

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Shinken Manual 1.4 documentation

Welcome to Shinken’s documentation!

Contents:

	About
	About Shinken

	Feature comparison between Shinken and Nagios

	Shinken notable innovations

	The project Vision

	Feature selection and release cycle

	Release code names

	Getting Started
	Advice for Beginners

	Quickstart Installation Guides

	Installations

	Upgrading Shinken

	Monitoring Windows Machines

	Monitoring GNU/Linux & Unix Machines

	Monitoring Network Printers

	Monitoring Routers and Switches

	Monitoring Publicly Available Services

	Nagios/Shinken Plugins

	Introduction

	What Are Plugins?

	Shinken integrated data acquisition modules

	Plugins As An Abstraction Layer

	What Plugins Are Available?

	Obtaining Plugins

	How Do I Use Plugin X?

	Plugin API

	Configuring Shinken
	Configuration Overview

	Main Configuration File Options

	Object Configuration Overview

	Object Definitions

	Custom Object Variables

	Main advanced configuration

	Running Shinken
	Verifying Your Configuration

	Starting and Stopping Shinken

	The Basics
	Setting up a basic Shinken Configuration

	Nagios/Shinken Plugins

	Understanding Macros and How They Work

	Standard Macros in Shinken

	Host Checks

	Service Checks

	Active Checks

	Passive Checks

	State Types

	Time Periods

	Determining Status and Reachability of Network Hosts

	Notifications

	Active data acquisition modules

	Network dependencies

	Logical dependencies

	Update Shinken

	Medium
	Business rules

	Monitoring a DMZ

	Shinken High Availability

	Mixed GNU/linux AND Windows pollers

	Notifications and escalations

	The Notification Ways, AKA mail 24x7, SMS only the night for a same contact

	Passive data acquisition

	Advanced Topics
	External Commands

	Event Handlers

	Volatile Services

	Service and Host Freshness Checks

	Distributed Monitoring

	Redundant and Failover Network Monitoring

	Detection and Handling of State Flapping

	Notification Escalations

	On-Call Rotations

	Monitoring Service and Host Clusters

	Host and Service Dependencies

	State Stalking

	Performance Data

	Scheduled Downtime

	Adaptive Monitoring

	Predictive Dependency Checks

	Cached Checks

	Passive Host State Translation

	Service and Host Check Scheduling

	Object Inheritance

	Advanced tricks

	Business rules

	Migrating from Nagios to Shinken

	Multi layer discovery

	Multiple action urls

	Aggregation rule

	Scaling Shinken for large deployments

	Defining advanced service dependencies

	Shinken’s distributed architecture

	Shinken’s distributed architecture with realms

	Macro modulations

	Shinken and Android

	Send sms by gateway

	Triggers

	Unused nagios parameters

	Advanced discovery with Shinken

	Discovery with Shinken

	Config
	Host Definition

	Host Group Definition

	Service Definition

	Service Group Definition

	Contact Definition

	Contact Group Definition

	Time Period Definition

	Command Definition

	Service Dependency Definition

	Service Escalation Definition

	Host Dependency Definition

	Host Escalation Definition

	Extended Host Information Definition

	Extended Service Information Definition

	Notification Way Definition

	Realm Definition

	Arbiter Definition

	Scheduler Definition

	Poller Definition

	Reactionner Definition

	Broker Definition

	Shinken Architecture
	Arbiter supervision of Shinken processes

	Advanced architectures

	How are commands and configurations managed in Shinken

	Problems and impacts correlation management

	Problems and impacts correlation management

	Shinken Architecture

	Troubleshooting
	FAQ - Shinken troubleshooting

	Integration With Other Software
	Integration Overview

	SNMP Trap Integration

	TCP Wrappers Integration

	Thruk

	Nagios CGI UI

	Thruk interface

	Use Shinken with ...

	Use Shinken with Centreon

	Use Shinken with Graphite

	Use Shinken with Multisite

	Use Shinken with Nagvis

	Use Shinken with Old CGI and VShell

	Use Shinken with PNP4Nagios

	Use Shinken with Thruk

	Use Shinken with WebUI

	Security and Performance Tuning
	Security Considerations

	Tuning Shinken For Maximum Performance

	Scaling a Shinken installation

	Shinken performance statistics

	How to monitor ...
	Monitoring an Asterisk server

	check_wmi_plus.pl for shinken on windows

	Monitoring Active Directory

	Monitoring a DHCP server

	Monitoring Microsoft Exchange

	Monitoring a IIS server

	Monitoring Linux Devices

	Monitoring Linux Devices

	Monitoring a Linux via a Local Agent

	Monitoring a Linux via SNMP

	Monitoring Publicly Available Services

	Monitoring a printer

	Monitoring Network Devices

	Monitoring Windows Devices

	Monitoring Microsoft Mssql server

	Monitoring MySQL

	Monitoring VMware Machines

	Monitoring Microsoft Mssql server

	Monitoring MySQL

	Monitoring Publicly Available Services

	Monitoring an Oracle database server

	Monitoring a printer

	Monitoring Network Devices

	Monitoring VMware Machines

	Monitoring Windows witn NSClient++

	Monitoring Windows Devices

	How to contribute
	Shinken packs

	Shinken modules and Shinken packs

	Help the Shinken project

	Getting Help and Ways to Contribute

	Shinken Package Manager

	Development
	Shinken Programming Guidelines

	Test Driven Development

	Nagios Plugin API

	Developing Shinken Daemon Modules

	Hacking the Shinken Code

	Shinken modules
	Amazon AWS/EC2 import

	Amazon AWS/EC2 import

	The distributed retention modules

	How to enable and use Livestatus module

	Exporting data for reporting

	Monitoring Linux System with Glances and checkglances.py

	Shinken GLPI integration

	Ip Tag module

	Ubuntu Landscape import

	Shinken Livestatus API

	NSCA module

	Retention troubleshooting

	NRPE Module

	Extending Shinken

	Broker modules

	TSCA (Thrift Service Check Acceptor)

	VMWare Arbiter module

	Web Service Module

	SNMP module

	WebUI module

	Reference
	shinken

	shinken Package

	clients Package

	daemons Package

	discovery Package

	misc Package

	objects Package

	webui Package

Indices and tables

	Index

	Module Index

	Search Page

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

About

	About Shinken
	What Is It?

	System Requirements

	Legacy Requirements

	Licensing

	Acknowledgements

	Downloading The Latest Version

	Feature comparison between Shinken and Nagios
	Change Log

	Shinken notable innovations
	Summary

	Notable items for DevOps admins

	Notable items for Nagios admins

	Notable items for Zabbix admins

	Notable items for Zenoss admins

	The project Vision
	What we want and how we want it

	What we do not want

	Feature selection and release cycle
	Feature selection

	Release cycle

	Release code names

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	About

About Shinken

What Is It?

Shinken is a system and network monitoring application. It supervises hosts and services from an IT and business point of view. Alerting or taking action on failures and recovery.

Shinken is a monitoring tool compatible with Nagios [http://www.nagios.org] configuration, plugins and interfaces. It is written in Python [http://www.python.org/], so it should work under all Python supported platforms.

Some of the many features of Shinken include:

	Web 2.0 Interface named WebUI that has innovative methods to visualize the state of your systems

	Web 2.0 Interface named SkonfUI, that links discovery and configuration management

	Livestatus networked API to provide realtime access to performance, status and configuration data
* Interchangeable console or mobile interfaces

	Providing operational or business insight
* Ability to map business processes to Hosts and services
* Ability to associate a business impact metrics to any warning or outages of hosts and services used to deliver a business process
* Ability to define network host hierarchy using “parent” hosts, allowing detection of and distinction between hosts that are down and those that are unreachable

	Monitoring Hosts and Services
* Simple plugin design that allows users to easily develop their own service checks
* Monitoring of network services (“SMTP”, “POP3”, “HTTP”, “NTP”, PING, etc.)
* Monitoring of host resources (processor load, disk usage, etc.)
* Hundreds of Nagios check scripts to choose from
* High performance plugin modules integrated in the distributed daemons to easily extend the scope of the software
* Parallelized service and host checks
* Designed for highly available and load balanced monitoring
* Acquire performance data from collectd via its network interface

	Define Triggers in the Shinken core to calculate new performance metrics or states based on performance or state data

	Contact notifications when service or host problems occur and get resolved (via email, SMS, pager, or user-defined method)

	Ability to define event handlers to be run during service or host events for proactive problem resolution

	Integrates with PNP4Nagios and Graphite time-series databases for storing data, querying or displaying data.

	Supports distributed retention modules, caches and databases to meet persistence and performance expectations

System Requirements

The requirement for running Shinken are the Python interpreter and a very short list of Python modules. You will also want to have TCP/IP configured, as the typical installation will download packages to install from the Internet and most service checks will be performed over the network.

Legacy Requirements

You are not required to use the original Nagios user interface CGIs included with Shinken. However, if you do decide to use them for migration purposes, you will need to have the following software installed...

	A web server (preferrably Apache [http://www.apache.org/])

	Thomas Boutell’s gd library [http://www.boutell.com/gd/] version 1.6.3 or higher.

Licensing

Shinken is licensed under the terms of the GNU Affero General Public License [http://www.gnu.org/licenses/agpl.txt] as published by the Free Software Foundation [http://www.fsf.org/]. This gives you legal permission to copy, distribute and/or modify Shinken under certain conditions. Read the ‘LICENSE’ file in the Shinken distribution or read the online version of the license [http://www.gnu.org/copyleft/gpl] for more details.

Shinken is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

The Shinken documentation is based on Nagios so is licensed under the terms of the GNU General Public License [http://www.gnu.org/copyleft/gpl] Version 2 as published by the Free Software Foundation [http://www.fsf.org/]. This gives you legal permission to copy, distribute and/or modify Shinken under certain conditions. Read the ‘LICENSE’ file in the Shinken distribution or read the online version of the license [http://www.gnu.org/copyleft/gpl] for more details.

Shinken is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE WARRANTY OF DESIGN, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE.

Acknowledgements

A long list of people have contributed to Shinken. The THANKS file included as part of Shinken and the project page at http://www.shinken-monitoring.org provide more details.

Downloading The Latest Version

You can check for new versions of Shinken at http://www.shinken-monitoring.org.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	About

Feature comparison between Shinken and Nagios

Shinken is not just a fork of Nagios. It has been rewritten completely as a modern distributed application while maintaining compatibility with the Nagios configuration, LiveStatus API and check plugins.

The major differences are listed on the page http://www.shinken-monitoring.org/what-is-in-shinken-not-in-nagios-and-vice-versa/.

Change Log

The Changelog file is included in the source root directory of the source code distribution.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	About

Shinken notable innovations

Summary

	Shinken is a true distributed applications which splits the different roles into separate daemons

	Shinken permits the use of modules to extend and enrich the various Shinken daemons

	Shinken is 100% python, from its API, frontend, back-end, discovery engine and high performance poller modules

	Scalability
* Shinken has a powerful scheduler for supervising tens of thousands of devices v1.2
* Shinken can supervise multiple independent environments/customers
* Shinken uses MongoDB to provide a distributed and highly scalable back-end for storing historical event data (experimental)

	Graphical and statistical analysis
* Shinken provides integration with the modern time series database, Graphite
* Shinken provides triggers against performance or event data in the core and in external checks (experimental) v1.2

	Correlation
* Shinken differentiates the business impact of a critical alert on a toaster versus the web store
* Shinken supports efficient correlation between parent-child relationship and business process rules

Notable items for DevOps admins

	Use Shinken and Graphite seamlessly in the Shinken WebUI. v1.2

	Export data from Shinken to Graphite and manipulate the data point names with PRE, POST, and SOURCE variables

	Buffered output to Graphite.

	Multiple Graphite destination servers.

	Use check_graphite to poll graphite and generate alerts.

	Use wildcards in checks against Graphite.

	Auto-detection, logging and semi-automatic registration of new passive checks. Planned for v1.4

	Mix and match frontends(Multisite, Nagvis), plugins, alerting(Pagerduty), analysis (Splunk, Logstash, Elastic Search, Kibana)

Notable items for Nagios admins

	Modern, Scalable, HA and distributed out of the box.

	Business rules, business impacts levels integrated in the core.

	The code is approachable for sys admins to improve and customize the core and manage additions using modules.

	Supervision packs(templates+commands+etc) and community

	For a full comparison: Shinken versus Nagios page [http://www.shinken-monitoring.org/what-is-in-shinken-not-in-nagios-and-vice-versa/].

	Can you say Graphite integration..

Shinken is the modern Nagios, re-implemented in Python, end of story.

Notable items for Zabbix admins

	A powerful and efficient dependency model that does event suppression. Not as flexible as the great Zabbix calculated items, but suffers from much less false positives, which is the whole point, especially at 3am.

	Uses the Graphite time-series database, which is hands-down one of the most modern, easy to use, fast, powerful and flexible time-series databases. None of the slooowness associated with scaling a SQL based storage for time-series.

	The code is approachable for sys admins to improve and customize the core and using modules.

	The new SNMP poller is more intelligent and efficient in its collection against remote devices. Zabbix collects each metric as it is scheduled, so IN/OUT stats of the same interface could be collected at two different times, errr, say what!

Notable items for Zenoss admins

	A working dependency model that does good and efficient event suppression and correlation.

	100% open-source...

	Can you say Graphite integration, MongoDB, distributed architecture and seamless HA.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	About

The project Vision

What we want and how we want it

We are here to create an open source monitoring solution that is:

	easy to install;

	easy to use for new users;

	useful for sysadmins and business types;

	built for scalability;

	incorporates high availability;

	multi-platform (and not just Unix ones);

	utf8 compliant;

	nearly fully compatible with Nagios configuration;

	fully compatible with its plugins and interfaces;

	fast enough

	centralized configuration that should be as easy as possible for the admin to manage;

	independent from any huge monitoring solution;

	fun to code :)

	More precisely:

	
	The 2 first points are to make the system accessible to more people by automating and pre-building the typical monitoring environments so that users can focus on customizing, not just getting the basics working.

	Shinken provides a business monitoring service, not just an IT focused service. This means helping users to differentiate between real business impacting outages and minor IT related failures.

	The next two are for the global architecture. We should be able to scale the load within minutes without losing the high availability feature. We believe this has been successfully implemented. :)

	Multi platform is also important. If we only focused on GNU/Linux, a large user segment would be left out (Windows!). Of course, some features inherited from Nagios are Unix-only like named pipes, but we should promote other ways for users to bypass this (like commands sent to livestatus or in a web based API for example). Such “os limited” points must be limited to modules.

This is what we want to have (and already have for the most part).

What we do not want

At the beginning of the project, we used to say that what we didn’t want was our own webui. This became a requirement. Why? Because none of the current UIs truly provided the right way to prioritize and display business oriented information to the end users. Features like root problem analysis or business impact. After trying to adapt the external UIs, we had to roll our own. So we did. :)

So there is nothing we do not want, if in the end it helps Shinken’s users.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	About

Feature selection and release cycle

Feature selection

The Shinken Ideascale [http://shinken.ideascale.com] is a key input in the feature selection process, everyone can propose and vote for his favorite feature.
Features are now managed based on expected user value. Features that users desire the most and which fit the project vision will be prioritized. The feature vote should be promoted to all users. The more users vote, the more we are sure to give them the most value for their monitoring system.

Release cycle

	“value first priority”

	Major changes are handled in github forks by each developer

	Very open to user submitted patches

	Comprehensive automated QA to enable a fast release cycle without sacrificing stability

	Tagging experimental unfinished features in the documentation

	Release soon and release often mentality

Release code names

I (Jean Gabès) keep the right to name the code name of each release. That’s the only thing I will keep for me in this project as its founder. :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Getting Started

	Advice for Beginners

	Quickstart Installation Guides
	Guides

	Post-Installation Modifications

	Installations
	Shinken Requirements
	Mandatory Requirements

	Conditional Requirements

	Installing/Checking Common Requirements on Linux
	Python

	Pyro

	Prerequisites for Shinken 1.2
	Build Dependencies for certain modules

	Core, Libs and Modules

	Optional Python Modules for Extended Features

	Additional Software

	10 Minute Shinken Installation Guide
	Summary

	GNU/Linux & Unix Installation
	Method 1: Installation Script
	Basic automated installation

	Installation using the sources

	Run a basic installation

	Start Shinken

	Run a full installation

	Update

	Method 2: On Fedora with RPM
	First install Python Pyro

	Then install Shinken

	Enable Shinken services

	Start Shinken services

	Stop Shinken services

	Windows Installation
	Method 1: Packaged .EXE Installer
	Download the Executable installer

	Read the installation instructions

	Run the installer

	CHECK_WMI_PLUS configuration

	Post installation
	Where is the configuration?

	Do I need to change my Nagios configuration?

	What do I need to do next

	Getting Help

	Review of script’s option and parameters

	Review of variable used in the script

	Alternatives installations
	Installation
	On Ubuntu or Debian

	On windows

	On Fedora with RPM

	On Debian with DEB packages

	On RedHat/Centos and other GNU/Linux box: from the sources
	Dependencies for Debian folks

	Dependencies for Centos5/RH5 with python 2.4

	Dependencies for Centos5/RH5 with python 2.6

	Shinken installation

	Discover your network

	Setup Thruk, the Web interface

	First launch

	Shinken on RedHat 6 with Thruk and PNP4Nagios HOWTO
	Shinken

	Mail

	Thruk

	PNP4Nagios

	Monitored hosts
	SNMP

	NRPE

	SSH

	Extra: Graphite

	GNU/Linux Installation from Source
	Abstract

	Automated installation

	Manual installation process for packagers
	Requirements

	Create Shinken Account

	Download Shinken and the Plugins

	Install Shinken
	Customize the configuration

	Install the Nagios Plugins to use with Shinken

	Start Shinken

	Windows Quickstart
	Abstract

	Automated installation

	Batch file manual installation process

	You’re Done

	Nokia N900 Quickstart
	Required Packages

	About Nokia N900

	Upgrading Shinken
	Upgrading From Previous Shinken Releases

	Upgrading From Nagios 3.x

	Monitoring Windows Machines
	Introduction

	Overview

	Steps

	What’s Already Done For You

	Prerequisites

	Installing the Windows Agent

	Configuring Shinken

	Password Protection

	Restarting Shinken

	Monitoring GNU/Linux & Unix Machines
	Introduction

	Overview

	Monitoring Network Printers
	Introduction

	Overview

	Steps

	What’s Already Done For You

	Prerequisites

	Configuring Shinken

	Restarting Shinken

	Monitoring Routers and Switches
	Introduction

	Overview

	Steps

	What’s Already Done For You

	Prerequisites

	Configuring Shinken

	Monitoring Services

	Monitoring Packet Loss and RTA

	Monitoring SNMP Status Information

	Monitoring Bandwidth / Traffic Rate

	Restarting Shinken

	Monitoring Publicly Available Services
	Introduction

	Plugins For Monitoring Services

	Creating A Host Definition

	Creating Service Definitions

	Monitoring HTTP

	Monitoring FTP

	Monitoring SSH

	Monitoring SMTP

	Monitoring POP3

	Monitoring IMAP

	Restarting Shinken

	Nagios/Shinken Plugins

	Introduction

	What Are Plugins?

	Shinken integrated data acquisition modules

	Plugins As An Abstraction Layer

	What Plugins Are Available?

	Obtaining Plugins

	How Do I Use Plugin X?

	Plugin API

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Advice for Beginners

Congratulations on choosing Shinken! Shinken is quite powerful and flexible, but it can take a bit of work to get it configured just the way you’d like. Once you become familiar with how it works and what it can do for you, you’ll never want to be without it :-) Here are some important things to keep in mind for first-time Shinken users:

	Relax - it takes some time. Don’t expect to be able to get things working exactly the way you want them right off the bat. Setting up Shinken can involve a bit of work - partly because of the options that Shinken offers, partly because you need to know what to monitor on your network (and how best to do it).

	Use the quickstart instructions. The Quickstart installation guide is designed to get most new users up and running with a basic Shinken setup fairly quickly. Within 10 minutes you can have Shinken installed and monitoring your local system. Once that’s complete, you can move on to learning how to configure Shinken to do more.

	Get familiar with the Getting Started section. Shinken has a getting started documentation section, that is easier to read through for common undertakings and to understand how Shinken works. It can be simpler to follow than the exhaustive official documentation.

	Read the documentation. Shinken can be tricky to configure when you’ve got a good grasp of what’s going on, and nearly impossible if you don’t. Make sure you read the documentation (particularly the sections on “Configuring Shinken” and “The Basics”). Save the advanced topics for when you’ve got a good understanding of the basics.

	Seek the help of others. If you’ve read the documentation, reviewed the sample config files, and are still having problems, go through the Shinken user resources to learn how you can get help and contribute back to the project.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Quickstart Installation Guides

Abstract

These quickstart guides are intended to provide you with simple instructions on how to install Shinken and have it monitoring your local machine inside of 10 minutes. No advanced installation options are discussed here - just the basics that will work for 95% of users who want to get started.

Guides

Installation guides are currently available for the following OSs :

	10 Minute installation Guide for GNU/Linux and Windows

	Shinken installation requirements

	Shinken 1.2 installation requirements

	Shinken installation script

	GNU/Linux Quickstart

	Windows Quickstart

	Nokia N900

	Shinken/Thruk/PNP4Nagios on Red Hat

Post-Installation Modifications

Once you get Shinken installed and running properly, you’ll no doubt want to start monitoring more than just your local machine. Check out the following docs for how to go about monitoring other things:

	Monitoring Windows machines

	Monitoring GNU/Linux or other Unix machines

	Monitoring Netware servers

	Monitoring routers/switches

	Monitoring network printers

	Monitoring publicly available services (“HTTP”, “FTP”, “SSH”, etc.)

Also, you can check the next documentations:

	How to monitor

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Installations

	Shinken Requirements
	Mandatory Requirements

	Conditional Requirements

	Installing/Checking Common Requirements on Linux
	Python

	Pyro

	Prerequisites for Shinken 1.2
	Build Dependencies for certain modules

	Core, Libs and Modules

	Optional Python Modules for Extended Features

	Additional Software

	10 Minute Shinken Installation Guide
	Summary

	GNU/Linux & Unix Installation
	Method 1: Installation Script
	Basic automated installation

	Installation using the sources

	Run a basic installation

	Start Shinken

	Run a full installation

	Update

	Method 2: On Fedora with RPM
	First install Python Pyro

	Then install Shinken

	Enable Shinken services

	Start Shinken services

	Stop Shinken services

	Windows Installation
	Method 1: Packaged .EXE Installer
	Download the Executable installer

	Read the installation instructions

	Run the installer

	CHECK_WMI_PLUS configuration

	Post installation
	Where is the configuration?

	Do I need to change my Nagios configuration?

	What do I need to do next

	Getting Help

	Review of script’s option and parameters

	Review of variable used in the script

	Alternatives installations
	Installation
	On Ubuntu or Debian

	On windows

	On Fedora with RPM

	On Debian with DEB packages

	On RedHat/Centos and other GNU/Linux box: from the sources
	Dependencies for Debian folks

	Dependencies for Centos5/RH5 with python 2.4

	Dependencies for Centos5/RH5 with python 2.6

	Shinken installation

	Discover your network

	Setup Thruk, the Web interface

	First launch

	Shinken on RedHat 6 with Thruk and PNP4Nagios HOWTO
	Shinken

	Mail

	Thruk

	PNP4Nagios

	Monitored hosts
	SNMP

	NRPE

	SSH

	Extra: Graphite

	GNU/Linux Installation from Source
	Abstract

	Automated installation

	Manual installation process for packagers
	Requirements

	Create Shinken Account

	Download Shinken and the Plugins

	Install Shinken
	Customize the configuration

	Install the Nagios Plugins to use with Shinken

	Start Shinken

	Windows Quickstart
	Abstract

	Automated installation

	Batch file manual installation process

	You’re Done

	Nokia N900 Quickstart
	Required Packages

	About Nokia N900

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Shinken Requirements

Shinken provides an “install script” which tries to manage all necessary steps to install and get Shinken up and running.
Use it if your Operating System is compatible with it, otherwise use the Fedora RPMs or the setup.py method.

Get me back to the 10 minute installation guide.

Mandatory Requirements

Shinken installation prefix:

You must use the same installation prefix on ALL your Shinken hosts.

Shinken requires on all hosts running a Shinken daemon the SAME versions :

	Python [http://www.python.org/download/] 2.4 or higher
	Python 2.6 or higher is mandatory on the server running the built-in Web interface (WebUI)

	Python 2.6 or higher is mandatory for using the discovery engine and configuration web interface (SkonfUI)

	setuptools [http://pypi.python.org/pypi/setuptools/] or the newer`distribute`_

	pyro [http://pypi.python.org/pypi/Pyro4] Python package
	version 3.x for Debian Squeeze

	version < 4.14 if running Shinken 1.0.1

	version 3.x, 4.x and if you can 4.15 for Shinken 1.2 and newer

	multiprocessing [http://pypi.python.org/pypi/multiprocessing/] Needed when using Python 2.4 or 2.5 (already included in Python 2.6 and higher)

	

	python-dev Python package or distribution package (ex. python-dev under Ubuntu)Core, Libs and Modules

	build-essentials
	sudo apt-get install build-essential python-dev (Installation under Linux Ubuntu/Debian)

	pymongo [http://pypi.python.org/pypi/pymongo/] >= 2.1 : for WebUI

Conditional Requirements

If you plan on using the Livestatus module, or a third party web interface, you will also need at a minimum the following Python packages:

	simplejson [http://pypi.python.org/pypi/simplejson/] (Included in Python 2.6 and higher)

	pysqlite [http://code.google.com/p/pysqlite/]

If you plan on using SkonfUI, NPCMOD or Canopsis

	pycurl for SkonfUI configuration pack management

	kombu for the Canopsis broker Module

	MySQL_python:MySQLdb >= <version> for ndomod

If you plan on developing or testing features, you will also need at a minimum the following Python packages:

	nose [http://pypi.python.org/pypi/nose/]

	unittest [http://pypi.python.org/pypi/unittest/]

	git-core If you want to regularly checkout the latest code and contribute to the project. Though you can also simply download the latest from the github shinken website

if you plan on using check scripts installed by install.sh

	paramiko (only if you use installer script)

	netifaces (only if you use installer script)

Installing/Checking Common Requirements on Linux

Python

For Python itself, the version which comes with almost all distributions should be okay. Though, if you are using a distribution with Python 2.4 or 2.5, you should use a Python version of least 2.6 in a virtualenv. This will avoid problems for upcoming Shinken versions that will require Python 2.6 and higher. (This is aimed right at you, RHEL 5!)

You must use the same version of Python on ALL your Shinken hosts.

You can validate your Python version with:

python -c 'import sys; print sys.version[:3]'

Pyro

You can validate your installed Python Pyro module version using:

python -c 'try:; import Pyro; except ImportError:; import Pyro4 as Pyro; print Pyro.constants.VERSION'

You must use the same version of Pyro on ALL your Shinken hosts.

Under Ubuntu, you can grab the Pyro module with:

sudo apt-get install pyro

Under other distributions, you can search for it:

yum search pyro

If you do not find it, or need to install a specific version, you can install it from PyPI:

easy_install pyro

If you do not find it, or need to install a specific version, you can install it from PyPI using the following Syntax:

pip install pyro4-4.15

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Prerequisites for Shinken 1.2

This page lists the prerequisites of shinken. A packager can use these dependencies when creating a package for his distribution and others can use it as a reference when installing on a new OS which is unsupported until now.

Build Dependencies for certain modules

These packages are only needed if one or more of the required modules are not contained in the distros repositories or only in a version that is not sufficiently high enough.

	The package names are from Debian/Ubuntu, please adapt as needed

	
	build-essential

	libperl-dev

	libsqlite3-dev

	python-dev

	libmysqlclient-dev

	libevent-dev

	python-setuptools

Core, Libs and Modules

	Python >= 2.4 for CORE

	Python >= 2.6 for WebUI and Skonf

	Pyro >= 4.0, if possible 4.9 or 4.14

	pysqlite:sqlite3 >= <version> for livestatus

	MySQL_python:MySQLdb >= <version> for ndomod

	pymongo >= 2.1 : for WebUI

	pycurl for Skonf configuration pack management

	paramiko (only if you use installer script)

	netifaces (only if you use installer script)

Optional Python Modules for Extended Features

	kombu : only if you use canopsis module

	simplejson : only if python 2.5 used

	python-ldap : active directory authentication (needed by Shinken WebUI ActiveDir_UI module)

	ujson : ujson [http://pypi.python.org/pypi/ujson/] (preferred by Livestatus over simplejson)

	Python >= 2.7 for running the Shinken Test Suite. This is mandatory for developers.

Additional Software

	sqlite3

	nmap : for discovery feature

	unzip

	nagios-plugins

	mongodb

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

10 Minute Shinken Installation Guide

Summary

By following this tutorial, in 10 minutes you will have the core monitoring system for your network.

The very first step is to verify that your server meets the requirements, the installation script will try to meet all requirements automatically.

You can get familiar with the Shinken Architecture now, or after the installation. This will explain the software components and how they fit together.

	Installation : GNU/Linux & Unix

	Installation : Windows

	Post-Installation : Common

Ready? Let’s go!

GNU/Linux & Unix Installation

Method 1: Installation Script

Warning

Do not mix installation methods! If you wish to change method, use the uninstaller from the chosen method THEN install using the alternate method.

The install script is located at the root of the Shinken sources. It creates the user and group, installs all dependencies and then installs Shinken. It is compatible with Debian, Ubuntu, Centos/RedHat 5.x and 6.x. The only requirement is an internet connection for the server on which you want to install Shinken.

Basic automated installation

You can get the sources and launch the install script with just this command :

curl -L http://install.shinken-monitoring.org | /bin/bash

You can then jump to the “Start Shinken” section and continue from there.

If instead want to make it manually, go in the next step :)

Installation using the sources

Download stable Shinken v1.4 tarball [http://shinken-monitoring.org/pub/shinken-1.4.tar.gz] archive (or get the latest git snapshot [https://github.com/naparuba/shinken/tarball/master]) and extract it somewhere:

cd ~
wget http://www.shinken-monitoring.org/pub/shinken-1.4.tar.gz
tar -xvzf shinken-1.4.tar.gz

By default the installation path is /usr/local/shinken, but it can be specified in the configuration file (see install.d/README [https://github.com/naparuba/shinken/blob/master/install.d/README]).

Run a basic installation

You need to have lsb-release package installed.

cd ~/shinken-1.4
./install -i

Done! Shinken is installed and you can edit its configuration files in /usr/local/shinken/etc (by default).

Init.d scripts are also copied, so you just have to enable them at boot time (with chkconfig or update-rc.d).

Start Shinken

To start Shinken:

/etc/init.d/shinken start

But wait! The installation script can do much more for you, such as installing plugins, addons, upgrading and removing an installation. See the install.d/README [https://github.com/naparuba/shinken/blob/master/install.d/README] file or full install script doc to know how you can get the best out of it.

Run a full installation

To list the plugins and addons available:

./install -h

A common and fully featured installation is:

./install -i &&\
./install -p nagios-plugins &&\
./install -p check_mem &&\
./install -p manubulon &&\
./install -a multisite &&\
./install -a pnp4nagios &&\
./install -a nagvis &&\
./install -a mongodb

	This will automatically install:

	
	Shinken

	Nagios plugins

	Manubulon SNMP plugins

	Multisite

	PNP4Nagios

	Nagvis

	MongoDB # This is used for the SkonfUI beta and WebUI

Tip

If you encounter problems installing Multisite, it may be because the latest stable version on Check_MK’s website has changed. Simply change the MK version in install.d/shinken.conf to the latest stable version: export MKVER="1.2.0p3"

For more information regarding the install script. See the full install script doc

Update

See update Shinken.

Method 2: On Fedora with RPM

Warning

Shinken is an official RPM

First install Python Pyro

yum install python-pyro

Then install Shinken

yum install shinken shinken-poller\
shinken-scheduler shinken-arbiter \
shinken-reactionner shinken-broker shinken-receiver

Enable Shinken services

for i in arbiter poller reactionner scheduler broker; do
systemctl enable shinken-$i.service;
done

Start Shinken services

for i in arbiter poller reactionner scheduler broker; do
systemctl start shinken-$i.service;
done

Stop Shinken services

for i in arbiter poller reactionner scheduler broker; do
systemctl stop shinken-$i.service;
done

Easy is not it?

Windows Installation

Method 1: Packaged .EXE Installer

Download the Executable installer

Download the executable installer for Shinken 1.4 [http://www.veosoft.net/index.php/en/component/phocadownload/category/1-binary-packages?download=6:shinken-1-4].

Thanks to J-F BUTKIEWICZ for preparing the installation package.

Read the installation instructions

Installation instructions at http://www.veosoft.net/index.php/en/tutorials/shinken-tutorials/shinken-1-2-4-installation-on-windows-2008-r2

Run the installer

What? You don’t want to read them? No problem.

Simply launch the .exe and click Next until the installation has run its course. :-)

The executable installer creates service and copies the necessary files into C:/Program Files (x86)/Shinken by default, but you can change that target folder as you want.

CHECK_WMI_PLUS configuration

By default, check_wmi_plus.pl use an user/password to access the windows WMI functions. But locally (shinken host managed itself on windows), this cannot be done. So the local template always works even if a wrong user/password is set. In the commands file, just set local to user and localhost to the computer.

But now, how to configure shinken to manage others windows hosts using wmi. Shinken team provides a set of commands in the windows template. We will see how to set the user/password to work properly. But there is an “extra” function to use the poller’s service to push its credential to check_wmi_plus.
This kind of configuration and globaly the use of check_wmi_plus under windows is described in this link.

Post installation

Where is the configuration?

	The configuration is where you put the etc directory. Usually it’s /etc/shinken, /usr/local/shinken/etc or C:/Program Files/Shinken.

	
	nagios.cfg is meant to be fully compatible with Nagios;

	shinken-specific.cfg contains all Shinken specific objects (ie. daemons, realms, etc.).

Do I need to change my Nagios configuration?

No, there is no need to change your existing Nagios configuration.
You can use an existing Nagios configuration as-is, as long as you have installed the plugins expected by the configuration.

Once you are comfortable with Shinken you can start to use its unique and powerful features.

What do I need to do next

The next logical steps for a new user are as listed in the Getting Started page:

	Setup the web interface:
	Use the default WebUI (Note: it’s the mandatory interface on Windows)

	Or set-up a third-party web interface and addons.

	Did you read the Shinken Architecture presentation?

	Complete the Shinken basic installation

	Start adding devices to monitor, such as:
	Public services (HTTP, SMTP, IMAP, SSH, etc.)

	GNU/Linux clients

	Windows clients

	Routers

	Printers

Getting Help

New and experienced users sometimes need to find documentation, troubleshooting tips, a place to chat, etc. The Shinken community provides many resources to help you. You can discuss installation documentation changes in the Shinken forums.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Review of script’s option and parameters

Important

It’s recommended to use option one by one! Some options have a parsing trick that prevent from being mixed with other. Call the install script as much as you need is better.

Here are the options for the install script :

	-k | --kill
	Kill shinken

	-i | --install
	Install shinken

	-u | --uninstall
	Remove shinken and all of the addons. if an argument is specified then just remove the specified argument

	-b | --backup
	Backup shinken configuration plugins and data

	-r | --restore
	Restore shinken configuration plugins and data

	-l | --listbackups
	List shinken backups

	-c | --compresslogs
	Compress rotated logs

	-e | --enabledaemons
	Which daemons to keep enabled at boot time. It’s a quoted list of shinken daemons that should be enabled at startup. Daemons are:
* arbiter
* scheduler
* poller
* broker
* reactionner
* receiver
* skonf

	-p | --plugin
	Install plugins. Argument should be one of the following:
* check_esx3
* nagios-plugins
* check_oracle_health
* check_mysql_health
* capture_plugin
* check_wmi_plus
* check_mongodb
* check_emc_clariion
* check_nwc_health
* manubulon (snmp plugins)
* check_hpasm
* check_netapp2
* check_mem (local enhanced memory check plugin)
* check_snmp_bandwidth (check bandwidth usage with snmp)
* check_netint (enhanced version of check_snmp_int plugins)
* check_IBM
* check_IBM_DS
* check_HPUX
* check_rsync

	-a | --addon
	Install addons. Argument should be one of the following:
* pnp4nagios
* multisite
* nagvis
* mongodb
* nconf (experimental)
* notify_by_xmpp

	--nconf-import-packs
	Import shinken packs into nconf (experimental). This require nconf to be installed

	--register
	Register on community (experimental)

	--enableeue
	Enable application performance monitoring stack (experimental)

	-h | --help
	Show help

Review of variable used in the script

The following variables can bet set before running the script in order to modify its behavior.

	Unordered List ItemTMP
	Specify the temp folder for Shinken installation. Default : /tmp

	LOGFILE
	Specify the logs file used during Shinken installation. Default : $TMP/shinken.install.log”

	USEPROXY
	Specify if the server is behind a proxy. Used during installing prerequisites. Default : 0 (No)

	SKIPPREREQUISITES
	Specify if the script check and install Shinken prerequisites. All prerequisites are not compulsory for a “small” install Default : 0 (No)

	TARGET
	Specify the target directory for Shinken installation. Default : /usr/local/shinken

	ETC
	Specify the etc directory for Shinken installation (configuration files directory). Default : $TARGET/etc

	LIBEXEC
	Specify the libexec directory for Shinken installation (plugin directory). Default : $TARGET/libexec

	VAR
	Specify the var directory for Shinken installation(logs directory). Default : $TARGET/var

	BACKUPDIR
	Specify the backup directory. Default : /opt/backup

	SKUSER
	Specify the Shinken user. Default : shinken

	SKGROUP
	Specify the Shinken group. Default : shinken

	MANAGEPYRO
	Specify if the script will install a “managed” version of Pyro (Pyro4 lib) Defaukt : 0 (No)

	KEEPDAYSLOG
	Specify the number of days to keep the logs (for Sqlite purge). Default : 7

	RETENTIONMODULE
	Specify the default retention module (pickle|mongodb). Default pickle

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Alternatives installations

Here you can find another way to install Shinken without using shinken.sh . If you want to understand deeply how Shinken work, it may be a better solution.

Note

Article under creation, it will me deeply modified before the 1.0 release ;)

Installation

On Ubuntu or Debian

Save time, use the very good installation script from Nicolargo [http://blog.nicolargo.com/2011/04/script-dinstallation-automatique-de-shinkenthruk.html?utm_source=twitterfeed&utm_medium=twitter]! Thanks a lot to him :)

cd ~
wget https://raw.github.com/nicolargo/shinkenautoinstall/master/shinkenautoinstall-debian.sh
chmod a+x shinkenautoinstall-debian.sh
sudo ./shinkenautoinstall-debian.sh

On windows

Get the http://shinken-monitoring.org/pub/shinken-0.8.1.tar.gz file in c:shinken

During portions of the installation you’ll need to have administrator access to your server.
Make sure you’ve installed the following packages on your Windows installation before continuing.

	Python 2.7 for Windows [http://www.python.org/download/]

	Pyro 4 library Windows [http://pypi.python.org/pypi/Pyro4/]

	Windows Resource Kit [http://www.microsoft.com/downloads/details.aspx?FamilyID=9D467A69-57FF-4AE7-96EE-B18C4790CFFD]

	PyWin32 [http://sourceforge.net/projects/pywin32/files/pywin32/]

Take the files instsrv.exe and srvany.exe from the directory of the resource kit (typically “c:program filesWindows Resource KitsTools”) and put them in the directory “c:shinkenwindows” (it should already exist by decompressing the archive, or you are a directory level to deep).

To install all services, launch the installation batch file:

c:\shinken\windows\install-all.bat

Launch services.msc to see you brand new services (Shinken-*).

But don’t start them yet, you should jump up to the discovery part before starting new Shinken services.

On Fedora with RPM

Prerequisites:

Install python Pyro:

yum install python-pyro

Install Shinken:

Download RPM to the url http://hvad.fedorapeople.org/fedora/shinken/RPM/

yum localinstall --nogpgcheck shinken-0.8.1-1.fc15.noarch.rpm shinken-arbiter-0.8.1-1.fc15.noarch.rpm shinken-broker-0.8.1-1.fc15.noarch.rpm shinken-poller-0.8.1-1.fc15.noarch.rpm shinken-reactionner-0.8.1-1.fc15.noarch.rpm shinken-receiver-0.8.1-1.fc15.noarch.rpm shinken-scheduler-0.8.1-1.fc15.noarch.rpm

Enable Shinken services:

for i in arbiter poller reactionner scheduler broker; do systemctl enable shinken-$i.service ; done

Start Shinken services:

for i in arbiter poller reactionner scheduler broker; do systemctl start shinken-$i.service ; done

Stop Shinken services:

for i in arbiter poller reactionner scheduler broker; do systemctl stop shinken-$i.service ; done

On Debian with DEB packages

Shinken is packaged on the debian “sid”:
Prerequisites:

aptitude install shinken python-simplejson python-pysqlite2 python-mysqldb python-redis python-memcache

Start Shinken services:

for i in broker poller reactionner receiver scheduler arbiter ; do /etc/init.d/shinken-$i start ;done

Stop Shinken services:

for i in broker poller reactionner receiver scheduler arbiter ; do /etc/init.d/shinken-$i stop ;done

On RedHat/Centos and other GNU/Linux box: from the sources

	Shinken asks for few dependencies:

	
	Python >= 2.4 (but Python 2.6 is preferable)

	Pyro, a Python module (version >= 4.5 is possible)

To know which Python version you are running, just type

python -V

Dependencies for Debian folks

To get Dependencies launch:

sudo apt-get install pyro nagios-plugins-extra

Dependencies for Centos5/RH5 with python 2.4

Important

Python version 2.4 is the default version of python on CentOS/RH5, so this is the easiest way to install Shinken on CentOS. The problem is that some advanced Shinken functionalities need ‘’at least’’ python 2.6

First get the dependencies (as root or with sudo):

yum install gcc nagios-plugins python-devel python-simplejson
wget http://pypi.python.org/packages/source/P/Pyro/Pyro-3.10.tar.gz#md5=7fc6b8b939073d4adb0e8939c59aaf1e
tar xvfz Pyro-3.10.tar.gz
cd Pyro-3.10
python setup.py install

cd ~

wget http://pypi.python.org/packages/2.4/s/setuptools/setuptools-0.6c11-py2.4.egg#md5=bd639f9b0eac4c42497034dec2ec0c2b
sh setuptools-0.6c11-py2.4.egg

cd ~

wget http://pypi.python.org/packages/source/m/multiprocessing/multiprocessing-2.6.2.1.tar.gz#md5=5cc484396c040102116ccc2355379c72
tar xvfz multiprocessing-2.6.2.1.tar.gz
cd multiprocessing-2.6.2.1/
python setup.py install

Dependencies for Centos5/RH5 with python 2.6

Important

Python version 2.4 is the default version on CentOS5/RH5. This version of python is deeply linked to the OS (yum package manager for instance), so you can’t just ‘’update’’ python. In order to add python 2.6 on your system, you will need to add packages from at least 2 additional repositories: ‘’‘RPMForge’‘’ and ‘’‘EPEL release’‘’

First, add the additional repositories

wget http://apt.sw.be/redhat/el5/en/i386/rpmforge/RPMS/rpmforge-release-0.5.2-2.el5.rf.i386.rpm
rpm -Uvh rpmforge-release-0.5.2-2.el5.rf.i386.rpm
wget http://download.fedora.redhat.com/pub/epel/5/i386/epel-release-5-4.noarch.rpm
rpm -Uvh epel-release-5-4.noarch.rpm

Then install the dependencies

yum install gcc nagios-plugins python26-devel python26-simplejson
wget http://pypi.python.org/packages/source/P/Pyro4/Pyro4-4.11.tar.gz#md5=8126e7049206b7b09f324750f50cee2d
tar xvfz Pyro4-4.11.tar.gz
cd Pyro4-4.11
python26 setup.py install

cd ~
wget http://pypi.python.org/packages/2.6/s/setuptools/setuptools-0.6c11-py2.6.egg#md5=bfa92100bd772d5a213eedd356d64086
sh setuptools-0.6c11-py2.6.egg

Shinken installation

Create the Shinken user:

sudo adduser shinken
sudo passwd shinken

Important

Be sure to create a valid home directory for the shinken user. If not, the daemons won’t start.

Then, get Shinken package and install it:

cd ~
wget http://www.shinken-monitoring.org/pub/shinken-0.8.1.tar.gz
tar xfz shinken-0.8.1.tar.gz
cd shinken-0.8.1
sudo python setup.py install --install-scripts=/usr/bin
sudo mkdir -p /usr/lib/nagios/plugins/
sudo cp libexec/* /usr/lib/nagios/plugins/

Important

Replace ‘’python26’’ instead of ‘’python’’ in the command line “sudo python setup.py install –install-scripts=/usr/bin” if you run CentOS5/RH5 and you wish shinken to be installed with python 2.6 support

You will get:

new binaries into /usr/bin (files shinken-*)
some new checks and notification scripts in /usr/lib/nagios/plugins/
some new directory (/etc/shinken and /var/lib/shinken).

Discover your network

The network discovery scans your network and sets up a standardized monitoring configuration for all your hosts and network services. To run it, ou need to install the nmap network discovery tool.

Ubuntu:

sudo apt-get install nmap

RedHat/Centos:

yum install nmap

Now, you are ready to run the network discovery tool:

[-d /etc/shinken/discovery] && sudo mkdir /etc/shinken/discovery
sudo shinken-discovery -o /etc/shinken/discovery -r nmap -m "NMAPTARGETS=192.168.0.1-254 localhost"

The important part is the NMAPTARGETS value. It’s an nmap target value, so you can give the value you want, like a list of hosts or an IP range.

Note

The scan duration depends on the number of IP addresses to scan. If you are scanning a large network, the scan can run into the tens of minutes.
(the scan timeout is set to one hour by default. The timeout parameter is defined in the etc/discovery.cfg)

Setup Thruk, the Web interface

This next section will use the Nicolargo [http://blog.nicolargo.com/2011/04/script-dinstallation-automatique-de-shinkenthruk.html?utm_source=twitterfeed&utm_medium=twitter] installation script, thank you once again.

If you have already run the Nicolargo script for Debian, you can skip this part.

To install Thruk, launch:

perl -V:version -V:archname
browse to http://www.thruk.org/files/ and download the file that matches the archname and version
(version is last number before tar.gz)
tar zxvf *filename*
cd Thruk-$thruk_version
wget https://raw.github.com/nicolargo/shinkenautoinstall/master/thruk_local.conf
cd ..
cp -R Thruk-1.0.5 /opt/thruk
chown -R shinken:shinken /opt/thruk
wget -O /etc/init.d/thruk https://raw.github.com/nicolargo/shinkenautoinstall/master/thruk
chown root:root /etc/init.d/thruk
chmod a+rx /etc/init.d/thruk

For Ubuntu/Debian:

update-rc.d thruk defaults

For RedHat/Centos:

chkconfig thruk --add

First launch

You are now ready to start the system, launch Shinken and Thruk.

/etc/init.d/shinken start
/etc/init.d/thruk start

You can validate that the software is running smoothly by tailing the main log file at:

tail -f /var/lib/shinken/shinken.log

And by connecting to the web interface at http://localhost:3000 (or use the IP address of your server)

Congrats, you just launched your next monitoring tool ^_^

Now you can go through the rest of the wiki to learn how to work with the configuration, and customize it as you need. There are tutorials in the getting started section for common tasks and there is an official documentation manual that provides in depth coverage of features and options.

Now are ready to learn how to configure the Shinken daemons, your gentle introduction to distributed monitoring, by reading the configure Shinken page.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Shinken on RedHat 6 with Thruk and PNP4Nagios HOWTO

We’ll install Shinken with the Thruk web user interface and the PNP4Nagios graphs. We’ll also configure SNMP, NRPE and SSH access to the monitored hosts.

Packages will be installed in /opt unless they are already packaged.

Shinken

Prepare sources:

mkdir /opt/shinken-dl/
wget http://www.shinken-monitoring.org/pub/shinken-1.4.tar.gz
tar xzf shinken-1.4.tar.gz

Installation:

cd /opt/shinken-dl/shinken-1.4/
TARGET=/opt/shinken SKUSER=shinken SKGROUP=shinken ./install -i
./install -p nagios-plugins
./install -p manubulon # snmp checks
./install -p check_netint # network/trafic checks

	Mandatory configuration:

	
	In /opt/shinken/etc/shinken-specific.cfg, define auth_secret with a random password

	Fix path to the mail command:

sed -i -e 's,/usr/bin/mail,mail,' /opt/shinken/etc/commands.cfg

	Optional configuration:

	
	Change in /opt/shinken/etc/nagios.cfg:

	Avoid flapping due to having the same timeout for service checks (UNKNOWN) and for check_https (CRITICAL):

service_check_timeout=60

	Support long event handlers:

event_handler_timeout=300

	Change in templates.cfg:

	If you need hosts that can’t be ping’d, comment out in generic-host:

#check_command check_host_alive

	Notifications may be sent even if the host is out of its notification hours, but you can force host>service inheritance by commenting this in generic-service:

#notification_period 24x7

	Same for check periods:

#check_period 24x7

	Notifications are sent every hour by default, you can change that to every day:

notification_interval 1440

	Add ‘u,f’ to service notifications in notificationway:service_notification_options

	If you need a global event handler (workaround issue 717 [https://github.com/naparuba/shinken/issues/717]), modify generic-service:

event_handler_enabled 1
event_handler test_log_service

Mail

In case you need to configure the Shinken mail sender:

echo "shinken shinken-notifications@mydomain.tld" >> /etc/postfix/canonical
postmap /etc/postfix/canonical
cat <<'EOF' >> /etc/postfix/main.cf
sender_canonical_maps = hash:/etc/postfix/canonical
EOF

Shinken also sends mail to none@localhost which is the contact for user ‘guest’.
This triggers bounces, so you can auto-trash these mails:

echo 'none: /dev/null' >> /etc/aliases && newaliases

Thruk

	Follow use_with_thruk:

	
	Installation from RPM (http://www.thruk.org/download.html):

rpm -ivh http://www.thruk.org/files/pkg/v1.76-3/rhel6/x86_64/thruk-1.76-3.rhel6.x86_64.rpm

	SELinux configuration (or disable it with setenforce Permissive)

	Using Shinken with Thruk

Thruk is available at: http://YOUR_SHINKEN_IP/thruk/

PNP4Nagios

	Follow use_with_pnp:

	
	Go to the Shinken sources and set the installation path in /opt/shinken-dl/shinken-1.4/install.d/shinken.conf:

PNPPREFIX=/opt/pnp4nagios

	Install PNP4Nagios automatically

	Using Shinken with PNP4Nagios

PNP4Nagios is now linked from Thruk though action_url, and more generally available at http://YOUR_SHINKEN_IP/pnp4nagios/

Monitored hosts

SNMP

Let’s enable SNMP on our monitored hosts.

Install SNMP server:
yum install net-snmp

Read-only access:
echo "rocommunity public" > /etc/snmp/snmpd.conf

Don't log each SNMP request:
[-e /etc/sysconfig/snmpd] && echo 'OPTIONS="-LS0-4d -Lf /dev/null -p /var/run/snmpd.pid"' >> /etc/sysconfig/snmpd # RHEL6
[-e /etc/sysconfig/snmpd.options] && echo 'OPTIONS="-LSwd -Lf /dev/null -p /var/run/snmpd.pid -a"' >> /etc/sysconfig/snmpd.options # RHEL5

Launch SNMP server on startup:
chkconfig snmpd on
service snmpd restart

NRPE

Let’s enable NRPE on our monitored hosts (port 5666).

Activate the EPEL6 repository - install:
http://download.fedoraproject.org/pub/epel/6/i386/repoview/epel-release.html

Install NRPE server:
yum install nrpe

Allow access from Shinken poller:
sed -i -e 's/^allowed_hosts=.*/allowed_hosts=127.0.0.1,YOUR_SHINKEN_IP/' /etc/nagios/nrpe.cfg

Launch NRPE server on startup:
chkconfig nrpe on
service nrpe start

Enable and configure remote checks in /etc/nagios/nrpe.cfg.

SSH

Let’s give Shinken access to our monitored hosts, e.g. to execute event handlers or run NRPE through SSH:

On the Shinken Server, generate a SSH key /home/shinken/.ssh/id_rsa:

sudo -u shinken ssh-keygen</code>

On each monitored host:

	Create a ‘’monitaction’’ user with limited rights, accessed by Shinken:<code>

useradd -r monitaction -m
mkdir -pm 700 ~monitaction/.ssh/
echo "ssh-rsa AAAAB3...EKtMx/9o0ApJl shinken@rh6" > ~monitaction/.ssh/authorized_keys # from /home/shinken/.ssh/id_rsa.pub
chown -R monitaction: ~monitaction/.ssh/
mkdir -pm 750 /etc/sudoers.d/
touch /etc/sudoers.d/local
chmod 440 /etc/sudoers.d/local

	Edit ‘’/etc/sudoers.d/local’’ to give it privileges, e.g.:

Defaults !requiretty
monitaction ALL= NOPASSWD: /sbin/service jbossas7 *
monitaction ALL= NOPASSWD: /sbin/service thunderhead *
monitaction ALL= NOPASSWD: /sbin/service httpd *

Test from the Shinken server:

ssh -oStrictHostKeyChecking=no -oUserKnownHostsFile=/dev/null 192.168.X.X -l monitaction -t sudo /sbin/service httpd reload

Of course, open firewall access from the Shinken server to the monitored host’s SSH.

Extra: Graphite

If you’re interested in Graphite, you can start from this basis:

	network_based_modules_-_graphite_graphing

	use_with_graphite

Additional configuration:

echo "/opt/graphite/bin/carbon-cache.py start" >> /etc/rc.local
chgrp apache /opt/graphite/storage/
chmod g+w /opt/graphite/storage/
sudo -u apache /opt/graphite/bin/python /opt/graphite/webapp/graphite/manage.py runserver # TODO: access from Apache
Remove the numerous dummy network graphs creating by mistake by Graphite:
echo "rm -f /opt/graphite/storage/whisper/*/shinken/NetworkUsage/*_13????????_.wsp" >> /etc/cron.daily/graphite-cleanup
chmod 755 /etc/cron.daily/graphite-cleanup

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

GNU/Linux Installation from Source

Abstract

This guide is intended to provide you with simple instructions on how to install Shinken from source (code) on GNU/Linux and have it monitoring in no time. This the basic Shinken installation primarily meant for packagers.

Automated installation

	Installation should be done using the Shinken 10 minute installation

	
	Installs Shinken

	Installs common checks scripts

	Installs core related optional modules

	Uses an installation script that will fetch all dependancies

	Internet access required

Find it at Shinken 10 minute installation.

Manual installation process for packagers

If you wish to install Shinken using the standalone setup.py installation method. Read on.

Operating system used for this walk through : Ubuntu Server edition 10.04 LTS

Requirements

Check the Shinken Requirements.

Make sure you’ve installed the required packages before continuing!

Create Shinken Account

Become the root user.

linux:~ $ sudo su -

Create a new shinken user account and give it a password.

linux:~ # /usr/sbin/useradd -m shinken
linux:~ # passwd shinken

On Ubuntu server edition (9.10 and newer versions), you will also need to add a shinken group (it’s not created by default). You should be able to skip this step on desktop editions of Ubuntu.

linux:~ # /usr/sbin/groupadd shinken
linux:~ # /usr/sbin/usermod -G shinken shinken

Add the apache user to this group to allow external commands to be send from the web interface.

linux:~ # /usr/sbin/usermod -G shinken www-data

Download Shinken and the Plugins

Create a directory for storing the downloads.

linux:~ # mkdir ~/downloads
linux:~ # cd ~/downloads

Download the source code of Shinken and the Shinken plugins (visit http://www.nagios.org/download/ for links to the latest versions of the plugins). At the time of writing, the latest versions plugins were 1.4.13.

linux:~ # git clone git://shinken.git.sourceforge.net/gitroot/shinken/shinken

or

Get the latest official release: https://github.com/naparuba/shinken/tarball/1.0.1

Install Shinken

linux:~ # cd shinken
linux:~ # sudo python setup.py install --install-scripts=/usr/bin

Don’t start Shinken yet - there’s still more that needs to be done...

Customize the configuration

Sample configuration files have now been installed in the “/etc/shinken/” directory. These sample files should work fine for getting started with Shinken. You’ll need to make just one change before you proceed.

Install the Nagios Plugins to use with Shinken

You can download plugins from source, but your debian-like administrator will just will you :

linux:~ # sudo apt-get install nagios-plugins

Start Shinken

Configure Shinken to automatically start when the system boots.

linux:~ # sudo ln -s /etc/init.d/shinken-scheduler /etc/rcS.d/S98shinken-scheduler
linux:~ # sudo ln -s /etc/init.d/shinken-poller /etc/rcS.d/S98shinken-poller
linux:~ # sudo ln -s /etc/init.d/shinken-reactionner /etc/rcS.d/S98shinken-reactionner
linux:~ # sudo ln -s /etc/init.d/shinken-broker /etc/rcS.d/S98shinken-broker
linux:~ # sudo ln -s /etc/init.d/shinken-arbiter /etc/rcS.d/S98shinken-arbiter

Verify the sample Shinken configuration files.

linux:~ # /usr/bin/shinken-arbiter -v -c /etc/shinken/nagios.cfg -c /etc/shinken/shinken-specific.cfg

If there are no errors, start Shinken.

linux:~ # sudo /etc/init.d/shinken-scheduler start
linux:~ # sudo /etc/init.d/shinken-poller start
linux:~ # sudo /etc/init.d/shinken-broker start
linux:~ # sudo /etc/init.d/shinken-reactionner start
linux:~ # sudo /etc/init.d/shinken-arbiter start

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Windows Quickstart

Abstract

This guide is intended to provide you with simple instructions on how to install Shinken on windows and have it monitoring your local machine inside of 10 minutes. No advanced installation options are discussed here - just the basics that will work for 95% of users who want to get started.

These instructions were written based on a standard Windows (tested on 2k3, 2k8, XP and Seven).

Automated installation

	Installation should be done using the Shinken 10 minute installation

	
	Installs Shinken

	Installs common checks scripts

	Installs core related optional modules

	Uses an installation script that will fetch all dependancies

	Internet access required

Read on to find out how to install Shinken manually.

Batch file manual installation process

Get the https://github.com/naparuba/shinken/zipball/1.2 file to c:shinken

During portions of the installation you will need to have administrator privileges to your server.
Make sure you have installed the following packages on your Windows installation before continuing.

	Python 2.7 for Windows [http://www.python.org/download/]

	easy_install [http://pypi.python.org/pypi/setuptools/#windows]
	add easy_install to your windows PATH as per setup tools instructions in link above

	easy_install pip

	Pyro 4 library Windows [http://pypi.python.org/pypi/Pyro4/]
	pip pyro4=4.14

	Windows server 2003 Resource Kit [http://www.microsoft.com/downloads/details.aspx?FamilyID=9D467A69-57FF-4AE7-96EE-B18C4790CFFD]

	PyWin32 [http://sourceforge.net/projects/pywin32/files/pywin32/]

Take the files instsrv.exe and srvany.exe from the directory of the resource kit (typically “c:program filesWindows Resource KitsTools”) and put them in the directory “c:shinkenwindows” (it should already exist by decompressing the archive, or you are a directory level to deep).

To install all services, launch the installation batch file:

c:\shinken\windows\install-all.bat

Launch services.msc to see your brand new services (Shinken-*).

You’re Done

Congratulations! You sucessfully installed Shinken. Your journey into monitoring is just beginning. You’ll no doubt want to monitor more than just your local machine, so check out the following docs...

	Monitoring Windows machines

	Monitoring Linux/Unix machines

	Monitoring Netware servers

	Monitoring routers/switches

	Monitoring publicly available services (“HTTP”, “FTP”, “SSH”, etc.)

You can also follow the instructions on setting up the new monitoring template based method of monitoring your systems.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

 	Installations

Nokia N900 Quickstart

This guide is intended to provide you with simple instructions on how to install Shinken from source (code) on a Nokia N900.

A Shinken how-to provides details on a new installation method using an install.sh script.

If you were really looking to install it on a GNU/Linux platform or Windows follow the Shinken 10 minute installation guide..

If you really wish to install Shinken on a Nokia N900, Read On!

Required Packages

	Python >= 2.4

	Pyro (Python module for distributed objects)

	Git (If you want the latest code)

About Nokia N900

The smartphone Nokia N900 runs natively under the Maemo Operating System (which includes python 2.5.4). You can find more information about it at :
http://maemo.org/intro/ and http://maemo.nokia.com/

Tip

You will need an internet connection to continu, don’t forget to take care of your 3G data quota!
It’s easier to do it via ssh.
And you will need of a tool like gainroot or rootsh to complete the following steps.

Create users :

Nokia-N900:~$ root
Nokia-N900:~#
Nokia-N900:~# useradd -m shinken
Nokia-N900:~# groupadd shinken
Nokia-N900:~# usermod -G shinken shinken

Then add theses two new repository at the end of /etc/apt/sources.list.d/hildon-application-manager.list :

deb http://repository.maemo.org/ fremantle/sdk free non-free
deb http://repository.maemo.org/ fremantle/tools free non-free

Next, install python an pyro :

Nokia-N900:~# aptitude update
Nokia-N900:~# aptitude install python-dev python-setuptools build-essential
Nokia-N900:~# easy_install http://www.xs4all.nl/~irmen/pyro3/download/Pyro-3.10.tar.gz

Now, we can install shinken, we use MyDocs because it’s the mount point of the ssd drive :

Nokia-N900:~# cd /home/user/MyDocs/ && mkdir tmp && cd tmp
Nokia-N900:/home/user/MyDocs/tmp/# wget http://shinken-monitoring.org/pub/shinken-0.5.1.tar.gz
Nokia-N900:/home/user/MyDocs/tmp/# tar zxf shinken-0.5.1.tar.gz
Nokia-N900:/home/user/MyDocs/tmp/# cd shinken-0.5.1
Nokia-N900:/home/user/MyDocs/tmp/shinken-0.5.1# python setup.py install --install-scripts=/usr/bin/
Nokia-N900:/home/user/MyDocs/tmp/shinken-0.5.1# cp -af bin/* /usr/bin/
Nokia-N900:/home/user/MyDocs/tmp/shinken-0.5.1# sync && cd

You can test an see what happen :

Nokia-N900:~# launch_all.sh
Nokia-N900:~# ps aux | grep python

That’s all! But for installation only! You need now to configure shinken.

Important

And don’t forget to take care of your 3G data quota!!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Upgrading Shinken

Upgrading From Previous Shinken Releases

See the update page for that. Basically it’s only about backuping and installing from a later git version.

Upgrading From Nagios 3.x

Just install Shinken and start the arbiter with your Nagios configuration. That’s all.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Monitoring Windows Machines

Abstract

This document describes how you can monitor “private” services and attributes of Windows machines, such as:

	Memory usage

	CPU load

	Disk usage

	Service states

	Running processes

	etc.

Introduction

Publicly available services that are provided by Windows machines (“HTTP”, “FTP”, “POP3”, etc.) can be monitored easily by following the documentation on Monitoring publicly available services (HTTP, FTP, SSH, etc.).

These instructions assume that you’ve installed Shinken according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that are installed if you follow the quickstart.

Overview

[image: ../_images/monitoring-windows-shinken.png]
Monitoring private services or attributes of a Windows machine requires that you install an agent on it. This agent acts as a proxy between the Nagios plugin that does the monitoring and the actual service or attribute of the Windows machine. Without installing an agent on the Windows box, Shinken would be unable to monitor private services or attributes of the Windows box.

For this example, we will be installing the NSClient++ [http://sourceforge.net/projects/nscplus] addon on the Windows machine and using the check_nt plugin to communicate with the NSClient++ addon. The check_nt plugin should already be installed on the Shinken server if you followed the quickstart guide.

Other Windows agents (like NC_Net [http://sourceforge.net/projects/nc-net]) could be used instead of NSClient++ if you wish - provided you change command and service definitions, etc. a bit. For the sake of simplicity I will only cover using the NSClient++ addon in these instructions.

Steps

There are several steps you’ll need to follow in order to monitor a new Windows machine. They are:

	Perform first-time prerequisites

	Install a monitoring agent on the Windows machine

	Create new host and service definitions for monitoring the Windows machine

	Restart the Shinken daemon

What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

	A check_nt command definition has been added to the “commands.cfg” file. This allows you to use the check_nt plugin to monitor Window services

	Windows server host template (called “windows-server”) has already been created in the “templates.cfg” file. This allows you to add new Windows host definitions in a simple manner

The above-mentioned config files can be found in the “/usr/local/nagios/etc/objects/” directory. You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d recommend waiting until you’re more familiar with configuring Nagios before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your Windows boxes in no time.

Prerequisites

The first time you configure Shinken to monitor a Windows machine, you’ll need to do a bit of extra work. Remember, you only need to do this for the first Windows machine you monitor.

Edit the main Shinken config file.

linux:~ # vi /usr/local/shinken/etc/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

#cfg_file=/usr/local/shinken/etc/objects/windows.cfg

Save the file and exit.

What did you just do? You told Shinken to look to the “/usr/local/shinken/etc/objects/windows.cfg” to find additional object definitions. That’s where you’ll be adding Windows host and service definitions. That configuration file already contains some sample host, hostgroup, and service definitions. For the first Windows machine you monitor, you can simply modify the sample host and service definitions in that file, rather than creating new ones.

Installing the Windows Agent

Before you can begin monitoring private services and attributes of Windows machines, you’ll need to install an agent on those machines. I recommend using the NSClient++ addon, which can be found at http://sourceforge.net/projects/nscplus. These instructions will take you through a basic installation of the NSClient++ addon, as well as the configuration of Shinken for monitoring the Windows machine.

	Download the latest stable version of the NSClient++ addon from http://sourceforge.net/projects/nscplus

	Unzip the NSClient++ files into a new C:NSClient++ directory

	Open a command prompt and change to the C:NSClient++ directory

	Register the NSClient++ system service with the following command:

C:\> nsclient++ /install

	Install the NSClient++ systray with the following command (‘SysTray’ is case-sensitive):

C:\> nsclient++ SysTray

	Open the services manager and make sure the NSClientpp service is allowed to interact with the desktop (see the ‘Log On’ tab of the services manager). If it isn’t already allowed to interact with the desktop, check the box to allow it to.

[image: ../_images/nscpp.png]

	Edit the “NSC.INI file” (located in the “C:NSClient++” directory) and make the following changes:

	Uncomment all the modules listed in the [modules] section, except for “CheckWMI.dll” and “RemoteConfiguration.dll”

	Optionally require a password for clients by changing the “password” option in the [Settings] section.

	Uncomment the “allowed_hosts” option in the [Settings] section. Add the IP address of the Nagios server to this line, or leave it blank to allow all hosts to connect.

	Make sure the “port” option in the [NSClient] section is uncommented and set to ‘12489’ (the default port).

	Start the NSClient++ service with the following command:

C:\> nsclient++ /start

	If installed properly, a new icon should appear in your system tray. It will be a yellow circle with a black ‘M’ inside.

	Success! The Windows server can now be added to the Shinken monitoring configuration...

Configuring Shinken

Now it’s time to define some object definitions in your Shinken configuration files in order to monitor the new Windows machine.

Open the “windows.cfg” file for editing.

linux:~ # vi /etc/shinken/objects/windows.cfg

Add a new host definition for the Windows machine that you’re going to monitor. If this is the first Windows machine you’re monitoring, you can simply modify the sample host definition in “windows.cfg”. Change the “host_name”, “alias”, and “address” fields to appropriate values for the Windows box.

define host{
 use windows-server ; Inherit default values from a Windows server template (make sure you keep this line!)
 host_name winserver
 alias My Windows Server
 address 192.168.1.2
}

Good. Now you can add some service definitions (to the same configuration file) in order to tell Shinken to monitor different aspects of the Windows machine. If this is the first Windows machine you’re monitoring, you can simply modify the sample service definitions in “windows.cfg”.

Replace “”*”winserver”*”” in the example definitions below with the name you specified in the “host_name” directive of the host definition you just added.

Add the following service definition to monitor the version of the NSClient++ addon that is running on the Windows server. This is useful when it comes time to upgrade your Windows servers to a newer version of the addon, as you’ll be able to tell which Windows machines still need to be upgraded to the latest version of NSClient++.

define service{
 use generic-service
 host_name winserver
 service_description NSClient++ Version
 check_command check_nt!CLIENTVERSION
}

Add the following service definition to monitor the uptime of the Windows server.

define service{
 use generic-service
 host_name winserver
 service_description Uptime
 check_command check_nt!UPTIME
}

Add the following service definition to monitor the CPU utilization on the Windows server and generate a CRITICAL alert if the 5-minute CPU load is 90% or more or a WARNING alert if the 5-minute load is 80% or greater.

define service{
 use generic-service
 host_name winserver
 service_description CPU Load
 check_command check_nt!CPULOAD!-l 5,80,90
}

Add the following service definition to monitor memory usage on the Windows server and generate a CRITICAL alert if memory usage is 90% or more or a WARNING alert if memory usage is 80% or greater.

define service{
 use generic-service
 host_name winserver
 service_description Memory Usage
 check_command check_nt!MEMUSE!-w 80 -c 90
}

Add the following service definition to monitor usage of the C:drive on the Windows server and generate a CRITICAL alert if disk usage is 90% or more or a WARNING alert if disk usage is 80% or greater.

define service{
 use generic-service
 host_name winserver
 service_description C:\ Drive Space
 check_command check_nt!USEDDISKSPACE!-l c -w 80 -c 90
}

Add the following service definition to monitor the W3SVC service state on the Windows machine and generate a CRITICAL alert if the service is stopped.

define service{
 use generic-service
 host_name winserver
 service_description W3SVC
 check_command check_nt!SERVICESTATE!-d SHOWALL -l W3SVC
}

Add the following service definition to monitor the Explorer.exe process on the Windows machine and generate a CRITICAL alert if the process is not running.

define service{
 use generic-service
 host_name winserver
 service_description Explorer
 check_command check_nt!PROCSTATE!-d SHOWALL -l Explorer.exe
}

That’s it for now. You’ve added some basic services that should be monitored on the Windows box. Save the configuration file.

Password Protection

If you specified a password in the NSClient++ configuration file on the Windows machine, you’ll need to modify the check_nt command definition to include the password. Open the “commands.cfg” file for editing.

linux:~ # vi /usr/local/nagios/etc/commands.cfg

Change the definition of the check_nt command to include the “”-s” <PASSWORD>” argument (where PASSWORD is the password you specified on the Windows machine) like this:

define command {
 command_name check_nt
 command_line $USER1$/check_nt -H $HOSTADDRESS$ -p 12489 -s PASSWORD -v $ARG1$ $ARG2$
}

Save the file.

Restarting Shinken

You’re done with modifying the Shiknen configuration, so you’ll need to verify your configuration files and restart Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that you don’t (re)start Shinken until the verification process completes without any errors!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Monitoring GNU/Linux & Unix Machines

Abstract

This document describes how you can monitor “private” services and attributes of Linux/UNIX servers, such as:

	CPU load

	Memory usage

	Disk usage

	Logged in users

	Running processes

	etc.

Introduction

Publicly available services that are provided by Linux servers (“HTTP”, “FTP”, “SSH”, “SMTP”, etc.) can be monitored easily by following the documentation on Monitoring publicly available services.

These instructions assume that you’ve installed Shinken according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that are installed if you follow the quickstart.

Overview

[This document has not been completed. I would recommend you read the documentation on the NRPE addon for instructions on how to monitor a remote Linux/Unix server.]

There are several different ways to monitor attributes or remote Linux/Unix servers. One is by using shared “SSH” keys and the check_by_ssh plugin to execute plugins on remote servers. This method will not be covered here, but can result in high load on your monitoring server if you are monitoring hundreds or thousands of services. The overhead of setting up/destroying “SSH” connections is the cause of this.

[image: ../_images/nrpe-shinken.png]
Another common method of monitoring remote Linux/Unix hosts is to use the NRPE addon. NRPE allows you to execute plugins on remote Linux/Unix hosts. This is useful if you need to monitor local resources/attributes like disk usage, CPU load, memory usage, etc. on a remote host.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Monitoring Network Printers

Abstract

This document describes how you can monitor the status of networked printers. Specifically, HP™ printers that have internal/external JetDirect® cards/devices, or other print servers (like the Troy™ PocketPro 100S® or the Netgear™ PS101®) that support the JetDirect protocol.

Introduction

[image: ../_images/printer.png]
The check_hpjd plugin (which is part of the standard Nagios plugins distribution) allows you to monitor the status of JetDirect-capable printers which have “SNMP” enabled. The plugin is capable of detecting the following printer states:

	Paper Jam

	Out of Paper

	Printer Offline

	Intervention Required

	Toner Low

	Insufficient Memory

	Open Door

	Output Tray is Full

	and more...

These instructions assume that you’ve installed Nagios according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that are installed if you follow the quickstart.

Overview

[image: ../_images/monitoring-printers-shinken.png]
Monitoring the status of a networked printer is pretty simple. JetDirect-enabled printers usually have “SNMP” enabled, which allows Nagios to monitor their status using the check_hpjd plugin.

The check_hpjd plugin will only get compiled and installed if you have the net-snmp and net-snmp-utils packages installed on your system. Make sure the plugin exists in “/usr/local/nagios/libexec” before you continue. If it doesn’t, install net-snmp and net-snmp-utils and recompile/reinstall the Nagios plugins.

Steps

There are several steps you’ll need to follow in order to monitor a new network printer. They are:

	Perform first-time prerequisites

	Create new host and service definitions for monitoring the printer

	Restart Shinken services

What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

	A check_hpjd command definition has been added to the “commands.cfg” file. This allows you to use the check_hpjd plugin to monitor network printers.

	A printer host template (called generic-printer) has already been created in the “templates.cfg” file. This allows you to add new printer host definitions in a simple manner.

The above-mentioned config files can be found in the “/etc/shinken/objects/” directory. You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your network printers in no time.

Prerequisites

The first time you configure Shinken to monitor a network printer, you’ll need to do a bit of extra work. Remember, you only need to do this for the first printer you monitor.

Edit the main Nagios config file.

linux:~ # vi /etc/shinken/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

#cfg_file=/etc/shinken/objects/printer.cfg

Save the file and exit.

What did you just do? You told Shinken to look to the “/etc/shinken/objects/printer.cfg” to find additional object definitions. That’s where you’ll be adding host and service definitions for the printer. That configuration file already contains some sample host, hostgroup, and service definitions. For the first printer you monitor, you can simply modify the sample host and service definitions in that file, rather than creating new ones.

Configuring Shinken

You’ll need to create some object definitions in order to monitor a new printer.

Open the “printer.cfg” file for editing.

linux:~ # vi /etc/shinken/objects/printer.cfg

Add a new host definition for the networked printer that you’re going to monitor. If this is the first printer you’re monitoring, you can simply modify the sample host definition in “printer.cfg”. Change the “host_name”, “alias”, and “address” fields to appropriate values for the printer.

define host{
 use generic-printer ; Inherit default values from a template
 host_name hplj2605dn ; The name we're giving to this printer
 alias HP LaserJet 2605dn ; A longer name associated with the printer
 address 192.168.1.30 ; IP address of the printer
 hostgroups allhosts ; Host groups this printer is associated with
}

Now you can add some service definitions (to the same configuration file) to monitor different aspects of the printer. If this is the first printer you’re monitoring, you can simply modify the sample service definition in “printer.cfg”.

Replace “hplj2605dn” in the example definitions below with the name you specified in the “host_name” directive of the host definition you just added.

Add the following service definition to check the status of the printer. The service uses the check_hpjd plugin to check the status of the printer every 10 minutes by default. The “SNMP” community string used to query the printer is “public” in this example.

define service{
 use generic-service ; Inherit values from a template
 host_name hplj2605dn ; The name of the host the service is associated with
 service_description Printer Status ; The service description
 check_command check_hpjd!-C public ; The command used to monitor the service
 normal_check_interval 10 ; Check the service every 10 minutes under normal conditions
 retry_check_interval 1 ; Re-check the service every minute until its final/hard state is determined
}

Add the following service definition to ping the printer every 10 minutes by default. This is useful for monitoring RTA, packet loss, and general network connectivity.

define service{
 use generic-service
 host_name hplj2605dn
 service_description PING
 check_command check_ping!3000.0,80%!5000.0,100%
 normal_check_interval 10
 retry_check_interval 1
}

Save the file.

Restarting Shinken

Once you’ve added the new host and service definitions to the “printer.cfg” file, you’re ready to start monitoring the printer. To do this, you’ll need to verify your configuration and restart Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that you don’t (re)start Shinken until the verification process completes without any errors!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Monitoring Routers and Switches

Abstract

This document describes how you can monitor the status of network switches and routers. Some cheaper “unmanaged” switches and hubs don’t have IP addresses and are essentially invisible on your network, so there’s not any way to monitor them. More expensive switches and routers have addresses assigned to them and can be monitored by pinging them or using “SNMP” to query status information.

Introduction

[image: ../_images/switch.png]
I’ll describe how you can monitor the following things on managed switches, hubs, and routers:

	Packet loss, round trip average

	“SNMP” status information

	Bandwidth / traffic rate

These instructions assume that you’ve installed Shinken according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample config files (“commands.cfg”, “templates.cfg”, etc.) that are installed when you follow the quickstart.

Overview

[image: ../_images/monitoring-routers-shinken.png]
Monitoring switches and routers can either be easy or more involved - depending on what equipment you have and what you want to monitor. As they are critical infrastructure components, you’ll no doubt want to monitor them in at least some basic manner.

Switches and routers can be monitored easily by “pinging” them to determine packet loss, RTA, etc. If your switch supports “SNMP”, you can monitor port status, etc. with the check_snmp plugin and bandwidth (if you’re using MRTG) with the check_mrtgtraf plugin.

The check_snmp plugin will only get compiled and installed if you have the net-snmp and net-snmp-utils packages installed on your system. Make sure the plugin exists in “/usr/local/nagios/libexec” before you continue. If it doesn’t, install net-snmp and net-snmp-utils and recompile/reinstall the Nagios plugins.

Steps

There are several steps you’ll need to follow in order to monitor a new router or switch. They are:

	Perform first-time prerequisites

	Create new host and service definitions for monitoring the device

	Restart Shinken services

What’s Already Done For You

To make your life a bit easier, a few configuration tasks have already been done for you:

	Two command definitions (check_snmp and check_local_mrtgtraf) have been added to the “commands.cfg” file. These allows you to use the check_snmp and check_mrtgtraf plugins to monitor network routers.

	A switch host template (called generic-switch) has already been created in the “templates.cfg” file. This allows you to add new router/switch host definitions in a simple manner.

The above-mentioned config files can be found in the “/etc/shinken/objects/” directory. You can modify the definitions in these and other definitions to suit your needs better if you’d like. However, I’d recommend waiting until you’re more familiar with configuring Shinken before doing so. For the time being, just follow the directions outlined below and you’ll be monitoring your network routers/switches in no time.

Important

The commands are in fact not included yet in commands.cfg

Prerequisites

The first time you configure Shinken to monitor a network switch, you’ll need to do a bit of extra work. Remember, you only need to do this for the first switch you monitor.

Edit the main Shinken config file.

linux:~ # vi /etc/shinken/nagios.cfg

Remove the leading pound (#) sign from the following line in the main configuration file:

#cfg_file=/etc/shinken/objects/switch.cfg

Save the file and exit.

What did you just do? You told Shinken to look to the “/etc/shinken/objects/switch.cfg” to find additional object definitions. That’s where you’ll be adding host and service definitions for routers and switches. That configuration file already contains some sample host, hostgroup, and service definitions. For the first router/switch you monitor, you can simply modify the sample host and service definitions in that file, rather than creating new ones.

Configuring Shinken

You’ll need to create some object definitions in order to monitor a new router/switch.

Open the “switch.cfg” file for editing.

linux:~ # vi /etc/shinken/objects/switch.cfg

Add a new host definition for the switch that you’re going to monitor. If this is the first switch you’re monitoring, you can simply modify the sample host definition in “switch.cfg”. Change the “host_name”, “alias”, and “address” fields to appropriate values for the switch.

define host{
 use generic-switch ; Inherit default values from a template
 host_name linksys-srw224p ; The name we're giving to this switch
 alias Linksys SRW224P Switch ; A longer name associated with the switch
 address 192.168.1.253 ; IP address of the switch
 hostgroups allhosts,switches ; Host groups this switch is associated with
}

Monitoring Services

Now you can add some service definitions (to the same configuration file) to monitor different aspects of the switch. If this is the first switch you’re monitoring, you can simply modify the sample service definition in “switch.cfg”.

Replace linksys-srw224p in the example definitions below with the name you specified in the “host_name” directive of the host definition you just added.

Monitoring Packet Loss and RTA

Add the following service definition in order to monitor packet loss and round trip average between the Shinken host and the switch every 5 minutes under normal conditions.

define service{
 use generic-service
 host_name linksys-srw224p
 service_description PING
 check_command check_ping!200.0,20%!600.0,60%
 normal_check_interval 5
 retry_check_interval 1
}

	Inherit values from a template

	The name of the host the service is associated with

	The service description

	The command used to monitor the service

	Check the service every 5 minutes under normal conditions

	Re-check the service every minute until its final/hard state is determined

This service will be:

	CRITICAL if the round trip average (RTA) is greater than 600 milliseconds or the packet loss is 60% or more

	WARNING if the RTA is greater than 200 ms or the packet loss is 20% or more

	OK if the RTA is less than 200 ms and the packet loss is less than 20%

Monitoring SNMP Status Information

If your switch or router supports “SNMP”, you can monitor a lot of information by using the check_snmp plugin. If it doesn’t, skip this section.

Add the following service definition to monitor the uptime of the switch.

define service{
 use generic-service ; Inherit values from a template
 host_name linksys-srw224p
 service_description Uptime
 check_command check_snmp!-C public -o sysUpTime.0
}

In the “check_command” directive of the service definition above, the “-C public” tells the plugin that the “SNMP” community name to be used is “public” and the “-o sysUpTime.0” indicates which OID should be checked.

If you want to ensure that a specific port/interface on the switch is in an up state, you could add a service definition like this:

define service{
 use generic-service ; Inherit values from a template
 host_name linksys-srw224p
 service_description Port 1 Link Status
 check_command check_snmp!-C public -o ifOperStatus.1 -r 1 -m RFC1213-MIB
}

In the example above, the “-o ifOperStatus.1” refers to the OID for the operational status of port 1 on the switch.

The “-r 1” option tells the check_snmp plugin to return an OK state if “1” is found in the “SNMP” result (1 indicates an “up” state on the port) and CRITICAL if it isn’t found.

The “-m RFC1213-MIB” is optional and tells the check_snmp plugin to only load the “RFC1213-MIB” instead of every single MIB that’s installed on your system, which can help speed things up.

That’s it for the “SNMP” monitoring example. There are a million things that can be monitored via “SNMP”, so its up to you to decide what you need and want to monitor. Good luck!

You can usually find the OIDs that can be monitored on a switch by running the following command (replace 192.168.1.253 with the IP address of the switch): snmpwalk -v1 -c public 192.168.1.253 -m ALL .1

Monitoring Bandwidth / Traffic Rate

If you’re monitoring bandwidth usage on your switches or routers using MRTG [http://oss.oetiker.ch/mrtg/], you can have Shinken alert you when traffic rates exceed thresholds you specify. The check_mrtgtraf plugin (which is included in the Nagios plugins distribution) allows you to do this.

You’ll need to let the check_mrtgtraf plugin know what log file the MRTG data is being stored in, along with thresholds, etc. In my example, I’m monitoring one of the ports on a Linksys switch. The MRTG log file is stored in “/var/lib/mrtg/192.168.1.253_1.log”. Here’s the service definition I use to monitor the bandwidth data that’s stored in the log file...

define service{
 use generic-service ; Inherit values from a template
 host_name linksys-srw224p
 service_description Port 1 Bandwidth Usage
 check_command check_local_mrtgtraf!/var/lib/mrtg/192.168.1.253_1.log!AVG!1000000,2000000!5000000,5000000!10
}

In the example above, the “/var/lib/mrtg/192.168.1.253_1.log” option that gets passed to the check_local_mrtgtraf command tells the plugin which MRTG log file to read from.

The AVG option tells it that it should use average bandwidth statistics. The “1000000,2000000” options are the warning thresholds (in bytes) for incoming traffic rates.

The “5000000,5000000” are critical thresholds (in bytes) for outgoing traffic rates. The “10” option causes the plugin to return a CRITICAL state if the MRTG log file is older than 10 minutes (it should be updated every 5 minutes).

Save the file.

Restarting Shinken

Once you’ve added the new host and service definitions to the “switch.cfg” file, you’re ready to start monitoring the router/switch. To do this, you’ll need to verify your configuration and restart Sinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that you don’t (re)start Shinken until the verification process completes without any errors!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Monitoring Publicly Available Services

Abstract

This document describes how you can monitor publicly available services, applications and protocols. By “public” I mean services that are accessible across the network - either the local network or the greater Internet. Examples of public services include “HTTP”, “POP3”, “IMAP”, “FTP”, and “SSH”. There are many more public services that you probably use on a daily basis. These services and applications, as well as their underlying protocols, can usually be monitored by Shinken without any special access requirements.

Introduction

Private services, in contrast, cannot be monitored with Shinken without an intermediary agent of some kind. Examples of private services associated with hosts are things like CPU load, memory usage, disk usage, current user count, process information, etc. These private services or attributes of hosts are not usually exposed to external clients. This situation requires that an intermediary monitoring agent be installed on any host that you need to monitor such information on. More information on monitoring private services on different types of hosts can be found in the documentation on:

	Monitoring Windows machines

	Monitoring Netware servers

	Monitoring Linux/Unix machines

Occasionally you will find that information on private services and applications can be monitored with “SNMP”. The “SNMP” agent allows you to remotely monitor otherwise private (and inaccessible) information about the host. For more information about monitoring services using “SNMP”, check out the documentation on Monitoring routers/switches.

These instructions assume that you’ve installed Shinken according to the quickstart guide. The sample configuration entries below reference objects that are defined in the sample “commands.cfg” and “localhost.cfg” config files.

Plugins For Monitoring Services

When you find yourself needing to monitor a particular application, service, or protocol, chances are good that a plugin exists to monitor it. The official Nagios plugins distribution comes with plugins that can be used to monitor a variety of services and protocols. There are also a large number of contributed plugins that can be found in the “contrib/” subdirectory of the plugin distribution. The NagiosExchange.org [http://www.nagiosexchange.org] website hosts a number of additional plugins that have been written by users, so check it out when you have a chance.

If you don’t happen to find an appropriate plugin for monitoring what you need, you can always write your own. Plugins are easy to write, so don’t let this thought scare you off. Read the documentation on developing plugins for more information.

I’ll walk you through monitoring some basic services that you’ll probably use sooner or later. Each of these services can be monitored using one of the plugins that gets installed as part of the Nagios plugins distribution. Let’s get started...

Creating A Host Definition

Before you can monitor a service, you first need to define a host that is associated with the service. You can place host definitions in any object configuration file specified by a cfg_file directive or placed in a directory specified by a cfg_dir directive. If you have already created a host definition, you can skip this step.

For this example, lets say you want to monitor a variety of services on a remote host. Let’s call that host remotehost. The host definition can be placed in its own file or added to an already exiting object configuration file. Here’s what the host definition for remotehost might look like:

define host{
 use generic-host ; Inherit default values from a template
 host_name remotehost ; The name we're giving to this host
 alias Some Remote Host ; A longer name associated with the host
 address 192.168.1.50 ; IP address of the host
 hostgroups allhosts ; Host groups this host is associated with
}

Now that a definition has been added for the host that will be monitored, we can start defining services that should be monitored. As with host definitions, service definitions can be placed in any object configuration file.

Creating Service Definitions

For each service you want to monitor, you need to define a service in Shinken that is associated with the host definition you just created. You can place service definitions in any object configuration file specified by a cfg_file directive or placed in a directory specified by a cfg_dir directive.

Some example service definitions for monitoring common public service (“HTTP”, “FTP”, etc) are given below.

Monitoring HTTP

Chances are you’re going to want to monitor web servers at some point - either yours or someone else’s. The check_http plugin is designed to do just that. It understands the “HTTP” protocol and can monitor response time, error codes, strings in the returned HTML, server certificates, and much more.

The “commands.cfg” file contains a command definition for using the check_http plugin. It looks like this:

define command{
 name check_http
 command_name check_http
 command_line $USER1$/check_http -I $HOSTADDRESS$ $ARG1$
 }

A simple service definition for monitoring the “HTTP” service on the remotehost machine might look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description HTTP
 check_command check_http
 }

This simple service definition will monitor the “HTTP” service running on remotehost. It will produce alerts if the web server doesn’t respond within 10 seconds or if it returns “HTTP” errors codes (403, 404, etc.). That’s all you need for basic monitoring. Pretty simple, huh?

For more advanced monitoring, run the check_http plugin manually with “–help” as a command-line argument to see all the options you can give the plugin. This “–help” syntax works with all of the plugins I’ll cover in this document.

A more advanced definition for monitoring the “HTTP” service is shown below. This service definition will check to see if the /download/index.php URI contains the string “latest-version.tar.gz”. It will produce an error if the string isn’t found, the URI isn’t valid, or the web server takes longer than 5 seconds to respond.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description Product Download Link
 check_command check_http!-u /download/index.php -t 5 -s "latest-version.tar.gz"
 }

Monitoring FTP

When you need to monitor “FTP” servers, you can use the check_ftp plugin. The “commands.cfg” file contains a command definition for using the check_ftp plugin, which looks like this:

define command{
 command_name check_ftp
 command_line $USER1$/check_ftp -H $HOSTADDRESS$ $ARG1$
 }

A simple service definition for monitoring the “FTP” server on remotehost would look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description FTP
 check_command check_ftp
 }

This service definition will monitor the “FTP” service and generate alerts if the “FTP” server doesn’t respond within 10 seconds.

A more advanced service definition is shown below. This service will check the “FTP” server running on port 1023 on remotehost. It will generate an alert if the server doesn’t respond within 5 seconds or if the server response doesn’t contain the string “Pure-FTPd [TLS]”.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description Special FTP
 check_command check_ftp!-p 1023 -t 5 -e "Pure-FTPd [TLS]"
 }

Monitoring SSH

When you need to monitor “SSH” servers, you can use the check_ssh plugin. The “commands.cfg” file contains a command definition for using the check_ssh plugin, which looks like this:

define command{
 command_name check_ssh
 command_line $USER1$/check_ssh $ARG1$ $HOSTADDRESS$
 }

A simple service definition for monitoring the “SSH” server on remotehost would look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description SSH
 check_command check_ssh
 }

This service definition will monitor the “SSH” service and generate alerts if the “SSH” server doesn’t respond within 10 seconds.

A more advanced service definition is shown below. This service will check the “SSH” server and generate an alert if the server doesn’t respond within 5 seconds or if the server version string string doesn’t match “OpenSSH_4.2”.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description SSH Version Check
 check_command check_ssh!-t 5 -r "OpenSSH_4.2"
 }

Monitoring SMTP

The check_smtp plugin can be using for monitoring your email servers. The “commands.cfg” file contains a command definition for using the check_smtp plugin, which looks like this:

define command{
 command_name check_smtp
 command_line $USER1$/check_smtp -H $HOSTADDRESS$ $ARG1$
 }

A simple service definition for monitoring the “SMTP” server on remotehost would look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description SMTP
 check_command check_smtp
 }

This service definition will monitor the “SMTP” service and generate alerts if the “SMTP” server doesn’t respond within 10 seconds.

A more advanced service definition is shown below. This service will check the “SMTP” server and generate an alert if the server doesn’t respond within 5 seconds or if the response from the server doesn’t contain “mygreatmailserver.com”.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description SMTP Response Check
 check_command check_smtp!-t 5 -e "mygreatmailserver.com"
 }

Monitoring POP3

The check_pop plugin can be using for monitoring the “POP3” service on your email servers. The “commands.cfg” file contains a command definition for using the check_pop plugin, which looks like this:

define command{
 command_name check_pop
 command_line $USER1$/check_pop -H $HOSTADDRESS$ $ARG1$
 }

A simple service definition for monitoring the “POP3” service on remotehost would look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description POP3
 check_command check_pop
 }

This service definition will monitor the “POP3” service and generate alerts if the “POP3” server doesn’t respond within 10 seconds.

A more advanced service definition is shown below. This service will check the “POP3” service and generate an alert if the server doesn’t respond within 5 seconds or if the response from the server doesn’t contain “mygreatmailserver.com”.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description POP3 Response Check
 check_command check_pop!-t 5 -e "mygreatmailserver.com"
 }

Monitoring IMAP

The check_imap plugin can be using for monitoring “IMAP4” service on your email servers. The “commands.cfg” file contains a command definition for using the check_imap plugin, which looks like this:

define command{
 command_name check_imap
 command_line $USER1$/check_imap -H $HOSTADDRESS$ $ARG1$
 }

A simple service definition for monitoring the “IMAP4” service on remotehost would look like this:

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description IMAP
 check_command check_imap
 }

This service definition will monitor the “IMAP4” service and generate alerts if the “IMAP” server doesn’t respond within 10 seconds.

A more advanced service definition is shown below. This service will check the IAMP4 service and generate an alert if the server doesn’t respond within 5 seconds or if the response from the server doesn’t contain “mygreatmailserver.com”.

define service{
 use generic-service ; Inherit default values from a template
 host_name remotehost
 service_description IMAP4 Response Check
 check_command check_imap!-t 5 -e "mygreatmailserver.com"
 }

Restarting Shinken

Once you’ve added the new host and service definitions to your object configuration file(s), you’re ready to start monitoring them. To do this, you’ll need to verify your configuration and restart Shinken.

If the verification process produces any errors messages, fix your configuration file before continuing. Make sure that you don’t (re)start Shinken until the verification process completes without any errors!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Getting Started

Nagios/Shinken Plugins

Introduction

Shinken includes a set of scalable internal mechanisms for checking the status of hosts and services on your network. These are called modules and can be loaded by the various Shinken daemons involved in data acquisition (Poller daemons, Receiver daemons, Arbiter Daemon)
Shinken also relies on external programs (called check plugins) to monitor a very wide variety of devices, applications and networked services.

What Are Plugins?

Plugins are compiled executables or scripts (Perl scripts, shell scripts, etc.) that can be run from a command line to check the status of a host or service. Shinken uses the results from plugins to determine the current status of hosts and services on your network and obtain performance data about the monitored service.

Shinken will execute a plugin whenever there is a need to check the status of a service or host. The plugin does something (notice the very general term) to perform the check and then simply returns the results to Shinken. It will process the results that it receives from the plugin and take any necessary actions (running event handlers, sending out notifications, etc).

Shinken integrated data acquisition modules

These replace traditional unscalable plugins with high performance variants that are more tightly coupled with Shinken.

	Integrated Shinken data acquisition modules support the following protocols:

	
	NRPE

	SNMP

Plugins As An Abstraction Layer

[image: ../_images/plugins.png]
DEPRECATED IMAGE - TODO Replace with the Shinken specific architecture diagram.

Plugins act as an abstraction layer between the monitoring logic present in the Shinken daemon and the actual services and hosts that are being monitored.

The upside of this type of plugin architecture is that you can monitor just about anything you can think of. If you can automate the process of checking something, you can monitor it with Shinken. There are already literally thousands of plugins that have been created in order to monitor basic resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on writing plugins and roll your own. It’s simple!

The downside to this type of plugin architecture is the fact that Shinken has absolutely no idea what it is that you’re monitoring. You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic toaster to properly brown your bread in the morning... Shinken doesn’t understand the specifics of what’s being monitored - it just tracks changes in the state of those resources. Only the plugins themselves know exactly what they’re monitoring and how to perform the actual checks.

What Plugins Are Available?

There are plugins currently available to monitor many different kinds of devices and services.

They use basic monitoring protocols including:

	WMI, SNMP, SSH, NRPE, TCP, UDP, ICMP, OPC, LDAP and more

They can monitor pretty much anything:

	Unix/Linux, Windows, and Netware Servers

	Routers, Switches, VPNs

	Networked services: “HTTP”, “POP3”, “IMAP”, “FTP”, “SSH”, “DHCP”

	CPU Load, Disk Usage, Memory Usage, Current Users

	Applications, databases, logs and more.

Obtaining Plugins

Shinken also organizes monitoring configuration packages. These are pre-built for fast no nonsense deployments. They include the check command definitions, service templates, host templates, discovery rules and integration hooks to the Community web site. The integration with the community web site permits for deployment and updates of monitoring packs.

Get started with Shinken Monitoring Packages “Packs” today.

The plugins themselves are not distributed with Shinken, but you can download the official Nagios plugins and many additional plugins created and maintained by Nagios users from the following locations:

	Nagios Plugins Project: http://nagiosplug.sourceforge.net/

	Nagios Downloads Page: http://www.nagios.org/download/

	NagiosExchange.org: http://www.nagiosexchange.org/

How Do I Use Plugin X?

Most plugins will display basic usage information when you execute them using “-h” or “–help” on the command line. For example, if you want to know how the check_http plugin works or what options it accepts, you should try executing the following command:

./check_http --help

Plugin API

You can find information on the technical aspects of plugins, as well as how to go about creating your own custom plugins here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Configuring Shinken

	Configuration Overview
	Introduction

	Main Configuration File

	Resource File(s)

	Object Definition Files

	Main Configuration File Options
	Config File Location and sample

	Broker Modules

	Arbiter, Receiver, Poller, Reactionner Modules

	Path, users and log variables
	Log File

	Log Level

	Human format for log timestamp

	Object Configuration File

	Object Configuration Directory

	Resource File

	Arbiter Daemon User

	Arbiter Daemon user Group

	Bypass security checks for the Arbiter daemon

	Notifications Option

	Log Rotation Method (Not fully implemented)

	External Command Check Option

	External Command File

	Arbiter Lock File

	State Retention Option (Not implemented)

	State Retention File

	Automatic State Retention Update Interval

	Scheduling parameters
	Service/Host Check Execution Option

	Passive Service/Host Check Acceptance Option

	Event Handler Option

	Event Handler during downtimes

	Syslog Logging Option

	Notification Logging Option

	Service/Host Check Retry Logging Option (Not implemented)

	Event Handler Logging Option

	Initial States Logging Option (Not implemented)

	External Command Logging Option

	Passive Check Logging Option (Not implemented)

	Global Host/Service Event Handler Option (Not implemented)

	Maximum Host/Service Check Spread

	Timing Interval Length

	Tuning and advanced parameters

	Old CGI related parameter

	Unused parameters

	Object Configuration Overview
	What Are Objects?

	Where Are Objects Defined?

	How Are Objects Defined?

	Objects Explained
	Hosts

	Host Groups

	Services

	Service Groups

	Contacts

	Contact Groups

	Timeperiods

	Commands

	Object Definitions
	Introduction

	Sample Configuration Files

	Object Types

	Custom Object Variables
	Introduction

	Custom Variable Basics

	Examples

	Custom Variables As Macros

	Custom Variables And Inheritance

	Main advanced configuration
	Tuning and advanced parameters

	Performance data parameters
	Performance Data Processor Command Timeout

	Performance Data Processing Option

	Host/Service Performance Data Processing Command

	Host/Service Performance Data File

	Host Performance Data File Template

	Service Performance Data File Template

	Host/Service Performance Data File Mode

	Host/Service Performance Data File Processing Interval (Unused)

	Host/Service Performance Data File Processing Command (Unused)

	Advanced scheduling parameters
	Passive Host Checks Are SOFT Option (Not implemented)

	Predictive Host/Service Dependency Checks Option (Unused)

	Orphaned Host/Service Check Option

	Max Plugins Output Length

	Enable problem/impacts states change

	Soft State Dependencies Option (Not implemented)

	Performance tuning
	Cached Host/Service Check Horizon

	Large Installation Tweaks Option

	Environment Macros Option

	Flapping parameters
	Flap Detection Option

	Low Service/Host Flap Threshold

	High Service/Host Flap Threshold

	Flap History

	Commands/checks timeout
	Service/Host Check Timeout

	Various commands Timeouts

	Old Obsess Over commands
	Obsess Over Services Option

	Obsessive Compulsive Service Processor Command

	Obsess Over Hosts Option

	Obsessive Compulsive Host Processor Command

	Freshness check
	Host/Service Freshness Checking Option

	Host/Service Freshness Check Interval

	Additional Freshness Threshold Latency Option (Not implemented)

	All the others :)
	Date Format (Not implemented)

	Timezone Option

	Illegal Object Name Characters

	Illegal Macro Output Characters

	Regular Expression Matching Option (Not implemented)

	True Regular Expression Matching Option (Not implemented)

	Administrator Email Address (unused)

	Administrator Pager (unused)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Configuration Overview

Introduction

There are several different configuration files that you’re going to need to create or edit before you start monitoring anything. Be patient! Configuring Shinken can take quite a while, especially if you’re first-time user. Once you figure out how things work, it’ll all be well worth your time. :-)

Sample configuration files are installed in the “/usr/local/shinken/etc/” directory when you follow the Quickstart installation guide.

Main Configuration File

	Main Shinken configuration files are separate in two part :

	
	Nagios compatible part (nagios.cfg)

	Shinken specific part (shinken-specific.cfg)

Documentation for the main configuration file can be found Main Configuration File Options.

Resource File(s)

[image: ../_images/configoverview-shinken.png]
Resource files can be used to store user-defined macros. The main point of having resource files is to use them to store sensitive configuration information (like passwords), without making them available to the CGIs.

You can specify one or more optional resource files by using the resource_file directive in your main configuration file.
ngshinken-configmain#configuringshinken-configmain-resource_file

Object Definition Files

Object definition files are used to define hosts, services, hostgroups, contacts, contactgroups, commands, etc. This is where you define all the things you want monitor and how you want to monitor them.

You can specify one or more object definition files by using the cfg_file and/or cfg_dir directives in your main configuration file.

An introduction to object definitions, and how they relate to each other, can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Main Configuration File Options

When creating and/or editing configuration files, keep the following in mind:

	Lines that start with a ‘”#”’ character are taken to be comments and are not processed

	Variable names are case-sensitive

	If you want to configure a process to use a specific module:
	You must define the module in a modules_xxx.cfg file in the shinken-specific.d directory

	You must reference it in the modules section for that process, e.g. the broker.cfg file

Config File Location and sample

The main configuration files are usually named “nagios.cfg” and “shinken-specific*.cfg”. They are located in the “/etc/shinken/” directory.
Sample main configuration files (“/etc/shinken/nagios.cfg”, “/etc/shiken/shinken-specific*.cfg”) are installed for you when you follow the Quickstart installation guide.

Broker Modules

Shinken provides a lot of functionality through its interfaces with external systems. To this end, the broker daemon will load modules. The function of the modules is described in more detail in the Broker modules page.

Broker modules are essential for the web frontends, the metric databases, logging state changes in log management systems.

Arbiter, Receiver, Poller, Reactionner Modules

Shinken daemons can also load modules to influence what they can do and how they interface with external systems.

The sample configuration file provides succinct explanations of each module, the shinken architecture page also links to the different module configuration pages.

Path, users and log variables

Below you will find descriptions of each main Shinken configuration file option.

Log File

Defined in shinken-specific.cfg file.

Format

define broker{
 modules <logging modules>
 [...]
}

Example for logging module named “Simple_log”

define module{
 module_name Simple-log
 module_type simple_log
 path /var/lib/shinken/nagios.log
 archive_path /var/lib/shinken/archives/
}

This variable specifies where Shinken should create its main log file on the broker server. If you have Log Rotation Method enabled, this file will automatically be rotated every day.

Log Level

Defined in nagios.cfg file.

Format

log_level=[DEBUG,INFO,WARNING,ERROR,CRITICAL]

Example :

log_level=WARNING

This variable specifies which logs will be raised by the arbiter daemon. For others daemons, it can be defined in their local *d.ini files.

Human format for log timestamp

Say if the timespam should be a unixtime (default) or a human read one.

Format :

human_timestamp_log=[0/1]

Example

human_timestamp_log=0

This directive is used to specify if the timespam before the log entry should be in unixtime (like [1302874960]) which is the default, or a human readable one (like [Fri Apr 15 15:43:19 2011]).

Beware : if you set the human format, some automatic parsing log tools won’t work!

Object Configuration File

Defined in nagios.cfg file.

Format :

cfg_file=<file_name>

Example

cfg_file=/usr/local/shinken/etc/hosts.cfg
cfg_file=/usr/local/shinken/etc/services.cfg
cfg_file=/usr/local/shinken/etc/commands.cfg

This directive is used to specify an Object Configuration Overview containing object definitions that Shinken should use for monitoring. Object configuration files contain definitions for hosts, host groups, contacts, contact groups, services, commands, etc. You can seperate your configuration information into several files and specify multiple “cfg_file=” statements to have each of them processed.

Remark : the cfg_file can be a relative path, so it can be relative from the file that is reading. For example if you set “cfg_file=hosts.cfg” in the file “cfg_file=/etc/shinken/nagios.cfg”, the file that will be read is “/etc/shinken/hosts.cfg”.

Object Configuration Directory

Defined in nagios.cfg file.

Format:

cfg_dir=<directory_name>

Example:

cfg_dir=/etc/shinken/commands
cfg_dir=/etc/shinken/services
cfg_dir=/etc/shinken/hosts

This directive is used to specify a directory which contains Object Configuration Overview that Shinken should use for monitoring. All files in the directory with a .cfg extension are processed as object config files. Additionally, it will recursively process all config files in subdirectories of the directory you specify here. You can separate your configuration files into different directories and specify multiple

cfg_dir=

statements to have all config files in each directory processed.

Resource File

Defined in nagios.cfg file.

	Format:

	resource_file=<file_name>

Example:

resource_file=/etc/shinken/resource.cfg

This is used to specify an optional resource file that can contain “$USERn$” Understanding Macros and How They Work definitions. “$USERn$” macros are useful for storing usernames, passwords, and items commonly used in command definitions (like directory paths). A classical variable used is $USER1$, used to store the plugins path, “/usr/local/nagios/libexec” on a classic installation.

Arbiter Daemon User

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and schedulerd-windows.ini.

Format:

user=username

Example:

user=shinken

This is used to set the effective user that the Arbiter process (main process) should run as. After initial program startup, Shinken will drop its effective privileges and run as this user.

Arbiter Daemon user Group

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and schedulerd-windows.ini.

Format:

group=groupname

Example:

group=shinken

This is used to set the effective group of the user used to launch the arbiter daemon.

Bypass security checks for the Arbiter daemon

Defined in brokerd.ini, brokerd-windows.ini, pollerd.ini, pollerd-windows.ini, reactionnerd.ini, schedulerd.ini and schedulerd-windows.ini.

Format:

idontcareaboutsecurity=<0/1>

Example:

idontcareaboutsecurity=0

This option determines whether or not Shinken will allow the Arbiter daemon to run under the root account. If this option is disabled, Shinken will bailout if the nagios_user or the nagios_group is configured with the root account.

	The Shinken daemons do not need root right. Without a good reason do not run thems under this account!

	
	0 = Be a responsible administrator

	1 = Make crazy your security manager

Notifications Option

Format:

enable_notifications=<0/1>

Example:

enable_notifications=1

This option determines whether or not Shinken will send out notifications. If this option is disabled, Shinken will not send out notifications for any host or service.

	Values are as follows:

	
	0 = Disable notifications

	1 = Enable notifications (default)

Log Rotation Method (Not fully implemented)

Format:

log_rotation_method=<n/h/d/w/m>

Example:

log_rotation_method=d

This is the rotation method that you would like Shinken to use for your log file on the broker server. Values are as follows:

	n = None (don’t rotate the log - this is the default)

	h = Hourly (rotate the log at the top of each hour)

	d = Daily (rotate the log at midnight each day)

	w = Weekly (rotate the log at midnight on Saturday)

	m = Monthly (rotate the log at midnight on the last day of the month)

Tip

From now, only the d (Daily) parameter is managed.

External Command Check Option

Format:

check_external_commands=<0/1>

Example:

check_external_commands=1

This option determines whether or not Shinken will check the External Command File for commands that should be executed with the arbiter daemon. More information on external commands can be found here.

	0 = Don’t check external commands (default)

	1 = Check external commands (default)

Note

FIX ME : Find the real default value

External Command File

Defined in nagios.cfg file.

Format:

command_file=<file_name>

Example:

command_file=/var/lib/shinken/rw/nagios.cmd

This is the file that Shinken will check for external commands to process with the arbiter daemon. The command CGI writes commands to this file. The external command file is implemented as a named pipe (FIFO), which is created when Nagios starts and removed when it shuts down. More information on external commands can be found here.

Tip

This external command file is not managed under Windows system. Please use others way to send commands like the LiveStatus module for example.

Arbiter Lock File

Defined in nagios.cfg file.

Format:
lock_file=<file_name>
Example:
lock_file=/var/lib/shinken/arbiterd.pid

This option specifies the location of the lock file that Shinken arbiter daemon should create when it runs as a daemon (when started with the “-d” command line argument). This file contains the process id (PID) number of the running arbiter process.

State Retention Option (Not implemented)

Format:

retain_state_information=<0/1>

Example:

retain_state_information=1

	This option determines whether or not Shinken will retain state information for hosts and services between program restarts. If you enable this option, you should supply a value for the State Retention File variable. When enabled, Shinken will save all state information for hosts and service before it shuts down (or restarts) and will read in previously saved state information when it starts up again.

	
	0 = Don’t retain state information

	1 = Retain state information (default)

Note

Idea to approve : Mark it as Unused : Related topic [http://www.shinken-monitoring.org/forum/index.php/topic,21.0.html]. A Shinken module replace it.

State Retention File

Format:

state_retention_file=<file_name>

Example:

state_retention_file=/var/lib/shinken/retention.dat

This is the file that Shinken scheduler daemons will use for storing status, downtime, and comment information before they shuts down. When Shinken is restarted it will use the information stored in this file for setting the initial states of services and hosts before it starts monitoring anything. In order to make Shinken retain state information between program restarts, you must enable the State Retention Option option.

Important

The file format is not the same between Shinken and Nagios! The retention.dat generated with Nagios will not load into Shinken.

Automatic State Retention Update Interval

Format:

retention_update_interval=<minutes>

Example:

retention_update_interval=60

This setting determines how often (in minutes) that Shinken scheduler will automatically save retention data during normal operation. If you set this value to 0, it will not save retention data at regular intervals, but it will still save retention data before shutting down or restarting. If you have disabled state retention (with the State Retention Option option), this option has no effect.

Scheduling parameters

Service/Host Check Execution Option

Format:

execute_service_checks=<0/1>
execute_host_checks=<0/1>

Example:

execute_service_checks=1
execute_host_checks=1

This option determines whether or not Shinken will execute service/host checks. Do not change this option unless you use a old school distributed architecture. And even if you do this, please change your architecture with a cool new one far more efficient.

	0 = Don’t execute service checks

	1 = Execute service checks (default)

Passive Service/Host Check Acceptance Option

Format:

accept_passive_service_checks=<0/1>
accept_passive_host_checks=<0/1>

Example:

accept_passive_service_checks=1
accept_passive_host_checks=1

This option determines whether or not Shinken will accept passive service/host checks. If this option is disabled, Nagios will not accept any passive service/host checks.

	0 = Don’t accept passive service/host checks

	1 = Accept passive service/host checks (default)

Event Handler Option

Format:

enable_event_handlers=<0/1>

Example:

enable_event_handlers=1

This option determines whether or not Shinken will run event handlers.

	0 = Disable event handlers

	1 = Enable event handlers (default)

Event Handler during downtimes

Format:

no_event_handlers_during_downtimes=<0/1>

Example:

no_event_handlers_during_downtimes=1

This option determines whether or not Shinken will run event handlers when the host or service is in a scheduled downtime.

	0 = Disable event handlers (Nagios behavior) (default)

	1 = Enable event handlers

References:

	http://www.mail-archive.com/shinken-devel@lists.sourceforge.net/msg01394.html

	https://github.com/naparuba/shinken/commit/9ce28d80857c137e5b915b39bbb8c1baecc821f9

Syslog Logging Option

Format:

use_syslog=<0/1>

Example:

use_syslog=1

This variable determines whether messages are logged to the syslog facility on your local host. Values are as follows:

	0 = Don’t use syslog facility

	1 = Use syslog facility

Tip

This is a Unix Os only option.

Notification Logging Option

Format:

log_notifications=<0/1>

Example:

log_notifications=1

This variable determines whether or not notification messages are logged. If you have a lot of contacts or regular service failures your log file will grow (let say some Mo by day for a huge configuration, so it’s quite OK for nearly every one to log them). Use this option to keep contact notifications from being logged.

	0 = Don’t log notifications

	1 = Log notifications

Service/Host Check Retry Logging Option (Not implemented)

Format:

log_service_retries=<0/1>
log_host_retries=<0/1>

Example:

log_service_retries=0
log_host_retries=0

This variable determines whether or not service/host check retries are logged. Service check retries occur when a service check results in a non-OK state, but you have configured Shinken to retry the service more than once before responding to the error. Services in this situation are considered to be in “soft” states. Logging service check retries is mostly useful when attempting to debug Shinken or test out service/host event handlers.

	0 = Don’t log service/host check retries (default)

	1 = Log service/host check retries

Event Handler Logging Option

Format:

log_event_handlers=<0/1>

Example:

log_event_handlers=1

This variable determines whether or not service and host event handlers are logged. Event handlers are optional commands that can be run whenever a service or hosts changes state. Logging event handlers is most useful when debugging Shinken or first trying out your event handler scripts.

	0 = Don’t log event handlers

	1 = Log event handlers

Initial States Logging Option (Not implemented)

Format:

log_initial_states=<0/1>

Example:

log_initial_states=1

This variable determines whether or not Shinken will force all initial host and service states to be logged, even if they result in an OK state. Initial service and host states are normally only logged when there is a problem on the first check. Enabling this option is useful if you are using an application that scans the log file to determine long-term state statistics for services and hosts.

	0 = Don’t log initial states (default)

	1 = Log initial states

External Command Logging Option

Format:

log_external_commands=<0/1>

Example:

log_external_commands=1

This variable determines whether or not Shinken will log external commands that it receives.

	0 = Don’t log external commands

	1 = Log external commands (default)

Passive Check Logging Option (Not implemented)

Format:

log_passive_checks=<0/1>

Example:

log_passive_checks=1

This variable determines whether or not Shinken will log passive host and service checks that it receives from the external command file.

	0 = Don’t log passive checks

	1 = Log passive checks (default)

Global Host/Service Event Handler Option (Not implemented)

Format:

global_host_event_handler=<command>
global_service_event_handler=<command>

Example:

global_host_event_handler=log-host-event-to-db
global_service_event_handler=log-service-event-to-db

This option allows you to specify a host event handler command that is to be run for every host state change. The global event handler is executed immediately prior to the event handler that you have optionally specified in each host definition. The command argument is the short name of a command that you define in your Object Configuration Overview. The maximum amount of time that this command can run is controlled by the Event Handler Timeout option. More information on event handlers can be found here.

Such commands should not be so useful with the new Shinken distributed architecture. If you use it, look if you can avoid it because such commands will kill your performances.

Maximum Host/Service Check Spread

Format:

max_service_check_spread=<minutes>

Example:

max_service_check_spread=30

This option determines the maximum number of minutes from when Shinken starts that all hosts/services (that are scheduled to be regularly checked) are checked. This option will ensure that the initial checks of all hosts/services occur within the timeframe you specify. Default value is 30 (minutes).

Timing Interval Length

Format:

interval_length=<seconds>

Example:

interval_length=60

This is the number of seconds per “unit interval” used for timing in the scheduling queue, re-notifications, etc. “Units intervals” are used in the object configuration file to determine how often to run a service check, how often to re-notify a contact, etc.

The default value for this is set to 60, which means that a “unit value” of 1 in the object configuration file will mean 60 seconds (1 minute).

Tip

Set this option top 1 is not a good thing with Shinken. It’s not design to be a hard real time (<5seconds) monitoring system. Nearly no one need such hard real time (maybe only the Nuclear center or a market place like the London Exchange...).

Tuning and advanced parameters

Others parameters are useful for advanced features like flapping detection or performance tuning. Please look at the
configuringshinken-configmain-advanced page for them.

Old CGI related parameter

If you are using the old CGI from Nagios, please migrate to a new WebUI. For historical perspective you can find information on the specific CGI parameters.

Unused parameters

The below parameters are inherited from Nagios but are not used in Shinken. You can defined them but if you don’t it will be the same :)

They are listed on another page Unused Nagios parameters.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Object Configuration Overview

What Are Objects?

Objects are all the elements that are involved in the monitoring and notification logic. Types of objects include:

	Services

	Service Groups

	Hosts

	Host Groups

	Contacts

	Contact Groups

	Commands

	Time Periods

	Notification Escalations

	Notification and Execution Dependencies

More information on what objects are and how they relate to each other can be found below.

Where Are Objects Defined?

Objects can be defined in one or more configuration files and/or directories that you specify using the cfg_file and/or cfg_dir directives in the main configuration file.

When you follow the Quickstart installation guide, several sample object configuration files are placed in “/etc/shinken/objects/”. You can use these sample files to see how object inheritance works and learn how to define your own object definitions.

How Are Objects Defined?

Objects are defined in a flexible template format, which can make it much easier to manage your Shinken configuration in the long term. Basic information on how to define objects in your configuration files can be found here.

Once you get familiar with the basics of how to define objects, you should read up on object inheritance, as it will make your configuration more robust for the future. Seasoned users can exploit some advanced features of object definitions as described in the documentation on object tricks.

Objects Explained

Some of the main object types are explained in greater detail below...

Hosts

Hosts are one of the central objects in the monitoring logic. Important attributes of hosts are as follows:

	Hosts are usually physical devices on your network (servers, workstations, routers, switches, printers, etc).

	Hosts have an address of some kind (e.g. an IP or MAC address).

	Hosts have one or more more services associated with them.

	Hosts can have parent/child relationships with other hosts, often representing real-world network connections, which is used in the network reachability logic.

Host Groups

	Host Groups are groups of one or more hosts. Host groups can make it easier to

	
	view the status of related hosts in the Shinken web interface and

	simplify your configuration through the use of object tricks.

Services

Services are one of the central objects in the monitoring logic. Services are associated with hosts and can be:

	Attributes of a host (CPU load, disk usage, uptime, etc.)

	Services provided by the host (“HTTP”, “POP3”, “FTP”, “SSH”, etc.)

	Other things associated with the host (“DNS” records, etc.)

Service Groups

	Service Groups are groups of one or more services. Service groups can make it easier to

	
	view the status of related services in the Shinken web interface and

	simplify your configuration through the use of object tricks.

Contacts

Contacts are people involved in the notification process:

	Contacts have one or more notification methods (cellphone, pager, email, instant messaging, etc.)

	Contacts receive notifications for hosts and service they are responsible for

Contact Groups

Contact Groups are groups of one or more contacts. Contact groups can make it easier to define all the people who get notified when certain host or service problems occur.

Timeperiods

Timeperiods are are used to control:

	When hosts and services can be monitored

	When contacts can receive notifications

Information on how timeperiods work can be found here.

Commands

Commands are used to tell Shinken what programs, scripts, etc. it should execute to perform:

	Host and service checks

	Notifications

	Event handlers

	and more...

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Object Definitions

Introduction

One of the features of Shinken’ object configuration format is that you can create object definitions that inherit properties from other object definitions. An explanation of how object inheritance works can be found here. I strongly suggest that you familiarize yourself with object inheritance once you read over the documentation presented below, as it will make the job of creating and maintaining object definitions much easier than it otherwise would be. Also, read up on the object tricks that offer shortcuts for otherwise tedious configuration tasks.

When creating and/or editing configuration files, keep the following in mind:

	Lines that start with a ‘”#”’ character are taken to be comments and are not processed

	Directive names are case-sensitive

Sample Configuration Files

Sample object configuration files are installed in the “/etc/shinken/” directory when you follow the quickstart installation guide.

Object Types

	Host

	Host Group

	Service

	Service Group

	Contact

	Contact Group

	Time Period

	Command

	Service Dependency

	Service Escalation

	Host Dependency

	Host Escalation

	Extended Host Information

	Extended Service Information

	Realm

	Arbiter

	Scheduler

	Poller

	Reactionner

	Broker

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Custom Object Variables

Introduction

Users often request that new variables be added to host, service, and contact definitions. These include variables for “SNMP” community, MAC address, AIM username, Skype number, and street address. The list is endless. The problem that I see with doing this is that it makes Nagios less generic and more infrastructure-specific. Nagios was intended to be flexible, which meant things needed to be designed in a generic manner. Host definitions in Nagios, for example, have a generic “address” variable that can contain anything from an IP address to human-readable driving directions - whatever is appropriate for the user’s setup.

Still, there needs to be a method for admins to store information about their infrastructure components in their Nagios configuration without imposing a set of specific variables on others. Nagios attempts to solve this problem by allowing users to define custom variables in their object definitions. Custom variables allow users to define additional properties in their host, service, and contact definitions, and use their values in notifications, event handlers, and host and service checks.

Custom Variable Basics

There are a few important things that you should note about custom variables:

	Custom variable names must begin with an underscore (_) to prevent name collision with standard variables

	Custom variable names are case-insensitive

	Custom variables are inherited from object templates like normal variables

	Scripts can reference custom variable values with macros and environment variables

Examples

Here’s an example of how custom variables can be defined in different types of object definitions:

define host{
 host_name linuxserver
 _mac_address 00:06:5B:A6:AD:AA ; <-- Custom MAC_ADDRESS variable
 _rack_number R32 ; <-- Custom RACK_NUMBER variable
...
}

define service{
 host_name linuxserver
 description Memory Usage
 _SNMP_community public ; <-- Custom SNMP_COMMUNITY variable
 _TechContact Jane Doe ; <-- Custom TECHCONTACT variable

}

define contact{
 contact_name john
 _AIM_username john16 ; <-- Custom AIM_USERNAME variable
 _YahooID john32 ; <-- Custom YAHOOID variable
 ...
}

Custom Variables As Macros

Custom variable values can be referenced in scripts and executables that Nagios runs for checks, notifications, etc. by using macros or environment variables.

In order to prevent name collision among custom variables from different object types, Nagios prepends “_HOST”, “_SERVICE”, or “_CONTACT” to the beginning of custom host, service, or contact variables, respectively, in macro and environment variable names. The table below shows the corresponding macro and environment variable names for the custom variables that were defined in the example above.

	Object Type
	Variable Name
	Macro Name
	Environment Variable

	Host
	MAC_ADDRESS
	$_HOSTMAC_ADDRESS$
	NAGIOS__HOSTMAC_ADDRESS

	Host
	RACK_NUMBER
	$_HOSTRACK_NUMBER$
	NAGIOS__HOSTRACK_NUMBER

	Service
	SNMP_COMMUNITY
	$_SERVICESNMP_COMMUNITY$
	NAGIOS__SERVICESNMP_COMMUNITY

	Service
	TECHCONTACT
	$_SERVICETECHCONTACT$
	NAGIOS__SERVICETECHCONTACT

	Contact
	AIM_USERNAME
	$_CONTACTAIM_USERNAME$
	NAGIOS__CONTACTAIM_USERNAME

	Contact
	YAHOOID
	$_CONTACTYAHOOID$
	NAGIOS__CONTACTYAHOOID

Custom Variables And Inheritance

Custom object variables are inherited just like standard host, service, or contact variables.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Configuring Shinken

Main advanced configuration

Tuning and advanced parameters

Important

If you do not know how to change the values of theses parameters, don’t touch them :)
(and ask for help on the mailing list).

Performance data parameters

Performance Data Processor Command Timeout

Format:

perfdata_timeout=<seconds>

Example:

perfdata_timeout=5

This is the maximum number of seconds that Shinken will allow a host performance data processor command or service performance data processor command to be run. If a command exceeds this time limit it will be killed and a warning will be logged.

Performance Data Processing Option

Format:

process_performance_data=<0/1>

Example:

process_performance_data=1

This value determines whether or not Shinken will process host and service check performance data.

	0 = Don’t process performance data

	1 = Process performance data (default)

If you want to use tools like PNP, NagiosGrapher or Graphite set it to 1.

Host/Service Performance Data Processing Command

Format:

host_perfdata_command=<command>
service_perfdata_command=<command>

Example:

host_perfdata_command=process-host-perfdata
services_perfdata_command=process-service-perfdata

This option allows you to specify a command to be run after every host/service check to process host/service performance data that may be returned from the check. The command argument is the short name of a command definition that you define in your object configuration file. This command is only executed if the Performance Data Processing Option option is enabled globally and if the “process_perf_data” directive in the host definition is enabled.

Host/Service Performance Data File

Format:

host_perfdata_file=<file_name>
service_perfdata_file=<file_name>

Example:

host_perfdata_file=/usr/local/shinken/var/host-perfdata.dat
service_perfdata_file=/usr/local/shinken/var/service-perfdata.dat

This option allows you to specify a file to which host/service performance data will be written after every host check. Data will be written to the performance file as specified by the Host Performance Data File Template option or the service one. Performance data is only written to this file if the Performance Data Processing Option option is enabled globally and if the “process_perf_data” directive in the host definition is enabled.

Host Performance Data File Template

Format:

host_perfdata_file_template=<template>

Example:

host_perfdata_file_template=[HOSTPERFDATA]\t$TIMET$\t$HOSTNAME$\t$HOSTEXECUTIONTIME$\t$HOSTOUTPUT$\t$HOSTPERFDATA$

This option determines what (and how) data is written to the host performance data file. The template may contain macros, special characters (t for tab, r for carriage return, n for newline) and plain text. A newline is automatically added after each write to the performance data file.

Service Performance Data File Template

Format:

service_perfdata_file_template=<template>

Example:

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

This option determines what (and how) data is written to the service performance data file. The template may contain macros, special characters (t for tab, r for carriage return, n for newline) and plain text. A newline is automatically added after each write to the performance data file.

Host/Service Performance Data File Mode

Format:

host_perfdata_file_mode=<mode>
service_perfdata_file_mode=<mode>

Example:

host_perfdata_file_mode=a
service_perfdata_file_mode=a

This option determines how the host performance data file (or the service one) is opened. Unless the file is a named pipe you’ll probably want to use the default mode of append.

	a = Open file in append mode (default)

	w = Open file in write mode

	p = Open in non-blocking read/write mode (useful when writing to pipes)

Host/Service Performance Data File Processing Interval (Unused)

Format:

host_perfdata_file_processing_interval=<seconds>
service_perfdata_file_processing_interval=<seconds>

Example:

host_perfdata_file_processing_interval=0
service_perfdata_file_processing_interval=0

This option allows you to specify the interval (in seconds) at which the host performance data file (orthe service one) is processed using the host performance data file processing command. A value of 0 indicates that the performance data file should not be processed at regular intervals.

Host/Service Performance Data File Processing Command (Unused)

Format:

host_perfdata_file_processing_command=<command>
service_perfdata_file_processing_command=<command>

Example:

host_perfdata_file_processing_command=process-host-perfdata-file
service_perfdata_file_processing_command=process-service-perfdata-file

This option allows you to specify the command that should be executed to process the host performance data file (or the service one). The command argument is the short name of a command definition that you define in your object configuration file. The interval at which this command is executed is determined by the host_perfdata_file_processing_interval directive.

Advanced scheduling parameters

Passive Host Checks Are SOFT Option (Not implemented)

Format:

passive_host_checks_are_soft=<0/1>

Example:

passive_host_checks_are_soft=1

This option determines whether or not Shinken will treat passive host checks as HARD states or SOFT states. By default, a passive host check result will put a host into a HARD state type. You can change this behavior by enabling this option.

	0 = Passive host checks are HARD (default)

	1 = Passive host checks are SOFT

Predictive Host/Service Dependency Checks Option (Unused)

Format:

enable_predictive_host_dependency_checks=<0/1>
enable_predictive_service_dependency_checks=<0/1>

Example:

enable_predictive_host_dependency_checks=1
enable_predictive_service_dependency_checks=1

This option determines whether or not Shinken will execute predictive checks of hosts/services that are being depended upon (as defined in host/services dependencies) for a particular host/service when it changes state. Predictive checks help ensure that the dependency logic is as accurate as possible. More information on how predictive checks work can be found here.

	0 = Disable predictive checks

	1 = Enable predictive checks (default)

Orphaned Host/Service Check Option

Format:

check_for_orphaned_services=<0/1>
check_for_orphaned_hosts=<0/1>

Example:

check_for_orphaned_services=1
check_for_orphaned_hosts=1

This option allows you to enable or disable checks for orphaned service/host checks. Orphaned checks are checks which have been launched to pollers but have not had any results reported in a long time.

Since no results have come back in for it, it is not rescheduled in the event queue. This can cause checks to stop being executed. Normally it is very rare for this to happen - it might happen if an external user or process killed off the process that was being used to execute a check.

If this option is enabled and Shinken finds that results for a particular check have not come back, it will log an error message and reschedule the check. If you start seeing checks that never seem to get rescheduled, enable this option and see if you notice any log messages about orphaned services.

	0 = Don’t check for orphaned service checks

	1 = Check for orphaned service checks (default)

Max Plugins Output Length

Format:

max_plugins_output_length=<int>

Example:

max_plugins_output_length=8192

This option is used to set the max size in bytes for the checks plugins output. So if you saw truncated output like for huge disk check when you have a lot of partitions, raise this value.

Enable problem/impacts states change

Format:

enable_problem_impacts_states_change=<0/1>

Example:

enable_problem_impacts_states_change=0

This option is used to know if we apply or not the state change when an host or service is impacted by a root problem (like the service’s host going down or a host’s parent being down too). The state will be changed by UNKNONW for a service and UNREACHABLE for an host until their next schedule check. This state change do not count as a attempt, it’s just for console so the users know that theses objects got problems and the previous states are not sure.

Soft State Dependencies Option (Not implemented)

Format: soft_state_dependencies=<0/1>
Example: soft_state_dependencies=0

This option determines whether or not Shinken will use soft state information when checking host and service dependencies. Normally it will only use the latest hard host or service state when checking dependencies. If you want it to use the latest state (regardless of whether its a soft or hard state type), enable this option.

	0 = Don’t use soft state dependencies (default)

	1 = Use soft state dependencies

Performance tuning

Cached Host/Service Check Horizon

Format:

cached_host_check_horizon=<seconds>
cached_service_check_horizon=<seconds>

Example:

cached_host_check_horizon=15
cached_service_check_horizon=15

This option determines the maximum amount of time (in seconds) that the state of a previous host check is considered current. Cached host states (from host/service checks that were performed more recently than the time specified by this value) can improve host check performance immensely. Too high of a value for this option may result in (temporarily) inaccurate host/service states, while a low value may result in a performance hit for host/service checks. Use a value of 0 if you want to disable host/service check caching. More information on cached checks can be found here.

Tip

Nagios default is 15s, but it’s a tweak that make checks less accurate. So Shinken use 0s as a default. If you have performances problems and you can’t add a new scheduler or poller, increase this value and start to buy a new server because this won’t be magical.

Large Installation Tweaks Option

Format:

use_large_installation_tweaks=<0/1>

Example:

use_large_installation_tweaks=0

This option determines whether or not the Shinken daemon will take shortcuts to improve performance. These shortcuts result in the loss of a few features, but larger installations will likely see a lot of benefit from doing so. If you can’t add new satellites to manage the load (like new pollers), you can activate it. More information on what optimizations are taken when you enable this option can be found here.

	0 = Don’t use tweaks (default)

	1 = Use tweaks

Environment Macros Option

Format:

enable_environment_macros=<0/1>

Example:

enable_environment_macros=0

This option determines whether or not the Shinken daemon will make all standard macros available as environment variables to your check, notification, event hander, etc. commands. In large installations this can be problematic because it takes additional CPU to compute the values of all macros and make them available to the environment. It also cost a increase network communication between schedulers and pollers.

	0 = Don’t make macros available as environment variables

	1 = Make macros available as environment variables (default)

Flapping parameters

Flap Detection Option

Format:

enable_flap_detection=<0/1>

Example:

enable_flap_detection=1

This option determines whether or not Shinken will try and detect hosts and services that are “flapping”. Flapping occurs when a host or service changes between states too frequently, resulting in a barrage of notifications being sent out. When Shinken detects that a host or service is flapping, it will temporarily suppress notifications for that host/service until it stops flapping.

More information on how flap detection and handling works can be found here.

	0 = Don’t enable flap detection (default)

	1 = Enable flap detection

Low Service/Host Flap Threshold

Format:

low_service_flap_threshold=<percent>
low_host_flap_threshold=<percent>

Example:

low_service_flap_threshold=25.0
low_host_flap_threshold=25.0

This option is used to set the low threshold for detection of host/service flapping. For more information on how flap detection and handling works (and how this option affects things) read this.

High Service/Host Flap Threshold

Format:

high_service_flap_threshold=<percent>
high_host_flap_threshold=<percent>

Example:

high_service_flap_threshold=50.0
high_host_flap_threshold=50.0

This option is used to set the high threshold for detection of host/service flapping. For more information on how flap detection and handling works (and how this option affects things) read this.

Flap History

Format:

flap_history=<int>

Example:

flap_history=20

This option is used to set the history size of states keep by the scheduler to make the flapping calculation. By default, the value is 20 states kept.

The size in memory is for the scheduler daemon : 4Bytes * flap_history * (nb hosts + nb services). For a big environment, it costs 4 * 20 * (1000+10000) ~ 900Ko. So you can raise it to higher value if you want. To have more information about flapping, you can read this.

Commands/checks timeout

Service/Host Check Timeout

Format:

service_check_timeout=<seconds>

Example:

service_check_timeout=60

This is the maximum number of seconds that Shinken will allow service checks to run. If checks exceed this limit, they are killed and a CRITICAL state is returned. A timeout error will also be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism to kill off plugins which are misbehaving and not exiting in a timely manner. It should be set to something high (like 60 seconds or more), so that each check normally finishes executing within this time limit. If a check runs longer than this limit, Shinken will kill it off thinking it is a runaway processes.

Various commands Timeouts

Format:

event_handler_timeout=<seconds> # default: 30s
notification_timeout=<seconds> # default: 30s
ocsp_timeout=<seconds> # default: 15s
ochp_timeout=<seconds> # default: 15s

Example:

event_handler_timeout=60
notification_timeout=60
ocsp_timeout=5
ochp_timeout=5

This is the maximum number of seconds that Shinken will allow event handlers, notification, obsessive compulsive service processor command or a Obsessive Compulsive Host Processor Command to be run. If an command exceeds this time limit it will be killed and a warning will be logged.

There is often widespread confusion as to what this option really does. It is meant to be used as a last ditch mechanism to kill off commands which are misbehaving and not exiting in a timely manner. It should be set to something high (like 60 seconds or more for notification, less for oc*p commands), so that each event handler command normally finishes executing within this time limit. If an event handler runs longer than this limit, Shinken will kill it off thinking it is a runaway processes.

Old Obsess Over commands

Obsess Over Services Option

Format:

obsess_over_services=<0/1>

Example:

obsess_over_services=1

This value determines whether or not Shinken will “obsess” over service checks results and run the obsessive compulsive service processor command you define. I know - funny name, but it was all I could think of. This option is useful for performing distributed monitoring. If you’re not doing distributed monitoring, don’t enable this option.

	0 = Don’t obsess over services (default)

	1 = Obsess over services

Obsessive Compulsive Service Processor Command

Format:

ocsp_command=<command>

Example:

ocsp_command=obsessive_service_handler

This option allows you to specify a command to be run after every service check, which can be useful in distributed monitoring. This command is executed after any event handler or notification commands. The command argument is the short name of a command definition that you define in your object configuration file.

It’s used nearly only for the old school distributed architecture. If you use it, please look at new architecture capabilities that are far efficient than the old one. More information on distributed monitoring can be found here. This command is only executed if the Obsess Over Services Option option is enabled globally and if the “obsess_over_service” directive in the service definition is enabled.

Obsess Over Hosts Option

Format:

obsess_over_hosts=<0/1>

Example:

obsess_over_hosts=1

This value determines whether or not Shinken will “obsess” over host checks results and run the obsessive compulsive host processor command you define. Same like the service one but for hosts :)

	0 = Don’t obsess over hosts (default)

	1 = Obsess over hosts

Obsessive Compulsive Host Processor Command

Format:

ochp_command=<command>

Example:

ochp_command=obsessive_host_handler

This option allows you to specify a command to be run after every host check, which can be useful in distributed monitoring. This command is executed after any event handler or notification commands. The command argument is the short name of a command definition that you define in your object configuration file.

This command is only executed if the Obsess Over Hosts Option option is enabled globally and if the “obsess_over_host” directive in the host definition is enabled.

Freshness check

Host/Service Freshness Checking Option

Format:

check_service_freshness=<0/1>
check_host_freshness=<0/1>

Example:

check_service_freshness=0
check_host_freshness=0

This option determines whether or not Shinken will periodically check the “freshness” of host/service checks. Enabling this option is useful for helping to ensure that passive service checks are received in a timely manner. More information on freshness checking can be found here.

	0 = Don’t check host/service freshness

	1 = Check host/service freshness (default)

Host/Service Freshness Check Interval

Format:

service_freshness_check_interval=<seconds>
host_freshness_check_interval=<seconds>

Example:

service_freshness_check_interval=60
host_freshness_check_interval=60

This setting determines how often (in seconds) Shinken will periodically check the “freshness” of host/service check results. If you have disabled host/service freshness checking (with the check_service_freshness option), this option has no effect. More information on freshness checking can be found here.

Additional Freshness Threshold Latency Option (Not implemented)

Format:

additional_freshness_latency=<#>

Example:

additional_freshness_latency=15

This option determines the number of seconds Shinken will add to any host or services freshness threshold it automatically calculates (e.g. those not specified explicitly by the user). More information on freshness checking can be found here.

All the others :)

Date Format (Not implemented)

Format:

date_format=<option>

Example:

date_format=us

This option allows you to specify what kind of date/time format Shinken should use in date/time macros. Possible options (along with example output) include:

	Option
	Output Format
	Sample Output

	us
	MM/DD/YYYY HH:MM:SS
	06/30/2002 03:15:00

	euro
	DD/MM/YYYY HH:MM:SS
	30/06/2002 03:15:00

	iso8601
	YYYY-MM-DD HH:MM:SS
	2002-06-30 03:15:00

	strict-iso8601
	YYYY-MM-DDTHH:MM:SS
	2002-06-30T03:15:00

Timezone Option

Format:

use_timezone=<tz>

Example:

use_timezone=US/Mountain

This option allows you to override the default timezone that this instance of Shinken runs in. Useful if you have multiple instances of Shinken that need to run from the same server, but have different local times associated with them. If not specified, Shinken will use the system configured timezone.

Illegal Object Name Characters

Format:

illegal_object_name_chars=<chars...>

Example:

illegal_object_name_chars=`~!$%^&*"|'<>?,()=

This option allows you to specify illegal characters that cannot be used in host names, service descriptions, or names of other object types. Shinken will allow you to use most characters in object definitions, but I recommend not using the characters shown in the example above. Doing may give you problems in the web interface, notification commands, etc.

Illegal Macro Output Characters

Format:

illegal_macro_output_chars=<chars...>

Example:

illegal_macro_output_chars=`~$^&"|'<>

This option allows you to specify illegal characters that should be stripped from macros before being used in notifications, event handlers, and other commands. This DOES NOT affect macros used in service or host check commands. You can choose to not strip out the characters shown in the example above, but I recommend you do not do this. Some of these characters are interpreted by the shell (i.e. the backtick) and can lead to security problems. The following macros are stripped of the characters you specify:

	“$HOSTOUTPUT$”

	“$HOSTPERFDATA$”

	“$HOSTACKAUTHOR$”

	“$HOSTACKCOMMENT$”

	“$SERVICEOUTPUT$”

	“$SERVICEPERFDATA$”

	“$SERVICEACKAUTHOR$”

	“$SERVICEACKCOMMENT$”

Regular Expression Matching Option (Not implemented)

Format:

use_regexp_matching=<0/1>

Example:

use_regexp_matching=0

This option determines whether or not various directives in your Object Configuration Overview will be processed as regular expressions. More information on how this works can be found here.

	0 = Don’t use regular expression matching (default)

	1 = Use regular expression matching

True Regular Expression Matching Option (Not implemented)

Format:

use_true_regexp_matching=<0/1>

Example:

use_true_regexp_matching=0

If you’ve enabled regular expression matching of various object directives using the Regular Expression Matching Option option, this option will determine when object directives are treated as regular expressions. If this option is disabled (the default), directives will only be treated as regular expressions if they contain *, ?, +, or .. If this option is enabled, all appropriate directives will be treated as regular expression - be careful when enabling this! More information on how this works can be found here.

	0 = Don’t use true regular expression matching (default)

	1 = Use true regular expression matching

Administrator Email Address (unused)

Format:

admin_email=<email_address>

Example:

admin_email=root@localhost.localdomain

This is the email address for the administrator of the local machine (i.e. the one that Shinken is running on). This value can be used in notification commands by using the “$ADMINEMAIL$” macro.

Administrator Pager (unused)

Format:

admin_pager=<pager_number_or_pager_email_gateway>

Example:

admin_pager=pageroot@localhost.localdomain

This is the pager number (or pager email gateway) for the administrator of the local machine (i.e. the one that Shinken is running on). The pager number/address can be used in notification commands by using the $ADMINPAGER$ macro.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

The Basics

	Setting up a basic Shinken Configuration
	Default Shinken configuration

	Configure the Shinken Daemons

	Daemon declaration in the global configuration
	special parameters
	module objects

	Configuration example

	Removing unused configurations

	launch all daemons

	What next

	Nagios/Shinken Plugins
	Introduction

	What Are Plugins?

	Shinken integrated data acquisition modules

	Plugins As An Abstraction Layer

	What Plugins Are Available?

	Obtaining Plugins

	How Do I Use Plugin X?

	Plugin API

	Understanding Macros and How They Work
	Macros

	Macro Substitution - How Macros Work

	Example 1: Host Address Macro

	Example 2: Command Argument Macros

	On-Demand Macros

	On-Demand Group Macros

	Custom Variable Macros

	Macro Cleansing

	Macros as Environment Variables

	Available Macros

	Standard Macros in Shinken
	Macro Validity

	Macro Availability Chart

	Macro Descriptions

	Notes

	Host Checks
	Introduction

	When Are Host Checks Performed?

	Cached Host Checks

	Dependencies and Checks

	Parallelization of Host Checks

	Host States

	Host State Determination

	Host State Changes

	Service Checks
	Introduction

	When Are Service Checks Performed?

	Cached Service Checks

	Dependencies and Checks

	Parallelization of Service Checks

	Service States

	Service State Determination

	Services State Changes

	Active Checks
	Introduction

	How Are Active Checks Performed?

	When Are Active Checks Executed?

	Passive Checks
	Introduction

	Uses For Passive Checks

	How Passive Checks Work

	Enabling Passive Checks

	Submitting Passive Service Check Results

	Submitting Passive Host Check Results

	Passive Checks and Host States

	Submitting Passive Check Results From Remote Hosts

	State Types
	Introduction

	Service and Host Check Retries

	Soft States

	Hard States

	Example

	Time Periods
	Introduction

	Precedence in Time Periods

	How Time Periods Work With Host and Service Checks

	How Time Periods Work With Contact Notifications

	How Time Periods Work With Notification Escalations

	How Time Periods Work With Dependencies

	Determining Status and Reachability of Network Hosts
	Introduction

	Example Network

	Defining Parent/Child Relationships

	Reachability Logic in Action

	UNREACHABLE States and Notifications

	Notifications
	Introduction

	When Do Notifications Occur?

	Who Gets Notified?

	What Filters Must Be Passed In Order For Notifications To Be Sent?

	Program-Wide Filter:

	Service and Host Filters:

	Contact Filters:

	Notification Methods

	Notification Type Macro

	Helpful Resources

	Active data acquisition modules
	Overview

	SNMP data acquisition module

	NRPE data acquisition module

	Notes on community Packs

	Network dependencies
	What are network dependencies ?

	Example Network

	Defining Parent/Child Relationships

	Reachability Logic in Action

	What about more than one parent for an host?

	UNREACHABLE States and Notifications

	What about notification about services of a down or unreachable hosts?

	Logical dependencies
	Service Dependencies Overview

	Defining simple advanced dependencies

	Dependencies inheritance

	And with the host down/unreachable logic?

	Advanced dependencies

	Update Shinken

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Setting up a basic Shinken Configuration

Default Shinken configuration

If you followed the 10 Minute Shinken Installation Guide tutorial you were able to install and launch Shinken.

	The default configuration deployed with the Shinken sources contains:

	
	one arbiter

	one scheduler

	one poller

	one reactionner

	one broker

	one receiver (commented out)

All these elements must have a basic configuration. The Arbiter must know about the other daemons and how to communicate with them, just as the other daemons need to know on which TCP port they must listen on.

Configure the Shinken Daemons

The schedulers, pollers, reactionners and brokers daemons need to know in which directory to work on, and on which TCP port to listen. That’s all.

Note

If you plan on using the default directories, user (shinken) and tcp port you shouldn’t have to edit these files.

Each daemon has one configuration file. The default location is /usr/local/shinken/etc/.

Important

Remember that all daemons can be on different servers: the daemons configuration files need to be on the server which is running the daemon, not necessarily on every server

Let’s see what it looks like:

$cat etc/schedulerd.ini

[daemon]
workdir=/usr/local/shinken/var
pidfile=%(workdir)s/schedulerd.pid
port=7768
host=0.0.0.0

daemon_enabled=1

Optional configurations

user=shinken
group=shinken
idontcareaboutsecurity=0
use_ssl=0
#certs_dir=etc/certs
#ca_cert=etc/certs/ca.pem
#server_cert=etc/certs/server.pem
hard_ssl_name_check=0
use_local_log=1
local_log=brokerd.log
log_level=INFO
max_queue_size=100000

So here we have a scheduler:

	workdir: working directory of the daemon. By default /usr/local/shinken/var

	pidfile: pid file of the daemon (so we can kill it :)). By default /usr/local/shinken/var/schedulerd.pid for a scheduler.

	port: TCP port to listen to. By default:

	scheduler: 7768

	poller: 7771

	reactionner: 7769

	broker: 7772

	arbiter: 7770 (the arbiter configuration will be seen later)

	host: IP interface to listen on. The default 0.0.0.0 means all interfaces

	user: user used by the daemon to run. By default shinken

	group: group of the user. By default shinken.

	idontcareaboutsecurity: if set to 1, you can run it under the root account. But seriously: do not to this. The default is 0 of course.

	daemon_enabled : if set to 0, the daemon won’t run. Useful for distributed setups where you only need a poller for example.

	use_ssl=0

	#certs_dir=etc/certs

	#ca_cert=etc/certs/ca.pem

	#server_cert=etc/certs/server.pem

	hard_ssl_name_check=0

	use_local_log=1 : Log all messages that match the log_level for this daemon in a local directory

	local_log=brokerd.log : name of the log file where to save the logs

	log_level=INFO : Log_level that will be permitted to be logger. Warning permits Warning, Error, Critical to be logged. INFO by default.

	max_queue_size=100000 : If a module got a brok queue() higher than this value, it will be killed and restarted. Put to 0 to disable it

Daemon declaration in the global configuration

Now each daemon knows in which directory to run, and on which tcp port to listen. A daemon is a resource in the Shinken architecture. Such resources must be declared in the global configuration (where the Arbiter is) for them to be utilized.

The global configuration file is: /usr/local/shinken/etc/shinken-specific.cfg/

The daemon declarations are quite simple: each daemon is represented by an object. The information contained in the daemon object are network parameters about how its resources should be treated (is it a spare, ...).

	Each objects type corresponds to a daemon:

	
	arbiter

	scheduler

	poller

	reactionner

	broker

	receiver

The names were chosen to understand their roles more easily. :)

	They have these parameters in common:

	
	*_name: name of the resource

	address: IP or DNS address to connect to the daemon

	port: I think you can find it on your own by now :)

	[spare]: 1 or 0, is a spare or not. See advanced features for this.

	[realm]: realm membership See advanced features for this.

	[manage_sub_realms]: manage or not sub realms. See advanced features for this.

	[modules]: modules used by the daemon. See below.

special parameters

Some daemons have special parameters:

	For the arbiter:

	
	host_name: hostname of the server where the arbiter is installed. It’s mandatory for a high availability environment (2 arbiters or more).

	For pollers:

	
	poller_tags: “tags” that the poller manages. See advanced features for this.

module objects

All daemons can use modules. In the brokers case, they are mandatory for it to actually accomplish a task.

	Modules have some common properties:

	
	module_name: module name called by the resource.

	module_type: module type of the module. It’s a fixed value given by the module.

	other options: each module can have specific parameters. See the respective module documentation to learn more about them.

	Module references, list of overall modules:

	
	Arbiter modules

	Scheduler modules

	Broker modules

	Receiver modules

	Pollers modules

	Reactionner modules

Configuration example

Here is an example of a simple configuration (which you already used without knowing it during the 10min installation tutorial). It has been kept to the strict minimum, with only one daemon for each type. There is no load distribution or high availability, but you’ll get the picture more easily.

Here, we have a server named server-1 that has 192.168.0.1 as its IP address:

define arbiter{
 arbiter_name arbiter-1
 host_name server-1
 address 192.168.0.1
 port 7770
 spare 0
}

define scheduler{
 scheduler_name scheduler-1
 address 192.168.0.1
 port 7768
 spare 0
}

define reactionner{
 reactionner_name reactionner-1
 address 192.168.0.1
 port 7769
 spare 0
}

define poller{
 poller_name poller-1
 address 192.168.0.1
 port 7771
 spare 0
}

define broker{
 broker_name broker-1
 address 192.168.0.1
 port 7772
 spare 0
 modules Status-Dat,Simple-log
}

define module{
 module_name Simple-log
 module_type simple_log
 path /usr/local/shinken/var/shinken.log
}

define module{
 module_name Status-Dat
 module_type status_dat
 status_file /usr/local/shinken/var/status.data
 object_cache_file /usr/local/shinken/var/objects.cache
 status_update_interval 15 ; update status.dat every 15s
}

See? That was easy. And don’t worry about forgetting one of them: if there is a missing daemon type, Shinken automatically adds one locally with a default address/port configuration.

Removing unused configurations

The sample shinken-specific.cfg file has all possible modules in addition to the basic daemon declarations.

	Backup your shinken-specific.cfg file.

	Delete all unused modules from your configuration file
- Ex. If you do not use the openldap module, delete it from the file

This will make any warnings or errors that show up in your log files more pertinent. This is because the modules, if declared will get loadedup even if they are not use in your Modules declaration of your daemons.

If you ever lose your shinken-specific.cfg, you can simply go to the shinken github repository and download the file.

launch all daemons

To launch daemons, simply type:

daemon_path -d -c daemon_configuration.ini

	The command lines arguments are:

	
	-c, –config: Config file.

	-d, –daemon: Run in daemon mode

	-r, –replace: Replace previous running scheduler

	-h, –help: Print detailed help screen

	–debug: path of the debug file

So a standard launch of the resources looks like:

/usr/local/shinken/bin/shinken-scheduler -d -c /usr/local/shinken/etc/schedulerd.ini
/usr/local/shinken/bin/shinken-poller -d -c /usr/local/shinken/etc/pollerd.ini
/usr/local/shinken/bin/shinken-reactionner -d -c /usr/local/shinken/etc/reactionnerd.ini
/usr/local/shinken/bin/shinken-broker -d -c /usr/local/shinken/etc/brokerd.ini

Now we can start the arbiter with the global configuration:

#First we should check the configuration for errors
python bin/shinken-arbiter -v -c etc/nagios.cfg -c etc/shinken-specific.cfg

#then, we can really launch it
python bin/shinken-arbiter -d -c etc/nagios.cfg -c etc/shinken-specific.cfg

Now, you’ve got the same thing you had when you launched bin/launch_all.sh script 8-) (but now you know what you’re doing)

What next

You are ready to continue to the next section, get DATA IN Shinken.

If you feel in the mood for testing even more shinken features, now would be the time to look at advanced_features to play with distributed and high availability architectures!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Nagios/Shinken Plugins

Introduction

Shinken includes a set of scalable internal mechanisms for checking the status of hosts and services on your network. These are called modules and can be loaded by the various Shinken daemons involved in data acquisition (Poller daemons, Receiver daemons, Arbiter Daemon)
Shinken also relies on external programs (called plugins) to do monitor a very wide variety of devices, applications and networked services.

What Are Plugins?

Plugins are compiled executables or scripts (Perl scripts, shell scripts, etc.) that can be run from a command line to check the status or a host or service. Shinken uses the results from plugins to determine the current status of hosts and services on your network.

Shinken will execute a plugin whenever there is a need to check the status of a service or host. The plugin does something (notice the very general term) to perform the check and then simply returns the results to Shinken. It will process the results that it receives from the plugin and take any necessary actions (running event handlers, sending out notifications, etc).

Shinken integrated data acquisition modules

These replace traditional unscalable plugins with high performance variants that are more tightly coupled with Shinken.

	The Shinken architecture describes how to fit with the Shinken daemons

	The Shinken NRPE module configuration page describes how it works and its configuration

	Integrated Shinken data acquisition modules support the following protocols:

	
	NRPE

	SNMP

Plugins As An Abstraction Layer

[image: ../_images/plugins.png]
DEPRECATED IMAGE - TODO Replace with Shinken specific.

Plugins act as an abstraction layer between the monitoring logic present in the Shinken daemon and the actual services and hosts that are being monitored.

The upside of this type of plugin architecture is that you can monitor just about anything you can think of. If you can automate the process of checking something, you can monitor it with Shinken. There are already a lot of plugins that have been created in order to monitor basic resources such as processor load, disk usage, ping rates, etc. If you want to monitor something else, take a look at the documentation on writing plugins and roll your own. Its simple!

The downside to this type of plugin architecture is the fact that Shinken has absolutely no idea what it is that you’re monitoring. You could be monitoring network traffic statistics, data error rates, room temperate, CPU voltage, fan speed, processor load, disk space, or the ability of your super-fantastic toaster to properly brown your bread in the morning... Shinken doesn’t understand the specifics of what’s being monitored - it just tracks changes in the state of those resources. Only the plugins themselves know exactly what they’re monitoring and how to perform the actual checks.

What Plugins Are Available?

There are plugins currently available to monitor many different kinds of devices and services, including:

	“HTTP”, “POP3”, “IMAP”, “FTP”, “SSH”, “DHCP”

	CPU Load, Disk Usage, Memory Usage, Current Users

	Unix/Linux, Windows, and Netware Servers

	Routers and Switches

	etc.

Obtaining Plugins

Shinken also organizes monitoring configuration packages. These are pre-built for fast no nonsense deployments. They include the check command definitions, service templates, host templates, discovery rules and integration hooks to the Community web site. The integration with the community web site permits for deployment and updates of monitoring packs.

Get started with Shinken Monitoring Packages “Packs” today.

The plugins themseles are not distributed with Shinken, but you can download the official Nagios plugins and many additional plugins created and maintained by Nagios users from the following locations:

	Nagios Plugins Project: http://nagiosplug.sourceforge.net/

	Nagios Downloads Page: http://www.nagios.org/download/

	NagiosExchange.org: http://www.nagiosexchange.org/

How Do I Use Plugin X?

Most all plugins will display basic usage information when you execute them using “-h” or “–help” on the command line. For example, if you want to know how the check_http plugin works or what options it accepts, you should try executing the following command:

./check_http --help

Plugin API

You can find information on the technical aspects of plugins, as well as how to go about creating your own custom plugins here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Understanding Macros and How They Work

Macros

One of the main features that make Shinken so flexible is the ability to use macros in command defintions. Macros allow you to reference information from hosts, services, and other sources in your commands.

Macro Substitution - How Macros Work

Before Shinken executes a command, it will replace any macros it finds in the command definition with their corresponding values. This macro substitution occurs for all types of commands that Shinken executes - host and service checks, notifications, event handlers, etc.

Certain macros may themselves contain other macros. These include the “$HOSTNOTES$”, “$HOSTNOTESURL$”, “$HOSTACTIONURL$”, “$SERVICENOTES$”, “$SERVICENOTESURL$”, and “$SERVICEACTIONURL$” macros.

Tip

If, you need to have the ‘$’ character in one of your command (and not referring to a macro), please put “$$” instead. Shinken will replace it well

Example 1: Host Address Macro

When you use host and service macros in command definitions, they refer to values for the host or service for which the command is being run. Let’s try an example. Assuming we are using a host definition and a check_ping command defined like this:

define host{
 host_name linuxbox
 address 192.168.1.2
 check_command check_ping
 ...
}

define command{
 command_name check_ping
 command_line /usr/local/shinken/libexec/check_ping -H $HOSTADDRESS$ -w 100.0,90% -c 200.0,60%
}

the expanded/final command line to be executed for the host’s check command would look like this:

/usr/local/shinken/libexec/check_ping -H 192.168.1.2 -w 100.0,90% -c 200.0,60%

Pretty simple, right? The beauty in this is that you can use a single command definition to check an unlimited number of hosts. Each host can be checked with the same command definition because each host’s address is automatically substituted in the command line before execution.

Example 2: Command Argument Macros

You can pass arguments to commands as well, which is quite handy if you’d like to keep your command definitions rather generic. Arguments are specified in the object (i.e. host or service) definition, by separating them from the command name with exclamation points (!) like so:

define service{
 host_name linuxbox
 service_description PING
 check_command check_ping!200.0,80%!400.0,40%
 ...
}

In the example above, the service check command has two arguments (which can be referenced with $ARGn$ macros). The $ARG1$ macro will be “200.0,80%” and “$ARG2$” will be “400.0,40%” (both without quotes). Assuming we are using the host definition given earlier and a check_ping command defined like this:

define command{
 command_name check_ping
 command_line /usr/local/shinken/libexec/check_ping -H $HOSTADDRESS$ -w $ARG1$ -c $ARG2$
}

the expanded/final command line to be executed for the service’s check command would look like this:

/usr/local/shinken/libexec/check_ping -H 192.168.1.2 -w 200.0,80% -c 400.0,40%

If you need to pass bang (!) characters in your command arguments, you can do so by escaping them with a backslash (). If you need to include backslashes in your command arguments, they should also be escaped with a backslash.

On-Demand Macros

Normally when you use host and service macros in command definitions, they refer to values for the host or service for which the command is being run. For instance, if a host check command is being executed for a host named “linuxbox”, all the standard host macros will refer to values for that host (“linuxbox”).

If you would like to reference values for another host or service in a command (for which the command is not being run), you can use what are called “on-demand” macros. On-demand macros look like normal macros, except for the fact that they contain an identifier for the host or service from which they should get their value. Here’s the basic format for on-demand macros:

	“$HOSTMACRONAME:host_name$”

	“$SERVICEMACRONAME:host_name:service_description$”

Replace “HOSTMACRONAME” and “SERVICEMACRONAME” with the name of one of the standard host of service macros found here.

Note that the macro name is separated from the host or service identifier by a colon (:). For on-demand service macros, the service identifier consists of both a host name and a service description - these are separated by a colon (:) as well.

On-demand service macros can contain an empty host name field. In this case the name of the host associated with the service will automatically be used.

Examples of on-demand host and service macros follow:

“$HOSTDOWNTIME:myhost$ <— On-demand host macro”

“$SERVICESTATEID:novellserver:DS Database$ <— On-demand service macro”

“$SERVICESTATEID::CPU Load$ <— On-demand service macro with blank host name field”

On-demand macros are also available for hostgroup, servicegroup, contact, and contactgroup macros. For example:

“$CONTACTEMAIL:john$ <— On-demand contact macro”

“$CONTACTGROUPMEMBERS:linux-admins$ <— On-demand contactgroup macro”

“$HOSTGROUPALIAS:linux-servers$ <— On-demand hostgroup macro”

“$SERVICEGROUPALIAS:DNS-Cluster$ <— On-demand servicegroup macro”

On-Demand Group Macros

You can obtain the values of a macro across all contacts, hosts, or services in a specific group by using a special format for your on-demand macro declaration. You do this by referencing a specific host group, service group, or contact group name in an on-demand macro, like so:

	“$HOSTMACRONAME:hostgroup_name:delimiter$”

	“$SERVICEMACRONAME:servicegroup_name:delimiter$”

	“$CONTACTMACRONAME:contactgroup_name:delimiter$”

Replace “HOSTMACRONAME”, “SERVICEMACRONAME”, and “CONTACTMACRONAME” with the name of one of the standard host, service, or contact macros found here. The delimiter you specify is used to separate macro values for each group member.

For example, the following macro will return a comma-separated list of host state ids for hosts that are members of the hg1 hostgroup:

"$HOSTSTATEID:hg1:,$"

This macro definition will return something that looks like this:

"0,2,1,1,0,0,2"

Custom Variable Macros

Any custom object variables that you define in host, service, or contact definitions are also available as macros. Custom variable macros are named as follows:

	“$_HOSTvarname$”

	“$_SERVICEvarname$”

	“$_CONTACTvarname$”

Take the following host definition with a custom variable called “”_MACADDRESS””...

define host{
 host_name linuxbox
 address 192.168.1.1
 _MACADDRESS 00:01:02:03:04:05
 ...
}

The “_MACADDRESS” custom variable would be available in a macro called “$_HOSTMACADDRESS$”. More information on custom object variables and how they can be used in macros can be found here.

Macro Cleansing

Some macros are stripped of potentially dangerous shell metacharacters before being substituted into commands to be executed. Which characters are stripped from the macros depends on the setting of the illegal_macro_output_chars directive. The following macros are stripped of potentially dangerous characters:

	$HOSTOUTPUT$

	$LONGHOSTOUTPUT$

	$HOSTPERFDATA$

	$HOSTACKAUTHOR$

	$HOSTACKCOMMENT$

	$SERVICEOUTPUT$

	$LONGSERVICEOUTPUT$

	$SERVICEPERFDATA$

	$SERVICEACKAUTHOR$

	$SERVICEACKCOMMENT$

Macros as Environment Variables

Most macros are made available as environment variables for easy reference by scripts or commands that are executed by Shinken. For purposes of security and sanity, $USERn$ and “on-demand” host and service macros are not made available as environment variables.

Environment variables that contain standard macros are named the same as their corresponding macro names (listed here), with “NAGIOS_” prepended to their names. For example, the $HOSTNAME$ macro would be available as an environment variable named “NAGIOS_HOSTNAME”.

Available Macros

A list of all the macros that are available in Shinken, as well as a chart of when they can be used, can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Standard Macros in Shinken

Standard macros that are available in Shinken are listed here. On-demand macros and macros for custom variables are described here.

Macro Validity

Although macros can be used in all commands you define, not all macros may be “valid” in a particular type of command. For example, some macros may only be valid during service notification commands, whereas other may only be valid during host check commands. There are ten types of commands that Nagios recognizes and treats differently. They are as follows:

	Service checks

	Service notifications

	Host checks

	Host notifications

	Service event handlers and/or a global service event handler

	Host event handlers and/or a global host event handler

	OCSP command

	OCHP command

	Service performance data commands

	Host performance data commands

The tables below list all macros currently available in Shinken, along with a brief description of each and the types of commands in which they are valid. If a macro is used in a command in which it is invalid, it is replaced with an empty string. It should be noted that macros consist of all uppercase characters and are enclosed in $ characters.

Macro Availability Chart

Legend:

	No
	The macro is not available

	Yes
	The macro is available

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Host Macros: 3
	
	
	
	
	
	
	
	

	$HOSTNAME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTDISPLAYNAME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTALIAS$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTADDRESS$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTSTATE$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTSTATEID$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTSTATE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTSTATEID$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTSTATETYPE$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTATTEMPT$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$MAXHOSTATTEMPTS$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTEVENTID$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTEVENTID$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTPROBLEMID$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTPROBLEMID$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTLATENCY$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTEXECUTIONTIME$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTDURATION$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTDURATIONSEC$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTDOWNTIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTPERCENTCHANGE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPNAME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPNAMES$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTCHECK$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTSTATECHANGE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTUP$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTDOWN$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LASTHOSTUNREACHABLE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTOUTPUT$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$LONGHOSTOUTPUT$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTPERFDATA$
	Yes
	Yes
	Yes 1
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTCHECKCOMMAND$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTACKAUTHOR$ 8
	No
	No
	No
	Yes
	No
	No
	No
	No

	$HOSTACKAUTHORNAME$ 8
	No
	No
	No
	Yes
	No
	No
	No
	No

	$HOSTACKAUTHORALIAS$ 8
	No
	No
	No
	Yes
	No
	No
	No
	No

	$HOSTACKCOMMENT$ 8
	No
	No
	No
	Yes
	No
	No
	No
	No

	$HOSTACTIONURL$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTNOTESURL$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTNOTES$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSERVICES$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSERVICESOK$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSERVICESWARNING$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSERVICESUNKNOWN$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSERVICESCRITICAL$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Host Group Macros:
	
	
	
	
	
	
	
	

	$HOSTGROUPALIAS$ 5
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPMEMBERS$ 5
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPNOTES$ 5
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPNOTESURL$ 5
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTGROUPACTIONURL$ 5
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Service Macros:
	
	
	
	
	
	
	
	

	$SERVICEDESC$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEDISPLAYNAME$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICESTATE$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICESTATEID$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICESTATE$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICESTATEID$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICESTATETYPE$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEATTEMPT$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$MAXSERVICEATTEMPTS$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEISVOLATILE$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEEVENTID$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICEEVENTID$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEPROBLEMID$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICEPROBLEMID$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICELATENCY$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEEXECUTIONTIME$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEDURATION$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEDURATIONSEC$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEDOWNTIME$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEPERCENTCHANGE$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEGROUPNAME$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEGROUPNAMES$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICECHECK$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICESTATECHANGE$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICEOK$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICEWARNING$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICEUNKNOWN$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LASTSERVICECRITICAL$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEOUTPUT$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$LONGSERVICEOUTPUT$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEPERFDATA$
	Yes 2
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICECHECKCOMMAND$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICEACKAUTHOR$ 8
	No
	Yes
	No
	No
	No
	No
	No
	No

	$SERVICEACKAUTHORNAME$ 8
	No
	Yes
	No
	No
	No
	No
	No
	No

	$SERVICEACKAUTHORALIAS$ 8
	No
	Yes
	No
	No
	No
	No
	No
	No

	$SERVICEACKCOMMENT$ 8
	No
	Yes
	No
	No
	No
	No
	No
	No

	$SERVICEACTIONURL$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICENOTESURL$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	$SERVICENOTES$
	Yes
	Yes
	No
	No
	Yes
	No
	Yes
	No

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Service Group Macros:
	
	
	
	
	
	
	
	

	$SERVICEGROUPALIAS$ 6
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SERVICEGROUPMEMBERS$ 6
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SERVICEGROUPNOTES$ 6
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SERVICEGROUPNOTESURL$ 6
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SERVICEGROUPACTIONURL$ 6
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Contact Macros:
	
	
	
	
	
	
	
	

	$CONTACTNAME$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$CONTACTALIAS$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$CONTACTEMAIL$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$CONTACTPAGER$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$CONTACTADDRESSn$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Contact Group Macros:
	
	
	
	
	
	
	
	

	$CONTACTGROUPALIAS$ 7
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$CONTACTGROUPMEMBERS$ 7
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Summary Macros:
	
	
	
	
	
	
	
	

	$TOTALHOSTSUP$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSDOWN$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSUNREACHABLE$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSDOWNUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTSUNREACHABLEUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTPROBLEMS$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALHOSTPROBLEMSUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESOK$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESWARNING$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESCRITICAL$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESUNKNOWN$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESWARNINGUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESCRITICALUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICESUNKNOWNUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICEPROBLEMS$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	$TOTALSERVICEPROBLEMSUNHANDLED$ 10
	Yes
	Yes 4
	Yes
	Yes 4
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Notification Macros:
	
	
	
	
	
	
	
	

	$NOTIFICATIONTYPE$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONRECIPIENTS$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONISESCALATED$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONAUTHOR$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONAUTHORNAME$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONAUTHORALIAS$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$NOTIFICATIONCOMMENT$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$HOSTNOTIFICATIONNUMBER$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$HOSTNOTIFICATIONID$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$SERVICENOTIFICATIONNUMBER$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	$SERVICENOTIFICATIONID$
	No
	Yes
	No
	Yes
	No
	No
	No
	No

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Date/Time Macros:
	
	
	
	
	
	
	
	

	$LONGDATETIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SHORTDATETIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$DATE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TIMET$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$ISVALIDTIME:$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$NEXTVALIDTIME:$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	File Macros:
	
	
	
	
	
	
	
	

	$MAINCONFIGFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$STATUSDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$COMMENTDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes< 5/td>

	$DOWNTIMEDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$RETENTIONDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$OBJECTCACHEFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TEMPFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$TEMPPATH$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$LOGFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$RESOURCEFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$COMMANDFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$HOSTPERFDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$SERVICEPERFDATAFILE$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	Macro Name
	Service Checks
	Service Notifications
	Host Checks
	Host Notifications
	Service Event Handlers and OCSP
	Host Event Handlers and OCHP
	Service Perf Data
	Host Perf Data

	Misc Macros:
	
	
	
	
	
	
	
	

	$PROCESSSTARTTIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$EVENTSTARTTIME$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$ADMINEMAIL$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$ADMINPAGER$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$ARGn$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

	$USERn$
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes
	Yes

Macro Descriptions

	Host Macros: 3
	

	$HOSTNAME$
	Short name for the host (i.e. “biglinuxbox”). This value is taken from the host_name directive in the host definition.

	$HOSTDISPLAYNAME$
	An alternate display name for the host. This value is taken from the display_name directive in the host definition.

	$HOSTALIAS$
	Long name/description for the host. This value is taken from the alias directive in the host definition.

	$HOSTADDRESS$
	Address of the host. This value is taken from the address directive in the host definition.

	$HOSTSTATE$
	A string indicating the current state of the host (“UP”, “DOWN”, or “UNREACHABLE”).

	$HOSTSTATEID$
	A number that corresponds to the current state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.

	$LASTHOSTSTATE$
	A string indicating the last state of the host (“UP”, “DOWN”, or “UNREACHABLE”).

	$LASTHOSTSTATEID$
	A number that corresponds to the last state of the host: 0=UP, 1=DOWN, 2=UNREACHABLE.

	$HOSTSTATETYPE$
	A string indicating the state type for the current host check (“HARD” or “SOFT”). Soft states occur when host checks return a non-OK (non-UP) state and are in the process of being retried. Hard states result when host checks have been checked a specified maximum number of times.

	$HOSTATTEMPT$
	The number of the current host check retry. For instance, if this is the second time that the host is being rechecked, this will be the number two. Current attempt number is really only useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.

	$MAXHOSTATTEMPTS$
	The max check attempts as defined for the current host. Useful when writing host event handlers for “soft” states that take a specific action based on the host retry number.

	$HOSTEVENTID$
	A globally unique number associated with the host’s current state. Every time a host (or service) experiences a state change, a global event ID number is incremented by one (1). If a host has experienced no state changes, this macro will be set to zero (0).

	$LASTHOSTEVENTID$
	The previous (globally unique) event number that was given to the host.

	$HOSTPROBLEMID$
	A globally unique number associated with the host’s current problem state. Every time a host (or service) transitions from an UP or OK state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the host is currently a non-UP state. State transitions between non-UP states (e.g. DOWN to UNREACHABLE) do not cause this problem id to increase. If the host is currently in an UP state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when hosts first enter a problem state.

	$LASTHOSTPROBLEMID$
	The previous (globally unique) problem number that was given to the host. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a host recovers to an UP state.

	$HOSTLATENCY$
	A (floating point) number indicating the number of seconds that a scheduled host check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds. On-demand host checks have a latency of zero seconds.

	$HOSTEXECUTIONTIME$
	A (floating point) number indicating the number of seconds that the host check took to execute (i.e. the amount of time the check was executing).

	$HOSTDURATION$
	A string indicating the amount of time that the host has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.

	$HOSTDURATIONSEC$
	A number indicating the number of seconds that the host has spent in its current state.

	$HOSTDOWNTIME$
	A number indicating the current “downtime depth” for the host. If this host is currently in a period of scheduled downtime, the value will be greater than zero. If the host is not currently in a period of downtime, this value will be zero.

	$HOSTPERCENTCHANGE$
	A (floating point) number indicating the percent state change the host has undergone. Percent state change is used by the flap detection algorithm.

	$HOSTGROUPNAME$
	The short name of the hostgroup that this host belongs to. This value is taken from the hostgroup_name directive in the hostgroup definition. If the host belongs to more than one hostgroup this macro will contain the name of just one of them.

	$HOSTGROUPNAMES$
	A comma separated list of the short names of all the hostgroups that this host belongs to.

	$LASTHOSTCHECK$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the host was last performed.

	$LASTHOSTSTATECHANGE$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the host last changed state.

	$LASTHOSTUP$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in an UP state.

	$LASTHOSTDOWN$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in a DOWN state.

	$LASTHOSTUNREACHABLE$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the host was last detected as being in an UNREACHABLE state.

	$HOSTOUTPUT$
	The first line of text output from the last host check (i.e. “Ping OK”).

	$LONGHOSTOUTPUT$
	The full text output (aside from the first line) from the last host check.

	$HOSTPERFDATA$
	This macro contains any performance data that may have been returned by the last host check.

	$HOSTCHECKCOMMAND$
	This macro contains the name of the command (along with any arguments passed to it) used to perform the host check.

	$HOSTACKAUTHOR$ 8
	A string containing the name of the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$HOSTACKAUTHORNAME$ 8
	A string containing the short name of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$HOSTACKAUTHORALIAS$ 8
	A string containing the alias of the contact (if applicable) who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$HOSTACKCOMMENT$ 8
	A string containing the acknowledgement comment that was entered by the user who acknowledged the host problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$HOSTACTIONURL$
	Action URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.

	$HOSTNOTESURL$
	Notes URL for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to pass the host name to a web page.

	$HOSTNOTES$
	Notes for the host. This macro may contain other macros (e.g. $HOSTNAME$), which can be useful when you want to host-specific status information, etc. in the description.

	$TOTALHOSTSERVICES$
	The total number of services associated with the host.

	$TOTALHOSTSERVICESOK$
	The total number of services associated with the host that are in an OK state.

	$TOTALHOSTSERVICESWARNING$
	The total number of services associated with the host that are in a WARNING state.

	$TOTALHOSTSERVICESUNKNOWN$
	The total number of services associated with the host that are in an UNKNOWN state.

	$TOTALHOSTSERVICESCRITICAL$
	The total number of services associated with the host that are in a CRITICAL state.

	Host Group Macros: 5
	

	$HOSTGROUPALIAS$ 5
	The long name / alias of either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro). This value is taken from the alias directive in the hostgroup definition.

	$HOSTGROUPMEMBERS$ 5
	A comma-separated list of all hosts that belong to either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro).

	$HOSTGROUPNOTES$ 5
	The notes associated with either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro). This value is taken from the notes directive in the hostgroup definition.

	$HOSTGROUPNOTESURL$ 5
	The notes URL associated with either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro). This value is taken from the notes_url directive in the hostgroup definition.

	$HOSTGROUPACTIONURL$ 5
	The action URL associated with either 1) the hostgroup name passed as an on-demand macro argument or 2) the primary hostgroup associated with the current host (if not used in the context of an on-demand macro). This value is taken from the action_url directive in the hostgroup definition.

	Service Macros:
	

	$SERVICEDESC$
	The long name/description of the service (i.e. “Main Website”). This value is taken from the description directive of the service definition.

	$SERVICEDISPLAYNAME$
	An alternate display name for the service. This value is taken from the display_name directive in the service definition.

	$SERVICESTATE$
	A string indicating the current state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).

	$SERVICESTATEID$
	A number that corresponds to the current state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.

	$LASTSERVICESTATE$
	A string indicating the last state of the service (“OK”, “WARNING”, “UNKNOWN”, or “CRITICAL”).

	$LASTSERVICESTATEID$
	A number that corresponds to the last state of the service: 0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN.

	$SERVICESTATETYPE$
	A string indicating the state type for the current service check (“HARD” or “SOFT”). Soft states occur when service checks return a non-OK state and are in the process of being retried. Hard states result when service checks have been checked a specified maximum number of times.

	$SERVICEATTEMPT$
	The number of the current service check retry. For instance, if this is the second time that the service is being rechecked, this will be the number two. Current attempt number is really only useful when writing service event handlers for “soft” states that take a specific action based on the service retry number.

	$MAXSERVICEATTEMPTS$
	The max check attempts as defined for the current service. Useful when writing host event handlers for “soft” states that take a specific action based on the service retry number.

	$SERVICEISVOLATILE$
	Indicates whether the service is marked as being volatile or not: 0 = not volatile, 1 = volatile.

	$SERVICEEVENTID$
	A globally unique number associated with the service’s current state. Every time a a service (or host) experiences a state change, a global event ID number is incremented by one (1). If a service has experienced no state changes, this macro will be set to zero (0).

	$LASTSERVICEEVENTID$
	The previous (globally unique) event number that given to the service.

	$SERVICEPROBLEMID$
	A globally unique number associated with the service’s current problem state. Every time a service (or host) transitions from an OK or UP state to a problem state, a global problem ID number is incremented by one (1). This macro will be non-zero if the service is currently a non-OK state. State transitions between non-OK states (e.g. WARNING to CRITICAL) do not cause this problem id to increase. If the service is currently in an OK state, this macro will be set to zero (0). Combined with event handlers, this macro could be used to automatically open trouble tickets when services first enter a problem state.

	$LASTSERVICEPROBLEMID$
	The previous (globally unique) problem number that was given to the service. Combined with event handlers, this macro could be used for automatically closing trouble tickets, etc. when a service recovers to an OK state.

	$SERVICELATENCY$
	A (floating point) number indicating the number of seconds that a scheduled service check lagged behind its scheduled check time. For instance, if a check was scheduled for 03:14:15 and it didn’t get executed until 03:14:17, there would be a check latency of 2.0 seconds.

	$SERVICEEXECUTIONTIME$
	A (floating point) number indicating the number of seconds that the service check took to execute (i.e. the amount of time the check was executing).

	$SERVICEDURATION$
	A string indicating the amount of time that the service has spent in its current state. Format is “XXh YYm ZZs”, indicating hours, minutes and seconds.

	$SERVICEDURATIONSEC$
	A number indicating the number of seconds that the service has spent in its current state.

	$SERVICEDOWNTIME$
	A number indicating the current “downtime depth” for the service. If this service is currently in a period of scheduled downtime, the value will be greater than zero. If the service is not currently in a period of downtime, this value will be zero.

	$SERVICEPERCENTCHANGE$
	A (floating point) number indicating the percent state change the service has undergone. Percent state change is used by the flap detection algorithm.

	$SERVICEGROUPNAME$
	The short name of the servicegroup that this service belongs to. This value is taken from the servicegroup_name directive in the servicegroup definition. If the service belongs to more than one servicegroup this macro will contain the name of just one of them.

	$SERVICEGROUPNAMES$
	A comma separated list of the short names of all the servicegroups that this service belongs to.

	$LASTSERVICECHECK$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which a check of the service was last performed.

	$LASTSERVICESTATECHANGE$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time the service last changed state.

	$LASTSERVICEOK$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an OK state.

	$LASTSERVICEWARNING$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a WARNING state.

	$LASTSERVICEUNKNOWN$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in an UNKNOWN state.

	$LASTSERVICECRITICAL$
	This is a timestamp in time_t format (seconds since the UNIX epoch) indicating the time at which the service was last detected as being in a CRITICAL state.

	$SERVICEOUTPUT$
	The first line of text output from the last service check (i.e. “Ping OK”).

	$LONGSERVICEOUTPUT$
	The full text output (aside from the first line) from the last service check.

	$SERVICEPERFDATA$
	This macro contains any performance data that may have been returned by the last service check.

	$SERVICECHECKCOMMAND$
	This macro contains the name of the command (along with any arguments passed to it) used to perform the service check.

	$SERVICEACKAUTHOR$ 8
	A string containing the name of the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$SERVICEACKAUTHORNAME$ 8
	A string containing the short name of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$SERVICEACKAUTHORALIAS$ 8
	A string containing the alias of the contact (if applicable) who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$SERVICEACKCOMMENT$ 8
	A string containing the acknowledgement comment that was entered by the user who acknowledged the service problem. This macro is only valid in notifications where the $NOTIFICATIONTYPE$ macro is set to “ACKNOWLEDGEMENT”.

	$SERVICEACTIONURL$
	Action URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.

	$SERVICENOTESURL$
	Notes URL for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICEDESC$), which can be useful when you want to pass the service name to a web page.

	$SERVICENOTES$
	Notes for the service. This macro may contain other macros (e.g. $HOSTNAME$ or $SERVICESTATE$), which can be useful when you want to service-specific status information, etc. in the description

	Service Group Macros: 6
	

	$SERVICEGROUPALIAS$ 6
	The long name / alias of either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro). This value is taken from the alias directive in the servicegroup definition.

	$SERVICEGROUPMEMBERS$ 6
	A comma-separated list of all services that belong to either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro).

	$SERVICEGROUPNOTES$ 6
	The notes associated with either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro). This value is taken from the notes directive in the servicegroup definition.

	$SERVICEGROUPNOTESURL$ 6
	The notes URL associated with either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro). This value is taken from the notes_url directive in the servicegroup definition.

	$SERVICEGROUPACTIONURL$ 6
	The action URL associated with either 1) the servicegroup name passed as an on-demand macro argument or 2) the primary servicegroup associated with the current service (if not used in the context of an on-demand macro). This value is taken from the action_url directive in the servicegroup definition.

	Contact Macros:
	

	$CONTACTNAME$
	Short name for the contact (i.e. “jdoe”) that is being notified of a host or service problem. This value is taken from the contact_name directive in the contact definition.

	$CONTACTALIAS$
	Long name/description for the contact (i.e. “John Doe”) being notified. This value is taken from the alias directive in the contact definition.

	$CONTACTEMAIL$
	Email address of the contact being notified. This value is taken from the email directive in the contact definition.

	$CONTACTPAGER$
	Pager number/address of the contact being notified. This value is taken from the pager directive in the contact definition.

	$CONTACTADDRESSn$
	Address of the contact being notified. Each contact can have six different addresses (in addition to email address and pager number). The macros for these addresses are $CONTACTADDRESS1$ - $CONTACTADDRESS6$. This value is taken from the addressx directive in the contact definition.

	$CONTACTGROUPNAME$
	The short name of the contactgroup that this contact is a member of. This value is taken from the contactgroup_name directive in the contactgroup definition. If the contact belongs to more than one contactgroup this macro will contain the name of just one of them.

	$CONTACTGROUPNAMES$
	A comma separated list of the short names of all the contactgroups that this contact is a member of.

	Contact Group Macros: 5
	

	$CONTACTGROUPALIAS$ 7
	The long name / alias of either 1) the contactgroup name passed as an on-demand macro argument or 2) the primary contactgroup associated with the current contact (if not used in the context of an on-demand macro). This value is taken from the alias directive in the contactgroup definition.

	$CONTACTGROUPMEMBERS$ 7
	A comma-separated list of all contacts that belong to either 1) the contactgroup name passed as an on-demand macro argument or 2) the primary contactgroup associated with the current contact (if not used in the context of an on-demand macro).

	SUMMARY Macros:
	

	$TOTALHOSTSUP$
	This macro reflects the total number of hosts that are currently in an UP state.

	$TOTALHOSTSDOWN$
	This macro reflects the total number of hosts that are currently in a DOWN state.

	$TOTALHOSTSUNREACHABLE$
	This macro reflects the total number of hosts that are currently in an UNREACHABLE state.

	$TOTALHOSTSDOWNUNHANDLED$
	This macro reflects the total number of hosts that are currently in a DOWN state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALHOSTSUNREACHABLEUNHANDLED$
	This macro reflects the total number of hosts that are currently in an UNREACHABLE state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALHOSTPROBLEMS$
	This macro reflects the total number of hosts that are currently either in a DOWN or an UNREACHABLE state.

	$TOTALHOSTPROBLEMSUNHANDLED$
	This macro reflects the total number of hosts that are currently either in a DOWN or an UNREACHABLE state that are not currently being “handled”. Unhandled host problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALSERVICESOK$
	This macro reflects the total number of services that are currently in an OK state.

	$TOTALSERVICESWARNING$
	This macro reflects the total number of services that are currently in a WARNING state.

	$TOTALSERVICESCRITICAL$
	This macro reflects the total number of services that are currently in a CRITICAL state.

	$TOTALSERVICESUNKNOWN$
	This macro reflects the total number of services that are currently in an UNKNOWN state.

	$TOTALSERVICESWARNINGUNHANDLED$
	This macro reflects the total number of services that are currently in a WARNING state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALSERVICESCRITICALUNHANDLED$
	This macro reflects the total number of services that are currently in a CRITICAL state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALSERVICESUNKNOWNUNHANDLED$
	This macro reflects the total number of services that are currently in an UNKNOWN state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	$TOTALSERVICEPROBLEMS$
	This macro reflects the total number of services that are currently either in a WARNING, CRITICAL, or UNKNOWN state.

	$TOTALSERVICEPROBLEMSUNHANDLED$
	This macro reflects the total number of services that are currently either in a WARNING, CRITICAL, or UNKNOWN state that are not currently being “handled”. Unhandled services problems are those that are not acknowledged, are not currently in scheduled downtime, and for which checks are currently enabled.

	Notification Macros:
	

	$NOTIFICATIONTYPE$
	A string identifying the type of notification that is being sent (“PROBLEM”, “RECOVERY”, “ACKNOWLEDGEMENT”, “FLAPPINGSTART”, “FLAPPINGSTOP”, “FLAPPINGDISABLED”, “DOWNTIMESTART”, “DOWNTIMEEND”, or “DOWNTIMECANCELLED”).

	$NOTIFICATIONRECIPIENTS$
	A comma-separated list of the short names of all contacts that are being notified about the host or service.

	$NOTIFICATIONISESCALATED$
	An integer indicating whether this was sent to normal contacts for the host or service or if it was escalated. 0 = Normal (non-escalated) notification , 1 = Escalated notification.

	$NOTIFICATIONAUTHOR$
	A string containing the name of the user who authored the notification. If the $NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or “DOWNTIMEEND”, this will be the name of the user who scheduled downtime for the host or service. If the $NOTIFICATIONTYPE$ macro is “ACKNOWLEDGEMENT”, this will be the name of the user who acknowledged the host or service problem. If the $NOTIFICATIONTYPE$ macro is “CUSTOM”, this will be name of the user who initated the custom host or service notification.

	$NOTIFICATIONAUTHORNAME$
	A string containing the short name of the contact (if applicable) specified in the $NOTIFICATIONAUTHOR$ macro.

	$NOTIFICATIONAUTHORALIAS$
	A string containing the alias of the contact (if applicable) specified in the $NOTIFICATIONAUTHOR$ macro.

	$NOTIFICATIONCOMMENT$
	A string containing the comment that was entered by the notification author. If the $NOTIFICATIONTYPE$ macro is set to “DOWNTIMESTART” or “DOWNTIMEEND”, this will be the comment entered by the user who scheduled downtime for the host or service. If the $NOTIFICATIONTYPE$ macro is “ACKNOWLEDGEMENT”, this will be the comment entered by the user who acknowledged the host or service problem. If the $NOTIFICATIONTYPE$ macro is “CUSTOM”, this will be comment entered by the user who initated the custom host or service notification.

	$HOSTNOTIFICATIONNUMBER$
	The current notification number for the host. The notification number increases by one (1) each time a new notification is sent out for the host (except for acknowledgements). The notification number is reset to 0 when the host recovers (after the recovery notification has gone out). Acknowledgements do not cause the notification number to increase, nor do notifications dealing with flap detection or scheduled downtime.

	$HOSTNOTIFICATIONID$
	A unique number identifying a host notification. Notification ID numbers are unique across both hosts and service notifications, so you could potentially use this unique number as a primary key in a notification database. Notification ID numbers should remain unique across restarts of the Nagios process, so long as you have state retention enabled. The notification ID number is incremented by one (1) each time a new host notification is sent out, and regardless of how many contacts are notified.

	$SERVICENOTIFICATIONNUMBER$
	The current notification number for the service. The notification number increases by one (1) each time a new notification is sent out for the service (except for acknowledgements). The notification number is reset to 0 when the service recovers (after the recovery notification has gone out). Acknowledgements do not cause the notification number to increase, nor do notifications dealing with flap detection or scheduled downtime.

	$SERVICENOTIFICATIONID$
	A unique number identifying a service notification. Notification ID numbers are unique across both hosts and service notifications, so you could potentially use this unique number as a primary key in a notification database. Notification ID numbers should remain unique across restarts of the Nagios process, so long as you have state retention enabled. The notification ID number is incremented by one (1) each time a new service notification is sent out, and regardless of how many contacts are notified.

	Date/Time Macros:
	

	$LONGDATETIME$
	Current date/time stamp (i.e. Fri Oct 13 00:30:28 CDT 2000). Format of date is determined by date_format directive.

	$SHORTDATETIME$
	Current date/time stamp (i.e. 10-13-2000 00:30:28). Format of date is determined by date_format directive.

	$DATE$
	Date stamp (i.e. 10-13-2000). Format of date is determined by date_format directive.

	$TIME$
	Current time stamp (i.e. 00:30:28).

	$TIMET$
	Current time stamp in time_t format (seconds since the UNIX epoch).

	$ISVALIDTIME:$ 9
	This is a special on-demand macro that returns a 1 or 0 depending on whether or not a particular time is valid within a specified timeperiod. There are two ways of using this macro: - $ISVALIDTIME:24x7$ will be set to “1” if the current time is valid within the “24x7” timeperiod. If not, it will be set to “0”. - $ISVALIDTIME:24x7:timestamp$ will be set to “1” if the time specified by the “timestamp” argument (which must be in time_t format) is valid within the “24x7” timeperiod. If not, it will be set to “0”.

	$NEXTVALIDTIME:$ 9
	This is a special on-demand macro that returns the next valid time (in time_t format) for a specified timeperiod. There are two ways of using this macro: - $NEXTVALIDTIME:24x7$ will return the next valid time - from and including the current time - in the “24x7” timeperiod. - $NEXTVALIDTIME:24x7:timestamp$ will return the next valid time - from and including the time specified by the “timestamp” argument (which must be specified in time_t format) - in the “24x7” timeperiod.If a next valid time cannot be found in the specified timeperiod, the macro will be set to “0”.

	File Macros:
	

	$MAINCONFIGFILE$
	The location of the main config file.

	$STATUSDATAFILE$
	The location of the status data file.

	$COMMENTDATAFILE$
	The location of the comment data file.

	$DOWNTIMEDATAFILE$
	The location of the downtime data file.

	$RETENTIONDATAFILE$
	The location of the retention data file.

	$OBJECTCACHEFILE$
	The location of the object cache file.

	$TEMPFILE$
	The location of the temp file.

	$TEMPPATH$
	The directory specified by the temp path variable.

	$LOGFILE$
	The location of the log file.

	$RESOURCEFILE$
	The location of the resource file.

	$COMMANDFILE$
	The location of the command file.

	$HOSTPERFDATAFILE$
	The location of the host performance data file (if defined).

	$SERVICEPERFDATAFILE$
	The location of the service performance data file (if defined).

	Misc Macros:
	

	$PROCESSSTARTTIME$
	Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Nagios process was last (re)started. You can determine the number of seconds that Nagios has been running (since it was last restarted) by subtracting $PROCESSSTARTTIME$ from $TIMET$.

	$EVENTSTARTTIME$
	Time stamp in time_t format (seconds since the UNIX epoch) indicating when the Nagios process starting process events (checks, etc.). You can determine the number of seconds that it took for Nagios to startup by subtracting $PROCESSSTARTTIME$ from $EVENTSTARTTIME$.

	$ADMINEMAIL$
	Global administrative email address. This value is taken from the admin_email directive.

	$ADMINPAGER$
	Global administrative pager number/address. This value is taken from the admin_pager directive.

	$ARGn$
	The nth argument passed to the command (notification, event handler, service check, etc.). Nagios supports up to 32 argument macros ($ARG1$ through $ARG32$).

	$USERn$
	The nth user-definable macro. User macros can be defined in one or more resource files. Nagios supports up to 32 user macros ($USER1$ through $USER32$).

Notes

-1 These macros are not valid for the host they are associated with when that host is being checked (i.e. they make no sense, as they haven’t been determined yet).

-2 These macros are not valid for the service they are associated with when that service is being checked (i.e. they make no sense, as they haven’t been determined yet).

-3 When host macros are used in service-related commands (i.e. service notifications, event handlers, etc) they refer to the host that the service is associated with.

-4 When host and service summary macros are used in notification commands, the totals are filtered to reflect only those hosts and services for which the contact is authorized (i.e. hosts and services they are configured to receive notifications for).

-5 These macros are normally associated with the first/primary hostgroup associated with the current host. They could therefore be considered host macros in many cases. However, these macros are not available as on-demand host macros. Instead, they can be used as on-demand hostgroup macros when you pass the name of a hostgroup to the macro. For example: $HOSTGROUPMEMBERS:hg1$ would return a comma-delimited list of all (host) members of the hostgroup hg1.

-6 These macros are normally associated with the first/primary servicegroup associated with the current service. They could therefore be considered service macros in many cases. However, these macros are not available as on-demand service macros. Instead, they can be used as on-demand servicegroup macros when you pass the name of a servicegroup to the macro. For example: $SERVICEGROUPMEMBERS:sg1$ would return a comma-delimited list of all (service) members of the servicegroup sg1.

-7 These macros are normally associated with the first/primary contactgroup associated with the current contact. They could therefore be considered contact macros in many cases. However, these macros are not available as on-demand contact macros. Instead, they can be used as on-demand contactgroup macros when you pass the name of a contactgroup to the macro. For example: $CONTACTGROUPMEMBERS:cg1$ would return a comma-delimited list of all (contact) members of the contactgroup cg1.

-8 These acknowledgement macros are deprecated. Use the more generic $NOTIFICATIONAUTHOR$, $NOTIFICATIONAUTHORNAME$, $NOTIFICATIONAUTHORALIAS$ or $NOTIFICATIONAUTHORCOMMENT$ macros instead.

-9 These macro are only available as on-demand macros - e.g. you must supply an additional argument with them in order to use them. These macros are not available as environment variables.

-10 Summary macros are not available as environment variables if the use_large_installation_tweaks option is enabled, as they are quite CPU-intensive to calculate.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Host Checks

Introduction

The basic workings of host checks are described here...

When Are Host Checks Performed?

Hosts are checked by the Shinken daemon:

	At regular intervals, as defined by the check_interval and retry_interval options in your host definitions.

	On-demand when a service associated with the host changes state.

	On-demand as needed as part of the host reachability logic.

	On-demand as needed for predictive host dependency checks.

Regularly scheduled host checks are optional. If you set the check_interval option in your host definition to zero (0), Shinken will not perform checks of the hosts on a regular basis. It will, however, still perform on-demand checks of the host as needed for other parts of the monitoring logic.

On-demand checks are made when a service associated with the host changes state because Shinken needs to know whether the host has also changed state. Services that change state are often an indicator that the host may have also changed state. For example, if Shinken detects that the “HTTP” service associated with a host just changed from a CRITICAL to an OK state, it may indicate that the host just recovered from a reboot and is now back up and running.

On-demand checks of hosts are also made as part of the host reachability logic. Shinken is designed to detect network outages as quickly as possible, and distinguish between DOWN and UNREACHABLE host states. These are very different states and can help an admin quickly locate the cause of a network outage.

On-demand checks are also performed as part of the predictive host dependency check logic. These checks help ensure that the dependency logic is as accurate as possible.

Cached Host Checks

The performance of on-demand host checks can be significantly improved by implementing the use of cached checks, which allow Shinken to forgo executing a host check if it determines a relatively recent check result will do instead. More information on cached checks can be found here.

Dependencies and Checks

You can define host execution dependencies that prevent Shinken from checking the status of a host depending on the state of one or more other hosts. More information on dependencies can be found here.

Parallelization of Host Checks

All checks are run in parallel.

Host States

Hosts that are checked can be in one of three different states:

	UP

	DOWN

	UNREACHABLE

Host State Determination

Host checks are performed by plugins, which can return a state of OK, WARNING, UNKNOWN, or CRITICAL. How does Shinken translate these plugin return codes into host states of UP, DOWN, or UNREACHABLE? Lets see...

The table below shows how plugin return codes correspond with preliminary host states. Some post-processing (which is described later) is done which may then alter the final host state.

	Plugin Result
	Preliminary Host State

	OK
	UP

	WARNING
	DOWN*

	UNKNOWN
	DOWN

	CRITICAL
	DOWN

If the preliminary host state is DOWN, Shinken will attempt to see if the host is really DOWN or if it is UNREACHABLE. The distinction between DOWN and UNREACHABLE host states is important, as it allows admins to determine root cause of network outages faster. The following table shows how Shinken makes a final state determination based on the state of the hosts parent(s). A host’s parents are defined in the parents directive in host definition.

	Preliminary Host State
	Parent Host State
	Final Host State

	DOWN
	At least one parent is UP
	DOWN

	DOWN
	All parents are either DOWN or UNREACHABLE
	UNREACHABLE

More information on how Shinken distinguishes between DOWN and UNREACHABLE states can be found here.

Host State Changes

As you are probably well aware, hosts don’t always stay in one state. Things break, patches get applied, and servers need to be rebooted. When Shinken checks the status of hosts, it will be able to detect when a host changes between UP, DOWN, and UNREACHABLE states and take appropriate action. These state changes result in different state types (HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Detecting and dealing with state changes is what Shinken is all about.

When hosts change state too frequently they are considered to be “flapping”. A good example of a flapping host would be server that keeps spontaneously rebooting as soon as the operating system loads. That’s always a fun scenario to have to deal with. Shinken can detect when hosts start flapping, and can suppress notifications until flapping stops and the host’s state stabilizes. More information on the flap detection logic can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Service Checks

Introduction

The basic workings of service checks are described here...

When Are Service Checks Performed?

Services are checked by the Shinken daemon:

	At regular intervals, as defined by the “check_interval” and “retry_interval” options in your service definitions.

	On-demand as needed for predictive service dependency checks.

On-demand checks are performed as part of the predictive service dependency check logic. These checks help ensure that the dependency logic is as accurate as possible. If you don’t make use of service dependencies, Shinken won’t perform any on-demand service checks.

Cached Service Checks

The performance of on-demand service checks can be significantly improved by implementing the use of cached checks, which allow Shinken to forgo executing a service check if it determines a relatively recent check result will do instead. Cached checks will only provide a performance increase if you are making use of service dependencies. More information on cached checks can be found here.

Dependencies and Checks

You can define service execution dependencies that prevent Shinken from checking the status of a service depending on the state of one or more other services. More information on dependencies can be found here.

Parallelization of Service Checks

Scheduled service checks are run in parallel.

Service States

Services that are checked can be in one of four different states:

	OK

	WARNING

	UNKNOWN

	CRITICAL

Service State Determination

Service checks are performed by plugins, which can return a state of OK, WARNING, UNKNOWN, or CRITICAL. These plugin states directly translate to service states. For example, a plugin which returns a WARNING state will cause a service to have a WARNING state.

Services State Changes

When Shinken checks the status of services, it will be able to detect when a service changes between OK, WARNING, UNKNOWN, and CRITICAL states and take appropriate action. These state changes result in different state types (HARD or SOFT), which can trigger event handlers to be run and notifications to be sent out. Service state changes can also trigger on-demand host checks. Detecting and dealing with state changes is what Shinken is all about.

When services change state too frequently they are considered to be “flapping”. Shinken can detect when services start flapping, and can suppress notifications until flapping stops and the service’s state stabilizes. More information on the flap detection logic can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Active Checks

Introduction

Shinken is capable of monitoring hosts and services in two ways: actively and passively. Passive checks are described elsewhere, so we’ll focus on active checks here. Active checks are the most common method for monitoring hosts and services. The main features of actives checks are as follows:

	Active checks are initiated by the Shinken process

	Active checks are run on a regularly scheduled basis

How Are Active Checks Performed?

[image: ../_images/activechecks.png]
Active checks are initiated by the check logic in the Shinken daemon. When Shinken needs to check the status of a host or service it will execute a plugin and pass it information about what needs to be checked. The plugin will then check the operational state of the host or service and report the results back to the Shinken daemon. Shinken will process the results of the host or service check and take appropriate action as necessary (e.g. send notifications, run event handlers, etc).

More information on how plugins work can be found here.

When Are Active Checks Executed?

Active check are executed:

	At regular intervals, as defined by the “check_interval” and “retry_interval” options in your host and service definitions

	On-demand as needed

Regularly scheduled checks occur at intervals equaling either the “check_interval” or the “retry_interval” in your host or service definitions, depending on what type of state the host or service is in. If a host or service is in a HARD state, it will be actively checked at intervals equal to the “check_interval” option. If it is in a SOFT state, it will be checked at intervals equal to the retry_interval option.

On-demand checks are performed whenever Shinken sees a need to obtain the latest status information about a particular host or service. For example, when Shinken is determining the reachability of a host, it will often perform on-demand checks of parent and child hosts to accurately determine the status of a particular network segment. On-demand checks also occur in the predictive dependency check logic in order to ensure Shinken has the most accurate status information.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Passive Checks

Introduction

In most cases you’ll use Shinken to monitor your hosts and services using regularly scheduled active checks. Active checks can be used to “poll” a device or service for status information every so often. Shinken also supports a way to monitor hosts and services passively instead of actively. They key features of passive checks are as follows:

	Passive checks are initiated and performed by external applications/processes

	Passive check results are submitted to Shinken for processing

The major difference between active and passive checks is that active checks are initiated and performed by Shinken, while passive checks are performed by external applications.

Uses For Passive Checks

Passive checks are useful for monitoring services that are:

	Asynchronous in nature, they cannot or would not be monitored effectively by polling their status on a regularly scheduled basis

	Located behind a firewall and cannot be checked actively from the monitoring host

Examples of asynchronous services that lend themselves to being monitored passively include:

	“SNMP” traps and security alerts. You never know how many (if any) traps or alerts you’ll receive in a given time frame, so it’s not feasible to just monitor their status every few minutes.

	Aggregated checks from a host running an agent. Checks may be run at much lower intervals on hosts running an agent.

	Submitting check results that happen directly within an application without using an intermediate log file(syslog, event log, etc.).

Passive checks are also used when configuring distributed or redundant monitoring installations.

How Passive Checks Work

[image: ../_images/passivechecks.png]
DEPRECATED IMAGE - TODO REPLACE WITH MOE ACCURATE DEPTICTION

Here’s how passive checks work in more detail...

	An external application checks the status of a host or service.

	The external application writes the results of the check to the external command named pipe (a named pipe is a “memory pipe”, so there is no disk IO involved).

	Shinken reads the external command file and places the results of all passive checks into a queue for processing by the appropriate process in the Shinken cloud.

	Shinken will execute a check result reaper event each second and scan the check result queue. Each service check result that is found in the queue is processed in the same manner - regardless of whether the check was active or passive. Shinken may send out notifications, log alerts, etc. depending on the check result information.

The processing of active and passive check results is essentially identical. This allows for seamless integration of status information from external applications with Shinken.

Enabling Passive Checks

In order to enable passive checks in Shinken, you’ll need to do the following:

	Set “accept_passive_service_checks” directive is set to 1 (in nagios.cfg).

	Set the “passive_checks_enabled” directive in your host and service definitions is set to 1.

If you want to disable processing of passive checks on a global basis, set the “accept_passive_service_checks” directive to 0.

If you would like to disable passive checks for just a few hosts or services, use the “passive_checks_enabled” directive in the host and/or service definitions to do so.

Submitting Passive Service Check Results

External applications can submit passive service check results to Shinken by writing a PROCESS_SERVICE_CHECK_RESULT external command to the external command pipe, which is essentially a file handle that you write to as you would a file.

The format of the command is as follows: “[<timestamp>] PROCESS_SERVICE_CHECK_RESULT;<host_name>;<svc_description>;<return_code>;<plugin_output>” where...

	timestamp is the time in time_t format (seconds since the UNIX epoch) that the service check was perfomed (or submitted). Please note the single space after the right bracket.

	host_name is the short name of the host associated with the service in the service definition

	svc_description is the description of the service as specified in the service definition

	return_code is the return code of the check (0=OK, 1=WARNING, 2=CRITICAL, 3=UNKNOWN)

	plugin_output is the text output of the service check (i.e. the plugin output)

A service must be defined in Shinken before Shinken will accept passive check results for it! Shinken will ignore all check results for services that have not been configured before it was last (re)started.

An example shell script of how to submit passive service check results to Shinken can be found in the documentation on volatile services.

Submitting Passive Host Check Results

External applications can submit passive host check results to Shinken by writing a PROCESS_HOST_CHECK_RESULT external command to the external command file.

The format of the command is as follows: “[<timestamp>]PROCESS_HOST_CHECK_RESULT;<host_name>;<host_status>;<plugin_output>” where...

	timestamp is the time in time_t format (seconds since the UNIX epoch) that the host check was perfomed (or submitted). Please note the single space after the right bracket.

	host_name is the short name of the host (as defined in the host definition)

	host_status is the status of the host (0=UP, 1=DOWN, 2=UNREACHABLE)

	plugin_output is the text output of the host check

A host must be defined in Shinken before you can submit passive check results for it! Shinken will ignore all check results for hosts that had not been configured before it was last (re)started.

Once data has been received by the Arbiter process, either directly or through a Receiver daemon, it will forward the check results to the appropriate Scheduler to apply check logic.

Passive Checks and Host States

Unlike with active host checks, Shinken does not (by default) attempt to determine whether or host is DOWN or UNREACHABLE with passive checks. Rather, Shinken takes the passive check result to be the actual state the host is in and doesn’t try to determine the hosts’ actual state using the reachability logic. This can cause problems if you are submitting passive checks from a remote host or you have a distributed monitoring setup where the parent/child host relationships are different.

You can tell Shinken to translate DOWN/UNREACHABLE passive check result states to their “proper” state by using the “translate_passive_host_checks” variable. More information on how this works can be found here.

Passive host checks are normally treated as HARD states, unless the “passive_host_checks_are_soft” option is enabled.

Submitting Passive Check Results From Remote Hosts

[image: ../_images/nsca.png]
DEPRECATED IMAGE - TODO REPLACE WITH MOE ACCURATE DEPTICTION

If an application that resides on the same host as Shinken is sending passive host or service check results, it can simply write the results directly to the external command named pipe file as outlined above. However, applications on remote hosts can’t do this so easily.

In order to allow remote hosts to send passive check results to the monitoring host, there a multiple modules to that can send and accept passive check results. NSCA, TSCA, Shinken WebService and more.

Learn more about the different passive check result/command protocols and how to configure them.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

State Types

Introduction

The current state of monitored services and hosts is determined by two components:

	The status of the service or host (i.e. OK, WARNING, UP, DOWN, etc.)

	The type of state the service or host is in.

There are two state types in Shinken - SOFT states and HARD states. These state types are a crucial part of the monitoring logic, as they are used to determine when event handlers are executed and when notifications are initially sent out.

This document describes the difference between SOFT and HARD states, how they occur, and what happens when they occur.

Service and Host Check Retries

In order to prevent false alarms from transient problems, Shinken allows you to define how many times a service or host should be (re)checked before it is considered to have a “real” problem. This is controlled by the max_check_attempts option in the host and service definitions. Understanding how hosts and services are (re)checked in order to determine if a real problem exists is important in understanding how state types work.

Soft States

Soft states occur in the following situations...

	When a service or host check results in a non-OK or non-UP state and the service check has not yet been (re)checked the number of times specified by the max_check_attempts directive in the service or host definition. This is called a soft error.

	When a service or host recovers from a soft error. This is considered a soft recovery.

The following things occur when hosts or services experience SOFT state changes:

	The SOFT state is logged.

	Event handlers are executed to handle the SOFT state.

SOFT states are only logged if you enabled the log_service_retries or log_host_retries options in your main configuration file.

The only important thing that really happens during a soft state is the execution of event handlers. Using event handlers can be particularly useful if you want to try and proactively fix a problem before it turns into a HARD state. The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “SOFT” when event handlers are executed, which allows your event handler scripts to know when they should take corrective action. More information on event handlers can be found here.

Hard States

Hard states occur for hosts and services in the following situations:

	When a host or service check results in a non-UP or non-OK state and it has been (re)checked the number of times specified by the max_check_attempts option in the host or service definition. This is a hard error state.

	When a host or service transitions from one hard error state to another error state (e.g. WARNING to CRITICAL).

	When a service check results in a non-OK state and its corresponding host is either DOWN or UNREACHABLE.

	When a host or service recovers from a hard error state. This is considered to be a hard recovery.

	When a passive host check is received. Passive host checks are treated as HARD unless the passive_host_checks_are_soft option is enabled.

The following things occur when hosts or services experience HARD state changes:

	The HARD state is logged.

	Event handlers are executed to handle the HARD state.

	Contacts are notifified of the host or service problem or recovery.

The $HOSTSTATETYPE$ or $SERVICESTATETYPE$ macros will have a value of “HARD” when event handlers are executed, which allows your event handler scripts to know when they should take corrective action. More information on event handlers can be found here.

Example

Here’s an example of how state types are determined, when state changes occur, and when event handlers and notifications are sent out. The table below shows consecutive checks of a service over time. The service has a max_check_attempts value of 3.

	Time
	Check #
	State
	State Type
	State Change
	Notes

	0
	1
	OK
	HARD
	No
	Initial state of the service

	1
	1
	CRITICAL
	SOFT
	Yes
	First detection of a non-OK state. Event handlers execute.

	2
	2
	WARNING
	SOFT
	Yes
	Service continues to be in a non-OK state. Event handlers execute.

	3
	3
	CRITICAL
	HARD
	Yes
	Max check attempts has been reached, so service goes into a HARD state. Event handlers execute and a problem notification is sent out. Check # is reset to 1 immediately after this happens.

	4
	1
	WARNING
	HARD
	Yes
	Service changes to a HARD WARNING state. Event handlers execute and a problem notification is sent out.

	5
	1
	WARNING
	HARD
	No
	Service stabilizes in a HARD problem state. Depending on what the notification interval for the service is, another notification might be sent out.

	6
	1
	OK
	HARD
	Yes
	Service experiences a HARD recovery. Event handlers execute and a recovery notification is sent out.

	7
	1
	OK
	HARD
	No
	Service is still OK.

	8
	1
	UNKNOWN
	SOFT
	Yes
	Service is detected as changing to a SOFT non-OK state. Event handlers execute.

	9
	2
	OK
	SOFT
	Yes
	Service experiences a SOFT recovery. Event handlers execute, but notification are not sent, as this wasn’t a “real” problem. State type is set HARD and check # is reset to 1 immediately after this happens.

	10
	1
	OK
	HARD
	No
	Service stabilizes in an OK state.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Time Periods

Abstract

or...“Is This a Good Time?”

Introduction

Precedence in Time Periods

Timeperod definitions may contain multiple types of directives, including weekdays, days of the month, and calendar dates. Different types of directives have different precedence levels and may override other directives in your timeperiod definitions. The order of precedence for different types of directives (in descending order) is as follows:

	Calendar date (2008-01-01)

	Specific month date (January 1st)

	Generic month date (Day 15)

	Offset weekday of specific month (2nd Tuesday in December)

	Offset weekday (3rd Monday)

	Normal weekday (Tuesday)

Examples of different timeperiod directives can be found here.

How Time Periods Work With Host and Service Checks

Host and service definitions have an optional “check_period” directive that allows you to specify a timeperiod that should be used to restrict when regularly scheduled, active checks of the host or service can be made.

If you do not use the “check_period directive” to specify a timeperiod, Shinken will be able to schedule active checks of the host or service anytime it needs to. This is essentially a 24x7 monitoring scenario.

Specifying a timeperiod in the “check_period directive” allows you to restrict the time that Shinken perform regularly scheduled, active checks of the host or service. When Shinken attempts to reschedule a host or service check, it will make sure that the next check falls within a valid time range within the defined timeperiod. If it doesn’t, Shinken will adjust the next check time to coincide with the next “valid” time in the specified timeperiod. This means that the host or service may not get checked again for another hour, day, or week, etc.

On-demand checks and passive checks are not restricted by the timeperiod you specify in the “check_period directive”. Only regularly scheduled active checks are restricted.

A service’s timeperiod is inherited from its host only if it’s not already defined. In a new shinken installation, it’s defined to “24x7” in generic-service. If you want service notifications stopped when the host is outside its notification period, you’ll want to comment “notification_period” and/or “notification_enabled” in templates.cfg:generic-service 1 [http://www.shinken-monitoring.org/forum/index.php/topic,377.0.html].

Unless you have a good reason not to do so, I would recommend that you monitor all your hosts and services using timeperiods that cover a 24x7 time range. If you don’t do this, you can run into some problems during “blackout” times (times that are not valid in the timeperiod definition):

	The status of the host or service will appear unchanged during the blackout time.

	Contacts will mostly likely not get re-notified of problems with a host or service during blackout times.

	If a host or service recovers during a blackout time, contacts will not be immediately notified of the recovery.

How Time Periods Work With Contact Notifications

By specifying a timeperiod in the “notification_period” directive of a host or service definition, you can control when Shinken is allowed to send notifications out regarding problems or recoveries for that host or service. When a host notification is about to get sent out, Shinken will make sure that the current time is within a valid range in the “notification_period” timeperiod. If it is a valid time, then Shinken will attempt to notify each contact of the problem or recovery.

You can also use timeperiods to control when notifications can be sent out to individual contacts. By using the “service_notification_period” and “host_notification_period” directives in contact definitions, you’re able to essentially define an “on call” period for each contact. Contacts will only receive host and service notifications during the times you specify in the notification period directives.

Examples of how to create timeperiod definitions for use for on-call rotations can be found here.

How Time Periods Work With Notification Escalations

Service and host Notification Escalations have an optional escalation_period directive that allows you to specify a timeperiod when the escalation is valid and can be used. If you do not use the “escalation_period” directive in an escalation definition, the escalation is considered valid at all times. If you specify a timeperiod in the “escalation_period” directive, Shinken will only use the escalation definition during times that are valid in the timeperiod definition.

How Time Periods Work With Dependencies

Host and Service Dependencies have an optional “dependency_period” directive that allows you to specify a timeperiod when the dependendies are valid and can be used. If you do not use the “dependency_period” directive in a dependency definition, the dependency can be used at any time. If you specify a timeperiod in the “dependency_period” directive, Shinken will only use the dependency definition during times that are valid in the timeperiod definition.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Determining Status and Reachability of Network Hosts

Introduction

If you’ve ever work in tech support, you’ve undoubtedly had users tell you “the Internet is down”. As a techie, you’re pretty sure that no one pulled the power cord from the Internet. Something must be going wrong somewhere between the user’s chair and the Internet.

Assuming its a technical problem, you begin to search for the problem. Perhaps the user’s computer is turned off, maybe their network cable is unplugged, or perhaps your organization’s core router just took a dive. Whatever the problem might be, one thing is most certain - the Internet isn’t down. It just happens to be unreachable for that user.

Shinken is able to determine whether the hosts you’re monitoring are in a DOWN or UNREACHABLE state. These are very different (although related) states and can help you quickly determine the root cause of network problems. To achieve this goal you must first and foremost define a check_command for the host you are monitoring. From there, here’s how the reachability logic works to distinguish between these two states...

Example Network

Take a look at the simple network diagram below. For this example, let us assume you’re monitoring all the hosts (server, routers, switches, etc) that are pictured, meaning you have defined check_commands for each of the various hosts. Shinken is installed and running on the Shinken host.

If you have not defined a check_command for your host, Shinken will assume that the host is always UP. Meaning that the logic described will NOT kick-in.

[image: ../_images/reachability1.png]

Defining Parent/Child Relationships

In order for Shinken to be able to distinguish between DOWN and UNREACHABLE states for the hosts that are being monitored, you’ll need to tell Shinken how those hosts are connected to each other - from the standpoint of the Shinken daemon. To do this, trace the path that a data packet would take from the Shinken daemon to each individual host. Each switch, router, and server the packet encounters or passes through is considered a “hop” and will require that you define a parent/child host relationship in Shinken. Here’s what the host parent/child relationships look like from the viewpoint of Shinken:

[image: ../_images/reachability2.png]
Now that you know what the parent/child relationships look like for hosts that are being monitored, how do you configure Shinken to reflect them? The parents directive in your host definitions allows you to do this. Here’s what the (abbreviated) host definitions with parent/child relationships would look like for this example:

define host{
 host_name Shinken ; <-- The local host has no parent - it is the topmost host
}

define host{
 host_name Switch1
 parents Shinken
}

define host{
 host_name Web
 parents Switch1
}

define host{
 host_name FTP
 parents Switch1
}

define host{
 host_name Router1
 parents Switch1
}

define host{
 host_name Switch2
 parents Router1
}

define host{
 host_name Wkstn1
 parents Switch2
}

define host{
 host_name HPLJ2605
 parents Switch2
}

define host{
 host_name Router2
 parents Router1
}

define host{
 host_name somewebsite.com
 parents Router2
}

Reachability Logic in Action

Now that you’re configured Shinken with the proper parent/child relationships for your hosts, let’s see what happen when problems arise. Assume that two hosts - Web and Router1 - go offline...

[image: ../_images/reachability3.png]
When hosts change state (i.e. from UP to DOWN), the host reachability logic in Shinken kicks in. The reachability logic will initiate parallel checks of the parents and children of whatever hosts change state. This allows Shinken to quickly determine the current status of your network infrastructure when changes occur.

[image: ../_images/reachability4.png]
In this example, Shinken will determine that Web and Router1 are both in DOWN states because the “path” to those hosts is not being blocked.

Shinken will determine that all the hosts “beneath” Router1 are all in an UNREACHABLE state because Shinken can’t reach them. Router1 is DOWN and is blocking the path to those other hosts. Those hosts might be running fine, or they might be offline - Shinken doesn’t know because it can’t reach them. Hence Shinken considers them to be UNREACHABLE instead of DOWN.

UNREACHABLE States and Notifications

By default, Shinken will notify contacts about both DOWN and UNREACHABLE host states. As an admin/tech, you might not want to get notifications about hosts that are UNREACHABLE. You know your network structure, and if Shinken notifies you that your router/firewall is down, you know that everything behind it is unreachable.

If you want to spare yourself from a flood of UNREACHABLE notifications during network outages, you can exclude the unreachable (u) option from the “notification_options” directive in your host definitions and/or the “host_notification_options” directive in your contact definitions.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Notifications

Introduction

Notification escalations are explained here.

When Do Notifications Occur?

The decision to send out notifications is made in the service check and host check logic. Host and service notifications occur in the following instances...

	When a hard state change occurs. More information on state types and hard state changes can be found here.

	When a host or service remains in a hard non-OK state and the time specified by the “notification_interval” option in the host or service definition has passed since the last notification was sent out (for that specified host or service).

Who Gets Notified?

Each host and service definition has a “contact_groups” option that specifies what contact groups receive notifications for that particular host or service. Contact groups can contain one or more individual contacts.

When Shinken sends out a host or service notification, it will notify each contact that is a member of any contact groups specified in the “contact_groups” option of the service definition. Shinken realizes that a contact may be a member of more than one contact group, so it removes duplicate contact notifications before it does anything.

What Filters Must Be Passed In Order For Notifications To Be Sent?

Just because there is a need to send out a host or service notification doesn’t mean that any contacts are going to get notified. There are several filters that potential notifications must pass before they are deemed worthy enough to be sent out. Even then, specific contacts may not be notified if their notification filters do not allow for the notification to be sent to them. Let’s go into the filters that have to be passed in more detail...

Program-Wide Filter:

The first filter that notifications must pass is a test of whether or not notifications are enabled on a program-wide basis. This is initially determined by the “enable_notifications” directive in the main config file, but may be changed during runtime from the web interface. If notifications are disabled on a program-wide basis, no host or service notifications can be sent out - period. If they are enabled on a program-wide basis, there are still other tests that must be passed...

Service and Host Filters:

The first filter for host or service notifications is a check to see if the host or service is in a period of scheduled downtime. It it is in a scheduled downtime, no one gets notified. If it isn’t in a period of downtime, it gets passed on to the next filter. As a side note, notifications for services are suppressed if the host they’re associated with is in a period of scheduled downtime.

The second filter for host or service notification is a check to see if the host or service is flapping (if you enabled flap detection). If the service or host is currently flapping, no one gets notified. Otherwise it gets passed to the next filter.

The third host or service filter that must be passed is the host- or service-specific notification options. Each service definition contains options that determine whether or not notifications can be sent out for warning states, critical states, and recoveries. Similiarly, each host definition contains options that determine whether or not notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the host or service notification does not pass these options, no one gets notified. If it does pass these options, the notification gets passed to the next filter...

Notifications about host or service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make sense to get a recovery notification for something you never knew was a problem.

The fourth host or service filter that must be passed is the time period test. Each host and service definition has a “notification_period” option that specifies which time period contains valid notification times for the host or service. If the time that the notification is being made does not fall within a valid time range in the specified time period, no one gets contacted. If it falls within a valid time range, the notification gets passed to the next filter...

If the time period filter is not passed, Shinken will reschedule the next notification for the host or service (if its in a non-OK state) for the next valid time present in the time period. This helps ensure that contacts are notified of problems as soon as possible when the next valid time in time period arrives.

The last set of host or service filters is conditional upon two things: (1) a notification was already sent out about a problem with the host or service at some point in the past and (2) the host or service has remained in the same non-OK state that it was when the last notification went out. If these two criteria are met, then Shinken will check and make sure the time that has passed since the last notification went out either meets or exceeds the value specified by the “notification_interval” option in the host or service definition. If not enough time has passed since the last notification, no one gets contacted. If either enough time has passed since the last notification or the two criteria for this filter were not met, the notification will be sent out! Whether or not it actually is sent to individual contacts is up to another set of filters...

Contact Filters:

At this point the notification has passed the program mode filter and all host or service filters and Shinken starts to notify all the people it should. Does this mean that each contact is going to receive the notification? No! Each contact has their own set of filters that the notification must pass before they receive it.

Contact filters are specific to each contact and do not affect whether or not other contacts receive notifications.

The first filter that must be passed for each contact are the notification options. Each contact definition contains options that determine whether or not service notifications can be sent out for warning states, critical states, and recoveries. Each contact definition also contains options that determine whether or not host notifications can be sent out when the host goes down, becomes unreachable, or recovers. If the host or service notification does not pass these options, the contact will not be notified. If it does pass these options, the notification gets passed to the next filter...

Notifications about host or service recoveries are only sent out if a notification was sent out for the original problem. It doesn’t make sense to get a recovery notification for something you never knew was a problem...

The last filter that must be passed for each contact is the time period test. Each contact definition has a “notification_period” option that specifies which time period contains valid notification times for the contact. If the time that the notification is being made does not fall within a valid time range in the specified time period, the contact will not be notified. If it falls within a valid time range, the contact gets notified!

Notification Methods

You can have Shinken notify you of problems and recoveries pretty much anyway you want: pager, cellphone, email, instant message, audio alert, electric shocker, etc. How notifications are sent depends on the notification commands that are defined in your object definition files.

If you install Shinken according to the quickstart guide, it should be configured to send email notifications. You can see the email notification commands that are used by viewing the contents of the following file: “/usr/local/shinken/etc/objects/commands.cfg”.

Specific notification methods (paging, etc.) are not directly incorporated into the Shinken code as it just doesn’t make much sense. The “core” of Shinken is not designed to be an all-in-one application. If service checks were embedded in Shinken’s core it would be very difficult for users to add new check methods, modify existing checks, etc. Notifications work in a similiar manner. There are a thousand different ways to do notifications and there are already a lot of packages out there that handle the dirty work, so why re-invent the wheel and limit yourself to a bike tire? Its much easier to let an external entity (i.e. a simple script or a full-blown messaging system) do the messy stuff. Some messaging packages that can handle notifications for pagers and cellphones are listed below in the resource section.

Notification Type Macro

When crafting your notification commands, you need to take into account what type of notification is occurring. The $NOTIFICATIONTYPE$ macro contains a string that identifies exactly that. The table below lists the possible values for the macro and their respective descriptions:

	Value
	Description

	PROBLEM
	A service or host has just entered (or is still in) a problem state. If this is a service notification, it means the service is either in a WARNING, UNKNOWN or CRITICAL state. If this is a host notification, it means the host is in a DOWN or UNREACHABLE state.

	RECOVERY
	A service or host recovery has occurred. If this is a service notification, it means the service has just returned to an OK state. If it is a host notification, it means the host has just returned to an UP state.

	ACKNOWLEDGEMENT
	This notification is an acknowledgement notification for a host or service problem. Acknowledgement notifications are initiated via the web interface by contacts for the particular host or service.

	FLAPPINGSTART
	The host or service has just started flapping.

	FLAPPINGSTOP
	The host or service has just stopped flapping.

	FLAPPINGDISABLED
	The host or service has just stopped flapping because flap detection was disabled..

	DOWNTIMESTART
	The host or service has just entered a period of scheduled downtime. Future notifications will be supressed.

	DOWNTIMESTOP
	The host or service has just exited from a period of scheduled downtime. Notifications about problems can now resume.

	DOWNTIMECANCELLED
	The period of scheduled downtime for the host or service was just cancelled. Notifications about problems can now resume.

Helpful Resources

There are many ways you could configure Shinken to send notifications out. Its up to you to decide which method(s) you want to use. Once you do that you’ll have to install any necessary software and configure notification commands in your config files before you can use them. Here are just a few possible notification methods:

	Email

	Pager

	Phone (SMS)

	WinPopup message

	Yahoo, ICQ, or MSN instant message

	Audio alerts

	etc...

Basically anything you can do from a command line can be tailored for use as a notification command.

If you’re looking for an alternative to using email for sending messages to your pager or cellphone, check out these packages. They could be used in conjunction with Shinken to send out a notification via a modem when a problem arises. That way you don’t have to rely on email to send notifications out (remember, email may not work if there are network problems). I haven’t actually tried these packages myself, but others have reported success using them...

	Gnokii [http://www.gnokii.org/] (SMS software for contacting Nokia phones via GSM network)

	QuickPage [http://www.qpage.org/] (alphanumeric pager software)

	Sendpage [http://www.sendpage.org/] (paging software)

If you want to try out a non-traditional method of notification, you might want to mess around with audio alerts. If you want to have audio alerts played on the monitoring server (with synthesized speech), check out Festival [http://www.cstr.ed.ac.uk/projects/festival/]. If you’d rather leave the monitoring box alone and have audio alerts played on another box, check out the Network Audio System (NAS) [http://radscan.com/nas] and rplay [http://rplay.doit.org/] projects.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Active data acquisition modules

Overview

An integrated acquisition module is an optional piece of software that is launched by a Shinken daemon. The module is responsible for doing data acquisition using a specific protocol in a very high performance method. This is preferred over repeatedly calling plugin scripts.

[image: ../_images/poller_daemon_module.png]

SNMP data acquisition module

Shinken provides an integrated SNMP data acquisition module: SnmpBooster

	What is the SnmpBooster module

	Install and configure the SNMP acquisition module.

	Reference - SnmpBooster troubleshooting

	Reference - SnmpBooster Design specification

	Reference - SnmpBooster configuration dictionnary

NRPE data acquisition module

Shinken provides an integrated NRPE data acquisition module. NRPE is a protocol used to communicate with agents installed on remote hosts. It is implemented in the poller daemon to transparently execute NRPE data acquisition. It reads the check command and opens the connection itself. This provides a big performance boost for launching check_nrpe based checks.

The command definitions are identical to the check_nrpe calls.

	Install and configure the NRPE acquisition module.

Notes on community Packs

Community provided monitoring packs may use the integrated acquisition modules.

Community provided plugins are complimentary to the integrated acquisition modules.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

 Setup Network and logical dependencies in Shinken

Network dependencies

What are network dependencies ?

If you’ve ever worked in tech support, you’ve undoubtedly had users tell you “the Internet is down”. As a techie, you’re pretty sure that no one pulled the power cord from the Internet. Something must be going wrong somewhere between the user’s chair and the Internet.

Assuming its a technical problem, you begin to search for the root problem. Perhaps the user’s computer is turned off, maybe their network cable is unplugged, or perhaps your organization’s core router just took a dive. Whatever the problem might be, one thing is most certain - the Internet isn’t down. It just happens to be unreachable for that user.

Shinken is able to determine whether the hosts you’re monitoring are in a DOWN or UNREACHABLE state. To do this simply define a check_command for your host. These are very different (although related) states and can help you quickly determine the root cause of network problems. Such dependencies are also possible for applications problems, like your web app is not available because your database is down.

Example Network

Take a look at the simple network diagram below. For this example, lets assume you’re monitoring all the hosts (server, routers, switches, etc) that are pictured by defining a check_command for each host. Shinken is installed and running on the Shinken host.
If you have not defined a check_command for your host, Shinken will assume that the host is always UP. Meaning that the logic described will NOT kick-in.

[image: ../_images/reachability1.png]

Defining Parent/Child Relationships

The network dependencies will be named “parent/child” relationship. The parent is the switch for example, and the child will be the server.

In order for Shinken to be able to distinguish between DOWN and UNREACHABLE states for the hosts that are being monitored, you’ll first need to tell Shinken how those hosts are connected to each other - from the standpoint of the Shinken daemon. To do this, trace the path that a data packet would take from the Shinken daemon to each individual host. Each switch, router, and server the packet encounters or passes through is considered a “hop” and will require that you define a parent/child host relationship in Shinken. Here’s what the host parent/child relationships looks like from the viewpoint of Shinken:

[image: ../_images/reachability2.png]
Now that you know what the parent/child relationships look like for hosts that are being monitored, how do you configure Shinken to reflect them? The parents directive in your host definitions allows you to do this. Here’s what the (abbreviated) host definitions with parent/child relationships would look like for this example:

define host{
 host_name Shinken ; <-- The local host has no parent - it is the topmost host
}

define host{
 host_name Switch1
 parents Shinken
}

define host{
 host_name Web
 parents Switch1
}

define host{
 host_name FTP
 parents Switch1
}

define host{
 host_name Router1
 parents Switch1
}

define host{
 host_name Switch2
 parents Router1
}

define host{
 host_name Wkstn1
 parents Switch2
}

define host{
 host_name HPLJ2605
 parents Switch2
}

define host{
 host_name Router2
 parents Router1
}

define host{
 host_name somewebsite.com
 parents Router2
}

So basicaly: in your “child”, you declare who is your parent(s).

Reachability Logic in Action

Now that you’re configured Shinken with the proper parent/child relationships for your hosts, let’s see what happen when problems arise. Assume that two hosts - Web and Router1 - go offline...

[image: ../_images/reachability3.png]
When hosts change state (i.e. from UP to DOWN), the host reachability logic in Shinken kicks in. The reachability logic will initiate parallel checks of the parents and children of whatever hosts change state. This allows Shinken to quickly determine the current status of your network infrastructure when changes occur. During this additonal check time, the notification for the web and router1 hosts are blocked because we don’t know yet WHO is the root problem.

[image: ../_images/reachability4.png]
In this example, Shinken will determine that Web and Router1 are both in DOWN states because the “path” to those hosts is not being blocked (switch1 is still alive), and so it will allow web and router1 notifications to be sent.

Shinken will determine that all the hosts “beneath” Router1 are all in an UNREACHABLE state because Shinken can’t reach them. Router1 is DOWN and is blocking the path to those other hosts. Those hosts might be running fine, or they might be offline - Shinken doesn’t know because it can’t reach them. Hence Shinken considers them to be UNREACHABLE instead of DOWN, and won’t send notifications about them. Such hosts and services beneath router1 are the impacts of the root problem “router1”

What about more than one parent for an host?

You see that there is a ‘s’ in parents. Because you can define as many parent as you want for an host (like if you got an active/passive switch setup). The host will be UNREACHABLE only, and only if all it’s parents are down or unreachable. If one is still alive, it will be down. See this as a big OR rule.

UNREACHABLE States and Notifications

One important point to remember is Shinken only notifies about root problems. If we allow it to notify for root problems AND impacts you will receive too many notifications to quickly find and solve the root problems. That’s why Shinken will notify contacts about DOWN hosts, but not for UNREACHABLE ones.

What about notification about services of a down or unreachable hosts?

You will not be notified about all critical or warning errors on a down or unreachable host, because such service states are the impacts of the host root problem. You don’t have to configure anything, Shinken will suppress these useless notifications automatically. The official documentation provides more information on how notifications work.

Logical dependencies

Network is not the only element that can have problems. Applications can too.

Service and host dependencies are an advanced feature of Shinken that allows you to control the behavior of hosts and services based on the status of one or more other hosts or services. This section explains how dependencies work, along with the differences between host and service dependencies.

Let’s starts with service dependencies. We can take the sample of a Web application service that will depend upon a database service. If the database is failed, it’s useless to notify about the web application one, because you already know it’s failed. So Shinken will notify you about your root problem, the database failed, and not about all its impacts, here your web application.

With only useful notifications, you will be able to find and fix them quickly and not take one hour to find the root problem in your mails.

Service Dependencies Overview

There are a few things you should know about service dependencies:

	A service can be dependent on one or more other services

	A service can be dependent on services which are not associated with the same host

	Advanced service dependencies can be used to cause service check execution and service notifications to be suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL states)

	Advanced service dependencies might only be valid during specific timeperiods

Defining simple advanced dependencies

Define a service dependency is quite easy in fact. All you need is to define in your Web application service that it is dependent upon the database service.

define service{
 host_name srv-web
 service_description Http
 service_dependencies srv-db,mysql
}

So here the web service Http on the host srv-web will depend upon the database service mysql on the host srv-db. If the mysql service has failed, there will be no notifications for service srv-web. If Shinken gets an error state check on the Http service, it will raised a mysql check and suppress the http notification until it knows if the Http service is a root problem or an impact.

Dependencies inheritance

By default, service dependencies are inherited. Let take an example where the mysql service depend upon a nfs service.

define service{
 host_name srv-bd
 service_description mysql
 service_dependencies srv-file,nfs,srv-dns,dns
}

If Shinken find a problem on Http, it will raise a check on mysql. If this one got a problem too, it will raise a check on the nfs service and srv-dns dns service. If one of these has got a problem too, it will be tagged as the root problem, and will raise a notification for the nfs administrator or dns administrator. If these are ok (dns and nfs), the notification will be sentfor the mysql admin.

And with the host down/unreachable logic?

The dependency logic is done in parallel to the network one. If one logic say it’s an impact, then it will tag the problem state as an impact. For example, if the srv-db is down a warning/critical alert on the Http service will be set as an impact, like the mysql one, and the root problem will be the srv-bd host that will raise only one notification, a host problem.

Advanced dependencies

For timeperiod limited dependencies or for specific states activation (like for critical states but not warning), please consult the advanced dependencies documentation.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	The Basics

Update Shinken

	grab the latest shinken archive and extract its content

	cd into the resulting folder

	backup shinken configuration plugins and addons and copy the backup id:

./install -b</code>

Warning

Be careful with your add-ons...Actually Shinken’s install script does NOT backs up all add-on configuration files...Take a look at saved files (usually at /opt/backup/bck-shinken.YYYYMMDDhhmmss.tar.gz, need uncompress before search) and check what is and what is not saved before remove. Install script can be easyly improved by adding few lines for other folders at functions “backup” and “restore”, see NAGVIS or PNP examples
- remove shinken (if you installed addons with the installer say no to the question about removing the addons): <code>./install -u
- install the new version:

./install -i</code>
- restore the backup: <code>./install -r backupid

Important

It’s recommended to pull stable version from git. Current master version may be not safe. Please use tagged release.
List (not full) of git tags : 1.0rc1, 1.2rc2

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Advanced Topics

	External Commands
	Introduction

	Enabling External Commands

	When Does Shinken Check For External Commands?

	Using External Commands

	Command Format

	Event Handlers
	Introduction

	When Are Event Handlers Executed?

	Event Handler Types

	Enabling Event Handlers

	Event Handler Execution Order

	Writing Event Handler Commands

	Permissions For Event Handler Commands

	Service Event Handler Example

	Volatile Services
	Introduction

	What Are They Useful For?

	What’s So Special About Volatile Services?

	The Power Of Two
	Shinken Configuration

	PortSentry Configuration

	Port Scan Script

	Service and Host Freshness Checks
	Introduction

	How Does Freshness Checking Work?

	Enabling Freshness Checking

	Example

	Distributed Monitoring
	Introduction

	Goals

	The global architecture

	Shinken Daemon roles

	The smart and automatic load balancing
	Creating independent packs

	The packs aggregations into scheduler configurations

	The configurations sending to satellites

	The high availability
	When a node dies

	External commands dispatching

	Different types of Pollers: poller_tag
	Use cases

	Different types of Reactionners: reactionner_tag

	Advanced architectures: Realms
	Realms in few words

	Realms are not poller_tags!

	Sub realms

	Example of realm usage

	Redundant and Failover Network Monitoring
	Introduction

	Detection and Handling of State Flapping
	Introduction

	How Flap Detection Works

	Example

	Flap Detection for Services

	Flap Detection for Hosts

	Flap Detection Thresholds

	States Used For Flap Detection

	Flap Handling

	Enabling Flap Detection

	Notification Escalations
	Introduction

	When Are Notifications Escalated?

	Contact Groups

	Overlapping Escalation Ranges

	Recovery Notifications

	Notification Intervals

	Escalations based on time

	Escalations based on time short time

	Time Period Restrictions

	State Restrictions

	On-Call Rotations
	Introduction

	Scenario 1: Holidays and Weekends

	Scenario 2: Alternating Days

	Scenario 3: Alternating Weeks

	Scenario 4: Vacation Days

	Other Scenarios

	Monitoring Service and Host Clusters
	Introduction

	Host and Service Dependencies
	Introduction

	Service Dependencies Overview

	Defining Service Dependencies

	Example Service Dependencies

	How Service Dependencies Are Tested

	Execution Dependencies

	Notification Dependencies

	Dependency Inheritance

	Host Dependencies

	Example Host Dependencies

	State Stalking
	Introduction

	How Does It Work?

	Should I Enable Stalking?

	How Do I Enable Stalking?

	How Does Stalking Differ From Volatile Services?

	Caveats

	Performance Data
	Introduction

	Types of Performance Data

	Plugin Performance Data

	Processing Performance Data

	Processing Performance Data Using Commands

	Writing Performance Data To Files

	Scheduled Downtime
	Introduction

	Scheduling Downtime

	Fixed vs. Flexible Downtime

	Triggered Downtime

	How Scheduled Downtime Affects Notifications

	Overlapping Scheduled Downtime

	Adaptive Monitoring
	Introduction

	What Can Be Changed?

	External Commands For Adaptive Monitoring

	Predictive Dependency Checks
	Introduction

	How Do Predictive Checks Work?

	Enabling Predictive Checks

	Cached Checks

	Cached Checks
	Introduction

	For On-Demand Checks Only

	How Caching Works

	What This Really Means

	Configuration Variables

	Optimizing Cache Effectiveness

	Passive Host State Translation
	Introduction

	Service and Host Check Scheduling
	The scheduling

	Object Inheritance
	Introduction

	Basics

	Local Variables vs. Inherited Variables

	Inheritance Chaining

	Using Incomplete Object Definitions as Templates

	Custom Object Variables

	Cancelling Inheritance of String Values

	Additive Inheritance of String Values

	Implied Inheritance

	Implied/Additive Inheritance in Escalations

	Multiple Inheritance Sources

	Precedence With Multiple Inheritance Sources

	Advanced tricks
	Time-Saving Tricks For Object Definitions

	Introduction

	Service Definitions
	Multiple Hosts:

	All Hosts In Multiple Hostgroups:

	All Hosts:

	Excluding Hosts:

	Service Escalation Definitions
	Multiple Hosts:

	All Hosts In Multiple Hostgroups:

	All Hosts:

	Excluding Hosts:

	All Services On Same Host:

	Multiple Services On Same Host:

	All Services In Multiple Servicegroups:

	Service Dependency Definitions
	Multiple Hosts:

	All Hosts In Multiple Hostgroups:

	All Services On A Host:

	Multiple Services On A Host:

	All Services In Multiple Servicegroups:

	Same Host Dependencies:

	Host Escalation Definitions
	Multiple Hosts:

	All Hosts In Multiple Hostgroups:

	All Hosts:

	Excluding Hosts:

	Host Dependency Definitions
	Multiple Hosts:

	All Hosts In Multiple Hostgroups:

	Hostgroups
	All Hosts:

	Business rules
	View your infrastructure from a business perspective

	How to define Business Rules?

	With “need at least X elements” clusters

	The NOT rule

	Manage degraded status
	Sample 1

	Sample 2

	Sample 3

	Sample 4

	Sample 5

	Sample 6

	Classic cases

	Migrating from Nagios to Shinken
	How to to import existing Nagios states

	How to to import Nagios reporting data

	Multi layer discovery
	Runners available
	Filesystems
	Pre-requisites

	How it works:

	Macros mode.

	Tag mode

	Cluster
	Pre-requisites

	How it works

	Multiple action urls

	Aggregation rule
	Goal

	Sample 1

	version 2 (tag based agregation)

	Scaling Shinken for large deployments
	Planning your deployment
	How scalable is Shinken

	Passive versus Active

	Scaling the data acquisition

	Scaling the broker

	Web Interface

	Dependancy model

	Scaling the acquisition daemons

	Active acquisition methods
	Scaling SNMP acquisition

	Scaling NRPE acquisition

	Passive acquisition methods
	Scaling metric acquisition

	Log management methods

	SLA reporting methods

	Practical optimization tips

	Defining advanced service dependencies
	Example Service Dependencies

	How Service Dependencies Are Tested

	Execution Dependencies

	Notification Dependencies

	Dependency Inheritance

	Host Dependencies

	Example Host Dependencies

	Shinken’s distributed architecture
	Shinken’s distributed architecture for load balancing

	Setup a load balancing architecture with some pollers
	Install the poller on the new server

	Declare the new poller on the main configuration file

	Shinken’s distributed architecture with realms
	Multi customers and/or sites: REALMS

	Sub-realms

	An example

	Picture example

	Configuration of the realms

	Multi levels brokers

	Macro modulations
	How macros modulations works

	How to define a macro_modulation

	Shinken and Android
	Sending SMS
	Install Python on your phone

	Install the Pyro lib on your phone

	Install Shinken on your phone

	Time to launch the Shinken app on the phone

	Declare this daemon in the central configuration

	Add SMS notification ways

	Add SMS to your contacts

	Receive SMS: acknowledge with a SMS
	Pre-requite

	How to send ACK from SMS?

	Send sms by gateway
	1. you need to go to your contact.cfg who is for linux in /usr/local/shinken/etc/contacts.cfg

	2. you need to go to your commands.cfg who is in /usr/local/shinken/etc/commands.cfg

	3. Add the script

	4. Test It

	Triggers
	Simple rule

	Rule with an OR

	Advanced correlation: active/passive cluster check

	Statefull rules

	Compute KPI

	Define and use triggers

	Unused nagios parameters
	External Command Check Interval (Unused)

	External Command Buffer Slots (Not implemented)

	Use Retained Program State Option (Not implemented)

	Use Retained Scheduling Info Option (Not implemented)

	Retained Host and Service Attribute Masks (Not implemented)

	Retained Process Attribute Masks (Not implemented)

	Retained Contact Attribute Masks (Not implemented)

	Service Inter-Check Delay Method (Unused)

	Inter-Check Sleep Time (Unused)

	Service Interleave Factor (Unused)

	Maximum Concurrent Service Checks (Unused)

	Check Result Reaper Frequency (Unused)

	Maximum Check Result Reaper Time

	Check Result Path (Unused)

	Max Check Result File Age (Unused)

	Host Inter-Check Delay Method (Unused)

	Auto-Rescheduling Option (Not implemented)

	Auto-Rescheduling Interval (Not implemented)

	Auto-Rescheduling Window (Not implemented)

	Aggressive Host Checking Option (Unused)

	Translate Passive Host Checks Option (Not implemented)

	Child Process Memory Option (Unused)

	Child Processes Fork Twice (Unused)

	Event Broker Options (Unused)

	Event Broker Modules (Unused)

	Debug File (Unused)

	Debug Level (Unused)

	Debug Verbosity (Unused)

	Maximum Debug File Size (Unused)

	Advanced discovery with Shinken
	How the discovery script works

	Discovery scripts

	Discovery rules
	Host rule

	Service rule

	The ! (not) key

	Add something instead of replace

	Delete something after add

	Discovery with Shinken
	Simple use of the discovery tool
	Setup nmap discovery

	Setup the VMware part

	Launch it!

	Restart Shinken

	More about discovery

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

External Commands

Introduction

Shinken can process commands from external applications (including the CGIs and others UIs) and alter various aspects of its monitoring functions based on the commands it receives. External applications can submit commands by writing to the command file, which is periodically processed by the Nagios daemon.

Enabling External Commands

[image: ../_images/externalcommands.png]
In order to have Shinken process external commands, make sure you do the following:

	Enable external command checking with the check_external_commands option.

	Specify the location of the command file with the command_file option.

	Setup proper permissions on the directory containing the external command file, as described in the quickstart guide.

When Does Shinken Check For External Commands?

In fact every loop it look at it and reap all it can have in the pipe.

Using External Commands

External commands can be used to accomplish a variety of things while Shinken is running. Example of what can be done include temporarily disabling notifications for services and hosts, temporarily disabling service checks, forcing immediate service checks, adding comments to hosts and services, etc.

Command Format

External commands that are written to the command file have the following format...

[time] command_id;command_arguments

...where time is the time (in “time_t” format) that the external application submitted the external command to the command file. The values for the “command_id” and “command_arguments” arguments will depend on what command is being submitted to Shinken.

A full listing of external commands that can be used (along with examples of how to use them) can be found online at the following URL:

http://www.nagios.org/developerinfo/externalcommands/

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Event Handlers

Introduction

An obvious use for event handlers is the ability for Shinken to proactively fix problems before anyone is notified. Some other uses for event handlers include:

	Restarting a failed service

	Entering a trouble ticket into a helpdesk system

	Logging event information to a database

	Cycling power on a host*

	etc.

Cycling power on a host that is experiencing problems with an automated script should not be implemented lightly. Consider the consequences of this carefully before implementing automatic reboots. :-)

When Are Event Handlers Executed?

Event handlers are executed when a service or host:

	Is in a SOFT problem state

	Initially goes into a HARD problem state

	Initially recovers from a SOFT or HARD problem state

SOFT and HARD states are described in detail here .

Event Handler Types

There are different types of optional event handlers that you can define to handle host and state changes:

	Global host event handler

	Global service event handler

	Host-specific event handlers

	Service-specific event handlers

Global host and service event handlers are run for every host or service state change that occurs, immediately prior to any host- or service-specific event handler that may be run.

Event handlers offer functionality similar to notifications (launch some command) but are called each state change, soft or hard. This allows to call handler function and react to problems before Shinken raises a hard state and starts sending out notifications.

You can specify global event handler commands by using the global_host_event_handler and global_service_event_handler options in your main configuration file.

Individual hosts and services can have their own event handler command that should be run to handle state changes. You can specify an event handler that should be run by using the “event_handler” directive in your host and service definitions. These host- and service-specific event handlers are executed immediately after the (optional) global host or service event handler is executed.

Important

Global event handlers are currently not launched as of April 2013: https://github.com/naparuba/shinken/issues/717

Enabling Event Handlers

Event handlers can be enabled or disabled on a program-wide basis by using the enable_event_handlers in your main configuration file.

Host- and service-specific event handlers can be enabled or disabled by using the “event_handler_enabled” directive in your host and service definitions. Host- and service-specific event handlers will not be executed if the global enable_event_handlers option is disabled.

Event Handler Execution Order

As already mentioned, global host and service event handlers are executed immediately before host- or service-specific event handlers.

Event handlers are executed for HARD problem and recovery states immediately after notifications are sent out.

Writing Event Handler Commands

Event handler commands will likely be shell or perl scripts, but they can be any type of executable that can run from a command prompt. At a minimum, the scripts should take the following macros as arguments:

For Services: $SERVICESTATE$, $SERVICESTATETYPE$, $SERVICEATTEMPT$

For Hosts: $HOSTSTATE$, $HOSTSTATETYPE$, $HOSTATTEMPT$

The scripts should examine the values of the arguments passed to it and take any necessary action based upon those values. The best way to understand how event
handlers work is to see an example. Lucky for you, one is provided below.

Additional sample event handler scripts can be found in the “contrib/eventhandlers/” subdirectory of the Nagios distribution. Some of these sample scripts demonstrate the use of external commands to implement a redundant and distributed monitoring environments.

Permissions For Event Handler Commands

Event handler commands will normally execute with the same permissions as the user under which Shinken is running on your machine. This can present a problem if you want to write an event handler that restarts system services, as root privileges are generally required to do these sorts of tasks.

Ideally you should evaluate the types of event handlers you will be implementing and grant just enough permissions to the Shinken user for executing the necessary system commands. You might want to try using sudo [http://www.courtesan.com/sudo/sudo] to accomplish this.

Service Event Handler Example

The example below assumes that you are monitoring the “HTTP” server on the local machine and have specified restart-httpd as the event handler command for the “HTTP” service definition. Also, I will be assuming that you have set the “max_check_attempts” option for the service to be a value of 4 or greater (i.e. the service is checked 4 times before it is considered to have a real problem). An abbreviated example service definition might look like this...

define service{
 host_name somehost
 service_description HTTP
 max_check_attempts 4
 event_handler restart-httpd
 ...
}

Once the service has been defined with an event handler, we must define that event handler as a command. An example command definition for restart-httpd is shown below. Notice the macros in the command line that I am passing to the event handler script - these are important!

define command{
 command_name restart-httpd
 command_line /usr/local/nagios/libexec/eventhandlers/restart-httpd $SERVICESTATE$ $SERVICESTATETYPE$ $SERVICEATTEMPT$
}

Now, let’s actually write the event handler script (this is the “/usr/local/nagios/libexec/eventhandlers/restart-httpd” script).

#!/bin/sh
#
Event handler script for restarting the web server on the local machine
#
Note: This script will only restart the web server if the service is
retried 3 times (in a "soft" state) or if the web service somehow
manages to fall into a "hard" error state.
#
What state is the HTTP service in?
case "$1" in
OK)
 # The service just came back up, so don't do anything...
 ;;
WARNING)
 # We don't really care about warning states, since the service is probably still running...
 ;;
UNKNOWN)
 # We don't know what might be causing an unknown error, so don't do anything...
 ;;
CRITICAL)
 # Aha! The HTTP service appears to have a problem - perhaps we should restart the server...
 # Is this a "soft" or a "hard" state?
 case "$2" in

 # We're in a "soft" state, meaning that Nagios is in the middle of retrying the
 # check before it turns into a "hard" state and contacts get notified...
 SOFT)

 # What check attempt are we on? We don't want to restart the web server on the first
 # check, because it may just be a fluke!
 case "$3" in

 # Wait until the check has been tried 3 times before restarting the web server.
 # If the check fails on the 4th time (after we restart the web server), the state
 # type will turn to "hard" and contacts will be notified of the problem.
 # Hopefully this will restart the web server successfully, so the 4th check will
 # result in a "soft" recovery. If that happens no one gets notified because we
 # fixed the problem!
 3)
 echo -n "Restarting HTTP service (3rd soft critical state)..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;

 # The HTTP service somehow managed to turn into a hard error without getting fixed.
 # It should have been restarted by the code above, but for some reason it didn't.
 # Let's give it one last try, shall we?
 # Note: Contacts have already been notified of a problem with the service at this
 # point (unless you disabled notifications for this service)
 HARD)
 echo -n "Restarting HTTP service..."
 # Call the init script to restart the HTTPD server
 /etc/rc.d/init.d/httpd restart
 ;;
 esac
 ;;
 esac
exit 0

The sample script provided above will attempt to restart the web server on the local machine in two different instances:

	After the service has been rechecked for the 3rd time and is in a SOFT CRITICAL state

	After the service first goes into a HARD CRITICAL state

The script should theoretically restart and web server and fix the problem before the service goes into a HARD problem state, but we include a fallback case in the event it doesn’t work the first time. It should be noted that the event handler will only be executed the first time that the service falls into a HARD problem state. This prevents Shinken from continuously executing the script to restart the web server if the service remains in a HARD problem state. You don’t want that. :-)

That’s all there is to it! Event handlers are pretty simple to write and implement, so give it a try and see what you can do.

	Note: you may need to:

	
	disable event handlers during downtimes (either by setting no_event_handlers_during_downtimes=1, or by checking $HOSTDOWNTIME$ and $SERVICEDOWNTIME$)

	make sure you want event handlers to be run even outside of the notification_period

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Volatile Services

Introduction

Shinken has the ability to distinguish between “normal” services and “volatile” services. The is_volatile option in each service definition allows you to specify whether a specific service is volatile or not. For most people, the majority of all monitored services will be non-volatile (i.e. “normal”). However, volatile services can be very useful when used properly...

What Are They Useful For?

Volatile services are useful for monitoring...

	Things that automatically reset themselves to an “OK” state each time they are checked

	Events such as security alerts which require attention every time there is a problem (and not just the first time)

What’s So Special About Volatile Services?

Volatile services differ from “normal” services in three important ways. Each time they are checked when they are in a hard non-OK state, and the check returns a non-OK state (i.e. no state change has occurred)...

	The non-OK service state is logged

	Contacts are notified about the problem (if that’s what should be done).Notification intervals are ignored for volatile services.

	The event handler for the service is run (if one has been defined)

These events normally only occur for services when they are in a non-OK state and a hard state change has just occurred. In other words, they only happen the first time that a service goes into a non-OK state. If future checks of the service result in the same non-OK state, no hard state change occurs and none of the events mentioned take place again.

Tip

If you are only interested in logging, consider using stalking options instead.

The Power Of Two

	Shinken Configuration

	PortSentry Configuration

	Port Scan Script

If you combine the features of volatile services and passive service checks, you can do some very useful things. Examples of this include handling “SNMP” traps, security alerts, etc.

How about an example... Let’s say you’re running PortSentry [http://sourceforge.net/projects/sentrytools/] to detect port scans on your machine and automatically firewall potential intruders. If you want to let Shinken know about port scans, you could do the following...

Shinken Configuration

	Create a service definition called Port Scans and associate it with the host that PortSentry is running on.

	Set the “max_check_attempts” directive in the service definition to 1. This will tell Shinken to immediate force the service into a hard state when a non-OK state is reported.

	Set the “active_checks_enabled” directive in the service definition to 0. This prevents Shinken from actively checking the service.

	Set the “passive_checks_enabled” directive in the service definition to 1. This enables passive checks for the service.

	Set this “is_volatile” directive in the service definition to 1.

PortSentry Configuration

Edit your PortSentry configuration file (“portsentry.conf”) and define a command for the KILL_RUN_CMD directive as follows:

KILL_RUN_CMD="/usr/local/Shinken/libexec/eventhandlers/submit_check_result *"host_name"* 'Port Scans' 2 'Port scan from host $TARGET$ on port $PORT$. Host has been firewalled.'"

Make sure to replace host_name with the short name of the host that the service is associated with.

Port Scan Script

Create a shell script in the “/usr/local/shinken/libexec/eventhandlers” directory named submit_check_result. The contents of the shell script should be something similiar to the following...

#!/bin/sh

Write a command to the Shinken command file to cause
it to process a service check result

echocmd="/bin/echo"

CommandFile="/usr/local/shinken/var/rw/shinken.cmd"

get the current date/time in seconds since UNIX epoch
datetime=`date +%s`

create the command line to add to the command file
cmdline="[$datetime] PROCESS_SERVICE_CHECK_RESULT;$1;$2;$3;$4"

append the command to the end of the command file
`$echocmd $cmdline >> $CommandFile`

What will happen when PortSentry detects a port scan on the machine in the future?

	PortSentry will firewall the host (this is a function of the PortSentry software)

	PortSentry will execute the submit_check_result shell script and send a passive check result to Shinken

	Shinken will read the external command file and see the passive service check submitted by PortSentry

	Shinken will put the Port Scans service in a hard CRITICAL state and send notifications to contacts

Pretty neat, huh?

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Service and Host Freshness Checks

Introduction

Shinken supports a feature that does “freshness” checking on the results of host and service checks. The purpose of freshness checking is to ensure that host and service checks are being provided passively by external applications on a regular basis.

Freshness checking is useful when you want to ensure that passive checks are being received as frequently as you want. This can be very useful in distributed and failover monitoring environments.

How Does Freshness Checking Work?

An active check is executed even if active checks are disabled on a program-wide or host- or service-specific basis.

For example, if you have a freshness threshold of 60 for one of your services, Shinken will consider that service to be stale if its last check result is older than 60 seconds.

Enabling Freshness Checking

Here’s what you need to do to enable freshness checking...

	Enable freshness checking on a program-wide basis with the check_service_freshness and check_host_freshness directives.

	Use service_freshness_check_interval and host_freshness_check_interval options to tell Shinken how often it should check the freshness of service and host results.

	Enable freshness checking on a host- and service-specific basis by setting the “check_freshness” option in your host and service definitions to a value of 1.

	Configure freshness thresholds by setting the “freshness_threshold” option in your host and service definitions.

	Configure the “check_command” option in your host or service definitions to reflect a valid command that should be used to actively check the host or service when it is detected as stale.

	The “check_period” option in your host and service definitions is used when Shinken determines when a host or service can be checked for freshness, so make sure it is set to a valid timeperiod.

If you do not specify a host- or service-specific “freshness_threshold” value (or you set it to zero), Shinken will automatically calculate a threshold automatically, based on a how often you monitor that particular host or service. I would recommended that you explicitly specify a freshness threshold, rather than let Shinken pick one for you.

Example

An example of a service that might require freshness checking might be one that reports the status of your nightly backup jobs. Perhaps you have a external script that submit the results of the backup job to Shinken once the backup is completed. In this case, all of the checks/results for the service are provided by an external application using passive checks. In order to ensure that the status of the backup job gets reported every day, you may want to enable freshness checking for the service. If the external script doesn’t submit the results of the backup job, you can have Shinken fake a critical result by doing something like this...

Here’s what the definition for the service might look like (some required options are omitted)...

define service{
 host_name backup-server
 service_description ArcServe Backup Job
 active_checks_enabled 0 ; active checks are NOT enabled
 passive_checks_enabled 1 ; passive checks are enabled (this is how results are reported)
 check_freshness 1
 freshness_threshold 93600 ; 26 hour threshold, since backups may not always finish at the same time
 check_command no-backup-report ; this command is run only if the service results are “stale"
 ...other options...
 }

Notice that active checks are disabled for the service. This is because the results for the service are only made by an external application using passive checks. Freshness checking is enabled and the freshness threshold has been set to 26 hours. This is a bit longer than 24 hours because backup jobs sometimes run late from day to day (depending on how much data there is to backup, how much network traffic is present, etc.). The “no-backup-report” command is executed only if the results of the service are determined to be stale. The definition of the “no-backup-report” command might look like this...

define command{
 command_name no-backup-report
 command_line /usr/local/shinken/libexec/check_dummy 2 "CRITICAL: Results of backup job were not reported!"
 }

If Shinken detects that the service results are stale, it will run the “no-backup-report” command as an active service check. This causes the check_dummy plugin to be executed, which returns a critical state to Shinken. The service will then go into to a critical state (if it isn’t already there) and someone will probably get notified of the problem.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Distributed Monitoring

Introduction

Shinken can be configured to support distributed monitoring of network services and resources. Shinken is designed for it in contrast to the Nagios way of doing it: which is more of a “MacGyver” way.

Goals

The goal in the distributed monitoring environment is to offload the overhead (CPU usage, etc.) of performing and receiving service checks from a “central” server onto one or more “distributed” servers. Most small to medium sized shops will not have a real need for setting up such an environment. However, when you want to start monitoring thousands of hosts (and several times that many services) using Shinken, this becomes quite important.

The global architecture

Shinken”s architecture has been designed according to the Unix Way: one tool, one task. Shinken has an architecture where each part is isolated and connects to the others via standard interfaces. Shinken is based on the Python Pyro remote objects library. Which makes building a highly available or distributed monitoring architecture quite easy. In contrast, the Nagios daemon does nearly everything: it loads the configuration, schedules and launches checks, and raises notifications.

	Major innovations of Shinken over Nagios are to :

	
	split the different roles into separate daemons

	permit the use of modules to extend and enrich the various Shinken daemons

Shinken core uses distributed programming, meaning a daemon will often do remote invocations of code on other daemons, this means that to ensure maximum compatibility and stability, the core language, paths and module versions must be the same everywhere a daemon is running.

Shinken Daemon roles

	Arbiter: The arbiter daemon reads the configuration, divides it into parts (N schedulers = N parts), and distributes them to the appropriate Shinken daemons. Additionally, it manages the high availability features: if a particular daemon dies, it re-routes the configuration managed by this failed daemon to the configured spare. Finally, it receives input from users (such as external commands from nagios.cmd) or passive check results and routes them to the appropriate daemon. Passive check results are forwarded to the Scheduler responsible for the check. There can only be one active arbiter with other arbiters acting as hot standby spares in the architecture.
	Modules for data collection: NSCA, TSCA, Ws_arbiter (web service)

	Modules for configuration data storage: MongoDB,

	Modules for status retention: PickleRententionArbiter

	Modules for configuration manipulation: IP_Tag, MySQLImport, GLPI, vmware autolinking and other task specific modules

	Scheduler: The scheduler daemon manages the dispatching of checks and actions to the poller and reactionner daemons respectively. The scheduler daemon is also responsible for processing the check result queue, analyzing the results, doing correlation and following up actions accordingly (if a service is down, ask for a host check). It does not launch checks or notifications. It just keeps a queue of pending checks and notifications for other daemons of the architecture (like pollers or reactionners). This permits distributing load equally across many pollers. There can be many schedulers for load-balancing or hot standby roles. Status persistence is achieved using a retention module.
	Modules for status retention: pickle, nagios, memcache, redis and MongoDB are available.

	Poller: The poller daemon launches check plugins as requested by schedulers. When the check is finished it returns the result to the schedulers. Pollers can be tagged for specialized checks (ex. Windows versus Unix, customer A versus customer B, DMZ) There can be many pollers for load-balancing or hot standby spare roles.
	Module for data acquisition: NRPE Module

	Module for data acquisition: CommandFile (Used for check_mk integration which depends on the nagios.cmd named pipe)

	Module for data acquisition: SNMPbooster [https://github.com/titilambert/shinken/blob/snmp_booster/shinken/modules/snmp_poller.py] (in development)

	Reactionner: The reactionner daemon issues notifications and launches event_handlers. This centralizes communication channels with external systems in order to simplify SMTP authorizations or RSS feed sources (only one for all hosts/services). There can be many reactionners for load-balancing and spare roles
* Module for external communications: AndroidSMS

	Broker: The broker daemon exports and manages data from schedulers. The management can is done exclusively with modules. Multiple Broker modules can be enabled simultaneously.
	Module for centralizing Shinken logs: Simple-log (flat file)

	Modules for data retention: Pickle , ToNdodb_Mysql, ToNdodb_Oracle, couchdb

	Modules for exporting data: Graphite-Perfdata, NPCDMOD(PNP4Nagios) and Syslog

	Modules for the Livestatus API - status retention and history: SQLite (default), MongoDB (experimental)

	Modules for the Shinken WebUI: GRAPHITE_UI, PNP_UI. Trending and data visualization.

	Modules for compatibility: Service-Perfdata, Host-Perfdata and Status-Dat

	Receiver (optional): The receiver daemon receives passive check data and serves as a distributed passive command buffer that will be read by the arbiter daemon. There can be many receivers for load-balancing and hot standby spare roles. The receiver can also use modules to accept data from different protocols. Anyone serious about using passive check results should use a receiver to ensure that when the arbiter is not available (when updating a configuration) all check results are buffered by the receiver and forwarded when the arbiter is back on-line.
	Module for passive data collection: NSCA, TSCA, Ws_arbiter (web service)

This architecture is fully flexible and scalable: the daemons that require more performance are the poller and the schedulers. The administrator can add as many as he wants. The broker daemon should be on a well provisioned server for larger installations, as only a single broker can be active at one time. A picture is worth a thousand words:

[image: ../_images/shinken-architecture.png]

The smart and automatic load balancing

	Creating independent packs

	The packs aggregations into scheduler configurations

	The configurations sending to satellites

Shinken is able to cut the user configuration into parts and dispatch it to the schedulers. The load balancing is done automatically: the administrator does not need to remember which host is linked with another one to create packs, Shinken does it for him.

The dispatch is a host-based one: that means that all services of a host will be in the same scheduler as this host. The major advantage of Shinken is the ability to create independent configurations: an element of a configuration will not have to call an element of another pack. That means that the administrator does not need to know all relations among elements like parents, hostdependencies or service dependencies: Shinken is able to look at these relations and put these related elements into the same packs.

This action is done in two parts:

	create independent packs of elements

	paste packs to create N configurations for the N schedulers

Creating independent packs

The cutting action is done by looking at two elements: hosts and services. Services are linked with their host so they will be in the same pack. Other relations are taken into account :

	parent relationship for hosts (like a distant server and its router)

	hostdependencies

	servicesdependencies

Shinken looks at all these relations and creates a graph with it. A graph is a relation pack. This can be illustrated by the following picture :

[image: ../_images/pack-creation.png]
In this example, we will have two packs:

	pack 1: Host-1 to host-5 and all their services

	pack 2: Host-6 to Host-8 and all their services

The packs aggregations into scheduler configurations

When all relation packs are created, the Arbiter aggregates them into N configurations if the administrator has defined N active schedulers (no spares). Packs are aggregated into configurations (it’s like “Big packs”). The dispatch looks at the weight property of schedulers: the higher weight a scheduler has, the more packs it will have. This can be shown in the folowing picture :

[image: ../_images/pack-agregation.png]

The configurations sending to satellites

When all configurations are created, the Arbiter sends them to the N active Schedulers. A Scheduler can start processing checks once it has received and loaded it’s configuration without having to wait for all schedulers to be ready(v1.2). For larger configurations, having more than one Scheduler, even on a single server is highly recommended, as they will load their configurations(new or updated) faster. The Arbiter also creates configurations for satellites (pollers, reactionners and brokers) with links to Schedulers so they know where to get jobs to do. After sending the configurations, the Arbiter begins to watch for orders from the users and is responsible for monitoring the availability of the satellites.

The high availability

	When a node dies

The shinken architecture is a high availability one. Before looking at how this works,let’s take a look at how the load balancing works if it’s now already done.

When a node dies

Nobody is perfect. A server can crash, an application too. That is why administrators have spares: they can take configurations of failing elements and reassign them. For the moment the only daemon that does not have a spare is the Arbiter, but this will be added in the future. The Arbiter regularly checks if everyone is available. If a scheduler or another satellite is dead, it sends its conf to a spare node, defined by the administrator. All satellites are informed by this change so they can get their jobs from the new element and do not try to reach the dead one. If a node was lost due to a network interruption and it comes back up, the Arbiter will notice and ask the old system to drop its configuration.
The availability parameters can be modified from the default settings when using larger configurations as the Schedulers or Brokers can become busy and delay their availability responses. The timers are aggressive by default for smaller installations. See shinken-specific configuration parameters for more information on the three timers involved.
This can be explained by the following picture :

[image: ../_images/pack-creation.png]

External commands dispatching

The administrator needs to send orders to the schedulers (like a new status for passive checks). In the Shinken way of thinking, the users only need to send orders to one daemon that will then dispatch them to all others. In Nagios the administrator needs to know where the hosts or services are to send the order to the right node. In Shinken the administrator just sends the order to the Arbiter, that’s all. External commands can be divided into two types :

	commands that are global to all schedulers

	commands that are specific to one element (host/service).

For each command, Shinken knows if it is global or not. If global, it just sends orders to all schedulers. For specific ones instead it searches which scheduler manages the element referred by the command (host/service) and sends the order to this scheduler. When the order is received by schedulers they just need to apply them.

Different types of Pollers: poller_tag

	Use cases

The current Shinken architecture is useful for someone that uses the same type of poller for checks. But it can be useful to have different types of pollers, like GNU/Linux ones and Windows ones. We already saw that all pollers talk to all schedulers. In fact, pollers can be “tagged” so that they will execute only some checks.

This is useful when the user needs to have hosts in the same scheduler (like with dependencies) but needs some hosts or services to be checked by specific pollers (see usage cases below).

These checks can in fact be tagged on 3 levels :

	Host

	Service

	Command

The parameter to tag a command, host or service, is “poller_tag”. If a check uses a “tagged” or “untagged” command in a untagged host/service, it takes the poller_tag of this host/service. In a “untagged” host/service, it’s the command tag that is taken into account.

The pollers can be tagged with multiple poller_tags. If they are tagged, they will only take checks that are tagged, not the untagged ones, unless they defined the tag “None”.

Use cases

This capability is useful in two cases:

	GNU/Linux and Windows pollers

	DMZ

In the first case, it can be useful to have a windows box in a domain with a poller daemon running under a domain account. If this poller launches WMI queries, the user can have an easy Windows monitoring.

The second case is a classic one: when you have a DMZ network, you need to have a dedicated poller that is in the DMZ, and return results to a scheduler in LAN. With this, you can still have dependencies between DMZ hosts and LAN hosts, and still be sure that checks are done in a DMZ-only poller.

Different types of Reactionners: reactionner_tag

	Use cases

Like for the pollers, reactionners can also have ‘tags’. So you can tag your host/service or commands with
“reactionner_tag”. If a notification or an event handler uses a “tagged” or “untagged” command in a untagged host/service, it takes the reactionner_tag of this host/service. In a “untaged” host/service, it’s the command tag that is taken into account.

The reactionners can be tagged with multiple reactionner_tags. If they are tagged, they will only take checks that are tagged, not the untagged ones, unless they defined the tag “None”.

Like for the poller case, it’s mainly useful for DMZ/LAN or GNU/Linux/Windows cases.

Advanced architectures: Realms

	Realms in few words

	Realms are not poller_tags!

	Sub realms

	Example of realm usage

Shinken’s architecture allows the administrator to have a unique point of administration with numerous schedulers, pollers, reactionners and brokers. Hosts are dispatched with their own services to schedulers and the satellites (pollers/reactionners/brokers) get jobs from them. Everyone is happy.

Or almost everyone. Think about an administrator who has a distributed architecture around the world. With the current Shinken architecture the administrator can put a couple scheduler/poller daemons in Europe and another set in Asia, but he cannot “tag” hosts in Asia to be checked by the asian scheduler . Also trying to check an asian server with an european scheduler can be very sub-optimal, read very sloooow. The hosts are dispatched to all schedulers and satellites so the administrator cannot be sure that asian hosts will be checked by the asian monitoring servers.

In the normal Shinken Architecture is useful for load balancing with high availability, for single site.

Shinken provides a way to manage different geographic or organizational sites.

We will use a generic term for this site managment, Realms.

Realms in few words

A realm is a pool of resources (scheduler, poller, reactionner and broker) that hosts or hostgroups can be attached to. A host or hostgroup can be attached to only one realm. All “dependancies” or parents of this hosts must be in the same realm. A realm can be tagged “default”’ and realm untagged hosts will be put into it. In a realm, pollers, reactionners and brokers will only get jobs from schedulers of the same realm.

Realms are not poller_tags!

	Make sure to undestand when to use realms and when to use poller_tags.

	
	realms are used to segregate schedulers

	poller_tags are used to segregate pollers

For some cases poller_tag functionality could also be done using Realms. The question you need to ask yourself: Is a poller_tag “enough”, or do you need to fully segregate a the scheduler level and use Realms. In realms, schedulers do not communicate with schedulers from other Realms.

If you just need a poller in a DMZ network, use poller_tag.

If you need a scheduler/poller in a customer LAN, use realms.

Sub realms

A realm can contain another realm. It does not change anything for schedulers: they are only responsible for hosts of their realm not the ones of the sub realms. The realm tree is useful for satellites like reactionners or brokers: they can get jobs from the schedulers of their realm, but also from schedulers of sub realms. Pollers can also get jobs from sub realms, but it’s less useful so it’s disabled by default. Warning: having more than one broker in a scheduler is not a good idea. The jobs for brokers can be taken by only one broker. For the Arbiter it does not change a thing: there is still only one Arbiter and one configuration whatever realms you have.

Example of realm usage

Let’s take a look at two distributed environnements. In the first case the administrator wants totally distinct daemons. In the second one he just wants the schedulers/pollers to be distincts, but still have one place to send notifications (reactionners) and one place for database export (broker).

Distincts realms :

[image: ../_images/shinken-architecture-isolated-realms.png]
More common usage, the global realm with reactionner/broker, and sub realms with schedulers/pollers :

[image: ../_images/shinken-architecture-global-realm.png]
Satellites can be used for their realm or sub realms too. It’s just a parameter in the configuration of the element.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Redundant and Failover Network Monitoring

Introduction

This topic is managed in the distributed section because it’s a part of the Shinken architecture.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Detection and Handling of State Flapping

Introduction

Shinken supports optional detection of hosts and services that are “flapping”. Flapping occurs when a service or host changes state too frequently, resulting in a storm of problem and recovery notifications. Flapping can be indicative of configuration problems (i.e. thresholds set too low), troublesome services, or real network problems.

How Flap Detection Works

Before I get into this, let me say that flapping detection has been a little difficult to implement. How exactly does one determine what “too frequently” means in regards to state changes for a particular host or service? When I first started thinking about implementing flap detection I tried to find some information on how flapping could/should be detected. I couldn’t find any information about what others were using (where they using any?), so I decided to settle with what seemed to me to be a reasonable solution...

Whenever Shinken checks the status of a host or service, it will check to see if it has started or stopped flapping. It does this by.

	Storing the results of the last 21 checks of the host or service

	Analyzing the historical check results and determine where state changes/transitions occur

	Using the state transitions to determine a percent state change value (a measure of change) for the host or service

	Comparing the percent state change value against low and high flapping thresholds

A host or service is determined to have started flapping when its percent state change first exceeds a high flapping threshold.

A host or service is determined to have stopped flapping when its percent state goes below a low flapping threshold (assuming that is was previously flapping).

Example

Let’s describe in more detail how flap detection works with services...

The image below shows a chronological history of service states from the most recent 21 service checks. OK states are shown in green, WARNING states in yellow, CRITICAL states in red, and UNKNOWN states in orange.

[image: ../_images/statetransitions.png]
The historical service check results are examined to determine where state changes/transitions occur. State changes occur when an archived state is different from the archived state that immediately precedes it chronologically. Since we keep the results of the last 21 service checks in the array, there is a possibility of having at most 20 state changes. The 20 value can be changed in the main configuration file, see flap_history. In this example there are 7 state changes, indicated by blue arrows in the image above.

The flap detection logic uses the state changes to determine an overall percent state change for the service. This is a measure of volatility/change for the service. Services that never change state will have a 0% state change value, while services that change state each time they’re checked will have 100% state change. Most services will have a percent state change somewhere in between.

When calculating the percent state change for the service, the flap detection algorithm will give more weight to new state changes compare to older ones. Specifically, the flap detection routines are currently designed to make the newest possible state change carry 50% more weight than the oldest possible state change. The image below shows how recent state changes are given more weight than older state changes when calculating the overall or total percent state change for a particular service.

[image: ../_images/statetransitions2.png]
Using the images above, lets do a calculation of percent state change for the service. You will notice that there are a total of 7 state changes (at t3, t4, t5, t9, t12, t16, and t19). Without any weighting of the state changes over time, this would give us a total state change of 35%:

(7 observed state changes / possible 20 state changes) * 100 = 35 %

Since the flap detection logic will give newer state changes a higher rate than older state changes, the actual calculated percent state change will be slightly less than 35% in this example. Let’s say that the weighted percent of state change turned out to be 31%...

The calculated percent state change for the service (31%) will then be compared against flapping thresholds to see what should happen:

	If the service was not previously flapping and 31% is equal to or greater than the high flap threshold, Shinken considers the service to have just started flapping.

	If the service was previously flapping and 31% is less than the low flap threshold, Shinken considers the service to have just stopped flapping.

If neither of those two conditions are met, the flap detection logic won’t do anything else with the service, since it is either not currently flapping or it is still flapping.

Flap Detection for Services

Shinken checks to see if a service is flapping whenever the service is checked (either actively or passively).

The flap detection logic for services works as described in the example above.

Flap Detection for Hosts

Host flap detection works in a similiar manner to service flap detection, with one important difference: Shinken will attempt to check to see if a host is flapping whenever:

	The host is checked (actively or passively)

	Sometimes when a service associated with that host is checked. More specifically, when at least x amount of time has passed since the flap detection was last performed, where x is equal to the average check interval of all services associated with the host.

Why is this done? With services we know that the minimum amount of time between consecutive flap detection routines is going to be equal to the service check interval. However, you might not be monitoring hosts on a regular basis, so there might not be a host check interval that can be used in the flap detection logic. Also, it makes sense that checking a service should count towards the detection of host flapping. Services are attributes of or things associated with host after all... At any rate, that’s the best method I could come up with for determining how often flap detection could be performed on a host, so there you have it.

Flap Detection Thresholds

Shinken uses several variables to determine the percent state change thresholds is uses for flap detection. For both hosts and services, there are global high and low thresholds and host- or service-specific thresholds that you can configure. Shinken will use the global thresholds for flap detection if you to not specify host- or service- specific thresholds.

The table below shows the global and host- or service-specific variables that control the various thresholds used in flap detection.

	Object Type
	Global Variables
	Object-Specific Variables

	Host
	low_host_flap_threshold high_host_flap_threshold
	low_flap_threshold high_flap_threshold

	Service
	low_service_flap_threshold high_service_flap_threshold
	low_flap_threshold high_flap_threshold

States Used For Flap Detection

Normally Shinken will track the results of the last 21 checks of a host or service, regardless of the check result (host/service state), for use in the flap detection logic.

You can exclude certain host or service states from use in flap detection logic by using the “flap_detection_options” directive in your host or service definitions. This directive allows you to specify what host or service states (i.e. “UP, “DOWN”, “OK, “CRITICAL”) you want to use for flap detection. If you don’t use this directive, all host or service states are used in flap detection.

Flap Handling

When a service or host is first detected as flapping, Shinken will:

	Log a message indicating that the service or host is flapping.

	Add a non-persistent comment to the host or service indicating that it is flapping.

	Send a “flapping start” notification for the host or service to appropriate contacts.

	Suppress other notifications for the service or host (this is one of the filters in the notification logic).

When a service or host stops flapping, Shinken will:

	Log a message indicating that the service or host has stopped flapping.

	Delete the comment that was originally added to the service or host when it started flapping.

	Send a “flapping stop” notification for the host or service to appropriate contacts.

	Remove the block on notifications for the service or host (notifications will still be bound to the normal notification logic).

Enabling Flap Detection

In order to enable the flap detection features in Shinken, you’ll need to:

	Set enable_flap_detection directive is set to 1.

	Set the “flap_detection_enabled” directive in your host and service definitions is set to 1.

If you want to disable flap detection on a global basis, set the enable_flap_detection directive to 0.

If you would like to disable flap detection for just a few hosts or services, use the “flap_detection_enabled” directive in the host and/or service definitions to do so.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Notification Escalations

Introduction

[image: ../_images/objects-contacts.png]
Shinken supports optional escalation of contact notifications for hosts and services. Escalation of host and service notifications is accomplished by defining host escalations and service escalations in your Object Configuration Overview.

The examples I provide below all make use of service escalation definitions, but host escalations work the same way. Except, of course, that they’re for hosts instead of services. :-)

When Are Notifications Escalated?

Notifications are escalated if and only if one or more escalation definitions matches the current notification that is being sent out. If a host or service notification does not have any valid escalation definitions that applies to it, the contact group(s) specified in either the host group or service definition will be used for the notification. Look at the example below:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 10
 notification_interval 60
 contact_groups nt-admins,managers,everyone
}

Notice that there are “holes” in the notification escalation definitions. In particular, notifications 1 and 2 are not handled by the escalations, nor are any notifications beyond 10. For the first and second notification, as well as all notifications beyond the tenth one, the default contact groups specified in the service definition are used. For all the examples I’ll be using, I’ll be assuming that the default contact groups for the service definition is called nt-admins.

Contact Groups

When defining notification escalations, it is important to keep in mind that any contact groups that were members of “lower” escalations (i.e. those with lower notification number ranges) should also be included in “higher” escalation definitions. This should be done to ensure that anyone who gets notified of a problem continues to get notified as the problem is escalated. Example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 90
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
}

The first (or “lowest”) escalation level includes both the nt-admins and managers contact groups. The last (or “highest”) escalation level includes the nt-admins, managers, and everyone contact groups. Notice that the nt-admins contact group is included in both escalation definitions. This is done so that they continue to get paged if there are still problems after the first two service notifications are sent out. The managers contact group first appears in the “lower” escalation definition - they are first notified when the third problem notification gets sent out. We want the managers group to continue to be notified if the problem continues past five notifications, so they are also included in the “higher” escalation definition.

Overlapping Escalation Ranges

Notification escalation definitions can have notification ranges that overlap. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
}

In the example above:

	The nt-admins and managers contact groups get notified on the third notification

	All three contact groups get notified on the fourth and fifth notifications

	Only the on-call-support contact group gets notified on the sixth (or higher) notification

Recovery Notifications

Recovery notifications are slightly different than problem notifications when it comes to escalations. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 20
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 30
 contact_groups on-call-support
}

If, after three problem notifications, a recovery notification is sent out for the service, who gets notified? The recovery is actually the fourth notification that gets sent out. However, the escalation code is smart enough to realize that only those people who were notified about the problem on the third notification should be notified about the recovery. In this case, the nt-admins and managers contact groups would be notified of the recovery.

Notification Intervals

You can change the frequency at which escalated notifications are sent out for a particular host or service by using the notification_interval option of the hostgroup or service escalation definition. Example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 6
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
}

In this example we see that the default notification interval for the services is 240 minutes (this is the value in the service definition). When the service notification is escalated on the 3rd, 4th, and 5th notifications, an interval of 45 minutes will be used between notifications. On the 6th and subsequent notifications, the notification interval will be 60 minutes, as specified in the second escalation definition.

Since it is possible to have overlapping escalation definitions for a particular hostgroup or service, and the fact that a host can be a member of multiple hostgroups, Shinken has to make a decision on what to do as far as the notification interval is concerned when escalation definitions overlap. In any case where there are multiple valid escalation definitions for a particular notification, Shinken will choose the smallest notification interval. Take the following example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 4
 last_notification 0
 notification_interval 60
 contact_groups nt-admins,managers,everyone
}

We see that the two escalation definitions overlap on the 4th and 5th notifications. For these notifications, Shinken will use a notification interval of 45 minutes, since it is the smallest interval present in any valid escalation definitions for those notifications.

One last note about notification intervals deals with intervals of 0. An interval of 0 means that Shinken should only sent a notification out for the first valid notification during that escalation definition. All subsequent notifications for the hostgroup or service will be suppressed. Take this example:

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 3
 last_notification 5
 notification_interval 45
 contact_groups nt-admins,managers
}

define serviceescalation{
 host_name webserver
 service_description HTTP
 first_notification 7
 last_notification 0
 notification_interval 30
 contact_groups nt-admins,managers
}

In the example above, the maximum number of problem notifications that could be sent out about the service would be four. This is because the notification interval of 0 in the second escalation definition indicates that only one notification should be sent out (starting with and including the 4th notification) and all subsequent notifications should be repressed. Because of this, the third service escalation definition has no effect whatsoever, as there will never be more than four notifications.

Escalations based on time

The escalations can also be based on time, instead of notification number. It’s very easy to setup and work like for the old way but with time instead.

define escalation{
 first_notification_time 60
 last_notification_time 120
 contact_groups nt-admins,managers
}

It will use the interval length for the value you set for first/last notification time. Here, it will escalate after 1 hour problem, and stop at 2 hours. You cannot have in the same escalation time and number escalation rules. But of course you can have escalations based on time and escalation based on notification number applied on hosts and services.

Escalations based on time short time

It’s also interesting to see that with escalation based on time, if the notification interval is longer than the next escalation time, it’s this last value that will be taken into account.

Let take an example where your service got :

define service{
 notification_interval 1440
 escalations ToLevel2,ToLevel3
}

Then with the escalations objects :

define escalation{
 first_notification_time 60
 last_notification_time 120
 contact_groups level2
}

 define escalation{
 first_notification_time 120
 last_notification_time 0
 contact_groups level3
}

Here let say you have a problem HARD on the service at t=0. It will notify the level1. The next notification should be at t=1440 minutes, so tomorrow. It’s ok for classic services (too much notification is DANGEROUS!) but not for escalated ones.

Here, at t=60 minutes, the escalation will raise, you will notify the level2 contact group, and then at t=120 minutes you will notify the level3, and here one a day until they solve it!

So you can put large notification_interval and still have quick escalations times, it’s not a problem :)

Time Period Restrictions

Under normal circumstances, escalations can be used at any time that a notification could normally be sent out for the host or service. This “notification time window” is determined by the “notification_period” directive in the host or service definition.

You can optionally restrict escalations so that they are only used during specific time periods by using the “escalation_period” directive in the host or service escalation definition. If you use the “escalation_period” directive to specify a Time Period Definition during which the escalation can be used, the escalation will only be used during that time. If you do not specify any “escalation_period” directive, the escalation can be used at any time within the “notification time window” for the host or service.

Escalated notifications are still subject to the normal time restrictions imposed by the “notification_period” directive in a host or service definition, so the timeperiod you specify in an escalation definition should be a subset of that larger “notification time window”.

State Restrictions

If you would like to restrict the escalation definition so that it is only used when the host or service is in a particular state, you can use the “escalation_options” directive in the host or service escalation definition. If you do not use the “escalation_options” directive, the escalation can be used when the host or service is in any state.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

On-Call Rotations

Introduction

[image: ../_images/objects-contacts.png]
For those lucky admins who have a team of gurus who can help share the responsibility of answering alerts, on-call rotations are often setup. Multiple admins will often alternate taking notifications on weekends, weeknights, holidays, etc.

I’ll show you how you can create timeperiod definitions in a way that can facilitate most on-call notification rotations. These definitions won’t handle human issues that will inevitably crop up (admins calling in sick, swapping shifts, or throwing their pagers into the river), but they will allow you to setup a basic structure that should work the majority of the time.

Scenario 1: Holidays and Weekends

Two admins - John and Bob - are responsible for responding to Shinken alerts. John receives all notifications for weekdays (and weeknights) - except for holidays - and Bob gets handles notifications during the weekends and holidays. Lucky Bob. Here’s how you can define this type of rotation using timeperiods...

First, define a timeperiod that contains time ranges for holidays:

define timeperiod{
 name holidays
 timeperiod_name holidays
 january 1 00:00-24:00 ; New Year's Day
 2008-03-23 00:00-24:00 ; Easter (2008)
 2009-04-12 00:00-24:00 ; Easter (2009)
 monday -1 may 00:00-24:00 ; Memorial Day (Last Monday in May)
 july 4 00:00-24:00 ; Independence Day
 monday 1 september 00:00-24:00 ; Labor Day (1st Monday in September)
 thursday 4 november 00:00-24:00 ; Thanksgiving (4th Thursday in November)
 december 25 00:00-24:00 ; Christmas
 december 31 17:00-24:00 ; New Year's Eve (5pm onwards)
 }

Next, define a timeperiod for John’s on-call times that include weekdays and weeknights, but excludes the dates/times defined in the holidays timeperiod above:

define timeperiod{
 timeperiod_name john-oncall
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 exclude holidays ; Exclude holiday dates/times defined elsewhere
}

You can now reference this timeperiod in John’s contact definition:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}

Define a new timeperiod for Bob’s on-call times that include weekends and the dates/times defined in the holidays timeperiod above:

define timeperiod{
 timeperiod_name bob-oncall
 friday 00:00-24:00
 saturday 00:00-24:00
 use holidays ; Also include holiday date/times defined elsewhere
}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 2: Alternating Days

In this scenario John and Bob alternate handling alerts every other day - regardless of whether its a weekend, weekday, or holiday.

Define a timeperiod for when John should receive notifications. Assuming today’s date is August 1st, 2007 and John is handling notifications starting today, the definition would look like this:

define timeperiod{
 timeperiod_name john-oncall
 2007-08-01 / 2 00:00-24:00 ; Every two days, starting August 1st, 2007
}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the days that John doesn’t, so his first on-call day starts tomorrow (August 2nd, 2007).

define timeperiod{
 timeperiod_name bob-oncall
 2007-08-02 / 2 00:00-24:00 ; Every two days, starting August 2nd, 2007
}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}
define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 3: Alternating Weeks

In this scenario John and Bob alternate handling alerts every other week. John handles alerts Sunday through Saturday one week, and Bob handles alerts for the following seven days. This continues in perpetuity.

Define a timeperiod for when John should receive notifications. Assuming today’s date is Sunday, July 29th, 2007 and John is handling notifications this week (starting today), the definition would look like this:

define timeperiod{
 timeperiod_name john-oncall
 2007-07-29 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, July 29th, 2007
 2007-07-30 / 14 00:00-24:00 ; Every other Monday starting July 30th, 2007
 2007-07-31 / 14 00:00-24:00 ; Every other Tuesday starting July 31st, 2007
 2007-08-01 / 14 00:00-24:00 ; Every other Wednesday starting August 1st, 2007
 2007-08-02 / 14 00:00-24:00 ; Every other Thursday starting August 2nd, 2007
 2007-08-03 / 14 00:00-24:00 ; Every other Friday starting August 3rd, 2007
 2007-08-04 / 14 00:00-24:00 ; Every other Saturday starting August 4th, 2007
}

Now define a timeperiod for when Bob should receive notifications. Bob gets notifications on the weeks that John doesn’t, so his first on-call day starts next Sunday (August 5th, 2007).

define timeperiod{
 timeperiod_name bob-oncall
 2007-08-05 / 14 00:00-24:00 ; Every 14 days (two weeks), starting Sunday, August 5th, 2007
 2007-08-06 / 14 00:00-24:00 ; Every other Monday starting August 6th, 2007
 2007-08-07 / 14 00:00-24:00 ; Every other Tuesday starting August 7th, 2007
 2007-08-08 / 14 00:00-24:00 ; Every other Wednesday starting August 8th, 2007
 2007-08-09 / 14 00:00-24:00 ; Every other Thursday starting August 9th, 2007
 2007-08-10 / 14 00:00-24:00 ; Every other Friday starting August 10th, 2007
 2007-08-11 / 14 00:00-24:00 ; Every other Saturday starting August 11th, 2007
}

Now you need to reference these timeperiod definitions in the contact definitions for John and Bob:

define contact{
 contact_name mjohn
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}
define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Scenario 4: Vacation Days

In this scenarios, John handles notifications for all days except those he has off. He has several standing days off each month, as well as some planned vacations. Bob handles notifications when John is on vacation or out of the office.

First, define a timeperiod that contains time ranges for John’s vacation days and days off:

define timeperiod{
 name john-out-of-office
 timeperiod_name john-out-of-office
 day 15 00:00-24:00 ; 15th day of each month
 day -1 00:00-24:00 ; Last day of each month (28th, 29th, 30th, or 31st)
 day -2 00:00-24:00 ; 2nd to last day of each month (27th, 28th, 29th, or 30th)
 january 2 00:00-24:00 ; January 2nd each year
 june 1 - july 5 00:00-24:00 ; Yearly camping trip (June 1st - July 5th)
 2007-11-01 - 2007-11-10 00:00-24:00 ; Vacation to the US Virgin Islands (November 1st-10th, 2007)
}

Next, define a timeperiod for John’s on-call times that excludes the dates/times defined in the timeperiod above:

define timeperiod{
 timeperiod_name john-oncall
 monday 00:00-24:00
 tuesday 00:00-24:00
 wednesday 00:00-24:00
 thursday 00:00-24:00
 friday 00:00-24:00
 exclude john-out-of-office ; Exclude dates/times John is out
}

You can now reference this timeperiod in John’s contact definition:

define contact{
 contact_name john
 ...
 host_notification_period john-oncall
 service_notification_period john-oncall
}

Define a new timeperiod for Bob’s on-call times that include the dates/times that John is out of the office:

define timeperiod{
 timeperod_name bob-oncall
 use john-out-of-office ; Include holiday date/times that John is out
}

You can now reference this timeperiod in Bob’s contact definition:

define contact{
 contact_name bob
 ...
 host_notification_period bob-oncall
 service_notification_period bob-oncall
}

Other Scenarios

There are a lot of other on-call notification rotation scenarios that you might have. The date exception directive in timeperiod definitions is capable of handling most dates and date ranges that you might need to use, so check out the different formats that you can use. If you make a mistake when creating timeperiod definitions, always err on the side of giving someone else more on-call duty time. :-)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Monitoring Service and Host Clusters

Introduction

This “cluster” monitoring was managed by the check_cluster2 plugin in the Nagios times, now it’s fully integer to the core, so you should read the new business rules that can be used for cluster monitoring :)
Here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Host and Service Dependencies

Introduction

Service and host dependencies are an advanced feature of Shinken that allow you to control the behavior of hosts and services based on the status of one or more other hosts or services. I’ll explain how dependencies work, along with the differences between host and service dependencies.

Service Dependencies Overview

There are a few things you should know about service dependencies:

	A service can be dependent on one or more other services

	A service can be dependent on services which are not associated with the same host

	Service dependencies are not inherited (unless specifically configured to)

	Service dependencies can be used to cause service check execution and service notifications to be suppressed under different circumstances (OK, WARNING, UNKNOWN, and/or CRITICAL states)

	Service dependencies might only be valid during specific timeperiods

Defining Service Dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your object config file(s). In each definition you specify the dependent service, the service you are depending on, and the criteria (if any) that cause the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency definition for each dependency you create.

Example Service Dependencies

The image below shows an example logical layout of service notification and execution dependencies. Different services are dependent on other services for notifications and check execution.

[image: ../_images/service-dependencies.png]
In this example, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria w,u
}

define servicedependency{
 host_name Host B
 service_description Service E
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria w
 notification_failure_criteria c
}

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
 host_name Host A
 service_description Service A
 dependent_host_name Host B
 dependent_service_description Service D
 execution_failure_criteria u
 notification_failure_criteria n
}

define servicedependency{
 host_name Host A
 service_description Service B
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria w,u
 notification_failure_criteria c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

How Service Dependencies Are Tested

Before Shinken executes a service check or sends notifications out for a service, it will check to see if the service has any dependencies. If it doesn’t have any dependencies, the check is executed or the notification is sent out as it normally would be. If the service does have one or more dependencies, Shinken will check each dependency entry as follows:

	Shinken gets the current status of the service that is being depended upon.

	Shinken compares the current status of the service that is being depended upon against either the execution or notification failure options in the dependency definition (whichever one is relevant at the time).

	If the current status of the service that is being depended upon matches one of the failure options, the dependency is said to have failed and Shinken will break out of the dependency check loop.

	If the current state of the service that is being depended upon does not match any of the failure options for the dependency entry, the dependency is said to have passed and Shinken will go on and check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency check fails.

	One important thing to note is that by default, Shinken will use the most current hard state of the service(s) that is/are being depended upon when it does the dependency checks. If you want Shinken to use the most current state of the services (regardless of whether its a soft or hard state), enable the soft_state_dependencies option.

Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed. Passive checks are not restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Shinken will execute the check of the service as it normally would. If even just one of the execution dependencies for a service fails, Shinken will temporarily prevent the execution of checks for that (dependent) service. At some point in the future the execution dependency tests for the service may all pass. If this happens, Shinken will start checking the service again as it normally would. More information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a WARNING or UNKNOWN state. If this was the case, the service check would not be performed and the check would be scheduled for (potential) execution at a later time.

Notification Dependencies

If all of the notification dependency tests for the service passed, Shinken will send notifications out for the service as it normally would. If even just one of the notification dependencies for a service fails, Shinken will temporarily repress notifications for that (dependent) service. At some point in the future the notification dependency tests for the service may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the service. More information on the notification logic can be found here.

In the example above, Service F would have failed notification dependencies if Service C is in a CRITICAL state, and/or Service D is in a WARNING or UNKNOWN state, and/or/ if Service E is in a WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would not be sent out.

Dependency Inheritance

As mentioned before, service dependencies are not inherited by default. In the example above you can see that Service F is dependent on Service E. However, it does not automatically inherit Service E’s dependencies on Service B and Service C. In order to make Service F dependent on Service C we had to add another service dependency definition. There is no dependency definition for Service B, so Service F is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in the service dependency definition. When this directive is enabled, it indicates that the dependency inherits dependencies of the service that is being depended upon (also referred to as the master service). In other words, if the master service is dependent upon other services and any one of those dependencies fail, this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it dependent on service A. You could create a new dependency definition that specified service F as the dependent service and service A as being the master service (i.e. the service that is being dependend on). You could alternatively modify the dependency definition for services D and F to look like this:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria n
 inherits_parent 1
}

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested when the dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritance. If the dependency definition between A and D had its inherits_parent directive enable and service A was dependent on some other service (let’s call it service G), the service F would be dependent on services D, A, and G (each with potentially different criteria).

Host Dependencies

As you’d probably expect, host dependencies work in a similar fashion to service dependencies. The difference is that they’re for hosts, not services.

Do not confuse host dependencies with parent/child host relationships. You should be using parent/child host relationships (defined with the parents directive in host definitions) for most cases, rather than host dependencies. A description of how parent/child host relationships work can be found in the documentation on network reachability.

Here are the basics about host dependencies:

	A host can be dependent on one or more other host

	Host dependencies are not inherited (unless specifically configured to)

	Host dependencies can be used to cause host check execution and host notifications to be suppressed under different circumstances (UP, DOWN, and/or UNREACHABLE states)

	Host dependencies might only be valid during specific timeperiods

Example Host Dependencies

The image below shows an example of the logical layout of host notification dependencies. Different hosts are dependent on other hosts for notifications.

[image: ../_images/host-dependencies.png]
In the example above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
 host_name Host A
 dependent_host_name Host C
 notification_failure_criteria d
}

define hostdependency{
 host_name Host B
 dependent_host_name Host C
 notification_failure_criteria d,u
}

As with service dependencies, host dependencies are not inherited. In the example image you can see that Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on Host A, a new host dependency definition must be defined.

Host notification dependencies work in a similar manner to service notification dependencies. If all of the notification dependency tests for the host pass, Shinken will send notifications out for the host as it normally would. If even just one of the notification dependencies for a host fails, Shinken will temporarily repress notifications for that (dependent) host. At some point in the future the notification dependency tests for the host may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the host. More information on the notification logic can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

State Stalking

Introduction

State “stalking” is a feature which is probably not going to used by most users. When enabled, it allows you to log changes in the output service and host checks even if the state of the host or service does not change. When stalking is enabled for a particular host or service, Shinken will watch that host or service very carefully and log any changes it sees in the output of check results. As you’ll see, it can be very helpful to you in later analysis of the log files.

How Does It Work?

Under normal circumstances, the result of a host or service check is only logged if the host or service has changed state since it was last checked. There are a few exceptions to this, but for the most part, that’s the rule.

If you enable stalking for one or more states of a particular host or service, Shinken will log the results of the host or service check if the output from the check differs from the output from the previous check. Take the following example of eight consecutive checks of a service:

Given this sequence of checks, you would normally only see two log entries for this catastrophe. The first one would occur at service check x+2 when the service changed from an OK state to a WARNING state. The second log entry would occur at service check x+3 when the service changed from a WARNING state to a CRITICAL state.

For whatever reason, you may like to have the complete history of this catastrophe in your log files. Perhaps to help explain to your manager how quickly the situation got out of control, perhaps just to laugh at it over a couple of drinks at the local pub...

Well, if you had enabled stalking of this service for CRITICAL states, you would have events at x+4 and x+5 logged in addition to the events at x+2 and x+3. Why is this? With state stalking enabled, Shinken would have examined the output from each service check to see if it differed from the output of the previous check. If the output differed and the state of the service didn’t change between the two checks, the result of the newer service check would get logged.

A similar example of stalking might be on a service that checks your web server. If the check_http plugin first returns a WARNING state because of a 404 error and on subsequent checks returns a WARNING state because of a particular pattern not being found, you might want to know that. If you didn’t enable state stalking for WARNING states of the service, only the first WARNING state event (the 404 error) would be logged and you wouldn’t have any idea (looking back in the archived logs) that future WARNING states were not due to a 404, but rather some text pattern that could not be found in the returned web page.

Should I Enable Stalking?

First, you must decide if you have a real need to analyze archived log data to find the exact cause of a problem. You may decide you need this feature for some hosts or services, but not for all. You may also find that you only have a need to enable stalking for some host or service states, rather than all of them. For example, you may decide to enable stalking for WARNING and CRITICAL states of a service, but not for OK and UNKNOWN states.

The decision to to enable state stalking for a particular host or service will also depend on the plugin that you use to check that host or service. If the plugin always returns the same text output for a particular state, there is no reason to enable stalking for that state.

How Do I Enable Stalking?

You can enable state stalking for hosts and services by using the stalking_options directive in host and service definitions.

How Does Stalking Differ From Volatile Services?

Volatile services are similar, but will cause notifications and event handlers to run. Stalking is purely for logging purposes.

Caveats

You should be aware that there are some potential pitfalls with enabling stalking. These all relate to the reporting functions found in various CGIs (histogram, alert summary, etc.). Because state stalking will cause additional alert entries to be logged, the data produced by the reports will show evidence of inflated numbers of alerts.

As a general rule, I would suggest that you not enable stalking for hosts and services without thinking things through. Still, it’s there if you need and want it.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Performance Data

Introduction

Shinken is designed to allow plugins to return optional performance data in addition to normal status data, as well as allow you to pass that performance data to external applications for processing. A description of the different types of performance data, as well as information on how to go about processing that data is described below...

Types of Performance Data

There are two basic categories of performance data that can be obtained from Shinken:

	Check performance data

	Plugin performance data

Check performance data is internal data that relates to the actual execution of a host or service check. This might include things like service check latency (i.e. how “late” was the service check from its scheduled execution time) and the number of seconds a host or service check took to execute. This type of performance data is available for all checks that are performed. The $HOSTEXECUTIONTIME$ and $SERVICEEXECUTIONTIME$ macros can be used to determine the number of seconds a host or service check was running and the $HOSTLATENCY$ and $SERVICELATENCY$ macros can be used to determine how “late” a regularly-scheduled host or service check was.

Plugin performance data is external data specific to the plugin used to perform the host or service check. Plugin-specific data can include things like percent packet loss, free disk space, processor load, number of current users, etc. - basically any type of metric that the plugin is measuring when it executes. Plugin-specific performance data is optional and may not be supported by all plugins. Plugin-specific performance data (if available) can be obtained by using the $HOSTPERFDATA$ and $SERVICEPERFDATA$ macros. Read on for more information on how plugins can return performance data to Shinken for inclusion in the $HOSTPERFDATA$ and $SERVICEPERFDATA$ macros.

Plugin Performance Data

At a minimum, Shinken plugins must return a single line of human-readable text that indicates the status of some type of measurable data. For example, the check_ping plugin might return a line of text like the following:

PING ok - Packet loss = 0%, RTA = 0.80 ms

With this simple type of output, the entire line of text is available in the $HOSTOUTPUT$ or $SERVICEOUTPUT$ macros (depending on whether this plugin was used as a host check or service check).

Plugins can return optional performance data in their output by sending the normal, human-readable text string that they usually would, followed by a pipe character (|), and then a string containing one or more performance data metrics. Let’s take the check_ping plugin as an example and assume that it has been enhanced to return percent packet loss and average round trip time as performance data metrics. Sample output from the plugin might look like this:

PING ok - Packet loss = 0%, RTA = 0.80 ms | percent_packet_loss=0, rta=0.80

When Shinken sees this plugin output format it will split the output into two parts:

	Everything before the pipe character is considered to be the “normal” plugin output and will be stored in either the $HOSTOUTPUT$ or $SERVICEOUTPUT$ macro

	Everything after the pipe character is considered to be the plugin-specific performance data and will be stored in the $HOSTPERFDATA$ or $SERVICEPERFDATA$ macro

In the example above, the $HOSTOUTPUT$ or $SERVICEOUTPUT$ macro would contain “PING ok - Packet loss = 0%, RTA = 0.80 ms” (without quotes) and the $HOSTPERFDATA$ or $SERVICEPERFDATA$ macro would contain “percent_packet_loss=0, rta=0.80” (without quotes).

Multiple lines of performace data (as well as normal text output) can be obtained from plugins, as described in the plugin API documentation.

The Shinken daemon doesn’t directly process plugin performance data, so it doesn’t really care what the performance data looks like. There aren’t really any inherent limitations on the format or content of the performance data. However, if you are using an external addon to process the performance data (i.e. PerfParse), the addon may be expecting that the plugin returns performance data in a specific format. Check the documentation that comes with the addon for more information.

Processing Performance Data

If you want to process the performance data that is available from Shinken and the plugins, you’ll need to do the following:

	Enable the process_performance_data option.

	Configure Shinken so that performance data is either written to files and/or processed by executing commands.

Read on for information on how to process performance data by writing to files or executing commands.

Processing Performance Data Using Commands

The most flexible way to process performance data is by having Shinken execute commands (that you specify) to process or redirect the data for later processing by external applications. The commands that Shinken executes to process host and service performance data are determined by the host_perfdata_command and service_perfdata_command options, respectively.

An example command definition that redirects service check performance data to a text file for later processing by another application is shown below:

define command{
 command_name store-service-perfdata
 command_line /bin/echo -e "$LASTSERVICECHECK$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICESTATE$\t$SERVICEATTEMPT$\t$SERVICESTATETYPE$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$" >> /usr/local/shinken/var/service-perfdata.dat
}

This method, while flexible, comes with a relatively high CPU overhead. If you’re processing performance data for a large number of hosts and services, you’ll probably want Shinken to write performance data to files instead. This method is described in the next section.

Writing Performance Data To Files

You can have Shinken write all host and service performance data directly to text files using the host_perfdata_file and service_perfdata_file options. The format in which host and service performance data is written to those files is determined by the host_perfdata_file_template and service_perfdata_file_template options.

An example file format template for service performance data might look like this:

service_perfdata_file_template=[SERVICEPERFDATA]\t$TIMET$\t$HOSTNAME$\t$SERVICEDESC$\t$SERVICEEXECUTIONTIME$\t$SERVICELATENCY$\t$SERVICEOUTPUT$\t$SERVICEPERFDATA$

By default, the text files will be opened in “append” mode. If you need to change the modes to “write” or “non-blocking read/write” (useful when writing to pipes), you can use the host_perfdata_file_mode and service_perfdata_file_mode options.

Additionally, you can have Shinken periodically execute commands to periocially process the performance data files (e.g. rotate them) using the host_perfdata_file_processing_command and service_perfdata_file_processing_command options. The interval at which these commands are executed are governed by the host_perfdata_file_processing_interval and service_perfdata_file_processing_interval options, respectively.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Scheduled Downtime

Introduction

Scheduling Downtime

You can schedule downtime with your favorite UI or as an external command in cli.

Once you schedule downtime for a host or service, Shinken will add a comment to that host/service indicating that it is scheduled for downtime during the period of time you indicated. When that period of downtime passes, Shinken will automatically delete the comment that it added. Nice, huh?

Fixed vs. Flexible Downtime

When you schedule downtime for a host or service through the web interface you’ll be asked if the downtime is fixed or flexible. Here’s an explanation of how “fixed” and “flexible” downtime differs:

“Fixed” downtime starts and stops at the exact start and end times that you specify when you schedule it. Okay, that was easy enough...

“Flexible” downtime is intended for times when you know that a host or service is going to be down for X minutes (or hours), but you don’t know exactly when that’ll start. When you schedule flexible downtime, Shinken will start the scheduled downtime sometime between the start and end times you specified. The downtime will last for as long as the duration you specified when you scheduled the downtime. This assumes that the host or service for which you scheduled flexible downtime either goes down (or becomes unreachable) or goes into a non-OK state sometime between the start and end times you specified. The time at which a host or service transitions to a problem state determines the time at which Shinken actually starts the downtime. The downtime will then last for the duration you specified, even if the host or service recovers before the downtime expires. This is done for a very good reason. As we all know, you might think you’ve got a problem fixed, but then have to restart a server ten times before it actually works right. Smart, eh?

Triggered Downtime

When scheduling host or service downtime you have the option of making it “triggered” downtime. What is triggered downtime, you ask? With triggered downtime the start of the downtime is triggered by the start of some other scheduled host or service downtime. This is extremely useful if you’re scheduling downtime for a large number or hosts or services and the start time of the downtime period depends on the start time of another downtime entry. For instance, if you schedule flexible downtime for a particular host (because its going down for maintenance), you might want to schedule triggered downtime for all of that hosts’s “children”.

How Scheduled Downtime Affects Notifications

When a host or service is in a period of scheduled downtime, Shinken will not allow normal notifications to be sent out for the host or service. However, a “DOWNTIMESTART” notification will get sent out for the host or service, which will serve to put any admins on notice that they won’t receive upcoming problem alerts.

When the scheduled downtime is over, Shinken will allow normal notifications to be sent out for the host or service again. A “DOWNTIMEEND” notification will get sent out notifying admins that the scheduled downtime is over, and they will start receiving normal alerts again.

If the scheduled downtime is cancelled prematurely (before it expires), a “DOWNTIMECANCELLED” notification will get sent out to the appropriate admins.

Overlapping Scheduled Downtime

I like to refer to this as the “Oh crap, its not working” syndrome. You know what I’m talking about. You take a server down to perform a “routine” hardware upgrade, only to later realize that the OS drivers aren’t working, the RAID array blew up, or the drive imaging failed and left your original disks useless to the world. Moral of the story is that any routine work on a server is quite likely to take three or four times as long as you had originally planned...

Let’s take the following scenario:

	You schedule downtime for host A from 7:30pm-9:30pm on a Monday

	You bring the server down about 7:45pm Monday evening to start a hard drive upgrade

	After wasting an hour and a half battling with SCSI errors and driver incompatabilities, you finally get the machine to boot up

	At 9:15 you realize that one of your partitions is either hosed or doesn’t seem to exist anywhere on the drive

	Knowing you’re in for a long night, you go back and schedule additional downtime for host A from 9:20pm Monday evening to 1:30am Tuesday Morning.

If you schedule overlapping periods of downtime for a host or service (in this case the periods were 7:40pm-9:30pm and 9:20pm-1:30am), Shinken will wait until the last period of scheduled downtime is over before it allows notifications to be sent out for that host or service. In this example notifications would be suppressed for host A until 1:30am Tuesday morning.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Adaptive Monitoring

Introduction

Shinken allows you to change certain commands and host and service check attributes during runtime. I’ll refer to this feature as “adaptive monitoring”. Please note that the adaptive monitoring features found in Shinken will probably not be of much use to 99% of users, but they do allow you to do some neat things.

What Can Be Changed?

The following host/service check attributes can be changed during runtime:

	Check command (and command arguments)

	Check interval

	Max check attempts

	Check timeperiod

	Event handler command (and command arguments)

The following global attributes can be changed during runtime:

	Global host event handler command (and command arguments)

	Global service event handler command (and command arguments)

External Commands For Adaptive Monitoring

In order to change global or host- or service-specific attributes during runtime, you must submit the appropriate external command to Shinken. The table below lists the different attributes that may be changed during runtime, along with the external command to accomplish the job.

A full listing of external commands that can be used for adaptive monitoring (along with examples of how to use them) can be found online at the following URL: http://www.nagios.org/developerinfo/externalcommands/

	When changing check commands, check timeperiods, or event handler commands, it is important to note that the new values for these options must have been defined before shinken was started. Any request to change a command or timeperiod to one which had not been defined when it was started is ignored.

	You can specify command arguments along with the actual command name - just seperate individual arguments from the command name (and from each other) using bang (!) characters. More information on how arguments in command definitions are processed during runtime can be found in the documentation on macros.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Predictive Dependency Checks

Note

The predictive dependency check functionality is not managed from now in Shinken.

Introduction

Host and service dependencies can be defined to allow you greater control over when checks are executed and when notifications are sent out. As dependencies are used to control basic aspects of the monitoring process, it is crucial to ensure that status information used in the dependency logic is as up to date as possible.

Shinken allows you to enable predictive dependency checks for hosts and services to ensure that the dependency logic will have the most up-to-date status information when it comes to making decisions about whether to send out notifications or allow active checks of a host or service.

How Do Predictive Checks Work?

The image below shows a basic diagram of hosts that are being monitored by Shinken, along with their parent/child relationships and dependencies.

The Switch2 host in this example has just changed state from an UP state to a problem state. Shinken needs to determine whether the host is DOWN or UNREACHABLE, so it will launch parallel checks of Switch2‘s immediate parents (Firewall1) and children (Comp1, Comp2, and Switch3). This is a normal function of the host reachability logic.

You will also notice that Switch2 is depending on Monitor1 and File1 for either notifications or check execution (which one is unimportant in this example). If predictive host dependency checks are enabled, Shinken will launch parallel checks of Monitor1 and File1 at the same time it launches checks of Switch2‘s immediate parents and children. Shinken does this because it knows that it will have to test the dependency logic in the near future (e.g. for purposes of notification) and it wants to make sure it has the most current status information for the hosts that take part in the dependency.

[image: ../_images/predictive-dependency-checks.png]
That’s how predictive dependency checks work. Simple, eh?

Predictive service dependency checks work in a similiar manner to what is described above. Except, of course, they deal with services instead of hosts.

Enabling Predictive Checks

Predictive dependency checks involve rather little overhead, so I would recommend that you enable them. In most cases, the benefits of having accurate information for the dependency logic outweighs the extra overhead imposed by these checks.

Enabling predictive dependency checks is easy:

	Predictive host dependency checks are controlled by the “enable_predictive_host_dependency_checks” option.

	Predictive service dependency checks are controlled by the “enable_predictive_service_dependency_checks” option.

Cached Checks

Predictive dependency checks are on-demand checks and are therefore subject to the rules of cached checks. Cached checks can provide you with performance improvements by allowing Shinken to forgo running an actual host or service check if it can use a relatively recent check result instead. More information on cached checks can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Cached Checks

Introduction

[image: ../_images/cachedchecks1.png]
The performance of Shinken’ monitoring logic can be significantly improved by implementing the use of cached checks. Cached checks allow Shinken to forgot executing a host or service check command if it determines a relatively recent check result will do instead.

For On-Demand Checks Only

Regularly scheduled host and service checks will not see a performance improvement with use of cached checks. Cached checks are only useful for improving the performance of on-demand host and service checks. Scheduled checks help to ensure that host and service states are updated regularly, which may result in a greater possibility their results can be used as cached checks in the future.

For reference, on-demand host checks occur...

	When a service associated with the host changes state.

	As needed as part of the host reachability logic.

	As needed for host dependency checks.

And on-demand service checks occur...

	As needed for service dependency checks.

Unless you make use of service dependencies, Shinken will not be able to use cached check results to improve the performance of service checks. Don’t worry about that - its normal. Cached host checks are where the big performance improvements lie, and everyone should see a benefit there.

How Caching Works

[image: ../_images/cachedchecks.png]
When Shinken needs to perform an on-demand host or service check, it will make a determination as to whether it can used a cached check result or if it needs to perform an actual check by executing a plugin. It does this by checking to see if the last check of the host or service occured within the last X seconds, where X is the cached host or service check horizon.

If the last check was performed within the timeframe specified by the cached check horizon variable, Shinken will use the result of the last host or service check and will not execute a new check. If the host or service has not yet been checked, or if the last check falls outside of the cached check horizon timeframe, Shinken will execute a new host or service check by running a plugin.

What This Really Means

Shinken performs on-demand checks because it need to know the current state of a host or service at that exact moment in time. Utilizing cached checks allows you to make Shinken think that recent check results are “good enough” for determining the current state of hosts, and that it doesn’t need to go out and actually re-check the status of that host or service.

The cached check horizon tells Shinken how recent check results must be in order to reliably reflect the current state of a host or service. For example, with a cached check horizon of 30 seconds, you are telling Shinken that if a host’s state was checked sometime in the last 30 seconds, the result of that check should still be considered the current state of the host.

The number of cached check results that Shinken can use versus the number of on-demand checks it has to actually execute can be considered the cached check “hit” rate. By increasing the cached check horizon to equal the regular check interval of a host, you could theoretically achieve a cache hit rate of 100%. In that case all on-demand checks of that host would use cached check results. What a performance improvement! But is it really? Probably not.

The reliability of cached check result information decreases over time. Higher cache hit rates require that previous check results are considered “valid” for longer periods of time. Things can change quickly in any network scenario, and there’s no guarantee that a server that was functioning properly 30 seconds ago isn’t on fire right now. There’s the tradeoff - reliability versus speed. If you have a large cached check horizon, you risk having unreliable check result values being used in the monitoring logic.

Shinken will eventually determine the correct state of all hosts and services, so even if cached check results prove to unreliably represent their true value, it will only work with incorrect information for a short period of time. Even short periods of unreliable status information can prove to be a nuisance for admins, as they may receive notifications about problems which no longer exist.

There is no standard cached check horizon or cache hit rate that will be acceptable to every users. Some people will want a short horizon timeframe and a low cache hit rate, while others will want a larger horizon timeframe and a larger cache hit rate (with a low reliability rate). Some users may even want to disable cached checks altogether to obtain a 100% reliability rate. Testing different horizon timeframes, and their effect on the reliability of status information, is the only want that an individual user will find the “right” value for their situation. More information on this is discussed below.

Configuration Variables

The following variables determine the timeframes in which a previous host or service check result may be used as a cached host or service check result:

	The cached_host_check_horizon variable controls cached host checks.

	The cached_service_check_horizon variable controls cached service checks.

Optimizing Cache Effectiveness

In order to make the most effective use of cached checks, you should:

	Schedule regular checks of your hosts

	Use MRTG to graph statistics for 1) on-demand checks and 2) cached checks

	Adjust cached check horizon variables to fit your needs

You can schedule regular checks of your hosts by specifying a value greater than 0 for check_interval option in your host definitions.

[image: ../_images/cachedcheckgraphs.png]
A good way to determine the proper value for the cached check horizon options is to compare how many on-demand checks Shinken has to actually run versus how may it can use cached values for. The nagiostats utility can produce information on cached checks, which can then be graphed with MRTG. Example MRTG graphs that show cached vs. actual on-demand checks are shown to the right.

The monitoring installation which produced the graphs above had:

	A total of 44 hosts, all of which were checked at regular intervals

	An average (regularly scheduled) host check interval of 5 minutes

	A cached_host_check_horizon of 15 seconds

The first MRTG graph shows how many regularly scheduled host checks compared to how many cached host checks have occured. In this example, an average of 53 host checks occur every five minutes. 9 of these (17%) are on-demand checks.

The second MRTG graph shows how many cached host checks have occurred over time. In this example an average of 2 cached host checks occurs every five minutes.

Remember, cached checks are only available for on-demand checks. Based on the 5 minute averages from the graphs, we see that Nagios is able to used cached host check results every 2 out of 9 times an on-demand check has to be run. That may not seem much, but these graphs represent a small monitoring environment. Consider that 2 out of 9 is 22% and you can start to see how this could significantly help improve host check performance in large environments. That percentage could be higher if the cached host check horizon variable value was increased, but that would reduce the reliability of the cached host state information.

Once you’ve had a few hours or days worth of MRTG graphs, you should see how many host and service checks were done by executing plugins versus those that used cached check results. Use that information to adjust the cached check horizon variables appropriately for your situation. Continue to monitor the MRTG graphs over time to see how changing the horizon variables affected cached check statistics. Rinse and repeat as necessary.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Passive Host State Translation

Introduction

This Nagios option is no more useful in the Shinken architecture.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Service and Host Check Scheduling

The scheduling

The scheduling of Shinken is quite simple. The first scheduling take care of the max_service_check_spread and max_host_check_spread so the time of the first schedule will be in the

start+max_*_check_spread*interval_length (60s in general)

if the check_timeperiod agree with it.

Note

Shinken do not take care about Nagios *_inter_check_delay_method : this is always ‘s’ (smart) because other options are just useless for nearly everyone. And it also do not use the *_interleave_factor too.

Nagios make a average of service by host to make it’s dispatch of checks in the first check window. Shinken use a random way of doing it : the check is between t=now and t=min(t from next timeperiod, max_*_check_spread), but in a random way. So you will will have the better distribution of checks in this period, intead of the nagios one where hosts with differents number of services can be agresively checks.

After this first scheduling, the time for the next check is just t_check+check_interval if the timepriod is agree for it (or just the next time available in the timeperiod). In the future, a little random value (like few seconds) will be add for such cases.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Object Inheritance

Introduction

This documentation attempts to explain object inheritance and how it can be used in your object definitions.

If you are confused about how recursion and inheritance work after reading this, take a look at the sample object config files provided in the Shinken distribution. If that still doesn’t help, have a look to the shinken resources for help.

Basics

There are three variables affecting recursion and inheritance that are present in all object definitions. They are indicated in red as follows...

define someobjecttype{
 object-specific variables ...
 name template_name
 use name_of_template_to_use
 register [0/1]
 }

The first variable is “name”. Its just a “template” name that can be referenced in other object definitions so they can inherit the objects properties/variables. Template names must be unique amongst objects of the same type, so you can’t have two or more host definitions that have “hosttemplate” as their template name.

The second variable is “use”. This is where you specify the name of the template object that you want to inherit properties/variables from. The name you specify for this variable must be defined as another object’s template named (using the name variable).

The third variable is “register”. This variable is used to indicate whether or not the object definition should be “registered” with Shinken. By default, all object definitions are registered. If you are using a partial object definition as a template, you would want to prevent it from being registered (an example of this is provided later). Values are as follows: 0 = do NOT register object definition, 1 = register object definition (this is the default). This variable is NOT inherited; every (partial) object definition used as a template must explicitly set the “register” directive to be 0. This prevents the need to override an inherited “register” directive with a value of 1 for every object that should be registered.

Local Variables vs. Inherited Variables

One important thing to understand with inheritance is that “local” object variables always take precedence over variables defined in the template object. Take a look at the following example of two host definitions (not all required variables have been supplied):

define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 }

You’ll note that the definition for host bighost1 has been defined as having hosttemplate1 as its template name. The definition for host bighost2 is using the definition of bighost1 as its template object. Once Shinken processes this data, the resulting definition of host bighost2 would be equivalent to this definition:

define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

You can see that the “check_command” and “notification_options” variables were inherited from the template object (where host bighost1 was defined). However, the host_name and max_check_attempts variables were not inherited from the template object because they were defined locally. Remember, locally defined variables override variables that would normally be inherited from a template object. That should be a fairly easy concept to understand.

If you would like local string variables to be appended to inherited string values, you can do so. Read more about how to accomplish this below.

Inheritance Chaining

Objects can inherit properties/variables from multiple levels of template objects. Take the following example:

define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name hosttemplate1
 }

 define host{
 host_name bighost2
 max_check_attempts 3
 use hosttemplate1
 name hosttemplate2
 }

 define host{
 host_name bighost3
 use hosttemplate2
 }

You’ll notice that the definition of host bighost3 inherits variables from the definition of host bighost2, which in turn inherits variables from the definition of host bighost1. Once Shinken processes this configuration data, the resulting host definitions are equivalent to the following:

define host{
 host_name bighost1
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

 define host{
 host_name bighost3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 3
 }

There is no inherent limit on how “deep” inheritance can go, but you’ll probably want to limit yourself to at most a few levels in order to maintain sanity.

Using Incomplete Object Definitions as Templates

It is possible to use imcomplete object definitions as templates for use by other object definitions. By “incomplete” definition, I mean that all required variables in the object have not been supplied in the object definition. It may sound odd to use incomplete definitions as templates, but it is in fact recommended that you use them. Why? Well, they can serve as a set of defaults for use in all other object definitions. Take the following example:

define host{
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 name generichosttemplate
 register 0
 }

 define host{
 host_name bighost1
 address 192.168.1.3
 use generichosthosttemplate
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 use generichosthosttemplate
 }

Notice that the first host definition is incomplete because it is missing the required “host_name” variable. We don’t need to supply a host name because we just want to use this definition as a generic host template. In order to prevent this definition from being registered with Shinken as a normal host, we set the “register” variable to 0.

The definitions of hosts bighost1 and bighost2 inherit their values from the generic host definition. The only variable we’ve chosed to override is the “address” variable. This means that both hosts will have the exact same properties, except for their “host_name” and “address” variables. Once Shinken processes the config data in the example, the resulting host definitions would be equivalent to specifying the following:

define host{
 host_name bighost1
 address 192.168.1.3
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

 define host{
 host_name bighost2
 address 192.168.1.4
 check_command check-host-alive
 notification_options d,u,r
 max_check_attempts 5
 }

At the very least, using a template definition for default variables will save you a lot of typing. It’ll also save you a lot of headaches later if you want to change the default values of variables for a large number of hosts.

Custom Object Variables

Any custom object variables that you define in your host, service, or contact definition templates will be inherited just like other standard variables. Take the following example:

define host{
 _customvar1 somevalue ; <-- Custom host variable
 _snmp_community public ; <-- Custom host variable
 name generichosttemplate
 register 0
 }

 define host{
 host_name bighost1
 address 192.168.1.3
 use generichosthosttemplate
 }

The host bighost1 will inherit the custom host variables “_customvar1” and “_snmp_community”, as well as their respective values, from the generichosttemplate definition. The effective result is a definition for bighost1 that looks like this:

define host{
 host_name bighost1
 address 192.168.1.3
 _customvar1 somevalue
 _snmp_community public
 }

Cancelling Inheritance of String Values

In some cases you may not want your host, service, or contact definitions to inherit values of string variables from the templates they reference. If this is the case, you can specify “null” (without quotes) as the value of the variable that you do not want to inherit. Take the following example:

define host{
 event_handler my-event-handler-command
 name generichosttemplate
 register 0
 }

 define host{
 host_name bighost1
 address 192.168.1.3
 event_handler null
 use generichosthosttemplate
 }

In this case, the host bighost1 will not inherit the value of the “event_handler” variable that is defined in the generichosttemplate. The resulting effective definition of bighost1 is the following:

define host{
 host_name bighost1
 address 192.168.1.3
 }

Additive Inheritance of String Values

Shinken gives preference to local variables instead of values inherited from templates. In most cases local variable values override those that are defined in templates. In some cases it makes sense to allow Shinken to use the values of inherited and local variables together.

This “additive inheritance” can be accomplished by prepending the local variable value with a plus sign (+). This features is only available for standard (non-custom) variables that contain string values. Take the following example:

define host{
 hostgroups all-servers
 name generichosttemplate
 register 0
 }

 define host{
 host_name linuxserver1
 hostgroups +linux-servers,web-servers
 use generichosthosttemplate
 }

In this case, the host linuxserver1 will append the value of its local “hostgroups” variable to that from generichosttemplate. The resulting effective definition of linuxserver1 is the following:

define host{
 host_name linuxserver1
 hostgroups all-servers,linux-servers,web-servers
 }

Important

If you use a field twice using several templates, the value of the field will be the first one found!
In the example above, fields values in all-servers won’t we be replaced. Be careful with overlaping field!

Implied Inheritance

Normally you have to either explicitly specify the value of a required variable in an object definition or inherit it from a template. There are a few exceptions to this rule, where Shinken will assume that you want to use a value that instead comes from a related object. For example, the values of some service variables will be copied from the host the service is associated with if you don’t otherwise specify them.

The following table lists the object variables that will be implicitly inherited from related objects if you don’t explicitly specify their value in your object definition or inherit them from a template.

	Object Type
	Object Variable
	Implied Source

	Services
	contact_groups
	contact_groups in the associated host definition

	notification_interval
	notification_interval in the associated host definition
	

	notification_period
	notification_period in the associated host definition
	

	check_period
	check_period in the associated host definition
	

	Host Escalations
	contact_groups
	contact_groups in the associated host definition

	notification_interval
	notification_interval in the associated host definition
	

	escalation_period
	notification_period in the associated host definition
	

	Service Escalations
	contact_groups
	contact_groups in the associated service definition

	notification_interval
	notification_interval in the associated service definition
	

	escalation_period
	notification_period in the associated service definition
	

Implied/Additive Inheritance in Escalations

Service and host escalation definitions can make use of a special rule that combines the features of implied and additive inheritance. If escalations 1) do not inherit the values of their “contact_groups” or “contacts” directives from another escalation template and 2) their “contact_groups” or “contacts” directives begin with a plus sign (+), then the values of their corresponding host or service definition’s “contact_groups” or “contacts” directives will be used in the additive inheritance logic.

Confused? Here’s an example:

define host{
 name linux-server
 contact_groups linux-admins
 ...
 }

 define hostescalation{
 host_name linux-server
 contact_groups +management
 ...
 }

This is a much simpler equivalent to:

define hostescalation{
 host_name linux-server
 contact_groups linux-admins,management
 ...
 }

Multiple Inheritance Sources

Thus far, all examples of inheritance have shown object definitions inheriting variables/values from just a single source. You are also able to inherit variables/values from multiple sources for more complex configurations, as shown below.

Generic host template

define host{
 name generic-host
 active_checks_enabled 1
 check_interval 10
 register 0
}

Development web server template
define host{
 name development-server
 check_interval 15
 notification_options d,u,r
 ...
 register 0
}

Development web server
define host{
 use generic-host,development-server
 host_name devweb1
 ...
}

[image: ../_images/multiple-templates1.png]
In the example above, devweb1 is inheriting variables/values from two sources: generic-host and development-server. You’ll notice that a check_interval variable is defined in both sources. Since generic-host was the first template specified in devweb1’s use directive, its value for the “check_interval” variable is inherited by the devweb1 host. After inheritance, the effective definition of devweb1 would be as follows:

Development web serve
define host{
 host_name devweb1
 active_checks_enabled 1
 check_interval 10
 notification_options d,u,r
 ...
}

Precedence With Multiple Inheritance Sources

When you use multiple inheritance sources, it is important to know how Shinken handles variables that are defined in multiple sources. In these cases Shinken will use the variable/value from the first source that is specified in the use directive. Since inheritance sources can themselves inherit variables/values from one or more other sources, it can get tricky to figure out what variable/value pairs take precedence.

Consider the following host definition that references three templates:

Development web server
define host{
 use 1, 4, 8
 host_name devweb1
 ...
}

If some of those referenced templates themselves inherit variables/values from one or more other templates, the precendence rules are shown below. Testing, trial, and error will help you better understand exactly how things work in complex inheritance situations like this. :-)

[image: ../_images/multiple-templates2.png]

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Advanced tricks

Time-Saving Tricks For Object Definitions

Abstract

or...”How To Preserve Your Sanity”

Introduction

This documentation attempts to explain how you can exploit the (somewhat) hidden features of template-based object definitions to save your sanity. How so, you ask? Several types of objects allow you to specify multiple host names and/or hostgroup names in definitions, allowing you to “copy” the object definition to multiple hosts or services. I’ll cover each type of object that supports these features separately. For starters, the object types which support this time-saving feature are as follows:

	Services

	Service escalations

	Service dependencies

	Host escalations

	Host dependencies

	Hostgroups

Object types that are not listed above (i.e. timeperiods, commands, etc.) do not support the features I’m about to describe.

Service Definitions

Multiple Hosts:

If you want to create identical services that are assigned to multiple hosts, you can specify multiple hosts in the “host_name” directive. The definition below would create a service called SOMESERVICE on hosts HOST1 through HOSTN. All the instances of the SOMESERVICE service would be identical (i.e. have the same check command, max check attempts, notification period, etc.).

define service{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other service directives ...
}

All Hosts In Multiple Hostgroups:

If you want to create identical services that are assigned to all hosts in one or more hostgroups, you can do so by creating a single service definition. How ? The “hostgroup_name” directive allows you to specify the name of one or more hostgroups that the service should be created for. The definition below would create a service called SOMESERVICE on all hosts that are members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the SOMESERVICE service would be identical (i.e. have the same check command, max check attempts, notification period, etc.).

define service{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other service directives ...
}

All Hosts:

If you want to create identical services that are assigned to all hosts that are defined in your configuration files, you can use a wildcard in the “host_name” directive. The definition below would create a service called SOMESERVICE on all hosts that are defined in your configuration files. All the instances of the SOMESERVICE service would be identical (i.e. have the same check command, max check attempts, notification period, etc.).

define service{
 host_name *
 service_description SOMESERVICE
 other service directives ...
}

Excluding Hosts:

If you want to create identical services on numerous hosts or hostgroups, but would like to exclude some hosts from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define service{
 host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
 hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
 service_description SOMESERVICE
 other service directives ...
}

Service Escalation Definitions

Multiple Hosts:

If you want to create service escalations for services of the same name/description that are assigned to multiple hosts, you can specify multiple hosts in the “host_name” directive. The definition below would create a service escalation for services called SOMESERVICE on hosts HOST1 through HOSTN. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 service_description SOMESERVICE
 other escalation directives ...
}

All Hosts In Multiple Hostgroups:

If you want to create service escalations for services of the same name/description that are assigned to all hosts in in one or more hostgroups, you can do use the “hostgroup_name” directive. The definition below would create a service escalation for services called SOMESERVICE on all hosts that are members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 service_description SOMESERVICE
 other escalation directives ...
}

All Hosts:

If you want to create identical service escalations for services of the same name/description that are assigned to all hosts that are defined in your configuration files, you can use a wildcard in the “host_name” directive. The definition below would create a service escalation for all services called SOMESERVICE on all hosts that are defined in your configuration files. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
 host_name *
 service_description SOMESERVICE
 other escalation directives ...
}

Excluding Hosts:

If you want to create identical services escalations for services on numerous hosts or hostgroups, but would like to exclude some hosts from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define serviceescalation{
 host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
 hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
 service_description SOMESERVICE
 other escalation directives ...
}

All Services On Same Host:

If you want to create service escalations for all services assigned to a particular host, you can use a wildcard in the “service_description” directive. The definition below would create a service escalation for all services on host HOST1. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

If you feel like being particularly adventurous, you can specify a wildcard in both the “host_name” and “service_description” directives. Doing so would create a service escalation for all services that you’ve defined in your configuration files.

define serviceescalation{
 host_name HOST1
 service_description *
 other escalation directives ...
}

Multiple Services On Same Host:

If you want to create service escalations for all multiple services assigned to a particular host, you can use a specify more than one service description in the “service_description” directive. The definition below would create a service escalation for services SERVICE1 through SERVICEN on host HOST1. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 other escalation directives ...
}

All Services In Multiple Servicegroups:

If you want to create service escalations for all services that belong in one or more servicegroups, you can do use the “servicegroup_name” directive. The definition below would create service escalations for all services that are members of servicegroups SERVICEGROUP1 through SERVICEGROUPN. All the instances of the service escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define serviceescalation{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 other escalation directives ...
}

Service Dependency Definitions

Multiple Hosts:

If you want to create service dependencies for services of the same name/description that are assigned to multiple hosts, you can specify multiple hosts in the “host_name” and or “dependent_host_name” directives. In the example below, service SERVICE2 on hosts HOST3 and HOST4 would be dependent on service SERVICE1 on hosts HOST1 and HOST2. All the instances of the service dependencies would be identical except for the host names (i.e. have the same notification failure criteria, etc.).

define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1
 dependent_host_name HOST3,HOST4
 dependent_service_description SERVICE2
 other dependency directives ...
}

All Hosts In Multiple Hostgroups:

If you want to create service dependencies for services of the same name/description that are assigned to all hosts in in one or more hostgroups, you can do use the “hostgroup_name” and/or “dependent_hostgroup_name” directives. In the example below, service SERVICE2 on all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would be dependent on service SERVICE1 on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. Assuming there were five hosts in each of the hostgroups, this definition would be equivalent to creating 100 single service dependency definitions ! All the instances of the service dependency would be identical except for the host names (i.e. have the same notification failure criteria, etc.).

define servicedependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 service_description SERVICE1
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 dependent_service_description SERVICE2
 other dependency directives ...
}

All Services On A Host:

If you want to create service dependencies for all services assigned to a particular host, you can use a wildcard in the “service_description” and/or “dependent_service_description” directives. In the example below, all services on host HOST2 would be dependent on all services on host HOST1. All the instances of the service dependencies would be identical (i.e. have the same notification failure criteria, etc.).

define servicedependency{
 host_name HOST1
 service_description *
 dependent_host_name HOST2
 dependent_service_description *
 other dependency directives ...
}

Multiple Services On A Host:

If you want to create service dependencies for multiple services assigned to a particular host, you can specify more than one service description in the “service_description” and/or “dependent_service_description” directives as follows:

define servicedependency{
 host_name HOST1
 service_description SERVICE1,SERVICE2,...,SERVICEN
 dependent_host_name HOST2
 dependent_service_description SERVICE1,SERVICE2,...,SERVICEN
 other dependency directives ...
}

All Services In Multiple Servicegroups:

If you want to create service dependencies for all services that belong in one or more servicegroups, you can do use the “servicegroup_name” and/or “dependent_servicegroup_name” directive as follows:

define servicedependency{
 servicegroup_name SERVICEGROUP1,SERVICEGROUP2,...,SERVICEGROUPN
 dependent_servicegroup_name SERVICEGROUP3,SERVICEGROUP4,...SERVICEGROUPN
 other dependency directives ...
}

Same Host Dependencies:

If you want to create service dependencies for multiple services that are dependent on services on the same host, leave the “dependent_host_name” and “dependent_hostgroup_name” directives empty. The example below assumes that hosts HOST1 and HOST2 have at least the following four services associated with them: SERVICE1, SERVICE2, SERVICE3, and SERVICE4. In this example, SERVICE3 and SERVICE4 on HOST1 will be dependent on both SERVICE1 and SERVICE2 on HOST1. Similiarly, SERVICE3 and SERVICE4 on HOST2 will be dependent on both SERVICE1 and SERVICE2 on HOST2.

define servicedependency{
 host_name HOST1,HOST2
 service_description SERVICE1,SERVICE2
 dependent_service_description SERVICE3,SERVICE4
 other dependency directives ...
}

Host Escalation Definitions

Multiple Hosts:

If you want to create host escalations for multiple hosts, you can specify multiple hosts in the “host_name” directive. The definition below would create a host escalation for hosts HOST1 through HOSTN. All the instances of the host escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define hostescalation{
 host_name HOST1,HOST2,HOST3,...,HOSTN
 other escalation directives ...
}

All Hosts In Multiple Hostgroups:

If you want to create host escalations for all hosts in in one or more hostgroups, you can do use the “hostgroup_name” directive. The definition below would create a host escalation on all hosts that are members of hostgroups HOSTGROUP1 through HOSTGROUPN. All the instances of the host escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define hostescalation{
 hostgroup_name HOSTGROUP1,HOSTGROUP2,...,HOSTGROUPN
 other escalation directives ...
}

All Hosts:

If you want to create identical host escalations for all hosts that are defined in your configuration files, you can use a wildcard in the “host_name” directive. The definition below would create a hosts escalation for all hosts that are defined in your configuration files. All the instances of the host escalation would be identical (i.e. have the same contact groups, notification interval, etc.).

define hostescalation{
 host_name *
 other escalation directives ...
}

Excluding Hosts:

If you want to create identical host escalations on numerous hosts or hostgroups, but would like to exclude some hosts from the definition, this can be accomplished by preceding the host or hostgroup with a ! symbol.

define hostescalation{
 host_name HOST1,HOST2,!HOST3,!HOST4,...,HOSTN
 hostgroup_name HOSTGROUP1,HOSTGROUP2,!HOSTGROUP3,!HOSTGROUP4,...,HOSTGROUPN
 other escalation directives ...
}

Host Dependency Definitions

Multiple Hosts:

If you want to create host dependencies for multiple hosts, you can specify multiple hosts in the “host_name” and/or “dependent_host_name” directives. The definition below would be equivalent to creating six seperate host dependencies. In the example above, hosts HOST3, HOST4 and HOST5 would be dependent upon both HOST1 and HOST2. All the instances of the host dependencies would be identical except for the host names (i.e. have the same notification failure criteria, etc.).

define hostdependency{
 host_name HOST1,HOST2
 dependent_host_name HOST3,HOST4,HOST5
 other dependency directives ...
}

All Hosts In Multiple Hostgroups:

If you want to create host escalations for all hosts in in one or more hostgroups, you can do use the “hostgroup_name” and /or “dependent_hostgroup_name” directives. In the example below, all hosts in hostgroups HOSTGROUP3 and HOSTGROUP4 would be dependent on all hosts in hostgroups HOSTGROUP1 and HOSTGROUP2. All the instances of the host dependencies would be identical except for host names (i.e. have the same notification failure criteria, etc.).

define hostdependency{
 hostgroup_name HOSTGROUP1,HOSTGROUP2
 dependent_hostgroup_name HOSTGROUP3,HOSTGROUP4
 other dependency directives ...
}

Hostgroups

All Hosts:

If you want to create a hostgroup that has all hosts that are defined in your configuration files as members, you can use a wildcard in the “members” directive. The definition below would create a hostgroup called HOSTGROUP1 that has all all hosts that are defined in your configuration files as members.

define hostgroup{
 hostgroup_name HOSTGROUP1
 members *
 other hostgroup directives ...
}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Business rules

View your infrastructure from a business perspective

The main role of this feature is to allow users to have in one “indicator” the aggregation of other states. This indicator can provide a unique view for users focused on different roles.

Typical roles :

	Service delivery Management

	Business Management

	Engineering

	IT support

Let’s take a simple example of a service delivery role for an ERP application. It mainly consists of the following IT components :

	2 databases, in high availability, so with one database active, the service is considered up

	2 web servers, in load sharing, so with one web server active, the service is considered up

	2 load balancers, again in high availability

These IT components (Hosts in this example) will be the basis for the ERP service.

With business rules, you can have an “indicator” representing the “aggregated service” state for the ERP service! Shinken already checks all of the IT components one by one including processing for root cause analysis from a host and service perspective.

How to define Business Rules?

It’s a simple service (or a host) with a “special” check_command named bp_rule. :)

This makes it compatible with all your current habits and UIs. As the service aggregation is considered as any other state from a host or service, you can get notifications, actions and escalations. This means you can have contacts that will receive only the relevant notifications based on their role.

Warning

You do not have to define “bp_rule” command, it’s purely internal. You should NOT define it in you checkcommands.cfg file, or the configuration will be invalid due to duplicate commands!

Here is a configuration for the ERP service example, attached to a dummy host named “servicedelivery”.

define service{

 use standard-service
 host_name servicedelivery
 service_description ERP
 check_command bp_rule!(h1,database1 | h2,database2) & (h3,Http1 | h4,Http4) & (h5,IPVS1 | h6,IPVS2)
}

That’s all!

Note

A complete service delivery view should include an aggregated view of the end user availability perspective states, end user performance perspective states, IT component states, application error states, application performance states. This aggregated state can then be used as a metric for Service Management (basis for defining an SLA).

With “need at least X elements” clusters

In some cases, you know that in a cluster of N elements, you need at least X of them to run OK. This is easily defined, you just need to use the “X of:” operator.

Here is an example of the same ERP but with 3 http web servers, and you need at least 2 of them (to handle the load) :

define service{

 use standard-service
 host_name servicedelivery
 service_description ERP
 check_command bp_rule!(h1,database1 | h2,database2) & (2 of: h3,Http1 & h4,Http4 & h5,Http5) & (h6,IPVS1 | h7,IPVS2)
}

It’s done :)

The NOT rule

You can define a not state rule. It can be useful for active/passive setups for example. You just need to add a ! before your element name.

For example :

define service{

 use generic-service
 host_name servicedelivery
 service_description Cluster_state
 check_command bp_rule!(h1,database1 & !h2,database2)
}

Aggregated state will be ok if database1 is ok and database2 is warning or critical (stopped).

Manage degraded status

In the Xof: way the only case where you got a “warning” (=”degraded but not dead”) it’s when all your elements are in warning. But you should want to be in warning if 1 or your 3 http server is critical : the service is still running, but in a degraded state.

	For this you can use the extended operator X,Y,Zof:

	
	X : number min of OK to get an overall OK state

	Y : number min of WARNING to get an overall WARNING state

	Z : number min of CRITICAL to get an overall CRITICAL state

	State processing will be done the following order :

	
	is Ok possible?

	is critical possible?

	is warning possible?

	if none is possible, set OK.

Here are some example for business rules about 5 services A, B, C, D and E. Like 5,1,1of:A|B|C|D|E

Sample 1

	A
	B
	C
	D
	E

	Warn
	Ok
	Ok
	Ok
	Ok

Rules and overall states :

	4of: –> Ok

	5,1,1of: –> Warning

	5,2,1of: –> Ok

Sample 2

	A
	B
	C
	D
	E

	Warn
	Warn
	Ok
	Ok
	Ok

Rules and overall states :

	4of: –> Warning

	3of: –> Ok

	4,1,1of: –> Warning

Sample 3

	A
	B
	C
	D
	E

	Crit
	Crit
	Ok
	Ok
	Ok

Rules and overall states :

	4of: –> Critical

	3of: –> Ok

	4,1,1of: –> Critical

Sample 4

	A
	B
	C
	D
	E

	Warn
	Crit
	Ok
	Ok
	Ok

Rules and overall states :

	4of: –> Critical

	4,1,1of: –> Critical

Sample 5

	A
	B
	C
	D
	E

	Warn
	Warn
	Crit
	Ok
	Ok

Rules and overall states :

	2of: –> Ok

	4,1,1of: –> Critical

Sample 6

	A
	B
	C
	D
	E

	Warn
	Crit
	Crit
	Ok
	Ok

Rules and overall states :

	2of: –> Ok
* 2,4,4of: –> Ok
* 4,1,1of: –> Critical
* 4,1,2of: –> Critical
* 4,1,3of: –> Warning

Classic cases

Let’s look at some classic setups, for MAX elements.

	ON/OFF setup : MAXof: <=> MAX,MAX,MAXof:

	Warning as soon as problem, and critical if all criticals : MAX,1,MAXof:

	Worse state : MAX,1,1

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Migrating from Nagios to Shinken

How to to import existing Nagios states

It’s possible with the nagios_retention_file module in fact.

The “migration” is done in two phases :

	First you launch shinken with both NagiosRetention and PickleRetention modules. It will load data from NagiosRetention and save them in a more “efficient” file. So add in shinken-specififc.cfg file both modules for your scheduler object:

modules NagiosRetention ,PickleRetention

	Then you remove the NagiosRetention (it’s a read only module, don’t fear for your nagios retention file) and restart with just PickleRetention. <code>modules PickleRetention

You’re done.

//Source:// Topic on forum [http://www.shinken-monitoring.org/forum/index.php/topic,233.0.html]

Important

This method has met with limited success, further testing of the NagiosRetention module is required. An issues encountered should be raised in the Shinken issue tracker on github.

How to to import Nagios reporting data

There is no out of the box migration path for Historical reports.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Multi layer discovery

Shinken provides a discovery mecanism in several steps. There are on a side the runners (cf Runners description) which are script that output in formatted way properties list of scanned host and on another side discovery rules which use properties list to tag hosts when some of these properties are meaningful.

There are two kinds of rules, those which generate a host definition and those which launch another runners more specific to the scanned object. Better an image than a long speech :

[image: ../_images/shinken_multilayer_discovery.png]

Runners available

Filesystems

Pre-requisites

To make this plugin works you must have snmp activated on targeted hosts. Take care to activate it and make HOST-RESSOURCES MIB OID available to it. Beginning OID of HOST-RESSOURCES MIB is : .1.3.6.1.2.1.25.
The default discovery runner rule trigger this runner on unix host with port 161 open.

How it works:

FS discovery runner provides two modes : __macros__ and __tags__ modes. First one, __macros__ mode, will output a comma-separated list of filesystems under host macro ‘_fs’, the other one will output tags with filesystems mountpoint.

Important

All filesystems will output with character / replaced by an underscore _.

Macros mode.

It is the easiest mode. It will add a line into host definition with host macro ‘_fs’ with comma-separated list of filesystems. Then it is only needed to write a service definition using
that macro with shinken directive “duplicate_foreach”. Here is an example :

define service{
 service_description DisksKEY
 use generic-service
 register 0
 host_name linux
 check_command check_linux_disks!KEY

 duplicate_foreach _fs
}

KEY will be replaced by ‘_fs’ host macros value.

Tag mode

This mode will let you more flexibility to monitor filesystems. Each filesystems will be a tag named with filesystem mountpoint then you need discovery rules to tag scanned host with
filesystem name.
Example if you want to monitor “/var” filesystem on a host with following filesystems “/usr”, “/var”, “/opt”, “/home”, “/”. You will need a discovery rules to match “/var”, then a host
template materializing the tag and a service applied to host template :

define discoveryrule {
 discoveryrule_name fs_var
 creation_type host
 fs var$
 +use fs_var
}

will match “/var” filesystem and tell to tag with “fs_var”.

define host{
 name fs_var
 register 0
}

Host template used be scanned host.

define service{
 host_name fs_var
 use 10min_short
 service_description Usage_var
 check_command check_snmp_storage!"var$$"!50!25
 icon_set disk
 register 0
}

and service applied to “fs_var” host template, itself applied to scanned host.

Now, if you want to apply same treatment to several filesystems, like “/var” and “/home” by example :

define discoveryrule {
 discoveryrule_name fs_var_home
 creation_type host
 fs var$|home$
 +use fs_var_home
}

define host{
 name fs_var_home
 register 0
}

define service{
 host_name fs_var_home
 use 10min_short
 service_description Usage_var_and_home
 check_command check_snmp_storage!"var$$|home$$"!50!25
 icon_set disk
 register 0
}

Pay attention to double “$$”, it is needed cause macros interpretation. When more than one “$” is used just double them else in this example we gotten Shinken trying to interprate macro ‘$|home$’.

Cluster

Pre-requisites

SNMP needed to make this runner works. You have to activate SNMP daemon on host discovered and make OID of clustering solution available to read.
OID beginning for HACMP-MIB is : .1.3.6.1.4.1.2.3.1.2.1.5.1 and for Safekit is : .1.3.6.1.4.1.107.175.10.

How it works

Runner does only detects HACMP/PowerHA and Safekit clustering solutions for the moment. It will scan OID and return cluster name or module name list, depends on Safekit or HACMP.
For an host with two Safekit modules test and prod, runner will output :

./cluster_discovery_runnner.py -H sydlrtsm1 -O linux -C public
sydlrtsm1::safekit=Test,Prod

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Multiple action urls

Since version <insert the version number here>, multiple action urls can be set for a service.

Syntax is :

define service {
 service_description name of the service
 [...]
 action_url URL1,ICON1,ALT1|URL2,ICON2,ALT2|URL3,ICON3,ALT3
}

* URLx are the url you want to use
* ICONx are the images you want to display the link as. It can be either a local file, relative to the folder webui/plugins/eltdetail/htdocs/ or an url.
* ALTx are the alternative texts you want to display when the ICONx file is missing, or not set.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Aggregation rule

Goal

Got a way to define sort of agregation service for host services.

Sample 1

define host{
 _disks /,/var,/backup
}

define service {
 register 0
 description Disk KEY
 check_command check_disk!KEY
}

define service {
 description All Disks
 check_command bp_rule!., Disk $_HOSTDISKS$
}

ok this version sucks, we cannot parse this:

bp_rule!., Disk /,/var/backup</code>

version 2 (tag based agregation)

define host{
 name template
 register 0
}

define host{
 host_name host1
 use template
 _disks /,/var,/backup
}

define service {
 register 0
 description Disk KEY
 check_command check_disk!KEY
 duplicate_foreach _disks
 business_rule_aggregate disks
}

define service {
 description All Disks
 host_name anyhost
 check_command bp_rule!host1,a:disks
}

define service {
 description All Disks template based
 host_name template
 check_command bp_rule!,a:disks
 register 0
}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Scaling Shinken for large deployments

Planning your deployment

A monitoring system needs to meet the expected requirements. The first thing you, as the system/network administrator need to do, is get management buy-in on deploying a supervisory and data acquisition system to meet corporate goals. The second is to define the scope of the monitoring system and its particularities.

	Number of services to supervise

	Service check frequency

	Method of supervising the services Passive versus Active

	Protocol used for data acquisition (ping, SSH, NSCA, TSCA, SNMP, NRPE, NSCAweb, collectd, scripts, etc)

	Retention duration for performance data

	Retention duration for status data

	For each status or performance data determine if it meets the scope and goals of the project.

	Can you live with interpolated data (RRD) or do you require exact representation of data (Graphite)

	Do you need to store performance data out of sequence (Graphite) or not (RRD)

	Do you need Active-Active HA for performance data (Graphite)

	Do you want to make use of Shinken’s store and forward inter-process communications architecture to not lose performance data (Graphite) or not (RRD)

How scalable is Shinken

Shinken can scale out horizontally on multiple servers or vertically with more powerful hardware. Shinken deals automatically with distributed status retention. There is also no need to use external clustering or HA solutions.

Scalability can be described through a few key metrics

	Number of hosts + services supervised

	Number of active checks per second (type of active check having a major impact!)

	Number of check results per second (hosts and services combined)

And to a lesser extent, as performance data is not expected to overload a Graphite server instance (Which a single server can do up to 80K updates per second with millions of metrics) or even RRDTool+RRDcache with a hardware RAID 10 of 10K RPM disks.

	Number of performance data points (if using an external time-series database to store performance data)

Passive versus Active

Passive checks do not need to be scheduled by the monitoring server. Data acquisition and processing is distributed to the monitored hosts permitting lower acquisition intervals and more data points to be collected.

Active checks benefit from Shinken’s powerful availability algorithms for fault isolation and false positive elimination.

A typical installation should make use of both types of checks.

Scaling the data acquisition

Thought needs to be used in determining what protocol to use and how many data points need to be collected will influence the acquisition method. There are many ways to slice an apple, but only a few scale beyond a few thousand services.

What is a big deployment? It depends on check frequency, number of services and check execution latency. 10K per minute NSCA based passive services is nothing for Shinken. 10K SSH checks per minute is unrealistic. 10K SNMP checks per minute can grind a server to a halt if not using an efficient polling method. Large deployments could easily ask for 20K, 50K, 80K services per minute.

	Large numbers of active checks need to use poller modules

	
	nrpe_booster

	snmp_booster

Other integrated poller modules can be easily developed as required for ICMP(ping), SSH, TCP probes, etc.

Check_mk also uses a daemonized poller for its Windows and Unix agents which also makes it a good choice for scaling data acquisition from hosts. Note that WATO, the configuration front-end is not compatible with Shinken at this time. Check_mk is also limited to RRD backends.

Scaling the broker

The broker is a key component of the scalable architecture. Only a single broker can be active per scheduler. A broker can process broks (messages) from multiple schedulers. In most modern deployments, Livestatus is the broker module that provides status information to the web frontends. (Nagvis, Multisite, Thruk, etc.) or Shinken’s own WebUI module. The broker needs memory and processing power.

Avoid using any broker modules that write logs or performance data to disk as an intermediate step prior to submission to the time series database.
Use the Graphite broker module which will directly submit data to load-shared and/or redundant Graphite instances. Graphite [http://graphite.readthedocs.org/en/0.9.10/index.html] is a time-series storage and retrieval database.

Make use of sqlite3 or mongodb to store Livestatus retention data. MongoDB integration with Livestatus is considered somewhat experimental, but can be very beneficial if performance and resiliency are desired. Especially when using a spare broker. MongoDB will ensure historical retention data is available to the spare broker, whereas with SQLite, it will not, and manual syncing is required.

Important

Code optimizations, a new JSON encoder/decoder, indexing and other means of decreasing access time to the in-memory data have been implemented in Shinken 1.2. These enhancements have improved markedly response time for small to extra large Livestatus instances.

Web Interface

MK Multisite and Nagvis are the only viable choices for very large installations. They can use multiple Nagios and Shinken monitoring servers as data providers and are based on the Livestatus API. Livestatus is a networked API for efficient remote access to Shinken run time data.

Dependancy model

Shinken has a great dependency resolution model. Automatic root cause isolation, at a host level, is one method that Shinken provides. This is based on explicitly defined parent/child relationships. This means that on a service or host failure, it will automatically reschedule an immediate check of the parent(s). Once the root failure(s) are found, any children will be marked as unknown status instead of soft down.

This model is very useful in reducing false positives. What needs to be understood is that it depends on defining a dependency tree. A dependency tree is restricted to single scheduler. Shinken provides a distributed architecture, that needs at least two trees for it to make sense.

Splitting trees by a logical grouping makes sense. This could be groups of services, geographic location, network hierarchy or other. Some elements may need to be duplicated at a host level (ex. ping check) like common critical elements (core routers, datacenter routers, AD, DNS, DHCP, NTP, etc.). A typical tree will involve clients, servers, network paths and dependent services. Make a plan, see if it works. If you need help designing your architecture, a professional services offering is in the works by the Shinken principals and their consulting partners.

Scaling the acquisition daemons

Typically pollers and Schedulers use up the most network, CPU and memory resources. Use the distributed architecture to scale horizontally on multiple commodity servers. Use at least a pair of Scheduler daemons on each server. Your dependency model should permit at least two trees, preferably 4.

Active acquisition methods

Scaling SNMP acquisition

Typically for networking devices, SNMP v2c is the most efficient method of data acquisition. Security considerations should be taken into account on the device accepting snmpv2c requests so that they are filtered to specific hosts and restricted to the required OIDs, this is device specific. Snmpv2c does not encrypt or protect the data or the passwords.

There is a myriad of SNMP monitoring scripts, most are utter garbage for scalable installations. This is simply due to the fact that every time they are launched a perl or python interpreter needs to be launched, modules need to be imported, the script executed, results get returned and then the script is cleared from memory. Rinse and repeat, very inefficient. Only two SNMP polling modules can meet high scalability requirements.

Shinken’s integrated SNMP poller can scale to thousands of SNMP checks per second.

Check_mk also has a good SNMP acquisition model.

Scaling NRPE acquisition

Shinken provides an integrated NRPE check launcher. It is implemented in the poller as a module that allows to bypass the launch of the check_nrpe process. It reads the check command and opens the connection itself. It allows a big performance boost for launching check_nrpe calls.

The command definitions should be identical to the check_nrpe calls.

Passive acquisition methods

Scaling metric acquisition

Metrics or performance data (in Nagios speak) are embedded with check results. A check result can have zero or more performance metrics associated with it.
Theses are transparently passed off to systems outside of Shinken using a Broker module. The Graphite broker module can easily send more than 2000 metrics per second. We have not tested the upper limit. Graphite itself can be configured to reach upper bounds of 80K metrics per second.

If a metric does not need its own service, it should be combined with a similar natured check being run on the server. Services are the expensive commodity, as they have all the intelligence like to them such as timeouts, retries, dependencies, etc. With Shinken 1.2 and fast servers, you should not exceed 60K services for optimum performance.

Recommended protocols for scalable passive acquisition

	TSCA (Used under Z/OS and embedded in applications)

	Ws_Arbiter (Used by GLPI)

	NSCA (generic collection)

	Collectd (metrics only, states are calculated from metrics by the Shinen Scheduler using Shinken Python Triggers)

Log management methods

System and application logs should be gathered from servers and network devices. For this a centralized logging and analysis system is required.

Suggested centralized logging systems: OSSEC+Splunk for OSSEC, loglogic, MK Multisite log manager

	Suggested windows agents:

	
	OSSEC agent

	Splunk universal forwarder

	Suggested linux agent:

	
	OSSEC agent

	Splunk universal forwarder

	Suggested Solaris agent:

	
	OSSEC agent

	Splunk universal forwarder

Splunk can aggregate the data, drop worthless data (unless mandated to log everything due to regulatory compliance), aggregate, analyze and alert back into Shinken. Log reporting and dashboards are a million times better in Splunk than anything else. If regulatory compliance causes too much data to be logged, look into using Kibana+logstash instead of Splunk, because Splunk costs a wicked lot per year.

SLA reporting methods

Feed Shinken event data back into Splunk, Thruk, Canopsis to get SLA reports.
Use MK Multisites Livestatus based reporting.

Practical optimization tips

Chapter 59. Tuning Shinken For Maximum Performance

Internal Shinken metrics to monitor

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Defining advanced service dependencies

First, the basics. You create service dependencies by adding service dependency definitions in your object config file(s). In each definition you specify the dependent service, the service you are depending on, and the criteria (if any) that cause the execution and notification dependencies to fail (these are described later).

You can create several dependencies for a given service, but you must add a separate service dependency definition for each dependency you create.

Example Service Dependencies

The image below shows an example logical layout of service notification and execution dependencies. Different services are dependent on other services for notifications and check execution.

[image: ../_images/service-dependencies.png]
In this example, the dependency definitions for Service F on Host C would be defined as follows:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria w,u
}

define servicedependency{
 host_name Host B
 service_description Service E
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria w
 notification_failure_criteria c
}

The other dependency definitions shown in the image above would be defined as follows:

define servicedependency{
 host_name Host A
 service_description Service A
 dependent_host_name Host B
 dependent_service_description Service D
 execution_failure_criteria u
 notification_failure_criteria n
}

define servicedependency{
 host_name Host A
 service_description Service B
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria w,u
 notification_failure_criteria c
}

define servicedependency{
 host_name Host B
 service_description Service C
 dependent_host_name Host B
 dependent_service_description Service E
 execution_failure_criteria n
 notification_failure_criteria w,u,c
}

How Service Dependencies Are Tested

Before Shinken executes a service check or sends notifications out for a service, it will check to see if the service has any dependencies. If it doesn’t have any dependencies, the check is executed or the notification is sent out as it normally would be. If the service does have one or more dependencies, Shinken will check each dependency entry as follows:

	Shinken gets the current status:ref:* <advancedtopics-dependencies#advancedtopics-dependencies-hard_dependencies> of the service that is being depended upon.

	Shinken compares the current status of the service that is being depended upon against either the execution or notification failure options in the dependency definition (whichever one is relevant at the time).

	If the current status of the service that is being depended upon matches one of the failure options, the dependency is said to have failed and Shinken will break out of the dependency check loop.

	If the current state of the service that is being depended upon does not match any of the failure options for the dependency entry, the dependency is said to have passed and Shinken will go on and check the next dependency entry.

This cycle continues until either all dependencies for the service have been checked or until one dependency check fails.

	One important thing to note is that by default, Shinken will use the most current hard state of the service(s) that is/are being depended upon when it does the dependency checks. If you want Shinken to use the most current state of the services (regardless of whether its a soft or hard state), enable the soft_state_dependencies option.

Execution Dependencies

Execution dependencies are used to restrict when active checks of a service can be performed. Passive checks are not restricted by execution dependencies.

If all of the execution dependency tests for the service passed, Shinken will execute the check of the service as it normally would. If even just one of the execution dependencies for a service fails, Shinken will temporarily prevent the execution of checks for that (dependent) service. At some point in the future the execution dependency tests for the service may all pass. If this happens, Shinken will start checking the service again as it normally would. More information on the check scheduling logic can be found here.

In the example above, Service E would have failed execution dependencies if Service B is in a WARNING or UNKNOWN state. If this was the case, the service check would not be performed and the check would be scheduled for (potential) execution at a later time.

Warning

Execution dependencies will limit the load due to useless checks, but can limit some correlation logics, and so should be used only if you trully need them.

Notification Dependencies

If all of the notification dependency tests for the service passed, Shinken will send notifications out for the service as it normally would. If even just one of the notification dependencies for a service fails, Shinken will temporarily repress notifications for that (dependent) service. At some point in the future the notification dependency tests for the service may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the service. More information on the notification logic can be found here.

In the example above, Service F would have failed notification dependencies if Service C is in a CRITICAL state, //and/or* Service D is in a WARNING or UNKNOWN state, and/or// if **Service E* is in a WARNING, UNKNOWN, or CRITICAL state. If this were the case, notifications for the service would not be sent out.

Dependency Inheritance

As mentioned before, service dependencies are not inherited by default. In the example above you can see that Service F is dependent on Service E. However, it does not automatically inherit Service E’s dependencies on Service B and Service C. In order to make Service F dependent on Service C we had to add another service dependency definition. There is no dependency definition for Service B, so Service F is not dependent on Service B.

If you do wish to make service dependencies inheritable, you must use the inherits_parent directive in the service dependency definition. When this directive is enabled, it indicates that the dependency inherits dependencies of the service that is being depended upon (also referred to as the master service). In other words, if the master service is dependent upon other services and any one of those dependencies fail, this dependency will also fail.

In the example above, imagine that you want to add a new dependency for service F to make it dependent on service A. You could create a new dependency definition that specified service F as the dependent service and service A as being the master service (i.e. the service that is being dependend on). You could alternatively modify the dependency definition for services D and F to look like this:

define servicedependency{
 host_name Host B
 service_description Service D
 dependent_host_name Host C
 dependent_service_description Service F
 execution_failure_criteria o
 notification_failure_criteria n
 inherits_parent 1
}

Since the inherits_parent directive is enabled, the dependency between services A and D will be tested when the dependency between services F and D are being tested.

Dependencies can have multiple levels of inheritance. If the dependency definition between A and D had its inherits_parent directive enable and service A was dependent on some other service (let’s call it service G), the service F would be dependent on services D, A, and G (each with potentially different criteria).

Host Dependencies

As you’d probably expect, host dependencies work in a similar fashion to service dependencies. The difference is that they’re for hosts, not services.

Do not confuse host dependencies with parent/child host relationships. You should be using parent/child host relationships (defined with the parents directive in host definitions) for most cases, rather than host dependencies. A description of how parent/child host relationships work can be found in the documentation on network reachability.

Here are the basics about host dependencies:

	A host can be dependent on one or more other host

	Host dependencies are not inherited (unless specifically configured to)

	Host dependencies can be used to cause host check execution and host notifications to be suppressed under different circumstances (UP, DOWN, and/or UNREACHABLE states)

	Host dependencies might only be valid during specific timeperiods

Example Host Dependencies

The image below shows an example of the logical layout of host notification dependencies. Different hosts are dependent on other hosts for notifications.

[image: ../_images/host-dependencies.png]
In the example above, the dependency definitions for Host C would be defined as follows:

define hostdependency{
 host_name Host A
 dependent_host_name Host C
 notification_failure_criteria d
}

define hostdependency{
 host_name Host B
 dependent_host_name Host C
 notification_failure_criteria d,u
}

As with service dependencies, host dependencies are not inherited. In the example image you can see that Host C does not inherit the host dependencies of Host B. In order for Host C to be dependent on Host A, a new host dependency definition must be defined.

Host notification dependencies work in a similar manner to service notification dependencies. If all of the notification dependency tests for the host pass, Shinken will send notifications out for the host as it normally would. If even just one of the notification dependencies for a host fails, Shinken will temporarily repress notifications for that (dependent) host. At some point in the future the notification dependency tests for the host may all pass. If this happens, Shinken will start sending out notifications again as it normally would for the host. More information on the notification logic can be found here.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Shinken’s distributed architecture

Shinken’s distributed architecture for load balancing

The load balancing feature is very easy to obtain with Shinken. If I say that the project’s name comes from it you should believe me :)

	If you use the distributed architecture for load balancing, know that load is typically present in 2 processes:

	
	pollers: they launch checks, they use a lot of CPU resources

	schedulers: they schedule, potentially lots of checks

For both, a limit of 150000 checks/5min is a reasonable goal on an average server(4 cores@3Ghz). Scaling can be achieved horizontally by simply adding more servers and declaring them as pollers or schedulers.

Tip

The scheduler is NOT a multi-threaded process, so even if you add cores to your server, it won’t change it’s performances.

	There are mainly two cases where load is a problem:

	
	using plugins that require lots of processing (check_esx3.pl is a good example)

	scheduling a very large number of checks (> 150000 checks in 5 minutes).

In the first case, you need to add more pollers. In the second, you need to add more schedulers. In this last case, you should also consider adding more pollers (more checks = more pollers) but that can be determined by the load observed on your poller(s).

From now, we will focus on the first case, typically installations have less than 150K checks in 5 minutes, and will only need to scale pollers, not schedulers.

Setup a load balancing architecture with some pollers

Install the poller on the new server

But I already hear you asking “How to add new satellites?”. That’s very simple: you start by installing the application on a new server like you did in the 10 min starting tutorial but you can pass the discovery, the webUI and skip the /etc/init.d/shinken script (or Windows services).

Let say that this new server is called server2 and has the IP 192.168.0.2 and the “master” is called server1 with 192.168.0.1 as its IP.

Tip

You need to have all plugins you use in server1 also installed on server2, this should already done if you followed the 10 min tutorial.

On server2, you just need to start the poller service, not the whole Shinken stack.

 On ubuntu/debian:
update-rc.d shinken-poller default
 On RedHat/Centos:
chkconfig --add shinken-poller
chkconfig shinken-poller on

Then start it:

sudo /etc/init.d/shinken-poller start

Warning

DO NOT START the arbiter on the server2 for load balancing purpose. It can be done for high availability. Unless you know what you are doing, don’t start the arbiter process!^_^

Declare the new poller on the main configuration file

Ok, now you have a brand new poller declared on your new server, server2. But server1 needs to know that it must give work to it. This is done by declaring the new poller in the shinken-specific.cfg file.

Edit your /etc/shinken-specific.cfg file (or c:shinkenetcshinken-specific.cfg under Windows) and define your new poller under the existing poller-1 definition (on server1):

#Pollers launch checks
define poller{
 poller_name poller-2
 address server2
 port 7771
}

Be sure to have also those lines:

define scheduler{
 scheduler_name scheduler-1 ; just the name
 address 192.168.0.1 ; ip or dns address of the daemon
 port 7768 ; tcp port of the daemon

The address has to be 192.168.0.1 or server1 but not localhost!

Important

Check that the line named host in the scheduler.ini is 0.0.0.0 in order to listen on all interfaces.

When it’s done, restart your arbiter:

Under Linux:
sudo /etc/init.d/shinken-arbiter restart
Under Windows:
net stop shinken-arbiter
net start shinken-arbiter

It’s done! You can look at the global shinken.log file (should be under /var/lib/shinken/shinken.log or c:shinkenvarshinken.log) that the new poller is started and can reach scheduler-1.
So look for lines like:

[All] poller satellite order: poller-2 (spare:False), poller-1 (spare:False),
[All] Trying to send configuration to poller poller-2
[All] Dispatch OK of for configuration 0 to poller poller-2

You can also look at the poller logs on server2.
You may have lines like that:

Waiting for initial configuration
[poller-2] Init de connection with scheduler-1 at PYROLOC://192.168.0.1:7768/Checks
[poller-2] Connexion OK with scheduler scheduler-1
We have our schedulers: {0: {'wait_homerun': {}, 'name': u'scheduler-1', 'uri': u'PYROLOC://192.168.0.1:7768/Checks', 'actions': {}, 'instance_id': 0, 'running_id': '1312996582.0', 'address': u'192.168.0.1', 'active': True, 'port': 7768, 'con': <DynamicProxy for PYROLOC://192.168.0.1:7768/Checks>}}
I correctly loaded the modules: []
[poller-2] Allocating new fork Worker: 0

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Shinken’s distributed architecture with realms

Multi customers and/or sites: REALMS

Shinken’s architecture like we saw allows us to have a unique administration and data location. All pollers the hosts are cut and sent to schedulers, and the pollers take jobs from all schedulers. Every one is happy.

Every one? In fact no. If an administrator got a continental distributed architecture he can have serious problems. If the architecture is common to multiple customers network, a customer A scheduler can have a customer B poller that asks him jobs. It’s not a good solution. Even with distributed network, distant pollers should not ask jobs to schedulers in the other continent, it’s not network efficient.

That is where the site/customers management is useful. In Shinken, it’s managed by the realms.

A realm is a group of resources that will manage hosts or hostgroups. Such a link will be unique: a host cannot be in multiple realms. If you put an hostgroup in a realm, all hosts in this group will be in the realm (unless a host already has the realm set, the host value will be taken).

A realm is:

	at least a scheduler

	at least a poller

	can have a reactionner

	can have a broker

In a realm, all realm pollers will take all realm schedulers jobs.

Important

Very important: there is only ONE arbiter (and a spare of course) for ALL realms. The arbiter manages all realms and all that is inside.

Sub-realms

A realm can have sub-realms. It doesn’t change anything for schedulers, but it can be useful for other satellites and spares. Reactionners and brokers are linked to a realm, but they can take jobs from all sub-realms too. This way you can have less reactionners and brokers (like we soon will see).

The fact that reactionners/brokers (and in fact pollers too) can take jobs from sub-schedulers is decided by the presence of the manage_sub_realms parameter. For pollers the default value is 0, but it’s 1 for reactionners/brokers.

An example

To make it simple: you put hosts and/or hostgroups in a realm. This last one is to be considered as a resources pool. You don’t need to touch the host/hostgroup definition if you need more/less performances in the realm or if you want to add a new satellites (a new reactionner for example).

Realms are a way to manage resources. They are the smaller clouds in your global cloud infrastructure :)

If you do not need this feature, that’s not a problem, it’s optional. There will be a default realm created and every one will be put into.

It’s the same for hosts that don’t have a realm configured: they will be put in the realm that has the “default” parameter.

Picture example

Diagrams are good :)

Let’s take two examples of distributed architectures around the world. In the first case, the administrator don’t want to share resources between realms. They are distinct. In the second, the reactionners and brokers are shared with all realms (so all notifications are send from a unique place, and so is all data).

Here is the isolated one:

[image: ../_images/shinken-architecture-isolated-realms.png?800]
And a more common way of sharing reactionner/broker:

[image: ../_images/shinken-architecture-global-realm.png?800]
Like you can see, all elements are in a unique realm. That’s the sub-realm functionality used for reactionner/broker.

Configuration of the realms

Here is the configuration for the shared architecture:

define realm {
 realm_name All
 realm_members Europe,US,Asia
 default 1 ;Is the default realm. Should be unique!
}

define realm{
 realm_name Europe
 realm_members Paris ;This realm is IN Europe
}

An now the satellites:

define scheduler{
 scheduler_name scheduler_Paris
 realm Paris ;It will only manage Paris hosts
}

define reactionner{
 reactionner_name reactionner-master
 realm All ;Will reach ALL schedulers
}

And in host/hostgroup definition:

define host{
 host_name server-paris
 realm Paris ;Will be put in the Paris realm
 [...]
}

define hostgroups{
 hostgroup_name linux-servers
 alias Linux Servers
 members srv1,srv2
 realm Europe ;Will be put in the Europe realm
}

Multi levels brokers

In the previous samples, if you put numerous brokers into the realm, each scheduler will have only one broker at the same time. It was also impossible to have a common Broker in All, and one brokers in each sub-realms.

You can activate multi-brokers features with a realm parameter, the broker_complete_links option (0 by default).

You will have to enable this option in ALL your realms! For example:

define realm{
 realm_name Europe
 broker_complete_links 1
}

This will enable the fact that each scehduler will be linked with each brokers. This will make possible to have dedicated brokers in a same realm (one for WebUI, another for Graphite for example). It will also make possible to have a common Broker in “All”, and one broker in each of its sub-realms (Europe, US and Asia). Of course the sub-brokers will only see the data from their realms, and the sub-realms (like Paris for Europe for example).

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Macro modulations

How macros modulations works

It’s a good idea to have macros for critical/warning levels on the host or its templates. But sometime even with this, it can be hard to manage such cases wher you want to have high levels during the night, and a lower one during the day.

macro_modulations is made for this.

How to define a macro_modulation

define macromodulation{
 macromodulation_name HighDuringNight
 modulation_period night
 _CRITICAL 20
 _WARNING 10
}

define host{
 check_command check_ping
 check_period 24x7
 host_name localhost
 use generic-host
 macromodulations HighDuringNight
 _CRITICAL 5
 _WARNING 2
}

With this, the services will get 5 and 2 for the threshold macros during the day, and will automatically get 20 and 10 during the night timeperiod. You can have as many modulations as you want. The first modulation enabled will take the lead.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Shinken and Android

Shinken can run on an android device like a phone. It can be very useful for one particular daemon: the reactionner that send alerts. With this, you can setup a “sms by phone” architecture, with high availability. We will see that you can also receive ACKs by SMS :)

All you need is one (or two if you want high availability) android phone with an internet connection and Wifi. Any version should work.

Tip

This is of course for fun. Unless you have a secure connection to your monitoring infrastructure. You should never open up your firewall to have in/out communications from a mobile phone directly to your monitoring systems. A serious infrastructure should use an SMS gateway in a DMZ that receives notifications from a your monitoring system. Either sourced as mails, or other message types.

Sending SMS

Install Python on your phone

	enable the “Unknown sources” option in your device’s “Application” settings to allow application installation from another source that the android marker.

	Go to http://code.google.com/p/android-scripting/ and “flash” the barcode with an application like “barcode scanner”, or just download http://android-scripting.googlecode.com/files/sl4a_r4.apk. Install this application.

	Launch the sl4a application you just installed.

	click in the menu button, click “view” and then select “interpreter”

	click the menu button again, then add and select “Python 2.6”. Then click to install.

Install the Pyro lib on your phone

Go to http://pypi.python.org/pypi/Pyro4/ and download the same Pyro that you are using in Shinken.

	Connect your phone to a computer, and open the sdcard disk.

	Untar the Pyro4 tar ball, and copy the Pyro4 library directory (the one IN the Pyro4-10 directory, NOT the 4.10 directory itself) and copy/paste it in SDCARD/com.googlecode.pythonforandroidextraspython directory. Be sure the file SDCARDcom.googlecode.pythonforandroidextraspythonPyro__init__.py exists, or you put the wrong directory here.

	Don’t close your sdcard explorer

Install Shinken on your phone

	Like for Pyro, copy your shinken library directory in SDCARDcom.googlecode.pythonforandroidextraspython. If you do not have the SDCARDcom.googlecode.pythonforandroidextraspythonshinken__ini__.py file, you put the bad directory.

	Copy the bin/shinken-reactionner file in SDCARDsl4ascripts direcotry and rename it shinken-reactionner.py (so add the .py extension)

Time to launch the Shinken app on the phone

	Unmount the phone from your computer and be sure to re-mount the sdcard on your phone (look at the notifications).

	Launch the sl4a app

	launch the shinken-reactionner.py app in the script list.

	It should launch without errors

Declare this daemon in the central configuration

The phone(s) will be a new reactionner daemon. You should want to only launch SMS with it, not mail commands or nother notifications. So you will have to define this reactionner to manage only the SMS commands. There is an example of such SMS-reactionner in the sample etc/shinken-specific.cfg file and the module AndroidSMS need by this reactionner to send SMS with android.

define reactionner{
 reactionner_name reactionner-Android
 address WIFIIPOFYOURPHONE
 port 7769
 spare 0

 # Modules
 modules AndroidSMS
 reactionner_tags android_sms

 }

Reactionner can be launched under an android device
and can be used to send SMS with this module
define module{
 module_name AndroidSMS
 module_type android_sms
}

The important lines are:

	address: put the Wifi address of your phone

	modules: load the Android module to be able to manage sms sent.

	reactionner_tags: only android_sms commands will be send to this reactionner.

In the commands.cfg, there are example of sms sending commands

For Android SMS things
You need both reactionner_tag and module_type in most cases!
define command{
 command_name notify-host-by-android-sms
 command_line android_sms $CONTACTPAGER$ Host: $HOSTNAME$\nAddress: $HOSTADDRESS$\nState: $HOSTSTATE$\nInfo: $OUTPUT$\nDate: $DATETIME$
 reactionner_tag android_sms
 module_type android_sms
}

define command{
 command_name notify-service-by-android-sms
 command_line android_sms $CONTACTPAGER$ Service: $SERVICEDESC$\nHost: $HOSTNAME$\nAddress: $HOSTADDRESS$\nState: $SERVICESTATE$\nInfo: $OUTPUT$\nDate: $DATETIME$
 reactionner_tag android_sms
 module_type android_sms
}

	The important part are the reactionner_tag and module_type lines. With this parameter, you are sure the command will be managed by:

	
	only the reactionner(s) with the tag android_sms, and in this reactionner, it will be managed by the module android_sms.

Add SMS notification ways

In order to use SMS, it is a good thing to add notification way dedicated to send SMS, separated from email notifications.
Edit templates and add theses lines to declare a new notification way using SMS (more about notification ways) :

define notificationway{
 notificationway_name android-sms
 service_notification_period 24x7
 host_notification_period 24x7
 service_notification_options c,w,r
 host_notification_options d,u,r,f,s
 service_notification_commands notify-service-by-android-sms
 host_notification_commands notify-host-by-android-sms
}

Add SMS to your contacts

You only need to add theses commands to your contacts (or contact templates, or notification ways) to send them SMS:

define contact{
 name generic-contact ; The name of this contact template
 [...]
 notificationways email,android-sms ; Use email and sms to notify the contact

That’s all.

Receive SMS: acknowledge with a SMS

Pre-requite

You need to have a working android-reactionner with the sms module. The sms reception will be automatically enabled.

How to send ACK from SMS?

All you need is to send a SMS to the phone with the format:

For a service:

ACK host_name/service_description

For an host:

ACK host_name

And it will automatically raise an acknowledgment for this object :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Send sms by gateway

Shinken can be used to send sms to you and other people when you got an alert.

I will tell you how to do it with ovh gateway. If you need for another one you need to modify a little bit the information.

1. you need to go to your contact.cfg who is for linux in /usr/local/shinken/etc/contacts.cfg

For each user you need to add her phone number in the pager line. (For ovh you need to do it with 0032 for example and not +32 , all phone number must be with the international prefix).

In the same file you need also to add these lines in each contact you want that I receive ams.

host_notifications_enabled 1 // This will activate the notifications for the hosts
service_notifications_enabled 1 // This will activate the notifications for the services
notificationways SMS // This is the name of your notifications ways (You can write what you want but remember what you set)

Then you need to add this at the end of the contacts.cfg

define notificationway{
 notificationway_name SMS // Here you need to put the name of the notifications ways you write up
 service_notification_period 24x7 // Here I will receive ams all the time, If you wanna receive them for only the night replace 24x7 by night.
 host_notification_period 24x7 // Same as above
 service_notification_options w,c,r // It tell that I want receive a sms for the hosts who are in warning / critical / recovery
 host_notification_options d,r // It tell that I want receive a sms for the services who are down and recovery
 service_notification_commands notify-service-by-ovhsms // The name of the notifications
 host_notification_commands notify-host-by-ovhsms
}

2. you need to go to your commands.cfg who is in /usr/local/shinken/etc/commands.cfg

And add these line at the end.

Notify Service by SMS-OVH
define command {
 command_name notify-service-by-ovhsms // Should be the same as in the contacts.cfg
 command_line $PLUGINSDIR$/ovhsms.sh $CONTACTPAGER$ $NOTIFICATIONTYPE$ $SERVICEDESC$ $HOSTNAME$ SE // Tell wich script shinken as to use to send sms. We will create it after.
}

Notify host by SMS-OVH
define command {
 command_name notify-host-by-ovhsms * * Should be the same as in the contacts.cfg
 command_line $PLUGINSDIR$/ovhsms.sh $CONTACTPAGER$ $NOTIFICATIONTYPE$ $SERVICEDESC$ $HOSTNAME$ SER // Tell wich script shinken as to use to send sms. We will create it after.
}

3. Add the script

First you need to be the shinken user so do a : su shinken
do a : cd /usr/local/shinken/libexec/
and then create and edit your new script with the name you set above : nano -w ovhsms.sh

#!/bin/bash

date > ~/datesms

NOTIFICATIONTYPE=$2
HOSTALIAS=$3
SERVICEDESC=$4
SERVICESTATE=$5
textesms="**"$NOTIFICATIONTYPE" alerte - "$HOSTALIAS"/"$SERVICEDESC" is "$SERVICESTATE" **" // This is the message who will be send. You can add something if you want.
wget -o ~/logenvoisms -O ~/reponse "https://www.ovh.com/cgi-bin/sms/http2sms.cgi?smsAccount=sms-XXXXXXXX-1&login=XXXXXXXX&password=XXXXXXXX&from=XXXXXXXXXXX&to=$1&contentType=text/xml&message=$textesms" // This is the command who will send the sms. You need to adapt it with you gateway settings.

exit 0

4. Test It

Save your file and do : “exit”
To exit the shinken user.
Then set down one of your host or service to test if you receive it.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Triggers

Warning

This is currently in Beta. DO NOT use in production.

Note

Not up to date. See the bottom part for something recent

A trigger object is something that can be called after a “change” on an object. It’s a bit like Zabbix trigger, and should be used only if you need it. In most cases, direct check is easier to setup :)

It’s defined like:

Here is an example that will raise a critical check if the CPU is too loaded:

Simple rule

define trigger{
 trigger_name One_Cpu_too_high
 matching_rule perf(self, 'cpu') >= 95
 hit_action critical(self, 'Cpu is too loaded')
}

Rule with an OR

Another one that will look if at least one CPU is too loaded (> 90% load) or the overall CPU is too loaded too (total > 60%):

define trigger{
 trigger_name One_or_more_cpu_too_high
 matching_rule max([perf(self, 'cpu*')]) > 90 | avg([perf(self, 'cpu*')]) > 60
 hit_action critical(self, 'Cpu is too loaded')
}

Advanced correlation: active/passive cluster check

It can be used for advanced correlation too:

If you want to do an active/passive check without a bp_rule here an example. This service will be the “cluster” service that show the overall state. It will have 2 custom macros: “master”, the master server and “slave” the slave one.

define trigger{
 trigger_name Bad_active_passive
 matching_rule (service(self.customs['master']).state == 'CRITICAL' & service(self.customs['slave']).state == 'CRITICAL') | (service(self.customs['master']).state == service(self.customs['slave']).state)
 hit_action critical(self, 'Cluster got a problem')
}

And if you want you can define a degraded one you can define another trigger for this same “cluster” service:

define trigger{
 trigger_name Degraded_service
 matching_rule service(self.customs['master']).state == 'CRITICAL' & service(self.customs['slave']).state == 'OK'
 hit_action warning(self, 'Cluster runs on slave!')
}

Statefull rules

Here an example with statefull rules.

I will read a regexp like PORTSCAN FROM (S+) TO S+:(d+) on a service, and create an “event” that got a 60min lifetime. It will be add on services on all hosts for example.

define trigger{
 trigger_name Log_post_scan
 matching_rule regexp(self.output, 'PORTSCAN FROM (?P<source>\S+) TO (?P<dest>\S+):(?P<port>\d+)')
 hit_action create_event('HORIZONTAL SCAN FROM SOURCE IP %s' % source, 60)
}

And a aggregated one will raise the alert if need:

define trigger{
 trigger_name Raise_too_much_scans
 matching_rule sources=get_events_count_group_by('HORIZONTAL SCAN FROM SOURCE IP (?P<source>\S+)'))
 hit_action [critical(self, 'The IP %s scan too much ips' % source) for (source, nb) in sources.iteritems() if nb > 10]
}

Compute KPI

You maybe want to compute a “KPI” (key point indicator) from various sources. You can also do it with triggers.

Let take an example, You got a cluster of N webservers. Each is returning in a check the number of active connections, but you want the overall. You just need to define a new service that will take it’s data from the N others.

define trigger{
 trigger_name Count_active_connections
 matching_rule True;total_connections=sum(perfs('web-srv*/Http', 'active_connections'))
 hit_action set_perfdata(self, 'total_connections=%d' % total_connections)
}

Define and use triggers

Note

More or less up to date

Use the trigger_name directive to link a trigger to a service or host. Example :

define service{
 use local-service ; Name of service template to use
 host_name localhost
 service_description Current Load trigger
 check_command check_local_load!5.0,4.0,3.0!10.0,6.0,4.0
 trigger_name simple_cpu
 }

Then define your trigger in etc/trigger.d/yourtrigger.trig. here the file is simple_cpu.trig

try:

 load = perf(self, 'load1')
 print "Founded load", load
 if load >= 10:
 critical(self, 'CRITICAL | load=%d' % load)
 elif load >= 5:
 warning(self, 'WARNING | load=%d' % load)
 else:
 ok(self, 'OK | load=%d' % load)
except:

 unknown(self, 'UNKNOWN | load=%d' % load)

Finally, add the triggers_dir=trigger.d statement to your shinken.cfg

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Unused nagios parameters

The parameters below are managed in Nagios but not in Shinken because they are useless in the architecture. If you really need one of them, please use Nagios instead or send us a patch :)

Note

The title is quite ambiguous : a not implemented parameter is different from an unused parameter.

The difference has been done in this page, why about creating a not_implemented_nagios_parameters?

External Command Check Interval (Unused)

	Format:
	command_check_interval=<xxx>[s]

	Example:
	command_check_interval=1

If you specify a number with an “s” appended to it (i.e. 30s), this is the number of seconds to wait between external command checks. If you leave off the “s”, this is the number of “time units” to wait between external command checks. Unless you’ve changed the Timing Interval Length value (as defined below) from the default value of 60, this number will mean minutes.

By setting this value to -1, Nagios will check for external commands as often as possible. Each time Nagios checks for external commands it will read and process all commands present in the External Command File before continuing on with its other duties. More information on external commands can be found here.

External Command Buffer Slots (Not implemented)

	Format:
	external_command_buffer_slots=<#>

	Example:
	external_command_buffer_slots=512

This is an advanced feature.

This option determines how many buffer slots Nagios will reserve for caching external commands that have been read from the external command file by a worker thread, but have not yet been processed by the main thread of the Nagios deamon. Each slot can hold one external command, so this option essentially determines how many commands can be buffered. For installations where you process a large number of passive checks (e.g. distributed setups), you may need to increase this number. You should consider using MRTG to graph Nagios’ usage of external command buffers.

Use Retained Program State Option (Not implemented)

	Format:
	use_retained_program_state=<0/1>

	Example:
	use_retained_program_state=1

This setting determines whether or not Nagios will set various program-wide state variables based on the values saved in the retention file. Some of these program-wide state variables that are normally saved across program restarts if state retention is enabled include the Notifications Option, Flap Detection Option, Event Handler Option, Service Check Execution Option, and Passive Service Check Acceptance Option !!!!!!!!!! options. If you do not have State Retention Option enabled, this option has no effect.

	0 = Don’t use retained program state

	1 = Use retained program state (default)

Use Retained Scheduling Info Option (Not implemented)

	Format:
	use_retained_scheduling_info=<0/1>

	Example:
	use_retained_scheduling_info=1

This setting determines whether or not Nagios will retain scheduling info (next check times) for hosts and services when it restarts. If you are adding a large number (or percentage) of hosts and services, I would recommend disabling this option when you first restart Nagios, as it can adversely skew the spread of initial checks. Otherwise you will probably want to leave it enabled.

	0 = Don’t use retained scheduling info

	1 = Use retained scheduling info (default)

Retained Host and Service Attribute Masks (Not implemented)

	Format:
	retained_host_attribute_mask=<number>

retained_service_attribute_mask=<number>

	Example:
	retained_host_attribute_mask=0

retained_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which host or service attributes are NOT retained across program restarts. The values for these options are a bitwise AND of values specified by the “MODATTR_” definitions in the “include/common.h” source code file. By default, all host and service attributes are retained.

Retained Process Attribute Masks (Not implemented)

	Format:
	retained_process_host_attribute_mask=<number>

retained_process_service_attribute_mask=<number>

	Example:
	retained_process_host_attribute_mask=0

retained_process_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which process attributes are NOT retained across program restarts. There are two masks because there are often separate host and service process attributes that can be changed. For example, host checks can be disabled at the program level, while service checks are still enabled. The values for these options are a bitwise AND of values specified by the “MODATTR_” definitions in the “include/common.h” source code file. By default, all process attributes are retained.

Retained Contact Attribute Masks (Not implemented)

	Format:
	retained_contact_host_attribute_mask=<number>

retained_contact_service_attribute_mask=<number>

	Example:
	retained_contact_host_attribute_mask=0i

retained_contact_service_attribute_mask=0

This is an advanced feature. You’ll need to read the Nagios source code to use this option effectively.

These options determine which contact attributes are NOT retained across program restarts. There are two masks because there are often separate host and service contact attributes that can be changed. The values for these options are a bitwise AND of values specified by the “MODATTR_” definitions in the “include/common.h” source code file. By default, all process attributes are retained.

Service Inter-Check Delay Method (Unused)

	Format:
	service_inter_check_delay_method=<n/d/s/x.xx>

	Example:
	service_inter_check_delay_method=s

This option allows you to control how service checks are initially “spread out” in the event queue. Using a “smart” delay calculation (the default) will cause Nagios to calculate an average check interval and spread initial checks of all services out over that interval, thereby helping to eliminate CPU load spikes. Using no delay is generally not recommended, as it will cause all service checks to be scheduled for execution at the same time. This means that you will generally have large CPU spikes when the services are all executed in parallel. More information on how to estimate how the inter-check delay affects service check scheduling can be found here. Values are as follows:

	n = Don’t use any delay - schedule all service checks to run immediately (i.e. at the same time!)

	d = Use a “dumb” delay of 1 second between service checks

	s = Use a “smart” delay calculation to spread service checks out evenly (default)

	x.xx = Use a user-supplied inter-check delay of x.xx seconds

Inter-Check Sleep Time (Unused)

	Format:
	sleep_time=<seconds>

	Example:
	sleep_time=1

This is the number of seconds that Nagios will sleep before checking to see if the next service or host check in the scheduling queue should be executed. Note that Nagios will only sleep after it “catches up” with queued service checks that have fallen behind.

Service Interleave Factor (Unused)

	Format:
	service_interleave_factor=<s/x>

	Example:
	service_interleave_factor=s

This variable determines how service checks are interleaved. Interleaving allows for a more even distribution of service checks, reduced load on remote hosts, and faster overall detection of host problems. Setting this value to 1 is equivalent to not interleaving the service checks (this is how versions of Nagios previous to 0.0.5 worked). Set this value to s (smart) for automatic calculation of the interleave factor unless you have a specific reason to change it. The best way to understand how interleaving works is to watch the status CGI (detailed view) when Nagios is just starting. You should see that the service check results are spread out as they begin to appear. More information on how interleaving works can be found here.

	x = A number greater than or equal to 1 that specifies the interleave factor to use. An interleave factor of 1 is equivalent to not interleaving the service checks.

	s = Use a “smart” interleave factor calculation (default)

Maximum Concurrent Service Checks (Unused)

	Format:
	max_concurrent_checks=<max_checks>

	Example:
	max_concurrent_checks=20

This option allows you to specify the maximum number of service checks that can be run in parallel at any given time. Specifying a value of 1 for this variable essentially prevents any service checks from being run in parallel. Specifying a value of 0 (the default) does not place any restrictions on the number of concurrent checks. You’ll have to modify this value based on the system resources you have available on the machine that runs Nagios, as it directly affects the maximum load that will be imposed on the system (processor utilization, memory, etc.). More information on how to estimate how many concurrent checks you should allow can be found here.

Check Result Reaper Frequency (Unused)

	Format:
	check_result_reaper_frequency=<frequency_in_seconds>

	Example:
	check_result_reaper_frequency=5

This option allows you to control the frequency in seconds of check result “reaper” events. “Reaper” events process the results from host and service checks that have finished executing. These events consitute the core of the monitoring logic in Nagios.

Maximum Check Result Reaper Time

Note

Is it Unused or Not Implemeted??

	Format:
	max_check_result_reaper_time=<seconds>

	Example:
	max_check_result_reaper_time=30

This option allows you to control the maximum amount of time in seconds that host and service check result “reaper” events are allowed to run. “Reaper” events process the results from host and service checks that have finished executing. If there are a lot of results to process, reaper events may take a long time to finish, which might delay timely execution of new host and service checks. This variable allows you to limit the amount of time that an individual reaper event will run before it hands control back over to Nagios for other portions of the monitoring logic.

Check Result Path (Unused)

	Format:
	check_result_path=<path>

	Example:
	check_result_path=/var/spool/nagios/checkresults

This options determines which directory Nagios will use to temporarily store host and service check results before they are processed. This directory should not be used to store any other files, as Nagios will periodically clean this directory of old file (see the :ref:Max Check Result File Age option above for more information).

Make sure that only a single instance of Nagios has access to the check result path. If multiple instances of Nagios have their check result path set to the same directory, you will run into problems with check results being processed (incorrectly) by the wrong instance of Nagios!

Max Check Result File Age (Unused)

	Format:
	max_check_result_file_age=<seconds>

	Example:
	max_check_result_file_age=3600

This options determines the maximum age in seconds that Nagios will consider check result files found in the check_result_path directory to be valid. Check result files that are older that this threshold will be deleted by Nagios and the check results they contain will not be processed. By using a value of zero (0) with this option, Nagios will process all check result files - even if they’re older than your hardware :-).

Host Inter-Check Delay Method (Unused)

	Format:
	host_inter_check_delay_method=<n/d/s/x.xx>

	Example:
	host_inter_check_delay_method=s

This option allows you to control how host checks that are scheduled to be checked on a regular basis are initially “spread out” in the event queue. Using a “smart” delay calculation (the default) will cause Nagios to calculate an average check interval and spread initial checks of all hosts out over that interval, thereby helping to eliminate CPU load spikes. Using no delay is generally not recommended. Using no delay will cause all host checks to be scheduled for execution at the same time. More information on how to estimate how the inter-check delay affects host check scheduling can be found here. Values are as follows:

	n = Don’t use any delay - schedule all host checks to run immediately (i.e. at the same time!)

	d = Use a “dumb” delay of 1 second between host checks

	s = Use a “smart” delay calculation to spread host checks out evenly (default)

	x.xx = Use a user-supplied inter-check delay of x.xx seconds

Auto-Rescheduling Option (Not implemented)

	Format:
	auto_reschedule_checks=<0/1>

	Example:
	auto_reschedule_checks=1

This option determines whether or not Nagios will attempt to automatically reschedule active host and service checks to “smooth” them out over time. This can help to balance the load on the monitoring server, as it will attempt to keep the time between consecutive checks consistent, at the expense of executing checks on a more rigid schedule.

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING THIS OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Interval (Not implemented)

	Format:
	auto_rescheduling_interval=<seconds>

	Example:
	auto_rescheduling_interval=30

This option determines how often (in seconds) Nagios will attempt to automatically reschedule checks. This option only has an effect if the Auto-Rescheduling Option option is enabled. Default is 30 seconds.

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Auto-Rescheduling Window (Not implemented)

	Format:
	auto_rescheduling_window=<seconds>

	Example:
	auto_rescheduling_window=180

This option determines the “window” of time (in seconds) that Nagios will look at when automatically rescheduling checks. Only host and service checks that occur in the next X seconds (determined by this variable) will be rescheduled. This option only has an effect if the Auto-Rescheduling Option option is enabled. Default is 180 seconds (3 minutes).

THIS IS AN EXPERIMENTAL FEATURE AND MAY BE REMOVED IN FUTURE VERSIONS. ENABLING THE AUTO-RESCHEDULING OPTION CAN DEGRADE PERFORMANCE - RATHER THAN INCREASE IT - IF USED IMPROPERLY!

Aggressive Host Checking Option (Unused)

	Format:
	use_aggressive_host_checking=<0/1>

	Example:
	use_aggressive_host_checking=0

Nagios tries to be smart about how and when it checks the status of hosts. In general, disabling this option will allow Nagios to make some smarter decisions and check hosts a bit faster. Enabling this option will increase the amount of time required to check hosts, but may improve reliability a bit. Unless you have problems with Nagios not recognizing that a host recovered, I would suggest not enabling this option.

	0 = Don’t use aggressive host checking (default)

	1 = Use aggressive host checking

Translate Passive Host Checks Option (Not implemented)

	Format:
	translate_passive_host_checks=<0/1>

	Example:
	translate_passive_host_checks=1

This option determines whether or not Nagios will translate DOWN/UNREACHABLE passive host check results to their “correct” state from the viewpoint of the local Nagios instance. This can be very useful in distributed and failover monitoring installations. More information on passive check state translation can be found here.

	0 = Disable check translation (default)

	1 = Enable check translation

Child Process Memory Option (Unused)

	Format:
	free_child_process_memory=<0/1>

	Example:
	free_child_process_memory=0

This option determines whether or not Nagios will free memory in child processes when they are fork()ed off from the main process. By default, Nagios frees memory. However, if the use_large_installation_tweaks option is enabled, it will not. By defining this option in your configuration file, you are able to override things to get the behavior you want.

	0 = Don’t free memory

	1 = Free memory

Child Processes Fork Twice (Unused)

	Format:
	child_processes_fork_twice=<0/1>

	Example:
	child_processes_fork_twice=0

This option determines whether or not Nagios will fork() child processes twice when it executes host and service checks. By default, Nagios fork()s twice. However, if the use_large_installation_tweaks option is enabled, it will only fork() once. By defining this option in your configuration file, you are able to override things to get the behavior you want.

	0 = Fork() just once

	1 = Fork() twice

Event Broker Options (Unused)

	Format:
	event_broker_options=<#>

	Example:
	event_broker_options=-1

This option controls what (if any) data gets sent to the event broker and, in turn, to any loaded event broker modules. This is an advanced option. When in doubt, either broker nothing (if not using event broker modules) or broker everything (if using event broker modules). Possible values are shown below.

	0 = Broker nothing

	-1 = Broker everything

	# = See BROKER_* definitions in source code (“include/broker.h”) for other values that can be OR’ed together

Event Broker Modules (Unused)

	Format:
	broker_module=<modulepath> [moduleargs]

	Example:
	broker_module=/usr/local/nagios/bin/ndomod.o cfg_file=/usr/local/nagios/etc/ndomod.cfg

This directive is used to specify an event broker module that should by loaded by Nagios at startup. Use multiple directives if you want to load more than one module. Arguments that should be passed to the module at startup are seperated from the module path by a space.

Do NOT overwrite modules while they are being used by Nagios or Nagios will crash in a fiery display of SEGFAULT glory. This is a bug/limitation either in “dlopen()”, the kernel, and/or the filesystem. And maybe Nagios...

The correct/safe way of updating a module is by using one of these methods:

	Shutdown Nagios, replace the module file, restart Nagios

	While Nagios is running... delete the original module file, move the new module file into place, restart Nagios

Debug File (Unused)

	Format:
	debug_file=<file_name>

	Example:
	debug_file=/usr/local/nagios/var/nagios.debug

This option determines where Nagios should write debugging information. What (if any) information is written is determined by the Debug Level and Debug Verbosity options. You can have Nagios automaticaly rotate the debug file when it reaches a certain size by using the Maximum Debug File Size option.

Debug Level (Unused)

	Format:
	debug_level=<#>

	Example:
	debug_level=24

This option determines what type of information Nagios should write to the Debug File. This value is a logical OR of the values below.

	-1 = Log everything

	0 = Log nothing (default)

	1 = Function enter/exit information

	2 = Config information

	4 = Process information

	8 = Scheduled event information

	16 = Host/service check information

	32 = Notification information

	64 = Event broker information

Debug Verbosity (Unused)

	Format:
	debug_verbosity=<#>

	Example:
	debug_verbosity=1

This option determines how much debugging information Nagios should write to the Debug File.

	0 = Basic information

	1 = More detailed information (default)

	2 = Highly detailed information

Maximum Debug File Size (Unused)

	Format:
	max_debug_file_size=<#>

	Example:
	max_debug_file_size=1000000

This option determines the maximum size (in bytes) of the debug file. If the file grows larger than this size, it will be renamed with a .old extension. If a file already exists with a .old extension it will automatically be deleted. This helps ensure your disk space usage doesn’t get out of control when debugging Nagios.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Advanced discovery with Shinken

Important

This topic assumes you have read and understood simple discovery with Shinken.

How the discovery script works

Did you like the discovery script? Now it’s time to look at how it works, and get even more from it.

	The discovery is done in two distinct phases:

	
	the discovery script runs generate raw data

	the discovery rules use this data to generate objects like hosts or services

Discovery scripts

A discovery script can be anything you can launch from a shell, just like plugins. As mentioned their main goal is to generate raw data for objects. Yes, it can be open ports of a server, or the number of wheels your car has, as you want. :)

The raw data is being sent to standard out.

Here is an example of the output of the nmap script for a standard Linux box:

$ libexec/nmap_discovery_runner.py -t localhost

localhost::isup=1
localhost::os=linux
localhost::osversion=2.6.X
localhost::macvendor=
localhost::openports=22,80,1521,3306,5432,5666,6502,8080,50000
localhost::fqdn=localhost
localhost::ip=127.0.0.1

So the output format is:

objectname::key=value

If there are multiple values, like here for open ports, they are separated by commas “’‘,’‘”.

The discovery script definitions (like nmap or vmware used by default) are located in the file ‘’/etc/shinken/discovery_runs.cfg’‘.

Discovery rules

Without rules, the raw data that is being generated by the discovery scripts is useless.
The rules are defined in the ‘’/etc/shinken/discovery_rules.cfg’’ file.

Host rule

Here is an example of how to create a “generic” host for anything that is detected by nmap and answers to a ping request:

define discoveryrule {
 discoveryrule_name HostGeneric
 creation_type host

 isup 1

 use generic-host
}

	There are three main parts for a rule:

	
	‘’discoveryrule_name’’ and ‘’creation_type’’ parameter. The first one should be unique, and the second can be ‘host’ or ‘service’ (default). More types will be added in the future.

	‘’isup’‘: refers the key name that will be looked up in the raw data from the discovery scripts. It’s value (here 1) will be used for a comparison. If all key/values pairs are good, the rule is valid, and will be applied.

	‘’use’‘: This mentions the template from which the generated object will inherit from. You can add as many properties as you want.

Service rule

Here is an example for a port matching rule service creation:

define discoveryrule {
 discoveryrule_name Ftp

 openports ^21$

 check_command check_ftp
 service_description Ftp
 use generic-service
}

Here, if the port 21 is open. The ^and $ is for the regexp thing, so 21 and only 21 will be match, and not 210 for example.

The service generated will be with FTP for the host_name the object_name send by the discovery script, the check_command check_ftp and it will use the generic-service template.

The ! (not) key

You can ask not to match a rule. It’s very easy, just add a ! character before the key name.

For example:

define discoveryrule {
 discoveryrule_name Ftp

 openports ^21$
 !os linux

 check_command check_ftp
 service_description Ftp
 use generic-service
}

This will create the Ftp service for all hosts that have port 21 open, but not for the linux ones.

Add something instead of replace

By default, when you put a new host/service property, it will replace all previously detected values. For some properties like templates or groups, this is not a good idea. That’s why you can say a property should be “added” by using the character “+” before it.

For example, we want to add the “ftp” and “http” templates on the host, without removing all previously inserted values.

define discoveryrule {
 discoveryrule_name Ftp
 creation_type host
 openports ^21$
 +use ftp
}

define discoveryrule {
 discoveryrule_name Http
 creation_type host
 openports ^21$
 +use http
}

If both ports are open, it will create an host with:

define host {
 host_name localhost
 use ftp,http
}

Important

The rules order is important, here ftp apply before http. So put the “generic” template at the end of you rules file.

Important

Why is the rule order important, explain the impact.

Delete something after add

Sometimes you need to simply remove a property that conflicts with a new one. For example, some routers are derived from linux system but does not work with the linux template. That’s why you can say a property should be “remove” by using the character “-” before it.

For exemple we want to add the “router-os” template but not the “linux” template on the host and do not remove previously inserted values.

define discoveryrule {
 discoveryrule_name Ftp
 creation_type host
 openports ^21$
 +use ftp
}

define discoveryrule {
 discoveryrule_name Http
 creation_type host
 openports ^21$
 +use http
}

define discoveryrule {
 discoveryrule_name Linux
 creation_type host
 os linux
 +use linux
}

define discoveryrule {
 discoveryrule_name RouterOS
 creation_type host
 macvendor routerboard
 +use router-os
 -use linux
}

If both ports are open, os detected is linux and the macvendor is routerboard it will create an host with:

define host {
 host_name myrouter
 use ftp,http,router-os
}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Advanced Topics

Discovery with Shinken

Simple use of the discovery tool

When Shinken is installed, the discovery script shinken-discovery can help you start your new monitoring tool and integrate a large number of hosts. This does not not replace extracting data from an authoritative CMDB/IT reference for provisioning known hosts. It can be used to supplement the data from the authoritative references.

	At this time, two “discovery” modules are available:

	
	Network based discovery using nmap

	VMware based discovery, using the check_esx3.pl script communicating with a vCenter installation.

It is suggested to execute both discovery modules in one pass, because one module can use data from the other.

Setup nmap discovery

The network discovery scans your network and sets up a basic monitoring configuration for all your hosts and network services. It uses the nmap tool.

Ubuntu:

sudo apt-get install nmap

RedHat/Centos:

yum install nmap

Windows: Not available at this time.

You need to setup the nmap targets in the file /usr/local/shinken/etc/resource.cfg:
For nmap:

$NMAPTARGETS$=localhost www.google.fr 192.168.0.1-254

This will scan the localhost, one of the numerous Google server and your LAN. Change it to your own LAN values of course!

Tip

This value can be changed without modifying this file with the -m discovery script argument

Setup the VMware part

Tip

Of course, if you do not have a vCenter installation, skip this part ...

You will need the check_esx3.pl script. You can get it at http://www.op5.org/community/plugin-inventory/op5-projects/op5-plugins and install it in your standard plugin directory (should be /var/lib/plugins/nagios by default).

You need to setup vcenter acces in the file /etc/shinken/resource.cfg:
Enter your server and credential (can be an account domain)

$VCENTER$=vcenter.mydomain.com
$VCENTERLOGIN$=someuser
$VCENTERPASSWORD$=somepassowrd

Launch it!

Now, you are ready to run the discovery tool:

This call will create hosts and services for nmap and vmware (vsphere) scripts in the /etc/shinken/object/discovery directory.

sudo shinken-discovery -o /etc/shinken/objects/discovery -r nmap,vsphere

If you are lazy and do not want to edit the resource file, you can set macros with the -m arguments:

sudo shinken-discovery -o /etc/shinken/objects/discovery -r nmap -m "NMAPTARGETS=192.168.0.1-254 localhost 192.168.0.1-254"

You can set several macros, just put them on the same -m argument, separated by a comma (,).

Tip

The scan can take quite a few minutes if you are scanning a large network, you can go have a coffee. The scan timeout is set to 60 minutes.

Restart Shinken

Once the scan is completed, you can restart Shinken and enjoy your new hosts and services:

sudo /etc/init.d/shinken restart

More about discovery

If you want to know more about the discovery process, like how to create a discovery script or define creation rules, consult the advanced discovery documentation.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Shinken Architecture

	Arbiter supervision of Shinken processes
	Introduction

	Supervision method

	Adjusting timers for large configurations

	Diagrams

	Advanced architectures
	= Distributed architecture
	High availability architecture

	Mixed Architecture (poller GNU/Linux and Windows or LAN/DMZ)

	Multi customers and/or sites: REALMS

	Sub-realms

	An example ?

	Picture example

	Configuration of the realms

	How are commands and configurations managed in Shinken
	Configuration dispatching

	Configuration changes on running systems

	External commands dispatching
	Method 1 - Via the Arbiter daemon

	Method 2 - Via the Livestatus API

	Problems and impacts correlation management
	What is this correlation ?

	How to enable it?

	Dynamic Business Impact

	Problems and impacts correlation management
	What is this correlation ?

	How to enable it?

	Dynamic Business Impact

	Shinken Architecture
	Summary

	Shinken innovative features

	Shinken data acquisition for monitoring

	Architecture diagram with all daemons illustrated

	Shinken Daemon roles

	Learn more about the Shinken Distributed Architecture

	Planning a large scale Shinken deployment

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

Arbiter supervision of Shinken processes

Introduction

Nobody is perfect, nor are OSes. A server can fail, and so does the network. That’s why you can (should) define multiple processes as well as spares in the Shinken architecture.

Supervision method

The Arbiter daemon constantly checks that every one is alive. If a node is declared to be dead, the Arbiter will send the configuration of this node to a spare one. Other satellites get the address of this new node so they can change their connections.

The case where the daemon was still alive but that it was just a network interruption is also managed: There will be 2 nodes with the same configuration, but the Arbiter will ask one (the old one) to become inactive.

The spare node that has become active will not preemptively fail back to the original node.

Adjusting timers for large configurations

Supervision parameters need to be adjusted with extra large configurations that may need more time to startup or process data. The arbiter periodically sends a verification to each process to see if it is alive. The timeouts and retry for this can be adjusted.

Timeout should be left at 3 seconds, even for large configuration. Health checks are synchronous. This is due to compatibility with Python 2.4. There will eventually become asynchronous as Python 2.6 support is dropped in the future.
Retries should be multiplied as need.
Data timeout should be left as is.

Important

TODO Put all of the arbiter supervisory parameters with formulas and examples.

Diagrams

It can be shown in the following diagram:

[image: ../_images/shinken-conf-dispatching.png]
[image: ../_images/shinken-scheduler-lost.png]

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

Advanced architectures

Shinken has got some cool features in term of configuration management or performance, but it’s true added value is in its architecture. It’s been designed to achieve easy distributed architecture and high availability.

= Distributed architecture

The load balancing feature is very easy to obtain with Shinken. If I say that the project’s name comes from it you should believe me :-)

	In fact the load is present in 2 major places:

	
	pollers: they launch checks, they use a lot of resources

	schedulers: they schedule, potentially lots of checks

For both, a limit of 150000 checks/5min is a reasonable goal on an average server(4 cores@3Ghz). But remember that is can be multiplied as much as you wish, just by adding another server.

	There are 2 cases:

	
	checks that ask for a lot of performance (perl or shell scripts for example)

	a lot of scheduling (> 150000 checks in 5 minutes).

In the first case, you need to add more pollers. In the second, you need to add more schedulers. In this last case, you should also add more pollers (more launch need more pollers) but that’s not compulsory.

But I already ear you asking “How to add new satellites?”. That’s very simple: You start by installing the application on a new server (don’t forget the sinken user + application files). Let say that this new server is called server-2 and has the IP 192.168.0.2 (remember that the “master” is called server-1 with 192.168.0.1 as IP).

Now you need to launch the scheduler and pollers (or just one of them if you want):

/etc/init.d/shinken-scheduler start
/etc/init.d/shinken-poller start

It looks like the launch in the master server? Yes, it’s the same :-)

Here you just launch the daemons, now you need to declare them in the shinken-specific.cfg file on the master server (the one with the arbiter daemon). You need to add new entries for these satellites:

define scheduler{

 scheduler_name scheduler-2
 address 192.168.0.2
 port 7768
 spare 0
 }

define poller{

 poller_name poller-2
 address 192.168.0.2
 port 7771
 spare 0
}

The differences with scheduler-1 and poller-1 are just the names and the address. Yep, that’s all :-)

Now you can restart the arbiter, and you’re done, the hosts will be distributed in both schedulers, and the checks will be distributed to all pollers. Congrats :)

High availability architecture

Ok, a server can crash or a network can go down. The high availability is not a useless feature, you know?

With shinken, making a high availability architecture is very easy. Just as easy as the load balancing feature :)

You saw how to add new scheduler/poller satellites. For the HA it’s quite the same. You just need to add new satellites in the same way you just did, and define them as “spares”. You can (should) do the same for all the satellites (a new arbiter, reactionner and broker) for a whole HA architecture.

We keep the load balancing previous installation and we add a new server (if you do not need load balancing, just take the previous server). So like the previous case, you need to install the daemons and launch them.

/etc/init.d/shinken-scheduler start
/etc/init.d/shinken-poller start

Nothing new here.

And we need to declare the new satellites in the shinken-specific.cfg file near the arbiter:

define scheduler{

 scheduler_name scheduler-3
 address 192.168.0.3
 port 7768
 spare 1
 }

define poller{

 poller_name poller-3
 address 192.168.0.3
 port 7771
 spare 1
}

Do you see a difference here? Aside from the name and address, there is a new parameter: spare. From the daemon point of view, they do not know if they are a spare or not. That’s the arbiter that says what they are.

You just need to restart the arbiter and you’ve got HA for the schedulers/pollers :)

Really?

Yes indeed, that’s all. Until one of the scheduler/poller fall, these two new daemons will just wait. If anyone falls, the spare daemon will take the configuration and start to work.

You should do the same for arbiter, reactionner and broker. Just install them in the server-3 and declare them in the shinken-specific.cfg file with a spare parameter. Now you’ve got a full HA architecture (and with load balancing if you keep the server-2 :)).

Note

Here you have high availability, but if a scheduler dies, the spare takes the configuration, but not the saved states. So it will have to reschedule all checks, and current states will be PENDING. To avoid this, you can link distributed retention modules <distributed retention modules> such as memcache to your schedulers

Mixed Architecture (poller GNU/Linux and Windows or LAN/DMZ)

There can be as many pollers as you want. And Shinken runs under a lot of systems, like GNU/Linux and Windows. It could be useful to make windows hosts checks by a windows pollers (by a server IN the domain), and all the others by a GNU/Linux one.

And in fact you can, and again it’s quite easy :)
All pollers connect to all schedulers, so we must have a way to distinguish ‘windows’ checks from ‘gnu/linux’ ones.

	The poller_tag/poller_tags parameter is useful here. It can be applied on the following objects:

	
	pollers

	commands

	services

	hosts

It’s quite simple: you ‘tag’ objects, and the pollers have got tags too. You’ve got an implicit inheritance between hosts->services->commands. If a command doesn’t have a poller_tag, it will take the one from the service. And if this service doesn’t have one neither, it will take the tag from its host.

Let take an example with a ‘windows’ tag:

define command{

 command_name
 command_line c:\shinken\libexec\check_wmi.exe -H $HOSTADRESS$ -r $ARG1$
 poller_tag Windows
}

define poller{

 poller_name poller-windows
 address 192.168.0.4
 port 7771
 spare 0
 poller_tags Windows,DMZ
}

And the magic is here: all checks launched with this command will be taken by the poller-windows (or another that has such a tag). A poller with no tags will only take ‘untagged’ commands.

It also works with a LAN/DMZ network. If you do not want to open all monitoring ports from the LAN to the DMZ server, you just need to install a poller with the ‘DMZ’ tag in the DMZ and then add it to all hosts (or services) in the DMZ. They will be taken by this poller and you just need to open the port to this poller from the LAN. Your network admins will be happier :)

define host{

 host_name server-DMZ-1
 [...]
 poller_tag DMZ
 [...]
}

define service{

 service_description CPU
 host_name server-DMZ-2
 [...]
 poller_tag DMZ
 [...]
}

And that’s all :)

Multi customers and/or sites: REALMS

The shinken’s architecture like we saw allows us to have a unique administration and data location. All pollers the hosts are cut and sent to schedulers, and the pollers take jobs from all schedulers. Every one is happy.

Every one? In fact no. If an administrator got a continental distributed architecture he can have serious problems. If the architecture is common to multile customers network, a customer A scheduler can have a customer B poller that asks him jobs. It’s not a good solution. Even with distributed network, distant pollers should not ask jobs to schedulers in the other continent, it’s not network efficient.

That is where the site/customers management is useful. In Shinken, it’s managed by the realms.

A realm is a group of resources that will manage hosts or hostgroups. Such a link will be unique: a host cannot be in multiple realms. If you put an hostgroup in a realm, all hosts in this group will be in the realm (unless a host already has the realm set, the host value will be taken).

	A realm is:

	
	at least a scheduler

	at least a poller

	can have a reactionner

	can have a broker

In a realm, all realm pollers will take all realm schedulers jobs.

Important

Very important: there is only ONE arbiter (and a spare of couse) for ALL realms. The arbiter manages all realms and all that is inside.

Sub-realms

A realm can have sub-realms. It doesnt change anything for schedulers, but it can be useful for other satellites and spares. Reactionners and brokers are linked to a realm, but they can take jobs from all sub-realms too. This way you can have less reactionners and brokers (like we soon will see).

The fact that reactionners/brokers (and in fact pollers too) can take jobs from sub-schedulers is decided by the presence of the manage_sub_realms parameter. For pollers the default value is 0, but it’s 1 for reactionners/brokers.

Important

WARNING: having multiple brokers for one scheduler is not a good idea: after the information is send, it’s deleted from the scheduler, so each brokers will only got partial data!

An example ?

To make it simple: you put hosts and/or hostgroups in a realm. This last one is to be considered as a resources pool. You don’t need to touch the host/hostgroup definition if you need more/less performances in the realm or if you want to add a new satellites (a new reactionner for example).

Realms are a way to manage resources. They are the smaller clouds in your global cloud infrastructure :)

If you do not need this feature, that’s not a problem, it’s optional. There will be a default realm created and every one will be put into.

It’s the same for hosts that don’t have a realm configured: they will be put in the realm that has the “default” parameter.

Picture example

Diagrams are good :)

Let’s take two examples of distributed architectures around the world. In the first case, the administrator don’t want to share resources between realms. They are distinct. In the second, the reactionners and brokers are shared with all realms (so all notifications are send from a unique place, and so is all data).

Here is the isolated one:

[image: ../_images/shinken-architecture-isolated-realms.png?640]
And a more common way of sharing reactionner/broker:

[image: ../_images/shinken-architecture-global-realm.png?640]
Like you can see, all elements are in a unique realm. That’s the sub-realm functionality used for reactionner/broker.

Configuration of the realms

Here is the configuration for the shared architecture:

define realm {

 realm_name All
 realm_members Europe,US,Asia
 default 1 ;Is the default realm. Should be unique!
}
define realm{

 realm_name Europe
 realm_members Paris ;This realm is IN Europe
}

An now the satellites:

define scheduler{

 scheduler_name scheduler_Paris
 realm Paris ;It will only manage Paris hosts
}
define reactionner{

 reactionner_name reactionner-master
 realm All ;Will reach ALL schedulers
}

And in host/hostgroup definition:

define host{

 host_name server-paris
 realm Paris ;Will be put in the Paris realm
 [...]
}

define hostgroups{

 hostgroup_name linux-servers
 alias Linux Servers
 members srv1,srv2
 realm Europe ;Will be put in the Europe realm
}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

How are commands and configurations managed in Shinken

Let’s take a look at how the dispatching is managed.

Shinken uses different daemons: each one has it’s own task. The global master is the Arbiter: it reads the configuration, divides it into parts and sends the parts to various Shinken daemons. It also looks at which daemon are alive: if one dies, it will give the configuration of the dead one to another daemon so that it can replace it.

Configuration dispatching

It looks like this:

[image: ../_images/shinken-conf-dispatching1.png]

Configuration changes on running systems

Once the configuration is being dispatched to a Shinken process by the Arbiter, this causes the process (ex. Scheduler) to stop and reload its configuration. Thus for small configurations, the monitoring gap, where no monitoring is being done, is of an inconsequential duration. However, as the number of services rises above 10K and as the complexity of the configuration grows, the monitoring gap will become noticeable to the order of minutes. This gap will impact the type of SLA the monitoring solution can meet.
.. important:

The 1.2 release is mandatory for anyone using more than 10K services as it includes improvements addressing this issue.

External commands dispatching

Method 1 - Via the Arbiter daemon

The user can send external commands to the system to raise a downtime or ask for passive checks. The commands should be sent to the only daemon that orchestrates everything in the system (the only one the user should know about): the Arbiter. It gives him the external commands (in a name pipe from now) and the Arbiter sends it to whoever needs it (just one scheduler or all of them).

It looks like this:

[image: ../_images/shinken-external-commands.png]

Method 2 - Via the Livestatus API

The Livestatus API is a Broker daemon module. It listens on the network for data requests or external commands. Commands can be authenticated. Commands can be submitted via a Python interface or a JSON interface. Consult the MK Livestatus documentation for the supported parameters.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

Problems and impacts correlation management

What is this correlation ?

The main role of this feature is to allow users to have the same correlation views in the console than they got in the notifications.

From now, users won”t get notified if there was a dependency problem or example (a host in DOWN make the service notifications to not be send for example). But in the console, we still got some green and red indicators: the scheduler waited for actual checks to put the elements in a UNKNOWN or UNREACHABLE state when he already know that there was a dependency problem.

Now it”s smart enough to put such states to elements that we know the check will fail. An example?

Imagine such a parent relations between hosts:

[image: ../_images/example_dep.png]
If gw is DOWN, all checks for others elements will put UNREACHABLE state. But if the fw and servers are checks 5 minutes later, during this period, the console will still have green indicators for them. And are they really green? No. We know that future checks will put them in errors. That why the problems/impacts feature do: when the gateway is set in HARD/DOWN, it apply a UNREACHABLE (and UNKNOWN for services) states for others elements below. So the administrators in front of his desk saw directly that there is a problem, and what are the elements impacted.

It”s important to see that such state change do not interfere with the HARD/SOFT logic: it”s just a state change for console, but it”s not taken into account as a checks attempt.

Here gateway is already in DOWN/HARD. We can see that all servers do not have an output: they are not already checked, but we already set the UNREACHABLE state. When they will be checks, there will be an output and they will keep this state.

How to enable it?

It’s quite easy, all you need is to enable the parameter

enable_problem_impacts_states_change=1

See the page Main advanced configuration <configuringshinken-configmain-advanced> for more information about it.

Dynamic Business Impact

There is a good thing about problems and impacts when you do not identify a parent devices Business Impact: your problem will dynamically inherit the maximum business impact of the failed child!

Let take an example: you have a switch with different children, one is a devel environment with a low business impact (0 or 1) and one with a huge business impact (4 or 5). The network administrator has set SMS notification at night but only for HUGE business impacts (min_criticity=4 in the contact definition for example).

It’s important to say that the switch DOES NOT HAVE ITS OWN BUSINESS IMPACT DEFINED! A switch is there to server applications, the only business impact it gets is the child hosts and services that are connected to it!

	There are 2 nights:

	
	the first one, the switch got a problem, and only the devel environment is impacted. The switch will inherit the maximum impact of its impacts (or it own value if it’s higher, it’s 3 by default for all elements). Here the devel impact is 0, the switch one is 3, so its impact will stay at 3. It’s slower than the contact value, so the notification will not be send, the admin will be able to sleep :)

	the second night, the switch got a problem, but this time it impacts the production environment! This time, the computed impact is set at 5 (the one of the max impact, here the production application), so it’s higher than the min_criticity of the contact, so the notification is send. The admin is awaken, and can solve this problem before too many users are impacted :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

Problems and impacts correlation management

What is this correlation ?

The main role of this feature is to allow users to have the same correlation views in the console than they got in the notifications.

From now, users won”t get notified if there was a dependency problem or example (a host in DOWN make the service notifications to not be send for example). But in the console, we still got some green and red indicators: the scheduler waited for actual checks to put the elements in a UNKNOWN or UNREACHABLE state when he already know that there was a dependency problem.

Now it”s smart enough to put such states to elements that we know the check will fail. An example?

Imagine such a parent relations between hosts:

[image: ../_images/example_dep.png]
If gw is DOWN, all checks for others elements will put UNREACHABLE state. But if the fw and servers are checks 5 minutes later, during this period, the console will still have green indicators for them. And are they really green? No. We know that future checks will put them in errors. That why the problems/impacts feature do: when the gateway is set in HARD/DOWN, it apply a UNREACHABLE (and UNKNOWN for services) states for others elements below. So the administrators in front of his desk saw directly that there is a problem, and what are the elements impacted.

It”s important to see that such state change do not interfere with the HARD/SOFT logic: it”s just a state change for console, but it”s not taken into account as a checks attempt.

Here gateway is already in DOWN/HARD. We can see that all servers do not have an output: they are not already checked, but we already set the UNREACHABLE state. When they will be checks, there will be an output and they will keep this state.

How to enable it?

It’s quite easy, all you need is to enable the parameter

enable_problem_impacts_states_change=1

See the page Main advanced configuration <configuringshinken-configmain-advanced> for more information about it.

Dynamic Business Impact

There is a good thing about problems and impacts when you do not identify a parent devices Business Impact: your problem will dynamically inherit the maximum bushiness impact of the failed child!

Let take an example: you have a switch with different children, one is a devel environment with a low business impact (0 or 1) and one with a huge business impact (4 or 5). The network administrator has set SMS notification at night but only for HUGE business impacts (min_criticity=4 in the contact definition for example).

It’s important to say that the switch DOES NOT HAVE ITS OWN BUSINESS IMPACT DEFINED! A switch is there to server applications, the only business impact it gets is the child hosts and services that are connected to it!

	There are 2 nights:

	
	the first one, the switch got a problem, and only the devel environment is impacted. The switch will inherit the maximum business impact of its impacts (or it own value if it’s higher, it’s 3 by default for all elements). Here the devel impact is 0, the switch one is 3, so its impact will stay at 3. It’s slower than the contact value, so the notification will not be send, the admin will be able to sleep :)

	the second night, the switch got a problem, but this time it impacts the production environment! This time, the computed impact is set at 5 (the one of the max impact, here the production application), so it’s higher than the min_criticity of the contact, so the notification is send. The admin is awaken, and can solve this problem before too many users are impacted :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken Architecture

Shinken Architecture

Summary

Shinken”s architecture has been designed according to the Unix Way: one tool, one task. Shinken has an architecture where each part is isolated and connects to the others via standard interfaces. Shinken is based on the Python Pyro remote objects library. Which makes building a highly available or distributed monitoring architectures quite easy.

	Shinken gets data IN
* passively
* actively
* Networked API

	Shinken acts on the data
* Correlation
* Event suppression
* Event handlers
* Adding new poller daemons
* Runtime interaction

	Shinken gets data OUT
* Networked API
* Notifications
* Logging
* Web/Mobile Frontend (via API and Native WebUI)
* Metrics databases

	Shinken manages configurations
* Discovery manager SkonfUI
* Multi-level discovery engine
* Configuration Packs (commands, config templates, graph templates, etc.)
* Text file management via configuration engines (cfengine, chef, puppet, salt)

Shinken innovative features

Learn more about the innovative features of Shinken.

Shinken data acquisition for monitoring

Shinken needs plugins to actually gather data. There exists **thousands** of plugins for every conceivable application [http://exchange.nagios.org/directory/Plugins]. Shinken packages the configurations necessary to use common plugins in Packs. Plugins themselves need to be installed by the administrator of the monitoring solution(Shinken will install some common ones for you). This is a great strength and flexibility of Shinken, but also an administrative responsibility to download and install the necessary plugins.

Architecture diagram with all daemons illustrated

[image: ../_images/shinken-architecture.png?900]

Shinken Daemon roles

	:ref:`Arbiter <arbiter>`: The arbiter daemon reads the configuration, divides it into parts (N schedulers = N parts), and distributes them to the appropriate Shinken daemons. Additionally, it manages the high availability features: if a particular daemon dies, it re-routes the configuration managed by this failed daemon to the configured spare. Finally, it can receive input from users (such as external commands from nagios.cmd) or passive check results and routes them to the appropriate daemon. Passive check results are forwarded to the Scheduler responsible for the check. There can only be one active arbiter with other arbiters acting as hot standby spares in the architecture.
* Modules for data collection: NSCA, TSCA, Ws_arbiter (web service)
* Modules for configuration data storage: MongoDB
* Modules for status retention: PickleRententionArbiter
* Modules for configuration import: MySQLImport, GLPI, Landscape(Ubuntu)
* Modules for configuration modification: vmware autolinking, IP_Tag, and other task specific modules

	:ref:`Scheduler <scheduler>`: The scheduler daemon manages the dispatching of checks and actions to the poller and reactionner daemons respectively. The scheduler daemon is also responsible for processing the check result queue, analyzing the results, doing correlation and following up actions accordingly (if a service is down, ask for a host check). It does not launch checks or notifications. It just keeps a queue of pending checks and notifications for other daemons of the architecture (like pollers or reactionners). This permits distributing load equally across many pollers. There can be many schedulers for load-balancing or hot standby roles. Status persistence is achieved using a retention module.
* Modules for status retention: pickle, nagios, memcache, redis and MongoDB are available.

	:ref:`Poller <poller>`: The poller daemon launches check plugins as requested by schedulers. When the check is finished it returns the result to the schedulers. Pollers can be tagged for specialized checks (ex. Windows versus Unix, customer A versus customer B, DMZ) There can be many pollers for load-balancing or hot standby spare roles.
* Module for data acquisition: NRPE Module
* Module for data acquisition: CommandFile (Used for check_mk integration which depends on the nagios.cmd named pipe)
* Module for data acquisition: SnmpBooster (NEW)

	:ref:`Reactionner <reactionner>`: The reactionner daemon issues notifications and launches event_handlers. This centralizes communication channels with external systems in order to simplify SMTP authorizations or RSS feed sources (only one for all hosts/services). There can be many reactionners for load-balancing and spare roles
* Module for external communications: AndroidSMS

	:ref:`Broker <broker>`: The broker daemon exports and manages data from schedulers. The broker uses modules exclusively to get the job done. The main method of interacting with Shinken is through the Livestatus API. Learn how to configure the Broker modules.
* Modules for the Livestatus API - live state, status retention and history: SQLite (default), MongoDB (experimental)
* Module for centralizing Shinken logs: Simple-log (flat file)
* Modules for data retention: Pickle , ToNdodb_Mysql, ToNdodb_Oracle, couchdb
* Modules for exporting data: Graphite-Perfdata, NPCDMOD(PNP4Nagios), raw_tcp(Splunk), Syslog
* Modules for the Shinken WebUI: GRAPHITE_UI, PNP_UI. Trending and data visualization.
* Modules for compatibility/migration: Service-Perfdata, Host-Perfdata and Status-Dat

	Receiver (optional): The receiver daemon receives passive check data and serves as a distributed command buffer. There can be many receivers for load-balancing and hot standby spare roles. The receiver can also use modules to accept data from different protocols. Anyone serious about using passive check results should use a receiver to ensure that check data does not go through the Arbiter (which may be busy doing administrative tasks) and is forwarded directly to the appropriate Scheduler daemon(s).
* Module for passive data collection: NSCA, TSCA, Ws_arbiter (web service)

Tip

The various daemons can be run on a single server for small deployments or split on different hardware for larger deployments as performance or availability requirements dictate. For larger deployments, running multiple Schedulers is recommended, even if they are on the same server. Consult planning a large scale Shinken deployment for more information.

Learn more about the Shinken Distributed Architecture

	The Shinken distributed architecture, more features explained.

	
	Smart and automatic load balancing

	High availability

	Specialized Pollers

	Advanced architectures: Realms

If you are just starting out, you can continue on with the next tutorial, which will help you configure a web front-end.

Planning a large scale Shinken deployment

If you wish to plan a large scale installation of Shinken, you can consult the Scaling Shinken reference.

This is essential to avoid making time consuming mistakes and aggravation.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Troubleshooting

	FAQ - Shinken troubleshooting
	FAQ Summary =
	Frequently asked questions

	General Shinken troubleshooting steps to resolve common issue =

	FAQ Answers
	Review the daemon logs
	Changing the log level during runtime

	Changing the log level in the configuration

	OSError read-only filesystem error

	OSError too many files open

	Notification emails have generic-host instead of host_name

	Reporting does not work with Shinken 1.2

	How to identify the source of a Pyro MemoryError

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Troubleshooting

FAQ - Shinken troubleshooting

FAQ Summary =

Shinken users, developers, administrators possess a body of knowledge that usually provides a quick path to problem resolutions. The Frequently Asked Questions questions are compiled from user questions and issues developers may run into.

Have you consulted at all the resources available for users and developers.

	__Before posting a question to the forum:__

	
	Read the through the Getting Started tutorials

	Search the documentation wiki

	Use this FAQ

	Bonus: Update this FAQ if you found the answer and think it would benefit someone else

Doing this will improve the quality of the answers and your own expertise.

Frequently asked questions

	How to set my daemons in debug mode to review the logs?

	I am getting an OSError read-only filesystem

	I am getting an OSError [Errno 24] Too many open files

	Notification emails have generic-host instead of host_name

	Thruk/Multisite reporting doesn’t work using Shinken 1.2

	Pyro MemoryError during configuration distribution by the Arbiter to other daemons(satellites)

General Shinken troubleshooting steps to resolve common issue =

	Have you mixed installation methods! Cleanup and install using a single method.

	Have you installed the check scripts and addon software

	Is Shinken even running?

	Have you checked the Shinken pre-requisites?

	Have you configured the WebUI module in your shinken-specific.cfg file

	Have you completed the Shinken basic configuration and Shinken WebUI configuration

	Have you reviewed your Shinken centralized (Simple-log broker module) logs for errors

	Have you reviewed your Shinken daemon specific logs for errors or tracebacks (what the system was doing just before a crash)

	Have you reviewed your configuration syntax (keywords and values)

	Is what you are trying to use installed? Are its dependancies installed! Does it even work.

	Is what you are trying to use a supported version?

	Are you using the same Python Pyro module version on all your hosts running a Shinken daemon (You have to!)

	Are you using the same Python version on all your hosts running a Shinken daemon (You have to!)

	Have you installed Shinken with the SAME prefix (ex: /usr/local) on all your hosts running a Shinken daemon (You have to!)

	Have you enabled debugging logs on your daemon(s)

	How to identify the source of a Pyro MemoryError

	Problem with Livestatus, did it start, is it listening on the exppected TCP port, have you enabled and configured the module in shinken-specific.cfg.

	Have you installed the check scripts as the shinken user and not as root

	Have you executed/tested your command as the shinken user

	Have you manually generated check results

	Can you connect to your remote agent NRPE, NSClient++, etc.

	Have you defined a module on the wrong daemon (ex. NSCA receiver module on a Broker)

	Have you created a diagram illustrating your templates and inheritance

	System logs (/var/messages, windows event log)

	Application logs (MongoDB, SQLite, Apache, etc)

	Security logs (Filters, Firewalls operational logs)

	Use top or Microsoft Task manager or process monitor (Microsoft sysinternals tools) to look for memory, cpu and process issues.

	Use nagiostat to check latency and other core related metrics.

	Is your check command timeout too long

	Have you looked at your Graphite Carbon metrics

	Can you connect to the Graphite web interface

	Are there gaps in your data

	Have you configured your storage schema (retention interval and aggregation rules) for Graphite collected data.

	Are you sending data more often than what is expected by your storage schema.

	Storing data to the Graphite databases, are you using the correct IP, port and protocol, are both modules enabled; Graphite_UI and graphite export.

FAQ Answers

Review the daemon logs

A daemon is a Shinken process. Each daemon generates a log file by default. If you need to learn more about what is what, go back to the shinken architecture.
The configuration of a daemon is set in the .ini configuration file(ex. brokerd.ini).
Logging is enabled and set to level INFO by default.

Default log file location ‘’local_log=%(workdir)s/schedulerd.log’‘

The log file will contain information on the Shinken process and any problems the daemon encounters.

Changing the log level during runtime

shinken-admin is a command line script that can change the logging level of a running daemon.

‘’linux-server# ./shinken-admin ...’‘

Changing the log level in the configuration

Edit the <daemon-name>.ini file, where daemon name is pollerd, schedulerd, arbiterd, reactionnerd, receiverd.
Set the log level to: DEBUG
Possible values: DEBUG,INFO,WARNING,ERROR,CRITICAL

Re-start the Shinken process.

OSError read-only filesystem error

You poller daemon and reactionner daemons are not starting and you get a traceback for an OSError in your logs.

‘’OSError [30] read-only filesystem’‘

Execute a ‘mount’ and verify if /tmp or /tmpfs is set to ‘ro’ (Read-only).
As root modify your /etc/fstab to set the filesystem to read-write.

OSError too many files open

The operating system cannot open anymore files and generates an error. Shinken opens a lot of files during runtime, this is normal. Increase the limits.

Google: changing the max number of open files linux / debian / centos / RHEL

cat /proc/sys/fs/file-max

su - shinken
$ ulimit -Hn
$ ulimit -Sn

This typically changing a system wide file limit and potentially user specific file limits. (ulimit, limits.conf, sysctl, sysctl.conf, cat /proc/sys/fs/file-max)

To immediately apply changes
ulimit -n xxxxx now

Notification emails have generic-host instead of host_name

Try defining host_alias, which is often the field used by the notification methods.

Why does Shinken use both host_alias and host_name. Flexibility and historicaly as Nagios did it this way.

Reporting does not work with Shinken 1.2

Set your Scheduler log level to INFO by editing shinken/etc/scheduler.ini.

Upgrade to Shinken 1.2.1, which fixes a MongoDB pattern matching error.

How to identify the source of a Pyro MemoryError

Are the satellites identical in every respect?
All the others work just fine?
What is the memory usage of the scheduler after sending the configuration data for each scheduler?
Do you use multiple realms?
Does the memory use increase for each Scheduler?

Possible causes

	Shinken Arbiter is not preparing the configuration correctly sending overlarge objects

2) there is a hardware problem that causes the error, for instance a faulty memory
chip or bad harddrive sector. Run a hardware diagnostics check and a memtest (http://www.memtest.org/) on
the failing device
3) a software package installed on the failing sattelite has become corrupted. Re-install all software related to Pyro, possibly the whole OS.
4) or perhaps, and probably very unlikely, that the network infrastructure
(cables/router/etc) experience a fault and deliver corrupt packets to the failing
sattelite, whereas the other sattelites get good data.. Do an direct server to server test or end to end test using iPerf to validate the bandwidth and packet loss on the communication path.

Other than that, here are some general thoughts. A MemoryError means:
“Raised when an operation runs out of memory but the situation may still be rescued
(by deleting some objects). The associated value is a string indicating what kind of
(internal) operation ran out of memory. Note that because of the underlying memory
management architecture (C”s malloc() function), the interpreter may not always be
able to completely recover from this situation; it nevertheless raises an exception so
that a stack traceback can be printed, in case a run-away program was the cause. “

5) Check on the server the actual memory usage of the Scheduler daemon.
Another possible reason for malloc() to fail can also be memory fragmentation, which
means that there’s enough free RAM but just not a free chunk somewhere in between that
is large enough to hold the required new allocation size. No idea if this could be the
case in your situation, and I have no idea on how to debug for this.

It is not entirely clear to me where exactly the memoryerror occurs: is it indeed
raised on the sattelite device, and received and logged on the server? Or is the
server throwing it by itself?

6) Other avenues of investigation
Try running the python interpreter with warnings on (-Wall).
Try using the HMAC key feature of Pyro to validate the network packets.
Try using Pyro’s multiplex server instead of the threadpool server.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Integration With Other Software

	Integration Overview
	Introduction

	Integration Points

	Integration Examples

	SNMP Trap Integration
	Introduction

	TCP Wrappers Integration
	Introduction

	Defining A Service

	Configuring TCP Wrappers

	Writing The Script

	Finishing Up

	Thruk
	Shinken installation

	Configure Thruk

	Nagios CGI UI
	Object Cache File

	Temp File

	Temp Path

	Status File

	Status File Update Interval

	Thruk interface

	Use Shinken with ...
	Shinken interface

	Web interfaces
	Direct memory access based interface

	Livestatus based interfaces (Networked API)

	Pickle based data export (Network)

	Other

	Deprecated: Flat file export

	Which one is right for me?

	Use Shinken with Centreon
	Centreon

	How to use Shinken as a Centreon backend
	Simple log

	NDO/MySQL

	Service Perfdata

	Configure Broker to use these modules

	Configure Scheduler to match Centreon’s Poller

	Use Shinken with Graphite
	Graphite

	Install graphite

	Using Shinken with Graphite
	Configure graphite module

	Enable it

	Use it
	With Shinken UI

	with Thruk

	Enjoy it

	Use Shinken with Multisite
	Check_MK Multisite

	Using Shinken with Multisite
	Enable Livestatus module

	Configure Multisite
	Check_MK install quick guide

	Use Shinken with Nagvis
	NagVis

	Using Shinken with NagVis
	Enable Livestatus module

	Nagvis Installation

	NagVis configuration

	Use Shinken with Old CGI and VShell
	For the Old CGI & VShell

	Declare the status_dat module

	Enable it

	Use Shinken with PNP4Nagios
	PNP4Nagios

	Install PNP4Nagios automatically

	Install PNP4Nagios manually
	Configure npcdmod

	Enable it

	Share users with Thruk

	Set the action_url option

	Link back to Thruk

	Enjoy it

	Use Shinken with Thruk
	Thruk

	Install Thruk

	Using Shinken with Thruk
	Enable Livestatus module

	Declare Shinken peer in Thruk

	Credit Shinken in the webpages title :-)

	Configure users

	Using PNP4Nagios with Thruk

	Use Shinken with WebUI
	Shinken WebUI

	Set up the WebUI module

	Authentification modules
	Shinken contact - cfg_password_webui

	Apache htpasswd - passwd_webui

	Active Directory / OpenLDAP - ad_webui
	User photos

	User preferences modules

	Metrology graph modules
	PNP graphs

	Graphite graphs

	Use it!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Integration Overview

Introduction

One of the reasons that Shinken is such a popular monitoring application is the fact that it can be easily integrated into your existing infrastructure. There are several methods of integrating Shinken with the management software you’re already using and you can monitor almost any type of new or custom hardware, service, or application that you might have.

Integration Points

Important

This diagram is deprecated and illustrates legacy Nagios. Which has nothing to do with the new architecture. eck.

[image: ../_images/integrationoverview.png]
To monitor new hardware, services, or applications, check out the docs on:

	Nagios Plugins

	Nagios Plugin API

	Passive Checks

	Event Handlers

It is also possible to use Shinken Poller daemon modules or Receiver daemon modules to provide daemonized high performance acquisition. Consult the Shinken architecture to learn more about poller modules. There are existing poller modules that can be usd as examples to further extend Shinken.

To get data into Nagios from external applications, check out the docs on:

	Passive Checks

	External Commands

To send status, performance, or notification information from Shinken to external applications, there are two typical paths. Through the Reactionner daemon which executes event handlers and modules or through the Broker daemon. The broker daemon provides access to all internal Shinken objects and state information. Thi data can be accessed through the Livestatus API. The data can also be forwarded by broker modules. Check out the docs on:

	Broker modules

	Event Handlers

	OCSP and OCHP Commands

	Performance Data

	Notifications

Integration Examples

I’ve documented some examples on how to integrate Shinken with external applications:

	TCP Wrappers Integration (security alerts)

	SNMP Trap Integration (Arcserve backup job status)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

SNMP Trap Integration

Introduction

Nagios is not designed to be a replacement for a full-blown “SNMP” management application like HP OpenView or OpenNMS [http://www.opennms.org/]. However, you can set things up so that “SNMP” traps received by a host on your network can generate alerts in Nagios. Specific traps or groups of traps are associated with passive services.

As if designed to make the Gods of Hypocrisy die of laughter, “SNMP” is anything but simple. Translating “SNMP” traps and getting them into Nagios (as passive check results) can be a bit tedious. To make this task easier, I suggest you check out Alex Burger’s “SNMP” Trap Translator project located at http://www.snmptt.org [http://www.snmptt.org/]. When combined with Net-“SNMP”, SNMPTT provides an enhanced trap handling system that can be integrated with Nagios.

You are strongly suggested to eventually have a logging system, SNMP manager or Hypervisor to classify and identify new alerts and events.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

TCP Wrappers Integration

Introduction

[image: ../_images/tcpwrappers.png]
This document explains how to easily generate alerts in Shinken for connection attempts that are rejected by TCP wrappers. For example, if an unauthorized host attempts to connect to your “SSH” server, you can receive an alert in Shinken that contains the name of the host that was rejected. If you implement this on your Linux/Unix boxes, you’ll be surprised how many port scans you can detect across your network.

These directions assume:

	You are already familiar with Passive Checks and how they work.

	You are already familiar with Volatile Services and how they work.

	The host which you are generating alerts for (i.e. the host you are using TCP wrappers on) is a remote host (called firestorm in this example). If you want to generate alerts on the same host that Shinken is running you will need to make a few modifications to the examples I provide.

	You have installed the NSCA daemon on your monitoring server and the NSCA client (send_nsca) on the remote machine that you are generating TCP wrapper alerts from.

Defining A Service

If you haven’t done so already, create a host definition for the remote host (firestorm).

Next, define a service in one of your object configuration files for the TCP wrapper alerts on host firestorm. The service definition might look something like this:

define service{
 " " " " host_name " " " " " " " " " " " firestorm
 " " " " service_description " " " " " " TCP Wrappers
 " " " " is_volatile " " " " " " " " " " 1
 " " " " active_checks_enabled " " " " " 0
 " " " " passive_checks_enabled " " " " "1
 " " " " max_check_attempts " " " " " " "1
 " " " " check_command " " " " " " " " " check_none
 " " " " ...
 " " " " }

There are some important things to note about the above service definition:

	The volatile option enabled. We want this option enabled because we want a notification to be generated for every alert that comes in.

	Active checks of the service as disabled, while passive checks are enabled. This means that the service will never be actively checked by Shinken - all alert information will have to be received passively from an external source.

	The “max_check_attempts” value is set to “1”. This guarantees you will get a notification when the first alert is generated.

Configuring TCP Wrappers

Now you’re going to have to modify the /etc/hosts.deny file on firestorm. In order to have the TCP wrappers send an alert to the monitoring host whenever a connection attempt is denied, you’ll have to add a line similiar to the following:

ALL: ALL: RFC931: twist (/usr/local/shinken/libexec/eventhandlers/handle_tcp_wrapper %h %d)&

This line assumes that there is a script called handle_tcp_wrapper in the “/usr/local/shinken/libexec/eventhandlers/” directory on firestorm. We’ll write that script next.

Writing The Script

The last thing you need to do is write the handle_tcp_wrapper script on firestorm that will send the alert back to the Shinken server. It might look something like this:

#!/bin/sh
/usr/local/shinken/libexec/eventhandlers/submit_check_result firestorm "TCP Wrappers" 2 "Denied $2-$1" > /dev/null 2> /dev/null

Notice that the handle_tcp_wrapper script calls the submit_check_result script to actually send the alert back to the monitoring host. Assuming your Shinken server is called monitor, the submit_check_result script might look like this:

#!/bin/sh
Arguments
$1 = name of host in service definition
$2 = name/description of service in service definition
$3 = return code
$4 = outputs

/bin/echo -e "$1\t$2\t$3\t$4\n" | /usr/local/shinken/bin/send_nsca monitor -c /usr/local/shinken/etc/send_nsca.cfg

Finishing Up

You’ve now configured everything you need to, so all you have to do is restart the inetd process on firestorm and restart Shinken on your monitoring server. That’s it! When the TCP wrappers on firestorm deny a connection attempt, you should be getting alerts in Shinken. The plugin output for the alert will look something like the following: “Denied sshd2-sdn-ar-002mnminnP321.dialsprint.net”

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Thruk

Shinken installation

Create a new user shinken:

adduser shinken

Important

Be sure to create a home directory for shinken user. If not, you will not be able to start the shinken arbiter.

Next step retrieve the last version of shinken and uncompress it:

tar xfv shinken-0.5.1.tar.gz

Get into this directory and install it on your system:

sudo python setup.py install --install-scripts=/usr/bin

You will get new binaries into /usr/bin (files shinken-*) and some new directory (/etc/shinken, /var/lib/shinken).

Now, to unleash the daemons (ah ah ah!), you can use the script in init.d, or create your own script like:

root@Enclume:/etc/init.d# more shinken.sh
#!/bin/bash
cd /etc/init.d

for script in shinken-scheduler shinken-poller shinken-reactionner shinken-broker shinken-arbiter
do
 ./$script $1
done

Start your deamon:

/etc/init.d/shinken.sh start

Now check that the shinken processes are up and running:

patrice@Enclume:~/tmp/shinken-0.4$ ps -u shinken
PID TTY TIME CMD
4358 ? 00:00:09 shinken-schedul
4367 ? 00:00:10 shinken-poller
4372 ? 00:00:00 shinken-poller
4380 ? 00:00:09 shinken-reactio
4385 ? 00:00:00 shinken-reactio
4949 ? 00:00:13 shinken-broker
4989 ? 00:00:00 shinken-poller
4990 ? 00:00:00 shinken-poller
4993 ? 00:00:00 shinken-poller
4996 ? 00:00:18 shinken-broker
4997 ? 00:00:00 shinken-broker
5001 ? 00:00:00 shinken-reactio
5004 ? 00:00:00 shinken-poller
5018 ? 00:00:10 shinken-arbiter

Configure Thruk

Get a fresh copy of Thruk (http://www.thruk.org/download.html) then uncompress your version and get into the root directory.

Now, create a new file named thruk_local.conf. Bellow, the content of this file:

~/tmp/Thruk-0.74$ cat thruk_local.conf
######################################
Backend Configuration, enter your backends here
<Component Thruk::Backend>
 <peer>
 name = Shinken
 type = livestatus
 <options>
 peer = 127.0.0.1:50000
 </options>
 </peer>
<peer>
name = External Icinga
type = livestatus
<options>
peer = 172.16.0.2:9999
</options>
</peer>
</Component>

Now launch the Thruk daemon:

~/tmp/Thruk-0.74/script$./thruk_server.pl
You can connect to your server at http://enclume:3000

Important

This article doesn’t describe a true Thruk installation with Apache connection. Please refer Thruk documentation [http://www.thruk.org/documentation.html] to get a cleaner installation.

Now, run your favorite internet browser with http://localhost:3000 and enjoy your Shinken installation !

[image: ../_images/shinken_with_thruk.png]

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

 The parameters below are deprecated and are only useful if you use the old Nagios CGI UI.

Nagios CGI UI

Object Cache File

Format:

object_cache_file=<file_name>

Example:

object_cache_file=/usr/local/shinken/var/objects.cache

This directive is used to specify a file in which a cached copy of Object Configuration Overview should be stored. The cache file is (re)created every time Shinken is (re)started.

Temp File

	Format:
	temp_file=<file_name>

	Example:
	temp_file=/usr/local/nagios/var/nagios.tmp

This is a temporary file that Nagios periodically creates to use when updating comment data, status data, etc. The file is deleted when it is no longer needed.

Temp Path

	Format:
	temp_path=<dir_name>

	Example:
	temp_path=/tmp

This is a directory that Nagios can use as scratch space for creating temporary files used during the monitoring process. You should run tmpwatch, or a similiar utility, on this directory occassionally to delete files older than 24 hours.

Status File

	Format:
	status_file=<file_name>

	Example:
	status_file=/usr/local/nagios/var/status.dat

This is the file that Nagios uses to store the current status, comment, and downtime information. This file is used by the CGIs so that current monitoring status can be reported via a web interface. The CGIs must have read access to this file in order to function properly. This file is deleted every time Nagios stops and recreated when it starts.

Status File Update Interval

	Format:
	status_update_interval=<seconds>

	Example:
	status_update_interval=15

This setting determines how often (in seconds) that Nagios will update status data in the Status File. The minimum update interval is 1 second.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Thruk interface

Thruk is a web interface to get feedback about shinken status. You can also send command for asking shinken a new check, set a downtime on a host etc.

[image: ../_images/shinken_with_thruk.png?500]

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with ...

Shinken interface

Administrators need a means to view status data and interact with the system.

If you install Shinken using the 10 minutes installation recommended method, you will have the Shinken WebUI installed. But it is not mandatory to use it, and you may prefer another interface. There are open-source and commercial web frontends using the Livestatus API or an SQL backend available to suit any needs.

Web interfaces

The choice of an interface starts with the method of data exchange: Those based on Livestatus and those based on an SQL backend.

The most responsive interfaces are the native WebUI and those based on Livestatus. The most scalable and flexible are those based on Livestatus.

SkonfUI is a discovery and configuration management UI that is not production ready and is meant as a beta preview for developers not users. Sorry.

Direct memory access based interface

	Shinken WebUI, included in the Shinken installation. Previews the Shinken features in an attractive package. Not meant for distributed deployments or scalability.

[image: ../_images/shinken_webui.png?480x320]

Livestatus based interfaces (Networked API)

	Thruk

[image: ../_images/nagivs.jpg?480x320]

Pickle based data export (Network)

	Complimentary module: Graphite

	Note: Integrated out-of-the-box in :ref:`Shinken WebUI <use_with_webui>`

Other

	Complimentary module: PNP4Nagios (Graphing interface)

[image: ../_images/pnp.png?480x320]

Deprecated: Flat file export

	Old CGI & VShell Note: The Nagios CGI web interface is deprecated.

[image: ../_images/nagios.jpg?480x320]

Which one is right for me?

Try them out and see which one fits best; this is especially easy with the Shinken WebUI and the Livestatus based interfaces.

	For users just starting out with small to medium installations, Thruk or Shinken’s WebUI are good choices;

	For maximum scalability, intuitive UI and a solid feature set Multisite is recommended. Thruk is perl/PHP based UI that is very feature complete which also provides some scalability.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Centreon

Centreon

Centreon is a famous French monitoring solution based on Nagios, which can also be used with Shinken.

How to use Shinken as a Centreon backend

	The following Shinken Broker modules are required:

	
	NDO/MySQL

	Simple log

	Flat file perfdata

Below is the configuration you should set (there is already a sample configuration in your ‘’/etc/shinken/shinken-specific.cfg’’ file)

Simple log

The module simple_log puts all Shinken’s logs (Arbiter, Scheduler, Poller, etc.) into a single file.

In ‘’/etc/shinken/shinken-specific.cfg’‘:

define module{

module_name Simple-log
module_type simple_log
path /var/lib/nagios/nagios.log
archive_path /var/lib/nagios/archives/

}

	It takes these parameters:

	
	module_name: name of the module called by the brokers

	module_type: simple_log

	path: path of the log file

NDO/MySQL

The module ndodb_mysql exports all data into a NDO MySQL database.

It needs the python module MySQLdb (Debian: ‘’sudo apt-get install python-mysqldb’‘, or ‘’easy_install MySQL-python’‘)

In ‘’/etc/shinken/shinken-specific.cfg’‘:

define module{

module_name ToNdodb_Mysql
module_type ndodb_mysql
database ndo ; database name
user root ; user of the database
password root ; must be changed
host localhost ; host to connect to
character_set utf8 ;optional, default: utf8

}

	It takes the following parameters:

	
	module_name: name of the module called by the brokers

	module_type: ndodb_mysql

	database: database name (ex ndo)

	user: database user

	password: database user passworddt

	host: database host

	character_set: utf8 is a good one

Service Perfdata

The module service_perfdata exports service’s perfdata to a flat file.

In ‘’/etc/shinken/shinken-specific.cfg’‘:

define module{

module_name Service-Perfdata
module_type service_perfdata
path /var/lib/shinken/service-perfdata

}

	It takes the following parameters:

	
	module_name: name of the module called by the brokers

	module_type: service_perfdata

	path: path to the service perfdata file you want

Configure Broker to use these modules

In ‘’/etc/shinken/shinken-specific.cfg’’ find the object Broker, and add the above modules to the modules line:

define broker{

 broker_name broker-1
[...]

modules Simple-log,ToNdodb_Mysql,Service-Perfdata

}

Configure Scheduler to match Centreon’s Poller

Shinken’s “Scheduler” is called a “Poller” in Centreon. If you keep the sample Scheduler name, you won’t see any data in the Centreon interface.

So edit ‘’/etc/shinken/shinken-specific.cfg’’ and change the Scheduler name to match the Centreon’s Poller name (“default”):

define scheduler{

scheduler_name default
[...]

}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Graphite

Graphite

	Homepage: Graphite [http://graphite.readthedocs.org/en/0.9.10/index.html]

	Screenshots:

	presentation: http://pivotallabs.com/talks/139-metrics-metrics-everywhere

	Description: “Graphite is an easy to use scalable time-series database and a web API that can provide raw data for client rendering or server side rendering. It is the evolution of RRDtool.”

	License: GPL v2

	Shinken dedicated forum: http://www.shinken-monitoring.org/forum/index.php/board,9.0.html

	Graphite dedicated forum: https://answers.launchpad.net/graphite

Install graphite

The best installation guide is actually this youtube walkthrough from Jason Dixon [http://www.youtube.com/watch?v=0-g–_Be2jc&feature=player_embedded] (Obfuscurity). There is a Chef recipe for the above demonstration [https://github.com/manasg/chef-graphite].

See http://graphite.readthedocs.org/en/latest/install.html documentation tells what to install but not how to configure Apache and Django.

See Installing Graphite version 0.9.8 [http://agiletesting.blogspot.ca/2011/04/installing-and-configuring-graphite.html] example. Just update for version 0.9.10 it is the exact same installation steps. The vhost example also worked for me, while the wsgi examples did not for me.

Make sure you set the timezone properly in ‘’/opt/graphite/webapp/graphite/local_settings.py’‘, for instance:

TIME_ZONE = 'Europe/Paris'</code>

Using Shinken with Graphite

The Shinken Broker module graphite is in charge of exporting performance data from Shinken to the Graphite databases.

Configure graphite module

<code>define module{

module_name Graphite-Perfdata
module_type graphite_perfdata
host localhost
port 2003
templates_path /usr/local/shinken/share/templates/graphite/

}

Additional list of options for the Graphite export module and more in-depth documentation.

Enable it

Edit ‘’/etc/shinken/shinken-specific.cfg’’ and find the Broker object, and add the graphite module to its modules line:

define broker{

 broker_name broker-1
[...]

modules Livestatus,Simple-log,WebUI,Graphite-Perfdata

}

Use it

With Shinken UI

Still in ‘’/etc/shinken/shinken-specific.cfg’‘, find the GRAPHITE_UI object and configure the URL to your Graphite install.
If you used a graphite_data_source in the Graphite-Perfdata section, make sure to specify it here as well.

define module {

module_name GRAPHITE_UI
uri http://monitoring.mysite.com/graphite/
graphite_data_source shinken
...

}

Then find the WebUI object, and add GRAPHITE_UI to its modules (you’ll want to replace PNP_UI):

define module {

module_name WebUI
modules Apache_passwd, ActiveDir_UI, Cfg_password, GRAPHITE_UI, Mongodb
...

}

Restart Shinken to take the changes into account.

You have to possibility to use graphite template files. They are located in “templates_path”, (from the graphite_webui module)
They are file containing graphite urls with shinken contextual variables.
Ex :

‘’${uri}render/?width=586&height=308&target=alias(legendValue(${host}.${service}.’user’%2C%22last%22)%2C%22User%22)&target=alias(legendValue(${host}.${service}.’sys’%2C%22last%22)%2C%22Sys%22)&target=alias(legendValue(${host}.${service}.’softirq’%2C%22last%22)%2C%22SoftIRQ%22)&target=alias(legendValue(${host}.${service}.’nice’%2C%22last%22)%2C%22Nice%22)&target=alias(legendValue(${host}.${service}.’irq’%2C%22last%22)%2C%22IRQ%22)&target=alias(legendValue(${host}.${service}.’iowait’%2C%22last%22)%2C%22I%2FO%20Wait%22)&target=alias(legendValue(${host}.${service}.’idle’%2C%22last%22)%2C%22Idle%22)&fgcolor=000000&bgcolor=FFFFFF)&areaMode=stacked&yMax=100’‘

is used for check_cpu. Split this string using & as a separator to understand it. It’s quite easy. Use graphite uri api doc.

Shinken uses the templates tht matches the check_command, like pnp does.

Important

The suggested configuration below is not final and has just been created, the documentation needs to be updated for the correct usage of the .graph templates used in WebUI. There are a number of the already created, see the existing packs to learn how to use them properly. Sorry for the inconvenience.

with Thruk

Thruk offers a proper integration with PNP, but not with Graphite.
Still, you can use graphite with Thruk. Simply use the action_url for your service/host to link toward the graphite url you want. Use HOSTNAME and SERVICEDESC macros.
The action_url icon will be a link to the graph in Thruk UI.
For ex :

‘’ http://MYGRAPHITE/render/?lineMode=connected&width=586&height=308&_salt=1355923874.899&target=cactiStyle($HOSTNAME$.$SERVICEDESC$.*)&xFormat=%25H%3A%25M&tz=Europe/Paris&bgcolor=DDDDDD&fgcolor=111111&majorGridLineColor=black&minorGridLineColor=grey‘’

is what I use in my Thruk.

A change has been pushed in thruk’s github to grant Thruk the features it has for pnp to graphite. The rule above (use action_url) still applies. Graphite will be displayed when the action_url contains the keyword “render”.

Important

The graphite template files feature is not used in Thruk. It is a “shinken UI only” feature.

Enjoy it

Restart shinken-arbiter and you are done.

/etc/init.d/shinken-arbiter restart</code>

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Multisite

Check_MK Multisite

Using Shinken with Multisite

Multisite communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything should be ready already. :)

You can review the configuration using the following steps.

Enable Livestatus module

See enable Livestatus module.

Configure Multisite

Latest versions of Multisite are included into Check_MK, which must be fully installed although we will only use the web interface.

To install and configure Multisite manually, follow `instructions at MK website`_.

Best choice is to use Shinken :ref:`install script <shinken_10min_start#method_1the_easy_way>` (In Shinken versions >1.0). With addons installation option (‘’./install -a multisite’‘) it is fast and easy to install and configure it as Multisite’s default site.

Warning

If you get some error installing Multisite related with unknown paths (“can not find Multisite_versionXXX”) perhaps you must edit ‘’init.d/shinken.conf’’ file and adjust MKVER variable (search for “export MKVER”) with current stable available version of Check_MK as stated on MK website.

Check_MK install quick guide

	Install check_mk: Detailed `instructions`_ there. Shell driven install with a lot of questions related with Check_mk install paths and integration with Apache and existing “Nagios”. For Shinken some default answers must be changed to accomodate Shinken install.

	Edit config file ‘’multisite.mk’‘, usually in ‘’/etc/check_mk’‘, to insert a new site pointing to Shinken and write Livestatus socket address as declared at Shinken’s Livestatus module. Socket may also be an unix socket (“unix:/some/other/path”).

	Restart Apache.

‘’/etc/check_mk/multisite.mk’‘:

sites = {

"munich": {
 "alias": "Munich"
},
"Shinken": {
 "alias": "Shinken",
 "socket": "tcp:127.0.0.1:50000",
 "url_prefix": "http://shinken.fqdn/",
 },

}
.. note:: Replace “shinken.fqdn” with the complete URI to reach Shinken host from browser (not 127.0.0.1!). Used by PNP4Nagios’s mouse-over images.

If you plan to use Multisite only as web UI no more configuration is needed. Also you can disable WATO (Web Administration TOol) by including the line wato_enabled = False in ‘’multisite.mk’‘.
.. _instructions at MK website: http://mathias-kettner.de/checkmk_multisite_setup.html
.. _instructions: http://mathias-kettner.de/checkmk_getting_started.html

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Nagvis

NagVis

Using Shinken with NagVis

NagVis communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything should be ready already. :)

You can review the configuration using the following steps.

Enable Livestatus module

The Livestatus API is server from the Shinken broker. It permits communications via TCP to efficiently retrieve the current state and performance data of supervised hosts and services from Shinken. It also exposes configuration information.

See enable Livestatus module.

Nagvis Installation

Download the software and follow the installation guide from http://www.nagvis.org/

NagVis configuration

Nagvis needs to know where the Shinken Livestatus API is hosted.

In NagVis configuration file ‘’/etc/nagvis/nagvis.ini.php’‘:

[backend_live_1]
backendtype="mklivestatus"
htmlcgi="/nagios/cgi-bin"

socket=”tcp:localhost:50000“

Important

If you are using a non local broker (or a distributed Shinken architecture with multiple brokers) you should change localhost to the IP/Servername/FQDN of your broker!

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Old CGI and VShell

For the Old CGI & VShell

The Old CGI and VShell uses the old flat file export. Shinken can export to this file, but beware: this method is very very slooooow!

Warning

You should migrate to a Livestatus enabled web interface.

Declare the status_dat module

Export all status into a flat file in the old Nagios format. It’s for small/medium environment because it’s very slow to parse. It can be used by the Nagios CGI. It also exports the objects.cache file for this interface.

Edit your /etc/shinken/shinken-specific.cfg file:

define module{

 module_name Status-Dat
 module_type status_dat
 status_file /var/lib/shinken/status.data
 object_cache_file /var/lib/shinken/objects.cache
 status_update_interval 15 ; update status.dat every 15s
}

Enable it

Edit your /etc/shinken/shinken-specific.cfg file and find the object Broker:

define broker{
 broker_name broker-1
[...]
 modules Simple-log,Status-Dat
}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with PNP4Nagios

PNP4Nagios

Install PNP4Nagios automatically

You can use the Shinken install script to install everything automatically (if your distro is supported):

./install -a pnp4nagios

By default PNP4Nagios is installed in ‘’/usr/local/pnp4nagios’‘.
If you prefer another location, edit ‘’PNPPREFIX’’ in ‘’install.d/shinken.conf’‘.

Install PNP4Nagios manually

See PHP4Nagios installation [http://docs.pnp4nagios.org/pnp-0.6/install] documentation.

In a nutshell:

./configure --with-nagios-user=shinken --with-nagios-group=shinken
make all

make fullinstall

Don’t forget to make PNP4Nagios’ npcd daemon to start at boot, and launch it:

chkconfig --add npcd # On RedHat-like
update-rc.d npcd defaults # On Debian-like

/etc/init.d/npcd start

Configure npcdmod

The module npcdmod is in charge to export performance data from Shinken to PNP.

define module{

module_name NPCDMOD
module_type npcdmod
config_file <PATH_TO_NPCD.CFG>

}

Don’t forget to replace “<PATH_TO_NPCD.CFG>” with your own value; By default something like ‘’/usr/local/pnp4nagios/etc/npcd.cfg’‘.

Enable it

Edit ‘’/etc/shinken/shinken-specific.cfg’’ and find the object Broker to add above defined “NPCDMOD” to its modules line:

define broker{

 broker_name broker-1
[...]

modules Simple-log,NPCDMOD

}

Edit ‘’/etc/shinken/shinken-specific.cfg’’ and find the object WebUI to add above defined “PNP_UI” to its modules line:

define broker{

 module_name WebUI
[...]

modules Apache_passwd,ActiveDir_UI,Cfg_password,PNP_UI

}

Then restart broker :

/etc/init.d/shinken-broker restart</code>

Share users with Thruk

Edit ‘’/etc/httpd/conf.d/pnp4nagios.conf’’ (RedHat path) and replace AuthName and AuthUserFile with:
<code>
AuthName “Thruk Monitoring”
AuthUserFile /etc/thruk/htpasswd

Then restart Apache:

service httpd restart

Set the action_url option

In order to get the graphs displayed in Thruk, you need to set the action_url option in host and service definitions, and it must include the string “/pnp4nagios/” (Thruk doc [http://www.thruk.org/documentation.html#_pnp4nagios_graphs]).

If you want the link and the graph for all hosts and services, you could set the option directly in the default templates, in ‘’templates.cfg’‘:

define host{

 name generic-host
[...]

 process_perf_data 1
[...]

 #action_url http://<PNP4NAGIOS_HOST>/pnp4nagios/graph?host=$HOSTNAME$
 # If not an absolute URI, it must be relative to /cgi-bin/thruk/, not /thruk/!
 action_url ../../pnp4nagios/graph?host=$HOSTNAME$
[...]
define service{

 name generic-service
[...]

 process_perf_data 1
[...]

#action_url http://<PNP4NAGIOS_HOST>/pnp4nagios/graph?host=$HOSTNAME$&srv=$SERVICEDESC$
If not an absolute URI, it must be relative to /cgi-bin/thruk/, not /thruk/!
action_url ../../pnp4nagios/graph?host=$HOSTNAME$&srv=$SERVICEDESC$

Don’t forget to replace “<PNP4NAGIOS_HOST>” with the server IP/name running PNP4Nagios (Don’t replace $HOSTNAME$ and $SERVICEDESC$!)

Make sure to also have process_perf_data set to 1 for both hosts and services.

Link back to Thruk

Ask PNP4Nagios to link to ‘’/thruk/cgi-bin’’ rather than ‘’/nagios/cgi-bin’‘:

sed -i -e 's,/nagios/cgi-bin,/thruk/cgi-bin,' /opt/pnp4nagios/etc/config_local.php

Enjoy it

Restart shinken-arbiter and you are done.

/etc/init.d/shinken-arbiter restart</code>

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with Thruk

Thruk

Install Thruk

See Thruk installation [http://www.thruk.org/documentation.html#_installation] documentation.

Note: if you’re using SELinux, also run:

chcon -t httpd_sys_script_exec_t /usr/share/thruk/fcgid_env.sh
chcon -t httpd_sys_script_exec_t /usr/share/thruk/script/thruk_fastcgi.pl
chcon -R -t httpd_sys_content_rw_t /var/lib/thruk/
chcon -R -t httpd_sys_content_rw_t /var/cache/thruk/
chcon -R -t httpd_log_t /var/log/thruk/
setsebool -P httpd_can_network_connect on

Using Shinken with Thruk

Thruk communicates with Shinken through the LiveStatus module. If you used the sample configuration, everything should be ready already. :)

You can review the configuration using the two following steps.

Enable Livestatus module

See enable Livestatus module.

Declare Shinken peer in Thruk

Edit ‘’/etc/thruk/thruk_local.conf’’ and declare the Shinken peer:

enable_shinken_features = 1
<Component Thruk::Backend>
 <peer>
 name = External Shinken
 type = livestatus
 <options>
 peer = 127.0.0.01:50000
 </options>
 # Uncomment the following lines if you want to configure shinken through Thruk
 #<configtool>
 # core_type = shinken
 # core_conf = /etc/shinken/shinken.cfg
 # obj_check_cmd = service shinken check
 # obj_reload_cmd = service shinken restart
 #</configtool>
 </peer>
</Component>

Or use the backend wizard which starts automatically upon first installation.

Don’t forget to change the 127.0.0.1 with the IP/name of your broker if it is installed on an different host, or if you are using a distributed architecture with multiple brokers!

Credit Shinken in the webpages title :-)

Edit ‘’/etc/thruk/thruk.conf’‘:

title_prefix = Shinken+Thruk-

Configure users

Passwords are stored in ‘’/etc/thruk/htpasswd’’ and may be modified using the ‘’htpasswd’’ command from Apache:

htpasswd /etc/thruk/htpasswd your_login

User permissions: modify ‘’templates.cfg:generic-contact’‘:

I couldn't manage to get Thruk-level permissions to work, let's use Shinken admins privileges
can_submit_commands 0

and define some users as admins in the Shinken configuration:

define contact {

 # ...

 use generic-contact
 is_admin 1

 # ...
}

Allow Thruk to modify its configuration file:

chgrp apache /etc/thruk/cgi.cfg
chmod g+w /etc/thruk/cgi.cfg

Set permissions for your users in Config Tool > User Settings > authorized_for_...

Using PNP4Nagios with Thruk

See PNP4Nagios.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Integration With Other Software

Use Shinken with WebUI

Shinken WebUI

Shinken includes a self sufficient Web User Interface, which includes its own web server (No need to setup Apache or Microsoft IIS)

Shinken WebUI is started at the same time Shinken itself does, and is configured using the main Shinken configuration file by setting a few basic parameters.

Set up the WebUI module

Enable the webui module in ‘’shinken-specific.cfg’’ configuration file that is on the server where your Arbiter is installed.

define module{

module_name WebUI
module_type webui

host 0.0.0.0 ; mean all interfaces of your broker server
port 7767

CHANGE THIS VALUE or someone may forge your cookies
auth_secret TOCHANGE

Allow or not the html characters in plugins output
WARNING: so far, it can be a security issue
allow_html_output 0

Option welcome message
#login_text Welcome to ACME Shinken WebUI.

#http_backend auto
; can be also: wsgiref, cherrypy, paste, tornado, twisted
; or gevent. auto means best match in the system.
modules Apache_passwd,ActiveDir_UI,Cfg_password,Mongodb

Modules available for the WebUI:
#
Note: Choose one or more authentication methods.
#
Apache_passwd: use an Apache htpasswd files for auth
ActiveDir_UI: use AD for auth and photo collect
Cfg_password: use passwords in contacts configuration for authentication
#
PNP_UI: Use PNP graphs in the UI
GRAPHITE_UI: Use graphs from Graphite
#
Mongodb: Necessary for enabling user preferences in WebUI

}

Important

Have you changed the auth_secret parameter already? No? Do it now!

Note

The web-server handling HTTP Request to the WebUI is a Python process. You do not need any web-server (like Apache) to run the WebUI.

Authentification modules

The WebUI use modules to lookup your user password and allow to authenticate or not.

By default it is using the cfg_password_webui module, which will look into your contact definition for the password parameter.

Tip

You need to declare these modules in the modules property of WebUI.

Shinken contact - cfg_password_webui

The simpliest is to use the users added as Shinken contacts.

define module{

 module_name Cfg_password
 module_type cfg_password_webui
}

Apache htpasswd - passwd_webui

This module uses an Apache passwd file (htpasswd) as authentification backend. All it needs is the full path of the file (from a legacy Nagios CGI installation, for example).

define module{

 module_name Apache_passwd
 module_type passwd_webui

 # WARNING: put the full PATH for this value!
 passwd /etc/shinken/htpasswd.users
}

Check the owner (must be Shinken user) and mode (must be readable) of this file.

If you don’t have such a file you can generate one with the “htpasswd” command (in Debian’s “apache2-utils” package), or from websites like htaccessTools [http://www.htaccesstools.com/htpasswd-generator/].

Important

To be able to log into the WebUI, users also have to be Shinken contacts! So adding an user in this file without adding it in the contacts will have no effect.

Active Directory / OpenLDAP - ad_webui

This module allows to lookup passwords into both Active Directory or OpenLDAP entries.

define module {

 module_name ActiveDir_UI
 module_type ad_webui
 ldap_uri ldaps://adserver
 username user
 password password
 basedn DC=google,DC=com

 # For mode you can switch between ad (active dir)
 # and openldap
 mode ad
}

Change “adserver” by your own dc server, and set the “user/password” to an account with read access on the basedn for searching the user entries.

Change “mode” from “ad” to “openldap” to make the module ready to authenticate against an OpenLDAP directory service.

You could also find module sample in shinken.specific.cfg.

User photos

In the WebUI users can see each others photos.

At this point only the “ad_webui” module allows to import and display photos in the WebUI. There is no configuration: if you add the “ad_webui” module it will import contact photos automatically.

User preferences modules

The WebUI use mongodb to store all user preferences, dashboards and other information.

	To enable user preferences do the following:

	
	install mongodb using the Shinken installation script: cd /usr/local/shinken ; ./install -a mongodb

	add “Mongodb” to your WebUI module list as done in the example at the top of this page

Metrology graph modules

You can link the WebUI so it will present graphs from other tools, like PNP4Nagios or Graphite. All you need is to declare such modules (there are already samples in the default configuration) and add them in the WebUI modules definition.

PNP graphs

You can ask for a PNP integration with a pnp_webui module. Here is its definition:

Use PNP graphs in the WebUI
define module{

module_name PNP_UI
module_type pnp_webui
uri http://YOURSERVERNAME/pnp4nagios/ ; put the real PNP uri here. YOURSERVERNAME must be changed
 ; to the hostname of the PNP server
}

Shinken will automatically replace YOURSERVERNAME with the broker hostname at runtime to try and make it work for you, but you MUST change it to the appropriate value.

Graphite graphs

You can ask for Graphite graphs with the graphite_ui definition.

define module{

module_name GRAPHITE_UI
module_type graphite_webui
uri http://YOURSERVERNAME/ ; put the real GRAPHITE uri here. YOURSERVERNAME must be changed
 ; to the hostname of the GRAPHITE server
}

Shinken will automatically replace YOURSERVERNAME with the broker hostname at runtime to try and make it work for you, but you MUST change it to the appropriate value.

Use it!

The next step is very easy: just access the WebUI URI (something like %%http://127.0.0.1:7767/%%) on log in with the user/password set during the previous part! The default username and password is admin/admin

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Security and Performance Tuning

	Security Considerations
	Introduction

	Best Practices

	Tuning Shinken For Maximum Performance
	Introduction

	Designing your installation for scalability

	Optimization Tips:

	Scaling a Shinken installation
	Introduction

	Scalability guide

	Shinken performance statistics
	Introduction

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Security and Performance Tuning

Security Considerations

Introduction

Your monitoring box should be viewed as a backdoor into your other systems. In many cases, the Nagios server might be allowed access through firewalls in order to monitor remote servers. In most all cases, it is allowed to query those remote servers for various information. Monitoring servers are always given a certain level of trust in order to query remote systems. This presents a potential attacker with an attractive backdoor to your systems. An attacker might have an easier time getting into your other systems if they compromise the monitoring server first. This is particularly true if you are making use of shared “SSH” keys in order to monitor remote systems.

If an intruder has the ability to submit check results or external commands to the Nagios daemon, they have the potential to submit bogus monitoring data, drive you nuts you with bogus notifications, or cause event handler scripts to be triggered. If you have event handler scripts that restart services, cycle power, etc. this could be particularly problematic.

Another area of concern is the ability for intruders to sniff monitoring data (status information) as it comes across the wire. If communication channels are not encrypted, attackers can gain valuable information by watching your monitoring information. Take as an example the following situation: An attacker captures monitoring data on the wire over a period of time and analyzes the typical CPU and disk load usage of your systems, along with the number of users that are typically logged into them. The attacker is then able to determine the best time to compromise a system and use its resources (CPU, etc.) without being noticed.

Here are some tips to help ensure that you keep your systems secure when implementing a Nagios-based monitoring solution...

Best Practices

	Use a Dedicated Monitoring Box. I would recommend that you install Nagios on a server that is dedicated to monitoring (and possibly other admin tasks). Protect your monitoring server as if it were one of the most important servers on your network. Keep running services to a minimum and lock down access to it via TCP wrappers, firewalls, etc. Since the Nagios server is allowed to talk to your servers and may be able to poke through your firewalls, allowing users access to your monitoring server can be a security risk. Remember, its always easier to gain root access through a system security hole if you have a local account on a box.

[image: ../_images/security2.png]

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Security and Performance Tuning

Tuning Shinken For Maximum Performance

Introduction

So you’ve finally got Shinken up and running and you want to know how you can tweak it a bit. Tuning Shinken to increase performance can be necessary when you start monitoring a large number (> 10,000) of hosts and services. Here are the common optimization paths.

Designing your installation for scalability

Planning a large scale Shinken deployments starts before installing Shinken and monitoring agents.

Scaling Shinken for large deployments

Optimization Tips:

	Graph your shinken server performance. In order to keep track of how well your installation handles load over time and how your configuration changes affect it, you should be graphing several important statistics. This is really, really, really useful when it comes to tuning the performance of an installation. Really. Information on how to do this can be found :ref:`Graphing Performance Info With MRTG <securityandperformancetuning-mrtggraphs>`here.

	Check service latencies to determine best value for maximum concurrent checks. Nagios can restrict the number of maximum concurrently executing service checks to the value you specify with the max_concurrent_checks option. This is good because it gives you some control over how much load Nagios will impose on your monitoring host, but it can also slow things down. If you are seeing high latency values (> 10 or 15 seconds) for the majority of your service checks. That’s not Shinken’s fault - its yours. Under ideal conditions, all service checks would have a latency of 0, meaning they were executed at the exact time that they were scheduled to be executed. However, it is normal for some checks to have small latency values. I would recommend taking the minimum number of maximum concurrent checks reported when running Shinken with the -s command line argument and doubling it. Keep increasing it until the average check latency for your services is fairly low. More information on service check scheduling can be found :ref:`Service and Host Check Scheduling <advancedtopics-checkscheduling>`here.

	Use passive checks when possible. The overhead needed to process the results of :ref:`Passive Checks <thebasics-passivechecks>`passive service checks is much lower than that of “normal” active checks, so make use of that piece of info if you’re monitoring a slew of services. It should be noted that passive service checks are only really useful if you have some external application doing some type of monitoring or reporting, so if you’re having Nagios do all the work, this won’t help things.

	Avoid using interpreted plugins. One thing that will significantly reduce the load on your monitoring host is the use of compiled (C/C++, etc.) plugins rather than interpreted script (Perl, etc) plugins. While Perl scripts and such are easy to write and work well, the fact that they are compiled/interpreted at every execution instance can significantly increase the load on your monitoring host if you have a lot of service checks. If you want to use Perl plugins, consider compiling them into true executables using perlcc(1) (a utility which is part of the standard Perl distribution).

	Optimize host check commands. If you’re checking host states using the check_ping plugin you’ll find that host checks will be performed much faster if you break up the checks. Instead of specifying a max_attempts value of 1 in the host definition and having the check_ping plugin send 10 “ICMP” packets to the host, it would be much faster to set the max_attempts value to 10 and only send out 1 “ICMP” packet each time. This is due to the fact that Nagios can often determine the status of a host after executing the plugin once, so you want to make the first check as fast as possible. This method does have its pitfalls in some situations (i.e. hosts that are slow to respond may be assumed to be down), but you’ll see faster host checks if you use it. Another option would be to use a faster plugin (i.e. check_fping) as the host_check_command instead of check_ping.
- Don’t use agressive host checking. Unless you’re having problems with Shinken recognizing host recoveries, I would recommend not enabling the use_aggressive_host_checking option. With this option turned off host checks will execute much faster, resulting in speedier processing of service check results. However, host recoveries can be missed under certain circumstances when this it turned off. For example, if a host recovers and all of the services associated with that host stay in non-OK states (and don’t “wobble” between different non-OK states), Shinken may miss the fact that the host has recovered. A few people may need to enable this option, but the majority don’t and I would recommendnot using it unless you find it necessary.

	Optimize hardware for maximum performance. Hardware performance shouldn’t be an issue unless:
- you’re monitoring thousands of services
- you are writing to a metric database such as RRDtool or Graphite. Disk access will be a very important factor.
- you’re doing a lot of post-processing of performance data, etc. Your system configuration and your hardware setup are going to directly affect how your operating system performs, so they’ll affect how Shinken performs. The most common hardware optimization you can make is with your hard drives, RAID, do not update attributes for access-time/write-time.
- Shinken needs quite a bit of memory which is pre-allocated by the Python processes.
- Move your Graphite metric databases to dedicated servers. Use multiple carbon-relay and carbon-cache daemons to split the load on a single server.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Security and Performance Tuning

Scaling a Shinken installation

Introduction

Shinken is designed to scale horizontally, but carefully planning your deployment will improve chances of success.

Scalability guide

Learn how to prepare by reading the main scalability guide for large Shinken installations

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Security and Performance Tuning

Shinken performance statistics

Introduction

Shinken provides some statistics in the log files on the health of the Shinken services. These are not currently available in the check_shinken check script. Support is planned in a future release. This will permit graphical review that Shinken :

	Operates efficiently

	Locate problem areas in the monitoring process

	Observe the performance impacts of changes in your Shinken configuration

Shinken internal metrics are collected in the poller log and scheduler logs when debug log level is enabled.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

How to contribute

	Shinken packs
	What are Packs?

	What does a .pack file looks like ?

	How to create a zip pack from a configuration directory?

	How to share the zip pack to the community website?
	Register on the community website and retrieve your API key

	Push your zip pack

	Shinken modules and Shinken packs
	Packages layout

	The package.json file

	How to publish it

	Help the Shinken project

	Getting Help and Ways to Contribute
	Shinken resources for users (help) :

	Ways to contribute :

	Shinken Guidelines for developers and power users :

	Shinken Package Manager

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	How to contribute

Shinken packs

What are Packs?

Packs are a small subset of configuration files, templates or pictures about a subject, like Linux or windows. It’s designed to be a “pack” about how to monitor a specific subject. Everyone can contribute by creating and sending their how packs to the Shinken community website [http://community.shinken-monitoring.org].

Technically, it’s a zip file with configuration files and some pictures or templates in it.

Let take a simple example with a linux pack, with only a CPU and a memory services checks. Files between [] are optional.

	templates.cfg -> define the host template for the “linux” tag

	commands.cfg -> define commands for getting CPU and Memory information, like by snmp for example.

	linux.pack -> json file that describe your pack

	[discovery.cfg] -> if you got a discovery rule for a “linux” (like a nmap based one), you can add it

	services/

	services/cpu.cfg -> Your two services. They must apply to the “linux” host tag!

	services/memory.cfg

	[images/sets/tag.png] -> if you want to put a linux logo for all linux host tagged host, it’s here. (size = 40x40px, in png format)

	[templates/pnp/check_cpu.php] -> if your check_cpu command got a PNP4 template

	[templates/graphite/check_cpu.graph] -> same, but for graphite

What does a .pack file looks like ?

It’s a json file that describe your “pack”. It will give it its name, where it should be installed, and if need give some macros provided by the host tags so it will be easier to configure in the SkonfUI.

Let use our previous Linux sample:

{
"name":"linux",
"description":"Standard linux checks, like CPU, RAM and disk space. Checks are done by SNMP.",
"path":"os/",
"macros":{

 "_SNMPCOMMUNITY": {"type":"string",
 "description":"The read snmp community allowed on the linux server"
 },

 "_LOAD_WARN": {"type":"string",
 "description": "Value for starting warning state for the load average at 1m,5m,15m"
 },
 "_LOAD_CRIT": {"type":"string",
 "description": "Value for starting critical state for the load average at 1m,5m,15m"
 },

 "_MEM_WARN": {"type":"percent",
 "description": "Warning level for used disk space"
 },
 "_MEM_CRIT": {"type":"percent",
 "description": "Critical level for used disk space"
 },

 "_CPU_WARN": {"type":"percent",
 "description": "Warning level for the CPU usage"
 }
 }
}

Name and description are quite easy to understand. Path is where this pack will be installed on the etc/packs directory for the user (and where it will be push in the community website). It can be a full path, like os/unix/ if you want.

Macros is a hash map of macro names with two values: type and description. Type can be in “string” or “percent” from now. It will give a simple input in SkonfUI for the SNMPCOMMUNITY macro for example, but a “slider” for warning/critical values (so a value between 0 and 100, integer).

How to create a zip pack from a configuration directory?

If you push a valid .pack in the configuration directory in etc/packs, you will be able to create a zip pack with the shinken-packs command. Let use again our linux sample. For example, the configuration directory with templates.cfg, commands.cfg, discovery.cfg, the linux.pack file and the services directory is in etc/packs/os/linux.

shinken-packs -c -s /var/lib/shinken/share -p etc/packs/os/linux/linux.pack

It will generate the file /tmp/linux.zip for you. All you need to give to the shinken-packs command is the .pack path, and in option the share path where you have your images and templates directory. The command will automatically parse this directory and take the good image set by looking a the pack name (like configured in the .pack file) and took each template that is available for your commands in the commands.cfg file.

You are done. Your zip pack is done and available in /tmp/linux.zip Congrats! :)

How to share the zip pack to the community website?

The community website is available at community.shinken-monitoring.org [http://community.shinken-monitoring.org]. You will need an account to share your zip packs or retrive some new from others community members.

Register on the community website and retrieve your API key

You can register online at community.shinken-monitoring.org/register [http://community.shinken-monitoring.org/register] or you can also do it in a CLI way with your shinken-packs command.

Tip

You only need to register once. All your packs will be pushed with the same account.

Note

You will also need the python-pycurl library, but it should be ok on most distribution already.

You need a valid email for registering (so you can validate your account).

bin/shinken-packs -r -l mylogin -P mypassword -e email@google.com

Tip

If you are behind a proxy, you will need to add a –proxy http://user:password@proxy-server:3128 argument in your shinken-packs command. It will be need for all community calls like registering or pushing zip packs.

You will have an email with a link to validate your email (so we will only spam users that want it :))

In order to push or retrieve packs you will need an api_key that will be generated when you will validate your account. You can connect to the community website and go in your account panel to get it, or you can get it from the shinken-packs command.

bin/shinken-packs -g --login mylogin -P mypassword

It will give you your api_key, something that looks like d9be716aad1d41988ad87b1a454274a50.

Push your zip pack

Now you got your can push your /tmp/linux.zip pack and make it available for the community!

bin/shinken-packs -u -k d9be716aad1d41988ad87b1a454274a50 -z /tmp/linux.zip

Then it’s done! You can go to the community website and look at your new shared zip pack. Thanks a lot for sharing :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	How to contribute

Shinken modules and Shinken packs

Packages layout

	For a MODULE named ABC (ex: github.com/shinken-monitoring/mod-ip-tag [https://github.com/shinken-monitoring/mod-ip-tag])

	
	etc/modules/abc.cfg

	module/module.py

	/__init__.py

	package.json

That”s ALL!

For a PACK named ABC (for an example look at github.com/shinken-monitoring/pack-linux-snmp

pack/templates.cfg
 /services/
 /commands.cfg
 […....]
share/images/sets/ABC/tag.png (if need)
 /templates/graphite/mycommand.graph

The package.json file

The package.json is like this for a PACK:

{

 "name": "linux-snmp",
 "types": ["pack"],
 "version": "1.4",
 "homepage": "https://github.com/shinken-monitoring/pack-linux-snmp",
 "author": "Jean Gabès",
 "description": "Linux checks based on SNMP",
 "contributors": [
 {
 "name": "Jean Gabès",
 "email": "naparuba@gmail.com"
 }
],
 "repository": "https://github.com/shinken-monitoring/pack-linux-snmp",
 "keywords": [
 "pack",
 "linux",
 "snmp"
],
 "dependencies": {
 "shinken": ">=1.4"
 },
 "license": "AGPL"
}

And for a module :

{

"name": "ip-tag",
"types": ["module"],
"version": "1.4",
"homepage": "http://github.com/shinken-monitoring/mod-ip-tag",
"author": "Jean Gabès",
"description": "Tag host by their IP ranges",
"contributors": [
 {
 "name": "Jean Gabès",
 "email": "naparuba@gmail.com"
 }
],
"repository": "https://github.com/shinken-monitoring/mod-ip-tag",
"keywords": [
 "module",
 "arbiter",
 "ip"
],
"dependencies": {
 "shinken": ">=1.4"
},
"license": "AGPL"
}

How to publish it

Before publishing, you must register an account on shinken.io [http://shinken.io]. Then on your account page on shinken.io/~ [http://shinken.io/~] you will got your api_key. Put it on your ~/.shinken.ini.

Then you can :

cd my-package
shinken publish

That’s all :)

Note

currently the integration process is a script on the shinken.io website, so you need to ask naparuba@gmail.com to launch it before he take time to put it on a cron :)).

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	How to contribute

 ~~NOTOC~~

Help the Shinken project

How can I help?

This page has moved to : How to contribute

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	How to contribute

Getting Help and Ways to Contribute

Shinken resources for users (help) :

	Shinken documentation wiki [Jump back to start page]

	Shinken Troubleshooting FAQ

	` Support Forums`_

	` Shinken issues and bug reports`_

	` Shinken Ideas`_

The documentation wiki contains a Getting started section for how-to and tutorial related information. It also hosts an official documentation that has the full in-depth details and a how to contribute section where you can learn how to help grow Shinken.

Your input and support is a precious resource. If the documentation is not clear, or you need help finding that nugget of information, the support forum has the answer to your burning questions. The Shinken Ideas page is a good place to let the development team how Shinken can improve to meet new challenges or better serve its user base.

Ways to contribute :

	help on the documentation [This wiki]

	help on updating this web site

	help on tracking and fixing bugs, Shinken is on github [https://github.com/naparuba/shinken] to make it easy!

	coding new features, modules and test cases

	performance profiling of the various daemons, interfaces and modules

	providing references for large installations

	submitting ideas to Shinken Ideas

	responding to questions on the forums

//Guidelines and resources are described for users in the first section and power users and developers in the second section.//

Shinken Guidelines for developers and power users :

	Guidelines that should be followed when contributing to the code

	
	Guidelines - Hacking the code [Examples of Shinken programming]

	Guidelines - How to add a new WebUI page

	Guidelines - Test driven development [How to create and run tests]

	Guidelines - Programming rules [Style, technical debt, logging]

	Informational - Feature planning process and release cycle

	Resources for developers and power users

	
	Development - Collaborative code repository on ` Shinken github`_

	Development - Bug tracking on ` Shinken github`_

	Development - Automated test and integration on ` Shinken Jenkins server`_ ` Shinken Jenkins server`_

	Development - The forums are also a good medium to discuss issues ` Support Forums`_

	Development - Developer Mailing list - Register or search the shinken-devel Mailing list [https://lists.sourceforge.net/lists/listinfo/shinken-devel]

For bug hunting and programming, you will need to look at the “How to hacking” tutorial page.

GitHub offers great facilities to fork, test, commit, review and comment anything related to Shinken. You can also follow the projects progress in real time.

There is a development mailing list where you can join us. Come and let us know what you think about Shinken, propose your help or ask for it. :)

Thank you for your help in making this software an open source success.

Happy New Year to all Shinken followers, users and developers. xkilian
(If you find this you are lucky or tracking changes. ;-)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	How to contribute

Shinken Package Manager

Important

I don’t now how you get here :) it’s a poc of the design of a shinken pack manager. A pack can be a module, a configuration pack or what ever you want.

	A pack can be about :

	
	configuration

	module

Each pack should have a pack.json file that describe it.

{

"name": "linux",
"version": "1.2",
"description": "Standard linux checks, like CPU, RAM and disk space. Checks are done by SNMP.",
"type": "configuration",
"dependencies": {
 "shinken" : ">1.2"
},
"repository": {
 "type": "git",
 "url": "git://github.com/naparuba/pack-cfg-linux.git"
},
"keywords": [
 "linux", "snmp"
],
"author": "Jean Gabès <naparuba@gmail.com>",
"license": "Affero GPLv3",
"configuration":{
 "path":"os/",
 "macros":{
 "_SNMPCOMMUNITY": {"type":"string",
 "description":"The read snmp community allowed on the linux server"
 },
 }
}
}

And for a module one :

{

"name": "logstore_mongodb",
"version": "1.2",
"description": "Log store module for LiveStatus. Will save the logs into Mongodb.",
"type": "module",
"dependencies": {
 "shinken" : ">1.2",
 "livestatus" : ">1.2"
},
"repository": {
 "type": "git",
 "url": "git://github.com/naparuba/pack-module-logstore_mongodb.git"
},
"keywords": [
 "mongodb", "log", "livestatus"
],
"author": "Gerhard Lausser <>",
"license": "Affero GPLv3"
}

The spm command should be really simple to use.

spm install linux

This will download the linux pack and put the good files into the rigth place.

spm search linux

This will output all the pack with linux in the name or the description.

spm create

This will create a .tar.gz file with all inside.

spm publish

This will push the .tar.gz file to the registry.shinken-montioring.org website. Will use the ~/.spm/api.key for credentials.

spm adduser

This will try to register you to the registry website. If the username you propose is already defined, propose you to login and get your API key.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

Development

	Shinken Programming Guidelines
	The python style guide

	Reference book

	Pyro remote Object Library

	The python docstring guide

	Logging is your friend

	Technical debt must be paid

	Where does the fun happen

	Test Driven Development
	Introduction
	Test Driven Development

	TDD in Shinken

	Add test to Shinken
	Create a test

	Executing tests

	Shell test run

	Integration test run

	Tests and integration servers

	Automated test execution

	Nagios Plugin API
	Other Resources

	Plugin Overview

	Return Code

	Plugin Output Spec

	Plugin Output Examples

	Plugin Output Length Restrictions

	Examples

	Developing Shinken Daemon Modules

	Hacking the Shinken Code
	Development goals

	Development rules

	How is Shinken’s code organized

	Datadriven programming in Shinken code

	Programming with broker modules in Shinken

	Example of code hacking : add a parameter for the flapping history
	Configuration part

	Running part

	The perfect patch

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Development

Shinken Programming Guidelines

The Shinken project aims to have good code quality. This is to the benefit of all. Easy to understand code, that is efficient and well documented can do wonders to introduce new developers to a great system and keep existing one happy!

During scores of secret meetings at undisclosed locations in the heart of Eurodisney, the following guidelines were documented.

So here’s the how to keep the developers happy! __Follow these guidelines__

The python style guide

The python style guide provides coding conventions for Python programmers covering topics such as:

	Whitespace

	Comments

	Imports

	Classes

	Naming conventions

Keep it as a handy reference: ` PEP8 - Python Style guide`_

Reference book

The Art of Readable Code, is a great book that provides a fast read and an immense value in improving the readability and maintainability of code.

Pyro remote Object Library

Shinken uses Pyro extensively to create its cloud-like architecture.:ref:You can learn more about Pyro <//pypi.python.org/pypi/Pyro4> if you wish to develop new features that need to use inter-process communications.

The python docstring guide

The Python docstring guide provides insight in how to format and declare docstrings which are used to document classes and functions.

Read through it to provide better understanding for yourself and others: ` Python docstring guide`_

Logging is your friend

Shinken provides a logger module, that acts as a wrapper to the Python logging facilities. This provides valuable feedback to users, power users and developers.

The logging functions also provide different levels to distinguish the type logging level at which the messages should appear. This is similar to how syslog classifies messages based on severity levels.

Some log messages will not get the level printed, these are related to state data.
Logging levels for logs generated at system startup and displayed in STDOUT are set by default to display all messages. This is normal behaviour. Once logging is initialized buffered messages are logged to the appropriate level defined in the daemon INI files. (ex. reactionnerd.ini, brokerd.ini, etc.)

Some test cases depend on logging output, so change existing logging messages to your hearts content, but validate all changes against the FULL test suite. Learn more about using the Shinken test suite.

Debug:
This is the most verbose logging level (maximum volume setting). Consider Debug to be out-of-bounds for a production system and used it only for development and testing. I prefer to aim to get my logging levels just right so I have just enough information and endeavor to log this at the Information level or above.

Information:
The Information level is typically used to output information that is useful to the running and management of your system. Information would also be the level used to log Entry and Exit points in key areas of your application. However, you may choose to add more entry and exit points at Debug level for more granularity during development and testing.

Warning:
Warning is often used for handled ‘exceptions’ or other important log events. For example, if your application requires a configuration setting but has a default in case the setting is missing, then the Warning level should be used to log the missing configuration setting.

Error:
Error is used to log all unhandled exceptions. This is typically logged inside a catch block at the boundary of your application.

Critical:
Critical is reserved for special exceptions/conditions where it is imperative that you can quickly pick out these events. I normally wouldn’t expect Fatal to be used early in an application’s development. It’s usually only with experience I can identify situations worthy of the FATAL moniker experience do specific events become worth of promotion to Critical. After all, an error’s an error.

log:
This level has been deprecated for NON NAGIOS/SHINKEN STATE messages and should be replaced with one of the approved logging levels listed above. The STATE messages are easy recognize as they are ALL CAPS. Do not mess with these unless you know what you are doing.

Technical debt must be paid

Coding in Shinken should be fun and rewarding.

“Technical debt”: all little hacks here and there. __There comes a time, technical debt must be paid__. We can have new features very quickly, if authors do not have to bypass numerous hack. We must take some time before each release to pay all technical debt we can. __The less we’ve got, the easier it is to service and extend the code__.

It’s the same for the core architecture. A solid and stable architecture allows developers to build on it and add value. A good example is being able to add a parameter with only a single line :)

We must be responsible with new features, if it means they can be used to build more innovation in the future without hacks :)

Where does the fun happen

` GitHub offers great facilities to fork, test, commit, review and comment anything related to Shinken`_.

You can also follow the project progress in real time.
.. _ GitHub offers great facilities to fork, test, commit, review and comment anything related to Shinken: https://github.com/naparuba/shinken
.. _ Python docstring guide: http://www.python.org/dev/peps/pep-0257/
.. _ PEP8 - Python Style guide: http://www.python.org/dev/peps/pep-0008/

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Development

Test Driven Development

Introduction

Test Driven Development

	In a strict sense TDD is:

	
	Create the test case for your new function (valid and invalid input, limits, expected output)

	Run the test, make sure it fails as planned.

	Code your function, run the test against it and eventually have it succeed.

	Once the function works, re-factor the code for efficiency, readability, comments, logging and anything else required.

	Any scope changes should be handled by new functions, by adding new test cases or by modifying the existing test case (dangerous for existing code).

	See the ` Wikipedia article about TDD`_ for more information.

	There are different test levels :

	
	Commit level tests : These should be as quick as possible, so everyone can launch them in a few seconds.

	Integration tests : Integration tests should be more extensive and can have longer execution periods as these are launched less often (before a release, or in an integration server).

TDD in Shinken

We think all functions and features should have a test case. Shinken has a system to run automated tests that pinpoint any issues. This is used prior to commit, at regular intervals and when preparing a release.

Shinken uses Test Driven Development to achieve agility and stability in its software development process. Developers must adhere to the described methods in order to maintain a high quality standard.

We know some functions will be hard to test (databases for example), so let’s do our best, we can’t have 100% coverage. Tests should cover the various input and expected output of a function. Tests can also cover end-to-end cases for performance, stability and features. Test can also be classified in their time to run, quick tests for commit level validation and integration tests that go in-depth.

We are not saying “all patches should be sent with tests”, but new features/functions should have tests. First, the submitter knows what his code is designed to do, second this will save us from having to create one or more test cases later on when something gets broken. Test examples can be found in the /tests/ directory of the repository or your local installation.

Add test to Shinken

I guess you have come here to chew bubblegum and create tests ... and you are all out of bubblegum! Lucky you are, here is some help to create tests!

Create a test

Tests use standard python tools to run (unittest), so that they have to be well formatted. But don’t worry it’s quite simple. All you have to know is something (a class or a method) containing the “test” string will be run. The typical way to create a new test is to copy paste from a simple one. We suggest the test_bad_contact_call.py for example which is very small.

Here is the file :

from shinken_test import *

class TestConfig(ShinkenTest):

 def setUp(self):
 self.setup_with_file('etc/nagios_bad_contact_call.cfg')

 def test_bad_contact_call(self):
 # The service got a unknow contact. It should raise an error
 svc = self.conf.services.find_srv_by_name_and_hostname("test_host_0", "test_ok_0")
 print "Contacts:", svc.contacts
 self.assert_(svc.is_correct() == False)

if __name__ == '__main__':
 unittest.main()

Basically what unittest does (and nosetest too) is run every method containing “test” in all class containing “test”. Here there is only one test : test_bad_contact_call
The setUp function is a special one : it is called before every test method to set up the test. You can also execute a special function after each test by defining a tearDown() method.

So the only thing you have to do is rename the function and write whatever you want to test inside!

This is more or less the only thing you have to do if you want to write a test from scratch. See http://docs.python.org/2/library/unittest.html for more detail about unittest

If you are testing more complex stuff you may use other test as template. For example broker module tests are a lot different and need some scheduling statement to simulate real beahvior.

Executing tests

Important

YOU NEED PYTHON 2.7 TO RUN THE TESTS. The test scripts use new Assert statements only available starting in Python 2.7.

Once you have done or edited the python file you have to run the test by typing :

python test_nameofyourtest.py

If there is no error then everything is correct. You can try to launch it with nosetests to double check it.

Note

nosetests has a different behavior than unittests, the jenkins integration is using nosetests, that’s why it’s a good thing to check before comminting.

The automated tests permit developers to concentrate on what they do best, while making sure they don’t break anything. That’s why the tests are critical to the success of the project. Shinken aims for “baseline zero bug” code and failure by design development :)
We all create bugs, it’s the coders life after all, lets at least catch them before they create havoc for users! The automated tests handle regression, performance, stability, new features and edge cases.

The test is ready for commit. The last thing to do is to run the test suit to ensure you do not create code regression. This can be a long step if you have made a big change.

Shell test run

There are basically two ways to run the test list. The first one (easiest) is to run the quick_test shell script. This will basically iterate on a bunch of python files and run them

FIXME : update test list into git and edit end to end script

./quick_tests.sh

Then you can run the end to end one : \
FIXME : explain what the script does

./test_end_to_end.sh

It only takes a few seconds to run and you know that you did not break anything (or this will indicate you should run the in-depth integration level tests :)).

If you are adhering to TDD this will validate that your function fails by design or that you have successfully built your function

Integration test run

The other way to do it is run the new_runtest script (which is run on the Jenkins ingration server)

Note

It can be difficult to make it work from scratch as the script create and install a python virtual enviromnt. On the distros, pip dependencies may be difficult to met. Don’t give up and ask help on the mailing list!

./test/jenkins/new_runtest ./test/jenkins/shorttests.txt ./test/moduleslist COVERAGE PYLINT PEP8

For short tests, coverage and python checking. Just put NOCOVERAGE or NOPYLINT or NOPEP8 instead to remove one.

This ensure that the Jenkins run won’t fail. It’s the best way to keep tests fine.

Tests and integration servers

The integration server is at http://shinken-monitoring.de:8080/

It use the following tests:

	
	test/jenkins/runtests[.bat]

	it takes the arguments: “file with a list of test_-scripts” [NO]COVERAGE

[NO]PYLINT
* test/test_end_to_end.sh

Other integration server is at https://test.savoirfairelinux.com/view/Shinken/

This one use the new_runtest script.

Automated test execution

The Hudson automated test jobs are:

	Shinken

	executed after each git commit

	runtests test/jenkins/shorttests.txt NOCOVERAGE NOPYLINT

	the scripts in shorttests.txt take a few minutes to run

	give the developer feedback as fast as possible (nobody should git-commit without running tests in his private environment first)

	Shinken-Multiplatform

	runs 4 times per day

	runtests test/jenkins/longtests.txt NOCOVERAGE NOPYLINT

	linux-python-2.4,linux-python-2.6,linux-python-2.7,windows-python-2.7

	executes _all_ test_-scripts we have, so it takes a long time

	Shinken-End-to-End

	runs after each successful Shinken-Multiplatform

	executes the test/test_end_to_end.sh script

	try a direct launch, install then launch, and high availability environment launch.

	Shinken-Code-Quality

	runs once a day

	runtests test/jenkins/longtests.txt COVERAGE PYLINT

	collects metrics for coverage and pylint

On the Jenkins one :

	Shinken-Upstream-Commit-Short-Tests

	executed after each git commit

	./test/jenkins/new_runtests ./test/jenkins/shorttests.txt ./test/moodulelist COVERAGE PYLINT PEP8

	test also module in a basic way.

	the scripts in shorttests.txt take a few minutes to run

	give the developer feedback as fast as possible (nobody should git-commit without running tests in his private environment first)

	Shinken-Upstream-Daily-Full-Tests

	executed every 6 hours

	./test/jenkins/new_runtest ./test/jenkins/all_tests.txt ./test/moduleslist COVERAGE PYLINT PEP8

	the all_test is regenerated everytime (all test_*.py)

	run all test in all module listed

	give a full view of shinken coverage.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Development

Nagios Plugin API

Other Resources

If you’re looking at writing your own plugins for Nagios or Shinken, please make sure to visit these other resources:

	The official Nagios plugin project website [http://sourceforge.net/projects/nagiosplug/]

	The official ` Nagios plugin development guidelines`_

Plugin Overview

Scripts and executables must do two things (at a minimum) in order to function as Shinken plugins:

	Exit with one of several possible return values

	Return at least one line of text output to “STDOUT”

The inner workings of your plugin are unimportant to Shinken, interface between them is important. Your plugin could check the status of a TCP port, run a database query, check disk free space, or do whatever else it needs to check something. The details will depend on what needs to be checked - that’s up to you.

If you are interested in having a plugin that is performant for use with Shinken, consider making it a Python or python + Ctype plugin that is daemonized by the Shinken poller or receiver daemons. You can look at the existing poller daemons for how to create a module, it is very simple.

Return Code

Shinken determines the status of a host or service by evaluating the return code from plugins. The following tables shows a list of valid return codes, along with their corresponding service or host states.

	Plugin Return Code
	Service State
	Host State

	0
	OK
	UP

	1
	WARNING
	UP or DOWN/UNREACHABLE*

	2
	CRITICAL
	DOWN/UNREACHABLE

	3
	UNKNOWN
	DOWN/UNREACHABLE

If the use_aggressive_host_checking option is enabled, return codes of 1 will result in a host state of DOWN or UNREACHABLE. Otherwise return codes of 1 will result in a host state of UP. The process by which Nagios determines whether or not a host is DOWN or UNREACHABLE is discussed here.

Plugin Output Spec

At a minimum, plugins should return at least one of text output. Beginning with Nagios 3, plugins can optionally return multiple lines of output. Plugins may also return optional performance data that can be processed by external applications. The basic format for plugin output is shown below:

TEXT OUTPUT | OPTIONAL PERFDATALONG TEXT LINE 1LONG TEXT LINE 2...LONG TEXT LINE N | PERFDATA LINE 2PERFDATA LINE 3...PERFDATA LINE N

The performance data (shown in orange) is optional. If a plugin returns performance data in its output, it must separate the performance data from the other text output using a pipe (|) symbol. Additional lines of long text output (shown in blue) are also optional.

Plugin Output Examples

Let’s see some examples of possible plugin output...

Case 1: One line of output (text only)

Assume we have a plugin that returns one line of output that looks like this:

DISK OK - free space: / 3326 MB (56%);

If this plugin was used to perform a service check, the entire line of output will be stored in the “$SERVICEOUTPUT$” macro.

Case 2: One line of output (text and perfdata)

A plugin can return optional performance data for use by external applications. To do this, the performance data must be separated from the text output with a pipe (|) symbol like such:

DISK OK - free space: / 3326 MB (56%);

"|"

/=2643MB;5948;5958;0;5968

If this plugin was used to perform a service check, the”red”portion of output (left of the pipe separator) will be stored in the $SERVICEOUTPUT$ macro and the”orange”portion of output (right of the pipe separator) will be stored in the $SERVICEPERFDATA$ macro.

Case 3: Multiple lines of output (text and perfdata)

A plugin optionally return multiple lines of both text output and perfdata, like such:

DISK OK - free space: / 3326 MB (56%);"|"/=2643MB;5948;5958;0;5968/ 15272 MB (77%);/boot 68 MB (69%);/home 69357 MB (27%);/var/log 819 MB (84%);"|"/boot=68MB;88;93;0;98/home=69357MB;253404;253409;0;253414 /var/log=818MB;970;975;0;980

If this plugin was used to perform a service check, the red portion of first line of output (left of the pipe separator) will be stored in the $SERVICEOUTPUT$ macro. The orange portions of the first and subsequent lines are concatenated (with spaces) are stored in the $SERVICEPERFDATA$ macro. The blue portions of the 2nd - 5th lines of output will be concatenated (with escaped newlines) and stored in $LONGSERVICEOUTPUT$ the macro.

The final contents of each macro are listed below:

	Macro
	Value

	$SERVICEOUTPUT$
	DISK OK - free space: / 3326 MB (56%);

	$SERVICEPERFDATA$
	/=2643MB;5948;5958;0;5968”/boot=68MB;88;93;0;98”/home=69357MB;253404;253409;0;253414”/var/log=818MB;970;975;0;980

	$LONGSERVICEOUTPUT$
	/ 15272 MB (77%);n/boot 68 MB (69%);n/var/log 819 MB (84%);

With regards to multiple lines of output, you have the following options for returning performance data:

	You can choose to return no performance data whatsoever

	You can return performance data on the first line only

	You can return performance data only in subsequent lines (after the first)

	You can return performance data in both the first line and subsequent lines (as shown above)

Plugin Output Length Restrictions

Nagios will only read the first 4 KB of data that a plugin returns. This is done in order to prevent runaway plugins from dumping megs or gigs of data back to Nagios. This 4 KB output limit is fairly easy to change if you need. Simply edit the value of the MAX_PLUGIN_OUTPUT_LENGTH definition in the include/nagios.h.in file of the source code distribution and recompile Nagios. There’s nothing else you need to change!

Shinken behaviour is ... TODO fill in the blanks.

Examples

If you’re looking for some example plugins to study, I would recommend that you download the official Nagios plugins and look through the code for various C, Perl, and shell script plugins. Information on obtaining the official Nagios plugins can be found here.

Or go to the Shinken Git hub or look in your installation in shinken/modules and look for the NRPE and NSCA modules for inspiration on create a new poller or receiver daemon module.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Development

Developing Shinken Daemon Modules

How to develop daemon modules...

Coming shortly.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Development

	Prev
	Up

Hacking the Shinken Code

Development goals

Shinken is an open source program.

Enhancements, optimization, fixes, these are all good reasons to create a patch and send it to the development mailing list. Even if you are not sure about the quality of your patch or your ideas, submit them to the mailing list for review or comment. Having feedback is essential to any project.

This documentation will show how to add code to Shinken. Shinken is written in Python. If you are new to python please consider reading this ` introduction / beginners guide`_.

Development rules

If you wish to commit code to the Shinken repository, you must strive to follow the Shinken development rules.

How is Shinken’s code organized

The Shinken code is in the shinken directory. All important source files are :

	bin/shinken-* : source files of daemons

	shinken/objects/item.py : base class for nearly all important objects like hosts, services and contacts.

	shinken/*link.py : class used by Arbiter to connect to daemons.

	shinken/modules/*/*py : modules for daemons (like the Broker).

	shinken/objects/schedulingitem.py : base class for host/service that defines all the algorithms for scheduling.

Datadriven programming in Shinken code

A very important thing in Shinken code is the data programming method : instead of hardcoding transformation for properties, it’s better to have a array (dict in Python) that described all transformations we can use on these properties.

With this method, a developer only needs to add this description, and all transformations will be automatic (like configuration parsing, inheritance application, etc).

Nearly all important classes have such an array. It’s named “properties” and is attached to the class, not the object itself.

Global parameters of the application (like the one for nagios.cfg file) are in the properties of the Config class. They are defined like: ‘enable_notifications’ : {‘required’:False, ‘default’:‘1’, ‘pythonize’: to_bool, ‘class_inherit’ : [(Host, None), (Service, None), (Contact, None)]},

Here, this property is:

	not required

	It’s default value is 1

	We use the ‘to_bool’ function to transform the string from the configuration file to a Python object

	We put this value in the Host and Service class with the same name (None==keep the name). The string in place of None, this string is used to access this property from the class.

Specific properties for objects like Hosts or Services are in a properties dict(dictionary), but without the ‘class_inherit’ part. Instead of this, they have the “fill_brok” part. A “brok” is an inter process message. It’s used to know if the property must be sent in the following brok types:

	full_status : send a full status brok, like at daemon starting.

	check_result : send when a check came back

	next_schedule : send when a new check is scheduled

These classes also have another “properties” like dict : “running_properties”. It’s like the standard one, but for running only properties (aka no configuration based properties).

Programming with broker modules in Shinken

Modules are pieces of code that are executed by a daemon.

Module configuration and startup is controlled in the shinken-specific.cfg

	The module is declared in a daemon

	The module itself is defined and its variables set

A shinken module class must have an _init_, init and documentation.
A shinken module can use the following functions:

	managed_broks: A specific function that will dynamically build calls for functions for specific brok.types if the functions exist.

	manage_NAME-OF-BROK-TYPE_broks: The function that will process a specific type of brok

The brok types are created in the code and are not registered in a central repository. At this time the following brok types exist and can be processed by broker modules.

	clean_all_my_instance_id

	host_check_resulthost_next_schedule

	initial

	initial_command_status

	initial_contactgroup_status

	initial_contact_status

	initial_hostgroup_status

	initial_host_status

	initial_poller_status

	initial_reactionner_status

	initial_receiver_status

	initial_scheduler_status

	initial_servicegroup_status

	initial_service_status

	initial_timeperiod_status

	log

	notification_raise

	program_status

	service_check_result

	service_check_resultup

	service_next_schedule

	update

	update_host_status

	update_poller_status

	update_program_status

	update_reactionner_status

	update_receiver_status

	update_scheduler_status

	update_service_status

Example of code hacking : add a parameter for the flapping history

	Configuration part

	Running part

	The perfect patch

In the Nagios code, the flapping state history size is hard coded (20). As in the first Shinken release. Let’S see how it works to add such a parameter in the global file and use it in the scheduling part of the code.

We will see that adding such a parameter is very (very) easy. To do this, only 5 lines need to be changed in :

	config.py : manage the global configuration

	schedulingitem.py : manage the scheduling algorithms of host/services

Configuration part

In the first one (config.py) we add an entry to the properties dict : “flap_history” : {“required”:False, “default”:‘20”, “pythonize”: to_int, “class_inherit” : [(Host, None), (Service, None)]}, So this property will be an option, with 20 by default, and will be put in the Host and Service class with the name ‘flap_history’.

That’s all for the configuration! Yes, no more add. Just one line :)

Running part

Now the scheduling part (schedulingitem.py). The hard code 20 was used in 2 functions : add_flapping_change and update_flapping. From this file, we are in an object named self in Python. To access the ‘flap_history’ of the Host or Service class of this object, we just need to do : flap_history = self.__class__.flap_history Then we change occurrences in the code : if len(self.flapping_changes) > flap_history: [...] r += i*(1.2-0.8)/flap_history + 0.8 r = r / flap_history

That’s all. You can test and propose the patch in the devel list. We will thank you and after some patch proposals, you can ask for a git access, you will be a Shinken developer :)

The perfect patch

If you can also add this property in the documentation (/doc directory)

If you followed the Python style guide. (See development rules)

If you created an automated test case for a new feature. (See development rules)

If you documented any new feature in the documentation wiki.

The patch will be __***perfect***__ :)

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

Amazon AWS/EC2 import

Description

You can import data from Amazon AWS/EC2 `AWS`_ into Shinken to create hosts.

Amazon provide VM hosting with EC2. With this arbiter module, you will be able to load your EC2 hosts into Shinken.

Prerequisites

You will need the `libcloud`_ package installed on your Arbiter server.

Configuring the Landscape import module

In your shinken-specific.cfg file, just add (or uncomment):

define module {
 module_name AWS
 module_type aws_import

 # Configure your REAL key and secret for AWS
 api_key PAAAB2CILT80I0ZA0999
 secret GGtWAAAzEItz0utWUeCe9BJKIYWX/hdSbA6YCHHH
 default_template generic-host ; if the host is not tagged, use this one
 }

	Put in key and secret your private Landscape access.
* default_template will be used if your host is not “tagged” in Landscape

Configuring the Arbiter module

And add it in your Arbiter object as a module.

define arbiter{
 arbiter_name Arbiter-Master

 address localhost ;IP or DNS adress
 port 7770
 spare 0
 modules AWS
 }

Restart your Arbiter and it’s done :)

Generated hosts

The configuration generated will look as below :

define host {
 host_name i-3fc56e5a
 address 8.8.4.4
 use t1.micro,MyTag,EC2,generic-host
 _EC2_AVAILABILITY us-east-1a
 _EC2_CLIENTTOKEN
 _EC2_DNS_NAME
 _EC2_GROUPS quicklaunch-1
 _EC2_IMAGEID ami-1b814f72
 _EC2_INSTANCEID i-3fc56e5a
 _EC2_INSTANCETYPE t1.micro
 _EC2_KERNELID aki-825ea7eb
 _EC2_KEYNAME testaws
 _EC2_LAUNCHDATETIME 2012-09-26T12:19:38.000Z
 _EC2_LAUNCHINDEX 0
 _EC2_PRIVATE_DNS
 _EC2_PRIVATE_IP
 _EC2_PRODUCTCODE
 _EC2_PUBLIC_IP 8.8.4.4
 _EC2_RAMDISKID None
 _EC2_STATUS stopped
 _EC2_TAGS demo:myvalue,use:MyTag
 }

Here with a stopped t1.micro instance with no name. You can put your how “use” parameter by adding a EC2 tag “use” on your VM. It will be output on the host configuration so you can setup the monitoring as you want.
.. _libcloud: http://libcloud.apache.org/index.html
.. _AWS: https://console.aws.amazon.com

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

Amazon AWS/EC2 import

Description

You can import data from Amazon AWS/EC3 `AWS`_ into Shinken to create hosts.

Amazon provide VM hosting with EC3. With this arbiter module, you will be able to load your EC2 hosts into Shinken.

Prerequisites

You will need the `libcloud`_ package installed on your Arbiter server.

Configuring the Landscape import module

In your shinken-specific.cfg file, just add (or uncomment):

define module {
 module_name AWS
 module_type aws_import

 # Configure your REAL key and secret for AWS
 api_key PAAAB2CILT80I0ZA0999
 secret GGtWAAAzEItz0utWUeCe9BJKIYWX/hdSbA6YCHHH
 default_template generic-host ; if the host is not tagged, use this one
 }

	Put in key and secret your private Landscape access.
* default_template will be used if your host is not “tagged” in Landscape

Configuring the Arbiter module

And add it in your Arbiter object as a module.

define arbiter{
 arbiter_name Arbiter-Master

 address localhost ;IP or DNS adress
 port 7770
 spare 0
 modules AWS
 }

Restart your Arbiter and it’s done :)

Generated hosts

The configuration generated will look as below :

define host {
 host_name i-3fc56e5a
 address 8.8.4.4
 use t1.micro,MyTag,EC2,generic-host
 _EC2_AVAILABILITY us-east-1a
 _EC2_CLIENTTOKEN
 _EC2_DNS_NAME
 _EC2_GROUPS quicklaunch-1
 _EC2_IMAGEID ami-1b814f72
 _EC2_INSTANCEID i-3fc56e5a
 _EC2_INSTANCETYPE t1.micro
 _EC2_KERNELID aki-825ea7eb
 _EC2_KEYNAME testaws
 _EC2_LAUNCHDATETIME 2012-09-26T12:19:38.000Z
 _EC2_LAUNCHINDEX 0
 _EC2_PRIVATE_DNS
 _EC2_PRIVATE_IP
 _EC2_PRODUCTCODE
 _EC2_PUBLIC_IP 8.8.4.4
 _EC2_RAMDISKID None
 _EC2_STATUS stopped
 _EC2_TAGS demo:myvalue,use:MyTag
 }

Here with a stopped t1.micro instance with no name. You can put your how “use” parameter by adding a EC2 tag “use” on your VM. It will be output on the host configuration so you can setup the monitoring as you want.
.. _libcloud: http://libcloud.apache.org/index.html
.. _AWS: https://console.aws.amazon.com

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

The distributed retention modules

The high availability allow the Arbiter to send a configuration to a spare scheduler, but a spare scheduler does not have any saved states for hosts and services. It will have to recheck them all. It’s better to use a distributed retention module so spares will have all the information they need to start with an accurate picture of the current states and scheduling :)

Non distributed retention modules

If you are just running tests on a single server, use the pickle or memcache retention modules You can also use MongoDB if you already have it installed for use with the WebUI.

MongoDB

MongoDB is a scalable, high-performance, open source NoSQL database written in C++.

Step 1: Install MongoDB:

We will use mongodb package from 10gen repository, so we start by adding it in apt sources list:

echo 'deb http://downloads-distro.mongodb.org/repo/debian-sysvinit dist 10gen' > /etc/apt/sources.list.d/10gen.list
apt-get update

And we install it:

apt-get install mongodb-10gen

And we install pymongo, the python interface to MongoDB, with easy_install to avoid packages versions problems (like here `forums.monitoring-fr.org/index.php?topic=5205.0`_):

apt-get remove python-pymongo
easy_install pymongo

And finally we start MongoDB :

/etc/init.d/mongodb start

Step 2: define a mongodb_retention module in your shinken-specific.cfg file:

define module {
 module_name MongodbRetention
 module_type mongodb_retention
 uri mongodb://localhost/?safe=true
 database shinken
}

Step 3: Declare a retention module for your scheduler(s) :)

Example:

#The scheduler is a "Host manager". It get hosts and theirs
#services. It scheduler checks for them.
define scheduler{
 scheduler_name scheduler-1 ; just the name
 address localhost ; ip or dns address of the daemon
 port 7768 ; tcp port of the daemon

 #optionnal: modules for things as retention
 modules MongodbRetention
 }

Step 4: Restart the Arbiter, and your Scheduler will now save its state between restarts. :)

Memcached

Memcached is a distributed memory resident key/value server. It’s very easy to install:

sudo apt-get install memcached
sudo /etc/init.d/memcached start

The shinken module also needs the python-memcache package to talk to this server.

sudo apt-get install python-memcache

To use it,

Step 1: define a memcache_retention module in your shinken-specific.cfg file:

define module{
 module_name MemcacheRetention
 module_type memcache_retention
 server 127.0.0.1
 port 11211
}

Step 2: Declare a retention module for your scheduler(s) :)

Example:

define scheduler{
 scheduler_name scheduler-1 ; just the name
 address localhost ; ip or dns address of the daemon
 port 7768 ; tcp port of the daemon

 #optional: modules for things as retention
 modules MemcacheRetention
 }

Step 3: Restart the Arbiter, and your Scheduler will now save its state between restarts. :)

Redis

Redis is a distributed key/value server (on disk and in-memory). It’s very easy to install:

sudo apt-get install redis-server
sudo /etc/init.d/redis-server start

The shinken module also need the python-redis package to talk to this server.

sudo apt-get install python-redis

Step 1: define a redis_retention module in your shinken-specific.cfg file:

define module{
 module_name RedisRetention
 module_type redis_retention
 server 127.0.0.1
}

Step 2: Declare a retention module for your scheduler(s) :)

Example:

#The scheduler is a "Host manager". It get hosts and theirs
#services. It scheduler checks for them.
define scheduler{
 scheduler_name scheduler-1 ; just the name
 address localhost ; ip or dns address of the daemon
 port 7768 ; tcp port of the daemon

 #optionnal: modules for things as retention
 modules RedisRetention
 }

Step 3: Restart the Arbiter, and your Scheduler will now save its state between restarts. :)
.. _forums.monitoring-fr.org/index.php?topic=5205.0: http://forums.monitoring-fr.org/index.php?topic=5205.0

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

Ubuntu Landscape import

Description

You can import data from Ubuntu Landscape [http://www.ubuntu.com/business/landscape] into Shinken to create hosts.

Ubuntu Landscape, is a web app to manage all your linux servers (update and co), which is provided by Canonical, Ubuntu’s parent company.

This is an Arbiter import module. The Arbiter manages the configuration.

Prerequisites

You will need the landscape-api [https://launchpad.net/~landscape/+archive/landscape-api] package installed on your Arbiter server.

Configuring the Landscape import module

In your shinken-specific.cfg file, just add (or uncomment):

define module {
module_name Landscape
module_type landscape_import

Configure your REAL key and secret from Landscape
key PAAAB2CILT80I0ZA0999
secret GGtWAAAzEItz0utWUeCe9BJKIYWX/hdSbA6YCHHH
default_template generic-host ; if the host is not tagged, use this one

If you are using a specific certificate for landscape_api
#ca /path/to.ca.cert

If you need a proxy to access https://landscape.canonical.com/api/
#https_proxy http://user:secret@myproxy.com:3128

}

	Put in key and secret your private Landscape access.

	default_template will be used if your host is not “tagged” in Landscape

	If you are using a specific certificate for connexion, give the full path in ca

	You will certainly need an https proxy to access the Landscape API. If so, configure it there.

Configuring the Arbiter module

And add it in your Arbiter object as a module.

define arbiter{
 arbiter_name Arbiter-Master
host_name node1 ;result of the hostname command under Unix
 address localhost ;IP or DNS adress
 port 7770
 spare 0
 modules Landscape
 }

Restart your Arbiter and it’s done :)

Tip

Your “tags” will be applied as templates for your hosts.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

NSCA module

The NSCA daemon module is used to receive send_nsca packets and submit them to the Shinken command pipe. The NSCA module can be loaded by the Receiver or Arbiter process. It will listen on port TCP/5667 for send_nsca packets.

Tip

Passive checks can be submitted natively to the Shinken command pipe or from remote hosts to modules, such as NSCA, AMQP or collectd, loaded in the Shinken Arbiter or Receiver process. AMQP is implemented for integration with the Canopsis Hypervisor, but could be re-used for generic messaging.

Note

The Shinken NSCA module implementation is currently limited to the “xor” obfuscation/encryption.

In your shinken-specific.cfg file, just add (or uncomment):

::

#You can send check result to Shinken using NSCA
#using send_nsca command
define module{

module_name NSCA
module_type nsca_server
host *
port 5667
encryption_method 0
password helloworld

}

define receiver{

receiver_name receiver-1
address localhost
port 7773
modules NSCA

timeout 3 ; 'ping' timeout
data_timeout 120 ; 'data send' timeout
max_check_attempts 3 ; if at least max_check_attempts ping failed, the node is DEAD

#advanced
realm All
}

This daemon is totally optional.

It’s main goal is to get all passive “things” (checks but why not other
commands) in distant realms. It will act as a “passive receive buffer” and will then dispatch the data or commands directly to the appropriate Scheduler or Arbiter process.

Data can be received from any Realm, thus the Realm option is nonsensical.

For now there is no init.d script to launch it.
.. note:: Verify that the init script has been added.

It is launched like all other daemons:

bin/shinken-receiver -c etc/receiverd.ini

Tip

Alternatively, for small installations with you can configure a modules inside your Arbiter instead of the Receiver. It will listen the TCP/5667 port for send_nsca packets.

To configure the NSCA module in your Arbiter instead of Receiver. Add the NSCA module to your Arbiter object configuration.

::

	define arbiter{

	arbiter_name Arbiter-Master

	# host_name node1 ;result of the hostname command under Unix

	address localhost ;IP or DNS adress
port 7770
spare 0
modules NSCA

}

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

NRPE Module

What is it

The NRPE module allows Shinken Pollers to bypass the launch of the check_nrpe process. It reads the check command and opens the connection by itself. It scales the use of NRPE for active supervision of servers hosting NRPE agents.

The command definitions should be identical to the check_nrpe calls.

How to define it

The definition is very easy (and you probably just have to uncomment it):

define module{
 module_name NrpeBooster
 module_type nrpe_poller
}

Then you add it to your poller object:

define poller {
 [...]
 modules NrpeBooster
}

Then just tag all your check_nrpe commands with this module:

define command {
 command_name check_nrpe
 command_line $USER1$/check_nrpe -H $HOSTADRESS$ -c $ARG1$ -a $ARG2$
 module_type nrpe_poller
}

That’s it. From now on all checks that use this command will use Shinken’s NRPE module and will be launched by it.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

Broker modules

The broker module receives messages from the Schedulers related to host, service check results. In addition to that it receives a copy of the compiled configuration at startup. What is special about the broker, is that without modules, the broker does nothing. It makes the configuration and result data available to modules. Modules are the ones in charge of doing something with the data. This could be exporting this “raw” data into flat files, databases or exposing it as an API.

The modules are presented according to their use cases.

	Core modules

	Livestatus Module for frontends

	Exporting data to metric databases

	SQL based Modules for frontends

	Exporting data to logging management systems

	Legacy modules for migration purposes

	Modules no longer supported

Core modules

simple_log: get all logs into one file

You can get a log for all your daemons in a single file. With the exception of Debug level logs which are not sent through the network as a safe guard.
Shinken state messages are ONLY logged at the debug level in the local log files. These are the ALL CAPS states that some 3rd party interfaces use to mine data from the historical logs. Actual state messages are sent as objects between the various daemons.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: simple_log

	path: path of the log file

Here is an example:

define module{

 module_name Simple-log
 module_type simple_log
 path /usr/local/shinken/var/nagios.log
 archive_path /usr/local/shinken/var/archives/
}

Syslog - Send all logs to a local syslog server

Send all logs to a local syslog server. Support for remote syslog can be implemented
if requested. Just lookup the syslog module, easy to modify. Use for example with Splunk, graylog2, Logstash, Elastic search, Kibana, or other log management and analysis system.

define module{

 module_name Syslog
 module_type syslog
}

Lightweight forwarder to Splunk

Shinken state data from the local syslog can also be sent to a Splunk server for indexing, reports, SLA and analysis. Via syslog or better yet, the Splunk lightweight forwarder which supports, TCP, buffering and security parameters.

Livestatus API Module - Thruk, Nagvis and Multisite Web frontends

There are three well known frontends and various small tools that can interface with the Livestatus API. This API is currently the most efficient method
of sharing live data with external interfaces. It provides a rich query language similar to SQL, authentication, command execution, caching,connections persistence, multiple object methods (JSON, Python). All Livestatus data is kept in memory, there is no disk IO involved. It exposes configuration objects, the current state of the hosts and services as well as historical Shinken state log messages.

	MK Multisite

	Thruk

	NagVis

Have you installed the required packages to use the Livestatus module? You can look at the requirement section of the 10 minute installation guide for the requirement lists.

Livestatus Module

	It takes the following parameters:

	
	module_name: name of the module called by the brokers

	module_type: livestatus

	host: IP interface to listen to. The default is ‘127.0.0.1’. ‘*’ means ‘listen on all interfaces’.

	port: TCP port to listen to.

	socket: Unix socket to listen to.

	allowed_hosts: a comma-separated list of IP-addresses which are allowed to contact the TCP port. Please keep in mind that these must be ip-addresses, NOT host names. (DNS lookups for every incoming livestatus request could hang up and therefore block the module)

	modules: a comma-separated list of modules (see below)

	pnp_path: relevant if you use the multisite gui. pnp_path points to the perfdata directory where the pnp4nagios data reside (it’s the directory which contains a subdirectory for each host). Multisite needs it to display a small perfdata icon if a rrd file exists.

	To deactivate an input, the port- and socket-attributes can also take the value “none”.

The Livestatus module itself can have sub-modules. In fact, it must have at least one submodule responsible for storing log events to a database, SQLite or MongoDB.

Livestatus module - Logstore Sqlite

Stores log-broks to an sqlite database.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: logstore_sqlite

	use_aggressive_sql: Prefer the use of sql queries to pre-filter data prior to python filtering. This is required for very large installations, as the Python structures are not indexed when filtering. Optional argument set to 0 by default. To enable set the value to 1. Some erroneous output may occur, but informal testing has shown these corner cases do not occur.

	read_only: don’t send any update to the database. Should be used when you run several livestatus modules : 1 instance is R/W, other are read only.

	database_file: the path to the sqlite database file which is used to store the log broks/messages. The default is ‘var/livestatus.db’

	archive_path: the path to a subdirectory where database file archives will be created. Every day the data from the last day will be moved to an archive datafile. The default is ‘var/archives’.

	max_logs_age: the maximum age of the log messages (before they are deleted from the database). The default is 1 year. The argument to this parameter takes the form <number>[<period of time>], where <period of time> can be d for days, w for weeks, m for months and y for years. This parameter is currently ignored. In future releases it will be used to automatically delete ancient database files.

Here is an example:

define module{

 module_name Livestatus
 module_type livestatus
 host * ; * = listen on all configured ip addresses
 port 50000 ; port to listen
 socket /usr/local/shinken/var/rw/live
 modules logsqlite
}
define module{

 module_name logsqlite
 module_type logstore_sqlite
 use_aggressive_sql 0 ; optional, by default set to 0. Only for large installations.
 database_file /usr/local/shinken/var/livelogs.db
 max_logs_age 3m ; three months. Other time intervals are d=days, w=weeks, y=years
}

Livestatus module - Logstore MongoDB

Stores historical log broks(inter daemon Shinken messages) to a MongoDB database. MongoDB is a distributed and very performant database that permits resilience and high availability. The current implementation has a few known broken pieces (some search functions are broken) and there are bugs in the implementation, so it is considered experimental until power users and developers have ironed out the bugs. It is the database of the future for Shinken.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: logstore_mongodb

	mongodb_uri: The address of the master. (Default: i_cant_write_the_uri_here_it_messes_the_wiki_up)

	replica_set: If you are running a MongoDB cluster (called a “replica set” in MongoDB), you need to specify it’s name here. With this option set, you can also write the mongodb_uri as a comma-separated list of host:port items. (But one is enough, it will be used as a “seed”)

	database: <undocumented>

	collection: <undocumented>

	max_logs_age: <undocumented>

The configuration looks quite similar to the sqlite one. In a single-node installation and with decent amount of log traffic, the sqlite backend should be considered best practice, as it needs no extra software and is stable and fast (when run in-memory).

Livestatus module - Logstore Null

In case you don’t need any logging (for instance, if you dedicate a livestatus module instance to nagvis), you can use this module.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: logstore_null

Network Based Modules - Graphite graphing

Graphite is a graphing and data analysis tool. It is composed of a web frontend (graphite-web), fixed size databases (whisper) and data redistribution/munging daemon. (carbon) The first step is having Graphite installed somewhere, if you do not have Graphite installed, please do this and come back later.

Pre-requisite : Shinken 1.2.2+ is recommended for the best experience with Graphite.

graphite_perfdata: exports check result performance data to Graphite

Export all performance data included in check results to Whisper databases managed by Graphite. Data is buffered, then exported once every broker time tick. (Once per second). Should a communication loss occur, it will buffer data for 5 minutes before dropping data. The tick_limit max is configurable, the only limitation is the amount of memory the buffered data can eat.

The graphite broker module (v1.2) sends data to graphite in the following format :

HOSTNAME.SERVICENAME.METRICNAME

It can be optionally enhanced to send it the following format :

_GRAPHITE_PRE.HOSTNAME.SOURCE.SERVICENAME.METRICNAME._GRAPHITE_POST

Each of the three variables are optional :

	The _GRAPHITE_PRE variable can be set per host/service to provide a more flexible naming convention. (ex. Prod.site1.Hostname.servicename)

	The _GRAPHITE_POST variable can be set per host/service to specify the more information concerning the variable being stored that graphite can use to determine the retention rule to use for the variable.

	The SOURCE variable can be set in shinken-specific.cfg for the WebUI module and the Graphite broker.

Metric names are converted from Shinken’s format to a more restrictive Graphite naming. Unsupported characters are converted to “_” underscore. So do not be surprised to see that some names differ in the WebUI or directly in Graphite. Permitted characters in Graphite are “A-Za-z_.”, the hyphen character is permitted from Shinken, though only future versions of Graphite will support it.

Performance data transfer method can be set to pickle, which is a binary format that can send data more efficiently than raw ascii.

	It takes the following parameters:

	
	module_name: name of the module called by the brokers

	module_type: graphite_perfdata

	host: ip address of the graphite server running a carbon instance

	port: port where carbon listens for metrics (default: 2003 for raw socket, 2004 for pickle encoded data)

	use_pickle: Use a more efficient transport for sending check results to graphite instead of raw data on the socket (v1.2)

	tick_limit: Number of ticks to buffer performance data during a communication outage with Graphite. On tick limit exceeded, flush to /dev/null and start buffering again. (v1.2)

	graphite_data_source: Set the source name for all data coming from shinken sent to Graphite. This helps diferentiate between data from other sources for the same hostnames. (ex. Diamond, statsd, ganglia, shinken) (v1.2)

Here is an example:

define module {

module_name Graphite-Perfdata
host xx.xx.xx.xx
module_type graphite_perfdata
port 2004 ; default port 2003 for raw data on the socket, 2004 for pickled data
use_pickle 1 ; default value is 0, 1 for pickled data
tick_limit 300 ; Default value 300
graphite_data_source shinken ; default is that the variable is unset
}

SQL Based Modules - PNP4Nagios Graphing

PNP4Nagios is a graphing tool that has a web interface for RRDTool based databases. Shinken can export performance data to an npcd database which will feed the RRD files (fixed sized round robin databases). You can learn how to install PNP4Nagios if you haven’t done it already.

npcdmod: export perfdatas to a PNP interface

Export all perfdata for PNP.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: npcdmod

	path: path to the npcd config file

Here is an example:

define module{
 module_name NPCD
 module_type npcdmod
 config_file /usr/local/pnp4nagios/etc/npcd.cfg
}

SQL Based Modules - Frontend Centreon2

Centreon2 use a NDO database, so you will need the ndodb_mysql module for it.

ndodb_mysql: Export to a NDO Mysql database

Export status into a NDO/Mysql database. It needs the python module MySQLdb (apt-get install python-mysqldb or easy_install MySQL-python).

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: ndodb_mysql

	database: database name (ex ndo)

	user: database user

	password: database user passworddt

	host: database host

	character_set: utf8 is a good one

Here is an example:

define module{

 module_name ToNdodb_Mysql
 module_type ndodb_mysql
 database ndo ; database name
 user root ; user of the database
 password root ; must be changed
 host localhost ; host to connect to
 character_set utf8 ;optionnal, UTF8 is the default
}

File based Legacy modules - perfdata export

service_perfdata: export service perfdatas to a flat file

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: service_perfdata

	path: path to the service perfdata file you want

Here is an example:

define module{

 module_name Service-Perfdata
 module_type service_perfdata
 path /usr/local/shinken/src/var/service-perfdata
}

host_perfdata: export host perfdatas to a flat file

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: host_perfdata

	path: path to the host perfdata file you want

Here is an example:

define module{

 module_name Host-Perfdata
 module_type host_perfdata
 path /usr/local/shinken/src/var/host-perfdata
}

Legacy File based Modules - Old CGI or VShell

The Old CGI and VShell use the flat file export. If you can, avoid it! It has awful performance, all modern UIs no longer use this.

status_dat: export status into a flat file

Export all status into a flat file in the old Nagios format. It’s for small/medium environment because it’s very slow to parse. It can be used by the Nagios CGI. It also export the objects.cache file for this interface.

	It takes the parameters:

	
	module_name: name of the module called by the brokers

	module_type: status_dat

	status_file: path of the status.dat file /usr/local/shinken/var/status.dat

	object_cache_file: path of the objects.cache file

	status_update_interval: interval in seconds to generate the status.dat file

Here is an example:

define module{

 module_name Status-Dat
 module_type status_dat
 status_file /usr/local/shinken/var/status.data
 object_cache_file /usr/local/shinken/var/objects.cache
 status_update_interval 15 ; update status.dat every 15s
}

Deprecated or unsupported modules

SQL Based MerlinDB

This interface is no longer supported and is going to be completely removed from Shinken.

SQL based ndodb_oracle - Icinga web frontend using NDO Oracle

This interface is no longer supported and is going to be completely removed from Shinken.

CouchDB: Export to a Couchdb database

This interface is no longer supported and is going to be completely removed from Shinken.

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Shinken Manual 1.4 documentation

 	Shinken modules

TSCA (Thrift Service Check Acceptor)

TSCA is a receiver/arbiter module to receive hosts and services check results. It provides the same functions as NSCA with additional features. High performance binary transmission, multi line output and auto generated clients for a variety of languages.

What is thrift ?

Let’s cut and paste the wikipedia definition from`en.wikipedia.org/wiki/Apache_Thrift`_ :

“Thrift is an interface definition language that is used to define and create services for numerous languages.[1] It is used as a remote procedure call (RPC) framework [..]. It combines a software stack with a code generation engine to build services that work efficiently to a varying degree and seamlessly between ActionScript, C#, C++ (on POSIX-compliant systems), Cappuccino, Cocoa, Erlang, Haskell, Java, OCaml, Perl, PHP, Python, Ruby, and Smalltalk.”

Installation

In any case, you have to install thrift with support for python (on the server side) and languages you want to use for clients.

Get it from thrift.apache.org [http://thrift.apache.org] or in your favorite distribution repository.

Server side

Go to the tsca module directory and generate the python stub for the server side installation

cd shinken/modules/tsca
$ thrift --gen py tsca.thrift

Declare the module is shinken-specific.org

define module{
 module_name TSCA
 module_type tsca_server
 host 0.0.0.0
 port 9090
}

Samples clients

There are three(3) client samples written in python, ruby and java in contrib/clients/TSCA of the Shinken distribution. You can use and extend them to send data directly in your code directly to Shinken’s TSCA receiver/arbiter module.

The samples clients read a CSV file from stdin and send them the the TSCA running on localhost:9090. The CSV has the following format :

hostname,service description,output,rc

Any use of TCP in an application should take care not to block the program and to have very short timeouts. For applications that need non blocking functions, prefer a UDP based transport or a local buffer file with a separate application(send_nsca, thrift, etc) to forward your data to Shinken.

Ruby

Generate the stub

$ thrift --gen rb ../../../shinken/modules/tsca/tsca.thrift

Run the client

$ cat file_state | ruby RubyClient.rb

Python

Generate the stub

$ thrift --gen py ../../../shinken/modules/tsca/tsca.thrift

Run the client

$ cat file_state | python PythonClient.py

java

Generate the stub

$ thrift --gen java ../../../shinken/modules/tsca/tsca.thrift

Compile the client

$ ant

Run the client

$ cat file_state | java JavaClientThrift

 Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

 _modules/shinken/objects/itemgroup.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.itemgroup

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

And itemgroup is like a item, but it's a group of items :)

from item import Item, Items

from shinken.brok import Brok
from shinken.property import StringProp
from shinken.log import logger

TODO: subclass Item & Items for Itemgroup & Itemgroups?
[docs]class Itemgroup(Item):

 id = 0

 properties = Item.properties.copy()
 properties.update({
 'members': StringProp(fill_brok=['full_status']),
 # Shinken specific
 'unknown_members': StringProp(default=[]),
 })

 def __init__(self, params={}):
 self.id = self.__class__.id
 self.__class__.id += 1

 self.init_running_properties()

 for key in params:
 setattr(self, key, params[key])

 # Copy the groups properties EXCEPT the members
 # members need to be fill after manually
[docs] def copy_shell(self):
 cls = self.__class__
 old_id = cls.id
 new_i = cls() # create a new group
 new_i.id = self.id # with the same id
 cls.id = old_id # Reset the Class counter

 # Copy all properties
 for prop in cls.properties:
 if prop is not 'members':
 if self.has(prop):
 val = getattr(self, prop)
 setattr(new_i, prop, val)
 # but no members
 new_i.members = []
 return new_i

 # Change the members like item1 ,item2 to ['item1' , 'item2']
 # so a python list :)
 # We also strip elements because spaces Stinks!

[docs] def pythonize(self):
 self.members = [mbr for mbr in
 (m.strip() for m in getattr(self, 'members', '').split(','))
 if mbr != '']

[docs] def replace_members(self, members):
 self.members = members

 # If a prop is absent and is not required, put the default value

[docs] def fill_default(self):
 cls = self.__class__
 for prop, entry in cls.properties.items():
 if not hasattr(self, prop) and not entry.required:
 value = entry.default
 setattr(self, prop, value)

[docs] def add_string_member(self, member):
 if hasattr(self, 'members'):
 self.members += ',' + member
 else:
 self.members = member

 def __str__(self):
 return str(self.__dict__) + '\n'

 def __iter__(self):
 return self.members.__iter__()

 def __delitem__(self, i):
 try:
 self.members.remove(i)
 except ValueError:
 pass

 # a item group is correct if all members actually exists,
 # so if unknown_members is still []
[docs] def is_correct(self):
 res = True

 if self.unknown_members != []:
 for m in self.unknown_members:
 logger.error("[itemgroup::%s] as %s, got unknown member %s" % (self.get_name(), self.__class__.my_type, m))
 res = False

 if self.configuration_errors != []:
 for err in self.configuration_errors:
 logger.error("[itemgroup] %s" % err)
 res = False

 return res

[docs] def has(self, prop):
 return hasattr(self, prop)

 # Get a brok with hostgroup info (like id, name)
 # members is special: list of (id, host_name) for database info

[docs] def get_initial_status_brok(self):
 cls = self.__class__
 data = {}
 # Now config properties
 for prop, entry in cls.properties.items():
 if entry.fill_brok != []:
 if self.has(prop):
 data[prop] = getattr(self, prop)
 # Here members is just a bunch of host, I need name in place
 data['members'] = []
 for i in self.members:
 # it look like lisp! (((..))), sorry....
 data['members'].append((i.id, i.get_name()))
 b = Brok('initial_' + cls.my_type + '_status', data)
 return b

[docs]class Itemgroups(Items):

 # If a prop is absent and is not required, put the default value
[docs] def fill_default(self):
 for i in self:
 i.fill_default()

[docs] def add(self, ig):
 self.items[ig.id] = ig

[docs] def get_members_by_name(self, gname):
 g = self.find_by_name(gname)
 if g is None:
 return []
 return getattr(g, 'members', [])

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/hostescalation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.hostescalation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items
from escalation import Escalation

from shinken.property import IntegerProp, StringProp, ListProp

[docs]class Hostescalation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'hostescalation'

 properties = Item.properties.copy()
 properties.update({
 'host_name': StringProp(),
 'hostgroup_name': StringProp(),
 'first_notification': IntegerProp(),
 'last_notification': IntegerProp(),
 'notification_interval': IntegerProp(default='30'), # like Nagios value
 'escalation_period': StringProp(default=''),
 'escalation_options': ListProp(default='d,u,r,w,c'),
 'contacts': StringProp(),
 'contact_groups': StringProp(),
 })

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return ''

[docs]class Hostescalations(Items):
 name_property = ""
 inner_class = Hostescalation

 # We look for contacts property in contacts and
[docs] def explode(self, escalations):
 # Now we explode all escalations (host_name, service_description) to escalations
 for es in self:
 properties = es.__class__.properties
 name = getattr(es, 'host_name', getattr(es, 'hostgroup_name', ''))
 creation_dict = {'escalation_name': 'Generated-Hostescalation-%d-%s' % (es.id, name)}
 for prop in properties:
 if hasattr(es, prop):
 creation_dict[prop] = getattr(es, prop)
 s = Escalation(creation_dict)
 escalations.add_escalation(s)

 #print "All escalations"
 #for es in escalations:
 # print es

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/resultmodulation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.resultmodulation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

The resultmodulation class is used for in scheduler modulation of results
like the return code or the output.

import time

from item import Item, Items

from shinken.property import StringProp, ListProp

[docs]class Resultmodulation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'resultmodulation'

 properties = Item.properties.copy()
 properties.update({
 'resultmodulation_name': StringProp(),
 'exit_codes_match': ListProp(default=''),
 'exit_code_modulation': StringProp(default=None),
 'modulation_period': StringProp(default=None),
 })

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.resultmodulation_name

 # Make the return code modulation if need

[docs] def module_return(self, return_code):
 # Only if in modulation_period of modulation_period == None
 if self.modulation_period is None or self.modulation_period.is_time_valid(time.time()):
 # Try to change the exit code only if a new one is defined
 if self.exit_code_modulation is not None:
 # First with the exit_code_match
 if return_code in self.exit_codes_match:
 return_code = self.exit_code_modulation

 return return_code

 # We override the pythonize because we have special cases that we do not want
 # to be do at running

[docs] def pythonize(self):
 # First apply Item pythonize
 super(self.__class__, self).pythonize()

 # Then very special cases
 # Intify the exit_codes_match, and make list
 self.exit_codes_match = [int(ec) for ec in getattr(self, 'exit_codes_match', [])]

 if hasattr(self, 'exit_code_modulation'):
 self.exit_code_modulation = int(self.exit_code_modulation)
 else:
 self.exit_code_modulation = None

[docs]class Resultmodulations(Items):
 name_property = "resultmodulation_name"
 inner_class = Resultmodulation

[docs] def linkify(self, timeperiods):
 self.linkify_rm_by_tp(timeperiods)

 # We just search for each timeperiod the tp
 # and replace the name by the tp

[docs] def linkify_rm_by_tp(self, timeperiods):
 for rm in self:
 mtp_name = rm.modulation_period.strip()

 # The new member list, in id
 mtp = timeperiods.find_by_name(mtp_name)

 if mtp_name != '' and mtp is None:
 err = "Error: the result modulation '%s' got an unknown modulation_period '%s'" % (rm.get_name(), mtp_name)
 rm.configuration_errors.append(err)

 rm.modulation_period = mtp

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/trigger.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.trigger

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
import os
import re

from shinken.objects.item import Item, Items
from shinken.misc.perfdata import PerfDatas
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.log import logger
from shinken.trigger_functions import objs, trigger_functions
#objs = {'hosts': [], 'services': []}

[docs]class Trigger(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'trigger'

 properties = Item.properties.copy()
 properties.update({'trigger_name': StringProp(fill_brok=['full_status']),
 'code_src': StringProp(default='', fill_brok=['full_status'])
 })

 running_properties = Item.running_properties.copy()
 running_properties.update({'code_bin': StringProp(default=None)})

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 try:
 return self.trigger_name
 except AttributeError:
 return 'UnnamedTrigger'

[docs] def compile(self):
 self.code_bin = compile(self.code_src, "<irc>", "exec")

 # ctx is the object we are evaluating the code. In the code
 # it will be "self".

[docs] def eval(myself, ctx):
 self = ctx

 # Ok we can declare for this trigger call our functions
 for (n, f) in trigger_functions.iteritems():
 locals()[n] = f

 code = myself.code_bin # Comment? => compile(myself.code_bin, "<irc>", "exec")
 exec code in dict(locals())

 def __getstate__(self):
 return {'trigger_name': self.trigger_name, 'code_src': self.code_src}

 def __setstate__(self, d):
 self.trigger_name = d['trigger_name']
 self.code_src = d['code_src']

[docs]class Triggers(Items):
 name_property = "trigger_name"
 inner_class = Trigger

 # We will dig into the path and load all .trig files
[docs] def load_file(self, path):
 # Now walk for it
 for root, dirs, files in os.walk(path):
 for file in files:
 if re.search("\.trig$", file):
 p = os.path.join(root, file)
 try:
 fd = open(p, 'rU')
 buf = fd.read()
 fd.close()
 except IOError, exp:
 logger.error("Cannot open trigger file '%s' for reading: %s" % (p, exp))
 # ok, skip this one
 continue
 self.create_trigger(buf, file[:-5])

 # Create a trigger from the string src, and with the good name

[docs] def create_trigger(self, src, name):
 # Ok, go compile the code
 t = Trigger({'trigger_name': name, 'code_src': src})
 t.compile()
 # Ok, add it
 self[t.id] = t
 return t

[docs] def compile(self):
 for i in self:
 i.compile()

[docs] def load_objects(self, conf):
 global objs
 objs['hosts'] = conf.hosts
 objs['services'] = conf.services

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/servicedependency.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.servicedependency

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items
from shinken.property import BoolProp, StringProp, ListProp
from shinken.log import logger

[docs]class Servicedependency(Item):
 id = 0
 my_type = "servicedependency"

 # F is dep of D
 # host_name Host B
 # service_description Service D
 # dependent_host_name Host C
 # dependent_service_description Service F
 # execution_failure_criteria o
 # notification_failure_criteria w,u
 # inherits_parent 1
 # dependency_period 24x7

 properties = Item.properties.copy()
 properties.update({
 'dependent_host_name': StringProp(),
 'dependent_hostgroup_name': StringProp(default=''),
 'dependent_service_description': StringProp(),
 'host_name': StringProp(),
 'hostgroup_name': StringProp(default=''),
 'service_description': StringProp(),
 'inherits_parent': BoolProp(default='0'),
 'execution_failure_criteria': ListProp(default='n'),
 'notification_failure_criteria': ListProp(default='n'),
 'dependency_period': StringProp(default=''),
 'explode_hostgroup': BoolProp(default='0')
 })

 # Give a nice name output, for debugging purpose
 # (Yes, debugging CAN happen...)
[docs] def get_name(self):
 return getattr(self, 'dependent_host_name', '') + '/' + getattr(self, 'dependent_service_description', '') + '..' + getattr(self, 'host_name', '') + '/' + getattr(self, 'service_description', '')

[docs]class Servicedependencies(Items):
[docs] def delete_servicesdep_by_id(self, ids):
 for id in ids:
 del self[id]

 # Add a simple service dep from another (dep -> par)

[docs] def add_service_dependency(self, dep_host_name, dep_service_description, par_host_name, par_service_description):
 # We create a "standard" service_dep
 prop = {
 'dependent_host_name': dep_host_name,
 'dependent_service_description': dep_service_description,
 'host_name': par_host_name,
 'service_description': par_service_description,
 'notification_failure_criteria': 'u,c,w',
 'inherits_parent': '1',
 }
 sd = Servicedependency(prop)
 self.items[sd.id] = sd

 # If we have explode_hostgroup parameter we have to create a service dependency for each host of the hostgroup

[docs] def explode_hostgroup(self, sd, hostgroups):
 # We will create a service dependency for each host part of the host group

 # First get services
 snames = sd.service_description.split(',')

 # And dep services
 dep_snames = sd.dependent_service_description.split(',')

 # Now for each host into hostgroup we will create a service dependency object
 hg_names = sd.hostgroup_name.split(',')
 for hg_name in hg_names:
 hg = hostgroups.find_by_name(hg_name)
 if hg is None:
 err = "ERROR: the servicedependecy got an unknown hostgroup_name '%s'" % hg_name
 self.configuration_errors.append(err)
 continue
 hnames = []
 hnames.extend(hg.members.split(','))
 for hname in hnames:
 for dep_sname in dep_snames:
 for sname in snames:
 new_sd = sd.copy()
 new_sd.host_name = hname
 new_sd.service_description = sname
 new_sd.dependent_host_name = hname
 new_sd.dependent_service_description = dep_sname
 self.items[new_sd.id] = new_sd

 # We create new servicedep if necessary (host groups and co)

[docs] def explode(self, hostgroups):
 # The "old" services will be removed. All services with
 # more than one host or a host group will be in it
 srvdep_to_remove = []

 # Then for every host create a copy of the service with just the host
 # because we are adding services, we can't just loop in it
 servicedeps = self.items.keys()
 for id in servicedeps:
 sd = self.items[id]
 if sd.is_tpl(): # Exploding template is useless
 continue

 # Have we to explode the hostgroup into many service?
 if hasattr(sd, 'explode_hostgroup') and hasattr(sd, 'hostgroup_name'):
 self.explode_hostgroup(sd, hostgroups)
 srvdep_to_remove.append(id)
 continue

 # Get the list of all FATHER hosts and service deps
 hnames = []
 if hasattr(sd, 'hostgroup_name'):
 hg_names = sd.hostgroup_name.split(',')
 hg_names = [hg_name.strip() for hg_name in hg_names]
 for hg_name in hg_names:
 hg = hostgroups.find_by_name(hg_name)
 if hg is None:
 err = "ERROR: the servicedependecy got an unknown hostgroup_name '%s'" % hg_name
 hg.configuration_errors.append(err)
 continue
 hnames.extend(hg.members.split(','))

 if not hasattr(sd, 'host_name'):
 sd.host_name = ''

 if sd.host_name != '':
 hnames.extend(sd.host_name.split(','))
 snames = sd.service_description.split(',')
 couples = []
 for hname in hnames:
 for sname in snames:
 couples.append((hname.strip(), sname.strip()))

 if not hasattr(sd, 'dependent_hostgroup_name') and hasattr(sd, 'hostgroup_name'):
 sd.dependent_hostgroup_name = sd.hostgroup_name

 # Now the dep part (the sons)
 dep_hnames = []
 if hasattr(sd, 'dependent_hostgroup_name'):
 hg_names = sd.dependent_hostgroup_name.split(',')
 hg_names = [hg_name.strip() for hg_name in hg_names]
 for hg_name in hg_names:
 hg = hostgroups.find_by_name(hg_name)
 if hg is None:
 err = "ERROR: the servicedependecy got an unknown dependent_hostgroup_name '%s'" % hg_name
 hg.configuration_errors.append(err)
 continue
 dep_hnames.extend(hg.members.split(','))

 if not hasattr(sd, 'dependent_host_name'):
 sd.dependent_host_name = getattr(sd, 'host_name', '')

 if sd.dependent_host_name != '':
 dep_hnames.extend(sd.dependent_host_name.split(','))
 dep_snames = sd.dependent_service_description.split(',')
 dep_couples = []
 for dep_hname in dep_hnames:
 for dep_sname in dep_snames:
 dep_couples.append((dep_hname.strip(), dep_sname.strip()))

 # Create the new service deps from all of this.
 for (dep_hname, dep_sname) in dep_couples: # the sons, like HTTP
 for (hname, sname) in couples: # the fathers, like MySQL
 new_sd = sd.copy()
 new_sd.host_name = hname
 new_sd.service_description = sname
 new_sd.dependent_host_name = dep_hname
 new_sd.dependent_service_description = dep_sname
 self.items[new_sd.id] = new_sd
 # Ok so we can remove the old one
 srvdep_to_remove.append(id)

 self.delete_servicesdep_by_id(srvdep_to_remove)

[docs] def linkify(self, hosts, services, timeperiods):
 self.linkify_sd_by_s(hosts, services)
 self.linkify_sd_by_tp(timeperiods)
 self.linkify_s_by_sd()

 # We just search for each srvdep the id of the srv
 # and replace the name by the id

[docs] def linkify_sd_by_s(self, hosts, services):
 for sd in self:
 try:
 s_name = sd.dependent_service_description
 hst_name = sd.dependent_host_name

 # The new member list, in id
 s = services.find_srv_by_name_and_hostname(hst_name, s_name)
 if s is None:
 self.configuration_errors.append("Service %s not found for host %s"
 % (s_name, hst_name))
 sd.dependent_service_description = s

 s_name = sd.service_description
 hst_name = sd.host_name

 # The new member list, in id
 s = services.find_srv_by_name_and_hostname(hst_name, s_name)
 if s is None:
 self.configuration_errors.append("Service %s not found for host %s"
 % (s_name, hst_name))
 sd.service_description = s

 except AttributeError, exp:
 logger.error("[servicedependency] fail to linkify by service %s: %s" % (sd, exp))

 # We just search for each srvdep the id of the srv
 # and replace the name by the id

[docs] def linkify_sd_by_tp(self, timeperiods):
 for sd in self:
 try:
 tp_name = sd.dependency_period
 tp = timeperiods.find_by_name(tp_name)
 sd.dependency_period = tp
 except AttributeError, exp:
 logger.error("[servicedependency] fail to linkify by timeperiods: %s" % exp)

 # We backport service dep to service. So SD is not need anymore

[docs] def linkify_s_by_sd(self):
 for sd in self:
 if sd.is_tpl():
 continue
 dsc = sd.dependent_service_description
 sdval = sd.service_description
 if dsc is not None and sdval is not None:
 dp = getattr(sd, 'dependency_period', None)
 dsc.add_service_act_dependency(sdval, sd.notification_failure_criteria, dp, sd.inherits_parent)
 dsc.add_service_chk_dependency(sdval, sd.execution_failure_criteria, dp, sd.inherits_parent)

 # Apply inheritance for all properties

[docs] def apply_inheritance(self, hosts):
 # We check for all Host properties if the host has it
 # if not, it check all host templates for a value
 for prop in Servicedependency.properties:
 self.apply_partial_inheritance(prop)

 # Then implicit inheritance
 # self.apply_implicit_inheritance(hosts)
 for s in self:
 s.get_customs_properties_by_inheritance(self)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/hostextinfo.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.hostextinfo

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This is the main class for the Host ext info. In fact it's mainly
about the configuration part. Parameters are merged in Hosts so it's
no use in running part
"""

import time

from item import Item, Items

from shinken.autoslots import AutoSlots
from shinken.util import format_t_into_dhms_format, to_hostnames_list, get_obj_name, to_svc_hst_distinct_lists, to_list_string_of_names
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.macroresolver import MacroResolver
from shinken.eventhandler import EventHandler
from shinken.log import logger

[docs]class HostExtInfo(Item):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 id = 1 # zero is reserved for host (primary node for parents)
 my_type = 'hostextinfo'

 # properties defined by configuration
 # *required: is required in conf
 # *default: default value if no set in conf
 # *pythonize: function to call when transforming string to python object
 # *fill_brok: if set, send to broker. there are two categories: full_status for initial and update status, check_result for check results
 # *no_slots: do not take this property for __slots__
 # Only for the initial call
 # conf_send_preparation: if set, will pass the property to this function. It's used to "flatten"
 # some dangerous properties like realms that are too 'linked' to be send like that.
 # brok_transformation: if set, will call the function with the value of the property
 # the major times it will be to flatten the data (like realm_name instead of the realm object).
 properties = Item.properties.copy()
 properties.update({
 'host_name': ListProp(brok_transformation=to_hostnames_list),
 'notes': StringProp(default=''),
 'notes_url': StringProp(default=''),
 'icon_image': StringProp(default=''),
 'icon_image_alt': StringProp(default=''),
 'vrml_image': StringProp(default=''),
 'statusmap_image': StringProp(default=''),

 # No slots for this 2 because begin property by a number seems bad
 # it's stupid!
 '2d_coords': StringProp(default='', no_slots=True),
 '3d_coords': StringProp(default='', no_slots=True),
 })

 # Hosts macros and prop that give the information
 # the prop can be callable or not
 macros = {
 'HOSTNAME': 'host_name',
 'HOSTNOTESURL': 'notes_url',
 'HOSTNOTES': 'notes',
 }

#######
__ _ _ _
/ _(_) | | (_)
___ ___ _ __ | |_ _ __ _ _ _ _ __ __ _| |_ _ ___ _ __
/ __/ _ \| '_ \| _| |/ _` | | | | '__/ _` | __| |/ _ \| '_ \
| (_| (_) | | | | | | | (_| | |_| | | | (_| | |_| | (_) | | | |
______/|_| |_|_| |_|__, |__,_|_| __,_|__|_|___/|_| |_|
__/ |
|___/
######

 # Check is required prop are set:
 # host_name is needed
[docs] def is_correct(self):
 state = True
 cls = self.__class__

 return state

 # For get a nice name

[docs] def get_name(self):
 if not self.is_tpl():
 try:
 return self.host_name
 except AttributeError: # outch, no hostname
 return 'UNNAMEDHOST'
 else:
 try:
 return self.name
 except AttributeError: # outch, no name for this template
 return 'UNNAMEDHOSTTEMPLATE'

 # For debugging purpose only

[docs] def get_dbg_name(self):
 return self.host_name

 # Same but for clean call, no debug

[docs] def get_full_name(self):
 return self.host_name

Class for the hosts lists. It's mainly for configuration
part

[docs]class HostsExtInfo(Items):
 name_property = "host_name" # use for the search by name
 inner_class = HostExtInfo # use for know what is in items

 # Merge extended host information into host
[docs] def merge(self, hosts):
 for ei in self:
 hosts_names = ei.get_name().split(",")
 for host_name in hosts_names:
 h = hosts.find_by_name(host_name)
 if h is not None:
 # FUUUUUUUUUUsion
 self.merge_extinfo(h, ei)

[docs] def merge_extinfo(self, host, extinfo):
 properties = ['notes', 'notes_url', 'icon_image', 'icon_image_alt', 'vrml_image', 'statusmap_image']
 # host properties have precedence over hostextinfo properties
 for p in properties:
 if getattr(host, p) == '' and getattr(extinfo, p) != '':
 setattr(host, p, getattr(extinfo, p))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/command.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.command

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items
from shinken.brok import Brok
from shinken.property import StringProp, IntegerProp
from shinken.autoslots import AutoSlots

Ok, slots are fun: you cannot set the __autoslots__
on the same class you use, fun isn't it? So we define*
a dummy useless class to get such :)
[docs]class DummyCommand(object):
 pass

[docs]class Command(Item):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 id = 0
 my_type = "command"

 properties = Item.properties.copy()
 properties.update({
 'command_name': StringProp(fill_brok=['full_status']),
 'command_line': StringProp(fill_brok=['full_status']),
 'poller_tag': StringProp(default='None'),
 'reactionner_tag': StringProp(default='None'),
 'module_type': StringProp(default=None),
 'timeout': IntegerProp(default='-1'),
 })

 def __init__(self, params={}):
 setattr(self, 'id', self.__class__.id)
 #self.id = self.__class__.id
 self.__class__.id += 1

 self.init_running_properties()

 self.customs = {}

 for key in params:
 # Manage customs values
 if key.startswith('_'):
 self.customs[key.upper()] = params[key]
 else:
 setattr(self, key, params[key])

 if not hasattr(self, 'timeout'):
 self.timeout = '-1'

 if not hasattr(self, 'poller_tag'):
 self.poller_tag = 'None'
 if not hasattr(self, 'reactionner_tag'):
 self.reactionner_tag = 'None'
 if not hasattr(self, 'module_type'):
 # If the command start with a _, set the module_type
 # as the name of the command, without the _
 if getattr(self, 'command_line', '').startswith('_'):
 module_type = getattr(self, 'command_line', '').split(' ')[0]
 # and we remove the first _
 self.module_type = module_type[1:]
 # If no command starting with _, be fork :)
 else:
 self.module_type = 'fork'

[docs] def get_name(self):
 return self.command_name

[docs] def pythonize(self):
 self.command_name = self.command_name.strip()
 self.timeout = int(self.timeout)

 def __str__(self):
 return str(self.__dict__)

 # Get a brok with initial status
[docs] def get_initial_status_brok(self):
 cls = self.__class__
 my_type = cls.my_type
 data = {'id': self.id}

 self.fill_data_brok_from(data, 'full_status')
 b = Brok('initial_' + my_type + '_status', data)
 return b

[docs] def fill_data_brok_from(self, data, brok_type):
 cls = self.__class__
 # Now config properties
 for prop, entry in cls.properties.items():
 # Is this property intended for broking?
 #if 'fill_brok' in entry[prop]:
 if brok_type in entry.fill_brok:
 if hasattr(self, prop):
 data[prop] = getattr(self, prop)
 #elif 'default' in entry[prop]:
 # data[prop] = entry.default

 # Call by pickle to dataify the comment
 # because we DO NOT WANT REF in this pickleisation!

 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)

 return res

 # Inversed function of getstate
 def __setstate__(self, state):
 cls = self.__class__
 # We move during 1.0 to a dict state
 # but retention file from 0.8 was tuple
 if isinstance(state, tuple):
 self.__setstate_pre_1_0__(state)
 return
 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])

 # In 1.0 we move to a dict save. Before, it was
 # a tuple save, like
 # ({'id': 11}, {'poller_tag': 'None', 'reactionner_tag': 'None',
 # 'command_line': u'/usr/local/nagios/bin/rss-multiuser',
 # 'module_type': 'fork', 'command_name': u'notify-by-rss'})
 def __setstate_pre_1_0__(self, state):
 for d in state:
 for k, v in d.items():
 setattr(self, k, v)

[docs]class Commands(Items):

 inner_class = Command
 name_property = "command_name"

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/servicegroup.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.servicegroup

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from itemgroup import Itemgroup, Itemgroups

from shinken.property import StringProp
from shinken.log import logger

[docs]class Servicegroup(Itemgroup):
 id = 1 # zero is always a little bit special... like in database
 my_type = 'servicegroup'

 properties = Itemgroup.properties.copy()
 properties.update({
 'id': StringProp(default=0, fill_brok=['full_status']),
 'servicegroup_name': StringProp(fill_brok=['full_status']),
 'alias': StringProp(fill_brok=['full_status']),
 'notes': StringProp(default='', fill_brok=['full_status']),
 'notes_url': StringProp(default='', fill_brok=['full_status']),
 'action_url': StringProp(default='', fill_brok=['full_status']),
 })

 macros = {
 'SERVICEGROUPALIAS': 'alias',
 'SERVICEGROUPMEMBERS': 'members',
 'SERVICEGROUPNOTES': 'notes',
 'SERVICEGROUPNOTESURL': 'notes_url',
 'SERVICEGROUPACTIONURL': 'action_url'
 }

[docs] def get_services(self):
 if self.has('members'):
 return self.members
 else:
 return ''

[docs] def get_name(self):
 return self.servicegroup_name

[docs] def get_servicegroup_members(self):
 if self.has('servicegroup_members'):
 return self.servicegroup_members.split(',')
 else:
 return []

 # We fillfull properties with template ones if need
 # Because hostgroup we call may not have it's members
 # we call get_hosts_by_explosion on it

[docs] def get_services_by_explosion(self, servicegroups):
 # First we tag the hg so it will not be explode
 # if a son of it already call it
 self.already_explode = True

 # Now the recursive part
 # rec_tag is set to False every HG we explode
 # so if True here, it must be a loop in HG
 # calls... not GOOD!
 if self.rec_tag:
 logger.error("[servicegroup::%s] got a loop in servicegroup definition" % self.get_name())
 if self.has('members'):
 return self.members
 else:
 return ''
 # Ok, not a loop, we tag it and continue
 self.rec_tag = True

 sg_mbrs = self.get_servicegroup_members()
 for sg_mbr in sg_mbrs:
 sg = servicegroups.find_by_name(sg_mbr.strip())
 if sg is not None:
 value = sg.get_services_by_explosion(servicegroups)
 if value is not None:
 self.add_string_member(value)

 if self.has('members'):
 return self.members
 else:
 return ''

[docs]class Servicegroups(Itemgroups):
 name_property = "servicegroup_name" # is used for finding servicegroup
 inner_class = Servicegroup

[docs] def linkify(self, services):
 self.linkify_sg_by_srv(services)

 # We just search for each host the id of the host
 # and replace the name by the id
 # TODO: very slow for hight services, so search with host list,
 # not service one

[docs] def linkify_sg_by_srv(self, services):
 for sg in self:
 mbrs = sg.get_services()

 # The new member list, in id
 new_mbrs = []
 seek = 0
 host_name = ''
 if (len(mbrs) == 1):
 sg.unknown_members.append('%s' % mbrs[0])

 for mbr in mbrs:
 if seek % 2 == 0:
 host_name = mbr.strip()
 else:
 service_desc = mbr.strip()
 find = services.find_srv_by_name_and_hostname(host_name, service_desc)
 if find is not None:
 new_mbrs.append(find)
 else:
 sg.unknown_members.append('%s,%s' % (host_name, service_desc))
 seek += 1

 # Make members uniq
 new_mbrs = list(set(new_mbrs))

 # We find the id, we replace the names
 sg.replace_members(new_mbrs)
 for s in sg.members:
 s.servicegroups.append(sg)
 # and make this uniq
 s.servicegroups = list(set(s.servicegroups))

 # Add a service string to a service member
 # if the service group do not exist, create it

[docs] def add_member(self, cname, sgname):
 sg = self.find_by_name(sgname)
 # if the id do not exist, create the cg
 if sg is None:
 sg = Servicegroup({'servicegroup_name': sgname, 'alias': sgname, 'members': cname})
 self.add(sg)
 else:
 sg.add_string_member(cname)

 # Use to fill members with contactgroup_members

[docs] def explode(self):
 # We do not want a same hg to be explode again and again
 # so we tag it
 for sg in self:
 sg.already_explode = False

 for sg in self:
 if sg.has('servicegroup_members') and not sg.already_explode:
 # get_services_by_explosion is a recursive
 # function, so we must tag hg so we do not loop
 for sg2 in self:
 sg2.rec_tag = False
 sg.get_services_by_explosion(self)

 # We clean the tags
 for sg in self:
 try:
 del sg.rec_tag
 except AttributeError:
 pass
 del sg.already_explode

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/macromodulation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.macromodulation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time

from item import Item, Items
from shinken.property import BoolProp, IntegerProp, StringProp, ListProp
from shinken.util import to_name_if_possible
from shinken.log import logger

[docs]class MacroModulation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'macromodulation'

 properties = Item.properties.copy()
 properties.update({
 'macromodulation_name': StringProp(fill_brok=['full_status']),
 'modulation_period' : StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 })

 running_properties = Item.running_properties.copy()

 _special_properties = ('modulation_period',)

 macros = {}

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.macromodulation_name

 # Will say if we are active or not

[docs] def is_active(self):
 now = int(time.time())
 if not self.modulation_period or self.modulation_period.is_time_valid(now):
 return True
 return False

 # Should have all properties, or a void macro_period

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 # Raised all previously saw errors like unknown commands or timeperiods
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.error("[item::%s] %s" % (self.get_name(), err))

 for prop, entry in cls.properties.items():
 if prop not in cls._special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.warning("[macromodulation::%s] %s property not set" % (self.get_name(), prop))
 state = False # Bad boy...

 # Ok just put None as modulation_period, means 24x7
 if not hasattr(self, 'modulation_period'):
 self.modulation_period = None

 return state

[docs]class MacroModulations(Items):
 name_property = "macromodulation_name"
 inner_class = MacroModulation

[docs] def linkify(self, timeperiods):
 self.linkify_with_timeperiods(timeperiods, 'modulation_period')

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/discoveryrun.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.discoveryrun

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re
from copy import copy

from item import Item, Items

from shinken.objects.matchingitem import MatchingItem
from shinken.property import StringProp
from shinken.eventhandler import EventHandler
from shinken.macroresolver import MacroResolver

[docs]class Discoveryrun(MatchingItem):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'discoveryrun'

 properties = Item.properties.copy()
 properties.update({
 'discoveryrun_name': StringProp(),
 'discoveryrun_command': StringProp(),
 })

 running_properties = Item.running_properties.copy()
 running_properties.update({
 'current_launch': StringProp(default=None),
 })

 # The init of a discovery will set the property of
 # Discoveryrun.properties as in setattr, but all others
 # will be in a list because we need to have all names
 # and not lost all in __dict__
 def __init__(self, params={}):
 cls = self.__class__

 # We have our own id of My Class type :)
 # use set attr for going into the slots
 # instead of __dict__ :)
 setattr(self, 'id', cls.id)
 cls.id += 1

 self.matches = {} # for matching rules
 self.not_matches = {} # for rules that should NOT match

 # In my own property:
 # -> in __dict__
 # if not, in matches or not match (if key starts
 # with a !, it's a not rule)
 # -> in self.matches or self.not_matches
 # in writing properties if start with + (means 'add this')
 for key in params:
 if key in cls.properties:
 setattr(self, key, params[key])
 else:
 if key.startswith('!'):
 key = key.split('!')[1]
 self.not_matches[key] = params['!'+key]
 else:
 self.matches[key] = params[key]

 # Then running prop :)
 cls = self.__class__
 # adding running properties like latency, dependency list, etc
 for prop, entry in cls.running_properties.items():
 # Copy is slow, so we check type
 # Type with __iter__ are list or dict, or tuple.
 # Item need it's own list, so qe copy
 val = entry.default
 if hasattr(val, '__iter__'):
 setattr(self, prop, copy(val))
 else:
 setattr(self, prop, val)

 # each instance to have his own running prop!

 # Output name
[docs] def get_name(self):
 try:
 return self.discoveryrun_name
 except AttributeError:
 return "UnnamedDiscoveryRun"

 # A Run that is first level means that it do not have
 # any matching filter

[docs] def is_first_level(self):
 return len(self.not_matches) + len(self.matches) == 0

 # Get an eventhandler object and launch it

[docs] def launch(self, ctx=[], timeout=300):
 m = MacroResolver()
 cmd = m.resolve_command(self.discoveryrun_command, ctx)
 self.current_launch = EventHandler(cmd, timeout=timeout)
 self.current_launch.execute()

[docs] def check_finished(self):
 max_output = 10 ** 9
 #print "Max output", max_output
 self.current_launch.check_finished(max_output)

 # Look if the current launch is done or not

[docs] def is_finished(self):
 if self.current_launch == None:
 return True
 if self.current_launch.status in ('done', 'timeout'):
 return True
 return False

 # we use an EventHandler object, so we have output with a single line
 # and longoutput with the rest. We just need to return all

[docs] def get_output(self):
 return '\n'.join([self.current_launch.output, self.current_launch.long_output])

[docs]class Discoveryruns(Items):
 name_property = "discoveryrun_name"
 inner_class = Discoveryrun

[docs] def linkify(self, commands):
 for r in self:
 r.linkify_one_command_with_commands(commands, 'discoveryrun_command')

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/discoveryrule.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.discoveryrule

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re
from copy import copy

from item import Item, Items
from shinken.objects.matchingitem import MatchingItem
from service import Service
from host import Host
from shinken.property import StringProp, ListProp, IntegerProp

[docs]class Discoveryrule(MatchingItem):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'discoveryrule'

 properties = Item.properties.copy()
 properties.update({
 'discoveryrule_name': StringProp(),
 'creation_type': StringProp(default='service'),
 'discoveryrule_order': IntegerProp(default='0'),
 ## 'check_command': StringProp (),
 ## 'service_description': StringProp (),
 ## 'use': StringProp(),
 })

 running_properties = {
 'configuration_errors': ListProp(default=[]),
 }

 macros = {}

 # The init of a discovery will set the property of
 # Discoveryrule.properties as in setattr, but all others
 # will be in a list because we need to have all names
 # and not lost all in __dict__
 def __init__(self, params={}):
 cls = self.__class__

 # We have our own id of My Class type :)
 # use set attr for going into the slots
 # instead of __dict__ :)
 setattr(self, 'id', cls.id)
 cls.id += 1

 self.matches = {} # for matching rules
 self.not_matches = {} # for rules that should NOT match
 self.writing_properties = {}

 # Get the properties of the Class we want
 if not 'creation_type' in params:
 params['creation_type'] = 'service'

 map = {'service': Service, 'host': Host}
 t = params['creation_type']
 if not t in map:
 return
 tcls = map[t]

 # In my own property:
 # -> in __dict__
 # In the properties of the 'creation_type' Class:
 # -> in self.writing_properties
 # if not, in matches or not match (if key starts
 # with a !, it's a not rule)
 # -> in self.matches or self.not_matches
 # in writing properties if start with + (means 'add this')
 # in writing properties if start with - (means 'del this')
 for key in params:
 # Some key are quite special
 if key in cls.properties:
 setattr(self, key, params[key])
 elif key in ['use'] or key.startswith('+') or key.startswith('-') or key in tcls.properties or key.startswith('_'):
 self.writing_properties[key] = params[key]
 else:
 if key.startswith('!'):
 key = key.split('!')[1]
 self.not_matches[key] = params['!' + key]
 else:
 self.matches[key] = params[key]

 # Then running prop :)
 cls = self.__class__
 # adding running properties like latency, dependency list, etc
 for prop, entry in cls.running_properties.items():
 # Copy is slow, so we check type
 # Type with __iter__ are list or dict, or tuple.
 # Item need it's own list, so qe copy
 val = entry.default
 if hasattr(val, '__iter__'):
 setattr(self, prop, copy(val))
 else:
 setattr(self, prop, val)

 # each instance to have his own running prop!

 # Output name
[docs] def get_name(self):
 try:
 return self.discoveryrule_name
 except AttributeError:
 return "UnnamedDiscoveryRule"

[docs]class Discoveryrules(Items):
 name_property = "discoveryrule_name"
 inner_class = Discoveryrule

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/item.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.item

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This class is a base class for nearly all configuration
 elements like service, hosts or contacts.
"""
import time
import cPickle # for hashing compute

Try to import md5 function
try:
 from hashlib import md5
except ImportError:
 from md5 import md5

from copy import copy

from shinken.graph import Graph
from shinken.commandcall import CommandCall
from shinken.property import StringProp, ListProp, BoolProp
from shinken.brok import Brok
from shinken.util import strip_and_uniq
from shinken.acknowledge import Acknowledge
from shinken.comment import Comment
from shinken.complexexpression import ComplexExpressionFactory
from shinken.log import logger

[docs]class Item(object):

 properties = {
 'imported_from': StringProp(default='unknown'),
 'use': ListProp(default=''),
 'name': StringProp(default=''),

 # TODO: find why we can't uncomment this line below.
 #'register': BoolProp(default='1'),
 }

 running_properties = {
 # All errors and warning raised during the configuration parsing
 # and that will raised real warning/errors during the is_correct
 'configuration_warnings': ListProp(default=[]),
 'configuration_errors': ListProp(default=[]),
 'hash': StringProp(default=''),
 # We save all template we asked us to load from
 'tags': ListProp(default=set(), fill_brok=['full_status']),
 }

 macros = {
 }

 def __init__(self, params={}):
 # We have our own id of My Class type :)
 # use set attr for going into the slots
 # instead of __dict__ :)
 cls = self.__class__
 self.id = cls.id
 cls.id += 1

 self.customs = {} # for custom variables
 self.plus = {} # for value with a +

 self.init_running_properties()

 # [0] = + -> new key-plus
 # [0] = _ -> new custom entry in UPPER case
 for key in params:
 if len(params[key]) >= 1 and params[key][0] == '+':
 # Special case: a _MACRO can be a plus. so add to plus
 # but upper the key for the macro name
 if key[0] == "_":
 self.plus[key.upper()] = params[key][1:] # we remove the +
 else:
 self.plus[key] = params[key][1:] # we remove the +
 elif key[0] == "_":
 custom_name = key.upper()
 self.customs[custom_name] = params[key]
 else:
 setattr(self, key, params[key])

[docs] def init_running_properties(self):
 for prop, entry in self.__class__.running_properties.items():
 # Copy is slow, so we check type
 # Type with __iter__ are list or dict, or tuple.
 # Item need it's own list, so we copy
 val = entry.default
 if hasattr(val, '__iter__'):
 setattr(self, prop, copy(val))
 else:
 setattr(self, prop, val)
 # each instance to have his own running prop!

[docs] def copy(self):
 """ Return a copy of the item, but give him a new id """
 cls = self.__class__
 i = cls({}) # Dummy item but with it's own running properties
 for prop in cls.properties:
 if hasattr(self, prop):
 val = getattr(self, prop)
 setattr(i, prop, val)
 # Also copy the customs tab
 i.customs = copy(self.customs)
 return i

[docs] def clean(self):
 """ Clean useless things not requested once item has been fully initialized&configured.
Like temporary attributes such as "imported_from", etc.. """
 for name in ('imported_from', 'use', 'plus', 'templates',):
 try:
 delattr(self, name)
 except AttributeError:
 pass

 def __str__(self):
 return str(self.__dict__) + '\n'

[docs] def is_tpl(self):
 """ Return if the elements is a template """
 try:
 return self.register == '0'
 except Exception, exp:
 return False

 # If a prop is absent and is not required, put the default value

[docs] def fill_default(self):
 """ Fill missing properties if they are missing """
 cls = self.__class__

 for prop, entry in cls.properties.items():
 if not hasattr(self, prop) and entry.has_default:
 setattr(self, prop, entry.default)

 # We load every useful parameter so no need to access global conf later
 # Must be called after a change in a global conf parameter

[docs] def load_global_conf(cls, conf):
 """ Used to put global values in the sub Class like
 hosts or services """
 # conf have properties, if 'enable_notifications':
 # { [...] 'class_inherit': [(Host, None), (Service, None),
 # (Contact, None)]}
 # get the name and put the value if None, put the Name
 # (not None) if not (not clear?)
 for prop, entry in conf.properties.items():
 # If we have a class_inherit, and the arbiter really send us it
 # if 'class_inherit' in entry and hasattr(conf, prop):
 if hasattr(conf, prop):
 for (cls_dest, change_name) in entry.class_inherit:
 if cls_dest == cls: # ok, we've got something to get
 value = getattr(conf, prop)
 if change_name is None:
 setattr(cls, prop, value)
 else:
 setattr(cls, change_name, value)

 # Make this method a classmethod

 load_global_conf = classmethod(load_global_conf)

 # Use to make python properties
[docs] def pythonize(self):
 cls = self.__class__
 for prop, tab in cls.properties.items():
 try:
 new_val = tab.pythonize(getattr(self, prop))
 setattr(self, prop, new_val)
 except AttributeError, exp:
 #print exp
 pass # Will be catch at the is_correct moment
 except KeyError, exp:
 #print "Missing prop value", exp
 err = "the property '%s' of '%s' do not have value" % (prop, self.get_name())
 self.configuration_errors.append(err)
 except ValueError, exp:
 err = "incorrect type for property '%s' of '%s'" % (prop, self.get_name())
 self.configuration_errors.append(err)

 # Compute a hash of this element values. Should be launched
 # When we got all our values, but not linked with other objects

[docs] def compute_hash(self):
 # ID will always changed between runs, so we remove it
 # for hash compute
 i = self.id
 del self.id
 m = md5()
 tmp = cPickle.dumps(self, cPickle.HIGHEST_PROTOCOL)
 m.update(tmp)
 self.hash = m.digest()
 # and put again our id
 self.id = i

[docs] def get_templates(self):
 if hasattr(self, 'use') and self.use != '':
 return self.use.split(',')
 else:
 return []

 # We fillfull properties with template ones if need

[docs] def get_property_by_inheritance(self, items, prop):

 # If I have the prop, I take mine but I check if I must
 # add a plus property
 if hasattr(self, prop):
 value = getattr(self, prop)
 # Maybe this value is 'null'. If so, we should NOT inherit
 # and just delete this entry, and hope of course.
 # Keep "null" values, because in "inheritance chaining" they must
 # be passed from one level to the next.
 #if value == 'null':
 # delattr(self, prop)
 # return None
 # Manage the additive inheritance for the property,
 # if property is in plus, add or replace it
 # Template should keep the '+' at the beginning of the chain
 if self.has_plus(prop):
 value = self.get_plus_and_delete(prop) + ',' + value
 if self.is_tpl():
 value = '+' + value
 return value
 # Ok, I do not have prop, Maybe my templates do?
 # Same story for plus
 for i in self.templates:
 value = i.get_property_by_inheritance(items, prop)

 if value is not None:
 # If our template give us a '+' value, we should continue to loop
 still_loop = False
 if value.startswith('+'):
 # Templates should keep their + inherited from their parents
 if not self.is_tpl():
 value = value[1:]
 still_loop = True

 # Maybe in the previous loop, we set a value, use it too
 if hasattr(self, prop):
 # If the current value is strong, it will simplify the problem
 if value.startswith('+'):
 # In this case we can remove the + from our current
 # tpl because our value will be final
 value = ','.join([getattr(self, prop), value[1:]])
 else: # If not, se should keep the + sign of need
 value = ','.join([getattr(self, prop), value])

 # Ok, we can set it
 setattr(self, prop, value)

 # If we only got some '+' values, we must still loop
 # for an end value without it
 if not still_loop:
 # And set my own value in the end if need
 if self.has_plus(prop):
 value = ','.join([getattr(self, prop), self.get_plus_and_delete(prop)])
 # Template should keep their '+'
 if self.is_tpl() and not value.startswith('+'):
 value = '+' + value
 setattr(self, prop, value)
 return value

 # Maybe templates only give us + values, so we didn't quit, but we already got a
 # self.prop value after all
 template_with_only_plus = hasattr(self, prop)

 # I do not have endingprop, my templates too... Maybe a plus?
 # warning: if all my templates gave me '+' values, do not forgot to
 # add the already set self.prop value
 if self.has_plus(prop):
 if template_with_only_plus:
 value = ','.join([getattr(self, prop), self.get_plus_and_delete(prop)])
 else:
 value = self.get_plus_and_delete(prop)
 # Template should keep their '+' chain
 # We must say it's a '+' value, so our son will now that it must
 # still loop
 if self.is_tpl() and not value.startswith('+'):
 value = '+' + value
 setattr(self, prop, value)
 return value

 # Ok so in the end, we give the value we got if we have one, or None
 # Not even a plus... so None :)
 return getattr(self, prop, None)

 # We fillfull properties with template ones if need

[docs] def get_customs_properties_by_inheritance(self, items):
 for i in self.templates:
 tpl_cv = i.get_customs_properties_by_inheritance(items)
 if tpl_cv is not {}:
 for prop in tpl_cv:
 if prop not in self.customs:
 value = tpl_cv[prop]
 else:
 value = self.customs[prop]
 if self.has_plus(prop):
 value = self.get_plus_and_delete(prop) + ',' + value
 self.customs[prop] = value
 for prop in self.customs:
 value = self.customs[prop]
 if self.has_plus(prop):
 value = self.get_plus_and_delete(prop) + ',' + value
 self.customs[prop] = value
 # We can get custom properties in plus, we need to get all
 # entires and put
 # them into customs
 cust_in_plus = self.get_all_plus_and_delete()
 for prop in cust_in_plus:
 self.customs[prop] = cust_in_plus[prop]
 return self.customs

[docs] def has_plus(self, prop):
 try:
 self.plus[prop]
 except:
 return False
 return True

[docs] def get_all_plus_and_delete(self):
 res = {}
 props = self.plus.keys() # we delete entries, so no for ... in ...
 for prop in props:
 res[prop] = self.get_plus_and_delete(prop)
 return res

[docs] def get_plus_and_delete(self, prop):
 val = self.plus[prop]
 del self.plus[prop]
 return val

 # Check is required prop are set:
 # template are always correct

[docs] def is_correct(self):
 state = True
 properties = self.__class__.properties

 # Raised all previously saw errors like unknown contacts and co
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.error("[item::%s] %s" % (self.get_name(), err))

 for prop, entry in properties.items():
 if not hasattr(self, prop) and entry.required:
 logger.warning("[item::%s] %s property is missing" % (self.get_name(), prop))
 state = False

 return state

 # This function is used by service and hosts
 # to transform Nagios2 parameters to Nagios3
 # ones, like normal_check_interval to
 # check_interval. There is a old_parameters tab
 # in Classes that give such modifications to do.

[docs] def old_properties_names_to_new(self):
 old_properties = self.__class__.old_properties
 for old_name, new_name in old_properties.items():
 # Ok, if we got old_name and NO new name,
 # we switch the name
 if hasattr(self, old_name) and not hasattr(self, new_name):
 value = getattr(self, old_name)
 setattr(self, new_name, value)

 # The arbiter is asking us our raw value before all explode or linking

[docs] def get_raw_import_values(self):
 r = {}
 properties = self.__class__.properties.keys()
 # Register is not by default in the properties
 if not 'register' in properties:
 properties.append('register')

 for prop in properties:
 if hasattr(self, prop):
 v = getattr(self, prop)
 #print prop, ":", v
 r[prop] = v
 return r

[docs] def add_downtime(self, downtime):
 self.downtimes.append(downtime)

[docs] def del_downtime(self, downtime_id):
 d_to_del = None
 for dt in self.downtimes:
 if dt.id == downtime_id:
 d_to_del = dt
 dt.can_be_deleted = True
 if d_to_del is not None:
 self.downtimes.remove(d_to_del)

[docs] def add_comment(self, comment):
 self.comments.append(comment)

[docs] def del_comment(self, comment_id):
 c_to_del = None
 for c in self.comments:
 if c.id == comment_id:
 c_to_del = c
 c.can_be_deleted = True
 if c_to_del is not None:
 self.comments.remove(c_to_del)

[docs] def acknowledge_problem(self, sticky, notify, persistent, author, comment, end_time=0):
 if self.state != self.ok_up:
 if notify:
 self.create_notifications('ACKNOWLEDGEMENT')
 self.problem_has_been_acknowledged = True
 if sticky == 2:
 sticky = True
 else:
 sticky = False
 a = Acknowledge(self, sticky, notify, persistent, author, comment, end_time=end_time)
 self.acknowledgement = a
 if self.my_type == 'host':
 comment_type = 1
 else:
 comment_type = 2
 c = Comment(self, persistent, author, comment,
 comment_type, 4, 0, False, 0)
 self.add_comment(c)
 self.broks.append(self.get_update_status_brok())

 # Look if we got an ack that is too old with an expire date and should
 # be delete

[docs] def check_for_expire_acknowledge(self):
 if self.acknowledgement and self.acknowledgement.end_time != 0 and self.acknowledgement.end_time < time.time():
 self.unacknowledge_problem()

 # Delete the acknowledgement object and reset the flag
 # but do not remove the associated comment.

[docs] def unacknowledge_problem(self):
 if self.problem_has_been_acknowledged:
 logger.debug("[item::%s] deleting acknowledge of %s" % (self.get_name(), self.get_dbg_name()))
 self.problem_has_been_acknowledged = False
 # Should not be deleted, a None is Good
 self.acknowledgement = None
 # del self.acknowledgement
 # find comments of non-persistent ack-comments and delete them too
 for c in self.comments:
 if c.entry_type == 4 and not c.persistent:
 self.del_comment(c.id)
 self.broks.append(self.get_update_status_brok())

 # Check if we have an acknowledgement and if this is marked as sticky.
 # This is needed when a non-ok state changes

[docs] def unacknowledge_problem_if_not_sticky(self):
 if hasattr(self, 'acknowledgement') and self.acknowledgement is not None:
 if not self.acknowledgement.sticky:
 self.unacknowledge_problem()

 # Will flatten some parameters tagged by the 'conf_send_preparation'
 # property because they are too "linked" to be send like that (like realms)

[docs] def prepare_for_conf_sending(self):
 cls = self.__class__

 for prop, entry in cls.properties.items():
 # Is this property need preparation for sending?
 if entry.conf_send_preparation is not None:
 f = entry.conf_send_preparation
 if f is not None:
 val = f(getattr(self, prop))
 setattr(self, prop, val)

 if hasattr(cls, 'running_properties'):
 for prop, entry in cls.running_properties.items():
 # Is this property need preparation for sending?
 if entry.conf_send_preparation is not None:
 f = entry.conf_send_preparation
 if f is not None:
 val = f(getattr(self, prop))
 setattr(self, prop, val)

 # Get the property for an object, with good value
 # and brok_transformation if need

[docs] def get_property_value_for_brok(self, prop, tab):
 entry = tab[prop]
 # Get the current value, or the default if need
 value = getattr(self, prop, entry.default)

 # Apply brok_transformation if need
 # Look if we must preprocess the value first
 pre_op = entry.brok_transformation
 if pre_op is not None:
 value = pre_op(self, value)

 return value

 # Fill data with info of item by looking at brok_type
 # in props of properties or running_properties

[docs] def fill_data_brok_from(self, data, brok_type):
 cls = self.__class__
 # Now config properties
 for prop, entry in cls.properties.items():
 # Is this property intended for broking?
 if brok_type in entry.fill_brok:
 data[prop] = self.get_property_value_for_brok(prop, cls.properties)

 # Maybe the class do not have running_properties
 if hasattr(cls, 'running_properties'):
 # We've got prop in running_properties too
 for prop, entry in cls.running_properties.items():
 #if 'fill_brok' in cls.running_properties[prop]:
 if brok_type in entry.fill_brok:
 data[prop] = self.get_property_value_for_brok(prop, cls.running_properties)

 # Get a brok with initial status

[docs] def get_initial_status_brok(self):
 cls = self.__class__
 my_type = cls.my_type
 data = {'id': self.id}

 self.fill_data_brok_from(data, 'full_status')
 b = Brok('initial_' + my_type + '_status', data)
 return b

 # Get a brok with update item status

[docs] def get_update_status_brok(self):
 cls = self.__class__
 my_type = cls.my_type

 data = {'id': self.id}
 self.fill_data_brok_from(data, 'full_status')
 b = Brok('update_' + my_type + '_status', data)
 return b

 # Get a brok with check_result

[docs] def get_check_result_brok(self):
 cls = self.__class__
 my_type = cls.my_type

 data = {}
 self.fill_data_brok_from(data, 'check_result')
 b = Brok(my_type + '_check_result', data)
 return b

 # Get brok about the new schedule (next_check)

[docs] def get_next_schedule_brok(self):
 cls = self.__class__
 my_type = cls.my_type

 data = {}
 self.fill_data_brok_from(data, 'next_schedule')
 b = Brok(my_type + '_next_schedule', data)
 return b

 # Link one command property to a class (for globals like oc*p_command)

[docs] def linkify_one_command_with_commands(self, commands, prop):
 if hasattr(self, prop):
 command = getattr(self, prop).strip()
 if command != '':
 if hasattr(self, 'poller_tag'):
 cmdCall = CommandCall(commands, command,
 poller_tag=self.poller_tag)
 elif hasattr(self, 'reactionner_tag'):
 cmdCall = CommandCall(commands, command,
 reactionner_tag=self.reactionner_tag)
 else:
 cmdCall = CommandCall(commands, command)
 setattr(self, prop, cmdCall)
 else:
 setattr(self, prop, None)

 # We look at the 'trigger' prop and we create a trigger for it

[docs] def explode_trigger_string_into_triggers(self, triggers):
 src = getattr(self, 'trigger', '')
 if src:
 # Change on the fly the characters
 src = src.replace(r'\n', '\n').replace(r'\t', '\t')
 t = triggers.create_trigger(src, 'inner-trigger-' + self.__class__.my_type + '' + str(self.id))
 if t:
 # Maybe the trigger factory give me a already existing trigger,
 # so my name can be dropped
 self.triggers.append(t.get_name())

 # Link with triggers. Can be with a "in source" trigger, or a file name

[docs] def linkify_with_triggers(self, triggers):
 # Get our trigger string and trigger names in the same list
 self.triggers.extend(self.trigger_name)
 #print "I am linking my triggers", self.get_full_name(), self.triggers
 new_triggers = []
 for tname in self.triggers:
 t = triggers.find_by_name(tname)
 if t:
 new_triggers.append(t)
 else:
 self.configuration_errors.append('the %s %s does have a unknown trigger_name "%s"' % (self.__class__.my_type, self.get_full_name(), tname))
 self.triggers = new_triggers

[docs]class Items(object):
 def __init__(self, items):
 self.items = {}
 self.configuration_warnings = []
 self.configuration_errors = []
 for i in items:
 self.items[i.id] = i
 self.templates = {}
 # We should keep a graph of templates relations
 self.templates_graph = Graph()

 def __iter__(self):
 return self.items.itervalues()

 def __len__(self):
 return len(self.items)

 def __delitem__(self, key):
 try:
 del self.items[key]
 except KeyError: # we don't want it, we do not have it. All is perfect
 pass

 def __setitem__(self, key, value):
 self.items[key] = value

 def __getitem__(self, key):
 return self.items[key]

 def __contains__(self, key):
 return key in self.items

[docs] def compute_hash(self):
 for i in self:
 i.compute_hash()

 # We create the reversed list so search will be faster
 # We also create a twins list with id of twins (not the original
 # just the others, higher twins)

[docs] def create_reversed_list(self):
 self.reversed_list = {}
 self.twins = []
 name_property = self.__class__.name_property
 for id in self.items:
 if hasattr(self.items[id], name_property):
 name = getattr(self.items[id], name_property)
 if name not in self.reversed_list:
 self.reversed_list[name] = id
 else:
 self.twins.append(id)

[docs] def find_id_by_name(self, name):
 if hasattr(self, 'reversed_list'):
 if name in self.reversed_list:
 return self.reversed_list[name]
 else:
 return None
 else: # ok, an early ask, with no reversed list from now...
 name_property = self.__class__.name_property
 for i in self:
 if hasattr(i, name_property):
 i_name = getattr(i, name_property)
 if i_name == name:
 return i.id
 return None

[docs] def find_by_name(self, name):
 id = self.find_id_by_name(name)
 if id is not None:
 return self.items[id]
 else:
 return None

 # prepare_for_conf_sending to flatten some properties

[docs] def prepare_for_sending(self):
 for i in self:
 i.prepare_for_conf_sending()

 # It's used to change old Nagios2 names to
 # Nagios3 ones

[docs] def old_properties_names_to_new(self):
 for i in self:
 i.old_properties_names_to_new()

[docs] def pythonize(self):
 for id in self.items:
 self.items[id].pythonize()

[docs] def create_tpl_list(self):
 for id in self.items:
 i = self.items[id]
 if i.is_tpl():
 self.templates[id] = i

[docs] def find_tpl_by_name(self, name):
 for i in self.templates.values():
 if hasattr(i, 'name') and i.name == name:
 return i
 return None

 # We will link all templates, and create the template
 # graph too

[docs] def linkify_templates(self):
 # First we create a list of all templates
 self.create_tpl_list()
 for i in self:
 tpls = i.get_templates()
 new_tpls = []
 for tpl in tpls:
 tpl = tpl.strip()
 # We save this template in the 'tags' set
 i.tags.add(tpl)
 # Then we link it
 t = self.find_tpl_by_name(tpl)
 # If it's ok, add the template and update the
 # template graph too
 if t is not None:
 # add the template object to us
 new_tpls.append(t)
 else: # not find? not good!
 err = "the template '%s' defined for '%s' is unknown" % (tpl, i.get_name())
 i.configuration_warnings.append(err)
 i.templates = new_tpls

 # Now we will create the template graph, so
 # we look only for templates here. First we should declare our nodes
 for tpl in self.templates.values():
 self.templates_graph.add_node(tpl)
 # And then really create our edge
 for tpl in self.templates.values():
 for father in tpl.templates:
 self.templates_graph.add_edge(father, tpl)

[docs] def is_correct(self):
 # we are ok at the beginning. Hope we still ok at the end...
 r = True
 # Some class do not have twins, because they do not have names
 # like servicedependencies
 twins = getattr(self, 'twins', None)
 if twins is not None:
 # Ok, look at no twins (it's bad!)
 for id in twins:
 i = self.items[id]
 logger.error("[items] %s.%s is duplicated from %s" %\
 (i.__class__.my_type, i.get_name(), getattr(i, 'imported_from', "unknown source")))
 r = False

 # Then look if we have some errors in the conf
 # Juts print warnings, but raise errors
 for err in self.configuration_warnings:
 logger.warning("[items] %s" % err)

 for err in self.configuration_errors:
 logger.error("[items] %s" % err)
 r = False

 # Then look for individual ok
 for i in self:
 # Alias and display_name hook hook
 prop_name = getattr(self.__class__, 'name_property', None)
 if prop_name and not hasattr(i, 'alias') and hasattr(i, prop_name):
 setattr(i, 'alias', getattr(i, prop_name))
 if prop_name and getattr(i, 'display_name', '') == '' and hasattr(i, prop_name):
 setattr(i, 'display_name', getattr(i, prop_name))

 # Now other checks
 if not i.is_correct():
 n = getattr(i, 'imported_from', "unknown source")
 logger.error("[items] In %s is incorrect ; from %s" % (i.get_name(), n))
 r = False

 return r

[docs] def remove_templates(self):
 """ Remove useless templates (& properties) of our items ; otherwise we could get errors on config.is_correct() """
 tpls = [i for i in self if i.is_tpl()]
 for i in tpls:
 del self[i.id]
 del self.templates
 del self.templates_graph

[docs] def clean(self):
 """ Request to remove the unnecessary attributes/others from our items """
 for i in self:
 i.clean()
 Item.clean(self)

 # If a prop is absent and is not required, put the default value

[docs] def fill_default(self):
 for i in self:
 i.fill_default()

 def __str__(self):
 s = ''
 cls = self.__class__
 for id in self.items:
 s = s + str(cls) + ':' + str(id) + str(self.items[id]) + '\n'
 return s

 # Inheritance for just a property
[docs] def apply_partial_inheritance(self, prop):
 for i in self:
 i.get_property_by_inheritance(self, prop)
 if not i.is_tpl():
 # If a "null" attribute was inherited, delete it
 try:
 if getattr(i, prop) == 'null':
 delattr(i, prop)
 except:
 pass

[docs] def apply_inheritance(self):
 # We check for all Class properties if the host has it
 # if not, it check all host templates for a value
 cls = self.inner_class
 for prop in cls.properties:
 self.apply_partial_inheritance(prop)
 for i in self:
 i.get_customs_properties_by_inheritance(self)

 # We remove twins
 # Remember: item id respect the order of conf. So if and item
 # is defined multiple times,
 # we want to keep the first one.
 # Services are also managed here but they are specials:
 # We remove twins services with the same host_name/service_description
 # Remember: host service are take into account first before hostgroup service
 # Id of host service are lower than hostgroups one, so they are
 # in self.twins_services
 # and we can remove them.

[docs] def remove_twins(self):
 for id in self.twins:
 i = self.items[id]
 type = i.__class__.my_type
 logger.warning("[items] %s.%s is already defined '%s'" % (type, i.get_name(), getattr(i, 'imported_from', "unknown source")))
 del self[id] # bye bye
 # do not remove twins, we should look in it, but just void it
 self.twins = []
 #del self.twins #no more need

 # We've got a contacts property with , separated contacts names
 # and we want have a list of Contacts

[docs] def linkify_with_contacts(self, contacts):
 for i in self:
 if hasattr(i, 'contacts'):
 contacts_tab = i.contacts.split(',')
 contacts_tab = strip_and_uniq(contacts_tab)
 new_contacts = []
 for c_name in contacts_tab:
 if c_name != '':
 c = contacts.find_by_name(c_name)
 if c is not None:
 new_contacts.append(c)
 # Else: Add in the errors tab.
 # will be raised at is_correct
 else:
 err = "the contact '%s' defined for '%s' is unknown" % (c_name, i.get_name())
 i.configuration_errors.append(err)
 # Get the list, but first make elements uniq
 i.contacts = list(set(new_contacts))

 # Make link between an object and its escalations

[docs] def linkify_with_escalations(self, escalations):
 for i in self:
 if hasattr(i, 'escalations'):
 escalations_tab = i.escalations.split(',')
 escalations_tab = strip_and_uniq(escalations_tab)
 new_escalations = []
 for es_name in [e for e in escalations_tab if e != '']:
 es = escalations.find_by_name(es_name)
 if es is not None:
 new_escalations.append(es)
 else: # Escalation not find, not good!
 err = "the escalation '%s' defined for '%s' is unknown" % (es_name, i.get_name())
 i.configuration_errors.append(err)
 i.escalations = new_escalations

 # Make link between item and it's resultmodulations

[docs] def linkify_with_resultmodulations(self, resultmodulations):
 for i in self:
 if hasattr(i, 'resultmodulations'):
 resultmodulations_tab = i.resultmodulations.split(',')
 resultmodulations_tab = strip_and_uniq(resultmodulations_tab)
 new_resultmodulations = []
 for rm_name in resultmodulations_tab:
 rm = resultmodulations.find_by_name(rm_name)
 if rm is not None:
 new_resultmodulations.append(rm)
 else:
 err = "the result modulation '%s' defined on the %s '%s' do not exist" % (rm_name, i.__class__.my_type, i.get_name())
 i.configuration_errors.append(err)
 continue
 i.resultmodulations = new_resultmodulations

 # Make link between item and it's business_impact_modulations

[docs] def linkify_with_business_impact_modulations(self, business_impact_modulations):
 for i in self:
 if hasattr(i, 'business_impact_modulations'):
 business_impact_modulations_tab = i.business_impact_modulations.split(',')
 business_impact_modulations_tab = strip_and_uniq(business_impact_modulations_tab)
 new_business_impact_modulations = []
 for rm_name in business_impact_modulations_tab:
 rm = business_impact_modulations.find_by_name(rm_name)
 if rm is not None:
 new_business_impact_modulations.append(rm)
 else:
 err = "the business impact modulation '%s' defined on the %s '%s' do not exist" % (rm_name, i.__class__.my_type, i.get_name())
 i.configuration_errors.append(err)
 continue
 i.business_impact_modulations = new_business_impact_modulations

 # If we've got a contact_groups properties, we search for all
 # theses groups and ask them their contacts, and then add them
 # all into our contacts property

[docs] def explode_contact_groups_into_contacts(self, contactgroups):
 for i in self:
 if hasattr(i, 'contact_groups'):
 cgnames = i.contact_groups.split(',')
 cgnames = strip_and_uniq(cgnames)
 for cgname in cgnames:
 cg = contactgroups.find_by_name(cgname)
 if cg is None:
 err = "The contact group '%s' defined on the %s '%s' do not exist" % (cgname, i.__class__.my_type, i.get_name())
 i.configuration_errors.append(err)
 continue
 cnames = contactgroups.get_members_by_name(cgname)
 # We add contacts into our contacts
 if cnames != []:
 if hasattr(i, 'contacts'):
 i.contacts += ',' + cnames
 else:
 i.contacts = cnames

 # Link a timeperiod property (prop)

[docs] def linkify_with_timeperiods(self, timeperiods, prop):
 for i in self:
 if hasattr(i, prop):
 tpname = getattr(i, prop).strip()
 # some default values are '', so set None
 if tpname == '':
 setattr(i, prop, None)
 continue

 # Ok, get a real name, search for it
 tp = timeperiods.find_by_name(tpname)
 # If not found, it's an error
 if tp is None:
 err = "The %s of the %s '%s' named '%s' is unknown!" % (prop, i.__class__.my_type, i.get_name(), tpname)
 i.configuration_errors.append(err)
 continue
 # Got a real one, just set it :)
 setattr(i, prop, tp)

 # Link one command property

[docs] def linkify_one_command_with_commands(self, commands, prop):
 for i in self:
 if hasattr(i, prop):
 command = getattr(i, prop).strip()
 if command != '':
 if hasattr(i, 'poller_tag'):
 cmdCall = CommandCall(commands, command,
 poller_tag=i.poller_tag)
 elif hasattr(i, 'reactionner_tag'):
 cmdCall = CommandCall(commands, command,
 reactionner_tag=i.reactionner_tag)
 else:
 cmdCall = CommandCall(commands, command)
 # TODO: catch None?
 setattr(i, prop, cmdCall)
 else:

 setattr(i, prop, None)

 # Link a command list (commands with , between) in real CommandCalls

[docs] def linkify_command_list_with_commands(self, commands, prop):
 for i in self:
 if hasattr(i, prop):
 coms = getattr(i, prop).split(',')
 coms = strip_and_uniq(coms)
 com_list = []
 for com in coms:
 if com != '':
 if hasattr(i, 'poller_tag'):
 cmdCall = CommandCall(commands, com,
 poller_tag=i.poller_tag)
 elif hasattr(i, 'reactionner_tag'):
 cmdCall = CommandCall(commands, com,
 reactionner_tag=i.reactionner_tag)
 else:
 cmdCall = CommandCall(commands, com)
 # TODO: catch None?
 com_list.append(cmdCall)
 else: # TODO: catch?
 pass
 setattr(i, prop, com_list)

 # Link with triggers. Can be with a "in source" trigger, or a file name

[docs] def linkify_with_triggers(self, triggers):
 for i in self:
 i.linkify_with_triggers(triggers)

 # We've got a notificationways property with , separated contacts names
 # and we want have a list of NotificationWay

[docs] def linkify_with_checkmodulations(self, checkmodulations):
 for i in self:
 if not hasattr(i, 'checkmodulations'):
 continue
 new_checkmodulations = []
 for cw_name in i.checkmodulations:
 cw = checkmodulations.find_by_name(cw_name)
 if cw is not None:
 new_checkmodulations.append(cw)
 else:
 err = "The checkmodulations of the %s '%s' named '%s' is unknown!" % (i.__class__.my_type, i.get_name(), cw_name)
 i.configuration_errors.append(err)
 # Get the list, but first make elements uniq
 i.checkmodulations = new_checkmodulations

 # We've got list of macro modulations as list of names, and
 # we want real objects

[docs] def linkify_with_macromodulations(self, macromodulations):
 for i in self:
 if not hasattr(i, 'macromodulations'):
 continue
 new_macromodulations = []
 for cw_name in i.macromodulations:
 cw = macromodulations.find_by_name(cw_name)
 if cw is not None:
 new_macromodulations.append(cw)
 else:
 err = "The macromodulations of the %s '%s' named '%s' is unknown!" % (i.__class__.my_type, i.get_name(), cw_name)
 i.configuration_errors.append(err)
 # Get the list, but first make elements uniq
 i.macromodulations = new_macromodulations

[docs] def evaluate_hostgroup_expression(self, expr, hosts, hostgroups, look_in='hostgroups'):
 #print "\n"*10, "looking for expression", expr
 if look_in=='hostgroups':
 f = ComplexExpressionFactory(look_in, hostgroups, hosts)
 else: # templates
 f = ComplexExpressionFactory(look_in, hosts, hosts)
 expr_tree = f.eval_cor_pattern(expr)

 #print "RES of ComplexExpressionFactory"
 #print expr_tree

 #print "Try to resolve the Tree"
 set_res = expr_tree.resolve_elements()
 #print "R2d2 final is", set_res

 # HOOK DBG
 return list(set_res)

 # If we've got a hostgroup_name property, we search for all
 # theses groups and ask them their hosts, and then add them
 # all into our host_name property

[docs] def explode_host_groups_into_hosts(self, hosts, hostgroups):
 for i in self:
 hnames_list = []
 if hasattr(i, 'hostgroup_name'):
 hnames_list.extend(self.evaluate_hostgroup_expression(i.hostgroup_name, hosts, hostgroups))

 # Maybe there is no host in the groups, and do not have any
 # host_name too, so tag is as template to do not look at
 if hnames_list == [] and not hasattr(i, 'host_name'):
 i.register = '0'

 if hasattr(i, 'host_name'):
 hst = i.host_name.split(',')
 for h in hst:
 h = h.strip()
 # If the host start with a !, it's to be removed from
 # the hostgroup get list
 if h.startswith('!'):
 hst_to_remove = h[1:].strip()
 try:
 hnames_list.remove(hst_to_remove)
 # was not in it
 except ValueError:
 pass
 # Else it's an host to add, but maybe it's ALL
 elif h == '*':
 for newhost in set(h.host_name for h in hosts.items.values() \
 if getattr(h, 'host_name', '') != '' and not h.is_tpl()):
 hnames_list.append(newhost)
 #print "DBG in item.explode_host_groups_into_hosts , added '%s' to group '%s'" % (newhost, i)
 else:
 hnames_list.append(h)

 i.host_name = ','.join(list(set(hnames_list)))

 # Ok, even with all of it, there is still no host, put it as a template
 if i.host_name == '':
 i.register = '0'

 # Take our trigger strings and create true objects with it

[docs] def explode_trigger_string_into_triggers(self, triggers):
 for i in self:
 i.explode_trigger_string_into_triggers(triggers)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/serviceextinfo.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.serviceextinfo

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This is the main class for the Service ext info. In fact it's mainly
about the configuration part. Parameters are merged in Service so it's
no use in running part
"""

import time

from item import Item, Items

from shinken.autoslots import AutoSlots
from shinken.util import format_t_into_dhms_format, to_hostnames_list, get_obj_name, to_svc_hst_distinct_lists, to_list_string_of_names
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.macroresolver import MacroResolver
from shinken.eventhandler import EventHandler
from shinken.log import logger

[docs]class ServiceExtInfo(Item):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 id = 1 # zero is reserved for host (primary node for parents)
 my_type = 'serviceextinfo'

 # properties defined by configuration
 # *required: is required in conf
 # *default: default value if no set in conf
 # *pythonize: function to call when transforming string to python object
 # *fill_brok: if set, send to broker. there are two categories: full_status for initial and update status, check_result for check results
 # *no_slots: do not take this property for __slots__
 # Only for the initial call
 # conf_send_preparation: if set, will pass the property to this function. It's used to "flatten"
 # some dangerous properties like realms that are too 'linked' to be send like that.
 # brok_transformation: if set, will call the function with the value of the property
 # the major times it will be to flatten the data (like realm_name instead of the realm object).
 properties = Item.properties.copy()
 properties.update({
 'host_name': ListProp(),
 'service_description': StringProp(),
 'notes': StringProp(default=''),
 'notes_url': StringProp(default=''),
 'icon_image': StringProp(default=''),
 'icon_image_alt': StringProp(default=''),
 })

 # Hosts macros and prop that give the information
 # the prop can be callable or not
 macros = {
 'SERVICEDESC': 'service_description',
 'SERVICEACTIONURL': 'action_url',
 'SERVICENOTESURL': 'notes_url',
 'SERVICENOTES': 'notes'
 }

#######
__ _ _ _
/ _(_) | | (_)
___ ___ _ __ | |_ _ __ _ _ _ _ __ __ _| |_ _ ___ _ __
/ __/ _ \| '_ \| _| |/ _` | | | | '__/ _` | __| |/ _ \| '_ \
| (_| (_) | | | | | | | (_| | |_| | | | (_| | |_| | (_) | | | |
______/|_| |_|_| |_|__, |__,_|_| __,_|__|_|___/|_| |_|
__/ |
|___/
######

 # Check is required prop are set:
 # host_name is needed
[docs] def is_correct(self):
 state = True
 cls = self.__class__

 return state

 # For get a nice name

[docs] def get_name(self):
 if not self.is_tpl():
 try:
 return self.host_name
 except AttributeError: # outch, no hostname
 return 'UNNAMEDHOST'
 else:
 try:
 return self.name
 except AttributeError: # outch, no name for this template
 return 'UNNAMEDHOSTTEMPLATE'

 # For debugging purpose only

[docs] def get_dbg_name(self):
 return self.host_name

 # Same but for clean call, no debug

[docs] def get_full_name(self):
 return self.host_name

Class for the hosts lists. It's mainly for configuration
part

[docs]class ServicesExtInfo(Items):
 name_property = "host_name" # use for the search by name
 inner_class = ServiceExtInfo # use for know what is in items

 # Merge extended host information into host
[docs] def merge(self, services):
 for ei in self:
 if hasattr(ei, 'register') and getattr(ei, 'register') == '0':
 # We don't have to merge template
 continue
 hosts_names = ei.get_name().split(",")
 for host_name in hosts_names:
 s = services.find_srv_by_name_and_hostname(host_name, ei.service_description)
 if s is not None:
 # FUUUUUUUUUUsion
 self.merge_extinfo(s, ei)

[docs] def merge_extinfo(self, service, extinfo):
 properties = ['notes', 'notes_url', 'icon_image', 'icon_image_alt']
 # service properties have precedence over serviceextinfo properties
 for p in properties:
 if getattr(service, p) == '' and getattr(extinfo, p) != '':
 setattr(service, p, getattr(extinfo, p))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/escalation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.escalation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items

from shinken.util import strip_and_uniq
from shinken.property import BoolProp, IntegerProp, StringProp, ListProp
from shinken.log import logger

_special_properties = ('contacts', 'contact_groups', 'first_notification_time', 'last_notification_time')
_special_properties_time_based = ('contacts', 'contact_groups', 'first_notification', 'last_notification')

[docs]class Escalation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'escalation'

 properties = Item.properties.copy()
 properties.update({
 'escalation_name': StringProp(),
 'first_notification': IntegerProp(),
 'last_notification': IntegerProp(),
 'first_notification_time': IntegerProp(),
 'last_notification_time': IntegerProp(),
 # by default don't use the notification_interval defined in
 # the escalation, but the one defined by the object
 'notification_interval': IntegerProp(default='-1'),
 'escalation_period': StringProp(default=''),
 'escalation_options': ListProp(default='d,u,r,w,c'),
 'contacts': StringProp(),
 'contact_groups': StringProp(),
 })

 running_properties = Item.running_properties.copy()
 running_properties.update({
 'time_based': BoolProp(default=False),
 })

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.escalation_name

 # Return True if:
 # *time in in escalation_period or we do not have escalation_period
 # *status is in escalation_options
 # *the notification number is in our interval [[first_notification .. last_notification]]
 # if we are a classic escalation.
 # *If we are time based, we check if the time that we were in notification
 # is in our time interval

[docs] def is_eligible(self, t, status, notif_number, in_notif_time, interval):
 small_states = {
 'WARNING': 'w', 'UNKNOWN': 'u', 'CRITICAL': 'c',
 'RECOVERY': 'r', 'FLAPPING': 'f', 'DOWNTIME': 's',
 'DOWN': 'd', 'UNREACHABLE': 'u', 'OK': 'o', 'UP': 'o'
 }

 # If we are not time based, we check notification numbers:
 if not self.time_based:
 # Begin with the easy cases
 if notif_number < self.first_notification:
 return False

 #self.last_notification = 0 mean no end
 if self.last_notification != 0 and notif_number > self.last_notification:
 return False
 # Else we are time based, we must check for the good value
 else:
 # Begin with the easy cases
 if in_notif_time < self.first_notification_time * interval:
 return False

 # self.last_notification = 0 mean no end
 if self.last_notification_time != 0 and in_notif_time > self.last_notification_time * interval:
 return False

 # If our status is not good, we bail out too
 if status in small_states and small_states[status] not in self.escalation_options:
 return False

 # Maybe the time is not in our escalation_period
 if self.escalation_period is not None and not self.escalation_period.is_time_valid(t):
 return False

 # Ok, I do not see why not escalade. So it's True :)
 return True

 # t = the reference time

[docs] def get_next_notif_time(self, t_wished, status, creation_time, interval):
 small_states = {'WARNING': 'w', 'UNKNOWN': 'u', 'CRITICAL': 'c',
 'RECOVERY': 'r', 'FLAPPING': 'f', 'DOWNTIME': 's',
 'DOWN': 'd', 'UNREACHABLE': 'u', 'OK': 'o', 'UP': 'o'}

 # If we are not time based, we bail out!
 if not self.time_based:
 return None

 # Check if we are valid
 if status in small_states and small_states[status] not in self.escalation_options:
 return None

 # Look for the min of our future validity
 start = self.first_notification_time * interval + creation_time

 # If we are after the classic next time, we are not asking for a smaller interval
 if start > t_wished:
 return None

 # Maybe the time we found is not a valid one....
 if self.escalation_period is not None and not self.escalation_period.is_time_valid(start):
 return None

 # Ok so I ask for my start as a possibility for the next notification time
 return start

 # Check is required prop are set:
 # template are always correct
 # contacts OR contactgroups is need

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 # If we got the _time parameters, we are time based. Unless, we are not :)
 if hasattr(self, 'first_notification_time') or hasattr(self, 'last_notification_time'):
 self.time_based = True
 special_properties = _special_properties_time_based
 else: # classic ones
 special_properties = _special_properties

 for prop, entry in cls.properties.items():
 if prop not in special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.info('%s: I do not have %s' % (self.get_name(), prop))
 state = False # Bad boy...

 # Raised all previously saw errors like unknown contacts and co
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.info(err)

 # Ok now we manage special cases...
 if not hasattr(self, 'contacts') and not hasattr(self, 'contact_groups'):
 logger.info('%s: I do not have contacts nor contact_groups' % self.get_name())
 state = False

 # If time_based or not, we do not check all properties
 if self.time_based:
 if not hasattr(self, 'first_notification_time'):
 logger.info('%s: I do not have first_notification_time' % self.get_name())
 state = False
 if not hasattr(self, 'last_notification_time'):
 logger.info('%s: I do not have last_notification_time' % self.get_name())
 state = False
 else: # we check classical properties
 if not hasattr(self, 'first_notification'):
 logger.info('%s: I do not have first_notification' % self.get_name())
 state = False
 if not hasattr(self, 'last_notification'):
 logger.info('%s: I do not have last_notification' % self.get_name())
 state = False

 return state

[docs]class Escalations(Items):
 name_property = "escalation_name"
 inner_class = Escalation

[docs] def linkify(self, timeperiods, contacts, services, hosts):
 self.linkify_with_timeperiods(timeperiods, 'escalation_period')
 self.linkify_with_contacts(contacts)
 self.linkify_es_by_s(services)
 self.linkify_es_by_h(hosts)

[docs] def add_escalation(self, es):
 self.items[es.id] = es

 # Will register escalations into service.escalations

[docs] def linkify_es_by_s(self, services):
 for es in self:
 # If no host, no hope of having a service
 if not (hasattr(es, 'host_name') and hasattr(es, 'service_description')):
 continue
 es_hname, sdesc = es.host_name, es.service_description
 if '' in (es_hname.strip(), sdesc.strip()):
 continue
 for hname in strip_and_uniq(es_hname.split(',')):
 for sname in strip_and_uniq(sdesc.split(',')):
 s = services.find_srv_by_name_and_hostname(hname, sname)
 if s is not None:
 #print "Linking service", s.get_name(), 'with me', es.get_name()
 s.escalations.append(es)
 #print "Now service", s.get_name(), 'have', s.escalations

 # Will register escalations into host.escalations

[docs] def linkify_es_by_h(self, hosts):
 for es in self:
 # If no host, no hope of having a service
 if (not hasattr(es, 'host_name') or es.host_name.strip() == ''
 or (hasattr(es, 'service_description') and es.service_description.strip() != '')):
 continue
 # I must be NOT a escalation on for service
 for hname in strip_and_uniq(es.host_name.split(',')):
 h = hosts.find_by_name(hname)
 if h is not None:
 #print "Linking host", h.get_name(), 'with me', es.get_name()
 h.escalations.append(es)
 #print "Now host", h.get_name(), 'have', h.escalations

 # We look for contacts property in contacts and

[docs] def explode(self, hosts, hostgroups, contactgroups):

 # items::explode_host_groups_into_hosts
 # take all hosts from our hostgroup_name into our host_name property
 self.explode_host_groups_into_hosts(hosts, hostgroups)

 # items::explode_contact_groups_into_contacts
 # take all contacts from our contact_groups into our contact property
 self.explode_contact_groups_into_contacts(contactgroups)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/contactgroup.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.contactgroup

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

Contactgroups are groups for contacts
They are just used for the config read and explode by elements

from itemgroup import Itemgroup, Itemgroups

from shinken.property import IntegerProp, StringProp
from shinken.log import logger

[docs]class Contactgroup(Itemgroup):
 id = 1
 my_type = 'contactgroup'

 properties = Itemgroup.properties.copy()
 properties.update({
 'id': IntegerProp(default=0, fill_brok=['full_status']),
 'contactgroup_name': StringProp(fill_brok=['full_status']),
 'alias': StringProp(fill_brok=['full_status']),
 })

 macros = {
 'CONTACTGROUPALIAS': 'alias',
 'CONTACTGROUPMEMBERS': 'get_members'
 }

[docs] def get_contacts(self):
 return getattr(self, 'members', '')

[docs] def get_name(self):
 return getattr(self, 'contactgroup_name', 'UNNAMED-CONTACTGROUP')

[docs] def get_contactgroup_members(self):
 if self.has('contactgroup_members'):
 return self.contactgroup_members.split(',')
 else:
 return []

 # We fillfull properties with template ones if need
 # Because hostgroup we call may not have it's members
 # we call get_hosts_by_explosion on it

[docs] def get_contacts_by_explosion(self, contactgroups):
 # First we tag the hg so it will not be explode
 # if a son of it already call it
 self.already_explode = True

 # Now the recursive part
 # rec_tag is set to False every CG we explode
 # so if True here, it must be a loop in HG
 # calls... not GOOD!
 if self.rec_tag:
 logger.error("[contactgroup::%s] got a loop in contactgroup definition" % self.get_name())
 if self.has('members'):
 return self.members
 else:
 return ''
 # Ok, not a loop, we tag it and continue
 self.rec_tag = True

 cg_mbrs = self.get_contactgroup_members()
 for cg_mbr in cg_mbrs:
 cg = contactgroups.find_by_name(cg_mbr.strip())
 if cg is not None:
 value = cg.get_contacts_by_explosion(contactgroups)
 if value is not None:
 self.add_string_member(value)
 if self.has('members'):
 return self.members
 else:
 return ''

[docs]class Contactgroups(Itemgroups):
 name_property = "contactgroup_name" # is used for finding contactgroup
 inner_class = Contactgroup

[docs] def get_members_by_name(self, cgname):
 cg = self.find_by_name(cgname)
 if cg is None:
 return []
 return cg.get_contacts()

[docs] def add_contactgroup(self, cg):
 self.items[cg.id] = cg

[docs] def linkify(self, contacts):
 self.linkify_cg_by_cont(contacts)

 # We just search for each host the id of the host
 # and replace the name by the id

[docs] def linkify_cg_by_cont(self, contacts):
 for cg in self:
 mbrs = cg.get_contacts()

 # The new member list, in id
 new_mbrs = []
 for mbr in mbrs:
 m = contacts.find_by_name(mbr)
 # Maybe the contact is missing, if so, must be put in unknown_members
 if m is not None:
 new_mbrs.append(m)
 else:
 cg.unknown_members.append(mbr)

 # Make members uniq
 new_mbrs = list(set(new_mbrs))

 # We find the id, we replace the names
 cg.replace_members(new_mbrs)

 # Add a contact string to a contact member
 # if the contact group do not exist, create it

[docs] def add_member(self, cname, cgname):
 cg = self.find_by_name(cgname)
 # if the id do not exist, create the cg
 if cg is None:
 cg = Contactgroup({'contactgroup_name': cgname, 'alias': cgname, 'members': cname})
 self.add_contactgroup(cg)
 else:
 cg.add_string_member(cname)

 # Use to fill members with contactgroup_members

[docs] def explode(self):
 # We do not want a same hg to be explode again and again
 # so we tag it
 for tmp_cg in self.items.values():
 tmp_cg.already_explode = False

 for cg in self.items.values():
 if cg.has('contactgroup_members') and not cg.already_explode:
 # get_contacts_by_explosion is a recursive
 # function, so we must tag hg so we do not loop
 for tmp_cg in self.items.values():
 tmp_cg.rec_tag = False
 cg.get_contacts_by_explosion(self)

 # We clean the tags
 for tmp_cg in self.items.values():
 if hasattr(tmp_cg, 'rec_tag'):
 del tmp_cg.rec_tag
 del tmp_cg.already_explode

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/timeperiod.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.timeperiod

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

Calendar date

'(\d{4})-(\d{2})-(\d{2}) - (\d{4})-(\d{2})-(\d{2}) / (\d+) ([0-9:, -]+)'
=> len = 8 => CALENDAR_DATE
#
'(\d{4})-(\d{2})-(\d{2}) / (\d+) ([0-9:, -]+)'
=> len = 5 => CALENDAR_DATE
#
'(\d{4})-(\d{2})-(\d{2}) - (\d{4})-(\d{2})-(\d{2}) ([0-9:, -]+)'
=> len = 7 => CALENDAR_DATE
#
'(\d{4})-(\d{2})-(\d{2}) ([0-9:, -]+)'
=> len = 4 => CALENDAR_DATE
#
Month week day

'([a-z]*) (\d+) ([a-z]*) - ([a-z]*) (\d+) ([a-z]*) / (\d+) ([0-9:, -]+)'
=> len = 8 => MONTH WEEK DAY
e.g.: wednesday 1 january - thursday 2 july / 3
#
'([a-z]*) (\d+) - ([a-z]*) (\d+) / (\d+) ([0-9:, -]+)' => len = 6
e.g.: february 1 - march 15 / 3 => MONTH DATE
e.g.: monday 2 - thusday 3 / 2 => WEEK DAY
e.g.: day 2 - day 6 / 3 => MONTH DAY
#
'([a-z]*) (\d+) - (\d+) / (\d+) ([0-9:, -]+)' => len = 6
e.g.: february 1 - 15 / 3 => MONTH DATE
e.g.: thursday 2 - 4 => WEEK DAY
e.g.: day 1 - 4 => MONTH DAY
#
'([a-z]*) (\d+) ([a-z]*) - ([a-z]*) (\d+) ([a-z]*) ([0-9:, -]+)' => len = 7
e.g.: wednesday 1 january - thursday 2 july => MONTH WEEK DAY
#
'([a-z]*) (\d+) - (\d+) ([0-9:, -]+)' => len = 7
e.g.: thursday 2 - 4 => WEEK DAY
e.g.: february 1 - 15 / 3 => MONTH DATE
e.g.: day 1 - 4 => MONTH DAY
#
'([a-z]*) (\d+) - ([a-z]*) (\d+) ([0-9:, -]+)' => len = 5
e.g.: february 1 - march 15 => MONTH DATE
e.g.: monday 2 - thusday 3 => WEEK DAY
e.g.: day 2 - day 6 => MONTH DAY
#
'([a-z]*) (\d+) ([0-9:, -]+)' => len = 3
e.g.: february 3 => MONTH DATE
e.g.: thursday 2 => WEEK DAY
e.g.: day 3 => MONTH DAY
#
'([a-z]*) (\d+) ([a-z]*) ([0-9:, -]+)' => len = 4
e.g.: thusday 3 february => MONTH WEEK DAY
#
'([a-z]*) ([0-9:, -]+)' => len = 6
e.g.: thusday => normal values
#
Types: CALENDAR_DATE
MONTH WEEK DAY
WEEK DAY
MONTH DATE
MONTH DAY
#

import time
import re
import string

from item import Item, Items

from shinken.daterange import Daterange, CalendarDaterange
from shinken.daterange import StandardDaterange, MonthWeekDayDaterange
from shinken.daterange import MonthDateDaterange, WeekDayDaterange
from shinken.daterange import MonthDayDaterange
from shinken.brok import Brok
from shinken.property import IntegerProp, StringProp, ListProp, BoolProp
from shinken.log import logger, console_logger

[docs]class Timeperiod(Item):
 id = 1
 my_type = 'timeperiod'

 properties = Item.properties.copy()
 properties.update({
 'timeperiod_name': StringProp(fill_brok=['full_status']),
 'alias': StringProp(default='', fill_brok=['full_status']),
 'use': StringProp(default=''),
 'register': IntegerProp(default='1'),

 # These are needed if a broker module calls methods on timeperiod objects
 'dateranges': ListProp(fill_brok=['full_status'], default=[]),
 'exclude': ListProp(fill_brok=['full_status'], default=[]),
 'is_active': BoolProp(default='0')
 })
 running_properties = Item.running_properties.copy()

 def __init__(self, params={}):
 self.id = Timeperiod.id
 Timeperiod.id = Timeperiod.id + 1
 self.unresolved = []
 self.dateranges = []
 self.exclude = ''
 self.customs = {}
 self.plus = {}
 self.invalid_entries = []
 for key in params:
 if key in ['name', 'alias', 'timeperiod_name', 'exclude', 'use', 'register', 'imported_from', 'is_active', 'dateranges']:
 setattr(self, key, params[key])
 else:
 self.unresolved.append(key + ' ' + params[key])

 self.cache = {} # For tunning purpose only
 self.invalid_cache = {} # same but for invalid search
 self.configuration_errors = []
 self.configuration_warnings = []
 # By default the tp is None so we know we just start
 self.is_active = None
 self.tags = set()

[docs] def get_name(self):
 return getattr(self, 'timeperiod_name', 'unknown_timeperiod')

 # We fillfull properties with template ones if need
 # for the unresolved values (like sunday ETCETC)

[docs] def get_unresolved_properties_by_inheritance(self, items):
 # Ok, I do not have prop, Maybe my templates do?
 # Same story for plus
 for i in self.templates:
 self.unresolved.extend(i.unresolved)

 # Ok timeperiods are a bit different from classic items, because we do not have a real list
 # of our raw properties, like if we got february 1 - 15 / 3 for example

[docs] def get_raw_import_values(self):
 properties = ['timeperiod_name', 'alias', 'use', 'register']
 r = {}
 for prop in properties:
 if hasattr(self, prop):
 v = getattr(self, prop)
 print prop, ":", v
 r[prop] = v
 # Now the unresolved one. The only way to get ride of same key things is to put
 # directly the full value as the key
 for other in self.unresolved:
 r[other] = ''
 return r

[docs] def is_time_valid(self, t):
 if self.has('exclude'):
 for dr in self.exclude:
 if dr.is_time_valid(t):
 return False
 for dr in self.dateranges:
 if dr.is_time_valid(t):
 return True
 return False

 # will give the first time > t which is valid

[docs] def get_min_from_t(self, t):
 mins_incl = []
 for dr in self.dateranges:
 mins_incl.append(dr.get_min_from_t(t))
 return min(mins_incl)

 # will give the first time > t which is not valid

[docs] def get_not_in_min_from_t(self, f):
 pass

[docs] def find_next_valid_time_from_cache(self, t):
 try:
 return self.cache[t]
 except KeyError:
 return None

[docs] def find_next_invalid_time_from_cache(self, t):
 try:
 return self.invalid_cache[t]
 except KeyError:
 return None

 # will look for active/un-active change. And log it
 # [1327392000] TIMEPERIOD TRANSITION: <name>;<from>;<to>
 # from is -1 on startup. to is 1 if the timeperiod starts
 # and 0 if it ends.

[docs] def check_and_log_activation_change(self):
 now = int(time.time())

 was_active = self.is_active
 self.is_active = self.is_time_valid(now)

 # If we got a change, log it!
 if self.is_active != was_active:
 _from = 0
 _to = 0
 # If it's the start, get a special value for was
 if was_active is None:
 _from = -1
 if was_active:
 _from = 1
 if self.is_active:
 _to = 1

 # Now raise the log
 console_logger.info('TIMEPERIOD TRANSITION: %s;%d;%d'
 % (self.get_name(), _from, _to))

 # clean the get_next_valid_time_from_t cache
 # The entries are a dict on t. t < now are useless
 # Because we do not care about past anymore.
 # If not, it's not important, it's just a cache after all :)

[docs] def clean_cache(self):
 now = int(time.time())
 t_to_del = []
 for t in self.cache:
 if t < now:
 t_to_del.append(t)
 for t in t_to_del:
 del self.cache[t]

 # same for the invalid cache
 t_to_del = []
 for t in self.invalid_cache:
 if t < now:
 t_to_del.append(t)
 for t in t_to_del:
 del self.invalid_cache[t]

[docs] def get_next_valid_time_from_t(self, t):
 # first find from cache
 t = int(t)
 original_t = t

 #logger.debug("[%s] Check valid time for %s" % (self.get_name(), time.asctime(time.localtime(t)))

 res_from_cache = self.find_next_valid_time_from_cache(t)
 if res_from_cache is not None:
 return res_from_cache

 still_loop = True

 # Loop for all minutes...
 while still_loop:
 local_min = None

 # Ok, not in cache...
 dr_mins = []
 s_dr_mins = []

 for dr in self.dateranges:
 dr_mins.append(dr.get_next_valid_time_from_t(t))

 s_dr_mins = sorted([d for d in dr_mins if d is not None])

 for t1 in s_dr_mins:
 if not self.exclude and still_loop is True:
 # No Exclude so we are good
 local_min = t1
 still_loop = False
 else:
 for tp in self.exclude:
 if not tp.is_time_valid(t1) and still_loop is True:
 # OK we found a date that is not valid in any exclude timeperiod
 local_min = t1
 still_loop = False

 if local_min is None:
 # print "Looking for next valid date"
 exc_mins = []
 if s_dr_mins != []:
 for tp in self.exclude:
 exc_mins.append(tp.get_next_invalid_time_from_t(s_dr_mins[0]))

 s_exc_mins = sorted([d for d in exc_mins if d is not None])

 if s_exc_mins != []:
 local_min = s_exc_mins[0]

 if local_min is None:
 still_loop = False
 else:
 t = local_min
 # No loop more than one year
 if t > original_t + 3600*24*366 + 1:
 still_loop = False
 local_min = None

 # Ok, we update the cache...
 self.cache[original_t] = local_min
 return local_min

[docs] def get_next_invalid_time_from_t(self, t):
 #print '\n\n', self.get_name(), 'Search for next invalid from', time.asctime(time.localtime(t)), t
 t = int(t)
 original_t = t
 still_loop = True

 # First try to find in cache
 res_from_cache = self.find_next_invalid_time_from_cache(t)
 if res_from_cache is not None:
 return res_from_cache

 # Then look, maybe t is already invalid
 if not self.is_time_valid(t):
 return t

 local_min = t
 res = None
 # Loop for all minutes...
 while still_loop:
 #print "Invalid loop with", time.asctime(time.localtime(local_min))

 dr_mins = []
 #val_valids = []
 #val_inval = []
 # But maybe we can find a better solution with next invalid of standard dateranges
 #print self.get_name(), "After valid of exclude, local_min =", time.asctime(time.localtime(local_min))
 for dr in self.dateranges:
 #print self.get_name(), "Search a next invalid from DR", time.asctime(time.localtime(local_min))
 #print dr.__dict__
 m = dr.get_next_invalid_time_from_t(local_min)

 #print self.get_name(), "Dr", dr.__dict__, "give me next invalid", time.asctime(time.localtime(m))
 if m is not None:
 # But maybe it's invalid for this dr, but valid for other ones.
 #if not self.is_time_valid(m):
 # print "Final: Got a next invalid at", time.asctime(time.localtime(m))
 dr_mins.append(m)
 #if not self.is_time_valid(m):
 # val_inval.append(m)
 #else:
 # val_valids.append(m)
 # print "Add a m", time.asctime(time.localtime(m))
 #else:
 # print dr.__dict__
 # print "FUCK bad result\n\n\n"
 #print "Inval"
 #for v in val_inval:
 # print "\t", time.asctime(time.localtime(v))
 #print "Valid"
 #for v in val_valids:
 # print "\t", time.asctime(time.localtime(v))

 if dr_mins != []:
 local_min = min(dr_mins)
 # Take the minimum valid as lower for next search
 #local_min_valid = 0
 #if val_valids != []:
 # local_min_valid = min(val_valids)
 #if local_min_valid != 0:
 # local_min = local_min_valid
 #else:
 # local_min = min(dr_mins)
 #print "UPDATE After dr: found invalid local min:", time.asctime(time.localtime(local_min)), "is valid", self.is_time_valid(local_min)

 #print self.get_name(), 'Invalid: local min', local_min #time.asctime(time.localtime(local_min))
 # We do not loop unless the local_min is not valid
 if not self.is_time_valid(local_min):
 still_loop = False
 else: # continue until we reach too far..., in one minute
 # After one month, go quicker...
 if local_min > original_t + 3600*24*30:
 local_min += 3600
 else: # else search for 1min precision
 local_min += 60
 # after one year, stop.
 if local_min > original_t + 3600*24*366 + 1: # 60*24*366 + 1:
 still_loop = False
 #print "Loop?", still_loop
 # if we've got a real value, we check it with the exclude
 if local_min is not None:
 # Now check if local_min is not valid
 for tp in self.exclude:
 #print self.get_name(),"we check for invalid", time.asctime(time.localtime(local_min)), 'with tp', tp.name
 if tp.is_time_valid(local_min):
 still_loop = True
 # local_min + 60
 local_min = tp.get_next_invalid_time_from_t(local_min+60)
 # No loop more than one year
 if local_min > original_t + 60*24*366 + 1:
 still_loop = False
 res = None

 if not still_loop: # We find a possible value
 # We take the result the minimal possible
 if res is None or local_min < res:
 res = local_min

 #print "Finished Return the next invalid", time.asctime(time.localtime(local_min))
 # Ok, we update the cache...
 self.invalid_cache[original_t] = local_min
 return local_min

[docs] def has(self, prop):
 return hasattr(self, prop)

 # We are correct only if our daterange are
 # and if we have no unmatch entries

[docs] def is_correct(self):
 b = True
 for dr in self.dateranges:
 b &= dr.is_correct()

 # Even one invalid is non correct
 for e in self.invalid_entries:
 b = False
 logger.error("[timeperiod::%s] invalid entry '%s'" % (self.get_name(), e))
 return b

 def __str__(self):
 s = ''
 s += str(self.__dict__) + '\n'
 for elt in self.dateranges:
 s += str(elt)
 (start, end) = elt.get_start_and_end_time()
 start = time.asctime(time.localtime(start))
 end = time.asctime(time.localtime(end))
 s += "\nStart and end:" + str((start, end))
 s += '\nExclude'
 for elt in self.exclude:
 s += str(elt)

 return s

[docs] def resolve_daterange(self, dateranges, entry):
 #print "Trying to resolve ", entry

 res = re.search('(\d{4})-(\d{2})-(\d{2}) - (\d{4})-(\d{2})-(\d{2}) / (\d+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 1"
 (syear, smon, smday, eyear, emon, emday, skip_interval, other) = res.groups()
 dateranges.append(CalendarDaterange(syear, smon, smday, 0, 0, eyear, emon, emday, 0, 0, skip_interval, other))
 return

 res = re.search('(\d{4})-(\d{2})-(\d{2}) / (\d+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 2"
 (syear, smon, smday, skip_interval, other) = res.groups()
 eyear = syear
 emon = smon
 emday = smday
 dateranges.append(CalendarDaterange(syear, smon, smday, 0, 0, eyear, emon, emday, 0, 0, skip_interval, other))
 return

 res = re.search('(\d{4})-(\d{2})-(\d{2}) - (\d{4})-(\d{2})-(\d{2})[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 3"
 (syear, smon, smday, eyear, emon, emday, other) = res.groups()
 dateranges.append(CalendarDaterange(syear, smon, smday, 0, 0, eyear, emon, emday, 0, 0, 0, other))
 return

 res = re.search('(\d{4})-(\d{2})-(\d{2})[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 4"
 (syear, smon, smday, other) = res.groups()
 eyear = syear
 emon = smon
 emday = smday
 dateranges.append(CalendarDaterange(syear, smon, smday, 0, 0, eyear, emon, emday, 0, 0, 0, other))
 return

 res = re.search('([a-z]*) ([\d-]+) ([a-z]*) - ([a-z]*) ([\d-]+) ([a-z]*) / (\d+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 5"
 (swday, swday_offset, smon, ewday, ewday_offset, emon, skip_interval, other) = res.groups()
 dateranges.append(MonthWeekDayDaterange(0, smon, 0, swday, swday_offset, 0, emon, 0, ewday, ewday_offset, skip_interval, other))
 return

 res = re.search('([a-z]*) ([\d-]+) - ([a-z]*) ([\d-]+) / (\d+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 6"
 (t0, smday, t1, emday, skip_interval, other) = res.groups()
 if t0 in Daterange.weekdays and t1 in Daterange.weekdays:
 swday = t0
 ewday = t1
 swday_offset = smday
 ewday_offset = emday
 dateranges.append(WeekDayDaterange(0, 0, 0, swday, swday_offset, 0, 0, 0, ewday, ewday_offset, skip_interval, other))
 return
 elif t0 in Daterange.months and t1 in Daterange.months:
 smon = t0
 emon = t1
 dateranges.append(MonthDateDaterange(0, smon, smday, 0, 0, 0, emon, emday, 0, 0, skip_interval, other))
 return
 elif t0 == 'day' and t1 == 'day':
 dateranges.append(MonthDayDaterange(0, 0, smday, 0, 0, 0, 0, emday, 0, 0, skip_interval, other))
 return

 res = re.search('([a-z]*) ([\d-]+) - ([\d-]+) / (\d+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 7"
 (t0, smday, emday, skip_interval, other) = res.groups()
 if t0 in Daterange.weekdays:
 swday = t0
 swday_offset = smday
 ewday = swday
 ewday_offset = emday
 dateranges.append(WeekDayDaterange(0, 0, 0, swday, swday_offset, 0, 0, 0, ewday, ewday_offset, skip_interval, other))
 return
 elif t0 in Daterange.months:
 smon = t0
 emon = smon
 dateranges.append(MonthDateDaterange(0, smon, smday, 0, 0, 0, emon, emday, 0, 0, skip_interval, other))
 return
 elif t0 == 'day':
 dateranges.append(MonthDayDaterange(0, 0, smday, 0, 0, 0, 0, emday, 0, 0, skip_interval, other))
 return

 res = re.search('([a-z]*) ([\d-]+) ([a-z]*) - ([a-z]*) ([\d-]+) ([a-z]*) [\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 8"
 (swday, swday_offset, smon, ewday, ewday_offset, emon, other) = res.groups()
 #print "Debug:", (swday, swday_offset, smon, ewday, ewday_offset, emon, other)
 dateranges.append(MonthWeekDayDaterange(0, smon, 0, swday, swday_offset, 0, emon, 0, ewday, ewday_offset, 0, other))
 return

 res = re.search('([a-z]*) ([\d-]+) - ([\d-]+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 9"
 (t0, smday, emday, other) = res.groups()
 if t0 in Daterange.weekdays:
 swday = t0
 swday_offset = smday
 ewday = swday
 ewday_offset = emday
 dateranges.append(WeekDayDaterange(0, 0, 0, swday, swday_offset, 0, 0, 0, ewday, ewday_offset, 0, other))
 return
 elif t0 in Daterange.months:
 smon = t0
 emon = smon
 dateranges.append(MonthDateDaterange(0, smon, smday, 0, 0, 0, emon, emday, 0, 0, 0, other))
 return
 elif t0 == 'day':
 dateranges.append(MonthDayDaterange(0, 0, smday, 0, 0, 0, 0, emday, 0, 0, 0, other))
 return

 res = re.search('([a-z]*) ([\d-]+) - ([a-z]*) ([\d-]+)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 10"
 (t0, smday, t1, emday, other) = res.groups()
 if t0 in Daterange.weekdays and t1 in Daterange.weekdays:
 swday = t0
 ewday = t1
 swday_offset = smday
 ewday_offset = emday
 dateranges.append(WeekDayDaterange(0, 0, 0, swday, swday_offset, 0, 0, 0, ewday, ewday_offset, 0, other))
 return
 elif t0 in Daterange.months and t1 in Daterange.months:
 smon = t0
 emon = t1
 dateranges.append(MonthDateDaterange(0, smon, smday, 0, 0, 0, emon, emday, 0, 0, 0, other))
 return
 elif t0 == 'day' and t1 == 'day':
 dateranges.append(MonthDayDaterange(0, 0, smday, 0, 0, 0, 0, emday, 0, 0, 0, other))
 return

 res = re.search('([a-z]*) ([\d-]+) ([a-z]*)[\s\t]*([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 11"
 (t0, swday_offset, t1, other) = res.groups()
 if t0 in Daterange.weekdays and t1 in Daterange.months:
 swday = t0
 smon = t1
 emon = smon
 ewday = swday
 ewday_offset = swday_offset
 dateranges.append(MonthWeekDayDaterange(0, smon, 0, swday, swday_offset, 0, emon, 0, ewday, ewday_offset, 0, other))
 return

 res = re.search('([a-z]*) ([\d-]+)[\s\t]+([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 12"
 (t0, smday, other) = res.groups()
 if t0 in Daterange.weekdays:
 swday = t0
 swday_offset = smday
 ewday = swday
 ewday_offset = swday_offset
 dateranges.append(WeekDayDaterange(0, 0, 0, swday, swday_offset, 0, 0, 0, ewday, ewday_offset, 0, other))
 return
 if t0 in Daterange.months:
 smon = t0
 emon = smon
 emday = smday
 dateranges.append(MonthDateDaterange(0, smon, smday, 0, 0, 0, emon, emday, 0, 0, 0, other))
 return
 if t0 == 'day':
 emday = smday
 dateranges.append(MonthDayDaterange(0, 0, smday, 0, 0, 0, 0, emday, 0, 0, 0, other))
 return

 res = re.search('([a-z]*)[\s\t]+([0-9:, -]+)', entry)
 if res is not None:
 #print "Good catch 13"
 (t0, other) = res.groups()
 if t0 in Daterange.weekdays:
 day = t0
 dateranges.append(StandardDaterange(day, other))
 return
 logger.info("[timeentry::%s] no match for %s" % (self.get_name(), entry))
 self.invalid_entries.append(entry)

[docs] def apply_inheritance(self):
 pass

 # create daterange from unresolved param

[docs] def explode(self, timeperiods):
 for entry in self.unresolved:
 #print "Revolving entry", entry
 self.resolve_daterange(self.dateranges, entry)
 self.unresolved = []

 # Will make tp in exclude with id of the timeperiods

[docs] def linkify(self, timeperiods):
 new_exclude = []
 if self.has('exclude') and self.exclude != '':
 logger.debug("[timeentry::%s] have excluded %s" % (self.get_name(), self.exclude))
 excluded_tps = self.exclude.split(',')
 #print "I will exclude from:", excluded_tps
 for tp_name in excluded_tps:
 tp = timeperiods.find_by_name(tp_name.strip())
 if tp is not None:
 new_exclude.append(tp)
 else:
 logger.error("[timeentry::%s] unknown %s timeperiod" % (self.get_name(), tp_name))
 self.exclude = new_exclude

[docs] def check_exclude_rec(self):
 if self.rec_tag:
 logger.error("[timeentry::%s] is in a loop in exclude parameter" % self.get_name())
 return False
 self.rec_tag = True
 for tp in self.exclude:
 tp.check_exclude_rec()
 return True

[docs] def fill_data_brok_from(self, data, brok_type):
 cls = self.__class__
 # Now config properties
 for prop, entry in cls.properties.items():
 # Is this property intended for broking?
 #if 'fill_brok' in entry:
 if brok_type in entry.fill_brok:
 if hasattr(self, prop):
 data[prop] = getattr(self, prop)
 elif entry.has_default:
 data[prop] = entry.default

 # Get a brok with initial status

[docs] def get_initial_status_brok(self):
 cls = self.__class__
 my_type = cls.my_type
 data = {'id': self.id}

 self.fill_data_brok_from(data, 'full_status')
 b = Brok('initial_' + my_type + '_status', data)
 return b

[docs]class Timeperiods(Items):
 name_property = "timeperiod_name"
 inner_class = Timeperiod

[docs] def explode(self):
 for id in self.items:
 tp = self.items[id]
 tp.explode(self)

[docs] def linkify(self):
 for id in self.items:
 tp = self.items[id]
 tp.linkify(self)

[docs] def apply_inheritance(self):
 # The only interesting property to inherit is exclude
 self.apply_partial_inheritance('exclude')
 for i in self:
 i.get_customs_properties_by_inheritance(self)

 # And now apply inheritance for unresolved properties
 # like the dateranges in fact
 for tp in self:
 tp.get_unresolved_properties_by_inheritance(self.items)

 # check for loop in definition

[docs] def is_correct(self):
 r = True
 # We do not want a same hg to be explode again and again
 # so we tag it
 for tp in self.items.values():
 tp.rec_tag = False

 for tp in self.items.values():
 for tmp_tp in self.items.values():
 tmp_tp.rec_tag = False
 r &= tp.check_exclude_rec()

 # We clean the tags
 for tp in self.items.values():
 del tp.rec_tag

 # And check all timeperiods for correct (sunday is false)
 for tp in self:
 r &= tp.is_correct()

 return r

if __name__ == '__main__':
 t = Timeperiod()
 test = ['1999-01-28 00:00-24:00',
 'monday 3 00:00-24:00 ',
 'day 2 00:00-24:00',
 'february 10 00:00-24:00',
 'february -1 00:00-24:00',
 'friday -2 00:00-24:00',
 'thursday -1 november 00:00-24:00',
 '2007-01-01 - 2008-02-01 00:00-24:00',
 'monday 3 - thursday 4 00:00-24:00',
 'day 1 - 15 00:00-24:00',
 'day 20 - -1 00:00-24:00',
 'july -10 - -1 00:00-24:00',
 'april 10 - may 15 00:00-24:00',
 'tuesday 1 april - friday 2 may 00:00-24:00',
 '2007-01-01 - 2008-02-01 / 3 00:00-24:00',
 '2008-04-01 / 7 00:00-24:00',
 'day 1 - 15 / 5 00:00-24:00',
 'july 10 - 15 / 2 00:00-24:00',
 'tuesday 1 april - friday 2 may / 6 00:00-24:00',
 'tuesday 1 october - friday 2 may / 6 00:00-24:00',
 'monday 3 - thursday 4 / 2 00:00-24:00',
 'monday 4 - thursday 3 / 2 00:00-24:00',
 'day -1 - 15 / 5 01:00-24:00,00:30-05:60',
 'tuesday 00:00-24:00',
 'sunday 00:00-24:00',
 'saturday 03:00-24:00,00:32-01:02',
 'wednesday 09:00-15:46,00:00-21:00',
 'may 7 - february 2 00:00-10:00',
 'day -1 - 5 00:00-10:00',
 'tuesday 1 february - friday 1 may 01:00-24:00,00:30-05:60',
 'december 2 - may -15 00:00-24:00',
]
 for entry in test:
 print "**********************"
 print entry
 t = Timeperiod()
 t.timeperiod_name = ''
 t.resolve_daterange(t.dateranges, entry)
 #t.exclude = []
 #t.resolve_daterange(t.exclude, 'monday 00:00-19:00')
 #t.check_valid_for_today()
 now = time.time()
 #print "Is valid NOW?", t.is_time_valid(now)
 t_next = t.get_next_valid_time_from_t(now + 5*60)
 if t_next is not None:
 print "Get next valid for now + 5 min ==>", time.asctime(time.localtime(t_next)), "<=="
 else:
 print "===> No future time!!!"
 #print "End date:", t.get_end_time()
 #print "Next valid", time.asctime(time.localtime(t.get_next_valid_time()))
 print str(t) + '\n\n'

 print "***"
 t3 = Timeperiod()
 t3.timeperiod_name = 't3'
 t3.resolve_daterange(t3.dateranges, 'day 1 - 10 10:30-15:00')
 t3.exclude = []

 t2 = Timeperiod()
 t2.timeperiod_name = 't2'
 t2.resolve_daterange(t2.dateranges, 'day 1 - 10 12:00-17:00')
 t2.exclude = [t3]

 t = Timeperiod()
 t.timeperiod_name = 't'
 t.resolve_daterange(t.dateranges, 'day 1 - 10 14:00-15:00')
 t.exclude = [t2]

 print "Mon T", str(t) + '\n\n'
 t_next = t.get_next_valid_time_from_t(now)
 t_no_next = t.get_next_invalid_time_from_t(now)
 print "Get next valid for now ==>", time.asctime(time.localtime(t_next)), "<=="
 print "Get next invalid for now ==>", time.asctime(time.localtime(t_no_next)), "<=="

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/hostgroup.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.hostgroup

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from itemgroup import Itemgroup, Itemgroups

from shinken.util import get_obj_name
from shinken.property import StringProp
from shinken.log import logger

[docs]class Hostgroup(Itemgroup):
 id = 1 # zero is always a little bit special... like in database
 my_type = 'hostgroup'

 properties = Itemgroup.properties.copy()
 properties.update({
 'id': StringProp(default=0, fill_brok=['full_status']),
 'hostgroup_name': StringProp(fill_brok=['full_status']),
 'alias': StringProp(fill_brok=['full_status']),
 'notes': StringProp(default='', fill_brok=['full_status']),
 'notes_url': StringProp(default='', fill_brok=['full_status']),
 'action_url': StringProp(default='', fill_brok=['full_status']),
 'realm': StringProp(default='', fill_brok=['full_status'], conf_send_preparation=get_obj_name),
 })

 macros = {
 'HOSTGROUPALIAS': 'alias',
 'HOSTGROUPMEMBERS': 'members',
 'HOSTGROUPNOTES': 'notes',
 'HOSTGROUPNOTESURL': 'notes_url',
 'HOSTGROUPACTIONURL': 'action_url'
 }

[docs] def get_name(self):
 return self.hostgroup_name

[docs] def get_hosts(self):
 return getattr(self, 'members', '')

[docs] def get_hostgroup_members(self):
 if self.has('hostgroup_members'):
 return self.hostgroup_members.split(',')
 else:
 return []

 # We fillfull properties with template ones if need
 # Because hostgroup we call may not have it's members
 # we call get_hosts_by_explosion on it

[docs] def get_hosts_by_explosion(self, hostgroups):
 # First we tag the hg so it will not be explode
 # if a son of it already call it
 self.already_explode = True

 # Now the recursive part
 # rec_tag is set to False every HG we explode
 # so if True here, it must be a loop in HG
 # calls... not GOOD!
 if self.rec_tag:
 logger.error("[hostgroup::%s] got a loop in hostgroup definition" % self.get_name())
 return self.get_hosts()

 # Ok, not a loop, we tag it and continue
 self.rec_tag = True

 hg_mbrs = self.get_hostgroup_members()
 for hg_mbr in hg_mbrs:
 hg = hostgroups.find_by_name(hg_mbr.strip())
 if hg is not None:
 value = hg.get_hosts_by_explosion(hostgroups)
 if value is not None:
 self.add_string_member(value)

 return self.get_hosts()

[docs]class Hostgroups(Itemgroups):
 name_property = "hostgroup_name" # is used for finding hostgroups
 inner_class = Hostgroup

[docs] def get_members_by_name(self, hgname):
 hg = self.find_by_name(hgname)
 if hg is None:
 return []
 return hg.get_hosts()

[docs] def linkify(self, hosts=None, realms=None):
 self.linkify_hg_by_hst(hosts)
 self.linkify_hg_by_realms(realms)

 # We just search for each hostgroup the id of the hosts
 # and replace the name by the id

[docs] def linkify_hg_by_hst(self, hosts):
 for hg in self:
 mbrs = hg.get_hosts()
 # The new member list, in id
 new_mbrs = []

 for mbr in mbrs:
 if mbr == '*':
 new_mbrs.extend(hosts)
 else:
 h = hosts.find_by_name(mbr)
 if h is not None:
 new_mbrs.append(h)
 else:
 hg.unknown_members.append(mbr)

 # Make members uniq
 new_mbrs = list(set(new_mbrs))

 # We find the id, we replace the names
 hg.replace_members(new_mbrs)

 # Now register us in our members
 for h in hg.members:
 h.hostgroups.append(hg)
 # and be sure we are uniq in it
 h.hostgroups = list(set(h.hostgroups))

 # More than an explode function, but we need to already
 # have members so... Will be really linkify just after
 # And we explode realm in ours members, but do not override
 # a host realm value if it's already set

[docs] def linkify_hg_by_realms(self, realms):
 # Now we explode the realm value if we've got one
 # The group realm must not override a host one (warning?)
 for hg in self:
 if not hasattr(hg, 'realm'):
 continue

 # Maybe the value is void?
 if not hg.realm.strip():
 continue

 r = realms.find_by_name(hg.realm.strip())
 if r is not None:
 hg.realm = r
 logger.debug("[hostgroups] %s is in %s realm" % (hg.get_name(), r.get_name()))
 else:
 err = "the hostgroup %s got an unknown realm '%s'" % (hg.get_name(), hg.realm)
 hg.configuration_errors.append(err)
 hg.realm = None
 continue

 for h in hg:
 if h is None:
 continue
 if h.realm is None or h.got_default_realm: # default value not hasattr(h, 'realm'):
 logger.debug("[hostgroups] apply a realm %s to host %s from a hostgroup rule (%s)" % \
 (hg.realm.get_name(), h.get_name(), hg.get_name()))
 h.realm = hg.realm
 else:
 if h.realm != hg.realm:
 logger.warning("[hostgroups] host %s it not in the same realm than it's hostgroup %s" % \
 (h.get_name(), hg.get_name()))

 # Add a host string to a hostgroup member
 # if the host group do not exist, create it

[docs] def add_member(self, hname, hgname):
 hg = self.find_by_name(hgname)
 # if the id do not exist, create the hg
 if hg is None:
 hg = Hostgroup({'hostgroup_name': hgname, 'alias': hgname, 'members': hname})
 self.add(hg)
 else:
 hg.add_string_member(hname)

 # Use to fill members with hostgroup_members

[docs] def explode(self):
 # We do not want a same hg to be explode again and again
 # so we tag it
 for tmp_hg in self.items.values():
 tmp_hg.already_explode = False
 for hg in self.items.values():
 if hg.has('hostgroup_members') and not hg.already_explode:
 # get_hosts_by_explosion is a recursive
 # function, so we must tag hg so we do not loop
 for tmp_hg in self.items.values():
 tmp_hg.rec_tag = False
 hg.get_hosts_by_explosion(self)

 # We clean the tags
 for tmp_hg in self.items.values():
 if hasattr(tmp_hg, 'rec_tag'):
 del tmp_hg.rec_tag
 del tmp_hg.already_explode

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/businessimpactmodulation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.businessimpactmodulation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

The resultmodulation class is used for in scheduler modulation of results
like the return code or the output.

import time

from item import Item, Items

from shinken.property import StringProp, IntegerProp

[docs]class Businessimpactmodulation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'businessimpactmodulation'

 properties = Item.properties.copy()
 properties.update({
 'business_impact_modulation_name': StringProp(),
 'business_impact': IntegerProp(),
 'modulation_period': StringProp(default=None),
 })

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.business_impact_modulation_name

[docs]class Businessimpactmodulations(Items):
 name_property = "business_impact_modulation_name"
 inner_class = Businessimpactmodulation

[docs] def linkify(self, timeperiods):
 self.linkify_cm_by_tp(timeperiods)

 # We just search for each timeperiod the tp
 # and replace the name by the tp

[docs] def linkify_cm_by_tp(self, timeperiods):
 for rm in self:
 mtp_name = rm.modulation_period.strip()

 # The new member list, in id
 mtp = timeperiods.find_by_name(mtp_name)

 if mtp_name != '' and mtp is None:
 err = "Error: the business impact modulation '%s' got an unknown modulation_period '%s'" % (rm.get_name(), mtp_name)
 rm.configuration_errors.append(err)

 rm.modulation_period = mtp

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/checkmodulation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.checkmodulation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time

from item import Item, Items
from shinken.property import BoolProp, IntegerProp, StringProp, ListProp
from shinken.util import to_name_if_possible
from shinken.log import logger

[docs]class CheckModulation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'checkmodulation'

 properties = Item.properties.copy()
 properties.update({
 'checkmodulation_name': StringProp(fill_brok=['full_status']),
 'check_command': StringProp(fill_brok=['full_status']),
 'check_period' : StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 })

 running_properties = Item.running_properties.copy()

 _special_properties = ('check_period',)

 macros = {}

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.checkmodulation_name

 # Will look at if our check_period is ok, and give our check_command if we got it

[docs] def get_check_command(self, t_to_go):
 if not self.check_period or self.check_period.is_time_valid(t_to_go):
 return self.check_command
 return None

 # Should have all properties, or a void check_period

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 # Raised all previously saw errors like unknown commands or timeperiods
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.error("[item::%s] %s" % (self.get_name(), err))

 for prop, entry in cls.properties.items():
 if prop not in cls._special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.warning("[checkmodulation::%s] %s property not set" % (self.get_name(), prop))
 state = False # Bad boy...

 # Ok now we manage special cases...
 # Service part
 if not hasattr(self, 'check_command'):
 logger.warning("[checkmodulation::%s] do not have any check_command defined" % self.get_name())
 state = False
 else:
 if self.check_command is None:
 logger.warning("[checkmodulation::%s] a check_command is missing" % self.get_name())
 state = False
 if not self.check_command.is_valid():
 logger.warning("[checkmodulation::%s] a check_command is invalid" % self.get_name())
 state = False

 # Ok just put None as check_period, means 24x7
 if not hasattr(self, 'check_period'):
 self.check_period = None

 return state

 # In the scheduler we need to relink the commandCall with
 # the real commands

[docs] def late_linkify_cw_by_commands(self, commands):
 if self.check_command:
 self.check_command.late_linkify_with_command(commands)

[docs]class CheckModulations(Items):
 name_property = "checkmodulation_name"
 inner_class = CheckModulation

[docs] def linkify(self, timeperiods, commands):
 self.linkify_with_timeperiods(timeperiods, 'check_period')
 self.linkify_one_command_with_commands(commands, 'check_command')

[docs] def new_inner_member(self, name=None, params={}):
 if name is None:
 name = CheckModulation.id
 params['checkmodulation_name'] = name
 #print "Asking a new inner checkmodulation from name %s with params %s" % (name, params)
 cw = CheckModulation(params)
 self.items[cw.id] = cw

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/singleton.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.singleton

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class Singleton(type):
 """The classic Singleton class. So all instance of this class will be the same
 instance in fact.

 """

 def __init__(cls, name, bases, dict):
 super(Singleton, cls).__init__(name, bases, dict)
 cls.instance = None

 def __call__(cls, *args, **kw):
 if cls.instance is None:
 cls.instance = super(Singleton, cls).__call__(*args, **kw)
 return cls.instance

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/macroresolver.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.macroresolver

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

This class resolve Macro in commands by looking at the macros list
in Class of elements. It give a property that call be callable or not.
It not callable, it's a simple property and replace the macro with the value
If callable, it's a method that is called to get the value. for example, to
get the number of service in a host, you call a method to get the
len(host.services)

import re
import time

from shinken.borg import Borg

[docs]class MacroResolver(Borg):
 """Please Add a Docstring to describe the class here"""

 my_type = 'macroresolver'
 # Global macros
 macros = {
 'TOTALHOSTSUP': '_get_total_hosts_up',
 'TOTALHOSTSDOWN': '_get_total_hosts_down',
 'TOTALHOSTSUNREACHABLE': '_get_total_hosts_unreachable',
 'TOTALHOSTSDOWNUNHANDLED': '_get_total_hosts_unhandled',
 'TOTALHOSTSUNREACHABLEUNHANDLED': '_get_total_hosts_unreachable_unhandled',
 'TOTALHOSTPROBLEMS': '_get_total_host_problems',
 'TOTALHOSTPROBLEMSUNHANDLED': '_get_total_host_problems_unhandled',
 'TOTALSERVICESOK': '_get_total_service_ok',
 'TOTALSERVICESWARNING': '_get_total_services_warning',
 'TOTALSERVICESCRITICAL': '_get_total_services_critical',
 'TOTALSERVICESUNKNOWN': '_get_total_services_unknown',
 'TOTALSERVICESWARNINGUNHANDLED': '_get_total_services_warning_unhandled',
 'TOTALSERVICESCRITICALUNHANDLED': '_get_total_services_critical_unhandled',
 'TOTALSERVICESUNKNOWNUNHANDLED': '_get_total_services_unknown_unhandled',
 'TOTALSERVICEPROBLEMS': '_get_total_service_problems',
 'TOTALSERVICEPROBLEMSUNHANDLED': '_get_total_service_problems_unhandled',
 'LONGDATETIME': '_get_long_date_time',
 'SHORTDATETIME': '_get_short_date_time',
 'DATE': '_get_date',
 'TIME': '_get_time',
 'TIMET': '_get_timet',
 'PROCESSSTARTTIME': '_get_process_start_time',
 'EVENTSTARTTIME': '_get_events_start_time',
 }

 # This must be called ONCE. It just put links for elements
 # by scheduler
[docs] def init(self, conf):
 # For searching class and elements for ondemand
 # we need link to types
 self.conf = conf
 self.lists_on_demand = []
 self.hosts = conf.hosts
 # For special void host_name handling...
 self.host_class = self.hosts.inner_class
 self.lists_on_demand.append(self.hosts)
 self.services = conf.services
 self.contacts = conf.contacts
 self.lists_on_demand.append(self.contacts)
 self.hostgroups = conf.hostgroups
 self.lists_on_demand.append(self.hostgroups)
 self.commands = conf.commands
 self.servicegroups = conf.servicegroups
 self.lists_on_demand.append(self.servicegroups)
 self.contactgroups = conf.contactgroups
 self.lists_on_demand.append(self.contactgroups)
 self.illegal_macro_output_chars = conf.illegal_macro_output_chars
 self.output_macros = ['HOSTOUTPUT', 'HOSTPERFDATA', 'HOSTACKAUTHOR', 'HOSTACKCOMMENT', 'SERVICEOUTPUT', 'SERVICEPERFDATA', 'SERVICEACKAUTHOR', 'SERVICEACKCOMMENT']

 # Try cache :)
 #self.cache = {}

 # Return all macros of a string, so cut the $
 # And create a dict with it:
 # val: value, not set here
 # type: type of macro, like class one, or ARGN one

 def _get_macros(self, s):
 #if s in self.cache:
 # return self.cache[s]

 p = re.compile(r'(\$)')
 elts = p.split(s)
 macros = {}
 in_macro = False
 for elt in elts:
 if elt == '$':
 in_macro = not in_macro
 elif in_macro:
 macros[elt] = {'val': '', 'type': 'unknown'}

 #self.cache[s] = macros
 if '' in macros:
 del macros['']
 return macros

 # Get a value from a property of a element
 # Prop can be a function or a property
 # So we call it or not
 def _get_value_from_element(self, elt, prop):
 try:
 value = getattr(elt, prop)
 if callable(value):
 return unicode(value())
 else:
 return unicode(value)
 except AttributeError, exp:
 # Return no value
 return ''
 except UnicodeError, exp:
 if isinstance(value, str):
 return unicode(value, 'utf8', errors='ignore')
 else:
 return ''

 # For some macros, we need to delete unwanted characters
 def _delete_unwanted_caracters(self, s):
 for c in self.illegal_macro_output_chars:
 s = s.replace(c, '')
 return s

 # return a dict with all environment variable came from
 # the macros of the datas object
[docs] def get_env_macros(self, data):
 env = {}

 for o in data:
 cls = o.__class__
 macros = cls.macros
 for macro in macros:
 if macro.startswith("USER"):
 break

 #print "Macro in %s: %s" % (o.__class__, macro)
 prop = macros[macro]
 value = self._get_value_from_element(o, prop)
 env['NAGIOS_%s' % macro] = value
 if hasattr(o, 'customs'):
 # make NAGIOS__HOSTMACADDR from _MACADDR
 for cmacro in o.customs:
 env['NAGIOS__' + o.__class__.__name__.upper() + cmacro[1:].upper()] = o.customs[cmacro]

 return env

 # This function will look at elements in data (and args if it filled)
 # to replace the macros in c_line with real value.

[docs] def resolve_simple_macros_in_string(self, c_line, data, args=None):
 # Now we prepare the classes for looking at the class.macros
 data.append(self) # For getting global MACROS
 if hasattr(self, 'conf'):
 data.append(self.conf) # For USERN macros
 clss = [d.__class__ for d in data]

 # we should do some loops for nested macros
 # like $USER1$ hiding like a ninja in a $ARG2$ Macro. And if
 # $USER1$ is pointing to $USER34$ etc etc, we should loop
 # until we reach the bottom. So the last loop is when we do
 # not still have macros :)
 still_got_macros = True
 nb_loop = 0
 while still_got_macros:
 nb_loop += 1
 # Ok, we want the macros in the command line
 macros = self._get_macros(c_line)

 # We can get out if we do not have macros this loop
 still_got_macros = (len(macros) != 0)
 #print "Still go macros:", still_got_macros

 # Put in the macros the type of macro for all macros
 self._get_type_of_macro(macros, clss)
 # Now we get values from elements
 for macro in macros:
 # If type ARGN, look at ARGN cutting
 if macros[macro]['type'] == 'ARGN' and args is not None:
 macros[macro]['val'] = self._resolve_argn(macro, args)
 macros[macro]['type'] = 'resolved'
 # If class, get value from properties
 if macros[macro]['type'] == 'class':
 cls = macros[macro]['class']
 for elt in data:
 if elt is not None and elt.__class__ == cls:
 prop = cls.macros[macro]
 macros[macro]['val'] = self._get_value_from_element(elt, prop)
 # Now check if we do not have a 'output' macro. If so, we must
 # delete all special characters that can be dangerous
 if macro in self.output_macros:
 macros[macro]['val'] = self._delete_unwanted_caracters(macros[macro]['val'])
 if macros[macro]['type'] == 'CUSTOM':
 cls_type = macros[macro]['class']
 # Beware : only cut the first _HOST value, so the macro name can have it on it...
 macro_name = re.split('_' + cls_type, macro, 1)[1].upper()
 # Ok, we've got the macro like MAC_ADDRESS for _HOSTMAC_ADDRESS
 # Now we get the element in data that have the type HOST
 # and we check if it got the custom value
 for elt in data:
 if elt is not None and elt.__class__.my_type.upper() == cls_type:
 if '_' + macro_name in elt.customs:
 macros[macro]['val'] = elt.customs['_' + macro_name]
 # Then look on the macromodulations, in reserver order, so
 # the last to set, will be the firt to have. (yes, don't want to play
 # with break and such things sorry...)
 mms = getattr(elt, 'macromodulations', [])
 for mm in mms[::-1]:
 # Look if the modulation got the value, but also if it's currently active
 if '_' + macro_name in mm.customs and mm.is_active():
 macros[macro]['val'] = mm.customs['_' + macro_name]
 if macros[macro]['type'] == 'ONDEMAND':
 macros[macro]['val'] = self._resolve_ondemand(macro, data)

 # We resolved all we can, now replace the macro in the command call
 for macro in macros:
 c_line = c_line.replace('$'+macro+'$', macros[macro]['val'])

 # A $$ means we want a $, it's not a macro!
 # We replace $$ by a big dirty thing to be sure to not misinterpret it
 c_line = c_line.replace("$$", "DOUBLEDOLLAR")

 if nb_loop > 32: # too much loop, we exit
 still_got_macros = False

 # We now replace the big dirty token we made by only a simple $
 c_line = c_line.replace("DOUBLEDOLLAR", "$")

 #print "Retuning c_line", c_line.strip()
 return c_line.strip()

 # Resolve a command with macro by looking at data classes.macros
 # And get macro from item properties.

[docs] def resolve_command(self, com, data):
 c_line = com.command.command_line
 return self.resolve_simple_macros_in_string(c_line, data, args=com.args)

 # For all Macros in macros, set the type by looking at the
 # MACRO name (ARGN? -> argn_type,
 # HOSTBLABLA -> class one and set Host in class)
 # _HOSTTOTO -> HOST CUSTOM MACRO TOTO
 # $SERVICESTATEID:srv-1:Load$ -> MACRO SERVICESTATEID of
 # the service Load of host srv-1

 def _get_type_of_macro(self, macros, clss):
 for macro in macros:
 # ARGN Macros
 if re.match('ARG\d', macro):
 macros[macro]['type'] = 'ARGN'
 continue
 # USERN macros
 # are managed in the Config class, so no
 # need to look that here
 elif re.match('_HOST\w', macro):
 macros[macro]['type'] = 'CUSTOM'
 macros[macro]['class'] = 'HOST'
 continue
 elif re.match('_SERVICE\w', macro):
 macros[macro]['type'] = 'CUSTOM'
 macros[macro]['class'] = 'SERVICE'
 # value of macro: re.split('_HOST', '_HOSTMAC_ADDRESS')[1]
 continue
 elif re.match('_CONTACT\w', macro):
 macros[macro]['type'] = 'CUSTOM'
 macros[macro]['class'] = 'CONTACT'
 continue
 # On demand macro
 elif len(macro.split(':')) > 1:
 macros[macro]['type'] = 'ONDEMAND'
 continue
 # OK, classical macro...
 for cls in clss:
 if macro in cls.macros:
 macros[macro]['type'] = 'class'
 macros[macro]['class'] = cls
 continue

 # Resolve MACROS for the ARGN
 def _resolve_argn(self, macro, args):
 # first, get the number of args
 id = None
 r = re.search('ARG(?P<id>\d+)', macro)
 if r is not None:
 id = int(r.group('id')) - 1
 try:
 return args[id]
 except IndexError:
 return ''

 # Resolve on-demand macro, quite hard in fact
 def _resolve_ondemand(self, macro, data):
 #print "\nResolving macro", macro
 elts = macro.split(':')
 nb_parts = len(elts)
 macro_name = elts[0]
 # Len 3 == service, 2 = all others types...
 if nb_parts == 3:
 val = ''
 #print "Got a Service on demand asking...", elts
 (host_name, service_description) = (elts[1], elts[2])
 # host_name can be void, so it's the host in data
 # that is important. We use our self.host_class to
 # find the host in the data :)
 if host_name == '':
 for elt in data:
 if elt is not None and elt.__class__ == self.host_class:
 host_name = elt.host_name
 # Ok now we get service
 s = self.services.find_srv_by_name_and_hostname(host_name, service_description)
 if s is not None:
 cls = s.__class__
 prop = cls.macros[macro_name]
 val = self._get_value_from_element(s, prop)
 #print "Got val:", val
 return val
 # Ok, service was easy, now hard part
 else:
 val = ''
 elt_name = elts[1]
 # Special case: elt_name can be void
 # so it's the host where it apply
 if elt_name == '':
 for elt in data:
 if elt is not None and elt.__class__ == self.host_class:
 elt_name = elt.host_name
 for list in self.lists_on_demand:
 cls = list.inner_class
 # We search our type by looking at the macro
 if macro_name in cls.macros:
 prop = cls.macros[macro_name]
 i = list.find_by_name(elt_name)
 if i is not None:
 val = self._get_value_from_element(i, prop)
 # Ok we got our value :)
 break
 return val
 return ''

 # Get Fri 15 May 11:42:39 CEST 2009
 def _get_long_date_time(self):
 return time.strftime("%a %d %b %H:%M:%S %Z %Y").decode('UTF-8', 'ignore')

 # Get 10-13-2000 00:30:28
 def _get_short_date_time(self):
 return time.strftime("%d-%m-%Y %H:%M:%S")

 # Get 10-13-2000
 def _get_date(self):
 return time.strftime("%d-%m-%Y")

 # Get 00:30:28
 def _get_time(self):
 return time.strftime("%H:%M:%S")

 # Get epoch time
 def _get_timet(self):
 return str(int(time.time()))

 def _get_total_hosts_up(self):
 return len([h for h in self.hosts if h.state == 'UP'])

 def _get_total_hosts_down(self):
 return len([h for h in self.hosts if h.state == 'DOWN'])

 def _get_total_hosts_unreachable(self):
 return len([h for h in self.hosts if h.state == 'UNREACHABLE'])

 # TODO
 def _get_total_hosts_unreachable_unhandled(self):
 return 0

 def _get_total_hosts_problems(self):
 return len([h for h in self.hosts if h.is_problem])

 def _get_total_hosts_problems_unhandled(self):
 return 0

 def _get_total_service_ok(self):
 return len([s for s in self.services if s.state == 'OK'])

 def _get_total_services_warning(self):
 return len([s for s in self.services if s.state == 'WARNING'])

 def _get_total_services_critical(self):
 return len([s for s in self.services if s.state == 'CRITICAL'])

 def _get_total_services_unknown(self):
 return len([s for s in self.services if s.state == 'UNKNOWN'])

 # TODO
 def _get_total_services_warning_unhandled(self):
 return 0

 def _get_total_services_critical_unhandled(self):
 return 0

 def _get_total_services_unknown_unhandled(self):
 return 0

 def _get_total_service_problems(self):
 return len([s for s in self.services if s.is_problem])

 def _get_total_service_problems_unhandled(self):
 return 0

 def _get_process_start_time(self):
 return 0

 def _get_events_start_time(self):
 return 0

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/basemodule.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.basemodule

#!/usr/bin/env python
#
-*- coding: utf-8 -*-
#
Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This python module contains the class BaseModule
that shinken modules will subclass
"""

import os
import signal
import time
from re import compile
from multiprocessing import Queue, Process

from shinken.log import logger

TODO: use a class for defining the module "properties" instead of
plain dict?? Like:
'''
class ModuleProperties(object):
 def __init__(self, type, phases, external=False)
 self.type = type
 self.phases = phases
 self.external = external
'''
and have the new modules instanciate this like follow:
'''
properties = ModuleProperties('the_module_type', the_module_phases, is_mod_ext)
'''

The `properties dict defines what the module can do and
if it's an external module or not.
properties = {
 # name of the module type ; to distinguish between them:
 'type': None,

 # is the module "external" (external means here a daemon module)?
 'external': True,

 # Possible configuration phases where the module is involved:
 'phases': ['configuration', 'late_configuration', 'running', 'retention'],
 }

[docs]class ModulePhases:
 """TODO: Add some comment about this class for the doc"""
 # TODO: why not use simply integers instead of string
 # to represent the different phases??
 CONFIGURATION = 1
 LATE_CONFIGURATION = 2
 RUNNING = 4
 RETENTION = 8

[docs]class BaseModule(object):
 """This is the base class for the shinken modules.
 Modules can be used by the different shinken daemons/services
 for different tasks.
 Example of task that a shinken module can do:
 - load additional configuration objects.
 - recurrently save hosts/services status/perfdata
 informations in different format.
 - ...
 """

 def __init__(self, mod_conf):
 """Instanciate a new module.
 There can be many instance of the same type.
 'mod_conf' is module configuration object
 for this new module instance.
 """
 self.myconf = mod_conf
 self.name = mod_conf.get_name()
 # We can have sub modules
 self.modules = getattr(mod_conf, 'modules', [])
 self.props = mod_conf.properties.copy()
 # TODO: choose between 'props' or 'properties'..
 self.interrupted = False
 self.properties = self.props
 self.is_external = self.props.get('external', False)
 # though a module defined with no phase is quite useless .
 self.phases = self.props.get('phases', [])
 self.phases.append(None)
 # the queue the module will receive data to manage
 self.to_q = None
 # the queue the module will put its result data
 self.from_q = None
 self.process = None
 self.illegal_char = compile(r'[^\w-]')
 self.init_try = 0
 # We want to know where we are load from? (broker, scheduler, etc)
 self.loaded_into = 'unknown'

[docs] def init(self):
 """Handle this module "post" init ; just before it'll be started.
 Like just open necessaries file(s), database(s),
 or whatever the module will need.
 """
 pass

[docs] def set_loaded_into(self, daemon_name):
 self.loaded_into = daemon_name

[docs] def create_queues(self, manager=None):
 """The manager is None on android, but a true Manager() elsewhere
 Create the shared queues that will be used by shinken daemon
 process and this module process.
 But clear queues if they were already set before recreating new one.
 """
 self.clear_queues(manager)
 # If no Manager() object, go with classic Queue()
 if not manager:
 self.from_q = Queue()
 self.to_q = Queue()
 else:
 self.from_q = manager.Queue()
 self.to_q = manager.Queue()

[docs] def clear_queues(self, manager):
 """Release the resources associated to the queues of this instance"""
 for q in (self.to_q, self.from_q):
 if q is None:
 continue
 # If we got no manager, we direct call the clean
 if not manager:
 q.close()
 q.join_thread()
 #else:
 # q._callmethod('close')
 # q._callmethod('join_thread')
 self.to_q = self.from_q = None

 # Start this module process if it's external. if not -> donothing

[docs] def start(self):

 if not self.is_external:
 return
 self.stop_process()
 logger.info("Starting external process for instance %s" % (self.name))
 p = Process(target=self.main, args=())

 # Under windows we should not call start() on an object that got
 # its process as object, so we remove it and we set it in a earlier
 # start
 try:
 del self.properties['process']
 except:
 pass

 p.start()
 # We save the process data AFTER the fork()
 self.process = p
 self.properties['process'] = p # TODO: temporary
 logger.info("%s is now started ; pid=%d" % (self.name, p.pid))

 def __kill(self):
 """Sometime terminate() is not enough, we must "help"
 external modules to die...
 """

 if os.name == 'nt':
 self.process.terminate()
 else:
 # Ok, let him 1 second before really KILL IT
 os.kill(self.process.pid, 15)
 time.sleep(1)
 # You do not let me another choice guy...
 if self.process.is_alive():
 os.kill(self.process.pid, 9)

[docs] def stop_process(self):
 """Request the module process to stop and release it"""
 if self.process:
 logger.info("I'm stopping module '%s' process pid:%s " %
 (self.get_name(), self.process.pid))
 self.process.terminate()
 self.process.join(timeout=1)
 if self.process.is_alive():
 logger.info("The process is still alive, I help it to die")
 self.__kill()
 self.process = None

 ## TODO: are these 2 methods really needed?

[docs] def get_name(self):
 return self.name

[docs] def has(self, prop):
 """The classic has: do we have a prop or not?"""
 return hasattr(self, prop)

 # For in scheduler modules, we will not send all broks to external
 # modules, only what they really want

[docs] def want_brok(self, b):
 return True

[docs] def manage_brok(self, brok):
 """Request the module to manage the given brok.
 There a lot of different possible broks to manage.
 """
 manage = getattr(self, 'manage_' + brok.type + '_brok', None)
 if manage:
 # Be sure the brok is prepared before call it
 brok.prepare()
 return manage(brok)

[docs] def manage_signal(self, sig, frame):
 self.interrupted = True

[docs] def set_signal_handler(self, sigs=None):
 if sigs is None:
 sigs = (signal.SIGINT, signal.SIGTERM)

 for sig in sigs:
 signal.signal(sig, self.manage_signal)

 set_exit_handler = set_signal_handler

[docs] def do_stop(self):
 """Called just before the module will exit
 Put in this method all you need to cleanly
 release all open resources used by your module
 """
 pass

[docs] def do_loop_turn(self):
 """For external modules only:
 implement in this method the body of you main loop
 """
 raise NotImplementedError()

[docs] def set_proctitle(self, name):
 try:
 from setproctitle import setproctitle
 setproctitle("shinken-%s module: %s" % (self.loaded_into, name))
 except:
 pass

[docs] def main(self):
 """module "main" method. Only used by external modules."""
 self.set_proctitle(self.name)

 self.set_signal_handler()
 logger.info("[%s[%d]]: Now running.." % (self.name, os.getpid()))
 while not self.interrupted:
 self.do_loop_turn()
 self.do_stop()
 logger.info("[%s]: exiting now.." % (self.name))

 # TODO: apparently some modules would uses "work" as the main method??

 work = main

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/downtime.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.downtime

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
from shinken.comment import Comment
from shinken.property import BoolProp, IntegerProp, StringProp
from shinken.brok import Brok
from shinken.log import logger

""" Schedules downtime for a specified service. If the "fixed" argument is set
 to one (1), downtime will start and end at the times specified by the
 "start" and "end" arguments.
 Otherwise, downtime will begin between the "start" and "end" times and last
 for "duration" seconds. The "start" and "end" arguments are specified
 in time_t format (seconds since the UNIX epoch). The specified service
 downtime can be triggered by another downtime entry if the "trigger_id"
 is set to the ID of another scheduled downtime entry.
 Set the "trigger_id" argument to zero (0) if the downtime for the
 specified service should not be triggered by another downtime entry.

"""
[docs]class Downtime:
 id = 1

 # Just to list the properties we will send as pickle
 # so to others daemons, so all but NOT REF
 properties = {
 'activate_me': StringProp(default=[]),
 'entry_time': IntegerProp(default=0, fill_brok=['full_status']),
 'fixed': BoolProp(default=True, fill_brok=['full_status']),
 'start_time': IntegerProp(default=0, fill_brok=['full_status']),
 'duration': IntegerProp(default=0, fill_brok=['full_status']),
 'trigger_id': IntegerProp(default=0),
 'end_time': IntegerProp(default=0, fill_brok=['full_status']),
 'real_end_time': IntegerProp(default=0),
 'author': StringProp(default='', fill_brok=['full_status']),
 'comment': StringProp(default=''),
 'is_in_effect': BoolProp(default=False),
 'has_been_triggered': BoolProp(default=False),
 'can_be_deleted': BoolProp(default=False),

 # TODO: find a very good way to handle the downtime "ref".
 # ref must effectively not be in properties because it points
 # onto a real object.
 #'ref': None
 }

 def __init__(self, ref, start_time, end_time, fixed, trigger_id, duration, author, comment):
 self.id = self.__class__.id
 self.__class__.id += 1
 self.ref = ref # pointer to srv or host we are apply
 self.activate_me = [] # The other downtimes i need to activate
 self.entry_time = int(time.time())
 self.fixed = fixed
 self.start_time = start_time
 self.duration = duration
 self.trigger_id = trigger_id
 if self.trigger_id != 0: # triggered plus fixed makes no sense
 self.fixed = False
 self.end_time = end_time
 if fixed:
 self.duration = end_time - start_time
 # This is important for flexible downtimes. Here start_time and
 # end_time mean: in this time interval it is possible to trigger
 # the beginning of the downtime which lasts for duration.
 # Later, when a non-ok event happens, real_end_time will be
 # recalculated from now+duration
 # end_time will be displayed in the web interface, but real_end_time
 # is used internally
 self.real_end_time = end_time
 self.author = author
 self.comment = comment
 self.is_in_effect = False # fixed: start_time has been reached, flexible: non-ok checkresult
 self.has_been_triggered = False # another downtime has triggered me
 self.can_be_deleted = False
 self.add_automatic_comment()

 def __str__(self):
 if self.is_in_effect == True:
 active = "active"
 else:
 active = "inactive"
 if self.fixed == True:
 type = "fixed"
 else:
 type = "flexible"
 return "%s %s Downtime id=%d %s - %s" % (active, type, self.id, time.ctime(self.start_time), time.ctime(self.end_time))

[docs] def trigger_me(self, other_downtime):
 self.activate_me.append(other_downtime)

[docs] def in_scheduled_downtime(self):
 return self.is_in_effect

 # The referenced host/service object enters now a (or another) scheduled
 # downtime. Write a log message only if it was not already in a downtime

[docs] def enter(self):
 res = []
 self.is_in_effect = True
 if self.fixed == False:
 now = time.time()
 self.real_end_time = now + self.duration
 if self.ref.scheduled_downtime_depth == 0:
 self.ref.raise_enter_downtime_log_entry()
 self.ref.create_notifications('DOWNTIMESTART')
 self.ref.scheduled_downtime_depth += 1
 self.ref.in_scheduled_downtime = True
 for dt in self.activate_me:
 res.extend(dt.enter())
 return res

 # The end of the downtime was reached.

[docs] def exit(self):
 res = []
 if self.is_in_effect == True:
 # This was a fixed or a flexible+triggered downtime
 self.is_in_effect = False
 self.ref.scheduled_downtime_depth -= 1
 if self.ref.scheduled_downtime_depth == 0:
 self.ref.raise_exit_downtime_log_entry()
 self.ref.create_notifications('DOWNTIMEEND')
 self.ref.in_scheduled_downtime = False
 else:
 # This was probably a flexible downtime which was not triggered
 # In this case it silently disappears
 pass
 self.del_automatic_comment()
 self.can_be_deleted = True
 # when a downtime ends and the service was critical
 # a notification is sent with the next critical check
 # So we should set a flag here which signals consume_result
 # to send a notification
 self.ref.in_scheduled_downtime_during_last_check = True
 return res

 # A scheduled downtime was prematurely canceled

[docs] def cancel(self):
 res = []
 self.is_in_effect = False
 self.ref.scheduled_downtime_depth -= 1
 if self.ref.scheduled_downtime_depth == 0:
 self.ref.raise_cancel_downtime_log_entry()
 self.ref.in_scheduled_downtime = False
 self.del_automatic_comment()
 self.can_be_deleted = True
 self.ref.in_scheduled_downtime_during_last_check = True
 # Nagios does not notify on canceled downtimes
 #res.extend(self.ref.create_notifications('DOWNTIMECANCELLED'))
 # Also cancel other downtimes triggered by me
 for dt in self.activate_me:
 res.extend(dt.cancel())
 return res

 # Scheduling a downtime creates a comment automatically

[docs] def add_automatic_comment(self):
 if self.fixed == True:
 text = "This %s has been scheduled for fixed downtime from %s to %s. Notifications for the %s will not be sent out during that time period." % (self.ref.my_type, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)), self.ref.my_type)
 else:
 hours, remainder = divmod(self.duration, 3600)
 minutes, seconds = divmod(remainder, 60)
 text = "This %s has been scheduled for flexible downtime starting between %s and %s and lasting for a period of %d hours and %d minutes. Notifications for the %s will not be sent out during that time period." % (self.ref.my_type, time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.start_time)), time.strftime("%Y-%m-%d %H:%M:%S", time.localtime(self.end_time)), hours, minutes, self.ref.my_type)
 if self.ref.my_type == 'host':
 comment_type = 1
 else:
 comment_type = 2
 c = Comment(self.ref, False, "(Nagios Process)", text, comment_type, 2, 0, False, 0)
 self.comment_id = c.id
 self.extra_comment = c
 self.ref.add_comment(c)

[docs] def del_automatic_comment(self):
 # Extra comment can be None if we load it from a old version of Shinken
 # TODO: remove it in a future version when every one got upgrade
 if self.extra_comment is not None:
 self.extra_comment.can_be_deleted = True
 #self.ref.del_comment(self.comment_id)

 # Fill data with info of item by looking at brok_type
 # in props of properties or running_properties

[docs] def fill_data_brok_from(self, data, brok_type):
 cls = self.__class__
 # Now config properties
 for prop, entry in cls.properties.items():
 if hasattr(prop, 'fill_brok'):
 if brok_type in entry['fill_brok']:
 data[prop] = getattr(self, prop)

 # Get a brok with initial status

[docs] def get_initial_status_brok(self):
 data = {'id': self.id}

 self.fill_data_brok_from(data, 'full_status')
 b = Brok('downtime_raise', data)
 return b

 # Call by pickle for dataify the downtime
 # because we DO NOT WANT REF in this pickleisation!

 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)
 return res

 # Inverted function of getstate
 def __setstate__(self, state):
 cls = self.__class__

 # Maybe it's not a dict but a list like in the old 0.4 format
 # so we should call the 0.4 function for it
 if isinstance(state, list):
 self.__setstate_deprecated__(state)
 return

 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])

 if self.id >= cls.id:
 cls.id = self.id + 1

 # This function is DEPRECATED and will be removed in a future version of
 # Shinken. It should not be useful any more after a first load/save pass.

 # Inversed function of getstate
 def __setstate_deprecated__(self, state):
 cls = self.__class__
 # Check if the len of this state is like the previous,
 # if not, we will do errors!
 # -1 because of the 'id' prop
 if len(cls.properties) != (len(state) - 1):
 logger.info("Passing downtime")
 return

 self.id = state.pop()
 for prop in cls.properties:
 val = state.pop()
 setattr(self, prop, val)
 if self.id >= cls.id:
 cls.id = self.id + 1

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/db.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.db

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class DB(object):
 """DB is a generic class for SQL Database"""

 def __init__(self, table_prefix=''):
 self.table_prefix = table_prefix

[docs] def stringify(self, val):
 """Get a unicode from a value"""
 # If raw string, go in unicode
 if isinstance(val, str):
 val = val.decode('utf8', 'ignore').replace("'", "''")
 elif isinstance(val, unicode):
 val = val.replace("'", "''")
 else: # other type, we can str
 val = unicode(str(val))
 val = val.replace("'", "''")
 return val

[docs] def create_insert_query(self, table, data):
 """Create a INSERT query in table with all data of data (a dict)"""
 query = u"INSERT INTO %s " % (self.table_prefix + table)
 props_str = u' ('
 values_str = u' ('
 i = 0 # f or the ',' problem... look like C here...
 for prop in data:
 i += 1
 val = data[prop]
 # Boolean must be catch, because we want 0 or 1, not True or False
 if isinstance(val, bool):
 if val:
 val = 1
 else:
 val = 0

 # Get a string of the value
 val = self.stringify(val)

 if i == 1:
 props_str = props_str + u"%s " % prop
 values_str = values_str + u"'%s' " % val
 else:
 props_str = props_str + u", %s " % prop
 values_str = values_str + u", '%s' " % val

 # Ok we've got data, let's finish the query
 props_str = props_str + u')'
 values_str = values_str + u')'
 query = query + props_str + u' VALUES' + values_str
 return query

[docs] def create_update_query(self, table, data, where_data):
 """Create a update query of table with data, and use where data for
 the WHERE clause
 """
 query = u"UPDATE %s set " % (self.table_prefix + table)

 # First data manage
 query_follow = ''
 i = 0 # for the , problem...
 for prop in data:
 # Do not need to update a property that is in where
 # it is even dangerous, will raise a warning
 if prop not in where_data:
 i += 1
 val = data[prop]
 # Boolean must be catch, because we want 0 or 1, not True or False
 if isinstance(val, bool):
 if val:
 val = 1
 else:
 val = 0

 # Get a string of the value
 val = self.stringify(val)

 if i == 1:
 query_follow += u"%s='%s' " % (prop, val)
 else:
 query_follow += u", %s='%s' " % (prop, val)

 # Ok for data, now WHERE, same things
 where_clause = u" WHERE "
 i = 0 # For the 'and' problem
 for prop in where_data:
 i += 1
 val = where_data[prop]
 # Boolean must be catch, because we want 0 or 1, not True or False
 if isinstance(val, bool):
 if val:
 val = 1
 else:
 val = 0

 # Get a string of the value
 val = self.stringify(val)

 if i == 1:
 where_clause += u"%s='%s' " % (prop, val)
 else:
 where_clause += u"and %s='%s' " % (prop, val)

 query = query + query_follow + where_clause
 return query

[docs] def fetchone(self):
 """Just get an entry"""
 return self.db_cursor.fetchone()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/db_mysql.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.db_mysql

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import MySQLdb
from MySQLdb import IntegrityError
from MySQLdb import ProgrammingError
import _mysql_exceptions

from shinken.db import DB
from shinken.log import logger

[docs]class DBMysql(DB):
 """DBMysql is a MySQL access database class"""

 def __init__(self, host, user, password, database, character_set,
 table_prefix='', port=3306):
 self.host = host
 self.user = user
 self.password = password
 self.database = database
 self.character_set = character_set
 self.table_prefix = table_prefix
 self.port = port

[docs] def connect_database(self):
 """Create the database connection
 TODO: finish (begin :)) error catch and conf parameters...
 Import to catch exception
 """

 # self.db = MySQLdb.connect (host = "localhost", user = "root",
 # passwd = "root", db = "merlin")
 self.db = MySQLdb.connect(host=self.host, user=self.user,
 passwd=self.password, db=self.database,
 port=self.port)
 self.db.set_character_set(self.character_set)
 self.db_cursor = self.db.cursor()
 self.db_cursor.execute('SET NAMES %s;' % self.character_set)
 self.db_cursor.execute('SET CHARACTER SET %s;' % self.character_set)
 self.db_cursor.execute('SET character_set_connection=%s;' %
 self.character_set)
 # Thanks:
 # http://www.dasprids.de/blog/2007/12/17/python-mysqldb-and-utf-8
 # for utf8 code :)

[docs] def execute_query(self, query, do_debug=False):
 """Just run the query
 TODO: finish catch
 """
 if do_debug:
 logger.debug("[MysqlDB]I run query %s" % query)
 try:
 self.db_cursor.execute(query)
 self.db.commit()
 except IntegrityError, exp:
 logger.warning("[MysqlDB] A query raised an integrity error:" \
 " %s, %s" % (query, exp))
 except ProgrammingError, exp:
 logger.warning("[MysqlDB] A query raised a programming error:" \
 " %s, %s" % (query, exp))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/worker.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.worker

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from Queue import Empty

In android, we should use threads, not process
is_android = True
try:
 import android
except ImportError:
 is_android = False

if not is_android:
 from multiprocessing import Process, Queue
else:
 from Queue import Queue
 from threading import Thread as Process

import time
import sys
import signal
import traceback
import cStringIO

from log import logger

[docs]class Worker:
 """This class is used for poller and reactionner to work.
 The worker is a process launch by theses process and read Message in a Queue
 (self.s) (slave)
 They launch the Check and then send the result in the Queue self.m (master)
 they can die if they do not do anything (param timeout)

 """

 id = 0 # None
 _process = None
 _mortal = None
 _idletime = None
 _timeout = None
 _c = None

 def __init__(self, id, s, returns_queue, processes_by_worker, mortal=True, timeout=300, max_plugins_output_length=8192, target=None, loaded_into='unknown'):
 self.id = self.__class__.id
 self.__class__.id += 1

 self._mortal = mortal
 self._idletime = 0
 self._timeout = timeout
 self.s = None
 self.processes_by_worker = processes_by_worker
 self._c = Queue() # Private Control queue for the Worker
 # By default, take our own code
 if target is None:
 target = self.work
 self._process = Process(target=target, args=(s, returns_queue, self._c))
 self.returns_queue = returns_queue
 self.max_plugins_output_length = max_plugins_output_length
 self.i_am_dying = False
 # Keep a trace where the worker is launch from (poller or reactionner?)
 self.loaded_into = loaded_into

[docs] def is_mortal(self):
 return self._mortal

[docs] def start(self):
 self._process.start()

 # Kill the background process
 # AND close correctly the queues (input and output)
 # each queue got a thread, so close it too....

[docs] def terminate(self):
 # We can just terminate process, not threads
 if not is_android:
 self._process.terminate()
 # Is we are with a Manager() way
 # there should be not such functions
 if hasattr(self._c, 'close'):
 self._c.close()
 self._c.join_thread()
 if hasattr(self.s, 'close'):
 self.s.close()
 self.s.join_thread()

[docs] def join(self, timeout=None):
 self._process.join(timeout)

[docs] def is_alive(self):
 return self._process.is_alive()

[docs] def is_killable(self):
 return self._mortal and self._idletime > self._timeout

[docs] def add_idletime(self, time):
 self._idletime = self._idletime + time

[docs] def reset_idle(self):
 self._idletime = 0

[docs] def send_message(self, msg):
 self._c.put(msg)

 # A zombie is immortal, so kill not be kill anymore

[docs] def set_zombie(self):
 self._mortal = False

 # Get new checks if less than nb_checks_max
 # If no new checks got and no check in queue,
 # sleep for 1 sec
 # REF: doc/shinken-action-queues.png (3)

[docs] def get_new_checks(self):
 try:
 while(len(self.checks) < self.processes_by_worker):
 #print "I", self.id, "wait for a message"
 msg = self.s.get(block=False)
 if msg is not None:
 self.checks.append(msg.get_data())
 #print "I", self.id, "I've got a message!"
 except Empty, exp:
 if len(self.checks) == 0:
 self._idletime = self._idletime + 1
 time.sleep(1)
 # Maybe the Queue() is not available, if so, just return
 # get back to work :)
 except IOError, exp:
 return

 # Launch checks that are in status
 # REF: doc/shinken-action-queues.png (4)

[docs] def launch_new_checks(self):
 # queue
 for chk in self.checks:
 if chk.status == 'queue':
 self._idletime = 0
 r = chk.execute()
 # Maybe we got a true big problem in the
 # action launching
 if r == 'toomanyopenfiles':
 # We should die as soon as we return all checks
 logger.error("[%d] I am dying Too many open files %s ... " % (self.id, chk))
 self.i_am_dying = True

 # Check the status of checks
 # if done, return message finished :)
 # REF: doc/shinken-action-queues.png (5)

[docs] def manage_finished_checks(self):
 to_del = []
 wait_time = 1
 now = time.time()
 for action in self.checks:
 if action.status == 'launched' and action.last_poll < now - action.wait_time:
 action.check_finished(self.max_plugins_output_length)
 wait_time = min(wait_time, action.wait_time)
 # If action done, we can launch a new one
 if action.status in ('done', 'timeout'):
 to_del.append(action)
 # We answer to the master
 #msg = Message(id=self.id, type='Result', data=action)
 try:
 self.returns_queue.put(action)
 except IOError, exp:
 logger.error("[%d] Exiting: %s" % (self.id, exp))
 sys.exit(2)

 # Little sleep
 self.wait_time = wait_time

 for chk in to_del:
 self.checks.remove(chk)

 # Little sleep
 time.sleep(wait_time)

 # Check if our system time change. If so, change our

[docs] def check_for_system_time_change(self):
 now = time.time()
 difference = now - self.t_each_loop

 # Now set the new value for the tick loop
 self.t_each_loop = now

 # return the diff if it need, of just 0
 if abs(difference) > 900:
 return difference
 else:
 return 0

 # Wrapper function for work in order to catch the exception
 # to see the real work, look at do_work

[docs] def work(self, s, returns_queue, c):
 try:
 self.do_work(s, returns_queue, c)
 # Catch any exception, try to print it and exit anyway
 except Exception, exp:
 output = cStringIO.StringIO()
 traceback.print_exc(file=output)
 logger.error("Worker '%d' exit with an unmanaged exception : %s" % (self.id, output.getvalue()))
 output.close()
 # Ok I die now
 raise

 # id = id of the worker
 # s = Global Queue Master->Slave
 # m = Queue Slave->Master
 # return_queue = queue managed by manager
 # c = Control Queue for the worker

[docs] def do_work(self, s, returns_queue, c):
 ## restore default signal handler for the workers:
 # but on android, we are a thread, so don't do it
 if not is_android:
 signal.signal(signal.SIGTERM, signal.SIG_DFL)

 self.set_proctitle()

 timeout = 1.0
 self.checks = []
 self.returns_queue = returns_queue
 self.s = s
 self.t_each_loop = time.time()
 while True:
 begin = time.time()
 msg = None
 cmsg = None

 # If we are dying (big problem!) we do not
 # take new jobs, we just finished the current one
 if not self.i_am_dying:
 # REF: doc/shinken-action-queues.png (3)
 self.get_new_checks()
 # REF: doc/shinken-action-queues.png (4)
 self.launch_new_checks()
 # REF: doc/shinken-action-queues.png (5)
 self.manage_finished_checks()

 # Now get order from master
 try:
 cmsg = c.get(block=False)
 if cmsg.get_type() == 'Die':
 logger.debug("[%d] Dad say we are dying..." % self.id)
 break
 except:
 pass

 if self._mortal == True and self._idletime > 2 * self._timeout:
 logger.warning("[%d] Timeout, Harakiri" % self.id)
 # The master must be dead and we are lonely, we must die
 break

 # Look if we are dying, and if we finish all current checks
 # if so, we really die, our master poller will launch a new
 # worker because we were too weak to manage our job :(
 if len(self.checks) == 0 and self.i_am_dying:
 logger.warning("[%d] I DIE because I cannot do my job as I should (too many open files?)... forgot me please." % self.id)
 break

 # Manage a possible time change (our avant will be change with the diff)
 diff = self.check_for_system_time_change()
 begin += diff

 timeout -= time.time() - begin
 if timeout < 0:
 timeout = 1.0

[docs] def set_proctitle(self):
 try:
 from setproctitle import setproctitle
 setproctitle("shinken-%s worker" % self.loaded_into)
 except:
 pass

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/daterange.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.daterange

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time, calendar

from shinken.util import get_sec_from_morning, get_day, get_start_of_day, get_end_of_day
from shinken.log import logger

Get the day number (like 27 in July Tuesday 27 2010 for call:
2010, July, Tuesday, -1 (last Tuesday of July 2010)
[docs]def find_day_by_weekday_offset(year, month, weekday, offset):
 # get the id of the weekday (1 for Tuesday)
 weekday_id = Daterange.get_weekday_id(weekday)
 if weekday_id is None:
 return None

 # same for month
 month_id = Daterange.get_month_id(month)
 if month_id is None:
 return None

 # thanks calendar :)
 cal = calendar.monthcalendar(year, month_id)

 # If we ask for a -1 day, just reverse cal
 if offset < 0:
 offset = abs(offset)
 cal.reverse()

 # ok go for it
 nb_found = 0
 try:
 for i in xrange(0, offset + 1):
 # in cal 0 mean "there are no day here :)"
 if cal[i][weekday_id] != 0:
 nb_found += 1
 if nb_found == offset:
 return cal[i][weekday_id]
 return None
 except:
 return None

[docs]def find_day_by_offset(year, month, offset):
 month_id = Daterange.get_month_id(month)
 if month_id is None:
 return None
 (tmp, days_in_month) = calendar.monthrange(year, month_id)
 if offset >= 0:
 return min(offset, days_in_month)
 else:
 return max(1, days_in_month + offset + 1)

[docs]class Timerange:

 # entry is like 00:00-24:00
 def __init__(self, entry):
 entries = entry.split('-')
 start = entries[0]
 end = entries[1]
 sentries = start.split(':')
 self.hstart = int(sentries[0])
 self.mstart = int(sentries[1])
 eentries = end.split(':')
 self.hend = int(eentries[0])
 self.mend = int(eentries[1])

 def __str__(self):
 return str(self.__dict__)

[docs] def get_sec_from_morning(self):
 return self.hstart*3600 + self.mstart*60

[docs] def get_first_sec_out_from_morning(self):
 # If start at 0:0, the min out is the end
 if self.hstart == 0 and self.mstart == 0:
 return self.hend*3600 + self.mend*60
 return 0

[docs] def is_time_valid(self, t):
 sec_from_morning = get_sec_from_morning(t)
 return self.hstart*3600 + self.mstart* 60 <= sec_from_morning <= self.hend*3600 + self.mend* 60

""" TODO: Add some comment about this class for the doc"""
[docs]class Daterange:
 weekdays = {'monday': 0, 'tuesday': 1, 'wednesday': 2, 'thursday': 3, \
 'friday': 4, 'saturday': 5, 'sunday': 6}
 months = {'january': 1, 'february': 2, 'march': 3, 'april': 4, 'may': 5, \
 'june': 6, 'july': 7, 'august': 8, 'september': 9, \
 'october': 10, 'november': 11, 'december': 12}

 def __init__(self, syear, smon, smday, swday, swday_offset,
 eyear, emon, emday, ewday, ewday_offset, skip_interval, other):
 self.syear = int(syear)
 self.smon = smon
 self.smday = int(smday)
 self.swday = swday
 self.swday_offset = int(swday_offset)
 self.eyear = int(eyear)
 self.emon = emon
 self.emday = int(emday)
 self.ewday = ewday
 self.ewday_offset = int(ewday_offset)
 self.skip_interval = int(skip_interval)
 self.other = other
 self.timeranges = []

 for timeinterval in other.split(','):
 self.timeranges.append(Timerange(timeinterval.strip()))

 def __str__(self):
 return '' # str(self.__dict__)

 # By default, daterange are correct
[docs] def is_correct(self):
 return True

[docs] def get_month_id(cls, month):
 try:
 return Daterange.months[month]
 except:
 return None

 get_month_id = classmethod(get_month_id)

 # @memoized
[docs] def get_month_by_id(cls, id):
 id = id % 12
 for key in Daterange.months:
 if id == Daterange.months[key]:
 return key
 return None

 get_month_by_id = classmethod(get_month_by_id)

[docs] def get_weekday_id(cls, weekday):
 try:
 return Daterange.weekdays[weekday]
 except:
 return None

 get_weekday_id = classmethod(get_weekday_id)

[docs] def get_weekday_by_id(cls, id):
 id = id % 7
 for key in Daterange.weekdays:
 if id == Daterange.weekdays[key]:
 return key
 return None

 get_weekday_by_id = classmethod(get_weekday_by_id)

[docs] def get_start_and_end_time(self, ref=None):
 logger.warning("Calling function get_start_and_end_time which is not implemented")

[docs] def is_time_valid(self, t):
 #print "****Look for time valid for", time.asctime(time.localtime(t))
 if self.is_time_day_valid(t):
 #print "is time day valid"
 for tr in self.timeranges:
 #print tr, "is valid?", tr.is_time_valid(t)
 if tr.is_time_valid(t):
 #print "return True"
 return True
 return False

[docs] def get_min_sec_from_morning(self):
 mins = []
 for tr in self.timeranges:
 mins.append(tr.get_sec_from_morning())
 return min(mins)

[docs] def get_min_sec_out_from_morning(self):
 mins = []
 for tr in self.timeranges:
 mins.append(tr.get_first_sec_out_from_morning())
 return min(mins)

[docs] def get_min_from_t(self, t):
 if self.is_time_valid(t):
 return t
 t_day_epoch = get_day(t)
 tr_mins = self.get_min_sec_from_morning()
 return t_day_epoch + tr_mins

[docs] def is_time_day_valid(self, t):
 (start_time, end_time) = self.get_start_and_end_time(t)
 if start_time <= t <= end_time:
 return True
 else:
 return False

[docs] def is_time_day_invalid(self, t):
 (start_time, end_time) = self.get_start_and_end_time(t)
 if start_time <= t <= end_time:
 return False
 else:
 return True

[docs] def get_next_future_timerange_valid(self, t):
 #print "Look for get_next_future_timerange_valid for t", t, time.asctime(time.localtime(t))
 sec_from_morning = get_sec_from_morning(t)
 starts = []
 for tr in self.timeranges:
 tr_start = tr.hstart * 3600 + tr.mstart * 60
 if tr_start >= sec_from_morning:
 starts.append(tr_start)
 if starts != []:
 return min(starts)
 else:
 return None

[docs] def get_next_future_timerange_invalid(self, t):
 #print 'Call for get_next_future_timerange_invalid from ', time.asctime(time.localtime(t))
 sec_from_morning = get_sec_from_morning(t)
 #print 'sec from morning', sec_from_morning
 ends = []
 for tr in self.timeranges:
 tr_start = tr.hstart * 3600 + tr.mstart * 60
 if tr_start >= sec_from_morning:
 ends.append(tr_start)
 tr_end = tr.hend * 3600 + tr.mend * 60
 if tr_end >= sec_from_morning:
 ends.append(tr_end)
 #print "Ends:", ends
 # Remove the last second of the day for 00->24h"
 if 86400 in ends:
 ends.remove(86400)
 if ends != []:
 return min(ends)
 else:
 return None

[docs] def get_next_valid_day(self, t):
 if self.get_next_future_timerange_valid(t) is None:
 # this day is finish, we check for next period
 (start_time, end_time) = self.get_start_and_end_time(get_day(t)+86400)
 else:
 (start_time, end_time) = self.get_start_and_end_time(t)

 if t <= start_time:
 return get_day(start_time)

 if self.is_time_day_valid(t):
 return get_day(t)
 return None

[docs] def get_next_valid_time_from_t(self, t):
 #print "\tDR Get next valid from:", time.asctime(time.localtime(t))
 #print "DR Get next valid from:", t
 if self.is_time_valid(t):
 return t

 #print "DR Get next valid from:", time.asctime(time.localtime(t))
 # First we search fot the day of t
 t_day = self.get_next_valid_day(t)

 #print "DR: T next valid day", time.asctime(time.localtime(t_day))

 # We search for the min of all tr.start > sec_from_morning
 # if it's the next day, use a start of the day search for timerange
 if t < t_day:
 sec_from_morning = self.get_next_future_timerange_valid(t_day)
 else: # t is in this day, so look from t (can be in the evening or so)
 sec_from_morning = self.get_next_future_timerange_valid(t)
 #print "DR: sec from morning", sec_from_morning

 if sec_from_morning is not None:
 if t_day is not None and sec_from_morning is not None:
 return t_day + sec_from_morning

 # Then we search for the next day of t
 # The sec will be the min of the day
 t = get_day(t) + 86400
 t_day2 = self.get_next_valid_day(t)
 sec_from_morning = self.get_next_future_timerange_valid(t_day2)
 if t_day2 is not None and sec_from_morning is not None:
 return t_day2 + sec_from_morning
 else:
 # I'm not find any valid time
 return None

[docs] def get_next_invalid_day(self, t):
 #print "Look in", self.__dict__
 #print 'DR: get_next_invalid_day for', time.asctime(time.localtime(t))
 if self.is_time_day_invalid(t):
 #print "EARLY RETURN"
 return t

 next_future_timerange_invalid = self.get_next_future_timerange_invalid(t)
 #print "next_future_timerange_invalid:", next_future_timerange_invalid

 # If today there is no more unavailable timerange, search the next day
 if next_future_timerange_invalid is None:
 #print 'DR: get_next_future_timerange_invalid is None'
 #this day is finish, we check for next period
 (start_time, end_time) = self.get_start_and_end_time(get_day(t))
 else:
 #print 'DR: get_next_future_timerange_invalid is', time.asctime(time.localtime(next_future_timerange_invalid))
 (start_time, end_time) = self.get_start_and_end_time(t)

 #(start_time, end_time) = self.get_start_and_end_time(t)

 #print "START", time.asctime(time.localtime(start_time)), "END", time.asctime(time.localtime(end_time))
 # The next invalid day can be t day if there a possible
 # invalid time range (timerange is not 00->24
 if next_future_timerange_invalid is not None:
 if start_time <= t <= end_time:
 #print "Early Return next invalid day:", time.asctime(time.localtime(get_day(t)))
 return get_day(t)
 if start_time >= t:
 #print "start_time >= t:", time.asctime(time.localtime(get_day(start_time)))
 return get_day(start_time)
 else:
 # Else, there is no possibility than in our start_time<->end_time we got
 # any invalid time (full period out). So it's end_time+1 sec (tomorrow of end_time)
 # print "Full period out, got end_time", time.asctime(time.localtime(get_day(end_time +1)))
 return get_day(end_time + 1)

 return None

[docs] def get_next_invalid_time_from_t(self, t):
 if not self.is_time_valid(t):
 return t

 # First we search fot the day of t
 t_day = self.get_next_invalid_day(t)
 #print "FUCK NEXT DAY", time.asctime(time.localtime(t_day))

 # We search for the min of all tr.start > sec_from_morning
 # if it's the next day, use a start of the day search for timerange
 if t < t_day:
 sec_from_morning = self.get_next_future_timerange_invalid(t_day)
 else: # t is in this day, so look from t (can be in the evening or so)
 sec_from_morning = self.get_next_future_timerange_invalid(t)
 #print "DR: sec from morning", sec_from_morning

 # tr can't be valid, or it will be return at the beginning
 #sec_from_morning = self.get_next_future_timerange_invalid(t)

 # Ok we've got a next invalid day and a invalid possibility in
 # timerange, so the next invalid is this day+sec_from_morning
 #print "T_day", t_day, "Sec from morning", sec_from_morning
 if t_day is not None and sec_from_morning is not None:
 return t_day + sec_from_morning + 1

 # We've got a day but no sec_from_morning: the timerange is full (0->24h)
 # so the next invalid is this day at the day_start
 if t_day is not None and sec_from_morning is None:
 return t_day

 # Then we search for the next day of t
 # The sec will be the min of the day
 t = get_day(t) + 86400
 t_day2 = self.get_next_invalid_day(t)
 sec_from_morning = self.get_next_future_timerange_invalid(t_day2)
 if t_day2 is not None and sec_from_morning is not None:
 return t_day2 + sec_from_morning + 1

 if t_day2 is not None and sec_from_morning is None:
 return t_day2
 else:
 # I'm not find any valid time
 return None

""" TODO: Add some comment about this class for the doc"""
[docs]class CalendarDaterange(Daterange):
[docs] def get_start_and_end_time(self, ref=None):
 start_time = get_start_of_day(self.syear, int(self.smon), self.smday)
 end_time = get_end_of_day(self.eyear, int(self.emon), self.emday)
 return (start_time, end_time)

""" TODO: Add some comment about this class for the doc"""
[docs]class StandardDaterange(Daterange):
 def __init__(self, day, other):
 self.other = other
 self.timeranges = []

 for timeinterval in other.split(','):
 self.timeranges.append(Timerange(timeinterval.strip()))
 self.day = day

 # It's correct only if the weekday (Sunday, etc) is a valid one
[docs] def is_correct(self):
 b = self.day in Daterange.weekdays
 if not b:
 logger.error("Error: %s is not a valid day" % self.day)
 return b

[docs] def get_start_and_end_time(self, ref=None):
 now = time.localtime(ref)
 self.syear = now.tm_year
 self.month = now.tm_mon
 #month_start_id = now.tm_mon
 #month_start = Daterange.get_month_by_id(month_start_id)
 self.wday = now.tm_wday
 day_id = Daterange.get_weekday_id(self.day)
 today_morning = get_start_of_day(now.tm_year, now.tm_mon, now.tm_mday)
 tonight = get_end_of_day(now.tm_year, now.tm_mon, now.tm_mday)
 day_diff = (day_id - now.tm_wday) % 7
 return (today_morning + day_diff*86400, tonight + day_diff*86400)

""" TODO: Add some comment about this class for the doc"""
[docs]class MonthWeekDayDaterange(Daterange):

 # It's correct only if the weekday (Sunday, etc) is a valid one
[docs] def is_correct(self):
 b = True
 b &= self.swday in Daterange.weekdays
 if not b:
 logger.error("Error: %s is not a valid day" % self.swday)

 b &= self.ewday in Daterange.weekdays
 if not b:
 logger.error("Error: %s is not a valid day" % self.ewday)

 return b

[docs] def get_start_and_end_time(self, ref=None):
 now = time.localtime(ref)

 if self.syear == 0:
 self.syear = now.tm_year
 month_id = Daterange.get_month_id(self.smon)
 day_start = find_day_by_weekday_offset(self.syear, self.smon, self.swday, self.swday_offset)
 start_time = get_start_of_day(self.syear, month_id, day_start)

 if self.eyear == 0:
 self.eyear = now.tm_year
 month_end_id = Daterange.get_month_id(self.emon)
 day_end = find_day_by_weekday_offset(self.eyear, self.emon, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 now_epoch = time.mktime(now)
 if start_time > end_time: # the period is between years
 if now_epoch > end_time: # check for next year
 day_end = find_day_by_weekday_offset(self.eyear + 1, self.emon, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear + 1, month_end_id, day_end)
 else:
 # it s just that the start was the last year
 day_start = find_day_by_weekday_offset(self.syear - 1, self.smon, self.swday, self.swday_offset)
 start_time = get_start_of_day(self.syear - 1, month_id, day_start)
 else:
 if now_epoch > end_time:
 # just have to check for next year if necessary
 day_start = find_day_by_weekday_offset(self.syear + 1, self.smon, self.swday, self.swday_offset)
 start_time = get_start_of_day(self.syear + 1, month_id, day_start)
 day_end = find_day_by_weekday_offset(self.eyear + 1, self.emon, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear + 1, month_end_id, day_end)

 return (start_time, end_time)

""" TODO: Add some comment about this class for the doc"""
[docs]class MonthDateDaterange(Daterange):
[docs] def get_start_and_end_time(self, ref=None):
 now = time.localtime(ref)
 if self.syear == 0:
 self.syear = now.tm_year
 month_start_id = Daterange.get_month_id(self.smon)
 day_start = find_day_by_offset(self.syear, self.smon, self.smday)
 start_time = get_start_of_day(self.syear, month_start_id, day_start)

 if self.eyear == 0:
 self.eyear = now.tm_year
 month_end_id = Daterange.get_month_id(self.emon)
 day_end = find_day_by_offset(self.eyear, self.emon, self.emday)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 now_epoch = time.mktime(now)
 if start_time > end_time: # the period is between years
 if now_epoch > end_time:
 # check for next year
 day_end = find_day_by_offset(self.eyear + 1, self.emon, self.emday)
 end_time = get_end_of_day(self.eyear + 1, month_end_id, day_end)
 else:
 # it s just that start was the last year
 day_start = find_day_by_offset(self.syear-1, self.smon, self.emday)
 start_time = get_start_of_day(self.syear-1, month_start_id, day_start)
 else:
 if now_epoch > end_time:
 # just have to check for next year if necessary
 day_start = find_day_by_offset(self.syear+1, self.smon, self.emday)
 start_time = get_start_of_day(self.syear+1, month_start_id, day_start)
 day_end = find_day_by_offset(self.eyear+1, self.emon, self.emday)
 end_time = get_end_of_day(self.eyear+1, month_end_id, day_end)

 return (start_time, end_time)

""" TODO: Add some comment about this class for the doc"""
[docs]class WeekDayDaterange(Daterange):
[docs] def get_start_and_end_time(self, ref=None):
 now = time.localtime(ref)

 # If no year, it's our year
 if self.syear == 0:
 self.syear = now.tm_year
 month_start_id = now.tm_mon
 month_start = Daterange.get_month_by_id(month_start_id)
 day_start = find_day_by_weekday_offset(self.syear, month_start, self.swday, self.swday_offset)
 start_time = get_start_of_day(self.syear, month_start_id, day_start)

 # Same for end year
 if self.eyear == 0:
 self.eyear = now.tm_year
 month_end_id = now.tm_mon
 month_end = Daterange.get_month_by_id(month_end_id)
 day_end = find_day_by_weekday_offset(self.eyear, month_end, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 # Maybe end_time is before start. So look for the
 # next month
 if start_time > end_time:
 month_end_id = month_end_id + 1
 if month_end_id > 12:
 month_end_id = 1
 self.eyear += 1
 month_end = Daterange.get_month_by_id(month_end_id)
 day_end = find_day_by_weekday_offset(self.eyear, month_end, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 now_epoch = time.mktime(now)
 # But maybe we look not enought far. We should add a month
 if end_time < now_epoch:
 month_end_id = month_end_id + 1
 month_start_id = month_start_id + 1
 if month_end_id > 12:
 month_end_id = 1
 self.eyear += 1
 if month_start_id > 12:
 month_start_id = 1
 self.syear += 1
 # First start
 month_start = Daterange.get_month_by_id(month_start_id)
 day_start = find_day_by_weekday_offset(self.syear, month_start, self.swday, self.swday_offset)
 start_time = get_start_of_day(self.syear, month_start_id, day_start)
 # Then end
 month_end = Daterange.get_month_by_id(month_end_id)
 day_end = find_day_by_weekday_offset(self.eyear, month_end, self.ewday, self.ewday_offset)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 return (start_time, end_time)

""" TODO: Add some comment about this class for the doc"""
[docs]class MonthDayDaterange(Daterange):
[docs] def get_start_and_end_time(self, ref=None):
 now = time.localtime(ref)
 if self.syear == 0:
 self.syear = now.tm_year
 month_start_id = now.tm_mon
 month_start = Daterange.get_month_by_id(month_start_id)
 day_start = find_day_by_offset(self.syear, month_start, self.smday)
 start_time = get_start_of_day(self.syear, month_start_id, day_start)

 if self.eyear == 0:
 self.eyear = now.tm_year
 month_end_id = now.tm_mon
 month_end = Daterange.get_month_by_id(month_end_id)
 day_end = find_day_by_offset(self.eyear, month_end, self.emday)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 now_epoch = time.mktime(now)

 if start_time > end_time:
 month_end_id = month_end_id + 1
 if month_end_id > 12:
 month_end_id = 1
 self.eyear += 1
 day_end = find_day_by_offset(self.eyear, month_end, self.emday)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 if end_time < now_epoch:
 month_end_id = month_end_id + 1
 month_start_id = month_start_id + 1
 if month_end_id > 12:
 month_end_id = 1
 self.eyear += 1
 if month_start_id > 12:
 month_start_id = 1
 self.syear += 1

 # For the start
 month_start = Daterange.get_month_by_id(month_start_id)
 day_start = find_day_by_offset(self.syear, month_start, self.smday)
 start_time = get_start_of_day(self.syear, month_start_id, day_start)

 # For the end
 month_end = Daterange.get_month_by_id(month_end_id)
 day_end = find_day_by_offset(self.eyear, month_end, self.emday)
 end_time = get_end_of_day(self.eyear, month_end_id, day_end)

 return (start_time, end_time)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/log.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.log

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
import logging
import sys
from logging.handlers import TimedRotatingFileHandler

from brok import Brok

[docs]def is_tty():
 # Look if we are in a tty or not
 if hasattr(sys.stdout, 'isatty'):
 return sys.stdout.isatty()
 return False

if is_tty():
 # Try to load the terminal color. Won't work under python 2.4
 try:
 from shinken.misc.termcolor import cprint
 except (SyntaxError, ImportError), exp:
 # Outch can't import a cprint, do a simple print
 def cprint(s, color):
 print s
Ok it's a daemon mode, if so, just print
else:
[docs] def cprint(s, color):
 print s

obj = None
name = None
local_log = None
human_timestamp_log = False

[docs]class Log:
 """Shinken logger class, wrapping access to Python logging standard library."""
 "Store the numeric value from python logging class"
 NOTSET = logging.NOTSET
 DEBUG = logging.DEBUG
 INFO = logging.INFO
 WARNING = logging.WARNING
 ERROR = logging.ERROR
 CRITICAL = logging.CRITICAL

 def __init__(self):
 self._level = logging.NOTSET

[docs] def load_obj(self, object, name_=None):
 """ We load the object where we will put log broks
 with the 'add' method
 """
 global obj
 global name
 obj = object
 name = name_

 @staticmethod
[docs] def get_level_id(lvlName):
 """Convert a level name (string) to its integer value
 and vice-versa. Input a level and it will return a name.
 Raise KeyError when name or level not found
 """
 return logging._levelNames[lvlName]

 # We can have level as an int (logging.INFO) or a string INFO
 # if string, try to get the int value

[docs] def get_level(self):
 return logging.getLogger().getEffectiveLevel()

 # We can have level as an int (logging.INFO) or a string INFO
 # if string, try to get the int value

[docs] def set_level(self, level):
 if not isinstance(level, int):
 level = getattr(logging, level, None)
 if not level or not isinstance(level, int):
 raise TypeError('log level must be an integer')

 self._level = level
 logging.getLogger().setLevel(level)

[docs] def debug(self, msg, *args, **kwargs):
 self._log(logging.DEBUG, msg, *args, **kwargs)

[docs] def info(self, msg, *args, **kwargs):
 self._log(logging.INFO, msg, *args, **kwargs)

[docs] def warning(self, msg, *args, **kwargs):
 self._log(logging.WARNING, msg, *args, **kwargs)

[docs] def error(self, msg, *args, **kwargs):
 self._log(logging.ERROR, msg, *args, **kwargs)

[docs] def critical(self, msg, *args, **kwargs):
 self._log(logging.CRITICAL, msg, *args, **kwargs)

[docs] def log(self, message, format=None, print_it=True):
 """Old log method, kept for NAGIOS compatibility
 What strings should not use the new format ??"""
 self._log(logging.INFO, message, format, print_it, display_level=False)

 def _log(self, level, message, format=None, print_it=True, display_level=True):
 """We enter a log message, we format it, and we add the log brok"""
 global obj
 global name
 global local_log
 global human_timestamp_log

 # ignore messages when message level is lower than Log level
 if level < self._level:
 return

 # We format the log in UTF-8
 if isinstance(message, str):
 message = message.decode('UTF-8', 'replace')

 if format is None:
 lvlname = logging.getLevelName(level)

 if display_level:
 fmt = u'[%(date)s] %(level)-9s %(name)s%(msg)s\n'
 else:
 fmt = u'[%(date)s] %(name)s%(msg)s\n'

 args = {
 'date': (human_timestamp_log and time.asctime()
 or int(time.time())),
 'level': lvlname.capitalize()+' :',
 'name': name and ('[%s] ' % name) or '',
 'msg': message
 }
 s = fmt % args
 else:
 s = format % message

 if print_it and len(s) > 1:
 # Take a color so we can print if it's a TTY
 if is_tty():
 color = {Log.WARNING:'yellow', Log.CRITICAL:'magenta', Log.ERROR:'red'}.get(level, None)
 else:
 color = None

 # Print to standard output.
 # If the daemon is launched with a non UTF8 shell
 # we can have problems in printing, work around it.
 try:
 cprint(s[:-1], color)
 except UnicodeEncodeError:
 print s.encode('ascii', 'ignore')

 # We create the brok and load the log message
 # DEBUG level logs are logged by the daemon locally
 # and must not be forwarded to other satellites, or risk overloading them.
 if level != logging.DEBUG:
 b = Brok('log', {'log': s})
 obj.add(b)

 # If local logging is enabled, log to the defined handler, file.
 if local_log is not None:
 logging.log(level, s.strip())

[docs] def register_local_log(self, path, level=None):
 """The shinken logging wrapper can write to a local file if needed
 and return the file descriptor so we can avoid to
 close it.
 """
 global local_log

 if level is not None:
 self._level = level

 # Open the log and set to rotate once a day
 basic_log_handler = TimedRotatingFileHandler(path,
 'midnight',
 backupCount=5)
 basic_log_handler.setLevel(self._level)
 basic_log_formatter = logging.Formatter('%(asctime)s %(message)s')
 basic_log_handler.setFormatter(basic_log_formatter)
 logger = logging.getLogger()
 logger.addHandler(basic_log_handler)
 logger.setLevel(self._level)
 local_log = basic_log_handler

 # Return the file descriptor of this file
 return basic_log_handler.stream.fileno()

[docs] def quit(self):
 """Close the local log file at program exit"""
 global local_log
 if local_log:
 self.debug("Closing %s local_log" % str(local_log))
 local_log.close()

[docs] def set_human_format(self, on=True):
 """
 Set the output as human format.

 If the optional parameter `on` is False, the timestamps format
 will be reset to the default format.
 """
 global human_timestamp_log
 human_timestamp_log = bool(on)

logger = Log()

class __ConsoleLogger:
 """
 This wrapper class for logging and printing messages to stdout, too.

 :fixme: Implement this using an additional stream-handler, as soon
 as the logging system is based on the standard Python logging
 module.
 """
 def debug(self, msg, *args, **kwargs):
 self._log(Log.DEBUG, msg, *args, **kwargs)

 def info(self, msg, *args, **kwargs):
 kwargs.setdefault('display_level', False)
 self._log(Log.INFO, msg, *args, **kwargs)

 def warning(self, msg, *args, **kwargs):
 self._log(Log.WARNING, msg, *args, **kwargs)

 def error(self, msg, *args, **kwargs):
 self._log(Log.ERROR, msg, *args, **kwargs)

 def critical(self, msg, *args, **kwargs):
 self._log(Log.CRITICAL, msg, *args, **kwargs)

 def _log(self, *args, **kwargs):
 # if `print_it` is not passed as an argument, set it to `true`
 kwargs.setdefault('print_it', True)
 logger._log(*args, **kwargs)

console_logger = __ConsoleLogger()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/contactdowntime.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.contactdowntime

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
from shinken.log import logger

""" TODO: Add some comment about this class for the doc"""
[docs]class ContactDowntime:
 id = 1

 # Just to list the properties we will send as pickle
 # so to others daemons, so all but NOT REF
 properties = {
 #'activate_me': None,
 #'entry_time': None,
 #'fixed': None,
 'start_time': None,
 #'duration': None,
 #'trigger_id': None,
 'end_time': None,
 #'real_end_time': None,
 'author': None,
 'comment': None,
 'is_in_effect': None,
 #'has_been_triggered': None,
 'can_be_deleted': None,
 }

 # Schedule a contact downtime. It's far more easy than a host/service
 # one because we got a beginning, and an end. That's all for running.
 # got also an author and a comment for logging purpose.
 def __init__(self, ref, start_time, end_time, author, comment):
 self.id = self.__class__.id
 self.__class__.id += 1
 self.ref = ref # pointer to srv or host we are apply
 self.start_time = start_time
 self.end_time = end_time
 self.author = author
 self.comment = comment
 self.is_in_effect = False
 self.can_be_deleted = False
 #self.add_automatic_comment()

 # Check if we came into the activation of this downtime
[docs] def check_activation(self):
 now = time.time()
 was_is_in_effect = self.is_in_effect
 self.is_in_effect = (self.start_time <= now <= self.end_time)
 logger.info("CHECK ACTIVATION:%s" % (self.is_in_effect))

 # Raise a log entry when we get in the downtime
 if not was_is_in_effect and self.is_in_effect:
 self.enter()

 # Same for exit purpose
 if was_is_in_effect and not self.is_in_effect:
 self.exit()

[docs] def in_scheduled_downtime(self):
 return self.is_in_effect

 # The referenced host/service object enters now a (or another) scheduled
 # downtime. Write a log message only if it was not already in a downtime

[docs] def enter(self):
 self.ref.raise_enter_downtime_log_entry()

 # The end of the downtime was reached.

[docs] def exit(self):
 self.ref.raise_exit_downtime_log_entry()
 self.can_be_deleted = True

 # A scheduled downtime was prematurely canceled

[docs] def cancel(self):
 self.is_in_effect = False
 self.ref.raise_cancel_downtime_log_entry()
 self.can_be_deleted = True

 # Call by pickle to dataify the comment
 # because we DO NOT WANT REF in this pickleisation!

 def __getstate__(self):
 #print "Asking a getstate for a downtime on", self.ref.get_dbg_name()
 cls = self.__class__
 # id is not in *_properties
 res = [self.id]
 for prop in cls.properties:
 res.append(getattr(self, prop))
 # We reverse because we want to recreate
 # By check at properties in the same order
 res.reverse()
 return res

 # Inverted function of getstate
 def __setstate__(self, state):
 cls = self.__class__
 self.id = state.pop()
 for prop in cls.properties:
 val = state.pop()
 setattr(self, prop, val)
 if self.id >= cls.id:
 cls.id = self.id + 1

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/complexexpression.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.complexexpression

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re
from shinken.util import strip_and_uniq

"""
Here is a node class for complex_expression(s) and a factory to create them
"""

[docs]class ComplexExpressionNode(object):
 def __init__(self):
 self.operand = None
 self.sons = []
 self.configuration_errors = []
 self.not_value = False
 # If leaf, the content will be the hostgroup or hosts
 # that are selected with this node
 self.leaf = False
 self.content = None

 def __str__(self):
 if not self.leaf:
 return "Op:'%s' Leaf:%s Sons:'[%s] IsNot:%s'" % (self.operand, self.leaf, ','.join([str(s) for s in self.sons]), self.not_value)
 else:
 return 'IS LEAF %s' % self.content

[docs] def resolve_elements(self):
 # If it's a leaf, we just need to dump a set with the content of the node
 if self.leaf:
 #print "Is a leaf", self.content
 if not self.content:
 return set()

 return set(self.content)

 # first got the not ones in a list, and the other in the other list
 not_nodes = [s for s in self.sons if s.not_value]
 positiv_nodes = [s for s in self.sons if not s.not_value] # ok a not not is hard to read...

 #print "Not nodes", not_nodes
 #print "Positiv nodes", positiv_nodes

 # By default we are using a OR rule
 if not self.operand:
 self.operand = '|'

 res = set()

 #print "Will now merge all of this", self.operand

 # The operand will change the positiv loop only
 i = 0
 for n in positiv_nodes:
 node_members = n.resolve_elements()
 if self.operand == '|':
 #print "OR rule", node_members
 res = res.union(node_members)
 elif self.operand == '&':
 #print "AND RULE", node_members
 # The first elements of an AND rule should be used
 if i == 0:
 res = node_members
 else:
 res = res.intersection(node_members)
 i += 1

 # And we finally remove all NOT elements from the result
 for n in not_nodes:
 node_members = n.resolve_elements()
 res = res.difference(node_members)

 return res

 # Check for empty (= not found) leaf nodes

[docs] def is_valid(self):

 valid = True
 if not self.sons:
 valid = False
 else:
 for s in self.sons:
 if isinstance(s, DependencyNode) and not s.is_valid():
 self.configuration_errors.extend(s.configuration_errors)
 valid = False
 return valid

""" TODO: Add some comment about this class for the doc"""
[docs]class ComplexExpressionFactory(object):
 def __init__(self, ctx='hostgroups', grps=None, all_elements=None):
 self.ctx = ctx
 self.grps = grps
 self.all_elements = all_elements

 # the () will be eval in a recursiv way, only one level of ()
[docs] def eval_cor_pattern(self, pattern):
 pattern = pattern.strip()
 #print "eval_cor_pattern::", pattern
 complex_node = False

 # Look if it's a complex pattern (with rule) or
 # if it's a leaf ofit, like a host/service
 for m in '()+&|,':
 if m in pattern:
 complex_node = True

 node = ComplexExpressionNode()
 #print "Is so complex?", complex_node, pattern, node

 # if it's a single expression like !linux or production
 # we will get the objects from it and return a leaf node
 if not complex_node:
 # If it's a not value, tag the node and find
 # the name without this ! operator
 if pattern.startswith('!'):
 node.not_value = True
 pattern = pattern[1:]

 node.operand = self.ctx
 node.leaf = True
 obj, error = self.find_object(pattern)
 if obj is not None:
 node.content = obj
 else:
 node.configuration_errors.append(error)
 return node

 in_par = False
 tmp = ''
 stacked_par = 0
 for c in pattern:
 #print "MATCHING", c
 if c == ',' or c == '|':
 # Maybe we are in a par, if so, just stack it
 if in_par:
 #print ", in a par, just staking it"
 tmp += c
 else:
 # Oh we got a real cut in an expression, if so, cut it
 #print "REAL , for cutting"
 tmp = tmp.strip()
 node.operand = '|'
 if tmp != '':
 #print "Will analyse the current str", tmp
 o = self.eval_cor_pattern(tmp)
 node.sons.append(o)
 tmp = ''

 elif c == '&' or c == '+':
 # Maybe we are in a par, if so, just stack it
 if in_par:
 #print " & in a par, just staking it"
 tmp += c
 else:
 # Oh we got a real cut in an expression, if so, cut it
 #print "REAL & for cutting"
 tmp = tmp.strip()
 node.operand = '&'
 if tmp != '':
 #print "Will analyse the current str", tmp
 o = self.eval_cor_pattern(tmp)
 node.sons.append(o)
 tmp = ''

 elif c == '(':
 stacked_par += 1
 #print "INCREASING STACK TO", stacked_par

 in_par = True
 tmp = tmp.strip()
 # Maybe we just start a par, but we got some things in tmp
 # that should not be good in fact !
 if stacked_par == 1 and tmp != '':
 #TODO : real error
 print "ERROR : bad expression near", tmp
 continue

 # If we are already in a par, add this (
 # but not if it's the first one so
 if stacked_par > 1:
 tmp += c
 #o = self.eval_cor_pattern(tmp)
 #print "1(I've %s got new sons" % pattern , o
 #node.sons.append(o)

 elif c == ')':
 #print "Need closeing a sub expression?", tmp
 stacked_par -= 1

 if stacked_par < 0:
 # TODO : real error
 print "Error : bad expression near", tmp, "too much ')'"
 continue

 if stacked_par == 0:
 #print "THIS is closing a sub compress expression", tmp
 tmp = tmp.strip()
 o = self.eval_cor_pattern(tmp)
 node.sons.append(o)
 in_par = False
 # OK now clean the tmp so we start clean
 tmp = ''
 continue

 # ok here we are still in a huge par, we just close one sub one
 tmp += c
 # Maybe it's a classic character, if so, continue
 else:
 tmp += c

 # Be sure to manage the trainling part when the line is done
 tmp = tmp.strip()
 if tmp != '':
 #print "Managing trainling part", tmp
 o = self.eval_cor_pattern(tmp)
 #print "4end I've %s got new sons" % pattern , o
 node.sons.append(o)

 #print "End, tmp", tmp
 #print "R %s:" % pattern, node
 return node

 # We've got an object, like super-grp, so we should link th group here

[docs] def find_object(self, pattern):
 obj = None
 error = None
 pattern = pattern.strip()

 if pattern == '*':
 obj = [h.host_name for h in self.all_elements.items.values()
 if getattr(h, 'host_name', '') != '' and not h.is_tpl()]
 return obj, error

 # Ok a more classic way

 #print "GRPS", self.grps

 if self.ctx == 'hostgroups':
 # Ok try to find this hostgroup
 hg = self.grps.find_by_name(pattern)
 # Maybe it's an known one?
 if not hg:
 error = "Error : cannot find the %s of the expression '%s'" % (self.ctx, pattern)
 return hg, error
 # Ok the group is found, get the elements!
 elts = hg.get_hosts().split(',')
 elts = strip_and_uniq(elts)

 # Maybe the hostgroup memebrs is '*', if so expand with all hosts
 if '*' in elts:
 elts.extend([h.host_name for h in self.all_elements.items.values()
 if getattr(h, 'host_name', '') != '' and not h.is_tpl()])
 # And remove this strange hostname too :)
 elts.remove('*')
 return elts, error

 else: #templates
 obj = self.grps.find_hosts_that_use_template(pattern)

 return obj, error

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/easter.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.easter

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from shinken.log import logger

[docs]def episode_iv():
 hst = 'towel.blinkenlights.nl'

 from telnetlib import Telnet

 t = Telnet(hst)
 while True:
 buf = t.read_until('mesfesses', 0.1)
 logger.info(buf)

[docs]def perdu():
 import urllib
 f = urllib.urlopen("http://www.perdu.com")
 logger.info(f.read())

[docs]def myip():
 import urllib
 f = urllib.urlopen("http://whatismyip.org/")
 logger.info(f.read())

[docs]def naheulbeuk():
 import os
 import urllib2
 from cStringIO import StringIO

 from PIL import Image
 import aalib

 if os.getenv('TERM') == 'linux':
 screen = aalib.LinuxScreen
 else:
 screen = aalib.AnsiScreen
 screen = screen(width=128, height=128)
 fp = StringIO(urllib2.urlopen('http://www.penofchaos.com/warham/bd/images/NBK-win7portrait-Nain02.JPG').read())
 image = Image.open(fp).convert('L').resize(screen.virtual_size)
 screen.put_image((0, 0), image)
 logger.info(screen.render())

[docs]def dark():
 r"""
 .-.
 |_:_|
 /(_Y_)\
 (\/M\/)
 '. _.'-/'-'\-'._
 ': _/.--'[[[[]'--._
 ': /_' : |::"| : '.\
 ': // ./ |oUU| \.' :\
 ': _:'..' _|___|_/ : :|
 ':. .' |_[___]_| :.':\
 [::\ | : | | : ; : \
 '-' \/'.| |.' \ .;.' |
 |_ \ '-' : |
 | \ \ .: : | |
 | \ | '. : \ |
 / \ :. .; |
 / | | :__/ : \\
 | | | \: | \ | ||
 / \ : : |: / |__| /|
 snd | : : :_/_| /'._\ '--|_\
 /___.-/_|-' \ \
 '-'

"""
 logger.info(dark.__doc__)

[docs]def get_coffee():
 r"""

 (
) (
 ___...(-------)-....___
 .-"") (""-.
 .-'``'|-._) _.-|
 / .--.| `""---...........---""` |
 / / | |
 | | | |
 \ \ | |
 `\ `\ | |
 `\ `| |
 _/ /\ /
 (__/ \ /
 ..---""` \ /`""---..
 .-' \ / '-.
 : `-.__ __.-' :
 :) ""---...---"" (:
 '._ `"--...___...--"` _.'
 jgs \""--..__ __..--""/
 '._ "'"----.....______.....----"'" _.'
 `""--..,,_____ _____,,..--""`
 `"'"----"'"`

"""
 logger.info(get_coffee.__doc__)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/acknowledge.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.acknowledge

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class Acknowledge:
 """
 Allows you to acknowledge the current problem for the specified service.
 By acknowledging the current problem, future notifications (for the same
 servicestate) are disabled.
 """
 id = 1

 # Just to list the properties we will send as pickle
 # so to others daemons, all but NOT REF
 properties = {
 'id': None,
 'sticky': None,
 'notify': None,
 'end_time': None,
 'author': None,
 'comment': None,
 }
 # If the "sticky" option is set to one (1), the acknowledgement
 # will remain until the service returns to an OK state. Otherwise
 # the acknowledgement will automatically be removed when the
 # service changes state. In this case Web interfaces set a value
 # of (2).
 #
 # If the "notify" option is set to one (1), a notification will be
 # sent out to contacts indicating that the current service problem
 # has been acknowledged.
 #
 # <WTF??>
 # If the "persistent" option is set to one (1), the comment
 # associated with the acknowledgement will survive across restarts
 # of the Shinken process. If not, the comment will be deleted the
 # next time Shinken restarts. "persistent" not only means "survive
 # restarts", but also
 #
 # => End of comment Missing!!
 # </WTF??>

 def __init__(self, ref, sticky, notify, persistent,
 author, comment, end_time=0):
 self.id = self.__class__.id
 self.__class__.id += 1
 self.ref = ref # pointer to srv or host we are applied
 self.sticky = sticky
 self.notify = notify
 self.end_time = end_time
 self.author = author
 self.comment = comment

 # Call by pickle for dataify the ackn
 # because we DO NOT WANT REF in this pickleisation!
 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)
 return res

 # Inversed function of getstate
 def __setstate__(self, state):
 cls = self.__class__
 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])
 # If load a old ack, set the end_time to 0 which refers to infinite
 if not hasattr(self, 'end_time'):
 self.end_time = 0

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/commandcall.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.commandcall

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from shinken.autoslots import AutoSlots
from shinken.property import StringProp, BoolProp, IntegerProp

[docs]class DummyCommandCall(object):
 """Ok, slots are fun: you cannot set the __autoslots__
 on the same class you use, fun isn't it? So we define*
 a dummy useless class to get such :)
 """
 pass

[docs]class CommandCall(DummyCommandCall):
 """This class is use when a service, contact or host define
 a command with args.
 """
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 #__slots__ = ('id', 'call', 'command', 'valid', 'args', 'poller_tag',
 # 'reactionner_tag', 'module_type', '__dict__')
 id = 0
 my_type = 'CommandCall'

 properties = {
 'call': StringProp(),
 'command': StringProp(),
 'poller_tag': StringProp(default='None'),
 'reactionner_tag': StringProp(default='None'),
 'module_type': StringProp(default='fork'),
 'valid': BoolProp(default=False),
 'args': StringProp(default=[]),
 'timeout': IntegerProp(default='-1'),
 'late_relink_done':BoolProp(default=False),
 }

 def __init__(self, commands, call, poller_tag='None',
 reactionner_tag='None'):
 self.id = self.__class__.id
 self.__class__.id += 1
 self.call = call
 self.timeout = -1
 # Now split by ! and get command and args
 self.get_command_and_args()
 self.command = commands.find_by_name(self.command.strip())
 self.late_relink_done = False # To do not relink again and again the same commandcall
 if self.command is not None:
 self.valid = True
 else:
 self.valid = False
 if self.valid:
 # If the host/service do not give an override poller_tag, take
 # the one of the command
 self.poller_tag = poller_tag # from host/service
 self.reactionner_tag = reactionner_tag
 self.module_type = self.command.module_type
 self.timeout = int(self.command.timeout)
 if self.valid and poller_tag is 'None':
 # from command if not set
 self.poller_tag = self.command.poller_tag
 # Same for reactionner tag
 if self.valid and reactionner_tag is 'None':
 # from command if not set
 self.reactionner_tag = self.command.reactionner_tag

[docs] def get_command_and_args(self):
 """We want to get the command and the args with ! splitting.
 but don't forget to protect against the \! to do not split them
 """

 # First protect
 p_call = self.call.replace('\!', '___PROTECT_EXCLAMATION___')
 tab = p_call.split('!')
 self.command = tab[0]
 # Reverse the protection
 self.args = [s.replace('___PROTECT_EXCLAMATION___', '!')
 for s in tab[1:]]

 # If we didn't already lately relink us, do it

[docs] def late_linkify_with_command(self, commands):
 if self.late_relink_done:
 return
 self.late_relink_done = True
 c = commands.find_by_name(self.command)
 self.command = c

[docs] def is_valid(self):
 return self.valid

 def __str__(self):
 return str(self.__dict__)

[docs] def get_name(self):
 return self.call

 def __getstate__(self):
 """Call by pickle to dataify the comment
 because we DO NOT WANT REF in this pickleisation!
 """
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}

 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)

 # The command is a bit special, we just put it's name
 # or a '' if need
 if self.command and not isinstance(self.command, basestring):
 res['command'] = self.command.get_name()
 # Maybe it's a repickle of a unpickle thing... (like with deepcopy). If so
 # only take the value
 elif self.command and isinstance(self.command, basestring):
 res['command'] = self.command
 else:
 res['command'] = ''

 return res

 def __setstate__(self, state):
 """Inverted function of getstate"""
 cls = self.__class__
 # We move during 1.0 to a dict state
 # but retention file from 0.8 was tuple
 if isinstance(state, tuple):
 self.__setstate_pre_1_0__(state)
 return

 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])

 def __setstate_pre_1_0__(self, state):
 """In 1.0 we move to a dict save. Before, it was
 a tuple save, like
 ({'id': 11}, {'poller_tag': 'None', 'reactionner_tag': 'None',
 'command_line': u'/usr/local/nagios/bin/rss-multiuser',
 'module_type': 'fork', 'command_name': u'notify-by-rss'})
 """
 for d in state:
 for k, v in d.items():
 setattr(self, k, v)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/sorteddict.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.sorteddict

#!/usr/bin/env python
#
sorteddict.py
Sorted dictionary (implementation for Python 2.x)
#
Copyright (c) 2010 Jan Kaliszewski (zuo)
#
The MIT License:
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

from bisect import bisect_left, insort
from itertools import izip, repeat

[docs]def dictdoc(method):
 "A decorator making reuse of the ordinary dict's docstrings more concise."
 dict_method = getattr(dict, method.__name__)
 if hasattr(dict_method, '__doc__'):
 method.__doc__ = dict_method.__doc__
 return method

[docs]class SortedDict(dict):
 '''Dictionary with sorted keys.

 The interface is similar to the ordinary dict's one, but:
 * methods: __repr__(), __str__(), __iter__(), iterkeys(), itervalues(),
 iteritems(), keys(), values(), items() and popitem() -- return results
 taking into consideration sorted keys order;
 * new methods: largest_key(), largest_item(), smallest_key(),
 smallest_item() added.
 '''

 def __init__(self, *args, **kwargs):
 '''Like with the ordinary dict: from a mapping, from an iterable
 of (key, value) pairs, or from keyword arguments.'''
 dict.__init__(self, *args, **kwargs)
 self._sorted_keys = sorted(dict.iterkeys(self))

 @dictdoc
 def __repr__(self):
 return 'SortedDict({%s})' % ', '.join('%r: %r' % item
 for item in self.iteritems())

 @dictdoc
 def __str__(self):
 return repr(self)

 @dictdoc
 def __setitem__(self, key, value):
 key_is_new = key not in self
 dict.__setitem__(self, key, value)
 if key_is_new:
 insort(self._sorted_keys, key)

 @dictdoc
 def __delitem__(self, key):
 dict.__delitem__(self, key)
 del self._sorted_keys[bisect_left(self._sorted_keys, key)]

 def __iter__(self, reverse=False):
 '''D.__iter__() <==> iter(D) <==> D.iterkeys() -> an iterator over
 sorted keys (add reverse=True for reverse ordering).'''
 if reverse:
 return reversed(self._sorted_keys)
 else:
 return iter(self._sorted_keys)

 iterkeys = __iter__

[docs] def itervalues(self, reverse=False):
 '''D.itervalues() -> an iterator over values sorted by keys
 (add reverse=True for reverse ordering).'''
 return (self[key] for key in self.iterkeys(reverse))

[docs] def iteritems(self, reverse=False):
 '''D.iteritems() -> an iterator over (key, value) pairs sorted by keys
 (add reverse=True for reverse ordering).'''
 return ((key, self[key]) for key in self.iterkeys(reverse))

[docs] def keys(self, reverse=False):
 '''D.keys() -> a sorted list of keys
 (add reverse=True for reverse ordering).'''
 return list(self.iterkeys(reverse))

[docs] def values(self, reverse=False):
 '''D.values() -> a list of values sorted by keys
 (add reverse=True for reverse ordering).'''
 return list(self.itervalues(reverse))

[docs] def items(self, reverse=False):
 '''D.items() -> a list of (key, value) pairs sorted by keys
 (add reverse=True for reverse ordering).'''
 return list(self.iteritems(reverse))

 @dictdoc
[docs] def clear(self):
 dict.clear(self)
 del self._sorted_keys[:]

[docs] def copy(self):
 '''D.copy() -> a shallow copy of D (still as a SortedDict).'''
 return self.__class__(self)

 @classmethod
 @dictdoc
[docs] def fromkeys(cls, seq, value=None):
 return cls(izip(seq, repeat(value)))

 @dictdoc
[docs] def pop(self, key, *args, **kwargs):
 if key in self:
 del self._sorted_keys[bisect_left(self._sorted_keys, key)]
 return dict.pop(self, key, *args, **kwargs)

[docs] def popitem(self):
 '''D.popitem() -> (k, v). Remove and return a (key, value) pair with
 the largest key; raise KeyError if D is empty.'''
 try:
 key = self._sorted_keys.pop()
 except IndexError:
 raise KeyError('popitem(): dictionary is empty')
 else:
 return key, dict.pop(self, key)

 @dictdoc
[docs] def setdefault(self, key, default=None):
 if key not in self:
 insort(self._sorted_keys, key)
 return dict.setdefault(self, key, default)

 @dictdoc
[docs] def update(self, other=()):
 if hasattr(other, 'keys') and hasattr(other, 'values'):
 # mapping
 newkeys = [key for key in other if key not in self]
 else:
 # iterator/sequence of pairs
 other = list(other)
 newkeys = [key for key, _ in other if key not in self]
 dict.update(self, other)
 for key in newkeys:
 insort(self._sorted_keys, key)

[docs] def largest_key(self):
 '''D.largest_key() -> the largest key; raise KeyError if D is empty.'''
 try:
 return self._sorted_keys[-1]
 except IndexError:
 raise KeyError('largest_key(): dictionary is empty')

[docs] def largest_item(self):
 '''D.largest_item() -> a (key, value) pair with the largest key;
 raise KeyError if D is empty.'''
 key = self.largest_key()
 return key, self[key]

[docs] def smallest_key(self):
 '''D.smallest_key() -> the smallest key; raise KeyError if D is empty.'''
 try:
 return self._sorted_keys[0]
 except IndexError:
 raise KeyError('smallest_key(): dictionary is empty')

[docs] def smallest_item(self):
 '''D.smallest_item() -> a (key, value) pair with the smallest key;
 raise KeyError if D is empty.'''
 key = self.smallest_key()
 return key, self[key]

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/eventhandler.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.eventhandler

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time

from action import Action
from shinken.property import IntegerProp, StringProp, FloatProp
from shinken.autoslots import AutoSlots

""" TODO: Add some comment about this class for the doc"""
[docs]class EventHandler(Action):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 my_type = 'eventhandler'

 properties = {
 'is_a': StringProp(default='eventhandler'),
 'type': StringProp(default=''),
 '_in_timeout': StringProp(default=False),
 'status': StringProp(default=''),
 'exit_status': StringProp(default=3),
 'output': StringProp(default=''),
 'long_output': StringProp(default=''),
 't_to_go': StringProp(default=0),
 'check_time': StringProp(default=0),
 'execution_time': FloatProp(default=0),
 'u_time': FloatProp(default=0.0),
 's_time': FloatProp(default=0.0),
 'env': StringProp(default={}),
 'perf_data': StringProp(default=''),
 'sched_id': IntegerProp(default=0),
 'timeout': IntegerProp(default=10),
 'check_time': IntegerProp(default=0),
 'command': StringProp(default=''),
 'module_type': StringProp(default='fork'),
 'worker': StringProp(default='none'),
 'reactionner_tag': StringProp(default='None'),
 }

 # id = 0 #Is common to Actions
 def __init__(self, command, id=None, ref=None, timeout=10, env={}, \
 module_type='fork', reactionner_tag='None'):
 self.is_a = 'eventhandler'
 self.type = ''
 self.status = 'scheduled'
 if id is None: # id != None is for copy call only
 self.id = Action.id
 Action.id += 1
 self.ref = ref
 self._in_timeout = False
 self.timeout = timeout
 self.exit_status = 3
 self.command = command
 self.output = ''
 self.long_output = ''
 self.t_to_go = time.time()
 self.check_time = 0
 self.execution_time = 0
 self.u_time = 0
 self.s_time = 0
 self.perf_data = ''
 self.env = {}
 self.module_type = module_type
 self.worker = 'none'
 self.reactionner_tag = reactionner_tag

 # return a copy of the check but just what is important for execution
 # So we remove the ref and all
[docs] def copy_shell(self):
 # We create a dummy check with nothing in it, just defaults values
 return self.copy_shell__(EventHandler('', id=self.id))

[docs] def get_return_from(self, e):
 self.exit_status = e.exit_status
 self.output = e.output
 self.long_output = getattr(e, 'long_output', '')
 self.check_time = e.check_time
 self.execution_time = getattr(e, 'execution_time', 0.0)
 self.perf_data = getattr(e, 'perf_data', '')

 # <TMI!!>

[docs] def get_outputs(self, out, max_plugins_output_length):
 elts = out.split('\n')
 # For perf data
 elts_line1 = elts[0].split('|')
 # First line before | is output
 self.output = elts_line1[0]
 # After | is perfdata
 if len(elts_line1) > 1:
 self.perf_data = elts_line1[1]
 # The others lines are long_output
 if len(elts) > 1:
 self.long_output = '\n'.join(elts[1:])
 # </TMI!!>

[docs] def is_launchable(self, t):
 return t >= self.t_to_go

 def __str__(self):
 return "Check %d status:%s command:%s" % (self.id, self.status, self.command)

[docs] def get_id(self):
 return self.id

 # Call by pickle to dataify the comment
 # because we DO NOT WANT REF in this pickleisation!

 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)

 return res

 # Inverted function of getstate
 def __setstate__(self, state):
 cls = self.__class__
 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])
 if not hasattr(self, 'worker'):
 self.worker = 'none'
 if not getattr(self, 'module_type', None):
 self.module_type = 'fork'
 # s_time and u_time are added between 1.2 and 1.4
 if not hasattr(self, 'u_time'):
 self.u_time = 0
 self.s_time = 0

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/autoslots.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.autoslots

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

"""The AutoSlots Class is a MetaClass: it manages how other classes
 are created (Classes, not instances of theses classes).
 Here it's role is to create the __slots__ list of the class with
 all properties of Class.properties and Class.running_properties
 so we do not have to add manually all properties to the __slots__
 list when we add a new entry"""

[docs]class AutoSlots(type):

 # new is call when we create a new Class
 # that have metaclass = AutoSlots
 # CLS is AutoSlots
 # name is string of the Class (like Service)
 # bases are the Classes of which Class inherits (like SchedulingItem)
 # dct is the new Class dict (like all method of Service)
 # Some properties names are not allowed in __slots__ like 2d_coords of
 # Host, so we must tag them in properties with no_slots
 def __new__(cls, name, bases, dct):
 # Thanks to Bertrand Mathieu to the set idea
 slots = dct.get('__slots__', set())
 # Now get properties from properties and running_properties
 if 'properties' in dct:
 props = dct['properties']
 slots.update((p for p in props
 if not props[p].no_slots))
 if 'running_properties' in dct:
 props = dct['running_properties']
 slots.update((p for p in props
 if not props[p].no_slots))
 dct['__slots__'] = tuple(slots)
 return type.__new__(cls, name, bases, dct)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/check.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.check

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from shinken.action import Action
from shinken.property import UnusedProp, BoolProp, IntegerProp, FloatProp
from shinken.property import CharProp, StringProp, ListProp
from shinken.autoslots import AutoSlots

[docs]class Check(Action):
 """ ODO: Add some comment about this class for the doc"""
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 my_type = 'check'

 properties = {
 'is_a': StringProp(default='check'),
 'type': StringProp(default=''),
 '_in_timeout': BoolProp(default=False),
 'status': StringProp(default=''),
 'exit_status': IntegerProp(default=3),
 'state': IntegerProp(default=0),
 'output': StringProp(default=''),
 'long_output': StringProp(default=''),
 'ref': IntegerProp(default=-1),
 't_to_go': IntegerProp(default=0),
 'depend_on': StringProp(default=[]),
 'dep_check': StringProp(default=[]),
 'check_time': IntegerProp(default=0),
 'execution_time': FloatProp(default=0.0),
 'u_time': FloatProp(default=0.0),
 's_time': FloatProp(default=0.0),
 'perf_data': StringProp(default=''),
 'check_type': IntegerProp(default=0),
 'poller_tag': StringProp(default='None'),
 'reactionner_tag': StringProp(default='None'),
 'env': StringProp(default={}),
 'internal': BoolProp(default=False),
 'module_type': StringProp(default='fork'),
 'worker': StringProp(default='none'),
 'from_trigger': BoolProp(default=False),
 }

 def __init__(self, status, command, ref, t_to_go, dep_check=None, id=None,
 timeout=10, poller_tag='None', reactionner_tag='None',
 env={}, module_type='fork', from_trigger=False, dependency_check=False):

 self.is_a = 'check'
 self.type = ''
 if id is None: # id != None is for copy call only
 self.id = Action.id
 Action.id += 1
 self._in_timeout = False
 self.timeout = timeout
 self.status = status
 self.exit_status = 3
 self.command = command
 self.output = ''
 self.long_output = ''
 self.ref = ref
 #self.ref_type = ref_type
 self.t_to_go = t_to_go
 self.depend_on = []
 if dep_check is None:
 self.depend_on_me = []
 else:
 self.depend_on_me = [dep_check]
 self.check_time = 0
 self.execution_time = 0
 self.u_time = 0 # user executon time
 self.s_time = 0 # system execution time
 self.perf_data = ''
 self.check_type = 0 # which kind of check result? 0=active 1=passive
 self.poller_tag = poller_tag
 self.reactionner_tag = reactionner_tag
 self.module_type = module_type
 self.env = env
 # we keep the reference of the poller that will take us
 self.worker = 'none'
 # If it's a business rule, manage it as a special check
 if ref and ref.got_business_rule or command.startswith('_internal'):
 self.internal = True
 else:
 self.internal = False
 self.from_trigger = from_trigger
 self.dependency_check = dependency_check

[docs] def copy_shell(self):
 """return a copy of the check but just what is important for execution
 So we remove the ref and all
 """

 # We create a dummy check with nothing in it, just defaults values
 return self.copy_shell__(Check('', '', '', '', '', id=self.id))

[docs] def get_return_from(self, c):
 self.exit_status = c.exit_status
 self.output = c.output
 self.long_output = c.long_output
 self.check_time = c.check_time
 self.execution_time = c.execution_time
 self.perf_data = c.perf_data

[docs] def is_launchable(self, t):
 return t > self.t_to_go

 def __str__(self):
 return "Check %d status:%s command:%s ref:%s" % \
 (self.id, self.status, self.command, self.ref)

[docs] def get_id(self):
 return self.id

[docs] def set_type_active(self):
 self.check_type = 0

[docs] def set_type_passive(self):
 self.check_type = 1

[docs] def is_dependent(self):
 return self.dependency_check

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/borg.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.borg

#!/usr/bin/env python
#
-*- coding: utf-8 -*-
#
Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class Borg(object):
 """ Here is the new-style Borg
 (not much more complex then the "old-style")
 """
 __shared_state = {}

 def __init__(self):
 #print "Init Borg", self.__dict__, self.__class__.__shared_state
 self.__dict__ = self.__class__.__shared_state

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/db_oracle.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.db_oracle

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

Failed to import will be catch by __init__.py
from cx_Oracle import connect as connect_function
from cx_Oracle import IntegrityError as IntegrityError_exp
from cx_Oracle import ProgrammingError as ProgrammingError_exp
from cx_Oracle import DatabaseError as DatabaseError_exp
from cx_Oracle import InternalError as InternalError_exp
from cx_Oracle import DataError as DataError_exp
from cx_Oracle import OperationalError as OperationalError_exp

from shinken.db import DB
from shinken.log import logger

connect_function = None
IntegrityError_exp = None
ProgrammingError_exp = None
DatabaseError_exp = None
InternalError_exp = None
DataError_exp = None
OperationalError_exp = None

[docs]class DBOracle(DB):
 """Manage connection and query execution against Oracle databases."""

 def __init__(self, user, password, database, table_prefix=''):
 self.user = user
 self.password = password
 self.database = database
 self.table_prefix = table_prefix

[docs] def connect_database(self):
 """Create the database connection
 TODO: finish (begin :)) error catch and conf parameters...
 """

 connstr = '%s/%s@%s' % (self.user, self.password, self.database)

 self.db = connect_function(connstr)
 self.db_cursor = self.db.cursor()
 self.db_cursor.arraysize = 50

[docs] def execute_query(self, query):
 """ Execute a query against an Oracle database.
 """
 logger.debug("[DBOracle] Execute Oracle query %s\n" % (query))
 try:
 self.db_cursor.execute(query)
 self.db.commit()
 except IntegrityError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise an integrity error:" \
 " %s, %s" % (query, exp))
 except ProgrammingError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise a programming error:" \
 " %s, %s" % (query, exp))
 except DatabaseError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise a database error:" \
 " %s, %s" % (query, exp))
 except InternalError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise an internal error:" \
 " %s, %s" % (query, exp))
 except DataError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise a data error:" \
 " %s, %s" % (query, exp))
 except OperationalError_exp, exp:
 logger.warning("[DBOracle] Warning: a query raise an operational error:" \
 " %s, %s" % (query, exp))
 except Exception, exp:
 logger.warning("[DBOracle] Warning: a query raise an unknown error:" \
 " %s, %s" % (query, exp))
 logger.warning(exp.__dict__)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/dependencynode.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.dependencynode

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re

"""
Here is a node class for dependency_node(s) and a factory to create them
"""
[docs]class DependencyNode(object):
 def __init__(self):
 self.operand = None
 self.sons = []
 # Of: values are a triple OK,WARN,CRIT
 self.of_values = (0, 0, 0)
 self.is_of_mul = False
 self.configuration_errors = []
 self.not_value = False

 def __str__(self):
 return "Op:'%s' Val:'%s' Sons:'[%s]' IsNot:'%s'" % (self.operand, self.of_values, ','.join([str(s) for s in self.sons]), self.not_value)

[docs] def get_reverse_state(self, state):
 # Warning is still warning
 if state == 1:
 return 1
 if state == 0:
 return 2
 if state == 2:
 return 0
 # should not go here...
 return state

 # We will get the state of this node, by looking at the state of
 # our sons, and apply our operand

[docs] def get_state(self):
 #print "Ask state of me", self

 # If we are a host or a service, wee just got the host/service
 # hard state
 if self.operand in ['host', 'service']:
 state = self.sons[0].last_hard_state_id
 #print "Get the hard state (%s) for the object %s" % (state, self.sons[0].get_name())
 # Make DOWN look as CRITICAL (2 instead of 1)
 if self.operand == 'host' and state == 1:
 state = 2
 # Maybe we are a NOT node, so manage this
 if self.not_value:
 # We inverse our states
 if self.operand == 'host' and state == 1:
 return 0
 if self.operand == 'host' and state == 0:
 return 1
 # Critical -> OK
 if self.operand == 'service' and state == 2:
 return 0
 # OK -> CRITICAL (warning is untouched)
 if self.operand == 'service' and state == 0:
 return 2
 return state

 # First we get the state of all our sons
 states = []
 for s in self.sons:
 st = s.get_state()
 states.append(st)

 # We will surely need the worst state
 worst_state = max(states)

 # Suggestion: What about returning min(states) for the | operand?
 # We don't need make a difference between an 0 and another no?
 # If you do so, it may be more efficient with lots of services
 # or host to return OK, but otherwise I can't see the reason for
 # this subcase.

 # We look for the better state but not OK/UP
 no_ok = [s for s in states if s != 0]
 if len(no_ok) != 0:
 best_not_good = min(no_ok)

 # Now look at the rule. For a or
 if self.operand == '|':
 if 0 in states:
 if self.not_value:
 return self.get_reverse_state(0)
 #print "We find a OK/UP match in an OR", states
 return 0
 # no ok/UP-> return worst state
 else:
 if self.not_value:
 return self.get_reverse_state(best_not_good)
 #print "I send the best not good state...in an OR", best_not_good, states
 return best_not_good

 # With an AND, we just send the worst state
 if self.operand == '&':
 if self.not_value:
 return self.get_reverse_state(worst_state)
 #print "We raise worst state for a AND", worst_state,states
 return worst_state

 # Ok we've got a 'of:' rule
 # We search for OK, WARN or CRIT applications
 # And we will choice between them

 nb_search_ok = self.of_values[0]
 nb_search_warn = self.of_values[1]
 nb_search_crit = self.of_values[2]

 # We look for each application
 nb_ok = len([s for s in states if s == 0])
 nb_warn = len([s for s in states if s == 1])
 nb_crit = len([s for s in states if s == 2])

 #print "NB:", nb_ok, nb_warn, nb_crit

 # Ok and Crit apply with their own values
 # Warn can apply with warn or crit values
 # so a W C can raise a Warning, but not enough for
 # a critical
 ok_apply = nb_ok >= nb_search_ok
 warn_apply = nb_warn + nb_crit >= nb_search_warn
 crit_apply = nb_crit >= nb_search_crit

 #print "What apply?", ok_apply, warn_apply, crit_apply

 # return the worst state that apply
 if crit_apply:
 if self.not_value:
 return self.get_reverse_state(2)
 return 2

 if warn_apply:
 if self.not_value:
 return self.get_reverse_state(1)
 return 1

 if ok_apply:
 if self.not_value:
 return self.get_reverse_state(0)
 return 0

 # Maybe even OK is not possible, if so, it depends if the admin
 # ask a simple form Xof: or a multiple one A,B,Cof:
 # the simple should give OK, the mult should give the worst state
 if self.is_of_mul:
 #print "Is mul, send 0"
 if self.not_value:
 return self.get_reverse_state(0)
 return 0
 else:
 #print "not mul, return worst", worse_state
 if self.not_value:
 return self.get_reverse_state(worst_state)
 return worst_state

 # return a list of all host/service in our node and below

[docs] def list_all_elements(self):
 r = []

 # We are a host/service
 if self.operand in ['host', 'service']:
 return [self.sons[0]]

 for s in self.sons:
 r.extend(s.list_all_elements())

 # and uniq the result
 return list(set(r))

 # If we are a of: rule, we can get some 0 in of_values,
 # if so, change them with NB sons instead

[docs] def switch_zeros_of_values(self):
 nb_sons = len(self.sons)
 # Need a list for assignment
 self.of_values = list(self.of_values)
 for i in [0, 1, 2]:
 if self.of_values[i] == 0:
 self.of_values[i] = nb_sons
 self.of_values = tuple(self.of_values)

 # Check for empty (= not found) leaf nodes

[docs] def is_valid(self):

 valid = True
 if not self.sons:
 valid = False
 else:
 for s in self.sons:
 if isinstance(s, DependencyNode) and not s.is_valid():
 self.configuration_errors.extend(s.configuration_errors)
 valid = False
 return valid

""" TODO: Add some comment about this class for the doc"""
[docs]class DependencyNodeFactory(object):
 def __init__(self):
 pass

 # the () will be eval in a recursiv way, only one level of ()
[docs] def eval_cor_pattern(self, pattern, hosts, services):
 pattern = pattern.strip()
 #print "***** EVAL ", pattern
 complex_node = False

 # Look if it's a complex pattern (with rule) or
 # if it's a leaf ofit, like a host/service
 for m in '()+&|':
 if m in pattern:
 complex_node = True

 is_of_nb = False

 node = DependencyNode()
 p = "^(\d+),*(\d*),*(\d*) *of: *(.+)"
 r = re.compile(p)
 m = r.search(pattern)
 if m is not None:
 #print "Match the of: thing N=", m.groups()
 node.operand = 'of:'
 g = m.groups()
 # We can have a Aof: rule, or a multiple A,B,Cof: rule.
 mul_of = (g[1] != u'' and g[2] != u'')
 # If multi got (A,B,C)
 if mul_of:
 node.is_of_mul = True
 node.of_values = (int(g[0]), int(g[1]), int(g[2]))
 else: # if not, use A,0,0, we will change 0 after to put MAX
 node.of_values = (int(g[0]), 0, 0)
 pattern = m.groups()[3]

 #print "Is so complex?", pattern, complex_node

 # if it's a single host/service
 if not complex_node:
 #print "Try to find?", pattern
 # If it's a not value, tag the node and find
 # the name without this ! operator
 if pattern.startswith('!'):
 node.not_value = True
 pattern = pattern[1:]
 node.operand = 'object'
 obj, error = self.find_object(pattern, hosts, services)
 if obj is not None:
 # Set host or service
 node.operand = obj.__class__.my_type
 node.sons.append(obj)
 else:
 node.configuration_errors.append(error)
 return node
 #else:
 # print "Is complex"

 in_par = False
 tmp = ''
 son_is_not = False # We keep is the next son will ne not or not
 stacked_par = 0
 for c in pattern:
 #print "MATCHING", c, pattern
 if c == '&' or c == '|':
 # Maybe we are in a par, if so, just stack it
 if in_par:
 #print " & in a par, just staking it"
 tmp += c
 else:
 # Oh we got a real cut in an expression, if so, cut it
 #print "REAL & for cutting"
 tmp = tmp.strip()
 # Look at the rule viability
 current_rule = node.operand
 if current_rule is not None and current_rule != 'of:' and c != current_rule:
 # Should be logged as a warning / info? :)
 return None

 if current_rule != 'of:':
 node.operand = c
 if tmp != '':
 #print "Will analyse the current str", tmp
 o = self.eval_cor_pattern(tmp, hosts, services)
 # Maybe our son was notted
 if son_is_not:
 o.not_value = True
 son_is_not = False
 node.sons.append(o)
 tmp = ''
 continue

 elif c == '(':
 stacked_par += 1
 #print "INCREASING STACK TO", stacked_par

 in_par = True
 tmp = tmp.strip()
 # Maybe we just start a par, but we got some things in tmp
 # that should not be good in fact !
 if stacked_par == 1 and tmp != '':
 #TODO : real error
 print "ERROR : bad expression near", tmp
 continue

 # If we are already in a par, add this (
 # but not if it's the first one so
 if stacked_par > 1:
 tmp += c
 #o = self.eval_cor_pattern(tmp)
 #print "1(I've %s got new sons" % pattern , o
 #node.sons.append(o)

 elif c == ')':
 #print "Need closeing a sub expression?", tmp
 stacked_par -= 1

 if stacked_par < 0:
 # TODO : real error
 print "Error : bad expression near", tmp, "too much ')'"
 continue

 if stacked_par == 0:
 #print "THIS is closing a sub compress expression", tmp
 tmp = tmp.strip()
 o = self.eval_cor_pattern(tmp, hosts, services)
 # Maybe our son was notted
 if son_is_not:
 o.not_value = True
 son_is_not = False
 node.sons.append(o)
 in_par = False
 # OK now clean the tmp so we start clean
 tmp = ''
 continue

 # ok here we are still in a huge par, we just close one sub one
 tmp += c
 # Manage the NOT for an expression. If we are in a starting bloc, put as
 # a NOT node, but if inside a bloc, don't
 elif c == '!':
 if stacked_par == 0:
 son_is_not = True
 # DO NOT keep the c in tmp, we consumed it
 else:
 tmp += c
 # Maybe it's a classic character, if so, continue
 else:
 tmp += c

 # Be sure to manage the trainling part when the line is done
 tmp = tmp.strip()
 if tmp != '':
 #print "Managing trainling part", tmp
 o = self.eval_cor_pattern(tmp, hosts, services)
 # Maybe our son was notted
 if son_is_not:
 o.not_value = True
 son_is_not = False
 #print "4end I've %s got new sons" % pattern , o
 node.sons.append(o)

 # We got our nodes, so we can update 0 values of of_values
 # with the number of sons
 node.switch_zeros_of_values()

 #print "End, tmp", tmp
 #print "R %s:" % pattern
 #print "Node:", node
 return node

 # We've got an object, like h1,db1 that mean the
 # db1 service of the host db1, or just h1, that mean
 # the host h1.

[docs] def find_object(self, pattern, hosts, services):
 #print "Finding object", pattern
 obj = None
 error = None
 is_service = False
 # h_name, service_desc are , separated
 elts = pattern.split(',')
 host_name = elts[0].strip()
 # Look if we have a service
 if len(elts) > 1:
 is_service = True
 service_description = elts[1].strip()
 if is_service:
 obj = services.find_srv_by_name_and_hostname(host_name, service_description)
 if not obj:
 error = "Business rule uses unknown service %s/%s" % (host_name, service_description)
 else:
 obj = hosts.find_by_name(host_name)
 if not obj:
 error = "Business rule uses unknown host %s" % (host_name,)
 return obj, error

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/notification.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.notification

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time

from shinken.action import Action
from shinken.brok import Brok
from shinken.property import BoolProp, IntegerProp, StringProp, FloatProp
from shinken.autoslots import AutoSlots

[docs]class Notification(Action):
 """Please Add a Docstring to describe the class here"""

 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 my_type = 'notification'

 properties = {
 'is_a': StringProp(default='notification'),
 'type': StringProp(default=''),
 'notification_type': IntegerProp(default=0, fill_brok=['full_status']),
 'start_time': StringProp(default=0, fill_brok=['full_status']),
 'end_time': StringProp(default=0, fill_brok=['full_status']),
 'contact_name': StringProp(default='',fill_brok=['full_status']),
 'host_name': StringProp(default='',fill_brok=['full_status']),
 'service_description': StringProp(default='',fill_brok=['full_status']),
 'reason_type': StringProp(default=0, fill_brok=['full_status']),
 'state': StringProp(default=0, fill_brok=['full_status']),
 'output': StringProp(default='',fill_brok=['full_status']),
 'ack_author': StringProp(default='',fill_brok=['full_status']),
 'ack_data': StringProp(default='',fill_brok=['full_status']),
 'escalated': BoolProp(default=False, fill_brok=['full_status']),
 'contacts_notified': StringProp(default=0, fill_brok=['full_status']),
 'env': StringProp(default={}),
 'exit_status': IntegerProp(default=3),
 'command_call': StringProp(default=None),
 'execution_time': FloatProp(default=0),
 'u_time': FloatProp(default=0.0),
 's_time': FloatProp(default=0.0),
 'contact': StringProp(default=None),
 '_in_timeout': BoolProp(default=False),
 'notif_nb': IntegerProp(default=0),
 'status': StringProp(default='scheduled'),
 't_to_go': IntegerProp(default=0),
 'command': StringProp(default=''),
 'sched_id': IntegerProp(default=0),
 'timeout': IntegerProp(default=10),
 'check_time': IntegerProp(default=0),
 'module_type': StringProp(default='fork', fill_brok=['full_status']),
 'worker': StringProp(default='none'),
 'reactionner_tag': StringProp(default='None'),
 'creation_time': IntegerProp(default=0),
 # Keep a list of currently active escalations
 'already_start_escalations': StringProp(default=set()),

 }

 macros = {
 'NOTIFICATIONTYPE': 'type',
 'NOTIFICATIONRECIPIENTS': 'recipients',
 'NOTIFICATIONISESCALATED': 'escalated',
 'NOTIFICATIONAUTHOR': 'author',
 'NOTIFICATIONAUTHORNAME': 'author_name',
 'NOTIFICATIONAUTHORALIAS': 'author_alias',
 'NOTIFICATIONCOMMENT': 'comment',
 'HOSTNOTIFICATIONNUMBER': 'notif_nb',
 'HOSTNOTIFICATIONID': 'id',
 'SERVICENOTIFICATIONNUMBER': 'notif_nb',
 'SERVICENOTIFICATIONID': 'id'
 }

 def __init__(self, type='PROBLEM' , status='scheduled', command='UNSET', command_call=None, ref=None, contact=None, t_to_go=0, \
 contact_name='', host_name='', service_description='',
 reason_type=1, state=0, ack_author='', ack_data='', \
 escalated=False, contacts_notified=0, \
 start_time=0, end_time=0, notification_type=0, id=None, \
 notif_nb=1, timeout=10, env={}, module_type='fork', \
 reactionner_tag='None'):

 self.is_a = 'notification'
 self.type = type
 if id is None: # id != None is for copy call only
 self.id = Action.id
 Action.id += 1
 self._in_timeout = False
 self.timeout = timeout
 self.status = status
 self.exit_status = 3
 self.command = command
 self.command_call = command_call
 self.output = None
 self.execution_time = 0
 self.u_time = 0 # user executon time
 self.s_time = 0 # system execution time

 self.ref = ref

 # Set host_name and description from the ref
 try:
 self.host_name = self.ref.host_name
 except:
 self.host_name = host_name
 try:
 self.service_description = self.ref.service_description
 except:
 self.service_description = service_description

 self.env = env
 self.module_type = module_type
 #self.ref_type = ref_type
 self.t_to_go = t_to_go
 self.notif_nb = notif_nb
 self.contact = contact

 # For brok part
 self.contact_name = contact_name
 self.reason_type = reason_type
 self.state = state
 self.ack_author = ack_author
 self.ack_data = ack_data
 self.escalated = escalated
 self.contacts_notified = contacts_notified
 self.start_time = start_time
 self.end_time = end_time
 self.notification_type = notification_type

 self.creation_time = time.time()
 self.worker = 'none'
 self.reactionner_tag = reactionner_tag
 self.already_start_escalations = set()

 # return a copy of the check but just what is important for execution
 # So we remove the ref and all
[docs] def copy_shell(self):
 # We create a dummy check with nothing in it, just defaults values
 return self.copy_shell__(Notification('', '', '', '', '', '', '', id=self.id))

[docs] def is_launchable(self, t):
 return t >= self.t_to_go

[docs] def is_administrative(self):
 if self.type in ('PROBLEM', 'RECOVERY'):
 return False
 else:
 return True

 def __str__(self):
 return "Notification %d status:%s command:%s ref:%s t_to_go:%s" % (self.id, self.status, self.command, getattr(self, 'ref', 'unknown'), time.asctime(time.localtime(self.t_to_go)))

[docs] def get_id(self):
 return self.id

[docs] def get_return_from(self, n):
 self.exit_status = n.exit_status
 self.execution_time = n.execution_time
 #self.output = c.output
 #self.check_time = c.check_time
 #self.execution_time = c.execution_time

 # Fill data with info of item by looking at brok_type
 # in props of properties or running_properties

[docs] def fill_data_brok_from(self, data, brok_type):
 cls = self.__class__
 # Now config properties
 for prop, entry in cls.properties.items():
 if brok_type in entry.fill_brok:
 data[prop] = getattr(self, prop)

 # Get a brok with initial status

[docs] def get_initial_status_brok(self):
 data = {'id': self.id}

 self.fill_data_brok_from(data, 'full_status')
 b = Brok('notification_raise', data)
 return b

 # Call by pickle for dataify the comment
 # because we DO NOT WANT REF in this pickleisation!

 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)

 return res

 # Inverted function of getstate
 def __setstate__(self, state):
 cls = self.__class__
 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])
 # Hook for load of 0.4 notification: there were no
 # creation time, must put one
 if not hasattr(self, 'creation_time'):
 self.creation_time = time.time()
 if not hasattr(self, 'reactionner_tag'):
 self.reactionner_tag = 'None'
 if not hasattr(self, 'worker'):
 self.worker = 'none'
 if not getattr(self, 'module_type', None):
 self.module_type = 'fork'
 if not hasattr(self, 'already_start_escalations'):
 self.already_start_escalations = set()
 if not hasattr(self, 'execution_time'):
 self.execution_time = 0
 # s_time and u_time are added between 1.2 and 1.4
 if not hasattr(self, 'u_time'):
 self.u_time = 0
 self.s_time = 0

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/schedulingitem.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.schedulingitem

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
Thibault Cohen, thibault.cohen@savoirfairelinux.com
Francois Mikus, fmikus@acktomic.com
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This class is a common one for service/host. Here you
will find all scheduling related functions, like the schedule
or the consume_check. It's a very important class!
"""

import random
import time
import traceback
from datetime import datetime

from item import Item

from shinken.check import Check
from shinken.notification import Notification
from shinken.macroresolver import MacroResolver
from shinken.eventhandler import EventHandler
from shinken.dependencynode import DependencyNodeFactory
from shinken.log import logger

on system time change just reevaluate the following attributes:
on_time_change_update = ('last_notification', 'last_state_change', 'last_hard_state_change')

[docs]class SchedulingItem(Item):

 # global counters used for [current|last]_[host|service]_[event|problem]_id
 current_event_id = 0
 current_problem_id = 0

 # Call by pickle to data-ify the host
 # we do a dict because list are too dangerous for
 # retention save and co :(even if it's more
 # extensive
 # The setstate function do the inverse
 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)
 for prop in cls.running_properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)
 return res

 # Inversed function of __getstate__
 def __setstate__(self, state):
 cls = self.__class__
 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])
 for prop in cls.running_properties:
 if prop in state:
 setattr(self, prop, state[prop])

 # Register the son in my child_dependencies, and
 # myself in its parent_dependencies
[docs] def register_son_in_parent_child_dependencies(self, son):
 # So we register it in our list
 self.child_dependencies.add(son)

 # and us to its parents
 son.parent_dependencies.add(self)

 # Add a flapping change, but no more than 20 states
 # Then update the self.is_flapping bool by calling update_flapping

[docs] def add_flapping_change(self, b):
 cls = self.__class__

 # If this element is not in flapping check, or
 # the flapping is globally disable, bailout
 if not self.flap_detection_enabled or not cls.enable_flap_detection:
 return

 self.flapping_changes.append(b)

 # Keep just 20 changes (global flap_history value)
 flap_history = cls.flap_history

 if len(self.flapping_changes) > flap_history:
 self.flapping_changes.pop(0)

 # Now we add a value, we update the is_flapping prop
 self.update_flapping()

 # We update the is_flapping prop with value in self.flapping_states
 # Old values have less weight than new ones

[docs] def update_flapping(self):
 flap_history = self.__class__.flap_history
 # We compute the flapping change in %
 r = 0.0
 i = 0
 for b in self.flapping_changes:
 i += 1
 if b:
 r += i * (1.2 - 0.8) / flap_history + 0.8
 r = r / flap_history
 r *= 100

 # We can update our value
 self.percent_state_change = r

 # Look if we are full in our states, because if not
 # the value is not accurate
 is_full = len(self.flapping_changes) >= flap_history

 # Now we get the low_flap_threshold and high_flap_threshold values
 # They can be from self, or class
 (low_flap_threshold, high_flap_threshold) = (self.low_flap_threshold, self.high_flap_threshold)
 if low_flap_threshold == -1:
 cls = self.__class__
 low_flap_threshold = cls.global_low_flap_threshold
 if high_flap_threshold == -1:
 cls = self.__class__
 high_flap_threshold = cls.global_high_flap_threshold

 # Now we check is flapping change, but only if we got enough
 # states to look at the value accuracy
 if self.is_flapping and r < low_flap_threshold and is_full:
 self.is_flapping = False
 # We also raise a log entry
 self.raise_flapping_stop_log_entry(r, low_flap_threshold)
 # and a notification
 self.remove_in_progress_notifications()
 self.create_notifications('FLAPPINGSTOP')
 # And update our status for modules
 b = self.get_update_status_brok()
 self.broks.append(b)

 if not self.is_flapping and r >= high_flap_threshold and is_full:
 self.is_flapping = True
 # We also raise a log entry
 self.raise_flapping_start_log_entry(r, high_flap_threshold)
 # and a notification
 self.remove_in_progress_notifications()
 self.create_notifications('FLAPPINGSTART')
 # And update our status for modules
 b = self.get_update_status_brok()
 self.broks.append(b)

 # Add an attempt but cannot be more than max_check_attempts

[docs] def add_attempt(self):
 self.attempt += 1
 self.attempt = min(self.attempt, self.max_check_attempts)

 # Return True if attempt is at max

[docs] def is_max_attempts(self):
 return self.attempt >= self.max_check_attempts

 # Call by scheduler to see if last state is older than
 # freshness_threshold if check_freshness, then raise a check
 # even if active check is disabled

[docs] def do_check_freshness(self):
 now = time.time()
 # Before, check if class (host or service) have check_freshness OK
 # Then check if item want freshness, then check freshness
 cls = self.__class__
 if not self.in_checking:
 if cls.global_check_freshness:
 if self.check_freshness and self.freshness_threshold != 0:
 if self.last_state_update < now - (self.freshness_threshold + cls.additional_freshness_latency):
 # Raise a log
 self.raise_freshness_log_entry(int(now-self.last_state_update), int(now-self.freshness_threshold))
 # And a new check
 return self.launch_check(now)
 return None

 # Raise all impact from my error. I'm setting myself
 # as a problem, and I register myself as this in all
 # hosts/services that depend_on_me. So they are now my
 # impacts

[docs] def set_myself_as_problem(self):
 now = time.time()

 self.is_problem = True
 # we should warn potentials impact of our problem
 # and they should be cool to register them so I've got
 # my impacts list
 for (impact, status, dep_type, tp, inh_par) in self.act_depend_of_me:
 # Check if the status is ok for impact
 for s in status:
 if self.is_state(s):
 # now check if we should bailout because of a
 # not good timeperiod for dep
 if tp is None or tp.is_time_valid(now):
 new_impacts = impact.register_a_problem(self)
 self.impacts.extend(new_impacts)
 # Make element unique in this list
 self.impacts = list(set(self.impacts))

 # We can update our business_impact value now
 self.update_business_impact_value()

 # And we register a new broks for update status
 b = self.get_update_status_brok()
 self.broks.append(b)

 # We update our 'business_impact' value with the max of
 # the impacts business_impact if we got impacts. And save our 'configuration'
 # business_impact if we do not have do it before
 # If we do not have impacts, we revert our value

[docs] def update_business_impact_value(self):
 # First save our business_impact if not already do
 if self.my_own_business_impact == -1:
 self.my_own_business_impact = self.business_impact

 # We look at our crit modulations. If one apply, we take apply it
 # and it's done
 in_modulation = False
 for cm in self.business_impact_modulations:
 now = time.time()
 period = cm.modulation_period
 if period is None or period.is_time_valid(now):
 #print "My self", self.get_name(), "go from crit", self.business_impact, "to crit", cm.business_impact
 self.business_impact = cm.business_impact
 in_modulation = True
 # We apply the first available, that's all
 break

 # If we truly have impacts, we get the max business_impact
 # if it's huge than ourselves
 if len(self.impacts) != 0:
 self.business_impact = max(self.business_impact, max([e.business_impact for e in self.impacts]))
 return

 # If we are not a problem, we setup our own_crit if we are not in a
 # modulation period
 if self.my_own_business_impact != -1 and not in_modulation:
 self.business_impact = self.my_own_business_impact

 # Look for my impacts, and remove me from theirs problems list

[docs] def no_more_a_problem(self):
 was_pb = self.is_problem
 if self.is_problem:
 self.is_problem = False

 # we warn impacts that we are no more a problem
 for impact in self.impacts:
 impact.deregister_a_problem(self)

 # we can just drop our impacts list
 self.impacts = []

 # We update our business_impact value, it's not a huge thing :)
 self.update_business_impact_value()

 # If we were a problem, we say to everyone
 # our new status, with good business_impact value
 if was_pb:
 # And we register a new broks for update status
 b = self.get_update_status_brok()
 self.broks.append(b)

 # Call recursively by potentials impacts so they
 # update their source_problems list. But do not
 # go below if the problem is not a real one for me
 # like If I've got multiple parents for examples

[docs] def register_a_problem(self, pb):
 # Maybe we already have this problem? If so, bailout too
 if pb in self.source_problems:
 return []

 now = time.time()
 was_an_impact = self.is_impact
 # Our father already look of he impacts us. So if we are here,
 # it's that we really are impacted
 self.is_impact = True

 impacts = []
 # Ok, if we are impacted, we can add it in our
 # problem list
 # TODO: remove this unused check
 if self.is_impact:
 # Maybe I was a problem myself, now I can say: not my fault!
 if self.is_problem:
 self.no_more_a_problem()

 # Ok, we are now an impact, we should take the good state
 # but only when we just go in impact state
 if not was_an_impact:
 self.set_impact_state()

 # Ok now we can be a simple impact
 impacts.append(self)
 if pb not in self.source_problems:
 self.source_problems.append(pb)
 # we should send this problem to all potential impact that
 # depend on us
 for (impact, status, dep_type, tp, inh_par) in self.act_depend_of_me:
 # Check if the status is ok for impact
 for s in status:
 if self.is_state(s):
 # now check if we should bailout because of a
 # not good timeperiod for dep
 if tp is None or tp.is_time_valid(now):
 new_impacts = impact.register_a_problem(pb)
 impacts.extend(new_impacts)

 # And we register a new broks for update status
 b = self.get_update_status_brok()
 self.broks.append(b)

 # now we return all impacts (can be void of course)
 return impacts

 # Just remove the problem from our problems list
 # and check if we are still 'impacted'. It's not recursif because problem
 # got the list of all its impacts

[docs] def deregister_a_problem(self, pb):
 self.source_problems.remove(pb)

 # For know if we are still an impact, maybe our dependencies
 # are not aware of the remove of the impact state because it's not ordered
 # so we can just look at if we still have some problem in our list
 if len(self.source_problems) == 0:
 self.is_impact = False
 # No more an impact, we can unset the impact state
 self.unset_impact_state()

 # And we register a new broks for update status
 b = self.get_update_status_brok()
 self.broks.append(b)

 # When all dep are resolved, this function say if
 # action can be raise or not by viewing dep status
 # network_dep have to be all raise to be no action
 # logic_dep: just one is enough

[docs] def is_no_action_dependent(self):
 # Use to know if notif is raise or not
 # no_action = False
 parent_is_down = []
 # So if one logic is Raise, is dep
 # is one network is no ok, is not dep
 # at the end, raise no dep
 for (dep, status, type, tp, inh_par) in self.act_depend_of:
 # For logic_dep, only one state raise put no action
 if type == 'logic_dep':
 for s in status:
 if dep.is_state(s):
 return True
 # more complicated: if none of the states are match, the host is down
 # so -> network_dep
 else:
 p_is_down = False
 dep_match = [dep.is_state(s) for s in status]
 # check if the parent match a case, so he is down
 if True in dep_match:
 p_is_down = True
 parent_is_down.append(p_is_down)
 # if a parent is not down, no dep can explain the pb
 if False in parent_is_down:
 return False
 else: # every parents are dead, so... It's not my fault :)
 return True

 # We check if we are no action just because of ours parents (or host for
 # service)
 # TODO: factorize with previous check?

[docs] def check_and_set_unreachability(self):
 parent_is_down = []
 # We must have all parents raised to be unreachable
 for (dep, status, type, tp, inh_par) in self.act_depend_of:
 # For logic_dep, only one state raise put no action
 if type == 'network_dep':
 p_is_down = False
 dep_match = [dep.is_state(s) for s in status]
 if True in dep_match: # the parent match a case, so he is down
 p_is_down = True
 parent_is_down.append(p_is_down)

 # if a parent is not down, no dep can explain the pb
 # or if we don't have any parents
 if len(parent_is_down) == 0 or False in parent_is_down:
 return
 else: # every parents are dead, so... It's not my fault :)
 self.set_unreachable()
 return

 # Use to know if I raise dependency for someone else (with status)
 # If I do not raise dep, maybe my dep raise me. If so, I raise dep.
 # So it's a recursive function

[docs] def do_i_raise_dependency(self, status, inherit_parents):
 # Do I raise dep?
 for s in status:
 if self.is_state(s):
 return True

 # If we do not inherit parent, we have no reason to be blocking
 if not inherit_parents:
 return False

 # Ok, I do not raise dep, but my dep maybe raise me
 now = time.time()
 for (dep, status, type, tp, inh_parent) in self.chk_depend_of:
 if dep.do_i_raise_dependency(status, inh_parent):
 if tp is None or tp.is_time_valid(now):
 return True

 # No, I really do not raise...
 return False

 # Use to know if my dep force me not to be checked
 # So check the chk_depend_of if they raise me

[docs] def is_no_check_dependent(self):
 now = time.time()
 for (dep, status, type, tp, inh_parent) in self.chk_depend_of:
 if tp is None or tp.is_time_valid(now):
 if dep.do_i_raise_dependency(status, inh_parent):
 return True
 return False

 # call by a bad consume check where item see that he have dep
 # and maybe he is not in real fault.

[docs] def raise_dependencies_check(self, ref_check):
 now = time.time()
 cls = self.__class__
 checks = []
 for (dep, status, type, tp, inh_par) in self.act_depend_of:
 # If the dep timeperiod is not valid, do notraise the dep,
 # None=everytime
 if tp is None or tp.is_time_valid(now):
 # if the update is 'fresh', do not raise dep,
 # cached_check_horizon = cached_service_check_horizon for service
 if dep.last_state_update < now - cls.cached_check_horizon:
 i = dep.launch_check(now, ref_check)
 if i is not None:
 checks.append(i)
else:
print "DBG: **************** The state is FRESH", dep.host_name, time.asctime(time.localtime(dep.last_state_update))
 return checks

 # Main scheduling function
 # If a check is in progress, or active check are disabled, do
 # not schedule a check.
 # The check interval change with HARD state or not:
 # SOFT: retry_interval
 # HARD: check_interval
 # The first scheduling is evenly distributed, so all checks
 # are not launched at the same time.

[docs] def schedule(self, force=False, force_time=None):
 # if last_chk == 0 put in a random way so all checks
 # are not in the same time

 # next_chk il already set, do not change
 # unless we force the check or the time
 if self.in_checking and not (force or force_time):
 return None

 cls = self.__class__
 # if no active check and no force, no check
 if (not self.active_checks_enabled or not cls.execute_checks) and not force:
 return None

 now = time.time()

 # If check_interval is 0, we should not add it for a service
 # but suppose a 5min sched for hosts
 if self.check_interval == 0 and not force:
 if cls.my_type == 'service':
 return None
 else: # host
 self.check_interval = 300 / cls.interval_length

 # Interval change is in a HARD state or not
 # If the retry is 0, take the normal value
 if self.state_type == 'HARD' or self.retry_interval == 0:
 interval = self.check_interval * cls.interval_length
 else: # TODO: if no retry_interval?
 interval = self.retry_interval * cls.interval_length

 # Determine when a new check (randomize and distribute next check time)
 # or recurring check should happen.
 if self.next_chk == 0:
 # At the start, we cannot have an interval more than cls.max_check_spread
 # is service_max_check_spread or host_max_check_spread in config
 interval = min(interval, cls.max_check_spread * cls.interval_length)
 time_add = interval * random.uniform(0.0, 1.0)
 else:
 time_add = interval

 ## Do the actual Scheduling now

 # If not force_time, try to schedule
 if force_time is None:

 # Do not calculate next_chk based on current time, but based on the last check execution time.
 # Important for consistency of data for trending.
 if self.next_chk == 0 or self.next_chk is None:
 self.next_chk = now

 # If the neck_chk is already in the future, do not touch it.
 # But if ==0, means was 0 in fact, schedule it too
 if self.next_chk <= now:
 # maybe we do not have a check_period, if so, take always good (24x7)
 if self.check_period:
 self.next_chk = self.check_period.get_next_valid_time_from_t(self.next_chk + time_add)
 else:
 self.next_chk = int(self.next_chk + time_add)

 # Maybe we load next_chk from retention and the value of the next_chk is still the past even
 # after add an interval
 if self.next_chk < now:
 interval = min(interval, cls.max_check_spread * cls.interval_length)
 time_add = interval * random.uniform(0.0, 1.0)

 # if we got a check period, use it, if now, use now
 if self.check_period:
 self.next_chk = self.check_period.get_next_valid_time_from_t(now + time_add)
 else:
 self.next_chk = int(now + time_add)
 # else: keep the self.next_chk value in the future
 else:
 self.next_chk = int(force_time)

 # If next time is None, do not go
 if self.next_chk is None:
 # Nagios do not raise it, I'm wondering if we should
 return None

 # Get the command to launch, and put it in queue
 self.launch_check(self.next_chk, force=force)

 # If we've got a system time change, we need to compensate it
 # If modify all past value. For active one like next_chk, it's the current
 # checks that will give us the new value

[docs] def compensate_system_time_change(self, difference):
 # We only need to change some value
 for p in on_time_change_update:
 val = getattr(self, p) # current value
 # Do not go below 1970 :)
 val = max(0, val + difference) # diff may be negative
 setattr(self, p, val)

 # For disabling active checks, we need to set active_checks_enabled
 # to false, but also make a dummy current checks attempts so the
 # effect is immediate.

[docs] def disable_active_checks(self):
 self.active_checks_enabled = False
 for c in self.checks_in_progress:
 c.status = 'waitconsume'
 c.exit_status = self.state_id
 c.output = self.output
 c.check_time = time.time()
 c.execution_time = 0
 c.perf_data = self.perf_data

[docs] def remove_in_progress_check(self, c):
 # The check is consumed, update the in_checking properties
 if c in self.checks_in_progress:
 self.checks_in_progress.remove(c)
 self.update_in_checking()

 # Is in checking if and only if there are still checks not consumed

[docs] def update_in_checking(self):
 self.in_checking = (len(self.checks_in_progress) != 0)

 # Del just a notification that is returned

[docs] def remove_in_progress_notification(self, n):
 if n.id in self.notifications_in_progress:
 n.status = 'zombie'
 del self.notifications_in_progress[n.id]

 # We do not need ours currents pending notifications,
 # so we zombify them and clean our list

[docs] def remove_in_progress_notifications(self):
 for n in self.notifications_in_progress.values():
 self.remove_in_progress_notification(n)

 # Get a event handler if item got an event handler
 # command. It must be enabled locally and globally

[docs] def get_event_handlers(self, externalcmd=False):
 cls = self.__class__

 # The external command always pass
 # if not, only if we enable them (auto launch)
 if self.event_handler is None or ((not self.event_handler_enabled or not cls.enable_event_handlers) and not externalcmd):
 return

 # If we do not force and we are in downtime, bailout
 # if the no_event_handlers_during_downtimes is 1 in conf
 if cls.no_event_handlers_during_downtimes and not externalcmd and self.in_scheduled_downtime:
 return

 m = MacroResolver()
 data = self.get_data_for_event_handler()
 cmd = m.resolve_command(self.event_handler, data)
 rt = self.event_handler.reactionner_tag
 e = EventHandler(cmd, timeout=cls.event_handler_timeout, \
 ref=self, reactionner_tag=rt)
 #print "DBG: Event handler call created"
 #print "DBG: ",e.__dict__
 self.raise_event_handler_log_entry(self.event_handler)

 # ok we can put it in our temp action queue
 self.actions.append(e)

 # Whenever a non-ok hard state is reached, we must check whether this
 # host/service has a flexible downtime waiting to be activated

[docs] def check_for_flexible_downtime(self):
 status_updated = False
 for dt in self.downtimes:
 # activate flexible downtimes (do not activate triggered downtimes)
 if dt.fixed == False and dt.is_in_effect == False and dt.start_time <= self.last_chk and self.state_id != 0 and dt.trigger_id == 0:
 n = dt.enter() # returns downtimestart notifications
 if n is not None:
 self.actions.append(n)
 status_updated = True
 if status_updated == True:
 self.broks.append(self.get_update_status_brok())

 # UNKNOWN during a HARD state are not so important, and they should
 # ot raise notif about it

[docs] def update_hard_unknown_phase_state(self):
 self.was_in_hard_unknown_reach_phase = self.in_hard_unknown_reach_phase

 # We do not care about SOFT state at all
 # and we are sure we are no more in such a phase
 if self.state_type != 'HARD' or self.last_state_type != 'HARD':
 self.in_hard_unknown_reach_phase = False

 # So if we are not in already in such a phase, we check for
 # a start or not. So here we are sure to be in a HARD/HARD following
 # state
 if not self.in_hard_unknown_reach_phase:
 if self.state == 'UNKNOWN' and self.last_state != 'UNKNOWN' \
 or self.state == 'UNREACHABLE' and self.last_state != 'UNREACHABLE':
 self.in_hard_unknown_reach_phase = True
 # We also backup with which state we was before enter this phase
 self.state_before_hard_unknown_reach_phase = self.last_state
 return
 else:
 # if we were already in such a phase, look for its end
 if self.state != 'UNKNOWN' and self.state != 'UNREACHABLE':
 self.in_hard_unknown_reach_phase = False

 # If we just exit the phase, look if we exit with a different state
 # than we enter or not. If so, lie and say we were not in such phase
 # because we need so to raise a new notif
 if not self.in_hard_unknown_reach_phase and self.was_in_hard_unknown_reach_phase:
 if self.state != self.state_before_hard_unknown_reach_phase:
 self.was_in_hard_unknown_reach_phase = False

 # consume a check return and send action in return
 # main function of reaction of checks like raise notifications
 # Special case:
 # is_flapping: immediate notif when problem
 # is_in_scheduled_downtime: no notification
 # is_volatile: notif immediately (service only)

[docs] def consume_result(self, c):
 OK_UP = self.__class__.ok_up # OK for service, UP for host

 # Protect against bad type output
 # if str, go in unicode
 if isinstance(c.output, str):
 c.output = c.output.decode('utf8', 'ignore')
 c.long_output = c.long_output.decode('utf8', 'ignore')

 # Same for current output
 # TODO: remove in future version, this is need only for
 # migration from old shinken version, that got output as str
 # and not unicode
 # if str, go in unicode
 if isinstance(self.output, str):
 self.output = self.output.decode('utf8', 'ignore')
 self.long_output = self.long_output.decode('utf8', 'ignore')

 if isinstance(c.perf_data, str):
 c.perf_data = c.perf_data.decode('utf8', 'ignore')

 # We check for stalking if necessary
 # so if check is here
 self.manage_stalking(c)

 # Latency can be <0 is we get a check from the retention file
 # so if <0, set 0
 try:
 self.latency = max(0, c.check_time - c.t_to_go)
 except TypeError:
 pass

 # Ok, the first check is done
 self.has_been_checked = 1

 # Now get data from check
 self.execution_time = c.execution_time
 self.last_chk = int(c.check_time)

 # Get output and forgot bad UTF8 values for simple str ones
 # (we can get already unicode with external commands)
 self.output = c.output
 self.long_output = c.long_output

 # Set the check result type also in the host/service
 # 0 = result came from an active check
 # 1 = result came from a passive check
 self.check_type = c.check_type

 # Get the perf_data only if we want it in the configuration
 if self.__class__.process_performance_data and self.process_perf_data:
 self.last_perf_data = self.perf_data
 self.perf_data = c.perf_data

 # Before setting state, modulate them
 for rm in self.resultmodulations:
 if rm is not None:
 c.exit_status = rm.module_return(c.exit_status)

 # If we got a bad result on a normal check, and we have dep,
 # we raise dep checks
 # put the actual check in waitdep and we return all new checks
 if c.exit_status != 0 and c.status == 'waitconsume' and len(self.act_depend_of) != 0:
 c.status = 'waitdep'
 # Make sure the check know about his dep
 # C is my check, and he wants dependencies
 checks_id = self.raise_dependencies_check(c)
 for check_id in checks_id:
 # Get checks_id of dep
 c.depend_on.append(check_id)
 # Ok, no more need because checks are not
 # take by host/service, and not returned

 # remember how we was before this check
 self.last_state_type = self.state_type

 self.set_state_from_exit_status(c.exit_status)

 # we change the state, do whatever we are or not in
 # an impact mode, we can put it
 self.state_changed_since_impact = True

 # The check is consumed, update the in_checking properties
 self.remove_in_progress_check(c)

 # C is a check and someone wait for it
 if c.status == 'waitconsume' and c.depend_on_me != []:
 c.status = 'havetoresolvedep'

 # if finish, check need to be set to a zombie state to be removed
 # it can be change if necessary before return, like for dependencies
 if c.status == 'waitconsume' and c.depend_on_me == []:
 c.status = 'zombie'

 # Use to know if notif is raise or not
 no_action = False

 # C was waitdep, but now all dep are resolved, so check for deps
 if c.status == 'waitdep':
 if c.depend_on_me != []:
 c.status = 'havetoresolvedep'
 else:
 c.status = 'zombie'
 # Check deps
 no_action = self.is_no_action_dependent()
 # We recheck just for network_dep. Maybe we are just unreachable
 # and we need to override the state_id
 self.check_and_set_unreachability()

 # OK following a previous OK. perfect if we were not in SOFT
 if c.exit_status == 0 and self.last_state in (OK_UP, 'PENDING'):
 #print "Case 1 (OK following a previous OK): code:%s last_state:%s" % (c.exit_status, self.last_state)
 self.unacknowledge_problem()
 # action in return can be notification or other checks (dependencies)
 if (self.state_type == 'SOFT') and self.last_state != 'PENDING':
 if self.is_max_attempts() and self.state_type == 'SOFT':
 self.state_type = 'HARD'
 else:
 self.state_type = 'SOFT'
 else:
 self.attempt = 1
 self.state_type = 'HARD'

 # OK following a NON-OK.
 elif c.exit_status == 0 and self.last_state not in (OK_UP, 'PENDING'):
 self.unacknowledge_problem()
 #print "Case 2 (OK following a NON-OK): code:%s last_state:%s" % (c.exit_status, self.last_state)
 if self.state_type == 'SOFT':
 # OK following a NON-OK still in SOFT state
 if not c.is_dependent():
 self.add_attempt()
 self.raise_alert_log_entry()
 # Eventhandler gets OK;SOFT;++attempt, no notification needed
 self.get_event_handlers()
 # Internally it is a hard OK
 self.state_type = 'HARD'
 self.attempt = 1
 elif self.state_type == 'HARD':
 # OK following a HARD NON-OK
 self.raise_alert_log_entry()
 # Eventhandler and notifications get OK;HARD;maxattempts
 # Ok, so current notifications are not needed, we 'zombie' them
 self.remove_in_progress_notifications()
 if not no_action:
 self.create_notifications('RECOVERY')
 self.get_event_handlers()
 # Internally it is a hard OK
 self.state_type = 'HARD'
 self.attempt = 1

 #self.update_hard_unknown_phase_state()
 # I'm no more a problem if I was one
 self.no_more_a_problem()

 # Volatile part
 # Only for service
 elif c.exit_status != 0 and getattr(self, 'is_volatile', False):
 #print "Case 3 (volatile only)"
 # There are no repeated attempts, so the first non-ok results
 # in a hard state
 self.attempt = 1
 self.state_type = 'HARD'
 # status != 0 so add a log entry (before actions that can also raise log
 # it is smarter to log error before notification)
 self.raise_alert_log_entry()
 self.check_for_flexible_downtime()
 self.remove_in_progress_notifications()
 if not no_action:
 self.create_notifications('PROBLEM')
 # Ok, event handlers here too
 self.get_event_handlers()

 # PROBLEM/IMPACT
 # I'm a problem only if I'm the root problem,
 # so not no_action:
 if not no_action:
 self.set_myself_as_problem()

 # NON-OK follows OK. Everything was fine, but now trouble is ahead
 elif c.exit_status != 0 and self.last_state in (OK_UP, 'PENDING'):
 #print "Case 4: NON-OK follows OK: code:%s last_state:%s" % (c.exit_status, self.last_state)
 if self.is_max_attempts():
 # if max_attempts == 1 we're already in deep trouble
 self.state_type = 'HARD'
 self.raise_alert_log_entry()
 self.remove_in_progress_notifications()
 self.check_for_flexible_downtime()
 if not no_action:
 self.create_notifications('PROBLEM')
 # Oh? This is the typical go for a event handler :)
 self.get_event_handlers()

 # PROBLEM/IMPACT
 # I'm a problem only if I'm the root problem,
 # so not no_action:
 if not no_action:
 self.set_myself_as_problem()

 else:
 # This is the first NON-OK result. Initiate the SOFT-sequence
 # Also launch the event handler, he might fix it.
 self.attempt = 1
 self.state_type = 'SOFT'
 self.raise_alert_log_entry()
 self.get_event_handlers()

 # If no OK in a no OK: if hard, still hard, if soft,
 # check at self.max_check_attempts
 # when we go in hard, we send notification
 elif c.exit_status != 0 and self.last_state != OK_UP:
 #print "Case 5 (no OK in a no OK): code:%s last_state:%s state_type:%s" % (c.exit_status, self.last_state,self.state_type)
 if self.state_type == 'SOFT':
 if not c.is_dependent():
 self.add_attempt()
 if self.is_max_attempts():
 # Ok here is when we just go to the hard state
 self.state_type = 'HARD'
 self.raise_alert_log_entry()
 self.remove_in_progress_notifications()
 # There is a request in the Nagios trac to enter downtimes
 # on soft states which does make sense. If this becomes
 # the default behavior, just move the following line
 # into the else-branch below.
 self.check_for_flexible_downtime()
 if not no_action:
 self.create_notifications('PROBLEM')
 # So event handlers here too
 self.get_event_handlers()

 # PROBLEM/IMPACT
 # I'm a problem only if I'm the root problem,
 # so not no_action:
 if not no_action:
 self.set_myself_as_problem()

 else:
 self.raise_alert_log_entry()
 # eventhandler is launched each time during the soft state
 self.get_event_handlers()
 else:
 # Send notifications whenever the state has changed. (W -> C)
 # but not if the current state is UNKNOWN (hard C-> hard U -> hard C should
 # not restart notifications)
 if self.state != self.last_state:
 self.update_hard_unknown_phase_state()
 #print self.last_state, self.last_state_type, self.state_type, self.state
 if not self.in_hard_unknown_reach_phase and not self.was_in_hard_unknown_reach_phase:
 self.unacknowledge_problem_if_not_sticky()
 self.raise_alert_log_entry()
 self.remove_in_progress_notifications()
 if not no_action:
 self.create_notifications('PROBLEM')

 # PROBLEM/IMPACT
 # Maybe our new state can raise the problem
 # when the last one was not
 # I'm a problem only if I'm the root problem,
 # so not no_action:
 if not no_action:
 self.set_myself_as_problem()

 elif self.in_scheduled_downtime_during_last_check == True:
 # during the last check i was in a downtime. but now
 # the status is still critical and notifications
 # are possible again. send an alert immediately
 self.remove_in_progress_notifications()
 if not no_action:
 self.create_notifications('PROBLEM')

 self.update_hard_unknown_phase_state()
 # Reset this flag. If it was true, actions were already taken
 self.in_scheduled_downtime_during_last_check = False

 # now is the time to update state_type_id
 # and our last_hard_state
 if self.state_type == 'HARD':
 self.state_type_id = 1
 self.last_hard_state = self.state
 self.last_hard_state_id = self.state_id
 else:
 self.state_type_id = 0

 # Fill last_hard_state_change to now
 # if we just change from SOFT->HARD or
 # in HARD we change of state (Warning->critical, or critical->ok, etc etc)
 if self.state_type == 'HARD' and (self.last_state_type == 'SOFT' or self.last_state != self.state):
 self.last_hard_state_change = int(time.time())

 # update event/problem-counters
 self.update_event_and_problem_id()

 # Now launch trigger if need. If it's from a trigger raised check,
 # do not raise a new one
 if not c.from_trigger:
 self.eval_triggers()

 self.broks.append(self.get_check_result_brok())
 self.get_obsessive_compulsive_processor_command()
 self.get_perfdata_command()

[docs] def update_event_and_problem_id(self):
 OK_UP = self.__class__.ok_up # OK for service, UP for host
 if (self.state != self.last_state and self.last_state != 'PENDING'
 or self.state != OK_UP and self.last_state == 'PENDING'):
 SchedulingItem.current_event_id += 1
 self.last_event_id = self.current_event_id
 self.current_event_id = SchedulingItem.current_event_id
 # now the problem_id
 if self.state != OK_UP and self.last_state == 'PENDING':
 # broken ever since i can remember
 SchedulingItem.current_problem_id += 1
 self.last_problem_id = self.current_problem_id
 self.current_problem_id = SchedulingItem.current_problem_id
 elif self.state != OK_UP and self.last_state != OK_UP:
 # State transitions between non-OK states
 # (e.g. WARNING to CRITICAL) do not cause
 # this problem id to increase.
 pass
 elif self.state == OK_UP:
 # If the service is currently in an OK state,
 # this macro will be set to zero (0).
 self.last_problem_id = self.current_problem_id
 self.current_problem_id = 0
 else:
 # Every time a service (or host) transitions from
 # an OK or UP state to a problem state, a global
 # problem ID number is incremented by one (1).
 SchedulingItem.current_problem_id += 1
 self.last_problem_id = self.current_problem_id
 self.current_problem_id = SchedulingItem.current_problem_id

 # Called by scheduler when a notification is
 # ok to be send (so fully prepared to be send
 # to reactionner). Here we update the command with
 # status of now, and we add the contact to set of
 # contact we notified. And we raise the log entry

[docs] def prepare_notification_for_sending(self, n):
 if n.status == 'inpoller':
 self.update_notification_command(n)
 self.notified_contacts.add(n.contact)
 self.raise_notification_log_entry(n)

 # Just update the notification command by resolving Macros
 # And because we are just launching the notification, we can say
 # that this contact have been notified

[docs] def update_notification_command(self, n):
 cls = self.__class__
 m = MacroResolver()
 data = self.get_data_for_notifications(n.contact, n)
 n.command = m.resolve_command(n.command_call, data)
 if not cls.use_large_installation_tweaks and cls.enable_environment_macros:
 n.env = m.get_env_macros(data)

 # See if an escalation is eligible at t and notif nb=n

[docs] def is_escalable(self, n):
 cls = self.__class__

 # We search since when we are in notification for escalations
 # that are based on time
 in_notif_time = time.time() - n.creation_time

 # Check is an escalation match the current_notification_number
 for es in self.escalations:
 if es.is_eligible(n.t_to_go, self.state, n.notif_nb, in_notif_time, cls.interval_length):
 return True

 return False

 # Give for a notification the next notification time
 # by taking the standard notification_interval or ask for
 # our escalation if one of them need a smaller value to escalade

[docs] def get_next_notification_time(self, n):
 res = None
 now = time.time()
 cls = self.__class__

 # Look at the minimum notification interval
 notification_interval = self.notification_interval
 # and then look for currently active notifications, and take notification_interval
 # if filled and less than the self value
 in_notif_time = time.time() - n.creation_time
 for es in self.escalations:
 if es.is_eligible(n.t_to_go, self.state, n.notif_nb, in_notif_time, cls.interval_length):
 if es.notification_interval != -1 and es.notification_interval < notification_interval:
 notification_interval = es.notification_interval

 # So take the by default time
 std_time = n.t_to_go + notification_interval * cls.interval_length

 # Maybe the notification comes from retention data and next notification alert is in the past
 # if so let use the now value instead
 if std_time < now:
 std_time = now + notification_interval * cls.interval_length

 # standard time is a good one
 res = std_time

 creation_time = n.creation_time
 in_notif_time = now - n.creation_time

 for es in self.escalations:
 # If the escalation was already raised, we do not look for a new "early start"
 if es.get_name() not in n.already_start_escalations:
 r = es.get_next_notif_time(std_time, self.state, creation_time, cls.interval_length)
 # If we got a real result (time base escalation), we add it
 if r is not None and now < r < res:
 res = r

 # And we take the minimum of this result. Can be standard or escalation asked
 return res

 # Get all contacts (uniq) from eligible escalations

[docs] def get_escalable_contacts(self, n):
 cls = self.__class__

 # We search since when we are in notification for escalations
 # that are based on this time
 in_notif_time = time.time() - n.creation_time

 contacts = set()
 for es in self.escalations:
 if es.is_eligible(n.t_to_go, self.state, n.notif_nb, in_notif_time, cls.interval_length):
 contacts.update(es.contacts)
 # And we tag this escalations as started now
 n.already_start_escalations.add(es.get_name())

 return list(contacts)

 # Create a "master" notification here, which will later
 # (immediately before the reactionner gets it) be split up
 # in many "child" notifications, one for each contact.

[docs] def create_notifications(self, type, t_wished=None):
 cls = self.__class__
 # t_wished==None for the first notification launch after consume
 # here we must look at the self.notification_period
 if t_wished is None:
 now = time.time()
 t_wished = now
 # if first notification, we must add first_notification_delay
 if self.current_notification_number == 0 and type == 'PROBLEM':
 last_time_non_ok_or_up = self.last_time_non_ok_or_up()
 if last_time_non_ok_or_up == 0:
 # this happens at initial
 t_wished = now + self.first_notification_delay * cls.interval_length
 else:
 t_wished = last_time_non_ok_or_up + self.first_notification_delay * cls.interval_length
 if self.notification_period is None:
 t = int(now)
 else:
 t = self.notification_period.get_next_valid_time_from_t(t_wished)
 else:
 # We follow our order
 t = t_wished

 if self.notification_is_blocked_by_item(type, t_wished) and self.first_notification_delay == 0 and self.notification_interval == 0:
 # If notifications are blocked on the host/service level somehow
 # and repeated notifications are not configured,
 # we can silently drop this one
 return

 if type == 'PROBLEM':
 # Create the notification with an incremented notification_number.
 # The current_notification_number of the item itself will only
 # be incremented when this notification (or its children)
 # have actually be sent.
 next_notif_nb = self.current_notification_number + 1
 elif type == 'RECOVERY':
 # Recovery resets the notification counter to zero
 self.current_notification_number = 0
 next_notif_nb = self.current_notification_number
 else:
 # downtime/flap/etc do not change the notification number
 next_notif_nb = self.current_notification_number

 n = Notification(type, 'scheduled', 'VOID', None, self, None, t, \
 timeout=cls.notification_timeout, \
 notif_nb=next_notif_nb)

 # Keep a trace in our notifications queue
 self.notifications_in_progress[n.id] = n
 # and put it in the temp queue for scheduler
 self.actions.append(n)

 # In create_notifications we created a notification "template". When it's
 # time to hand it over to the reactionner, this master notification needs
 # to be split in several child notifications, one for each contact
 # To be more exact, one for each contact who is willing to accept
 # notifications of this type and at this time

[docs] def scatter_notification(self, n):
 cls = self.__class__
 childnotifications = []

 if n.contact:
 # only master notifications can be split up
 return []
 if n.type == 'RECOVERY':
 if self.first_notification_delay != 0 and len(self.notified_contacts) == 0:
 # Recovered during first_notification_delay. No notifications
 # have been sent yet, so we keep quiet
 contacts = []
 else:
 # The old way. Only send recover notifications to those contacts
 # who also got problem notifications
 contacts = list(self.notified_contacts)
 self.notified_contacts.clear()
 else:
 # Check is an escalation match. If yes, get all contacts from escalations
 if self.is_escalable(n):
 contacts = self.get_escalable_contacts(n)
 # else take normal contacts
 else:
 contacts = self.contacts

 for contact in contacts:
 # We do not want to notify again a contact with notification interval == 0 that has been already
 # notified. Can happen when a service exit a dowtime and still in crit/warn (and not ack)
 if n.type == "PROBLEM" and self.notification_interval == 0 and contact in self.notified_contacts:
 continue
 # Get the property name for notif commands, like
 # service_notification_commands for service
 notif_commands = contact.get_notification_commands(cls.my_type)

 for cmd in notif_commands:
 rt = cmd.reactionner_tag
 child_n = Notification(n.type, 'scheduled', 'VOID', cmd, self,
 contact, n.t_to_go, timeout=cls.notification_timeout,
 notif_nb=n.notif_nb, reactionner_tag=rt, module_type=cmd.module_type)
 if not self.notification_is_blocked_by_contact(child_n, contact):
 # Update the notification with fresh status information
 # of the item. Example: during the notification_delay
 # the status of a service may have changed from WARNING to CRITICAL
 self.update_notification_command(child_n)
 self.raise_notification_log_entry(child_n)
 self.notifications_in_progress[child_n.id] = child_n
 childnotifications.append(child_n)

 if n.type == 'PROBLEM':
 # Remember the contacts. We might need them later in the
 # recovery code some lines above
 self.notified_contacts.add(contact)

 return childnotifications

 # return a check to check the host/service
 # and return id of the check

[docs] def launch_check(self, t, ref_check=None, force=False):
 c = None
 cls = self.__class__

 # Look if we are in check or not
 self.update_in_checking()

 # the check is being forced, so we just replace next_chk time by now
 if force and self.in_checking:
 now = time.time()
 c_in_progress = self.checks_in_progress[0]
 c_in_progress.t_to_go = now
 return c_in_progress.id

 # If I'm already in checking, Why launch a new check?
 # If ref_check_id is not None , this is a dependency_ check
 # If none, it might be a forced check, so OK, I do a new

 # Dependency check, we have to create a new check that will be launched only once (now)
 # Otherwise it will delay the next real check. this can lead to an infinite SOFT state.
 if not force and (self.in_checking and ref_check is not None):

 c_in_progress = self.checks_in_progress[0] # 0 is OK because in_checking is True

 # c_in_progress has almost everything we need but we cant copy.deepcopy() it
 # we need another c.id
 command_line = c_in_progress.command
 timeout = c_in_progress.timeout
 poller_tag = c_in_progress.poller_tag
 env = c_in_progress.env
 module_type = c_in_progress.module_type

 c = Check('scheduled', command_line, self, t, ref_check,
 timeout=timeout,
 poller_tag=poller_tag,
 env=env,
 module_type=module_type,
 dependency_check=True)

 self.actions.append(c)
 #print "Creating new check with new id : %d, old id : %d" % (c.id, c_in_progress.id)
 return c.id

 if force or (not self.is_no_check_dependent()):

 # By default we will use our default check_command
 check_command = self.check_command
 # But if a checkway is available, use this one instead.
 # Take the first available
 for cw in self.checkmodulations:
 c_cw = cw.get_check_command(t)
 if c_cw:
 check_command = c_cw
 break

 # Get the command to launch
 m = MacroResolver()
 data = self.get_data_for_checks()
 command_line = m.resolve_command(check_command, data)

 # By default env is void
 env = {}

 # And get all environment variables only if needed
 if not cls.use_large_installation_tweaks and cls.enable_environment_macros:
 env = m.get_env_macros(data)

 # By default we take the global timeout, but we use the command one if it
 # define it (by default it's -1)
 timeout = cls.check_timeout
 if check_command.timeout != -1:
 timeout = check_command.timeout

 # Make the Check object and put the service in checking
 # Make the check inherit poller_tag from the command
 # And reactionner_tag too
 c = Check('scheduled', command_line, self, t, ref_check, \
 timeout=timeout, \
 poller_tag=check_command.poller_tag, \
 env=env, \
 module_type=check_command.module_type)

 # We keep a trace of all checks in progress
 # to know if we are in checking_or not
 self.checks_in_progress.append(c)
 self.update_in_checking()

 # We need to put this new check in our actions queue
 # so scheduler can take it
 if c is not None:
 self.actions.append(c)
 return c.id
 # None mean I already take it into account
 return None

 # returns either 0 or a positive number
 # 0 == don't check for orphans
 # non-zero == number of secs that can pass before
 # marking the check an orphan.

[docs] def get_time_to_orphanage(self):
 # if disabled program-wide, disable it
 if not self.check_for_orphaned:
 return 0
 # otherwise, check what my local conf says
 if self.time_to_orphanage <= 0:
 return 0
 return self.time_to_orphanage

 # Get the perfdata command with macro resolved for this

[docs] def get_perfdata_command(self):
 cls = self.__class__
 if not cls.process_performance_data or not self.process_perf_data:
 return

 if cls.perfdata_command is not None:
 m = MacroResolver()
 data = self.get_data_for_event_handler()
 cmd = m.resolve_command(cls.perfdata_command, data)
 reactionner_tag = cls.perfdata_command.reactionner_tag
 e = EventHandler(cmd, timeout=cls.perfdata_timeout,
 ref=self, reactionner_tag=reactionner_tag)

 # ok we can put it in our temp action queue
 self.actions.append(e)

 # Create the whole business rule tree
 # if we need it

[docs] def create_business_rules(self, hosts, services):
 cmdCall = getattr(self, 'check_command', None)

 # If we do not have a command, we bailout
 if cmdCall is None:
 return

 # we get our based command, like
 # check_tcp!80 -> check_tcp
 cmd = cmdCall.call
 elts = cmd.split('!')
 base_cmd = elts[0]

 # If it's bp_rule, we got a rule :)
 if base_cmd == 'bp_rule':
 #print "Got rule", elts, cmd
 self.got_business_rule = True
 rule = ''
 if len(elts) >= 2:
 rule = '!'.join(elts[1:])

 fact = DependencyNodeFactory()
 node = fact.eval_cor_pattern(rule, hosts, services)
 #print "got node", node
 self.business_rule = node

 # We ask us to manage our own internal check,
 # like a business based one

[docs] def manage_internal_check(self, c):
 #print "DBG, ask me to manage a check!"
 if c.command.startswith('bp_'):
 state = self.business_rule.get_state()
 # _internal_host_up is for putting host as UP
 elif c.command == '_internal_host_up':
 state = 0
 c.execution_time = 0
 c.output = 'Host assumed to be UP'
 c.long_output = c.output
 # Echo is just putting the same state again
 elif c.command == '_echo':
 state = self.state
 c.execution_time = 0
 c.output = self.output
 c.long_output = c.long_output
 c.check_time = time.time()
 c.exit_status = state
 #print "DBG, setting state", state

 # If I'm a business rule service/host, I register myself to the
 # elements I will depend on, so They will have ME as an impact

[docs] def create_business_rules_dependencies(self):
 if self.got_business_rule:
 #print "DBG: ask me to register me in my dependencies", self.get_name()
 elts = self.business_rule.list_all_elements()
 # I will register myself in this
 for e in elts:
 #print "I register to the element", e.get_name()
 # all states, every timeperiod, and inherit parents
 e.add_business_rule_act_dependency(self, ['d', 'u', 's', 'f', 'c', 'w'], None, True)

[docs] def rebuild_ref(self):
 """ Rebuild the possible reference a schedulingitem can have """
 for g in self.comments, self.downtimes:
 for o in g:
 o.ref = self

 # Go launch all our triggers

[docs] def eval_triggers(self):
 for t in self.triggers:
 try:
 t.eval(self)
 except Exception, exp:
 logger.error("We got an exception from a trigger on %s for %s" % (self.get_full_name().decode('utf8', 'ignore'), str(traceback.format_exc())))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/pack.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.pack

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
import os
import re
try:
 import json
except ImportError:
 json = None

from shinken.objects.item import Item, Items
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.log import logger

[docs]class Pack(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'pack'

 properties = Item.properties.copy()
 properties.update({'pack_name': StringProp(fill_brok=['full_status'])})

 running_properties = Item.running_properties.copy()
 running_properties.update({'macros': StringProp(default={})})

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 try:
 return self.pack_name
 except AttributeError:
 return 'UnnamedPack'

[docs]class Packs(Items):
 name_property = "pack_name"
 inner_class = Pack

 # We will dig into the path and load all .trig files
[docs] def load_file(self, path):
 # Now walk for it
 for root, dirs, files in os.walk(path):
 for file in files:
 if re.search("\.pack$", file):
 p = os.path.join(root, file)
 try:
 fd = open(p, 'rU')
 buf = fd.read()
 fd.close()
 except IOError, exp:
 logger.error("Cannot open pack file '%s' for reading: %s" % (p, exp))
 # ok, skip this one
 continue
 self.create_pack(buf, file[:-5])

 # Create a pack from the string buf, and get a real object from it

[docs] def create_pack(self, buf, name):
 if not json:
 logger.warning("[Pack] cannot load the pack file '%s': missing json lib" % name)
 return
 # Ok, go compile the code
 try:
 d = json.loads(buf)
 if not 'name' in d:
 logger.error("[Pack] no name in the pack '%s'" % name)
 return
 p = Pack({})
 p.pack_name = d['name']
 p.description = d.get('description', '')
 p.macros = d.get('macros', {})
 p.templates = d.get('templates', [p.pack_name])
 p.path = d.get('path', 'various/')
 p.doc_link = d.get('doc_link', '')
 p.services = d.get('services', {})
 p.commands = d.get('commands', [])
 if not p.path.endswith('/'):
 p.path += '/'
 # Ok, add it
 self[p.id] = p
 except ValueError, exp:
 logger.error("[Pack] error in loading pack file '%s': '%s'" % (name, exp))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/contact.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.contact

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items

from shinken.util import strip_and_uniq
from shinken.property import BoolProp, IntegerProp, StringProp
from shinken.log import logger, console_logger

_special_properties = ('service_notification_commands', 'host_notification_commands',
 'service_notification_period', 'host_notification_period',
 'service_notification_options', 'host_notification_options',
 'host_notification_commands', 'contact_name')

_simple_way_parameters = ('service_notification_period', 'host_notification_period',
 'service_notification_options', 'host_notification_options',
 'service_notification_commands', 'host_notification_commands',
 'min_business_impact')

[docs]class Contact(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'contact'

 properties = Item.properties.copy()
 properties.update({
 'contact_name': StringProp(fill_brok=['full_status']),
 'alias': StringProp(default='none', fill_brok=['full_status']),
 'contactgroups': StringProp(default='', fill_brok=['full_status']),
 'host_notifications_enabled': BoolProp(default='1', fill_brok=['full_status']),
 'service_notifications_enabled': BoolProp(default='1', fill_brok=['full_status']),
 'host_notification_period': StringProp(fill_brok=['full_status']),
 'service_notification_period': StringProp(fill_brok=['full_status']),
 'host_notification_options': StringProp(fill_brok=['full_status']),
 'service_notification_options': StringProp(fill_brok=['full_status']),
 'host_notification_commands': StringProp(fill_brok=['full_status']),
 'service_notification_commands': StringProp(fill_brok=['full_status']),
 'min_business_impact': IntegerProp(default='0', fill_brok=['full_status']),
 'email': StringProp(default='none', fill_brok=['full_status']),
 'pager': StringProp(default='none', fill_brok=['full_status']),
 'address1': StringProp(default='none', fill_brok=['full_status']),
 'address2': StringProp(default='none', fill_brok=['full_status']),
 'address3': StringProp(default='none', fill_brok=['full_status']),
 'address4': StringProp(default='none', fill_brok=['full_status']),
 'address5': StringProp(default='none', fill_brok=['full_status']),
 'address6': StringProp(default='none', fill_brok=['full_status']),
 'can_submit_commands': BoolProp(default='0', fill_brok=['full_status']),
 'is_admin': BoolProp(default='0', fill_brok=['full_status']),
 'retain_status_information': BoolProp(default='1', fill_brok=['full_status']),
 'notificationways': StringProp(default='', fill_brok=['full_status']),
 'password': StringProp(default='NOPASSWORDSET', fill_brok=['full_status']),
 })

 running_properties = Item.running_properties.copy()
 running_properties.update({
 'modified_attributes': IntegerProp(default=0L, fill_brok=['full_status'], retention=True),
 'downtimes': StringProp(default=[], fill_brok=['full_status'], retention=True),
 })

 # This tab is used to transform old parameters name into new ones
 # so from Nagios2 format, to Nagios3 ones.
 # Or Shinken deprecated names like criticity
 old_properties = {
 'min_criticity': 'min_business_impact',
 }

 macros = {
 'CONTACTNAME': 'contact_name',
 'CONTACTALIAS': 'alias',
 'CONTACTEMAIL': 'email',
 'CONTACTPAGER': 'pager',
 'CONTACTADDRESS1': 'address1',
 'CONTACTADDRESS2': 'address2',
 'CONTACTADDRESS3': 'address3',
 'CONTACTADDRESS4': 'address4',
 'CONTACTADDRESS5': 'address5',
 'CONTACTADDRESS6': 'address6',
 'CONTACTGROUPNAME': 'get_groupname',
 'CONTACTGROUPNAMES': 'get_groupnames'
 }

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 try:
 return self.contact_name
 except AttributeError:
 return 'UnnamedContact'

 # Search for notification_options with state and if t is
 # in service_notification_period

[docs] def want_service_notification(self, t, state, type, business_impact, cmd=None):
 if not self.service_notifications_enabled:
 return False

 # If we are in downtime, we do nto want notification
 for dt in self.downtimes:
 if dt.is_in_effect:
 return False

 # Now the rest is for sub notificationways. If one is OK, we are ok
 # We will filter in another phase
 for nw in self.notificationways:
 nw_b = nw.want_service_notification(t, state, type, business_impact, cmd)
 if nw_b:
 return True

 # Oh... no one is ok for it? so no, sorry
 return False

 # Search for notification_options with state and if t is in
 # host_notification_period

[docs] def want_host_notification(self, t, state, type, business_impact, cmd=None):
 if not self.host_notifications_enabled:
 return False

 # If we are in downtime, we do nto want notification
 for dt in self.downtimes:
 if dt.is_in_effect:
 return False

 # Now it's all for sub notificationways. If one is OK, we are OK
 # We will filter in another phase
 for nw in self.notificationways:
 nw_b = nw.want_host_notification(t, state, type, business_impact, cmd)
 if nw_b:
 return True

 # Oh, nobody..so NO :)
 return False

 # Call to get our commands to launch a Notification

[docs] def get_notification_commands(self, type):
 r = []
 # service_notification_commands for service
 notif_commands_prop = type + '_notification_commands'
 for nw in self.notificationways:
 r.extend(getattr(nw, notif_commands_prop))
 return r

 # Check is required prop are set:
 # contacts OR contactgroups is need

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 # All of the above are checks in the notificationways part
 for prop, entry in cls.properties.items():
 if prop not in _special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.error("[contact::%s] %s property not set" % (self.get_name(), prop))
 state = False # Bad boy...

 # There is a case where there is no nw: when there is not special_prop defined
 # at all!!
 if self.notificationways == []:
 for p in _special_properties:
 logger.error("[contact::%s] %s property is missing" % (self.get_name(), p))
 state = False

 if hasattr(self, 'contact_name'):
 for c in cls.illegal_object_name_chars:
 if c in self.contact_name:
 logger.error("[contact::%s] %s character not allowed in contact_name" % (self.get_name(), c))
 state = False
 else:
 if hasattr(self, 'alias'): # take the alias if we miss the contact_name
 self.contact_name = self.alias

 return state

 # Raise a log entry when a downtime begins
 # CONTACT DOWNTIME ALERT: test_contact;STARTED; Contact has entered a period of scheduled downtime

[docs] def raise_enter_downtime_log_entry(self):
 console_logger.info("CONTACT DOWNTIME ALERT: %s;STARTED; Contact has "
 "entered a period of scheduled downtime"
 % self.get_name())

 # Raise a log entry when a downtime has finished
 # CONTACT DOWNTIME ALERT: test_contact;STOPPED; Contact has exited from a period of scheduled downtime

[docs] def raise_exit_downtime_log_entry(self):
 console_logger.info("CONTACT DOWNTIME ALERT: %s;STOPPED; Contact has "
 "exited from a period of scheduled downtime"
 % self.get_name())

 # Raise a log entry when a downtime prematurely ends
 # CONTACT DOWNTIME ALERT: test_contact;CANCELLED; Contact has entered a period of scheduled downtime

[docs] def raise_cancel_downtime_log_entry(self):
 console_logger.info("CONTACT DOWNTIME ALERT: %s;CANCELLED; Scheduled "
 "downtime for contact has been cancelled."
 % self.get_name())

[docs]class Contacts(Items):
 name_property = "contact_name"
 inner_class = Contact

[docs] def linkify(self, timeperiods, commands, notificationways):
 #self.linkify_with_timeperiods(timeperiods, 'service_notification_period')
 #self.linkify_with_timeperiods(timeperiods, 'host_notification_period')
 #self.linkify_command_list_with_commands(commands, 'service_notification_commands')
 #self.linkify_command_list_with_commands(commands, 'host_notification_commands')
 self.linkify_with_notificationways(notificationways)

 # We've got a notificationways property with , separated contacts names
 # and we want have a list of NotificationWay

[docs] def linkify_with_notificationways(self, notificationways):
 for i in self:
 if not hasattr(i, 'notificationways'):
 continue
 new_notificationways = []
 for nw_name in strip_and_uniq(i.notificationways.split(',')):
 nw = notificationways.find_by_name(nw_name)
 if nw is not None:
 new_notificationways.append(nw)
 else:
 err = "The %s of the %s '%s' named '%s' is unknown!" % (prop, i.__class__.my_type, i.get_name(), nw_name)
 i.configuration_errors.append(err)
 # Get the list, but first make elements uniq
 i.notificationways = list(set(new_notificationways))

[docs] def late_linkify_c_by_commands(self, commands):
 for i in self:
 for nw in i.notificationways:
 nw.late_linkify_nw_by_commands(commands)

 # We look for contacts property in contacts and

[docs] def explode(self, contactgroups, notificationways):
 # Contactgroups property need to be fullfill for got the informations
 self.apply_partial_inheritance('contactgroups')

 # Register ourself into the contactsgroups we are in
 for c in self:
 if c.is_tpl() or not (hasattr(c, 'contact_name') and hasattr(c, 'contactgroups')):
 continue
 for cg in c.contactgroups.split(','):
 contactgroups.add_member(c.contact_name, cg.strip())

 # Now create a notification way with the simple parameter of the
 # contacts
 for c in self:
 if not c.is_tpl():
 need_notificationway = False
 params = {}
 for p in _simple_way_parameters:
 if hasattr(c, p):
 need_notificationway = True
 params[p] = getattr(c, p)
 else: # put a default text value
 # Remove the value and put a default value
 setattr(c, p, '')

 if need_notificationway:
 #print "Create notif way with", params
 cname = getattr(c, 'contact_name', getattr(c, 'alias', ''))
 nw_name = cname + '_inner_notificationway'
 notificationways.new_inner_member(nw_name, params)

 if not hasattr(c, 'notificationways'):
 c.notificationways = nw_name
 else:
 c.notificationways = c.notificationways + ',' + nw_name

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/hostdependency.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.hostdependency

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items

from shinken.property import BoolProp, StringProp, ListProp
from shinken.log import logger

[docs]class Hostdependency(Item):
 id = 0
 my_type = 'hostdependency'

 # F is dep of D
 # host_name Host B
 # service_description Service D
 # dependent_host_name Host C
 # dependent_service_description Service F
 # execution_failure_criteria o
 # notification_failure_criteria w,u
 # inherits_parent 1
 # dependency_period 24x7

 properties = Item.properties.copy()
 properties.update({
 'dependent_host_name': StringProp(),
 'dependent_hostgroup_name': StringProp(default=''),
 'host_name': StringProp(),
 'hostgroup_name': StringProp(default=''),
 'inherits_parent': BoolProp(default='0'),
 'execution_failure_criteria': ListProp(default='n'),
 'notification_failure_criteria': ListProp(default='n'),
 'dependency_period': StringProp(default='')
 })

 # Give a nice name output, for debugging purpose
 # (debugging happens more often than expected...)
[docs] def get_name(self):
 dependent_host_name = 'unknown'
 if getattr(self, 'dependent_host_name', None):
 dependent_host_name = getattr(getattr(self, 'dependent_host_name'), 'host_name', 'unknown')
 host_name = 'unknown'
 if getattr(self, 'host_name', None):
 host_name = getattr(getattr(self, 'host_name'), 'host_name', 'unknown')
 return dependent_host_name + '/' + host_name

[docs]class Hostdependencies(Items):
[docs] def delete_hostsdep_by_id(self, ids):
 for id in ids:
 del self[id]

 # We create new hostdep if necessary (host groups and co)

[docs] def explode(self, hostgroups):
 # The "old" dependencies will be removed. All dependencies with
 # more than one host or a host group will be in it
 hstdep_to_remove = []

 # Then for every host create a copy of the dependency with just the host
 # because we are adding services, we can't just loop in it
 hostdeps = self.items.keys()
 for id in hostdeps:
 hd = self.items[id]
 if hd.is_tpl(): # Exploding template is useless
 continue

 # We explode first the dependent (son) part
 dephnames = []
 if hasattr(hd, 'dependent_hostgroup_name'):
 dephg_names = hd.dependent_hostgroup_name.split(',')
 dephg_names = [hg_name.strip() for hg_name in dephg_names]
 for dephg_name in dephg_names:
 dephg = hostgroups.find_by_name(dephg_name)
 if dephg is None:
 err = "ERROR: the hostdependency got an unknown dependent_hostgroup_name '%s'" % dephg_name
 hd.configuration_errors.append(err)
 continue
 dephnames.extend(dephg.members.split(','))

 if hasattr(hd, 'dependent_host_name'):
 dephnames.extend(hd.dependent_host_name.split(','))

 # Ok, and now the father part :)
 hnames = []
 if hasattr(hd, 'hostgroup_name'):
 hg_names = hd.hostgroup_name.split(',')
 hg_names = [hg_name.strip() for hg_name in hg_names]
 for hg_name in hg_names:
 hg = hostgroups.find_by_name(hg_name)
 if hg is None:
 err = "ERROR: the hostdependency got an unknown hostgroup_name '%s'" % hg_name
 hd.configuration_errors.append(err)
 continue
 hnames.extend(hg.members.split(','))

 if hasattr(hd, 'host_name'):
 hnames.extend(hd.host_name.split(','))

 # Loop over all sons and fathers to get S*F host deps
 for dephname in dephnames:
 dephname = dephname.strip()
 for hname in hnames:
 new_hd = hd.copy()
 new_hd.dependent_host_name = dephname
 new_hd.host_name = hname
 self.items[new_hd.id] = new_hd
 hstdep_to_remove.append(id)

 self.delete_hostsdep_by_id(hstdep_to_remove)

[docs] def linkify(self, hosts, timeperiods):
 self.linkify_hd_by_h(hosts)
 self.linkify_hd_by_tp(timeperiods)
 self.linkify_h_by_hd()

[docs] def linkify_hd_by_h(self, hosts):
 for hd in self:
 try:
 h_name = hd.host_name
 dh_name = hd.dependent_host_name
 h = hosts.find_by_name(h_name)
 if h is None:
 err = "Error: the host dependency got a bad host_name definition '%s'" % h_name
 hd.configuration_errors.append(err)
 dh = hosts.find_by_name(dh_name)
 if dh is None:
 err = "Error: the host dependency got a bad dependent_host_name definition '%s'" % dh_name
 hd.configuration_errors.append(err)
 hd.host_name = h
 hd.dependent_host_name = dh
 except AttributeError, exp:
 err = "Error: the host dependency miss a property '%s'" % exp
 hd.configuration_errors.append(err)

 # We just search for each hostdep the id of the host
 # and replace the name by the id

[docs] def linkify_hd_by_tp(self, timeperiods):
 for hd in self:
 try:
 tp_name = hd.dependency_period
 tp = timeperiods.find_by_name(tp_name)
 hd.dependency_period = tp
 except AttributeError, exp:
 logger.error("[hostdependency] fail to linkify by timeperiod: %s" % exp)

 # We backport host dep to host. So HD is not need anymore

[docs] def linkify_h_by_hd(self):
 for hd in self:
 # Link template is useless
 if hd.is_tpl():
 continue
 # if the host dep conf is bad, pass this one
 if getattr(hd, 'host_name', None) is None or getattr(hd, 'dependent_host_name', None) is None:
 continue
 # Ok, link!
 depdt_hname = hd.dependent_host_name
 dp = getattr(hd, 'dependency_period', None)
 depdt_hname.add_host_act_dependency(hd.host_name, hd.notification_failure_criteria, dp, hd.inherits_parent)
 depdt_hname.add_host_chk_dependency(hd.host_name, hd.execution_failure_criteria, dp, hd.inherits_parent)

 # Apply inheritance for all properties

[docs] def apply_inheritance(self):
 # We check for all Host properties if the host has it
 # if not, it check all host templates for a value
 for prop in Hostdependency.properties:
 self.apply_partial_inheritance(prop)

 # Then implicit inheritance
 # self.apply_implicit_inheritance(hosts)
 for h in self:
 h.get_customs_properties_by_inheritance(self)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/host.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.host

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This is the main class for the Host. In fact it's mainly
about the configuration part. for the running one, it's better
to look at the schedulingitem class that manage all
scheduling/consume check smart things :)
"""

import time

from item import Items
from schedulingitem import SchedulingItem

from shinken.autoslots import AutoSlots
from shinken.util import format_t_into_dhms_format, to_hostnames_list, get_obj_name, to_svc_hst_distinct_lists, to_list_string_of_names, to_list_of_names, to_name_if_possible
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.graph import Graph
from shinken.macroresolver import MacroResolver
from shinken.eventhandler import EventHandler
from shinken.log import logger, console_logger

[docs]class Host(SchedulingItem):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 id = 1 # zero is reserved for host (primary node for parents)
 ok_up = 'UP'
 my_type = 'host'

 # properties defined by configuration
 # *required: is required in conf
 # *default: default value if no set in conf
 # *pythonize: function to call when transforming string to python object
 # *fill_brok: if set, send to broker. there are two categories: full_status for initial and update status, check_result for check results
 # *no_slots: do not take this property for __slots__
 # Only for the initial call
 # conf_send_preparation: if set, will pass the property to this function. It's used to "flatten"
 # some dangerous properties like realms that are too 'linked' to be send like that.
 # brok_transformation: if set, will call the function with the value of the property
 # the major times it will be to flatten the data (like realm_name instead of the realm object).
 properties = SchedulingItem.properties.copy()
 properties.update({
 'host_name': StringProp(fill_brok=['full_status', 'check_result', 'next_schedule']),
 'alias': StringProp(fill_brok=['full_status']),
 'display_name': StringProp(default='', fill_brok=['full_status']),
 'address': StringProp(fill_brok=['full_status']),
 'parents': ListProp(brok_transformation=to_hostnames_list, default='', fill_brok=['full_status']),
 'hostgroups': StringProp(brok_transformation=to_list_string_of_names, default='', fill_brok=['full_status']),
 'check_command': StringProp(default='_internal_host_up', fill_brok=['full_status']),
 'initial_state': CharProp(default='u', fill_brok=['full_status']),
 'max_check_attempts': IntegerProp(fill_brok=['full_status']),
 'check_interval': IntegerProp(default='0', fill_brok=['full_status']),
 'retry_interval': IntegerProp(default='0', fill_brok=['full_status']),
 'active_checks_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'passive_checks_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'check_period': StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'obsess_over_host': BoolProp(default='0', fill_brok=['full_status'], retention=True),
 'check_freshness': BoolProp(default='0', fill_brok=['full_status']),
 'freshness_threshold': IntegerProp(default='0', fill_brok=['full_status']),
 'event_handler': StringProp(default='', fill_brok=['full_status']),
 'event_handler_enabled': BoolProp(default='0', fill_brok=['full_status']),
 'low_flap_threshold': IntegerProp(default='25', fill_brok=['full_status']),
 'high_flap_threshold': IntegerProp(default='50', fill_brok=['full_status']),
 'flap_detection_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'flap_detection_options': ListProp(default='o,d,u', fill_brok=['full_status']),
 'process_perf_data': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'retain_status_information': BoolProp(default='1', fill_brok=['full_status']),
 'retain_nonstatus_information': BoolProp(default='1', fill_brok=['full_status']),
 'contacts': StringProp(default='', brok_transformation=to_list_of_names, fill_brok=['full_status']),
 'contact_groups': StringProp(default='', fill_brok=['full_status']),
 'notification_interval': IntegerProp(default='60', fill_brok=['full_status']),
 'first_notification_delay': IntegerProp(default='0', fill_brok=['full_status']),
 'notification_period': StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'notification_options': ListProp(default='d,u,r,f', fill_brok=['full_status']),
 'notifications_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'stalking_options': ListProp(default='', fill_brok=['full_status']),
 'notes': StringProp(default='', fill_brok=['full_status']),
 'notes_url': StringProp(default='', fill_brok=['full_status']),
 'action_url': StringProp(default='', fill_brok=['full_status']),
 'icon_image': StringProp(default='', fill_brok=['full_status']),
 'icon_image_alt': StringProp(default='', fill_brok=['full_status']),
 'icon_set': StringProp(default='', fill_brok=['full_status']),
 'vrml_image': StringProp(default='', fill_brok=['full_status']),
 'statusmap_image': StringProp(default='', fill_brok=['full_status']),

 # No slots for this 2 because begin property by a number seems bad
 # it's stupid!
 '2d_coords': StringProp(default='', fill_brok=['full_status'], no_slots=True),
 '3d_coords': StringProp(default='', fill_brok=['full_status'], no_slots=True),
 'failure_prediction_enabled': BoolProp(default='0', fill_brok=['full_status']),

 ### New to shinken
 # 'fill_brok' is ok because in scheduler it's already
 # a string from conf_send_preparation
 'realm': StringProp(default=None, fill_brok=['full_status'], conf_send_preparation=get_obj_name),
 'poller_tag': StringProp(default='None'),
 'reactionner_tag': StringProp(default='None'),
 'resultmodulations': StringProp(default=''),
 'business_impact_modulations': StringProp(default=''),
 'escalations': StringProp(default='', fill_brok=['full_status']),
 'maintenance_period': StringProp(default='', brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'time_to_orphanage': IntegerProp(default='300', fill_brok=['full_status']),

 # Business impact value
 'business_impact': IntegerProp(default='2', fill_brok=['full_status']),

 # Load some triggers
 'trigger': StringProp(default=''),
 'trigger_name': ListProp(default=''),

 # Trending
 'trending_policies': ListProp(default='', fill_brok=['full_status']),

 # Our modulations. By defualt void, but will filled by an inner if need
 'checkmodulations': ListProp(default='', fill_brok=['full_status']),
 'macromodulations': ListProp(default=''),

 # Custom views
 'custom_views' : ListProp(default='', fill_brok=['full_status']),

 })

 # properties set only for running purpose
 # retention: save/load this property from retention
 running_properties = SchedulingItem.running_properties.copy()
 running_properties.update({
 'modified_attributes': IntegerProp(default=0L, fill_brok=['full_status'], retention=True),
 'last_chk': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'next_chk': IntegerProp(default=0, fill_brok=['full_status', 'next_schedule'], retention=True),
 'in_checking': BoolProp(default=False, fill_brok=['full_status', 'check_result', 'next_schedule']),
 'latency': FloatProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'attempt': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'state': StringProp(default='PENDING', fill_brok=['full_status', 'check_result'], retention=True),
 'state_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'state_type': StringProp(default='HARD', fill_brok=['full_status', 'check_result'], retention=True),
 'state_type_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'current_event_id': StringProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_event_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_state': StringProp(default='PENDING', fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_type': StringProp(default='HARD', fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_hard_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_hard_state': StringProp(default='PENDING', fill_brok=['full_status'], retention=True),
 'last_hard_state_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'last_time_up': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_time_down': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_time_unreachable': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'duration_sec': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'output': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'long_output': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'is_flapping': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 'flapping_comment_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 # No broks for _depend_of because of to much links to hosts/services
 # dependencies for actions like notif of event handler, so AFTER check return
 'act_depend_of': StringProp(default=[]),

 # dependencies for checks raise, so BEFORE checks
 'chk_depend_of': StringProp(default=[]),

 # elements that depend of me, so the reverse than just upper
 'act_depend_of_me': StringProp(default=[]),

 # elements that depend of me
 'chk_depend_of_me': StringProp(default=[]),
 'last_state_update': StringProp(default=0, fill_brok=['full_status'], retention=True),

 # no brok ,to much links
 'services': StringProp(default=[]),

 # No broks, it's just internal, and checks have too links
 'checks_in_progress': StringProp(default=[]),

 # No broks, it's just internal, and checks have too links
 'notifications_in_progress': StringProp(default={}, retention=True),
 'downtimes': StringProp(default=[], fill_brok=['full_status'], retention=True),
 'comments': StringProp(default=[], fill_brok=['full_status'], retention=True),
 'flapping_changes': StringProp(default=[], fill_brok=['full_status'], retention=True),
 'percent_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'problem_has_been_acknowledged': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 'acknowledgement': StringProp(default=None, retention=True),
 'acknowledgement_type': IntegerProp(default=1, fill_brok=['full_status', 'check_result'], retention=True),
 'check_type': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'has_been_checked': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'should_be_scheduled': IntegerProp(default=1, fill_brok=['full_status'], retention=True),
 'last_problem_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'current_problem_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'execution_time': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_notification': FloatProp(default=0.0, fill_brok=['full_status'], retention=True),
 'current_notification_number': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'current_notification_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'check_flapping_recovery_notification': BoolProp(default=True, fill_brok=['full_status'], retention=True),
 'scheduled_downtime_depth': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'pending_flex_downtime': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'timeout': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'start_time': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'end_time': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'early_timeout': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'return_code': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'perf_data': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'last_perf_data': StringProp(default='', retention=True),
 'customs': StringProp(default={}, fill_brok=['full_status']),
 'got_default_realm': BoolProp(default=False),

 # use for having all contacts we have notified
 # Warning: for the notified_contacts retention save, we save only the names of the contacts, and we should RELINK
 # them when we load it.
 'notified_contacts': StringProp(default=set(), retention=True, retention_preparation=to_list_of_names),

 'in_scheduled_downtime': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 'in_scheduled_downtime_during_last_check': BoolProp(default=False, retention=True),

 # put here checks and notif raised
 'actions': StringProp(default=[]),
 # and here broks raised
 'broks': StringProp(default=[]),

 # For knowing with which elements we are in relation
 # of dep.
 # childs are the hosts that have US as parent, so
 # only a network dep
 'childs': StringProp(brok_transformation=to_hostnames_list, default=[], fill_brok=['full_status']),
 # Here it's the elements we are depending on
 # so our parents as network relation, or a host
 # we are depending in a hostdependency
 # or even if we are business based.
 'parent_dependencies': StringProp(brok_transformation=to_svc_hst_distinct_lists, default=set(), fill_brok=['full_status']),
 # Here it's the guys that depend on us. So it's the total
 # opposite of the parent_dependencies
 'child_dependencies': StringProp(
 brok_transformation=to_svc_hst_distinct_lists,
 default=set(),
 fill_brok=['full_status']),

 ### Problem/impact part
 'is_problem': StringProp(default=False, fill_brok=['full_status']),
 'is_impact': StringProp(default=False, fill_brok=['full_status']),

 # the save value of our business_impact for "problems"
 'my_own_business_impact': IntegerProp(default=-1, fill_brok=['full_status']),

 # list of problems that make us an impact
 'source_problems': StringProp(brok_transformation=to_svc_hst_distinct_lists, default=[], fill_brok=['full_status']),

 # list of the impact I'm the cause of
 'impacts': StringProp(brok_transformation=to_svc_hst_distinct_lists, default=[], fill_brok=['full_status']),

 # keep a trace of the old state before being an impact
 'state_before_impact': StringProp(default='PENDING'),
 # keep a trace of the old state id before being an impact
 'state_id_before_impact': StringProp(default=0),
 # if the state change, we know so we do not revert it
 'state_changed_since_impact': StringProp(default=False),

 # BUSINESS CORRELATOR PART
 # Say if we are business based rule or not
 'got_business_rule': BoolProp(default=False, fill_brok=['full_status']),
 # Our Dependency node for the business rule
 'business_rule': StringProp(default=None),

 # Manage the unknown/unreach during hard state
 # From now its not really used
 'in_hard_unknown_reach_phase': BoolProp(default=False, retention=True),
 'was_in_hard_unknown_reach_phase': BoolProp(default=False, retention=True),
 'state_before_hard_unknown_reach_phase': StringProp(default='UP', retention=True),

 # Set if the element just change its father/son topology
 'topology_change': BoolProp(default=False, fill_brok=['full_status']),

 # Keep in mind our pack id after the cutting phase
 'pack_id': IntegerProp(default=-1),

 # Trigger list
 'triggers': StringProp(default=[]),
 })

 # Hosts macros and prop that give the information
 # the prop can be callable or not
 macros = {
 'HOSTNAME': 'host_name',
 'HOSTDISPLAYNAME': 'display_name',
 'HOSTALIAS': 'alias',
 'HOSTADDRESS': 'address',
 'HOSTSTATE': 'state',
 'HOSTSTATEID': 'state_id',
 'LASTHOSTSTATE': 'last_state',
 'LASTHOSTSTATEID': 'last_state_id',
 'HOSTSTATETYPE': 'state_type',
 'HOSTATTEMPT': 'attempt',
 'MAXHOSTATTEMPTS': 'max_check_attempts',
 'HOSTEVENTID': 'current_event_id',
 'LASTHOSTEVENTID': 'last_event_id',
 'HOSTPROBLEMID': 'current_problem_id',
 'LASTHOSTPROBLEMID': 'last_problem_id',
 'HOSTLATENCY': 'latency',
 'HOSTEXECUTIONTIME': 'execution_time',
 'HOSTDURATION': 'get_duration',
 'HOSTDURATIONSEC': 'get_duration_sec',
 'HOSTDOWNTIME': 'get_downtime',
 'HOSTPERCENTCHANGE': 'percent_state_change',
 'HOSTGROUPNAME': 'get_groupname',
 'HOSTGROUPNAMES': 'get_groupnames',
 'LASTHOSTCHECK': 'last_chk',
 'LASTHOSTSTATECHANGE': 'last_state_change',
 'LASTHOSTUP': 'last_time_up',
 'LASTHOSTDOWN': 'last_time_down',
 'LASTHOSTUNREACHABLE': 'last_time_unreachable',
 'HOSTOUTPUT': 'output',
 'LONGHOSTOUTPUT': 'long_output',
 'HOSTPERFDATA': 'perf_data',
 'LASTHOSTPERFDATA': 'last_perf_data',
 'HOSTCHECKCOMMAND': 'get_check_command',
 'HOSTACKAUTHOR': 'get_ack_author_name',
 'HOSTACKAUTHORNAME': 'get_ack_author_name',
 'HOSTACKAUTHORALIAS': 'get_ack_author_name',
 'HOSTACKCOMMENT': 'get_ack_comment',
 'HOSTACTIONURL': 'action_url',
 'HOSTNOTESURL': 'notes_url',
 'HOSTNOTES': 'notes',
 'HOSTREALM': 'get_realm',
 'TOTALHOSTSERVICES': 'get_total_services',
 'TOTALHOSTSERVICESOK': 'get_total_services_ok',
 'TOTALHOSTSERVICESWARNING': 'get_total_services_warning',
 'TOTALHOSTSERVICESUNKNOWN': 'get_total_services_unknown',
 'TOTALHOSTSERVICESCRITICAL': 'get_total_services_critical',
 'HOSTBUSINESSIMPACT': 'business_impact'
 }

 # Manage ADDRESSX macros by adding them dynamically
 for _i in range(32):
 macros['HOSTADDRESS%d'%_i] = 'address%d'% _i

 # This tab is used to transform old parameters name into new ones
 # so from Nagios2 format, to Nagios3 ones.
 # Or Shinken deprecated names like criticity
 old_properties = {
 'normal_check_interval': 'check_interval',
 'retry_check_interval': 'retry_interval',
 'criticity': 'business_impact',
 'hostgroup': 'hostgroups',
 ## 'criticitymodulations': 'business_impact_modulations',
 }

#######
__ _ _ _
/ _(_) | | (_)
___ ___ _ __ | |_ _ __ _ _ _ _ __ __ _| |_ _ ___ _ __
/ __/ _ \| '_ \| _| |/ _` | | | | '__/ _` | __| |/ _ \| '_ \
| (_| (_) | | | | | | | (_| | |_| | | | (_| | |_| | (_) | | | |
______/|_| |_|_| |_|__, |__,_|_| __,_|__|_|___/|_| |_|
__/ |
|___/
######

 # Fill address with host_name if not already set
[docs] def fill_predictive_missing_parameters(self):
 if hasattr(self, 'host_name') and not hasattr(self, 'address'):
 self.address = self.host_name
 if hasattr(self, 'host_name') and not hasattr(self, 'alias'):
 self.alias = self.host_name

 # Check is required prop are set:
 # contacts OR contactgroups is need

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 source = getattr(self, 'imported_from', 'unknown')

 special_properties = ['check_period', 'notification_interval', 'check_period',
 'notification_period']
 for prop, entry in cls.properties.items():
 if prop not in special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.error("[host::%s] %s property not set" % (self.get_name(), prop))
 state = False # Bad boy...

 # Then look if we have some errors in the conf
 # Juts print warnings, but raise errors
 for err in self.configuration_warnings:
 logger.warning("[host::%s] %s" % (self.get_name(), err))

 # Raised all previously saw errors like unknown contacts and co
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.error("[host::%s] %s" % (self.get_name(), err))

 if not hasattr(self, 'notification_period'):
 self.notification_period = None

 # Ok now we manage special cases...
 if self.notifications_enabled and self.contacts == []:
 logger.warning("The host %s has no contacts nor contact_groups in (%s)" % (self.get_name(), source))

 if getattr(self, 'event_handler', None) and not self.event_handler.is_valid():
 logger.info("%s: my event_handler %s is invalid" % (self.get_name(), self.event_handler.command))
 state = False

 if getattr(self, 'check_command', None) is None:
 logger.info("%s: I've got no check_command" % self.get_name())
 state = False
 # Ok got a command, but maybe it's invalid
 else:
 if not self.check_command.is_valid():
 logger.info("%s: my check_command %s is invalid" % (self.get_name(), self.check_command.command))
 state = False
 if self.got_business_rule:
 if not self.business_rule.is_valid():
 logger.info("%s: my business rule is invalid" % (self.get_name(),))
 for bperror in self.business_rule.configuration_errors:
 logger.error("[host::%s] %s" % (self.get_name(), bperror))
 state = False

 if not hasattr(self, 'notification_interval') and self.notifications_enabled == True:
 logger.info("%s: I've got no notification_interval but I've got notifications enabled" % self.get_name())
 state = False

 # If active check is enabled with a check_interval!=0, we must have a check_period
 if (getattr(self, 'active_checks_enabled', False)
 and getattr(self, 'check_period', None) is None
 and getattr(self, 'check_interval', 1) != 0):
 logger.info("%s: My check_period is not correct" % self.get_name())
 state = False

 if not hasattr(self, 'check_period'):
 self.check_period = None

 if hasattr(self, 'host_name'):
 for c in cls.illegal_object_name_chars:
 if c in self.host_name:
 logger.info("%s: My host_name got the character %s that is not allowed." % (self.get_name(), c))
 state = False

 return state

 # Search in my service if I've got the service

[docs] def find_service_by_name(self, service_description):
 for s in self.services:
 if getattr(s, 'service_description', '__UNNAMED_SERVICE__') == service_description:
 return s
 return None

 # For get a nice name

[docs] def get_name(self):
 if not self.is_tpl():
 try:
 return self.host_name
 except AttributeError: # outch, no hostname
 return 'UNNAMEDHOST'
 else:
 try:
 return self.name
 except AttributeError: # outch, no name for this template
 return 'UNNAMEDHOSTTEMPLATE'

 # For debugging purpose only

[docs] def get_dbg_name(self):
 return self.host_name

 # Same but for clean call, no debug

[docs] def get_full_name(self):
 return self.host_name

 # Get our realm

[docs] def get_realm(self):
 return self.realm

[docs] def get_hostgroups(self):
 return self.hostgroups

[docs] def get_host_tags(self):
 return self.tags

 # Say if we got the other in one of your dep list

[docs] def is_linked_with_host(self, other):
 for (h, status, type, timeperiod, inherits_parent) in self.act_depend_of:
 if h == other:
 return True
 return False

 # Delete all links in the act_depend_of list of self and other

[docs] def del_host_act_dependency(self, other):
 to_del = []
 # First we remove in my list
 for (h, status, type, timeperiod, inherits_parent) in self.act_depend_of:
 if h == other:
 to_del.append((h, status, type, timeperiod, inherits_parent))
 for t in to_del:
 self.act_depend_of.remove(t)

 # And now in the father part
 to_del = []
 for (h, status, type, timeperiod, inherits_parent) in other.act_depend_of_me:
 if h == self:
 to_del.append((h, status, type, timeperiod, inherits_parent))
 for t in to_del:
 other.act_depend_of_me.remove(t)

 # Remove in child/parents deps too
 # Me in father list
 other.child_dependencies.remove(self)
 # and father list in mine
 self.parent_dependencies.remove(other)

 # Add a dependency for action event handler, notification, etc)
 # and add ourself in it's dep list

[docs] def add_host_act_dependency(self, h, status, timeperiod, inherits_parent):
 # I add him in MY list
 self.act_depend_of.append((h, status, 'logic_dep', timeperiod, inherits_parent))
 # And I add me in it's list
 h.act_depend_of_me.append((self, status, 'logic_dep', timeperiod, inherits_parent))

 # And the parent/child dep lists too
 h.register_son_in_parent_child_dependencies(self)

 # Register the dependency between 2 service for action (notification etc)
 # but based on a BUSINESS rule, so on fact:
 # ERP depend on database, so we fill just database.act_depend_of_me
 # because we will want ERP mails to go on! So call this
 # on the database service with the srv=ERP service

[docs] def add_business_rule_act_dependency(self, h, status, timeperiod, inherits_parent):
 # first I add the other the I depend on in MY list
 # I only register so he know that I WILL be a impact
 self.act_depend_of_me.append((h, status, 'business_dep',
 timeperiod, inherits_parent))

 # And the parent/child dep lists too
 self.register_son_in_parent_child_dependencies(h)

 # Add a dependency for check (so before launch)

[docs] def add_host_chk_dependency(self, h, status, timeperiod, inherits_parent):
 # I add him in MY list
 self.chk_depend_of.append((h, status, 'logic_dep', timeperiod, inherits_parent))
 # And I add me in it's list
 h.chk_depend_of_me.append((self, status, 'logic_dep', timeperiod, inherits_parent))

 # And we fill parent/childs dep for brok purpose
 # Here self depend on h
 h.register_son_in_parent_child_dependencies(self)

 # Add one of our service to services (at linkify)

[docs] def add_service_link(self, service):
 self.services.append(service)

#####
_
(_)
_ __ _ _ _ __ _ __ _ _ __ __ _
| '__| | | | '_ \| '_ \| | '_ \ / _` |
| | | |_| | | | | | | | | | | | (_| |
|_| __,_|_| |_|_| |_|_|_| |_|__, |
__/ |
|___/
####

 # Set unreachable: all our parents are down!
 # We have a special state, but state was already set, we just need to
 # update it. We are no DOWN, we are UNREACHABLE and
 # got a state id is 2

[docs] def set_unreachable(self):
 now = time.time()
 self.state_id = 2
 self.state = 'UNREACHABLE'
 self.last_time_unreachable = int(now)

 # We just go an impact, so we go unreachable
 # But only if we enable this state change in the conf

[docs] def set_impact_state(self):
 cls = self.__class__
 if cls.enable_problem_impacts_states_change:
 # Keep a trace of the old state (problem came back before
 # a new checks)
 self.state_before_impact = self.state
 self.state_id_before_impact = self.state_id
 # This flag will know if we override the impact state
 self.state_changed_since_impact = False
 self.state = 'UNREACHABLE' # exit code UNDETERMINED
 self.state_id = 2

 # Ok, we are no more an impact, if no news checks
 # override the impact state, we came back to old
 # states
 # And only if impact state change is set in configuration

[docs] def unset_impact_state(self):
 cls = self.__class__
 if cls.enable_problem_impacts_states_change and not self.state_changed_since_impact:
 self.state = self.state_before_impact
 self.state_id = self.state_id_before_impact

 # set the state in UP, DOWN, or UNDETERMINED
 # with the status of a check. Also update last_state

[docs] def set_state_from_exit_status(self, status):
 now = time.time()
 self.last_state_update = now

 # we should put in last_state the good last state:
 # if not just change the state by an problem/impact
 # we can take current state. But if it's the case, the
 # real old state is self.state_before_impact (it's the TRUE
 # state in fact)
 # And only if we enable the impact state change
 cls = self.__class__
 if cls.enable_problem_impacts_states_change and self.is_impact and not self.state_changed_since_impact:
 self.last_state = self.state_before_impact
 else:
 self.last_state = self.state

 if status == 0 or (status == 1 and cls.use_aggressive_host_checking == 0):
 self.state = 'UP'
 self.state_id = 0
 self.last_time_up = int(self.last_state_update)
 state_code = 'u'
 elif status in (2, 3) or (status == 1 and cls.use_aggressive_host_checking == 1):
 self.state = 'DOWN'
 self.state_id = 1
 self.last_time_down = int(self.last_state_update)
 state_code = 'd'
 else:
 self.state = 'DOWN' # exit code UNDETERMINED
 self.state_id = 1
 self.last_time_down = int(self.last_state_update)
 state_code = 'd'
 if state_code in self.flap_detection_options:
 self.add_flapping_change(self.state != self.last_state)
 if self.state != self.last_state:
 self.last_state_change = self.last_state_update
 self.duration_sec = now - self.last_state_change

 # See if status is status. Can be low of high format (o/UP, d/DOWN, ...)

[docs] def is_state(self, status):
 if status == self.state:
 return True
 # Now low status
 elif status == 'o' and self.state == 'UP':
 return True
 elif status == 'd' and self.state == 'DOWN':
 return True
 elif status == 'u' and self.state == 'UNREACHABLE':
 return True
 return False

 # The last time when the state was not UP

[docs] def last_time_non_ok_or_up(self):
 if self.last_time_down > self.last_time_up:
 last_time_non_up = self.last_time_down
 else:
 last_time_non_up = 0
 return last_time_non_up

 # Add a log entry with a HOST ALERT like:
 # HOST ALERT: server;DOWN;HARD;1;I don't know what to say...

[docs] def raise_alert_log_entry(self):
 console_logger.info('HOST ALERT: %s;%s;%s;%d;%s'
 % (self.get_name(),
 self.state, self.state_type,
 self.attempt, self.output))

 # If the configuration allow it, raise an initial log like
 # CURRENT HOST STATE: server;DOWN;HARD;1;I don't know what to say...

[docs] def raise_initial_state(self):
 if self.__class__.log_initial_states:
 console_logger.info('CURRENT HOST STATE: %s;%s;%s;%d;%s'
 % (self.get_name(),
 self.state, self.state_type,
 self.attempt, self.output))

 # Add a log entry with a Freshness alert like:
 # Warning: The results of host 'Server' are stale by 0d 0h 0m 58s (threshold=0d 1h 0m 0s).
 # I'm forcing an immediate check of the host.

[docs] def raise_freshness_log_entry(self, t_stale_by, t_threshold):
 logger.warning("The results of host '%s' are stale by %s "
 "(threshold=%s). I'm forcing an immediate check "
 "of the host."
 % (self.get_name(),
 format_t_into_dhms_format(t_stale_by),
 format_t_into_dhms_format(t_threshold)))

 # Raise a log entry with a Notification alert like
 # HOST NOTIFICATION: superadmin;server;UP;notify-by-rss;no output

[docs] def raise_notification_log_entry(self, n):
 contact = n.contact
 command = n.command_call
 if n.type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'CUSTOM',
 'ACKNOWLEDGEMENT', 'FLAPPINGSTART', 'FLAPPINGSTOP',
 'FLAPPINGDISABLED'):
 state = '%s (%s)' % (n.type, self.state)
 else:
 state = self.state
 if self.__class__.log_notifications:
 console_logger.info("HOST NOTIFICATION: %s;%s;%s;%s;%s"
 % (contact.get_name(), self.get_name(),
 state, command.get_name(), self.output))

 # Raise a log entry with a Eventhandler alert like
 # HOST NOTIFICATION: superadmin;server;UP;notify-by-rss;no output

[docs] def raise_event_handler_log_entry(self, command):
 if self.__class__.log_event_handlers:
 console_logger.info("HOST EVENT HANDLER: %s;%s;%s;%s;%s"
 % (self.get_name(),
 self.state, self.state_type,
 self.attempt, command.get_name()))

 # Raise a log entry with FLAPPING START alert like
 # HOST FLAPPING ALERT: server;STARTED; Host appears to have started flapping (50.6% change >= 50.0% threshold)

[docs] def raise_flapping_start_log_entry(self, change_ratio, threshold):
 console_logger.info("HOST FLAPPING ALERT: %s;STARTED; "
 "Host appears to have started flapping "
 "(%.1f%% change >= %.1f%% threshold)"
 % (self.get_name(), change_ratio, threshold))

 # Raise a log entry with FLAPPING STOP alert like
 # HOST FLAPPING ALERT: server;STOPPED; host appears to have stopped flapping (23.0% change < 25.0% threshold)

[docs] def raise_flapping_stop_log_entry(self, change_ratio, threshold):
 console_logger.info("HOST FLAPPING ALERT: %s;STOPPED; "
 "Host appears to have stopped flapping "
 "(%.1f%% change < %.1f%% threshold)"
 % (self.get_name(), change_ratio, threshold))

 # If there is no valid time for next check, raise a log entry

[docs] def raise_no_next_check_log_entry(self):
 logger.warning("I cannot schedule the check for the host '%s' "
 "because there is not future valid time"
 % (self.get_name()))

 # Raise a log entry when a downtime begins
 # HOST DOWNTIME ALERT: test_host_0;STARTED; Host has entered a period of scheduled downtime

[docs] def raise_enter_downtime_log_entry(self):
 console_logger.info("HOST DOWNTIME ALERT: %s;STARTED; "
 "Host has entered a period of scheduled downtime"
 % (self.get_name()))

 # Raise a log entry when a downtime has finished
 # HOST DOWNTIME ALERT: test_host_0;STOPPED; Host has exited from a period of scheduled downtime

[docs] def raise_exit_downtime_log_entry(self):
 console_logger.info("HOST DOWNTIME ALERT: %s;STOPPED; Host has "
 "exited from a period of scheduled downtime"
 % (self.get_name()))

 # Raise a log entry when a downtime prematurely ends
 # HOST DOWNTIME ALERT: test_host_0;CANCELLED; Service has entered a period of scheduled downtime

[docs] def raise_cancel_downtime_log_entry(self):
 console_logger.info("HOST DOWNTIME ALERT: %s;CANCELLED; "
 "Scheduled downtime for host has been cancelled."
 % (self.get_name()))

 # Is stalking?
 # Launch if check is waitconsume==first time
 # and if c.status is in self.stalking_options

[docs] def manage_stalking(self, c):
 need_stalk = False
 if c.status == 'waitconsume':
 if c.exit_status == 0 and 'o' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 1 and 'd' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 2 and 'd' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 3 and 'u' in self.stalking_options:
 need_stalk = True
 if c.output != self.output:
 need_stalk = False
 if need_stalk:
 logger.info("Stalking %s: %s" % (self.get_name(), self.output))

 # fill act_depend_of with my parents (so network dep)
 # and say parents they impact me, no timeperiod and follow parents of course

[docs] def fill_parents_dependency(self):
 for parent in self.parents:
 if parent is not None:
 # I add my parent in my list
 self.act_depend_of.append((parent, ['d', 'u', 's', 'f'], 'network_dep', None, True))

 # And I register myself in my parent list too
 parent.register_child(self)

 # And add the parent/child dep filling too, for broking
 parent.register_son_in_parent_child_dependencies(self)

 # Register a child in our lists

[docs] def register_child(self, child):
 # We've got 2 list: a list for our child
 # where we just put the pointer, it's just for broking
 # and another with all data, useful for 'running' part
 self.childs.append(child)
 self.act_depend_of_me.append((child, ['d', 'u', 's', 'f'], 'network_dep', None, True))

 # Give data for checks's macros

[docs] def get_data_for_checks(self):
 return [self]

 # Give data for event handler's macro

[docs] def get_data_for_event_handler(self):
 return [self]

 # Give data for notifications'n macros

[docs] def get_data_for_notifications(self, contact, n):
 return [self, contact, n]

 # See if the notification is launchable (time is OK and contact is OK too)

[docs] def notification_is_blocked_by_contact(self, n, contact):
 return not contact.want_host_notification(self.last_chk, self.state, n.type, self.business_impact, n.command_call)

 # MACRO PART

[docs] def get_duration_sec(self):
 return str(int(self.duration_sec))

[docs] def get_duration(self):
 m, s = divmod(self.duration_sec, 60)
 h, m = divmod(m, 60)
 return "%02dh %02dm %02ds" % (h, m, s)

 # Check if a notification for this host is suppressed at this time
 # This is a check at the host level. Do not look at contacts here

[docs] def notification_is_blocked_by_item(self, type, t_wished=None):
 if t_wished is None:
 t_wished = time.time()

 # TODO
 # forced notification -> false
 # custom notification -> false

 # Block if notifications are program-wide disabled
 if not self.enable_notifications:
 return True

 # Does the notification period allow sending out this notification?
 if self.notification_period is not None and not self.notification_period.is_time_valid(t_wished):
 return True

 # Block if notifications are disabled for this host
 if not self.notifications_enabled:
 return True

 # Block if the current status is in the notification_options d,u,r,f,s
 if 'n' in self.notification_options:
 return True

 if type in ('PROBLEM', 'RECOVERY'):
 if self.state == 'DOWN' and not 'd' in self.notification_options:
 return True
 if self.state == 'UP' and not 'r' in self.notification_options:
 return True
 if self.state == 'UNREACHABLE' and not 'u' in self.notification_options:
 return True
 if (type in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED')
 and not 'f' in self.notification_options):
 return True
 if (type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'DOWNTIMECANCELLED')
 and not 's' in self.notification_options):
 return True

 # Acknowledgements make no sense when the status is ok/up
 if type == 'ACKNOWLEDGEMENT':
 if self.state == self.ok_up:
 return True

 # Flapping
 if type in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 # todo block if not notify_on_flapping
 if self.scheduled_downtime_depth > 0:
 return True

 # When in deep downtime, only allow end-of-downtime notifications
 # In depth 1 the downtime just started and can be notified
 if self.scheduled_downtime_depth > 1 and not type in ('DOWNTIMEEND', 'DOWNTIMECANCELLED'):
 return True

 # Block if in a scheduled downtime and a problem arises
 if self.scheduled_downtime_depth > 0 and type in ('PROBLEM', 'RECOVERY'):
 return True

 # Block if the status is SOFT
 if self.state_type == 'SOFT' and type == 'PROBLEM':
 return True

 # Block if the problem has already been acknowledged
 if self.problem_has_been_acknowledged and type != 'ACKNOWLEDGEMENT':
 return True

 # Block if flapping
 if self.is_flapping and type not in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 return True

 return False

 # Get a oc*p command if item has obsess_over_*
 # command. It must be enabled locally and globally

[docs] def get_obsessive_compulsive_processor_command(self):
 cls = self.__class__
 if not cls.obsess_over or not self.obsess_over_host:
 return

 m = MacroResolver()
 data = self.get_data_for_event_handler()
 cmd = m.resolve_command(cls.ochp_command, data)
 e = EventHandler(cmd, timeout=cls.ochp_timeout)

 # ok we can put it in our temp action queue
 self.actions.append(e)

 # Macro part

[docs] def get_total_services(self):
 return str(len(self.services))

[docs] def get_total_services_ok(self):
 return str(len([s for s in self.services if s.state_id == 0]))

[docs] def get_total_services_warning(self):
 return str(len([s for s in self.services if s.state_id == 1]))

[docs] def get_total_services_critical(self):
 return str(len([s for s in self.services if s.state_id == 2]))

[docs] def get_total_services_unknown(self):
 return str(len([s for s in self.services if s.state_id == 3]))

[docs] def get_ack_author_name(self):
 if self.acknowledgement is None:
 return ''
 return self.acknowledgement.author

[docs] def get_ack_comment(self):
 if self.acknowledgement is None:
 return ''
 return self.acknowledgement.comment

[docs] def get_check_command(self):
 return self.check_command.get_name()

CLass for the hosts lists. It's mainly for configuration
part

[docs]class Hosts(Items):
 name_property = "host_name" # use for the search by name
 inner_class = Host # use for know what is in items

 # Create link between elements:
 # hosts -> timeperiods
 # hosts -> hosts (parents, etc)
 # hosts -> commands (check_command)
 # hosts -> contacts
[docs] def linkify(self, timeperiods=None, commands=None, contacts=None, realms=None, resultmodulations=None, businessimpactmodulations=None, escalations=None, hostgroups=None, triggers=None, checkmodulations=None, macromodulations=None):
 self.linkify_with_timeperiods(timeperiods, 'notification_period')
 self.linkify_with_timeperiods(timeperiods, 'check_period')
 self.linkify_with_timeperiods(timeperiods, 'maintenance_period')
 self.linkify_h_by_h()
 self.linkify_h_by_hg(hostgroups)
 self.linkify_one_command_with_commands(commands, 'check_command')
 self.linkify_one_command_with_commands(commands, 'event_handler')

 self.linkify_with_contacts(contacts)
 self.linkify_h_by_realms(realms)
 self.linkify_with_resultmodulations(resultmodulations)
 self.linkify_with_business_impact_modulations(businessimpactmodulations)
 # WARNING: all escalations will not be link here
 # (just the escalation here, not serviceesca or hostesca).
 # This last one will be link in escalations linkify.
 self.linkify_with_escalations(escalations)
 self.linkify_with_triggers(triggers)
 self.linkify_with_checkmodulations(checkmodulations)
 self.linkify_with_macromodulations(macromodulations)

 # Fill address by host_name if not set

[docs] def fill_predictive_missing_parameters(self):
 for h in self:
 h.fill_predictive_missing_parameters()

 # Link host with hosts (parents)

[docs] def linkify_h_by_h(self):
 for h in self:
 parents = h.parents
 # The new member list
 new_parents = []
 for parent in parents:
 parent = parent.strip()
 p = self.find_by_name(parent)
 if p is not None:
 new_parents.append(p)
 else:
 err = "the parent '%s' on host '%s' is unknown!" % (parent, h.get_name())
 self.configuration_errors.append(err)
 #print "Me,", h.host_name, "define my parents", new_parents
 # We find the id, we replace the names
 h.parents = new_parents

 # Link with realms and set a default realm if none

[docs] def linkify_h_by_realms(self, realms):
 default_realm = None
 for r in realms:
 if getattr(r, 'default', False):
 default_realm = r
 # if default_realm is None:
 # print "Error: there is no default realm defined!"
 for h in self:
 if h.realm is not None:
 p = realms.find_by_name(h.realm.strip())
 if p is None:
 err = "the host %s got an invalid realm (%s)!" % (h.get_name(), h.realm)
 h.configuration_errors.append(err)
 h.realm = p
 else:
 #print "Notice: applying default realm %s to host %s" % (default_realm.get_name(), h.get_name())
 h.realm = default_realm
 h.got_default_realm = True

 # We look for hostgroups property in hosts and
 # link them

[docs] def linkify_h_by_hg(self, hostgroups):
 # Register host in the hostgroups
 for h in self:
 if not h.is_tpl():
 new_hostgroups = []
 if hasattr(h, 'hostgroups') and h.hostgroups != '':
 hgs = h.hostgroups.split(',')
 for hg_name in hgs:
 hg_name = hg_name.strip()
 hg = hostgroups.find_by_name(hg_name)
 if hg is not None:
 new_hostgroups.append(hg)
 else:
 err = "the hostgroup '%s' of the host '%s' is unknown" % (hg_name, h.host_name)
 h.configuration_errors.append(err)
 h.hostgroups = new_hostgroups

 # We look for hostgroups property in hosts and

[docs] def explode(self, hostgroups, contactgroups, triggers):

 # items::explode_trigger_string_into_triggers
 self.explode_trigger_string_into_triggers(triggers)

 # Register host in the hostgroups
 for h in self:
 if not h.is_tpl() and hasattr(h, 'host_name'):
 hname = h.host_name
 if hasattr(h, 'hostgroups'):
 hgs = h.hostgroups.split(',')
 for hg in hgs:
 hostgroups.add_member(hname, hg.strip())

 # items::explode_contact_groups_into_contacts
 # take all contacts from our contact_groups into our contact property
 self.explode_contact_groups_into_contacts(contactgroups)

 # In the scheduler we need to relink the commandCall with
 # the real commands

[docs] def late_linkify_h_by_commands(self, commands):
 props = ['check_command', 'event_handler']
 for h in self:
 for prop in props:
 cc = getattr(h, prop, None)
 if cc:
 cc.late_linkify_with_command(commands)

 # Ok also link checkmodulations
 for cw in h.checkmodulations:
 cw.late_linkify_cw_by_commands(commands)
 print cw

 # Create dependencies:
 # Dependencies at the host level: host parent

[docs] def apply_dependencies(self):
 for h in self:
 h.fill_parents_dependency()

 # Parent graph: use to find quickly relations between all host, and loop
 # return True if there is a loop

[docs] def no_loop_in_parents(self):
 # Ok, we say "from now, no loop :) "
 r = True

 # Create parent graph
 parents = Graph()

 # With all hosts as nodes
 for h in self:
 if h is not None:
 parents.add_node(h)

 # And now fill edges
 for h in self:
 for p in h.parents:
 if p is not None:
 parents.add_edge(p, h)

 # Now get the list of all hosts in a loop
 host_in_loops = parents.loop_check()

 # and raise errors about it
 for h in host_in_loops:
 logger.error("The host '%s' is part of a circular parent/child chain!" % h.get_name())
 r = False

 return r

 # Return a list of the host_name of the hosts
 # that got the template with name=tpl_name or inherit from
 # a template that use it

[docs] def find_hosts_that_use_template(self, tpl_name):
 res = set()

 # First find the template
 tpl = None
 for h in self:
 # Look for template with the good name
 if h.is_tpl() and hasattr(h, 'name') and h.name.strip() == tpl_name.strip():
 tpl = h

 # If we find none, we return nothing (easy case:))
 if tpl is None:
 return []

 # Ok, we find the tpl. We should find its father template too
 for t in self.templates.values():
 t.dfs_loop_status = 'DFS_UNCHECKED'
 all_tpl_searched = self.templates_graph.dfs_get_all_childs(tpl)
 # Clean the search tag
 # TODO: better way?
 for t in self.templates.values():
 del t.dfs_loop_status

 # Now we got all the templates we are looking for (so the template
 # and all its own templates too, we search for the hosts that are
 # using them
 for h in self:
 # If the host is a not valid one, skip it
 if not hasattr(h, 'host_name'):
 continue
 # look if there is a match between host templates
 # and the ones we are looking for
 for t in h.templates:
 if t in all_tpl_searched:
 res.add(h.host_name)
 continue

 return list(res)

 # Will create all business tree for the
 # services

[docs] def create_business_rules(self, hosts, services):
 for h in self:
 h.create_business_rules(hosts, services)

 # Will link all business service/host with theirs
 # dep for problem/impact link

[docs] def create_business_rules_dependencies(self):
 for h in self:
 h.create_business_rules_dependencies()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/service.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.service

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

""" This Class is the service one, s it manage all service specific thing.
If you look at the scheduling part, look at the scheduling item class"""

import time
import re

try:
 from ClusterShell.NodeSet import NodeSet, NodeSetParseRangeError
except ImportError:
 NodeSet = None

from shinken.objects.item import Items
from shinken.objects.schedulingitem import SchedulingItem

from shinken.autoslots import AutoSlots
from shinken.util import strip_and_uniq, format_t_into_dhms_format, to_svc_hst_distinct_lists, \
 get_key_value_sequence, GET_KEY_VALUE_SEQUENCE_ERROR_SYNTAX, GET_KEY_VALUE_SEQUENCE_ERROR_NODEFAULT, \
 GET_KEY_VALUE_SEQUENCE_ERROR_NODE, to_list_string_of_names, to_list_of_names, to_name_if_possible
from shinken.property import BoolProp, IntegerProp, FloatProp, CharProp, StringProp, ListProp
from shinken.macroresolver import MacroResolver
from shinken.eventhandler import EventHandler
from shinken.log import logger, console_logger

[docs]class Service(SchedulingItem):
 # AutoSlots create the __slots__ with properties and
 # running_properties names
 __metaclass__ = AutoSlots

 # Every service have a unique ID, and 0 is always special in
 # database and co...
 id = 1
 # The host and service do not have the same 0 value, now yes :)
 ok_up = 'OK'
 # used by item class for format specific value like for Broks
 my_type = 'service'

 # properties defined by configuration
 # required: is required in conf
 # default: default value if no set in conf
 # pythonize: function to call when transforming string to python object
 # fill_brok: if set, send to broker. there are two categories:
 # full_status for initial and update status, check_result for check results
 # no_slots: do not take this property for __slots__
 properties = SchedulingItem.properties.copy()
 properties.update({
 'host_name': StringProp(fill_brok=['full_status', 'check_result', 'next_schedule']),
 'hostgroup_name': StringProp(default='', fill_brok=['full_status']),
 'service_description': StringProp(fill_brok=['full_status', 'check_result', 'next_schedule']),
 'display_name': StringProp(default='', fill_brok=['full_status']),
 'servicegroups': StringProp(default='', fill_brok=['full_status'], brok_transformation=to_list_string_of_names),
 'is_volatile': BoolProp(default='0', fill_brok=['full_status']),
 'check_command': StringProp(fill_brok=['full_status']),
 'initial_state': CharProp(default='o', fill_brok=['full_status']),
 'max_check_attempts': IntegerProp(fill_brok=['full_status']),
 'check_interval': IntegerProp(fill_brok=['full_status']),
 'retry_interval': IntegerProp(fill_brok=['full_status']),
 'active_checks_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'passive_checks_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'check_period': StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'obsess_over_service': BoolProp(default='0', fill_brok=['full_status'], retention=True),
 'check_freshness': BoolProp(default='0', fill_brok=['full_status']),
 'freshness_threshold': IntegerProp(default='0', fill_brok=['full_status']),
 'event_handler': StringProp(default='', fill_brok=['full_status']),
 'event_handler_enabled': BoolProp(default='0', fill_brok=['full_status'], retention=True),
 'low_flap_threshold': IntegerProp(default='-1', fill_brok=['full_status']),
 'high_flap_threshold': IntegerProp(default='-1', fill_brok=['full_status']),
 'flap_detection_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'flap_detection_options': ListProp(default='o,w,c,u', fill_brok=['full_status']),
 'process_perf_data': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'retain_status_information': BoolProp(default='1', fill_brok=['full_status']),
 'retain_nonstatus_information': BoolProp(default='1', fill_brok=['full_status']),
 'notification_interval': IntegerProp(default='60', fill_brok=['full_status']),
 'first_notification_delay': IntegerProp(default='0', fill_brok=['full_status']),
 'notification_period': StringProp(brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'notification_options': ListProp(default='w,u,c,r,f,s', fill_brok=['full_status']),
 'notifications_enabled': BoolProp(default='1', fill_brok=['full_status'], retention=True),
 'contacts': StringProp(default='', brok_transformation=to_list_of_names, fill_brok=['full_status']),
 'contact_groups': StringProp(default='', fill_brok=['full_status']),
 'stalking_options': ListProp(default='', fill_brok=['full_status']),
 'notes': StringProp(default='', fill_brok=['full_status']),
 'notes_url': StringProp(default='', fill_brok=['full_status']),
 'action_url': StringProp(default='', fill_brok=['full_status']),
 'icon_image': StringProp(default='', fill_brok=['full_status']),
 'icon_image_alt': StringProp(default='', fill_brok=['full_status']),
 'icon_set': StringProp(default='', fill_brok=['full_status']),
 'failure_prediction_enabled': BoolProp(default='0', fill_brok=['full_status']),
 'parallelize_check': BoolProp(default='1', fill_brok=['full_status']),

 # Shinken specific
 'poller_tag': StringProp(default='None'),
 'reactionner_tag': StringProp(default='None'),
 'resultmodulations': StringProp(default=''),
 'business_impact_modulations': StringProp(default=''),
 'escalations': StringProp(default='', fill_brok=['full_status']),
 'maintenance_period': StringProp(default='', brok_transformation=to_name_if_possible, fill_brok=['full_status']),
 'time_to_orphanage': IntegerProp(default="300", fill_brok=['full_status']),

 # Easy Service dep definition
 'service_dependencies': ListProp(default=''), # TODO: find a way to brok it?

 # service generator
 'duplicate_foreach': StringProp(default=''),
 'default_value': StringProp(default=''),

 # Business_Impact value
 'business_impact': IntegerProp(default='2', fill_brok=['full_status']),

 # Load some triggers
 'trigger': StringProp(default=''),
 'trigger_name': ListProp(default=''),

 # Trending
 'trending_policies': ListProp(default='', fill_brok=['full_status']),

 # Our check ways. By defualt void, but will filled by an inner if need
 'checkmodulations': ListProp(default='', fill_brok=['full_status']),
 'macromodulations': ListProp(default=''),

 # Custom views
 'custom_views' : ListProp(default='', fill_brok=['full_status']),

 # UI aggregation
 'aggregation' : StringProp(default='', fill_brok=['full_status']),
 })

 # properties used in the running state
 running_properties = SchedulingItem.running_properties.copy()
 running_properties.update({
 'modified_attributes': IntegerProp(default=0L, fill_brok=['full_status'], retention=True),
 'last_chk': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'next_chk': IntegerProp(default=0, fill_brok=['full_status', 'next_schedule'], retention=True),
 'in_checking': BoolProp(default=False, fill_brok=['full_status', 'check_result', 'next_schedule'], retention=True),
 'latency': FloatProp(default=0, fill_brok=['full_status', 'check_result'], retention=True,),
 'attempt': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'state': StringProp(default='PENDING', fill_brok=['full_status', 'check_result'], retention=True),
 'state_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'current_event_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_event_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_state': StringProp(default='PENDING', fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_type': StringProp(default='HARD', fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_hard_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_hard_state': StringProp(default='PENDING', fill_brok=['full_status'], retention=True),
 'last_hard_state_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'last_time_ok': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_time_warning': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_time_critical': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_time_unknown': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'duration_sec': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'state_type': StringProp(default='HARD', fill_brok=['full_status', 'check_result'], retention=True),
 'state_type_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'output': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'long_output': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'is_flapping': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 # dependencies for actions like notif of event handler,
 # so AFTER check return
 'act_depend_of': ListProp(default=[]),
 # dependencies for checks raise, so BEFORE checks
 'chk_depend_of': ListProp(default=[]),
 # elements that depend of me, so the reverse than just upper
 'act_depend_of_me': ListProp(default=[]),
 # elements that depend of me
 'chk_depend_of_me': ListProp(default=[]),

 'last_state_update': FloatProp(default=0.0, fill_brok=['full_status'], retention=True),
 'checks_in_progress': ListProp(default=[]), # no brok because checks are too linked
 'notifications_in_progress': ListProp(default={}, retention=True), # no broks because notifications are too linked
 'downtimes': ListProp(default=[], fill_brok=['full_status'], retention=True),
 'comments': ListProp(default=[], fill_brok=['full_status'], retention=True),
 'flapping_changes': ListProp(default=[], fill_brok=['full_status'], retention=True),
 'flapping_comment_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'percent_state_change': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'problem_has_been_acknowledged': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 'acknowledgement': StringProp(default=None, retention=True),
 'acknowledgement_type': IntegerProp(default=1, fill_brok=['full_status', 'check_result'], retention=True),
 'check_type': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'has_been_checked': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'should_be_scheduled': IntegerProp(default=1, fill_brok=['full_status'], retention=True),
 'last_problem_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'current_problem_id': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'execution_time': FloatProp(default=0.0, fill_brok=['full_status', 'check_result'], retention=True),
 'last_notification': FloatProp(default=0.0, fill_brok=['full_status'], retention=True),
 'current_notification_number': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'current_notification_id': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'check_flapping_recovery_notification': BoolProp(default=True, fill_brok=['full_status'], retention=True),
 'scheduled_downtime_depth': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'pending_flex_downtime': IntegerProp(default=0, fill_brok=['full_status'], retention=True),
 'timeout': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'start_time': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'end_time': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'early_timeout': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'return_code': IntegerProp(default=0, fill_brok=['full_status', 'check_result'], retention=True),
 'perf_data': StringProp(default='', fill_brok=['full_status', 'check_result'], retention=True),
 'last_perf_data': StringProp(default='', retention=True),
 'host': StringProp(default=None),
 'customs': ListProp(default={}, fill_brok=['full_status']),
 # Warning: for the notified_contacts retention save, we save only the names of the contacts, and we should RELINK
 # them when we load it.
 'notified_contacts': ListProp(default=set(), retention=True, retention_preparation=to_list_of_names), # use for having all contacts we have notified
 'in_scheduled_downtime': BoolProp(default=False, fill_brok=['full_status'], retention=True),
 'in_scheduled_downtime_during_last_check': BoolProp(default=False, retention=True),
 'actions': ListProp(default=[]), # put here checks and notif raised
 'broks': ListProp(default=[]), # and here broks raised

 # Problem/impact part
 'is_problem': BoolProp(default=False, fill_brok=['full_status']),
 'is_impact': BoolProp(default=False, fill_brok=['full_status']),
 # the save value of our business_impact for "problems"
 'my_own_business_impact': IntegerProp(default=-1, fill_brok=['full_status']),
 # list of problems that make us an impact
 'source_problems': ListProp(default=[], fill_brok=['full_status'], brok_transformation=to_svc_hst_distinct_lists),
 # list of the impact I'm the cause of
 'impacts': ListProp(default=[], fill_brok=['full_status'], brok_transformation=to_svc_hst_distinct_lists),
 # keep a trace of the old state before being an impact
 'state_before_impact': StringProp(default='PENDING'),
 # keep a trace of the old state id before being an impact
 'state_id_before_impact': IntegerProp(default=0),
 # if the state change, we know so we do not revert it
 'state_changed_since_impact': BoolProp(default=False),

 # BUSINESS CORRELATOR PART
 # Say if we are business based rule or not
 'got_business_rule': BoolProp(default=False, fill_brok=['full_status']),
 # Our Dependency node for the business rule
 'business_rule': StringProp(default=None),

 # Here it's the elements we are depending on
 # so our parents as network relation, or a host
 # we are depending in a hostdependency
 # or even if we are business based.
 'parent_dependencies': StringProp(default=set(), brok_transformation=to_svc_hst_distinct_lists, fill_brok=['full_status']),
 # Here it's the guys that depend on us. So it's the total
 # opposite of the parent_dependencies
 'child_dependencies': StringProp(brok_transformation=to_svc_hst_distinct_lists, default=set(), fill_brok=['full_status']),

 # Manage the unknown/unreach during hard state
 'in_hard_unknown_reach_phase': BoolProp(default=False, retention=True),
 'was_in_hard_unknown_reach_phase': BoolProp(default=False, retention=True),
 'state_before_hard_unknown_reach_phase': StringProp(default='OK', retention=True),

 # Set if the element just change its father/son topology
 'topology_change': BoolProp(default=False, fill_brok=['full_status']),

 # Trigger list
 'triggers': StringProp(default=[])

 })

 # Mapping between Macros and properties (can be prop or a function)
 macros = {
 'SERVICEDESC': 'service_description',
 'SERVICEDISPLAYNAME': 'display_name',
 'SERVICESTATE': 'state',
 'SERVICESTATEID': 'state_id',
 'LASTSERVICESTATE': 'last_state',
 'LASTSERVICESTATEID': 'last_state_id',
 'SERVICESTATETYPE': 'state_type',
 'SERVICEATTEMPT': 'attempt',
 'MAXSERVICEATTEMPTS': 'max_check_attempts',
 'SERVICEISVOLATILE': 'is_volatile',
 'SERVICEEVENTID': 'current_event_id',
 'LASTSERVICEEVENTID': 'last_event_id',
 'SERVICEPROBLEMID': 'current_problem_id',
 'LASTSERVICEPROBLEMID': 'last_problem_id',
 'SERVICELATENCY': 'latency',
 'SERVICEEXECUTIONTIME': 'execution_time',
 'SERVICEDURATION': 'get_duration',
 'SERVICEDURATIONSEC': 'get_duration_sec',
 'SERVICEDOWNTIME': 'get_downtime',
 'SERVICEPERCENTCHANGE': 'percent_state_change',
 'SERVICEGROUPNAME': 'get_groupname',
 'SERVICEGROUPNAMES': 'get_groupnames',
 'LASTSERVICECHECK': 'last_chk',
 'LASTSERVICESTATECHANGE': 'last_state_change',
 'LASTSERVICEOK': 'last_time_ok',
 'LASTSERVICEWARNING': 'last_time_warning',
 'LASTSERVICEUNKNOWN': 'last_time_unknown',
 'LASTSERVICECRITICAL': 'last_time_critical',
 'SERVICEOUTPUT': 'output',
 'LONGSERVICEOUTPUT': 'long_output',
 'SERVICEPERFDATA': 'perf_data',
 'LASTSERVICEPERFDATA': 'last_perf_data',
 'SERVICECHECKCOMMAND': 'get_check_command',
 'SERVICEACKAUTHOR': 'get_ack_author_name',
 'SERVICEACKAUTHORNAME': 'get_ack_author_name',
 'SERVICEACKAUTHORALIAS': 'get_ack_author_name',
 'SERVICEACKCOMMENT': 'get_ack_comment',
 'SERVICEACTIONURL': 'action_url',
 'SERVICENOTESURL': 'notes_url',
 'SERVICENOTES': 'notes',
 'SERVICEBUSINESSIMPACT': 'business_impact'
 }

 # This tab is used to transform old parameters name into new ones
 # so from Nagios2 format, to Nagios3 ones.
 # Or Shinken deprecated names like criticity
 old_properties = {
 'normal_check_interval': 'check_interval',
 'retry_check_interval': 'retry_interval',
 'criticity': 'business_impact',
 'hostgroup': 'hostgroup_name',
 'hostgroups': 'hostgroup_name',
 ## 'criticitymodulations': 'business_impact_modulations',
 }

#######
__ _ _ _
/ _(_) | | (_)
___ ___ _ __ | |_ _ __ _ _ _ _ __ __ _| |_ _ ___ _ __
/ __/ _ \| '_ \| _| |/ _` | | | | '__/ _` | __| |/ _ \| '_ \
| (_| (_) | | | | | | | (_| | |_| | | | (_| | |_| | (_) | | | |
______/|_| |_|_| |_|__, |__,_|_| __,_|__|_|___/|_| |_|
__/ |
|___/
######

 # Give a nice name output
[docs] def get_name(self):
 if hasattr(self, 'service_description'):
 return self.service_description
 if hasattr(self, 'name'):
 return self.name
 return 'SERVICE-DESCRIPTION-MISSING'

 # Get the servicegroups names

[docs] def get_groupnames(self):
 return ','.join([sg.get_name() for sg in self.servicegroups])

 # Need the whole name for debugging purpose

[docs] def get_dbg_name(self):
 return "%s/%s" % (self.host.host_name, self.service_description)

[docs] def get_full_name(self):
 return "%s/%s" % (self.host.host_name, self.service_description)

 # Get our realm, so in fact our host one

[docs] def get_realm(self):
 return self.host.get_realm()

[docs] def get_hostgroups(self):
 return self.host.hostgroups

[docs] def get_host_tags(self):
 return self.host.tags

 # Check is required prop are set:
 # template are always correct
 # contacts OR contactgroups is need

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 source = getattr(self, 'imported_from', 'unknown')

 desc = getattr(self, 'service_description', 'unnamed')
 hname = getattr(self, 'host_name', 'unnamed')

 special_properties = ('check_period', 'notification_interval', 'host_name',
 'hostgroup_name', 'notification_period')

 for prop, entry in cls.properties.items():
 if prop not in special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.error("The service %s on host '%s' does not have %s" % (desc, hname, prop))
 state = False # Bad boy...

 # Then look if we have some errors in the conf
 # Juts print warnings, but raise errors
 for err in self.configuration_warnings:
 logger.warning("[service::%s] %s" % (desc, err))

 # Raised all previously saw errors like unknown contacts and co
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.info(err)

 # If no notif period, set it to None, mean 24x7
 if not hasattr(self, 'notification_period'):
 self.notification_period = None

 # Ok now we manage special cases...
 if self.notifications_enabled and self.contacts == []:
 logger.warning("The service '%s' in the host '%s' does not have contacts nor contact_groups in '%s'" % (desc, hname, source))

 # Set display_name if need
 if getattr(self, 'display_name', '') == '':
 self.display_name = getattr(self, 'service_description', '')

 # If we got an event handler, it should be valid
 if getattr(self, 'event_handler', None) and not self.event_handler.is_valid():
 logger.info("%s: my event_handler %s is invalid" % (self.get_name(), self.event_handler.command))
 state = False

 if not hasattr(self, 'check_command'):
 logger.info("%s: I've got no check_command" % self.get_name())
 state = False
 # Ok got a command, but maybe it's invalid
 else:
 if not self.check_command.is_valid():
 logger.info("%s: my check_command %s is invalid" % (self.get_name(), self.check_command.command))
 state = False
 if self.got_business_rule:
 if not self.business_rule.is_valid():
 logger.info("%s: my business rule is invalid" % (self.get_name(),))
 for bperror in self.business_rule.configuration_errors:
 logger.info("%s: %s" % (self.get_name(), bperror))
 state = False
 if not hasattr(self, 'notification_interval') \
 and self.notifications_enabled == True:
 logger.info("%s: I've got no notification_interval but I've got notifications enabled" % self.get_name())
 state = False
 if self.host is None:
 logger.info("The service '%s' got an unknown host_name '%s'." % (desc, self.host_name))
 state = False
 if not hasattr(self, 'check_period'):
 self.check_period = None
 if hasattr(self, 'service_description'):
 for c in cls.illegal_object_name_chars:
 if c in self.service_description:
 logger.info("%s: My service_description got the character %s that is not allowed." % (self.get_name(), c))
 state = False
 return state

 # The service is dependent of his father dep
 # Must be AFTER linkify

[docs] def fill_daddy_dependency(self):
 # Depend of host, all status, is a networkdep
 # and do not have timeperiod, and follow parents dep
 if self.host is not None:
 # I add the dep in MY list
 self.act_depend_of.append((self.host,
 ['d', 'u', 's', 'f'],
 'network_dep',
 None, True))
 # I add the dep in Daddy list
 self.host.act_depend_of_me.append((self,
 ['d', 'u', 's', 'f'],
 'network_dep',
 None, True))

 # And the parent/child dep lists too
 self.host.register_son_in_parent_child_dependencies(self)

 # Register the dependency between 2 service for action (notification etc)

[docs] def add_service_act_dependency(self, srv, status, timeperiod, inherits_parent):
 # first I add the other the I depend on in MY list
 self.act_depend_of.append((srv, status, 'logic_dep',
 timeperiod, inherits_parent))
 # then I register myself in the other service dep list
 srv.act_depend_of_me.append((self, status, 'logic_dep',
 timeperiod, inherits_parent))

 # And the parent/child dep lists too
 srv.register_son_in_parent_child_dependencies(self)

 # Register the dependency between 2 service for action (notification etc)
 # but based on a BUSINESS rule, so on fact:
 # ERP depend on database, so we fill just database.act_depend_of_me
 # because we will want ERP mails to go on! So call this
 # on the database service with the srv=ERP service

[docs] def add_business_rule_act_dependency(self, srv, status, timeperiod, inherits_parent):
 # I only register so he know that I WILL be a impact
 self.act_depend_of_me.append((srv, status, 'business_dep',
 timeperiod, inherits_parent))

 # And the parent/child dep lists too
 self.register_son_in_parent_child_dependencies(srv)

 # Register the dependency between 2 service for checks

[docs] def add_service_chk_dependency(self, srv, status, timeperiod, inherits_parent):
 # first I add the other the I depend on in MY list
 self.chk_depend_of.append((srv, status, 'logic_dep',
 timeperiod, inherits_parent))
 # then I register myself in the other service dep list
 srv.chk_depend_of_me.append((self, status, 'logic_dep',
 timeperiod, inherits_parent))

 # And the parent/child dep lists too
 srv.register_son_in_parent_child_dependencies(self)

 # For a given host, look for all copy we must
 # create for for_each property

[docs] def duplicate(self, host):
 duplicates = []

 # In macro, it's all in UPPER case
 prop = self.duplicate_foreach.strip().upper()

 # If I do not have the property, we bail out
 if prop in host.customs:
 # Get the list entry, and the not one if there is one
 entry = host.customs[prop]
 # Look at the list of the key we do NOT want maybe,
 # for _disks it will be _!disks
 not_entry = host.customs.get('_' + '!' + prop[1:], '').split(',')
 not_keys = strip_and_uniq(not_entry)

 default_value = getattr(self, 'default_value', '')
 # Transform the generator string to a list
 # Missing values are filled with the default value
 (key_values, errcode) = get_key_value_sequence(entry, default_value)

 if key_values:
 for key_value in key_values:
 key = key_value['KEY']
 # Maybe this key is in the NOT list, if so, skip it
 if key in not_keys:
 continue
 value = key_value['VALUE']
 new_s = self.copy()
 new_s.host_name = host.get_name()
 if self.is_tpl(): # if template, the new one is not
 new_s.register = 1
 for key in key_value:
 if key == 'KEY':
 if hasattr(self, 'service_description'):
 # We want to change all illegal chars to a _ sign. We can't use class.illegal_obj_char
 # because in the "explode" phase, we do not have access to this data! :(
 safe_key_value = re.sub(r'[' + "`~!$%^&*\"|'<>?,()=" + ']+', '_', key_value[key])
 new_s.service_description = self.service_description.replace('$' + key + '$', safe_key_value)
 # Here is a list of property where we will expand the KEY by the value
 _the_expandables = ['check_command', 'aggregation', 'service_dependencies']
 for prop in _the_expandables:
 if hasattr(self, prop):
 # here we can replace VALUE, VALUE1, VALUE2,...
 setattr(new_s, prop, getattr(new_s, prop).replace('$' + key + '$', key_value[key]))
 if hasattr(self, 'aggregation'):
 new_s.aggregation = new_s.aggregation.replace('$' + key + '$', key_value[key])
 # And then add in our list this new service
 duplicates.append(new_s)
 else:
 # If error, we should link the error to the host, because self is a template, and so won't be checked not print!
 if errcode == GET_KEY_VALUE_SEQUENCE_ERROR_SYNTAX:
 err = "The custom property '%s' of the host '%s' is not a valid entry %s for a service generator" % (self.duplicate_foreach.strip(), host.get_name(), entry)
 logger.warning(err)
 host.configuration_errors.append(err)
 elif errcode == GET_KEY_VALUE_SEQUENCE_ERROR_NODEFAULT:
 err = "The custom property '%s 'of the host '%s' has empty values %s but the service %s has no default_value" % (self.duplicate_foreach.strip(), host.get_name(), entry, self.service_description)
 logger.warning(err)
 host.configuration_errors.append(err)
 elif errcode == GET_KEY_VALUE_SEQUENCE_ERROR_NODE:
 err = "The custom property '%s' of the host '%s' has an invalid node range %s" % (self.duplicate_foreach.strip(), host.get_name(), entry)
 logger.warning(err)
 host.configuration_errors.append(err)
 return duplicates

#####
_
(_)
_ __ _ _ _ __ _ __ _ _ __ __ _
| '__| | | | '_ \| '_ \| | '_ \ / _` |
| | | |_| | | | | | | | | | | | (_| |
|_| __,_|_| |_|_| |_|_|_| |_|__, |
__/ |
|___/
####

 # Set unreachable: our host is DOWN, but it mean nothing for a service

[docs] def set_unreachable(self):
 pass

 # We just go an impact, so we go unreachable
 # but only if it's enable in the configuration

[docs] def set_impact_state(self):
 cls = self.__class__
 if cls.enable_problem_impacts_states_change:
 # Keep a trace of the old state (problem came back before
 # a new checks)
 self.state_before_impact = self.state
 self.state_id_before_impact = self.state_id
 # this flag will know if we override the impact state
 self.state_changed_since_impact = False
 self.state = 'UNKNOWN' # exit code UNDETERMINED
 self.state_id = 3

 # Ok, we are no more an impact, if no news checks
 # override the impact state, we came back to old
 # states
 # And only if we enable the state change for impacts

[docs] def unset_impact_state(self):
 cls = self.__class__
 if cls.enable_problem_impacts_states_change and not self.state_changed_since_impact:
 self.state = self.state_before_impact
 self.state_id = self.state_id_before_impact

 # Set state with status return by the check
 # and update flapping state

[docs] def set_state_from_exit_status(self, status):
 now = time.time()
 self.last_state_update = now

 # we should put in last_state the good last state:
 # if not just change the state by an problem/impact
 # we can take current state. But if it's the case, the
 # real old state is self.state_before_impact (it's the TRUE
 # state in fact)
 # but only if the global conf have enable the impact state change
 cls = self.__class__
 if cls.enable_problem_impacts_states_change \
 and self.is_impact \
 and not self.state_changed_since_impact:
 self.last_state = self.state_before_impact
 else: # standard case
 self.last_state = self.state

 if status == 0:
 self.state = 'OK'
 self.state_id = 0
 self.last_time_ok = int(self.last_state_update)
 state_code = 'o'
 elif status == 1:
 self.state = 'WARNING'
 self.state_id = 1
 self.last_time_warning = int(self.last_state_update)
 state_code = 'w'
 elif status == 2:
 self.state = 'CRITICAL'
 self.state_id = 2
 self.last_time_critical = int(self.last_state_update)
 state_code = 'c'
 elif status == 3:
 self.state = 'UNKNOWN'
 self.state_id = 3
 self.last_time_unknown = int(self.last_state_update)
 state_code = 'u'
 else:
 self.state = 'CRITICAL' # exit code UNDETERMINED
 self.state_id = 2
 self.last_time_critical = int(self.last_state_update)
 state_code = 'c'

 if state_code in self.flap_detection_options:
 self.add_flapping_change(self.state != self.last_state)

 if self.state != self.last_state:
 self.last_state_change = self.last_state_update

 self.duration_sec = now - self.last_state_change

 # Return True if status is the state (like OK) or small form like 'o'

[docs] def is_state(self, status):
 if status == self.state:
 return True
 # Now low status
 elif status == 'o' and self.state == 'OK':
 return True
 elif status == 'c' and self.state == 'CRITICAL':
 return True
 elif status == 'w' and self.state == 'WARNING':
 return True
 elif status == 'u' and self.state == 'UNKNOWN':
 return True
 return False

 # The last time when the state was not OK

[docs] def last_time_non_ok_or_up(self):
 non_ok_times = filter(lambda x: x > self.last_time_ok, [self.last_time_warning,
 self.last_time_critical,
 self.last_time_unknown])
 if len(non_ok_times) == 0:
 last_time_non_ok = 0 # program_start would be better
 else:
 last_time_non_ok = min(non_ok_times)
 return last_time_non_ok

 # Add a log entry with a SERVICE ALERT like:
 # SERVICE ALERT: server;Load;UNKNOWN;HARD;1;I don't know what to say...

[docs] def raise_alert_log_entry(self):
 console_logger.info('SERVICE ALERT: %s;%s;%s;%s;%d;%s'
 % (self.host.get_name(), self.get_name(),
 self.state, self.state_type,
 self.attempt, self.output))

 # If the configuration allow it, raise an initial log like
 # CURRENT SERVICE STATE: server;Load;UNKNOWN;HARD;1;I don't know what to say...

[docs] def raise_initial_state(self):
 if self.__class__.log_initial_states:
 console_logger.info('CURRENT SERVICE STATE: %s;%s;%s;%s;%d;%s'
 % (self.host.get_name(), self.get_name(),
 self.state, self.state_type,
 self.attempt, self.output))

 # Add a log entry with a Freshness alert like:
 # Warning: The results of host 'Server' are stale by 0d 0h 0m 58s (threshold=0d 1h 0m 0s).
 # I'm forcing an immediate check of the host.

[docs] def raise_freshness_log_entry(self, t_stale_by, t_threshold):
 logger.warning("The results of service '%s' on host '%s' are stale "
 "by %s (threshold=%s). I'm forcing an immediate check "
 "of the service."
 % (self.get_name(), self.host.get_name(),
 format_t_into_dhms_format(t_stale_by),
 format_t_into_dhms_format(t_threshold)))

 # Raise a log entry with a Notification alert like
 # SERVICE NOTIFICATION: superadmin;server;Load;OK;notify-by-rss;no output

[docs] def raise_notification_log_entry(self, n):
 contact = n.contact
 command = n.command_call
 if n.type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'DOWNTIMECANCELLED',
 'CUSTOM', 'ACKNOWLEDGEMENT', 'FLAPPINGSTART',
 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 state = '%s (%s)' % (n.type, self.state)
 else:
 state = self.state
 if self.__class__.log_notifications:
 console_logger.info("SERVICE NOTIFICATION: %s;%s;%s;%s;%s;%s"
 % (contact.get_name(),
 self.host.get_name(), self.get_name(), state,
 command.get_name(), self.output))

 # Raise a log entry with a Eventhandler alert like
 # SERVICE EVENT HANDLER: test_host_0;test_ok_0;OK;SOFT;4;eventhandler

[docs] def raise_event_handler_log_entry(self, command):
 if self.__class__.log_event_handlers:
 console_logger.info("SERVICE EVENT HANDLER: %s;%s;%s;%s;%s;%s"
 % (self.host.get_name(), self.get_name(),
 self.state, self.state_type,
 self.attempt, command.get_name()))

 # Raise a log entry with FLAPPING START alert like
 # SERVICE FLAPPING ALERT: server;LOAD;STARTED; Service appears to have started flapping (50.6% change >= 50.0% threshold)

[docs] def raise_flapping_start_log_entry(self, change_ratio, threshold):
 console_logger.info("SERVICE FLAPPING ALERT: %s;%s;STARTED; "
 "Service appears to have started flapping "
 "(%.1f%% change >= %.1f%% threshold)"
 % (self.host.get_name(), self.get_name(),
 change_ratio, threshold))

 # Raise a log entry with FLAPPING STOP alert like
 # SERVICE FLAPPING ALERT: server;LOAD;STOPPED; Service appears to have stopped flapping (23.0% change < 25.0% threshold)

[docs] def raise_flapping_stop_log_entry(self, change_ratio, threshold):
 console_logger.info("SERVICE FLAPPING ALERT: %s;%s;STOPPED; "
 "Service appears to have stopped flapping "
 "(%.1f%% change < %.1f%% threshold)"
 % (self.host.get_name(), self.get_name(),
 change_ratio, threshold))

 # If there is no valid time for next check, raise a log entry

[docs] def raise_no_next_check_log_entry(self):
 logger.warning("I cannot schedule the check for the service '%s' on "
 "host '%s' because there is not future valid time"
 % (self.get_name(), self.host.get_name()))

 # Raise a log entry when a downtime begins
 # SERVICE DOWNTIME ALERT: test_host_0;test_ok_0;STARTED; Service has entered a period of scheduled downtime

[docs] def raise_enter_downtime_log_entry(self):
 console_logger.info("SERVICE DOWNTIME ALERT: %s;%s;STARTED; "
 "Service has entered a period of scheduled "
 "downtime"
 % (self.host.get_name(), self.get_name()))

 # Raise a log entry when a downtime has finished
 # SERVICE DOWNTIME ALERT: test_host_0;test_ok_0;STOPPED; Service has exited from a period of scheduled downtime

[docs] def raise_exit_downtime_log_entry(self):
 console_logger.info("SERVICE DOWNTIME ALERT: %s;%s;STOPPED; Service "
 "has exited from a period of scheduled downtime"
 % (self.host.get_name(), self.get_name()))

 # Raise a log entry when a downtime prematurely ends
 # SERVICE DOWNTIME ALERT: test_host_0;test_ok_0;CANCELLED; Service has entered a period of scheduled downtime

[docs] def raise_cancel_downtime_log_entry(self):
 console_logger.info("SERVICE DOWNTIME ALERT: %s;%s;CANCELLED; "
 "Scheduled downtime for service has been cancelled."
 % (self.host.get_name(), self.get_name()))

 # Is stalking?
 # Launch if check is waitconsume==first time
 # and if c.status is in self.stalking_options

[docs] def manage_stalking(self, c):
 need_stalk = False
 if c.status == 'waitconsume':
 if c.exit_status == 0 and 'o' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 1 and 'w' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 2 and 'c' in self.stalking_options:
 need_stalk = True
 elif c.exit_status == 3 and 'u' in self.stalking_options:
 need_stalk = True

 if c.output == self.output:
 need_stalk = False
 if need_stalk:
 logger.info("Stalking %s: %s" % (self.get_name(), c.output))

 # Give data for checks's macros

[docs] def get_data_for_checks(self):
 return [self.host, self]

 # Give data for event handlers's macros

[docs] def get_data_for_event_handler(self):
 return [self.host, self]

 # Give data for notifications'n macros

[docs] def get_data_for_notifications(self, contact, n):
 return [self.host, self, contact, n]

 # See if the notification is launchable (time is OK and contact is OK too)

[docs] def notification_is_blocked_by_contact(self, n, contact):
 return not contact.want_service_notification(self.last_chk, self.state, n.type, self.business_impact, n.command_call)

[docs] def get_duration_sec(self):
 return str(int(self.duration_sec))

[docs] def get_duration(self):
 m, s = divmod(self.duration_sec, 60)
 h, m = divmod(m, 60)
 return "%02dh %02dm %02ds" % (h, m, s)

[docs] def get_ack_author_name(self):
 if self.acknowledgement is None:
 return ''
 return self.acknowledgement.author

[docs] def get_ack_comment(self):
 if self.acknowledgement is None:
 return ''
 return self.acknowledgement.comment

[docs] def get_check_command(self):
 return self.check_command.get_name()

 # Check if a notification for this service is suppressed at this time

[docs] def notification_is_blocked_by_item(self, type, t_wished = None):
 if t_wished is None:
 t_wished = time.time()

 # TODO
 # forced notification
 # pass if this is a custom notification

 # Block if notifications are program-wide disabled
 if not self.enable_notifications:
 return True

 # Does the notification period allow sending out this notification?
 if self.notification_period is not None and not self.notification_period.is_time_valid(t_wished):
 return True

 # Block if notifications are disabled for this service
 if not self.notifications_enabled:
 return True

 # Block if the current status is in the notification_options w,u,c,r,f,s
 if 'n' in self.notification_options:
 return True
 if type in ('PROBLEM', 'RECOVERY'):
 if self.state == 'UNKNOWN' and not 'u' in self.notification_options:
 return True
 if self.state == 'WARNING' and not 'w' in self.notification_options:
 return True
 if self.state == 'CRITICAL' and not 'c' in self.notification_options:
 return True
 if self.state == 'OK' and not 'r' in self.notification_options:
 return True
 if (type in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED')
 and not 'f' in self.notification_options):
 return True
 if (type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'DOWNTIMECANCELLED')
 and not 's' in self.notification_options):
 return True

 # Acknowledgements make no sense when the status is ok/up
 if type == 'ACKNOWLEDGEMENT':
 if self.state == self.ok_up:
 return True

 # When in downtime, only allow end-of-downtime notifications
 if self.scheduled_downtime_depth > 1 and type not in ('DOWNTIMEEND', 'DOWNTIMECANCELLED'):
 return True

 # Block if host is in a scheduled downtime
 if self.host.scheduled_downtime_depth > 0:
 return True

 # Block if in a scheduled downtime and a problem arises, or flapping event
 if self.scheduled_downtime_depth > 0 and type in ('PROBLEM', 'RECOVERY', 'FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 return True

 # Block if the status is SOFT
 if self.state_type == 'SOFT' and type == 'PROBLEM':
 return True

 # Block if the problem has already been acknowledged
 if self.problem_has_been_acknowledged and type != 'ACKNOWLEDGEMENT':
 return True

 # Block if flapping
 if self.is_flapping and type not in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 return True

 # Block if host is down
 if self.host.state != self.host.ok_up:
 return True

 return False

 # Get a oc*p command if item has obsess_over_*
 # command. It must be enabled locally and globally

[docs] def get_obsessive_compulsive_processor_command(self):
 cls = self.__class__
 if not cls.obsess_over or not self.obsess_over_service:
 return

 m = MacroResolver()
 data = self.get_data_for_event_handler()
 cmd = m.resolve_command(cls.ocsp_command, data)
 e = EventHandler(cmd, timeout=cls.ocsp_timeout)

 # ok we can put it in our temp action queue
 self.actions.append(e)

Class for list of services. It's mainly, mainly for configuration part

[docs]class Services(Items):
 inner_class = Service # use for know what is in items

 # Create the reversed list for speedup search by host_name/name
 # We also tag service already in list: they are twins. It's a a bad things.
 # Hostgroups service have an ID higher than host service. So it we tag
 # an id that already are in the list, this service is already
 # exist, and is a host,
 # or a previous hostgroup, but define before.
[docs] def create_reversed_list(self):
 self.reversed_list = {}
 self.twins = []
 for s in self:
 if hasattr(s, 'service_description') and hasattr(s, 'host_name'):
 s_desc = getattr(s, 'service_description')
 s_host_name = getattr(s, 'host_name')
 key = (s_host_name, s_desc)
 if key not in self.reversed_list:
 self.reversed_list[key] = s.id
 else:
 self.twins.append(s.id)
 # For service, the reversed_list is not used for
 # search, so we del it
 del self.reversed_list

 # TODO: finish search to use reversed
 # Search a service id by it's name and host_name

[docs] def find_srv_id_by_name_and_hostname(self, host_name, name):
 # key = (host_name, name)
 # if key in self.reversed_list:
 # return self.reversed_list[key]

 # if not, maybe in the whole list?
 for s in self:
 # Runtime first, available only after linkify
 if hasattr(s, 'service_description') and hasattr(s, 'host'):
 if s.service_description == name and s.host == host_name:
 return s.id
 # At config part, available before linkify
 if hasattr(s, 'service_description') and hasattr(s, 'host_name'):
 if s.service_description == name and s.host_name == host_name:
 return s.id
 return None

 # Search a service by it's name and hot_name

[docs] def find_srv_by_name_and_hostname(self, host_name, name):
 if hasattr(self, 'hosts'):
 h = self.hosts.find_by_name(host_name)
 if h is None:
 return None
 return h.find_service_by_name(name)

 id = self.find_srv_id_by_name_and_hostname(host_name, name)
 if id is not None:
 return self.items[id]
 else:
 return None

 # Make link between elements:
 # service -> host
 # service -> command
 # service -> timeperiods
 # service -> contacts

[docs] def linkify(self, hosts, commands, timeperiods, contacts,
 resultmodulations, businessimpactmodulations, escalations,
 servicegroups, triggers, checkmodulations, macromodulations):
 self.linkify_with_timeperiods(timeperiods, 'notification_period')
 self.linkify_with_timeperiods(timeperiods, 'check_period')
 self.linkify_with_timeperiods(timeperiods, 'maintenance_period')
 self.linkify_s_by_hst(hosts)
 self.linkify_s_by_sg(servicegroups)
 self.linkify_one_command_with_commands(commands, 'check_command')
 self.linkify_one_command_with_commands(commands, 'event_handler')
 self.linkify_with_contacts(contacts)
 self.linkify_with_resultmodulations(resultmodulations)
 self.linkify_with_business_impact_modulations(businessimpactmodulations)
 # WARNING: all escalations will not be link here
 # (just the escalation here, not serviceesca or hostesca).
 # This last one will be link in escalations linkify.
 self.linkify_with_escalations(escalations)
 self.linkify_with_triggers(triggers)
 self.linkify_with_checkmodulations(checkmodulations)
 self.linkify_with_macromodulations(macromodulations)

 # We can link services with hosts so
 # We can search in O(hosts) instead
 # of O(services) for common cases

[docs] def optimize_service_search(self, hosts):
 self.hosts = hosts

 # We just search for each host the id of the host
 # and replace the name by the id
 # + inform the host we are a service of him

[docs] def linkify_s_by_hst(self, hosts):
 for s in self:
 # If we do not have an host_name, we set it as
 # a template element to delete. (like Nagios
 if not hasattr(s, 'host_name'):
 continue
 try:
 hst_name = s.host_name
 # The new member list, in id
 hst = hosts.find_by_name(hst_name)
 s.host = hst
 # Let the host know we are his service
 if s.host is not None:
 hst.add_service_link(s)
 else: # Ok, the host do not exists!
 err = "Error: the service '%s' do not have a host_name not hostgroup_name" % (self.get_name())
 s.configuration_errors.append(err)
 continue
 except AttributeError, exp:
 pass # Will be catch at the is_correct moment

 # We look for servicegroups property in services and
 # link them

[docs] def linkify_s_by_sg(self, servicegroups):
 for s in self:
 if not s.is_tpl():
 new_servicegroups = []
 if hasattr(s, 'servicegroups') and s.servicegroups != '':
 sgs = s.servicegroups.split(',')
 for sg_name in sgs:
 sg_name = sg_name.strip()
 sg = servicegroups.find_by_name(sg_name)
 if sg is not None:
 new_servicegroups.append(sg)
 else:
 err = "Error: the servicegroup '%s' of the service '%s' is unknown" % (sg_name, s.get_dbg_name())
 s.configuration_errors.append(err)
 s.servicegroups = new_servicegroups

 # In the scheduler we need to relink the commandCall with
 # the real commands

[docs] def late_linkify_s_by_commands(self, commands):
 props = ['check_command', 'event_handler']
 for s in self:
 for prop in props:
 cc = getattr(s, prop, None)
 if cc:
 cc.late_linkify_with_command(commands)

 # Delete services by ids

[docs] def delete_services_by_id(self, ids):
 for id in ids:
 del self[id]

 # Apply implicit inheritance for special properties:
 # contact_groups, notification_interval , notification_period
 # So service will take info from host if necessary

[docs] def apply_implicit_inheritance(self, hosts):
 for prop in ('contacts', 'contact_groups', 'notification_interval',
 'notification_period', 'resultmodulations', 'business_impact_modulations', 'escalations',
 'poller_tag', 'reactionner_tag', 'check_period', 'business_impact', 'maintenance_period'):
 for s in self:
 if not s.is_tpl():
 if not hasattr(s, prop) and hasattr(s, 'host_name'):
 h = hosts.find_by_name(s.host_name)
 if h is not None and hasattr(h, prop):
 setattr(s, prop, getattr(h, prop))

 # Apply inheritance for all properties

[docs] def apply_inheritance(self, hosts):
 # We check for all Host properties if the host has it
 # if not, it check all host templates for a value
 for prop in Service.properties:
 self.apply_partial_inheritance(prop)

 # Then implicit inheritance
 # self.apply_implicit_inheritance(hosts)
 for s in self:
 s.get_customs_properties_by_inheritance(self)

 # Create dependencies for services (daddy ones)

[docs] def apply_dependencies(self):
 for s in self:
 s.fill_daddy_dependency()

 # Add in our queue a service create from another. Special case:
 # is a template: so hname is a name of template, so need to get all
 # hosts that inherit from it.

[docs] def copy_create_service_from_another(self, hosts, s, hname):
 for_hosts_to_create = []
 # if we are not a template, it's easy: copy for all host_name
 # because they are our final host_name after all
 if not s.is_tpl():
 for_hosts_to_create.append(hname)
 else:
 # But for template it's more tricky: it's a template name
 # we've got, not a real host_name/ So we must get a list of host_name
 # that use this template
 # Use the complex expression manager for it, it will call find_hosts_that_use_template
 # for the templates it think it's useful
 hosts_from_tpl = self.evaluate_hostgroup_expression(hname.strip(), hosts, hosts.templates, look_in='templates')

 # And now copy our real services
 for n in hosts_from_tpl:
 for_hosts_to_create.append(n)

 if getattr(s, 'duplicate_foreach', '') == '':
 def _loop(name):
 new_s = s.copy()
 new_s.host_name = name
 if s.is_tpl(): # if template, the new one is not
 new_s.register = 1
 self.items[new_s.id] = new_s
 else:
 def _loop(name):
 # the generator case, we must create several new services
 # we must find our host, and get all key:value we need
 h = hosts.find_by_name(name.strip())

 if h is not None:
 for new_s in s.duplicate(h):
 self.items[new_s.id] = new_s
 else: # TODO: raise an error?
 err = 'Error: The hostname %s is unknown for the service %s!' % (name, s.get_name())
 s.configuration_errors.append(err)

 # Now really create the services
 for name in for_hosts_to_create:
 _loop(name)

 # We create new service if necessary (host groups and co)

[docs] def explode(self, hosts, hostgroups, contactgroups,
 servicegroups, servicedependencies, triggers):
 # The "old" services will be removed. All services with
 # more than one host or a host group will be in it
 srv_to_remove = []

 # items::explode_trigger_string_into_triggers
 self.explode_trigger_string_into_triggers(triggers)

 # items::explode_host_groups_into_hosts
 # take all hosts from our hostgroup_name into our host_name property
 self.explode_host_groups_into_hosts(hosts, hostgroups)

 # items::explode_contact_groups_into_contacts
 # take all contacts from our contact_groups into our contact property
 self.explode_contact_groups_into_contacts(contactgroups)

 # Then for every host create a copy of the service with just the host
 # because we are adding services, we can't just loop in it
 service_to_check = self.items.keys()

 for id in service_to_check:
 s = self.items[id]
 duplicate_for_hosts = [] # get the list of our host_names if more than 1
 not_hosts = [] # the list of !host_name so we remove them after

 # If do not have an host_name, just delete it
 if not hasattr(s, 'host_name'):
 srv_to_remove.append(s.id)

 # if not s.is_tpl(): # Exploding template is useless
 # Explode for real service or template with a host_name
 if hasattr(s, 'host_name'):
 hnames = s.host_name.split(',')
 hnames = strip_and_uniq(hnames)
 # We will duplicate if we have multiple host_name
 # or if we are a template (so a clean service)
 if len(hnames) >= 2 or s.is_tpl() \
 or (hasattr(s, 'duplicate_foreach') and s.duplicate_foreach != ''):
 for hname in hnames:
 hname = hname.strip()

 # If the name begin with a !, we put it in
 # the not list
 if hname.startswith('!'):
 not_hosts.append(hname[1:])
 else: # the standard list
 duplicate_for_hosts.append(hname)

 # remove duplicate items from duplicate_for_hosts:
 duplicate_for_hosts = list(set(duplicate_for_hosts))

 # Ok now we clean the duplicate_for_hosts with all hosts
 # of the not
 for hname in not_hosts:
 if hname in duplicate_for_hosts:
 duplicate_for_hosts.remove(hname)

 # Now we duplicate the service for all host_names
 for hname in duplicate_for_hosts:
 self.copy_create_service_from_another(hosts, s, hname)

 # Multiple host_name -> the original service
 # must be delete. But template are clean else where
 # and only the the service not got an error in it's conf
 if not s.is_tpl() and s.configuration_errors == []:
 srv_to_remove.append(id)

 else: # Maybe the hnames was full of same host, so we must reset the name
 for hname in hnames: # So even if len == 0, we are protected
 s.host_name = hname

 # We clean all service that was for multiple hosts.
 self.delete_services_by_id(srv_to_remove)

 # Servicegroups property need to be fullfill for got the informations
 # And then just register to this service_group
 for s in self:
 if not s.is_tpl() and hasattr(s, 'service_description'):
 sname = s.service_description
 shname = getattr(s, 'host_name', '')
 if hasattr(s, 'servicegroups'):
 sgs = s.servicegroups.split(',')
 for sg in sgs:
 servicegroups.add_member(shname+','+sname, sg)

 # Now we explode service_dependencies into Servicedependency
 # We just create serviceDep with goods values (as STRING!),
 # the link pass will be done after
 for s in self:
 # Templates are useless here
 if not s.is_tpl():
 if hasattr(s, 'service_dependencies'):
 if s.service_dependencies != '':
 sdeps = s.service_dependencies.split(',')
 # %2=0 are for hosts, !=0 are for service_description
 i = 0
 hname = ''
 for elt in sdeps:
 if i % 2 == 0: # host
 hname = elt.strip()
 else: # description
 desc = elt.strip()
 # we can register it (s) (depend on) -> (hname, desc)
 # If we do not have enough data for s, it's no use
 if hasattr(s, 'service_description') and hasattr(s, 'host_name'):
 if hname == '':
 hname = s.host_name
 servicedependencies.add_service_dependency(s.host_name, s.service_description, hname, desc)
 i += 1

 # Will create all business tree for the
 # services

[docs] def create_business_rules(self, hosts, services):
 for s in self:
 s.create_business_rules(hosts, services)

 # Will link all business service/host with theirs
 # dep for problem/impact link

[docs] def create_business_rules_dependencies(self):
 for s in self:
 s.create_business_rules_dependencies()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/serviceescalation.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.serviceescalation

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items
from escalation import Escalation

from shinken.property import IntegerProp, StringProp, ListProp

[docs]class Serviceescalation(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'serviceescalation'

 properties = Item.properties.copy()
 properties.update({
 'host_name': StringProp(),
 'hostgroup_name': StringProp(),
 'service_description': StringProp(),
 'first_notification': IntegerProp(),
 'last_notification': IntegerProp(),
 'notification_interval': IntegerProp(default='30'), # like Nagios value
 'escalation_period': StringProp(default=''),
 'escalation_options': ListProp(default='d,u,r,w,c'),
 'contacts': StringProp(),
 'contact_groups': StringProp(),
 })

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return ''

[docs]class Serviceescalations(Items):
 name_property = ""
 inner_class = Serviceescalation

 # We look for contacts property in contacts and
[docs] def explode(self, escalations):
 # Now we explode all escalations (host_name, service_description) to escalations
 for es in self:
 properties = es.__class__.properties

 creation_dict = {'escalation_name': 'Generated-Serviceescalation-%d' % es.id}
 for prop in properties:
 if hasattr(es, prop):
 creation_dict[prop] = getattr(es, prop)
 #print "Creation an escalation with:", creation_dict
 s = Escalation(creation_dict)
 escalations.add_escalation(s)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/notificationway.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.notificationway

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items

from shinken.property import BoolProp, IntegerProp, StringProp, ListProp
from shinken.log import logger

_special_properties = ('service_notification_commands', 'host_notification_commands',
 'service_notification_period', 'host_notification_period')

[docs]class NotificationWay(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'notificationway'

 properties = Item.properties.copy()
 properties.update({
 'notificationway_name': StringProp(fill_brok=['full_status']),
 'host_notifications_enabled': BoolProp(default='1', fill_brok=['full_status']),
 'service_notifications_enabled': BoolProp(default='1', fill_brok=['full_status']),
 'host_notification_period': StringProp(fill_brok=['full_status']),
 'service_notification_period': StringProp(fill_brok=['full_status']),
 'host_notification_options': ListProp(fill_brok=['full_status']),
 'service_notification_options': ListProp(fill_brok=['full_status']),
 'host_notification_commands': StringProp(fill_brok=['full_status']),
 'service_notification_commands': StringProp(fill_brok=['full_status']),
 'min_business_impact': IntegerProp(default='0', fill_brok=['full_status']),
 })

 running_properties = Item.running_properties.copy()

 # This tab is used to transform old parameters name into new ones
 # so from Nagios2 format, to Nagios3 ones.
 # Or Shinken deprecated names like criticity
 old_properties = {
 'min_criticity': 'min_business_impact',
 }

 macros = {}

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.notificationway_name

 # Search for notification_options with state and if t is
 # in service_notification_period

[docs] def want_service_notification(self, t, state, type, business_impact, cmd=None):
 if not self.service_notifications_enabled:
 return False

 # Maybe the command we ask for are not for us, but for another notification ways
 # on the same contact. If so, bail out
 if cmd and not cmd in self.service_notification_commands:
 return False

 # If the business_impact is not high enough, we bail out
 if business_impact < self.min_business_impact:
 return False

 b = self.service_notification_period.is_time_valid(t)
 if 'n' in self.service_notification_options:
 return False
 t = {'WARNING': 'w', 'UNKNOWN': 'u', 'CRITICAL': 'c',
 'RECOVERY': 'r', 'FLAPPING': 'f', 'DOWNTIME': 's'}
 if type == 'PROBLEM':
 if state in t:
 return b and t[state] in self.service_notification_options
 elif type == 'RECOVERY':
 if type in t:
 return b and t[type] in self.service_notification_options
 elif type == 'ACKNOWLEDGEMENT':
 return b
 elif type in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 return b and 'f' in self.service_notification_options
 elif type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'DOWNTIMECANCELLED'):
 # No notification when a downtime was cancelled. Is that true??
 # According to the documentation we need to look at _host_ options
 return b and 's' in self.host_notification_options

 return False

 # Search for notification_options with state and if t is in
 # host_notification_period

[docs] def want_host_notification(self, t, state, type, business_impact, cmd=None):
 if not self.host_notifications_enabled:
 return False

 # If the business_impact is not high enough, we bail out
 if business_impact < self.min_business_impact:
 return False

 # Maybe the command we ask for are not for us, but for another notification ways
 # on the same contact. If so, bail out
 if cmd and not cmd in self.host_notification_commands:
 return False

 b = self.host_notification_period.is_time_valid(t)
 if 'n' in self.host_notification_options:
 return False
 t = {'DOWN': 'd', 'UNREACHABLE': 'u', 'RECOVERY': 'r',
 'FLAPPING': 'f', 'DOWNTIME': 's'}
 if type == 'PROBLEM':
 if state in t:
 return b and t[state] in self.host_notification_options
 elif type == 'RECOVERY':
 if type in t:
 return b and t[type] in self.host_notification_options
 elif type == 'ACKNOWLEDGEMENT':
 return b
 elif type in ('FLAPPINGSTART', 'FLAPPINGSTOP', 'FLAPPINGDISABLED'):
 return b and 'f' in self.host_notification_options
 elif type in ('DOWNTIMESTART', 'DOWNTIMEEND', 'DOWNTIMECANCELLED'):
 return b and 's' in self.host_notification_options

 return False

 # Call to get our commands to launch a Notification

[docs] def get_notification_commands(self, type):
 # service_notification_commands for service
 notif_commands_prop = type + '_notification_commands'
 notif_commands = getattr(self, notif_commands_prop)
 return notif_commands

 # Check is required prop are set:
 # contacts OR contactgroups is need

[docs] def is_correct(self):
 state = True
 cls = self.__class__

 # Raised all previously saw errors like unknown commands or timeperiods
 if self.configuration_errors != []:
 state = False
 for err in self.configuration_errors:
 logger.error("[item::%s] %s" % (self.get_name(), err))

 # A null notif way is a notif way that will do nothing (service = n, hot =n)
 is_null_notifway = False
 if hasattr(self, 'service_notification_options') and self.service_notification_options == ['n']:
 if hasattr(self, 'host_notification_options') and self.host_notification_options == ['n']:
 is_null_notifway = True
 return True

 for prop, entry in cls.properties.items():
 if prop not in _special_properties:
 if not hasattr(self, prop) and entry.required:
 logger.warning("[notificationway::%s] %s property not set" % (self.get_name(), prop))
 state = False # Bad boy...

 # Ok now we manage special cases...
 # Service part
 if not hasattr(self, 'service_notification_commands'):
 logger.warning("[notificationway::%s] do not have any service_notification_commands defined" % self.get_name())
 state = False
 else:
 for cmd in self.service_notification_commands:
 if cmd is None:
 logger.warning("[notificationway::%s] a service_notification_command is missing" % self.get_name())
 state = False
 if not cmd.is_valid():
 logger.warning("[notificationway::%s] a service_notification_command is invalid" % self.get_name())
 state = False

 if getattr(self, 'service_notification_period', None) is None:
 logger.warning("[notificationway::%s] the service_notification_period is invalid" % self.get_name())
 state = False

 # Now host part
 if not hasattr(self, 'host_notification_commands'):
 logger.warning("[notificationway::%s] do not have any host_notification_commands defined" % self.get_name())
 state = False
 else:
 for cmd in self.host_notification_commands:
 if cmd is None:
 logger.warning("[notificationway::%s] a host_notification_command is missing" % self.get_name())
 state = False
 if not cmd.is_valid():
 logger.warning("[notificationway::%s] a host_notification_command is invalid (%s)" % (cmd.get_name(), str(cmd.__dict__)))
 state = False

 if getattr(self, 'host_notification_period', None) is None:
 logger.warning("[notificationway::%s] the host_notification_period is invalid" % self.get_name())
 state = False

 return state

 # In the scheduler we need to relink the commandCall with
 # the real commands

[docs] def late_linkify_nw_by_commands(self, commands):
 props = ['service_notification_commands', 'host_notification_commands']
 for prop in props:
 for cc in getattr(self, prop, []):
 cc.late_linkify_with_command(commands)

[docs]class NotificationWays(Items):
 name_property = "notificationway_name"
 inner_class = NotificationWay

[docs] def linkify(self, timeperiods, commands):
 self.linkify_with_timeperiods(timeperiods, 'service_notification_period')
 self.linkify_with_timeperiods(timeperiods, 'host_notification_period')
 self.linkify_command_list_with_commands(commands, 'service_notification_commands')
 self.linkify_command_list_with_commands(commands, 'host_notification_commands')

[docs] def new_inner_member(self, name=None, params={}):
 if name is None:
 name = NotificationWay.id
 params['notificationway_name'] = name
 #print "Asking a new inner notificationway from name %s with params %s" % (name, params)
 nw = NotificationWay(params)
 self.items[nw.id] = nw

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/module.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.module

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from item import Item, Items

from shinken.property import StringProp, ListProp
from shinken.util import strip_and_uniq
from shinken.log import logger

[docs]class Module(Item):
 id = 1 # zero is always special in database, so we do not take risk here
 my_type = 'module'

 properties = Item.properties.copy()
 properties.update({
 'module_name': StringProp(),
 'module_type': StringProp(),
 'modules': ListProp(default=''),
 })

 macros = {}

 # For debugging purpose only (nice name)
[docs] def get_name(self):
 return self.module_name

[docs]class Modules(Items):
 name_property = "module_name"
 inner_class = Module

[docs] def linkify(self):
 self.linkify_s_by_plug()

[docs] def linkify_s_by_plug(self):
 for s in self:
 new_modules = []
 mods = s.modules.split(',')
 mods = strip_and_uniq(mods)
 for plug_name in mods:
 plug_name = plug_name.strip()

 # don't read void names
 if plug_name == '':
 continue

 # We are the modules, we search them :)
 plug = self.find_by_name(plug_name)
 if plug is not None:
 new_modules.append(plug)
 else:
 err = "[module] unknown %s module from %s" % (plug_name, s.get_name())
 logger.error(err)
 s.configuration_errors.append(err)
 s.modules = new_modules

 # We look for contacts property in contacts and

[docs] def explode(self):
 pass

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/matchingitem.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.matchingitem

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

'''
 This is a utility class for factorizing matching functions for
 discovery runners and rules.
'''

import re

from item import Item

[docs]class MatchingItem(Item):

 # Try to see if the key,value is matching one or
 # our rule. If value got ',' we must look for each value
 # If one match, we quit
 # We can find in matches or not_matches
[docs] def is_matching(self, key, value, look_in='matches'):
 if look_in == 'matches':
 d = self.matches
 else:
 d = self.not_matches
 # If we do not even have the key, we bailout
 if not key.strip() in d:
 return False

 # Get my matching pattern
 m = d[key]
 if ',' in m:
 matchings = [mt.strip() for mt in m.split(',')]
 else:
 matchings = [m]

 # Split the value by , too
 values = value.split(',')
 for m in matchings:
 for v in values:
 #print "Try to match", m, v
 if re.search(m, v):
 return True
 return False

 # Look if we match all discovery data or not
 # a disco data look as a list of (key, values)

[docs] def is_matching_disco_datas(self, datas):
 # If we got not data, no way we can match
 if len(datas) == 0:
 return False

 # First we look if it's possible to match
 # we must match All self.matches things
 for m in self.matches:
 #print "Compare to", m
 match_one = False
 for (k, v) in datas.iteritems():
 # We found at least one of our match key
 if m == k:
 if self.is_matching(k, v):
 #print "Got matching with", m, k, v
 match_one = True
 continue
 if not match_one:
 # It match none
 #print "Match none, False"
 return False
 #print "It's possible to be OK"

 # And now look if ANY of not_matches is reach. If so
 # it's False
 for m in self.not_matches:
 #print "Compare to NOT", m
 match_one = False
 for (k, v) in datas.iteritems():
 #print "K,V", k,v
 # We found at least one of our match key
 if m == k:
 #print "Go loop"
 if self.is_matching(k, v, look_in='not_matches'):
 #print "Got matching with", m, k, v
 match_one = True
 continue
 if match_one:
 #print "I match one, I quit"
 return False

 # Ok we match ALL rules in self.matches
 # and NONE of self.not_matches, we can go :)
 return True

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/clients/livestatus.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.clients.livestatus

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import socket
import asyncore
import time
from log import logger

[docs]class LSSyncConnection:
 def __init__(self, addr='127.0.0.1', port=50000, path=None, timeout=10):
 self.addr = addr
 self.port = port
 self.path = path
 self.timeout = timeout

 # We must know if the socket is alive or not
 self.alive = False

 # Now we can inti the sockets
 if path:
 self.socket = socket.socket(socket.AF_UNIX, socket.SOCK_STREAM)
 self.type = 'unix'
 else:
 self.socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
 self.type = 'tcp'

 # We can now set the socket timeout
 self.socket.settimeout(timeout)
 self.connect()

[docs] def connect(self):
 if not self.alive:
 if self.type == 'unix':
 target = self.path
 else:
 target = (self.addr, self.port)

 try:
 self.socket.connect(target)
 self.alive = True
 except IOError, exp:
 self.alive = False
 logger.warning("Connection problem: %s" % str(exp))

[docs] def read(self, size):
 res = ""
 while size > 0:
 data = self.socket.recv(size)
 l = len(data)

 if l == 0:
 logger.warning("0 size read")
 return res #: TODO raise an error

 size = size - l
 res = res + data
 return res

[docs] def launch_query(self, query):
 if not self.alive:
 self.connect()
 if not query.endswith("\n"):
 query += "\n"
 query += "OutputFormat: python\nKeepAlive: on\nResponseHeader: fixed16\n\n"

 try:
 self.socket.send(query)
 data = self.read(16)
 code = data[0:3]
 logger.debug("RAW DATA: %s" % data)

 length = int(data[4:15])
 logger.debug("Len: %d" % length)

 data = self.read(length)
 logger.debug("DATA: %s" % data)

 if code == "200":
 try:
 return eval(data)
 except:
 logger.warning("BAD VALUE RETURN (data=%s)" % data)
 return None
 else:
 logger.warning("BAD RETURN CODE (code= %s, data=%s" % (code, data))
 return None
 except IOError, exp:
 self.alive = False
 logger.warning("SOCKET ERROR (%s)" % str(exp))
 return None

[docs] def exec_command(self, command):
 if not self.alive:
 self.connect()
 if not command.endswith("\n"):
 command += "\n"

 try:
 self.socket.send("COMMAND " + command + "\n")
 except IOError, exp:
 self.alive = False
 logger.warning("COMMAND EXEC error: %s" % str(exp))

Query class for define a query, and its states

[docs]class Query(object):

 id = 0

 def __init__(self, q):
 # The query string
 if not q.endswith("\n"):
 q += "\n"
 q += "OutputFormat: python\nKeepAlive: on\nResponseHeader: fixed16\n\n"

 self.q = q
 self.id = Query.id
 Query.id += 1
 # Got some states PENDING -> PICKUP -> DONE
 self.state = 'PENDING'
 self.result = None
 self.duration = 0
 # By default, an error :)
 self.return_code = '500'

[docs] def get(self):
 #print "Someone ask my query", self.q
 self.state = 'PICKUP'
 self.duration = time.time()
 return self.q

[docs] def put(self, r):
 self.result = r
 self.state = 'DONE'
 self.duration = time.time() - self.duration
 #print "Got a result", r

[docs]class LSAsynConnection(asyncore.dispatcher):
 def __init__(self, addr='127.0.0.1', port=50000, path=None, timeout=10):
 asyncore.dispatcher.__init__(self)
 self.addr = addr
 self.port = port
 self.path = path
 self.timeout = timeout

 # We must know if the socket is alive or not
 self.alive = False

 # Now we can inti the sockets
 if path:
 self.create_socket(socket.AF_UNIX, socket.SOCK_STREAM)
 self.type = 'unix'
 else:
 self.create_socket(socket.AF_INET, socket.SOCK_STREAM)
 self.type = 'tcp'

 # We can now set the socket timeout
 self.socket.settimeout(timeout)
 self.do_connect()

 # And our queries
 #q = Query('GET hosts\nColumns name\n')
 self.queries = []
 self.results = []

 self.current = None

[docs] def stack_query(self, q):
 self.queries.append(q)

 # Get a query and put it in current

[docs] def get_query(self):
 q = self.queries.pop()
 self.current = q
 return q

[docs] def do_connect(self):
 if not self.alive:
 if self.type == 'unix':
 target = self.path
 else:
 target = (self.addr, self.port)
 try:
 self.connect(target)
 self.alive = True
 except IOError, exp:
 self.alive = False
 logger.warning("Connection problem: %s" % str(exp))
 self.handle_close()

[docs] def do_read(self, size):
 res = ""
 while size > 0:
 data = self.socket.recv(size)
 l = len(data)
 if l == 0:
 logger.warning("0 size read")
 return res #: TODO raise an error

 size = size - l
 res = res + data
 return res

[docs] def exec_command(self, command):
 if not self.alive:
 self.do_connect()
 if not command.endswith("\n"):
 command += "\n"

 try:
 self.socket.send("COMMAND " + command + "\n")
 except IOError, exp:
 self.alive = False
 logger.warning("COMMAND EXEC error: %s" % str(exp))

[docs] def handle_connect(self):
 pass
 #print "In handle_connect"

[docs] def handle_close(self):
 logger.debug("Closing connection")
 self.current = None
 self.queries = []
 self.close()

 # Check if we are in timeout. If so, just bailout
 # and set the correct return code from timeout
 # case

[docs] def look_for_timeout(self):
 logger.debug("Look for timeout")
 now = time.time()
 if now - self.start_time > self.timeout:
 if self.unknown_on_timeout:
 rc = 3
 else:
 rc = 2
 message = 'Error: connection timeout after %d seconds' % self.timeout
 self.set_exit(rc, message)

 # We got a read for the socket. We do it if we do not already
 # finished. Maybe it's just a SSL handshake continuation, if so
 # we continue it and wait for handshake finish

[docs] def handle_read(self):
 #print "Handle read"

 q = self.current
 # get a read but no current query? Not normal!

 if not q:
 #print "WARNING: got LS read while no current query in progress. I return"
 return

 try:
 data = self.do_read(16)
 code = data[0:3]
 q.return_code = code

 length = int(data[4:15])
 data = self.do_read(length)

 if code == "200":
 try:
 d = eval(data)
 #print d
 q.put(d)
 except:
 q.put(None)
 else:
 q.put(None)
 return None
 except IOError, exp:
 self.alive = False
 logger.warning("SOCKET ERROR: %s" % str(exp))
 return q.put(None)

 # Now the current is done. We put in in our results queue
 self.results.append(q)
 self.current = None

 # Did we finished our job?

[docs] def writable(self):
 b = (len(self.queries) != 0 and not self.current)
 #print "Is writable?", b
 return b

[docs] def readable(self):
 b = self.current is not None
 #print "Readable", b
 return True

 # We can write to the socket. If we are in the ssl handshake phase
 # we just continue it and return. If we finished it, we can write our
 # query

[docs] def handle_write(self):
 if not self.writable():
 logger.debug("Not writable, I bail out")
 return

 #print "handle write"
 try:
 q = self.get_query()
 sent = self.send(q.get())
 except socket.error, exp:
 logger.debug("Write fail: %s" % str(exp))
 return

 #print "Sent", sent, "data"

 # We are finished only if we got no pending queries and
 # no in progress query too

[docs] def is_finished(self):
 #print "State:", self.current, len(self.queries)
 return self.current == None and len(self.queries) == 0

 # Will loop over the time until all returns are back

[docs] def wait_returns(self):
 while self.alive and not self.is_finished():
 asyncore.poll(timeout=0.001)

[docs] def get_returns(self):
 r = self.results
 self.results = self.results[:]
 return r

[docs] def launch_raw_query(self, query):
 if not self.alive:
 logger.debug("Cannot launch query. Connection is closed")
 return None

 if not self.is_finished():
 logger.debug("Try to launch a new query in a normal mode but the connection already got async queries in progress")
 return None

 q = Query(query)
 self.stack_query(q)
 self.wait_returns()
 q = self.results.pop()
 return q.result

[docs]class LSConnectionPool(object):
 def __init__(self, con_addrs):
 self.connections = []
 for s in con_addrs:
 if s.startswith('tcp:'):
 s = s[4:]
 addr = s.split(':')[0]
 port = int(s.split(':')[1])
 con = LSAsynConnection(addr=addr, port=port)
 elif s.startswith('unix:'):
 s = s[5:]
 path = s
 con = LSAsynConnection(path=path)
 else:
 logger.info("Unknown connection type for %s" % s)

 self.connections.append(con)

[docs] def launch_raw_query(self, query):
 for c in self.connections:
 q = Query(query)
 c.stack_query(q)
 still_working = [c for c in self.connections if c.alive and not c.is_finished()]
 while len(still_working) > 0:
 asyncore.poll(timeout=0.001)
 still_working = [c for c in self.connections if c.alive and not c.is_finished()]
 # Now get all results
 res = []
 for c in self.connections:
 if len(c.get_returns()) > 0:
 q = c.get_returns().pop()
 r = q.result
 logger.debug(str(r))
 res.extend(r)
 return res

if __name__ == "__main__":
 c = LSAsynConnection()
 import time
 t = time.time()

 q = Query('GET hosts\nColumns name\n')
 #c.stack_query(q)
 #q2 = Query('GET hosts\nColumns name\n')
 #c.stack_query(q)

 #print "Start to wait"
 #c.wait_returns()
 #print "End to wait"
 #print "Results", c.get_returns()
 #while time.time() - t < 1:
 # asyncore.poll()

 #while time.time() - t < 1:
 # asyncore.poll()
 #print c.launch_query('GET hosts\nColumns name')
 #print c.__dict__

 #print "Launch raw query"
 #r = c.launch_raw_query('GET hosts\nColumns name\n')
 #print "Result", r

 cp = LSConnectionPool(['tcp:localhost:50000', 'tcp:localhost:50000'])
 r = cp.launch_raw_query('GET hosts\nColumns name last_check\n')
 logger.debug("Result= %s" % str(r))
 import time
 logger.debug(int(time.time()))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/property.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.property

#!/usr/bin/env python

-*- mode: python ; coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re

from shinken.util import to_float, to_split, to_char, to_int
from shinken.log import logger

__all__ = ['UnusedProp', 'BoolProp', 'IntegerProp', 'FloatProp',
 'CharProp', 'StringProp', 'ListProp',
 'FULL_STATUS', 'CHECK_RESULT']

Suggestion
Is this useful? see above
__author__ = "Hartmut Goebel <h.goebel@goebel-consult.de>"
__copyright__ = "Copyright 2010-2011 by Hartmut Goebel <h.goebel@goebel-consult.de>"
__licence__ = "GNU Affero General Public License version 3 (AGPL v3)"

FULL_STATUS = 'full_status'
CHECK_RESULT = 'check_result'

none_object = object()

class Property(object):
 """Baseclass of all properties.

 Same semantic for all subclasses (except UnusedProp): The property
 is required if, and only if, the default value is `None`.

 """

 def __init__(self, default=none_object, class_inherit=None,
 unmanaged=False, help='', no_slots=False,
 fill_brok=None, conf_send_preparation=None,
 brok_transformation=None, retention=False,
 retention_preparation=None, to_send=False,
 override=False, managed=True):

 """
 `default`: default value to be used if this property is not set.
 If default is None, this property is required.

 `class_inherit`: List of 2-tuples, (Service, 'blabla'): must
 set this property to the Service class with name
 blabla. if (Service, None): must set this property
 to the Service class with same name
 `unmanaged`:
 `help`: usage text
 `no_slots`: do not take this property for __slots__

 `fill_brok`: if set, send to broker. There are two categories:
 FULL_STATUS for initial and update status,
 CHECK_RESULT for check results
 `retention`: if set, we will save this property in the retention files
 `retention_preparation`: function, if set, will go this function before
 being save to the retention data

 Only for the initial call:

 conf_send_preparation: if set, will pass the property to this
 function. It's used to 'flatten' some dangerous
 properties like realms that are too 'linked' to
 be send like that.

 brok_transformation: if set, will call the function with the
 value of the property when flattening
 data is necessary (like realm_name instead of
 the realm object).

 override: for scheduler, if the property must override the
 value of the configuration we send it

 managed: property that is managed in Nagios but not in Shinken

 """

 self.default = default
 self.has_default = (default is not none_object)
 self.required = not self.has_default
 self.class_inherit = class_inherit or []
 self.help = help or ''
 self.unmanaged = unmanaged
 self.no_slots = no_slots
 self.fill_brok = fill_brok or []
 self.conf_send_preparation = conf_send_preparation
 self.brok_transformation = brok_transformation
 self.retention = retention
 self.retention_preparation = retention_preparation
 self.to_send = to_send
 self.override = override
 self.managed = managed
 self.unused = False

[docs]class UnusedProp(Property):
 """A unused Property. These are typically used by Nagios but
 no longer useful/used by Shinken.

 This is just to warn the user that the option he uses is no more used
 in Shinken.

 """

 # Since this property is not used, there is no use for other
 # parameters than 'text'.
 # 'text' a some usage text if present, will print it to explain
 # why it's no more useful
 def __init__(self, text=None):

 if text is None:
 text = ("This parameter is no longer useful in the "
 "Shinken architecture.")
 self.text = text
 self.has_default = False
 self.class_inherit = []
 self.unused = True
 self.managed = True

_boolean_states = {'1': True, 'yes': True, 'true': True, 'on': True,
 '0': False, 'no': False, 'false': False, 'off': False}

[docs]class BoolProp(Property):
 """A Boolean Property.

 Boolean values are currently case insensitively defined as 0,
 false, no, off for False, and 1, true, yes, on for True).
 """

 #@staticmethod
[docs] def pythonize(self, val):
 return _boolean_states[val.lower()]

[docs]class IntegerProp(Property):
 """Please Add a Docstring to describe the class here"""

 #@staticmethod
[docs] def pythonize(self, val):
 return to_int(val)

[docs]class FloatProp(Property):
 """Please Add a Docstring to describe the class here"""

 #@staticmethod
[docs] def pythonize(self, val):
 return to_float(val)

[docs]class CharProp(Property):
 """Please Add a Docstring to describe the class here"""

 #@staticmethod
[docs] def pythonize(self, val):
 return to_char(val)

[docs]class StringProp(Property):
 """Please Add a Docstring to describe the class here"""

 #@staticmethod
[docs] def pythonize(self, val):
 return val

class PathProp(StringProp):
 """ A string property representing a "running" (== VAR) file path """

class ConfigPathProp(StringProp):
 """ A string property representing a config file path """

[docs]class ListProp(Property):
 """Please Add a Docstring to describe the class here"""

 #@staticmethod
[docs] def pythonize(self, val):
 return to_split(val)

class LogLevelProp(StringProp):
 """ A string property representing a logging level """

 def pythonize(self, val):
 return logger.get_level_id(val)

class DictProp(Property):
 def __init__(self, elts_prop=None, *args, **kwargs):
 """Dictionary of values.
 If elts_prop is not None, must be a Property subclass
 All dict values will be casted as elts_prop values when pythonized

 elts_prop = Property of dict members
 """
 super(DictProp, self).__init__(*args, **kwargs)

 if not elts_prop is None and not issubclass(elts_prop, Property):
 raise TypeError("DictProp constructor only accept Property sub-classes as elts_prop parameter")
 self.elts_prop = elts_prop()

 def pythonize(self, val):

 #import traceback; traceback.print_stack()
 def split(kv):
 m = re.match("^\s*([^\s]+)\s*=\s*([^\s]+)\s*$", kv)
 if m is None:
 raise ValueError

 return (
 m.group(1),
 # >2.4 only. we keep it for later. m.group(2) if self.elts_prop is None else self.elts_prop.pythonize(m.group(2))
 (self.elts_prop.pythonize(m.group(2)), m.group(2))[self.elts_prop is None]
)

 if val is None:
 return(dict())

 # val is in the form "key1=addr:[port],key2=addr:[port],..."
 print ">>>", dict([split(kv) for kv in to_split(val)])
 return dict([split(kv) for kv in to_split(val)])

class AddrProp(Property):
 """Address property (host + port)"""

 def pythonize(self, val):
 """
 i.e: val = "192.168.10.24:445"
 NOTE: port is optional
 """
 m = re.match("^([^:]*)(?::(\d+))?$", val)
 if m is None:
 raise ValueError

 addr = {'address': m.group(1)}
 if m.group(2) is not None:
 addr['port'] = int(m.group(2))

 return addr

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/sorter.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.sorter

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

"""
Helper functions for some sorting
"""

Sort hosts and services by impact, states and co
[docs]def hst_srv_sort(s1, s2):
 if s1.business_impact > s2.business_impact:
 return -1
 if s2.business_impact > s1.business_impact:
 return 1

 # Ok, we compute a importance value so
 # For host, the order is UP, UNREACH, DOWN
 # For service: OK, UNKNOWN, WARNING, CRIT
 # And DOWN is before CRITICAL (potential more impact)
 tab = {'host': {0: 0, 1: 4, 2: 1},
 'service': {0: 0, 1: 2, 2: 3, 3: 1}
 }
 state1 = tab[s1.__class__.my_type].get(s1.state_id, 0)
 state2 = tab[s2.__class__.my_type].get(s2.state_id, 0)
 # ok, here, same business_impact
 # Compare warn and crit state
 if state1 > state2:
 return -1
 if state2 > state1:
 return 1

 # Ok, so by name...
 if s1.get_full_name() > s2.get_full_name():
 return 1
 else:
 return -1

Sort hosts and services by impact, states and co

[docs]def worse_first(s1, s2):
 # Ok, we compute a importance value so
 # For host, the order is UP, UNREACH, DOWN
 # For service: OK, UNKNOWN, WARNING, CRIT
 # And DOWN is before CRITICAL (potential more impact)
 tab = {'host': {0: 0, 1: 4, 2: 1},
 'service': {0: 0, 1: 2, 2: 3, 3: 1}
 }
 state1 = tab[s1.__class__.my_type].get(s1.state_id, 0)
 state2 = tab[s2.__class__.my_type].get(s2.state_id, 0)

 # ok, here, same business_impact
 # Compare warn and crit state
 if state1 > state2:
 return -1
 if state2 > state1:
 return 1

 # Same? ok by business impact
 if s1.business_impact > s2.business_impact:
 return -1
 if s2.business_impact > s1.business_impact:
 return 1

 # Ok, so by name...
 # Ok, so by name...
 if s1.get_full_name() > s2.get_full_name():
 return -1
 else:
 return 1

Sort hosts and services by last_state_change time

[docs]def last_state_change_earlier(s1, s2):
 # ok, here, same business_impact
 # Compare warn and crit state
 if s1.last_state_change > s2.last_state_change:
 return -1
 if s1.last_state_change < s2.last_state_change:
 return 1

 return 0

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/clients/LSB.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.clients.LSB

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
Nicolas Dupeux, nicolas.dupeux@arkea.com
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import sys
import time
import asyncore
import getopt
sys.path.append("..")
sys.path.append("../..")
from livestatus import LSAsynConnection, Query

""" Benchmark of the livestatus broker"""

[docs]class QueryGenerator(object):
 """Generate a livestatus query"""

[docs] def get(self):
 pass

[docs]class SimpleQueryGenerator(QueryGenerator):
 def __init__(self, querys, name="sqg"):
 self.querys = querys
 self.name = name
 self.i = 0

[docs] def get(self):
 query = self.querys[self.i]
 query_class = "%s-%s" % (self.name, self.i)
 self.i += 1
 if self.i >= len(self.querys):
 self.i = 0
 return (query_class, query)

[docs]class FileQueryGenerator(SimpleQueryGenerator):
 def __init__(self, filename):
 f = open(filename, "r")
 querys = []
 for query in f:
 query = query.replace("\\n", "\n")
 querys.append(query)
 SimpleQueryGenerator.__init__(self, querys, filename)

[docs]def usage():
 print " -n requests Number of requests to perform [Default: 10]"
 print " -c concurrency Number of multiple requests to make [Default: 1]"

[docs]def mean(numberList):
 if len(numberList) == 0:
 return float('nan')

 floatNums = [float(x) for x in numberList]
 return sum(floatNums) / len(numberList)

[docs]def median(numberList):
 sorted_values = sorted(numberList)

 if len(sorted_values) % 2 == 1:
 return sorted_values[(len(sorted_values) + 1) / 2 - 1]
 else:
 lower = sorted_values[len(sorted_values) / 2 - 1]
 upper = sorted_values[len(sorted_values) / 2]

 return (float(lower + upper)) / 2

[docs]def run(url, requests, concurrency, qg):
 if (concurrency > requests):
 concurrency = requests

 remaining = requests

 conns = []
 queries_durations = {}
 if url.startswith('tcp:'):
 url = url[4:]
 addr = url.split(':')[0]
 port = int(url.split(':')[1])
 else:
 return

 for x in xrange(0, concurrency):
 conns.append(LSAsynConnection(addr=addr, port=port))
 (query_class, query_str) = qg.get()
 q = Query(query_str)
 q.query_class = query_class
 conns[x].stack_query(q)

 print "Start queries"
 t = time.time()
 while remaining > 0:
 asyncore.poll(timeout=1)
 for c in conns:
 if c.is_finished():
 # Store query duration to compute stats
 q = c.results.pop()
 duration = q.duration
 if (not queries_durations.has_key(q.query_class)):
 queries_durations[q.query_class] = []
 queries_durations[q.query_class].append(q.duration)
 sys.stdout.flush()
 remaining -= 1

 # Print a dot every 10 completed queries
 if (remaining % 10 == 0):
 print '.',
 sys.stdout.flush()

 # Run another query
 (query_class, query_str) = qg.get()
 q = Query(query_str)
 q.query_class = query_class
 c.stack_query(q)
 running_time = time.time() - t
 print "End queries"

 print "\n==============="
 print "Execution report"
 print "==============="
 print "Running time is %04f s" % running_time
 print "Query Class nb min max mean median"
 for query_class, durations in queries_durations.items():
 print "%s %03d %03f %03f %03f %03f" % (query_class.ljust(20), len(durations), min(durations), max(durations), mean(durations), median(durations))

[docs]def main(argv):
 # Defaults values
 concurrency = 5
 requests = 20
 url = "tcp:localhost:50000"

 try:
 opts, args = getopt.getopt(argv, "hc:n:", "help")
 except getopt.GetoptError:
 usage()
 sys.exit(2)
 for opt, arg in opts:
 if opt in ("-h", "--help"):
 usage()
 sys.exit()
 elif opt == "-c":
 concurrency = int(arg)
 elif opt == "-n":
 requests = int(arg)

 if len(args) >= 1:
 url = args[0]

 print "Running %s queries on %s" % (requests, url)
 print "Concurrency level %s " % (concurrency)

 qg = FileQueryGenerator("thruk_tac.queries")

 run(url, requests, concurrency, qg)

if __name__ == "__main__":
 main(sys.argv[1:])

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/termcolor.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.termcolor

coding: utf-8
Copyright (c) 2008-2011 Volvox Development Team
#
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
#
The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.
#
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.
#
Author: Konstantin Lepa <konstantin.lepa@gmail.com>

"""ANSII Color formatting for output in terminal."""

from __future__ import print_function
import os

__ALL__ = ['colored', 'cprint']

VERSION = (1, 1, 0)

ATTRIBUTES = dict(
 list(zip([
 'bold',
 'dark',
 '',
 'underline',
 'blink',
 '',
 'reverse',
 'concealed'
],
 list(range(1, 9))
))
)
del ATTRIBUTES['']

HIGHLIGHTS = dict(
 list(zip([
 'on_grey',
 'on_red',
 'on_green',
 'on_yellow',
 'on_blue',
 'on_magenta',
 'on_cyan',
 'on_white'
],
 list(range(40, 48))
))
)

COLORS = dict(
 list(zip([
 'grey',
 'red',
 'green',
 'yellow',
 'blue',
 'magenta',
 'cyan',
 'white',
],
 list(range(30, 38))
))
)

RESET = '\033[0m'

[docs]def colored(text, color=None, on_color=None, attrs=None):
 """Colorize text.

 Available text colors:
 red, green, yellow, blue, magenta, cyan, white.

 Available text highlights:
 on_red, on_green, on_yellow, on_blue, on_magenta, on_cyan, on_white.

 Available attributes:
 bold, dark, underline, blink, reverse, concealed.

 Example:
 colored('Hello, World!', 'red', 'on_grey', ['blue', 'blink'])
 colored('Hello, World!', 'green')
 """
 if os.getenv('ANSI_COLORS_DISABLED') is None:
 fmt_str = '\033[%dm%s'
 if color is not None:
 text = fmt_str % (COLORS[color], text)

 if on_color is not None:
 text = fmt_str % (HIGHLIGHTS[on_color], text)

 if attrs is not None:
 for attr in attrs:
 text = fmt_str % (ATTRIBUTES[attr], text)
 # Shinken mod
 if color is not None:
 text += RESET
 return text

[docs]def cprint(text, color=None, on_color=None, attrs=None, **kwargs):
 """Print colorize text.

 It accepts arguments of print function.
 """

 print((colored(text, color, on_color, attrs)), **kwargs)

if __name__ == '__main__':
 print('Current terminal type: %s' % os.getenv('TERM'))
 print('Test basic colors:')
 cprint('Grey color', 'grey')
 cprint('Red color', 'red')
 cprint('Green color', 'green')
 cprint('Yellow color', 'yellow')
 cprint('Blue color', 'blue')
 cprint('Magenta color', 'magenta')
 cprint('Cyan color', 'cyan')
 cprint('White color', 'white')
 print(('-' * 78))

 print('Test highlights:')
 cprint('On grey color', on_color='on_grey')
 cprint('On red color', on_color='on_red')
 cprint('On green color', on_color='on_green')
 cprint('On yellow color', on_color='on_yellow')
 cprint('On blue color', on_color='on_blue')
 cprint('On magenta color', on_color='on_magenta')
 cprint('On cyan color', on_color='on_cyan')
 cprint('On white color', color='grey', on_color='on_white')
 print('-' * 78)

 print('Test attributes:')
 cprint('Bold grey color', 'grey', attrs=['bold'])
 cprint('Dark red color', 'red', attrs=['dark'])
 cprint('Underline green color', 'green', attrs=['underline'])
 cprint('Blink yellow color', 'yellow', attrs=['blink'])
 cprint('Reversed blue color', 'blue', attrs=['reverse'])
 cprint('Concealed Magenta color', 'magenta', attrs=['concealed'])
 cprint('Bold underline reverse cyan color', 'cyan',
 attrs=['bold', 'underline', 'reverse'])
 cprint('Dark blink concealed white color', 'white',
 attrs=['dark', 'blink', 'concealed'])
 print(('-' * 78))

 print('Test mixing:')
 cprint('Underline red on grey color', 'red', 'on_grey',
 ['underline'])
 cprint('Reversed green on red color', 'green', 'on_red', ['reverse'])

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/perfdata.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.perfdata

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import re
from shinken.util import to_best_int_float

perfdata_split_pattern = re.compile('([^=]+=\S+)')
metric_pattern = re.compile('^([^=]+)=([\d\.\-eE]+)([\w\/%]*);?([\d\.\-eE:~@]+)?;?([\d\.\-eE:~@]+)?;?([\d\.\-eE]+)?;?([\d\.\-eE]+)?;?\s*')

If we can return an int or a float, or None
if we can't
[docs]def guess_int_or_float(val):
 try:
 return to_best_int_float(val)
 except Exception, exp:
 return None

Class for one metric of a perf_data

[docs]class Metric:
 def __init__(self, s):
 self.name = self.value = self.uom = self.warning = self.critical = self.min = self.max = None
 s = s.strip()
 #print "Analysis string", s
 r = metric_pattern.match(s)
 if r:
 # Get the name but remove all ' in it
 self.name = r.group(1).replace("'", "")
 self.value = guess_int_or_float(r.group(2))
 self.uom = r.group(3)
 self.warning = guess_int_or_float(r.group(4))
 self.critical = guess_int_or_float(r.group(5))
 self.min = guess_int_or_float(r.group(6))
 self.max = guess_int_or_float(r.group(7))
 #print 'Name', self.name
 #print "Value", self.value
 #print "Res", r
 #print r.groups()
 if self.uom == '%':
 self.min = 0
 self.max = 100

 def __str__(self):
 s = "%s=%s%s" % (self.name, self.value, self.uom)
 if self.warning:
 s = s + ";%s" % (self.warning)
 if self.critical:
 s = s + ";%s" % (self.critical)
 return s

[docs]class PerfDatas:
 def __init__(self, s):
 elts = perfdata_split_pattern.findall(s)
 elts = [e for e in elts if e != '']
 self.metrics = {}
 for e in elts:
 m = Metric(e)
 if m.name is not None:
 self.metrics[m.name] = m

 def __iter__(self):
 return self.metrics.itervalues()

 def __len__(self):
 return len(self.metrics)

 def __getitem__(self, key):
 return self.metrics[key]

 def __contains__(self, key):
 return key in self.metrics

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/md5crypt.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.md5crypt

###
md5crypt.py
#
0423.2000 by michal wallace http://www.sabren.com/
based on perl's Crypt::PasswdMD5 by Luis Munoz (lem@cantv.net)
based on /usr/src/libcrypt/crypt.c from FreeBSD 2.2.5-RELEASE
#
MANY THANKS TO
#
Carey Evans - http://home.clear.net.nz/pages/c.evans/
Dennis Marti - http://users.starpower.net/marti1/
#
For the patches that got this thing working!
#
###
"""md5crypt.py - Provides interoperable MD5-based crypt() function

SYNOPSIS

import md5crypt.py

cryptedpassword = md5crypt.md5crypt(password, salt);

DESCRIPTION

unix_md5_crypt() provides a crypt()-compatible interface to the
rather new MD5-based crypt() function found in modern operating systems.
It's based on the implementation found on FreeBSD 2.2.[56]-RELEASE and
contains the following license in it:

 "THE BEER-WARE LICENSE" (Revision 42):
 <phk@login.dknet.dk> wrote this file. As long as you retain this notice you
 can do whatever you want with this stuff. If we meet some day, and you think
 this stuff is worth it, you can buy me a beer in return. Poul-Henning Kamp

apache_md5_crypt() provides a function compatible with Apache's
.htpasswd files. This was contributed by Bryan Hart <bryan@eai.com>.

"""

MAGIC = '1' # Magic string
ITOA64 = "./0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz"

from hashlib import md5

[docs]def to64 (v, n):
 ret = ''
 while (n - 1 >= 0):
 n = n - 1
 ret = ret + ITOA64[v & 0x3f]
 v = v >> 6
 return ret

[docs]def apache_md5_crypt (pw, salt):
 # change the Magic string to match the one used by Apache
 return unix_md5_crypt(pw, salt, '$apr1$')

[docs]def unix_md5_crypt(pw, salt, magic=None):

 if magic == None:
 magic = MAGIC

 # Take care of the magic string if present
 if salt[:len(magic)] == magic:
 salt = salt[len(magic):]

 # salt can have up to 8 characters:
 import string
 salt = string.split(salt, '$', 1)[0]
 salt = salt[:8]

 ctx = pw + magic + salt

 final = md5(pw + salt + pw).digest()

 for pl in range(len(pw), 0, -16):
 if pl > 16:
 ctx = ctx + final[:16]
 else:
 ctx = ctx + final[:pl]
 # Now the 'weird' xform (??)

 i = len(pw)
 while i:
 if i & 1:
 ctx = ctx + chr(0) # if ($i & 1) { $ctx->add(pack("C", 0)); }
 else:
 ctx = ctx + pw[0]
 i = i >> 1

 final = md5(ctx).digest()

 # The following is supposed to make
 # things run slower.

 # my question: WTF???

 for i in range(1000):
 ctx1 = ''
 if i & 1:
 ctx1 = ctx1 + pw
 else:
 ctx1 = ctx1 + final[:16]

 if i % 3:
 ctx1 = ctx1 + salt

 if i % 7:
 ctx1 = ctx1 + pw

 if i & 1:
 ctx1 = ctx1 + final[:16]
 else:
 ctx1 = ctx1 + pw

 final = md5(ctx1).digest()
 # Final xform

 passwd = ''

 passwd = passwd + to64((int(ord(final[0])) << 16)
 |(int(ord(final[6])) << 8)
 |(int(ord(final[12]))), 4)

 passwd = passwd + to64((int(ord(final[1])) << 16)
 |(int(ord(final[7])) << 8)
 |(int(ord(final[13]))), 4)

 passwd = passwd + to64((int(ord(final[2])) << 16)
 |(int(ord(final[8])) << 8)
 |(int(ord(final[14]))), 4)

 passwd = passwd + to64((int(ord(final[3])) << 16)
 |(int(ord(final[9])) << 8)
 |(int(ord(final[15]))), 4)

 passwd = passwd + to64((int(ord(final[4])) << 16)
 |(int(ord(final[10])) << 8)
 |(int(ord(final[5]))), 4)

 passwd = passwd + to64((int(ord(final[11]))), 2)

 return magic + salt + '$' + passwd

assign a wrapper function:

md5crypt = unix_md5_crypt

if __name__ == "__main__":
 print unix_md5_crypt("cat", "hat")

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/filter.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.filter

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

"""
Helper functions for some filtering, like for user based
"""

Get only user relevant items for the user
[docs]def only_related_to(lst, user):
 # if the user is an admin, show all
 if user.is_admin:
 return lst

 # Ok the user is a simple user, we should filter
 r = set()
 for i in lst:
 # Maybe the user is a direct contact
 if user in i.contacts:
 r.add(i)
 continue
 # TODO: add a notified_contact pass

 # Maybe it's a contact of a linked elements (source problems or impacts)
 is_find = False
 for s in i.source_problems:
 if user in s.contacts:
 r.add(i)
 is_find = True
 # Ok skip this object now
 if is_find:
 continue
 # Now impacts related maybe?
 for imp in i.impacts:
 if user in imp.contacts:
 r.add(i)

 return list(r)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/objects/realm.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.objects.realm

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import copy

from item import Item
from itemgroup import Itemgroup, Itemgroups
from shinken.property import BoolProp, IntegerProp, StringProp
from shinken.log import logger

It change from hostgroup Class because there is no members
properties, just the realm_members that we rewrite on it.

[docs]class Realm(Itemgroup):
 id = 1 # zero is always a little bit special... like in database
 my_type = 'realm'

 properties = Itemgroup.properties.copy()
 properties.update({
 'id': IntegerProp(default=0, fill_brok=['full_status']),
 'realm_name': StringProp(fill_brok=['full_status']),
 'realm_members': StringProp(default=''), # No status_broker_name because it put hosts, not host_name
 'higher_realms': StringProp(default=''),
 'default': BoolProp(default='0'),
 'broker_complete_links': BoolProp(default='0'),
 #'alias': {'required': True, 'fill_brok': ['full_status']},
 #'notes': {'required': False, 'default':'', 'fill_brok': ['full_status']},
 #'notes_url': {'required': False, 'default':'', 'fill_brok': ['full_status']},
 #'action_url': {'required': False, 'default':'', 'fill_brok': ['full_status']},
 })

 running_properties = Item.running_properties.copy()
 running_properties.update({
 'serialized_confs': StringProp(default={}),
 })

 macros = {
 'REALMNAME': 'realm_name',
 'REALMMEMBERS': 'members',
 }

[docs] def get_name(self):
 return self.realm_name

[docs] def get_realms(self):
 return self.realm_members

[docs] def add_string_member(self, member):
 self.realm_members += ',' + member

[docs] def get_realm_members(self):
 if self.has('realm_members'):
 return [r.strip() for r in self.realm_members.split(',')]
 else:
 return []

 # Use to make python properties
 # TODO: change itemgroup function pythonize?

[docs] def pythonize(self):
 cls = self.__class__
 for prop, tab in cls.properties.items():
 try:
 old_val = getattr(self, prop)
 new_val = tab.pythonize(old_val)
 #print "Changing ", old_val, "by", new_val
 setattr(self, prop, new_val)
 except AttributeError, exp:
 pass # Will be catch at the is_correct moment

 # We fillfull properties with template ones if need
 # Because hostgroup we call may not have it's members
 # we call get_hosts_by_explosion on it

[docs] def get_realms_by_explosion(self, realms):
 # First we tag the hg so it will not be explode
 # if a son of it already call it
 self.already_explode = True

 # Now the recursive part
 # rec_tag is set to False every HG we explode
 # so if True here, it must be a loop in HG
 # calls... not GOOD!
 if self.rec_tag:
 err = "Error: we've got a loop in realm definition %s" % self.get_name()
 self.configuration_errors.append(err)
 if self.has('members'):
 return self.members
 else:
 return ''

 # Ok, not a loop, we tag it and continue
 self.rec_tag = True

 p_mbrs = self.get_realm_members()
 for p_mbr in p_mbrs:
 p = realms.find_by_name(p_mbr.strip())
 if p is not None:
 value = p.get_realms_by_explosion(realms)
 if value is not None:
 self.add_string_member(value)

 if self.has('members'):
 return self.members
 else:
 return ''

[docs] def get_all_subs_pollers(self):
 r = copy.copy(self.pollers)
 for p in self.realm_members:
 tmps = p.get_all_subs_pollers()
 for s in tmps:
 r.append(s)
 return r

[docs] def get_all_subs_reactionners(self):
 r = copy.copy(self.reactionners)
 for p in self.realm_members:
 tmps = p.get_all_subs_reactionners()
 for s in tmps:
 r.append(s)
 return r

[docs] def count_reactionners(self):
 self.nb_reactionners = 0
 for reactionner in self.reactionners:
 if not reactionner.spare:
 self.nb_reactionners += 1
 for realm in self.higher_realms:
 for reactionner in realm.reactionners:
 if not reactionner.spare and reactionner.manage_sub_realms:
 self.nb_reactionners += 1

[docs] def fill_potential_reactionners(self):
 self.potential_reactionners = []
 for reactionner in self.reactionners:
 self.potential_reactionners.append(reactionner)
 for realm in self.higher_realms:
 for reactionner in realm.reactionners:
 if reactionner.manage_sub_realms:
 self.potential_reactionners.append(reactionner)

[docs] def count_pollers(self):
 self.nb_pollers = 0
 for poller in self.pollers:
 if not poller.spare:
 self.nb_pollers += 1
 for realm in self.higher_realms:
 for poller in realm.pollers:
 if not poller.spare and poller.manage_sub_realms:
 self.nb_pollers += 1

[docs] def fill_potential_pollers(self):
 self.potential_pollers = []
 for poller in self.pollers:
 self.potential_pollers.append(poller)
 for realm in self.higher_realms:
 for poller in realm.pollers:
 if poller.manage_sub_realms:
 self.potential_pollers.append(poller)

[docs] def count_brokers(self):
 self.nb_brokers = 0
 for broker in self.brokers:
 if not broker.spare:
 self.nb_brokers += 1
 for realm in self.higher_realms:
 for broker in realm.brokers:
 if not broker.spare and broker.manage_sub_realms:
 self.nb_brokers += 1

[docs] def fill_potential_brokers(self):
 self.potential_brokers = []
 for broker in self.brokers:
 self.potential_brokers.append(broker)
 for realm in self.higher_realms:
 for broker in realm.brokers:
 if broker.manage_sub_realms:
 self.potential_brokers.append(broker)

[docs] def count_receivers(self):
 self.nb_receivers = 0
 for receiver in self.receivers:
 if not receiver.spare:
 self.nb_receivers += 1
 for realm in self.higher_realms:
 for receiver in realm.receivers:
 if not receiver.spare and receiver.manage_sub_realms:
 self.nb_receivers += 1

[docs] def fill_potential_receivers(self):
 self.potential_receivers = []
 for broker in self.receivers:
 self.potential_receivers.append(broker)
 for realm in self.higher_realms:
 for broker in realm.receivers:
 if broker.manage_sub_realms:
 self.potential_receivers.append(broker)

 # Return the list of satellites of a certain type
 # like reactionner -> self.reactionners

[docs] def get_satellties_by_type(self, type):
 if hasattr(self, type + 's'):
 return getattr(self, type + 's')
 else:
 logger.debug("[realm] do not have this kind of satellites: %s" % type)
 return []

 # Return the list of potentials satellites of a certain type
 # like reactionner -> self.potential_reactionners

[docs] def get_potential_satellites_by_type(self, type):
 if hasattr(self, 'potential_' + type + 's'):
 return getattr(self, 'potential_' + type + 's')
 else:
 logger.debug("[realm] do not have this kind of satellites: %s" % type)
 return []

 # Return the list of potentials satellites of a certain type
 # like reactionner -> self.nb_reactionners

[docs] def get_nb_of_must_have_satellites(self, type):
 if hasattr(self, 'nb_' + type + 's'):
 return getattr(self, 'nb_' + type + 's')
 else:
 logger.debug("[realm] do not have this kind of satellites: %s" % type)
 return 0

 # Fill dict of realms for managing the satellites confs

[docs] def prepare_for_satellites_conf(self):
 self.to_satellites = {}
 self.to_satellites['reactionner'] = {}
 self.to_satellites['poller'] = {}
 self.to_satellites['broker'] = {}
 self.to_satellites['receiver'] = {}

 self.to_satellites_need_dispatch = {}
 self.to_satellites_need_dispatch['reactionner'] = {}
 self.to_satellites_need_dispatch['poller'] = {}
 self.to_satellites_need_dispatch['broker'] = {}
 self.to_satellites_need_dispatch['receiver'] = {}

 self.to_satellites_managed_by = {}
 self.to_satellites_managed_by['reactionner'] = {}
 self.to_satellites_managed_by['poller'] = {}
 self.to_satellites_managed_by['broker'] = {}
 self.to_satellites_managed_by['receiver'] = {}

 self.count_reactionners()
 self.fill_potential_reactionners()
 self.count_pollers()
 self.fill_potential_pollers()
 self.count_brokers()
 self.fill_potential_brokers()
 self.count_receivers()
 self.fill_potential_receivers()

 s = "%s: (in/potential) (schedulers:%d) (pollers:%d/%d) (reactionners:%d/%d) (brokers:%d/%d) (receivers:%d/%d)" % \
 (self.get_name(),
 len(self.schedulers),
 self.nb_pollers, len(self.potential_pollers),
 self.nb_reactionners, len(self.potential_reactionners),
 self.nb_brokers, len(self.potential_brokers),
 self.nb_receivers, len(self.potential_receivers)
)
 logger.info(s)

 # TODO: find a better name...
 # TODO: and if he goes active?

[docs] def fill_broker_with_poller_reactionner_links(self, broker):
 # First we create/void theses links
 broker.cfg['pollers'] = {}
 broker.cfg['reactionners'] = {}

 # First our own level
 for p in self.pollers:
 cfg = p.give_satellite_cfg()
 broker.cfg['pollers'][p.id] = cfg

 for r in self.reactionners:
 cfg = r.give_satellite_cfg()
 broker.cfg['reactionners'][r.id] = cfg

 # Then sub if we must to it
 if broker.manage_sub_realms:
 # Now pollers
 for p in self.get_all_subs_pollers():
 cfg = p.give_satellite_cfg()
 broker.cfg['pollers'][p.id] = cfg

 # Now reactionners
 for r in self.get_all_subs_reactionners():
 cfg = r.give_satellite_cfg()
 broker.cfg['reactionners'][r.id] = cfg

 # Get a conf package of satellites links that can be useful for
 # a scheduler

[docs] def get_satellites_links_for_scheduler(self):
 cfg = {}

 # First we create/void theses links
 cfg['pollers'] = {}
 cfg['reactionners'] = {}

 # First our own level
 for p in self.pollers:
 c = p.give_satellite_cfg()
 cfg['pollers'][p.id] = c

 for r in self.reactionners:
 c = r.give_satellite_cfg()
 cfg['reactionners'][r.id] = c

 #print "***** Preparing a satellites conf for a scheduler", cfg
 return cfg

[docs]class Realms(Itemgroups):
 name_property = "realm_name" # is used for finding hostgroups
 inner_class = Realm

[docs] def get_members_by_name(self, pname):
 realm = self.find_by_name(pname)
 if realm is None:
 return []
 return realm.get_realms()

[docs] def linkify(self):
 self.linkify_p_by_p()

 # prepare list of satellites and confs
 for p in self:
 p.pollers = []
 p.schedulers = []
 p.reactionners = []
 p.brokers = []
 p.receivers = []
 p.packs = []
 p.confs = {}

 # We just search for each realm the others realms
 # and replace the name by the realm

[docs] def linkify_p_by_p(self):
 for p in self.items.values():
 mbrs = p.get_realm_members()
 # The new member list, in id
 new_mbrs = []
 for mbr in mbrs:
 new_mbr = self.find_by_name(mbr)
 if new_mbr is not None:
 new_mbrs.append(new_mbr)
 # We find the id, we replace the names
 p.realm_members = new_mbrs

 # Now put higher realm in sub realms
 # So after they can
 for p in self.items.values():
 p.higher_realms = []

 for p in self.items.values():
 for sub_p in p.realm_members:
 sub_p.higher_realms.append(p)

 # Use to fill members with hostgroup_members

[docs] def explode(self):
 # We do not want a same hg to be explode again and again
 # so we tag it
 for tmp_p in self.items.values():
 tmp_p.already_explode = False
 for p in self:
 if p.has('realm_members') and not p.already_explode:
 # get_hosts_by_explosion is a recursive
 # function, so we must tag hg so we do not loop
 for tmp_p in self:
 tmp_p.rec_tag = False
 p.get_realms_by_explosion(self)

 # We clean the tags
 for tmp_p in self.items.values():
 if hasattr(tmp_p, 'rec_tag'):
 del tmp_p.rec_tag
 del tmp_p.already_explode

[docs] def get_default(self):
 for r in self:
 if getattr(r, 'default', False):
 return r
 return None

[docs] def prepare_for_satellites_conf(self):
 for r in self:
 r.prepare_for_satellites_conf()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/misc/datamanager.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.misc.datamanager

#!/usr/bin/python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from shinken.util import safe_print
from shinken.misc.sorter import hst_srv_sort, last_state_change_earlier

[docs]class DataManager(object):
 def __init__(self):
 self.rg = None

[docs] def load(self, rg):
 self.rg = rg

 # UI will launch us names in str, we got unicode
 # in our rg, so we must manage it here

[docs] def get_host(self, hname):
 hname = hname.decode('utf8', 'ignore')
 return self.rg.hosts.find_by_name(hname)

[docs] def get_service(self, hname, sdesc):
 hname = hname.decode('utf8', 'ignore')
 sdesc = sdesc.decode('utf8', 'ignore')
 return self.rg.services.find_srv_by_name_and_hostname(hname, sdesc)

[docs] def get_all_hosts_and_services(self):
 all = []
 all.extend(self.rg.hosts)
 all.extend(self.rg.services)
 return all

[docs] def get_contact(self, name):
 name = name.decode('utf8', 'ignore')
 return self.rg.contacts.find_by_name(name)

[docs] def get_contacts(self):
 return self.rg.contacts

[docs] def get_hostgroups(self):
 return self.rg.hostgroups

[docs] def get_hostgroup(self, name):
 return self.rg.hostgroups.find_by_name(name)

 # Get the hostgroups sorted by names, and zero size in the end
 # if selected one, put it in the first place

[docs] def get_hostgroups_sorted(self, selected=''):
 r = []
 selected = selected.strip()

 hg_names = [hg.get_name() for hg in self.rg.hostgroups if len(hg.members) > 0 and hg.get_name() != selected]
 hg_names.sort()
 hgs = [self.rg.hostgroups.find_by_name(n) for n in hg_names]
 hgvoid_names = [hg.get_name() for hg in self.rg.hostgroups if len(hg.members) == 0 and hg.get_name() != selected]
 hgvoid_names.sort()
 hgvoids = [self.rg.hostgroups.find_by_name(n) for n in hgvoid_names]

 if selected:
 hg = self.rg.hostgroups.find_by_name(selected)
 if hg:
 r.append(hg)

 r.extend(hgs)
 r.extend(hgvoids)

 return r

[docs] def get_hosts(self):
 return self.rg.hosts

[docs] def get_services(self):
 return self.rg.services

[docs] def get_schedulers(self):
 return self.rg.schedulers

[docs] def get_pollers(self):
 return self.rg.pollers

[docs] def get_brokers(self):
 return self.rg.brokers

[docs] def get_receivers(self):
 return self.rg.receivers

[docs] def get_reactionners(self):
 return self.rg.reactionners

[docs] def get_program_start(self):
 for c in self.rg.configs.values():
 return c.program_start
 return None

[docs] def get_realms(self):
 return self.rg.realms

[docs] def get_realm(self, r):
 if r in self.rg.realms:
 return r
 return None

 # Get the hostgroups sorted by names, and zero size in the end
 # if selected one, put it in the first place

[docs] def get_host_tags_sorted(self):
 r = []
 names = self.rg.tags.keys()
 names.sort()
 for n in names:
 r.append((n, self.rg.tags[n]))
 return r

[docs] def get_important_impacts(self):
 res = []
 for s in self.rg.services:
 if s.is_impact and s.state not in ['OK', 'PENDING']:
 if s.business_impact > 2:
 res.append(s)
 for h in self.rg.hosts:
 if h.is_impact and h.state not in ['UP', 'PENDING']:
 if h.business_impact > 2:
 res.append(h)
 return res

 # Returns all problems

[docs] def get_all_problems(self, to_sort=True, get_acknowledged=False):
 res = []
 if not get_acknowledged:
 res.extend([s for s in self.rg.services if s.state not in ['OK', 'PENDING'] and not s.is_impact and not s.problem_has_been_acknowledged and not s.host.problem_has_been_acknowledged])
 res.extend([h for h in self.rg.hosts if h.state not in ['UP', 'PENDING'] and not h.is_impact and not h.problem_has_been_acknowledged])
 else:
 res.extend([s for s in self.rg.services if s.state not in ['OK', 'PENDING'] and not s.is_impact])
 res.extend([h for h in self.rg.hosts if h.state not in ['UP', 'PENDING'] and not h.is_impact])

 if to_sort:
 res.sort(hst_srv_sort)
 return res

 # returns problems, but the most recent before

[docs] def get_problems_time_sorted(self):
 pbs = self.get_all_problems(to_sort=False)
 pbs.sort(last_state_change_earlier)
 return pbs

 # Return all non managed impacts

[docs] def get_all_impacts(self):
 res = []
 for s in self.rg.services:
 if s.is_impact and s.state not in ['OK', 'PENDING']:
 # If s is acked, pass
 if s.problem_has_been_acknowledged:
 continue
 # We search for impacts that were NOT currently managed
 if len([p for p in s.source_problems if not p.problem_has_been_acknowledged]) > 0:
 res.append(s)
 for h in self.rg.hosts:
 if h.is_impact and h.state not in ['UP', 'PENDING']:
 # If h is acked, pass
 if h.problem_has_been_acknowledged:
 continue
 # We search for impacts that were NOT currently managed
 if len([p for p in h.source_problems if not p.problem_has_been_acknowledged]) > 0:
 res.append(h)
 return res

 # Return the number of problems

[docs] def get_nb_problems(self):
 return len(self.get_all_problems(to_sort=False))

 # Get the number of all problems, even the ack ones

[docs] def get_nb_all_problems(self):
 res = []
 res.extend([s for s in self.rg.services if s.state not in ['OK', 'PENDING'] and not s.is_impact])
 res.extend([h for h in self.rg.hosts if h.state not in ['UP', 'PENDING'] and not h.is_impact])
 return len(res)

 # Return the number of impacts

[docs] def get_nb_impacts(self):
 return len(self.get_all_impacts())

[docs] def get_nb_elements(self):
 return len(self.rg.services) + len(self.rg.hosts)

[docs] def get_important_elements(self):
 res = []
 # We want REALLY important things, so business_impact > 2, but not just IT elements that are
 # root problems, so we look only for config defined my_own_business_impact value too
 res.extend([s for s in self.rg.services if (s.business_impact > 2 and not 0 <= s.my_own_business_impact <= 2)])
 res.extend([h for h in self.rg.hosts if (h.business_impact > 2 and not 0 <= h.my_own_business_impact <= 2)])
 print "DUMP IMPORTANT"
 for i in res:
 safe_print(i.get_full_name(), i.business_impact, i.my_own_business_impact)
 return res

 # For all business impacting elements, and give the worse state
 # if warning or critical

[docs] def get_overall_state(self):
 h_states = [h.state_id for h in self.rg.hosts if h.business_impact > 2 and h.is_impact and h.state_id in [1, 2]]
 s_states = [s.state_id for s in self.rg.services if s.business_impact > 2 and s.is_impact and s.state_id in [1, 2]]
 print "get_overall_state:: hosts and services business problems", h_states, s_states
 if len(h_states) == 0:
 h_state = 0
 else:
 h_state = max(h_states)
 if len(s_states) == 0:
 s_state = 0
 else:
 s_state = max(s_states)
 # Ok, now return the max of hosts and services states
 return max(h_state, s_state)

 # Same but for pure IT problems

[docs] def get_overall_it_state(self):
 h_states = [h.state_id for h in self.rg.hosts if h.is_problem and h.state_id in [1, 2]]
 s_states = [s.state_id for s in self.rg.services if s.is_problem and s.state_id in [1, 2]]
 if len(h_states) == 0:
 h_state = 0
 else:
 h_state = max(h_states)
 if len(s_states) == 0:
 s_state = 0
 else:
 s_state = max(s_states)
 # Ok, now return the max of hosts and services states
 return max(h_state, s_state)

 # Get percent of all Services

[docs] def get_per_service_state(self):
 all_services = self.rg.services
 problem_services = []
 problem_services.extend([s for s in self.rg.services if s.state not in ['OK', 'PENDING'] and not s.is_impact])
 return (100-(len(problem_services) *100)/len(all_services))

 # Get percent of all Hosts

[docs] def get_per_hosts_state(self):
 all_hosts = self.rg.hosts
 problem_hosts = []
 problem_hosts.extend([s for s in self.rg.hosts if s.state not in ['UP', 'PENDING'] and not s.is_impact])
 return (100-(len(problem_hosts) *100)/len(all_hosts))

 # For all business impacting elements, and give the worse state
 # if warning or critical

[docs] def get_len_overall_state(self):
 h_states = [h.state_id for h in self.rg.hosts if h.business_impact > 2 and h.is_impact and h.state_id in [1, 2]]
 s_states = [s.state_id for s in self.rg.services if s.business_impact > 2 and s.is_impact and s.state_id in [1, 2]]
 print "get_len_overall_state:: hosts and services business problems", h_states, s_states
 # Just return the number of impacting elements
 return len(h_states) + len(s_states)

 # Return a tree of {'elt': Host, 'fathers': [{}, {}]}

[docs] def get_business_parents(self, obj, levels=3):
 res = {'node': obj, 'fathers': []}
 ## if levels == 0:
 ## return res

 for i in obj.parent_dependencies:
 # We want to get the levels deep for all elements, but
 # go as far as we should for bad elements
 if levels != 0 or i.state_id != 0:
 par_elts = self.get_business_parents(i, levels=levels - 1)
 res['fathers'].append(par_elts)

 print "get_business_parents::Give elements", res
 return res

 # Ok, we do not have true root problems, but we can try to guess isn't it?
 # We can just guess for services with the same services of this host in fact

[docs] def guess_root_problems(self, obj):
 if obj.__class__.my_type != 'service':
 return []
 r = [s for s in obj.host.services if s.state_id != 0 and s != obj]
 return r

datamgr = DataManager()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/load.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.load

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
import math

From advanced load average's code (another of my projects :))
#def calc_load_load(load, exp,n):
load = n + exp*(load - n)
return (load, exp)

[docs]class Load:
 """This class is for having a easy Load calculation
 without having to send value at regular interval
 (but it's more efficient if you do this :)) and without
 having a list or other stuff. It's just an object, an update and a get
 You can define m: the average for m minutes. The val is
 the initial value. It's better if it's 0 but you can choose.

 """

 def __init__(self, m=1, initial_value=0):
 self.exp = 0 # first exp
 self.m = m # Number of minute of the avg
 self.last_update = 0 # last update of the value
 self.val = initial_value # first value

 #
[docs] def update_load(self, new_val, forced_interval=None):
 # The first call do not change the value, just tag
 # the beginning of last_update
 # IF we force : bail out all time thing
 if not forced_interval and self.last_update == 0:
 self.last_update = time.time()
 return
 now = time.time()
 try:
 if forced_interval:
 diff = forced_interval
 else:
 diff = now - self.last_update
 self.exp = 1 / math.exp(diff / (self.m * 60.0))
 self.val = new_val + self.exp * (self.val - new_val)
 self.last_update = now
 except OverflowError: # if the time change without notice, we overflow :(
 pass
 except ZeroDivisionError: # do not care
 pass

[docs] def get_load(self):
 return self.val

if __name__ == '__main__':
 l = Load()
 t = time.time()
 for i in xrange(1, 300):
 l.update_load(1)
 print '[', int(time.time() - t), ']', l.get_load(), l.exp
 time.sleep(5)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/util.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.util

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time
import re
import copy
import sys
import shutil
import os
try:
 from ClusterShell.NodeSet import NodeSet, NodeSetParseRangeError
except ImportError:
 NodeSet = None

from shinken.macroresolver import MacroResolver
from shinken.log import logger

#from memoized import memoized
try:
 stdout_encoding = sys.stdout.encoding
 safe_stdout = (stdout_encoding == 'UTF-8')
except Exception, exp:
 logger.error('Encoding detection error= %s' % (exp))
 safe_stdout = False

########### Strings #############
Try to print strings, but if there is an utf8 error, go in simple ascii mode
(Like if the terminal do not have en_US.UTF8 as LANG for example)
[docs]def safe_print(*args):
 l = []
 for e in args:
 # If we got an str, go in unicode, and if we cannot print
 # utf8, go in ascii mode
 if isinstance(e, str):
 if safe_stdout:
 s = unicode(e, 'utf8', errors='ignore')
 else:
 s = e.decode('ascii', 'replace').encode('ascii', 'replace').decode('ascii', 'replace')
 l.append(s)
 # Same for unicode, but skip the unicode pass
 elif isinstance(e, unicode):
 if safe_stdout:
 s = e
 else:
 s = e.encode('ascii', 'replace')
 l.append(s)
 # Other types can be directly convert in unicode
 else:
 l.append(unicode(e))
 # Ok, now print it :)
 print u' '.join(l)

################################### TIME ##################################
@memoized

[docs]def get_end_of_day(year, month_id, day):
 end_time = (year, month_id, day, 23, 59, 59, 0, 0, -1)
 end_time_epoch = time.mktime(end_time)
 return end_time_epoch

@memoized

[docs]def print_date(t):
 return time.asctime(time.localtime(t))

@memoized

[docs]def get_day(t):
 return int(t - get_sec_from_morning(t))

Same but for week day

[docs]def get_wday(t):
 t_lt = time.localtime(t)
 return t_lt.tm_wday

@memoized

[docs]def get_sec_from_morning(t):
 t_lt = time.localtime(t)
 h = t_lt.tm_hour
 m = t_lt.tm_min
 s = t_lt.tm_sec
 return h * 3600 + m * 60 + s

@memoized

[docs]def get_start_of_day(year, month_id, day):
 start_time = (year, month_id, day, 00, 00, 00, 0, 0, -1)
 try:
 start_time_epoch = time.mktime(start_time)
 except OverflowError:
 # Windows mktime sometimes crashes on (1970, 1, 1, ...)
 start_time_epoch = 0.0

 return start_time_epoch

change a time in seconds like 3600 into a format: 0d 1h 0m 0s

[docs]def format_t_into_dhms_format(t):
 s = t
 m, s = divmod(s, 60)
 h, m = divmod(m, 60)
 d, h = divmod(h, 24)
 return '%sd %sh %sm %ss' % (d, h, m, s)

################################# Pythonization ###########################
first change to float so manage for example 25.0 to 25

[docs]def to_int(val):
 return int(float(val))

[docs]def to_float(val):
 return float(val)

[docs]def to_char(val):
 return val[0]

[docs]def to_split(val):
 val = val.split(',')
 if val == ['']:
 val = []
 return val

[docs]def to_best_int_float(val):
 i = int(float(val))
 f = float(val)
 # If the f is a .0 value,
 # best match is int
 if i == f:
 return i
 return f

bool('0') = true, so...

[docs]def to_bool(val):
 if val == '1' or val == 'on' or val == 'true' or val == 'True':
 return True
 else:
 return False

[docs]def from_bool_to_string(b):
 if b:
 return '1'
 else:
 return '0'

[docs]def from_bool_to_int(b):
 if b:
 return 1
 else:
 return 0

[docs]def from_list_to_split(val):
 val = ','.join(['%s' % v for v in val])
 return val

[docs]def from_float_to_int(val):
 val = int(val)
 return val

Functions for brok_transformations
They take 2 parameters: ref, and a value
ref is the item like a service, and value
if the value to preprocess

Just a string list of all names, with ,

[docs]def to_list_string_of_names(ref, tab):
 return ",".join([e.get_name() for e in tab])

Just a list of names

[docs]def to_list_of_names(ref, tab):
 return [e.get_name() for e in tab]

This will give a string if the value exists
or '' if not

[docs]def to_name_if_possible(ref, value):
 if value:
 return value.get_name()
 return ''

take a list of hosts and return a list
of all host_names

[docs]def to_hostnames_list(ref, tab):
 r = []
 for h in tab:
 if hasattr(h, 'host_name'):
 r.append(h.host_name)
 return r

Will create a dict with 2 lists:
*services: all services of the tab
*hosts: all hosts of the tab

[docs]def to_svc_hst_distinct_lists(ref, tab):
 r = {'hosts': [], 'services': []}
 for e in tab:
 cls = e.__class__
 if cls.my_type == 'service':
 name = e.get_dbg_name()
 r['services'].append(name)
 else:
 name = e.get_dbg_name()
 r['hosts'].append(name)
 return r

Will expand the value with macros from the
host/service ref before brok it

[docs]def expand_with_macros(ref, value):
 return MacroResolver().resolve_simple_macros_in_string(value, ref.get_data_for_checks())

Just get the string name of the object
(like for realm)

[docs]def get_obj_name(obj):
 # Maybe we do not have a real object but already a string. If so
 # return the string
 if isinstance(obj, basestring):
 return obj
 return obj.get_name()

Same as before, but call with object,prop instead of just value
But if we got an attribute error, return ''

[docs]def get_obj_name_two_args_and_void(obj, value):
 try:
 return value.get_name()
 except AttributeError:
 return ''

Get the full name if there is one

[docs]def get_obj_full_name(obj):
 try:
 return obj.get_full_name()
 except Exception:
 return obj.get_name()

return the list of keys of the custom dict
but without the _ before

[docs]def get_customs_keys(d):
 return [k[1:] for k in d.keys()]

return the values of the dict

[docs]def get_customs_values(d):
 return d.values()

###################### Sorting ################

[docs]def scheduler_no_spare_first(x, y):
 if x.spare and not y.spare:
 return 1
 elif x.spare and y.spare:
 return 0
 else:
 return -1

#-1 is x first, 0 equal, 1 is y first

[docs]def alive_then_spare_then_deads(x, y):
 # First are alive
 if x.alive and not y.alive:
 return -1
 if y.alive and not x.alive:
 return 0
 # if not alive both, I really don't care...
 if not x.alive and not y.alive:
 return -1
 # Ok, both are alive... now spare after no spare
 if not x.spare:
 return -1
 # x is a spare, so y must be before, even if
 # y is a spare
 if not y.spare:
 return 1
 return 0

#-1 is x first, 0 equal, 1 is y first

[docs]def sort_by_ids(x, y):
 if x.id < y.id:
 return -1
 if x.id > y.id:
 return 1
 # So is equal
 return 0

From a tab, get the avg, min, max
for the tab values, but not the lower ones
and higher ones that are too distinct
than major ones

[docs]def nighty_five_percent(t):
 t2 = copy.copy(t)
 t2.sort()

 l = len(t)

 # If void tab, wtf??
 if l == 0:
 return (None, None, None)

 t_reduce = t2
 # only take a part if we got more
 # than 100 elements, or it's a non sense
 if l > 100:
 offset = int(l * 0.05)
 t_reduce = t_reduce[offset:-offset]

 reduce_len = len(t_reduce)
 reduce_sum = sum(t_reduce)

 reduce_avg = float(reduce_sum) / reduce_len
 reduce_max = max(t_reduce)
 reduce_min = min(t_reduce)

 return (reduce_avg, reduce_min, reduce_max)

##################### Cleaning ##############

[docs]def strip_and_uniq(tab):
 new_tab = set()
 for elt in tab:
 val = elt.strip()
 if (val != ''):
 new_tab.add(val)
 return list(new_tab)

#################### Pattern change application (mainly for host) #######

[docs]def expand_xy_pattern(pattern):
 ns = NodeSet(str(pattern))
 if len(ns) > 1:
 for elem in ns:
 for a in expand_xy_pattern(elem):
 yield a
 else:
 yield pattern

This function is used to generate all pattern change as
recursive list.
for example, for a [(1,3),(1,4),(1,5)] xy_couples,
it will generate a 60 item list with:
Rule: [1, '[1-5]', [1, '[1-4]', [1, '[1-3]', []]]]
Rule: [1, '[1-5]', [1, '[1-4]', [2, '[1-3]', []]]]
...

[docs]def got_generation_rule_pattern_change(xy_couples):
 res = []
 xy_cpl = xy_couples
 if xy_couples == []:
 return []
 (x, y) = xy_cpl[0]
 for i in xrange(x, y+1):
 n = got_generation_rule_pattern_change(xy_cpl[1:])
 if n != []:
 for e in n:
 res.append([i, '[%d-%d]' % (x, y), e])
 else:
 res.append([i, '[%d-%d]' % (x, y), []])
 return res

this function apply a recursive pattern change
generate by the got_generation_rule_pattern_change
function.
It take one entry of this list, and apply
recursively the change to s like:
s = "Unit [1-3] Port [1-4] Admin [1-5]"
rule = [1, '[1-5]', [2, '[1-4]', [3, '[1-3]', []]]]
output = Unit 3 Port 2 Admin 1

[docs]def apply_change_recursive_pattern_change(s, rule):
 #print "Try to change %s" % s, 'with', rule
 new_s = s
 (i, m, t) = rule
 #print "replace %s by %s" % (r'%s' % m, str(i)), 'in', s
 s = s.replace(r'%s' % m, str(i))
 #print "And got", s
 if t == []:
 return s
 return apply_change_recursive_pattern_change(s, t)

For service generator, get dict from a _custom properties
as _disks C$(80%!90%),D$(80%!90%)$,E$(80%!90%)$
#return {'C': '80%!90%', 'D': '80%!90%', 'E': '80%!90%'}
And if we have a key that look like [X-Y] we will expand it
into Y-X+1 keys

GET_KEY_VALUE_SEQUENCE_ERROR_NOERROR = 0
GET_KEY_VALUE_SEQUENCE_ERROR_SYNTAX = 1
GET_KEY_VALUE_SEQUENCE_ERROR_NODEFAULT = 2
GET_KEY_VALUE_SEQUENCE_ERROR_NODE = 3

[docs]def get_key_value_sequence(entry, default_value=None):
 array1 = []
 array2 = []
 conf_entry = entry

 # match a key$(value1..n)$
 keyval_pattern_txt = r"""
\s*(?P<key>[^,]+?)(?P<values>(\$\(.*?\)\$)*)(?:[,]|$)
"""
 keyval_pattern = re.compile('(?x)' + keyval_pattern_txt)
 # match a whole sequence of key$(value1..n)$
 all_keyval_pattern = re.compile('(?x)^(' + keyval_pattern_txt + ')+$')
 # match a single value
 value_pattern = re.compile('(?:\$\((?P<val>.*?)\)\$)')
 # match a sequence of values
 all_value_pattern = re.compile('^(?:\$\(.*?\)\$)+$')

 if all_keyval_pattern.match(conf_entry):
 for mat in re.finditer(keyval_pattern, conf_entry):
 r = {'KEY': mat.group('key')}
 # The key is in mat.group('key')
 # If there are also value(s)...
 if mat.group('values'):
 if all_value_pattern.match(mat.group('values')):
 # If there are multiple values, loop over them
 valnum = 1
 for val in re.finditer(value_pattern, mat.group('values')):
 r['VALUE' + str(valnum)] = val.group('val')
 valnum += 1
 else:
 # Value syntax error
 return (None, GET_KEY_VALUE_SEQUENCE_ERROR_SYNTAX)
 else:
 r['VALUE1'] = None
 array1.append(r)
 else:
 # Something is wrong with the values. (Maybe unbalanced '$(')
 # TODO: count opening and closing brackets in the pattern
 return (None, GET_KEY_VALUE_SEQUENCE_ERROR_SYNTAX)

 # now fill the empty values with the default value
 for r in array1:
 if r['VALUE1'] is None:
 if default_value is None:
 return (None, GET_KEY_VALUE_SEQUENCE_ERROR_NODEFAULT)
 else:
 r['VALUE1'] = default_value
 r['VALUE'] = r['VALUE1']

 # Now create new one but for [X-Y] matchs
 # array1 holds the original entries. Some of the keys may contain wildcards
 # array2 is filled with originals and inflated wildcards

 if NodeSet is None:
 # The pattern that will say if we have a [X-Y] key.
 pat = re.compile('\[(\d*)-(\d*)\]')

 for r in array1:

 key = r['KEY']
 orig_key = r['KEY']

 # We have no choice, we cannot use NodeSet, so we use the
 # simple regexp
 if NodeSet is None:
 m = pat.search(key)
 got_xy = (m is not None)
 else: # Try to look with a nodeset check directly
 try:
 ns = NodeSet(str(key))
 # If we have more than 1 element, we have a xy thing
 got_xy = (len(ns) != 1)
 except NodeSetParseRangeError:
 return (None, GET_KEY_VALUE_SEQUENCE_ERROR_NODE)
 pass # go in the next key

 # Now we've got our couples of X-Y. If no void,
 # we were with a "key generator"

 if got_xy:
 # Ok 2 cases: we have the NodeSet lib or not.
 # if not, we use the dumb algo (quick, but manage less
 # cases like /N or , in patterns)
 if NodeSet is None: # us the old algo
 still_loop = True
 xy_couples = [] # will get all X-Y couples
 while still_loop:
 m = pat.search(key)
 if m is not None: # we've find one X-Y
 (x, y) = m.groups()
 (x, y) = (int(x), int(y))
 xy_couples.append((x, y))
 # We must search if we've gotother X-Y, so
 # we delete this one, and loop
 key = key.replace('[%d-%d]' % (x, y), 'Z'*10)
 else: # no more X-Y in it
 still_loop = False

 # Now we have our xy_couples, we can manage them

 # We search all pattern change rules
 rules = got_generation_rule_pattern_change(xy_couples)

 # Then we apply them all to get ours final keys
 for rule in rules:
 res = apply_change_recursive_pattern_change(orig_key, rule)
 new_r = {}
 for key in r:
 new_r[key] = r[key]
 new_r['KEY'] = res
 array2.append(new_r)

 else:
 # The key was just a generator, we can remove it
 # keys_to_del.append(orig_key)

 # We search all pattern change rules
 #rules = got_generation_rule_pattern_change(xy_couples)
 nodes_set = expand_xy_pattern(orig_key)
 new_keys = list(nodes_set)

 # Then we apply them all to get ours final keys
 for new_key in new_keys:
 #res = apply_change_recursive_pattern_change(orig_key, rule)
 new_r = {}
 for key in r:
 new_r[key] = r[key]
 new_r['KEY'] = new_key
 array2.append(new_r)
 else:
 # There were no wildcards
 array2.append(r)
 #t1 = time.time()
 #print "***********Diff", t1 -t0

 return (array2, GET_KEY_VALUE_SEQUENCE_ERROR_NOERROR)

############################### Files management #######################
We got a file like /tmp/toto/toto2/bob.png And we want to be sure the dir
/tmp/toto/toto2/ will really exists so we can copy it. Try to make if if need
and return True/False if succeed

[docs]def expect_file_dirs(root, path):
 dirs = os.path.normpath(path).split('/')
 dirs = [d for d in dirs if d != '']
 # We will create all directory until the last one
 # so we are doing a mkdir -p
 # TODO: and windows????
 tmp_dir = root
 for d in dirs:
 _d = os.path.join(tmp_dir, d)
 logger.info ('Verify the existence of file %s' % (_d))
 if not os.path.exists(_d):
 try:
 os.mkdir(_d)
 except:
 return False
 tmp_dir = _d
 return True

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/memoized.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.memoized

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class memoized(object):
 """Decorator that caches a function's return value each time it is called.
 If called later with the same arguments, the cached value is returned, and
 not re-evaluated.

 """

 def __init__(self, func):
 self.func = func
 self.cache = {}

 def __call__(self, *args):
 try:
 return self.cache[args]
 except KeyError:
 self.cache[args] = value = self.func(*args)
 return value
 except TypeError:
 # uncatchable -- for instance, passing a list as an argument.
 # Better to not catch it than to blow up entirely.
 return self.func(*args)

 # Return the function's docstring.
 def __repr__(self):
 return self.func.__doc__

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/comment.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.comment

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import time

""" TODO: Add some comment about this class for the doc"""
[docs]class Comment:
 id = 1

 properties = {
 'entry_time': None,
 'persistent': None,
 'author': None,
 'comment': None,
 'comment_type': None,
 'entry_type': None,
 'source': None,
 'expires': None,
 'expire_time': None,
 'can_be_deleted': None,

 # TODO: find a very good way to handle the downtime "ref".
 # ref must effectively not be in properties because it points
 # onto a real object.
 #'ref': None
 }

 # Adds a comment to a particular service. If the "persistent" field
 # is set to zero (0), the comment will be deleted the next time
 # Shinken is restarted. Otherwise, the comment will persist
 # across program restarts until it is deleted manually.
 def __init__(self, ref, persistent, author, comment, comment_type, entry_type, source, expires, expire_time):
 self.id = self.__class__.id
 self.__class__.id += 1
 self.ref = ref # pointer to srv or host we are apply
 self.entry_time = int(time.time())
 self.persistent = persistent
 self.author = author
 self.comment = comment
 # Now the hidden attributes
 # HOST_COMMENT=1,SERVICE_COMMENT=2
 self.comment_type = comment_type
 # USER_COMMENT=1,DOWNTIME_COMMENT=2,FLAPPING_COMMENT=3,ACKNOWLEDGEMENT_COMMENT=4
 self.entry_type = entry_type
 # COMMENTSOURCE_INTERNAL=0,COMMENTSOURCE_EXTERNAL=1
 self.source = source
 self.expires = expires
 self.expire_time = expire_time
 self.can_be_deleted = False

 def __str__(self):
 return "Comment id=%d %s" % (self.id, self.comment)

 # Call by pickle for dataify the ackn
 # because we DO NOT WANT REF in this pickleisation!
 def __getstate__(self):
 cls = self.__class__
 # id is not in *_properties
 res = {'id': self.id}
 for prop in cls.properties:
 if hasattr(self, prop):
 res[prop] = getattr(self, prop)
 return res

 # Inverted function of getstate
 def __setstate__(self, state):
 cls = self.__class__

 # Maybe it's not a dict but a list like in the old 0.4 format
 # so we should call the 0.4 function for it
 if isinstance(state, list):
 self.__setstate_deprecated__(state)
 return

 self.id = state['id']
 for prop in cls.properties:
 if prop in state:
 setattr(self, prop, state[prop])

 # to prevent from duplicating id in comments:
 if self.id >= cls.id:
 cls.id = self.id + 1

 # This function is DEPRECATED and will be removed in a future version of
 # Shinken. It should not be useful any more after a first load/save pass.
 # Inverted function of getstate
 def __setstate_deprecated__(self, state):
 cls = self.__class__
 # Check if the len of this state is like the previous,
 # if not, we will do errors!
 # -1 because of the 'id' prop
 if len(cls.properties) != (len(state) - 1):
 self.debug("Passing comment")
 return

 self.id = state.pop()
 for prop in cls.properties:
 val = state.pop()
 setattr(self, prop, val)
 if self.id >= cls.id:
 cls.id = self.id + 1

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/db_sqlite.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.db_sqlite

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

from db import DB
from shinken.log import logger
import sqlite3

[docs]class DBSqlite(DB):
 """DBSqlite is a sqlite access database class"""

 def __init__(self, db_path, table_prefix=''):
 self.table_prefix = table_prefix
 self.db_path = db_path

[docs] def connect_database(self):
 """Create the database connection"""
 self.db = sqlite3.connect(self.db_path)
 self.db_cursor = self.db.cursor()

[docs] def execute_query(self, query):
 """Just run the query"""
 logger.debug("[SqliteDB] Info: I run query '%s'" % query)
 self.db_cursor.execute(query)
 self.db.commit()

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/dispatcher.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.dispatcher

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

"""
 This is the class of the dispatcher. Its role is to dispatch
 configurations to other elements like schedulers, reactionner,
 pollers, receivers and brokers. It is responsible for high availability part. If an
 element dies and the element type has a spare, it sends the config of the
 dead one to the spare
"""

import time
import random
import itertools

from shinken.util import alive_then_spare_then_deads
from shinken.log import logger

Always initialize random :)
random.seed()

Dispatcher Class
[docs]class Dispatcher:

 # Load all elements, set them as not assigned
 # and add them to elements, so loop will be easier :)
 def __init__(self, conf, arbiter):
 self.arbiter = arbiter
 # Pointer to the whole conf
 self.conf = conf
 self.realms = conf.realms
 # Direct pointer to important elements for us

 for sat_type in ('arbiters', 'schedulers', 'reactionners', 'brokers', 'receivers', 'pollers'):
 setattr(self, sat_type, getattr(self.conf, sat_type))

 # for each satellite, we look if current arbiter have a specific satellitemap value setted for this satellite
 # if so, we give this map to the satellite (used to build satellite URI later)
 if arbiter is None:
 continue

 key = sat_type[:-1] + '_name' # i.e: schedulers -> scheduler_name
 for satellite in getattr(self, sat_type):
 sat_name = getattr(satellite, key)
 satellite.set_arbiter_satellitemap(arbiter.satellitemap.get(sat_name, {}))

 self.dispatch_queue = {'schedulers': [], 'reactionners': [],
 'brokers': [], 'pollers': [], 'receivers': []}
 self.elements = [] # all elements, sched and satellites
 self.satellites = [] # only satellites not schedulers

 for cfg in self.conf.confs.values():
 cfg.is_assigned = False
 cfg.assigned_to = None
 # We try to remember each "push", so we
 # can know with configuration ids+flavor
 # if a satellite already got it or not :)
 cfg.push_flavor = 0

 # Add satellites in the good lists
 self.elements.extend(self.schedulers)

 # Others are in 2 lists
 self.elements.extend(self.reactionners)
 self.satellites.extend(self.reactionners)
 self.elements.extend(self.pollers)
 self.satellites.extend(self.pollers)
 self.elements.extend(self.brokers)
 self.satellites.extend(self.brokers)
 self.elements.extend(self.receivers)
 self.satellites.extend(self.receivers)

 # Some flag about dispatch need or not
 self.dispatch_ok = False
 self.first_dispatch_done = False

 # Prepare the satellites confs
 for satellite in self.satellites:
 satellite.prepare_for_conf()

 # Some properties must be given to satellites from global
 # configuration, like the max_plugins_output_length to pollers
 parameters = {'max_plugins_output_length': self.conf.max_plugins_output_length}
 for poller in self.pollers:
 poller.add_global_conf_parameters(parameters)

 # Reset need_conf for all schedulers.
 for s in self.schedulers:
 s.need_conf = True
 # Same for receivers
 for rec in self.receivers:
 rec.need_conf = True

 # checks alive elements
[docs] def check_alive(self):
 for elt in self.elements:
 #print "Updating elements", elt.get_name(), elt.__dict__
 elt.update_infos()

 # Not alive needs new need_conf
 # and spare too if they do not have already a conf
 # REF: doc/shinken-scheduler-lost.png (1)
 if not elt.alive or hasattr(elt, 'conf') and elt.conf is None:
 elt.need_conf = True

 for arb in self.arbiters:
 # If not me, but not the master too
 if arb != self.arbiter and arb.spare:
 arb.update_infos()
 #print "Arb", arb.get_name(), "alive?", arb.alive, arb.__dict__

 # Check if all active items are still alive
 # the result goes into self.dispatch_ok
 # TODO: finish need conf

[docs] def check_dispatch(self):
 # Check if the other arbiter has a conf, but only if I am a master
 for arb in self.arbiters:
 # If not me and I'm a master
 if arb != self.arbiter and self.arbiter and not self.arbiter.spare:
 if not arb.have_conf(self.conf.magic_hash):
 if not hasattr(self.conf, 'whole_conf_pack'):
 logger.error('CRITICAL: the arbiter try to send a configureion but it is not a MASTER one?? Look at your configuration.')
 continue
 arb.put_conf(self.conf.whole_conf_pack)
 else:
 # Ok, it already has the conf. I remember that
 # it does not have to run, I'm still alive!
 arb.do_not_run()

 # We check for confs to be dispatched on alive scheds. If not dispatched, need dispatch :)
 # and if dispatch on a failed node, remove the association, and need a new dispatch
 for r in self.realms:
 for cfg_id in r.confs:
 push_flavor = r.confs[cfg_id].push_flavor
 sched = r.confs[cfg_id].assigned_to
 if sched is None:
 if self.first_dispatch_done:
 logger.info("Scheduler configuration %d is unmanaged!!" % cfg_id)
 self.dispatch_ok = False
 else:
 if not sched.alive:
 self.dispatch_ok = False # so we ask a new dispatching
 logger.warning("Scheduler %s had the configuration %d but is dead, I am not happy." % (sched.get_name(), cfg_id))
 sched.conf.assigned_to = None
 sched.conf.is_assigned = False
 sched.conf.push_flavor = 0
 sched.push_flavor = 0
 sched.conf = None
 # Maybe the scheduler restarts, so is alive but without the conf we think it was managing
 # so ask it what it is really managing, and if not, put the conf unassigned
 if not sched.do_i_manage(cfg_id, push_flavor):
 self.dispatch_ok = False # so we ask a new dispatching
 logger.warning("Scheduler %s did not managed its configuration %d,I am not happy." % (sched.get_name(), cfg_id))
 if sched.conf:
 sched.conf.assigned_to = None
 sched.conf.is_assigned = False
 sched.conf.push_flavor = 0
 sched.push_flavor = 0
 sched.need_conf = True
 sched.conf = None
 # Else: ok the conf is managed by a living scheduler

 # Maybe satellites are alive, but do not have a cfg yet.
 # I think so. It is not good. I ask a global redispatch for
 # the cfg_id I think is not correctly dispatched.
 for r in self.realms:
 for cfg_id in r.confs:
 push_flavor = r.confs[cfg_id].push_flavor
 try:
 for kind in ('reactionner', 'poller', 'broker', 'receiver'):
 # We must have the good number of satellite or we are not happy
 # So we are sure to raise a dispatch every loop a satellite is missing
 if len(r.to_satellites_managed_by[kind][cfg_id]) < r.get_nb_of_must_have_satellites(kind):
 logger.warning("Missing satellite %s for configuration %d:" % (kind, cfg_id))

 # TODO: less violent! Must only resent to who need?
 # must be caught by satellite who sees that it already has the conf (hash)
 # and do nothing
 self.dispatch_ok = False # so we will redispatch all
 r.to_satellites_need_dispatch[kind][cfg_id] = True
 r.to_satellites_managed_by[kind][cfg_id] = []
 for satellite in r.to_satellites_managed_by[kind][cfg_id]:
 # Maybe the sat was marked as not alive, but still in
 # to_satellites_managed_by. That means that a new dispatch
 # is needed
 # Or maybe it is alive but I thought that this reactionner managed the conf
 # and it doesn't. I ask a full redispatch of these cfg for both cases

 # DBG:
 #print "What I manage", satellite.get_name(), satellite.what_i_managed()
 #try:
 # satellite.reachable and cfg_id not in satellite.what_i_managed()
 #except TypeError, exp:
 # print "DBG: ERROR: (%s) for satellite %s" % (exp, satellite.__dict__)
 # satellite.reachable = False

 #wim = satellite.managed_confs # what_i_managed()
 #print "%s [%s]Look at what manage the %s %s (alive? %s, reachable? %s): %s (look for %s)" % (int(time.time()), r.get_name(), kind, satellite.get_name(), satellite.alive, satellite.reachable, wim, cfg_id)
 #print satellite.alive, satellite.reachable, satellite.do_i_manage(cfg_id, push_flavor)
 if not satellite.alive or (satellite.reachable and not satellite.do_i_manage(cfg_id, push_flavor)):
 logger.warning('[%s] The %s %s seems to be down, I must re-dispatch its role to someone else.' % (r.get_name(), kind, satellite.get_name()))
 self.dispatch_ok = False # so we will redispatch all
 r.to_satellites_need_dispatch[kind][cfg_id] = True
 r.to_satellites_managed_by[kind][cfg_id] = []
 # At the first pass, there is no cfg_id in to_satellites_managed_by
 except KeyError:
 pass

 # Look for receivers. If they got conf, it's ok, if not, need a simple
 # conf
 for r in self.realms:
 for rec in r.receivers:
 # If the receiver does not have a conf, must got one :)
 if rec.reachable and not rec.got_conf():
 self.dispatch_ok = False # so we will redispatch all
 rec.need_conf = True

 # Imagine a world where... oh no, wait...
 # Imagine a master got the conf and the network is down
 # a spare takes it (good :)). Like the Empire, the master
 # strikes back! It was still alive! (like Elvis). It still got conf
 # and is running! not good!
 # Bad dispatch: a link that has a conf but I do not allow this
 # so I ask it to wait a new conf and stop kidding.

[docs] def check_bad_dispatch(self):
 for elt in self.elements:
 if hasattr(elt, 'conf'):
 # If element has a conf, I do not care, it's a good dispatch
 # If dead: I do not ask it something, it won't respond..
 if elt.conf is None and elt.reachable:
 # print "Ask", elt.get_name() , 'if it got conf'
 if elt.have_conf():
 logger.warning("The element %s have a conf and should not have one! I ask it to idle now" % elt.get_name())
 elt.active = False
 elt.wait_new_conf()
 # I do not care about order not send or not. If not,
 # The next loop will resent it
 # else:
 # print "No conf"

 # I ask satellites which sched_id they manage. If I do not agree, I ask
 # them to remove it
 for satellite in self.satellites:
 kind = satellite.get_my_type()
 if satellite.reachable:
 cfg_ids = satellite.managed_confs # what_i_managed()
 # I do not care about satellites that do nothing, they already
 # do what I want :)
 if len(cfg_ids) != 0:
 id_to_delete = []
 for cfg_id in cfg_ids:
 # DBG print kind, ":", satellite.get_name(), "manage cfg id:", cfg_id
 # Ok, we search for realms that have the conf
 for r in self.realms:
 if cfg_id in r.confs:
 # Ok we've got the realm, we check its to_satellites_managed_by
 # to see if reactionner is in. If not, we remove he sched_id for it
 if not satellite in r.to_satellites_managed_by[kind][cfg_id]:
 id_to_delete.append(cfg_id)
 # Maybe we removed all cfg_id of this reactionner
 # We can put it idle, no active and wait_new_conf
 if len(id_to_delete) == len(cfg_ids):
 satellite.active = False
 logger.info("I ask %s to wait a new conf" % satellite.get_name())
 satellite.wait_new_conf()
 else:
 # It is not fully idle, just less cfg
 for id in id_to_delete:
 logger.info("I ask to remove configuration N%d from %s" % (id, satellite.get_name()))
 satellite.remove_from_conf(id)

 # Make an ORDERED list of schedulers so we can
 # send them conf in this order for a specific realm

[docs] def get_scheduler_ordered_list(self, r):
 # get scheds, alive and no spare first
 scheds = []
 for s in r.schedulers:
 scheds.append(s)

 # now the spare scheds of higher realms
 # they are after the sched of realm, so
 # they will be used after the spare of
 # the realm
 for higher_r in r.higher_realms:
 for s in higher_r.schedulers:
 if s.spare:
 scheds.append(s)

 # Now we sort the scheds so we take master, then spare
 # the dead, but we do not care about them
 scheds.sort(alive_then_spare_then_deads)
 scheds.reverse() # pop is last, I need first

 print_sched = [s.get_name() for s in scheds]
 print_sched.reverse()

 return scheds

 # Manage the dispatch
 # REF: doc/shinken-conf-dispatching.png (3)

[docs] def dispatch(self):
 # Ok, we pass at least one time in dispatch, so now errors are True errors
 self.first_dispatch_done = True

 # If no needed to dispatch, do not dispatch :)
 if not self.dispatch_ok:
 for r in self.realms:
 conf_to_dispatch = [cfg for cfg in r.confs.values() if not cfg.is_assigned]
 nb_conf = len(conf_to_dispatch)
 if nb_conf > 0:
 logger.info("Dispatching Realm %s" % r.get_name())
 logger.info('[%s] Dispatching %d/%d configurations' % (r.get_name(), nb_conf, len(r.confs)))

 # Now we get in scheds all scheduler of this realm and upper so
 # we will send them conf (in this order)
 scheds = self.get_scheduler_ordered_list(r)

 if nb_conf > 0:
 print_string = '[%s] Schedulers order: %s' % (r.get_name(), ','.join([s.get_name() for s in scheds]))
 logger.info(print_string)

 # Try to send only for alive members
 scheds = [s for s in scheds if s.alive]

 # Now we do the real job
 # every_one_need_conf = False
 for conf in conf_to_dispatch:
 logger.info('[%s] Dispatching configuration %s' % (r.get_name(), conf.id))

 # If there is no alive schedulers, not good...
 if len(scheds) == 0:
 logger.info('[%s] but there a no alive schedulers in this realm!' % r.get_name())

 # we need to loop until the conf is assigned
 # or when there are no more schedulers available
 while True:
 try:
 sched = scheds.pop()
 except IndexError: # No more schedulers.. not good, no loop
 # need_loop = False
 # The conf does not need to be dispatch
 cfg_id = conf.id
 for kind in ('reactionner', 'poller', 'broker', 'receiver'):
 r.to_satellites[kind][cfg_id] = None
 r.to_satellites_need_dispatch[kind][cfg_id] = False
 r.to_satellites_managed_by[kind][cfg_id] = []
 break

 logger.info('[%s] Trying to send conf %d to scheduler %s' % (r.get_name(), conf.id, sched.get_name()))
 if not sched.need_conf:
 logger.info('[%s] The scheduler %s do not need conf, sorry' % (r.get_name(), sched.get_name()))
 continue

 # We tag conf with the instance_name = scheduler_name
 instance_name = sched.scheduler_name
 # We give this configuration a new 'flavor'
 conf.push_flavor = random.randint(1, 1000000)
 # REF: doc/shinken-conf-dispatching.png (3)
 # REF: doc/shinken-scheduler-lost.png (2)
 override_conf = sched.get_override_configuration()
 satellites_for_sched = r.get_satellites_links_for_scheduler()
 s_conf = r.serialized_confs[conf.id]
 # Prepare the conf before sending it
 conf_package = {'conf': s_conf, 'override_conf': override_conf,
 'modules': sched.modules, 'satellites': satellites_for_sched,
 'instance_name': sched.scheduler_name, 'push_flavor': conf.push_flavor,
 'skip_initial_broks': sched.skip_initial_broks,
 }

 t1 = time.time()
 is_sent = sched.put_conf(conf_package)
 logger.debug("Conf is sent in %d" % (time.time() - t1))
 if not is_sent:
 logger.warning('[%s] configuration dispatching error for scheduler %s' % (r.get_name(), sched.get_name()))
 continue

 logger.info('[%s] Dispatch OK of conf in scheduler %s' % (r.get_name(), sched.get_name()))

 sched.conf = conf
 sched.push_flavor = conf.push_flavor
 sched.need_conf = False
 conf.is_assigned = True
 conf.assigned_to = sched

 # We update all data for this scheduler
 sched.managed_confs = {conf.id: conf.push_flavor}

 # Now we generate the conf for satellites:
 cfg_id = conf.id
 for kind in ('reactionner', 'poller', 'broker', 'receiver'):
 r.to_satellites[kind][cfg_id] = sched.give_satellite_cfg()
 r.to_satellites_need_dispatch[kind][cfg_id] = True
 r.to_satellites_managed_by[kind][cfg_id] = []

 # Ok, the conf is dispatched, no more loop for this
 # configuration
 break

 # We pop conf to dispatch, so it must be no more conf...
 conf_to_dispatch = [cfg for cfg in self.conf.confs.values() if not cfg.is_assigned]
 nb_missed = len(conf_to_dispatch)
 if nb_missed > 0:
 logger.warning("All schedulers configurations are not dispatched, %d are missing" % nb_missed)
 else:
 logger.info("OK, all schedulers configurations are dispatched :)")
 self.dispatch_ok = True

 # Sched without conf in a dispatch ok are set to no need_conf
 # so they do not raise dispatch where no use
 if self.dispatch_ok:
 for sched in self.schedulers.items.values():
 if sched.conf is None:
 # print "Tagging sched", sched.get_name(), "so it do not ask anymore for conf"
 sched.need_conf = False

 arbiters_cfg = {}
 for arb in self.arbiters:
 arbiters_cfg[arb.id] = arb.give_satellite_cfg()

 # We put the satellites conf with the "new" way so they see only what we want
 for r in self.realms:
 for cfg in r.confs.values():
 cfg_id = cfg.id
 # flavor if the push number of this configuration send to a scheduler
 flavor = cfg.push_flavor
 for kind in ('reactionner', 'poller', 'broker', 'receiver'):
 if r.to_satellites_need_dispatch[kind][cfg_id]:
 cfg_for_satellite_part = r.to_satellites[kind][cfg_id]

 # make copies of potential_react list for sort
 satellites = []
 for satellite in r.get_potential_satellites_by_type(kind):
 satellites.append(satellite)
 satellites.sort(alive_then_spare_then_deads)

 # Only keep alive Satellites and reachable ones
 satellites = [s for s in satellites if s.alive and s.reachable]

 # If we got a broker, we make the list to pop a new
 # item first for each scheduler, so it will smooth the load
 # But the spare must stay at the end ;)
 # WARNING : skip this if we are in a complet broker link realm
 if kind == "broker" and not r.broker_complete_links:
 nospare = [s for s in satellites if not s.spare]
 # Should look over the list, not over
 if len(nospare) != 0:
 idx = cfg_id % len(nospare)
 #print "No spare", nospare
 spares = [s for s in satellites if s.spare]
 #print "Spare", spares
 #print "Got 1", nospare[idx:]
 #print "Got 2", nospare[:-idx+1]
 new_satellites = nospare[idx:]
 for _b in nospare[:-idx+1]:
 if _b not in new_satellites:
 new_satellites.append(_b)
 #new_satellites.extend(nospare[:-idx+1])
 #print "New satellites", cfg_id, new_satellites
 #for s in new_satellites:
 # print "New satellites", cfg_id, s.get_name()
 satellites = new_satellites
 satellites.extend(spares)

 # Dump the order where we will send conf
 satellite_string = "[%s] Dispatching %s satellite with order: " % (r.get_name(), kind)
 for satellite in satellites:
 satellite_string += '%s (spare:%s), ' % (satellite.get_name(), str(satellite.spare))
 logger.info(satellite_string)

 # Now we dispatch cfg to every one ask for it
 nb_cfg_sent = 0
 for satellite in satellites:
 # Send only if we need, and if we can
 if nb_cfg_sent < r.get_nb_of_must_have_satellites(kind) and satellite.alive:
 satellite.cfg['schedulers'][cfg_id] = cfg_for_satellite_part
 if satellite.manage_arbiters:
 satellite.cfg['arbiters'] = arbiters_cfg

 # Brokers should have poller/reactionners links too
 if kind == "broker":
 r.fill_broker_with_poller_reactionner_links(satellite)

 is_sent = False
 # Maybe this satellite already got this configuration, so skip it
 if satellite.do_i_manage(cfg_id, flavor):
 logger.info('[%s] Skipping configuration %d send to the %s %s: it already got it' % (r.get_name(), cfg_id, kind, satellite.get_name()))
 is_sent = True
 else: # ok, it really need it :)
 logger.info('[%s] Trying to send configuration to %s %s' % (r.get_name(), kind, satellite.get_name()))
 is_sent = satellite.put_conf(satellite.cfg)

 if is_sent:
 satellite.active = True
 logger.info('[%s] Dispatch OK of configuration %s to %s %s' % (r.get_name(), cfg_id, kind, satellite.get_name()))
 # We change the satellite configuration, update our data
 satellite.known_conf_managed_push(cfg_id, flavor)

 nb_cfg_sent += 1
 r.to_satellites_managed_by[kind][cfg_id].append(satellite)

 # If we got a broker, the conf_id must be sent to only ONE
 # broker in a classic realm.
 if kind == "broker" and not r.broker_complete_links:
 break

 #If receiver, we must send the hostnames of this configuration
 if kind == 'receiver':
 hnames = [h.get_name() for h in cfg.hosts]
 logger.debug("[%s] Sending %s hostnames to the receiver %s" % (r.get_name(), len(hnames), satellite.get_name()))
 satellite.push_host_names(cfg_id, hnames)
 # else:
 # #I've got enough satellite, the next ones are considered spares
 if nb_cfg_sent == r.get_nb_of_must_have_satellites(kind):
 logger.info("[%s] OK, no more %s sent need" % (r.get_name(), kind))
 r.to_satellites_need_dispatch[kind][cfg_id] = False

 # And now we dispatch receivers. It's easier, they need ONE conf
 # in all their life :)
 for r in self.realms:
 for rec in r.receivers:
 if rec.need_conf:
 logger.info('[%s] Trying to send configuration to receiver %s' % (r.get_name(), rec.get_name()))
 is_sent = False
 if rec.reachable:
 is_sent = rec.put_conf(rec.cfg)
 else:
 logger.info('[%s] Skyping configuration sent to offline receiver %s' % (r.get_name(), rec.get_name()))
 if is_sent:
 rec.active = True
 rec.need_conf = False
 logger.info('[%s] Dispatch OK of configuration to receiver %s' % (r.get_name(), rec.get_name()))
 else:
 logger.error('[%s] Dispatching failed for receiver %s' % (r.get_name(), rec.get_name()))

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/modulesmanager.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.modulesmanager

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import os
import time
import sys
import traceback
import cStringIO

from shinken.basemodule import BaseModule
from shinken.log import logger

[docs]class ModulesManager(object):
 """This class is use to manage modules and call callback"""

 def __init__(self, modules_type, modules_path, modules):
 self.modules_path = modules_path
 self.modules_type = modules_type
 self.modules = modules
 self.allowed_types = [plug.module_type for plug in modules]
 self.imported_modules = []
 self.modules_assoc = []
 self.instances = []
 self.to_restart = []
 self.max_queue_size = 0
 self.manager = None

[docs] def load_manager(self, manager):
 self.manager = manager

 # Set the modules requested for this manager

[docs] def set_modules(self, modules):
 self.modules = modules
 self.allowed_types = [mod.module_type for mod in modules]

[docs] def set_max_queue_size(self, max_queue_size):
 self.max_queue_size = max_queue_size

 # Import, instanciate & "init" the modules we have been requested

[docs] def load_and_init(self):
 self.load()
 self.get_instances()

 # Try to import the requested modules ; put the imported modules in self.imported_modules.
 # The previous imported modules, if any, are cleaned before.

[docs] def load(self):
 now = int(time.time())
 # We get all modules file with .py
 modules_files = [fname[:-3] for fname in os.listdir(self.modules_path)
 if fname.endswith(".py")]

 # And directories
 modules_files.extend([fname for fname in os.listdir(self.modules_path)
 if os.path.isdir(os.path.join(self.modules_path, fname))])

 # Now we try to load them
 # So first we add their dir into the sys.path
 if not self.modules_path in sys.path:
 sys.path.append(self.modules_path)

 # We try to import them, but we keep only the one of
 # our type
 del self.imported_modules[:]
 for fname in modules_files:
 #print "Try to load", fname
 try:
 m = __import__(fname)
 if not hasattr(m, 'properties'):
 continue

 # We want to keep only the modules of our type
 if self.modules_type in m.properties['daemons']:
 self.imported_modules.append(m)
 except Exception, exp:
 logger.warning("Importing module %s: %s" % (fname, exp))

 del self.modules_assoc[:]
 for mod_conf in self.modules:
 module_type = mod_conf.module_type
 is_find = False
 for module in self.imported_modules:
 if module.properties['type'] == module_type:
 self.modules_assoc.append((mod_conf, module))
 is_find = True
 break
 if not is_find:
 # No module is suitable, we Raise a Warning
 logger.warning("The module type %s for %s was not found in modules!" % (module_type, mod_conf.get_name()))

 # Try to "init" the given module instance.
 # If late_start, don't look for last_init_try
 # Returns: True on successful init. False if instance init method raised any Exception.

[docs] def try_instance_init(self, inst, late_start=False):
 try:
 logger.info("Trying to init module: %s" % inst.get_name())
 inst.init_try += 1
 # Maybe it's a retry
 if not late_start and inst.init_try > 1:
 # Do not try until 5 sec, or it's too loopy
 if inst.last_init_try > time.time() - 5:
 return False
 inst.last_init_try = time.time()

 # If it's an external, create/update Queues()
 if inst.is_external:
 inst.create_queues(self.manager)

 inst.init()
 except Exception, e:
 logger.error("The instance %s raised an exception %s, I remove it!" % (inst.get_name(), str(e)))
 output = cStringIO.StringIO()
 traceback.print_exc(file=output)
 logger.error("Back trace of this remove: %s" % (output.getvalue()))
 output.close()
 return False
 return True

 # Request to "remove" the given instances list or all if not provided

[docs] def clear_instances(self, insts=None):
 if insts is None:
 insts = self.instances[:] # have to make a copy of the list
 for i in insts:
 self.remove_instance(i)

 # Put an instance to the restart queue

[docs] def set_to_restart(self, inst):
 self.to_restart.append(inst)

 # actually only arbiter call this method with start_external=False..
 # Create, init and then returns the list of module instances that the caller needs.
 # If an instance can't be created or init'ed then only log is done.
 # That instance is skipped. The previous modules instance(s), if any, are all cleaned.

[docs] def get_instances(self):
 self.clear_instances()
 for (mod_conf, module) in self.modules_assoc:
 try:
 mod_conf.properties = module.properties.copy()
 inst = module.get_instance(mod_conf)
 # Give the module the data to which module it is load from
 inst.set_loaded_into(self.modules_type)
 if inst is None: # None = Bad thing happened :)
 logger.info("get_instance for module %s returned None!" % (mod_conf.get_name()))
 continue
 assert(isinstance(inst, BaseModule))
 self.instances.append(inst)
 except Exception, exp:
 s = str(exp)
 if isinstance(s, str):
 s = s.decode('UTF-8', 'replace')
 logger.error("The module %s raised an exception %s, I remove it!" % (mod_conf.get_name(), s))
 output = cStringIO.StringIO()
 traceback.print_exc(file=output)
 logger.error("Back trace of this remove: %s" % (output.getvalue()))
 output.close()

 for inst in self.instances:
 # External are not init now, but only when they are started
 if not inst.is_external and not self.try_instance_init(inst):
 # If the init failed, we put in in the restart queue
 logger.warning("The module '%s' failed to init, I will try to restart it later" % inst.get_name())
 self.to_restart.append(inst)

 return self.instances

 # Launch external instances that are load correctly

[docs] def start_external_instances(self, late_start=False):
 for inst in [inst for inst in self.instances if inst.is_external]:
 # But maybe the init failed a bit, so bypass this ones from now
 if not self.try_instance_init(inst, late_start=late_start):
 logger.warning("The module '%s' failed to init, I will try to restart it later" % inst.get_name())
 self.to_restart.append(inst)
 continue

 # ok, init succeed
 logger.info("Starting external module %s" % inst.get_name())
 inst.start()

 # Request to cleanly remove the given instance.
 # If instance is external also shutdown it cleanly

[docs] def remove_instance(self, inst):

 # External instances need to be close before (process + queues)
 if inst.is_external:
 logger.debug("Ask stop process for %s" % inst.get_name())
 inst.stop_process()
 logger.debug("Stop process done")

 inst.clear_queues(self.manager)

 # Then do not listen anymore about it
 self.instances.remove(inst)

[docs] def check_alive_instances(self):
 # Only for external
 for inst in self.instances:
 if not inst in self.to_restart:
 if inst.is_external and not inst.process.is_alive():
 logger.error("The external module %s goes down unexpectedly!" % inst.get_name())
 logger.info("Setting the module %s to restart" % inst.get_name())
 # We clean its queues, they are no more useful
 inst.clear_queues(self.manager)
 self.to_restart.append(inst)
 # Ok, no need to look at queue size now
 continue

 # Now look for man queue size. If above value, the module should got a huge problem
 # and so bailout. It's not a perfect solution, more a watchdog
 # If max_queue_size is 0, don't check this
 if self.max_queue_size == 0:
 continue
 # Ok, go launch the dog!
 queue_size = 0
 try:
 queue_size = inst.to_q.qsize()
 except Exception, exp:
 pass
 if queue_size > self.max_queue_size:
 logger.error("The external module %s got a too high brok queue size (%s > %s)!" % (inst.get_name(), queue_size, self.max_queue_size))
 logger.info("Setting the module %s to restart" % inst.get_name())
 # We clean its queues, they are no more useful
 inst.clear_queues(self.manager)
 self.to_restart.append(inst)

[docs] def try_to_restart_deads(self):
 to_restart = self.to_restart[:]
 del self.to_restart[:]
 for inst in to_restart:
 logger.debug("I should try to reinit %s" % inst.get_name())

 if self.try_instance_init(inst):
 logger.debug("Good, I try to restart %s" % inst.get_name())
 # If it's an external, it will start it
 inst.start()
 # Ok it's good now :)
 else:
 self.to_restart.append(inst)

 # Do not give to others inst that got problems

[docs] def get_internal_instances(self, phase=None):
 return [inst for inst in self.instances if not inst.is_external and phase in inst.phases and inst not in self.to_restart]

[docs] def get_external_instances(self, phase=None):
 return [inst for inst in self.instances if inst.is_external and phase in inst.phases and inst not in self.to_restart]

[docs] def get_external_to_queues(self):
 return [inst.to_q for inst in self.instances if inst.is_external and inst not in self.to_restart]

[docs] def get_external_from_queues(self):
 return [inst.from_q for inst in self.instances if inst.is_external and inst not in self.to_restart]

[docs] def stop_all(self):
 # Ask internal to quit if they can
 for inst in self.get_internal_instances():
 if hasattr(inst, 'quit') and callable(inst.quit):
 inst.quit()

 self.clear_instances([inst for inst in self.instances if inst.is_external])

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/brok.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.brok

#!/usr/bin/env python
#
-*- coding: utf-8 -*-
#
Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import cPickle

[docs]class Brok:
 """A Brok is a piece of information exported by Shinken to the Broker.
 Broker can do whatever he wants with it.
 """
 __slots__ = ('__dict__', 'id', 'type', 'data', 'prepared', 'instance_id')
 id = 0
 my_type = 'brok'

 def __init__(self, type, data):
 self.type = type
 self.id = self.__class__.id
 self.__class__.id += 1
 self.data = cPickle.dumps(data, cPickle.HIGHEST_PROTOCOL)
 self.prepared = False

 def __str__(self):
 return str(self.__dict__) + '\n'

 # We unserialize the data, and if some prop were
 # add after the serialize pass, we integer them in the data
[docs] def prepare(self):
 # Maybe the brok is a old daemon one or was already prepared
 # if so, the data is already ok
 if hasattr(self, 'prepared') and not self.prepared:
 self.data = cPickle.loads(self.data)
 if hasattr(self, 'instance_id'):
 self.data['instance_id'] = self.instance_id
 self.prepared = True

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/graph.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.graph

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class Graph:
 """Graph is a class to make graph things like DFS checks or accessibility
 Why use an atomic bomb when a little hammer is enough?

 """

 def __init__(self):
 self.nodes = {}

 # Do not call twice...
[docs] def add_node(self, node):
 self.nodes[node] = []

 # Just loop over nodes

[docs] def add_nodes(self, nodes):
 for node in nodes:
 self.add_node(node)

 # Add an edge to the graph from->to

[docs] def add_edge(self, from_node, to_node):
 # Maybe to_node is unknown
 if to_node not in self.nodes:
 self.add_node(to_node)

 try:
 self.nodes[from_node].append(to_node)
 # If from_node does not exist, add it with its son
 except KeyError, exp:
 self.nodes[from_node] = [to_node]

 # Return all nodes that are in a loop. So if return [], no loop

[docs] def loop_check(self):
 in_loop = []
 # Add the tag for dfs check
 for node in self.nodes:
 node.dfs_loop_status = 'DFS_UNCHECKED'

 # Now do the job
 for node in self.nodes:
 # Run the dfs only if the node has not been already done */
 if node.dfs_loop_status == 'DFS_UNCHECKED':
 self.dfs_loop_search(node)
 # If LOOP_INSIDE, must be returned
 if node.dfs_loop_status == 'DFS_LOOP_INSIDE':
 in_loop.append(node)

 # Remove the tag
 for node in self.nodes:
 del node.dfs_loop_status

 return in_loop

 # DFS_UNCHECKED default value
 # DFS_TEMPORARY_CHECKED check just one time
 # DFS_OK no problem for node and its children
 # DFS_NEAR_LOOP has trouble sons
 # DFS_LOOP_INSIDE is a part of a loop!

[docs] def dfs_loop_search(self, root):
 # Make the root temporary checked
 root.dfs_loop_status = 'DFS_TEMPORARY_CHECKED'

 # We are scanning the sons
 for child in self.nodes[root]:
 child_status = child.dfs_loop_status
 # If a child is not checked, check it
 if child_status == 'DFS_UNCHECKED':
 self.dfs_loop_search(child)
 child_status = child.dfs_loop_status

 # If a child has already been temporary checked, it's a problem,
 # loop inside, and its a acked status
 if child_status == 'DFS_TEMPORARY_CHECKED':
 child.dfs_loop_status = 'DFS_LOOP_INSIDE'
 root.dfs_loop_status = 'DFS_LOOP_INSIDE'

 # If a child has already been temporary checked, it's a problem, loop inside
 if child_status in ('DFS_NEAR_LOOP', 'DFS_LOOP_INSIDE'):
 # if a node is known to be part of a loop, do not let it be less
 if root.dfs_loop_status != 'DFS_LOOP_INSIDE':
 root.dfs_loop_status = 'DFS_NEAR_LOOP'
 # We've already seen this child, it's a problem
 child.dfs_loop_status = 'DFS_LOOP_INSIDE'

 # If root have been modified, do not set it OK
 # A node is OK if and only if all of its children are OK
 # if it does not have a child, goes ok
 if root.dfs_loop_status == 'DFS_TEMPORARY_CHECKED':
 root.dfs_loop_status = 'DFS_OK'

 # Get accessibility packs of the graph: in one pack,
 # element are related in a way. Between packs, there is no relation
 # at all.
 # TODO: Make it work for directional graph too
 # Because for now, edge must be father->son AND son->father

[docs] def get_accessibility_packs(self):
 packs = []
 # Add the tag for dfs check
 for node in self.nodes:
 node.dfs_loop_status = 'DFS_UNCHECKED'

 for node in self.nodes:
 # Run the dfs only if the node is not already done */
 if node.dfs_loop_status == 'DFS_UNCHECKED':
 packs.append(self.dfs_get_all_childs(node))

 # Remove the tag
 for node in self.nodes:
 del node.dfs_loop_status

 return packs

 # Return all my children, and all my grandchildren

[docs] def dfs_get_all_childs(self, root):
 root.dfs_loop_status = 'DFS_CHECKED'

 ret = set()
 # Me
 ret.add(root)
 # And my sons
 ret.update(self.nodes[root])

 for child in self.nodes[root]:
 # I just don't care about already checked childs
 if child.dfs_loop_status == 'DFS_UNCHECKED':
 ret.update(self.dfs_get_all_childs(child))

 return list(ret)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 All modules for which code is available

		shinken.acknowledge

		shinken.action

		shinken.autoslots

		shinken.basemodule

		shinken.borg

		shinken.brok

		shinken.check

		shinken.clients.LSB

		shinken.clients.livestatus

		shinken.commandcall

		shinken.comment

		shinken.complexexpression

		shinken.contactdowntime

		shinken.daterange

		shinken.db

		shinken.db_mysql

		shinken.db_oracle

		shinken.db_sqlite

		shinken.dependencynode

		shinken.dispatcher

		shinken.downtime

		shinken.easter

		shinken.eventhandler

		shinken.graph

		shinken.load

		shinken.log

		shinken.macroresolver

		shinken.memoized

		shinken.message

		shinken.misc.datamanager

		shinken.misc.filter

		shinken.misc.md5crypt

		shinken.misc.perfdata

		shinken.misc.sorter

		shinken.misc.termcolor

		shinken.modulesmanager

		shinken.notification

		shinken.objects.businessimpactmodulation

		shinken.objects.checkmodulation

		shinken.objects.command

		shinken.objects.contact

		shinken.objects.contactgroup

		shinken.objects.discoveryrule

		shinken.objects.discoveryrun

		shinken.objects.escalation

		shinken.objects.host

		shinken.objects.hostdependency

		shinken.objects.hostescalation

		shinken.objects.hostextinfo

		shinken.objects.hostgroup

		shinken.objects.item

		shinken.objects.itemgroup

		shinken.objects.macromodulation

		shinken.objects.matchingitem

		shinken.objects.module

		shinken.objects.notificationway

		shinken.objects.pack

		shinken.objects.realm

		shinken.objects.resultmodulation

		shinken.objects.schedulingitem

		shinken.objects.service

		shinken.objects.servicedependency

		shinken.objects.serviceescalation

		shinken.objects.serviceextinfo

		shinken.objects.servicegroup

		shinken.objects.timeperiod

		shinken.objects.trigger

		shinken.property

		shinken.singleton

		shinken.sorteddict

		shinken.util

		shinken.worker

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/message.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.message

#!/usr/bin/env python

-*- coding: utf-8 -*-

Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

[docs]class Message:
 """This is a simple message class for communications between actionners and
 workers

 """

 my_type = 'message'
 _type = None
 _data = None
 _from = None

 def __init__(self, id, type, data=None, source=None):
 self._type = type
 self._data = data
 self._from = id
 self.source = source

[docs] def get_type(self):
 return self._type

[docs] def get_data(self):
 return self._data

[docs] def get_from(self):
 return self._from

[docs] def str(self):
 return "Message from %d (%s), Type: %s Data: %s" % (self._from, self.source, self._type, self._data)

 © Copyright 2013, Shinken Team.
 Created using Sphinx 1.3.1.

_modules/shinken/action.html

 Navigation

 		
 index

 		
 modules |

 		Shinken Manual 1.4 documentation »

 		Module code »

 Source code for shinken.action

#!/usr/bin/env python
-*- coding: utf-8 -*-
#
Copyright (C) 2009-2012:
Gabes Jean, naparuba@gmail.com
Gerhard Lausser, Gerhard.Lausser@consol.de
Gregory Starck, g.starck@gmail.com
Hartmut Goebel, h.goebel@goebel-consult.de
#
This file is part of Shinken.
#
Shinken is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
#
Shinken is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
#
You should have received a copy of the GNU Affero General Public License
along with Shinken. If not, see <http://www.gnu.org/licenses/>.

import os
import time
import shlex
import sys
import subprocess

Try to read in non-blocking mode, from now this only from now on
Unix systems
try:
 import fcntl
except ImportError:
 fcntl = None

from shinken.util import safe_print
from shinken.log import logger

__all__ = ('Action')

valid_exit_status = (0, 1, 2, 3)

only_copy_prop = ('id', 'status', 'command', 't_to_go', 'timeout',
 'env', 'module_type', 'execution_time', 'u_time', 's_time')

shellchars = ('!', '$', '^', '&', '*', '(', ')', '~', '[', ']',
 '|', '{', '}', ';', '<', '>', '?', '`')

Try to read a fd in a non blocking mode
[docs]def no_block_read(output):
 fd = output.fileno()
 fl = fcntl.fcntl(fd, fcntl.F_GETFL)
 fcntl.fcntl(fd, fcntl.F_SETFL, fl | os.O_NONBLOCK)
 try:
 return output.read()
 except:
 return ''

class __Action(object):
 """
 This abstract class is used just for having a common id for both
 actions and checks.
 """
 id = 0

 # Ok when we load a previous created element, we should
 # not start at 0 for new object, so we must raise the Action.id
 # if need
 @staticmethod
 def assume_at_least_id(_id):
 Action.id = max(Action.id, _id)

 def set_type_active(self):
 "Dummy function, only useful for checks"
 pass

 def set_type_passive(self):
 "Dummy function, only useful for checks"
 pass

 def get_local_environnement(self):
 """

 Mix the env and the environment variables into a new local
 env dict.

 Note: We cannot just update the global os.environ because this
 would effect all other checks.
 """
 # Do not use copy.copy() here, as the resulting copy still
 # changes the real environment (it is still a os._Environment
 # instance).
 local_env = os.environ.copy()
 for p in self.env:
 local_env[p] = self.env[p].encode('utf8')
 return local_env

 def execute(self):
 """
 Start this action command. The command will be executed in a
 subprocess.
 """

 self.status = 'launched'
 self.check_time = time.time()
 self.wait_time = 0.0001
 self.last_poll = self.check_time
 # Get a local env variables with our additional values
 self.local_env = self.get_local_environnement()

 # Initialize stdout and stderr. we will read them in small parts
 # if the fcntl is available
 self.stdoutdata = ''
 self.stderrdata = ''

 return self.execute__() ## OS specific part

 def get_outputs(self, out, max_plugins_output_length):
 #print "Get only," , max_plugins_output_length, "bytes"
 # Squeeze all output after max_plugins_output_length
 out = out[:max_plugins_output_length]
 # Then cuts by lines
 elts = out.split('\n')
 # For perf data
 elts_line1 = elts[0].split('|')
 # First line before | is output, and strip it
 self.output = elts_line1[0].strip()
 # Init perfdata as void
 self.perf_data = ''
 # After | is perfdata, and strip it
 if len(elts_line1) > 1:
 self.perf_data = elts_line1[1].strip()
 # Now manage others lines. Before the | it's long_output
 # And after it's all perf_data, \n join
 long_output = []
 in_perfdata = False
 for line in elts[1:]:
 # if already in perfdata, direct append
 if in_perfdata:
 self.perf_data += ' ' + line.strip()
 else: # not already in? search for the | part :)
 elts = line.split('|', 1)
 # The first part will always be long_output
 long_output.append(elts[0].strip())
 if len(elts) > 1:
 in_perfdata = True
 self.perf_data += ' ' + elts[1].strip()
 # long_output is all non output and perfline, join with \n
 self.long_output = '\n'.join(long_output)

 def check_finished(self, max_plugins_output_length):
 # We must wait, but checks are variable in time
 # so we do not wait the same for an little check
 # than a long ping. So we do like TCP: slow start with *2
 # but do not wait more than 0.1s.
 self.last_poll = time.time()

 _, _, child_utime, child_stime, _ = os.times()
 if self.process.poll() is None:
 self.wait_time = min(self.wait_time * 2, 0.1)
 #time.sleep(wait_time)
 now = time.time()

 # If the fcntl is available (unix) we try to read in a
 # asynchronous mode, so we won't block the PIPE at 64K buffer
 # (deadlock...)
 if fcntl:
 self.stdoutdata += no_block_read(self.process.stdout)
 self.stderrdata += no_block_read(self.process.stderr)

 if (now - self.check_time) > self.timeout:
 self.kill__()
 #print "Kill for timeout", self.process.pid,
 #print self.command, now - self.check_time
 self.status = 'timeout'
 self.execution_time = now - self.check_time
 self.exit_status = 3
 # Do not keep a pointer to the process
 del self.process
 # Get the user and system time
 _, _, n_child_utime, n_child_stime, _ = os.times()
 self.u_time = n_child_utime - child_utime
 self.s_time = n_child_stime - child_stime
 return
 return

 # Get standards outputs from the communicate function if we do
 # not have the fcntl module (Windows, and maybe some special
 # unix like AIX)
 if not fcntl:
 (self.stdoutdata, self.stderrdata) = self.process.communicate()
 else:
 # The command was to quick and finished even before we can
 # polled it first. So finish the read.
 self.stdoutdata += no_block_read(self.process.stdout)
 self.stderrdata += no_block_read(self.process.stderr)

 self.exit_status = self.process.returncode

 # we should not keep the process now
 del self.process

 # if the exit status is abnormal, we add stderr to the output
 # TODO: Abnormal should be logged properly no?
 if self.exit_status not in valid_exit_status:
 self.stdoutdata = self.stdoutdata + self.stderrdata
 elif ('sh: -c: line 0: unexpected EOF while looking for matching'
 in self.stderrdata
 or ('sh: -c:' in self.stderrdata and ': Syntax' in self.stderrdata)
 or 'sh: Syntax error: Unterminated quoted string'
 in self.stderrdata):
 # Very, very ugly. But subprocess._handle_exitstatus does
 # not see a difference between a regular "exit 1" and a
 # bailing out shell. Strange, because strace clearly shows
 # a difference. (exit_group(1) vs. exit_group(257))
 self.stdoutdata = self.stdoutdata + self.stderrdata
 self.exit_status = 3
 # Now grep what we want in the output
 self.get_outputs(self.stdoutdata, max_plugins_output_length)

 # We can clean the useless properties now
 del self.stdoutdata
 del self.stderrdata

 self.status = 'done'
 self.execution_time = time.time() - self.check_time
 # Also get the system and user times
 _, _, n_child_utime, n_child_stime, _ = os.times()
 self.u_time = n_child_utime - child_utime
 self.s_time = n_child_stime - child_stime

 def copy_shell__(self, new_i):
 """
 Copy all attributes listed in 'only_copy_prop' from `self` to
 `new_i`.
 """
 for prop in only_copy_prop:
 setattr(new_i, prop, getattr(self, prop))
 return new_i

 def got_shell_characters(self):
 for c in self.command:
 if c in shellchars:
 return True
 return False

###
OS specific "execute__" & "kill__" are defined by "Action" class
definition:
###

if os.name != 'nt':

 class Action(__Action):

 # We allow direct launch only for 2.7 and higher version
 # because if a direct launch crash, under this the file handles
 # are not releases, it's not good.
 def execute__(self, force_shell=sys.version_info < (2, 7)):
 # If the command line got shell characters, we should go
 # in a shell mode. So look at theses parameters
 force_shell |= self.got_shell_characters()

 # 2.7 and higher Python version need a list of args for cmd
 # and if not force shell (if, it's useless, even dangerous)
 # 2.4->2.6 accept just the string command
 if sys.version_info < (2, 7) or force_shell:
 cmd = self.command.encode('utf8', 'ignore')
 else:
 try:
 cmd = shlex.split(self.command.encode('utf8', 'ignore'))
 except Exception, exp:
 self.output = 'Not a valid shell command: ' + exp.__str__()
 self.exit_status = 3
 self.status = 'done'
 self.execution_time = time.time() - self.check_time
 return

 #safe_print("Launching", cmd)
 #safe_print("With env", self.local_env)

 # Now: GO for launch!

 # The preexec_fn=os.setsid is set to give sons a same
 # process group. See
 # http://www.doughellmann.com/PyMOTW/subprocess/ for
 # detail about this.
 try:
 self.process = subprocess.Popen(
 cmd, stdout=subprocess.PIPE, stderr=subprocess.PIPE,
 close_fds=True, shell=force_shell, env=self.local_env,
 preexec_fn=os.setsid)
 except OSError, exp:
 logger.error("Fail launching command: %s %s %s"
 % (self.command, exp, force_shell))
 # Maybe it's just a shell we try to exec. So we must retry
 if (not force_shell and exp.errno == 8
 and exp.strerror == 'Exec format error'):
 return self.execute__(True)
