

    
      
          
            
  
ZMON Docs




















Introduction

ZMON is a flexible and extensible open-source platform monitoring tool developed at Zalando [https://tech.zalando.de/] and is in production use since early 2014.
It offers proven scaling with its distributed nature and fast storage with KairosDB on top of Cassandra.
ZMON splits checking(data acquisition) from the alerting responsibilities and uses abstract entities to describe what’s being monitored.
Its checks and alerts rely on Python expressions, giving the user a lot of power and connectivity.
Besides the UI it provides RESTful APIs to manage and configure most properties automatically.

Anyone can use ZMON, but offers particular advantages for technical organizations with many autonomous teams.
Its front end (see Demo [https://demo.zmon.io] / Bootstrap [https://github.com/zalando-zmon/zmon-demo] / Kubernetes [https://github.com/zalando-zmon/zmon-kubernetes]/ Vagrant [https://github.com/zalando/zmon]) comes with Grafana3 “built-in,” enabling teams to create and manage their own data-driven dashboards along side ZMON’s own team/personal dashboards for alerts and custom widgets.
Being able to inherit and clone alerts makes it easier for teams to reuse and share code.
Alerts can trigger HipChat, Slack, and E-Mail notifications.
iOS and Android clients are works in progress, but push notifications are already implemented.

ZMON also enables painless integration with CMDBs and deployment tools.
It also supports service discovery via custom adapters or its built-in entity service’s REST API.
For an example, see zmon-aws-agent [https://github.com/zalando-zmon/zmon-aws-agent] to learn how we connect AWS service discovery with our monitoring in the cloud.

Feel free to contact us via slack.zmon.io [https://slack.zmon.io].






ZMON Components

[image: _images/components.svg]A minimum ZMON setup requires these four components:


	zmon-controller [https://github.com/zalando-zmon/zmon-controller]: UI/Grafana/Oauth2 Login/Github Login


	zmon-scheduler [https://github.com/zalando-zmon/zmon-scheduler]: Scheduling check/alert evaluation


	zmon-worker [https://github.com/zalando-zmon/zmon-worker]: Doing the heavy lifting


	zmon-eventlog-service [https://github.com/zalando-zmon/zmon-eventlog-service]: History for state changes and modifications




Plus the storage covered in the Requirements section.

The following components are optional:


	zmon-cli [https://github.com/zalando-zmon/zmon-cli]: A command line client for managing entities/checks/alerts if needed


	zmon-aws-agent [https://github.com/zalando-zmon/zmon-aws-agent]: Works with the AWS API to retrieve “known” applications


	zmon-data-service [https://github.com/zalando-zmon/zmon-data-service]: API for multi DC federation: receiver for remote workers primarily


	zmon-metric-cache [https://github.com/zalando-zmon/zmon-metric-cache]: Small scale special purpose metric store for API metrics in ZMON’s cloud UI


	zmon-notification-service [https://github.com/zalando-zmon/zmon-notification-service]: Provides mobile API and push notification support for GCM to Android/iOS app


	zmon-android [https://github.com/zalando-zmon/zmon-android]: An Android client for ZMON monitoring


	zmon-ios [https://github.com/zalando-zmon/zmon-ios]: An iOS client for ZMON monitoring







ZMON Origins

ZMON was born in late 2013 during Zalando’s annual Hack Week [https://tech.zalando.de/blog/?tags=Hack%20Week], when a group of Zalando engineers aimed to develop a replacement for ICINGA.
Scalability, manageability and flexibility were all critical, as Zalando’s small teams needed to be able to monitor their services independent of each other.
In early 2014, Zalando teams began migrating all checks to ZMON, which continues to serve Zalando Tech.




Entities

ZMON uses entities to describe your infrastructure or platform, and to bind check variables to fixed values.

{
      "type":"host",
      "id":"cassandra01",
      "host":"cassandra01",
      "role":"cassandra-host",
      "ip":"192.168.1.17",
      "dc":"data-center-1"
}





Or more abstract objects:

{
      "type":"postgresql-cluster",
      "id":"article-cluster",
      "name":"article-cluster",
      "shards": {
              "shard1":"articledb01:5432/shard1",
              "shard2":"articledb02:5432/shard2"
      }
}





Entity properties are not defined in any schema, so you can add properties as you see fit. This enables finer-grained filtering or selection of entities later on. As an example, host entities can include a physical model to later select the proper hardware checks.

Below you see an exmple of the entity view with alerts per entity.

[image: _images/entities.png]



Checks

A check describes how data is acquired. Its key properties are: a command to execute and an entity filter. The filter selects a subset of entities by requiring an overlap on specified properties. An example:

{
  "type":"postgresql-cluster", "name":"article-cluster"
}





The check command itself is an executable Python [http://www.python.org] expression. ZMON provides many custom wrappers that bind to the selected entity. The following example uses a PostgreSQL wrapper to execute a query on every shard defined above:

# sql() in this context is aware of the "shards" property

sql().execute('SELECT count(1) FROM articles "total"').result()





A check command always returns a value to the alert. This can be of any Python type.

Not familiar with Python’s functional expressions? No worries: ZMON allows you to define a top-level function and define your command in an easier, less functional way:

def check():
  # sql() binds to the entity used and thus knows the connection URLs
  return sql().execute('SELECT count(1) FROM articles "total"').result()








Alerts

A basic alert consists of an alert condition, an entity filter, and a team.
An alert has only two states: up or down.
An alert is up if it yields anything but False; this also includes exceptions thrown during evaluation of the check or alert, e.g. in the event of connection problems.
ZMON does not support levels of criticality, or something like “unknown”, but you have a color option to customize sort and style on your dashboard (red, orange, yellow).

Let’s revisit the above PostgreSQL check again. The alert below would either popup if there are no articles found or if we get an exception connecting to the PostgreSQL database.

team: database
entities:
  - type: postgresql-cluster
alert_condition: |
  value <= 0





Alerts raised by exceptions are marked in the dashboard with a “!”.

Via ZMON’s UI, alerts support parameters to the alert condition.
This makes it easy for teams/users to implement different thresholds, and — with the priority field defining the dashboard color — render their dashboards to reflect their priorities.




Dashboards

Dashboards include a widget area where you can render important data with charts, gauges, or plain text.
Another section features rendering of all active alerts for the team filter, defined at the dashboard level.
Using the team filter, select the alerts you want your dashboard to include.
Specify multiple teams, if necessary. TAGs are supported to subselect topics.

[image: _images/dashboard.png]



REST API and CLI

To make your life easier, ZMON’s REST API manages all the essential moving parts to support your daily work — creating and updating entities to allow for sync-up with your existing infrastructure.
When you create and modify checks and alerts, the scheduler will quickly pick up these changes so you won’t have to restart or deploy anything.

And ZMON’s command line client - a slim wrapper around the REST API - also adds usability by making it simpler to work with YAML files or push collections of entities.




Development Status

The team behind ZMON continues to improve performance and functionality. Please let us know via GitHub’s issues tracker if you find any bugs or issues.




Indices and Tables


	Index


	Module Index


	Search Page








          

      

      

    

  

    
      
          
            
  
Introduction

ZMON is a flexible and extensible open-source platform monitoring tool developed at Zalando [https://tech.zalando.de/] and is in production use since early 2014.
It offers proven scaling with its distributed nature and fast storage with KairosDB on top of Cassandra.
ZMON splits checking(data acquisition) from the alerting responsibilities and uses abstract entities to describe what’s being monitored.
Its checks and alerts rely on Python expressions, giving the user a lot of power and connectivity.
Besides the UI it provides RESTful APIs to manage and configure most properties automatically.

Anyone can use ZMON, but offers particular advantages for technical organizations with many autonomous teams.
Its front end (see Demo [https://demo.zmon.io] / Bootstrap [https://github.com/zalando-zmon/zmon-demo] / Kubernetes [https://github.com/zalando-zmon/zmon-kubernetes]/ Vagrant [https://github.com/zalando/zmon]) comes with Grafana3 “built-in,” enabling teams to create and manage their own data-driven dashboards along side ZMON’s own team/personal dashboards for alerts and custom widgets.
Being able to inherit and clone alerts makes it easier for teams to reuse and share code.
Alerts can trigger HipChat, Slack, and E-Mail notifications.
iOS and Android clients are works in progress, but push notifications are already implemented.

ZMON also enables painless integration with CMDBs and deployment tools.
It also supports service discovery via custom adapters or its built-in entity service’s REST API.
For an example, see zmon-aws-agent [https://github.com/zalando-zmon/zmon-aws-agent] to learn how we connect AWS service discovery with our monitoring in the cloud.

Feel free to contact us via slack.zmon.io [https://slack.zmon.io].


ZMON Components

[image: _images/components.svg]A minimum ZMON setup requires these four components:


	zmon-controller [https://github.com/zalando-zmon/zmon-controller]: UI/Grafana/Oauth2 Login/Github Login


	zmon-scheduler [https://github.com/zalando-zmon/zmon-scheduler]: Scheduling check/alert evaluation


	zmon-worker [https://github.com/zalando-zmon/zmon-worker]: Doing the heavy lifting


	zmon-eventlog-service [https://github.com/zalando-zmon/zmon-eventlog-service]: History for state changes and modifications




Plus the storage covered in the Requirements section.

The following components are optional:


	zmon-cli [https://github.com/zalando-zmon/zmon-cli]: A command line client for managing entities/checks/alerts if needed


	zmon-aws-agent [https://github.com/zalando-zmon/zmon-aws-agent]: Works with the AWS API to retrieve “known” applications


	zmon-data-service [https://github.com/zalando-zmon/zmon-data-service]: API for multi DC federation: receiver for remote workers primarily


	zmon-metric-cache [https://github.com/zalando-zmon/zmon-metric-cache]: Small scale special purpose metric store for API metrics in ZMON’s cloud UI


	zmon-notification-service [https://github.com/zalando-zmon/zmon-notification-service]: Provides mobile API and push notification support for GCM to Android/iOS app


	zmon-android [https://github.com/zalando-zmon/zmon-android]: An Android client for ZMON monitoring


	zmon-ios [https://github.com/zalando-zmon/zmon-ios]: An iOS client for ZMON monitoring







ZMON Origins

ZMON was born in late 2013 during Zalando’s annual Hack Week [https://tech.zalando.de/blog/?tags=Hack%20Week], when a group of Zalando engineers aimed to develop a replacement for ICINGA.
Scalability, manageability and flexibility were all critical, as Zalando’s small teams needed to be able to monitor their services independent of each other.
In early 2014, Zalando teams began migrating all checks to ZMON, which continues to serve Zalando Tech.




Entities

ZMON uses entities to describe your infrastructure or platform, and to bind check variables to fixed values.

{
      "type":"host",
      "id":"cassandra01",
      "host":"cassandra01",
      "role":"cassandra-host",
      "ip":"192.168.1.17",
      "dc":"data-center-1"
}





Or more abstract objects:

{
      "type":"postgresql-cluster",
      "id":"article-cluster",
      "name":"article-cluster",
      "shards": {
              "shard1":"articledb01:5432/shard1",
              "shard2":"articledb02:5432/shard2"
      }
}





Entity properties are not defined in any schema, so you can add properties as you see fit. This enables finer-grained filtering or selection of entities later on. As an example, host entities can include a physical model to later select the proper hardware checks.

Below you see an exmple of the entity view with alerts per entity.

[image: _images/entities.png]



Checks

A check describes how data is acquired. Its key properties are: a command to execute and an entity filter. The filter selects a subset of entities by requiring an overlap on specified properties. An example:

{
  "type":"postgresql-cluster", "name":"article-cluster"
}





The check command itself is an executable Python [http://www.python.org] expression. ZMON provides many custom wrappers that bind to the selected entity. The following example uses a PostgreSQL wrapper to execute a query on every shard defined above:

# sql() in this context is aware of the "shards" property

sql().execute('SELECT count(1) FROM articles "total"').result()





A check command always returns a value to the alert. This can be of any Python type.

Not familiar with Python’s functional expressions? No worries: ZMON allows you to define a top-level function and define your command in an easier, less functional way:

def check():
  # sql() binds to the entity used and thus knows the connection URLs
  return sql().execute('SELECT count(1) FROM articles "total"').result()








Alerts

A basic alert consists of an alert condition, an entity filter, and a team.
An alert has only two states: up or down.
An alert is up if it yields anything but False; this also includes exceptions thrown during evaluation of the check or alert, e.g. in the event of connection problems.
ZMON does not support levels of criticality, or something like “unknown”, but you have a color option to customize sort and style on your dashboard (red, orange, yellow).

Let’s revisit the above PostgreSQL check again. The alert below would either popup if there are no articles found or if we get an exception connecting to the PostgreSQL database.

team: database
entities:
  - type: postgresql-cluster
alert_condition: |
  value <= 0





Alerts raised by exceptions are marked in the dashboard with a “!”.

Via ZMON’s UI, alerts support parameters to the alert condition.
This makes it easy for teams/users to implement different thresholds, and — with the priority field defining the dashboard color — render their dashboards to reflect their priorities.




Dashboards

Dashboards include a widget area where you can render important data with charts, gauges, or plain text.
Another section features rendering of all active alerts for the team filter, defined at the dashboard level.
Using the team filter, select the alerts you want your dashboard to include.
Specify multiple teams, if necessary. TAGs are supported to subselect topics.

[image: _images/dashboard.png]



REST API and CLI

To make your life easier, ZMON’s REST API manages all the essential moving parts to support your daily work — creating and updating entities to allow for sync-up with your existing infrastructure.
When you create and modify checks and alerts, the scheduler will quickly pick up these changes so you won’t have to restart or deploy anything.

And ZMON’s command line client - a slim wrapper around the REST API - also adds usability by making it simpler to work with YAML files or push collections of entities.




Development Status

The team behind ZMON continues to improve performance and functionality. Please let us know via GitHub’s issues tracker if you find any bugs or issues.







          

      

      

    

  

    
      
          
            
  
Getting Started

To quickly get started with ZMON, use the preconfigured Vagrant box featured on the main ZMON repository [https://github.com/zalando/zmon].
Make sure you’ve installed Vagrant (at least 1.7.4) and a Vagrant provider like VirtualBox on your machine.
Clone the repository with Git:

$ git clone https://github.com/zalando/zmon.git
$ cd zmon/





From within the cloned repository, run:

$ vagrant up





Bootstrapping the image for the first time will take a bit of time.
You might want to grab some coffee while you wait. :)

When it’s finally up, Vagrant will report on how to reach the ZMON web interface:

==> default: ZMON installation is done!
==> default: Goto: https://localhost:8443
==> default: Login with your GitHub credentials






Creating Your First Alert


Log In

Open your web browser and navigate to the URL reported by Vagrant: e.g. https://localhost:8443/.
Click on Sign In. This will redirect you to Github where you sign in and authorize the ZMON app.
Then it takes you back and you are logged in.


Note

For your own deployment create your own app in Github with your redirect URL.
In ZMON you can then limit users allowed access to your Github organization.






Checks and Alerts

An alert shown on ZMON’s dashboard typically consists of two parts: the check-definition, which is responsible for
fetching the underlying data; and the alert-definition, which defines the condition under which the alert will trigger.
Multiple alerts with different alert conditions can operate on the same check, fetching data only once.

Let’s explore this concept now by creating a simple check and defining some alerts on it.




Create a new Check

One way to create a new check from scratch is via the Using the CLI.
A more convenient way, however, is to use the “Trial Run” feature.
It enables you to develop checks and alerts, execute them immediately, and inspect the result.
Once you are happy with your check command and filter, you can save it from the Trial Run directly.
Some users prefer to download the YAML definition from there to store and maintain it in Git.




Create an Alert

In the top navigation of ZMON’s web interface, select Check defs [https://localhost:8443/#/check-definitions] from the list and click on Website HTTP status.
Then click “Add New Alert Definition” to create a new alert for this particular check.
Fill out the form (see example values below), and hit “Save”:







	Name

	Oops … website is gone!



	Description

	Website was not reachable.



	Priority

	Priority 1 (red)



	Alert Condition

	value != 200



	Team

	Team 1



	Responsible Team

	Team 1



	Status

	ACTIVE






After you hit save, it will take a few seconds until it is picked up and executed.




View Dashboard

If the alerts condition evaluates to anything but False the alert will appear on the dashboard.
This means not only for True, but also e.g. in case of exceptions triggered, e.g. due to timeouts or failure to connect.
Currently there’s only one dashboard, and it is configured to show all present alerts.
To view the dashboard, select Dashboards [https://localhost:8443/#/dashboards] from the main menu and click on Example Dashboard.

To see the alert, you must simulate the error condition; try modifying its condition or the check-definition to return an error code).
You do this, set the URL in the check command to http://httpstat.us/500.
(The number in the URL represents the HTTP error code you will get.)

To see the actual error code in the alert, you might want to create/modify it like this:







	Name

	Website gone with status {code}



	Description

	Website was not reachable.



	Priority

	Priority 1 (red)



	Alert Condition

	capture(code=value)!=200



	Team

	Team 1



	Responsible Team

	Team 1



	Status

	ACTIVE











Using the CLI

The ZMON Vagrant box comes preinstalled with zmon-cli.
To use the CLI, log in to the running Vagrant box with:

$ vagrant ssh





The Vagrant box also contains some sample yaml files for creating entities, checks and alerts.
You can find these in /vagrant/examples.

As an example of using ZMON’s CLI, let’s create a check to verify that google.com is reachable.
cd to /vagrant/examples/check-definitions and, using zmon-cli, create a new check-definition:

$ cd /vagrant/examples/check-definitions
$ zmon check-definitions init website-availability.yaml
$ vim website-availability.yaml





Edit the newly created website-availability.yaml to contain the following code. (type i for insert-mode)

name: "Website HTTP status"
owning_team: "Team 1"
command: http("http://httpstat.us/200", timeout=5).code()
description: "Returns current http status code for Website"
interval: 60
entities:
 - type: GLOBAL
status: ACTIVE





Type ESC :wq RETURN to save the file.

To push the updated check definition to ZMON, run:

$ zmon check-definitions update website-availability.yaml
Updating check definition... http://localhost:8080/#/check-definitions/view/2





Find more detailed information here: Command Line Client.







          

      

      

    

  

    
      
          
            
  
Entities

Entities describe what you want to monitor in your infrastructure.
This can be as basic as a host, with its attributes hostname and IP; or something more complex, like a PostgreSQL sharded cluster with its identifier and set of connection strings.

ZMON gives you two options for automation in/integration with your platform: storing entities via zmon-controller [https://github.com/zalando-zmon/zmon-controller]’s entity service, or discovering them via the adapters in zmon-scheduler [https://github.com/zalando-zmon/zmon-scheduler].
At Zalando we use both, connecting ZMON to tools like our CMDB but also pushing entities via REST API.

ZMON’s entity service describes entities with a single JSON document.


	Any entity must contain an ID that is unique within your ZMON deployment. We often use a pattern like <hostname>(:<port>) to create uniqueness at the host and application levels, but this is up to you.


	Any entity must contain a type which describes the kind of entity, like an object class.




At the check execution we bind entity properties as default values to the functions executed, e.g. the IP gets used for relative http() requests.


Format

Generally, ZMON entity is a set of properties that can be represented as a multi-level dictionary. For example:

{
    "id":"arbitrary_entity_id",
    "type":"some_type",
    "oneMoreProperty":"foo",
    "nestedProperty": {
        "subProperty1": "foo",
        "subProperty2": "bar",
    }
}





2 notes here to keep in mind:


	id and type properties are mandatory.


	ZMON filtering (e.g. in ZMON UI) does not support nested properties.







Examples

In working with the Vagrant Box, you can use the scheduler instance entity like this:

{
    "id":"localhost:3421",
    "type":"instance",
    "host":"localhost",
    "project":"zmon-scheduler-ng",
    "ports": {"3421":3421}
}





Here, you can use the “ports” dictionary to also describe additional open ports.
As with Spring Boot, a second port is usually added, exposing management features.

Now let’s look at an example of the PostgreSQL instance:

{
    "id":"localhost:5432",
    "type":"database",
    "name":"zmon-cluster",
    "shards": {"zmon":"localhost:5432/local_zmon_db"}
}





Usage of the property “shards” is given by how ZMON’s worker exposes PostgreSQL clusters to the sql() function.

View more examples here [https://github.com/zalando-zmon/zmon-demo/tree/master/bootstrap/entities].

If you’d like to create an entity by yourself, check ZMON CLI tool [https://docs.zmon.io/en/latest/developer/zmon-cli.html#entities]







          

      

      

    

  

    
      
          
            
  
Check Definitions

Checks are ZMON’s way of gathering data from arbitrary entities, e.g. databases, micro services, hosts and more.
Create them as describe below using either the UI or the CLI.


Key properties


Command

The command is being executed by the worker and is considered the data gathering part.
It is executed once per selected entity and its result made available to all attached alerts.
You have different wrappers at hand and the entity variable is also available for access.




Entity Filter

Select the entities you want the check to execute against in general, often only a type filter is applied, sometimes more specific.
The alert allows you to do more fine grained filtering.
This proves useful to allow checks to be easily reused.




Interval

Specify the interval in seconds at which you want the check to be executed.




Owning team

This is the team originally creating the check, right now this has little effect.






Creating new checks


Using trial run




Using the CLI

$ zmon check init new-check.yaml
$ zmon check update new-check.yaml













          

      

      

    

  

    
      
          
            
  
Alert Definitions

Alert definitions specify when (condition, time period) and who (team) to notify for a desired monitoring event.
Alert definitions can be defined in the ZMON web frontend and via the ZMON CLI.

The following fields exist for alert definitions:



	name

	The alert’s display name on the dashboard.
This field can contain curly-brace variables like {mycapture} that are replaced by capture’s value when the alert is triggered.
It’s also possible to format decimal precision (e.g. “My alert {mycapture:.2f}” would show as “My alert 123.45” if mycapture is 123.456789).
To include a comma separated list of entities as part of the alert’s name, just use the special placeholder {entities}.



	description

	Meaningful text for people trying to handle the alert, e.g. incident support.



	priority

	The alert’s dashboard priority. This defines color and sort order on the dashboard.



	condition

	Valid Python expression to return true when alert should be triggered.



	parameters

	You may apply parameters your alert condition using variables. More details here



	entities filter

	Additional filter to apply the alert definition only to a subset of entities.



	notifications

	List of notification commands, e.g. to send out emails.



	time_period

	Notification time period.



	team

	Team dashboard to show alert on.



	responsible_team

	Additional team field to allow delegating alert monitoring to other teams.
The responsible team’s name will be shown on the dashboard.



	status

	Alerts will only be triggered if status is “ACTIVE”.



	template

	A template is an alert definition that is not evaluated and can only be used for extension. More details here









Condition

Simple expressions can start directly with an operator. To trigger an alert if the check result value is larger than zero:

> 0





You can use the value variable to create more complex conditions:

value >= 10 and value <= 100





Some more examples of valid conditions:

== 'OK'
!= False
value in ('banana', 'apple')





If the value already is a dictionary (hash map), we can apply all the Python magic to it:

['mykey'] > 100                                       # check a specific dict value
'error-message' in value                              # trigger alert if key is present
not empty([ k for k, v in value.items() if v > 100 ]) # trigger alert if some dict value is > 100








Captures

You can capture intermediate results in alert conditions by using the
capture function. This allows easier debugging of complex alert
conditions.

capture(value["a"]/value["b"]) > 0
capture(myval=value["a"]/value["b"]) > 0
any([capture(foo=FOO) > 10, capture(bar=BAR) > 10])





Please refer to Recipes section in Python Tutorial for some Python tricks you may use.

Named captures can be used to customize the alert display on the dashboard by using template substitution in the alert name.

If you call your capture dashboard, it will be used on dashboard next to entity name instead of entity value.
For example, if you have a host-based alert that fails on z-host1 and z-host2, you would normally see something like that

ALERT TITLE (N)
z-host1 (value1), z-host2 (value2)

Once you introduce capture called dashboard, you will get something like

ALERT TITLE (N)
z-host1 (capturevalue1), z-host2 (capturevalue2)

where capturevalue1 is value of “dashboard” capture evaluated against z-host1.

Example alert condition (based on PF/System check for diskspace)

"ERROR" not in value
and
capture(dashboard=(lambda d: '{}:{}'.format(d.keys()[0], d[d.keys()[0]]['percentage_space_used']) if d else d)(dict((k, v) for k,v in value.iteritems() if v.get('percentage_space_used', 0) >= 90))))








Entity (Exclude) Filter

The check definition already defines on what entities the checks should run.
Usually the check definition’s entities are broader than you want.
A diskspace check might be defined for all hosts, but you want to trigger alerts only for hosts you are interested in.
The alert definition’s entities field allows to filter entities by their attributes.

See Entities for details on supported entities and their attributes.

Note: The entity name can be included in the alert message by using a special placeholder {entities}` on the alert name.




Notifications

ZMON notifications lets you know when you have a new alert without check the web UI.
This section will explain how to use the different options available to notify about changes in alert states.
We support E-Mail, HipChat, Slack and one SMS provider that we have been using.

The notifications field is a list of function calls (see below for examples), calling one of the following methods of notification:


	
send_email(email*[, subject, message, repeat])

	




	
send_sms(number*[, message, repeat])

	




	
send_push([message, repeat, url, key])

	




	
send_slack([channel, message, repeat, token])

	




	
send_hipchat([room, message, color='red', repeat, token, message_format='html', notify=False])

	



If the alert has the top priority and should be handled immediately, you can specify the repeat interval for each notification.
In this case, you will be notified periodically, according to the specified interval, while the alert persists.
The interval is specified in seconds.

To receive push notifications you need one of the ZMON mobile apps (configured for your deployment) and subscribe to alert ids, before you can receive notifications.

In addition, you may use notification-groups to configure groups of people with associated emails and/or phone numbers and use these groups in notifications like this:

Example JSON email and SMS configuration using groups:

[
   "send_sms('active:2nd-database')",
   "send_email('group:2nd-database')"
]





In the above example you send SMS to active member of 2nd-database group and send email to all members of the group.

Example JSON email configuration:

[
   "send_mail('a@example.org', 'b@example.org')",
   "send_mail('a@example.com', 'b@example.com', subject='Critical Alert please do something!')",
   "send_mail('c@example.com', repeat=60)"
]





Example JSON Slack configuration:

[
   "send_slack()",
   "send_slack(channel='#incidents')",
   "send_slack(channel='#incidents', token='your-token')"
]





Example JSON HipChat configuration:

[
   "send_hipchat()",
   "send_hipchat(room='#incidents', color='red')",
   "send_hipchat(room='#incidents', token='your-token')",
   "send_hipchat(room='#incidents', token='your-token', notify=True)",
   "send_hipchat(room='#incidents', token='your-token', notify=True, message='@here Plz check it', message_format='text')"
]





Example JSON Push configuration:


[
   "send_push()"
]








Example JSON SMS configuration:

[
   "send_sms('0049123555555', '0123111111')",
   "send_sms('0049123555555', '0123111111', message='Critical Alert please do something!')",
   "send_sms('0029123555556', repeat=300)"
]





Example email:

From: ZMON <zmon@example.com>
Date: 2014-05-28 18:37 GMT+01:00
Subject: NEW ALERT: Low Orders/m: 84.9% of last weeks on GLOBAL
To: Undisclosed Recipients <zmon@example.com>

New alert on GLOBAL: Low Orders/m: {percentage_wow:.1f}% of last weeks


Current value: {'2w_ago': 188.8, 'now': 180.8, '1w_ago': 186.6, '3w_ago': 196.4, '4w_ago': 208.8}


Captures:

percentage_wow: 184.9185496584

last_weeks_avg: 195.15



Alert Definition
Name (ID):     Low Orders/m: {percentage_wow:.1f}% of last weeks (ID: 190)
Priority:      1
Check ID:      203
Condition      capture(percentage_wow=100. * value['now']/capture(last_weeks_avg=(value['1w_ago'] + value['2w_ago'] + value['3w_ago'] + value['4w_ago'])/4. )) < 85
Team:          Platform/Software
Resp. Team:    Platform/Software
Notifications: [u"send_mail('example@example.com')"]

Entity

id: GLOBAL

type: GLOBAL

percentage_wow: 184.9185496584

last_weeks_avg: 195.15





Example SMS:

Message details:
   Type: Text Message
   From: zmon2
Message text:
   NEW ALERT: DB instances test alert on all shards on customer-integration-master








Time periods

ZMON 2.0 allows specifying time periods (in UTC) in alert definitions.
When specified, user will be notified about the alert only when it occurs during given period.
Examples below cover most common use cases of time periods’ definitions.

To specify a time period from Monday through Friday, 9:00 to 17:00, use a
period such as


wd {Mon-Fri} hr {9-16}




When specifying a range by using -, it is best to think of - as meaning through.
It is 9:00 through 16:00, which is just before 17:00 (16:59:59).

To specify a time period from Monday through Friday, 9:00 to 17:00 on Monday, Wednesday, and Friday, and 9:00 to 15:00 on Tuesday and Thursday, use a period such as


wd {Mon Wed Fri} hr {9-16}, wd{Tue Thu} hr {9-14}




To specify a time period that extends Mon-Fri 9-16, but alternates weeks in a month, use a period such as


wk {1 3 5} wd {Mon Wed Fri} hr {9-16}




A period that specifies winter in the northern hemisphere:


mo {Nov-Feb}




This is equivalent to the previous example:


mo {Jan-Feb Nov-Dec}




As is


mo {jan feb nov dec}




And this is too:


mo {Jan Feb}, mo {Nov Dec}




To specify a period that describes every other half-hour, use something like:


minute { 0-29 }




To specify the morning, use


hour { 0-11 }




Remember, 11 is not 11:00:00, but rather 11:00:00 - 11:59:59.

5 second blocks:


sec {0-4 10-14 20-24 30-34 40-44 50-54}




To specify every first half-hour on alternating week days, and the
second half-hour the rest of the week, use the period


wd {1 3 5 7} min {0-29}, wd {2 4 6} min {30-59}




For more examples and syntax reference, please refer to this documentation [http://search.cpan.org/~pryan/Period-1.20/Period.pm#PERIOD_EXAMPLES],
note that suffixes like am or pm for hours are not supported, only
integers between 0 and 23. In doubt, try calling with python with your period definition
like

from timeperiod import in_period
in_period('hr { 0 - 23 }')





This should not throw an exception. The
timeperiod module in use is timeperiod2 [https://pypi.python.org/pypi/timeperiod2].
The in_period function accepts a second parameter which is a
datetime [https://docs.python.org/2/library/datetime.html#datetime-objects] like

from datetime import datetime
from timeperiod import in_period
in_period('hr { 7 - 23 }', datetime(2018, 1, 8, 2, 15)) # check 2018-01-08 02:15:00








Alert Definition Inheritance

Alert definition inheritance allows one to create an alert definition based on another alert whereby a child reuses attributes from the parent.
Each alert definition can only inherit from a single alert definition (single inheritance).


Template

A Template is basically an alert definition with a subset of attributes that is not evaluated and can only be used for extension.

To create a template:


	Select the check definition


	click Add New Alert Definition


	Set attributes to reuse and activate checkbox template







Extending

In general one can inherit from any alert definition/template. One should open the alert definition details and click inherit on the top right corner.
To override a field, just type in a new value. An icon should appear on the left side, meaning that the field will be overridden.
To rollback the change and keep the value defined on the parent, one should click in override icon.




Overriding


	By default the child alert retains all attributes of the parent alert with the exception of the following mandatory attributes:

	
	team


	responsible team


	status








These attributes are used for authorization (see permissions for details) therefore, they cannot be reused. If one changes these attributes on the parent alert definition, child alerts are not affected and you don’t loose access rights.
All the remaining attributes can be overridden, replacing the parent alert definition with its own values.






Alert Definition Parameters

Alert definition parameters allows one to decouple alert condition from constants that are used inside it.


Use Case: Technical alert condition

If your alert condition is highly technical with a lot of Python code in it, it is often makes sense to split actual calculation from threshold values and move such constant values into parameters.

The same may apply in certain cases to alert definitions created by technical staff, which later need to be adjusted by non-technical people - if you split calculation from variable definition, you may let non-technical people just change values without touching calculation logic.




Use Case: Same alert, different priorities

Another use case where we recommend to use parameters is when you need to have the same alert come up with a different priority depending on threshold values.

In such case, refer to alert inheritance for configuring inherited alerts.

Proposed structure would look like:


	Base alert “A” with alert condition and parameters, check template box


	Alert “B1” inherits from “A” specifying priority RED and associated parameter values


	Alert “B2” inherits from “A” specifying priority YELLOW and associated parameter values







An example: Setting a simple parameter in trial run

In the zmon2 web interface click on the trial run button.


	In the Check Command text box enter:

normalvariate(50, 20)









This is a simple normal probability function that produce a float number 50% of the time over 50.0, so it’s good to test things.


	In the Alert Condition enter:

value>capture(threshold=threshold) + len(capture(params=params))







	In the Parameters selector enter two values (by clicking the plus sign):









	Name

	Value

	Type





	threshold

	50.0

	Float



	anything

	Kartoffel

	String











	In the Entity Filter text box enter:


[
    {
        "type": "GLOBAL"
    }
]










	In the Interval enter: 10




If you run this Trial you can get an Alert or an ‘OK’, but the interesting thing will be in the Captures column.
See how the parameters that you entered are evaluated in the alert condition with the value that you provided.
Notice also that there is a special parameter called params that holds a dict with all the parameters that you entered, this is done so the user can iterate over all the parameters and take conditional decisions, providing a kind of introspection capability, but this is only for advanced users.

Last but not least: Most of the time you don’t need to capture the parameter values, we did it like this so you can visually see that the parameters are evaluated, this means that you can run exactly the same check with this Alert Condition:

value>threshold + len(params)










Downtimes

This functionality allows the user to acknowledge an existing alert or create a downtime schedule for an anticipated service
interruption. When acknowleding an existing alert, the user has to provide the predicted duration, and when creating
a scheduled downtime - start and end date. If the downtime is currently active, meaning an alert occured within the
downtime period, the alert notification won’t be shown in the dashboard and it’ll be greyed out in alert details page.
Please note that the downtime will not be evaluated immediately after creation, meaning that the alert might appear
as active until it’s evaluated again by the worker. E.g. if the user defined a downtime for an alert which is evaluated
every minute and the last evaluation was 5 seconds ago, it would take approximately one more minute for the alert to
appear in “downtime state”.

To acknowledge an alert or to schedule a new downtime, the user has to go to the specific alert details page and click
on a downtime button next to the desired alert.




Alert Comments

Comments are useful in providing additional information to other members of your team (or other teams) about your
alerts. Those with ADMIN and USER roles can add comments to an alert, but VIEWERS can not. ADMINs can delete
either their own or other people’s comments. USERs can delete only their own comments.


Adding Comments

Follow these steps:


	Open the alert definition where you want to add your comment.


	Either click on the top-right link Comments to add a general comment (for all entities), or click on the balloon on the left side of the entity name to add a comment on a specific entity.


	In the comments window, type your comment. Use as many lines as you need.


	Click the Post comment button and save your comment. Done!







Seeing Existing Comments

It’s easy: Just open the alert definition, then click on Comments (top-right link).




Deleting Comments

Deleting is also easy: Open the alert definition, click on the top right-link Comments, click on the cross above the comment, and delete.









          

      

      

    

  

    
      
          
            
  
Dashboards

[image: ../_images/dashboard1.png]
ZMON’s customizable dashboards enable you to configure widgets and choose which alerts to show. Dashboards have the following fields:



	name

	The dashboard’s name. This is mainly used to identify the dashboard.



	default view

	The dashboard default view. Here you can specify the default rendering behavior when you open the dashboard.
There are two options available:



	Full: Provides detailed information about the alert. Useful when using big screens.


	Compact: Only displays the alert message. Useful for small screens.







Note: You can toggle the view in the dashboard by clicking on the top right button of the alert container.



	edit mode

	Here you can specify who can modify your dashboard.
There are three options available:



	Private: Only you (and the admin) can edit the dashboard


	Team: All members of your team(s) can edit the dashboard


	Public: Everyone can edit the dashboard









	widget configuration

	The widget configuration defines the different widgets that the current
dashboard has. An example of a valid widget configuration is the
following:

[
    {
        "checkDefinitionId": 1,
        "entityId": "GLOBAL",
        "type": "gauge",
        "title": "Order Failure %",
        "options": {
            "max": 35
        }
    },
    {
        "checkDefinitionId": 4,
        "entityId": "GLOBAL",
        "type": "gauge",
        "title": "Random",
        "options": {
            "max": 100
        }
    },
    {
        "checkDefinitionId": 5,
        "entityId": "my_db_name-live",
        "type": "value",
        "title": "My database value"
    }
]





Supported widget types are:


	gauge


	chart


	value


	networkmap


	iframe




In order to edit a specific dashboard, go to the dashboard tab, and
click the edit button. To set it as active, just click on its name.

In order to be able to create or edit a new dashboard, user should be
logged in. Unless you have the admin role, you will only be able to edit
the dashboards you created.

Widgets will automatically spread out across the whole width, i.e. if
you define two widgets both will take about 50% of screen width.



	alert teams

	Here you can specify a list of patterns to filter alerts by team or responsible team you want to display (wildcards using * are allowed)

Example: All incident alerts (including sub-teams)

[
 "Incident*"
]













value, gauge, chart, trend

The value widget will show the check value with a big font.
The gauge will show a gauge from “min” to “max”.
The chart will show the history of check values.
The trend will show a trend arrow (going up or down).

These widgets expect a “checkDefinitionId”, “entityId” and “title” properties:


	“checkDefinitionId” - self-explanatory. Data in widget is based on check results


	“entityId” - if your check is based on GLOBAL, leave “GLOBAL”, otherwise specify name of entity (as it appears in alert details) that you will use to get the data from (as check returns one result for each entity).


	“title” - text displayed in the top part of the widget.




For chart widgets, instead of using “checkDefinitionId” + “entityId”, you can also define the data
to be shown using a KairosDB query.

They’ll share the full screen width unless you set the “width” property,
ranging from 12 (full width, calculated in “columns”, see Bootstrap [http://getbootstrap.com/2.3.2/scaffolding.html#gridSystem]) to 2 (smallest meaningful) or even 1.

Configuration options can be defined inside an “options” property. Each widget
accepts a different set of options.

Value widgets accept “fontSize”, “color” and “format” properties. Additionally you can
set a specific JSON value of the check result to be displayed by using the “jsonPath”
property, in case the result is a JSON object instead of a string / number.

A font size can be specified with the “fontSize” property, with numbers
(in pixels) for the desired size.

A color for the font can be specified with the “color” property.

A formatting string can be also specified to make python-like string
interpolation and floating point precision rounding, by defining a “format”
property in the options object. Syntax of the format string is mostly same as
in python [https://docs.python.org/3/library/string.html#format-specification-mini-language].

Options example for all widgets to specify which value from the
check result to be displayed using “jsonPath”:

"options": {
    "fontSize": 120,    # set font size to 120px,
    "color": "red",     # set color to red (also accepts #FF0000).
    "format": ".3f"     # show value with 3 places of floating point precision
},
"jsonPath": ".cpu.load1"





Check the documentation of JSONPath [http://goessner.net/articles/JsonPath/] for more
info on how to use the jsonPath property. Please note that you don’t need to use the $
symbol, as it’s prepended automatically on parsing.

Charts can be configured by defining an “options” property. All options
available to Flot charts can be overridden here, plus some extra options like
stacked mode. The following shows an example of a stacked area chart with
customized colors.

Series of data can be filtered, so that Charts show only the customized data you want to see.
To specify which data series you want visible, define the ‘series’ property as an array of names of the
data series as showed below.

{
    "type": "chart",
    "title": "Orders+Failures/m",
    "checkDefinitionId": 131,
    "entityId": "GLOBAL",
    "options": {
        "series": {
            "stack": true
        },
        "colors": [
            "#ff3333",
            "#33ff33"
        ]
    "series": [ "Mean", "Peak" ]
}





See the Flot documentation [https://github.com/flot/flot/blob/master/API.md#plot-options] for more details.


Data from KairosDB-queries

As detailed in the Grafana3 and KairosDB section, all ZMON check data is saved into KairosDB, and
can be queried from there. For chart widgets, you can directly use
a KairosDB query [https://kairosdb.github.io/docs/build/html/restapi/QueryMetrics.html] in the options
section of a widget to specify the data series to be used.
The query consists of the key metrics (which indicates the data series to use)
and a time specifier, for our purposes usually start_relative. In addition you can use
cache_time (in seconds) to indicate that a previous result can be reused.

Here is an example which shows the values of check 1 [https://demo.zmon.io/#/check-definitions/view/1]
for just three of its entities.

{
    "options": {
        "lines": {},
        "legend": {
            "backgroundOpacity": 0.1,
            "show": true,
            "position": "ne"
        },
        "series": {
            "stack": false
        },
        "start_relative": {
            "unit": "minutes",
            "value": "30"
        },
        "metrics": [
            {
                "tags": {
                    "entity": [
                        "website-zalando.de",
                        "website-zalando.ch",
                        "website-zalando.at"
                    ],
                    "key": []
                },
                "name": "zmon.check.1",
                "group_by": [
                    {
                        "name": "tag",
                        "tags": [
                            "entity",
                            "key"
                        ]
                    }
                ]
            }
        ],
        "cache_time": 0,
        "colors": [
            "#F00",
            "#0F0",
            "#00F"
        ]
    },
    "type": "chart",
    "title": "Response time (just de/at/ch)"
}





An easy way to compose the KairosDB queries (specially the value for metrics) is to
create a new Grafana Dashboard in the built-in Grafana and then copy the query from the
requests sent by the browser (Developer Tools → Network in Chromium).






IFRAME

The Iframe widget is a simple widget that allows you to embed a thrid
party page in a widget container.

For browser security reasons, only same-domain source urls can be used.

Style property is used to set scale and size of iframe inside the widget container.
Normally widths and heights bigger than 100% will be used, and scales around 0.5 are
also common.

Reload after a given amount of miliseconds can be done by setting the ‘refresh’ property.

Sample iframe widget:

{
    "type": "iframe",
    "src": "http://example.com",
    "style": {
        "width": "180%",    // Width to be occupied by iframe (px or %).
        "height": "180%",   // Height to be occupied by iframe (px or %).
        "scale: 0.54        // Scaling ratio
    },
    "refresh": 60000        // time in miliseconds after which the iframe content will be reloaded.
}








Alert Age

In the rightmost column of each alert block on the dashboard, the age of that alert is shown. An entry of “28m”, for example, indicates that the alert is 28 minutes old.

If an alert is raised for multiple entities, the alert age is based on the entity for which the alert has been raised first. Entities in downtime are ignored for determining alert age, but when an entity leaves downtime, the length of time it spent in downtime is taken into account.

An example:











	time

	event

	entity A

	entity B

	alert age





	00:00

	alert is raised for entity A

	raised for 0h

	not raised

	0h



	01:00

	alert is raised for entity B

	raised for 1h

	raised for 0h

	1h (from entity A)



	02:00

	alert enters downtime for entity A

	raised for 2h, in downtime

	raised for 1h

	1h (from entity B)



	03:00

	alert leaves downtime for entity A

	raised for 3h

	raised for 2h

	3h (from entity A)



	04:00

	alert is cleared for entity A

	not raised

	raised for 3h

	3h (from entity B)



	05:00

	alert enters downtime for entity A

	not raised, in downtime

	raised for 4h

	4h (from entity B)



	06:00

	alert is raised for entity A

	raised for 0h, in downtime

	raised for 5h

	5h (from entity B)



	07:00

	alert leaves downtime for entity A

	raised for 1h

	raised for 6h

	6h (from entity B)



	08:00

	alert is cleared for entity B

	raised for 2h

	not raised

	2h (from entity A)












Widgets styling and effects based on active alerts

You can change the styling or add a blinking effect to widgets in
case one or more alerts are active at the moment. This is done
by using the “alertStyles” option, like the sample below:

{
    "type": "gauge",
    // Some widget configuration here...
    "alertStyles": {
        "blink": [1, 4, 20],
        "red": [9]
    }
}





On the sample below the gauge widget will blink if alert 1, 4 or 20
is active, and make the background red if alert 9 is active. At the
moment the following effects are defined:


	blink: will blink the whole widget (opacity 0 to 100%, 1 second interval)


	shake: will start shaking the widget


	red: set the background to red


	orange: set the background to orange


	yellow: set the background to yellow


	green: set the background to green


	blue: set the background to blue




Please note that you can mix different styles and alerts, as shown on
the previous sample. If alerts 1 and 9 are active, it will blink with
a red background. If you define different styles with the same alert ID
it will always give priority to the last one.







          

      

      

    

  

    
      
          
            
  
Grafana3 and KairosDB

Grafana is a powerful open-source tool for creating dashboards to visualize metric data.
ZMON deploys Grafana 3.x along with the new KairosDB plugin to read metric data from KairosDB.
Grafana is served directly from the ZMON controller.
Read requests are proxied through the controller so as not to expose the write/delete API from KairosDB.
Dashboards are also saved via the controller, so there’s no need for any additional data store.



http://grafana.org




Example of latency and requests charted via Grafana:

[image: ../_images/grafana-example1.png]




Check data

Workers will send all their data to KairosDB. Depending on the KairosDB setting, data is stored forever or you may set a TTL in KairosDB. ZMON will not clean up or roll up any data.


Serialization

For checks retrieving only numeric values data storage in KairosDB is easy.
But the worker will also flatten more complex result types and persist them in KairosDB.
At Zalando checks that yield only single numeric values have become quite rare.

If the check returns dictionary the worker will try to flatten its structure and persist all entries with a numeric value.

{
    "load": {"1min":1,"5min":3,"15min":2}
    "memory_free": 16000
}





Will be flattened to an equivalent of

{
    "load.1min": 1,
    "load.5min": 3,
    "load.15min": 2,
    "memory_free": 16000
}





Always yielding a simple dictionary with (key, value) pairs.




Tagging

KairosDB creates timer series with a name and allows us to tag data points with additional (tagname, tagvalue) pairs.

ZMON stores all data to a single check in a time series named: “zmon.check.<checkid>”.

Single data points are then tagged as follows to describe their contents:



	entity: containing the entity id (some character replace rules are applied)


	key: containing the dict key after serialization of check value (see above)


	metric: contains the last segment of “key” split by “.” (making selection easier in tooling)


	hg: host group(hg) will contain a substring of the entity id, to try to group e.g. cassandra01 and cassandra02 into hg=cassandra







For a certrain set of metrics additional tags may be deployed(REST metrics/actuator)



	sc: HTTP status code


	sg: first digit of HTTP status code







Some of the tagging may seem strange, but as KairosDB does not allow real operations on tags they are basically precreated to allow easier filtering in the tools/charts.
This is also fine from a storage/performance point of view during writes, as KairosDB’s Cassandra implementation creates a new row for each unique tuple (time series name, set of tags) thus this is only stored once.









          

      

      

    

  

    
      
          
            
  
“Read Only” Display Login

The ZMON front end requires users to login.
However a very common way of deploying dashboards is on TV screens running across office spaces to e.g. render Grafana or ZMON dashboards.
For this ZMON provides you with a way to login a read only authenticated user via one-time tokens.

Those tokens can be created by any real user by login in first and switching to TV mode or via the ZMON CLI.


How does it work

First time a valid one time token is used to login we associate a random UUID with it and the device IP.
Both are registered within ZMON to create a persisted session, thus this will continue to work after the frontend gets deployed.

Tokens can’t be reused. Once used, it can no longer be used and you need to create a new one. You’ll need a different token per additional
device or location. One time token sessions will last up to 365 days.


Using the menu option

First you need to login using your own personal credentials or Single Sign-On mechanism. After logging in you can use the top right
drop-down menu with your username to reveal the “Switch to TV mode” option.

[image: ../_images/switch-tv-mode.png]
Clicking this option will replace your login session with a new session using a newly created one time token, but your personal session
will still be valid!. You mu
  
    
    Check Command Reference
    

    
 
  

    
      
          
            
  
Check Command Reference

To give an overview of available commands, we divided them into several
categories.


AppDynamics

Enable AppDynamics Healthrule violations check and optionally query underlying Elasticsearch cluster raw logs.


	
appdynamics(url=None, username=None, password=None, es_url=None, index_prefix='')

	Initialize AppDynamics wrapper.


	Parameters

	
	url (str [https://docs.python.org/2/library/functions.html#str]) – Appdynamics url.


	username (str [https://docs.python.org/2/library/functions.html#str]) – Appdynamics username.


	password (str [https://docs.python.org/2/library/functions.html#str]) – Appdynamics password.


	es_url (str [https://docs.python.org/2/library/functions.html#str]) – Appdynamics Elasticsearch cluster url.


	index_prefix (str [https://docs.python.org/2/library/functions.html#str]) – Appdynamics Elasticsearch cluster logs index prefix.













Note

If username and password are not supplied, then OAUTH2 will be used.

If appdynamics() is initialized with no args, then plugin configuration values will be used.




Methods of AppDynamics


	
healthrule_violations(application, time_range_type=BEFORE_NOW, duration_in_mins=5, start_time=None, end_time=None, severity=None)

	Return Healthrule violations for AppDynamics application.


	Parameters

	
	application (str [https://docs.python.org/2/library/functions.html#str]) – Application name or ID


	time_range_type (str [https://docs.python.org/2/library/functions.html#str]) – Valid time range type. Valid range types are BEFORE_NOW, BEFORE_TIME, AFTER_TIME and BETWEEN_TIMES. Default is BEFORE_NOW.


	duration_in_mins (int [https://docs.python.org/2/library/functions.html#int]) – Time duration in mins. Required for BEFORE_NOW, AFTER_TIME, BEFORE_TIME range types. Default is 5 mins.


	start_time (int [https://docs.python.org/2/library/functions.html#int]) – Start time (in milliseconds) from which the metric data is returned. Default is 5 mins ago.


	end_time (int [https://docs.python.org/2/library/functions.html#int]) – End time (in milliseconds) until which the metric data is returned. Default is now.


	severity (str [https://docs.python.org/2/library/functions.html#str]) – Filter results based on severity. Valid values are CRITICAL or WARNING.






	Returns

	List of healthrule violations



	Return type

	list





Example query:

appdynamics('https://appdynamics/controller/rest').healthrule_violations('49', time_range_type='BEFORE_NOW', duration_in_mins=5)

[
    {
        affectedEntityDefinition: {
            entityId: 408,
            entityType: "BUSINESS_TRANSACTION",
            name: "/error"
        },
        detectedTimeInMillis: 0,
        endTimeInMillis: 0,
        id: 39637,
        incidentStatus: "OPEN",
        name: "Backend errrors (percentage)",
        severity: "CRITICAL",
        startTimeInMillis: 1462244635000,
    }
]










	
metric_data(application, metric_path, time_range_type=BEFORE_NOW, duration_in_mins=5, start_time=None, end_time=None, rollup=True)

	AppDynamics’s metric-data API


	Parameters

	
	application (str [https://docs.python.org/2/library/functions.html#str]) – Application name or ID


	metric_path (str [https://docs.python.org/2/library/functions.html#str]) – The path to the metric in the metric hierarchy


	time_range_type (str [https://docs.python.org/2/library/functions.html#str]) – Valid time range type. Valid range types are BEFORE_NOW, BEFORE_TIME, AFTER_TIME and
BETWEEN_TIMES. Default is BEFORE_NOW.


	duration_in_mins (int [https://docs.python.org/2/library/functions.html#int]) – Time duration in mins. Required for BEFORE_NOW, AFTER_TIME, BEFORE_TIME range types.


	start_time (int [https://docs.python.org/2/library/functions.html#int]) – Start time (in milliseconds) from which the metric data is returned. Default is 5 mins ago.


	end_time (int [https://docs.python.org/2/library/functions.html#int]) – End time (in milliseconds) until which the metric data is returned. Default is now.


	rollup (bool [https://docs.python.org/2/library/functions.html#bool]) – By default, the values of the returned metrics are rolled up into a single data point
(rollup=True). To get separate results for all values within the time range, set the
rollup parameter to False.






	Returns

	metric values for a metric



	Return type

	list










	
query_logs(q='', body=None, size=100, source_type=SOURCE_TYPE_APPLICATION_LOG, duration_in_mins=5)

	Perform search query on AppDynamics ES logs.


	Parameters

	
	q (str [https://docs.python.org/2/library/functions.html#str]) – Query string used in search.


	body (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – (dict) holding an ES query DSL.


	size (int [https://docs.python.org/2/library/functions.html#int]) – Number of hits to return. Default is 100.


	source_type (str [https://docs.python.org/2/library/functions.html#str]) – sourceType field filtering. Default to application-log, and will be part of q.


	duration_in_mins (int [https://docs.python.org/2/library/functions.html#int]) – Duration in mins before current time. Default is 5 mins.






	Returns

	ES query result hits.



	Return type

	list










	
count_logs(q='', body=None, source_type=SOURCE_TYPE_APPLICATION_LOG, duration_in_mins=5)

	Perform count query on AppDynamics ES logs.


	Parameters

	
	q (str [https://docs.python.org/2/library/functions.html#str]) – Query string used in search. Will be ingnored if body is not None.


	body (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – (dict) holding an ES query DSL.


	source_type (str [https://docs.python.org/2/library/functions.html#str]) – sourceType field filtering. Default to application-log, and will be part of q.


	duration_in_mins (int [https://docs.python.org/2/library/functions.html#int]) – Duration in mins before current time. Default is 5 mins. Will be ignored if body is not None.






	Returns

	Query match count.



	Return type

	int [https://docs.python.org/2/library/functions.html#int]










Note

In case of passing an ES query DSL in body, then all filter parameters should be explicitly added in the query body (e.g. eventTimestamp, application_id, sourceType).








Cassandra

Provides access to a Cassandra cluster via cassandra() wrapper object.


	
cassandra(node, keyspace, username=None, password=None, port=9042, connect_timeout=1, protocol_version=3)

	Initialize cassandra wrapper.


	Parameters

	
	node (str [https://docs.python.org/2/library/functions.html#str]) – Cassandra host.


	keyspace (str [https://docs.python.org/2/library/functions.html#str]) – Cassandra keyspace used during the session.


	username (str [https://docs.python.org/2/library/functions.html#str]) – Username used in connection. It is recommended to use unprivileged user for cassandra checks.


	password (str [https://docs.python.org/2/library/functions.html#str]) – Password used in connection.


	port (int [https://docs.python.org/2/library/functions.html#int]) – Cassandra host port. Default is 9042.


	connect_timeout (int [https://docs.python.org/2/library/functions.html#int]) – Connection timeout.


	protocol_version (str [https://docs.python.org/2/library/functions.html#str]) – Protocol version used in connection. Default is 3.













Note

You should always use an unprivileged user to access your databases. Use plugin.cassandra.user and plugin.cassandra.pass to configure credentials for the zmon-worker.




	
execute(stmt)

	Execute a CQL statement against the specified keyspace.


	Parameters

	stmt (str [https://docs.python.org/2/library/functions.html#str]) – CQL statement



	Returns

	CQL result



	Return type

	list












CloudWatch

If running on AWS you can use cloudwatch() to access AWS metrics easily.


	
cloudwatch(region=None, assume_role_arn=None)

	Initialize CloudWatch wrapper.


	Parameters

	
	region (str [https://docs.python.org/2/library/functions.html#str]) – AWS region for CloudWatch queries. Will be auto-detected if not supplied.


	assume_role_arn (str [https://docs.python.org/2/library/functions.html#str]) – AWS IAM role ARN to be assumed. This can be useful in cross-account CloudWatch queries.













Methods of Cloudwatch


	
query_one(dimensions, metric_name, statistics, namespace, period=60, minutes=5, start=None, end=None, extended_statistics=None)

	Query a single AWS CloudWatch metric and return a single scalar value (float).
Metric will be aggregated over the last five minutes using the provided aggregation type.

This method is a more low-level variant of the query method: all parameters, including all dimensions need to be known.


	Parameters

	
	dimensions (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Cloudwatch dimensions. Example {'LoadBalancerName': 'my-elb-name'}


	metric_name (str [https://docs.python.org/2/library/functions.html#str]) – Cloudwatch metric. Example 'Latency'.


	statistics (list) – Cloudwatch metric statistics. Example 'Sum'


	namespace (str [https://docs.python.org/2/library/functions.html#str]) – Cloudwatch namespace. Example 'AWS/ELB'


	period (int [https://docs.python.org/2/library/functions.html#int]) – Cloudwatch statistics granularity in seconds. Default is 60.


	minutes (int [https://docs.python.org/2/library/functions.html#int]) – Used to determine start time of the Cloudwatch query. Default is 5. Ignored if start is supplied.


	start (int [https://docs.python.org/2/library/functions.html#int]) – Cloudwatch start timestamp. Default is None.


	end (int [https://docs.python.org/2/library/functions.html#int]) – Cloudwatch end timestamp. Default is None. If not supplied, then end time is now.


	extended_statistics (list) – Cloudwatch ExtendedStatistics for percentiles query. Example ['p95', 'p99'].






	Returns

	Return a float if single value, dict otherwise.



	Return type

	float [https://docs.python.org/2/library/functions.html#float], dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example query with percentiles for AWS ALB:

cloudwatch().query_one({'LoadBalancer': 'app/my-alb/1234'}, 'TargetResponseTime', 'Average', 'AWS/ApplicationELB', extended_statistics=['p95', 'p99', 'p99.45'])
{
    'Average': 0.224,
    'p95': 0.245,
    'p99': 0.300,
    'p99.45': 0.500
}










Note

In very rare cases, e.g. for ELB metrics, you may see only 1/2 or 1-2/3 of the value in ZMON due to a race condition of what data is already present in cloud watch.
To fix this click “evaluate” on the alert, this will trigger the check and move its execution time to a new start time.




	
query(dimensions, metric_name, statistics='Sum', namespace=None, period=60, minutes=5)

	Query AWS CloudWatch for metrics. Metrics will be aggregated over the last five minutes using the provided aggregation type (default “Sum”).

dimensions is a dictionary to filter the metrics to query. See the list_metrics boto documentation [http://boto.readthedocs.org/en/latest/ref/cloudwatch.html#boto.ec2.cloudwatch.CloudWatchConnection.list_metrics].
You can provide the special value “NOT_SET” for a dimension to only query metrics where the given key is not set.
This makes sense e.g. for ELB metrics as they are available both per AZ (“AvailabilityZone” has a value) and aggregated over all AZs (“AvailabilityZone” not set).
Additionally you can include the special “*” character in a dimension value to do fuzzy (shell globbing) matching.

metric_name is the name of the metric to filter against (e.g. “RequestCount”).

namespace is an optional namespace filter (e.g. “AWS/EC2).

To query an ELB for requests per second:

# both using special "NOT_SET" and "*" in dimensions here:
val = cloudwatch().query({'AvailabilityZone': 'NOT_SET', 'LoadBalancerName': 'pierone-*'}, 'RequestCount', 'Sum')['RequestCount']
requests_per_second = val / 60









You can find existing metrics with the AWS CLI tools:

$ aws cloudwatch list-metrics --namespace "AWS/EC2"





Use the “dimensions” argument to select on what dimension(s) to aggregate over:

$ aws cloudwatch list-metrics --namespace "AWS/EC2" --dimensions Name=AutoScalingGroupName,Value=my-asg-FEYBCZF





The desired metric can now be queried in ZMON:

cloudwatch().query({'AutoScalingGroupName': 'my-asg-*'}, 'DiskReadBytes', 'Sum')






	
alarms(alarm_names=None, alarm_name_prefix=None, state_value=STATE_ALARM, action_prefix=None, max_records=50)

	Retrieve cloudwatch alarms filtered by state value.

See describe_alarms boto documentation [http://boto3.readthedocs.io/en/latest/reference/services/cloudwatch.html#CloudWatch.Client.describe_alarms] for more details.


	Parameters

	
	alarm_names (list) – List of alarm names.


	alarm_name_prefix (str [https://docs.python.org/2/library/functions.html#str]) – Prefix of alarms. Cannot be specified if alarm_names is specified.


	state_value (str [https://docs.python.org/2/library/functions.html#str]) – State value used in alarm filtering. Available values are OK, ALARM (default) and INSUFFICIENT_DATA.


	action_prefix (str [https://docs.python.org/2/library/functions.html#str]) – Action name prefix. Example arn:aws:autoscaling: to filter results for all autoscaling related alarms.


	max_records (int [https://docs.python.org/2/library/functions.html#int]) – Maximum records to be returned. Default is 50.






	Returns

	List of MetricAlarms.



	Return type

	list









cloudwatch().alarms(state_value='ALARM')[0]
{
    'ActionsEnabled': True,
    'AlarmActions': ['arn:aws:autoscaling:...'],
    'AlarmArn': 'arn:aws:cloudwatch:...',
    'AlarmConfigurationUpdatedTimestamp': datetime.datetime(2016, 5, 12, 10, 44, 15, 707000, tzinfo=tzutc()),
    'AlarmDescription': 'Scale-down if CPU < 50% for 10.0 minutes (Average)',
    'AlarmName': 'metric-alarm-for-service-x',
    'ComparisonOperator': 'LessThanThreshold',
    'Dimensions': [
        {
            'Name': 'AutoScalingGroupName',
            'Value': 'service-x-asg'
        }
    ],
    'EvaluationPeriods': 2,
    'InsufficientDataActions': [],
    'MetricName': 'CPUUtilization',
    'Namespace': 'AWS/EC2',
    'OKActions': [],
    'Period': 300,
    'StateReason': 'Threshold Crossed: 1 datapoint (36.1) was less than the threshold (50.0).',
    'StateReasonData': '{...}',
    'StateUpdatedTimestamp': datetime.datetime(2016, 5, 12, 10, 44, 16, 294000, tzinfo=tzutc()),
    'StateValue': 'ALARM',
    'Statistic': 'Average',
    'Threshold': 50.0
}










Counter

The counter() function allows you to get increment rates of increasing counter values.
Main use case for using counter() is to get rates per second of JMX counter beans (e.g. “Tomcat Requests”).
The counter function requires one parameter key to identify the counter.


	
per_second(value)

	counter('requests').per_second(get_total_requests())





Returns the value’s increment rate per second. Value must be a float or integer.






	
per_minute(value)

	counter('requests').per_minute(get_total_requests())





Convenience method to return the value’s increment rate per minute (same as result of per_second() divided by 60).





Internally counter values and timestamps are stored in Redis.




Data Pipeline

If running on AWS you can use datapipeline() to access AWS Data Pipelines’ health easily.


	
datapipeline(region=None)

	Initialize Data Pipeline wrapper.


	Parameters

	region (str [https://docs.python.org/2/library/functions.html#str]) – AWS region for Data Pipeline queries. Eg. “eu-west-1”. Defaults to the region in which the check is being executed. Note that Data Pipeline is not availabe in “eu-central-1” at time of writing.










Methods of Data Pipeline


	
get_details(pipeline_ids)

	Query AWS Data Pipeline IDs supplied as a String (single) or list of Strings (multiple).
Return a dict of ID(s) and status dicts as described in describe_pipelines boto documentation [http://boto3.readthedocs.io/en/latest/reference/services/datapipeline.html#DataPipeline.Client.describe_pipelines].


	Parameters

	pipeline_ids (Union[str [https://docs.python.org/2/library/functions.html#str], list]) – Data Pipeline IDs. Example df-0123456789ABCDEFGHI



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example query with single Data Pipeline ID supplied in a list:

datapipeline().get_details(pipeline_ids=['df-exampleA'])
{
    "df-exampleA": {
        "@lastActivationTime": "2018-01-30T14:23:52",
        "pipelineCreator": "ABCDEF:auser",
        "@scheduledPeriod": "24 hours",
        "@accountId": "0123456789",
        "name": "exampleA",
        "@latestRunTime": "2018-01-04T03:00:00",
        "@id": "df-0441325MB6VYFI6MUU1",
        "@healthStatusUpdatedTime": "2018-01-01T10:00:00",
        "@creationTime": "2018-01-01T10:00:00",
        "@userId": "0123456789",
        "@sphere": "PIPELINE",
        "@nextRunTime": "2018-01-05T03:00:00",
        "@scheduledStartTime": "2018-01-02T03:00:00",
        "@healthStatus": "HEALTHY",
        "uniqueId": "exampleA",
        "*tags": "[{\"key\":\"DataPipelineName\",\"value\":\"exampleA\"},{\"key\":\"DataPipelineId\",\"value\":\"df-exampleA\"}]",
        "@version": "2",
        "@firstActivationTime": "2018-01-01T10:00:00",
        "@pipelineState": "SCHEDULED"
    }
}














DNS

The dns() function provide a way to resolve hosts.


	
dns(host=None)

	




Methods of DNS


	
resolve(host=None)

	Return IP address of host. If host is None, then will resolve host used in initialization. If both are None then exception will be raised.


	Returns

	IP address



	Return type

	str [https://docs.python.org/2/library/functions.html#str]





Example query:

dns('google.de').resolve()
'173.194.65.94'

dns().resolve('google.de')
'173.194.65.94'














EBS

Allows to describe EBS objects (currently, only Snapshots are supported).


	
ebs()

	




Methods of EBS


	
list_snapshots(account_id, max_items)

	List the EBS Snapshots owned by the given account_id.
By default, listing is possible for up to 1000 items, so we use pagination internally to overcome this.


	Parameters

	
	account_id – AWS account id number (as a string).  Defaults to the AWS account id where the check is running.


	max_items – the maximum number of snapshots to list.  Defaults to 100.






	Returns

	an EBSSnapshotsList object






	
class EBSSnapshotsList

	
	
items()

	Returns a list of dicts like

{
    "id": "snap-12345",
    "description": "Snapshot description...",
    "size": 123,
    "start_time": "2017-07-16T01:01:21Z",
    "state": "completed"
}













Example usage:

ebs().list_snapshots().items()

snapshots = ebs().list_snapshots(max_items=1000).items()  # for listing more than the default of 100 snapshots
start_time = snapshots[0]["start_time"].isoformat()  # returns a string that can be passed to time()
age = time() - time(start_time)














Elasticsearch

Provides search queries and health check against an Elasticsearch cluster.


	
elasticsearch(url=None, timeout=10, oauth2=False)

	




Note

If url is None, then the plugin will use the default Elasticsearch cluster set in worker configuration.




Methods of Elasticsearch


	
search(indices=None, q='', body=None, source=True, size=DEFAULT_SIZE)

	Search ES cluster using URI or Request body search. If body is None then GET request will be used.


	Parameters

	
	indices (list) – List of indices to search. Limited to only 10 indices. [‘_all’] will search all available
indices, which effectively leads to same results as None. Indices can accept wildcard form.


	q (str [https://docs.python.org/2/library/functions.html#str]) – Search query string. Will be ignored if body is not None.


	body (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dict holding an ES query DSL.


	source (bool [https://docs.python.org/2/library/functions.html#bool]) – Whether to include _source field in query response.


	size (int [https://docs.python.org/2/library/functions.html#int]) – Number of hits to return. Maximum value is 1000. Set to 0 if interested in hits count only.






	Returns

	ES query result.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example query:

elasticsearch('http://es-cluster').search(indices=['logstash-*'], q='client:192.168.20.* AND http_status:500', size=0, source=False)

{
    "_shards": {
        "failed": 0,
        "successful": 5,
        "total": 5
    },
    "hits": {
        "hits": [],
        "max_score": 0.0,
        "total": 1
    },
    "timed_out": false,
    "took": 2
}










	
count(indices=None, q='', body=None)

	Return ES count of matching query.


	Parameters

	
	indices (list) – List of indices to search. Limited to only 10 indices. [‘_all’] will search all available
indices, which effectively leads to same results as None. Indices can accept wildcard form.


	q (str [https://docs.python.org/2/library/functions.html#str]) – Search query string. Will be ignored if body is not None.


	body (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Dict holding an ES query DSL.






	Returns

	ES query result.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example query:

elasticsearch('http://es-cluster').count(indices=['logstash-*'], q='client:192.168.20.* AND http_status:500')

{
    "_shards": {
        "failed": 0,
        "successful": 16,
        "total": 16
    },
    "count": 12
}










	
health()

	Return ES cluster health.


	Returns

	Cluster health result.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





elasticsearch('http://es-cluster').health()

{
    "active_primary_shards": 11,
    "active_shards": 11,
    "active_shards_percent_as_number": 50.0,
    "cluster_name": "big-logs-cluster",
    "delayed_unassigned_shards": 0,
    "initializing_shards": 0,
    "number_of_data_nodes": 1,
    "number_of_in_flight_fetch": 0,
    "number_of_nodes": 1,
    "number_of_pending_tasks": 0,
    "relocating_shards": 0,
    "status": "yellow",
    "task_max_waiting_in_queue_millis": 0,
    "timed_out": false,
    "unassigned_shards": 11
}














Entities

Provides access to ZMON entities.


	
entities(service_url, infrastructure_account, verify=True, oauth2=False)

	Initialize entities wrapper.


	Parameters

	
	service_url (str [https://docs.python.org/2/library/functions.html#str]) – Entities service url.


	infrastructure_account (str [https://docs.python.org/2/library/functions.html#str]) – Infrastructure account used to filter entities.


	verify – Verify SSL connection. Default is True.


	oauth2 (bool [https://docs.python.org/2/library/functions.html#bool]) – Use OAUTH for authentication. Default is False.













Note

If service_url or infrastructure_account were not supplied, their corresponding values in worker plugin config will be used.




Methods of Entities


	
search_local(**kwargs)

	Search entities in local infrastructure account. If infrastructure_account is not supplied in kwargs, then should search entities “local” to your filtered entities by using the same infrastructure_account as a default filter.


	Parameters

	kwargs (str [https://docs.python.org/2/library/functions.html#str]) – Filtering kwargs



	Returns

	Entities



	Return type

	list





Example searching all instance entities in local account:

entities().search_local(type='instance')










	
search_all(**kwargs)

	Search all entities.


	Parameters

	kwargs (str [https://docs.python.org/2/library/functions.html#str]) – Filtering kwargs



	Returns

	Entities



	Return type

	list










	
alert_coverage(**kwargs)

	Return alert coverage for infrastructure_account.


	Parameters

	kwargs (str [https://docs.python.org/2/library/functions.html#str]) – Filtering kwargs



	Returns

	Alert coverage result.



	Return type

	list





entities().alert_coverage(type='instance', infrastructure_account='1052643')

[
    {
        'alerts': [],
        'entities': [
            {'id': 'app-1-instance', 'type': 'instance'}
        ]
    }
]














EventLog

The eventlog() function allows you to conveniently count EventLog events by type and time.


	
count(event_type_ids, time_from[, time_to=None][, group_by=None])

	Return event counts for given parameters.

event_type_ids is either a single integer (use hex notation, e.g. 0x96001) or a list of integers.

time_from is a string time specification ('-5m' means 5 minutes ago, '-1h' means 1 hour ago).

time_to is a string time specification and defaults to now if not given.

group_by can specify an EventLog field name to group counts by

eventlog().count(0x96001, time_from='-1m')                         # returns a single number
eventlog().count([0x96001, 0x63005], time_from='-1m')              # returns dict {'96001': 123, '63005': 456}
eventlog().count(0x96001, time_from='-1m', group_by='appDomainId') # returns dict {'1': 123, '5': 456, ..}





The count() method internally requests the EventLog Viewer’s “count” JSON endpoint.








History

Wrapper for KairosDB to access history data about checks.


	
history(url=None, check_id='', entities=None, oauth2=False)

	




Methods of History


	
result(time_from=ONE_WEEK_AND_5MIN, time_to=ONE_WEEK)

	Return query result.


	Parameters

	
	time_from – Relative time from in seconds. Default is ONE_WEEK_AND_5MIN.


	time_to – Relative time to in seconds. Default is ONE_WEEK.






	Returns

	Json result



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_one(time_from=ONE_WEEK_AND_5MIN, time_to=ONE_WEEK)

	Return first result values.


	Parameters

	
	time_from – Relative time from in seconds. Default is ONE_WEEK_AND_5MIN.


	time_to – Relative time to in seconds. Default is ONE_WEEK.






	Returns

	List of values



	Return type

	list










	
get_aggregated(key, aggregator, time_from=ONE_WEEK_AND_5MIN, time_to=ONE_WEEK)

	Return first result values. If no key filtering matches, empty list is returned.


	Parameters

	
	key (str [https://docs.python.org/2/library/functions.html#str]) – Tag key used in filtering the results.


	aggregator (str [https://docs.python.org/2/library/functions.html#str]) – Aggregator used in query. (e.g ‘avg’)


	time_from – Relative time from in seconds. Default is ONE_WEEK_AND_5MIN.


	time_to – Relative time to in seconds. Default is ONE_WEEK.






	Returns

	List of values



	Return type

	list










	
get_avg(key, time_from=ONE_WEEK_AND_5MIN, time_to=ONE_WEEK)

	Return aggregated average.


	Parameters

	
	key (str [https://docs.python.org/2/library/functions.html#str]) – Tag key used in filtering the results.


	time_from – Relative time from in seconds. Default is ONE_WEEK_AND_5MIN.


	time_to – Relative time to in seconds. Default is ONE_WEEK.






	Returns

	List of values



	Return type

	list










	
get_std_dev(key, time_from=ONE_WEEK_AND_5MIN, time_to=ONE_WEEK)

	Return aggregated standard deviation.


	Parameters

	
	key (str [https://docs.python.org/2/library/functions.html#str]) – Tag key used in filtering the results.


	time_from – Relative time from in seconds. Default is ONE_WEEK_AND_5MIN.


	time_to – Relative time to in seconds. Default is ONE_WEEK.






	Returns

	List of values



	Return type

	list










	
distance(self, weeks=4, snap_to_bin=True, bin_size='1h', dict_extractor_path='')

	For detailed docs on distance function please see History distance functionality .










HTTP

Access to HTTP (and HTTPS) endpoints is provided by the http() function.


	
http(url[, method='GET'][, timeout=10][, max_retries=0][, verify=True][, oauth2=False][, allow_redirects=None][, headers=None])

	
	Parameters

	
	url (str [https://docs.python.org/2/library/functions.html#str]) – The URL that is to be queried. See below for details.


	method (str [https://docs.python.org/2/library/functions.html#str]) – The HTTP request method. Allowed values are GET or HEAD.


	timeout (float [https://docs.python.org/2/library/functions.html#float]) – The timeout for the HTTP request, in seconds. Defaults to 10.


	max_retries (int [https://docs.python.org/2/library/functions.html#int]) – The number of times the HTTP request should be retried if it fails. Defaults to 0.


	verify (bool [https://docs.python.org/2/library/functions.html#bool]) – Can be set to False [https://docs.python.org/2/library/constants.html#False] to disable SSL certificate verification.


	oauth2 (bool [https://docs.python.org/2/library/functions.html#bool]) – Can be set to True [https://docs.python.org/2/library/constants.html#True] to inject a OAuth 2 Bearer access token in the outgoing request


	oauth2_token_name (str [https://docs.python.org/2/library/functions.html#str]) – The name of the OAuth 2 token. Default is uid.


	allow_redirects (bool [https://docs.python.org/2/library/functions.html#bool]) – Follow request redirects. If None then it will be set to True [https://docs.python.org/2/library/constants.html#True] in case of GET and False [https://docs.python.org/2/library/constants.html#False] in case of HEAD request.


	headers (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – The headers to be used in the HTTP request.






	Returns

	An object encapsulating the response from the server. See below.

For checks on entities that define the attributes url or host, the given URL may be relative. In that case, the URL http://<value><url> is queried, where <value> is the value of that attribute, and <url> is the URL passed to this function. If an entity defines both url and host, the former is used.







This function cannot query URLs using a scheme other than HTTP or HTTPS; URLs that do not start with http:// or https:// are considered to be relative.

Example:


http('http://www.example.org/data?fetch=json').json()

# avoid raising error in case the response error status (e.g. 500 or 503)
# but you are interested in the response json
http('http://www.example.org/data?fetch=json').json(raise_error=False)













HTTP Responses

The object returned by the http() function provides methods: json(), text(), headers(), cookies(), content_size(), time() and code().


	
json(raise_error=True)

	This method returns an object representing the content of the JSON response from the queried endpoint. Usually, this will be a map (represented by a Python dict), but, depending on the endpoint, it may also be a list, string, set, integer, floating-point number, or Boolean.






	
text(raise_error=True)

	Returns the text response from queried endpoint:

http("/heartbeat.jsp", timeout=5).text().strip()=='OK: JVM is running'





Since we’re using a relative url, this check has to be defined for
specific entities (e.g. type=zomcat will run it on all zomcat
instances). The strip function removes all leading and trailing
whitespace.






	
headers(raise_error=True)

	Returns the response headers in a case-insensitive dict-like object:

http("/api/json", timeout=5).headers()['content-type']=='application/json'










	
cookies(raise_error=True)

	Returns the response cookies in a dict like object:

http("/heartbeat.jsp", timeout=5).cookies()['my_custom_cookie'] == 'custom_cookie_value'










	
content_size(raise_error=True)

	Returns the length of the response content:

http("/heartbeat.jsp", timeout=5).content_size() > 1024










	
time(raise_error=True)

	Returns the elapsed time in seconds until response was received:

http("/heartbeat.jsp", timeout=5).time() > 1.5










	
code()

	Return HTTP status code from the queried endpoint.:

http("/heartbeat.jsp", timeout=5).code()










	
actuator_metrics(prefix='zmon.response.', raise_error=True)

	Parses the json result of a metrics endpoint into a map ep->method->status->metric


http(“/metrics”, timeout=5).actuator_metrics()









	
prometheus()

	Parse the resulting text result according to the Prometheus specs using their prometheus_client.


http(“/metrics”, timeout=5).prometheus()









	
jolokia(read_requests, raise_error=False)

	Does a POST request to the endpoint given in the wrapper, with validating the endpoint and setting
the request to be read-only.


	Parameters

	
	read_requests (list) – see https://jolokia.org/reference/html/protocol.html#post-request


	raise_error – bool






	Returns

	Jolokia response





Example:


requests = [
    {'mbean': 'org.apache.cassandra.metrics:type=ClientRequest,scope=Read,name=Latency'},
    {'mbean': 'org.apache.cassandra.metrics:type=ClientRequest,scope=Write,name=Latency'},
]
results = http('http://{}:8778/jolokia/'.format(entity['ip']), timeout=15).jolokia(requests)

















JMX

To use JMXQuery, run “jmxquery” (this is not yet released)

Queries beans’ attributes on hosts specified in entities filter:

jmx().query('java.lang:type=Memory', 'HeapMemoryUsage', 'NonHeapMemoryUsage').results()





Another example:

jmx().query('java.lang:type=Threading', 'ThreadCount', 'DaemonThreadCount', 'PeakThreadCount').results()





This would return a dict like:

{
    "DaemonThreadCount": 524,
    "PeakThreadCount": 583,
    "ThreadCount": 575
}








KairosDB

Provides read access to the target KairosDB


	
kairosdb(url, oauth2=False)

	




Methods of KairosDB


	
query(name, group_by = None, tags = None, start = -5, end = 0, time_unit='seconds', aggregators = None, start_absolute = None, end_absolute = None)

	Query kairosdb.


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Metric name.


	group_by (list) – List of fields to group by.


	tags (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Filtering tags. Example of tags object:

{
    "key": ["max"]
}








	start (int [https://docs.python.org/2/library/functions.html#int]) – Relative start time. Default is 5. Should be greater than or equal 1.


	end (int [https://docs.python.org/2/library/functions.html#int]) – End time. Default is 0. If not 0, then it should be greater than or equal to 1.


	time_unit (str [https://docs.python.org/2/library/functions.html#str]) – Time unit (‘seconds’, ‘minutes’, ‘hours’). Default is ‘minutes’.


	aggregators (list) – List of aggregators. Aggregator is an object that looks like

{
    "name": "max",
    "sampling": {
        "value": "1",
        "unit": "minutes"
    },
    "align_sampling": true
}








	start_absolute (long [https://docs.python.org/2/library/functions.html#long]) – Absolute start time in milliseconds, overrides the start parameter which is relative


	end_absolute (long [https://docs.python.org/2/library/functions.html#long]) – Absolute end time in milliseconds, overrides the end parameter which is relative






	Returns

	Result queries.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
query_batch(self, metrics, start=5, end=0, time_unit='minutes', start_absolute=None, end_absolute=None)

	Query kairosdb for several checks at once.


	Parameters

	
	metrics (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – list of KairosDB metric queries, one query per metric name, e.g.

[
    {
        'name': 'metric_name',      # name of the metric
        'group_by': ['foo'],        # list of fields to group by
        'aggregators': [            # list of aggregator objects
            {                       # structure of a single aggregator
                'name': 'max',
                'sampling': {
                    'value': '1',
                    'unit': 'minutes'
                },
                'align_sampling': True
            }
        ],
        'tags': {                   # dict with filtering tags
            'key': ['max']          # a key is a tag name, list of values is used to filter
                                    # all the records with given tag and given values
        }
    }
]








	start (int [https://docs.python.org/2/library/functions.html#int]) – Relative start time. Default is 5.


	end (int [https://docs.python.org/2/library/functions.html#int]) – End time. Default is 0.


	time_unit (str [https://docs.python.org/2/library/functions.html#str]) – Time unit (‘seconds’, ‘minutes’, ‘hours’). Default is ‘minutes’.


	start_absolute (long [https://docs.python.org/2/library/functions.html#long]) – Absolute start time in milliseconds, overrides the start parameter which is relative






	Returns

	Array of results for each queried metric



	Return type

	list














Kubernetes

Provides a wrapper for querying Kubernetes cluster resources.


	
kubernetes(namespace='default')

	If namespace is None then all namespaces will be queried. This however will increase the number of calls to Kubernetes API server.






Note


	Kubernetes wrapper will authenticate using service account, which assumes the worker is running in a Kubernetes cluster.


	All Kubernetes wrapper calls are scoped to the Kubernetes cluster hosting the worker. It is not intended to be used in querying multiple clusters.







Label Selectors

Kubernetes API provides a way to filter resources using labelSelector [https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/]. Kubernetes wrapper provides a friendly syntax for filtering.

The following examples show different usage of the Kubernetes wrapper utilizing label filtering:

# Get all pods with label ``application`` equal to ``zmon-worker``
kubernetes().pods(application='zmon-worker')
kubernetes().pods(application__eq='zmon-worker')


# Get all pods with label ``application`` **not equal to** ``zmon-worker``
kubernetes().pods(application__neq='zmon-worker')


# Get all pods with label ``application`` **any of** ``zmon-worker`` or ``zmon-agent``
kubernetes().pods(application__in=['zmon-worker', 'zmon-agent'])

# Get all pods with label ``application`` **not any of** ``zmon-worker`` or ``zmon-agent``
kubernetes().pods(application__notin=['zmon-worker', 'zmon-agent'])








Methods of Kubernetes


	
pods(name=None, phase=None, ready=None, **kwargs)

	Return list of Pods [https://kubernetes.io/docs/user-guide/pods/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Pod name.


	phase (str [https://docs.python.org/2/library/functions.html#str]) – Pod status phase. Valid values are: Pending, Running, Failed, Succeeded or Unknown.


	ready (bool [https://docs.python.org/2/library/functions.html#bool]) – Pod readiness status. If None then all pods are returned.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Pod Label Selectors filters.






	Returns

	List of pods. Typical pod has “metadata”, “status” and “spec” fields.



	Return type

	list










	
nodes(name=None, **kwargs)

	Return list of Nodes [https://kubernetes.io/docs/admin/node/]. Namespace does not apply.


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Node name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Node Label Selectors filters.






	Returns

	List of nodes. Typical pod has “metadata”, “status” and “spec” fields.



	Return type

	list










	
services(name=None, **kwargs)

	Return list of Services [https://kubernetes.io/docs/user-guide/services/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Service name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Service Label Selectors filters.






	Returns

	List of services. Typical service has “metadata”, “status” and “spec” fields.



	Return type

	list










	
endpoints(name=None, **kwargs)

	Return list of Endpoints.


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Endpoint name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Endpoint Label Selectors filters.






	Returns

	List of Endpoints. Typical Endpoint has “metadata”, and “subsets” fields.



	Return type

	list










	
ingresses(name=None, **kwargs)

	Return list of Ingresses [https://kubernetes.io/docs/user-guide/ingress/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Ingress name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Ingress Label Selectors filters.






	Returns

	List of Ingresses. Typical Ingress has “metadata”, “spec” and “status” fields.



	Return type

	list










	
statefulsets(name=None, replicas=None, **kwargs)

	Return list of Statefulsets [https://kubernetes.io/docs/user-guide/petset/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Statefulset name.


	replicas (int [https://docs.python.org/2/library/functions.html#int]) – Statefulset replicas.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Statefulset Label Selectors filters.






	Returns

	List of Statefulsets. Typical Statefulset has “metadata”, “status” and “spec” fields.



	Return type

	list










	
daemonsets(name=None, **kwargs)

	Return list of Daemonsets [https://kubernetes.io/docs/admin/daemons/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Daemonset name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Daemonset Label Selectors filters.






	Returns

	List of Daemonsets. Typical Daemonset has “metadata”, “status” and “spec” fields.



	Return type

	list










	
replicasets(name=None, replicas=None, **kwargs)

	Return list of ReplicaSets [https://kubernetes.io/docs/user-guide/replicasets/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – ReplicaSet name.


	replicas (int [https://docs.python.org/2/library/functions.html#int]) – ReplicaSet replicas.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – ReplicaSet Label Selectors filters.






	Returns

	List of ReplicaSets. Typical ReplicaSet has “metadata”, “status” and “spec” fields.



	Return type

	list










	
deployments(name=None, replicas=None, ready=None, **kwargs)

	Return list of Deployments [https://kubernetes.io/docs/user-guide/deployments/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Deployment name.


	replicas (int [https://docs.python.org/2/library/functions.html#int]) – Deployment replicas.


	ready (bool [https://docs.python.org/2/library/functions.html#bool]) – Deployment readiness status.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Deployment Label Selectors filters.






	Returns

	List of Deployments. Typical Deployment has “metadata”, “status” and “spec” fields.



	Return type

	list










	
configmaps(name=None, **kwargs)

	Return list of ConfigMaps [https://kubernetes.io/docs/user-guide/configmap/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – ConfigMap name.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – ConfigMap Label Selectors filters.






	Returns

	List of ConfigMaps. Typical ConfigMap has “metadata” and “data”.



	Return type

	list










	
persistentvolumeclaims(name=None, phase=None, **kwargs)

	Return list of PersistentVolumeClaims [https://kubernetes.io/docs/user-guide/persistent-volumes/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – PersistentVolumeClaim name.


	phase (str [https://docs.python.org/2/library/functions.html#str]) – Volume phase.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – PersistentVolumeClaim Label Selectors filters.






	Returns

	List of PersistentVolumeClaims. Typical PersistentVolumeClaim has “metadata”, “status” and “spec” fields.



	Return type

	list










	
persistentvolumes(name=None, phase=None, **kwargs)

	Return list of PersistentVolumes [https://kubernetes.io/docs/user-guide/persistent-volumes/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – PersistentVolume name.


	phase (str [https://docs.python.org/2/library/functions.html#str]) – Volume phase.


	kwargs (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – PersistentVolume Label Selectors filters.






	Returns

	List of PersistentVolumes. Typical PersistentVolume has “metadata”, “status” and “spec” fields.



	Return type

	list










	
jobs(name=None, **kwargs)

	Return list of Jobs [https://kubernetes.io/docs/concepts/workloads/controllers/jobs-run-to-completion/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – Job name.


	**kwargs – Job labelSelector filters.








	Returns

	List of Jobs. Typical Job has “metadata”, “status” and “spec”.



	Return type

	list










	
cronjobs(name=None, **kwargs)

	Return list of CronJobs [https://kubernetes.io/docs/concepts/workloads/controllers/cron-jobs/].


	Parameters

	
	name (str [https://docs.python.org/2/library/functions.html#str]) – CronJob name.


	**kwargs – CronJob labelSelector filters.








	Returns

	List of CronJobs. Typical CronJob has “metadata”, “status” and “spec”.



	Return type

	list










	
metrics()

	Return API server metrics in prometheus format.


	Returns

	Cluster metrics.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]














LDAP

Retrieve OpenLDAP statistics (needs “cn=Monitor” database installed in LDAP server).

ldap().statistics()





This would return a dict like:

{
    "connections_current": 77,
    "connections_per_sec": 27.86,
    "entries": 359369,
    "max_file_descriptors": 65536,
    "operations_add_per_sec": 0.0,
    "operations_bind_per_sec": 27.99,
    "operations_delete_per_sec": 0.0,
    "operations_extended_per_sec": 0.23,
    "operations_modify_per_sec": 0.09,
    "operations_search_per_sec": 24.09,
    "operations_unbind_per_sec": 27.82,
    "waiters_read": 76,
    "waiters_write": 0
}





All information is based on the cn=Monitor OpenLDAP tree. You can get more information in the OpenLDAP Administrator’s Guide [http://www.openldap.org/doc/admin24/monitoringslapd.html#Monitor%20Information].
The meaning of the different fields is as follows:


	connections_current

	Number of currently established TCP connections.



	connections_per_sec

	Increase of connections per second.



	entries

	Number of LDAP records.



	operations_*_per_sec

	Number of operations per second per operation type (add, bind, search, ..).



	waiters_read

	Number of waiters for read (whatever that means, OpenLDAP documentation does not say anything).








Memcached

Read-only access to memcached servers is provided by the memcached() function.


	
memcached([host=some.host][, port=11211])

	Returns a connection to the Memcached server at <host>:<port>, where <host> is the value
of the current entity’s host attribute, and <port> is the given port (default 11211). See
below for a list of methods provided by the returned connection object.






Methods of the Memcached Connection

The object returned by the memcached() function provides the following methods:


	
get(key)

	Returns the string stored at key. If key does not exist an error is raised.

memcached().get("example_memcached_key")










	
json(key)

	Returns the data of the key as unserialized JSON data. I.e. you can store a JSON object as
value of the key and get a dict back

memcached().json("example_memcached_key")










	
stats([extra_keys=[STR, STR])

	Returns a dict with general Memcached statistics such as memory usage and operations/s.
All values are extracted using the Memcached STATS command [https://lzone.de/cheat-sheet/memcached#stats].

The extra_keys may be retrieved as returned as well from the memcached server’s stats
command, e.g. version or uptime.

Example result:





{
    "incr_hits_per_sec": 0,
    "incr_misses_per_sec": 0,
    "touch_misses_per_sec": 0,
    "decr_misses_per_sec": 0,
    "touch_hits_per_sec": 0,
    "get_expired_per_sec": 0,
    "get_hits_per_sec": 100.01,
    "cmd_get_per_sec": 119.98,
    "cas_hits_per_sec": 0,
    "cas_badval_per_sec": 0,
    "delete_misses_per_sec": 0,
    "bytes_read_per_sec": 6571.76,
    "auth_errors_per_sec": 0,
    "cmd_set_per_sec": 19.97,
    "bytes_written_per_sec": 6309.17,
    "get_flushed_per_sec": 0,
    "delete_hits_per_sec": 0,
    "cmd_flush_per_sec": 0,
    "curr_items": 37217768,
    "decr_hits_per_sec": 0,
    "connections_per_sec": 0.02,
    "cas_misses_per_sec": 0,
    "cmd_touch_per_sec": 0,
    "bytes": 3902170728,
    "evictions_per_sec": 0,
    "auth_cmds_per_sec": 0,
    "get_misses_per_sec": 19.97
}










MongoDB

Provides access to a MongoDB cluster


	
mongodb(host, port=27017)

	




Methods of MongoDB


	
find(database, collection, query)

	








Nagios

This function provides a wrapper for Nagios plugins.


	
check_load()

	nagios().nrpe('check_load')





Example check result as JSON:

{
    "load1": 2.86,
    "load15": 3.13,
    "load5": 3.23
}










	
check_list_timeout()

	nagios().nrpe('check_list_timeout',  path="/data/production/", timeout=10)





This command will run “timeout 10 ls /data/production/” on the
target host via nrpe.

Example check result as JSON:

{

    "exit":0,
    "timeout":0
}





Exit is the exitcode from nrpe 0 for OK, 2 for ERROR.
Timeout should not be used, yet.






	
check_diff_reverse()

	nagios().nrpe('check_diff_reverse')





Example check result as JSON:

{
    "CommitLimit-Committed_AS": 16022524
}










	
check_mailq_postfix()

	nagios().nrpe('check_mailq_postfix')





Example check result as JSON:

{
    "unsent": 0
}










	
check_memcachestatus()

	nagios().nrpe('check_memcachestatus', port=11211)





Example check result as JSON:

{
    "curr_connections": 0.0,
    "cmd_get": 3569.09,
    "bytes_written": 66552.9,
    "get_hits": 1593.9,
    "cmd_set": 0.04,
    "curr_items": 0.0,
    "get_misses": 1975.19,
    "bytes_read": 83077.28
}










	
check_findfiles()

	Find-file analyzer plugin for Nagios. This plugin checks for newer files within a directory and checks their access time, modification time and count.

nagios().nrpe('check_findfiles', directory='/data/example/error/', epoch=1)





Example check result as JSON:

{
    "ftotal": 0,
    "faccess": 0,
    "fmodify": 0
}










	
check_findolderfiles()

	Find-file analyzer plugin for Nagios. This plugin checks for files within a directory older than 2 given times in minutes.

nagios().nrpe('check_findolderfiles', directory='/data/stuff,/mnt/other', time01=480, time02=600)





Example check result as JSON:

{
    "total files": 831,
    "files older than time01": 112,
    "files older than time02": 0
}










	
check_findfiles_names()

	Find-file analyzer plugin for Nagios. This plugin checks for newer files within a directory, optionally matching a filename pattern, and checks their access time, modification time and count.

nagios().nrpe('check_findfiles_names', directory='/mnt/storage/error/', epoch=1, name='app*')





Example check result as JSON:

{
    "ftotal": 0,
    "faccess": 0,
    "fmodify": 0
}










	
check_findfiles_names_exclude()

	Find-file analyzer plugin for Nagios. This plugin checks for newer files within a directory, optionally matching a filename pattern(in this command the files are excluded), and checks their access time, modification time and count.

nagios().nrpe('check_findfiles_names_exclude', directory='/mnt/storage/error/', epoch=1, name='app*')





Example check result as JSON:

{
    "ftotal": 0,
    "faccess": 0,
    "fmodify": 0
}










	
check_logwatch()

	nagios().nrpe('check_logwatch', logfile='/var/logs/example/p{}/catalina.out'.format(entity['instance']), pattern='Full.GC')





Example check result as JSON:

{
    "last": 0,
    "total": 0
}










	
check_ntp_time()

	nagios().nrpe('check_ntp_time')





Example check result as JSON:

{
    "offset": 0.003063
}










	
check_iostat()

	nagios().nrpe('check_iostat', disk='sda')





Example check result as JSON:

{
    "tps": 944.7,
    "iowrite": 6858.4,
    "ioread": 6268.4
}










	
check_hpacucli()

	nagios().nrpe('check_hpacucli')





Example check result as JSON:

{
    "logicaldrive_1": "OK",
    "logicaldrive_2": "OK",
    "logicaldrive_3": "OK",
    "physicaldrive_2I:1:6": "OK",
    "physicaldrive_2I:1:5": "OK",
    "physicaldrive_1I:1:3": "OK",
    "physicaldrive_1I:1:2": "OK",
    "physicaldrive_1I:1:1": "OK",
    "physicaldrive_1I:1:4": "OK"
}










	
check_hpasm_fix_power_supply()

	nagios().nrpe('check_hpasm_fix_power_supply')





Example check result as JSON:

{
    "status": "OK",
    "message": "System: 'proliant dl360 g6', S/N: 'CZJ947016M', ROM: 'P64 05/05/2011', hardware working fine, da: 3 logical drives, 6 physical drives cpu_0=ok cpu_1=ok ps_2=ok fan_1=46% fan_2=46% fan_3=46% fan_4=46% temp_1=21 temp_2=40 temp_3=40 temp_4=36 temp_5=35 temp_6=37 temp_7=32 temp_8=36 temp_9=32 temp_10=36 temp_11=32 temp_12=33 temp_13=48 temp_14=29 temp_15=32 temp_16=30 temp_17=29 temp_18=39 temp_19=37 temp_20=38 temp_21=45 temp_22=42 temp_23=39 temp_24=48 temp_25=35 temp_26=46 temp_27=35 temp_28=71 | fan_1=46%;0;0 fan_2=46%;0;0 fan_3=46%;0;0 fan_4=46%;0;0 'temp_1_ambient'=21;42;42 'temp_2_cpu#1'=40;82;82 'temp_3_cpu#2'=40;82;82 'temp_4_memory_bd'=36;87;87 'temp_5_memory_bd'=35;78;78 'temp_6_memory_bd'=37;87;87 'temp_7_memory_bd'=32;78;78 'temp_8_memory_bd'=36;87;87 'temp_9_memory_bd'=32;78;78 'temp_10_memory_bd'=36;87;87 'temp_11_memory_bd'=32;78;78 'temp_12_power_supply_bay'=33;59;59 'temp_13_power_supply_bay'=48;73;73 'temp_14_memory_bd'=29;60;60 'temp_15_processor_zone'=32;60;60 'temp_16_processor_zone'=3"
}










	
check_hpasm_gen8()

	nagios().nrpe('check_hpasm_gen8')





Example check result as JSON:

{
    "status": "OK",
    "message": "ignoring 16 dimms with status 'n/a' , System: 'proliant dl360p gen8', S/N: 'CZJ2340R6C', ROM: 'P71 08/20/2012', hardware working fine, da: 1 logical drives, 4 physical drives"
}










	
check_openmanage()

	nagios().nrpe('check_openmanage')





Example check result as JSON:

{
    "status": "OK",
    "message": "System: 'PowerEdge R720', SN: 'GN2J8X1', 256 GB ram (16 dimms), 5 logical drives, 10 physical drives|T0_System_Board_Inlet=21C;42;47 T1_System_Board_Exhaust=36C;70;75 T2_CPU1=59C;95;100 T3_CPU2=52C;95;100 W2_System_Board_Pwr_Consumption=168W;896;980 A0_PS1_Current_1=0.8A;0;0 A1_PS2_Current_2=0.2A;0;0 V25_PS1_Voltage_1=230V;0;0 V26_PS2_Voltage_2=232V;0;0 F0_System_Board_Fan1=1680rpm;0;0 F1_System_Board_Fan2=1800rpm;0;0 F2_System_Board_Fan3=1680rpm;0;0 F3_System_Board_Fan4=2280rpm;0;0 F4_System_Board_Fan5=2400rpm;0;0 F5_System_Board_Fan6=2400rpm;0;0"
}










	
check_ping()

	nagios().local('check_ping')





Example check result as JSON:

{
    "rta": 1.899,
    "pl": 0.0
}










	
check_apachestatus_uri()

	nagios().nrpe('check_apachestatus_uri', url='http://127.0.0.1/server-status?auto') or nagios().nrpe('check_apachestatus_uri', url='http://127.0.0.1:10083/server-status?auto')





Example check result as JSON:

{
    "idle": 60.0,
    "busy": 15.0,
    "hits": 24.256,
    "kBytes": 379.692
}










	
check_check_command_procs()

	nagios().nrpe('check_command_procs', process='httpd')





Example check result as JSON:

{
    "procs": 33
}










	
check_http_expect_port_header()

	nagios().nrpe('check_http_expect_port_header', ip='localhost', url= '/', redirect='warning', size='9000:90000', expect='200', port='88', hostname='www.example.com')





Example check result as JSON:

{
    "size": 33633.0,
    "time": 0.080755
}





NOTE: if the nrpe check returns an ‘expect’result(return code is not the expected) , the check returns a NagiosError






	
check_mysql_processes()

	nagios().nrpe('check_mysql_processes', host='localhost', port='/var/lib/mysql/mysql.sock', user='myuser', password='mypas')





Example check result as JSON:

{
    "avg": 0,
    "threads": 1
}










	
check_mysqlperformance()

	nagios().nrpe('check_mysqlperformance', host='localhost', port='/var/lib/mysql/mysql.sock', user='myuser', password='mypass')





Example check result as JSON:

{
    "Com_select": 15.27,
    "Table_locks_waited": 0.01,
    "Select_scan": 2.25,
    "Com_change_db": 0.0,
    "Com_insert": 382.26,
    "Com_replace": 8.09,
    "Com_update": 335.7,
    "Com_delete": 0.02,
    "Qcache_hits": 16.57,
    "Questions": 768.14,
    "Qcache_not_cached": 1.8,
    "Created_tmp_tables": 2.43,
    "Created_tmp_disk_tables": 2.25,
    "Aborted_clients": 0.3
}










	
check_mysql_slave()

	nagios().nrpe('check_mysql_slave', host='localhost', port='/var/lib/mysql/mysql.sock', database='mydb', user='myusr', password='mypwd')





Example check result as JSON:

{
    "Uptime": 6215760.0,
    "Open tables": 3953.0,
    "Slave IO": "Yes",
    "Queries per second avg": 967.106,
    "Slow queries": 1047406.0,
    "Seconds Behind Master": 0.0,
    "Threads": 1262.0,
    "Questions": 6011300666.0,
    "Slave SQL": "Yes",
    "Flush tables": 1.0,
    "Opens": 59466.0
}










	
check_ssl_cert()

	nagios().nrpe('check_ssl_cert', host_ip='91.240.34.73', domain_name='www.example.com') or nagios().local('check_ssl_cert', host_ip='91.240.34.73', domain_name='www.example.com')





Example check result as JSON:

{
    "days": 506
}










NRPE checks for Windows Hosts


Checks are based on nsclient++ v.0.4.1. For more info look: http://docs.nsclient.org/





	
CheckCounter()

	Returns performance counters for a process(usedMemory/WorkingSet)

nagios().win('CheckCounter', process='eo_server')





Example check result as JSON:

used memory in bytes

{
    "ProcUsedMem": 811024384
}










	
CheckCPU()

	nagios().win('CheckCPU')





Example check result as JSON:

{
    "1": 4,
    "10": 8,
    "5": 14
}










	
CheckDriveSize()

	nagios().win('CheckDriveSize')





Example check result as JSON:


Used Space in MByte




{
    "C:\\ %": 61.0,
    "C:\\": 63328.469

}










	
CheckEventLog()

	nagios().win('CheckEventLog', log='application', query='generated gt -7d AND type=\'error\'')





‘generated gt -7d’ means in the last 7 days

Example check result as JSON:

{
    "eventlog": 20
}










	
CheckFiles()

	nagios().win('CheckFiles', path='C:\\Import\\Exchange2Clearing', pattern='*.*', query='creation lt -1h')





‘creation lt -1h’ means older than 1 hour

Example check result as JSON:

{
    "found files": 22
}










	
CheckLogFile()

	nagios().win('CheckLogFile', logfile='c:\Temp\log\maxflow_portal.log', seperator=' ', query='column4 = \'ERROR\' OR column4 = \'FATAL\'')





Example check result as JSON:

{
    "count": 4
}










	
CheckMEM()

	nagios().win('CheckMEM')





Example check result as JSON:

used memory in MBytes

{
    "page file %": 16.0,
    "page file": 5534.105,
    "physical memory": 3331.109,
    "virtual memory": 268.777,
    "virtual memory %": 0.0,
    "physical memory %": 20.0
}










	
CheckProcState()

	nagios().win('CheckProcState', process='check_mk_agent.exe')





Example check result as JSON:

{
    "status": "OK",
    "message": "check_mk_agent.exe: running"
}










	
CheckServiceState()

	nagios().win('CheckServiceState', service='ENAIO_server')





Example check result as JSON:

{
    "status": "OK",
    "message": "ENAIO_server: started"
}










	
CheckUpTime()

	nagios().win('CheckUpTime')





Example check result as JSON:

uptime in ms

{
    "uptime": 412488000
}














Ping

Simple ICMP ping function which returns True if the ping command returned without error and False otherwise.


	
ping(timeout=1)

	ping()





The timeout argument specifies the timeout in seconds.
Internally it just runs the following system command:

ping -c 1 -w <TIMEOUT> <HOST>












Redis

Read-only access to Redis servers is provided by the redis() function.


	
redis([port=6379][, db=0])

	Returns a connection to the Redis server at <host>:<port>, where <host> is the value
of the current entity’s host attribute, and <port> is the given port (default 6379). See
below for a list of methods provided by the returned connection object.





Please also have a look at the Redis documentation [http://redis.io/].


Methods of the Redis Connection

The object returned by the redis() function provides the following methods:


	
llen(key)

	Returns the length of the list stored at key. If key does not exist, it’s value is treated as if it were
an empty list, and 0 is returned. If key exists but is not a list, an error is raised.

redis().llen("prod_eventlog_queue")










	
lrange(key, start, stop)

	Returns the elements of the list stored at key in the range [start, stop]. If key does not
exist, it’s value is treated as if it were an empty list. If key exists but is not a list, an
error is raised.

The parameters start and stop are zero-based indexes. Negative numbers are converted to indexes
by adding the length of the list, so that -1 is the last element of the list, -2 the
second-to-last element of the list, and so on.

Indexes outside the range of the list are not an error: If both start and stop are less than 0 or
greater than or equal to the length of the list, an empty list is returned. Otherwise, if start is
less than 0, it is treated as if it were 0, and if stop is greater than or equal to the the length
of the list, it is treated as if it were equal to the length of the list minus 1. If start is
greater than stop, an empty list is returned.

Note that this method is subtly different from Python’s list slicing syntax, where list[start:stop]
returns elements in the range [start, stop).

redis().lrange("prod_eventlog_queue", 0, 9)   # Returns *ten* elements!
redis().lrange("prod_eventlog_queue", 0, -1)  # Returns the entire list.










	
get(key)

	Returns the string stored at key. If key does not exist, returns None. If key exists
but is not a string, an error is raised.

redis().get("example_redis_key")










	
keys(pattern)

	Returns list of keys from Redis matching pattern.

redis().keys("*downtime*")










	
hget(key, field)

	Returns the value of the field field of the hash key. If key does not exist or does not have
a field named field, returns None. If key exists but is not a hash, an error is raised.

redis().hget("example_hash_key", "example_field_name")










	
hgetall(key)

	Returns a dict of all fields of the hash key. If key does not exist, returns an empty dict.
If key exists but is not a hash, an error is raised.

redis().hgetall("example_hash_key")










	
scan(cursor[, match=None][, count=None])

	Returns a set with the next cursor and the results from this scan.
Please see the Redis documentation on how to use this function exactly: http://redis.io/commands/scan

redis().scan(0, 'prefix*', 10)










	
smembers(key)

	Returns members of set key in Redis.

redis().smembers("zmon:alert:1")










	
ttl(key)

	Return the time to live of an expiring key.

redis().ttl('lock')










	
scard(key)

	Return the number of elements in set key

redis().scard("example_hash_key")










	
zcard(key)

	Return the number of elements in the sorted set key

redis().zcard("example_sorted_set_key")










	
statistics()

	Returns a dict with general Redis statistics such as memory usage and operations/s.
All values are extracted using the Redis INFO command [http://redis.io/commands/info].

Example result:

{
    "blocked_clients": 2,
    "commands_processed_per_sec": 15946.48,
    "connected_clients": 162,
    "connected_slaves": 0,
    "connections_received_per_sec": 0.5,
    "dbsize": 27351,
    "evicted_keys_per_sec": 0.0,
    "expired_keys_per_sec": 0.0,
    "instantaneous_ops_per_sec": 29626,
    "keyspace_hits_per_sec": 1195.43,
    "keyspace_misses_per_sec": 1237.99,
    "used_memory": 50781216,
    "used_memory_rss": 63475712
}





Please note that the values for both used_memory and used_memory_rss are in Bytes.










S3

Allows data to be pulled from S3 Objects.


	
s3()

	




Methods of S3


	
get_object_metadata(bucket_name, key)

	Get the metadata associated with the given bucket_name and key. The metadata allows you to check for the
existance of the key within the bucket and to check how large the object is without reading the whole object into
memory.


	Parameters

	
	bucket_name – the name of the S3 Bucket


	key – the key that identifies the S3 Object within the S3 Bucket






	Returns

	an S3ObjectMetadata object






	
class S3ObjectMetadata

	
	
exists()

	Will return True if the object exists.






	
size()

	Returns the size in bytes for the object. Will return -1 for objects that do not exist.









Example usage:

s3().get_object_metadata('my bucket', 'mykeypart1/mykeypart2').exists()
s3().get_object_metadata('my bucket', 'mykeypart1/mykeypart2').size()










	
get_object(bucket_name, key)

	Get the S3 Object associated with the given bucket_name and key. This method will cause the object to be
read into memory.


	Parameters

	
	bucket_name – the name of the S3 Bucket


	key – the key that identifies the S3 Object within the S3 Bucket






	Returns

	an S3Object object






	
class S3Object

	
	
text()

	Get the S3 Object data






	
json()

	If the object exists, parse the object as JSON.


	Returns

	a dict containing the parsed JSON or None if the object does not exist.










	
exists()

	Will return True if the object exists.






	
size()

	Returns the size in bytes for the object. Will return -1 for objects that do not exist.









Example usage:

s3().get_object('my bucket', 'mykeypart1/my_text_doc.txt').text()

s3().get_object('my bucket', 'mykeypart1/my_json_doc.json').json()










	
list_bucket(bucket_name, prefix, max_items=100, recursive=True)

	List the S3 Object associated with the given bucket_name, matching prefix.
By default, listing is possible for up to 1000 keys, so we use pagination internally to overcome this.


	Parameters

	
	bucket_name – the name of the S3 Bucket


	prefix – the prefix to search under


	max_items – the maximum number of objects to list.  Defaults to 100.


	recursive – if the listing should contain deeply nested keys. Defaults to True.






	Returns

	an S3FileList object






	
class S3FileList

	
	
files()

	Returns a list of dicts like

{
    "file_name": "foo",
    "size": 12345,
    "last_modified": "2017-07-17T01:01:21Z"
}













Example usage:

s3().list_bucket('my bucket', 'some_prefix').files()

files = s3().list_bucket('my bucket', 'some_prefix', 10000).files()  # for listing a lot of keys
last_modified = files[0]["last_modified"].isoformat()  # returns a string that can be passed to time()
age = time() - time(last_modified)














Scalyr


Wrapper

The scalyr() wrapper enables querying Scalyr from your AWS worker if the credentials have been specified for the worker instance(s).
For more description of each type of query, please refer to https://www.scalyr.com/help/api .


	
count(query, minutes=5)

	Run a count query against Scalyr, depending on number of queries you may run into rate limit.

scalyr().count(' ERROR ')










	
timeseries(query, minutes=30)

	Runs a timeseries query against Scalyr with more generous rate limits. (New time series are created on the fly by Scalyr)






	
facets(filter, field, max_count=5, minutes=30, prio='low')

	This method is used to retrieve the most common values for a field.






	
logs(query, max_count=100, minutes=5, continuation_token=None, columns=None)

	Runs a query against Scalyr and returns logs that match the query. At most max_count log lines will be returned.
More can be fetched with the same query by passing back the continuation_token from the last response into the
logs method.

Specific columns can be returned (as defined in scalyr parser) using the columns array e.g. columns=['severity','threadName','timestamp'].
If this is unspecified, only the message column will be returned.

An example logs result as JSON:

{
    "messages": [
       "message line 1",
       "message line 2"
    ],
    "continuation_token": "a token"
}












Custom Scalyr Region

By default the Scalyr wrapper uses https://www.scalyr.com/ as the default region. Overriding is possible using scalyr(scalyr_region='eu') if you want to use their Europe environment https://eu.scalyr.com/.


scalyr(scalyr_region='eu').count(' ERROR ')













SNMP

Provides a wrapper for SNMP functions listed below. SNMP checks require
specifying hosts in the entities filter. The partial object snmp() accepts a
timeout=seconds parameter, default is 5 seconds timeout. NOTE: this timeout
is per answer, so multiple answers will add up and may block the whole check


	
memory()

	snmp().memory()





Returns host’s memory usage statistics. All values are in KiB (1024 Bytes).

Example check result as JSON:

{
    "ram_buffer": 359404,
    "ram_cache": 6478944,
    "ram_free": 20963524,
    "ram_shared": 0,
    "ram_total": 37066332,
    "ram_total_free": 22963392,
    "swap_free": 1999868,
    "swap_min": 16000,
    "swap_total": 1999868,
}










	
load()

	snmp().load()





Returns host’s CPU load average (1 minute, 5 minute and 15 minute averages).

Example check result as JSON:

{"load1": 0.95, "load5": 0.69, "load15": 0.72}










	
cpu()

	snmp().cpu()





Returns host’s CPU usage in percent.

Example check result as JSON:

{"cpu_system": 0, "cpu_user": 17, "cpu_idle": 81}










	
df()

	snmp().df()





Example check result as JSON:

{
    "/data/postgres-wal-nfs-example": {
        "available_space": 524287840,
        "device": "example0-2-stp-123:/vol/example_pgwal",
        "percentage_inodes_used": 0,
        "percentage_space_used": 0,
        "total_size": 524288000,
        "used_space": 160,
    }
}










	
logmatch()

	snmp().logmatch()










	
interfaces()

	snmp().interfaces()





Example check result as JSON:

{
    "lo": {
        "in_octets": 63481918397415,
        "in_discards": 11,
        "adStatus": 1,
        "out_octets": 63481918397415,
        "opStatus": 1,
        "out_discards": 0,
        "speed": "10",
        "in_error": 0,
        "out_error": 0
    },
    "eth1": {
        "in_octets": 55238870608924,
        "in_discards": 8344,
        "adStatus": 1,
        "out_octets": 6801703429894,
        "opStatus": 1,
        "out_discards": 0,
        "speed": "10000",
        "in_error": 0,
        "out_error": 0
    },
    "eth0": {
        "in_octets": 3538944286327,
        "in_discards": 1130,
        "adStatus": 1,
        "out_octets": 16706789573119,
        "opStatus": 1,
        "out_discards": 0,
        "speed": "10000",
        "in_error": 0,
        "out_error": 0
    }
}










	
get()

	snmp().get('iso.3.6.1.4.1.42253.1.2.3.1.4.7.47.98.105.110.47.115.104', 'stunnel', int)





Example check result as JSON:

{
    "stunnel": 0
}












SQL


	
sql([shard])

	Provides a wrapper for connection to PostgreSQL database and allows
executing queries. All queries are executed in read-only transactions.
The connection wrapper requires one parameters: list of shard connections.
The shard connections must come from the entity definition (see database-entities).
Example query for log database which returns a primitive long value:

sql().execute("SELECT count(*) FROM zl_data.log WHERE log_created > now() - '1 hour'::interval").result()





Example query which will return a single dict with keys a and b:

sql().execute('SELECT 1 AS a, 2 AS b').result()





The SQL wrapper will automatically sum up values over all shards:

sql().execute('SELECT count(1) FROM zc_data.customer').result() # will return a single integer value (sum over all shards)





It’s also possible to query a single shard by providing its name:

sql(shard='customer1').execute('SELECT COUNT(1) AS c FROM zc_data.customer').results() # returns list of values from a single shard





It’s also possible to query another database on the same server overwriting the shards information:

sql(shards={'customer_db' : entity['host'] + ':' + str(entity['port']) + '/another_db'}).execute('SELECT COUNT(1) AS c FROM my_table').results()





To execute a SQL statement on all LIVE customer shards, for example, use the following entity filter:

[
    {
        "type":        "database",
        "name":        "customer",
        "environment": "live",
        "role":        "master"
    }
]





The check command will have the form

>>> sql().execute('SELECT 1 AS a').result()
8
# Returns a single value: the sum over the result from all shards

>>> sql().execute('SELECT 1 AS a').results()
[{'a': 1}, {'a': 1}, {'a': 1}, {'a': 1}, {'a': 1}, {'a': 1}, {'a': 1}, {'a': 1}]
# Returns a list of the results from all shards

>>> sql(shard='customer1').execute('SELECT 1 AS a').results()
[{'a': 1}]
# Returns the result from the specified shard in a list of length one

>>> sql().execute('SELECT 1 AS a, 2 AS b').result()
{'a': 8, 'b': 16}
# Returns a dict of the two values, which are each the sum over the result from all shards





The results() function has several additional parameters:

sql().execute('SELECT 1 AS ONE, 2 AS TWO FROM dual').results([max_results=100], [raise_if_limit_exceeded=True])






	max_results

	The maximum number of rows you expect to get from the call. If not specified, defaults to 100. You cannot have an
unlimited number of rows. There is an absolute maximum of 1,000,000 results that cannot be overridden.
Note: If you require processing of larger dataset, it
is recommended to revisit architecture of your monitoring subsystem and possibly move logic that does calculation
into external web service callable by ZMON 2.0.



	raise_if_limit_exceeded

	Raises an exception if the limit of rows would have been exceeded by the issued query.










	
orasql()

	Provides a wrapper for connection to Oracle database and allows
executing queries. All queries are executed in read-only transactions.
The connection wrapper requires three parameters: host, port and sid,
that must come from the entity definition (see database-entities).
One idiosyncratic behaviour to be aware, is that when your query produces
more than one value, and you get a dict with keys being the column names
or aliases you used in your query, you will always get back those keys
in uppercase. For clarity, we recommend that you write all aliases
and column names in uppercase, to avoid confusion due to case changes.
Example query of the simplest query, which returns a single value:

orasql().execute("SELECT 'OK' from dual").result()





Example query which will return a single dict with keys ONE and TWO:

orasql().execute('SELECT 1 AS ONE, 2 AS TWO from dual').result()





To execute a SQL statement on a LIVE server, tagged with the name business_intelligence, for example,
use the following entity filter:

[
    {
        "type":        "oracledb",
        "name":        "business_intelligence",
        "environment": "live",
        "role":        "master"
    }
]










	
exacrm()

	Provides a wrapper for connection to the CRM Exasol database executing
queries.
The connection wrapper requires one parameter: the query.

Example query:

exacrm().execute("SELECT 'OK';").result()





To execute a SQL statement on the itr-crmexa* servers use the following
entity filter:

[
   {
       "type": "host",
        "host_role_id": "117"
   }
]










	
mysql([shard])

	Provides a wrapper for connection to MySQL database and allows
executing queries.
The connection wrapper requires one parameters: list of shard connections.
The shard connections must come from the entity definition (see database-entities).
Example query of the simplest query, which returns a single value:

mysql().execute("SELECT count(*) FROM mysql.user").result()





Example query which will return a single dict with keys h and u:

mysql().execute('SELECT host AS h, user AS u FROM mysql.user').result()





The SQL wrapper will automatically sum up values over all shards:

mysql().execute('SELECT count(1) FROM zc_data.customer').result() # will return a single integer value (sum over all shards)





It’s also possible to query a single shard by providing its name:

mysql(shard='customer1').execute('SELECT COUNT(1) AS c FROM zc_data.customer').results() # returns list of values from a single shard





To execute a SQL statement on all LIVE customer shards, for example, use the following entity filter:

[
    {
        "type":        "mysqldb",
        "name":        "lounge",
        "environment": "live",
        "role":        "master"
    }
]












TCP

This function opens a TCP connection to a host on a given port. If the
connection succeeds, it returns ‘OK’. The host can be provided directly for global checks or resolved from
entities filter. Assuming that we have an entity filter type=host, the
example below will try to connect to every host on port 22:

tcp().open(22)








Zomcat

Retrieve zomcat instance status (memory, CPU, threads).

zomcat().health()





This would return a dict like:

{
    "cpu_percentage": 5.44,
    "gc_percentage": 0.11,
    "gcs_per_sec": 0.25,
    "heap_memory_percentage": 6.52,
    "heartbeat_enabled": true,
    "http_errors_per_sec": 0.0,
    "jobs_enabled": true,
    "nonheap_memory_percentage": 20.01,
    "requests_per_sec": 1.09,
    "threads": 128,
    "time_per_request": 42.58
}





Most of the values are retrieved via JMX:


	cpu_percentage

	CPU usage in percent (retrieved from JMX).



	gc_percentage

	Percentage of time spent in garbage collection runs.



	gcs_per_sec

	Garbage collections per second.



	heap_memory_percentage

	Percentage of heap memory used.



	nonheap_memory_percentage

	Percentage of non-heap memory (e.g. permanent generation) used.



	heartbeat_enabled

	Boolean indicating whether heartbeat.jsp is enabled (true) or not (false). If /heartbeat.jsp cannot be retrieved, the value is null.



	http_errors_per_sec

	Number of Tomcat HTTP errors per second (all 4xx and 5xx HTTP status codes).



	jobs_enabled

	Boolean indicating whether jobs are enabled (true) or not (false). If /jobs.monitor cannot be retrieved, the value is null.



	requests_per_sec

	Number of HTTP/AJP requests per second.



	threads

	Total number of threads.



	time_per_request

	Average time in milliseconds per HTTP/AJP request.








Helper Functions

The following general-purpose functions are available in check commands:


	
abs(number)

	Returns the absolute value of the argument. Does not have overflow issues.

>>> abs(-1)
1
>>> abs(1)
1
>>> abs(-2147483648)
2147483648










	
all(iterable)

	Returns True if none of the elements of iterable are falsy.

>>> all([4, 2, 8, 0, 3])
False

>>> all([])
True










	
any(iterable)

	Returns True if at least one element of iterable is truthy.

>>> any([None, [], '', {}, 0, 0.0, False])
False

>>> any([])
False










	
avg(results)

	Returns the arithmetic mean of the values in results. Returns None if there are no values. results must not be an iterator.

>>> avg([1, 2, 3])
2.0

>>> avg([])
None










	
basestring()

	Superclass of str and unicode useful for checking whether a value is a string of some sort.

>>> isinstance('foo', basestring)
True
>>> isinstance(u'ˈ', basestring)
True










	
bin(n)

	Returns a string of the given integer in binary representation.

>>> bin(1000)
'0b1111101000'










	
bool(x)

	Returns True if x is truthy, and False otherwise. Does not parse strings. Also usable to check whether a value is Boolean.

>>> bool(None)
False

>>> bool('False')
True

>>> isinstance(False, bool)
True










	
chain(*iterables)

	Returns an iterator that that yields the elements of the first iterable, followed by the elements of the second iterable, and so on.

>>> list(chain([1, 2, 3], 'abc'))
[1, 2, 3, 'a', 'b', 'c']

>>> list(chain())
[]










	
chr(n)

	Returns the character for the given ASCII code.

>>> chr(65)
'A'










	
class Counter([iterable-or-mapping])

	Creates a specialized dict for counting things. See the official Python documentation [http://docs.python.org/2/library/collections.html#collections.Counter] for details.






	
dict([mapping][, **kwargs])

	Creates a new dict. Usually, using a literal will be simpler, but the function may be useful to copy dicts, to covert a list of key/value pairs to a dict, or to check whether some object is a dict.

>>> dict(a=1, b=2, c=3)
{'a': 1, 'c': 3, 'b': 2}

>>> dict({'a': 1, 'b': 2, 'c': 3})
{'a': 1, 'c': 3, 'b': 2}   # This is a copy of the original dict.

>>> dict([['a', 1], ['b', 2], ['c', 3]])
{'a': 1, 'c': 3, 'b': 2}

>>> isinstance({}, dict)
True










	
divmod(x, y):

	Performs integer division and modulo as a single operation.

>>> divmod(23, 5)
(4, 3)










	
empty(v)

	Indicates whether v is falsy. Equivalent to not v.

>>> empty([])
True

>>> empty([0])
False










	
enumerate(iterable[, start=0])

	Generates tuples (start + 0, iterable[0]), (start + 1, iterable[1]), .... Useful to have access to the index in a loop.

>>> list(enumerate(['a', 'b', 'c'], start=1))
[(1, 'a'), (2, 'b'), (3, 'c')]










	
filter(function, iterable)

	Returns a list of all objects in iterable for which function returns a truthy value. If function is None, the returned list contains all truthy objects in iterable.

>>> filter(lambda n: n % 3, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10])
[1, 2, 4, 5, 7, 8, 10]

>>> filter(None, [False, None, 0, 0.0, '', [], {}, 1000])
[1000]










	
float(x)

	Returns x as a floating-point number. Parses stings.

>>> float('2.5')
2.5

>>> float('-inf')
-inf

>>> float(2)
2.0





This is useful to force proper division:

>>> 2 / 5
0

>>> float(2) / 5
0.4





Also usable to check whether a value is a floating-point number:

>>> isinstance(2.5, float)
True

>>> isinstance(2, float)
False










	
groupby(iterable[, key])

	A somewhat obscure function for grouping consecutive equal elements in an iterable. See the official Python documentation [http://docs.python.org/2/library/itertools.html#itertools.groupby] for more details.

>>> [(k, list(v)) for k, v in groupby('abba')]
[('a', ['a']), ('b', ['b', 'b']), ('a', ['a'])]










	
hex(n)

	Returns a string of the given integer in hexadecimal representation.

>>> hex(1000)
'0x3e8'










	
int(x[, base])

	Returns x as an integer. Truncates floating-point numbers and parses strings. Also usable to check whether a value is an integer.

>>> int(2.5)
2

>>> int(-2.5)
2

>>> int('2')
2

>>> int('abba', 16)
43962

>>> isinstance(2, int)
True










	
isinstance(object, classinfo)

	Indicates whether object is an instance of the given class or classes.

>>> isinstance(2, int)
True

>>> isinstance(2, (int, float))
True

>>> isinstance('2', int)
False










	
json(s)

	Converts the given JSON string to a Python object.

>>> json('{"list": [1, 2, 3, 4]}')
{u'list': [1, 2, 3, 4]}










	
jsonpath_flat_filter(obj, path)

	Executes json path expression using jsonpath_rw [https://github.com/kennknowles/python-jsonpath-rw] and returns a flat dict of (full_path, value).

>>> data = {"timers":{"/api/v1/":{"m1.rate": 12, "99th": "3ms"}}}
>>> jsonpath_flat_filter(data, "timers.*.*.'m1.rate'")
{"timers./api/v1/.m1.rate": 12}










	
jsonpath_parse(path)

	Creates a json path parse object from the jsonpath_rw [https://github.com/kennknowles/python-jsonpath-rw] to be used in your check command.






	
len(s)

	Returns the length of the given collection.

>>> len('foo')
3

>>> len([0, 1, 2])
3

>>> len({'a': 1, 'b': 2, 'c': 3})
3










	
list(iterable)

	Creates a new list. Usually, using a literal will be simpler, but the function may be useful to copy lists, to covert some other iterable to a list, or to check whether some object is a list.

>>> list({'a': 1, 'b': 2, 'c': 3})
['a', 'c', 'b']

>>> list(chain([1, 2, 3], 'abc'))
[1, 2, 3, 'a', 'b', 'c']   # Without the list call, this would be a chain object.

>>> isinstance([1, 2, 3], list)
True










	
long(x[, base])

	Converts a number or string to a long integer.

>>> long(2.5)
2L

>>> long(-2.5)
-2L

>>> long('2')
2L

>>> long('abba', 16)
43962L










	
map(function, iterable)

	Calls function on each element of iterable and returns the results as a list.

>>> map(lambda n: n**2, [0, 1, 2, 3, 4, 5])
[0, 1, 4, 9, 16, 25]










	
max(iterable)

	Returns the greatest element of iterable. With two or more arguments, returns the greatest argument instead.

>>> max([2, 4, 1, 3])
4

>>> max(2, 4, 1, 3)
4










	
min(iterable)

	Returns the smallest element of iterable. With two or more arguments, returns the smallest argument instead.

>>> min([2, 4, 1, 3])
1

>>> min(2, 4, 1, 3)
1










	
normalvariate(mu, sigma)

	Returns a normally distributed random variable with the given mean and standard derivation.

>>> normalvariate(0, 1)
-0.1711153439880709










	
oct(n)

	Returns a string of the given integer in octal representation.

>>> oct(1000)
'01750'










	
ord(n)

	Returns the ASCII code of the given character.

>>> ord('A')
65










	
parse_cert(pem[, decode_base64])

	Returns a Certificate object [https://cryptography.io/en/latest/x509/reference/#x-509-certificate-object] for details. The first argument pem is the PEM encoded certificate as string and the optional argument is used to decode Base64 before parsing the string.






	
pow(x, y[, z])

	Computes x to the power of y. The result is modulo z, if z is given, and the function is much, much faster than (x ** y) % z in that case.

>>> pow(56876845793546543243783543735425734536873, 12425445412439354354394354397364398364378, 10)
9L










	
range([start, ]stop[, step])

	Returns a list of integers [start, start + step * 1, start + step * 2, ...] where all integers are less than stop, or greater than stop if step is negative.

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
>>> range(1, 11)
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
>>> range(1, 1)
[]
>>> range(11, 1)
[]
>>> range(0, 10, 3)
[0, 3, 6, 9]
>>> range(10, -1, -1)
[10, 9, 8, 7, 6, 5, 4, 3, 2, 1, 0]










	
reduce(function, iterable[, initializer])

	Calls function(r, e) for each element e in iterable, where r is the result of the last such call, or initializer for the first such call. If iterable has no elements, returns initializer.

If initializer is ommitted, the first element of iterable is removed and used in place of initializer. In that case, an error is raised if iterable has no elements.

>>> reduce(lambda a, b: a * b, [1, 2, 3, 4, 5, 6, 7, 8, 9, 10], 1)
3628800  # 10!





Note: Because of a Python bug, reduce used to be unreliable. This issue should now be fixed.






	
reversed(iterable)

	Returns an iterator that iterates over the elements in iterable in reverse order.

>>> list(reversed([1, 2, 3]))
[3, 2, 1]










	
round(n[, digits=0])

	Rounds the given number to the given number of digits, rounding half away from zero.

>>> round(23.4)
23.0
>>> round(23.5)
24.0
>>> round(-23.4)
-23.0
>>> round(-23.5)
-24.0
>>> round(0.123456789, 3)
0.123
>>> round(987654321, -3)
987654000.0










	
set(iterable)

	Returns a set built from the elements of iterable. Useful to remove duplicates from some collection.

>>> set([1, 2, 1, 4, 3, 2, 2, 3, 4, 1])
set([1, 2, 3, 4])










	
sorted(iterable[, reverse])

	Returns a sorted list containing the elements of iterable.

>>> sorted([2, 4, 1, 3])
[1, 2, 3, 4]

>>> sorted([2, 4, 1, 3], reverse=True)
[4, 3, 2, 1]










	
str(object)

	Returns the string representation of object. Also usable to check whether a value is a string. If the result would contain Unicode characters, the unicode() function must be used instead.

>>> str(2)
'2'

>>> str({'a': 1, 'b': 2, 'c': 3})
"{'a': 1, 'c': 3, 'b': 2}"

>>> isinstance('foo', str)
True










	
sum(iterable)

	Returns the sum of the elements of iterable, or 0 if iterable is empty.

>>> sum([1, 2, 3, 4])
10

>>> sum([])
0










	
time([spec][, utc])

	Given a time specification such as '-10m' for “ten minutes ago” or '+3h' for “in three hours”, returns an object representing that timestamp. Valid units are s for seconds, m for minutes, h for hours, and d for days.

The time specification spec can also be a Unix epoch/timestamp or a valid ISO timestamp in of the following formats:
YYYY-MM-DD HH:MM:SS.mmmmm,
YYYY-MM-DD HH:MM:SS,
YYYY-MM-DD HH:MM or
YYYY-MM-DD.

If spec is omitted, the current time is used. If utc is True the timestamp uses UTC, otherwise it uses local time.

The returned object has two methods:


	
isoformat([sep])

	Returns the timestamp as a string of the form YYYY-MM-DD HH:MM:SS.mmmmmm. The default behavior is to omit the T between date and time. This can be overridden by passing the optional sep parameter to the method.

>>> time('+4d').isoformat()
'2014-03-29 18:05:50.098919'

>>> time(1396112750).isoformat()
'2014-03-29 18:05:50'

>>> time('+4d').isoformat('T')
'2014-03-29T18:05:50.098919'










	
format(fmt)

	Returns the timestamp as a string formatted according to the given format. See the official Python documentation [http://docs.python.org/2/library/datetime.html#strftime-strptime-behavior] for an incomplete list of supported format directives.





Additionally, the subtraction operator is overloaded and returns the time difference in seconds:

>>> time('2014-01-01 01:13') - time('2014-01-01 01:01')
12










	
timestamp()

	Returns Unix time stamp. This wraps time.time()






	
tuple(iterable)

	Returns the given iterable as a tuple (an immutable list, basically). Also usable to check whether a value is a tuple.

>>> tuple([1, 2, 3])
(1, 2, 3)
>>> isinstance((1, 2, 3), tuple)
True










	
unicode(object)

	Returns the string representation of object as a Unicode string. Also usable to check whether a value is a Unicode string.

>>> unicode({u'α': 1, u'β': 2, u'γ': 3})
u"{u'\\u03b1': 1, u'\\u03b3': 3, u'\\u03b2': 2}"

>>> isinstance(u'ˈ', unicode)
True










	
unichr(n)

	Returns the unicode character with the given code point. Might be limited to code points less than 0x10000.

>>> unichr(0x2a13)  # LINE INTEGRATION WITH SEMICIRCULAR PATH AROUND POLE
u'⨓'










	
xrange([start, ]stop[, step])

	As range(), but returns an iterator rather than a list.






	
zip(*iterables)

	Returns a list of tuples where the i-th tuple contains the i-th element from each of the given iterables. Uses the lowest length if the iterables have different lengths.

>>> zip(['a', 'b', 'c'], [1, 2, 3])
[('a', 1), ('b', 2), ('c', 3)]
>>> zip(['A', 'B', 'C'], ['a', 'b', 'c'], [1, 2, 3])
[('A', 'a', 1), ('B', 'b', 2), ('C', 'c', 3)]
>>> zip([], [1, 2, 3])
[]










	
re()

	Python regex re module for all regex operations.

>>> re.match(r'^ab.*', 'a123b') != None
False

>>> re.match(r'^ab.*', 'ab123') != None
True










	
math()

	Python math module for all math operations.

>>> math.log(4, 2)
2.0















          

      

      

    

  

  
    
    Notifications Reference
    

    
 
  

    
      
          
            
  
Notifications Reference

ZMON provides several means of notification in case of alerts. Notifications will be triggered when alert status change. Please refer to
Notification options for different worker configuration options.


Google Hangouts Chat

Notify Google Hangouts Chat room with alert status.


	
send_google_hangouts_chat(webhook_link=None, message=None, color='red')

	Send Google Hangouts Chat notification.


	Parameters

	
	webhook_link (str [https://docs.python.org/2/library/functions.html#str]) – Webhook Link in Google Hangouts Chat Room. Create a Google Hangouts Chat Webhook [https://developers.google.com/hangouts/chat/how-tos/webhooks] and copy the link here.


	multiline (bool [https://docs.python.org/2/library/functions.html#bool]) – Should the Text in the notification span multiple lines or not? Default is True.


	message (str [https://docs.python.org/2/library/functions.html#str]) – Message to be sent. If None, then a message constructed from the alert will be sent.


	color (str [https://docs.python.org/2/library/functions.html#str]) – Message color. Default is red if alert is raised.













Note

Message color will be determined based on alert status. If alert has ended, then color will be green, otherwise color argument will be used.






Hipchat

Notify Hipchat room with alert status.


	
send_hipchat(room=None, message=None, token=None, message_format='html', notify=False, color='red', link=False, link_text='go to alert')

	Send Hipchat notification to specified room.


	Parameters

	
	room (str [https://docs.python.org/2/library/functions.html#str]) – Room to be notified.


	message (str [https://docs.python.org/2/library/functions.html#str]) – Message to be sent. If None, then a message constructed from the alert will be sent.


	token (str [https://docs.python.org/2/library/functions.html#str]) – Hipchat API token.


	message_format (str [https://docs.python.org/2/library/functions.html#str]) – message format - html (default) or text (which correctly treats @mentions).


	notify (bool [https://docs.python.org/2/library/functions.html#bool]) – Hipchat notify flag. Default is False.


	color (str [https://docs.python.org/2/library/functions.html#str]) – Message color. Default is red if alert is raised.


	link (bool [https://docs.python.org/2/library/functions.html#bool]) – Add link to Hipchat message. Default is False.


	link_text (str [https://docs.python.org/2/library/functions.html#str]) – if link param is True, this will be displayed as a link in the hipchat message. Default is  go to alert.













Note

Message color will be determined based on alert status. If alert has ended, then color will be green, otherwise color argument will be used.

Example message - using html format (default):

{
    "message": "NEW ALERT: Requests failing with status 500 on host-production-1-entity",
    "color": "red",
    "notify": true
}





Example message - using text format with @mention:

{
    "message": "@here NEW ALERT: Requests failing with status 500 on host-production-1-entity",
    "color": "red",
    "notify": true,
    "message_format": "text"
}










HTTP

Provides notification by invoking HTTP call to certain endpoint. HTTP notification uses POST method when invoking the call.


	
notify_http(url=None, body=None, params=None, headers=None, timeout=5, oauth2=False, include_alert=True)

	Send HTTP notification to specified endpoint.


	Parameters

	
	url (str [https://docs.python.org/2/library/functions.html#str]) – HTTP endpoint URL. If not passed, then default URL will be used in worker configuration.


	body (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Request body.


	params (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Request URL params.


	headers (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – HTTP headers.


	timeout (int [https://docs.python.org/2/library/functions.html#int]) – Request timeout. Default is 5 seconds.


	oauth2 (bool [https://docs.python.org/2/library/functions.html#bool]) – Add OAUTH2 authentication headers. Default is False.


	include_alert (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert data in request body. Default is True.








Example:

notify_http('https://some-notification-service/alert', body={'zmon': True}, headers={'X-TOKEN': 1234})










Note

If include_alert is True, then request body will include alert data. This is usually useful, since it provides valuable info like is_alert and changed which can indicate whether the alert has started or ended.

{
    "body": null,
    "alert": {
        "is_alert": true,
        "changed": true,
        "duration": 2.33,
        "captures": {},
        "entity": {"type": "GLOBAL", "id": "GLOBAL"},
        "worker": "plocal.zmon",
        "value": {"td": 0.00037, "worker": "plocal.zmon", "ts": 1472032348.665247, "value": 51.67797677979191},
        "alert_def": {
            "name": "Random Example Alert", "parameters": null, "check_id": 4, "entities_map": [], "responsible_team": "ZMON", "period": "", "priority": 1,
            "notifications": ["notify_http()"], "team": "ZMON", "id": 3, "condition": ">40"
        }
    }
}










Hubot

Send Hubot notification.


	
notify_hubot(queue, hubot_url, message=None)

	Send Hubot notification.


	Parameters

	
	queue (str [https://docs.python.org/2/library/functions.html#str]) – Hubot queue.


	hubot_url (str [https://docs.python.org/2/library/functions.html#str]) – Hubot url.


	message (str [https://docs.python.org/2/library/functions.html#str]) – Notification message.















Mail

Send email notifications.


	
send_mail(subject=None, cc=None, html=False, hide_recipients=True, include_value=True, include_definition=True, include_captures=True, include_entity=True, per_entity=True)

	Send email notification.


	Parameters

	
	subject (str [https://docs.python.org/2/library/functions.html#str] or unicode or None [https://docs.python.org/2/library/constants.html#None]) – Email subject.
You must use a unicode string (e.g. u’äöüß’) if you have non-ASCII
characters in there.
If None, the alert name will be used.


	cc (list) – List of CC recipients.


	html (bool [https://docs.python.org/2/library/functions.html#bool]) – HTML email.


	hide_recipients (bool [https://docs.python.org/2/library/functions.html#bool]) – Hide recipients. Will be sent as BCC.


	include_value (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert value in notification message.


	include_definition (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert definition details in notification message.


	include_captures (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert captures in message.


	include_entity (bool [https://docs.python.org/2/library/functions.html#bool]) – Include affected entities in notification message.


	per_entity (bool [https://docs.python.org/2/library/functions.html#bool]) – Send new email notification per entity. Default is True.













Note

send_email is an alias for this notification function.






Opsgenie

Notify Opsgenie [https://www.opsgenie.com/] of a new alert status. If alert is active, then a new opsgenie alert will be created. If alert is inactive then the alert will be closed.


	
notify_opsgenie(message='', teams=None, per_entity=False, priority=None, include_alert=True, description='', **kwargs)

	Send notifications to Opsgenie.


	Parameters

	
	message (str [https://docs.python.org/2/library/functions.html#str]) – Alert message. If empty, then a message will be generated from the alert data.


	teams (str | list) – Opsgenie teams to be notified. Value can be a single team or a list of teams.


	per_entity (bool [https://docs.python.org/2/library/functions.html#bool]) – Send new alert per entity. This affects the alias value and impacts how de-duplication is handled in Opsgenie. Default is False.


	priority (str [https://docs.python.org/2/library/functions.html#str]) – Set Opsgenie priority for this notification. Valid values are P1, P2, P3, P4 or P5.


	include_alert (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert data in alert body details. Default is True.


	include_captures (bool [https://docs.python.org/2/library/functions.html#bool]) – Include captures data in alert body details. Default is False.


	description (str [https://docs.python.org/2/library/functions.html#str]) – An optional description. If present, this is inserted into the opsgenie alert description field.








Example:

notify_opsgenie(teams=['zmon', 'ops'], message='Number of failed requests is too high!', include_alert=True)










Note

If priority is not set, then ZMON will set the priority according to the alert priority.






Pagerduty

Notify Pagerduty [https://www.pagerduty.com/] of a new alert status. If alert is active, then a new pagerduty incident with type trigger will be sent. If alert is inactive then incident type will be updated to resolve.


Note

Pagerduty notification plugin uses API v2.




	
notify_pagerduty(message='', per_entity=False, include_alert=True, routing_key=None, alert_class=None, alert_group=None, **kwargs)

	Send notifications to Pagerduty.


	Parameters

	
	message (str [https://docs.python.org/2/library/functions.html#str]) – Incident message. If empty, then a message will be generated from the alert data.


	per_entity (bool [https://docs.python.org/2/library/functions.html#bool]) – Send new alert per entity. This affects the dedup_key value and impacts how de-duplication is handled in Pagerduty. Default is False.


	include_alert (bool [https://docs.python.org/2/library/functions.html#bool]) – Include alert data in incident payload custom_details. Default is True.


	routing_key (str [https://docs.python.org/2/library/functions.html#str]) – Pagerduty service routing_key. If not specified, then the service key configured for the worker will be used.


	alert_class (str [https://docs.python.org/2/library/functions.html#str]) – Set the Pagerduty incident class.


	alert_group (str [https://docs.python.org/2/library/functions.html#str]) – Set the Pagerduty incident group.








Example:

notify_pagerduty(message='Number of failed requests is too high!', include_alert=True, alert_class='API health', alert_group='production')












Push

Send push notification via ZMON notification service [https://github.com/zalando-zmon/zmon-notification-service].


	
send_push(url=None, key=None, message=None)

	Send Push notification to mobile devices.


	Parameters

	
	url (str [https://docs.python.org/2/library/functions.html#str]) – Notification service base URL.


	key (str [https://docs.python.org/2/library/functions.html#str]) – Notification service API key.


	message (str [https://docs.python.org/2/library/functions.html#str]) – Message to be sent in notification.













Note

If Message is None then it will be generated from alert status.






Slack

Notify Slack channel with alert status. A webhook is required for notifications.


	
notify_slack(webhook=None, channel='#general', message=None)

	Send Slack notification to specified channel.


	Parameters

	
	webhook (str [https://docs.python.org/2/library/functions.html#str]) – Slack webhook. If not set, then webhook set in configuration will be used.


	channel (str [https://docs.python.org/2/library/functions.html#str]) – Channel to be notified. Default is #general.


	message (str [https://docs.python.org/2/library/functions.html#str]) – Message to be sent. If None, then a message constructed from the alert will be sent.















Twilio

Use Twilio to receive phone calls if alerts pop up. This includes basic ACK and escalation. Requires account at Twilio and the notifiction service deployed. Low investment to get going though. WORK IN PROGRESS.


	
notifiy_twilio(numbers=[], message="ZMON Alert Up: Some Alert")

	Make phone call to supplied numbers. First number will be called immediately. After two minutes, another call is made to that number if no ACK. Other numbers follow at 5min interval without ACK.


	Parameters

	
	message (str [https://docs.python.org/2/library/functions.html#str]) – Message to be sent. If None, then a message constructed from the alert will be sent.


	numbers – Numbers to call













Note

Remember to configure your worker for this.

NOTIFICATION_SERVICE_URL
NOTIFICATION_SERVICE_KEY













          

      

      

    

  

  
    
    Monitoring on AWS
    

    
 
  

    
      
          
            
  
Monitoring on AWS

This section assumes that you’re running zmon-aws-agent [https://github.com/zalando-zmon/zmon-aws-agent], which automatically discovers your EC2 instances, auto-scaling of groups, ELBs, and more.

ZMON AWS agent syncs the following entities from AWS infrastructure:


	EC2 instances


	Auto-Scaling groups


	ELBs (classic and ELBv2)


	Elasticaches


	RDS instances


	DynamoDB tables


	IAM/ACM certificates





Note

ZMON AWS Agent can be also deployed via a single appliance [https://github.com/zalando-zmon/zmon-appliance], which runs AWS Agent, ZMON worker [https://github.com/zalando-zmon/zmon-worker] and ZMON scheduler [https://github.com/zalando-zmon/zmon-scheduler].




CloudWatch Metrics

You can achieve most basic monitoring with AWS CloudWatch [https://aws.amazon.com/cloudwatch/]. CloudWatch EC2 metrics contain the following information:


	CPU Utilization


	Network traffic


	Disk throughput/operations per second (only for ephemeral storage; EBS volumes are not included)




ZMON allows querying arbitrary CloudWatch metrics using the cloudwatch() wrapper.




Security Groups

Depending on your AWS setup, you’ll probably have to open particular ports/instances to access from ZMON. Using a limited set of ports to expose management APIs and the Prometheus node exporter will make your life easier. ZMON allows parsing of Prometheus metrics via the http().prometheus().

You can deploy ZMON into each of your AWS accounts to allow cross-team monitoring and dashboards. Make sure that your security groups allow ZMON to connect to port 9100 of your monitored instances.

Not having the proper security groups configured is mainly visible by not getting the expected results at all, as packages are dropped by the EC2 instance rather then e.g. getting a connection refused.




Low-Level or Basic Properties


EC2 Instances

Having enough diskspace on your instance is important; here’s a sample check [https://github.com/zalando/zmon/tree/master/examples/check-definitions/11-ec2-diskspace.yaml]. By default, you can only get space used from CloudWatch [https://aws.amazon.com/cloudwatch/]. Using Amazon’s own script, you can push free space to CloudWatch and pull this data via ZMON. Alternatively, you can run the Prometheus Node exporter [https://github.com/prometheus/node_exporter] to pull disk space data from the EC2 node itself via HTTP.

Similarly, you can pull CPU-related metrics from CloudWatch. The Prometheus Node exporter also exposes these metrics.

You also need enough available INodes.

Regarding memory, you can either query via CloudWatch, use Prometheus Node exporter to feed ZMON, or go with low-level snmp() [not recommended].

The following block shows part of EC2 instance entity properties:

id: a-app-1-2QBrR1[aws:123456789:eu-west-1]
type: instance
aws_id: i-87654321
created_by: agent
host: 172.33.173.201
infrastructure_account: aws:123456789
instance_type: t2.medium
ip: 172.33.173.201
ports:
  '5432': 5432
  '8008': 8008
region: eu-west-1





An example check using cloudwatch wrapper and entity properties would look like the following:

cloudwatch().query_one({'InstanceId': entity['aws_id']}, 'CPUUtilization', 'Average', 'AWS/EC2', period=120)








Elastic Load Balancers

You can query AWS CloudWatch to get ELB-specific metrics. The ZMON agent will put data into the ELB entity, allowing you to monitor instance and healthy instance count.

id: elb-a-app-1[aws:123456789:eu-west-1]
type: elb
elb_type: classic
active_members: 1
created_by: agent
dns_name: internal-a-app-1.eu-west-1.elb.amazonaws.com
host: internal-a-app-1.eu-west-1.elb.amazonaws.com
infrastructure_account: aws:123456789
members: 3
region: eu-west-1
scheme: internal





ZMON AWS agent will detect both ELBs, classic and application load balancers. Both ELBs entities will be created in ZMON with type:elb. In order to distinguish between them in your checks, there is another property elb_type which holds either classic or application.

Since Cloudwatch metrics are different for each ELB type, please check CloudWatch ELB metrics [http://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/elb-metricscollected.html] for detailed reference. An example check using Cloudwatch wrapper and entity properties would look like the following:

# Classic ELB
lb_name = entity['name']
key = 'LoadBalancerName'
namespace = 'AWS/ELB'

# Check if Application ELBv2 entity
if entity.get('elb_type') == 'application':
    lb_name = entity['cloudwatch_name']
    key = 'LoadBalancer'
    namespace = 'AWS/ApplicationELB'

cloudwatch().query_one({key: lb_name}, 'RequestCount', 'Sum', namespace)






Note

ELB entities contain a special flag dns_traffic which is an indicator about the load balancer being actively serving traffic.






Auto-Scaling Groups

ZMON’s agent creates an auto-scaling group entity that provides you with the number of desired instances and the number of instances in a healthy state. This enables you to monitor whether the ASG actually works and hosts spawn into a productive state.

id: asg-proxy-1[aws:123456789:eu-central-1]
type: asg
name: proxy-1
created_by: agent
desired_capacity: 2
dns_traffic: 'true'
dns_weight: 200
infrastructure_account: aws:123456789
instances:
- aws_id: i-123456
  ip: 172.33.109.201
- aws_id: i-654321
  ip: 172.33.109.202
max_size: 4
min_size: 2
region: eu-central-1








RDS Instances

ZMON AWS agent will detect RDS instances and store them as entities with type database.

id: rds-db-1[aws:123456789]
type: database
name: db-1
created_by: agent
engine: postgres
host: db-1.rds.amazonaws.com
infrastructure_account: aws:123456789
port: 5432
region: eu-west-1





cloudwatch().query_one({'DBInstanceIdentifier': entity['name']}, 'DatabaseConnections', 'Sum', 'AWS/RDS')








ElastiCache Redis

Elasticache instances are stored as entities with type elc.

id: elc-redis-1[aws:123456789:eu-central-1]
type: elc
cluster_id: all-redis-001
cluster_num_nodes: 1
created_by: agent
engine: redis
host: redis-1.cache.amazonaws.com
infrastructure_account: aws:123456789
port: 6379
region: eu-central-1








IAM/ACM Certificates

ZMON AWS agent will also sync IAM/ACM SSL certificates, with type certificate. Certificate entities could be used to create an alert in case a certificate is about to expire for instance.

id: cert-acm-example.org[aws:123456789:eu-central-1]
type: certificate
name: '*.example.org'
status: ISSUED
arn: arn:aws:acm:eu-central-1:123456789:certificate/123456-123456-123456-123456
certificate_type: acm
created_by: agent
expiration: '2017-07-28T12:00:00+00:00'
infrastructure_account: aws:123456789
region: eu-central-1










Application API Monitoring

When monitoring an application, you’ll usually want to check the number of received requests, latency patterns, and the number of returned status codes.
These data points form a pretty clear picture of what is going on with the application.

Additional metrics will help you find problems as well as opportunities for improvement.
Assuming that your applications provide HTTP APIs hidden behind ELBs, you can use ZMON to gather this data from CloudWatch.

For more detailed data, ZMON offers options for different languages and frameworks.
One is zmon-actuator [https://github.com/zalando-zmon/zmon-actuator] for Spring Boot.
ZMON gathers the data by querying a JSON endpoint /metrics adhering to the DropWizard metrics layout with some convention on the naming of timers.
Basically on timer per API path and status code.

We also recommend checking out Friboo [https://github.com/zalando-stups/friboo] for working with Clojure, the Python/Flask framework Connexion [https://github.com/zalando/connexion] or Markscheider [https://github.com/zalando-incubator/markscheider] for Play/Scala development.

The http(url=…).actuator_metrics() will parse the data into a Python dict that allows you to easily monitor and alert on changes in API behavior.

This also drives ZMON’s cloud UI.

[image: ../_images/cloud1.png]






          

      

      

    

  

  
    
    Requirements
    

    
 
  

    
      
          
            
  
Requirements

The requirements below are all open soure technologies that need to be available for ZMON to run with all its features.


Redis

The Redis service is one of the core dependencies, ZMON uses Redis for its task queue and to store its current state.




PostgreSQL

PostgreSQL is ZMONs data store for entities, checks, alerts, dashboards and Grafana dashboards.
The entities service relies on PostgreSQL’s jsonb data type thus you need a PostgreSQL 9.4+ running.




Cassandra

Cassandra needs to be available for KairosDB if you want to have historic data and make use of Grafana, this is highly suggested.
We strongly recommend to run Cassandra 3.7+ and using TimeWindow compaction strategy for KairosDB.
This will nicely split your SSTables into a single file per day (depending on your config).




KairosDB

KairosDB is our time series database of choice, however by now we are running our own fork [https://github.com/zalando-zmon/kairosdb]. This is not required for standard volume scenarios we believe.
ZMON will store every metric gathered in KairosDB so that you can use it directly or via Graphana to access historic data.
ZMON itself allows you to plot charts from KairosDB in Dashboard widgets or go to check/alert specific charts directly.







          

      

      

    

  

  
    
    Essential ZMON Components
    

    
 
  

    
      
          
            
  
Essential ZMON Components

To use ZMON requires these four components: zmon-controller [https://github.com/zalando-zmon/zmon-controller], zmon-scheduler [https://github.com/zalando-zmon/zmon-scheduler], zmon-worker [https://github.com/zalando-zmon/zmon-worker], and zmon-eventlog-service [https://github.com/zalando-zmon/zmon-eventlog-service].

[image: ../_images/components1.svg]
Controller

zmon-controller [https://github.com/zalando-zmon/zmon-controller] runs ZMON’s AngularJS frontend and serves as an endpoint for retrieving data and managing your ZMON deployment via REST API (with help from the command line client). It needs a connection configured to:



	PostgreSQL to store/retrieve all kind of data: entities, checks, dashboards, alerts


	Redis, to keep the state of ZMON’s alerts


	KairosDB, if you want charts/Grafana







To provide a means of authentication and authorization, you can choose between the following options:



	A basic credential file


	An OAuth2 identity provider, e.g., GitHub










Scheduler

zmon-scheduler [https://github.com/zalando-zmon/zmon-scheduler] is responsible for keeping track of all existing entities, checks and alerts and scheduling checks in time for applicable entities, which are then executed by the worker.

Needs connections to:



	Redis, which serves ZMON as a task queue


	Controller, to get check/alerts/entities


	Custom adapters might need connections for entity discovery in your platform










Worker

zmon-worker [https://github.com/zalando-zmon/zmon-worker] does the heavy lifting — executing tasks against entities and evaluating all alerts assigned to this check. Tasks are picked up from Redis and the resulting check value plus alert state changes are written back to Redis.


	Needs connection to:

	
	Redis to retrieve tasks and update current state


	KairosDB if you want to have metrics


	EventLog service to store history events for alert state changes











EventLog Service

zmon-eventlog-service [https://github.com/zalando-zmon/zmon-eventlog-service] is our slim implementation of an event store, keeping track of Events related to alert state changes as well as events like alert and check modification by the user.


	Needs connection to:

	
	PostgreSQL to store events using jsonb














          

      

      

    

  

  
    
    Component Configuration
    

    
 
  

    
      
          
            
  
Component Configuration

In this section we assume that you want to use Docker as means of deployment.
The ZMON Dockerimages in Zalando’s Open Source registry are exactly the ones we use ourselves, injecting all configuartion via environment variables.

If this does not fit your needs you can run the artifacts directly and decide to use environment variables or modify the example config files.

At this point we also assume the requirements in terms of PostgreSQL, Redis and KairosDB are available and you have the credentials at hand.
If not see Requirements. The minimal configuration options below are taken from the Demo’s Bootstrap [https://github.com/zalando-zmon/zmon-demo] script!


Authentication

For the ZMON controller we assume that it is publicly accessible.
Thus the UI always requires users to login and the REST API, too.
The REST API relies on tokens via the Authorization: Bearer <token> header to allow access.
For environments where you have no OAauth2 setup you can configure pre-shared keys for API access.


Note

Feel free to look at Zalando’s Plan-B [http://planb.readthedocs.io/en/latest/], which is a freely available OAuth2 provider we use for our platform to secure service to service communication.



Creating a preshared token can be achieved like this and adding them to the Controller configuration.

SCHEDULER_TOKEN=$(makepasswd --string=0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ --chars 32)






Warning

Due to magic in matching env vars token must be ALL UPPERCASE



Scheduler and worker both at times call the controller’s REST API thus you need to configure tokens for them.
For the scheduler, KairosDB, eventlog-service and metric-cache if deployed we assume for now they are private.
Theses services are accessed only by worker and controller and do not need to be public.
Same is true for Redis, PostgreSQL and Cassandra.
However in general we advise you to setup proper credentials and roles where possible.




Running Docker

First we need to figure out what tags to run.
Belows bash snippet helps you to retrieve and set the latest available tags.

function get_latest () {
    name=$1
    # REST API returns tags sorted by time
    tag=$(curl --silent https://registry.opensource.zalan.do/teams/stups/artifacts/$name/tags | jq .[].name -r | tail -n 1)
    echo "$name:$tag"
}

echo "Retrieving latest versions.."
REPO=registry.opensource.zalan.do/stups
POSTGRES_IMAGE=$REPO/postgres:9.4.5-1
REDIS_IMAGE=$REPO/redis:3.2.0-alpine
CASSANDRA_IMAGE=$REPO/cassandra:2.1.5-1
ZMON_KAIROSDB_IMAGE=$REPO/$(get_latest kairosdb)
ZMON_EVENTLOG_SERVICE_IMAGE=$REPO/$(get_latest zmon-eventlog-service)
ZMON_CONTROLLER_IMAGE=$REPO/$(get_latest zmon-controller)
ZMON_SCHEDULER_IMAGE=$REPO/$(get_latest zmon-scheduler)
ZMON_WORKER_IMAGE=$REPO/$(get_latest zmon-worker)
ZMON_METRIC_CACHE=$REPO/$(get_latest zmon-metric-cache)





To run the selected images use Docker’s run command together with the options explained below.
We use the following wrapper for this:

function run_docker () {
    name=$1
    shift 1
    echo "Starting Docker container ${name}.."
    # ignore non-existing containers
    docker kill $name &> /dev/null || true
    docker rm -f $name &> /dev/null || true
    docker run --restart "on-failure:10" --net zmon-demo -d --name $name $@
}

run_docker zmon-controller \
            # -e ......... \
            # -e ......... \
           $ZMON_CONTROLLER_IMAGE








Controller


Authentication

Configure your Github application

-e SPRING_PROFILES_ACTIVE=github \
-e ZMON_OAUTH2_SSO_CLIENT_ID=64210244ddd8378699d6 \
-e ZMON_OAUTH2_SSO_CLIENT_SECRET=48794a58705d1ba66ec9b0f06a3a44ecb273c048 \





Make everyone admin for now:

-e ZMON_AUTHORITIES_SIMPLE_ADMINS=* \








Logout URL

When switching to TV Mode, you can use this to enable the Pop-up dialog described in
“Read Only” Display Login which opens the Logout URL in a new Tab to terminate the user’s session.

-e ZMON_LOGOUT_URL="https://example.com/logout"








Dependencies

Configure PostgreSQL access:

-e POSTGRES_URL=jdbc:postgresql://$PGHOST:5432/local_zmon_db \
-e POSTGRES_PASSWORD=$PGPASSWORD \





Setup Redis connection:

-e REDIS_HOST=zmon-redis \
-e REDIS_PORT=6379 \





Set CORS allowed origins:

-e ENDPOINTS_CORS_ALLOWED_ORIGINS=https://demo.zmon.io \





Setup URLs for other services:

-e ZMON_EVENTLOG_URL=http://zmon-eventlog-service:8081/ \
-e ZMON_KAIROSDB_URL=http://zmon-kairosdb:8083/ \
-e ZMON_METRICCACHE_URL=http://zmon-metric-cache:8086/ \
-e ZMON_SCHEDULER_URL=http://zmon-scheduler:8085/ \





And last but not least, configure a preshared token, to allow the scheduler and worker to access the REST API. Remember tokens need to all uppercase here.

-e PRESHARED_TOKENS_${SCHEDULER_TOKEN}_UID=zmon-scheduler \
-e PRESHARED_TOKENS_${SCHEDULER_TOKEN}_EXPIRES_AT=1758021422 \
-e PRESHARED_TOKENS_${SCHEDULER_TOKEN}_AUTHORITY=user








Firebase and Webpush

Enable desktop push notification UI with the following options:

-e ZMON_ENABLE_FIREBASE=true \
-e ZMON_NOTIFICATIONSERVICE_URL=http://zmon-notification-service:8087/ \
-e ZMON_FIREBASE_API_KEY="AIzaSyBM1ktKS5u_d2jxWPHVU7Xk39s-PG5gy7c" \
-e ZMON_FIREBASE_AUTH_DOMAIN="zmon-demo.firebaseapp.com" \
-e ZMON_FIREBASE_DATABASE_URL="https://zmon-demo.firebaseio.com" \
-e ZMON_FIREBASE_STORAGE_BUCKET="zmon-demo.appspot.com" \
-e ZMON_FIREBASE_MESSAGING_SENDER_ID="280881042812" \





This feature requires additional config for the worker and to run the notification-service.






Scheduler

Specify the Redis server you want to use:

-e SCHEDULER_REDIS_HOST=zmon-redis \
-e SCHEDULER_REDIS_PORT=6379 \





Setup access to the controller and entity service (both provided by the controller):
Not the reuse of the above defined pre shared key!

-e SCHEDULER_OAUTH2_STATIC_TOKEN=$SCHEDULER_TOKEN \
-e SCHEDULER_URLS_WITHOUT_REST=true \
-e SCHEDULER_ENTITY_SERVICE_URL=http://zmon-controller:8080/ \
-e SCHEDULER_CONTROLLER_URL=http://zmon-controller:8080/ \





If you run into scenarios of different queues or the demand for different levels of parallelism, e.g. limiting number of queries run at MySQL/PostgreSQL databases use the following as an example:

-e SPRING_APPLICATION_JSON='{"scheduler":{"queue_property_mapping":{"zmon:queue:mysql":[{"type":"mysql"}]}}}'





This will route checks agains entities of type “mysql” to another queue.




Worker

The worker configuration is split into essential configuration options, like Redis and KairosDB and the plugin configuration, e.g. PostgreSQL credentials, …


Essential Options

Configure Redis Access:

-e WORKER_REDIS_SERVERS=zmon-redis:6379 \





Configure parallelism and throughput:

-e WORKER_ZMON_QUEUES=zmon:queue:default/25,zmon:queue:mysql/3





Specify the number of worker processes that are polling the queues and execute tasks.
You can specify multiple queues here to listen to.

Configure KairosDB:

-e WORKER_KAIROSDB_HOST=zmon-kairosdb \





Configure EventLog service:

-e WORKER_EVENTLOG_HOST=zmon-eventlog-service \
-e WORKER_EVENTLOG_PORT=8081 \





Configure Worker token to access controller API: (relying on Python tokens library here)

-e  OAUTH2_ACCESS_TOKENS=uid=$WORKER_TOKEN \





Configure Worker named tokens to access external APIs:

-e WORKER_PLUGIN_HTTP_OAUTH2_TOKENS=token_name1=scope1,scope2,scope3:token_name2=scope1,scope2





Configure Metric Cache (optional):

-e WORKER_METRICCACHE_URL=http://zmon-metric-cache:8086/api/v1/rest-api-metrics/ \
-e WORKER_METRICCACHE_CHECK_ID=9 \








Notification Options


Firebase and Webpush

To trigger notifications for desktop web and mobile apps set the following params to point to notification service.


	WORKER_NOTIFICATION_SERVICE_URL

	Notification service base url



	WORKER_NOTIFICATION_SERVICE_KEY

	(optional, if not using oauth2) A shared key configured in the notification service








Hipchat


	WORKER_NOTIFICATIONS_HIPCHAT_TOKEN

	Access token for HipChat notifications.



	WORKER_NOTIFICATIONS_HIPCHAT_URL

	URL of HipChat server.








HTTP

This allows to trigger HTTP Post calls to arbitrary services.


	WORKER_NOTIFICATIONS_HTTP_DEFAULT_URL

	HTTP endpoint default URL.



	WORKER_NOTIFICATIONS_HTTP_WHITELIST_URLS

	List of whitelist URL endpoints. If URL is not in this list, then exception will be raised.



	WORKER_NOTIFICATIONS_HTTP_ALLOW_ALL

	Allow any URL to be used in HTTP notification.



	WORKER_NOTIFICATIONS_HTTP_HEADERS

	Default headers to be used in HTTP requests.








Mail


	WORKER_NOTIFICATIONS_MAIL_HOST

	SMTP host for email notifications.



	WORKER_NOTIFICATIONS_MAIL_PORT

	SMTP port for email notifications.



	WORKER_NOTIFICATIONS_MAIL_SENDER

	Sender address for email notifications.



	WORKER_NOTIFICATIONS_MAIL_USER

	SMTP user for email notifications.



	WORKER_NOTIFICATIONS_MAIL_PASSWORD

	SMTP password for email notifications.








Slack


	WORKER_NOTIFICATIONS_SLACK_WEBHOOK

	Slack webhook for channel notifications.








Twilio


	WORKER_NOTIFICATION_SERVICE_URL

	URL of notification service (needs to be publicly accessible)



	WORKER_NOTIFICATION_SERVICE_KEY

	(optional, if not using oauth2) Preshared key to call notification service








Pagerduty


	WORKER_NOTIFICATIONS_PAGERDUTY_SERVICEKEY

	Routing key for a Pagerduty service








Plug-In Options

All plug-in options have the prefix WORKER_PLUGIN_<plugin-name>_, i.e. if you want to set option “bar” of the plugin “foo” to “123” via environment variable:

WORKER_PLUGIN_FOO_BAR=123





If you plan to access your PostgreSQL cluster specify the credentials below. We suggest to use a distinct user for ZMON with limited read only privileges.

WORKER_PLUGIN_SQL_USER
WORKER_PLUGIN_SQL_PASS





If you need to access MySQL specify the user credentials below, again we suggest to use a user with limited privileges only.

WORKER_PLUGIN_MYSQL_USER
WORKER_PLUGIN_MYSQL_PASS












Notification Service

Optional component to service mobile API, push notifications and Twilio notifications.


Authentication


	SPRING_APPLICATION_JSON

	Use this to define pre-shared keys if not using OAuth2. Specify key and max validity.

{"notifications":{"shared_keys":{"<your random key>": 1504981053654}}}












Firebase and Web Push


	NOTIFICATIONS_GOOGLE_PUSH_SERVICE_API_KEY

	Private Firebase messaging server key



	NOTIFICATIONS_ZMON_URL

	ZMON’s base URL








Twilio options


	NOTIFICATIONS_TWILIO_API_KEY

	Private API Key



	NOTIFICATIONS_TWILIO_USER

	User



	NOTIFICATIONS_TWILIO_PHONE_NUMBER

	Phone number to use



	NOTIFICATIONS_DOMAIN

	Domain under which notification service is reachable













          

      

      

    

  

  
    
    Rest API
    

    
 
  

    
      
          
            
  
Rest API


Authentication & Authorization

You need to obtain a token to access ZMON’s REST API. For the default deployment using Github rely on access tokens from Github, otherwise it depends on your selected provider.

Your application should always examine the HTTP status of the response. Any value other than 200 indicates a failure.

Here are some examples:

Request with invalid credentials:

HTTP/1.1 401 Unauthorized
Content-Type: application/json;charset=UTF-8
Content-Length: 29
Date: Thu, 21 Aug 2014 10:28:10 GMT

{"message":"Bad credentials"}





Request without proper authentication:

HTTP/1.1 401 Unauthorized
Content-Type: application/json;charset=UTF-8
Content-Length: 69
Date: Thu, 21 Aug 2014 10:29:14 GMT

{"message":"Full authentication is required to access this resource"}





Request without proper authorization:

HTTP/1.1 403 Forbidden
Content-Type: application/json;charset=UTF-8
Content-Length: 30
Date: Thu, 21 Aug 2014 10:31:20 GMT

{"message":"Access is denied"}








Entities

see CLI entities




Check Definitions

see CLI check definitions




Dashboards




Downtimes

For more info about this feature, please check this


Scheduling a downtime

Resource URL: POST /api/v1/downtimes

Description

Create a new downtime, returning the id of the newly created resource. If none of the
alert definition entities match this request it will succeed and return an empty list of entities/alert definitions.
Any attempt to execute this method without proper authentication will result in a 401. If the user does not have enough
permissions (role: api-writer) this method will return an HTTP 403. In case of malformed syntax or missing mandatory
fields this method will return an HTTP 400 and the client SHOULD NOT repeat the request without modifications. In case
of success this method will return HTTP 200.



Note

Alerts and checks with hard-coded entity identifiers in the check command are not covered.






Parameters:









	Name

	Data Type

	Mandatory

	Description





	comment

	String

	yes

	Downtime comment



	start_time

	Number

	no

	The start time in seconds since epoch.

Default: current time




	end_time

	Number

	yes

	The end time in seconds since epoch.

Precondition: end_time > start_time




	entities

	Array

	yes

	Array of entities to set in downtime.
(e.g. htt01:4420)

Precondition: The array should have
at least one element




	alert_definitions

	Array

	no

	Alert definition ids. If specified, only
entities belonging to these alert
definitions will be set in downtime.






Example:

curl -v --user hjacobs:test 'https://zmon.example.com/api/v1/downtimes' \
   -H 'Content-Type: application/json' \
   --data-binary $'{"comment":"Cities downtime","end_time":1408665600,"entities":["cd-kinshasa", "cn-peking"]}'





Request:

POST /api/v1/downtimes HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*
Content-Type: application/json
Content-Length: 91

{"comment":"Cities downtime","end_time":1408665600,"entities":["cd-kinshasa", "cn-peking"]}





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 21 Aug 2014 14:26:02 GMT

{"comment":"Cities downtime","start_time":1408631162,"end_time":1408665600,"created_by":"hjacobs",
"id":"cf6ada50-3eb2-4c17-8d09-4eb03dc19cf5","entities":["cn-peking","cd-kinshasa"],"alert_definitions":[704]}








Deleting a downtime

Resource URL: DELETE /api/v1/downtimes/{id}

Description

Attempt to delete the downtime with the specified id. If the downtime ID doesn’t exist, the request will succeed and
return an empty list of entities/alert definitions. Any attempt to execute this method without
proper authentication will result in a 401. If the user doesn’t have enough permissions (role: api-writer) this method
will return an HTTP 403. In case of malformed syntax or missing mandatory fields this method will return an HTTP 400
and the client SHOULD NOT repeat the request without modifications. In case of success this method will return HTTP 200.

Parameters:









	Name

	Data Type

	Mandatory

	Description





	id

	String

	yes

	Id of the downtime to delete






Example:

curl -v --user hjacobs:test 'https://zmon.example.com/api/v1/downtimes/cf6ada50-3eb2-4c17-8d09-4eb03dc19cf5' \
  -H 'Content-Type: application/json' \
  -X DELETE





Request:

DELETE /api/v1/downtimes/cf6ada50-3eb2-4c17-8d09-4eb03dc19cf5 HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*
Content-Type: application/json





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Thu, 21 Aug 2014 15:16:51 GMT

{"comment":"Cities downtime","start_time":1408633908,"end_time":1408665600,"created_by":"hjacobs",
"id":"0ff6ed67-9521-42a7-8132-5ab837193af9","entities":["cn-peking","cd-kinshasa"],"alert_definitions":[704]}










Alert Definitions

For more info about this feature, please check this


Creating a new Alert Definition

Resource URL: POST /api/v1/alert-definitions

Description

Create a new alert definition, returning the id of the newly created resource. Alert definitions can be created based
on another alert definition whereby a child reuses attributes from the parent. Each alert definition can only inherit
from a single alert definition (single inheritance).

One can also create templates. A Template is basically an alert definition with a subset of mandatory attributes that
is not evaluated and is only used for extension.

Any attempt to execute this method without proper authentication will result in a 401. In case of success this method
will return HTTP 200.

Parameters:










	Name

	Data Type

	Mandatory

	Inherited

	Description





	name

	String

	yes

	yes

	The alert’s display name on the dashboard. This field can
contain curly-brace variables like {mycapture} that are
replaced by capture’s value when the alert is triggered. It’s
also possible to format decimal precision (e.g. “My alert
{mycapture:.2f}” would show as “My alert 123.45” if mycapture
is 123.456789). To include a comma separated list of entities
as part of the alert’s name, just use the special placeholder
{entities}. This field can be omitted if the new definition
extends an existing one with this field defined (templates
might not have all fields).



	description

	String

	yes

	yes

	Meaningful text for people trying to handle the alert. This
field can be omitted if the new definition extends an
existing one with this field defined.



	team

	String

	yes

	no

	Team dashboard to show the alert on.



	responsible_team

	String

	yes

	no

	Additional team field that allows one to delegate alert
monitoring to other teams. The responsible team’s name will
be shown on the dashboard. This team is responsible for
fixing the problem in case the alert is triggered.



	entities

	Array

	yes

	yes

	Filter used to select a subset of check definition entities.
If empty, the condition will be evaluated in all entities
defined in check definition. This field can be omitted if the
new definition extends an existing one with this fields
defined.



	entities_exclude

	Array

	yes

	yes

	This filter is useful to exclude entities from the final
entity set. If empty, none of the  entities will be excluded.
This field can be omitted if the new definition extends an
existing one with this fields defined



	condition

	String

	yes

	yes

	Valid Python expression to return true when alert should be
triggered. This field can be omitted if the new definition
extends an existing one with this fields defined.



	notifications

	String

	no

	yes

	List of notification commands. One could either send emails
(send_mail) or sms (send_sms).



	check_definition_id

	Number

	yes

	yes

	Id of the check definition. This field can be omitted if the
new definition extends an existing one with this fields
defined.



	status

	String

	yes

	no

	Alert definition status. Possible values are:


	ACTIVE


	INACTIVE


	REJECTED




Alerts are only triggered if the alert definition is active.




	priority

	Number

	yes

	yes

	Alert priority. Possible values are:


	1: red


	2: orange


	3: yellow







	period

	String

	no

	yes

	Notification time period.



	template

	Boolean

	yes

	no

	A template is an alert definition that is not evaluated and
can only be used for extension.



	parent_id

	Number

	no

	no

	Id of the parent alert definition. All fields defined on the
parent will be inherited.



	parameters

	Object

	no

	yes

	Alert definition parameters allows one to decouple alert
condition from constants that are used inside it. One can
define parameters in the python condition and specify its
values in this field. e.g. {“KEY1”: 1, “KEY2”, “foo”}



	tags

	Array

	no

	yes

	keyword assigned to a alert definition. This metadata helps
describe an alert definition and allows it to be found by
searching.






Example:

curl --user hjacobs:test 'https://zmon.example.com/api/v1/alert-definitions' -H 'Content-Type: application/json' \
    --data-binary $'{"name": "City Longitude >0", "description": "Test whether a city lies east or west", "team": "Platform/Software", "responsible_team": "Platform/Software", "entities": [{"type": "city"}], "entities_exclude": [], "condition": "capture(longitude=float(value)) > longitude_param", "notifications": [], "check_definition_id": 20, "status": "ACTIVE", "priority": 2, "period": "", "template": false, "parameters": {"longitude_param": {"comment": "Longitude parameter","type": "float", "value": 0}}, "tags": ["CITY"]}'





Request:

POST /api/v1/alert-definitions HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*
Content-Type: application/json





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Tue, 26 Aug 2014 18:02:29 GMT

{"id":788,"name":"City Longitude >0","description":"Test whether a city lies east or west",
"team":"Platform/Software","responsible_team":"Platform/Software","entities":[{"type":"city"}],
"entities_exclude":[],"condition":"capture(longitude=float(value)) > longitude_param","notifications":[],
"check_definition_id":20,"status":"ACTIVE","priority":2,"last_modified":1409076149956,"last_modified_by":"hjacobs",
"period":"","template":false,"parent_id":null,
"parameters":{"longitude_param":{"value":0,"comment":"Longitude parameter","type":"float"}},"tags":["CITY"]}








Updating an Alert Definition

Resource URL: PUT /api/v1/alert-definitions/{id}

Description

Updates an existing alert definition. If the alert definintion doesn’t exist, this method will return a 404.

For more info about the parameters, please check how to create a new Alert Definition

Example:

curl --user hjacobs:test 'https://zmon.example.com/api/v1/alert-definitions/788' \
-H 'Content-Type: application/json' \
--data-binary $'{"name": "City Longitude >0", "description": "Checks whether a city lies east or west", "team": "Platform/Software", "responsible_team": "Platform/Software", "entities": [{"type": "city"}], "entities_exclude": [], "condition": "capture(longitude=float(value)) > longitude_param", "notifications": [], "check_definition_id": 20, "status": "ACTIVE", "priority": 2, "period": "", "template": false, "parameters": {"longitude_param": {"comment": "Longitude parameter","type": "float", "value": 0}}, "tags": ["CITY"]}' \
-X PUT





Request:

PUT /api/v1/alert-definitions/788 HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*
Content-Type: application/json





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Tue, 26 Aug 2014 18:47:00 GMT

{"id":788,"name":"City Longitude >0","description":"Checks whether a city lies east or west",
"team":"Platform/Software","responsible_team":"Platform/Software","entities":[{"type":"city"}],
"entities_exclude":[],"condition":"capture(longitude=float(value)) > longitude_param","notifications":[],
"check_definition_id":20,"status":"ACTIVE","priority":2,"last_modified":1409078820694,"last_modified_by":"hjacobs",
"period":"","template":false,"parent_id":null,
"parameters":{"longitude_param":{"value":0,"comment":"Longitude parameter","type":"float"}},"tags":["CITY"]}








Find an Alert Defintion by ID

Resource URL: GET /api/v1/alert-definitions/{id}

Description

Find an existing alert definition by id. If the alert definintion doesn’t exist, this method will return a 404.

Example:

curl -v --user hjacobs:test 'https://zmon.example.com/api/v1/alert-definitions/788' \
-H 'Content-Type: application/json'





Request:

GET /api/v1/alert-definitions/788 HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*
Content-Type: application/json





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Date: Tue, 26 Aug 2014 18:47:00 GMT

{"id":788,"name":"City Longitude >0","description":"Checks whether a city lies east or west",
"team":"Platform/Software","responsible_team":"Platform/Software","entities":[{"type":"city"}],
"entities_exclude":[],"condition":"capture(longitude=float(value)) > longitude_param","notifications":[],
"check_definition_id":20,"status":"ACTIVE","priority":2,"last_modified":1409078820694,"last_modified_by":"hjacobs",
"period":"","template":false,"parent_id":null,
"parameters":{"longitude_param":{"value":0,"comment":"Longitude parameter","type":"float"}},"tags":["CITY"]}








Retrieving Alert Status

Resource URL: GET /api/v1/status/alert/{alert ids}/

Description

Returns current status of the given alert IDs. The information comes directly from Redis and represents results of the last alert evaluation

The results are returned in the following format (so basically for each alert and entity you get information


	when alert started (ts)


	how long has evaluation taken (td)


	are there any downtimes (downtimes)


	capture values, if available (captures)


	which worker has processed the value (worker)


	the latest check value (value)




NOTE Please keep in mind that this request will only work if you specify trailing slash (as in the example below).

{"alert id":
    {
            "entity name":
            {
                    "td":0.013866,
                    "downtimes":[],
                    "captures":{"count":1},
                    "start_time":1.416391418749185E9,
                    "worker":"p3426.itr-monitor01",
                    "ts":1.4164876292204E9,
                    "value":1
            }
    }
}





Any attempt to execute this method without proper authentication will result in a 401. In case of success this method
will return HTTP 200.

Example:

curl --user hjacobs:test 'https://zmon.example.com/api/v1/status/alert/69,3454/'





Request:

GET https://zmon.example.com/api/v1/status/alert/69,3454/ HTTP/1.1
Authorization: Basic aGphY29iczp0ZXN0
User-Agent: curl/7.30.0
Host: zmon.example.com
Accept: */*





Response:

HTTP/1.1 200 OK
Content-Type: application/json;charset=UTF-8
Transfer-Encoding: chunked
Vary: Accept-Encoding
Date: Thu, 20 Nov 2014 12:47:37 GMT

{"69":{"itr-elsn02:5827":{"td":0.013866,"downtimes":[],"captures":{"count":1},"start_time":1.416391418749185E9,"worker":"p3426.itr-monitor01","ts":1.4164876292204E9,"value":1},"elsn03:5827":{"td":0.015576,"downtimes":[],"captures":{"count":8},"start_time":1.416391397741839E9,"worker":"p3426.monitor02","ts":1.416487629218565E9,"value":8},"elsn02:5827":{"td":0.024973,"downtimes":[],"captures":{"count":9},"start_time":1.416330457394862E9,"worker":"p3426.itr-monitor01","ts":1.416487629223615E9,"value":9},"itr-elsn03:5827":{"td":0.020491,"downtimes":[],"captures":{"count":1},"start_time":1.416255229204794E9,"worker":"p3426.itr-monitor01","ts":1.41648762923005E9,"value":1},"elsn01:5827":{"td":0.019912,"downtimes":[],"captures":{"count":8},"start_time":1.416391418966269E9,"worker":"p3426.monitor03","ts":1.416487629216758E9,"value":8},"itr-elsn01:5827":{"td":0.015741,"downtimes":[],"captures":{"count":2},"start_time":1.416391429438217E9,"worker":"p3426.itr-monitor01","ts":1.416487629224237E9,"value":2}},"3454":{"monitor02":{"td":0.027714,"downtimes":[],"captures":{},"start_time":1.414754929626809E9,"worker":"p3426.monitor02","ts":1.416487578812573E9,"value":{"load1":8.71,"load15":9.73,"load5":10.22}},"monitor03":{"td":0.028951,"downtimes":[],"captures":{},"start_time":1.41475492971822E9,"worker":"p3426.monitor02","ts":1.41648757881069E9,"value":{"load1":9.25,"load15":11.17,"load5":10.9}}}}













          

      

      

    

  

  
    
    Command Line Client
    

    
 
  

    
      
          
            
  
Command Line Client

The command line client makes your life easier when interacting with the REST API. The ZMON scheduler will refresh modified data (checks, alerts, entities every 60 seconds).


Installation

pip3 install --upgrade zmon-cli






Configuration

Configure your zmon cli by running configure-

zmon configure








Authentication

ZMON CLI tool must authenticate against ZMON. Internally it uses zign to obtain access token, but you can override that behaviour by exporting a variable ZMON_TOKEN.

export ZMON_TOKEN=myfancytoken





If you are using github for authentication, have an unprivileged personal access token ready.






Entities


Create or update

Pushing entities with the zmon cli is as easy as:

zmon entities push \
  '{"id":"localhost:3421","type":"instance","name":"zmon-scheduler-ng","host":"localhost","ports":{"3421":3421}}'





Existing entities with the same ID will be updated.

The client however also supports loading data from .json and .yaml files, both may contain a list for creating/updating many entities at once.

zmon entities push your-entities.yaml






Note

Creating an entity of type GLOBAL is not allowed. GLOBAL as an entity type is reserved for ZMON’s internal use.




Tip

All commands and subcommands can be abbreviated, i.e. the following lines are equivalent:


$ zmon entities push my-data.yaml
$ zmon ent pu my-data.yaml













Search and filter

Show all entities:

zmon entities





Filter by type “instance”

zmon entities filter type instance










Check Definitions


Initializing

When starting from scratch use:

zmon check-definition init your-new-check.yaml








Get

Retrieve an existing check defintion as YAML.

zmon check-definition get 1234








Create and Update

Create or update from file, existing check with same “owning_team” and “name” will be updated.

zmon check-definition update your-check.yaml










Alert Definitions

Similar to check defintions you can also manage your alert definitions via the ZMON cli.

Keep in mind that for alerts the same constraints apply as in the UI. For creating/modifying an alert you need to be a member of the team selected for “team” (unlike the responsible team).


Init

zmon alert-definition init your-new-alert.yaml








Create

zmon alert-definition create your-new-alert.yaml








Get

zmon alert-definition get 1999








Update

zmon alert-definition update host-load-5.yaml













          

      

      

    

  

  
    
    Python Client
    

    
 
  

    
      
          
            
  
Python Client

ZMON provides a python client library that can be imported and used in your own software.


Installation

ZMON python client library is part of ZMON CLI.

pip3 install --upgrade zmon-cli








Usage

Using ZMON client is pretty straight forward.

>>> from zmon_cli.client import Zmon

>>> zmon = Zmon('https://zmon.example.org', token='123')

>>> entity = zmon.get_entity('entity-1')
{
    'id': 'entity-1',
    'team': 'ZMON',
    'type': 'instance',
    'data': {'host': '192.168.20.16', 'port': 8080, 'name': 'entity-1-instance'}
}

>>> zmon.delete_entity('entity-102')
True

>>> check = zmon.get_check_definition(123)

>>> check['command']
http('http://www.custom-service.example.org/health').code()

>>> check['command'] = "http('http://localhost:9090/health').code()"

>>> zmon.update_check_definition(check)
{
    'command': "http('http://localhost:9090/health').code()",
    'description': 'Check service health',
    'entities': [{'application_id': 'custom-service', 'type': 'instance'}],
    'id': 123,
    'interval': 60,
    'last_modified_by': 'admin',
    'name': 'Check service health',
    'owning_team': 'ZMON',
    'potential_analysis': None,
    'potential_impact': None,
    'potential_solution': None,
    'source_url': None,
    'status': 'ACTIVE',
    'technical_details': None
}








Client


Exceptions


	
class zmon_cli.client.ZmonError(message='')

	ZMON client error.






	
class zmon_cli.client.ZmonArgumentError(message='')

	A ZMON client error indicating that a supplied object has missing or invalid attributes.








Zmon


	
class zmon_cli.client.Zmon(url, token=None, username=None, password=None, timeout=10, verify=True, user_agent='zmon-client/1.1.56')

	ZMON client class that enables communication with ZMON backend.


	Parameters

	
	url (str [https://docs.python.org/2/library/functions.html#str]) – ZMON backend base url.


	token (str [https://docs.python.org/2/library/functions.html#str]) – ZMON authentication token.


	username (str [https://docs.python.org/2/library/functions.html#str]) – ZMON authentication username. Ignored if token is used.


	password (str [https://docs.python.org/2/library/functions.html#str]) – ZMON authentication password. Ignored if token is used.


	timeout (int [https://docs.python.org/2/library/functions.html#int]) – HTTP requests timeout. Default is 10 sec.


	verify (bool [https://docs.python.org/2/library/functions.html#bool]) – Verify SSL connection. Default is True.


	user_agent (str [https://docs.python.org/2/library/functions.html#str]) – ZMON user agent. Default is generated by ZMON client and includes lib version.









	
add_entity(entity: dict) → requests.models.Response

	Create or update an entity on ZMON.


Note

ZMON PUT entity API doesn’t return JSON response.




	Parameters

	entity (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Entity dict.



	Returns

	Response object.



	Return type

	requests.Response










	
alert_details_url(alert: dict) → str

	Return direct deeplink to alert details view on ZMON UI.


	Parameters

	alert (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – alert dict.



	Returns

	Deeplink to alert details view.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]










	
check_definition_url(check_definition: dict) → str

	Return direct deeplink to check definition view on ZMON UI.


	Parameters

	check_definition (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – check_difinition dict.



	Returns

	Deeplink to check definition view.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]










	
create_alert_definition(alert_definition: dict) → dict

	Create new alert definition.

Attributes last_modified_by and check_definition_id are required.
If status is not set, then it will be set to ACTIVE.


	Parameters

	alert_definition (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – ZMON alert definition dict.



	Returns

	Alert definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
create_downtime(downtime: dict) → dict

	Create a downtime for specific entities.

Atrributes entities list, start_time and end_time timestamps are required.


	Parameters

	downtime (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Downtime dict.



	Returns

	Downtime dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example downtime:

{
    "entities": ["entity-id-1", "entity-id-2"],
    "comment": "Planned maintenance",
    "start_time": 1473337437.312921,
    "end_time": 1473341037.312921,
}










	
dashboard_url(dashboard_id: int) → str

	Return direct deeplink to ZMON dashboard.


	Parameters

	dashboard_id (int [https://docs.python.org/2/library/functions.html#int]) – ZMON Dashboard ID.



	Returns

	Deeplink to dashboard.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]










	
delete_alert_definition(alert_definition_id: int) → dict

	Delete existing alert definition.


	Parameters

	alert_definition_id (int [https://docs.python.org/2/library/functions.html#int]) – ZMON alert definition ID.



	Returns

	Alert definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
delete_check_definition(check_definition_id: int) → requests.models.Response

	Delete existing check definition.


	Parameters

	check_definition_id (int [https://docs.python.org/2/library/functions.html#int]) – ZMON check definition ID.



	Returns

	HTTP response.



	Return type

	requests.Response










	
delete_entity(entity_id: str) → bool

	Delete entity from ZMON.


Note

ZMON DELETE entity API doesn’t return JSON response.




	Parameters

	entity_id (str [https://docs.python.org/2/library/functions.html#str]) – Entity ID.



	Returns

	True if succeeded, False otherwise.



	Return type

	bool [https://docs.python.org/2/library/functions.html#bool]










	
get_alert_data(alert_id: int) → dict

	Retrieve alert data.

Response is a dict with entity ID as a key, and check return value as a value.


	Parameters

	alert_id (int [https://docs.python.org/2/library/functions.html#int]) – ZMON alert ID.



	Returns

	Alert data dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example:

{
    "entity-id-1": 122,
    "entity-id-2": 0,
    "entity-id-3": 100
}










	
get_alert_definition(alert_id: int) → dict

	Retrieve alert definition.


	Parameters

	alert_id (int [https://docs.python.org/2/library/functions.html#int]) – Alert definition ID.



	Returns

	Alert definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_alert_definitions() → list

	Return list of all active alert definitions.


	Returns

	List of alert-defs.



	Return type

	list










	
get_check_definition(definition_id: int) → dict

	Retrieve check defintion.


	Parameters

	defintion_id (int [https://docs.python.org/2/library/functions.html#int]) – Check defintion id.



	Returns

	Check definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_check_definitions() → list

	Return list of all active check definitions.


	Returns

	List of check-defs.



	Return type

	list










	
get_dashboard(dashboard_id: str) → dict

	Retrieve a ZMON dashboard.


	Parameters

	dashboard_id (int [https://docs.python.org/2/library/functions.html#int], str [https://docs.python.org/2/library/functions.html#str]) – ZMON dashboard ID.



	Returns

	Dashboard dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_entities(query=None) → list

	Get ZMON entities, with optional filtering.


	Parameters

	query (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Entity filtering query. Default is None. Example query {'type': 'instance'} to return
all entities of type: instance.



	Returns

	List of entities.



	Return type

	list










	
get_entity(entity_id: str) → str

	Retrieve single entity.


	Parameters

	entity_id (str [https://docs.python.org/2/library/functions.html#str]) – Entity ID.



	Returns

	Entity dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_grafana_dashboard(grafana_dashboard_id: str) → dict

	Retrieve Grafana dashboard.


	Parameters

	grafana_dashboard_id (str [https://docs.python.org/2/library/functions.html#str]) – Grafana dashboard ID.



	Returns

	Grafana dashboard dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
get_onetime_token() → str

	Retrieve new one-time token.

You can use zmon_cli.client.Zmon.token_login_url() to return a deeplink to one-time login.


	Returns

	One-time token.



	Retype

	str










	
grafana_dashboard_url(dashboard: dict) → str

	Return direct deeplink to Grafana dashboard.


	Parameters

	dashboard (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Grafana dashboard dict.



	Returns

	Deeplink to Grafana dashboard.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]










	
list_onetime_tokens() → list

	List exisitng one-time tokens.


	Returns

	List of one-time tokens, with relevant attributes.



	Retype

	list





Example:

- bound_at: 2016-09-08 14:00:12.645999
  bound_expires: 1503744673506
  bound_ip: 192.168.20.16
  created: 2016-08-26 12:51:13.506000
  token: 9pSzKpcO










	
search(q, limit: int = None, teams: list = None) → dict

	Search ZMON dashboards, checks, alerts and grafana dashboards with optional team filtering.


	Parameters

	
	q (str [https://docs.python.org/2/library/functions.html#str]) – search query.


	teams (list) – List of team IDs. Default is None.






	Returns

	Search result.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]





Example:

{
    "alerts": [{"id": "123", "title": "ZMON alert", "team": "ZMON"}],
    "checks": [{"id": "123", "title": "ZMON check", "team": "ZMON"}],
    "dashboards": [{"id": "123", "title": "ZMON dashboard", "team": "ZMON"}],
    "grafana_dashboards": [{"id": "123", "title": "ZMON grafana", "team": ""}],
}










	
status() → dict

	Return ZMON status from status API.


	Returns

	ZMON status.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
token_login_url(token: str) → str

	Return direct deeplink to ZMON one-time login.


	Parameters

	token (str [https://docs.python.org/2/library/functions.html#str]) – One-time token.



	Returns

	Deeplink to ZMON one-time login.



	Return type

	str [https://docs.python.org/2/library/functions.html#str]










	
update_alert_definition(alert_definition: dict) → dict

	Update existing alert definition.

Atrributes id, last_modified_by and check_definition_id are required.
If status is not set, then it will be set to ACTIVE.


	Parameters

	alert_definition (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – ZMON alert definition dict.



	Returns

	Alert definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
update_check_definition(check_definition: dict, skip_validation: bool = False) → dict

	Update existing check definition.

Atrribute owning_team is required. If status is not set, then it will be set to ACTIVE.


	Parameters

	
	check_definition (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – ZMON check definition dict.


	skip_validation (bool [https://docs.python.org/2/library/functions.html#bool]) – Skip validation of the check command syntax.






	Returns

	Check definition dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
update_dashboard(dashboard: dict) → dict

	Create or update dashboard.

If dashboard has an id then dashboard will be updated, otherwise a new dashboard is created.


	Parameters

	dashboard (int [https://docs.python.org/2/library/functions.html#int], str [https://docs.python.org/2/library/functions.html#str]) – ZMON dashboard dict.



	Returns

	Dashboard dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
update_grafana_dashboard(grafana_dashboard: dict) → dict

	Update existing Grafana dashboard.

Atrributes id and title are required.


	Parameters

	grafana_dashboard (dict [https://docs.python.org/2/library/stdtypes.html#dict]) – Grafana dashboard dict.



	Returns

	Grafana dashboard dict.



	Return type

	dict [https://docs.python.org/2/library/stdtypes.html#dict]










	
static validate_check_command(src)

	Validates if check command is valid syntax. Raises exception in case of invalid syntax.


	Parameters

	src (str [https://docs.python.org/2/library/functions.html#str]) – Check command python source code.



	Raises

	ZmonError





















          

      

      

    

  

  
    
    A Short Python Tutorial
    

    
 
  

    
      
          
            
  
A Short Python Tutorial

This tutorial explains by example how to process a dict using Python’s list comprehension facilities.

Suppose we’re interested in the total number or order failures.


	First, we need to query the appropriate endpoint to get the data, and call the json() method.

http('http://www.example.com/foo/bar/data.json').json()





This endpoint returns JSON data that is structured as follows (with much of the data omitted):

{
    ...
    "itr-http04_orderfails": [1, 0],
    "itr-http05_addtocart": [0.05, 0.0875],
    "http17_addtocart": [0.075, 0.066667],
    "http27_requests": [14.666667, 12.195833],
    "http13_orderfails": [null, 2],
    ...
}





The parsed object will therefore be a dict mapping strings to lists of numbers, which may contain None [https://docs.python.org/2/library/constants.html#None] values.



	We need to find all entries ending in _orderfails. In Python, we can transform a dict in a list of tuples (key, value) using the items() method:

http(...).json().items()





We now need to filter this list to include only order failure information. Using a loop and an if statement, this could be accomplished like this:

result = []
for key, value in http(...).json().items():
    if key.endswith('_orderfails'):
        result.append(value)





(Note how the tuples in the list returned by items() are automatically “unpacked”, their elements being assigned to key and value, respectively.)

Since the check command needs to be a single expression, not a series of statements, this is unfortunately not an option. Fortunately, Python provides a feature called list comprehension, which allows us to express the code above as follows:

[value for key, value in http(...).json().items() if key.endswith('_orderfails')]





That is, code of the form

result = []
for ELEMENT in LIST:
    if CONDITION:
        result.append(RESULT_ELEMENT)





becomes

[RESULT_ELEMENT for ELEMENT in LIST if CONDITION]





(The if CONDITION part is optional.)

We now have a list of lists [[1, 0], [None, 2]].



	In order to sum the list, we’d need to flatten it first, so that it has the form [1, 0, None, 2]. This can be accomplished with the chain() function. Given one or more iterable objects (such as lists), chain() returns a new iterable object produced by concatenating the given objects. That is

chain([1, 0], [None, 2])





would return

[1, 0, None, 2]





Unfortunately, the lists we want to chain are themselves elements of a list, and calling chain([[1, 0], [None, 2]]) would just concatenate the list with nothing and return the it unchanged. We therefore need to tell Python to unpack the list, so that each of its elements becomes a new argument for the invocation of chain().

This can be accomplished by the * operator:

chain(*[[1, 0], [None, 2]])





That is, out expression is now

chain(*[value for key, value in http(...).json().items() if key.endswith('_orderfails')])







	Now we need to remove that pesky None [https://docs.python.org/2/library/constants.html#None] from the list. This could be accomplished with another list comprehension:

[value for value in chain(...) if value is not None]





For didactic reasons, we shall use the filter() function instead. filter() takes two arguments: a function that is called for each element in the filtered list and indicates whether that element should be in the resulting list, and the list that is to be filtered itself. We can create an anonymous function for this purpose using a lambda expression:

filter(lambda element: element is not None, chain(...))





In this case, we can use a somewhat obscure shortcut, though. If the function given to filter() is None [https://docs.python.org/2/library/constants.html#None], the identity function is used. Therefore, objects will be included in the resulting list if and only if they are “truthy”, which None [https://docs.python.org/2/library/constants.html#None] isn’t. The integer 0 isn’t truthy either, but this isn’t a problem in this case since the presence or absence of zeros does not affect the sum. Therefore, we can use the expression

filter(None, chain(*[value for key, value in http(...).json().items() if key.endswith('_orderfails')]))







	Finally, we need to sum the elements of the list. For that, we can just use the sum() function, so that the expression is now

sum(filter(None, chain(*[value for key, value in http(...).json().items() if key.endswith('_orderfails')])))










Python Recipes


	
Merging Data Into One Result

	You can merge heterogeneous data into a single result object:

{
    'http_data': http(...).json()[...],
    'jmx_data':  jmx().query(...).results()[...],
    'sql_data':  sql().execute(...)[...],
}










	
Mapping SQL Results by ID

	The SQL results() methods returns a list of maps ([{'id': 1, 'data': 1000}, {'id': 2, 'data': 2000}]). You can convert this to a single map ({1: 1000, 2: 2000}) like this:

{ row['id']: row['data'] for row in sql().execute(...).results() }










	
Using Multiple Captures

	If you have a alert condition such as

FOO > 10 or BAR > 10





adding capures is a bit tricky. If you use

capture(foo=FOO) > 10 or capture(bar=BAR) > 10





and both FOO and BAR are greater than 10, only foo will be captured because the or uses short-circuit evaluation (True or X is true for all X, so X doesn’t need to be evaluated). Instead, you can use

any([capture(foo=FOO) > 10, capture(bar=BAR) > 10])





which will always evaluate both comparisons and thus capture both values.






	
Defining Temporary Variables

	You aren’t supposed to be able to do define variables, but you can work around this restriction as follows:

(lambda x:
    # Some complex operation using x multiple times
)(
    x = sql().execute(...)  # Some complex or expensive query
)










	
Defining Functions

	Since you can define variables with the trick above, you can also define functions:

(lambda f:
    # Some complex operation calling f multiple times
)(
    f = lambda a, b, c: sql().execute(...)  # Some code using the arguments a, b, and c
)















          

      

      

    

  

  
    
    Tests
    

    
 
  

    
      
          
            
  
Tests


Acceptance and Unit Tests

These tests must be run from inside the vagrant box.:

$ vagrant ssh
vagrant@zmon:~$ cd /vagrant/vagrant/
vagrant@zmon:/vagrant/vagrant$ sudo ./test.sh





An example output of the previous command can look similar to this:

Starting Xvfb...
[13:36:12] Using gulpfile /vagrant/zmon-controller/src/main/webapp/gulpfile.js
[13:36:12] Starting 'test'...
Starting selenium standalone server...
Selenium standalone server started at http://10.0.2.15:47833/wd/hub
Testing dashboard features
  should display the search form - pass

Finished in 3.24 seconds
1 test, 1 assertion, 0 failures

Shutting down selenium standalone server.
[13:36:22] Finished 'test' after 10 s





Only one single acceptance test and no unit tests are provided so far. This is still a work in progress.







          

      

      

    

  

  
    
    Redis Data Structure
    

    
 
  

    
      
          
            
  
Redis Data Structure

ZMON stores its primary working data in Redis. This page describes the used Redis keys and data structures.

Queues are Redis keys like zmon:queue:<NAME> of type “list”, e.g. zmon:queue:default.

New queue items are added by the ZMON Scheduler via the Redis “rpush” command [http://redis.io/commands/rpush].

Important Redis key patterns are:


	zmon:queue:<QUEUE-NAME>

	List of worker tasks for given queue.



	zmon:checks

	Set of all executed check IDs.



	zmon:checks:<CHECK-ID>

	Set of entity IDs having check results.



	zmon:checks:<CHECK-ID>:<ENTITY-ID>

	List of last N check results. The first list item contains the most recent check result.
Each check result is a JSON object with the keys ts (result timestamp), td (check duration), value (actual result value) and worker (ID of worker having produced the check result).



	zmon:alerts

	Set of all active alert IDs.



	zmon:alerts:<ALERT-ID>

	Set of entity IDs in alert state.



	zmon:alerts:<ALERT-ID>:entities

	Hash of entity IDs to alert captures. This hash contains all entity IDs matched by the alert, i.e. not only entities in alert state.



	zmon:alerts:<ALERT-ID>:<ENTITY-ID>

	Alert detail JSON containing alert start time, captures, worker, etc.



	zmon:downtimes

	Set of all alert IDs having downtimes.



	zmon:downtimes:<ALERT-ID>

	Set of all entity IDs having a downtime for this alert.



	zmon:downtimes:<ALERT-ID>:<ENTITY-ID>

	Hash of downtimes for this entity/alert. Each hash value is a JSON object with keys start_time, end_time and comment.



	zmon:active_downtimes

	Set of currently active downtimes. Each set item has the form <ALERT-ID>:<ENTITY-ID>:<DOWNTIME-ID>.



	zmon:metrics

	Set of worker and scheduler IDs with metrics.



	zmon:metrics:<WORKER-OR-SCHEDULER-ID>:ts

	Timestamp of last worker or scheduler metrics update.



	zmon:metrics:<WORKER-OR-SCHEDULER-ID>:check.count

	Increasing counter of executed (or scheduled) checks.









          

      

      

    

  

  
    
    Glossary
    

    
 
  

    
      
          
            
  
Glossary


	alert definition

	Alert definitions define when to trigger an alert and for which entity.
See Alert Definitions



	alert condition

	Python expression defining the “threshold” when to trigger an alert. See Condition.



	check command

	Python expression defining the value of a check. See Check Command Reference.



	check definition

	A check definition provides a source of data for alerts to monitor. See Check Definitions



	dashboard

	A dashboard is the main monitoring page of ZMON and consists of widgets and the list of active alerts.
See Dashboards



	downtime

	In ZMON, downtime refers to a period of time where certain alerts/entities should not be triggered.
One use case for downtimes are scheduled maintenance works. See Downtimes



	entity

	Entities are “objects” to be monitored. Entities can be hosts, Zomcat instances, but they can also be more abstract things like app domains.
See Entities



	JSON

	JavaScript Object Notation. A minimal data interchange format. You probably already know it. If you don’t, there’s good documentation on its official page [http://json.org/].



	Markdown

	A simple markup language that can mostly pass for plain text. There’s an introduction [http://daringfireball.net/projects/markdown/basics] and a syntax reference [http://daringfireball.net/projects/markdown/syntax] on its official page.



	time period

	Alert definition’s time period can restrict its active alerting to certain time frames. This allows for alerts to be active e.g. only during work hours.
See Time periods



	YAML

	Not actually Yet Another Markup Language. A powerful but succinct data interchange format. This document should be sufficient to learn how to use YAML in ZMON. In case it isn’t, the Wikipedia entry on YAML [http://en.wikipedia.org/wiki/Yaml] is actually slightly more useful that the official documentation [http://yaml.org/spec/1.1/#id857168].

Note that YAML is a strict superset of JSON. That is, wherever YAML is required, JSON can be used instead.









          

      

      

    

  

  
    
    Index
    

    
 
  

    
      
          
            

Index



 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | X
 | Y
 | Z
 


A


  	
      	abs() (built-in function)


      	absolute() (built-in function)


      	actuator_metrics(), [1]


      	add_entity() (zmon_cli.client.Zmon method)


      	alarms(), [1]


      	alert condition


      	alert definition


  

  	
      	alert_coverage() (built-in function), [1]


      	alert_details_url() (zmon_cli.client.Zmon method)


      	alert_series() (built-in function)


      	all() (built-in function)


      	any() (built-in function)


      	appdynamics() (built-in function), [1]


      	avg() (built-in function)


  





B


  	
      	basestring() (built-in function)


      	bin() (built-in function)


  

  	
      	bin_mean() (built-in function)


      	bin_standard_deviation() (built-in function)


      	bool() (built-in function)


  





C


  	
      	capture() (built-in function)


      	cassandra() (built-in function), [1]


      	chain() (built-in function)


      	check command


      	check definition


      	check_apachestatus_uri(), [1]


      	check_check_command_procs(), [1]


      	check_definition_url() (zmon_cli.client.Zmon method)


      	check_diff_reverse(), [1]


      	check_findfiles(), [1]


      	check_findfiles_names(), [1]


      	check_findfiles_names_exclude(), [1]


      	check_findolderfiles(), [1]


      	check_hpacucli(), [1]


      	check_hpasm_fix_power_supply(), [1]


      	check_hpasm_gen8(), [1]


      	check_http_expect_port_header(), [1]


      	check_iostat(), [1]


      	check_list_timeout(), [1]


      	check_load(), [1]


      	check_logwatch(), [1]


      	check_mailq_postfix(), [1]


      	check_memcachestatus(), [1]


      	check_mysql_processes(), [1]


      	check_mysql_slave(), [1]


      	check_mysqlperformance(), [1]


      	check_ntp_time(), [1]


  

  	
      	check_openmanage(), [1]


      	check_ping(), [1]


      	check_ssl_cert(), [1]


      	CheckCounter(), [1]


      	CheckCPU(), [1]


      	CheckDriveSize(), [1]


      	CheckEventLog(), [1]


      	CheckFiles(), [1]


      	CheckLogFile(), [1]


      	CheckMEM(), [1]


      	CheckProcState(), [1]


      	CheckServiceState(), [1]


      	CheckUpTime(), [1]


      	chr() (built-in function)


      	cloudwatch() (built-in function), [1]


      	code(), [1]


      	configmaps() (built-in function), [1]


      	content_size(), [1]


      	cookies(), [1]


      	count(), [1], [2], [3]

      
        	(built-in function), [1]


      


      	count_logs() (built-in function), [1]


      	Counter (built-in class)


      	cpu(), [1]


      	create_alert_definition() (zmon_cli.client.Zmon method)


      	create_downtime() (zmon_cli.client.Zmon method)


      	cronjobs() (built-in function), [1]


  





D


  	
      	daemonsets() (built-in function), [1]


      	dashboard


      	dashboard_url() (zmon_cli.client.Zmon method)


      	datapipeline() (built-in function), [1]


      	delete_alert_definition() (zmon_cli.client.Zmon method)


      	delete_check_definition() (zmon_cli.client.Zmon method)


  

  	
      	delete_entity() (zmon_cli.client.Zmon method)


      	deployments() (built-in function), [1]


      	df(), [1]


      	dict() (built-in function)


      	distance() (built-in function), [1]


      	dns() (built-in function), [1]


      	downtime


  





E


  	
      	ebs() (built-in function), [1]


      	EBSSnapshotsList (built-in class), [1]


      	elasticsearch() (built-in function), [1]


      	empty() (built-in function)


      	endpoints() (built-in function), [1]


      	entities() (built-in function), [1]


      	entity


  

  	
      	entity_results() (built-in function)


      	entity_values() (built-in function)


      	enumerate() (built-in function)


      	exacrm() (built-in function), [1]


      	execute() (built-in function), [1]


      	exists() (S3Object method), [1]

      
        	(S3ObjectMetadata method), [1]


      


  





F


  	
      	facets(), [1]


      	files() (S3FileList method), [1]


      	filter() (built-in function)


  

  	
      	find() (built-in function), [1]


      	float() (built-in function)


      	format()


  





G


  	
      	get(), [1], [2], [3], [4], [5]


      	get_aggregated() (built-in function), [1]


      	get_alert_data() (zmon_cli.client.Zmon method)


      	get_alert_definition() (zmon_cli.client.Zmon method)


      	get_alert_definitions() (zmon_cli.client.Zmon method)


      	get_avg() (built-in function), [1]


      	get_check_definition() (zmon_cli.client.Zmon method)


      	get_check_definitions() (zmon_cli.client.Zmon method)


      	get_dashboard() (zmon_cli.client.Zmon method)


      	get_details(), [1]


  

  	
      	get_entities() (zmon_cli.client.Zmon method)


      	get_entity() (zmon_cli.client.Zmon method)


      	get_grafana_dashboard() (zmon_cli.client.Zmon method)


      	get_object() (built-in function), [1]


      	get_object_metadata() (built-in function), [1]


      	get_one() (built-in function), [1]


      	get_onetime_token() (zmon_cli.client.Zmon method)


      	get_std_dev() (built-in function), [1]


      	grafana_dashboard_url() (zmon_cli.client.Zmon method)


      	groupby() (built-in function)


  





H


  	
      	headers(), [1]


      	health(), [1]


      	healthrule_violations() (built-in function), [1]


      	hex() (built-in function)


  

  	
      	hget(), [1]


      	hgetall(), [1]


      	history() (built-in function), [1]


      	http() (built-in function), [1]


  





I


  	
      	ingresses() (built-in function), [1]


      	int() (built-in function)


      	interfaces(), [1]


  

  	
      	isinstance() (built-in function)


      	isoformat()


      	items() (EBSSnapshotsList method), [1]


  





J


  	
      	jobs() (built-in function), [1]


      	jolokia(), [1]


      	JSON


      	json(), [1], [2], [3]

      
        	(S3Object method), [1]


        	(built-in function)


      


  

  	
      	jsonpath_flat_filter() (built-in function)


      	jsonpath_parse() (built-in function)


  





K


  	
      	kairosdb() (built-in function), [1]


  

  	
      	keys(), [1]


      	kubernetes() (built-in function), [1]


  





L


  	
      	len() (built-in function)


      	list() (built-in function)


      	list_bucket() (built-in function), [1]


      	list_onetime_tokens() (zmon_cli.client.Zmon method)


      	list_snapshots() (built-in function), [1]


  

  	
      	llen(), [1]


      	load(), [1]


      	logmatch(), [1]


      	logs(), [1]


      	long() (built-in function)


      	lrange(), [1]


  





M


  	
      	map() (built-in function)


      	Markdown


      	math() (built-in function)


      	max() (built-in function)


      	memcached() (built-in function), [1]


      	memory(), [1]


  

  	
      	metric_data() (built-in function), [1]


      	metrics() (built-in function), [1]


      	min() (built-in function)


      	mongodb() (built-in function), [1]


      	monotonic() (built-in function)


      	mysql() (built-in function), [1]


  





N


  	
      	nodes() (built-in function), [1]


      	normalvariate() (built-in function)


      	notifiy_twilio() (built-in function), [1]


      	notify_http() (built-in function), [1]


  

  	
      	notify_hubot() (built-in function), [1]


      	notify_opsgenie() (built-in function), [1]


      	notify_pagerduty() (built-in function), [1]


      	notify_slack() (built-in function), [1]


  





O


  	
      	oct() (built-in function)


  

  	
      	orasql() (built-in function), [1]


      	ord() (built-in function)


  





P


  	
      	parse_cert() (built-in function)


      	per_minute(), [1]


      	per_second(), [1]


      	persistentvolumeclaims() (built-in function), [1]


  

  	
      	persistentvolumes() (built-in function), [1]


      	ping() (built-in function), [1]


      	pods() (built-in function), [1]


      	pow() (built-in function)


      	prometheus(), [1]


  





Q


  	
      	query(), [1]

      
        	(built-in function), [1]


      


  

  	
      	query_batch() (built-in function), [1]


      	query_logs() (built-in function), [1]


      	query_one(), [1]


  





R


  	
      	range() (built-in function)


      	re() (built-in function)


      	redis() (built-in function), [1]


      	reduce() (built-in function)


  

  	
      	replicasets() (built-in function), [1]


      	resolve(), [1]


      	result() (built-in function), [1]


      	reversed() (built-in function)


      	round() (built-in function)


  





S


  	
      	s3() (built-in function), [1]


      	S3FileList (built-in class), [1]


      	S3Object (built-in class), [1]


      	S3ObjectMetadata (built-in class), [1]


      	scan(), [1]


      	scard(), [1]


      	search() (built-in function), [1]

      
        	(zmon_cli.client.Zmon method)


      


      	search_all() (built-in function), [1]


      	search_local() (built-in function), [1]


      	send_email() (built-in function)


      	send_google_hangouts_chat() (built-in function), [1]


      	send_hipchat() (built-in function), [1], [2]


      	send_mail() (built-in function), [1]


      	send_push() (built-in function), [1], [2]


  

  	
      	send_slack() (built-in function)


      	send_sms() (built-in function)


      	services() (built-in function), [1]


      	set() (built-in function)


      	sigma() (built-in function)


      	size() (S3Object method), [1]

      
        	(S3ObjectMetadata method), [1]


      


      	smembers(), [1]


      	sorted() (built-in function)


      	sql() (built-in function), [1]


      	statefulsets() (built-in function), [1]


      	statistics(), [1]


      	stats(), [1]


      	status() (zmon_cli.client.Zmon method)


      	str() (built-in function)


      	sum() (built-in function)


  





T


  	
      	text(), [1]

      
        	(S3Object method), [1]


      


      	time period


      	time(), [1]

      
        	(built-in function)


      


      	timeseries(), [1]


      	timeseries_avg() (built-in function)


      	timeseries_delta() (built-in function)


      	timeseries_first() (built-in function)


  

  	
      	timeseries_max() (built-in function)


      	timeseries_median() (built-in function)


      	timeseries_min() (built-in function)


      	timeseries_percentile() (built-in function)


      	timeseries_sum() (built-in function)


      	timestamp() (built-in function)


      	token_login_url() (zmon_cli.client.Zmon method)


      	ttl(), [1]


      	tuple() (built-in function)


  





U


  	
      	unichr() (built-in function)


      	unicode() (built-in function)


      	update_alert_definition() (zmon_cli.client.Zmon method)


  

  	
      	update_check_definition() (zmon_cli.client.Zmon method)


      	update_dashboard() (zmon_cli.client.Zmon method)


      	update_grafana_dashboard() (zmon_cli.client.Zmon method)


  





V


  	
      	validate_check_command() (zmon_cli.client.Zmon static method)


  

  	
      	value_series() (built-in function)


  





X


  	
      	xrange() (built-in function)


  





Y


  	
      	YAML


  





Z


  	
      	zcard(), [1]


      	zip() (built-in function)


  

  	
      	Zmon (class in zmon_cli.client)


      	ZmonArgumentError (class in zmon_cli.client)


      	ZmonError (class in zmon_cli.client)


  







          

      

      

    

  

  
    
    Alert Definition Inheritance
    

    
 
  

    
      
          
            
  
Alert Definition Inheritance

Alert definition inheritance allows one to create an alert definition based on another alert whereby a child reuses attributes from the parent.
Each alert definition can only inherit from a single alert definition (single inheritance).


Template

A Template is basically an alert definition with a subset of attributes that is not evaluated and can only be used for extension.

To create a template:


	Select the check definition


	click Add New Alert Definition


	Set attributes to reuse and activate checkbox template







Extending

In general one can inherit from any alert definition/template. One should open the alert definition details and click inherit on the top right corner.
To override a field, just type in a new value. An icon should appear on the left side, meaning that the field will be overridden.
To rollback the change and keep the value defined on the parent, one should click in override icon.




Overriding


	By default the child alert retains all attributes of the parent alert with the exception of the following mandatory attributes:

	
	team


	responsible team


	status








These attributes are used for authorization (see permissions for details) therefore, they cannot be reused. If one changes these attributes on the parent alert definition, child alerts are not affected and you don’t loose access rights.
All the remaining attributes can be overridden, replacing the parent alert definition with its own values.







          

      

      

    

  

  
    
    Alert Definition Parameters
    

    
 
  

    
      
          
            
  
Alert Definition Parameters

Alert definition parameters allows one to decouple alert condition from constants that are used inside it.


Use Case: Technical alert condition

If your alert condition is highly technical with a lot of Python code in it, it is often makes sense to split actual calculation from threshold values and move such constant values into parameters.

The same may apply in certain cases to alert definitions created by technical staff, which later need to be adjusted by non-technical people - if you split calculation from variable definition, you may let non-technical people just change values without touching calculation logic.




Use Case: Same alert, different priorities

Another use case where we recommend to use parameters is when you need to have the same alert come up with a different priority depending on threshold values.

In such case, refer to alert inheritance for configuring inherited alerts.

Proposed structure would look like:


	Base alert “A” with alert condition and parameters, check template box


	Alert “B1” inherits from “A” specifying priority RED and associated parameter values


	Alert “B2” inherits from “A” specifying priority YELLOW and associated parameter values







An example: Setting a simple parameter in trial run

In the zmon2 web interface click on the trial run button.


	In the Check Command text box enter:

normalvariate(50, 20)









This is a simple normal probability function that produce a float number 50% of the time over 50.0, so it’s good to test things.


	In the Alert Condition enter:

value>capture(threshold=threshold) + len(capture(params=params))







	In the Parameters selector enter two values (by clicking the plus sign):









	Name

	Value

	Type





	threshold

	50.0

	Float



	anything

	Kartoffel

	String











	In the Entity Filter text box enter:


[
    {
        "type": "GLOBAL"
    }
]










	In the Interval enter: 10




If you run this Trial you can get an Alert or an ‘OK’, but the interesting thing will be in the Captures column.
See how the parameters that you entered are evaluated in the alert condition with the value that you provided.
Notice also that there is a special parameter called params that holds a dict with all the parameters that you entered, this is done so the user can iterate over all the parameters and take conditional decisions, providing a kind of introspection capability, but this is only for advanced users.

Last but not least: Most of the time you don’t need to capture the parameter values, we did it like this so you can visually see that the parameters are evaluated, this means that you can run exactly the same check with this Alert Condition:

value>threshold + len(params)











          
