

Event NotificationServer Documentation

Github Repository [https://github.com/pliablepixels/zmeventnotification]

	Installation of the Event Server (ES)

	How to install the Event Notification Server

	Machine Learning Hooks

	How to configure the machine learning hooks after you install the Event Server

	Breaking Changes

	Breaking changes. Always read this if you are upgrading (for example, lots changed with 3.x and 3.2)

	FAQ

	FAQ covering common scenarios/issues

	For Developers writing their own consumers

	If you want to use the Event Notification Server to make your own app/client

	Writing your own detection plugin

	If you want to add your own algoritm to the machine learning hooks (Needs to be expanded)

	zmNinja Documentation [https://zmninja.readthedocs.io/en/latest/index.html]

	Documentation for zmNinja

Installation of the Event Server (ES)

Download the repo

	Clone the project to some directory
git clone https://github.com/pliablepixels/zmeventnotification.git

	Edit zmeventnotification.ini to your liking. More details about
various parts of the configuration are explained later in this readme

	If you are behind a firewall, make sure you enable port 9000,
TCP, bi-directional (unless you changed the port in the code)

	If you are _not_ using machine learning hooks, make sure you comment out the
hook_script attribute in the [hook] section of the ini file or
you will see errors and you will not receive push

	We now need to install a bunch of dependencies (as described below)

Install Dependencies

Note that I assume you have other development packages already installed
like make, gcc etc as the plugins may require them. The
following perl packages need to be added (these are for Ubuntu - if you
are on a different OS, you’ll have to figure out which packages are
needed - I don’t know what they might be)

(General note - some users may face issues installing dependencies
via perl -MCPAN -e "Module::Name". If so, its usually more reliable
to get into the CPAN shell and install it from the shell as a 2 step
process. You’d do that using sudo perl -MCPAN -e shell and then
whilst inside the shell, install Module::Name)

	Crypt::MySQL (if you have updated to ZM 1.34, this is no longer needed)

	Net::WebSocket::Server

	Config::IniFiles (you may already have this installed)

	Crypt::Eksblowfish::Bcrypt (if you have updated to ZM 1.34, you will already have this)

Installing these dependencies is as simple as:

sudo perl -MCPAN -e "install Crypt::MySQL"
sudo perl -MCPAN -e "install Config::IniFiles"
sudo perl -MCPAN -e "install Crypt::Eksblowfish::Bcrypt"

If after installing them you still see errors about these libraries
missing, please launch a CPAN shell - see General Note above.

If you face issues installing Crypt::MySQL try this instead: (Thanks to
aaronl)

sudo apt-get install libcrypt-mysql-perl

If you face issues installing Crypt::Eksblowfish::Bcrypt, this this instead:

sudo apt-get install libcrypt-eksblowfish-perl

If there are issues installing Config::IniFiles and the errors are
related to Module::Build missing, use following command to get this
module in debian based systems and install Config::IniFiles again.

sudo apt-get install libmodule-build-perl

Next up install WebSockets

sudo apt-get install libyaml-perl
sudo apt-get install make
sudo perl -MCPAN -e "install Net::WebSocket::Server"

Then, you need JSON.pm installed. It’s there on some systems and not on
others In ubuntu, do this to install JSON:

sudo apt-get install libjson-perl

Get HTTPS library for LWP:

perl -MCPAN -e "install LWP::Protocol::https"

If you want to enable MQTT:

perl -MCPAN -e "install Net::MQTT::Simple"

Some notes on MQTT:

	A minimum version of MQTT 3.1.1 is required

	If your MQTT:Simple library was installed a while ago, you may need to update it. A new login method was added
to that library on Dec 2018 which is required (ref [https://github.com/Juerd/Net-MQTT-Simple/blob/cf01b43c27893a07185d4b58ff87db183d08b0e9/Changes#L21])

Note that starting 1.0, we also use File::Spec, Getopt::Long and
Config::IniFiles as additional libraries. My ubuntu installation
seemed to include all of this by default (even though
Config::IniFiles is not part of base perl).

If you get errors about missing libraries, you’ll need to install the
missing ones like so:

perl -MCPAN -e "install XXXX" # where XXX is Config::IniFiles, for example

Configure SSL certificate (Generate new, or use ZoneMinder certs if you are already using HTTPS)

NOTE: If you plan on using picture messaging in zmNinja, then you cannot use self signed certificates. You will need to generate a proper certificate. LetsEncrypt is free and perfect for this.

If you are using secure mode (default) you also need to make sure you
generate SSL certificates otherwise the script won’t run If you are
using SSL for ZoneMinder, simply point this script to the certificates.

If you are not already using SSL for ZoneMinder and don’t have
certificates, generating them is as easy as:

(replace /etc/zm/apache2/ssl/ with the directory you want the
certificate and key files to be stored in)

sudo openssl req -x509 -nodes -days 4096 -newkey rsa:2048 -keyout /etc/zm/apache2/ssl/zoneminder.key -out /etc/zm/apache2/ssl/zoneminder.crt

It’s very important to ensure the Common Name selected while
generating the certificate is the same as the hostname or IP of the
server. For example if you plan to access the server as
myserver.ddns.net Please make sure you use myserver.ddns.net as
the common name. If you are planning to access it via IP, please make
sure you use the same IP.

Once you do that please change the following options in the config file
to point to your SSL certs/keys:

[ssl]
cert = /etc/zm/apache2/ssl/zoneminder.crt
key = /etc/zm/apache2/ssl/zoneminder.key

IOS Users

On some IOS devices and when using self signed certs, I noticed that
zmNinja was not able to register with the event server when it was using
WSS (SSL enabled) and self-signed certificates. To solve this, I had to
email myself the zoneminder certificate (zoneminder.crt) file and
install it in the phone. Why that is needed only for WSS and not for
HTTPS is a mystery to me. The alternative is to run the eventserver in
WS mode by disabling SSL.

Making sure everything is running (in manual mode)

	I am assuming you have downloaded the files to your current directory
in the step below

	Make sure you do a chmod a+x ./zmeventnotification.pl

	Start the event server manually first using
sudo -u www-data ./zmeventnotification.pl --config ./zmeventnotification.ini
(Note that if you omit --config it will look for
/etc/zm/zmeventnotification.ini and if that doesn’t exist, it
will use default values) and make sure you check syslogs to ensure
its loaded up and all dependencies are found. If you see errors, fix
them. Then exit and follow the steps below to start it along with
Zoneminder. Note that the -u www-data runs this command with the
user id that apache uses (in some systems this may be apache or
similar). It is important to run it using the same user id as your
webserver because that is the permission zoneminder will use when run
as a daemon mode.

	Its is HIGHLY RECOMMENDED that you first start the event server
manually from terminal, as described above and not directly dive into
daemon mode (described below) and ensure you inspect syslog to
validate all logs are correct and THEN make it a daemon in
ZoneMinder. If you don’t, it will be hard to know what is going
wrong. See this section later that describes how to make sure its all working fine
from command line.

Install the server (optionally along with hooks)

NOTE : By default install.sh moves the ES script to /usr/bin.
If your ZM install is elsewhere, like /usr/local/bin please modify the TARGET_BIN variable
in install.sh before executing it.

	You can now move the ES to the right place by simply doing
sudo ./install.sh and following prompts. Other options are below:

	Execute sudo ./install.sh --no-install-hook to move the ES to the
right place without installing machine learning hooks

	In ZM 1.32.0 and above, go to your web interface, and go to
Options->Systems and enable OPT_USE_EVENTNOTIFICATION and you
are all set.

The rest of this section is NOT NEEDED for 1.32.0 and above!

Deprecated since version 1.32.0.

WARNING : Do NOT do this before you run it manually as I’ve
mentioned above to test. Make sure it works, all packages are present
etc. before you add it as a daemon as if you don’t and it crashes you
won’t know why

(Note if you have compiled from source using cmake, the paths may be
/usr/local/bin not /usr/bin)

	Edit /usr/bin/zmdc.pl and in the array @daemons (starting
line 89 or so, may change depending on ZM version) add
'zmeventnotification.pl' like
this [https://gist.github.com/pliablepixels/18bb68438410d5e4b644]

	Edit /usr/bin/zmpkg.pl and around line 275 (exact line # may
change depending on ZM version), right after the comment that says
#this is now started unconditionally and right before the line
that says runCommand("zmdc.pl start zmfilter.pl"); start
zmeventnotification.pl by adding
runCommand("zmdc.pl start zmeventnotification.pl"); like
this [https://gist.github.com/pliablepixels/b4e4fd38ac526c5c881ee55da05195ff]

	Make sure you restart ZM. Rebooting the server is better - sometimes
zmdc hangs around and you’ll be wondering why your new daemon hasn’t
started

	To check if its running do a
zmdc.pl status zmeventnotification.pl

You can/should run it manually at first to check if it works

Machine Learning Hooks

Note

Before you install machine learnings hooks, please make sure you have installed
the Event Notification Server (Installation of the Event Server (ES)) and have it working properly

Important

Please don’t ask me basic questions like “pip3 command not found” or
“cv2 not found” - what do I do? Hooks require some terminal
knowledge and familiarity with troubleshooting. I don’t plan to
provide support for these hooks. They are for reference only

Limitations

	Only tested with ZM 1.32+. May or may not work with older versions

	Needs Python3 (I used to support Python2, but not any more). Python2 will be deprecated in 2020. May as well update.

What

Kung-fu machine learning goodness.

This is an example of how you can use the hook feature of the
notification server to invoke a custom script on the event before it
generates an alarm. I currently support object detection and face
recognition.

Please don’t ask me questions on how to use them. Please read the
extensive documentation and ini file configs

Installation

Option 1: Automatic install

	You need to have pip3 installed. On ubuntu, it is
sudo apt install python3-pip, or see
this [https://pip.pypa.io/en/stable/installing/]

	Clone the event server and go to the hook directory

git clone https://github.com/pliablepixels/zmeventnotification # if you don't already have it downloaded

cd zmeventnotification

	(OPTIONAL) Edit hook/detect_wrapper.sh and change:

	CONFIG_FILE to point to the right config file, if you changed
paths

sudo -H ./install.sh # and follow the prompts

Note: if you want to add “face recognition” you also need to do

sudo apt-get install libopenblas-dev liblapack-dev libblas-dev # not mandatory, but gives a good speed boost!
sudo -H pip3 install face_recognition # mandatory

Takes a while and installs a gob of stuff, which is why I did not add it
automatically, especially if you don’t need face recognition.

Note, if you installed face_recognition earlier without blas, do this:

sudo -H pip3 uninstall dlib
sudo -H pip3 uninstall face-recognition
sudo apt-get install libopenblas-dev liblapack-dev libblas-dev # this is the important part
sudo -H pip3 install dlib --verbose --no-cache-dir # make sure it finds openblas
sudo -H pip3 install face_recognition

Option 2: Manual install

If automatic install fails for you, or you like to be in control:

git clone https://github.com/pliablepixels/zmeventnotification # if you don't already have it downloaded

	Install object detection files:

cd zmeventnotification/
sudo -H pip3 install hook/

Note: if you want to add “face recognition” you also need to do

sudo apt-get install libopenblas-dev liblapack-dev libblas-dev # not mandatory, but gives a good speed boost!
sudo -H pip3 install face_recognition # mandatory

Takes a while and installs a gob of stuff, which is why I did not add it
automatically, especially if you don’t need face recognition.

Note, if you installed face_recognition without blas, do this:

	::

	sudo -H pip3 uninstall dlib
sudo -H pip3 uninstall face-recognition
sudo apt-get install libopenblas-dev liblapack-dev libblas-dev # this is the important part
sudo -H pip3 install dlib –verbose –no-cache-dir # make sure it finds openblas
sudo -H pip3 install face_recognition

	You now need to download configuration and weight files that are
required by the machine learning magic. Note that you don’t have to
put them in /var/lib/zmeventnotification -> use whatever you want
(and change variables in detect_wrapper.sh script if you do)

sudo mkdir -p /var/lib/zmeventnotification/images
sudo mkdir -p /var/lib/zmeventnotification/models

if you are using face recognition, create this folder
after that you need to copy images of faces you want to detect
to this folder
sudo mkdir -p /var/lib/zmeventnotification/known_faces

if you want to use YoloV3 (slower, accurate)
sudo mkdir -p /var/lib/zmeventnotification/models/yolov3 # if you are using YoloV3
sudo wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3.cfg -O /var/lib/zmeventnotification/models/yolov3/yolov3.cfg
sudo wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names -O /var/lib/zmeventnotification/models/yolov3/yolov3_classes.txt
sudo wget https://pjreddie.com/media/files/yolov3.weights -O /var/lib/zmeventnotification/models/yolov3/yolov3.weights

--OR--

if you want to use TinyYoloV3 (faster, less accurate)
sudo mkdir -p /var/lib/zmeventnotification/models/tinyyolo # if you are using TinyYoloV3
sudo wget https://pjreddie.com/media/files/yolov3-tiny.weights -O /var/lib/zmeventnotification/models/tinyyolo/yolov3-tiny.weights
sudo wget https://raw.githubusercontent.com/pjreddie/darknet/master/cfg/yolov3-tiny.cfg -O /var/lib/zmeventnotification/models/tinyyolo/yolov3-tiny.cfg
sudo wget https://raw.githubusercontent.com/pjreddie/darknet/master/data/coco.names -O /var/lib/zmeventnotification/models/tinyyolo/yolov3-tiny.txt

	Copy over the object detection config file

sudo cp objectconfig.ini /etc/zm

	Now make sure it all RW accessible by www-data (or apache)

sudo chown -R www-data:www-data /var/lib/zmeventnotification/ #(change www-data to apache for CentOS/Fedora)

	(OPTIONAL) Edit detect_wrapper.sh and change:

	CONFIG_FILE to point to the right config file, if you changed
paths

	Now copy your detection file to /usr/bin

sudo cp detect.py /usr/bin

Post install steps

	Make sure you edit your installed objectconfig.ini to the right
settings. You MUST change the [general] section for your own
portal.

	Make sure the CONFIG_FILE variable in detect_wrapper.sh is
correct

Test operation

sudo -u www-data /usr/bin/detect_wrapper.sh <eid> <mid> # replace www-data with apache if needed

This will try and download the configured frame for alarm and analyze
it. Replace with your own EID (Example 123456) The files will be in
/var/lib/zmeventnotification/images For example: if you configured
frame_id to be bestmatch you’ll see two files
<eid>-alarm.jpg and <eid>-snapshot.jpg If you configured
frame_id to be snapshot or a specific number, you’ll see one
file <eid>.jpg

The <mid> is optional and is the monitor ID. If you do specify it,
it will pick up the right mask to apply (if it is in your config)

The above command will also try and run detection.

If it doesn’t work, go back and figure out where you have a problem

	Other configuration notes, after you get everything working

	Set delete_after_analyze to yes so that downloaded images
are removed after analysis. In the default installation, the
images are kept in /var/lib/zmeventnotification/images so you
can debug.

	Remember these rules:

	frame_id=snapshot will work for any ZM >= 1.32

	If you are running ZM < 1.33, to enable bestmatch or
alarm you need to enable the monitor to store JPEG frames
in its ZM monitor->storage configuration in ZM

	If you are running ZM >= 1.33, you can use all fid modes
without requiring to enable frames in storage

Upgrading

To upgrade at a later stage, see How do I safely upgrade zmeventnotification to new versions?.

Logging

Starting version 4.0.x, the hooks now use ZM logging, thanks to a python wrapper [https://pypi.org/project/pyzmutils/] I wrote recently that taps into ZM’s logging system. This also means it is no longer as easy as enabling log_level=debug in objdetect.ini. Infact, that option has been removed. Follow standard ZM logging options for the hooks. Here is what I do:

	In ZM->Options->Logs:

	LOG_LEVEL_FILE = debug

	LOG_LEVEL_SYSLOG = Info

	LOG_LEVEL_DATABASE = Info

	LOG_DEBUG is on

	LOG_DEBUG_TARGET = _zmesdetect (if you have other targets, just separate them with | - example, _zmc|_zmesdetect). If you want to enable debug logs for both the ES and the hooks, your target will look like _zmesdetect|_zmeventnotification. You can also enabled debug logs for just one monitor’s hooks like so: _zmesdetect_m5|_zmeventnotification. This will enable debug logs only when hooks are run for monitor 5.

The above config. will store debug logs in my /var/log/zm directory, while Info level logs will be recorded in syslog and DB.

You will likely need to restart ZM after this.

So now, to view hooks/detect logs, all I do is:

tail -f /var/log/zm/zmesdetect*.log

Note that the detection code registers itself as zmesdetect with ZM. When it is invoked with a specific monitor ID (usually the case), then the component is named zmesdetect_mX.log where X is the monitor ID. In other words, that now gives you one log per monitor (just like /var/log/zm/zmc_mX.log) which makes it easy to debug/isolate.

Troubleshooting

	In general, I expect you to debug properly. Please don’t ask me basic
questions without investigating logs yourself

	Always run detect_wrapper.sh in manual mode first to make sure it
works

	To get debug logs, Make sure your LOG_DEBUG in ZM Options->Logs is set to on and your LOG_DEBUG_TARGET option includes _zmesdetect (or is empty)

	You can view debug logs for detection by doing tail -f /var/log/zm/zmesdetect*.log

	One of the big reasons why object detection fails is because the hook
is not able to download the image to check. This may be because your
ZM version is old or other errors. Some common issues:

	Make sure your objectconfig.ini section for [general] are
correct (portal, user,admin)

	For object detection to work, the hooks expect to download images
of events using
https://yourportal/zm/?view=image&eid=<eid>&fid=snapshot and
possibly https://yourportal/zm/?view=image&eid=<eid>&fid=alarm

	Open up a browser, log into ZM. Open a new tab and type in
https://yourportal/zm/?view=image&eid=<eid>&fid=snapshot in
your browser. Replace eid with an actual event id. Do you see
an image? If not, you’ll have to fix/update ZM. Please don’t ask
me how. Please post in the ZM forums

	Open up a browser, log into ZM. Open a new tab and type in
https://yourportal/zm/?view=image&eid=<eid>&fid=alarm in your
browser. Replace eid with an actual event id. Do you see an
image? If not, you’ll have to fix/update ZM. Please don’t ask me
how. Please post in the ZM forums

Types of detection

You can switch detection type by using
model=<detection_type1>,<detection_type2>,.... in your
objectconfig.ini

Example:

model=yolo,hog,face will run full Yolo, then HOG, then face
recognition.

Note that you can change model on a per monitor basis too. Read the
comments in objectconfig.ini

If you select yolo, you can add a model_type=tiny to use tiny YOLO
instead of full yolo weights. Again, please readd the comments in
objectconfig.ini

How to use license plate recognition

Two ALPR options are provided:

	Plate Recognizer [https://platerecognizer.com] . It uses a deep learning model that does a far better job than OpenALPR (based on my tests). The class is abstracted, obviously, so in future I may add local models. For now, you will have to get a license key from them (they have a free tier [https://platerecognizer.com/pricing/] that allows 2500 lookups per month)

	OpenALPR [https://www.openalpr.com] . While OpenALPR’s detection is not as good as Plate Recognizer, when it does detect, it provides a lot more information (like car make/model/year etc.)

To enable alpr, simple add alpr to models. You will also have to add your license key to the [alpr] section of objdetect.ini

This is an example config that uses plate recognizer:

models = yolo,alpr

[alpr]
alpr_service=plate_recognizer
If you want to host a local SDK https://app.platerecognizer.com/sdk/
#alpr_url=https://localhost:8080
Plate recog replace with your api key
alpr_key=KEY
if yes, then it will log usage statistics of the ALPR service
platerec_stats=no
If you want to specify regions. See http://docs.platerecognizer.com/#regions-supported
#platerec_regions=['us','cn','kr']
minimal confidence for actually detecting a plate
platerec_min_dscore=0.1
minimal confidence for the translated text
platerec_min_score=0.2

This is an example config that uses OpenALPR:

models = yolo,alpr

[alpr]
alpr_service=open_alpr
alpr_key=SECRET

For an explanation of params, see http://doc.openalpr.com/api/?api=cloudapi
openalpr_recognize_vehicle=1
openalpr_country=us
openalpr_state=ca
openalpr returns percents, but we convert to between 0 and 1
openalpr_min_confidence=0.3

Leave alpr_use_after_detection_only to the default values.

How license plate recognition will work

	To save on API calls, the code will only invoke remote APIs if a vehicle is detected

	This also means you MUST specify yolo along with alpr

How to use face recognition

Face Recognition uses
this [https://github.com/ageitgey/face_recognition] library. Before
you try and use face recognition, please make sure you did a
sudo -H pip3 install face_recognition The reason this is not
automatically done during setup is that it installs a lot of
dependencies that takes time (including dlib) and not everyone wants it.

Face recognition limitations

Don’t expect magic with overhead cameras. This library requires a
reasonable face orientation (works for front facing, or somewhat side
facing poses) and does not work for full profiles or completely overhead
faces. Take a look at the accuracy
wiki [https://github.com/ageitgey/face_recognition/wiki/Face-Recognition-Accuracy-Problems]
of this library to know more about its limitations. Also note that I found cnn mode is much more accurage than hog mode. However, cnn comes with a speed and memory tradeoff.

Configuring face recognition

	Make sure you have images of people you want to recognize in
/var/lib/zmeventnotification/known_faces

	Only one image per person

	For example, you may have the following image setup:

/var/lib/zmeventnotification/known_faces
 + david_gilmour.jpg
 + ramanujan.jpg
 + bruce_lee.jpg

	When face recognition is triggered, it will load each of these files
and if there are faces in them, will load them and compare them to
the alarmed image

known faces images

	Only put in one image per person

	Make sure the face is recognizable

	crop it to around 400 pixels width (doesn’t seem to need bigger
images, but experiment. Larger the image, the larger the memory
requirements)

Yo, it can’t recognize faces

	Look at debug logs.

	If it says “no faces loaded” that means your known images don’t
have recognizable faces

	If it says “no faces found” that means your alarmed image doesn’t
have a face that is recognizable

	Read comments about num_jitters, model, upsample_times
in objectconfig.ini

	Experiment. Read the accuracy wiki link I posted in the previous
section

Performance comparison

DNNs perform very well on a GPU. My ZM server doesn’t have a GPU. On a
Intel Xeon 3.16GHz 4Core machine:

With BLAS installed, here are my performance stats:
All tests are with a 600px wide image

	Face Detection with CNN:

[|--> model:face init took: 1.901829s]
[|--> model:face detection took: 4.218463s] (Fyi, this varies, from 4.x - 6.xs)

	Face Detection with HOG:

[|--> model:face init took: 1.866364s]
[|--> model:face detection took: 0.263436s]

	YoloV3 object detection (with full yolov3 weights)

[|--> model:yolo init took: 1.9e-05s]
[|--> model:yolo detection took: 2.487402s]

As always, if you are trying to figure out how this works, do this in 3
steps:

Manually testing if detection is working well

You can manually invoke the detection module to check if it works ok:

./sudo -u www-data /usr/bin/detect.py --config /etc/zm/objectconfig.ini --eventid <eid> --monitorid <mid>

The --monitorid <mid> is optional and is the monitor ID. If you do
specify it, it will pick up the right mask to apply (if it is in your
config)

STEP 1: Make sure the scripts(s) work

	Run the python script manually to see if it works (refer to sections above on how to run them manually)

	./detect_wrapper.sh <eid> <mid> –> make sure it
downloads a proper image for that eid. Make sure it correctly invokes
detect.py If not, fix it. (<mid> is optional and is used to apply a
crop mask if specified)

	Make sure the image_path you’ve chosen in the config file is WRITABLE by www-data (or apache) before you move to step 2

STEP 2: run zmeventnotification in MANUAL mode

	sudo zmdc.pl stop zmeventnotification.pl

	change console_logs to yes in zmeventnotification.ini

	sudo -u www-data ./zmeventnotification.pl --config ./zmeventnotification.ini

	Force an alarm, look at logs

STEP 3: integrate with the actual daemon
- You should know how to do this already

Breaking Changes

Version 4.4 onwards

	If you are using picture messaging, then the URL format has changed. Please REMOVE &username=<user>&password=<passwd> from the URL and put them into the picture_portal_username and picture_portal_password fields respectively

Version 4.1 onwards

	Hook versions will now always be <ES version>.x, so in this case 4.1.x

	Hooks have now migrated to using a proper python ZM logger module [https://pypi.org/project/pyzmutils/] so it better integrates with ZM logging

	To view detection logs, you now need to follow the standard ZM logging process. See Logging documentation for more details)

	You no longer have to manually install python requirements, the setup process should automatically install them

	If you are using MQTT and your MQTT:Simple library was installed a while ago, you may need to update it. A new login method was added
to that library on Dec 2018 which is required (ref [https://github.com/Juerd/Net-MQTT-Simple/blob/cf01b43c27893a07185d4b58ff87db183d08b0e9/Changes#L21])

Version 3.9 onwards

	Hooks now add ALPR, so you need to run sudo -H pip install -r requirements.txt again

	See modified objectconfig.ini if you want to add ALPR. Currently works with platerecognizer.com, so you will need an API key. See hooks docs for more info

Version 3.7 onwards

	There were some significant changes to ZM (will be part of 1.34), which includes migration to Bcrypt for passwords. Changes were made to support Bcrypt, which means you will have to add additional libraries. See the installation guide.

version 3.3 onwards

	Please use yes or no instead of 1 and 0 in zmeventnotification.ini to maintain consistency with objectconfig.ini

	In zmeventnotification.ini, store_frame_in_zm is now hook_pass_image_path

version 3.2 onwards

	Changes in paths for everything. - event server config file now defaults to /etc/zm

	hook config now defaults to /etc/zm

	Push token file now defaults to /var/lib/zmeventnotification/push

	all object detection data files default to /var/lib/zmeventnotification

	
	If you are migrating from a previous version:

	
	Make a copy of your /etc/zmeventnotification.ini and /var/detect/objectconfig.ini (if you are using hooks)

	Run sudo -H ./install.sh again inside the repo, let it set up all the files

	Compare your old config files to the news ones at /etc/zm and make necessary changes

	Make sure everything works well

	You can now delete the old /var/detect folder as well as /etc/zmeventnotification.ini

	Run zmNinja again to make sure its token is registered in the new tokens file (in /var/lib/zmeeventnotification/push/tokens.txt)

FAQ

Machine Learning! Mmm..Machine Learning!

Easy. You will first have to read this document to correctly install
this server along with zoneminder. Once it works well, you can explore
how to enable Machine Learning based object detection that can be used
along with ZoneMinder alarms. If you already have this server figured
out, you can skip directly to the machine learning part (Machine Learning Hooks)

What is it?

A WSS (Secure Web Sockets) and/or MQTT based event notification server
that broadcasts new events to any authenticated listeners. (As of 0.6,
it also includes a non secure websocket option, if that’s how you want
to run it)

Why do we need it?

	The only way ZoneMinder sends out event notifications via event
filters - this is too slow

	People developing extensions to work with ZoneMinder for Home
Automation needs will benefit from a clean interface

	Receivers don’t poll. They keep a web socket open and when there are
events, they get a notification

	Supports WebSockets, MQTT and Apple/Android push notification
transports

	Offers an authentication layer

	Allows you to integrate custom hooks that can decide if an alarm
needs to be sent out or not (an example of how this can be used for
person detection is provided)

Is this officially developed by ZM developers?

No. I developed it for zmNinja, but you can use it with your own
consumer.

How can I use this with Node-Red or Home Assistant?

As of version 1.1, the event server also supports MQTT (Contributed by
@vajonam [https://github.com/vajonam]). zmeventnotification server can
be configured to broadcast on a topic called
/zoneminder/<monitor-id> which can then be consumed by Home
Assistant or Node-Red.

To enable this, set enable = 1 under the [mqtt] section and
specify the server to broadcast to.

You will also need to install the following module for this work

perl -MCPAN -e "install Net::MQTT::Simple"

The MQTT::Simple module is known to work only with Mosquitto as of 10 Jun 2019. It does not work correctly with the RabbitMQ MQTT plugin. The easiest workaround if you have an unsupported MQTT system is to install Mosquitto on the Zoneminder system itself and bridge that to RabbitMQ. You can bind Mosquitto to 127.0.0.1 and disable authentication to keep it simple. The eventserver.pl is then configured to send events to the local Mosquitto. This is an example known working bridge set up (on Ubuntu, for example, this is put into /etc/mosquitto/conf.d/local.conf):

bind_address 127.0.0.1
allow_anonymous true
connection bridge-zm2things
address 10.10.1.20:1883
bridge_protocol_version mqttv311
remote_clientid bridge-zm2things
remote_username zm
remote_password my_mqtt_zm_password
try_private false
topic # out 0

Set the address, remote_username and remote_password for Mosquitto to use on the RabbitMQ. Note that this is a one way bridge, so there is only a topic # out 0. try_private false is needed to avoid a similar error to using MQTT::Simple.

Disabling security

While I don’t recommend either, several users seem to be interested in
the following

	To run the eventserver on Websockets and not Secure Websockets, use
enable = 0 in the [ssl] section of the configuration file.

	To disable ZM Auth checking (be careful, anyone can get all your data
INCLUDING passwords for ZoneMinder monitors if you open it up to the
Internet) use enable = 0 in the [auth] section of the
configuration file.

How do I safely upgrade zmeventnotification to new versions?

STEP 1: get the latest code

Download the latest version & change dir to it:

git clone https://github.com/pliablepixels/zmeventnotification.git
cd zmeventnotification/

STEP 2: stop the current ES

sudo zmdc.pl stop zmeventnotification.pl

STEP 3: Make a backup of your config files

Before you execute the next step you may want to create a backup of your existing zmeventnotification.ini and objectconfig.ini config files. The script will prompt you to overwrite. If you say ‘Y’ then your old configs will be overwritten. Note that old configs are backed up using suffixes like ~1, ~2 etc. but it is always good to backup on your own.

STEP 4: Execute the install script

NOTE : By default install.sh moves the ES script to /usr/bin.
If your ZM install is elsewhere, like /usr/local/bin please modify the TARGET_BIN variable
in install.sh before executing it.

sudo ./install.sh

Follow prompts. Note that just copying the ES perl file to /usr/bin is not sufficient. You also have to install the updated machine learning hook files if you are using them. That is why install.sh is better. If you are updating, make sure not to overwrite your config files (but please read breaking changes to see if any config files have changed). Note that the install script makes a backup of your old config files using ~n suffixes where n is the backup number. However, never hurts to make your own backup first.

STEP 5: Start the new updated server

sudo zmdc.pl start zmeventnotification.pl

Make sure you look at the logs to make sure its started properly

Configuring the notification server

Understanding zmeventnotification configuration

Starting v1.0, @synthead [https://github.com/synthead] reworked the
configuration (brilliantly) as follows:

	If you just run zmeventnotification.pl it will try and load
/etc/zm/zmeventnotification.ini. If it doesn’t find it, it will
use internal defaults

	If you want to override this with another configuration file, use
zmeventnotification.pl --config /path/to/your/config/filename.ini.

	Its always a good idea to validate you config settings. For example:

sudo /usr/bin/zmeventnotification.pl --check-config

03/31/2018 16:52:23.231955 zmeventnotification[29790].INF [using config file: /etc/zm/zmeventnotification.ini]
Configuration (read /etc/zm/zmeventnotification.ini):

Port 9000
Address XX.XX.XX.XX
Event check interval 5
Monitor reload interval 300

Auth enabled true
Auth timeout 20

Use FCM true
FCM API key (defined)
Token file /var/lib/zmeventnotification/push/tokens.txt

SSL enabled true
SSL cert file /etc/zm/apache2/ssl/zoneminder.crt
SSL key file /etc/zm/apache2/ssl/zoneminder.key

console_logs false
Read alarm cause true
Tag alarm event id false
Use custom notification sound . false

Hook '/usr/bin/person_detect_wrapper.sh'
Use Hook Description........... true

What is the hook section ?

The hook section allows you to invoke a custom script when an alarm
is triggered by ZM.

hook_script points to the script that is invoked when an alarm
occurs

If the script returns success (exit value of 0) then the notification
server will send out an alarm notification. If not, it will not send a
notification to its listeners. This is useful to implement any custom
logic you may want to perform that decides whether this event is worth
sending a notification for.

Related to hook we also have a hook_description attribute. When
set to 1, the text returned by the hook script will overwrite the alarm
text that is notified.

We also have a skip_monitors attribute. This is a comma separated
list of monitors. When alarms occur in those monitors, hooks will not be
called and the ES will directly send out notifications (if enabled in
ES). This is useful when you don’t want to invoke hooks for certain
monitors as they may be expensive (especially if you are doing object
detection)

Finally, keep_frame_match_type is really used when you enable
“bestmatch”. It prefixes an [a] or [s] to tell you if object
detection succeeded in the alarmed or snapshot frame.

Here is an example: (Note: just an example, please don’t ask me for
support for person detection)

	You will find a sample detect_wrapper.sh hook in the hook
directory. This script is invoked by the notification server when an
event occurs.

	This script in turn invokes a python OpenCV based script that grabs
an image with maximum score from the current event so far and runs a
fast person detection routine.

	It returns the value “person detected” if a person is found and none
if not

	The wrapper script then checks for this value and exits with either 0
(send alarm) or 1 (don’t send alarm)

	the notification server then sends out a “: person detected”
notification to the clients listening

Those who want to know more: - Read the detailed notes
here [https://github.com/pliablepixels/zmeventnotification/tree/master/hook]
- Read
this [https://medium.com/zmninja/inside-the-hood-machine-learning-enhanced-real-time-alarms-with-zoneminder-e26c34fe354c]
for an explanation of how this works

Troubleshooting common situations

LetsEncrypt certificates cannot be found when running as a web user

When the notification server is run in web user mode (example sudo -u www-data), the event notification
server complains that it cannot find the certificate. The error is something like this:

zmeventnotification[10090].ERR [main:547] [Failed starting server: SSL_cert_file /etc/letsencrypt/live/mysite.net-0001/fullchain.pem does not exist at /usr/share/perl5/vendor_perl/IO/Socket/SSL.pm line 402.]

The problem is read permissions, starting at the root level. Typically doing chown -R www-data:www-data /etc/letsencrypt solves this issue

Picture notifications don’t show images

Starting v2.0, I support images in alarms. However, there are several
conditions to be met:

	You can’t use self signed certs

	The IP/hostname needs to be publicly accessible (Apple/Google servers render the image)

	You need patches to ZM unless you are using a package that is later than Oct 11, 2018. Please read the notes in the INI file

	A good way to isolate if its a URL problem or something else is replace the picture_url with a knows HTTPS url like this [https://upload.wikimedia.org/wikipedia/commons/5/5f/Chinese_new_year_dragon_2014.jpg]

Before you report issues, please make sure you have been diligent in
testing - Try with a public URL as indicated above. This is important. -
In your issue, post debug logs of zmeventnotification so I can see what
message it is sending

Secure mode just doesn’t work (WSS) - WS works

Try to put in your event server IP in the address token in
[network] section of zmeventnotification.ini

I’m not receiving push notifications in zmNinja

This almost always happens when zmNinja is not able to reach the server.
Before you contact me, please perform the following steps and send me
the output:

	Stop the event server. sudo zmdc.pl stop zmeventnotification.pl

	Do a ps -aef | grep zmevent and make sure no stale processes are
running

	Edit your /etc/zm/zmeventnotification.ini and make sure
console_logs = yes to get console debug logs

	Run the server manually by doing
sudo -u www-data /usr/bin/zmeventnotification.pl (replace with
www-data with apache depending on your OS)

	You should now see logs on the commandline like so that shows the
server is running:

018-12-20,08:31:32 About to start listening to socket
12/20/2018 08:31:32.606198 zmeventnotification[12460].INF [main:582] [About to start listening to socket]
2018-12-20,08:31:32 Secure WS(WSS) is enabled...
12/20/2018 08:31:32.656834 zmeventnotification[12460].INF [main:582] [Secure WS(WSS) is enabled...]
2018-12-20,08:31:32 Web Socket Event Server listening on port 9000
12/20/2018 08:31:32.696406 zmeventnotification[12460].INF [main:582] [Web Socket Event Server listening on port 9000]

	Now start zmNinja. You should see event server logs like this:

2018-12-20,08:32:43 Raw incoming message: {"event":"push","data":{"type":"token","platform":"ios","token":"cVuLzCBsEn4:APA91bHYuO3hVJqTIMsm0IRNQEYAUa<deleted>GYBwNdwRfKyZV0","monlist":"1,2,4,5,6,7,11","intlist":"45,60,0,0,0,45,45","state":"enabled"}}

If you don’t see these logs on the event server, zmNinja is not able to
connect to the event server. This may be because of several reasons: a)
Your event server IP/DNS is not reachable from your phone b) If you are
using SSL, your certificates are invalid (try disabling SSL first - both
on the event server and on zmNinja) c) Your zmNinja configuration is
wrong (the most common error I see is the server has SSL disabled, but
zmNinja is configured to use wss:// instead of ws://)

	Assuming the above worked, go to zmNinja logs in the app. Somewhere
in the logs, you should see a line similar to:

Dec 20, 2018 05:50:41 AM DEBUG Real-time event: {"type":"","version":"2.4","status":"Success","reason":"","event":"auth"}

This indicates that the event server successfully authenticated the app.
If you see step 6 work but not step 7, you might have provided incorrect
credentials (and in that case, you’ll see an error message)

	Finally, after all of the above succeeds, do a
cat /var/lib/zmeventnotification/push/tokens.txt to make sure
the device token that zmNinja sent is stored (desktop apps don’t
have a device token). If you are using zmNinja on a mobile app, and
you don’t see an entry in tokens.txt you have a problem. Debug.

	Always send me logs of both zmNinja and zmeventnotification - I
need them to understand what is going on. Don’t send me one line.
You may think you are sending what is relevant, but you are not. One
line logs are mostly useless.

	Some other notes:

	If you are not using machine learning hooks, make sure you comment
out the hook_script line in [hook]. If you have not setup
the scripts correctly, if will fail and not send a push.

	If you don’t see an entry in tokens.txt (typically in
/var/lib/zmeventnotification/push) then your phone is not
registered to get push. Kill zmNinja, start the app, make sure the
event server receives the registration and check tokens.txt

	Sometimes, Google’s FCM server goes down, or Apple’s APNS server goes
down for a while. Things automagically work in 24 hrs.

	Kill the app. Then empty the contents of tokens.txt in the event
server (don’t delete it). Then restart the event server. Start the
app again. If you don’t see a new registration token, you have a
connection problem

	I’d strongly recommend you run the event server in “manual mode” and
stop daemon mode while debugging.

I’m getting multiple notifications for the same event

99.9% of times, its because you have multiple copies of the eventserver
running and you don’t know it. Maybe you were manually testing it, and
forgot to quit it and terminated the window. Do
sudo zmdc.pl stop zmeventnotification.pl and then
ps -aef | grep zme, kill everything, and start again. Monitor the
logs to see how many times a message is sent out.

The other 0.1% is at times Google’s FCM servers send out multiple
notifications. Why? I don’t know. But it sorts itself out very quickly,
and if you think this must be the reason, I’ll wager that you are
actually in the 99.9% lot and haven’t checked properly.

The server runs fine when manually executed, but fails when run in daemon mode (started by zmdc.pl)

	Make sure the file where you store tokens
(/var/lib/zmeventnotification/push/tokens.txt or whatever you have used)
is not RW Root only. It needs to be RW www-data for Ubuntu/Debian
or apache for Fedora/CentOS. You also need to make sure the
directory is accessible. Something like
chown -R www-data:www-data /var/lib/zmeventnotification/push

	Make sure your certificates are readable by www-data for
Ubuntu/Debian, or apache for Fedora/CentOS (thanks to
@jagee [https://github.com/pliablepixels/zmeventnotification/issues/8]).

	Make sure the path to the certificates are readable by www-data
for Ubuntu/Debian, or apache for Fedora/CentOS

When you run zmeventnotifiation.pl manually, you get an error saying ‘port already in use’ or ‘cannot bind to port’ or something like that

The chances are very high that you have another copy of
zmeventnotification.pl running. You might have run it in daemon
mode. Try sudo zmdc.pl stop zmeventnotification.pl. Also do
ps -aef | grep zmeventnotification to check if another copy is not
running and if you do find one running, you’ll have to kill it before
you can start it from command line again.

Running hooks manually detects the objects I want but fails to detect via ES (daemon mode)

There may be multiple reasons, but a common one is of timing. When the ES invokes the hook, it is invoked almost immediately upon event detection. In some cases, ZoneMinder still has not had time to create an alarmed frame, or the right snapshot frame. So what happens is that when the ES invokes the hook, it runs detection on a different image from the one you run later when invoked manually. Try adding a wait = 5 to objectconfig.ini to that monitor section and see if it helps

Great Krypton! I just upgraded ZoneMinder and I’m not getting push anymore!

Make sure your eventserver is running:
sudo zmdc.pl status zmeventnotification.pl

How do I disable secure (WSS) mode?

As it turns out many folks run ZM inside the LAN only and don’t want to
deal with certificates. Fair enough. For that situation, edit
zmeventnotification.pl and use enable = 0 in the [ssl] section
of the configuration file. Remember to ensure that your EventServer
URL in zmNinja does NOT use wss too - change it to ws

Debugging and reporting problems

STOP. Before you shoot me an email, please make sure you have read
the common problems and have
followed every step of the install guide
and in sequence. I can’t emphasize how important it is.

There could be several reasons why you may not be receiving
notifications:

	Your event server is not running

	Your app is not able to reach the server

	You have enabled SSL but the certificate is invalid

	The event server is rejecting the connections

Here is how to debug and report:

	Enable Debug logs in zmNinja (Setting->Developer Options->Enable
Debug Log)

	SSH into your zoneminder server

	Stop the zmeventnotification doing
sudo zmdc.pl stop zmeventnotification.pl

	Make sure there are no stale processes running of zmeventnotification
by doing ps -aef | grep zmeventnotification and making sure it
doesn’t show existing processes (ignore the one that says
grep <something>)

	Make sure ES debug logs are on.
- Enable ZM debug logs for both ES (and hooks if you use them) as described in Logging. Note that ES debug logs are different from hooks debug logs. You need to enable both if you use them.

	Start a terminal and start zmeventnotification manually from
command line like so sudo -u www-data /usr/bin/zmeventnotification.pl

	Start another terminal and tail logs like so tail -f /var/log/zm/zmeventnotification.log /var/log/zm/zmesdetect_m*.log. If you are NOT using hooks, simply do tail -f /var/log/zm/zmeventnotification.log

	Make sure you see logs like this in the logs window like so: (this example shows logs from both ES and hooks)

pp@homeserver:~/fiddle/zmeventnotification$ tail -f /var/log/zm/zmeventnotification.log /var/log/zm/zmesdetect_m*.log
==> /var/log/zm/zmeventnotification.log <==
10/06/2019 06:48:29.200008 zmeventnotification[13694].INF [main:557] [Invoking hook:'/usr/bin/detect_wrapper.sh' 33989 2 "DoorBell" " front" "/var/cache/zoneminder/events/2/2019-10-06/33989"]
10/06/2019 06:48:34.013490 zmeventnotification[29913].INF [main:557] [New event 33990 reported for Monitor:10 (Name:FrontLawn) front steps]
10/06/2019 06:48:34.020958 zmeventnotification[13728].INF [main:557] [Forking process:13728 to handle 1 alarms]
10/06/2019 06:48:34.021347 zmeventnotification[13728].INF [main:557] [processAlarms: EID:33990 Monitor:FrontLawn (id):10 cause: front steps]
10/06/2019 06:48:34.237147 zmeventnotification[13728].INF [main:557] [Adding event path:/var/cache/zoneminder/events/10/2019-10-06/33990 to hook for image storage]
10/06/2019 06:48:34.237418 zmeventnotification[13728].INF [main:557] [Invoking hook:'/usr/bin/detect_wrapper.sh' 33990 10 "FrontLawn" " front steps" "/var/cache/zoneminder/events/10/2019-10-06/33990"]
10/06/2019 06:48:46.529693 zmeventnotification[13728].INF [main:557] [For Monitor:10 event:33990, hook script returned with text: exit:1]
10/06/2019 06:48:46.529896 zmeventnotification[13728].INF [main:557] [Ending process:13728 to handle alarms]
10/06/2019 06:48:47.640414 zmeventnotification[13694].INF [main:557] [For Monitor:2 event:33989, hook script returned with text: exit:1]
10/06/2019 06:48:47.640668 zmeventnotification[13694].INF [main:557] [Ending process:13694 to handle alarms]

==> /var/log/zm/zmesdetect_m10.log <==
10/06/19 06:48:42 zmesdetect_m10[13732] DBG detect.py:344 [No match found in /var/lib/zmeventnotification/images/33990-alarm.jpg using model:yolo]
10/06/19 06:48:42 zmesdetect_m10[13732] DBG detect.py:189 [Using model: yolo with /var/lib/zmeventnotification/images/33990-snapshot.jpg]
10/06/19 06:48:46 zmesdetect_m10[13732] DBG detect.py:194 [|--> model:yolo detection took: 3.541227s]

	If you are debugging problems with receiving push notifications on
zmNinja mobile, then replicate the following scenario:

	Run the event server in manual mode as described above

	Kill zmNinja

	Start zmNinja

	At this point, in the zmeventnotification logs you should

registration messages (refer to logs example above). If you don’t
you’ve either not configured zmNinja to use the eventserver, or it
can’t reach the eventserver (very common problem)

	Next up, make sure you are not running zmNinja in the foreground

(move it to background or kill it). When zmNinja is in the
foreground, it uses websockets to get notifications

	Force an alarm like I described above. If you don’t see logs in

zmeventnotification saying “Sending notification over FCM”
then the eventserver, for some reason, does not have your app token.
Inspect tokens.txt (typically in /etc/zm/) to make sure an
entry for your phone exists

	If you see that message, but your mobile phone is not receiving a

push notification:
- Make sure you haven’t disable push notifications on your phone (lots

of people do this by mistake and wonder why)

	Make sure you haven’t muted notifications (again, lots of people…)

	Sometimes, the push servers of Apple and Google stop forwarding

messages for a day or two. I have no idea why. Give it a day or two?

	Open up zmNinja, go right to logs and send it to me

	If you have issues, please send me a copy of your zmeventnotification

logs generated above from Terminal-Log, as well as zmNinja debug logs

Brickbats

Why not just supply the username and password in the URL as a
resource? It’s over TLS

Yup its encrypted but it may show up in the history of a browser you
tried it from (if you are using a browser) Plus it may get passed along
from the source when accessing another URL via the Referral header

So it’s encrypted, but passing password is a bad idea. Why not some
token?

	Well, now that ZM supports login tokens (starting 1.33), I’ll get to supporting it.

Why WSS and not WS?

Not secure. Easy to snoop. Updated: As of 0.6, I’ve also added a non
secure version - use enable = 0 in the [ssl] section of the
configuration file. As it turns out many folks don’t expose ZM to the
WAN and for that, I guess WS instead of WSS is ok.

Why ZM auth in addition to WSS?

WSS offers encryption. We also want to make sure connections are
authorized. Reusing ZM authentication credentials is the easiest. You
can change it to some other credential match (modify validateZM
function)

For Developers writing their own consumers

How do I talk to it?

	{"JSON":"everywhere"}

	Your client sends messages (authentication) over JSON

	The server sends auth success/failure over JSON back at you

	New events are reported as JSON objects as well

	By default the notification server runs on port 9000 (unless you
change it)

	You need to open a secure web socket connection to that port from
your client/consumer

	You then need to provide your authentication credentials (ZoneMinder
username/password) within 20 seconds of opening the connection

	If you provide an incorrect authentication or no authentication, the
server will close your connection

	As of today, there are 3 categories of message types your client
(zmNinja or your own) can exchange with the server (event
notification server)

	auth (from client to server)

	control (from client to server)

	push (only applicable for zmNinja)

	alarm (from server to client)

Authentication messages

To connect with the server you need to send the following JSON object
(replace username/password) Note this payload is NOT encrypted. If you
are not using SSL, it will be sent in clear.

Authentication messages can be sent multiple times. It is necessary that
you send the first one within 20 seconds of opening a connection or the
server will terminate your connection.

Client –> Server:

{"event":"auth","data":{"user":"<username>","password":"<password>"}}

Server –> Client: The server will send back one of the following
responses

Authentication successful:

{"event":"auth", "type":"", "version":"0.2","status":"Success","reason":""}

Note that it also sends its version number for convenience

Incorrect credentials:

{"event":"auth", "type":"", "status":"Fail","reason":"BADAUTH"}

No authentication received in time limit:

{"event":"auth","type":"", "status":"Fail","reason":"NOAUTH"}

Control messages

Control messages manage the nature of notifications received/sent. As of
today, Clients send control messages to the Server. In future this may
be bi-directional

Control message to restrict monitor IDs for events as well as interval durations for reporting

A client can send a control message to restrict which monitor IDs it is
interested in. When received, the server will only send it alarms for
those specific monitor IDs. You can also specify the reporting interval
for events.

Client–>Server:

{"event":"control","data":{"type":"filter","monlist":"1,2,4,5,6", "intlist":"0,0,3600,60,0"}}

In this example, a client has requested to be notified of events only
from monitor IDs 1,2,4,5 and 6 Furthermore it wants to be notified for
each alarm for monitors 1,2,6. For monitor 4, it wants to be notified
only if the time difference between the previous and current event is 1
hour or more (3600 seconds) while for monitor 5, it wants the time
difference between the previous and current event to be 1 minute (60
seconds)

There is no response for this request, unless the payload did not have
either monlist or intlist.

No monitorlist received:

{"event":"control","type":"filter", "status":"Fail","reason":"NOMONITORLIST"}

No interval received:

{"event":"control","type":"filter", "status":"Fail","reason":"NOINTERVALLIST"}

Note that if you don’t want to specify intervals, send it a interval
list comprising of comma separated 0’s, one for each monitor in monitor
list.

Control message to get Event Server version

A client can send a control message to request Event Server version

Client–>Server:

{"event":"control","data":{"type":"version"}}

Server–>Client:

{"event":"control", "type:":"version", "version":"0.2","status":"Success","reason":""}

Alarm notifications

Alarms are events sent from the Server to the Client

Server–>Client: Sample payload of 2 events being reported:

{"event":"alarm", "type":"", "status":"Success", "events":[{"EventId":"5060","Name":"Garage","MonitorId":"1"},{"EventId":"5061","MonitorId":"5","Name":"Unfinished"}]}

Push Notifications (for both iOS and Android)

To make Push Notifications work, please make sure you read the section
on enabling
Push [https://github.com/pliablepixels/zmeventnotification#44-apnsgcm-howto---only-applicable-for-zmninja-not-for-other-consumers]
for the event server.

Concepts of Push and why it is only for zmNinja

Both Apple and Google ensure that a “trusted” application server can
send push notifications to a specific app running in a device. If they
did not require this, anyone could spam apps with messages. So in other
words, a “Push” will be routed from a specific server to a specific app.
Starting Jan 2018, I am hosting my trusted push server on Google’s
Firebase cloud. This eliminates the need for me to run my own server.

Registering Push token with the server

Client–>Server:

Registering an iOS device:

{"event":"push","data":{"type":"token","platform":"ios","token":"<device tokenid here>", "state":"enabled"}}

Here is an example of registering an Android device:

{"event":"push","data":{"type":"token","platform":"android","token":"<device tokenid here>", "state":"enabled"}}

For devices capable of receiving push notifications, but want to stop
receiving push notifications over APNS/GCM and have it delivered over
websockets instead, set the state to disabled

For example: Here is an example of registering an Android device, which
disables push notifications over GCM:

{"event":"push","data":{"type":"token","platform":"android","token":"<device tokenid here>", "state":"disabled"}}

What happens here is if there is a new event to report, the Event Server
will send it over websockets. This means if the app is running
(foreground or background in Android, foreground in iOS) it will receive
this notification over the open websocket. Note that in iOS this means
you won’t receive notifications when the app is not running in the
foreground. We went over why, remember?

Server–>Client: If its successful, there is no response. However,
if Push is disabled it will send back

{"event":"push", "type":"", "status":"Fail", "reason": "PUSHDISABLED"}

Badge reset

Only applies to iOS. Android push notifications don’t have a concept of
badge notifications, as it turns out.

In push notifications, the server owns the responsibility for badge
count (unlike local notifications). So a client can request the server
to reset its badge count so the next push notification starts from the
value provided.

Client–>Server:

{"event":"push", "data":{"type":"badge", "badge":"0"}}

In this example, the client requests the server to reset the badge count
to 0. Note that you can use any other number. The next time the server
sends a push via APNS, it will use this value. 0 makes the badge go
away.

Testing from command line

If you are writing your own consumer/client it helps to test the event
server commands from command line. The event server uses
Secure/WebSockers so you can’t just HTTP to it using tools like
curl. You’ll need to use a websocket client. While there are
examples on the net on how to use curl for websockets, I’ve found it
much simpler to use wscat [https://github.com/websockets/wscat] like
so:

wscat -c wss://myzmeventnotification.domain:9000 -n
connected (press CTRL+C to quit)
> {"event":"auth","data":{"user":"admin","password":"xxxx"}}
< {"reason":"","status":"Success","type":"","event":"auth","version":"0.93"}

In the example above, I used wscat to connect to my event server and
then sent it a JSON login message which it accepted and acknowledged.

Writing your own detection plugin

It is super simple to create your own plugin.

Your plugin needs to be created as a class that detect.py can import.

The best file to start from is hog.py (simplest)

In general, your plugin needs to follow the following structure:

class YourPluginName:

 # input
 def __init__ (self, param1, ...,paramN):

 # expected output
 # none

 def get_classes(self):
 # classes is a list of objects your plugin detects
 # example ['item1', 'item2', 'item3']

 # expected output
 # list of class names

 def detect (self, image):
 # image passed will be the image to detect
 # format is that returned by cv2.imread

 # expected output
 # list of (rects, labels, confidence)
 # where:
 # rects = list of (x1,y1,x2,y2) bounding box of object detected
 # x1,y1 = left, top coordinates
 # x2,y2 = right, bottom coordinates
 # labels = list of object names
 # conidence = string number between 1 and 0 for confidence

Index

 nav.xhtml

 Table of Contents

 		
 Event NotificationServer Documentation

_static/plus.png

_static/comment-bright.png

_static/file.png

_static/ajax-loader.gif

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

