

Shipper documentation

	Documentation overview

	Introduction
	Shipper

	Getting help

	Shipper in 5 minutes
	Step 0: procure a cluster

	Step 1: get shipperctl

	Step 2: write a cluster manifest

	Step 3: apply the manifest

	Step 4: deploy shipper

	Step 5: do a rollout!

	User guide
	Rolling out with Shipper

	Troubleshooting Shipper

	Operations and administration
	Cluster architecture

	Using shipperctl

	Monitoring Shipper

	Cluster fleet management

	Limitations and known issues
	Chart restrictions

	Load balancing

	Lock-step rollouts

	API Reference
	High-level APIs

	Low-level APIs

	Administrator APIs

Documentation overview

	Introduction: Brief overview of what Shipper is and why you might be interested

	Quick start: 5 minutes to a working Shipper setup

	User guide: Using Shipper to deploy your code

	Administrator guide: Production installation, monitoring, and cluster fleet management

	Limitations and known issues

	API Reference: Detailed reference on the Shipper resources

Introduction

	Shipper
	Why does Shipper exist?

	What is Shipper from a technical point of view?

	Multi-cluster, multi-region, multi-cloud

	Release Management

	Roll Backs

	Charts As Input

	Getting help

Shipper

Shipper is an extension for Kubernetes to add sophisticated rollout strategies
and multi-cluster orchestration.

It lets you use kubectl to manipulate objects which represent any kind of
rollout strategy, like blue/green or canary. These strategies can deploy to one
cluster, or many clusters across the world.

Why does Shipper exist?

Kubernetes is a wonderful platform, but implementing mature rollout strategies
on top of it requires subtle multi-step orchestration: Deployment objects are
a building block, not a solution.

When implemented as a set of scripts in CI/CD systems like Jenkins, GitLab, or
Brigade, these strategies can become hard to debug, or leave out important
properties like safe rollbacks.

These problems become more severe when the rollout targets multiple Kubernetes
clusters in multiple regions: the complex, multi-step orchestration has
many opportunities to fail and leave clusters in inconsistent states.

Shipper helps by providing a higher level API for complex rollout strategies to
one or many clusters. It simplifies CI/CD pipeline scripts by letting them
focus on the parts that matter to that particular application.

What is Shipper from a technical point of view?

Shipper is a collection of Kubernetes controllers that work with custom
Kubernetes objects to provide a declarative API for advanced rollouts. These
controllers continuously monitor the clusters involved, and converge them on
the declared state. They act as control loops for the different aspects of
a rollout: capacity management, traffic shifting, and Kubernetes object
installation.

For example, you might have a Shipper Application like this:

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:
 name: reviews-api
spec:
 template:
 # helm chart for this application
 chart:
 name: reviews-api
 version: 0.0.1
 repoUrl: https://charts.example.com
 # how to select clusters to deploy to
 clusterRequirements:
 regions:
 - name: us-east1
 # the rollout strategy
 strategy:
 steps:
 - name: canary
 capacity:
 incumbent: 100
 contender: 10
 traffic:
 incumbent: 9
 contender: 1
 - name: all-in
 capacity:
 incumbent: 0
 contender: 100
 traffic:
 incumbent: 0
 contender: 10
 # the values for the helm chart
 values:
 image:
 repository: image-registry.example.com/reviews-api
 tag: v0.1.0

In this example, we’re defining an Application named reviews-api. It uses
a Helm Chart of the same name, and deploys to a cluster in the us-east1
region. It uses a two step rollout strategy: a basic canary step with a bit of
traffic for the new version, then “all-in”. It populates the Helm Chart with
values specifying the image tag.

In order to make this declared state a reality, Shipper will select a matching
cluster, install the Chart objects into that cluster, and with your guidance,
progress through the rollout strategy until the new release is fully live.

Multi-cluster, multi-region, multi-cloud

Shipper can deploy your application to multiple clusters in different regions.

It expects a Kubernetes API and requires no agent in the application clusters,
so it should work with any compliant Kubernetes implementation like GKE or AKS.
If you can use kubectl with it, chances are, you can use Shipper with it as
well.

Release Management

Shipper doesn’t just copy-paste your code onto multiple clusters for you – it
allows you to customize the rollout strategy fully. This allows you to craft
a rollout strategy with the appropriate speed/risk balance for your particular
situation.

After each step of the rollout strategy, Shipper pauses to wait for another
update to the Release object. This checkpointing approach means that rollouts
are fully declarative, scriptable, and resumable. Shipper can keep a rollout on
a particular step in the strategy for ten seconds or ten hours. At any point
the rollout can be safely aborted, or moved backwards through the strategy to
return to an earlier state.

Roll Backs

Since Shipper keeps a record of all your successful releases, it allows you to
roll back to an earlier release very easily.

Charts As Input

Shipper installs a complete set of Kubernetes objects for a given application.

It does this by relying on Helm [https://helm.sh], and using Helm Charts as
the unit of configuration deployment. Shipper’s Application object provides an
interface for specifying values to a Chart just like the helm command line
tool.

Getting help

We’re happy to take bug reports on the GitHub repo [https://github.com/bookingcom/shipper/issues].

For user questions or general discussion you can find us on #shipper [https://kubernetes.slack.com/messages/shipper] on the Kubernetes Slack.

Shipper in 5 minutes

Step 0: procure a cluster

The rest of this document assumes that you have access to a Kubernetes cluster
and admin privileges on it. If you don’t have this, check out microk8s [https://microk8s.io/] or minikube [https://github.com/kubernetes/minikube]. Cloud clusters like GKE are also
fine. Shipper requires Kubernetes 1.11 or later, and you’ll need to be an admin
on the cluster you’re working with. 1

Make sure that kubectl works and can connect to your cluster before
continuing.

Step 1: get shipperctl

shipperctl automates setting up clusters for Shipper. Grab the tarball for
your operating system, extract it, and stick it in your PATH somewhere.

You can find the binaries on the GitHub Releases page for
Shipper [https://github.com/bookingcom/shipper/releases].

Step 2: write a cluster manifest

shipperctl expects a manifest of clusters to configure. It uses your
~/.kube/config to translate context names into cluster API server URLs.
Find out the name of your context like so:

$ kubectl config get-contexts
CURRENT NAME CLUSTER AUTHINFO NAMESPACE
* microk8s microk8s-cluster admin

In my setup, the context name is microk8s. Let’s write a clusters.yaml
manifest to configure Shipper here:

clusters.yaml

managementClusters:
- name: microk8s # name of a context; will also be the Cluster object name
applicationClusters:
- name: microk8s
 region: local

Step 3: apply the manifest

Now we’ll give clusters.yaml to shipperctl to configure the cluster for
Shipper:

$ shipperctl admin clusters apply -f clusters.yaml
Setting up management cluster microk8s:
Registering or updating custom resource definitions... done
Creating a namespace called shipper-system... done
Creating a service account called shipper-management-cluster... done
Creating a ClusterRole called shipper:management-cluster... done
Creating a ClusterRoleBinding called shipper:management-cluster... done
Finished setting up cluster microk8s

Setting up application cluster microk8s:
Creating a namespace called shipper-system... already exists. Skipping
Creating a service account called shipper-application-cluster... done
Creating a ClusterRoleBinding called shipper:application-cluster... done
Finished setting up cluster microk8s

Joining management cluster microk8s to application cluster microk8s:
Creating or updating the cluster object for cluster microk8s on the management cluster... done
Checking whether a secret for the microk8s cluster exists in the shipper-system namespace... no. Fetching secret for service account shipper-application-cluster from the microk8s cluster... done
Copying the secret to the management cluster... done
Finished joining cluster microk8s and microk8s together

Cluster configuration applied successfully!

Step 4: deploy shipper

Now that we have the namespace, custom resource definitions, role bindings,
service accounts, and so on, let’s create the Shipper Deployment:

$ kubectl create -f https://github.com/bookingcom/shipper/releases/download/v0.1.0/shipper-deploy.yaml
deployment.apps/shipper created

This will create an instance of Shipper in the shipper-system namespace.

Step 5: do a rollout!

Now we should have a working Shipper installation. Let’s roll something out!

Footnotes

	1

	For example, on GKE you need to bind yourself to cluster-admin [https://stackoverflow.com/a/52972588] before shipperctl will work.

User guide

	Rolling out with Shipper

	Troubleshooting Shipper

Rolling out with Shipper

Rollouts with Shipper are all about transitioning from an old Release, the
incumbent, to a new Release, the contender. If you’re rolling out
an Application for the very first time, then there is no incumbent, only
a contender.

In general Shipper tries to present a familiar interface for people accustomed
to Deployment objects.

Application object

Here’s the Application object we’ll use:

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:
 name: super-server
spec:
 revisionHistoryLimit: 3
 template:
 chart:
 name: nginx
 repoUrl: https://storage.googleapis.com/shipper-demo
 version: 0.0.1
 clusterRequirements:
 regions:
 - name: local
 strategy:
 steps:
 - capacity:
 contender: 1
 incumbent: 100
 name: staging
 traffic:
 contender: 0
 incumbent: 100
 - capacity:
 contender: 100
 incumbent: 0
 name: full on
 traffic:
 contender: 100
 incumbent: 0
 values:
 replicaCount: 3

Copy this to a file called app.yaml and apply it to our Kubernetes cluster:

$ kubectl apply -f app.yaml

This will create an Application and Release object. Shortly thereafter, you
should also see the set of Chart objects: a Deployment, a Service, and
a Pod.

Checking progress

There are a few different ways to figure out how your rollout is going.

We can check in on the Release to see what kind of progress we’re making:

.status.achievedStep

This field is the definitive answer for whether Shipper considers a given step in
a rollout strategy complete.

$ kubectl get rel super-server-83e4eedd-0 -o json | jq .status.achievedStep
null
$ # "null" means Shipper has not written the achievedStep key, because it hasn't finished the first step
$ kubectl get rel -o json | jq .items[0].status.achievedStep
{
 "name": "staging",
 "step": 0
}

If everything is working, you should see one Pod active/ready.

.status.strategy.conditions

For a more detailed view of what’s happening while things are in between
states, you can use the Strategy conditions.

$ kubectl get rel super-server-83e4eedd-0 -o json | jq .status.strategy.conditions
[
 {
 "lastTransitionTime": "2018-12-09T10:00:55Z",
 "message": "clusters pending capacity adjustments: [microk8s]",
 "reason": "ClustersNotReady",
 "status": "False",
 "type": "ContenderAchievedCapacity"
 },
 {
 "lastTransitionTime": "2018-12-09T10:00:55Z",
 "status": "True",
 "type": "ContenderAchievedInstallation"
 }
]

These will tell you which part of the step Shipper is currently working on. In
this example, Shipper is waiting for the desired capacity in the microk8s
cluster. This means that Pods aren’t ready yet.

.status.strategy.state

Finally, because the Strategy conditions can be kind of a lot to parse, they
are summarized into estatus.strategy.state.

$ kubectl get rel super-server-83e4eedd-0 -o json | jq .status.strategy.state
{
 "waitingForCapacity": "True",
 "waitingForCommand": "False",
 "waitingForInstallation": "False",
 "waitingForTraffic": "False"
}

The troubleshooting guide has more information on
how to dig deep into what’s going on with any given Release.

Advancing the rollout

So now that we’ve checked on our Release and seen that Shipper considers step
0 achieved, let’s advance the rollout:

$ kubectl patch rel super-server-83e4eedd-0 --type=merge -p '{"spec":{"targetStep":1}}'

I’m using patch here to keep things concise, but any means of modifying
objects will work just fine.

Now we should be able to see 2 more pods spin up:

$ kubectl get po
NAME READY STATUS RESTARTS AGE
super-server-83e4eedd-0-nginx-5775885bf6-76l6g 1/1 Running 0 7s
super-server-83e4eedd-0-nginx-5775885bf6-9hdn5 1/1 Running 0 7s
super-server-83e4eedd-0-nginx-5775885bf6-dkqbh 1/1 Running 0 3m55s

And confirm that Shipper believes this rollout to be done:

$ kubectl get rel -o json | jq .items[0].status.achievedStep
{
 "name": "full on",
 "step": 1
}

That’s it! Doing another rollout is as simple as editing the Application
object, just like you would with a Deployment. The main principle is
patching the Release object to move from step to step.

Troubleshooting Shipper

Prerequisites

To troubleshoot deployments effectively you need to be familiar with core Kubernetes [https://kubernetes.io/docs/concepts/] and Shipper concepts (very briefly explained below) and be comfortable running kubectl commands.

Fundamentals

Shipper objects form a hierarchy:

Application
 |
Release
 |
InstallationTarget
CapacityTarget
TrafficTarget

You already know Applications and Releases, but there’s more. Below Release you
have what we call “target objects”. Each represents an important chunk of work
we do when rolling out:

	Kind

	Shorthand

	Description

	InstallationTarget

	it

	Install charts in application clusters

	CapacityTarget

	ct

	Scale deployments up and down to reach desired number of pods

	TrafficTarget

	tt

	Orchestrate traffic by moving pods in and out of the LB

The list is ordered (e.g. we can’t manipulate traffic before there are pods).

The universal troubleshooting algorithm

Shipper is a fairly complex system that runs on top of an even more complex one.
Things can fail in many different way. It’s not really feasible for us to list
all the possible problems and solutions for them. Instead, we’ll give you a
rough algorithm that should help you deal with commonly encountered problems.

To summarise, the algorithm is roughly:

	Find what stage you’re at by looking at Release conditions and state

	Inspect the corresponding target object’s conditions

	Act accordingly

In the next sections we’ll explain in more detail how to do that.

Finding where you are

Before we attempt to fix anything we need to make sure we know where we are in
the rollout process. The starting point is almost always looking at your
Release’s status:

$ kubectl describe rel nginx-vj7sn-7cb440f1-0
...
Status:
 Achieved Step: 0
 Conditions:
 Last Transition Time: 2018-07-27T07:21:14Z
 Status: True
 Type: Scheduled
 Strategy:
 Conditions:
 Last Transition Time: 2018-07-27T07:23:29Z
 Message: clusters pending capacity adjustments: [minikube]
 Reason: ClustersNotReady
 Status: False
 Type: ContenderAchievedCapacity
 Last Transition Time: 2018-07-27T07:23:29Z
 Status: True
 Type: ContenderAchievedInstallation
 State:
 Waiting For Capacity: True
 Waiting For Command: False
 Waiting For Installation: False
 Waiting For Traffic: False
...

We already looked at status.strategy.status.waitingForCommand but there are more fields there: one for every type of target objects. If your rollout isn’t finished and not waiting for input, these fields tell you which stage you’re at.

	Field

	Meaning

	waitingForInstallation

	Waiting for the chart to be installed in application clusters

	waitingForCapacity

	Waiting for the contender to scale up and/or the incumbent to scale down

	waitingForTraffic

	Waiting for the contender traffic to increase and/or the incumbent to
decrease

Release conditions and strategy conditions

	Category

	Description

	Object conditions

	Conditions that apply to the object itself. All objects have this.

	Strategy conditions

	Conditions that apply to the strategy of the Release that’s being rolled out. Only Releases have this.

In the example above, under .status.strategy we can find a condition called ContenderAchievedCapacity, saying there’re still clusters pending capacity adjustments.

Target objects

The next step would be to look at the corresponding target object. Since we’re waiting for capacity, we’ll be looking at CapacityTarget. The object will have the same name as the release but different kind:

$ kubectl describe ct nginx-vj7sn-7cb440f1-0
...
Status:
 Clusters:
 Achieved Percent: 0
 Available Replicas: 0
 Conditions:
 Last Transition Time: 2018-07-27T07:23:29Z
 Status: True
 Type: Operational
 Last Transition Time: 2018-07-27T07:23:29Z
 Message: there are 1 sad pods
 Reason: PodsNotReady
 Status: False
 Type: Ready
 Name: minikube
 Sad Pods:
 Condition:
 Last Probe Time: <nil>
 Last Transition Time: 2018-07-27T07:23:14Z
 Status: True
 Type: PodScheduled
 Containers:
 Image: nginx:boom
 Image ID:
 Last State:
 Name: nginx
 Ready: false
 Restart Count: 0
 State:
 Waiting:
 Message: Back-off pulling image "nginx:boom"
 Reason: ImagePullBackOff
 Init Containers: <nil>
 Name: nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-2gjwl
...

Important

For installation the command would be kubectl describe it <release name>,
for traffic kubectl describe tt <release name>.

If we inspect .status.conditions of the InstallationTarget we’ll notice a condition called Ready which has status False and reason PodsNotReady. Further inspection will reveal that we have a pod called nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-2gjwl and that Kubernetes can’t pull the Docker image for one if its containers:

Message: Back-off pulling image "nginx:boom"
Reason: ImagePullBackOff

The “boom” Docker tag clearly looks wrong. To fix this you can simply edit the application object and set the correct tag in .spec.template.values.

Other sources of useful information

Shipper emits Kubernetes events with useful information. You can look at that, if you prefer:

$ kubectl get events
...
1m 1h 238 nginx-vj7sn-7cb440f1-0.154528eb631aac75 CapacityTarget Normal CapacityTargetChanged capacity-controller Set "default/nginx-vj7sn-7cb440f1-0" status to {[{minikube 0 0 [{nginx-vj7sn-7cb440f1-0-nginx-9b5c4d7c9-2gjwl [{nginx {&ContainerStateWaiting{Reason:ImagePullBackOff,Message:Back-off pulling image "nginx:boom",} nil nil} {nil nil nil} false 0 nginx:boom }] [] {PodScheduled True 0001-01-01 00:00:00 +0000 UTC 2018-07-27 09:23:14 +0200 CEST }}] [{Operational True 2018-07-27 09:23:29 +0200 CEST } {Ready False 2018-07-27 09:23:29 +0200 CEST PodsNotReady there are 1 sad pods}]}]}

Typical failure scenarios

While we can’t list all the possible failures we can list the ones that we
think happen more often than others:

	Failure

	Description

	
Can’t pull Docker image

	Strategy condition ContenderAchievedCapacity is false, InstallationTarget’s Ready condition is false and the message is something like “Back-off pulling image “nginx:boom”“

	Can’t fetch Helm chart

	Release condition Scheduled is false and the message is something like “download https://charts.example.com/charts/nginx-0.1.42.tgz: 404”

Make sure you’re on the right cluster!

There are cases where the user is checking on the wrong cluster and can’t see the pods etc. To make sure you’re on the right one:

$ kubectl get release
NAME CREATED AT
myrelease-cf68dfe8-0 23m

$ kubectl describe release <your app release> | grep release.clusters
Annotations: shipper.booking.com/release.clusters=kube-us-east-1-a

Operations and administration

Shipper is designed to make it easier to manage a fleet of Kubernetes clusters
with many teams deploying code to them.

	Cluster architecture

	Using shipperctl

	Monitoring Shipper

	Cluster fleet management

Cluster architecture

Shipper defines two kinds of Kubernetes clusters, management clusters and
application clusters.

Management clusters

Management clusters are where Shipper itself runs. It has the Shipper
Custom Resource Definitions installed, and is where application developers
interact with the Application or Release objects. The management
cluster stores the set of Cluster objects and associated Secrets that
enable Shipper to connect to the application clusters.

Typically you have one of these per large deployment, or one with a standby.

Application clusters

Application clusters are where Shipper installs and rolls out user
workloads. Shipper does not run any custom software in the application
clusters: it only needs a service account and associated RBAC configuration.

Patterns

One management, many application

This is the standard arrangement if you have a fleet of Kubernetes clusters
that you would like to manage with Shipper. The single management cluster
provides application developers with a single place to interface with Shipper’s
objects and orchestrate their rollouts.

One-and-the-same

It is totally fine if the management cluster and the application
cluster are the same. This is how Shipper is developed, and also how you would
use Shipper if you only have a single Kubernetes cluster in your
infrastructure. You can think about this configuration as using Shipper to
provide a better Deployment object, but without any multi-cluster federation.

Multiple management, each with own set of application

While Shipper fully supports namespaces as units of multi-tenancy, it does not
yet have any way to limit the set of clusters that an Application can select.
So, if your organization has multiple groups of Kubernetes clusters that are
consumed by disjoint sets of users, it might make sense to create
a management cluster for each group of application clusters that need
strong isolation between each other.

Using shipperctl

The shipperctl command is created to make using Shipper easier. The commands under shipperctl admin are meant to aid cluster administrators or users who want to administrate Shipper locally. Commands that are not a subset of shipperctl admin are meant to make life easier for users using a cluster with Shipper already running in it.

Setting Up Clusters Using shipperctl admin clusters apply

To set up clusters to work with Shipper, you should create ClusterRoleBindings, ClusterRoles, Roles, RoleBindings, Clusters, and so forth.

Meet shipperctl admin clusters apply, which is made to make this easier.

There are two use cases for this command.

First, you can use it to set up a local environment to run Shipper in, or to set up a fleet of clusters for the first time.

Second, you can integrate it into your continuous integration pipeline. Since this command is idempotent, you can use it to apply the configuration of your clusters. Here is how you would do that:

	Create the configuration file, defining your clusters. The configuration file is explained below

	Run shipperctl admin clusters apply -f clusters.yaml as part of your CI/CD pipeline

	Change the file later on, commit it to your repository, and shipperctl will apply your changes for you

Options

	
-f <path string>

	The path to the cluster configuration file. The format is explained below.

	
--kube-config <path string>

	The path to your kubectl configuration, where the contexts that shipperctl should use resides.

	
-n, --shipper-system-namespace <string>

	The namespace Shipper is running in. This is the namespace where you have a Deployment running the Shipper image.

Clusters Configuration File Format

The clusters configuration file is a YAML file. At the top level, you should specify two keys, managementClusters and applicationClusters. The clusters you specify under each key are your management and application clusters, respectively. Check out Cluster Architecture to learn more about what this means.

For each item in the list of management or application clusters, you can specify these fields:

	name (mandatory): This is the name of the cluster. When specified for an application cluster, a Cluster object will be created on the management cluster, and will point to the application.

	context (optional, defaults to the value of name): this is the name of the context from your kubectl configuration that points to this cluster. shipperctl will use this context to run commands to set up the cluster, and also to populate the URL to the api-master.

	Fields from the Cluster object (optional): you can specify any field from the Cluster object, and shipperctl will patch the Cluster object for you the next time you run it. The only field that is mandatory is region, which you have to specify to create any Cluster object.

Examples

Minimal Configuration

Here is a minimal configuration to set up a local minikube instance:

managementClusters:
- name: minikube
applicationClusters:
- name: minikube
 region: eu-west

This way, setting up an environment to run Shipper in Docker For Desktop, for example, is as easy as creating a list of managementClusters and a list of applicationClusters, and specifying docker-for-desktop as the name.

Specifying Cluster Fields

Here is something more interesting: having 2 application clusters, and marking one of them as unschedulable:

managementCluster:
- name: eu-m
applicationClusters:
- name: eu-1
 region: eu-west
- name: eu-2
 region: eu-west
 scheduler:
 unschedulable: true

Using Google Kubernetes Engine (GKE) Context Names

If you’re running on GKE, your cluster context names are likely to have underscores in them, like this: gke_ACCOUNT_ZONE_CLUSTERNAME. shipperctl’s usage of the context name as the name of the Cluster object will break, because Kubernetes objects are not allowed to have underscores in their names. To solve this, specify context explicitly in clusters.yaml, like so:

managementCluster:
- name: eu-m # make sure this is a Kubernetes-friendly name
 context: gke_ACCOUNT_ZONE_CLUSTERNAME_MANAGEMENT # add this
applicationClusters:
- name: eu-1
 region: eu-west
 context: gke_ACCOUNT_ZONE_CLUSTERNAME_APP_1 # same here
- name: eu-2
 region: eu-west
 context: gke_ACCOUNT_ZONE_CLUSTERNAME_APP_2 # and here
 scheduler:
 unschedulable: true

Monitoring Shipper

Cluster fleet management

Limitations and known issues

Shipper is just software, and all software has limits. Here are the highlights
for Shipper currently. Some of these are not principal problems, just shortcuts
that we took while building Shipper.

Chart restrictions

Shipper expects a few properties to be true about the Chart it is rolling out.
We hope to loosen or remove most of these restrictions over time.

Only Deployments

The Chart must have exactly one Deployment object. The name of the
Deployment should be templated with {{.Release.Name}}. The Deployment
object should have apiVersion: apps/v1.

Shipper cannot yet perform roll outs for StatefulSets,
HorizontalPodAutoscalers, or bare ReplicaSets. These objects can be
present in the Chart, but Shipper only knows how to manipulate Deployment
objects to scale capacity over the course of a rollout.

Services

The Chart must contain either:

	exactly one Service, or

	exactly one Service labeled with the label shipper-lb: production.

The name of the Service should be fixed: either a literal in the Chart
template, or a value which does not change from release to release.

The Service should have a selector which matches the application, not
a single release. A Service with release: {{ .Release.Name }} as part
of the Service selector will cause Shipper to error, as it will not be
able to balance traffic between multiple Releases.

If you cannot modify the Chart you’re rolling out, you can ask Shipper to
remove the release selector from the Service selector by adding the
enable-helm-release-workaround: true label to your Application. This
workaround helps make Charts created with helm create work out of the box.

Load balancing

Shipper uses Kubernetes’ built-in mechanism for shifting traffic: labeling
Pods to add or remove them to a Service’s selector. This means you
don’t need any special support in your Kubernetes clusters, but it has several
drawbacks.

We hope to mitigate these by adding support for service mesh providers as
traffic shifting backends.

Pod-based traffic shifting

Traffic shifting happens at the granularity of Pods, not requests. While
Shipper’s interface specifes a traffic weight, small fleets of Pods may
find that their actual weight differs significantly from the one they
requested.

New Pods don’t get traffic if Shipper is not working

Shipper adds the shipper-traffic-status: enabled label to Pods after they
start. This allows Shipper to correctly manage the number of Pods exposed to
traffic. However, if a Pod is deleted and Shipper is not currently running or
cannot contact the cluster, the new Pod spawned by the ReplicaSet will not
get traffic until Shipper is working again.

The primary issue is that we cannot “cork” a successfully completed rollout by
adding the traffic label to the Deployment or ReplicaSet without triggering
a native Deployment-based rollout. We could solve this by working directly
with ReplicaSets instead of Deployments, but that’s probably working
against the grain of the ecosystem (most charts contain Deployments).

Lock-step rollouts

Shipper is good at making sure that all clusters involved in a rollout are in
the same state. It does this by ensuring that all clusters are in the correct
state before marking a rollout step as complete.

However, this means that Shipper cannot perform cluster-by-cluster rollouts,
like first kube-us-east1-a, then kube-eu-west2-b. Our “federation”
layer supports this, but we have not yet designed the extension to our strategy
language to describe this kind of rollout.

This cluster-by-cluster strategy is important when limiting traffic or capacity
exposure to a new change is not enough to mitigate risk: for example, perhaps
the new version will change a cluster-local schema once it starts running.

API Reference

	High-level APIs
	Application

	Release

	Low-level APIs
	Installation Target

	Capacity Target

	Traffic Target

	Administrator APIs
	Cluster

High-level APIs

These objects represent the primary user interface to Shipper. They are the
control and reporting layers for any rollout operation.

	Application
	Example

	Spec

	Status

	Release
	Example

	Spec

	Status

Application

An Application object represents a single application Shipper can manage on
a user’s behalf. In this case, the term “application” means ‘a collection of
Kubernetes objects installed by a single Helm chart’.

Application objects are a user interface, and are the
primary way that application developers trigger new rollouts.

This is accomplished by editing an Application’s .spec.template field. The
template field is a mold that Shipper will use to stamp out a new Release
object on each edit. This model is identical to to Kubernetes Deployment
objects and their .spec.template field, which serves as a mold for
ReplicaSet objects (and by extension, Pod objects).

The .spec.template field will be copied to a new Release
object under the .spec.environment field during deployment.

Example

Application example

apiVersion: shipper.booking.com/v1alpha1
kind: Application
metadata:
 name: reviews-api
spec:
 revisionHistoryLimit: 1
 template:
 chart:
 name: reviews-api
 version: 0.0.1
 repoUrl: https://charts.example.com
 clusterRequirements:
 capabilities:
 - gpu
 - high-memory-nodes
 regions:
 - name: us-east1
 strategy:
 steps:
 - name: staging
 capacity:
 incumbent: 100
 contender: 1
 traffic:
 incumbent: 100
 contender: 0
 - name: canary
 capacity:
 incumbent: 10
 contender: 90
 traffic:
 incumbent: 10
 contender: 90
 - name: full on
 capacity:
 incumbent: 0
 contender: 100
 traffic:
 incumbent: 0
 contender: 100
 values:
 replicaCount: 2

Spec

.spec.revisionHistoryLimit

revisionHistoryLimit is an optional field that represents the number
of associated Release objects in .status.history.

If you’re using Shipper to configure development environments,
revisionHistoryLimit can be a small value, like 1. In a production
setting it should be set to a larger number, like 10 or 20. This
ensures that you have plenty of rollback targets to choose from if something
goes wrong.

.spec.template

The .spec.template is the only required field of the .spec.

The .spec.template is a Release template. It has the same schema as the
.spec.environment in a Release
object.

Status

.status.history

history is the sequence of Releases that belong to this Application.
This list is ordered by generation, old to new: the oldest Release is at the
start of the list, and the most recent (the contender) at the bottom.

.status.conditions

All conditions contain five fields: lastTransitionTime, status, type,
reason, and message. Typically reason and message are omitted in the
expected case, and populated in the error or unexpected case.

type: Aborting

This condition indicates whether an abort is currently in progress. An abort is
when the latest Release (the contender) is deleted, triggering an
automatic rollback to the incumbent.

	Type

	Status

	Reason

	Description

	Aborting

	True

	N/A

	The contender was deleted, triggering an abort. The Application
.spec.template will be overwritten with the Release
.spec.environment of the incumbent.

	Aborting

	False

	N/A

	No abort is occurring.

type: ReleaseSynced

This condition indicates whether the contender Release reflects the
current state of the Application .spec.template.

	Type

	Status

	Reason

	Description

	ReleaseSynced

	True

	N/A

	Everything is OK: Release .spec.environment and Application .spec.template are in sync.

	ReleaseSynced

	False

	CreateReleaseFailed

	The API call to Kubernetes to create the Release object failed. Check
message for the specific error.

type: RollingOut

This condition indicates whether a rollout is currently in progress. A rollout
is in progress if the contender Release object has not yet achieved the
final step in the rollout strategy.

	Type

	Status

	Reason

	Description

	RollingOut

	False

	N/A

	No rollout is in progress.

	RollingOut

	True

	N/A

	A rollout is in progress. Check message for more details.

type: ValidHistory

This condition indicates whether the Releases listed in .status.history
form a valid sequence.

	Type

	Status

	Reason

	Description

	ValidHistory

	True

	N/A

	Everything is OK. All Releases have a valid generation annotation.

	ValidHistory

	False

	BrokenReleaseGeneration

	One of the Releases does not have a valid generation annotation.
Check message for more details.

	ValidHistory

	False

	BrokenApplicationObservedGeneration

	The Application has an invalid highestObservedGeneration
annotation. check message for more details.

Release

A Release contains all the information required for Shipper to run a
particular version of an application.

To aid both the human and other users in finding resources related to a
particular Release object, the following labels are expected to be present
in a newly created Release and propagated to all of its related objects
(both in the management and application clusters):

	shipper-app

	The name of the Application object owning the Release.

	shipper-release

	The name of the Release object.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

	apiVersion: shipper.booking.com/v1alpha1
kind: Release
metadata:
 name: reviews-api-deadbeef-1
spec:
 targetStep: 0
 environment:
 chart:
 name: reviews-api
 version: 0.0.1
 repoUrl: https://charts.example.com
 clusterRequirements:
 capabilities:
 - gpu
 - high-memory-nodes
 regions:
 - name: us-east1
 strategy:
 steps:
 - name: staging
 capacity:
 incumbent: 100
 contender: 1
 traffic:
 incumbent: 100
 contender: 0
 - name: canary
 capacity:
 incumbent: 10
 contender: 90
 traffic:
 incumbent: 10
 contender: 90
 - name: full on
 capacity:
 incumbent: 0
 contender: 100
 traffic:
 incumbent: 0
 contender: 100
 values:
 replicaCount: 2
status:
 achievedStep:
 name: full on
 step: 2
 conditions:
 - lastTransitionTime: 2018-12-06T13:43:15Z
 status: "True"
 type: Complete
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Scheduled
 strategy:
 conditions:
 - lastTransitionTime: 2018-12-06T17:48:41Z
 status: "True"
 step: 2
 type: ContenderAchievedCapacity
 - lastTransitionTime: 2018-12-06T12:43:46Z
 status: "True"
 step: 2
 type: ContenderAchievedInstallation
 - lastTransitionTime: 2018-12-06T13:42:15Z
 status: "True"
 step: 2
 type: ContenderAchievedTraffic
 - lastTransitionTime: 2018-12-06T13:43:15Z
 status: "True"
 step: 2
 type: IncumbentAchievedCapacity
 - lastTransitionTime: 2018-12-06T13:42:45Z
 status: "True"
 step: 2
 type: IncumbentAchievedTraffic
 state:
 waitingForCapacity: "False"
 waitingForCommand: "False"
 waitingForInstallation: "False"
 waitingForTraffic: "False"

Spec

.spec.targetStep

targetStep defines which strategy step this Release should be trying to
complete. It is the primary interface for users to advance or retreat a given
rollout.

.spec.environment

The environment contains all the information required for an
application to be deployed with Shipper.

Important

Roll-forwards and roll-backs have no difference from Shipper’s
perspective, so a roll-back can be performed simply by replacing an
Application’s .spec.template field with the .spec.environment
field of the Release you want to roll-back to.

.spec.environment.chart

	1
2
3
4

	 chart:
 name: reviews-api
 version: 0.0.1
 repoUrl: https://charts.example.com

The environment chart key defines the Helm Chart that contains the Kubernetes object
templates for this Release. name, version, and repoUrl are all
required. repoUrl is the Helm Chart repository that Shipper should
download the chart from.

Note

Shipper will cache this chart version internally after fetching it, just
like pullPolicy: IfNotPresent for Docker images in Kubernetes. This
protects against chart repository outages. However, it means that if you
need to change your chart, you need to tag it with a different version.

.spec.environment.clusterRequirements

	1
2
3
4
5
6

	 clusterRequirements:
 capabilities:
 - gpu
 - high-memory-nodes
 regions:
 - name: us-east1

The environment clusterRequirements key specifies what kinds of clusters
this Release can be scheduled to. It is required.

clusterRequirements.capabilities is a list of capability names this
Release requires. They should match capabilities specified in Cluster objects exactly. This may be left empty
if the Release has no required capabilities.

clusterRequirements.regions is a list of regions this Release must run in. It is required.

.spec.environment.strategy

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23

	 strategy:
 steps:
 - name: staging
 capacity:
 incumbent: 100
 contender: 1
 traffic:
 incumbent: 100
 contender: 0
 - name: canary
 capacity:
 incumbent: 10
 contender: 90
 traffic:
 incumbent: 10
 contender: 90
 - name: full on
 capacity:
 incumbent: 0
 contender: 100
 traffic:
 incumbent: 0
 contender: 100

The environment strategy is a required field that specifies the rollout strategy to
be used when deploying the Release.

.spec.environment.strategy.steps contains a list of steps that must be
executed in order to complete a release. A step should have the follwing keys:

	Key

	Description

	.name

	The step name, meant for human users. For example, staging, canary or full on.

	.capacity.incumbent

	The percentage of replicas, from the total number of required replicas
the incumbent Release should have at this step.

	.capacity.contender

	The percentage of replicas, from the total number of required replicas
the contender Release should have at this step.

	.traffic.incumbent

	The weight the incumbent Release has when load balancing traffic
through all Release objects of the given Application.

	.traffic.contender

	The weight the contender Release has when load balancing traffic
through all Release objects of the given Application.

.spec.environment.values

The environment values key provides parameters for the Helm Chart templates. It is
exactly equivalent to a values.yaml file provided to the helm install -f
values.yaml invocation. Like values.yaml it is technically optional, but
almost all rollouts are likely to include some dynamic values for the chart,
like the image tag.

Almost all Charts will expect some values like replicaCount,
image.repository, and image.tag.

Status

.status.achievedStep

achievedStep indicates which strategy step was most recently completed.

.status.conditions

All conditions contain five fields: lastTransitionTime, status, type,
reason, and message. Typically reason and message are omitted in the
expected case, and populated in the error or unexpected case.

type: Complete

This condition indicates whether a Release has finished its strategy, and
should be considered complete.

type: Scheduled

This condition indicates whether the clusterRequirements were satisfied and
a concrete set of clusters selected for this Release.

.status.strategy

This section contains information on the progression of the strategy.

.status.strategy.conditions

These conditions represent the precise state of the strategy: for each of the
incumbent and contender, whether they have converged on the state
defined by the given strategy step.

.status.strategy.state

The state keys are intended to make it easier to interpret the strategy
conditions by summarizing into a high level conclusion: what is Shipper waiting
for right now? If it is waitingForCommand: "True" then the rollout is
awaiting a change to .spec.targetStep to proceed. If any other key is
True, then Shipper is still working to achieve the desired state.

Low-level APIs

These objects represent low-level commands defining the state of specific
clusters, as well as the current status of those commands. Together they
provide ‘just enough federation’ to implement Shipper’s rollout strategies.

They depend on an associated Release object to work correctly: they cannot be
created in isolation.

	Installation Target
	Example

	Spec

	Status

	Capacity Target
	Example

	Spec

	Status

	Traffic Target
	Example

	Spec

	Status

Installation Target

An InstallationTarget describes the concrete set of clusters where the release
should be installed. It is created by the Schedule Controller after the
concrete clusters are picked using clusterRequirements.

The Installation Controller acts on InstallationTarget objects by getting the
chart, values, and sidecars from the associated Release object,
rendering the chart per-cluster, and inserting those objects into each target
cluster. Where applicable, these objects are always created with 0 replicas.

It updates the status resource to indicate progress for each target cluster.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

	apiVersion: shipper.booking.com/v1alpha1
kind: InstallationTarget
metadata:
 name: api-3f498d25-0
 namespace: service-directory
spec:
 clusters:
 - kube-us-east1-a
 - kube-eu-west2-b
status:
 clusters:
 - conditions:
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Ready
 name: kube-us-east1-a
 status: Installed
 - conditions:
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Ready
 name: kube-eu-west2-b
 status: Installed

Spec

.spec.clusters

The clusters field is a list of cluster names known to Shipper where the associated Release should be installed.
Installation means rendering all the objects in the Chart and inserting them
into the cluster.

	1
2
3
4

	spec:
 clusters:
 - kube-us-east1-a
 - kube-eu-west2-b

Status

.status.clusters

.status.clusters is a list of objects representing the installation status
of all clusters where the associated Release objects must be installed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	status:
 clusters:
 - conditions:
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Ready
 name: kube-us-east1-a
 status: Installed
 - conditions:
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T16:53:24Z
 status: "True"
 type: Ready
 name: kube-eu-west2-b
 status: Installed

The following table displays the keys a cluster status entry should have:

	Key

	Description

	name

	The Application Cluster name. For example, kube-us-east1-a.

	status

	Failed in case of failure, or Installed in case of success.

	message

	A message describing the reason Shipper decided that it has failed.

	conditions

	A list of all conditions observed for this particular Application Cluster.

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the
InstallationTarget object for the Operational condition type:

	Type

	Status

	Reason

	Description

	Operational

	True

	N/A

	Cluster is reachable, and seems to be operational.

	Operational

	False

	TargetClusterClientError

	There is a problem contacting the Application Cluster; Shipper
either doesn’t know about this Application Cluster, or there is
another issue when accessing the Application Cluster. Details
can be found in the .message field.

	Operational

	False

	ServerError

	Some error has happened Shipper couldn’t classify. Details can be
found in the .message field.

The following table displays the different conditions statuses and reasons reported in the
InstallationTarget object for the Ready condition type:

	Type

	Status

	Reason

	Description

	Ready

	True

	N/A

	Indicates that Kubernetes has achieved the desired state related to
the InstallationTarget object.

	Ready

	False

	ServerError

	Shipper could not either create an object in the Application Cluster,
or an error occurred when trying to fetch an object from the
Application Cluster. Details can be found in the .message field.

	Ready

	False

	ChartError

	There was an issue while processing a Helm Chart, such as invalid
templates being used as input, or rendered templates that do not
match any known Kubernetes object. Details can be found in the
.message field.

	Ready

	False

	ClientError

	Shipper couldn’t create a resource client to process a particular
rendered object. Details can be found in the .message field.

	Ready

	False

	UnknownError

	Some error Shipper couldn’t classify has happened. Details can be
found in the .message field.

Capacity Target

A CapacityTarget is the interface used by the Strategy Controller to change
the target number of replicas for an application in a set of clusters. It is
acted upon by the Capacity Controller.

The status resource includes status per-cluster so that the Strategy
Controller can determine when the Capacity Controller is complete and it can
move to the traffic step.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

	apiVersion: shipper.booking.com/v1alpha1
kind: CapacityTarget
metadata:
 name: reviewsapi-deadbeef-0
 namespace: reviewsapi
 annotations:
 "shipper.booking.com/v1/finalReplicaCount": 10
 labels:
 release: reviewsapi-4
spec:
 clusters:
 - name: kube-us-east1-a
 percent: 10
 - name: kube-eu-west2-b
 percent: 10
status:
 clusters:
 - name: kube-us-east1-a
 availableReplicas: 1
 achievedPercent: 10
 - name: kube-eu-west2-b
 availableReplicas: 1
 achievedPercent: 10
 sadPods:
 - name: reviewsapi-deadbeef-0-cafebabe
 phase: Terminated
 containers:
 - name: app
 status: CrashLoopBackOff
 condition:
 type: Ready
 status: False
 reason: ContainersNotReady
 message: "unready containers [app]"

Spec

.spec.clusters

clusters is a list of clusters the associated Release object is present
in. Each item in the list has a name, which should map to a Cluster object, and a percent. percent declares how
much capacity the Release should have in this cluster relative to the final
replica count. For example, if the final replica count is 10 and the
percent is 50, the Deployment object for this Release will be patched to
have 5 pods.

	1
2
3
4
5
6

	 release: reviewsapi-4
spec:
 clusters:
 - name: kube-us-east1-a
 percent: 10
 - name: kube-eu-west2-b

Status

.status.clusters

.status.clusters is a list of objects representing the capacity status
of all clusters where the associated Release objects must be installed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20

	 percent: 10
status:
 clusters:
 - name: kube-us-east1-a
 availableReplicas: 1
 achievedPercent: 10
 - name: kube-eu-west2-b
 availableReplicas: 1
 achievedPercent: 10
 sadPods:
 - name: reviewsapi-deadbeef-0-cafebabe
 phase: Terminated
 containers:
 - name: app
 status: CrashLoopBackOff
 condition:
 type: Ready
 status: False
 reason: ContainersNotReady
 message: "unready containers [app]"

The following table displays the keys a cluster status entry should have:

	Key

	Description

	name

	The Application Cluster name. For example, kube-us-east1-a.

	availableReplicas

	The number of pods that have successfully started up

	achievedPercent

	What percentage of the final replica count does availableReplicas
represent.

	sadPods

	Pod Statuses for up to 5 Pods which are not yet Ready.

	conditions

	A list of all conditions observed for this particular Application Cluster.

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the
CapacityTarget object for the Operational condition type:

	Type

	Status

	Reason

	Description

	Operational

	True

	N/A

	Cluster is reachable, and seems to be operational.

	Operational

	False

	ServerError

	Some error has happened Shipper couldn’t classify. Details can be
found in the .message field.

The following table displays the different conditions statuses and reasons reported in the
CapacityTarget object for the Ready condition type:

	Type

	Status

	Reason

	Description

	Ready

	True

	N/A

	The correct number of pods are running and all of them are Ready.

	Ready

	False

	WrongPodCount

	This cluster has not yet achieved the desired number of pods.

	Ready

	False

	PodsNotReady

	The cluster has the desired number of pods, but not all of them are
Ready.

	Ready

	False

	MissingDeployment

	Shipper could not find the Deployment object that it expects to be able
to adjust capacity on. See message for more details.

Traffic Target

A TrafficTarget is an interface to a method of shifting traffic between
different Releases based on weight. This may be implemented in a number of
ways: pod labels and Service objects, service mesh manipulation, or something
else. For the moment only vanilla Kubernetes traffic shifting is supported: pod
labels and Service objects.

It is manipulated by the Strategy Controller as part of executing a release
strategy.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33

	apiVersion: shipper.booking.com/v1alpha1
kind: TrafficTarget
metadata:
 name: reviewsapi-deadbeaf-0
 namespace: reviewsapi
spec:
 clusters:
 - name: kube-us-east1-a
 weight: 30
 - name: kube-eu-west2-b
 weight: 30
status:
 clusters:
 - achievedTraffic: 100
 conditions:
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Ready
 name: kube-us-east1-a
 status: Synced
 - achievedTraffic: 100
 conditions:
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Ready
 name: kube-eu-west2-b
 status: Synced

Spec

.spec.clusters

	1
2
3
4
5
6

	spec:
 clusters:
 - name: kube-us-east1-a
 weight: 30
 - name: kube-eu-west2-b
 weight: 30

clusters is a list of cluster entries and the desired traffic weight for
this Release in that cluster. The Traffic controller calculates the correct
traffic ratio for this Release by summing weights from all TrafficTarget
objects available.

Status

.status.clusters

.status.clusters is a list of objects representing the traffic status
of all clusters where the associated Release objects must be installed.

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22

	status:
 clusters:
 - achievedTraffic: 100
 conditions:
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Ready
 name: kube-us-east1-a
 status: Synced
 - achievedTraffic: 100
 conditions:
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Operational
 - lastTransitionTime: 2018-12-06T12:43:09Z
 status: "True"
 type: Ready
 name: kube-eu-west2-b
 status: Synced

The following table displays the keys a cluster status entry should have:

	Key

	Description

	name

	The Application Cluster name. For example, kube-us-east1-a.

	status

	Failed in case of failure, or Synced in case of success.

	achievedTraffic

	The traffic weight achieved by Shipper for this cluster.

	conditions

	A list of all conditions observed for this particular Application Cluster.

.status.clusters.conditions

The following table displays the different conditions statuses and reasons reported in the
TrafficTarget object for the Operational condition type:

	Type

	Status

	Reason

	Description

	Operational

	True

	N/A

	Cluster is reachable, and seems to be operational.

	Operational

	False

	ServerError

	There is a problem contacting the Application Cluster; Shipper
either doesn’t know about this Application Cluster, or there is
another issue when accessing the Application Cluster. Details
can be found in the .message field.

The following table displays the different conditions statuses and reasons reported in the
TrafficTarget object for the Ready condition type:

	Type

	Status

	Reason

	Description

	Ready

	True

	N/A

	The desired traffic weight has been successfully achieved.

	Ready

	False

	MissingService

	Shipper could not find a Service object to use for traffic shifting.
Check message for more details.

	Ready

	False

	ServerError

	Shipper got an error status code while calling the Kubernetes API of
the Application Cluster. Details in the .message field.

	Ready

	False

	ClientError

	Shipper couldn’t create a resource client to process a particular
rendered object. Details can be found in the .message field.

	Ready

	False

	InternalError

	Something went wrong with the math that Shipper does to calculate the
desired number of pods. See the .message field for the exact error.

	Ready

	False

	UnknownError

	Some error Shipper couldn’t classify has happened. Details can be
found in the .message field.

Administrator APIs

These objects represent internal details of a Shipper installation. They expose
tools for administrators to configure Shipper or change how Shipper works for
application developers.

	Cluster
	Example

	Spec

	Status

Cluster

A Cluster object represents a Kubernetes cluster that Shipper can deploy to.
It is an administrative interface.

They serve two purposes:

	Enable Shipper to connect to the cluster to manage it

	Enable administrators to influence how Releases are scheduled to this cluster.

The second point allows administrators to perform tasks like load balancing
workloads between clusters, shift workloads from one cluster to another, or
drain clusters for risky maintenance. For examples of these tasks, see the
administrator’s guide.

Example

	 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15

	apiVersion: shipper.booking.com/v1alpha1
kind: Cluster
metadata:
 name: kube-us-east1-a
 namespace: ""
spec:
 apiMaster: https://10.0.0.1
 capabilities:
 - gpu
 - ssd
 - high-memory-nodes
 region: us-east1
 scheduler:
 unschedulable: false
 weight: 100

Spec

.spec.apiMaster

apiMaster is the URL of the Kubernetes cluster API server. Shipper uses
this to connect to the cluster to manage it. This is the same URL as in
a ~/.kube/config for enabling kubectl commands.

.spec.capabilities

capabilities[] is a required field that lists the capabilities the
cluster has. Capabilities are arbitrary tags that can be used by Application
objects to select clusters while rolling out. For example, one Kubernetes
cluster might have nodes provisioned with GPUs for video encoding. Adding ‘gpu’
as a Cluster capability will allow application developers to specify ‘gpu’ in
their set of Application clusterRequirements if their application needs
access to that feature.

.spec.region

region is a required field that specifies the region the cluster belongs to.

.spec.scheduler

scheduler.unschedulable is an optional field that causes clusters to
be ignored during rollout cluster selection. This allows operators to mark
clusters to be drained. Default: false.

scheduler.weight is an optional field that assigns a weight to the
cluster. The weight influences the priority of the cluster during rollout
cluster selection. Default: 100.

scheduler.identity is an optional field that assigns an identity to
the cluster different than its .metadata.name value. This allows operators
to make one cluster ‘impersonate’ another in order to transfer all of the
Applications on one cluster to another specific cluster. Default:
.metadata.name.

More information on how to use these fields to manage a fleet of clusters can
be found in the Administrator’s guide.

Status

Cluster objects do not currently have a meaningful .status field.

Index

 Symbols
 | C

Symbols

 	
 	
 --kube-config <path string>

 	command line option

 	
 -f <path string>

 	command line option

 	
 	
 -n, --shipper-system-namespace <string>

 	command line option

C

 	
 	
 command line option

 	--kube-config <path string>

 	-f <path string>

 	-n, --shipper-system-namespace <string>

Building Shipper yourself

Shipper uses go build to produce binaries. All dependencies are present in Shipper’s repository, and managed with dep [https://github.com/golang/dep].

Requirements

	Go 1.10+

	Go dep

Building Shipper

Assuming you have Go installed and the GOPATH environment variable properly defined:

build.sh

mkdir $GOPATH/src/github.com/bookingcom
cd $GOPATH/src/github.com/bookingcom
git clone git@github.com:bookingcom/shipper.git
go build cmd/shipper

Developing Shipper

	Building Shipper yourself
	Requirements

	Building Shipper

 TODO: what kind of Charts work with Shipper, document the workaround for
off-the-shelf charts, shipper-lb, apps/v1.

Continuous Integration and Deployment

Lorem ipsum.

 _static/file.png

_static/minus.png

_static/down.png

_static/up-pressed.png

_static/plus.png

_static/up.png

_static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/down-pressed.png

nav.xhtml

 Table of Contents

 		
 Shipper documentation

 		
 Documentation overview

 		
 Introduction

 		
 Shipper

 		
 Why does Shipper exist?

 		
 What is Shipper from a technical point of view?

 		
 Multi-cluster, multi-region, multi-cloud

 		
 Release Management

 		
 Roll Backs

 		
 Charts As Input

 		
 Getting help

 		
 Shipper in 5 minutes

 		
 Step 0: procure a cluster

 		
 Step 1: get shipperctl

 		
 Step 2: write a cluster manifest

 		
 Step 3: apply the manifest

 		
 Step 4: deploy shipper

 		
 Step 5: do a rollout!

 		
 User guide

 		
 Rolling out with Shipper

 		
 Application object

 		
 Checking progress

 		
 Advancing the rollout

 		
 Troubleshooting Shipper

 		
 Prerequisites

 		
 Fundamentals

 		
 The universal troubleshooting algorithm

 		
 Other sources of useful information

 		
 Typical failure scenarios

 		
 Make sure you’re on the right cluster!

 		
 Operations and administration

 		
 Cluster architecture

 		
 Management clusters

 		
 Application clusters

 		
 Patterns

 		
 Using shipperctl

 		
 Setting Up Clusters Using shipperctl admin clusters apply

 		
 Monitoring Shipper

 		
 Cluster fleet management

 		
 Limitations and known issues

 		
 Chart restrictions

 		
 Only Deployments

 		
 Services

 		
 Load balancing

 		
 Pod-based traffic shifting

 		
 New Pods don’t get traffic if Shipper is not working

 		
 Lock-step rollouts

 		
 API Reference

 		
 High-level APIs

 		
 Application

 		
 Release

 		
 Low-level APIs

 		
 Installation Target

 		
 Capacity Target

 		
 Traffic Target

 		
 Administrator APIs

 		
 Cluster

_static/ajax-loader.gif

