
cert-manager Documentation

Jetstack Ltd

Jun 21, 2019

Contents:

1 Get started 3
1.1 Installing cert-manager . 3
1.2 Webhook component . 8
1.3 Troubleshooting installation . 12

2 Tutorials 15
2.1 ACME Issuer Tutorials . 15

3 Tasks 41
3.1 Setting up Issuers . 41
3.2 Issuing Certificates . 64
3.3 Backing up and restoring . 67
3.4 Upgrading cert-manager . 68

4 Reference documentation 79
4.1 Certificates . 79
4.2 Orders . 81
4.3 Challenges . 82
4.4 Issuers . 84
4.5 ClusterIssuers . 85
4.6 cainjector controller . 86
4.7 API documentation . 86

5 Development documentation 87
5.1 Develop with minikube . 87
5.2 Running end-to-end tests . 89
5.3 Contributing DNS01 providers . 89
5.4 DCO Sign off . 90
5.5 Release process . 91
5.6 Generating Documentation . 93

i

ii

cert-manager Documentation

cert-manager is a native Kubernetes certificate management controller. It can help with issuing certificates from a
variety of sources, such as Let’s Encrypt, HashiCorp Vault, Venafi, a simple signing keypair, or self signed.

It will ensure certificates are valid and up to date, and attempt to renew certificates at a configured time before expiry.

It is loosely based upon the work of kube-lego and has borrowed some wisdom from other similar projects e.g. kube-
cert-manager.

This is the full technical documentation for the project, and should be used as a source of references when seeking
help with the project.

Contents: 1

https://kubernetes.io
https://letsencrypt.org
https://www.vaultproject.io
https://www.venafi.com/
https://github.com/jetstack/kube-lego
https://github.com/PalmStoneGames/kube-cert-manager
https://github.com/PalmStoneGames/kube-cert-manager

cert-manager Documentation

2 Contents:

CHAPTER 1

Get started

The guides in this section will explain how to install and set up cert-manager.

If you run into issues deploying, upgrading or running cert-manager please check the troubleshooting document.

1.1 Installing cert-manager

cert-manager supports running on Kubernetes and OpenShift. The installation mechanism between the two platforms
is similar, although there are a number of extra notes to be aware of per-platform.

1.1.1 Installing on Kubernetes

cert-manager runs within your Kubernetes cluster as a series of deployment resources. It utilises CustomResourceDef-
initions to configure Certificate Authorities and request certificates.

It is deployed using regular YAML manifests, like any other applications on Kubernetes.

Once cert-manager has been deployed, you must configure Issuer or ClusterIssuer resources which represent certificate
authorities. More information on configuring different Issuer types can be found in the respective setup guides.

Installing with regular manifests

In order to install cert-manager, we must first create a namespace to run it within. This guide will install cert-manager
into the cert-manager namespace. It is possible to run cert-manager in a different namespace, although you will
need to make modifications to the deployment manifests.

Create a namespace to run cert-manager in
kubectl create namespace cert-manager

As part of the installation, cert-manager also deploys a ValidatingWebhookConfiguration resource in order to validate
that the Issuer, ClusterIssuer and Certificate resources we will create after installation are valid.

3

https://kubernetes.io
https://www.openshift.com
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

cert-manager Documentation

In order to deploy the ValidatingWebhookConfiguration, cert-manager creates a number of ‘internal’ Issuer and Cer-
tificate resources in its own namespace.

This creates a chicken-and-egg problem, where cert-manager requires the webhook in order to create the resources,
and the webhook requires cert-manager in order to run.

We avoid this problem by disabling resource validation on the namespace that cert-manager runs in:

Disable resource validation on the cert-manager namespace
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

You can read more about the webhook on the webhook document.

We can now go ahead and install cert-manager. All resources (the CustomResourceDefinitions, cert-manager, and the
webhook component) are included in a single YAML manifest file:

Install the CustomResourceDefinitions and cert-manager itself
kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v0.8.1/
→˓cert-manager.yaml

Note: If you are running kubectl v1.12 or below, you will need to add the --validate=false flag to your
kubectl apply command above else you will receive a validation error relating to the caBundle field of the
ValidatingWebhookConfiguration resource. This issue is resolved in Kubernetes 1.13 onwards. More
details can be found in kubernetes/kubernetes#69590.

Note: When running on GKE (Google Kubernetes Engine), you may encounter a ‘permission denied’ error when
creating some of these resources. This is a nuance of the way GKE handles RBAC and IAM permissions, and as such
you should ‘elevate’ your own privileges to that of a ‘cluster-admin’ before running the above command. If you have
already run the above command, you should run them again after elevating your permissions:

kubectl create clusterrolebinding cluster-admin-binding \
--clusterrole=cluster-admin \
--user=$(gcloud config get-value core/account)

Installing with Helm

As an alternative to the YAML manifests referenced above, we also provide an official Helm chart for installing
cert-manager.

Pre-requisites

• Helm and Tiller installed (or alternatively, use Tillerless Helm v2)

• cluster-admin privileges bound to the Tiller pod

Foreword

Before deploying cert-manager with Helm, you must ensure Tiller is up and running in your cluster. Tiller is the server
side component to Helm.

Your cluster administrator may have already setup and configured Helm for you, in which case you can skip this step.

4 Chapter 1. Get started

https://github.com/kubernetes/kubernetes/issues/69590
https://helm.sh/
https://rimusz.net/tillerless-helm/
https://github.com/helm/helm/blob/240e539cec44e2b746b3541529d41f4ba01e77df/docs/rbac.md#Example-Service-account-with-cluster-admin-role
https://github.com/helm/helm

cert-manager Documentation

Full documentation on installing Helm can be found in the Installing helm docs.

If your cluster has RBAC (Role Based Access Control) enabled (default in GKE v1.7+), you will need to take spe-
cial care when deploying Tiller, to ensure Tiller has permission to create resources as a cluster administrator. More
information on deploying Helm with RBAC can be found in the Helm RBAC docs.

Steps

In order to install the Helm chart, you must run:

Install the CustomResourceDefinition resources separately
kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/
→˓deploy/manifests/00-crds.yaml

Create the namespace for cert-manager
kubectl create namespace cert-manager

Label the cert-manager namespace to disable resource validation
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

Add the Jetstack Helm repository
helm repo add jetstack https://charts.jetstack.io

Update your local Helm chart repository cache
helm repo update

Install the cert-manager Helm chart
helm install \
--name cert-manager \
--namespace cert-manager \
--version v0.8.1 \
jetstack/cert-manager

The default cert-manager configuration is good for the majority of users, but a full list of the available options can be
found in the Helm chart README.

Verifying the installation

Once you’ve installed cert-manager, you can verify it is deployed correctly by checking the cert-manager names-
pace for running pods:

kubectl get pods --namespace cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-5c6866597-zw7kh 1/1 Running 0 2m
webhook-78fb756679-9bsmf 1/1 Running 0 2m
webhook-ca-sync-1543708620-n82gj 0/1 Completed 0 1m

You should see both the cert-manager and webhook component in a Running state, and the ca-sync pod is
Completed. If the webhook has not Completed but the cert-manager pod has recently started, wait a few minutes
for the ca-sync pod to be retried. If you experience problems, please check the troubleshooting guide.

The following steps will confirm that cert-manager is set up correctly and able to issue basic certificate types:

1.1. Installing cert-manager 5

https://github.com/kubernetes/helm/blob/master/docs/install.md
https://github.com/helm/helm/blob/master/docs/rbac.md
https://github.com/jetstack/cert-manager/blob/release-0.8/deploy/charts/cert-manager/README.md

cert-manager Documentation

Create a ClusterIssuer to test the webhook works okay
cat <<EOF > test-resources.yaml
apiVersion: v1
kind: Namespace
metadata:

name: cert-manager-test

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: test-selfsigned
namespace: cert-manager-test

spec:
selfSigned: {}

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:

name: selfsigned-cert
namespace: cert-manager-test

spec:
commonName: example.com
secretName: selfsigned-cert-tls
issuerRef:
name: test-selfsigned

EOF

Create the test resources
kubectl apply -f test-resources.yaml

Check the status of the newly created certificate
You may need to wait a few seconds before cert-manager processes the
certificate request
kubectl describe certificate -n cert-manager-test
...
Spec:

Common Name: example.com
Issuer Ref:
Name: test-selfsigned

Secret Name: selfsigned-cert-tls
Status:

Conditions:
Last Transition Time: 2019-01-29T17:34:30Z
Message: Certificate is up to date and has not expired
Reason: Ready
Status: True
Type: Ready

Not After: 2019-04-29T17:34:29Z
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal CertIssued 4s cert-manager Certificate issued successfully

Clean up the test resources
kubectl delete -f test-resources.yaml

If all the above steps have completed without error, you are good to go!

6 Chapter 1. Get started

cert-manager Documentation

If you experience problems, please check the troubleshooting guide.

Configuring your first Issuer

Before you can begin issuing certificates, you must configure at least one Issuer or ClusterIssuer resource in your
cluster.

You should read the Setting up Issuers guide to learn how to configure cert-manager to issue certificates from one of
the supported backends.

Alternative installation methods

kubeprod

Bitnami Kubernetes Production Runtime (BKPR, kubeprod) is a curated collection of the services you would need to
deploy on top of your Kubernetes cluster to enable logging, monitoring, certificate management, automatic discovery
of Kubernetes resources via public DNS servers and other common infrastructure needs.

It depends on cert-manager for certificate management, and it is regularly tested so the components are known to
work together for GKE and AKS clusters (EKS to be added soon). For its ingress stack it creates a DNS entry in the
configured DNS zone and requests a TLS certificate from the Let’s Encrypt staging server.

BKPR can be deployed using the kubeprod install command, which will deploy cert-manager as part of
it. Details available in the BKPR installation guide.

Debugging installation issues

If you have any issues with your installation, please refer to the troubleshooting guide.

1.1.2 Installing on OpenShift

cert-manager supports running on OpenShift in a similar manner to Running on Kubernetes. It runs within your
OpenShift cluster as a series of deployment resources. It utilises CustomResourceDefinitions to configure Certificate
Authorities and request certificates.

It is deployed using regular YAML manifests, like any other application on OpenShift.

Once cert-manager has been deployed, you must configure Issuer or ClusterIssuer resources which represent certificate
authorities. More information on configuring different Issuer types can be found in the respective setup guides.

Login to your OpenShift cluster

Before you can install cert-manager, you must first ensure your local machine is configured to talk to your OpenShift
cluster using the oc tool.

Login to the OpenShift cluster as the system:admin user
oc login -u system:admin

1.1. Installing cert-manager 7

https://github.com/bitnami/kube-prod-runtime/
https://github.com/bitnami/kube-prod-runtime/blob/master/Jenkinsfile
https://github.com/bitnami/kube-prod-runtime/blob/master/docs/install.md
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/

cert-manager Documentation

Installing with regular manifests

In order to install cert-manager, we must first create a namespace to run it within. This guide will install cert-manager
into the cert-manager namespace. It is possible to run cert-manager in a different namespace, although you will
need to make modifications to the deployment manifests.

Create a namespace to run cert-manager in
oc create namespace cert-manager

As part of the installation, cert-manager also deploys a ValidatingWebhookConfiguration resource in order to validate
that the Issuer, ClusterIssuer and Certificate resources we will create after installation are valid.

In order to deploy the ValidatingWebhookConfiguration, cert-manager creates a number of ‘internal’ Issuer and Cer-
tificate resources in its own namespace.

This creates a chicken-and-egg problem, where cert-manager requires the webhook in order to create the resources,
and the webhook requires cert-manager in order to run.

We avoid this problem by disabling resource validation on the namespace that cert-manager runs in:

Disable resource validation on the cert-manager namespace
oc label namespace cert-manager certmanager.k8s.io/disable-validation=true

You can read more about the webhook on the webhook document.

We can now go ahead and install cert-manager. All resources (the CustomResourceDefinitions, cert-manager, and the
webhook component) are included in a single YAML manifest file:

Install the CustomResourceDefinitions and cert-manager itself
oc apply --validate=false -f https://github.com/jetstack/cert-manager/releases/
→˓download/v0.8.1/cert-manager-openshift.yaml

Note: The --validate=false flag is added to the oc apply command above else you will receive a validation
error relating to the caBundle field of the ValidatingWebhookConfiguration resource.

Configuring your first Issuer

Before you can begin issuing certificates, you must configure at least one Issuer or ClusterIssuer resource in your
cluster.

You should read the Setting up Issuers guide to learn how to configure cert-manager to issue certificates from one of
the supported backends.

Debugging installation issues

If you have any issues with your installation, please refer to the troubleshooting guide.

1.2 Webhook component

In order to provide advanced resource validation, cert-manager includes a ValidatingWebhookConfiguration resource
which is deployed into the cluster.

8 Chapter 1. Get started

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/
https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

cert-manager Documentation

This allows cert-manager to validate that Issuer, ClusterIssuer and Certificate resources that are submitted to the
apiserver are syntactically valid, and catch issues with your resources early on.

If you disable the webhook component, cert-manager will still perform the same resource validation however it will
not reject ‘create’ events when the resources are submitted to the apiserver if they are invalid. This means it may be
possible for a user to submit a resource that renders the controller inoperable. For this reason, it is strongly advised to
keep the webhook enabled.

Note: This feature requires Kubernetes v1.9 or greater.

1.2.1 How it works

This sections walks through how the resource validation webhook is configured and explains the process required for
it to provision.

The webhook is a ValidatingWebhookConfiguration resource combined with an extra pod that is deployed alongside
the cert-manager-controller.

The ValidatingWebhookConfiguration instructs the Kubernetes apiserver to POST the contents of any Create or Update
operations performed on cert-manager resource types in order to validate that they are setting valid configurations.

This allows us to ensure mis-configurations are caught early on and communicated to you.

In order for this to work, the webhook requires a TLS certificate that the apiserver is configured to trust.

The cert-manager deployment manifests define two Issuer resources, and two Certificate resources:

• issuer/cert-manager-webhook-selfsign - A self signing Issuer that is used to issue a self signed root CA certifi-
cate.

• certificate/cert-manager-webhook-ca - A self-signed root CA certificate which is used to sign certificates for the
webhook pod.

• issue/cert-manager-webhook-ca - A CA Issuer that is used to issue certificates used by the webhook pod to serve
with.

• certificate/cert-manager-webhook-webhook-tls - A TLS certificate issued by the root CA above, served by the
webhook.

You can check the status of these resources to ensure they’re functioning correctly by running:

kubectl get issuer --namespace cert-manager
NAME AGE
cert-manager-webhook-ca 10m
cert-manager-webhook-selfsign 10m

kubectl get certificate -o wide --namespace cert-manager
NAME READY SECRET ISSUER
→˓ STATUS AGE
cert-manager-webhook-ca True cert-manager-webhook-ca cert-
→˓manager-webhook-selfsign Certificate is up to date and has not expired 10m
cert-manager-webhook-webhook-tls True cert-manager-webhook-webhook-tls cert-
→˓manager-webhook-ca Certificate is up to date and has not expired 10m

If the certificates or issuer are not Ready or you cannot see them, you should check the troubleshooting guide for help.

1.2. Webhook component 9

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

cert-manager Documentation

Note: If you are running Kubernetes v1.10 or earlier, you may need to run kubectl describe instead of
kubectl get as the ‘additionalPrinterColumns’ functionality only moved to beta in v1.11.

cainjector

The cert-manager CA injector is responsible for injecting the two CA bundles above into the webhook’s Validating-
WebhookConfiguration and APIService resource in order to allow the Kubernetes apiserver to ‘trust’ the webhook
apiserver.

This component is configured using the certmanager.k8s.io/inject-apiserver-ca: "true" and
certmanager.k8s.io/inject-apiserver-ca: "true" annotations on the APIService and Validating-
WebhookConfiguration resources.

It copies across the CA defined in the ‘cert-manager-webhook-ca’ Secret generated above to the caBundle
field on the APIService resource. It also sets the webhook’s clientConfig.caBundle field on the
cert-manager-webhook ValidatingWebhookConfiguration resource to that of your Kubernetes API server in
order to support Kubernetes versions earlier than v1.11.

Known issues

This section contains known issues with the webhook component.

If you’re having problems, or receiving errors when creating cert-manager resources, please read through this section
for help.

Disabling validation on the cert-manager namespace

If you’ve installed cert-manager with custom manifests, or have performed an upgrade from an earlier version, it’s
important to make sure that the namespace that the webhook is running in has an additional label applied to it in order
to disable resource validation on the namespace that the webhook runs in.

If this step is not completed, cert-manager will not be able to provision certificates for the webhook correctly, causing
a chicken-egg situation.

To apply the label, run:

kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

You may need to wait a little while before cert-manager retries issuing the certificates if they have been failing for a
while due to cert-manager’s built in back-offs.

Running on private GKE clusters

When Google configure the control plane for private clusters, they automatically configure VPC peering between your
Kubernetes cluster’s network and a separate Google managed project.

In order to restrict what Google are able to access within your cluster, the firewall rules configured restrict access to
your Kubernetes pods.

This means that in order to use the webhook component with a GKE private cluster, you must configure an additional
firewall rule to allow the GKE control plane access to your webhook pod.

You can read more information on how to add firewall rules for the GKE control plane nodes in the GKE docs.

10 Chapter 1. Get started

https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters#add_firewall_rules

cert-manager Documentation

Alternatively, you can read how to disable the webhook component below.

Todo: add an example command for how to do this here & explain any security implications

1.2.2 Disable the webhook component

If you are having issues with the webhook and cannot use it at this time, you can optionally disable the webhook
altogether.

Doing this may expose your cluster to mis-configuration problems that in some cases could cause cert-manager to stop
working altogether (i.e. if invalid types are set for fields on cert-manager resources).

How you disable the webhook depends on your deployment method.

With Helm

The Helm chart exposes an option that can be used to disable the webhook.

To do so with an existing installation, you can run:

helm upgrade cert-manager \
--reuse-values \
--set webhook.enabled=false

If you have not installed cert-manager yet, you can add the --set webhook.enabled=false to the helm
install command used to install cert-manager.

With static manifests

Because we cannot specify options when installing the static manifests to conditionally disable different components,
we also ship a copy of the deployment files that do not include the webhook.

Instead of installing with cert-manager.yaml file, you should instead use the cert-manager-no-webhook.yaml file lo-
cated in the deploy directory.

This is a destructive operation, as it will remove the CustomResourceDefinition resources, causing your configured
Issuers, Certificates etc to be deleted.

You should first backup your configuration before running the following commands.

To re-install cert-manager without the webhook, run:

kubectl delete -f https://github.com/jetstack/cert-manager/releases/download/v0.8.1/
→˓cert-manager.yaml

kubectl apply -f https://github.com/jetstack/cert-manager/releases/download/v0.8.1/
→˓cert-manager-no-webhook.yaml

Once you have re-installed cert-manager, you should then restore your configuration.

1.2. Webhook component 11

https://github.com/jetstack/cert-manager/releases/download/v0.8.1/cert-manager.yaml
https://github.com/jetstack/cert-manager/releases/download/v0.8.1/cert-manager-no-webhook.yaml

cert-manager Documentation

1.3 Troubleshooting installation

1.3.1 Internal error occurred: failed calling admission webhook . . . the server is
currently unable to handle the request

When installing or upgrading cert-manager, you may run into issues when going through the Validation Steps in the
install guide which relate to the admission webhook.

If you see an error like the above, this guide will talk you through a few checks that can pick up common installation
problems.

1. Check the namespace cert-manager is running in

As described in the Webhook component documentation, the webhook component requires TLS certificates in order to
start and communicate securely with the Kubernetes API server.

In order for cert-manager to be able to issue certificates for the webhook before it has started, we must disable resource
validation on the namespace that cert-manager is running in.

Assuming you have deployed into the cert-manager namespace, run the following command to verify that your
cert-manager namespace has the necessary label:

kubectl describe namespace cert-manager

Name: cert-manager
Labels: certmanager.k8s.io/disable-validation=true
Annotations: <none>
Status: Active
...

If you cannot see the certmanager.k8s.io/disable-validation=true label on your namespace, you
should add it with:

kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

Please continue reading this guide once you have added the label.

2. Verify that the webhook Issuer and Certificate resources exist

If you had any issues upgrading, especially if you install cert-manager using Helm, you may run into an issue where
either:

• the CustomResourceDefinition resources do not exist

• the webhook’s Issuer and Certificate resources do not exist

We can first check for the existence of the CustomResourceDefinition resources:

kubectl get crd | grep certmanager

NAME CREATED AT
certificates.certmanager.k8s.io 2018-08-17T20:12:26Z
challenges.certmanager.k8s.io 2018-08-02T15:33:02Z
clusterissuers.certmanager.k8s.io 2018-08-17T20:12:26Z
issuers.certmanager.k8s.io 2018-08-17T20:12:26Z
orders.certmanager.k8s.io 2018-08-02T14:40:11Z

12 Chapter 1. Get started

cert-manager Documentation

We should then also check for that the webhook’s Issuer and Certificate resources exist and have been issued correctly:

kubectl get issuer,certificate --namespace cert-manager

NAME AGE
issuer.certmanager.k8s.io/cert-manager-webhook-ca 22d
issuer.certmanager.k8s.io/cert-manager-webhook-selfsign 22d

NAME READY SECRET
→˓ AGE
certificate.certmanager.k8s.io/cert-manager-webhook-ca True cert-
→˓manager-webhook-ca 22d
certificate.certmanager.k8s.io/cert-manager-webhook-webhook-tls True cert-
→˓manager-webhook-webhook-tls 22d

If you do not see the CustomResourceDefinitions installed, or cannot see the webhook’s Issuer and Certificate re-
sources, please go back to the install guide and ensure you’ve followed every step closely.

Take particular care to install the CRD manifest before installing cert-manager itself.

3. Verify all cert-manager pods are running successfully

You can verify that cert-manager has managed to start successfully by checking the state of the pods that have been
deployed:

kubectl get pods --namespace cert-manager

NAME READY STATUS RESTARTS AGE
cert-manager-7cbdc48784-rpgnt 1/1 Running 0 3m
cert-manager-webhook-5b5dd6999-kst4x 1/1 Running 0 3m
cert-manager-cainjector-3ba5cd2bcd-de332x 1/1 Running 0 3m

If the ‘webhook’ pod (2nd line) is in a ContainerCreating state, it may still be waiting for the Secret in step 2 to be
mounted into the pod.

Provided the Secret resource does now exist, Waiting a few minutes, or deleting the pod and allowing it to be recreated
should get things moving again.

Note: Check if the Secret exists by running:

kubectl --namespace cert-manager get secret cert-manager-webhook-webhook-tls

1.3. Troubleshooting installation 13

cert-manager Documentation

14 Chapter 1. Get started

CHAPTER 2

Tutorials

This section contains guides that help you get started using cert-manager for more specific use cases.

For more information on performing individual tasks, read the tasks section.

2.1 ACME Issuer Tutorials

This sections contains tutorials relating to the ACME issuer.

2.1.1 Quick-Start using Cert-Manager with NGINX Ingress

Step 0 - Install Helm Client

Skip this section if you have helm installed.

The easiest way to install cert-manager is to use Helm, a templating and deployment tool for Kubernetes resources.

First, ensure the Helm client is installed following the Helm installation instructions.

For example, on macOS:

$ brew install kubernetes-helm

Step 1 - Installer Tiller

Skip this section if you have Tiller set-up.

Tiller is Helm’s server-side component, which the helm client uses to deploy resources.

Deploying resources is a privileged operation; in the general case requiring arbitrary privileges. With this example,
we give Tiller complete control of the cluster. View the documentation on securing helm for details on setting up
appropriate permissions for your environment.

15

https://helm.sh
https://github.com/helm/helm/blob/master/docs/install.md
https://docs.helm.sh/using_helm/#securing-your-helm-installation

cert-manager Documentation

Create the a ServiceAccount for tiller:

$ kubectl create serviceaccount tiller --namespace=kube-system
serviceaccount "tiller" created

Grant the tiller service account cluster admin privileges:

$ kubectl create clusterrolebinding tiller-admin --serviceaccount=kube-system:tiller -
→˓-clusterrole=cluster-admin
clusterrolebinding.rbac.authorization.k8s.io "tiller-admin" created

Install tiller with the tiller service account:

$ helm init --service-account=tiller
$HELM_HOME has been configured at /Users/myaccount/.helm.

Tiller (the Helm server-side component) has been installed into your Kubernetes
→˓Cluster.

Please note: by default, Tiller is deployed with an insecure 'allow unauthenticated
→˓users' policy.
To prevent this, run `helm init` with the --tiller-tls-verify flag.
For more information on securing your installation see: https://docs.helm.sh/using_
→˓helm/#securing-your-helm-installation
Happy Helming!

Update the helm repository with the latest charts:

$ helm repo update
Hang tight while we grab the latest from your chart repositories...
...Skip local chart repository
...Successfully got an update from the "stable" chart repository
...Successfully got an update from the "coreos" chart repository
Update Complete. Happy Helming!

Step 2 - Deploy the NGINX Ingress Controller

A kubernetes ingress controller is designed to be the access point for HTTP and HTTPS traffic to the software running
within your cluster. The nginx-ingress controller does this by providing an HTTP proxy service supported by your
cloud provider’s load balancer.

You can get more details about nginx-ingress and how it works from the documentation for nginx-ingress.

Use helm to install an Nginx Ingress controller:

$ helm install stable/nginx-ingress --name quickstart

NAME: quickstart
LAST DEPLOYED: Sat Nov 10 10:25:06 2018
NAMESPACE: default
STATUS: DEPLOYED

RESOURCES:
==> v1/ConfigMap
NAME AGE
quickstart-nginx-ingress-controller 0s

(continues on next page)

16 Chapter 2. Tutorials

https://kubernetes.io/docs/concepts/services-networking/ingress/
https://kubernetes.github.io/ingress-nginx/

cert-manager Documentation

(continued from previous page)

==> v1beta1/ClusterRole
quickstart-nginx-ingress 0s

==> v1beta1/Deployment
quickstart-nginx-ingress-controller 0s
quickstart-nginx-ingress-default-backend 0s

==> v1/Pod(related)

NAME READY STATUS
→˓RESTARTS AGE
quickstart-nginx-ingress-controller-6cfc45747-wcxrg 0/1 ContainerCreating 0
→˓ 0s
quickstart-nginx-ingress-default-backend-bf9db5c67-dkg4l 0/1 ContainerCreating 0
→˓ 0s

==> v1/ServiceAccount

NAME AGE
quickstart-nginx-ingress 0s

==> v1beta1/ClusterRoleBinding
quickstart-nginx-ingress 0s

==> v1beta1/Role
quickstart-nginx-ingress 0s

==> v1beta1/RoleBinding
quickstart-nginx-ingress 0s

==> v1/Service
quickstart-nginx-ingress-controller 0s
quickstart-nginx-ingress-default-backend 0s

NOTES:
The nginx-ingress controller has been installed.
It may take a few minutes for the LoadBalancer IP to be available.
You can watch the status by running 'kubectl --namespace default get services -o wide
→˓-w quickstart-nginx-ingress-controller'

An example Ingress that makes use of the controller:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:
annotations:

kubernetes.io/ingress.class: nginx
name: example
namespace: foo

spec:
rules:

- host: www.example.com
http:
paths:
- backend:

serviceName: exampleService
(continues on next page)

2.1. ACME Issuer Tutorials 17

cert-manager Documentation

(continued from previous page)

servicePort: 80
path: /

This section is only required if TLS is to be enabled for the Ingress
tls:

- hosts:
- www.example.com

secretName: example-tls

If TLS is enabled for the Ingress, a Secret containing the certificate and key must
→˓also be provided:

apiVersion: v1
kind: Secret
metadata:
name: example-tls
namespace: foo

data:
tls.crt: <base64 encoded cert>
tls.key: <base64 encoded key>

type: kubernetes.io/tls

It can take a minute or two for the cloud provider to provide and link a public IP address. When it is complete, you
can see the external IP address using the kubectl command:

$ kubectl get svc

NAME TYPE CLUSTER-IP EXTERNAL-
→˓IP PORT(S) AGE
kubernetes ClusterIP 10.63.240.1 <none>
→˓ 443/TCP 23m
quickstart-nginx-ingress-controller LoadBalancer 10.63.248.177 35.233.154.
→˓161 80:31345/TCP,443:31376/TCP 16m
quickstart-nginx-ingress-default-backend ClusterIP 10.63.250.234 <none>
→˓ 80/TCP 16m

This command shows you all the services in your cluster (in the default namespace), and any external IP addresses
they have. When you first create the controller, your cloud provider won’t have assigned and allocated an IP address
through the LoadBalancer yet. Until it does, the external IP address for the service will be listed as <pending>.

Your cloud provider may have options for reserving an IP address prior to creating the ingress controller and using that
IP address rather than assigning an IP address from a pool. Read through the documentation from your cloud provider
on how to arrange that.

Step 3 - Assign a DNS name

The external IP that is allocated to the ingress-controller is the IP to which all incoming traffic should be routed. To
enable this, add it to a DNS zone you control, for example as example.your-domain.com.

This quickstart assumes you know how to assign a DNS entry to an IP address and will do so.

Step 4 - Deploy an Example Service

Your service may have its own chart, or you may be deploying it directly with manifests. This quickstart uses manifests
to create and expose a sample service. The example service uses kuard, a demo application which makes an excellent
back-end for examples.

18 Chapter 2. Tutorials

https://github.com/kubernetes-up-and-running/kuard

cert-manager Documentation

The quickstart example uses three manifests for the sample. The first two are a sample deployment and an associated
service:

• deployment manifest: deployment.yaml

apiVersion: extensions/v1beta1
kind: Deployment
metadata:

name: kuard
spec:
replicas: 1
template:
metadata:
labels:

app: kuard
spec:

containers:
- image: gcr.io/kuar-demo/kuard-amd64:1
imagePullPolicy: Always
name: kuard
ports:
- containerPort: 8080

• service manifest: service.yaml

apiVersion: v1
kind: Service
metadata:

name: kuard
spec:
ports:
- port: 80
targetPort: 8080
protocol: TCP

selector:
app: kuard

You can create download and reference these files locally, or you can reference them from the GitHub source repository
for this documentation. To install the example service from the tutorial files straight from GitHub, you may use the
commands:

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.
→˓8/docs/tutorials/acme/quick-start/example/deployment.yaml
deployment.extensions "kuard" created

$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.
→˓8/docs/tutorials/acme/quick-start/example/service.yaml
service "kuard" created

An ingress resource is what Kubernetes uses to expose this example service outside the cluster. You will need to
download and modify the example manifest to reflect the domain that you own or control to complete this example.

A sample ingress you can start with is:

• ingress manifest: ingress.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

(continues on next page)

2.1. ACME Issuer Tutorials 19

https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/deployment.yaml
https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/service.yaml
https://kubernetes.io/docs/concepts/services-networking/ingress/
https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/ingress.yaml

cert-manager Documentation

(continued from previous page)

name: kuard
annotations:
kubernetes.io/ingress.class: "nginx"
#certmanager.k8s.io/issuer: "letsencrypt-staging"
#certmanager.k8s.io/acme-challenge-type: http01

spec:
tls:
- hosts:
- example.example.com
secretName: quickstart-example-tls

rules:
- host: example.example.com
http:

paths:
- path: /

backend:
serviceName: kuard
servicePort: 80

You can download the sample manifest from github, edit it, and submit the manifest to Kubernetes with the command:

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/
→˓release-0.8/docs/tutorials/acme/quick-start/example/ingress.yaml

edit the file in your editor, and once it is saved:
ingress.extensions "kuard" created

Note: The ingress example we show above has a host definition within it. The nginx-ingress-controller will route
traffic when the hostname requested matches the definition in the ingress. You can deploy an ingress without a host
definition in the rule, but that pattern isn’t usable with a TLS certificate, which expects a fully qualified domain name.

Once it is deployed, you can use the command kubectl get ingress to see the status of the ingress:

NAME HOSTS ADDRESS PORTS AGE
kuard * 80, 443 17s

It may take a few minutes, depending on your service provider, for the ingress to be fully created. When it has been
created and linked into place, the ingress will show an address as well:

NAME HOSTS ADDRESS PORTS AGE
kuard * 35.199.170.62 80 9m

Note: The IP address on the ingress may not match the IP address that the nginx-ingress-controller. This is fine,
and is a quirk/implementation detail of the service provider hosting your Kubernetes cluster. Since we are using the
nginx-ingress-controller instead of any cloud-provider specific ingress backend, use the IP address that was defined
and allocated for the nginx-ingress-service LoadBalancer resource as the primary access point for your service.

Make sure the service is reachable at the domain name you added above, for example http://example.your-domain.com.
The simplest way is to open a browser and enter the name that you set up in DNS, and for which we just added the
ingress.

You may also use a command line tool like curl to check the ingress.

20 Chapter 2. Tutorials

cert-manager Documentation

$ curl -kivL -H 'Host: example.your-domain.com' 'http://35.199.164.14'

The options on this curl command will provide verbose output, following any redirects, show the TLS headers in
the output, and not error on insecure certificates. With nginx-ingress-controller, the service will be available with a
TLS certificate, but it will be using a self-signed certificate provided as a default from the nginx-ingress-controller.
Browsers will show a warning that this is an invalid certificate. This is expected and normal, as we have not yet used
cert-manager to get a fully trusted certificate for our site.

Warning: It is critical to make sure that your ingress is available and responding correctly on the internet. This
quickstart example uses Let’s Encypt to provide the certificates, which expects and validates both that the service
is available and that during the process of issuing a certificate uses that valdiation as proof that the request for the
domain belongs to someone with sufficient control over the domain.

Step 5 - Deploy Cert Manager

We need to install cert-manager to do the work with kubernetes to request a certificate and respond to the challenge
to validate it. We can use helm to install cert-manager. This example installed cert-manager into the kube-system
namespace from the public helm charts.

Install the cert-manager CRDs. We must do this before installing the Helm
chart in the next step for `release-0.8` of cert-manager:
$ kubectl apply -f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.
→˓8/deploy/manifests/00-crds.yaml

IMPORTANT: if the cert-manager namespace **already exists**, you MUST ensure
it has an additional label on it in order for the deployment to succeed
$ kubectl label namespace cert-manager certmanager.k8s.io/disable-validation="true"

Add the Jetstack Helm repository
$ helm repo add jetstack https://charts.jetstack.io
Updating the repo just incase it already existed
$ helm repo update

Install the cert-manager helm chart
$ helm install \
--name cert-manager \
--namespace cert-manager \
--version v0.8.1 \
jetstack/cert-manager

NAME: cert-manager
LAST DEPLOYED: Wed Jan 9 13:36:13 2019
NAMESPACE: cert-manager
STATUS: DEPLOYED

RESOURCES:
==> v1beta1/ClusterRoleBinding
NAME AGE
cert-manager-webhook-ca-sync 2s
cert-manager-webhook:auth-delegator 2s
cert-manager 2s

==> v1beta1/APIService
NAME AGE

(continues on next page)

2.1. ACME Issuer Tutorials 21

cert-manager Documentation

(continued from previous page)

v1beta1.admission.certmanager.k8s.io 2s

==> v1alpha1/Certificate
cert-manager-webhook-webhook-tls 1s
cert-manager-webhook-ca 1s

==> v1beta1/ValidatingWebhookConfiguration
cert-manager-webhook 1s

==> v1/ServiceAccount
NAME SECRETS AGE
cert-manager-webhook-ca-sync 1 2s
cert-manager-webhook 1 2s
cert-manager 1 2s

==> v1beta1/RoleBinding
NAME AGE
cert-manager-webhook:webhook-authentication-reader 2s

==> v1beta1/Deployment
NAME DESIRED CURRENT UP-TO-DATE AVAILABLE AGE
cert-manager-webhook 1 1 1 0 2s
cert-manager 1 1 1 0 2s

==> v1/Job
NAME DESIRED SUCCESSFUL AGE
cert-manager-webhook-ca-sync 1 0 2s

==> v1beta1/CronJob
NAME SCHEDULE SUSPEND ACTIVE LAST SCHEDULE AGE
cert-manager-webhook-ca-sync * * */24 * * False 0 <none> 2s

==> v1beta1/ClusterRole
NAME AGE
cert-manager-webhook-ca-sync 2s
cert-manager 2s

==> v1/ClusterRole
cert-manager-webhook:webhook-requester 2s
cert-manager-view 2s
cert-manager-edit 2s

==> v1/Service
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
cert-manager-webhook ClusterIP 10.3.244.237 <none> 443/TCP 2s

==> v1/ConfigMap
NAME DATA AGE
cert-manager-webhook-ca-sync 1 2s

==> v1alpha1/Issuer
NAME AGE
cert-manager-webhook-ca 1s
cert-manager-webhook-selfsign 1s

==> v1/Pod(related)
NAME READY STATUS RESTARTS AGE

(continues on next page)

22 Chapter 2. Tutorials

cert-manager Documentation

(continued from previous page)

cert-manager-webhook-745b49d445-rnxm2 0/1 ContainerCreating 0 2s
cert-manager-9cdd9f774-t856z 0/1 ContainerCreating 0 2s
cert-manager-webhook-ca-sync-ddf4b 0/1 ContainerCreating 0 2s

NOTES:
cert-manager has been deployed successfully!

In order to begin issuing certificates, you will need to set up a ClusterIssuer
or Issuer resource (for example, by creating a 'letsencrypt-staging' issuer).

More information on the different types of issuers and how to configure them
can be found in our documentation:

https://docs.cert-manager.io/en/latest/reference/issuers.html

For information on how to configure cert-manager to automatically provision
Certificates for Ingress resources, take a look at the `ingress-shim`
documentation:

https://docs.cert-manager.io/en/latest/reference/ingress-shim.html

Cert-manager uses two different custom resources, also known as CRD’s, to configure and control how it operates, as
well as share status of its operation. These two resources are:

Issuers (or ClusterIssuers)

An Issuer is the definition for where cert-manager will get request TLS certificates. An Issuer is specific
to a single namespace in Kubernetes, and a ClusterIssuer is meant to be a cluster-wide definition for the
same purpose.

Certificate

A certificate is the resource that cert-manager uses to expose the state of a request as well as track upcom-
ing expirations.

Step 6 - Configure Let’s Encrypt Issuer

We will set up two issuers for Let’s Encrypt in this example. The Let’s Encrypt production issuer has very strict rate
limits. When you are experimenting and learning, it is very easy to hit those limits, and confuse rate limiting with
errors in configuration or operation.

Because of this, we will start with the Let’s Encrypt staging issuer, and once that is working switch to a production
issuer.

Create this definition locally and update the email address to your own. This email required by Let’s Encrypt and used
to notify you of certificate expirations and updates.

• staging issuer: staging-issuer.yaml

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: letsencrypt-staging
spec:

acme:
The ACME server URL
server: https://acme-staging-v02.api.letsencrypt.org/directory

(continues on next page)

2.1. ACME Issuer Tutorials 23

https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://letsencrypt.org/docs/rate-limits/
https://letsencrypt.org/docs/rate-limits/
https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/staging-issuer.yaml

cert-manager Documentation

(continued from previous page)

Email address used for ACME registration
email: user@example.com
Name of a secret used to store the ACME account private key
privateKeySecretRef:
name: letsencrypt-staging

Enable the HTTP-01 challenge provider
http01: {}

Once edited, apply the custom resource:

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/
→˓release-0.8/docs/tutorials/acme/quick-start/example/staging-issuer.yaml
issuer.certmanager.k8s.io "letsencrypt-staging" created

Also create a production issuer and deploy it. As with the staging issuer, you will need to update this example and add
in your own email address.

• production issuer: production-issuer.yaml

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: letsencrypt-prod
spec:

acme:
The ACME server URL
server: https://acme-v02.api.letsencrypt.org/directory
Email address used for ACME registration
email: user@example.com
Name of a secret used to store the ACME account private key
privateKeySecretRef:
name: letsencrypt-prod

Enable the HTTP-01 challenge provider
http01: {}

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/
→˓release-0.8/docs/tutorials/acme/quick-start/example/production-issuer.yaml
issuer.certmanager.k8s.io "letsencrypt-prod" created

Both of these issuers are configured to use the HTTP01 challenge provider.

Check on the status of the issuer after you create it:

$ kubectl describe issuer letsencrypt-staging

Name: letsencrypt-staging
Namespace: default
Labels: <none>
Annotations: kubectl.kubernetes.io/last-applied-configuration={"apiVersion":
→˓"certmanager.k8s.io/v1alpha1","kind":"Issuer","metadata":{"annotations":{},"name":
→˓"letsencrypt-staging","namespace":"default"},"spec":{"a...
API Version: certmanager.k8s.io/v1alpha1
Kind: Issuer
Metadata:
Cluster Name:
Creation Timestamp: 2018-11-17T18:03:54Z
Generation: 0

(continues on next page)

24 Chapter 2. Tutorials

https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/production-issuer.yaml

cert-manager Documentation

(continued from previous page)

Resource Version: 9092
Self Link: /apis/certmanager.k8s.io/v1alpha1/namespaces/default/issuers/

→˓letsencrypt-staging
UID: 25b7ae77-ea93-11e8-82f8-42010a8a00b5

Spec:
Acme:

Email: your.email@your-domain.com
Http 01:
Private Key Secret Ref:

Key:
Name: letsencrypt-staging

Server: https://acme-staging-v02.api.letsencrypt.org/directory
Status:
Acme:

Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct/7374163
Conditions:

Last Transition Time: 2018-11-17T18:04:00Z
Message: The ACME account was registered with the ACME server
Reason: ACMEAccountRegistered
Status: True
Type: Ready

Events: <none>

You should see the issuer listed with a registered account.

Step 7 - Deploy a TLS Ingress Resource

With all the pre-requisite configuration in place, we can now do the pieces to request the TLS certificate. There are two
primary ways to do this: using annotations on the ingress with ingress-shim or directly creating a certificate resource.

In this example, we will add annotations to the ingress, and take advantage of ingress-shim to have it create the
certificate resource on our behalf. After creating a certificate, the cert-manager will update or create a ingress resource
and use that to validate the domain. Once verified and issued, cert-manager will create or update the secret defined in
the certificate.

Note: The secret that is used in the ingress should match the secret defined in the certificate. There isn’t any explicit
checking, so a typo will resut in the nginx-ingress-controller falling back to its self-signed certificate. In our example,
we are using annotations on the ingress (and ingress-shim) which will create the correct secrets on your behalf.

Edit the ingress add the annotations that were commented out in our earlier example:

• ingress tls: ingress-tls.yaml

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: kuard
annotations:
kubernetes.io/ingress.class: "nginx"
certmanager.k8s.io/issuer: "letsencrypt-staging"
certmanager.k8s.io/acme-challenge-type: http01

spec:
tls:

(continues on next page)

2.1. ACME Issuer Tutorials 25

https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/ingress-tls.yaml

cert-manager Documentation

(continued from previous page)

- hosts:
- example.example.com
secretName: quickstart-example-tls

rules:
- host: example.example.com
http:

paths:
- path: /

backend:
serviceName: kuard
servicePort: 80

and apply it:

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/
→˓release-0.8/docs/tutorials/acme/quick-start/example/ingress-tls.yaml
ingress.extensions "kuard" configured

Cert-manager will read these annotations and use them to create a certificate, which you can request and see:

$ kubectl get certificate
NAME AGE
quickstart-example-tls 38s

Cert-manager reflects the state of the process for every request in the certificate object. You can view this information
using the kubectl describe command:

$ kubectl describe certificate quickstart-example-tls

Name: quickstart-example-tls
Namespace: default
Labels: <none>
Annotations: <none>
API Version: certmanager.k8s.io/v1alpha1
Kind: Certificate
Metadata:
Cluster Name:
Creation Timestamp: 2018-11-17T17:58:37Z
Generation: 0
Owner References:

API Version: extensions/v1beta1
Block Owner Deletion: true
Controller: true
Kind: Ingress
Name: kuard
UID: a3e9f935-ea87-11e8-82f8-42010a8a00b5

Resource Version: 9295
Self Link: /apis/certmanager.k8s.io/v1alpha1/namespaces/default/

→˓certificates/quickstart-example-tls
UID: 68d43400-ea92-11e8-82f8-42010a8a00b5

Spec:
Acme:

Config:
Domains:
example.your-domain.com

Http 01:

(continues on next page)

26 Chapter 2. Tutorials

cert-manager Documentation

(continued from previous page)

Ingress:
Ingress Class: nginx

Dns Names:
example.your-domain.com

Issuer Ref:
Kind: Issuer
Name: letsencrypt-staging

Secret Name: quickstart-example-tls
Status:
Acme:

Order:
URL: https://acme-staging-v02.api.letsencrypt.org/acme/order/7374163/13665676

Conditions:
Last Transition Time: 2018-11-17T18:05:57Z
Message: Certificate issued successfully
Reason: CertIssued
Status: True
Type: Ready

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal CreateOrder 9m cert-manager Created new ACME order,

→˓attempting validation...
Normal DomainVerified 8m cert-manager Domain "example.your-

→˓domain.com" verified with "http-01" validation
Normal IssueCert 8m cert-manager Issuing certificate...
Normal CertObtained 7m cert-manager Obtained certificate

→˓from ACME server
Normal CertIssued 7m cert-manager Certificate issued

→˓Successfully

The events associated with this resource and listed at the bottom of the describe results show the state of the request.
In the above example the certificate was validated and issued within a couple of minutes.

Once complete, cert-manager will have created a secret with the details of the certificate based on the secret used in
the ingress resource. You can use the describe command as well to see some details:

$ kubectl describe secret quickstart-example-tls

Name: quickstart-example-tls
Namespace: default
Labels: certmanager.k8s.io/certificate-name=quickstart-example-tls
Annotations: certmanager.k8s.io/alt-names=example.your-domain.com

certmanager.k8s.io/common-name=example.your-domain.com
certmanager.k8s.io/issuer-kind=Issuer
certmanager.k8s.io/issuer-name=letsencrypt-staging

Type: kubernetes.io/tls

Data
====
tls.crt: 3566 bytes
tls.key: 1675 bytes

Now that we have confidence that everything is configured correctly, you can update the annotations in the ingress to
specify the production issuer:

• ingress tls final: ingress-tls-final.yaml

2.1. ACME Issuer Tutorials 27

https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/docs/tutorials/acme/quick-start/example/ingress-tls-final.yaml

cert-manager Documentation

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

name: kuard
annotations:
kubernetes.io/ingress.class: "nginx"
certmanager.k8s.io/issuer: "letsencrypt-prod"
certmanager.k8s.io/acme-challenge-type: http01

spec:
tls:
- hosts:
- example.example.com
secretName: quickstart-example-tls

rules:
- host: example.example.com
http:

paths:
- path: /

backend:
serviceName: kuard
servicePort: 80

$ kubectl create --edit -f https://raw.githubusercontent.com/jetstack/cert-manager/
→˓release-0.8/docs/tutorials/acme/quick-start/example/ingress-tls-final.yaml

ingress.extensions "kuard" configured

You will also need to delete the existing secret, which cert-manager is watching and will cause it to reprocess the
request with the updated issuer.

$ kubectl delete secret quickstart-example-tls

secret "quickstart-example-tls" deleted

This will start the process to get a new certificate, and using describe you can see the status. Once the production cer-
tificate has been updated, you should see the example KUARD running at your domain with a signed TLS certificate.

$ kubectl describe certificate

Name: quickstart-example-tls
Namespace: default
Labels: <none>
Annotations: <none>
API Version: certmanager.k8s.io/v1alpha1
Kind: Certificate
Metadata:
Cluster Name:
Creation Timestamp: 2018-11-17T18:36:48Z
Generation: 0
Owner References:

API Version: extensions/v1beta1
Block Owner Deletion: true
Controller: true
Kind: Ingress
Name: kuard
UID: a3e9f935-ea87-11e8-82f8-42010a8a00b5

(continues on next page)

28 Chapter 2. Tutorials

cert-manager Documentation

(continued from previous page)

Resource Version: 283686
Self Link: /apis/certmanager.k8s.io/v1alpha1/namespaces/default/

→˓certificates/quickstart-example-tls
UID: bdd93b32-ea97-11e8-82f8-42010a8a00b5

Spec:
Acme:

Config:
Domains:
example.your-domain.com

Http 01:
Ingress:
Ingress Class: nginx

Dns Names:
example.your-domain.com

Issuer Ref:
Kind: Issuer
Name: letsencrypt-prod

Secret Name: quickstart-example-tls
Status:
Conditions:

Last Transition Time: 2019-01-09T13:52:05Z
Message: Certificate does not exist
Reason: NotFound
Status: False
Type: Ready

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Generated 18s cert-manager Generated new private key
Normal OrderCreated 18s cert-manager Created Order resource "quickstart-

→˓example-tls-889745041"

You can see the current state of the ACME Order by running kubectl describe on the Order resource that
cert-manager has created for your Certificate:

$ kubectl describe order quickstart-example-tls-889745041
...
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Created 90s cert-manager Created Challenge resource "quickstart-

→˓example-tls-889745041-0" for domain "example.your-domain.com"

Here, we can see that cert-manager has created 1 ‘Challenge’ resource to fulfil the Order. You can dig into the state of
the current ACME challenge by running kubectl describe on the automatically created Challenge resource:

$ kubectl describe challenge quickstart-example-tls-889745041-0
...

Status:
Presented: true
Processing: true
Reason: Waiting for http-01 challenge propagation
State: pending

Events:
Type Reason Age From Message

(continues on next page)

2.1. ACME Issuer Tutorials 29

cert-manager Documentation

(continued from previous page)

---- ------ ---- ---- -------
Normal Started 15s cert-manager Challenge scheduled for processing
Normal Presented 14s cert-manager Presented challenge using http-01 challenge

→˓mechanism

From above, we can see that the challenge has been ‘presented’ and cert-manager is waiting for the challenge record to
propagate to the ingress controller. You should keep an eye out for new events on the challenge resource, as a ‘success’
event should be printed after a minute or so (depending on how fast your ingress controller is at updating rules):

$ kubectl describe challenge quickstart-example-tls-889745041-0
...

Status:
Presented: false
Processing: false
Reason: Successfully authorized domain
State: valid

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Started 71s cert-manager Challenge scheduled for processing
Normal Presented 70s cert-manager Presented challenge using http-01

→˓challenge mechanism
Normal DomainVerified 2s cert-manager Domain "example.your-domain.com"

→˓verified with "http-01" validation

Note: If your challenges are not becoming ‘valid’ and remain in the ‘pending’ state (or enter into a ‘failed’ state), it
is likely there is some kind of configuration error. Read the Challenge resource reference docs for more information
on debugging failing challenges.

Once the challenge(s) have been completed, their corresponding challenge resources will be deleted, and the ‘Order’
will be updated to reflect the new state of the Order:

$ kubectl describe order quickstart-example-tls-889745041
...
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Created 90s cert-manager Created Challenge resource "quickstart-

→˓example-tls-889745041-0" for domain "example.your-domain.com"
Normal OrderValid 16s cert-manager Order completed successfully

Finally, the ‘Certificate’ resource will be updated to reflect the state of the issuance process. If all is well, you should
be able to ‘describe’ the Certificate and see something like the below:

$ kubectl describe certificate quickstart-example-tls

Status:
Conditions:
Last Transition Time: 2019-01-09T13:57:52Z
Message: Certificate is up to date and has not expired
Reason: Ready
Status: True
Type: Ready

(continues on next page)

30 Chapter 2. Tutorials

cert-manager Documentation

(continued from previous page)

Not After: 2019-04-09T12:57:50Z
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Generated 11m cert-manager Generated new private key
Normal OrderCreated 11m cert-manager Created Order resource

→˓"quickstart-example-tls-889745041"
Normal OrderComplete 10m cert-manager Order "quickstart-example-

→˓tls-889745041" completed successfully

2.1.2 Issuing an ACME certificate using DNS validation

Todo: This guide needs rewriting to be clearer, splitting into sections and potentially rewriting altogether.

cert-manager can be used to obtain certificates from a CA using the ACME protocol. The ACME protocol supports
various challenge mechanisms which are used to prove ownership of a domain so that a valid certificate can be issued
for that domain.

One such challenge mechanism is DNS-01. With a DNS-01 challenge, you prove ownership of a domain by proving
you control its DNS records. This is done by creating a TXT record with specific content that proves you have control
of the domains DNS records.

The following Issuer defines the necessary information to enable DNS validation. You can read more about the Issuer
resource in the Issuer reference docs.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: letsencrypt-staging
5 namespace: default
6 spec:
7 acme:
8 server: https://acme-staging-v02.api.letsencrypt.org/directory
9 email: user@example.com

10

11 # Name of a secret used to store the ACME account private key
12 privateKeySecretRef:
13 name: letsencrypt-staging
14

15 # ACME DNS-01 provider configurations
16 dns01:
17

18 # Here we define a list of DNS-01 providers that can solve DNS challenges
19 providers:
20

21 - name: prod-dns
22 clouddns:
23 # A secretKeyRef to a google cloud json service account
24 serviceAccountSecretRef:
25 name: clouddns-service-account
26 key: service-account.json
27 # The project in which to update the DNS zone
28 project: gcloud-prod-project

(continues on next page)

2.1. ACME Issuer Tutorials 31

https://en.wikipedia.org/wiki/Automated_Certificate_Management_Environment

cert-manager Documentation

(continued from previous page)

29

30 - name: cf-dns
31 cloudflare:
32 email: user@example.com
33 # A secretKeyRef to a cloudflare api key
34 apiKeySecretRef:
35 name: cloudflare-api-key
36 key: api-key.txt

We have specified the ACME server URL for Let’s Encrypt’s staging environment. The staging environment will
not issue trusted certificates but is used to ensure that the verification process is working properly before moving to
production. Let’s Encrypt’s production environment imposes much stricter rate limits, so to reduce the chance of you
hitting those limits it is highly recommended to start by using the staging environment. To move to production, simply
create a new Issuer with the URL set to https://acme-v02.api.letsencrypt.org/directory.

The first stage of the ACME protocol is for the client to register with the ACME server. This phase includes generating
an asymmetric key pair which is then associated with the email address specified in the Issuer. Make sure to change
this email address to a valid one that you own. It is commonly used to send expiry notices when your certificates are
coming up for renewal. The generated private key is stored in a Secret named letsencrypt-staging.

The dns01 stanza contains a list of DNS-01 providers that can be used to solve DNS challenges. Our Issuer defines
two providers. This gives us a choice of which one to use when obtaining certificates.

More information about the DNS provider configuration, including a list of supported providers, can be found in the
dns01 reference docs.

Once we have created the above Issuer we can use it to obtain a certificate.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: example-com-tls
8 issuerRef:
9 name: letsencrypt-staging

10 commonName: '*.example.com'
11 dnsNames:
12 - example.com
13 - foo.com
14 acme:
15 config:
16 - dns01:
17 provider: prod-dns
18 domains:
19 - '*.example.com'
20 - example.com
21 - dns01:
22 provider: cf-dns
23 domains:
24 - foo.com

The Certificate resource describes our desired certificate and the possible methods that can be used to obtain it. You
can obtain certificates for wildcard domains just like any other. Make sure to wrap wildcard domains with asterisks
in your YAML resources, to avoid formatting issues. If you specify both example.com and *.example.com on
the same Certificate, it will take slightly longer to perform validation as each domain will have to be validated one
after the other. You can learn more about the Certificate resource in the reference docs. If the certificate is obtained

32 Chapter 2. Tutorials

https://letsencrypt.org/docs/staging-environment/
https://letsencrypt.org/docs/rate-limits/

cert-manager Documentation

successfully, the resulting key pair will be stored in a secret called example-com-tls in the same namespace as
the Certificate.

The certificate will have a common name of *.example.com and the Subject Alternative Names (SANs) will be
*.example.com, example.com and foo.com.

In our Certificate we have referenced the letsencrypt-staging Issuer above. The Issuer must be in the same
namespace as the Certificate. If you want to reference a ClusterIssuer, which is a cluster-scoped version of an Issuer,
you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the ClusterIssuer reference docs.

The acme stanza defines the configuration for our ACME challenges. Here we have defined the configuration for
our DNS challenges which will be used to verify domain ownership. For each domain mentioned in a dns01
stanza, cert-manager will use the provider’s credentials from the referenced Issuer to create a TXT record called
_acme-challenge. This record will then be verified by the ACME server in order to issue the certificate. Once
domain ownership has been verified, any cert-manager affected records will be cleaned up.

Note: It is your responsibility to ensure the selected provider is authoritative for your domain.

After creating the above Certificate, we can check whether it has been obtained successfully using kubectl
describe:

$ kubectl describe certificate example-com
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal CreateOrder 57m cert-manager Created new ACME order, attempting

→˓validation...
Normal DomainVerified 55m cert-manager Domain "*.example.com" verified with

→˓"dns-01" validation
Normal DomainVerified 55m cert-manager Domain "example.com" verified with

→˓"dns-01" validation
Normal DomainVerified 55m cert-manager Domain "foo.com" verified with "dns-

→˓01" validation
Normal IssueCert 55m cert-manager Issuing certificate...
Normal CertObtained 55m cert-manager Obtained certificate from ACME server
Normal CertIssued 55m cert-manager Certificate issued successfully

You can also check whether issuance was successful with kubectl get secret example-com-tls -o
yaml. You should see a base64 encoded signed TLS key pair.

Once our certificate has been obtained, cert-manager will periodically check its validity and attempt to renew it if
it gets close to expiry. cert-manager considers certificates to be close to expiry when the ‘Not After’ field on the
certificate is less than the current time plus 30 days.

2.1.3 Issuing an ACME certificate using HTTP validation

cert-manager can be used to obtain certificates from a CA using the ACME protocol. The ACME protocol supports
various challenge mechanisms which are used to prove ownership of a domain so that a valid certificate can be issued
for that domain.

One such challenge mechanism is the HTTP-01 challenge. With a HTTP-01 challenge, you prove ownership of a
domain by ensuring that a particular file is present at the domain. It is assumed that you control the domain if you are
able to publish the given file under a given path.

2.1. ACME Issuer Tutorials 33

https://en.wikipedia.org/wiki/Subject_Alternative_Name
https://en.wikipedia.org/wiki/Automated_Certificate_Management_Environment

cert-manager Documentation

The following Issuer defines the necessary information to enable HTTP validation. You can read more about the Issuer
resource in the Issuer reference docs.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: letsencrypt-staging
5 namespace: default
6 spec:
7 acme:
8 # The ACME server URL
9 server: https://acme-staging-v02.api.letsencrypt.org/directory

10 # Email address used for ACME registration
11 email: user@example.com
12 # Name of a secret used to store the ACME account private key
13 privateKeySecretRef:
14 name: letsencrypt-staging
15 # Enable the HTTP-01 challenge provider
16 http01: {}

We have specified the ACME server URL for Let’s Encrypt’s staging environment. The staging environment will
not issue trusted certificates but is used to ensure that the verification process is working properly before moving to
production. Let’s Encrypt’s production environment imposes much stricter rate limits, so to reduce the chance of you
hitting those limits it is highly recommended to start by using the staging environment. To move to production, simply
create a new Issuer with the URL set to https://acme-v02.api.letsencrypt.org/directory.

The first stage of the ACME protocol is for the client to register with the ACME server. This phase includes generating
an asymmetric key pair which is then associated with the email address specified in the Issuer. Make sure to change
this email address to a valid one that you own. It is commonly used to send expiry notices when your certificates are
coming up for renewal. The generated private key is stored in a Secret named letsencrypt-staging.

The presence of the http01 field simply enables the HTTP-01 challenge for this Issuer. No further configuration is
necessary or currently possible.

Once we have created the above Issuer we can use it to obtain a certificate.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: example-com-tls
8 issuerRef:
9 name: letsencrypt-staging

10 commonName: example.com
11 dnsNames:
12 - www.example.com
13 acme:
14 config:
15 - http01:
16 ingressClass: nginx
17 domains:
18 - example.com
19 - http01:
20 ingress: my-ingress
21 domains:
22 - www.example.com

34 Chapter 2. Tutorials

https://letsencrypt.org/docs/staging-environment/
https://letsencrypt.org/docs/rate-limits/

cert-manager Documentation

The Certificate resource describes our desired certificate and the possible methods that can be used to obtain it. You
can learn more about the Certificate resource in the reference docs. If the certificate is obtained successfully, the
resulting key pair will be stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the Subject Alternative Names (SANs) will be
example.com and www.example.com.

In our Certificate we have referenced the letsencrypt-staging Issuer above. The Issuer must be in the same
namespace as the Certificate. If you want to reference a ClusterIssuer, which is a cluster-scoped version of an Issuer,
you must add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the ClusterIssuer reference docs.

The acme stanza defines the configuration for our ACME challenges. Here we have defined the configuration for our
HTTP-01 challenges which will be used to verify domain ownership. To verify ownership of each domain mentioned
in an http01 stanza, cert-manager will create a Pod, Service and Ingress that exposes an HTTP endpoint that satisfies
the HTTP-01 challenge.

The fields ingress and ingressClass in the http01 stanza can be used to control how cert-manager interacts
with Ingress resources:

• If the ingress field is specified, then an Ingress resource with the same name in the same namespace as the
Certificate must already exist and it will be modified only to add the appropriate rules to solve the challenge.
This field is useful for the GCLB ingress controller, as well as a number of others, that assign a single public
IP address for each ingress resource. Without manual intervention, creating a new ingress resource would cause
any challenges to fail.

• If the ingressClass field is specified, a new ingress resource with a randomly generated name will be
created in order to solve the challenge. This new resource will have an annotation with key kubernetes.
io/ingress.class and value set to the value of the ingressClass field. This works for the likes of the
NGINX ingress controller.

• If neither are specified, new ingress resources will be created with a randomly generated name, but they will not
have the ingress class annotation set.

• If both are specified, then the ingress field will take precedence.

Once domain ownership has been verified, any cert-manager affected resources will be cleaned up or deleted.

Note: It is your responsibilty to point each domain name at the correct IP address for your ingress controller.

After creating the above Certificate, we can check whether it has been obtained successfully using kubectl
describe:

$ kubectl describe certificate example-com
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal CreateOrder 57m cert-manager Created new ACME order, attempting

→˓validation...
Normal DomainVerified 55m cert-manager Domain "example.com" verified with

→˓"http-01" validation
Normal DomainVerified 55m cert-manager Domain "www.example.com" verified

→˓with "http-01" validation
Normal IssueCert 55m cert-manager Issuing certificate...
Normal CertObtained 55m cert-manager Obtained certificate from ACME server
Normal CertIssued 55m cert-manager Certificate issued successfully

2.1. ACME Issuer Tutorials 35

https://en.wikipedia.org/wiki/Subject_Alternative_Name

cert-manager Documentation

You can also check whether issuance was successful with kubectl get secret example-com-tls -o
yaml. You should see a base64 encoded signed TLS key pair.

Once our certificate has been obtained, cert-manager will periodically check its validity and attempt to renew it if
it gets close to expiry. cert-manager considers certificates to be close to expiry when the ‘Not After’ field on the
certificate is less than the current time plus 30 days.

2.1.4 Migrating from kube-lego

kube-lego is an older Jetstack project for obtaining TLS certificates from Let’s Encrypt (or another ACME server).

Since cert-managers release, kube-lego has been gradually deprecated in favour of this project. There are a number of
key differences between the two:

Feature kube-lego cert-manager
Configuration Annotations on Ingress resources CRDs
CAs ACME ACME, signing keypair
Kubernetes v1.2 - v1.8 v1.7+
Debugging Look at logs Kubernetes Events API
Multi-tenancy Not supported Supported
Distinct issuance sources per Certificate Not supported Supported
Ingress controller support (ACME) GCE, nginx All

This guide will walk through how you can safely migrate your kube-lego installation to cert-manager, without service
interruption.

By the end of the guide, we should have:

1. Scaled down and removed kube-lego

2. Installed cert-manager

3. Migrated ACME private key to cert-manager

4. Created an ACME ClusterIssuer using this private key, to issue certificates throughout your cluster

5. Configured cert-manager’s ingress-shim to automatically provision Certificate resources for all Ingress resources
with the kubernetes.io/tls-acme: "true" annotation, using the ClusterIssuer we have created

6. Verified that the cert-manager installation is working

1. Scale down kube-lego

Before we begin deploying cert-manager, it is best we scale our kube-lego deployment down to 0 replicas. This will
prevent the two controllers potentially ‘fighting’ each other. If you deployed kube-lego using the official deployment
YAMLs, a command like so should do:

$ kubectl scale deployment kube-lego \
--namespace kube-lego \
--replicas=0

You can then verify your kube-lego pod is no longer running with:

$ kubectl get pods --namespace kube-lego

36 Chapter 2. Tutorials

https://github.com/jetstack/kube-lego

cert-manager Documentation

2. Deploy cert-manager

cert-manager should be deployed using Helm, according to our official Get started guide. No special steps are required
here. We will return to this deployment at the end of this guide and perform an upgrade of some of the CLI flags we
deploy cert-manager with however.

Please take extra care to ensure you have configured RBAC correctly when deploying Helm and cert-manager - there
are some nuances described in our deploying document!

3. Obtaining your ACME account private key

In order to continue issuing and renewing certificates on your behalf, we need to migrate the user account private key
that kube-lego has created for you over to cert-manager.

Your ACME user account identity is a private key, stored in a secret resource. By default, kube-lego will store this
key in a secret named kube-lego-account in the same namespace as your kube-lego Deployment. You may
have overridden this value when you deploy kube-lego, in which case the secret name to use will be the value of the
LEGO_SECRET_NAME environment variable.

You should download a copy of this secret resource and save it in your local directory:

$ kubectl get secret kube-lego-account -o yaml \
--namespace kube-lego \
--export > kube-lego-account.yaml

Once saved, open up this file and change the metadata.name field to something more relevant to cert-manager. For
the rest of this guide, we’ll assume you chose letsencrypt-private-key.

Once done, we need to create this new resource in the kube-system namespace. By default, cert-manager stores
supporting resources for ClusterIssuers in the namespace that it is running in, and we used kube-system when
deploying cert-manager above. You should change this if you have deployed cert-manager into a different namespace.

$ kubectl create -f kube-lego-account.yaml \
--namespace kube-system

4. Creating an ACME ClusterIssuer using your old ACME account

We need to create a ClusterIssuer which will hold information about the ACME account previously registered via
kube-lego. In order to do so, we need two more pieces of information from our old kube-lego deployment: the server
URL of the ACME server, and the email address used to register the account.

Both of these bits of information are stored within the kube-lego ConfigMap.

To retrieve them, you should be able to get the ConfigMap using kubectl:

$ kubectl get configmap kube-lego -o yaml \
--namespace kube-lego \
--export

Your email address should be shown under the .data.lego.email field, and the ACME server URL under .
data.lego.url.

For the purposes of this guide, we will assume the lego email is user@example.com and the URL https://
acme-staging-v02.api.letsencrypt.org/directory.

Now that we have migrated our private key to the new Secret resource, as well as obtaining our ACME email address
and URL, we can create a ClusterIssuer resource!

2.1. ACME Issuer Tutorials 37

cert-manager Documentation

Create a file named cluster-issuer.yaml:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 # Adjust the name here accordingly
5 name: letsencrypt-staging
6 spec:
7 acme:
8 # The ACME server URL
9 server: https://acme-staging-v02.api.letsencrypt.org/directory

10 # Email address used for ACME registration
11 email: user@example.com
12 # Name of a secret used to store the ACME account private key from step 3
13 privateKeySecretRef:
14 name: letsencrypt-private-key
15 # Enable the HTTP-01 challenge provider
16 http01: {}

We then submit this file to our Kubernetes cluster:

$ kubectl create -f cluster-issuer.yaml

You should be able to verify the ACME account has been verified successfully:

$ kubectl describe clusterissuer letsencrypt-staging
Name: letsencrypt-staging
Namespace:
Labels: <none>
Annotations: <none>
API Version: certmanager.k8s.io/v1alpha1
Kind: ClusterIssuer
Metadata:

Cluster Name:
Creation Timestamp: 2017-11-30T22:33:40Z
Generation: 0
Resource Version: 4450170
Self Link: /apis/certmanager.k8s.io/v1alpha1/letsencrypt-staging
UID: 83d04e6b-d61e-11e7-ac26-42010a840044

Spec:
Acme:
Email: user@example.com
Http 01:
Private Key Secret Ref:

Key:
Name: letsencrypt-private-key

Server: https://acme-staging-v02.api.letsencrypt.org/directory
Status:

Acme:
Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct/11217539

Conditions:
Last Transition Time: 2018-04-12T17:32:30Z
Message: The ACME account was registered with the ACME server
Reason: ACMEAccountRegistered
Status: True
Type: Ready

38 Chapter 2. Tutorials

cert-manager Documentation

5. Configuring ingress-shim to use our new ClusterIssuer by default

Now that our ClusterIssuer is ready to issue certificates, we have one last thing to do: we must reconfigure ingress-
shim (deployed as part of cert-manager) to automatically create Certificate resources for all Ingress resources it finds
with appropriate annotations.

More information on the role of ingress-shim can be found in the docs, but for now we can just run a helm upgrade
in order to add a few additional flags. Assuming you’ve named your ClusterIssuer letsencrypt-staging (as
above), run:

helm upgrade cert-manager \
jetstack/cert-manager \
--namespace kube-system \
--set ingressShim.defaultIssuerName=letsencrypt-staging \
--set ingressShim.defaultIssuerKind=ClusterIssuer

You should see the cert-manager pod be re-created, and once started it should automatically create Certificate resources
for all of your ingresses that previously had kube-lego enabled.

6. Verify each ingress now has a corresponding Certificate

Before we finish, we should make sure there is now a Certificate resource for each ingress resource you previously
enabled kube-lego on.

You should be able to check this by running:

$ kubectl get certificates --all-namespaces

There should be an entry for each ingress in your cluster with the kube-lego annotation.

We can also verify that cert-manager has ‘adopted’ the old TLS certificates by viewing the logs for cert-manager:

$ kubectl logs -n kube-system -l app=cert-manager -c cert-manager
...
I1025 21:54:02.869269 1 sync.go:206] Certificate my-example-certificate
→˓scheduled for renewal in 292 hours

Here we can see cert-manager has verified the existing TLS certificate and scheduled it to be renewed in 292h time.

2.1. ACME Issuer Tutorials 39

cert-manager Documentation

40 Chapter 2. Tutorials

CHAPTER 3

Tasks

This section contains guides on using specific features of cert-manager, such as configuring different Issuer types and
any special settings that you may want to configure.

3.1 Setting up Issuers

Before you can begin issuing certificates, you must configure at least one Issuer or ClusterIssuer resource in your
cluster.

These represent a certificate authority from which signed x509 certificates can be obtained, such as Let’s Encrypt, or
your own signing key pair stored in a Kubernetes Secret resource. They are referenced by Certificate resources in
order to request certificates from them.

An Issuer is scoped to a single namespace, and can only fulfill Certificate resources within its own namespace. This
is useful in a multi-tenant environment where multiple teams or independent parties operate within a single cluster.

On the other hand, a ClusterIssuer is a cluster wide version of an Issuer. It is able to be referenced by Certificate
resources in any namespace.

Users often create letsencrypt-staging and letsencrypt-prod ClusterIssuers if they operate a single-
tenant environment and want to expose a cluster-wide mechanism for obtaining TLS certificates from Let’s Encrypt.

3.1.1 Supported issuer types

cert-manager supports a number of different issuer backends, each with their own different types of configuration.

Please follow one of the below linked guides to learn how to set up the issuer types you require:

• CA - issue certificates signed by a X509 signing keypair, stored in a Secret in the Kubernetes API server.

• Self signed - issue self signed certificates.

• ACME - issue certificates obtained by performing challenge validations against an ACME server such as Let’s
Encrypt.

41

https://letsencrypt.org
https://letsencrypt.org
https://letsencrypt.org

cert-manager Documentation

• Vault- issue certificates from a Vault instance configured with the Vault PKI backend.

• Venafi - issue certificates from a Venafi Cloud or Trust Protection Platform instance.

3.1.2 Additional information

There are a few key things to know about Issuers, but for full information you can refer to the Issuer reference docs.

Difference between Issuers and ClusterIssuers

ClusterIssuers are a resource type similar to Issuers. They are specified in exactly the same way, but they do not belong
to a single namespace and can be referenced by Certificate resources from multiple different namespaces.

They are particularly useful when you want to provide the ability to obtain certificates from a central authority (e.g.
Letsencrypt, or your internal CA) and you run single-tenant clusters.

The resource spec is identical, and you should set the certificate.spec.issuerRef.kind field to ClusterIs-
suer when creating your Certificate resources.

Setting up ACME Issuers

The ACME Issuer type represents a single Account registered with the ACME server.

When you create a new ACME Issuer, cert-manager will generate a private key which is used to identify you with the
ACME server.

To set up a basic ACME issuer, you should create a new Issuer or ClusterIssuer resource.

You should read the guides linked at the bottom of this page to learn more about the ACME challenge validation
mechanisms that cert-manager supports and how to configure the various DNS01 provider implementations.

Creating a basic ACME Issuer

The below example configures a ClusterIssuer named letsencrypt-staging that is configured to HTTP01 chal-
lenge solving with configuration suitable for ingress controllers such as ingress-nginx_.

You should copy and paste this example into a new file named letsencrypt-staging.yaml and update the
spec.acme.email field to be your own email address.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 # You must replace this email address with your own.
8 # Let's Encrypt will use this to contact you about expiring
9 # certificates, and issues related to your account.

10 email: user@example.com
11 server: https://acme-staging-v02.api.letsencrypt.org/directory
12 privateKeySecretRef:
13 # Secret resource used to store the account's private key.
14 name: example-issuer-account-key
15 # Add a single challenge solver, HTTP01 using nginx
16 solvers:

(continues on next page)

42 Chapter 3. Tasks

https://www.vaultproject.io/docs/secrets/pki/index.html
https://venafi.com

cert-manager Documentation

(continued from previous page)

17 - http01:
18 ingress:
19 class: nginx

You can then create this resource using kubectl apply:

kubectl apply -f letsencrypt-staging.yaml

To verify that the account has been registered successfully, you can run kubectl describe and check the ‘Ready’
condition:

kubectl describe clusterissuer letsencrypt-staging
...
Status:

Acme:
Uri: https://acme-staging-v02.api.letsencrypt.org/acme/acct/7571319

Conditions:
Last Transition Time: 2019-01-30T14:52:03Z
Message: The ACME account was registered with the ACME server
Reason: ACMEAccountRegistered
Status: True
Type: Ready

Any Certificate you create that references this Issuer resource will use the HTTP01 challenge solver you have config-
ured above.

Note: Let’s Encrypt does not support issuing wildcard certificates with HTTP-01 challenges. To issue wildcard
certificates, you must use the DNS-01 challenge.

Adding multiple solver types

You may want to use different types of challenge solver configuration for different ingress controllers, for example if
you want to issue wildcard certificates using DNS01 alongside other certificates that are validated using HTTP01.

The solvers stanza has an optional selector field, that can be used to specify which Certificates, and further,
what DNS names on those certificates should be used to solve challenges.

For example, to configure HTTP01 using nginx ingress as the default solver, along with a DNS01 solver that can be
used for wildcard certificates:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 ...
8 solvers:
9 - http01:

10 ingress:
11 class: nginx
12 - selector:
13 matchLabels:

(continues on next page)

3.1. Setting up Issuers 43

cert-manager Documentation

(continued from previous page)

14 use-cloudflare-solver: "true"
15 dns01:
16 cloudflare:
17 email: user@example.com
18 apiKeySecretRef:
19 name: cloudflare-apikey-secret
20 key: apikey

In order to utilise the configured cloudflare DNS01 solver, you must add the use-cloudflare-solver:
"true" label to your Certificate resources.

Using multiple solvers for a single certificate

The solver’s selector stanza has an additional field dnsNames that further refines the set of domains that the
solver configuration applies to.

If any dnsNames are specified, then that challenge solver will be used if the domain being validated is named in that
list.

For example:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 ...
8 solvers:
9 - http01:

10 ingress:
11 class: nginx
12 - selector:
13 dnsNames:
14 - '*.example.com'
15 dns01:
16 cloudflare:
17 email: user@example.com
18 apiKeySecretRef:
19 name: cloudflare-apikey-secret
20 key: apikey

In this instance, a Certificate that specified both *.example.com and example.com would use the HTTP01
challenge solver for example.com and the DNS01 challenge solver for *.example.com.

It is possible to specify both matchLabels AND dnsNames on an ACME solver selector.

Configuring HTTP01 Ingress Provider

This page contains details on the different options available on the Issuer resource’s HTTP01 challenge solver
configuration.

For more information on configuring ACME issuers and their API format, read the Setting up ACME Issuers docu-
mentation.

44 Chapter 3. Tasks

cert-manager Documentation

How HTTP01 validations work

You can read about how the HTTP01 challenge type works on the Let’s Encrypt challenge types page.

Options

The HTTP01 Issuer supports a number of additional options. For full details on the range of options available, read
the reference documentation.

ingressClass

If the ingressClass field is specified, cert-manager will create new Ingress resources in order to route traffic to
the ‘acmesolver’ pods, which are responsible for responding to ACME challenge validation requests.

If this field is not specified, and ingressName is also not specified, cert-manager will default to create new ingress
resources but will not set the ingress class on these resources, meaning all ingress controllers installed in your cluster
will server traffic for the challenge solver, potentially occurring additional cost.

ingressName

If the ‘ingressName’ field is specified, cert-manager will edit the named ingress resource in order to solve HTTP01
challenges.

This is useful for compatibility with ingress controllers such as ingress-gce_, which utilise a unique IP address for
each Ingress resource created.

This mode should be avoided when using ingress controllers that expose a single IP for all ingress resources, as it can
create compatibility problems with certain ingress-controller specific annotations.

servicePort

In rare cases it might be not possible/desired to use NodePort as type for the http01 challenge response service, e.g.
because of Kubernetes limit restrictions. To define which Kubernetes service type to use during challenge response
specify the following http01 config:

http01:
Valid values are ClusterIP and NodePort
serviceType: ClusterIP

By default type NodePort will be used when you don’t set http01 or when you set serviceType to an empty string.
Normally there’s no need to change this.

Configuring DNS01 Challenge Providers

This page contains details on the different options available on the Issuer resource’s DNS01 challenge solver con-
figuration.

For more information on configuring ACME issuers and their API format, read the Setting up ACME Issuers docu-
mentation.

DNS01 provider configuration must be specified on the Issuer resource, similar to the examples in the setting up
documentation:

3.1. Setting up Issuers 45

https://letsencrypt.org/docs/challenge-types/#http-01-challenge
https://docs.cert-manager.io/en/latest/reference/api-docs/index.html#acmeissuerhttp01config-v1alpha1

cert-manager Documentation

You can read about how the DNS01 challenge type works on the Let’s Encrypt challenge types page.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: example-issuer
5 spec:
6 acme:
7 email: user@example.com
8 server: https://acme-staging-v02.api.letsencrypt.org/directory
9 privateKeySecretRef:

10 name: example-issuer-account-key
11 solvers:
12 - dns01:
13 clouddns:
14 project: my-project
15 serviceAccountSecretRef:
16 name: prod-clouddns-svc-acct-secret
17 key: service-account.json

Each issuer can specify multiple different DNS01 challenge providers, and it is also possible to have multiple instances
of the same DNS provider on a single Issuer (e.g. two clouddns accounts could be set, each with their own name).

For more information on utilising multiple solver types on a single Issuer, read the multiple-solver-types_ section.

Setting nameservers for DNS01 self check

cert-manager will check the correct DNS records exist before attempting a DNS01 challenge. By default, the DNS
servers for this check will be taken from /etc/resolv.conf. If this is not desired (for example with multiple
authoritative nameservers or split-horizon DNS), the cert-manager controller exposes a flag that allows you alter this
behaviour:

Example usage:

--dns01-recursive-nameservers "8.8.8.8:53,1.1.1.1:53"

Delegated Domains for DNS01

By default, cert-manager will not follow CNAME records pointing to subdomains.

If granting cert-manager access to the root DNS zone is not desired, then the _acme-challenge.example.com subdomain
can instead be delegated to some other, less privileged domain. Once a CNAME record has been configured to point
at the desired domain, and the DNS configuration/credentials for the zone that should be updated have been provided,
all that is left to be done is adding an additional field into the relevant dns01 solver:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 ...
5 spec:
6 acme:
7 ...
8 solvers:
9 - dns01:

10 # Valid values are None and Follow

(continues on next page)

46 Chapter 3. Tasks

https://letsencrypt.org/docs/challenge-types/#dns-01-challenge

cert-manager Documentation

(continued from previous page)

11 cnameStrategy: Follow
12 clouddns:
13 ...

cert-manager will then follow CNAME records recursively in order to determine which DNS zone to update during
DNS01 challenges.

Supported DNS01 providers

A number of different DNS providers are supported for the ACME issuer. Below is a listing of available providers,
their .yaml configurations, along with additional Kubernetes and provider specific notes regarding their usage.

ACME-DNS

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: example-issuer
spec:
acme:
...
solvers:
- dns01:

acmedns:
host: https://acme.example.com
accountSecretRef:

name: acme-dns
key: acmedns.json

In general, clients to acme-dns perform registration on the users behalf and inform them of the CNAME entries they
must create. This is not possible in cert-manager, it is a non-interactive system. Registration must be carried out
beforehand and the resulting credentials JSON uploaded to the cluster as a secret. In this example, we use curl
and the API endpoints directly. Information about setting up and configuring acme-dns is available on the acme-dns
project page.

1. First, register with the acme-dns server, in this example, there is one running at “auth.example.com”

curl -X POST http://auth.example.com/register will return a JSON with credentials
for your registration:

{
"username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
"password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
"fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
"subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
"allowfrom":[]

}

It is strongly recommended to restrict the update endpoint to the IP range of your pods. This is done at
registration time as follows:

curl -X POST http://auth.example.com/register -H "Content-Type:
application/json" --data '{"allowfrom": ["10.244.0.0/16"]}'

3.1. Setting up Issuers 47

https://github.com/joohoi/acme-dns
https://github.com/joohoi/acme-dns

cert-manager Documentation

Make sure to update the allowfrom field to match your cluster configuration. The JSON will now look
like

{
"username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
"password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
"fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
"subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
"allowfrom":["10.244.0.0/16"]

}

2. Save this JSON to a file with the key as your domain. You can specify multiple domains with the same creden-
tials if you like. In our example, the returned credentials can be used to verify ownership of “example.com” and
and “example.org”.

{
"example.com": {

"username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
"password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
"fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
"subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
"allowfrom":["10.244.0.0/16"]

},
"example.org": {

"username":"eabcdb41-d89f-4580-826f-3e62e9755ef2",
"password":"pbAXVjlIOE01xbut7YnAbkhMQIkcwoHO0ek2j4Q0",
"fulldomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com",
"subdomain":"d420c923-bbd7-4056-ab64-c3ca54c9b3cf",
"allowfrom":["10.244.0.0/16"]

}
}

3. Next update your primary DNS server with CNAME record that will tell the verifier how to locate the challenge
TXT record. This is obtained from the “fulldomain” field in the registration:

_acme-challenge.example.com CNAME d420c923-bbd7-4056-ab64-c3ca54c9b3cf.
auth.example.com _acme-challenge.example.org CNAME
d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.example.com

Note that the “name” of the record is always the “_acme-challenge” subdomain, and the “value” of the
record matches exactly the “fulldomain” field from registration.

At verification time, the domain name d420c923-bbd7-4056-ab64-c3ca54c9b3cf.auth.
example.com will be a TXT record that is set to your validation token. When the verifier queries
_acme-challenge.example.com, it will be directed to the correct location by this CNAME record.
This proves that you control “example.com”

4. Create a secret from the credentials json that was saved in step 2, this secret is referenced in the
accountSecretRef field of your dns01 issuer settings.

kubectl create secret generic acme-dns --from-file acmedns.json

Akamai FastDNS

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

(continues on next page)

48 Chapter 3. Tasks

cert-manager Documentation

(continued from previous page)

name: example-issuer
spec:
acme:
...
solvers:
- dns01:

akamai:
serviceConsumerDomain: akab-tho6xie2aiteip8p-poith5aej0ughaba.luna.

→˓akamaiapis.net
clientTokenSecretRef:

name: akamai-dns
key: clientToken

clientSecretSecretRef:
name: akamai-dns
key: clientSecret

accessTokenSecretRef:
name: akamai-dns
key: accessToken

AzureDNS

Configuring the AzureDNS DNS-01 Challenge for a Kubernetes cluster requires creating a service principal in Azure.

For security purposes, it is appropriate to utilize RBAC to ensure that you properly maintain access control to your
resources in Azure. The service principal that is generated by this tutorial has fine grained access to ONLY the DNS
Zone in the specific resource group specified. It requires this permission so that it can read/write the _acme_challenge
TXT records to the zone.

To create the service principal:

1 AZURE_CERT_MANAGER_SP_NAME=SOME_SERVICE_PRINCIPAL_NAME
2 AZURE_CERT_MANAGER_SP_PASSWORD=SOME_PASSWORD
3 AZURE_CERT_MANAGER_DNS_RESOURCE_GROUP=SOME_RESOURCE_GROUP
4 AZURE_CERT_MANAGER_DNS_NAME=SOME_DNS_ZONE
5

6 AZURE_CERT_MANAGER_SP_APP_ID=$(az ad sp create-for-rbac --name $AZURE_CERT_MANAGER_SP_
→˓NAME --password $AZURE_CERT_MANAGER_SP_PASSWORD --query "appId" --output tsv)

7

8 # Lower the Permissions of the SP
9 az role assignment delete --assignee $AZURE_CERT_MANAGER_SP_APP_ID --role Contributor

10

11 # Give Access to DNS Zone
12 DNS_ID=$(az network dns zone show --name $AZURE_CERT_MANAGER_DNS_NAME --resource-

→˓group $AZURE_CERT_MANAGER_DNS_RESOURCE_GROUP --query "id" --output tsv)
13

14 az role assignment create --assignee $AZURE_CERT_MANAGER_SP_APP_ID --role "DNS Zone
→˓Contributor" --scope $DNS_ID

15

16 # Check Permissions
17 az role assignment list --assignee $AZURE_CERT_MANAGER_SP_APP_ID
18

19 # Create Secret
20 kubectl create secret generic azuredns-config \
21 --from-literal=CLIENT_SECRET=$AZURE_CERT_MANAGER_SP_PASSWORD
22

(continues on next page)

3.1. Setting up Issuers 49

cert-manager Documentation

(continued from previous page)

23 # Get the Service Principal App ID for configuration
24 echo $AZURE_CERT_MANAGER_SP_APP_ID

You can configure the issuer like so:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: example-issuer
spec:
acme:
...
solvers:
- dns01:

azuredns:
Service principal clientId (also called appId)
clientID: AZURE_SERVICE_PRINCIPAL_ID
A secretKeyRef to a service principal ClientSecret (password)
ref: https://docs.microsoft.com/en-us/azure/container-service/kubernetes/

→˓container-service-kubernetes-service-principal
clientSecretSecretRef:
name: AZUREDNS_SECRET_KEY_NAME
key: CLIENT_SECRET

Azure subscription Id
subscriptionID: AZURE_SUBSCRIPTION_ID
Azure AD tenant Id
tenantID: AZURE_TENANT_ID
ResourceGroup name where dns zone is provisioned
resourceGroupName: AZURE_RESOURCE_GROUP
hostedZoneName: AZURE_DNS_ZONE_NAME

Cloudflare

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: example-issuer
spec:
acme:
...
solvers:
- dns01:

cloudflare:
email: my-cloudflare-acc@example.com
apiKeySecretRef:

name: cloudflare-api-key-secret
key: api-key

Google CloudDNS

This guide explains how to set up an Issuer, or ClusterIssuer, to use Google CloudDNS to solve DNS01 ACME
challenges. It’s advised you read the DNS01 Challenge Provider page first for a more general understanding of how
cert-manager handles DNS01 challenges.

50 Chapter 3. Tasks

cert-manager Documentation

Note: This guide assumes that your cluster is hosted on Google Cloud Platform (GCP) and that you already have a
domain set up with CloudDNS.

Set up a Service Account

Cert-manager needs to be able to add records to CloudDNS in order to solve the DNS01 challenge. To enable this, a
GCP service account must be created with the dns.admin role.

Note: For this guide the gcloud command will be used to set up the service account. Ensure that gcloud is in
using the correct project and zone before entering the commands. These steps could also be completed using the Cloud
Console.

gcloud iam service-accounts create dns01-solver \
--display-name "dns01-solver"

Replace both uses of project-id with the id of your project
gcloud projects add-iam-policy-binding project-id \
--member serviceAccount:dns01-solver@project-id.iam.gserviceaccount.com \
--role roles/dns.admin

Create a Service Account Secret

To access this service account cert-manager uses a key stored in a Kubernetes Secret. First, create a key for the service
account and download it as JSON file, then create a Secret from this file.

Replace use of project-id with the id of your project
gcloud iam service-accounts keys create key.json \
--iam-account dns01-solver@project-id.iam.gserviceaccount.com

kubectl create secret generic clouddns-dns01-solver-svc-acct \
--from-file=key.json

Note: Keep the key file safe and do not share it, as it could be used to gain access to your cloud resources. The key
file can be deleted once it has been used to generate the Secret.

Create an Issuer That Uses CloudDNS

Next, create an Issuer (or ClusterIssuer) with a clouddns provider. An example Issuer manifest can be seen below
with annotations.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: example-issuer
5 spec:
6 acme:
7 ...
8 solvers:

(continues on next page)

3.1. Setting up Issuers 51

cert-manager Documentation

(continued from previous page)

9 - dns01:
10 clouddns:
11 # The ID of the GCP project
12 project: my-project-id
13 # This is the secret used to access the service account
14 serviceAccountSecretRef:
15 name: clouddns-dns01-solver-svc-acct
16 key: key.json

For more information about Issuers and ClusterIssuers, see Setting Up Issuers.

Once an Issuer (or ClusterIssuer) has been created successfully a Certificate can then be added to verify that everything
works.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: example-com-tls
8 issuerRef:
9 # The issuer created previously

10 name: letsencrypt-staging
11 commonName: example.com
12 dnsNames:
13 - example.com
14 - www.example.com

For more details about Certificates, see Issuing Certificates.

Amazon Route53

Cert-manager requires the following IAM policy.

{
"Version": "2012-10-17",
"Statement": [

{
"Effect": "Allow",
"Action": "route53:GetChange",
"Resource": "arn:aws:route53:::change/*"

},
{

"Effect": "Allow",
"Action": "route53:ChangeResourceRecordSets",
"Resource": "arn:aws:route53:::hostedzone/*"

},
{

"Effect": "Allow",
"Action": "route53:ListHostedZonesByName",
"Resource": "*"

}
]

}

52 Chapter 3. Tasks

cert-manager Documentation

The route53:ListHostedZonesByName statement can be removed if you specify the optional hosted zone
ID (spec.acme.dns01.providers[].hostedZoneID) on the Issuer resource. You can further tighten this
policy by limiting the hosted zone that cert-manager has access to (replace arn:aws:route53:::hostedzone/
* with arn:aws:route53:::hostedzone/DIKER8JPL21PSA, for instance).

DigitalOcean

This provider uses a Kubernetes Secret Resource to work. In the following example, the secret will have to be
named digitalocean-dns and have a subkey access-token with the token in it.

To create a Personnal Access Token, see DigitalOcean documentation. Handy direct link: https://cloud.digitalocean.
com/account/api/tokens/new

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: example-issuer
spec:
acme:
...
solvers:
- dns01:

digitalocean:
tokenSecretRef:

name: digitalocean-dns
key: access-token

RFC-2136

The goal of this document is to provide a configuration overview of the various facilities required to deploy cert-
manager against a RFC-2136 compliant DNS server such as BIND named. This capability is also commonly known
as “dynamic DNS”.

Unlike the peer of other cert-manager DNS integrations, named is a bit of a “Swiss Army Knife” of domain name
servers. Over the years, it has been highly optimized to provide maximal vertical scalability for a single node, as well
as horizontal scalability with service provider interfaces. This flexibility makes it impossible to go into every possible
named deployment that a user may run in to though. Instead, this document will try to make sure your server is ready
to accept requests from cert-manager using command line tools, then get on to the making the two work together.

Transaction Signatures TSIG

Dynamic DNS updates are essentially server queries which otherwise might return resource records (RRs). Since DNS
servers are commonly exposed to the public internet, being able to push an unauthenticated update to any server that
responds to queries would be immediately untenable.

In the eyes of the named architects, the generic solution to this problem space was twofold. The first is to require
manual enablement of updates at a zone level, such as example.com. In a naive network, there is no requirement
that zone updates have any security to them, and clients can be configured such that they can provide updates without
any authentication. An example of where this is useful is for machines booting using DHCP, in this case the machines
know about themselves and the DNS server can be configured to accept updates when they come from the address
being configured.

This clearly has limitations in situations such as cert-manager and the DNS-01 challenge. In this environment, a
TXT RR must be created after coordination with the ACME server. After negotiating with the ACME server, a

3.1. Setting up Issuers 53

https://www.digitalocean.com/docs/api/create-personal-access-token/
https://cloud.digitalocean.com/account/api/tokens/new
https://cloud.digitalocean.com/account/api/tokens/new

cert-manager Documentation

the TXT RR that is published on the domain validates that the domain is legitimately engaged with the process
of creating a certificate for it. In the bigger picture of DNS, this means that an arbitrary actor (cert-manager, in
this case) must be able to add one of these KV mappings to the domain and delete it after the certificate has been
issued. cert-manager does not have a convenient physical characteristic such as a DHCP allocation to validate it’s
requests.

For cases like this, we need to be able to sign a request that is being sent to the DNS server. We do that through TSIGs,
or Transaction SIGnatures.

Configuration Step 1 - Set up your DNS server for secure dynamic updates

There are many excellent tutorials on the net that walk through preparing a basic named server for dynamic updates:

• https://www.cyberciti.biz/faq/unix-linux-bind-named-configuring-tsig/

• https://tomthorp.me/blog/using-tsig-enable-secure-zone-transfers-between-bind-9x-servers

More complex named deployments will not use text files, but rather may use LDAP or SQL for a database for resource
records. An additional wrinkle is metadata configuration, such as for zone metadata like enabling dynamic updates or
access control lists (ACLs) for a zone. There are too many configurations to go into here, but you should be able to
find the documentation to do so.

Whatever your deployment is, the goal at this stage has nothing to do with cert-manager and everything to do with
a tool called nsupdate generating updates signed with TSIG. Once this is out of the way, you can attack the cert-
manager configuration with far greater confidence.

Using nsupdate

Most paths to configuring BIND named will go through using dnssec-keygen. This command-line tool generates
a named private key that is used for signing TSIG requests. When a request is signed, both the signature and the name
of the private key are attached to the request in an unencrypted form. In this manner, when the request is received, the
name of the private key can be used to by the recipient to find the private key itself, build a new signature with it, and
compare the two for acceptance.

Since there are dozens of ways to have your named server misconfigured, we’ll use nsupdate to test that the
server behaves as expected before we get there. https://debian-administration.org/article/591/Using_the_dynamic_
DNS_editor_nsupdate is a solid breakdown of how to use the tool.

To get started, we’ll simply run nsupdate -k <keyID> where keyID is the value returned from
dnssec-keygen. This will read the key from disk and provide a command prompt to issue commands. In general,
we want to write a simple TXT RR and make sure we can delete it.

$ nsupdate -k <keyID>
> update add www1.example.com txt testing
> send
> ... test here with ``nslookup``
> update delete www1.example.com txt
> send
> ... test here with ``nslookup``

Any failures to write, read or delete the record will mean that cert-manager will not be able to do so either, no matter
how well it is configured.

54 Chapter 3. Tasks

https://www.cyberciti.biz/faq/unix-linux-bind-named-configuring-tsig/
https://tomthorp.me/blog/using-tsig-enable-secure-zone-transfers-between-bind-9x-servers
https://debian-administration.org/article/591/Using_the_dynamic_DNS_editor_nsupdate
https://debian-administration.org/article/591/Using_the_dynamic_DNS_editor_nsupdate

cert-manager Documentation

Configuration Step 2 - Set up cert-manager

Now we get to the fun stuff, seeing everything work. Remember that we need to set up the ACME DNS-01 issuer and
challenge mechanism as well as the rfc2136 provider. Since the documentation covers the other parts sufficiently,
let’s focus on the provider here.

For example:

rfc2136:
nameserver: 1.2.3.4:53
tsigKeyName: example-com-secret
tsigAlgorithm: HMACSHA512
tsigSecretSecretRef:
name: tsig-secret
key: tsig-secret-key

For this example configuration, we’ll need the following two commands. The first, on your named server generates the
key. Note how example-com-secret is both in the tsigKeyName above and the dnssec-keygen command
that follows.

dnssec-keygen -r /dev/urandom -a HMAC-SHA512 -b 512 -n HOST example-com-secret

Also note how the tsigAlgorithm is provided in both the configuration and the keygen command. They are listed
at https://github.com/miekg/dns/blob/v1.0.12/tsig.go#L18-L23.

The second bit of configuration you need on the kubernetes side is to create a secret. Pulling the secret key string from
the <key>.private file generated above, use the secret in the placeholder below:

kubectl -n cert-manager create secret generic tsig-secret --from-literal=tsig-secret-
→˓key=<somesecret>

Note how the tsig-secret and tsig-secret-key match the configuration in the tsigSecretSecretRef
above.

Rate Limits

The rfc2136 provider waits until all nameservers to in your domain’s SOA RR respond with the same result before
it contacts Let’s Encrypt to complete the challenge process. This is because the challenge server contacts a non-
authoritative DNS server that does a recursive query (a query for records it does not maintain locally). If the servers
in the SOA do not contain the correct values, it’s likely that the non-authoritative server will have bad information as
well, causing the request to go against rate limits and eventually locking the process out.

This process is in place to protect users from server misconfigurations creating a more subtle lockout that persists after
the server configuration has been repaired.

As documented elsewhere, it is prudent to fully debug configurations using the ACME staging servers before using the
production servers. The staging servers have less aggressive rate limits, but the certificates they issue are not signed
with a root certificate trusted by browsers.

What’s next?

This configuration so far will actually do nothing. You still have to request a certificate as in Issuing Certificates. Once
a certficate is requested, the provider will begin processing the request.

3.1. Setting up Issuers 55

https://github.com/miekg/dns/blob/v1.0.12/tsig.go#L18-L23

cert-manager Documentation

Troubleshooting

• Be sure that you have fully tested the DNS server updates using nsupdate first. Ideally, this is done from a
pod in the same namespace as the rfc2136 provider to ensure there are no firewall issues.

• The logs for the cert-manager pod are your friend. Additional logs can be generated by adding the --v=5
argument to the container launch.

• The TSIG key is encoded with base64, but the Kubernetes API server also expects that key literals will
be decoded before they are stored. In some cases, a key must be double-encoded. (If you’ve tested using
nsupdate, it’s pretty easy to spot when you are running into this.)

• Pay attention to the refresh time of the zone you are working with. For zones with low traffic, it will not make
a significant difference to reduce the refresh time down to about five minutes while getting initial certificates.
Once the process is working, the beauty of cert-manager is it doesn’t matter if a renewal takes hours due to
refresh times, it’s all automated!

• Compared to the other providers that often use REST APIs to modify DNS RRs, this provider can take a little
longer. You can watch kubectl certificate yourcert to get a display of what’s going on. It’s not
uncommon for the process to take five minutes in total.

Setting up CA Issuers

cert-manager can be used to obtain certificates using an arbitrary signing key pair stored in a Kubernetes Secret
resource.

This guide will show you how to configure and create a CA based issuer, backed by a signing key pair stored in a
Secret resource.

1. (Optional) Generate a signing key pair

The CA Issuer does not automatically create and manage a signing key pair for you. As a result, you will need to
either supply your own or generate a self signed CA using a tool such as openssl or cfssl.

This guide will explain how to generate a new signing key pair, however you can substitute it for your own so long as
it has the CA flag set.

Generate a CA private key
$ openssl genrsa -out ca.key 2048

Create a self signed Certificate, valid for 10yrs with the 'signing' option set
$ openssl req -x509 -new -nodes -key ca.key -subj "/CN=${COMMON_NAME}" -days 3650 -
→˓reqexts v3_req -extensions v3_ca -out ca.crt

The output of these commands will be two files, ca.key and ca.crt, the key and certificate for your signing key
pair. If you already have your own key pair, you should name the private key and certificate ca.key and ca.crt
respectively.

2. Save the signing key pair as a Secret

We are going to create an Issuer that will use this key pair to generate signed certificates. You can read more about
the Issuer resource in the Issuer reference docs. To allow the Issuer to reference our key pair we will store it in a
Kubernetes Secret resource.

56 Chapter 3. Tasks

https://github.com/openssl/openssl
https://github.com/cloudflare/cfssl

cert-manager Documentation

Issuers are namespaced resources and so they can only reference Secrets in their own namespace. We will therefore
put the key pair into the same namespace as the Issuer. We could alternatively create a ClusterIssuer, a cluster-scoped
version of an Issuer. For more information on ClusterIssuers, read the ClusterIssuer reference documentation.

The following command will create a Secret containing a signing key pair in the default namespace:

kubectl create secret tls ca-key-pair \
--cert=ca.crt \
--key=ca.key \
--namespace=default

3. Creating an Issuer referencing the Secret

We can now create an Issuer referencing the Secret resource we just created:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: ca-issuer
5 namespace: default
6 spec:
7 ca:
8 secretName: ca-key-pair

We are now ready to obtain certificates!

4. Obtain a signed Certificate

We can now create the following Certificate resource which specifies the desired certificate. You can read more about
the Certificate resource in the reference docs.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: example-com-tls
8 issuerRef:
9 name: ca-issuer

10 # We can reference ClusterIssuers by changing the kind here.
11 # The default value is Issuer (i.e. a locally namespaced Issuer)
12 kind: Issuer
13 commonName: example.com
14 organization:
15 - Example CA
16 dnsNames:
17 - example.com
18 - www.example.com

In order to use the Issuer to obtain a Certificate, we must create a Certificate resource in the same namespace as the
Issuer, as an Issuer is a namespaced resource. We could alternatively create a ClusterIssuer if we wanted to reuse the
signing key pair across multiple namespaces.

3.1. Setting up Issuers 57

cert-manager Documentation

Once we have created the Certificate resource, cert-manager will attempt to use the Issuer ca-issuer to obtain a
certificate. If successful, the certificate will be stored in a Secret resource named example-com-tls in the same
namespace as the Certificate resource (default).

The example above explicitly sets the commonName field to example.com. cert-manager automatically adds the
commonName field as a DNS SAN if it is not already contained in the dnsNames field.

If we had not specified the commonName field, then the first DNS SAN that is specified (under dnsNames) would
be used as the certificate’s common name.

After creating the above Certificate, we can check whether it has been obtained successfully like so:

$ kubectl describe certificate example-com
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Warning ErrorCheckCertificate 26s cert-manager-controller Error

→˓checking existing TLS certificate: secret "example-com-tls" not found
Normal PrepareCertificate 26s cert-manager-controller Preparing

→˓certificate with issuer
Normal IssueCertificate 26s cert-manager-controller Issuing

→˓certificate...
Normal CertificateIssued 25s cert-manager-controller

→˓Certificate issued successfully

You can also check whether issuance was successful with kubectl get secret example-com-tls -o
yaml. You should see a base64 encoded signed TLS key pair.

Once the certificate has been obtained, cert-manager will keep checking its validity and attempt to renew it if it gets
close to expiry. cert-manager considers certificates to be close to expiry when the ‘Not After’ field on the certificate is
less than the current time plus 30 days. For CA based Issuers, cert-manager will issue certificates with the ‘Not After’
field set to the current time plus 365 days.

Setting up self signing Issuers

Self signed Issuers will issue self signed certificates.

This is useful when building PKI within Kubernetes, or as a means to generate a root CA for use with the CA Issuer.

A self-signed Issuer contains no additional configuration fields, and can be created with a resource like so:

apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:

name: selfsigning-issuer
spec:
selfSigned: {}

Note: The presence of the selfSigned: {} line is enough to indicate that this Issuer is of type ‘self signed’.

Once created, you should be able to issue certificates like usual by referencing the newly created Issuer in your
issuerRef:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:

(continues on next page)

58 Chapter 3. Tasks

https://en.wikipedia.org/wiki/Subject_Alternative_Name

cert-manager Documentation

(continued from previous page)

name: example-crt
spec:
secretName: my-selfsigned-cert
commonName: "my-selfsigned-root-ca"
isCA: true
issuerRef:
name: selfsigning-issuer
kind: ClusterIssuer

Setting up Vault Issuers

Installing Vault

Vault installation is a complex subject. For a thorough tour of the subject you can read the official HashiCorp Vault
documentation.

Vault PKI Backend

The PKI Secrets Engine needs to be initialized for cert-manager to be able to generate certificate. The official Vault
documentation can be found here.

Vault Authentication with a AppRole

This Vault authentication method uses a Vault AppRole.

The secret ID of the AppRole is stored in a secret.

Here an example of a secret containing the secretId of the AppRole:

apiVersion: v1
kind: Secret
type: Opaque
metadata:

name: cert-manager-vault-approle
namespace: default

data:
secretId: "MDI..."

Where the secretId is the base 64 encoded value of the appRole secretId giving access to the pki backend in Vault.

We can now create a cluster issuer referencing this secret:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: vault-issuer
namespace: default

spec:
vault:
path: pki_int/sign/example-dot-com
server: https://vault
caBundle: <base64 encoded caBundle PEM file>

(continues on next page)

3.1. Setting up Issuers 59

https://learn.hashicorp.com/vault/getting-started/install
https://www.vaultproject.io/docs/secrets/pki/index.html
https://www.vaultproject.io/docs/auth/approle.html

cert-manager Documentation

(continued from previous page)

auth:
appRole:

path: approle
roleId: "291b9d21-8ff5-..."
secretRef:
name: cert-manager-vault-approle
key: secretId

Where path is the Vault role path of the PKI backend and server is the Vault server base URL. The path MUST USE
the vault sign endpoint. The Vault appRole credentials are supplied as the Vault authentication method using the
appRole created in Vault. The secretRef references the Kubernetes secret created previously. More specifically, the
field name is the Kubernetes secret name and key is the name given as the key value that store the secretId. The
optional attribute path specifies where the AppRole authentication is mounted in Vault. The attribute path default
value is approle.

An optional base64 encoded caBundle in PEM format can be provided to validate the TLS connection to the Vault
Server. When caBundle is set it replaces the CA bundle inside the container running cert-manager. This parameter has
no effect if the connection used is in plain HTTP.

Once we have created the above Issuer we can use it to obtain a certificate.

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:

name: example-com
namespace: default

spec:
secretName: example-com-tls
issuerRef:
name: vault-issuer

commonName: example.com
dnsNames:
- www.example.com

The Certificate resource describes our desired certificate and the possible methods that can be used to obtain it. You
can learn more about the Certificate resource in the reference docs. If the certificate is obtained successfully, the
resulting key pair will be stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the Subject Alternative Names (SANs) will be
example.com and www.example.com.

In our Certificate we have referenced the vault-issuer Issuer above. The Issuer must be in the same namespace
as the Certificate. If you want to reference a ClusterIssuer, which is a cluster-scoped version of an Issuer, you must
add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the ClusterIssuer reference docs.

Vault Authentication with a Token

This Vault authentication method uses a plain token. A Vault token is generated by one of the many authentication
backends supported by Vault. Tokens in Vault have expiration and need to be refreshed. You need to be aware that
cert-manager does not refresh these tokens. Another process must be put in place to keep them from expiring.

For testing purposes a root token is generated at Vault installation time. WARNING: Root tokens do not expire, so
should only be used for testing purposes.

Please refer to the official token documentation for all the details.

60 Chapter 3. Tasks

https://en.wikipedia.org/wiki/Subject_Alternative_Name
https://www.vaultproject.io/docs/concepts/tokens.html

cert-manager Documentation

Here an example of a secret Kubernetes resource containing the Vault token:

apiVersion: v1
kind: Secret
type: Opaque
metadata:

name: cert-manager-vault-token
namespace: kube-system

data:
token: "MjI..."

Where the token value is the base 64 encoded value of the token giving access to the PKI backend in Vault.

We can now create an issuer referencing this secret:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: vault-issuer
namespace: default

spec:
vault:
auth:
tokenSecretRef:

name: cert-manager-vault-token
key: token

path: pki_int/sign/example-dot-com
server: https://vault
caBundle: <base64 encoded caBundle PEM file>

Where path is the Vault role path of the PKI backend and server is the Vault server base URL. The secret created
previously is referenced in the issuer with its name and key corresponding to the name of the Kubernetes secret and
the property name containing the token value respectively.

An optional base64 encoded caBundle in PEM format can be provided to validate the TLS connection to the Vault
Server. When caBundle is set it replaces the CA bundle inside the container running cert-manager. This parameter as
no effect if the connection used is in plain HTTP.

Once we have created the above Issuer we can use it to obtain a certificate.

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:

name: example-com
namespace: default

spec:
secretName: example-com-tls
issuerRef:
name: vault-issuer

commonName: example.com
dnsNames:
- www.example.com

The Certificate resource describes our desired certificate and the possible methods that can be used to obtain it. You
can learn more about the Certificate resource in the reference docs. If the certificate is obtained successfully, the
resulting key pair will be stored in a secret called example-com-tls in the same namespace as the Certificate.

The certificate will have a common name of example.com and the Subject Alternative Names (SANs) will be
example.com and www.example.com.

3.1. Setting up Issuers 61

https://en.wikipedia.org/wiki/Subject_Alternative_Name

cert-manager Documentation

In our Certificate we have referenced the vault-issuer Issuer above. The Issuer must be in the same namespace
as the Certificate. If you want to reference a ClusterIssuer, which is a cluster-scoped version of an Issuer, you must
add kind: ClusterIssuer to the issuerRef stanza.

For more information on ClusterIssuers, read the ClusterIssuer reference docs.

Setting up Venafi Issuers

The Venafi Issuer types allows you to obtain certificates from Venafi Cloud and Venafi Trust Protection Platform
instances.

Register your account at https://ui.venafi.cloud/enroll and get an API key from your dashboard.

You can have multiple different Venafi Issuer types installed within the same cluster, including mixtures of Cloud and
TPP issuer types. This allows you to be flexible with the types of Venafi account you use.

Automated certificate renewal and management are provided for Certificates using the Venafi issuer.

Note: The Venafi Issuer has been recently added, and the exact structure of the Issuer resource is subject to change.
Such changes will be clearly documented, and migration steps will be provided.

Creating an Issuer resource

A single Venafi Issuer represents a single ‘zone’ within the Venafi API, therefore you must create an Issuer resource
for each Venafi Zone you want to obtain certificates from.

You can configure your Issuer resource to either issue certificates only within a single namespace, or cluster-wide
(using a ClusterIssuer resource). For more information on the distinction between Issuer and ClusterIssuer resources,
read the Difference between Issuers and ClusterIssuers section.

Creating a Venafi Cloud Issuer

In order to set up a Venafi Cloud Issuer, you must first create a Kubernetes Secret resource containing your Venafi
Cloud API credentials:

kubectl create secret generic \
cloud-secret \
--namespace='NAMESPACE OF YOUR ISSUER RESOURCE' \
--from-literal=apikey='YOUR_CLOUD_API_KEY_HERE'

Note: If you are configuring your Issuer as a ClusterIssuer resource in order to issue Certificates across your whole
cluster, you must set the --namespace parameter to cert-manager, which is the default ‘cluster resource names-
pace’.

This API key will be used by cert-manager to interact with the Venafi Cloud service on your behalf.

Once the API key Secret has been created, you can create your Issuer or ClusterIssuer resource. If you are creat-
ing a ClusterIssuer resource, you must change the kind field to ClusterIssuer and remove the metadata.
namespace field.

Save the below content after making your amendments to a file named venafi-cloud-issuer.yaml:

62 Chapter 3. Tasks

https://pki.venafi.com/venafi-cloud/
https://venafi.com/
https://ui.venafi.cloud/enroll

cert-manager Documentation

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: cloud-venafi-issuer
namespace: <NAMESPACE YOU WANT TO ISSUE CERTIFICATES IN>

spec:
venafi:
zone: "DevOps" # Set this to the Venafi policy zone you want to use
cloud:

apiTokenSecretRef:
name: cloud-secret
key: apikey

You can then create the Issuer using kubectl create -f:

kubectl create -f venafi-cloud-issuer.yaml

Verify the Issuer has been initialised correctly using kubectl describe:

kubectl describe issuer cloud-venafi-issuer --namespace='NAMESPACE OF YOUR ISSUER
→˓RESOURCE'

(TODO) include sample output

You are now ready to issue certificates using the newly provisioned Venafi Issuer.

Read the Issuing Certificates document for more information on how to create Certificate resources.

Creating a Venafi Trust Protection Platform Issuer

The Venafi Trust Protection integration allows you to obtain certificates from a properly configured Venafi TPP in-
stance.

The setup is similar to the Venafi Cloud configuration above, however some of the connection parameters are slightly
different.

Note: You must allow “User Provided CSRs” as part of your TPP policy, as this is the only type supported by
cert-manager at this time.

In order to set up a Venafi Trust Protection Platform Issuer, you must first create a Kubernetes Secret resource contain-
ing your Venafi TPP API credentials:

kubectl create secret generic \
tpp-secret \
--namespace=<NAMESPACE OF YOUR ISSUER RESOURCE> \
--from-literal=username='YOUR_TPP_USERNAME_HERE' \
--from-literal=password='YOUR_TPP_PASSWORD_HERE'

Note: If you are configuring your Issuer as a ClusterIssuer resource in order to issue Certificates across your whole
cluster, you must set the --namespace parameter to cert-manager, which is the default ‘cluster resource names-
pace’.

These credentials will be used by cert-manager to interact with your Venafi TPP instance.

3.1. Setting up Issuers 63

cert-manager Documentation

Once the Secret containing credentials has been created, you can create your Issuer or ClusterIssuer resource. If
you are creating a ClusterIssuer resource, you must change the kind field to ClusterIssuer and remove the
metadata.namespace field.

Save the below content after making your amendments to a file named venafi-tpp-issuer.yaml:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
metadata:

name: tpp-venafi-issuer
namespace: <NAMESPACE YOU WANT TO ISSUE CERTIFICATES IN>

spec:
venafi:
zone: devops\cert-manager # Set this to the Venafi policy zone you want to use
tpp:

url: https://tpp.venafi.example/vedsdk # Change this to the URL of your TPP
→˓instance

caBundle: <base64 encoded string of caBundle PEM file>
credentialsRef:

name: tpp-secret

You can then create the Issuer using kubectl create -f:

kubectl create -f venafi-tpp-issuer.yaml

Verify the Issuer has been initialised correctly using kubectl describe:

kubectl describe issuer tpp-venafi-issuer --namespace='NAMESPACE OF YOUR ISSUER
→˓RESOURCE'

(TODO) include sample output

You are now ready to issue certificates using the newly provisioned Venafi Issuer.

Read the Issuing Certificates document for more information on how to create Certificate resources.

3.2 Issuing Certificates

The Certificate resource type is used to request certificates from different Issuers.

In order to issue any certificates, you’ll need to configure an Issuer resource first.

If you have not configured any issuers yet, you should read the Setting up Issuers guide.

3.2.1 Creating Certificate resources

A Certificate resource specifies fields that are used to generated certificate signing requests which are then fulfilled by
the issuer type you have referenced.

Certificates specify which issuer they want to obtain the certificate from by specifying the certificate.spec.
issuerRef field.

A basic Certificate resource, for the example.com and www.example.com DNS names that is valid for 90d and
renews 15d before expiry is below:

64 Chapter 3. Tasks

cert-manager Documentation

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example-com
5 namespace: default
6 spec:
7 secretName: example-com-tls
8 duration: 2160h # 90d
9 renewBefore: 360h # 15d

10 commonName: example.com
11 dnsNames:
12 - example.com
13 - www.example.com
14 issuerRef:
15 name: ca-issuer
16 # We can reference ClusterIssuers by changing the kind here.
17 # The default value is Issuer (i.e. a locally namespaced Issuer)
18 kind: Issuer

The signed certificate will be stored in a Secret resource named example-com-tls once the issuer has successfully
issued the requested certificate.

The Certificate will be issued using the issuer named ca-issuer in the default namespace (the same namespace
as the Certificate resource).

Note: If you want to create an Issuer that can be referenced by Certificate resources in all namespaces, you should
create a ClusterIssuer resource and set the certificate.spec.issuerRef.kind field to ClusterIssuer.

Note: The renewBefore and duration fields must be specified using Golang’s time.Time string format,
which does not allow the d (days) suffix. You must specify these values using s, m and h suffixes instead. Failing to
do so without installing the webhook component can prevent cert-manager from functioning correctly (#1269).

Note: Take care when setting the renewBefore field to be very close to the duration as this can lead to a
renewal loop, where the Certificate is always in the renewal period. Some Issuers set the notBefore field on their
issued X.509 certificate before the issue time to fix clock-skew issues, leading to the working duration of a certificate
to be less than the full duration of the certificate. For example, Let’s Encrypt sets it to be one hour before issue time,
so the actual working duration of the certificate is 89 days, 23 hours (the full duration remains 90 days).

A full list of the fields supported on the Certificate resource can be found in the API reference documentation.

3.2.2 Temporary certificates whilst issuing

With some Issuer types, certificates can take a few minutes to be issued.

A temporary untrusted certificate will be issued whilst this process takes places if another certificate does not already
exist in the target Secret resource.

This helps to improve compatibility with certain ingress controllers (e.g. ingress-gce) which require a TLS certificate
to be present at all times in order to function.

After the real, valid certificate has been obtained, cert-manager will replace the temporary self signed certificate with
the valid one, but will retain the same private key.

3.2. Issuing Certificates 65

https://github.com/jetstack/cert-manager/issues/1269
https://docs.cert-manager.io/en/release-0.8/reference/api-docs/index.html#certificatespec-v1alpha1
https://github.com/kubernetes/ingress-gce

cert-manager Documentation

Automatically creating Certificates for Ingress resources

cert-manager can be configured to automatically provision TLS certificates for Ingress resources via annotations on
your Ingresses.

A small sub-component of cert-manager, ingress-shim, is responsible for this.

How it works

ingress-shim watches Ingress resources across your cluster. If it observes an Ingress with any of the annotations
described in the ‘Usage’ section, it will ensure a Certificate resource with the same name as the Ingress, and configured
as described on the Ingress exists. For example:

apiVersion: extensions/v1beta1
kind: Ingress
metadata:

annotations:
add an annotation indicating the issuer to use.
certmanager.k8s.io/cluster-issuer: nameOfClusterIssuer

name: myIngress
namespace: myIngress

spec:
rules:
- host: myingress.com
http:

paths:
- backend:

serviceName: myservice
servicePort: 80

path: /
tls: # < placing a host in the TLS config will indicate a cert should be created
- hosts:
- myingress.com
secretName: myingress-cert # < cert-manager will store the created certificate in

→˓this secret.

Configuration

Since cert-manager v0.2.2, ingress-shim is deployed automatically as part of a Helm chart installation.

If you would also like to use the old kube-lego kubernetes.io/tls-acme: "true" annotation for fully
automated TLS, you will need to configure a default Issuer when deploying cert-manager. This can be done by adding
the following --set when deploying using Helm:

--set ingressShim.defaultIssuerName=letsencrypt-prod \
--set ingressShim.defaultIssuerKind=ClusterIssuer

In the above example, cert-manager will create Certificate resources that reference the ClusterIssuer letsencrypt-prod
for all Ingresses that have a kubernetes.io/tls-acme: "true" annotation.

For more information on deploying cert-manager, read the deployment guide.

66 Chapter 3. Tasks

https://github.com/jetstack/kube-lego

cert-manager Documentation

Supported annotations

You can specify the following annotations on ingresses in order to trigger Certificate resources to be automatically
created:

• certmanager.k8s.io/issuer - the name of an Issuer to acquire the certificate required for this ingress
from. The Issuer must be in the same namespace as the Ingress resource.

• certmanager.k8s.io/cluster-issuer - the name of a ClusterIssuer to acquire the certificate required
for this ingress from. It does not matter which namespace your Ingress resides, as ClusterIssuers are non-
namespaced resources.

• kubernetes.io/tls-acme: "true" - this annotation requires additional configuration of the ingress-
shim (see above). Namely, a default issuer must be specified as arguments to the ingress-shim container.

• certmanager.k8s.io/acme-challenge-type - (DEPRECATED) by default, if the Issuer specified
is an ACME issuer (either through ingress-shim’s defaults, or with one of the above annotations), the ingress-
shim will set the ACME challenge mechanism on the Certificate resource it creates to ‘http01’. This annotation
can be used to alter this behaviour. Must be one of ‘http01’ or ‘dns01’.

• certmanager.k8s.io/acme-dns01-provider - (DEPRECATED) if the ACME challenge type has
been set to dns01, this annotation must be specified to instruct cert-manager which DNS provider (as configured
on the specified Issuer resource) should be used. This field is required if the challenge type is set to DNS01.

• certmanager.k8s.io/acme-http01-ingress-class - (DEPRECATED) if the ACME challenge
type has been set to http01, this annotation allows you to configure ingress class that will be used to solve
challenges for this ingress. Customising this is useful when you are trying to secure internal services, and need
to solve challenges using different ingress class to that of the ingress. If not specified and the ‘acme-http01-edit-
in-place’ annotation is not set, this defaults to the ingress class of the ingress resource.

• certmanager.k8s.io/acme-http01-edit-in-place: "true" - (DEPRECATED) if the
ACME challenge type has been set to http01, and the ingress has the ‘kubernetes.io/tls-acme: true’ annota-
tion, this controls whether the ingress is modified ‘in-place’, or a new one created specifically for the http01
challenge. If present, and set to “true” the existing ingress will be modified. Any other value, or the absence of
the annotation assumes “false”.

3.3 Backing up and restoring

If you need to uninstall cert-manager, or transfer your installation to a new cluster, you can backup all of cert-manager’s
configuration in order to later re-install.

3.3.1 Backing up

To backup all of your cert-manager configuration resources, run:

kubectl get -o yaml \
--all-namespaces \
issuer,clusterissuer,certificates,orders,challenges > cert-manager-backup.yaml

If you are transferring data to a new cluster, you may also need to copy across additional Secret resources that are
referenced by your configured Issuers, such as:

3.3. Backing up and restoring 67

cert-manager Documentation

CA Issuers

• The root CA Secret referenced by issuer.spec.ca.secretName

Vault Issuers

• The token authentication Secret referenced by issuer.spec.vault.auth.tokenSecretRef

• The approle configuration Secret referenced by issuer.spec.vault.auth.appRole.secretRef

ACME Issuers

• The ACME account private key Secret referenced by issuer.acme.privateKeySecretRef

• Any Secrets referenced by DNS providers configured under the issuer.acme.dns01.providers field

3.3.2 Restoring

In order to restore your configuration, you can simply kubectl apply the files created above after installing cert-
manager.

kubectl apply -f cert-manager-backup.yaml

If you have migrated from an old cluster, you will need to make sure to run a similar kubectl apply command to
restore your Secret resources too.

3.4 Upgrading cert-manager

This section contains information on upgrading cert-manager. It also contains documents detailing breaking changes
between cert-manager versions, and information on things to look out for when upgrading.

Note: Before performing upgrades of cert-manager, it is advised to take a backup of all your cert-manager resources
just in case an issue occurs whilst upgrading. You can read how to backup and restore cert-manager in the Backing up
and restoring guide.

3.4.1 Upgrading with Helm

If you installed cert-manager using Helm, you can easily upgrade using the Helm CLI.

Note: Before upgrading, please read the relevant instructions at the links below for your from and to version.

Once you have read the relevant upgrading notes and taken any appropriate actions, you can begin the upgrade pro-
cess like so - replacing <release_name> with the name of your Helm release for cert-manager (usually this is
cert-manager) and replacing <version> with the version number you want to install:

68 Chapter 3. Tasks

cert-manager Documentation

Install the cert-manager CustomResourceDefinition resources before
upgrading the Helm chart
kubectl apply \

-f https://raw.githubusercontent.com/jetstack/cert-manager/<version>/deploy/
→˓manifests/00-crds.yaml

Ensure the local Helm chart repository cache is up to date
helm repo update

If you are upgrading from v0.5 or below, you should manually add this
label to your cert-manager namespace to ensure the `webhook component`_
can provision correctly.
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

helm upgrade --version <version> <release_name> jetstack/cert-manager

This will upgrade you to the latest version of cert-manager, as listed in the ‘Jetstack Helm chart repository‘_.

Note: You can find out your release name using helm list | grep cert-manager.

3.4.2 Upgrading using static manifests

If you installed cert-manager using the static deployment manifests, you can upgrade them in a similar way to how
you first installed them.

Note: Before upgrading, please read the relevant instructions at the links below for your from and to version.

Once you have read the relevant notes and taken any appropriate actions, you can begin the upgrade process like so -
replacing <version> with the version number you want to install:

If you are upgrading from v0.5 or below, you should manually add this
label to your cert-manager namespace to ensure the `webhook component`_
can provision correctly.
kubectl label namespace cert-manager certmanager.k8s.io/disable-validation=true

kubectl apply \
-f https://github.com/jetstack/cert-manager/releases/download/<version>/cert-

→˓manager.yaml

Note: If you are running kubectl v1.12 or below, you will need to add the --validate=false flag to your
kubectl apply command above else you will receive a validation error relating to the caBundle field of the
ValidatingWebhookConfiguration resource. This issue is resolved in Kubernetes 1.13 onwards. More
details can be found in kubernetes/kubernetes#69590.

Upgrading from v0.2 to v0.3

During the v0.3 release, a number of breaking changes were made that require you to update either deployment
configuration and runtime configuration (e.g. Certificate, Issuer and ClusterIssuer resources).

3.4. Upgrading cert-manager 69

https://github.com/jetstack/cert-manager/blob/release-0.8/deploy/manifests
https://github.com/kubernetes/kubernetes/issues/69590

cert-manager Documentation

After reading these instructions, you should then proceed to upgrade cert-manager according to your deployment
configuration (e.g. using helm upgrade if installing via Helm chart, or kubectl apply if installing with raw
manifests).

A brief summary:

• Supporting resources for ClusterIssuers (e.g. signing CA certificates, or ACME account private keys) will
now be stored in the same namespace as cert-manager, instead of kube-system in previous versions (#329,
@munnerz)

• Switch to ConfigMaps instead of Endpoints for leader election (#327, @mikebryant)

• Removing support for ACMEv1 in favour of ACMEv2 (#309, @munnerz)

• Removing ingress-shim and compiling it into cert-manager itself (#502, @munnerz)

• Change to the default behaviour of ingress-shim. It now generates Certificates with the ingressClass field
set instead of the ingress field. This will mean users of ingress controllers that assign a single IP to a single
Ingress (e.g. the GCE ingress controller) will no longer work without adding a new annotation to your ingress
resource.

Supporting resources for ClusterIssuers moving into the cert-manager namespace

In the past, the cert-manager controller was hard coded to look for supplemental resources, such as Secrets containing
DNS provider credentials, in the kube-system namespace.

We now store these resources in the same namespace as the cert-manager pod itself runs within.

When upgrading, you should make sure to move any of these supplemental resources into the cert-manager deployment
namespace, or otherwise deploy cert-manager into kube-system itself.

You can also change the ‘cluster resource namespace’ when deploying cert-manager:

With the helm chart: --set clusterResourceNamespace=kube-system.

Or if using the static deployment manifests, by adding the --cluster-resource-namespace flag to the args
field of the cert-manager container.

Switch to ConfigMaps instead of Endpoints for leader election

cert-manager-controller performs leader election to allow you to run ‘hot standby’ replicas of cert-manager.

In the past, we used Endpoint resources to perform this election. The new best practice is to use ConfigMap resources
in order to reduce API overhead in large clusters.

As such, v0.3 switches us to use ConfigMap resources for leader election.

During the upgrade, you should first scale your cert-manager-controller deployment to 0 to ensure no other replicas of
cert-manager are running when the new v0.3 deployment starts:

kubectl scale --namespace <deployment-namespace> --replicas=0 deployment <cert-
→˓manager-deployment-name>

Removing support for ACMEv1 in favour of ACMEv2

The ACME v2 specification is now in production with Let’s Encrypt. In order to support this new spec, which includes
support for wildcard certificates, we have removed support for the v1 protocol altogether.

70 Chapter 3. Tasks

cert-manager Documentation

If you have any ACME Issuer or ClusterIssuer resources, you should update the server fields of these to the new
ACMEv2 endpoints.

For example, if you have a Let’s Encrypt production issuer, you should update the server URL:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Issuer
...
spec:
acme:
server: https://acme-v01.api.letsencrypt.org/directory
server: https://acme-v02.api.letsencrypt.org/directory # we switch 'v01' to 'v02'

Removing ingress-shim and compiling it into cert-manager itself

In v0.3 we removed the ingress-shim component and instead now compile in its functionality into the main cert-
manager binary.

This change also introduces a change to the way you configure default Issuers and ClusterIssuers at deployment time.

The deployment documentation has been updated accordingly, but instead of setting ingressShim.
extraArgs={--default-issuer-name=letsencrypt-pod} there are now dedicated Helm chart fields:

--set ingressShim.defaultIssuerName=letsencrypt-prod \
--set ingressShim.defaultIssuerKind=ClusterIssuer

Change to the default behaviour of ingress-shim

In the past, when using ingress-shim, we set the ingress field on the Certificate resource to trigger cert-manager to
edit the specified Ingress resource to solve the challenge.

The alternate option is to set the ingressClass field, which causes cert-manager to create temporary Ingress
resources to solve the challenge. This behaviour provides better compatibility with ingress controllers like nginx-
ingress.

In v0.3 we have changed the default behaviour of ingress-shim to set the ingressClass field instead of ingress.

This will cause validations for ingress controllers like ingress-gce to fail without additional configuration in your
Ingress resources annotations.

Add the follow annotation to your Ingress resources if you are using the GCE ingress controller, in addition to the
usual ingress-shim annotation(s):

certmanager.k8s.io/acme-http01-edit-in-place: "true"

Upgrading from v0.3 to v0.4

There are no special notes or considerations when upgrading from v0.3 to v0.4.

Upgrading from v0.4 to v0.5

Version 0.5 of cert-manager introduces a new ‘webhook’ component, which is used by the Kubernetes apiserver to
validate our CRD resource types.

This should help in future to reduce errors caused by misconfigured Certificate and Issuer resources.

3.4. Upgrading cert-manager 71

https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-nginx
https://github.com/kubernetes/ingress-gce

cert-manager Documentation

When upgrading from a previous release using Helm, it is essential that you perform one extra step before upgrading.

Disabling resource validation on the cert-manager namespace

Before upgrading, you should add the certmanager.k8s.io/disable-validation: "true" label to
the cert-manager namespace.

This will allow the system resources that cert-manager requires to bootstrap TLS to be created in its own namespace.

Upgrading from v0.5 to v0.6

Warning: If you are upgrading from a release older than v0.5, please read the Upgrading from older versions
using Helm note at the bottom of this document!

The upgrade process from v0.5 to v0.6 should be fairly seamless for most users. As part of the new release, we have
changed how we ship the CustomResourceDefinition resources that cert-manager needs in order to operate (as well as
introducing two new CRD types).

Depending on the way you have installed cert-manager in the past, your upgrade process will slightly vary:

Upgrading with the Helm chart

If you have previously deployed cert-manager v0.5 using the Helm installation method, you will now need to perform
one extra step before upgrading.

Due to issues with the way Helm handles CRD resources in Helm charts, we have now moved the installation of these
resources into a separate YAML manifest that must be installed with kubectl apply before upgrading the chart.

You can follow the regular upgrade guide as usual in order to upgrade from v0.5 to v0.6.

Upgrading with static manifests

The static manifests have moved into the deploy/manifests directory for this release.

We now also no longer ship different manifests for different configurations, in favour of a single cert-manager.
yaml file which should work for all Kubernetes clusters from Kubernetes v1.9 onwards.

You can follow the regular upgrade guide as usual in order to upgrade from v0.5 to v0.6.

Upgrading from older versions using Helm

If you are upgrading from a version older than v0.5 and have installed with Helm, you will need to perform a
fresh installation of cert-manager due to issues with the Helm upgrade process. This will involve the removal of all
cert-manager custom resources. This will not delete the Secret resources being used by your apps.

Before upgrading you will need to:

1. Read and follow the backup guide to create a backup of your configuration.

2. Delete the existing cert-manager Helm release (replacing ‘cert-manager’ with the name of your Helm release):

72 Chapter 3. Tasks

cert-manager Documentation

Uninstall the Helm chart
$ helm delete --purge cert-manager

Ensure the cert-manager CustomResourceDefinition resources do not exist:
$ kubectl delete crd \

certificates.certmanager.k8s.io \
issuers.certmanager.k8s.io \
clusterissuers.certmanager.k8s.io

3. Perform a fresh install (as per the installation guide):

Install the cert-manager CRDs
$ kubectl apply \

-f https://raw.githubusercontent.com/jetstack/cert-manager/release-0.8/deploy/
→˓manifests/00-crds.yaml

Update helm repository cache
$ helm repo update

Install cert-manager
$ helm install \

--name cert-manager \
--namespace cert-manager \
--version v0.6.6 \
stable/cert-manager

4. Follow the steps in the restore guide to restore your configuration.

5. Verify that your Issuers and Certificate resources are ‘Ready’:

$ kubectl get clusterissuer,issuer,certificates --all-namespaces
NAMESPACE NAME READY SECRET
→˓ AGE
cert-manager cert-manager-webhook-ca True cert-manager-webhook-ca
→˓ 1m
cert-manager cert-manager-webhook-webhook-tls True cert-manager-webhook-
→˓webhook-tls 1m
example-com example-com-tls True example-com-tls
→˓ 11s

Upgrading from v0.6 to v0.7

There are no special notes or considerations when upgrading from v0.6 to v0.7.

Upgrading from v0.7 to v0.8

Upgrading from v0.7 to v0.8 is possible using the regular upgrade guide.

All resources should continue to operate as before.

As part of v0.8, a new format for configure ACME Certificate resources has been introduced. Notably, challenge
solver configuration has moved from the Certificate resource (under certificate.spec.acme) and now resides
on your configure Issuer resource, under issuer.spec.acme.solvers.

This allows Certificate resources to be portable between different Issuer types.

3.4. Upgrading cert-manager 73

cert-manager Documentation

Both the old and the new format of configuration are supported in the v0.8 release, so it is possible to incrementally
upgrade your resources if you have a large, multi-team deployment of cert-manager that makes it complex to upgrade
all manifests at once in place.

After upgrading, it is strongly recommended that you update your ACME Issuer and Certificate resources to the new
format.

We will be removing support for the old format ahead of the 1.0 release.

The documentation has been updated to reflect configuring using the new format, and as such, exhaustive information
can be found in the Setting up ACME Issuers document.

Performing an incremental switch to the new format

The following guide assumes you have 2 ‘solver types’ currently in use across your cert-manager deployment - one for
DNS01 and another for HTTP01 using an ingress class of nginx. The nginx based HTTP01 solver will be configured
as the default solver type for Certificate resources that reference our issuer.

You can adjust the instructions below to fit your own configuration, either with more or less solvers as appropriate.

First, we will modify our ACME Issuer to add the new HTTP01 and DNS01 solvers. This operation will not effect
any existing Certificates that already explicitly set a certificate.spec.acme field:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 email: user@example.com
8 server: https://acme-staging-v02.api.letsencrypt.org/directory
9 privateKeySecretRef:

10 name: example-issuer-account-key
11

12 # The HTTP01 and DNS01 fields are now **deprecated**.
13 # We leave them in place here so that any Certificates that still
14 # specify a ``certificate.spec.acme`` stanza will continue to operate
15 # correctly.
16 # cert-manager will decide which configuration to use based on whether
17 # the Certificate contains a ``certificate.spec.acme`` stanza.
18 http01: {}
19 dns01:
20 providers:
21 - name: cloudflare
22 cloudflare:
23 email: my-cloudflare-acc@example.com
24 apiKeySecretRef:
25 name: cloudflare-api-key-secret
26 key: api-key
27

28 # Configure the challenge solvers.
29 solvers:
30 # An empty selector will 'match' all Certificate resources that
31 # reference this Issuer.
32 - selector: {}
33 http01:
34 ingress:
35 class: nginx

(continues on next page)

74 Chapter 3. Tasks

cert-manager Documentation

(continued from previous page)

36 - selector:
37 # Any Certificate resources, or Ingress resources that use
38 # ingress-shim and match the below label selector will use this
39 # configured solver type instead of the default nginx based HTTP01
40 # solver above.
41 # You can continue to add new solver types if needed.
42 # The most specific 'match' will be used.
43 matchLabels:
44 use-cloudflare-solver: "true"
45 dns01:
46 # Adjust the configuration below according to your environment.
47 # You can view more example configurations for different DNS01
48 # providers in the documentation: https://docs.cert-manager.io/en/latest/

→˓tasks/issuers/setup-acme/dns01/index.html
49 cloudflare:
50 email: my-cloudflare-acc@example.com
51 apiKeySecretRef:
52 name: cloudflare-api-key-secret
53 key: api-key

By retaining both the old and the new configuration format on the Issuer resource, we can begin the process of
incrementally upgrading our Certificate resources.

Any Certificate resources that you have manually created (i.e. not managed by ingress-shim) must then be updated to
remove the certificate.spec.acme stanza.

Given the above configuration, certificates will use the HTTP01 solver with the nginx ingress class in order to solve
ACME challenges.

If a particular certificate requires a wildcard, or you simply want to use DNS01 for that certificate instead of HTTP01,
you can add the use-cloudflare-solver: "true" label to your Certificate resources and the appropriate
ACME challenge solver will be used.

Upgrading ingress-shim managed certificates to the new format

When using ingress-shim, cert-manager itself will create and manage your Certificate resource for you.

In order to support both the old and the new format simultaneously, ingress-shim will continue to set the
certificate.spec.acme field on Certificate resources it manages.

In order to force ingress-shim to also use the new format, you must remove the old format configuration from your
Issuer resources (i.e. issuer.spec.acme.http01 and issuer.spec.acme.dns01).

When ingress-shim detects that these fields are not specified, it will clear/not set the certificate.spec.acme
field.

If you are managing a certificate using ingress-shim that requires an alternative solver type (other than the default
solver configured on the issuer which in this instance is the HTTP01 nginx solver), you can add labels to the Ingress
resource which will be automatically copied across to the Certificate resource:

1 apiVersion: extensions/v1beta1
2 kind: Ingress
3 metadata:
4 name: my-test-ingress
5 labels:
6 use-cloudflare-solver: "true"

3.4. Upgrading cert-manager 75

cert-manager Documentation

Confirming all Certificate resources are upgraded

In order to check if any of your Certificate resources still have the old configuration format, you can run the following
command:

kubectl get certificate --all-namespaces \
-o custom-columns="NAMESPACE:.metadata.namespace,NAME:.metadata.name,OWNER:.

→˓metadata.ownerReferences[0].kind,OLD FORMAT:.spec.acme"

NAMESPACE NAME OWNER OLD FORMAT
default test <none> <none>
default test2 Ingress map[config:[map[domains:[abc.com]
→˓http01:map[ingressClass:nginx]]]]

In the above example, we can see there are two Certificate resources.

The test resource has been updated to no longer include the certificate.spec.acme field.

The test2 resource still specifies the old configuration format, however it also has an OwnerReference linking it to
an Ingress resource. This is because the test2 Certificate resource is managed by ingress-shim.

As mentioned in the previous section, ingress-shim managed certificates will only switch to the new format once the
old format configuration on the Issuer resource has been removed. This means we need to continue to the next
section in order to remove the old format configuration altogether from Issuer resource in order for ingress-shim to
automatically migrate the test2 Certificate resource.

Removing old configuration altogether

Once we’ve verified that all non-ingress-shim managed Certificate resources have been updated to not specify the
certificate.spec.acme stanza using the command above, we can proceed to remove the issuer.spec.
acme.http01 and issuer.spec.acme.dns01 stanzas from our Issuer resources. Once completed, the Issuer
resource from the previous section should look like the following:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-staging
5 spec:
6 acme:
7 email: user@example.com
8 server: https://acme-staging-v02.api.letsencrypt.org/directory
9 privateKeySecretRef:

10 name: example-issuer-account-key
11

12 # Configure the challenge solvers.
13 solvers:
14 # An empty selector will 'match' all Certificate resources that
15 # reference this Issuer.
16 - selector: {}
17 http01:
18 ingress:
19 class: nginx
20 - selector:
21 # Any Certificate resources, or Ingress resources that use
22 # ingress-shim and match the below label selector will use this
23 # configured solver type instead of the default nginx based HTTP01

(continues on next page)

76 Chapter 3. Tasks

cert-manager Documentation

(continued from previous page)

24 # solver above.
25 # You can continue to add new solver types if needed.
26 # The most specific 'match' will be used.
27 matchLabels:
28 use-cloudflare-solver: "true"
29 dns01:
30 # Adjust the configuration below according to your environment.
31 # You can view more example configurations for different DNS01
32 # providers in the documentation: https://docs.cert-manager.io/en/latest/

→˓tasks/issuers/setup-acme/dns01/index.html
33 cloudflare:
34 email: my-cloudflare-acc@example.com
35 apiKeySecretRef:
36 name: cloudflare-api-key-secret
37 key: api-key

After applying the above Issuer resource, you should re-run the command from the last section to verify that the
remaining ingress-shim managed Certificate resources have also been updated to the new format:

kubectl get certificate --all-namespaces \
-o custom-columns="NAMESPACE:.metadata.namespace,NAME:.metadata.name,OWNER:.

→˓metadata.ownerReferences[0].kind,OLD FORMAT:.spec.acme"

NAMESPACE NAME OWNER OLD FORMAT
default test <none> <none>
default test2 Ingress <none>

Manually triggering a Certificate to be issued to validate the full config

To be certain that you’ve correctly configured your new Issuer/Certificate resources, it is advised you attempt to issue
a new Certificate after removing the old configuration format.

To do so, you can either:

• update the secretName field of an existing Certificate resource

• add an additional dnsName to one of your existing Certificate resources

• create a new Certificate resource

You should ensure that your Certificates are still be issued correctly to avoid any potential issues at renewal time.

Special notes for ingress-gce users

Users of the ingress-gce ingress controller may find that their experience configuring cert-manager to solve chal-
lenges using HTTP01 validation is slightly more painful using the new format, as it requires the ingressName field
to be specified as a distinct solver on the Issuer resource (as opposed to in the past where the ingressName could be
specified as a field on the Certificate resource).

This is a known issue, and a workaround is scheduled to be completed for v0.9.

In the meantime, ingress-gce users can either choose to manually create a new solver entry per Ingress resource they
want to use to solve challenges, or otherwise continue to use the old format until a suitable alternative appears in v0.9.

3.4. Upgrading cert-manager 77

https://github.com/jetstack/cert-manager/issues/1666

cert-manager Documentation

78 Chapter 3. Tasks

CHAPTER 4

Reference documentation

This section contains detailed reference documentation about cert-manager’s types and how it operates. It also includes
some simple example configurations in order to help users activate advanced functionality of cert-manager.

Step by step user guides and tutorials can be found in the tutorials section.

4.1 Certificates

cert-manager has the concept of ‘Certificates’ that define a desired X.509 certificate. A Certificate is a namespaced
resource that references an Issuer or ClusterIssuer for information on how to obtain the certificate.

A simple Certificate could be defined as:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: acme-crt
5 spec:
6 secretName: acme-crt-secret
7 dnsNames:
8 - foo.example.com
9 - bar.example.com

10 acme:
11 config:
12 - http01:
13 ingressClass: nginx
14 domains:
15 - foo.example.com
16 - bar.example.com
17 issuerRef:
18 name: letsencrypt-prod
19 # We can reference ClusterIssuers by changing the kind here.
20 # The default value is Issuer (i.e. a locally namespaced Issuer)
21 kind: Issuer

79

cert-manager Documentation

This Certificate will tell cert-manager to attempt to use the Issuer named letsencrypt-prod to obtain a certifi-
cate key pair for the foo.example.com and bar.example.com domains. If successful, the resulting key and
certificate will be stored in a secret named acme-crt-secret with keys of tls.key and tls.crt respectively.
This secret will live in the same namespace as the Certificate resource.

The dnsNames field specifies a list of Subject Alternative Names to be associated with the certificate. If the
commonName field is omitted, the first element in the list will be the common name.

The referenced Issuer must exist in the same namespace as the Certificate. A Certificate can alternatively reference a
ClusterIssuer which is non-namespaced.

4.1.1 Certificate Duration and Renewal Window

cert-manager Certificate resources also support custom validity durations and renewal windows.

Important: The backend service implementation can choose to generate a certificate with a different validity period
than what is requested in the issuer.

Although the duration and renewal periods are specified on the Certificate resources, the corresponding Issuer or
ClusterIssuer must support this.

The table below shows the support state of the different backend services used by issuer types:

Issuer Description
ACME Only ‘renewBefore’ supported
CA Fully supported
Vault Fully supported (although the requested duration must be lower than the configured Vault role’s

TTL)
Self Signed Fully supported
Venafi Fully supported

The default duration for all certificates is 90 days and the default renewal windows is 30 days. This means that
certificates are considered valid for 3 months and renewal will be attempted within 1 month of expiration.

The duration and renewBefore parameters must be given in the golang parseDuration string format.

Example Usage

Here an example of an issuer specifying the duration and renewal window.

The certificate from the previous section is extended with a validity period of 24 hours and to begin trying to renew 12
hours before the certificate expiration.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Certificate
3 metadata:
4 name: example
5 spec:
6 secretName: example-tls
7 duration: 24h
8 renewBefore: 12h
9 dnsNames:

10 - foo.example.com
11 - bar.example.com
12 issuerRef:

(continues on next page)

80 Chapter 4. Reference documentation

https://en.wikipedia.org/wiki/Subject_Alternative_Name
https://golang.org/pkg/time/#ParseDuration

cert-manager Documentation

(continued from previous page)

13 name: my-internal-ca
14 kind: Issuer

4.2 Orders

Order resources are used by the ACME issuer to manage the lifecycle of an ACME ‘order’ for a signed TLS certificate.

When a Certificate resource is created that references an ACME issuer, cert-manager will create an Order resource in
order to obtain a signed certificate.

As an end-user, you will never need to manually create an Order resource. Once created, an Order cannot be changed.
Instead, a new Order resource must be created.

4.2.1 Debugging Order resources

In order to debug why a Certificate isn’t being issued, we can first run kubectl describe on the Certificate
resource we’re having issues with:

$ kubectl describe certificate example-com

...
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Generated 1m cert-manager Generated new private key
Normal OrderCreated 1m cert-manager Created Order resource "example-com-

→˓1217431265"

We can see here that Certificate controller has created an Order resource to request a new certificate from the ACME
server.

Orders are a useful source of information when debugging failures issuing ACME certificates. By running kubectl
describe order on a particular order, information can be gleaned about failures in the process:

$ kubectl describe order example-com-1248919344

...
Reason:
State: pending
URL: https://acme-v02.api.letsencrypt.org/acme/order/41123272/265506123
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Created 1m cert-manager Created Challenge resource "example-com-

→˓1217431265-0" for domain "test1.example.com"
Normal Created 1m cert-manager Created Challenge resource "example-com-

→˓1217431265-1" for domain "test2.example.com"

Here we can see that cert-manager has created two Challenge resources in order to fulfil the requirements of the ACME
order to obtain a signed certificate.

You can then go on to run kubectl describe challenge example-com-1217431265-0 to further de-
bug the progress of the Order.

Once an Order is successful, you should see an event like the following:

4.2. Orders 81

cert-manager Documentation

$ kubectl describe order example-com-1248919344

...
Reason:
State: valid
URL: https://acme-v02.api.letsencrypt.org/acme/order/41123272/265506123
Events:

Type Reason Age From Message
---- ------ ---- ---- -------
Normal Created 72s cert-manager Created Challenge resource "example-com-

→˓1217431265-0" for domain "test1.example.com"
Normal Created 72s cert-manager Created Challenge resource "example-com-

→˓1217431265-1" for domain "test2.example.com"
Normal OrderValid 4s cert-manager Order completed successfully

If the Order is not completing successfully, you can debug the challenges for the Order by running kubectl
describe on the Challenge resource.

For more information on debugging Challenge resources, read the challenge reference docs.

4.3 Challenges

Challenge resources are used by the ACME issuer to manage the lifecycle of an ACME ‘challenge’ that must be
completed in order to complete an ‘authorization’ for a single DNS name/identifier.

When an Order resource is created, the order controller will create Challenge resources for each DNS name that is
being authorized with the ACME server.

As an end-user, you will never need to manually create a Challenge resource. Once created, a Challenge cannot be
changed. Instead, a new Challenge resource must be created.

4.3.1 Challenge lifecycle

After a Challenge resource has been created, it will be initially queued for processing. Processing will not begin until
the challenge has been ‘scheduled’ to start. This scheduling process prevents too many challenges being attempted at
once, or multiple challenges for the same DNS name being attempted at once. For more information on how challenges
are scheduled, read the challenge scheduling section.

Once a challenge has been scheduled, it will first be ‘synced’ with the ACME server in order to determine its current
state. If the challenge is already valid, its ‘state’ will be updated to ‘valid’, and also set status.processing =
false to ‘unschedule’ itself.

If the challenge is still ‘pending’, the challenge controller will ‘present’ the challenge using the configured solver, one
of HTTP01 or DNS01. Once the challenge has been ‘presented’, it will set status.presented=true.

Once ‘presented’, the challenge controller will perform a ‘self check’ to ensure that the challenge has ‘propagated’
(i.e. the authoritve DNS servers have been updated to respond correctly, or the changes to the ingress resources have
been observed and in-use by the ingress controller).

If the self check fails, cert-manager will retry the self check with a fixed 10 second retry interval. Challenges that do
not ever complete the self check will continue retrying until the user intervenes.

Once the self check is passing, the ACME ‘authorization’ associated with this challenge will be ‘accepted’ (TODO:
add link to accepting challenges section of ACME spec).

The final state of the authorization after accepting it will be copied across to the Challenge’s status.state field,
as well as the ‘error reason’ if an error occurred whilst the ACME server attempted to validate the challenge.

82 Chapter 4. Reference documentation

cert-manager Documentation

Once a Challenge has entered the valid, invalid, expired or revoked state, it will set status.
processing=false to prevent any further processing of the ACME challenge, and to allow another challenge
to be scheduled if there is a backlog of challenges to complete.

4.3.2 Challenge scheduling

Instead of attempting to process all challenges at once, challenges are ‘scheduled’ by cert-manager.

This scheduler applies a cap on the maximum number of simultaneous challenges as well as disallows two challenges
for the same DNS name and solver type (http-01 or dns-01) to be completed at once.

The maximum number of challenges that can be processed at a time is 60 as of ddff78.

4.3.3 Debugging Challenge resources

In order to determine why an ACME Certificate is not being issued, we can debug using the ‘Challenge’ resources that
cert-manager has created.

In order to determine which Challenge is failing, you can run kubectl get challenges:

$ kubectl get challenges

NAME STATE DOMAIN REASON
→˓ AGE
example-com-1217431265-0 pending example.com Waiting for dns-01 challenge
→˓propagation 22s

This shows that the challenge has been presented using the DNS01 solver successfully and now cert-manager is waiting
for the ‘self check’ to pass.

You can get more information about the challenge by using kubectl describe:

$ kubectl describe challenge example-com-1217431265-0

...
Status:

Presented: true
Processing: true
Reason: Waiting for dns-01 challenge propagation
State: pending

Events:
Type Reason Age From Message
---- ------ ---- ---- -------
Normal Started 19s cert-manager Challenge scheduled for processing
Normal Presented 16s cert-manager Presented challenge using dns-01 challenge

→˓mechanism

Progress about the state of each challenge will be recorded either as Events or on the Challenge’s status block (as
shown above).

4.3.4 Troubleshooting failing challenges

Todo: add section describing common issues and resolutions when challenges are failing

4.3. Challenges 83

https://github.com/jetstack/cert-manager/blob/ddff78f011558e64186d61f7c693edced1496afa/pkg/controller/acmechallenges/scheduler/scheduler.go#L31-L33

cert-manager Documentation

4.4 Issuers

Issuers (and ClusterIssuers) represent a certificate authority from which signed x509 certificates can be obtained, such
as Let’s Encrypt. You will need at least one Issuer or ClusterIssuer in order to begin issuing certificates within your
cluster.

An example of an Issuer type is ACME. A simple ACME issuer could be defined as:

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: Issuer
3 metadata:
4 name: letsencrypt-prod
5 namespace: edge-services
6 spec:
7 acme:
8 # The ACME server URL
9 server: https://acme-v02.api.letsencrypt.org/directory

10 # Email address used for ACME registration
11 email: user@example.com
12 # Name of a secret used to store the ACME account private key
13 privateKeySecretRef:
14 name: letsencrypt-prod
15 # Enable HTTP01 validations
16 http01: {}

This is the simplest of ACME issuers - it specifies no DNS-01 challenge providers. HTTP-01 validation can be
performed through using Ingress resources by enabling the HTTP-01 challenge mechanism (with the http01: {}
field). More information on configuring ACME Issuers can be found here.

4.4.1 Namespacing

An Issuer is a namespaced resource, and it is not possible to issue certificates from an Issuer in a different namespace.
This means you will need to create an Issuer in each namespace you wish to obtain Certificates in.

If you want to create a single issuer than can be consumed in multiple namespaces, you should consider creating a
ClusterIssuer resource. This is almost identical to the Issuer resource, however is non-namespaced and so it can be
used to issue Certificates across all namespaces.

4.4.2 Ambient Credentials

Some API clients are able to infer credentials to use from the environment they run within. Notably, this includes
cloud instance-metadata stores and environment variables. In cert-manager, the term ‘ambient credentials’ refers to
such credentials. They are always drawn from the environment of the ‘cert-manager-controller’ deployment.

Example Usage

If cert-manager is deployed in an environment with ambient AWS credentials, such as with a kube2iam role, the
following ClusterIssuer would make use of those credentials to perform the ACME DNS01 challenge with route53.

1 apiVersion: certmanager.k8s.io/v1alpha1
2 kind: ClusterIssuer
3 metadata:
4 name: letsencrypt-prod

(continues on next page)

84 Chapter 4. Reference documentation

https://letsencrypt.org
https://github.com/jtblin/kube2iam

cert-manager Documentation

(continued from previous page)

5 spec:
6 acme:
7 server: https://acme-v02.api.letsencrypt.org/directory
8 email: user@example.com
9 privateKeySecretRef:

10 name: letsencrypt-prod
11 dns01:
12 providers:
13 - name: route53
14 route53:
15 region: us-east-1

It is important to note that the route53 section does not specify any accessKeyID or
secretAccessKeySecretRef. If either of these are specified, ambient credentials will not be used.

When are Ambient Credentials used

Ambient credentials are supported for the ‘route53’ ACME DNS01 challenge provider.

They will only be used if no credentials are supplied, even if the supplied credentials are invalid.

By default, ambient credentials may be used by ClusterIssuers, but not regular issuers. The
--issuer-ambient-credentials and --cluster-issuer-ambient-credentials=false
flags on cert-manager may be used to override this behavior.

Note that ambient credentials are disabled for regular Issuers by default to ensure unprivileged users who may create
issuers cannot issue certificates using any credentials cert-manager incidentally has access to.

4.4.3 Supported Issuer types

cert-manager has been designed to support pluggable Issuer backends. The currently supported Issuer types are:

Name Description
ACME Supports obtaining certificates from an ACME server, validating with HTTP01 or DNS01
CA Supports issuing certificates using a simple signing keypair, stored in a Secret in the Kubernetes API

server
Vault Supports issuing certificates using HashiCorp Vault.
Self
signed

Supports issuing self signed certificates

Venafi Supports issuing certificates from Venafi Cloud & TPP

Each Issuer resource is of one, and only one type. The type of an Issuer is inferred by which field it specifies in its
spec, such as spec.acme for the ACME issuer, or spec.ca for the CA based issuer.

4.5 ClusterIssuers

ClusterIssuers are a resource type similar to Issuers. They are specified in exactly the same way, but they do not belong
to a single namespace and can be referenced by Certificate resources from multiple different namespaces.

They are particularly useful when you want to provide the ability to obtain certificates from a central authority (e.g.
Letsencrypt, or your internal CA) and you run single-tenant clusters.

4.5. ClusterIssuers 85

cert-manager Documentation

The docs for Issuer resources apply equally to ClusterIssuers.

You can specify a ClusterIssuer resource by changing the kind attribute of an Issuer to ClusterIssuer, and
removing the metadata.namespace attribute:

apiVersion: certmanager.k8s.io/v1alpha1
kind: ClusterIssuer
metadata:

name: letsencrypt-prod
spec:
...

We can then reference a ClusterIssuer from a Certificate resource by setting the spec.issuerRef.kind field to
ClusterIssuer:

apiVersion: certmanager.k8s.io/v1alpha1
kind: Certificate
metadata:

name: my-certificate
namespace: my-namespace

spec:
secretName: my-certificate-secret
issuerRef:
name: letsencrypt-prod
kind: ClusterIssuer

...

When referencing a Secret resource in ClusterIssuer resources (eg apiKeySecretRef) the Secret needs
to be in the same namespace as the cert-manager controller pod. You can optionally override this by using the
--cluster-resource-namespace argument to the controller.

For more information on configuring Issuer resources, see the Issuers reference documentation.

4.6 cainjector controller

4.7 API documentation

86 Chapter 4. Reference documentation

CHAPTER 5

Development documentation

5.1 Develop with minikube

Minikube is a tool to quickly provision a local Kubernetes cluster on many platforms. It can be used to test and develop
cert-manager. This guide will walk you through getting started using Minikube for development.

5.1.1 Start minikube

First, run minikube, and configure your local kubectl command to work with minikube; minikube typically does this
automatically.

Check your locally installed minikube version
$ minikube version
minikube version: v0.25.0

Start a local cluster
If using Minikube v0.25.0 or older:
$ minikube start --extra-config=apiserver.Authorization.Mode=RBAC
Otherwise:
$ minikube start

Verify it works. This should output a local apiserver IP
$ kubectl cluster-info

Create a cluster role binding so Tiller has cluster-admin access rights
$ kubectl create clusterrolebinding default-admin --clusterrole=cluster-admin --
→˓serviceaccount=kube-system:default

Install helm
$ helm init

87

cert-manager Documentation

5.1.2 Install local development tools

You will need the following tools to build cert-manager:

• Bazel

• Docker (and enable for non-root user)

These instructions have only been tested on Linux and MacOS; Windows may require further changes.

If you need to add dependencies, you will additionally need:

• Git

• Mercurial

You can then run ./hack/update-vendor.sh to regenerate any dependencies, and make build to build the
docker images.

5.1.3 Build a dev version of cert-manager

Configure your local docker client to use the minikube docker daemon
$ eval "$(minikube docker-env)"

Build cert-manager binaries and docker images. Full output omitted for brevity
$ make build
Successfully tagged quay.io/jetstack/cert-manager-controller:canary

5.1.4 Deploy that version with helm

Install custom resources before running helm
$ kubectl apply -f deploy/manifests/00-crds.yaml

IMPORTANT: if you are deploying into a namespace that **already exists**,
you MUST ensure the namespace has an additional label on it in order for
the deployment to succeed
$ kubectl label namespace <deployment-namespace> certmanager.k8s.io/disable-
→˓validation="true"

Install our freshly built cert-manager image
$ helm install \

--set image.tag=canary \
--set image.pullPolicy=Never \
--name cert-manager \
./deploy/charts/cert-manager

From here, you should be able to do whatever manual testing or development you wish to.

5.1.5 Deploy a new version

In general, upgrading can be done simply by running make build, and then deleting the deployed pod using kubectl
delete pod.

However, if you make changes to the helm chart or wish to change the controller’s arguments, such as to change the
logging level, you may also update it with the following:

88 Chapter 5. Development documentation

https://docs.bazel.build/versions/master/install.html
https://store.docker.com/search?type=edition&offering=community
https://git-scm.com/downloads
https://www.mercurial-scm.org/

cert-manager Documentation

helm upgrade \
cert-manager \
--reuse-values \
--set extraArgs="{-v=5}"
--set image.tag=build
./contrib/charts/cert-manager

5.2 Running end-to-end tests

cert-manager has an end-to-end test suite that verifies functionality against a real Kubernetes cluster.

This document explains how you can run the end-to-end tests yourself. This is useful when you have added or changed
functionality in cert-manager and want to verify the software still works as expected.

5.2.1 Requirements

Currently, a number of tools must be installed on your machine in order to run the tests:

• bazel - As with all other development, Bazel is required to actually build the project as well as end-to-end test
framework. Bazel will also retrieve appropriate versions of any other dependencies depending on what ‘target’
you choose to run.

• docker - We provision a whole Kubernetes cluster within Docker, and so an up to date version of Docker must
be installed. The oldest Docker version we have tested is 17.09.

• kubectl - If you are running the tests on Linux, this step is technically not required. For non-Linux hosts (i.e.
OSX), you will need to ensure you have a relatively new version of kubectl available on your PATH.

• An internet connection - tests require access to DNS, and optionally Cloudflare APIs (if a Cloudflare API token
is provided).

Bazel, Docker and Kubectl should be installed through your preferred means.

5.2.2 Run end-to-end tests

You can run the end-to-end tests by executing the following:

./hack/ci/run-e2e-kind.sh

The full suite may take up to 10 minutes to run. You can monitor output of this command to track progress.

5.3 Contributing DNS01 providers

5.3.1 WARNING

Because of the overwhelming number of PRs for new DNS providers, We’re changing how we handle the DNS01
contributions. See this post on the mailing list for more information.

Steps to add a FooDNS DNS-01 provider:

1. Create a new package under pkg/issuer/acme/dns/foodns. This is where all the code to interact with
the DNS providers API will live.

5.2. Running end-to-end tests 89

https://groups.google.com/d/msg/cert-manager-dev/CgoMxSP6DSI/IyHp0BGfCQAJ

cert-manager Documentation

2. Implement functions to match the solver interface (Present, CleanUp and Timeout). Use an existing
provider for reference. Most of the cert-manager providers are based off https://github.com/xenolf/lego, so if
lego supports the DNS provider you want to add, it’s fairly easy to copy it over and make modifications to fit
with the cert-manager codebase. Examples of the changes required:

• replace uses of github.com/xenolf/lego/acme with github.com/jetstack/
cert-manager/pkg/issuer/acme/dns/util.

• replace uses of github.com/xenolf/lego/log with github.com/golang/glog.

• remove references to github.com/xenolf/lego/platform/config/env. cert-manager does
not use environment variables for internal configuration, so calls to this package should not be required.

3. Add unit test coverage for this package.

4. Add your provider configuration types to the API (located in pkg/apis/certmanager/v1alpha1/
types.go) and regenerate code (run ./hack/update-codegen.sh). New API types should have an
associated short documentation string, which is added to the reference API documentation (run ./hack/
update-reference-docs-dockerized.sh to update the API documentation).

5. Register the provider in pkg/issuer/acme/dns:

• The constructor for the provider needs adding to dnsProviderConstructors,

• solverForIssuerProvider must be updated to handle retrieving any information for the new
provider (for example, fetching credentials from a secret) and constructing a new instance of the provider.

6. Add coverage for the provider to pkg/issuer/acme/dns/dns_test.go.

7. Add example configuration for the new provider to docs/tasks/acme/configuring-dns01/. The
more information here the better, this example and corresponding documentation should inform users how to
use and configure this backend, as well as mentioning any nuances with using this particular provider.

8. Test your provider out against a real account, and make sure you can issue a Certificate.

9. Submit your new provider to cert-manager!

Things to watch out for:

• Assume that at any point the cert-manager process may restart. Make sure values required for operations like
CleanUp are not solely stored in memory.

5.4 DCO Sign off

All authors to the project retain copyright to their work. However, to ensure that they are only submitting work that
they have rights to, we are requiring everyone to acknowledge this by signing their work.

Any copyright notices in this repo should specify the authors as “the Jetstack cert-manager contributors”.

To sign your work, just add a line like this at the end of your commit message:

Signed-off-by: Joe Bloggs <joe@example.com>

This can easily be done with the --signoff option to git commit. You can also mass sign-off a whole PR with
git rebase --signoff master, replacing master with the branch you are creating a pull request again if
not master.

By doing this you state that you certify the following (from https://developercertificate.org/):

90 Chapter 5. Development documentation

https://github.com/xenolf/lego
https://developercertificate.org/

cert-manager Documentation

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

5.5 Release process

This document aims to outline the process that should be followed for cutting a new release of cert-manager.

5.5.1 Minor releases

A minor release is a backwards-compatible ‘feature’ release. It can contain new features and bugfixes.

Release schedule

We aim to cut a new minor release once per month. The rough goals for each release are outlined as part of a GitHub
milestone. We cut a release even if some of these goals are missed, in order to keep up release velocity.

5.5. Release process 91

cert-manager Documentation

Process

Note: This process document is WIP and may be incomplete

The process for cutting a minor release is as follows:

1. Ensure upgrading document exists in docs/admin/upgrading

2. Create a new release branch (e.g. `release-0.5`)

3. Push it to the `jetstack/cert-manager repository

4. Create a pull-request updating the Helm chart version and merge it:

• Update contrib/charts/cert-manager/README.md

• Update contrib/charts/cert-manager/Chart.yaml

• Update contrib/charts/cert-manager/values.yaml

• Update contrib/charts/cert-manager/requirements.yaml

• Update contrib/charts/cert-manager/webhook/Chart.yaml

• Update contrib/charts/cert-manager/webhook/values.yaml

• Run `helm dep update` in the contrib/charts/cert-manager directory

• Run `./hack/update-deploy-gen.sh` in the root of the repository

5. Gather release notes since the previous release:

• Run `relnotes -repo cert-manager -owner jetstack release-0.5`

• Write up appropriate notes, similar to previous releases

6. Submit the Helm chart changes to the upstream `helm/charts` repo:

TARGET_REPO_REMOTE=upstream \
SOURCE_REPO_REMOTE=upstream \
SOURCE_REPO_REF=release-0.5 \
GITHUB_USER=munnerz \
./hack/create-chart-pr.sh

7. Iterate on review feedback (hopefully this will be minimal) and submit changes to `master` of cert-manager,
performing a rebase of release-x.y and re-run of the `create-chart-pr.sh` script after each cycle to
gather more feedback.

8. Create a new tag taken from the release branch, e.g. `v0.5.0`.

5.5.2 Patch releases

A patch release contains critical bugfixes for the project. They are managed on an ad-hoc basis, and should only be
required when critical bugs/regressions are found in the release.

We will only perform patch release for the current version of cert-manager.

Once a new minor release has been cut, we will stop providing patches for the version before it.

92 Chapter 5. Development documentation

cert-manager Documentation

Release schedule

Patch releases are cut on an ad-hoc basis, depending on recent activity on the release branch.

Process

Note: This process document is WIP and may be incomplete

Bugs that need to be fixed in a patch release should be cherry picked into the appropriate release branch using the
`./hack/cherry-pick-pr.sh` script in this repository.

The process for cutting a patch release is as follows:

1. Create a PR against the release branch to bump the chart version:

• Update contrib/charts/cert-manager/README.md

• Update contrib/charts/cert-manager/Chart.yaml

• Update contrib/charts/cert-manager/values.yaml

• Update contrib/charts/cert-manager/requirements.yaml

• Update contrib/charts/cert-manager/webhook/Chart.yaml

• Update contrib/charts/cert-manager/webhook/values.yaml

• Run `helm dep update` in the contrib/charts/cert-manager directory

• Run `./hack/update-deploy-gen.sh` in the root of the repository

2. Submit the Helm chart changes to the upstream `helm/charts` repo:

TARGET_REPO_REMOTE=upstream \
SOURCE_REPO_REMOTE=upstream \
SOURCE_REPO_REF=release-0.5 \
GITHUB_USER=munnerz \
./hack/create-chart-pr.sh

3. Iterate on review feedback (hopefully this will be minimal) and submit changes to `master` of cert-manager,
performing a rebase of release-x.y and re-run of the `create-chart-pr.sh` script after each cycle to
gather more feedback.

4. Gather release notes since the previous release:

• Run `relnotes -repo cert-manager -owner jetstack release-0.5`

• Write up appropriate notes, similar to previous patch releases

5. Create a new tag taken from the release branch, e.g. `v0.5.1`.

5.6 Generating Documentation

The documentation is generated from reStructured Text by Sphinx (via Read The Docs). If you’re unfamiliar with
reStructured Text, the files typically have the extension .rst. You can find more details in the reStructured Text Basics.

5.6. Generating Documentation 93

https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.sphinx-doc.org/
https://readthedocs.org/
https://www.sphinx-doc.org/en/master/usage/restructuredtext/index.html
https://www.sphinx-doc.org/en/master/usage/restructuredtext/basics.html

cert-manager Documentation

5.6.1 Installation instructions

To install the sphinx tools, you’ll need python (and pip) installed.:

.. code-block: shell

pip install –user -r requirements.txt

5.6.2 Generating documentation locally

You can generate the documentation locally with the following command:

This will create documentation in the _build directory which you can open with your browser.

Note that you do not need to add these files to your git client, as Read The Docs will generate the HTML on the fly.

94 Chapter 5. Development documentation

	Get started
	Installing cert-manager
	Webhook component
	Troubleshooting installation

	Tutorials
	ACME Issuer Tutorials

	Tasks
	Setting up Issuers
	Issuing Certificates
	Backing up and restoring
	Upgrading cert-manager

	Reference documentation
	Certificates
	Orders
	Challenges
	Issuers
	ClusterIssuers
	cainjector controller
	API documentation

	Development documentation
	Develop with minikube
	Running end-to-end tests
	Contributing DNS01 providers
	DCO Sign off
	Release process
	Generating Documentation

