Contents

1 Features .. 3
2 Example .. 5
3 Dependencies ... 9
4 Installing .. 11
5 Important References ... 13
6 Contents: .. 15
 6.1 brew package .. 15
 6.1.1 Subpackages 15
 6.1.2 Submodules 34
 6.1.3 brew.base module 34
 6.1.4 Module contents 36
 6.2 Installation .. 37
 6.3 Usage ... 37
 6.4 Contributing ... 38
 6.4.1 Types of Contributions 38
 6.4.2 Get Started! 39
 6.4.3 Pull Request Guidelines 39
 6.4.4 Tips ... 40
 6.5 Credits .. 40
 6.5.1 Development Lead 40
 6.5.2 Contributors 40
 6.6 History .. 40
 6.6.1 0.1.0 (2014-11-12) 40
7 Feedback .. 41

Python Module Index .. 43
This project has not being maintained for a while, so as of now we have abandoned it. If you want an alternative ensemble library in python, we recommend [DESLib](https://github.com/Menelau/DESlib) instead.

This project was started in 2014 by Dayvid Victor and Thyago Porpino for the Multiple Classifier Systems class at Federal University of Pernambuco.

The aim of this project is to provide an easy API for Ensembling, Stacking, Blending, Ensemble Generation, Ensemble Pruning, Dynamic Classifier Selection, and Dynamic Ensemble Selection.
CHAPTER 1

Features

• General: Ensembling, Stacking and Blending.
• Dynamic Selection: Overall Local Accuracy (OLA), Local Class Accuracy (LCA), Multiple Classifier Behavior (MCB), K-Nearest Oracles Eliminate (KNORA-E), K-Nearest Oracles Union (KNORA-U), A Priori Dynamic Selection, A Posteriori Dynamic Selection, Dynamic Selection KNN (DSKNN).
• Ensemble Combination Rules: majority vote, min, max, mean and median.
• Ensemble Diversity Metrics: Entropy Measure E, Kohavi Wolpert Variance, Q Statistics, Correlation Coefficient p, Disagreement Measure, Agreement Measure, Double Fault Measure.
• Ensemble Pruning: Ensemble Pruning via Individual Contribution (EPIC).
import numpy as np
import matplotlib.pyplot as plt
import matplotlib.gridspec as gridspec
import itertools
import sklearn
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier
from brew.base import Ensemble, EnsembleClassifier
from brew.stacking.stacker import EnsembleStack, EnsembleStackClassifier
from brew.combination.combiner import Combiner
from mlxtend.data import iris_data
from mlxtend.evaluate import plot_decision_regions

Initializing Classifiers
clf1 = LogisticRegression(random_state=0)
clf2 = RandomForestClassifier(random_state=0)
clf3 = SVC(random_state=0, probability=True)

Creating Ensemble
ensemble = Ensemble([clf1, clf2, clf3])
eclf = EnsembleClassifier(ensemble=ensemble, combiner=Combiner('mean'))

Creating Stacking
layer_1 = Ensemble([clf1, clf2, clf3])
layer_2 = Ensemble([sklearn.clone(clf1)])

stack = EnsembleStack(cv=3)
stack.add_layer(layer_1)

(continues on next page)
stack.add_layer(layer_2)

sclf = EnsembleStackClassifier(stack)

clf_list = [clf1, clf2, clf3, eclf, sclf]

lbl_list = ['Logistic Regression', 'Random Forest', 'RBF kernel SVM', 'Ensemble', 'Stacking']

Loading some example data
X, y = iris_data()
X = X[:,[0, 2]]

WARNING, WARNING, WARNING
brew requires classes from 0 to N, no skipping allowed

d = {yi : i for i, yi in enumerate(set(y))}
y = np.array([d[yi] for yi in y])

Plotting Decision Regions
gs = gridspec.GridSpec(2, 3)
fig = plt.figure(figsize=(10, 8))
itt = itertools.product([0, 1, 2], repeat=2)

for clf, lab, grd in zip(clf_list, lbl_list, itt):
 clf.fit(X, y)
 ax = plt.subplot(gs[grd[0], grd[1]])
 fig = plot_decision_regions(X=X, y=y, clf=clf, legend=2)
 plt.title(lab)

plt.show()
CHAPTER 3

Dependencies

- Python 2.7+
- scikit-learn >= 0.15.2
- Numpy >= 1.6.1
- SciPy >= 0.9
- Matplotlib >= 0.99.1 (examples, only)
- mlxtend (examples, only)
You can easily install brew using `pip`:

```
pip install brew
```

or, if you prefer an up-to-date version, get it from here:

```
pip install git+https://github.com/viisar/brew.git
```
CHAPTER 5

Important References

6.1 brew package

6.1.1 Subpackages

brew.combination package

Submodules

brew.combination.combiner module

class brew.combination.combiner.Combiner(rule='majority_vote')
 Bases: object
 combine(results)

brew.combination.rules module

brew.combination.rules.majority_vote_rule(votes)
 Implements the majority vote rule as defined by [1].

 This rule can always be used, because even if the classifiers output posterior probabilities, you can for example, decide to vote for the class with the greatest probability. The important thing is to transform the classifiers probabilities/decisions into a matrix of votes.

 Parameters votes (Numpy 2d-array with rows representing each class, columns) – representing each classifier and elements representing votes (binary). Each column should sum up to one (i.e. a classifier can only vote for one class).
brew.combination.rules.

max_rule *(probs)*

Implements the max rule as defined by [1].

This rule only makes sense if the classifiers output the posterior probabilities for each class.

Parameters

- **probs** (*Numpy 2d-array with rows representing each class, columns*) — representing each classifier and elements representing posterior probabilities. Each column should sum up to one as a sanity check that the probabilities are valid.

brew.combination.rules.

mean_rule *(probs)*

Implements the first case of the median rule as defined by [1].

This rule only makes sense if the classifiers output the posterior probabilities for each class.

Parameters

- **probs** (*Numpy 2d-array with rows representing each class, columns*) — representing each classifier and elements representing posterior probabilities. Each column should sum up to one as a sanity check that the probabilities are valid.

brew.combination.rules.

median_rule *(probs)*

Implements the second case of the median rule as defined by [1].

This rule only makes sense if the classifiers output the posterior probabilities for each class.

Parameters

- **probs** (*Numpy 2d-array with rows representing each class, columns*) — representing each classifier and elements representing posterior probabilities. Each column should sum up to one as a sanity check that the probabilities are valid.

brew.combination.rules.

min_rule *(probs)*

Implements the min rule as defined by [1].

This rule only makes sense if the classifiers output the posterior probabilities for each class.

Parameters

- **probs** (*Numpy 2d-array with rows representing each class, columns*) — representing each classifier and elements representing posterior probabilities. Each column should sum up to one as a sanity check that the probabilities are valid.

Module contents

class brew.combination.

Combiner *(rule='majority_vote')*

Bases: object

combine *(results)*

brew.generation package

Submodules

brew.generation.bagging module

class brew.generation.bagging.

Bagging *(base_classifier=None, n_classifiers=100, combination_rule='majority_vote')*

Bases: brew.generation.base.PoolGenerator

fit *(X, y)*

predict *(X)*
class brew.generation.bagging.BaggingSK(
 base_classifier=None, n_classifiers=100, combination_rule='majority_vote')

 Bases: brew.generation.base.PoolGenerator

 "This class should not be used, use brew.generation.bagging.Bagging instead.

 fit (X, y)
 predict (X)

brew.generation.base module

class brew.generation.base.PoolGenerator
 Bases: object
 fit (X, y)
 predict (X)

brew.generation.random_subspace module

class brew.generation.random_subspace.RandomSubspace(
 base_classifier=None, n_classifiers=100, combination_rule='majority_vote', max_features=0.5)

 Bases: brew.generation.base.PoolGenerator
 fit (X, y)
 predict (X)

brew.generation.smote_bagging module

class brew.generation.smote_bagging.SmoteBagging(
 base_classifier=None, n_classifiers=100, combination_rule='majority_vote', k=5)

 Bases: brew.generation.base.PoolGenerator
 fit (X, y)
 predict (X)

 smote_bootstrap_sample (X, y, b, k)

class brew.generation.smote_bagging.SmoteBaggingNew(
 base_classifier=None, n_classifiers=100, combination_rule='majority_vote', k=5)

 Bases: brew.generation.smote_bagging.SmoteBagging
 fit (X, y)

 smote_bootstrap_sample (X, y, b, k)
Module contents

class brew.generation.Bagging (base_classifier=None, n_classifiers=100, combination_rule='majority_vote')
 Bases: brew.generation.base.PoolGenerator
 fit (X, y)
 predict (X)

class brew.generation.SmoteBagging (base_classifier=None, n_classifiers=100, combination_rule='majority_vote', k=5)
 Bases: brew.generation.base.PoolGenerator
 fit (X, y)
 predict (X)
 smote_bootstrap_sample (X, y, b, k)

class brew.generation.RandomSubspace (base_classifier=None, n_classifiers=100, combination_rule='majority_vote', max_features=0.5)
 Bases: brew.generation.base.PoolGenerator
 fit (X, y)
 predict (X)

brew.metrics package

Subpackages

brew.metrics.diversity package

Submodules

brew.metrics.diversity.base module

class brew.metrics.diversity.base.Diversity (metric="")
 Bases: object

 Ensemble Diversity Calculator.

 The class calculates the diversity of ensemble of classifiers.

 `metric`

 function, receives the oracle output and returns float – Function used to calculate the metric.

 Parameters metric ("e", "kw", "q", "p", "disagreement", "agreement", "df"), optional – Metric used to compute the ensemble diversity:

 • 'e' (Entropy Measure e) will use kuncheva_entropy_measure()
 • 'kw' (Kohavi Wolpert Variance) will use kuncheva_kw()
 • 'q' (Q Statistics) will use kuncheva_q_statistics()
 • 'p' (Correlation Coefficient p) will use kuncheva_correlation_coefficient_p()

 # noqa
• 'disagreement' (Disagreement Measure) will use `kuncheva_disagreement_measure()` # noqa
• 'agreement' (Agreement Measure) will use `kuncheva_agreement_measure()` # noqa
• 'df' (Double Fault Measure) will use `kuncheva_double_fault_measure()` # noqa

Examples

```python
>>> from brew.metrics.diversity.base import Diversity
>>> from brew.generation.bagging import Bagging
>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)

>>> div = Diversity(metric='q')
>>> q = div.calculate(bag.ensemble, Xtst, ytst)
>>> q < 1.01 and q > -1.01
True
```

See also:

- `brew.metrics.diversity.paired` Paired diversity metrics.

- `brew.metrics.diversity.non_paired` Non-paired diversity metrics.

References

`calculate(ensemble, X, y)`

`brew.metrics.diversity.non_paired` module

- `brew.metrics.diversity.non_paired.entropy_measure_e(ensemble, X, y)`
- `brew.metrics.diversity.non_paired.kohavi_wolpert_variance(ensemble, X, y)`
- `brew.metrics.diversity.non_paired.kuncheva_entropy_measure(orlacle)`
- `brew.metrics.diversity.non_paired.kuncheva_kw(orlacle)`
brew.metrics.diversity.non_paired.new_entropy *(ensemble, X, y)*

brew.metrics.diversity.paired module

brew.metrics.diversity.paired.agreement_measure *(y_true, y_pred_a, y_pred_b)*
brew.metrics.diversity.paired.correlation_coefficient_p *(y_true, y_pred_a, y_pred_b)*
brew.metrics.diversity.paired.disagreement_measure *(y_true, y_pred_a, y_pred_b)*
brew.metrics.diversity.paired.double_fault_measure *(y_true, y_pred_a, y_pred_b)*
brew.metrics.diversity.paired.kuncheva_agreement_measure *(oracle)*
brew.metrics.diversity.paired.kuncheva_correlation_coefficient_p *(oracle)*
brew.metrics.diversity.paired.kuncheva_disagreement_measure *(oracle)*
brew.metrics.diversity.paired.kuncheva_double_fault_measure *(oracle)*
brew.metrics.diversity.paired.kuncheva_q_statistics *(oracle)*
brew.metrics.diversity.paired.paired_metric_ensemble *(ensemble, X, y, paired_metric=<function q_statistics>)*
brew.metrics.diversity.paired.q_statistics *(y_true, y_pred_a, y_pred_b)*

Module contents

class **brew.metrics.diversity.Diversity** *(metric=”)*

 Bases: object

 Ensemble Diversity Calculator.

 The class calculates the diversity of ensemble of classifiers.

 metric

 function, receives the oracle output and returns float – Function used to calculate the metric.

 Parameters **metric** *(('e', 'kw', 'q', 'p', 'disagreement', 'agreement', 'df'), optional) – Metric used to compute the ensemble diversity:

 - 'e' (Entropy Measure e) will use kuncheva_entropy_measure()
 - 'kw' (Kohavi Wolpert Variance) will use kuncheva_kw()
 - 'q' (Q Statistics) will use kuncheva_q_statistics()
 - 'p' (Correlation Coefficient p) will use kuncheva_correlation_coefficient_p()
 # noqa
 - 'disagreement' (Disagreement Measure) will use kuncheva_disagreement_measure()
 # noqa
 - 'agreement' (Agreement Measure) will use kuncheva_agreement_measure() # noqa
 - 'df' (Double Fault Measure) will use kuncheva_double_fault_measure() # noqa
Examples

```python
>>> from brew.metrics.diversity.base import Diversity
>>> from brew.generation.bagging import Bagging
>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                 [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]]))
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)

>>> div = Diversity(metric='q')
>>> q = div.calculate(bag.ensemble, X, y)
>>> q < 1.01 and q > -1.01
True
```

See also:

- `brew.metrics.diversity.paired` Paired diversity metrics.
- `brew.metrics.diversity.non_paired` Non-paired diversity metrics.

References

Submodules

- `brew.metrics.evaluation module`

  ```python
class brew.metrics.evaluation.Evaluator(metric='auc')
  Bases: object

  calculate(y_true, y_pred)
```

`brew.metrics.evaluation.acc_score(y_true, y_pred, positive_label=1)`

`brew.metrics.evaluation.auc_score(y_true, y_pred, positive_label=1)`
Module contents

brew.preprocessing package

Submodules

brew.preprocessing.smote module

brew.preprocessing.smote.smote \((T, N=100, k=1)\)

\(T\): minority class data \(N\): percentage of oversampling \(k\): number of neighbors used

Module contents

brew.selection package

Subpackages

brew.selection.dynamic package

Submodules

brew.selection.dynamic.base module

class brew.selection.dynamic.base.DCS \((Xval, yval, K=5, weighted=False, knn=None)\)

Bases: object

get_neighbors \((x, return_distance=False)\)

select \((ensemble, x)\)

brew.selection.dynamic.knora module

class brew.selection.dynamic.knora.KNORA \((Xval, yval, K=5, weighted=False, knn=None)\)

Bases: brew.selection.dynamic.base.DCS

class brew.selection.dynamic.knora.KNORA_ELIMINATE \((Xval, yval, K=5, weighted=False, knn=None, v2007=False)\)

Bases: brew.selection.dynamic.knora.KNORA

K-nearest-oracles Eliminate.

The KNORA Eliminate reduces the neighborhood until finds an ensemble of classifiers that correctly classify all neighbors.

`Xval`

`yval`

`knn`

sklearn KNeighborsClassifier, – Classifier used to find neighborhood.
`weighted`

`bool`, *(makes no difference in knora_eliminate)* – Bool that defines if the classifiers uses weights or not.

Examples

```python
>>> from brew.selection.dynamic.knora import KNORA_ELIMINATE
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier

>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                 [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])

>>> dt = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=dt, n_classifiers=10)
>>> bag.fit(X, y)

>>> ke = KNORA_ELIMINATE(X, y, K=5)

>>> clf = EnsembleClassifier(bag.ensemble, selector=ke)
>>> clf.predict([-1.1,-0.5])
[1]
```

See also:

brew.selection.dynamic.knora.KNORA_UNION KNORA Union.

brew.selection.dynamic.lca.LCA Local Class Accuracy.

brew.selection.dynamic.ola.OLA Overall Local Accuracy.

References


```python
select(ensemble, x)
```

class **brew.selection.dynamic.knora.KNORA_UNION**(Xval, yval, K=5, weighted=False, knm=None)

Bases: **brew.selection.dynamic.knora.KNORA**

K-nearest-oracles Union.

The KNORA union reduces the neighborhood until finds an ensemble of classifiers that correctly classify all neighbors.
`Xval`

`yval`

`knn`
sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

`weighted`
bool, (makes no difference in knora_eliminate) – Bool that defines if the classifiers uses weights or not

Examples

```python
>>> from brew.selection.dynamic.knora import KNORA_UNION
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier

>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
[0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])

>>> dt = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)

>>> bag = Bagging(base_classifier=dt, n_classifiers=10)

>>> bag.fit(X, y)

>>> ku = KNORA_UNION(X, y, K=5)

>>> clf = EnsembleClassifier(bag.ensemble, selector=ku)

>>> clf.predict([[-1.1,-0.5]])
[1]
```

See also:

`brew.selection.dynamic.knora.KNORA_ELIMINATE` Knora Eliminate.

`brew.selection.dynamic.lca.LCA` Local Class Accuracy.

`brew.selection.dynamic.ola.OLA` Overall Local Accuracy.

References

`select` (ensemble, x)
brew.selection.dynamic.lca module

```python
class brew.selection.dynamic.lca.LCA(Xval, yval, K=5, weighted=False, knn=None)
Bases: brew.selection.dynamic.base.DCS
select(ensemble, x)
```

class brew.selection.dynamic.lca.LCA2(Xval, yval, K=5, weighted=False, knn=None)
Bases: brew.selection.dynamic.base.DCS

Local Class Accuracy.
The Local Class Accuracy selects the best classifier for a sample using it’s K nearest neighbors.

`Xval`

`yval`

`knn`
`sklearn KNeighborsClassifier`, – Classifier used to find neighborhood.

Examples

```python
>>> from brew.selection.dynamic.lca import LCA
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier
>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)

>>> lca = LCA(X, y, K=3)

>>> clf = EnsembleClassifier(bag.ensemble, selector=lca)
>>> clf.predict([[-1.1, -0.5]])
[1]
```

See also:

`brew.selection.dynamic.ola.OLA` Overall Local Accuracy.

References

select \((ensemble, x)\)

brew.selection.dynamic.ola module

class brew.selection.dynamic.ola.OLA \((Xval, yval, K=5, weighted=False, knn=None)\)
Bases: brew.selection.dynamic.base.DCS

select \((ensemble, x)\)

class brew.selection.dynamic.ola.OLA2 \((Xval, yval, K=5, weighted=False, knn=None)\)
Bases: brew.selection.dynamic.base.DCS

Overall Local Accuracy.
The Overall Local Accuracy selects the best classifier for a sample using it’s K nearest neighbors.

`Xval`

`yval`

`knn`
sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

Examples

```python
>>> from brew.selection.dynamic.ola import OLA
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier
>>> from sklearn.tree import DecisionTreeClassifier
>>>
>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0], [0.5, 0],[1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)
>>>
>>> ola = OLA(X, y, K=3)
>>> clf = EnsembleClassifier(bag.ensemble, selector=ola)
>>> clf.predict([[-1.1,-0.5]])
[1]
```

See also:

brew.selection.dynamic.lca.LCA Local Class Accuracy.

References

select (ensemble, x)

Module contents

class brew.selection.dynamic.LCA (Xval, yval, K=5, weighted=False, knn=None)
 Bases: brew.selection.dynamic.base.DCS
 select (ensemble, x)

class brew.selection.dynamic.OLA (Xval, yval, K=5, weighted=False, knn=None)
 Bases: brew.selection.dynamic.base.DCS
 select (ensemble, x)

class brew.selection.dynamic.APriori (Xval, yval, K=5, weighted=False, knn=None, threshold=0.1)
 Bases: brew.selection.dynamic.probabilistic.Probabilistic

A Priori Classifier Selection.

The A Priori method is a dynamic classifier selection that uses a probabilistic-based measures for selecting the best classifier.

`Xval`

`yval`

`knn`
 sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

`threshold`
 float, default = 0.1 – Threshold used to verify if there is a single best.

Examples

```python
>>> from brew.selection.dynamic.probabilistic import APriori
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier
>>> from sklearn.tree import DecisionTreeClassifier as Tree
>>> import numpy as np

>>> X = np.array([[[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                 [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 2, 1, 2, 2])
>>> tree = Tree(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)

>>> apriori = APriori(X, y, K=3)
>>> clf = EnsembleClassifier(bag.ensemble, selector=apriori)
>>> clf.predict([-1.1, -0.5])
[1]
```
See also:

brew.selection.dynamic.probabilistic.APosteriori A Posteriori DCS.
brew.selection.dynamic.ola.OLA Overall Local Accuracy.
brew.selection.dynamic.lca.LCA Local Class Accuracy.

References


```python
probabilities(clf, nn_X, nn_y, distances, x)
```

class brew.selection.dynamic.APosteriori(Xval, yval, K=5, weighted=False, knn=None, threshold=0.1)

Bases: brew.selection.dynamic.probabilistic.Probabilistic

A Priori Classifier Selection.

The A Priori method is a dynamic classifier selection that uses a probabilistic-based measures for selecting the best classifier.

`Xval`

`yval`

`knn`
sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

`threshold`
float, default = 0.1 – Threshold used to verify if there is a single best.

Examples

```python
>>> from brew.selection.dynamic.probabilistic import APosteriori
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier

>>> from sklearn.tree import DecisionTreeClassifier as Tree
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1],
    [-0.5, 0], [0.5, 0], [1, 0],
    [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 2, 1, 2, 2, 2])
>>> tree = Tree(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=tree, n_classifiers=10)
>>> bag.fit(X, y)

>>> aposteriori = APosteriori(X, y, K=3)
```
clf = EnsembleClassifier(bag.ensemble, selector=aposteriori)
clf.predict([-1.1,-0.5])
[1]

See also:

- `brew.selection.dynamic.probabilistic.APriori` A Priori DCS.
- `brew.selection.dynamic.ola.OLA` Overall Local Accuracy.
- `brew.selection.dynamic.lca.LCA` Local Class Accuracy.

References

probabilities (clf, nn_X, nn_y, distances, x)

class `brew.selection.dynamic.KNORA_UNION`(Xval, yval, K=5, weighted=False, knn=None)
Bases: `brew.selection.dynamic.knora.KNORA`

K-nearest-oracles Union.

The KNORA union reduces the neighborhood until finds an ensemble of classifiers that correctly classify all neighbors.

- `Xval`

- `yval`

- `knn`
 sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

- `weighted`
 bool, (makes no difference in knora_eliminate) – Bool that defines if the classifiers uses weights or not

Examples

```python
>>> from brew.selection.dynamic.knora import KNORA_UNION
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier
>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np
>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
               [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> dt = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
```
```python
>>> bag = Bagging(base_classifier=dt, n_classifiers=10)
>>> bag.fit(X, y)
>>>
>>> ku = KNORA_UNION(X, y, K=5)
>>> 
>>> clf = EnsembleClassifier(bag.ensemble, selector=ku)
>>> clf.predict([-1.1, -0.5])
[1]
```

See also:

- `brew.selection.dynamic.knora.KNORA_ELIMINATE` Knora Eliminate.
- `brew.selection.dynamic.lca.LCA` Local Class Accuracy.
- `brew.selection.dynamic.ola.OLA` Overall Local Accuracy.

References


```python
select(ensemble, x)
```

class `brew.selection.dynamic.KNORA_ELIMINATE` (Xval, yval, K=5, weighted=False, knn=None, v2007=False)

Bases: `brew.selection.dynamic.knora.KNORA`
K-nearest-oracles Eliminate.

The KNORA Eliminate reduces the neighborhood until finds an ensemble of classifiers that correctly classify all neighbors.

- `Xval`

- `yval`

- `knn`
 sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

- `weighted`
 bool, (makes no difference in knora_eliminate) – Bool that defines if the classifiers uses weights or not

Examples

```python
>>> from brew.selection.dynamic.knora import KNORA_ELIMINATE
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier
```
>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0], [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])

>>> dt = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
>>> bag = Bagging(base_classifier=dt, n_classifiers=10)
>>> bag.fit(X, y)

>>> ke = KNORA_ELIMINATE(X, y, K=5)

>>> clf = EnsembleClassifier(bag.ensemble, selector=ke)

>>> clf.predict([-1.1, -0.5])
[1]

See also:

brew.selection.dynamic.knora.KNORA_UNION KNORA Union.
brew.selection.dynamic.lca.LCA Local Class Accuracy.
brew.selection.dynamic.ola.OLA Overall Local Accuracy.

References

Ko, Albert HR, Robert Sabourin, and Alceu Souza Britto Jr. “From dynamic classifier selection to dynamic

select(ensemble, x)

class brew.selection.dynamic.MCB (Xval, yval, K=5, weighted=False, knn=None, similarity_threshold=0.7, significance_threshold=0.3)

Bases: brew.selection.dynamic.base.DCS

Multiple Classifier Behavior.

The Multiple Classifier Behavior (MCB) selects the best classifier using the similarity of the classifications on
the K neighbors of the test sample in the validation set.

`Xval`

`yval`

`knn`
 sklearn KNeighborsClassifier; – Classifier used to find neighborhood.
Examples

```python
>>> from brew.selection.dynamic.mcb import MCB
>>> from brew.generation.bagging import Bagging
>>> from brew.base import EnsembleClassifier

>>> from sklearn.tree import DecisionTreeClassifier
>>> import numpy as np

X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0], [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)

bag = Bagging(base_classifier=tree, n_classifiers=10)

bag.fit(X, y)

mcb = MCB(X, y, K=3)

clf = EnsembleClassifier(bag.ensemble, selector=mcb)
clf.predict([-1.1, -0.5])
```

See also:

brew.selection.dynamic.lca.OLA Overall Local Accuracy.
brew.selection.dynamic.lca.LCA Local Class Accuracy.

References

select(ensemble, x)

class brew.selection.dynamic.DSKNN(Xval, yval, K=5, weighted=False, knn=None, n_1=0.7, n_2=0.3)
Bases: brew.selection.dynamic.base.DCS

DS-KNN

The DS-KNN selects an ensemble of classifiers based on their accuracy and diversity in the neighborhood of the test sample.

`Xval`

`yval`

`knn`
sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

Examples
from brew.selection.dynamic import DSKNN
from brew.generation.bagging import Bagging
from brew.base import EnsembleClassifier

from sklearn.tree import DecisionTreeClassifier
import numpy as np

X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
 [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
tree = DecisionTreeClassifier(max_depth=1, min_samples_leaf=1)
bag = Bagging(base_classifier=tree, n_classifiers=10)
bag.fit(X, y)

sel = DSKNN(X, y, K=3)
clf = EnsembleClassifier(bag.ensemble, selector=sel)
clf.predict([-1.1,-0.5])

See also:

brew.selection.dynamic.lca.OLA Overall Local Accuracy.
brew.selection.dynamic.lca.LCA Local Class Accuracy.

References

select (ensemble, x)
Module contents

brew.utils package

Submodules

brew.utils.data module

brew.utils.data.split_data(X, y, t_size)

Module contents

6.1.2 Submodules

6.1.3 brew.base module

class brew.base.BrewClassifier(classifier=None, transformer=None)
 Bases: object
 fit(X, y)
 predict(X)
 predict_proba(X)

class brew.base.Ensemble(classifiers=None)
 Bases: object
 Class that represents a collection of classifiers.
 The Ensemble class serves as a wrapper for a list of classifiers, besides providing a simple way to calculate the
 output of all the classifiers in the ensemble.
 `classifiers`
 list – Stores all classifiers in the ensemble.
 `yval`
 `knn`
 sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

Examples

```python
>>> import numpy as np
>>> from sklearn.tree import DecisionTreeClassifier
>>> from brew.base import Ensemble

>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])

>>> dt1 = DecisionTreeClassifier()
>>> dt2 = DecisionTreeClassifier()
```
```python
>>> dt1.fit(X, y)
>>> dt2.fit(X, y)
>>> ens = Ensemble(classifiers=[dt1, dt2])

def add(classifier)
def add_classifiers(classifiers)
def add_ensemble(ensemble)

fit(X, y)
    warning: this fit overrides previous generated base classifiers!
def get_classes()
def in_agreement(x)

def output(X, mode='votes')
    Returns the output of all classifiers packed in a numpy array.
    This method calculates the output of each classifier, and stores them in a array-like shape. The specific
    shape and the meaning of each element is defined by argument mode.
    (1) 'labels': each classifier will return a single label prediction for each sample in X, therefore the ensemble
    output will be a 2d-array of shape (n_samples, n_classifiers), with elements being the class labels.
    (2) 'probs': each classifier will return the posterior probabilities of each class (i.e. instead of returning a
    single choice it will return the probabilities of each class label being the right one). The ensemble output
    will be a 3d-array with shape (n_samples, n_classes, n_classifiers), with each element being the probability
    of a specific class label being right on a given sample according to one the classifiers. This mode can be
    used with any combination rule.
    (3) 'votes': each classifier will return votes for each class label i.e. a binary representation, where the
    chosen class label will have one vote and the other labels will have zero votes. The ensemble output will
    be a binary 3d-array with shape (n_samples, n_classes, n_classifiers), with the elements being the votes.
    This mode is mainly used in combining the classifiers output by using majority vote rule.

Parameters
    • X(array-like, shape = [n_samples, n_features]) -- The test input samples.
    • mode(string, optional(default='labels')) -- The type of output given by each classifier. 'labels' | 'probs' | 'votes'

def output_simple(X)
```

```python
class EnsembleClassifier(ensemble=None, selector=None, combiner=None)
    Bases: object
    fit(X, y)
    predict(X)
    predict_proba(X)
    score(X, y, sample_weight=None)

class FeatureSubsamplingTransformer(features=None)
    Bases: brew.base.Transformer
    apply(X)
```

6.1. brew package
class brew.base.Transformer
 Bases: object
 apply(X)

brew.base.oracle(ensemble, X, y_true, metric=<function auc_score>)
brew.base.single_best (ensemble, X, y_true, metric=<function auc_score>)
brew.base.transform2votes(output, n_classes)

6.1.4 Module contents

class brew.Ensemble (classifiers=None)
 Bases: object
 Class that represents a collection of classifiers.
 The Ensemble class serves as a wrapper for a list of classifiers, besides providing a simple way to calculate the
 output of all the classifiers in the ensemble.

 `classifiers`
 list – Stores all classifiers in the ensemble.

 `yval`

 `knn`
 sklearn KNeighborsClassifier, – Classifier used to find neighborhood.

Examples

```python
>>> import numpy as np
>>> from sklearn.tree import DecisionTreeClassifier
>>> from brew.base import Ensemble
>>> X = np.array([[-1, 0], [-0.8, 1], [-0.8, -1], [-0.5, 0],
                [0.5, 0], [1, 0], [0.8, 1], [0.8, -1]])
>>> y = np.array([1, 1, 1, 2, 1, 2, 2, 2])
>>> dt1 = DecisionTreeClassifier()
>>> dt2 = DecisionTreeClassifier()
>>> dt1.fit(X, y)
>>> dt2.fit(X, y)
>>> ens = Ensemble(classifiers=[dt1, dt2])

add(classifier)
add_classifiers(classifiers)
add_ensemble(ensemble)
fit(X, y)
    warning: this fit overrides previous generated base classifiers!
get_classes()
in_agreement (x)

output (X, mode='votes')
Returns the output of all classifiers packed in a numpy array.

This method calculates the output of each classifier, and stores them in an array-like shape. The specific shape and the meaning of each element is defined by argument mode.

(1) 'labels': each classifier will return a single label prediction for each sample in X, therefore the ensemble output will be a 2d-array of shape (n_samples, n_classifiers), with elements being the class labels.

(2) 'probs': each classifier will return the posterior probabilities of each class (i.e. instead of returning a single choice it will return the probabilities of each class label being the right one). The ensemble output will be a 3d-array with shape (n_samples, n_classes, n_classifiers), with each element being the probability of a specific class label being right on a given sample according to one of the classifiers. This mode can be used with any combination rule.

(3) 'votes': each classifier will return votes for each class label i.e. a binary representation, where the chosen class label will have one vote and the other labels will have zero votes. The ensemble output will be a binary 3d-array with shape (n_samples, n_classes, n_classifiers), with the elements being the votes. This mode is mainly used in combining the classifiers output by using majority vote rule.

Parameters

• X (array-like, shape = [n_samples, n_features]) – The test input samples.

• mode (string, optional (default='labels')) – The type of output given by each classifier. 'labels' | 'probs' | 'votes'

output_simple (X)

class brew.EnsembleClassifier (ensemble=None, selector=None, combiner=None)
Bases: object

fit (X, y)
predict (X)
predict_proba (X)
score (X, y, sample_weight=None)

6.2 Installation

At the command line either via easy_install or pip:

$ easy_install brew
$ pip install brew

Or, if you have virtualenvwrapper installed:

$ mkvirtualenv brew
$ pip install brew

6.3 Usage

To use brew in a project:
import brew
from brew.base import Ensemble
from brew.base import EnsembleClassifier
from brew.combination import Combiner

# here, clf1 and clf2 are sklearn classifiers or brew ensemble classifiers
# already trained. Keep in mind that brew requires your labels = [0,1,2,...]
# numerical with no skips.
cvfs = [clf1, clf2]
ens = Ensemble(classifiers = cvfs)

# create your Combiner
# the rules can be 'majority_vote', 'max', 'min', 'mean' or 'median'
comb = Combiner(rule='mean')

# now create your ensemble classifier
ensemble_clf = EnsembleClassifier(ensemble=ens, combiner=comb)
y_pred = ensemble_clf.predict(X)

# there you go, y_pred is your prediction.

6.4 Contributing

Contributions are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

You can contribute in many ways:

6.4.1 Types of Contributions

Report Bugs


If you are reporting a bug, please include:

- Your operating system name and version.
- Any details about your local setup that might be helpful in troubleshooting.
- Detailed steps to reproduce the bug.

Fix Bugs

Look through the GitHub issues for bugs. Anything tagged with “bug” is open to whoever wants to implement it.

Implement Features

Look through the GitHub issues for features. Anything tagged with “feature” is open to whoever wants to implement it.
Write Documentation

brew could always use more documentation, whether as part of the official brew docs, in docstrings, or even on the web in blog posts, articles, and such.

Submit Feedback

The best way to send feedback is to file an issue at https://github.com/viisar/brew/issues.

If you are proposing a feature:

- Explain in detail how it would work.
- Keep the scope as narrow as possible, to make it easier to implement.
- Remember that this is a volunteer-driven project, and that contributions are welcome :) 

6.4.2 Get Started!

Ready to contribute? Here’s how to set up brew for local development.

1. Fork_ the brew repo on GitHub.
2. Clone your fork locally:

   ```bash
 $ git clone git@github.com:your_name_here/brew.git
   ```

3. Create a branch for local development:

   ```bash
 $ git checkout -b name-of-your-bugfix-or-feature
   ```

Now you can make your changes locally.

4. When you’re done making changes, check that your changes pass style and unit tests, including testing other Python versions with tox:

   ```bash
 $ tox
   ```

To get tox, just pip install it.

5. Commit your changes and push your branch to GitHub:

   ```bash
 $ git add .
 $ git commit -m "Your detailed description of your changes."
 $ git push origin name-of-your-bugfix-or-feature
   ```

6. Submit a pull request through the GitHub website.

6.4.3 Pull Request Guidelines

Before you submit a pull request, check that it meets these guidelines:

1. The pull request should include tests.
2. If the pull request adds functionality, the docs should be updated. Put your new functionality into a function with a docstring, and add the feature to the list in README.rst.
3. The pull request should work for Python 2.6, 2.7, and 3.3, and for PyPy. Check [https://travis-ci.org/viisar/brew](https://travis-ci.org/viisar/brew) under pull requests for active pull requests or run the `tox` command and make sure that the tests pass for all supported Python versions.

### 6.4.4 Tips

To run a subset of tests:

```
$ py.test test/test_brew.py
```

### 6.5 Credits

This project was started in 2014 by Dayvid Victor and Thyago Porpino as a project for the Multiple Classifier Systems class at Federal University of Pernambuco (UFPE).

Nowadays, this project is part of Dayvid’s PhD thesis on Ensemble Learning.

#### 6.5.1 Development Lead

- Dayvid Victor (<victor.dvro@gmail.com>)
- Thyago Porpino (<thyago.porpino@gmail.com>)

#### 6.5.2 Contributors

None yet. Why not be the first?

### 6.6 History

#### 6.6.1 0.1.0 (2014-11-12)

- First release on PyPI.
Feedback

If you have any suggestions or questions about `brew` feel free to email me at victor.dvro@gmail.com.

If you encounter any errors or problems with `brew`, please let me know! Open an Issue at the GitHub [http://github.com/dvro/brew](http://github.com/dvro/brew) main repository.
### Python Module Index

<table>
<thead>
<tr>
<th>Module</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>brew</td>
<td>36</td>
</tr>
<tr>
<td>brew.base</td>
<td>34</td>
</tr>
<tr>
<td>brew.combination</td>
<td>16</td>
</tr>
<tr>
<td>brew.combination.combiner</td>
<td>15</td>
</tr>
<tr>
<td>brew.combination.rules</td>
<td>15</td>
</tr>
<tr>
<td>brew.generation</td>
<td>18</td>
</tr>
<tr>
<td>brew.generation.bagging</td>
<td>16</td>
</tr>
<tr>
<td>brew.generation.base</td>
<td>17</td>
</tr>
<tr>
<td>brew.generation.random_subspace</td>
<td>17</td>
</tr>
<tr>
<td>brew.generation.smote_bagging</td>
<td>17</td>
</tr>
<tr>
<td>brew.metrics</td>
<td>22</td>
</tr>
<tr>
<td>brew.metrics.diversity</td>
<td>20</td>
</tr>
<tr>
<td>brew.metrics.diversity.base</td>
<td>18</td>
</tr>
<tr>
<td>brew.metrics.diversity.non_paired</td>
<td>19</td>
</tr>
<tr>
<td>brew.metrics.diversity.paired</td>
<td>20</td>
</tr>
<tr>
<td>brew.metrics.evaluation</td>
<td>21</td>
</tr>
<tr>
<td>brew.preprocessing</td>
<td>22</td>
</tr>
<tr>
<td>brew.preprocessing.smote</td>
<td>22</td>
</tr>
<tr>
<td>brew.selection</td>
<td>34</td>
</tr>
<tr>
<td>brew.selection.dynamic</td>
<td>27</td>
</tr>
<tr>
<td>brew.selection.dynamic.base</td>
<td>22</td>
</tr>
<tr>
<td>brew.selection.dynamic.knora</td>
<td>22</td>
</tr>
<tr>
<td>brew.selection.dynamic.lca</td>
<td>25</td>
</tr>
<tr>
<td>brew.selection.dynamic.ola</td>
<td>26</td>
</tr>
<tr>
<td>brew.selection.pruning</td>
<td>33</td>
</tr>
<tr>
<td>brew.selection.pruning.epic</td>
<td>33</td>
</tr>
<tr>
<td>brew.utils</td>
<td>34</td>
</tr>
<tr>
<td>brew.utils.data</td>
<td>34</td>
</tr>
</tbody>
</table>
Index

A
acc_score() (in module brew.metrics.evaluation), 21
add() (brew.base.Ensemble method), 35
add() (brew.Ensemble method), 36
add_classifiers() (brew.base.Ensemble method), 35
add_classifiers() (brew.Ensemble method), 36
add_ensemble() (brew.base.Ensemble method), 35
add_ensemble() (brew.Ensemble method), 36
agreement_measure() (in module brew.metrics.diversity.paired), 20
APosteriori (class in brew.selection.dynamic), 28
apply() (brew.base.FeatureSubsamplingTransformer method), 35
apply() (brew.base.Transformer method), 36
APriori (class in brew.selection.dynamic), 27
auc_score() (in module brew.metrics.evaluation), 21

B
Bagging (class in brew.generation), 18
Bagging (class in brew.generation.bagging), 16
BaggingSK (class in brew.generation.bagging), 16
brew (module), 36
brew.base (module), 34
brew.combination (module), 16
brew.combination.combiner (module), 15
brew.combination.rules (module), 15
brew.generation (module), 18
brew.generation.bagging (module), 16
brew.generation.base (module), 17
brew.generation.random_subspace (module), 17
brew.generation.smote_bagging (module), 17
brew.metrics (module), 22
brew.metrics.diversity (module), 20
brew.metrics.diversity.base (module), 18
brew.metrics.diversity.non_paired (module), 19
brew.metrics.diversity.paired (module), 20
brew.metrics.evaluation (module), 21
brew.preprocessing (module), 22
brew.preprocessing.smote (module), 22
brew.selection (module), 34
brew.selection.dynamic (module), 27
brew.selection.dynamic.base (module), 22
brew.selection.dynamic.knora (module), 22
brew.selection.dynamic.lca (module), 25
brew.selection.dynamic.ola (module), 26
brew.selection.pruning (module), 33
brew.selection.pruning.epic (module), 33
brew.utils (module), 34
brew.utils.data (module), 34
BrewClassifier (class in brew.base), 34

C
calculate() (brew.metrics.diversity.base.Diversity method), 19
calculate() (brew.metrics.evaluation.Evaluator method), 21
combine() (brew.combination.Combiner method), 16
combine() (brew.combination.combiner.Combiner method), 15
Combiner (class in brew.combination), 16
Combiner (class in brew.combination.combiner), 15
correlation_coefficient_p() (in module brew.metrics.diversity.paired), 20

d
DCS (class in brew.selection.dynamic.base), 22
disagreement_measure() (in module brew.metrics.diversity.paired), 20
Diversity (class in brew.metrics.diversity), 20
Diversity (class in brew.metrics.diversity.base), 18
double_fault_measure() (in module brew.metrics.diversity.paired), 20
DSKNN (class in brew.selection.dynamic), 32

E
Ensemble (class in brew), 36
Ensemble (class in brew.base), 34
EnsembleClassifier (class in brew), 37
EnsembleClassifier (class in brew.base), 35
entropy_measure_e() (in module brew.metrics.diversity.non_paired), 19
EPIC (class in brew.selection.pruning), 33
EPIC (class in brew.selection.pruning.epic), 33
Evaluator (class in brew.metrics.evaluation), 21

F
FeatureSubsamplingTransformer (class in brew.base), 35
fit() (brew.base.BrewClassifier method), 34
fit() (brew.base.Ensemble method), 35
fit() (brew.base.EnsembleClassifier method), 35
fit() (brew.Ensemble method), 36
fit() (brew.EnsembleClassifier method), 37
fit() (brew.generation.Bagging method), 18
fit() (brew.generation.bagging.Bagging method), 16
fit() (brew.generation.bagging.BaggingSK method), 17
fit() (brew.generation.base.PoolGenerator method), 17
fit() (brew.generation.random_subspace.RandomSubspace method), 17
fit() (brew.generation.RandomSubspace method), 18
fit() (brew.generation.smote_bagging.SmoteBagging method), 17
fit() (brew.generation.smote_bagging.SmoteBaggingNew method), 17
fit() (brew.generation.SmoteBagging method), 18
fit() (brew.selection.pruning.EPIC method), 33
fit() (brew.selection.pruning.epic.EPIC method), 33

G
get() (brew.selection.pruning.EPIC method), 33
get() (brew.selection.pruning.epic.EPIC method), 33
get_classes() (brew.base.Ensemble method), 35
get_classes() (brew.Ensemble method), 36
get_neighbors() (brew.selection.dynamic.base.DCS method), 22

I
in_agreement() (brew.base.Ensemble method), 35
in_agreement() (brew.Ensemble method), 36

K
KNORA (class in brew.selection.dynamic.knora), 22
KNORA_ELIMINATE (class in brew.selection.dynamic), 30
KNORA_ELIMINATE (class in brew.selection.dynamic.knora), 22
KNORA_UNION (class in brew.selection.dynamic), 29
KNORA_UNION (class in brew.selection.dynamic.knora), 23
kohavi_wolpert_variance() (in module brew.metrics.diversity.non_paired), 19
kuncheva_agreement_measure() (in module brew.metrics.diversity.paired), 20
kuncheva_correlation_coefficient_p() (in module brew.metrics.diversity.paired), 20
kuncheva_disagreement_measure() (in module brew.metrics.diversity.paired), 20
kuncheva_double_fault_measure() (in module brew.metrics.diversity.paired), 20
kuncheva_entropy_measure() (in module brew.metrics.diversity.paired), 19
kuncheva_kw() (in module brew.metrics.diversity.non_paired), 19
kuncheva_q_statistics() (in module brew.metrics.diversity.paired), 20

L
LCA (class in brew.selection.dynamic), 27
LCA (class in brew.selection.dynamic.lca), 25
LCA2 (class in brew.selection.dynamic.lca), 25

M
majority_vote_rule() (in module brew.combination.rules), 15
max_rule() (in module brew.combination.rules), 15
MCB (class in brew.selection.dynamic), 31
mean_rule() (in module brew.combination.rules), 16
median_rule() (in module brew.combination.rules), 16
min_rule() (in module brew.combination.rules), 16

N
new_entropy() (in module brew.metrics.diversity.non_paired), 19

O
OLA (class in brew.selection.dynamic), 27
OLA (class in brew.selection.dynamic.ola), 26
OLA2 (class in brew.selection.dynamic.ola), 26
oracle() (in module brew.base), 36
output() (brew.base.Ensemble method), 35
output() (brew.Ensemble method), 37
output_simple() (brew.base.Ensemble method), 35
output_simple() (brew.Ensemble method), 37

P
paired_metric_ensemble() (in module brew.metrics.diversity.paired), 20
PoolGenerator (class in brew.generation.base), 17
predict() (brew.base.BrewClassifier method), 34
predict() (brew.base.EnsembleClassifier method), 35
predict() (brew.EnsembleClassifier method), 37
predict() (brew.generation.Bagging method), 18
predict() (brew.generation.bagging.Bagging method), 16
predict() (brew.generation.bagging.BaggingSK method), 17