
 1

A Highly Generalised Automatic Plugin Delay Compensation
Solution for Virtual Studio Mixers

Tebello Thejane

zyxoas@gmail.com
12 July 2006

Abstract
 While virtual studio music production software may have revolutionised
music production, music producers still face many problems in using it.
This paper fully presents a very simple solution to one such problem, that
of computational latency in the effects chain, and gives two examples of
how one might apply it in the mixer of the popular Steinberg’s Cubase SX
and in the versatile mixer of Image-Line’s FL Studio. The solution
presented here is only for the mixers in music production software with a
clear distinction between the mixer with effects and audio generators, but
in some cases it can be extended to include generators, as Appendix A
shows.
 The solution works in compensating for audio latency inherent in effects
processors during real-time playback. It is not intended as a solution for
the latency inherent in the hardware, nor for the software’s MIDI system,
nor for dealing with latency during recording.
 This paper is a refinement and generalisation of the method presented in
[1].

Contents
1 Introduction 2

2 The Mixer Model 2

3 The Method 4

4 Conclusions 6

Appendix A 7

Appendix B 11

 2

1 Introduction

Most studio software with virtual mixers work in a similar manner: sound data is
generated by a generator; the data then goes to the mixer, which is divided into
several effects tracks, each containing zero or more effects; and the sound finally exits
the mixer to some or other sound output mechanism (which can be the system’s sound
drivers, Rewire output, etc). This mechanism is very intuitive to the user and
everything works fine since the virtual studio is able to time the processes properly.
 Most effects work in a similar manner: the studio feeds it audio in an input
buffer; it applies some process to the buffer’s contents; and gives the studio an output
buffer. Although the calculations performed by the effect on the buffer do take some
processor time, this manifests itself in processor (CPU) usage. In these cases, where
the input buffer InB goes from InB0 to InBv, and the output buffer goes from f(InB0) to
f(InBv) (where f() is the process applied by the effect) we say that the effect is zero
latency.
 In practice, many popular effect processes are not zero latency. There exist
effects which perform processes involving, among other things:

1. Several techniques usually named “look-ahead” – these are used in many
dynamics processors. For example, a soft limiting effect might need to know if
it will encounter a peak above 0dB in the future so it can adjust its attack
setting appropriately.

2. The fast Fourier transform (FFT). This process needs to receive and analyze a
chunk of audio data (which, in the fast Fourier transform, is of a size which is
a perfect power of 2) before it can produce any output.

3. Finite impulse response (FIR) filters – these are used in many “linear phase”
filter implementations. FIR filters are non-causal [2]; the impulse response
extends into negative time, meaning that the filter produces output before it
receives the corresponding input. Real-time effects processors that use these
filters accomplish this paradoxical behaviour by intentionally introducing
latency.

In these cases, the output buffer goes from f(InB0–n) to f(InBv-n) where n is the latency
in samples.
 This behaviour is particularly problematic when the delayed audio is supposed
to run at the same time as other, non-delayed audio. This can result in improper
timing or, if the audio is mixed with a dry version of itself, comb-filtering artefacts
and even noticeable doubling (or worse).

Many software virtual studios already have incomplete PDC implementations, with
very few having complete implementations (such as Apple’s Logic Pro). This paper
presents a solution to this problem, based on a generalised model of the virtual mixer,
which may be used in implementing PDC solutions for most mixer-based software
studios.

2 The Mixer Model
This solution is based on a mixer model comprising of polymorphic effects tracks,
which are free to send audio data to each other in any configuration (provided
feedback loops are not allowed). Figure 1 shows the general mixer effects track.

 3

Figure 1. The generalised effects track

The polymorphic nature of this model means that the effects track can be interpreted
in many ways (an insert track, a send track, a master track, even the mixer output)
without having to treat each variety differently1.
 The model effects track is composed of the following parts:

1. A port for inputting audio from generators, GIn. The audio from several
generators needs to be summed first before being sent to this port2.

2. A port for inputting audio from other effects tracks, FIn. The audio from
several effects tracks needs to be summed first before being sent to this port.

3. Zero or more effects FX, with a total latency of TL.
4. An array of ports for outputting audio to other effects tracks, FOut. Each

effects track the track outputs to has its own corresponding FOut port. Each
FOut port is denoted by FOutk for each track k routed to.

Figure 2 shows several effects tracks connected to one another.

3 Overview of the Method

This method compensates for the delays of effects tracks by inserting compensating
delays in the mixer such that the audio is once again in sync3. There are two classes of
compensating delays in the effects track:

1 although in practice this might not actually be the case in a software implementation

2 this solution does not take the latencies of the generators into account, although it would not be too
difficult to implement this, as is shown in Appendix A

3 this is due to the very simple fact that we can’t eliminate the effects’ latencies, nor can we predict
future inputs

 4

Figure 2. Several effect tracks connected to each other in a possible
mixer. Directed lines indicate audio paths: solid lines coming from
FOut ports and going to FIn ports, and dashed lines indicating the path
of all audio coming to the GIn ports. The short lines crossing the
directed lines indicate the positions of the compensating delays. The
track at the bottom-centre is sending audio out of the mixer.

1. The InD that’s applied to audio from the generators, before mixing it with
audio from other effects tracks.

2. An array of OD’s, which are applied to the FOut ports. The OD for the port
FOutk is ODk, where k represents a track to which this track sends audio data.

A working PDC implementation needs to calculate the OD’s and InD’s and apply
them in the correct places.

3 The Method
The actual algorithm comprises of several parts:

The HD’s

The HD of an effects track is the absolute highest delay a signal may experience when
passed from a generator, through the effects track, through the tracks the track outputs
to (recursively), and finally exiting the mixer. It can be calculated recursively as:

• The HD of an effects track which sends audio data out of the mixer4 is equal to
0.

• The HD of any other track is its TL + max{HDk | for all tracks k that the track
sends audio data to}. In most implementations the master track’s HD would be
equal to its TL (since it would be connected only to the mixer output).

4 in most implementations this would be the mixer output

 5

The ID

The ID (“initial delay”) of the mixer is the very highest possible delay a signal may
experience when sent to the mixer from a generator before being output (before the
PDC analysis). The name comes from viewing the problem in reverse: if, after
implementing PDC properly, one traces the path of an audio signal from a generator,
after setting some value equal to ID, and subtracts from that value the values of all
delays encountered (whether they be PDC compensating delays or the intrinsic
latencies of effects) the value will be 0 after exiting the mixer.
 Its value is max{HDk | for all tracks k in the mixer}.
 The PDC implementation ensures that all audio sent to the mixer will
experience a delay of ID.

The ID Invariant

This states that

Once all of the PDC calculations have been performed, if one traces all
possible paths from generators, through the mixer, and out of the mixer, then
the sum of all the inherent and compensating delays in that path must equal ID.

This of course follows naturally from our intuitive understanding of how PDC should
work, but is the basis for most of the analysis.

Keeping the definitions of the HD, FIn, and FOut in mind we can rephrase this as:

The compensating delay applied to audio coming into the track from
generators, plus the track’s latency, plus the compensating delay applied to
any output port, plus the highest delay of the track connected to that output
port, must be equal to the ID.

That is:

 ID = InD + TL + ODk + HDk (1)

where k denotes any track this track sends audio data to. This equation, with two
unknowns, is the heart of the PDC implementation.
 From the definitions of the HD it should be obvious that in any mixer that has
been analysed, there should exist at least one possible path through the mixer from a
generator such that the sum of all compensating delays (InD’s and OD’s) in that path
is equal to 0. This would be true if the HD of the first track in this path is equal to the
ID:

ID = InD + TL + ODk + HDk

Substituting the recursive definition of the HD for the highest HDk routed to

ID = InD + ODk + HD

Since the ID and HD are equal

 6

InD + ODk = 0

Since none of the compensating delays can be negative, both values must therefore be
0. This proves that this implementation is as efficient as possible (that is, it doesn’t
introduce any unnecessarily high delays) and that each track will have at least one OD
of value 0 (the one routing to the track with the highest HD of all tracks routed to).

Now, since audio from other tracks does not go through the InD, this gives a situation
where the delay experienced by audio coming from other tracks equals

Delay = TL + ODk + HDk

Using the definition of the HD as the highest HDk of the tracks routed to

Delay = ODk + HD

As demonstrated above, the OD will be 0, thus

Delay = HD

Therefore, one way of interpreting the OD’s is that they ensure that all audio coming
out of the track will have experienced a delay equal to the track’s HD by the time it
exits the mixer (once again, note recursively that all tracks have at least one OD of
value 0, thus there exists at least one path out of the track with compensating delays
summing to 0, and thus all audio out of the track must experience a delay exactly
equal to its HD, since PDC attempts to make all paths have the same delay).

The InD

The InD is calculated before the OD’s. In order to keep the ID invariant valid, we
wish to calculate the InD such that the audio from the generators will have
experienced a delay exactly equal to the ID by the time it exits the mixer. Since,
before and after analysis, the highest delay the audio can experience coming out of the
track (including going through the TL) is its HD, the InD needs to satisfy:

 ID = InD + HD (2)

4 Conclusions
A PDC implementation based on a flexible, polymorphic mixer model has been
presented as a system of two linear equations per effects track. The solution flows
naturally from intuitive first principles. The solution is highly generalised and should
work on a large class of virtual mixer implementations.

 7

Appendix A

In this appendix the derivation of an incomplete5 general solution to the mixer used in
Steinberg’s Cubase SX music software is presented.

The Cubase SX Mixer Model

The Cubase SX mixer model makes a 5–way distinction between6:

1. Generator tracks (including VST Instrument tracks and ReWire channels)
which can output to Master tracks, FX channels, and Group tracks. This is
different from the generalised mixer model since there is no separation
between generators and the mixer. This is not a problem, however, and indeed
it helps give a solution to the latencies of generators as well.

2. Audio Generator tracks that work like Generator tracks but also get audio
input from Audio-in tracks.

3. FX channels that can get audio from several generator tracks and can only
output to a single Master track at a time. These can also be interpreted as
“Send tracks”.

4. Group tracks that can output to FX channels and Master tracks, and can
receive input from Generator tracks.

5. Audio-in tracks that can output to a single audio Generator track at a time.
6. Master tracks. There can be several of these, each one sending audio out of the

mixer.

Cubase SX currently has an incomplete automatic PDC implementation; in particular,
there is no PDC for Group tracks, VST Instrument tracks, or ReWire channels [3] 7.

Deriving the Solution

Only Audio Generator tracks need an FIn separate from a GIn, since no other tracks
can input audio from both generators and other tracks, therefore a separate InD is only
necessary for generator tracks. For most track types except Generator tracks,
substituting equation (2) into equation (1) and solving for the OD’s yields:

 ODk = HD – TL – HDk (3)

After calculating the HD’s and the ID, the following calculations need to be
performed for the different types of tracks:

1. One can effectively deal with the latencies inherent in generator tracks by
treating a generator as an instantaneous source of audio followed by an
element causing latency, this way any inherent latency in the generator is
treated as another effect with latency. We therefore need to calculate the
(internal) InD:

5 since it doesn’t distinguish between pre-fader and post-fader effects; it shouldn’t be too difficult to
modify the solution to take this into consideration, with a bit of thought

6 this only lists audio tracks; MIDI tracks are not part of the audio system and will be ignored

7 this is contrary to claims made elsewhere in the software’s documentation, but is easy to confirm

 8

InD = ID – HD

We use equation (1) for the OD’s:

ODk = ID – InD – TL – HDk

Since the audio data from the generator will go through both the InD and the
OD’s, we can simplify matters by absorbing the InD in the OD’s. Adding the
InD to both sides of the equation, then rewriting and setting ODk � ODk + InD,
gives:

ODk = ID – TL – HDk

or

ID = TL + ODk + HDk

which is simply the ID invariant for tracks that accept generator input with no
separate FIn port or InD.

2. Audio Generators behave like other Generator tracks, but need to be treated
differently since the audio generator (audio data streamed from the hard-drive
or the output of an Audio-in track) is not part of the track. The solution is to
break the Cubase SX track model somewhat by letting hard-drive audio
streams be generators external from the mixer and treating Audio-in tracks as
normal audio tracks. Audio Generators therefore use the generalised solution
with both the FIn and GIn ports. The InD that’s applied to hard-drive streamed
audio is:

InD = ID – HD

and the OD’s are described by equation (3):

ODk = HD – TL – HDk

3. For FX channels we use equation (3):

ODk = HD – TL – HDk

Since the track sends audio data to only one other track (a Master track), its
HD is equal to its TL + HDk. Substitution yields:

ODk = 0

for all FX channels.

4. Group tracks simply use equation (3):

ODk = HD – TL – HDk

 9

5. Each audio-in track sends audio data to only one Audio Generator track , has
no track sending audio to it, and is connected to a “generator” (an external
audio source) therefore they are treated in the same way as non-Audio
Generator tracks:

ODk = ID – TL – HDk

Since the track only sends to one other track, we can substitute the value of the
HD:

ODk = ID – HD

6. Master tracks send audio data out of the mixer, and do not receive audio data
from any generators. Since it only sends audio data to the mixer output:

ODMixer Output = 0

An Example Application of the Solution

To test the solution, we apply it to a slightly convoluted mixer setup which the current
Cubase SX automatic PDC system fails to solve properly (figure 3a):

The mixer has four tracks: one VST Generator track with an LM 7 Drum
Sample Unit (zero latency), one Group track with three VST Dynamics effects
with “look-ahead” (each with an incredibly high latency of 1212 samples), an
FX track with two VST Dynamics plugins, and a Master track with no effects.
The VST Generator outputs directly to the Group track as well as sending its
audio to the FX track (which is used as a “send track”); the Group track
outputs directly to the Master track as well as sending audio to the FX track;
while the FX track outputs to the Master track.

The problem with this setup is the fact that the Group track has latency and sends its
audio to the FX track (Cubase SX has no PDC for Group tracks); triggering a drum
sample with a distinct attack in the LM 7 causes audible tripling8. The solution is as
follows:

1. The HD for the Master track is 0; the HD for the FX track is 2424; the HD for
the Group track is 6060; the HD for the VST Generator track is 6060. The ID
is 6060.

2. For the VST Generator track:

ODGroup track = 6060 – 0 – 6060 = 0

ODFX track = 6060 – 0 – 2424 = 3636

3. For the Group track:

ODMaster track = 6060 – 3636 – 0 = 2424

ODFX Track = 6060 – 3636 – 2424 = 0

8 as there are three paths out of the mixer, each with a different total latency

 10

4. For the FX track:

ODMaster Track = 0

5. For the Master track:

ODMixer output = 0

The completely analysed mixer is shown in figure 3b. Checking for correctness by
tracing all possible audio paths for audio from a generator out of the mixer depth–
first9:

• Path 1 (VST Generator � Group � Master):

0 + 0 + 3636 + 2424 + 0 + 0 = 6060

• Path 2 (VST Generator � Group � FX � Master):

0 + 0 + 3636 + 0 + 2424 + 0 + 0 + 0 =6060

The sum of all compensating delays in this path equals 0.

• Path 3 (VST Generator � FX � Master):

0 + 3636 + 2424 + 0 + 0 + 0= 6060

9 compensating delays are underlined

(a)

(b)

Figure 3
(a) An example Cubase SX mixer setup, and
(b) The same mixer after analysis, showing
the compensating delays

 11

Appendix B

In this appendix the derivation of a complete general solution to the mixer used in
Image-Line’s FL Studio10 is presented.

The FL Studio Mixer Model

The FL Studio mixer model makes a 3–way distinction between:

1. Insert tracks which accept audio data from generators, other Insert tracks, and
external audio sources; and can output to other Insert tracks, Send tracks, the
Master track, and out of the mixer. There are 64 Insert tracks in the mixer.

2. Send tracks which accept audio data from generators11 , Insert tracks, and
external audio sources; and can output to the Master track, and out of the
mixer. There are four Send tracks in the mixer.

3. A single Master track, which accepts audio data from generators, Insert tracks,
Send tracks, and external audio sources; and sends audio data out of the mixer.

This mixer model is very versatile, as the Insert tracks can be connected almost
without restriction12.
 FL Studio currently does not have an automatic PDC implementation.

Deriving the Solution

The FL Studio mixer model is very close to the generalised model. The calculations
are based on equations (1) and (2):

1. Each Insert track has an FIn port, a GIn port, and FOut ports, therefore they
use the general solution:

InD = ID – HD
and

ODk = ID – InD – TL – HDk

2. Send tracks also have FIn, GIn, and FOut ports, with the FOut port possibly
connected to 2 outputs simultaneously (the Master track and out the mixer);
they therefore also use the generalised solution:

InD = ID – HD
and

ODk = ID – InD – TL – HDk

10 beginning with version 6 of the software

11 certain FL Studio specific generator plugins, such as the Fruity SoundFont player and the Fruity
DrumSynth Live, can output audio directly to the Send tracks

12 provided that feed-back loops do not occur

 12

3. The Master track also has FIn and GIn ports, however it only sends audio data
to one place (out of the mixer):

InD = ID – HD

and

ODMixer output = 0

An Example Application of the Solution

To test the solution, we apply it to a mixer setup even more convoluted than that used
to test the Cubase SX solution. In particular, this setup takes advantage of FL Studio’s
advanced routing capabilities (figure 4a):

This setup only considers three Insert tracks and two send tracks. Insert track 1
(Ins1) has no latency and sends audio data to the Master track and Send track
2. Insert track 2 (Ins2) has a Waves X-Noise noise-reduction effect using the
FFT with a latency of 5120 samples; it outputs to the Master track, Insert track
1, and Send track 2. Insert track 3 (Ins3) has no latency and outputs to Insert
track 2, the Master track, and Send track 1.
 Send track 1 (S1) has a Waves LinEQ Broadband graphical equaliser
using FIR filters with a latency of 2679 samples; it sends audio data straight
out of the mixer. Send track 2 (S2) has no latency and outputs to the Master
track.
 The Master track has a Slim Slow Slider LPGEQ for Mastering
graphical equaliser using FIR filters with a latency of 427 samples.

The solution is as follows:

1. Insert track 1 has an HD of 427; Insert track 2 has an HD of 5547; Insert track
3 has an HD of 5547; Send track 1 has an HD of 2679; Send track 2 has an
HD of 427; the Master track has an HD of 427. The ID is 5547.

2. For Insert track 1:

InD = 5547 – 427 = 5120

ODSend track 2 = 5547 – 5120 – 0 – 427 = 0
ODMaster track = 5547 – 5120 – 0 – 427 = 0

3. For Insert track 2:

InD = 5547 – 5547 = 0

ODInsert track 1 = 5547 – 0 – 5120 – 427 = 0
ODMaster track = 5547 – 0 – 5120 – 427 = 0
ODSend track 2 = 5547 – 0 – 5120 – 427 = 0

which makes sense, since the track’s HD is equal to the ID.

 13

4. For Insert track 3:

InD = 5547 – 5547 = 0
ODInsert track 2 = 5547 – 0 – 0 – 5547 = 0

ODMaster track = 5547 – 0 – 0 – 427 = 5120
ODSend track 1 = 5547 – 0 – 0 – 2679 = 2868

(a)

Figure 4
(a) An example FL Studio mixer
setup, and (b) The same mixer
after analysis, showing the
compensating delays

(b)

 14

5. For Send track 1:

InD = 5547 – 2679 = 2868
ODMixer output = 5547 – 2868 – 2679 – 0 = 0

6. For Send track 2:

InD = 5547 – 427 = 5120

ODMaster track = 5547 – 5120 – 0 – 427 = 0

7. For the Master track:

InD = 5547 – 427 = 5120
ODMixer output = 0

The completely analysed mixer is shown in figure 4b. The unnecessary chore of
tracing and verifying all paths is left to the reader as an exercise.

Acknowledgements
Richard Bristow-Johnson

For his advice in the initial planning stages of this paper.

Didier Dambrin

For making me realise that perhaps this was not as obvious to many people as
I had thought it was; and for convincing me of the need to write a paper
attempting to explain it in a simple and convincing manner, with a few pretty
pictures, and open to public scrutiny.

References

[1] Tebello Thejane “A solution for complete automatic PDC in FL Studio”.

[2] Steven W. Smith “The Scientist and Engineers guide to Digital Signal

Processing”, chapter 7. http://www.dspguide.com

[3] The Cubase SX2 documentation “Cubase SX/SL – Effects Parameters”,
page 19

