
Synthesising band limited waveforms using wavetables
Joe Wright – joe@nyrsound.com
17 August 2000

Introduction

When synthesising analogue type waveforms (sawtooth, square, triangle) in the digital
domain special care must be taken to ensure the results are bandlimited. The simple
method of producing a sawtooth wave is given by:

Analogue: ()[] 00 tfInttfAyt −=

Digital: 00














−=

ss
n

f
nfInt

f
nfAy

where y is the output, A is the amplitude, t is time, n is sample number in the discrete
digital domain, f0 is the frequency of the waveform, fs is the sampling rate and Int(x) is the
highest integer less than or equal to x.

The analogue equation produces desirable results because it is working in the continuous
domain. However, the digital equation fails because it is sampling a non-bandlimited
waveform. Sampling hardware would first feed an input signal through a low pass filter
before the ADC. Because direct synthesis in the digital domain of the above formula does
not do this, an aliased signal is produce. The aliasing will contaminate the whole spectrum
and therefore cannot be filtered. Therefore, a technique is needed for synthesising
bandlimited waveforms.

Wavetables

A wavetable is a sample (collection of individual samples) containing one period of a
waveform. Synthesis using wavetables simply involves playing back the wavetable as
follows:

mn wy =

where l
fs

nlfm mod0=

where w is the wavetable and l is the length of the wavetable in samples. Most of the time
m will contain both integer and fractional parts. To deal with this a large oversampled
wavetable can be used with access via Int(m), or a form of interpolation can be used.

Generating a bandlimited wavetable

A bandlimited wavetable contains harmonics whose frequencies are less than the Nyquist
frequency (above which aliasing occurs). The frequencies of the harmonics in the
wavetable are relative to the frequency at which the wavetable is played. The number of
harmonics h allowable in a wavetable for a given frequency f0 obeys the following:

02 f

fh s<

so the highest frequency a wavetable can be played at is given by:

h
ff s

2
0 <

Given this formula, a series of bandlimited wavetables with varying number of harmonics
can be used to play notes across a range of pitches. The wavetables should be
normalised to the richest waveform (highest h) so the harmonics are kept at constant
amplitude.

For absolute coverage the series of wavetables would have h increasing by one each time.
The problem with this is that it requires a huge amount of wavetables to cover a good pitch
range. Given large oversampled wavetables this would demand a large amount of
memory. A solution is to use 128 wavetables corresponding to the midi note range. Each
wavetable should have the right number of harmonics for that midi pitch. It is
recommended to use wavetables with 4096 samples and to play back using linear
interpolation. This gives a good range of wavetables with good sound quality.

If sliding between pitches is required, the correct wavetable to use should be determined
for each wave cycle. For this, use a reverse look-up table that specifies which of the 128
wavetables should be used for a given frequency (in fact, integer of frequency).

Generating a bandlimited sawtooth waveform

The sawtooth can be generated using its Fourier series:

...3sin
3
12sin

2
1sin +++ xxx π<≤ x0

For each wavetable, sum the series up to (1/h) sin hx.

Generating a bandlimited square waveform

This can be done in the same way as before using the following series:

 ...5sin
5
13sin

3
1sin xxx ++

However, a pulse wave (variable width of peak and trough) can be generated in real time
by subtracting one sawtooth from another with a different phase.

This can be shown for the standard equal width square wave as follows:

Sawtooth 1 = ...3sin
3
12sin

2
1sin +++ xxx

Sawtooth 2 = ...)(3sin
3
1)(2sin

2
1)sin(++++++ πππ xxx

 = ...3sin
3
12sin

2
1sin +−+− xxx

Therefore sawooth1 – sawtooth2 = ...3sin
3
12sin2 +⋅+ xx

which is proportional to the square wave.

The above process can be examined on a graph showing non-bandlimited waveforms.

The sawtooth waves must be properly normalised. Then, for a given phase difference
between the first and second (inverted) sawtooth waves to be summed, an offset and
scalar has to be applied to produce a properly sized pulse wave.

If 0 < phase < 1 (equivalent of 0 < phase < 2π), and the positive sawtooth is located at 0
then the offset and scalar can be calculated at the negative sawtooth crossover.

Peak = 1 + (2.phase – 1)
Trough = -1 + (2.phase – 1)

The correct peak should be 1 and the correct trough should be –1. By inspection we can
see the offset should be (1 - 2.phase) and scalar is not needed.

Creating a slope variable triangle wave

To create a wave that can be adjusted from triangle to sawtooth, a parabola and inverted
out of phase parabola can be summed in the same way as the pulse wave was generated.

A parabola wavetable is constructed with the following

...cos4)1...(3cos
9
42coscos4

3 2

2

nx
n

xxx n−+−+−π

Which is then centred around 0 and normalised.

e.g.

max=max abs value of wavetable
for each sample
 sample=sample / (max / 2) – 1
next

There is no offset but there is a scalar of:

)(8
1

2pp −

Gibbs effect

There is a problem with the waveforms generated by their Fourier series. At the transition
points, the signal will overshoot. This is because a Fourier series should be infinite
(whereby the length in time of the overshoot tends to 0) but the bandlimited case is finite.

To minimise this effect, reduce the amplitude of the higher partials. For example use:

))1((cos2 knm −= where:

partialsk /
2






= π , n = partial number, and partials = total number of partials

For example, the sawtooth series can be given by:

))1((cossin1
1

2∑ −⋅
partials

knnx
n

Code example:

// An example of generating the sawtooth and parabola wavetables
// for storage to disk.
//
// SPEED=sampling rate, e.g. 44100.0f
// TUNING=pitch of concert A, e.g. 440.0f

///////////////////////////
// Wavetable reverse lookup
// Given a playback rate of the wavetable, what is wavetables index?
//
// rate = f.wavesize/fs e.g. 4096f/44100
// max partials = nyquist/f = wavesize/2rate e.g. 2048/rate
//
// using max partials we could then do a lookup to find the wavetables index
// in a pre-calculated table
//
// however, we could skip max partials, and lookup a table based on a
// function of f (or rate)
//
// the first few midi notes (0 - 9) differ by < 1 so there are duplicates
// values of (int) f.
// therefore, to get an index to our table (that indexes the wavetables)
// we need 2f
//
// to get 2f from rate we multiply by the constant
// 2f = 2.fs/wavesize e.g. 88200/4096
//
// our lookup table will have a length>25087 to cover the midi range
// we'll make it 32768 in length for easy processing

 int a,b,n;
 float* data;
 float* sinetable=new float[4096];
 float* datap;
 for(b=0;b<4096;b++)
 sinetable[b]=sin(TWOPI*(float)b/4096.0f);

 int partials;
 int partial;
 int partialindex,reverseindex,lastnumpartials;
 float max,m;
 int* reverse;

 // sawtooth

 data=new float[128*4096];
 reverse=new int[32768];

 reverseindex=0;
 partialindex=0;
 lastnumpartials=-1;

 for(n=0;n<128;n++)
 {
 partials=(int)((SPEED*0.5f)/float(TUNING*(float)pow(2,(float) (n-69)/12.0f))); //(int) NYQUIST/f
 if(partials!=lastnumpartials)
 {
 datap=&data[partialindex*4096];
 for(b=0;b<4096;b++)
 datap[b]=0.0f; //blank wavetable
 for(a=0;a<partials;a++)
 {
 partial=a+1;
 m=cos((float)a*HALFPI/(float)partials); //gibbs
 m*=m; //gibbs
 m/=(float)partial;
 for(b=0;b<4096;b++)
 datap[b]+=m*sinetable[(b*partial)%4096];
 }
 lastnumpartials=partials;
 a=int(2.0f*TUNING*(float)pow(2,(float) (n-69)/12.0f)); //2f
 for(b=reverseindex;b<=a;b++)
 reverse[b]=partialindex;
 reverseindex=a+1;
 partialindex++;
 }
 }

 for(b=reverseindex;b<32768;b++)
 reverse[b]=partialindex-1;

 ar << (int) partialindex; //number of waveforms
 ar << (int) 4096; //waveform size (in samples)

 max=0.0;
 for(b=0;b<4096;b++)
 {
 if(fabs(*(data+b))>max) //normalise to richest waveform (0)
 max=(float)fabs(*(data+b));
 }
 for(b=0;b<4096*partialindex;b++)
 {
 *(data+b)/=max;
 }

 //ar.Write(data,4096*partialindex*sizeof(float));
 //ar.Write(reverse,32768*sizeof(int));

 delete [] data;
 delete [] reverse;
 }
 // end sawtooth

 // parabola

 data=new float[128*4096];
 reverse=new int[32768];

 reverseindex=0;
 partialindex=0;
 lastnumpartials=-1;

 float sign;

 for(n=0;n<128;n++)
 {

 partials=(int)((SPEED*0.5f)/float(TUNING*(float)pow(2,(float) (n-69)/12.0f)));
 if(partials!=lastnumpartials)
 {
 datap=&data[partialindex*4096];
 for(b=0;b<4096;b++)
 datap[b]=PI*PI/3.0f;
 sign=-1.0f;
 for(a=0;a<partials;a++)
 {
 partial=a+1;
 m=cos((float)a*HALFPI/(float)partials); //gibbs
 m*=m; //gibbs
 m/=(float)(partial*partial);
 m*=4.0f*sign;
 for(b=0;b<4096;b++)
 datap[b]+=m*sinetable[((b*partial)+1024)%4096]; //note, parabola uses cos
 sign=-sign;
 }
 lastnumpartials=partials;
 a=int(2.0f*TUNING*(float)pow(2,(float) (n-69)/12.0f)); //2f
 for(b=reverseindex;b<=a;b++)
 reverse[b]=partialindex;
 reverseindex=a+1;
 partialindex++;
 }
 }

 for(b=reverseindex;b<32768;b++)
 reverse[b]=partialindex-1;

 ar << (int) partialindex; //number of waveforms
 ar << (int) 4096; //waveform size (in samples)

 max=0.0;
 for(b=0;b<4096;b++)
 {
 if(fabs(*(data+b))>max) //normalise to richest waveform (0)
 max=(float)fabs(*(data+b));
 }
 max*=0.5;
 for(b=0;b<4096*partialindex;b++)
 {
 *(data+b)/=max;
 *(data+b)-=1.0f;
 }

 //ar.Write(data,4096*partialindex*sizeof(float));
 //ar.Write(reverse,32768*sizeof(int));

 delete [] data;
 delete [] reverse;
 }
 // end parabola

///
// An example of playback of a sawtooth wave
// This is not optimised for easy reading
// When optimising you'll need to get this in assembly (especially those
// float to int conversions)
///

#define WAVETABLE_SIZE (1 << 12)
#define WAVETABLE_SIZEF WAVETABLE_SIZE.0f
#define WAVETABLE_MASK (WAVETABLE_SIZE - 1)

float index;
float rate;
int wavetableindex;
float ratetofloatfactor;
float* wavetable;

void setupnote(int midinote /*0 - 127*/)
{
 float f=TUNING*(float)pow(2,(float) (midinote-69)/12.0f));
 rate=f*WAVETABLE_SIZEF/SPEED;
 ratetofloatfactor=2.0f*SPEED/WAVETABLE_SIZEF;
 index=0.0f;
 wavetableindex=reverse[(int)(2.0f*f)];

 wavetable=&sawtoothdata[wavetableindex*WAVETABLE_SIZE];
}

void generatesample(float* buffer,int length)
{
 int currentsample,
 int nextsample;
 float m;
 float temprate;
 while(length--)
 {
 currentsample=(int) index;
 nextsample=(currentsample+1) & WAVETABLE_MASK;
 m=index-(float) currentsample; //fractional part
 *buffer++=(1.0f-m)*wavetable[currentsample]+m*wavetable[nextsample]; //linear interpolation
 rate*=slide; //slide coeffecient if required
 temprate=rate*fm; //frequency modulation if required
 index+=temprate;
 if(index>WAVETABLE_SIZEF)
 {
 //new cycle, respecify wavetable for sliding
 wavetableindex=reverse[(int)(ratetofloatfactor*temprate)];
 wavetable=&sawtoothdata[wavetableindex*WAVETABLE_SIZE];
 index-=WAVETABLE_SIZEF;
 }
 }
}

