
ROS-Industrial Advanced
Developer’s Training Class

Southwest Research Institute

1

August 2017

Session 5:
Advanced Topics

(Path Planning and Perception)

Southwest Research Institute

2

INTRODUCTION TO DESCARTES

3

Outline

• Introduction

• Overview
– Descartes architecture

• Descartes Path Planning
– Exercise 5.0

• Perception
– Exercise 5.1

• STOMP Path Planning
– Exercise 5.2

 4

Introduction

• Application Need:
– Semi-constrained trajectories: traj. DOF < robot DOF

5

Current Solution

• Arbitrary assignment of
6DOF poses, redundant
axes -> IK

• Limited guarantee on
trajectory timing

• Limitations
– Reduced workspace

– Relies on human
intuition

– Collisions, singularities,

joint limits

3DOF
Workspace

6DOF
Workspace

6

Descartes

• Planning library for semi-constrained
trajectories

• Requirements
– Generate well behaved plans that

minimize joint motions

– Find easy solutions fast, hard solutions
with time

– Handle hybrid trajectories (joint,
Cartesian, specialized points)

– Fast re-planning/cached planning

7

Descartes Use Case

• Robotic Routing

8

Other Uses

• Robotic Blending

9

Open Source Details

• Public development: https://github.com/ros-
industrial-consortium/descartes

• Wiki Page: http://wiki.ros.org/descartes

• Acknowledgements:

– Dev team: Dan Solomon (former SwRI), Shaun
Edwards (former SwRI), Jorge Nicho (SwRI),
Jonathan Meyer (SwRI), Purser Sturgeon(SwRI)

– Supported by: NIST (70NANB14H226), ROS-
Industrial Consortium FTP

10

https://github.com/ros-industrial-consortium/descartes
https://github.com/ros-industrial-consortium/descartes
https://github.com/ros-industrial-consortium/descartes
https://github.com/ros-industrial-consortium/descartes
https://github.com/ros-industrial-consortium/descartes
http://wiki.ros.org/descartes

Descartes Demonstration

11

Descartes Architecture

12

Robot Model
Semi-Constrained

Trajectory

Path Planner

Robot Path

Descartes Interfaces

• Trajectory Point
– Robot independent
– Tolerance (fuzzy)
– Timing

• Robot Model
– IK/FK
– Validity (Collision checking, limits)
– Similar to MoveIt::RobotState, but with getAllIK

• Planner
– Trajectory solving
– Plan caching/re-planning

13

Descartes Implementations

• Trajectory Points
– Cartesian point
– Joint point
– AxialSymmetric point (5DOF)

• Robot Model
– MoveIt wrapper (working with MoveIt to make better)
– FastIK wrappers
– Custom solution

• Planners
– Dense – graph based search
– Sparse – hybrid graph based/interpolated search

14

Trajectory Point “Types”

15

• Trajectory Points
– JointTrajectoryPt

• Represents a robot joint pose. It can accept tolerances for
each joint

– CartTrajectoryPt
• Defines the position and orientation of the tool relative to a

world coordinate frame. It can also apply tolerances for the
relevant variables that determine the tool pose.

– AxialSymmetricPt
• Extends the CartTrajectoryPt by specifying a free axis of

rotation for the tool. Useful whenever the orientation about
the tool’s approach vector doesn’t have to be defined.

Descartes Implementations

16

Cartesian Trajectory Point

17

• Create a CartTrajectoryPt from a tool pose.

• Store the CartTrajectoryPt in a TrajectoryPtPtr
type.

 descartes_core::TrajectoryPtPtr cart_point_ptr (new
 descartes_trajectory::CartTrajectoryPt (tool_pose));

Axial Symmetric Point

18

• Use the AxialSymmetricPt to create a tool
point with rotational freedom about z.

• Use tool_pose to set the nominal tool
position.

descartes_core::TrajectoryPtPtr free_z_rot_pt(
 new descartes_trajectory::AxialSymmetricPt(

tool_pose,
0.5f,
descartes_trajectory::AxialSymmetricPt::Z_AXIS));

Joint Point

19

• Use the JointTrajectoryPt to “fix” the robot’s
position at any given point.

• Could be used to force a particular start or
end configuration.

std::vector<double> joint_pose = {0, 0, 0, 0, 0, 0};
descartes_core::TrajectoryPtPtr joint_pt(
 new descartes_trajectory::JointTrajectoryPt(joint_pose));

Timing Constraints

20

• All trajectory points take an optional
TimingConstraint that enables the planners to
more optimally search the graph space.

• This defines the time, in seconds, to achieve
this position from the previous point.

Descartes_core::TimingConstraint tm (1.0);
descartes_core::TrajectoryPtPtr joint_pt(
 new descartes_trajectory::JointTrajectoryPt(joint_pose, tm));

Robot Models

21

• Robot Model Implementations
– MoveitStateAdapter :

• Wraps moveit Robot State.

• Can be used with most 6DOF robots.

• Uses IK Numerical Solver.

– Custom Robot Model
• Specific to a particular robot (lab demo uses UR5 specific

implementation).

• Usually uses closed-form IK solution (a lot faster than
numerical).

• Planners solve a lot faster with a custom robot model.

Used in the
Exercises

Used in the Lab

Descartes Input/Output

• Input:
– Can come from CAD

– From processed scan data

– Elsewhere

• Output
– Joint trajectories

– Must convert to ROS format to
work with other ROS components
(see 4.0)

22

23

DESCARTES IMPLEMENTATIONS

You specify these “points”, and Descartes finds shortest path through them.

Descartes Path Planning

24

• Planners

– Planners are the highest level component of the
Descartes architecture.

– Take a trajectory of points and return a valid path
expressed in joint positions for each point in the
tool path.

– Two implementations

• DensePlanner

• SparsePlanner

Descartes Path Planning

25

• Dense Planner

– Finds a path through the points that minimizes the
joint motion.

Find All IK
Solutions

Compute cost
between consecutive

pairs

Choose lowest cost
path

Descartes Path Planning

26

• Dense Planner

– Search graph uses joint solutions as vertices and
the movement costs as edges

– Applies Dijkstra’s algorithm to find the lowest cost
path from a start to and end configuration.

Descartes Path Planning

27

• Create a trajectory of AxialSymetricPt points.

• Store all of the points in the traj array.

 for(…)
 {
 ...

 descartes_core::TrajectoryPtPtr cart_point (
 new descartes_trajectory::AxialSymmetricPt (
 tool_pose ,
 1.0f,
 descartes_trajectory::AxialSymmetricPt::Z_AXIS));
 traj.push_back(cart_point);
 }

Descartes Path Planning

28

• Create and initialize a DensePlanner.

• Verify that initialization succeeded.

 descartes_planner::DensePlanner planner;
 if (planner.initialize(robot_model_ptr))
 {
 ...
 }

Descartes Path Planning

29

• Use planPath(…) to plan a robot path.

• Invoke getPath(…) to get the robot path from
the planner.

 std::vector < descartes_core::TrajectoryPtPtr > path;
 if (planner.planPath(traj))
 {
 if (planner. getPath(path))
 {
 …
 }
 …
 }

Descartes Path Planning

30

• Write a for loop to print all the joints poses in
the planned path to the console.

 std::vector< double > seed (robot_model_ptr->getDOF());
 for(…)
 {
 std::vector <double> joints;
 descartes_core::TrajectoryPtPtr joint_pt = path[i];
 joint_pt -> getNominalJointPose (seed ,*robot_model_ptr , joints);

 // print joint values in joints
 }

Descartes Path Planning

31

• Sparse Planner

– Saves computational time by planning with a
subset of the trajectory points and completing the
path using joint interpolation.

Dense
Planner

Samples
Trajectory

Plans for
trajectory subset Interpolates and

checks FK

FK
check

Adds interpolated
point to the path

Exercise 5.0

32

• Go back to the line where the DensePlanner
was created and replace it with the
SparsePlanner.

• Planning should be a lot faster now.

descartes_planner::DensePlanner planner;

descartes_planner::SparsePlanner planner;

Exercise 5.1

33

Exercise 5.1:

 Descartes Path Planning

34

DESCARTES IMPLEMENTATIONS

These points have a free degree of freedom, but they don’t have to.

BUILDING A PERCEPTION PIPELINE

35

Perception Processing Pipeline

• Goal: Gain knowledge from sensor
data

• Process data in order to
– Improve data quality  filter noise
– Enhance succeeding processing steps
 reduce amount of data

– Create a consistent environment
model  Combine data from different
view points

– Simplify detection problem 
segment interesting regions

– Gain knowledge about environment 
classify surfaces

36

Camera

Processing

Robot
Capabilities

Perception Libraries (PCL)

• Point Cloud Library (PCL) -
http://pointclouds.org/

– Focused on 3D Range(Colorized) data

37

http://pointclouds.org

http://pointclouds.org/

Perception Pipeline

38

3D Camera

Processing

Robot
Capabilities

Obtain PointCloud

Convert PointCloud

ROS->PCL

Filter PointCloud

Convert PointCloud

PCL->ROS

Publish PointCloud

Broadcast Transform*

Voxel Grid

PassThrough

RANSAC Plane

Segmentation

Others...

Overall
Process

Perception Process

PCL Methods

Exercise 5.1

• Exercise 5.1 - https://github.com/ros-
industrial/industrial_training/wiki/Building-a-
Perception-Pipeline

39

https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline
https://github.com/ros-industrial/industrial_training/wiki/Building-a-Perception-Pipeline

Introduction to STOMP

February 2017
40

Introduction to STOMP

• Stochastic Trajectory
Optimization Planner

• Optimization-based planner that
generates smooth well behaved
collision free motion paths in
reasonable time.

• Original work by (Mrinal
Kalakrishnan, Sachin Chitta,
Evangelos Theodorou, Peter
Pastor, Stefan Schaal, ICRA 2011)

• PI^2 (Policy Improvement with
Path Integrals, Theodorou et al,
2010) algorithm

• The STOMP ROS package was first
introduce in Hydro which was a
direct implementation of the
ICRA 2011 paper.

February 2017
41

Introduction to STOMP

• Generates smooth well behaved
motion plans in reasonable time.

• All steps of the algorithm are
implemented through plugins and
configurable via yaml file.

• Can Incorporates additional
objective functions such as
torque limits, energy and tool
constraints.

• Cost functions that don’t need to
be differentiable.

• Can use distance field and
spherical approximations to
quickly compute distance queries
and collision costs.

February 2017
42

Introduction to STOMP

February 2017
43

Introduction to STOMP

February 2017
44

Noisy Generation

Introduction to STOMP

February 2017
45

Noisy Update Smoothing

Exercise 5.2

Exercise 5.2
Introduction to STOMP

February 2017
46

