

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	steve 0.5.dev documentation

steve

steve is a command line interface and Python library to make it easier
and funner to add collections of videos to a richard [https://github.com/pyvideo/richard] instance than using the Django
admin.

Wait, wut?

It’s a bunch of command line subcommands that automate building a
video collection with the basic data and then a library of Python
functions that make it easy to write a script or two to batch-process
a large number of video metadata files.

User/Contributor Guide

	About steve

	ChangeLog

	License

	Installation

	Using steve - commandline

	Using steve - library

	Using steve - restapi

	Using steve - richardapi

	Hacking on steve

	Resources I found helpful

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

About steve

richard [https://github.com/pyvideo/richard] is a video index
site. It has a very basic admin interface for adding videos by hand
one-by-one. This gets very tedious when adding all the videos for a
conference.

steve [https://github.com/pyvideo/steve] is a command line utility
for downloading information for a conference, downloading all the
metadata for the videos, and making it easier to transform the data,
fix it and make it better. Then steve grew into a library of functions
making it easier to manipulate video metadata and push it into
richard.

richard and steve go together like peanut butter and jelly. You could
use one without the other, but it’s daft. steve uses richard’s API for
pulling/pushing video data.

It solves this use case:

MAL sends Will a request to add the EuroPython 2011 videos to
pyvideo.org. The EuroPython 2011 videos are on YouTube. Will uses
steve to download all the data for the conference on YouTube, then
uses steve to apply some transforms on the data, then uses steve
to edit each video individually and finally uses steve to push all
the data (the new conference, new videos, speakers, tags) to
pyvideo.org.

History

I’ve been working on richard since March 2012. I knew I needed steve
and had some thoughts on how it should work, but there were a bunch of
things I wanted to do with richard, so I pushed work on steve off.

Then on May 29th, 2012, I finished up the initial bits of steve and
thus steve was born.

I worked on it on and off while simultaneously working on adding the
EuroPython 2011 conference videos to pyvideo.org [http://pyvideo.org/] and helping Carl with some of the conferences
he was working on.

Then I continued working on it until I thought it was at the point
where someone else could use it to generate conference metadata. That
point happened on January 13th, 2013 when I released version 0.1.

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

ChangeLog

version 0.5 – in development

Changes

version 0.4 – August 5th, 2014

Changes

	added steve.richardapi.get_video

	Tweaks to webedit to make it a little easier to use

	added steve.utils.fetch_videos_from_url

version 0.3 – March 17th, 2014

API Changes

	steve.richardapi functions changed signatures

The new functions match the new v2 richard api. These involve
sending just an auth token—no more sending an auth token and
a username.

	steve.richardapi.MissingRequiredData changed

If you were missing data, you could look at the errors attribute
of the MissingDataRequired exception for details. That was dumb
and difficult. Now it’s just part of the message. So you can do this:

try:
 # do something wrogn
except MissingRequiredData as exc:
 print exc

	nixed steve.richardapi.create_category_if_missing

I think this was causing too many problems. You now have to create
the category on the server.

Other Changes

	bug fixes

version 0.2 – March 17th, 2013

API Changes

	changed steve.util.verify_json to steve.util.verify_video_data

The previous function name was a misnomer—it takes a Python
dict as an argument and has nothing to do with JSON.

Other Changes

	added steve.restapi

Basic REST client to talk to richard instances.

	added steve.richardapi

Added the richardapi module which has some functions that make
it easier to do richard API things

	added steve.util.html_to_markdown

Since richard and pyvideo now use Markdown for summaries and
descriptions, it helps to have a converter.

	added webedit command of awesome

steve now has a webedit command that lets you edit JSON files
in a web-based editor.

version 0.1 – January 13th, 2013

	First version, so everything is new.

See documentation for features and how to use it!

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

License

Copyright (c) 2012-2014 Will Kahn-Greene
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

	Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.

	Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND
ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR
ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
(INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

The views and conclusions contained in the software and documentation are those
of the authors and should not be interpreted as representing official policies,
either expressed or implied, of the FreeBSD Project.

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Installation

There are a few ways to install steve. This document covers them.

	Installing a released version

	Installing a bleeding edge version

	Installing a Bleeding edge for hacking purposes

Installing a released version

You can install steve using pip:

pip install steve

Installing a bleeding edge version

If you want a bleeding edge version of steve, you can either
install with pip from a git url or clone the project and install
that.

pip and git urls:

Install like this:

	pip install git+https://github.com/pyvideo/steve.git

Update like this:

	pip install -U git+https://github.com/pyvideo/steve.git

git clone and installing from that:

Install like this:

	git clone git://github.com/pyvideo/steve.git

	cd steve

	python setup.py develop

Update like this:

	cd steve

	git checkout master

	git pull --rebase

Installing a Bleeding edge for hacking purposes

If you want to install steve in a way that makes it easy to hack on,
do this:

	git clone git://github.com/pyvideo/steve.git

	cd steve

	virtualenv ./venv/

	./venv/bin/python setup.py develop

When you want to use steve from your virtual environment, make sure to
activate the virtual environment first. e.g.:

	. ./venv/bin/activate

	steve-cmd --help

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Using steve - commandline

The steve-cmd utility is designed to automate the basic tasks that
result in you having a directory of JSON files each containing the
metadata for a single video.

After doinge some steve-cmd work, you can then tar/zip this
directory up and send it to someone who has API access to the richard
instance you’re collecting videos for. This person can then look at
the data and push it.

In this way, anyone can generate the metadata for a richard instance
from the comfort of their own command line.

Usage

For list of subcommands, arguments and other help, do this:

steve-cmd --help

The basic commands are these:

createproject

Creates the directory structure and configuration files for a new
steve project. Each project is a collection of videos from a
single source.

fetch

Fetches the metadata for the videos from the url where all the
videos are hosted and puts it in JSON files in the json/
directory of your steve project.

status

Tells you the editing status of all the JSON files.

verify

Goes through the JSON files and verifies correctness of the keys
and values. Are the required data elements present? Are the values
of the correct type? Are there any “bad” values?

webedit

Provides a (really super duper) basic web server app that lets you
go through the JSON files in your web browser.

Also, there are some other subcommands:

push

Pushes a bunch of JSON files to a richard instance.

pull

Pulls a bunch of data from a richard instance and puts it in
JSON files.

scrapevideo

This is a convenience subcommand for scraping a single video at a
url and showing the metadata.

Example use

Note

This is a quick tutorial—you don’t have to use steve like
this. Use it in a way that makes your work easier!

	Install steve.

	Run: steve-cmd createproject europython2011

This creates a europython2011 directory for project files.

I usually call this the project directory.

In that directory is:

	a steve.ini project config file

	a json/ directory which hold the video metadata json files

I usually have all my helper scripts in the project directory since
it has the steve.ini file.

	cd europython2011

	Edit steve.ini:

[project]

The name of this group of videos. For example, if this was a
conference called EuroPython 2011, then you'd put:
category = EuroPython 2011
category = EuroPython 2011

The url for where all the videos are listed.
e.g. url = http://www.youtube.com/user/PythonItalia/videos
url = http://www.youtube.com/user/PythonItalia/videos

If the url is a YouTube-based url, you can either have 'object'
based embed code or 'iframe' based embed code. Specify that
here.
youtube_embed = object

The url for the richard instance api.
e.g. url = http://example.com/api/v1/
api_url =

Your username and api key.
#
Alternatively, you can pass this on the command line or put it in a
separate API_KEY file which you can keep out of version control.
e.g. username = willkg
api_key = OU812
username =
api_key =

If you’re not pushing the JSON files to a richard instance, you can
ignore the api_url, username and api_key keys.

	Run: steve-cmd fetch

This fetches the video metadata from that YouTube user and
generates a series of JSON files—one for each video—and puts
them in the json/ directory.

The format for each file matches the format expected by the richard
API.

	See the status of your video metadata.

Run: steve-cmd status

Lists filenames for all videos that have a non-empty whiteboard
field. Because you’ve just downloaded the metadata, all of the
videos have a whiteboard field stating they haven’t been edited,
yet.

Run: steve-cmd ls

Lists titles and some other data for each video in the set.

	Now you go through and edit the json metadata. There are a few ways
to do this. Don’t just pick one way—mix and match them to
reduce the work required.

Use the whiteboard field to keep track of which videos still have
problems and/or things that need to be done with them and/or just
haven’t been edited, yet.

	Edit with your favorite editor.

You can use the status command to make this easier.

For example, if you use vim:

steve-cmd status --list | xargs vim

and edit them by hand one-by-one.

	Write a script to batch-process the files.

You can also write a script which uses functions in
steve.util to automate fixing the metadata.

For example, here’s a script that takes the summary data,
converts it from reStructuredText to HTML and puts it in the
description field:

from docutils.core import publish_parts

from steve.util import (get_project_config, load_json_files,
 save_json_files)

cfg = get_project_config()
data = load_json_files(cfg)

def parse(text):
 settings = {
 'initial_header_level': 2,
 'transform_doctitle': 1
 }
 parts = publish_parts(
 text, writer_name='html', settings_overrides=settings)
 return parts['body']

for fn, contents in data:
 print fn

 summary = contents['summary'].strip()
 summary_parsed = parse(summary)
 if 'ERROR' in summary_parsed or 'WARNING' in summary_parsed:
 print 'problem with %s' % fn
 raise ValueError()

 if not contents['description']:
 contents['description'] = parse(summary)

save_json_files(cfg, data)

Conference data varies pretty widely, so writing scripts to
batch-process it to handle issues like this is super
helpful. Automate anything you can.

See the API documentation in Using steve - library.

	Use the web editor.

steve comes with a bare-bones web-based editor for the json files.
To launch it from the project directory, do:

steve-cmd webedit

then point your browser at the url in the output.

This is helpful when you have a few things to fix and don’t feel
like writing json.

If there are other tools you want to use—go for it. Anything
to get the job done.

	Run: steve-cmd verify

This goes through all the json files and verifies correctness.

Is the data of the correct type and shape?

Are required fields present?

Are values that should be in HTML in HTML?

	Now it’s time to submit your changes!

If you do not have an API key that gives you write access to the server,
then tar the json/ directory up and send it to someone who does.

If you do have an API key that gives you write access to the
server, then you can do:

steve-cmd push

That will create the videos on the server and update the JSON
files with the new ids.

That’s it!

Note

Use version control for your steve project and commit changes to
it. Make sure you back it up, too! Don’t lose everything you’ve
done because you wrote a bad batch-processing script!

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Using steve - library

By day, steve is a cli of world renoun. By night, steve is a Python
library capable of great cunning. This chapter covers the utility
functions.

	Writing steve scripts

	steve.util

	Recipes
	Update language

	Move speaker from summary to speakers

	Convert summary and description to Markdown

Writing steve scripts

steve can be used for batch processing a bunch of JSON files.

Most batch processing works this way:

	get the config file (steve.util.get_project_config())

	get all the json files (steve.util.load_json_files())

	iterate through the json files transforming the data (Python for loop)

	save the json files (steve.util.save_json_files())

steve.util

	
steve.util.with_config(fun)

	Decorator that passes config as first argument

	Raises:	ConfigNotFound – if the config file can’t be found

This calls get_project_config(). If that returns a
configuration object, then this passes that as the first argument
to the decorated function. If get_project_config() doesn’t
return a config object, then this raises ConfigNotFound.

Example:

>>> @with_config
... def config_printer(cfg):
... print 'Config!: {0!r}'.format(cfg)
...
>>> config_printer() # if it found a config
Config! ...
>>> config_printer() # if it didn't find a config
Traceback
 ...
steve.util.ConfigNotFound: steve.ini could not be found.

	
steve.util.get_project_config()

	Finds and opens the config file in the current directory

	Raises:	ConfigNotFound – if the config file can’t be found

	Returns:	config file

	
steve.util.html_to_markdown(text)

	Converts an HTML string to equivalent Markdown

	Parameters:	text – the HTML string to convert

	Returns:	Markdown string

Example:

>>> html_to_markdown('<p>this is html!</p>')
u'this is **html**!'

	
steve.util.load_json_files(config)

	Parses and returns all video files for a project

	Parameters:	config – the configuration object

	Returns:	list of (filename, data) tuples where filename is the
string for the json file and data is a Python dict of
metadata.

	
steve.util.save_json_files(config, data, **kw)

	Saves a bunch of files to json format

	Parameters:	
	config – the configuration object

	data – list of (filename, data) tuples where filename is the
string for the json file and data is a Python dict of metadata

Note

This is the save side of load_json_files(). The output
of that function is the data argument for this one.

	
steve.util.save_json_file(config, filename, contents, **kw)

	Saves a single json file

	Parameters:	
	config – configuration object

	filename – filename

	contents – python dict to save

	kw – any keyword arguments accepted by json.dump

	
steve.util.scrapevideo(video_url)

	Scrapes the url and fixes the data

	Parameters:	video_url – Url of video to scrape.

	Returns:	Python dict of metadata

Example:

>>> scrapevideo('http://www.youtube.com/watch?v=ywToByBkOTc')
{'url': 'http://www.youtube.com/watch?v=ywToByBkOTc', ...}

	
steve.util.verify_video_data(data)

	Verify the data in a single json file for a video.

	Parameters:	
	data – The parsed contents of a JSON file. This should be a
Python dict.

	category – The category as specified in the steve.ini file.

If the steve.ini has a category, then every data file either
has to have the same category or no category at all.

This is None if no category is specified in which case every
data file has to have a category.

	Returns:	list of error strings.

	
steve.util.verify_json_files(json_files)

	Verifies the data in a bunch of json files.

Prints the output

	Parameters:	
	json_files – list of (filename, parsed json data) tuples to
call verify_video_data() on

	category – The category as specified in the steve.ini file.

If the steve.ini has a category, then every data file either
has to have the same category or no category at all.

This is None if no category is specified in which case every
data file has to have a category.

	Returns:	dict mapping filenames to list of error strings

Recipes

Here’s some sample code for doing batch transforms. Each script should
be located in the project directory root next to the steve.ini file.
Make sure the steve package is installed and then run the script with
the python interpreter:

python name_of_my_script.py

Or however you want to structure and/or run it.

Update language

This fixes the language property in each json file. It sets it to
“Italian” if the word “Italiana” appears in the summary. Otherwise it
sets it to “English”.

import steve.util

cfg = steve.util.get_project_config()
data = steve.util.load_json_files(cfg)

for fn, contents in data:
 print fn

 # If 'Italiana' shows up in the summary, set the language
 # to Italian.
 if 'Italiana' in contents['summary']:
 contents['language'] = u'Italian'
 else:
 contents['language'] = u'English'

steve.util.save_json_files(cfg, data)

Move speaker from summary to speakers

This removes the first line of the summary and puts it in the speakers
field.

import steve.util

cfg = steve.util.get_project_config()
data = steve.util.load_json_files(cfg)

for fn, contents in data:
 print fn

 # If the data already has speakers, then we assume we've already
 # operated on it and don't operate on it again.
 if contents['speakers']:
 continue

 summary = contents['summary']
 summary = summary.split('\n')

 # The speakers field is a list of strings. So we remove the first
 # line of the summary, strip the whitespace from it, and put that
 # in the speakers field.
 # (NB: This bombs out if the summary field is empty.)
 contents['speakers'].append(summary.pop(0).strip())

 # Put the rest of the summary back.
 contents['summary'] = '\n'.join(summary)

steve.util.save_json_files(cfg, data)

Convert summary and description to Markdown

This converts summary and description to Markdown.

import steve.util

cfg = steve.util.get_project_config()
data = steve.util.load_json_files(cfg)

for fn, contents in data:
 print fn

 contents['summary'] = steve.util.html_to_markdown(
 contents.get('summary', ''))

 contents['description'] = steve.util.html_to_markdown(
 contents.get('description', ''))

steve.util.save_json_files(cfg, data)

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Using steve - restapi

“steve comes with its own REST client API.”

“Seriously? There are dozens out there? Why roll your own?”

“Because the one I was using had issues and wasn’t being updated. I
decided it was easier to just roll my own for my limited needs. Plus
it was kind of fun to write.”

“Dude. steve is turning into a Frankenstein monster monstrosity. You
need to see the doctor to cure you of your NIH syndrome.”

“Shh... I’m busy.”

	Using the REST client API by itself

	steve.restapi

Using the REST client API by itself

It’s similar to slumber except a little less feature(bug)-full.
The gist of it is this:

	Import some stuff:

from steve.restapi import API, RestAPIException, get_content

	Build an API object:

api = API('http://localhost/v1/api/')

	Use the API object to fiddle with resources:

Get all Foos
all_foos = api.foo.get()

Get foo with id 1
foo_1 = get_content(api.foo(1).get())

Change the data, then put it
foo_1['somekey'] = 'newvalue'
api.foo(1).put(data=foo_1)

Create a new foo. This does a POST and if there's
a 201, it'll return the results of that.
newfoo = get_content(api.foo.post(data={'somekey': 'newvalue'}))

That’s pretty much it!

Why get_content? That way you’re guaranteed that you have the
requests Response object so you can see what’s going on. That makes
this REST client API a bit easier to debug—it’s just a thin layer on
top of requests [http://docs.python-requests.org/en/latest/].

steve.restapi

This is a REST client API since steve does a bunch of REST things
with richard’s API. It’s a slim layer on top of requests.

	
steve.restapi.get_content(resp)

	Returns the JSON content from a response.

Note

Mostly this just deals with the fact that requests changed
.json from a property to a method. Once that settles out and
we can use requests >= 1.0, then we can ditch this.

	
class steve.restapi.API(base_url)

	Convenience wrapper around requests.

Example:

from steve.restapi import API

Creates an api endpoint
api = API('http://pyvideo.org/v1/api/')

Does a get for all videos
all_videos = api.video.get()

Does a get for video with a specific id
video_1 = api.video(1).get()

Update the data and then put it
video_1['somekey'] = 'newvalue'
api.video(1).put(data=video_1)

Create a new video. This does a POST and if there's a
redirect, will pick that up.
newvideo = api.video.post(data={'somekey': 'newvalue'})

	
class steve.restapi.Resource(**kwargs)

	Convenience wrapper for requests.request.

HTTP methods return requests Response objects or throw
exceptions in cases where things are weird.

	
class steve.restapi.RestAPIException(*args, **kwargs)

	

	
class steve.restapi.Http4xxException(*args, **kwargs)

	Exception for 4xx errors.

These usually mean you did something wrong.

	Property response:

		The full requests Response object.

Example:

from steve.restapi import Http4xxException

try:
 # do something here
except Http4xxException as exc:
 # oh noes! i did something wrogn!

 # This tells you the actual HTTP status code
 print exc.response.status_code

 # This tells you the content of the response---sometimes
 # the server will tell you an error message and it's
 # probably in here.
 print exc.response.content

	
class steve.restapi.Http5xxException(*args, **kwargs)

	Exception for 5xx errors.

These usually mean the server did something wrong. Let me know.

	Property response:

		The full requests Response object.

Example:

from steve.restapi import Http5xxException

try:
 # do something here
except Http5xxException as exc:
 # oh noes! i hit dumb willkg code and server is br0ken!

 # This tells you the actual HTTP status code
 print exc.response.status_code

 # This tells you the content of the response---sometimes
 # the server will tell you an error message and it's
 # probably in here.
 print exc.response.content

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Using steve - richardapi

This module holds a series of functions that use the richard API
to move data back and forth.

	steve.richardapi

steve.richardapi

New in version 0.2.

Note

Carl, Ryan: These functions are for you!

They use an auth token. If you need an auth token, let one of the
pyvideo admin know.

	
steve.richardapi.get_all_categories(api_url)

	Given an api_url, retrieves all categories

	Parameters:	api_url – URL for the api.

	Returns:	list of dicts each belonging to a category

	Raises:	steve.restapi.Http5xxException – if there’s a server
error

Example:

from steve.util import get_all_categories

cats = get_all_categories('http://pyvideo.org/api/v1/')
print [cat['title'] for cat in cats]

Prints something like:
[u'PyCon 2012', u'PyCon 2011', etc.]

	
steve.richardapi.get_category(api_url, title)

	Gets information for specified category

	Parameters:	
	api_url – URL for the api

	title – title of category to retrieve

	Returns:	category data

	Raises:	steve.richardapi.DoesNotExist – if the category doesn’t
exist

	
steve.richardapi.get_video(api_url, auth_token, video_id)

	Gets information for specified video

	Parameters:	
	api_url – URL for the api

	auth_token – auth token

	video_id – The id for the video

	Returns:	video data

	Raises:	steve.richardapi.DoesNotExist – if the video doesn’t
exist

	
steve.richardapi.create_video(api_url, auth_token, video_data)

	Creates a video on the site

This creates a video on the site using HTTP POST. It returns
the video data it posted which also contains the id.

Note

This doesn’t yet check to see if the video already exists.

	Parameters:	
	api_url – URL for the api

	auth_token – auth token

	video_data – Python dict holding the values to create
this video

	Returns:	the video data

	Raises:	
	steve.restapi.Http5xxException – if there’s a server
error

	steve.richardapi.MissingRequiredData – if the video_data
is missing keys that are required

Example:

import datetime

from steve.util import STATE_LIVE, create_video, MissingRequiredData

try:
 video = create_video(
 'http://pyvideo.org/api/v1/',
 auth_token='ou812authkey',
 video_data={
 'category': 'Test Category',
 'state': STATE_LIVE,
 'title': 'Test video title',
 'speakers': ['Jimmy Discotheque'],
 'language': 'English',
 'added': datetime.datetime.now().isoformat()
 })

 # Prints the video data.
 print video

except MissingRequiredData as exc:
 # Prints the errors
 print exc

Note

Check the richard project in the video app at models.py for
up-to-date list of fields and their types.

https://github.com/pyvideo/richard/blob/master/richard/videos/models.py

	
steve.richardapi.update_video(api_url, auth_token, video_id, video_data)

	Updates an existing video on the site

This updates an existing video on the site using HTTP PUT. It
returns the final video data.

Warning

This stomps on the data that’s currently there. If you have the
video_id wrong, then this will overwrite the current data.

Be very careful about updating existing video data. Best to get
it, make sure the id is correct (check the title? the slug?),
and then update it.

	Parameters:	
	api_url – URL for the api

	auth_token – auth token

	video_id – The id for the video

	video_data – Python dict holding all the data for this video

	Returns:	the updated video data

	Raises:	
	steve.restapi.Http4xxException – if the video doesn’t
exist on the server

	steve.restapi.Http5xxException – if there’s a server
error

	steve.richardapi.MissingRequiredData – if the video_data
is missing keys that are required

Example:

import datetime

from steve.util import STATE_LIVE, update_video, MissingRequiredData

try:
 video = update_video(
 'http://pyvideo.org/api/v1/',
 auth_token='ou812authkey',
 video_id=1101,
 video_data={
 'id': 1101,
 'category': 'Test Category',
 'state': STATE_LIVE,
 'title': 'Test video title',
 'speakers': ['Jimmy Discotheque'],
 'language': 'English',
 'added': datetime.datetime.now().isoformat()
 })

 # Prints the video data.
 print video

except MissingRequiredData as exc:
 # Prints the errors
 print exc

Note

Check the richard project in the video app at models.py for
up-to-date list of fields and their types.

https://github.com/pyvideo/richard/blob/master/richard/videos/models.py

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	steve 0.5.dev documentation

Hacking on steve

It’s likely steve will never “be done”. Thus, it’s likely it will be
in a perpetual need for people to tweak steve to do the things they
need it to do. These people are you!

This chapter covers contributing to steve.

Contributing

We use Github to host the code. After you’ve forked the project, make
changes like this:

	create a branch based on master to hold your changes

	make your changes in that branch and commit them

	create a pull request between pyvideo/master and your branch with
all the details you think I’ll need to know to understand what you
did, why, and what problem you were trying to solve

This is somewhat high level and sort of assumes you know git, Github,
and contributing to projects like this one. If you need more help
because these assumptions don’t match you, please ask me on IRC.

Code conventions

PEP-8 and pyflakes is your friend.

Documenting

steve documentation is in two places:

	in the code in docstrings

	in the docs/ directory in reStructuredText files as a Sphinx
docs project

Everything is in reStructuredText.

Generally speaking:

	Good docs are good.

	Bad docs are lousy.

	Lack of docs are suboptimal.

Running and writing tests

steve comes with unit tests. Unit tests are executed using nose [http://code.google.com/p/python-nose/].
If you don’t already have nose installed, then install it with:

pip install nose

I like to use nose-progressive [http://pypi.python.org/pypi/nose-progressive/], too, because it’s awesome. To
install that:

pip install nose-progressive

To run the unit tests from a git clone or the source tarball, do this
from the project directory:

nosetests

With nose-progressive and fail-fast:

nosetests -x --with-progressive

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	steve 0.5.dev documentation

Resources I found helpful

richard api docs

	richard api docs [http://richard.readthedocs.org/en/latest/admin/api.html]

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	steve 0.5.dev documentation

 Python Module Index

 s

 			

 		
 s	

 	[image: -]
 	
 steve	

 	
 	
 steve.restapi	

 	
 	
 steve.richardapi	

 	
 	
 steve.util	

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 modules |

 	steve 0.5.dev documentation

Index

 A
 | C
 | G
 | H
 | L
 | R
 | S
 | U
 | V
 | W

A

 	

 	API (class in steve.restapi)

C

 	

 	create_video() (in module steve.richardapi)

G

 	

 	get_all_categories() (in module steve.richardapi)

 	get_category() (in module steve.richardapi)

 	get_content() (in module steve.restapi)

 	

 	get_project_config() (in module steve.util)

 	get_video() (in module steve.richardapi)

H

 	

 	html_to_markdown() (in module steve.util)

 	Http4xxException (class in steve.restapi)

 	

 	Http5xxException (class in steve.restapi)

L

 	

 	load_json_files() (in module steve.util)

R

 	

 	Resource (class in steve.restapi)

 	

 	RestAPIException (class in steve.restapi)

S

 	

 	save_json_file() (in module steve.util)

 	save_json_files() (in module steve.util)

 	scrapevideo() (in module steve.util)

 	

 	steve.restapi (module)

 	steve.richardapi (module)

 	steve.util (module)

U

 	

 	update_video() (in module steve.richardapi)

V

 	

 	verify_json_files() (in module steve.util)

 	

 	verify_video_data() (in module steve.util)

W

 	

 	with_config() (in module steve.util)

 Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

 _static/comment-bright.png

_static/comment-close.png

_static/minus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/file.png

search.html

 Navigation

 		
 index

 		
 modules |

 		steve 0.5.dev documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2012-2014 Will Kahn-Greene.
 Created using Sphinx 1.3.5.

_static/plus.png

_static/up-pressed.png

_static/down.png

_static/up.png

