
Databases
Theoretical Introduction

Contents

1 Databases 1
1.1 Database . 1

1.1.1 Terminology and overview . 1
1.1.2 Applications . 2
1.1.3 General-purpose and special-purpose DBMSs . 2
1.1.4 History . 2
1.1.5 Research . 6
1.1.6 Examples . 6
1.1.7 Design and modeling . 7
1.1.8 Languages . 9
1.1.9 Performance, security, and availability . 10
1.1.10 See also . 12
1.1.11 References . 12
1.1.12 Further reading . 13
1.1.13 External links . 14

1.2 Schema migration . 14
1.2.1 Risks and Benefits . 14
1.2.2 Schema migration in agile software development . 14
1.2.3 Available Tools . 15
1.2.4 References . 15

1.3 Star schema . 16
1.3.1 Model . 16
1.3.2 Benefits . 16
1.3.3 Disadvantages . 17
1.3.4 Example . 17
1.3.5 See also . 17
1.3.6 References . 17
1.3.7 External links . 17

2 Not Only SQL 18
2.1 CAP . 18

2.1.1 Science and medicine . 18
2.1.2 Computing . 18

i

ii CONTENTS

2.1.3 Organisations . 18
2.1.4 Companies . 18
2.1.5 Projects, programs, policies . 19
2.1.6 Military . 19
2.1.7 Certifications . 19
2.1.8 Other . 19
2.1.9 See also . 19

2.2 Eventual consistency . 19
2.2.1 Conflict resolution . 19
2.2.2 Strong eventual consistency . 20
2.2.3 See also . 20
2.2.4 References . 20

2.3 Object-relational impedance mismatch . 20
2.3.1 Mismatches . 20
2.3.2 Solving impedance mismatch . 21
2.3.3 Contention . 22
2.3.4 Philosophical differences . 23
2.3.5 References . 25
2.3.6 External links . 25

2.4 Object database . 25
2.4.1 Overview . 25
2.4.2 History . 25
2.4.3 Timeline . 26
2.4.4 Adoption of object databases . 27
2.4.5 Technical features . 27
2.4.6 Standards . 27
2.4.7 Comparison with RDBMSs . 27
2.4.8 See also . 28
2.4.9 References . 28
2.4.10 External links . 28

2.5 NoSQL . 28
2.5.1 History . 29
2.5.2 Types and examples of NoSQL databases . 29
2.5.3 Performance . 31
2.5.4 Handling relational data . 31
2.5.5 ACID and JOIN Support . 31
2.5.6 See also . 32
2.5.7 References . 32
2.5.8 Further reading . 33
2.5.9 External links . 33

2.6 Key-value database . 33

CONTENTS iii

2.6.1 Types and notable examples . 33
2.6.2 References . 34
2.6.3 External links . 35

2.7 Document-oriented database . 35
2.7.1 Documents . 35
2.7.2 Comparison with relational databases . 37
2.7.3 Implementations . 38
2.7.4 See also . 38
2.7.5 Notes . 38
2.7.6 References . 38
2.7.7 Further reading . 38
2.7.8 External links . 38

2.8 NewSQL . 38
2.8.1 History . 38
2.8.2 Systems . 39
2.8.3 See also . 39
2.8.4 References . 39

3 ACID 40
3.1 ACID . 40

3.1.1 Characteristics . 40
3.1.2 Examples . 40
3.1.3 Implementation . 41
3.1.4 See also . 42
3.1.5 References . 42

3.2 Consistency (database systems) . 42
3.2.1 As an ACID guarantee . 42
3.2.2 As a CAP trade-off . 43
3.2.3 See also . 43
3.2.4 References . 43

3.3 Durability (database systems) . 43
3.3.1 See also . 43

4 Isolation 44
4.1 Serializability . 44

4.1.1 Database transaction . 44
4.1.2 Correctness . 44
4.1.3 View and conflict serializability . 46
4.1.4 Enforcing conflict serializability . 46
4.1.5 Distributed serializability . 48
4.1.6 See also . 49
4.1.7 Notes . 49

iv CONTENTS

4.1.8 References . 49
4.2 Isolation (database systems) . 49

4.2.1 Concurrency control . 50
4.2.2 Isolation levels . 50
4.2.3 Default isolation level . 51
4.2.4 Read phenomena . 51
4.2.5 Isolation Levels, Read Phenomena and Locks . 52
4.2.6 See also . 52
4.2.7 References . 52
4.2.8 External links . 53

4.3 Database transaction . 53
4.3.1 Purpose . 53
4.3.2 Transactional databases . 53
4.3.3 Object databases . 54
4.3.4 Distributed transactions . 54
4.3.5 Transactional filesystems . 54
4.3.6 See also . 54
4.3.7 References . 54
4.3.8 Further reading . 54
4.3.9 External links . 55

4.4 Transaction processing . 55
4.4.1 Description . 55
4.4.2 Methodology . 55
4.4.3 ACID criteria . 56
4.4.4 Benefits . 56
4.4.5 Implementations . 57
4.4.6 References . 57
4.4.7 External links . 57
4.4.8 Further reading . 57

5 Atomicity 58
5.1 Journaling file system . 58

5.1.1 Rationale . 58
5.1.2 Techniques . 58
5.1.3 Alternatives . 59
5.1.4 See also . 59
5.1.5 References . 59

5.2 Atomicity (database systems) . 60
5.2.1 Examples . 60
5.2.2 Orthogonality . 60
5.2.3 Implementation . 60
5.2.4 See also . 61

CONTENTS v

5.2.5 References . 61

6 Locking 62
6.1 Lock (database) . 62

6.1.1 Mechanisms for locking . 62
6.1.2 See also . 62

6.2 Record locking . 62
6.2.1 Granularity of locks . 62
6.2.2 Use of locks . 63
6.2.3 References . 63

6.3 Two-phase locking . 63
6.3.1 Data-access locks . 64
6.3.2 Two-phase locking and its special cases . 64
6.3.3 Deadlocks in 2PL . 66
6.3.4 See also . 67
6.3.5 References . 67

7 MVCC 68
7.1 Multiversion concurrency control . 68

7.1.1 Implementation . 68
7.1.2 Examples . 69
7.1.3 History . 69
7.1.4 Version control systems . 69
7.1.5 See also . 69
7.1.6 References . 69
7.1.7 Further reading . 69

7.2 Snapshot isolation . 69
7.2.1 Definition . 70
7.2.2 Workarounds . 70
7.2.3 History . 70
7.2.4 References . 71
7.2.5 Further reading . 71

7.3 Two-phase commit protocol . 71
7.3.1 Assumptions . 72
7.3.2 Basic algorithm . 72
7.3.3 Disadvantages . 72
7.3.4 Implementing the two-phase commit protocol . 72
7.3.5 See also . 73
7.3.6 References . 74
7.3.7 External links . 74

7.4 Three-phase commit protocol . 74
7.4.1 Protocol Description . 74

vi CONTENTS

7.4.2 Motivation . 75
7.4.3 Disadvantages . 75
7.4.4 References . 75
7.4.5 See also . 75

8 Scaling 76
8.1 Scalability . 76

8.1.1 Measures . 76
8.1.2 Examples . 76
8.1.3 Horizontal and vertical scaling . 77
8.1.4 Database scalability . 77
8.1.5 Strong versus eventual consistency (storage) . 78
8.1.6 Performance tuning versus hardware scalability . 78
8.1.7 Weak versus strong scaling . 78
8.1.8 See also . 78
8.1.9 References . 79
8.1.10 External links . 79

8.2 Shard (database architecture) . 79
8.2.1 Database architecture . 79
8.2.2 Shards compared to horizontal partitioning . 80
8.2.3 Support for shards . 80
8.2.4 Disadvantages of sharding . 81
8.2.5 Etymology . 81
8.2.6 See also . 81
8.2.7 References . 82
8.2.8 External links . 82

8.3 Optimistic concurrency control . 82
8.3.1 OCC phases . 82
8.3.2 Web usage . 83
8.3.3 See also . 83
8.3.4 References . 83
8.3.5 External links . 84

8.4 Partition (database) . 84
8.4.1 Benefits of multiple partitions . 84
8.4.2 Partitioning criteria . 84
8.4.3 Partitioning methods . 84
8.4.4 See also . 84
8.4.5 References . 84
8.4.6 External links . 85

8.5 Distributed transaction . 85
8.5.1 See also . 85
8.5.2 References . 85

CONTENTS vii

8.5.3 Further reading . 85

9 Examples 86
9.1 Redis . 86

9.1.1 Supported languages . 86
9.1.2 Data types . 86
9.1.3 Persistence . 86
9.1.4 Replication . 86
9.1.5 Performance . 87
9.1.6 Clustering . 87
9.1.7 See also . 87
9.1.8 References . 87
9.1.9 External links . 87

9.2 MongoDB . 88
9.2.1 History . 88
9.2.2 Main features . 88
9.2.3 Criticisms . 89
9.2.4 Architecture . 89
9.2.5 Performance . 89
9.2.6 Production deployments . 89
9.2.7 See also . 90
9.2.8 References . 90
9.2.9 Bibliography . 91
9.2.10 External links . 91

9.3 PostgreSQL . 91
9.3.1 Name . 92
9.3.2 History . 92
9.3.3 Multiversion concurrency control (MVCC) . 92
9.3.4 Storage and replication . 93
9.3.5 Control and connectivity . 95
9.3.6 Security . 97
9.3.7 Upcoming features . 97
9.3.8 Add-ons . 97
9.3.9 Benchmarks and performance . 98
9.3.10 Platforms . 98
9.3.11 Database administration . 98
9.3.12 Prominent users . 99
9.3.13 Proprietary derivatives and support . 100
9.3.14 Release history . 100
9.3.15 See also . 100
9.3.16 References . 100
9.3.17 Further reading . 103

viii CONTENTS

9.3.18 External links . 103
9.4 Apache Cassandra . 103

9.4.1 History . 103
9.4.2 Licensing and support . 104
9.4.3 Main features . 104
9.4.4 Data model . 104
9.4.5 Clustering . 105
9.4.6 Prominent users . 105
9.4.7 See also . 106
9.4.8 References . 106
9.4.9 Bibliography . 108
9.4.10 External links . 108

9.5 Berkeley DB . 108
9.5.1 Origin . 109
9.5.2 Architecture . 109
9.5.3 Editions . 109
9.5.4 Programs that use Berkeley DB . 110
9.5.5 Licensing . 110
9.5.6 References . 111
9.5.7 External links . 111

9.6 Memcached . 112
9.6.1 History . 112
9.6.2 Software architecture . 112
9.6.3 Example code . 113
9.6.4 See also . 113
9.6.5 References . 113
9.6.6 External links . 114

9.7 BigTable . 114
9.7.1 History . 114
9.7.2 Design . 114
9.7.3 Other similar software . 115
9.7.4 See also . 115
9.7.5 References . 115
9.7.6 Bibliography . 116
9.7.7 External links . 116

10 Text and image sources, contributors, and licenses 117
10.1 Text . 117
10.2 Images . 124
10.3 Content license . 126

Chapter 1

Databases

1.1 Database

“Database Software” redirects here. For the computer
program, see Europress.

A database is an organized collection of data.[1] It is the
collection of schemas, tables, queries, reports, views and
other objects. The data is typically organized to model as-
pects of reality in a way that supports processes requiring
information, such as modelling the availability of rooms
in hotels in a way that supports finding a hotel with va-
cancies.
A database management system (DBMS) is a
computer software application that interacts with the
user, other applications, and the database itself to cap-
ture and analyze data. A general-purpose DBMS is de-
signed to allow the definition, creation, querying, update,
and administration of databases. Well-known DBMSs
include MySQL, PostgreSQL, Microsoft SQL Server,
Oracle, Sybase and IBM DB2. A database is not generally
portable across different DBMSs, but different DBMS
can interoperate by using standards such as SQL and
ODBC or JDBC to allow a single application to work with
more than one DBMS. Database management systems
are often classified according to the database model that
they support; the most popular database systems since
the 1980s have all supported the relational model as rep-
resented by the SQL language. Sometimes a DBMS is
loosely referred to as a 'database'.

1.1.1 Terminology and overview

Formally, a “database” refers to a set of related data and
the way it is organized. Access to this data is usually pro-
vided by a “database management system” (DBMS) con-
sisting of an integrated set of computer software that al-
lows users to interact with one or more databases and pro-
vides access to all of the data contained in the database
(although restrictions may exist that limit access to par-
ticular data). The DBMS provides various functions that
allow entry, storage and retrieval of large quantities of
information and provides ways to manage how that infor-
mation is organized.

Because of the close relationship between them, the
term “database” is often used casually to refer to both a
database and the DBMS used to manipulate it.
Outside the world of professional information technol-
ogy, the term database is often used to refer to any collec-
tion of related data (such as a spreadsheet or a card index).
This article is concerned only with databases where the
size and usage requirements necessitate use of a database
management system.[2]

Existing DBMSs provide various functions that allow
management of a database and its data which can be clas-
sified into four main functional groups:

• Data definition – Creation, modification and removal
of definitions that define the organization of the data.

• Update – Insertion, modification, and deletion of the
actual data.[3]

• Retrieval – Providing information in a form directly
usable or for further processing by other applica-
tions. The retrieved data may be made available in a
form basically the same as it is stored in the database
or in a new form obtained by altering or combining
existing data from the database.[4]

• Administration – Registering and monitoring users,
enforcing data security, monitoring performance,
maintaining data integrity, dealing with concurrency
control, and recovering information that has been
corrupted by some event such as an unexpected sys-
tem failure.[5]

Both a database and its DBMS conform to the princi-
ples of a particular database model.[6] “Database system”
refers collectively to the database model, database man-
agement system, and database.[7]

Physically, database servers are dedicated computers
that hold the actual databases and run only the DBMS
and related software. Database servers are usually
multiprocessor computers, with generous memory and
RAID disk arrays used for stable storage. RAID is used
for recovery of data if any of the disks fail. Hardware
database accelerators, connected to one or more servers
via a high-speed channel, are also used in large volume

1

https://en.wikipedia.org/wiki/Europress
https://en.wikipedia.org/wiki/Data_(computing)
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/View_(SQL)
https://en.wikipedia.org/wiki/Process_(computing)
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/Sybase
https://en.wikipedia.org/wiki/IBM_DB2
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Technical_standard
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/ODBC
https://en.wikipedia.org/wiki/JDBC
https://en.wikipedia.org/wiki/Database_model
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/User_(computing)
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Information_technology
https://en.wikipedia.org/wiki/Spreadsheet
https://en.wikipedia.org/wiki/Database_model
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Multiprocessor
https://en.wikipedia.org/wiki/Redundant_array_of_independent_disks

2 CHAPTER 1. DATABASES

transaction processing environments. DBMSs are found
at the heart of most database applications. DBMSs may
be built around a custom multitasking kernel with built-
in networking support, but modern DBMSs typically rely
on a standard operating system to provide these functions.
Since DBMSs comprise a significant economical market,
computer and storage vendors often take into account
DBMS requirements in their own development plans.
Databases and DBMSs can be categorized according to
the database model(s) that they support (such as relational
or XML), the type(s) of computer they run on (from a
server cluster to a mobile phone), the query language(s)
used to access the database (such as SQL or XQuery), and
their internal engineering, which affects performance,
scalability, resilience, and security.

1.1.2 Applications

Databases are used to support internal operations of or-
ganizations and to underpin online interactions with cus-
tomers and suppliers (see Enterprise software).
Databases are used to hold administrative information
and more specialized data, such as engineering data or
economic models. Examples of database applications
include computerized library systems, flight reservation
systems, computerized parts inventory systems, and many
content management systems that store websites as col-
lections of webpages in a database.

1.1.3 General-purpose and special-
purpose DBMSs

A DBMS has evolved into a complex software system and
its development typically requires thousands of person-
years of development effort.[8] Some general-purpose
DBMSs such as Adabas, Oracle and DB2 have been
undergoing upgrades since the 1970s. General-purpose
DBMSs aim to meet the needs of as many applications
as possible, which adds to the complexity. However, the
fact that their development cost can be spread over a large
number of users means that they are often the most cost-
effective approach. However, a general-purpose DBMS
is not always the optimal solution: in some cases a
general-purpose DBMS may introduce unnecessary over-
head. Therefore, there are many examples of systems that
use special-purpose databases. A common example is an
email system that performs many of the functions of a
general-purpose DBMS such as the insertion and dele-
tion of messages composed of various items of data or
associating messages with a particular email address; but
these functions are limited to what is required to handle
email and don't provide the user with the all of the func-
tionality that would be available using a general-purpose
DBMS.
Many other databases have application software that ac-

cesses the database on behalf of end-users, without ex-
posing the DBMS interface directly. Application pro-
grammers may use a wire protocol directly, or more likely
through an application programming interface. Database
designers and database administrators interact with the
DBMS through dedicated interfaces to build and main-
tain the applications’ databases, and thus need some more
knowledge and understanding about how DBMSs operate
and the DBMSs’ external interfaces and tuning parame-
ters.

1.1.4 History

Following the technology progress in the areas of
processors, computer memory, computer storage and
computer networks, the sizes, capabilities, and per-
formance of databases and their respective DBMSs
have grown in orders of magnitude. The develop-
ment of database technology can be divided into three
eras based on data model or structure: navigational,[9]

SQL/relational, and post-relational.
The two main early navigational data models were the
hierarchical model, epitomized by IBM’s IMS system,
and the CODASYL model (network model), imple-
mented in a number of products such as IDMS.
The relational model, first proposed in 1970 by Edgar F.
Codd, departed from this tradition by insisting that ap-
plications should search for data by content, rather than
by following links. The relational model employs sets
of ledger-style tables, each used for a different type of
entity. Only in the mid-1980s did computing hardware
become powerful enough to allow the wide deployment
of relational systems (DBMSs plus applications). By the
early 1990s, however, relational systems dominated in all
large-scale data processing applications, and as of 2015
they remain dominant : IBM DB2, Oracle, MySQL and
Microsoft SQL Server are the top DBMS.[10] The dom-
inant database language, standardised SQL for the rela-
tional model, has influenced database languages for other
data models.
Object databases were developed in the 1980s to over-
come the inconvenience of object-relational impedance
mismatch, which led to the coining of the term “post-
relational” and also the development of hybrid object-
relational databases.
The next generation of post-relational databases in the
late 2000s became known as NoSQL databases, in-
troducing fast key-value stores and document-oriented
databases. A competing “next generation” known as
NewSQL databases attempted new implementations that
retained the relational/SQL model while aiming to match
the high performance of NoSQL compared to commer-
cially available relational DBMSs.

https://en.wikipedia.org/wiki/Database_application
https://en.wikipedia.org/wiki/Computer_multitasking
https://en.wikipedia.org/wiki/Kernel_(computing)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Economy
https://en.wikipedia.org/wiki/Market_(economics)
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/Library
https://en.wikipedia.org/wiki/Flight_reservation_system
https://en.wikipedia.org/wiki/Flight_reservation_system
https://en.wikipedia.org/wiki/Parts_inventory_system
https://en.wikipedia.org/wiki/Content_management_system
https://en.wikipedia.org/wiki/Website
https://en.wikipedia.org/wiki/Adabas
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Email
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Wire_protocol
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Processors
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Computer_storage
https://en.wikipedia.org/wiki/Computer_networks
https://en.wikipedia.org/wiki/Navigational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Hierarchical_database_model
https://en.wikipedia.org/wiki/CODASYL
https://en.wikipedia.org/wiki/Network_model
https://en.wikipedia.org/wiki/IDMS
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/IBM_DB2
https://en.wikipedia.org/wiki/Oracle_database
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Key-value_store
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/NewSQL

1.1. DATABASE 3

1960s, navigational DBMS

Further information: Navigational database
The introduction of the term database coincided with

Basic structure of navigational CODASYL database model

the availability of direct-access storage (disks and drums)
from the mid-1960s onwards. The term represented a
contrast with the tape-based systems of the past, allowing
shared interactive use rather than daily batch processing.
The Oxford English Dictionary cites[11] a 1962 report by
the System Development Corporation of California as the
first to use the term “data-base” in a specific technical
sense.
As computers grew in speed and capability, a number of
general-purpose database systems emerged; by the mid-
1960s a number of such systems had come into commer-
cial use. Interest in a standard began to grow, and Charles
Bachman, author of one such product, the Integrated Data
Store (IDS), founded the “Database Task Group” within
CODASYL, the group responsible for the creation and
standardization of COBOL. In 1971 the Database Task
Group delivered their standard, which generally became
known as the “CODASYL approach”, and soon a number
of commercial products based on this approach entered
the market.
The CODASYL approach relied on the “manual” navi-

gation of a linked data set which was formed into a large
network. Applications could find records by one of three
methods:

1. Use of a primary key (known as a CALC key, typi-
cally implemented by hashing)

2. Navigating relationships (called sets) from one
record to another

3. Scanning all the records in a sequential order

Later systems added B-trees to provide alternate access
paths. Many CODASYL databases also added a very
straightforward query language. However, in the final
tally, CODASYL was very complex and required signif-
icant training and effort to produce useful applications.
IBM also had their own DBMS in 1968, known as
Information Management System (IMS). IMS was a de-
velopment of software written for the Apollo program
on the System/360. IMS was generally similar in con-
cept to CODASYL, but used a strict hierarchy for its
model of data navigation instead of CODASYL’s net-
work model. Both concepts later became known as navi-
gational databases due to the way data was accessed, and
Bachman’s 1973 Turing Award presentation was The Pro-
grammer as Navigator. IMS is classified as a hierarchical
database. IDMS and Cincom Systems' TOTAL database
are classified as network databases. IMS remains in use
as of 2014.[12]

1970s, relational DBMS

Edgar Codd worked at IBM in San Jose, California, in
one of their offshoot offices that was primarily involved
in the development of hard disk systems. He was un-
happy with the navigational model of the CODASYL ap-
proach, notably the lack of a “search” facility. In 1970, he
wrote a number of papers that outlined a new approach
to database construction that eventually culminated in the
groundbreaking A Relational Model of Data for Large
Shared Data Banks.[13]

In this paper, he described a new system for storing and
working with large databases. Instead of records being
stored in some sort of linked list of free-form records as
in CODASYL, Codd’s idea was to use a "table" of fixed-
length records, with each table used for a different type
of entity. A linked-list system would be very inefficient
when storing “sparse” databases where some of the data
for any one record could be left empty. The relational
model solved this by splitting the data into a series of
normalized tables (or relations), with optional elements
being moved out of the main table to where they would
take up room only if needed. Data may be freely inserted,
deleted and edited in these tables, with the DBMS doing
whatever maintenance needed to present a table view to
the application/user.

https://en.wikipedia.org/wiki/Navigational_database
https://en.wikipedia.org/wiki/CODASYL
https://en.wikipedia.org/wiki/Batch_processing
https://en.wikipedia.org/wiki/Oxford_English_Dictionary
https://en.wikipedia.org/wiki/Charles_Bachman
https://en.wikipedia.org/wiki/Charles_Bachman
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/Integrated_Data_Store
https://en.wikipedia.org/wiki/CODASYL
https://en.wikipedia.org/wiki/COBOL
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/International_Business_Machines
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/Apollo_program
https://en.wikipedia.org/wiki/System/360
https://en.wikipedia.org/wiki/Turing_Award
https://en.wikipedia.org/wiki/Hierarchical_database
https://en.wikipedia.org/wiki/Hierarchical_database
https://en.wikipedia.org/wiki/Cincom_Systems
https://en.wikipedia.org/wiki/Cincom_Systems#1970s
https://en.wikipedia.org/wiki/Edgar_F._Codd
https://en.wikipedia.org/wiki/San_Jose,_California
https://en.wikipedia.org/wiki/Hard_disk
https://en.wikipedia.org/wiki/Linked_list
https://en.wikipedia.org/wiki/Table_(database)

4 CHAPTER 1. DATABASES

login first last

lion
mark

kitty

Samuel
Lion
Amber

Clemens
Kimbro
Straub

login phone
mark 555.555.5555

"key"

"related table"

In the relational model, records are “linked” using virtual keys
not stored in the database but defined as needed between the data
contained in the records.

The relational model also allowed the content of the
database to evolve without constant rewriting of links and
pointers. The relational part comes from entities refer-
encing other entities in what is known as one-to-many
relationship, like a traditional hierarchical model, and
many-to-many relationship, like a navigational (network)
model. Thus, a relational model can express both hierar-
chical and navigational models, as well as its native tab-
ular model, allowing for pure or combined modeling in
terms of these three models, as the application requires.
For instance, a common use of a database system is to
track information about users, their name, login informa-
tion, various addresses and phone numbers. In the nav-
igational approach all of these data would be placed in
a single record, and unused items would simply not be
placed in the database. In the relational approach, the
data would be normalized into a user table, an address
table and a phone number table (for instance). Records
would be created in these optional tables only if the ad-
dress or phone numbers were actually provided.
Linking the information back together is the key to this
system. In the relational model, some bit of information
was used as a "key", uniquely defining a particular record.
When information was being collected about a user, in-
formation stored in the optional tables would be found by
searching for this key. For instance, if the login name of a
user is unique, addresses and phone numbers for that user
would be recorded with the login name as its key. This
simple “re-linking” of related data back into a single col-
lection is something that traditional computer languages
are not designed for.
Just as the navigational approach would require programs
to loop in order to collect records, the relational ap-
proach would require loops to collect information about
any one record. Codd’s solution to the necessary loop-
ing was a set-oriented language, a suggestion that would

later spawn the ubiquitous SQL. Using a branch of math-
ematics known as tuple calculus, he demonstrated that
such a system could support all the operations of normal
databases (inserting, updating etc.) as well as providing
a simple system for finding and returning sets of data in a
single operation.
Codd’s paper was picked up by two people at Berkeley,
Eugene Wong and Michael Stonebraker. They started
a project known as INGRES using funding that had al-
ready been allocated for a geographical database project
and student programmers to produce code. Beginning
in 1973, INGRES delivered its first test products which
were generally ready for widespread use in 1979. IN-
GRES was similar to System R in a number of ways, in-
cluding the use of a “language” for data access, known as
QUEL. Over time, INGRES moved to the emerging SQL
standard.
IBM itself did one test implementation of the relational
model, PRTV, and a production one, Business System
12, both now discontinued. Honeywell wrote MRDS
for Multics, and now there are two new implementa-
tions: Alphora Dataphor and Rel. Most other DBMS im-
plementations usually called relational are actually SQL
DBMSs.
In 1970, the University of Michigan began develop-
ment of the MICRO Information Management Sys-
tem[14] based on D.L. Childs’ Set-Theoretic Data
model.[15][16][17] Micro was used to manage very large
data sets by the US Department of Labor, the U.S. Envi-
ronmental Protection Agency, and researchers from the
University of Alberta, the University of Michigan, and
Wayne State University. It ran on IBM mainframe com-
puters using the Michigan Terminal System.[18] The sys-
tem remained in production until 1998.

Integrated approach

Main article: Database machine

In the 1970s and 1980s attempts were made to build
database systems with integrated hardware and software.
The underlying philosophy was that such integration
would provide higher performance at lower cost. Exam-
ples were IBM System/38, the early offering of Teradata,
and the Britton Lee, Inc. database machine.
Another approach to hardware support for database man-
agement was ICL's CAFS accelerator, a hardware disk
controller with programmable search capabilities. In
the long term, these efforts were generally unsuccessful
because specialized database machines could not keep
pace with the rapid development and progress of general-
purpose computers. Thus most database systems nowa-
days are software systems running on general-purpose
hardware, using general-purpose computer data storage.
However this idea is still pursued for certain applications

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Primary_key
https://en.wikipedia.org/wiki/Tuple_calculus
https://en.wikipedia.org/wiki/Eugene_Wong
https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/INGRES
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/Data_access
https://en.wikipedia.org/wiki/QUEL_query_languages
https://en.wikipedia.org/wiki/PRTV
https://en.wikipedia.org/wiki/Business_System_12
https://en.wikipedia.org/wiki/Business_System_12
https://en.wikipedia.org/wiki/Honeywell
https://en.wikipedia.org/wiki/Multics_Relational_Data_Store
https://en.wikipedia.org/wiki/Multics
https://en.wikipedia.org/wiki/Dataphor
https://en.wikipedia.org/wiki/Rel_(DBMS)
https://en.wikipedia.org/wiki/MICRO_Information_Management_System
https://en.wikipedia.org/wiki/MICRO_Information_Management_System
https://en.wikipedia.org/wiki/US_Department_of_Labor
https://en.wikipedia.org/wiki/U.S._Environmental_Protection_Agency
https://en.wikipedia.org/wiki/U.S._Environmental_Protection_Agency
https://en.wikipedia.org/wiki/University_of_Alberta
https://en.wikipedia.org/wiki/University_of_Michigan
https://en.wikipedia.org/wiki/Wayne_State_University
https://en.wikipedia.org/wiki/Michigan_Terminal_System
https://en.wikipedia.org/wiki/Database_machine
https://en.wikipedia.org/wiki/System/38
https://en.wikipedia.org/wiki/Teradata
https://en.wikipedia.org/wiki/Britton_Lee,_Inc.
https://en.wikipedia.org/wiki/International_Computers_Limited
https://en.wikipedia.org/wiki/Content_Addressable_File_Store

1.1. DATABASE 5

by some companies like Netezza and Oracle (Exadata).

Late 1970s, SQL DBMS

IBM started working on a prototype system loosely based
on Codd’s concepts as System R in the early 1970s. The
first version was ready in 1974/5, and work then started
on multi-table systems in which the data could be split so
that all of the data for a record (some of which is optional)
did not have to be stored in a single large “chunk”. Sub-
sequent multi-user versions were tested by customers in
1978 and 1979, by which time a standardized query lan-
guage – SQL – had been added. Codd’s ideas were estab-
lishing themselves as both workable and superior to CO-
DASYL, pushing IBM to develop a true production ver-
sion of System R, known as SQL/DS, and, later, Database
2 (DB2).
Larry Ellison's Oracle started from a different chain,
based on IBM’s papers on System R, and beat IBM to
market when the first version was released in 1978.
Stonebraker went on to apply the lessons from INGRES
to develop a new database, Postgres, which is now known
as PostgreSQL. PostgreSQL is often used for global mis-
sion critical applications (the .org and .info domain name
registries use it as their primary data store, as do many
large companies and financial institutions).
In Sweden, Codd’s paper was also read and Mimer SQL
was developed from the mid-1970s at Uppsala Univer-
sity. In 1984, this project was consolidated into an inde-
pendent enterprise. In the early 1980s, Mimer introduced
transaction handling for high robustness in applications,
an idea that was subsequently implemented on most other
DBMSs.
Another data model, the entity–relationship model,
emerged in 1976 and gained popularity for database de-
sign as it emphasized a more familiar description than
the earlier relational model. Later on, entity–relationship
constructs were retrofitted as a data modeling construct
for the relational model, and the difference between the
two have become irrelevant.

1980s, on the desktop

The 1980s ushered in the age of desktop computing. The
new computers empowered their users with spreadsheets
like Lotus 1-2-3 and database software like dBASE. The
dBASE product was lightweight and easy for any com-
puter user to understand out of the box. C. Wayne
Ratliff the creator of dBASE stated: “dBASE was dif-
ferent from programs like BASIC, C, FORTRAN, and
COBOL in that a lot of the dirty work had already been
done. The data manipulation is done by dBASE instead
of by the user, so the user can concentrate on what he
is doing, rather than having to mess with the dirty de-
tails of opening, reading, and closing files, and managing

space allocation.”[19] dBASE was one of the top selling
software titles in the 1980s and early 1990s.

1990s, object-oriented

The 1990s, along with a rise in object-oriented program-
ming, saw a growth in how data in various databases were
handled. Programmers and designers began to treat the
data in their databases as objects. That is to say that if a
person’s data were in a database, that person’s attributes,
such as their address, phone number, and age, were now
considered to belong to that person instead of being ex-
traneous data. This allows for relations between data to
be relations to objects and their attributes and not to in-
dividual fields.[20] The term "object-relational impedance
mismatch" described the inconvenience of translating be-
tween programmed objects and database tables. Object
databases and object-relational databases attempt to solve
this problem by providing an object-oriented language
(sometimes as extensions to SQL) that programmers can
use as alternative to purely relational SQL. On the pro-
gramming side, libraries known as object-relational map-
pings (ORMs) attempt to solve the same problem.

2000s, NoSQL and NewSQL

Main articles: NoSQL and NewSQL

The next generation of post-relational databases in the
2000s became known as NoSQL databases, including fast
key-value stores and document-oriented databases.
XML databases are a type of structured document-
oriented database that allows querying based on XML
document attributes. XML databases are mostly used
in enterprise database management, where XML is be-
ing used as the machine-to-machine data interoper-
ability standard. XML database management systems
include commercial software MarkLogic and Oracle
Berkeley DB XML, and a free use software Clusterpoint
Distributed XML/JSON Database. All are enterprise
software database platforms and support industry stan-
dard ACID-compliant transaction processing with strong
database consistency characteristics and high level of
database security.[21][22][23]

NoSQL databases are often very fast, do not re-
quire fixed table schemas, avoid join operations by
storing denormalized data, and are designed to scale
horizontally. The most popular NoSQL systems in-
clude MongoDB, Couchbase, Riak, Memcached, Redis,
CouchDB, Hazelcast, Apache Cassandra and HBase,[24]

which are all open-source software products.
In recent years there was a high demand for massively
distributed databases with high partition tolerance but
according to the CAP theorem it is impossible for a
distributed system to simultaneously provide consistency,

https://en.wikipedia.org/wiki/Netezza
https://en.wikipedia.org/wiki/Exadata
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Larry_Ellison
https://en.wikipedia.org/wiki/Data_store
https://en.wikipedia.org/wiki/Mimer_SQL
https://en.wikipedia.org/wiki/Uppsala_University
https://en.wikipedia.org/wiki/Uppsala_University
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Database_design
https://en.wikipedia.org/wiki/Database_design
https://en.wikipedia.org/wiki/Desktop_Computer
https://en.wikipedia.org/wiki/Lotus_1-2-3
https://en.wikipedia.org/wiki/DBASE
https://en.wikipedia.org/wiki/C._Wayne_Ratliff
https://en.wikipedia.org/wiki/C._Wayne_Ratliff
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/NewSQL
https://en.wikipedia.org/wiki/XML_databases
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Enterprise_database_management
https://en.wikipedia.org/wiki/Commercial_software
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/Enterprise_software
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Denormalization
https://en.wikipedia.org/wiki/Horizontal_scaling
https://en.wikipedia.org/wiki/Horizontal_scaling
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/CouchDB
https://en.wikipedia.org/wiki/Hazelcast
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Consistency_model

6 CHAPTER 1. DATABASES

availability and partition tolerance guarantees. A dis-
tributed system can satisfy any two of these guarantees
at the same time, but not all three. For that reason many
NoSQL databases are using what is called eventual con-
sistency to provide both availability and partition toler-
ance guarantees with a reduced level of data consistency.
NewSQL is a class of modern relational databases
that aims to provide the same scalable performance
of NoSQL systems for online transaction processing
(read-write) workloads while still using SQL and main-
taining the ACID guarantees of a traditional database
system. Such databases include ScaleBase, Clustrix,
EnterpriseDB, MemSQL, NuoDB[25] and VoltDB.

1.1.5 Research

Database technology has been an active research topic
since the 1960s, both in academia and in the research
and development groups of companies (for example IBM
Research). Research activity includes theory and devel-
opment of prototypes. Notable research topics have in-
cluded models, the atomic transaction concept and re-
lated concurrency control techniques, query languages
and query optimization methods, RAID, and more.
The database research area has several dedicated
academic journals (for example, ACM Transactions on
Database Systems-TODS, Data and Knowledge Engineer-
ing-DKE) and annual conferences (e.g., ACM SIGMOD,
ACM PODS, VLDB, IEEE ICDE).

1.1.6 Examples

One way to classify databases involves the type of their
contents, for example: bibliographic, document-text, sta-
tistical, or multimedia objects. Another way is by their
application area, for example: accounting, music com-
positions, movies, banking, manufacturing, or insurance.
A third way is by some technical aspect, such as the
database structure or interface type. This section lists a
few of the adjectives used to characterize different kinds
of databases.

• An in-memory database is a database that primarily
resides in main memory, but is typically backed-up
by non-volatile computer data storage. Main mem-
ory databases are faster than disk databases, and so
are often used where response time is critical, such
as in telecommunications network equipment.[26]

SAP HANA platform is a very hot topic for in-
memory database. By May 2012, HANA was
able to run on servers with 100TB main memory
powered by IBM. The co founder of the company
claimed that the system was big enough to run the 8
largest SAP customers.

• An active database includes an event-driven archi-

tecture which can respond to conditions both inside
and outside the database. Possible uses include secu-
rity monitoring, alerting, statistics gathering and au-
thorization. Many databases provide active database
features in the form of database triggers.

• A cloud database relies on cloud technology. Both
the database and most of its DBMS reside remotely,
“in the cloud”, while its applications are both de-
veloped by programmers and later maintained and
utilized by (application’s) end-users through a web
browser and Open APIs.

• Data warehouses archive data from operational
databases and often from external sources such as
market research firms. The warehouse becomes the
central source of data for use by managers and other
end-users who may not have access to operational
data. For example, sales data might be aggregated
to weekly totals and converted from internal prod-
uct codes to use UPCs so that they can be com-
pared with ACNielsen data. Some basic and es-
sential components of data warehousing include ex-
tracting, analyzing, and mining data, transforming,
loading and managing data so as to make them avail-
able for further use.

• A deductive database combines logic programming
with a relational database, for example by using the
Datalog language.

• A distributed database is one in which both the data
and the DBMS span multiple computers.

• A document-oriented database is designed for stor-
ing, retrieving, and managing document-oriented,
or semi structured data, information. Document-
oriented databases are one of the main categories of
NoSQL databases.

• An embedded database system is a DBMS which is
tightly integrated with an application software that
requires access to stored data in such a way that the
DBMS is hidden from the application’s end-users
and requires little or no ongoing maintenance.[27]

• End-user databases consist of data developed by
individual end-users. Examples of these are col-
lections of documents, spreadsheets, presentations,
multimedia, and other files. Several products ex-
ist to support such databases. Some of them are
much simpler than full-fledged DBMSs, with more
elementary DBMS functionality.

• A federated database system comprises several dis-
tinct databases, each with its own DBMS. It is han-
dled as a single database by a federated database
management system (FDBMS), which transparently
integrates multiple autonomous DBMSs, possibly of
different types (in which case it would also be a
heterogeneous database system), and provides them
with an integrated conceptual view.

https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/ScaleBase
https://en.wikipedia.org/wiki/Clustrix
https://en.wikipedia.org/wiki/EnterpriseDB
https://en.wikipedia.org/wiki/MemSQL
https://en.wikipedia.org/wiki/NuoDB
https://en.wikipedia.org/wiki/VoltDB
https://en.wikipedia.org/wiki/Academia
https://en.wikipedia.org/wiki/IBM_Research
https://en.wikipedia.org/wiki/IBM_Research
https://en.wikipedia.org/wiki/Database_theory
https://en.wikipedia.org/wiki/Prototype
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Query_optimization
https://en.wikipedia.org/wiki/RAID
https://en.wikipedia.org/wiki/Academic_journal
https://en.wikipedia.org/wiki/ACM_Transactions_on_Database_Systems
https://en.wikipedia.org/wiki/ACM_Transactions_on_Database_Systems
https://en.wikipedia.org/wiki/Data_and_Knowledge_Engineering
https://en.wikipedia.org/wiki/Data_and_Knowledge_Engineering
https://en.wikipedia.org/wiki/Academic_conference
https://en.wikipedia.org/wiki/Association_for_Computing_Machinery
https://en.wikipedia.org/wiki/SIGMOD
https://en.wikipedia.org/wiki/Symposium_on_Principles_of_Database_Systems
https://en.wikipedia.org/wiki/VLDB
https://en.wikipedia.org/wiki/IEEE
https://en.wikipedia.org/wiki/Bibliographic_database
https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/Main_memory
https://en.wikipedia.org/wiki/SAP_HANA
https://en.wikipedia.org/wiki/Active_database
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Cloud_database
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Web_browser
https://en.wikipedia.org/wiki/Open_API
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Universal_Product_Code
https://en.wikipedia.org/wiki/ACNielsen
https://en.wikipedia.org/wiki/Data_mining
https://en.wikipedia.org/wiki/Deductive_database
https://en.wikipedia.org/wiki/Logic_programming
https://en.wikipedia.org/wiki/Datalog
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Embedded_database
https://en.wikipedia.org/wiki/Federated_database_system
https://en.wikipedia.org/wiki/Heterogeneous_database_system

1.1. DATABASE 7

• Sometimes the term multi-database is used as a syn-
onym to federated database, though it may refer
to a less integrated (e.g., without an FDBMS and
a managed integrated schema) group of databases
that cooperate in a single application. In this
case typically middleware is used for distribution,
which typically includes an atomic commit protocol
(ACP), e.g., the two-phase commit protocol, to al-
low distributed (global) transactions across the par-
ticipating databases.

• A graph database is a kind of NoSQL database that
uses graph structures with nodes, edges, and prop-
erties to represent and store information. General
graph databases that can store any graph are distinct
from specialized graph databases such as triplestores
and network databases.

• An array DBMS is a kind of NoSQL DBMS that
allows to model, store, and retrieve (usually large)
multi-dimensional arrays such as satellite images
and climate simulation output.

• In a hypertext or hypermedia database, any word or
a piece of text representing an object, e.g., another
piece of text, an article, a picture, or a film, can be
hyperlinked to that object. Hypertext databases are
particularly useful for organizing large amounts of
disparate information. For example, they are useful
for organizing online encyclopedias, where users can
conveniently jump around the text. The World Wide
Web is thus a large distributed hypertext database.

• A knowledge base (abbreviated KB, kb or Δ[28][29])
is a special kind of database for knowledge man-
agement, providing the means for the computerized
collection, organization, and retrieval of knowledge.
Also a collection of data representing problems with
their solutions and related experiences.

• A mobile database can be carried on or synchronized
from a mobile computing device.

• Operational databases store detailed data about
the operations of an organization. They typically
process relatively high volumes of updates using
transactions. Examples include customer databases
that record contact, credit, and demographic in-
formation about a business’ customers, personnel
databases that hold information such as salary, ben-
efits, skills data about employees, enterprise re-
source planning systems that record details about
product components, parts inventory, and finan-
cial databases that keep track of the organization’s
money, accounting and financial dealings.

• A parallel database seeks to improve performance
through parallelization for tasks such as loading data,
building indexes and evaluating queries.

The major parallel DBMS architec-
tures which are induced by the un-
derlying hardware architecture are:
• Shared memory archi-
tecture, where multiple
processors share the main
memory space, as well as
other data storage.

• Shared disk architecture,
where each processing unit
(typically consisting of mul-
tiple processors) has its own
main memory, but all units
share the other storage.

• Shared nothing architec-
ture, where each processing
unit has its own main memory
and other storage.

• Probabilistic databases employ fuzzy logic to draw
inferences from imprecise data.

• Real-time databases process transactions fast
enough for the result to come back and be acted on
right away.

• A spatial database can store the data with multidi-
mensional features. The queries on such data in-
clude location based queries, like “Where is the clos-
est hotel in my area?".

• A temporal database has built-in time aspects, for
example a temporal data model and a temporal ver-
sion of SQL. More specifically the temporal aspects
usually include valid-time and transaction-time.

• A terminology-oriented database builds upon an
object-oriented database, often customized for a
specific field.

• An unstructured data database is intended to store
in a manageable and protected way diverse objects
that do not fit naturally and conveniently in com-
mon databases. It may include email messages,
documents, journals, multimedia objects, etc. The
name may be misleading since some objects can be
highly structured. However, the entire possible ob-
ject collection does not fit into a predefined struc-
tured framework. Most established DBMSs now
support unstructured data in various ways, and new
dedicated DBMSs are emerging.

1.1.7 Design and modeling

Main article: Database design

The first task of a database designer is to produce a
conceptual data model that reflects the structure of the

https://en.wikipedia.org/wiki/Middleware_(distributed_applications)
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Graph_(data_structure)
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Network_database_model
https://en.wikipedia.org/wiki/Array_DBMS
https://en.wikipedia.org/wiki/Array_data_structure
https://en.wikipedia.org/wiki/Hypertext
https://en.wikipedia.org/wiki/Hypermedia
https://en.wikipedia.org/wiki/Hyperlink
https://en.wikipedia.org/wiki/Online_encyclopedia
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/Knowledge_base
https://en.wikipedia.org/wiki/Knowledge_management
https://en.wikipedia.org/wiki/Knowledge_management
https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Knowledge
https://en.wikipedia.org/wiki/Mobile_database
https://en.wikipedia.org/wiki/Operational_database
https://en.wikipedia.org/wiki/Transaction_(database)
https://en.wikipedia.org/wiki/Customer_relationship_management
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Enterprise_resource_planning
https://en.wikipedia.org/wiki/Parallel_database
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Shared_memory_architecture
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Probabilistic_database
https://en.wikipedia.org/wiki/Fuzzy_logic
https://en.wikipedia.org/wiki/Real-time_database
https://en.wikipedia.org/wiki/Spatial_database
https://en.wikipedia.org/wiki/Temporal_database
https://en.wikipedia.org/wiki/Terminology-oriented_database
https://en.wikipedia.org/wiki/Object-oriented_database
https://en.wikipedia.org/wiki/Unstructured_data
https://en.wikipedia.org/wiki/Database_design
https://en.wikipedia.org/wiki/Conceptual_data_model

8 CHAPTER 1. DATABASES

information to be held in the database. A common ap-
proach to this is to develop an entity-relationship model,
often with the aid of drawing tools. Another popular ap-
proach is the Unified Modeling Language. A successful
data model will accurately reflect the possible state of the
external world being modeled: for example, if people can
have more than one phone number, it will allow this in-
formation to be captured. Designing a good conceptual
data model requires a good understanding of the applica-
tion domain; it typically involves asking deep questions
about the things of interest to an organisation, like “can
a customer also be a supplier?", or “if a product is sold
with two different forms of packaging, are those the same
product or different products?", or “if a plane flies from
New York to Dubai via Frankfurt, is that one flight or two
(or maybe even three)?". The answers to these questions
establish definitions of the terminology used for entities
(customers, products, flights, flight segments) and their
relationships and attributes.
Producing the conceptual data model sometimes involves
input from business processes, or the analysis of workflow
in the organization. This can help to establish what infor-
mation is needed in the database, and what can be left
out. For example, it can help when deciding whether the
database needs to hold historic data as well as current
data.
Having produced a conceptual data model that users are
happy with, the next stage is to translate this into a schema
that implements the relevant data structures within the
database. This process is often called logical database
design, and the output is a logical data model expressed
in the form of a schema. Whereas the conceptual data
model is (in theory at least) independent of the choice
of database technology, the logical data model will be
expressed in terms of a particular database model sup-
ported by the chosen DBMS. (The terms data model and
database model are often used interchangeably, but in
this article we use data model for the design of a specific
database, and database model for the modelling notation
used to express that design.)
The most popular database model for general-purpose
databases is the relational model, or more precisely, the
relational model as represented by the SQL language.
The process of creating a logical database design us-
ing this model uses a methodical approach known as
normalization. The goal of normalization is to ensure
that each elementary “fact” is only recorded in one place,
so that insertions, updates, and deletions automatically
maintain consistency.
The final stage of database design is to make the decisions
that affect performance, scalability, recovery, security,
and the like. This is often called physical database design.
A key goal during this stage is data independence, mean-
ing that the decisions made for performance optimiza-
tion purposes should be invisible to end-users and appli-
cations. Physical design is driven mainly by performance

requirements, and requires a good knowledge of the ex-
pected workload and access patterns, and a deep under-
standing of the features offered by the chosen DBMS.
Another aspect of physical database design is security. It
involves both defining access control to database objects
as well as defining security levels and methods for the data
itself.

Models

Main article: Database model
A database model is a type of data model that deter-

Collage of five types of database models

mines the logical structure of a database and fundamen-
tally determines in which manner data can be stored, or-
ganized, and manipulated. The most popular example of
a database model is the relational model (or the SQL ap-
proximation of relational), which uses a table-based for-
mat.
Common logical data models for databases include:

• Navigational databases

• Hierarchical database model
• Network model
• Graph database

• Relational model

• Entity–relationship model

• Enhanced entity–relationship model

• Object model

• Document model

• Entity–attribute–value model

• Star schema

An object-relational database combines the two related
structures.
Physical data models include:

https://en.wikipedia.org/wiki/Unified_Modeling_Language
https://en.wikipedia.org/wiki/Business_process_modeling
https://en.wikipedia.org/wiki/Workflow
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Logical_data_model
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Data_independence
https://en.wikipedia.org/wiki/Access_control
https://en.wikipedia.org/wiki/Database_model
https://en.wikipedia.org/wiki/Data
https://en.wikipedia.org/wiki/Navigational_database
https://en.wikipedia.org/wiki/Hierarchical_database_model
https://en.wikipedia.org/wiki/Network_model
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Enhanced_entity%E2%80%93relationship_model
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Entity%E2%80%93attribute%E2%80%93value_model
https://en.wikipedia.org/wiki/Star_schema
https://en.wikipedia.org/wiki/Physical_data_model

1.1. DATABASE 9

• Inverted index

• Flat file

Other models include:

• Associative model

• Multidimensional model

• Array model

• Multivalue model

Specialized models are optimized for particular types of
data:

• XML database

• Semantic model

• Content store

• Event store

• Time series model

External, conceptual, and internal views

External Schema
-User View-

Internal Schema
-Computer View-

Traditional view of data[30]

A database management system provides three views of
the database data:

• The external level defines how each group of end-
users sees the organization of data in the database.
A single database can have any number of views at
the external level.

• The conceptual level unifies the various external
views into a compatible global view.[31] It provides
the synthesis of all the external views. It is out of
the scope of the various database end-users, and is
rather of interest to database application developers
and database administrators.

• The internal level (or physical level) is the inter-
nal organization of data inside a DBMS. It is con-
cerned with cost, performance, scalability and other
operational matters. It deals with storage layout of
the data, using storage structures such as indexes to
enhance performance. Occasionally it stores data
of individual views (materialized views), computed
from generic data, if performance justification ex-
ists for such redundancy. It balances all the external
views’ performance requirements, possibly conflict-
ing, in an attempt to optimize overall performance
across all activities.

While there is typically only one conceptual (or logical)
and physical (or internal) view of the data, there can be
any number of different external views. This allows users
to see database information in a more business-related
way rather than from a technical, processing viewpoint.
For example, a financial department of a company needs
the payment details of all employees as part of the com-
pany’s expenses, but does not need details about employ-
ees that are the interest of the human resources depart-
ment. Thus different departments need different views
of the company’s database.
The three-level database architecture relates to the con-
cept of data independence which was one of the major
initial driving forces of the relational model. The idea
is that changes made at a certain level do not affect the
view at a higher level. For example, changes in the inter-
nal level do not affect application programs written using
conceptual level interfaces, which reduces the impact of
making physical changes to improve performance.
The conceptual view provides a level of indirection be-
tween internal and external. On one hand it provides a
common view of the database, independent of different
external view structures, and on the other hand it abstracts
away details of how the data is stored or managed (inter-
nal level). In principle every level, and even every exter-
nal view, can be presented by a different data model. In
practice usually a given DBMS uses the same data model
for both the external and the conceptual levels (e.g., rela-
tional model). The internal level, which is hidden inside
the DBMS and depends on its implementation, requires
a different level of detail and uses its own types of data
structure types.
Separating the external, conceptual and internal levels was
a major feature of the relational database model imple-
mentations that dominate 21st century databases.[31]

1.1.8 Languages

Database languages are special-purpose languages, which
do one or more of the following:

• Data definition language – defines data types and the
relationships among them

https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/Flat_file_database
https://en.wikipedia.org/wiki/Associative_model_of_data
https://en.wikipedia.org/wiki/Multidimensional_database
https://en.wikipedia.org/wiki/Array_DBMS
https://en.wikipedia.org/wiki/Multivalue_model
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/Semantic_data_model
https://en.wikipedia.org/wiki/Content_store
https://en.wikipedia.org/wiki/Event_store
https://en.wikipedia.org/wiki/Time_series_database
https://en.wikipedia.org/wiki/Index_(database)
https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Human_resources
https://en.wikipedia.org/wiki/Data_definition_language

10 CHAPTER 1. DATABASES

• Data manipulation language – performs tasks such
as inserting, updating, or deleting data occurrences

• Query language – allows searching for information
and computing derived information

Database languages are specific to a particular data
model. Notable examples include:

• SQL combines the roles of data definition, data ma-
nipulation, and query in a single language. It was
one of the first commercial languages for the rela-
tional model, although it departs in some respects
from the relational model as described by Codd (for
example, the rows and columns of a table can be or-
dered). SQL became a standard of the American
National Standards Institute (ANSI) in 1986, and of
the International Organization for Standardization
(ISO) in 1987. The standards have been regularly
enhanced since and is supported (with varying de-
grees of conformance) by all mainstream commer-
cial relational DBMSs.[32][33]

• OQL is an object model language standard (from the
Object Data Management Group). It has influenced
the design of some of the newer query languages like
JDOQL and EJB QL.

• XQuery is a standard XML query language im-
plemented by XML database systems such as
MarkLogic and eXist, by relational databases with
XML capability such as Oracle and DB2, and also
by in-memory XML processors such as Saxon.

• SQL/XML combines XQuery with SQL.[34]

A database language may also incorporate features like:

• DBMS-specific Configuration and storage engine
management

• Computations to modify query results, like count-
ing, summing, averaging, sorting, grouping, and
cross-referencing

• Constraint enforcement (e.g. in an automotive
database, only allowing one engine type per car)

• Application programming interface version of the
query language, for programmer convenience

1.1.9 Performance, security, and availabil-
ity

Because of the critical importance of database technology
to the smooth running of an enterprise, database systems
include complex mechanisms to deliver the required per-
formance, security, and availability, and allow database
administrators to control the use of these features.

Storage

Main articles: Computer data storage and Database
engine

Database storage is the container of the physical materi-
alization of a database. It comprises the internal (phys-
ical) level in the database architecture. It also contains
all the information needed (e.g., metadata, “data about
the data”, and internal data structures) to reconstruct the
conceptual level and external level from the internal level
when needed. Putting data into permanent storage is
generally the responsibility of the database engine a.k.a.
“storage engine”. Though typically accessed by a DBMS
through the underlying operating system (and often uti-
lizing the operating systems’ file systems as intermediates
for storage layout), storage properties and configuration
setting are extremely important for the efficient opera-
tion of the DBMS, and thus are closely maintained by
database administrators. A DBMS, while in operation,
always has its database residing in several types of storage
(e.g., memory and external storage). The database data
and the additional needed information, possibly in very
large amounts, are coded into bits. Data typically reside
in the storage in structures that look completely different
from the way the data look in the conceptual and external
levels, but in ways that attempt to optimize (the best pos-
sible) these levels’ reconstruction when needed by users
and programs, as well as for computing additional types
of needed information from the data (e.g., when querying
the database).
Some DBMSs support specifying which character encod-
ing was used to store data, so multiple encodings can be
used in the same database.
Various low-level database storage structures are used by
the storage engine to serialize the data model so it can
be written to the medium of choice. Techniques such as
indexing may be used to improve performance. Conven-
tional storage is row-oriented, but there are also column-
oriented and correlation databases.

Materialized views Main article: Materialized view

Often storage redundancy is employed to increase per-
formance. A common example is storing materialized
views, which consist of frequently needed external views
or query results. Storing such views saves the expensive
computing of them each time they are needed. The down-
sides of materialized views are the overhead incurred
when updating them to keep them synchronized with their
original updated database data, and the cost of storage re-
dundancy.

Replication Main article: Database replication

https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Codd%2527s_12_rules
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/OQL
https://en.wikipedia.org/wiki/Object_Data_Management_Group
https://en.wikipedia.org/wiki/JDOQL
https://en.wikipedia.org/wiki/EJB_QL
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/EXist
https://en.wikipedia.org/wiki/Saxon_XSLT
https://en.wikipedia.org/wiki/SQL/XML
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Database_engine
https://en.wikipedia.org/wiki/Database_engine
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Database_engine
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Character_encoding
https://en.wikipedia.org/wiki/Database_storage_structures
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Correlation_database
https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Database_replication

1.1. DATABASE 11

Occasionally a database employs storage redundancy by
database objects replication (with one or more copies) to
increase data availability (both to improve performance
of simultaneous multiple end-user accesses to a same
database object, and to provide resiliency in a case of par-
tial failure of a distributed database). Updates of a repli-
cated object need to be synchronized across the object
copies. In many cases the entire database is replicated.

Security

Main article: Database security

Database security deals with all various aspects of pro-
tecting the database content, its owners, and its users.
It ranges from protection from intentional unauthorized
database uses to unintentional database accesses by unau-
thorized entities (e.g., a person or a computer program).
Database access control deals with controlling who (a
person or a certain computer program) is allowed to ac-
cess what information in the database. The informa-
tion may comprise specific database objects (e.g., record
types, specific records, data structures), certain compu-
tations over certain objects (e.g., query types, or specific
queries), or utilizing specific access paths to the former
(e.g., using specific indexes or other data structures to ac-
cess information). Database access controls are set by
special authorized (by the database owner) personnel that
uses dedicated protected security DBMS interfaces.
This may be managed directly on an individual basis, or
by the assignment of individuals and privileges to groups,
or (in the most elaborate models) through the assignment
of individuals and groups to roles which are then granted
entitlements. Data security prevents unauthorized users
from viewing or updating the database. Using passwords,
users are allowed access to the entire database or sub-
sets of it called “subschemas”. For example, an employee
database can contain all the data about an individual em-
ployee, but one group of users may be authorized to view
only payroll data, while others are allowed access to only
work history and medical data. If the DBMS provides
a way to interactively enter and update the database, as
well as interrogate it, this capability allows for managing
personal databases.
Data security in general deals with protecting specific
chunks of data, both physically (i.e., from corruption, or
destruction, or removal; e.g., see physical security), or the
interpretation of them, or parts of them to meaningful in-
formation (e.g., by looking at the strings of bits that they
comprise, concluding specific valid credit-card numbers;
e.g., see data encryption).
Change and access logging records who accessed which
attributes, what was changed, and when it was changed.
Logging services allow for a forensic database audit
later by keeping a record of access occurrences and

changes. Sometimes application-level code is used to
record changes rather than leaving this to the database.
Monitoring can be set up to attempt to detect security
breaches.

Transactions and concurrency

Further information: Concurrency control

Database transactions can be used to introduce some level
of fault tolerance and data integrity after recovery from a
crash. A database transaction is a unit of work, typically
encapsulating a number of operations over a database
(e.g., reading a database object, writing, acquiring lock,
etc.), an abstraction supported in database and also other
systems. Each transaction has well defined boundaries
in terms of which program/code executions are included
in that transaction (determined by the transaction’s pro-
grammer via special transaction commands).
The acronym ACID describes some ideal properties of a
database transaction: Atomicity, Consistency, Isolation,
and Durability.

Migration

See also section Database migration in article
Data migration

A database built with one DBMS is not portable to an-
other DBMS (i.e., the other DBMS cannot run it). How-
ever, in some situations it is desirable to move, migrate
a database from one DBMS to another. The reasons are
primarily economical (different DBMSs may have differ-
ent total costs of ownership or TCOs), functional, and op-
erational (different DBMSs may have different capabili-
ties). The migration involves the database’s transforma-
tion from one DBMS type to another. The transformation
should maintain (if possible) the database related applica-
tion (i.e., all related application programs) intact. Thus,
the database’s conceptual and external architectural lev-
els should be maintained in the transformation. It may be
desired that also some aspects of the architecture internal
level are maintained. A complex or large database migra-
tion may be a complicated and costly (one-time) project
by itself, which should be factored into the decision to mi-
grate. This in spite of the fact that tools may exist to help
migration between specific DBMSs. Typically a DBMS
vendor provides tools to help importing databases from
other popular DBMSs.

Building, maintaining, and tuning

Main article: Database tuning

https://en.wikipedia.org/wiki/Database_security
https://en.wikipedia.org/wiki/Database_security
https://en.wikipedia.org/wiki/Privilege_(Computing)
https://en.wikipedia.org/wiki/Data_security
https://en.wikipedia.org/wiki/Physical_security
https://en.wikipedia.org/wiki/Data_encryption
https://en.wikipedia.org/wiki/Database_audit
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Database_transactions
https://en.wikipedia.org/wiki/Fault_tolerance
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Data_migration#Database_migration
https://en.wikipedia.org/wiki/Data_migration
https://en.wikipedia.org/wiki/Total_cost_of_ownership
https://en.wikipedia.org/wiki/Database_tuning

12 CHAPTER 1. DATABASES

After designing a database for an application, the next
stage is building the database. Typically an appropri-
ate general-purpose DBMS can be selected to be utilized
for this purpose. A DBMS provides the needed user in-
terfaces to be utilized by database administrators to de-
fine the needed application’s data structures within the
DBMS’s respective data model. Other user interfaces are
used to select needed DBMS parameters (like security
related, storage allocation parameters, etc.).
When the database is ready (all its data structures and
other needed components are defined) it is typically pop-
ulated with initial application’s data (database initializa-
tion, which is typically a distinct project; in many cases
using specialized DBMS interfaces that support bulk in-
sertion) before making it operational. In some cases the
database becomes operational while empty of application
data, and data is accumulated during its operation.
After the database is created, initialised and populated
it needs to be maintained. Various database parame-
ters may need changing and the database may need to be
tuned (tuning) for better performance; application’s data
structures may be changed or added, new related applica-
tion programs may be written to add to the application’s
functionality, etc.

Backup and restore

Main article: Backup

Sometimes it is desired to bring a database back to a
previous state (for many reasons, e.g., cases when the
database is found corrupted due to a software error, or if
it has been updated with erroneous data). To achieve this
a backup operation is done occasionally or continuously,
where each desired database state (i.e., the values of its
data and their embedding in database’s data structures) is
kept within dedicated backup files (many techniques ex-
ist to do this effectively). When this state is needed, i.e.,
when it is decided by a database administrator to bring the
database back to this state (e.g., by specifying this state
by a desired point in time when the database was in this
state), these files are utilized to restore that state.

Static Analysis

Static analysis techniques for software verification can
be applied also in the scenario of query languages. In
particular, the *Abstract interpretation framework has
been extended to the field of query languages for rela-
tional databases as a way to support sound approximation
techniques.[35] The semantics of query languages can be
tuned according to suitable abstractions of the concrete
domain of data. The abstraction of relational database
system has many interesting applications, in particular,
for security purposes, such as fine grained access control,
watermarking, etc.

Other

Other DBMS features might include:

• Database logs

• Graphics component for producing graphs and
charts, especially in a data warehouse system

• Query optimizer – Performs query optimization on
every query to choose for it the most efficient query
plan (a partial order (tree) of operations) to be exe-
cuted to compute the query result. May be specific
to a particular storage engine.

• Tools or hooks for database design, application
programming, application program maintenance,
database performance analysis and monitoring,
database configuration monitoring, DBMS hard-
ware configuration (a DBMS and related database
may span computers, networks, and storage units)
and related database mapping (especially for a dis-
tributed DBMS), storage allocation and database
layout monitoring, storage migration, etc.

1.1.10 See also

Main article: Outline of databases

• Comparison of database tools

• Comparison of object database management sys-
tems

• Comparison of object-relational database manage-
ment systems

• Comparison of relational database management sys-
tems

• Data hierarchy

• Data bank

• Data store

• Database theory

• Database testing

• Database-centric architecture

• Question-focused dataset

1.1.11 References
[1] “Database - Definition of database by Merriam-Webster”.

merriam-webster.com.

[2] Jeffrey Ullman 1997: First course in database systems,
Prentice–Hall Inc., Simon & Schuster, Page 1, ISBN 0-
13-861337-0.

https://en.wikipedia.org/wiki/General-purpose_DBMS
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Database_tuning
https://en.wikipedia.org/wiki/Backup
https://en.wikipedia.org/wiki/Abstract_interpretation
https://en.wikipedia.org/wiki/Database_log
https://en.wikipedia.org/wiki/Query_optimizer
https://en.wikipedia.org/wiki/Query_optimization
https://en.wikipedia.org/wiki/Query_plan
https://en.wikipedia.org/wiki/Query_plan
https://en.wikipedia.org/wiki/Outline_of_databases
https://en.wikipedia.org/wiki/Comparison_of_database_tools
https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_object-relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_object-relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Data_hierarchy
https://en.wikipedia.org/wiki/Data_bank
https://en.wikipedia.org/wiki/Data_store
https://en.wikipedia.org/wiki/Database_theory
https://en.wikipedia.org/wiki/Database_testing
https://en.wikipedia.org/wiki/Database-centric_architecture
https://en.wikipedia.org/wiki/Question-focused_dataset
http://www.merriam-webster.com/dictionary/database
https://en.wikipedia.org/wiki/Jeffrey_Ullman
https://en.wikipedia.org/wiki/Special:BookSources/0138613370
https://en.wikipedia.org/wiki/Special:BookSources/0138613370

1.1. DATABASE 13

[3] “Update - Definition of update by Merriam-Webster”.
merriam-webster.com.

[4] “Retrieval - Definition of retrieval by Merriam-Webster”.
merriam-webster.com.

[5] “Administration - Definition of administration by
Merriam-Webster”. merriam-webster.com.

[6] Tsitchizris, D. C. and F. H. Lochovsky (1982). DataMod-
els. Englewood-Cliffs, Prentice–Hall.

[7] Beynon-Davies P. (2004). Database Systems 3rd Edition.
Palgrave, Basingstoke, UK. ISBN 1-4039-1601-2

[8] Raul F. Chong, Michael Dang, Dwaine R. Snow, Xiaomei
Wang (3 July 2008). “Introduction to DB2”. Retrieved
17 March 2013.. This article quotes a development time
of 5 years involving 750 people for DB2 release 9 alone

[9] C. W. Bachmann (November 1973), “The Programmer as
Navigator” (PDF), CACM (Turing Award Lecture 1973)

[10] “TOPDB Top Database index”. pypl.github.io.

[11] “database, n”. OED Online. Oxford University Press.
June 2013. Retrieved July 12, 2013.

[12] IBM Corporation. “IBM Information Management Sys-
tem (IMS) 13 Transaction and Database Servers delivers
high performance and low total cost of ownership”. Re-
trieved Feb 20, 2014.

[13] Codd, E.F. (1970).“A Relational Model of Data for Large
Shared Data Banks”. In: Communications of the ACM 13
(6): 377–387.

[14] William Hershey and Carol Easthope, “A set theo-
retic data structure and retrieval language”, Spring Joint
Computer Conference, May 1972 in ACM SIGIR Fo-
rum, Volume 7, Issue 4 (December 1972), pp. 45–55,
DOI=10.1145/1095495.1095500

[15] Ken North, “Sets, Data Models and Data Independence”,
Dr. Dobb’s, 10 March 2010

[16] Description of a set-theoretic data structure, D. L. Childs,
1968, Technical Report 3 of the CONCOMP (Research
in Conversational Use of Computers) Project, University
of Michigan, Ann Arbor, Michigan, USA

[17] Feasibility of a Set-Theoretic Data Structure : A General
Structure Based on a Reconstituted Definition of Relation,
D. L. Childs, 1968, Technical Report 6 of the CON-
COMP (Research in Conversational Use of Computers)
Project, University of Michigan, Ann Arbor, Michigan,
USA

[18] MICRO Information Management System (Version 5.0)
Reference Manual, M.A. Kahn, D.L. Rumelhart, and B.L.
Bronson, October 1977, Institute of Labor and Industrial
Relations (ILIR), University of Michigan and Wayne State
University

[19] Interview with Wayne Ratliff. The FoxPro History. Re-
trieved on 2013-07-12.

[20] Development of an object-oriented DBMS; Portland, Ore-
gon, United States; Pages: 472 – 482; 1986; ISBN 0-
89791-204-7

[21] “Oracle Berkeley DB XML” (PDF). Retrieved 10 March
2015.

[22] “ACID Transactions, MarkLogic”. Retrieved 10 March
2015.

[23] “Clusterpoint Database at a Glance”. Retrieved 10 March
2015.

[24] “DB-Engines Ranking”. January 2013. Retrieved 22 Jan-
uary 2013.

[25] Proctor, Seth (2013). “Exploring the Architecture of the
NuoDB Database, Part 1”. Retrieved 2013-07-12.

[26] “TeleCommunication Systems Signs up as a Reseller of
TimesTen; Mobile Operators and Carriers Gain Real-
Time Platform for Location-Based Services”. Business
Wire. 2002-06-24.

[27] Graves, Steve. “COTS Databases For Embedded Sys-
tems”, Embedded Computing Design magazine, January
2007. Retrieved on August 13, 2008.

[28] Argumentation in Artificial Intelligence by Iyad Rahwan,
Guillermo R. Simari

[29] “OWL DL Semantics”. Retrieved 10 December 2010.

[30] itl.nist.gov (1993) Integration Definition for Information
Modeling (IDEFIX). 21 December 1993.

[31] Date 1990, pp. 31–32

[32] Chapple, Mike. “SQL Fundamentals”. Databases.
About.com. Retrieved 2009-01-28.

[33] “Structured Query Language (SQL)". International Busi-
ness Machines. October 27, 2006. Retrieved 2007-06-
10.

[34] Wagner, Michael (2010), “1. Auflage”, SQL/XML:2006
– Evaluierung der Standardkonformität ausgewählter
Datenbanksysteme, Diplomica Verlag, ISBN 3-8366-
9609-6

[35] R.Halder and A.Cortesi, Abstract Interpretation of
Database Query Languages. COMPUTER LAN-
GUAGES, SYSTEMS & STRUCTURES, vol. 38(2), pp.
123-−157, Elsevier Ed. (ISSN 1477-8424)

1.1.12 Further reading

• Ling Liu and Tamer M. Özsu (Eds.) (2009).
"Encyclopedia of Database Systems, 4100 p. 60 il-
lus. ISBN 978-0-387-49616-0.

• Beynon-Davies, P. (2004). Database Systems. 3rd
Edition. Palgrave, Houndmills, Basingstoke.

• Connolly, Thomas and Carolyn Begg. Database Sys-
tems. New York: Harlow, 2002.

http://www.merriam-webster.com/dictionary/update
http://www.merriam-webster.com/dictionary/retrieval
http://www.merriam-webster.com/dictionary/administration
http://www.merriam-webster.com/dictionary/administration
https://en.wikipedia.org/wiki/Special:BookSources/1403916012
http://www.ibmpressbooks.com/articles/article.asp?p=1163083
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p653-bachman.pdf
http://www.cs.uiuc.edu/class/fa05/cs511/Spring05/other_papers/p653-bachman.pdf
http://pypl.github.io/DB.html
http://www.oed.com/view/Entry/47411
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS213-381
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS213-381
http://www-01.ibm.com/common/ssi/cgi-bin/ssialias?subtype=ca&infotype=an&appname=iSource&supplier=897&letternum=ENUS213-381
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
http://www.seas.upenn.edu/~zives/03f/cis550/codd.pdf
https://docs.google.com/open?id=0B4t_NX-QeWDYNmVhYjAwMWMtYzc3ZS00YjI0LWJhMjgtZTYyODZmNmFkNThh
https://docs.google.com/open?id=0B4t_NX-QeWDYNmVhYjAwMWMtYzc3ZS00YjI0LWJhMjgtZTYyODZmNmFkNThh
http://doi.acm.org/10.1145/1095495.1095500
http://drdobbs.com/blogs/database/228700616
http://hdl.handle.net/2027.42/4163
http://hdl.handle.net/2027.42/4164
http://hdl.handle.net/2027.42/4164
http://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4t_NX-QeWDYZGMwOTRmOTItZTg2Zi00YmJkLTg4MTktN2E4MWU0YmZlMjE3
http://docs.google.com/viewer?a=v&pid=explorer&chrome=true&srcid=0B4t_NX-QeWDYZGMwOTRmOTItZTg2Zi00YmJkLTg4MTktN2E4MWU0YmZlMjE3
http://www.foxprohistory.org/interview_wayne_ratliff.htm
https://en.wikipedia.org/wiki/Special:BookSources/0897912047
https://en.wikipedia.org/wiki/Special:BookSources/0897912047
http://www.oracle.com/technetwork/database/database-technologies/berkeleydb/berkeley-db-xml-datasheet-130133.pdf
http://www.marklogic.com/what-is-marklogic/features/acid-transactions/
http://docs.clusterpoint.com/wiki/Clusterpoint_DB_at_a_glance
http://db-engines.com/en/ranking
http://www.infoq.com/articles/nuodb-architecture-1/
http://www.infoq.com/articles/nuodb-architecture-1/
http://findarticles.com/p/articles/mi_m0EIN/is_2002_June_24/ai_87694370
http://findarticles.com/p/articles/mi_m0EIN/is_2002_June_24/ai_87694370
http://findarticles.com/p/articles/mi_m0EIN/is_2002_June_24/ai_87694370
http://www.embedded-computing.com/articles/id/?2020
http://www.embedded-computing.com/articles/id/?2020
http://www.obitko.com/tutorials/ontologies-semantic-web/owl-dl-semantics.html
http://www.itl.nist.gov/fipspubs/idef1x.doc
http://www.itl.nist.gov/fipspubs/idef1x.doc
https://en.wikipedia.org/wiki/Database#CITEREFDate1990
http://databases.about.com/od/sql/a/sqlfundamentals.htm
http://publib.boulder.ibm.com/infocenter/db2luw/v9/index.jsp?topic=com.ibm.db2.udb.admin.doc/doc/c0004100.htm
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/3-8366-9609-6
https://en.wikipedia.org/wiki/Special:BookSources/3-8366-9609-6
http://www.dsi.unive.it/~cortesi/paperi/CL2012.pdf
http://www.dsi.unive.it/~cortesi/paperi/CL2012.pdf
http://www.springer.com/computer/database+management+&+information+retrieval/book/978-0-387-49616-0
https://en.wikipedia.org/wiki/Special:BookSources/9780387496160

14 CHAPTER 1. DATABASES

• Date, C. J. (2003). An Introduction to Database Sys-
tems, Fifth Edition. Addison Wesley. ISBN 0-201-
51381-1.

• Gray, J. and Reuter, A. Transaction Processing:
Concepts and Techniques, 1st edition, Morgan Kauf-
mann Publishers, 1992.

• Kroenke, David M. and David J. Auer. Database
Concepts. 3rd ed. New York: Prentice, 2007.

• Raghu Ramakrishnan and Johannes Gehrke,
Database Management Systems

• Abraham Silberschatz, Henry F. Korth, S. Sudar-
shan, Database System Concepts

• Discussion on database systems,

• Lightstone, S.; Teorey, T.; Nadeau, T. (2007). Phys-
ical Database Design: the database professional’s
guide to exploiting indexes, views, storage, and more.
Morgan Kaufmann Press. ISBN 0-12-369389-6.

• Teorey, T.; Lightstone, S. and Nadeau, T. Database
Modeling & Design: Logical Design, 4th edition,
Morgan Kaufmann Press, 2005. ISBN 0-12-
685352-5

1.1.13 External links

• Database at DMOZ

• DB File extension – informations about files with
DB extension

1.2 Schema migration

Not to be confused with Data migration.

In software engineering, schema migration (also
database migration, database change manage-
ment[1][2]) refers to the management of incremental,
reversible changes to relational database schemas. A
schema migration is performed on a database whenever
it is necessary to update or revert that database’s schema
to some newer or older version.
Migrations are performed programmatically by using a
schema migration tool. When invoked with a specified
desired schema version, the tool automates the succes-
sive application or reversal of an appropriate sequence of
schema changes until it is brought to the desired state.
Most schema migration tools aim to minimise the impact
of schema changes on any existing data in the database.
Despite this, preservation of data in general is not guar-
anteed because schema changes such as the deletion of a
database column can destroy data (i.e. all values stored
under that column for all rows in that table are deleted).

Instead, the tools help to preserve the meaning of the data
or to reorganize existing data to meet new requirements.
Since meaning of the data often cannot be encoded, the
configuration of the tools usually needs manual interven-
tion.

1.2.1 Risks and Benefits

Schema migration allows to fix mistakes and adapt the
data as requirements change. They are an essential part of
software evolution, especially in agile environments (see
below).
Applying a schema migration to a production database is
always a risk. Development and test databases tend to be
smaller and cleaner. The data in them is better understood
or, if everything else fails, the amount of data is small
enough for a human to process. Production databases are
usually huge, old and full of surprises. The surprises can
come from many sources:

• Corrupt data that was written by old versions of the
software and not cleaned properly

• Implied dependencies in the data which no one
knows about anymore

• People directly changing the database without using
the designated tools

• Bugs in the schema migration tools

• Mistakes in assumptions how data should be mi-
grated

For these reasons, the migration process needs a high
level of discipline, thorough testing and a sound backup
strategy.

1.2.2 Schema migration in agile software
development

When developing software applications backed by a
database, developers typically develop the application
source code in tandem with an evolving database
schema. The code typically has rigid expectations of
what columns, tables and constraints are present in the
database schema whenever it needs to interact with one,
so only the version of database schema against which the
code was developed is considered fully compatible with
that version of source code.
In software testing, while developers may mock the pres-
ence of a compatible database system for unit testing,
any level of testing higher than this (e.g. integration test-
ing or system testing) it is common for developers to test
their application against a local or remote test database
schematically compatible with the version of source code

https://en.wikipedia.org/wiki/Christopher_J._Date
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-51381-1
https://en.wikipedia.org/wiki/Special:BookSources/0-201-51381-1
https://en.wikipedia.org/wiki/Raghu_Ramakrishnan
https://en.wikipedia.org/wiki/Johannes_Gehrke
http://pages.cs.wisc.edu/~dbbook/
https://en.wikipedia.org/wiki/Abraham_Silberschatz
http://www.db-book.com/
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-12-369389-6
https://en.wikipedia.org/wiki/Special:BookSources/0126853525
https://en.wikipedia.org/wiki/Special:BookSources/0126853525
https://www.dmoz.org/Computers/Data_Formats/Database
https://en.wikipedia.org/wiki/DMOZ
http://www.fileextension.org/DB
https://en.wikipedia.org/wiki/Data_migration
https://en.wikipedia.org/wiki/Software_engineering
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Requirement
https://en.wikipedia.org/wiki/Software_applications
https://en.wikipedia.org/wiki/Software_developer
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Mock_object
https://en.wikipedia.org/wiki/Unit_testing
https://en.wikipedia.org/wiki/Software_testing#Testing_levels
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/Integration_testing
https://en.wikipedia.org/wiki/System_testing

1.2. SCHEMA MIGRATION 15

under test. In advanced applications, the migration itself
can be subject to migration testing.
With schema migration technology, data models no
longer need to be fully designed up-front, and is more
capable of being adapted with changing project require-
ments throughout the software development lifecycle.

Relation to revision control systems

Teams of software developers usually use version con-
trol systems to manage and collaborate on changes made
to versions of source code. Different developers can de-
velop on divergent, relatively older or newer branches of
the same source code to make changes and additions dur-
ing development.
Supposing that the software under development interacts
with a database, every version of the source code can be
associated with at least one database schema with which
it is compatible.
Under good software testing practise, schema migrations
can be performed on test databases to ensure that their
schema is compatible to the source code. To streamline
this process, a schema migration tool is usually invoked
as a part of an automated software build as a prerequisite
of the automated testing phase.
Schema migration tools can be said to solve versioning
problems for database schemas just as version control sys-
tems solve versioning problems for source code. In prac-
tice, many schema migration tools actually rely on a tex-
tual representation of schema changes (such as files con-
taining SQL statements) such that the version history of
schema changes can effectively be stored alongside pro-
gram source code within VCS. This approach ensures
that the information necessary to recover a compatible
database schema for a particular code branch is recover-
able from the source tree itself. Another benefit of this
approach is the handling of concurrent conflicting schema
changes; developers may simply use their usual text-based
conflict resolution tools to reconcile differences.

Relation to schema evolution

Schema migration tooling could be seen as a facility to
track the history of an evolving schema.

Advantages

Developers no longer need to remove the entire test
database in order to create a new test database from
scratch (e.g. using schema creation scripts from DDL
generation tools). Further, if generation of test data costs
a lot of time, developers can avoid regenerating test data
for small, non-destructive changes to the schema.

1.2.3 Available Tools

• Flyway - database migration tool (for Windows,
OSX, Linux, Android and the JVM) where migra-
tions are written in SQL or Java

• LiquiBase - cross platform tool where migrations are
written in XML, YAML, JSON or SQL.

• Datical - Enterprise commercial version of
Liquibase.

• Redgate SQL Compare - a schema comparison and
deployment tool for SQL Server and Oracle.

• ReadyRoll - a migrations-based Visual Studio exten-
sion for SQL Server development and deployment.

• Active Record (Migrations) - schema migration tool
for Ruby on Rails projects based on Active Record.

• Ruckusing-migrations - schema migration tool for
PHP projects.

• Phinx - another framework-independent PHP mi-
gration tool.

• MyBatis Migrations - seeks to be the best migration
tool of its kind.

• Ragtime - a SQL database schema migration library
written in Clojure

• Lobos - a SQL database schema manipulation and
migration library written in Clojure.

• Alembic - a lightweight database migration tool for
usage with the SQLAlchemy Database Toolkit for
Python.

• RoundhousE - a SQL database versioning and
change management tool written in C#.

• XMigra - a SQL database evolution management
tool written in Ruby that generates scripts without
communicating with the database.

• DBmaestro - a database version control and schema
migration solution for SQL Server and Oracle.

• DB Change Manager - Commercial Change Man-
agement Software by Embarcadero.

• Sqitch - Sqitch by Theory.

1.2.4 References

[1] http://www.liquibase.org/ Liquibase Database Refactor-
ing

[2] http://flywaydb.org/ Flyway: The agile database migra-
tion framework for Java

https://en.wikipedia.org/wiki/Migration_testing
https://en.wikipedia.org/wiki/Software_development_lifecycle
https://en.wikipedia.org/wiki/Version_control_systems
https://en.wikipedia.org/wiki/Version_control_systems
https://en.wikipedia.org/wiki/Branch_(software)
https://en.wikipedia.org/wiki/Software_testing
https://en.wikipedia.org/wiki/Software_build
https://en.wikipedia.org/wiki/Test_automation
http://flywaydb.org/
https://en.wikipedia.org/wiki/LiquiBase
http://datical.com/
http://www.red-gate.com/products/sql-development/sql-compare/
http://www.ready-roll.com/
http://guides.rubyonrails.org/migrations.html
https://github.com/ruckus/ruckusing-migrations
https://github.com/robmorgan/phinx
http://mybatis.github.io/migrations/
https://github.com/weavejester/ragtime
https://github.com/budu/lobos
http://alembic.readthedocs.org/en/latest/
https://github.com/chucknorris/roundhouse/wiki
https://github.com/rtweeks/xmigra
http://www.dbmaestro.com/
http://www.embarcadero.com/products/db-change-manager/
http://sqitch.org/
http://www.liquibase.org/
https://en.wikipedia.org/wiki/Liquibase
http://flywaydb.org/

16 CHAPTER 1. DATABASES

1.3 Star schema

In computing, the Star Schema is the simplest style of
data mart schema. The star schema consists of one or
more fact tables referencing any number of dimension
tables. The star schema is an important special case of
the snowflake schema, and is more effective for handling
simpler queries.[1]

The star schema gets its name from the physical model’s[2]

resemblance to a star shape with a fact table at its center
and the dimension tables surrounding it representing the
star’s points.

1.3.1 Model

The star schema separates business process data into
facts, which hold the measurable, quantitative data about
a business, and dimensions which are descriptive at-
tributes related to fact data. Examples of fact data include
sales price, sale quantity, and time, distance, speed, and
weight measurements. Related dimension attribute ex-
amples include product models, product colors, product
sizes, geographic locations, and salesperson names.
A star schema that has many dimensions is sometimes
called a centipede schema.[3] Having dimensions of only
a few attributes, while simpler to maintain, results in
queries with many table joins and makes the star schema
less easy to use.

Fact tables

Fact tables record measurements or metrics for a specific
event. Fact tables generally consist of numeric values, and
foreign keys to dimensional data where descriptive infor-
mation is kept.[3] Fact tables are designed to a low level
of uniform detail (referred to as “granularity” or “grain”),
meaning facts can record events at a very atomic level.
This can result in the accumulation of a large number of
records in a fact table over time. Fact tables are defined
as one of three types:

• Transaction fact tables record facts about a specific
event (e.g., sales events)

• Snapshot fact tables record facts at a given point in
time (e.g., account details at month end)

• Accumulating snapshot tables record aggregate facts
at a given point in time (e.g., total month-to-date
sales for a product)

Fact tables are generally assigned a surrogate key to en-
sure each row can be uniquely identified.

Dimension tables

Dimension tables usually have a relatively small number
of records compared to fact tables, but each record may
have a very large number of attributes to describe the fact
data. Dimensions can define a wide variety of character-
istics, but some of the most common attributes defined
by dimension tables include:

• Time dimension tables describe time at the low-
est level of time granularity for which events are
recorded in the star schema

• Geography dimension tables describe location data,
such as country, state, or city

• Product dimension tables describe products
• Employee dimension tables describe employees,

such as sales people
• Range dimension tables describe ranges of time,

dollar values, or other measurable quantities to sim-
plify reporting

Dimension tables are generally assigned a surrogate pri-
mary key, usually a single-column integer data type,
mapped to the combination of dimension attributes that
form the natural key.

1.3.2 Benefits

Star schemas are denormalized, meaning the normal
rules of normalization applied to transactional rela-
tional databases are relaxed during star schema de-
sign and implementation. The benefits of star schema
denormalization are:

• Simpler queries - star schema join logic is generally
simpler than the join logic required to retrieve data
from a highly normalized transactional schemas.

• Simplified business reporting logic - when compared
to highly normalized schemas, the star schema sim-
plifies common business reporting logic, such as
period-over-period and as-of reporting.

• Query performance gains - star schemas can provide
performance enhancements for read-only reporting
applications when compared to highly normalized
schemas.

• Fast aggregations - the simpler queries against a star
schema can result in improved performance for ag-
gregation operations.

• Feeding cubes - star schemas are used by all OLAP
systems to build proprietary OLAP cubes effi-
ciently; in fact, most major OLAP systems provide
a ROLAP mode of operation which can use a star
schema directly as a source without building a pro-
prietary cube structure.

https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Data_mart
https://en.wikipedia.org/wiki/Logical_schema
https://en.wikipedia.org/wiki/Fact_table
https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
https://en.wikipedia.org/wiki/Dimension_(data_warehouse)
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Physical_data_model
https://en.wikipedia.org/wiki/Star_polygon
https://en.wikipedia.org/wiki/Surrogate_key
https://en.wikipedia.org/wiki/Surrogate_key
https://en.wikipedia.org/wiki/Surrogate_key
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/OLAP_cube
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/ROLAP

1.3. STAR SCHEMA 17

1.3.3 Disadvantages

The main disadvantage of the star schema is that data in-
tegrity is not enforced as well as it is in a highly normal-
ized database. One-off inserts and updates can result in
data anomalies which normalized schemas are designed
to avoid. Generally speaking, star schemas are loaded in
a highly controlled fashion via batch processing or near-
real time “trickle feeds”, to compensate for the lack of
protection afforded by normalization.
Star schema is also not as flexible in terms of analytical
needs as a normalized data model. Normalized models al-
low any kind of analytical queries to be executed as long
as they follow the business logic defined in the model.
Star schemas tend to be more purpose-built for a partic-
ular view of the data, thus not really allowing more com-
plex analytics. Star schemas don't support many-to-many
relationships between business entities - at least not very
naturally. Typically these relationships are simplified in
star schema to conform to the simple dimensional model.

1.3.4 Example

Star schema used by example query.

Consider a database of sales, perhaps from a store chain,
classified by date, store and product. The image of the
schema to the right is a star schema version of the sample
schema provided in the snowflake schema article.
Fact_Sales is the fact table and there are three dimension
tables Dim_Date, Dim_Store and Dim_Product.
Each dimension table has a primary key on its Id col-
umn, relating to one of the columns (viewed as rows
in the example schema) of the Fact_Sales table’s three-
column (compound) primary key (Date_Id, Store_Id,
Product_Id). The non-primary key Units_Sold column
of the fact table in this example represents a measure or
metric that can be used in calculations and analysis. The
non-primary key columns of the dimension tables repre-
sent additional attributes of the dimensions (such as the
Year of the Dim_Date dimension).
For example, the following query answers how many TV
sets have been sold, for each brand and country, in 1997:

SELECT P.Brand, S.Country AS Countries,
SUM(F.Units_Sold) FROM Fact_Sales F INNER
JOIN Dim_Date D ON (F.Date_Id = D.Id) INNER
JOIN Dim_Store S ON (F.Store_Id = S.Id) INNER
JOIN Dim_Product P ON (F.Product_Id = P.Id)
WHERE D.Year = 1997 AND P.Product_Category =
'tv' GROUP BY P.Brand, S.Country

1.3.5 See also

• Online analytical processing

• Reverse star schema

• Snowflake schema

• Fact constellation

1.3.6 References
[1] “DWH Schemas”. 2009.

[2] C J Date, “An Introduction to Database Systems (Eighth
Edition)", p. 708

[3] Ralph Kimball and Margy Ross, The Data Warehouse
Toolkit: The Complete Guide to Dimensional Modeling
(Second Edition), p. 393

1.3.7 External links

• Designing the Star Schema Database by Craig Utley

• Stars: A Pattern Language for Query Optimized
Schema

• Fact constellation schema

• Data Warehouses, Schemas and Decision Support
Basics by Dan Power

https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Online_analytical_processing
https://en.wikipedia.org/wiki/Reverse_star_schema
https://en.wikipedia.org/wiki/Snowflake_schema
https://en.wikipedia.org/wiki/Fact_constellation
http://www.dwhworld.com/dwh-schemas/
http://ciobriefings.com/Publications/WhitePapers/DesigningtheStarSchemaDatabase/tabid/101/Default.aspx
http://c2.com/ppr/stars.html
http://c2.com/ppr/stars.html
http://datawarehouse4u.info/Data-warehouse-schema-architecture-fact-constellation-schema.html
http://www.b-eye-network.com/view/8451
http://www.b-eye-network.com/view/8451

Chapter 2

Not Only SQL

2.1 CAP

CAP may refer to:

2.1.1 Science and medicine

• CaP, prostate cancer

• CAP (protein), cyclase-associated protein

• Carrierless amplitude phase modulation

• Catabolite activator protein, a regulatory protein for
mRNA transcription in prokaryotes that binds cyclic
AMP

• Cellulose acetate phthalate, a cellulose-based poly-
mer

• Community-acquired pneumonia

2.1.2 Computing

• CAP computer, an experimental machine built in
Cambridge, UK

• CAP theorem, Consistency, Availability, Partition-
tolerance theorem in computer science

• Camel Application Part, a protocol used in CAMEL
servers

• Common Alerting Protocol, an XML based data
format for exchanging public warnings between dif-
ferent alerting technologies

2.1.3 Organisations

• Canadian Action Party

• Canadian Association of Physicists

• Center for Adoption Policy

• Center for American Progress, a left-of-centre think
tank

• Central Atlanta Progress

• Chicago Area Project, a juvenile delinquency
project

• Christian Appalachian Project, a program to assist
disadvantaged persons in Kentucky and West Vir-
ginia

• Christians Against Poverty, the UK charity

• Church Action on Poverty, UK national ecumenical
social justice charity established in 1982

• College of American Pathologists

• Committee of Advertising Practice

• Committee for Another Policy (Comité voor een An-
dere Politiek / Comité pour une Autre Politique), a
Belgian political movement

• Concerned Alumni of Princeton

• Congress of Aboriginal Peoples, Canadian aborigi-
nal organization

2.1.4 Companies

• Companhia Aeronáutica Paulista, a 1940s Brazilian
aircraft manufacturer

• CAP Group (Computer Analysts and Program-
mers), a UK software company

• CAP S.A. (Compañía de Acero del Pacífico), a
Chilean mining and steel sector holding company

• CAP Scientific, a British defence software company
(1979-1988)

• Constructions Aéronautiques Parisiennes, Apex
Aircraft training and aerobatic aircraft

18

https://en.wikipedia.org/wiki/Prostate_cancer
https://en.wikipedia.org/wiki/CAP_(protein)
https://en.wikipedia.org/wiki/Carrierless_amplitude_phase_modulation
https://en.wikipedia.org/wiki/Catabolite_activator_protein
https://en.wikipedia.org/wiki/Cellulose_acetate_phthalate
https://en.wikipedia.org/wiki/Community-acquired_pneumonia
https://en.wikipedia.org/wiki/CAP_computer
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Camel_Application_Part
https://en.wikipedia.org/wiki/Common_Alerting_Protocol
https://en.wikipedia.org/wiki/Canadian_Action_Party
https://en.wikipedia.org/wiki/Canadian_Association_of_Physicists
https://en.wikipedia.org/wiki/Center_for_Adoption_Policy
https://en.wikipedia.org/wiki/Center_for_American_Progress
https://en.wikipedia.org/wiki/Central_Atlanta_Progress
https://en.wikipedia.org/wiki/Chicago_Area_Project
https://en.wikipedia.org/wiki/Christian_Appalachian_Project
https://en.wikipedia.org/wiki/Christians_Against_Poverty
https://en.wikipedia.org/wiki/Church_Action_on_Poverty
https://en.wikipedia.org/wiki/College_of_American_Pathologists
https://en.wikipedia.org/wiki/Committee_of_Advertising_Practice
https://en.wikipedia.org/wiki/Committee_for_Another_Policy
https://en.wikipedia.org/wiki/Concerned_Alumni_of_Princeton
https://en.wikipedia.org/wiki/Congress_of_Aboriginal_Peoples
https://en.wikipedia.org/wiki/Companhia_Aeron%C3%A1utica_Paulista
https://en.wikipedia.org/wiki/CAP_Group
https://en.wikipedia.org/wiki/CAP_S.A.
https://en.wikipedia.org/wiki/CAP_Scientific
https://en.wikipedia.org/wiki/Apex_Aircraft
https://en.wikipedia.org/wiki/Apex_Aircraft

2.2. EVENTUAL CONSISTENCY 19

2.1.5 Projects, programs, policies

• Common Agricultural Policy, the European Union’s
agricultural subsidy system

• Community Access Program, a government of
Canada initiative to provide access to the Internet
in remote areas

• Capital Assistance Program

• Community Action Program, Lyndon Johnson’s
anti-poverty programs

• Community Action Programme, United Kingdom
workfare scheme

2.1.6 Military

• Combat air patrol

• Combined Action Program (AKA Combined Ac-
tion Platoon), a United States Marine Corps Viet-
nam era special operation

• Civil Air Patrol, the official US Air Force Auxiliary

2.1.7 Certifications

• Certified Automation Professional, certification
from the International Society of Automation

• Certified Administrative Professional, certification
from the International Association of Administra-
tive Professionals

2.1.8 Other

• Carlos Andrés Pérez (1922-2010), twice President
of Venezuela

• CAP Markets, social franchise and supermarket
chain in Germany

• Capital Airlines, the ICAO airline designator for this
airline

• Causal adequacy principle, a philosophical claim
made by René Descartes

• Central Arizona Project, the Colorado River diver-
sion canal in Arizona

• Chip Authentication Program, using EMV smart-
cards to authenticate online banking transactions

• Coded Anti-Piracy, an anti-piracy system for mo-
tion picture prints exhibited theatrically

• Consolidated Appeals Process, a funding mecha-
nism used by humanitarian aid organisations

• Codice di Avviamento Postale, literally Postal Expe-
dition Code, Italy’s postal code system

• Estadio CAP (Compañía de Acero del Pacífico), a
football stadium in Talcahuano, Chile

2.1.9 See also

• CAP code (disambiguation)

• Cap (disambiguation)

2.2 Eventual consistency

Eventual consistency is a consistency model used in
distributed computing to achieve high availability that in-
formally guarantees that, if no new updates are made to
a given data item, eventually all accesses to that item will
return the last updated value.[1] Eventual consistency is
widely deployed in distributed systems, often under the
moniker of optimistic replication,[2] and has origins in
early mobile computing projects.[3] A system that has
achieved eventual consistency is often said to have con-
verged, or achieved replica convergence.[4] Eventual
consistency is a weak guarantee - most stronger models,
like linearizability are trivially eventually consistent, but a
system that is merely eventually consistent doesn't usually
fulfill these stronger constraints.
Eventually consistent services are often classified
as providing BASE (Basically Available, Soft state,
Eventual consistency) semantics, in contrast to tra-
ditional ACID (Atomicity, Consistency, Isolation,
Durability) guarantees.[5][6] Eventual consistency is
sometimes criticized[7] as increasing the complexity of
distributed software applications. This is partly because
eventual consistency is purely a liveness guarantee (reads
eventually return the same value) and does not make
safety guarantees: an eventually consistent system can
return any value before it converges.

2.2.1 Conflict resolution

In order to ensure replica convergence, a system must rec-
oncile differences between multiple copies of distributed
data. This consists of two parts:

• exchanging versions or updates of data between
servers (often known as anti-entropy);[8] and

• choosing an appropriate final state when concurrent
updates have occurred, called reconciliation.

The most appropriate approach to reconciliation depends
on the application. A widespread approach is “last writer
wins”.[1] Another is to invoke a user-specified conflict

https://en.wikipedia.org/wiki/Common_Agricultural_Policy
https://en.wikipedia.org/wiki/Community_Access_Program
https://en.wikipedia.org/wiki/Capital_Assistance_Program
https://en.wikipedia.org/wiki/Community_Action_Program
https://en.wikipedia.org/wiki/Community_Action_Programme
https://en.wikipedia.org/wiki/Combat_air_patrol
https://en.wikipedia.org/wiki/Combined_Action_Program
https://en.wikipedia.org/wiki/Civil_Air_Patrol
https://en.wikipedia.org/wiki/Certified_Automation_Professional
https://en.wikipedia.org/wiki/International_Association_of_Administrative_Professionals
https://en.wikipedia.org/wiki/International_Association_of_Administrative_Professionals
https://en.wikipedia.org/wiki/Carlos_Andr%C3%A9s_P%C3%A9rez
https://en.wikipedia.org/wiki/CAP_Markets
https://en.wikipedia.org/wiki/Capital_Airlines
https://en.wikipedia.org/wiki/Causal_adequacy_principle
https://en.wikipedia.org/wiki/Central_Arizona_Project
https://en.wikipedia.org/wiki/Chip_Authentication_Program
https://en.wikipedia.org/wiki/Coded_Anti-Piracy
https://en.wikipedia.org/wiki/Consolidated_Appeals_Process
https://en.wikipedia.org/wiki/Codice_di_Avviamento_Postale
https://en.wikipedia.org/wiki/Estadio_CAP
https://en.wikipedia.org/wiki/CAP_code_(disambiguation)
https://en.wikipedia.org/wiki/Cap_(disambiguation)
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Optimistic_replication
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Liveness
https://en.wikipedia.org/wiki/Safety_(distributed_computing)

20 CHAPTER 2. NOT ONLY SQL

handler.[4] Timestamps and vector clocks are often used
to detect concurrency between updates.
Reconciliation of concurrent writes must occur sometime
before the next read, and can be scheduled at different
instants:[3][9]

• Read repair: The correction is done when a read
finds an inconsistency. This slows down the read op-
eration.

• Write repair: The correction takes place during a
write operation, if an inconsistency has been found,
slowing down the write operation.

• Asynchronous repair: The correction is not part of
a read or write operation.

2.2.2 Strong eventual consistency

Whereas EC is only a liveness guarantee (updates will be
observed eventually), Strong Eventual Consistency (SEC)
adds the safety guarantee that any two nodes that have
received the same (unordered) set of updates will be in
the same state. If, furthermore, the system is monotonic,
the application will never suffer rollbacks. Conflict-free
replicated data types are a common approach to ensuring
SEC.[10]

2.2.3 See also

• CAP theorem

2.2.4 References

[1] Vogels, W. (2009). “Eventually consistent”. Communica-
tions of the ACM 52: 40. doi:10.1145/1435417.1435432.

[2] Vogels, W. (2008). “Eventually Consistent”. Queue 6 (6):
14. doi:10.1145/1466443.1466448.

[3] Terry, D. B.; Theimer, M. M.; Petersen, K.; Demers, A.
J.; Spreitzer, M. J.; Hauser, C. H. (1995). “Managing
update conflicts in Bayou, a weakly connected replicated
storage system”. Proceedings of the fifteenth ACM sympo-
sium on Operating systems principles - SOSP '95. p. 172.
doi:10.1145/224056.224070. ISBN 0897917154.

[4] Petersen, K.; Spreitzer, M. J.; Terry, D. B.; Theimer,
M. M.; Demers, A. J. (1997). “Flexible update
propagation for weakly consistent replication”. ACM
SIGOPS Operating Systems Review 31 (5): 288.
doi:10.1145/269005.266711.

[5] Pritchett, D. (2008). “Base: An Acid Alternative”. Queue
6 (3): 48. doi:10.1145/1394127.1394128.

[6] Bailis, P.; Ghodsi, A. (2013). “Eventual Consistency To-
day: Limitations, Extensions, and Beyond”. Queue 11 (3):
20. doi:10.1145/2460276.2462076.

[7] Yaniv Pessach (2013), Distributed Storage (Distributed
Storage: Concepts, Algorithms, and Implementations
ed.), Amazon, Systems using Eventual Consistency result
in decreased system load and increased system availability
but result in increased cognitive complexity for users and
developers

[8] Demers, A.; Greene, D.; Hauser, C.; Irish, W.; Larson,
J. (1987). “Epidemic algorithms for replicated database
maintenance”. Proceedings of the sixth annual ACM Sym-
posium on Principles of distributed computing - PODC '87.
p. 1. doi:10.1145/41840.41841. ISBN 978-0-89791-
239-6.

[9] Olivier Mallassi (2010-06-09). “Let’s play with Cas-
sandra… (Part 1/3)". http://blog.octo.com/en/: OCTO
Talks!. Retrieved 2011-03-23. Of course, at a given time,
chances are high that each node has its own version of the
data. Conflict resolution is made during the read requests
(called read-repair) and the current version of Cassandra
does not provide a Vector Clock conflict resolution mech-
anisms [sic] (should be available in the version 0.7). Con-
flict resolution is so based on timestamp (the one set when
you insert the row or the column): the higher timestamp
win[s] and the node you are reading the data [from] is re-
sponsible for that. This is an important point because the
timestamp is specified by the client, at the moment the
column is inserted. Thus, all Cassandra clients’ [sic] need
to be synchronized...

[10] Shapiro, Marc; Preguiça, Nuno; Baquero, Carlos; Za-
wirski, Marek (2011-10-10). “Conflict-free replicated
data types”. SSS'11 Proceedings of the 13th international
conference on Stabilization, safety, and the security of
distributed systems (Springer-Verlag Berlin, Heidelberg):
386–400.

2.3 Object-relational impedance
mismatch

The object-relational impedance mismatch is a set of
conceptual and technical difficulties that are often en-
countered when a relational database management sys-
tem (RDBMS) is being used by a program written in
an object-oriented programming language or style, par-
ticularly when objects or class definitions are mapped
in a straightforward way to database tables or relational
schemata.
The term object-relational impedance mismatch is derived
from the electrical engineering term impedance matching.

2.3.1 Mismatches

Object-oriented concepts

Encapsulation Object-oriented programs are designed
with techniques that result in encapsulated objects whose
representation is hidden. In an object-oriented frame-
work, the underlying properties of a given object are ex-

https://en.wikipedia.org/wiki/Lamport_timestamps
https://en.wikipedia.org/wiki/Vector_clock
https://en.wikipedia.org/wiki/Liveness
https://en.wikipedia.org/wiki/Safety_(distributed_computing)
https://en.wikipedia.org/wiki/Monotonic
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_types
https://en.wikipedia.org/wiki/Conflict-free_replicated_data_types
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Werner_Vogels
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1435417.1435432
https://en.wikipedia.org/wiki/Werner_Vogels
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1466443.1466448
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F224056.224070
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0897917154
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F269005.266711
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1394127.1394128
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F2460276.2462076
http://openlibrary.org/books/OL25423189M/Distributed_Storage_Concepts_Algorithms_and_Implementations
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F41840.41841
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-89791-239-6
https://en.wikipedia.org/wiki/Special:BookSources/978-0-89791-239-6
http://blog.octo.com/en/nosql-lets-play-with-cassandra-part-13/
http://blog.octo.com/en/nosql-lets-play-with-cassandra-part-13/
http://blog.octo.com/en/
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Object-oriented
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Electrical_engineering
https://en.wikipedia.org/wiki/Impedance_matching
https://en.wikipedia.org/wiki/Encapsulation_(object-oriented_programming)
https://en.wikipedia.org/wiki/Object_(computer_science)

2.3. OBJECT-RELATIONAL IMPEDANCE MISMATCH 21

pected to be unexposed to any interface outside of the
one implemented alongside the object. However, object-
relational mapping necessarily exposes the underlying
content of an object to interaction with an interface that
the object implementation cannot specify. Hence, object-
relational mapping violates the encapsulation of the ob-
ject.

Accessibility In relational thinking, “private” versus
“public” access is relative to need rather than being an
absolute characteristic of the data’s state, as in the object-
oriented (OO) model. The relational and OO models of-
ten have conflicts over relativity versus absolutism of clas-
sifications and characteristics.

Interface, class, inheritance and polymorphism Un-
der an object-oriented paradigm, objects have interfaces
that together provide the only access to the internals of
that object. The relational model, on the other hand, uti-
lizes derived relation variables (views) to provide vary-
ing perspectives and constraints to ensure integrity. Sim-
ilarly, essential OOP concepts for classes of objects,
inheritance and polymorphism, are not supported by re-
lational database systems.

Mapping to relational concepts A proper mapping
between relational concepts and object-oriented concepts
can be made if relational database tables are linked to
associations found in object-oriented analysis.

Data type differences

A major mismatch between existing relational and OO
languages is the type system differences. The rela-
tional model strictly prohibits by-reference attributes (or
pointers), whereas OO languages embrace and expect
by-reference behavior. Scalar types and their operator
semantics can be vastly different between the models,
causing problems in mapping.
For example, most SQL systems support string types
with varying collations and constrained maximum lengths
(open-ended text types tend to hinder performance),
while most OO languages consider collation only as an ar-
gument to sort routines and strings are intrinsically sized
to available memory. A more subtle, but related example
is that SQL systems often ignore trailing white space in a
string for the purposes of comparison, whereas OO string
libraries do not. It is typically not possible to construct
new data types as a matter of constraining the possible
values of other primitive types in an OO language.

Structural and integrity differences

Another mismatch has to do with the differences in the
structural and integrity aspects of the contrasted mod-

els. In OO languages, objects can be composed of other
objects—often to a high degree—or specialize from a
more general definition. This may make the mapping to
relational schemas less straightforward. This is because
relational data tends to be represented in a named set
of global, unnested relation variables. Relations them-
selves, being sets of tuples all conforming to the same
header do not have an ideal counterpart in OO languages.
Constraints in OO languages are generally not declared as
such, but are manifested as exception raising protection
logic surrounding code that operates on encapsulated in-
ternal data. The relational model, on the other hand, calls
for declarative constraints on scalar types, attributes, re-
lation variables, and the database as a whole.

Manipulative differences

The semantic differences are especially apparent in the
manipulative aspects of the contrasted models, however.
The relational model has an intrinsic, relatively small
and well-defined set of primitive operators for usage in
the query and manipulation of data, whereas OO lan-
guages generally handle query and manipulation through
custom-built or lower-level, case- and physical-access-
path-specific imperative operations. Some OO languages
do have support for declarative query sublanguages, but
because OO languages typically deal with lists and per-
haps hash tables, the manipulative primitives are neces-
sarily distinct from the set-based operations of the rela-
tional model.

Transactional differences

The concurrency and transaction aspects are significantly
different also. In particular, transactions, the smallest
unit of work performed by databases, are much larger
in relational databases than are any operations performed
by classes in OO languages. Transactions in relational
databases are dynamically bounded sets of arbitrary data
manipulations, whereas the granularity of transactions in
an OO language is typically on the level of individual as-
signments to primitive-typed fields. In general, OO lan-
guages have no analogue of isolation or durability, so
atomicity and consistency are only ensured when writing
to fields of those primitive types.

2.3.2 Solving impedance mismatch

Solving the impedance mismatch problem for object-
oriented programs starts with recognition of the differ-
ences in the specific logic systems being employed, then
either the minimization or compensation of the mis-
match.

https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Interface_(computer_science)
https://en.wikipedia.org/wiki/View_(database)
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Inheritance_(computer_science)
https://en.wikipedia.org/wiki/Polymorphism_(computer_science)
https://en.wikipedia.org/wiki/Association_(object-oriented_programming)
https://en.wikipedia.org/wiki/Object-oriented_analysis
https://en.wikipedia.org/wiki/Type_system
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Scalar_(computing)
https://en.wikipedia.org/wiki/Semantics
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/Collation
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Whitespace_(computer_science)
https://en.wikipedia.org/wiki/Tuple
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Sublanguage
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Set_(computer_science)
https://en.wikipedia.org/wiki/Database_transaction

22 CHAPTER 2. NOT ONLY SQL

Minimization

There have been some attempts at building object-
oriented database management systems (OODBMS) that
would avoid the impedance mismatch problem. They
have been less successful in practice than relational
databases however, partly due to the limitations of OO
principles as a basis for a data model.[1] There has
been research performed in extending the database-like
capabilities of OO languages through such notions as
transactional memory.
One common solution to the impedance mismatch prob-
lem is to layer the domain and framework logic. In this
scheme, the OO language is used to model certain re-
lational aspects at runtime rather than attempt the more
static mapping. Frameworks which employ this method
will typically have an analogue for a tuple, usually as a
“row” in a “dataset” component or as a generic “entity
instance” class, as well as an analogue for a relation. Ad-
vantages of this approach may include:

• Straightforward paths to build frameworks and au-
tomation around transport, presentation, and valida-
tion of domain data.

• Smaller code size; faster compile and load times.

• Ability for the schema to change dynamically.

• Avoids the name-space and semantic mismatch is-
sues.

• Expressive constraint checking

• No complex mapping necessary

Disadvantages may include:

• Lack of static type “safety” checks. Typed accessors
are sometimes utilized as one way to mitigate this.

• Possible performance cost of runtime construction
and access.

• Inability to natively utilize uniquely OO aspects,
such as polymorphism.

Alternative architectures

The rise of XML databases and XML client structures has
motivated other alternative architectures to get around
the impedance mismatch challenges. These architectures
use XML technology in the client (such as XForms) and
native XML databases on the server that use the XQuery
language for data selection. This allows a single data
model and a single data selection language (XPath) to be
used in the client, in the rules engines and on the persis-
tence server.[2]

Compensation

The mixing of levels of discourse within OO applica-
tion code presents problems, but there are some com-
mon mechanisms used to compensate. The biggest chal-
lenge is to provide framework support, automation of
data manipulation and presentation patterns, within the
level of discourse in which the domain data is being mod-
eled. To address this, reflection and/or code generation
are utilized. Reflection allows code (classes) to be ad-
dressed as data and thus provide automation of the trans-
port, presentation, integrity, etc. of the data. Gener-
ation addresses the problem through addressing the en-
tity structures as data inputs for code generation tools or
meta-programming languages, which produce the classes
and supporting infrastructure en masse. Both of these
schemes may still be subject to certain anomalies where
these levels of discourse merge. For instance, generated
entity classes will typically have properties which map to
the domain (e. g. Name, Address) as well as properties
which provide state management and other framework in-
frastructure (e. g. IsModified).

2.3.3 Contention

It has been argued, by Christopher J. Date and oth-
ers, that a truly relational DBMS would pose no such
problem,[3][4][5] as domains and classes are essentially one
and the same thing. A naïve mapping between classes and
relational schemata is a fundamental design mistake ; and
that individual tuples within a database table (relation)
ought to be viewed as establishing relationships between
entities; not as representations for complex entities them-
selves. However, this view tends to diminish the influence
and role of object-oriented programming, using it as little
more than a field type management system.
The impedance mismatch is in programming between the
domain objects and the user interface. Sophisticated user
interfaces, to allow operators, managers, and other non-
programmers to access and manipulate the records in the
database, often require intimate knowledge about the na-
ture of the various database attributes (beyond name and
type). In particular, it’s considered a good practice (from
an end-user productivity point of view) to design user
interfaces such that the UI prevents illegal transactions
(those which cause a database constraint to be violated)
from being entered; to do so requires much of the logic
present in the relational schemata to be duplicated in the
code.
Certain code-development frameworks can leverage cer-
tain forms of logic that are represented in the database’s
schema (such as referential integrity constraints), so that
such issues are handled in a generic and standard fashion
through library routines rather than ad hoc code written
on a case-by-case basis.
It has been argued that SQL, due to a very limited set of

https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Polymorphism_in_object-oriented_programming
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/XForms
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/Levels_of_discourse
https://en.wikipedia.org/wiki/Reflection_(computer_science)
https://en.wikipedia.org/wiki/Automatic_programming
https://en.wikipedia.org/wiki/Christopher_J._Date
https://en.wikipedia.org/wiki/Relational_DBMS
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Domain_object
https://en.wikipedia.org/wiki/User_interface
https://en.wikipedia.org/wiki/Database_constraints
https://en.wikipedia.org/wiki/Code_duplication
https://en.wikipedia.org/wiki/SQL

2.3. OBJECT-RELATIONAL IMPEDANCE MISMATCH 23

domain types (and other alleged flaws) makes proper ob-
ject and domain-modelling difficult; and that SQL con-
stitutes a very lossy and inefficient interface between a
DBMS and an application program (whether written in an
object-oriented style or not). However, SQL is currently
the only widely accepted common database language in
the marketplace; use of vendor-specific query languages
is seen as a bad practice when avoidable. Other database
languages such as Business System 12 and Tutorial D
have been proposed; but none of these has been widely
adopted by DBMS vendors.
In current versions of mainstream “object-relational”
DBMSs like Oracle and Microsoft SQL Server, the above
point may be a non-issue. With these engines, the func-
tionality of a given database can be arbitrarily extended
through stored code (functions and procedures) written
in a modern OO language (Java for Oracle, and a Mi-
crosoft .NET language for SQL Server), and these func-
tions can be invoked in-turn in SQL statements in a trans-
parent fashion: that is, the user neither knows nor cares
that these functions/procedures were not originally part
of the database engine. Modern software-development
paradigms are fully supported: thus, one can create a set
of library routines that can be re-used across multiple
database schemas.
These vendors decided to support OO-language inte-
gration at the DBMS back-end because they realized
that, despite the attempts of the ISO SQL-99 commit-
tee to add procedural constructs to SQL, SQL will never
have the rich set of libraries and data structures that
today’s application programmers take for granted, and
it is reasonable to leverage these as directly as possi-
ble rather than attempting to extend the core SQL lan-
guage. Consequently, the difference between “applica-
tion programming” and “database administration” is now
blurred: robust implementation of features such as con-
straints and triggers may often require an individual with
dual DBA/OO-programming skills, or a partnership be-
tween individuals who combine these skills. This fact also
bears on the “division of responsibility” issue below.
Some, however, would point out that this contention is
moot due to the fact that: (1) RDBMSes were never in-
tended to facilitate object modelling, and (2) SQL gen-
erally should only be seen as a “lossy” or “inefficient”
interface language when one is trying to achieve a so-
lution for which RDBMSes were not designed. SQL is
very efficient at doing what it was designed to do, namely,
to query, sort, filter, and store large sets of data. Some
would additionally point out that the inclusion of OO lan-
guage functionality in the back-end simply facilitates bad
architectural practice, as it admits high-level application
logic into the data tier, antithetical to the RDBMS.
Here the “canonical” copy of state is located. The
database model generally assumes that the database man-
agement system is the only authoritative repository of
state concerning the enterprise; any copies of such state

held by an application program are just that — tempo-
rary copies (which may be out of date, if the underlying
database record was subsequently modified by a transac-
tion). Many object-oriented programmers prefer to view
the in-memory representations of objects themselves as
the canonical data, and view the database as a backing
store and persistence mechanism.
Another point of contention is the proper division
of responsibility between application programmers and
database administrators (DBA). It is often the case that
needed changes to application code (in order to imple-
ment a requested new feature or functionality) require
corresponding changes in the database definition; in most
organizations, the database definition is the responsibil-
ity of the DBA. Due to the need to maintain a produc-
tion database system 24 hours a day many DBAs are re-
luctant to make changes to database schemata that they
deem gratuitous or superfluous and in some cases outright
refuse to do so. Use of developmental databases (apart
from production systems) can help somewhat; but when
the newly developed application “goes live” the DBA
will need to approve any changes. Some programmers
view this as intransigence; however the DBA is frequently
held responsible if any changes to the database definition
cause a loss of service in a production system—as a result,
many DBAs prefer to contain design changes to applica-
tion code, where design defects are far less likely to have
catastrophic consequences.
In organizations with a non-dysfunctional relationship be-
tween DBAs and developers, though, the above issue
should not present itself, as the decision to change a
database schema or not would only be driven by business
needs: a new requirement to persist additional data or a
performance boost of a critical application would both
trigger a schema modification, for example.

2.3.4 Philosophical differences

Key philosophical differences between the OO and rela-
tional models can be summarized as follows:

• Declarative vs. imperative interfaces — Rela-
tional thinking tends to use data as interfaces, not
behavior as interfaces. It thus has a declarative tilt
in design philosophy in contrast to OO’s behavioral
tilt. (Some relational proponents propose using trig-
gers, stored procedures, etc. to provide complex be-
havior, but this is not a common viewpoint.)

• Schema bound — Objects do not have to follow
a “parent schema” for which attributes or accessors
an object has, while table rows must follow the en-
tity’s schema. A given row must belong to one and
only one entity. The closest thing in OO is inher-
itance, but it is generally tree-shaped and optional.
A dynamic form of relational tools that allows ad

https://en.wikipedia.org/wiki/Business_System_12
https://en.wikipedia.org/wiki/Tutorial_D
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_administrator

24 CHAPTER 2. NOT ONLY SQL

hoc columns may relax schema bound-ness, but such
tools are currently rare.

• Access rules — In relational databases, attributes
are accessed and altered through predefined rela-
tional operators, while OO allows each class to cre-
ate its own state alteration interface and practices.
The “self-handling noun” viewpoint of OO gives in-
dependence to each object that the relational model
does not permit. This is a “standards versus local
freedom” debate. OO tends to argue that relational
standards limit expressiveness, while relational pro-
ponents suggest the rule adherence allows more ab-
stract math-like reasoning, integrity, and design con-
sistency.

• Relationship between nouns and verbs— OO en-
courages a tight association between verbs (actions)
and the nouns (entities) that the operations operate
on. The resulting tightly bound entity containing
both nouns and the verbs is usually called a class, or
in OO analysis, a concept. Relational designs gener-
ally do not assume there is anything natural or logical
about such tight associations (outside of relational
operators).

• Object identity — Objects (other than immutable
ones) are generally considered to have a unique iden-
tity; two objects which happen to have the same
state at a given point in time are not considered to
be identical. Relations, on the other hand, have no
inherent concept of this kind of identity. That said,
it is a common practice to fabricate “identity” for
records in a database through use of globally unique
candidate keys; though many consider this a poor
practice for any database record which does not have
a one-to-one correspondence with a real world en-
tity. (Relational, like objects, can use domain keys
if they exist in the external world for identification
purposes). Relational systems in practice strive for
and support “permanent” and inspectable identifica-
tion techniques, whereas object identification tech-
niques tend to be transient or situational.

• Normalization — Relational normalization prac-
tices are often ignored by OO designs. However,
this may just be a bad habit instead of a native fea-
ture of OO. An alternate view is that a collection
of objects, interlinked via pointers of some sort, is
equivalent to a network database; which in turn can
be viewed as an extremely denormalized relational
database.

• Schema inheritance — Most relational databases
do not support schema inheritance. Although such a
feature could be added in theory to reduce the con-
flict with OOP, relational proponents are less likely
to believe in the utility of hierarchical taxonomies
and sub-typing because they tend to view set-based

taxonomies or classification systems as more power-
ful and flexible than trees. OO advocates point out
that inheritance/subtyping models need not be lim-
ited to trees (though this is a limitation in many pop-
ular OO languages such as Java), but non-tree OO
solutions are seen as more difficult to formulate than
set-based variation-on-a-theme management tech-
niques preferred by relational. At the least, they dif-
fer from techniques commonly used in relational al-
gebra.

• Structure vs. behaviour — OO primarily focuses
on ensuring that the structure of the program is
reasonable (maintainable, understandable, extensi-
ble, reusable, safe), whereas relational systems fo-
cus on what kind of behaviour the resulting run-time
system has (efficiency, adaptability, fault-tolerance,
liveness, logical integrity, etc.). Object-oriented
methods generally assume that the primary user of
the object-oriented code and its interfaces are the ap-
plication developers. In relational systems, the end-
users’ view of the behaviour of the system is some-
times considered to be more important. However,
relational queries and “views” are common tech-
niques to present information in application- or task-
specific configurations. Further, relational does not
prohibit local or application-specific structures or ta-
bles from being created, although many common de-
velopment tools do not directly provide such a fea-
ture, assuming objects will be used instead. This
makes it difficult to know whether the stated non-
developer perspective of relational is inherent to re-
lational, or merely a product of current practice and
tool implementation assumptions.

• Set vs. graph relationships — The relationship
between different items (objects or records) tend to
be handled differently between the paradigms. Re-
lational relationships are usually based on idioms
taken from set theory, while object relationships
lean toward idioms adopted from graph theory (in-
cluding trees). While each can represent the same
information as the other, the approaches they pro-
vide to access and manage information differ.

As a result of the object-relational impedance mismatch,
it is often argued by partisans on both sides of the de-
bate that the other technology ought to be abandoned or
reduced in scope.[6] Some database advocates view tra-
ditional “procedural” languages as more compatible with
an RDBMS than many OO languages; or suggest that a
less OO-style ought to be used. (In particular, it is ar-
gued that long-lived domain objects in application code
ought not to exist; any such objects that do exist should
be created when a query is made and disposed of when
a transaction or task is complete). On the other hand,
many OO advocates argue that more OO-friendly persis-
tence mechanisms, such as OODBMS, ought to be de-
veloped and used, and that relational technology ought

https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Conceptual_model_(computer_science)
https://en.wikipedia.org/wiki/Candidate_key
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Network_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Set_Theory
https://en.wikipedia.org/wiki/Java_(language)
https://en.wikipedia.org/wiki/Set_theory
https://en.wikipedia.org/wiki/Graph_theory
https://en.wikipedia.org/wiki/Tree_(graph_theory)
https://en.wikipedia.org/wiki/OODBMS

2.4. OBJECT DATABASE 25

to be phased out. Of course, it should be pointed out
that many (if not most) programmers and DBAs do not
hold either of these viewpoints; and view the object-
relational impedance mismatch as a mere fact of life that
information technology has to deal with.
It is also argued that the O/R mapping is paying off in
some situations, but is probably oversold: it has advan-
tages besides drawbacks. Skeptics point out that it is
worth to think carefully before using it, as it will add little
value in some cases.[7]

2.3.5 References
[1] C. J. Date, Relational Database Writings

[2] Dan McCreary, XRX: Simple, Elegant, Disruptive on
XML.com

[3] Date, Christopher ‘Chris’ J; Pascal, Fabian (2012-08-12)
[2005], “Type vs. Domain and Class”, Database debunk-
ings (World Wide Web log), Google, retrieved 12 Septem-
ber 2012.

[4] ——— (2006), “4. On the notion of logical differ-
ence”, Date on Database: writings 2000–2006, The ex-
pert’s voice in database; Relational database select writ-
ings, USA: Apress, p. 39, ISBN 978-1-59059-746-0,
Class seems to be indistinguishable from type, as that term
is classically understood.

[5] ——— (2004), “26. Object/Relational databases”, An in-
troduction to database systems (8th ed.), Pearson Addison
Wesley, p. 859, ISBN 978-0-321-19784-9, ...any such
rapprochement should be firmly based on the relational
model.

[6] Neward, Ted (2006-06-26). “The Vietnam of Computer
Science”. Interoperability Happens. Retrieved 2010-06-
02.

[7] J2EE Design and Development by Rod Johnson, © 2002
Wrox Press, p. 256.

2.3.6 External links

• The Object-Relational Impedance Mismatch - Agile
Data Essay

• The Vietnam of Computer Science - Examples of
mismatch problems

2.4 Object database

An object database (also object-oriented database
management system) is a database management sys-
tem in which information is represented in the form of
objects as used in object-oriented programming. Object
databases are different from relational databases which
are table-oriented. Object-relational databases are a hy-
brid of both approaches.

Object-Oriented Model

Object 1: Maintenance Report Object 1 Instance

Object 2: Maintenance Activity

Date
Activity Code
Route No.
Daily Production
Equipment Hours
Labor Hours

01-12-01
24
I-95
2.5
6.0
6.0

Activity Code
Activity Name
Production Unit
Average Daily Production Rate

Example of an object-oriented model[1]

Object databases have been considered since the early
1980s.[2]

2.4.1 Overview

Object-oriented database management systems
(OODBMSs) combine database capabilities with
object-oriented programming language capabilities.
OODBMSs allow object-oriented programmers to de-
velop the product, store them as objects, and replicate or
modify existing objects to make new objects within the
OODBMS. Because the database is integrated with the
programming language, the programmer can maintain
consistency within one environment, in that both the
OODBMS and the programming language will use
the same model of representation. Relational DBMS
projects, by way of contrast, maintain a clearer division
between the database model and the application.
As the usage of web-based technology increases with
the implementation of Intranets and extranets, companies
have a vested interest in OODBMSs to display their com-
plex data. Using a DBMS that has been specifically de-
signed to store data as objects gives an advantage to those
companies that are geared towards multimedia presenta-
tion or organizations that utilize computer-aided design
(CAD).[3]

Some object-oriented databases are designed to work
well with object-oriented programming languages such
as Delphi, Ruby, Python, Perl, Java, C#, Visual Basic
.NET, C++, Objective-C and Smalltalk; others have their
own programming languages. OODBMSs use exactly the
same model as object-oriented programming languages.

2.4.2 History

Object database management systems grew out of re-
search during the early to mid-1970s into having intrin-
sic database management support for graph-structured
objects. The term “object-oriented database system”

https://en.wikipedia.org/wiki/Information_technology
http://www.oreillynet.com/xml/blog/2008/05/xrx_a_simple_elegant_disruptiv_1.html
https://en.wikipedia.org/wiki/Fabian_Pascal
http://dbdebunk.blogspot.com.br/2012/08/type-vs-domain-and-class.html
http://dbdebunk.blogspot.com.br/2012/08/type-vs-domain-and-class.html
https://en.wikipedia.org/wiki/United_States_of_America
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-59059-746-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-19784-9
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
http://www.agiledata.org/essays/impedanceMismatch.html
http://blogs.tedneward.com/2006/06/26/The+Vietnam+Of+Computer+Science.aspx
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Computer-aided_design
https://en.wikipedia.org/wiki/Object-oriented_programming_language
https://en.wikipedia.org/wiki/Object_Pascal
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Smalltalk

26 CHAPTER 2. NOT ONLY SQL

first appeared around 1985.[4] Notable research projects
included Encore-Ob/Server (Brown University), EXO-
DUS (University of Wisconsin–Madison), IRIS (Hewlett-
Packard), ODE (Bell Labs), ORION (Microelectronics
and Computer Technology Corporation or MCC), Vo-
dak (GMD-IPSI), and Zeitgeist (Texas Instruments). The
ORION project had more published papers than any of
the other efforts. Won Kim of MCC compiled the best
of those papers in a book published by The MIT Press.[5]

Early commercial products included Gemstone (Servio
Logic, name changed to GemStone Systems), Gbase
(Graphael), and Vbase (Ontologic). The early to mid-
1990s saw additional commercial products enter the mar-
ket. These included ITASCA (Itasca Systems), Jasmine
(Fujitsu, marketed by Computer Associates), Matisse
(Matisse Software), Objectivity/DB (Objectivity, Inc.),
ObjectStore (Progress Software, acquired from eXcelon
which was originally Object Design), ONTOS (Ontos,
Inc., name changed from Ontologic), O2

[6] (O2 Tech-
nology, merged with several companies, acquired by
Informix, which was in turn acquired by IBM), POET
(now FastObjects from Versant which acquired Poet Soft-
ware), Versant Object Database (Versant Corporation),
VOSS (Logic Arts) and JADE (Jade Software Corpora-
tion). Some of these products remain on the market and
have been joined by new open source and commercial
products such as InterSystems Caché.
Object database management systems added the concept
of persistence to object programming languages. The
early commercial products were integrated with various
languages: GemStone (Smalltalk), Gbase (LISP), Vbase
(COP) and VOSS (Virtual Object Storage System for
Smalltalk). For much of the 1990s, C++ dominated the
commercial object database management market. Ven-
dors added Java in the late 1990s and more recently, C#.
Starting in 2004, object databases have seen a sec-
ond growth period when open source object databases
emerged that were widely affordable and easy to use,
because they are entirely written in OOP languages
like Smalltalk, Java, or C#, such as Versant’s db4o
(db4objects), DTS/S1 from Obsidian Dynamics and Perst
(McObject), available under dual open source and com-
mercial licensing.

2.4.3 Timeline

• 1966

• MUMPS

• 1979

• InterSystems M

• 1980

• TORNADO – an object database for
CAD/CAM[7]

• 1982

• Gemstone started (as Servio Logic) to build a
set theoretic model data base machine.

• 1985 – Term Object Database first introduced

• 1986

• Servio Logic (Gemstone Systems) Ships Gem-
stone 1.0

• 1988

• Versant Corporation started (as Object Sci-
ences Corp)

• Objectivity, Inc. founded

• Early 1990s

• Servio Logic changes name to Gemstone Sys-
tems

• Gemstone (Smalltalk)-(C++)-(Java)
• GBase (LISP)
• VBase (O2- ONTOS – INFORMIX)
• Objectivity/DB

• Mid 1990’s

• InterSystems Caché
• Versant Object Database
• ObjectStore
• ODABA
• ZODB
• Poet
• Jade
• Matisse
• Illustra Informix
• Webcrossing

• 2000’s

• db4o project started by Carl Rosenberger
• ObjectDB

• 2001 IBM acquires Informix

• 2003 odbpp public release

• 2004 db4o’s commercial launch as db4objects, Inc.

• 2008 db4o acquired by Versant Corporation

• 2010 VMware acquires GemStone[8]

• 2012 Wakanda first production versions with open
source and commercial licenses

• 2013 GemTalk Systems acquires GemStone prod-
ucts from VMware[9]

• 2014 Realm

https://en.wikipedia.org/wiki/Brown_University
https://en.wikipedia.org/wiki/University_of_Wisconsin%E2%80%93Madison
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation
https://en.wikipedia.org/wiki/Microelectronics_and_Computer_Technology_Corporation
https://en.wikipedia.org/wiki/GemStone_Systems
https://en.wikipedia.org/wiki/Objectivity/DB
https://en.wikipedia.org/wiki/ObjectStore
https://en.wikipedia.org/wiki/Progress_Software
https://en.wikipedia.org/wiki/Informix
https://en.wikipedia.org/wiki/IBM
http://www.versant.com/developer
http://www.versant.com/
https://en.wikipedia.org/wiki/JADE_(programming_language)
http://www.jadeworld.com/jade
https://en.wikipedia.org/wiki/InterSystems_Cach%C3%A9
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/LISP_programming_language
https://en.wikipedia.org/wiki/C_Object_Processor
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Java_programming_language
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/Db4o
https://en.wikipedia.org/wiki/Perst
https://en.wikipedia.org/wiki/Open_source
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/InterSystems
https://en.wikipedia.org/wiki/TORNADO_database
https://en.wikipedia.org/wiki/CAD/CAM
https://en.wikipedia.org/wiki/Gemstone_(database)
https://en.wikipedia.org/wiki/Versant_Corporation
https://en.wikipedia.org/wiki/Gemstone_(database)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/LISP
https://en.wikipedia.org/wiki/Objectivity/DB
https://en.wikipedia.org/wiki/InterSystems_Cach%C3%A9
https://en.wikipedia.org/wiki/Versant_Object_Database
https://en.wikipedia.org/wiki/ObjectStore
https://en.wikipedia.org/wiki/ODABA
https://en.wikipedia.org/wiki/Zope_Object_Database
https://en.wikipedia.org/wiki/Informix
https://en.wikipedia.org/wiki/Webcrossing
https://en.wikipedia.org/wiki/Db4o
https://en.wikipedia.org/wiki/ObjectDB
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/ObjectDatabase++
https://en.wikipedia.org/wiki/Versant_Corporation
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Wakanda_(software)
https://en.wikipedia.org/wiki/Realm_database

2.4. OBJECT DATABASE 27

2.4.4 Adoption of object databases

Object databases based on persistent programming ac-
quired a niche in application areas such as engineering
and spatial databases, telecommunications, and scientific
areas such as high energy physics and molecular biology.
Another group of object databases focuses on embedded
use in devices, packaged software, and real-time systems.

2.4.5 Technical features

Most object databases also offer some kind of query lan-
guage, allowing objects to be found using a declarative
programming approach. It is in the area of object query
languages, and the integration of the query and navi-
gational interfaces, that the biggest differences between
products are found. An attempt at standardization was
made by the ODMG with the Object Query Language,
OQL.
Access to data can be faster because joins are often not
needed (as in a tabular implementation of a relational
database). This is because an object can be retrieved di-
rectly without a search, by following pointers.
Another area of variation between products is in the way
that the schema of a database is defined. A general char-
acteristic, however, is that the programming language and
the database schema use the same type definitions.
Multimedia applications are facilitated because the class
methods associated with the data are responsible for its
correct interpretation.
Many object databases, for example Gemstone or VOSS,
offer support for versioning. An object can be viewed
as the set of all its versions. Also, object versions can
be treated as objects in their own right. Some object
databases also provide systematic support for triggers and
constraints which are the basis of active databases.
The efficiency of such a database is also greatly improved
in areas which demand massive amounts of data about
one item. For example, a banking institution could get the
user’s account information and provide them efficiently
with extensive information such as transactions, account
information entries etc. The Big O Notation for such a
database paradigm drops from O(n) to O(1), greatly in-
creasing efficiency in these specific cases.

2.4.6 Standards

The Object Data Management Group was a consortium
of object database and object-relational mapping ven-
dors, members of the academic community, and inter-
ested parties. Its goal was to create a set of specifica-
tions that would allow for portable applications that store
objects in database management systems. It published
several versions of its specification. The last release was

ODMG 3.0. By 2001, most of the major object database
and object-relational mapping vendors claimed confor-
mance to the ODMG Java Language Binding. Compli-
ance to the other components of the specification was
mixed. In 2001, the ODMG Java Language Binding was
submitted to the Java Community Process as a basis for
the Java Data Objects specification. The ODMG mem-
ber companies then decided to concentrate their efforts
on the Java Data Objects specification. As a result, the
ODMG disbanded in 2001.
Many object database ideas were also absorbed into SQL:
1999 and have been implemented in varying degrees in
object-relational database products.
In 2005 Cook, Rai, and Rosenberger proposed to drop
all standardization efforts to introduce additional object-
oriented query APIs but rather use the OO programming
language itself, i.e., Java and .NET, to express queries.
As a result, Native Queries emerged. Similarly, Mi-
crosoft announced Language Integrated Query (LINQ)
and DLINQ, an implementation of LINQ, in Septem-
ber 2005, to provide close, language-integrated database
query capabilities with its programming languages C#
and VB.NET 9.
In February 2006, the Object Management Group
(OMG) announced that they had been granted the right
to develop new specifications based on the ODMG 3.0
specification and the formation of the Object Database
Technology Working Group (ODBT WG). The ODBT
WG planned to create a set of standards that would in-
corporate advances in object database technology (e.g.,
replication), data management (e.g., spatial indexing),
and data formats (e.g., XML) and to include new fea-
tures into these standards that support domains where ob-
ject databases are being adopted (e.g., real-time systems).
The work of the ODBT WG was suspended in March
2009 when, subsequent to the economic turmoil in late
2008, the ODB vendors involved in this effort decided to
focus their resources elsewhere.
In January 2007 the World Wide Web Consortium gave
final recommendation status to the XQuery language.
XQuery uses XML as its data model. Some of the ideas
developed originally for object databases found their
way into XQuery, but XQuery is not intrinsically object-
oriented. Because of the popularity of XML, XQuery
engines compete with object databases as a vehicle for
storage of data that is too complex or variable to hold
conveniently in a relational database. XQuery also allows
modules to be written to provide encapsulation features
that have been provided by Object-Oriented systems.

2.4.7 Comparison with RDBMSs

An object database stores complex data and relationships
between data directly, without mapping to relational rows
and columns, and this makes them suitable for applica-
tions dealing with very complex data.[10] Objects have a

https://en.wikipedia.org/wiki/Object-based_spatial_database
https://en.wikipedia.org/wiki/Telecommunications
https://en.wikipedia.org/wiki/Particle_physics
https://en.wikipedia.org/wiki/Molecular_biology
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Query_language
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Object_Data_Management_Group
https://en.wikipedia.org/wiki/Object_Query_Language
https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Versioning
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Active_database
https://en.wikipedia.org/wiki/Big_O_Notation
https://en.wikipedia.org/wiki/Object_Data_Management_Group
https://en.wikipedia.org/wiki/Java_Community_Process
https://en.wikipedia.org/wiki/Java_Data_Objects
https://en.wikipedia.org/wiki/SQL:1999
https://en.wikipedia.org/wiki/SQL:1999
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Native_Queries
https://en.wikipedia.org/wiki/Language_Integrated_Query
https://en.wikipedia.org/wiki/Object_Management_Group
https://en.wikipedia.org/wiki/W3c
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/Extensible_Markup_Language

28 CHAPTER 2. NOT ONLY SQL

many to many relationship and are accessed by the use of
pointers. Pointers are linked to objects to establish rela-
tionships. Another benefit of an OODBMS is that it can
be programmed with small procedural differences with-
out affecting the entire system.[11]

2.4.8 See also

• Comparison of object database management sys-
tems

• Component-oriented database

• EDA database

• Enterprise Objects Framework

• NoSQL

• Object Data Management Group

• Object-relational database

• Persistence (computer science)

• Relational model

2.4.9 References

[1] Data Integration Glossary, U.S. Department of Trans-
portation, August 2001.

[2] ODBMS.ORG :: Object Database (ODBMS) | Object-
Oriented Database (OODBMS) | Free Resource Por-
tal. ODBMS (2013-08-31). Retrieved on 2013-09-18.
Archived July 25, 2014 at the Wayback Machine

[3] O’Brien, J. A., & Marakas, G. M. (2009). Management
Information Systems (9th ed.). New York, NY: McGraw-
Hill/Irwin

[4] Three example references from 1985 that use the term:
T. Atwood, “An Object-Oriented DBMS for Design Sup-
port Applications,” Proceedings of the IEEE COMPINT 85,
pp. 299-307, September 1985; N. Derrett, W. Kent, and
P. Lyngbaek, “Some Aspects of Operations in an Object-
Oriented Database,” Database Engineering, vol. 8, no.
4, IEEE Computer Society, December 1985; D. Maier,
A. Otis, and A. Purdy, “Object-Oriented Database Devel-
opment at Servio Logic,” Database Engineering, vol. 18,
no.4, December 1985.

[5] Kim, Won. Introduction to Object-Oriented Databases.
The MIT Press, 1990. ISBN 0-262-11124-1

[6] Bancilhon, Francois; Delobel,Claude; and Kanellakis,
Paris. Building an Object-Oriented Database System: The
Story of O2. Morgan Kaufmann Publishers, 1992. ISBN
1-55860-169-4.

[7] Ulfsby; et al. (July 1981). “TORNADO: a DBMS for
CAD/CAM systems”. Computer-Aided Design 13 (4):
193–197.

[8] “SpringSource to Acquire Gemstone Systems Data Man-
agement Technology”. WMware. May 6, 2010. Re-
trieved August 5, 2014.

[9] GemTalk Systems (May 2, 2013). “GemTalk Systems
Acquires GemStone/S Products from VMware”. PRWeb.
Retrieved August 5, 2014.

[10] Radding, Alan (1995). “So what the Hell is ODBMS?".
Computerworld 29 (45): 121–122, 129.

[11] Burleson, Donald. (1994). OODBMSs gaining MIS
ground but RDBMSs still own the road. Software Maga-
zine, 14(11), 63

2.4.10 External links

• Object DBMS resource portal

• Object-Oriented Databases – From CompTech-
Doc.org

• DB-Engines Ranking of Object Oriented DBMS by
popularity, updated monthly

2.5 NoSQL

“Structured storage” redirects here. For the Microsoft
technology also known as structured storage, see COM
Structured Storage.

A NoSQL (originally referring to “non SQL” or “non re-
lational” [1]) database provides a mechanism for storage
and retrieval of data that is modeled in means other than
the tabular relations used in relational databases. Such
databases have existed since the late 1960s, but did not
obtain the “NoSQL” moniker until a surge of popular-
ity in the early twenty-first century,[2] triggered by the
needs of Web 2.0 companies such as Facebook, Google
and Amazon.com.[3][4][5]

Motivations for this approach include: simplicity of de-
sign, simpler “horizontal” scaling to clusters of machines,
which is a problem for relational databases,[2] and finer
control over availability. The data structures used by
NoSQL databases (e.g. key-value, wide column, graph,
or document) differ slightly from those used by default
in relational databases, making some operations faster in
NoSQL and others faster in relational databases. The par-
ticular suitability of a given NoSQL database depends on
the problem it must solve. Sometimes the data structures
used by NoSQL databases are also viewed as “more flex-
ible” than relational database tables.[6]

NoSQL databases are increasingly used in big data and
real-time web applications.[7] NoSQL systems are also
sometimes called “Not only SQL” to emphasize that they
may support SQL-like query languages.[8][9]

https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Component-oriented_database
https://en.wikipedia.org/wiki/EDA_database
https://en.wikipedia.org/wiki/Enterprise_Objects_Framework
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Object_Data_Management_Group
https://en.wikipedia.org/wiki/Object-relational_database
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Relational_model
http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/$FILE/DIGloss.pdf
http://odbms.org/Introduction/history.aspx
http://odbms.org/Introduction/history.aspx
http://odbms.org/Introduction/history.aspx
https://web.archive.org/web/20140725090329/http://odbms.org/Introduction/history.aspx
https://en.wikipedia.org/wiki/Wayback_Machine
https://en.wikipedia.org/wiki/Special:BookSources/0262111241
https://en.wikipedia.org/wiki/Special:BookSources/1558601694
https://en.wikipedia.org/wiki/Special:BookSources/1558601694
http://www.sciencedirect.com/science/article/pii/0010448581901408
http://www.sciencedirect.com/science/article/pii/0010448581901408
https://en.wikipedia.org/wiki/Computer-Aided_Design_journal
http://www.vmware.com/company/news/releases/spring-gemstone.html
http://www.vmware.com/company/news/releases/spring-gemstone.html
http://www.prweb.com/releases/gemtalksystems/acquires-gemstone-s/prweb10652596.htm
http://www.prweb.com/releases/gemtalksystems/acquires-gemstone-s/prweb10652596.htm
http://www.odbms.org/
http://www.comptechdoc.org/independent/database/basicdb/dataobject.html
http://db-engines.com/en/ranking/object+oriented+dbms
https://en.wikipedia.org/wiki/COM_Structured_Storage
https://en.wikipedia.org/wiki/COM_Structured_Storage
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Data_retrieval
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Web_2.0
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Horizontal_scaling#Horizontal_and_vertical_scaling
https://en.wikipedia.org/wiki/Cluster_computing
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Real-time_web
https://en.wikipedia.org/wiki/SQL

2.5. NOSQL 29

Many NoSQL stores compromise consistency (in the
sense of the CAP theorem) in favor of availability, par-
tition tolerance, and speed. Barriers to the greater adop-
tion of NoSQL stores include the use of low-level query
languages (instead of SQL, for instance the lack of abil-
ity to perform ad-hoc JOIN’s across tables), lack of stan-
dardized interfaces, and huge previous investments in ex-
isting relational databases.[10] Most NoSQL stores lack
true ACID transactions, although a few databases, such
as MarkLogic, Aerospike, FairCom c-treeACE, Google
Spanner (though technically a NewSQL database), Symas
LMDB and OrientDB have made them central to their de-
signs. (See ACID and JOIN Support.)
Instead, most NoSQL databases offer a concept of “even-
tual consistency” in which database changes are propa-
gated to all nodes “eventually” (typically within millisec-
onds) so queries for data might not return updated data
immediately or might result in reading data that is not ac-
curate, a problem known as stale reads.[11] Additionally,
some NoSQL systems may exhibit lost writes and other
forms of data loss.[12] Fortunately, some NoSQL systems
provide concepts such as write-ahead logging to avoid
data loss.[13] For distributed transaction processing across
multiple databases, data consistency is an even bigger
challenge that is difficult for both NoSQL and relational
databases. Even current relational databases “do not al-
low referential integrity constraints to span databases.”[14]

There are few systems that maintain both ACID transac-
tions and X/Open XA standards for distributed transac-
tion processing.

2.5.1 History

The term NoSQL was used by Carlo Strozzi in 1998 to
name his lightweight, Strozzi NoSQL open-source rela-
tional database that did not expose the standard SQL in-
terface, but was still relational.[15] His NoSQL RDBMS is
distinct from the circa-2009 general concept of NoSQL
databases. Strozzi suggests that, as the current NoSQL
movement “departs from the relational model altogether;
it should therefore have been called more appropriately
'NoREL'",[16] referring to 'No Relational'.
Johan Oskarsson of Last.fm reintroduced the term
NoSQL in early 2009 when he organized an event
to discuss “open source distributed, non relational
databases".[17] The name attempted to label the emer-
gence of an increasing number of non-relational, dis-
tributed data stores, including open source clones of
Google’s BigTable/MapReduce and Amazon’s Dynamo.
Most of the early NoSQL systems did not attempt to pro-
vide atomicity, consistency, isolation and durability guar-
antees, contrary to the prevailing practice among rela-
tional database systems.[18]

Based on 2014 revenue, the NoSQL market leaders are
MarkLogic, MongoDB, and Datastax.[19] Based on 2015
popularity rankings, the most popular NoSQL databases

are MongoDB, Apache Cassandra, and Redis.[20]

2.5.2 Types and examples of NoSQL
databases

There have been various approaches to classify NoSQL
databases, each with different categories and subcate-
gories, some of which overlap. A basic classification
based on data model, with examples:

• Column: Accumulo, Cassandra, Druid, HBase,
Vertica

• Document: Apache CouchDB, Clusterpoint,
Couchbase, DocumentDB, HyperDex, Lotus
Notes, MarkLogic, MongoDB, OrientDB, Qizx

• Key-value: Aerospike, CouchDB, Dynamo,
FairCom c-treeACE, FoundationDB, HyperDex,
MemcacheDB, MUMPS, Oracle NoSQL Database,
OrientDB, Redis, Riak

• Graph: Allegro, InfiniteGraph, MarkLogic, Neo4J,
OrientDB, Virtuoso, Stardog

• Multi-model: Alchemy Database, ArangoDB, Cor-
texDB, FoundationDB, MarkLogic, OrientDB

A more detailed classification is the following, based on
one from Stephen Yen:[21]

Correlation databases are model-independent, and in-
stead of row-based or column-based storage, use value-
based storage.

Key-value stores

Main article: Key-value database

Key-value (KV) stores use the associative array (also
known as a map or dictionary) as their fundamental data
model. In this model, data is represented as a collection
of key-value pairs, such that each possible key appears at
most once in the collection.[22][23]

The key-value model is one of the simplest non-trivial
data models, and richer data models are often imple-
mented on top of it. The key-value model can be
extended to an ordered model that maintains keys in
lexicographic order. This extension is powerful, in that
it can efficiently process key ranges.[24]

Key-value stores can use consistency models ranging
from eventual consistency to serializability. Some sup-
port ordering of keys. Some maintain data in memory
(RAM), while others employ solid-state drives or rotating
disks.
Examples include Oracle NoSQL Database, redis, and
dbm.

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Aerospike
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/Spanner_(database)
https://en.wikipedia.org/wiki/NewSQL
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/NoSQL#ACID_and_JOIN_Support
https://en.wikipedia.org/wiki/Data_loss
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Distributed_transaction_processing
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Strozzi_NoSQL_(RDBMS)
https://en.wikipedia.org/wiki/Strozzi_NoSQL_(RDBMS)
https://en.wikipedia.org/wiki/Last.fm
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Datastax
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Column_(data_store)
https://en.wikipedia.org/wiki/Accumulo
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Druid_(open-source_data_store)
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Vertica
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Apache_CouchDB
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Couchbase
https://en.wikipedia.org/wiki/DocumentDB
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/Lotus_Notes
https://en.wikipedia.org/wiki/Lotus_Notes
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Qizx
https://en.wikipedia.org/wiki/Key-value_store
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/CouchDB
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/MUMPS
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/InfiniteGraph
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Neo4J
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Stardog
https://en.wikipedia.org/wiki/Multi-model_database
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/Correlation_database
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Lexicographical_order
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Dbm

30 CHAPTER 2. NOT ONLY SQL

Document store

Main articles: Document-oriented database and XML
database

The central concept of a document store is the notion of
a “document”. While each document-oriented database
implementation differs on the details of this definition, in
general, they all assume that documents encapsulate and
encode data (or information) in some standard formats or
encodings. Encodings in use include XML, YAML, and
JSON as well as binary forms like BSON. Documents are
addressed in the database via a unique key that represents
that document. One of the other defining characteristics
of a document-oriented database is that in addition to the
key lookup performed by a key-value store, the database
offers an API or query language that retrieves documents
based on their contents
Different implementations offer different ways of orga-
nizing and/or grouping documents:

• Collections

• Tags

• Non-visible metadata

• Directory hierarchies

Compared to relational databases, for example, collec-
tions could be considered analogous to tables and docu-
ments analogous to records. But they are different: every
record in a table has the same sequence of fields, while
documents in a collection may have fields that are com-
pletely different.

Graph

Main article: Graph database

This kind of database is designed for data whose rela-
tions are well represented as a graph (elements intercon-
nected with an undetermined number of relations be-
tween them). The kind of data could be social relations,
public transport links, road maps or network topologies,
for example.

Graph databases and their query language

Object database

Main article: Object database

• db4o

• GemStone/S

• InterSystems Caché
• JADE
• NeoDatis ODB
• ObjectDatabase++
• ObjectDB
• Objectivity/DB
• ObjectStore
• ODABA
• Perst
• OpenLink Virtuoso
• Versant Object Database
• ZODB

Tabular

• Apache Accumulo
• BigTable
• Apache Hbase
• Hypertable
• Mnesia
• OpenLink Virtuoso

Tuple store

• Apache River
• GigaSpaces
• Tarantool
• TIBCO ActiveSpaces
• OpenLink Virtuoso

Triple/quad store (RDF) database

Main articles: Triplestore and Named graph

• AllegroGraph
• Apache JENA (It’s a framework, not a database)
• MarkLogic
• Ontotext-OWLIM
• Oracle NoSQL database
• SparkleDB
• Virtuoso Universal Server
• Stardog

https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Db4o
https://en.wikipedia.org/wiki/Gemstone_(database)
https://en.wikipedia.org/wiki/InterSystems_Cach%C3%A9
https://en.wikipedia.org/wiki/JADE_(programming_language)
https://en.wikipedia.org/wiki/NeoDatis_ODB
https://en.wikipedia.org/wiki/ObjectDatabase++
https://en.wikipedia.org/wiki/ObjectDB
https://en.wikipedia.org/wiki/Objectivity/DB
https://en.wikipedia.org/wiki/ObjectStore
https://en.wikipedia.org/wiki/Odaba
https://en.wikipedia.org/wiki/Perst
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Versant_Object_Database
https://en.wikipedia.org/wiki/ZODB
https://en.wikipedia.org/wiki/Apache_Accumulo
https://en.wikipedia.org/wiki/BigTable
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Hypertable
https://en.wikipedia.org/wiki/Mnesia
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Apache_River
https://en.wikipedia.org/wiki/GigaSpaces
https://en.wikipedia.org/wiki/Tarantool
https://en.wikipedia.org/wiki/TIBCO_Software
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Triplestore
https://en.wikipedia.org/wiki/Named_graph
https://en.wikipedia.org/wiki/AllegroGraph
https://en.wikipedia.org/wiki/Jena_(framework)
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/Ontotext
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/SparkleDB
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Stardog

2.5. NOSQL 31

Hosted

• Amazon DynamoDB

• Amazon SimpleDB

• Datastore on Google Appengine

• Clusterpoint database

• Cloudant Data Layer (CouchDB)

• Freebase

• Microsoft Azure Tables [25]

• Microsoft Azure DocumentDB [26]

• OpenLink Virtuoso

Multivalue databases

• D3 Pick database

• Extensible Storage Engine (ESE/NT)

• InfinityDB

• InterSystems Caché

• Northgate Information Solutions Reality, the origi-
nal Pick/MV Database

• OpenQM

• Revelation Software’s OpenInsight

• Rocket U2

Multimodel database

• OrientDB

• FoundationDB

• ArangoDB

• MarkLogic

2.5.3 Performance

Ben Scofield rated different categories of NoSQL
databases as follows: [27]

Performance and scalability comparisons are sometimes
done with the YCSB benchmark.
See also: Comparison of structured storage software

2.5.4 Handling relational data

Since most NoSQL databases lack ability for joins in
queries, the database schema generally needs to be de-
signed differently. There are three main techniques for
handling relational data in a NoSQL database. (See table
Join and ACID Support for NoSQL databases that sup-
port joins.)

Multiple queries

Instead of retrieving all the data with one query, it’s com-
mon to do several queries to get the desired data. NoSQL
queries are often faster than traditional SQL queries so
the cost of having to do additional queries may be ac-
ceptable. If an excessive number of queries would be
necessary, one of the other two approaches is more ap-
propriate.

Caching/replication/non-normalized data

Instead of only storing foreign keys, it’s common to store
actual foreign values along with the model’s data. For ex-
ample, each blog comment might include the username
in addition to a user id, thus providing easy access to
the username without requiring another lookup. When
a username changes however, this will now need to be
changed in many places in the database. Thus this ap-
proach works better when reads are much more common
than writes.[28]

Nesting data

With document databases like MongoDB it’s common to
put more data in a smaller number of collections. For
example, in a blogging application, one might choose to
store comments within the blog post document so that
with a single retrieval one gets all the comments. Thus
in this approach a single document contains all the data
you need for a specific task.

2.5.5 ACID and JOIN Support

If a database is marked as supporting ACID or joins, then
the documentation for the database makes that claim.
The degree to which the capability is fully supported in a
manner similar to most SQL databases or the degree to
which it meets the needs of a specific application is left
up to the reader to assess.
(*) HyperDex currently offers ACID support via its Warp
extension, which is a commercial add-on. (**) Joins do
not necessarily apply to document databases, but Mark-
Logic can do joins using semantics [29]

https://en.wikipedia.org/wiki/Amazon_DynamoDB
https://en.wikipedia.org/wiki/Amazon_SimpleDB
https://en.wikipedia.org/wiki/Appengine
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Cloudant
https://en.wikipedia.org/wiki/Freebase_(database)
https://en.wikipedia.org/wiki/Microsoft_Azure#Table_Service
https://en.wikipedia.org/wiki/DocumentDB
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Pick_database
https://en.wikipedia.org/wiki/Extensible_Storage_Engine
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/InterSystems_Cach%C3%A9
https://en.wikipedia.org/wiki/Northgate_Information_Solutions
https://en.wikipedia.org/wiki/OpenQM
https://en.wikipedia.org/wiki/OpenInsight
https://en.wikipedia.org/wiki/Rocket_U2
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/ArangoDB
https://en.wikipedia.org/wiki/MarkLogic
https://en.wikipedia.org/wiki/YCSB
https://en.wikipedia.org/wiki/Comparison_of_structured_storage_software
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Join_(SQL)

32 CHAPTER 2. NOT ONLY SQL

2.5.6 See also

• CAP theorem

• Comparison of object database management sys-
tems

• Comparison of structured storage software

• Correlation database

• Distributed cache

• Faceted search

• MultiValue database

• Multi-model database

• Triplestore

2.5.7 References
[1] http://nosql-database.org/ “NoSQL DEFINITION: Next

Generation Databases mostly addressing some of the
points: being non-relational, distributed, open-source and
horizontally scalable”

[2] Leavitt, Neal (2010). “Will NoSQL Databases Live Up
to Their Promise?" (PDF). IEEE Computer.

[3] Mohan, C. (2013). History Repeats Itself: Sensible and
NonsenSQL Aspects of the NoSQL Hoopla (PDF). Proc.
16th Int'l Conf. on Extending Database Technology.

[4] http://www.eventbrite.com/e/
nosql-meetup-tickets-341739151 “Dynamo clones
and BigTables”

[5] http://www.wired.com/2012/01/amazon-dynamodb/
“Amazon helped start the “NoSQL” movement.”

[6] http://www.allthingsdistributed.com/2012/01/
amazon-dynamodb.html “Customers like SimpleDB’s
table interface and its flexible data model. Not having to
update their schemas when their systems evolve makes
life much easier”

[7] “RDBMS dominate the database market, but NoSQL sys-
tems are catching up”. DB-Engines.com. 21 Nov 2013.
Retrieved 24 Nov 2013.

[8] “NoSQL (Not Only SQL)". NoSQL database, also called
Not Only SQL

[9] Fowler, Martin. “NosqlDefinition”. many advocates of
NoSQL say that it does not mean a “no” to SQL, rather it
means Not Only SQL

[10] Grolinger, K.; Higashino, W. A.; Tiwari, A.; Capretz,
M. A. M. (2013). “Data management in cloud environ-
ments: NoSQL and NewSQL data stores” (PDF). JoC-
CASA, Springer. Retrieved 8 Jan 2014.

[11] https://aphyr.com/posts/
322-call-me-maybe-mongodb-stale-reads

[12] Martin Zapletal: Large volume data analysis on the Type-
safe Reactive Platform, ScalaDays 2015, Slides

[13] http://www.dummies.com/how-to/content/
10-nosql-misconceptions.html “NoSQL databases
lose data” section

[14] https://iggyfernandez.wordpress.com/2013/07/28/
no-to-sql-and-no-to-nosql/

[15] Lith, Adam; Mattson, Jakob (2010). “Investigating stor-
age solutions for large data: A comparison of well per-
forming and scalable data storage solutions for real time
extraction and batch insertion of data” (PDF). Göte-
borg: Department of Computer Science and Engineering,
Chalmers University of Technology. p. 70. Retrieved
12 May 2011. Carlo Strozzi first used the term NoSQL
in 1998 as a name for his open source relational database
that did not offer a SQL interface[...]

[16] “NoSQL Relational Database Management System:
Home Page”. Strozzi.it. 2 October 2007. Retrieved 29
March 2010.

[17] “NoSQL 2009”. Blog.sym-link.com. 12 May 2009. Re-
trieved 29 March 2010.

[18] Chapple, Mike. “The ACID Model”.

[19] “Hadoop-NoSQL-rankings”. Retrieved 2015-11-17.

[20] “DB-Engines Ranking”. Retrieved 2015-07-31.

[21] Yen, Stephen. “NoSQL is a Horseless Carriage” (PDF).
NorthScale. Retrieved 2014-06-26..

[22] Sandy (14 January 2011). “Key Value stores and the
NoSQL movement”. http://dba.stackexchange.com/
questions/607/what-is-a-key-value-store-database:
Stackexchange. Retrieved 1 January 2012. Key-value
stores allow the application developer to store schema-less
data. This data usually consists of a string that represents
the key, and the actual data that is considered the value
in the “key-value” relationship. The data itself is usually
some kind of primitive of the programming language (a
string, an integer, or an array) or an object that is being
marshaled by the programming language’s bindings to
the key-value store. This structure replaces the need for
a fixed data model and allows proper formatting.

[23] Seeger, Marc (21 September 2009). “Key-Value Stores:
a practical overview” (PDF). http://blog.marc-seeger.
de/2009/09/21/key-value-stores-a-practical-overview/:
Marc Seeger. Retrieved 1 January 2012. Key-value
stores provide a high-performance alternative to relational
database systems with respect to storing and accessing
data. This paper provides a short overview of some of the
currently available key-value stores and their interface to
the Ruby programming language.

[24] Katsov, Ilya (1 March 2012). “NoSQL Data Modeling
Techniques”. Ilya Katsov. Retrieved 8 May 2014.

[25] http://azure.microsoft.com/en-gb/services/storage/
tables/

[26] http://azure.microsoft.com/en-gb/services/documentdb/

https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_object_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_structured_storage_software
https://en.wikipedia.org/wiki/Correlation_database
https://en.wikipedia.org/wiki/Distributed_cache
https://en.wikipedia.org/wiki/Faceted_search
https://en.wikipedia.org/wiki/MultiValue
https://en.wikipedia.org/wiki/Multi-model_database
https://en.wikipedia.org/wiki/Triplestore
http://nosql-database.org/
http://www.leavcom.com/pdf/NoSQL.pdf
http://www.leavcom.com/pdf/NoSQL.pdf
https://en.wikipedia.org/wiki/IEEE_Computer
http://openproceedings.eu/2013/conf/edbt/Mohan13.pdf
http://openproceedings.eu/2013/conf/edbt/Mohan13.pdf
http://www.eventbrite.com/e/nosql-meetup-tickets-341739151
http://www.eventbrite.com/e/nosql-meetup-tickets-341739151
http://www.wired.com/2012/01/amazon-dynamodb/
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
http://www.allthingsdistributed.com/2012/01/amazon-dynamodb.html
http://db-engines.com/en/blog_post/23
http://db-engines.com/en/blog_post/23
http://searchdatamanagement.techtarget.com/definition/NoSQL-Not-Only-SQL
https://en.wikipedia.org/wiki/Martin_Fowler
http://martinfowler.com/bliki/NosqlDefinition.html
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf
http://www.journalofcloudcomputing.com/content/pdf/2192-113X-2-22.pdf
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
http://www.slideshare.net/MartinZapletal/zapletal-martinlargevolumedataanalytics
http://www.dummies.com/how-to/content/10-nosql-misconceptions.html
http://www.dummies.com/how-to/content/10-nosql-misconceptions.html
https://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
https://iggyfernandez.wordpress.com/2013/07/28/no-to-sql-and-no-to-nosql/
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://publications.lib.chalmers.se/records/fulltext/123839.pdf
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%2520Page
http://www.strozzi.it/cgi-bin/CSA/tw7/I/en_US/nosql/Home%2520Page
http://blog.sym-link.com/2009/05/12/nosql_2009.html
http://databases.about.com/od/specificproducts/a/acid.htm
http://wikibon.com/hadoop-nosql-software-and-services-market-forecast-2013-2017/
http://db-engines.com/en/ranking
https://dl.dropboxusercontent.com/u/2075876/nosql-steve-yen.pdf
http://dba.stackexchange.com/a/619
http://dba.stackexchange.com/a/619
http://dba.stackexchange.com/questions/607/what-is-a-key-value-store-database
http://dba.stackexchange.com/questions/607/what-is-a-key-value-store-database
http://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger_Key_Value_Stores.pdf
http://blog.marc-seeger.de/assets/papers/Ultra_Large_Sites_SS09-Seeger_Key_Value_Stores.pdf
http://blog.marc-seeger.de/2009/09/21/key-value-stores-a-practical-overview/
http://blog.marc-seeger.de/2009/09/21/key-value-stores-a-practical-overview/
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://highlyscalable.wordpress.com/2012/03/01/nosql-data-modeling-techniques/
http://azure.microsoft.com/en-gb/services/storage/tables/
http://azure.microsoft.com/en-gb/services/storage/tables/
http://azure.microsoft.com/en-gb/services/documentdb/

2.6. KEY-VALUE DATABASE 33

[27] Scofield, Ben (2010-01-14). “NoSQL - Death to Rela-
tional Databases(?)". Retrieved 2014-06-26.

[28] “Making the Shift from Relational to NoSQL” (PDF).
Couchbase.com. Retrieved December 5, 2014.

[29] http://www.gennet.com/big-data/
cant-joins-marklogic-just-matter-semantics/

2.5.8 Further reading

• Sadalage, Pramod; Fowler, Martin (2012). NoSQL
Distilled: A Brief Guide to the Emerging World of
Polyglot Persistence. Addison-Wesley. ISBN 0-321-
82662-0.

• McCreary, Dan; Kelly, Ann (2013). Making Sense
of NoSQL: A guide for managers and the rest of us.
ISBN 9781617291074.

• Strauch, Christof (2012). “NoSQL Databases”
(PDF).

• Moniruzzaman, A. B.; Hossain, S. A. (2013).
“NoSQL Database: New Era of Databases for Big
data Analytics - Classification, Characteristics and
Comparison”. arXiv:1307.0191.

• Orend, Kai (2013). “Analysis and Classification of
NoSQL Databases and Evaluation of their Ability
to Replace an Object-relational Persistence Layer”.
CiteSeerX: 10 .1 .1 .184 .483.

• Krishnan, Ganesh; Kulkarni, Sarang; Dadbhawala,
Dharmesh Kirit. “Method and system for versioned
sharing, consolidating and reporting information”.

2.5.9 External links

• Strauch, Christoph. “NoSQL whitepaper” (PDF).
Stuttgart: Hochschule der Medien.

• Edlich, Stefan. “NoSQL database List”.

• Neubauer, Peter (2010). “Graph Databases,
NOSQL and Neo4j”.

• Bushik, Sergey (2012). “A vendor-independent
comparison of NoSQL databases: Cassandra,
HBase, MongoDB, Riak”. NetworkWorld.

• Zicari, Roberto V. (2014). “NoSQL Data Stores –
Articles, Papers, Presentations”. odbms.org.

2.6 Key-value database

A key-value store, or key-value database, is a data stor-
age paradigm designed for storing, retrieving, and man-
aging associative arrays, a data structure more commonly

A tabular data card proposed for Babbage’s Analytical Engine
showing a key-value pair, in this instance a number and its base-
ten logarithm.

known today as a dictionary or hash. Dictionaries con-
tain a collection of objects, or records, which in turn have
many different fields within them, each containing data.
These records are stored and retrieved using a key that
uniquely identifies the record, and is used to quickly find
the data within the database.
Key-value stores work in a very different fashion than
the better known relational databases (RDB). RDBs pre-
define the data structure in the database as a series of ta-
bles containing fields with well defined data types. Ex-
posing the data types to the database program allows it to
apply a number of optimizations. In contrast, key-value
systems treat the data as a single opaque collection which
may have different fields for every record. This offers
considerable flexibility and more closely follows modern
concepts like object-oriented programming. Because op-
tional values are not represented by placeholders as in
most RDBs, key-value stores often use far less memory
to store the same database, which can lead to large per-
formance gains in certain workloads.
Performance, a lack of standardization and other issues
limited key-value systems to niche uses for many years,
but the rapid move to cloud computing after 2010 has
led to a renaissance as part of the broader NoSQL move-
ment. A subclass of the key-value store is the document-
oriented database, which offers additional tools that use
the metadata in the data to provide a richer key-value
database that more closely matches the use patterns of
RDBM systems. Some graph databases are also key-
value stores internally, adding the concept of the relation-
ships (pointers) between records as a first class data type.

2.6.1 Types and notable examples

Key-value stores can use consistency models ranging
from eventual consistency to serializability. Some sup-
port ordering of keys. Some maintain data in memory
(RAM), while others employ solid-state drives or rotating
disks.
Redis was the most popular implementation of a key-
value database as of August 2015, according to DB-

http://www.slideshare.net/bscofield/nosql-codemash-2010
http://www.slideshare.net/bscofield/nosql-codemash-2010
http://www.couchbase.com/sites/default/files/uploads/all/whitepapers/Couchbase_Whitepaper_Transitioning_Relational_to_NoSQL.pdf
http://www.gennet.com/big-data/cant-joins-marklogic-just-matter-semantics/
http://www.gennet.com/big-data/cant-joins-marklogic-just-matter-semantics/
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-321-82662-0
https://en.wikipedia.org/wiki/Special:BookSources/0-321-82662-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781617291074
http://www.christof-strauch.de/nosqldbs.pdf
https://en.wikipedia.org/wiki/ArXiv
https://arxiv.org/abs/1307.0191
https://en.wikipedia.org/wiki/CiteSeer#CiteSeerX
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.184.483
https://www.google.com/patents/US7383272?pg=PA1&dq=ganesh+krishnan&hl=en&sa=X
https://www.google.com/patents/US7383272?pg=PA1&dq=ganesh+krishnan&hl=en&sa=X
http://www.christof-strauch.de/nosqldbs.pdf
http://nosql-database.org/
http://www.infoq.com/articles/graph-nosql-neo4j
http://www.infoq.com/articles/graph-nosql-neo4j
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.odbms.org/category/downloads/nosql-data-stores/nosql-data-stores-articles/
http://www.odbms.org/category/downloads/nosql-data-stores/nosql-data-stores-articles/
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Analytical_Engine
https://en.wikipedia.org/wiki/Collection_(abstract_data_type)
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Record_(computer_science)
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Computer_memory
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Graph_database
https://en.wikipedia.org/wiki/Pointer_(computer_programming)
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Hard_disk_drive
https://en.wikipedia.org/wiki/Redis

34 CHAPTER 2. NOT ONLY SQL

Engines Ranking.[1]

Another example of key-value database is Oracle NoSQL
Database. Oracle NoSQL Database provides a key-value
paradigm to the application developer. Every entity
(record) is a set of key-value pairs. A key has multi-
ple components, specified as an ordered list. The ma-
jor key identifies the entity and consists of the leading
components of the key. The subsequent components
are called minor keys. This organization is similar to a
directory path specification in a file system (e.g., /Ma-
jor/minor1/minor2/). The “value” part of the key-value
pair is simply an uninterpreted string of bytes of arbitrary
length[2]

The Unix system provides dbm (DataBase Manager)
which is a library originally written by Ken Thompson.
The dbm manages associative arrays of arbitrary data by
use of a single key (a primary key). Modern implemen-
tations include ndbm, sdbm and GNU dbm.

KV - eventually consistent

• Apache Cassandra

• Dynamo

• Oracle NoSQL Database

• Project Voldemort

• Riak[3]

• OpenLink Virtuoso

KV - ordered

• Berkeley DB

• FairCom c-treeACE/c-treeRTG

• FoundationDB

• HyperDex

• IBM Informix C-ISAM

• InfinityDB

• LMDB

• MemcacheDB

• NDBM

KV - RAM

• Aerospike

• Coherence

• FairCom c-treeACE

• Hazelcast

• memcached

• OpenLink Virtuoso

• Redis

• XAP

• Gemfire

KV - solid-state drive or rotating disk

• Aerospike

• BigTable

• CDB

• Clusterpoint Database Server

• Couchbase Server

• FairCom c-treeACE

• GT.M[4]

• Hibari

• Keyspace

• LevelDB

• LMDB

• MemcacheDB (using Berkeley DB or LMDB)

• MongoDB

• NoSQLz

• Coherence

• Oracle NoSQL Database

• OpenLink Virtuoso

• Tarantool

• Tokyo Cabinet

• Tuple space

2.6.2 References

[1] http://db-engines.com/en/ranking

[2] “Oracle NoSQL Database”

[3] “Riak: An Open Source Scalable Data Store”. 28 Novem-
ber 2010. Retrieved 28 November 2010.

https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Dbm
https://en.wikipedia.org/wiki/Ndbm
https://en.wikipedia.org/wiki/Sdbm
https://en.wikipedia.org/wiki/GNU_dbm
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Project_Voldemort
https://en.wikipedia.org/wiki/Riak
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Berkeley_DB
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/FoundationDB
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/IBM_Informix_C-ISAM
https://en.wikipedia.org/wiki/InfinityDB
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/NDBM
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/Oracle_Coherence
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/Hazelcast
https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/GigaSpaces#XAP
https://en.wikipedia.org/wiki/Gemfire
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/BigTable
https://en.wikipedia.org/wiki/Cdb_(software)
https://en.wikipedia.org/wiki/Clusterpoint
https://en.wikipedia.org/wiki/Couchbase_Server
https://en.wikipedia.org/wiki/C-treeACE
https://en.wikipedia.org/wiki/GT.M
https://en.wikipedia.org/wiki/Hibari_(database)
https://en.wikipedia.org/wiki/Keyspace_(distributed_data_store)
https://en.wikipedia.org/wiki/LevelDB
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/Lightning_Memory-Mapped_Database
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/NoSQLz
https://en.wikipedia.org/wiki/Oracle_Coherence
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Virtuoso_Universal_Server
https://en.wikipedia.org/wiki/Tarantool
https://en.wikipedia.org/wiki/Tokyo_Cabinet
https://en.wikipedia.org/wiki/Tuple_space
http://db-engines.com/en/ranking
http://www.dbjournal.ro/archive/12/12.pdf
https://wiki.basho.com/

2.7. DOCUMENT-ORIENTED DATABASE 35

[4] Tweed, Rob; James, George (2010). “A Universal
NoSQL Engine, Using a Tried and Tested Technology”
(PDF). p. 25. Without exception, the most successful and
well-known of the NoSQL databases have been developed
from scratch, all within just the last few years. Strangely,
it seems that nobody looked around to see whether there
were any existing, successfully implemented database
technologies that could have provided a sound founda-
tion for meeting Web-scale demands. Had they done
so, they might have discovered two products, GT.M and
Caché.....*

2.6.3 External links

• Ranking of key-value databases by popularity

2.7 Document-oriented database

This article is about the software type. For us-
age/deployment instances, see Full text database.

A document-oriented database or document store is
a computer program designed for storing, retrieving, and
managing document-oriented information, also known as
semi-structured data. Document-oriented databases are
one of the main categories of NoSQL databases and the
popularity of the term “document-oriented database” has
grown[1] with the use of the term NoSQL itself.
Document-oriented databases are inherently a subclass of
the key-value store, another NoSQL database concept.
The difference lies in the way the data is processed; in
a key-value store the data is considered to be inherently
opaque to the database, whereas a document-oriented
system relies on internal structure in the document order
to extract metadata that the database engine uses for fur-
ther optimization. Although the difference is often moot
due to tools in the systems,[lower-alpha 1] conceptually the
document-store is designed to offer a richer experience
with modern programming techniques. XML databases
are a specific subclass of document-oriented databases
that are optimized to extract their metadata from XML
documents.
Document databases[lower-alpha 2] contrast strongly with
the traditional relational database (RDB). Relational
databases are strongly typed during database creation,
and store repeated data in separate tables that are defined
by the programmer. In an RDB, every instance of data
has the same format as every other, and changing that for-
mat is generally difficult. Document databases get their
type information from the data itself, normally store all
related information together, and allow every instance of
data to be different from any other. This makes them
more flexible in dealing with change and optional values,
maps more easily into program objects, and often reduces
database size. This makes them attractive for program-
ming modern web applications, which are subject to con-

tinual change in place, and speed of deployment is an im-
portant issue.

2.7.1 Documents

The central concept of a document-oriented database are
the documents, which is used in usual English sense of a
group of data that encodes some sort of user-readable in-
formation. This contrasts with the value in the key-value
store, which is assumed to be opaque data. The basic
concept that makes a database document-oriented as op-
posed to key-value is the idea that the documents include
internal structure, or metadata, that the database engine
can use to further automate the storage and provide more
value.
To understand the difference, consider this text docu-
ment:
Bob Smith 123 Back St. Boys, AR, 32225 US
Although it is clear to the reader that this document con-
tains the address for a contact, there is no information
within the document that indicates that, nor information
on what the individual fields represent. This file could be
stored in a key-value store, but the semantic content that
this is an address may be lost, and the database has no
way to know how to optimize or index this data by itself.
For instance, there is no way for the database to know that
“AR” is the state and add it to an index of states, it is sim-
ply a piece of data in a string that also includes the city and
zip code. It is possible to add additional logic to decon-
struct the string into fields, to extract the state by looking
for the middle item of three comma separated values in
the 3rd line, but this is not a simple task. For instance, if
another line is added to the address, adding a PO Box or
suite number for instance, the state information is in the
4th line instead of 3rd. Without additional information,
parsing free form data of this sort can be complex.
Now consider the same document marked up in pseudo-
XML:
<contact> <firstname>Bob</firstname> <last-
name>Smith</lastname> <street1>123 Back
St.</street1> <city>Boys</city> <state>AR</state>
<zip>32225</zip> <country>US</country> </contact>

In this case, the document includes both data and the
metadata explaining each of the fields. A key-value store
receiving this document would simply store it. In the case
of a document-store, the system understands that contact
documents may have a state field, allowing the program-
mer to “find all the <contact>s where the <state> is 'AR'".
Additionally, the programmer can provide hints based on
the document type or fields within it, for instance, they
may tell the engine to place all <contact> documents in a
separate physical store, or to make an index on the state
field for performance reasons. All of this can be done
in a key-value store as well, and the difference lies pri-

http://www.mgateway.com/docs/universalNoSQL.pdf
http://www.mgateway.com/docs/universalNoSQL.pdf
http://db-engines.com/en/ranking/key-value+store
https://en.wikipedia.org/wiki/Full_text_database
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Semi-structured_model
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Key-value_store
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Strong_and_weak_typing
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Metadata

36 CHAPTER 2. NOT ONLY SQL

marily in how much programming effort is needed to add
these indexes and other features; in a document-store this
is normally almost entirely automated.
Now consider a slightly more complex example:
<contact> <firstname>Bob</firstname>
<lastname>Smith</lastname> <email
type="Home">bob.smith@example.com</email>
<phone type="Cell">(123) 555-0178</phone>
<phone type="Work">(890) 555-0133</phone>
<address> <type>Home</type> <street1>123 Back
St.</street1> <city>Boys</city> <state>AR</state>
<zip>32225</zip> <country>US</country> </address>
</contact>

In this case a number of the fields are either repeated or
split out into separate containers in the case of <address>.
With similar hints, the document store will allow searches
for things like “find all my <contact>s with a <phone>
of type <work> but does not have an <email> of type
<work>". This is not unlike other database systems in
terms of retrieval. What is different is that these fields
are defined by the metadata in the document itself. There
is no need to pre-define these fields in the database.
This is another major advantage of the document-
oriented concept; a single database can contain both of
these <contact> objects in the same store, and more gen-
erally, every document in the database can have a differ-
ent format. It is very common for a particular type of doc-
ument to differ from instance to instance; one <contact>
might have a work email, another might not, one might
have a single address, another might have several. More
widely, the database can store completely unrelated doc-
uments, yet still understand that parts of the data within
them are the same. For instance, one could construct
a query that would look for any document that has the
<state> 'AR', it doesn't matter that the documents might
be <contact>s or <business>es, or if the <state> is within
an <address> or not.
In addition to making it easier to handle different types
of data, the metadata also allows the document format
to be changed at any time without affecting the exist-
ing records. If one wishes to add an <image> field to
their contact book application some time in the future,
they simply add it. Existing documents will still work
fine without being changed in the database, they simply
won't have an image. Fields can be added at any time,
anywhere, with no need to change the physical storage.
The usefulness of this sort of introspection of the data
is not lost on the designers of other database systems.
Many key-value stores include some or all of the function-
ality of dedicated from the start document stores, and a
number of relational databases, notably PostgreSQL and
Informix, have added functionality to make these sorts of
operations possible. It is not the ability to provide these
functions that define the document-orientation, but the
ease with which these functions can be implemented and

used; a document-oriented database is designed from the
start to work with complex documents, and will (hope-
fully) make it easier to access this functionality than a
system where this was added after the fact.
Practically any “document” containing metadata can be
managed in this fashion, and common examples in-
clude XML, YAML, JSON, and BSON. Some document-
oriented databases include functionality to help map data
lacking clearly defined metadata. For instance, many en-
gines include functionality to index PDF or TeX doc-
uments, or may include predefined document formats
that are in turn based on XML, like MathML, JATS or
DocBook. Some allow documents to be mapped onto
a more suitable format using a schema language such as
DTD, XSD, Relax NG, or Schematron. Others may in-
clude tools to map enterprise data, like column-delimited
text files, into formats that can be read more easily by the
database engine. Still others take the opposite route, and
are dedicated to one type of data format, JSON. JSON
is widely used in online programming for interactive web
pages and mobile apps, and a niche has appeared for doc-
ument stores dedicated to efficiently handling them.
Some of the most popular Web sites are document
databases, including the many collections of articles at
pubmed.gov or major journal publishers; Wikipedia and
its kin; and even search engines (though many of those
store links to indexed documents, rather than the full doc-
uments themselves).

Keys and retrieval

Documents may be addressed in the database via a unique
key that represents that document. This key is often
a simple string, a URI, or a path. The key can be
used to retrieve the document from the database. Typi-
cally, the database retains an index on the key to speed
up document retrieval. The most primitive document
databases may do little more than that. However, modern
document-oriented databases provide far more, because
they extract and index all kinds of metadata, and usu-
ally also the entire data content, of the documents. Such
databases offer a query language that allows the user to
retrieve documents based on their content. For example,
you may want to retrieve all the documents whose date
falls within some range, that contains a citation to another
document, etc.. The set of query APIs or query language
features available, as well as the expected performance of
the queries, varies significantly from one implementation
to the next.

Organization

Implementations offer a variety of ways of organizing
documents, including notions of:

• Collections

https://en.wikipedia.org/wiki/Introspection
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Informix
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/YAML
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/TeX
https://en.wikipedia.org/wiki/JATS
https://en.wikipedia.org/wiki/DocBook
https://en.wikipedia.org/wiki/Document_type_definition
https://en.wikipedia.org/wiki/XSD
https://en.wikipedia.org/wiki/Relax_NG
https://en.wikipedia.org/wiki/Schematron
https://en.wikipedia.org/wiki/JSON
http://www.ncbi.nlm.nih.gov/pubmed
https://en.wikipedia.org/wiki/URI

2.7. DOCUMENT-ORIENTED DATABASE 37

• Tags

• Non-visible Metadata

• Directory hierarchies

• Buckets

2.7.2 Comparison with relational
databases

In a relational database, data is first categorized into a
number of predefined types, and tables are created to hold
individual entries, or records, of each type. The tables
define the data within each record’s fields, meaning that
every record in the table has the same overall form. The
administrator also defines the relations between the ta-
bles, and selects certain fields that they believe will be
most commonly used for searching and defines indexes
on them. A key concept in the relational design is that
any data that may be repeated is placed in its own table,
and if these instances are related to each other, a field is
selected to group them together, the foreign key.
For example, an address book application will gener-
ally need to store the contact name, an optional im-
age, one or more phone numbers, one or more mail-
ing addresses, and one or more email addresses. In
a canonical relational database solution, tables would
be created for each of these records with prede-
fined fields for each bit of data: the CONTACT
table might include FIRST_NAME, LAST_NAME
and IMAGE fields, while the PHONE_NUMBER ta-
ble might include COUNTRY_CODE, AREA_CODE,
PHONE_NUMBER and TYPE (home, work, etc). The
PHONE_NUMBER table also contains a foreign key
field, “CONTACT_ID”, which holds the unique ID num-
ber assigned to the contact when it was created. In order
to recreate the original contact, the system has to search
through all of the tables and collect the information back
together using joins.
In contrast, in a document-oriented database there may
be no internal structure that maps directly onto the con-
cept of a table, and the fields and relations generally don't
exist as predefined concepts. Instead, all of the data for
an object is placed in a single document, and stored in the
database as a single entry. In the address book example,
the document would contain the contact’s name, image,
and any contact info, all in a single record. That entry is
accessed through a key, some unique bit of data, which
allows the database to retrieve and return the document
to the application. No additional work is needed to re-
trieve the related data; all of this is returned in a single
object.
A key difference between the document-oriented and re-
lational models is that the data formats are not predefined
in the document case. In most cases, any sort of docu-
ment can be stored in any database, and those documents

can change in type and form at any time. If one wishes to
add a COUNTRY_FLAG to a CONTACT, simply add
this field to new documents as they are inserted, this will
have no effect on the database or the existing documents
already stored, they simply won't have this field. This in-
dicates an advantage of the document-based model: op-
tional fields are truly optional, so a contact that does not
include a mailing address simply does not have a mailing
address, and there is no need to check another table to see
if there are entries.
To aid retrieval of information from the database,
document-oriented systems generally allow the adminis-
trator to provide hints to the database to look for certain
types of information. In the address book example, the
design might add hints for the first and last name fields.
When the document is inserted into the database (or later
modified), the database engine looks for these bits of in-
formation and indexes them, in the same fashion as the
relational model. Additionally, most document-oriented
databases allow documents to have a type associated with
them, like “address book entry”, which allows the pro-
grammer to retrieve related types of information, like “all
the address book entries”. This provides functionality
similar to a table, but separates the concept (categories
of data) from its physical implementation (tables).
All of this is predicated on the ability of the database
engine to examine the data in the document and extract
fields from the formatting, itsmetadata. This is easy in the
case of, for example, an XML document or HTML page,
where markup tags clearly identify various bits of data.
Document-oriented databases may include functionality
to automatically extract this sort of information from a
variety of document types, even those that were not orig-
inally designed for easy access in this manner. In other
cases the programmer has to provide this information us-
ing their own code. In contrast, a relational database re-
lies on the programmer to handle all of these tasks, break-
ing down the document into fields and providing those to
the database engine, which may require separate instruc-
tions if the data spans tables.
Document-oriented databases normally map more
cleanly onto existing programming concepts, like
object-oriented programming (OOP). OOP systems
have a structure somewhere between the relational and
document models; they have predefined fields but they
may be empty, they have a defined structure but that may
change, they have related data store in other objects,
but they may be optional, and collections of other data
are directly linked to the “master” object; there is no
need to look in other collections to gather up related
information. Generally, any object that can be archived
to a document can be stored directly in the database and
directly retrieved. Most modern OOP systems include
archiving systems as a basic feature.
The relational model stores each part of the object as
a separate concept and has to split out this information

https://en.wikipedia.org/wiki/Object-oriented_programming

38 CHAPTER 2. NOT ONLY SQL

on storage and recombine it on retrieval. This leads to
a problem known as object-relational impedance mis-
match, which requires considerable effort to overcome.
Object-relational mapping systems, which solve these
problems, are often complex and have a considerable per-
formance overhead. This problem simply doesn't exist
in a document-oriented system, and more generally, in
NoSQL systems as a whole.

2.7.3 Implementations

Main category: Document-oriented databases

XML database implementations

Further information: XML database

Most XML databases are document-oriented databases.

2.7.4 See also

• Database theory

• Data hierarchy

• Full text search

• In-memory database

• Internet Message Access Protocol (IMAP)

• NoSQL

• Object database

• Online database

• Real time database

• Relational database

2.7.5 Notes
[1] To the point that document-oriented and key-value sys-

tems can often be interchanged in operation.

[2] And key-value stores in general.

2.7.6 References
[1] DB-Engines Ranking per database model category

[2] Document-oriented Database. Clusterpoint. Retrieved on
2015-10-08.

[3] Documentation. Couchbase. Retrieved on 2013-09-18.

[4] CouchDB Overview

[5] CouchDB Document API

[6]

[7] eXist-db Open Source Native XML Database. Exist-
db.org. Retrieved on 2013-09-18.

[8] http://www.ibm.com/developerworks/data/library/
techarticle/dm-0801doe/

[9] http://developer.marklogic.com/licensing

[10] MongoDB Licensing

[11] Additional 30+ community MongoDB supported drivers

[12] MongoDB REST Interfaces

[13] GTM MUMPS FOSS on SourceForge

2.7.7 Further reading

• Assaf Arkin. (2007, September 20). Read Consis-
tency: Dumb Databases, Smart Services. Labnotes:
Don’t let the bubble go to your head!

2.7.8 External links

• DB-Engines Ranking of Document Stores by popu-
larity, updated monthly

2.8 NewSQL

NewSQL is a class of modern relational database man-
agement systems that seek to provide the same scal-
able performance of NoSQL systems for online trans-
action processing (OLTP) read-write workloads while
still maintaining the ACID guarantees of a traditional
database system.[1][2][3]

2.8.1 History

The term was first used by 451 Group analyst Matthew
Aslett in a 2011 research paper discussing the rise of new
database systems as challengers to established vendors.[4]

Many enterprise systems that handle high-profile data
(e.g., financial and order processing systems) also need
to be able to scale but are unable to use NoSQL solutions
because they cannot give up strong transactional and con-
sistency requirements.[4][5] The only options previously
available for these organizations were to either purchase
a more powerful single-node machine or develop cus-
tom middleware that distributes queries over traditional
DBMS nodes. Both approaches are prohibitively expen-
sive and thus are not an option for many. Thus, in this pa-
per, Aslett discusses how NewSQL upstarts are poised to
challenge the supremacy of commercial vendors, in par-
ticular Oracle.

https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Category:Document-oriented_databases
https://en.wikipedia.org/wiki/XML_database
https://en.wikipedia.org/wiki/Database_theory
https://en.wikipedia.org/wiki/Data_hierarchy
https://en.wikipedia.org/wiki/Full_text_search
https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/Internet_Message_Access_Protocol
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Object_database
https://en.wikipedia.org/wiki/Online_database
https://en.wikipedia.org/wiki/Real_time_database
https://en.wikipedia.org/wiki/Relational_database
http://db-engines.com/en/ranking_categories
http://www.clusterpoint.com/
http://www.couchbase.com/docs/
http://couchdb.apache.org/docs/overview.html
http://wiki.apache.org/couchdb/HTTP_Document_API
http://exist-db.org/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0801doe/
http://www.ibm.com/developerworks/data/library/techarticle/dm-0801doe/
http://developer.marklogic.com/licensing
http://www.mongodb.org/about/licensing/
http://docs.mongodb.org/ecosystem/drivers/community-supported-drivers/
http://www.mongodb.org/display/DOCS/Http+Interface#HttpInterface-RESTInterfaces
http://sourceforge.net/projects/fis-gtm/
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/
http://blog.labnotes.org/2007/09/20/read-consistency-dumb-databases-smart-services/
http://db-engines.com/en/ranking/document+store
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Oracle_Database

2.8. NEWSQL 39

2.8.2 Systems

Although NewSQL systems vary greatly in their inter-
nal architectures, the two distinguishing features common
amongst them is that they all support the relational data
model and use SQL as their primary interface.[6] The ap-
plications targeted by these NewSQL systems are charac-
terized as having a large number of transactions that (1)
are short-lived (i.e., no user stalls), (2) touch a small sub-
set of data using index lookups (i.e., no full table scans
or large distributed joins), and (3) are repetitive (i.e. ex-
ecuting the same queries with different inputs).[7] These
NewSQL systems achieve high performance and scala-
bility by eschewing much of the legacy architecture of
the original IBM System R design, such as heavyweight
recovery or concurrency control algorithms.[8] One of
the first known NewSQL systems is the H-Store parallel
database system.[9][10]

NewSQL systems can be loosely grouped into three cat-
egories: [11][12]

New architectures

The first type of NewSQL systems are completely new
database platforms. These are designed to operate in a
distributed cluster of shared-nothing nodes, in which each
node owns a subset of the data. These databases are of-
ten written from scratch with a distributed architecture in
mind, and include components such as distributed con-
currency control, flow control, and distributed query pro-
cessing. Example systems in this category are Google
Spanner, Clustrix, VoltDB, MemSQL, Pivotal's GemFire
XD, SAP HANA,[13] NuoDB, and Trafodion.[14]

SQL engines

The second category are highly optimized storage en-
gines for SQL. These systems provide the same program-
ming interface as SQL, but scale better than built-in en-
gines, such as InnoDB. Examples of these new storage
engines include MySQL Cluster, Infobright, TokuDB and
the now defunct InfiniDB.

Transparent sharding

These systems provide a sharding middleware layer to au-
tomatically split databases across multiple nodes. Ex-
amples of this type of system includes dbShards and
ScaleBase.

2.8.3 See also

• Transaction processing

• Partition (database)

2.8.4 References
[1] Aslett, Matthew (2011). “How Will The Database Incum-

bents Respond To NoSQL And NewSQL?" (PDF). 451
Group (published 2011-04-04). Retrieved 2012-07-06.

[2] Stonebraker, Michael (2011-06-16). “NewSQL: An Al-
ternative to NoSQL and Old SQL for New OLTP Apps”.
Communications of the ACM Blog. Retrieved 2012-07-
06.

[3] Hoff, Todd (2012-09-24). “Google Spanner’s Most Sur-
prising Revelation: NoSQL is Out and NewSQL is In”.
Retrieved 2012-10-07.

[4] Aslett, Matthew (2010). “What we talk about when we
talk about NewSQL”. 451 Group (published 2011-04-
06). Retrieved 2012-10-07.

[5] Lloyd, Alex (2012). “Building Spanner”. Berlin Buz-
zwords (published 2012-06-05). Retrieved 2012-10-07.

[6] Cattell, R. (2011). “Scalable SQL and NoSQL data
stores” (PDF). ACM SIGMOD Record 39 (4): 12.
doi:10.1145/1978915.1978919.

[7] Stonebraker, Mike; et al. (2007). “The end of an architec-
tural era: (it’s time for a complete rewrite” (PDF). VLDB
'07: Proceedings of the 33rd international conference on
Very large data bases. Vienna, Austria.

[8] Stonebraker, M.; Cattell, R. (2011). “10 rules
for scalable performance in 'simple operation' datas-
tores”. Communications of the ACM 54 (6): 72.
doi:10.1145/1953122.1953144.

[9] Aslett, Matthew (2008). “Is H-Store the future of
database management systems?" (published 2008-03-04).
Retrieved 2012-07-05.

[10] Dignan, Larry (2008). “H-Store: Complete destruction of
the old DBMS order?". Retrieved 2012-07-05.

[11] Venkatesh, Prasanna (2012). “NewSQL - The New Way
to Handle Big Data” (published 2012-01-30). Retrieved
2012-10-07.

[12] Levari, Doron (2011). “The NewSQL Market Break-
down”. Retrieved 2012-04-08.

[13] “SAP HANA”. SAP. Retrieved 17 July 2014.

[14] “Trafodion: Transactional SQL-on-HBase”. 2014.

https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/Relational_model
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/IBM_System_R
https://en.wikipedia.org/wiki/Algorithms_for_Recovery_and_Isolation_Exploiting_Semantics
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/H-Store
https://en.wikipedia.org/wiki/Parallel_database
https://en.wikipedia.org/wiki/Parallel_database
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Google_Spanner
https://en.wikipedia.org/wiki/Google_Spanner
https://en.wikipedia.org/wiki/Clustrix
https://en.wikipedia.org/wiki/VoltDB
https://en.wikipedia.org/wiki/MemSQL
https://en.wikipedia.org/wiki/Pivotal_Labs
https://en.wikipedia.org/wiki/SAP_HANA
https://en.wikipedia.org/wiki/NuoDB
https://en.wikipedia.org/wiki/Trafodion
https://en.wikipedia.org/wiki/Database_engine
https://en.wikipedia.org/wiki/Database_engine
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/InnoDB
https://en.wikipedia.org/wiki/MySQL_Cluster
https://en.wikipedia.org/wiki/Infobright
https://en.wikipedia.org/wiki/TokuDB
https://en.wikipedia.org/wiki/InfiniDB
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Middleware
https://en.wikipedia.org/wiki/CodeFutures
https://en.wikipedia.org/wiki/ScaleBase
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Partition_(database)
http://cs.brown.edu/courses/cs227/archives/2012/papers/newsql/aslett-newsql.pdf
http://cs.brown.edu/courses/cs227/archives/2012/papers/newsql/aslett-newsql.pdf
http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://cacm.acm.org/blogs/blog-cacm/109710-new-sql-an-alternative-to-nosql-and-old-sql-for-new-oltp-apps/fulltext
http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html
http://highscalability.com/blog/2012/9/24/google-spanners-most-surprising-revelation-nosql-is-out-and.html
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://blogs.the451group.com/information_management/2011/04/06/what-we-talk-about-when-we-talk-about-newsql/
http://berlinbuzzwords.de/sessions/keynote-0
http://cattell.net/datastores/Datastores.pdf
http://cattell.net/datastores/Datastores.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1978915.1978919
https://en.wikipedia.org/wiki/Michael_Stonebraker
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
http://hstore.cs.brown.edu/papers/hstore-endofera.pdf
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1953122.1953144
http://blogs.the451group.com/information_management/2008/03/04/is-h-store-the-future-of-database-management-systems/
http://blogs.the451group.com/information_management/2008/03/04/is-h-store-the-future-of-database-management-systems/
http://www.zdnet.com/blog/btl/h-store-complete-destruction-of-the-old-dbms-order/8055
http://www.zdnet.com/blog/btl/h-store-complete-destruction-of-the-old-dbms-order/8055
http://www.linuxforu.com/2012/01/newsql-handle-big-data/
http://www.linuxforu.com/2012/01/newsql-handle-big-data/
http://www.scalebase.com/the-story-of-newsql/
http://www.scalebase.com/the-story-of-newsql/
http://www.sap.com/pc/tech/data-management/software/extreme-transaction-oltp/index.html
http://www.trafodion.org/

Chapter 3

ACID

3.1 ACID

For other uses, see Acid (disambiguation).

In computer science, ACID (Atomicity, Consistency,
Isolation, Durability) is a set of properties that guaran-
tee that database transactions are processed reliably. In
the context of databases, a single logical operation on the
data is called a transaction. For example, a transfer of
funds from one bank account to another, even involving
multiple changes such as debiting one account and cred-
iting another, is a single transaction.
Jim Gray defined these properties of a reliable transaction
system in the late 1970s and developed technologies to
achieve them automatically.[1][2][3]

In 1983, Andreas Reuter and Theo Härder coined the
acronym ACID to describe them.[4]

3.1.1 Characteristics

The characteristics of these four properties as defined by
Reuter and Härder:

Atomicity

Main article: Atomicity (database systems)

Atomicity requires that each transaction be “all or noth-
ing": if one part of the transaction fails, the entire trans-
action fails, and the database state is left unchanged.
An atomic system must guarantee atomicity in each and
every situation, including power failures, errors, and
crashes. To the outside world, a committed transaction
appears (by its effects on the database) to be indivisible
(“atomic”), and an aborted transaction does not happen.

Consistency

Main article: Consistency (database systems)

The consistency property ensures that any transaction will

bring the database from one valid state to another. Any
data written to the database must be valid according to
all defined rules, including constraints, cascades, triggers,
and any combination thereof. This does not guarantee
correctness of the transaction in all ways the application
programmer might have wanted (that is the responsibility
of application-level code) but merely that any program-
ming errors cannot result in the violation of any defined
rules.

Isolation

Main article: Isolation (database systems)

The isolation property ensures that the concurrent execu-
tion of transactions results in a system state that would be
obtained if transactions were executed serially, i.e., one
after the other. Providing isolation is the main goal of
concurrency control. Depending on concurrency control
method (i.e. if it uses strict - as opposed to relaxed - seri-
alizability), the effects of an incomplete transaction might
not even be visible to another transaction.

Durability

Main article: Durability (database systems)

The durability property ensures that once a transaction
has been committed, it will remain so, even in the event of
power loss, crashes, or errors. In a relational database, for
instance, once a group of SQL statements execute, the re-
sults need to be stored permanently (even if the database
crashes immediately thereafter). To defend against power
loss, transactions (or their effects) must be recorded in a
non-volatile memory.

3.1.2 Examples

The following examples further illustrate the ACID prop-
erties. In these examples, the database table has two
columns, A and B. An integrity constraint requires that
the value in A and the value in B must sum to 100. The
following SQL code creates a table as described above:

40

https://en.wikipedia.org/wiki/Acid_(disambiguation)
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Serializability#Relaxing_serializability
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Durability_(computer_science)
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Non-volatile_memory
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/SQL

3.1. ACID 41

CREATE TABLE acidtest (A INTEGER, B INTEGER,
CHECK (A + B = 100));

Atomicity failure

In database systems, atomicity (or atomicness; from
Greek a-tomos, undividable) is one of the ACID trans-
action properties. In an atomic transaction, a series of
database operations either all occur, or nothing occurs.
The series of operations cannot be divided apart and exe-
cuted partially from each other, which makes the series of
operations “indivisible”, hence the name. A guarantee of
atomicity prevents updates to the database occurring only
partially, which can cause greater problems than reject-
ing the whole series outright. In other words, atomicity
means indivisibility and irreducibility.

Consistency failure

Consistency is a very general term, which demands that
the data must meet all validation rules. In the previous ex-
ample, the validation is a requirement that A + B = 100.
Also, it may be inferred that both A and B must be inte-
gers. A valid range for A and B may also be inferred. All
validation rules must be checked to ensure consistency.
Assume that a transaction attempts to subtract 10 from A
without altering B. Because consistency is checked after
each transaction, it is known that A + B = 100 before the
transaction begins. If the transaction removes 10 from A
successfully, atomicity will be achieved. However, a vali-
dation check will show that A + B = 90, which is inconsis-
tent with the rules of the database. The entire transaction
must be cancelled and the affected rows rolled back to
their pre-transaction state. If there had been other con-
straints, triggers, or cascades, every single change opera-
tion would have been checked in the same way as above
before the transaction was committed.

Isolation failure

To demonstrate isolation, we assume two transactions ex-
ecute at the same time, each attempting to modify the
same data. One of the two must wait until the other com-
pletes in order to maintain isolation.
Consider two transactions. T1 transfers 10 from A to B.
T2 transfers 10 from B to A. Combined, there are four
actions:

• T1 subtracts 10 from A.

• T1 adds 10 to B.

• T2 subtracts 10 from B.

• T2 adds 10 to A.

If these operations are performed in order, isolation is
maintained, although T2 must wait. Consider what hap-
pens if T1 fails half-way through. The database elimi-
nates T1's effects, and T2 sees only valid data.
By interleaving the transactions, the actual order of ac-
tions might be:

• T1 subtracts 10 from A.

• T2 subtracts 10 from B.

• T2 adds 10 to A.

• T1 adds 10 to B.

Again, consider what happens if T1 fails halfway through.
By the time T1 fails, T2 has already modified A; it cannot
be restored to the value it had before T1 without leaving
an invalid database. This is known as a write-write fail-
ure, because two transactions attempted to write to the
same data field. In a typical system, the problem would
be resolved by reverting to the last known good state, can-
celing the failed transaction T1, and restarting the inter-
rupted transaction T2 from the good state.

Durability failure

Consider a transaction that transfers 10 from A to B. First
it removes 10 from A, then it adds 10 to B. At this point,
the user is told the transaction was a success, however the
changes are still queued in the disk buffer waiting to be
committed to disk. Power fails and the changes are lost.
The user assumes (understandably) that the changes have
been persisted.

3.1.3 Implementation

Processing a transaction often requires a sequence of op-
erations that is subject to failure for a number of rea-
sons. For instance, the system may have no room left
on its disk drives, or it may have used up its allocated
CPU time. There are two popular families of techniques:
write-ahead logging and shadow paging. In both cases,
locks must be acquired on all information to be updated,
and depending on the level of isolation, possibly on all
data that be read as well. In write ahead logging, atom-
icity is guaranteed by copying the original (unchanged)
data to a log before changing the database. That allows
the database to return to a consistent state in the event of
a crash. In shadowing, updates are applied to a partial
copy of the database, and the new copy is activated when
the transaction commits.

Locking vs multiversioning

Many databases rely upon locking to provide ACID ca-
pabilities. Locking means that the transaction marks the

https://en.wikipedia.org/wiki/Write-write_failure
https://en.wikipedia.org/wiki/Write-write_failure
https://en.wikipedia.org/wiki/Disk_buffer
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Shadow_paging
https://en.wikipedia.org/wiki/Lock_(computer_science)

42 CHAPTER 3. ACID

data that it accesses so that the DBMS knows not to al-
low other transactions to modify it until the first transac-
tion succeeds or fails. The lock must always be acquired
before processing data, including data that is read but
not modified. Non-trivial transactions typically require
a large number of locks, resulting in substantial overhead
as well as blocking other transactions. For example, if
user A is running a transaction that has to read a row of
data that user B wants to modify, user B must wait un-
til user A’s transaction completes. Two phase locking is
often applied to guarantee full isolation.
An alternative to locking is multiversion concurrency con-
trol, in which the database provides each reading transac-
tion the prior, unmodified version of data that is being
modified by another active transaction. This allows read-
ers to operate without acquiring locks, i.e. writing trans-
actions do not block reading transactions, and readers do
not block writers. Going back to the example, when user
A’s transaction requests data that user B is modifying, the
database provides A with the version of that data that ex-
isted when user B started his transaction. User A gets a
consistent view of the database even if other users are
changing data. One implementation, namely snapshot
isolation, relaxes the isolation property.

Distributed transactions

Main article: Distributed transaction

Guaranteeing ACID properties in a distributed transac-
tion across a distributed database, where no single node
is responsible for all data affecting a transaction, presents
additional complications. Network connections might
fail, or one node might successfully complete its part
of the transaction and then be required to roll back its
changes because of a failure on another node. The two-
phase commit protocol (not to be confused with two-
phase locking) provides atomicity for distributed trans-
actions to ensure that each participant in the transaction
agrees on whether the transaction should be committed
or not. Briefly, in the first phase, one node (the coordi-
nator) interrogates the other nodes (the participants) and
only when all reply that they are prepared does the coor-
dinator, in the second phase, formalize the transaction.

3.1.4 See also

• Basically Available, Soft state, Eventual consistency
(BASE)

• CAP theorem

• Concurrency control

• Java Transaction API

• Open Systems Interconnection

• Transactional NTFS

•

3.1.5 References
[1] “Gray to be Honored With A.M. Turing Award This

Spring”. Microsoft PressPass. Archived from the origi-
nal on February 6, 2009. Retrieved March 27, 2015.

[2] Gray, Jim (September 1981). “The Transaction Concept:
Virtues and Limitations” (PDF). Proceedings of the 7th In-
ternational Conference on Very Large Databases. Cuper-
tino, CA: Tandem Computers. pp. 144–154. Retrieved
March 27, 2015.

[3] Gray, Jim & Andreas Reuter. Distributed Transaction
Processing: Concepts and Techniques. Morgan Kaufmann,
1993; ISBN 1-55860-190-2.

[4] Haerder, T.; Reuter, A. (1983). “Principles of
transaction-oriented database recovery”. ACM Computing
Surveys 15 (4): 287. doi:10.1145/289.291. These four
properties, atomicity, consistency, isolation, and durabil-
ity (ACID), describe the major highlights of the transac-
tion paradigm, which has influenced many aspects of de-
velopment in database systems.

3.2 Consistency (database systems)

Consistency in database systems refers to the require-
ment that any given database transaction must change af-
fected data only in allowed ways. Any data written to the
database must be valid according to all defined rules, in-
cluding constraints, cascades, triggers, and any combina-
tion thereof. This does not guarantee correctness of the
transaction in all ways the application programmer might
have wanted (that is the responsibility of application-level
code) but merely that any programming errors cannot re-
sult in the violation of any defined rules.

3.2.1 As an ACID guarantee

Consistency is one of the four guarantees that define
ACID transactions; however, significant ambiguity exists
about the nature of this guarantee. It is defined variously
as:

• The guarantee that any transactions started in the fu-
ture necessarily see the effects of other transactions
committed in the past[1][2]

• The guarantee that database constraints are
not violated, particularly once a transaction
commits[3][4][5][6]

• The guarantee that operations in transactions are
performed accurately, correctly, and with validity,
with respect to application semantics[7]

https://en.wikipedia.org/wiki/Two_phase_locking
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/CAP_theorem
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Java_Transaction_API
https://en.wikipedia.org/wiki/Open_Systems_Interconnection
https://en.wikipedia.org/wiki/Transactional_NTFS
http://www.microsoft.com/presspass/features/1998/11-23gray.mspx
http://www.microsoft.com/presspass/features/1998/11-23gray.mspx
http://web.archive.org/web/20090206084720/http://www.microsoft.com/presspass/features/1998/11-23gray.mspx
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
http://research.microsoft.com/~gray/papers/theTransactionConcept.pdf
http://research.microsoft.com/~gray/papers/theTransactionConcept.pdf
https://en.wikipedia.org/wiki/Tandem_Computers
https://en.wikipedia.org/wiki/Morgan_Kaufmann
https://en.wikipedia.org/wiki/Special:BookSources/1558601902
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F289.291
https://en.wikipedia.org/wiki/Database_systems
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Integrity_constraints
https://en.wikipedia.org/wiki/Cascading_rollback
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Relational_database#Constraints

3.3. DURABILITY (DATABASE SYSTEMS) 43

As these various definitions are not mutually exclusive,
it is possible to design a system that guarantees “con-
sistency” in every sense of the word, as most relational
database management systems in common use today ar-
guably do.

3.2.2 As a CAP trade-off

The CAP Theorem is based on three trade-offs, one of
which is “atomic consistency” (shortened to “consistency”
for the acronym), about which the authors note, “Dis-
cussing atomic consistency is somewhat different than
talking about an ACID database, as database consistency
refers to transactions, while atomic consistency refers
only to a property of a single request/response operation
sequence. And it has a different meaning than the Atomic
in ACID, as it subsumes the database notions of both
Atomic and Consistent.”[1]

3.2.3 See also

• Consistency model

• CAP Theorem

• Eventual consistency

3.2.4 References

[1] http://webpages.cs.luc.edu/~{}pld/353/gilbert_lynch_
brewer_proof.pdf “Brewer’s Conjecture and the Feasi-
bility of Consistent, Available, Partition-Tolerant Web
Services”

[2] Ports, D.R.K, Clements, A.T, Zhang, I, Madden, S,
Liskov, B. “Transactional Consistency and Automatic
Management in an Application Data Cache” (PDF). MIT
CSAIL.

[3] Haerder, T, Reuter, A. (December 1983). “Principles of
Transaction-Oriented Database Recovery” (PDF). Com-
puting Surveys 15 (4): 287–317.

[4] Mike Chapple. “The ACID Model”. About.

[5] “ACID properties”.

[6] Cory Janssen. “What is ACID in Databases? - Definition
from Techopedia”. Techopedia.com.

[7] “ISO/IEC 10026-1:1998 - Information technology --
Open Systems Interconnection -- Distributed Transaction
Processing -- Part 1: OSI TP Model”.

3.3 Durability (database systems)

In database systems, durability is the ACID property
which guarantees that transactions that have committed

will survive permanently. For example, if a flight book-
ing reports that a seat has successfully been booked, then
the seat will remain booked even if the system crashes.
Durability can be achieved by flushing the transaction’s
log records to non-volatile storage before acknowledging
commitment.
In distributed transactions, all participating servers must
coordinate before commit can be acknowledged. This is
usually done by a two-phase commit protocol.
Many DBMSs implement durability by writing transac-
tions into a transaction log that can be reprocessed to
recreate the system state right before any later failure. A
transaction is deemed committed only after it is entered
in the log.

3.3.1 See also

• Atomicity

• Consistency

• Isolation

• Relational database management system

https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/CAP_Theorem
https://en.wikipedia.org/wiki/Consistency_model
https://en.wikipedia.org/wiki/CAP_Theorem
https://en.wikipedia.org/wiki/Eventual_consistency
http://webpages.cs.luc.edu/~pld/353/gilbert_lynch_brewer_proof.pdf
http://webpages.cs.luc.edu/~pld/353/gilbert_lynch_brewer_proof.pdf
http://drkp.net/papers/txcache-osdi10.pdf
http://drkp.net/papers/txcache-osdi10.pdf
http://www.minet.uni-jena.de/dbis/lehre/ws2005/dbs1/HaerderReuter83.pdf
http://www.minet.uni-jena.de/dbis/lehre/ws2005/dbs1/HaerderReuter83.pdf
http://databases.about.com/od/specificproducts/a/acid.htm
http://msdn.microsoft.com/en-us/library/aa480356.aspx
http://www.techopedia.com/definition/23949/atomicity-consistency-isolation-durability-acid
http://www.techopedia.com/definition/23949/atomicity-consistency-isolation-durability-acid
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=27614
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=27614
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=27614
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Non-volatile_storage
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Transaction_log
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Relational_database_management_system

Chapter 4

Isolation

4.1 Serializability

In concurrency control of databases,[1][2] transaction
processing (transaction management), and various
transactional applications (e.g., transactional memory[3]

and software transactional memory), both centralized
and distributed, a transaction schedule is serializable if
its outcome (e.g., the resulting database state) is equal
to the outcome of its transactions executed serially, i.e.,
sequentially without overlapping in time. Transactions
are normally executed concurrently (they overlap), since
this is the most efficient way. Serializability is the
major correctness criterion for concurrent transactions’
executions. It is considered the highest level of isolation
between transactions, and plays an essential role in
concurrency control. As such it is supported in all gen-
eral purpose database systems. Strong strict two-phase
locking (SS2PL) is a popular serializability mechanism
utilized in most of the database systems (in various
variants) since their early days in the 1970s.
Serializability theory provides the formal framework
to reason about and analyze serializability and its tech-
niques. Though it is mathematical in nature, its funda-
mentals are informally (without mathematics notation)
introduced below.

4.1.1 Database transaction

Main article: Database transaction

For this is a specific intended run (with specific param-
eters, e.g., with transaction identification, at least) of a
computer program (or programs) that accesses a database
(or databases). Such a program is written with the as-
sumption that it is running in isolation from other ex-
ecuting programs, i.e., when running, its accessed data
(after the access) are not changed by other running pro-
grams. Without this assumption the transaction’s results
are unpredictable and can be wrong. The same transac-
tion can be executed in different situations, e.g., in dif-
ferent times and locations, in parallel with different pro-
grams. A live transaction (i.e., exists in a computing en-
vironment with already allocated computing resources; to

distinguish from a transaction request, waiting to get exe-
cution resources) can be in one of three states, or phases:

1. Running - Its program(s) is (are) executing.

2. Ready - Its program’s execution has ended, and it is
waiting to be Ended (Completed).

3. Ended (or Completed) - It is either Committed or
Aborted (Rolled-back), depending whether the ex-
ecution is considered a success or not, respectively .
When committed, all its recoverable (i.e., with states
that can be controlled for this purpose), durable re-
sources (typically database data) are put in their fi-
nal states, states after running. When aborted, all
its recoverable resources are put back in their initial
states, as before running.

A failure in transaction’s computing environment before
ending typically results in its abort. However, a transac-
tion may be aborted also for other reasons as well (e.g.,
see below).
Upon being ended (completed), transaction’s allocated
computing resources are released and the transaction dis-
appears from the computing environment. However, the
effects of a committed transaction remain in the database,
while the effects of an aborted (rolled-back) transaction
disappear from the database. The concept of atomic
transaction (“all or nothing” semantics) was designed to
exactly achieve this behavior, in order to control correct-
ness in complex faulty systems.

4.1.2 Correctness

Correctness - serializability

Serializability is a property of a transaction schedule
(history). It relates to the isolation property of a database
transaction.

Serializability of a schedule means equiva-
lence (in the outcome, the database state, data
values) to a serial schedule (i.e., sequential with
no transaction overlap in time) with the same

44

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Isolation_(computer_science)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Mathematics
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction

4.1. SERIALIZABILITY 45

transactions. It is the major criterion for the
correctness of concurrent transactions’ sched-
ule, and thus supported in all general purpose
database systems.

The rationale behind serializability is the
following:
If each transaction is correct by itself, i.e.,
meets certain integrity conditions, then a
schedule that comprises any serial execution
of these transactions is correct (its transactions
still meet their conditions): “Serial” means that
transactions do not overlap in time and cannot
interfere with each other, i.e, complete isola-
tion between each other exists. Any order of
the transactions is legitimate, if no dependen-
cies among them exist, which is assumed (see
comment below). As a result, a schedule that
comprises any execution (not necessarily se-
rial) that is equivalent (in its outcome) to any
serial execution of these transactions, is cor-
rect.

Schedules that are not serializable are likely to gener-
ate erroneous outcomes. Well known examples are with
transactions that debit and credit accounts with money:
If the related schedules are not serializable, then the to-
tal sum of money may not be preserved. Money could
disappear, or be generated from nowhere. This and vi-
olations of possibly needed other invariant preservations
are caused by one transaction writing, and “stepping on”
and erasing what has been written by another transaction
before it has become permanent in the database. It does
not happen if serializability is maintained.
If any specific order between some transactions is re-
quested by an application, then it is enforced inde-
pendently of the underlying serializability mechanisms.
These mechanisms are typically indifferent to any spe-
cific order, and generate some unpredictable partial or-
der that is typically compatible with multiple serial orders
of these transactions. This partial order results from the
scheduling orders of concurrent transactions’ data access
operations, which depend on many factors.
A major characteristic of a database transaction is
atomicity, which means that it either commits, i.e., all its
operations’ results take effect in the database, or aborts
(rolled-back), all its operations’ results do not have any
effect on the database (“all or nothing” semantics of a
transaction). In all real systems transactions can abort
for many reasons, and serializability by itself is not suf-
ficient for correctness. Schedules also need to possess
the recoverability (from abort) property. Recoverabil-
ity means that committed transactions have not read data
written by aborted transactions (whose effects do not ex-
ist in the resulting database states). While serializability is
currently compromised on purpose in many applications
for better performance (only in cases when application’s

correctness is not harmed), compromising recoverability
would quickly violate the database’s integrity, as well as
that of transactions’ results external to the database. A
schedule with the recoverability property (a recoverable
schedule) “recovers” from aborts by itself, i.e., aborts do
not harm the integrity of its committed transactions and
resulting database. This is false without recoverability,
where the likely integrity violations (resulting incorrect
database data) need special, typically manual, corrective
actions in the database.
Implementing recoverability in its general form may re-
sult in cascading aborts: Aborting one transaction may
result in a need to abort a second transaction, and then a
third, and so on. This results in a waste of already par-
tially executed transactions, and may result also in a per-
formance penalty. Avoiding cascading aborts (ACA, or
Cascadelessness) is a special case of recoverability that
exactly prevents such phenomenon. Often in practice a
special case of ACA is utilized: Strictness. Strictness
allows an efficient database recovery from failure.
Note that the recoverability property is needed even if
no database failure occurs and no database recovery from
failure is needed. It is rather needed to correctly automat-
ically handle aborts, which may be unrelated to database
failure and recovery from failure.

Relaxing serializability

In many applications, unlike with finances, absolute cor-
rectness is not needed. For example, when retrieving a
list of products according to specification, in most cases
it does not matter much if a product, whose data was up-
dated a short time ago, does not appear in the list, even
if it meets the specification. It will typically appear in
such a list when tried again a short time later. Commer-
cial databases provide concurrency control with a whole
range of isolation levels which are in fact (controlled) se-
rializability violations in order to achieve higher perfor-
mance. Higher performance means better transaction ex-
ecution rate and shorter average transaction response time
(transaction duration). Snapshot isolation is an example
of a popular, widely utilized efficient relaxed serializabil-
ity method with many characteristics of full serializabil-
ity, but still short of some, and unfit in many situations.
Another common reason nowadays for distributed se-
rializability relaxation (see below) is the requirement
of availability of internet products and services. This
requirement is typically answered by large-scale data
replication. The straightforward solution for synchroniz-
ing replicas’ updates of a same database object is includ-
ing all these updates in a single atomic distributed trans-
action. However, with many replicas such a transaction is
very large, and may span several computers and networks
that some of them are likely to be unavailable. Thus
such a transaction is likely to end with abort and miss its
purpose.[4] Consequently, Optimistic replication (Lazy

https://en.wikipedia.org/wiki/Invariant_(computer_science)
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Partial_order
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Recoverable
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Avoids_cascading_aborts_(rollbacks)
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Strict
https://en.wikipedia.org/wiki/Isolation_(computer_science)#Isolation_levels
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Serializability#Distributed_serializability
https://en.wikipedia.org/wiki/Serializability#Distributed_serializability
https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Internet_service_provider
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Computer
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Optimistic_replication

46 CHAPTER 4. ISOLATION

replication) is often utilized (e.g., in many products and
services by Google, Amazon, Yahoo, and alike), while
serializability is relaxed and compromised for eventual
consistency. Again in this case, relaxation is done only
for applications that are not expected to be harmed by
this technique.
Classes of schedules defined by relaxed serializability
properties either contain the serializability class, or are
incomparable with it.

4.1.3 View and conflict serializability

Mechanisms that enforce serializability need to execute
in real time, or almost in real time, while transactions are
running at high rates. In order to meet this requirement
special cases of serializability, sufficient conditions for
serializability which can be enforced effectively, are uti-
lized.
Two major types of serializability exist: view-
serializability, and conflict-serializability. View-
serializability matches the general definition of
serializability given above. Conflict-serializability is
a broad special case, i.e., any schedule that is conflict-
serializable is also view-serializable, but not necessarily
the opposite. Conflict-serializability is widely uti-
lized because it is easier to determine and covers a
substantial portion of the view-serializable schedules.
Determining view-serializability of a schedule is an
NP-complete problem (a class of problems with only
difficult-to-compute, excessively time-consuming known
solutions).

View-serializability of a schedule is defined
by equivalence to a serial schedule (no over-
lapping transactions) with the same transac-
tions, such that respective transactions in the
two schedules read and write the same data val-
ues (“view” the same data values).

Conflict-serializability is defined by equiva-
lence to a serial schedule (no overlapping trans-
actions) with the same transactions, such that
both schedules have the same sets of respective
chronologically ordered pairs of conflicting op-
erations (same precedence relations of respec-
tive conflicting operations).

Operations upon data are read or write (a write: either in-
sert or modify or delete). Two operations are conflicting,
if they are of different transactions, upon the same datum
(data item), and at least one of them is write. Each such
pair of conflicting operations has a conflict type: It is ei-
ther a read-write, or write-read, or a write-write conflict.
The transaction of the second operation in the pair is said
to be in conflict with the transaction of the first operation.
A more general definition of conflicting operations (also

for complex operations, which may consist each of sev-
eral “simple” read/write operations) requires that they are
noncommutative (changing their order also changes their
combined result). Each such operation needs to be atomic
by itself (by proper system support) in order to be consid-
ered an operation for a commutativity check. For exam-
ple, read-read operations are commutative (unlike read-
write and the other possibilities) and thus read-read is not
a conflict. Another more complex example: the opera-
tions increment and decrement of a counter are both write
operations (both modify the counter), but do not need to
be considered conflicting (write-write conflict type) since
they are commutative (thus increment-decrement is not
a conflict; e.g., already has been supported in the old
IBM’s IMS “fast path”). Only precedence (time order) in
pairs of conflicting (non-commutative) operations is im-
portant when checking equivalence to a serial schedule,
since different schedules consisting of the same transac-
tions can be transformed from one to another by chang-
ing orders between different transactions’ operations (dif-
ferent transactions’ interleaving), and since changing or-
ders of commutative operations (non-conflicting) does
not change an overall operation sequence result, i.e., a
schedule outcome (the outcome is preserved through or-
der change between non-conflicting operations, but typi-
cally not when conflicting operations change order). This
means that if a schedule can be transformed to any se-
rial schedule without changing orders of conflicting oper-
ations (but changing orders of non-conflicting, while pre-
serving operation order inside each transaction), then the
outcome of both schedules is the same, and the schedule
is conflict-serializable by definition.
Conflicts are the reason for blocking transactions and de-
lays (non-materialized conflicts), or for aborting transac-
tions due to serializability violations prevention. Both
possibilities reduce performance. Thus reducing the
number of conflicts, e.g., by commutativity (when pos-
sible), is a way to increase performance.
A transaction can issue/request a conflicting operation
and be in conflict with another transaction while its
conflicting operation is delayed and not executed (e.g.,
blocked by a lock). Only executed (materialized) conflict-
ing operations are relevant to conflict serializability (see
more below).

4.1.4 Enforcing conflict serializability

Testing conflict serializability

Schedule compliance with conflict serializability can be
tested with the precedence graph (serializability graph,
serialization graph, conflict graph) for committed transac-
tions of the schedule. It is the directed graph representing
precedence of transactions in the schedule, as reflected by
precedence of conflicting operations in the transactions.

In the precedence graph transactions are

https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Yahoo
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Real-time_computing
https://en.wikipedia.org/wiki/NP-complete
https://en.wikipedia.org/wiki/Noncommutative
https://en.wikipedia.org/wiki/IBM_Information_Management_System
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Precedence_graph
https://en.wikipedia.org/wiki/Directed_graph
https://en.wikipedia.org/wiki/Precedence_graph

4.1. SERIALIZABILITY 47

nodes and precedence relations are directed
edges. There exists an edge from a first trans-
action to a second transaction, if the second
transaction is in conflict with the first (see Con-
flict serializability above), and the conflict is
materialized (i.e., if the requested conflict-
ing operation is actually executed: in many
cases a requested/issued conflicting operation
by a transaction is delayed and even never ex-
ecuted, typically by a lock on the operation’s
object, held by another transaction, or when
writing to a transaction’s temporary private
workspace and materializing, copying to the
database itself, upon commit; as long as a re-
quested/issued conflicting operation is not exe-
cuted upon the database itself, the conflict is
non-materialized; non-materialized conflicts
are not represented by an edge in the prece-
dence graph).

Comment: In many text books only commit-
ted transactions are included in the precedence
graph. Here all transactions are included for
convenience in later discussions.

The following observation is a key characterization of
conflict serializability:

A schedule is conflict-serializable if and only if
its precedence graph of committed transactions
(when only committed transactions are consid-
ered) is acyclic. This means that a cycle con-
sisting of committed transactions only is gener-
ated in the (general) precedence graph, if and
only if conflict-serializability is violated.

Cycles of committed transactions can be prevented by
aborting an undecided (neither committed, nor aborted)
transaction on each cycle in the precedence graph of all
the transactions, which can otherwise turn into a cycle
of committed transactions (and a committed transaction
cannot be aborted). One transaction aborted per cycle is
both required and sufficient number to break and elimi-
nate the cycle (more aborts are possible, and can happen
in some mechanisms, but unnecessary for serializability).
The probability of cycle generation is typically low, but
nevertheless, such a situation is carefully handled, typi-
cally with a considerable overhead, since correctness is
involved. Transactions aborted due to serializability vio-
lation prevention are restarted and executed again imme-
diately.
Serializability enforcing mechanisms typically do not
maintain a precedence graph as a data structure, but
rather prevent or break cycles implicitly (e.g., SS2PL be-
low).

Common mechanism - SS2PL

Main article: Two-phase locking

Strong strict two phase locking (SS2PL) is a common
mechanism utilized in database systems since their early
days in the 1970s (the “SS” in the name SS2PL is
newer though) to enforce both conflict serializability and
strictness (a special case of recoverability which allows
effective database recovery from failure) of a schedule.
In this mechanism each datum is locked by a transaction
before accessing it (any read or write operation): The
item is marked by, associated with a lock of a certain
type, depending on operation (and the specific implemen-
tation; various models with different lock types exist; in
some models locks may change type during the transac-
tion’s life). As a result, access by another transaction may
be blocked, typically upon a conflict (the lock delays or
completely prevents the conflict from being materialized
and be reflected in the precedence graph by blocking the
conflicting operation), depending on lock type and the
other transaction’s access operation type. Employing an
SS2PL mechanism means that all locks on data on behalf
of a transaction are released only after the transaction has
ended (either committed or aborted).
SS2PL is the name of the resulting schedule property as
well, which is also called rigorousness. SS2PL is a special
case (proper subset) of Two-phase locking (2PL)
Mutual blocking between transactions results in a dead-
lock, where execution of these transactions is stalled, and
no completion can be reached. Thus deadlocks need to
be resolved to complete these transactions’ execution and
release related computing resources. A deadlock is a re-
flection of a potential cycle in the precedence graph, that
would occur without the blocking when conflicts are ma-
terialized. A deadlock is resolved by aborting a transac-
tion involved with such potential cycle, and breaking the
cycle. It is often detected using a wait-for graph (a graph
of conflicts blocked by locks from being materialized;
it can be also defined as the graph of non-materialized
conflicts; conflicts not materialized are not reflected in
the precedence graph and do not affect serializability),
which indicates which transaction is “waiting for” lock
release by which transaction, and a cycle means a dead-
lock. Aborting one transaction per cycle is sufficient to
break the cycle. Transactions aborted due to deadlock
resolution are restarted and executed again immediately.

Other enforcing techniques

Other known mechanisms include:

• Precedence graph (or Serializability graph, Conflict
graph) cycle elimination

• Two-phase locking (2PL)

https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Directed_acyclic_graph
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Strict
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Proper_subset
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Wait-for_graph
https://en.wikipedia.org/wiki/Precedence_graph
https://en.wikipedia.org/wiki/Two-phase_locking

48 CHAPTER 4. ISOLATION

• Timestamp ordering (TO)

• Serializable snapshot isolation[5] (SerializableSI)

The above (conflict) serializability techniques in their
general form do not provide recoverability. Special en-
hancements are needed for adding recoverability.

Optimistic versus pessimistic techniques Concur-
rency control techniques are of three major types:

1. Pessimistic: In Pessimistic concurrency control a
transaction blocks data access operations of other
transactions upon conflicts, and conflicts are non-
materialized until blocking is removed. This is done
to ensure that operations that may violate serializ-
ability (and in practice also recoverability) do not
occur.

2. Optimistic: In Optimistic concurrency control data
access operations of other transactions are not
blocked upon conflicts, and conflicts are immedi-
ately materialized. When the transaction reaches
the ready state, i.e., its running state has been com-
pleted, possible serializability (and in practice also
recoverability) violation by the transaction’s oper-
ations (relatively to other running transactions) is
checked: If violation has occurred, the transac-
tion is typically aborted (sometimes aborting an-
other transaction to handle serializability violation
is preferred). Otherwise it is committed.

3. Semi-optimistic: Mechanisms that mix blocking in
certain situations with not blocking in other sit-
uations and employ both materialized and non-
materialized conflicts

The main differences between the technique types is the
conflict types that are generated by them. A pessimistic
method blocks a transaction operation upon conflict and
generates a non-materialized conflict, while an optimistic
method does not block and generates a materialized con-
flict. A semi-optimistic method generates both conflict
types. Both conflict types are generated by the chronolog-
ical orders in which transaction operations are invoked,
independently of the type of conflict. A cycle of com-
mitted transactions (with materialized conflicts) in the
precedence graph (conflict graph) represents a serializ-
ability violation, and should be avoided for maintain-
ing serializability. A cycle of (non-materialized) con-
flicts in the wait-for graph represents a deadlock situation,
which should be resolved by breaking the cycle. Both
cycle types result from conflicts, and should be broken.
At any technique type conflicts should be detected and
considered, with similar overhead for both materialized
and non-materialized conflicts (typically by using mecha-
nisms like locking, while either blocking for locks, or not
blocking but recording conflict for materialized conflicts).

In a blocking method typically a context switching occurs
upon conflict, with (additional) incurred overhead. Oth-
erwise blocked transactions’ related computing resources
remain idle, unutilized, which may be a worse alternative.
When conflicts do not occur frequently, optimistic meth-
ods typically have an advantage. With different trans-
actions loads (mixes of transaction types) one technique
type (i.e., either optimistic or pessimistic) may provide
better performance than the other.
Unless schedule classes are inherently blocking (i.e., they
cannot be implemented without data-access operations
blocking; e.g., 2PL, SS2PL and SCO above; see chart),
they can be implemented also using optimistic techniques
(e.g., Serializability, Recoverability).

Serializable multi-version concurrency control

See also Multiversion concurrency control
(partial coverage)
and Serializable_Snapshot_Isolation in
Snapshot isolation

Multi-version concurrency control (MVCC) is a com-
mon way today to increase concurrency and performance
by generating a new version of a database object each
time the object is written, and allowing transactions’ read
operations of several last relevant versions (of each ob-
ject), depending on scheduling method. MVCC can
be combined with all the serializability techniques listed
above (except SerializableSI which is originally MVCC
based). It is utilized in most general-purpose DBMS
products.
MVCC is especially popular nowadays through the re-
laxed serializability (see above) method Snapshot isolation
(SI) which provides better performance than most known
serializability mechanisms (at the cost of possible serial-
izability violation in certain cases). SerializableSI, which
is an efficient enhancement of SI to make it serializable,
is intended to provide an efficient serializable solution.
SerializableSI has been analyzed[5][6] via a general theory
of MVCC

4.1.5 Distributed serializability

Overview

Distributed serializability is the serializability of a
schedule of a transactional distributed system (e.g., a
distributed database system). Such system is character-
ized by distributed transactions (also called global trans-
actions), i.e., transactions that span computer processes
(a process abstraction in a general sense, depending on
computing environment; e.g., operating system's thread)
and possibly network nodes. A distributed transaction
comprises more than one local sub-transactions that each
has states as described above for a database transaction.

https://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
https://en.wikipedia.org/wiki/Snapshot_isolation#Making_Snapshot_Isolation_Serializable
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Precedence_graph
https://en.wikipedia.org/wiki/Wait-for_graph
https://en.wikipedia.org/wiki/Context_switch
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Snapshot_isolation#Serializable_Snapshot_Isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation#Making_Snapshot_Isolation_Serializable
https://en.wikipedia.org/wiki/Snapshot_isolation#Making_Snapshot_Isolation_Serializable
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Serializability#Database_transaction

4.2. ISOLATION (DATABASE SYSTEMS) 49

A local sub-transaction comprises a single process, or
more processes that typically fail together (e.g., in a single
processor core). Distributed transactions imply a need in
Atomic commit protocol to reach consensus among its lo-
cal sub-transactions on whether to commit or abort. Such
protocols can vary from a simple (one-phase) hand-shake
among processes that fail together, to more sophisticated
protocols, like Two-phase commit, to handle more com-
plicated cases of failure (e.g., process, node, communi-
cation, etc. failure). Distributed serializability is a major
goal of distributed concurrency control for correctness.
With the proliferation of the Internet, Cloud computing,
Grid computing, and small, portable, powerful comput-
ing devices (e.g., smartphones) the need for effective dis-
tributed serializability techniques to ensure correctness in
and among distributed applications seems to increase.
Distributed serializability is achieved by implement-
ing distributed versions of the known centralized
techniques.[1][2] Typically all such distributed versions re-
quire utilizing conflict information (either of material-
ized or non-materialized conflicts, or equivalently, trans-
action precedence or blocking information; conflict se-
rializability is usually utilized) that is not generated lo-
cally, but rather in different processes, and remote lo-
cations. Thus information distribution is needed (e.g.,
precedence relations, lock information, timestamps, or
tickets). When the distributed system is of a relatively
small scale, and message delays across the system are
small, the centralized concurrency control methods can
be used unchanged, while certain processes or nodes in
the system manage the related algorithms. However, in
a large-scale system (e.g., Grid and Cloud), due to the
distribution of such information, substantial performance
penalty is typically incurred, even when distributed ver-
sions of the methods (Vs. centralized) are used, primar-
ily due to computer and communication latency. Also,
when such information is distributed, related techniques
typically do not scale well. A well-known example with
scalability problems is a distributed lock manager, which
distributes lock (non-materialized conflict) information
across the distributed system to implement locking tech-
niques.

4.1.6 See also

• Strong strict two-phase locking (SS2PL or Rigor-
ousness).

• Making snapshot isolation serializable[5] in Snapshot
isolation.

• Global serializability, where the Global serializabil-
ity problem and its proposed solutions are described.

• Linearizability, a more general concept in
concurrent computing

4.1.7 Notes
[1] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman

(1987): Concurrency Control and Recovery in Database
Systems (free PDF download), Addison Wesley Publishing
Company, ISBN 0-201-10715-5

[2] Gerhard Weikum, Gottfried Vossen (2001):
Transactional Information Systems, Elsevier, ISBN
1-55860-508-8

[3] Maurice Herlihy and J. Eliot B. Moss. Transactional
memory: architectural support for lock-free data struc-
tures. Proceedings of the 20th annual international sym-
posium on Computer architecture (ISCA '93). Volume
21, Issue 2, May 1993.

[4] Gray, J.; Helland, P.; O’Neil, P.; Shasha, D. (1996).
The dangers of replication and a solution (PDF). Pro-
ceedings of the 1996 ACM SIGMOD International
Conference on Management of Data. pp. 173–182.
doi:10.1145/233269.233330.

[5] Michael J. Cahill, Uwe Röhm, Alan D. Fekete (2008):
“Serializable isolation for snapshot databases”, Proceed-
ings of the 2008 ACM SIGMOD international confer-
ence on Management of data, pp. 729-738, Vancou-
ver, Canada, June 2008, ISBN 978-1-60558-102-6 (SIG-
MOD 2008 best paper award)

[6] Alan Fekete (2009), “Snapshot Isolation and Serializable
Execution”, Presentation, Page 4, 2009, The university of
Sydney (Australia). Retrieved 16 September 2009

4.1.8 References

• Philip A. Bernstein, Vassos Hadzilacos, Nathan
Goodman (1987): Concurrency Control and Recov-
ery in Database Systems, Addison Wesley Publishing
Company, ISBN 0-201-10715-5

• Gerhard Weikum, Gottfried Vossen (2001):
Transactional Information Systems, Elsevier, ISBN
1-55860-508-8

4.2 Isolation (database systems)

In database systems, isolation determines how transac-
tion integrity is visible to other users and systems. For
example, when a user is creating a Purchase Order and
has created the header, but not the Purchase Order lines,
is the header available for other systems/users, carrying
out concurrent operations (such as a report on Purchase
Orders), to see?
A lower isolation level increases the ability of many users
to access data at the same time, but increases the num-
ber of concurrency effects (such as dirty reads or lost up-
dates) users might encounter. Conversely, a higher iso-
lation level reduces the types of concurrency effects that
users may encounter, but requires more system resources

https://en.wikipedia.org/wiki/Processor_core
https://en.wikipedia.org/wiki/Atomic_commit
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/Distributed_concurrency_control
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/Grid_computing
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Latency_(engineering)
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Snapshot_isolation#Making_Snapshot_Isolation_Serializable
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Concurrent_computing
https://en.wikipedia.org/wiki/Phil_Bernstein
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://en.wikipedia.org/wiki/Special:BookSources/0201107155
https://en.wikipedia.org/wiki/Gerhard_Weikum
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Maurice_Herlihy
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://en.wikipedia.org/wiki/Patrick_O%2527Neil
https://en.wikipedia.org/wiki/Dennis_Shasha
ftp://ftp.research.microsoft.com/pub/tr/tr-96-17.pdf
https://en.wikipedia.org/wiki/ACM_SIGMOD_International_Conference_on_Management_of_Data
https://en.wikipedia.org/wiki/ACM_SIGMOD_International_Conference_on_Management_of_Data
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F233269.233330
http://portal.acm.org/citation.cfm?id=1376690
https://en.wikipedia.org/wiki/Special:BookSources/9781605581026
http://www.it.usyd.edu.au/~fekete/teaching/serializableSI-Fekete.pdf
http://www.it.usyd.edu.au/~fekete/teaching/serializableSI-Fekete.pdf
https://en.wikipedia.org/wiki/Phil_Bernstein
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://en.wikipedia.org/wiki/Special:BookSources/0201107155
https://en.wikipedia.org/wiki/Gerhard_Weikum
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Concurrency_(computer_science)

50 CHAPTER 4. ISOLATION

and increases the chances that one transaction will block
another.[1]

Isolation is typically defined at database level as a prop-
erty that defines how/when the changes made by one op-
eration become visible to other. On older systems, it may
be implemented systemically, for example through the
use of temporary tables. In two-tier systems, a Trans-
action Processing (TP) manager is required to maintain
isolation. In n-tier systems (such as multiple websites at-
tempting to book the last seat on a flight), a combination
of stored procedures and transaction management is re-
quired to commit the booking and send confirmation to
the customer.[2]

Isolation is one of the ACID (Atomicity, Consistency,
Isolation, Durability) properties.

4.2.1 Concurrency control

Concurrency control comprises the underlying mecha-
nisms in a DBMS which handles isolation and guaran-
tees related correctness. It is heavily utilized by the
database and storage engines (see above) both to guaran-
tee the correct execution of concurrent transactions, and
(different mechanisms) the correctness of other DBMS
processes. The transaction-related mechanisms typically
constrain the database data access operations’ timing
(transaction schedules) to certain orders characterized as
the serializability and recoverability schedule properties.
Constraining database access operation execution typi-
cally means reduced performance (rates of execution),
and thus concurrency control mechanisms are typically
designed to provide the best performance possible under
the constraints. Often, when possible without harming
correctness, the serializability property is compromised
for better performance. However, recoverability cannot
be compromised, since such typically results in a quick
database integrity violation.
Two-phase locking is the most common transaction con-
currency control method in DBMSs, used to provide both
serializability and recoverability for correctness. In or-
der to access a database object a transaction first needs
to acquire a lock for this object. Depending on the ac-
cess operation type (e.g., reading or writing an object)
and on the lock type, acquiring the lock may be blocked
and postponed, if another transaction is holding a lock for
that object.

4.2.2 Isolation levels

Of the four ACID properties in a DBMS (Database Man-
agement System), the isolation property is the one most
often relaxed. When attempting to maintain the highest
level of isolation, a DBMS usually acquires locks on data
or implements multiversion concurrency control, which
may result in a loss of concurrency. This requires adding

logic for the application to function correctly.
Most DBMSs offer a number of transaction isolation lev-
els, which control the degree of locking that occurs when
selecting data. For many database applications, the ma-
jority of database transactions can be constructed to avoid
requiring high isolation levels (e.g. SERIALIZABLE
level), thus reducing the locking overhead for the sys-
tem. The programmer must carefully analyze database
access code to ensure that any relaxation of isolation does
not cause software bugs that are difficult to find. Con-
versely, if higher isolation levels are used, the possibility
of deadlock is increased, which also requires careful anal-
ysis and programming techniques to avoid.
The isolation levels defined by the ANSI/ISO SQL stan-
dard are listed as follows.

Serializable

This is the highest isolation level.
With a lock-based concurrency control DBMS imple-
mentation, serializability requires read and write locks
(acquired on selected data) to be released at the end of the
transaction. Also range-locks must be acquired when a
SELECT query uses a ranged WHERE clause, especially
to avoid the phantom reads phenomenon (see below).
When using non-lock based concurrency control, no locks
are acquired; however, if the system detects a write col-
lision among several concurrent transactions, only one of
them is allowed to commit. See snapshot isolation for
more details on this topic.

Repeatable reads

In this isolation level, a lock-based concurrency control
DBMS implementation keeps read and write locks (ac-
quired on selected data) until the end of the transac-
tion. However, range-locks are not managed, so phantom
reads can occur.

Read committed

In this isolation level, a lock-based concurrency control
DBMS implementation keeps write locks (acquired on
selected data) until the end of the transaction, but read
locks are released as soon as the SELECT operation is
performed (so the non-repeatable reads phenomenon can
occur in this isolation level, as discussed below). As in
the previous level, range-locks are not managed.
Putting it in simpler words, read committed is an isola-
tion level that guarantees that any data read is committed
at the moment it is read. It simply restricts the reader
from seeing any intermediate, uncommitted, 'dirty' read.
It makes no promise whatsoever that if the transaction re-
issues the read, it will find the same data; data is free to

https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Recoverability
https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Software_application
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Select_(SQL)
https://en.wikipedia.org/wiki/Snapshot_isolation
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Phantom_reads
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Select_(SQL)

4.2. ISOLATION (DATABASE SYSTEMS) 51

change after it is read.

Read uncommitted

This is the lowest isolation level. In this level, dirty reads
are allowed, so one transaction may see not-yet-committed
changes made by other transactions.
Since each isolation level is stronger than those below,
in that no higher isolation level allows an action forbid-
den by a lower one, the standard permits a DBMS to run
a transaction at an isolation level stronger than that re-
quested (e.g., a “Read committed” transaction may actu-
ally be performed at a “Repeatable read” isolation level).

4.2.3 Default isolation level

The default isolation level of different DBMS's varies
quite widely. Most databases that feature transactions al-
low the user to set any isolation level. Some DBMS’s also
require additional syntax when performing a SELECT
statement to acquire locks (e.g. SELECT ... FOR UP-
DATE to acquire exclusive write locks on accessed rows).
However, the definitions above have been criticized [3]

as being ambiguous, and as not accurately reflecting the
isolation provided by many databases:

This paper shows a number of weaknesses in
the anomaly approach to defining isolation lev-
els. The three ANSI phenomena are ambigu-
ous. Even their broadest interpretations do
not exclude anomalous behavior. This leads
to some counter-intuitive results. In particular,
lock-based isolation levels have different char-
acteristics than their ANSI equivalents. This
is disconcerting because commercial database
systems typically use locking. Additionally,
the ANSI phenomena do not distinguish among
several isolation levels popular in commercial
systems.

There are also other criticisms concerning ANSI SQL’s
isolation definition, in that it encourages implementors to
do “bad things":

... it relies in subtle ways on an assumption
that a locking schema is used for concurrency
control, as opposed to an optimistic or multi-
version concurrency scheme. This implies that
the proposed semantics are ill-defined.[4]

4.2.4 Read phenomena

The ANSI/ISO standard SQL 92 refers to three differ-
ent read phenomena when Transaction 1 reads data that
Transaction 2 might have changed.

In the following examples, two transactions take place. In
the first, Query 1 is performed. Then, in the second trans-
action, Query 2 is performed and committed. Finally, in
the first transaction, Query 1 is performed again.
The queries use the following data table:

Dirty reads

A dirty read (aka uncommitted dependency) occurs when
a transaction is allowed to read data from a row that has
been modified by another running transaction and not yet
committed.
Dirty reads work similarly to non-repeatable reads; how-
ever, the second transaction would not need to be com-
mitted for the first query to return a different result. The
only thing that may be prevented in the READ UNCOM-
MITTED isolation level is updates appearing out of order
in the results; that is, earlier updates will always appear
in a result set before later updates.
In our example, Transaction 2 changes a row, but does
not commit the changes. Transaction 1 then reads the
uncommitted data. Now if Transaction 2 rolls back its
changes (already read by Transaction 1) or updates dif-
ferent changes to the database, then the view of the data
may be wrong in the records of Transaction 1.
But in this case no row exists that has an id of 1 and an
age of 21.

Non-repeatable reads

A non-repeatable read occurs, when during the course
of a transaction, a row is retrieved twice and the values
within the row differ between reads.
Non-repeatable reads phenomenon may occur in a lock-
based concurrency control method when read locks are
not acquired when performing a SELECT, or when the
acquired locks on affected rows are released as soon as the
SELECT operation is performed. Under the multiversion
concurrency control method, non-repeatable reads may
occur when the requirement that a transaction affected by
a commit conflict must roll back is relaxed.
In this example, Transaction 2 commits successfully,
which means that its changes to the row with id 1 should
become visible. However, Transaction 1 has already seen
a different value for age in that row. At the SERIALIZ-
ABLE and REPEATABLE READ isolation levels, the
DBMS must return the old value for the second SE-
LECT. At READ COMMITTED and READ UNCOM-
MITTED, the DBMS may return the updated value; this
is a non-repeatable read.
There are two basic strategies used to prevent non-
repeatable reads. The first is to delay the execution of
Transaction 2 until Transaction 1 has committed or rolled
back. This method is used when locking is used, and pro-

https://en.wikipedia.org/wiki/Isolation_(database_systems)#Dirty_reads
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Non-repeatable_reads
https://en.wikipedia.org/wiki/Select_(SQL)
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Commit_conflict

52 CHAPTER 4. ISOLATION

duces the serial schedule T1, T2. A serial schedule ex-
hibits repeatable reads behaviour.
In the other strategy, as used in multiversion concurrency
control, Transaction 2 is permitted to commit first, which
provides for better concurrency. However, Transaction 1,
which commenced prior to Transaction 2, must continue
to operate on a past version of the database — a snap-
shot of the moment it was started. When Transaction 1
eventually tries to commit, the DBMS checks if the result
of committing Transaction 1 would be equivalent to the
schedule T1, T2. If it is, then Transaction 1 can proceed.
If it cannot be seen to be equivalent, however, Transac-
tion 1 must roll back with a serialization failure.
Using a lock-based concurrency control method, at the
REPEATABLE READ isolation mode, the row with ID
= 1 would be locked, thus blocking Query 2 until the
first transaction was committed or rolled back. In READ
COMMITTED mode, the second time Query 1 was exe-
cuted, the age would have changed.
Under multiversion concurrency control, at the SERI-
ALIZABLE isolation level, both SELECT queries see a
snapshot of the database taken at the start of Transac-
tion 1. Therefore, they return the same data. However,
if Transaction 1 then attempted to UPDATE that row as
well, a serialization failure would occur and Transaction
1 would be forced to roll back.
At the READ COMMITTED isolation level, each query
sees a snapshot of the database taken at the start of each
query. Therefore, they each see different data for the
updated row. No serialization failure is possible in this
mode (because no promise of serializability is made), and
Transaction 1 will not have to be retried.

Phantom reads

A phantom read occurs when, in the course of a transac-
tion, two identical queries are executed, and the collection
of rows returned by the second query is different from the
first.
This can occur when range locks are not acquired on per-
forming a SELECT ... WHERE operation. The phantom
reads anomaly is a special case of Non-repeatable reads
when Transaction 1 repeats a ranged SELECT ... WHERE
query and, between both operations, Transaction 2 cre-
ates (i.e. INSERT) new rows (in the target table) which
fulfill that WHERE clause.
Note that Transaction 1 executed the same query twice.
If the highest level of isolation were maintained, the same
set of rows should be returned both times, and indeed that
is what is mandated to occur in a database operating at
the SQL SERIALIZABLE isolation level. However, at
the lesser isolation levels, a different set of rows may be
returned the second time.
In the SERIALIZABLE isolation mode, Query 1 would
result in all records with age in the range 10 to 30 being

locked, thus Query 2 would block until the first transac-
tion was committed. In REPEATABLE READ mode,
the range would not be locked, allowing the record to be
inserted and the second execution of Query 1 to include
the new row in its results.

4.2.5 Isolation Levels, Read Phenomena
and Locks

Isolation Levels vs Read Phenomena

Anomaly Serializable is not the same as Serializable.
That is, it is necessary, but not sufficient that a Serializ-
able schedule should be free of all three phenomena types.
See [1] below.
“may occur” means that the isolation level suffers that
phenomenon, while "-" means that it does not suffer it.

Isolation Levels vs Lock Duration

In lock-based concurrency control, isolation level deter-
mines the duration that locks are held.
“C” - Denotes that locks are held until the transaction
commits.
“S” - Denotes that the locks are held only during the cur-
rently executing statement. Note that if locks are released
after a statement, the underlying data could be changed by
another transaction before the current transaction com-
mits, thus creating a violation.

4.2.6 See also

• Atomicity

• Consistency

• Durability

• Lock (database)

• Optimistic concurrency control

• Relational Database Management System

• Snapshot isolation

4.2.7 References

[1] “Isolation Levels in the Database Engine”, Technet,
Microsoft, http://technet.microsoft.com/en-us/library/
ms189122(v=SQL.105).aspx

[2] “The Architecture of Transaction Processing Systems”,
Chapter 23, Evolution of Processing Systems, Depart-
ment of Computer Science, Stony Brook University,
retrieved 20 March 2014, http://www.cs.sunysb.edu/
~{}liu/cse315/23.pdf

https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Range_locks
https://en.wikipedia.org/wiki/Select_(SQL)
https://en.wikipedia.org/wiki/INSERT
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/Optimistic_concurrency_control
https://en.wikipedia.org/wiki/Relational_Database_Management_System
https://en.wikipedia.org/wiki/Snapshot_isolation
http://technet.microsoft.com/en-us/library/ms189122(v=SQL.105).aspx
http://technet.microsoft.com/en-us/library/ms189122(v=SQL.105).aspx
http://www.cs.sunysb.edu/~liu/cse315/23.pdf
http://www.cs.sunysb.edu/~liu/cse315/23.pdf

4.3. DATABASE TRANSACTION 53

[3] “A Critique of ANSI SQL Isolation Levels” (PDF). Re-
trieved 29 July 2012.

[4] salesforce (2010-12-06). “Customer testimonials (Sim-
pleGeo, CLOUDSTOCK 2010)". www.DataStax.com:
DataStax. Retrieved 2010-03-09. (see above at about
13:30 minutes of the webcast!)

4.2.8 External links

• Oracle® Database Concepts, chapter 13 Data Con-
currency and Consistency, Preventable Phenomena
and Transaction Isolation Levels

• Oracle® Database SQL Reference, chapter 19
SQL Statements: SAVEPOINT to UPDATE, SET
TRANSACTION

• in JDBC: Connection constant fields,
Connection.getTransactionIsolation(),
Connection.setTransactionIsolation(int)

• in Spring Framework: @Transactional, Isolation

• P.Bailis. When is “ACID” ACID? Rarely

4.3 Database transaction

A transaction symbolizes a unit of work performed
within a database management system (or similar sys-
tem) against a database, and treated in a coherent and reli-
able way independent of other transactions. A transaction
generally represents any change in database. Transactions
in a database environment have two main purposes:

1. To provide reliable units of work that allow correct
recovery from failures and keep a database consis-
tent even in cases of system failure, when execution
stops (completely or partially) and many operations
upon a database remain uncompleted, with unclear
status.

2. To provide isolation between programs accessing a
database concurrently. If this isolation is not pro-
vided, the programs’ outcomes are possibly erro-
neous.

A database transaction, by definition, must be atomic,
consistent, isolated and durable.[1] Database practition-
ers often refer to these properties of database transactions
using the acronym ACID.
Transactions provide an “all-or-nothing” proposition,
stating that each work-unit performed in a database must
either complete in its entirety or have no effect whatso-
ever. Further, the system must isolate each transaction
from other transactions, results must conform to existing
constraints in the database, and transactions that complete
successfully must get written to durable storage.

4.3.1 Purpose

Databases and other data stores which treat the integrity
of data as paramount often include the ability to han-
dle transactions to maintain the integrity of data. A sin-
gle transaction consists of one or more independent units
of work, each reading and/or writing information to a
database or other data store. When this happens it is of-
ten important to ensure that all such processing leaves the
database or data store in a consistent state.
Examples from double-entry accounting systems often il-
lustrate the concept of transactions. In double-entry ac-
counting every debit requires the recording of an asso-
ciated credit. If one writes a check for $100 to buy
groceries, a transactional double-entry accounting system
must record the following two entries to cover the single
transaction:

1. Debit $100 to Groceries Expense Account

2. Credit $100 to Checking Account

A transactional system would make both entries pass or
both entries would fail. By treating the recording of mul-
tiple entries as an atomic transactional unit of work the
system maintains the integrity of the data recorded. In
other words, nobody ends up with a situation in which a
debit is recorded but no associated credit is recorded, or
vice versa.

4.3.2 Transactional databases

A transactional database is a DBMS where write trans-
actions on the database are able to be rolled back if they
are not completed properly (e.g. due to power or connec-
tivity loss).
Most modern relational database management systems
fall into the category of databases that support transac-
tions.
In a database system a transaction might consist of one
or more data-manipulation statements and queries, each
reading and/or writing information in the database. Users
of database systems consider consistency and integrity of
data as highly important. A simple transaction is usu-
ally issued to the database system in a language like SQL
wrapped in a transaction, using a pattern similar to the
following:

1. Begin the transaction

2. Execute a set of data manipulations and/or queries

3. If no errors occur then commit the transaction and
end it

4. If errors occur then rollback the transaction and end
it

http://www.cs.umb.edu/~poneil/iso.pdf
http://www.youtube.com/v/7J61pPG9j90?version=3
http://www.youtube.com/v/7J61pPG9j90?version=3
http://docs.oracle.com/cd/B12037_01/server.101/b10743/toc.htm
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#sthref1919
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#sthref1919
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#sthref1919
http://docs.oracle.com/cd/B19306_01/server.102/b14200/toc.htm
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10.htm#i2068385
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10.htm#i2068385
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10005.htm#i2067247
http://docs.oracle.com/cd/B19306_01/server.102/b14200/statements_10005.htm#i2067247
https://en.wikipedia.org/wiki/Java_Database_Connectivity
http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html#field_summary
http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html#getTransactionIsolation()
http://docs.oracle.com/javase/7/docs/api/java/sql/Connection.html#setTransactionIsolation(int)
https://en.wikipedia.org/wiki/Spring_Framework
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Transactional.html
http://static.springsource.org/spring/docs/current/javadoc-api/org/springframework/transaction/annotation/Isolation.html
http://www.bailis.org/blog/when-is-acid-acid-rarely/
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Double-entry_bookkeeping_system
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Data_consistency
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/Structured_Query_Language

54 CHAPTER 4. ISOLATION

If no errors occurred during the execution of the trans-
action then the system commits the transaction. A trans-
action commit operation applies all data manipulations
within the scope of the transaction and persists the results
to the database. If an error occurs during the transaction,
or if the user specifies a rollback operation, the data ma-
nipulations within the transaction are not persisted to the
database. In no case can a partial transaction be commit-
ted to the database since that would leave the database in
an inconsistent state.
Internally, multi-user databases store and process trans-
actions, often by using a transaction ID or XID.
There are multiple varying ways for transactions to be im-
plemented other than the simple way documented above.
Nested transactions, for example, are transactions which
contain statements within them that start new transactions
(i.e. sub-transactions). Multi-level transactions are a vari-
ant of nested transactions where the sub-transactions take
place at different levels of a layered system architecture
(e.g., with one operation at the database-engine level, one
operation at the operating-system level) [2] Another type
of transaction is the compensating transaction.

In SQL

Transactions are available in most SQL database im-
plementations, though with varying levels of robustness.
(MySQL, for example, does not support transactions in
the MyISAM storage engine, which was its default stor-
age engine before version 5.5.)
A transaction is typically started using the com-
mand BEGIN (although the SQL standard specifies
START TRANSACTION). When the system processes
a COMMIT statement, the transaction ends with success-
ful completion. A ROLLBACK statement can also end
the transaction, undoing any work performed since BE-
GIN TRANSACTION. If autocommit was disabled us-
ing START TRANSACTION, autocommit will also be
re-enabled at the transaction’s end.
One can set the isolation level for individual transactional
operations as well as globally. At the READ COMMIT-
TED level, the result of any work done after a transac-
tion has commenced, but before it has ended, will remain
invisible to other database-users until it has ended. At
the lowest level (READ UNCOMMITTED), which may
occasionally be used to ensure high concurrency, such
changes will be visible.

4.3.3 Object databases

Relational databases traditionally comprise tables with
fixed size fields and thus records. Object databases com-
prise variable sized blobs (possibly incorporating a mime-
type or serialized). The fundamental similarity though is
the start and the commit or rollback.

After starting a transaction, database records or objects
are locked, either read-only or read-write. Actual reads
and writes can then occur. Once the user (and applica-
tion) is happy, any changes are committed or rolled-back
atomically, such that at the end of the transaction there is
no inconsistency.

4.3.4 Distributed transactions

Database systems implement distributed transactions as
transactions against multiple applications or hosts. A dis-
tributed transaction enforces the ACID properties over
multiple systems or data stores, and might include sys-
tems such as databases, file systems, messaging systems,
and other applications. In a distributed transaction a co-
ordinating service ensures that all parts of the transaction
are applied to all relevant systems. As with database and
other transactions, if any part of the transaction fails, the
entire transaction is rolled back across all affected sys-
tems.

4.3.5 Transactional filesystems

The Namesys Reiser4 filesystem for Linux[3] supports
transactions, and as of Microsoft Windows Vista, the Mi-
crosoft NTFS filesystem[4] supports distributed transac-
tions across networks.

4.3.6 See also

• Concurrency control

4.3.7 References

[1] A transaction is a group of operations that are atomic, con-
sistent, isolated, and durable (ACID).

[2] Beeri, C., Bernstein, P.A., and Goodman, N. A model for
concurrency in nested transactions systems. Journal of the
ACM, 36(1):230-269, 1989

[3] namesys.com

[4] “MSDN Library”. Retrieved 16 October 2014.

4.3.8 Further reading

• Philip A. Bernstein, Eric Newcomer (2009):
Principles of Transaction Processing, 2nd Edition,
Morgan Kaufmann (Elsevier), ISBN 978-1-55860-
623-4

• Gerhard Weikum, Gottfried Vossen (2001), Trans-
actional information systems: theory, algorithms,
and the practice of concurrency control and recov-
ery, Morgan Kaufmann, ISBN 1-55860-508-8

https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Identifier
https://en.wikipedia.org/wiki/Nested_transaction
https://en.wikipedia.org/wiki/Compensating_transaction
https://en.wikipedia.org/wiki/MyISAM
https://en.wikipedia.org/wiki/Commit_(SQL)
https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Autocommit
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Binary_large_object
https://en.wikipedia.org/wiki/Mime-type
https://en.wikipedia.org/wiki/Mime-type
https://en.wikipedia.org/wiki/Serializable_(databases)
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Rollback_(data_management)
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Namesys
https://en.wikipedia.org/wiki/Reiser4
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Windows_Vista
https://en.wikipedia.org/wiki/NTFS
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Concurrency_control
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://msdn.microsoft.com/en-us/library/aa366402(VS.85).aspx
http://namesys.com/v4/v4.html#committing
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/fileio/fs/portal.asp
https://en.wikipedia.org/wiki/Philip_A._Bernstein
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
https://en.wikipedia.org/wiki/Special:BookSources/9781558606234
https://en.wikipedia.org/wiki/Special:BookSources/9781558606234
https://en.wikipedia.org/wiki/Special:BookSources/1558605088

4.4. TRANSACTION PROCESSING 55

4.3.9 External links

• c2:TransactionProcessing

4.4 Transaction processing

For other uses, see Transaction (disambiguation).
This article is about the principles of transaction pro-
cessing. For specific implementations, see Transaction
processing system.

In computer science, transaction processing is informa-
tion processing that is divided into individual, indivisi-
ble operations called transactions. Each transaction must
succeed or fail as a complete unit; it can never be only
partially complete.
For example, when you purchase a book from an online
bookstore, you exchange money (in the form of credit)
for a book. If your credit is good, a series of related
operations ensures that you get the book and the book-
store gets your money. However, if a single operation in
the series fails during the exchange, the entire exchange
fails. You do not get the book and the bookstore does not
get your money. The technology responsible for making
the exchange balanced and predictable is called transac-
tion processing. Transactions ensure that data-oriented
resources are not permanently updated unless all opera-
tions within the transactional unit complete successfully.
By combining a set of related operations into a unit that
either completely succeeds or completely fails, one can
simplify error recovery and make one’s application more
reliable.
Transaction processing systems consist of computer hard-
ware and software hosting a transaction-oriented applica-
tion that performs the routine transactions necessary to
conduct business. Examples include systems that manage
sales order entry, airline reservations, payroll, employee
records, manufacturing, and shipping.
Since most, though not necessarily all, transaction pro-
cessing today is interactive the term is often treated as
synonymous with online transaction processing.

4.4.1 Description

Transaction processing is designed to maintain a sys-
tem’s Integrity (typically a database or some modern
filesystems) in a known, consistent state, by ensuring that
interdependent operations on the system are either all
completed successfully or all canceled successfully.
For example, consider a typical banking transaction that
involves moving $700 from a customer’s savings account
to a customer’s checking account. This transaction in-
volves at least two separate operations in computer terms:
debiting the savings account by $700, and crediting the

checking account by $700. If one operation succeeds but
the other does not, the books of the bank will not bal-
ance at the end of the day. There must therefore be a
way to ensure that either both operations succeed or both
fail, so that there is never any inconsistency in the bank’s
database as a whole.
Transaction processing links multiple individual opera-
tions in a single, indivisible transaction, and ensures that
either all operations in a transaction are completed with-
out error, or none of them are. If some of the operations
are completed but errors occur when the others are at-
tempted, the transaction-processing system “rolls back”
all of the operations of the transaction (including the suc-
cessful ones), thereby erasing all traces of the transaction
and restoring the system to the consistent, known state
that it was in before processing of the transaction began.
If all operations of a transaction are completed success-
fully, the transaction is committed by the system, and all
changes to the database are made permanent; the trans-
action cannot be rolled back once this is done.
Transaction processing guards against hardware and soft-
ware errors that might leave a transaction partially com-
pleted. If the computer system crashes in the middle of
a transaction, the transaction processing system guaran-
tees that all operations in any uncommitted transactions
are cancelled.
Generally, transactions are issued concurrently. If they
overlap (i.e. need to touch the same portion of the
database), this can create conflicts. For example, if the
customer mentioned in the example above has $150 in
his savings account and attempts to transfer $100 to a dif-
ferent person while at the same time moving $100 to the
checking account, only one of them can succeed. How-
ever, forcing transactions to be processed sequentially
is inefficient. Therefore, concurrent implementations of
transaction processing is programmed to guarantee that
the end result reflects a conflict-free outcome, the same
as could be reached if executing the transactions sequen-
tially in any order (a property called serializability). In
our example, this means that no matter which transaction
was issued first, either the transfer to a different person
or the move to the checking account succeeds, while the
other one fails.

4.4.2 Methodology

The basic principles of all transaction-processing systems
are the same. However, the terminology may vary from
one transaction-processing system to another, and the
terms used below are not necessarily universal.

Rollback

Main article: Rollback (data management)

http://c2.com/cgi/wiki?TransactionProcessing
https://en.wikipedia.org/wiki/Transaction_(disambiguation)
https://en.wikipedia.org/wiki/Transaction_processing_system
https://en.wikipedia.org/wiki/Transaction_processing_system
https://en.wikipedia.org/wiki/Computer_science
https://en.wikipedia.org/wiki/Failure
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Filesystem
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Rollback_(data_management)

56 CHAPTER 4. ISOLATION

Transaction-processing systems ensure database integrity
by recording intermediate states of the database as it is
modified, then using these records to restore the database
to a known state if a transaction cannot be committed.
For example, copies of information on the database prior
to its modification by a transaction are set aside by the
system before the transaction can make any modifications
(this is sometimes called a before image). If any part of
the transaction fails before it is committed, these copies
are used to restore the database to the state it was in before
the transaction began.

Rollforward

It is also possible to keep a separate journal of all modifi-
cations to a database management system. (sometimes
called after images). This is not required for rollback
of failed transactions but it is useful for updating the
database management system in the event of a database
failure, so some transaction-processing systems provide
it. If the database management system fails entirely, it
must be restored from the most recent back-up. The
back-up will not reflect transactions committed since the
back-up was made. However, once the database man-
agement system is restored, the journal of after images
can be applied to the database (rollforward) to bring the
database management system up to date. Any transac-
tions in progress at the time of the failure can then be
rolled back. The result is a database in a consistent,
known state that includes the results of all transactions
committed up to the moment of failure.

Deadlocks

Main article: Deadlock

In some cases, two transactions may, in the course of
their processing, attempt to access the same portion of
a database at the same time, in a way that prevents them
from proceeding. For example, transaction A may access
portion X of the database, and transaction B may access
portion Y of the database. If, at that point, transaction
A then tries to access portion Y of the database while
transaction B tries to access portion X, a deadlock occurs,
and neither transaction can move forward. Transaction-
processing systems are designed to detect these deadlocks
when they occur. Typically both transactions will be can-
celled and rolled back, and then they will be started again
in a different order, automatically, so that the deadlock
doesn't occur again. Or sometimes, just one of the dead-
locked transactions will be cancelled, rolled back, and au-
tomatically restarted after a short delay.
Deadlocks can also occur among three or more transac-
tions. The more transactions involved, the more difficult
they are to detect, to the point that transaction process-
ing systems find there is a practical limit to the deadlocks

they can detect.

Compensating transaction

In systems where commit and rollback mechanisms are
not available or undesirable, a compensating transaction
is often used to undo failed transactions and restore the
system to a previous state.

4.4.3 ACID criteria

Main article: ACID

Jim Gray defined properties of a reliable transaction sys-
tem in the late 1970s under the acronym ACID — atom-
icity, consistency, isolation, and durability.[1]

Atomicity

Main article: Atomicity (database systems)

A transaction’s changes to the state are atomic: either all
happen or none happen. These changes include database
changes, messages, and actions on transducers.

Consistency

Consistency: A transaction is a correct transformation of
the state. The actions taken as a group do not violate any
of the integrity constraints associated with the state.

Isolation

Even though transactions execute concurrently, it appears
to each transaction T, that others executed either before
T or after T, but not both.

Durability

Once a transaction completes successfully (commits), its
changes to the state survive failures.

4.4.4 Benefits

Transaction processing has these benefits:

• It allows sharing of computer resources among many
users

• It shifts the time of job processing to when the com-
puting resources are less busy

https://en.wikipedia.org/wiki/Journal_(computing)
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Compensating_transaction
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Consistency_(database_systems)#Consistency

4.4. TRANSACTION PROCESSING 57

• It avoids idling the computing resources without
minute-by-minute human interaction and supervi-
sion

• It is used on expensive classes of computers to help
amortize the cost by keeping high rates of utilization
of those expensive resources

4.4.5 Implementations

Main article: Transaction processing system

Standard transaction-processing software, notably IBM's
Information Management System, was first developed in
the 1960s, and was often closely coupled to particular
database management systems. Client–server computing
implemented similar principles in the 1980s with mixed
success. However, in more recent years, the distributed
client–server model has become considerably more diffi-
cult to maintain. As the number of transactions grew in
response to various online services (especially the Web),
a single distributed database was not a practical solution.
In addition, most online systems consist of a whole suite
of programs operating together, as opposed to a strict
client–server model where the single server could han-
dle the transaction processing. Today a number of trans-
action processing systems are available that work at the
inter-program level and which scale to large systems, in-
cluding mainframes.
One well-known (and open) industry standard is the
X/Open Distributed Transaction Processing (DTP) (see
also JTA the Java Transaction API). However, propri-
etary transaction-processing environments such as IBM’s
CICS are still very popular, although CICS has evolved
to include open industry standards as well.
The term 'Extreme Transaction Processing' (XTP) has
been used to describe transaction processing systems
with uncommonly challenging requirements, particularly
throughput requirements (transactions per second). Such
systems may be implemented via distributed or cluster
style architectures.

4.4.6 References

[1] Gray, Jim; Reuter, Andreas. “Transaction Processing -
Concepts and Techniques (Powerpoint)". Retrieved Nov
12, 2012.

4.4.7 External links

• Nuts and Bolts of Transaction Processing (1999)

• Managing Transaction Processing for SQL Database
Integrity

• Transaction Processing

4.4.8 Further reading

• Gerhard Weikum, Gottfried Vossen, Transactional
information systems: theory, algorithms, and the
practice of concurrency control and recovery, Mor-
gan Kaufmann, 2002, ISBN 1-55860-508-8

• Jim Gray, Andreas Reuter, Transaction Processing
— Concepts and Techniques, 1993, Morgan Kauf-
mann, ISBN 1-55860-190-2

• Philip A. Bernstein, Eric Newcomer, Principles of
Transaction Processing, 1997, Morgan Kaufmann,
ISBN 1-55860-415-4

• Ahmed K. Elmagarmid (Editor), Transaction Mod-
els for Advanced Database Applications, Morgan-
Kaufmann, 1992, ISBN 1-55860-214-3

https://en.wikipedia.org/wiki/Transaction_processing_system
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Information_Management_System
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/WWW
https://en.wikipedia.org/wiki/Mainframe_computer
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Java_Transaction_API
https://en.wikipedia.org/wiki/CICS
https://en.wikipedia.org/wiki/Extreme_Transaction_Processing
http://research.microsoft.com/~gray/WICS_99_TP/01_WhirlwindTour.ppt
http://research.microsoft.com/~gray/WICS_99_TP/01_WhirlwindTour.ppt
http://www.subbu.org/articles/transactions/NutsAndBoltsOfTP.html
http://www.informit.com/articles/article.aspx?p=174375
http://www.informit.com/articles/article.aspx?p=174375
http://msdn.microsoft.com/en-us/library/ee818756(v=vs.110).aspx
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://en.wikipedia.org/wiki/Special:BookSources/1558601902
https://en.wikipedia.org/wiki/Special:BookSources/1558604154
https://en.wikipedia.org/wiki/Special:BookSources/1558602143

Chapter 5

Atomicity

5.1 Journaling file system

For the IBM Journaled File System, see JFS (file system).

A journaling file system is a file system that keeps track
of changes not yet committed to the file system’s main
part by recording the intentions of such changes in a data
structure known as a "journal", which is usually a circular
log. In the event of a system crash or power failure, such
file systems can be brought back online quicker with lower
likelihood of becoming corrupted.[1][2]

Depending on the actual implementation, a journaling file
system may only keep track of stored metadata, resulting
in improved performance at the expense of increased pos-
sibility for data corruption. Alternatively, a journaling file
system may track both stored data and related metadata,
while some implementations allow selectable behavior in
this regard.[3]

5.1.1 Rationale

Updating file systems to reflect changes to files and di-
rectories usually requires many separate write operations.
This makes it possible for an interruption (like a power
failure or system crash) between writes to leave data
structures in an invalid intermediate state.[1]

For example, deleting a file on a Unix file system involves
three steps:[4]

1. Removing its directory entry.

2. Release the inode to the pool of free inodes.

3. Return all used disk blocks to the pool of free disk
blocks.

If a crash occurs after step 1 and before step 2, there
will be an orphaned inode and hence a storage leak. On
the other hand, if only step 2 is performed first before
the crash, the not-yet-deleted file will be marked free and
possibly be overwritten by something else.
Detecting and recovering from such inconsistencies nor-
mally requires a complete walk of its data structures, for

example by a tool such as fsck (the file system checker).[2]

This must typically be done before the file system is next
mounted for read-write access. If the file system is large
and if there is relatively little I/O bandwidth, this can take
a long time and result in longer downtimes if it blocks the
rest of the system from coming back online.
To prevent this, a journaled file system allocates a spe-
cial area—the journal—in which it records the changes it
will make ahead of time. After a crash, recovery simply
involves reading the journal from the file system and re-
playing changes from this journal until the file system is
consistent again. The changes are thus said to be atomic
(not divisible) in that they either succeed (succeeded orig-
inally or are replayed completely during recovery), or are
not replayed at all (are skipped because they had not yet
been completely written to the journal before the crash
occurred).

5.1.2 Techniques

Some file systems allow the journal to grow, shrink and
be re-allocated just as a regular file, while others put the
journal in a contiguous area or a hidden file that is guar-
anteed not to move or change size while the file system is
mounted. Some file systems may also allow external jour-
nals on a separate device, such as a solid-state drive or
battery-backed non-volatile RAM. Changes to the jour-
nal may themselves be journaled for additional redun-
dancy, or the journal may be distributed across multiple
physical volumes to protect against device failure.
The internal format of the journal must guard against
crashes while the journal itself is being written to. Many
journal implementations (such as the JBD2 layer in ext4)
bracket every change logged with a checksum, on the un-
derstanding that a crash would leave a partially written
change with a missing (or mismatched) checksum that
can simply be ignored when replaying the journal at next
remount.

Physical journals

A physical journal logs an advance copy of every block
that will later be written to the main file system. If there is

58

https://en.wikipedia.org/wiki/JFS_(file_system)
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Journal_(computing)
https://en.wikipedia.org/wiki/Circular_log
https://en.wikipedia.org/wiki/Circular_log
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Crash_(computing)
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Storage_leak
https://en.wikipedia.org/wiki/Glossary_of_graph_theory#Walks
https://en.wikipedia.org/wiki/Fsck
https://en.wikipedia.org/wiki/Atomicity_(database_systems)
https://en.wikipedia.org/wiki/Solid-state_drive
https://en.wikipedia.org/wiki/Ext4

5.1. JOURNALING FILE SYSTEM 59

a crash when the main file system is being written to, the
write can simply be replayed to completion when the file
system is next mounted. If there is a crash when the write
is being logged to the journal, the partial write will have
a missing or mismatched checksum and can be ignored at
next mount.
Physical journals impose a significant performance
penalty because every changed block must be commit-
ted twice to storage, but may be acceptable when absolute
fault protection is required.[5]

Logical journals

A logical journal stores only changes to file metadata in
the journal, and trades fault tolerance for substantially
better write performance.[6] A file system with a logical
journal still recovers quickly after a crash, but may allow
unjournaled file data and journaled metadata to fall out
of sync with each other, causing data corruption.
For example, appending to a file may involve three sepa-
rate writes to:

1. The file’s inode, to note in the file’s metadata that its
size has increased.

2. The free space map, to mark out an allocation of
space for the to-be-appended data.

3. The newly allocated space, to actually write the ap-
pended data.

In a metadata-only journal, step 3 would not be logged. If
step 3 was not done, but steps 1 and 2 are replayed during
recovery, the file will be appended with garbage.

Write hazards

The write cache in most operating systems sorts its writes
(using the elevator algorithm or some similar scheme)
to maximize throughput. To avoid an out-of-order write
hazard with a metadata-only journal, writes for file data
must be sorted so that they are committed to storage be-
fore their associated metadata. This can be tricky to im-
plement because it requires coordination within the op-
erating system kernel between the file system driver and
write cache. An out-of-order write hazard can also exist
if the underlying storage cannot write blocks atomically,
or does not honor requests to flush its write cache.
To complicate matters, many mass storage devices have
their own write caches, in which they may aggressively re-
order writes for better performance. (This is particularly
common on magnetic hard drives, which have large seek
latencies that can be minimized with elevator sorting.)
Some journaling file systems conservatively assume such
write-reordering always takes place, and sacrifice perfor-
mance for correctness by forcing the device to flush its

cache at certain points in the journal (called barriers in
ext3 and ext4).[7]

5.1.3 Alternatives

Soft updates

Some UFS implementations avoid journaling and instead
implement soft updates: they order their writes in such
a way that the on-disk file system is never inconsistent,
or that the only inconsistency that can be created in the
event of a crash is a storage leak. To recover from these
leaks, the free space map is reconciled against a full walk
of the file system at next mount. This garbage collection
is usually done in the background.[8]

Log-structured file systems

In log-structured file systems, the write-twice penalty
does not apply because the journal itself is the file system:
it occupies the entire storage device and is structured so
that it can be traversed as would a normal file system.

Copy-on-write file systems

Full copy-on-write file systems (such as ZFS and Btrfs)
avoid in-place changes to file data by writing out the data
in newly allocated blocks, followed by updated metadata
that would point to the new data and disown the old, fol-
lowed by metadata pointing to that, and so on up to the
superblock, or the root of the file system hierarchy. This
has the same correctness-preserving properties as a jour-
nal, without the write-twice overhead.

5.1.4 See also

• ACID

• Comparison of file systems

• Database

• Intent log

• Journaled File System (JFS) – a file system made by
IBM

• Transaction processing

5.1.5 References
[1] Jones, M Tim (2008-06-04), Anatomy of Linux journaling

file systems, IBM DeveloperWorks, retrieved 2009-04-13

[2] Arpaci-Dusseau, Remzi H.; Arpaci-Dusseau, Andrea C.
(2014-01-21), Crash Consistency: FSCK and Journaling
(PDF), Arpaci-Dusseau Books

https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Inode
https://en.wikipedia.org/wiki/Elevator_algorithm
https://en.wikipedia.org/wiki/Ext3
https://en.wikipedia.org/wiki/Ext4
https://en.wikipedia.org/wiki/Unix_File_System
https://en.wikipedia.org/wiki/Soft_updates
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Log-structured_file_system
https://en.wikipedia.org/wiki/Copy-on-write
https://en.wikipedia.org/wiki/ZFS
https://en.wikipedia.org/wiki/Btrfs
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Comparison_of_file_systems
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Intent_log
https://en.wikipedia.org/wiki/JFS_(file_system)
https://en.wikipedia.org/wiki/Transaction_processing
http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html
http://www.ibm.com/developerworks/library/l-journaling-filesystems/index.html
https://en.wikipedia.org/wiki/IBM_DeveloperWorks
http://pages.cs.wisc.edu/~remzi/OSTEP/file-journaling.pdf

60 CHAPTER 5. ATOMICITY

[3] “tune2fs(8) – Linux man page”. linux.die.net. Retrieved
February 20, 2015.

[4] File Systems from Tanenbaum, A.S. (2008). Modern op-
erating systems (3rd ed., pp. 287). Upper Saddle River,
NJ: Prentice Hall.

[5] Tweedie, Stephen (2000), “Ext3, journaling filesystem”,
Proceedings of the Ottawa Linux Symposium: 24–29

[6] Prabhakaran, Vijayan; Arpaci-Dusseau, Andrea C;
Arpaci-Dusseau, Remzi H, “Analysis and Evolution of
Journaling File Systems” (PDF), 2005 USENIX Annual
Technical Conference (USENIX Association).

[7] Corbet, Jonathan (2008-05-21), Barriers and journaling
filesystems, retrieved 2010-03-06

[8] Seltzer, Margo I; Ganger, Gregory R; McKusick, M Kirk,
“Journaling Versus Soft Updates: Asynchronous Meta-
data Protection in File Systems”, 2000 USENIX Annual
Technical Conference (USENIX Association).

5.2 Atomicity (database systems)

For other uses, see Atomicity (disambiguation).

In database systems, atomicity (or atomicness; from
Greek a-tomos, undividable) is one of the ACID
transaction properties. In an atomic transaction, a se-
ries of database operations either all occur, or nothing
occurs. The series of operations cannot be divided apart
and executed partially from each other, which makes the
series of operations “indivisible”, hence the name. A
guarantee of atomicity prevents updates to the database
occurring only partially, which can cause greater prob-
lems than rejecting the whole series outright. In other
words, atomicity means indivisibility and irreducibility.[1]

As a consequence, the transaction cannot be observed to
be in progress by another database client. At one mo-
ment in time, it has not yet happened, and at the next it
has already occurred in whole (or nothing happened if the
transaction was cancelled in progress).
The etymology of the phrase originates in the Classical
Greek concept of a fundamental and indivisible compo-
nent; see atom.

5.2.1 Examples

An example of atomicity is ordering an airline ticket
where two actions are required: payment, and a seat
reservation. The potential passenger must either:

1. both pay for and reserve a seat; OR

2. neither pay for nor reserve a seat.

The booking system does not consider it acceptable for a
customer to pay for a ticket without securing the seat, nor
to reserve the seat without payment succeeding.
Another example is that if one wants to transfer some
amount of money from one account to another, then the
user would start a procedure to do it. However, if a failure
occurs, then due to atomicity, the amount will either be
transferred completely or will not be even initiated. Thus
atomicity protects the user from losing money due to a
failed transaction.

5.2.2 Orthogonality

Atomicity does not behave completely orthogonally with
regard to the other ACID properties of the transac-
tions. For example, isolation relies on atomicity to roll
back changes in the event of isolation failures such as
deadlock; consistency also relies on rollback in the event
of a consistency-violation by an illegal transaction. Fi-
nally, atomicity itself relies on durability to ensure the
atomicity of transactions even in the face of external fail-
ures.
As a result of this, failure to detect errors and roll back
the enclosing transaction may cause failures of isolation
and consistency.

5.2.3 Implementation

Typically, systems implement Atomicity by providing
some mechanism to indicate which transactions have
started and which finished; or by keeping a copy of the
data before any changes occurred (read-copy-update).
Several filesystems have developed methods for avoiding
the need to keep multiple copies of data, using journal-
ing (see journaling file system). Databases usually im-
plement this using some form of logging/journaling to
track changes. The system synchronizes the logs (often
the metadata) as necessary once the actual changes have
successfully taken place. Afterwards, crash recovery sim-
ply ignores incomplete entries. Although implementa-
tions vary depending on factors such as concurrency is-
sues, the principle of atomicity — i.e. complete success
or complete failure — remain.
Ultimately, any application-level implementation relies
on operating-system functionality. At the file-system
level, POSIX-compliant systems provide system calls
such as open(2) and flock(2) that allow applications to
atomically open or lock a file. At the process level,
POSIX Threads provide adequate synchronization prim-
itives.
The hardware level requires atomic operations such
as Test-and-set, Fetch-and-add, Compare-and-swap, or
Load-Link/Store-Conditional, together with memory
barriers. Portable operating systems cannot simply block
interrupts to implement synchronization, since hardware

http://linux.die.net/man/8/tune2fs
https://www.usenix.org/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf
https://www.usenix.org/events/usenix05/tech/general/full_papers/prabhakaran/prabhakaran.pdf
http://lwn.net/Articles/283161/
http://lwn.net/Articles/283161/
http://www.usenix.org/event/usenix2000/general/full_papers/seltzer/seltzer_html
http://www.usenix.org/event/usenix2000/general/full_papers/seltzer/seltzer_html
https://en.wikipedia.org/wiki/Atomicity_(disambiguation)
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Greek_language
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Atom
https://en.wikipedia.org/wiki/Orthogonality#Computer_science
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Journaling_file_system
https://en.wikipedia.org/wiki/Metadata
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/POSIX_Threads
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Test-and-set
https://en.wikipedia.org/wiki/Fetch-and-add
https://en.wikipedia.org/wiki/Compare-and-swap
https://en.wikipedia.org/wiki/Load-Link/Store-Conditional
https://en.wikipedia.org/wiki/Memory_barrier
https://en.wikipedia.org/wiki/Memory_barrier

5.2. ATOMICITY (DATABASE SYSTEMS) 61

that lacks actual concurrent execution such as hyper-
threading or multi-processing is now extremely rare.
In NoSQL data stores with eventual consistency, the
atomicity is also weaker specified than in relational
database systems, and exists only in rows (i.e. column
families).[2]

5.2.4 See also

• Atomic operation

• Transaction processing

• Long-running transaction

• Read-copy-update

5.2.5 References
[1] “atomic operation”. http://www.webopedia.com/: Webo-

pedia. Retrieved 2011-03-23. An operation during which
a processor can simultaneously read a location and write
it in the same bus operation. This prevents any other pro-
cessor or I/O device from writing or reading memory until
the operation is complete.

[2] Olivier Mallassi (2010-06-09). “Let’s play with Cas-
sandra… (Part 1/3)". http://blog.octo.com/en/: OCTO
Talks!. Retrieved 2011-03-23. Atomicity is also weaker
than what we are used to in the relational world. Cassan-
dra guarantees atomicity within a ColumnFamily so for all
the columns of a row.

https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Hyper-threading
https://en.wikipedia.org/wiki/Multi-processing
https://en.wikipedia.org/wiki/NoSQL_(concept)
https://en.wikipedia.org/wiki/Data_store
https://en.wikipedia.org/wiki/Column_family
https://en.wikipedia.org/wiki/Column_family
https://en.wikipedia.org/wiki/Atomic_operation
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Long-running_transaction
https://en.wikipedia.org/wiki/Read-copy-update
http://www.webopedia.com/TERM/A/atomic_operation.html
http://www.webopedia.com/
http://blog.octo.com/en/nosql-lets-play-with-cassandra-part-13/
http://blog.octo.com/en/nosql-lets-play-with-cassandra-part-13/
http://blog.octo.com/en/

Chapter 6

Locking

6.1 Lock (database)

A lock, as a read lock or write lock, is used when
multiple users need to access a database concurrently.
This prevents data from being corrupted or invalidated
when multiple users try to read while others write to the
database. Any single user can only modify those database
records (that is, items in the database) to which they have
applied a lock that gives them exclusive access to the
record until the lock is released. Locking not only pro-
vides exclusivity to writes but also prevents (or controls)
reading of unfinished modifications (AKA uncommitted
data).
A read lock can be used to prevent other users from read-
ing a record (or page) which is being updated, so that oth-
ers will not act upon soon-to-be-outdated information.

6.1.1 Mechanisms for locking

There are two mechanisms for locking data in a database:
pessimistic locking, and optimistic locking. In pessimistic
locking a record or page is locked immediately when the
lock is requested, while in an optimistic lock the record
or page is only locked when the changes made to that
record are updated. The latter situation is only appro-
priate when there is less chance of someone needing to
access the record while it is locked; otherwise it cannot be
certain that the update will succeed because the attempt
to update the record will fail if another user updates the
record first. With pessimistic locking it is guaranteed that
the record will be updated.
The degree of locking can be controlled by isolation level.
Change of a lock is called lock conversion and the lock
may be upgraded (lock upgrade) or downgraded (lock
downgrade).

6.1.2 See also

• Race condition

6.2 Record locking

Record locking is the technique of preventing simulta-
neous access to data in a database, to prevent inconsistent
results.
The classic example is demonstrated by two bank clerks
attempting to update the same bank account for two dif-
ferent transactions. Clerks 1 and 2 both retrieve (i.e.,
copy) the account’s record. Clerk 1 applies and saves a
transaction. Clerk 2 applies a different transaction to his
saved copy, and saves the result, based on the original
record and his changes, overwriting the transaction en-
tered by clerk 1. The record no longer reflects the first
transaction, as if it had never taken place.
A simple way to prevent this is to lock the file whenever a
record is being modified by any user, so that no other user
can save data. This prevents records from being overwrit-
ten incorrectly, but allows only one record to be processed
at a time, locking out other users who need to edit records
at the same time.
To allow several users to edit a database table at the same
time and also prevent inconsistencies created by unre-
stricted access, a single record can be locked when re-
trieved for editing or updating. Anyone attempting to re-
trieve the same record for editing is denied write access
because of the lock (although, depending on the imple-
mentation, they may be able to view the record without
editing it). Once the record is saved or edits are canceled,
the lock is released. Records can never be saved so as to
overwrite other changes, preserving data integrity.
In database management theory, locking is used to im-
plement isolation among multiple database users. This is
the “I” in the acronym ACID.
A thorough and authoritative description of locking was
written by Jim Gray.[1]

6.2.1 Granularity of locks

If the bank clerks (to follow the illustration above) are
serving two customers, but their accounts are contained in
one ledger, then the entire ledger, or one or more database
tables, would need to be made available for editing to the

62

https://en.wikipedia.org/wiki/Multi-user
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Database_record
https://en.wikipedia.org/wiki/Database_record
https://en.wikipedia.org/wiki/Pessimistic_locking
https://en.wikipedia.org/wiki/Optimistic_locking
https://en.wikipedia.org/wiki/Isolation_level
https://en.wikipedia.org/wiki/Lock_conversion
https://en.wikipedia.org/wiki/Lock_upgrade
https://en.wikipedia.org/wiki/Lock_downgrade
https://en.wikipedia.org/wiki/Lock_downgrade
https://en.wikipedia.org/wiki/Race_condition
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Banking
https://en.wikipedia.org/wiki/Bank_account
https://en.wikipedia.org/wiki/Record_(database)
https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Data_integrity
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Jim_Gray_(computer_scientist)
https://en.wikipedia.org/wiki/Database_table
https://en.wikipedia.org/wiki/Database_table

6.3. TWO-PHASE LOCKING 63

clerks in order for each to complete a transaction, one at
a time (file locking). While safe, this method can cause
unnecessary waiting.
If the clerks can remove one page from the ledger, con-
taining the account of the current customer (plus several
other accounts), then multiple customers can be serviced
concurrently, provided that each customer’s account is
found on a different page than the others. If two cus-
tomers have accounts on the same page, then only one
may be serviced at a time. This is analogous to a page
level lock in a database.
A higher degree of granularity is achieved if each indi-
vidual account may be taken by a clerk. This would allow
any customer to be serviced without waiting for another
customer who is accessing a different account. This is
analogous to a record level lock and is normally the highest
degree of locking granularity in a database management
system.
In a SQL database, a record is typically called a “row.”
The introduction of granular (subset) locks creates the
possibility for a situation called deadlock. Deadlock is
possible when incremental locking (locking one entity,
then locking one or more additional entities) is used. To
illustrate, if two bank customers asked two clerks to ob-
tain their account information so they could transfer some
money into other accounts, the two accounts would essen-
tially be locked. Then, if the customers told their clerks
that the money was to be transferred into each other’s ac-
counts, the clerks would search for the other accounts but
find them to be “in use” and wait for them to be returned.
Unknowingly, the two clerks are waiting for each other,
and neither of them can complete their transaction until
the other gives up and returns the account. Various tech-
niques are used to avoid such problems.

6.2.2 Use of locks

Record locks need to be managed between the entities re-
questing the records such that no entity is given too much
service via successive grants, and no other entity is ef-
fectively locked out. The entities that request a lock can
be either individual applications (programs) or an entire
processor.
The application or system should be designed such that
any lock is held for the shortest time possible. Data read-
ing, without editing facilities, does not require a lock, and
reading locked records is usually permissible.
Two main types of locks can be requested:

Exclusive locks

Exclusive locks are, as the name implies, exclusively held
by a single entity, usually for the purpose of writing to
the record. If the locking schema was represented by a

list, the holder list would contain only one entry. Since
this type of lock effectively blocks any other entity that
requires the lock from processing, care must be used to:

• ensure the lock is held for the shortest time possible;

• not hold the lock across system or function calls
where the entity is no longer running on the proces-
sor - this can lead to deadlock;

• ensure that if the entity is unexpectedly exited for
any reason, the lock is freed.

Non-holders of the lock (aka waiters) can be held in a
list that is serviced in a round robin fashion, or in a FIFO
queue. This would ensure that any possible waiter would
get equal chance to obtain the lock and not be locked out.
To further speed up the process, if an entity has gone to
sleep waiting for a lock, performance is improved if the
entity is notified of the grant, instead of discovering it on
some sort of system timeout driven wakeup.

Shared locks

Shared locks differ from exclusive locks in that the
holder list can contain multiple entries. Shared locks al-
low all holders to read the contents of the record knowing
that the record cannot be changed until after the lock has
been released by all holders. Exclusive locks cannot be
obtained when a record is already locked (exclusively or
shared) by another entity.
If lock requests for the same entity are queued, then once
a shared lock is granted, any queued shared locks may
also be granted. If an exclusive lock is found next on the
queue, it must wait until all shared locks have been re-
leased. As with exclusive locks, these shared locks should
be held for the least time possible.

6.2.3 References
[1] Gray, Jim, and Reuter, Andreas (1993), Distributed

Transaction Processing: Concepts and Techniques, Mor-
gan Kaufmann, pp. 375–437, ISBN 1-55860-190-2

6.3 Two-phase locking

This article is about concurrency control. For commit
consensus within a distributed transaction, see Two-
phase commit protocol.

In databases and transaction processing, two-phase lock-
ing (2PL) is a concurrency control method that guaran-
tees serializability.[1][2] It is also the name of the resulting
set of database transaction schedules (histories). The pro-
tocol utilizes locks, applied by a transaction to data, which

https://en.wikipedia.org/wiki/File_locking
https://en.wikipedia.org/wiki/Concurrency_(computer_science)
https://en.wikipedia.org/wiki/Granularity#Computing
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/FIFO_(computing_and_electronics)
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-55860-190-2
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Schedule_(computer_science)
https://en.wikipedia.org/wiki/Lock_(computer_science)

64 CHAPTER 6. LOCKING

may block (interpreted as signals to stop) other transac-
tions from accessing the same data during the transac-
tion’s life.
By the 2PL protocol locks are applied and removed in
two phases:

1. Expanding phase: locks are acquired and no locks
are released.

2. Shrinking phase: locks are released and no locks are
acquired.

Two types of locks are utilized by the basic protocol:
Shared and Exclusive locks. Refinements of the basic pro-
tocol may utilize more lock types. Using locks that block
processes, 2PL may be subject to deadlocks that result
from the mutual blocking of two or more transactions.

6.3.1 Data-access locks

A lock is a system object associated with a shared re-
source such as a data item of an elementary type, a row in
a database, or a page of memory. In a database, a lock on
a database object (a data-access lock) may need to be ac-
quired by a transaction before accessing the object. Cor-
rect use of locks prevents undesired, incorrect or incon-
sistent operations on shared resources by other concurrent
transactions. When a database object with an existing
lock acquired by one transaction needs to be accessed by
another transaction, the existing lock for the object and
the type of the intended access are checked by the system.
If the existing lock type does not allow this specific at-
tempted concurrent access type, the transaction attempt-
ing access is blocked (according to a predefined agree-
ment/scheme). In practice a lock on an object does not
directly block a transaction’s operation upon the object,
but rather blocks that transaction from acquiring another
lock on the same object, needed to be held/owned by the
transaction before performing this operation. Thus, with
a locking mechanism, needed operation blocking is con-
trolled by a proper lock blocking scheme, which indicates
which lock type blocks which lock type.
Two major types of locks are utilized:

• Write-lock (exclusive lock) is associated with a
database object by a transaction (Terminology: “the
transaction locks the object,” or “acquires lock
for it”) before writing (inserting/modifying/deleting)
this object.

• Read-lock (shared lock) is associated with a
database object by a transaction before reading (re-
trieving the state of) this object.

The common interactions between these lock types are
defined by blocking behavior as follows:

• An existing write-lock on a database object blocks
an intended write upon the same object (already re-
quested/issued) by another transaction by blocking
a respective write-lock from being acquired by the
other transaction. The second write-lock will be ac-
quired and the requested write of the object will take
place (materialize) after the existing write-lock is
released.

• A write-lock blocks an intended (already re-
quested/issued) read by another transaction by
blocking the respective read-lock .

• A read-lock blocks an intended write by another
transaction by blocking the respective write-lock .

• A read-lock does not block an intended read by
another transaction. The respective read-lock for
the intended read is acquired (shared with the pre-
vious read) immediately after the intended read is
requested, and then the intended read itself takes
place.

Several variations and refinements of these major lock
types exist, with respective variations of blocking behav-
ior. If a first lock blocks another lock, the two locks are
called incompatible; otherwise the locks are compatible.
Often lock types blocking interactions are presented in
the technical literature by a Lock compatibility table. The
following is an example with the common, major lock
types:

X indicates incompatibility, i.e, a case when a
lock of the first type (in left column) on an ob-
ject blocks a lock of the second type (in top
row) from being acquired on the same object
(by another transaction). An object typically
has a queue of waiting requested (by transac-
tions) operations with respective locks. The
first blocked lock for operation in the queue is
acquired as soon as the existing blocking lock
is removed from the object, and then its respec-
tive operation is executed. If a lock for opera-
tion in the queue is not blocked by any existing
lock (existence of multiple compatible locks on
a same object is possible concurrently) it is ac-
quired immediately.
Comment: In some publications the table en-
tries are simply marked “compatible” or “in-
compatible”, or respectively “yes” or “no”.

6.3.2 Two-phase locking and its special
cases

Two-phase locking

According to the two-phase locking protocol a transac-
tion handles its locks in two distinct, consecutive phases
during the transaction’s execution:

https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Lock_(computer_science)

6.3. TWO-PHASE LOCKING 65

1. Expanding phase (aka Growing phase): locks are
acquired and no locks are released (the number of
locks can only increase).

2. Shrinking phase: locks are released and no locks
are acquired.

The two phase locking rule can be summarized as: never
acquire a lock after a lock has been released. The
serializability property is guaranteed for a schedule with
transactions that obey this rule.
Typically, without explicit knowledge in a transaction on
end of phase-1, it is safely determined only when a trans-
action has completed processing and requested commit.
In this case all the locks can be released at once (phase-2).

Strict two-phase locking

To comply with the S2PL protocol a transaction needs to
comply with 2PL, and release its write (exclusive) locks
only after it has ended, i.e., being either committed or
aborted. On the other hand, read (shared) locks are re-
leased regularly during phase 2. This protocol is not ap-
propriate in B-trees because it causes Bottleneck (while
B-trees always starts searching from the parent root).

Strong strict two-phase locking

or Rigorousness, or Rigorous scheduling, or Rigorous
two-phase locking
To comply with strong strict two-phase locking
(SS2PL) the locking protocol releases both write (exclu-
sive) and read (shared) locks applied by a transaction only
after the transaction has ended, i.e., only after both com-
pleting executing (being ready) and becoming either com-
mitted or aborted. This protocol also complies with the
S2PL rules. A transaction obeying SS2PL can be viewed
as having phase-1 that lasts the transaction’s entire execu-
tion duration, and no phase-2 (or a degenerate phase-2).
Thus, only one phase is actually left, and “two-phase” in
the name seems to be still utilized due to the historical
development of the concept from 2PL, and 2PL being a
super-class. The SS2PL property of a schedule is also
called Rigorousness. It is also the name of the class of
schedules having this property, and an SS2PL schedule
is also called a “rigorous schedule”. The term “Rigorous-
ness” is free of the unnecessary legacy of “two-phase,”
as well as being independent of any (locking) mechanism
(in principle other blocking mechanisms can be utilized).
The property’s respective locking mechanism is some-
times referred to as Rigorous 2PL.
SS2PL is a special case of S2PL, i.e., the SS2PL class
of schedules is a proper subclass of S2PL (every SS2PL
schedule is also an S2PL schedule, but S2PL schedules
exist that are not SS2PL).

SS2PL has been the concurrency control protocol of
choice for most database systems and utilized since their
early days in the 1970s. It is proven to be an effec-
tive mechanism in many situations, and provides besides
Serializability also Strictness (a special case of cascade-
less Recoverability), which is instrumental for efficient
database recovery, and also Commitment ordering (CO)
for participating in distributed environments where a CO
based distributed serializability and global serializability
solutions are employed. Being a subset of CO, an ef-
ficient implementation of distributed SS2PL exists with-
out a distributed lock manager (DLM), while distributed
deadlocks (see below) are resolved automatically. The
fact that SS2PL employed in multi database systems en-
sures global serializability has been known for years be-
fore the discovery of CO, but only with CO came the un-
derstanding of the role of an atomic commitment pro-
tocol in maintaining global serializability, as well as the
observation of automatic distributed deadlock resolution
(see a detailed example of Distributed SS2PL). As a mat-
ter of fact, SS2PL inheriting properties of Recoverabil-
ity and CO is more significant than being a subset of
2PL, which by itself in its general form, besides compris-
ing a simple serializability mechanism (however serializ-
ability is also implied by CO), in not known to provide
SS2PL with any other significant qualities. 2PL in its
general form, as well as when combined with Strictness,
i.e., Strict 2PL (S2PL), are not known to be utilized in
practice. The popular SS2PL does not require marking
“end of phase-1” as 2PL and S2PL do, and thus is sim-
pler to implement. Also, unlike the general 2PL, SS2PL
provides, as mentioned above, the useful Strictness and
Commitment ordering properties.
Many variants of SS2PL exist that utilize various lock
types with various semantics in different situations, in-
cluding cases of lock-type change during a transaction.
Notable are variants that use Multiple granularity lock-
ing.
Comments:

1. SS2PL Vs. S2PL: Both provide Serializability
and Strictness. Since S2PL is a super class of
SS2PL it may, in principle, provide more concur-
rency. However, no concurrency advantage is typi-
cally practically noticed (exactly same locking exists
for both, with practically not much earlier lock re-
lease for S2PL), and the overhead of dealing with
an end-of-phase-1 mechanism in S2PL, separate
from transaction-end, is not justified. Also, while
SS2PL provides Commitment ordering, S2PL does
not. This explains the preference of SS2PL over
S2PL.

2. Especially before 1990, but also after, in many ar-
ticles and books, e.g., (Bernstein et al. 1987, p.
59),[1] the term “Strict 2PL” (S2PL) has been fre-
quently defined by the locking protocol “Release all
locks only after transaction end,” which is the pro-

https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Database_system
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Strict
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Data_recovery
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Serializability#Distributed_serializability
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Commitment_ordering#Distributed_serializability_and_CO
https://en.wikipedia.org/wiki/Distributed_lock_manager
https://en.wikipedia.org/wiki/Atomic_commitment
https://en.wikipedia.org/wiki/Commitment_ordering#Distributed_SS2PL
https://en.wikipedia.org/wiki/Schedule_(computer_science)#Strict
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Multiple_granularity_locking
https://en.wikipedia.org/wiki/Multiple_granularity_locking
https://en.wikipedia.org/wiki/Commitment_ordering

66 CHAPTER 6. LOCKING

tocol of SS2PL. Thus, “Strict 2PL” could not be
there the name of the intersection of Strictness and
2PL, which is larger than the class generated by the
SS2PL protocol. This has caused confusion. With
an explicit definition of S2PL as the intersection of
Strictness and 2PL, a new name for SS2PL, and an
explicit distinction between the classes S2PL and
SS2PL, the articles (Breitbart et al. 1991)[3] and
(Raz 1992)[4] have intended to clear the confusion:
The first using the name “Rigorousness,” and the
second “SS2PL.”

3. A more general property than SS2PL exists (a
schedule super-class), Strict commitment order-
ing (Strict CO, or SCO), which as well provides
both serializability, strictness, and CO, and has sim-
ilar locking overhead. Unlike SS2PL, SCO does
not block upon a read-write conflict (a read-lock
does not block acquiring a write-lock; both SCO and
SS2PL have the same behavior for write-read and
write-write conflicts) at the cost of a possible de-
layed commit, and upon such conflict type SCO has
shorter average transaction completion time and bet-
ter performance than SS2PL.[5] While SS2PL obeys
the lock compatibility table above, SCO has the fol-
lowing table:

Note that though SCO releases all
locks at transaction end and com-
plies with the 2PL locking rules,
SCO is not a subset of 2PL be-
cause of its different lock compat-
ibility table. SCO allows materi-
alized read-write conflicts between
two transactions in their phases 1,
which 2PL does not allow in phase-
1 (see about materialized conflicts
in Serializability). On the other
hand 2PL allows other material-
ized conflict types in phase-2 that
SCO does not allow at all. To-
gether this implies that the schedule
classes 2PL and SCO are incom-
parable (i.e., no class contains the
other class).

Summary - Relationships among classes

Between any two schedule classes (define by their sched-
ules’ respective properties) that have common schedules,
either one contains the other (strictly contains if they are
not equal), or they are incomparable. The containment
relationships among the 2PL classes and other major
schedule classes are summarized in the following dia-
gram. 2PL and its subclasses are inherently blocking,
which means that no optimistic implementations for them
exist (and whenever “Optimistic 2PL” is mentioned it

Schedule classes containment: An arrow from class A to class
B indicates that class A strictly contains B; a lack of a directed
path between classes means that the classes are incomparable.
A property is inherently blocking, if it can be enforced only by
blocking transaction’s data access operations until certain events
occur in other transactions. (Raz 1992)

refers to a different mechanism with a class that includes
also schedules not in the 2PL class).

6.3.3 Deadlocks in 2PL

Locks block data-access operations. Mutual blocking be-
tween transactions results in a deadlock, where execution
of these transactions is stalled, and no completion can be
reached. Thus deadlocks need to be resolved to complete
these transactions’ executions and release related comput-
ing resources. A deadlock is a reflection of a potential cy-
cle in the precedence graph, that would occur without the
blocking. A deadlock is resolved by aborting a transac-
tion involved with such potential cycle, and breaking the
cycle. It is often detected using a wait-for graph (a graph
of conflicts blocked by locks from being materialized;
conflicts not materialized in the database due to blocked
operations are not reflected in the precedence graph and
do not affect serializability), which indicates which trans-
action is “waiting for” lock release by which transaction,
and a cycle means a deadlock. Aborting one transaction
per cycle is sufficient to break the cycle. Transactions
aborted due to deadlock resolution are executed again im-
mediately.
In a distributed environment an atomic commitment pro-
tocol, typically the Two-phase commit (2PC) protocol, is
utilized for atomicity. When recoverable data (data under

https://en.wikipedia.org/wiki/Commitment_ordering#Strict_CO_(SCO)
https://en.wikipedia.org/wiki/Commitment_ordering#Strict_CO_(SCO)
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Two-phase_locking#Raz1992
https://en.wikipedia.org/wiki/Deadlock
https://en.wikipedia.org/wiki/Serializability#Testing_conflict_serializability
https://en.wikipedia.org/wiki/Wait-for_graph
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Atomic_commitment
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/Atomicity_(database_systems)

6.3. TWO-PHASE LOCKING 67

transaction control) are partitioned among 2PC partici-
pants (i.e., each data object is controlled by a single 2PC
participant), then distributed (global) deadlocks, dead-
locks involving two or more participants in 2PC, are re-
solved automatically as follows:
When SS2PL is effectively utilized in a distributed en-
vironment, then global deadlocks due to locking gener-
ate voting-deadlocks in 2PC, and are resolved automati-
cally by 2PC (see Commitment ordering (CO), in Exact
characterization of voting-deadlocks by global cycles; No
reference except the CO articles is known to notice this).
For the general case of 2PL, global deadlocks are simi-
larly resolved automatically by the synchronization point
protocol of phase-1 end in a distributed transaction (syn-
chronization point is achieved by “voting” (notifying local
phase-1 end), and being propagated to the participants in
a distributed transaction the same way as a decision point
in atomic commitment; in analogy to decision point in
CO, a conflicting operation in 2PL cannot happen before
phase-1 end synchronization point, with the same result-
ing voting-deadlock in the case of a global data-access
deadlock; the voting-deadlock (which is also a locking
based global deadlock) is automatically resolved by the
protocol aborting some transaction involved, with a miss-
ing vote, typically using a timeout).
Comment:

When data are partitioned among the atomic
commitment protocol (e.g., 2PC) participants,
automatic global deadlock resolution has been
overlooked in the database research literature,
though deadlocks in such systems has been a
quite intensive research area:

• For CO and its special case
SS2PL, the automatic resolu-
tion by the atomic commitment
protocol has been noticed only
in the CO articles. However,
it has been noticed in practice
that in many cases global dead-
locks are very infrequently de-
tected by the dedicated reso-
lution mechanisms, less than
could be expected (“Why do
we see so few global dead-
locks?"). The reason is proba-
bly the deadlocks that are auto-
matically resolved and thus not
handled and uncounted by the
mechanisms;

• For 2PL in general, the
automatic resolution by the
(mandatory) end-of-phase-one
synchronization point protocol
(which has same voting mech-
anism as atomic commitment
protocol, and same missing

vote handling upon voting
deadlock, resulting in global
deadlock resolution) has not
been mentioned until today
(2009). Practically only the
special case SS2PL is utilized,
where no end-of-phase-one
synchronization is needed in
addition to atomic commit
protocol.

In a distributed environment where recover-
able data are not partitioned among atomic
commitment protocol participants, no such au-
tomatic resolution exists, and distributed dead-
locks need to be resolved by dedicated tech-
niques.

6.3.4 See also

• Serializability

• Lock (computer science)

6.3.5 References
[1] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman

(1987): Concurrency Control and Recovery in Database
Systems, Addison Wesley Publishing Company, ISBN 0-
201-10715-5

[2] Gerhard Weikum, Gottfried Vossen (2001):
Transactional Information Systems, Elsevier, ISBN
1-55860-508-8

[3] Yuri Breitbart, Dimitrios Georgakopoulos, Marek
Rusinkiewicz, Abraham Silberschatz (1991): “On
Rigorous Transaction Scheduling”, IEEE Transactions on
Software Engineering (TSE), September 1991, Volume
17, Issue 9, pp. 954-960, ISSN: 0098-5589

[4] Yoav Raz (1992): “The Principle of Commitment Order-
ing, or Guaranteeing Serializability in a Heterogeneous
Environment of Multiple Autonomous Resource Man-
agers Using Atomic Commitment” (PDF), Proceedings
of the Eighteenth International Conference on Very Large
Data Bases (VLDB), pp. 292-312, Vancouver, Canada,
August 1992, ISBN 1-55860-151-1 (also DEC-TR 841,
Digital Equipment Corporation, November 1990)

[5] Yoav Raz (1991): “Locking Based Strict Commitment
Ordering, or How to improve Concurrency in Locking
Based Resource Managers”, DEC-TR 844, December
1991.

https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Commitment_ordering#Exact_characterization_of_voting-deadlocks_by_global_cycles
https://en.wikipedia.org/wiki/Commitment_ordering#Exact_characterization_of_voting-deadlocks_by_global_cycles
https://en.wikipedia.org/wiki/Synchronization_(computer_science)#Thread_or_process_synchronization
https://en.wikipedia.org/wiki/Timeout_(telecommunication)
https://en.wikipedia.org/wiki/Atomic_commitment
https://en.wikipedia.org/wiki/Atomic_commitment
https://en.wikipedia.org/wiki/Deadlock#Distributed_deadlock
https://en.wikipedia.org/wiki/Deadlock#Distributed_deadlock
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Phil_Bernstein
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://en.wikipedia.org/wiki/Special:BookSources/0201107155
https://en.wikipedia.org/wiki/Special:BookSources/0201107155
https://en.wikipedia.org/wiki/Gerhard_Weikum
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Abraham_Silberschatz
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=92915
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=92915
https://en.wikipedia.org/wiki/Yoav_Raz
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.informatik.uni-trier.de/~ley/db/conf/vldb/Raz92.html
http://www.vldb.org/conf/1992/P292.PDF
https://en.wikipedia.org/wiki/Special:BookSources/1558601511
https://en.wikipedia.org/wiki/Digital_Equipment_Corporation

Chapter 7

MVCC

7.1 Multiversion concurrency con-
trol

Multiversion concurrency control (MCC or MVCC),
is a concurrency control method commonly used by
database management systems to provide concurrent ac-
cess to the database and in programming languages to im-
plement transactional memory.[1]

If someone is reading from a database at the same time
as someone else is writing to it, it is possible that the
reader will see a half-written or inconsistent piece of data.
There are several ways of solving this problem, known
as concurrency control methods. The simplest way is to
make all readers wait until the writer is done, which is
known as a lock. This can be very slow, so MVCC takes
a different approach: each user connected to the database
sees a snapshot of the database at a particular instant in
time. Any changes made by a writer will not be seen by
other users of the database until the changes have been
completed (or, in database terms: until the transaction
has been committed.)
When an MVCC database needs to update an item of
data, it will not overwrite the old data with new data,
but instead mark the old data as obsolete and add the
newer version elsewhere. Thus there are multiple versions
stored, but only one is the latest. This allows readers to ac-
cess the data that was there when they began reading, even
if it was modified or deleted part way through by someone
else. It also allows the database to avoid the overhead of
filling in holes in memory or disk structures but requires
(generally) the system to periodically sweep through and
delete the old, obsolete data objects. For a document-
oriented database it also allows the system to optimize
documents by writing entire documents onto contiguous
sections of disk—when updated, the entire document can
be re-written rather than bits and pieces cut out or main-
tained in a linked, non-contiguous database structure.
MVCC provides point in time consistent views. Read
transactions under MVCC typically use a timestamp or
transaction ID to determine what state of the DB to read,
and read these versions of the data. Read and write trans-
actions are thus isolated from each other without any need
for locking. Writes create a newer version, while concur-

rent reads access the older version.

7.1.1 Implementation

MVCC uses timestamps (TS), and incrementing transac-
tion IDs (T), to achieve transactional consistency. MVCC
ensures a transaction (T) never has to wait to Read a
database object (P) by maintaining several versions of
such object (P). Each version of the object (P) would
have both a Read Timestamp (RTS) and a Write Times-
tamp (WTS) which lets a transaction (Tᵢ) read the most
recent version of an object (P) which precedes the trans-
action’s (Tᵢ) Read Timestamp (RTS(Tᵢ)).
If a transaction (Tᵢ) wants to Write to an object (P), and
if there is also another transaction (Tᆩ) happening to the
same object (P), the Read Timestamp (RTS) of (Tᵢ)
must precede the Read Timestamp (RTS) of (Tᆩ), (i.e.,
RTS(Tᵢ) < RTS(Tᆩ)) for the object (P) Write Operation
(WTS) to succeed. Basically, a Write cannot complete
if there are other outstanding transactions with an earlier
Read Timestamp (RTS) to the same object (P). Think of
it like standing in line at the store, you cannot complete
your checkout transaction until those in front of you have
completed theirs.
To restate; every object (P) has a Timestamp (TS), how-
ever if transaction Tᵢ wants to Write to object (P), and
there is a Timestamp (TS) of that transaction that is ear-
lier than the object’s current Read Timestamp, (TS(P) <
RTS(Tᵢ)), the transaction Tᵢ is aborted and restarted. (If
you try to cut in line, to check out early, go to the back of
that line) Otherwise, Tᵢ creates a new version of (P) and
sets the read/write timestamp (TS) of the new version of
(P) to the timestamp of the transaction TS=TS(Tᵢ).[2]

The obvious drawback to this system is the cost of storing
multiple versions of objects in the database. On the other
hand reads are never blocked, which can be important
for workloads mostly involving reading values from the
database. MVCC is particularly adept at implementing
true snapshot isolation, something which other methods
of concurrency control frequently do either incompletely
or with high performance costs.

68

https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Transactional_memory
https://en.wikipedia.org/wiki/Consistency_(database_systems)
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Lock_(database)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Timestamp
https://en.wikipedia.org/wiki/Snapshot_isolation

7.2. SNAPSHOT ISOLATION 69

7.1.2 Examples

Concurrent read-write

At Time = 1, the state of a database could be:
T0 wrote Object 1="Foo” and Object 2="Bar”. After
that T1 wrote Object 1="Hello” leaving Object 2 at its
original value. The new value of Object 1 will supersede
the value at 0 for all transaction that starts after T1 com-
mits at which point version 0 of Object 1 can be garbage
collected.
If a long running transaction T2 starts a read operation of
Object 2 and Object 1 after T1 committed and there is
a concurrent update transaction T3 which deletes Object
2 and adds Object 3="Foo-Bar”, the database state will
look like at time 2:
There is a new version as of time 2 of Object 2 which
is marked as deleted and a new Object 3. Since T2 and
T3 run concurrently T2 sees another the version of the
database before 2 i.e. before T3 committed writes, as
such T2 reads Object 2="Bar” and Object 1="Hello”.
This is how MVCC allows snapshot isolation reads in al-
most every case without any locks.

7.1.3 History

Multiversion concurrency control is described in some
detail in the 1981 paper “Concurrency Control in Dis-
tributed Database Systems”[3] by Phil Bernstein and
Nathan Goodman, then employed by the Computer Cor-
poration of America. Bernstein and Goodman’s paper
cites a 1978 dissertation[4] by David P. Reed which quite
clearly describes MVCC and claims it as an original work.
The first shipping, commercial database software product
featuring MVCC was Digital’s VAX Rdb/ELN. The sec-
ond was InterBase, which is still an active, commercial
product.

7.1.4 Version control systems

Any version control system that has the internal notion of
a version (e.g. Subversion, Git, probably almost any cur-
rent VCS with the notable exception of CVS) will provide
explicit MVCC (you only ever access data by its version
identifier).
Among the VCSs that don't provide MVCC at the repos-
itory level, most still work with the notion of a working
copy, which is a file tree checked out from the repository,
edited without using the VCS itself and checked in after
the edit. This working copy provides MVCC while it is
checked out.

7.1.5 See also

• List of databases using MVCC

• Timestamp-based concurrency control

• Clojure

• Read-copy-update

• Vector clock

7.1.6 References
[1] refs. Clojure. Retrieved on 2013-09-18.

[2] Ramakrishnan, R., & Gehrke, J. (2000). Database man-
agement systems. Osborne/McGraw-Hill.

[3] Bernstein, Philip A.; Goodman, Nathan (1981).
“Concurrency Control in Distributed Database Systems”.
ACM Computing Surveys.

[4] Reed, David P. (September 21, 1978). “Naming and Syn-
chronization in a Decentralized Computer System”. MIT
dissertation.

7.1.7 Further reading

• Gerhard Weikum, Gottfried Vossen, Transactional
information systems: theory, algorithms, and the
practice of concurrency control and recovery, Mor-
gan Kaufmann, 2002, ISBN 1-55860-508-8

7.2 Snapshot isolation

In databases, and transaction processing (transaction
management), snapshot isolation is a guarantee that all
reads made in a transaction will see a consistent snapshot
of the database (in practice it reads the last committed
values that existed at the time it started), and the transac-
tion itself will successfully commit only if no updates it
has made conflict with any concurrent updates made since
that snapshot.
Snapshot isolation has been adopted by several major
database management systems, such as SQL Anywhere,
InterBase, Firebird, Oracle, PostgreSQL, MongoDB[1]

and Microsoft SQL Server (2005 and later). The main
reason for its adoption is that it allows better performance
than serializability, yet still avoids most of the concur-
rency anomalies that serializability avoids (but not always
all). In practice snapshot isolation is implemented within
multiversion concurrency control (MVCC), where gener-
ational values of each data item (versions) are maintained:
MVCC is a common way to increase concurrency and
performance by generating a new version of a database
object each time the object is written, and allowing trans-
actions’ read operations of several last relevant versions

https://en.wikipedia.org/wiki/Phil_Bernstein
https://en.wikipedia.org/wiki/David_P._Reed
https://en.wikipedia.org/wiki/InterBase
https://en.wikipedia.org/wiki/Version_control
https://en.wikipedia.org/wiki/Subversion_(software)
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/List_of_databases_using_MVCC
https://en.wikipedia.org/wiki/Timestamp-based_concurrency_control
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Read-copy-update
https://en.wikipedia.org/wiki/Vector_clock
http://clojure.org/refs
https://en.wikipedia.org/wiki/Phil_Bernstein
http://portal.acm.org/citation.cfm?id=356842.356846
https://en.wikipedia.org/wiki/David_P._Reed
http://www.lcs.mit.edu/publications/specpub.php?id=773
http://www.lcs.mit.edu/publications/specpub.php?id=773
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Sql_anywhere
https://en.wikipedia.org/wiki/InterBase
https://en.wikipedia.org/wiki/Firebird_(database_server)
https://en.wikipedia.org/wiki/Oracle_database
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Microsoft_SQL_Server
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Multiversion_concurrency_control

70 CHAPTER 7. MVCC

(of each object). Snapshot isolation has also been used[2]

to critique the ANSI SQL−92 standard’s definition of
isolation levels, as it exhibits none of the “anomalies” that
the SQL standard prohibited, yet is not serializable (the
anomaly-free isolation level defined by ANSI).
Snapshot isolation is called “serializable” mode in
Oracle[3][4]<ref name"">Ask Tom : “Serializable
Transaction”</ref> and PostgreSQL versions prior to
9.1,[5][6][7] which may cause confusion with the “real
serializability" mode. There are arguments both for and
against this decision; what is clear is that users must
be aware of the distinction to avoid possible undesired
anomalous behavior in their database system logic.

7.2.1 Definition

A transaction executing under snapshot isolation appears
to operate on a personal snapshot of the database, taken
at the start of the transaction. When the transaction con-
cludes, it will successfully commit only if the values up-
dated by the transaction have not been changed externally
since the snapshot was taken. Such a write-write conflict
will cause the transaction to abort.
In a write skew anomaly, two transactions (T1 and T2)
concurrently read an overlapping data set (e.g. values V1
and V2), concurrently make disjoint updates (e.g. T1 up-
dates V1, T2 updates V2), and finally concurrently com-
mit, neither having seen the update performed by the
other. Were the system serializable, such an anomaly
would be impossible, as either T1 or T2 would have to
occur “first”, and be visible to the other. In contrast, snap-
shot isolation permits write skew anomalies.
As a concrete example, imagine V1 and V2 are two bal-
ances held by a single person, Phil. The bank will allow
either V1 or V2 to run a deficit, provided the total held in
both is never negative (i.e. V1 + V2 ≥ 0). Both balances
are currently $100. Phil initiates two transactions con-
currently, T1 withdrawing $200 from V1, and T2 with-
drawing $200 from V2.
If the database guaranteed serializable transactions, the
simplest way of coding T1 is to deduct $200 from V1,
and then verify that V1 + V2 ≥ 0 still holds, aborting if
not. T2 similarly deducts $200 from V2 and then verifies
V1 + V2 ≥ 0. Since the transactions must serialize, either
T1 happens first, leaving V1 = -$100, V2 = $100, and
preventing T2 from succeeding (since V1 + (V2 - $200)
is now -$200), or T2 happens first and similarly prevents
T1 from committing.
Under snapshot isolation, however, T1 and T2 operate
on private snapshots of the database: each deducts $200
from an account, and then verifies that the new total is
zero, using the other account value that held when the
snapshot was taken. Since neither update conflicts, both
commit successfully, leaving V1 = V2 = -$100, and V1
+ V2 = -$200.

If built on multiversion concurrency control, snapshot
isolation allows transactions to proceed without worry-
ing about concurrent operations, and more importantly
without needing to re-verify all read operations when the
transaction finally commits. The only information that
must be stored during the transaction is a list of updates
made, which can be scanned for conflicts fairly easily be-
fore being committed.

7.2.2 Workarounds

Potential inconsistency problems arising from write skew
anomalies can be fixed by adding (otherwise unneces-
sary) updates to the transactions in order to enforce the
serializability property.[8]

Materialize the conflict Add a special conflict table,
which both transactions update in order to create a
direct write-write conflict.

Promotion Have one transaction “update” a read-only
location (replacing a value with the same value) in
order to create a direct write-write conflict (or use an
equivalent promotion, e.g. Oracle’s SELECT FOR
UPDATE).

In the example above, we can materialize the conflict by
adding a new table which makes the hidden constraint ex-
plicit, mapping each person to their total balance. Phil
would start off with a total balance of $200, and each
transaction would attempt to subtract $200 from this, cre-
ating a write-write conflict that would prevent the two
from succeeding concurrently. This approach violates the
normal form.
Alternatively, we can promote one of the transaction’s
reads to a write. For instance, T2 could set V1 = V1, cre-
ating an artificial write-write conflict with T1 and, again,
preventing the two from succeeding concurrently. This
solution may not always be possible.
In general, therefore, snapshot isolation puts some of the
problem of maintaining non-trivial constraints onto the
user, who may not appreciate either the potential pitfalls
or the possible solutions. The upside to this transfer is
better performance.

7.2.3 History

Snapshot isolation arose from work on multiversion con-
currency control databases, where multiple versions of
the database are maintained concurrently to allow readers
to execute without colliding with writers. Such a system
allows a natural definition and implementation of such an
isolation level.[2] InterBase, later owned by Borland, was
acknowledged to provide SI rather than full serializability
in version 4,[2] and likely permitted write-skew anomalies
since its first release in 1985.[9]

https://en.wikipedia.org/wiki/ANSI
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Isolation_(database_systems)
https://en.wikipedia.org/wiki/Oracle_database
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:3233191441609
http://asktom.oracle.com/pls/asktom/f?p=100:11:0::::P11_QUESTION_ID:3233191441609
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Write-write_conflict
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/InterBase
https://en.wikipedia.org/wiki/Borland

7.3. TWO-PHASE COMMIT PROTOCOL 71

Unfortunately, the ANSI SQL-92 standard was written
with a lock-based database in mind, and hence is rather
vague when applied to MVCC systems. Berenson et al.
wrote a paper in 1995[2] critiquing the SQL standard, and
cited snapshot isolation as an example of an isolation level
that did not exhibit the standard anomalies described in
the ANSI SQL-92 standard, yet still had anomalous be-
haviour when compared with serializable transactions.
In 2008, Cahill et al. showed that write-skew anomalies
could be prevented by detecting and aborting “danger-
ous” triplets of concurrent transactions.[10] This imple-
mentation of serializability is well-suited to multiversion
concurrency control databases, and has been adopted in
PostgreSQL 9.1,[6][7][11] where it is referred to as “Seri-
alizable Snapshot Isolation”, abbreviated to SSI. When
used consistently, this eliminates the need for the above
workarounds. The downside over snapshot isolation is
an increase in aborted transactions. This can perform
better or worse than snapshot isolation with the above
workarounds, depending on workload.

7.2.4 References
[1] Multiversion concurrency control in MongoDB,

MongoDB CTO: How our new WiredTiger storage
engine will earn its stripes

[2] Berenson, Hal; Bernstein, Phil; Gray, Jim; Melton, Jim;
O'Neil, Elizabeth; O'Neil, Patrick (1995), “A Critique
of ANSI SQL Isolation Levels”, Proceedings of the 1995
ACM SIGMOD international Conference on Management
of Data, pp. 1–10, doi:10.1145/223784.223785

[3] Oracle Database Concepts 10g Release 1 (10.1) Chapter
13 : Data Concurrency and Consistency — Oracle Isola-
tion Levels

[4] Ask Tom : On Transaction Isolation Levels

[5] PostgreSQL 9.0 Documentation: 13.2.2.1. Serializable
Isolation versus True Serializability

[6] PostgreSQL 9.1 press release

[7] PostgreSQL 9.1.14 Documentation: 13.2.3. Serializable
Isolation Level

[8] Fekete, Alan; Liarokapis, Dimitrios; O'Neil, Eliz-
abeth; O'Neil, Patrick; Shasha, Dennis (2005),
“Making Snapshot Isolation Serializable”, ACM
Transactions on Database Systems 30 (2): 492–528,
doi:10.1145/1071610.1071615, ISSN 0362-5915

[9] Stuntz, Craig. “Multiversion Concurrency Control Before
InterBase”. Retrieved October 30, 2014.

[10] Michael J. Cahill, Uwe Röhm, Alan D. Fekete (2008)
“Serializable isolation for snapshot databases”, Proceed-
ings of the 2008 ACM SIGMOD international conference
on Management of data, pp. 729–738, ISBN 978-1-
60558-102-6 (SIGMOD 2008 best paper award)

[11] Ports, Dan R. K.; Grittner, Kevin (2012). “Serializable
Snapshot Isolation in PostgreSQL” (PDF). Proceedings of
the VLDB Endowment 5 (12): 1850–1861.

7.2.5 Further reading

• Gerhard Weikum, Gottfried Vossen, Transactional
information systems: theory, algorithms, and the
practice of concurrency control and recovery, Mor-
gan Kaufmann, 2002, ISBN 1-55860-508-8

• Khuzaima Daudjee, Kenneth Salem, Lazy Database
Replication with Snapshot Isolation, VLDB 2006:
pages 715-726

7.3 Two-phase commit protocol

“2PC” redirects here. For the play in American and
Canadian football, see Two-point conversion. For the
American rapper, see 2Pac. For the cryptographic
protocol, see Commitment scheme.

In transaction processing, databases, and computer net-
working, the two-phase commit protocol (2PC) is a
type of atomic commitment protocol (ACP). It is a
distributed algorithm that coordinates all the processes
that participate in a distributed atomic transaction on
whether to commit or abort (roll back) the transaction (it
is a specialized type of consensus protocol). The protocol
achieves its goal even in many cases of temporary system
failure (involving either process, network node, commu-
nication, etc. failures), and is thus widely utilized.[1][2][3]

However, it is not resilient to all possible failure configu-
rations, and in rare cases, user (e.g., a system’s adminis-
trator) intervention is needed to remedy an outcome. To
accommodate recovery from failure (automatic in most
cases) the protocol’s participants use logging of the pro-
tocol’s states. Log records, which are typically slow to
generate but survive failures, are used by the protocol’s
recovery procedures. Many protocol variants exist that
primarily differ in logging strategies and recovery mech-
anisms. Though usually intended to be used infrequently,
recovery procedures compose a substantial portion of the
protocol, due to many possible failure scenarios to be
considered and supported by the protocol.
In a “normal execution” of any single distributed trans-
action, i.e., when no failure occurs, which is typically
the most frequent situation, the protocol consists of two
phases:

1. The commit-request phase (or voting phase), in
which a coordinator process attempts to prepare
all the transaction’s participating processes (named
participants, cohorts, or workers) to take the nec-
essary steps for either committing or aborting the
transaction and to vote, either “Yes": commit (if the
transaction participant’s local portion execution has
ended properly), or “No": abort (if a problem has
been detected with the local portion), and

https://en.wikipedia.org/wiki/SQL-92
https://en.wikipedia.org/wiki/Database_lock
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
http://www.zdnet.com/article/mongodb-cto-how-our-new-wiredtiger-storage-engine-will-earn-its-stripes/
http://www.zdnet.com/article/mongodb-cto-how-our-new-wiredtiger-storage-engine-will-earn-its-stripes/
https://en.wikipedia.org/wiki/Patrick_O%2527Neil
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F223784.223785
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#i17856
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#i17856
http://docs.oracle.com/cd/B12037_01/server.101/b10743/consist.htm#i17856
http://asktom.oracle.com/pls/asktom/f?p=100:11:::::P11_QUESTION_ID:7636765105002
http://www.postgresql.org/docs/9.0/static/transaction-iso.html#MVCC-SERIALIZABILITY
http://www.postgresql.org/docs/9.0/static/transaction-iso.html#MVCC-SERIALIZABILITY
http://www.postgresql.org/about/news.1349
http://www.postgresql.org/docs/9.1/static/transaction-iso.html#XACT-SERIALIZABLE
http://www.postgresql.org/docs/9.1/static/transaction-iso.html#XACT-SERIALIZABLE
https://en.wikipedia.org/wiki/Patrick_O%2527Neil
https://en.wikipedia.org/wiki/Dennis_Shasha
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1071610.1071615
https://en.wikipedia.org/wiki/International_Standard_Serial_Number
https://www.worldcat.org/issn/0362-5915
http://blogs.teamb.com/craigstuntz/2005/02/18/2699/
http://blogs.teamb.com/craigstuntz/2005/02/18/2699/
http://portal.acm.org/citation.cfm?id=1376690
https://en.wikipedia.org/wiki/Special:BookSources/9781605581026
https://en.wikipedia.org/wiki/Special:BookSources/9781605581026
http://drkp.net/drkp/papers/ssi-vldb12.pdf
http://drkp.net/drkp/papers/ssi-vldb12.pdf
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
https://en.wikipedia.org/wiki/Two-point_conversion
https://en.wikipedia.org/wiki/2Pac
https://en.wikipedia.org/wiki/Commitment_scheme
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Atomic_commit
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Consensus_(computer_science)
https://en.wikipedia.org/wiki/Server_log
https://en.wikipedia.org/wiki/Recovery_procedure
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Distributed_transaction

72 CHAPTER 7. MVCC

2. The commit phase, in which, based on voting of the
cohorts, the coordinator decides whether to com-
mit (only if all have voted “Yes”) or abort the trans-
action (otherwise), and notifies the result to all the
cohorts. The cohorts then follow with the needed
actions (commit or abort) with their local transac-
tional resources (also called recoverable resources;
e.g., database data) and their respective portions in
the transaction’s other output (if applicable).

Note that the two-phase commit (2PC) protocol should
not be confused with the two-phase locking (2PL) proto-
col, a concurrency control protocol.

7.3.1 Assumptions

The protocol works in the following manner: one node is
designated the coordinator, which is the master site, and
the rest of the nodes in the network are designated the co-
horts. The protocol assumes that there is stable storage
at each node with a write-ahead log, that no node crashes
forever, that the data in the write-ahead log is never lost
or corrupted in a crash, and that any two nodes can com-
municate with each other. The last assumption is not too
restrictive, as network communication can typically be
rerouted. The first two assumptions are much stronger; if
a node is totally destroyed then data can be lost.
The protocol is initiated by the coordinator after the last
step of the transaction has been reached. The cohorts then
respond with an agreementmessage or an abortmessage
depending on whether the transaction has been processed
successfully at the cohort.

7.3.2 Basic algorithm

Commit request phase

or voting phase

1. The coordinator sends a query to commit message
to all cohorts and waits until it has received a reply
from all cohorts.

2. The cohorts execute the transaction up to the point
where they will be asked to commit. They each write
an entry to their undo log and an entry to their redo
log.

3. Each cohort replies with an agreement message
(cohort votes Yes to commit), if the cohort’s actions
succeeded, or an abort message (cohort votes No,
not to commit), if the cohort experiences a failure
that will make it impossible to commit.

Commit phase

or Completion phase

Success If the coordinator received an agreement
message from all cohorts during the commit-request
phase:

1. The coordinator sends a commit message to all the
cohorts.

2. Each cohort completes the operation, and releases
all the locks and resources held during the transac-
tion.

3. Each cohort sends an acknowledgment to the coor-
dinator.

4. The coordinator completes the transaction when all
acknowledgments have been received.

Failure If any cohort votes No during the commit-
request phase (or the coordinator’s timeout expires):

1. The coordinator sends a rollback message to all the
cohorts.

2. Each cohort undoes the transaction using the undo
log, and releases the resources and locks held during
the transaction.

3. Each cohort sends an acknowledgement to the co-
ordinator.

4. The coordinator undoes the transaction when all ac-
knowledgements have been received.

Message flow Coordinator Cohort QUERY TO
COMMIT --------------------------------> VOTE YES/NO
prepare*/abort* <------------------------------- com-
mit*/abort* COMMIT/ROLLBACK --------------------
------------> ACKNOWLEDGMENT commit*/abort*
<-------------------------------- end
An * next to the record type means that the record is
forced to stable storage.[4]

7.3.3 Disadvantages

The greatest disadvantage of the two-phase commit pro-
tocol is that it is a blocking protocol. If the coordinator
fails permanently, some cohorts will never resolve their
transactions: After a cohort has sent an agreement mes-
sage to the coordinator, it will block until a commit or
rollback is received.

7.3.4 Implementing the two-phase commit
protocol

https://en.wikipedia.org/wiki/Two-phase_locking
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Stable_storage
https://en.wikipedia.org/wiki/Write_ahead_logging
https://en.wikipedia.org/wiki/Redo_log
https://en.wikipedia.org/wiki/Redo_log

7.3. TWO-PHASE COMMIT PROTOCOL 73

Common architecture

In many cases the 2PC protocol is distributed in a com-
puter network. It is easily distributed by implement-
ing multiple dedicated 2PC components similar to each
other, typically named Transaction managers (TMs; also
referred to as 2PC agents or Transaction Processing Mon-
itors), that carry out the protocol’s execution for each
transaction (e.g., The Open Group's X/Open XA). The
databases involved with a distributed transaction, the par-
ticipants, both the coordinator and cohorts, register to
close TMs (typically residing on respective same network
nodes as the participants) for terminating that transaction
using 2PC. Each distributed transaction has an ad hoc set
of TMs, the TMs to which the transaction participants
register. A leader, the coordinator TM, exists for each
transaction to coordinate 2PC for it, typically the TM of
the coordinator database. However, the coordinator role
can be transferred to another TM for performance or re-
liability reasons. Rather than exchanging 2PC messages
among themselves, the participants exchange the mes-
sages with their respective TMs. The relevant TMs com-
municate among themselves to execute the 2PC protocol
schema above, “representing” the respective participants,
for terminating that transaction. With this architecture
the protocol is fully distributed (does not need any cen-
tral processing component or data structure), and scales
up with number of network nodes (network size) effec-
tively.
This common architecture is also effective for the dis-
tribution of other atomic commitment protocols be-
sides 2PC, since all such protocols use the same vot-
ing mechanism and outcome propagation to protocol
participants.[1][2]

Protocol optimizations

Database research has been done on ways to get most of
the benefits of the two-phase commit protocol while re-
ducing costs by protocol optimizations[1][2][3] and proto-
col operations saving under certain system’s behavior as-
sumptions.

Presume abort and Presume commit Pre-
sumed abort or Presumed commit are common such
optimizations.[2][3][5] An assumption about the outcome
of transactions, either commit, or abort, can save both
messages and logging operations by the participants
during the 2PC protocol’s execution. For example, when
presumed abort, if during system recovery from failure
no logged evidence for commit of some transaction is
found by the recovery procedure, then it assumes that
the transaction has been aborted, and acts accordingly.
This means that it does not matter if aborts are logged at
all, and such logging can be saved under this assumption.
Typically a penalty of additional operations is paid
during recovery from failure, depending on optimization

type. Thus the best variant of optimization, if any, is
chosen according to failure and transaction outcome
statistics.

Tree two-phase commit protocol TheTree 2PC pro-
tocol[2] (also called Nested 2PC, or Recursive 2PC) is a
common variant of 2PC in a computer network, which
better utilizes the underlying communication infrastruc-
ture. The participants in a distributed transaction are
typically invoked in an order which defines a tree struc-
ture, the invocation tree, where the participants are the
nodes and the edges are the invocations (communication
links). The same tree is commonly utilized to complete
the transaction by a 2PC protocol, but also another com-
munication tree can be utilized for this, in principle. In a
tree 2PC the coordinator is considered the root (“top”) of
a communication tree (inverted tree), while the cohorts
are the other nodes. The coordinator can be the node
that originated the transaction (invoked recursively (tran-
sitively) the other participants), but also another node in
the same tree can take the coordinator role instead. 2PC
messages from the coordinator are propagated “down”
the tree, while messages to the coordinator are “collected”
by a cohort from all the cohorts below it, before it sends
the appropriate message “up” the tree (except an abort
message, which is propagated “up” immediately upon re-
ceiving it or if the current cohort initiates the abort).
The Dynamic two-phase commit (Dynamic two-phase
commitment, D2PC) protocol[2][6] is a variant of Tree
2PC with no predetermined coordinator. It subsumes
several optimizations that have been proposed earlier.
Agreement messages (Yes votes) start to propagate from
all the leaves, each leaf when completing its tasks on be-
half of the transaction (becoming ready). An interme-
diate (non leaf) node sends when ready an agreement
message to the last (single) neighboring node from which
agreement message has not yet been received. The coor-
dinator is determined dynamically by racing agreement
messages over the transaction tree, at the place where they
collide. They collide either at a transaction tree node, to
be the coordinator, or on a tree edge. In the latter case one
of the two edge’s nodes is elected as a coordinator (any
node). D2PC is time optimal (among all the instances of a
specific transaction tree, and any specific Tree 2PC pro-
tocol implementation; all instances have the same tree;
each instance has a different node as coordinator): By
choosing an optimal coordinator D2PC commits both the
coordinator and each cohort in minimum possible time,
allowing the earliest possible release of locked resources
in each transaction participant (tree node).

7.3.5 See also

• Atomic commit

• Commit (data management)

https://en.wikipedia.org/wiki/Transaction_manager
https://en.wikipedia.org/wiki/The_Open_Group
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Atomic_commitment_protocol
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Tree_(data_structure)
https://en.wikipedia.org/wiki/Computer_network
https://en.wikipedia.org/wiki/Atomic_commit
https://en.wikipedia.org/wiki/Commit_(data_management)

74 CHAPTER 7. MVCC

• Three-phase commit protocol

• XA

• Paxos algorithm

• Two Generals’ Problem

7.3.6 References
[1] Philip A. Bernstein, Vassos Hadzilacos, Nathan Goodman

(1987): Concurrency Control and Recovery in Database
Systems, Chapter 7, Addison Wesley Publishing Com-
pany, ISBN 0-201-10715-5

[2] Gerhard Weikum, Gottfried Vossen (2001):
Transactional Information Systems, Chapter 19, El-
sevier, ISBN 1-55860-508-8

[3] Philip A. Bernstein, Eric Newcomer (2009): Principles of
Transaction Processing, 2nd Edition, Chapter 8, Morgan
Kaufmann (Elsevier), ISBN 978-1-55860-623-4

[4] C. Mohan, Bruce Lindsay and R. Obermarck (1986):
“Transaction management in the R* distributed database
management system”,ACMTransactions on Database Sys-
tems (TODS), Volume 11 Issue 4, Dec. 1986, Pages 378 -
396

[5] C. Mohan, Bruce Lindsay (1985): “Efficient commit
protocols for the tree of processes model of distributed
transactions”,ACM SIGOPS Operating Systems Review,
19(2),pp. 40-52 (April 1985)

[6] Yoav Raz (1995): “The Dynamic Two Phase Commit-
ment (D2PC) protocol ",Database Theory — ICDT '95,
Lecture Notes in Computer Science, Volume 893/1995, pp.
162-176, Springer, ISBN 978-3-540-58907-5

7.3.7 External links

• Two Phase Commit protocol explained in Pictures
by exploreDatabase

7.4 Three-phase commit protocol

In computer networking and databases, the three-phase
commit protocol (3PC)[1] is a distributed algorithm
which lets all nodes in a distributed system agree to
commit a transaction. Unlike the two-phase commit pro-
tocol (2PC) however, 3PC is non-blocking. Specifically,
3PC places an upper bound on the amount of time re-
quired before a transaction either commits or aborts. This
property ensures that if a given transaction is attempting
to commit via 3PC and holds some resource locks, it will
release the locks after the timeout.
3PC was originally described by Dale Skeen and Michael
Stonebraker in their paper, “A Formal Model of Crash
Recovery in a Distributed System”.[1] In that work, they
modeled 2PC as a system of non-deterministic finite state

automata and proved that it is not resilient to a random
single site failure. The basic observation is that in 2PC,
while one site is in the “prepared to commit” state, the
other may be in either the “commit” or the “abort” state.
From this analysis, they developed 3PC to avoid such
states and it is thus resilient to such failures.

7.4.1 Protocol Description

In describing the protocol, we use terminology similar to
that used in the two-phase commit protocol. Thus we
have a single coordinator site leading the transaction and
a set of one or more cohorts being directed by the coor-
dinator.

Coordinator

1. The coordinator receives a transaction request. If
there is a failure at this point, the coordinator aborts
the transaction (i.e. upon recovery, it will consider
the transaction aborted). Otherwise, the coordinator
sends a canCommit? message to the cohorts and
moves to the waiting state.

2. If there is a failure, timeout, or if the coordinator
receives a No message in the waiting state, the co-
ordinator aborts the transaction and sends an abort
message to all cohorts. Otherwise the coordinator
will receive Yes messages from all cohorts within
the time window, so it sends preCommit messages
to all cohorts and moves to the prepared state.

3. If the coordinator succeeds in the prepared state, it
will move to the commit state. However if the coor-
dinator times out while waiting for an acknowledge-
ment from a cohort, it will abort the transaction. In

https://en.wikipedia.org/wiki/Three-phase_commit_protocol
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Paxos_algorithm
https://en.wikipedia.org/wiki/Two_Generals%2527_Problem
https://en.wikipedia.org/wiki/Phil_Bernstein
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
http://research.microsoft.com/en-us/people/philbe/ccontrol.aspx
https://en.wikipedia.org/wiki/Special:BookSources/0201107155
https://en.wikipedia.org/wiki/Gerhard_Weikum
http://www.elsevier.com/wps/find/bookdescription.cws_home/677937/description#description
https://en.wikipedia.org/wiki/Special:BookSources/1558605088
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
http://www.elsevierdirect.com/product.jsp?isbn=9781558606234
https://en.wikipedia.org/wiki/Special:BookSources/9781558606234
https://en.wikipedia.org/wiki/C._Mohan
http://dl.acm.org/citation.cfm?id=7266
http://dl.acm.org/citation.cfm?id=7266
https://en.wikipedia.org/wiki/C._Mohan
http://portal.acm.org/citation.cfm?id=850772
http://portal.acm.org/citation.cfm?id=850772
http://portal.acm.org/citation.cfm?id=850772
https://en.wikipedia.org/wiki/Yoav_Raz
http://www.springerlink.com/content/pv12p828kk616258/
http://www.springerlink.com/content/pv12p828kk616258/
https://en.wikipedia.org/wiki/Special:BookSources/9783540589075
http://exploredatabase.blogspot.in/2014/07/two-phase-commit-protocol-in-pictures.html
https://en.wikipedia.org/wiki/Computer_networking
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Distributed_algorithm
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Abort_(computing)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Dale_Skeen
https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Non-deterministic_finite_automaton
https://en.wikipedia.org/wiki/Non-deterministic_finite_automaton
https://en.wikipedia.org/wiki/Two-phase_commit_protocol

7.4. THREE-PHASE COMMIT PROTOCOL 75

the case where all acknowledgements are received,
the coordinator moves to the commit state as well.

Cohort

1. The cohort receives a canCommit? message from
the coordinator. If the cohort agrees it sends a Yes
message to the coordinator and moves to the pre-
pared state. Otherwise it sends a No message and
aborts. If there is a failure, it moves to the abort
state.

2. In the prepared state, if the cohort receives an abort
message from the coordinator, fails, or times out
waiting for a commit, it aborts. If the cohort receives
a preCommit message, it sends an ACK message
back and awaits a final commit or abort.

3. If, after a cohort member receives a preCommit
message, the coordinator fails or times out, the co-
hort member goes forward with the commit.

7.4.2 Motivation

A Two-phase commit protocol cannot dependably re-
cover from a failure of both the coordinator and a cohort
member during the Commit phase. If only the coordi-
nator had failed, and no cohort members had received a
commit message, it could safely be inferred that no com-
mit had happened. If, however, both the coordinator
and a cohort member failed, it is possible that the failed
cohort member was the first to be notified, and had ac-
tually done the commit. Even if a new coordinator is
selected, it cannot confidently proceed with the operation
until it has received an agreement from all cohort mem-
bers ... and hence must block until all cohort members
respond.
The Three-phase commit protocol eliminates this prob-
lem by introducing the Prepared to commit state. If the
coordinator fails before sending preCommit messages,
the cohort will unanimously agree that the operation was
aborted. The coordinator will not send out a doCom-
mit message until all cohort members have ACKed that
they are Prepared to commit. This eliminates the pos-
sibility that any cohort member actually completed the
transaction before all cohort members were aware of the
decision to do so (an ambiguity that necessitated indefi-
nite blocking in the Two-phase commit protocol).

7.4.3 Disadvantages

The main disadvantage to this algorithm is that it can-
not recover in the event the network is segmented in any
manner. The original 3PC algorithm assumes a fail-stop
model, where processes fail by crashing and crashes can
be accurately detected, and does not work with network
partitions or asynchronous communication.

Keidar and Dolev’s E3PC[2] algorithm eliminates this dis-
advantage.
The protocol requires at least 3 round trips to complete,
needing a minimum of 3 round trip times (RTTs). This
is potentially a long latency to complete each transaction.

7.4.4 References
[1] Skeen, Dale; Stonebraker, M. (May 1983). “A Formal

Model of Crash Recovery in a Distributed System”. IEEE
Transactions on Software Engineering 9 (3): 219–228.
doi:10.1109/TSE.1983.236608.

[2] Keidar, Idit; Danny Dolev (December 1998). “Increasing
the Resilience of Distributed and Replicated Database
Systems”. Journal of Computer and System Sciences
(JCSS) 57 (3): 309–324. doi:10.1006/jcss.1998.1566.

7.4.5 See also

• Two-phase commit protocol

https://en.wikipedia.org/wiki/Acknowledgement_(data_networks)
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FTSE.1983.236608
http://webee.technion.ac.il/~idish/Abstracts/jcss.html
http://webee.technion.ac.il/~idish/Abstracts/jcss.html
http://webee.technion.ac.il/~idish/Abstracts/jcss.html
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1006%252Fjcss.1998.1566
https://en.wikipedia.org/wiki/Two-phase_commit_protocol

Chapter 8

Scaling

8.1 Scalability

Scalability is the capability of a system, network, or pro-
cess to handle a growing amount of work, or its potential
to be enlarged in order to accommodate that growth.[1]

For example, it can refer to the capability of a system
to increase its total output under an increased load when
resources (typically hardware) are added. An analo-
gous meaning is implied when the word is used in an
economic context, where scalability of a company implies
that the underlying business model offers the potential for
economic growth within the company.
Scalability, as a property of systems, is generally difficult
to define[2] and in any particular case it is necessary to de-
fine the specific requirements for scalability on those di-
mensions that are deemed important. It is a highly signif-
icant issue in electronics systems, databases, routers, and
networking. A system whose performance improves after
adding hardware, proportionally to the capacity added, is
said to be a scalable system.
An algorithm, design, networking protocol, program, or
other system is said to scale if it is suitably efficient and
practical when applied to large situations (e.g. a large in-
put data set, a large number of outputs or users, or a large
number of participating nodes in the case of a distributed
system). If the design or system fails when a quantity in-
creases, it does not scale. In practice, if there are a large
number of things (n) that affect scaling, then resource re-
quirements (for example, algorithmic time-complexity)
must grow less than n2 as n increases. An example is a
search engine, that must scale not only for the number of
users, but for the number of objects it indexes. Scalability
refers to the ability of a site to increase in size as demand
warrants.[3]

The concept of scalability is desirable in technology as
well as business settings. The base concept is consistent
– the ability for a business or technology to accept in-
creased volume without impacting the contribution mar-
gin (= revenue − variable costs). For example, a given
piece of equipment may have a capacity for 1–1000 users,
while beyond 1000 users additional equipment is needed
or performance will decline (variable costs will increase
and reduce contribution margin).

8.1.1 Measures

Scalability can be measured in various dimensions, such
as:

• Administrative scalability: The ability for an increas-
ing number of organizations or users to easily share
a single distributed system.

• Functional scalability: The ability to enhance the
system by adding new functionality at minimal ef-
fort.

• Geographic scalability: The ability to maintain per-
formance, usefulness, or usability regardless of ex-
pansion from concentration in a local area to a more
distributed geographic pattern.

• Load scalability: The ability for a distributed system
to easily expand and contract its resource pool to ac-
commodate heavier or lighter loads or number of in-
puts. Alternatively, the ease with which a system or
component can be modified, added, or removed, to
accommodate changing load.

• Generation scalability refers to the ability of a system
to scale up by using new generations of components.
Thereby, heterogeneous scalability is the ability to
use the components from different vendors.[4]

8.1.2 Examples

• A routing protocol is considered scalable with re-
spect to network size, if the size of the necessary
routing table on each node grows as O(log N), where
N is the number of nodes in the network.

• A scalable online transaction processing system or
database management system is one that can be up-
graded to process more transactions by adding new
processors, devices and storage, and which can be
upgraded easily and transparently without shutting
it down.

• Some early peer-to-peer (P2P) implementations of
Gnutella had scaling issues. Each node query

76

https://en.wikipedia.org/wiki/Economics
https://en.wikipedia.org/wiki/Business_model
https://en.wikipedia.org/wiki/Economic_growth
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Protocol_(computing)
https://en.wikipedia.org/wiki/Computer_program
https://en.wikipedia.org/wiki/Algorithmic_efficiency
https://en.wikipedia.org/wiki/Business
https://en.wikipedia.org/wiki/Contribution_margin
https://en.wikipedia.org/wiki/Contribution_margin
https://en.wikipedia.org/wiki/Revenue
https://en.wikipedia.org/wiki/Variable_cost
https://en.wikipedia.org/wiki/Distributed_system
https://en.wikipedia.org/wiki/Open_architecture
https://en.wikipedia.org/wiki/Routing_protocol
https://en.wikipedia.org/wiki/Routing_table
https://en.wikipedia.org/wiki/Big_O_notation
https://en.wikipedia.org/wiki/Online_transaction_processing
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Peer-to-peer
https://en.wikipedia.org/wiki/Gnutella

8.1. SCALABILITY 77

flooded its requests to all peers. The demand on each
peer would increase in proportion to the total num-
ber of peers, quickly overrunning the peers’ limited
capacity. Other P2P systems like BitTorrent scale
well because the demand on each peer is indepen-
dent of the total number of peers. There is no cen-
tralized bottleneck, so the system may expand indef-
initely without the addition of supporting resources
(other than the peers themselves).

• The distributed nature of the Domain Name System
allows it to work efficiently even when all hosts on
the worldwide Internet are served, so it is said to
“scale well”.

8.1.3 Horizontal and vertical scaling

Methods of adding more resources for a particular ap-
plication fall into two broad categories: horizontal and
vertical scaling.[5]

• To scale horizontally (or scale out) means to add
more nodes to a system, such as adding a new com-
puter to a distributed software application. An
example might involve scaling out from one Web
server system to three. As computer prices have
dropped and performance continues to increase,
high-performance computing applications such as
seismic analysis and biotechnology workloads have
adopted low-cost "commodity" systems for tasks
that once would have required supercomputers. Sys-
tem architects may configure hundreds of small
computers in a cluster to obtain aggregate com-
puting power that often exceeds that of computers
based on a single traditional processor. The devel-
opment of high-performance interconnects such as
Gigabit Ethernet, InfiniBand and Myrinet further fu-
eled this model. Such growth has led to demand
for software that allows efficient management and
maintenance of multiple nodes, as well as hardware
such as shared data storage with much higher I/O
performance. Size scalability is the maximum num-
ber of processors that a system can accommodate.[4]

• To scale vertically (or scale up) means to add re-
sources to a single node in a system, typically in-
volving the addition of CPUs or memory to a single
computer. Such vertical scaling of existing systems
also enables them to use virtualization technology
more effectively, as it provides more resources for
the hosted set of operating system and application
modules to share. Taking advantage of such re-
sources can also be called “scaling up”, such as ex-
panding the number of Apache daemon processes
currently running. Application scalability refers to
the improved performance of running applications
on a scaled-up version of the system.[4]

There are tradeoffs between the two models. Larger num-
bers of computers means increased management com-
plexity, as well as a more complex programming model
and issues such as throughput and latency between nodes;
also, some applications do not lend themselves to a dis-
tributed computing model. In the past, the price differ-
ence between the two models has favored “scale up” com-
puting for those applications that fit its paradigm, but re-
cent advances in virtualization technology have blurred
that advantage, since deploying a new virtual system over
a hypervisor (where possible) is almost always less expen-
sive than actually buying and installing a real one. Config-
uring an existing idle system has always been less expen-
sive than buying, installing, and configuring a new one,
regardless of the model.

8.1.4 Database scalability

A number of different approaches enable databases
to grow to very large size while supporting an ever-
increasing rate of transactions per second. Not to be
discounted, of course, is the rapid pace of hardware ad-
vances in both the speed and capacity of mass storage de-
vices, as well as similar advances in CPU and networking
speed.
One technique supported by most of the major database
management system (DBMS) products is the partitioning
of large tables, based on ranges of values in a key field.
In this manner, the database can be scaled out across a
cluster of separate database servers. Also, with the advent
of 64-bit microprocessors, multi-core CPUs, and large
SMP multiprocessors, DBMS vendors have been at the
forefront of supporting multi-threaded implementations
that substantially scale up transaction processing capacity.
Network-attached storage (NAS) and Storage area net-
works (SANs) coupled with fast local area networks and
Fibre Channel technology enable still larger, more loosely
coupled configurations of databases and distributed com-
puting power. The widely supported X/Open XA stan-
dard employs a global transaction monitor to coordinate
distributed transactions among semi-autonomous XA-
compliant database resources. Oracle RAC uses a dif-
ferent model to achieve scalability, based on a “shared-
everything” architecture that relies upon high-speed con-
nections between servers.
While DBMS vendors debate the relative merits of their
favored designs, some companies and researchers ques-
tion the inherent limitations of relational database man-
agement systems. GigaSpaces, for example, contends
that an entirely different model of distributed data access
and transaction processing, Space based architecture, is
required to achieve the highest performance and scala-
bility. On the other hand, Base One makes the case for
extreme scalability without departing from mainstream
relational database technology.[6] For specialized appli-
cations, NoSQL architectures such as Google’s BigTable

https://en.wikipedia.org/wiki/Query_flooding
https://en.wikipedia.org/wiki/BitTorrent_(protocol)
https://en.wikipedia.org/wiki/Domain_Name_System
https://en.wikipedia.org/wiki/Server_(computing)
https://en.wikipedia.org/wiki/Internet
https://en.wikipedia.org/wiki/Commodity_server
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/Gigabit_Ethernet
https://en.wikipedia.org/wiki/InfiniBand
https://en.wikipedia.org/wiki/Myrinet
https://en.wikipedia.org/wiki/Platform_virtualization
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Apache_HTTP_Server
https://en.wikipedia.org/wiki/Amdahl%2527s_Law
https://en.wikipedia.org/wiki/Amdahl%2527s_Law
https://en.wikipedia.org/wiki/Hypervisor
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Transactions_Per_Second
https://en.wikipedia.org/wiki/Mass_storage
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Partition_(database)
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Multi-core_(computing)
https://en.wikipedia.org/wiki/Symmetric_multiprocessing
https://en.wikipedia.org/wiki/Thread_(computer_science)
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Network-attached_storage
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Storage_area_network
https://en.wikipedia.org/wiki/Fibre_Channel
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Distributed_transaction
https://en.wikipedia.org/wiki/Oracle_RAC
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/GigaSpaces
https://en.wikipedia.org/wiki/Space_based_architecture
https://en.wikipedia.org/wiki/Base_One
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/BigTable

78 CHAPTER 8. SCALING

can further enhance scalability. Google’s massively dis-
tributed Spanner technology, positioned as a successor
to BigTable, supports general-purpose database transac-
tions and provides a more conventional SQL-based query
language.[7]

8.1.5 Strong versus eventual consistency
(storage)

In the context of scale-out data storage, scalability is de-
fined as the maximum storage cluster size which guaran-
tees full data consistency, meaning there is only ever one
valid version of stored data in the whole cluster, inde-
pendently from the number of redundant physical data
copies. Clusters which provide “lazy” redundancy by
updating copies in an asynchronous fashion are called
'eventually consistent'. This type of scale-out design is
suitable when availability and responsiveness are rated
higher than consistency, which is true for many web file
hosting services or web caches (if you want the latest ver-
sion, wait some seconds for it to propagate). For all clas-
sical transaction-oriented applications, this design should
be avoided.[8]

Many open source and even commercial scale-out stor-
age clusters, especially those built on top of standard
PC hardware and networks, provide eventual consistency
only. Idem some NoSQL databases like CouchDB and
others mentioned above. Write operations invalidate
other copies, but often don't wait for their acknowledge-
ments. Read operations typically don't check every re-
dundant copy prior to answering, potentially missing the
preceding write operation. The large amount of meta-
data signal traffic would require specialized hardware
and short distances to be handled with acceptable per-
formance (i.e. act like a non-clustered storage device or
database).
Whenever strong data consistency is expected, look for
these indicators:

• the use of InfiniBand, Fibrechannel or similar low-
latency networks to avoid performance degradation
with increasing cluster size and number of redundant
copies.

• short cable lengths and limited physical extent,
avoiding signal runtime performance degradation.

• majority / quorum mechanisms to guarantee data
consistency whenever parts of the cluster become in-
accessible.

Indicators for eventually consistent designs (not suitable
for transactional applications!) are:

• write performance increases linearly with the num-
ber of connected devices in the cluster.

• while the storage cluster is partitioned, all parts re-
main responsive. There is a risk of conflicting up-
dates.

8.1.6 Performance tuning versus hard-
ware scalability

It is often advised to focus system design on hardware
scalability rather than on capacity. It is typically cheaper
to add a new node to a system in order to achieve im-
proved performance than to partake in performance tun-
ing to improve the capacity that each node can handle.
But this approach can have diminishing returns (as dis-
cussed in performance engineering). For example: sup-
pose 70% of a program can be sped up if parallelized and
run on multiple CPUs instead of one. If α is the fraction
of a calculation that is sequential, and 1−α is the fraction
that can be parallelized, the maximum speedup that can
be achieved by using P processors is given according to
Amdahl’s Law:

1
α+ 1−α

P

.

Substituting the value for this example, using 4 processors
we get

1
0.3+ 1−0.3

4

= 2.105 .

If we double the compute power to 8 processors we get
1

0.3+ 1−0.3
8

= 2.581 .

Doubling the processing power has only improved the
speedup by roughly one-fifth. If the whole problem was
parallelizable, we would, of course, expect the speed up
to double also. Therefore, throwing in more hardware is
not necessarily the optimal approach.

8.1.7 Weak versus strong scaling

In the context of high performance computing there are
two common notions of scalability:

• The first is strong scaling, which is defined as how the
solution time varies with the number of processors
for a fixed total problem size.

• The second is weak scaling, which is defined as how
the solution time varies with the number of proces-
sors for a fixed problem size per processor.[9]

8.1.8 See also

• Asymptotic complexity

• Computational complexity theory

• Data Defined Storage

• Extensibility

https://en.wikipedia.org/wiki/Spanner_(distributed_database_technology)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Computer_data_storage
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/CouchDB
https://en.wikipedia.org/wiki/Eventual_consistency
https://en.wikipedia.org/wiki/Performance_tuning
https://en.wikipedia.org/wiki/Performance_tuning
https://en.wikipedia.org/wiki/Performance_engineering
https://en.wikipedia.org/wiki/Speedup
https://en.wikipedia.org/wiki/Amdahl%2527s_Law
https://en.wikipedia.org/wiki/High_performance_computing
https://en.wikipedia.org/wiki/Asymptotic_complexity
https://en.wikipedia.org/wiki/Computational_complexity_theory
https://en.wikipedia.org/wiki/Data_Defined_Storage
https://en.wikipedia.org/wiki/Extensibility

8.2. SHARD (DATABASE ARCHITECTURE) 79

• Gustafson’s law

• List of system quality attributes

• Load balancing (computing)

• Lock (computer science)

• NoSQL

• Parallel computing

• Scalable Video Coding (SVC)

• Similitude (model)

8.1.9 References

[1] Bondi, André B. (2000). Characteristics of scalability and
their impact on performance. Proceedings of the second
international workshop on Software and performance -
WOSP '00. p. 195. doi:10.1145/350391.350432. ISBN
158113195X.

[2] See for instance, Hill, Mark D. (1990). “What is scal-
ability?". ACM SIGARCH Computer Architecture News
18 (4): 18. doi:10.1145/121973.121975. and Duboc,
Leticia; Rosenblum, David S.; Wicks, Tony (2006). A
framework for modelling and analysis of software sys-
tems scalability. Proceeding of the 28th international con-
ference on Software engineering - ICSE '06. p. 949.
doi:10.1145/1134285.1134460. ISBN 1595933751.

[3] Laudon, Kenneth Craig; Traver, Carol Guercio (2008). E-
commerce: Business, Technology, Society. Pearson Pren-
tice Hall/Pearson Education. ISBN 9780136006459.

[4] Hesham El-Rewini and Mostafa Abd-El-Barr (Apr 2005).
Advanced Computer Architecture and Parallel Processing.
John Wiley & Son. p. 66. ISBN 978-0-471-47839-3.
Retrieved Oct 2013.

[5] Michael, Maged; Moreira, Jose E.; Shiloach, Doron; Wis-
niewski, Robert W. (March 26, 2007). Scale-up x Scale-
out: A Case Study using Nutch/Lucene. 2007 IEEE Inter-
national Parallel and Distributed Processing Symposium.
p. 1. doi:10.1109/IPDPS.2007.370631. ISBN 1-4244-
0909-8.

[6] Base One (2007). “Database Scalability - Dispelling
myths about the limits of database-centric architecture”.
Retrieved May 23, 2007.

[7] “Spanner: Google’s Globally-Distributed Database”
(PDF). OSDI'12 Proceedings of the 10th USENIX con-
ference on Operating Systems Design and Implementa-
tion. 2012. pp. 251–264. ISBN 978-1-931971-96-6.
Retrieved September 30, 2012.

[8] “Eventual consistency by Werner Vogels”.

[9] “CSE - CSE - The Weak Scaling of DL_POLY 3”.
Stfc.ac.uk. Retrieved 2014-03-08.

8.1.10 External links

• Architecture of a Highly Scalable NIO-Based Server
- an article about writing scalable server in Java
(java.net).

• Links to diverse learning resources - page curated by
the memcached project.

• Scalable Definition - by The Linux Information
Project (LINFO)

• Scale in Distributed Systems B. Clifford Neumann,
In: Readings in Distributed Computing Systems,
IEEE Computer Society Press, 1994

8.2 Shard (database architecture)

A database shard is a horizontal partition of data in a
database or search engine. Each individual partition is
referred to as a shard or database shard. Each shard
is held on a separate database server instance, to spread
load.
Some data within a database remains present in all
shards,[notes 1] but some only appears in a single shard.
Each shard (or server) acts as the single source for this
subset of data.[1]

8.2.1 Database architecture

Horizontal partitioning is a database design principle
whereby rows of a database table are held separately,
rather than being split into columns (which is what
normalization and vertical partitioning do, to differing
extents). Each partition forms part of a shard, which
may in turn be located on a separate database server or
physical location.
There are numerous advantages to the horizontal parti-
tioning approach. Since the tables are divided and dis-
tributed into multiple servers, the total number of rows
in each table in each database is reduced. This reduces
index size, which generally improves search performance.
A database shard can be placed on separate hardware, and
multiple shards can be placed on multiple machines. This
enables a distribution of the database over a large number
of machines, which means that the load can be spread out
over multiple machines, greatly improving performance.
In addition, if the database shard is based on some real-
world segmentation of the data (e.g., European customers
v. American customers) then it may be possible to infer
the appropriate shard membership easily and automati-
cally, and query only the relevant shard.[2] Disadvantages
include :

• A heavier reliance on the interconnect between
servers

https://en.wikipedia.org/wiki/Gustafson%2527s_law
https://en.wikipedia.org/wiki/List_of_system_quality_attributes
https://en.wikipedia.org/wiki/Load_balancing_(computing)
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Parallel_computing
https://en.wikipedia.org/wiki/Scalable_Video_Coding
https://en.wikipedia.org/wiki/Similitude_(model)
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F350391.350432
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/158113195X
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F121973.121975
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F1134285.1134460
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1595933751
http://books.google.com/books/about/E_commerce.html?id=n4bUGAAACAAJ
http://books.google.com/books/about/E_commerce.html?id=n4bUGAAACAAJ
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9780136006459
http://books.google.ee/books?id=7JB-u6D5Q7kC&pg=PA63&dq=parallel+architectures+scalability&hl=et&sa=X&ei=bQZtUtTKC6SO4gT27oC4Ag&ved=0CC4Q6AEwAA#v=onepage&q=parallel%2520architectures%2520scalability&f=false
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-471-47839-3
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4228359
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=4228359
https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1109%252FIPDPS.2007.370631
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-4244-0909-8
https://en.wikipedia.org/wiki/Special:BookSources/1-4244-0909-8
http://www.boic.com/scalability.htm
http://www.boic.com/scalability.htm
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//archive/spanner-osdi2012.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-931971-96-6
http://www.infoq.com/news/2008/01/consistency-vs-availability
https://web.archive.org/web/20140307224104/http://www.stfc.ac.uk/cse/25052.aspx
http://today.java.net/pub/a/today/2007/02/13/architecture-of-highly-scalable-nio-server.html
http://code.google.com/p/memcached/wiki/HowToLearnMoreScalability
https://en.wikipedia.org/wiki/Memcached
http://www.linfo.org/scalable.html
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.31.3576
https://en.wikipedia.org/wiki/Partition_(database)
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Search_engine
https://en.wikipedia.org/wiki/Database_server
https://en.wikipedia.org/wiki/Row_(database)
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Partition_(database)
https://en.wikipedia.org/wiki/Index_(database)

80 CHAPTER 8. SCALING

• Increased latency when querying, especially where
more than one shard must be searched.

• Data or indexes are often only sharded one
way, so that some searches are optimal, and
others are slow or impossible.

• Issues of consistency and durability due to the more
complex failure modes of a set of servers, which
often result in systems making no guarantees about
cross-shard consistency or durability.

In practice, sharding is complex. Although it has been
done for a long time by hand-coding (especially where
rows have an obvious grouping, as per the example
above), this is often inflexible. There is a desire to sup-
port sharding automatically, both in terms of adding code
support for it, and for identifying candidates to be sharded
separately. Consistent hashing is one form of automatic
sharding to spread large loads across multiple smaller ser-
vices and servers.[3]

Where distributed computing is used to separate load be-
tween multiple servers (either for performance or relia-
bility reasons), a shard approach may also be useful.

8.2.2 Shards compared to horizontal par-
titioning

Horizontal partitioning splits one or more tables by row,
usually within a single instance of a schema and a database
server. It may offer an advantage by reducing index size
(and thus search effort) provided that there is some obvi-
ous, robust, implicit way to identify in which table a par-
ticular row will be found, without first needing to search
the index, e.g., the classic example of the 'CustomersEast'
and 'CustomersWest' tables, where their zip code already
indicates where they will be found.
Sharding goes beyond this: it partitions the problematic
table(s) in the same way, but it does this across potentially
multiple instances of the schema. The obvious advantage
would be that search load for the large partitioned table
can now be split across multiple servers (logical or physi-
cal), not just multiple indexes on the same logical server.
Splitting shards across multiple isolated instances re-
quires more than simple horizontal partitioning. The
hoped-for gains in efficiency would be lost, if querying
the database required both instances to be queried, just to
retrieve a simple dimension table. Beyond partitioning,
sharding thus splits large partitionable tables across the
servers, while smaller tables are replicated as complete
units.
This is also why sharding is related to a shared nothing
architecture—once sharded, each shard can live in a to-
tally separate logical schema instance / physical database
server / data center / continent. There is no ongoing need
to retain shared access (from between shards) to the other
unpartitioned tables in other shards.

This makes replication across multiple servers easy (sim-
ple horizontal partitioning does not). It is also useful for
worldwide distribution of applications, where communi-
cations links between data centers would otherwise be a
bottleneck.
There is also a requirement for some notification and
replication mechanism between schema instances, so that
the unpartitioned tables remain as closely synchronized as
the application demands. This is a complex choice in the
architecture of sharded systems: approaches range from
making these effectively read-only (updates are rare and
batched), to dynamically replicated tables (at the cost of
reducing some of the distribution benefits of sharding)
and many options in between.

8.2.3 Support for shards

Apache HBase HBase supports automatic sharding.[4]

Azure SQL Database Elastic Database tools Elastic
Database tools enables the data-tier of an appli-
cation to scale out and in via industry-standard
sharding practices[5]

CUBRID CUBRID supports sharding from version 9.0

dbShards CodeFutures dbShards is a product dedicated
to database shards.[6]

Elasticsearch Elasticsearch enterprise search server
provides sharding capabilities.[7]

eXtreme Scale eXtreme Scale is a cross-process in-
memory key/value datastore (a variety of NoSQL
datastore). It uses sharding to achieve scalability
across processes for both data and MapReduce-style
parallel processing.[8]

Hibernate ORM Hibernate Shards provides support for
shards, although there has been little activity since
2007.[9][10]

IBM Informix IBM has supported sharding in Informix
since version 12.1 xC1 as part of the MACH11
technology. Informix 12.10 xC2 added full com-
patibility with MongoDB drivers, allowing the mix
of regular relational tables with NoSQL collections,
while still supporting sharding, failover and ACID
properties.[11][12]

MonetDB the open-source column-store MonetDB sup-
ports read-only sharding as its July 2015 release.[13]

MongoDB MongoDB supports sharding from version
1.6

https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Partition_(database)
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/Zip_code
https://en.wikipedia.org/wiki/Dimension_table
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Shared_nothing_architecture
https://en.wikipedia.org/wiki/Data_center
https://en.wikipedia.org/wiki/Continent
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/HBase
http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-documentation-map/
http://azure.microsoft.com/en-us/documentation/articles/sql-database-elastic-scale-documentation-map/
https://en.wikipedia.org/wiki/CUBRID
https://en.wikipedia.org/wiki/CodeFutures
https://en.wikipedia.org/wiki/Elasticsearch
https://en.wikipedia.org/wiki/IBM_WebSphere_eXtreme_Scale
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Hibernate_(Java)
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Informix
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/MonetDB
https://en.wikipedia.org/wiki/MongoDB

8.2. SHARD (DATABASE ARCHITECTURE) 81

MySQL Cluster Auto-Sharding: Database is automati-
cally and transparently partitioned across low-cost
commodity nodes, allowing scale-out of read and
write queries, without requiring changes to the
application.[14]

MySQL Fabric (part of MySQL utilities) includes
support for sharding.[15]

Oracle NoSQL Database

Oracle NoSQL Database supports automatic sharding
and elastic, online expansion of the cluster (adding more
shards).

OrientDB OrientDB supports sharding from version 1.7

pg_shard a sharding extension for PostgreSQL. It shards
and replicates PostgreSQL tables for horizontal
scale and for high availability. The extension also
seamlessly distributes SQL statements without re-
quiring any changes to applications.[16]

Plugin for Grails Grails supports sharding using the
Grails Sharding Plugin.[17]

Ruby ActiveRecord Octopus works as a database
sharding and replication extension for the Ac-
tiveRecord ORM.

ScaleBase’s Data Traffic Manager ScaleBase’s Data
Traffic Manager is a software product dedicated
to automating MySQL database sharding without
requiring changes to applications.[18]

Shard Query Open Source parallel query engine for
MySQL.[19]

Solr Search Server Solr enterprise search server pro-
vides sharding capabilities.[20]

Spanner Spanner, Google’s global-scale distributed
database, shards data across multiple Paxos state
machines to scale to “millions of machines across
hundreds of datacenters and trillions of database
rows”.[21]

SQLAlchemy ORM SQLAlchemy is a data-mapper for
the Python programming language that provides
sharding capabilities.[22]

Teradata

The DWH of Teradata was the first massive
parallel database.

8.2.4 Disadvantages of sharding

Sharding a database table before it has been optimized
locally causes premature complexity. Sharding should be
used only when all other options for optimization are in-
adequate. The introduced complexity of database shard-
ing causes the following potential problems:

• Increased complexity of SQL - Increased bugs be-
cause the developers have to write more complicated
SQL to handle sharding logic.

• Sharding introduces complexity - The sharding
software that partitions, balances, coordinates, and
ensures integrity can fail.

• Single point of failure - Corruption of one shard
due to network/hardware/systems problems causes
failure of the entire table.

• Failover servers more complex - Failover servers
must themselves have copies of the fleets of database
shards.

• Backups more complex - Database backups of
the individual shards must be coordinated with the
backups of the other shards.

• Operational complexity added -
Adding/removing indexes, adding/deleting columns,
modifying the schema becomes much more diffi-
cult.

These historical complications of do-it-yourself sharding
are now being addressed by independent software vendors
who provide autosharding solutions.

8.2.5 Etymology

The word “shard” in a database context may have been
introduced by the CCA's “System for Highly Available
Replicated Data”.[23] There has been speculation[24] that
the term might be derived from the 1997 MMORPG
Ultima Online, but the SHARD database system predates
this by at least nine years.
However, the SHARD system appears[25] to have used its
redundant hardware only for replication and not for hor-
izontal partitioning. It is not known whether present-day
use of the term “shard” is derived from the CCA system,
but in any case it refers to a different use of redundant
hardware in database systems.

8.2.6 See also

• Shared nothing architecture

https://en.wikipedia.org/wiki/MySQL_Cluster
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/OrientDB
https://en.wikipedia.org/wiki/PostgreSQL
https://en.wikipedia.org/wiki/Grails_(framework)
https://en.wikipedia.org/wiki/Solr
https://en.wikipedia.org/wiki/Spanner_(database)
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/SQLAlchemy
https://en.wikipedia.org/wiki/Teradata
https://en.wikipedia.org/wiki/Computer_Corporation_of_America
https://en.wikipedia.org/wiki/MMORPG
https://en.wikipedia.org/wiki/Ultima_Online
https://en.wikipedia.org/wiki/Shared_nothing_architecture

82 CHAPTER 8. SCALING

8.2.7 References

[1] Typically 'supporting' data such as dimension tables

[1] Pramod J. Sadalage; Martin Fowler (2012), “4: Distribu-
tion Models”, NoSQL Distilled, ISBN 0321826620

[2] Rahul Roy (July 28, 2008). “Shard - A Database Design”.

[3] Ries, Eric. “Sharding for Startups”.

[4] “Apache HBase Sharding”.

[5] “Introducing Elastic Scale preview for Azure SQL
Database”.

[6] “dbShards product overview”.

[7] “Index Shard Allocation”.

[8] http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/
index.jsp?topic=%2Fcom.ibm.websphere.extremescale.
over.doc%2

[9] “Hibernate Shards”. 2007-02-08.

[10] “Hibernate Shards”.

[11] “New Grid queries for Informix”.

[12] “NoSQL support in Informix”.

[13] “MonetDB July2015 Released”. 31 August 2015.

[14] “MySQL Cluster Features & Benefits”. 2012-11-23.

[15] “MySQL Fabric sharding quick start guide”.

[16] “pg_shard PostgreSQL extension”.

[17] “Grails Sharding Plugin”.

[18] “ScaleBase’s Data Traffic Manager product architecture
overview”.

[19] “Shard Query”.

[20] “Distributed Search”.

[21] Corbett, James C; Dean, Jeffrey; Epstein, Michael; Fikes,
Andrew; Frost, Christopher; Furman, JJ; Ghemawat, San-
jay; Heiser, Christopher; Hochschild, Peter; Hsieh, Wil-
son; Kanthak, Sebastian; Kogan, Eugene; Li, Hongyi;
Lloyd, Alexander; Melnik, Sergey; Mwaura, David; Na-
gle, David; Quinlan, Sean; Rao, Rajesh; Rolig, Lind-
say; Saito, Yasushi; Szymaniak, Michal; Taylor, Christo-
pher; Wang, Ruth; Woodford, Dale. “Spanner: Google’s
Globally-Distributed Database” (PDF). Proceedings of
OSDI 2012. Google. Retrieved 24 February 2014. |first8=
missing |last8= in Authors list (help)

[22] “Basic example of using the SQLAlchemy Sharding
API.”.

[23] Sarin, DeWitt & Rosenburg, Overview of SHARD: A
System for Highly Available Replicated Data, Technical
Report CCA-88-01, Computer Corporation of America,
May 1988

[24] Koster, Raph (2009-01-08). “Database “sharding” came
from UO?". Raph Koster’s Website. Retrieved 2015-01-
17.

[25] Sarin & Lynch, Discarding Obsolete Information in a
Replicated Database System, IEEE Transactions on Soft-
ware Engineering vol SE-13 no 1, January 1987

8.2.8 External links

• Informix JSON data sharding

8.3 Optimistic concurrency control

Optimistic concurrency control (OCC) is a
concurrency control method applied to transactional
systems such as relational database management systems
and software transactional memory. OCC assumes that
multiple transactions can frequently complete without
interfering with each other. While running, transactions
use data resources without acquiring locks on those
resources. Before committing, each transaction verifies
that no other transaction has modified the data it has
read. If the check reveals conflicting modifications, the
committing transaction rolls back and can be restarted.[1]

Optimistic concurrency control was first proposed by
H.T. Kung.[2]

OCC is generally used in environments with low data con-
tention. When conflicts are rare, transactions can com-
plete without the expense of managing locks and with-
out having transactions wait for other transactions’ locks
to clear, leading to higher throughput than other concur-
rency control methods. However, if contention for data
resources is frequent, the cost of repeatedly restarting
transactions hurts performance significantly; it is com-
monly thought that other concurrency control methods
have better performance under these conditions. How-
ever, locking-based (“pessimistic”) methods also can de-
liver poor performance because locking can drastically
limit effective concurrency even when deadlocks are
avoided.

8.3.1 OCC phases

More specifically, OCC transactions involve these phases:

• Begin: Record a timestamp marking the transac-
tion’s beginning.

• Modify: Read database values, and tentatively write
changes.

• Validate: Check whether other transactions have
modified data that this transaction has used (read

https://en.wikipedia.org/wiki/Dimension_table
https://en.wikipedia.org/wiki/Martin_Fowler
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0321826620
http://technoroy.blogspot.com/2008/07/shard-database-design.html
http://www.startuplessonslearned.com/2009/01/sharding-for-startups.html
http://hbase.apache.org/
http://azure.microsoft.com/blog/2014/10/02/introducing-elastic-scale-preview-for-azure-sql-database/
http://azure.microsoft.com/blog/2014/10/02/introducing-elastic-scale-preview-for-azure-sql-database/
http://www.dbshards.com/
http://www.elastic.co/guide/en/elasticsearch/reference/current/index-modules-allocation.html
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp?topic=%252Fcom.ibm.websphere.extremescale.over.doc%252
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp?topic=%252Fcom.ibm.websphere.extremescale.over.doc%252
http://publib.boulder.ibm.com/infocenter/wxsinfo/v7r1/index.jsp?topic=%252Fcom.ibm.websphere.extremescale.over.doc%252
http://shards.hibernate.org/
http://www.hibernate.org/hib_docs/shards/reference/en/html/
http://ibmdatamag.com/2013/04/informix-12-10-new-grid-queries/
http://fr.slideshare.net/journalofinformix/informix-no-sql-sept-2013
https://www.monetdb.org/blog/monetdb-jul2015-released
http://www.mysql.com/products/cluster/features.html
http://dev.mysql.com/doc/mysql-utilities/1.4/en/fabric-quick-start-sharding.html
https://github.com/citusdata/pg_shard
http://www.grails.org/plugin/sharding
http://www.scalebase.com/products/product-architecture/
http://www.scalebase.com/products/product-architecture/
http://shardquery.com/
http://wiki.apache.org/solr/DistributedSearch
http://static.googleusercontent.com/media/research.google.com/en///archive/39966.pdf
http://static.googleusercontent.com/media/research.google.com/en///archive/39966.pdf
https://en.wikipedia.org/wiki/Help:CS1_errors#first_missing_last
http://www.sqlalchemy.org/trac/browser/examples/sharding/attribute_shard.py
http://www.sqlalchemy.org/trac/browser/examples/sharding/attribute_shard.py
http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
http://www.raphkoster.com/2009/01/08/database-sharding-came-from-uo/
http://groups.csail.mit.edu/tds/papers/Lynch/tse87-scanned.pdf
http://groups.csail.mit.edu/tds/papers/Lynch/tse87-scanned.pdf
http://www-01.ibm.com/support/knowledgecenter/_12.1.0/com.ibm.json.doc/ids_json_011.htm?lang=en
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Relational_database_management_systems
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/HT_Kung
https://en.wikipedia.org/wiki/Concurrency_control

8.3. OPTIMISTIC CONCURRENCY CONTROL 83

or written). This includes transactions that com-
pleted after this transaction’s start time, and option-
ally, transactions that are still active at validation
time.

• Commit/Rollback: If there is no conflict, make all
changes take effect. If there is a conflict, resolve it,
typically by aborting the transaction, although other
resolution schemes are possible. Care must be taken
to avoid a TOCTTOU bug, particularly if this phase
and the previous one are not performed as a single
atomic operation.

8.3.2 Web usage

The stateless nature of HTTP makes locking infeasible
for web user interfaces. It’s common for a user to start
editing a record, then leave without following a “cancel”
or “logout” link. If locking is used, other users who at-
tempt to edit the same record must wait until the first
user’s lock times out.
HTTP does provide a form of built-in OCC: The GET
method returns an ETag for a resource and subsequent
PUTs use the ETag value in the If-Match headers; while
the first PUT will succeed, the second will not, as the
value in If-Match is based on the first version of the
resource.[3]

Some database management systems offer OCC natively
- without requiring special application code. For oth-
ers, the application can implement an OCC layer outside
of the database, and avoid waiting or silently overwrit-
ing records. In such cases, the form includes a hidden
field with the record’s original content, a timestamp, a se-
quence number, or an opaque token. On submit, this is
compared against the database. If it differs, the conflict
resolution algorithm is invoked.

Examples

• MediaWiki's edit pages use OCC.[4]

• Bugzilla uses OCC; edit conflicts are called “mid-air
collisions”.[5]

• The Ruby on Rails framework has an API for
OCC.[6]

• The Grails framework uses OCC in its default
conventions.[7]

• The GT.M database engine uses OCC for manag-
ing transactions[8] (even single updates are treated
as mini-transactions).

• Microsoft's Entity Framework (including Code-
First) has built-in support for OCC based on a binary
timestamp value.[9]

• Mimer SQL is a DBMS that only implements opti-
mistic concurrency control.[10]

• Google App Engine data store uses OCC.[11]

• The Elasticsearch search engine supports OCC via
the version attribute.[12]

• The MonetDB column-oriented database manage-
ment system's transaction management scheme is
based on OCC.[13]

• Most implementations of software transactional
memory use optimistic locking.

• Redis provides OCC through WATCH
command.[14]

8.3.3 See also

• Server Message Block#Opportunistic locking

8.3.4 References
[1] Johnson, Rohit (2003). “Common Data Access Issues”.

Expert One-on-One J2EE Design and Development. Wrox
Press. ISBN 0-7645-4385-7.

[2] Kung, H.T. (1981). “On Optimistic Methods for Concur-
rency Control”. ACM Transactions on Database Systems.

[3] “Editing the Web - Detecting the Lost Update Problem
Using Unreserved Checkout”. W3C Note. 10 May 1999.

[4] Help:Edit conflict

[5] “Bugzilla: FAQ: Administrative Questions”. MozillaWiki.
11 April 2012.

[6] “Module ActiveRecord::Locking”. Rails Framework
Documentation.

[7] “Object Relational Mapping (GORM)". Grails Frame-
work Documentation.

[8] “Transaction Processing”. GT.M Programmers Guide
UNIX Edition.

[9] “Tip 19 – How to use Optimistic Concurrency with the
Entity Framework”. MSDN Blogs. 19 May 2009.

• Most revision control systems support the “merge”
model for concurrency, which is OCC.

[10] “Transaction Concurrency - Optimistic Concurrency Con-
trol”. Mimer Developers - Features. 26 February 2010.

[11] “The Datastore”. What Is Google App Engine?. 27 August
2010.

[12] “Elasticsearch - Guide - Index API”. Elasticsearch Guide.
22 March 2012.

[13] “Transactions - MonetDB”. 16 January 2013.

[14] “Transactions in Redis”.

https://en.wikipedia.org/wiki/TOCTTOU
https://en.wikipedia.org/wiki/Linearizability
https://en.wikipedia.org/wiki/Stateless_server
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTP
https://en.wikipedia.org/wiki/HTTP_ETag
https://en.wikipedia.org/wiki/Form_(web)
https://en.wikipedia.org/wiki/MediaWiki
https://en.wikipedia.org/wiki/Bugzilla
https://en.wikipedia.org/wiki/Edit_conflict
https://en.wikipedia.org/wiki/Ruby_on_Rails
https://en.wikipedia.org/wiki/Grails_(framework)
https://en.wikipedia.org/wiki/GT.M
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Entity_Framework
https://en.wikipedia.org/wiki/Mimer_SQL
https://en.wikipedia.org/wiki/DBMS
https://en.wikipedia.org/wiki/Google_App_Engine
https://en.wikipedia.org/wiki/Elasticsearch
https://en.wikipedia.org/wiki/MonetDB
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Software_transactional_memory
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Server_Message_Block#Opportunistic_locking
http://learning.infocollections.com/ebook%25202/Computer/Programming/Java/Expert_One-on-One_J2EE_Design_and_Development/6266final/LiB0080.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-7645-4385-7
http://www.w3.org/1999/04/Editing/
http://www.w3.org/1999/04/Editing/
https://en.wikipedia.org/wiki/Help:Edit_conflict
https://wiki.mozilla.org/Bugzilla:FAQ#Does_Bugzilla_provide_record_locking_when_there_is_simultaneous_access_to_the_same_bug.3F_Does_the_second_person_get_a_notice_that_the_bug_is_in_use_or_how_are_they_notified.3F
http://api.rubyonrails.org/classes/ActiveRecord/Locking/Optimistic.html
http://grails.org/doc/1.0.x/guide/single.html#5.3.5%2520Pessimistic%2520and%2520Optimistic%2520Locking
http://tinco.pair.com/bhaskar/gtm/doc/books/pg/UNIX_manual/ch05s17.html
http://blogs.msdn.com/b/alexj/archive/2009/05/20/tip-19-how-to-use-optimistic-concurrency-in-the-entity-framework.aspx
http://blogs.msdn.com/b/alexj/archive/2009/05/20/tip-19-how-to-use-optimistic-concurrency-in-the-entity-framework.aspx
https://en.wikipedia.org/wiki/Revision_control
http://developer.mimer.com/features/feature_15.htm
http://developer.mimer.com/features/feature_15.htm
http://code.google.com/appengine/docs/whatisgoogleappengine.html
http://www.elastic.co/guide/en/elasticsearch/reference/current/docs-index_.html#index-versioning
http://www.monetdb.org/Documentation/Manuals/SQLreference/Transactions
http://redis.io/topics/transactions

84 CHAPTER 8. SCALING

8.3.5 External links

• Kung, H. T.; John T. Robinson (June 1981). “On
optimistic methods for concurrency control”. ACM
Transactions on Database Systems 6 (2): 213–226.
doi:10.1145/319566.319567.

• Enterprise JavaBeans, 3.0, By Bill Burke, Richard
Monson-Haefel, Chapter 16. Transactions, Section
16.3.5. Optimistic Locking, Publisher: O'Reilly,
Pub Date: May 16, 2006,Print ISBN 0-596-00978-
X,

• Hollmann, Andreas (May 2009). “Multi-Isolation:
Virtues and Limitations” (PDF). Multi-Isolation
(what is between pessimistic and optimistic locking).
01069 Gutzkovstr. 30/F301.2, Dresden: Happy-
Guys Software GbR. p. 8. Retrieved 2013-05-16.

8.4 Partition (database)

A partition is a division of a logical database or
its constituent elements into distinct independent parts.
Database partitioning is normally done for manageabil-
ity, performance or availability reasons.

8.4.1 Benefits of multiple partitions

A popular and favourable application of partitioning is in
a distributed database management system. Each parti-
tion may be spread over multiple nodes, and users at the
node can perform local transactions on the partition. This
increases performance for sites that have regular transac-
tions involving certain views of data, whilst maintaining
availability and security.

8.4.2 Partitioning criteria

Current high end relational database management sys-
tems provide for different criteria to split the database.
They take a partitioning key and assign a partition based
on certain criteria. Common criteria are:

Range partitioning Selects a partition by determining
if the partitioning key is inside a certain range. An
example could be a partition for all rows where
the column zipcode has a value between 70000 and
79999.

List partitioning A partition is assigned a list of values.
If the partitioning key has one of these values, the
partition is chosen. For example all rows where the
column Country is either Iceland, Norway, Sweden,
Finland or Denmark could build a partition for the
Nordic countries.

Hash partitioning The value of a hash function deter-
mines membership in a partition. Assuming there
are four partitions, the hash function could return a
value from 0 to 3.

Composite partitioning allows for certain combina-
tions of the above partitioning schemes, by for ex-
ample first applying a range partitioning and then
a hash partitioning. Consistent hashing could be
considered a composite of hash and list partitioning
where the hash reduces the key space to a size that
can be listed.

8.4.3 Partitioning methods

The partitioning can be done by either building separate
smaller databases (each with its own tables, indices, and
transaction logs), or by splitting selected elements, for ex-
ample just one table.
Horizontal partitioning (also see shard) involves
putting different rows into different tables. Perhaps cus-
tomers with ZIP codes less than 50000 are stored in Cus-
tomersEast, while customers with ZIP codes greater than
or equal to 50000 are stored in CustomersWest. The two
partition tables are then CustomersEast and Customer-
sWest, while a view with a union might be created over
both of them to provide a complete view of all customers.
Vertical partitioning involves creating tables with fewer
columns and using additional tables to store the remaining
columns.[1] Normalization also involves this splitting of
columns across tables, but vertical partitioning goes be-
yond that and partitions columns even when already nor-
malized. Different physical storage might be used to real-
ize vertical partitioning as well; storing infrequently used
or very wide columns on a different device, for example,
is a method of vertical partitioning. Done explicitly or
implicitly, this type of partitioning is called “row split-
ting” (the row is split by its columns). A common form
of vertical partitioning is to split dynamic data (slow to
find) from static data (fast to find) in a table where the
dynamic data is not used as often as the static. Creating
a view across the two newly created tables restores the
original table with a performance penalty, however per-
formance will increase when accessing the static data e.g.
for statistical analysis.

8.4.4 See also

• Shard (database architecture)

8.4.5 References

[1] Vertical Partitioning Algorithms for Database Design, by
Shamkant Navathe, Stefano Ceri, Gio Wiederhold, and
Jinglie Dou, Stanford University 1984

https://en.wikipedia.org/wiki/Digital_object_identifier
https://dx.doi.org/10.1145%252F319566.319567
https://en.wikipedia.org/wiki/Special:BookSources/059600978X
https://en.wikipedia.org/wiki/Special:BookSources/059600978X
http://www.andrej-hollmann.de/images/stories/informatik/multi-isolation-part-1.pdf
http://www.andrej-hollmann.de/images/stories/informatik/multi-isolation-part-1.pdf
https://en.wikipedia.org/wiki/PDF
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Optimization_(computer_science)
https://en.wikipedia.org/wiki/Availability
https://en.wikipedia.org/wiki/Distributed_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Row_(database)
https://en.wikipedia.org/wiki/Column_(database)
https://en.wikipedia.org/wiki/Nordic_countries
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Consistent_hashing
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Index_(database)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_log
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/ZIP_code
https://en.wikipedia.org/wiki/View_(database)
https://en.wikipedia.org/wiki/Database_normalization
https://en.wikipedia.org/wiki/Shard_(database_architecture)

8.5. DISTRIBUTED TRANSACTION 85

8.4.6 External links

• IBM DB2 partitioning

• MySQL partitioning

• Oracle partitioning

• SQL Server partitions

• PostgreSQL partitioning

• Sybase ASE 15.0 partitioning

• MongoDB partitioning

• ScimoreDB partitioning

• VoltDB partitioning

8.5 Distributed transaction

A distributed transaction is a database transaction in
which two or more network hosts are involved. Usually,
hosts provide transactional resources, while the trans-
action manager is responsible for creating and manag-
ing a global transaction that encompasses all operations
against such resources. Distributed transactions, as any
other transactions, must have all four ACID (atomic-
ity, consistency, isolation, durability) properties, where
atomicity guarantees all-or-nothing outcomes for the unit
of work (operations bundle).
Open Group, a vendor consortium, proposed the
X/Open Distributed Transaction Processing (DTP)
Model (X/Open XA), which became a de facto standard
for behavior of transaction model components.
Databases are common transactional resources and, of-
ten, transactions span a couple of such databases. In this
case, a distributed transaction can be seen as a database
transaction that must be synchronized (or provide ACID
properties) among multiple participating databases which
are distributed among different physical locations. The
isolation property (the I of ACID) poses a special chal-
lenge for multi database transactions, since the (global)
serializability property could be violated, even if each
database provides it (see also global serializability). In
practice most commercial database systems use strong
strict two phase locking (SS2PL) for concurrency control,
which ensures global serializability, if all the participat-
ing databases employ it. (see also commitment ordering
for multidatabases.)
A common algorithm for ensuring correct completion of
a distributed transaction is the two-phase commit (2PC).
This algorithm is usually applied for updates able to
commit in a short period of time, ranging from couple
of milliseconds to couple of minutes.
There are also long-lived distributed transactions, for ex-
ample a transaction to book a trip, which consists of

booking a flight, a rental car and a hotel. Since book-
ing the flight might take up to a day to get a confirmation,
two-phase commit is not applicable here, it will lock the
resources for this long. In this case more sophisticated
techniques that involve multiple undo levels are used. The
way you can undo the hotel booking by calling a desk and
cancelling the reservation, a system can be designed to
undo certain operations (unless they are irreversibly fin-
ished).
In practice, long-lived distributed transactions are imple-
mented in systems based on Web Services. Usually these
transactions utilize principles of Compensating transac-
tions, Optimism and Isolation Without Locking. X/Open
standard does not cover long-lived DTP.
Several modern technologies, including Enterprise Java
Beans (EJBs) and Microsoft Transaction Server (MTS)
fully support distributed transaction standards.

8.5.1 See also

Java Transaction API (JTA)

8.5.2 References

• “Web-Services Transactions”. Web-Services Trans-
actions. Retrieved May 2, 2005.

• “Nuts And Bolts Of Transaction Processing”. Arti-
cle about Transaction Management. Retrieved May
3, 2005.

• “A Detailed Comparison of Enterprise JavaBeans
(EJB) & The Microsoft Transaction Server (MTS)
Models”.

8.5.3 Further reading

• Gerhard Weikum, Gottfried Vossen, Transactional
information systems: theory, algorithms, and the
practice of concurrency control and recovery, Mor-
gan Kaufmann, 2002, ISBN 1-55860-508-8

http://publib.boulder.ibm.com/infocenter/db2help/index.jsp?topic=/com.ibm.db2.udb.doc/admin/c0004885.htm
http://dev.mysql.com/doc/refman/5.5/en/partitioning.html
http://www.oracle.com/us/products/database/options/partitioning/index.htm
http://msdn.microsoft.com/en-us/library/ms190787.aspx
http://www.postgresql.org/docs/current/interactive/ddl-partitioning.html
http://www.sybase.com/detail?id=1036923
http://www.mongodb.org/display/DOCS/Sharding
http://scimore.com/wiki/Distributed_schema
http://community.voltdb.com/docs/UsingVoltDB/ChapAppDesign#DesignPartition
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/X/Open_XA
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Synchronization
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Distributed_computing
https://en.wikipedia.org/wiki/Isolation_(computer_science)
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Global_serializability
https://en.wikipedia.org/wiki/Two_phase_locking
https://en.wikipedia.org/wiki/Two_phase_locking
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Commitment_ordering
https://en.wikipedia.org/wiki/Algorithm
https://en.wikipedia.org/wiki/Correctness
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/Commit_(data_management)
https://en.wikipedia.org/wiki/Web_Services
https://en.wikipedia.org/wiki/Compensating_transaction
https://en.wikipedia.org/wiki/Compensating_transaction
https://en.wikipedia.org/wiki/Enterprise_Java_Beans
https://en.wikipedia.org/wiki/Enterprise_Java_Beans
https://en.wikipedia.org/wiki/Microsoft_Transaction_Server
https://en.wikipedia.org/wiki/Java_Transaction_API
http://xml.sys-con.com/read/43755.htm
http://www.subbu.org/articles/transactions/NutsAndBoltsOfTP.html
http://gsraj.tripod.com/misc/ejbmtscomp.html
http://gsraj.tripod.com/misc/ejbmtscomp.html
http://gsraj.tripod.com/misc/ejbmtscomp.html
https://en.wikipedia.org/wiki/Special:BookSources/1558605088

Chapter 9

Examples

9.1 Redis

This article is about Redis software. For Redis people,
see Romani people.

Redis is a data structure server. It is open-source,
networked, in-memory, and stores keys with optional
durability. The development of Redis has been sponsored
by Redis Labs since June 2015.[3] Before that, it was
sponsored by Pivotal Software[4] and by VMware.[5][6]

According to the monthly ranking by DB-Engines.com,
Redis is the most popular key-value database.[7] Redis
has also been ranked the #1 NoSQL (and #4 database)
in User Satisfaction and Market Presence based on
user reviews,[8] the most popular NoSQL database in
containers,[9] and the #2 NoSQL among Top 50 Devel-
oper Tools & Services.[10] The name Redis means RE-
mote DIctionary Server.[11]

9.1.1 Supported languages

Many languages have Redis bindings, including:[12]

ActionScript, C, C++, C#, Chicken Scheme, Clojure,
Common Lisp, D, Dart, Erlang, Go, Haskell, Haxe, Io,
Java, JavaScript (Node.js), Julia, Lua, Objective-C, Perl,
PHP, Pure Data, Python, R,[13] Racket, Ruby, Rust,
Scala, Smalltalk and Tcl.

9.1.2 Data types

Redis maps keys to types of values. A key difference
between Redis and other structured storage systems is
that Redis supports not only strings, but also abstract data
types:

• Lists of strings

• Sets of strings (collections of non-repeating un-
sorted elements)

• Sorted sets of strings (collections of non-repeating
elements ordered by a floating-point number called
score)

• Hash tables where keys and values are strings

• HyperLogLogs used for approximated set cardinal-
ity size estimation.

The type of a value determines what operations (called
commands) are available for the value itself. Redis sup-
ports high-level, atomic, server-side operations like inter-
section, union, and difference between sets and sorting of
lists, sets and sorted sets.

9.1.3 Persistence

Redis typically holds the whole dataset in memory. Ver-
sions up to 2.4 could be configured to use what they refer
to as virtual memory[14] in which some of the dataset is
stored on disk, but this feature is deprecated. Persistence
is now reached in two different ways: one is called snap-
shotting, and is a semi-persistent durability mode where
the dataset is asynchronously transferred from memory
to disk from time to time, written in RDB dump format.
Since version 1.1 the safer alternative is AOF, an append-
only file (a journal) that is written as operations modify-
ing the dataset in memory are processed. Redis is able to
rewrite the append-only file in the background in order to
avoid an indefinite growth of the journal.
By default, Redis syncs data to the disk at least every
2 seconds, with more or less robust options available if
needed. In the case of a complete system failure on de-
fault settings, only a few seconds of data would be lost.[15]

9.1.4 Replication

Redis supports master-slave replication. Data from any
Redis server can replicate to any number of slaves. A
slave may be a master to another slave. This allows Re-
dis to implement a single-rooted replication tree. Re-
dis slaves can be configured to accept writes, permitting
intentional and unintentional inconsistency between in-
stances. The Publish/Subscribe feature is fully imple-
mented, so a client of a slave may SUBSCRIBE to a chan-
nel and receive a full feed of messages PUBLISHed to

86

https://en.wikipedia.org/wiki/Romani_people
https://en.wikipedia.org/wiki/Data_structure
https://en.wikipedia.org/wiki/Open-source_software
https://en.wikipedia.org/wiki/In-memory_database
https://en.wikipedia.org/wiki/Key-value_data_store
https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Redis_Labs
https://en.wikipedia.org/wiki/Pivotal_Software
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/Language_binding
https://en.wikipedia.org/wiki/ActionScript
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/Chicken_Scheme
https://en.wikipedia.org/wiki/Clojure
https://en.wikipedia.org/wiki/Common_Lisp
https://en.wikipedia.org/wiki/D_(programming_language)
https://en.wikipedia.org/wiki/Dart_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Haskell_(programming_language)
https://en.wikipedia.org/wiki/Haxe
https://en.wikipedia.org/wiki/Io_(programming_language)
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Server-side_JavaScript
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Lua_(programming_language)
https://en.wikipedia.org/wiki/Objective-C
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Pure_Data
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Racket_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Rust_(programming_language)
https://en.wikipedia.org/wiki/Scala_(programming_language)
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Structured_storage
https://en.wikipedia.org/wiki/String_(computer_science)
https://en.wikipedia.org/wiki/List_(computing)
https://en.wikipedia.org/wiki/Set_(abstract_data_type)
https://en.wikipedia.org/wiki/Floating-point_number
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/HyperLogLog
https://en.wikipedia.org/wiki/Persistence_(computer_science)
https://en.wikipedia.org/wiki/Journal_(computing)
https://en.wikipedia.org/wiki/Master-slave_replication
https://en.wikipedia.org/wiki/Publish%E2%80%93subscribe_pattern

9.1. REDIS 87

the master, anywhere up the replication tree. Replica-
tion is useful for read (but not write) scalability or data
redundancy.[16]

9.1.5 Performance

When the durability of data is not needed, the in-memory
nature of Redis allows it to perform extremely well com-
pared to database systems that write every change to disk
before considering a transaction committed.[11] There is
no notable speed difference between write and read op-
erations. Redis operates as a single process and single-
threaded. Therefore a single Redis instance cannot utilize
parallel execution of tasks e.g. stored procedures (Lua
scripts).

9.1.6 Clustering

The Redis project has a cluster specification,[17] but the
cluster feature is currently in Beta stage.[18] According to
a news post by Redis creator Sanfilippo, the first produc-
tion version of Redis cluster (planned for beta release at
end of 2013),[19] will support automatic partitioning of
the key space and hot resharding, but will support only
single key operations.[20] In the future Redis Cluster is
planned to support up to 1000 nodes, fault tolerance with
heartbeat and failure detection, incremental versioning
(“epochs”) to prevent conflicts, slave election and promo-
tion to master, and publish/subscribe between all cluster
nodes.[17][18][21]

9.1.7 See also

• NoSQL

9.1.8 References
[1] An interview with Salvatore Sanfilippo, creator of Re-

dis, working out of Sicily, January 4, 2011, by Stefano
Bernardi, EU-Startups

[2] Pivotal People—Salvatore Sanfilippo, Inventor of Redis,
July 17, 2013, By Stacey Schneider, Pivotal P.O.V.

[3]

[4] Redis Sponsors – Redis

[5] VMware: the new Redis home

[6] VMWare: The Console: VMware hires key developer for
Redis

[7] DB-Engines Ranking of Key-value Stores

[8] Best NoSQL Databases: Fall 2015 Report from G2
Crowd

[9] The Current State of Container Usage

[10] Top 50 Developer Tools and Services of 2014

[11] “FAQ, Redis”.

[12] Redis language bindings

[13] CRAN – Package rredis

[14] Redis documentation “Virtual Memory”, redis.io, ac-
cessed January 18, 2011.

[15] Redis persistence demystified, 26 March 2012, antirez
weblog

[16] ReplicationHowto – redis – A persistent key-value
database with built-in net interface written in ANSI-C for
Posix systems – Google Project Hosting

[17] Redis Cluster Specification, Redis.io, Retrieved 2013-12-
25.

[18] Redis Cluster Tutorial, Redis.io, Retrieved 2014-06-14.

[19] Redis Download Page, Redis.io, Retrieved 2013-12-25.

[20] News about Redis: 2.8 is shaping, I'm back on Cluster,
Antirez Weblog - Salvatore Sanfilippo, Retrieved 2013-
12-25.

[21] Redis Cluster - a Pragmatic Approach to Distribution,
Redis.io, Retrieved 2013-12-25.

Notes

• Jeremy Zawodny, Redis: Lightweight key/value Store
That Goes the Extra Mile, Linux Magazine, August
31, 2009

• Isabel Drost and Jan Lehnard (29 October 2009),
Happenings: NoSQL Conference, Berlin, The H.
Slides for the Redis presentation. Summary.

• Billy Newport (IBM): "Evolving the Key/Value Pro-
gramming Model to a Higher Level" Qcon Confer-
ence 2009 San Francisco.

• A Mishra: "Install and configure Redis on Centos/
Fedora server".

9.1.9 External links

• Official website

• redis on GitHub

• Redis Mailing List Archives

• Redis Articles Collection

https://en.wikipedia.org/wiki/Durability_(database_systems)
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/NoSQL
http://www.eu-startups.com/2011/01/an-interview-with-salvatore-sanfilippo-creator-of-redis-working-out-of-sicily/
http://www.eu-startups.com/2011/01/an-interview-with-salvatore-sanfilippo-creator-of-redis-working-out-of-sicily/
http://blog.pivotal.io/pivotal/pivotal-people/pivotal-people-salvatore-sanfilippo-inventor-of-redis
http://redis.io/topics/sponsors
http://antirez.com/post/vmware-the-new-redis-home.html
http://blogs.vmware.com/console/2010/03/vmware-hires-key-developer-for-redis.html
http://blogs.vmware.com/console/2010/03/vmware-hires-key-developer-for-redis.html
http://db-engines.com/en/ranking/key-value+store
http://about.g2crowd.com/press-release/best-nosql-databases-fall-2015/
http://about.g2crowd.com/press-release/best-nosql-databases-fall-2015/
https://clusterhq.com/assets/pdfs/state-of-container-usage-june-2015.pdf
http://stackshare.io/posts/top-50-developer-tools-and-services-of-2014
http://redis.io/topics/faq
http://redis.io/clients
http://cran.r-project.org/web/packages/rredis/index.html
http://redis.io/topics/virtual-memory
http://oldblog.antirez.com/post/redis-persistence-demystified.html
http://code.google.com/p/redis/wiki/ReplicationHowto
http://code.google.com/p/redis/wiki/ReplicationHowto
http://code.google.com/p/redis/wiki/ReplicationHowto
http://redis.io/topics/cluster-spec
http://redis.io/
http://redis.io/topics/cluster-tutorial
http://redis.io/
http://redis.io/download
http://redis.io/
http://antirez.com/news/49
http://antirez.com/
http://redis.io/presentation/Redis_Cluster.pdf
http://redis.io/
http://www.linux-mag.com/cache/7496/1.html
http://www.linux-mag.com/cache/7496/1.html
https://en.wikipedia.org/wiki/Linux_Magazine
http://www.h-online.com/open/features/Happenings-NoSQL-Conference-Berlin-843597.html
https://en.wikipedia.org/wiki/The_H
http://nosqlberlin.de/slides/NoSQLBerlin-Redis.pdf
http://www.paperplanes.de/2009/10/27/theres_something_about_redis.html
http://www.infoq.com/presentations/newport-evolving-key-value-programming-model
http://www.infoq.com/presentations/newport-evolving-key-value-programming-model
http://blog.andolasoft.com/2013/07/how-to-install-and-configure-redis-server-on-centosfedora-server.html
http://blog.andolasoft.com/2013/07/how-to-install-and-configure-redis-server-on-centosfedora-server.html
http://redis.io/
https://github.com/antirez/redis
https://en.wikipedia.org/wiki/GitHub
http://qnalist.com/q/redis-db
http://thememorydb.com/

88 CHAPTER 9. EXAMPLES

9.2 MongoDB

MongoDB (from humongous) is a cross-platform
document-oriented database. Classified as a NoSQL
database, MongoDB eschews the traditional table-based
relational database structure in favor of JSON-like docu-
ments with dynamic schemas (MongoDB calls the format
BSON), making the integration of data in certain types of
applications easier and faster. Released under a combi-
nation of the GNU Affero General Public License and
the Apache License, MongoDB is free and open-source
software.
First developed by the software company MongoDB Inc.
in October 2007 as a component of a planned platform
as a service product, the company shifted to an open
source development model in 2009, with MongoDB of-
fering commercial support and other services.[2] Since
then, MongoDB has been adopted as backend software
by a number of major websites and services, including
Craigslist, eBay, and Foursquare among others. As of
July 2015, MongoDB is the fourth most popular type of
database management system, and the most popular for
document stores.[3]

9.2.1 History

9.2.2 Main features

Some of the features include:[14]

Document-oriented

Instead of taking a business subject and breaking it up
into multiple relational structures, MongoDB can store
the business subject in the minimal number of docu-
ments. For example, instead of storing title and author
information in two distinct relational structures, title, au-
thor, and other title-related information can all be stored
in a single document called Book.[15]

Ad hoc queries

MongoDB supports search by field, range queries, regular
expression searches. Queries can return specific fields of
documents and also include user-defined JavaScript func-
tions.

Indexing

Any field in a MongoDB document can be indexed (in-
dices in MongoDB are conceptually similar to those in
RDBMSes). Secondary indices are also available.

Replication

MongoDB provides high availability with replica sets.[16]

A replica set consists of two or more copies of the data.
Each replica set member may act in the role of primary or
secondary replica at any time. The primary replica per-
forms all writes and reads by default. Secondary replicas
maintain a copy of the data of the primary using built-
in replication. When a primary replica fails, the replica
set automatically conducts an election process to deter-
mine which secondary should become the primary. Sec-
ondaries can also perform read operations, but the data is
eventually consistent by default.

Load balancing

MongoDB scales horizontally using sharding.[17] The user
chooses a shard key, which determines how the data in a
collection will be distributed. The data is split into ranges
(based on the shard key) and distributed across multiple
shards. (A shard is a master with one or more slaves.)
MongoDB can run over multiple servers, balancing the
load and/or duplicating data to keep the system up and
running in case of hardware failure. Automatic configu-
ration is easy to deploy, and new machines can be added
to a running database.

File storage

MongoDB can be used as a file system, taking advantage
of load balancing and data replication features over mul-
tiple machines for storing files.
This function, called Grid File System,[18] is included
with MongoDB drivers and available for development
languages (see "Language Support" for a list of supported
languages). MongoDB exposes functions for file manip-
ulation and content to developers. GridFS is used, for ex-
ample, in plugins for NGINX[19] and lighttpd.[20] Instead
of storing a file in a single document, GridFS divides a
file into parts, or chunks, and stores each of those chunks
as a separate document.[21]

In a multi-machine MongoDB system, files can be dis-
tributed and copied multiple times between machines
transparently, thus effectively creating a load-balanced
and fault-tolerant system.

Aggregation

MapReduce can be used for batch processing of data and
aggregation operations. The aggregation framework en-
ables users to obtain the kind of results for which the SQL
GROUP BY clause is used.

Server-side JavaScript execution

JavaScript can be used in queries, aggregation functions
(such as MapReduce), and sent directly to the database
to be executed.

https://en.wikipedia.org/wiki/Document-oriented_database
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Database_schema
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/MongoDB_Inc.
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Backend
https://en.wikipedia.org/wiki/Craigslist
https://en.wikipedia.org/wiki/EBay
https://en.wikipedia.org/wiki/Foursquare
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Database_index
https://en.wikipedia.org/wiki/RDBMS
https://en.wikipedia.org/wiki/Sharding
https://en.wikipedia.org/wiki/File_system
https://en.wikipedia.org/wiki/Grid_File_System
https://en.wikipedia.org/wiki/MongoDB#Language_support
https://en.wikipedia.org/wiki/Nginx
https://en.wikipedia.org/wiki/Lighttpd
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/SQL

9.2. MONGODB 89

Capped collections

MongoDB supports fixed-size collections called capped
collections. This type of collection maintains insertion
order and, once the specified size has been reached, be-
haves like a circular queue.

9.2.3 Criticisms

In some failure scenarios where an application can access
two distinct MongoDB processes, but these processes
cannot access each other, it is possible for MongoDB
to return stale reads. In this scenario it is also possible
for MongoDB to acknowledge writes that will be rolled
back.[22]

Before version 2.2, concurrency control was implemented
on a per-mongod basis. With version 2.2, concurrency
control was implemented at the database level.[23] Since
version 3.0,[24] pluggable storage engines were intro-
duced, and each storage engine may implement concur-
rency control differently.[25] With MongoDB 3.0 concur-
rency control is implemented at the collection level for
the MMAPv1 storage engine,[26] and at the document
level with the WiredTiger storage engine.[27] With ver-
sions prior to 3.0, one approach to increase concurrency
is to use sharding.[28] In some situations, reads and writes
will yield their locks. If MongoDB predicts a page is un-
likely to be in memory, operations will yield their lock
while the pages load. The use of lock yielding expanded
greatly in 2.2.[29]

Another criticism is related to the limitations of Mon-
goDB when used on 32-bit systems.[30] In some cases, this
was due to inherent memory limitations.[31] MongoDB
recommends 64-bit systems and that users provide suffi-
cient RAM for their working set. Compose, a provider of
managed MongoDB infrastructure, recommends a scal-
ing checklist for large systems.[32]

Additionally, MongoDB does not support collation-based
sorting and is limited to byte-wise comparison via
memcmp,[33] which will not provide correct ordering for
many non-English languages[34] when used with a Uni-
code encoding.

9.2.4 Architecture

Language support

MongoDB has official drivers for a variety of pop-
ular programming languages and development
environments.[35] There are also a large number of
unofficial or community-supported drivers for other
programming languages and frameworks.[36]

Record insertion in MongoDB with Robomongo 0.8.5.

Management and graphical front-ends

Most administration is done from command line tools
such as the mongo shell because MongoDB does not in-
clude a GUI-style administrative interface. There are
third-party projects that offer user interfaces for admin-
istration and data viewing.[37]

Licensing and support

MongoDB is available for free under the GNU Affero
General Public License.[38] The language drivers are
available under an Apache License. In addition, Mon-
goDB Inc. offers proprietary licenses for MongoDB.[2]

9.2.5 Performance

United Software Associates published a benchmark us-
ing Yahoo's Cloud Serving Benchmark as a basis of all
the tests. MongoDB provides greater performance than
Couchbase Server or Cassandra in all the tests they ran,
in some cases by as much as 25x.[39]

Another benchmark for top NoSQL databases utilizing
Amazon's Elastic Compute Cloud that was done by End
Point arrived at opposite results, placing MongoDB last
among the tested databases.[40]

9.2.6 Production deployments

Large-scale deployments of MongoDB are tracked by
MongoDB Inc. Notable users of MongoDB include:

• Adobe: Adobe Experience Manager is intended to
accelerate development of digital experiences that
increase customer loyalty, engagement and demand.
Adobe uses MongoDB to store petabytes of data in
the large-scale content repositories underpinning the
Experience Manager.[41]

• Amadeus IT Group uses MongoDB for its back-end
software.[42]

https://en.wikipedia.org/wiki/Circular_queue
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Collation
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/GNU_Affero_General_Public_License
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Yahoo!
https://en.wikipedia.org/wiki/YCSB
https://en.wikipedia.org/wiki/Couchbase_Server
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Amazon_Elastic_Compute_Cloud
https://en.wikipedia.org/wiki/Adobe_Systems
https://en.wikipedia.org/wiki/Amadeus_IT_Group

90 CHAPTER 9. EXAMPLES

• The Compact Muon Solenoid at CERN uses Mon-
goDB as the primary back-end for the Data Aggre-
gation System for the Large Hadron Collider.[43]

• Craigslist: With 80 million classified ads posted
every month, Craigslist needs to archive billions
of records in multiple formats, and must be able
to query and report on these archives at runtime.
Craigslist migrated from MySQL to MongoDB to
support its active archive, with continuous availabil-
ity mandated for regulatory compliance across 700
sites in 70 different countries.[44]

• eBay uses MongoDB in the search suggestion and
the internal Cloud Manager State Hub.[45]

• FIFA (video game series): EA Sports FIFA is the
world’s best-selling sports video game franchise. To
serve millions of players, EA’s Spearhead develop-
ment studio selected MongoDB[46] to store user data
and game state. Auto-sharding makes it simple to
scale MongoDB across EA’s 250+ servers with no
limits to growth as EA FIFA wins more fans.

• Foursquare deploys MongoDB on Amazon AWS to
store venues and user check-ins into venues.[47]

• LinkedIn uses MongoDB as its backend DB.[48]

• McAfee: MongoDB powers McAfee Global Threat
Intelligence (GTI), a cloud-based intelligence ser-
vice that correlates data from millions of sen-
sors around the globe. Billions of documents are
stored and analyzed in MongoDB to deliver real-
time threat intelligence to other McAfee end-client
products.[49]

• MetLife uses MongoDB for “The Wall”, a customer
service application providing a “360-degree view” of
MetLife customers.[50]

• SAP uses MongoDB in the SAP PaaS.[51]

• Shutterfly uses MongoDB for its photo platform. As
of 2013, the photo platform stores 18 billion photos
uploaded by Shutterfly’s 7 million users.[52]

• Tuenti uses MongoDB as its backend DB.[53]

• Yandex: The largest search engine in Russia uses
MongoDB to manage all user and metadata for its
file sharing service. MongoDB has scaled[54] to sup-
port tens of billions of objects and TBs of data,
growing at 10 million new file uploads per day.

9.2.7 See also

• NoSQL

• Server-side scripting

• MEAN, a solutions stack using MongoDB as the
database

• HyperDex, a NoSQL database providing the Mon-
goDB API with stronger consistency guarantees

9.2.8 References
[1] “Release Notes for MongoDB 3.0”. MongoDB.

[2] “10gen embraces what it created, becomes MongoDB
Inc.”. Gigaom. Retrieved 27 August 2013.

[3] “Popularity ranking of database management systems”.
db-engines.com. Solid IT. Retrieved 2015-07-04.

[4] “Release Notes for MongoDB 1.2.x”. Retrieved 2015-11-
29.

[5] “Release Notes for MongoDB 1.4”. Retrieved 2015-11-
29.

[6] “Release Notes for MongoDB 1.6”. Retrieved 2015-11-
29.

[7] “Release Notes for MongoDB 1.8”. Retrieved 2015-11-
29.

[8] “Release Notes for MongoDB 2.0”. Retrieved 2015-11-
29.

[9] “Release Notes for MongoDB 2.2”. Retrieved 2015-11-
29.

[10] “Release Notes for MongoDB 2.4”. Retrieved 2015-11-
29.

[11] “Release Notes for MongoDB 2.6”. Retrieved 2015-11-
29.

[12] “Release Notes for MongoDB 3.0”. Retrieved 2015-11-
29.

[13] “Development Release Notes for 3.2 Release Candidate”.
Retrieved 2015-11-29.

[14] MongoDB. “MongoDB Developer Manual”. MongoDB.

[15] Data Modeling for MongoDB

[16] MongoDB. “Introduction to Replication”. MongoDB.

[17] MongoDB. “Introduction to Sharding”. MongoDB.

[18] MongoDB. “GridFS article on MongoDB Developer’s
Manual”. MongoDB.

[19] “NGINX plugin for MongoDB source code”. GitHub.

[20] “lighttpd plugin for MongoDB source code”. Bitbucket.

[21] Malick Md. “MongoDB overview”. Expertstown.

[22] Kyle Kingsbury (2015-04-20). “Call me maybe: Mon-
goDB stale reads”. Retrieved 2015-07-04.

[23] “MongoDB Jira Ticket 4328”. jira.mongodb.org.

[24] Eliot Horowitz (2015-01-22). “Renaming Our Upcoming
Release to MongoDB 3.0”. MongoDB. Retrieved 2015-
02-23.

https://en.wikipedia.org/wiki/Compact_Muon_Solenoid
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/Large_Hadron_Collider
https://en.wikipedia.org/wiki/Craigslist
https://en.wikipedia.org/wiki/EBay
https://en.wikipedia.org/wiki/FIFA_(video_game_series)
https://en.wikipedia.org/wiki/Foursquare
https://en.wikipedia.org/wiki/Amazon_AWS
https://en.wikipedia.org/wiki/LinkedIn
https://en.wikipedia.org/wiki/McAfee
https://en.wikipedia.org/wiki/MetLife
https://en.wikipedia.org/wiki/SAP_AG
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Shutterfly
https://en.wikipedia.org/wiki/Tuenti
https://en.wikipedia.org/wiki/Yandex
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Server-side_scripting
https://en.wikipedia.org/wiki/MEAN_(software_bundle)
https://en.wikipedia.org/wiki/Solutions_stack
https://en.wikipedia.org/wiki/HyperDex
http://docs.mongodb.org/manual/release-notes/3.0/
http://gigaom.com/2013/08/27/10gen-embraces-what-it-created-becomes-mongodb-inc/
http://gigaom.com/2013/08/27/10gen-embraces-what-it-created-becomes-mongodb-inc/
http://db-engines.com/en/ranking
https://docs.mongodb.org/master/release-notes/1.2/
https://docs.mongodb.org/master/release-notes/1.4/
https://docs.mongodb.org/master/release-notes/1.6/
https://docs.mongodb.org/master/release-notes/1.8/
https://docs.mongodb.org/master/release-notes/2.0/
https://docs.mongodb.org/master/release-notes/2.2/
https://docs.mongodb.org/master/release-notes/2.4/
https://docs.mongodb.org/master/release-notes/2.6/
https://docs.mongodb.org/master/release-notes/3.0/
https://docs.mongodb.org/master/release-notes/3.2/
http://www.mongodb.org/display/DOCS/Manual
http://www.technicspub.com/product.sc;jsessionid=2C874BF93727F3F4751DDFF7B0105B0B.m1plqscsfapp04?productId=73&categoryId=1
http://docs.mongodb.org/manual/core/replication-introduction/
http://docs.mongodb.org/manual/sharding/
http://www.mongodb.org/display/DOCS/GridFS
http://www.mongodb.org/display/DOCS/GridFS
http://github.com/mdirolf/nginx-gridfs
http://bitbucket.org/bwmcadams/lighttpd-gridfs/src/
http://www.expertstown.com/mongodb-overview/
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
https://aphyr.com/posts/322-call-me-maybe-mongodb-stale-reads
https://jira.mongodb.org/browse/SERVER-4328
http://www.mongodb.com/blog/post/renaming-our-upcoming-release-mongodb-30?_ga=1.2592691.2020943709.1424661872
http://www.mongodb.com/blog/post/renaming-our-upcoming-release-mongodb-30?_ga=1.2592691.2020943709.1424661872

9.3. POSTGRESQL 91

[25] “MongoDB 2.8 release”. MongoDB.

[26] MongoDB. “MMAPv1 Concurrency Improvement”.
MongoDB.

[27] MongoDB. “WiredTiger Concurrency and Compression”.
MongoDB.

[28] MongoDB. “FAQ Concurrency - How Does Sharding Af-
fect Concurrency”. MongoDB.

[29] MongoDB. “FAQ Concurrency - Do Operations Ever
Yield the Lock”. MongoDB.

[30] MongoDB (8 July 2009). “32-bit Limitations”. Mon-
goDB.

[31] David Mytton (25 September 2012). “Does Everybody
Hate MongoDB”. Server Density.

[32] https://blog.compose.io/
mongodb-scaling-to-100gb-and-beyond/. Missing
or empty |title= (help)

[33] “memcmp”. cppreference.com. 31 May 2013. Retrieved
26 April 2014.

[34] “MongoDB Jira ticket 1920”. jira.mongodb.org.

[35] MongoDB. “MongoDB Drivers and Client Libraries”.
MongoDB. Retrieved 2013-07-08.

[36] MongoDB. “Community Supported Drivers”. MongoDB.
Retrieved 2014-07-09.

[37] MongoDB. “Admin UIs”. Retrieved 15 September 2015.

[38] MongoDB. “The AGPL”. The MongoDB NoSQL
Database Blog. MongoDB.

[39] United Software Associates. “High Performance Bench-
marking: MongoDB and NoSQL Systems” (PDF).

[40] End Point (13 April 2015). “Benchmarking Top NoSQL
Databases; Apache Cassandra, Couchbase, HBase, and
MongoDB” (PDF).

[41] MongoDB. “Adobe Experience Manager”. MongoDB.

[42] “Presentation by Amadeus 11/2014”. MongoDB.

[43] “Holy Large Hadron Collider, Batman!". MongoDB.

[44] MongoDB. “Craigslist”. MongoDB.

[45] “MongoDB at eBay”. Slideshare.

[46] “MongoDB based FIFA Online”. MongoDB.

[47] “Experiences Deploying MongoDB on AWS”. Mon-
goDB.

[48] “Presentation by LinkedIn”. MongoDB.

[49] MongoDB. “McAfee is Improving Global Cybersecurity
with MongoDB”. MongoDB.

[50] Doug Henschen (13 May 2013). “Metlife uses nosql
for customer service”. Information Week. Retrieved 8
November 2014.

[51] Richard Hirsch (30 September 2011). “The Quest to Un-
derstand the Use of MongoDB in the SAP PaaS”.

[52] Guy Harrison (28 January 2011). “Real World NoSQL:
MongoDB at Shutterfly”. Gigaom.

[53] “We host the MongoDB user group meetup at our office”.

[54] “Yandex: MongoDB”. Yandex.

9.2.9 Bibliography

• Hoberman, Steve (June 1, 2014), Data Modeling for
MongoDB (1st ed.), Technics Publications, p. 226,
ISBN 978-1-935504-70-2

• Banker, Kyle (March 28, 2011), MongoDB in Action
(1st ed.), Manning, p. 375, ISBN 978-1-935182-
87-0

• Chodorow, Kristina; Dirolf, Michael (September
23, 2010), MongoDB: The Definitive Guide (1st ed.),
O'Reilly Media, p. 216, ISBN 978-1-4493-8156-1

• Pirtle, Mitch (March 3, 2011), MongoDB for Web
Development (1st ed.), Addison-Wesley Profes-
sional, p. 360, ISBN 978-0-321-70533-4

• Hawkins, Tim; Plugge, Eelco; Membrey, Peter
(September 26, 2010), The Definitive Guide to Mon-
goDB: The NoSQL Database for Cloud and Desktop
Computing (1st ed.), Apress, p. 350, ISBN 978-1-
4302-3051-9

9.2.10 External links

• Official website

9.3 PostgreSQL

PostgreSQL, often simply Postgres, is an object-
relational database management system (ORDBMS) with
an emphasis on extensibility and standards-compliance.
As a database server, its primary function is to store data
securely, supporting best practices, and to allow for re-
trieval at the request of other software applications. It can
handle workloads ranging from small single-machine ap-
plications to large Internet-facing applications with many
concurrent users.
PostgreSQL implements the majority of the SQL:2011
standard,[9][10] is ACID-compliant and transactional (in-
cluding most DDL statements) avoiding locking issues
using multiversion concurrency control (MVCC), pro-
vides immunity to dirty reads and full serializability; han-
dles complex SQL queries using many indexing meth-
ods that are not available in other databases; has up-
dateable views and materialized views, triggers, foreign
keys; supports functions and stored procedures, and other

http://blog.mongodb.org/post/102461818738/announcing-mongodb-2-8-0-rc0-release-candidate-and
http://docs.mongodb.org/manual/release-notes/3.0/#mmapv1-concurrency-improvement
http://docs.mongodb.org/manual/release-notes/3.0/#wiredtiger-concurrency-and-compression
http://docs.mongodb.org/manual/faq/concurrency/#how-does-sharding-affect-concurrency
http://docs.mongodb.org/manual/faq/concurrency/#how-does-sharding-affect-concurrency
http://docs.mongodb.org/manual/faq/concurrency/#does-a-read-or-write-operation-ever-yield-the-lock
http://docs.mongodb.org/manual/faq/concurrency/#does-a-read-or-write-operation-ever-yield-the-lock
http://blog.mongodb.org/post/137788967/32-bit-limitations
https://blog.serverdensity.com/does-everyone-hate-mongodb/
https://blog.serverdensity.com/does-everyone-hate-mongodb/
https://blog.compose.io/mongodb-scaling-to-100gb-and-beyond/
https://blog.compose.io/mongodb-scaling-to-100gb-and-beyond/
https://en.wikipedia.org/wiki/Help:CS1_errors#citation_missing_title
http://en.cppreference.com/w/c/string/byte/memcmp
https://jira.mongodb.org/browse/SERVER-1920
http://www.mongodb.org/display/DOCS/Drivers
http://docs.mongodb.org/ecosystem/drivers/community-supported-drivers/
http://docs.mongodb.org/ecosystem/tools/administration-interfaces/
http://blog.mongodb.org/post/103832439/the-agpl
http://info-mongodb-com.s3.amazonaws.com/High%252BPerformance%252BBenchmark%252BWhite%252BPaper_final.pdf
http://info-mongodb-com.s3.amazonaws.com/High%252BPerformance%252BBenchmark%252BWhite%252BPaper_final.pdf
http://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
http://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
http://www.datastax.com/wp-content/themes/datastax-2014-08/files/NoSQL_Benchmarks_EndPoint.pdf
https://www.mongodb.com/press/mongodb-delivers-multi-petabyte-data-store-option-adobe-experience-manager
https://www.mongodb.com/presentations/shaping-future-travel-mongodb
http://blog.mongodb.org/post/660037122/holy-large-hadron-collider-batman
https://www.mongodb.com/customers/craigslist
http://www.slideshare.net/mongodb/mongodb-at-ebay
https://www.mongodb.com/blog/post/ea-scores-mongodb-based-fifa-online-3
http://www.10gen.com/presentations/experiences-deploying-mongodb-aws
https://www.mongodb.com/presentations/building-linkedins-learning-platform-mongodb
https://www.mongodb.com/customers/mcafee
https://www.mongodb.com/customers/mcafee
http://www.informationweek.com/software/information-management/metlife-uses-nosql-for-customer-service/240154741
http://www.informationweek.com/software/information-management/metlife-uses-nosql-for-customer-service/240154741
http://scn.sap.com/people/richard.hirsch/blog/2011/09/30/the-quest-to-understand-the-use-of-mongodb-in-the-sap-paas
http://scn.sap.com/people/richard.hirsch/blog/2011/09/30/the-quest-to-understand-the-use-of-mongodb-in-the-sap-paas
http://gigaom.com/2011/01/28/real-world-nosql-mongodb-at-shutterfly/
http://gigaom.com/2011/01/28/real-world-nosql-mongodb-at-shutterfly/
http://corporate.tuenti.com/en/dev/blog/tags/MongoDB%2520user%2520group
https://events.yandex.ru/lib/talks/1709/
https://en.wikipedia.org/wiki/Steve_Hoberman
https://en.wikipedia.org/wiki/Technics_Publications
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-935504-70-2
https://en.wikipedia.org/wiki/Manning
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-935182-87-0
https://en.wikipedia.org/wiki/Special:BookSources/978-1-935182-87-0
https://en.wikipedia.org/wiki/O%2527Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4493-8156-1
https://en.wikipedia.org/wiki/Addison-Wesley_Professional
https://en.wikipedia.org/wiki/Addison-Wesley_Professional
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-70533-4
https://en.wikipedia.org/wiki/Apress
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4302-3051-9
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4302-3051-9
http://www.mongodb.org/
https://en.wikipedia.org/wiki/Object-relational_database_management_system
https://en.wikipedia.org/wiki/Object-relational_database_management_system
https://en.wikipedia.org/wiki/Web_service
https://en.wikipedia.org/wiki/Concurrent_user
https://en.wikipedia.org/wiki/SQL:2011
https://en.wikipedia.org/wiki/Atomicity,_consistency,_isolation,_durability
https://en.wikipedia.org/wiki/Transaction_processing
https://en.wikipedia.org/wiki/Data_Definition_Language
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/Isolation_(database_systems)#Dirty_reads
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/View_(SQL)
https://en.wikipedia.org/wiki/Materialized_view
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Foreign_key

92 CHAPTER 9. EXAMPLES

expandability,[11] and has a large number of extensions
written by third parties. In addition to the possibility
of working with the major proprietary and open source
databases, PostgreSQL supports migration from them, by
its extensive standard SQL support and available migra-
tion tools. Proprietary extensions in databases such as
Oracle can be emulated by built-in and third-party open
source compatibility extensions. Recent versions also
provide replication of the database itself for availability
and scalability.
PostgreSQL is cross-platform and runs on many
operating systems including Linux, FreeBSD, OS X,
Solaris, and Microsoft Windows. On OS X, PostgreSQL
has been the default database starting with Mac OS
X 10.7 Lion Server, [12][13][14] and PostgreSQL client
tools are bundled with in the desktop edition. The
vast majority of Linux distributions have it available in
supplied packages.
PostgreSQL is developed by the PostgreSQL Global De-
velopment Group, a diverse group of many companies
and individual contributors.[15] It is free and open-source
software, released under the terms of the PostgreSQL Li-
cense, a permissive free-software license.

9.3.1 Name

PostgreSQL’s developers pronounce it /ˈpoʊstɡrɛs ˌkjuː
ˈɛl/.[16] It is abbreviated as Postgres, its original name.
Because of ubiquitous support for the SQL Standard
among most relational databases, the community con-
sidered changing the name back to Postgres. However,
the PostgreSQL Core Team announced in 2007 that the
product would continue to use the name PostgreSQL.[17]

The name refers to the project’s origins as a “post-Ingres"
database, being a development from University Ingres
DBMS (Ingres being an acronym for INteractive Graphics
Retrieval System).[18][19]

9.3.2 History

PostgreSQL evolved from the Ingres project at the
University of California, Berkeley. In 1982 the leader
of the Ingres team, Michael Stonebraker, left Berkeley
to make a proprietary version of Ingres.[18] He returned
to Berkeley in 1985, and started a post-Ingres project to
address the problems with contemporary database sys-
tems that had become increasingly clear during the early
1980s. The new project, POSTGRES, aimed to add the
fewest features needed to completely support types.[20]

These features included the ability to define types and to
fully describe relationships – something used widely be-
fore but maintained entirely by the user. In POSTGRES,
the database “understood” relationships, and could re-
trieve information in related tables in a natural way using
rules. POSTGRES used many of the ideas of Ingres, but
not its code.[21]

Starting in 1986, the POSTGRES team published a num-
ber of papers describing the basis of the system, and by
1987 had a prototype version shown at the 1988 ACM
SIGMOD Conference. The team released version 1 to
a small number of users in June 1989, then version 2
with a re-written rules system in June 1990. Version 3,
released in 1991, again re-wrote the rules system, and
added support for multiple storage managers and an im-
proved query engine. By 1993, the great number of users
began to overwhelm the project with requests for support
and features. After releasing version 4.2[22] on June 30,
1994—primarily a cleanup—the project ended. Berke-
ley had released POSTGRES under an MIT-style license,
which enabled other developers to use the code for any
use. At the time, POSTGRES used an Ingres-influenced
POSTQUEL query language interpreter, which could be
interactively used with a console application named mon-
itor.
In 1994, Berkeley graduate students Andrew Yu and Jolly
Chen replaced the POSTQUEL query language inter-
preter with one for the SQL query language, creating
Postgres95. The front-end program monitor was also re-
placed by psql. Yu and Chen released the code on the
web.
On July 8, 1996, Marc Fournier at Hub.org Networking
Services provided the first non-university development
server for the open-source development effort.[1] With the
participation of Bruce Momjian and Vadim B. Mikheev,
work began to stabilize the code inherited from Berkeley.
The first open-source version was released on August 1,
1996.
In 1996, the project was renamed to PostgreSQL to reflect
its support for SQL. The online presence at the website
PostgreSQL.org began on October 22, 1996.[23] The first
PostgreSQL release formed version 6.0 on January 29,
1997. Since then a group of developers and volunteers
around the world have maintained the software as The
PostgreSQL Global Development Group.
The PostgreSQL project continues to make major re-
leases (approximately annually) and minor “bugfix” re-
leases, all available under its free and open-source soft-
ware PostgreSQL License. Code comes from contribu-
tions from proprietary vendors, support companies, and
open-source programmers at large. See also Release his-
tory below.

9.3.3 Multiversion concurrency control
(MVCC)

PostgreSQL manages concurrency through a system
known as multiversion concurrency control (MVCC),
which gives each transaction a “snapshot” of the database,
allowing changes to be made without being visible to
other transactions until the changes are committed. This
largely eliminates the need for read locks, and ensures
the database maintains the ACID (atomicity, consistency,

https://en.wikipedia.org/wiki/Oracle_Database
https://en.wikipedia.org/wiki/Scalability
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Mac_OS_X_Lion
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Permissive_free_software_license
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/Help:IPA_for_English
https://en.wikipedia.org/wiki/SQL:2003
https://en.wikipedia.org/wiki/Ingres_(database)
https://en.wikipedia.org/wiki/Ingres_(database)
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Michael_Stonebraker
https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/ACM_SIGMOD_Conference
https://en.wikipedia.org/wiki/ACM_SIGMOD_Conference
https://en.wikipedia.org/wiki/Storage_manager
https://en.wikipedia.org/wiki/MIT_License
https://en.wikipedia.org/wiki/POSTQUEL_query_language
https://en.wikipedia.org/wiki/Console_application
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/PostgreSQL#Release_history
https://en.wikipedia.org/wiki/PostgreSQL#Release_history
https://en.wikipedia.org/wiki/Concurrency_control
https://en.wikipedia.org/wiki/Multiversion_concurrency_control
https://en.wikipedia.org/wiki/ACID

9.3. POSTGRESQL 93

isolation, durability) principles in an efficient manner.
PostgreSQL offers three levels of transaction isolation:
Read Committed, Repeatable Read and Serializable. Be-
cause PostgreSQL is immune to dirty reads, requesting
a Read Uncommitted transaction isolation level provides
read committed instead. Prior to PostgreSQL 9.1, re-
questing Serializable provided the same isolation level as
Repeatable Read. PostgreSQL 9.1 and later support full
serializability via the serializable snapshot isolation (SSI)
technique.[24]

9.3.4 Storage and replication

Replication

PostgreSQL, beginning with version 9.0, includes built-in
binary replication, based on shipping the changes (write-
ahead logs) to replica nodes asynchronously.
Version 9.0 also introduced the ability to run read-only
queries against these replicated nodes, where earlier ver-
sions would only allow that after promoting them to be a
new master. This allows splitting read traffic among mul-
tiple nodes efficiently. Earlier replication software that
allowed similar read scaling normally relied on adding
replication triggers to the master, introducing additional
load onto it.
Beginning from version 9.1, PostgreSQL also includes
built-in synchronous replication[25] that ensures that, for
each write transaction, the master waits until at least one
replica node has written the data to its transaction log.
Unlike other database systems, the durability of a trans-
action (whether it is asynchronous or synchronous) can
be specified per-database, per-user, per-session or even
per-transaction. This can be useful for work loads that
do not require such guarantees, and may not be wanted
for all data as it will have some negative effect on perfor-
mance due to the requirement of the confirmation of the
transaction reaching the synchronous standby.
There can be a mixture of synchronous and asynchronous
standby servers. A list of synchronous standby servers
can be specified in the configuration which determines
which servers are candidates for synchronous replication.
The first in the list which is currently connected and ac-
tively streaming is the one that will be used as the current
synchronous server. When this fails, it falls to the next in
line.
Synchronous multi-master replication is currently not in-
cluded in the PostgreSQL core. Postgres-XC which
is based on PostgreSQL provides scalable synchronous
multi-master replication,[26] available in version 1.1 is li-
censed under the same license as PostgreSQL. A similar
project is called Postgres-XL and is available under the
Mozilla Public License.[27]

The community has also written some tools to make man-
aging replication clusters easier, such as repmgr.

There are also several asynchronous trigger-based repli-
cation packages for PostgreSQL. These remain useful
even after introduction of the expanded core capabili-
ties, for situations where binary replication of an entire
database cluster is not the appropriate approach:

• Slony-I

• Londiste, part of SkyTools (developed by Skype)

• Bucardo multi-master replication (developed by
Backcountry.com)[28]

• SymmetricDS multi-master, multi-tier replication

Indexes

PostgreSQL includes built-in support for regular B-tree
and hash indexes, and two types of inverted indexes: gen-
eralized search trees (GiST) and generalized inverted in-
dexes (GIN). Hash indexes are implemented, but discour-
aged because they cannot be recovered after a crash or
power loss. In addition, user-defined index methods can
be created, although this is quite an involved process. In-
dexes in PostgreSQL also support the following features:

• Expression indexes can be created with an index of
the result of an expression or function, instead of
simply the value of a column.

• Partial indexes, which only index part of a table, can
be created by adding a WHERE clause to the end
of the CREATE INDEX statement. This allows a
smaller index to be created.

• The planner is capable of using multiple indexes to-
gether to satisfy complex queries, using temporary
in-memory bitmap index operations.

• As of PostgreSQL 9.1, k-nearest neighbors (k-NN)
indexing (also referred to KNN-GiST) provides effi-
cient searching of “closest values” to that specified,
useful to finding similar words, or close objects or
locations with geospatial data. This is achieved with-
out exhaustive matching of values.

• In PostgreSQL 9.2 and above, index-only scans of-
ten allow the system to fetch data from indexes with-
out ever having to access the main table.

Schemas

In PostgreSQL, all objects (with the exception of roles
and tablespaces) are held within a schema. Schemas
effectively act like namespaces, allowing objects of the
same name to co-exist in the same database.
By default, databases are created with the “public”
schema, but any additional schemas can be added, and the

https://en.wikipedia.org/wiki/Transaction_isolation
https://en.wikipedia.org/wiki/Serializability
https://en.wikipedia.org/wiki/Serializable_snapshot_isolation
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Write-ahead_logging
https://en.wikipedia.org/wiki/Multi-master_replication
https://en.wikipedia.org/wiki/Slony-I
https://en.wikipedia.org/wiki/Skype
https://en.wikipedia.org/wiki/Backcountry.com
https://en.wikipedia.org/wiki/SymmetricDS
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Inverted_index
https://en.wikipedia.org/wiki/GiST
https://en.wikipedia.org/wiki/Expression_index
https://en.wikipedia.org/wiki/Partial_index
https://en.wikipedia.org/wiki/Bitmap_index
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://en.wikipedia.org/wiki/Geospatial
https://en.wikipedia.org/wiki/Database_schema

94 CHAPTER 9. EXAMPLES

public schema isn't mandatory. A “search_path” deter-
mines the order in which schemas are checked on unqual-
ified objects (those without a prefixed schema), which can
be configured on a database or role level. The search path,
by default, contains the special schema name of "$user”,
which first looks for a schema named after the connected
database user (e.g. if the user “dave” were connected, it
would first look for a schema also named “dave” when re-
ferring to any objects). If such a schema is not found, it
then proceeds to the next schema. New objects are cre-
ated in whichever valid schema (one that presently exists)
is listed first in the search path.

Data types

A wide variety of native data types are supported, includ-
ing:

• Boolean

• Arbitrary precision numerics

• Character (text, varchar, char)

• Binary

• Date/time (timestamp/time with/without timezone,
date, interval)

• Money

• Enum

• Bit strings

• Text search type

• Composite

• HStore (an extension enabled key-value store within
PostgreSQL)

• Arrays (variable length and can be of any data type,
including text and composite types) up to 1 GB in
total storage size

• Geometric primitives

• IPv4 and IPv6 addresses

• CIDR blocks and MAC addresses

• XML supporting XPath queries

• UUID

• JSON (since version 9.2), and a faster binary
JSONB (since version 9.4; not the same as
BSON[29])

In addition, users can create their own data types which
can usually be made fully indexable via PostgreSQL’s
GiST infrastructure. Examples of these include the
geographic information system (GIS) data types from the
PostGIS project for PostgreSQL.
There is also a data type called a “domain”, which is the
same as any other data type but with optional constraints
defined by the creator of that domain. This means any
data entered into a column using the domain will have to
conform to whichever constraints were defined as part of
the domain.
Starting with PostgreSQL 9.2, a data type that represents
a range of data can be used which are called range types.
These can be discrete ranges (e.g. all integer values 1
to 10) or continuous ranges (e.g. any point in time be-
tween 10:00 am and 11:00 am). The built-in range types
available include ranges of integers, big integers, decimal
numbers, time stamps (with and without time zone) and
dates.
Custom range types can be created to make new types of
ranges available, such as IP address ranges using the inet
type as a base, or float ranges using the float data type
as a base. Range types support inclusive and exclusive
range boundaries using the [] and () characters respec-
tively. (e.g. '[4,9)' represents all integers starting from
and including 4 up to but not including 9.) Range types
are also compatible with existing operators used to check
for overlap, containment, right of etc.

User-defined objects

New types of almost all objects inside the database can
be created, including:

• Casts

• Conversions

• Data types

• Domains

• Functions, including aggregate functions and win-
dow functions

• Indexes including custom indexes for custom types

• Operators (existing ones can be overloaded)

• Procedural languages

Inheritance

Tables can be set to inherit their characteristics from a
“parent” table. Data in child tables will appear to exist in
the parent tables, unless data is selected from the parent
table using the ONLY keyword, i.e. SELECT * FROM

https://en.wikipedia.org/wiki/Data_type
https://en.wikipedia.org/wiki/Arbitrary_precision
https://en.wikipedia.org/wiki/IPv4
https://en.wikipedia.org/wiki/IPv6
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://en.wikipedia.org/wiki/MAC_address
https://en.wikipedia.org/wiki/XML
https://en.wikipedia.org/wiki/XPath
https://en.wikipedia.org/wiki/UUID
https://en.wikipedia.org/wiki/JSON
https://en.wikipedia.org/wiki/Binary_code
https://en.wikipedia.org/wiki/BSON
https://en.wikipedia.org/wiki/Geographic_information_system
https://en.wikipedia.org/wiki/PostGIS
https://en.wikipedia.org/wiki/Data_domain
https://en.wikipedia.org/wiki/Operator_overloading

9.3. POSTGRESQL 95

ONLY parent_table;. Adding a column in the parent table
will cause that column to appear in the child table.
Inheritance can be used to implement table partitioning,
using either triggers or rules to direct inserts to the parent
table into the proper child tables.
As of 2010, this feature is not fully supported yet—in
particular, table constraints are not currently inheritable.
All check constraints and not-null constraints on a parent
table are automatically inherited by its children. Other
types of constraints (unique, primary key, and foreign key
constraints) are not inherited.
Inheritance provides a way to map the features of gener-
alization hierarchies depicted in Entity Relationship Dia-
grams (ERD) directly into the PostgreSQL database.

Other storage features

• Referential integrity constraints including foreign
key constraints, column constraints, and row checks

• Binary and textual large-object storage

• Tablespaces

• Per-column collation (from 9.1)

• Online backup

• Point-in-time recovery, implemented using write-
ahead logging

• In-place upgrades with pg_upgrade for less down-
time (supports upgrades from 8.3.x and later)

9.3.5 Control and connectivity

Foreign data wrappers

As of version 9.1, PostgreSQL can link to other systems
to retrieve data via foreign data wrappers (FDWs). These
can take the form of any data source, such as a file system,
another RDBMS, or a web service. This means regular
database queries can use these data sources like regular
tables, and even join multiple data sources together.

Interfaces

PostgreSQL has several interfaces available and is also
widely supported among programming language li-
braries. Built-in interfaces include libpq (PostgreSQL’s
official C application interface) and ECPG (an embed-
ded C system). External interfaces include:

• libpqxx: C++ interface

• PostgresDAC: PostgresDAC (for Embarcadero
RadStudio/Delphi/CBuilder XE-XE3)

• DBD::Pg: Perl DBI driver

• JDBC: JDBC interface

• Lua: Lua interface

• Npgsql: .NET data provider

• ST-Links SpatialKit: Link Tool to ArcGIS

• PostgreSQL.jl: Julia interface

• node-postgres: Node.js interface

• pgoledb: OLEDB interface

• psqlODBC: ODBC interface

• psycopg2:[30] Python interface (also used by
HTSQL)

• pgtclng: Tcl interface

• pyODBC: Python library

• php5-pgsql: PHP driver based on libpq

• postmodern: A Common Lisp interface

• pq: A pure Go PostgreSQL driver for the Go
database/sql package. The driver passes the com-
patibility test suite.[31]

Procedural languages

Procedural languages allow developers to extend the
database with custom subroutines (functions), often
called stored procedures. These functions can be used
to build triggers (functions invoked upon modification of
certain data) and custom aggregate functions. Procedural
languages can also be invoked without defining a func-
tion, using the “DO” command at SQL level.
Languages are divided into two groups: “Safe” languages
are sandboxed and can be safely used by any user. Proce-
dures written in “unsafe” languages can only be created by
superusers, because they allow bypassing the database’s
security restrictions, but can also access sources external
to the database. Some languages like Perl provide both
safe and unsafe versions.
PostgreSQL has built-in support for three procedural lan-
guages:

• Plain SQL (safe). Simpler SQL functions can get
expanded inline into the calling (SQL) query, which
saves function call overhead and allows the query op-
timizer to “see inside” the function.

• PL/pgSQL (safe), which resembles Oracle’s
PL/SQL procedural language and SQL/PSM.

https://en.wikipedia.org/wiki/Entity-relationship_model
https://en.wikipedia.org/wiki/Entity-relationship_model
https://en.wikipedia.org/wiki/Referential_integrity
https://en.wikipedia.org/wiki/Constraint_satisfaction
https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Foreign_key
https://en.wikipedia.org/wiki/Tablespace
https://en.wikipedia.org/wiki/ECPG
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/JDBC
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/ArcGIS
https://en.wikipedia.org/wiki/Julia_(programming_language)
https://en.wikipedia.org/wiki/Node.js
https://en.wikipedia.org/wiki/OLEDB
https://en.wikipedia.org/wiki/ODBC
https://en.wikipedia.org/wiki/HTSQL
https://github.com/lib/pq
https://en.wikipedia.org/wiki/Go_(programming_language)
https://en.wikipedia.org/wiki/Subroutines
https://en.wikipedia.org/wiki/Stored_procedure
https://en.wikipedia.org/wiki/Database_trigger
https://en.wikipedia.org/wiki/Aggregate_function
https://en.wikipedia.org/wiki/Sandbox_(computer_security)
https://en.wikipedia.org/wiki/Superuser
https://en.wikipedia.org/wiki/Inline_expansion
https://en.wikipedia.org/wiki/PL/pgSQL
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/SQL/PSM

96 CHAPTER 9. EXAMPLES

• C (unsafe), which allows loading custom shared li-
braries into the database. Functions written in C of-
fer the best performance, but bugs in code can crash
and potentially corrupt the database. Most built-in
functions are written in C.

In addition, PostgreSQL allows procedural languages to
be loaded into the database through extensions. Three
language extensions are included with PostgreSQL to
support Perl, Python and Tcl. There are external projects
to add support for many other languages, including Java,
JavaScript (PL/V8), R.

Triggers

Triggers are events triggered by the action of SQL DML
statements. For example, an INSERT statement might
activate a trigger that checks if the values of the state-
ment are valid. Most triggers are only activated by either
INSERT or UPDATE statements.
Triggers are fully supported and can be attached to tables.
In PostgreSQL 9.0 and above, triggers can be per-column
and conditional, in that UPDATE triggers can target spe-
cific columns of a table, and triggers can be told to exe-
cute under a set of conditions as specified in the trigger’s
WHERE clause. As of PostgreSQL 9.1, triggers can be
attached to views by utilising the INSTEAD OF condi-
tion. Views in versions prior to 9.1 can have rules, though.
Multiple triggers are fired in alphabetical order. In addi-
tion to calling functions written in the native PL/pgSQL,
triggers can also invoke functions written in other lan-
guages like PL/Python or PL/Perl.

Asynchronous notifications

PostgreSQL provides an asynchronous messaging system
that is accessed through the NOTIFY, LISTEN and UN-
LISTEN commands. A session can issue a NOTIFY
command, along with the user-specified channel and an
optional payload, to mark a particular event occurring.
Other sessions are able to detect these events by issuing a
LISTEN command, which can listen to a particular chan-
nel. This functionality can be used for a wide variety of
purposes, such as letting other sessions know when a table
has updated or for separate applications to detect when
a particular action has been performed. Such a system
prevents the need for continuous polling by applications
to see if anything has yet changed, and reducing unnec-
essary overhead. Notifications are fully transactional, in
that messages are not sent until the transaction they were
sent from is committed. This eliminates the problem of
messages being sent for an action being performed which
is then rolled back.
Many of the connectors for PostgreSQL provide sup-
port for this notification system (including libpq, JDBC,

Npgsql, psycopg and node.js) so it can be used by external
applications.

Rules

Rules allow the “query tree” of an incoming query to
be rewritten. Rules, or more properly, “Query Re-Write
Rules”, are attached to a table/class and “Re-Write” the
incoming DML (select, insert, update, and/or delete) into
one or more queries that either replace the original DML
statement or execute in addition to it. Query Re-Write
occurs after DML statement parsing, but before query
planning.

Other querying features

• Transactions

• Full text search

• Views

• Materialized views[32]

• Updateable views[33]

• Recursive views[34]

• Inner, outer (full, left and right), and cross joins

• Sub-selects

• Correlated sub-queries[35]

• Regular expressions[36]

• Common table expressions and writable common ta-
ble expressions

• Encrypted connections via TLS (current versions do
not use vulnerable SSL, even with that configuration
option)[37]

• Domains

• Savepoints

• Two-phase commit

• TOAST (The Oversized-Attribute Storage Technique)
is used to transparently store large table attributes
(such as big MIME attachments or XML messages)
in a separate area, with automatic compression.

• Embedded SQL is implemented using preproces-
sor. SQL code is first written embedded into C
code. Then code is run through ECPG preprocessor,
which replaces SQL with calls to code library. Then
code can be compiled using a C compiler. Embed-
ding works also with C++ but it does not recognize
all C++ constructs.

https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Shared_library
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/R_(programming_language)
https://en.wikipedia.org/wiki/Data_manipulation_language
https://en.wikipedia.org/wiki/Insert_(SQL)
https://en.wikipedia.org/wiki/Update_(SQL)
https://en.wikipedia.org/wiki/View_(SQL)
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Full_text_search
https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Select_(SQL)
https://en.wikipedia.org/wiki/Regular_expression
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Savepoint
https://en.wikipedia.org/wiki/Two-phase_commit
https://en.wikipedia.org/wiki/Embedded_SQL

9.3. POSTGRESQL 97

9.3.6 Security

PostgreSQL manages its internal security on a per-role
basis. A role is generally regarded to be a user (a role
that can log in), or a group (a role of which other roles
are members). Permissions can be granted or revoked
on any object down to the column level, and can also al-
low/prevent the creation of new objects at the database,
schema or table levels.
The sepgsql extension (provided with PostgreSQL as of
version 9.1) provides an additional layer of security by in-
tegrating with SELinux. This utilises PostgreSQL’s SE-
CURITY LABEL feature.
PostgreSQL natively supports a broad number of external
authentication mechanisms, including:

• password (either MD5 or plain-text)

• GSSAPI

• SSPI

• Kerberos

• ident (maps O/S user-name as provided by an ident
server to database user-name)

• peer (maps local user name to database user name)

• LDAP

• Active Directory

• RADIUS

• certificate

• PAM

The GSSAPI, SSPI, Kerberos, peer, ident and certificate
methods can also use a specified “map” file that lists which
users matched by that authentication system are allowed
to connect as a specific database user.
These methods are specified in the cluster’s host-based
authentication configuration file (pg_hba.conf), which
determines what connections are allowed. This allows
control over which user can connect to which database,
where they can connect from (IP address/IP address
range/domain socket), which authentication system will
be enforced, and whether the connection must use TLS.

9.3.7 Upcoming features

Upcoming features in 9.5, in order of commit, include:

• IMPORT FOREIGN SCHEMA to import foreign
tables from a foreign schema, meaning tables no
longer have to be manually configured[38]

• ALTER TABLE ... SET LOGGED / UNLOGGED
for switching tables between logged and unlogged
states[39]

• Row-Level Security Policies for controlling which
rows are visible or can be added to a table[40]

• SKIP LOCKED for row-level locks[41]

• BRIN (Block Range Indexes) to speed up queries on
very large tables[42]

• Parallel VACUUMing with vacuumdb tool[43]

• Foreign tables can inherit and be inherited from[44]

• pg_rewind tool to efficiently resynchronise failed
primary to new primary[45]

• Index-only scans on GiST indexes[46]

• CREATE TRANSFORM for mapping data type
structures to procedural language data types[47]

• INSERT ... ON CONFLICT DO NOTH-
ING/UPDATE which provides “UPSERT"-style
functionality[48]

• JSONB-modifying operators and functions[49]

• TABLESAMPLE clause to specify random
sampling[50]

• GROUPING SETS, CUBE and ROLLUP
support[51]

Upcoming features in 9.6, in order of commit, include:

• Parallel sequential scan[52]

9.3.8 Add-ons
• MADlib: an open source analytics library for

PostgreSQL providing mathematical, statistical and
machine-learning methods for structured and un-
structured data

• MySQL migration wizard: included with Enter-
priseDB’s PostgreSQL installer (source code also
available)[53]

• Performance Wizard: included with EnterpriseDB’s
PostgreSQL installer (source code also available)[53]

• pgRouting: extended PostGIS to provide geospatial
routing functionality[54] (GNU GPL)

• PostGIS: a popular add-on which provides support
for geographic objects (GNU GPL)

• Postgres Enterprise Manager: a non-free tool con-
sisting of a service, multiple agents, and a GUI
which provides remote monitoring, management,
reporting, capacity planning and tuning[55]

• ST-Links SpatialKit: Extension for directly con-
necting to spatial databases[56]

https://en.wikipedia.org/wiki/Role_(computer_science)
https://en.wikipedia.org/wiki/SELinux
https://en.wikipedia.org/wiki/MD5
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://en.wikipedia.org/wiki/Security_Support_Provider_Interface
https://en.wikipedia.org/wiki/Kerberos_(protocol)
https://en.wikipedia.org/wiki/Ident_protocol
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Active_Directory
https://en.wikipedia.org/wiki/RADIUS
https://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/PostGIS

98 CHAPTER 9. EXAMPLES

9.3.9 Benchmarks and performance

Many informal performance studies of PostgreSQL have
been done.[57] Performance improvements aimed at im-
proving scalability started heavily with version 8.1. Sim-
ple benchmarks between version 8.0 and version 8.4
showed that the latter was more than 10 times faster on
read-only workloads and at least 7.5 times faster on both
read and write workloads.[58]

The first industry-standard and peer-validated benchmark
was completed in June 2007 using the Sun Java System
Application Server (proprietary version of GlassFish) 9.0
Platform Edition, UltraSPARC T1-based Sun Fire server
and PostgreSQL 8.2.[59] This result of 778.14 SPEC-
jAppServer2004 JOPS@Standard compares favourably
with the 874 JOPS@Standard with Oracle 10 on an
Itanium-based HP-UX system.[57]

In August 2007, Sun submitted an improved benchmark
score of 813.73 SPECjAppServer2004 JOPS@Standard.
With the system under test at a reduced price, the
price/performance improved from $US 84.98/JOPS to
$US 70.57/JOPS.[60]

The default configuration of PostgreSQL uses only a
small amount of dedicated memory for performance-
critical purposes such as caching database blocks and
sorting. This limitation is primarily because older oper-
ating systems required kernel changes to allow allocating
large blocks of shared memory.[61] PostgreSQL.org pro-
vides advice on basic recommended performance prac-
tice in a wiki.[62]

In April 2012, Robert Haas of EnterpriseDB demon-
strated PostgreSQL 9.2’s linear CPU scalability using a
server with 64 cores.[63]

Matloob Khushi performed benchmarking between Post-
gresql 9.0 and MySQL 5.6.15 for their ability to pro-
cess genomic data. In his performance analysis he found
that PostgreSQL extracts overlapping genomic regions 8x
times faster than MySQL using two datasets of 80,000
each forming random human DNA regions. Insertion and
data uploads in PostgreSQL were also better, although
general searching capability of both databases was almost
equivalent . [64]

9.3.10 Platforms

PostgreSQL is available for the following operating sys-
tems: Linux (all recent distributions), Windows (Win-
dows 2000 SP4 and later) (compilable by e.g. Visual
Studio, now with up to most recent 2015 version),
DragonFly BSD, FreeBSD, OpenBSD, NetBSD, Mac OS
X,[14] AIX, BSD/OS, HP-UX, IRIX, OpenIndiana,[65]

OpenSolaris, SCO OpenServer, SCO UnixWare, Solaris
and Tru64 Unix. In 2012, support for the following ob-
solete systems was removed (still supported in 9.1):[66]

DG/UX, NeXTSTEP, SunOS 4, SVR4, Ultrix 4, and

Univel. Most other Unix-like systems should also work.
PostgreSQL works on any of the following instruction
set architectures: x86 and x86-64 on Windows and
other operating systems; these are supported on other
than Windows: IA-64 Itanium, PowerPC, PowerPC 64,
S/390, S/390x, SPARC, SPARC 64, Alpha, ARMv8-
A (64-bit)[67] and older ARM (32-bit, including older
such as ARMv6 in Raspberry Pi[68]), MIPS, MIPSel,
M68k, and PA-RISC. It is also known to work on M32R,
NS32k, and VAX. In addition to these, it is possible to
build PostgreSQL for an unsupported CPU by disabling
spinlocks.[69]

9.3.11 Database administration

See also: Comparison of database tools

Open source front-ends and tools for administering Post-
greSQL include:

psql The primary front-end for PostgreSQL is the psql
command-line program, which can be used to en-
ter SQL queries directly, or execute them from a
file. In addition, psql provides a number of meta-
commands and various shell-like features to facili-
tate writing scripts and automating a wide variety of
tasks; for example tab completion of object names
and SQL syntax.

pgAdmin The pgAdmin package is a free and open
source graphical user interface administration tool
for PostgreSQL, which is supported on many com-
puter platforms.[70] The program is available in more
than a dozen languages. The first prototype, named
pgManager, was written for PostgreSQL 6.3.2 from
1998, and rewritten and released as pgAdmin un-
der the GNU General Public License (GPL) in later
months. The second incarnation (named pgAdmin
II) was a complete rewrite, first released on January
16, 2002. The third version, pgAdmin III, was orig-
inally released under the Artistic License and then
released under the same license as PostgreSQL. Un-
like prior versions that were written in Visual Basic,
pgAdmin III is written in C++, using the wxWidgets
framework allowing it to run on most common op-
erating systems. The query tool includes a script-
ing language called pgScript for supporting admin
and development tasks. In December 2014, Dave
Page, the pgAdmin project founder and primary
developer,[71] announced that with the shift towards
web-based models work has started on pgAdmin 4
with the aim of facilitating Cloud deployments.[72]

Although still at the concept stage,[73] the plan is to
build a single Python-based pgAdmin that users can
either deploy on a web server or run from their desk-
top.

https://en.wikipedia.org/wiki/Sun_Java_System_Application_Server
https://en.wikipedia.org/wiki/Sun_Java_System_Application_Server
https://en.wikipedia.org/wiki/GlassFish
https://en.wikipedia.org/wiki/UltraSPARC_T1
https://en.wikipedia.org/wiki/Sun_Fire
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/System_under_test
https://en.wikipedia.org/wiki/Shared_memory_(interprocess_communication)
https://en.wikipedia.org/wiki/Wiki
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Windows
https://en.wikipedia.org/wiki/Visual_Studio
https://en.wikipedia.org/wiki/Visual_Studio
https://en.wikipedia.org/wiki/DragonFly_BSD
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/NetBSD
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/Mac_OS_X
https://en.wikipedia.org/wiki/IBM_AIX
https://en.wikipedia.org/wiki/BSD/OS
https://en.wikipedia.org/wiki/HP-UX
https://en.wikipedia.org/wiki/IRIX
https://en.wikipedia.org/wiki/OpenIndiana
https://en.wikipedia.org/wiki/OpenSolaris
https://en.wikipedia.org/wiki/SCO_OpenServer
https://en.wikipedia.org/wiki/UnixWare
https://en.wikipedia.org/wiki/Solaris_(operating_system)
https://en.wikipedia.org/wiki/Tru64_UNIX
https://en.wikipedia.org/wiki/DG/UX
https://en.wikipedia.org/wiki/NeXTSTEP
https://en.wikipedia.org/wiki/SunOS
https://en.wikipedia.org/wiki/SVR4
https://en.wikipedia.org/wiki/Ultrix
https://en.wikipedia.org/wiki/Univel
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/X86-64
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/PowerPC
https://en.wikipedia.org/wiki/S/390
https://en.wikipedia.org/wiki/IBM_System_z
https://en.wikipedia.org/wiki/SPARC
https://en.wikipedia.org/wiki/DEC_Alpha
https://en.wikipedia.org/wiki/ARMv8
https://en.wikipedia.org/wiki/ARMv8
https://en.wikipedia.org/wiki/64-bit
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/32-bit
https://en.wikipedia.org/wiki/ARMv6
https://en.wikipedia.org/wiki/Raspberry_Pi
https://en.wikipedia.org/wiki/MIPS_architecture
https://en.wikipedia.org/wiki/MIPSel
https://en.wikipedia.org/wiki/Motorola_68000_family
https://en.wikipedia.org/wiki/PA-RISC
https://en.wikipedia.org/wiki/M32R
https://en.wikipedia.org/wiki/NS320xx
https://en.wikipedia.org/wiki/VAX
https://en.wikipedia.org/wiki/Spinlock
https://en.wikipedia.org/wiki/Comparison_of_database_tools
https://en.wikipedia.org/wiki/Front_and_back_ends
https://en.wikipedia.org/wiki/Command-line_program
http://www.pgadmin.org/
https://en.wikipedia.org/wiki/Graphical_user_interface
https://en.wikipedia.org/wiki/Artistic_License
https://en.wikipedia.org/wiki/Visual_Basic
https://en.wikipedia.org/wiki/WxWidgets
http://www.pgadmin.org/docs/dev/pgscript.html
https://en.wikipedia.org/wiki/Python_(programming_language)

9.3. POSTGRESQL 99

phpPgAdmin phpPgAdmin is a web-based administra-
tion tool for PostgreSQL written in PHP and based
on the popular phpMyAdmin interface originally
written for MySQL administration.[74]

PostgreSQL Studio PostgreSQL Studio allows users to
perform essential PostgreSQL database develop-
ment tasks from a web-based console. PostgreSQL
Studio allows users to work with cloud databases
without the need to open firewalls.[75]

TeamPostgreSQL AJAX/JavaScript-driven web inter-
face for PostgreSQL. Allows browsing, maintaining
and creating data and database objects via a web
browser. The interface offers tabbed SQL editor
with auto-completion, row-editing widgets, click-
through foreign key navigation between rows and
tables, 'favorites’ management for commonly used
scripts, among other features. Supports SSH for
both the web interface and the database connec-
tions. Installers are available for Windows, Mac and
Linux, as well as a simple cross-platform archive
that runs from a script.[76]

LibreOffice/OpenOffice.org Base
LibreOffice/OpenOffice.org Base can be used
as a front-end for PostgreSQL.[77][78]

pgFouine The pgFouine PostgreSQL log analyzer gen-
erates detailed reports from a PostgreSQL log file
and provides VACUUM analysis.[79]

A number of companies offer proprietary tools for Post-
greSQL. They often consist of a universal core that is
adapted for various specific database products. These
tools mostly share the administration features with the
open source tools but offer improvements in data mod-
eling, importing, exporting or reporting.

9.3.12 Prominent users

Prominent organizations and products that use Post-
greSQL as the primary database include:

• Yahoo! for web user behavioral analysis, storing
two petabytes and claimed to be the largest data
warehouse using a heavily modified version of Post-
greSQL with an entirely different column-based
storage engine and different query processing layer.
While for performance, storage, and query pur-
poses the database bears little resemblance to Post-
greSQL, the front-end maintains compatibility so
that Yahoo can use many off-the-shelf tools already
written to interact with PostgreSQL.[80][81]

• In 2009, social networking website MySpace
used Aster Data Systems's nCluster database for
data warehousing, which was built on unmodified
PostgreSQL.[82][83]

• Geni.com uses PostgreSQL for their main genealogy
database.[84]

• OpenStreetMap, a collaborative project to create a
free editable map of the world.[85]

• Afilias, domain registries for .org, .info and
others.[86]

• Sony Online multiplayer online games.[87]

• BASF, shopping platform for their agribusiness
portal.[88]

• Reddit social news website.[89]

• Skype VoIP application, central business
databases.[90]

• Sun xVM, Sun’s virtualization and datacenter au-
tomation suite.[91]

• MusicBrainz, open online music encyclopedia.[92]

• The International Space Station for collecting
telemetry data in orbit and replicating it to the
ground.[93]

• MyYearbook social networking site.[94]

• Instagram, a popular mobile photo sharing
service[95]

• Disqus, an online discussion and commenting
service[96]

• TripAdvisor, travel information website of mostly
user-generated content[97]

PostgreSQL is offered by some major vendors as software
as a service:

• Heroku, a platform as a service provider, has sup-
ported PostgreSQL since the start in 2007.[98] They
offer value-add features like full database “roll-
back” (ability to restore a database from any point
in time),[99] which is based on WAL-E, open source
software developed by Heroku.[100]

• In January 2012, EnterpriseDB released a cloud ver-
sion of both PostgreSQL and their own proprietary
Postgres Plus Advanced Server with automated pro-
visioning for failover, replication, load-balancing,
and scaling. It runs on Amazon Web Services.[101]

• VMware offers vFabric Postgres for private clouds
on vSphere since May 2012.[102]

• In November 2013, Amazon.com announced that
they are adding PostgreSQL to their Relational
Database Service offering.[103][104]

https://en.wikipedia.org/wiki/PhpPgAdmin
https://en.wikipedia.org/wiki/PhpMyAdmin
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Database_connection
https://en.wikipedia.org/wiki/Database_connection
https://en.wikipedia.org/wiki/LibreOffice
https://en.wikipedia.org/wiki/OpenOffice.org_Base
https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Data_modeling
https://en.wikipedia.org/wiki/Yahoo!
https://en.wikipedia.org/wiki/Petabytes
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/MySpace
https://en.wikipedia.org/wiki/Aster_Data_Systems
https://en.wikipedia.org/wiki/Geni.com
https://en.wikipedia.org/wiki/OpenStreetMap
https://en.wikipedia.org/wiki/Afilias
https://en.wikipedia.org/wiki/.org
https://en.wikipedia.org/wiki/.info
https://en.wikipedia.org/wiki/Sony_Online
https://en.wikipedia.org/wiki/BASF
https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/Sun_xVM
https://en.wikipedia.org/wiki/MusicBrainz
https://en.wikipedia.org/wiki/International_Space_Station
https://en.wikipedia.org/wiki/MyYearbook
https://en.wikipedia.org/wiki/Instagram
https://en.wikipedia.org/wiki/Disqus
https://en.wikipedia.org/wiki/TripAdvisor
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Software_as_a_service
https://en.wikipedia.org/wiki/Heroku
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/VMware
https://en.wikipedia.org/wiki/VMware_vSphere
https://en.wikipedia.org/wiki/Amazon.com
https://en.wikipedia.org/wiki/Amazon_Relational_Database_Service
https://en.wikipedia.org/wiki/Amazon_Relational_Database_Service

100 CHAPTER 9. EXAMPLES

9.3.13 Proprietary derivatives and support

Although the license allows proprietary products based
on Postgres, the code did not develop in the proprietary
space at first. The first main offshoot originated when
Paula Hawthorn (an original Ingres team member who
moved from Ingres) and Michael Stonebraker formed
Illustra Information Technologies to make a proprietary
product based on POSTGRES.
In 2000, former Red Hat investors created the company
Great Bridge to make a proprietary product based on
PostgreSQL and compete against proprietary database
vendors. Great Bridge sponsored several PostgreSQL
developers and donated many resources back to the
community,[105] but by late 2001 closed due to tough
competition from companies like Red Hat and to poor
market conditions.[106][107]

In 2001, Command Prompt, Inc. released Mammoth
PostgreSQL, a proprietary product based on PostgreSQL.
In 2008, Command Prompt, Inc. released the source un-
der the original license. Command Prompt, Inc. con-
tinues to support the PostgreSQL community actively
through developer sponsorships and projects including
PL/Perl, PL/php, and hosting of community projects such
as the PostgreSQL build farm.
In January 2005, PostgreSQL received backing by
database vendor Pervasive Software, known for its
Btrieve product which was ubiquitous on the Novell Net-
Ware platform. Pervasive announced commercial sup-
port and community participation and achieved some suc-
cess. In July 2006, Pervasive left the PostgreSQL support
market.[108]

In mid-2005, two other companies announced plans to
make proprietary products based on PostgreSQL with fo-
cus on separate niche markets. EnterpriseDB added func-
tionality to allow applications written to work with Oracle
to be more readily run with PostgreSQL. Greenplum con-
tributed enhancements directed at data warehouse and
business intelligence applications, including the BizGres
project.
In October 2005, John Loiacono, executive vice president
of software at Sun Microsystems, commented: “We're
not going to OEM Microsoft but we are looking at Post-
greSQL right now,”[109] although no specifics were re-
leased at that time. By November 2005, Sun had an-
nounced support for PostgreSQL.[110] By June 2006, Sun
Solaris 10 (June 2006 release) shipped with PostgreSQL.
In August 2007, EnterpriseDB introduced Postgres
Plus (originally called EnterpriseDB Postgres), a pre-
configured distribution of PostgreSQL including many
contrib modules and add-on components.[111]

In 2011, 2ndQuadrant became a Platinum Sponsor of
PostgreSQL, in recognition of their long-standing con-
tributions and developer sponsorship. 2ndQuadrant em-
ploy one of the largest teams of PostgreSQL contributors

and provide professional support for open source Post-
greSQL.
Many other companies have used PostgreSQL as the
base for their proprietary database projects, e.g. Tru-
viso, Netezza, ParAccel (used in Amazon Redshift[112]).
In many cases the products have been enhanced so much
that the software has been forked, though with some fea-
tures cherry-picked from later releases.

9.3.14 Release history

9.3.15 See also

• Comparison of relational database management sys-
tems

9.3.16 References
[1] “Happy Birthday, PostgreSQL!". PostgreSQL Global De-

velopment Group. July 8, 2008.

[2] “2015-10-08 Security Update Release”. PostgreSQL. The
PostgreSQL Global Development Group. 2015-10-08.
Retrieved 2015-10-08.

[3] “PostgreSQL licence approved by OSI”. Crynwr. 2010-
02-18. Retrieved 2010-02-18.

[4] “OSI PostgreSQL Licence”. Open Source Initiative.
2010-02-20. Retrieved 2010-02-20.

[5] “License”. PostgreSQL Global Development Group. Re-
trieved 2010-09-20.

[6] “Debian -- Details of package postgresql in sid”. de-
bian.org.

[7] "Licensing:Main". FedoraProject.

[8] “PostgreSQL”. fsf.org.

[9] “SQL Conformance”. postgresql.org. 2013-04-04. Re-
trieved 2013-08-28.

[10] “Appendix D. SQL Conformance”. PostgreSQL 9 Doc-
umentation. PostgreSQL Global Development Group.
2009 [1996]. Retrieved 2013-04-01.

[11] “What is PostgreSQL?". PostgreSQL 9.3.0 Documenta-
tion. PostgreSQL Global Development Group. Retrieved
2013-09-20.

[12] “Lion Server: MySQL not included”. 2011-08-04. Re-
trieved 2011-11-12.

[13] “OS X Lion Server — Technical Specifications”. 2011-
08-04. Retrieved 2011-11-12.

[14] http://www.postgresql.org/download/macosx/

[15] “Contributor Profiles”. PostgreSQL. Retrieved December
17, 2011.

[16] Audio sample, 5.6k MP3

https://en.wikipedia.org/wiki/Illustra
https://en.wikipedia.org/wiki/Pervasive_Software
https://en.wikipedia.org/wiki/Btrieve
https://en.wikipedia.org/wiki/Novell_NetWare
https://en.wikipedia.org/wiki/Novell_NetWare
https://en.wikipedia.org/wiki/Oracle_database
https://en.wikipedia.org/wiki/Greenplum
https://en.wikipedia.org/wiki/Data_warehouse
https://en.wikipedia.org/wiki/Business_intelligence
https://en.wikipedia.org/wiki/Executive_vice_president
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Original_equipment_manufacturer
https://en.wikipedia.org/wiki/Amazon_Redshift
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
https://en.wikipedia.org/wiki/Comparison_of_relational_database_management_systems
http://www.postgresql.org/about/news/978/
http://www.postgresql.org/about/news/1615/
http://www.crynwr.com/cgi-bin/ezmlm-cgi?17:mmp:969
http://www.opensource.org/licenses/postgresql
http://www.postgresql.org/about/licence
https://packages.debian.org/sid/postgresql
https://fedoraproject.org/wiki/Licensing:Main?rd=Licensing
http://directory.fsf.org/wiki/PostgreSQL
http://www.postgresql.org/docs/current/static/features.html
http://www.postgresql.org/docs/current/interactive/features.html
http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/interactive/
http://www.postgresql.org/docs/current/static/intro-whatis.html
http://support.apple.com/kb/HT4828
http://support.apple.com/kb/SP630
http://www.postgresql.org/download/macosx/
http://www.postgresql.org/community/contributors/
http://www.postgresql.org/files/postgresql.mp3

9.3. POSTGRESQL 101

[17] “Project name — statement from the core team”.
archives.postgresql.org. 2007-11-16. Retrieved 2007-11-
16.

[18] Stonebraker, M; Rowe, LA (May 1986). The design of
POSTGRES (PDF). Proc. 1986 ACM SIGMOD Con-
ference on Management of Data. Washington, DC. Re-
trieved 2011-12-17.

[19]

[20] Stonebraker, M; Rowe, LA. The POSTGRES data model
(PDF). Proceedings of the 13th International Conference
on Very Large Data Bases. Brighton, England: Morgan
Kaufmann Publishers. pp. 83–96. ISBN 0-934613-46-
X.

[21] Pavel Stehule (9 June 2012). “Historie projektu Post-
greSQL” (in Czech).

[22] “University POSTGRES, Version 4.2”. 1999-07-26.

[23] Page, Dave (2015-04-07). “Re: 20th anniversary of Post-
greSQL ?". pgsql-advocacy (Mailing list). Retrieved 9
April 2015.

[24] Dan R. K. Ports, Kevin Grittner (2012). “Serializable
Snapshot Isolation in PostgreSQL” (PDF). Proceedings of
the VLDB Endowment 5 (12): 1850–1861.

[25] PostgreSQL 9.1 with synchronous replication (news), H
Online

[26] Postgres-XC project page (website), Postgres-XC

[27] Postgres-XL product page (website), TransLattice

[28] Marit Fischer (2007-11-10). “Backcountry.com finally
gives something back to the open source community”
(Press release). Backcountry.com.

[29] Geoghegan, Peter (March 23, 2014). “What I think of
jsonb”.

[30] “PostgreSQL + Python — Psycopg”. initd.org.

[31] “SQL database drivers”. Go wiki. golang.org. Retrieved
22 June 2015.

[32] “Add a materialized view relations.”. 2013-03-04. Re-
trieved 2013-03-04.

[33] “Support automatically-updatable views.”. 2012-12-08.
Retrieved 2012-12-08.

[34] “Add CREATE RECURSIVE VIEW syntax”. 2013-02-
01. Retrieved 2013-02-28.

[35] Momjian, Bruce (2001). “Subqueries”. PostgreSQL: In-
troduction and Concepts. Addison-Wesley. ISBN 0-201-
70331-9. Retrieved 2010-09-25.

[36] Bernier, Robert (2 February 2006). “Using Regular Ex-
pressions in PostgreSQL”. O'Reilly Media. Retrieved
2010-09-25.

[37] “A few short notes about PostgreSQL and POODLE”. ha-
gander.net.

[38] “Implement IMPORT FOREIGN SCHEMA.”. 2014-07-
10. Retrieved 2014-09-11.

[39] “Implement ALTER TABLE .. SET LOGGED / UN-
LOGGED”. 2014-08-22. Retrieved 2014-08-27.

[40] “Row-Level Security Policies (RLS)". 2014-09-19. Re-
trieved 2014-09-19.

[41] “Implement SKIP LOCKED for row-level locks”. 2014-
10-07. Retrieved 2014-10-07.

[42] “BRIN: Block Range Indexes”. 2014-11-07. Retrieved
2014-11-09.

[43] “vacuumdb: enable parallel mode”. 2015-01-23. Re-
trieved 2015-01-28.

[44] “Allow foreign tables to participate in inheritance.”. 2015-
03-22. Retrieved 2015-03-26.

[45] “Add pg_rewind, for re-synchronizing a master server af-
ter failback.”. 2015-03-23. Retrieved 2015-03-26.

[46] “Add support for index-only scans in GiST.”. 2015-03-
26. Retrieved 2015-03-26.

[47] “Add transforms feature”. 2015-04-26. Retrieved 2015-
04-27.

[48] “Add support for INSERT ... ON CONFLICT DO
NOTHING/UPDATE”. 2015-05-08. Retrieved 2015-
05-11.

[49] “Additional functions and operators for jsonb”. 2015-05-
12. Retrieved 2015-05-16.

[50] “TABLESAMPLE, SQL Standard and extensible”. 2015-
05-15. Retrieved 2015-05-16.

[51] “Support GROUPING SETS, CUBE and ROLLUP.”.
2015-05-16. Retrieved 2015-05-16.

[52] “Generate parallel sequential scan plans in simple cases.”.
2015-11-11. Retrieved 2015-11-18.

[53] “Postgres Plus Downloads”. Company website. Enter-
priseDB. Retrieved November 12, 2011.

[54] pgRouting, PostLBS

[55] “Postgres Enterprise Manager”. Company website. Enter-
priseDB. Retrieved November 12, 2011.

[56] ST Links

[57] Josh Berkus (2007-07-06). “PostgreSQL publishes first
real benchmark”. Retrieved 2007-07-10.

[58] György Vilmos (2009-09-29). “PostgreSQL history”.
Retrieved 2010-08-28.

[59] “SPECjAppServer2004 Result”. SPEC. 2007-07-06. Re-
trieved 2007-07-10.

[60] “SPECjAppServer2004 Result”. SPEC. 2007-07-04. Re-
trieved 2007-09-01.

[61] “Managing Kernel Resources”. PostgreSQL Manual.
PostgreSQL.org. Retrieved November 12, 2011.

http://archives.postgresql.org/pgsql-advocacy/2007-11/msg00109.php
http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
http://db.cs.berkeley.edu/papers/ERL-M85-95.pdf
https://en.wikipedia.org/wiki/ACM_SIGMOD_Conference
https://en.wikipedia.org/wiki/ACM_SIGMOD_Conference
http://db.cs.berkeley.edu/papers/ERL-M87-13.pdf
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-934613-46-X
https://en.wikipedia.org/wiki/Special:BookSources/0-934613-46-X
http://postgres.cz/wiki/Historie_projektu_PostgreSQL
http://postgres.cz/wiki/Historie_projektu_PostgreSQL
http://db.cs.berkeley.edu/postgres.html
http://www.postgresql.org/message-id/CA+OCxozS_cuaLw=nfS=GdJZmS7ygjhdtZbqVt17wPLfCOtFY4g@mail.gmail.com
http://www.postgresql.org/message-id/CA+OCxozS_cuaLw=nfS=GdJZmS7ygjhdtZbqVt17wPLfCOtFY4g@mail.gmail.com
http://drkp.net/drkp/papers/ssi-vldb12.pdf
http://drkp.net/drkp/papers/ssi-vldb12.pdf
http://www.h-online.com/open/news/item/PostgreSQL-9-1-with-synchronous-replication-1341228.html
http://postgres-xc.sourceforge.net/
http://www.translattice.com/postgres-xl_product.shtml
http://www.backcountrycorp.com/corporate/section/3/press/a511/Backcountry-finally-gives-something-back-to-the-open-source-community.html
http://www.backcountrycorp.com/corporate/section/3/press/a511/Backcountry-finally-gives-something-back-to-the-open-source-community.html
http://pgeoghegan.blogspot.com/2014/03/what-i-think-of-jsonb.html
http://pgeoghegan.blogspot.com/2014/03/what-i-think-of-jsonb.html
http://initd.org/psycopg/
https://github.com/golang/go/wiki/SQLDrivers#drivers
http://www.postgresql.org/message-id/E1UCJDN-00042x-0w@gemulon.postgresql.org
http://archives.postgresql.org/pgsql-committers/2012-12/msg00154.php
http://www.postgresql.org/message-id/E1U17NB-0006c6-DX@gemulon.postgresql.org
http://www.postgresql.org/files/documentation/books/aw_pgsql/node81.html
http://www.postgresql.org/files/documentation/books/aw_pgsql/15467.html
http://www.postgresql.org/files/documentation/books/aw_pgsql/15467.html
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-70331-9
https://en.wikipedia.org/wiki/Special:BookSources/0-201-70331-9
http://www.oreillynet.com/pub/a/databases/2006/02/02/postgresq_regexes.html
http://www.oreillynet.com/pub/a/databases/2006/02/02/postgresq_regexes.html
http://blog.hagander.net/archives/222-A-few-short-notes-about-PostgreSQL-and-POODLE.html
http://www.postgresql.org/message-id/E1X5JcQ-0007ND-Fz@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1XKtbL-0001B9-6k@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1XKtbL-0001B9-6k@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1XV0JP-0003h6-O6@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1XbbM1-00049u-MR@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1XmpRL-0001Zh-Sd@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YEicn-00062k-0F@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YZk49-0008WE-Gw@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1Ya6aw-0005qo-4n@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1Ya6aw-0005qo-4n@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YbBKy-0000at-AF@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YmNw0-0002Kb-3Q@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YqZCW-0000e6-Od@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YqZCW-0000e6-Od@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YsGHP-0006De-1z@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YtKVU-0001M2-1k@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1YtRD5-0005Q7-SM@gemulon.postgresql.org
http://www.postgresql.org/message-id/E1ZwVzN-0000Xz-5e@gemulon.postgresql.org
http://www.enterprisedb.com/products/download.do
http://pgrouting.org/
http://www.enterprisedb.com/products-services-training/products/postgres-enterprise-manager/
http://st-links.com/
https://en.wikipedia.org/wiki/Josh_Berkus
http://blogs.ittoolbox.com/database/soup/archives/postgresql-publishes-first-real-benchmark-17470
http://blogs.ittoolbox.com/database/soup/archives/postgresql-publishes-first-real-benchmark-17470
http://suckit.blog.hu/2009/09/29/postgresql_history
http://www.spec.org/jAppServer2004/results/res2007q3/jAppServer2004-20070606-00065.html
https://en.wikipedia.org/wiki/SPEC
http://www.spec.org/jAppServer2004/results/res2007q3/jAppServer2004-20070703-00073.html
https://en.wikipedia.org/wiki/SPEC
http://www.postgresql.org/docs/current/static/kernel-resources.html

102 CHAPTER 9. EXAMPLES

[62] Greg Smith, Robert Treat, and Christopher Browne.
“Tuning your PostgreSQL server”. Wiki. Post-
greSQL.org. Retrieved November 12, 2011.

[63] Robert Haas (2012-04-03). “Did I Say 32 Cores? How
about 64?". Retrieved 2012-04-08.

[64] Matloob Khushi “Benchmarking database performance
for genomic data.”, J Cell Biochem., 2015 Jun;116(6):877-
83. doi: 10.1002/jcb.25049.

[65] “oi_151a Release Notes”. OpenIndiana. Retrieved 2012-
04-07.

[66] “Git — postgresql.git/commitdiff". Git.postgresql.org.
Retrieved 2012-07-08.

[67] “AArch64 planning BoF at DebConf”. debian.org.

[68] http://raspberrypg.org/2015/06/
step-5-update-installing-postgresql-on-my-raspberry-pi-1-and-2/

[69] “Supported Platforms”. PostgreSQL Global Development
Group. Retrieved 2012-04-06.

[70] “pgAdmin: PostgreSQL administration and management
tools”. website. Retrieved November 12, 2011.

[71] “pgAdmin Development Team”. pgadmin.org. Retrieved
22 June 2015.

[72] Dave, Page. “The story of pgAdmin”. Dave’s Postgres
Blog. pgsnake.blogspot.co.uk. Retrieved 7 December
2014.

[73] Dave, Page. “pgAdmin 4”. Git Repository - The next gen-
eration of pgAdmin. git.postgresql.org.

[74] phpPgAdmin Project (2008-04-25). “About phpPgAd-
min”. Retrieved 2008-04-25.

[75] PostgreSQL Studio (2013-10-09). “About PostgreSQL
Studio”. Retrieved 2013-10-09.

[76] “TeamPostgreSQL website”. 2013-10-03. Retrieved
2013-10-03.

[77] oooforum.org (2010-01-10). “Back Ends for OpenOf-
fice”. Retrieved 2011-01-05.

[78] libreoffice.org (2012-10-14). “Base features”. Retrieved
2012-10-14.

[79] Greg Smith (15 October 2010). PostgreSQL 9.0 High Per-
formance. Packt Publishing. ISBN 978-1-84951-030-1.

[80] Eric Lai (2008-05-22). “Size matters: Yahoo claims
2-petabyte database is world’s biggest, busiest”.
Computerworld.

[81] Thomas Claburn (2008-05-21). “Yahoo Claims Record
With Petabyte Database”. InformationWeek.

[82] Emmanuel Cecchet (May 21, 2009). Building PetaByte
Warehouses with Unmodified PostgreSQL (PDF). PGCon
2009. Retrieved November 12, 2011.

[83] “MySpace.com scales analytics for all their friends”
(PDF). case study. Aster Data. June 15, 2010. Archived
(PDF) from the original on November 14, 2010. Re-
trieved November 12, 2011.

[84] “Last Weekend’s Outage”. Blog. Geni. 2011-08-01.

[85] “Database”. Wiki. OpenStreetMap.

[86] PostgreSQL affiliates .ORG domain, AU: Computer World

[87] Sony Online opts for open-source database over Oracle,
Computer World

[88] AWeb Commerce Group Case Study on PostgreSQL (PDF)
(1.2 ed.), PostgreSQL

[89] “Architecture Overview”. Reddit software wiki. Reddit.
27 March 2014. Retrieved 2014-11-25.

[90] “PostgreSQL at Skype”. Skype Developer Zone. 2006.
Retrieved 2007-10-23.

[91] “How Much Are You Paying For Your Database?". Sun
Microsystems blog. 2007. Retrieved 2007-12-14.

[92] “Database — MusicBrainz”. MusicBrainz Wiki. Re-
trieved 5 February 2011.

[93] Duncavage, Daniel P (2010-07-13). “NASA needs
Postgres-Nagios help”.

[94] Roy, Gavin M (2010). “PostgreSQL at myYear-
book.com” (talk). USA East: PostgreSQL Conference.

[95] “Keeping Instagram up with over a million new users in
twelve hours”. Instagram-engineering.tumblr.com. 2011-
05-17. Retrieved 2012-07-07.

[96] “Postgres at Disqus”. Retrieved May 24, 2013.

[97] Matthew Kelly (27 March 2015). At The Heart Of
A Giant: Postgres At TripAdvisor. PGConf US 2015.
(Presentation video)

[98] Alex Williams (1 April 2013). “Heroku Forces Customer
Upgrade To Fix Critical PostgreSQL Security Hole”.
TechCrunch.

[99] Barb Darrow (11 November 2013). “Heroku gussies up
Postgres with database roll-back and proactive alerts”. Gi-
gaOM.

[100] Craig Kerstiens (26 September 2013). “WAL-E and Con-
tinuous Protection with Heroku Postgres”. Heroku blog.

[101] “EnterpriseDB Offers Up Postgres Plus Cloud Database”.
Techweekeurope.co.uk. 2012-01-27. Retrieved 2012-
07-07.

[102] Al Sargent (15 May 2012). “Introducing VMware vFab-
ric Suite 5.1: Automated Deployment, New Components,
and Open Source Support”. VMware blogs.

[103] Jeff (14 November 2013). “Amazon RDS for PostgreSQL
— Now Available”. Amazon Web Services Blog.

[104] Alex Williams (14 November 2013). “PostgreSQL Now
Available On Amazon’s Relational Database Service”.
TechCrunch.

[105] Maya Tamiya (2001-01-10). “Interview: Bruce
Momjian”. LWN.net. Retrieved 2007-09-07.

http://wiki.postgresql.org/wiki/Tuning_Your_PostgreSQL_Server
http://rhaas.blogspot.com/2012/04/did-i-say-32-cores-how-about-64.html
http://rhaas.blogspot.com/2012/04/did-i-say-32-cores-how-about-64.html
http://www.ncbi.nlm.nih.gov/pubmed/25560631
http://www.ncbi.nlm.nih.gov/pubmed/25560631
http://wiki.openindiana.org/oi/oi_151a+Release+Notes
http://git.postgresql.org/gitweb/?p=postgresql.git;a=commitdiff;h=f2f9439fbfba378cb64cd6e5a046e0184cd542c6
http://lists.debian.org/debian-devel/2012/07/msg00536.html
http://raspberrypg.org/2015/06/step-5-update-installing-postgresql-on-my-raspberry-pi-1-and-2/
http://raspberrypg.org/2015/06/step-5-update-installing-postgresql-on-my-raspberry-pi-1-and-2/
http://www.postgresql.org/docs/current/static/supported-platforms.html
http://www.pgadmin.org/
http://www.pgadmin.org/
http://www.pgadmin.org/development/team.php
http://pgsnake.blogspot.co.uk/2014/12/the-story-of-pgadmin.html
http://git.postgresql.org/gitweb/?p=pgadmin4.git
http://phppgadmin.sourceforge.net/?page=about
http://phppgadmin.sourceforge.net/?page=about
http://www.postgresqlstudio.org/about/
http://www.postgresqlstudio.org/about/
http://www.teampostgresql.com/
http://www.oooforum.org/forum/viewtopic.phtml?p=356180
http://www.oooforum.org/forum/viewtopic.phtml?p=356180
http://www.libreoffice.org/features/base/
http://www.packtpub.com/postgresql-90-high-performance/book
http://www.packtpub.com/postgresql-90-high-performance/book
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-84951-030-1
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyId=18&articleId=9087918&intsrc=hm_topic
http://www.computerworld.com/action/article.do?command=viewArticleBasic&taxonomyId=18&articleId=9087918&intsrc=hm_topic
https://en.wikipedia.org/wiki/Computerworld
http://www.informationweek.com/news/showArticle.jhtml?articleID=207801579
http://www.informationweek.com/news/showArticle.jhtml?articleID=207801579
https://en.wikipedia.org/wiki/InformationWeek
http://www.pgcon.org/2009/schedule/attachments/135_PGCon%25202009%2520-%2520Aster%2520v6.pdf
http://www.pgcon.org/2009/schedule/attachments/135_PGCon%25202009%2520-%2520Aster%2520v6.pdf
http://www.asterdata.com/resources/assets/cs_Aster_Data_4.0_MySpace.pdf
http://web.archive.org/web/20101114141918/http://asterdata.com/resources/assets/cs_Aster_Data_4.0_MySpace.pdf
http://www.geni.com/blog/last-weekends-outage-368211.html
http://wiki.openstreetmap.org/wiki/Database
http://www.computerworld.com.au/index.php?id=760310963
http://www.computerworld.com/databasetopics/data/software/story/0,10801,109722,00.html
http://www.postgresql.org/files/about/casestudies/wcgcasestudyonpostgresqlv1.2.pdf
https://github.com/reddit/reddit/wiki/Architecture-Overview#reddit-the-software
https://developer.skype.com/SkypeGarage/DbProjects/SkypePostgresqlWhitepaper
http://blogs.sun.com/marchamilton/entry/how_much_are_you_paying
http://musicbrainz.org/doc/Database
http://archives.postgresql.org/pgsql-general/2010-07/msg00394.php
http://archives.postgresql.org/pgsql-general/2010-07/msg00394.php
https://www.postgresqlconference.org/2010/east/talks/postgresql_at_myyearbook.com
https://www.postgresqlconference.org/2010/east/talks/postgresql_at_myyearbook.com
http://instagram-engineering.tumblr.com/post/20541814340/keeping-instagram-up-with-over-a-million-new-users-in#replicationread-slaves
http://instagram-engineering.tumblr.com/post/20541814340/keeping-instagram-up-with-over-a-million-new-users-in#replicationread-slaves
https://speakerdeck.com/mikeclarke/pgcon-2013-keynote-postgres-at-disqus
http://www.pgconf.us/2015/event/95/
http://www.pgconf.us/2015/event/95/
https://www.youtube.com/watch?v=YquXmwZNnfg
http://techcrunch.com/2013/04/01/heroku-forces-customer-upgrade-to-fix-critical-postgresql-security-hole/
http://techcrunch.com/2013/04/01/heroku-forces-customer-upgrade-to-fix-critical-postgresql-security-hole/
http://gigaom.com/2013/11/11/heroku-gussies-up-postgres-with-database-roll-back-and-proactive-alerts/
http://gigaom.com/2013/11/11/heroku-gussies-up-postgres-with-database-roll-back-and-proactive-alerts/
https://blog.heroku.com/archives/2013/9/26/wal_e_and_continuous_protection_with_heroku_postgres
https://blog.heroku.com/archives/2013/9/26/wal_e_and_continuous_protection_with_heroku_postgres
http://www.techweekeurope.co.uk/news/enterprisedb-offers-up-postgres-plus-cloud-database-57030
https://blogs.vmware.com/vfabric/2012/05/announcing-vmware-vfabric-suite-51.html
https://blogs.vmware.com/vfabric/2012/05/announcing-vmware-vfabric-suite-51.html
https://blogs.vmware.com/vfabric/2012/05/announcing-vmware-vfabric-suite-51.html
http://aws.typepad.com/aws/2013/11/amazon-rds-for-postgresql-now-available.html
http://aws.typepad.com/aws/2013/11/amazon-rds-for-postgresql-now-available.html
http://techcrunch.com/2013/11/14/postgressql-now-available-on-amazons-relational-database-service/
http://techcrunch.com/2013/11/14/postgressql-now-available-on-amazons-relational-database-service/
http://lwn.net/2001/features/Momjian/
http://lwn.net/2001/features/Momjian/
https://en.wikipedia.org/wiki/LWN.net

9.4. APACHE CASSANDRA 103

[106] “Great Bridge ceases operations” (Press release). Great
Bridge. 2001-09-06. Retrieved 2007-09-07.

[107] Nikolai Bezroukov (1 July 2004). “The Sunset of Linux
Hype”. Portraits of Open Source Pioneers. NORFOLK,
Va., September 6, 2001 -- Great Bridge LLC, the com-
pany that pioneered commercial distribution and support
of the PostgreSQL open source database, announced to-
day that it has ceased business operations

[108] John Farr (2006-07-25). “Open letter to the PostgreSQL
Community”. Pervasive Software. Archived from the
original on 2007-02-25. Retrieved 2007-02-13.

[109] Rodney Gedda (2005-10-05). “Sun’s software chief eyes
databases, groupware”. Computerworld. Retrieved 2007-
02-13.

[110] “Sun Announces Support for Postgres Database on Solaris
10” (Press release). Sun Microsystems. 2005-11-17. Re-
trieved 2007-02-13.

[111] “EnterpriseDB Announces First-Ever Professional-Grade
PostgreSQL Distribution for Linux” (Press release).
EnterpriseDB. 2007-08-07. Retrieved 2007-08-07.

[112] http://docs.aws.amazon.com/redshift/latest/dg/c_
redshift-and-postgres-sql.html

[113] “Versioning policy”. PostgreSQL Global Development
Group. Retrieved 2012-01-30.

9.3.17 Further reading

• Obe, Regina; Hsu, Leo (July 8, 2012). PostgreSQL:
Up and Running. O'Reilly. ISBN 1-4493-2633-1.

• Krosing, Hannu; Roybal, Kirk (June 15, 2013).
PostgreSQL Server Programming. Packt Publishing.
ISBN 9781849516983.

• Riggs, Simon; Krosing, Hannu (October 27, 2010).
PostgreSQL 9 Administration Cookbook. Packt Pub-
lishing. ISBN 1-84951-028-8.

• Smith, Greg (October 15, 2010). PostgreSQL 9High
Performance. Packt Publishing. ISBN 1-84951-
030-X.

• Gilmore, W. Jason; Treat, Robert (February 27,
2006). Beginning PHP and PostgreSQL 8: From
Novice to Professional. Apress. p. 896. ISBN 1-
59059-547-5.

• Douglas, Korry (August 5, 2005). PostgreSQL (Sec-
ond ed.). Sams. p. 1032. ISBN 0-672-32756-2.

• Matthew, Neil; Stones, Richard (April 6, 2005).
Beginning Databases with PostgreSQL (Second ed.).
Apress. p. 664. ISBN 1-59059-478-9.

• Worsley, John C; Drake, Joshua D (January 2002).
Practical PostgreSQL. O'Reilly Media. p. 636.
ISBN 1-56592-846-6.

9.3.18 External links

• Official website

• PostgreSQL wiki

• https://www.depesz.com/

• https://explain.depesz.com/ – PostgreSQL’s
explain analyze made readable

• PostgreSQL at DMOZ

9.4 Apache Cassandra

Helenos is a graphical user interface for Cassandra

Apache Cassandra is an open source distributed
database management system designed to handle large
amounts of data across many commodity servers, provid-
ing high availability with no single point of failure. Cas-
sandra offers robust support for clusters spanning multi-
ple datacenters,[1] with asynchronous masterless replica-
tion allowing low latency operations for all clients.
Cassandra also places a high value on performance. In
2012, University of Toronto researchers studying NoSQL
systems concluded that “In terms of scalability, there is
a clear winner throughout our experiments. Cassandra
achieves the highest throughput for the maximum number
of nodes in all experiments” although “this comes at the
price of high write and read latencies.”[2]

9.4.1 History

Apache Cassandra was initially developed at Facebook to
power their Inbox Search feature by Avinash Lakshman
(one of the authors of Amazon’s Dynamo) and Prashant
Malik. It was released as an open source project on
Google code in July 2008.[3] In March 2009, it became
an Apache Incubator project.[4] On February 17, 2010 it
graduated to a top-level project.[5]

It was named after the Greek mythological prophet
Cassandra.[6]

Releases after graduation include

http://findarticles.com/p/articles/mi_m0EIN/is_2001_Sept_6/ai_77869978/print
https://en.wikipedia.org/wiki/Nikolai_Bezroukov
http://www.softpanorama.org/People/Torvalds/sunset_of_linux_hype.shtml
http://www.softpanorama.org/People/Torvalds/sunset_of_linux_hype.shtml
http://web.archive.org/web/20070225141652/http://www.pervasive-postgres.com/letter.asp
http://web.archive.org/web/20070225141652/http://www.pervasive-postgres.com/letter.asp
https://en.wikipedia.org/wiki/Pervasive_Software
http://www.pervasive-postgres.com/letter.asp
http://www.pervasive-postgres.com/letter.asp
http://www.computerworld.com.au/index.php/id;116679278;fp;16;fpid;0
http://www.computerworld.com.au/index.php/id;116679278;fp;16;fpid;0
https://en.wikipedia.org/wiki/Computerworld
http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.20051117.1.html
http://www.sun.com/smi/Press/sunflash/2005-11/sunflash.20051117.1.html
https://en.wikipedia.org/wiki/Sun_Microsystems
http://www.enterprisedb.com/news_events/press_releases/07_08_07.do
http://www.enterprisedb.com/news_events/press_releases/07_08_07.do
https://en.wikipedia.org/wiki/EnterpriseDB
http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://docs.aws.amazon.com/redshift/latest/dg/c_redshift-and-postgres-sql.html
http://www.postgresql.org/support/versioning/
http://www.postgresonline.com/store.php?asin=1449326331
http://www.postgresonline.com/store.php?asin=1449326331
https://en.wikipedia.org/wiki/O%2527Reilly
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-4493-2633-1
http://www.2ndquadrant.com/books/
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/9781849516983
http://www.2ndquadrant.com/books/
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-84951-028-8
http://www.2ndquadrant.com/books/
http://www.2ndquadrant.com/books/
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-84951-030-X
https://en.wikipedia.org/wiki/Special:BookSources/1-84951-030-X
http://www.apress.com/book/view/1590595475
http://www.apress.com/book/view/1590595475
https://en.wikipedia.org/wiki/Apress
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-59059-547-5
https://en.wikipedia.org/wiki/Special:BookSources/1-59059-547-5
http://www.informit.com/store/product.aspx?isbn=0672327562
https://en.wikipedia.org/wiki/Sams_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-672-32756-2
http://www.apress.com/book/view/9781590594780
https://en.wikipedia.org/wiki/Apress
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-59059-478-9
http://oreilly.com/catalog/9781565928466/
https://en.wikipedia.org/wiki/O%2527Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-56592-846-6
http://www.postgresql.org/
https://wiki.postgresql.org/wiki/
https://www.depesz.com/
https://explain.depesz.com/
https://www.dmoz.org/Computers/Software/Databases/PostgreSQL/
https://en.wikipedia.org/wiki/DMOZ
https://en.wikipedia.org/wiki/Open_source_software
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Database_management_system
https://en.wikipedia.org/wiki/Single_point_of_failure
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Google_code
https://en.wikipedia.org/wiki/Apache_Incubator
https://en.wikipedia.org/wiki/Cassandra

104 CHAPTER 9. EXAMPLES

• 0.6, released Apr 12 2010, added support for inte-
grated caching, and Apache Hadoop MapReduce[7]

• 0.7, released Jan 08 2011, added secondary indexes
and online schema changes[8]

• 0.8, released Jun 2 2011, added the Cassandra
Query Language (CQL), self-tuning memtables,
and support for zero-downtime upgrades[9]

• 1.0, released Oct 17 2011, added integrated com-
pression, leveled compaction, and improved read
performance[10]

• 1.1, released Apr 23 2012, added self-tuning
caches, row-level isolation, and support for mixed
ssd/spinning disk deployments[11]

• 1.2, released Jan 2 2013, added clustering across
virtual nodes, inter-node communication, atomic
batches, and request tracing[12]

• 2.0, released Sep 4 2013, added lightweight transac-
tions (based on the Paxos consensus protocol), trig-
gers, improved compactions

• 2.0.4, released Dec 30 2013, added allowing spec-
ifying datacenters to participate in a repair, client
encryption support to sstableloader, allow removing
snapshots of no-longer-existing CFs[13]

• 2.1.0 released Sep 10 2014 [14]

• 2.1.6 released June 8, 2015

• 2.1.7 released June 22, 2015

• 2.2.0 released July 20, 2015

• 2.2.2 released October 5, 2015

9.4.2 Licensing and support

Apache Cassandra is an Apache Software Foundation
project, so it has an Apache License (version 2.0).

9.4.3 Main features

Decentralized Every node in the cluster has the same
role. There is no single point of failure. Data is
distributed across the cluster (so each node contains
different data), but there is no master as every node
can service any request.

Supports replication and multi data center replication
Replication strategies are configurable.[15] Cas-
sandra is designed as a distributed system, for
deployment of large numbers of nodes across
multiple data centers. Key features of Cassandra’s
distributed architecture are specifically tailored for
multiple-data center deployment, for redundancy,
for failover and disaster recovery.

Scalability Read and write throughput both increase lin-
early as new machines are added, with no downtime
or interruption to applications.

Fault-tolerant Data is automatically replicated to mul-
tiple nodes for fault-tolerance. Replication across
multiple data centers is supported. Failed nodes can
be replaced with no downtime.

Tunable consistency Writes and reads offer a tunable
level of consistency, all the way from “writes never
fail” to “block for all replicas to be readable”, with
the quorum level in the middle.[16]

MapReduce support Cassandra has Hadoop integra-
tion, with MapReduce support. There is support
also for Apache Pig and Apache Hive.[17]

Query language Cassandra introduces CQL
(Cassandra Query Language), a SQL-like alter-
native to the traditional RPC interface. Language
drivers are available for Java (JDBC), Python
(DBAPI2), Node.JS (Helenus), Go (gocql) and
C++.[18]

Below an example of keyspace creation, including a col-
umn family in CQL 3.0:[19]

CREATE KEYSPACE MyKeySpace WITH REPLICA-
TION = { 'class’ : 'SimpleStrategy', 'replication_factor' :
3 }; USE MyKeySpace; CREATE COLUMNFAMILY
MyColumns (id text, Last text, First text, PRIMARY
KEY(id)); INSERT INTO MyColumns (id, Last, First)
VALUES ('1', 'Doe', 'John'); SELECT * FROM My-
Columns;

Which gives:
id | first | last ----+-------+------ 1 | John | Doe (1 rows)

9.4.4 Data model

Cassandra is essentially a hybrid between a key-value and
a column-oriented (or tabular) database. Its data model is
a partitioned row store with tunable consistency.[16] Rows
are organized into tables; the first component of a table’s
primary key is the partition key; within a partition, rows
are clustered by the remaining columns of the key.[20]

Other columns may be indexed separately from the pri-
mary key.[21]

Tables may be created, dropped, and altered at run-time
without blocking updates and queries.[22]

Cassandra does not support joins or subqueries. Rather,
Cassandra emphasizes denormalization through features
like collections.[23]

https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Apache_License
https://en.wikipedia.org/wiki/Fault-tolerance
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/Quorum_(distributed_computing)
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Pig_(programming_tool)
https://en.wikipedia.org/wiki/Apache_Hive
https://en.wikipedia.org/wiki/Cassandra_Query_Language
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Clustered_index
https://en.wikipedia.org/wiki/Join_(SQL)
https://en.wikipedia.org/wiki/Correlated_subquery
https://en.wikipedia.org/wiki/Denormalization

9.4. APACHE CASSANDRA 105

A column family (called “table” since CQL 3) resem-
bles a table in an RDBMS. Column families contain rows
and columns. Each row is uniquely identified by a row
key. Each row has multiple columns, each of which has
a name, value, and a timestamp. Unlike a table in an
RDBMS, different rows in the same column family do
not have to share the same set of columns, and a column
may be added to one or multiple rows at any time.[24]

Each key in Cassandra corresponds to a value which is an
object. Each key has values as columns, and columns are
grouped together into sets called column families. Thus,
each key identifies a row of a variable number of ele-
ments. These column families could be considered then
as tables. A table in Cassandra is a distributed multi di-
mensional map indexed by a key. Furthermore, applica-
tions can specify the sort order of columns within a Super
Column or Simple Column family.

9.4.5 Clustering

When the cluster for Apache Cassandra is designed, an
important point is to select the right partitioner. Two par-
titioners exist:[25]

1. RandomPartitioner (RP): This partitioner randomly
distributes the key-value pairs over the network, re-
sulting in a good load balancing. Compared to OPP,
more nodes have to be accessed to get a number of
keys.

2. OrderPreservingPartitioner (OPP): This partitioner
distributes the key-value pairs in a natural way so
that similar keys are not far away. The advantage is
that fewer nodes have to be accessed. The drawback
is the uneven distribution of the key-value pairs.

9.4.6 Prominent users

• @WalmartLabs[26] (previously Kosmix) uses Cas-
sandra with SSD

• Amadeus IT Group uses Cassandra for some of their
back-end systems.

• Apple uses 100,000 Cassandra nodes, as revealed at
Cassandra Summit San Francisco 2015,[27] although
it has not elaborated for which products, services or
features.

• AppScale uses Cassandra as a back-end for Google
App Engine applications[28]

• CERN used Cassandra-based prototype for its
ATLAS experiment to archive the online DAQ sys-
tem’s monitoring information[29]

• Cisco's WebEx uses Cassandra to store user feed
and activity in near real time.[30]

• Cloudkick uses Cassandra to store the server metrics
of their users.[31]

• Constant Contact uses Cassandra in their email and
social media marketing applications.[32] Over 200
nodes are deployed.

• Digg, a large social news website, announced on
Sep 9th, 2009 that it is rolling out its use of
Cassandra[33] and confirmed this on March 8,
2010.[34] TechCrunch has since linked Cassandra to
Digg v4 reliability criticisms and recent company
struggles.[35] Lead engineers at Digg later rebuked
these criticisms as red herring and blamed a lack of
load testing.[36]

• Facebook used Cassandra to power Inbox Search,
with over 200 nodes deployed.[37] This was aban-
doned in late 2010 when they built Facebook Mes-
saging platform on HBase as they “found Cassan-
dra’s eventual consistency model to be a difficult
pattern”.[38]

• Formspring uses Cassandra to count responses, as
well as store Social Graph data (followers, following,
blockers, blocking) for 26 Million accounts with 10
million responses a day[39]

• IBM has done research in building a scalable email
system based on Cassandra.[40]

• Mahalo.com uses Cassandra to record user activity
logs and topics for their Q&A website[41][42]

• Netflix uses Cassandra as their back-end database
for their streaming services[43][44]

• Nutanix appliances use Cassandra to store metadata
and stats.[45]

• Ooyala built a scalable, flexible, real-time analytics
engine using Cassandra[46]

• Openwave uses Cassandra as a distributed database
and as a distributed storage mechanism for their next
generation messaging platform[47]

• OpenX is running over 130 nodes on Cassandra
for their OpenX Enterprise product to store and
replicate advertisements and targeting data for ad
delivery[48]

• Plaxo has “reviewed 3 billion contacts in [their]
database, compared them with publicly available
data sources, and identified approximately 600 mil-
lion unique people with contact info.”[49]

• PostRank used Cassandra as their backend
database[50]

• Rackspace is known to use Cassandra internally.[51]

https://en.wikipedia.org/wiki/Column_family
https://en.wikipedia.org/wiki/@WalmartLabs
https://en.wikipedia.org/wiki/Kosmix
https://en.wikipedia.org/wiki/Amadeus_IT_Group
https://en.wikipedia.org/wiki/Apple_Inc.
https://en.wikipedia.org/wiki/AppScale
https://en.wikipedia.org/wiki/CERN
https://en.wikipedia.org/wiki/ATLAS_experiment
https://en.wikipedia.org/wiki/Cisco
https://en.wikipedia.org/wiki/WebEx
https://en.wikipedia.org/wiki/Cloudkick
https://en.wikipedia.org/wiki/Constant_Contact
https://en.wikipedia.org/wiki/Digg
https://en.wikipedia.org/wiki/TechCrunch
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Formspring
https://en.wikipedia.org/wiki/IBM
https://en.wikipedia.org/wiki/Mahalo.com
https://en.wikipedia.org/wiki/Netflix
https://en.wikipedia.org/wiki/Nutanix
https://en.wikipedia.org/wiki/Ooyala
https://en.wikipedia.org/wiki/Openwave
https://en.wikipedia.org/wiki/OpenX_(software)
https://en.wikipedia.org/wiki/Plaxo
https://en.wikipedia.org/wiki/PostRank
https://en.wikipedia.org/wiki/Rackspace

106 CHAPTER 9. EXAMPLES

• Reddit switched to Cassandra from memcacheDB
on March 12, 2010[52] and experienced some prob-
lems in May due to insufficient nodes in their
cluster.[53]

• RockYou uses Cassandra to record every single click
for 50 million Monthly Active Users in real-time for
their online games[54]

• SoundCloud uses Cassandra to store the dashboard
of their users[55]

• Talentica Software uses Cassandra as a back-end
for Analytics Application with Cassandra cluster of
30 nodes and inserting around 200GB data on daily
basis.[56]

• Tibbo Systems uses Cassandra as configuration and
event storage for AggreGate Platform.

• Twitter announced it was planning to move entirely
from MySQL to Cassandra,[57][58] though soon af-
ter retracted this, keeping Tweets in MySQL while
using Cassandra for analytics.[59]

• Urban Airship uses Cassandra with the mobile ser-
vice hosting for over 160 million application installs
across 80 million unique devices[60]

• Wikimedia uses Cassandra as backend storage for
its public-facing REST Content API.[61]

• Zoho uses Cassandra for generating the inbox pre-
view in their Zoho#Zoho Mail service

Facebook moved off its pre-Apache Cassandra deploy-
ment in late 2010 when they replaced Inbox Search with
the Facebook Messaging platform.[38] In 2012, Facebook
began using Apache Cassandra in its Instagram unit.[62]

Cassandra is the most popular wide column store,[63] and
in September 2014 surpassed Sybase to become the 9th
most popular database, close behind Microsoft Access
and SQLite.[64]

9.4.7 See also

Academic background

• BigTable - Original distributed database by Google

• Distributed database

• Distributed hash table (DHT)

• Dynamo (storage system) - Cassandra borrows
many elements from Dynamo

• NoSQL

Commercial companies

• DataStax

• Impetus Technologies

• Instaclustr

Alternatives

• Apache Accumulo—Secure Apache Hadoop based
distributed database.

• Aerospike

• Berkeley DB

• Druid (open-source data store)

• Apache HBase—Apache Hadoop based distributed
database. Very similar to BigTable

• HyperDex

• Hypertable—Apache Hadoop based distributed
database. Very similar to BigTable

• MongoDB

• Riak

• ScyllaDB

9.4.8 References
[1] Casares, Joaquin (2012-11-05). “Multi-datacenter Repli-

cation in Cassandra”. DataStax. Retrieved 2013-07-25.
Cassandra’s innate datacenter concepts are important as
they allow multiple workloads to be run across multiple
datacenters…

[2] Rabl, Tilmann; Sadoghi, Mohammad; Jacobsen, Hans-
Arno; Villamor, Sergio Gomez-; Mulero -, Victor
Muntes; Mankovskii, Serge (2012-08-27). “Solving Big
Data Challenges for Enterprise Application Performance
Management” (PDF). VLDB. Retrieved 2013-07-25. In
terms of scalability, there is a clear winner throughout our
experiments. Cassandra achieves the highest throughput
for the maximum number of nodes in all experiments...
this comes at the price of high write and read latencies

[3] Hamilton, James (July 12, 2008). “Facebook Releases
Cassandra as Open Source”. Retrieved 2009-06-04.

[4] “Is this the new hotness now?". Mail-archive.com. 2009-
03-02. Archived from the original on 25 April 2010. Re-
trieved 2010-03-29.

[5] “Cassandra is an Apache top level project”. Mail-
archive.com. 2010-02-18. Archived from the original on
28 March 2010. Retrieved 2010-03-29.

[6] http://kellabyte.com/2013/01/04/
the-meaning-behind-the-name-of-apache-cassandra/

https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/RockYou
https://en.wikipedia.org/wiki/SoundCloud
https://en.wikipedia.org/wiki/Talentica_Software
https://en.wikipedia.org/wiki/AggreGate_Platform
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Urban_Airship
https://en.wikipedia.org/wiki/Wikimedia_Foundation
http://rest.wikimedia.org/
https://en.wikipedia.org/wiki/Zoho
https://en.wikipedia.org/wiki/Zoho#Zoho_Mail
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Wide_column_store
https://en.wikipedia.org/wiki/BigTable
https://en.wikipedia.org/wiki/Distributed_database
https://en.wikipedia.org/wiki/Distributed_hash_table
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/NoSQL
https://en.wikipedia.org/wiki/DataStax
https://en.wikipedia.org/wiki/Impetus_Technologies
https://www.instaclustr.com/
https://en.wikipedia.org/wiki/Apache_Accumulo
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/Aerospike_database
https://en.wikipedia.org/wiki/Berkeley_db
https://en.wikipedia.org/wiki/Druid_(open-source_data_store)
https://en.wikipedia.org/wiki/HBase
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/HyperDex
https://en.wikipedia.org/wiki/Hypertable
https://en.wikipedia.org/wiki/Hadoop
https://en.wikipedia.org/wiki/MongoDB
https://en.wikipedia.org/wiki/Riak
http://www.scylladb.com/
http://www.datastax.com/dev/blog/multi-datacenter-replication
http://www.datastax.com/dev/blog/multi-datacenter-replication
http://vldb.org/pvldb/vol5/p1724_tilmannrabl_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1724_tilmannrabl_vldb2012.pdf
http://vldb.org/pvldb/vol5/p1724_tilmannrabl_vldb2012.pdf
http://perspectives.mvdirona.com/2008/07/12/FacebookReleasesCassandraAsOpenSource.aspx
http://perspectives.mvdirona.com/2008/07/12/FacebookReleasesCassandraAsOpenSource.aspx
http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg00004.html
http://web.archive.org/web/20100425071855/http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg00004.html
http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01518.html
http://web.archive.org/web/20100328090322/http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01518.html
http://kellabyte.com/2013/01/04/the-meaning-behind-the-name-of-apache-cassandra/
http://kellabyte.com/2013/01/04/the-meaning-behind-the-name-of-apache-cassandra/

9.4. APACHE CASSANDRA 107

[7] The Apache Software Foundation Announces Apache
Cassandra Release 0.6 : The Apache Software Founda-
tion Blog

[8] The Apache Software Foundation Announces Apache
Cassandra 0.7 : The Apache Software Foundation Blog

[9] [Cassandra-user] [RELEASE] 0.8.0 - Grokbase

[10] Cassandra 1.0.0. Is Ready for the Enterprise

[11] The Apache Software Foundation Announces Apache
Cassandra™ v1.1 : The Apache Software Foundation
Blog

[12] “The Apache Software Foundation Announces Apache
Cassandra™ v1.2 : The Apache Software Foundation
Blog”. apache.org. Retrieved 11 December 2014.

[13] Eric Evans. "[Cassandra-User] [RELEASE] Apache Cas-
sandra 2.0.4”. qnalist.com. Retrieved 11 December 2014.

[14] Sylvain Lebresne (10 September 2014). "[VOTE
SUCCESS] Release Apache Cassandra 2.1.0”. mail-
archive.com. Retrieved 11 December 2014.

[15] “Deploying Cassandra across Multiple Data Centers”.
DataStax. Retrieved 11 December 2014.

[16] DataStax (2013-01-15). “About data consistency”. Re-
trieved 2013-07-25.

[17] “Hadoop Support” article on Cassandra’s wiki

[18] “DataStax C/C++ Driver for Apache Cassandra”. DataS-
tax. Retrieved 15 December 2014.

[19] https://cassandra.apache.org/doc/cql3/CQL.html

[20] Ellis, Jonathan (2012-02-15). “Schema in Cassandra
1.1”. DataStax. Retrieved 2013-07-25.

[21] Ellis, Jonathan (2010-12-03). “What’s new in Cassandra
0.7: Secondary indexes”. DataStax. Retrieved 2013-07-
25.

[22] Ellis, Jonathan (2012-03-02). “The Schema Management
Renaissance in Cassandra 1.1”. DataStax. Retrieved
2013-07-25.

[23] Lebresne, Sylvain (2012-08-05). “Coming in 1.2: Col-
lections support in CQL3”. DataStax. Retrieved 2013-
07-25.

[24] DataStax. “Apache Cassandra 0.7 Documentation - Col-
umn Families”. Apache Cassandra 0.7 Documentation.
Retrieved 29 October 2012.

[25] Williams, Dominic. “Cassandra: RandomPartitioner
vs OrderPreservingPartitioner”. http://wordpress.com/:
WordPress.com. Retrieved 2011-03-23. When building a
Cassandra cluster, the “key” question (sorry, that’s weak)
is whether to use the RandomPartitioner (RP), or the Or-
dengPartitioner (OPP). These control how your data is
distributed over your nodes. Once you have chosen your
partitioner, you cannot change without wiping your data,
so think carefully! The problem with OPP: If the distribu-
tion of keys used by individual column families is differ-
ent, their sets of keys will not fall evenly across the ranges

assigned to nodes. Thus nodes will end up storing prepon-
derances of keys (and the associated data) corresponding
to one column family or another. If as is likely column
families store differing quantities of data with their keys,
or store data accessed according to differing usage pat-
terns, then some nodes will end up with disproportion-
ately more data than others, or serving more “hot” data
than others.

[26] "@WalmartLabs”. walmartlabs.com. Retrieved 11 De-
cember 2014.

[27] Luca Martinetti: Apple runs more than 100k [production]
Cassandra nodes. on Twitter

[28] “Datastores on Appscale”.

[29] “A Persistent Back-End for the ATLAS Online Informa-
tion Service (P-BEAST)".

[30] “Re: Cassandra users survey”. Mail-archive.com. 2009-
11-21. Archived from the original on 17 April 2010. Re-
trieved 2010-03-29.

[31] 4 Months with Cassandra, a love story |Cloudkick, man-
age servers better

[32] Finley, Klint (2011-02-18). “This Week in Consolidation:
HP Buys Vertica, Constant Contact Buys Bantam Live and
More”. Read Write Enterprise.

[33] Eure, Ian. “Looking to the future with Cassandra”.

[34] Quinn, John. “Saying Yes to NoSQL; Going Steady with
Cassandra”.

[35] Schonfeld, Erick. “As Digg Struggles, VP Of Engineering
Is Shown The Door”.

[36] “Is Cassandra to Blame for Digg v4’s Failures?".

[37] “Niet compatibele browser”. Facebook. Retrieved 2010-
03-29.

[38] Muthukkaruppan, Kannan. “The Underlying Technology
of Messages”.

[39] Cozzi, Martin (2011-08-31). “Cassandra at Formspring”.

[40] “BlueRunner: Building an Email Service in the Cloud”
(PDF). ieee.org. 2009-07-20. Retrieved 2010-03-29.

[41] “Mahalo.com powered by Apache Cassandra™" (PDF).
DataStax.com. Santa Clara, CA, USA: DataStax. 2012-
04-10. Retrieved 2014-06-13.

[42] Watch Cassandra at Mahalo.com |DataStax Episodes |Blip

[43] Cockcroft, Adrian (2011-07-11). “Migrating Netflix from
Datacenter Oracle to Global Cassandra”. slideshare.net.
Retrieved 2014-06-13.

[44] Izrailevsky, Yury (2011-01-28). “NoSQL at Netflix”.

[45] “Nutanix Bible”.

[46] Ooyala (2010-05-18). “Designing a Scalable Database for
Online Video Analytics” (PDF). DataStax.com. Mountain
View CA, USA. Retrieved 2014-06-14.

https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces3
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces9
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces9
http://grokbase.com/t/cassandra/user/1162fkpwx2/release-0-8-0
http://www.infoq.com/news/2011/10/Cassandra-1
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces26
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces26
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces26
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces38
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces38
https://blogs.apache.org/foundation/entry/the_apache_software_foundation_announces38
http://qnalist.com/questions/4662083/release-apache-cassandra-2-0-4
http://qnalist.com/questions/4662083/release-apache-cassandra-2-0-4
http://www.mail-archive.com/dev@cassandra.apache.org/msg07512.html
http://www.mail-archive.com/dev@cassandra.apache.org/msg07512.html
http://www.datastax.com/dev/blog/deploying-cassandra-across-multiple-data-centers
https://en.wikipedia.org/wiki/DataStax
http://www.datastax.com/docs/1.2/dml/data_consistency
http://wiki.apache.org/cassandra/HadoopSupport
https://github.com/datastax/cpp-driver
https://cassandra.apache.org/doc/cql3/CQL.html
http://www.datastax.com/dev/blog/schema-in-cassandra-1-1
http://www.datastax.com/dev/blog/schema-in-cassandra-1-1
http://www.datastax.com/dev/blog/whats-new-cassandra-07-secondary-indexes
http://www.datastax.com/dev/blog/whats-new-cassandra-07-secondary-indexes
http://www.datastax.com/dev/blog/the-schema-management-renaissance
http://www.datastax.com/dev/blog/the-schema-management-renaissance
http://www.datastax.com/dev/blog/cql3_collections
http://www.datastax.com/dev/blog/cql3_collections
http://www.datastax.com/docs/0.7/data_model/column_families#column-families
http://www.datastax.com/docs/0.7/data_model/column_families#column-families
http://ria101.wordpress.com/2010/02/22/cassandra-randompartitioner-vs-orderpreservingpartitioner/
http://ria101.wordpress.com/2010/02/22/cassandra-randompartitioner-vs-orderpreservingpartitioner/
http://wordpress.com/
http://www.walmartlabs.com/
https://twitter.com//lucamartinetti/status/646789308116938752
https://twitter.com//lucamartinetti/status/646789308116938752
https://en.wikipedia.org/wiki/Twitter
http://appscale.cs.ucsb.edu/datastores.html#cassandra
https://cdsweb.cern.ch/record/1432912
https://cdsweb.cern.ch/record/1432912
http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01163.html
http://web.archive.org/web/20100417083733/http://www.mail-archive.com/cassandra-dev@incubator.apache.org/msg01163.html
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
https://www.cloudkick.com/blog/2010/mar/02/4_months_with_cassandra/
http://www.readwriteweb.com/enterprise/2011/02/this-week-in-consolidation-hp.php
http://www.readwriteweb.com/enterprise/2011/02/this-week-in-consolidation-hp.php
http://www.readwriteweb.com/enterprise/2011/02/this-week-in-consolidation-hp.php
http://blog.digg.com/?p=966
http://about.digg.com/node/564
http://about.digg.com/node/564
http://techcrunch.com/2010/09/07/digg-struggles-vp-engineering-door/
http://techcrunch.com/2010/09/07/digg-struggles-vp-engineering-door/
http://www.quora.com/Is-Cassandra-to-blame-for-Digg-v4s-technical-failures/
https://www.facebook.com/note.php?note_id=24413138919&id=9445547199&index=9
https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919
https://www.facebook.com/notes/facebook-engineering/the-underlying-technology-of-messages/454991608919
http://www.slideshare.net/martincozzi/cassandra-formspring
http://ewh.ieee.org/r6/scv/computer/nfic/2009/IBM-Jun-Rao.pdf
http://www.datastax.com/wp-content/uploads/2011/06/DataStax-CaseStudy-Mahalo.pdf
https://en.wikipedia.org/wiki/DataStax
http://blip.tv/datastax/cassandra-at-mahalo-com-4030941
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra
http://www.slideshare.net/adrianco/migrating-netflix-from-oracle-to-global-cassandra
http://techblog.netflix.com/2011/01/nosql-at-netflix.html
http://stevenpoitras.com/the-nutanix-bible/#components
https://en.wikipedia.org/wiki/Ooyala
http://www.datastax.com/wp-content/uploads/2011/04/WP-Ooyala.pdf
http://www.datastax.com/wp-content/uploads/2011/04/WP-Ooyala.pdf

108 CHAPTER 9. EXAMPLES

[47] Mainstay LLC (2013-11-11). “DataStax Case Study
of Openwave Messaging” (PDF). DataStax.com. Santa
Clara, CA, USA: DataStax. Retrieved 2014-06-15.

[48] Ad Serving Technology - Advanced Optimization, Fore-
casting, & Targeting |OpenX

[49] Smalley, Preston (2011-03-20). “An important milestone
- and it’s only the beginning!".

[50] Grigorik, Ilya (2011-03-29). “Webpulp TV: Scaling Pos-
tRank with Ilya Grigorik”.

[51] “Hadoop and Cassandra (at Rackspace)". Stu Hood.
2010-04-23. Retrieved 2011-09-01.

[52] david [ketralnis] (2010-03-12). “what’s new on reddit:
She who entangles men”. blog.reddit. Archived from the
original on 25 March 2010. Retrieved 2010-03-29.

[53] Posted by the reddit admins at (2010-05-11). “blog.reddit
-- what’s new on reddit: reddit’s May 2010 “State of the
Servers” report”. blog.reddit. Archived from the original
on 14 May 2010. Retrieved 2010-05-16.

[54] Pattishall, Dathan Vance (2011-03-23). “Cassandra is my
NoSQL Solution but”.

[55] “Cassandra at SoundCloud”.

[56] cite web|url=http://www.talentica.com[]

[57] Popescu, Alex. “Cassandra @ Twitter: An Interview with
Ryan King”. myNoSQL. Archived from the original on 1
March 2010. Retrieved 2010-03-29.

[58] Babcock, Charles. “Twitter Drops MySQL For Cassandra
- Cloud databases”. InformationWeek. Archived from the
original on 2 April 2010. Retrieved 2010-03-29.

[59] King, Ryan (2010-07-10). “Cassandra at Twitter Today”.
blog.twitter.com. San Francisco, CA, USA: Twitter. Re-
trieved 2014-06-20.

[60] Onnen, Erik. “From 100s to 100s of Millions”.

[61] Wicke, Gabriel. “Wikimedia REST content API is now
available in beta”.

[62] Rick Branson (2013-06-26). “Cassandra at Instagram”.
DataStax. Retrieved 2013-07-25.

[63] DB-Engines. “DB-Engines Ranking of Wide Column
Stores”.

[64] DB-Engines. “DB-Engines Ranking”.

9.4.9 Bibliography

• Hewitt, Eben (December 15, 2010). Cassandra:
The Definitive Guide (1st ed.). O'Reilly Media. p.
300. ISBN 978-1-4493-9041-9.

• Capriolo, Edward (July 15, 2011). Cassandra High
Performance Cookbook (1st ed.). Packt Publishing.
p. 324. ISBN 1-84951-512-3.

9.4.10 External links

• Lakshman, Avinash (2008-08-25). “Cassandra - A
structured storage system on a P2P Network”. En-
gineering @ Facebook’s Notes. Retrieved 2014-06-
17.

• “The Apache Cassandra Project”. Forest Hill, MD,
USA: The Apache Software Foundation. Retrieved
2014-06-17.

• “Project Wiki”. Forest Hill, MD, USA: The Apache
Software Foundation. Retrieved 2014-06-17.

• Hewitt, Eben (2010-12-01). “Adopting Apache
Cassandra”. infoq.com. InfoQ, C4Media Inc. Re-
trieved 2014-06-17.

• Lakshman, Avinash; Malik, Prashant (2009-08-15).
“Cassandra - A Decentralized Structured Storage
System” (PDF). cs.cornell.edu. The authors are
from Facebook. Retrieved 2014-06-17.

• Ellis, Jonathan (2009-07-29). “What Every De-
veloper Should Know About Database Scalabil-
ity”. slideshare.net. Retrieved 2014-06-17. From
the OSCON 2009 talk on RDBMS vs. Dynamo,
BigTable, and Cassandra.

• “Cassandra-RPM - Red Hat Package Manager
(RPM) build for the Apache Cassandra project”.
code.google.com. Menlo Park, CA, USA: Google
Project Hosting. Retrieved 2014-06-17.

• Roth, Gregor (2012-10-14). “Cassandra by ex-
ample - the path of read and write requests”.
slideshare.net. Retrieved 2014-06-17.

• Mansoor, Umer (2012-11-04). “A collection of
Cassandra tutorials”. Retrieved 2015-02-08.

• Bushik, Sergey (2012-10-22). “A vendor-
independent comparison of NoSQL databases: Cas-
sandra, HBase, MongoDB, Riak”. NetworkWorld.
Framingham, MA, USA and Staines, Middlesex,
UK: IDG. Retrieved 2014-06-17.

9.5 Berkeley DB

Berkeley DB (BDB) is a software library that provides a
high-performance embedded database for key/value data.
Berkeley DB is written in C with API bindings for C++,
C#, PHP, Java, Perl, Python, Ruby, Tcl, Smalltalk, and
many other programming languages. BDB stores arbi-
trary key/data pairs as byte arrays, and supports multiple
data items for a single key. Berkeley DB is not a relational
database.[1]

BDB can support thousands of simultaneous threads of
control or concurrent processes manipulating databases
as large as 256 terabytes,[2] on a wide variety of operating

http://www.datastax.com/wp-content/uploads/2011/05/DataStax-CaseStudy-Openwave.pdf
http://www.datastax.com/wp-content/uploads/2011/05/DataStax-CaseStudy-Openwave.pdf
https://en.wikipedia.org/wiki/DataStax
http://openx.com/publisher/technology
http://openx.com/publisher/technology
http://blog.plaxo.com/2011/03/an-important-milestone-and-its-only-the-beginning/
http://blog.plaxo.com/2011/03/an-important-milestone-and-its-only-the-beginning/
http://blog.postrank.com/2011/03/webpulp-tv-scaling-postrank-with-ilya-grigorik/
http://blog.postrank.com/2011/03/webpulp-tv-scaling-postrank-with-ilya-grigorik/
http://www.slideshare.net/stuhood/hadoop-and-cassandra-at-rackspace
http://blog.reddit.com/2010/03/she-who-entangles-men.html
http://blog.reddit.com/2010/03/she-who-entangles-men.html
http://web.archive.org/web/20100325115755/http://blog.reddit.com/2010/03/she-who-entangles-men.html
http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://web.archive.org/web/20100514085008/http://blog.reddit.com/2010/05/reddits-may-2010-state-of-servers.html
http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
http://mysqldba.blogspot.com/2010/03/cassandra-is-my-nosql-solution-but.html
http://backstage.soundcloud.com/2011/04/failing-with-mongodb/
http://www.talentica.com/%5B%5D
http://nosql.mypopescu.com/post/407159447/cassandra-twitter-an-interview-with-ryan-king
http://nosql.mypopescu.com/post/407159447/cassandra-twitter-an-interview-with-ryan-king
http://web.archive.org/web/20100301151656/http://nosql.mypopescu.com/post/407159447/cassandra-twitter-an-interview-with-ryan-king
http://www.informationweek.com/news/software/open_source/showArticle.jhtml?articleID=223100894&pgno=1&queryText=&isPrev=
http://www.informationweek.com/news/software/open_source/showArticle.jhtml?articleID=223100894&pgno=1&queryText=&isPrev=
http://web.archive.org/web/20100402075726/http://www.informationweek.com/news/software/open_source/showArticle.jhtml?articleID=223100894&pgno=1&queryText=&isPrev=
https://blog.twitter.com/2010/cassandra-twitter-today
https://en.wikipedia.org/wiki/Twitter
http://www.slideshare.net/eonnen/from-100s-to-100s-of-millions
https://lists.wikimedia.org/pipermail/wikitech-l/2015-March/081135.html
https://lists.wikimedia.org/pipermail/wikitech-l/2015-March/081135.html
http://www.youtube.com/watch?v=xDtclzE4ydA
http://db-engines.com/en/ranking/wide+column+store
http://db-engines.com/en/ranking/wide+column+store
http://db-engines.com/en/ranking
http://oreilly.com/catalog/0636920010852
http://oreilly.com/catalog/0636920010852
https://en.wikipedia.org/wiki/O%2527Reilly_Media
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-1-4493-9041-9
http://www.packtpub.com/cassandra-apache-high-performance-cookbook/book
http://www.packtpub.com/cassandra-apache-high-performance-cookbook/book
https://en.wikipedia.org/wiki/Packt_Publishing
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/1-84951-512-3
https://www.facebook.com/note.php?note_id=24413138919&id=9445547199&index=9
https://www.facebook.com/note.php?note_id=24413138919&id=9445547199&index=9
https://cassandra.apache.org/
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://wiki.apache.org/cassandra/
https://en.wikipedia.org/wiki/Apache_Software_Foundation
https://en.wikipedia.org/wiki/Apache_Software_Foundation
http://www.infoq.com/presentations/Adopting-Apache-Cassandra
http://www.infoq.com/presentations/Adopting-Apache-Cassandra
https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
https://www.cs.cornell.edu/projects/ladis2009/papers/lakshman-ladis2009.pdf
https://en.wikipedia.org/wiki/Facebook
http://www.slideshare.net/jbellis/what-every-developer-should-know-about-database-scalability
http://www.slideshare.net/jbellis/what-every-developer-should-know-about-database-scalability
http://www.slideshare.net/jbellis/what-every-developer-should-know-about-database-scalability
https://en.wikipedia.org/wiki/O%2527Reilly_Open_Source_Convention
https://code.google.com/p/cassandra-rpm/
https://code.google.com/p/cassandra-rpm/
https://en.wikipedia.org/wiki/Google_Code#Project_hosting
https://en.wikipedia.org/wiki/Google_Code#Project_hosting
http://de.slideshare.net/grro/cassandra-by-example-the-path-of-read-and-write-requests
http://de.slideshare.net/grro/cassandra-by-example-the-path-of-read-and-write-requests
http://10kloc.wordpress.com/category/cassandra-2/
http://10kloc.wordpress.com/category/cassandra-2/
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
http://www.networkworld.com/news/tech/2012/102212-nosql-263595.html
https://en.wikipedia.org/wiki/Network_World
https://en.wikipedia.org/wiki/International_Data_Group
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Embedded_database
https://en.wikipedia.org/wiki/Key-value_database
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C++
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Ruby_(programming_language)
https://en.wikipedia.org/wiki/Tcl
https://en.wikipedia.org/wiki/Smalltalk
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Operating_system

9.5. BERKELEY DB 109

systems including most Unix-like and Windows systems,
and real-time operating systems. “Berkeley DB” is also
used as the common brand name for three distinct prod-
ucts: Oracle Berkeley DB, Berkeley DB Java Edition, and
Berkeley DB XML. These three products all share a com-
mon ancestry and are currently under active development
at Oracle Corporation.

9.5.1 Origin

Berkeley DB originated at the University of California,
Berkeley as part of BSD, Berkeley’s version of the Unix
operating system. After 4.3BSD (1986), the BSD de-
velopers attempted to remove or replace all code origi-
nating in the original AT&T Unix from which BSD was
derived. In doing so, they needed to rewrite the Unix
database package.[3] A non-AT&T-copyrighted replace-
ment, due to Seltzer and Yigit,[4] attempted to create a
disk hash table that performed better than any of the ex-
isting Dbm libraries. Berkeley DB itself was first re-
leased in 1991 and later included with 4.4BSD.[3] In 1996
Netscape requested that the authors of Berkeley DB im-
prove and extend the library, then at version 1.86, to suit
Netscape’s requirements for an LDAP server[5] and for
use in the Netscape browser. That request led to the cre-
ation of Sleepycat Software. This company was acquired
by Oracle Corporation in February 2006, which contin-
ues to develop and sell Berkeley DB.
Since its initial release, Berkeley DB has gone through
various versions. Each major release cycle has introduced
a single new major feature generally layering on top of
the earlier features to add functionality to the product.
The 1.x releases focused on managing key/value data stor-
age and are referred to as “Data Store” (DS). The 2.x re-
leases added a locking system enabling concurrent access
to data. This is what is known as “Concurrent Data Store”
(CDS). The 3.x releases added a logging system for trans-
actions and recovery, called “Transactional Data Store”
(TDS). The 4.x releases added the ability to replicate log
records and create a distributed highly available single-
master multi-replica database. This is called the “High
Availability” (HA) feature set. Berkeley DB’s evolution
has sometimes led to minor API changes or log format
changes, but very rarely have database formats changed.
Berkeley DB HA supports online upgrades from one ver-
sion to the next by maintaining the ability to read and ap-
ply the prior release’s log records.
The FreeBSD and OpenBSD operating systems continue
to use Berkeley DB 1.8x for compatibility reasons;[6]

Linux-based operating systems commonly include sev-
eral versions to accommodate for applications still using
older interfaces/files.
Starting with the 6.0/12c releases, all Berkeley DB prod-
ucts are licensed under the GNU AGPL.[7] Up until then
Berkeley DB was redistributed under the 4-clause BSD
license (before version 2.0), and the Sleepycat Public Li-

cense, which is an OSI-approved open-source license as
well as an FSF-approved free software license.[8][9] The
product ships with complete source code, build script, test
suite, and documentation. The code quality and general
utility along with the licensing terms have led to its use in
a multitude of free and open-source software. Those who
do not wish to abide by the terms of the GNU AGPL, or
use an older version with the Sleepycat Public License,
have the option of purchasing another proprietary license
for redistribution from Oracle Corporation. This tech-
nique is called dual licensing.
Berkeley DB includes compatibility interfaces for some
historic Unix database libraries: dbm, ndbm and hsearch
(a System V library for creating in-memory hash tables).

9.5.2 Architecture

Berkeley DB has an architecture notably simpler than that
of other database systems like relational database man-
agement systems. For example, like SQLite, it does not
provide support for network access — programs access
the database using in-process API calls. Oracle added
support for SQL in 11g R2 release based on the popular
SQLite API by including a version of SQLite in Berke-
ley DB.[10] There is third party support for PL/SQL in
Berkeley DB via a commercial product named Metatranz
StepSqlite.[11]

A program accessing the database is free to decide how
the data is to be stored in a record. Berkeley DB puts no
constraints on the record’s data. The record and its key
can both be up to four gigabytes long.
Despite having a simple architecture, Berkeley DB sup-
ports many advanced database features such as ACID
transactions, fine-grained locking, hot backups and
replication.

9.5.3 Editions

The name “Berkeley DB” is given to three different prod-
ucts:

1. Berkeley DB

2. Berkeley DB Java Edition

3. Berkeley DB XML

Each edition has separate database libraries, despite the
common branding. The first is the traditional Berke-
ley DB, written in C. It contains several database im-
plementations, including a B-Tree and one built around
extendible hashing. It supports multiple language bind-
ings, including C/C++, Java (via JNI), C# .NET, Perl and
Python.

https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Real-time_operating_system
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/University_of_California,_Berkeley
https://en.wikipedia.org/wiki/Berkeley_Software_Distribution
https://en.wikipedia.org/wiki/Unix
https://en.wikipedia.org/wiki/AT&T_Corporation
https://en.wikipedia.org/wiki/Dbm
https://en.wikipedia.org/wiki/Netscape
https://en.wikipedia.org/wiki/LDAP
https://en.wikipedia.org/wiki/Netscape_(web_browser)
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/FreeBSD
https://en.wikipedia.org/wiki/OpenBSD
https://en.wikipedia.org/wiki/Affero_General_Public_License
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/Open_Source_Initiative
https://en.wikipedia.org/wiki/Open-source_license
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Proprietary_software_license
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Dual_license
https://en.wikipedia.org/wiki/Dbm
https://en.wikipedia.org/wiki/Ndbm
https://en.wikipedia.org/wiki/UNIX_System_V
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/SQLite
https://en.wikipedia.org/wiki/Application_programming_interface
https://en.wikipedia.org/wiki/PL/SQL
https://en.wikipedia.org/wiki/StepSqlite
https://en.wikipedia.org/wiki/StepSqlite
https://en.wikipedia.org/wiki/ACID
https://en.wikipedia.org/wiki/Database_transaction
https://en.wikipedia.org/wiki/Lock_(computer_science)
https://en.wikipedia.org/wiki/Backup
https://en.wikipedia.org/wiki/Replication_(computer_science)
https://en.wikipedia.org/wiki/B-tree
https://en.wikipedia.org/wiki/Extendible_hashing
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)

110 CHAPTER 9. EXAMPLES

Berkeley DB Java Edition (JE) is a pure Java database
management library. Its design resembles that of Berke-
ley DB without replicating it exactly, and has a feature
set that includes many of those found in the traditional
Berkeley DB and others that are specific to the Java Edi-
tion. It has a log structured storage architecture, which
gives it different performance and concurrency charac-
teristics. Three APIs are available—a Direct Persistence
Layer which is “Plain Old Java Objects” (POJO); one
which is based on the Java Collections Framework (an
object persistence approach); and one based on the tradi-
tional Berkeley DB API. The Berkeley DB Java Edition
High Availability option (Replication) is available. Note
that traditional Berkeley DB also supports a Java API, but
it does so via JNI and thus requires an installed native li-
brary.
The Berkeley DB XML database specializes in the stor-
age of XML documents, supporting XQuery via XQilla.
It is implemented as an additional layer on top of (a legacy
version of) Berkeley DB and the Xerces library. DB
XML is written in C++ and supports multiple language
bindings, including C++, Java (via JNI), Perl and Python.

9.5.4 Programs that use Berkeley DB

Berkeley DB provides the underlying storage and retrieval
system of several LDAP servers, database systems, and
many other proprietary and free/open source applica-
tions. Notable software that use Berkeley DB for data
storage include:

• 389 Directory Server - An open-source LDAP
server from the Fedora Project.

• Bitcoin Core - The first implementation of the Bit-
coin cryptocurrency.

• Bogofilter – A free/open source spam filter that saves
its wordlists using Berkeley DB.

• Carbonado – An open source relational database ac-
cess layer.

• Citadel – A free/open source groupware platform
that keeps all of its data stores, including the mes-
sage base, in Berkeley DB.

• Cyrus IMAP Server – A free/open source IMAP and
POP3 server, developed by Carnegie Mellon Uni-
versity

• Evolution - A free/open source mail client; contacts
are stored in addressbook.db using Berkeley DB

• GlusterFS - Prior to v3.4, GlusterFS included a BDB
storage translator.

• Jabberd2 – An Extensible Messaging and Presence
Protocol server

• KDevelop – An IDE for Linux and other Unix-like
operating systems

• Movable Type (until version 4.0) – A proprietary
weblog publishing system developed by California-
based Six Apart

• memcachedb - A persistence-enabled variant of
memcached

• MySQL database system – Prior to v5.1, MySQL
included a BDB data storage backend.

• OpenLDAP – A free/open source implementa-
tion of the Lightweight Directory Access Protocol
(LDAP)

• Oracle NoSQL - A NoSQL distributed key-value
database

• Oracle Retail Predictive Application Server (RPAS)
- RPAS (since 12.x?) uses Berkeley DB as the un-
derlying persistence layer for the MOLAP engine
used in several Oracle Retail Planning and Supply
Chain products. (Berkeley DB replaced the previ-
ous Accumate/Acumen persistence layer used since
the original development of the RPAS product by
Neil Thall Associates, which was no longer sup-
ported by its final owner, Lucent and no longer suf-
ficiently scalable).

• Postfix – A fast, secure, easy-to-administer MTA for
Linux/Unix systems

• Parallel Virtual File System (PVFS) – A parallel file
system for HPC clusters.[12]

• Red Dwarf - A server framework originally devel-
oped by Sun, now open sourced, commonly used for
game development.

• RPM – The RPM Package Manager uses Berkeley
DB to retain its internal database of packages in-
stalled on a system

• Sendmail - A popular MTA for Linux/Unix systems

• Spamassassin – An anti-spam application

• Subversion – A version control system designed
specifically to replace CVS

• Sun Grid Engine – A free and open source dis-
tributed resource management system.

9.5.5 Licensing

Oracle Corporation makes versions 2.0 and higher of
Berkeley DB available under a dual license.[13] The Sleep-
ycat license is a 2-clause BSD license with an additional
copyleft clause similar to the GNU GPL version 2’s Sec-
tion 3, requiring source code of an application using
Berkeley DB to be made available for a nominal fee.

https://en.wikipedia.org/wiki/Java_Native_Interface
https://en.wikipedia.org/wiki/XQuery
https://en.wikipedia.org/wiki/XQilla
https://en.wikipedia.org/wiki/Xerces
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/Python_(programming_language)
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/389_Directory_Server
https://en.wikipedia.org/wiki/Fedora_Project
https://en.wikipedia.org/wiki/Bitcoin_Core
https://en.wikipedia.org/wiki/Cryptocurrency
https://en.wikipedia.org/wiki/Bogofilter
https://en.wikipedia.org/wiki/Spam_(email)
https://en.wikipedia.org/wiki/Carbonado_(Java)
https://en.wikipedia.org/wiki/Citadel/UX
https://en.wikipedia.org/wiki/Groupware
https://en.wikipedia.org/wiki/Cyrus_IMAP_server
https://en.wikipedia.org/wiki/IMAP
https://en.wikipedia.org/wiki/POP3
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Carnegie_Mellon_University
https://en.wikipedia.org/wiki/Evolution_(software)
https://en.wikipedia.org/wiki/GlusterFS
https://en.wikipedia.org/wiki/Jabberd2
https://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
https://en.wikipedia.org/wiki/Extensible_Messaging_and_Presence_Protocol
https://en.wikipedia.org/wiki/KDevelop
https://en.wikipedia.org/wiki/Integrated_Development_Environment
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Movable_Type
https://en.wikipedia.org/wiki/Weblog
https://en.wikipedia.org/wiki/California
https://en.wikipedia.org/wiki/Six_Apart
https://en.wikipedia.org/wiki/Memcachedb
https://en.wikipedia.org/wiki/Memcached
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/OpenLDAP
https://en.wikipedia.org/wiki/Oracle_NoSQL_Database
https://en.wikipedia.org/wiki/Oracle_Retail_Predictive_Application_Server_(RPAS)
https://en.wikipedia.org/wiki/MOLAP
https://en.wikipedia.org/wiki/Lucent
https://en.wikipedia.org/wiki/Postfix_(software)
https://en.wikipedia.org/wiki/Mail_transfer_agent
https://en.wikipedia.org/wiki/Parallel_Virtual_File_System
https://en.wikipedia.org/wiki/RedDwarf_Server
https://en.wikipedia.org/wiki/RPM_Package_Manager
https://en.wikipedia.org/wiki/Software_package_(installation)
https://en.wikipedia.org/wiki/Sendmail
https://en.wikipedia.org/wiki/Spamassassin
https://en.wikipedia.org/wiki/Apache_Subversion
https://en.wikipedia.org/wiki/Version_control_system
https://en.wikipedia.org/wiki/Concurrent_Versions_System
https://en.wikipedia.org/wiki/Sun_Grid_Engine
https://en.wikipedia.org/wiki/Free_and_open_source_software
https://en.wikipedia.org/wiki/Dual_license
https://en.wikipedia.org/wiki/BSD_license
https://en.wikipedia.org/wiki/Copyleft
https://en.wikipedia.org/wiki/GNU_General_Public_License

9.5. BERKELEY DB 111

As of Berkeley DB release 6.0, the Oracle Corporation
has relicensed Berkeley DB under the GNU AGPL v3.[14]

As of July 2011, Oracle’s list price for non-copyleft
Berkeley DB licenses varies between 900 and 13,800
USD per processor.[15] Embedded usage within the
Oracle Retail Predictive Application Server (RPAS) does
not require an additional license payment.

Sleepycat License

Sleepycat License (sometimes referred to as Berkeley
Database License or the Sleepycat Public License) is
an OSI-approved open source license used by Oracle Cor-
poration for the open-source editions of Berkeley DB,
Berkeley DB Java Edition and Berkeley DB XML em-
bedded database products older than version 6.0. (Start-
ing with version 6.0 the open-source editions are instead
licensed under the GNU AGPL v3.) The name of this
license is derived from the name of the company which
commercially sold the Berkeley DB products, Sleepycat
Software, which was acquired by Oracle in 2006. Or-
acle continued to use the name “Sleepycat License” for
Berkeley DB, despite not using the term “Sleepycat” in
any other documentation until it changed to GNU AGPL
with version 6.
According to the Free Software Foundation,[16] it quali-
fies as a free software license, and is compatible with the
GPL.
The license is a strong form of copyleft because it man-
dates that redistributions in any form not only include the
source code of Berkeley DB, but also “any accompany-
ing software that uses the DB software”. It is possible
to circumvent this strict licensing policy through the pur-
chase of a commercial software license from Oracle Cor-
poration consisting of terms and conditions which are ne-
gotiated at the time of sale. This is an example of dual
licensing.
The effect of the dual license creates financial exposure
for commercial organizations, since there is considerable
risk of becoming liable for payment of license fees to Or-
acle. Some people consider it to be a “sneaky” license.
Mike Olson, co-founder and CEO of Sleepycat Software
and Cloudera, said that “This is good business if you can
get it, but your relationship with your customer begins
based on a threat and that’s not a really healthy place to
start out.”[17]

9.5.6 References

[1] Berkeley DB Reference Guide: What is Berkeley DB not?.
Doc.gnu-darwin.org (2001-05-31). Retrieved on 2013-
09-18.

[2] http://doc.gnu-darwin.org/am_misc/dbsizes.html Berke-
ley DB Reference Guide: Database limits Retrieved on
2013-09-19

[3] Olson, Michael A.; Bostic, Keith; Seltzer, Margo (1999).
“Berkeley DB” (PDF). Proc. FREENIX Track, USENIX
Annual Tech. Conf. Retrieved October 20, 2009.

[4] Seltzer, Margo; Yigit, Ozan (1991). “A New Hashing
Package for UNIX”. Proc. USENIX Winter Tech. Conf.
Retrieved October 20, 2009.

[5] Brunelli, Mark (March 28, 2005). “A Berkeley DB
primer”. Enterprise Linux News. Retrieved December 28,
2008.

[6] “db(3)". Retrieved April 12, 2009.

[7] [Berkeley DB Announce] Major Release: Berkeley DB
12gR1 (12.1.6.0). Retrieved July 5, 2013.

[8] “The Sleepycat License”. Open Source Initiative. October
31, 2006. Retrieved December 28, 2008.

[9] “Licenses”. Free Software Foundation. December 10,
2008. Retrieved December 28, 2008.

[10] “Twitter / Gregory Burd: @humanications We didn't r ...”.

[11] “Official Berkeley DB FAQ”. Oracle Corporation. Re-
trieved March 30, 2010. Does Berkeley DB support
PL/SQL?

[12] RCE 35: PVFS Parallel Virtual FileSystem

[13] “Open Source License for Berkeley DB”. Oracle Corpo-
ration. For a license to use the Berkeley DB software un-
der conditions other than those described here, or to pur-
chase support for this software, please contact berkeleydb-
info_us@oracle.com.

[14] “Major Release: Berkeley DB 12gR1 (12.1.6.0)". June
10, 2013. Retrieved July 15, 2013.

[15] http://www.oracle.com/us/corporate/pricing/
technology-price-list-070617.pdf

[16] Various Licenses and Comments about Them - Free Soft-
ware Foundation

[17] Mike Olson (co-founder and CEO of Sleepycat Soft-
ware and Cloudera), lecture to Stanford University en-
trepreneurship students, 2013.11.13

9.5.7 External links

• Oracle Berkeley DB Site

• Berkeley DB Programmer’s Reference Guide

• Licensing pitfalls for Oracle Technology Products

• The Berkeley DB Book by Himanshu Yadava

• Launchpad.net - Berkeley DB at Launchpad

• Oracle Licensing Knowledge Net

• Oracle Berkeley DB Licensing Information

• Text of the Sleepycat License (old)

https://en.wikipedia.org/wiki/Affero_General_Public_License
https://en.wikipedia.org/wiki/Oracle_Retail_Predictive_Application_Server_(RPAS)
https://en.wikipedia.org/wiki/Open_Source_Initiative
https://en.wikipedia.org/wiki/Open_source_license
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Affero_General_Public_License
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Affero_General_Public_License
https://en.wikipedia.org/wiki/Free_Software_Foundation
https://en.wikipedia.org/wiki/Free_software_license
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Copyleft
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Dual_license
https://en.wikipedia.org/wiki/Dual_license
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Cloudera
http://doc.gnu-darwin.org/intro/dbisnot.html
http://doc.gnu-darwin.org/am_misc/dbsizes.html
http://www.usenix.org/events/usenix99/full_papers/olson/olson.pdf
http://www.eecs.harvard.edu/margo/papers/usenix91/paper.ps
http://www.eecs.harvard.edu/margo/papers/usenix91/paper.ps
http://searchenterpriselinux.techtarget.com/originalContent/0,289142,sid39_gci1071880,00.html
http://searchenterpriselinux.techtarget.com/originalContent/0,289142,sid39_gci1071880,00.html
http://www.freebsd.org/cgi/man.cgi?query=db&apropos=0&sektion=0&manpath=FreeBSD+7.1-RELEASE&format=html
https://oss.oracle.com/pipermail/bdb/2013-June/000056.html
https://oss.oracle.com/pipermail/bdb/2013-June/000056.html
http://www.opensource.org/licenses/sleepycat.php
https://en.wikipedia.org/wiki/Open_Source_Initiative
http://www.fsf.org/licensing/licenses/index_html#GPLCompatibleLicenses
https://en.wikipedia.org/wiki/Free_Software_Foundation
http://twitter.com/gregburd/statuses/10979336891
http://www.oracle.com/technetwork/database/berkeleydb/db-faq-095848.html#DoesBerkeleyDBsupportPLSQL
https://en.wikipedia.org/wiki/Oracle_Corporation
http://www.rce-cast.com/Podcast/rce-35-pvfs-parallel-virtual-filesystem.html
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Oracle_Corporation
https://oss.oracle.com/pipermail/bdb/2013-June/000056.html
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
http://www.oracle.com/us/corporate/pricing/technology-price-list-070617.pdf
http://www.gnu.org/licenses/license-list.html#BerkeleyDB
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Sleepycat_Software
https://en.wikipedia.org/wiki/Cloudera
http://ecorner.stanford.edu/authorMaterialInfo.html?mid=3223
http://ecorner.stanford.edu/authorMaterialInfo.html?mid=3223
http://www.oracle.com/us/products/database/berkeley-db/overview/index.html
http://download.oracle.com/docs/cd/E17076_02/html/programmer_reference/index.html
http://omtco.eu/references/oracle/top-60-licensing-pitfalls-for-oracle-databases-and-oracle-technology-products/
http://www.apress.com/book/view/9781590596722
https://launchpad.net/berkeley-db
https://en.wikipedia.org/wiki/Launchpad_(website)
http://omtco.eu/references/oracle/
http://www.oracle.com/technetwork/products/berkeleydb/downloads/licensing-098979.html
http://opensource.org/licenses/Sleepycat

112 CHAPTER 9. EXAMPLES

9.6 Memcached

Memcached (pronunciation: mem-cash-dee) is a
general-purpose distributed memory caching system.
It is often used to speed up dynamic database-driven
websites by caching data and objects in RAM to reduce
the number of times an external data source (such as a
database or API) must be read.
Memcached is free and open-source software, licensed
under the Revised BSD license.[2] Memcached runs on
Unix-like operating systems (at least Linux and OS X)
and on Microsoft Windows. It depends on the libevent
library.
Memcached’s APIs provide a very large hash table dis-
tributed across multiple machines. When the table is full,
subsequent inserts cause older data to be purged in least
recently used (LRU) order.[3][4] Applications using Mem-
cached typically layer requests and additions into RAM
before falling back on a slower backing store, such as a
database.
The size of this hash table is often very large. It is limited
to available memory across all the servers in the cluster of
servers in a data centre. Where high volume, wide audi-
ence web publishing requires it, this may stretch to many
gigabytes. Memcached can be equally valuable for situ-
ations where either the number of requests for content is
high, or the cost of generating a particular piece of con-
tent is high.
Memcached was originally developed by Danga Inter-
active for LiveJournal, but is now used by many other
systems, including MocoSpace,[5] YouTube,[6] Reddit,[7]

Survata,[8] Zynga,[9] Facebook,[10][11][12] Orange,[13]

Twitter,[14] Tumblr[15] and Wikipedia.[16] Engine Yard
and Jelastic are using Memcached as part of their
platform as a service technology stack[17][18] and Heroku
offers several Memcached services[19] as part of their
platform as a service. Google App Engine, AppScale,
Microsoft Azure and Amazon Web Services also offer a
Memcached service through an API.[20][21][22][23]

9.6.1 History

Memcached was first developed by Brad Fitzpatrick for
his website LiveJournal, on May 22, 2003.[24][25][26] It
was originally written in Perl, then later rewritten in C
by Anatoly Vorobey, then employed by LiveJournal.[27]

9.6.2 Software architecture

The system uses a client–server architecture. The servers
maintain a key–value associative array; the clients popu-
late this array and query it by key. Keys are up to 250
bytes long and values can be at most 1 megabyte in size.
Clients use client-side libraries to contact the servers

which, by default, expose their service at port 11211.
Each client knows all servers; the servers do not commu-
nicate with each other. If a client wishes to set or read the
value corresponding to a certain key, the client’s library
first computes a hash of the key to determine which server
to use. Then it contacts that server. This gives a simple
form of sharding and scalable shared-nothing architec-
ture across the servers. The server computes a second
hash of the key to determine where to store or read the
corresponding value.
The servers keep the values in RAM; if a server runs out
of RAM, it discards the oldest values. Therefore, clients
must treat Memcached as a transitory cache; they cannot
assume that data stored in Memcached is still there when
they need it. Other databases, such as MemcacheDB,
Couchbase Server, provide persistent storage while main-
taining Memcached protocol compatibility.
If all client libraries use the same hashing algorithm to de-
termine servers, then clients can read each other’s cached
data.
A typical deployment has several servers and many
clients. However, it is possible to use Memcached on
a single computer, acting simultaneously as client and
server.

Security

Most deployments of Memcached are within trusted net-
works where clients may freely connect to any server.
However, sometimes Memcached is deployed in un-
trusted networks or where administrators want to exercise
control over the clients that are connecting. For this pur-
pose Memcached can be compiled with optional SASL
authentication support. The SASL support requires the
binary protocol.
A presentation at BlackHat USA 2010 revealed that a
number of large public websites had left Memcached
open to inspection, analysis, retrieval, and modification
of data.[28]

Even within a trusted organisation, the flat trust model of
memcached may have security implications. For efficient
simplicity, all Memcached operations are treated equally.
Clients with a valid need for access to low-security en-
tries within the cache gain access to all entries within the
cache, even when these are higher-security and that client
has no justifiable need for them. If the cache key can be
either predicted, guessed or found by exhaustive search-
ing, its cache entry may be retrieved.
Some attempt to isolate setting and reading data may be
made in situations such as high volume web publishing.
A farm of outward-facing content servers have read ac-
cess to memcached containing published pages or page
components, but no write access. Where new content is
published (and is not yet in memcached), a request is in-
stead sent to content generation servers that are not pub-

https://en.wikipedia.org/wiki/Memory_caching
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Object_(computer_science)
https://en.wikipedia.org/wiki/Random-access_memory
https://en.wikipedia.org/wiki/Free_and_open-source_software
https://en.wikipedia.org/wiki/Revised_BSD_license
https://en.wikipedia.org/wiki/Unix-like
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/OS_X
https://en.wikipedia.org/wiki/Microsoft_Windows
https://en.wikipedia.org/wiki/Libevent
https://en.wikipedia.org/wiki/Application_Programming_Interface
https://en.wikipedia.org/wiki/Hash_table
https://en.wikipedia.org/wiki/Least_recently_used
https://en.wikipedia.org/wiki/Least_recently_used
http://www.danga.com/
http://www.danga.com/
https://en.wikipedia.org/wiki/LiveJournal
https://en.wikipedia.org/wiki/MocoSpace
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/Reddit
https://en.wikipedia.org/wiki/Survata
https://en.wikipedia.org/wiki/Zynga
https://en.wikipedia.org/wiki/Facebook
https://en.wikipedia.org/wiki/Orange_(telecommunications)
https://en.wikipedia.org/wiki/Twitter
https://en.wikipedia.org/wiki/Tumblr
https://en.wikipedia.org/wiki/Wikipedia
https://en.wikipedia.org/wiki/Engine_Yard
https://en.wikipedia.org/wiki/Jelastic
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Heroku
https://en.wikipedia.org/wiki/Platform_as_a_service
https://en.wikipedia.org/wiki/Google_App_Engine
https://en.wikipedia.org/wiki/AppScale
https://en.wikipedia.org/wiki/Microsoft_Azure
https://en.wikipedia.org/wiki/Amazon_Web_Services
https://en.wikipedia.org/wiki/Brad_Fitzpatrick
https://en.wikipedia.org/wiki/LiveJournal
https://en.wikipedia.org/wiki/Perl
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/Anatoly_Vorobey
https://en.wikipedia.org/wiki/Client%E2%80%93server
https://en.wikipedia.org/wiki/Associative_array
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Computer_port_(software)
https://en.wikipedia.org/wiki/Hash_function
https://en.wikipedia.org/wiki/Shard_(database_architecture)
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/Shared-nothing_architecture
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/Couchbase_Server
https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
https://en.wikipedia.org/wiki/Black_Hat_Briefings

9.6. MEMCACHED 113

lically accessible to create the content unit and add it to
memcached. The content server then retries to retrieve it
and serve it outwards.

9.6.3 Example code

Note that all functions described on this page are
pseudocode only. Memcached calls and programming lan-
guages may vary based on the API used.

Converting database or object creation queries to use
Memcached is simple. Typically, when using straight
database queries, example code would be as follows:
function get_foo(int userid) { data = db_select(“SELECT
* FROM users WHERE userid = ?", userid); return data;
}

After conversion to Memcached, the same call might look
like the following
function get_foo(int userid) { /* first try the cache
*/ data = memcached_fetch(“userrow:" + userid); if
(!data) { /* not found : request database */ data =
db_select(“SELECT * FROM users WHERE userid
= ?", userid); /* then store in cache until next get */
memcached_add(“userrow:" + userid, data); } return
data; }

The client would first check whether a Memcached value
with the unique key "userrow:userid" exists, where userid
is some number. If the result does not exist, it would se-
lect from the database as usual, and set the unique key
using the Memcached API add function call.
However, if only this API call were modified, the server
would end up fetching incorrect data following any
database update actions: the Memcached “view” of the
data would become out of date. Therefore, in addition
to creating an “add” call, an update call would also be
needed using the Memcached set function.
function update_foo(int userid, string dbUpdat-
eString) { /* first update database */ result =
db_execute(dbUpdateString); if (result) { /* database
update successful : fetch data to be stored in cache */
data = db_select(“SELECT * FROM users WHERE
userid = ?", userid); /* the previous line could also look
like data = createDataFromDBString(dbUpdateString);
/ / then store in cache until next get */ mem-
cached_set(“userrow:" + userid, data); } }

This call would update the currently cached data to match
the new data in the database, assuming the database query
succeeds. An alternative approach would be to invalidate
the cache with the Memcached delete function, so that
subsequent fetches result in a cache miss. Similar ac-
tion would need to be taken when database records were
deleted, to maintain either a correct or incomplete cache.

9.6.4 See also

• Aerospike

• phpFastCache - Supported MemCached, Mem-
Cache, WinCache, APC and Files.

• Couchbase Server

• Redis

• Mnesia

• MemcacheDB

• MySQL - directly supports the Memcached API as
of version 5.6.[29]

• Oracle Coherence - directly supports the Mem-
cached API as of version 12.1.3.[30]

• GigaSpaces XAP - support Memcached with high
availability, transaction support[31]

• Hazelcast

• Cassandra

9.6.5 References
[1] “Release notes for Release 1.4.22”. Retrieved 2015-04-

06.

[2] “Memcached license”. GitHub. Retrieved 2014-06-27.

[3] “Memcached NewOverview”.

[4] “Memcached NewUserInternals”.

[5] MocoSpace Architecture - 3 Billion Mobile Page Views
a Month. High Scalability (2010-05-03). Retrieved on
2013-09-18.

[6] Cuong Do Cuong (Engineering manager at
YouTube/Google) (June 23, 2007). Seattle Confer-
ence on Scalability: YouTube Scalability (Online Video -
26th minute). Seattle: Google Tech Talks.

[7] Steve Huffman on Lessons Learned at Reddit

[8]

[9] How Zynga Survived FarmVille

[10] Facebook Developers Resources

[11] Scaling Memcached at Facebook

[12] NSDI '13: Scaling Memcache at Facebook

[13] Orange Developers

[14] It’s Not Rocket Science, But It’s Our Work

[15] Engineer â€“ Core Applications Group job at Tumblr
in New York, NY, powered by JobScore. Jobscore.com.
Retrieved on 2013-09-18.

[16] MediaWiki Memcached

https://en.wikipedia.org/wiki/Pseudocode
https://en.wikipedia.org/wiki/Aerospike_database
http://www.phpfastcache.com/
https://en.wikipedia.org/wiki/Couchbase_Server
https://en.wikipedia.org/wiki/Redis
https://en.wikipedia.org/wiki/Mnesia
https://en.wikipedia.org/wiki/MemcacheDB
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Oracle_Coherence
https://en.wikipedia.org/wiki/GigaSpaces_XAP
https://en.wikipedia.org/wiki/Hazelcast
https://en.wikipedia.org/wiki/Apache_Cassandra
https://code.google.com/p/memcached/wiki/ReleaseNotes1422
https://github.com/memcached/memcached/blob/master/COPYING
https://en.wikipedia.org/wiki/GitHub
http://code.google.com/p/memcached/wiki/NewOverview
http://code.google.com/p/memcached/wiki/NewUserInternals
http://highscalability.com/blog/2010/5/3/mocospace-architecture-3-billion-mobile-page-views-a-month.html
http://highscalability.com/blog/2010/5/3/mocospace-architecture-3-billion-mobile-page-views-a-month.html
http://video.google.com/videoplay?docid=-6304964351441328559
http://video.google.com/videoplay?docid=-6304964351441328559
http://carsonified.com/blog/dev/steve-huffman-on-lessons-learned-at-reddit/
http://gigaom.com/2010/06/08/how-zynga-survived-farmville/
http://developers.facebook.com/opensource/
http://www.facebook.com/note.php?note_id=39391378919&ref=mf
https://www.usenix.org/conference/nsdi13/scaling-memcache-facebook
http://www.orangepartner.com/
http://blog.twitter.com/2008/05/its-not-rocket-science-but-its-our-work.html
http://www.jobscore.com/jobs2/tumblr/engineer-core-applications-group/cvAFBCbcyr47JbiGakhP3Q?ref=rss&sid=68
http://www.jobscore.com/jobs2/tumblr/engineer-core-applications-group/cvAFBCbcyr47JbiGakhP3Q?ref=rss&sid=68
https://www.mediawiki.org/wiki/Memcached

114 CHAPTER 9. EXAMPLES

[17] Engine Yard Technology Stack

[18] Jelastic Memcached System

[19] Heroku Memcached add-ons

[20] Using Memcache - Google App Engine - Google Code

[21] http://appscale.cs.ucsb.edu Memcached in AppScale

[22] About In-Role Cache for Windows Azure Cache.
Msdn.microsoft.com. Retrieved on 2013-09-18.

[23] Amazon ElastiCache. Aws.amazon.com. Retrieved on
2013-09-18.

[24] changelog: livejournal. Community.livejournal.com
(2003-05-22). Retrieved on 2013-09-18.

[25] brad’s life - weather, running, distributed cache daemon.
Brad.livejournal.com (2003-05-22). Retrieved on 2013-
09-18.

[26] lj_dev: memcached. Community.livejournal.com (2003-
05-27). Retrieved on 2013-09-18.

[27] lj_dev: memcached. Lj-dev.livejournal.com (2003-05-
27). Retrieved on 2013-09-18.

[28] BlackHat Write-up: go-derper and mining memcaches

[29] “Speedy MySQL 5.6 takes aim at NoSQL, MariaDB.”

[30]

[31]

9.6.6 External links
• Official website

• Memcached wiki and faq

• PHP Memcached Manager with Tag Support

• membase

• Memcached and Ruby

• go-memcached - Memcached implementation in Go

• QuickCached - Memcached server implementation
in Java

• nsmemcache - memcache client for AOL Server

• Memcached implementation on Windows 8/8.1

Commercially supported distributions

• Couchbase Server (formerly Membase) offers a
Memcached “bucket type” (free for use, subscrip-
tion support available)

• GigaSpaces Java based Memcached (free commu-
nity edition, fault tolerance)

• Hazelcast Memcached clustered, elastic, fault-
tolerant, Java based Memcached (free for use, sub-
scription support available)

9.7 BigTable

Bigtable is a compressed, high performance, and
proprietary data storage system built on Google File Sys-
tem, Chubby Lock Service, SSTable (log-structured stor-
age like LevelDB) and a few other Google technolo-
gies. On May 6, 2015, a public version of Bigtable was
launched as Google Cloud Bigtable.[1] Bigtable also un-
derlies Google Datastore,[2] which is available as a part
of the Google Cloud Platform.

9.7.1 History

Bigtable development began in 2004[3] and is now used by
a number of Google applications, such as web indexing,[4]

MapReduce, which is often used for generating and
modifying data stored in Bigtable,[5] Google Maps,[6]

Google Book Search, “My Search History”, Google
Earth, Blogger.com, Google Code hosting, YouTube,[7]

and Gmail.[8] Google’s reasons for developing its own
database include scalability and better control of perfor-
mance characteristics.[9]

Google’s Spanner RDBMS is layered on an implementa-
tion of Bigtable with a Paxos group for two-phase com-
mits to each table. Google F1 was built using Spanner to
replace an implementation based on MySQL.[10]

9.7.2 Design

Bigtable maps two arbitrary string values (row key and
column key) and timestamp (hence three-dimensional
mapping) into an associated arbitrary byte array. It is
not a relational database and can be better defined as
a sparse, distributed multi-dimensional sorted map.[11]:1

Bigtable is designed to scale into the petabyte range across
“hundreds or thousands of machines, and to make it easy
to add more machines [to] the system and automatically
start taking advantage of those resources without any
reconfiguration”.[12]

Each table has multiple dimensions (one of which is a
field for time, allowing for versioning and garbage col-
lection). Tables are optimized for Google File System
(GFS) by being split into multiple tablets – segments of
the table are split along a row chosen such that the tablet
will be ~200 megabytes in size. When sizes threaten to
grow beyond a specified limit, the tablets are compressed
using the algorithm BMDiff[13][14] and the Zippy com-
pression algorithm[15] publicly known and open-sourced
as Snappy,[16] which is a less space-optimal variation of
LZ77 but more efficient in terms of computing time.
The locations in the GFS of tablets are recorded as
database entries in multiple special tablets, which are
called “META1” tablets. META1 tablets are found by
querying the single “META0” tablet, which typically re-
sides on a server of its own since it is often queried by
clients as to the location of the “META1” tablet which

https://support.cloud.engineyard.com/entries/21009842-engine-yard-technology-stack
http://jelastic.com/docs/memcached
https://addons.heroku.com/?q=memcache
http://code.google.com/appengine/docs/python/memcache/usingmemcache.html
http://appscale.cs.ucsb.edu/
http://msdn.microsoft.com/en-us/library/windowsazure/hh914161.aspx
http://aws.amazon.com/elasticache/
http://community.livejournal.com/changelog/637455.html
http://brad.livejournal.com/1893677.html
http://community.livejournal.com/lj_dev/539656.html
http://lj-dev.livejournal.com/539656.html
http://www.sensepost.com/blog/4873.html
http://www.theregister.co.uk/2013/02/06/oracle_mysql_56_vs_mariadb/
http://www.memcached.org/
https://code.google.com/p/memcached/wiki/NewStart
https://github.com/manifestinteractive/memcachemanager
http://membase.org/
http://lukaszwrobel.pl/blog/memcached-and-ruby
https://github.com/valyala/ybc/tree/master/apps/go/memcached
https://code.google.com/p/quickcached/
https://code.google.com/p/quickcached/
https://github.com/aolserver/nsmemcache/
http://www.kapadiya.net/blog/installing-memcached-windows-8-81/
http://www.couchbase.com/products-and-services/memcached
http://www.gigaspaces.com/wiki/display/XAP71/memcached
http://www.hazelcast.com/docs/1.9.4/manual/single_html/#MemcacheClient
https://en.wikipedia.org/wiki/Data_compression
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Distributed_lock_manager#Google.27s_Chubby_lock_service
https://en.wikipedia.org/wiki/LevelDB
https://en.wikipedia.org/wiki/Google
https://en.wikipedia.org/wiki/Google_Datastore
https://en.wikipedia.org/wiki/Google_Cloud_Platform
https://en.wikipedia.org/wiki/MapReduce
https://en.wikipedia.org/wiki/Google_Maps
https://en.wikipedia.org/wiki/Google_Book_Search
https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Google_Earth
https://en.wikipedia.org/wiki/Blogger.com
https://en.wikipedia.org/wiki/Google_Code
https://en.wikipedia.org/wiki/YouTube
https://en.wikipedia.org/wiki/Gmail
https://en.wikipedia.org/wiki/Spanner_(distributed_database_technology)
https://en.wikipedia.org/wiki/Paxos_(computer_science)
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Two-phase_commit_protocol
https://en.wikipedia.org/wiki/Google_F1
https://en.wikipedia.org/wiki/MySQL
https://en.wikipedia.org/wiki/Petabyte
https://en.wikipedia.org/wiki/Table_(database)
https://en.wikipedia.org/wiki/Field_(computer_science)
https://en.wikipedia.org/wiki/Versioning
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Google_File_System
https://en.wikipedia.org/wiki/Megabyte
https://en.wikipedia.org/wiki/Snappy_(software)
https://en.wikipedia.org/wiki/LZ77

9.7. BIGTABLE 115

itself has the answer to the question of where the actual
data is located. Like GFS’s master server, the META0
server is not generally a bottleneck since the proces-
sor time and bandwidth necessary to discover and trans-
mit META1 locations is minimal and clients aggressively
cache locations to minimize queries.

9.7.3 Other similar software

• Apache Accumulo — built on top of Hadoop,
ZooKeeper, and Thrift. Has cell-level access labels
and a server-side programming mechanism. Written
in Java.

• Apache Cassandra — brings together Dynamo's
fully distributed design and Bigtable’s data model.
Written in Java.

• Apache HBase — Provides Bigtable-like support on
the Hadoop Core.[17] Has cell-level access labels and
a server-side programming mechanism too. Written
in Java.

• Hypertable — Hypertable is designed to manage the
storage and processing of information on a large
cluster of commodity servers.[18] Written in C++.

• “KDI”, Bluefish, GitHub — Kosmix attempt to
make a Bigtable clone. Written in C++.

• LevelDB — Google’s embedded key/value store
that uses similar design concepts as the Bigtable
tablet.[19]

9.7.4 See also

• Amazon SimpleDB

• Big data

• Distributed data stores, an overview

• Dynamo (storage system)

• Column-oriented DBMS

• Hadoop

9.7.5 References

[1] http://googlecloudplatform.blogspot.com/2015/05/
introducing-Google-Cloud-Bigtable.html

[2] http://googledevelopers.blogspot.com/2013/05/
get-started-with-google-cloud-datastore.html

[3] Kumar, Aswini, Whitchcock, Andrew, ed., Google’s
BigTable, First an overview. BigTable has been in devel-
opment since early 2004 and has been in active use for
about eight months (about February 2005)..

[4] Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay; Hsieh,
Wilson C; Wallach, Deborah A; Burrows, Michael ‘Mike’;
Chandra, Tushar; Fikes, Andrew; Gruber, Robert E
(2006), “Bigtable: A Distributed Storage System for
Structured Data”, Research (PDF), Google .

[5] Chang et al. 2006, p. 3: ‘Bigtable can be used with
MapReduce, a framework for running large-scale paral-
lel computations developed at Google. We have written a
set of wrappers that allow a Bigtable to be used both as an
input source and as an output target for MapReduce jobs’

[6] Whitchcock, Andrew, Google’s BigTable, There are cur-
rently around 100 cells for services such as Print, Search
History, Maps, and Orkut.

[7] Cordes, Kyle (2007-07-12), YouTube Scalability (talk),
Their new solution for thumbnails is to use Google’s
BigTable, which provides high performance for a large
number of rows, fault tolerance, caching, etc. This is a
nice (and rare?) example of actual synergy in an acquisi-
tion..

[8] “How Entities and Indexes are Stored”, Google App En-
gine, Google Code.

[9] Chang et al. 2006, Conclusion: ‘We have described
Bigtable, a distributed system for storing structured data
at Google... Our users like the performance and high
availability provided by the Bigtable implementation, and
that they can scale the capacity of their clusters by sim-
ply adding more machines to the system as their resource
demands change over time... Finally, we have found that
there are significant advantages to building our own stor-
age solution at Google. We have gotten a substantial
amount of flexibility from designing our own data model
for Bigtable.’

[10] Shute, Jeffrey ‘Jeff’; Oancea, Mircea; Ellner, Stephan;
Handy, Benjamin ‘Ben’; Rollins, Eric; Samwel, Bart; Vin-
gralek, Radek; Whipkey, Chad; Chen, Xin; Jegerlehner,
Beat; Littlefield, Kyle; Tong, Phoenix (2012), “Summary;
F1 — the Fault-Tolerant Distributed RDBMS Supporting
Google’s Ad Business”, Research (presentation), Sigmod:
Google, p. 19, We've moved a large and critical applica-
tion suite from MySQL to F1.

[11] Chang et al. 2006.

[12] “Google File System and BigTable”, Radar (World Wide
Web log), Database War Stories (7), O’Reilly, May 2006.

[13] “Google Bigtable, Compression, Zippy and BMDiff”.
2008-10-12. Archived from the original on 1 May 2013.
Retrieved 14 April 2015..

[14] McIlroy, Bentley. Data compression using long common
strings. DCC '99. IEEE..

[15] “Google’s Bigtable”, Outer court (Weblog), 2005-10-23.

[16] “Snappy”, Code (project), Google.

[17] “Background; HBase”, Hadoop Core (wiki), Apache.

[18] “About”, Hyper table.

[19] “Leveldb file layout and compactions”, Code, Google.

https://en.wikipedia.org/wiki/Bottleneck_(software)
https://en.wikipedia.org/wiki/Apache_Accumulo
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Apache_ZooKeeper
https://en.wikipedia.org/wiki/Apache_Thrift
https://en.wikipedia.org/wiki/Apache_Cassandra
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Apache_HBase
https://en.wikipedia.org/wiki/Apache_Hadoop
https://en.wikipedia.org/wiki/Hypertable
http://github.com/bluefish/kdi
https://en.wikipedia.org/wiki/Kosmix
https://en.wikipedia.org/wiki/LevelDB
https://en.wikipedia.org/wiki/Amazon_SimpleDB
https://en.wikipedia.org/wiki/Big_data
https://en.wikipedia.org/wiki/Distributed_data_store
https://en.wikipedia.org/wiki/Dynamo_(storage_system)
https://en.wikipedia.org/wiki/Column-oriented_DBMS
https://en.wikipedia.org/wiki/Hadoop
http://googlecloudplatform.blogspot.com/2015/05/introducing-Google-Cloud-Bigtable.html
http://googlecloudplatform.blogspot.com/2015/05/introducing-Google-Cloud-Bigtable.html
http://googledevelopers.blogspot.com/2013/05/get-started-with-google-cloud-datastore.html
http://googledevelopers.blogspot.com/2013/05/get-started-with-google-cloud-datastore.html
http://andrewhitchcock.org/?post=214
http://andrewhitchcock.org/?post=214
http://research.google.com/archive/bigtable-osdi06.pdf
https://en.wikipedia.org/wiki/BigTable#CITEREFChangJeffreyGhemawatHsieh2006
http://andrewhitchcock.org/?post=214
http://kylecordes.com/2007/07/12/youtube-scalability/
https://code.google.com/intl/pl/appengine/articles/storage_breakdown.html#anc-background
https://code.google.com/intl/pl/appengine/articles/storage_breakdown.html#anc-background
https://en.wikipedia.org/wiki/BigTable#CITEREFChangJeffreyGhemawatHsieh2006
http://research.google.com/pubs/pub38125.html
https://en.wikipedia.org/wiki/Sigmod
https://en.wikipedia.org/wiki/BigTable#CITEREFChangJeffreyGhemawatHsieh2006
http://radar.oreilly.com/archives/2006/05/database_war_stories_7_google.html
https://en.wikipedia.org/wiki/World_Wide_Web
https://en.wikipedia.org/wiki/World_Wide_Web
https://web.archive.org/web/20130501020631/http://feedblog.org/2008/10/12/google-bigtable-compression-zippy-and-bmdiff/
http://feedblog.org/2008/10/12/google-bigtable-compression-zippy-and-bmdiff
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=755678
http://ieeexplore.ieee.org/xpl/freeabs_all.jsp?arnumber=755678
http://blog.outer-court.com/archive/2005-10-23-n61.html
https://code.google.com/p/snappy/
http://wiki.apache.org/hadoop/Hbase#background
http://www.hypertable.org/about.html
http://leveldb.googlecode.com/svn/trunk/doc/impl.html

116 CHAPTER 9. EXAMPLES

9.7.6 Bibliography

• Chang, Fay; Dean, Jeffrey; Ghemawat, Sanjay;
Hsieh, Wilson C; Wallach, Deborah A; Burrows,
Michael ‘Mike’; Chandra, Tushar; Fikes, Andrew;
Gruber, Robert E (2006), “Bigtable: A Distributed
Storage System for Structured Data”, Research
(PDF), Google .

9.7.7 External links

• BigTable: A Distributed Structured Storage System,
Washington. Video, Google.

• UWTV (video).
• Witchcock, Andrew, Google’s BigTable (notes

on the official presentation).

• Carr, David F (2006-07-06), “How Google Works”,
Baseline.

• “Is the Relational Database Doomed?", Read-write
web.

http://research.google.com/archive/bigtable-osdi06.pdf
http://www.cs.washington.edu/htbin-post/mvis/mvis?ID=437
http://video.google.com/videoplay?docid=7278544055668715642
http://www.uwtv.org/programs/displayevent.asp?rid=2787
http://andrewhitchcock.org/?post=214
http://www.baselinemag.com/article2/0,1540,1985050,00.asp
http://readwrite.com/2009/02/12/is-the-relational-database-doomed
http://readwrite.com/2009/02/12/is-the-relational-database-doomed

Chapter 10

Text and image sources, contributors, and
licenses

10.1 Text
• Database Source: https://en.wikipedia.org/wiki/Database?oldid=693733035 Contributors: Paul Drye, NathanBeach, Dreamyshade,

LC~enwiki, Robert Merkel, Zundark, The Anome, Stephen Gilbert, Sjc, Andre Engels, Chuckhoffmann, Fubar Obfusco, Ben-Zin~enwiki,
Maury Markowitz, Waveguy, Imran, Leandrod, Stevertigo, Edward, Ubiquity, Michael Hardy, JeffreyYasskin, Fuzzie, Pnm, Ixfd64,
TakuyaMurata, SebastianHelm, Pcb21, CesarB, MartinSpamer, ArnoLagrange, Ahoerstemeier, Haakon, Nanshu, Angela, Bogdangiusca,
Cyan, Poor Yorick, Mxn, Mulad, Feedmecereal, Jay, Greenrd, Wik, DJ Clayworth, Tpbradbury, E23~enwiki, Furrykef, Morwen, Sand-
man~enwiki, Finlay McWalter, Jni, Chuunen Baka, Robbot, Noldoaran, Sander123, Craig Stuntz, Chrism, Chris 73, Vespristiano, Choco-
lateboy, Netizen, Nurg, Romanm, Lowellian, Pingveno, Tualha, Rursus, Rothwellisretarded, Jondel, TittoAssini, Hadal, Vikreykja, Mush-
room, HaeB, Pengo, SpellBott, Tobias Bergemann, Stirling Newberry, Psb777, Giftlite, Graeme Bartlett, SamB, Sarchand~enwiki, Arved,
Inter, Kenny sh, Levin, Peruvianllama, Everyking, Ciciban, Ssd, Niteowlneils, Namlemez, Mboverload, SWAdair, Bobblewik, Wmahan,
Gadfium, SarekOfVulcan, Quadell, Kevins, Antandrus, Beland, OverlordQ, Rdsmith4, APH, Troels Arvin, Gscshoyru, Ohka-, Sonett72,
Trevor MacInnis, Canterbury Tail, Bluemask, Zro, Grstain, Mike Rosoft, DanielCD, Shipmaster, EugeneZelenko, AnjaliSinha, KeyStroke,
Discospinster, Rich Farmbrough, Rhobite, Lovelac7, Pak21, C12H22O11, Andrewferrier, Mumonkan, Kzzl, Paul August, Edgarde, Djord-
jes, S.K., Elwikipedista~enwiki, CanisRufus, *drew, MBisanz, Karmafist, Kiand, Cpereyra, Tom, Causa sui, Chrax, PatrikR, Hurricane111,
Mike Schwartz, Smalljim, Wipe, John Vandenberg, Polluks, Ejrrjs, JeffTan, Nk, Franl, Alphax, Railgun, Sleske, Sam Korn, Nsaa, Mdd,
HasharBot~enwiki, Jumbuck, Storm Rider, Alansohn, Tablizer, Etxrge, Guy Harris, Arthena, Keenan Pepper, Ricky81682, Riana, Aza-
Toth, Zippanova, Kocio, PaePae, Velella, Skybrian, Helixblue, Filx, Frankman, Danhash, Max Naylor, Harej, Mathewforyou, W mc-
call, Ringbang, Chirpy, Djsasso, Dan100, Brookie, Isfisk, Marasmusine, Simetrical, Reinoutr, Woohookitty, Mindmatrix, Camw, Arcann,
25or6to4, Decrease789, Mazca, Pol098, Commander Keane, Windsok, Ruud Koot, Tabletop, Bbatsell, KingsleyIdehen, DeirdreGerhardt,
GregorB, AnmaFinotera, Plrk, Crucis, Prashanthns, TrentonLipscomb, Turnstep, PeregrineAY, Dysepsion, Mandarax, Wulfila, Mass-
GalactusUniversum, Graham87, Qwertyus, DePiep, Jclemens, Sjakkalle, Rjwilmsi, Koavf, DeadlyAssassin, Vary, Carbonite, GlenPeterson,
Feydey, Eric Burnett, Jb-adder, ElKevbo, The wub, Sango123, FlaBot, Doc glasgow, Latka, GnuDoyng, Jstaniek, RexNL, AndriuZ, Intgr,
Antrax, Ahunt, Imnotminkus, JonathanFreed, King of Hearts, Chobot, Visor, Phearlez, DVdm, Bkhouser, NSR, Cornellrockey, Rimonu,
YurikBot, Wavelength, Sceptre, JarrahTree, Phantomsteve, Michael Slone, Woseph, Fabartus, Toquinha, GLaDOS, SpuriousQ, Radio-
Fan2 (usurped), Akamad, Stephenb, Rsrikanth05, Cryptic, Cpuwhiz11, BobStepno, Wimt, SamJohnston, RadioKirk, NawlinWiki, Wiki
alf, Jonathan Webley, Jaxl, Milo99, Welsh, Joel7687, SAE1962, Journalist, Nick, Aaron Brenneman, RayMetz100, Matticus78, Larsinio,
Mikeblas, Ezeu, Zwobot, Supten, Dbfirs, JMRyan, Bluerocket, LindaEllen, Samir, DeadEyeArrow, Werdna, User27091, Mugunth Ku-
mar, SimonMorgan, Lod, Twelvethirteen, Deville, Theodolite, Zzuuzz, Mike Dillon, Closedmouth, Arthur Rubin, Fang Aili, Th1rt3en,
GraemeL, JoanneB, Alasdair, Echartre, JLaTondre, ArielGold, Stuhacking, Kungfuadam, Mhkay, Bernd in Japan, GrinBot~enwiki, DVD
R W, Jonearles, CIreland, Victor falk, Pillefj, SmackBot, Hydrogen Iodide, McGeddon, WikiuserNI, Unyoyega, Pgk, AnonUser, Dav-
ewild, AutumnSnow, Brick Thrower, Stifle, Jab843, PJM, Kslays, Edgar181, Lexo, David Fuchs, Siebren, Yamaguchi��, Gilliam, Donama,
Ohnoitsjamie, Chaojoker, Chris the speller, TimBentley, MikeSy, Thumperward, Nafclark, Oli Filth, MalafayaBot, Silly rabbit, Robocoder,
Xx236, Deli nk, Jerome Charles Potts, Baa, Robth, DHN-bot~enwiki, Methnor, Colonies Chris, Darth Panda, Can't sleep, clown will
eat me, Frap, Chlewbot, Paul E Ester, Edivorce, Allan McInnes, Pax85, Mugaliens, Khoikhoi, COMPFUNK2, Soosed, Cybercobra,
Jwy, Jdlambert, Dreadstar, Insineratehymn, Hgilbert, BryanG, Ultraexactzz, RayGates, Daniel.Cardenas, Kukini, Kkailas, SashatoBot,
Krashlandon, Jasimab, Srikeit, Kuru, Jonwynne, Microchip08, Tazmaniacs, Gobonobo, PeeAeMKay, Sir Nicholas de Mimsy-Porpington,
Lguzenda, Tim Q. Wells, Minna Sora no Shita, Joffeloff, HeliXx, IronGargoyle, 16@r, MarkSutton, Slakr, Tasc, Beetstra, Noah Salzman,
Wikidrone, Babbling.Brook, Childzy, Optakeover, Waggers, Ryulong, ThumbFinger, DougBarry, Asyndeton, Dead3y3, Iridescent, Mro-
zlog, TwistOfCain, Paul Foxworthy, Igoldste, Benni39, Dwolt, DEddy, Courcelles, Linkspamremover, Navabromberger, Dkastner, Tawker-
bot2, Flubeca, LessHeard vanU, Megatronium, FatalError, JForget, Comps, VoxLuna, Spdegabrielle, Thatperson, Ahy1, CmdrObot, Ale
jrb, Ericlaw02, Iced Kola, KyraVixen, Kushal one, GHe, Constructive, Dgw, Argon233, FlyingToaster, Moreschi, Sewebster, Simeon,
Joshnpowell, Ubiq, Cantras, Mato, Gogo Dodo, Parzi, Chasingsol, Pascal.Tesson, Dancter, SymlynX, Tawkerbot4, Shirulashem, Dumb-
BOT, Chrislk02, Alaibot, IComputerSaysNo, SpK, Omicronpersei8, UberScienceNerd, Cavanagh, Click23, Mattisse, Thijs!bot, Epbr123,
Qwyrxian, HappyInGeneral, Andyjsmith, CynicalMe, Mojo Hand, Philippe, Eric3K, Peashy, Maxferrario, Mentifisto, AntiVandalBot,
Majorly, Luna Santin, Widefox, Seaphoto, Turlo Lomon, MrNoblet, EarthPerson, Kbthompson, Credema, Spartaz, Lfstevens, Deadbeef,
JAnDbot, Eric Bekins, MER-C, BlindEagle, The Transhumanist, Blood Red Sandman, RIH-V, Andonic, PhilKnight, Saiken79, Little-
OldMe, Jdrumgoole, Magioladitis, Karlhahn, Bongwarrior, VoABot II, Hasek is the best, JamesBWatson, Think outside the box, Lucyin,
Twsx, WODUP, Cic, Jvhertum, Bubba hotep, Culverin, Danieljamesscott, Adrian J. Hunter, 28421u2232nfenfcenc, Stdazi, Wwmbes, Cpl

117

https://en.wikipedia.org/wiki/Database?oldid=693733035

118 CHAPTER 10. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

Syx, Kunaldeo, Kozmando, Chris G, DerHexer, JaGa, Ahodgkinson, Oroso, Leaderofearth, MartinBot, Ironman5247, Arjun01, NAHID,
Poeloq, CableCat, Rettetast, R'n'B, NetManage, Tgeairn, J.delanoy, Pharaoh of the Wizards, Trusilver, Rohitj.iitk, Bogey97, Ayecee, Uncle
Dick, Maurice Carbonaro, Jesant13, Ginsengbomb, Darth Mike, Gzkn, Bcartolo, BrokenSphere, Katalaveno, Afluegel, Chriswiki, Damn-
Randall, Girl2k, NewEnglandYankee, SJP, Gregfitzy, Kraftlos, Madth3, Madhava 1947, Jackacon, Juliancolton, Cometstyles, Ryager,
Raspalchima, Seanust 1, Lamp90, Bonadea, Aditya gopal3, Pdcook, Ja 62, TheNewPhobia, DigitalEnthusiast, Squids and Chips, Cardinal-
Dan, Ryanslater, Ryanslater2, Siteobserver, Lights, VolkovBot, Amaraiel, Thedjatclubrock, Alain Amiouni, Indubitably, JustinHagstrom,
WOSlinker, Barneca, N25696, Erikrj, Philip Trueman, Lingwitt, TXiKiBoT, Wiki tiki tr, Moogwrench, Vipinhari, Technopat, Caster23,
GDonato, ScMeGr, Olinga, Ann Stouter, Anonymous Dissident, Cyberjoac, Qxz, Gozzy345, Lradrama, Sintaku, Clarince63, Twebby,
BwDraco, Jackfork, LeaveSleaves, Wya 7890, Mannafredo, Amd628, Zhenqinli, Hankhuck, Gwizard, Synthebot, Kingius, Bblank, Why
Not A Duck, Atkinsdc, Pjoef, Aepanico, Logan, HybridBoy, Thehulkmonster, D. Recorder, Calutuigor, SieBot, Fooker69, Calliopejen1,
Praba tuty, Kimera Kat, Jauerback, LeeHam2007, Caltas, Eagleal, Triwbe, Yintan, TalkyLemon, Keilana, Bentogoa, Flyer22 Reborn,
Radon210, Oda Mari, JCLately, Jojalozzo, Hxhbot, Le Pied-bot~enwiki, Sucker666, Theory of deadman, KoshVorlon, 10285658sd-
saa, Mkeranat, Fratrep, Macy, ChorizoLasagna, Autumn Wind, Maxime.Debosschere, Spazure, Paulinho28, Vanished User 8902317830,
G12kid, Pinkadelica, Treekids, Denisarona, Escape Orbit, Levin Carsten, Kanonkas, VanishedUser sdu9aya9fs787sads, Explicit, Beeble-
brox, ClueBot, Frsparrow, Phoenix-wiki, Hugsandy, Strongsauce, Avenged Eightfold, The Thing That Should Not Be, Buzzimu, Jan1nad,
Poterxu, Supertouch, Unbuttered Parsnip, Garyzx, Zipircik, SuperHamster, Boing! said Zebedee, Doddsy1993, Niceguyedc, Sam Bar-
soom, Blanchardb, Dylan620, Mikey180791, Puchiko, Mspraveen, Vivacewwxu~enwiki, Veryprettyfish, Robert Skyhawk, Drumroll99,
Excirial, Pumpmeup, M4gnum0n, Dbates1999, LaosLos, Northernhenge, Eeekster, Tyler, Odavy, Cenarium, Lunchscale, Peter.C, Jotter-
bot, MECiAf., Huntthetroll, Tictacsir, Thehelpfulone, Inspector 34, Thingg, Aitias, DerBorg, Subash.chandran007, Versus22, Burner0718,
Johnuniq, SoxBot III, Apparition11, DumZiBoT, Jmanigold, XLinkBot, EastTN, Gsallis, PrePress, Avoided, Pee Tern, Galzigler, Noctibus,
Qwertykris, Dsimic, Osarius, HexaChord, Rakeki, Addbot, Proofreader77, Pyfan, Willking1979, Some jerk on the Internet, Betteruser-
name, Non-dropframe, Captain-tucker, Ngpd, Fgnievinski, Fieldday-sunday, JephapE, Xhelllox, Vishnava, CanadianLinuxUser, Fluffer-
nutter, Cevalsi, Cambalachero, CarsracBot, DFS454, Glane23, FiriBot, SDSWIKI, Roux, Favonian, Doniago, Exor674, AtheWeatherman,
Jasper Deng, Hotstaff, Evildeathmath, Tide rolls, Nicoosuna, Kivar2, Matěj Grabovský, Dart88, Gail, David0811, Duyanfang, Jarble,
Arbitrarily0, LuK3, Informatwr, Ben Ben, Luckas-bot, Yobot, Sudarevic, 2D, OrgasGirl, Bunnyhop11, Fraggle81, Gishac, MarcoAure-
lio, Pvjohnson, Nallimbot, SwisterTwister, Srdju001, Peter Flass, Bbb23, N1RK4UDSK714, AnomieBOT, AmritasyaPutra, Rubinbot,
Sonia, Jim1138, JackieBot, Piano non troppo, Kingpin13, Ulric1313, Imfargo, Flewis, Bluerasberry, Materialscientist, Kimsey0, Cita-
tion bot, OllieFury, BlurTento, Clark89, Darthvader023, Xqbot, Anders Torlind, Kimberly ayoma, Sythy2, Llyntegid, Addihockey10,
Capricorn42, Bcontins, 4twenty42o, Craftyminion, Grim23, Yossman007, Preet91119, Tonydent, GrouchoBot, Call me Bubba, Kekeke-
cakes, Bjcubsfan, Earlypsychosis, Prunesqualer, Crashdoom, Amaury, Doulos Christos, Sophus Bie, The Wiki Octopus, IElonex!, Shad-
owjams, М И Ф, Oho1, Dougofborg, Al Wiseman, Chtuw, Captain-n00dle, Gonfus, Prari, FrescoBot, Sock, Riverraisin, Fortdj33, Black-
guard SF, Dogposter, Mark Renier, StaticVision, HJ Mitchell, Sae1962, Wifione, Weetoddid, ZenerV, Kwiki, Javert, ZooPro, Winterst,
Shadowseas, Pinethicket, I dream of horses, HRoestBot, Grsmca, LittleWink, 10metreh, Supreme Deliciousness, Hamtechperson, Sissi’s
bd, 28nebraska, Jschnur, Xfact, RedBot, Btilm, MastiBot, Rotanagol, Bharath357, Σ, 05winsjp, Psaajid, Meaghan, Abhikumar1995,
Jandalhandler, Refactored, FoxBot, TobeBot, Mercy11, عقیل ,کاشف KotetsuKat, ItsZippy, Lotje, Callanecc, Writeread82, Vrenator,
Reidh21234, Reaper Eternal, Luizfsc, TheGrimReaper NS, Xin0427, Suffusion of Yellow, SnoFox, BluCreator, Colindolly, TheMesquito,
Minimac, Thinktdub, Heysim0n, RazorXX8, DARTH SIDIOUS 2, Lingliu07, KILLERKEA23, Onel5969, Leonnicholls07, Mean as cus-
tard, Helloher, ArwinJ, Kvasilev, Regancy42, FetchcommsAWB, Timbits82, Aj.robin, Salvio giuliano, Skamecrazy123, Rollins83, Emaus-
Bot, John of Reading, FFGeyer, Armen1304, Heymid, ScottyBerg, Lflores92201, Beta M, Dewritech, GoingBatty, RA0808, Rename-
dUser01302013, Itafran2010, Knbanker, Winner 42, Carbo1200, Wikipelli, K6ka, Sheeana, Ceyjan, Serketan, AsceticRose, Anirudh
Emani, Tudorol, Komal.Ar, Pete1248, Savh, Ravinjit, Joshwa1234567890, Fæ, NicatronTg, M.badnjki, Alpha Quadrant (alt), Tuhl,
Makecat, Ocaasi, OnePt618, Tolly4bolly, W163, TyA, L Kensington, Mayur, Donner60, Mentibot, MainFrame, RockMagnetist, Nz101,
Matthewrbowker, Peter Karlsen, GregWPhoto, GrayFullbuster, Rishu arora11, DASHBotAV, Kellyk99, 28bot, Rocketrod1960, Dia-
mondland, ClueBot NG, SpikeTorontoRCP, Mechanical digger, Jack Greenmaven, MelbourneStar, Satellizer, Dancayta, Chester Markel,
Name Omitted, Bwhynot14, Millermk, Theimmaculatechemist, Lsschwar, Bowlderizer, Zhoravdb, Widr, Danim, Ugebgroup8, CasualVis-
itor, Vibhijain, Franky21, Jk2q3jrklse, Cammo33, Oddbodz, Lbausalop, Cambapp, Strike Eagle, Calabe1992, Doorknob747, Lower-
case sigmabot, BG19bot, Freebiekr, MilerWhite, Machdohvah, Tomatronster, Northamerica1000, Wiki13, MusikAnimal, Frze, Dan653,
AwamerT, Allecher, Mark Arsten, Somchai1029, Vincent Liu, Compfreak7, 110808028 amol, Altaïr, Foxfax555, Rj Haseeb, Alzpp,
Bfugett, Jbrune, Thomasryno, Afree10, Glacialfox, Rowan Adams, Admfirepanther, Era7bd, Soumark, Maxmarengo, Manikandan 2030,
Branzman, Melucky2getu, Fylbecatulous, Plavozont, Carliitaeliza, IkamusumeFan, Several Pending, Pratyya Ghosh, Zhaofeng Li, Mrt3366,
VNeumann, ChrisGualtieri, Christophe.billiottet, Lovefamosos, Maty18, Mediran, Khazar2, Deathlasersonline, Saturdayswiki, ���, Co-
dename Lisa, Mukherjeeassociates, Cerabot~enwiki, Malvikiran, Cheolsoo, R3miixasim, Pebau.grandauer, TwoTwoHello, Lugia2453,
Frosty, SFK2, Graphium, Rafaelschp, 069952497a, Reatlas, Phamnhatkhanh, Epicgenius, P2Peter, Acetotyce, Rockonomics, Eyesnore,
Moazzam chand, JamesMoose, Jabby11, EvergreenFir, Menublogger, Backendgaming, PappaAvMin, Mike99999, Gburd, Babitaarora,
MJunkCat, Boli1107, JJdaboss, Ray Lightyear, BentlijDB, Hshoemark, Melody Lavender, Ginsuloft, D Eaketts, Eddiecarter1, Eddiej-
carter, Mwaci11, Gajurahman, Manul, IrfanSha, AddWittyNameHere, Dkwebsub, JunWan, WPGA2345, Verajohne, Phinicle, Title302,
JaconaFrere, ElijahLloyd97, Suelru, 7Sidz, Monkbot, JewishMonser69, Rajat Kant Singh, Davidcopperfield123, Sunrocket89, Nomonom-
nom, Samster0708, Krushna124, Cabral88, MisteArndon, KizzyCode, Uoy ylgu dratsab, Hillysilly, FSahar, Thedinesh4u, Boybudz321,
Jesseminisis, ChamithN, Crystallizedcarbon, Eurodyne, JensLechtenboerger, Papapasan, Is8ac, Torvolt, Rgeurts, DiscantX, Maurolepis-
Dreki, Top The Ball, Godfarther48, Jack0898, Rob12467, Gfsfg, Uthinkurspecial, Asdafsd, KasparBot, SaltySloth, Jrgreene2, Timoutiwin,
Smedley Rhyse-Frockmorton, Communal t, BadSprad, AldrinRemoto, Vinurarulz, Yeshii 909, Cani talk and Anonymous: 2088

• Schema migration Source: https://en.wikipedia.org/wiki/Schema_migration?oldid=687610122 Contributors: Wtmitchell, Malcolma,
Racklever, Hu12, Paling Alchemist, AnomieBOT, Digulla, Billegge, LilHelpa, Diroussel, Snotbot, NietzscheSpeaks, Wokspoon, Andi-
falk, Axel.fontaine, Ebr.wolff, Dvdtknsn, JonRou, Bread2000, Gregoriomelo and Anonymous: 17

• Star schema Source: https://en.wikipedia.org/wiki/Star_schema?oldid=676280147 Contributors: Jketola, Random832, Jay, 1984, Remy
B, Pne, Dfrankow, Beland, Asqueella, KeyStroke, Appi~enwiki, .:Ajvol:., Gothick, Diego Moya, Andrewpmk, GregorB, DePiep,
Birger~enwiki, Chobot, YurikBot, Chrissi~enwiki, Od Mishehu, Vald, Mselway, Chronodm, Gilliam, Bluebot, Cralize, OrphanBot, Ray-
Gates, Michael miceli, Budyhead, JHunterJ, Bertport, Thesuperav, SqlPac, CWY2190, NishithSingh, Electrum, Kablammo, Armchairlin-
guist, Mwarren us, Littldo, Falcor84, Raymondwinn, Panfakes, Flyer22 Reborn, ClueBot, AndrewMWebster, Aitias, Addbot, Elsendero,
Luckas-bot, Yobot, Fraggle81, JackieBot, Materialscientist, Mark Renier, D'ohBot, Crysb, Gahooa, EmausBot, Txnate, ClueBot NG,
Gilderien, Ozancan, Mrityu411989, Sharad.sangle, Helpful Pixie Bot, BG19bot, Walk&check, Sitoiganap, Anubhab91, Jobin RV, Miller-
timebjm, Nrahimian, ChrisGualtieri, Abergquist, Surendra.konathala, Ginsuloft, Amattas, Andrew not the saint and Anonymous: 121

• CAP Source: https://en.wikipedia.org/wiki/CAP?oldid=662445807 Contributors: Gtrmp, RHaworth, BD2412, Wavelength, N35w101,

https://en.wikipedia.org/wiki/Schema_migration?oldid=687610122
https://en.wikipedia.org/wiki/Star_schema?oldid=676280147
https://en.wikipedia.org/wiki/CAP?oldid=662445807

10.1. TEXT 119

Capmo, Clarityfiend, Connermcd, HelenOnline, Krassotkin, Brycehughes, ClueBot NG, Mark Arsten, Oranjblud, Gnasby, Alexwho314
and Anonymous: 6

• Eventual consistency Source: https://en.wikipedia.org/wiki/Eventual_consistency?oldid=682273269 Contributors: The Anome, Alaric,
Charles Matthews, Finlay McWalter, Ruinia, Rich Farmbrough, Dodiad, Intgr, Emersoni, Fang Aili, Mshiltonj, SmackBot, Frap, Jon-
Harder, Kinotgell, Gpierre, Gregbard, Cydebot, Kovan, Momo54, Duncan.Hull, Gdupont, Siskus, Morninj, Mild Bill Hiccup, M4gnum0n,
DumZiBoT, Addbot, Twimoki, Yobot, AnomieBOT, Materialscientist, Ms.wiki.us, Theclapp, DataWraith, PeaceLoveHarmony, Erik9bot,
Skcpublic, Sae1962, Winterst, RedBot, GoingBatty, Mspreitz, ZéroBot, Richnice, Rob7139, ClueBot NG, BG19bot, SAuhsoj, Andrew
Helwer, APerson, Dexbot, Datamaniac, Pbailis and Anonymous: 23

• Object-relational impedance mismatch Source: https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch?oldid=
680987835 Contributors: Leandrod, GCarty, Rbraunwa, Morven, Topbanana, Jeffq, Craig Stuntz, Rursus, Ambarish, Bkonrad,
Esap, Jpp, SarekOfVulcan, Rich Farmbrough, Mike Schwartz, Mojo~enwiki, Pearle, Merenta, Tablizer, Diego Moya, Ruud Koot,
Triddle, Msiddalingaiah, Rjwilmsi, JubalHarshaw, MarSch, Salix alba, Dmccreary, Hairy Dude, Allister MacLeod, Big Brother 1984,
EngineerScotty, Grafen, ZacBowling, SAE1962, Ospalh, Scope creep, BazookaJoe, Fram, Draicone, Erik Postma, SmackBot, Brick
Thrower, Chris the speller, Thumperward, Jerome Charles Potts, Colonies Chris, Frap, Cybercobra, Warren, Zsvedic, Wickethewok,
Larrymcp, Hu12, CmdrObot, Jiminez, Arnonf, Pingku, Underpants, PKT, Towopedia, Ideogram, Mentifisto, Magioladitis, Dbasch,
Joshua Davis, Rustyfence, STBot, J.delanoy, Cantonnier, Q Chris, Andy Dingley, Prakash Nadkarni, Creative1985, M4gnum0n, Aprock,
Addbot, Sbhug1, N8allan, Agomulka, AnomieBOT, Roux-HG, Metafax1, Mark Renier, OldTownIT, GoingBatty, Rdmil, ClueBot NG,
Shaddim, Widr, Kcragin, Danim, MusikAnimal, Stelpa, Thesquaregroot, BattyBot, Fraulein451, Lesser Cartographies, Alexadamson and
Anonymous: 83

• Object database Source: https://en.wikipedia.org/wiki/Object_database?oldid=678990087 Contributors: Vtan, Hari, Ben-Zin~enwiki,
Maury Markowitz, Leandrod, Stevertigo, W~enwiki, Modster, Kku, Pcb21, CesarB, Hofoen, Ronz, Rednblu, Furrykef, Robbot, Noldoaran,
BenFrantzDale, Beardo, Mckaysalisbury, Gadfium, Beland, SimonArlott, Sam Hocevar, Indolering, Usrnme h8er, Klemen Kocjancic,
Tordek ar, Pavel Vozenilek, Elwikipedista~enwiki, Enric Naval, Ejrrjs, Mdd, Tablizer, Zippanova, Rickyp, SteinbDJ, Voxadam, Forderud,
Karnesky, Mindmatrix, Dandv, Timosa, Ruud Koot, JIP, Icey, Jivecat, Dmccreary, FlaBot, SchuminWeb, Margosbot~enwiki, Intgr, Bg-
white, YurikBot, Foxxygirltamara, Hydrargyrum, ENeville, Oberst, SAE1962, Larsinio, Voidxor, Grafikm fr, BOT-Superzerocool, Ott2,
Sandstein, BSTRhino, Talyian, Wainstead, Mhkay, Mlibby, Dybdahl, SmackBot, Pintman, Kellen, Reedy, OEP, AutumnSnow, Commander
Keane bot, Bluebot, Nkaku, MyNameIsVlad, RProgrammer, Turbothy, Soumyasch, Lguzenda, IronGargoyle, RichardF, DougBarry, Hu12,
Britannica~enwiki, Tawkerbot2, DBooth, FatalError, LGuzenda, Ervinn, Shreyasjoshis, Singerboi22, Yaris678, Corpx, Sestoft, Torc2,
Charwing, Nick Number, Mvjs, Spencer, MER-C, Cameltrader, Jbom1, Magioladitis, Hroðulf, Soulbot, 28421u2232nfenfcenc, Gwern,
Wixardy, J.delanoy, Saifali1, Kozka, Tagus, VolkovBot, Rei-bot, WikipedianYknOK, Dawn Bard, JCLately, SmallRepair, Edlich, PsyberS,
VanishedUser sdu9aya9fs787sads, Dinojc, ClueBot, The Thing That Should Not Be, EoGuy, Alexbot, Eeekster, Sun Creator, Lucpeu-
vrier~enwiki, EastTN, HarlandQPitt, Zeliboba7, Addbot, Download, Kngspook, Lightbot, Jackelfive, Yobot, Bunnyhop11, Fraggle81,
Waynenilsen, AnomieBOT, Materialscientist, Xqbot, Mika au, Addbc, Garyaj, Pwwamic, FrescoBot, Sulfsby, Mark Renier, Bablind, ITOn-
theMind, Shewizzy2005, Cari.tenang, Maria Johansson, Alexandre.Morgaut, Gf uip, EmausBot, John of Reading, WikitanvirBot, Booler80,
Minimac’s Clone, Phiarc, SvetCo, Germanviscuso, ClueBot NG, Ki2010, Danim, Secured128, Razorbliss, Compfreak7, Pradiq009, Mat-
spca, Snow Blizzard, Osiris, Eduardofeld, Khiladi 2010, Cyberbot II, FlyingPhysicist, André Miranda Moreira, DallasClarke, Rzicari,
Monkbot and Anonymous: 210

• NoSQL Source: https://en.wikipedia.org/wiki/NoSQL?oldid=692912453 Contributors: AxelBoldt, Maury Markowitz, Jose Icaza, Pnm,
Kku, Komap, Phoe6, Ronz, Ntoll, Ehn, Timwi, Furrykef, Phil Boswell, Bearcat, Peak, Dilbert, (:Julien:), Tagishsimon, Gadfium, Coldacid,
Alexf, Beland, Euphoria, Clemwang, Rfl, MMSequeira, Smyth, Leigh Honeywell, Russss, Stephen Bain, Thüringer, Walter Görlitz,
Markito~enwiki, Bhaskar, PatrickFisher, YPavan, Eno~enwiki, Crosbiesmith, Marasmusine, Woohookitty, Linas, Tshanky, Barrylb,
Dm~enwiki, Tabletop, MacTed, Nileshbansal, BD2412, Qwertyus, Koavf, Ceefour, Strait, Amire80, Seraphimblade, ErikHaugen, Pro-
fessionalsql, Vegaswikian, Jubalkessler, ElKevbo, Dmccreary, AlisonW, RobertG, Sstrader, Intgr, Tedder, Benbovee, Wavelength, Hairy
Dude, Bovineone, Morphh, SamJohnston, Mbonaci, Rjlabs, Leotohill, Poohneat, GraemeL, Volt42, HereToHelp, Jonasfagundes, JLaTon-
dre, Shepard, Matt Heard, Benhoyt, A bit iffy, SmackBot, Fulldecent, Anastrophe, Mauls, Drttm, Gorman, Somewherepurple, KiloByte,
Thumperward, Jstplace, Jerome Charles Potts, Милан Јелисавчић, Frap, DavidSol, Cybercobra, Plustgarten, Looris, ThomasMueller,
Trbdavies, NickPenguin, Eedeebee, ThurnerRupert, Petr Kopač, Zaxius, Lguzenda, Heelmijnlevenlang, Omidnoorani, Mauro Bieg, Be-
natkin, Mjresin, Hu12, Charbelgereige, Dancrumb, Gpierre, Arto B, Raysonho, Sanspeur, Ostrolphant, ProfessorBaltasar, Netmesh, Omer-
Mor, Neustradamus, ColdShine, Mydoghasworms, Viper007Bond, Headbomb, CharlesHoffman, Peter Gulutzan, Davidhorman, Philu,
Bramante~enwiki, Nick Number, Sorenriise, Polymorph self, Widefox, QuiteUnusual, Replizwank, Lfstevens, Gstein, Syaskin, Deri-
cofilho, Joolean, Orenfalkowitz, Kunaldeo, Kgfleischmann, Philg88, Mitpradeep, Adtadt, GimliDotNet, Lmxspice, Stimpy77, Mikek999,
DatabACE, JohnPritchard, Ansh.prat, McSly, Atropos235, Lamp90, Jottinger, Anoop K Nayak, Bbulkow, Tonyrogerson, Robert1947,
Rogerdpack, Billinghurst, Quiark, Kbrose, ManikSurtani, TJRC, Dawn Bard, Whimsley, DavidBourguignon, Flyer22 Reborn, Hello71,
Ctxppc, Mesut.ayata, Legacypath, AndrewBass, Edlich, Drq123, CaptTofu, Stevedekorte, Rossturk, Niceguyedc, Cnorvell, Pointillist,
Excirial, Zapher67, PixelBot, Dredwolff, Robhughadams, Arjayay, Razorflame, StanContributor, Irmatov, Shijucv, The-verver, Tgrall,
Miami33139, XLinkBot, Phoenix720, Duncan, Fiskbil, Whooym, Techsaint, Addbot, Fmorstatter, Mortense, Mabdul, MrOllie, Laa-
knorBot, Chrismcnab, Alexrakia, Getmoreatp, Luckas-bot, Yobot, Amirobot, Pcap, Ebalter, Ma7dy, AnomieBOT, Angry bee, Fraktalek,
White gecko, Materialscientist, Xtremejames183, Cyril Wack, Jabawack81, El33th4x0r, Gkorland, Tomdo08, Ubcule, ChristianGruen,
FontOfSomeKnowledge, Rtweed1955, Omnipaedista, Sduplooy, Shadowjams, Ciges, Cekli829, Sdrkyj, FrescoBot, Nawroth, Ashtango,
Sae1962, Thegreeneman5, David Paniz, Ertugka, Chenopodiaceous, Winterst, I dream of horses, Leegee23, Hoo man, Natishalom,
Michael Minh, Seancribbs, Jandalhandler, Craigbeveridge, Cnwilliams, Colemala, Argv0, Justinsheehy, AdityaKishore, Javalangstring,
Voodootikigod, JnRouvignac, Svesterli, Violaaa, Hoelzro, Magnuschr, Extrovrt101, Wyverald, Jeffdexter77, Uhbif19, Zond, Asafdap-
per, Ptab, Tobiasivarsson, Alexandre.Morgaut, Steve03Mills, Phunehehe, R39132, EmausBot, Biofinderplus, WikitanvirBot, FalseAx-
iom, Bdijkstra, Dewritech, GoingBatty, RA0808, Ledhed2222, MrWerewolf, EricBloch, Hloeung, ZéroBot, Weimanm, Al3xpopescu,
Theandrewdavis, Mhegi, Sagarjhobalia, Mtrencseni, Phillips-Martin, Dmitri.grigoriev, H3llBot, Jnaranjo86, DamarisC, Dstainer, Bulw-
ersator, Eco schranzer, Thomas.uhl, Lyoshenka, Inmortalnet, Really Enthusiastic, Germanviscuso, Stephen E Browne, ClueBot NG, Ra-
bihnassar, Ki2010, Randl, Luisramos22, Fxsjy, Korrawit, Tylerskf, Castncoot, ScottConroy, Jrudisin, Mshefer, Ashtango5, Helpful Pixie
Bot, Pereb, William greenly, Rpk512, GlobalsDB, DBigXray, Tuvrotya, BG19bot, Nawk, Gonim, Freshnfruity, Vychtrle, Gaborcselle,
Kkbhumana, Frze, AvocatoBot, Mark Arsten, Compfreak7, Anne.naimoli, Matspca, Boshomi, Fceller, Dshelby, Brocsima, BigButter-
fly, Winston Chuen-Shih Yang, Griswolf, Socialuser, Ugurbost, BattyBot, Khiladi 2010, Noah Slater, Farvartish, Knudmoeller, Electric-
muffin11, Mbarrenecheajr, Corrector623, Sandy.toast, F331491, Luebbert42, Holland.jg, Anujsahni, Tsvljuchsh, Makecat-bot, Fitzchak,
Toopathfind, Msalvadores, Cloud-dev, Sasindar, Zhanghaohit, CJGarner, Crosstantine, Stevenguttman, Razibot, DallasClarke, Altered

https://en.wikipedia.org/wiki/Eventual_consistency?oldid=682273269
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch?oldid=680987835
https://en.wikipedia.org/wiki/Object-relational_impedance_mismatch?oldid=680987835
https://en.wikipedia.org/wiki/Object_database?oldid=678990087
https://en.wikipedia.org/wiki/NoSQL?oldid=692912453

120 CHAPTER 10. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

Walter, Rediosoft, Tsm32, François Robere, Harpreet dandeon, LeeAMitchell, Mbroberg, Virendervermamca, Anilkumar1129, Mh-
grove, FranzKraun, Jasonhpang, Nanolat, Nosql.analyst, Rzicari, Ginsuloft, Sugamsha, K0zka, Tshuva, Dodi 8238, Dabron, Mongochang,
Natan.puzis, Webtrill, CafeNoName, Yasinaktimur, Monkbot, Itamar.haber, User db, Columbus240, Textractor, Maykurutu, Kamaci,
Mongodbheavy, Dexterchief, RedOctober13, Nathan194, Jjrenzel, Azanebrain, Annmkelly1, Sunnyeyre, Danny996, Thomas4019, Dr.
Testificate, M.D., Johnbweeks, Magic-carpet-pilot, Heymattallen, Teowey, IdlePlayground, Datadatadatadata, Kevin at aerospike, Any-
whichway, Nawazdhandala, The King Breaker, Mohammad.rafigh, Mgentz, Desertrat1969 and Anonymous: 551

• Key-value database Source: https://en.wikipedia.org/wiki/Key-value_database?oldid=693289963 Contributors: Maury Markowitz,
Bearcat, Beland, ArnoldReinhold, MZMcBride, Kgfleischmann, FrescoBot, Danos p, GGink, Altered Walter, Itamar.haber, Opencooper
and Anonymous: 6

• Document-oriented database Source: https://en.wikipedia.org/wiki/Document-oriented_database?oldid=693497164 Contributors:
Maury Markowitz, Edward, Ehn, RedWolf, Gwicke~enwiki, Cobaltbluetony, Chris Wood, Beland, Plasma east, Iznogoud~enwiki, Thor-
wald, Rfl, Imroy, Enric Naval, Shenme, Mdd, Arthena, Stuartyeates, Woohookitty, Mindmatrix, Dm~enwiki, Kingsleyj, MassGalac-
tusUniversum, JIP, Dmccreary, Crazycomputers, Intgr, Sderose, KirtWalker, Wavelength, MySchizoBuddy, Cedar101, Thumperward,
Jerome Charles Potts, Frap, Cybercobra, Superjordo, Eedeebee, Vivek.raman, FatalError, Spdegabrielle, Cydebot, Philu, QuiteUnusual,
Dasfrosty, Plamoa, Toutoune25, Nyttend, R'n'B, Nwbeeson, Mqchen, Vishal0soni, TXiKiBoT, Kulkarninikhil, Rachkovsky, Benrcass,
Antony.stubbs, Niceguyedc, Pointillist, Boleyn, Lodrian~enwiki, Addbot, Mortense, Fgnievinski, SDSWIKI, Goldzahn, Bunnyhop11, Pcap,
Carleas, AnomieBOT, FreeRangeFrog, Neitherk, ChristianGruen, GrouchoBot, Rtweed1955, FrescoBot, Mark Renier, BrideOfKripken-
stein, Bablind, RedBot, Refactored, Argv0, Mreftel, Hchrm, EmausBot, Akagel, EricBloch, Bxj, Staszek Lem, ClueBot NG, Rezabot,
Danim, JasonNichols, Helpful Pixie Bot, Danmcg.au, Mark Arsten, Compfreak7, Luebbert42, Dodilp, CJGarner, Crosstantine, Altered
Walter, Rediosoft, Hzguo, Tsm32, François Robere, Mbroberg, Cbuccella, Tshuva, ScotXW, Dodi 8238, There is a T101 in your kitchen,
Webtrill, Adventurer61, Heymattallen, Datadatadatadata, ChrisChinchillaWard, Haptic-feedback, Jorl17, Oleron17, Tannerstirrat and
Anonymous: 106

• NewSQL Source: https://en.wikipedia.org/wiki/NewSQL?oldid=693078739 Contributors: Maury Markowitz, Beland, Julian
Mehnle~enwiki, Stuartyeates, MacTed, Quuxplusone, Intgr, Datamgmt, Amux, Frap, Apavlo, Kgfleischmann, Ibains, Duncan.Hull,
MPH007, Phoenix720, Dsimic, MrOllie, Yobot, AnomieBOT, Noq, W Nowicki, Diego diaz espinoza, Cnwilliams, Bulwersator, UMD-
Database, BG19bot, Akim.demaille, Dexbot, Plothridge, Sanketsarang, Brianna.galloway, Mwaci99, Andygrove73, Monkbot, Serge-
jjurecko, Qid4475, Hvaara, Oleron17 and Anonymous: 19

• ACID Source: https://en.wikipedia.org/wiki/ACID?oldid=693458102 Contributors: AxelBoldt, Verloren, Matusz, PierreAbbat, Fubar Ob-
fusco, Maury Markowitz, Zippy, Mrwojo, Edward, Michael Hardy, Kku, Markonen, Karada, Haakon, Poor Yorick, IMSoP, Clausen,
GregRobson, Mcenedella, Zoicon5, Robbot, Kristof vt, RedWolf, Bernhard Bauer, Rfc1394, DHN, Jleedev, Zigger, Leonard G.,
Kainaw, Neilc, Beland, Saucepan, Vina, Daniel11, Urhixidur, Rfl, Discospinster, Rich Farmbrough, Thomas Willerich, Ponder, El-
wikipedista~enwiki, Rlaager, Smalljim, Shenme, LuoShengli, Raja99, BlueNovember, Espoo, Anthony Appleyard, Suruena, Endersdou-
ble, Ceyockey, Forderud, UFu, Mindmatrix, Swamp Ig, Barrylb, Kam Solusar, WadeSimMiser, Turnstep, Yurik, Rjwilmsi, Salix alba,
Raztus, FayssalF, FlaBot, StephanCom, Ysangkok, Kmorozov, Fragglet, Quuxplusone, Intgr, Joonasl, Chobot, YurikBot, Personman,
Pip2andahalf, Petiatil, Mskfisher, Barefootguru, Rsrikanth05, Ytcracker, Jpbowen, CPColin, Larsinio, RUL3R, Jessemerriman, MacMog,
Paul Magnussen, Rms125a@hotmail.com, Saeed Jahed, Gorgan almighty, Katieh5584, Benandorsqueaks, Victor falk, KnightRider~enwiki,
BonsaiViking, SmackBot, Amolshah, Renku, Bmearns, Mcherm, Gilliam, Thumperward, Prachee.j, DHN-bot~enwiki, Decibel, Corbin-
Simpson, Grover cleveland, SeanAhern, Luís Felipe Braga, Acdx, Dave.excira, Accurizer, Bezenek, IronGargoyle, Lee Carre, TwistOf-
Cain, Paul Foxworthy, MrRedwood, Jontomkittredge, FatalError, SqlPac, Ivan Pozdeev, Safalra, Christian75, DumbBOT, Surturz, Viridae,
Thijs!bot, Epbr123, Marek69, Vertium, Uiteoi, Jaydlewis, Siggimund, Hmrox, AntiVandalBot, Gioto, Seaphoto, Lfstevens, Stangaa, DAl-
lardyce, MetsBot, R'n'B, Tgeairn, Huzzlet the bot, J.delanoy, Trusilver, Inimino, It Is Me Here, Gurchzilla, NewEnglandYankee, DorganBot,
Tagus, Inter16, WhiteOak2006, Reelrt, Jeff G., Af648, Drake Redcrest, Sean D Martin, Martin451, BwDraco, Noformation, Duncan.Hull,
Wykypydya, Zhenqinli, Charliearcuri, Triesault, Synthebot, !dea4u, Sesshomaru, Heiser, YonaBot, Kaell, Flyer22 Reborn, JCLately, Svick,
AlanUS, Siskus, Denisarona, Loren.wilton, ClueBot, Jagun, Boing! said Zebedee, Passargea, Gakusha, Excirial, SoxBot III, Trefork, Trvth,
Maimai009, Addbot, Some jerk on the Internet, Ngpd, Shmuelsamuele, CanadianLinuxUser, Download, CarsracBot, Tide rolls, Yobot,
Synchronism, AnomieBOT, ThinkerFeeler, Jim1138, Kd24911, Nmfon, Flewis, Materialscientist, RobertEves92, Citation bot, E2eamon,
Dudegroove, Vhabacoreilc, Obersachsebot, Pontificalibus, Miym, Cole2, Tabledhote, Tct13, FrescoBot, Bluiee, Mark Renier, MGA73bot,
HJ Mitchell, Sae1962, DivineAlpha, Citation bot 1, Bunyk, Redrose64, I dream of horses, Hellknowz, SpaceFlight89, Σ, Throwaway85,
Vrenator, Premsurya, Noommos, Gf uip, DASHBot, RA0808, Tommy2010, TuHan-Bot, Wikipelli, John Cline, Fæ, Sckolar, Makecat,
Prasannawikis, Tolly4bolly, Rob7139, Puffin, Wildrain21, ClueBot NG, Andrei S, 123Hedgehog456, Widr, Ghostdood, Novusuna, Strike
Eagle, Titodutta, Calabe1992, Lowercase sigmabot, Jordonbyers, Amiramix, MPSUK, Mark Arsten, Silvrous, Yourbane, Agnt9, Klilidiplo-
mus, Fylbecatulous, Winston Chuen-Shih Yang, Yazan kokash23, Thecodysite1, Mdann52, Polupolu890, Arr4, ZappaOMati, EuroCarGT,
Kirilldoom16, Harsh 2580, Dexbot, Golfguy399, Mynameissskr, NewAspen1, Epicgenius, Woo333, 7Rius, DevonDBA, 7Sidz, Midget
zombie, Kethrus, Winghouchan, Mayank0001, Bryanleungnokhin12345 and Anonymous: 489

• Consistency (database systems) Source: https://en.wikipedia.org/wiki/Consistency_(database_systems)?oldid=674938190 Contributors:
Patrick, Greenrd, Rfl, CanisRufus, Suruena, Ewlyahoocom, Intgr, YurikBot, Ste1n, Sasuke Sarutobi, Gaius Cornelius, SmackBot, Silly
rabbit, Capmo, Gregbard, StudierMalMarburg, Jeepday, JCLately, M4gnum0n, Addbot, Willking1979, Fraggle81, Obersachsebot, Mark
Renier, Sae1962, SpaceFlight89, Rob7139, Encyclopedant, Monkbot, Ganeshdtor, Nerdgonewild and Anonymous: 15

• Durability (database systems) Source: https://en.wikipedia.org/wiki/Durability_(database_systems)?oldid=617369164 Contributors:
Edward, CesarB, Clausen, LordHz, Tobias Bergemann, Saucepan, Rfl, Ewlyahoocom, SmackBot, Bluebot, Wizardman, SqlPac, Astazi,
JCLately, D3fault, Addbot, Erik9bot, Mark Renier, Yourbane, JYBot and Anonymous: 8

• Serializability Source: https://en.wikipedia.org/wiki/Serializability?oldid=687103552 Contributors: Ahoerstemeier, Greenrd, DavidCary,
ArnoldReinhold, Arthena, Ruud Koot, MassGalactusUniversum, BD2412, Rjwilmsi, Darthsco, Wavelength, That Guy, From That Show!,
SmackBot, Amux, Chris the speller, Mihai Capotă, Flyguy649, Cybercobra, Paul Foxworthy, Comps, MeekMark, Paddles, Kubanczyk,
Supparluca, VoABot II, Rxtreme, R'n'B, Deor, VolkovBot, Klower, JCLately, Svick, M4gnum0n, Addbot, Fyrael, Alex.mccarthy, Zorrobot,
Luckas-bot, Yobot, AnomieBOT, Materialscientist, LilHelpa, Gilo1969, Miym, Omnipaedista, FrescoBot, Mark Renier, Craig Pemberton,
Farhikht, Tbhotch, DRAGON BOOSTER, John of Reading, Dewritech, Fæ, Mentibot, ClueBot NG, Jack Greenmaven, Richard3120,
MerlIwBot, Kgrittn, Cyberpower678, Cyberbot II and Anonymous: 50

• Isolation (database systems) Source: https://en.wikipedia.org/wiki/Isolation_(database_systems)?oldid=686923177 Contributors: Ax-
elBoldt, Ramesh, IMSoP, Hadal, Tobias Bergemann, Beland, J18ter, Asqueella, Rfl, KeyStroke, EmmetCaulfield, Velella, Mindmatrix,

https://en.wikipedia.org/wiki/Key-value_database?oldid=693289963
https://en.wikipedia.org/wiki/Document-oriented_database?oldid=693497164
https://en.wikipedia.org/wiki/NewSQL?oldid=693078739
https://en.wikipedia.org/wiki/ACID?oldid=693458102
https://en.wikipedia.org/wiki/Consistency_(database_systems)?oldid=674938190
https://en.wikipedia.org/wiki/Durability_(database_systems)?oldid=617369164
https://en.wikipedia.org/wiki/Serializability?oldid=687103552
https://en.wikipedia.org/wiki/Isolation_(database_systems)?oldid=686923177

10.1. TEXT 121

Swamp Ig, Mattmorgan, Mandarax, Bunchofgrapes, Ketiltrout, Ej, Michal.burda, Maxal, Chris Purcell, Ewlyahoocom, Alvin-cs, Ivansoto,
RussBot, Phlip, Stefan Udrea, Laurent Van Winckel, Closedmouth, SmackBot, Khfan93, Serhio, Gracenotes, Cybercobra, Djmitche, Joe-
Bot, Igoldste, Insanephantom, Nczempin, Ervinn, Slazenger, TheJC, Thijs!bot, Maverick13, JMatthews, Rsocol, Mentin, Cameltrader, Ma-
gioladitis, Hheimbuerger, MartinBot, Scku, NunoFerreira, SoCalSuperEagle, Wikidemon, Inovakov, Enigmaman, JCLately, Paul Clapham,
Ian Clelland, ClueBot, Erichero, The Thing That Should Not Be, Mild Bill Hiccup, Niceguyedc, LonelyBeacon, Alexbot, Addbot, Materi-
alscientist, Xqbot, Prunesqualer, SPKirsch, Sae1962, Searcherfinder, Irbisgreif, Sahedin, BYVoid, DARTH SIDIOUS 2, QLineOrientalist,
Hrishikeshbarua, Anonymouslee, Antonio.al.al, Olof nord, Tommy2010, Olnrao, ClueBot NG, Kgrittn, BG19bot, Wiki13, Brian.low22,
Snow Blizzard, Sbose7890, Tommy0605, MaryEFreeman, Kevsteppe, KasparBot and Anonymous: 176

• Database transaction Source: https://en.wikipedia.org/wiki/Database_transaction?oldid=683102718 Contributors: Damian Yerrick,
Nixdorf, SebastianHelm, WeißNix, Ajk, Clausen, GregRobson, Owen, Craig Stuntz, RedWolf, Babbage, KellyCoinGuy, Lysy,
Mintleaf~enwiki, T0m, Jason Quinn, Timo~enwiki, Neilc, Troels Arvin, Burschik, KeyStroke, Mike Schwartz, DCEdwards1966,
Obradovic Goran, Haham hanuka, Jeltz, Derbeth, Forderud, Mindmatrix, TigerShark, AnmaFinotera, Turnstep, OMouse, FlaBot, Dauerad,
Intgr, Karel Anthonissen, Chobot, Bgwhite, YurikBot, Matiash, Hede2000, SAE1962, Larsinio, Luc4~enwiki, Mikeblas, Adi92~enwiki,
SmackBot, Georgeryp, Gilliam, Lubos, PureRED, Khukri, MegaHasher, RichMorin, 16@r, Slakr, Paul Foxworthy, Comps, SqlPac,
WeggeBot, Stevag, Thijs!bot, CharlotteWebb, JAnDbot, Geniac, Cic, Leeborkman, Hbent, Idioma-bot, TXiKiBoT, Zhenqinli, Billinghurst,
Gerd-HH, Daniel0524, Prakash Nadkarni, BotMultichill, Roesser, JCLately, Fratrep, OKBot, ClueBot, Binksternet, DnetSvg, M4gnum0n,
Triwger, HumphreyW, Addbot, Ghettoblaster, Highguard, Sandrarossi, Lightbot, Jarble, Yobot, Pcap, AnomieBOT, Rubinbot, JackieBot,
Materialscientist, Zerksis, Pepper, Mark Renier, Al3ksk, RedBot, Lingliu07, Sobia akhtar, Gf uip, K6ka, Rocketrod1960, ClueBot NG,
MerlIwBot, Helpful Pixie Bot, Mostafiz93, Kirananils, AmandeepJ, ChrisGualtieri, Davew123, Lemnaminor, Appypani, Juhuyuta, Thisis-
myusername96 and Anonymous: 94

• Transaction processing Source: https://en.wikipedia.org/wiki/Transaction_processing?oldid=674407211 Contributors: Maury
Markowitz, Zippy, Pratyeka, Clausen, GregRobson, Gutza, SEWilco, Craig Stuntz, Tobias Bergemann, Khalid hassani, Uzume, Beland,
Abdull, Gordonjcp, Atlant, Wtmitchell, Stephan Leeds, Suruena, Mindmatrix, Ruud Koot, MONGO, Mandarax, BD2412, Chobot, Cliffb,
Mikeblas, Zzuuzz, Rbpasker, Tschristoppe~enwiki, Kgf0, SmackBot, Chairman S., Agateller, BBCWatcher, Avb, Radagast83, Akulkis,
Luís Felipe Braga, Joshua Scott, 16@r, JHunterJ, Beve, Baiji, Stymiee, Adolphus79, Bruvajc, Thijs!bot, Kubanczyk, JAnDbot, MER-C,
Donsez, DGG, Gwern, MartinBot, Rettetast, DeKXer, Jmcw37, STBotD, Jeff G., Lear’s Fool, Andy Dingley, JCLately, CutOffTies,
Oxymoron83, Jan1nad, M4gnum0n, Ghaskins, Oo7nets, Addbot, MrOllie, Download, LaaknorBot, Lightbot, Wireless friend, Luckas-bot,
Yobot, Pcap, Peter Flass, AnomieBOT, Jim1138, Materialscientist, Ellynwinters, Unimath, Xqbot, Mika au, Amaury, Alkamins, Mark
Renier, Charleyrich, Danielle009, Awolski, Gf uip, Cbwash, Dr Jonx, ClueBot NG, CaroleHenson, Danim, Jorgenev, Helpful Pixie Bot,
BG19bot, Bnicolae, JoshuaChen, Wiki-jonne, Hampton11235, ClaeszXIV and Anonymous: 90

• Journaling file system Source: https://en.wikipedia.org/wiki/Journaling_file_system?oldid=692526177 Contributors: Marj Tiefert, Brion
VIBBER, Wesley, Uriyan, The Anome, Tarquin, Stephen Gilbert, Enchanter, Rootbeer, Ghakko, Ark~enwiki, Hephaestos, Graue, Karada,
(, Emperorbma, Magnus.de, Pistnor, Furrykef, Taxman, Khym Chanur, Phil Boswell, Robbot, Scott McNay, Naddy, Tim Ivorson, Cek,
David Gerard, DavidCary, AviDrissman, Mintleaf~enwiki, AlistairMcMillan, Wmahan, Karlward, Beland, Kareeser, Damieng, Mormegil,
ChrisRuvolo, KeyStroke, Luxdormiens, Indil, Edward Z. Yang, Androo, MARQUIS111, Poli, Guy Harris, Apoc2400, Seans Potato Busi-
ness, Bart133, MIT Trekkie, Ruud Koot, Anthony Borla, Graham87, Rjwilmsi, Raffaele Megabyte, FlaBot, Maxal, Chobot, The Rambling
Man, YurikBot, Wikipedia., NickBush24, Moppet65535, Nailbiter, Daleh, Eskimbot, Chris the speller, Charles Moss, Anabus, SheeEttin,
Mwtoews, Ryulong, Bitwise, RekishiEJ, Rogério Brito, Unixguy, Seven of Nine, Davidhorman, Escarbot, AntiVandalBot, Widefox, Shlomi
Hillel, Gavia immer, VoABot II, Public Menace, Cpiral, WJBscribe, DorganBot, Jcea, VolkovBot, AlnoktaBOT, Dani Groner, Steve0702,
Leopoldt, MadmanBot, Rdhettinger, PipepBot, BJ712, Subversive.sound, Dsimic, Addbot, Ghettoblaster, AkhtaBot, Luckas-bot, Ptbot-
gourou, AnomieBOT, FrescoBot, Mfwitten, Citation bot 1, Hajecate, Merlion444, Japs 88, 15turnsm, Aharris16, ClueBot NG, BG19bot,
Tsjerven, Forsakensam and Anonymous: 96

• Atomicity (database systems) Source: https://en.wikipedia.org/wiki/Atomicity_(database_systems)?oldid=693440689 Contributors:
Michael Hardy, DopefishJustin, CesarB, Rohan Jayasekera, Biggins, Gdimitr, Hadal, Jleedev, Enochlau, Ancheta Wis, ArneBab, Rfl, Smyth,
Hooperbloob, EmmetCaulfield, Danhash, RJFJR, Apokrif, PeterJohnson, Marudubshinki, Nihiltres, Chris Purcell, Ewlyahoocom, Jules-
cubtree, Snailwalker, Chobot, Korg, RussBot, Sasuke Sarutobi, Bota47, Vicarious, SmackBot, Jmendez, Betacommand, DanPope, Tim-
Bentley, LinguistAtLarge, Hkmaly, Kvng, Dreftymac, JForget, Neelix, Bodragon, JPG-GR, TXiKiBoT, Synthebot, Freshbaked, JCLately,
Qwertykris, Addbot, Jncraton, Fraggle81, Materialscientist, Erik9bot, Mark Renier, Sae1962, Widr, Anutural, Juan Carlos Farah, TvojaS-
tara, Cooldudevipin and Anonymous: 37

• Lock (database) Source: https://en.wikipedia.org/wiki/Lock_(database)?oldid=664133461 Contributors: Greenrd, Ta bu shi da yu, Du-
plode, Caidence, Maxal, SmackBot, InverseHypercube, Mauro Bieg, VinnieCool, Bruvajc, Thijs!bot, Wikid77, Belenus, Cic, Jack007,
Jojalozzo, Kidoshisama, Addbot, LilHelpa, Vishnu2011, Gulsig4, Potionism, ClueBot NG, Danim, Sharpshooter4008, EdwardH, Chris-
Gualtieri, FCutic and Anonymous: 20

• Record locking Source: https://en.wikipedia.org/wiki/Record_locking?oldid=647556070 Contributors: Michael Hardy, Finn-Zoltan, D6,
Atlant, Pol098, SmackBot, Quaddriver, Umaguna, JCLately, Jojalozzo, Niceguyedc, Erik9bot, This lousy T-shirt, Waynelwarren, BattyBot
and Anonymous: 15

• Two-phase locking Source: https://en.wikipedia.org/wiki/Two-phase_locking?oldid=684806331 Contributors: Michael Hardy, Poor
Yorick, Clausen, Dtaylor1984, Neilc, Andreas Kaufmann, Rich Farmbrough, Nchaimov, Woohookitty, Ruud Koot, Wavelength, Aaron
Schulz, SmackBot, OrangeDog, Jeskeca, Cybercobra, Comps, SeanMon, Epbr123, Touko vk, Seaphoto, Beta16, Syst3m, Lerdthenerd,
Paul20070, Gerakibot, Yintan, Svick, ImageRemovalBot, Stuart.clayton.22, Addbot, Cxz111, Thomas Bjørkan, Yobot, AnomieBOT, Ma-
terialscientist, AbigailAbernathy, Craig Pemberton, John of Reading, ClueBot NG, Chrisjameskirkham, Cntras, Helpful Pixie Bot, Dexbot,
Jodosma, JohnTB and Anonymous: 41

• Multiversion concurrency control Source: https://en.wikipedia.org/wiki/Multiversion_concurrency_control?oldid=689311592 Contrib-
utors: Poor Yorick, Palfrey, Ggaughan, Dcoetzee, Jamesday, RickBeton, Craig Stuntz, Rsfinn, DavidCary, Neilc, Chowbok, Rawlife, Troels
Arvin, Rich Farmbrough, Smyth, Martpol, R. S. Shaw, Franl, Terrycojones, RJFJR, Drbreznjev, GregorB, Ssteedman, Turnstep, Rjwilmsi,
Ysangkok, Chris Purcell, Intgr, YurikBot, Piet Delport, Gaius Cornelius, AmunRa, Blowdart, Naasking, JLaTondre, That Guy, From That
Show!, SmackBot, Basil.bourque, Chris the speller, ThurnerRupert, Cbbrowne, Hu12, Tawkerbot2, ChrisCork, Comps, Raysonho, Gritzko,
Elendal, Hga, Jordan Brown, ProfessorBaltasar, Cydebot, Cwhii, Marcuscalabresus, Nowhere man, Andrewjamesmorgan, Visik, Dougher,
Tedickey, Seashorewiki, Ahodgkinson, Kiore, Yannick56, Kedawa, DanielWeinreb, Fecund, Bill.zopf, Dllahr, Arleach, Highlandsun, Dfet-
ter, Doug4j, Danilo.Piazzalunga, MrChupon, Whimsley, Jerryobject, JCLately, Kobotbel, Breinbaas, Siskus, Tuntable, Jonathanstray,

https://en.wikipedia.org/wiki/Database_transaction?oldid=683102718
https://en.wikipedia.org/wiki/Transaction_processing?oldid=674407211
https://en.wikipedia.org/wiki/Journaling_file_system?oldid=692526177
https://en.wikipedia.org/wiki/Atomicity_(database_systems)?oldid=693440689
https://en.wikipedia.org/wiki/Lock_(database)?oldid=664133461
https://en.wikipedia.org/wiki/Record_locking?oldid=647556070
https://en.wikipedia.org/wiki/Two-phase_locking?oldid=684806331
https://en.wikipedia.org/wiki/Multiversion_concurrency_control?oldid=689311592

122 CHAPTER 10. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

Nthiery, CYCC, M4gnum0n, Kalotus, KyleJ1, MelonBot, XLinkBot, MystBot, Addbot, Tsunanet, Lightbot, Yobot, Pcap, Pvjohnson,
AnomieBOT, Yoonforh, Drachmae, ThomasTomMueller, LilHelpa, FrescoBot, LucienBOT, DrilBot, RedBot, Seancribbs, Full-date un-
linking bot, Unordained, Obankston, John of Reading, Dewritech, EricBloch, Tuhl, H3llBot, Stradafi, Dexp, CasualVisitor, BG19bot, Was-
beer, Julien2512, Snnn~enwiki, Compfreak7, Kevin 71984, Waynelwarren, Kwetal1, Giloki, JYBot, Bdempsey64, JingguoYao, Mbautin,
Will Faught, Kevinroy09, Johnkarva, Plothridge, Textractor, Kanelai, Kclee968, Oleron17 and Anonymous: 108

• Snapshot isolation Source: https://en.wikipedia.org/wiki/Snapshot_isolation?oldid=690117018 Contributors: Craig Stuntz, Neilc, Isidore,
Chowbok, Woohookitty, Ruud Koot, Ej, Ysangkok, Chris Purcell, Blowdart, Elkman, Johndburger, SmackBot, Comps, Cydebot, An-
drewjamesmorgan, David Eppstein, VanishedUserABC, JCLately, Tuntable, Idleloop~enwiki, Yobot, Pcap, AnomieBOT, Citation bot,
Searcherfinder, Citation bot 1, AnnHarrison, Helpful Pixie Bot, Kgrittn and Anonymous: 13

• Two-phase commit protocol Source: https://en.wikipedia.org/wiki/Two-phase_commit_protocol?oldid=690180092 Contributors: Pnm,
Ciphergoth, Lkesteloot, Gtrmp, Neilc, Gdr, Rworsnop, Rdsmith4, Rich Farmbrough, CanisRufus, R. S. Shaw, Liao, Bestchai, Mbloore,
Suruena, ReubenGarrett, Ruud Koot, Choas~enwiki, MassGalactusUniversum, YurikBot, Bayle Shanks, Daleh, Segv11, Emilong, Smack-
Bot, Dubwai, Jdeisenh, Coredesat, Zero sharp, Comps, Pmerson, Touko vk, LenzGr, Somebody2014, MartinBot, Stephanwehner, Richard
KAL, Ja 62, VolkovBot, Cyberjoac, JCLately, Svick, Yagibear, WikHead, Addbot, DOI bot, Twimoki, Yobot, AnomieBOT, Materi-
alscientist, Uglybugger, Wktsugue, FrescoBot, Killian441, PleaseStand, EmausBot, Flegmon, ClueBot NG, Braincricket, Electriccatfish2,
BG19bot, JingguoYao, SLipRaTi, Deepu2k, Hotcheese92 and Anonymous: 76

• Three-phase commit protocol Source: https://en.wikipedia.org/wiki/Three-phase_commit_protocol?oldid=676045717 Contributors:
Chris Q, Pnm, Trevor Johns, Levin, Rworsnop, N.o.bouvin, Guy Harris, Ceyockey, Ampledata, Choas~enwiki, Rjwilmsi, GreyCat, Bayle
Shanks, Aaron Schulz, Segv11, Emilong, Jsnx, Zero sharp, Megatronium, Junche, MarkKampe, TXiKiBoT, JCLately, Addbot, DOI bot,
Citation bot, FrescoBot, IdishK, Joerg Bader, BG19bot, BattyBot, Remcgrath, Monkbot and Anonymous: 26

• Scalability Source: https://en.wikipedia.org/wiki/Scalability?oldid=690445208 Contributors: Kpjas, The Anome, Awaterl, Matusz,
Michael Hardy, Kku, TakuyaMurata, Bearcat, Sander123, Jondel, Dbroadwell, SpellBott, Lysy, Javidjamae, Leonard G., Stevietheman,
Gdr, Beland, Urhixidur, Hugh Mason, Ferrans, FT2, Mazi, Dtremenak, Liao, Calton, Pion, Suruena, Kusma, Mattbrundage, Tyz, Unde-
fined~enwiki, BD2412, Rjwilmsi, Quiddity, Williamborg, Fred Bradstadt, Aapo Laitinen, FlaBot, Intgr, Dalef, Agil~enwiki, YurikBot,
Whoisjohngalt, NTBot~enwiki, Michael Slone, Bovineone, Moe Epsilon, Leotohill, .marc., Xpclient, LeonardoRob0t, Stumps, SmackBot,
Irnavash, KelleyCook, Ohnoitsjamie, Thumperward, Jammus, Javalenok, Ascentury, Frap, JonHarder, Cyhatch, BWDuncan, Andrei Stroe,
Harryboyles, Writtenonsand, 16@r, Swartik, Hu12, UncleDouggie, Tawkerbot2, FatalError, CBM, Thijs!bot, Uiteoi, Marokwitz, Kdakin,
JAnDbot, NapoliRoma, Shar1R, SunSw0rd, Raffen, Joshua Davis, FienX, RockMFR, Auroramatt, 1000Faces, NewEnglandYankee, Do-
ria, Jottinger, Izno, VolkovBot, TXiKiBoT, CHaoTiCa, Falcon8765, Suction Man, Bpringlemeir, Paladin1979, DigitalDave42, JCLately,
Luciole2013, Gp5588, Dangelow, Nvrijn, Elnon, Tearaway, Mild Bill Hiccup, Saravu2k, M4gnum0n, Friendlydata, Shiro jdn, MPH007,
XLinkBot, Philippe Giabbanelli, Avoided, Klungel, MystBot, Dsimic, Addbot, Jncraton, Tonkie67, Fluffernutter, MrOllie, Latiligence,
Kiril Simeonovski, Teles, Luckas-bot, Yobot, Davew haverford, Terrifictriffid, AnomieBOT, Materialscientist, Obersachsebot, Xqbot,
Miym, GrouchoBot, Sae1962, MastiBot, Jandalhandler, Akolyth, Jesse V., Gf uip, EmausBot, John of Reading, Anirudh Emani, Josve05a,
Cosmoskramer, AManWithNoPlan, Music Sorter, Tsipi, ChuispastonBot, ClueBot NG, Widr, Daniel Minor, Meniv, Helpful Pixie Bot,
MarkusWinand, Electriccatfish2, BG19bot, ElphiBot, Wikicadger, Anbu121, Srenniw, BattyBot, CGBoas, K0zka, Mwaci11, Paul2520,
Shahbazali101, Igorghisi, Vieque, Verbal.noun, Mantraman701, KasparBot, The Quixotic Potato, KealanJH and Anonymous: 121

• Shard (database architecture) Source: https://en.wikipedia.org/wiki/Shard_(database_architecture)?oldid=692288729 Contributors: Rfl,
Kenfar, Fche, Gareth McCaughan, Winterstein, Bgwhite, Hairy Dude, Grafen, Neil Hooey, Wainstead, Deepdraft, SmackBot, Russorat, Cy-
bercobra, Jdlambert, Steipe, Bezenek, Sanspeur, Underpants, Jadahl, Dougher, Magioladitis, Eleschinski2000, StefanPapp, Otisg, McSly,
NewEnglandYankee, Cswpride, Phasma Felis, Andy Dingley, Angusmca, SmallRepair, ClueBot, Fipar, Delicious carbuncle, Dthomsen8,
MystBot, Yobot, AnomieBOT, Noq, Isheden, FontOfSomeKnowledge, Rfportilla, Mopashinov, Jacosi, Tilkax, FrescoBot, X7q, Haeinous,
Sae1962, Gautamsomani, Citation bot 1, Winterst, Jandalhandler, Crysb, Visvadinu, Cfupdate, EmausBot, ClueBot NG, Liran.zelkha,
BG19bot, Eric-vrcl, MusikAnimal, MeganShield, Tmalone22, BattyBot, Jaybear, Drewandersonnz, Cc4fire, David9911, Dudewhereismy-
bike, Alexandre.marini, Sodomojo, Prabhusingh25, Viam Ferream, Josephidziorek, Codingalz and Anonymous: 76

• Optimistic concurrency control Source: https://en.wikipedia.org/wiki/Optimistic_concurrency_control?oldid=655011024 Contributors:
Karada, Poor Yorick, Nikai, Timwi, Zoicon5, DavidCary, Neilc, Beland, D6, Rich Farmbrough, Smyth, Dmeranda, Mnot, R. S. Shaw,
Bhaskar, Suruena, HenryLi, Simetrical, GregorB, Intgr, Ahunt, SAE1962, SmackBot, Slamb, SmartGuy Old, Drewnoakes, NYKevin, Al-
lan McInnes, Russorat, Cybercobra, Iridescent, Zero sharp, Nczempin, Mydoghasworms, Lfstevens, Magioladitis, JeromeJerome, Algotr,
Homer Landskirty, Randomalious, SieBot, JCLately, DraX3D, OKBot, Svick, Jfromcanada, ClueBot, Sim IJskes, Methossant, M4gnum0n,
Addbot, Ace of Spades, BenzolBot, Citation bot 1, RedBot, RjwilmsiBot, Helpful Pixie Bot, Noazark, Therealmatbrown, Monkbot,
Bhutani.ashish14 and Anonymous: 36

• Partition (database) Source: https://en.wikipedia.org/wiki/Partition_(database)?oldid=685683849 Contributors: Ehn, Peak, Foonly, S.K.,
Stevelihn, Alai, Geoffmcgrath, Mindmatrix, Drrngrvy, Roboto de Ajvol, Yahya Abdal-Aziz, Brian1975, Mikeblas, Georgewilliamherbert,
Doubleplusjeff, Ccubedd, Salobaas, Andrew.rose, JAnDbot, Mdfst13, Jamelan, Andy Dingley, Jonstephens, Angusmca, Ceva, SmallRepair,
Pinkadelica, Saravu2k, Chrisarnesen, Addbot, Vishnava, Highflyerjl, MrOllie, SamatBot, Yobot, AnomieBOT, Beaddy1238, Materialsci-
entist, Semmerich, Isheden, LucienBOT, Mark Renier, Wordstext, Troy.frericks, Habitmelon, Fholahan, Lurkfest, Jan.hasller, Vieque and
Anonymous: 32

• Distributed transaction Source: https://en.wikipedia.org/wiki/Distributed_transaction?oldid=650232287 Contributors: Gtrmp,
Saucepan, MartinBiely, Exceeder~enwiki, Ruud Koot, Jameshfisher, X42bn6, ShinyKnows, Gaius Cornelius, SmackBot, Brick Thrower,
Jeskeca, Ligulembot, Comps, Pmerson, Darklilac, GL1zdA, Wikiisawesome, JCLately, Alexbot, MelonBot, MystBot, Addbot, Pcap,
AnomieBOT, John of Reading, K6ka, Helpful Pixie Bot, Mediran and Anonymous: 15

• Redis Source: https://en.wikipedia.org/wiki/Redis?oldid=693848779 Contributors: Thebramp, Ehn, Toreau, Beland, ShakataGaNai, Jay-
buffington, Stesch, Rfl, Rich Farmbrough, Plest, Philipp Weis, CONFIQ, Barrylb, Bhound89, Justin Ormont, Sdornan, Raztus, Husky, Intgr,
Bgwhite, Iamfscked, Rsrikanth05, SamJohnston, Joel7687, Unforgiven24, Poohneat, Mike Dillon, Modify, Nic Doye, SmackBot, Larry
Doolittle, Boul22435, Wolph~enwiki, Vid, Frap, ThurnerRupert, Heelmijnlevenlang, Vanished user ih3rjk324jdei2, Aaaidan, Sanspeur,
Cydebot, Ivant, Jamitzky, Avi4now, Wdspann, HazeNZ, Jm3, Omarkonsul, Sorenriise, Gioto, Kavehmb, Adys, Scorwin, Vishal0soni,
Satani, TXiKiBoT, BlackVegetable, Jonknox, Benclewett, Swillison, ImageRemovalBot, Arkanosis, M4gnum0n, Miami33139, Dthom-
sen8, Rreagan007, Addbot, Mortense, Jncraton, Gnukix, Tnm8, Balabiot, Jarble, Pcap, Kmerenkov, Dmarquard, BastianVenthur, Mavz0r,
Xqbot, Soveran, Cole2, Jder~enwiki, FrescoBot, Ksato9700, Tóraí, Hoo man, Tim1357, Jfmantis, EmausBot, T. Canens, Spf2, Angry-
toast, Djembayz, ZéroBot, Overred~enwiki, Corb555, Mark Martinec, Sitic, Adamretter, Kasirbot, Karmiq, Codingoutloud, BG19bot,

https://en.wikipedia.org/wiki/Snapshot_isolation?oldid=690117018
https://en.wikipedia.org/wiki/Two-phase_commit_protocol?oldid=690180092
https://en.wikipedia.org/wiki/Three-phase_commit_protocol?oldid=676045717
https://en.wikipedia.org/wiki/Scalability?oldid=690445208
https://en.wikipedia.org/wiki/Shard_(database_architecture)?oldid=692288729
https://en.wikipedia.org/wiki/Optimistic_concurrency_control?oldid=655011024
https://en.wikipedia.org/wiki/Partition_(database)?oldid=685683849
https://en.wikipedia.org/wiki/Distributed_transaction?oldid=650232287
https://en.wikipedia.org/wiki/Redis?oldid=693848779

10.1. TEXT 123

Toffanin, Anne.naimoli, Fceller, Axule, Samusman waz, Rashidusman82, User 9d3ffb53ccf204e0, Ju2ender, Dexbot, Rwky, Altered Wal-
ter, Luhnatic, Dme26, Aeon10, Nikunjsingh01, Napy65, AlexanderRedd, Wksunder, Ebr.wolff, Mindskt, Mmoreram, Itamar.haber, Abi-
nashMishra1234, Ushnishtha, S4saurabh12, Nikkiobjectrocket, Andlpa63, Terrencepryan and Anonymous: 126

• MongoDB Source: https://en.wikipedia.org/wiki/MongoDB?oldid=693452881 Contributors: AxelBoldt, William Avery, Phoe6, Gren-
delkhan, Topbanana, Tomchiukc, Wjhonson, Sriehl, Jason Quinn, Masterhomer, Coldacid, Pgan002, Beland, Alobodig, Josephgross-
berg, ShortBus, Thorwald, Perey, Rfl, Rich Farmbrough, Jakuza~enwiki, Nabla, Theinfo, Lauciusa, Stesmo, Kfogel, Koper, Mdd,
PCJockey, Zachlipton, Tobych, Kocio, Nforbes, Falcorian, LOL, Adallas, Dm~enwiki, GregorB, Johnny99, VsevolodSipakov, HV, Al-
isonW, RobertG, Garyvdm, Kolbasz, FrankTobia, Wavelength, Hairy Dude, Youngtwig, SamJohnston, Thunderforge, Ben b, Arthur Ru-
bin, Fram, ViperSnake151, Narkstraws, AndrewWTaylor, DrJolo, SmackBot, Mauls, KennethJ, Ohnoitsjamie, Skizzik, Jdorner, Ctrl-
freak13, Frap, Meandtheshell, Ochbad, DMacks, KDIsom, Stennie, Heelmijnlevenlang, Chickencha, Hu12, MikeWazowski, Mikeyv,
Alexey Feldgendler, Mineralè, Cydebot, Calorus, Widefox, Kohenkatz, Avleenvig, Magioladitis, JamesBWatson, AlbinoChocobo, David
Eppstein, SBunce, Cander0000, Jackson Peebles, Lmxspice, CommonsDelinker, Qweruiop321, Grshiplett, BrianOfRugby, Serge925,
TXiKiBoT, BookLubber, KickaXe, Wingedsubmariner, Crcsmnky, Tuxcantfly, Valio bg, Koryu Obihiro, Iapain wiki, Quiark, Kbrose,
Adm.Wiggin, Yashwantchavan, Jojalozzo, Elibarzilay, Hello71, Svick, Solprovider, Shruti14, Gian-Pa, WDavis1911, Niceguyedc, Ar-
lenCuss, Alexbot, Plaes, Jinlye, Supa Z, SteveMao, Megaltoid, Shijucv, The-verver, Crypticbird, Piratemurray, XLinkBot, Gerhard-
valentin, MystBot, Deineka, Addbot, Moosehadley, CanadianLinuxUser, MrOllie, Jasper Deng, Peridon, Twimoki, TundraGreen, Ben
Ben, Zyx, Luckas-bot, Yobot, JackPotte, Ptbotgourou, Amirobot, Wonderfl, AnomieBOT, Beaddy1238, Jim1138, Materialscientist,
CoMePrAdZ, Cababunga, John Bessa, Gkorland, Flying sheep, Mackrauss, Miym, Jonas AGX, Omnipaedista, Yadavjpr, SassoBot, Ciges,
Mike2782, Mu Mind, Haeinous, Jocelynp85, Marsiancba, Jandalhandler, Mdirolf, Chris Caven, LogAntiLog, OnceAlpha, Mreftel, Reaper
Eternal, Difu Wu, Asafdapper, RjwilmsiBot, Mbferg, Pengwynn, WikitanvirBot, Najeeb1010, GoingBatty, Mixmax99, Al3xpopescu,
Bernard.szlachta, Shuitu, Blr21000, Lateg, H3llBot, Vittyvk, Dstainer, Zephyrus Tavvier, Petrb, ClueBot NG, Mechanical digger, Thepaul0,
Joefromrandb, Millermk, Ninja987, Renatovitolo, Mschneido, Masssly, Antiqueight, Nadavidson, Helpful Pixie Bot, BG19bot, Arkroll,
Compfreak7, Dustinrodrigues, Cnevis, Ycallaf, Tobias.trelle, Dr. Coal, Jayadevp13, Solved009, Kizar, FeralOink, Chip123456, Ethe-
for, Justincheng12345-bot, Bpatrick001, Shaksharf, The Illusive Man, ChrisGualtieri, JYBot, Thenaberry1, Lan3y, Dexbot, Awesoham,
Frosty, MartinMichlmayr, Samarthgahire, Jamesx12345, Mikewbaca, Alfre2v, CJGarner, DavidPKendal, CCC2012, Mahbubur-r-aaman,
Amritakripa, Fc07, François Robere, Jan.hasller, The Herald, Francium1988, Ewolff42, ArmitageAmy, Tshuva, Xujizhe, Mongodb,
Grouik92, Luxure, Kathir04on, ScotXW, Jameswahlin, Lvmetrics, Bhpdownloads, Mehdi2305, Dodi 8238, Dabron, Mongochang, Samo-
htm, Kaimast, Tazi Mehdi, Ayush3292, Mcocohen, Airuleguy, RationalBlasphemist, Swoopover, Vwsuran, Attish~enwiki, Alexeybut,
Andlpa63, Andreea Panainte, Dwtkr, Iamvikas1982, Xsenechal, Anandchandak15, Mandge.rohit, Rnmandge and Anonymous: 342

• PostgreSQL Source: https://en.wikipedia.org/wiki/PostgreSQL?oldid=692506269 Contributors: 0, Carey Evans, Wesley, The Anome,
Christopher Mahan, Aldie, Fubar Obfusco, Nate Silva, M~enwiki, Roadrunner, Maury Markowitz, TomCerul, Heron, Cwitty, Freck-
lefoot, Edward, Fuzzie, Gregben~enwiki, Nixdorf, Liftarn, Wwwwolf, (, Greenman, CesarB, Ahoerstemeier, KAMiKAZOW, Stevenj,
Nanshu, Angela, Glenn, Sugarfish, Nikai, Ehn, Jay, Tejano, Doradus, Pedant17, Tpbradbury, Polyglot, Cleduc, Jnc, Wernher, Bevo, Joy,
Fvw, Jamesday, Robbot, Chealer, Lowellian, Ianb, Stewartadcock, LX, Lasix, Weialawaga~enwiki, Oberiko, Nickdc, Levin, Fleminra,
Ceejayoz, Prell, Lvr, Neilc, Chowbok, Utcursch, Pgan002, Alexf, Cbraga, ConradPino, Billposer, Gene s, Burgundavia, Karl-Henner,
Cynical, Troels Arvin, GreenReaper, Deleteme42, RandalSchwartz, Imroy, Rich Farmbrough, Sesse, Oska, Ardonik, Lulu of the Lotus-
Eaters, Slipstream, Gronky, Bender235, PaulMEdwards, Chibimagic, Kwamikagami, Kanzure, TommyG, Mereman, Giraffedata, Timsh-
eridan, Minghong, Jonsafari, QuantumEleven, Stephen Bain, HasharBot~enwiki, Poli, Gary, Fchoong, Jeltz, Andrewpmk, Ringerc~enwiki,
Pjacklam, Pauli133, SteinbDJ, Gmaxwell, Mindmatrix, MianZKhurrum, Dandv, Deeahbz, Jacobolus, Distalzou, Ruud Koot, Cosmic-
softceo, Bowman, GregorB, AnmaFinotera, Wisq, Turnstep, Marudubshinki, Graham87, EdDavies, Gilesmorant, KublaChaos, Silvestre
Zabala, Zero0w, Mikecron, FlaBot, SchuminWeb, Gurch, Ghen, Intgr, Chobot, Reetep, Peterl, YurikBot, Manop, Gaius Cornelius, Bovi-
neone, Varnav, Geertivp, Mipadi, Tkbwik, Randolf Richardson, Larsinio, E rulez, Snarius, BraneJ, Gsherry, Analoguedragon, Johnd-
burger, Closedmouth, Johnsu01, MaNeMeBasat, BanzaiSi, JLaTondre, Benhoyt, Mlibby, A bit iffy, SmackBot, Nicolas Barbier, Direvus,
Slamb, Faisal.akeel, Reedy, Georgeryp, Dkusnetzky, Anastrophe, Richmeister, Amux, Chris the speller, Bluebot, Wolph~enwiki, Advorak,
DStoykov, Crashmatrix, Ben.c.roberts, Thumperward, Droll, Jerome Charles Potts, DHN-bot~enwiki, Decibel, Frap, Lantrix, Matchups,
MattOates, Stevemidgley, Cybercobra, Emmanuel JARRI, Mwtoews, Where, Towsonu2003~enwiki, SashatoBot, Vincenzo.romano, Brian
Gunderson, Avé, Misery~enwiki, Abolen, AdultSwim, MTSbot~enwiki, Peyre, DagErlingSmørgrav, Angryxpeh, Dark ixion, Hu12, Fa-
talError, Raysonho, WeggeBot, Musashi1600, Andrew.george.hammond, Revolus, Cydebot, Krauss, Ttiotsw, Rchoate, Synergy, Ebrahim,
Thijs!bot, MinorEdits, Andyjsmith, Dalahäst, Jcarle, Xzilla, AntiVandalBot, Bearheart, Marokwitz, LenzGr, Room813, Deflective, Cjk-
porter, Martinkunev, Dskoll, GregorySmith, Apostrophyx, NoDepositNoReturn, JamesBWatson, Bernd vdB~enwiki, Gabriel Kielland, Ea-
gleFan, Cander0000, Nevit, Gwern, Scottmacpherson, Ronbtni, Lmxspice, Zeus, R'n'B, Whale plane, Sven Klemm~enwiki, Keesiewonder,
Usp, Eleven81, VolkovBot, Allencheung, Blindmatrix, Bramschoenmakers, Luke Lonergan, Kmacd, Gwinkless, HLHJ, RonaldDuncan,
Dfetter, Eljope, Jibun, PieterDeBruijn, Agentq314, Anas2048, Kindofoctarine, Majeru, ChrisMiddleton, Bfcase, X-Fi6, Jojalozzo, Gor-
got, Ctkeene, Ctxppc, Jonlandrum, Trevorbrooks, Martarius, ClueBot, Jhellerstein, Kl4m, Tintinobelisk, The Thing That Should Not Be,
Unbuttered Parsnip, Kl4m-AWB, Nikolas Stephan, Niceguyedc, M4gnum0n, WikiNickEN, Freerangelibrarian, Pmronchi, Eeekster, Tobi-
asPersson, Chrisarnesen, SF007, DumZiBoT, TimTay, XLinkBot, Jabberwoch, Andy318, Addbot, Mortense, Nate Wessel, Ginzel~enwiki,
Fale, Luckas-bot, Yobot, Specious, AnomieBOT, Coolboy1234, Piano non troppo, Kukushk, ArthurBot, The Banner, Wikante, Gilo1969,
Zenaan, FChurca, Mark Renier, W Nowicki, Alex.ryazantsev, Kwiki, Louperibot, William.temperley, Simple Bob, B3t, Tim baroon,
Skyerise, Jandalhandler, Full-date unlinking bot, Bmomjian, Jons2006, Filiprem, Ravenmewtwo, RjwilmsiBot, Streapadair, EmausBot,
Grldedwrdbutler, Marzalpac, Klenot, Dewritech, Peaceray, Solarra, Your Lord and Master, AvicBot, H3llBot, Demonkoryu, Gz33, கி.
கார்த்திகேயன், Sbmeirow, Palosirkka, Eggyknap, Martinmarques, Tijfo098, ChuispastonBot, Rugh, Brew8028, DisneyG, ClueBot NG,
Birkedit, Mangal ratna, Redneb33, Boria, Web20boom, Kasirbot, Patrias, Denys.Kravchenko, Kwetal1, Kweetal nl, Winston Chuen-Shih
Yang, Dexbot, Codename Lisa, Laurenz albe, Palmbeachguy, Digoal, Praemonitus, RaphaelQS, Comp.arch, ScotXW, Lavagnino, Craigk-
erstiens, Erilong, Unician, Docesam, Simonriggs, X3mofile, Lucazeo, Helldalgo, E1328167, Johnlgrant, Vihorny, GCarterEDB, Transfat0g
and Anonymous: 408

• Apache Cassandra Source: https://en.wikipedia.org/wiki/Apache_Cassandra?oldid=693344463 Contributors: Enchanter, Frecklefoot,
Edward, Ronz, Stefan-S, Ehn, Hashar, Cleduc, Bearcat, Alan Liefting, Msiebuhr, Neilc, Pgan002, Beland, Euphoria, Rich Farmbrough,
Bender235, Anthony Appleyard, PatrickFisher, YPavan, Runtime, Swaroopch, Mindmatrix, Timendum, Deansfa, Qwertyus, Jmhodges,
Jweiss11, Vegaswikian, Intgr, Tas50, FrankTobia, SamJohnston, Formina Sage, Mipadi, Grafen, Wainstead, JLaTondre, Tommymor-
gan, Chris Chittleborough, AtomCrusher, SmackBot, Timoey, Aardvark92, Jdorner, Thumperward, OrangeDog, Frap, Cybercobra, Mw-
toews, Acdx, Daniel.Cardenas, ArglebargleIV, Cydebot, Mblumber, Cinderblock63, Fyedernoggersnodden, Anupam, Nemnkim, Gstein,
GreyTeardrop, Cander0000, Krotty, McSly, Woodjr, Mercurywoodrose, Bcantoni, Andy Dingley, Peter.vanroose, Drmies, Alexbot, Ar-
jayay, The-verver, XLinkBot, Kolyma, Maximgr, Deineka, Addbot, Mortense, S4saurabh, Jncraton, MrOllie, Mdnahas, Jbryanscott,

https://en.wikipedia.org/wiki/MongoDB?oldid=693452881
https://en.wikipedia.org/wiki/PostgreSQL?oldid=692506269
https://en.wikipedia.org/wiki/Apache_Cassandra?oldid=693344463

124 CHAPTER 10. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

Luckas-bot, Yobot, Midinastasurazz, JackPotte, Vanger13, AnomieBOT, Jim1138, Materialscientist, Pmiossec, Citation bot, Arthur-
Bot, Xqbot, Santiagobasulto, Yadavjpr, Cgraysontx, Ciges, FrescoBot, FalconL, IO Device, Ksato9700, Sae1962, Tdmackey, Freen-
erd, Jadave234, Biktora, Rollins83, DASHBot, Dewritech, GoingBatty, Peaceray, Driftx, Arthurjulian, Werieth, ZéroBot, Al3xpopescu,
Kylemurph, Grossenhayn, Dstainer, Billmantisco, ClueBot NG, Nmilford, Ben morphett, Elisiariocouto, Kinglarvae, Helpful Pixie Bot,
YogiWanKenobi, Slebresne, BG19bot, Mark Arsten, IluvatarBot, Andrewllavore, Mmozum, Diglio.simoni, BattyBot, RichardMills65,
Perlscriptgurubot, ChrisGualtieri, TheJJJunk, Viocomnetworks, Clydewylam, Hoestmelankoli, Samarthgahire, Jamesx12345, CJGarner,
RobinUS2, Jonathanbellis, Wikiuser298, Jimtarber, Stuartmccaul, Stather, Mfiguiere, Dough34, Sebastibe, Khyryll, Dabron, Samohtm,
Spiesche, Textractor, Wehanw, FLGMwt, Elishaoren, Andlpa63, Jericevans, Kevin at aerospike, BD2412bot, Wesko, Marissabell, Jorgebg,
Barmic and Anonymous: 172

• Berkeley DB Source: https://en.wikipedia.org/wiki/Berkeley_DB?oldid=692113739 Contributors: Damian Yerrick, AxelBoldt, Bryan
Derksen, Taw, Andre Engels, Nate Silva, DavidSJ, Danja, Phoe6, KAMiKAZOW, Docu, Mxn, GregRobson, Jay, Johnleach, Smithd,
Paul W, Peak, Merovingian, Tobias Bergemann, Centrx, BenFrantzDale, AlistairMcMillan, Mendel, Rworsnop, Am088, Oneiros, Alo-
bodig, Bumm13, Arunkv, EagleOne, RossPatterson, Rich Farmbrough, Mecanismo, Abelson, Gronky, Jarsyl, Elwikipedista~enwiki, Mike
Schwartz, TommyG, JesseHogan, Justinc, Beinsane, Lystrata, TheParanoidOne, Interiot, GregorB, Tom W.M., Tokek, Turnstep, Kesla,
Graham87, Art Cancro, Qwertyus, Nuptsey, Ligulem, Gene Wood, Zero0w, FlaBot, Vsion, Kmorozov, Intgr, Jac099, YurikBot, Rylz,
Gaius Cornelius, SamJohnston, DragonHawk, DavidConrad, Welsh, Gregburd, Echiner~enwiki, JLaTondre, Berlotti, ViperSnake151,
SmackBot, Reedy, Vald, KiloByte, Thumperward, Jerome Charles Potts, Letdorf, Eliyahu S, Where, TPO-bot, AThing, Guyjohnston,
Jeberle, Rafert, Fatespeaks, Aarktica, Riffic, Eliashc, Tawkerbot2, 00112233, FatalError, Raysonho, Cydebot, Wernight, Danarmstrong,
Gioto, Gilson.soares, Marokwitz, Mk*, Skarkkai, Jelloman, MER-C, Wootery, Ff1959, Cander0000, Gwern, Ariel., CommonsDelinker,
Lordgilman, Rivenmyst137, Rajankila, Limn, Highlandsun, UnitedStatesian, Pcolby, Jerryobject, Oerdnj, Dead paulie, Toothrot, Ex-
plicit, Mild Bill Hiccup, Kilessan, Ecobun, Feline Hymnic, GreenGourd, Rhododendrites, SoxBot, TobiasPersson, Manorhill, Paulsheer,
Brentsmith101, Drhowarddrfine, Twimoki, Legobot, Yobot, Legobot II, AnomieBOT, Arcoro01, Rubinbot, Götz, Noelkoutlis, Edrandall,
Drilnoth, Scientes, UrusHyby, FrescoBot, HJ Mitchell, Nathan 314159, GoodenM, I dream of horses, Skyerise, SchreyP, Tokmeserdar,
JnRouvignac, Figarobdbxml, McShark, Bolerio, DigitalKiwi, Ebrambot, Staticd, Mikhail Ryazanov, Dexp, Be..anyone, BG19bot, Compf-
reak7, Gm246, Chrisxue815, ChrisGualtieri, MartinMichlmayr, Hoestmelankoli, LennyWikidata, Apgiannakidis, ScotXW, Shinydiscoball
and Anonymous: 123

• Memcached Source: https://en.wikipedia.org/wiki/Memcached?oldid=692531683 Contributors: AxelBoldt, Magnus Manske, Bryan Derk-
sen, Tim Starling, Lemming, Angela, Den fjättrade ankan~enwiki, Ijon, Alaric, Ehn, Markhurd, Grendelkhan, Toreau, Ayucat, Rrjanbiah,
TittoAssini, Mattflaschen, David Gerard, Jpo, Christopherlin, Oneishy, Neilc, Pgan002, Fpahl, Euphoria, Beginning, Gcanyon, Thorwald,
Rfl, Rich Farmbrough, Gronky, Bender235, Enyo, CanisRufus, John Vandenberg, Giraffedata, Gary, Halsteadk, Diego Moya, GreggHil-
ferding, Stephan Leeds, Danhash, Foolswisdom, Lime~enwiki, Simetrical, Barrylb, Jacobolus, Bratsche, Apokrif, MrSomeone, Rjwilmsi,
Pleiotrop3, Pmc, Mahlon, Jnutting512, Anrie Nord, Pinecar, Phorque, YoavShapira, Rsrikanth05, SamJohnston, Corevette, Gslin, Smack-
Bot, Mark Tranchant, Faisal.akeel, Oben, DStoykov, Morte, Oli Filth, ClaudiaM, Frap, Hermzz, T.J. Crowder, BrentRockwood, A5b,
Evlekis, Thejerm, Sembiance, Tawkerbot2, Chnv, HDCase, Raysonho, Devis, Jasoncalacanis, Colorprobe, Grubbiv, Johnnicely, Thijs!bot,
Dasani, Plausible deniability, Cherianthomas, Spotnyk, Hcobb, Mordere, Marokwitz, Pensador82, Falcor84, Mange01, Charlesyoung, An-
tiSpamBot, Tarinth, HansRoht, LastChanceToBe, TXiKiBoT, AgamemnonZ, Mfriedenhagen, Zkarab, BrianAker, Cnilep, Hyuu 91, Aed-
nichols, NightRave, Monkeychubs, SHINERJ6, Kl4m-AWB, Gtstricky, Pauljchang, Herbert1000, SF007, Qgil-WMF, Addbot, ToikeOike,
Raykrueger, Peridon, OlEnglish, Pjherrero, Legobot, Luckas-bot, Yobot, Timeroot, Kowser, Bub’s, AnomieBOT, Materialscientist,
Pmiossec, Neurocod, DataWraith, The Evil IP address, PlaysWithLife, FrescoBot, Natishalom, Enes1177, Sevi81, Jfmantis, Ingenthr,
Majidkhan59, EmausBot, SBachenberg, Ajraddatz, Wikipediancag, ZéroBot, ILYA INDIGO, Javiermarinros, Zephyrus Tavvier, Smc-
quay, ClueBot NG, Webkul, Danim, Kronigon1, Helpful Pixie Bot, Mhmhk, Compfreak7, CitationCleanerBot, OmarMOthman, Papow-
ell, JYBot, Dexbot, Altered Walter, RaphaelQS, Bitobor, ArmitageAmy, Mindskt, ScotXW, Dudeprgm, Kevin at aerospike, Gekart and
Anonymous: 171

• BigTable Source: https://en.wikipedia.org/wiki/BigTable?oldid=692084407 Contributors: Jpatokal, Hashar, Greenrd, Bearcat, Bkonrad,
Jason Quinn, Adpowers, Macrakis, Khalid hassani, Pgan002, Jeremykemp, Imroy, Discospinster, Brianhe, Pmsyyz, Bender235, Nilesh-
bansal, Marudubshinki, Zoz, Rjwilmsi, Vegaswikian, Intgr, Wavelength, Cliffb, Markpeak, Corevette, Moe Epsilon, DeadEyeArrow, Elk-
man, Georgewilliamherbert, Matt Heard, SmackBot, Gnangarra, Drttm, Hmains, Amux, Fintler, JennyRad, Jeskeca, Audriusa, Cybercobra,
Dwchin, Nakon, EIFY, A5b, Michael miceli, Larrymcp, Skim1420, John Reed Riley, Raysonho, Phoib, Franzks, Harrigan, Oo7565, Cy-
debot, Nearfar, Heroeswithmetaphors, Gstein, Benstown, Exerda, Gwern, Erik s paulson, Sounil, Rdquay, Vincent Lextrait, TXiKiBoT,
Andy Dingley, Treekids, Dstrube, Captin411, ArlenCuss, Alexbot, Whereiswally, Replysixty, XLinkBot, Addbot, Tanhabot, Luckas-bot,
Yobot, Legobot II, Wonderfl, Masharabinovich, AnomieBOT, ArthurBot, Quebec99, DataWraith, Ogendarf, Thehelpfulbot, Mateuszb,
FrescoBot, Mark Renier, Sae1962, Wordstext, RedBot, MastiBot, Barauswald, Trappist the monk, Jmspaggi, DanielWaterworth, Pirroh,
Ebrambot, FinalRapture, ClueBot NG, Dfarrell07, Barry K. Nathan, Danim, FreePeter3000, BG19bot, Mgr493, AvocatoBot, Goolasso,
BattyBot, Paul2520, Monkbot, Seano314, Aashrayarora, Jefesaurus and Anonymous: 99

10.2 Images
• File:ASF-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/c/cd/ASF-logo.svg License: Apache License 2.0 Contribu-

tors: http://www.apache.org/ Original artist: Apache Software Foundation (ASF)

• File:Ambox_important.svg Source: https://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg License: Public do-
main Contributors: Own work, based off of Image:Ambox scales.svg Original artist: Dsmurat (talk · contribs)

• File:BabbageKeyValueCard.tiff Source: https://upload.wikimedia.org/wikipedia/commons/7/74/BabbageKeyValueCard.tiff License:
Public domain Contributors: https://ia801408.us.archive.org/0/items/passagesfromlif01babbgoog/passagesfromlif01babbgoog.pdf, https:
//en.wikisource.org/wiki/Page:Babbage_-_Passages_from_the_Life_of_a_Philosopher.djvu/139 Original artist: Charles Babbage

• File:CO-ScheduleClasses.jpg Source: https://upload.wikimedia.org/wikipedia/commons/d/db/CO-ScheduleClasses.jpg License: Attri-
bution Contributors: Yoav Raz (1990): The Principle of Commitment Ordering, or Guaranteeing Serializability in a Heterogeneous Environ-
ment of Multiple Autonomous Resource Managers Using Atomic Commitment. DEC-TR 841, Digital Equipment Corporation, November
1990; Yoav Raz (1995): The Principle of Commitment Ordering, in yoavraz.googlepages.com Original artist: Yoav Raz

https://en.wikipedia.org/wiki/Berkeley_DB?oldid=692113739
https://en.wikipedia.org/wiki/Memcached?oldid=692531683
https://en.wikipedia.org/wiki/BigTable?oldid=692084407
https://upload.wikimedia.org/wikipedia/commons/c/cd/ASF-logo.svg
http://www.apache.org/
https://upload.wikimedia.org/wikipedia/commons/b/b4/Ambox_important.svg
//commons.wikimedia.org/wiki/File:Ambox_scales.svg
//commons.wikimedia.org/wiki/User:Dsmurat
//commons.wikimedia.org/wiki/User_talk:Dsmurat
//commons.wikimedia.org/wiki/Special:Contributions/Dsmurat
https://upload.wikimedia.org/wikipedia/commons/7/74/BabbageKeyValueCard.tiff
https://ia801408.us.archive.org/0/items/passagesfromlif01babbgoog/passagesfromlif01babbgoog.pdf
https://en.wikisource.org/wiki/Page:Babbage_-_Passages_from_the_Life_of_a_Philosopher.djvu/139
https://en.wikisource.org/wiki/Page:Babbage_-_Passages_from_the_Life_of_a_Philosopher.djvu/139
https://upload.wikimedia.org/wikipedia/commons/d/db/CO-ScheduleClasses.jpg
http://yoavraz.googlepages.com/

10.2. IMAGES 125

• File:CodasylB.png Source: https://upload.wikimedia.org/wikipedia/commons/d/d6/CodasylB.png License: CC-BY-SA-3.0 Contributors:
“CIM: Principles of Computer Integrated Manufacturing”, Jean-Baptiste Waldner, John Wiley & Sons, 1992 Original artist: Jean-Baptiste
Waldner

• File:Commons-logo.svg Source: https://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg License: ? Contributors: ? Original
artist: ?

• File:Computer-aj_aj_ashton_01.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_
Yellow_theme.svg License: CC0 Contributors: https://openclipart.org/detail/105871/computeraj-aj-ashton-01 Original artist: AJ from
openclipart.org

• File:Crystal_Clear_app_database.png Source: https://upload.wikimedia.org/wikipedia/commons/4/40/Crystal_Clear_app_database.
png License: LGPL Contributors: All Crystal Clear icons were posted by the author as LGPL on kde-look; Original artist: Everaldo Coelho
and YellowIcon;

• File:Database_models.jpg Source: https://upload.wikimedia.org/wikipedia/commons/3/3b/Database_models.jpg License: CC BY-SA
3.0 Contributors: Own work Original artist: Marcel Douwe Dekker

• File:Disambig_gray.svg Source: https://upload.wikimedia.org/wikipedia/en/5/5f/Disambig_gray.svg License: Cc-by-sa-3.0 Contributors:
? Original artist: ?

• File:Edit-clear.svg Source: https://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg License: Public domain Contributors: The
Tango! Desktop Project. Original artist:
The people from the Tango! project. And according to the meta-data in the file, specifically: “Andreas Nilsson, and Jakub Steiner (although
minimally).”

• File:Folder_Hexagonal_Icon.svg Source: https://upload.wikimedia.org/wikipedia/en/4/48/Folder_Hexagonal_Icon.svg License: Cc-by-
sa-3.0 Contributors: ? Original artist: ?

• File:Free_Software_Portal_Logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/6/67/Nuvola_apps_emacs_vector.svg
License: LGPL Contributors:

• Nuvola_apps_emacs.png Original artist: Nuvola_apps_emacs.png: David Vignoni
• File:Gnome-searchtool.svg Source: https://upload.wikimedia.org/wikipedia/commons/1/1e/Gnome-searchtool.svg License: LGPL Con-

tributors: http://ftp.gnome.org/pub/GNOME/sources/gnome-themes-extras/0.9/gnome-themes-extras-0.9.0.tar.gz Original artist: David
Vignoni

• File:Helenos_for_Apache_Cassandra.PNG Source: https://upload.wikimedia.org/wikipedia/commons/2/27/Helenos_for_Apache_
Cassandra.PNG License: CC BY-SA 4.0 Contributors: Own work Original artist: JackPotte

• File:HelloWorld.svg Source: https://upload.wikimedia.org/wikipedia/commons/2/28/HelloWorld.svg License: Public domain Contribu-
tors: Own work Original artist: Wooptoo

• File:Internet_map_1024.jpg Source: https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg License: CC BY
2.5 Contributors: Originally from the English Wikipedia; description page is/was here. Original artist: The Opte Project

• File:LampFlowchart.svg Source: https://upload.wikimedia.org/wikipedia/commons/9/91/LampFlowchart.svg License: CC-BY-SA-3.0
Contributors: vector version of Image:LampFlowchart.png Original artist: svg by Booyabazooka

• File:Memcached.svg Source: https://upload.wikimedia.org/wikipedia/en/2/27/Memcached.svg License: Fair use Contributors:
The logo may be obtained from Memcached.
Original artist: ?

• File:Merge-arrow.svg Source: https://upload.wikimedia.org/wikipedia/commons/a/aa/Merge-arrow.svg License: Public domain Contrib-
utors: ? Original artist: ?

• File:Merge-arrows.svg Source: https://upload.wikimedia.org/wikipedia/commons/5/52/Merge-arrows.svg License: Public domain Con-
tributors: ? Original artist: ?

• File:Mergefrom.svg Source: https://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg License: Public domain Contribu-
tors: ? Original artist: ?

• File:MongoDB-Logo.svg Source: https://upload.wikimedia.org/wikipedia/en/4/45/MongoDB-Logo.svg License: Fair use Contributors:
The logo is from the https://www.mongodb.com/brand-resources website. Original artist: ?

• File:Node.js_logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg License: Public domain Contrib-
utors: http://nodejs.org/logos Original artist: node.js authors

• File:Object-Oriented_Model.svg Source: https://upload.wikimedia.org/wikipedia/commons/7/7c/Object-Oriented_Model.svg License:
Public domain Contributors: Data Integration Glossary. Original artist:

• U.S. Department of Transportation
• vectorization: Own work

• File:Office-book.svg Source: https://upload.wikimedia.org/wikipedia/commons/a/a8/Office-book.svg License: Public domain Contribu-
tors: This and myself. Original artist: Chris Down/Tango project

• File:People_icon.svg Source: https://upload.wikimedia.org/wikipedia/commons/3/37/People_icon.svg License: CC0 Contributors: Open-
Clipart Original artist: OpenClipart

• File:Portal-puzzle.svg Source: https://upload.wikimedia.org/wikipedia/en/f/fd/Portal-puzzle.svg License: Public domain Contributors: ?
Original artist: ?

• File:Postgresql_elephant.svg Source: https://upload.wikimedia.org/wikipedia/commons/2/29/Postgresql_elephant.svg License: BSD
Contributors: http://pgfoundry.org/docman/?group_id=1000089 Original artist: Jeff MacDonald

https://upload.wikimedia.org/wikipedia/commons/d/d6/CodasylB.png
https://upload.wikimedia.org/wikipedia/en/4/4a/Commons-logo.svg
https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_Yellow_theme.svg
https://upload.wikimedia.org/wikipedia/commons/d/d7/Desktop_computer_clipart_-_Yellow_theme.svg
https://openclipart.org/detail/105871/computeraj-aj-ashton-01
https://openclipart.org/user-detail/AJ
https://openclipart.org/
https://upload.wikimedia.org/wikipedia/commons/4/40/Crystal_Clear_app_database.png
https://upload.wikimedia.org/wikipedia/commons/4/40/Crystal_Clear_app_database.png
http://kde-look.org/content/show.php/Crystal+Clear?content=25668
http://www.yellowicon.com/
https://upload.wikimedia.org/wikipedia/commons/3/3b/Database_models.jpg
//commons.wikimedia.org/wiki/User:Mdd
https://upload.wikimedia.org/wikipedia/en/5/5f/Disambig_gray.svg
https://upload.wikimedia.org/wikipedia/en/f/f2/Edit-clear.svg
http://tango.freedesktop.org/Tango_Desktop_Project
http://tango.freedesktop.org/The_People
https://upload.wikimedia.org/wikipedia/en/4/48/Folder_Hexagonal_Icon.svg
https://upload.wikimedia.org/wikipedia/commons/6/67/Nuvola_apps_emacs_vector.svg
//commons.wikimedia.org/wiki/File:Nuvola_apps_emacs.png
//commons.wikimedia.org/wiki/File:Nuvola_apps_emacs.png
https://upload.wikimedia.org/wikipedia/commons/1/1e/Gnome-searchtool.svg
http://ftp.gnome.org/pub/GNOME/sources/gnome-themes-extras/0.9/gnome-themes-extras-0.9.0.tar.gz
https://upload.wikimedia.org/wikipedia/commons/2/27/Helenos_for_Apache_Cassandra.PNG
https://upload.wikimedia.org/wikipedia/commons/2/27/Helenos_for_Apache_Cassandra.PNG
//commons.wikimedia.org/wiki/User:JackPotte
https://upload.wikimedia.org/wikipedia/commons/2/28/HelloWorld.svg
//commons.wikimedia.org/wiki/User:Wooptoo
https://upload.wikimedia.org/wikipedia/commons/d/d2/Internet_map_1024.jpg
//en.wikipedia.org/wiki/en:Image:Internet_map_1024.jpg
//commons.wikimedia.org/w/index.php?title=Barrett_Lyon&action=edit&redlink=1
https://upload.wikimedia.org/wikipedia/commons/9/91/LampFlowchart.svg
//commons.wikimedia.org/wiki/File:LampFlowchart.png
//commons.wikimedia.org/wiki/User:Booyabazooka
https://upload.wikimedia.org/wikipedia/en/2/27/Memcached.svg
https://upload.wikimedia.org/wikipedia/commons/a/aa/Merge-arrow.svg
https://upload.wikimedia.org/wikipedia/commons/5/52/Merge-arrows.svg
https://upload.wikimedia.org/wikipedia/commons/0/0f/Mergefrom.svg
https://upload.wikimedia.org/wikipedia/en/4/45/MongoDB-Logo.svg
https://www.mongodb.com/brand-resources
https://upload.wikimedia.org/wikipedia/commons/d/d9/Node.js_logo.svg
http://nodejs.org/logos
https://upload.wikimedia.org/wikipedia/commons/7/7c/Object-Oriented_Model.svg
http://knowledge.fhwa.dot.gov/tam/aashto.nsf/All+Documents/4825476B2B5C687285256B1F00544258/%2524FILE/DIGloss.pdf
https://upload.wikimedia.org/wikipedia/commons/a/a8/Office-book.svg
//commons.wikimedia.org/wiki/File:X-office-address-book.svg
https://upload.wikimedia.org/wikipedia/commons/3/37/People_icon.svg
https://upload.wikimedia.org/wikipedia/en/f/fd/Portal-puzzle.svg
https://upload.wikimedia.org/wikipedia/commons/2/29/Postgresql_elephant.svg
http://pgfoundry.org/docman/?group_id=1000089

126 CHAPTER 10. TEXT AND IMAGE SOURCES, CONTRIBUTORS, AND LICENSES

• File:Question_book-new.svg Source: https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg License: Cc-by-sa-3.0
Contributors:
Created from scratch in Adobe Illustrator. Based on Image:Question book.png created by User:Equazcion Original artist:
Tkgd2007

• File:Redis_Logo.svg Source: https://upload.wikimedia.org/wikipedia/en/6/6b/Redis_Logo.svg License: Fair use Contributors: http:
//redis.io/images/redis-logo.svg Original artist: Carlos Prioglio created the logo for the copyright owner Salvatore Sanfilippo, lead developer
of Redis.

• File:Relational_key_SVG.svg Source: https://upload.wikimedia.org/wikipedia/commons/4/4c/Relational_key_SVG.svg License: CC
BY-SA 3.0 Contributors: Own work Original artist: IkamusumeFan

• File:Robomongo_0.8.5_-_insertion.png Source: https://upload.wikimedia.org/wikipedia/commons/4/48/Robomongo_0.8.5_-_
insertion.png License: CC BY-SA 4.0 Contributors: Own work Original artist: JackPotte

• File:Star-schema-example.png Source: https://upload.wikimedia.org/wikipedia/en/f/fe/Star-schema-example.png License: CC-BY-
SA-3.0 Contributors:
I created this work entirely by myself.
Original artist:
SqlPac (talk)

• File:Symbol_book_class2.svg Source: https://upload.wikimedia.org/wikipedia/commons/8/89/Symbol_book_class2.svg License: CC
BY-SA 2.5 Contributors: Mad by Lokal_Profil by combining: Original artist: Lokal_Profil

• File:Text_document_with_red_question_mark.svg Source: https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_
with_red_question_mark.svg License: Public domain Contributors: Created by bdesham with Inkscape; based upon Text-x-generic.svg
from the Tango project. Original artist: Benjamin D. Esham (bdesham)

• File:Three-phase_commit_diagram.png Source: https://upload.wikimedia.org/wikipedia/en/3/39/Three-phase_commit_diagram.png
License: CC-BY-3.0 Contributors: ? Original artist: ?

• File:Traditional_View_of_Data_SVG.svg Source: https://upload.wikimedia.org/wikipedia/commons/4/4d/Traditional_View_of_
Data_SVG.svg License: CC BY-SA 3.0 Contributors: Own work Original artist: IkamusumeFan

• File:Unbalanced_scales.svg Source: https://upload.wikimedia.org/wikipedia/commons/f/fe/Unbalanced_scales.svg License: Public do-
main Contributors: ? Original artist: ?

• File:Wikibooks-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/f/fa/Wikibooks-logo.svg License: CC BY-SA 3.0
Contributors: Own work Original artist: User:Bastique, User:Ramac et al.

• File:Wikinews-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/2/24/Wikinews-logo.svg License: CC BY-SA 3.0
Contributors: This is a cropped version of Image:Wikinews-logo-en.png. Original artist: Vectorized by Simon 01:05, 2 August 2006 (UTC)
Updated by Time3000 17 April 2007 to use official Wikinews colours and appear correctly on dark backgrounds. Originally uploaded by
Simon.

• File:Wikiquote-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/f/fa/Wikiquote-logo.svg License: Public domain
Contributors: ? Original artist: ?

• File:Wikisource-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg License: CC BY-SA 3.0
Contributors: Rei-artur Original artist: Nicholas Moreau

• File:Wikiversity-logo-Snorky.svg Source: https://upload.wikimedia.org/wikipedia/commons/1/1b/Wikiversity-logo-en.svg License:
CC BY-SA 3.0 Contributors: Own work Original artist: Snorky

• File:Wikiversity-logo.svg Source: https://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg License: CC BY-SA 3.0
Contributors: Snorky (optimized and cleaned up by verdy_p) Original artist: Snorky (optimized and cleaned up by verdy_p)

• File:Wiktionary-logo-en.svg Source: https://upload.wikimedia.org/wikipedia/commons/f/f8/Wiktionary-logo-en.svg License: Public
domain Contributors: Vector version of Image:Wiktionary-logo-en.png. Original artist: Vectorized by Fvasconcellos (talk · contribs),
based on original logo tossed together by Brion Vibber

10.3 Content license
• Creative Commons Attribution-Share Alike 3.0

https://upload.wikimedia.org/wikipedia/en/9/99/Question_book-new.svg
//en.wikipedia.org/wiki/File:Question_book.png
//en.wikipedia.org/wiki/User:Equazcion
//en.wikipedia.org/wiki/User:Tkgd2007
https://upload.wikimedia.org/wikipedia/en/6/6b/Redis_Logo.svg
http://redis.io/images/redis-logo.svg
http://redis.io/images/redis-logo.svg
http://www.carlosprioglio.com/
https://upload.wikimedia.org/wikipedia/commons/4/4c/Relational_key_SVG.svg
//commons.wikimedia.org/wiki/User:IkamusumeFan
https://upload.wikimedia.org/wikipedia/commons/4/48/Robomongo_0.8.5_-_insertion.png
https://upload.wikimedia.org/wikipedia/commons/4/48/Robomongo_0.8.5_-_insertion.png
//commons.wikimedia.org/wiki/User:JackPotte
https://upload.wikimedia.org/wikipedia/en/f/fe/Star-schema-example.png
//en.wikipedia.org/wiki/User:SqlPac
//en.wikipedia.org/wiki/User_talk:SqlPac
https://upload.wikimedia.org/wikipedia/commons/8/89/Symbol_book_class2.svg
//commons.wikimedia.org/wiki/User:Lokal_Profil
//commons.wikimedia.org/wiki/User:Lokal_Profil
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
https://upload.wikimedia.org/wikipedia/commons/a/a4/Text_document_with_red_question_mark.svg
//commons.wikimedia.org/wiki/User:Bdesham
//commons.wikimedia.org/wiki/File:Text-x-generic.svg
//commons.wikimedia.org/wiki/User:Bdesham
https://upload.wikimedia.org/wikipedia/en/3/39/Three-phase_commit_diagram.png
https://upload.wikimedia.org/wikipedia/commons/4/4d/Traditional_View_of_Data_SVG.svg
https://upload.wikimedia.org/wikipedia/commons/4/4d/Traditional_View_of_Data_SVG.svg
//commons.wikimedia.org/wiki/User:IkamusumeFan
https://upload.wikimedia.org/wikipedia/commons/f/fe/Unbalanced_scales.svg
https://upload.wikimedia.org/wikipedia/commons/f/fa/Wikibooks-logo.svg
//commons.wikimedia.org/wiki/User:Bastique
//commons.wikimedia.org/wiki/User:Ramac
https://upload.wikimedia.org/wikipedia/commons/2/24/Wikinews-logo.svg
//commons.wikimedia.org/wiki/File:Wikinews-logo-en.png
//commons.wikimedia.org/wiki/User:Simon
//commons.wikimedia.org/w/index.php?title=User:Time3000&action=edit&redlink=1
//commons.wikimedia.org/wiki/User:Simon
https://upload.wikimedia.org/wikipedia/commons/f/fa/Wikiquote-logo.svg
https://upload.wikimedia.org/wikipedia/commons/4/4c/Wikisource-logo.svg
//commons.wikimedia.org/wiki/User:Rei-artur
https://upload.wikimedia.org/wikipedia/commons/1/1b/Wikiversity-logo-en.svg
//commons.wikimedia.org/w/index.php?title=User:Snorky&action=edit&redlink=1
https://upload.wikimedia.org/wikipedia/commons/9/91/Wikiversity-logo.svg
//commons.wikimedia.org/w/index.php?title=User:Snorky&action=edit&redlink=1
//commons.wikimedia.org/wiki/User:Verdy_p
//commons.wikimedia.org/w/index.php?title=User:Snorky&action=edit&redlink=1
//commons.wikimedia.org/wiki/User:Verdy_p
https://upload.wikimedia.org/wikipedia/commons/f/f8/Wiktionary-logo-en.svg
//commons.wikimedia.org/wiki/File:Wiktionary-logo-en.png
//commons.wikimedia.org/wiki/User:Fvasconcellos
//commons.wikimedia.org/wiki/User_talk:Fvasconcellos
//commons.wikimedia.org/wiki/Special:Contributions/Fvasconcellos
//commons.wikimedia.org/wiki/User:Brion_VIBBER
https://creativecommons.org/licenses/by-sa/3.0/

	Databases
	Database
	Terminology and overview
	Applications
	General-purpose and special-purpose DBMSs
	History
	Research
	Examples
	Design and modeling
	Languages
	Performance, security, and availability
	See also
	References
	Further reading
	External links

	Schema migration
	Risks and Benefits
	Schema migration in agile software development
	Available Tools
	References

	Star schema
	Model
	Benefits
	Disadvantages
	Example
	See also
	References
	External links

	Not Only SQL
	CAP
	Science and medicine
	Computing
	Organisations
	Companies
	Projects, programs, policies
	Military
	Certifications
	Other
	See also

	Eventual consistency
	Conflict resolution
	Strong eventual consistency
	See also
	References

	Object-relational impedance mismatch
	Mismatches
	Solving impedance mismatch
	Contention
	Philosophical differences
	References
	External links

	Object database
	Overview
	History
	Timeline
	Adoption of object databases
	Technical features
	Standards
	Comparison with RDBMSs
	See also
	References
	External links

	NoSQL
	History
	Types and examples of NoSQL databases
	Performance
	Handling relational data
	ACID and JOIN Support
	See also
	References
	Further reading
	External links

	Key-value database
	Types and notable examples
	References
	External links

	Document-oriented database
	Documents
	Comparison with relational databases
	Implementations
	See also
	Notes
	References
	Further reading
	External links

	NewSQL
	History
	Systems
	See also
	References

	ACID
	ACID
	Characteristics
	Examples
	Implementation
	See also
	References

	Consistency (database systems)
	As an ACID guarantee
	As a CAP trade-off
	See also
	References

	Durability (database systems)
	See also

	Isolation
	Serializability
	Database transaction
	Correctness
	View and conflict serializability
	Enforcing conflict serializability
	Distributed serializability
	See also
	Notes
	References

	Isolation (database systems)
	Concurrency control
	Isolation levels
	Default isolation level
	Read phenomena
	Isolation Levels, Read Phenomena and Locks
	See also
	References
	External links

	Database transaction
	Purpose
	Transactional databases
	Object databases
	Distributed transactions
	Transactional filesystems
	See also
	References
	Further reading
	External links

	Transaction processing
	Description
	Methodology
	ACID criteria
	Benefits
	Implementations
	References
	External links
	Further reading

	Atomicity
	Journaling file system
	Rationale
	Techniques
	Alternatives
	See also
	References

	Atomicity (database systems)
	Examples
	Orthogonality
	Implementation
	See also
	References

	Locking
	Lock (database)
	Mechanisms for locking
	See also

	Record locking
	Granularity of locks
	Use of locks
	References

	Two-phase locking
	Data-access locks
	Two-phase locking and its special cases
	Deadlocks in 2PL
	See also
	References

	MVCC
	Multiversion concurrency control
	Implementation
	Examples
	History
	Version control systems
	See also
	References
	Further reading

	Snapshot isolation
	Definition
	Workarounds
	History
	References
	Further reading

	Two-phase commit protocol
	Assumptions
	Basic algorithm
	Disadvantages
	Implementing the two-phase commit protocol
	See also
	References
	External links

	Three-phase commit protocol
	Protocol Description
	Motivation
	Disadvantages
	References
	See also

	Scaling
	Scalability
	Measures
	Examples
	Horizontal and vertical scaling
	Database scalability
	Strong versus eventual consistency (storage)
	Performance tuning versus hardware scalability
	Weak versus strong scaling
	See also
	References
	External links

	Shard (database architecture)
	Database architecture
	Shards compared to horizontal partitioning
	Support for shards
	Disadvantages of sharding
	Etymology
	See also
	References
	External links

	Optimistic concurrency control
	OCC phases
	Web usage
	See also
	References
	External links

	Partition (database)
	Benefits of multiple partitions
	Partitioning criteria
	Partitioning methods
	See also
	References
	External links

	Distributed transaction
	See also
	References
	Further reading

	Examples
	Redis
	Supported languages
	Data types
	Persistence
	Replication
	Performance
	Clustering
	See also
	References
	External links

	MongoDB
	History
	Main features
	Criticisms
	Architecture
	Performance
	Production deployments
	See also
	References
	Bibliography
	External links

	PostgreSQL
	Name
	History
	Multiversion concurrency control (MVCC)
	Storage and replication
	Control and connectivity
	Security
	Upcoming features
	Add-ons
	Benchmarks and performance
	Platforms
	Database administration
	Prominent users
	Proprietary derivatives and support
	Release history
	See also
	References
	Further reading
	External links

	Apache Cassandra
	History
	Licensing and support
	Main features
	Data model
	Clustering
	Prominent users
	See also
	References
	Bibliography
	External links

	Berkeley DB
	Origin
	Architecture
	Editions
	Programs that use Berkeley DB
	Licensing
	References
	External links

	Memcached
	History
	Software architecture
	Example code
	See also
	References
	External links

	BigTable
	History
	Design
	Other similar software
	See also
	References
	Bibliography
	External links

	Text and image sources, contributors, and licenses
	Text
	Images
	Content license

