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Introduction 
 
When synthesising analogue type waveforms (sawtooth, square, triangle) in the digital 
domain special care must be taken to ensure the results are bandlimited.  The simple 
method of producing a sawtooth wave is given by: 
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where y is the output, A is the amplitude, t is time, n is sample number in the discrete 
digital domain, f0 is the frequency of the waveform, fs is the sampling rate and Int(x) is the 
highest integer less than or equal to x. 
 
The analogue equation produces desirable results because it is working in the continuous 
domain.  However, the digital equation fails because it is sampling a non-bandlimited 
waveform.  Sampling hardware would first feed an input signal through a low pass filter 
before the ADC.  Because direct synthesis in the digital domain of the above formula does 
not do this, an aliased signal is produce.  The aliasing will contaminate the whole spectrum 
and therefore cannot be filtered.  Therefore, a technique is needed for synthesising 
bandlimited waveforms. 
 
Wavetables 
 
A wavetable is a sample (collection of individual samples) containing one period of a 
waveform.  Synthesis using wavetables simply involves playing back the wavetable as 
follows: 
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where w is the wavetable and l is the length of the wavetable in samples.  Most of the time 
m will contain both integer and fractional parts.  To deal with this a large oversampled 
wavetable can be used with access via Int(m), or a form of interpolation can be used. 
 
 
Generating a bandlimited wavetable 
 
A bandlimited wavetable contains harmonics whose frequencies are less than the Nyquist 
frequency (above which aliasing occurs).  The frequencies of the harmonics in the 
wavetable are relative to the frequency at which the wavetable is played.  The number of 
harmonics h allowable in a wavetable for a given frequency f0 obeys the following: 
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so the highest frequency a wavetable can be played at is given by: 
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Given this formula, a series of bandlimited wavetables with varying number of harmonics 
can be used to play notes across a range of pitches.  The wavetables should be 
normalised to the richest waveform (highest h) so the harmonics are kept at constant 
amplitude. 
 
For absolute coverage the series of wavetables would have h increasing by one each time.  
The problem with this is that it requires a huge amount of wavetables to cover a good pitch 
range.  Given large oversampled wavetables this would demand a large amount of 
memory.  A solution is to use 128 wavetables corresponding to the midi note range.  Each 
wavetable should have the right number of harmonics for that midi pitch.  It is 
recommended to use wavetables with 4096 samples and to play back using linear 
interpolation.  This gives a good range of wavetables with good sound quality. 
 
If sliding between pitches is required, the correct wavetable to use should be determined 
for each wave cycle.  For this, use a reverse look-up table that specifies which of the 128 
wavetables should be used for a given frequency (in fact, integer of frequency). 
 
 
Generating a bandlimited sawtooth waveform 
 
The sawtooth can be generated using its Fourier series: 
 

...3sin
3
12sin

2
1sin +++ xxx   π<≤ x0  

 
For each wavetable, sum the series up to (1/h) sin hx. 
 
 
Generating a bandlimited square waveform 
 
This can be done in the same way as before using the following series: 
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However, a pulse wave (variable width of peak and trough) can be generated in real time 
by subtracting one sawtooth from another with a different phase. 
 
This can be shown for the standard equal width square wave as follows: 
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Therefore sawooth1 – sawtooth2 = ...3sin
3
12sin2 +⋅+ xx  

which is proportional to the square wave. 
 
The above process can be examined on a graph showing non-bandlimited waveforms. 
 
 
 
 
 
 
 
 
The sawtooth waves must be properly normalised.  Then, for a given phase difference 
between the first and second (inverted) sawtooth waves to be summed, an offset and 
scalar has to be applied to produce a properly sized pulse wave. 
 
If 0 < phase < 1 (equivalent of 0 < phase < 2π), and the positive sawtooth is located at 0 
then the offset and scalar can be calculated at the negative sawtooth crossover. 
 
Peak = 1 + (2.phase – 1) 
Trough = -1 + (2.phase – 1) 
 
The correct peak should be 1 and the correct trough should be –1.  By inspection we can 
see the offset should be (1 - 2.phase) and scalar is not needed. 
 
 
Creating a slope variable triangle wave 
 
To create a wave that can be adjusted from triangle to sawtooth, a parabola and inverted 
out of phase parabola can be summed in the same way as the pulse wave was generated. 
 
A parabola wavetable is constructed with the following 
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Which is then centred around 0 and normalised. 
 
e.g. 
 
max=max abs value of wavetable 
for each sample 
 sample=sample / (max / 2) – 1 
next 
 
 
There is no offset but there is a scalar of: 
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Gibbs effect 
 
There is a problem with the waveforms generated by their Fourier series.  At the transition 
points, the signal will overshoot.  This is because a Fourier series should be infinite 
(whereby the length in time of the overshoot tends to 0) but the bandlimited case is finite. 
 
To minimise this effect, reduce the amplitude of the higher partials.  For example use: 
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For example, the sawtooth series can be given by: 
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Code example: 
 
// An example of generating the sawtooth and parabola wavetables 
// for storage to disk. 
// 
// SPEED=sampling rate, e.g. 44100.0f 
// TUNING=pitch of concert A, e.g. 440.0f 
 
/////////////////////////// 
// Wavetable reverse lookup 
// Given a playback rate of the wavetable, what is wavetables index? 
// 
// rate = f.wavesize/fs e.g. 4096f/44100 
// max partials = nyquist/f = wavesize/2rate  e.g. 2048/rate 
// 
// using max partials we could then do a lookup to find the wavetables index 
// in a pre-calculated table 
// 
// however, we could skip max partials, and lookup a table based on a 
// function of f (or rate) 
// 
// the first few midi notes (0 - 9) differ by < 1 so there are duplicates 
// values of (int) f. 
// therefore, to get an index to our table (that indexes the wavetables) 
// we need 2f 
// 
// to get 2f from rate we multiply by the constant 
// 2f = 2.fs/wavesize  e.g. 88200/4096 
// 
// our lookup table will have a length>25087 to cover the midi range 
// we'll make it 32768 in length for easy processing 
 
 
 int a,b,n; 
 float* data; 
 float* sinetable=new float[4096]; 
 float* datap; 
 for(b=0;b<4096;b++) 
  sinetable[b]=sin(TWOPI*(float)b/4096.0f); 



 int partials; 
 int partial; 
 int partialindex,reverseindex,lastnumpartials; 
 float max,m; 
 int* reverse; 
 
 // sawtooth 
 
  data=new float[128*4096]; 
  reverse=new int[32768]; 
 
  reverseindex=0; 
  partialindex=0; 
  lastnumpartials=-1; 
 
  for(n=0;n<128;n++) 
  { 
   partials=(int)((SPEED*0.5f)/float(TUNING*(float)pow(2,(float) (n-69)/12.0f))); //(int) NYQUIST/f 
   if(partials!=lastnumpartials) 
   { 
    datap=&data[partialindex*4096]; 
    for(b=0;b<4096;b++) 
     datap[b]=0.0f;  //blank wavetable 
    for(a=0;a<partials;a++) 
    { 
     partial=a+1; 
     m=cos((float)a*HALFPI/(float)partials);  //gibbs 
     m*=m;  //gibbs 
     m/=(float)partial; 
     for(b=0;b<4096;b++) 
      datap[b]+=m*sinetable[(b*partial)%4096]; 
    } 
    lastnumpartials=partials; 
    a=int(2.0f*TUNING*(float)pow(2,(float) (n-69)/12.0f)); //2f 
    for(b=reverseindex;b<=a;b++) 
     reverse[b]=partialindex; 
    reverseindex=a+1; 
    partialindex++; 
   } 
  } 
 
  for(b=reverseindex;b<32768;b++) 
   reverse[b]=partialindex-1; 
 
  ar << (int) partialindex; //number of waveforms 
  ar << (int) 4096; //waveform size (in samples) 
 
  max=0.0; 
  for(b=0;b<4096;b++) 
  { 
   if(fabs(*(data+b))>max)  //normalise to richest waveform (0) 
    max=(float)fabs(*(data+b)); 
  } 
  for(b=0;b<4096*partialindex;b++) 
  { 
   *(data+b)/=max; 
  } 
 
  //ar.Write(data,4096*partialindex*sizeof(float)); 
  //ar.Write(reverse,32768*sizeof(int)); 
 
  delete [] data; 
  delete [] reverse; 
 } 
 // end sawtooth 
 
 // parabola 
 
  data=new float[128*4096]; 
  reverse=new int[32768]; 
 
  reverseindex=0; 
  partialindex=0; 
  lastnumpartials=-1; 
 
  float sign; 
 
  for(n=0;n<128;n++) 
  { 



   partials=(int)((SPEED*0.5f)/float(TUNING*(float)pow(2,(float) (n-69)/12.0f))); 
   if(partials!=lastnumpartials) 
   { 
    datap=&data[partialindex*4096]; 
    for(b=0;b<4096;b++) 
     datap[b]=PI*PI/3.0f; 
    sign=-1.0f; 
    for(a=0;a<partials;a++) 
    { 
     partial=a+1; 
     m=cos((float)a*HALFPI/(float)partials); //gibbs 
     m*=m;  //gibbs 
     m/=(float)(partial*partial); 
     m*=4.0f*sign; 
     for(b=0;b<4096;b++) 
      datap[b]+=m*sinetable[((b*partial)+1024)%4096]; //note, parabola uses cos 
     sign=-sign; 
    } 
    lastnumpartials=partials; 
    a=int(2.0f*TUNING*(float)pow(2,(float) (n-69)/12.0f)); //2f 
    for(b=reverseindex;b<=a;b++) 
     reverse[b]=partialindex; 
    reverseindex=a+1; 
    partialindex++; 
   } 
  } 
 
  for(b=reverseindex;b<32768;b++) 
   reverse[b]=partialindex-1; 
 
  ar << (int) partialindex; //number of waveforms 
  ar << (int) 4096; //waveform size (in samples) 
 
  max=0.0; 
  for(b=0;b<4096;b++) 
  { 
   if(fabs(*(data+b))>max)  //normalise to richest waveform (0) 
    max=(float)fabs(*(data+b)); 
  } 
  max*=0.5; 
  for(b=0;b<4096*partialindex;b++) 
  { 
   *(data+b)/=max; 
   *(data+b)-=1.0f; 
  } 
 
  //ar.Write(data,4096*partialindex*sizeof(float)); 
  //ar.Write(reverse,32768*sizeof(int)); 
 
  delete [] data; 
  delete [] reverse; 
 } 
 // end parabola 
 
 
///////////////////////////////////////////////////////////////////////// 
// An example of playback of a sawtooth wave 
// This is not optimised for easy reading 
// When optimising you'll need to get this in assembly (especially those 
// float to int conversions) 
///////////////////////////////////////////////////////// 
 
#define WAVETABLE_SIZE  (1 << 12) 
#define WAVETABLE_SIZEF  WAVETABLE_SIZE.0f 
#define WAVETABLE_MASK  (WAVETABLE_SIZE - 1) 
 
float index; 
float rate; 
int wavetableindex; 
float ratetofloatfactor; 
float* wavetable; 
 
void setupnote(int midinote /*0 - 127*/) 
{ 
 float f=TUNING*(float)pow(2,(float) (midinote-69)/12.0f)); 
 rate=f*WAVETABLE_SIZEF/SPEED; 
 ratetofloatfactor=2.0f*SPEED/WAVETABLE_SIZEF; 
 index=0.0f; 
 wavetableindex=reverse[(int)(2.0f*f)]; 



 wavetable=&sawtoothdata[wavetableindex*WAVETABLE_SIZE]; 
} 
 
void generatesample(float* buffer,int length) 
{ 
 int currentsample, 
 int nextsample; 
 float m; 
 float temprate; 
 while(length--) 
 { 
  currentsample=(int) index; 
  nextsample=(currentsample+1) & WAVETABLE_MASK; 
  m=index-(float) currentsample; //fractional part 
  *buffer++=(1.0f-m)*wavetable[currentsample]+m*wavetable[nextsample]; //linear interpolation 
  rate*=slide; //slide coeffecient if required 
  temprate=rate*fm; //frequency modulation if required 
  index+=temprate; 
  if(index>WAVETABLE_SIZEF) 
  { 
   //new cycle, respecify wavetable for sliding 
   wavetableindex=reverse[(int)(ratetofloatfactor*temprate)]; 
   wavetable=&sawtoothdata[wavetableindex*WAVETABLE_SIZE]; 
   index-=WAVETABLE_SIZEF; 
  } 
 } 
} 


