

 Navigation

 	
 index

 	
 next |

 	Tangelo Web Framework None documentation

Welcome to the Tangelo Web Framework!

Tangelo is a general-purpose web server framework, built on top of CherryPy [http://www.cherrypy.org].
Once it’s set up, it stays out of your way, clearing the path for you to use
HTML5, CSS, JavaScript, and other web technologies such as jQuery, D3,
Bootstrap, WebGL, Canvas, and Vega [http://trifacta.github.io/vega/] to create rich web applications - from traditional,
static pages, to cutting-edge, visual, dynamic displays. Tangelo also lets
you include Python scripts as part of your application, alongside your HTML and
JavaScript files, running them on your behalf to do anything from retrieving a
few database results for display, to engaging with powerful computational
engines such as Hadoop to compute complex results.

To help in creating these applications, Tangelo exports the Tangelo API, which
exists as a collection of Python functions, JavaScript functions, and a set of
rules for creating flexible and powerful web services. This document describes
all the pieces that fit together to make Tangelo work.

Please visit the Tangelo homepage [http://tangelo.kitware.com] or the GitHub repository [https://github.com/Kitware/tangelo] for more
information.

Quick Start

	Make sure you have Python 2.7 and Pip installed (on Linux and OS X systems,
your local package manager should do the trick; for Windows, see here [http://docs.python-guide.org/en/latest/starting/install/win/]).

	Open a shell (e.g. Terminal on OS X; Bash on Linux; or Command Prompt on
Windows) and issue this command to install the Tangelo package:

pip install tangelo

(On UNIX systems you may need to do this as root, or with sudo.)

	Issue this command to start Tangelo, serving the example pack:

tangelo --examples

	Visit your Tangelo instance at http://localhost:8080.

Using Tangelo

	Installation
	Installing from the Python Package Index

	Building and Installing from Source

	Setup and Administration
	Configuring and Launching Tangelo

	Administering a Tangelo Installation

	A Note on Version Numbers

	Basic Usage
	Serving Web Content

	HTTP Authentication

	Tangelo Web Services
	General Services

	HTTP Status Codes

	RESTful Services

	Configuring Web Services

	Persistent Storage for Web Services

	Tangelo Plugins
	Structure and Content

	Setup and Teardown

	Plugin Configuration

	Loading and Unloading

Command Line Utilities

	tangelo
	Example Usage

	tangelo-passwd
	Example Usage

The Tangelo API

	Python Web Service API
	Core Services

	HTTP Interaction

	Web Services Utilities

	Tangelo JavaScript Library

	Bundled Plugins
	Core Plugins

	Utilities

	Data Management and Processing

	Visualization

Tutorials

	Building a Tangelo Web Application from Scratch
	String Reverser

	Driving a Visualization with SQLAlchemy
	Getting the Data

	Creating the Database

	Writing Data Services

	Designing a Web Frontend

	Putting It All Together

	Fiddling with the Bundled Examples
	The Example Web Applications

	Making a Copy

Information for Developers

	Coding Style Guidelines
	Code Style Rules

	Code structure

	A note on try...catch blocks

	A note on “eval is evil”

	Creating Tangelo Releases
	Release Procedure

	Summary

	Developing Visualizations
	Creating jQuery Widgets

	Visualization Options

	Accessor Specifications

Indices and tables

	Index

	Search Page

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Installation

There are two ways to install Tangelo: from the Python Package Index (PyPI), or from
source. Installing from PyPI is simpler, but limited to public release
versions; installing from source is slightly more complicated but allows you to
run cutting-edge development versions.

Installing from the Python Package Index

The latest release version of Tangelo can always be found in the Python Package
Index [http://pypi.python.org/pypi]. The easiest way to install Tangelo is
via Pip, a package manager for Python.

1. Install software dependencies

Install the following software:

	Python 2.7

	Pip

On Linux and OS X computers, your local package manager should be sufficient for
installing these. On Windows, please consult this guide [http://docs.python-guide.org/en/latest/starting/install/win/] for advice
about Python and Pip.

2. Install the Tangelo Python package

Use this command in a shell to install the Tangelo package and its dependencies:

pip install tangelo

You may need to run this command as the superuser, using sudo or similar.

Building and Installing from Source

Tangelo is developed on GitHub [https://github.com/Kitware/tangelo]. If you
wish to contribute code, or simply want the very latest development version, you
can download, build, and install from GitHub, following these steps:

1. Install software dependencies

To build Tangelo from source, you will need to install the following software:

	Git

	Python 2.7

	Virtualenv 12.0

	Node.js

	Grunt

2. Check out the Tangelo source code

Issue this git command to clone the Tangelo repository:

git clone git://github.com/Kitware/tangelo.git

This will create a directory named tangelo containing the source code. Use
cd to move into this directory:

cd tangelo

3. Install Node dependencies

Issue this command to install the necessary Node dependencies via the Node
Package Manager (NPM):

npm install

The packages will be installed to a directory named node_modules.

4. Select your Virtualenv version

If the Virtualenv executable you wish to use is invoked in a non-standard way,
use the Grunt config task to let Grunt know how to invoke Virtualenv. For
example, on Arch Linux systems, Virtualenv for Python 2.7 is invoked as
virtualenv2. In such a case, you would issue the following Grunt command:

grunt config:virtualenv:virtualenv2

By default, Grunt will assume that Virtualenv is invokable via virtualenv.
Note that, in most cases, you will not have to complete this step.

5. Begin the build process

Issue this command to kick off the Grunt build process:

grunt

The output will include several phases of action, including: bcreating a
virtual environment (in the directory named venv), building documentation,
creating a Tangelo package, and installing that package to the virtual
environment.

Watch the output for any errorrs. In most cases, an error will halt the
process, displaying a message to indicate what happened. If you need any help
deciphering any such errors, drop us a note at
tangelo-users@public.kitware.com.

6. Launch Tangelo

If all has gone well, you can now try to run Tangelo, using this command:

./venv/bin/tangelo --examples

The Tangelo executable comes from installing the built Tangelo Python package
into the development virtual environment, so the command assumes you are in the
root of the Tangelo repository, since that is where the virtual environment is
created by the build process.

If you open a web browser and go to http://localhost:8080, you should see a
welcome message along with the Tangelo Sunrise. If instead you receive an error
message about port 8080 not being free, you may need to launch Tangelo on a
different port, using a command similar to the following:

./venv/bin/tangelo --examples --port 9090

Running the Test Suites

Tangelo comes with a battery of server and client tests. To run these, you can
invoke the Grunt test task as follows:

grunt test

This runs both the server and client tests. Each test suite can be run on its
own, with:

grunt test:server

and:

grunt test:client

Each of these produces a summary report on the command line. To view details
such as individual test results, or details about code coverage, you can launch
Tangelo to serve the HTML reports with the Grunt serve task:

grunt serve:test

and point a web browser at http://localhost:50047.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Setup and Administration

While the Quick Start instructions will get you exploring the Tangelo
examples in just two commands, Tangelo has a rich set of configuration options
that can be used to administer Tangelo effectively. This page will discuss
configuration and deployment strategies, including suggestions for best
practices.

Configuring and Launching Tangelo

The simplest way to launch a Tangelo server is to use this command:

tangelo

(This command causes Tangelo to begin serving content out of the current
directory on the default port, 8080.)

Tangelo’s runtime behaviors are specified via configuration file and command
line options. Tangelo configuration files are YAML files representing a
key-value store (“associative array” in YAML jargon) at the top level. Each
options is specified as a key-value pair: the line starts with the name of the
key, then a colon followed by a space, and then the value.

The example configuration found at
/usr/share/tangelo/conf/tangelo.local.conf reads something like the
following:

hostname: 0.0.0.0
port: 8080

This minimal configuration file specifies that Tangelo should listen on all
interfaces for connections on port 8080. By contrast, tangelo.conf.global
looks like this:

hostname: 0.0.0.0
port: 80

user: nobody
group: nobody

This configuration file is meant for the case when Tangelo is to be installed as
a system-level service. It will run on port 80 (the standard port for an HTTP
server) and, though it will need to be started with superuser privileges, it
will drop those privleges to run as user nobody in group nobody to
prevent damage to the system should the process be, e.g., hijacked by an
attacker.

To run Tangelo using a particular configuration file, tangelo can be invoked
with the -c or --config option:

tangelo -c ~/myconfig.yaml

When the flag is omitted, Tangelo will use default values for all
configuration options (see Configuration Options below).

Finally, all configuration options can also be specified on the command line.
This has the effect of overriding whatever value may be set in the specified
configuration file. This can be useful for, e.g., using a single configuration
file for multiple Tangelo instances, but varying the port number.

Configuration Options

The following table shows what fields can be included in the configuration file,
what they mean, and their default values if left unspecified.

	Option
	Meaning
	Default value

	hostname
	The hostname interface on which to listen for connections
	localhost

	port
	The port number on which to listen for connections
	8080

	root
	The path to the directory to be served by Tangelo as the web root
	. [1]

	drop-privileges
	Whether to drop privileges when started as the superuser
	True

	sessions
	Whether to enable server-side session tracking
	True

	user
	The user account to drop privileges to
	nobody [2]

	group
	The user group to drop privileges to
	nobody [2]

	access-auth
	Whether to protect directories containing a .htaccess file
	True

	key
	The path to the SSL key
	None [3] [4]

	cert
	The path to the SSL certificate
	None [3] [4]

	plugins
	A list of plugins to load (see Plugin Configuration)
	None [5] [4]

Footnotes

	[1]	This is to say, Tangelo serves from the directory in which it was
invoked by default.

	[2]	(1, 2) Your Unix system may already have a user named “nobody” which
has the least possible level of permissions. The theory is that system daemons
can be run as this user, limiting the damage a rogue process can do. However,
if multiple daemons are run this way, any rogue daemon can theoretically gain
control of the others. Therefore, the recommendation is to create a new user
named “tangelo”, that also has minimal permissions, but is only used to run
Tangelo in privilege drop mode.

	[3]	(1, 2) You must also specify both key and cert to serve content over
https.

	[4]	(1, 2, 3) That is to say, the option is simply unset by default, the
equivalent of not mentioning the option at all in a configuration file.

	[5]	This option can only appear in the configuration file; there is
no command line equivalent.

Administering a Tangelo Installation

Administering Tangelo on a particular system requires making some decisions
about how Tangelo ought to behave, then implementing those decisions in a
configuration file.

For example, as the system administrator you might create a directory on the web
server machine at /srv/tangelo which would serve as the web root, containing
the website front page and supporting materials.

You should then prepare a plugin configuration file that, at the very least,
activates the Tangelo plugin:

enabled: true
path: /usr/share/tangelo/plugins/tangelo

This file can be saved to /etc/tangelo/plugin.conf.

It remains to configure Tangelo itself. The hostname should reflect the desired
external identity of the Tangelo server - perhaps excelsior.starfleet.mil. As
this is a “global” deployment, we want to listen on port 80 for connections.
Since we will need to start Tangelo as root (to gain access to the low-numbered
ports), we should also specify a user and group to drop privileges to: these
can be the specially created user and group tangelo.

The corresponding configuration file might look like this:

Network options.
hostname: excelsior.starfleet.mil
port: 80

Privilege drop options.
user: tangelo
group: tangelo

Runtime resources.
root: /srv/tangelo

This file should be saved to /etc/tangelo.conf, and then Tangelo can be
launched with a command like tangelo -c /etc/tangelo.conf (running the
command with sudo may be necessary to allow for port 80 to be bound).

A Note on Version Numbers

Tangelo uses semantic versioning [http://semver.org/] for its version
numbers, meaning that each release’s version number establishes a promise about
the levels of functionality and backwards compatibility present in that release.
Tangelo’s version numbers come in two forms: x.y and x.y.z. x is a major
version number, y is a minor version number, and z is a patch level.

Following the semantic versioning approach, major versions represent a stable
API for the software as a whole. If the major version number is incremented, it
means you can expect a discontinuity in backwards compatibility. That is to
say, a setup that works for, e.g., version 1.3 will work for versions 1.4, 1.5,
and 1.10, but should not be expected to work with version 2.0.

The minor versions indicate new features or functionality added to the previous
version. So, version 1.1 can be expected to contain some feature not found in
version 1.0, but backwards compatibility is ensured.

The patch level is incremented when a bug fix or other correction to the
software occurs.

Major version 0 is special: essentially, there are no guarantees about
compatibility in the 0.y series. The stability of APIs and behaviors begins
with version 1.0.

In addition to the standard semantic versioning practices, Tangelo also tags the
current version number with “dev” in the Git repository, resulting in version
numbers like “1.1dev” for the Tangelo package that is built from source. The
release protocol deletes this tag from the version number before uploading a
package to the Python Package Index.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Basic Usage

Once it is set up and running, Tangelo’s basic usage is relatively
straightforward. This chapter explains how Tangelo serves web content, a best
practices guide for organizing your content, and how to use HTTP authentication
to protect your content.

Serving Web Content

Tangelo’s most basic purpose is to serve web content. Once Tangelo is
running, it will serve content from two types of locations:

Web root directory. Visiting most URLs (whose first path component is not
plugin; see below) will cause Tangelo to serve content out of the web root
directory, which is set in the Tangelo configuration file, or by the -r (or
--root) flag when Tangelo is launched (see Setup and Administration). For example, if
the web root directory is set to /srv/tangelo/root, visiting
http://localhost:8080/ would serve content from that directory, and visiting
http://localhost:8080/foobar would serve content from
/srv/tangelo/root/foobar, etc.

Plugin content directories. The URLs rooted at http://localhost:8080/plugin refer to web
content served by any active Tangelo plugins. Each active plugin can have
static content associated with it, and such content is served from a directory
particular to each plugin. For information about how Tangelo plugins work, see
Tangelo Plugins. In partciular, this means that if there is a subdirectory of
the web root directory named plugin, Tangelo will not be able to serve any
content from this directory.

The foregoing examples demonstrate how Tangelo associates URLs to directories
and files in the filesystem. URLs referencing particular files will cause
Tangelo to serve that file immediately. URLs referencing a directory behave
according to the following rules:

	If the directory contains a file named index.html, that file will be
served.

	If Tangelo was launched with the --list-dir option, Tangelo will generate
and serve a directory listing for the directory. This listing will include
hyperlinks to the files contained therein.

	Tangelo will serve a 403 Forbidden error indicating that directory
listing is disabled.

Furthermore, any URL referring to a Python script, but lacking the final .py,
names a web service; such URLs do not serve static content, but rather run the
referred Python script and serve the results (see Tangelo Web Services).

The following table summarizes Tangelo’s URL types:

	URL type
	Example
	Behavior

	Web root
	http://localhost:8080/holodeck3/status.html
	serve /srv/tangelo/root/holodeck3/status.html

	Indexed directory
	http://localhost:8080/tenforward
	serve /srv/tangelo/root/tenforward/index.html

	Unindexed directory
	http://localhost:8080/warpdrive
	serve 403 Forbidden error, or directory listing for /srv/tangelo/root/warpdrive

	Web service
	http://localhost:8080/lcars/lookup
	serve result of executing run() function of /srv/tangelo/lcars/lookup.py

	Plugin
	http://localhost:8080/plugin/foobar/...
	serve content from foobar plugin

HTTP Authentication

Tangelo supports HTTP Digest Authentication [http://www.ietf.org/rfc/rfc2617.txt] to password protect web directories.
The process to protect a directory is as follows:

	Go to the directory you wish to protect:

cd /srv/engineering/DilithiumChamberStats

The idea is, this directory (which is accessible on the web as
http://localhost:8080/DilithiumChamberStats) contains sensitive
information, and should be restricted to just certain people who have a
password.

	Create a file there called .htaccess and make it look like the following
example, customizing it to fit your needs:

AuthType digest
AuthRealm USS Enterprise NCC-1701-D
AuthPasswordFile /home/laforge/secret/dilithiumpw.txt

This file requestes digest authnetication on the directory, sets the
authentication realm to be the string “USS Enterprise NCC-1701-D”, and
specifies that the acceptable usernames and passwords will be found in the
file /home/laforge/secret/dilithiumpw.txt.

Currently, the only supported authentication type is digest. The realm will
be displayed to the user when prompted for a username and password.

	Create the password file, using the tangelo-passwd program (see
tangelo-passwd):

$ tangelo-passwd -c ~laforge/secret/dilithiumpw.txt "USS Enterprise NCC-1701-D" picard
Enter password for picard@USS Enterprise NCC-1701-D: <type password here>
Re-enter password: <retype password here>

This will create a new password file. If you inspect the file, you will see
a user picard associated with an md5 hash of the password that was
entered. You can add more users by repeating the command without the -c
flag, and changing the username.

At this point, the directory is password protected - when you visit the page,
you will be prompted for a username and password, and access to the page will
be restricted until you provide valid ones.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Tangelo Web Services

Tangelo’s special power lies in its ability to run user-created web services
as part of a larger web application. Essentially, each Python file in Tangelo’s
web space is associated to a URL; requesting this URL (e.g., by visiting it in a
browser) will cause Tangelo to load the file as a Python module, run a
particular function found within it, and return the output as the content for
the URL.

In other words, Tangelo web services mean that Python code can become
web resources. Python is a flexible and powerful programming language with
a comprehensive standard library and a galaxy of third-party modules providing
access to all kinds of APIs and software libraries.

General Services

Here is a simple example of a web service. Suppose
/home/riker/tangelo_html/calc.py reads as follows:

import tangelo

allowed = ["add", "subtract", "multiply", "divide"]

@tangelo.types(a=float, b=float)
def run(operation, a=None, b=None):
 if a is None:
 return "Parameter 'a' is missing!"
 elif b is None:
 return "Parameter 'b' is missing!"

 try:
 if operation == "add":
 return a + b
 elif operation == "subtract":
 return a - b
 elif operation == "multiply":
 return a * b
 elif operation == "divide":
 return a / b
 else:
 return "Unsupported operation: %s\nAllowed operations are: %s" % (operation, ", ".join(allowed))
 except ValueError:
 return "Could not %s '%s' and '%s'" % (operation, a, b)
 except ZeroDivisionError:
 return "Can't divide by zero!"

This is a Python module named calc, implementing a very rudimentary
four-function calculator in the run() function. Tangelo will respond to a
request for the URL http://localhost:8080/examples/calculator/calc/add?a=33&b=14
(without the trailing .py) by loading calc.py as a Python module,
executing its run() function, and returning the result - in this case, the
string 47 - as the contents of the URL.

The run() function takes three arguments: a positional argument named
operation, and two keyword arguments named a and b. Tangelo maps
the positional arguments to any “path elements” found after the name of the
script in the URL (in this case, add), while keyword arguments are mapped to
query parameters (33 and 14 in this case). In other words, the example
URL is the equivalent of running the following short Python script:

import calc
print calc.run("add", "33", "14")

Note that all arguments are passed as strings. This is due to the way URLs
and associated web technologies work - the URL itself is simply a string, so it
is chunked up into tokens which are then sent to the server. These arguments
must therefore be cast to appropriate types at run time. The
tangelo.types() decorator offers a convenient way to perform this type
casting automatically, but of course you can do it manually within the service
itself if it is necessary.

Generally speaking, the web endpoints exposed by Tangelo for each Python file
are not meant to be visited directly in a web browser; instead, they provide
data to a web application using Ajax calls to retrieve the data. Suppose we
wish to use calc.py in a web calculator application, which includes an HTML
file with two fields for the user to type inputs into, and four buttons, one for
each arithmetic operation. An associated JavaScript file might have code like
the following:

function do_arithmetic(op) {
 var a_val = $("#input-a").val();
 var b_val = $("#input-b").val();

 $.ajax({
 url: "calc/" + op,
 data: {
 a: a_val,
 b: b_val
 },
 dataType: "text",
 success: function (response) {
 $("#result").text(response);
 },
 error: function (jqxhr, textStatus, reason) {
 $("#result").html(reason);
 }
 });
}

$("#plus").click(function () {
 do_arithmetic("add");
});

$("#minus").click(function () {
 do_arithmetic("subtract");
});

$("#times").click(function () {
 do_arithmetic("multiply");
});

$("#divide").click(function () {
 do_arithmetic("divide");
});

The do_arithmetic() function is called whenever the operation buttons are
clicked; it contains a call to the JQuery ajax() function, which prepares a
URL with query parameters then retrieves data from it. The success callback
then takes the response from the URL and places it on the webpage so the user
can see the result. In this way, your web application front end can connect to
the Python back end via Ajax.

Return Types

The type of the value returned from the run() function determines how
Tangelo creates content for the associated web endpoint. Since web server
communication occurs via textual data, all values returned by web services must
eventually be converted to strings. By default, Tangelo accomplishes this by
considering all such values to be JSON-encoded. For example, in the calculator
example, the run() function returns Python int value 47; Tangelo
takes this value and applies the standard function json.dump() to it,
resulting in the string "47", which is delivered to the client for further
processing. Similarly, a service that returns a Python dict value will be
converted to a general JSON-object, making it easy to return structured
information from any given web service.

This means that, in the most general case, you can create your own types,
equipped with methods for JSON encoding them, and use those are direct return
values (see the Python documentation [http://docs.python.org/2/library/json.html#json.JSONEncoder] for information
on custom JSON encoding). Attempting to return a type that is not
JSON-serializable results in a 400 error.

The only exception to the default conversion behavior is that if the service
returns a string directly, this value will not be JSON encoded (which entails
surrounding it with double-quotes), but simply passed along unchanged. This
“escape hatch” enables a service to return any kind of data by encoding it as a
string. The tangelo.content_type() utility function can be used to specify
the intended type of the returned data. For instance,
tangelo.content_type("text/plain") followed by return "hello, world"
will result in a text result being sent to the client. More complex types are
also possible; e.g., a service might compute a PNG image, then send the PNG data
back as a string after calling tangelo.content_type("application/png").

Specifying a Custom Return Type Converter

Similarly to the tangelo.types() decorator mentioned above, services
can specify a custom return type via the tangelo.return_type()
decorator. It takes a single argument, a function to convert the object
returned from the service function to a string or JSON-serializable value (see
Return Types):

import tangelo

def excited(s):
 return s + "!!!"

@tangelo.return_type(excited)
def run(name):
 return "hello %s" % (name)

Given Data as an input, this service will return the string Hello
Data!!! to the client.

A more likely use case for this decorator is special-purpose JSON converters,
such as Pymongo’s bson.json_util.dumps() function, which can handle certain
non-standard objects such as Python datetime objects when converting to JSON
text.

HTTP Status Codes

When something goes wrong during execution of a web service, you may wish to
signal to the client what happened. The tangelo.http_status() function can
be used to set the status code to indicate the class of problem. For instance,
if the service invocation does not include the proper required arguments, the
service might signal the error by the following:

tangelo.http_status(400, "Required Argument Missing")

Many HTTP status codes have standard meanings [http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html], including default
titles (e.g., the default title for 400 is “Bad Request”); invoking
tangelo.http_status() with only a numerical code will use such a default
title. Otherwise, you may include a second string argument to provide a more
specific description.

Errors are generally signaled with 4xx and 5xx codes. In these cases, the
response body may be useful for providing specific information about the error
to the client. Such information can be provided as JSON, plain text, HTML, or
any other feasible format. Just make sure to call tangelo.content_type() to
specify the MIME type of the response before using return to prepare and
send the response.

RESTful Services

Tangelo also supports the creation of REST services. Instead of placing
functionality in a run() function, such a service has one function per
desired REST verb. For example, a rudimentary service to manage a collection of
databases might look like the following:

import tangelo
import lcarsdb

@tangelo.restful
def get(dbname, query):
 db = lcarsdb.connect("enterprise.starfleet.mil", dbname)
 if not db:
 return None
 else:
 return db.find(query)

@tangelo.restful
def put(dbname):
 connection = lcarsdb.connect("enterprise.starfleet.mil")
 if not connection:
 return "FAIL"
 else:
 success = connection.createDB(dbname)
 if success:
 return "OK"
 else:
 return "FAIL"

The tangelo.restful() decorator is used to explicitly mark the
functions that are part of the RESTful interface so as to avoid (1) restricting
REST verbs to just the set of commonly used ones and (2) exposing every function
in the service as part of a REST interface (since some of those could simply be
helper functions).

Bear in mind that a function named run() will always take precedence over
any functions marked with @tangelo.restful. This is because run() is
meant to be agnostic to the HTTP method that was used to invoke it, and as such,
has higher precedence when Tangelo is looking for a function to invoke.

Configuring Web Services

You can optionally include a configuration file alongside the service itself.
For instance, suppose the following service is implemented in autodestruct.py:

import tangelo
import starship

def run(officer=None, code=None, countdown=20*60):
 config = tangelo.config()

 if officer is None or code is None:
 return {"status": "failed",
 "reason": "missing officer or code argument"}

 if officer != config["officer"]:
 return {"status": "failed",
 "reason": "unauthorized"}
 elif code != config["code"]:
 return {"status": "failed",
 "reason": "incorrect code"}

 starship.autodestruct(countdown)

 return {"status": "complete",
 "message": "Auto destruct in %d seconds!" % (countdown)}

Via the tangelo.config() function, this service attempts to match the
input data against credentials stored in the module level configuration, which
is stored in autodestruct.yaml a YAML file containing an associative array
(i.e., a key-value store) at its top level:

officer: picard
code: echo november golf alpha golf echo four seven enable

The two files must have the same base name (autodestruct in this case) and be
in the same location. Any time the module for a service is loaded, the
configuration file will be parsed and loaded as well. Changing either file will
cause the module to be reloaded the next time it is invoked. The
tangelo.config() function returns a copy of the configuration dictionary, to
prevent an errant service from updating the configuration in a persistent way.
For this reason, it is advisable to only call this function once, capturing the
result in a variable, and retrieving values from it as needed.

Persistent Storage for Web Services

In contrast to the read-only service configuration, each service also has access
to a persistent data store that remembers changes made to it from invocation
to invocation. This may be accessed by invoking tangelo.store() within a
service function. Like tangelo.config(), the store is a Python dictionary,
but anything stored in it will be accessible from a subsequent invocation of the
service.

A very simple example would increment tangelo.store()["count"] on each
invocation, allowing the service to “know” how many times it has been invoked
before.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Tangelo Plugins

Tangelo’s capabilities can be extended by creating plugins to serve custom
content and services from a canonical URL, extend Tangelo’s Python runtime
environment, and perform specialized setup and teardown actions to support new
behaviors. Tangelo ships with several bundled plugins that implement useful
features and provide examples of how the plugin system can add value to your
Tangelo setup.

Structure and Content

A plugin is simply a directory containing a mix of content, documentation, and
control directives. Together, these elements determine what services and
features the plugin provides to a Tangelo server instance, and how those
services and features are prepped and cleaned up. A configuration file supplied
to Tangelo at startup time controls which plugins are loaded.

An example plugin’s file contents might be as follows:

foobar/
 control.py
 config.yaml
 requirements.txt
 info.txt
 python/
 __init__.py
 helper.py
 web/
 foobar.js
 foobar.py
 example/
 index.html
 index.js

We can examine the contents piece by piece.

Web Content

The directory foobar/web behaves much like any other static and dynamic
content served by Tangelo. Content in this directory is served from a base URL
of /plugin/foobar/ (where, foobar is the name of this plugin; however,
see Plugin Configuration). For example, /plugin/foobar/foobar.js refers to the
file of the same name in the web directory; this URL could be used by a web
application to include this file in a <script> tag, etc. (see
Serving Web Content for more information).

Dynamic web services also behave as elsewhere: the URL
/plugin/foobar/foobar will cause Tangelo to run the code found in
foobar.py and return it to the client, etc. (see Tangelo Web Services for
more information).

Python Content

A plugin may also wish to export some Python code for use in web services. In
the foobar plugin example, such content appears in
foobar/python/__init__.py. This file, for example, might contain the
following code:

import helper

def even(n):
 return n % 2 == 0

When the foobar plugin is loaded by Tangelo, the contents of
python/__init__.py are placed in a virtual package named
tangelo.plugin.foobar. This enables web services to use the even()
functions as in the following example:

import tangelo
import tangelo.plugin.foobar

def run(n):
 tangelo.content_type("text/plain")
 return "even" if tangelo.plugin.foobar.even(n) else "odd"

To export “submodules” that will appear in the tangelo.plugin.foobar
namespace, note that __init__.py uses the import statement to cause the
helper module to appear within its scope; this module can now be addressed
with tangelo.plugin.foobar.helper, and any functions and data exported by
helper will become available for use in web services as well.

The bundled bokeh plugin contains an example of exporting a decorator function
using this technique.

Setup and Teardown

The file foobar/control.py defines setup and teardown actions for each
plugin. For example, the contents of that file might be as follows:

import tangelo

def setup(config, store):
 tangelo.log("FOOBAR", "Setting up foobar plugin!")

def teardown(config, store):
 tangelo.log("FOOBAR", "Tearing down foobar plugin!")

Whenever Tangelo loads (unloads) the foobar plugin, it will import
control.py as a module and execute any setup() (teardown()) function
it finds, passing the configuration and persistent storage (see
Plugin Configuration) to it as arguments. If during setup the function raises
any exception, the exception will be printed to the log, and Tangelo will
abandon loading the plugin and move to the next one.

The setup() function can also cause arbitrary CherryPy applications to be
mounted in the plugin’s URL namespace. setup() can optionally return a list
of 3-tuples describing the applications to mount. Each 3-tuple should contain a
CherryPy application object, an optional configuration object associated with
the application, and a string describing where to mount the application. This
string will automatically be prepended with the base URL of the plugin being set
up. For instance:

import tangelo.plugin.foobar

def setup(config, store):
 app = tangelo.plugin.foobar.make_cherrypy_app()
 appconf = tangelo.plugin.foobar.make_config()

 return [(app, appconf, "/superapp")]

When the foobar plugin is loaded, the URL /plugin/foobar/superapp will
serve the CherryPy application implemented in app. Any such applications
are also unmounted when the plugin is unloaded.

Plugin Configuration

Plugin configuration comes in two parts: specifying which plugins to load, and
specifying particular behavior for each plugin.

Enabling Plugins

The Tangelo configuration file supports an option plugin that specifies a
plugin configuration. The option’s value should be a YAML expression consisting
of a list of objects, one for each plugin under consideration. The objects
themselves are relatively simple:

- name: foobar
 path: /path/to/foobar/plugin

- name: quux
 path: path/to/quux

- name: docs

Each contains a required name property and an optional path property
describing where to find the plugin materials (i.e., the example directory shown
above).

Note that you can enable a bundled plugin (see Bundled Plugins) by omitting the
path property. In this case, Tangelo searches for a plugin by the given
name in the plugins that come bundled with Tangelo. In the example above, the
docs plugin will be enabled. This is useful for enabling a “standard” plugin
without having to know where Tangelo keeps it.

The plugins option can simply be omitted when you do not wish to load any
plugins.

When Tangelo is started with a plugins option in its configuration file,
each plugin listed will be loaded before Tangelo begins serving content to the
web. Because it is assumed that any plugins specified are necessary for the
Tangelo application being launched, any error in loading any of the plugins will
result in aborting the startup process (logging errors as they occur).

Inversely, when Tangelo is shut down, each plugin will be unloaded in turn
(enabling, e.g., cleanup actions such as flushing buffers to disk, committing
pending database transactions, closing connections, etc.). In this case, if a
plugin cannot be unloaded for any reason, Tangelo’s shutdown will continue, and
you should clean up after the faulty plugin manually.

Plugin Setup

Some plugins may need to be set up before they can be properly used. Plugin
setup consists of two steps: installing Python dependencies, if any, and
consulting any informational messages supplied by the plugin.

In the example foobar plugin, note that the root directory includes a
requirements.txt file. This is simply a pip requirements file [https://pip.pypa.io/en/latest/user_guide.html#requirements-files] declaring
what Python packages the plugin needs to run. You can install these with a
command similar to pip install -r foobar/requirements.txt.

Secondly, some plugins may require some other action to be taken before they
work. The plugin authors can describe any such instructions in the info.txt
file. After installing the requirements, you should read this file to see if
anything else is required. For instance, a package may need to bootstrap after
it’s installed by fetching further resources or updates from the web; in this
case, info.txt would explain just how to accomplish this bootstrapping.

These steps constitute a standard procedure when retrieving a new plugin for use
with your local Tangelo installation. For instance, if the foobar plugin
resides in a GitHub repository, you would first find a suitable location on your
local computer to clone that repository. Then you would invoke pip to
install the required dependencies, then take any action specified by
info.txt, and finally create an entry in the Tangelo plugin configuration
file. When Tangelo is started (or when the plugin registry is refreshed), the
new plugin will be running.

Configuring Plugin Behavior

The file foobar/config.yaml describes a YAML associative array representing
the plugin’s configuration data. This is the same format as web service
configurations (see Configuring Web Services), and can be read with the function
tangelo.plugin_config().

Similarly, plugins also have a editable persistent store, accessed with the
tangelo.plugin_store() function.

Both the configuration and the persistent store and passed as arguments to
setup() and teardown() in the control module.

Loading and Unloading

When plugins are loaded or unloaded, Tangelo takes a sequence of particular
steps to accomplish the effect.

Loading a Plugin

Loading a plugin consists of the following actions:

	The configuration is loaded from config.yaml.

	An empty persistent store is created.

	Any python content is set up by creating a virtual package called
tangelo.plugin.<pluginname>, and exporting the contents of
python/__init__.py to it.

	The control.py module is loaded, and control.setup() is invoked,
passing the configuration and fresh persistent store to it.

	If setup() returns a result, the list of CherryPy apps expressed in the
"apps" property of it are mounted.

Steps 3, 4, and 5 are not taken if the corresponding content is not present. If
any of those steps raises an exception, the error will be logged and the Tangelo
startup process will abort.

Unloading a Plugin

Unloading a plugins consists of the follow actions (which serve to undo the
corresponding setup actions):

	Any python content present in tangelo.plugin.<pluginname> is torn down by
deleting the virtual package from the runtime.

	Any CherryPy applications are unmounted.

	If the control module contains a teardown() function, it is invoked,
passing the configuration and persistent store to it.

If an exception occurs during step 3, the teardown() function will not
finish executing, but Tangelo shutdown will continue with the unloading of
the rest of the plugins and eventual exiting of the Tangelo process.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

tangelo

tangelo [-h] [-c FILE] [-nc] [-a] [-na] [-p] [-np]

[–hostname HOSTNAME] [–port PORT] [-u USERNAME]

[-g GROUPNAME] [-r DIR] [–vtkpython FILE] [–verbose]

[–version] [–key FILE] [–cert FILE]

Start a Tangelo server.

	Optional argument
	Effect

	-h, –help
	show this help message and exit

	-c FILE, –config FILE
	specifies configuration file to use

	-nc, –no-config
	skips looking for and using a configuration file

	-a, –access-auth
	enable HTTP authentication (i.e. processing of .htaccess files) (default)

	-na, –no-access-auth
	disable HTTP authentication (i.e. processing of .htaccess files)

	-p, –drop-privileges
	enable privilege drop when started as superuser (default)

	-np, –no-drop-privileges
	disable privilege drop when started as superuser

	-s, –sessions
	enable server-side session tracking (default)

	-ns, –no-drop-privileges
	disable server-side session tracking

	–hostname HOSTNAME
	overrides configured hostname on which to run Tangelo

	–port PORT
	overrides configured port number on which to run Tangelo

	-u USERNAME, –user USERNAME
	specifies the user to run as when root privileges are dropped

	-g GROUPNAME, –group GROUPNAME
	specifies the group to run as when root privileges are dropped

	-r DIR, –root DIR
	the directory from which Tangelo will serve content

	–examples
	serve the Tangelo example applications

	–verbose, -v
	display extra information as Tangelo starts up

	–version
	display Tangelo version number

	–key FILE
	the path to the SSL key. You must also specify –cert to serve content over https.

	–cert FILE
	the path to the SSL certificate. You must also specify –key to serve content over https.

Example Usage

To start a Tangelo server with the default configuration, serving from the
current directory:

tangelo

This starts Tangelo on port 8080.

To serve the example applications that come bundled with Tangelo:

tangelo --examples

To control particular options, such as the port number (overriding the value
specified in the config) file:

tangelo --port 9090

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

tangelo-passwd

tangelo-passwd [-h] [-c] passwordfile realm user

Edit .htaccess files for Tangelo

	Positional argument
	Meaning

	passwordfile
	Password file

	realm
	Authentication realm

	user
	Username

	Optional argument
	Effect

	-h, –help
	Show this help message and exit

	-c, –create
	Create new password file

Example Usage

To create a new password file:

tangelo-passwd -c secret.txt romulus tomalak

(Then type in the password as prompted.)

To add a user to the file:

tangelo-passwd secret.txt Qo\'noS martok

(Again, type in password.)

To overwrite a new password file on top of the old one:

tangelo-passwd -c secret.txt betazed troi

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Python Web Service API

The web service API is a collection of Python functions meant to help write web
service scripts in as “Pythonic” a way as possible. The functionality is
divided into severul areas: core services for generally useful utilities; HTTP
interaction, for manipulating request headers, retrieving request bodies, and
formatting errors; and web service utilities to supercharge Python services.

Core Services

	
tangelo.log([context,]msg)

	Writes a message msg to the log file. The optional context is a
descriptive tag that will be prepended to the message within the log file
(defaulting to “TANGELO” if omitted). Common context tags used internally
in Tangelo include “TANGELO” (to describe startup/shutdown activities), and
“ENGINE” (which describes actions being taken by CherryPy). This function
may be useful for debugging or otherwise tracking a service’s activities as
it runs.

	
tangelo.log_info([context,]msg)

	Variant of tangelo.log() that writes out messages in purple.
Informational messages are those that simply declare a helpful description
of what the system is doing at the moment. For example, when a plugin is
about to perform initialization, a call like tangelo.log_info("FOOBAR",
"About to initialize...") may be appropriate.

	
tangelo.log_warning([context,]msg)

	Variant of tangelo.log() that writes out messages in yellow.
Warnings are messages indicating that something did not work out as
expected, but not so bad as to compromise the continued running of the
system. For example, if Tangelo is unable to load a plugin for any reason,
Tangelo itself is able to continue running - this constitutes a warning
about the failed plugin loading.

	
tangelo.log_error([context,]msg)

	Variant of tangelo.log() that writes out messages in red. Errors
describe conditions that prevent the further functioning of the system.
Generally, you will not need to call this function.

	
tangelo.log_success([context,]msg)

	Variant of tangelo.log() that writes out messages in green. This
is meant to declare that some operation went as expected. It is generally
not needed because the absence of errors and warnings can generally be
regarded as a success condition.

HTTP Interaction

	
tangelo.content_type([type])

	Returns the content type for the current request, as a string. If type
is specified, also sets the content type to the specified string.

	
tangelo.http_status(code[, message])

	Sets the HTTP status code for the current request’s response. code should
be an integer; optional message can give a concise description of the
code. Omitting it results in a standard message; for instance,
tangelo.http_status(404) will send back a status of 404 Not Found.

This function can be called before returning, e.g., a dict describing in
detail what went wrong. Then, the response will indicate the general error
while the body contains error details, which may be informational for the
client, or useful for debugging.

	
tangelo.header(header_name[, new_value])

	Returns the value associated to header_name in the HTTP headers, or
None if the header is not present.

If new_value is supplied, the header value will additionally be replaced
by that value.

	
tangelo.request_header(header_name)

	Returns the value associated to header_name in the request headers, or
None if the header is not present.

	
tangelo.request_path()

	Returns the path of the current request. This is generally the sequence of
path components following the domain and port number in a URL.

	
tangelo.request_body()

	Returns a filelike object that streams out the body of the current request.
This can be useful, e.g., for retrieving data submitted in the body for a
POST request.

	
tangelo.session(key[, value])

	Returns the value currently associated to the session key key, or None
if there is no such key. If value is given, it will become newly associated
to key.

Web Services Utilities

	
tangelo.paths(paths)

	Augments the Python system path with the list of web directories specified
in paths. Each path must be within the web root directory or
within a user’s web home directory (i.e., the paths must be legal with
respect to tangelo.legal_path()).

This function can be used to let web services access commonly used functions
that are implemented in their own Python modules somewhere in the web
filesystem.

After a service calling this function returns, the system path will be
restored to its original state. This requires calling tangelo.paths()
in every function wishing to change the path, but prevents shadowing of
expected locations by modules with the same name in other directories, and
the uncontrolled growth of the sys.path variable.

	
tangelo.config()

	Returns a copy of the service configuration dictionary (see
Configuring Web Services).

	
@tangelo.restful

	Marks a function in a Python service file as being part of that service’s
RESTful API. This prevents accidental exposure of unmarked support
functions as part of the API, and also enables the use of arbitrary words as
REST verbs (so long as those words are also valid Python function names).
An example usage might look like the following, which uses a both a standard
verb (“GET”) and a custom one (“NORMALIZE”).

import tangelo

@tangelo.restful
def get(foo, bar, baz=None):
 pass

@tangelo.restful
def normalize():
 pass

Note that Tangelo automatically converts the verb used by the web client to
all lowercase letters before searching the Python module for a matching
function to call.

	
@tangelo.types(arg1=type1, ..., argN=typeN)

	Decorates a service by converting it from a function of several string
arguments to a function taking typed arguments. Each argument to
tangelo.types() is a function that converts strings to some other type -
the standard Python functions int(), float(), and json.loads()
are good examples. The functions are passed in as keyword arguments, with
the keyword naming an argument in the decorated function. For example, the
following code snippet

import tangelo

def stringfunc(a, b):
 return a + b

@tangelo.types(a=int, b=int)
def intfunc(a, b):
 return a + b

print stringfunc("3", "4")
print intfunc("3", "4")

will print:

34
7

stringfunc() performs string concatentation, while intfunc() performs
addition on strings that have been converted to integers.

Though the names of the built-in conversion functions make this decorator look
like it accepts “types” as arguments, any function that maps strings to any type
can be used. For instance, a string representing the current time could be
consumed by a function that parses the string and returns a Python datetime
object, or, as mentioned above, json.loads() could be used to convert
arbitrary JSON data into Python objects.

If an exception is raised by any of the conversion functions, its error message
will be passed back to the client via a tangelo.HTTPStatusCode
object.

	
@tangelo.return_type(type)

	Similarly to how tangelo.types() works, this decorator can be used to
provide a function to convert the return value of a service function to some
other type or form. By default, return values are converted to JSON via the
standard json.dumps() function. However, this may not be sufficient in
certain cases. For example, the bson.dumps() is a function provided by
PyMongo that can handle certain types of objects that json.dumps() cannot,
such as datetime objects. In such a case, the service module can provide
whatever functions it needs (e.g., by importing an appropriate module or
package) then naming the conversion function in this decorator.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Tangelo JavaScript Library

The Tangelo clientside library (tangelo.js) contains functions to help work
with Tangelo, including basic support for creating web applications. These
functions represent basic tasks that are widely useful in working with web
applications; for advanced functionality and associated JavaScript/Python
functions, see Bundled Plugins.

	
tangelo.version()

	

	Return type:	string – the version string

Returns a string representing Tangelo’s current version number. See
A Note on Version Numbers for more information on Tangelo version numbers.

	
tangelo.getPlugin(pluginName)

	

	Arguments:	
	string (pluginName) – The name of the plugin to retrieve

	Return type:	object – the contents of the requested plugin

Returns an object containing the plugin contents for pluginName. If
pluginName does not yet exist as a plugin, the function first creates it
as an empty object.

This is a standard way to create and work with plugins. For instance, if
foobar.js introduces the foobar clientside plugin, it may contain code
like this:

var plugin = tangelo.getPlugin("foobar");

plugin.awesomeFunction = function () { ... };

plugin.greatConstant = ...

The contents of this example plugin would hereafter be accessible via
tangelo.plugin.foobar.

	
tangelo.pluginUrl(plugin[, *pathComponents])

	

	Arguments:	
	api (string) – The name of the Tangelo plugin to construct a URL for.

	*pathComponents (string) – Any extra path components to be appended to
the constructed URL.

	Return type:	string – the URL corresponding to the requested plugin and path

Constructs and returns a URL for the named plugin, with optional trailing
path components listed in the remaining arguments to the function.

For example, a call to tangelo.pluginUrl("stream", "next", "a1b2c3d4e5")
will return the string "/plugin/stream/next/a1b2c3d4e5". This function is
useful for calls to, e.g., $.ajax() when engaging a Tangelo plugin.

	
tangelo.queryArguments()

	

	Return type:	object – the query arguments as key-value pairs

Returns an object whose key-value pairs are the query arguments passed to
the current web page.

This function may be useful to customize page content based on query
arguments, or for restoring state based on configuration options, etc.

	
tangelo.absoluteUrl(webpath)

	

	Arguments:	
	webpath (string) – an absolute or relative web path

	Return type:	string – an absolute URL corresponding to the input webpath

Computes an absolute web path for webpath based on the current location.
If webpath is already an absolute path, it is returned unchanged;
if relative, the return value has the appropriate prefix computed and prepended.

For example, if called from a page residing at /foo/bar/index.html,
tangelo.absoluteUrl("../baz/qux/blah.html") would yield
/foo/baz/qux/blah.html, and tangelo.absoluteUrl("/one/two/three")
would yield /one/two/three.

	
tangelo.accessor([spec])

	

	Arguments:	
	object (spec) – The accessor specification

	Return type:	function – the accessor function

Returns an accessor function that behaves according to the accessor
specification spec. Accessor functions generally take as input a
JavaScript object, and return some value that may or may not be related to
that object. For instance, tangelo.accessor({field: "mass"}) returns a
function equivalent to:

function (d) {
 return d.mass;
}

while tangelo.accessor({value: 47}) return a constant function that
returns 47, regardless of its input.

As a special case, if spec is missing, or equal to the empty object
{}, then the return value is the undefined accessor, which simply
raises a fatal error when called.

For more information of the semantics of the spec argument, see
Accessor Specifications.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Bundled Plugins

Tangelo ships with several bundled plugins that implement useful and powerful
functionality, as well as providing examples of various tasks that plugins can
perform. This page divides the set of bundled plugins into categories,
demonstrating some of the styles of problems Tangelo can help solve.

Core Plugins

Although these “core plugins” are built using the same plugin system
architecture available to any Tangelo user, these deliver services vital to any
working Tangelo instance, and can therefore be considered integral parts of the
Tangelo platform.

Tangelo

The Tangelo plugin simply serves the Tangelo clientside library files
tangelo.js and tangelo.min.js. It also includes a “version” web service
that simply returns, as plain text, the running server’s version number.

This is supplied as a plugin to avoid having to include the JavaScript files
manually into every deployment of Tangelo. Instead, the files can be easily
served directly from the plugin, thus retaining stable URLs across deployments.

Manifest

	File
	Description

	/plugin/tangelo/tangelo.js
	Unminified Tangelo library

	/plugin/tangelo/tangelo.min.js
	Minified Tangelo library

	/plugin/tangelo/version
	Version reporting service

Docs

The Docs plugin serves the Tangelo documentation (the very documentation you are
reading right now!). Again, this is to simplify deployments. The index is
served at /plugin/docs and from there the index page links to all pages of
the documentation.

Stream

It may be necessary to return an immense (or even infinite [http://localhost:8080/examples/primes]) amount of data from a web service to the client. However,
this may take up so much time and memory that dealing with it becomes
intractable. In such situations, the Stream plugin may be able to help.

Generators in Python

Essentially, the plugin works by exposing Python’s abstraction of generators [http://docs.python.org/2/reference/expressions.html#yield-expressions]. If a
web service module includes a stream() function that uses the yield
keyword instead of return, thus marking it as a generator function, then the
Stream plugin can use this module to launch a streaming service. Here is an
example of such a service, in a hypothetical file named prime-factors.py:

import math
import tangelo

def prime(n):
 for i in xrange(2, int(math.floor(math.sqrt(num)+1))):
 if n % i == 0:
 return False
 return True

@tangelo.types(n=int)
def stream(n=2):
 for i in filter(prime, range(2, int(math.floor(math.sqrt(num)+1)))):
 if n % i == 0
 yield i

The stream() function returns a generator object - an object that returns
a prime divisor of its argument once for each call to its next() method.
When the code reaches its “end” (i.e., there are no more values to yield),
the next() method raises a StopIteration exception.

In Python this object, and others that behave the same way, are known as
iterables. Generators are valuable in particular because they generate values
as they are requested, unlike e.g. a list, which always retains all of its
values and therefore has a larger memory footprint. In essence, a generator
trades space for time, then amortizes the time over multiple calls to
next().

The Stream plugin leverages this idea to create streaming services. When a
service module returns a generator object from its stream() function, the
plugin logs the generator object in a table, associates a key to it, and sends
this key as the response. For example, an ajax request to the streaming API,
identifying the prime-factors service above, might yield the following
response:

{"key": "3dffee9e03cef2322a2961266ebff104"}

From this point on, values can be retrieved from the newly created generator
object by further engaging the streaming API.

The Stream REST API

The streaming API can be found at /plugin/stream/stream. The API is RESTful
and uses the following verbs:

	GET /plugin/stream/stream returns a list of all active stream keys.

	GET /plugin/stream/stream/<stream-key> returns some information about the
named stream.

	POST /plugin/stream/stream/start/<path>/<to>/<streaming>/<service> runs
the stream() function found in the service, generates a hexadecimal key,
and logs it in a table of streaming services, finally returning the key.

	POST /api/stream/next/<stream-key> calls next() on the associated
generator and returns a JSON object with the following form:

{
 "finished": false,
 "data": <value>
}

The finished field indicates whether StopIteration was thrown, while
the data field contains the value yielded from the generator object.
If finished is true, there will be no data field, and the stream
key for that stream will become invalid.

	DELETE /api/stream/<stream-key> makes the stream key invalid, removes the
generator object from the stream table, and returns a response showing which
key was removed:

{"key": "3dffee9e03cef2322a2961266ebff104"}

This is meant to inform the client of which stream was deleted in the case
where multiple deletions are in flight at once.

JavaScript Support for Streaming

/plugin/stream/stream.js defines a clientside stream plugin that offers
a clean, callback-based JavaScript API to the streaming REST service:

	
tangelo.plugin.stream.streams(callback)

	

	Arguments:	
	callback (function(keys)) – Callback invoked with the list of active
stream keys

Asynchronously retrieves a JSON-encoded list of all stream keys, then
invokes callback, passing the keys in as a JavaScript list of strings.

	
tangelo.plugin.stream.start(webpath, callback)

	

	Arguments:	
	webpath (string) – A relative or absolute web path, naming a
stream-initiating web service

	callback (function(key)) – A function to call when the key for the new
stream becomes available

Asynchronously invokes the web service at webpath - which should initiate a
stream by returning a Python iterable object from its run() method - then
invokes callback, passing it the stream key associated with the new
stream.

This callback might, for example, log the key with the application so that
it can be used later, possibly via calls to tangelo.plugin.stream.query()
or tangelo.plugin.stream.run():

tangelo.plugin.stream.start("myservice", function (key) {
 app.key = key;
});

	
tangelo.plugin.stream.query(key, callback)

	

	Arguments:	
	key (string) – The key for the desired stream

	error) callback (function(data,) – The callback to invoke when results come
back from the stream

Runs the stream keyed by key for one step, then invokes callback with
the result. If there is an error, callback is instead invoked passing
undefined as the first argument, and the error as the second.

	
tangelo.plugin.stream.run(key, callback[, delay=100])

	

	Arguments:	
	key (string) – The key for the stream to run

	callback (function(data)) – The callback to pass stream data when it
becomes available

	delay (number) – The delay in milliseconds between the return from a
callback invocation, and the next stream query

Runs the stream keyed by key continuously until it runs out, or there is
an error, invoking callback with the results each time. The delay
parameter expresses in milliseconds the interval between when a callback
returns, and when the stream is queried again.

The behavior of callback can influence the future behavior of this
function. If callback returns a value, and the value is a

	function, it will replace callback for the remainder of the stream
queries;

	boolean, it will stop running the stream if false;

	number, it will become the new delay, beginning with the very next
stream query.

	object, it will have the function effect above if there is a key
callback; the boolean effect above if there is a key continue;
the number effect above if there is a key delay (in other words,
this allows for multiple effects to be declared at once).

Other return types will simply be ignored.

	
tangelo.plugin.stream.delete(key[, callback])

	

	Arguments:	
	key (string) – The key of the stream to delete

	callback (function(error)) – A callback that is passed an error object
if an error occurs during deletion.

Deletes the stream keyed by key. The optional callback is a function
that is invoked with an error object is something went wrong during the
delete operation, or no arguments if the delete was successful.

VTKWeb

The VTKWeb plugin is able to run VTK Web programs and display the result in real
time on a webpage. The interface is somewhat experimental at the moment and
only supports running the program and interacting with it via the mouse. In a
later version, the ability to call functions and otherwise interact with VTK Web
in a programmatic way will be added.

In order to enable this funcationality, the plugin must be configured with a
vtkpython option set to the full path to a vtkpython executable in a
build of VTK.

The VTK Web REST API

The VTK Web API is found at /plugin/vtkweb/vtkweb. The API is RESTful and
uses the following verbs:

	POST /plugin/vtkweb/vtkweb/full/path/to/vtkweb/script.py launches the
named script (which must be given as an absolute path) and returns a JSON
object similar to the following:

{
 "status": "complete",
 "url": "ws://localhost:8080/ws/d74a945ca7e3fe39629aa623149126bf/ws",
 "key": "d74a945ca7e3fe39629aa623149126bf"
}

The url field contains a websocket endpoint that can be used to
communicate with the VTK web process. There is a vtkweb.js file (included
in the Tangelo installation) that can use this information to hook up an HTML
viewport to interact with the program, though for use with Tangelo, it is much
simpler to use the JavaScript VTK Web library functions to abstract these
details away. The key field is, similarly to the streaming API, a
hexadecimal string that identifies the process within Tangelo.

In any case, receiving a response with a status field reading “complete”
means that the process has started successfully.

	GET /plugin/vtkweb/vtkweb returns a list of keys for all active VTK Web
processes.

	GET /plugin/vtkweb/vtkweb/<key> returns information about a particular VTK
Web process. For example:

{
 "status": "complete",
 "process": "running",
 "port": 52446,
 "stderr": [],
 "stdout": [
 "2014-02-26 10:00:34-0500 [-] Starting factory <vtk.web.wamp.ReapingWampServerFactory instance at 0x272b2d8>\n",
 "2014-02-26 10:00:34-0500 [-] ReapingWampServerFactory starting on 52446\n",
 "2014-02-26 10:00:34-0500 [-] Log opened.\n",
 "2014-02-26 10:00:34-0500 [VTKWebApp,0,127.0.0.1] Client has reconnected, cancelling reaper\n",
 "2014-02-26 10:00:34-0500 [VTKWebApp,0,127.0.0.1] on_connect: connection count = 1\n"
]
}

The status field indicates that the request for information was
successful, while the remaining fields give information about the running
process. In particular, the stderr and stdout streams are queried for
any lines of text they contain, and these are delivered as well. These can be
useful for debugging purposes.

If a process has ended, the process field will read terminated and
there will be an additional field returncode containing the exit code of
the process.

	DELETE /plugin/vtkweb/vtkweb/<key> terminates the associated VTK process
and returns a response containing the key:

{
 "status": "complete",
 "key": "d74a945ca7e3fe39629aa623149126bf"
}

As with the streaming DELETE action, the key is returned to help
differentiate which deletion has completed, in case multiple DELETE
requests are in flight at the same time.

JavaScript Support for VTK Web

As with the Stream plugin’s JavaScript functions, /plugin/vtkweb/vtkweb.js
defines a clientside plugin providing a clean, callback-based interface to the
low-level REST API:

	
tangelo.plugin.vtkweb.processes(callback)

	

	Arguments:	
	callback (function(keys)) – The callback to invoke when the list of keys
becomes available

Asynchronously retrieves a list of VTK Web process keys, and invokes
callback with the list.

	
tangelo.plugin.vtkweb.info(key, callback)

	

	Arguments:	
	key (string) – The key for the requested VTK Web process

	callback (function(object)) – The callback to invoke when the info
report becomes available

Retrieves a status report about the VTK Web process keyed by key, then
invokes callback with it when it becomes available.

The report is a JavaScript object containing a status field indicating
whether the request succeeded (“complete”) or not (“failed”). If the status
is “failed”, the reason field will explain why.

A successful report will contain a process field that reads either
“running” or “terminated”. For a terminated process, the returncode
field will contain the exit code of the process.

For running processes, there are additional fields: port, reporting the
port number the process is running on, and stdout and stderr, which
contain a list of lines coming from those two output streams.

This function may be useful for debugging an errant VTK Web script.

	
tangelo.plugin.vtkweb.launch(cfg)

	

	Arguments:	
	cfg.url (string) – A relative or absolute web path referring to a VTK
Web script

	cfg.argstring (string) – A string containing command line arguments to
pass to the launcher script

	cfg.viewport (string) – A CSS selector for the div element to serve
as the graphics viewport for the running process

	cfg.callback (function(key,error)) – A callback that reports the key of
the new process, or the error that occured

Attempts to launch a new VTK Web process by running a Python script found at
cfg.url, passing cfg.argstring as commandline arguments to the launcher
script. If successful, the streaming image output will be sent to the first
DOM element matching the CSS selector given in cfg.viewport, which should
generally be a div element.

After the launch attempt succeeds or fails, callback is invoked, passing
the process key as the first argument, and the error object describing any
errors that occurred as the second (or undefined if there was no error).

	
tangelo.plugin.vtkweb.terminate(key[, callback])

	

	Arguments:	
	key (string) – The key of the process to terminate

	callback (function(key,viewport,error)) – A callback that will be
invoked upon completion of the termination attempt

Attempts to terminate the VTK Web process keyed by key. If there is a
callback, it will be invoked with the key of the terminated process, the
DOM element that was the viewport for that process, and an error (if any).
The key is passed to the callback in case this function is called several
times at once, and you wish to distinguish between the termination of
different processes. The DOM element is passed in case you wish to change
something about the appearance of the element upon termination.

Girder

Girder [http://girder.readthedocs.org/en/latest/] is an open-source,
high-performance data management platform. The Girder plugin mounts a working
instance of Girder in the plugin namespace so that its web client and REST API
become available for use with Tangelo web applications.

When the plugin is loaded, /plugin/girder/girder will serve out the web
frontend to Girder, while /plugin/girder/girder/api/v1 will point to the
REST API documentation, as well as serving as the base URL for all API calls to
Girder.

For more information about how to use Girder, see its documentation [http://girder.readthedocs.org/en/latest/].

Utilities

These plugins do not represent core, substantive functionality, but rather
utility functions that significantly ease the process of creating web
applications.

Config

Many web applications need to change their behavior depending on external
resources or other factors. For instance, if an application makes use of a
Mongo database, a particular deployment of that application may wish to specify
just which database to use. To this end, the Config plugin works to provide a
simple way to configure the runtime behavior of applications, by using a file
containing a JSON object as a key-value store representing the configuration.

The plugin provides a web service at /plugin/config/config that simply
parses a JSON file and returns a JSON object representing the contents of the
file. The API is as follows:

	GET /plugin/config/config/<absolute>/<webpath>/<to>/<json>/<file>[?required]

If the path specified does not point to a static file, or does not contain a
valid JSON object, the call will result in an HTTP 4xx error, with the body
expressing the particular reason for the error in a JSON response. Otherwise,
the service will parse the file and return the configuration object in the
“result” field of the response.

If the file does not exist, then the behavior of the service depends on the
presence of absence of the required parameter: when the call is made with
the parameter, this results in a 404 error; otherwise, the service returns an
empty object. This is meant to express the use case where an application can
use a configuration file if specified, falling back on defaults if there is
none.

The plugin also supplies a JavaScript plugin via /plugin/config/config.js;
like other JavaScript plugin components, it provides a callback-based function
that engages the service on the user’s behalf:

	
tangelo.plugin.config.config(url, [required,]callback)

	

	Arguments:	
	string (url) – An absolute or relative URL to the configuration file

	boolean (required) – A flag indicating whether the configuration file is
required or not (default: false)

	function (callback(config)) – Callback invoked with configuration data
when it becomes available

Engages the config service using the file specified by url, invoking
callback with the configuration when it becomes available. The optional
required flag, if set to true, causes callback to be invoked with
undefined when the configuration file doesn’t exist; when set to
false or not supplied, a non-existent configuration file results in
callback being invoked with {}.

UI

The UI plugin contains some JQuery plugins useful for building a user interface
as part of a web application.

	
$.controlPanel()

	Constructs a control panel drawer from a <div> element. The div can
contain any standard HTML content; when this plugin is invoked on it, it
becomes a sliding drawer with a clickable handle that will disappear into
the bottom of the window when closed.

This plugin can be used to maintain, e.g., visualization settings that
affect what is seen in the main window.

	
$.svgColorLegend(cfg)

	

	Arguments:	
	cfg.legend (string) – CSS selector for SVG group element that will
contain the legend

	cfg.cmap_func (function) – A colormapping function to create color
patches for the legend entries

	cfg.xoffset (integer) – How far, in pixels, to set the legend from the
left edge of the parent SVG element.

	cfg.yoffset (integer) – How far, in pixels, to set the legend from the
top edge of the parent SVG element.

	cfg.categories (string[]) – A list of strings naming the categories
represented in the legend.

	cfg.height_padding (integer) – How much space, in pixels, to place
between legend entries.

	cfg.width_padding (integer) – How much space, in pixels, to place
between a color patch and its associated label

	cfg.text_spacing (integer) – How far, in pixels, to raise text labels
(used to vertically center text within the vertical space occupied by a
color patch).

	cfg.legend_margins (object) – An object with (optional) fields top,
bottom, left, and right, specifying how much space, in pixels, to
leave between the edge of the legend and the entries.

	cfg.clear (bool) – Whether to clear out the previous contents of the
element selected by cfg.legend.

Constructs an SVG color legend in the g element specified by
cfg.legend, mapping colors from the elements of cfg.categories through
the function cfg.cmap_func.

Data Management and Processing

To perform visualization, at some point it is necessary to deal with raw data.
These plugins provide ways of storing, accessing, and tranforming data for use
in your application.

Data

These functions provide transformations of common data formats into a common
format usable by Tangelo plugins.

	
tangelo.plugin.data.tree(spec)

	Converts an array of nodes with ids and child lists into a nested tree structure.
The nested tree format with a standard children attribute is the required format for other Tangelo
functions such as $.dendrogram().

As an example, evaluating:

var tree = tangelo.plugin.data.tree({
 data: [
 {name: "a", childNodes: [{child: "b", child: "c"}]},
 {name: "b", childNodes: [{child: "d"}]},
 {name: "c"},
 {name: "d"}
],
 id: {field: "name"},
 idChild: {field: "child"},
 children: {field: "childNodes"}
});

will return the following nested tree (note that the original childNodes attributes will also remain intact):

{
 name: "a",
 children: [
 {
 name: "b",
 children: [
 {
 name: "d"
 }
]
 },
 {
 name: "c"
 }
]
}

	Arguments:	
	spec.data (object) – The array of nodes.

	spec.id (Accessor) – An accessor for the ID of each node in the tree.

	spec.idChild (Accessor) – An accessor for the ID of the elements of the children array.

	spec.children (Accessor) – An accessor to retrieve the array of children for a node.

	
tangelo.plugin.data.distanceCluster(spec)

	

	Arguments:	
	spec.data (object) – The array of nodes.

	spec.clusterDistance (number) – The radius of each cluster.

	spec.x (Accessor) – An accessor to the \(x\)-coordinate of a node.

	spec.y (Accessor) – An accessor to the \(y\)-coordinate of a node.

	spec.metric (function) – A function that returns the distance between two nodes provided
as arguments.

Groups an array of nodes together into clusters based on distance according to some metric. By
default, the 2D Euclidean distance,
\(d(a, b) = \sqrt{(a\mathord{.}x - b\mathord{.}x)^2 + (a\mathord{.}y - b\mathord{.}y)^2}\),
will be used. One can override the accessors to the \(x\) and \(y\)-coordinates of the nodes
via the spec object. The algorithm supports arbitrary topologies with the presence of a
custom metric. If a custom metric is provided, the x/y accessors are ignored.

For each node, the algorithm searches for a cluster with a distance spec.clusterDistance. If such a
cluster exists, the node is added otherwise a new cluster is created centered at the node. As implemented,
it runs in \(\mathcal{O}(nN)\) time for \(n\) nodes and \(N\) clusters. If the cluster distance
provided is negative, then the algorithm will be skipped and all nodes will be placed in their own cluster group.

The data array itself is mutated so that each node will contain a cluster property set to an array containing
all nodes in the local cluster. For example, with clustering distance 5 the following data array

>>> data
[
 { x: 0, y: 0 },
 { x: 1, y: 0 },
 { x: 10, y: 0 }
]

will become

>>> data
[
 { x: 0, y: 0, cluster: c1 },
 { x: 1, y: 0, cluster: c1 },
 { x: 10, y: 0, cluster: c2 }
]

with

>>> c1
[data[0], data[1]]
>>> c2
[data[2]]

In addition, the function returns an object with properties singlets and clusters containing an array of nodes
in their own cluster and an array of all cluster with more than one node, respectively. As in the previous example,

>>> tangelo.plugin.data.distanceCluster({ data: data, clusterDistance: 5 })
{
 singlets: [data[2]],
 clusters: [[data[0], data[1]]]
}

	
tangelo.plugin.data.smooth(spec)

	

	Arguments:	
	spec.data (object) – An array of data objects.

	spec.x (Accessor) – An accessor to the independent variable.

	spec.y (Accessor) – An accessor to the dependent variable.

	spec.set (function) – A function to set the dependent variable of a data object.

	spec.kernel (string) – A string denoting a predefined kernel or a function computing a custom kernel.

	spec.radius (number) – The radius of the convolution.

	spec.absolute (bool) – Whether the radius is given in absolute coordinates or relative to the data extent.

	spec.sorted (bool) – Whether the data is presorted by independent variable, if not the data will be sorted internally.

	spec.normalize (bool) – Whether or not to normalize the kernel to 1.

Performs 1-D smoothing on a dataset by convolution with a kernel function. The mathematical operation performed is as
follows:

\[\begin{split}y_i \leftarrow \sum_{\left|x_i - x_j\right|<R} K\left(x_i,x_j\right)y_j\end{split}\]

for \(R=\) spec.radius and \(K=\) spec.kernel. Predefined kernels can be specified as strings,
these include:

	box: simple moving average (default),

	gaussian: gaussian with standard deviation spec.radius/3.

The function returns an array of numbers representing the smoothed dependent variables. In addition
if spec.set was given, the input data object is modified as well. The set method is called after
smoothing as follows:

set.call(data, y(data[i]), data[i], i),

and the kernel is called as:

kernel.call(data, x(data[i]), x(data[j]), i, j).

The default options called by

smooth({ data: data })

will perform a simple moving average of the data over a window that
is of radius \(0.05\) times the data extent. A more advanced example

smooth({
 data: data,
 kernel: 'gaussian',
 radius: 3,
 absolute: true,
 sorted: false
})

will sort the input data and perform a gaussian smooth with standard deviation equal to \(1\).

	
tangelo.plugin.data.bin(spec)

	

	Arguments:	
	spec.data (object) – An array of data objects.

	spec.value (Accessor) – An accessor to the value of a data object.

	spec.nBins (integer) – The number of bins to create (default 25).

	spec.min (number) – The minimum bin value (default data minimum).

	spec.max (number) – The maximum bin value (default data maximum).

	spec.bins (object) – User defined bins to aggregate the data into.

Aggregates an array of data objects into a set of bins that can be used to draw a histogram.
The bin objects returned by this method look as follows:

{
 "min": 0,
 "max": 1,
 "count": 5
}

A data object is counted as inside the bin if its value is in the half open interval
[min, max); however for the right most bin, values equal to the maximum
are also included. The default behavior of this method is two construct a new array of
equally spaced bins between data’s minimum value and the data’s maximum value. If
spec.bins is given, then the data is aggregated into these bins rather
than a new set being generated. In this case, the bin objects are mutated rather
a new array being created. In addition, the counters are not reset to 0, so the user must
do so manually if the bins are reused over multiple calls.

Examples:

>>> tangelo.plugin.data.bin({
 data: [{"value": 0}, {"value": 1}, {"value": 2}],
 nBins: 2
 })
[
 {"min": 0, "max": 1, "count": 1},
 {"min": 1, "max": 2, "count": 2}
]

>>> tangelo.plugin.data.bin({
 data: [{"value": 1}, {"value": 3}],
 nBins: 2,
 min: 0,
 max: 4
 })
[
 {"min": 0, "max": 2, "count": 1},
 {"min": 2, "max": 4, "count": 1}
]

>>> tangelo.plugin.data.bin({
 data: [{"value": 1}, {"value": 3}],
 bins: [{"min": 0, "max": 2, "count": 1}, {"min": 2, "max": 10, "count": 0}]
 })
[
 {"min": 0, "max": 2, "count": 2},
 {"min": 2, "max": 10, "count": 1}
]

Mongo

This plugin provides a service that connects to a Mongo database and retrieves
results based on the requested query. The API looks as follows:

	GET /plugin/mongo/mongo/<hostname>/<database>/<collection>?query=<query-string>&limit=<N>&fields=<fields-string>

query-string should be a JSON string describing a query object, while
field-string should be a JSON string describing a list of fields to include in
the results.

The service returns a JSON-encoded list of results from the database.

This plugin is under development, so the interface may change in the future in
order to provide a more complete API.

Visualization

In order to help create vibrant visualization applications, the following
plugins provide various services and widgets to visualize different kinds of
data. These are meant to also offer a guideline on creating new visualization
plugins as new data types and applications arise.

Vis

The Vis plugin provides several JQuery widgets for visualization particular
types of data using basic chart types.

Dendrogram. /plugin/vis/dendrogram.js provides the following JQuery
widget:

	
$.dendrogram(spec)

	

	Arguments:	
	spec.data (object) – A nested tree object where child nodes are stored in the children attribute.

	spec.label (accessor) – The accessor for displaying tree node labels.

	spec.id (accessor) – The accessor for the node ID.

	spec.nodeColor (accessor) – The accessor for the color of the nodes.

	spec.labelSize (accessor) – The accessor for the font size of the labels.

	spec.lineWidth (accessor) – The accessor for the stroke width of the node links.

	spec.lineColor (accessor) – The accessor for the stroke color of the node links.

	spec.nodeSize (accessor) – The accessor for the radius of the nodes.

	spec.labelPosition (accessor) – The accessor for the label position relative to
the node. Valid return values are ‘above’ and ‘below’.

	spec.expanded (accessor) – The accessor to a boolean value that determines whether
the given node is expanded or not.

	spec.lineStyle (string) – The node link style: ‘curved’ or ‘axisAligned’.

	spec.orientation (string) – The graph orientation: ‘vertical’ or ‘horizontal’.

	spec.duration (number) – The transition animation duration.

	spec.on (object) – An object of event handlers. The handler receives the data
element as an argument and the dom node as this. If the function returns
true, the default action is perfomed after the handler, otherwise it is
prevented. Currently, only the ‘click’ event handler is exposed.

Constructs an interactive dendrogram.

	
resize()

	Temporarily turns transitions off and resizes the dendrogram. Should be
called whenever the containing dom element changes size.

Correlation Plot. /plugin/vis/correlationPlot.js provides this widget:

	
$.correlationPlot(spec)

	Constructs a grid of scatter plots that are designed to show the relationship
between different variables or properties in a dataset.

	Arguments:	
	spec.variables (object[]) – An array of functions representing variables or properties
of the dataset. Each of these functions takes a data element as
an argument and returns a number between 0 and 1. In addition, the functions
should have a label attribute whose value is the string used for the
axis labels.

	spec.data (object[]) – An array of data elements that will be plotted.

	spec.color (accessor) – An accessor for the color of each marker.

	spec.full (bool) – Whether to show a full plot layout or not. See the
images below for an example. This value cannot currently be changed after the
creation of the plot.

[image: Full correlation plot layout]
An example of a full correlation plot layout. All variables are shown on the
horizontal and vertical axes.

[image: Half correlation plot layout]
An example of a half correlation plot layout. Only the upper left corner of the
full layout are displayed.

Timeline. /plugin/vis/timeline.js provides this widget:

	
$.timeline(spec)

	Constructs a line plot with time on the x-axis and an arbitrary numerical value on the
y-axis.

	Arguments:	
	spec.data (object[]) – An array of data objects from which the timeline will be derived.

	spec.x (accessor) – An accessor for the time of the data.

	spec.y (accessor) – An accessor for the value of the data.

	spec.transition (number) – The duration of the transition animation in milliseconds, or
false to turn off transitions.

	
xScale()

	

	
yScale()

	These return a d3 linear scale representing the transformation from plot coordinates to
screen pixel coordinates. They make it possible to add custom annotations to
the plot by appending an svg element to the d3.select(‘.plot’) selection at the coordinates
returned by the scales.

[image: An example timeline plot]

Node-link diagram. /plugin/vis/nodelink.js provides this widget:

	
$.nodelink(spec)

	

	Arguments:	
	spec.data (object) – The node-link diagram data

	spec.nodeSize (accessor) – An accessor for the size of each node

	spec.nodeColor (accessor) – An accessor for the colormap category for
each node

	spec.nodeLabel (accessor) – An accessor for each node’s text label

	spec.nodeCharge (accessor) – An access for each node’s simulated
electrostatic charge

	spec.linkSource (accessor) – An accessor to derive the source node of
each link

	spec.linkTarget (accessor) – An accessor to derive the target node of
each link

Constructs an interactive node-link diagram. spec.data is an object with
nodes and links fields, each of which is a list of objects. The
nodes list objects specify the nodes’ visual properties, while the
links list simply specifies the nodes at the end of each link, as
indices into the nodes list.

The accessors spec.linkSource and spec.linkTarget specify how to extract
the source and target information from each link object, while
spec.nodeSize and spec.nodeColor specify how to extract these visual
properties from the node objects, much as in the $.geonodelink()
plugin. spec.nodeCharge specifies the simulated electrostatic
charge on the nodes, for purposes of running the interactive node placement
algorithm (see the D3 documentation [https://github.com/mbostock/d3/wiki/Force-Layout#wiki-charge] for more
information). Finally, spec.nodeLabel is an accessor describing what, if
any, text label should be attached to each node.

Mapping

In many cases, data has a geospatial component, for which some kind of map is a
useful mode of visualization. The mapping plugin provides several options for
visualization geolocation data, via the following JQuery widgets.

Geo dots. To plot location dots on a GeoJSON [http://geojson.org/] map,
/plugin/mapping/geodots.js provides:

	
$.geodots(spec)

	

	Arguments:	
	spec.worldGeometry (string) – A web path to a GeoJSON file

	spec.latitude (accessor) – An accessor for the latitude component

	spec.longitude (accessor) – An accessor for the longitude component

	spec.size (accessor) – An accessor for the size of each plotted circle

	spec.color (accessor) – An accessor for the colormap category for each
plotted circle

Constructs a map from a GeoJSON specification, and
plots colored SVG dots on it according to spec.data.

spec.worldGeometry is a web path referencing a GeoJSON file. spec.data
is an array of JavaScript objects which may encode geodata attributes such
as longitude and latitude, and visualization parameters such as size and
color, while spec.latitude, spec.longitude, and spec.size are accessor
specifications describing how to derive the respective values from the data
objects. spec.color is an accessor deriving categorical values to put
through a color mapping function.

[image: _images/geodots-small.png]
For a demonstration of this plugin, see the geodots example [http://localhost:8080/examples/geodots].

Geo node-link diagram. To plot a node-link diagram on a GeoJSON map,
/plugin/mapping/geonodelink.js provides:

	
$.geonodelink(spec)

	

	Arguments:	
	spec.data (object) – The encoded node-link diagram to plot

	spec.worldGeometry (string) – A web path to a GeoJSON file

	spec.nodeLatitude (accessor) – An accessor for the latitude component of
the nodes

	spec.nodeLongitude (accessor) – An accessor for the longitude component
of the nodes

	spec.nodeSize (accessor) – An accessor for the size of each plotted circle

	spec.nodeColor (accessor) – An accessor for the colormap category for each
plotted circle

	spec.linkSource (accessor) – An accessor to derive the source node of
each link

	spec.linkTarget (accessor) – An accessor to derive the target node of
each link

Constructs a map from a GeoJSON [http://geojson.org/] specification, and
plots a node-link diagram on it according to spec.data. This plugin
produces similar images as $.geodots() does.

spec.worldGeometry is a web path referencing a GeoJSON file.

spec.data is an object containing two fields: nodes and links.
The nodes field contains an array of JavaScript objects of the exact
same structure as the spec.data array passed to $.geodots(),
encoding each node’s location and visual properties.

The links field contains a list of objects, each encoding a single link
by specifying its source and target node as an index into the nodes
array. spec.linkSource and spec.linkTarget are accessors describing how
to derive the source and target values from each of these objects.

The plugin draws a map with nodes plotted at their specified locations, with
the specified links drawn as black lines between the appropriate nodes.

[image: _images/geonodelink-small.png]
For a demonstration of this plugin, see the geonodelink example [http://localhost:8080/examples/geonodelink].

Map dots. To plot dots on a Google Map, /plugin/mapping/mapdots.js
provides:

	
$.mapdots(spec)

	This plugin performs the same job as $.geodots(), but plots the dots
on an interactive Google Map rather than a GeoJSON map. To this end, there
is no need for a “worldGeometry” argument, but the data format and other
arguments remain the same.

[image: _images/mapdots-small.png]
For a demonstration of this plugin, see the mapdots example [http://localhost:8080/examples/mapdots].

	Arguments:	
	spec.data (object[]) – The list of dots to plot

	spec.latitude (accessor) – An accessor for the latitude component

	spec.longitude (accessor) – An accessor for the longitude component

	spec.size (accessor) – An accessor for the size of each plotted circle

	spec.color (accessor) – An accessor for the colormap category for each
plotted circle

GeoJS Map. GeoJS [https://github.com/OpenGeoscience/geojs] is an
open-source visualization-centric mapping library. Tangelo provides some JQuery
plugins to replicate the above mapping use cases with GeoJS.

GeoJS map. To use a GeoJS map instance as a plugin,
/plugin/mapping/geojsMap.js provides:

	
$.geojsMap(spec)

	This plugin provides a low level interface to the GeoJS mapping library.
For a simple example of using this plugin, see the geojsMap example [http://localhost:8080/examples/geojsMap].

	Arguments:	
	spec.zoom (integer) – The initial zoom level of the map.

The widget also contains the following public methods for drawing on the
map.

	
latlng2display(points)

	Converts a point or points in latitude/longitude coordinates into screen pixel
coordinates. This function takes in either a geo.latlng object or
an array of such objects. It always returns an array of objects with
properties:

	x the horizontal pixel coordinate

	y the vertical pixel coordinate

	Arguments:	
	point (geo.latlng) – The world coordinate(s) to be converted

	
display2latlng(points)

	This is the inverse of latlng2display returning an array of
geo.latlng objects.

	Arguments:	
	point (object) – The world coordinate(s) to be converted

	
svg()

	Returns an svg DOM element contained in the geojs map. This
element directly receives mouse events from the browser, so
you can attach event handlers to svg elements as if the map
were not present. You can call stopPropagation to customize
user intaraction and to prevent mouse events from reaching the map.

	
map()

	Returns the geojs map object for advanced customization.

Users of this plugin should attach a handler to the draw event that
recomputes the pixel coordinates and redraws the svg elements. The
plugin will trigger this event whenever the map is panned, zoomed, or
resized.

GeoJS dots. To plot dots on a GeoJS map, /plugin/mapping/geojsdots.js
provides:

	
$.geojsdots(spec)

	

	Arguments:	
	spec.data (object[]) – The list of dots to plot

	spec.latitude (accessor) – An accessor for the latitude component

	spec.longitude (accessor) – An accessor for the longitude component

	spec.size (accessor) – An accessor for the size of each plotted circle

	spec.color (accessor) – An accessor for the colormap category for each
plotted circle

This plugin is similar to $.mapdots(), but plots the dots
using the geojsMap plugin.

For a demonstration of this plugin, see the geojsdots example [http://localhost:8080/examples/geojsdots].

Bokeh

Bokeh [http://bokeh.pydata.org/] is a Python plotting library that can
display interactive graphics on the web. Tangelo provides seamless integration
with Bokeh via the Bokeh plugin. This plugin provides a Python decorator for
use with web service functions that invoke the Bokeh module to construct a
visualization, and a JavaScript function to smoothly transition the results of
such a service into a web application.

	
@tangelo.plugin.bokeh.bokeh(plot_object)

	

	Parameters:	plot_object (PlotObject) – A Bokeh PlotObject instance representing
the plot to be displayed

	Return type:	dict – A Python dict containing a div and a script for embedded
the plot in a webpage

This decorator transforms the output of a web service that computes a Bokeh
plot to a form that can be handled by the browser. It works by converting
the plot object into the web components necessary to render it. When the
decorator is used, an ajax call to the service results in a dict of two
fields: script and div. If the div is embedded in the DOM, and the
script after it so that it executes, the plot will appear in the page.

Rather than perform the task of setting up the div and script manually, the
following JQuery widget, found in /plugin/bokeh/bokeh.js, can help:

	
$.bokeh(cfg)

	

	Arguments:	
	string (cfg.url) – The URL of a web service returning a PlotObject

When invoked on a DOM element, the URL is retrieved; the expected data
should be in the format described by
tangelo.plugin.bokeh.bokeh() above. The DOM element then
receives both the div and script content returned by the service, causing
the interactive Bokeh plot to begin running in the target DOM element.

An example application can be found at
/plugin/bokeh/examples/scatter/index.html.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Building a Tangelo Web Application from Scratch

This tutorial will go through the steps of building a working, albeit simple,
Tangelo application from the ground up. Most Tangelo applications consist of
(at least) three parts: an HTML document presenting the form of the application
as a web page, a JavaScript file to drive dynamic content and behavior within
the web page, and a Python service to perform serverside processing. The
tutorial application will have one of each to demonstrate how they will fit
together.

String Reverser

The tutorial application will be a string reverser. The user will see a form
where a word can be entered, and a button to submit the word. The word will
then make a trip to the server, where it will be reversed and returned to the
client. The reversed word will then be displayed in the web page.

Preparing the Stage

Tangelo will need to be running in order for the application to work. The
quickstart instructions will be sufficient (see Quick Start):

tangelo

This should launch Tangelo on localhost, port 8080 (also known as
http://localhost:8080/).

First we need a place to put the files for the application. We will serve the
application out of a specialized directory to contain several Tangelo
applications. It is a good practice to house each application in its own
subdirectory - this keeps things organized, and allows for easy development of
web applications in source control systems such as GitHub:

cd ~
mkdir tangelo_apps
cd tangelo_apps
mkdir reverser

Next, we need to serve this directory to the web. We’d also like to be able to
see the directory contents and Python source as we edit our application, since
we’re in “developer mode”:

tangelo --list-dir --show-py

By default, Tangelo serves files from the current directory. It would also be
possible to use the web root option by adding --root ~/tangelo_apps to make the
desired root directory explicit.

Visiting http://localhost:8080/reverser in a web browser should at this point
show you a directory listing of no entries. Let’s fix that by creating some
content.

HTML

The first step is to create a web page. In a text editor, open a file called
index.html and copy in the following:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19

	<!DOCTYPE html>
<title>Reverser</title>

<!-- Boilerplate JavaScript -->
<script src=http://code.jquery.com/jquery-1.11.0.min.js></script>
<script src=/js/tangelo.js></script>

<!-- The app's JavaScript -->
<script src=myapp.js></script>

<!-- A form to submit the text -->
<h2>Reverser</h2>
<div class=form-inline>
 <input id=text type=text>
 <button id=go class="btn btn-class">Go
</div>

<!-- A place to show the output -->
<div id=output></div>

This is a very simple page, containing a text field (with ID text), a button
(ID go), and an empty div element (ID output). Feel free to reload the
page in your browser to see if everything worked properly.

Next we need to attach some behaviors to these elements.

JavaScript

We want to be able to read the text from the input element, send it to the
server, and do something with the result. We would like to do this whenever the
“Go” button is clicked. The JavaScript to accomplish this follows - place this
in a file named myapp.js (to reflect the script tag in line 9 of
index.html):

	1
2
3
4
5
6
7
8

	$(function () {
 $("#go").click(function () {
 var text = $("#text").val();
 $.getJSON("myservice?text=" + encodeURIComponent(text), function (data) {
 $("#output").text(data.reversed);
 });
 });
});

Several things are happening in this short bit of code, so let’s examine them
one by one. Line 1 simply makes use of the jQuery $() function, which takes
a single argument: a function to invoke with no arguments when the page content
is loaded and ready.

Line 2 uses the “CSS selector” variant of the $() function to select an
element by ID - in this case, the “go” button - and attach a behavior to its
“click” callback.

Line 3 - the first line of the function executed on button click - causes the
contents of of the text input field to be read out into the variable text.

Line 4 uses the jQuery convenience function $.getJSON() to initiate an ajax
request to the URL http://localhost:8080/reverser/myservice, passing in the text
field contents as a query argument. When the server has a response prepared,
the function passed as the second argument to $.getJSON() will be called,
with the response as the argument.

Line 5 makes use of this response data to place some text in the blank div.
Because $.getJSON() converts the server response to a JSON object
automatically, we can simply get the reversed word we are looking for in
data.reversed. The output div in the webpage should now be displaying the
reversed word.

The final component of this application is the server side processing itself,
the service named myservice.

Python

The Python web service will perform a reversal of its input. The following
Python code accomplishes this (save it in a file named myservice.py, again,
to reflect the usage of that name in the myapp.js above):

def run(text=""):
 return {"reversed": text[::-1]}

This short Python function uses a terse array idiom to reverse the order of the
letters in a string. Note that a string goes into this function from the client
(i.e., the call to $.getJSON is line 4 of myapp.js), and a Python dict
comes out. The dict is automatically converted to JSON-encoded text, which the
$.getJSON() function automatically converts to a JavaScript object, which is
finally passed to the anonymous function on line 4 of myapp.js.

Tying it All Together

The application is now complete. Once more refresh the page at
http://localhost:8080/reverser/, type in your favorite word, and click the “Go”
button. If all goes well, you should see your favorite word, reversed, below
the text input field!

Discussion

Of course, we did not need to bring the server into this particular example,
since JavaScript is perfectly suited to reversing words should the need arise.
However, this example was meant to demonstrate how the three pieces - content,
dynamic clientside behavior, and serverside processing - come together to
implement a full, working web application.

Now imagine that instead of reversing the word, you wanted to use the word as a
search index in a database, or to direct the construction of a complex object,
or to kick off a large, parallel processing job on a computation engine, or that
you simply want to use some Python library that has no equivalent in the
JavaScript world. Each of these cases represents some action that is difficult
or impossible to achieve using clientside JavaScript. By writing Tangelo web
services you can enrich your application by bringing in the versatility and
power of Python and its libraries.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Driving a Visualization with SQLAlchemy

This tutorial demonstrates how you might set up a SQL database to serve data to
a visualization application using Tangelo. This example demonstrates how an
application-specific approach to building and using a database can provide
flexibility and adaptability for your Tangelo application.

In this tutorial we will

	obtain Star Trek: The Next Generation episode data

	create an SQLite database from it

	establish some object-relational mapping (ORM) classes using SQLAlchemy

	visualize the data using Vega [http://trifacta.github.io/vega]

To begin this tutorial, create a fresh directory somewhere where we can build
a new project:

mkdir tng
cd tng

Here, we will create a database, along with appropriate ORM infrastructure;
write some web services to be used as runtime data sources to pull requested
data from the database; and a simple web frontend made from HTML and JavaScript,
using the Vega visualization library.

For convenience, you can download and unpack a ZIP archive of the entire web
application as well: tng.zip. However, downloading and
inspecting the files as we go, or writing them by hand from the listings below,
may encourage a deeper understanding of what’s going on.

Getting the Data

The episode data, gleaned from Memory Alpha [http://memory-alpha.org] by
hand, is in these two CSV files:

	episodes.csv

	people.csv

If you take a look in these files, you’ll see some basic data about episodes of
Star Trek: The Next Generation. episodes.csv contains one row per episode,
indicating its overall episode number, season/episode, title, airdate, a link to
the associated Memory Alpha article, and numeric indices into people.csv to
indicate who wrote each teleplay, who developed each story, and who directed
each episode.

Creating the Database

SQLAlchemy is a Python library that provides a programmatic API for creating,
updating, and accessing SQL databases. It includes an object-relational
mapping (ORM) component, meaning it provides facilities for writing Python
classes that transparently maintain a connection to the database, changing it as
the object is updated, etc.

To install SQLAlchemy, you can use the Python package manager pip as
follows:

pip install sqlalchemy==0.9.8

(The version specifier may not be necessary, but this tutorial was designed
using SQLAlchemy 0.9.8.)

Establishing ORM Classes

The first step in this visualization project is to establish our data model by
writing some ORM classes, then using those classes to read in the CSV files from
above and flow them into an SQLite database. The file startrek.py has what we need. Let’s analyze it, section by
section.

First, we need some support from SQLAlchemy:

	1
2
3
4
5
6
7
8

	from sqlalchemy import create_engine
engine = create_engine("sqlite:///tngeps.db", echo=True, convert_unicode=True)

from sqlalchemy.ext.declarative import declarative_base
Base = declarative_base()

from sqlalchemy.orm import sessionmaker
DBSession = sessionmaker(bind=engine)

create_engine simply gives us a handle to a database - this one will exist
on disk, in the file tngeps.db. The echo keyword argument controls
whether the behind-the-scenes translation to SQL commands will appear on the
output when changes occur. For now it may be a good idea to leave this set to
True for the sake of education.

declarative_base is a base class that provides the foundation for creating
ORM classes to model our data, while the sessionmaker function creates a
function that can be used to establish a connection to the database.

Next we need to import some types for the columns appearing in our data:

	11
12
13
14

	from sqlalchemy import Column
from sqlalchemy import Date
from sqlalchemy import Integer
from sqlalchemy import String

Date and String will be used to store actual data values, such as
airdates, and names of people and episodes. Integer is useful as a unique
ID field for the various objects we will be storing.

Now, we finally get to the data modeling:

	17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

	from sqlalchemy import Table
from sqlalchemy import ForeignKey
from sqlalchemy.orm import relationship

episode_teleplays = Table("episode_teleplays", Base.metadata,
 Column("episode_id", Integer, ForeignKey("episodes.id")),
 Column("teleplay_id", Integer, ForeignKey("people.id")))

episode_stories = Table("episode_stories", Base.metadata,
 Column("episode_id", Integer, ForeignKey("episodes.id")),
 Column("story_id", Integer, ForeignKey("people.id")))

episode_directors = Table("episode_directors", Base.metadata,
 Column("episode_id", Integer, ForeignKey("episodes.id")),
 Column("director_id", Integer, ForeignKey("people.id")))

class Episode(Base):
 __tablename__ = "episodes"

 id = Column(Integer, primary_key=True)
 season = Column(Integer)
 episode = Column(Integer)
 title = Column(String)
 airdate = Column(Date)
 teleplay = relationship("Person", secondary=episode_teleplays, backref="teleplays")
 story = relationship("Person", secondary=episode_stories, backref="stories")
 director = relationship("Person", secondary=episode_directors, backref="directors")
 stardate = Column(String)
 url = Column(String)

 def __repr__(self):
 return (u"Episode('%s')" % (self.title)).encode("utf-8")

class Person(Base):
 __tablename__ = "people"

 id = Column(Integer, primary_key=True)
 name = Column(String)

 def __repr__(self):
 return (u"Person('%s')" % (self.name)).encode("utf-8")

First take a look at the classes Episode and Person. These make use of
SQLAlchemy’s declarative_base to establish classes whose structure reflect
the semantics of a table in the database. The __tablename__ attribute gives
the name of the associated table, while the other named attributes give the
names of the columns appearing in it, along with the data type.

Note that the teleplay, story, and director attributes of
Episode are a bit more complex than the others. These are fields that
cross-reference into the “people” table: each Episode may have
multiple writers and story developers [1], each of which is a Person. Of
course, a particular Person may also be associated with multiple Episodes, so a
special “many-to-many” relationship exists between Episode and Person
when it comes to the teleplay, story, and director columns. These
are expressed in the “association table” declarations appearing in lines 25, 29,
and 33. Such tables simply contain one row for each unique episode-person
connection; they are referenced in the appropriate column declaration (lines
46-48) to implement the many-to-many relation.

The effect of these ORM classes is that when, e.g., an Episode object is
queried from the database, its teleplay property will contain a list of the
correct Person objects, having been reconstructed by examining the
“episode_teleplays” table in the database.

Creating the Database

Now it just remains to use the ORM infrastructure to drive the parsing of the
raw data and creation of the actual database. The file build-db.py contains a Python script to do just this. Let’s
examine this script, section by section. First, as always, we need to import
some standard modules:

	1
2
3

	import csv
import datetime
import sys

Next, we need some stuff from startrek.py:

	5
6
7
8
9

	from startrek import Base
from startrek import engine
from startrek import DBSession
from startrek import Episode
from startrek import Person

Now, let’s go ahead and slurp in the raw data from the CSV files:

	12
13
14
15
16
17
18
19

	try:
 with open("episodes.csv") as episodes_f:
 with open("people.csv") as people_f:
 episodes = list(csv.reader(episodes_f))
 people = list(csv.reader(people_f))
except IOError as e:
 print >>sys.stderr, "error: %s" % (e)
 sys.exit(1)

We now have two lists, episodes and people, containing the row data.
Before we continue, we need to “activate” the ORM classes, and connect to the
database:

	22
23

	Base.metadata.create_all(engine)
session = DBSession()

Now let’s add the rows from people.csv to the database:

	26
27
28
29
30
31
32
33

	people_rec = {}
for i, name in people[1:]:
 i = int(i)

 p = Person(id=i, name=name.decode("utf-8"))

 people_rec[i] = p
 session.add(p)

This loop simply runs through the rows of the people data (excluding the first
“row,” which is just the header descriptors), saving each in a table indexed by
ID: line 30 creates a Person object, while line 33 causes a row in the
appropriate tables to be created in the database (using ORM magic). We want the
saved table so we can reference Person objects later.

Now that we have all the people loaded up, we can put the episode data itself
into the database:

	37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58

	for i, season, ep, title, airdate, teleplay, story, director, stardate, url in episodes[1:]:
 # Extract the fields that exist more or less as is.
 i = int(i)
 season = int(season)
 ep = int(ep)

 # Parse the (American-style) dates from the airdate field, creating a Python
 # datetime object.
 month, day, year = airdate.split("/")
 month = "%02d" % (int(month))
 day = "%02d" % (int(day))
 airdate = datetime.datetime.strptime("%s/%s/%s" % (month, day, year), "%m/%d/%Y")

 # Create lists of writers, story developers, and directors from the
 # comma-separated people ids in these fields.
 teleplay = map(lambda writer: people_rec[int(writer)], teleplay.split(","))
 story = map(lambda writer: people_rec[int(writer)], story.split(","))
 director = map(lambda writer: people_rec[int(writer)], director.split(","))

 # Construct an Episode object, and add it to the live session.
 ep = Episode(id=int(i), season=season, episode=ep, title=title.decode("utf-8"), airdate=airdate, stardate=stardate, teleplay=teleplay, story=story, director=director, url=url)
 session.add(ep)

This is a loop running through the rows of the episode data, pulling out the
various fields, possibly converting them to appropriate Python types. The
teleplay, story, and director columns in particular are converted to
lists of Person objects (by looking up the appropriate Person in the
table we created earlier). Line 58 adds the newly created Person to the
database. The many-to-many relationships we established earlier will be invoked
here, updating the association tables according to the Person objects
present in each Episode object’s fields.

Finally, we must commit the accumulated database operations:

	61
62

	session.commit()
sys.exit(0)

If you have downloaded the data files, startrek.py, and build-db.py all to
the same directory, you should be able to build the database with this command:

python build-db.py

Because we directed the database engine to echo its activity to the output, you
should see SQL commands fly by as they are generated by the various calls to
session.add(). This should result in a new file being created, tngeps.db.
This is an SQLite database file, and should contain all of the data and
relationships established in the raw data files.

Writing Data Services

Now we have a database and some ORM classes to query it. The next step is to
write a web service that can pull out some data that we need. We are going to
use Vega [http://trifacta.github.io/vega] to create some basic charts of the
episode data, and Vega visualizations rely on data presented as a list of JSON
objects, one per data point. As a starting point for a visualization project on
Star Trek episode data, let’s tally up the number of episodes written or
developed by each person in the people table, and use Vega to render a bar
chart. To do so, we need to query the database and count how many episodes each
person is associated to. We can use the ORM classes to accomplish this. Let’s
analyze the file writers.py to see how. First,
module imports:

	1
2
3
4
5

	import json
import tangelo

from startrek import DBSession
from startrek import Episode

Now, the meat of the service, the run() function:

	8
9

	@tangelo.types(sort=json.loads)
def run(sort=False):

The function signature says that the sort parameter, if present, should be a
query argument in JSON-form, defaulting to False. We will use this
parameter to sort the list of episode writers by the number of episodes worked
on (since this may be an interesting thing to look into). Next we need a
connection to the database:

	10

	 session = DBSession()

and some logic to aggregate writers’ episode counts ():

	12
13
14
15
16
17
18
19
20
21
22

	 count = {}
 episodes = session.query(Episode)
 for ep in episodes:
 seen = set()
 for writer in ep.teleplay:
 count[writer] = count.get(writer, 0) + 1
 seen.add(writer)

 for writer in ep.story:
 if writer not in seen:
 count[writer] = count.get(writer, 0) + 1

This retrieves a list of Episode objects from the database (line 13), then
loops through them, incrementing a count of writers in a dictionary (being
careful not to double count writers listed under both teleplay and story for
a given episode).

Now we convert the dictionary of collected counts into a list of objects
suitable for a Vega visualization:

	24
25
26
27
28

	 results = [{"name": r.name, "count": count[r]} for r in sorted(count.keys(), key=lambda x: x.id)]
 if sort:
 results.sort(key=lambda x: x["count"], reverse=True)

 return results

This line converts each Person object into a Python dictionary after sorting
by the numeric ID (which, because of how the data was collected, roughly
corresponds to the order of first involvement in writing for Star Trek: The
Next Generation). If the sort parameter was True, then the results
will be sorted by descending episode count (so that the most frequent writers
will appear first, etc.). And finally, of course, the function returns this
list of results.

With this file written we have the start of a web application. To see how
things stand, you can launch Tangelo to serve this directory to the web,

tangelo --root .

and then visit http://localhost:8080/writers?sort=false to see the list of JSON
objects that results.

Designing a Web Frontend

The final piece of the application is a web frontend. Ours will be relatively
simple. Here is the webpage itself, in index.html:

	1
2
3
4
5
6
7
8

	<!doctype html>
<title>Star Trek: The Next Generation Episode Writers</title>

<script src=http://trifacta.github.io/vega/lib/d3.v3.min.js></script>
<script src=http://trifacta.github.io/vega/vega.js></script>
<script src=index.js></script>

<div id=chart></div>

This is a very simple HTML file with a div element (line 9), in which we
will place a Vega visualization.

Next, we have some simple JavaScript to go along with this HTML file, in
index.js:

	1
2
3
4
5
6
7
8
9

	window.onload = function () {
 d3.json("barchart.json", function (spec) {
 vg.parse.spec(spec, function (chart) {
 chart({
 el: "#chart"
 }).update();
 });
 });
};

This simply parses a Vega visualization specification into a JavaScript object,
which it then passes to vg.parse.spec(), which in turn renders it into the
#chart element of the web page [2].

The final piece of the puzzle is the Vega specification itself, in
barchart.json.:

	 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

	{
 "name": "barchart",
 "width": 4000,
 "height": 500,
 "data": [
 {
 "name": "table",
 "url": "writers?sort=true"
 }
],
 "scales": [
 {
 "name": "y",
 "type": "linear",
 "range": "height",
 "domain": {
 "data": "table",
 "field": "data.count"
 }
 },
 {
 "name": "x",
 "type": "ordinal",
 "range": "width",
 "domain": {
 "data": "table",
 "field": "data.name"
 }
 }
],
 "axes": [
 {
 "type": "x",
 "scale": "x",
 "values": []
 },
 {
 "type": "y",
 "scale": "y",
 "grid": false
 }
],
 "marks": [
 {
 "type": "rect",
 "from": {
 "data": "table"
 },
 "properties": {
 "enter": {
 "x": {
 "scale": "x",
 "field": "data.name",
 "offset": -1
 },
 "width": {
 "scale": "x",
 "band": true,
 "offset": -1
 },
 "y": {
 "scale": "y",
 "field": "data.count"
 },
 "y2": {
 "scale": "y",
 "value": 0},
 "fill": {
 "value": "steelblue"
 }
 },
 "update": {
 "fill": {
 "value": "steelblue"
 }
 },
 "hover": {
 "fill": {
 "value": "firebrick"
 }
 }
 }
 },
 {
 "type": "text",
 "from": {
 "data": "table"
 },
 "properties": {
 "enter": {
 "x": {
 "scale": "x",
 "field": "data.name"
 },
 "dx": {
 "value": 5
 },
 "y": {
 "value": 505
 },
 "angle": {
 "value": 45
 },
 "fill": {
 "value": "black"
 },
 "text": {
 "field": "data.name"
 },
 "font": {
 "value": "Helvetica Neue"
 },
 "fontSize": {
 "value": 15
 }
 }
 }
 }
]
}

This specification describes a data-driven bar chart. You may wish to
experiment with this file (for example, changing the colors used, or the width
and height of the visualization, or by setting the sort parameter in the
url property to false), but as-is, the specification will deliver a bar
chart of Star Trek: The Next Generation writers, ordered by most episodes
worked on.

Putting It All Together

Your web application is complete! If Tangelo is not running, start it with

tangelo --root .

and then visit http://localhost:8080. You should see a bar chart appear, in
which the trekkies out there will surely recognize some of the names.

In summary, we performed the following actions to write a Tangelo application
driven by a database:

	Got some data we wanted to visualize.

	Developed some ORM infrastructure to model the data, using SQLAlchemy.

	Imported the data into a new database, using the data and the ORM models.

	Developed a web service using SQLAlchemy to retrieve some of the data and
then shape it into a form we needed for Vega.

	Developed a Vega specification that can take the web service results and
render it as a bar chart.

	Developed a simple web application to give Vega a place to work and display
its results.

Of course, this is just a simple example of what you can do. With Python’s
power, flexibility, and interfaces to many kinds of databases and visualization
systems, you can develop a Tangelo application that is suited to whatever
problem you happen to be working on.

Footnotes

	[1]	And even directors, though this only happened in one episode when the
original director was fired and a replacement brought on.

	[2]	For more information on how Vega works, and what you can do with it,
see the Vega website at http://trifacta.github.io/vega.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Fiddling with the Bundled Examples

The previous tutorials have shown how to develop various types of Tangelo
applications, but you might also want to simply fiddle around with the example
applications that come bundled with Tangelo. Since the bundled examples are
treated in a somewhat special manner by Tangelo, this tutorial explains how you
can make a copy of the example applications, set them up with a Tangelo
configuration file, and then experiment and see the results yourself.

The examples can be viewed at http://localhost:8080 by launching Tangelo in
example mode:

tangelo --examples

The index page contains links to different examples, each of which is served as
the web content of one plugin or another. For example,
http://localhost:8080/plugin/vis/examples/barchart/ serves an example of the
barchart that is part of the vis plugin.

The Example Web Applications

The example web applications are bundled in the Tangelo Python package with the
following directory structure:

tangelo.ico
web/
 ...
plugin/
 ...

The file tangelo.ico is served by Tangelo statically as the default favicon,
while the web directory contains the example site’s front page (including
the Tangelo Sunrise, and the menu of links to the individual examples). The
examples themselves are contained within the plugin directory. As an
example, the directory for the Bokeh plugin looks like this:

plugin/
 bokeh/
 requirements.txt
 python/
 __init__.py
 web/
 bokeh.js
 examples/
 iris/
 index.html
 iris.py

This plugin contains a Python component and a clientside component, as well as
the Iris example application, which demonstrates how the pieces fit together
(for information about how plugins work, see Tangelo Plugins). The web
application content in the iris directory would be a good place to play
around to discover for yourself how this plugin works.

Therefore, we will want to make a private copy of the web and plugin
directories in order to experiment with the contents of the example web
applications.

Making a Copy

To actually play with the examples, we’d like to set up our own sandbox, copy
these materials into it, configure Tangelo to run with the appropriate plugins,
and finally serve our own version of the example applications.

Step 1: Create a Sandbox

The examples are bundled as package data with the Tangelo Python package,
meaning they will be found within the tangelo/pkgdata subdirectory of the
site-packages directory of the Python installation that contains Tangelo.
On a typical Linux Python installation, this directory might be
/usr/lib/python2.7/site-packages/tangelo/pkgdata. Because different Python
setups may behave differently with respect to where such files are kept, Tangelo
includes a program tangelo-pkgdata that simply reports the full path to the
pkgdata directory. Using this program, the following sequence of shell
commands will create an area where we can safely modify and otherwise experiment
with the examples:

$ cd ~
$ mkdir tangelo-examples
$ cd tangelo-examples
$ cp -r `tangelo-pkgdata` .

(Enclosing a command in backticks causes the shell to run the enclosed program
and substitute its output in the original command. You can also run
tangelo-pkgdata manually, inspect the output, and copy it into your own
manual shell command as well.)

Step 2: Configure the Plugins

We will want to have Tangelo serve the web directory, while loading the
appropriate plugins from the plugin directory. For the latter, we will need
a configuration file to declare the plugins:

This very simple configuration simply names the plugins we need, together with
relative paths stating where the plugins can be found. Create a file
config.yaml (in the tangelo-examples directory) and copy the
configuration into it.

Step 3: Launch Tangelo

Now that we have web materials, plugins, and a configuration, we just need to
start Tangelo:

$ tangelo --root web --config config.yaml

Tangelo should begin serving the example site at http://localhost:8080 (if you
get an error about port 8080 not being free, try again with the --port
option to select a different port).

Step 4: Fiddle!

Now you can go into the various web subdirectories of the plugin paths, make
changes, and observe them live. If you find things don’t update as expected,
you can try restarting the server (certain features of plugins can only be
instantiated when Tangelo first starts up).

Try changing the data values in the mapping plugin examples, or changing how
some of the web services retrieve, process, or format their output data.
With a safe, hands-on approach, you can learn a lot about how Tangelo operates.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Coding Style Guidelines

This section concerns written code format in Tangelo, with the goal of clear,
readable, and consistent code. The build process uses jshint and jscs
to catch possible code and style errors. This document describes some of the
coding practices employed to help make Tangelo more reliable.

Code Style Rules

Indentation

Indentation is used to provide visual cues about the syntactic scope
containing particular line of code. Good indentation practice
dramaticaly improves code readability.

Four-space indentation. Each additional indentation level shall be
exactly four spaces.

Indentation policy. The following structures shall require
incrementing the indentation level:

Statements belonging to any block.

Chained function calls:

obj.call1()
 .call2()
 .call3();

Properties in a literal object:

obj = {
 prop1: 10,
 prop2: 3
};

Curly bracket placement. The left curly bracket that introduces a
new indentation level shall appear at the end of the line that uses it;
the right curly bracket that delimits the indented statements shall
appear on the line following the last indented statement, at the
decremented indentation:

[some statement...] {
 ^
 .
 .
 .
}
^

Naming

Use camelCase for visualization, property, method, and local variable names.

Curly brackets

JavaScript uses curly brackets to delimit blocks. Blocks are required by
the language when functions are defined. They are also required for
executing more than one statement within control flow constructs such as
if and while. While the option exists not to use curly
brackets for a single statement in such cases, that practice can lead to
errors (when, e.g., a new feature requires the single statement to be
replaced by several statements).

Always use blocks in control flow statements. Every use of control
flow operators (if, while, do) shall use curly brackets for
its associated statement block, even if only a single statement appears
therein.

Space placement

Parentheses are required in several places in JavaScript. Proper space
placement can help make such constructs more readable.

Keyword-condition separation. A single space shall appear in the
following situations.

Between a control-flow operator and its parenthesized condition:

if (condition...) {
 ^

Between a parenthesized condition and its following curly bracket:

if (condition...) {
 ^

Between a function argument list and its following curly bracket:

function foobar(x, y, z) {
 ^

Between the function keyword and the argument list, in anonymous
functions:

f = function (a, b) {
 ^

After every comma.

On either side of a binary operator:

x = 3 + 4;
 ^ ^

Extraneous spaces. The last character in any given line shall not be
a space.

Blank lines. Blank lines should be used to set apart sequences of
statements that logically belong together.

Chained if/else-if/else statements

A common programming pattern is to test a sequence of conditions,
selecting a single action to take when one of them is satisfied. In
JavaScript, this is accomplished with an if block followed by a
number of else if blocks, followed by an else block.
try catch blocks have a similar syntax.

Single line else if, else, and catch. The else if,
else, and catch keyword phrases shall appear on a single line,
with a right curly bracket on their left and a left curly bracket on
their right:

if (condition) {
 action();
} else if {
 other_action();
} else {
 default_action();
}

new Array and new Object

The new keyword is problematic in JavaScript. If it is omitted by
mistake, the code will run without error, but will not do the right
thing. Furthermore, built in constructors like Array and Object
can be reimplemented by other code.

Use [] and {}. All construction of arrays and objects shall
use the literal [] and {} syntax. The sequence of statements
x = [];, then x.length = N; shall replace new Array(N).

Code structure

This section concerns the structure of functions and modules, how
constructs at a larger scale than individual statements and expressions
should be handled.

JSLint directives

JSLint reads two special comments appearing at the top of files it is
working on. The first appears in the following form:

/*jslint browser: true */

and specifies options to JSLint. Because Tangelo is a web project,
every JavaScript file should have the comment that appears above as the
first line. The other recognized directive in the global name list:

/*globals d3, $, FileReader */

This directive prevents JSLint from complaining that the listed names
are global variables, or undefined. It is meant for valid names, such as
standard library objects or linked libraries used in the file.

Lexical scopes

JavaScript has only two scope levels: global and function. In
particular, blocks following, e.g., for and if statements do
not introduce an inner scope. Despite this fact, JavaScript allows for
variables to be declared within such blocks, causing seasoned C and C++
programmers to assume something false about the lifetime of such
variables.

Single var declaration. Every function shall contain a single
var declaration as its first statement, which shall list every local
variable used by that function, listed one per line.

function foobar(){
 var width,
 height,
 i;
 .
 .
 .
}

This declaration statement shall not include any initializers (this
promotes clearer coding, as the “initializers” can be moved below the
declaration, and each one can retain its own comment to explain the
initialization).

Global variables. Global variables shall not be used, unless as
a namespace-like container for variables and names that would otherwise
have to be global. When such namespace-like containers are used in a
JavaScript file, they shall appear in the JSLint global name specifier.

Strict Mode

JavaScript has a “strict mode” that disallows certain actions
technically allowed by the language. These are such things as using
variables before they are defined, etc. It can be enabled by including
"use strict"; as the first statement in any function:

function foobaz() {
 "use strict";

 .
 .
 .
}

Strict mode functions. All functions shall be written to use strict
mode.

A note on try...catch blocks

JSLint complains if the exception name bound to a catch block is the
same as the exception name bound to a previous catch block. This is
due to an ambiguity in the ECMAScript standard regarding the semantics
of try...catch blocks. Because using a unique exception name in each
catch block just to avoid errors from JSLint seems to introduce just
as much confusion as it avoids, the current practice is not to use
unique exception names for each catch block.

Use e for exception name. catch blocks may all use the name
e for the bound exception, to aid in scanning over similar messages
in the JSLint output. This rule is subject to change in the future.

A note on “eval is evil”

JSLint claims that eval is evil. However, it is actually
dangerous, and not evil. Accordingly, eval should be kept away
from most JavaScript code. However, to take one example, one of
Tangelo’s main dependencies, Vega, makes use of compiler technology that generates
JavaScript code. evaling this code is reasonable and necessary in
this instance.

eval is misunderstood. If a JavaScript file needs to make use of
eval, it shall insert an evil: true directive into the JSLint
options list. All other JavaScript files shall not make use of
eval.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	Tangelo Web Framework None documentation

Creating Tangelo Releases

Tangelo is developed on GitHub using the Git Flow [http://nvie.com/posts/a-successful-git-branching-model/] work style. The
main development branch is named develop, while all commits on master
correspond to tagged releases. Topic, hotfix, and release branches are all used
as described in the discussion in the link above.

This page documents the careful steps to take in creating a new release, meaning
that a new commit is made on master, and a package is uploaded to the Python
Package Index.

Release Procedure

Suppose for the sake of example that the last release’s version number is 1.1.
The following procedure will produce a new release of Tangelo:

1. Merge all topic branches to develop. Be sure that develop contains
the code from which you wish to create the new release.

2. Create a release branch. A release branch needs to be created off of
develop:

git checkout -b release-1.2 develop

Note that the version number mentioned in the branch name is the version number
of the release being created.

3. Bump the version number. Edit the file package.json in the top level
of the repository, updating the version number to 1.2.0. Be sure to use the
major.minor.patch format.

Also edit js/tests/tangelo-version.js, tests/tangelo-version.py, and
tests/commandline-version.py to bump the version numbers there manually (in
each file, the expected version string is contained in a variable named
expected). This is done by hand to ensure that the version tests are
deployed correctly for step 6 below.

Finally, edit the file CHANGELOG.md in the root of the codebase. Change the
[Unreleased] - [unreleased] line near the top of the file to something like
[1.2.0] - 2014-12-18. Look over the specified changes. Edit these if
necessary, making sure that the list is up to date.

4. Build Tangelo. Issue the following commands to create a fresh build of
Tangelo from scratch:

grunt clean:all
npm install
grunt

This should result in a virtual environment with a newly built Tangelo. Bumping
the version number in the previous step means that Grunt should have also
updated the version string in all parts of the code that require it.

5. Commit. Make a commit on the release branch containing the version number
update:

git commit -am "Bumping version number for release"

then visit http://localhost:8080/plugin/tangelo/version to verify the version
number there. Finally, load up any of the examples that uses tangelo.js
(e.g., http://localhost:8080/plugin/vis/examples/barchart), and, in the console,
issue tangelo.version() to verify the clientside version number as well.

6. Run the tests.

Issue this command to verify that the client and server side tests all pass:

grunt test

If any tests fail, fix the root causes, making commits and retesting as you go.
In particular, the tests regarding Tangelo version numbers will fail if the
version number bump or build process did not work properly for any reason.

7. Merge into master. Switch to the master branch and merge the release
branch into it:

git checkout master
git merge --no-ff release-1.2

Do not omit the --no-ff flag! You can use the default merge commit message.

8. Tag the release. Create a tag for the release as follows:

git tag -a v1.2

Use a commit message like “Release v1.2”. Be sure to push the tag so it becomes
visible to GitHub:

git push --tags

9. Upload the package to PyPI. Unpack the built package file, and then use
the upload option to setup.py:

cd sdist
tar xzvf tangelo-1.2.0.tar.gz
../venv/bin/python setup.py sdist upload

10. Merge into develop. The changes made on the release branch must be
merged back into develop as well, so that development may continue there:

git checkout develop
git merge release-1.2

This is one of the few times you should not use the --no-ff flag. We want
both master and develop to thread through the release branch to simplify
the graph view of the release. After the next step, this leaves both master
and develop one commit ahead of the same, prepared release branch point.

11. Bump the version number again. The version number on the develop
branch needs to be changed again, to add a -dev suffix. In our example, the
version number will now be 1.2.0-dev. This entails editing package.json
once more, as well as js/tests/tangelo-version.js,
tests/tangelo-version.py, and tests/commandline-version.py.

Also edit CHANGELOG.md again, reproducing a skeleton of a new changes
section, copying the following:

[Unreleased] - [unreleased]
Added

Changed

Deprecated

Removed

Fixed

Security

This will allow developers to update the appropriate section easily whenever a
topic branch is merged to develop.

12. Test again. Run the tests one more time, to verify that the version
number bump happened correctly, and to catch anything weird that may have
happened as well.

13. Commit. Commit the change so that develop is ready to go:

git commit -am "Bumping version number"

Summary

You now have

	a new Tangelo package on PyPI. Installing with pip install tangelo will
install the new version to the system.

	a new, tagged commit on master that corresponds exactly to the new
release, and the new package in PyPI. Anyone who checks this out and builds
it will have the same Tangelo they would have if installing via pip as
above.

	a new commit on develop representing a starting point for further
development. Be sure to create topic branches off of develop to implement
new features and bugfixes.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 previous |

 	Tangelo Web Framework None documentation

Developing Visualizations

Creating jQuery Widgets

Tangelo visualizations can be implemented as jQuery widgets. They extend the
base jQuery UI widget class, but otherwise do not need to depend on anything
else from jQuery UI.

Visualization Options

Basic Options

	data - The data associated with the visualization, normally
an array.

	width, height - The width and height of the visualization, in pixels.
If omitted, the visualization should resize to fit the DOM element.

Visualization Mapping Options

The following options are optional, but if your visualization is able to map
data element properties to visual attributes like size, color, and label, you
should use this standard naming convention. If you have multiple sets of visual
elements (such as nodes and links in a graph), prefix these attributes as
appropriate (e.g. nodeSize, nodeStrokeWidth).

	size - The size of the visual element as a number of pixels. For example,
if drawing a square for each data element, the squares should have sizes
equal to the square-root of what the size option returns for each
data element.

	color - The main color of the visual element, specified as a CSS color string.

	symbol - The symbol to use for the visual element.
This should use D3’s standard set of symbol names.

	label - The label for the visual element (a string).

	stroke - The color of the stroke (outline) of the visual element specified
in pixels.

	strokeWidth - The width of the stroke of the visual element in pixels.

	opacity - The opacity of the entire visual element, as a number between 0 to 1.

Accessor Specifications

AccessorSpec

Each visual mapping should take an AccessorSpec for a value.
Accessor specifications work much like DataRef specs do in Vega,
though they also allow programmatic ways to generate arbitrary
accessors and scales.

	function (d) { ... } - The most general purpose way
to generate a visual mapping. The argument is the data element and the return
value is the value for the visual property.

	{value: v} - Sets the visual property to the same constant
value v for all data elements.

	{index: true} - Evaluates to the index of the data item within its
array.

	{field: "dot.separated.name"} - Retrieves the specified field
or subfield from the data element and passes it through the
visualization’s default scale for that visual property.
Unlike Vega, fields from the original data do not need to be
prefixed by "data.". The special field name "."
refers to the entire data element.

	{field: "dot.separated.name", scale: ScaleSpec} - Overrides the default scale
using a scale specification. Set scale to tangelo.identity to use
a field directly as the visual property.

	{} - The undefined accessor. This is a function that, if called,
throws an exception. The function also has a property undefined set to
true. This is meant as a stand-in for the case when an accessor must be
assigned but there is no clear choice for a default. It is also used when
creating Tangelo jQuery widgets to mark a property as being an accessor.
Calling tangelo.accessor() with no arguments also results in an
undefined accessor being created and returned.

ScaleSpec

A scale specification defines how to map data properties to visual properties.
For example, if you want to color your visual elements using a data field
continent containing values such as North America, Europe, Asia, etc.
you will need a scale that maps North America to "blue",
Europe to "green", etc. Vega has a number of built-in named scales that
together define the ScaleSpec. In Tangelo, a ScaleSpec may also be an
arbitrary function.

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Tangelo Web Framework None documentation

Index

 Symbols
 | D
 | L
 | M
 | R
 | S
 | T
 | X
 | Y

Symbols

 	

 	$.bokeh() ($ method)

 	$.controlPanel() ($ method)

 	$.correlationPlot() ($ method)

 	$.dendrogram() ($ method)

 	$.geodots() ($ method)

 	$.geojsdots() ($ method)

 	

 	$.geojsMap() ($ method)

 	$.geonodelink() ($ method)

 	$.mapdots() ($ method)

 	$.nodelink() ($ method)

 	$.svgColorLegend() ($ method)

 	$.timeline() ($ method)

D

 	

 	display2latlng() (built-in function)

L

 	

 	latlng2display() (built-in function)

M

 	

 	map() (built-in function)

R

 	

 	resize() (built-in function)

S

 	

 	svg() (built-in function)

T

 	

 	tangelo.absoluteUrl() (tangelo method)

 	tangelo.accessor() (tangelo method)

 	tangelo.config() (built-in function)

 	tangelo.content_type() (built-in function)

 	tangelo.getPlugin() (tangelo method)

 	tangelo.header() (built-in function)

 	tangelo.http_status() (built-in function)

 	tangelo.log() (built-in function)

 	tangelo.log_error() (built-in function)

 	tangelo.log_info() (built-in function)

 	tangelo.log_success() (built-in function)

 	tangelo.log_warning() (built-in function)

 	tangelo.paths() (built-in function)

 	tangelo.plugin.bokeh.bokeh() (built-in function)

 	tangelo.plugin.config.config() (tangelo.plugin.config method)

 	tangelo.plugin.data.bin() (tangelo.plugin.data method)

 	tangelo.plugin.data.distanceCluster() (tangelo.plugin.data method)

 	tangelo.plugin.data.smooth() (tangelo.plugin.data method)

 	tangelo.plugin.data.tree() (tangelo.plugin.data method)

 	

 	tangelo.plugin.stream.delete() (tangelo.plugin.stream method)

 	tangelo.plugin.stream.query() (tangelo.plugin.stream method)

 	tangelo.plugin.stream.run() (tangelo.plugin.stream method)

 	tangelo.plugin.stream.start() (tangelo.plugin.stream method)

 	tangelo.plugin.stream.streams() (tangelo.plugin.stream method)

 	tangelo.plugin.vtkweb.info() (tangelo.plugin.vtkweb method)

 	tangelo.plugin.vtkweb.launch() (tangelo.plugin.vtkweb method)

 	tangelo.plugin.vtkweb.processes() (tangelo.plugin.vtkweb method)

 	tangelo.plugin.vtkweb.terminate() (tangelo.plugin.vtkweb method)

 	tangelo.pluginUrl() (tangelo method)

 	tangelo.queryArguments() (tangelo method)

 	tangelo.request_body() (built-in function)

 	tangelo.request_header() (built-in function)

 	tangelo.request_path() (built-in function)

 	tangelo.restful() (built-in function)

 	tangelo.return_type() (built-in function)

 	tangelo.session() (built-in function)

 	tangelo.types() (built-in function)

 	tangelo.version() (tangelo method)

X

 	

 	xScale() (built-in function)

Y

 	

 	yScale() (built-in function)

 Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

 _static/file.png

_static/plus.png

_static/down-pressed.png

_static/comment.png

_images/correlationPlotFull.png

_static/tng/index.html

_images/geonodelink-small.png

_static/minus.png

_static/up-pressed.png

_images/geodots-small.png

_images/timeline.png

search.html

 Navigation

 		
 index

 		Tangelo Web Framework None documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Kitware, Inc..
 Created using Sphinx 1.3.1.

_images/mapdots-small.png

_static/comment-close.png

_images/correlationPlotHalf.png

_static/ajax-loader.gif

_static/down.png

_static/comment-bright.png

_static/up.png

