
The Asphalt Framework (core)
Release 4.4.4.post8

Mar 26, 2019

Contents

1 Tutorials 3
1.1 Tutorial 1: Getting your feet wet – a simple echo server and client 3
1.2 Tutorial 2: Something a little more practical – a web page change detector 7

2 User guide 15
2.1 Application architecture . 15
2.2 Working with components . 16
2.3 Working with contexts and resources . 17
2.4 Working with coroutines and threads . 19
2.5 Working with signals and events . 21
2.6 Testing Asphalt components . 23
2.7 Configuration and deployment . 25

3 Version history 31

4 Acknowledgements 37

i

ii

The Asphalt Framework (core), Release 4.4.4.post8

This is the core Asphalt library. If you’re looking for documentation for some specific component project, you will
the appropriate link from the project’s Github page.

If you’re a new user, it’s a good idea to start from the tutorials. Pick a tutorial that suits your current level of knowledge.

Contents 1

https://github.com/asphalt-framework

The Asphalt Framework (core), Release 4.4.4.post8

2 Contents

CHAPTER 1

Tutorials

The following tutorials will help you get acquainted with Asphalt application development. It is expected that the
reader have at least basic understanding of the Python language.

Code for all tutorials can be found in the examples directory in the source distribution or in the Github repository.

1.1 Tutorial 1: Getting your feet wet – a simple echo server and client

This tutorial will get you started with Asphalt development from the ground up. You will be learn how to build a
simple network server that echoes back messages sent to it, along with a matching client application. It will however
not yet touch more advanced concepts like using the asphalt command to run an application with a configuration
file.

1.1.1 Prerequisites

Asphalt requires Python 3.5.2 or later. You will also need to have the venvmodule installed for your Python version of
choice. It should come with most Python installations, but if it does not, you can usually install it with your operating
system’s package manager (python3-venv is a good guess).

1.1.2 Setting up the virtual environment

Now that you have your base tools installed, it’s time to create a virtual environment (referred to as simply
virtualenv later). Installing Python libraries in a virtual environment isolates them from other projects, which
may require different versions of the same libraries.

Now, create a project directory and a virtualenv:

mkdir tutorial1
cd tutorial1
python3.5 -m venv tutorialenv
source tutorialenv/bin/activate

3

https://github.com/asphalt-framework/asphalt/tree/master/examples

The Asphalt Framework (core), Release 4.4.4.post8

On Windows, the last line should be:

tutorialenv\Scripts\activate

The last command activates the virtualenv, meaning the shell will first look for commands in its bin directory
(Scripts on Windows) before searching elsewhere. Also, Python will now only import third party libraries from the
virtualenv and not anywhere else. To exit the virtualenv, you can use the deactivate command (but don’t do that
now!).

You can now proceed with installing Asphalt itself:

pip install asphalt

1.1.3 Creating the project structure

Every project should have a top level package, so create one now:

mkdir echo
touch echo/__init__.py

On Windows, the last line should be:

copy NUL echo__init__.py

1.1.4 Creating the first component

Now, let’s write some code! Create a file named server.py in the echo package directory:

from asphalt.core import Component, run_application

class ServerComponent(Component):
async def start(self, ctx):

print('Hello, world!')

if __name__ == '__main__':
component = ServerComponent()
run_application(component)

The ServerComponent class is the root component (and in this case, the only component) of this applica-
tion. Its start() method is called by run_application when it has set up the event loop. Finally, the
if __name__ == '__main__': block is not strictly necessary but is good, common practice that prevents
run_application() from being called again if this module is ever imported from another module.

You can now try running the above application. With the project directory (tutorial) as your current directory, do:

python -m echo.server

This should print “Hello, world!” on the console. The event loop continues to run until you press Ctrl+C (Ctrl+Break
on Windows).

4 Chapter 1. Tutorials

The Asphalt Framework (core), Release 4.4.4.post8

1.1.5 Making the server listen for connections

The next step is to make the server actually accept incoming connections. For this purpose, the asyncio.
start_server() function is a logical choice:

from asyncio import start_server

from asphalt.core import Component, run_application

async def client_connected(reader, writer):
message = await reader.readline()
writer.write(message)
writer.close()
print('Message from client:', message.decode().rstrip())

class ServerComponent(Component):
async def start(self, ctx):

await start_server(client_connected, 'localhost', 64100)

if __name__ == '__main__':
component = ServerComponent()
run_application(component)

Here, asyncio.start_server() is used to listen to incoming TCP connections on the localhost interface
on port 64100. The port number is totally arbitrary and can be changed to any other legal value you want to use.

Whenever a new connection is established, the event loop launches client_connected() as a new Task. Tasks
work much like green threads in that they’re adjourned when waiting for something to happen and then resumed when
the result is available. The main difference is that a coroutine running in a task needs to use the await statement (or
async for or async with) to yield control back to the event loop. In client_connected(), the await on
the first line will cause the task to be adjourned until a line of text has been read from the network socket.

The client_connected() function receives two arguments: a StreamReader and a StreamWriter. In the
callback we read a line from the client, write it back to the client and then close the connection. To get at least some
output from the application, the function was made to print the received message on the console (decoding it from
bytes to str and stripping the trailing newline character first). In production applications, you will want to use the
logging module for this instead.

If you have the netcat utility or similar, you can already test the server like this:

echo Hello | nc localhost 64100

This command, if available, should print “Hello” on the console, as echoed by the server.

1.1.6 Creating the client

No server is very useful without a client to access it, so we’ll need to add a client module in this project. And to make
things a bit more interesting, we’ll make the client accept a message to be sent as a command line argument.

Create the file client.py file in the echo package directory as follows:

import sys
from asyncio import open_connection

from asphalt.core import CLIApplicationComponent, run_application

(continues on next page)

1.1. Tutorial 1: Getting your feet wet – a simple echo server and client 5

https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server
https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server
https://docs.python.org/3/library/asyncio-stream.html#asyncio.start_server
https://docs.python.org/3/library/asyncio-task.html#asyncio.Task
https://en.wikipedia.org/wiki/Green_threads
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamReader
https://docs.python.org/3/library/asyncio-stream.html#asyncio.StreamWriter
https://docs.python.org/3/library/logging.html#module-logging

The Asphalt Framework (core), Release 4.4.4.post8

(continued from previous page)

class ClientComponent(CLIApplicationComponent):
def __init__(self, message: str):

super().__init__()
self.message = message

async def run(self, ctx):
reader, writer = await open_connection('localhost', 64100)
writer.write(self.message.encode() + b'\n')
response = await reader.readline()
writer.close()
print('Server responded:', response.decode().rstrip())

if __name__ == '__main__':
component = ClientComponent(sys.argv[1])
run_application(component)

You may have noticed that ClientComponent inherits from CLIApplicationComponent instead of
Component and that instead of overriding the start() method, run() is overridden instead. This is standard
practice for Asphalt applications that just do one specific thing and then exit.

The script instantiates ClientComponent using the first command line argument as the message argument to the
component’s constructor. Doing this instead of directly accessing sys.argv from the run() method makes this
component easier to test and allows you to specify the message in a configuration file (covered in the next tutorial).

When the client component runs, it grabs the message to be sent from the list of command line arguments (sys.
argv), converts it from a unicode string to a bytestring and adds a newline character (so the server can use
readline()). Then, it connects to localhost on port 64100 and sends the bytestring to the other end. Next,
it reads a response line from the server, closes the connection and prints the (decoded) response. When the run()
method returns, the application exits.

To send the “Hello” message to the server, run this in the project directory:

python -m echo.client Hello

1.1.7 Conclusion

This covers the basics of setting up a minimal Asphalt application. You’ve now learned to:

• Create a virtual environment to isolate your application’s dependencies from other applications

• Create a package structure for your application

• Start your application using run_application()

• Use asyncio streams to create a basic client-server protocol

This tutorial only scratches the surface of what’s possible with Asphalt, however. The second tutorial will build on the
knowledge you gained here and teach you how to work with components, resources and configuration files to build
more useful applications.

6 Chapter 1. Tutorials

https://docs.python.org/3/library/asyncio-stream.html#asyncio-streams

The Asphalt Framework (core), Release 4.4.4.post8

1.2 Tutorial 2: Something a little more practical – a web page change
detector

Now that you’ve gone through the basics of creating an Asphalt application, it’s time to expand your horizons a little.
In this tutorial you will learn to use a container component to create a multi-component application and how to set up
a configuration file for that.

The application you will build this time will periodically load a web page and see if it has changed since the last check.
When changes are detected, it will then present the user with the computed differences between the old and the new
versions.

1.2.1 Setting up the project structure

As in the previous tutorial, you will need a project directory and a virtual environment. Create a directory
named tutorial2 and make a new virtual environment inside it. Then activate it and use pip to install the
asphalt-mailer and aiohttp libraries:

pip install asphalt-mailer aiohttp

This will also pull in the core Asphalt library as a dependency.

Next, create a package directory named webnotifier and a module named app (app.py). The code in the
following sections should be put in the app module (unless explicitly stated otherwise).

1.2.2 Detecting changes in a web page

The first task is to set up a loop that periodically retrieves the web page. For that, you can adapt code from the aiohttp
HTTP client tutorial:

import asyncio
import logging

import aiohttp
from asphalt.core import CLIApplicationComponent, run_application

logger = logging.getLogger(__name__)

class ApplicationComponent(CLIApplicationComponent):
async def run(self, ctx):

with aiohttp.ClientSession() as session:
while True:

async with session.get('http://imgur.com') as resp:
await resp.text()

await asyncio.sleep(10)

if __name__ == '__main__':
run_application(ApplicationComponent(), logging=logging.DEBUG)

Great, so now the code fetches the contents of http://imgur.com at 10 second intervals. But this isn’t very useful
yet – you need something that compares the old and new versions of the contents somehow. Furthermore, constantly
loading the contents of a page exerts unnecessary strain on the hosting provider. We want our application to be as
polite and efficient as reasonably possible.

1.2. Tutorial 2: Something a little more practical – a web page change detector 7

http://aiohttp.readthedocs.io/en/stable/client.html
http://aiohttp.readthedocs.io/en/stable/client.html

The Asphalt Framework (core), Release 4.4.4.post8

To that end, you can use the if-modified-since header in the request. If the requests after the initial one specify
the last modified date value in the request headers, the remote server will respond with a 304 Not Modified if
the contents have not changed since that moment.

So, modify the code as follows:

class ApplicationComponent(CLIApplicationComponent):
async def run(self, ctx):

last_modified = None
with aiohttp.ClientSession() as session:

while True:
headers = {'if-modified-since': last_modified} if last_modified else

→˓{}
async with session.get('http://imgur.com', headers=headers) as resp:

logger.debug('Response status: %d', resp.status)
if resp.status == 200:

last_modified = resp.headers['date']
await resp.text()
logger.info('Contents changed')

await asyncio.sleep(10)

The code here stores the date header from the first response and uses it in the if-modified-since header of
the next request. A 200 response indicates that the web page has changed so the last modified date is updated and the
contents are retrieved from the response. Some logging calls were also sprinkled in the code to give you an idea of
what’s happening.

1.2.3 Computing the changes between old and new versions

Now you have code that actually detects when the page has been modified between the requests. But it doesn’t yet
show what in its contents has changed. The next step will then be to use the standard library difflib module to
calculate the difference between the contents and send it to the logger:

from difflib import unified_diff

class ApplicationComponent(CLIApplicationComponent):
async def run(self, ctx):

with aiohttp.ClientSession() as session:
last_modified, old_lines = None, None
while True:

logger.debug('Fetching webpage')
headers = {'if-modified-since': last_modified} if last_modified else

→˓{}
async with session.get('http://imgur.com', headers=headers) as resp:

logger.debug('Response status: %d', resp.status)
if resp.status == 200:

last_modified = resp.headers['date']
new_lines = (await resp.text()).split('\n')
if old_lines is not None and old_lines != new_lines:

difference = diff.make_file(old_lines, new_lines,
→˓context=True)

logger.info('Contents changed:\n%s', difference)

old_lines = new_lines

await asyncio.sleep(10)

8 Chapter 1. Tutorials

https://docs.python.org/3/library/difflib.html#module-difflib

The Asphalt Framework (core), Release 4.4.4.post8

This modified code now stores the old and new contents in different variables to enable them to be compared. The
.split('\n') is needed because unified_diff() requires the input to be iterables of strings. Likewise, the
'\n'.join(...) is necessary because the output is also an iterable of strings.

1.2.4 Sending changes via email

While an application that logs the changes on the console could be useful on its own, it’d be much better if it actually
notified the user by means of some communication medium, wouldn’t it? For this specific purpose you need the
asphalt-mailer library you installed in the beginning. The next modification will send the HTML formatted
differences to you by email.

But, you only have a single component in your app now. To use asphalt-mailer, you will need to add its
component to your application somehow. Enter ContainerComponent. With that, you can create a hierarchy of
components where the mailer component is a child component of your own container component.

And to make the the results look nicer in an email message, you can switch to using difflib.HtmlDiff to produce
the delta output:

from difflib import HtmlDiff

class ApplicationComponent(CLIApplicationComponent):
async def start(self, ctx):

self.add_component(
'mailer', backend='smtp', host='your.smtp.server.here',
message_defaults={'sender': 'your@email.here', 'to': 'your@email.here'})

await super().start(ctx)

async def run(self, ctx):
with aiohttp.ClientSession() as session:

last_modified, old_lines = None, None
diff = HtmlDiff()
while True:

logger.debug('Fetching webpage')
headers = {'if-modified-since': last_modified} if last_modified else

→˓{}
async with session.get('http://imgur.com', headers=headers) as resp:

logger.debug('Response status: %d', resp.status)
if resp.status == 200:

last_modified = resp.headers['date']
new_lines = (await resp.text()).split('\n')
if old_lines is not None and old_lines != new_lines:

difference = diff.make_file(old_lines, new_lines,
→˓context=True)

await ctx.mailer.create_and_deliver(
subject='Change detected in %s' % event.source.url,
html_body=difference)

logger.info('Sent notification email')

old_lines = new_lines

await asyncio.sleep(10)

You’ll need to replace the host, sender and to arguments for the mailer component and possibly add the
username and password arguments if your SMTP server requires authentication.

With these changes, you’ll get a new HTML formatted email each time the code detects changes in the target web
page.

1.2. Tutorial 2: Something a little more practical – a web page change detector 9

https://docs.python.org/3/library/difflib.html#difflib.unified_diff
https://docs.python.org/3/library/difflib.html#difflib.HtmlDiff

The Asphalt Framework (core), Release 4.4.4.post8

1.2.5 Separating the change detection logic

While the application now works as intended, you’re left with two small problems. First off, the target URL and
checking frequency are hard coded. That is, they can only be changed by modifying the program code. It is not
reasonable to expect non-technical users to modify the code when they want to simply change the target website or
the frequency of checks. Second, the change detection logic is hardwired to the notification code. A well designed
application should maintain proper separation of concerns. One way to do this is to separate the change detection logic
to its own class.

Create a new module named detector in the webnotifier package. Then, add the change event class to it:

import asyncio
import logging

import aiohttp
from async_generator import yield_

from asphalt.core import Component, Event, Signal, context_teardown

logger = logging.getLogger(__name__)

class WebPageChangeEvent(Event):
def __init__(self, source, topic, old_lines, new_lines):

super().__init__(source, topic)
self.old_lines = old_lines
self.new_lines = new_lines

This class defines the type of event that the notifier will emit when the target web page changes. The old and new
content are stored in the event instance to allow the event listener to generate the output any way it wants.

Next, add another class in the same module that will do the HTTP requests and change detection:

class Detector:
changed = Signal(WebPageChangeEvent)

def __init__(self, url, delay):
self.url = url
self.delay = delay

async def run(self):
with aiohttp.ClientSession() as session:

last_modified, old_lines = None, None
while True:

logger.debug('Fetching contents of %s', self.url)
headers = {'if-modified-since': last_modified} if last_modified else

→˓{}
async with session.get(self.url, headers=headers) as resp:

logger.debug('Response status: %d', resp.status)
if resp.status == 200:

last_modified = resp.headers['date']
new_lines = (await resp.text()).split('\n')
if old_lines is not None and old_lines != new_lines:

self.changed.dispatch(old_lines, new_lines)

old_lines = new_lines

await asyncio.sleep(self.delay)

10 Chapter 1. Tutorials

https://en.wikipedia.org/wiki/Separation_of_concerns

The Asphalt Framework (core), Release 4.4.4.post8

The constructor arguments allow you to freely specify the parameters for the detection process. The class includes a
signal named changed that uses the previously created WebPageChangeEvent class. The code dispatches such
an event when a change in the target web page is detected.

Finally, add the component class which will allow you to integrate this functionality into any Asphalt application:

class ChangeDetectorComponent(Component):
def __init__(self, url, delay=10):

self.url = url
self.delay = delay

@context_teardown
async def start(self, ctx):

detector = Detector(self.url, self.delay)
ctx.add_resource(detector, context_attr='detector')
task = ctx.loop.create_task(detector.run())
logging.info('Started web page change detector for url "%s" with a delay of

→˓%d seconds',
self.url, self.delay)

Can be replaced with plain "yield" on Python 3.6+
await yield_()

This part is run when the context is being torn down
task.cancel()
await asyncio.gather(task, return_exceptions=True)
logging.info('Shut down web page change detector')

The component’s start() method starts the detector’s run() method as a new task, adds the detector object as
resource and installs an event listener that will shut down the detector when the context is torn down.

Now that you’ve moved the change detection code to its own module, ApplicationComponent will become
somewhat lighter:

from async_generator import aclosing

class ApplicationComponent(CLIApplicationComponent):
async def start(self, ctx):

self.add_component('detector', ChangeDetectorComponent, url='http://imgur.com
→˓')

self.add_component(
'mailer', backend='smtp', host='your.smtp.server.here',
message_defaults={'sender': 'your@email.here', 'to': 'your@email.here'})

await super().start(ctx)

async def run(self, ctx):
diff = HtmlDiff()
async with aclosing(ctx.detector.changed.stream_events()) as stream:

async for event in stream:
difference = diff.make_file(event.old_lines, event.new_lines,

→˓context=True)
await ctx.mailer.create_and_deliver(

subject='Change detected in %s' % event.source.url, html_
→˓body=difference)

logger.info('Sent notification email')

The main application component will now use the detector resource added by ChangeDetectorComponent. It
adds one event listener which reacts to change events by creating an HTML formatted difference and sending it to the

1.2. Tutorial 2: Something a little more practical – a web page change detector 11

The Asphalt Framework (core), Release 4.4.4.post8

default recipient.

Once the start() method here has run to completion, the event loop finally has a chance to run the task created
for Detector.run(). This will allow the detector to do its work and dispatch those changed events that the
page_changed() listener callback expects.

1.2.6 Setting up the configuration file

Now that your application code is in good shape, you will need to give the user an easy way to configure it. This is
where YAML configuration files come in handy. They’re clearly structured and are far less intimidating to end users
than program code. And you can also have more than one of them, in case you want to run the program with a different
configuration.

In your project directory (tutorial2), create a file named config.yaml with the following contents:

component:
type: webnotifier.app:ApplicationComponent
components:
detector:

url: http://imgur.com/
delay: 15

mailer:
host: your.smtp.server.here
message_defaults:

sender: your@email.here
to: your@email.here

logging:
version: 1
disable_existing_loggers: false
formatters:
default:
format: '[%(asctime)s %(levelname)s] %(message)s'

handlers:
console:

class: logging.StreamHandler
formatter: default

root:
handlers: [console]
level: INFO

loggers:
webnotifier:

level: DEBUG

The component section defines parameters for the root component. Aside from the special type key which
tells the runner where to find the component class, all the keys in this section are passed to the constructor of
ApplicationComponent as keyword arguments. Keys under components will match the alias of each child
component, which is given as the first argument to add_component(). Any component parameters given here can
now be removed from the add_component() call in ApplicationComponent’s code.

The logging configuration here sets up two loggers, one for webnotifier and its descendants and another (root)
as a catch-all for everything else. It specifies one handler that just writes all log entries to the standard output. To learn
more about what you can do with the logging configuration, consult the Configuration dictionary schema section in
the standard library documentation.

You can now run your app with the asphalt run command, provided that the project directory is on Python’s search
path. When your application is properly packaged and installed in site-packages, this won’t be a problem. But

12 Chapter 1. Tutorials

http://yaml.org/
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema
https://packaging.python.org/

The Asphalt Framework (core), Release 4.4.4.post8

for the purposes of this tutorial, you can temporarily add it to the search path by setting the PYTHONPATH environment
variable:

PYTHONPATH=. asphalt run config.yaml

On Windows:

set PYTHONPATH=%CD%
asphalt run config.yaml

Note: The if __name__ == '__main__': block is no longer needed since asphalt run is now used as
the entry point for the application.

1.2.7 Conclusion

You now know how to take advantage of Asphalt’s component system to add structure to your application. You’ve
learned how to build reusable components and how to make the components work together through the use of re-
sources. Last, but not least, you’ve learned to set up a YAML configuration file for your application and to set up a
fine grained logging configuration in it.

You now possess enough knowledge to leverage Asphalt to create practical applications. You are now encouraged to
find out what Asphalt component projects exist to aid your application development. Happy coding

1.2. Tutorial 2: Something a little more practical – a web page change detector 13

https://github.com/asphalt-framework

The Asphalt Framework (core), Release 4.4.4.post8

14 Chapter 1. Tutorials

CHAPTER 2

User guide

This is the reference documentation. If you’re looking to learn Asphalt from scratch, you should take a look at the
Tutorials first.

2.1 Application architecture

Asphalt applications are centered around the following building blocks:

• components

• contexts

• resources

• signals/events

• the application runner

Components (Component) are classes that initialize one or more services, like network servers or database connec-
tions and add them to the context as resources. Components are started by the application runner and usually discarded
afterwards.

Contexts (Context) are “hubs” through which resources are shared between components. Contexts can be chained
by setting a parent context for a new context. A context has access to all its parents’ resources but parent contexts
cannot access the resources of their children.

Resources are any arbitrary objects shared through a context. Every resource is shared on a context using its type
(class) and name (chosen by the component). Every combination of type/name is unique in a context.

Signals are the standard way in Asphalt applications to send events to interested parties. Events are dispatched asyn-
chronously without blocking the sender. The signal system was loosely modeled after the signal system in the Qt
toolkit.

The application runner (run_application()) is a function that is used to start an Asphalt application. It con-
figures up the Python logging module, sets up an event loop policy (if configured), creates the root context, starts the
root component and then runs the event loop until the application exits. A command line tool (asphalt) is provided

15

https://www.qt.io/

The Asphalt Framework (core), Release 4.4.4.post8

to better facilitate the running of Asphalt applications. It reads the application configuration from one or more YAML
formatted configuration files and calls run_application()with the resulting configuration dictionary as keyword
arguments. The settings from the configuration file are merged with hard coded defaults so the config file only needs
to override settings where necessary.

The following chapters describe in detail how each of these building blocks work.

2.2 Working with components

Components are the basic building blocks of an Asphalt application. They have a narrowly defined set of responsibil-
ities:

1. Take in configuration through the constructor

2. Validate the configuration

3. Add resources to the context (in start())

4. Close/shut down/clean up resources when the context is torn down (by directly adding a callback on the context
with add_teardown_callback(), or by using context_teardown())

The start() method is called either by the parent component or the application runner with a Context as its only
argument. The component can use the context to add resources for other components and the application business
logic to use. It can also request resources provided by other components to provide some complex service that builds
on those resources.

The start() method of a component is only called once, during application startup. When all components have
been started, they are disposed of. If any of the components raises an exception, the application startup process fails
and any context teardown callbacks scheduled so far are called before the process is exited.

In order to speed up the startup process and to prevent any deadlocks, components should try to add any resources
as soon as possible before requesting any. If two or more components end up waiting on each others’ resources, the
application will fail to start. Also, if a component needs to perform lengthy operations like connection validation on
network clients, it should add all its resources first to avoid the application start timing out.

There is no rule stating that a component cannot add itself to the context as a resource. The reason official Asphalt
libraries do not usually do this is that most of them have the option of providing multiple instances of their services,
which is obviously not possible when you only add the component itself as a resource.

Hint: It is a good idea to use type hints with typeguard checks (assert check_argument_types()) in the
component’s __init__ method to ensure that the received configuration values are of the expected type, but this is
of course not required.

2.2.1 Container components

A container component is component that can contain other Asphalt components. The root component of virtually any
nontrivial Asphalt application is a container component. Container components can of course contain other container
components and so on.

When the container component starts its child components, each start() call is launched in its own task. Therefore
all the child components start concurrently and cannot rely on the start order. This is by design. The only way
components should be relying on each other is by the sharing of resources in the context.

16 Chapter 2. User guide

http://yaml.org/
https://www.python.org/dev/peps/pep-0484/
https://pypi.python.org/pypi/typeguard

The Asphalt Framework (core), Release 4.4.4.post8

2.3 Working with contexts and resources

Every Asphalt application has at least one context: the root context. The root context is typically created by the
run_application() function and passed to the root component. This context will only be closed when the
application is shutting down.

Most nontrivial applications will make use of subcontexts. A subcontext is a context that has a parent context. A
subcontext can make use of its parent’s resources, but the parent cannot access the resources of its children. This
enables developers to create complex services that work together without risking interfering with each other.

Subcontexts can be roughly divided into two types: long lived and short lived ones. Long lived subcontexts are
typically used in container components to isolate its resources from the rest of the application. Short lived subcontexts,
on the other hand, usually encompass some unit of work (UOW). Examples of such UOWs are:

• handling of a request in a network service

• running a scheduled task

• running a test in a test suite

2.3.1 Resources

The resource system in Asphalt exists for two principal reasons:

• To avoid having to duplicate configuration

• To enable sharing of pooled resources, like database connection pools

Here are a few examples of services that will likely benefit from resource sharing:

• Database connections

• Remote service handles

• Serializers

• Template renderers

• SSL contexts

When you add a resource, you should make sure that the resource is discoverable using any abstract interface or base
class that it implements. This is so that consumers of the service don’t have to care if you switch the implementation of
another. For example, consider a mailer service, provided by asphalt-mailer. The library has an abstract base class for
all mailers, asphalt.mailer.api.Mailer. To facilitate this loose coupling of services, it adds all its configure
mailer services using the Mailer interface so that components that just need some was to send email don’t have to
care what implementation was chosen in the configuration.

2.3.2 Adding resources to a context

Resources can be added to a context in two forms: regular resources and resource factories. A regular resource can
be any arbitrary object. The same object can be added to the context under several different types, as long as the
type/name combination remains unique within the same context.

A resource factory is a callable that takes a Context as an argument an returns the value of the resource. There are
at least a couple reasons to use resource factories instead of regular resources:

• the resource’s lifecycle needs to be bound to the local context (example: database transactions)

• the resource requires access to the local context (example: template renderers)

2.3. Working with contexts and resources 17

https://github.com/asphalt-framework/asphalt-mailer

The Asphalt Framework (core), Release 4.4.4.post8

2.3.3 Getting resources from a context

The Context class offers a few ways to look up resources.

The first one, get_resource(), looks for a resource or resource factory matching the given type and name. If the
resource is found, it returns its value.

The second one, require_resource(), works exactly the same way except that it raises ResourceNotFound
if the resource is not found.

The third method, request_resource(), calls get_resource() and if the resource is not found, it waits
indefinitely for the resource to be added to the context or its parents. When that happens, it calls get_resource()
again, at which point success is guaranteed. This is usually used only in the components’ start() methods.

The order of resource lookup is as follows:

1. search for a resource in the local context

2. search for a resource factory in the local context and its parents and, if found, generate the local resource

3. search for a resource in the parent contexts

2.3.4 Handling resource cleanup

Any code that adds resources to a context is also responsible for cleaning them up when the context is closed. This
usually involves closing sockets and files and freeing whatever system resources were allocated. This should be done
in a teardown callback, scheduled using add_teardown_callback(). When the context is closed, teardown
callbacks are run in the reverse order in which they were added, and always one at a time, unlike with the Signal
class. This ensures that a resource that is still in use by another resource is never cleaned up prematurely.

For example:

from asphalt.core import Component

class FooComponent(Component):
async def start(ctx):

service = SomeService()
await service.start(ctx)
ctx.add_teardown_callback(service.stop)
ctx.add_resource(service)

There also exists a convenience decorator, context_teardown(), which makes use of asynchronous generators:

from asphalt.core import Component, context_teardown
from async_generator import yield_

class FooComponent(Component):
@context_teardown
async def start(ctx):

service = SomeService()
await service.start(ctx)
ctx.add_resource(service)

await yield_() # just "yield" on Python 3.6+

This part of the function is run when the context is closing
service.stop()

18 Chapter 2. User guide

The Asphalt Framework (core), Release 4.4.4.post8

Sometimes you may want the cleanup to know whether the context was ended because of an unhandled exception. The
one use that has come up so far is committing or rolling back a database transaction. This can be achieved by passing
the pass_exception keyword argument to add_teardown_callback():

class FooComponent(Component):
async def start(ctx):

def teardown(exception: Optional[BaseException]):
if exception:

db.rollback()
else:

db.commit()

db = SomeDatabase()
await db.start(ctx)
ctx.add_teardown_callback(teardown, pass_exception=True)
ctx.add_resource(db)

The same can be achieved with context_teardown() by storing the yielded value:

class FooComponent(Component):
@context_teardown
async def start(ctx):

db = SomeDatabase()
await db.start(ctx)
ctx.add_resource(db)

exception = await yield_()

if exception:
db.rollback()

else:
db.commit()

If any of the teardown callbacks raises an exception, the cleanup process will still continue, but at the end a
TeardownError will be raised. This exception contains all the raised exceptions in its exceptions attribute.

2.4 Working with coroutines and threads

Asphalt was designed as a network oriented framework capable of high concurrency. This means that it can efficiently
work with hundreds or even thousands of connections at once. This is achieved by utilizing co-operative multitasking,
using an event loop provided by the asyncio module.

The event loop can only work on one task at a time, so whenever the currently running task needs to wait for something
to happen, it will need to explicitly yield control back to the event loop (using await and similar statements) to let the
event loop run other tasks while this task waits for the result. Once the result is available, the event loop will resume
the task.

There is another concurrency mechanism called threads. Threads are an implementation of preemptive multitasking,
which means that the CPU may run your program at more than one location at once and your code will not have
to worry about yielding control to another task. There are some big downsides to using threads, however. First
off, threaded code is much more prone to race conditions and programs often need to use locks to share state in a
predictable manner. Second, threads don’t scale. When you have more threads than CPU cores, the cores need to
do context switching, that is, juggle between the threads. With a large number of threads, the overhead from context
switching becomes very significant up to the point where the system stops responding altogether.

While Asphalt was designed to avoid the use of threads, they are sometimes necessary. Most third party libraries at the

2.4. Working with coroutines and threads 19

https://en.wikipedia.org/wiki/Cooperative_multitasking
https://docs.python.org/3/library/asyncio.html#module-asyncio
https://en.wikipedia.org/wiki/Preemption_%28computing%29
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Lock_%28computer_science%29
https://en.wikipedia.org/wiki/Context_switch

The Asphalt Framework (core), Release 4.4.4.post8

moment don’t support the asynchronous concurrency model, and as such, they sometimes need to be used with threads
in order to avoid blocking the event loop. Also, file operations cannot, at this time, be executed asynchronously and
need to be wrapped in threads. Finally, your application might just need to do some CPU heavy processing that would
otherwise block the event loop for long periods of time.

To help with this, Asphalt contains functionality with which you can easily run code in thread pools or call asyn-
chronous code from worker threads.

2.4.1 Examples

Consider a coroutine function that reads the contents of a certain file and then sends them over a network connection.
While you might get away with reading the file in the event loop thread, consider what happens if the disk has to spin
up from idle state or the file is located on a slow (or temporarily inaccessible) network drive. The whole event loop
will then be blocked for who knows how long.

The easiest way is probably to use call_in_executor():

from pathlib import Path

async def read_and_send_file(ctx, connection):
contents = await ctx.call_in_executor(Path('file.txt').read_bytes)
await connection.send(contents)

You can also opt to execute entire blocks with a thread pool executor by using threadpool():

async def read_and_send_file(ctx, connection):
async with ctx.threadpool():

Anything inside this block runs in a worker thread!
contents = Path('file.txt').read_bytes()

Don't try to "await" inside the ctx.threadpool() block!
await connection.send(contents)

Alternatively, you can run the whole function in an executor. You will then need to make it a regular function instead
of a coroutine function:

from asphalt.core import executor

@executor
def read_and_send_file(ctx, connection):

contents = Path('file.txt').read_bytes()
ctx.call_async(connection.send, contents)

2.4.2 Using alternate executors

By default, all these methods use the default executor of the event loop, which in turn defaults to a
ThreadPoolExecutor with the default number of workers. Sometimes you may encounter situations where you
need to use multiple executors, each earmarked for a particular task or group of tasks so as to prevent other tasks from
getting stuck due to the lack of available workers. To this end, the mechanisms described above can be made to target
a specific executor, either given directly or acquired as a resource from a context.

Suppose you add an Executor resource named file_ops to a context:

20 Chapter 2. User guide

https://docs.python.org/3/library/concurrent.futures.html#concurrent.futures.ThreadPoolExecutor

The Asphalt Framework (core), Release 4.4.4.post8

from concurrent.futures import ThreadPoolExecutor, Executor

file_ops = ThreadPoolExecutor(5) # max 5 worker threads for file operations
ctx.add_resource(file_ops, 'file_ops', types=[Executor])

You can then use this executor resource by its name:

async def read_and_send_file(ctx, connection):
contents = await ctx.call_in_executor(Path('file.txt').read_bytes, executor='file_

→˓ops')
await connection.send(contents)

Also works with the async context manager:

async def read_and_send_file(ctx, connection):
async with ctx.threadpool('file_ops'):

contents = Path('file.txt').read_bytes()

await connection.send(contents)

And of course as a decorator too, as long as the context is provided:

from asphalt.core import executor

@executor('file_ops')
def read_and_send_file(ctx, connection):

contents = Path('file.txt').read_bytes()
ctx.call_async(connection.send, contents)

2.5 Working with signals and events

Events are a handy way to make your code react to changes in another part of the application. To dispatch and listen
to events, you first need to have one or more Signal instances as attributes of some class. Each signal needs to be
associated with some Event class. Then, when you dispatch a new event by calling dispatch(), a new instance
of this event class will be constructed and passed to all listener callbacks.

To listen to events dispatched from a signal, you need to have a function or any other callable that accepts a single
positional argument. You then pass this callable to connect(). That’s it!

To disconnect the callback, simply call disconnect() with whatever you passed to connect() as argument.

Here’s how it works:

from asphalt.core import Event, Signal

class CustomEvent(Event):
def __init__(source, topic, extra_argument):

super().__init__(source, topic)
self.extra_argument = extra_argument

class MyEventSource:
somesignal = Signal(Event)
customsignal = Signal(CustomEvent)

(continues on next page)

2.5. Working with signals and events 21

The Asphalt Framework (core), Release 4.4.4.post8

(continued from previous page)

def plain_listener(event):
print('received event: %s' % event)

async def coro_listener(event):
print('coroutine listeners are fine too: %s' % event)

async def some_handler():
source = MyEventSource()
source.somesignal.connect(plain_listener)
source.customsignal.connect(coro_listener)

Dispatches an Event instance
source.somesignal.dispatch()

Dispatches a CustomEvent instance (the extra argument is passed to its
→˓constructor)

source.customsignal.dispatch('extra argument here')

2.5.1 Exception handling

Any exceptions raised by the listener callbacks are logged to the asphalt.core.event logger. Additionally,
the future returned by dispatch() resolves to True if no exceptions were raised during the processing of lis-
teners. This was meant as a convenience for use with tests where you can just do assert await thing.
some_signal.dispatch('foo').

2.5.2 Waiting for a single event

To wait for the next event dispatched from a given signal, you can use the wait_event() method:

async def print_next_event(source):
event = await source.somesignal.wait_event()
print(event)

You can even wait for the next event dispatched from any of several signals using the wait_event() function:

from asphalt.core import wait_event

async def print_next_event(source1, source2, source3):
event = await wait_event(source1.some_signal, source2.another_signal, source3.

→˓some_signal)
print(event)

As a convenience, you can provide a filter callback that will cause the call to only return when the callback returns
True:

async def print_next_matching_event(source1, source2, source3):
event = await wait_event(source1.some_signal, source2.another_signal, source3.

→˓some_signal,

(continues on next page)

22 Chapter 2. User guide

The Asphalt Framework (core), Release 4.4.4.post8

(continued from previous page)

lambda event: event.myrandomproperty == 'foo')
print(event)

2.5.3 Receiving events iteratively

With stream_events(), you can even asynchronously iterate over events dispatched from a signal:

from async_generator import aclosing

async def listen_to_events(source):
async with aclosing(source.somesignal.stream_events()) as stream:

async for event in stream:
print(event)

Using stream_events(), you can stream events from multiple signals:

from asphalt.core import stream_events

async def listen_to_events(source1, source2, source3):
stream = stream_events(source1.some_signal, source2.another_signal, source3.some_

→˓signal)
async with aclosing(stream):

async for event in stream:
print(event)

The filtering capability of wait_event() works here too:

async def listen_to_events(source1, source2, source3):
stream = stream_events(source1.some_signal, source2.another_signal, source3.some_

→˓signal,
lambda event: event.randomproperty == 'foo')

async with aclosing(stream):
async for event in stream:

print(event)

2.6 Testing Asphalt components

Testing Asphalt components and component hierarchies is a relatively simple procedure:

1. Create an instance of your Component

2. Create a Context instance

3. Run the component’s start() method with the context as the argument

4. Run the tests

5. Close the context to release any resources

With Asphalt projects, it is recommended to use the py.test testing framework because it is already being used with
Asphalt core and it provides easy testing of asynchronous code (via the pytest-asyncio plugin).

2.6. Testing Asphalt components 23

http://pytest.org/
https://pypi.python.org/pypi/pytest-asyncio

The Asphalt Framework (core), Release 4.4.4.post8

2.6.1 Example

Let’s build a test suite for the Echo Tutorial.

The client and server components could be tested separately, but to make things easier, we’ll test them against each
other.

Create a tests directory at the root of the project directory and create a module named test_client_server
there (the test_ prefix is important):

import asyncio

import pytest
from asphalt.core import Context

from echo.client import ClientComponent
from echo.server import ServerComponent

@pytest.fixture
def event_loop():

Required on pytest-asyncio v0.4.0 and newer since the event_loop fixture
→˓provided by the

plugin no longer sets the global event loop
loop = asyncio.new_event_loop()
asyncio.set_event_loop(loop)
yield loop
loop.close()

@pytest.fixture
def context(event_loop):

with Context() as ctx:
yield ctx

@pytest.fixture
def server_component(event_loop, context):

component = ServerComponent()
event_loop.run_until_complete(component.start(context))

def test_client(event_loop, server_component, context, capsys):
client = ClientComponent('Hello!')
event_loop.run_until_complete(client.start(context))
exc = pytest.raises(SystemExit, event_loop.run_forever)
assert exc.value.code == 0

Grab the captured output of sys.stdout and sys.stderr from the capsys fixture
out, err = capsys.readouterr()
assert out == 'Message from client: Hello!\nServer responded: Hello!\n'

The test module above contains one test function (test_client) and three fixtures:

• event_loop: provides an asyncio event loop and closes it after the test

• context provides the root context and runs teardown callbacks after the test

• server_component: creates and starts the server component

24 Chapter 2. User guide

The Asphalt Framework (core), Release 4.4.4.post8

The client component is not provided as a fixture because, as always with CLIApplicationComponent, starting
it would run the logic we want to test, so we defer that to the actual test code.

In the test function (test_client), the client component is instantiated and started. Since the component’s
start() function only kicks off the task that runs the client’s business logic (the run() method), we have to
wait until the task is complete by running the event loop (using run_forever()) until run() finishes and its
callback code attempts to terminate the application. For that purpose, we catch the resulting SystemExit exception
and verify that the application indeed completed successfully, as indicated by the return code of 0.

Finally, we check that the server and the client printed the messages they were supposed to. When the server receives a
line from the client, it prints a message to standard output using print(). Likewise, when the client gets a response
from the server, it too prints out its own message. By using pytest’s built-in capsys fixture, we can capture the output
and verify it against the expected lines.

To run the test suite, make sure you’re in the project directory and then do:

pytest tests

For more elaborate examples, please see the test suites of various Asphalt subprojects.

2.7 Configuration and deployment

As your application grows more complex, you may find that you need to have different settings for your development
environment and your production environment. You may even have multiple deployments that all need their own
custom configuration.

For this purpose, Asphalt provides a command line interface that will read a YAML formatted configuration file and
run the application it describes.

2.7.1 Running the Asphalt launcher

Running the launcher is very straightfoward:

asphalt run yourconfig.yaml [your-overrides.yml...]

Or alternatively:

python -m asphalt run yourconfig.yaml [your-overrides.yml. . .]

What this will do is:

1. read all the given configuration files, starting from yourconfig.yaml

2. merge the configuration files’ contents into a single configuration dictionary using merge_config()

3. call run_application() using the configuration dictionary as keyword arguments

2.7.2 Writing a configuration file

A production-ready configuration file should contain at least the following options:

• component: a dictionary containing the class name and keyword arguments for its constructor

• logging: a dictionary to be passed to logging.config.dictConfig()

Suppose you had the following component class as your root component:

2.7. Configuration and deployment 25

https://docs.python.org/3/library/exceptions.html#SystemExit
https://docs.python.org/3/library/functions.html#print
https://github.com/asphalt-framework
http://yaml.org/
https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

The Asphalt Framework (core), Release 4.4.4.post8

class MyRootComponent(ContainerComponent):
def __init__(self, components, data_directory: str):

super().__init__(components)
self.data_directory = data_directory

async def start(ctx):
self.add_component('mailer', backend='smtp')
self.add_component('sqlalchemy')
await super().start(ctx)

You could then write a configuration file like this:

max_threads: 20
component:

type: myproject:MyRootComponent
data_directory: /some/file/somewhere
components:
mailer:

host: smtp.mycompany.com
ssl: true

sqlalchemy:
url: postgresql:///mydatabase

logging:
version: 1
disable_existing_loggers: false
handlers:
console:

class: logging.StreamHandler
formatter: generic

formatters:
generic:

format: "%(asctime)s:%(levelname)s:%(name)s:%(message)s"
root:
handlers: [console]
level: INFO

In the above configuration you have three top level configuration keys: max_threads, component and logging,
all of which are directly passed to run_application() as keyword arguments.

The component section defines the type of the root component using the specially processed type option. You can
either specify a setuptools entry point name (from the asphalt.components namespace) or a text reference like
module:class (see resolve_reference() for details). The rest of the keys in this section are passed directly
to the constructor of the MyRootComponent class.

The components section within component is processed in a similar fashion. Each subsection here is a component
type alias and its keys and values are the constructor arguments to the relevant component class. The per-component
configuration values are merged with those provided in the start() method of MyRootComponent. See the next
section for a more elaborate explanation.

With max_threads: 20, the maximum number of threads in the event loop’s default thread pool executor is set
to 20.

The logging configuration tree here sets up a root logger that prints all log entries of at least INFO level to the
console. You may want to set up more granular logging in your own configuration file. See the Python standard library
documentation for details.

26 Chapter 2. User guide

https://docs.python.org/3/library/logging.config.html#logging-config-dictschema
https://docs.python.org/3/library/logging.config.html#logging-config-dictschema

The Asphalt Framework (core), Release 4.4.4.post8

2.7.3 Using data from environment variables and files

Many deployment environments (Kubernetes, Docker Swarm, Heroku, etc.) require applications to input configuration
values and/or secrets using environment variables or external files. To support this, Asphalt extends the YAML parser
with three custom tags:

• !Env: substitute with the value of an environment variable

• !TextFile substitute with the contents of a (UTF-8 encoded) text file (as str)

• !BinaryFile substitute with the contents of a file (as bytes)

For example:

component:
type: myproject:MyRootComponent
param_from_environment: !Env MY_ENV_VAR
files:
- !TextFile /path/to/file.txt
- !BinaryFile /path/to/file.bin

If a file path contains spaces, you can just quote it:

component:
type: myproject:MyRootComponent
param_from_text_file: !TextFile "/path with spaces/to/file.txt"

Note: This does not allow you to include other YAML documents as part of the configuration, except as text/binary
blobs. See the next section if this is what you want.

New in version 4.5.0.

2.7.4 Configuration overlays

Component configuration can be specified on several levels:

• Hard-coded arguments to add_component()

• First configuration file argument to asphalt run

• Second configuration file argument to asphalt run

• . . .

Any options you specify on each level override or augment any options given on previous levels. To minimize the
effort required to build a working configuration file for your application, it is suggested that you pass as many of the
options directly in the component initialization code and leave only deployment specific options like API keys, access
credentials and such to the configuration file.

With the configuration presented in the earlier paragraphs, the mailer component’s constructor gets passed three
keyword arguments:

• backend='smtp'

• host='smtp.mycompany.com'

• ssl=True

2.7. Configuration and deployment 27

The Asphalt Framework (core), Release 4.4.4.post8

The first one is provided in the root component code while the other two options come from the YAML file. You could
also override the mailer backend in the configuration file if you wanted. The same effect can be achieved programmat-
ically by supplying the override configuration to the container component via its components constructor argument.
This is very useful when writing tests against your application. For example, you might want to use the mock mailer
in your test suite configuration to test that the application correctly sends out emails (and to prevent them from actually
being sent to recipients!).

There is another neat trick that lets you easily modify a specific key in the configuration. By using dotted notation in a
configuration key, you can target a specific key arbitrarily deep in the configuration structure. For example, to override
the logging level for the root logger in the configuration above, you could use an override configuration such as:

logging.root.level: DEBUG

The keys don’t need to be on the top level either, so the following has the same effect:

logging:

root.level: DEBUG

2.7.5 Defining multiple services

New in version 4.1.0.

Sometimes it may be more convenient to use a single configuration file for launching your application with different
configurations or entry points. To this end, the runner supports the notion of “service definitions” in the configuration
file. This is done by replacing the component dictionary with a services dictionary at the top level of the
configuration file and either setting the ASPHALT_SERVICE environment variable or by passing the --service
(or -s) option when launching the runner. This approach provides the additional advantage of allowing the use of
YAML references, like so:

services:

server:
max_threads: 30
component:

type: myproject.server.ServerComponent
components:

wamp: &wamp
host: wamp.example.org
port: 8000
tls: true
auth_id: serveruser
auth_secret: serverpass

mailer:
backend: smtp

client:
component:

type: myproject.client.ClientComponent
components:

wamp:
<<: *wamp
auth_id: clientuser
auth_secret: clientpass

Each section under services is like its own distinct top level configuration. Additionally, the keys under each
service are merged with any top level configuration, so you can, for example, define a logging configuration there.

28 Chapter 2. User guide

The Asphalt Framework (core), Release 4.4.4.post8

Now, to run the server service, do:

asphalt run -s server config.yaml

The client service is run in the same fashion:

asphalt run -s client config.yaml

You can also define a service with a special name, default, which is used in case multiple services are present and
no service has been explicitly selected.

Note: The -s/--service command line switch overrides the ASPHALT_SERVICE environment variable.

2.7.6 Performance tuning

Asphalt’s core code and many third part components employ a number of potentially expensive validation steps in its
code. The performance hit of these checks is not a concern in development and testing, but in a production environment
you will probably want to maximize the performance.

To do this, you will want to disable Python’s debugging mode by either setting the environment variable
PYTHONOPTIMIZE to 1 or (if applicable) running Python with the -O switch. This has the effect of completely
eliminating all assert statements and blocks starting with if __debug__: from the compiled bytecode.

When you want maximum performance, you’ll also want to use the fastest available event loop implementation. This
can be done by specifying the event_loop_policy option in the configuration file or by using the -l or --loop
switch. The core library has built-in support for the uvloop event loop implementation, which should provide a nice
performance boost over the standard library implementation.

2.7. Configuration and deployment 29

http://magic.io/blog/uvloop-make-python-networking-great-again/

The Asphalt Framework (core), Release 4.4.4.post8

30 Chapter 2. User guide

CHAPTER 3

Version history

This library adheres to Semantic Versioning.

4.5.0 (2019-03-26)

• Added new custom YAML tags (!Env, !BinaryFile and !TextFile)

4.4.4 (2018-05-08)

• Changed the async_timeout dependency to allow the 3.x and newer releases

4.4.3 (2018-02-05)

• Fixed exception in stream_events() cleanup code introduced in the previous release

4.4.2 (2018-02-02)

• Fixed memory leak when stream_events() is called but the returned generator is never used

4.4.1 (2018-01-21)

• Fixed incompatibility with Python 3.5.2

4.4.0 (2017-11-25)

• Removed the requirement for async generators to yield at least once when wrapped with
@context_teardown

• Removed aiogevent support since it has been removed from PyPI

4.3.0 (2017-11-05)

• The runner now calls logging.shutdown() after the event loop has been closed

• Added the Context.get_resources() method

• Made stream_events() connect to the signal when called instead of the first iteration of the async generator

4.2.0 (2017-08-24)

• Allowed selecting the service to run with asphalt run using an environment variable
(ASPHALT_SERVICE)

31

http://semver.org/

The Asphalt Framework (core), Release 4.4.4.post8

4.1.0 (2017-08-18)

• Added support for the Tokio event loop

• Added a feature to the runner that lets one define multiple services in a configuration file and select which one
to run

• Increased the runner default start timeout to 10 seconds

4.0.0 (2017-06-04)

• BACKWARD INCOMPATIBLE When a teardown callback raises an exception during Context.close(),
a TeardownException is raised at the end instead of the error being logged

• Renamed the asphalt.core.command module to asphalt.core.cli

• Fixed the inability to override the component type from external configuration (contributed by Devin Fee)

3.0.2 (2017-05-05)

• Fixed CLIApplicationComponent running prematurely (during the application start phase) and skipping
the proper shutdown sequence

• Fixed return code from CLIApplicationComponent being ignored

3.0.1 (2017-04-30)

• Fixed run_application() not working on Windows due to NotImplementedError when adding the
SIGTERM signal handler

3.0.0 (2017-04-10)

• BACKWARD INCOMPATIBLE Upped the minimum Python version to 3.5.2 from 3.5.0

• BACKWARD INCOMPATIBLE Renamed the asphalt.core.util module to asphalt.core.
utils

• The asphalt.core.event module was overhauled:

– BACKWARD INCOMPATIBLE Removed the monotime attribute from the Event class

– BACKWARD INCOMPATIBLE Dropped the return_future argument from Signal.
dispatch() and Signal.dispatch_event() – they now always return an awaitable that resolves
to a boolean, indicating whether all callbacks were successful or not

– BACKWARD INCOMPATIBLE Made the max_queue_size argument in Signal.
stream_events and stream_events() into a keyword-only argument

– BACKWARD INCOMPATIBLE Signal.dispatch_event() was renamed to Signal.
dispatch_raw()

– Added the filter argument to Signal.stream_events() and stream_events() which can
restrict the events that are yielded by them

– Added the time constructor argument to the Event class

• The asphalt.core.context module was overhauled:

– “lazy resources” are now called “resource factories”

– Context.get_resources() now returns a set of ResourceContainer (instead of a list)

– BACKWARD INCOMPATIBLE The default_timeout parameter was removed from the Context
constructor

– BACKWARD INCOMPATIBLE The timeout parameter of Context.request_resource()
was removed

32 Chapter 3. Version history

https://github.com/PyO3/tokio

The Asphalt Framework (core), Release 4.4.4.post8

– BACKWARD INCOMPATIBLE The alias parameter of Context.request_resource() was
renamed to name

– BACKWARD INCOMPATIBLE Removed the Context.finished signal in favor of the new
add_teardown_callback() method which has different semantics (callbacks are called in LIFO
order and awaited for one at a time)

– BACKWARD INCOMPATIBLE Removed the ability to remove resources from a Context

– Added several new methods to the Context class: close(), get_resource(),
require_resource()

– BACKWARD INCOMPATIBLE Context.publish_resource() was renamed to Context.
add_resource()

– BACKWARD INCOMPATIBLE Context.publish_lazy_resource() was renamed to
Context.add_resource_factory()

– BACKWARD INCOMPATIBLE The Context.get_resources() method was removed until it
can be replaced with a better thought out API

– BACKWARD INCOMPATIBLE The Resource class was removed from the public API

– Three new methods were added to the Context class to bridge asyncio_extras and Executor
resources: call_async(), call_in_executor() and threadpool()

– Added a new decorator, @executor to help run code in specific Executor resources

• The application runner (asphalt.core.runner) got some changes too:

– BACKWARD INCOMPATIBLE The runner no longer cancels all active tasks on exit

– BACKWARD INCOMPATIBLE There is now a (configurable, defaults to 5 seconds) timeout for waiting
for the root component to start

– Asynchronous generators are now closed after the context has been closed (on Python 3.6+)

– The SIGTERM signal now cleanly shuts down the application

• Switched from asyncio_extras to async_generator as the async generator compatibility library

• Made the current event loop accessible (from any thread) as the loop property from any asphalt.core.
context.Context instance to make it easier to schedule execution of async code from worker threads

• The asphalt.core.utils.merge_config() function now accepts None as either argument (or both)

2.1.1 (2017-02-01)

• Fixed memory leak which prevented objects containing Signals from being garbage collected

• Log a message on startup that indicates whether optimizations (-O or PYTHONOPTIMIZE) are enabled

2.1.0 (2016-09-26)

• Added the possibility to specify more than one configuration file on the command line

• Added the possibility to use the command line interface via python -m asphalt ...

• Added the CLIApplicationComponent class to facilitate the creation of Asphalt based command line
tools

• Root component construction is now done after installing any alternate event loop policy provider

• Switched YAML library from PyYAML to ruamel.yaml

• Fixed a corner case where in wait_event() the future’s result would be set twice, causing an exception in
the listener

33

The Asphalt Framework (core), Release 4.4.4.post8

• Fixed coroutine-based lazy resource returning a CoroWrapper instead of a Future when asyncio’s debug mode
has been enabled

• Fixed a bug where a lazy resource would not be created separately for a context if a parent context contained an
instance of the same resource

2.0.0 (2016-05-09)

• BACKWARD INCOMPATIBLE Dropped Python 3.4 support in order to make the code fully rely on the new
async/await, async for and async with language additions

• BACKWARD INCOMPATIBLE De-emphasized the ability to implicitly run code in worker threads. As such,
Asphalt components are no longer required to transparently work outside of the event loop thread. Instead,
use asyncio_extras.threads.call_async() to call asynchronous code from worker threads if ab-
solutely necessary. As a direct consequence of this policy shift, the asphalt.core.concurrency module
was dropped in favor of the asyncio_extras library.

• BACKWARD INCOMPATIBLE The event system was completely rewritten:

– instead of inheriting from EventSource, event source classes now simply assign Signal instances to
attributes and use object.signalname.connect() to listen to events

– all event listeners are now called independently of each other and coroutine listeners are run concurrently

– added the ability to stream events

– added the ability to wait for a single event to be dispatched

• BACKWARD INCOMPATIBLE Removed the asphalt.command module from the public API

• BACKWARD INCOMPATIBLE Removed the asphalt quickstart command

• BACKWARD INCOMPATIBLE Removed the asphalt.core.connectors module

• BACKWARD INCOMPATIBLE Removed the optional argument of Context.
request_resource()

• BACKWARD INCOMPATIBLE Removed the asphalt.core.runners entry point namespace

• BACKWARD INCOMPATIBLE Component.start() is now required to be a coroutine method

• BACKWARD INCOMPATIBLE Removed regular context manager support from the Context class (asyn-
chronous context manager support still remains)

• BACKWARD INCOMPATIBLE The Context.publish_resource(), Context.
publish_lazy_resource() and Context.remove_resource() methods are no longer coroutine
methods

• BACKWARD INCOMPATIBLE Restricted resource names to alphanumeric characters and underscores

• Added the possibility to specify a custom event loop policy

• Added support for uvloop

• Added support for aiogevent

• Added the ability to use coroutine functions as lazy resource creators (though that just makes them return a
Future instead)

• Added the ability to get a list of all the resources in a Context

• Changed the asphalt.core.util.resolve_reference() function to return invalid reference strings
as-is

• Switched from argparse to click for the command line interface

• All of Asphalt core’s public API is now importable directly from asphalt.core

34 Chapter 3. Version history

https://github.com/MagicStack/uvloop
https://bitbucket.org/haypo/aiogevent

The Asphalt Framework (core), Release 4.4.4.post8

1.2.0 (2016-01-02)

• Moved the @asynchronous and @blocking decorators to the asphalt.core.concurrency package
along with related code (they’re still importable from asphalt.core.util until v2.0)

• Added typeguard checks to fail early if arguments of wrong types are passed to functions

1.1.0 (2015-11-19)

• Decorated ContainerComponent.start with @asynchronous so that it can be called by a blocking
subclass implementation

• Added the stop_event_loop function to enable blocking callables to shut down Asphalt’s event loop

1.0.0 (2015-10-18)

• Initial release

35

The Asphalt Framework (core), Release 4.4.4.post8

36 Chapter 3. Version history

CHAPTER 4

Acknowledgements

Many thanks to following people for the time spent helping with Asphalt’s development:

• Alice Bevan-McGregor (brainstorming and documentation QA)

• Guillaume “Cman” Brun (brainstorming)

• Darin Gordon (brainstorming and documentation QA)

• Antti Haapala (brainstorming)

• Olli Paloheimo (Asphalt logo design).

• Cody Scott (tutorials QA)

• API reference

37

	Tutorials
	Tutorial 1: Getting your feet wet – a simple echo server and client
	Tutorial 2: Something a little more practical – a web page change detector

	User guide
	Application architecture
	Working with components
	Working with contexts and resources
	Working with coroutines and threads
	Working with signals and events
	Testing Asphalt components
	Configuration and deployment

	Version history
	Acknowledgements

