

treq: High-level Twisted HTTP Client API

treq [https://pypi.python.org/pypi/treq] depends on a recent Twisted and functions on Python 2.7 and Python 3.3+ (including PyPy).

Why?

requests [http://python-requests.org/] by Kenneth Reitz [https://www.gittip.com/kennethreitz/] is a wonderful library.
I want the same ease of use when writing Twisted applications.
treq is not of course a perfect clone of requests [http://python-requests.org/].
I have tried to stay true to the do-what-I-mean spirit of the requests [http://python-requests.org/] API and also kept the API familiar to users of Twisted [http://twistedmatrix.com/] and twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] on which treq is based.

Quick Start

Installation:

pip install treq

GET

	1
2
3
4

	def main(reactor, *args):
 d = treq.get('http://httpbin.org/get')
 d.addCallback(print_response)
 return d

Full example: basic_get.py

POST

	1
2
3
4
5
6

	def main(reactor, *args):
 d = treq.post('http://httpbin.org/post',
 json.dumps({"msg": "Hello!"}).encode('ascii'),
 headers={b'Content-Type': [b'application/json']})
 d.addCallback(print_response)
 return d

Full example: basic_post.py

Why not 100% requests-alike?

Initially when I started off working on treq I thought the API should look exactly like requests [http://python-requests.org/] except anything that would involve the network would return a Deferred [https://twistedmatrix.com/documents/current/api/twisted.internet.defer.Deferred.html].

Over time while attempting to mimic the requests [http://python-requests.org/] API it became clear that not enough code could be shared between requests [http://python-requests.org/] and treq for it to be worth the effort to translate many of the usage patterns from requests [http://python-requests.org/].

With the current version of treq I have tried to keep the API simple, yet remain familiar to users of Twisted and its lower-level HTTP libraries.

Feature Parity with Requests

Even though mimicking the requests [http://python-requests.org/] API is not a goal, supporting most of its features is.
Here is a list of requests [http://python-requests.org/] features and their status in treq.

	
	requests

	treq

	International Domains and URLs

	yes

	yes

	Keep-Alive & Connection Pooling

	yes

	yes

	Sessions with Cookie Persistence

	yes

	yes

	Browser-style SSL Verification

	yes

	yes

	Basic Authentication

	yes

	yes

	Digest Authentication

	yes

	no

	Elegant Key/Value Cookies

	yes

	yes

	Automatic Decompression

	yes

	yes

	Unicode Response Bodies

	yes

	yes

	Multipart File Uploads

	yes

	yes

	Connection Timeouts

	yes

	yes

	.netrc support

	yes

	no

	Python 2.6

	yes

	no

	Python 2.7

	yes

	yes

	Python 3.x

	yes

	yes

Table of Contents

	Use Cases
	Handling Streaming Responses

	Query Parameters

	Auth

	Redirects

	Cookies

	Agent Customization

	Testing Helpers
	Writing tests for HTTP clients
	Loosely matching the request

	Writing tests for Twisted Web resources

	API Reference
	Making Requests

	Accessing Content

	HTTPClient Objects

	Augmented Response Objects

	Test Helpers

	MultiPartProducer Objects

Indices and tables

	Index

	Module Index

	Search Page

Use Cases

Handling Streaming Responses

In addition to receiving responses [https://twistedmatrix.com/documents/current/web/howto/client.html#receiving-responses]
with IResponse.deliverBody(), treq provides a helper function
treq.collect() which takes a
response and a single argument function which will be called with all new
data available from the response. Much like IProtocol.dataReceived(),
treq.collect() knows nothing about the framing of your data and will
simply call your collector function with any data that is currently available.

Here is an example which simply a file object’s write method to
treq.collect() to save the response body to a file.

	1
2
3
4
5
6

	def download_file(reactor, url, destination_filename):
 destination = open(destination_filename, 'wb')
 d = treq.get(url)
 d.addCallback(treq.collect, destination.write)
 d.addBoth(lambda _: destination.close())
 return d

Full example: download_file.py

Query Parameters

treq.request() supports a params keyword argument which will
be URL-encoded and added to the url argument in addition to any query
parameters that may already exist.

The params argument may be either a dict or a list of
(key, value) tuples.

If it is a dict then the values in the dict may either be a str value
or a list of str values.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

	@inlineCallbacks
def main(reactor):
 print('List of tuples')
 resp = yield treq.get('http://httpbin.org/get',
 params=[('foo', 'bar'), ('baz', 'bax')])
 content = yield resp.text()
 print(content)

 print('Single value dictionary')
 resp = yield treq.get('http://httpbin.org/get',
 params={'foo': 'bar', 'baz': 'bax'})
 content = yield resp.text()
 print(content)

 print('Multi value dictionary')
 resp = yield treq.get('http://httpbin.org/get',
 params={'foo': ['bar', 'baz', 'bax']})
 content = yield resp.text()
 print(content)

 print('Mixed value dictionary')
 resp = yield treq.get('http://httpbin.org/get',
 params={'foo': ['bar', 'baz'], 'bax': 'quux'})
 content = yield resp.text()
 print(content)

 print('Preserved query parameters')
 resp = yield treq.get('http://httpbin.org/get?foo=bar',
 params={'baz': 'bax'})
 content = yield resp.text()
 print(content)

Full example: query_params.py

Auth

HTTP Basic authentication as specified in RFC 2617 [https://tools.ietf.org/html/rfc2617.html] is easily supported by
passing an auth keyword argument to any of the request functions.

The auth argument should be a tuple of the form ('username', 'password').

	1
2
3
4
5
6
7

	def main(reactor, *args):
 d = treq.get(
 'http://httpbin.org/basic-auth/treq/treq',
 auth=('treq', 'treq')
)
 d.addCallback(print_response)
 return d

Full example: basic_auth.py

Redirects

treq handles redirects by default.

The following will print a 200 OK response.

	1
2
3
4
5
6

	def main(reactor, *args):
 d = treq.get('http://httpbin.org/redirect/1')
 d.addCallback(print_response)
 return d

react(main, [])

Full example: redirects.py

You can easily disable redirects by simply passing allow_redirects=False to
any of the request methods.

	1
2
3
4
5
6

	def main(reactor, *args):
 d = treq.get('http://httpbin.org/redirect/1', allow_redirects=False)
 d.addCallback(print_response)
 return d

react(main, [])

Full example: disable_redirects.py

You can even access the complete history of treq response objects by calling
the history() method on the response.

	1
2
3
4
5
6
7
8
9

	def main(reactor, *args):
 d = treq.get('http://httpbin.org/redirect/1')

 def cb(response):
 print('Response history:')
 print(response.history())
 return print_response(response)

 d.addCallback(cb)

Full example: response_history.py

Cookies

Cookies can be set by passing a dict or cookielib.CookieJar instance
via the cookies keyword argument. Later cookies set by the server can be
retrieved using the cookies() method.

The object returned by cookies() supports the same key/value
access as requests cookies [http://requests.readthedocs.org/en/latest/user/quickstart/#cookies].

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14

	def main(reactor, *args):
 d = treq.get('http://httpbin.org/cookies/set?hello=world')

 def _get_jar(resp):
 jar = resp.cookies()

 print('The server set our hello cookie to: {}'.format(jar['hello']))

 return treq.get('http://httpbin.org/cookies', cookies=jar)

 d.addCallback(_get_jar)
 d.addCallback(print_response)

 return d

Full example: using_cookies.py

Agent Customization

treq creates its own twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html]
with reasonable defaults, but you may want to provide your own custom agent.
A custom agent can be passed to the various treq request methods using the
agent keyword argument.

custom_agent = Agent(reactor, connectTimeout=42)
treq.get(url, agent=custom_agent)

Testing Helpers

The treq.testing module provides some tools for testing both HTTP clients which use the treq API and implementations of the Twisted Web resource model <https://twistedmatrix.com/documents/current/api/twisted.web.resource.IResource.html>.

Writing tests for HTTP clients

The StubTreq class implements the treq module interface (treq.get(), treq.post(), etc.) but runs all I/O via a MemoryReactor [https://twistedmatrix.com/documents/current/api/twisted.test.proto_helpers.MemoryReactor.html].
It wraps a twisted.web.resource.IResource [https://twistedmatrix.com/documents/current/api/twisted.web.resource.IResource.html] provider which handles each request.

You can wrap a pre-existing IResource provider, or write your own.
For example, the twisted.web.resource.ErrorPage [https://twistedmatrix.com/documents/current/api/twisted.web.resource.ErrorPage.html] resource can produce an arbitrary HTTP status code.
twisted.web.static.File [https://twistedmatrix.com/documents/current/api/twisted.web.static.File.html] can serve files or directories.
And you can easily achieve custom responses by writing trivial resources yourself:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10

	@implementer(IResource)
class JsonResource(object):
 isLeaf = True # NB: means getChildWithDefault will not be called

 def __init__(self, data):
 self.data = data

 def render(self, request):
 request.setHeader(b'Content-Type', b'application/json')
 return json.dumps(self.data).encode('utf-8')

However, those resources don’t assert anything about the request.
The RequestSequence and StringStubbingResource classes make it easy to construct a resource which encodes the expected request and response pairs.
Do note that most parameters to these functions must be bytes—it’s safest to use the b'' string syntax, which works on both Python 2 and 3.

For example:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	from twisted.internet import defer
from twisted.logger import Logger
from twisted.trial.unittest import SynchronousTestCase
from twisted.web import http

from treq.testing import StubTreq, HasHeaders
from treq.testing import RequestSequence, StringStubbingResource

log = Logger()

@defer.inlineCallbacks
def make_a_request(treq):
 """
 Make a request using treq.
 """
 response = yield treq.get('http://an.example/foo', params={'a': 'b'},
 headers={b'Accept': b'application/json'})
 if response.code == http.OK:
 result = yield response.json()
 else:
 message = yield response.text()
 raise Exception("Got an error from the server: {}".format(message))
 defer.returnValue(result)

class MakeARequestTests(SynchronousTestCase):
 """
 Test :func:`make_a_request()` using :mod:`treq.testing.RequestSequence`.
 """

 def test_200_ok(self):
 """On a 200 response, return the response's JSON."""
 req_seq = RequestSequence([
 ((b'get', 'http://an.example/foo', {b'a': [b'b']},
 HasHeaders({'Accept': ['application/json']}), b''),
 (http.OK, {b'Content-Type': b'application/json'}, b'{"status": "ok"}'))
], log.error)
 treq = StubTreq(StringStubbingResource(req_seq))

 with req_seq.consume(self.fail):
 result = self.successResultOf(make_a_request(treq))

 self.assertEqual({"status": "ok"}, result)

 def test_418_teapot(self):
 """On an unexpected response code, raise an exception"""
 req_seq = RequestSequence([
 ((b'get', 'http://an.example/foo', {b'a': [b'b']},
 HasHeaders({'Accept': ['application/json']}), b''),
 (418, {b'Content-Type': b'text/plain'}, b"I'm a teapot!"))
], log.error)
 treq = StubTreq(StringStubbingResource(req_seq))

 with req_seq.consume(self.fail):
 failure = self.failureResultOf(make_a_request(treq))

 self.assertEqual(u"Got an error from the server: I'm a teapot!",
 failure.getErrorMessage())

This may be run with trial testing_seq.py.
Download: testing_seq.py.

Loosely matching the request

If you don’t care about certain parts of the request, you can pass mock.ANY, which compares equal to anything.
This sequence matches a single GET request with any parameters or headers:

RequestSequence([
 ((b'get', mock.ANY, mock.ANY, b''), (200, {}, b'ok'))
])

If you care about headers, use HasHeaders to make assertions about the headers present in the request.
It compares equal to a superset of the headers specified, which helps make your test robust to changes in treq or Agent.
Right now treq adds the Accept-Encoding: gzip header, but as support for additional compression methods is added, this may change.

Writing tests for Twisted Web resources

Since StubTreq wraps any resource, you can use it to test your server-side code as well.
This is superior to calling your resource’s methods directly or passing mock objects, since it uses a real Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] to generate the request and a real Site [https://twistedmatrix.com/documents/current/api/twisted.web.server.Site.html] to process the response.
Thus, the request object your code interacts with is a real twisted.web.server.Request [https://twistedmatrix.com/documents/current/api/twisted.web.server.Request.html] and behaves the same as it would in production.

Note that if your resource returns NOT_DONE_YET you must call the flush() method to spin the memory reactor once the server writes additional data before the client will receive it.

API Reference

This page lists all of the interfaces exposed by the treq package.

Making Requests

	
treq.request(method, url, **kwargs)

	Make an HTTP request.

	Parameters

	
	method (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – HTTP method. Example: 'GET', 'HEAD'. 'PUT',
'POST'.

	url (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – http or https URL, which may include query arguments.

	headers (Headers or None [https://docs.python.org/3.5/library/constants.html#None]) – Optional HTTP Headers to send with this request.

	params (dict w/ str or list/tuple of str values, list of 2-tuples, or
None.) – Optional parameters to be append as the query string to
the URL, any query string parameters in the URL already will be
preserved.

	data (str [https://docs.python.org/3.5/library/stdtypes.html#str], file-like, IBodyProducer, or None [https://docs.python.org/3.5/library/constants.html#None]) – Optional request body.

	json (dict [https://docs.python.org/3.5/library/stdtypes.html#dict], list/tuple, int [https://docs.python.org/3.5/library/functions.html#int], string/unicode, bool [https://docs.python.org/3.5/library/functions.html#bool], or None [https://docs.python.org/3.5/library/constants.html#None]) – Optional JSON-serializable content to pass in body.

	reactor – Optional twisted reactor.

	persistent (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Use persistent HTTP connections. Default: True

	allow_redirects (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Follow HTTP redirects. Default: True

	auth (tuple of ('username', 'password').) – HTTP Basic Authentication information.

	cookies (dict or cookielib.CookieJar) – Cookies to send with this request. The HTTP kind, not the
tasty kind.

	timeout (int [https://docs.python.org/3.5/library/functions.html#int]) – Request timeout seconds. If a response is not
received within this timeframe, a connection is aborted with
CancelledError.

	browser_like_redirects (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Use browser like redirects
(i.e. Ignore RFC2616 section 10.3 and follow redirects from
POST requests). Default: False

	unbuffered (bool [https://docs.python.org/3.5/library/functions.html#bool]) – Pass True to to disable response buffering. By
default treq buffers the entire response body in memory.

	Return type

	Deferred that fires with an IResponse provider.

	
treq.get(url, headers=None, **kwargs)

	Make a GET request.

See treq.request()

	
treq.head(url, **kwargs)

	Make a HEAD request.

See treq.request()

	
treq.post(url, data=None, **kwargs)

	Make a POST request.

See treq.request()

	
treq.put(url, data=None, **kwargs)

	Make a PUT request.

See treq.request()

	
treq.patch(url, data=None, **kwargs)

	Make a PATCH request.

See treq.request()

	
treq.delete(url, **kwargs)

	Make a DELETE request.

See treq.request()

Accessing Content

	
treq.collect(response, collector)

	Incrementally collect the body of the response.

This function may only be called once for a given response.

	Parameters

	
	response (IResponse) – The HTTP response to collect the body from.

	collector (single argument callable) – A callable to be called each time data is available
from the response body.

	Return type

	Deferred that fires with None when the entire body has been read.

	
treq.content(response)

	Read the contents of an HTTP response.

This function may be called multiple times for a response, it uses a
WeakKeyDictionary to cache the contents of the response.

	Parameters

	response (IResponse) – The HTTP Response to get the contents of.

	Return type

	Deferred that fires with the content as a str.

	
treq.text_content(response, encoding='ISO-8859-1')

	Read the contents of an HTTP response and decode it with an appropriate
charset, which may be guessed from the Content-Type header.

	Parameters

	
	response (IResponse) – The HTTP Response to get the contents of.

	encoding (str [https://docs.python.org/3.5/library/stdtypes.html#str]) – A charset, such as UTF-8 or ISO-8859-1,
used if the response does not specify an encoding.

	Return type

	Deferred that fires with a unicode string.

	
treq.json_content(response)

	Read the contents of an HTTP response and attempt to decode it as JSON.

This function relies on content() and so may be called more than
once for a given response.

	Parameters

	response (IResponse) – The HTTP Response to get the contents of.

	Return type

	Deferred that fires with the decoded JSON.

HTTPClient Objects

The treq.client.HTTPClient class provides the same interface as the treq module itself.

	
class treq.client.HTTPClient(agent, cookiejar=None, data_to_body_producer=<InterfaceClass twisted.web.iweb.IBodyProducer>)

	
	
delete(url, **kwargs)

	

	
get(url, **kwargs)

	

	
head(url, **kwargs)

	

	
patch(url, data=None, **kwargs)

	

	
post(url, data=None, **kwargs)

	

	
put(url, data=None, **kwargs)

	

	
request(method, url, **kwargs)

	

Augmented Response Objects

treq.request(), treq.get(), etc. return an object which implements twisted.web.iweb.IResponse [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html], plus a few additional convenience methods:

	
class treq.response._Response

	
	
collect(collector)

	Incrementally collect the body of the response, per
treq.collect().

	Parameters

	collector – A single argument callable that will be called
with chunks of body data as it is received.

	Returns

	A Deferred that fires when the entire body has been
received.

	
content()

	Read the entire body all at once, per treq.content().

	Returns

	A Deferred that fires with a bytes object when the entire
body has been received.

	
json()

	Collect the response body as JSON per treq.json_content().

	Return type

	Deferred that fires with the decoded JSON when the entire body
has been read.

	
text(encoding='ISO-8859-1')

	Read the entire body all at once as text, per
treq.text_content().

	Return type

	A Deferred that fires with a unicode string when the entire
body has been received.

	
history()

	Get a list of all responses that (such as intermediate redirects),
that ultimately ended in the current response. The responses are
ordered chronologically.

	Returns

	A list of _Response objects

	
cookies()

	Get a copy of this response’s cookies.

	Return type

	requests.cookies.RequestsCookieJar

Inherited from twisted.web.iweb.IResponse [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IResponse.html]:

	Variables

	
	version –

	code [https://docs.python.org/3.5/library/code.html#module-code] –

	phrase –

	headers –

	length –

	request –

	previousResponse –

	
deliverBody(protocol)

	

	
setPreviousResponse(response)

	

Test Helpers

In-memory version of treq for testing.

	
class treq.testing.HasHeaders(headers)

	Since Twisted adds headers to a request, such as the host and the content
length, it’s necessary to test whether request headers CONTAIN the expected
headers (the ones that are not automatically added by Twisted).

This wraps a set of headers, and can be used in an equality test against
a superset if the provided headers. The headers keys are lowercased, and
keys and values are compared in their bytes-encoded forms.

Headers should be provided as a mapping from strings or bytes to a list of
strings or bytes.

	
class treq.testing.RequestSequence(sequence, async_failure_reporter)

	For an example usage, see RequestSequence.consume().

Takes a sequence of:

[((method, url, params, headers, data), (code, headers, body)),
 ...]

Expects the requests to arrive in sequence order. If there are no more
responses, or the request’s parameters do not match the next item’s
expected request parameters, raises AssertionError [https://docs.python.org/3.5/library/exceptions.html#AssertionError].

For the expected request arguments:

	method should be bytes normalized to lowercase.

	url should be a str normalized as per the transformations in
https://en.wikipedia.org/wiki/URL_normalization that (usually) preserve
semantics. A URL to http://something-that-looks-like-a-directory
would be normalized to http://something-that-looks-like-a-directory/
and a URL to http://something-that-looks-like-a-page/page.html
remains unchanged.

	params is a dictionary mapping bytes to lists of bytes

	headers is a dictionary mapping bytes to lists of bytes - note
that twisted.web.client.Agent [https://twistedmatrix.com/documents/current/api/twisted.web.client.Agent.html] may add its own headers though,
which are not guaranteed (for instance, user-agent or
content-length), so it’s better to use some kind of matcher like
HasHeaders.

	data is a bytes

For the response:

	code is an integer representing the HTTP status code to return

	headers is a dictionary mapping bytes to bytes or lists of
bytes

	body is a bytes

	Variables

	
	sequence (list [https://docs.python.org/3.5/library/stdtypes.html#list]) – The sequence of expected request arguments mapped to
stubbed responses

	async_failure_reporter – A callable that takes a single message
reporting failures—it’s asynchronous because it cannot just raise
an exception—if it does, Resource.render will just convert
that into a 500 response, and there will be no other failure reporting
mechanism. Under Trial, this may be
a twisted.logger.Logger.error, as Trial fails the test when an
error is logged.

	
consume(**kwds)

	Usage:

async_failures = []
sequence_stubs = RequestSequence([...], async_failures.append)
stub_treq = StubTreq(StringStubbingResource(sequence_stubs))
with sequence_stubs.consume(self.fail): # self = unittest.TestCase
 stub_treq.get('http://fakeurl.com')
 stub_treq.get('http://another-fake-url.com')

self.assertEqual([], async_failures)

If there are still remaining expected requests to be made in the
sequence, fails the provided test case.

	Parameters

	sync_failure_reporter – A callable that takes a single message
reporting failures. This can just raise an exception - it does
not need to be asynchronous, since the exception would not get
raised within a Resource.

	Returns

	a context manager that can be used to ensure all expected
requests have been made.

	
consumed()

	
	Returns

	bool representing whether the entire sequence has been
consumed. This is useful in tests to assert that the expected
requests have all been made.

	
class treq.testing.RequestTraversalAgent(rootResource)

	IAgent implementation that issues an in-memory request rather than
going out to a real network socket.

	
flush()

	Flush all data between pending client/server pairs.

This is only necessary if a Resource under test returns
NOT_DONE_YET from its render method, making a response
asynchronous. In that case, after each write from the server,
pump() must be called so the client can see it.

	
request(method, uri, headers=None, bodyProducer=None)

	Implement IAgent.request.

	
class treq.testing.StringStubbingResource(get_response_for)

	A resource that takes a callable with 5 parameters
(method, url, params, headers, data) and returns
(code, headers, body).

The resource uses the callable to return a real response as a result of a
request.

The parameters for the callable are:

	method, the HTTP method as bytes.

	url, the full URL of the request as text.

	params, a dictionary of query parameters mapping query keys
lists of values (sorted alphabetically).

	headers, a dictionary of headers mapping header keys to
a list of header values (sorted alphabetically).

	data, the request body as bytes.

The callable must return a tuple of (code, headers, body) where the
code is the HTTP status code, the headers is a dictionary of bytes (unlike
the headers parameter, which is a dictionary of lists), and body is
a string that will be returned as the response body.

If there is a stubbing error, the return value is undefined (if an
exception is raised, Resource [https://twistedmatrix.com/documents/current/api/twisted.web.resource.Resource.html] will just eat it
and return 500 in its place). The callable, or whomever creates the
callable, should have a way to handle error reporting.

	
render(request)

	Produce a response according to the stubs provided.

	
class treq.testing.StubTreq(resource)

	A fake version of the treq module that can be used for testing that
provides all the function calls exposed in treq.__all__.

	Variables

	resource [https://docs.python.org/3.5/library/resource.html#module-resource] – A Resource object that provides the fake responses

MultiPartProducer Objects

treq.multipart.MultiPartProducer is used internally when making requests which involve files.

	
class treq.multipart.MultiPartProducer(fields, boundary=None, cooperator=<module 'twisted.internet.task' from '/home/docs/checkouts/readthedocs.org/user_builds/treq/envs/release-17.7.0/local/lib/python2.7/site-packages/twisted/internet/task.pyc'>)

	MultiPartProducer takes parameters for a HTTP request and
produces bytes in multipart/form-data format defined in RFC 2388 [https://tools.ietf.org/html/rfc2388.html] and
RFC 2046 [https://tools.ietf.org/html/rfc2046.html].

The encoded request is produced incrementally and the bytes are
written to a consumer.

Fields should have form: [(parameter name, value), ...]

Accepted values:

	Unicode strings (in this case parameter will be encoded with utf-8)

	Tuples with (file name, content-type,
IBodyProducer [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IBodyProducer.html] objects)

Since MultiPartProducer can accept objects like
IBodyProducer [https://twistedmatrix.com/documents/current/api/twisted.web.iweb.IBodyProducer.html] which cannot be read from in an
event-driven manner it uses uses a
Cooperator [https://twistedmatrix.com/documents/current/api/twisted.internet.task.Cooperator.html] instance to schedule reads
from the underlying producers. Reading is also paused and resumed based on
notifications from the IConsumer provider being written to.

	Variables

	
	_fields – Sorted parameters, where all strings are enforced to be
unicode and file objects stacked on bottom (to produce a human readable
form-data request)

	_cooperate – A method like Cooperator.cooperate which is used to
schedule all reads.

	boundary – The generated boundary used in form-data encoding

	
pauseProducing()

	Temporarily suspend copying bytes from the input file to the consumer
by pausing the CooperativeTask which drives that activity.

	
resumeProducing()

	Undo the effects of a previous pauseProducing and resume copying
bytes to the consumer by resuming the CooperativeTask which drives
the write activity.

	
startProducing(consumer)

	Start a cooperative task which will read bytes from the input file and
write them to consumer. Return a Deferred which fires after all
bytes have been written.

	Parameters

	consumer – Any IConsumer provider

	
stopProducing()

	Permanently stop writing bytes from the file to the consumer by
stopping the underlying CooperativeTask.

 Python Module Index

 t

 		 	

 		
 t	

 	[image: -]
 	
 treq	

 	
 	
 treq.client	

 	
 	
 treq.multipart	

 	
 	
 treq.response	

 	
 	
 treq.testing	

Index

 _
 | C
 | D
 | F
 | G
 | H
 | J
 | M
 | P
 | R
 | S
 | T

_

 	
 	_Response (class in treq.response)

C

 	
 	collect() (in module treq)

 	(treq.response._Response method)

 	consume() (treq.testing.RequestSequence method)

 	
 	consumed() (treq.testing.RequestSequence method)

 	content() (in module treq)

 	(treq.response._Response method)

 	cookies() (treq.response._Response method)

D

 	
 	delete() (in module treq)

 	(treq.client.HTTPClient method)

 	
 	deliverBody() (treq.response._Response method)

F

 	
 	flush() (treq.testing.RequestTraversalAgent method)

G

 	
 	get() (in module treq)

 	(treq.client.HTTPClient method)

H

 	
 	HasHeaders (class in treq.testing)

 	head() (in module treq)

 	(treq.client.HTTPClient method)

 	
 	history() (treq.response._Response method)

 	HTTPClient (class in treq.client)

J

 	
 	json() (treq.response._Response method)

 	
 	json_content() (in module treq)

M

 	
 	MultiPartProducer (class in treq.multipart)

P

 	
 	patch() (in module treq)

 	(treq.client.HTTPClient method)

 	pauseProducing() (treq.multipart.MultiPartProducer method)

 	
 	post() (in module treq)

 	(treq.client.HTTPClient method)

 	put() (in module treq)

 	(treq.client.HTTPClient method)

R

 	
 	render() (treq.testing.StringStubbingResource method)

 	request() (in module treq)

 	(treq.client.HTTPClient method)

 	(treq.testing.RequestTraversalAgent method)

 	RequestSequence (class in treq.testing)

 	
 	RequestTraversalAgent (class in treq.testing)

 	resumeProducing() (treq.multipart.MultiPartProducer method)

 	
 RFC

 	RFC 2046

 	RFC 2388

 	RFC 2617

S

 	
 	setPreviousResponse() (treq.response._Response method)

 	startProducing() (treq.multipart.MultiPartProducer method)

 	
 	stopProducing() (treq.multipart.MultiPartProducer method)

 	StringStubbingResource (class in treq.testing)

 	StubTreq (class in treq.testing)

T

 	
 	text() (treq.response._Response method)

 	text_content() (in module treq)

 	treq (module)

 	
 	treq.client (module)

 	treq.multipart (module)

 	treq.response (module)

 	treq.testing (module)

 nav.xhtml

 Table of Contents

 		
 treq: High-level Twisted HTTP Client API

 		
 Use Cases

 		
 Handling Streaming Responses

 		
 Query Parameters

 		
 Auth

 		
 Redirects

 		
 Cookies

 		
 Agent Customization

 		
 Testing Helpers

 		
 Writing tests for HTTP clients

 		
 Loosely matching the request

 		
 Writing tests for Twisted Web resources

 		
 API Reference

 		
 Making Requests

 		
 Accessing Content

 		
 HTTPClient Objects

 		
 Augmented Response Objects

 		
 Test Helpers

 		
 MultiPartProducer Objects

_static/down.png

_static/comment.png

_static/down-pressed.png

_static/plus.png

_static/file.png

_static/minus.png

_static/up-pressed.png

_static/up.png

_static/comment-bright.png

_static/ajax-loader.gif

_static/comment-close.png

