T)$ and the precision. If furthermore $T$ has rational coefficients, roots are guaranteed to the required relative accuracy. If the input polynomial $T$ is exact, then the ordering of the roots does not depend on the precision: they are ordered by increasing $||\Im z||$, then by increasing $\Re z$; in case of tie (conjugates), the root with negative imaginary part comes first.

\textbf{polrootsbound}(\textit{tau})

Return a sharp upper bound $B$ for the modulus of the largest complex root of the polynomial $T$ with complex coefficients with relative error $\tau$. More precisely, we have $||z|| <= B$ for all roots and there exist one root such that $||z_0|| >= B \exp(-2\tau)$. Much faster than either polroots or polrootsreal.

\begin{verbatim}
? T=poltchebi(500);
? vecmax(abs(polroots(T)))
time = 5,706 ms.
%2 = 0.9999950652018581661184481744870013191

? vecmax(abs(polrootsreal(T)))
time = 1,972 ms.
%3 = 0.9999950652018581661184481744870013191

? polrootsbound(T)
time = 217 ms.
%4 = 1.0098792554165905155

? polrootsbound(T, log(2)/2) \ allow a factor 2, much faster
    time = 51 ms.
%5 = 1.4065759938190154354

? polrootsbound(T, 1e-4)
time = 504 ms.
%6 = 1.0000920717983847741

? polrootsbound(T, 1e-6)
time = 810 ms.
%7 = 0.9999960652993869760

? polrootsbound(T, 1e-10)
time = 1,351 ms.
%8 = 0.9999950652018581661
\end{verbatim}

\textbf{polrootsff}(p, a)

Obsolete, kept for backward compatibility: use factormod.

\textbf{polrootsmod}(D)

Vector of roots of the polynomial $f$ over the finite field defined by the domain $D$ as follows:

- $D = p$ a prime: factor over $\mathbb{F}_p$;
- $D = [T, p]$ for a prime $p$ and $T(y)$ an irreducible polynomial over $\mathbb{F}_p$: factor over $\mathbb{F}_p[y]/(T)$ (as usual the main variable of $T$ must have lower priority than the main variable of $f$);
- $D$ a t\textunderscore FFELT: factor over the attached field;
\* $D$ omitted: factor over the field of definition of $f$, which must be a finite field.

Multiple roots are not repeated.

```
? polrootsmod(x^2-1,2)
%1 = [Mod(1, 2)]~
? polrootsmod(x^2+1,3)
%2 = []~
? polrootsmod(x^2+1, [y^2+1,3])
%3 = [Mod(Mod(1, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3)),
 Mod(Mod(2, 3)*y, Mod(1, 3)*y^2 + Mod(1, 3))]~
? polrootsmod(x^2 + Mod(1,3))
%4 = []~
? liftall(polrootsmod(x^2 + Mod(Mod(1,3),y^2+1)))
%5 = [y, 2*y]~
? t = ffgen(y^2+Mod(1,3)); polrootsmod(x^2 + t^0)
%6 = [y, 2*y]~
```

polrootsmod$(p, r)$

Vector of $p$-adic roots of the polynomial $pol$, given to $p$-adic precision $r$; the integer $p$ is assumed to be a prime. Multiple roots are not repeated. Note that this is not the same as the roots in $\mathbb{Z}/p^r\mathbb{Z}$, rather it gives approximations in $\mathbb{Z}/p^r\mathbb{Z}$ of the true roots living in $\mathbb{Q}_p$:

```
? polrootsmod(x^3 - x^2 + 64, 2, 4)
%1 = [2^3 + O(2^4), 2^3 + O(2^4), 1 + O(2^4)]~
? polrootsmod(x^3 - x^2 + 64, 2, 5)
%2 = [2^3 + O(2^5), 2^3 + 2^4 + O(2^5), 1 + O(2^5)]~
```

As the second commands show, the first two roots are distinct in $\mathbb{Q}_p$, even though they are equal modulo $2^4$.

More generally, if $T$ is an integral polynomial irreducible mod $p$ and $f$ has coefficients in $\mathbb{Q}[t]/(T)$, the argument $p$ may be replaced by the vector $[T, p]$; we then return the roots of $f$ in the unramified extension $\mathbb{Q}_p[t]/(T)$.

```
? polrootsmod(x^3 - x^2 + 64*y, [y^2+y+1,2], 5)
%3 = [Mod((2^3 + 0(2^5))*y + (2^3 + 0(2^5)), y^2 + y + 1),
 Mod((2^3 + 2^4 + 0(2^5))*y + (2^3 + 2^4 + 0(2^5)), y^2 + y + 1),
 Mod(1 + 0(2^5), y^2 + y + 1)]~
```

If $pol$ has inexact t_PADIC coefficients, this need not well-defined; in this case, the polynomial is first made integral by dividing out the $p$-adic content, then lifted to $\mathbb{Z}$ using truncate coefficientwise. Hence the roots given are approximations of the roots of an exact polynomial which is $p$-adically close to the input. To avoid pitfalls, we advise to only factor polynomials with exact rational coefficients.

polrootsreal$(ab, \text{precision})$

Real roots of the polynomial $T$ with real coefficients, multiple roots being included according to their multiplicity. If the polynomial does not have rational coefficients, it first rescaled and rounded. The roots are given to a relative accuracy of realprecision. If argument $ab$ is present, it must be a vector $[a, b]$ with two components (of type t_INT, t_FRAC or t_INFINITY) and we restrict to roots belonging to that closed interval.

```
? \p9
? polrootsreal(x^2-2)
%1 = [-1.41421356, 1.41421356]~
? polrootsreal(x^2-2, [1,+oo))
%2 = [1.41421356]~
? polrootsreal(x^2-2, [2,3])
```
The algorithm used is a modification of Uspensky’s method (relying on Descartes’s rule of sign), following Rouillier and Zimmerman’s article “Efficient isolation of a polynomial real roots” (http://hal.inria.fr/inria-00072518/). Barring bugs, it is guaranteed to converge and to give the roots to the required accuracy.

**Remark.** If the polynomial \( T \) is of the form \( Q(x^h) \) for some \( h \geq 2 \) and \( ab \) is omitted, the routine will apply the algorithm to \( Q \) (restricting to nonnegative roots when \( h \) is even), then take \( h \)-th roots. On the other hand, if you want to specify \( ab \), you should apply the routine to \( Q \) yourself and a suitable interval \([a', b']\) using approximate \( h \)-th roots adapted to your problem: the function will not perform this change of variables if \( ab \) is present.

**polsturm\( (ab, _\text{arg2}) \)**

Number of distinct real roots of the real polynomial \( T \). If the argument \( ab \) is present, it must be a vector \([a, b]\) with two real components (of type \texttt{t_INT}, \texttt{t_REAL}, \texttt{t_FRAC} or \texttt{t_INFINITY}) and we count roots belonging to that closed interval.

If possible, you should stick to exact inputs, that is avoid \texttt{t_REAL} s in \( T \) and the bounds \( a, b \): the result is then guaranteed and we use a fast algorithm (Uspensky’s method, relying on Descartes’s rule of sign, see \texttt{polrootsreal}). Otherwise, the polynomial is rescaled and rounded first and the result may be wrong due to that initial error. If only \( a \) or \( b \) is inexact, on the other hand, the interval is first thickened using rational endpoints and the result remains guaranteed unless there exist a root very close to a nonrational endpoint (which may be missed or unduly included).

```plaintext
? T = (x-1)*(x-2)*(x-3);
? polsturm(T)
%2 = 3
? polsturm(T, [-oo,2])
%3 = 2
? polsturm(T, [1/2, +oo])
%4 = 3
? polsturm(T, [1, Pi]) \ Pi inexact: not recommended !
%5 = 3
? polsturm(T^1., [0, 4]) \ T^1. inexact: not recommended !
%6 = 3
? polsturm(T^2, [0, 4]) \ not squarefree: roots are not repeated!
%7 = 3
```

**polsylvestermatrix\( (y) \)**

Forms the Sylvester matrix corresponding to the two polynomials \( x \) and \( y \), where the coefficients of the polynomials are put in the columns of the matrix (which is the natural direction for solving equations afterwards). The use of this matrix can be essential when dealing with polynomials with inexact entries, since polynomial Euclidean division doesn’t make much sense in this case.

**polsym\( (n) \)**

Creates the column vector of the symmetric powers of the roots of the polynomial \( x \) up to power \( n \), using Newton’s formula.

**polteichmuller\( (p, r) \)**

Given \( T \in \mathbb{F}_p[X] \) return the polynomial \( P \in \mathbb{Z}_p[X] \) whose roots (resp. leading coefficient) are the Teichmuller lifts of the roots (resp. leading coefficient) of \( T \), to \( p \)-adic precision \( r \). If \( T \) is monic, \( P \) is the reduction modulo \( p^r \) of the unique monic polynomial congruent to \( T \) modulo \( p \) such that \( P(X^p) = 0 (\mod P(X), p^r) \).
When \( T \) is monic and irreducible mod \( p \), this provides a model \( \mathbb{Q}_p[X]/(P) \) of the unramified extension \( \mathbb{Q}_p[X]/(T) \) where the Frobenius has the simple form \( X \mod P \): \( \psi(X) = X^p \mod P \).

\[ \text{poltschirnhaus()} \]
Applies a random Tschirnhausen transformation to the polynomial \( x \), which is assumed to be nonconstant and separable, so as to obtain a new equation for the étale algebra defined by \( x \). This is for instance useful when computing resolvents, hence is used by the \text{polgalois} function.

\[ \text{polylogmult}(z, t, \text{precision}) \]
For \( s \) a vector of positive integers and \( z \) a vector of complex numbers of the same length, returns the multiple polylogarithm value (MPV)
\[
\zeta(s_1, \ldots, s_r; z_1, \ldots, z_r) = \sum_{n_1 > \ldots > n_r > 0} \prod_{1 < i < r} z_i^{n_i} / n_i^{s_i}.
\]
If \( z \) is omitted, assume \( z = [1, \ldots, 1] \), i.e., Multiple Zeta Value. More generally, return Yamamoto’s interpolation between ordinary multiple polylogarithms \( (t = 0) \) and star polylogarithms \( (t = 1) \), using the condition \( n_1 > \ldots > n_r > 0 \), evaluated at \( t \).

We must have \( \|z_1 \ldots z_r\| < 1 \) for all \( i \), and if \( s_1 = 1 \) we must have \( z_1! = 1 \).

\[ \text{powers}(n, x_0) \]
For nonnegative \( n \), return the vector with \( n + 1 \) components \([1, x, \ldots, x^n]\) if \( x_0 \) is omitted, and \([x_0, x_0 \cdot x, \ldots, x_0 \cdot x^n]\) otherwise.
When $n < 0$, the function returns the empty vector `[]`.

**precision($n$)**

The function behaves differently according to whether $n$ is present or not. If $n$ is missing, the function returns the floating point precision in decimal digits of the PARI object $x$. If $x$ has no floating point component, the function returns $+\infty$.

```plaintext
? precision(exp(1e-100))
%1 = 154 \ 154 significant decimal digits
? precision(2 + x)
%2 = +oo \ exact object
? precision(0.5 + O(x))
%3 = 38 \ floating point accuracy, NOT series precision
? precision([exp(1e-100), 0.5])
%4 = 38 \ minimal accuracy among components
```

Using `getlocalprec()` allows to retrieve the working precision (as modified by possible `localprec` statements).

If $n$ is present, the function creates a new object equal to $x$ with a new floating point precision $n$: $n$ is the number of desired significant decimal digits. If $n$ is smaller than the precision of a `t_REAL` component of $x$, it is truncated, otherwise it is extended with zeros. For non-floating-point types, no change.

**precprime()**

Finds the largest pseudoprime (see `ispseudoprime`) less than or equal to $x$. $x$ can be of any real type. Returns 0 if $x \leq 1$. Note that if $x$ is a prime, this function returns $x$ and not the largest prime strictly smaller than $x$. To rigorously prove that the result is prime, use `isprime`.

**primecert($flag$)**

If $N$ is a prime, return a PARI Primality Certificate for the prime $N$, as described below. Otherwise, return 0. A Primality Certificate $c$ can be checked using `primecertisvalid(c).

If $flag = 0$ (default), return an ECPP certificate (Atkin-Morain)

A PARI ECPP Primality Certificate for the prime $N$ is either a prime integer $N < 2^{64}$ or a vector $C$ of length $\ell$ whose $i$ is a vector $[N_i, t_i, s_i, a_i, P_i]$ of length 5 where $N_1 = N$. It is said to be valid if for each $i = 1, \ldots, \ell$, all of the following conditions are satisfied

- $N_i$ is a positive integer
- $t_i$ is an integer such that $t_i^2 < 4N_i$
- $s_i$ is a positive integer which divides $m_i$ where $m_i = N_i + 1 - t_i$
- If we set $q_i = (m_i)/(s_i)$, then
  * $q_i > (N_i^{1/4} + 1)^2$
  * $q_i = N_{i+1}$ if $1 \leq i < \ell$
  * $q_\ell \leq 2^{64}$ is prime
- $a_i$ is an integer
Theorem. If \( N \) is an integer and there exist positive integers \( m, q \) and a point \( P \) on the elliptic curve \( E : y^2 = x^3 + ax + b \) defined modulo \( N \) such that \( q > (N^{1/4} + 1)^2 \), \( q \) is a prime divisor of \( m \), \( mP = oo \) and \((m)/(q)P! = oo \), then \( N \) is prime.

If \( flag = 1 \) (very slow), return an \( N - 1 \) certificate (Pocklington Lehmer)

A PARI \( N - 1 \) Primality Certificate for the prime \( N \) is either a prime integer \( N < 2^{64} \) or a pair \([N, C]\), where \( C \) is a vector with \( \ell \) elements which are either a single integer \( p_i < 2^{64} \) or a triple \([p_i, a, C_i]\) with \( p_i > 2^{64} \) satisfying the following properties:

- \( p_i \) is a prime divisor of \( N - 1 \);
- \( a_i \) is an integer such that \( a_i^{N-1} = 1 \pmod{N} \) and \( a_i^{(N-1)/p_i} - 1 \) is coprime with \( N \);
- \( C_i \) is an \( N - 1 \) Primality Certificate for \( p_i \)
- The product \( F \) of the \( p_i^{v_i(N-1)} \) is strictly larger than \( N^{1/3} \). Provided that all \( p_i \) are indeed primes, this implies that any divisor of \( N \) is congruent to 1 modulo \( F \).
- The Billhart, Lehmer, Selfridge criterion is satisfied: when we write \( N = 1 + c_1 F + c_2 F^2 \) in base \( F \) the polynomial \( 1 + c_1 X + c_2 X^2 \) is irreducible over \( \mathbb{Z} \), i.e. \( c_1^2 - 4c_2 \) is not a square. This implies that \( N \) is prime.

This algorithm requires factoring partially \( p - 1 \) for various prime integers \( p \) with an unfactored parted \( \leq p^{2/3} \) and this may be exceedingly slow compared to the default.

The algorithm fails if one of the pseudo-prime factors is not prime, which is exceedingly unlikely and well worth a bug report. Note that if you monitor the algorithm at a high enough debug level, you may see warnings about untested integers being declared primes. This is normal: we ask for partial factorizations (sufficient to prove primality if the unfactored part is not too large), and \texttt{factor} warns us that the cofactor hasn’t been tested. It may or may not be tested later, and may or may not be prime. This does not affect the validity of the whole Primality Certificate.

\texttt{primercertexport(format)}

Returns a string suitable for print/write to display a primality certificate from \texttt{primercert}, the format of which depends on the value of \texttt{format}:
• 0 (default): Human-readable format. See ??primecert for the meaning of the successive $N, t, s, a, m, q, E, P$. The integer $D$ is the negative fundamental discriminant $\text{coredisc}(t^2 - 4N)$.

• 1: Primo format 4.

• 2: MAGMA format.

Currently, only ECPP Primality Certificates are supported.

\begin{verbatim}
? cert = primecert(10^35+69);
? s = primecertexport(cert); \ Human-readable
? print(s)
[1]
N = 100000000000000000000000000000000069
t = 546867911035452074
s = 2963504668391148
a = 0
D = -3
m = 9999999999999999453132088964547996
q = 33743830764501150277
E = [0, 1]
P = [2156786168249326346435353707814204,
49167839501923147849639425291163552]
[2]
N = 33743830764501150277
t = -11610830419
s = 734208843
a = 0
D = -3
m = 33743830776111980697
q = 45959444779
E = [0, 25895956964997806805]
P = [29257172487394218479, 3678591960085668324]
\ \ Primo format
? s = primecertexport(cert,1); write("cert.out", s);
\ \ Magma format, write to file
? s = primecertexport(cert,2); write("cert.m", s);
? cert = primecert(10^35+69, 1); \ N-1 certificate
? primecertexport(cert)
*** at top-level: primecertexport(cert)
*** ^---------------------
*** primecertexport: sorry, N-1 certificate is not yet implemented.
\end{verbatim}

\texttt{primecertisvalid()}\hspace{1cm}

Verifies if \texttt{cert} is a valid PARI ECPP Primality certificate, as described in ??primecert.

\begin{verbatim}
? cert = primecert(10^35 + 69)
%1 = [[100000000000000000000000000000000069, 5468679110354],
52074, 2963504668391148, 0, [6073797324046450274283740674,
208692, 24368673584839493121227731392450025]], [33743830764501150277,
4501150277, -11610830419, 734208843, 0, [26740412374402652,
72 4, 6367191119818901665]], [45959444779, 299597, 2331, 0

(continues on next page)
primepi()
The prime counting function. Returns the number of primes $p$, $p \leq x$.

```plaintext
? primepi(10)
%1 = 4;
? primes(5)
%2 = [2, 3, 5, 7, 11]
? primepi(10^11)
%3 = 4118054813
```

Uses checkpointing and a naive $O(x)$ algorithm; make sure to start gp with `primelimit` at least $\sqrt{x}$.

primes()
Creates a row vector whose components are the first $n$ prime numbers. (Returns the empty vector for $n \leq 0$.) A $\text{t\_VEC} n = [a, b]$ is also allowed, in which case the primes in $[a, b]$ are returned.

```plaintext
? primes(10) \ \text{the first 10 primes}
%1 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([0,29]) \ \text{the primes up to 29}
%2 = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29]
? primes([15,30])
%3 = [17, 19, 23, 29]
```

produlerrat($s, a, \text{precision}$)
\[\prod_{p > a} F(p^s), \text{ where the product is taken over prime numbers and } F \text{ is a rational function.}\]

```plaintext
? produlerrat(1+1/q^3,1)
%1 = 1.1815649490102569125693997341604542605
? zeta(3)/zeta(6)
%2 = 1.1815649490102569125693997341604542606
```

prodnrat($a, \text{precision}$)
\[\prod_{n > a} F(n), \text{ where } F - 1 \text{ is a rational function of degree less than or equal to } -2.\]

```plaintext
? prodnrat(1+1/x^2,1)
%1 = 3.6760779103749777206956974920282606665
```

psdraw($\text{flag}$)
This function is obsolete, use `plotexport` and write the result to file.

psi($\text{precision}$)
The $\psi$-function of $x$, i.e. the logarithmic derivative $\Gamma'(x)/\Gamma(x)$.  

psplotraw(listy, flag)
This function is obsolete, use plothrawexport and write the result to file.

qfauto(fl)

G being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs the automorphism group of the associate lattice. Since this requires computing the minimal vectors, the computations can become very lengthy as the dimension grows. G can also be given by an qfisominit structure. See qfisominit for the meaning of fl.

The output is a two-components vector [o, g] where o is the group order and g is the list of generators (as a vector).

For each generator H, the equality $G = t H G H$ holds.

The interface of this function is experimental and will likely change in the future.

This function implements an algorithm of Plesken and Souvignier, following Souvignier’s implementation.

qfautoexport(flag)

qfa being an automorphism group as output by qfauto, export the underlying matrix group as a string suitable for (no flags or flag = 0) GAP or (flag = 1) Magma. The following example computes the size of the matrix group using GAP:

```plaintext
? G = qfauto([2,1;1,2])
%1 = [12, [[-1, 0; 0, -1], [0, -1; 1, 1], [1, 1; 0, -1]]]
? s = qfautoexport(G)
%2 = "Group([[[-1, 0], [0, -1]], [[0, -1], [1, 1]], [[1, 1], [0, -1]]])"
? extern("echo "Order("s");" | gap -q")
%3 = 12
```

qfbclassno(flag)

Ordinary class number of the quadratic order of discriminant D, for “small” values of D.

- if $D > 0$ or flag = 1, use a $O(|D|^{1/2})$ algorithm (compute $L(1, \chi_D)$ with the approximate functional equation). This is slower than quadclassunit as soon as $|D| \approx 10^2$ or so and is not meant to be used for large D.

- if $D < 0$ and flag = 0 (or omitted), use a $O(|D|^{1/4})$ algorithm (Shanks’s baby-step/giant-step method). It should be faster than quadclassunit for small values of D, say $|D| < 10^{18}$.

**Important warning.** In the latter case, this function only implements part of Shanks’s method (which allows to speed it up considerably). It gives unconditionally correct results for $|D| < 2.10^{10}$, but may give incorrect results for larger values if the class group has many cyclic factors. We thus recommend to double-check results using the function quadclassunit, which is about 2 to 3 times slower in the range $|D| \in [10^{10}, 10^{18}]$, assuming GRH. We currently have no counter-examples but they should exist: we would appreciate a bug report if you find one.

**Warning.** Contrary to what its name implies, this routine does not compute the number of classes of binary primitive forms of discriminant D, which is equal to the narrow class number. The two notions are the same when $D < 0$ or the fundamental unit $\varepsilon$ has negative norm; when $D > 0$ and $N\varepsilon > 0$, the number of classes of forms is twice the ordinary class number. This is a problem which we cannot fix for backward compatibility reasons. Use the following routine if you are only interested in the number of classes of forms:

```plaintext
QFBclassno(D) = qfbclassno(D) * if (D < 0 || norm(quadunit(D)) < 0, 1, 2)
```

Here are a few examples:
? qfbclassno(400000028) \ D > 0: slow
time = 3,140 ms.
%1 = 1
? quadclassunit(400000028).no
time = 20 ms. \{ much faster, assume GRH\}
%2 = 1
? qfbclassno(-400000028) \ D < 0: fast enough
time = 0 ms.
%3 = 7253
? quadclassunit(-400000028).no
time = 0 ms.
%4 = 7253

See also qfbhclassno.

qfbcompraw(y)

composition of the binary quadratic forms \( x \) and \( y \), without reduction of the result. This is useful e.g. to compute a generating element of an ideal. The result is undefined if \( x \) and \( y \) do not have the same discriminant.

qfbhclassno()

Hurwitz class number of \( x \), when \( x \) is nonnegative and congruent to 0 or 3 modulo 4, and 0 for other values. For \( x > 5 \cdot 10^5 \), we assume the GRH, and use quadclassunit with default parameters.

? qfbhclassno(1) \ not 0 or 3 mod 4
%1 = 0
? qfbhclassno(3)
%2 = 1/3
? qfbhclassno(4)
%3 = 1/2
? qfbhclassno(23)
%4 = 3

qfbil(y, q)

This function is obsolete, use qfeval.

qfbnucomp(y, L)

composition of the primitive positive definite binary quadratic forms \( x \) and \( y \) (type t_QFI) using the NUCOMP and NUDUPL algorithms of Shanks, à la Atkin. \( L \) is any positive constant, but for optimal speed, one should take \( L = |D/4|^{1/4} \), i.e. \sqrintn\( (abs(D) >> 2, 4) \), where \( D \) is the common discriminant of \( x \) and \( y \). When \( x \) and \( y \) do not have the same discriminant, the result is undefined.

The current implementation is slower than the generic routine for small \( D \), and becomes faster when \( D \) has about 45 bits.

qfbmupow(n, L)

\( n \)-th power of the primitive positive definite binary quadratic form \( x \) using Shanks’s NUCOMP and NUDUPL algorithms; if set, \( L \) should be equal to \sqrintn\( (abs(D) >> 2, 4) \), where \( D < 0 \) is the discriminant of \( x \).

The current implementation is slower than the generic routine for small discriminant \( D \), and becomes faster for \( D > 45^2 \).

qfbpowraw(n)

\( n \)-th power of the binary quadratic form \( x \), computed without doing any reduction (i.e. using qfbcompraw). Here \( n \) must be nonnegative and \( n < 2^{31} \).
**qfbprimeform**($p$, precision)

Prime binary quadratic form of discriminant $x$ whose first coefficient is $p$, where $||p||$ is a prime number. By abuse of notation, $p = 1$ is also valid and returns the unit form. Returns an error if $x$ is not a quadratic residue mod $p$, or if $x < 0$ and $p < 0$. (Negative definite t_QFI are not implemented.) In the case where $x > 0$, the “distance” component of the form is set equal to zero according to the current precision.

**qfbred**(flag, $d$, isd, sd)

Reduces the binary quadratic form $x$ (updating Shanks’s distance function if $x$ is indefinite). The binary digits of flag are toggles meaning

1: perform a single reduction step
2: don’t update Shanks’s distance

The arguments $d$, isd, sd, if present, supply the values of the discriminant, floor$\sqrt{d}$, and $\sqrt{d}$ respectively (no checking is done of these facts). If $d < 0$ these values are useless, and all references to Shanks’s distance are irrelevant.

**qfbredsl2**(data)

Reduction of the (real or imaginary) binary quadratic form $x$, return $[y, g]$ where $y$ is reduced and $g$ in $SL(2, Z)$ is such that $g.x = y$; data, if present, must be equal to $[D, sqrtint(D)]$, where $D > 0$ is the discriminant of $x$. In case $x$ is a t_QFR, the distance component is unaffected.

**qfbsolve**(n, flag)

Solve the equation $Q(x, y) = n$ in coprime integers $x$ and $y$ (primitive solutions), where $Q$ is a binary quadratic form and $n$ an integer, up to the action of the special orthogonal group $G = SO(Q, Z)$, which is isomorphic to the group of units of positive norm of the quadratic order of discriminant $D = \text{disc}Q$. If $D > 0$, $G$ is infinite. If $D < -4$, $G$ is of order 2, if $D = -3$, $G$ is of order 6 and if $D = -4$, $G$ is of order 4.

Binary digits of flag mean: 1: return all solutions if set, else a single solution; return $[]$ if a single solution is wanted (bit unset) but none exist. 2: also include imprimitive solutions.

When flag = 2 (return a single solution, possibly imprimitive), the algorithm returns a solution with minimal content; in particular, a primitive solution exists if and only if one is returned.

The integer $n$ can be given by its factorization matrix:emphasis:`fa = factor(n)` or by the pair $[n, fa]$.

```
? qfbsolve(Qfb(1,0,2), 603) \ a single primitive solution
%1 = [5, 17]

? qfbsolve(Qfb(1,0,2), 603, 1) \ all primitive solutions
%2 = [[5, 17], [-19, -11], [19, -11], [5, -17]]

? qfbsolve(Qfb(1,0,2), 603, 2) \ a single, possibly imprimitive solution
%3 = [5, 17] \ actually primitive

? qfbsolve(Qfb(1,0,2), 603, 3) \ all solutions
%4 = [[5, 17], [-19, -11], [19, -11], [5, -17], [-21, 9], [-21, -9]]

? N = 2^128+1; F = factor(N);
? qfbsolve(Qfb(1,0,1),[N,F],1)
%3 = [[-16382350221535464479,8479443857936402504],
[18446744073709551616,-1],[-18446744073709551616,-1],
[16382350221535464479,8479443857936402504]]
```

For fixed $Q$, assuming the factorisation of $n$ is given, the algorithm runs in probabilistic polynomial time in $\log p$, where $p$ is the largest prime divisor of $n$, through the computation of square roots of $D$ modulo 4$p$. The dependency on $Q$ is more complicated: polynomial time in $\log |D|$ if $Q$ is imaginary, but exponential time if $Q$
is real (through the computation of a full cycle of reduced forms). In the latter case, note that \texttt{bnfisprincipal} provides a solution in heuristic subexponential time assuming the GRH.

\texttt{qfeval} \,(x,y) 

Evaluate the quadratic form \(q\) (given by a symmetric matrix) at the vector \(x\); if \(y\) is present, evaluate the polar form at \((x,y)\); if \(q\) omitted, use the standard Euclidean scalar product, corresponding to the identity matrix.

Roughly equivalent to \(x^\sim \ast q \ast y\), but a little faster and more convenient (does not distinguish between column and row vectors):

? x = [1,2,3] \sim; y = [-1,3,1] \sim; q = [1,2,3;2,2,-1;3,-1,9];
? qfeval(q,x,y)
%2 = 23
? for(i=1,10^6, qfeval(q,x,y))
time = 661ms
? for(i=1,10^6, x^\sim*y)
time = 697ms

The speedup is noticeable for the quadratic form, compared to \(x^\sim \ast q \ast x\), since we save almost half the operations:

? for(i=1,10^6, qfeval(q,x))
time = 487ms

The special case \(q = Id\) is handled faster if we omit \(q\) altogether:

? qfeval(,x,y)
%6 = 8
? q = matid(#x);
? for(i=1,10^6, qfeval(q,x,y))
time = 529 ms.
? for(i=1,10^6, qfeval(,x,y))
time = 228 ms.
? for(i=1,10^6, x^\sim*y)
time = 274 ms.

We also allow \texttt{t\_MAT}s of compatible dimensions for \(x\), and return \(x^\sim \ast q \ast x\) in this case as well:

? M = [1,2,3;4,5,6;7,8,9]; qfeval(,M) %5 =
[66 78 90]
[78 93 108]
[90 108 126]

? q = [1,2,3;2,2,-1;3,-1,9];
? for(i=1,10^6, qfeval(q,M))
time = 2,008 ms.
? for(i=1,10^6, M^\sim\ast q\ast M)
time = 2,368 ms.
? for(i=1,10^6, qfeval(,M))
time = 1,053 ms.

(continues on next page)
If \( q \) is a \texttt{t_QFI} or \texttt{t_QFR}, it is implicitly converted to the attached symmetric \texttt{t_MAT}. This is done more efficiently than by direct conversion, since we avoid introducing a denominator 2 and rational arithmetic:

```pari
def for(i=1, 10^6, qfeval(q, x))
time = 758 ms.
def for (i=1, 10^6, qfeval(Q, x))
time = 1,110 ms.
```

Finally, when \( x \) is a \texttt{t_MAT} with integral coefficients, we allow a \texttt{t_QFI} or \texttt{t_QFR} for \( q \) and return the binary quadratic form \( qoM \). Again, the conversion to \texttt{t_MAT} is less efficient in this case:

```pari
def qfeval(q, x)
def for(i=1, 10^6, qfeval(q, x))
time = 701 ms.
def for (i=1, 10^6, qfeval(Q, x))
time = 1,639 ms.
```

\texttt{qfgaussred()} decomposes into squares of the quadratic form represented by the symmetric matrix \( q \). The result is a matrix whose diagonal entries are the coefficients of the squares, and the off-diagonal entries on each line represent the bilinear forms. More precisely, if \( (a_{ij}) \) denotes the output, one has

\[
q(x) = \sum_i a_{ii}(x_i + \sum_{j \neq i} a_{ij}x_j)^2
\]

```pari
def qfgaussred([0,1;1,0])
%1 =
[1/2 1]
[-1 -1/2]
```

This means that \( 2xy = (1/2)(x + y)^2 - (1/2)(x - y)^2 \). Singular matrices are supported, in which case some diagonal coefficients will vanish:
This means that \( x^2 + 2xy + y^2 = (x + y)^2 \).

**qfisom** \((H, fl, grp)\)

\( G, H \) being square and symmetric matrices with integer entries representing positive definite quadratic forms, return an invertible matrix \( S \) such that \( G = S H S^T \). This defines a isomorphism between the corresponding lattices. Since this requires computing the minimal vectors, the computations can become very lengthy as the dimension grows. See **qfisomin**it for the meaning of \( fl \). If \( grp \) is given it must be the automorphism group of \( H \). It will be used to speed up the computation.

\( G \) can also be given by an **qfisomin**it structure which is preferable if several forms \( H \) need to be compared to \( G \).

This function implements an algorithm of Plesken and Souvignier, following Souvignier's implementation.

**qfisomin**it \((fl, m)\)

\( G \) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, return an isom structure allowing to compute isomorphisms between \( G \) and other quadratic forms faster.

The interface of this function is experimental and will likely change in future release.

If present, the optional parameter \( fl \) must be a \( \text{t}_\text{VEC} \) with two components. It allows to specify the invariants used, which can make the computation faster or slower. The components are

- \( fl[1] \) Depth of scalar product combination to use.
- \( fl[2] \) Maximum level of Bacher polynomials to use.

If present, \( m \) must be the set of vectors of norm up to the maximal of the diagonal entry of \( G \), either as a matrix or as given by **qfminim**. Otherwise this function computes the minimal vectors so it become very lengthy as the dimension of \( G \) grows.

**qfjacobi** \((\text{precision})\)

Apply Jacobi's eigenvalue algorithm to the real symmetric matrix \( A \). This returns \( [L, V] \), where

- \( L \) is the vector of (real) eigenvalues of \( A \), sorted in increasing order,
- \( V \) is the corresponding orthogonal matrix of eigenvectors of \( A \).
qflll(flag)

LLL algorithm applied to the columns of the matrix \(x\). The columns of \(x\) may be linearly dependent. The result is by default a unimodular transformation matrix \(T\) such that \(x.T\) is an LLL-reduced basis of the lattice generated by the column vectors of \(x\). Note that if \(x\) is not of maximal rank \(T\) will not be square. The LLL parameters are \((0.51, 0.99)\), meaning that the Gram-Schmidt coefficients for the final basis satisfy \(\|\mu_{i,j}\| \leq 0.51\), and the Lovász’s constant is 0.99.

If \(flag = 0\) (default), assume that \(x\) has either exact (integral or rational) or real floating point entries. The matrix is rescaled, converted to integers and the behavior is then as in \(flag = 1\).

If \(flag = 1\), assume that \(x\) is integral. Computations involving Gram-Schmidt vectors are approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s algorithm and Stehlé’s code (fplll-1.3).

If \(flag = 2\), \(x\) should be an integer matrix whose columns are linearly independent. Returns a partially reduced basis for \(x\), using an unpublished algorithm by Peter Montgomery: a basis is said to be partially reduced if \(\|v_i.v_j\| \geq \|v_i\|\) for any two distinct basis vectors \(v_i, v_j\). This is faster than \(flag = 1\), esp. when one row is huge compared to the other rows (knapsack-style), and should quickly produce relatively short vectors. The resulting basis is not LLL-reduced in general. If LLL reduction is eventually desired, avoid this partial reduction: applying LLL to the partially reduced matrix is significantly slower than starting from a knapsack-type lattice.

If \(flag = 3\), as \(flag = 1\), but the reduction is performed in place: the routine returns \(x.T\). This is usually faster for knapsack-type lattices.

If \(flag = 4\), as \(flag = 1\), returning a vector \([K, T]\) of matrices: the columns of \(K\) represent a basis of the integer kernel of \(x\) (not LLL-reduced in general) and \(T\) is the transformation matrix such that \(x.T\) is an LLL-reduced \(\mathbb{Z}\)-basis of the image of the matrix \(x\).

If \(flag = 5\), case as case 4, but \(x\) may have polynomial coefficients.

If \(flag = 8\), same as case 0, but \(x\) may have polynomial coefficients.
qflllgram(flag)
Same as qflll, except that the matrix $G = x^* x$ is the Gram matrix of some lattice vectors $x$, and not the coordinates of the vectors themselves. In particular, $G$ must now be a square symmetric real matrix, corresponding to a positive quadratic form (not necessarily definite: $x$ needs not have maximal rank). The result is a unimodular transformation matrix $T$ such that $x.T$ is an LLL-reduced basis of the lattice generated by the column vectors of $x$. See qflll for further details about the LLL implementation.

If flag = 0 (default), assume that $G$ has either exact (integral or rational) or real floating point entries. The matrix is rescaled, converted to integers and the behavior is then as in flag = 1.

If flag = 1, assume that $G$ is integral. Computations involving Gram-Schmidt vectors are approximate, with precision varying as needed (Lehmer’s trick, as generalized by Schnorr). Adapted from Nguyen and Stehlé’s algorithm and Stehlé’s code (fp1ll-1.3).

flag = 4: $G$ has integer entries, gives the kernel and reduced image of $x$.

flag = 5: same as 4, but $G$ may have polynomial coefficients.

qfminim(B, m, flag, precision)
$x$ being a square and symmetric matrix of dimension $d$ representing a positive definite quadratic form, this function deals with the vectors of $x$ whose norm is less than or equal to $B$, enumerated using the Fincke-Pohst algorithm, storing at most $m$ pairs of vectors: only one vector is given for each pair $v$. There is no limit if $m$ is omitted: beware that this may be a huge vector! The vectors are returned in no particular order.

The function searches for the minimal nonzero vectors if $B$ is omitted. The behavior is undefined if $x$ is not positive definite (a “precision too low” error is most likely, although more precise error messages are possible). The precise behavior depends on flag.

- If flag = 0 (default), return $[N, M, V]$, where $N$ is the number of vectors enumerated (an even number, possibly larger than $2m$), $M <= B$ is the maximum norm found, and $V$ is a matrix whose columns are found vectors.

- If flag = 1, ignore $m$ and return $[M, v]$, where $v$ is a nonzero vector of length $M <= B$. If no nonzero vector has length $<= B$, return []. If no explicit $B$ is provided, return a vector of smallish norm, namely the vector of smallest length (usually the first one but not always) in an LLL-reduced basis for $x$.

In these two cases, $x$ must have integral small entries: more precisely, we definitely must have $d.\|x\|_o2 < 2^{53}$ but even that may not be enough. The implementation uses low precision floating point computations for maximal speed and gives incorrect results when $x$ has large entries. That condition is checked in the code and the routine raises an error if large rounding errors occur. A more robust, but much slower, implementation is chosen if the following flag is used:

- If flag = 2, $x$ can have non integral real entries, but this is also useful when $x$ has large integral entries. Return $[N, M, V]$ as in case flag = 0, where $M$ is returned as a floating point number. If $x$ is inexact and $B$ is omitted, the “minimal” vectors in $V$ only have approximately the same norm (up to the internal working accuracy). This version is very robust but still offers no hard and fast guarantee about the result: it involves floating point operations performed at a high floating point precision depending on your input, but done without rigorous tracking of roundoff errors (as would be provided by interval arithmetic for instance). No example is known where the input is exact but the function returns a wrong result.

```plaintext
? x = matid(2);
? qfminim(x) \ 4 minimal vectors of norm 1: ±[0,1], ±[1,0]
%2 = [4, 1, [0, 1; 1, 0]]
? x = \ The Leech lattice
[4, 2, 0, 0, 0, -2, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 0, 0, -2;
 2, 4, -2, 0, -2, 0, 0, 0, 0, 0, 0, 0, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, -1;
 0, -2, 4, 0, -2, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
 0, -2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, -1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0;
 0, -2, 0, 4, 0;
(continues on next page)
```
In this example, storing 0 vectors limits memory use; storing all of them requires a `parisize` about 50MB. All minimal vectors are nevertheless enumerated in both cases of course, which means the speedup is likely to be marginal.

**qfparam**

This function is obsolete; use `qfeval`.

**qforbits**

Return the orbits of $V$ under the action of the group of linear transformation generated by the set $G$. It is assumed that $G$ contains minus identity, and only one vector in $v, -v$ should be given. If $G$ does not stabilize $V$, the function return 0.

In the example below, we compute representatives and lengths of the orbits of the vectors of norm $\leq 3$ under the automorphisms of the lattice $\mathbb{Z}^6$.

```pari
? Q=matid(6); G=qfauto(Q); V=qfminim(Q,3);
? apply(x->[x[1],#x],qforbits(G,V))
%2 = \{[0,0,0,0,0,1], 6, [0,0,0,1,-1,-1], 30, [0,0,0,1,-1,-1], 80\}
```

**qfparam**

Coefficients of binary quadratic forms that parametrize the solutions of the ternary quadratic form $G$, using the particular solution $sol$. `flag` is optional and can be 1, 2, or 3, in which case the `flag`-th form is reduced. The default is `flag = 0` (no reduction).
? G = [1,0,0;0,1,0;0,0,-34];
? M = qfparam(G, qfsolve(G))
%2 =
[ 3 -10 -3]
[-5 -6 5]
[ 1 0 1]

Indeed, the solutions can be parametrized as

\[(3x^2 - 10xy - 3y^2)^2 + (-5x^2 - 6xy + 5y^2)^2 - 34(x^2 + y^2)^2 = 0.\]

? v = y^2 * M*[1,x/y,(x/y)^2]~
%3 = [3*x^2 - 10*y*x - 3*y^2, -5*x^2 - 6*y*x + 5*y^2, -x^2 - y^2]~
? v~*G*v
%4 = 0

\textbf{qfperfection}()

\(G\) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, outputs the perfection rank of the form. That is, gives the rank of the family of the \(s\) symmetric matrices \(vv^t\), where \(v\) runs through the minimal vectors.

The algorithm computes the minimal vectors and its runtime is exponential in the dimension of \(x\).

\textbf{qfrep}(B, flag)

\(q\) being a square and symmetric matrix with integer entries representing a positive definite quadratic form, count the vectors representing successive integers.

- If \(flag = 0\), count all vectors. Outputs the vector whose \(i\)-th entry, \(1 \leq i \leq B\) is half the number of vectors \(v\) such that \(q(v) = i\).
- If \(flag = 1\), count vectors of even norm. Outputs the vector whose \(i\)-th entry, \(1 \leq i \leq B\) is half the number of vectors such that \(q(v) = 2i\).

? q = [2, 1; 1, 3];
? qfrep(q, 5)
%2 = Vecsmall([0, 1, 2, 0, 0]) \ 1 vector of norm 2, 2 of norm 3, etc.
? qfrep(q, 5, 1)
%3 = Vecsmall([1, 0, 1, 0]) \ 1 vector of norm 2, 0 of norm 4, etc.

This routine uses a naive algorithm based on \textbf{qfminim}, and will fail if any entry becomes larger than \(2^{31}\) (or \(2^{63}\)).

\textbf{qfsign}()

Returns \([p, m]\) the signature of the quadratic form represented by the symmetric matrix \(x\). Namely, \(p\) (resp. \(m\)) is the number of positive (resp. negative) eigenvalues of \(x\). The result is computed using Gaussian reduction.

\textbf{qfsolve}()

Given a square symmetric matrix \(G\) of dimension \(n \geq 1\), solve over \(\mathbb{Q}\) the quadratic equation \(X^tGX = 0\). The matrix \(G\) must have rational coefficients. The solution might be a single nonzero vector (vectorv) or a matrix (whose columns generate a totally isotropic subspace).

If no solution exists, returns an integer, that can be a prime \(p\) such that there is no local solution at \(p\), or \(-1\) if there is no real solution, or \(-2\) if \(n = 2\) and \(-\det G\) is positive but not a square (which implies there is a real solution, but no local solution at some \(p\) dividing \(\det G\)).
quadclassunit(flag, tech, precision)

Buchmann-McCurley’s sub-exponential algorithm for computing the class group of a quadratic order of discriminant $D$.

This function should be used instead of \texttt{qfbclassno} or \texttt{quadregulator} when $D < -10^{25}$, $D > 10^{10}$, or when the \textit{structure} is wanted. It is a special case of \texttt{bnfinit}, which is slower, but more robust.

The result is a vector $v$ whose components should be accessed using member functions:

- \texttt{\textbackslash v.no}: the class number
- \texttt{\textbackslash v.cyc}: a vector giving the structure of the class group as a product of cyclic groups;
- \texttt{\textbackslash v.gen}: a vector giving generators of those cyclic groups (as binary quadratic forms).
- \texttt{\textbackslash v.reg}: the regulator, computed to an accuracy which is the maximum of an internal accuracy determined by the program and the current default (note that once the regulator is known to a small accuracy it is trivial to compute it to very high accuracy, see the tutorial).

The \textit{flag} is obsolete and should be left alone. In older versions, it supposedly computed the narrow class group when $D > 0$, but this did not work at all; use the general function \texttt{bnfnarrow}.

Optional parameter \textit{tech} is a row vector of the form $[c_1, c_2]$, where $c_1 \leq c_2$ are nonnegative real numbers which control the execution time and the stack size, see \texttt{GRHbnf} (in the \texttt{PARI} manual). The parameter is used as a threshold to balance the relation finding phase against the final linear algebra. Increasing the default $c_1$ means that relations are easier to find, but more relations are needed and the linear algebra will be harder. The default value for $c_1$ is 0 and means that it is taken equal to $c_2$. The parameter $c_2$ is mostly obsolete and should not be changed, but we still document it for completeness: we compute a tentative class group by generators and relations using a factorbase of prime ideals $\leq c_1(\log ||D||)^2$, then prove that ideals of norm $\leq c_2(\log ||D||)^2$ do not generate a larger group. By default an optimal $c_2$ is chosen, so that the result is provably correct under the GRH — a famous result of Bach states that $c_2 = 6$ is fine, but it is possible to improve on this algorithmically. You may provide a smaller $c_2$, it will be ignored (we use the provably correct one); you may provide a larger $c_2$ than the default value, which results in longer computing times for equally correct outputs (under GRH).

quaddisc()

Discriminant of the étale algebra $\mathbb{Q}(\sqrt{x})$, where $x \in \mathbb{Q}^*$. This is the same as \texttt{coredisc}(d) where $d$ is the integer squarefree part of $x$, so $x = df^2$ with $f \in \mathbb{Q}^*$ and $d \in \mathbb{Z}$. This returns 0 for $x = 0$, 1 for $x$ square and the discriminant of the quadratic field $\mathbb{Q}(\sqrt{x})$ otherwise.

\begin{verbatim}
? quaddisc(7)
%1 = 28
? quaddisc(-7)
%2 = -7
\end{verbatim}

quadgen(v)

Creates the quadratic number $\omega = (a + \sqrt{D})/2$ where $a = 0$ if $D = 0 \mod 4$, $a = 1$ if $D = 1 \mod 4$, so that $(1, \omega)$
is an integral basis for the quadratic order of discriminant $D$. $D$ must be an integer congruent to 0 or 1 modulo 4, which is not a square. If $v$ is given, the variable name is used to display $g$ else ‘w’ is used.

```
? w = quadgen(5, 'w); w^2 - w - 1
%1 = 0
? w = quadgen(0, 'w)
*** at top-level: w=quadgen(0)
*** ^--------
*** quadgen: domain error in quadpoly: issquare(disc) = 1
```

quadhilbert(precision)

Relative equation defining the Hilbert class field of the quadratic field of discriminant $D$.

If $D < 0$, uses complex multiplication (Schartz’s variant).

If $D > 0$ Stark units are used and (in rare cases) a vector of extensions may be returned whose compositum is the requested class field. See bnrstark for details.

quadpoly($v$)

Creates the “canonical” quadratic polynomial (in the variable $v$) corresponding to the discriminant $D$, i.e. the minimal polynomial of $\text{quadgen}(D)$. $D$ must be an integer congruent to 0 or 1 modulo 4, which is not a square.

```
? quadpoly(5, 'y)
%1 = y^2 - y - 1
? quadpoly(0, 'y)
*** at top-level: quadpoly(0, 'y)
*** ^--------
*** quadpoly: domain error in quadpoly: issquare(disc) = 1
```

quadray($f$, precision)

Relative equation for the ray class field of conductor $f$ for the quadratic field of discriminant $D$ using analytic methods. A bnf for $x^2 - D$ is also accepted in place of $D$.

For $D < 0$, uses the $\sigma$ function and Schartz’s method.

For $D > 0$, uses Stark’s conjecture, and a vector of relative equations may be returned. See bnrstark for more details.

quadregulator(precision)

Regulator of the quadratic field of positive discriminant $x$. Returns an error if $x$ is not a discriminant (fundamental or not) or if $x$ is a square. See also quadclassunit if $x$ is large.

quadunit($v$)

Fundamental unit $u$ of the real quadratic field $\mathbb{Q}(\sqrt{D})$ where $D$ is the positive discriminant of the field. If $D$ is not a fundamental discriminant, this probably gives the fundamental unit of the corresponding order. $D$ must be an integer congruent to 0 or 1 modulo 4, which is not a square; the result is a quadratic number (see quadgen in the PARI manual). If $v$ is given, the variable name is used to display $u$ else ‘w’ is used. The algorithm computes the continued fraction of $(1 + \sqrt{D})/2$ or $\sqrt{D}/2$ (see GTM 138, algorithm 5.7.2). Although the continued fraction length is only $O(\sqrt{D})$, the function still runs in time $O(D)$, in part because the output size is not polynomially bounded in terms of $\log D$. See bnfinit and bnfunits for a better alternative for large $D$, running in time subexponential in $\log D$ and returning the fundamental units in compact form (as a short list of $S$-units of size $O(\log D)^3$ raised to possibly large exponents).

ramanujantau()

Compute the value of Ramanujan’s tau function at an individual $n$, assuming the truth of the GRH (to compute quickly class numbers of imaginary quadratic fields using quadclassunit). Algorithm in $O(n^{1/2})$ using
$O(\log n)$ space. If all values up to $N$ are required, then

$$\sum \tau(n)q^n = q \prod_{n=1}^N (1-q^n)^{24}$$

will produce them in time $O(N)$, against $O(N^{3/2})$ for individual calls to \texttt{ramanujantau}; of course the space complexity then becomes $O(N)$.

```plaintext
? tauvec(N) = Vec(q*eta(q + O(q^N))^24);
? N = 10^4; v = tauvec(N);
time = 26 ms.
? ramanujantau(N)
%3 = -482606811957501440000
? w = vector(N, n, ramanujantau(n)); \ \text{\small much slower!}
time = 13,190 ms.
? v == w
%4 = 1
```

\textbf{random()}

Returns a random element in various natural sets depending on the argument $N$.

- \texttt{t\_INT}: returns an integer uniformly distributed between $0$ and $N - 1$. Omitting the argument is equivalent to \texttt{random(2^31)}.
- \texttt{t\_REAL}: returns a real number in $[0, 1]$ with the same accuracy as $N$ (whose mantissa has the same number of significant words).
- \texttt{t\_INTMOD}: returns a random intmod for the same modulus.
- \texttt{t\_FFELT}: returns a random element in the same finite field.
- \texttt{t\_VEC} of length 2, $N = [a, b]$: returns an integer uniformly distributed between $a$ and $b$.
- \texttt{t\_VEC} generated by \texttt{ellinit} over a finite field $k$ (coefficients are \texttt{t\_INTMOD} s modulo a prime or \texttt{t\_FFELT} s): returns a “random” $k$-rational affine point on the curve. More precisely if the curve has a single point (at infinity!) we return it; otherwise we return an affine point by drawing an abscissa uniformly at random until \texttt{ellordinate} succeeds. Note that this is definitely not a uniform distribution over $E(k)$, but it should be good enough for applications.
- \texttt{t\_POL} return a random polynomial of degree at most the degree of $N$. The coefficients are drawn by applying \texttt{random} to the leading coefficient of $N$.

```plaintext
? random(10)
%1 = 9
? random(Mod(0,7))
%2 = Mod(1, 7)
? a = ffgen(ffinit(3,7), 'a); random(a)
%3 = a^6 + 2*a^5 + a^4 + a^3 + a^2 + 2*a
? E = ellinit([3,7]*Mod(1,109)); random(E)
%4 = [Mod(103, 109), Mod(10, 109)]
? E = ellinit([1,7]*Mod(0,7)); random(E)
%5 = [a^6 + a^5 + 2*a^4 + 2*a^2, 2*a^6 + 2*a^4 + 2*a^3 + a^2 + 2*a]
? random(Mod(1,7)*x^4)
%6 = Mod(5, 7)*x^4 + Mod(6, 7)*x^3 + Mod(2, 7)*x^2 + Mod(2, 7)*x + Mod(5, 7)
```

These variants all depend on a single internal generator, and are independent from your operating system’s random number generators. A random seed may be obtained via \texttt{getrand}, and reset using \texttt{setrand}: from a given seed, and given sequence of \texttt{random}s, the exact same values will be generated. The same seed is used at each startup,
reseed the generator yourself if this is a problem. Note that internal functions also call the random number generator; adding such a function call in the middle of your code will change the numbers produced.

**Technical note.** Up to version 2.4 included, the internal generator produced pseudo-random numbers by means of linear congruences, which were not well distributed in arithmetic progressions. We now use Brent’s XORGEN algorithm, based on Feedback Shift Registers, see [http://wwwmaths.anu.edu.au/~brent/random.html](http://wwwmaths.anu.edu.au/~brent/random.html). The generator has period $2^{4096} - 1$, passes the Crush battery of statistical tests of L’Ecuyer and Simard, but is not suitable for cryptographic purposes: one can reconstruct the state vector from a small sample of consecutive values, thus predicting the entire sequence.

**randomprime**($q$)

Returns a strong pseudo prime (see *ispseudoprime*) in $[2, N - 1]$. A t_VEC $N = [a, b]$ is also allowed, with $a <= b$ in which case a pseudo prime $a <= p <= b$ is returned; if no prime exists in the interval, the function will run into an infinite loop. If the upper bound is less than $2^{64}$ the pseudo prime returned is a proven prime.

```pari
? randomprime(100)
%1 = 71
? randomprime([3,100])
%2 = 61
? randomprime([1,1])
*** at top-level: randomprime([1,1])
*** ^------------------
*** randomprime: domain error in randomprime:
*** floor(b) - max(ceil(a),2) < 0
? randomprime([24,28]) \ infinite loop
```

If the optional parameter $q$ is an integer, return a prime congruent to $1 \bmod q$; if $q$ is an intmod, return a prime in the given congruence class. If the class contains no prime in the given interval, the function will raise an exception if the class is not invertible, else run into an infinite loop.

```pari
? randomprime(100, 4) \ 1 mod 4
%1 = 71
? randomprime(100, 4)
%2 = 13
? randomprime([10,100], Mod(2,5))
%3 = 47
? randomprime(100, Mod(0,2)) \ silly but works
%4 = 2
? randomprime([3,100], Mod(0,2)) \ not invertible
*** at top-level: randomprime([3,100],Mod(0,2))
*** ^------------------
*** randomprime: elements not coprime in randomprime:
0
2
? randomprime(100, 97) \ infinite loop
```

**real()**

Real part of $x$. When $x$ is a quadratic number, this is the coefficient of 1 in the “canonical” integral basis $(1, \omega)$.

```pari
? real(3 + I)
%1 = 3
? x = 3 + quadgen(-23);
? real(x) \ as a quadratic number
%3 = 3
```
```plaintext
? real(x * 1.) \ as a complex number
%4 = 3.5000000000000000000000000000000000000
```

**removeprimes()**

Removes the primes listed in \( x \) from the prime number table. In particular `removeprimes(addprimes())` empties the extra prime table. \( x \) can also be a single integer. List the current extra primes if \( x \) is omitted.

**rnfalgtobasis()**

Expresses \( x \) on the relative integral basis. Here, \( rnf \) is a relative number field extension \( L/K \) as output by `rnfinit`, and \( x \) an element of \( L \) in absolute form, i.e. expressed as a polynomial or polmod with polmod coefficients, not on the relative integral basis.

**rnfbasis(M)**

Let \( K \) the field represented by \( bnf \), as output by `bnfinit`. \( M \) is a projective \( \mathbb{Z}_K \)-module of rank \( n \) \((M \otimes K \text{ is an } n\text{-dimensional } K\text{-vector space})\), given by a pseudo-basis of size \( n \). The routine returns either a true \( \mathbb{Z}_K \)-basis of \( M \) (of size \( n \)) if it exists, or an \( n+1 \)-element generating set of \( M \) if not.

It is allowed to use a monic irreducible polynomial \( P \) in \( K[X] \) instead of \( M \), in which case, \( M \) is defined as the ring of integers of \( K[X]/(P) \), viewed as a \( \mathbb{Z}_K \)-module.

**Huge discriminants, helping rnfdis**c. The format \([T, B]\) is also accepted instead of \( T \) and computes an order which is maximal at all maximal ideals specified by \( B \), see `??rnfinit`: the valuation of \( D \) is then correct at all such maximal ideals but may be incorrect at other primes.

**rnfbasistoalg(x)**

 Computes the representation of \( x \) as a polmod with polmods coefficients. Here, \( rnf \) is a relative number field extension \( L/K \) as output by `rnfinit`, and \( x \) an element of \( L \) expressed on the relative integral basis.

**rnfcharchpoly(T, a, var)**

Characteristic polynomial of \( a \) over \( n\), where \( a \) belongs to the algebra defined by \( T \) over \( n\), i.e. \( n\mathbb{F}[(X)/T] \). Returns a polynomial in variable \( v \) (\( x \) by default).

```plaintext
? nf = nfininit(y^2+1);
? rnfcharchpoly(nf, x^2+y*x+1, x+y)
%2 = x^2 + Mod(-y, y^2 + 1)*x + 1
```

**rnfconductor(T, flag)**

Given a \( bnf \) structure attached to a number field \( K \), as produced by `bnfinit`, and \( T \) an irreducible polynomial in \( K[X] \) defining an Abelian extension \( L = K[X]/(T) \), computes the class field theory conductor of this Abelian extension. If \( T \) does not define an Abelian extension over \( K \), the result is undefined; it may be the integer 0 (in which case the extension is definitely not Abelian) or a wrong result.

The result is a 3-component vector \([f, bnr, H] \), where \( f \) is the conductor of the extension given as a 2-component row vector \([f_0, f_0o] \), \( bnr \) is the attached \( bnr \) structure and \( H \) is a matrix in HNF defining the subgroup of the ray class group on the ray class group generators \( bnr\text{.gen} \); in particular, it is a left divisor of the diagonal matrix attached to \( bnr\text{.cyc} \) and \( \det H = N = \deg T \).

If \( flag \) is set, return \([f, bnr\text{.mod}, H] \), where \( bnr\text{.mod} \) is now attached to \( CL_f/CL_f^N \), and \( H \) is as before since it contains the \( N\)th powers. This is useful when \( f \) contains a maximal ideal with huge residue field, since the corresponding tough discrete logarithms are trivialized: in the quotient group, all elements have small order dividing \( N \). This allows to work in \( CL_f/H \) but no longer in \( CL_f \).

**Huge discriminants, helping rnfdis**c. The format \([T, B]\) is also accepted instead of \( T \) and computes the conductor of the extension provided it factors completely over the maximal ideals specified by \( B \), see `??rnfinit`: the valuation of \( f_0 \) is then correct at all such maximal ideals but may be incorrect at other primes.
rnfdedekind(pol, pr, flag)

Given a number field \( K \) coded by \( nf \) and a monic polynomial \( P \in \mathbb{Z}_K[X] \), irreducible over \( K \) and thus defining a relative extension \( L \) of \( K \), applies Dedekind’s criterion to the order \( \mathbb{Z}_K[X]/(P) \), at the prime ideal \( pr \). It is possible to set \( pr \) to a vector of prime ideals (test maximality at all primes in the vector), or to omit altogether, in which case maximality at all primes is tested; in this situation \( flag \) is automatically set to 1.

The default historic behavior (\( flag \) is 0 or omitted and \( pr \) is a single prime ideal) is not so useful since rnfpseudobasis gives more information and is generally not that much slower. It returns a 3-component vector \([max, basis, v]\):

- \( basis \) is a pseudo-basis of an enlarged order \( O \) produced by Dedekind’s criterion, containing the original order \( \mathbb{Z}_K[X]/(P) \) with index a power of \( pr \). Possibly equal to the original order.
- \( max \) is a flag equal to 1 if the enlarged order \( O \) could be proven to be \( pr \)-maximal and to 0 otherwise; it may still be maximal in the latter case if \( pr \) is ramified in \( L \),
- \( v \) is the valuation at \( pr \) of the order discriminant.

If \( flag \) is nonzero, on the other hand, we just return 1 if the order \( \mathbb{Z}_K[X]/(P) \) is \( pr \)-maximal (resp. maximal at all relevant primes, as described above), and 0 if not. This is much faster than the default, since the enlarged order is not computed.

```
? nf = nfinit(y^2-3); P = x^3 - 2*y;
? pr3 = idealprimedec(nf,3)[1];
? rnfdedekind(nf, P, pr3)
%3 = [1, [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, 1]], 8]
? rnfdedekind(nf, P, pr3, 1)
%4 = 1
```

In this example, \( pr3 \) is the ramified ideal above 3, and the order generated by the cube roots of \( y \) is already \( pr3 \)-maximal. The order-discriminant has valuation 8. On the other hand, the order is not maximal at the prime above 2:

```
? pr2 = idealprimedec(nf,2)[1];
? rnfdedekind(nf, P, pr2, 1)
%6 = 0
? rnfdedekind(nf, P, pr2)
%7 = [0, [[2, 0, 0; 0, 1, 0; 0, 0, 1], [[1, 0; 0, 1], [1, 0; 0, 1],
[1, 1/2; 0, 1/2]], 2]
```

The enlarged order is not proven to be \( pr2 \)-maximal yet. In fact, it is; it is in fact the maximal order:

```
? B = rnfpseudobasis(nf, P)
%8 = [[1, 0, 0; 0, 1, 0; 0, 0, 1], [1, 1, [1, 1/2; 0, 1/2]],
[162, 0; 0, 162], -1]
? idealval(nf,B[3], pr2)
%9 = 2
```

It is possible to use this routine with nonmonic \( P = \sum_{i=0}^{n} p_i X^i \in \mathbb{Z}_K[X] \) if \( flag \) = 1; in this case, we test maximality of Dedekind’s order generated by

\[ 1, \alpha p_0, \alpha p_0^2 + p_{n-1} \alpha, \ldots, p_0 \alpha^{n-1} + p_{n-1} \alpha^{n-2} + \ldots + p_1 \alpha. \]

The routine will fail if \( P \) vanishes on the projective line over the residue field \( \mathbb{Z}_K/pr \) (FIXME).

rnfdet(M)

Given a pseudo-matrix \( M \) over the maximal order of \( nf \), computes its determinant.
rnfdisc($T$)

Given an $nf$ structure attached to a number field $K$, as output by `nfinit`, and a monic irreducible polynomial $T \in K[x]$ defining a relative extension $L = K[x]/(T)$, compute the relative discriminant of $L$. This is a vector $[D, d]$, where $D$ is the relative ideal discriminant and $d$ is the relative discriminant considered as an element of $K^*/K^{*2}$. The main variable of $nf$ must be of lower priority than that of $T$, see `priority` (in the PARI manual).

**Huge discriminants, helping rnfdisc.** The format $[T, B]$ is also accepted instead of $T$ and computes an order which is maximal at all maximal ideals specified by $B$, see `rnfinit`: the valuation of $D$ is then correct at all such maximal ideals but may be incorrect at other primes.

rnfeltabstorel($x$)

Let $rnf$ be a relative number field extension $L/K$ as output by `rnfinit` and let $x$ be an element of $L$ expressed as a polynomial modulo the absolute equation (emphasis: `rnf.pol`), or in terms of the absolute $\mathbb{Z}$-basis for $\mathbb{Z}_L$ if $rnf$ contains one (as in `rnfinit(nf,pol,1)`), or after a call to `nfinit(rnf)`. Computes $x$ as an element of the relative extension $L/K$ as a polmod with polmod coefficients.

```pARI
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.polabs
%2 = x^4 + 1
? rnfeltabstorel(L, Mod(x, L.polabs))
%3 = Mod(x, x^2 + Mod(-y, y^2 + 1))
? rnfeltabstorel(L, 1/3)
%4 = 1/3
? rnfeltabstorel(L, Mod(x, x^2-y))
%5 = Mod(x, x^2 + Mod(-y, y^2 + 1))

? rnfeltabstorel(L, [0,0,0,1]~) \ Z_L not initialized yet
*** at top-level: rnfeltabstorel(L,[0,
*** ^-------------------
*** rnfeltabstorel: incorrect type in rnfeltabstorel, apply nfinit(rnf).
? nfinit(L); \ initialize now
? rnfeltabstorel(L, [0,0,0,1]~)
%6 = Mod(Mod(y, y^2 + 1)*x, x^2 + Mod(-y, y^2 + 1))
```

rnfeltdown($x$, flag)

$rnf$ being a relative number field extension $L/K$ as output by `rnfinit` and $x$ being an element of $L$ expressed as a polynomial or polmod with polmod coefficients (or as a `t_COL` on `nfinit(rnf).zk`), computes $x$ as an element of $K$ as a `t_POLMOD` if $flag = 0$ and as a `t_COL` otherwise. If $x$ is not in $K$, a domain error occurs.

```pARI
? K = nfinit(y^2+1); L = rnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeltdown(L, Mod(x^2, L.pol))
%3 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x^2, L.pol), 1)
%4 = [0, 1]~
? rnfeltdown(L, Mod(y, x^2-y))
%5 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(y,K.pol))
%6 = Mod(y, y^2 + 1)
? rnfeltdown(L, Mod(x, L.pol))
*** at top-level: rnfeltdown(L,Mod(x,x
*** ^-------------------
*** rnfeltdown: domain error in rnfeltdown: element not in the base field
```

(continues on next page)
%7 = [0, 1]~
%8 = Mod(y, y^2 + 1)

If we had started with \( L = \text{rnfninit}(K, x^2-y, 1) \), then the final would have worked directly.

\textbf{rnfnorm}(x)

\( rnf \) being a relative number field extension \( L/K \) as output by \text{rnfninit} and \( x \) being an element of \( L \), returns the relative norm \( N_{L/K}(x) \) as an element of \( K \).

\textbf{rnftreltoabs}(x)

\( rnf \) being a relative number field extension \( L/K \) as output by \text{rnfninit} and \( x \) being an element of \( L \) expressed as a polynomial or polmod with polmod coefficients, computes \( x \) as an element of the absolute extension \( L/Q \) as a polynomial modulo the absolute equation :emphasis:`rnf.pol`.

\textbf{rnfttrace}(x)

\( rnf \) being a relative number field extension \( L/K \) as output by \text{rnfninit} and \( x \) being an element of \( L \), returns the relative trace \( Tr_{L/K}(x) \) as an element of \( K \).

\textbf{rnftup}(x, flag)

\( rnf \) being a relative number field extension \( L/K \) as output by \text{rnfninit} and \( x \) being an element of \( K \), computes \( x \) as an element of the absolute extension \( L/Q \). As a \text{t_POLMOD} modulo :emphasis:`rnf.pol` if flag = 0 and as a \text{t_COL} on the absolute field integer basis if flag = 1.
? K = nffinit(y^2+1); L = rnfnfinit(K, x^2-y);
? L.pol
%2 = x^4 + 1
? rnfeuclup(L, Mod(y, K.pol))
%3 = Mod(x^2, x^4 + 1)
? rnfeuclup(L, y)
%4 = Mod(x^2, x^4 + 1)
? rnfeuclup(L, [1,2]~) \ in terms of K.zk
%5 = Mod(2*x^2 + 1, x^4 + 1)
? rnfeuclup(L, y, 1) \ in terms of nfnfinit(L).zk
%6 = [0, 1, 0, 0]~
? rnfeuclup(L, [1,2]~, 1)
%7 = [1, 2, 0, 0]~

rnfequation(pol, flag)
Given a number field nfnf as output by nffinit (or simply a polynomial) and a polynomial pol with coefficients in nfnf defining a relative extension L of nfnf, computes an absolute equation of L over \( \mathbb{Q} \).

The main variable of nfnf must be of lower priority than that of pol (see priority (in the PARI manual)). Note that for efficiency, this does not check whether the relative equation is irreducible over nfnf, but only if it is squarefree. If it is reducible but squarefree, the result will be the absolute equation of the étale algebra defined by pol. If pol is not squarefree, raise an e_DOMAIN exception.

? T = y^3-2; pol = x^2 +x*y + y^2;
? [z,a,k] = rnfequation(T, pol, 1);
? z
%3 = x^6 + 108
? subst(T, y, a)
%4 = 0
? alpha= Mod(y, T);
? beta = Mod(x*Mod(1,T), pol);
? subst(z, x, beta + k*alpha)
%7 = 0

rnfhnfbasis(x)
Given bnfnf as output by bnfnfinit, and either a polynomial x with coefficients in bnfnf defining a relative extension L of bnfnf, or a pseudo-basis x of such an extension, gives either a true bnfnf-basis of L in upper triangular Hermite normal form, if it exists, and returns 0 otherwise.

rnfidealabstorel(x)
Let rnf be a relative number field extension \( L/K \) as output by nffinit and let x be an ideal of the absolute
extension $L/Q$. Returns the relative pseudo-matrix in HNF giving the ideal $x$ considered as an ideal of the relative extension $L/K$, i.e. as a $\mathbb{Z}_K$-module.

Let Labs be an (absolute) nf structure attached to $L$, obtained via Labs = nfinit(rnf). Then rnf “knows” about Labs and $x$ may be given in any format attached to Labs, e.g. a prime ideal or an ideal in HNF wrt. Labs.zk:

```plaintext
? K = nfinit(y^2+1); rnf = rnfinitial(R, x^2-y); Labs = nfinit(rnf);
? m = idealhnf(Labs, 17, x^3+2); \ some ideal in HNF wrt. Labs.zk
? B = rnfidealabstorel(rnf, m)
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]] \ pseudo-basis for m as Z_K-module
? A = rnfidealreltoabs(rnf, B)
%4 = [17, x^2 + 4, x + 8, x^3 + 8*x^2] \ Z-basis for m in Q[x]/(rnf.polabs)
? mathnf(matalktobasis(Labs, A)) == m
%5 = 1
```

If on the other hand, we do not have a Labs at hand, because it would be too expensive to compute, but we nevertheless have a $\mathbb{Z}$-basis for $x$, then we can use the function with this basis as argument. The entries of $x$ may be given either modulo rnfinitial.polabs (absolute form, possibly lifted) or modulo rnfinitial.pol (relative form as t_POLMOD s):

```plaintext
? K = nfinit(y^2+1); rnf = rnfinitial(R, x^2-y);
? rnfidealabstorel(rnf, [17, x^2 + 4, x + 8, x^3 + 8*x^2])
%2 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
? rnfidealabstorel(rnf, Mod([17, y + 4, x + 8, y*x + 8*y], x^2-y))
%3 = [[1, 8; 0, 1], [[17, 4; 0, 1], 1]]
```

rnfidealdown($x$)

Let $rnf$ be a relative number field extension $L/K$ as output by rnfinitial, and $x$ an ideal of $L$, given either in relative form or by a $\mathbb{Z}$-basis of elements of $L$ (see rnfidealabstorel (in the PARI manual)). This function returns the ideal of $K$ below $x$, i.e. the intersection of $x$ with $K$.

rnfidealfactor($x$)

Factor into prime ideal powers the ideal $x$ in the attached absolute number field $L = \text{nfinit}(rnf)$. The output format is similar to the factor function, and the prime ideals are represented in the form output by the idealprimedec function for $L$.

```plaintext
? rnf = rnfinitial(nfinit(y^2+1), x^2-y+1);
? rnfidealfactor(rnf, y+1) \ P_2*2
%2 = [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 2]

? rnfidealfactor(rnf, x) \ P_2
%3 = [[2, [0,0,1,0]~, 4, 1, [0,0,0,2;0,0,-2,0;-1,-1,0;1,-1,0,0]] 1]

? L = nfinit(rnf);
? id = idealhnf(L, idealhnf(L, 25, (x+1)^2));
? idealfactor(L, id) == rnfidealfactor(rnf, id)
%6 = 1
```

Note that ideals of the base field $K$ must be explicitly lifted to $L$ via rnfidealup before they can be factored.

rnfidealhnf($x$)

$rnf$ being a relative number field extension $L/K$ as output by rnfinitial and $x$ being a relative ideal (which can be,
as in the absolute case, of many different types, including of course elements), computes the HNF pseudo-matrix attached to $x$, viewed as a $\mathbb{Z}_K$-module.

\textbf{rnfidealmul}(x, y)

$rnf$ being a relative number field extension $L/K$ as output by \texttt{rnfinit} and $x$ and $y$ being ideals of the relative extension $L/K$ given by pseudo-matrices, outputs the ideal product, again as a relative ideal.

\textbf{rnfidealnorms}(x)

Let $rnf$ be a relative number field extension $L/K$ as output by \texttt{rnfinit} and let $x$ be a relative ideal (which can be, as in the absolute case, of many different types, including of course elements). This function computes the norm of the $x$ considered as an ideal of the absolute extension $L/\mathbb{Q}$. This is identical to

\begin{verbatim}
idealnorm(rnf, rnfidealnormrel(rnf,x))
\end{verbatim}

but faster.

\textbf{rnfidealnormrel}(x)

Let $rnf$ be a relative number field extension $L/K$ as output by \texttt{rnfinit} and let $x$ be a relative ideal (which can be, as in the absolute case, of many different types, including of course elements). This function computes the relative norm of $x$ as an ideal of $K$ in HNF.

\textbf{rnfidealprimedec}(pr)

Let $rnf$ be a relative number field extension $L/K$ as output by \texttt{rnfinit}, and \texttt{pr} a maximal ideal of $K$ (\texttt{prid}), this function completes the $rnf$ with a \texttt{nf} structure attached to $L$ (see \texttt{rnfinit} (in the PARI manual)) and returns the prime ideal decomposition of \texttt{pr} in $L/K$.

```
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? S = rnfidealprimedec(rnf, P);
? #S
%4 = 1
```

The argument \texttt{pr} is also allowed to be a prime number \texttt{p}, in which case the function returns a pair of vectors $[SK,SL]$, where $SK$ contains the primes of $K$ above $p$ and $SL[i]$ is the vector of primes of $L$ above $SK[i]$.

```
? [SK,SL] = rnfidealprimedec(rnf, 5);
? [#SK, vector(#SL,i,#SL[i])]
%6 = [2, [2, 2]]
```

\textbf{rnfidealreltoabs}(x, flag)

Let $rnf$ be a relative number field extension $L/K$ as output by \texttt{rnfinit} and let $x$ be a relative ideal, given as a $\mathbb{Z}_K$-module by a pseudo matrix $[A, I]$. This function returns the ideal $x$ as an absolute ideal of $L/\mathbb{Q}$. If \texttt{flag} = 0, the result is given by a vector of \texttt{t_POLMOD}s modulo $rnf$.\texttt{pol}$\mod$forming a $\mathbb{Z}$-basis; if \texttt{flag} = 1, it is given in HNF in terms of the fixed $\mathbb{Z}$-basis for $\mathbb{Z}_L$, see \texttt{rnfinit} (in the PARI manual).

```
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? P = rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? Prel = rnfidealhnf(rnf, P)
%4 = [[1, 0; 0, 1], [[2, 1; 0, 1], [2, 1; 0, 1]]]
? rnfidealreltoabs(rnf,Prel)
%5 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealreltoabs(rnf,Prel,1)
%6 =
```
The reason why we do not return by default \((\text{flag} = 0)\) the customary HNF in terms of a fixed \(\mathbb{Z}\)-basis for \(\mathbb{Z}_L\) is precisely because a \(\text{rnf}\) does not contain such a basis by default. Completing the structure so that it contains a \(\text{nf}\) structure for \(L\) is polynomial time but costly when the absolute degree is large, thus it is not done by default. Note that setting \(\text{flag} = 1\) will complete the \(\text{rnf}\).

\texttt{rnfidealtwoelt}(x)

\(\text{rnf}\) being a relative number field extension \(L/K\) as output by \texttt{rnfinit} and \(x\) being an ideal of the relative extension \(L/K\) given by a pseudo-matrix, gives a vector of two generators of \(x\) over \(\mathbb{Z}_L\) expressed as polmods with polmod coefficients.

\texttt{rnfidealup}(x, flag)

Let \(\text{rnf}\) be a relative number field extension \(L/K\) as output by \texttt{rnfinit} and let \(x\) be an ideal of \(K\). This function returns the ideal \(x\mathbb{Z}_L\) as an absolute ideal of \(L/\mathbb{Q}\), in the form of a \(\mathbb{Z}\)-basis. If \(\text{flag} = 0\), the result is given by a vector of polynomials (modulo \texttt{rnf.pol}); if \(\text{flag} = 1\), it is given in HNF in terms of the fixed \(\mathbb{Z}\)-basis for \(\mathbb{Z}_L\), see \texttt{rnfinit} (in the PARI manual).

\begin{verbatim}
? K = nfinit(y^2+1); rnf = rnfinit(K, x^2-y);
? P = idealprimedec(K,2)[1];
? rnfidealup(rnf, P)
%3 = [2, x^2 + 1, 2*x, x^3 + x]
? rnfidealup(rnf, P,1)
%4 =
[2 1 0 0]
[0 1 0 0]
[0 0 2 1]
[0 0 0 1]
\end{verbatim}

The reason why we do not return by default \((\text{flag} = 0)\) the customary HNF in terms of a fixed \(\mathbb{Z}\)-basis for \(\mathbb{Z}_L\) is precisely because a \(\text{rnf}\) does not contain such a basis by default. Completing the structure so that it contains a \(\text{nf}\) structure for \(L\) is polynomial time but costly when the absolute degree is large, thus it is not done by default. Note that setting \(\text{flag} = 1\) will complete the \(\text{rnf}\).

\texttt{rnfinit}(T, flag)

Given an \(\text{nf}\) structure attached to a number field \(K\), as output by \texttt{nfinit}, and a monic irreducible polynomial \(T\) in \(\mathbb{Z}_K[x]\) defining a relative extension \(L = K[x]/(T)\), this computes data to work in \(L/K\). The main variable of \(T\) must be of higher priority (see \texttt{priority} (in the PARI manual)) than that of \(\text{nf}\), and the coefficients of \(T\) must be in \(K\).

The result is a row vector, whose components are technical. We let \(m = [K : \mathbb{Q}]\) the degree of the base field, \(n = [L : K]\) the relative degree, \(r_1\) and \(r_2\) the number of real and complex places of \(K\). Access to this information via \texttt{member functions} is preferred since the specific data organization specified below will change in the future.

If \(\text{flag} = 1\), add an \(\text{nf}\) structure attached to \(L\) to \(\text{rnf}\). This is likely to be very expensive if the absolute degree \(mn\) is large, but fixes an integer basis for \(\mathbb{Z}_L\) as a \(\mathbb{Z}\)-module and allows to input and output elements of \(L\) in
absolute form: as t_COL for elements, as t_MAT in HNF for ideals, as prid for prime ideals. Without such a call, elements of L are represented as t_POLMOD, etc. Note that a subsequent nfinit(rnf) will also explicitly add such a component, and so will the following functions rnfidealmul, rnfidealtoel, rnfidealprime, rnfidealup (with flag 1) and rnfidealreloabs (with flag 1). The absolute nf structure attached to L can be recovered using nfinit(rnf).

rnf[1] contains the relative polynomial T.

rnf[2] contains the integer basis \([A, d]\) of \(K\), as (integral) elements of \(L/\mathbb{Q}\). More precisely, \(A\) is a vector of polynomial with integer coefficients, \(d\) is a denominator, and the integer basis is given by \(A/d\).

rnf[3] (rnf.disc) is a two-component row vector \([d(L/K), s]\) where \(d(L/K)\) is the relative ideal discriminant of \(L/K\) and \(s\) is the discriminant of \(L/K\) viewed as an element of \(K^*/(K^*)^2\), in other words it is the output of rnfdisc.

rnf[4] is the index \(f\), i.e. such that \(d(T)\mathbb{Z}_K = f^2d(L/K)\).

rnf[5] is the list of rational primes dividing the norm of the relative discriminant ideal.

rnf[7] (rnf.zk) is the pseudo-basis \((A, I)\) for the maximal order \(\mathbb{Z}_L\) as a \(\mathbb{Z}_K\)-module: \(A\) is the relative integral pseudo basis expressed as polynomials (in the variable of \(T\)) with polmod coefficients in \(n\), and the second component \(I\) is the ideal list of the pseudobasis in HNF.

rnf[8] is the inverse matrix of the integral basis matrix, with coefficients polmods in \(n\).

rnf[9] is currently unused.

rnf[10] (rnf.nf) is \(n\).

rnf[11] is an extension of rnfextension(K, T, 1). Namely, a vector \([P, a, k, K.pol, T]\) describing the absolute extension \(L/\mathbb{Q}\): \(P\) is an absolute equation, more conveniently obtained as rnf.polabs; \(a\) expresses the generator \(\alpha = y\text{mod}K.pol\) of the number field \(K\) as an element of \(L\), i.e. a polynomial modulo the absolute equation \(P\); \(k\) is a small integer such that, if \(\beta\) is an abstract root of \(T\) and \(\alpha\) the generator of \(K\) given above, then \(P(\beta + k\alpha) = 0\). It is guaranteed that \(k = 0\) if \(\mathbb{Q}(\beta) = L\).

Caveat. Be careful if \(k! = 0\) when dealing simultaneously with absolute and relative quantities since \(L = \mathbb{Q}(\beta + k\alpha) = K(\alpha)\), and the generator chosen for the absolute extension is not the same as for the relative one. If this happens, one can of course go on working, but we advise to change the relative polynomial so that its root becomes \(\beta + k\alpha\). Typical GP instructions would be

```plaintext
[P,a,k] = rnfextension(K, T, 1);
if (k, T = subst(T, x, x - k*Mod(y, K.pol)));
L = nfinit(K, T);
```

rnf[12] is by default unused and set equal to 0. This field is used to store further information about the field as it becomes available (which is rarely needed, hence would be too expensive to compute during the initial nfinit call).

Huge discriminants, helping rnfdisc. When \(T\) has a discriminant which is difficult to factor, it is hard to compute \(Z_L\). As in nfinit, the special input format \([T, B]\) is also accepted, where \(T\) is a polynomial as above and \(B\) specifies a list of maximal ideals. The following formats are recognized for \(B\):

- an integer: the list of all maximal ideals above a rational prime \(p < B\).
- a vector of rational primes or prime ideals: the list of all maximal ideals dividing an element in the list.

Instead of \(Z_L\), this produces an order which is maximal at all such maximal ideals primes. The result may actually be a complete and correct rnf structure if the relative ideal discriminant factors completely over this list of maximal ideals but this is not guaranteed. In general, the order may not be maximal at primes \(p\) not in the list such that \(p^2\) divides the relative ideal discriminant.
rnfisabelian(T)
T being a relative polynomial with coefficients in nf, return 1 if it defines an abelian extension, and 0 otherwise.

``` pari
? K = nfinit(y^2 + 23);
? rnfisabelian(K, x^3 - 3*x - y)
%2 = 1
```

rnfisfree(x)
Given bnf as output by bnfinit, and either a polynomial x with coefficients in bnf defining a relative extension L of bnf, or a pseudo-basis x of such an extension, returns true (1) if L/bnf is free, false (0) if not.

rnfislocalcyclo()
Let rnf be a relative number field extension L/K as output by rnfinit whose degree [L : K] is a power of a prime \( \ell \). Return 1 if the \( \ell \)-extension is locally cyclotomic (locally contained in the cyclotomic \( \mathbb{Z}_\ell \)-extension of \( K_v \) at all places \( v \parallel \ell \)), and 0 if not.

``` pari
? K = nfinit(y^2 + y + 1);
? L = rnfinit(K, x^3 - y); /* = K(zeta_9), globally cyclotomic */
? rnfislocalcyclo(L)
%3 = 1
\ \ we expect 3-adic continuity by Krasner's lemma
? vector(5, i, rnfislocalcyclo(rnfinit(K, x^3 - y + 3^i)))
%5 = [0, 1, 1, 1, 1]
```

rnfisnorm(a, flag)
Similar to bnfisnorm but in the relative case. T as output by rnfisnorminit applied to the extension L/K. This tries to decide whether the element a in K is the norm of some x in the extension L/K.

The output is a vector \([x, q]\), where \( a = \text{Norm}(x) \cdot q \). The algorithm looks for a solution x which is an S-integer, with S a list of places of K containing at least the ramified primes, the generators of the class group of L, as well as those primes dividing a. If L/K is Galois, then this is enough but you may want to add more primes to S to produce different elements, possibly smaller; otherwise, flag is used to add more primes to S: all the places above the primes \( p \parallel flag \) if \( flag > 0 \) (resp. \( flag < 0 \)).

The answer is guaranteed (i.e. a is a norm iff \( q = 1 \)) if the field is Galois, or, under GRH, if S contains all primes less than \( 12 \log^2 |\text{disc}(M)| \), where M is the normal closure of L/K.

If rnfisnorminit has determined (or was told) that L/K is Galois, and \( flag = 0 \), a Warning is issued (so that you can set \( flag = 1 \) to check whether L/K is known to be Galois, according to T). Example:

``` pari
bnf = bnfinit(y^3 + y^2 - 2*y - 1);
p = x^2 + Mod(y^2 + 2*y + 1, bnf.pol);
T = rnfisnorminit(bnf, p);
runfisnorm(T, 17)
```

checks whether 17 is a norm in the Galois extension \( \mathbb{Q}(\beta)/\mathbb{Q}(\alpha) \), where \( \alpha^3 + \alpha^2 - 2\alpha - 1 = 0 \) and \( \beta^2 + \alpha^2 + 2\alpha + 1 = 0 \) (it is).

rnfisnorminit(polrel, flag)
Let K be defined by a root of pol, and L/K the extension defined by the polynomial polrel. As usual, pol can in fact be an nf, or bnf, etc; if pol has degree 1 (the base field is \( \mathbb{Q} \)), polrel is also allowed to be an nf, etc. Computes technical data needed by rnfisnorm to solve norm equations \( Nx = a \), for \( x \) in L, and \( a \) in K.

If \( flag = 0 \), do not care whether L/K is Galois or not.

If \( flag = 1 \), L/K is assumed to be Galois (unchecked), which speeds up rnfisnorm.

If \( flag = 2 \), let the routine determine whether L/K is Galois.
CyPari2 Documentation, Release 2.1.3

rnfkummer(subgp, precision)
This function is deprecated, use bnrclassfield.

rnflllgram(pol, order, precision)
Given a polynomial pol with coefficients in nf defining a relative extension L and a suborder order of L (of maximal rank), as output by rnfpsuedobasis(nf, pol) or similar, gives [[neworder], U], where neworder is a reduced order and U is the unimodular transformation matrix.

rnfnormgroup(pol)
bnr being a big ray class field as output by bnrintit and pol a relative polynomial defining an Abelian extension, computes the norm group (alias Artin or Takagi group) corresponding to the Abelian extension of \( bn_f = bnr \). bnf defined by pol, where the module corresponding to bnr is assumed to be a multiple of the conductor (i.e. pol defines a subextension of bnr). The result is the HNF defining the norm group on the given generators of bnr. gen. Note that neither the fact that pol defines an Abelian extension nor the fact that the module is a multiple of the conductor is checked. The result is undefined if the assumption is not correct, but the function will return the empty matrix [ ; ] if it detects a problem; it may also not detect the problem and return a wrong result.

rnfpolred(pol, precision)
This function is obsolete: use rnfpolredbest instead. Relative version of polred. Given a monic polynomial pol with coefficients in nf, finds a list of relative polynomials defining some subfields, hopefully simpler and containing the original field. In the present version 2.13.3, this is slower and less efficient than rnfpolredbest.

Remark. This function is based on an incomplete reduction theory of lattices over number fields, implemented by rnflllgram, which deserves to be improved.

rnfpolredabs(pol, flag)
Relative version of polredabs. Given an irreducible monic polynomial pol with coefficients in nf, finds a canonical relative polynomial defining the same field, hopefully with small coefficients. Note that the equation is only canonical for a fixed nf, using a different defining polynomial in the nf structure will produce a different relative equation.

The binary digits of flag correspond to 1: add information to convert elements to the new representation, 2: absolute polynomial, instead of relative, 16: possibly use a suborder of the maximal order. More precisely:

0: default, return P
1: returns \([P, a]\) where P is the default output and a, a t_POLMOD modulo P, is a root of pol.
2: returns Pabs, an absolute, instead of a relative, polynomial. This polynomial is canonical and does not depend on the nf structure. Same as but faster than

\[
\text{polredabs(rnfquation(nf, pol))}
\]

3: returns \([Pabs, a, b]\), where Pabs is an absolute polynomial as above, a, b are t_POLMOD modulo Pabs, roots of nf.pol and pol respectively.
16: (OBSOLETE) possibly use a suborder of the maximal order. This makes rnfpolredabs behave as rnfpolredbest. Just use the latter.

Warning. The complexity of rnfpolredabs is exponential in the absolute degree. The function rnfpolredbest runs in polynomial time, and tends to return polynomials with smaller discriminants. It also supports polynomials with arbitrary coefficients in nf, neither integral nor necessarily monic.

rnfpolredbest(pol, flag)
Relative version of polredbest. Given a polynomial pol with coefficients in nf, finds a simpler relative polynomial P defining the same field. As opposed to rnfpolredabs this function does not return a smallest (canonical) polynomial with respect to some measure, but it does run in polynomial time.
The binary digits of \texttt{flag} correspond to 1: add information to convert elements to the new representation, 2: absolute polynomial, instead of relative. More precisely:

0: default, return \(P\)

1: returns \([P, a]\) where \(P\) is the default output and \(a\), a \texttt{t\_POLMOD} modulo \(P\), is a root of \(pol\).

2: returns \(Pabs\), an absolute, instead of a relative, polynomial. Same as but faster than \linebreak \texttt{rnfequation(nf, rnfpolredbest(nf,pol))}

3: returns \([Pabs, a, b]\), where \(Pabs\) is an absolute polynomial as above, \(a, b\) are \texttt{t\_POLMOD} modulo \(Pabs\), roots of \(nf.pol\) and \(pol\) respectively.

\texttt{rnfpseudobasis(T)}

Given an \texttt{nf} structure attached to a number field \(K\), as output by \texttt{nfinit}, and a monic irreducible polynomial \(T\) in \(\mathbb{Z}_K[x]\) defining a relative extension \(L = K[x]/(T)\), computes the relative discriminant of \(L\) and a pseudo-basis \((A, J)\) for the maximal order \(\mathbb{Z}_L\) viewed as a \(\mathbb{Z}_K\)-module. This is output as a vector \([A, J, D, d]\), where \(D\) is the relative ideal discriminant and \(d\) is the relative discriminant considered as an element of \(K^*/K^{*2}\).
**Huge discriminants, helping \textsc{rnfdisc}**. The format $[T, B]$ is also accepted instead of $T$ and produce an order which is maximal at all prime ideals specified by $B$, see \texttt{??rnfini}.

\begin{verbatim}
? p = 585403248812100232206609398101;
? q = 711171340236468512951957953369;
? T = x^2 + 3*(p*q)^2;
? [A,J,D,d] = V = rnfpseudobasis(K, T); D
time = 22,178 ms.
%10 = 3
? [A,J,D,d] = W = rnfpseudobasis(K, [T,100]); D
time = 5 ms.
%11 = 3
? V == W
%12 = 1
? [A,J,D,d] = W = rnfpseudobasis(K, [T, [3]]); D
%13 = 3
? V == W
%14 = 1
\end{verbatim}

In this example, the results are identical since $D \cap \mathbb{Z}$ factors over primes less than 100 (and in fact, over 3). Had it not been the case, the order would have been guaranteed maximal at primes $p || p$ for $p \leq 100$ only (resp. $p || 3$). And might have been nonmaximal at any other prime ideal $p$ such that $p^2$ divided $D$.

**\texttt{rnfsteinitz}(x)**

Given a number field $n$ as output by \texttt{nfini} and either a polynomial $x$ with coefficients in $n$ defining a relative extension $L$ of $n$, or a pseudo-basis $x$ of such an extension as output for example by \texttt{rnfpseudobasis}, computes another pseudo-basis $(A, I)$ (not in HNF in general) such that all the ideals of $I$ except perhaps the last one are equal to the ring of integers of $n$, and outputs the four-component row vector $[A, I, D, d]$ as in \texttt{rnfpseudobasis}. The name of this function comes from the fact that the ideal class of the last ideal of $I$, which is well defined, is the Steinitz class of the $\mathbb{Z}_K$-module $\mathbb{Z}_L$ (its image in $SK_0(\mathbb{Z}_K)$).

**\texttt{round}(e)**

If $x$ is in $\mathbb{R}$, rounds $x$ to the nearest integer (rounding to $+\infty$ in case of ties), then and sets $e$ to the number of error bits, that is the binary exponent of the difference between the original and the rounded value (the “fractional part”). If the exponent of $x$ is too large compared to its precision (i.e. $e > 0$), the result is undefined and an error occurs if $e$ was not given.

**Important remark.** Contrary to the other truncation functions, this function operates on every coefficient at every level of a PARI object. For example

\[
\text{truncate}((2.4 \times X^2 - 1.7)/(X)) = 2.4 \times X,
\]

whereas

\[
\text{round}((2.4 \times X^2 - 1.7)/(X)) = (2 \times X^2 - 2)/(X).
\]

An important use of \texttt{round} is to get exact results after an approximate computation, when theory tells you that the coefficients must be integers.

**\texttt{select}(A, flag)**

We first describe the default behavior, when \texttt{flag} is 0 or omitted. Given a vector or list $A$ and a \texttt{t\_CLOSURE} $f$, \texttt{select} returns the elements $x$ of $A$ such that $f(x)$ is nonzero. In other words, $f$ is seen as a selection function returning a boolean value.
returns the primes of the form $i^2 + 1$ for some $i \leq 50$, then the elements less than 100 in the preceding result. The `select` function also applies to a matrix $A$, seen as a vector of columns, i.e. it selects columns instead of entries, and returns the matrix whose columns are the selected ones.

**Remark.** For $v$ a `t_VEC`, `t_COL`, `t_VECSMALL`, `t_LIST` or `t_MAT`, the alternative set-notations

```
[g(x) | x <- v, f(x)]
[x | x <- v, f(x)]
[g(x) | x <- v]
```

are available as shortcuts for

```
apply(g, select(f, Vec(v)))
select(f, Vec(v))
apply(g, Vec(v))
```

respectively:

```
? [x | x <- vector(50,i,i^2+1), isprime(x)]
%1 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
```

If `flag` = 1, this function returns instead the *indices* of the selected elements, and not the elements themselves (indirect selection):

```
? V = vector(50,i,i^2+1);
? select(x->isprime(x), V, 1)
%2 = Vecsmall([1, 2, 4, 6, 10, 14, 16, 20, 24, 26, 36, 40])
? vecextract(V, %)
%3 = [2, 5, 17, 37, 101, 197, 257, 401, 577, 677, 1297, 1601]
```

The following function lists the elements in $(\mathbb{Z}/N\mathbb{Z})^*$:

```
? invertibles(N) = select(x->gcd(x,N) == 1, [1..N])
```

Finally

```
? select(x->x, M)
```

selects the nonzero entries in $M$. If the latter is a `t_MAT`, we extract the matrix of nonzero columns. Note that removing entries instead of selecting them just involves replacing the selection function $f$ with its negation:

```
? select(x->!isprime(x), vector(50,i,i^2+1))
```

**seralgdep** ($p$, $r$)

finds a linear relation between powers $(1, s, ..., s^p)$ of the series $s$, with polynomial coefficients of degree $\leq r$. In case no relation is found, return 0.

```
? s = 1 + 10*y - 46*y^2 + 460*y^3 - 5658*y^4 + 77740*y^5 + 0(y^6);
? seralgdep(s, 2, 2)
```

(continues on next page)
%2 = -x^2 + (8*y^2 + 20*y + 1)
? subst(%2, x, s)
%3 = 0(y^6)
? seralgdep(s, 1, 3)
%4 = (-77*y^2 - 20*y - 1)*x + (310*y^3 + 231*y^2 + 30*y + 1)
? seralgdep(s, 1, 2)
%5 = 0

The series main variable must not be \(x\), so as to be able to express the result as a polynomial in \(x\).

serchop(n)
Remove all terms of degree strictly less than \(n\) in series \(s\). When the series contains no terms of degree < \(n\), return \(O(x^n)\).

\[
? s = 1/x + x + 2*x^2 + O(x^3);
? serchop(s)
%2 = x + 2*x^2 + O(x^3)
? serchop(s, 2)
%3 = 2*x^2 + O(x^3)
? serchop(s, 100)
%4 = O(x^100)
\]

serconvol(y)
Convolution (or Hadamard product) of the two power series \(x\) and \(y\); in other words if \(x = \sum a_k * X^k\) and \(y = \sum b_k * X^k\) then \(serconvol(x, y) = \sum a_k * b_k * X^k\).

serlaplace()
\(x\) must be a power series with nonnegative exponents or a polynomial. If \(x = \sum (a_k/k!) * X^k\) then the result is \(\sum a_k * X^k\).

serprec(v)
Returns the absolute precision of \(x\) with respect to power series in the variable \(v\); this is the minimum precision of the components of \(x\). The result is \(+\infty\) if \(x\) is an exact object (as a series in \(v\)):

\[
? serprec(x + O(y^2), y)
%1 = 2
? serprec(x + 2, x)
%2 = +oo
? serprec(2 + x + O(x^2), y)
%3 = +oo
\]

serreverse()
Reverse power series of \(s\), i.e. the series \(t\) such that \(t(s) = x\); \(s\) must be a power series whose valuation is exactly equal to one.

\[
? \ps 8
? t = serreverse(tan(x))
%2 = x - 1/3*x^3 + 1/5*x^5 - 1/7*x^7 + O(x^8)
? tan(t)
%3 = x + O(x^8)
\]

setbinop(X, Y)
The set whose elements are the \(f(x,y)\), where \(x, y\) run through \(X, Y\) respectively. If \(Y\) is omitted, assume that \(X = Y\) and that \(f\) is symmetric: \(f(x, y) = f(y, x)\) for all \(x, y\) in \(X\).
setintersect(y)

Intersection of the two sets \( x \) and \( y \) (see setisset). If \( x \) or \( y \) is not a set, the result is undefined.

setisset()

Returns true (1) if \( x \) is a set, false (0) if not. In PARI, a set is a row vector whose entries are strictly increasing with respect to a (somewhat arbitrary) universal comparison function. To convert any object into a set (this is most useful for vectors, of course), use the function Set.

```pari
def setisset(a)
return Vec(a).Polsetbool[1];
end
```

setminus(y)

Difference of the two sets \( x \) and \( y \) (see setisset), i.e. set of elements of \( x \) which do not belong to \( y \). If \( x \) or \( y \) is not a set, the result is undefined.

setrand()

Reseeds the random number generator using the seed \( n \). No value is returned. The seed is a small positive integer \( 0 < n < 2^{64} \) used to generate deterministically a suitable state array. All gp session start by an implicit setrand(1), so resetting the seed to this value allows to replay all computations since the session start. Alternatively, running a randomized computation starting by setrand \( (n) \) twice with the same \( n \) will generate the exact same output.

In the other direction, including a call to setrand(getwalltime()) from your gprc will cause GP to produce different streams of random numbers in each session. (Unix users may want to use /dev/urandom instead of getwalltime.)

For debugging purposes, one can also record a particular random state using getrand (the value is encoded as a huge integer) and feed it to setrand:

```pari
\(\text{? state = getrand(); } \text{\# record seed} \)
\(\text{\ldots} \)
\(\text{? setrand(state); } \text{\# we can now replay the exact same computations} \)
```

setsearch(x, flag)

Determines whether \( x \) belongs to the set \( S \) (see setisset).

We first describe the default behavior, when \( flag \) is zero or omitted. If \( x \) belongs to the set \( S \), returns the index \( j \) such that \( S[j] = x \), otherwise returns 0.

```pari
\(\text{? T = [7,2,3,5]; } S = \text{Set(T)}; \)
\(\text{? setsearch(S, 2)} \)
\(\%2 = 1 \)
\(\text{? setsearch(S, 4)} \text{ \# not found} \)
\(\%3 = \text{0} \)
```
If $S$ is not a set, we also allow sorted lists with respect to the \texttt{cmp} sorting function, without repeated entries, as per \texttt{listsort(L, 1)}; otherwise the result is undefined.

If \texttt{flag} is nonzero, this function returns the index $j$ where $x$ should be inserted, and 0 if it already belongs to $S$. This is meant to be used for dynamically growing (sorted) lists, in conjunction with \texttt{listinsert}.

\begin{verbatim}
? L = List([1,5,2,3,2]); listsort(L,1); L
%1 = List([1,2,3,5])
? j = setsearch(L, 4, 1) \ 4 should have been inserted at index j
%2 = 4
? listinsert(L, 4, j); L
%3 = List([1, 2, 3, 4, 5])
\end{verbatim}

\texttt{setunion(y)}

Union of the two sets $x$ and $y$ (see \texttt{setisset}). If $x$ or $y$ is not a set, the result is undefined.

\texttt{shift(n)}

Shifts $x$ componentwise left by $n$ bits if $n \geq 0$ and right by $||n||$ bits if $n < 0$. May be abbreviated as $x \lrcorner:\texttt{literal:} \llcorner \llcorner \langle-n\rangle$. A left shift by $n$ corresponds to multiplication by $2^n$. A right shift of an integer $x$ by $||n||$ corresponds to a Euclidean division of $x$ by $2^{|n|}$ with a remainder of the same sign as $x$, hence is not the same (in general) as $x \times 2^n$.

\texttt{shiftmul(n)}

Multiplies $x$ by $2^n$. The difference with \texttt{shift} is that when $n < 0$, ordinary division takes place, hence for example if $x$ is an integer the result may be a fraction, while for shifts Euclidean division takes place when $n < 0$ hence if $x$ is an integer the result is still an integer.

\texttt{sigma(k)}

Sum of the $k - \text{th}$ powers of the positive divisors of $||x||$. $x$ and $k$ must be of type integer.

\texttt{sign()}

\begin{verbatim}
sign (0, 1 or -1) of $x$, which must be of type integer, real or fraction; \texttt{t_QUAD} with positive discriminants and \texttt{t_INFINITY} are also supported.
\end{verbatim}

\texttt{simplify()}  

This function simplifies $x$ as much as it can. Specifically, a complex or quadratic number whose imaginary part is the integer 0 (i.e. not \texttt{Mod(0, 2)} or \texttt{0.E-28}) is converted to its real part, and a polynomial of degree 0 is converted to its constant term. Simplifications occur recursively.

This function is especially useful before using arithmetic functions, which expect integer arguments:
*** at top-level: isprime(x)
*** ^----------
*** isprime: not an integer argument in an arithmetic function
?

Note that GP results are simplified as above before they are stored in the history. (Unless you disable automatic simplification with `\y`, that is.) In particular

? type(%1)
%4 = "t_INT"

\sin(\text{precision})

Sine of \(x\). Note that, for real \(x\), cosine and sine can be obtained simultaneously as

\[
\text{cs}(x) = \text{my}(z = \exp(I \times x)); \ [\text{real}(z), \text{imag}(z)];
\]

and for general complex \(x\) as

\[
\text{cs2}(x) = \text{my}(z = \exp(I \times x), \ u = 1/z); \ [(z+u)/2, (z-u)/2];
\]

Note that the latter function suffers from catastrophic cancellation when \(z^2 \approx 1\).

\sinc(\text{precision})

Cardinal sine of \(x\), i.e. \(\sin(x)/x\) if \(x! = 0\), 1 otherwise. Note that this function also allows to compute

\[
(1 - \cos(x))/x^2 = \sinc(x/2)^2/2
\]

accurately near \(x = 0\).

\sinh(\text{precision})

Hyperbolic sine of \(x\).

\sizebyte()

Outputs the total number of bytes occupied by the tree representing the PARI object \(x\).

\sizedigit()

This function is DEPRECATED, essentially meaningless, and provided for backwards compatibility only. Don’t use it!

outputs a quick upper bound for the number of decimal digits of (the components of) \(x\), off by at most 1. More precisely, for a positive integer \(x\), it computes (approximately) the ceiling of

\[
\text{floor}(1 + \log_2 x) \log_{10} 2,
\]

To count the number of decimal digits of a positive integer \(x\), use `#digits(x)`. To estimate (recursively) the size of \(x\), use `normlp(x)`.

\sqr()

Square of \(x\). This operation is not completely straightforward, i.e. identical to \(x \times x\), since it can usually be computed more efficiently (roughly one-half of the elementary multiplications can be saved). Also, squaring a 2-adic number increases its precision. For example,
\( (1 + O(2^4))^2 \)
\%1 = 1 + O(2^5)
\( (1 + O(2^4)) * (1 + O(2^4)) \)
\%2 = 1 + O(2^4)

Note that this function is also called whenever one multiplies two objects which are known to be identical, e.g. they are the value of the same variable, or we are computing a power.

\( x = (1 + O(2^4)); x * x \)
\%3 = 1 + O(2^5)
\( (1 + O(2^4))^4 \)
\%4 = 1 + O(2^6)

(none the difference between \%2 and \%3 above).

\( \sqrt{\text{precision}} \)
Principal branch of the square root of \( x \), defined as \( \sqrt{x} = \exp(\log x / 2) \). In particular, we have \( \text{Arg}(\sqrt{x}) \in ]-\pi/2, \pi/2] \), and if \( x \in \mathbb{R} \) and \( x < 0 \), then the result is complex with positive imaginary part.

\text{Intmod a prime} \( p \), \text{t_PADIC} and \text{t_FFELT} are allowed as arguments. In the first 2 cases (\text{t_INTMOD}, \text{t_PADIC}), the square root (if it exists) which is returned is the one whose first \( p \)-adic digit is in the interval \([0, p/2]\). For other arguments, the result is undefined.

\( \text{sqrtn}(r) \)
Returns the integer square root of \( x \), i.e. the largest integer \( y \) such that \( y^2 \leq x \), where \( x \) a nonnegative integer. If \( r \) is present, set it to the remainder \( r = x - y^2 \), which satisfies \( 0 \leq r < 2y \)

\( \text{sqrtn}(n, z, \text{precision}) \)
Principal branch of the \( n \), i.e. such that \( \text{Arg}(\text{sqrtn}(x)) \in ]-\pi/n, \pi/n] \). \text{Intmod a prime} and \( p \)-adics are allowed as arguments.

If \( z \) is present, it is set to a suitable root of unity allowing to recover all the other roots. If it was not possible, \( z \) is set to zero. In the case this argument is present and no \( n \) is returned instead of raising an error.
The following script computes all roots in all possible cases:

```pam
sqrtnall(x,n)=
{ my(V,r,z,r2);
 r = sqrtn(x,n, &z);
 if (!z, error("Impossible case in sqrtn");
 if (type(x) == "t_INTMOD" || type(x)=="t_PADIC",
 r2 = r*z; n = 1;
 while (r2!=r, r2*=z;n++);
 V = vector(n); V[1] = r;
 for(i=2, n, V[i] = V[i-1]*z);
 V
}
addhelp(sqrtnall,"sqrtnall(x,n):compute the vector of nth-roots of x");
```

`sqrtnint(n)`

Returns the integer $n$-th root of $x$, i.e. the largest integer $y$ such that $y^n <= x$, where $x$ is a nonnegative integer.

```
? N = 120938191237; sqrtnint(N, 5)
%1 = 164
? N^(1/5)
%2 = 164.63140849829660842958614676939677391
```

The special case $n = 2$ is `sqrtint`.

`strchr()`

Converts integer or vector of integers $x$ to a string, translating each integer (in the range $[1, 255]$) into a character using ASCII encoding.

```
? strchr(97)
%1 = "a"
? Vecsmall("hello world")
? strchr(%)
%3 = "hello world"
```

`strjoin(p)`

Joins the strings in vector $v$, separating them with delimiter $p$. The reverse operation is `strsplit`.

```
? v = ["abc", "def", "ghi"]
? strjoin(v, "/")
%2 = "abc/def/ghi"
? strjoin(v)
%3 = "abcdefghi"
```

`strsplit(p)`

Splits the string $s$ into a vector of strings, with $p$ acting as a delimiter. If $p$ is empty or omitted, split the string into characters.

```
? strsplit("abc::def::ghi", ":")
%1 = ["abc", "def", "ghi"]
? strsplit("abc", "")
%2 = ["a", "b", "c"]
```

---

739
If $s$ starts (resp. ends) with the pattern $p$, then the first (resp. last) entry in the vector is the empty string:

```plaintext
? strsplit("aba", "a")
%3 = ["", "b", "]
```

**subgrouplist** 

`cyc` being a vector of positive integers giving the cyclic components for a finite Abelian group $G$ (or any object which has a `.cyc` method), outputs the list of subgroups of $G$. Subgroups are given as HNF left divisors of the SNF matrix corresponding to $G$.

If `flag = 0` (default) and `cyc` is a `bnr` structure output by `bnrinit`, gives only the subgroups whose modulus is the conductor. Otherwise, all subgroups are given.

If `bound` is present, and is a positive integer, restrict the output to subgroups of index less than `bound`. If `bound` is a vector containing a single positive integer $B$, then only subgroups of index exactly equal to $B$ are computed. For instance

```plaintext
? subgrouplist([6,2])
%1 = [[6, 0; 0, 2], [2, 0; 0, 2], [6, 3; 0, 1], [2, 1; 0, 1], [3, 0; 0, 2],
 [1, 0; 0, 2], [6, 0; 0, 1], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],3) \ index less than 3
%2 = [[2, 1; 0, 1], [1, 0; 0, 2], [2, 0; 0, 1], [3, 0; 0, 1], [1, 0; 0, 1]]
? subgrouplist([6,2],[3]) \ index 3
%3 = [[3, 0; 0, 1]]
? bnr = bnrinit(bnfinit(x), [120,[1]], 1);
? L = subgrouplist(bnr, [8]);
```

In the last example, $L$ corresponds to the 24 subfields of $\mathbb{Q}(\zeta_{120})$, of degree 8 and conductor 120 (by setting `flag`, we see there are a total of 43 subgroups of degree 8).

```plaintext
? vector(#L, i, galoisubcyclo(bnr, L[i]))
```

will produce their equations. (For a general base field, you would have to rely on `bnrstark`, or `bnrclassfield`.)

**Warning.** This function requires factoring the exponent of $G$. If you are only interested in subgroups of index $n$ (or dividing $n$), you may considerably speed up the function by computing the subgroups of $G/G^n$, whose cyclic components are $\text{apply}(x -> \gcd(n,x), C)$ (where $C$ gives the cyclic components of $G$). If you want the `bnr` variant, now is a good time to use `bnrinit(,,, n)` as well, to directly compute the ray class group modulo $n$-th powers.

**subst**(y, z)

Replace the simple variable $y$ by the argument $z$ in the “polynomial” expression $x$. If $z$ is a vector, return the vector of the evaluated expressions `subst(x, y, z[i])`.

Every type is allowed for $x$, but if it is not a genuine polynomial (or power series, or rational function), the substitution will be done as if the scalar components were polynomials of degree zero. In particular, beware that:

```plaintext
? subst(1, x, [1,2; 3,4])
%1 =
[1 0]
[0 1]
? subst(1, x, Mat([0,1]))
*** at top-level: subst(1,x,Mat([0,1]))
*** ^--------------------
*** subst: forbidden substitution by a non square matrix.
```
If $x$ is a power series, $z$ must be either a polynomial, a power series, or a rational function. If $x$ is a vector, matrix or list, the substitution is applied to each individual entry.

Use the function substvec to replace several variables at once, or the function substpol to replace a polynomial expression.

**substpol($y,z$)**

Replace the “variable” $y$ by the argument $z$ in the “polynomial” expression $x$. Every type is allowed for $x$, but the same behavior as subst above apply.

The difference with subst is that $y$ is allowed to be any polynomial here. The substitution is done moding out all components of $x$ (recursively) by $y - t$, where $t$ is a new free variable of lowest priority. Then substituting $t$ by $z$ in the resulting expression. For instance

```
? substpol(x^4 + x^2 + 1, x^2, y)
%1 = y^2 + y + 1
? substpol(x^4 + x^2 + 1, x^3, y)
%2 = x^2 + y*x + 1
? substpol(x^4 + x^2 + 1, (x+1)^2, y)
%3 = (-4*y - 6)*x + (y^2 + 3*y - 3)
```

**substvec($v,w$)**

$v$ being a vector of monomials of degree 1 (variables), $w$ a vector of expressions of the same length, replace in the expression $x$ all occurrences of $v_i$ by $w_i$. The substitutions are done simultaneously; more precisely, the $v_i$ are first replaced by new variables in $x$, then these are replaced by the $w_i$:

```
? substvec([x,y], [x,y], [y,x])
%1 = [y, x]
? substvec([x,y], [x,y], [y, x+y])
%2 = [y, x + y] \ \ not \ [y, 2*y]
```

**sumdedekind($k$)**

Returns the Dedekind sum attached to the integers $h$ and $k$, corresponding to a fast implementation of

$$s(h,k) = \sum_{n = 1}^{k-1} \left( \frac{n}{k} \right) \left( \frac{\frac{h}{n} - \frac{1}{2}}{k} \right)$$

**sumdigits($B$)**

Sum of digits in the integer $||n||$, when written in base $B > 1$.

```
? sumdigits(123456789)
%1 = 45
? sumdigits(123456789, 2)
%1 = 16
```

Note that the sum of bits in $n$ is also returned by hammingweight. This function is much faster than vecsum(digits(n,B)) when $B$ is 10 or a power of 2, and only slightly faster in other cases.

**sumeulerrat($s,a$, precision)**

$$\sum_{p > a} F(p^s),$$

where the sum is taken over prime numbers and $F$ is a rational function.

```
? sumeulerrat(1/p^2)
%1 = 0.4522474204106549850654336483224793417
? sumeulerrat(1/p, 2)
%2 = 0.4522474204106549850654336483224793417
```
sumformal\((v)\)

formal sum of the polynomial expression \(f\) with respect to the main variable if \(v\) is omitted, with respect to the variable \(v\) otherwise; it is assumed that the base ring has characteristic zero. In other words, considering \(f\) as a polynomial function in the variable \(v\), returns \(F\), a polynomial in \(v\) vanishing at 0, such that \(F(b) - F(a) = \sum_{v=a+1}^{b} f(v)\):

```plaintext
? sumformal(n) \ 1 + ... + n
%1 = 1/2*n^2 + 1/2*n
? f(n) = n^3+n^2+1;
? F = sumformal(f(n)) \ f(1) + ... + f(n)
%3 = 1/4*n^4 + 5/6*n^3 + 3/4*n^2 + 7/6*n
? sum(n = 1, 2000, f(n)) == subst(F, n, 2000)
%4 = 1
? sum(n = 1001, 2000, f(n)) == subst(F, n, 2000) - subst(F, n, 1000)
%5 = 1
? sumformal(x^2 + x*y + y^2, y)
%6 = y*x^2 + (1/2*y^2 + 1/2*y)*x + (1/3*y^3 + 1/2*y^2 + 1/6*y)
? x^2 * y + x * sumformal(y) + sumformal(y^2) == %
%7 = 1
```

sumnumapinit(\(precision\))

Initialize tables for Abel-Plana summation of a series \(\sum f(n)\), where \(f\) is holomorphic in a right half-plane. If given, \(\text{asymp}\) is of the form \([+oo, \alpha]\), as in \text{intnum} and indicates the decrease rate at infinity of functions to be summed. A positive \(\alpha > 0\) encodes an exponential decrease of type \(\exp(-\alpha n)\) and a negative \(-2 < \alpha < -1\) encodes a slow polynomial decrease of type \(n^\alpha\).

```plaintext
? \p200
? sumnumap(n=1, n^-2);
time = 163 ms.
? tab = sumnumapinit();
time = 160 ms.
? sumnumap(n=1, n^-2, tab); \ \ \ faster
time = 7 ms.

? tab = sumnumapinit([+oo, log(2)]); \ \ \ decrease like 2^-n
time = 164 ms.
? sumnumap(n=1, 2^-n, tab) - 1
time = 36 ms.
%5 = 3.0127431466707723218 E-282

? tab = sumnumapinit([+oo, -4/3]); \ \ \ decrease like n^(-4/3)
time = 166 ms.
? sumnumap(n=1, n^(-4/3), tab);
time = 181 ms.
```

sumnuminit(\(precision\))

Initialize tables for Euler-MacLaurin delta summation of a series with positive terms. If given, \(\text{asymp}\) is of the form \([+oo, \alpha]\), as in \text{intnum} and indicates the decrease rate at infinity of functions to be summed. A positive \(\alpha > 0\) encodes an exponential decrease of type \(\exp(-\alpha n)\) and a negative \(-2 < \alpha < -1\) encodes a slow polynomial decrease of type \(n^\alpha\).

```plaintext
? \p200
? sumnum(n=1, n^-2);
(continues on next page)
```
time = 200 ms.
? tab = sumnuminit();
time = 188 ms.
? sumnum(n=1, n^-2, tab); \ \text{\\ faster}
time = 8 ms.

? tab = sumnuminit([+oo, log(2)]); \ \text{\\ decrease like } 2^\text{-n}
time = 200 ms.
? sumnum(n=1, 2^-n, tab)
time = 44 ms.

? tab = sumnuminit([+oo, -4/3]); \ \text{\\ decrease like } n^{(-4/3)}
time = 200 ms.
? sumnum(n=1, n^{(-4/3)}, tab);
time = 221 ms.

\textbf{sumnumlagrangeinit}(c1, precision)

Initialize tables for Lagrange summation of a series. By default, assume that the remainder $R(n) = \sum_{m>n} f(m)$ has an asymptotic expansion

$$R(n) = \sum_{m>n} f(n) \sum_{i>1} a_i/n^i$$

at infinity. The argument asymp allows to specify different expansions:

- a real number $\beta$ means
  $$R(n) = n^{-\beta} \sum_{i>1} a_i/n^i$$

- a \texttt{t\_CLOSEURE} $g$ means
  $$R(n) = g(n) \sum_{i>1} a_i/n^i$$

  \textit{(The preceding case corresponds to \texttt{math} : 'g(n) = n^{-\beta\cdot\cdot\cdot}.)}

- a pair $[\alpha, \beta]$ where $\beta$ is as above and $\alpha \in 2, 1/2, 1/3, 1/4$. We let $R_2(n) = R(n) - f(n)/2$ and $R_{\alpha}(n) = R(n)$ for $\alpha! = 2$. Then
  $$R_{\alpha}(n) = g(n) \sum_{i>1} a_i/n^{i\alpha}$$

\textit{Note that the initialization times increase considerably for the \texttt{math} : '\alpha\'isthislist(\texttt{math} : '1/4\'beingtheslowest).}

The constant $c_1$ is technical and computed by the program, but can be set by the user: the number of interpolation steps will be chosen close to $c_1 B$, where $B$ is the bit accuracy.

? \p2000
? sumnumlagrange(n=1, n^-2);
time = 173 ms.
? tab = sumnumlagrangeinit();
time = 172 ms.
? sumnumlagrange(n=1, n^-2, tab);
time = 4 ms.
in The final example with $\zeta(4/3)$, the remainder $R_1(n)$ is of the form $n^{-1/3} \sum_{i>0} a_i/n^i$, i.e. $n^{1/3} \sum_{i>1} a_i/n^i$. The explains the wrong result for $\beta = 1/3$ and the correction with $\beta = -2/3$.

**sumnummonieninit**(\(w, n0, \text{precision}\))

Initialize tables for Monien summation of a series $\sum_{n>n0} f(n)$ where $f(1/z)$ has a complex analytic continuation in a (complex) neighbourhood of the segment $[0, 1]$.

By default, assume that $f(n) = O(n^{-2})$ and has a nonzero asymptotic expansion

\[ f(n) = \sum_{i>2} a_i/n^i \]

at infinity. Note that the sum starts at $i = 2$! The argument `asympt` allows to specify different expansions:

- a real number $\beta > 0$ means

\[ f(n) = \sum_{i>1} a_i/n^{i+\beta} \]

(\text{Now the summation starts at} \: \text{math:} \: '1'.)

- a vector $[\alpha, \beta]$ of reals, where we must have $\alpha > 0$ and $\alpha + \beta > 1$ to ensure convergence, means that

\[ f(n) = \sum_{i>1} a_i/n^{\alpha i+\beta} \]

\text{Note that:} \: \text{math:} \: 'asympt = [1, \beta]' \: \text{i.e. equivalent to} \: \text{math:} \: 'asympt = \beta';

? \p57
? s = sumnum(n = 1, sin(1/sqrt(n)) / n); \ \ \text{reference point}
?
?
? \p38
? sumnummonien(n = 1, sin(1/sqrt(n)) / n) - s
%2 = -0.001[...] \ \ \text{completely wrong}
(As a matter of fact, in the above summation, the result given by `sumnum` at \p38 is slightly incorrect, so we had to increase the accuracy to \p57.)

The argument $w$ is used to sum expressions of the form

$$\sum_{n > n_0} f(n)w(n),$$

for varying $f$ as above, and fixed weight function $w$, where we further assume that the auxiliary sums

$$g_w(m) = \sum_{n > n_0} w(n)/n^{\alpha m + \beta}$$

converge for all $m \geq 1$. Note that for nonnegative integers $k$, and weight $w(n) = (\log n)^k$, the function $g_w(m) = c^{(k)}(\alpha m + \beta)$ has a simple expression; for general weights, $g_w$ is computed using `sumnum`. The following variants are available

- an integer $k \geq 0$, to code $w(n) = (\log n)^k$;
- a `t_closure` computing the values $w(n)$, where we assume that $w(n) = O(n^\epsilon)$ for all $\epsilon > 0$;
- a vector $[w, fast]$, where $w$ is a closure as above and `fast` is a scalar; we assume that $w(n) = O(n^{fast+\epsilon})$; note that $w = [w, 0]$ is equivalent to $w = w$. Note that if $w$ decreases exponentially, `suminf` should be used instead.

The subsequent calls to `sumnummonien` must use the same value of $n_0$ as was used here.

```plaintext
? \p300
? sumnummonien(n = 1, n^4-2*log(n)) + zeta'(2)
time = 328 ms.
%1 = -1.323[...E-6 \ \text{completely wrong, } f \text{ does not satisfy hypotheses!}

? tab = sumnummonieninit(, 1); \ \text{codes } w(n) = \log(n)
time = 3,993 ms.
? sumnummonien(n = 1, n^4-2, tab) + zeta'(2)
time = 41 ms.
%3 = -5.562684646268003458 E-309 \ \text{now perfect}

? tab = sumnummonieninit(, n->log(n)); \ \text{generic, slower}
time = 9,808 ms.
? sumnummonien(n = 1, n^4-2, tab) + zeta'(2)
time = 40 ms.
%5 = -5.562684646268003458 E-309 \ \text{identical result}
```

`sumnumrat(a, precision)`

$$\sum_{n > a} F(n),$$

where $F$ is a rational function of degree less than or equal to $-2$ and where poles of $F$ at integers $\geq a$ are omitted from the summation. The argument $a$ must be a `t_int` or `-oo`.

```plaintext
? sumnumrat(1/(x^2+1)^2,0)
%1 = 1.306836975422908693178621382829073480
? sumnumrat(1/x^2, -oo) \ \text{value at } x=0 \text{ is discarded}
%2 = 3.289868133696452872944830332920503784
```

(continues on next page)
When \( \deg F = -1 \), we define

\[
\sum_{n>0}^\infty F(n) := \sum_{n>0} (F(n) + F(-1 - n)) : 
\]

? sumnumrat(1/x, -oo)
%4 = 0.E-38

\texttt{tan(precision)}

Tangent of \( x \).

\texttt{tanh(precision)}

Hyperbolic tangent of \( x \).

\texttt{taylor(t, serprec)}

Taylor expansion around 0 of \( x \) with respect to the simple variable \( t \). \( x \) can be of any reasonable type, for example a rational function. Contrary to \texttt{Ser}, which takes the valuation into account, this function adds \( \mathcal{O}(t^d) \) to all components of \( x \).

? taylor(x/(1+y), y, 5)
%1 = (y^4 - y^3 + y^2 - y + 1)*x + \mathcal{O}(y^5)

? Ser(x/(1+y), y, 5)
*** at top-level: Ser(x/(1+y),y,5)
*** ^----------------
*** Ser: main variable must have higher priority in gtoser.

\texttt{teichmuller(tab)}

Teichmüller character of the \( p \)-adic number \( x \), i.e. the unique \((p - 1)\)-th root of unity congruent to \( x/p^{\nu_p(x)} \) modulo \( p \). If \( x \) is of the form \([p, n]\), for a prime \( p \) and integer \( n \), return the lifts to \( \mathbb{Z} \) of the images of \( i + O(p^n) \) for \( i = 1, \ldots, p - 1 \), i.e. all roots of 1 ordered by residue class modulo \( p \). Such a vector can be fed back to \texttt{teichmuller}, as the optional argument \( \text{tab} \), to speed up later computations.

? z = teichmuller([2, 100])
%1 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)

As a rule of thumb, if more than \( p/2(\log_2(p) + \text{hammingweight}(p)) \) values of \texttt{teichmuller} are to be computed, then it is worthwhile to initialize:

? p = 101; n = 100; T = teichmuller([p, n]); \\ instantaneous
? for(i=1,10^3, vector(p-1, i, teichmuller(i+O(p^n), T)))
time = 60 ms.
Here the precomputation induces a speedup by a factor $1293/60 = 21.5$.

Caveat. If the accuracy of tab (the argument $n$ above) is lower than the precision of $x$, the former is used, i.e. the cached value is not refined to higher accuracy. If the accuracy of tab is larger, then the precision of $x$ is used:

\begin{verbatim}
? Tlow = teichmuller([101, 2]); \ lower accuracy !
\end{verbatim}
\begin{verbatim}
? teichmuller(2 + O(101^5), Tlow)
\end{verbatim}
\begin{verbatim}
%10 = 2 + 83*101 + O(101^5) \ no longer a root of 1
\end{verbatim}
\begin{verbatim}
? Thigh = teichmuller([101, 10]); \ higher accuracy
? teichmuller(2 + O(101^5), Thigh)
\end{verbatim}
\begin{verbatim}
%12 = 2 + 83*101 + 18*101^2 + 69*101^3 + 62*101^4 + O(101^5)
\end{verbatim}

\subsection*{theta($z$, precision)}

Jacobi sine theta-function

$$\theta_1(z, q) = 2q^{1/4} \sum_{n \geq 0} (-1)^n q^{n(n+1)} \sin((2n + 1)z).$$

\subsection*{thetanullk($k$, precision)}

$k$-th derivative at $z = 0$ of $\theta(q, z)$.

\subsection*{thue($a$, sol)}

Returns all solutions of the equation $P(x, y) = a$ in integers $x$ and $y$, where \texttt{tnf} was created with \texttt{thueinit(P)}.

If present, \texttt{sol} must contain the solutions of \texttt{Norm(x) = a} modulo units of positive norm in the number field defined by \texttt{P} (as computed by \texttt{bnfisintnorm}). If there are infinitely many solutions, an error is issued.

It is allowed to input directly the polynomial $P$ instead of a \texttt{tnf}, in which case, the function first performs \texttt{thueinit(P, 0)}. This is very wasteful if more than one value of $a$ is required.

If \texttt{tnf} was computed without assuming GRH (flag 1 in \texttt{thueinit}), then the result is unconditional. Otherwise, it depends in principle of the truth of the GRH, but may still be unconditionally correct in some favorable cases. The result is conditional on the GRH if $a! = 1$ and $P$ has a single irreducible rational factor, whose attached tentative class number $h$ and regulator $R$ (as computed assuming the GRH) satisfy

- $h > 1$,
- $R/0.2 > 1.5$.

Here's how to solve the Thue equation $x^{13} - 5y^{13} = -4$:

\begin{verbatim}
? tnf = thueinit(x^13 - 5);
? thue(tnf, -4)
%1 = [[1, 1]]
\end{verbatim}

In this case, one checks that \texttt{bnfinit(x^13 -5).no} is 1. Hence, the only solution is $(x, y) = (1, 1)$ and the result is unconditional. On the other hand:

\begin{verbatim}
? P = x^3-2*x^2+3*x-17; tnf = thueinit(P);
? thue(tnf, -15)
\end{verbatim}

(continues on next page)
This time the result is conditional. All results computed using this particular \( tnf \) are likewise conditional, except for a right-hand side of 1. The above result is in fact correct, so we did not just disprove the GRH:

```
? tnf = thueinit(x^3-2*x^2+3*x-17, 1 /*unconditional*/);
? thue(tnf, -15)
%4 = [[1, 1]]
```

Note that reducible or nonmonic polynomials are allowed:

```
? tnf = thueinit((2*x+1)^5 * (4*x^3-2*x^2+3*x-17), 1);
? thue(tnf, 128)
%2 = [[-1, 0], [1, 0]]
```

Reducible polynomials are in fact much easier to handle.

**Note.** When \( P \) is irreducible without a real root, the default strategy is to use brute force enumeration in time \( \|a\|^{1/\deg P} \) and avoid computing a tough \( bnf \) attached to \( P \), see `thueinit`. Besides reusing a quantity you might need for other purposes, the default argument `sol` can also be used to use a different strategy and prove that there are no solutions; of course you need to compute a \( bnf \) on your own to obtain `sol`. If there are solutions this won’t help unless \( P \) is quadratic, since the enumeration will be performed in any case.

### thueinit(flag, precision)

Initializes the \( tnf \) corresponding to \( P \), a nonconstant univariate polynomial with integer coefficients. The result is meant to be used in conjunction with `thue` to solve Thue equations \( P(X/Y)Y^{\deg P} = a \), where \( a \) is an integer. Accordingly, \( P \) must either have at least two distinct irreducible factors over \( \mathbb{Q} \), or have one irreducible factor \( T \) with degree \( > 2 \) or two conjugate complex roots: under these (necessary and sufficient) conditions, the equation has finitely many integer solutions.

```
? S = thueinit(t^2+1);
? thue(S, 5)
%2 = [[-2, -1], [-2, 1], [-1, -2], [-1, 2], [1, -2], [1, 2], [2, -1], [2, 1]]

? S = thueinit(t+1);
*** at top-level: thueinit(t+1)
*** ^-----------
*** thueinit: domain error in thueinit: P = t + 1
```

The hardest case is when \( \deg P > 2 \) and \( P \) is irreducible with at least one real root. The routine then uses Bilu-Hanrot’s algorithm.

If `flag` is nonzero, certify results unconditionally. Otherwise, assume GRH, this being much faster of course. In the latter case, the result may still be unconditionally correct, see `thue`. For instance in most cases where \( P \) is reducible (not a pure power of an irreducible), or conditional computed class groups are trivial or the right hand side is 1, then results are unconditional.

**Note.** The general philosophy is to disprove the existence of large solutions then to enumerate bounded solutions naively. The implementation will overflow when there exist huge solutions and the equation has degree \( > 2 \) (the quadratic imaginary case is special, since we can stick to \( bnfisintnorm \), there are no fundamental units):
? thue(t^3+2, 10^30)
*** at top-level: L=thue(t^3+2,10^30)
*** ^-----------------
*** thue: overflow in thue (SmallSols): y <= 80665203789619036028928.

Note. It is sometimes possible to circumvent the above, and in any case obtain an important speed-up, if you can write $P = Q(x^d)$ for some $d > 1$ and $Q$ still satisfying the thueinit hypotheses. You can then solve the equation attached to $Q$ then eliminate all solutions $(x, y)$ such that either $x$ or $y$ is not a $d$-th power.

? thue(x^4+1, 10^40); \ stopped after 10 hours
? filter(L,d) =
  my(x,y); [[x,y] | v<-L, ispower(v[1],d,&x)&&ispower(v[2],d,&y)];
? L = thue(x^2+1, 10^40);
? filter(L, 2)
%4 = [[0, 10000000000], [10000000000, 0]]

The last 2 commands use less than 20ms.

Note. When $P$ is irreducible without a real root, the equation can be solved unconditionnally in time $\|a\|^{1/\deg P}$. When this latter quantity is huge and the equation has no solutions, this fact may still be ascertained via arithmetic conditions but this now implies solving norm equations, computing a bnf and possibly assuming the GRH. When there is no real root, the code does not compute a bnf (with certification if flag = 1) if it expects this to be an “easy” computation (because the result would only be used for huge values of $a$). See thue for a way to compute an expensive bnf on your own and still get a result where this default cheap strategy fails.

trace()
This applies to quite general $x$. If $x$ is not a matrix, it is equal to the sum of $x$ and its conjugate, except for polmods where it is the trace as an algebraic number.

For $x$ a square matrix, it is the ordinary trace. If $x$ is a nonsquare matrix (but not a vector), an error occurs.

truncate($e$)
Truncates $x$ and sets $e$ to the number of error bits. When $x$ is in $\mathbb{R}$, this means that the part after the decimal point is chopped away, $e$ is the binary exponent of the difference between the original and the truncated value (the “fractional part”). If the exponent of $x$ is too large compared to its precision (i.e. $e > 0$), the result is undefined and an error occurs if $e$ was not given. The function applies componentwise on vector / matrices; $e$ is then the maximal number of error bits. If $x$ is a rational function, the result is the “integer part” (Euclidean quotient of numerator by denominator) and $e$ is not set.

Note a very special use of truncate: when applied to a power series, it transforms it into a polynomial or a rational function with denominator a power of $X$, by chopping away the $O(X^k)$. Similarly, when applied to a $p$-adic number, it transforms it into an integer or a rational number by chopping away the $O(p^k)$.

type()
This is useful only under gp. Returns the internal type name of the PARI object $x$ as a string. Check out existing type names with the metacommand \t. For example type(1) will return “t_INT”.

valuation($p$)
Computes the highest exponent of $p$ dividing $x$. If $p$ is of type integer, $x$ must be an integer, an intmod whose modulus is divisible by $p$, a fraction, a $q$-adic number with $q = p$, or a polynomial or power series in which case the valuation is the minimum of the valuation of the coefficients.

If $p$ is of type polynomial, $x$ must be of type polynomial or rational function, and also a power series if $x$ is a monomial. Finally, the valuation of a vector, complex or quadratic number is the minimum of the component valuations.
If \( x = 0 \), the result is \(+\infty\) if \( x \) is an exact object. If \( x \) is a \( p \)-adic numbers or power series, the result is the exponent of the zero. Any other type combinations gives an error.

**variable()**

Gives the main variable of the object \( x \) (the variable with the highest priority used in \( x \)), and \( p \) if \( x \) is a \( p \)-adic number. Return 0 if \( x \) has no variable attached to it.

```
? variable(x^2 + y)
%1 = x
? variable(1 + O(5^2))
%2 = 5
? variable([x,y,z,t])
%3 = x
? variable(1)
%4 = 0
```

The construction

```
if (!variable(x),...)
```

can be used to test whether a variable is attached to \( x \).

If \( x \) is omitted, returns the list of user variables known to the interpreter, by order of decreasing priority. (Highest priority is initially \( x \), which come first until varhigher is used.) If varhigher or varlower are used, it is quite possible to end up with different variables (with different priorities) printed in the same way: they will then appear multiple times in the output:

```
? varhigher("y");
? varlower("y");
? variable()
%4 = [y, x, y]
```

Using \( v = \text{variable()} \) then \( v[1], v[2], \) etc. allows to recover and use existing variables.

**variables()**

Returns the list of all variables occurring in object \( x \) (all user variables known to the interpreter if \( x \) is omitted), sorted by decreasing priority.

```
? variables([x^2 + y*z + O(t), a+x])
%1 = [x, y, z, t, a]
```

The construction

```
if (!variables(x),...)
```

can be used to test whether a variable is attached to \( x \).

If varhigher or varlower are used, it is quite possible to end up with different variables (with different priorities) printed in the same way: they will then appear multiple times in the output:

```
? y1 = varhigher("y");
? y2 = varlower("y");
? variables(y*y1*y2)
%4 = [y, y, y]
```
vecextract \( (y, z) \)
Extraction of components of the vector or matrix \( x \) according to \( y \). In case \( x \) is a matrix, its components are the columns of \( x \). The parameter \( y \) is a component specifier, which is either an integer, a string describing a range, or a vector.

If \( y \) is an integer, it is considered as a mask: the binary bits of \( y \) are read from right to left, but correspond to taking the components from left to right. For example, if \( y = 13 = (1101)_2 \) then the components 1,3 and 4 are extracted.

If \( y \) is a vector (t_VEC, t_COL or t_VECSMALL), which must have integer entries, these entries correspond to the component numbers to be extracted, in the order specified.

If \( y \) is a string, it can be

- a single (nonzero) index giving a component number (a negative index means we start counting from the end).
- a range of the form \:`\text{\textquotesingle}\text{\textbackslash a}..\text{\textquotesingle}\text{\textbackslash b}`\text{\textbackslash text{\textquotesingle}}`, where \:`\text{\textbackslash a}` and \:`\text{\textbackslash b}` are indexes as above. Any of \:`\text{\textbackslash a}` and \:`\text{\textbackslash b}` can be omitted; in this case, we take as default values \:`\text{\textbackslash a} = 1` and \:`\text{\textbackslash b} = -1`, i.e. the first and last components respectively. We then extract all components in the interval \:`[\text{\textbackslash a}, \text{\textbackslash b}]`, in reverse order if \:`\text{\textbackslash b} < \text{\textbackslash a}`.

In addition, if the first character in the string is \:`^`\text{\textbackslash text{\textbackslash}}`, the complement of the given set of indices is taken.

If \( z \) is not omitted, \( x \) must be a matrix. \( y \) is then the row specifier, and \( z \) the column specifier, where the component specifier is as explained above.

\[
\begin{align*}
? v = [a, b, c, d, e]; \\
? \text{vecextract}(v, 5) \ \text{\textbackslash mask} \\
%1 = [a, c] \\
? \text{vecextract}(v, [4, 2, 1]) \ \text{\textbackslash component list} \\
%2 = [d, b, a] \\
? \text{vecextract}(v, "2..4") \ \text{\textbackslash interval} \\
%3 = [b, c, d] \\
? \text{vecextract}(v, "-1..-3") \ \text{\textbackslash interval + reverse order} \\
%4 = [e, d, c] \\
? \text{vecextract}(v, "^2") \ \text{\textbackslash complement} \\
%5 = [a, c, d, e] \\
? \text{vecextract(matid(3), "2..", ")"}) \\
%6 = \\
\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}
\end{align*}
\]

The range notations \:`v[i..j]` and \:`v[^i]` (for t_VEC or t_COL) and \:`M[i..j, k..l]` and friends (for t_MAT) implement a subset of the above, in a simpler and faster way, hence should be preferred in most common situations. The following features are not implemented in the range notation:

- reverse order,
- omitting either \:`\text{\textbackslash a}` or \:`\text{\textbackslash b}` in \:`\text{\textbackslash a}..\text{\textbackslash b}`.

\textbf{vecmax} \( (v) \)

If \( x \) is a vector or a matrix, returns the largest entry of \( x \), otherwise returns a copy of \( x \). Error if \( x \) is empty.

If \( v \) is given, set it to the index of a largest entry (indirect maximum), when \( x \) is a vector. If \( x \) is a matrix, set \( v \) to coordinates \([i, j]\) such that \( x[i, j] \) is a largest entry. This flag is ignored if \( x \) is not a vector or matrix.

\[
\begin{align*}
? \text{vecmax}([10, 20, -30, 40]) \\
%1 = 40
\end{align*}
\]
vecmin\(v\)

If \(x\) is a vector or a matrix, returns the smallest entry of \(x\), otherwise returns a copy of \(x\). Error if \(x\) is empty.

If \(v\) is given, set it to the index of a smallest entry (indirect minimum), when \(x\) is a vector. If \(x\) is a matrix, set \(v\) to coordinates \([i, j]\) such that \(x[i, j]\) is a smallest entry. This is ignored if \(x\) is not a vector or matrix.

\[
\begin{align*}
? \text{vecmin}([10, 20, -30, 40]) &\quad 1 = -30 \\
? \text{vecmin}([10, 20, -30, 40], &v); v &\quad v = [2, 1] \\
\end{align*}
\]

vecprod()

Return the product of the components of the vector \(v\). Return 1 on an empty vector.

\[
\begin{align*}
? \text{vecprod([1,2,3])} &\quad 1 = 6 \\
? \text{vecprod([])} &\quad v = 1 \\
\end{align*}
\]

vecsearch\(x, \text{cmpf}\)

Determines whether \(x\) belongs to the sorted vector or list \(v\): return the (positive) index where \(x\) was found, or 0 if it does not belong to \(v\).

If the comparison function \(\text{cmpf}\) is omitted, we assume that \(v\) is sorted in increasing order, according to the standard comparison function \(\text{lex}\), thereby restricting the possible types for \(x\) and the elements of \(v\) (integers, fractions, reals, and vectors of such). We also transparently allow a \(\text{t_VECSMALL} \) \(x\) in this case, for the natural ordering of the integers.

If \(\text{cmpf}\) is present, it is understood as a comparison function and we assume that \(v\) is sorted according to it, see vecsort for how to encode comparison functions.

\[
\begin{align*}
? v = [1,3,4,5,7]; \\
? \text{vecsearch}(v, 3) &\quad 2 \\
? \text{vecsearch}(v, 6) &\quad 0 \ \text{not in the list} \\
? \text{vecsearch}([7,6,5], 5) \ \text{\textbackslash \ not in the list} \\
? \text{vecsearch}([7,6,5], 5) \ \text{\textbackslash \ not in the list} \\
? \text{vecsearch}([7,6,5], 5) \ \text{\textbackslash \ not in the list} \\
\end{align*}
\]

Note that if we are sorting with respect to a key which is expensive to compute (e.g. a discriminant), one should rather precompute all keys, sort that vector and search in the vector of keys, rather than searching in the original vector with respect to a comparison function.

By abuse of notation, \(x\) is also allowed to be a matrix, seen as a vector of its columns; again by abuse of notation, a \(\text{t_VEC}\) is considered as part of the matrix, if its transpose is one of the matrix columns.
vecsort(cmpf, flag)

Sorts the vector \( x \) in ascending order, using a mergesort method. \( x \) must be a list, vector or matrix (seen as a vector of its columns). Note that mergesort is stable, hence the initial ordering of "equal" entries (with respect to the sorting criterion) is not changed.

If \( \text{cmpf} \) is omitted, we use the standard comparison function \( \text{lex} \), thereby restricting the possible types for the elements of \( x \) (integers, fractions or reals and vectors of those). We also transparently allow a \( \text{t_VECSMALL} \) \( x \) in this case, for the standard ordering on the integers.

If \( \text{cmpf} \) is present, it is understood as a comparison function and we sort according to it. The following possibilities exist:

- an integer \( k \): sort according to the value of the \( k \)-th subcomponents of the components of \( x \).
- a vector: sort lexicographically according to the components listed in the vector. For example, if \( \text{cmpf} = [2, 1, 3] \), sort with respect to the second component, and when these are equal, with respect to the first, and when these are equal, with respect to the third.
- a comparison function: \( \text{t_CLOSURE} \) with two arguments \( x \) and \( y \), and returning a real number which is \( < 0 \), \( > 0 \) or \( = 0 \) if \( x < y \), \( x > y \) or \( x = y \) respectively.
- a key: \( \text{t_CLOSURE} \) with one argument \( x \) and returning the value \( f(x) \) with respect to which we sort.

The \( \text{abs} \) and \( \text{cmpf} \) examples show how to use a named function instead of an anonymous function. It is preferable to use a \( \text{key} \) whenever possible rather than include it in the comparison function as above since the key is evaluated \( O(n) \) times instead of \( O(n \log n) \), where \( n \) is the number of entries.

A direct approach is also direct and equivalent to using a sorting key:
This also provides the vector $T$ of all keys, which is interesting for instance in later \texttt{vecsearch} calls: it is more efficient to sort $T (T = \text{vecextract}(T, \text{perm}))$ then search for a key in $T$ rather than to search in $v$ using a comparison function or a key. Note also that \texttt{mapisdefined} is often easier to use and faster than \texttt{vecsearch}.

The binary digits of \texttt{flag} mean:

- 1: indirect sorting of the vector $x$, i.e. if $x$ is an $n$-component vector, returns a permutation of $[1, 2, ..., n]$ which applied to the components of $x$ sorts $x$ in increasing order. For example, \texttt{vecextract(x, vecsort(x,,1))} is equivalent to \texttt{vecsort(x)}.
- 4: use descending instead of ascending order.
- 8: remove “duplicate” entries with respect to the sorting function (keep the first occurring entry). For example:

\begin{verbatim}
? v = vecsort([Pi,Mod(1,2),z], (x,y)->0, 8) \ make everything compare equal
%1 = [3.141592653589793238462643383, 1, 2, 3] \ remove duplicate entries

? vecsort([2,3],[0,1],[0,3], 2, 8)
%2 = [[0, 1], [2, 3]]
\end{verbatim}

\begin{description}
\item[\texttt{vecsum}()] Return the sum of the components of the vector $v$. Return 0 on an empty vector.
\end{description}

\begin{verbatim}
? vecsum([1,2,3])
%1 = 6

? vecsum([[]])
%2 = 0
\end{verbatim}

\begin{description}
\item[\texttt{weber}() \hspace{1em} (\texttt{flag}, \texttt{precision})] One of Weber’s three $f$ functions. If $\text{flag} = 0$, returns

$$f(x) = \exp(-i\pi/24) \cdot \frac{\eta((x + 1)/2)}{\eta(x)} \text{such that } j = \frac{(f^{24} - 16)^3}{f^{24}},$$

where $j$ is the elliptic $j$-invariant (see the function \texttt{ellj}). If $\text{flag} = 1$, returns

$$f_1(x) = \frac{\eta(x/2)}{\eta(x)} \text{such that } j = \frac{(f_1^{24} + 16)^3}{f_1^{24}}.$$  

Finally, if $\text{flag} = 2$, returns

$$f_2(x) = \sqrt{2} \frac{\eta(2x)}{\eta(x)} \text{such that } j = \frac{(f_2^{24} + 16)^3}{f_2^{24}}.$$  

Note the identities $f^8 = f_1^8 + f_2^8$ and $f_1 f_2 = \sqrt{2}$.
\end{description}

\begin{description}
\item[\texttt{zeta}() \hspace{1em} (\texttt{precision})] For $s \neq 1$ a complex number, Riemann’s zeta function $\zeta(s) = \sum_{n \geq 1} n^{-s}$, computed using the Euler-Maclaurin summation formula, except when $s$ is of type integer, in which case it is computed using Bernoulli numbers for $s \leq 0$ or $s > 0$ and even, and using modular forms for $s > 0$ and odd. Power series are also allowed:

\begin{verbatim}
? zeta(2) - Pi^2/6
%1 = 0.E-38
\end{verbatim}

For $s \neq 1$ a p-adic number, Kubota-Leopoldt zeta function at $s$, that is the unique continuous $p$-adic function on the $p$-adic integers that interpolates the values of $(1 - p^{-k}) \zeta(k)$ at negative integers $k$ such that $k \equiv 1 \pmod{p-1}$ (resp. $k$ is odd) if $p$ is odd (resp. $p = 2$). Power series are not allowed in this case.
zetahurwitz(x, der, precision)

Hurwitz zeta function \( \zeta(s, x) = \sum_{n \geq 0} (n + x)^{-s} \) and analytically continued, with \( s! = 1 \) and \( x \) not a negative or zero integer. Note that \( \zeta(s, 1) = \zeta(s) \). \( s \) can also be a polynomial, rational function, or power series. If \( \text{der} \) is positive, compute the \( \text{der} \)'th derivative with respect to \( s \). Note that the derivative with respect to \( x \) is simply \( -s \zeta(s + 1, x) \).

zetamult(t, precision)

For \( s \) a vector of positive integers such that \( s[1] \geq 2 \), returns the multiple zeta value (MZV)

\[ \zeta(s_1, \ldots, s_k) = \sum_{n_1 \geq \ldots \geq n_k > 0} n_1^{-s_1} \ldots n_k^{-s_k} \]

of length \( k \) and weight \( \sum s_i \). More generally, return Yamamoto's \( t \)-MZV interpolation evaluated at \( t \): for \( t = 0 \), this is the ordinary MZV; for \( t = 1 \), we obtain the MZSV star value, with \( > \) instead of strict inequalities; and of course, for \( t = x \) we obtain Yamamoto's one-variable polynomial.

If the bit precision is \( B \), this function runs in time \( O(k(B + k)^2) \) if \( t = 0 \), and \( O(kB^3) \) otherwise.
In addition to the above format (avec), the function also accepts a binary word format evec (each $s_i$ is replaced by $s_i$ bits, all of them 0 but the last one) giving the MZV representation as an iterated integral, and an index format (if $e$ is the positive integer attached the evec vector of bits, the index is the integer $e + 2^{k-2}$). The function zetamultconvert allows to pass from one format to the other; the function zetamultall computes simultaneously all MZVs of weight $\sum_{i=0}^{k-1} s_i$ up to $n$.

**zetamultconvert($fl$)**

$a$ being either an evec, avec, or index $m$, converts into evec ($fl = 0$), avec ($fl = 1$), or index $m$ ($fl = 2$).

```plaintext
? zetamultconvert(10)
%1 = Vecsmall([3, 2])
? zetamultconvert(13)
%2 = Vecsmall([2, 2, 1])
? zetamultconvert(10, 0)
%3 = Vecsmall([0, 0, 1, 0, 1])
? zetamultconvert(13, 0)
%4 = Vecsmall([0, 1, 0, 1, 1])
```

The last two lines imply that $[3, 2]$ and $[2, 2, 1]$ are dual (reverse order of bits and swap 0 and 1 in evec form). Hence they have the same zeta value:

```plaintext
? zetamult([3, 2])
%5 = 0.22881039760335375976874614894168879193
? zetamult([2, 2, 1])
%6 = 0.22881039760335375976874614894168879193
```

**zetamultdual()**

$s$ being either an evec, avec, or index $m$, return the dual sequence in avec format. The dual of a sequence of length $r$ and weight $k$ has length $k - r$ and weight $k$. Duality is an involution and zeta values attached to dual sequences are the same:

```plaintext
? zetamultdual([4])
%1 = Vecsmall([2, 1, 1])
? zetamultdual(%)
%2 = Vecsmall([2, 2, 1])
? zetamult(%1) - zetamult(%2)
%3 = 0.E-38
```

In evec form, duality simply reverses the order of bits and swaps 0 and 1:

```plaintext
? zetamultconvert([4], 0)
%4 = Vecsmall([0, 0, 0, 1])
? zetamultconvert([2,1,1], 0)
%5 = Vecsmall([0, 1, 1, 1])
```

**znchar()**

Given a datum $D$ describing a group $\mathbb{Z}/N\mathbb{Z}^*$ and a Dirichlet character $\chi$, return the pair $[G, \chi]$, where $G$ is znstar($N$, 1) and $\chi$ is a GP character.

The following possibilities for $D$ are supported:

- a nonzero $t_{\text{INT}}$ congruent to 0, 1 modulo 4, return the real character modulo $D$ given by the Kronecker symbol $(D/\cdot)$;
- a $t_{\text{INTMOD}}$ Mod($m$, $N$), return the Conrey character modulo $N$ of index $m$ (see znconreylog).
• a modular form space as per \texttt{mfinit([N, k, \chi])} or a modular form for such a space, return the underlying Dirichlet character \( \chi \) (which may be defined modulo a divisor of \( N \) but need not be primitive).

In the remaining cases, \( G \) is initialized by \texttt{znstar(N, 1)}.

• a pair \([G, \chi]\), where \( \chi \) is a standard GP Dirichlet character \( c = (c_j) \) on \( G \) (generic character \texttt{t_VEC} or Conrey characters \texttt{t_COL} or \texttt{t_INT}); given generators \( G = \mathbb{Z}/d_j\mathbb{Z} \), \( \chi(g_j) = e(c_j/d_j) \).

• a pair \([G, \text{chin}]\), where \( \text{chin} \) is a normalized representation \([n, c]\) of the Dirichlet character \( c \); \( \chi(g_j) = e(c_j/n) \) where \( n \) is minimal (order of \( \chi \)).

\begin{verbatim}
? [G,chi] = znchar(-3);
? G.cyc
%2 = [2]
? charatval(G, chi, 2)
%3 = 1/2
? kronecker(-3,2)
%4 = -1
? znchartokronecker(G,chi)
%5 = -3
? mf = mfinit([28, 5/2, Mod(2,7)]); [f] = mfbasis(mf);
? [G,chi] = znchar(mf); [G.mod, chi]
%7 = [7, [2]~]
? [G,chi] = znchar(f); chi
%8 = [28, [0, 2]~]
\end{verbatim}

\texttt{znchardecompose(chi, Q)}

Let \( N = \prod p^e_p \) and a Dirichlet character \( \chi \), we have a decomposition \( \chi = \prod p^e_p \chi_p \) into character modulo \( N \) where the conductor of \( \chi_p \) divides \( p^e_p \); it equals \( p^e_p \) for all \( p \) if and only if \( \chi \) is primitive.

Given a \texttt{znstar} \( G \) describing a group \((\mathbb{Z}/N\mathbb{Z})^*\), a Dirichlet character \( \chi \) and an integer \( Q \), return \( \prod p^e_p^{(Q,N)} \chi_p \). For instance, if \( Q = p \) is a prime divisor of \( N \), the function returns \( \chi_p \) (as a character modulo \( N \)), given as a Conrey character (\texttt{t_COL}).

\begin{verbatim}
? G = znstar(40, 1);
? G.cyc
%2 = [4, 2, 2]
? chi = [2, 1, 1];
? chi2 = znchardecompose(G, chi, 2)
%4 = [1, 1, 0]~
? chi5 = znchardecompose(G, chi, 5)
%5 = [0, 0, 2]~
? znchardecompose(G, chi, 3)
\end{verbatim}

(continues on next page)
\%6 = [0, 0, 0]~
? c = charmul(G, chi2, chi5)
\%7 = [1, 1, 2]~ \( t_{\text{COL}}: \) in terms of Conrey generators!
? znconreychar(G, c)
\%8 = [2, 1, 1] \( t_{\text{VEC}}: \) in terms of SNF generators

\textbf{znchargauss}(\textit{chi, a, precision})

Given a Dirichlet character \( \chi \) on \( G = (\mathbb{Z}/N\mathbb{Z})^* \) (see znchar), return the complex Gauss sum

\[
g(\chi, a) = \sum_{n=1}^{N} \chi(n)e(an/N)
\]

? [G,chi] = znchar(-3); \( \text{\quad} \) \( \text{\{\quad} \) \( \text{\quad} \)
\%2 = 1.7320508075688772935274463415058723670*I
? znchargauss(G,chi)
\%2 = 1.7320508075688772935274463415058723670*I

\textbf{zncharinduce}(\textit{chi, N})

Let \( G \) be attached to \( (\mathbb{Z}/q\mathbb{Z})^* \) (as per \( G = \text{znstar}(q, 1) \)) and let \( \chi \) be a Dirichlet character on \( (\mathbb{Z}/q\mathbb{Z})^* \), given by

- a \text{\texttt{t\_VEC}}: a standard character on \texttt{bid\_gen},
- a \text{\texttt{t\_INT}} or a \text{\texttt{t\_COL}}: a Conrey index in \( (\mathbb{Z}/q\mathbb{Z})^* \) or its Conrey logarithm; see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

Let \( N \) be a multiple of \( q \), return the character modulo \( N \) extending \( \chi \). As usual for arithmetic functions, the new modulus \( N \) can be given as a \text{\texttt{t\_INT}}, via a factorization matrix or a pair \([N, \text{factor}(N)]\), or by \text{\texttt{znstar}}(\( N, 1 \)).

? G = znstar(4, 1);
? chi = znconreylog(G, 1); \( \text{\quad} \) \( \text{\{\quad} \) \( \text{\quad} \)
? zncharinduce(G, chi, 80) \( \text{\quad} \) \( \text{\{\quad} \) \( \text{\quad} \)
\%3 = [0, 0, 0]~
? zncharinduce(G, 1, 80) \( \text{\quad} \) \( \text{\{\quad} \) \( \text{\quad} \)
\%4 = [0, 0, 0]~

\textbf{Chapter 2. The Gen class wrapping PARI's GEN type}
Here is a larger example:

```pari
c? G = znstar(126000, 1);
c? label = 1009;
c? chi = znconreylog(G, label)
c%3 = [0, 0, 0, 14, 0]~
c? [G0, chi0] = znchartoprimitive(G, label); \ \ works also with 'chi'
c? G0.mod
%c5 = 125
c? chi0 \ \ primitive character mod 5^3 attached to chi
c%c6 = [14]~
c? G0 = znstar(N0, 1);
c? zncharinduce(G0, chi0, G) \ \ induce back
c%c8 = [0, 0, 0, 14, 0]~
c? znconreyexp(G, %)
c%c9 = 1009
```

**zncharisodd**(chi)

Let $G$ be attached to $(\mathbb{Z}/N\mathbb{Z})^*$ (as per $G = \text{znstar}(N,1)$) and let $\chi$ be a Dirichlet character on $(\mathbb{Z}/N\mathbb{Z})^*$, given by

- a $\text{t_VEC}$: a standard character on $G$.gen,
- a $\text{t_INT}$ or $\text{t_COL}$: a Conrey index in $(\mathbb{Z}/q\mathbb{Z})^*$ or its Conrey logarithm; see $\text{dirichletchar}$ (in the PARI manual) or $\text{??character}$.

Return 1 if and only if $\chi(-1) = -1$ and 0 otherwise.

```pari
c? G = znstar(8, 1);
c? zncharisodd(G, 1) \ \ trivial character
c%c2 = 0
c? zncharisodd(G, 3)
c%c3 = 1
c? chareval(G, 3, -1)
c%c4 = 1/2
```

**znchartokronecker**(chi, flag)

Let $G$ be attached to $(\mathbb{Z}/N\mathbb{Z})^*$ (as per $G = \text{znstar}(N,1)$) and let $\chi$ be a Dirichlet character on $(\mathbb{Z}/N\mathbb{Z})^*$, given by

- a $\text{t_VEC}$: a standard character on $G$.gen,
- a $\text{t_INT}$ or $\text{t_COL}$: a Conrey index in $(\mathbb{Z}/q\mathbb{Z})^*$ or its Conrey logarithm; see $\text{dirichletchar}$ (in the PARI manual) or $\text{??character}$.

If $\text{flag} = 0$, return the discriminant $D$ if $\chi$ is real equal to the Kronecker symbol $(D/.)$ and 0 otherwise. The discriminant $D$ is fundamental if and only if $\chi$ is primitive.

If $\text{flag} = 1$, return the fundamental discriminant attached to the corresponding primitive character.

```pari
c? G = znstar(8,1); CHARS = [1,3,5,7]; \ \ Conrey labels
c? apply(t->znchartokronecker(G,t), CHARS)
c%c2 = [4, -8, 8, -4]
c? apply(t->znchartokronecker(G,t,1), CHARS)
c%c3 = [1, -8, 8, -4]
```
znchartoprimitive(chi)

Let $G$ be attached to $(\mathbb{Z}/q\mathbb{Z})^*$ (as per $G = \text{znstar}(q, 1)$) and $\chi$ be a Dirichlet character on $(\mathbb{Z}/q\mathbb{Z})^*$, of conductor $q_0 || q$.

```pari
? G = znstar(126000, 1);
? [G0, chi0] = znchartoprimitive(G, 11)
? G0.mod
%3 = 126000
? chi0
%4 = 11
? [G0, chi0] = znchartoprimitive(G, 1);\ \text{trivial character, not primitive!}
? G0.mod
%6 = 1
? chi0
%7 = []
? [G0, chi0] = znchartoprimitive(G, 1009)
? G0.mod
%4 = 125
? chi0
%5 = [14]
```

Note that `znconreyconductor` is more efficient since it can return $\chi_0$ and its conductor $q_0$ without needing to initialize $G_0$. The price to pay is a more cryptic format and the need to initialize $G_0$ later, but that needs to be done only once for all characters with conductor $q_0$.

znconreychar($m$)

Given a `znstar` $G$ attached to $(\mathbb{Z}/q\mathbb{Z})^*$ (as per $G = \text{znstar}(q, 1)$), this function returns the Dirichlet character attached to $m \in (\mathbb{Z}/q\mathbb{Z})^*$ via Conrey’s logarithm, which establishes a “canonical” bijection between $(\mathbb{Z}/q\mathbb{Z})^*$ and its dual.

Let $q = \prod_p p^{e_p}$ be the factorization of $q$ into distinct primes. For all odd $p$ with $e_p > 0$, let $g_p$ be the element in $(\mathbb{Z}/q\mathbb{Z})^*$ which is

- congruent to 1 mod $q/p^{e_p}$,
- congruent mod $p^{e_p}$ to the smallest positive integer that generates $(\mathbb{Z}/p^{2}\mathbb{Z})^*$.

For $p = 2$, we let $g_4$ (if $2^{e_2} >= 4$) and $g_8$ (if furthermore $2^{e_2} >= 8$) be the elements in $(\mathbb{Z}/q\mathbb{Z})^*$ which are

- congruent to 1 mod $q/2^{e_2}$,
- $g_4 = -1 \text{mod} 2^{e_2}$,
- $g_8 = 5 \text{mod} 2^{e_2}$.

Then the $g_p$ (and the extra $g_4$ and $g_8$ if $2^{e_2} >= 2$) are independent generators of $(\mathbb{Z}/q\mathbb{Z})^*$, i.e. every $m$ in $(\mathbb{Z}/q\mathbb{Z})^*$ can be written uniquely as $\prod_p g_p^{m_p}$, where $m_p$ is defined modulo the order $o_p$ of $g_p$ and $p \in S_q$, the set of prime divisors of $q$ together with 4 if $4 || q$ and 8 if $8 || q$. Note that the $g_p$ are in general not SNF generators as produced by `znstar` whenever $\omega(q) >= 2$, although their number is the same. They however allow to handle the finite abelian group $(\mathbb{Z}/q\mathbb{Z})^*$ in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)

The Conrey logarithm of $m$ is the vector $(m_p)_{p \in S_q}$, obtained via `znconreylog`. The Conrey character $\chi_q(m, \cdot)$ attached to $m \mod q$ maps each $g_p, p \in S_q$ to $e(m_p/o_p)$, where $e(x) = \exp(2i\pi x)$. This function returns the Conrey character expressed in the standard PARI way in terms of the SNF generators $G$.gen.

```pari
? G = znstar(8, 1);
? G.cyc
```

(continues on next page)
%2 = [2, 2] \ Z/2 x Z/2
? G.gen
%3 = [7, 3]
? znconreychar(G,1) \ 1 is always the trivial character
%4 = [0, 0]
? znconreychar(G,2) \ 2 is not coprime to 8 !!!
*** at top-level: znconreychar(G,2)
*** ^-----------------
*** znconreychar: elements not coprime in Zideallog:
2
8
*** Break loop: type 'break' to go back to GP prompt
break>
?
%5 = [0, 1]
? znconreychar(G,5)
%6 = [1, 1]
? znconreychar(G,7)
%7 = [1, 0]

We indeed get all 4 characters of \((\mathbb{Z}/8\mathbb{Z})^\ast\).

For convenience, we allow to input the Conrey logarithm of \(m\) instead of \(m\):

? G = znstar(55, 1);
? znconreychar(G,7)
%2 = [7, 0]
?
%3 = [7, 0]

znconreyconductor(chi, chi0)

Let \(G\) be attached to \((\mathbb{Z}/q\mathbb{Z})^\ast\) (as per \(G = \text{znstar}(q, 1)\)) and chi be a Dirichlet character on \((\mathbb{Z}/q\mathbb{Z})^\ast\), given by

- a \texttt{t_VEC}: a standard character on \texttt{bid.gen},
- a \texttt{t_INT} or a \texttt{t_COL}: a Conrey index in \((\mathbb{Z}/q\mathbb{Z})^\ast\) or its Conrey logarithm; see \texttt{dirichletchar} (in the PARI manual) or \texttt{??character}.

Return the conductor of \(chi\), as the \texttt{t_INT} \texttt{bid.mod} if \(chi\) is primitive, and as a pair \([N, \text{faN}]\) (with \texttt{faN} the factorization of \(N\)) otherwise.

If \(chi0\) is present, set it to the Conrey logarithm of the attached primitive character.

? G = znstar(126000, 1);
? znconreyconductor(G,11) \ primitive
%2 = 126000
? znconreyconductor(G,1) \ trivial character, not primitive!
%3 = [1, matrix(0,2)]
? N0 = znconreyconductor(G,1009, &chi0) \ character mod 5^3
%4 = [125, Mat([5, 3])]
? chi0
%5 = [14]~
? G0 = znstar(N0, 1); \ format [N,factor(N)] accepted
? znconreyexp(G0, chi0)
%7 = 9
? znconreyconductor(G0, chi0) \ now primitive, as expected
%8 = 125

The group G0 is not computed as part of znconreyconductor because it needs to be computed only once per conductor, not once per character.

**znconreyexp(chi)**

Given a znstar G attached to \((\mathbb{Z}/q\mathbb{Z})^*\) (as per G = znstar(q, 1)), this function returns the Conrey exponential of the character chi: it returns the integer \(m \in (\mathbb{Z}/q\mathbb{Z})^*\) such that znconreylog(G, \(m\)) is chi.

The character chi is given either as a

- \(\textbf{t}_\text{VEC}\): in terms of the generators \(G\).\text{gen};
- \(\textbf{t}_\text{COL}\): a Conrey logarithm.

? G = znstar(126000, 1)
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G,%)
%3 = 1
? G.cyc \ now SNF generators
%4 = [300, 12, 2, 2, 2]
? chi = [100, 1, 0, 1, 0]; \ some random character on SNF generators
? znconreylog(G, chi) \ in terms of Conrey generators
%6 = [0, 3, 3, 0, 2]~
? znconreyexp(G, %) \ apply to a Conrey log
%7 = 18251
? znconreyexp(G, chi) \ ... or a char on SNF generators
%8 = 18251
? znconreychar(G,%)
%9 = [100, 1, 0, 1, 0]

**znconreylog(m)**

Given a znstar attached to \((\mathbb{Z}/q\mathbb{Z})^*\) (as per G = znstar(q, 1)), this function returns the Conrey logarithm of \(m \in (\mathbb{Z}/q\mathbb{Z})^*\).

Let \(q = \prod_p p^{e_p}\) be the factorization of q into distinct primes, where we assume \(e_2 = 0\) or \(e_2 > 2\). (If \(e_2 = 1\), we can ignore 2 from the factorization, as if we replaced \(q\) by \(q/2\), since \((\mathbb{Z}/q\mathbb{Z})^* (\mathbb{Z}/(q/2)\mathbb{Z})^*\).

For all odd \(p\) with \(e_p > 0\), let \(g_p\) be the element in \((\mathbb{Z}/q\mathbb{Z})^*\) which is

- congruent to 1 mod \(q/p^{e_p}\),
- congruent mod \(p^{e_p}\) to the smallest positive integer that generates \((\mathbb{Z}/p^2\mathbb{Z})^*\).

For \(p = 2\), we let \(g_4\) (if \(2^{e_2} > 4\)) and \(g_8\) (if furthermore \(2^{e_2} > 8\)) be the elements in \((\mathbb{Z}/q\mathbb{Z})^*\) which are

- congruent to 1 mod \(q/2^{e_2}\),
- \(g_4 = -1 \mod 2^{e_2}\),
- \(g_8 = 5 \mod 2^{e_2}\).

Then the \(g_p\) (and the extra \(g_4\) and \(g_8\) if \(2^{e_2} > 2\)) are independent generators of \((\mathbb{Z}/q\mathbb{Z})^*\). i.e. every \(m \in (\mathbb{Z}/q\mathbb{Z})^*\) can be written uniquely as \(\prod_p g_p^{m_p}\), where \(m_p\) is defined modulo the order \(o_p\) of \(g_p\) and \(p \in S_q\), the set of prime divisors of \(q\) together with 4 if \(4\|q\) and 8 if \(8\|q\). Note that the \(g_p\) are in general not SNF generators as produced.
by \texttt{znstar} whenever $\omega(q) \geq 2$, although their number is the same. They however allow to handle the finite abelian group $(\mathbb{Z}/q\mathbb{Z})^\ast$ in a fast and elegant way. (Which unfortunately does not generalize to ray class groups or Hecke characters.)

The Conrey logarithm of $m$ is the vector $(m_p)_{p \in S_q}$. The inverse function \texttt{znconreyexp} recovers the Conrey label $m$ from a character.

\begin{verbatim}
? G = znstar(126000, 1);
? znconreylog(G,1)
%2 = [0, 0, 0, 0, 0]~
? znconreyexp(G, %)
%3 = 1
? znconreylog(G,2) \ \%2 is not coprime to modulus !!!
*** at top-level: znconreylog(G,2)
*** ^--------------
*** znconreylog: elements not coprime in Zideallog:
2 126000
*** Break loop: type 'break' to go back to GP prompt
break>
? znconreylog(G,11) \ \%2 is not coprime to modulus !!!
%4 = [0, 3, 1, 76, 4]~
? log11 = ideallog(,11,G) \ \%2 is not coprime to modulus !!!
%5 = [178, 3, -75, 1, 0]~

For convenience, we allow to input the ordinary discrete log of $m$, \texttt{ideallog()}, which allows to convert discrete logs from \texttt{bid.gen} generators to Conrey generators.

\begin{verbatim}
? znconreylog(G, log11)
%7 = [0, 3, 1, 76, 4]~
\end{verbatim}

We also allow a character (\texttt{t_VEC}) on \texttt{bid.gen} and return its representation on the Conrey generators.

\begin{verbatim}
? G.cyc
%8 = [300, 12, 2, 2, 2]
? chi = [10,1,0,1,1];
? znconreylog(G, chi)
%10 = [1, 3, 3, 10, 2]~
? n = znconreyexp(G, chi)
%11 = 84149
? znconreychar(G, n)
%12 = [10, 1, 0, 1, 1]
\end{verbatim}

\texttt{zncookiesmith}(N, X, B)

Coppersmith’s algorithm. $N$ being an integer and $P \in \mathbb{Z}[t]$, finds in polynomial time in $\log(N)$ and $d = \deg(P)$ all integers $x$ with $||x|| \leq X$ such that

$$\gcd(N, P(x)) \geq B.$$ 

This is a famous application of the LLL algorithm meant to help in the factorization of $N$. Notice that $P$ may be reduced modulo $N\mathbb{Z}[t]$ without affecting the situation. The parameter $X$ must not be too large: assume for now that the leading coefficient of $P$ is coprime to $N$, then we must have

$$d \log X \log N < \log^2 B,$$
i.e., $X < N^{1/d}$ when $B = N$. Let now $P_0$ be the gcd of the leading coefficient of $P$ and $N$. In applications to factorization, we should have $P_0 = 1$; otherwise, either $P_0 = N$ and we can reduce the degree of $P$, or $P_0$ is a non trivial factor of $N$. For completeness, we nevertheless document the exact conditions that $X$ must satisfy in this case: let $p := \log_N P_0, b := \log_N B, x := \log_N X$, then

- either $p \geq d/(2d - 1)$ is large and we must have $xd < 2b - 1$;
- or $p < d/(2d - 1)$ and we must have both $p < b < 1 - p + p/d$ and $x(d + p(1 - 2d)) < (b - p)^2$. Note that this reduces to $xd < b^2$ when $p = 0$, i.e., the condition described above.

Some $x$ larger than $X$ may be returned if you are very lucky. The routine runs in polynomial time in $\log N$ and $d$ but the smaller $B$, or the larger $X$, the slower. The strength of Coppersmith method is the ability to find roots modulo a general composite $N$: if $N$ is a prime or a prime power, `polrootsmod` or `polrootspadic` will be much faster.

We shall now present two simple applications. The first one is finding nontrivial factors of $N$, given some partial information on the factors; in that case $B$ must obviously be smaller than the largest nontrivial divisor of $N$.

``` pari
setrand(1); \ to make the example reproducible
[a,b] = [10^30, 10^31]; D = 20;
p = randomprime([a,b]);
q = randomprime([a,b]); N = p*q;
\ assume we know 0) p | N; 1) p in [a,b]; 2) the last D digits of p
p0 = p \% 10^D;

? L = zncoppersmith(10^D*x + p0, N, b \ 10^D, a)
time = 1ms.
%6 = [738281386540]
? gcd(L[1] * 10^D + p0, N) == p
%7 = 1
```

and we recovered $p$, faster than by trying all possibilities $x < 10^{11}$.

The second application is an attack on RSA with low exponent, when the message $x$ is short and the padding $P$ is known to the attacker. We use the same RSA modulus $N$ as in the first example:

``` pari
setrand(1);
P = random(N); \ known padding
e = 3; \ small public encryption exponent
X = floor(N^0.3); \ N^(1/e - epsilon)
x0 = random(X); \ unknown short message
C = lift((Mod(x0,N) + P)^e); \ known ciphertext, with padding P
znccoppersmith((P + x)^3 - C, N, X)
\ result in 244ms.
%14 = [2679982004001230401]

? %[1] == x0
%15 = 1
```

We guessed an integer of the order of $10^{18}$, almost instantly.

`znlog(g, o)`

This function allows two distinct modes of operation depending on $g$:

- if $g$ is the output of `znstar` (with initialization), we compute the discrete logarithm of $x$ with respect to the generators contained in the structure. See `ideallog` for details.
• else \( g \) is an explicit element in \((\mathbb{Z}/N\mathbb{Z})^*\), we compute the discrete logarithm of \( x \) in \((\mathbb{Z}/N\mathbb{Z})^*\) in base \( g \). The rest of this entry describes the latter possibility.

The result is \([]\) when \( x \) is not a power of \( g \), though the function may also enter an infinite loop in this case.

If present, \( o \) represents the multiplicative order of \( g \), see DLfun (in the PARI manual); the preferred format for this parameter is \([\text{ord}, \text{factor}({\text{ord}})]\), where \( \text{ord} \) is the order of \( g \). This provides a definite speedup when the discrete log problem is simple:

\[
\begin{align*}
? p = \text{nextprime}(10^4); g = \text{znprimroot}(p); o = [p-1, \text{factor}(p-1)]; \\
? \text{for}(i=1, 10^4, \text{znlog}(i, g, o)) \\
\text{time} = 163 \text{ ms.} \\
? \text{for}(i=1, 10^4, \text{znlog}(i, g)) \\
\text{time} = 200 \text{ ms.} \quad \text{\textbackslash{}text{a little slower}}
\end{align*}
\]

The result is undefined if \( g \) is not invertible mod \( N \) or if the supplied order is incorrect.

This function uses

• a combination of generic discrete log algorithms (see below).

• in \((\mathbb{Z}/N\mathbb{Z})^*\) when \( N \) is prime: a linear sieve index calculus method, suitable for \( N < 10^{50} \), say, is used for large prime divisors of the order.

The generic discrete log algorithms are:

• Pohlig-Hellman algorithm, to reduce to groups of prime order \( q \), where \( q \mid p - 1 \) and \( p \) is an odd prime divisor of \( N \),

• Shanks baby-step/giant-step (\( q < 2^{32} \) is small),

• Pollard rho method (\( q > 2^{32} \)).

The latter two algorithms require \( O(\sqrt{q}) \) operations in the group on average, hence will not be able to treat cases where \( q > 10^{10} \), say. In addition, Pollard rho is not able to handle the case where there are no solutions: it will enter an infinite loop.

\[
\begin{align*}
? g = \text{znprimroot}(101) \\
%1 = \text{Mod}(2, 101) \\
? \text{znlog}(5, g) \\
%2 = 24 \\
? g^{24} \\
%3 = \text{Mod}(5, 101)
\end{align*}
\]

\[
\begin{align*}
? G = \text{znprimroot}(2 * 101^{10}) \\
%4 = \text{Mod}(1104621212541120451003, 220924425082240902002) \\
? \text{znlog}(5, G) \\
%5 = 76210072736547066624 \\
? G^{%5} \% 5 = 5 \\
%6 = 1 \\
? N = 2^4 \cdot 3^2 \cdot 5^3 \cdot 7^4 \cdot 11; g = \text{Mod}(13, N); \text{znlog}(g^{110}, g) \\
%7 = 110 \\
? \text{znlog}(6, \text{Mod}(2,3)) \quad \text{\textbackslash{}text{no solution}} \\
%8 = []
\end{align*}
\]

For convenience, \( g \) is also allowed to be a \( p \)-adic number:

\[
\begin{align*}
? g = 3 + O(5 \cdot 10); \text{znlog}(2, g) \\
%1 = 1015243
\end{align*}
\]
znorder(o)

\( x \) must be an integer mod \( n \), and the result is the order of \( x \) in the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\). Returns an error if \( x \) is not invertible. The parameter \( o \), if present, represents a nonzero multiple of the order of \( x \). The preferred format for this parameter is \([\text{ord, factor(ord)}]\), where \text{ord} = \text{eulerphi}(n)\) is the cardinality of the group.

znprimroot()

Returns a primitive root (generator) of \((\mathbb{Z}/n\mathbb{Z})^*\), whenever this latter group is cyclic \((n = 4 \text{ or } n = 2p^k \text{ or } n = p^k, \text{ where } p \text{ is an odd prime and } k \geq 0)\). If the group is not cyclic, the result is undefined. If \( n \) is a prime power, then the smallest positive primitive root is returned. This may not be true for \( n = 2p^k, p \text{ odd} \).

Note that this function requires factoring \( p - 1 \) for \( p \) as above, in order to determine the exact order of elements in \((\mathbb{Z}/n\mathbb{Z})^*\): this is likely to be costly if \( p \) is large.

znstar(flag)

Gives the structure of the multiplicative group \((\mathbb{Z}/n\mathbb{Z})^*\). The output \( G \) depends on the value of \( flag \):

- \( flag = 0 \) (default), an abelian group structure \([h, d, g]\), where \( h = \phi(n) \) is the order \((G \text{.no})\), \( d \) \((G \text{.cyc})\) is a \( k \)-component row-vector \( d \) of integers \( d_i \) such that \( d_i > 1, d_i|d_{i-1} \) for \( i > 2 \) and

\( \mathbb{Z}^* \)

and : math : ‘\( g \') (: \text{literal} : ‘G.gen') : \text{isa} : \text{math} : ‘k' – \text{component row vector giving generators of the image of the cyclic group}

- \( flag = 1 \) the result is a bid structure; this allows computing discrete logarithms using znlog (also in the noncyclic case!).

For user convenience, we define \( \text{znstar}(0) \) as \([2, [2], [-1]]\), corresponding to \( \mathbb{Z}^* \), but \( flag = 1 \) is not implemented in this trivial case.

cypari2.gen.objtogen(s)

Convert any SageMath/Python object to a PARI Gen.

For SageMath types, this uses the \_\_\_pari\_\_\() method on the object. Basic Python types like \text{int} are converted directly. For other types, the string representation is used.

Examples:

```python
>>> from cypari2 import Pari
>>> pari = Pari()
```
>>> pari(0)
0
>>> pari([2, 3, 5])
[2, 3, 5]

>>> a = pari(1)
>>> a, a.type()
(1, 't_INT')

>>> from fractions import Fraction
>>> a = pari(Fraction('1/2'))
>>> a, a.type()
(1/2, 't_FRAC')

Conversion from reals uses the real's own precision:

>>> a = pari(1.2); a, a.type(), a.bitprecision()
(1.20000000000000, 't_REAL', 64)

Conversion from strings uses the current PARI real precision. By default, this is 64 bits:

>>> a = pari('1.2'); a, a.type(), a.bitprecision()
(1.20000000000000, 't_REAL', 64)

Unicode and bytes work fine:

>>> pari(b"zeta(3)"
1.20205690315959
>>> pari(u"zeta(3)"
1.20205690315959

But we can change this precision:

>>> pari.set_real_precision(35) # precision in decimal digits
15
>>> a = pari('Pi'); a, a.type(), a.bitprecision()
(3.1415926535897932384626433832795029, 't_REAL', 128)
>>> a = pari('1.2'); a, a.type(), a.bitprecision()
(1.2000000000000000000000000000000000, 't_REAL', 128)

Set the precision to 15 digits for the remaining tests:

>>> pari.set_real_precision(15)
35

Conversion from basic Python types:

>>> pari(int(-5))
-5
>>> pari(2**150)
14274276927059588105828596949495136382746624
>>> import math
>>> pari(math.pi)
3.14159265358979
>>> one = pari(complex(1,0)); one, one.type()
(1.00000000000000, 't_COMPLEX')
>>> pari(complex(0, 1))
1.00000000000000*I
>>> pari(complex(0.3, 1.7))
0.300000000000000 + 1.70000000000000*I

>>> pari(False)
0
>>> pari(True)
1

The following looks strange, but it is what PARI does:

>>> pari(['"print(x)"'])
x
[0]
>>> pari(['"[print(x)]"'])
x
[0]

Tests:

>>> pari(None)
Traceback (most recent call last):
  ...
  ...ValueError: Cannot convert None to pari
MEMORY MANAGEMENT FOR GENS ON THE PARI STACK OR THE HEAP

class cypari2.stack.DetachGen

Destroy a Gen but keep the GEN which is inside it.

The typical usage is as follows:

1. Creates the DetachGen object from a Gen.
2. Removes all other references to that Gen.
3. Call the detach method to retrieve the GEN (or a copy of it if the original was not on the stack).
CONVERT PYTHON FUNCTIONS TO PARI CLOSURES

AUTHORS:


Examples:

```python
>>> def the_answer():
... return 42
>>> import cypari2
>>> pari = cypari2.Pari()
>>> f = pari(the_answer)
>>> f()
42
```

```python
>>> cube = pari(lambda i: i**3)
>>> cube.apply(range(10))
[0, 1, 8, 27, 64, 125, 216, 343, 512, 729]
```

cypari2.closure.objtoclosure(f)

Convert a Python function (more generally, any callable) to a PARI t_CLOSURE.

**Note:** With the current implementation, the function can be called with at most 5 arguments.

**Warning:** The function `f` which is called through the closure cannot be interrupted. Therefore, it is advised to use this only for simple functions which do not take a long time.

Examples:

```python
>>> from cypari2.closure import objtoclosure
>>> def pymul(i,j):
... return i*j
>>> mul = objtoclosure(pymul)
>>> mul(6,9)
54
>>> mul.type()
't_CLOSURE'
>>> mul.arity()
```

(continues on next page)
2 >>> def printme(x):
    ...     print(x)
>>>
>>> objtoclosure(printme)('matid(2)')
[1, 0; 0, 1]

Construct the Riemann zeta function using a closure:

```python
>>> from cypari2 import Pari; pari = Pari()
>>> def coeffs(n):
 ... return [1 for i in range(n)]
>>> Z = pari.lfuncreate([coeffs, 0, [0], 1, 1, 1, 1])
>>> Z.lfun(2)
1.64493406684823
```

A trivial closure:

```python
>>> f = pari(lambda x: x)
>>> f(10)
10
```

Test various kinds of errors:

```python
>>> mul(4)
Traceback (most recent call last):
 ... TypeError: pymul() ...
>>> mul(None, None)
Traceback (most recent call last):
 ... ValueError: Cannot convert None to pari
>>> mul(*range(100))
Traceback (most recent call last):
 ... PariError: call_python: too many parameters in user-defined function call
>>> mul([1], [2])
Traceback (most recent call last):
 ... PariError: call_python: ...
```
AUTHORS:

• Peter Bruin (September 2013): initial version (Sage ticket #9640)
• Jeroen Demeyer (January 2015): use \texttt{cb\_pari\_err\_handle} (Sage ticket #14894)

\textbf{exception} \texttt{cypari2.handle\_error.PariError}

Error raised by PARI

\textbf{errdata()} 

Return the error data (a \texttt{t\_ERROR gen}) corresponding to this error.

EXAMPLES:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari("Mod(2,6)")**-1
... except PariError as e:
... E = e.errdata()
>>> E
error("impossible inverse in Fp_inv: Mod(2, 6).")
>>> E.component(2)
Mod(2, 6)
```

\textbf{errnum()} 

Return the PARI error number corresponding to this exception.

EXAMPLES:

```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari("1/0")
... except PariError as err:
... print(err.errnum())
31
```

\textbf{errtext()} 

Return the message output by PARI when this error occurred.

EXAMPLES:
```python
>>> import cypari2
>>> pari = cypari2.Pari()
>>> try:
... pari('pi()')
... except PariError as e:
... print(e.errtext())
not a function in function call
```
CHAPTER SIX

CONVERT PARI OBJECTS TO/FROM PYTHON/C NATIVE TYPES

This modules contains the following conversion routines:

- integers, long integers <-> PARI integers
- list of integers -> PARI polynomials
- doubles -> PARI reals
- pairs of doubles -> PARI complex numbers

PARI integers are stored as an array of limbs of type `pari_ulong` (which are 32-bit or 64-bit integers). Depending on the kernel (GMP or native), this array is stored little-endian or big-endian. This is encapsulated in macros like `int_W()`: see section 4.5.1 of the PARI library manual.

Python integers of type `int` are just C longs. Python integers of type `long` are stored as a little-endian array of type `digit` with 15 or 30 bits used per digit. The internal format of a `long` is not documented, but there is some information in `longintrepr.h`.

Because of this difference in bit lengths, converting integers involves some bit shuffling.

cypari2.convert.gen_to_integer(x)

Convert a PARI gen to a Python int or long.

**INPUT:**

- x – a PARI t_INT, t_FRAC, t_REAL, a purely real t_COMPLEX, a t_INTMOD or t_PADIC (which are lifted).

**Examples:**

```python
>>> from cypari2.convert import gen_to_integer
>>> from cypari2 import Pari
>>> pari = Pari()
>>> a = gen_to_integer(pari("12345")); a; type(a)
12345
'int'
>>> gen_to_integer(pari("10^30")) == 10**30
True
>>> gen_to_integer(pari("19/5"))
3
>>> gen_to_integer(pari("1 + 0.0*I"))
1
>>> gen_to_integer(pari("3/2 + 0.0*I"))
1
>>> gen_to_integer(pari("Mod(-1, 11)"))
10
>>> gen_to_integer(pari("5 + O(5^10)"))
```
5
>>> gen_to_integer(pari("Pol(42)"))
42
>>> gen_to_integer(pari("u"))
Traceback (most recent call last):
...  
TypeError: unable to convert PARI object u of type t_POL to an integer

Tests:

>>> gen_to_integer(pari("1.0 - 2^64")) == -18446744073709551615
True
>>> gen_to_integer(pari("1 - 2^64")) == -18446744073709551615
True

>>> import sys
>>> if sys.version_info.major == 3:
...
long = int
>>> for i in range(10000):
...
x = 3**i
...  
...  
if type(N1) is not type(N2):
...
print(N1, type(N1), N2, type(N2))
cypari2.convert.gen_to_python(z)
Convert the PARI element z to a Python object.

OUTPUT:
• a Python integer for integers (type t_INT)
• a Fraction (fractions module) for rationals (type t_FRAC)
• a float for real numbers (type t_REAL)
• a complex for complex numbers (type t_COMPLEX)
• a list for vectors (type t_VEC or t_COL). The function gen_to_python is then recursively applied on the entries.
• a list of Python integers for small vectors (type t_VECSMALL)
• a list of list’s for matrices (type `t_MAT`). The function gen_to_python is then recursively applied on the entries.
• the floating point inf or -inf for infinities (type t_INFINITY)
• a string for strings (type t_STR)
• other PARI types are not supported and the function will raise a NotImplementedError

Examples:

```python
>>> from cypari2 import Pari
>>> from cypari2.convert import gen_to_python
>>> pari = Pari()
```

Converting integers:

```python
>>> z = pari('42'); z
42
>>> a = gen_to_python(z); a
42
>>> type(a)
<... 'int'>
```

```python
>>> gen_to_python(pari('3^50')) == 3**50
True
>>> type(gen_to_python(pari('3^50'))) == type(3**50)
True
```

Converting rational numbers:

```python
>>> z = pari('2/3'); z
2/3
>>> a = gen_to_python(z); a
Fraction(2, 3)
>>> type(a)
<class 'fractions.Fraction'>
```

Converting real numbers (and infinities):

```python
>>> z = pari('1.2'); z
1.2
>>> a = gen_to_python(z); a
1.2
>>> type(a)
<... 'float'>
```
Converting complex numbers:

```
>>> z = pari('1 + I'); z
1 + I
>>> a = gen_to_python(z); a
(1+1j)
>>> type(a)
<... 'complex'>
```

Converting vectors:

```
>>> z1 = pari('Vecsmall([1,2,3])'); z1
Vecsmall([1, 2, 3])
>>> z2 = pari('[1, 3.4, [-5, 2], oo]'); z2
[1, 3.4000000000000000000, [-5, 2], +oo]
>>> z3 = pari('[1, 5.2]~'); z3
[1, 5.200000000000000000000000000]~
>>> z1.type(), z2.type(), z3.type()
('t_VECSMALL', 't_VEC', 't_COL')
```

```
>>> a1 = gen_to_python(z1); a1
[1, 2, 3]
>>> type(a1)
<... 'list'>
>>> [type(x) for x in a1]
[<... 'int'>, <... 'int'>, <... 'int'>]
```

```
>>> a2 = gen_to_python(z2); a2
[1, 3.4, [-5, 2], inf]
>>> type(a2)
<... 'list'>
>>> [type(x) for x in a2]
[<... 'int'>, <... 'float'>, <... 'int'>, <... 'float'>]
```
>>> a3 = gen_to_python(z3); a3
[1, 5.2]
>>> type(a3)
<... 'list'>
>>> [type(x) for x in a3]
[<... 'int'>, <... 'float'>]

Converting matrices:

>>> z = pari('[[1,2;3,4]]')
>>> gen_to_python(z)
[[1, 2], [3, 4]]

>>> z = pari('[[1, 3], [[2]]; 3, [4, [5, 6]]]
>>> gen_to_python(z)
[[[1, 3], [[2]]], [3, [4, [5, 6]]]]

Converting strings:

>>> z = pari('"Hello"')
>>> a = gen_to_python(z); a
'Hello'
>>> type(a)
<... 'str'>

Some currently unsupported types:

>>> z = pari('x')
>>> z.type()
't_POL'
>>> gen_to_python(z)
Traceback (most recent call last):
... 
NotImplementedError: conversion not implemented for t_POL

>>> z = pari('12 + O(2^13)')
>>> z.type()
't_PADIC'
>>> gen_to_python(z)
Traceback (most recent call last):
... 
NotImplementedError: conversion not implemented for t_PADIC

cypari2.convert.integer_to_gen(x)

Convert a Python int or long to a PARI gen of type t_INT.

Examples:

>>> from cypari2.convert import integer_to_gen
>>> from cypari2 import Pari
>>> pari = Pari()
>>> a = integer_to_gen(int(12345)); a; type(a)
12345
(continues on next page)
>>> integer_to_gen(float(12345))
Traceback (most recent call last):
...
TypeError: integer_to_gen() needs an int or long argument, not float
>>> integer_to_gen(2**100)
1267650600228229401496703205376

Tests:

>>> import sys
>>> if sys.version_info.major == 3:
...    long = int
>>> assert integer_to_gen(long(12345)) == 12345
>>> for i in range(10000):
...    x = 3**i
...    if pari(long(x)) != pari(x) or pari(int(x)) != pari(x):
...        print(x)
CHAPTER
SEVEN

INDICES AND TABLES

• genindex
• modindex
• search
C
- cypari2.closure, 769
- cypari2.convert, 774
- cypari2.gen, 382
- cypari2.handle_error, 772
- cypari2.pari_instance, 1
- cypari2.stack, 768
A

abs() (cypari2.gen.Gen_base method), 430
abs() (cypari2.pari_instance.Pari_auto method), 19
acos() (cypari2.gen.Gen_base method), 430
acos() (cypari2.pari_instance.Pari_auto method), 19
acosh() (cypari2.gen.Gen_base method), 430
acosh() (cypari2.pari_instance.Pari_auto method), 19
addhelp() (cypari2.pari_instance.Pari_auto method), 20
addprimes() (cypari2.gen.Gen_base method), 430
addprimes() (cypari2.pari_instance.Pari_auto method), 20
agm() (cypari2.gen.Gen_base method), 430
agm() (cypari2.pari_instance.Pari_auto method), 20
airy() (cypari2.gen.Gen_base method), 431
airy() (cypari2.pari_instance.Pari_auto method), 20
algadd() (cypari2.gen.Gen_base method), 431
algadd() (cypari2.pari_instance.Pari_auto method), 21
algalgtobasis() (cypari2.gen.Gen_base method), 431
algalgtobasis() (cypari2.pari_instance.Pari_auto method), 21
algaut() (cypari2.gen.Gen_base method), 431
algaut() (cypari2.pari_instance.Pari_auto method), 21
alg() (cypari2.gen.Gen_base method), 431
alg() (cypari2.pari_instance.Pari_auto method), 20
algchar() (cypari2.gen.Gen_base method), 433
algchar() (cypari2.pari_instance.Pari_auto method), 23
algcharpoly() (cypari2.gen.Gen_base method), 433
algcharpoly() (cypari2.pari_instance.Pari_auto method), 23
algdegree() (cypari2.gen.Gen_base method), 433
algdegree() (cypari2.pari_instance.Pari_auto method), 23
algdep() (cypari2.gen.Gen_base method), 433
algdep() (cypari2.pari_instance.Pari_auto method), 23
algdim() (cypari2.gen.Gen_base method), 434
algdim() (cypari2.pari_instance.Pari_auto method), 24
algdisc() (cypari2.gen.Gen_base method), 434
algdisc() (cypari2.pari_instance.Pari_auto method), 24
alggroup() (cypari2.gen.Gen_base method), 435
alggroup() (cypari2.pari_instance.Pari_auto method), 25
alggroupcenter() (cypari2.gen.Gen_base method), 435
alggroupcenter() (cypari2.pari_instance.Pari_auto method), 25
algindex() (cypari2.gen.Gen_base method), 436
algindex() (cypari2.pari_instance.Pari_auto method), 26
alginit() (cypari2.gen.Gen_base method), 436
alginit() (cypari2.pari_instance.Pari_auto method), 26
alginv() (cypari2.gen.Gen_base method), 439
alginv() (cypari2.pari_instance.Pari_auto method), 29
alginvbasis() (cypari2.gen.Gen_base method), 439
algisassociative() (cypari2.gen.Gen_base method), 439
algisassociative() (cypari2.pari_instance.Pari_auto method), 29
algiscommutative() (cypari2.gen.Gen_base method), 439
algiscommutative() (cypari2.pari_instance.Pari_auto method), 29
algisdivision() (cypari2.gen.Gen_base method), 440
algisdivision() (cypari2.pari_instance.Pari_auto method), 30
algisdivl() (cypari2.gen.Gen_base method), 440
algisdivl() (cypari2.pari_instance.Pari_auto method), 30
algisinv() (cypari2.gen.Gen_base method), 440
algisinv() (cypari2.pari_instance.Pari_auto method), 30
algisramified() (cypari2.gen.Gen_base method), 440
algisramified() (cypari2.pari_instance.Pari_auto method), 30
algissemisimple() (cypari2.gen.Gen_base method), 441
algissemisimple() (cypari2.pari_instance.Pari_auto method), 31
algissimple() (cypari2.gen.Gen_base method), 441
algissimple() (cypari2.pari_instance.Pari_auto method), 31
algissplit() (cypari2.gen.Gen_base method), 441
algissplit() (cypari2.pari_instance.Pari_auto method), 31
alglatadd() (cypari2.gen.Gen_base method), 442
alglatadd() (cypari2.pari_instance.Pari_auto method), 32
alglatcontains() (cypari2.gen.Gen_base method), 442
alglatcontains() (cypari2.pari_instance.Pari_auto method), 32
alglatelement() (cypari2.gen.Gen_base method), 442
alglatelement() (cypari2.pari_instance.Pari_auto method), 32
alglathnf() (cypari2.gen.Gen_base method), 443
alglathnf() (cypari2.pari_instance.Pari_auto method), 32
alglatindex() (cypari2.gen.Gen_base method), 443
alglatindex() (cypari2.pari_instance.Pari_auto method), 33
alglatinter() (cypari2.gen.Gen_base method), 443
alglatinter() (cypari2.pari_instance.Pari_auto method), 33
alglatelement() (cypari2.gen.Gen_base method), 443
alglatelement() (cypari2.pari_instance.Pari_auto method), 32
alglatlefttransporter() (cypari2.gen.Gen_base method), 443
alglatlefttransporter() (cypari2.pari_instance.Pari_auto method), 33
alglatmul() (cypari2.gen.Gen_base method), 444
alglatmul() (cypari2.pari_instance.Pari_auto method), 33
alglatrighttransporter() (cypari2.gen.Gen_base method), 444
alglatrighttransporter() (cypari2.pari_instance.Pari_auto method), 34
algluset() (cypari2.gen.Gen_base method), 444
algluset() (cypari2.pari_instance.Pari_auto method), 34
algmakeintegral() (cypari2.gen.Gen_base method), 445
algmakeintegral() (cypari2.pari_instance.Pari_auto method), 34
algmult() (cypari2.gen.Gen_base method), 445
algmult() (cypari2.pari_instance.Pari_auto method), 35
algmultable() (cypari2.gen.Gen_base method), 445
algmultable() (cypari2.pari_instance.Pari_auto method), 35
algneg() (cypari2.gen.Gen_base method), 446
algneg() (cypari2.pari_instance.Pari_auto method), 36
algnorm() (cypari2.gen.Gen_base method), 446
algnorm() (cypari2.pari_instance.Pari_auto method), 36
algpoleval() (cypari2.gen.Gen_base method), 446
algpoleval() (cypari2.pari_instance.Pari_auto method), 36
algpow() (cypari2.gen.Gen_base method), 447
algpow() (cypari2.pari_instance.Pari_auto method), 36
algrambeds() (cypari2.gen.Gen_base method), 447
algrambeds() (cypari2.pari_instance.Pari_auto method), 37
alquotient() (cypari2.gen.Gen_base method), 447
alquotient() (cypari2.pari_instance.Pari_auto method), 37
algradical() (cypari2.gen.Gen_base method), 447
algradical() (cypari2.pari_instance.Pari_auto method), 37
algramifiedplaces() (cypari2.gen.Gen_base method), 448
algramifiedplaces() (cypari2.pari_instance.Pari_auto method), 38
algrandom() (cypari2.gen.Gen_base method), 448
algrandom() (cypari2.pari_instance.Pari_auto method), 38
algremlastable() (cypari2.gen.Gen_base method), 448
algremlastable() (cypari2.pari_instance.Pari_auto method), 38
algremlastable() (cypari2.pari_instance.Pari_auto method), 38
bezout() (cypari2.pari_instance.Pari_auto method), 51
bezoutres() (cypari2.gen.Gen_base method), 460
bezoutres() (cypari2.pari_instance.Pari_auto method), 51
bid_get_cyc() (cypari2.gen.Gen_method), 388
bid_get_gen() (cypari2.gen.Gen_method), 388
bigomega() (cypari2.gen.Gen_base method), 460
bigomega() (cypari2.pari_instance.Pari_auto method), 51
binary() (cypari2.gen.Gen_base method), 460
binary() (cypari2.pari_instance.Pari_auto method), 51
binomial() (cypari2.gen.Gen_base method), 461
binomial() (cypari2.pari_instance.Pari_auto method), 51
bitand() (cypari2.gen.Gen_base method), 461
bitand() (cypari2.pari_instance.Pari_auto method), 52
bitneg() (cypari2.gen.Gen_base method), 461
bitneg() (cypari2.pari_instance.Pari_auto method), 52
bitnegimply() (cypari2.gen.Gen_base method), 461
bitnegimply() (cypari2.pari_instance.Pari_auto method), 52
bitor() (cypari2.gen.Gen_base method), 462
bitor() (cypari2.pari_instance.Pari_auto method), 52
bitprecision() (cypari2.gen.Gen_base method), 462
bitprecision() (cypari2.pari_instance.Pari_auto method), 52
bittest() (cypari2.gen.Gen_method), 389
bittest() (cypari2.gen.Gen_base method), 462
bittest() (cypari2.pari_instance.Pari_auto method), 53
bitxor() (cypari2.gen.Gen_base method), 462
bitxor() (cypari2.pari_instance.Pari_auto method), 53
bnf_get_cyc() (cypari2.gen.Gen_method), 389
bnf_get_fu() (cypari2.gen.Gen_method), 389
bnf_get_gen() (cypari2.gen.Gen_method), 390
bnf_get_no() (cypari2.gen.Gen_method), 390
bnf_get_reg() (cypari2.gen.Gen_method), 390
bnf_get_tu() (cypari2.gen.Gen_method), 391
bnfcertify() (cypari2.gen.Gen_base method), 463
bnfcertify() (cypari2.pari_instance.Pari_auto method), 53
bnfdecodemodule() (cypari2.gen.Gen_base method), 463
bnfdecodemodule() (cypari2.pari_instance.Pari_auto method), 54
bnfinit() (cypari2.gen.Gen_base method), 463
bnfinit() (cypari2.pari_instance.Pari_auto method), 54
bnfisintnorm() (cypari2.gen.Gen_base method), 465
bnfisintnorm() (cypari2.pari_instance.Pari_auto method), 55
bnfisnorm() (cypari2.gen.Gen_base method), 465
bnfisnorm() (cypari2.pari_instance.Pari_auto method), 55
bnfissunit() (cypari2.gen.Gen_base method), 466
bnfissunit() (cypari2.pari_instance.Pari_auto method), 55
bnfisunit() (cypari2.gen.Gen_base method), 466
bnfisunit() (cypari2.pari_instance.Pari_auto method), 56
bnflog() (cypari2.gen.Gen_base method), 467
bnflog() (cypari2.pari_instance.Pari_auto method), 58
bnflogdegree() (cypari2.gen.Gen_base method), 468
bnflogdegree() (cypari2.pari_instance.Pari_auto method), 58
bnflgef() (cypari2.gen.Gen_base method), 468
bnflgef() (cypari2.pari_instance.Pari_auto method), 58
bnfnarrow() (cypari2.gen.Gen_base method), 468
bnfnarrow() (cypari2.pari_instance.Pari_auto method), 59
bnfsignunit() (cypari2.gen.Gen_base method), 468
bnfsignunit() (cypari2.pari_instance.Pari_auto method), 59
bnfsunit() (cypari2.gen.Gen_base method), 469
bnfsunit() (cypari2.pari_instance.Pari_auto method), 59
bnfunit() (cypari2.gen.Gen_method), 391
bnfunits() (cypari2.gen.Gen_base method), 469
bnfunits() (cypari2.pari_instance.Pari_auto method), 59
bnrchar() (cypari2.gen.Gen_base method), 471
bnrchar() (cypari2.pari_instance.Pari_auto method), 61
bnrclassfield() (cypari2.gen.Gen_base method), 471
bnrclassfield() (cypari2.pari_instance.Pari_auto method), 61
bnrclassno() (cypari2.gen.Gen_base method), 472
bnrclassno() (cypari2.pari_instance.Pari_auto method), 62
bnrclassnolist() (cypari2.gen.Gen_base method), 472
bnrclassnolist() (cypari2.pari_instance.Pari_auto method), 62
bnrconductor() (cypari2.gen.Gen_base method), 472
bnrconductor() (cypari2.pari_instance.Pari_auto method), 63
bnrconductorofchar() (cypari2.gen.Gen_base method), 473
bnrconductorofchar() (cypari2.pari_instance.Pari_auto method), 63
bnrdisc() (cypari2.gen.Gen_base method), 473
bnrdisc() (cypari2.pari_instance.Pari_auto method), 63
Index

CyPari2 Documentation, Release 2.1.3

63
bnrdiscclist() (cypari2.gen.Gen_base method), 473
bnrdiscclist() (cypari2.pari_instance.Pari_auto method), 64
bnrgaloisapply() (cypari2.gen.Gen_base method), 474
bnrgaloisapply() (cypari2.pari_instance.Pari_auto method), 64
bnrgaloismatrix() (cypari2.gen.Gen_base method), 474
bnrgaloismatrix() (cypari2.pari_instance.Pari_auto method), 64
bnrinit() (cypari2.gen.Gen_base method), 475
bnrinit() (cypari2.pari_instance.Pari_auto method), 65
bnrisconductor() (cypari2.gen.Gen_base method), 475
bnrisconductor() (cypari2.pari_instance.Pari_auto method), 66
bnrisprincipal() (cypari2.gen.Gen_base method), 476
bnrisprincipal() (cypari2.pari_instance.Pari_auto method), 66
bnrl1() (cypari2.gen.Gen_base method), 470
bnrl1() (cypari2.pari_instance.Pari_auto method), 61
bnrmap() (cypari2.gen.Gen_base method), 476
bnrmap() (cypari2.pari_instance.Pari_auto method), 67
bnrrootnumber() (cypari2.gen.Gen_base method), 477
bnrrootnumber() (cypari2.pari_instance.Pari_auto method), 67
bnrstark() (cypari2.gen.Gen_base method), 477
bnrstark() (cypari2.pari_instance.Pari_auto method), 68

C
call() (cypari2.gen.Gen_base method), 478
call() (cypari2.pari_instance.Pari_auto method), 68
Catalan() (cypari2.pari_instance.Pari_auto method), 13
ceiling() (cypari2.gen.Gen_base method), 479
ceiling() (cypari2.pari_instance.Pari_auto method), 69
centerlift() (cypari2.gen.Gen_base method), 479
centerlift() (cypari2.pari_instance.Pari_auto method), 69
change_variable_name() (cypari2.gen.Gen_base method), 391
characteristic() (cypari2.gen.Gen_base method), 479
characteristic() (cypari2.pari_instance.Pari_auto method), 69
charconj() (cypari2.gen.Gen_base method), 479
charconj() (cypari2.pari_instance.Pari_auto method), 69
chardiv() (cypari2.gen.Gen_base method), 480
chardiv() (cypari2.pari_instance.Pari_auto method), 70
chareval() (cypari2.gen.Gen_base method), 480
chareval() (cypari2.pari_instance.Pari_auto method), 71
chargalois() (cypari2.gen.Gen_base method), 481
chargalois() (cypari2.pari_instance.Pari_auto method), 71
charker() (cypari2.gen.Gen_base method), 481
charker() (cypari2.pari_instance.Pari_auto method), 72
charmul() (cypari2.gen.Gen_base method), 482
charmul() (cypari2.pari_instance.Pari_auto method), 72
charorder() (cypari2.gen.Gen_base method), 482
charorder() (cypari2.pari_instance.Pari_auto method), 73
charpoly() (cypari2.gen.Gen_base method), 483
charpoly() (cypari2.pari_instance.Pari_auto method), 73
charpow() (cypari2.gen.Gen_base method), 484
charpow() (cypari2.pari_instance.Pari_auto method), 74
chinese() (cypari2.gen.Gen_base method), 484
chinese() (cypari2.pari_instance.Pari_auto method), 75
cmp() (cypari2.gen.Gen_base method), 392
cmp() (cypari2.pari_instance.Pari_auto method), 485
cmp() (cypari2.pari_instance.Pari_auto method), 75
Col() (cypari2.gen.Gen_base method), 424
Col() (cypari2.pari_instance.Pari_auto method), 13
Colrev() (cypari2.gen.Gen_base method), 425
Colrev() (cypari2.pari_instance.Pari_auto method), 14
complex() (cypari2.pari_instance.Pari_auto method), 7
component() (cypari2.gen.Gen_base method), 485
component() (cypari2.pari_instance.Pari_auto method), 76
concat() (cypari2.gen.Gen_base method), 486
concat() (cypari2.pari_instance.Pari_auto method), 76
conj() (cypari2.gen.Gen_base method), 487
conj() (cypari2.pari_instance.Pari_auto method), 78
convec() (cypari2.gen.Gen_base method), 487
convec() (cypari2.pari_instance.Pari_auto method), 78
content() (cypari2.gen.Gen_base method), 487
content() (cypari2.pari_instance.Pari_auto method), 78
contfrac() (cypari2.gen.Gen_base method), 488
contfrac() (cypari2.pari_instance.Pari_auto method), 79
contfrac() (cypari2.pari_instance.Pari_auto method), 489

789
contfracpnqn() (cytpari2.pari_instance.Pari_auto method), 80
dilog() (cytpari2.pari_instance.Pari_auto method), 84
dirdiv() (cytpari2.gen.Gen_base method), 493
dirzeta() (cytpari2.pari_instance.Pari_auto method), 84

cos() (cytpari2.pari_instance.Pari_auto method), 90
cos() (cytpari2.pari_instance.Pari_auto method), 81
cosh() (cytpari2.pari_instance.Pari_auto method), 90
cosh() (cytpari2.pari_instance.Pari_auto method), 90
cotan() (cytpari2.pari_instance.Pari_auto method), 90
cotanh() (cytpari2.pari_instance.Pari_auto method), 90
cotanh() (cytpari2.pari_instance.Pari_auto method), 90
cotanh() (cytpari2.pari_instance.Pari_auto method), 90

cytpari2.close
module, 769
cytpari2.conv
module, 774
cytpari2.gen
module, 382
cytpari2.handle_error
module, 772
cytpari2.pari_instance
module, 1
cytpari2.stack
module, 768

D
debug() (cytpari2.gen.Gen method), 393
debugstack() (cytpari2.pari_instance.Pari method), 7
default() (cytpari2.pari_instance.Pari_auto method), 81
default_bitprec() (in module cytpari2.pari_instance), 80
denominator() (cytpari2.pari_instance.Pari_auto method), 90
denominator() (cytpari2.pari_instance.Pari_auto method), 81
deriv() (cytpari2.pari_instance.Pari_auto method), 81
deriv() (cytpari2.pari_instance.Pari_auto method), 91
deriv() (cytpari2.pari_instance.Pari_auto method), 92
deriv() (cytpari2.pari_instance.Pari_auto method), 92
deriv() (cytpari2.pari_instance.Pari_auto method), 92
DetachGen (class in cytpari2.stack), 769
diffop() (cytpari2.pari_instance.Pari_auto method), 92
diffop() (cytpari2.pari_instance.Pari_auto method), 82
digits() (cytpari2.pari_instance.Pari_auto method), 93
digits() (cytpari2.pari_instance.Pari_auto method), 93
digits() (cytpari2.pari_instance.Pari_auto method), 83
dilog() (cytpari2.pari_instance.Pari_auto method), 83
dilog() (cytpari2.pari_instance.Pari_auto method), 93
dilog() (cytpari2.pari_instance.Pari_auto method), 84
dirzeta() (cytpari2.pari_instance.Pari_auto method), 84
dirzeta() (cytpari2.pari_instance.Pari_auto method), 84
dirzeta() (cytpari2.pari_instance.Pari_auto method), 84
elllocalred() (cy pari2.g en.Gen_base method), 511
elllocalred() (cy pari2.p ar i_instance.Pari_a ut o method), 102
elllog() (cy pari2.g en.Gen_base method), 511
elllog() (cy pari2.p ar i_instance.Pari_auto method), 102
ellseries() (cy pari2.g en.Gen_base method), 511
ellseries() (cy pari2.p ar i_instance.Pari_auto method), 102
ellminimaldisc() (cy pari2.g en.Gen_base method), 512
ellminimaldisc() (cy pari2.p ar i_instance.Pari_auto method), 102
ellminimalmodel() (cy pari2.g en.Gen_base method), 395
ellminimalmodel() (cy pari2.p ar i_instance.Pari_auto method), 103
ellminimaltwist() (cy pari2.g en.Gen_base method), 512
ellminimaltwist() (cy pari2.p ar i_instance.Pari_auto method), 103
ellmoddegree() (cy pari2.g en.Gen_base method), 513
ellmoddegree() (cy pari2.p ar i_instance.Pari_auto method), 104
ellmodulareqn() (cy pari2.p ar i_instance.Pari_auto method), 104
ellmul() (cy pari2.g en.Gen_base method), 513
ellmul() (cy pari2.p ar i_instance.Pari_auto method), 105
ellneg() (cy pari2.g en.Gen_base method), 513
ellneg() (cy pari2.p ar i_instance.Pari_auto method), 105
ellnonsingularmultiple() (cy pari2.g en.Gen_base method), 514
ellnonsingularmultiple() (cy pari2.p ar i_instance.Pari_auto method), 105
ellorder() (cy pari2.g en.Gen_base method), 514
ellorder() (cy pari2.p ar i_instance.Pari_auto method), 105
ellordinate() (cy pari2.g en.Gen_base method), 514
ellordinate() (cy pari2.p ar i_instance.Pari_auto method), 106
ellpadicbsd() (cy pari2.g en.Gen_base method), 516
ellpadicbsd() (cy pari2.p ar i_instance.Pari_auto method), 108
ellpadicfrobenius() (cy pari2.g en.Gen_base method), 517
ellpadicfrobenius() (cy pari2.p ar i_instance.Pari_auto method), 109
ellpadicheight() (cy pari2.g en.Gen_base method), 518
ellpadicheight() (cy pari2.p ar i_instance.Pari_auto method), 109
ellpadicheightmatrix() (cy pari2.g en.Gen_base method), 519
ellpadicheightmatrix() (cy pari2.p ar i_instance.Pari_auto method), 111
ellpadicL() (cy pari2.g en.Gen_base method), 514
ellpadicL() (cy pari2.p ar i_instance.Pari_auto method), 106
ellpadiclambda(mu) () (cy pari2.g en.Gen_base method), 519
ellpadiclambda(mu) () (cy pari2.p ar i_instance.Pari_auto method), 111
ellpadiclog() (cy pari2.g en.Gen_base method), 520
ellpadiclog() (cy pari2.p ar i_instance.Pari_auto method), 112
ellpadicregulator() (cy pari2.g en.Gen_base method), 520
ellpadicregulator() (cy pari2.p ar i_instance.Pari_auto method), 112
ellpadics2() (cy pari2.g en.Gen_base method), 521
ellpadics2() (cy pari2.p ar i_instance.Pari_auto method), 112
ellperiods() (cy pari2.g en.Gen_base method), 521
ellperiods() (cy pari2.p ar i_instance.Pari_auto method), 113
ellpointtoz() (cy pari2.g en.Gen_base method), 522
ellpointtoz() (cy pari2.p ar i_instance.Pari_auto method), 113
ellpow() (cy pari2.g en.Gen_base method), 523
ellpow() (cy pari2.p ar i_instance.Pari_auto method), 114
ellratpoints() (cy pari2.g en.Gen_base method), 523
ellratpoints() (cy pari2.p ar i_instance.Pari_auto method), 114
ellrootno() (cy pari2.g en.Gen_base method), 523
ellrootno() (cy pari2.p ar i_instance.Pari_auto method), 114
ellsea() (cy pari2.g en.Gen_base method), 523
ellsea() (cy pari2.p ar i_instance.Pari_auto method), 115
ellsearch() (cy pari2.g en.Gen_base method), 524
ellsearch() (cy pari2.p ar i_instance.Pari_auto method), 116
ellsigma() (cy pari2.g en.Gen_base method), 525
ellsigma() (cy pari2.p ar i_instance.Pari_auto method), 116
ellsub() (cy pari2.g en.Gen_base method), 525
ellsub() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
elltamagawa() (cy pari2.g en.Gen_base method), 525
elltamagawa() (cy pari2.p ar i_instance.Pari_auto method), 116
Index

CyPari2 Documentation, Release 2.1.3

gen_to_integer() (in module cypari2.convert), 775
gen_to_python() (in module cypari2.convert), 776

genus2red() (cypari2.gen.Gen_base method), 555
genus2red() (cypari2.pari_instance.Pari method), 7
genus2red() (cypari2.pari_instance.Pari_auto method), 151
going() (cypari2.gen.Gen method), 403
going10() (cypari2.gen.Gen method), 403
going_10() (cypari2.gen.Gen method), 404
get_debug_level() (cypari2.pari_instance.Pari method), 8
get_real_precision() (cypari2.pari_instance.Pari method), 8
get_real_precision_bits() (cypari2.pari_instance.Pari method), 8
getabstime() (cypari2.pari_instance.Pari_auto method), 153
getattr() (cypari2.gen.Gen method), 404
getcache() (cypari2.pari_instance.Pari_auto method), 153
getenv() (cypari2.pari_instance.Pari_auto method), 153
getheap() (cypari2.pari_instance.Pari_auto method), 154
getlocalbitprec() (cypari2.pari_instance.Pari_auto method), 154
getlocalprec() (cypari2.pari_instance.Pari_auto method), 154
getrand() (cypari2.pari_instance.Pari_auto method), 154
getstack() (cypari2.pari_instance.Pari_auto method), 154
getime() (cypari2.pari_instance.Pari_auto method), 154
getwalltime() (cypari2.pari_instance.Pari_auto method), 154

H
halfgcd() (cypari2.gen.Gen_base method), 556
halfgcd() (cypari2.pari_instance.Pari_auto method), 154
hammingweight() (cypari2.gen.Gen_base method), 556
hammingweight() (cypari2.pari_instance.Pari_auto method), 154
hilbert() (cypari2.gen.Gen_base method), 557
hilbert() (cypari2.pari_instance.Pari_auto method), 155
hyperellcharpoly() (cypari2.gen.Gen_base method), 557
hyperellcharpoly() (cypari2.pari_instance.Pari_auto method), 155
hyperellpadicfrobenius() (cypari2.gen.Gen_base method), 557

Index 795

galoisinit() (cypari2.gen.Gen_base method), 550
galoisinit() (cypari2.pari_instance.Pari_auto method), 146
galoisisabelian() (cypari2.gen.Gen_base method), 551

galoisisabelian() (cypari2.pari_instance.Pari_auto method), 147
galoisisnormal() (cypari2.gen.Gen_base method), 551
galoisisnormal() (cypari2.pari_instance.Pari_auto method), 147
galoispermtopol() (cypari2.pari_instance.Pari_auto method), 551
galoispermtopol() (cypari2.gen.Gen_base method), 148
galoissubcyclo() (cypari2.gen.Gen_base method), 551
galoissubcyclo() (cypari2.pari_instance.Pari_auto method), 148
galoissubfields() (cypari2.gen.Gen method), 402
galoissubfields() (cypari2.gen.Gen_base method), 552
galoissubfields() (cypari2.pari_instance.Pari_auto method), 148
galoissubgroups() (cypari2.gen.Gen_base method), 552
galoissubgroups() (cypari2.pari_instance.Pari_auto method), 148

gammad() (cypari2.gen.Gen_base method), 552

gammad() (cypari2.pari_instance.Pari_auto method), 149

gammah() (cypari2.gen.Gen_base method), 553
gammah() (cypari2.pari_instance.Pari_auto method), 149

gammamellininv() (cypari2.gen.Gen_base method), 553
gammamellininv() (cypari2.pari_instance.Pari_auto method), 149

gammamellininvasymp() (cypari2.gen.Gen_base method), 553
gammamellininvasymp() (cypari2.pari_instance.Pari_auto method), 149

gammamellininvinit() (cypari2.gen.Gen_base method), 553
gammamellininvinit() (cypari2.pari_instance.Pari_auto method), 149

gcd() (cypari2.gen.Gen_base method), 554
gcd() (cypari2.pari_instance.Pari_auto method), 150

gcdext() (cypari2.gen.Gen_base method), 554
gcdext() (cypari2.pari_instance.Pari_auto method), 151
Gen (class in cypari2.gen), 383
Gen_base (class in cypari2.gen), 424
idealintersect() (cypari2.pari_instance.Pari_auto method), 162
idealinv() (cypari2.gen.Gen_base method), 565
idealinv() (cypari2.pari_instance.Pari_auto method), 162
idealismaximal() (cypari2.gen.Gen_base method), 565
idealismaximal() (cypari2.pari_instance.Pari_auto method), 163
ideallist() (cypari2.gen.Gen_base method), 565
ideallist() (cypari2.pari_instance.Pari_auto method), 163
ideallistarch() (cypari2.gen.Gen_base method), 566
ideallistarch() (cypari2.pari_instance.Pari_auto method), 164
ideallog() (cypari2.gen.Gen_base method), 567
ideallog() (cypari2.pari_instance.Pari_auto method), 165
idealmin() (cypari2.gen.Gen_base method), 567
idealmin() (cypari2.pari_instance.Pari_auto method), 165
idealmoddivisor() (cypari2.gen.Gen_base method), 404
idealmul() (cypari2.gen.Gen_base method), 567
idealmul() (cypari2.pari_instance.Pari_auto method), 165
ideallist() (cypari2.pari_instance.Pari_auto method), 165
idealprincipalunits() (cypari2.gen.Gen_base method), 568
idealprincipalunits() (cypari2.pari_instance.Pari_auto method), 166
idealramgroups() (cypari2.gen.Gen_base method), 569
idealramgroups() (cypari2.pari_instance.Pari_auto method), 166
idealred() (cypari2.gen.Gen_base method), 569
idealred() (cypari2.pari_instance.Pari_auto method), 167
idealredmodpower() (cypari2.gen.Gen_base method), 570
idealredmodpower() (cypari2.pari_instance.Pari_auto method), 168
idealstar() (cypari2.gen.Gen_base method), 570
idealstar() (cypari2.pari_instance.Pari_auto method), 168
idealtwoelt() (cypari2.gen.Gen_base method), 571
idealtwoelt() (cypari2.pari_instance.Pari_auto method), 169
idealval() (cypari2.gen.Gen_base method), 572
idealval() (cypari2.pari_instance.Pari_auto method), 169
imag() (cypari2.gen.Gen_base method), 572
imag() (cypari2.pari_instance.Pari_auto method), 169
incgam() (cypari2.gen.Gen_base method), 572
incgam() (cypari2.pari_instance.Pari_auto method), 170
incgamc() (cypari2.gen.Gen_base method), 572
incgamc() (cypari2.pari_instance.Pari_auto method), 170
init_primes() (cypari2.pari_instance.Pari_method), 8
input() (cypari2.pari_instance.Pari_auto method), 170
install() (cypari2.pari_instance.Pari_auto method), 170
integer_to_gen() (in module cypari2.convert), 779
isformal() (cypari2.gen.Gen_base method), 572
isformal() (cypari2.pari_instance.Pari_auto method), 171
intnumgaussinit() (cypari2.pari_instance.Pari_auto method), 171
intnuminit() (cypari2.gen.Gen_base method), 573
intnuminit() (cypari2.pari_instance.Pari_auto method), 172
isfundamental() (cypari2.gen.Gen_base method), 573
isfundamental() (cypari2.pari_instance.Pari_auto method), 173
ispolygonal() (cypari2.gen.Gen_base method), 573
ispolygonal() (cypari2.pari_instance.Pari_auto method), 173
ispower() (cypari2.gen.Gen_method), 405
ispower() (cypari2.gen.Gen_base method), 574
ispower() (cypari2.pari_instance.Pari_auto method), 173
ispowerful() (cypari2.gen.Gen_base method), 574
ispowerful() (cypari2.pari_instance.Pari_auto method), 173
isprime() (cypari2.gen.Gen_method), 405
isprime() (cypari2.gen.Gen_base method), 574
isprime() (cypari2.pari_instance.Pari_auto method), 174
isprimepower() (cypari2.gen.Gen_method), 406
isprimepower() (cypari2.gen.Gen_base method), 574
isprimepower() (cypari2.pari_instance.Pari_auto method), 174
ispseudoprime() (cypari2.gen.Gen_method), 406
ispseudoprime() (cypari2.gen.Gen_base method), 575
ispseudoprimepower() (cypari2.gen.Gen_method), 407
ispseudoprimepower() (cypari2.gen.Gen_base method), 575
ispseudoprimepower() (cypari2.pari_instance.Pari_auto method), 175
issquare() (cypari2.gen.Gen_method), 407
issquare() (cypari2.gen.Gen_base method), 575
issquare() (cypari2.pari_instance.Pari_auto method), 175
issquarefree() (cypari2.gen.Gen_method), 407
issquarefree() (cypari2.gen.Gen_base method), 576
issquarefree() (cypari2.pari_instance.Pari_auto method), 175
istotient() (cypari2.gen.Gen_base method), 576
istotient() (cypari2.pari_instance.Pari_auto method), 176
j() (cypari2.gen.Gen_method), 408
K
kill() (cypari2.pari_instance.Pari_auto method), 176
kronecker() (cypari2.gen.Gen_base method), 576
kronecker() (cypari2.pari_instance.Pari_auto method), 177
L
lambertw() (cypari2.gen.Gen_base method), 577
lambertw() (cypari2.pari_instance.Pari_auto method), 177
laurentseries() (cypari2.gen.Gen_base method), 577
laurentseries() (cypari2.pari_instance.Pari_auto method), 177
lcm() (cypari2.gen.Gen_base method), 577
lcm() (cypari2.pari_instance.Pari_auto method), 178
length() (cypari2.gen.Gen_base method), 578
length() (cypari2.pari_instance.Pari_auto method), 178
lex() (cypari2.gen.Gen_base method), 578
lex() (cypari2.pari_instance.Pari_auto method), 179
lfun() (cypari2.gen.Gen_base method), 579
lfun() (cypari2.pari_instance.Pari_auto method), 179
lfunabelianrelinit() (cypari2.gen.Gen_base method), 579
lfunabelianrelinit() (cypari2.pari_instance.Pari_auto method), 180
lfun() (cypari2.gen.Gen_base method), 580
CyPari2 Documentation, Release 2.1.3

Index

1funan() (cypari2.pari_instance.Pari_auto method), 180
1funartin() (cypari2.gen.Gen_base method), 580
1funartin() (cypari2.pari_instance.Pari_auto method), 180
1funcheckeq() (cypari2.gen.Gen_base method), 581
1funcheckeq() (cypari2.pari_instance.Pari_auto method), 181
1funconductor() (cypari2.gen.Gen_base method), 581
1funconductor() (cypari2.pari_instance.Pari_auto method), 182
1funcost() (cypari2.gen.Gen_base method), 583
1funcost() (cypari2.pari_instance.Pari_auto method), 183
1funcreate() (cypari2.gen.Gen_base method), 584
1funcreate() (cypari2.pari_instance.Pari_auto method), 184
1fundiv() (cypari2.gen.Gen_base method), 585
1fundiv() (cypari2.pari_instance.Pari_auto method), 186
1fun_dual() (cypari2.gen.Gen_base method), 586
1fun_dual() (cypari2.pari_instance.Pari_auto method), 186
1funetaquo() (cypari2.gen.Gen_base method), 586
1funetaquo() (cypari2.pari_instance.Pari_auto method), 186
1fungenus2() (cypari2.gen.Gen_base method), 586
1fungenus2() (cypari2.pari_instance.Pari_auto method), 187
1funhardy() (cypari2.gen.Gen_base method), 586
1funhardy() (cypari2.pari_instance.Pari_auto method), 187
1funinit() (cypari2.gen.Gen_base method), 587
1funinit() (cypari2.pari_instance.Pari_auto method), 187
1funlambda() (cypari2.gen.Gen_base method), 587
1funlambda() (cypari2.pari_instance.Pari_auto method), 187
1fumf() (cypari2.gen.Gen_base method), 587
1fumf() (cypari2.pari_instance.Pari_auto method), 188
1fumffspec() (cypari2.gen.Gen_base method), 587
1fumffspec() (cypari2.pari_instance.Pari_auto method), 188
1funmul() (cypari2.gen.Gen_base method), 588
1funmul() (cypari2.pari_instance.Pari_auto method), 188
1funorderzero() (cypari2.gen.Gen_base method), 588
1funorderzero() (cypari2.pari_instance.Pari_auto method), 188
1funqf() (cypari2.gen.Gen_base method), 588
1funqf() (cypari2.pari_instance.Pari_auto method), 189
1funrootres() (cypari2.gen.Gen_base method), 589
1funrootres() (cypari2.pari_instance.Pari_auto method), 189
1funshift() (cypari2.gen.Gen_base method), 589
1funshift() (cypari2.pari_instance.Pari_auto method), 189
1fun_sympow() (cypari2.gen.Gen_base method), 589
1fun_sympow() (cypari2.pari_instance.Pari_auto method), 190
1funtheta() (cypari2.gen.Gen_base method), 589
1funtheta() (cypari2.pari_instance.Pari_auto method), 190
1funtheta_cost() (cypari2.gen.Gen_base method), 589
1funtheta_cost() (cypari2.pari_instance.Pari_auto method), 190
1funzeros() (cypari2.gen.Gen_base method), 591
1funzeros() (cypari2.pari_instance.Pari_auto method), 191

lift() (cypari2.gen.Gen_base method), 591
lift() (cypari2.pari_instance.Pari_auto method), 192

lift.centered() (cypari2.gen.Gen method), 408

liftall() (cypari2.gen.Gen_base method), 592
liftall() (cypari2.pari_instance.Pari_auto method), 192

liftint() (cypari2.gen.Gen_base method), 592

lindep() (cypari2.gen.Gen_base method), 595
lindep() (cypari2.pari_instance.Pari_auto method), 195

list() (cypari2.gen.Gen method), 408
List() (cypari2.gen.Gen_base method), 425
List() (cypari2.pari_instance.Pari_auto method), 5
List() (cypari2.pari_instance.Pari_auto method), 14
listinsert() (cypari2.gen.Gen_base method), 596
listinsert() (cypari2.pari_instance.Pari_auto method), 196

listkill() (cypari2.gen.Gen_base method), 596
listkill() (cypari2.pari_instance.Pari_auto method), 196

listpop() (cypari2.gen.Gen_base method), 596
listpop() (cypari2.pari_instance.Pari_auto method), 196
listput () (cypari2.gen.Gen_base method), 596
listput () (cypari2.pari_instance.Pari_auto method), 197
listsort () (cypari2.gen.Gen_base method), 597
listsort () (cypari2.pari_instance.Pari_auto method), 197
lngamma () (cypari2.gen.Gen_base method), 597
lngamma () (cypari2.pari_instance.Pari_auto method), 197
localbitprec () (cypari2.gen.Gen_base method), 598
localbitprec () (cypari2.pari_instance.Pari_auto method), 198
localprec () (cypari2.gen.Gen_base method), 598
localprec () (cypari2.pari_instance.Pari_auto method), 199
log () (cypari2.gen.Gen_base method), 599
log () (cypari2.pari_instance.Pari_auto method), 200
loglp () (cypari2.gen.Gen_base method), 599
loglp () (cypari2.pari_instance.Pari_auto method), 200
log_gamma () (cypari2.gen.Gen_base method), 409
logint () (cypari2.gen.Gen_base method), 600
logint () (cypari2.pari_instance.Pari_auto method), 200

M
Map () (cypari2.gen.Gen_base method), 425
Map () (cypari2.pari_instance.Pari_auto method), 14
mapdelete () (cypari2.gen.Gen_base method), 600
mapdelete () (cypari2.pari_instance.Pari_auto method), 201
mapget () (cypari2.gen.Gen_base method), 601
mapget () (cypari2.pari_instance.Pari_auto method), 201
mapisdefined () (cypari2.gen.Gen_base method), 601
mapisdefined () (cypari2.pari_instance.Pari_auto method), 201
mapput () (cypari2.gen.Gen_base method), 601
mapput () (cypari2.pari_instance.Pari_auto method), 202
Mat () (cypari2.gen.Gen_base method), 425
Mat () (cypari2.pari_instance.Pari_auto method), 14
matadjoint () (cypari2.gen.Gen_base method), 602
matadjoint () (cypari2.pari_instance.Pari_auto method), 202
matalgtobasis () (cypari2.gen.Gen_base method), 602
matalgtobasis () (cypari2.pari_instance.Pari_auto method), 202
matbasistoalg () (cypari2.gen.Gen_base method), 602
matbasistoalg () (cypari2.pari_instance.Pari_auto method), 202
matcompanion () (cypari2.gen.Gen_base method), 602
matcompanion () (cypari2.pari_instance.Pari_auto method), 203
matconcat () (cypari2.gen.Gen_base method), 602
matconcat () (cypari2.pari_instance.Pari_auto method), 203
matdet () (cypari2.gen.Gen_base method), 604
matdet () (cypari2.pari_instance.Pari_auto method), 204
matdetint () (cypari2.gen.Gen_base method), 604
matdetint () (cypari2.pari_instance.Pari_auto method), 204
matdetmod () (cypari2.gen.Gen_base method), 604
matdetmod () (cypari2.pari_instance.Pari_auto method), 204
matdiagonal () (cypari2.gen.Gen_base method), 604
matdiagonal () (cypari2.pari_instance.Pari_auto method), 205
mateigen () (cypari2.gen.Gen_base method), 605
mateigen () (cypari2.pari_instance.Pari_auto method), 205
matfrobenius () (cypari2.gen.Gen_base method), 606
matfrobenius () (cypari2.pari_instance.Pari_auto method), 206
matheiss () (cypari2.gen.Gen_base method), 606
matheiss () (cypari2.pari_instance.Pari_auto method), 206
mathilbert () (cypari2.pari_instance.Pari_auto method), 206
matnf () (cypari2.gen.Gen_base method), 606
matnf () (cypari2.pari_instance.Pari_auto method), 206
matnfmod () (cypari2.gen.Gen_base method), 607
matnfmod () (cypari2.pari_instance.Pari_auto method), 208
matnfmodid () (cypari2.gen.Gen_base method), 608
matnfmodid () (cypari2.pari_instance.Pari_auto method), 208
mathouseholder () (cypari2.gen.Gen_base method), 608
mathouseholder () (cypari2.pari_instance.Pari_auto method), 209
matid () (cypari2.pari_instance.Pari_auto method), 209
matimage () (cypari2.gen.Gen_base method), 609
matimage () (cypari2.pari_instance.Pari_auto method), 209
matimagecompl () (cypari2.gen.Gen_base method), 609
matimagecompl () (cypari2.pari_instance.Pari_auto method), 210
matimagemod () (cypari2.gen.Gen_base method), 609
matimagemod () (cypari2.pari_instance.Pari_auto method), 210
matindexrank () (cypari2.gen.Gen_base method), 610
matindexrank () (cypari2.pari_instance.Pari_auto method), 211
matintersect () (cypari2.gen.Gen_base method), 610
matintersect () (cypari2.pari_instance.Pari_auto method), 211
mfpow() (cypari2.gen.Gen_base method), 637
mfpow() (cypari2.pari_instance.Pari_auto method), 246
mfpow() (cypari2.pari_instance.Pari_auto method), 238
mfspace() (cypari2.gen.Gen_base method), 639
mfspace() (cypari2.pari_instance.Pari_auto method), 240
mfspace() (cypari2.pari_instance.Pari_auto method), 241
mfsplit() (cypari2.gen.Gen_base method), 640
mfsplit() (cypari2.pari_instance.Pari_auto method), 241
mfsturm() (cypari2.gen.Gen_base method), 640
mfsturm() (cypari2.pari_instance.Pari_auto method), 242
mfsymbol() (cypari2.gen.Gen_base method), 641
mfsymbol() (cypari2.pari_instance.Pari_auto method), 242
mfsymboleval() (cypari2.gen.Gen_base method), 641
mfsymboleval() (cypari2.pari_instance.Pari_auto method), 243
mftaylor() (cypari2.gen.Gen_base method), 642
mftaylor() (cypari2.pari_instance.Pari_auto method), 244
mftTheta() (cypari2.gen.Gen_base method), 616
mftTheta() (cypari2.pari_instance.Pari_auto method), 217
mftobasis() (cypari2.gen.Gen_base method), 642
mftobasis() (cypari2.pari_instance.Pari_auto method), 244
mftocoset() (cypari2.pari_instance.Pari_auto method), 245
mftonew() (cypari2.gen.Gen_base method), 643
mftonew() (cypari2.pari_instance.Pari_auto method), 245
mftraceform() (cypari2.gen.Gen_base method), 643
mftraceform() (cypari2.pari_instance.Pari_auto method), 245
mftwist() (cypari2.gen.Gen_base method), 644
mftwist() (cypari2.pari_instance.Pari_auto method), 245
min() (cypari2.gen.Gen_base method), 644
min() (cypari2.pari_instance.Pari_auto method), 246
minpoly() (cypari2.gen.Gen_base method), 644
minpoly() (cypari2.pari_instance.Pari_auto method), 246
mod() (cypari2.gen.Gen_base method), 410
Mod() (cypari2.gen.Gen_base method), 426
Mod() (cypari2.pari_instance.Pari_auto method), 15
modreverse() (cypari2.gen.Gen_base method), 644
modreverse() (cypari2.pari_instance.Pari_auto method), 246
module
cypari2.close, 769
cypari2.convert, 774
cypari2.gen, 382
cypari2.handle_error, 772
cypari2.pari_instance, 1
cypari2.stack, 768
moebius() (cypari2.gen.Gen_base method), 645
moebius() (cypari2.pari_instance.Pari_auto method), 246
msatkinlehner() (cypari2.gen.Gen_base method), 645
msatkinlehner() (cypari2.pari_instance.Pari_auto method), 246
mscosets() (cypari2.gen.Gen_base method), 645
mscosets() (cypari2.pari_instance.Pari_auto method), 247
mscuspidal() (cypari2.gen.Gen_base method), 645
mscuspidal() (cypari2.pari_instance.Pari_auto method), 247
msdim() (cypari2.gen.Gen_base method), 646
msdim() (cypari2.pari_instance.Pari_auto method), 248
mseisenstein() (cypari2.gen.Gen_base method), 646
mseisenstein() (cypari2.pari_instance.Pari_auto method), 248
mseval() (cypari2.gen.Gen_base method), 647
mseval() (cypari2.pari_instance.Pari_auto method), 248
msfarey() (cypari2.gen.Gen_base method), 647
msfarey() (cypari2.pari_instance.Pari_auto method), 249
msfromcusp() (cypari2.gen.Gen_base method), 648
msfromcusp() (cypari2.pari_instance.Pari_auto method), 249
msfromell() (cypari2.gen.Gen_base method), 649
msfromell() (cypari2.pari_instance.Pari_auto method), 250
msfromhecke() (cypari2.gen.Gen_base method), 650
msfromhecke() (cypari2.pari_instance.Pari_auto method), 251
msgetlevel() (cypari2.gen.Gen_base method), 650
msgetlevel() (cypari2.pari_instance.Pari_auto method), 252
msgetsign() (cypari2.gen.Gen_base method), 650
msgetsign() (cypari2.pari_instance.Pari_auto method), 252
msgetweight() (cypari2.gen.Gen_base method), 650
nfeltdivueuc() (cypari2.gen.Gen_base method), 668
nfeltdivueuc() (cypari2.pari_instance.Pari_auto method), 270
nfeltdivmodpr() (cypari2.gen.Gen_base method), 668
nfeltdivmodpr() (cypari2.pari_instance.Pari_auto method), 270
nfeltdivrem() (cypari2.gen.Gen_base method), 669
nfeltdivrem() (cypari2.pari_instance.Pari_auto method), 270
nfeltembed() (cypari2.gen.Gen_base method), 669
nfeltembed() (cypari2.pari_instance.Pari_auto method), 270
nfeltmod() (cypari2.gen.Gen_base method), 669
nfeltmod() (cypari2.pari_instance.Pari_auto method), 271
nfeltmul() (cypari2.gen.Gen_base method), 669
nfeltmul() (cypari2.pari_instance.Pari_auto method), 271
nfeltmulmodpr() (cypari2.gen.Gen_base method), 669
nfeltmulmodpr() (cypari2.pari_instance.Pari_auto method), 271
nfeltnorm() (cypari2.gen.Gen_base method), 669
nfeltnorm() (cypari2.pari_instance.Pari_auto method), 271
nfeltpow() (cypari2.gen.Gen_base method), 669
nfeltpow() (cypari2.pari_instance.Pari_auto method), 271
nfeltposmodpr() (cypari2.gen.Gen_base method), 669
nfeltposmodpr() (cypari2.pari_instance.Pari_auto method), 271
nfeltreduce() (cypari2.gen.Gen_base method), 669
nfeltreduce() (cypari2.pari_instance.Pari_auto method), 271
nfeltreducemodpr() (cypari2.gen.Gen_base method), 669
nfeltreducemodpr() (cypari2.pari_instance.Pari_auto method), 271
nftfactor() (cypari2.gen.Gen_base method), 671
nftfactor() (cypari2.pari_instance.Pari_auto method), 272
nftfactorback() (cypari2.gen.Gen_base method), 671
nftfactorback() (cypari2.pari_instance.Pari_auto method), 273
nftfactormod() (cypari2.gen.Gen_base method), 671
nftfactormod() (cypari2.pari_instance.Pari_auto method), 273
nfgaloisapply() (cypari2.gen.Gen_base method), 672
nfgaloisapply() (cypari2.pari_instance.Pari_auto method), 273
nfgaloisconj() (cypari2.gen.Gen_base method), 672
nfgaloisconj() (cypari2.pari_instance.Pari_auto method), 274
nfgrunwaldwang() (cypari2.gen.Gen_base method), 673
nfgrunwaldwang() (cypari2.pari_instance.Pari_auto method), 275
nfhilbert() (cypari2.gen.Gen_base method), 673
nfhilbert() (cypari2.pari_instance.Pari_auto method), 275
nfhnf() (cypari2.gen.Gen_base method), 674
nfhnf() (cypari2.pari_instance.Pari_auto method), 275
nfhnfmod() (cypari2.gen.Gen_base method), 674
nfhnfmod() (cypari2.pari_instance.Pari_auto method), 275
nfinit() (cypari2.gen.Gen_base method), 674
nfinit() (cypari2.pari_instance.Pari_auto method), 275
nfisideal() (cypari2.gen.Gen_base method), 676
nfisideal() (cypari2.pari_instance.Pari_auto method), 277
nfisinc() (cypari2.gen.Gen_base method), 676
nfisinc() (cypari2.pari_instance.Pari_auto method), 277
nfisism() (cypari2.gen.Gen_base method), 676
nfisism() (cypari2.pari_instance.Pari_auto method), 278
nfislocalpower() (cypari2.gen.Gen_base method), 677
nfislocalpower() (cypari2.pari_instance.Pari_auto method), 279
nfkermodpr() (cypari2.gen.Gen_base method), 678
nfkermodpr() (cypari2.pari_instance.Pari_auto method), 279
nfmodpr() (cypari2.gen.Gen_base method), 678
nfmodpr() (cypari2.pari_instance.Pari_auto method), 279
nfmodprint() (cypari2.gen.Gen_base method), 678
nfmodprint() (cypari2.pari_instance.Pari_auto method), 280
nfmodprint() (cypari2.gen.Gen_base method), 679
nfmodprint() (cypari2.pari_instance.Pari_auto method), 280
nfnewprec() (cypari2.gen.Gen_base method), 679
nfnewprec() (cypari2.pari_instance.Pari_auto method), 281
nfpolsturm() (cypari2.gen.Gen_base method), 679
nfpolsturm() (cypari2.pari_instance.Pari_auto method), 281
nfroots() (cypari2.gen.Gen_base method), 680
nfroots() (cypari2.pari_instance.Pari_auto method), 281
nfrootsolf() (cypari2.gen.Gen_base method), 680
nfrootsolf() (cypari2.pari_instance.Pari_auto method), 282
nfsnf() (cypari2.gen.Gen_base method), 680
nfsnf() (cypari2.pari_instance.Pari_auto method), 282
nfslovesmodpr() (cypari2.gen.Gen_base method), 681
nfslovesmodpr() (cypari2.pari_instance.Pari_auto method), 282
nfsplitting() (cypari2.gen.Gen_base method), 681
nfsplitting() (cypari2.pari_instance.Pari_auto method), 282
nfsubfields() (cypari2.gen.Gen_base method), 681
nfsubfields() (cypari2.pari_instance.Pari_auto method), 283
nfsubfieldsmax() (cypari2.gen.Gen_base method), 682
nfsubfieldsmax() (cypari2.pari_instance.Pari_auto method), 284
norm() (cypari2.gen.Gen_base method), 682
norm() (cypari2.pari_instance.Pari_auto method), 284
norm12() (cypari2.gen.Gen_base method), 682
norm12() (cypari2.pari_instance.Pari_auto method), 284
normlp() (cypari2.gen.Gen_base method), 683
normlp() (cypari2.pari_instance.Pari_auto method), 284
nrows() (cypari2.gen.Gen method), 415
numbpart() (cypari2.gen.Gen_base method), 683
numbpart() (cypari2.pari_instance.Pari_auto method), 285
numdiv() (cypari2.gen.Gen_base method), 683
numdiv() (cypari2.pari_instance.Pari_auto method), 285
numerator() (cypari2.gen.Gen_base method), 683
numerator() (cypari2.pari_instance.Pari_auto method), 285
numtoperm() (cypari2.pari_instance.Pari_auto method), 285

O
objtoclosure() (in module cypari2.close), 771
objtogen() (in module cypari2.gen), 766
omega() (cypari2.gen.Gen method), 415
omega() (cypari2.gen.Gen_base method), 684
omega() (cypari2.pari_instance.Pari_auto method), 285
one() (cypari2.pari_instance.Pari method), 9
oo() (cypari2.pari_instance.Pari_auto method), 286

P
padicapp() (cypari2.gen.Gen_base method), 684
padicapp() (cypari2.pari_instance.Pari_auto method), 286
padicfields() (cypari2.gen.Gen_base method), 684
padicfields() (cypari2.pari_instance.Pari_auto method), 286
padicprec() (cypari2.gen.Gen_base method), 684
padicprec() (cypari2.pari_instance.Pari_auto method), 286
padicprime() (cypari2.gen.Gen method), 416
parapply() (cypari2.gen.Gen_base method), 685
parapply() (cypari2.pari_instance.Pari_auto method), 287
pareval() (cypari2.gen.Gen_base method), 685
pareval() (cypari2.pari_instance.Pari_auto method), 287
Pari (class in cypari2.pari_instance), 5
Pari_auto (class in cypari2.pari_instance), 13
pari_version() (cypari2.pari_instance.Pari static method), 9
PariError, 773
parselect() (cypari2.gen.Gen_base method), 685
parselect() (cypari2.pari_instance.Pari_auto method), 287
partitions() (cypari2.pari_instance.Pari_auto method), 287
permcycles() (cypari2.gen.Gen_base method), 686
permcycles() (cypari2.pari_instance.Pari_auto method), 288
permorder() (cypari2.gen.Gen_base method), 686
permorder() (cypari2.pari_instance.Pari_auto method), 288
permsign() (cypari2.gen.Gen_base method), 686
permsign() (cypari2.pari_instance.Pari_auto method), 288
permtomon() (cypari2.gen.Gen_base method), 686
permtomon() (cypari2.pari_instance.Pari_auto method), 289
pi() (cypari2.pari_instance.Pari method), 9
Pi() (cypari2.pari_instance.Pari_auto method), 16
plotbox() (cypari2.pari_instance.Pari_auto method), 289
plotclip() (cypari2.pari_instance.Pari_auto method), 289
plotcolor() (cypari2.pari_instance.Pari_auto method), 289
plotcopy() (cypari2.pari_instance.Pari_auto method), 289
plotcursor() (cypari2.pari_instance.Pari_auto method), 289
plotdraw() (cypari2.gen.Gen_base method), 686
plotdraw() (cypari2.pari_instance.Pari_auto method), 289

Index
CyPari2 Documentation, Release 2.1.3

Index 809

qfparam() (cy pari2.gen.Gen_base method), 714
qfparam() (cy pari2.pari_instance.Pari_auto method), 322
qfperfection() (cy pari2.gen.Gen_base method), 715
qfperfection() (cy pari2.pari_instance.Pari_auto method), 323
qfrep() (cy pari2.gen.Gen method), 419
qfrep() (cy pari2.gen.Gen_base method), 715
qfrep() (cy pari2.pari_instance.Pari_auto method), 323
qfsign() (cy pari2.gen.Gen_base method), 715
qfsign() (cy pari2.pari_instance.Pari_auto method), 323
qfsolve() (cy pari2.gen.Gen_base method), 715
qfsolve() (cy pari2.pari_instance.Pari_auto method), 323
quadclassunit() (cy pari2.gen.Gen_base method), 716
quadclassunit() (cy pari2.pari_instance.Pari_auto method), 324
quaddisc() (cy pari2.gen.Gen_base method), 716
quaddisc() (cy pari2.pari_instance.Pari_auto method), 324
quadgen() (cy pari2.gen.Gen_base method), 716
quadgen() (cy pari2.pari_instance.Pari_auto method), 324
quadhilbert() (cy pari2.gen.Gen_base method), 717
quadhilbert() (cy pari2.pari_instance.Pari_auto method), 325
quadpoly() (cy pari2.gen.Gen_base method), 717
quadpoly() (cy pari2.pari_instance.Pari_auto method), 325
quadray() (cy pari2.gen.Gen_base method), 717
quadray() (cy pari2.pari_instance.Pari_auto method), 325
quadregulator() (cy pari2.gen.Gen_base method), 717
quadregulator() (cy pari2.pari_instance.Pari_auto method), 325
quadunit() (cy pari2.gen.Gen_base method), 717
quadunit() (cy pari2.pari_instance.Pari_auto method), 325

R
ramanujantau() (cy pari2.gen.Gen_base method), 717
ramanujantau() (cy pari2.pari_instance.Pari_auto method), 325
random() (cy pari2.gen.Gen_base method), 718
random() (cy pari2.pari_instance.Pari_auto method), 326
randomprime() (cy pari2.gen.Gen_base method), 719
randomprime() (cy pari2.pari_instance.Pari_auto method), 327
read() (cy pari2.pari_instance.Pari_auto method), 327
readstr() (cy pari2.pari_instance.Pari_auto method), 328
readvec() (cy pari2.pari_instance.Pari_auto method), 328
real() (cy pari2.gen.Gen_base method), 719
real() (cy pari2.pari_instance.Pari_auto method), 328
removeprimes() (cy pari2.gen.Gen_base method), 720
removeprimes() (cy pari2.pari_instance.Pari_auto method), 328
rnfalgtobasis() (cy pari2.gen.Gen_base method), 720
rnfalgtobasis() (cy pari2.pari_instance.Pari_auto method), 328
rnfbasis() (cy pari2.gen.Gen_base method), 720
rnfbasis() (cy pari2.pari_instance.Pari_auto method), 328
rnfbistaloalg() (cy pari2.gen.Gen_base method), 720
rnfbistaloalg() (cy pari2.pari_instance.Pari_auto method), 328
rnfcharpoly() (cy pari2.gen.Gen_base method), 720
rnfcharpoly() (cy pari2.pari_instance.Pari_auto method), 329
rnfconductor() (cy pari2.gen.Gen_base method), 720
rnfconductor() (cy pari2.pari_instance.Pari_auto method), 329
rnfdekedkind() (cy pari2.gen.Gen_base method), 720
rnfdekedkind() (cy pari2.pari_instance.Pari_auto method), 329
rnfdet() (cy pari2.gen.Gen_base method), 721
rnfdet() (cy pari2.pari_instance.Pari_auto method), 330
rnfdisc() (cy pari2.gen.Gen_base method), 721
rnfdisc() (cy pari2.pari_instance.Pari_auto method), 330
rnftabstorel() (cy pari2.gen.Gen_base method), 722
rnftabstorel() (cy pari2.pari_instance.Pari_auto method), 330
rnfeltabstorel() (cy pari2.gen.Gen_base method), 722
rnfeltabstorel() (cy pari2.pari_instance.Pari_auto method), 330
rnfeltdown() (cy pari2.gen.Gen_base method), 722
rnfeltdown() (cy pari2.pari_instance.Pari_auto method), 331
rnfeltnorm() (cy pari2.gen.Gen_base method), 723
rnfeltnorm() (cy pari2.pari_instance.Pari_auto method), 331
rnfeltreltoabs() (cy pari2.gen.Gen_base method), 723
rnfeltreltoabs() (cy pari2.pari_instance.Pari_auto method), 332
rnfelttrace() (cy pari2.gen.Gen_base method), 723
rnfelttrace() (cy pari2.pari_instance.Pari_auto method), 332
rnfeltup() (cy pari2.gen.Gen_base method), 723
rnfeltup() (cy pari2.pari_instance.Pari_auto method), 332
rnfequation() (cy pari2.gen.Gen_base method), 724
rnfequation() (cy pari2.pari_instance.Pari_auto method), 332
CyPari2 Documentation, Release 2.1.3

Index

serconvol() (cypari2.gen.Gen_base method), 734
serconvol() (cypari2 pari_instance.Pari_auto method), 343
serlaplace() (cypari2.gen.Gen_base method), 734
serlaplace() (cypari2.pari_instance.Pari_auto method), 343
serreverse() (cypari2.gen.Gen_base method), 734
serreverse() (cypari2.pari_instance.Pari_auto method), 343
serprec() (cypari2.gen.Gen_base method), 734
serprec() (cypari2.pari_instance.Pari_auto method), 343
set_debug_level() (cypari2.pari_instance.Pari_auto method), 18
set_real_precision() (cypari2.pari_instance.Pari_auto method), 11
set_real_precision_bits() (cypari2.pari_instance.Pari_auto method), 11
setbinop() (cypari2.gen.Gen_base method), 734
setbinop() (cypari2.pari_instance.Pari_auto method), 343
setintersect() (cypari2.gen.Gen_base method), 735
setintersect() (cypari2.pari_instance.Pari_auto method), 344
setisset() (cypari2.pari_instance.Pari_auto method), 344
setminus() (cypari2.gen.Gen_base method), 735
setminus() (cypari2.pari_instance.Pari_auto method), 344
setrand() (cypari2.gen.Gen_base method), 735
setrand() (cypari2.pari_instance.Pari method), 12
setrand() (cypari2.pari_instance.Pari_auto method), 344
setsearch() (cypari2.gen.Gen_base method), 735
setsearch() (cypari2.pari_instance.Pari_auto method), 344
setunion() (cypari2.gen.Gen_base method), 736
setunion() (cypari2.pari_instance.Pari_auto method), 345
shift() (cypari2.gen.Gen_base method), 736
shift() (cypari2.pari_instance.Pari_auto method), 345
shiftmul() (cypari2.gen.Gen_base method), 736
shiftmul() (cypari2.pari_instance.Pari_auto method), 345
sigma() (cypari2.gen.Gen_base method), 736
sigma() (cypari2.pari_instance.Pari_auto method), 345
sign() (cypari2.gen.Gen_base method), 736
sign() (cypari2.pari_instance.Pari_auto method), 345
simplify() (cypari2.gen.Gen_base method), 736
simplify() (cypari2.pari_instance.Pari_auto method), 345
sin() (cypari2.gen.Gen_base method), 737
sin() (cypari2.pari_instance.Pari_auto method), 346
sinc() (cypari2.gen.Gen_base method), 737
sinc() (cypari2.pari_instance.Pari_auto method), 346
sind() (cypari2.gen.Gen_base method), 737
sind() (cypari2.pari_instance.Pari_auto method), 346
sizebyte() (cypari2.gen.Gen_base method), 420
sizebyte() (cypari2.gen.Gen_base method), 737
sizebyte() (cypari2.pari_instance.Pari_auto method), 346
sizedigit() (cypari2.gen.Gen_base method), 737
sizedigit() (cypari2.pari_instance.Pari_auto method), 346
sizeword() (cypari2.gen.Gen_base method), 421
sqrt() (cypari2.gen.Gen_base method), 737
sqrt() (cypari2.pari_instance.Pari_auto method), 346
sqr() (cypari2.gen.Gen_base method), 738
sqr() (cypari2.pari_instance.Pari_auto method), 347
sqrnt() (cypari2.gen.Gen_base method), 738
sqrnt() (cypari2.pari_instance.Pari_auto method), 347
stacksize() (cypari2.pari_instance.Pari_auto method), 12
stacksizemax() (cypari2.pari_instance.Pari_auto method), 12
stirling() (cypari2.pari_instance.Pari_auto method), 348
Str() (cypari2.gen.Gen_base method), 384
Strchr() (cypari2.gen.Gen_base method), 428
strchr() (cypari2.gen.Gen_base method), 739
strchr() (cypari2.pari_instance.Pari_auto method), 18
strchr() (cypari2.pari_instance.Pari_auto method), 349
斯特克斯() (cypari2.gen.Gen_base method), 385
strjoin() (cypari2.gen.Gen_base method), 379
strjoin() (cypari2.pari_instance.Pari_auto method), 349
strsplit() (cypari2.gen.Gen_base method), 739
strsplit() (cypari2.pari_instance.Pari_auto method), 349
strtex() (cypari2.gen.Gen_base method), 385
strtime() (cypari2.pari_instance.Pari_auto method), 349
subtotal() (cypari2.gen.Gen_base method), 350
subtotal() (cypari2.pari_instance.Pari_auto method), 349
substpol() (cypari2.gen.Gen_base method), 741

Index
substpol() (cypari2.pari_instance.Pari_auto method), 351
substvec() (cypari2.gen.Gen_base method), 741
substvec() (cypari2.pari_instance.Pari_auto method), 351
sumdedekind() (cypari2.gen.Gen_base method), 741
sumdedekind() (cypari2.pari_instance.Pari_auto method), 351
sumdigits() (cypari2.gen.Gen_base method), 741
sumdigits() (cypari2.pari_instance.Pari_auto method), 351
sumdiv() (cypari2.pari_instance.Pari_auto method), 351
sumdiv() (cypari2.pari_instance.Pari_auto method), 351
sumdivk() (cypari2.pari_instance.Pari_auto method), 351
sumformal() (cypari2.pari_instance.Pari_auto method), 351
sumnumapinit() (cypari2.pari_instance.Pari_auto method), 351
sumnumapinit() (cypari2.pari_instance.Pari_auto method), 351
sumeulerrat() (cypari2.gen.Gen_base method), 741
sumeulerrat() (cypari2.pari_instance.Pari_auto method), 351
sumeulerrat() (cypari2.pari_instance.Pari_auto method), 351
sumeulerrat() (cypari2.pari_instance.Pari_auto method), 351
sumformal() (cypari2.pari_instance.Pari_auto method), 351
sumformal() (cypari2.pari_instance.Pari_auto method), 351
sumeuler() (cypari2.gen.Gen_base method), 741
sumeuler() (cypari2.pari_instance.Pari_auto method), 351
sumeuler() (cypari2.pari_instance.Pari_auto method), 351
sumeuler() (cypari2.pari_instance.Pari_auto method), 351
thetanullk() (cypari2.pari_instance.Pari_auto method), 357
thue() (cypari2.pari_instance.Pari_auto method), 357
thue() (cypari2.pari_instance.Pari_auto method), 357
thueinit() (cypari2.pari_instance.Pari_auto method), 358
thueinit() (cypari2.pari_instance.Pari_auto method), 358
trace() (cypari2.pari_instance.Pari_auto method), 359
trace() (cypari2.pari_instance.Pari_auto method), 359
trunc() (cypari2.pari_instance.Pari_auto method), 423
trunc() (cypari2.pari_instance.Pari_auto method), 423
trunc2() (cypari2.pari_instance.Pari_auto method), 423
trunc2() (cypari2.pari_instance.Pari_auto method), 423
type() (cypari2.pari_instance.Pari_auto method), 423
type() (cypari2.pari_instance.Pari_auto method), 423
type() (cypari2.pari_instance.Pari_auto method), 423
U
unexportall() (cypari2.pari_instance.Pari_auto method), 359
V
valuation() (cypari2.pari_instance.Pari_auto method), 749
valuation() (cypari2.pari_instance.Pari_auto method), 749
varhigher() (cypari2.pari_instance.Pari_auto method), 359
variable() (cypari2.pari_instance.Pari_auto method), 359
variable() (cypari2.pari_instance.Pari_auto method), 359
variables() (cypari2.pari_instance.Pari_auto method), 359
variables() (cypari2.pari_instance.Pari_auto method), 359
varlower() (cypari2.pari_instance.Pari_auto method), 361
Vec() (cypari2.pari_instance.Pari_auto method), 429
Vec() (cypari2.pari_instance.Pari_auto method), 429
vecextract() (cypari2.pari_instance.Pari_auto method), 750
vecextract() (cypari2.pari_instance.Pari_auto method), 750
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
Vvec() (cypari2.pari_instance.Pari_auto method), 429
Vvec() (cypari2.pari_instance.Pari_auto method), 429
vecsearch() (cypari2.pari_instance.Pari_auto method), 752

T
thetanullk() (cypari2.pari_instance.Pari_auto method), 357
thetanullk() (cypari2.pari_instance.Pari_auto method), 357
theta() (cypari2.pari_instance.Pari_auto method), 747
vecmax() (cypari2.pari_instance.Pari_auto method), 751
vecmax() (cypari2.pari_instance.Pari_auto method), 751
vecmax() (cypari2.pari_instance.Pari_auto method), 751
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
Vvec() (cypari2.pari_instance.Pari_auto method), 429
Vvec() (cypari2.pari_instance.Pari_auto method), 429
vecsearch() (cypari2.pari_instance.Pari_auto method), 752

U
unexportall() (cypari2.pari_instance.Pari_auto method), 359
V
valuation() (cypari2.pari_instance.Pari_auto method), 749
valuation() (cypari2.pari_instance.Pari_auto method), 749
varhigher() (cypari2.pari_instance.Pari_auto method), 359
variable() (cypari2.pari_instance.Pari_auto method), 359
variable() (cypari2.pari_instance.Pari_auto method), 359
variables() (cypari2.pari_instance.Pari_auto method), 359
variables() (cypari2.pari_instance.Pari_auto method), 359
varlower() (cypari2.pari_instance.Pari_auto method), 361
Vec() (cypari2.pari_instance.Pari_auto method), 429
Vec() (cypari2.pari_instance.Pari_auto method), 429
vecextract() (cypari2.pari_instance.Pari_auto method), 750
vecextract() (cypari2.pari_instance.Pari_auto method), 750
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
Vvec() (cypari2.pari_instance.Pari_auto method), 429
Vvec() (cypari2.pari_instance.Pari_auto method), 429
vecsearch() (cypari2.pari_instance.Pari_auto method), 752

T
theta() (cypari2.pari_instance.Pari_auto method), 747
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmax() (cypari2.pari_instance.Pari_auto method), 424
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecmin() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
vecprod() (cypari2.pari_instance.Pari_auto method), 752
Vvec() (cypari2.pari_instance.Pari_auto method), 429
Vvec() (cypari2.pari_instance.Pari_auto method), 429
vecsearch() (cypari2.pari_instance.Pari_auto method), 752

Index
vecsearch() (cypari2.pari_instance.Pari_auto method), 364
Vecsmall() (cypari2.gen.Gen_base method), 430
Vecsmall() (cypari2.pari_instance.Pari_auto method), 19
vectorsort() (cypari2.gen.Gen_base method), 753
vectorsort() (cypari2.pari_instance.Pari_auto method), 365
vecsum() (cypari2.gen.Gen_base method), 754
vecsum() (cypari2.pari_instance.Pari_auto method), 366
vector() (cypari2.pari_instance.Pari method), 13
version() (cypari2.pari_instance.Pari method), 13
version() (cypari2.pari_instance.Pari_auto method), 366

W
weber() (cypari2.gen.Gen_base method), 754
weber() (cypari2.pari_instance.Pari_auto method), 367
writebin() (cypari2.pari_instance.Pari_auto method), 367

Z
zero() (cypari2.pari_instance.Pari method), 13
zeta() (cypari2.gen.Gen_base method), 754
zeta() (cypari2.pari_instance.Pari_auto method), 367
zetahurwitz() (cypari2.gen.Gen_base method), 755
zetahurwitz() (cypari2.pari_instance.Pari_auto method), 368
zetamult() (cypari2.gen.Gen_base method), 755
zetamult() (cypari2.pari_instance.Pari_auto method), 368
zetamultall() (cypari2.pari_instance.Pari_auto method), 369
zetamultconvert() (cypari2.gen.Gen_base method), 756
zetamultconvert() (cypari2.pari_instance.Pari_auto method), 370
zetamultdual() (cypari2.gen.Gen_base method), 756
zetamultdual() (cypari2.pari_instance.Pari_auto method), 370
Zn_issquare() (cypari2.gen.Gen method), 386
Zn_sqrt() (cypari2.gen.Gen method), 386
znchar() (cypari2.gen.Gen_base method), 756
znchar() (cypari2.pari_instance.Pari_auto method), 370
zncharconductor() (cypari2.gen.Gen_base method), 757
zncharconductor() (cypari2.pari_instance.Pari_auto method), 371
znchardecompose() (cypari2.gen.Gen_base method), 757
znchardecompose() (cypari2.pari_instance.Pari_auto method), 371
znchargauss() (cypari2.gen.Gen_base method), 758
znchargauss() (cypari2.pari_instance.Pari_auto method), 372
zncharinduce() (cypari2.gen.Gen_base method), 758
zncharinduce() (cypari2.pari_instance.Pari_auto method), 372
zncharisodd() (cypari2.gen.Gen_base method), 759
zncharisodd() (cypari2.pari_instance.Pari_auto method), 373
znchartokronecker() (cypari2.gen.Gen_base method), 759
znchartokronecker() (cypari2.pari_instance.Pari_auto method), 373
znchartoprimitive() (cypari2.gen.Gen_base method), 759
znchartoprimitive() (cypari2.pari_instance.Pari_auto method), 374
znconreychar() (cypari2.gen.Gen_base method), 760
znconreychar() (cypari2.pari_instance.Pari_auto method), 374
znconreyconductor() (cypari2.gen.Gen_base method), 761
znconreyconductor() (cypari2.pari_instance.Pari_auto method), 374
znconreyexp() (cypari2.gen.Gen_base method), 762
znconreyexp() (cypari2.pari_instance.Pari_auto method), 376
znconreylog() (cypari2.gen.Gen_base method), 762
znconreylog() (cypari2.pari_instance.Pari_auto method), 376
zncllemsmith() (cypari2.gen.Gen_base method), 763
zncllemsmith() (cypari2.pari_instance.Pari_auto method), 377
znlog() (cypari2.gen.Gen_base method), 764
znlog() (cypari2.pari_instance.Pari_auto method), 378
znorder() (cypari2.gen.Gen_base method), 766
znorder() (cypari2.pari_instance.Pari_auto method), 380
znprimroot() (cypari2.gen.Gen_base method), 766
znprimroot() (cypari2.pari_instance.Pari_auto method), 380
znstar() (cypari2.gen.Gen_base method), 766
znstar() (cypari2.pari_instance.Pari_auto method), 380