

 Navigation

 	
 index

 	
 next |

 	ripe-atlas-monitor 0.1.0 documentation

RIPE Atlas Monitor

[image: Documentation] [https://ripe-atlas-monitor.readthedocs.org/en/latest/?badge=latest] [image: Build Status] [https://travis-ci.org/pierky/ripe-atlas-monitor] [image: PYPI Version] [https://pypi.python.org/pypi/ripe-atlas-monitor/] [image: Python Versions] [https://pypi.python.org/pypi/ripe-atlas-monitor/] [image: Requirements Status] [https://requires.io/github/pierky/ripe-atlas-monitor/requirements/?branch=master]

A Python tool to monitor results collected by RIPE Atlas [https://atlas.ripe.net] probes and verify they match against predefined expected values.

How does it work?

On the basis of a RIPE Atlas [https://atlas.ripe.net] measurement previously created, you define a monitor by declaring which results you expect that probes should produce: rules are used to map probes and their expected results. Depending on whether the collected results match the expectations, custom actions are performed: to log the result, to send an email, a syslog message or to run an external program.

descr: Check network reachability
matching_rules:
- descr: Probes from France via AS64496
 src_country: FR
 expected_results: ViaAS64496
 actions: EMailToNOC
- descr: RTT from AS64499 and AS64500 below 50ms
 src_as:
 - 64499
 - 64500
 expected_results: LowRTT
 actions: EMailToNOC
expected_results:
 ViaAS64496:
 upstream_as: 64496
 LowRTT:
 rtt: 50
actions:
 EMailToNOC:
 kind: email
 to_addr: noc@agreatcompany.org
 subject: "ripe-atlas-monitor: unexpected results"
measurement-id: 123456789

Contents

	QuickStart
	Step 1: install dependencies

	Step 2: install ripe-atlas-monitor

	Step 3: global configuration

	Step 4: create a new monitor and customize its configuration

	Step 5: run the brand new monitor

	Requirements & Installation
	Requirements

	Installation
	Setup a virtualenv

	Installation from PyPI

	Installation from GitHub

	Bash autocomplete

	Global configuration

	Commands
	Results analysis

	Monitors’ configuration management

	Execution modes
	Single monitor: run command

	Multiple monitors: daemonize command

	Monitors: how they work
	How they work

	Kinds of monitors

	Expected results criteria

	Advanced use
	Excluding probes from processing

	Match all probes except those...

	Actions execution

	Internal labels

	Integration with ripe-atlas-tools (Magellan)

	Monitor configuration syntax
	Monitor

	Rule

	Expected result
	Common criteria

	Traceroute criteria

	SSL criteria

	DNS criteria

	Action
	Action log

	Action email

	Action run

	Action syslog

	Action label

	How to contribute
	Code
	Adding a new check

	Adding a new report to the analyzer

	Data for unit testing

	ExpResCriterion-derived classes docstring

	Changelog
	0.1.10

	0.1.9
	improvements

	0.1.8
	improvements

	fixes

	0.1.7
	improvements

	fixes

	0.1.6
	improvements

	0.1.5
	improvements

	fixes

	0.1.4
	new features

	improvements

	fixes

	0.1.3
	improvements

	fixes

	0.1.2
	new features

	fixes

	0.1.1
	improvements

	0.1.0

Status

This tool is currently in beta: some field tests have been done but it needs to be tested deeply and on more scenarios.

Moreover, contributions (fixes to code and to grammatical errors, typos, new features) are very much appreciated. More details on the contributing guide.

Bug? Issues?

But also suggestions? New ideas?

Please create an issue on GitHub at https://github.com/pierky/ripe-atlas-monitor/issues

Author

Pier Carlo Chiodi - https://pierky.com

Blog: https://blog.pierky.com Twitter: @pierky [https://twitter.com/pierky]

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

QuickStart

Step 1: install dependencies

Some libraries ripe-atlas-monitor depends on need to be compiled and require a compiler and Python’s dev libraries:

$ # on Debian/Ubuntu:
$ sudo apt-get install python-dev libffi-dev libssl-dev

$ # on CentOS:
$ sudo yum install gcc libffi-devel openssl-devel

Strongly suggested: install pip and setup a virtualenv:

$ # on Debian/Ubuntu:
$ sudo apt-get install python-virtualenv

$ # on CentOS:
$ sudo yum install epel-release
$ sudo yum install python-pip python-virtualenv

$ # setup a virtualenv
$ mkdir ripe-atlas-monitor
$ cd ripe-atlas-monitor
$ virtualenv venv
$ source venv/bin/activate

More: virtualenv installation [https://virtualenv.pypa.io/en/latest/installation.html] and usage [https://virtualenv.pypa.io/en/latest/userguide.html].

Step 2: install ripe-atlas-monitor

Install latest ripe-atlas-monitor version from PyPI:

$ pip install ripe-atlas-monitor

$ # to enable bash autocomplete:
$ eval "$(register-python-argcomplete ripe-atlas-monitor)"

More: installation options.

Step 3: global configuration

Create the var directory and let the config file to be inizialized; set (at least) the var parameter:

$ # directory where ripe-atlas-monitor can write a bunch of data
$ mkdir var
$ ripe-atlas-monitor init-config

var: /path/to/ripe-atlas-monitor/var

More: global configuration options.

Step 4: create a new monitor and customize its configuration

The analyze command can help you defining your rules by giving an overview of the results for a specific measurement, as elaborated by ripe-atlas-monitor:

$ ripe-atlas-monitor analyze --measurement-id 1234567890

More: Results analysis.

Once you have a clear idea how your rules should look like, create and edit a new monitor:

$ ripe-atlas-monitor init-monitor -m MonitorName

More: how monitors work and syntax.

Alternatively, you can take a look at the sample monitors provided within the examples [https://github.com/pierky/ripe-atlas-monitor/tree/master/examples] directory.

Step 5: run the brand new monitor

$ ripe-atlas-monitor run -m MonitorName --latest -vvv

More: execution modes and options.

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Requirements & Installation

Requirements

This is a tool written in Python for Linux environments; currently, Python 2.7 and 3.4 are supported. Windows is not supported at all.

It is based on two RIPE NCC packages: RIPE Atlas Sagan [https://github.com/RIPE-NCC/ripe.atlas.sagan] and RIPE Atlas Cousteau [https://github.com/RIPE-NCC/ripe-atlas-cousteau], both available on GitHub and PyPI. It also has some other dependencies, they are reported in the setup.py file and managed by the pip installer.

Some libraries need to be compiled and they require a compiler and development libraries for Python.

	On Debian/Ubuntu the following system packages need to be installed:

$ sudo apt-get install python-dev libffi-dev libssl-dev

Since pip and virtualenv are also strongly suggested, you may need to install them too:

$ sudo apt-get install python-virtualenv python-pip

	On CentOS, the following packages are needed:

$ sudo yum install gcc libffi-devel openssl-devel

$ # for pip and virtualenv:
$ sudo yum install epel-release
$ sudo yum install python-pip python-virtualenv

Installation

Even if you can manually install it and run it as a system package, pip installation and virtualenv use are strongly recommended to ease installation and dependencies management and to have it running within an isolated environment.

More: pip installation [https://pip.pypa.io/en/stable/installing/], virtualenv installation [https://virtualenv.pypa.io/en/latest/installation.html].

Setup a virtualenv

Virtualenv usage is documented here [https://virtualenv.pypa.io/en/latest/userguide.html], but the following should be enough in most cases:

$ mkdir ripe-atlas-monitor
$ cd ripe-atlas-monitor
$ virtualenv venv
$ source venv/bin/activate

Installation from PyPI

Python pip can install packages both globally (system wide) and on a per-user basis. To avoid conflicts with other packages, the second way is the preferred one. It can be achieved using the virtualenv tool (the preferred way) or passing the --user argument to pip, so that the package will be installed within the $HOME/.local directory.

$ # using virtualenv
$ pip install ripe-atlas-monitor

$ # in your user's local dir
$ pip install --user ripe-atlas-monitor

Installation from GitHub

If you just want to use the latest code on the master branch on GitHub, you can install it with

$ pip install git+https://github.com/pierky/ripe-atlas-monitor.git

“Editable” installation

If you want to contribute to the code, you can clone the repository and install it using the -e argument of pip; you’ll have it installed in a local directory where you can edit it and see the results without having to install it every time:

$ pip install -e git+https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git#egg=ripe-atlas-monitor

See also: How to contribute.

Bash autocomplete

To enable bash autocomplete, register the ripe-atlas-monitor script and update your shell preferences:

eval "$(register-python-argcomplete ripe-atlas-monitor)"

If you want it to be enabled on every access, you can it to your .bashrc file.

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Global configuration

The global configuration file contains some options that are used by the program to run: the working directory path, logging options, default values for some actions and so on.

By default, ripe-atlas-monitor looks for this file in $HOME/.config/ripe-atlas-monitor (if $HOME is not defined, it tries with /etc/ripe-atlas-monitor/config.cfg), but this path can be set with the --cfg command line argument.

Only one parameter is really needed, it is the var directory used by the program to store its monitors configuration files and a bunch of other data (IP addresses cache, running status).

You can initialize the global configuration file by executing ripe-atlas-monitor init-config: this command copies the template file to the default path. Add the --cfg argument to use a custom path.

Comments within the file itself should be enough to explain the various options. If you want to take a look at it, you can find it on GitHub [https://github.com/pierky/ripe-atlas-monitor/blob/master/pierky/ripeatlasmonitor/templates/global_config.yaml].

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Commands

Results analysis

The analyze command can be used to have an overview of results received from a measurement and how they are elaborated by ripe-atlas-monitor:

$ ripe-atlas-monitor analyze --measurement-id 1234567890

$ ripe-atlas-monitor analyze -m MonitorName

Some heuristics provide aggregated metrics for most of the measurement’s types:

	RTTs distribution (ping, traceroute)

	target responded or not (ping, traceroute)

	destination IP addresses (ping, traceroute, ssl)

	SSL certificate fingerprints (ssl)

	destination AS numbers and upstream ASNs (traceroute)

	AS paths (traceroute)

	DNS RCODEs (dns)

	DNS responses’ flags combinations (dns)

	EDNS status and NSID option (dns)

	DNS answers (dns)

Results of each metric are grouped on the basis of common patterns and sorted by the number of matching probes.

Example analysis of measurement ID 1674977, a traceroute from 50 probes all over the world toward www.ripe.net (see it on RIPE Atlas Tracepath [https://www.pierky.com/ripeatlastracepath/demo/]):

$ ripe-atlas-monitor analyze --measurement-id 1674977

Downloading and processing results... please wait
Median RTTs:

 < 30 ms: 25 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10039 (AS701, US), ...

 30 - 60 ms: 14 times, probe ID 10068 (AS34594, HR), probe ID 10772 (AS12552, SE), probe ID 10816 (AS12322, FR), ...

 >= 180 ms: 5 times, probe ID 10509 (AS1273, HK), probe ID 10510 (AS1273, SG), probe ID 12468 (AS30844, ZW), ...

 150 - 180 ms: 3 times, probe ID 10313 (US), probe ID 13631 (AS21502, FR), probe ID 14856 (AS7922, US)

 (use the --show-all-rtts argument to show the full list)

Destination responded:

 yes: 38 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10068 (AS34594, HR), ...

 no: 11 times, probe ID 10039 (AS701, US), probe ID 10460 (AS7155, GB), probe ID 10922 (RU), ...

Unique destination IP addresses:

 193.0.6.139: 49 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10039 (AS701, US), ...

Destination AS:

 3333: 38 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10068 (AS34594, HR), ...

 12513: 1 time, probe ID 12277 (AS12513, GB)

 7922: 1 time, probe ID 16134 (AS7922, US)

 7155: 1 time, probe ID 10460 (AS7155, GB)

 6830: 1 time, probe ID 12224 (AS6830, NL)

 5089: 1 time, probe ID 13335 (AS5089, GB)

 3320: 1 time, probe ID 11059 (AS3320, DE)

 3269: 1 time, probe ID 4228 (AS3269, IT)

 701: 1 time, probe ID 10039 (AS701, US)

Upstream AS:

 1200: 24 times, probe ID 10001 (AS3265, NL), probe ID 10012 (AS3265, NL), probe ID 10273 (AS9143, NL), ...

 1299: 3 times, probe ID 10068 (AS34594, HR), probe ID 11586 (AS29056, AT), probe ID 16063 (AS6830, IE)

 3356: 2 times, probe ID 10313 (US), probe ID 14856 (AS7922, US)

 33765: 1 time, probe ID 15282 (AS33765, TZ)

 31213: 1 time, probe ID 11418 (AS39087, RU)

 21502: 1 time, probe ID 13631 (AS21502, FR)

 12513: 1 time, probe ID 10953 (AS12513, GB)

 8218: 1 time, probe ID 14175 (AS24651, LV)

 4755: 1 time, probe ID 14593 (AS4755, IN)

 2856: 1 time, probe ID 11610 (AS2856, GB)

 Only top 10 most common shown.
 (use the --show-all-upstream-asns argument to show the full list)

Most common ASs sequences:

 1200 3333: 24 times

 S 1200 3333: 14 times

 S 1200: 14 times

 S 3333: 5 times

 1299 3333: 3 times

 S 1299 3333: 2 times

 9002 1200 3333: 2 times

 3356 1200 3333: 2 times

 15589 1200 3333: 2 times

 S 6830: 2 times

 (use the --show-all-aspaths argument to show the full list)

Unique AS paths (with IXPs networks):

 S IX 2603 3333: 1 time, probe ID 11585 (AS29518, SE)

The --probes and --countries arguments can be used to restrict the analysis to results produced by a limited set of probes by specifying their IDs or the source countries.

$ ripe-atlas-monitor analyze --measurement-id 1234567890 --probes 1,23,456

The --key argument can be used to provide a RIPE Atlas key needed to fetch the results. Other arguments may be used to display statistics about probes distribution and to show sub-results, grouping them by country or by source AS: the --help will show all of these options.

Data that form the analysis report can be printed in JSON format using the --use-json argument.

Monitors’ configuration management

Some commands can be used to manage monitors’ configuration:

	init-monitor: initializes a new monitor configuration by cloning the template file;

	edit-monitor: opens the monitor’s configuration file with the default text editor ($EDITOR or misc.editor global config option);

	check-monitor: verifies that the monitor’s configuration syntax is valid and conforming to the measurement’s type. The -v argument can be used to display an explanatory description of the given configuration as interpreted by the program.

$ ripe-atlas-monitor [init-monitor | edit-monitor | check-monitor] -m MonitorName

Execution modes

There are some ways this tool can be executed, depending on how many concurrent monitors you want to run and which measurement results you want to consider.

The -v argument is common to all the scenarios and allow to set the verbosity level:

	0: only warnings and errors are produced;

	1 (-v): messages from logging actions are produced;

	2 (-vv): results from matching rules are produced too;

	3 (-vvv): information messages are logged (internal decisions about rules and results processing);

	4 (-vvvv): debug messages are logged too, useful to debug monitors’ configurations.

Single monitor: run command

The run command allows to execute a single monitor. It is mostly useful to process one-off measurements, to schedule execution or to debug monitors’ configurations.

$ ripe-atlas-monitor run -m MonitorName -vvv

In this mode, the --start, --stop and --latest arguments allow to set the time frame for the measurement’s results to download, unless the monitor has the stream option set to use RIPE Atlas result streaming [https://atlas.ripe.net/docs/result-streaming/].
The --probes and --countries arguments can be used to restrict the processing to results produced by a limited set of probes by specifying their IDs or the source countries.

Time frame options

By default, for measurements which are still running, results are fetched continously every measurement’s interval seconds, starting from the time of the last received result.

	The --start and --stop arguments set the lower and upper bounds for results downloading and processing. They can be used togheter or separately.

	If the --start argument is not given, results are downloaded starting from the last processed result’s timestamp, or from the last 7 days (configurable in the global config) if the measurement has not been processed yet.

	If the --stop argument is missing, results up to the last produced one are downloaded.

	The --latest argument can be used when the other two are not passed and it allows to download the latest results [https://atlas.ripe.net/docs/measurement-latest-api/] only.

	For running measurements, the --dont-wait argument allows to run a monitor against up to date results then exiting, without waiting for measurement’s interval before running it again.

Scheduling monitors

Execution of ripe-atlas-monitor can be scheduled (using crontab for example) in order to periodically monitor measurements’ results.

For continous measurements (those which are not stopped and keep producing results) the --dont-wait argument is particularly suggested, so that at each execution the program downloads and processes the results collected since the previous one.

Note

Since only one instance of ripe-atlas-monitor at a time can be executed, if you plan to run multiple monitors be careful to schedule them in order to avoid overlapping running; alternatively consider using the daemonize command (see below).

If you are using a virtualenv, you can point your cron’s job at the full python executable that is in the virtualenv’s bin directory...

1 * * * * /home/USERNAME/ripe-atlas-monitor/venv/bin/python /home/USERNAME/ripe-atlas-monitor/venv/bin/ripe-atlas-monitor -m MonitorName --dont-wait

... or you can write a wrapper bash script that sets up the virtualenv and then runs your command...

#! /bin/bash
cd /home/USERNAME/ripe-atlas-monitor/venv/
source bin/activate
"$@"

1 * * * * /home/USERNAME/ripe-atlas-monitor/setup_venv_and_run ripe-atlas-monitor -m MonitorName --dont-wait

Multiple monitors: daemonize command

Note

This mode is highly experimental

The daemonize command allows to run multiple monitors within a single instance of ripe-atlas-monitor by forking the main process into many subprocesses, one for each monitor. This mode does not allow to use time frame arguments, results are downloaded starting from the last received one for each measurement. This mode is mostly suitable for streaming monitors or continous measurements.

$ ripe-atlas-monitor daemonize -m Monitor1Name -m Monitor2Name

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Monitors: how they work

Monitors are the core of the program. You can initialize their configuration with ripe-atlas-monitor init-monitor -m monitor_name: a monitor template file will be created and opened for customization using the preferred text editor (which can also be set within the global configuration file or via the $EDITOR environment variable).

How they work

You have a RIPE Atlas measurement;

	probes involved in the measurement collect some results (ping, traceroute, ...);

	a ripe-atlas-monitor‘s monitor is executed;

	results for the aforementioned measurement are downloaded and elaborated;

	for each result, the probe’s information (ID, country, ASN) are matched against a set of rules;

	if a matching condition is found, the result collected by that probe is matched against a set of results you expected from that probe;

	actions (email, syslog, external programs) are performed on the basis of this process’s output.

All this is written in YAML files, one for each monitor you want to configure:

descr: Check network reachability
matching_rules:
- descr: Probes from France via AS64496
 src_country: FR
 expected_results: ViaAS64496
 actions: EMailToNOC
- descr: RTT from AS64499 and AS64500 below 50ms
 src_as:
 - 64499
 - 64500
 expected_results: LowRTT
 actions: EMailToNOC
expected_results:
 ViaAS64496:
 upstream_as: 64496
 LowRTT:
 rtt: 50
actions:
 EMailToNOC:
 kind: email
 to_addr: noc@agreatcompany.org
 subject: "ripe-atlas-monitor: unexpected results"
measurement-id: 123456789

For the complete syntax of monitors’ configuration file please refer to Monitor configuration syntax.

Kinds of monitors

Depending on the measurement they are configured to use and which command is used to run them, monitors can be grouped into 3 categories:

	one-off monitors are those used to process one-off measurements: they are executed using the --latest argument of ripe-atlas-monitor to download only the latest results, or they can be executed using both the --start and --stop command line argument in order to define a specific time frame within which results are downloaded;

	continous monitors are used to continously process results for those measurements which have not been stopped yet: results are downloaded and processed once every x seconds, where x is the interval value of the measurement itself; when the --start argument of ripe-atlas-monitor is used, results are downloaded starting at that time, otherwise results are downloaded starting from the timestamp of the last processed result;

	streaming monitors, which are those that use RIPE Atlas result streaming [https://atlas.ripe.net/docs/result-streaming/].

The type of monitor is not written anywhere, it’s derived from the commands used to run ripe-atlas-monitor. For example, the same monitor can be run using ripe-atlas-monitor run -m MonitorName --measurement-id 123456 --latest to process the latest results from the measurement ID 123456, but also using ripe-atlas-monitor daemonize -m MonitorName to continously process results from the measurement reported in the measurement-id attribute of its configuration file. It can be also run in streaming mode, by using the --stream command line argument (provided that the measurement is still running).

Expected results criteria

Expected results can be of various kinds, depending on the measurement’s type, and various criteria can be used to verify collected results.

Traceroute measurements can be used to monitor AS path toward a destination, ping measurements to test network reachability and performance, SSL measurements to be sure that the certificates received by a probe match the expected fingerprints and that TLS connections are not hijacked on their way, DNS measurements to verify host name resolution.

For the full list of implemented criteria please read Monitor configuration syntax.

Advanced use

Configuration syntax “tricks” and internal labels allow to describe complex scenarios.

Excluding probes from processing

A rule with no expected_results and the process_next attribute to its default value False (or missing) allows to stop further processing for those probes which match the rule’s criteria:

matching_rules:
- descr: Do not process results for probe ID 123 and 456
 probe_id:
 - 123
 - 456

Match all probes except those...

The reverse attribute of a rule, when set to True, allows to match all the probes which do not meet the given criteria:

matching_rules:
- descr: All probes except those from AS64496
 src_as: 64496
 reverse: True

Actions execution

The when attribute of an action can be used to set when it has to be performed:

	on_match, the action is performed when the collected result matches one of the expected values, or when the rule has no expected results at all;

	on_mismatch, the action is performed when the collected result does not match the expected values;

	always, well, the action is always performed, independently of results.

Internal labels

Actions can be used to attach internal labels to probes on the basis of rules and results processing. These labels can be subsequently used to match probes against specific rules.

matching_rules:
- descr: Set 'VIP' (Very Important Probe) label to ID 123 and 456
 probe_id:
 - 123
 - 456
 process_next: True
 actions: SetVIPLabel
- descr: Set 'VIP' label to Italian probes too
 src_country: IT
 process_next: True
 actions: SetVIPLabel
- descr: VIPs must have low RTT
 internal_labels: VIP
 expected_results: LowRTT
actions:
 SetVIPLabel:
 when: always
 kind: label
 op: add
 label_name: VIP

Integration with ripe-atlas-tools (Magellan)

Magellan [https://github.com/RIPE-NCC/ripe-atlas-tools] is the official command-line client for RIPE Atlas. It allows, moreover, to create new measurements [https://ripe-atlas-tools.readthedocs.org/en/latest/use.html#measurement-creation] from the command line. It can be used, for example, in an action to create one-off measurements from the probes which fail expectations.

actions:
 RunRIPEAtlasTraceroute:
 descr: Create new traceroute msm from the probe which missed expectations
 kind: run
 path: ripe-atlas
 args:
 - measure
 - traceroute
 - --target
 - www.example.com
 - --no-report
 - --from-probes
 - $ProbeID

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Monitor configuration syntax

Contents

	Monitor configuration syntax
	Monitor

	Rule

	Expected result
	Common criteria
	Criterion: rtt

	Criterion: dst_responded

	Criterion: dst_ip

	Traceroute criteria
	Criterion: dst_as

	Criterion: as_path

	Criterion: upstream_as

	SSL criteria
	Criterion: cert_fp

	DNS criteria
	Criterion: dns_rcode

	Criterion: dns_flags

	Criterion: edns

	Criterion: dns_answers
	DNS record

	A record

	AAAA record

	NS record

	CNAME record

	Action
	Action log

	Action email

	Action run

	Action syslog

	Action label

Monitor

A monitor allows to process results from a measurement.

Configuration fields:

	descr (optional): monitor’s brief description.

	measurement-id (optional): measurement ID used to gather results. It can
be given (and/or overwritten) via command line argument --measurement-id.

	matching_rules: list of rules to match probes against. When a probe
matches one of these rules, its expected results are processed and its
actions are performed.

	expected_results (optional): list of expected results. Probe’s expected
results contain references to this list.

	actions (optional): list of actions to be executed on the basis of
probe’s expected results.

	stream (optional): boolean indicating if results streaming must be used.
It can be given (and/or overwritten) via command line argument --stream.

	stream_timeout (optional): how long to wait (in seconds) before stopping
a streaming monitor if no results are received on the stream.

	key (optional): RIPE Atlas key to access the measurement. It can be
given (and/or overwritten) via command line argument --key.

	key_file (optional): a file containing the RIPE Atlas key to access the
measurement. The file must contain only the RIPE Atlas key, in plain text.
If key is given, this field is ignored.

Rule

Probes which produced the results fetched from the measurement are matched
against these rules to determine whether those results must be processed
or not.

Configuration fields:

	descr (optional): a brief description of the rule.

	process_next (optional): determine whether the rule following the current
one has to be elaborated or nor. More details on the description below.

	src_country (optional): list of two letters country ISO codes.

	src_as (optional): list of Autonomous System numbers.

	probe_id (optional): list of probes’ IDs.

	internal_labels (optional): list of internal labels. More details on the
description below.

	reverse (optional): boolean, indicating if the aforementioned criteria
identify probes which have to be exluded from the matching.

	expected_results (optional): list of expected results’ names which
have to be processed on match. Must be one or more of the expected results
defined in Monitor.``expected_results``. If empty or missing, the rule will
be treated as if a match occurred and its actions are performed.

	actions (optional): list of actions’ names which have to be perormed for
matching probes. Must be one or more of the actions defined in
Monitor.``actions``.

The src_country criterion matches when probe’s source country is one of
the country ISO codes given in the list.

The src_as criterion matches when probe’s source AS is one of the ASN
given in the list. Since RIPE Atlas defines two ASs for each probe (ASN_v4
and ASN_v6) the one corresponding to the measurement’s address family is
taken into account.

The probe_id criterion matches when probe’s ID is one of the IDs given
in the list.

The internal_labels criterion matches when a probe has been previously
tagged with a label falling in the given list. See the label Action for
more details.

A probe matches the rule when all the given criteria are satisfied or when
no criteria are defined at all. If reverse is True, a probe matches when
none of the criteria is satisfied.

When a probe matches the rule, the expected results given
in expected_results are processed; actions given in the actions list
are performed on the basis of expected results processing output. If
no expected_results are given, actions will be performed too.

When a probe matches the current rule’s criteria:

	if process_next is True, the rule which follows the current one is
forcedly elaborated;

	if process_next if False or missing, the rules processing is stopped.

If a probe does not match the current rule’s criteria:

	if process_next is False, the rule processing is forcedly stopped;

	if process_next is True or missing, the rule which follows the current
one is regularly processed.

Examples:

matching_rules:
- descr: Do not process results for probe ID 123 and 456
 probe_id:
 - 123
 - 456
- descr: Check dst AS for any probe, errors to NOC; process next rule
 expected_results: DstAS
 actions: SendEMailToNOC
 process_next: True
- descr: Italian probes must reach target via AS64496
 src_country: IT
 expected_results: ViaAS64496
 actions: LogErrors
- descr: German and French probes must reach target with low RTT
 src_country:
 - DE
 - FR
 expected_results: LowRTT
 actions: LogErrors

matching_rules:
- descr: Set 'VIP' (Very Important Probe) label to ID 123 and 456
 probe_id:
 - 123
 - 456
 process_next: True
 actions: SetVIPLabel
- descr: Set 'VIP' label to Italian probes too
 src_country: IT
 process_next: True
 actions: SetVIPLabel
- descr: VIPs must have low RTT
 internal_labels: VIP
 expected_results: LowRTT

Expected result

A group of criteria used to match probes’ results.

Configuration fields:

	descr (optional): a brief description of this group of criteria.

Matching rules reference this on their expected_results list.

When a probe matches a rule, the keys in the expected_results list
of that rule are used to obtain the group of criteria to be used to
process the result.

Example:

matching_rules:
- descr: Probes from France via AS64496
 src_country: FR
 expected_results: ViaAS64496
expected_results:
 ViaAS64496:
 upstream_as: 64496

Common criteria

Criterion: rtt

Test the median round trip time toward destination.

Available for:

	ping

	traceroute

Configuration fields:

	rtt: maximum RTT (in ms).

	rtt_tolerance (optional): tolerance (in %) on rtt.

If rtt_tolerance is not given, match when measured RTT is less
than rtt, otherwise match when measured RTT is within rtt
+/- rtt_tolerance %.

Examples:

expected_results:
 LowRTT:
 rtt: 50
 Near150:
 rtt: 150
 rtt_tolerance: 30

Criterion: dst_responded

Verify if destination responded.

Available for:

	traceroute

	ping

	sslcert

Configuration fields:

	dst_responded: boolean indicating if the destination is expected to be
responding or not.

For ping, a destination is responding if a probe received at least one
reply packet.
For sslcert, a destination is responding if at least one certificate is
received by the probe.

If dst_responded is True, match when a destination is responding.
If dst_responded is False, match when a destination is not responding.

Example:

expected_results:
 DestinationReachable:
 dst_responded: True

Criterion: dst_ip

Verify that the destination IP used by the probe for the measurement is
the expected one.

Available for:

	traceroute

	ping

	sslcert

Configuration fields:

	dst_ip: list of expected IP addresses (or prefixes).

Match when the probe destination IP is one of the expected ones (or falls
within one of the expected prefixes).

Examples:

dst_ip: 192.168.0.1

dst_ip:
- 192.168.0.1
- 2001:DB8::1

dst_ip:
- 192.168.0.1
- 10.0.0.0/8
- 2001:DB8::/32

Traceroute criteria

Criterion: dst_as

Verify the traceroute destination’s AS number.

Available for:

	traceroute

Configuration fields:

	dst_as: list of Autonomous System numbers.

It builds the path of ASs traversed by the traceroute.
Match when the last AS in the path is one of the expected ones.

Examples:

dst_as:
- 64496

dst_as:
- 64496
- 65551

Criterion: as_path

Verify the path of ASs traversed by a traceroute.

Available for:

	traceroute

Configuration fields:

	as_path: list of Autonomous System path.

An AS path is made of AS numbers separated by white spaces. It can
contain two special tokens:

	“S”, that is expanded with the probe’s source AS number;

	“IX”, that represents an Internet Exchange Point peering network for
those IXPs which don’t announce their peering prefixes via BGP.

The “IX” token is meagniful only if the ip_cache.use_ixps_info
global configuration parameter is True.

It builds the path of ASs traversed by the traceroute.
Match when the AS path or a contiguous part of it is one of
the expected ones.

Examples:

as_path: 64496 64497

as_path:
- 64496 64497
- 64498 64499 64500

as_path:
- S 64496 64497

as_path:
- S IX 64500

Criterion: upstream_as

Verify the traceroute destination upstream’s AS number.

Available for:

	traceroute

Configuration fields:

	upstream_as: list of Autonomous System numbers.

It builds the path of ASs traversed by the traceroute.
Match when the penultimate AS in the path is one of the expected ones.

Examples:

upstream_as:
- 64496

upstream_as:
- 64496
- 64497

SSL criteria

Criterion: cert_fp

Verify SSL certificates’ fingerprints.

Available for:

	sslcert

Configuration fields:

	cert_fp: list of certificates’ SHA256 fingerprints or SHA256
fingerprints of the chain.

A fingerprint must be in the format 12:34:AB:CD:EF:... 32 blocks of 2
characters hex values separated by colon (”:”).

The cert_fp parameter can contain stand-alone fingerprints or bundle of
fingerprints in the format “fingerprint1,fingerprint2,fingerprintN”.

A result matches if any of its certificates’ fingerprint is in the list
of stand-alone expected fingerprints or if the full chain fingerprints is
in the list of bundle fingerprints.

Examples:

expected_results:
 MatchLeafCertificate:
 cert_fp: 01:02:[...]:31:32
 MatchLeacCertificates:
 cert_fp:
 - 01:02:[...]:31:32
 - 12:34:[...]:CD:EF
 MatchLeafOrChain:
 cert_fp:
 - 01:02:[...]:31:32
 - 12:34:[...]:CD:EF,56:78:[...]:AB:CD

DNS criteria

Criterion: dns_rcode

Verify if DNS responses received by a probe have the expected rcode.

Available for:

	dns

Configuration fields:

	dns_rcode: list of expected DNS rcodes (“NOERROR”, “FORMERR”, “SERVFAIL”,
“NXDOMAIN”, “NOTIMP”, “REFUSED”, “YXDOMAIN”, “YXRRSET”, “NXRRSET”,
“NOTAUTH”, “NOTZONE”, “BADVERS”).

Match when all the responses received by a probe have one of the expected
rcodes listed in dns_rcode.

Example:

expected_results:
 DNS_NoError_or_NXDomain:
 dns_rcode:
 - "NOERROR"
 - "NXDOMAIN"

Criterion: dns_flags

Verify if DNS responses received by a probe have the expected
headers flags on.

Available for:

	dns

Configuration fields:

	dns_flags: list of expected DNS flag (“aa”, “ad”, “cd”, “qr”, “ra”,
“rd”).

Match when all the responses received by a probe have all the expected
flags on.

Example:

expected_results:
 AA_and_AD:
 dns_flags:
 - aa
 - ad

Criterion: edns

Verify EDNS extension of DNS responses received by probes.

Available for:

	dns

Configuration fields:

	edns: boolean indicating whether EDNS support is expected or not.

	edns_size (optional): minimum expected size.

	edns_do (optional): boolean indicating the expected presence of DO flag.

	edns_nsid (optional): list of expected NSID values.

The optional parameters are taken into account only when edns is True.

If edns is True, match when all the responses contain EDNS extension,
otherwise when all the responses do not contain it.
If edns_size is given, the size reported must be >= than the expected
one.
If edns_do is given, all the responses must have (or have not) the DO
flag on.
If edns_nsid is given, all the responses must contain and EDNS NSID
option which falls within the list of values herein specified.

Examples:

edns: true

edns: true
edns_do: true

edns: true
edns_nsid:
- "ods01.l.root-servers.org"
- "kbp01.l.root-servers.org"

Criterion: dns_answers

Verify if the responses received by a probe contain the expected
records.

Available for:

	dns

Configuration fields:

	dns_answers: one or more sections where records are searched on. Must
be one of “answers”, “authorities”, “additionals”.

Each section must contain a list of records.

Match when all the responses received by a probe contain at least one
record matching the expected ones in each of the given sections.

Example:

dns_answers:
 answers:
 - <record1>
 - <record2>
 authorities:
 - <record3>
 - <record4>

DNS record

Test properties which are common to all DNS record types.

Configuration fields:

	type: record’s type. Must be one of the DNS record types implemented
and described below.

	name (optional): list of expected names.

	ttl_min (optional): minimum TTL that is expected for the record.

	ttl_max (optional): maximum TTL that is expected for the record.

	class (optional): expected class for the record.

Match when all the defined criteria are met:

	record name must be within the list of given names (name);

	record TTL must be >= ttl_min and <= ttl_max;

	record class must be equal to class.

On the basis of record’s type, further parameters may be needed.

Example:

dns_answers:
 answers:
 - type: A
 name: www.ripe.net.
 address: 193.0.6.139
 - type: AAAA
 name:
 - www.ripe.net.
 - ripe.net.
 ttl_min: 604800
 address: 2001:67c:2e8:22::c100:0/64

A record

Verify if record’s type is A and if received address match the
expectations.

Configuration fields:

	address: list of IPv4 addresses (or IPv4 prefixes).

Match when record’s type is A and resolved address is one of the
given addresses (or falls within one of the given prefixes).

AAAA record

Verify if record’s type is AAAA and if received address match the
expectations.

Configuration fields:

	address: list of IPv6 addresses (or IPv6 prefixes).

Match when record’s type is AAAA and resolved address is one of the
given addresses (or falls within one of the given prefixes).

NS record

Verify if record’s type is NS and if target is one of the expected ones.

Configuration fields:

	target: list of expected targets.

Match when record’s type is NS and received target is one of those given
in target.

CNAME record

Verify if record’s type is CNAME and if target is one of the expected ones.

Configuration fields:

	target: list of expected targets.

Match when record’s type is CNAME and received target is one of those given
in target.

Action

Action performed on the basis of expected results processing for probes
which match the matching_rules rules.

Configuration fields:

	kind: type of action.

	descr (optional): brief description of the action.

	when (optional): when the action must be performed (with regards of
expected results processing output); one of “on_match”, “on_mismatch”,
“always”. Default: “on_mismatch”.

When a probe matches a rule, it’s expected results are processed; on the
basis of the output, actions given in the rule’s actions list are
performed.
For each expected result, if the probe’s collected result matches the
expectation actions whose when = “on_match” or “always” are performed.
If the collected result does not match the expected result, actions
whose when = “on_mismatch” or “always” are performed.

Action log

Log the match/mismatch along with the collected result.

No parameters required.

Action email

Send an email with the expected result processing output.

Configuration fields:

	from_addr (optional): email address used in the From field.

	to_addr (optional): email address used in the To field.

	subject (optional): subject of the email message.

	smtp_host (optional): SMTP server’s host.

	smtp_port (optional): SMTP server’s port.

	use_ssl (optional): boolean indicating whether the connection
toward SMTP server must use encryption.

	username (optional): username for SMTP authentication.

	password (optional): password for SMTP authentication.

	timeout (optional): timeout, in seconds.

Parameters which are not given are read from the global configuration
file default_smtp section.

Action run

Run an external program.

Configuration fields:

	path: path of the program to run.

	env_prefix (optional): prefix used to build environment variables.

	args (optional): list of arguments which have to be passed to the
program. If the argument starts with “$” it is replaced with the
value of the variable with the same name.

If env_prefix is not given, it’s value is taken from the global
configuration file misc.env_prefix parameter.

Variables are:

	ResultMatches: True, False or None

	MsmID: measurement’s ID

	MsmType: measurement’s type (ping, traceroute, sslcert, dns)

	MsmAF: measurement’s address family (4, 6)

	MsmStatus: measurement’s status (Running, Stopped)
[https://atlas.ripe.net/docs/rest/]

	MsmStatusID: measurement’s status ID
[https://atlas.ripe.net/docs/rest/]

	Stream: True or False

	ProbeID: probe’s ID

	ProbeCC: probe’s ISO Country Code

	ProbeASNv4: probe’s ASN (IPv4)

	ProbeASNv6: probe’s ASN (IPv6)

	ProbeASN: probe’s ASN related to measurement’s address family

	ResultCreated: timestamp of result’s creation date/time

Example:

actions:
 RunMyProgram:
 kind: run
 path: /path/to/my-program
 args:
 - command
 - -o
 - --msm
 - $MsmID
 - --probe
 - $ProbeID

Action syslog

Log the match/mismatch along with the collected result using syslog.

Configuration fields:

	socket (optional): where the syslog message has to be logged. One of
“file”, “udp”, “tcp”.

	host (optional): meaningful only when socket is “udp” or “tcp”. Host
where send the syslog message to.

	port (optional): meaningful only when socket is “udp” or “tcp”.
UDP/TCP port where send the syslog message to.

	file (optional): meaningful only when socket is “file”. File where the
syslog message has to be written to.

	facility (optional): syslog facility that must be used to log the
message.

	priority (optional): syslog priority that must be used to log the
message.

Parameters which are not given are read from the global configuration
file default_syslog section.

Action label

Add or remove custom labels to/from probes.

Configuration fields:

	op: operation; one of “add” or “del”.

	label_name: label to be added/removed.

	scope (optional): scope of the label; one of “result” or “probe”.
Default: “result”.

Labels can be added to probes and subsequently used to match those probes
in other rules (internal_labels criterion).

If scope is “result”, the operation is significative only within the
current result processing (that is, within the current matching_rules
processing for the current result). Labels added to probe are
removed when the current result processing is completed.

If scope is “probe”, the operation is persistent across results processing.

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 next |

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

How to contribute

Here a brief guide to contributing to this tool:

	fork it on GitHub and create your own repository;

	install it using the “editable” installation or clone it locally on your machine (virtualenv [https://virtualenv.pypa.io/en/latest/installation.html] usage is strongly suggested);

$ # pip "editable" installation
$ pip install -e git+https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git#egg=ripe-atlas-monitor

$ # manual cloning from GitHub (you have to care about dependencies)
$ git clone https://github.com/YOUR_USERNAME/ripe-atlas-monitor.git
$ export PYTHONPATH="/path/to/your/ripe-atlas-monitor"

	run the tests in order to be sure that everything is fine;

$ nosetests -vs

	finally, start making your changes and, possibly, add test units and docs to make the merging process easier.

Once you have done, please run tests again:

$ tox

If everything is fine, push to your fork and create a pull request [https://help.github.com/articles/using-pull-requests/].

Code

Adding a new check

	ParsedResults.py: a new property must be handled by a ParsedResult class in order to parse and prepare the new
result to be checked.
Create a new class (if needed) and add a new property (PROPERTIES and @property).
The prepare() method must call self.set_attr_to_cache() to store the parsed values;
the @property must read the value using self.get_attr_from_cache() and return it.
More info on the ParsedResult class docstring.

	ExpResCriteriaXXX.py: an ExpResCriterion-derived class must implement the __init__() method to
read the expected result attributes from the monitor’s configuration and validate them.
The prepare() method must parse the result received from probes and store its value in a local attribute
(something like self.response_xxx); the result_matches() method must compare the parsed result
received from the probe with the expected result.
The new class must be added to the appropriate list in ExpResCriteria.py.
More info on the ExpResCriterion class docstring (ExpResCriteriaBase.py). See also ExpResCriterion-derived classes docstring.

	tests/monitor_cfg_test.py:
	Add the new criterion to self.criteria in TestMonitorCfg.setUp()
(at least the CRITERION_NAME with a correct value).

	Add a call to self.add_criterion("<criterion_name>") to the test_expres_XXX() methods, where XXX is
the measurements’ type this expected result applies to.

	Add some tests for the new expected result configuration syntax.

	tests/doc_test.py: if the new expected result contains lists attributes, add the configuration field name to the
appropriate exp_list_fields variables.

	tests/results_XXX_test.py: add some tests to validate how the new criterion processes results from real measurements.

Adding a new report to the analyzer

	ParsedResults.py: a new class must be created (or a new property added to an existing ParsedResult-derived class). See the previous section.

	Analyzer.py:

	This step can be avoided if the new ParsedResult property to analyze is handled by an already existing ParsedResult class.

Create a new BaseResultsAnalyzer-derived class; its get_parsed_results() method must yield each
ParsedResult element that need to be analyzed (for example, the result itself or each DNS response
for DNS measurements’ results). The BaseResultsAnalyzer and ResultsAnalyzer_DNSBased classes
should already do most of the work. Add the new class to the Analyzer.RESULTS_ANALYZERS list.

	The BaseResultsAnalyzer.PROPERTIES_ANALYZERS_CLASSES and BaseResultsAnalyzer.PROPERTIES_ORDER lists
must contain the new property defined in the ParsedResult-derived class.

	A BasePropertyAnalyzer-derived class must be created in order to implement the aggregation mechanism and
the output formatting for the new property. More info on the BasePropertyAnalyzer and BaseResultsAnalyzer classes docstring.

	docs/COMMANDS.rst: add the new property to the list of those supported by the analyze command.

Data for unit testing

The tests/data/download_msm.py script can be used to download and store data used for tests. It downloads measurement’s metadata, results and probes’ information and stores them in a measurement_id.json file. The tests/data.py module loads the JSON files that can subsequently be used for unit testing purposes.

ExpResCriterion-derived classes docstring

These classes must use a special syntax in their docstrings which allows to automatically build documentation and config example (doc.py build_doc and build_monitor_cfg_tpl functions).

Example:

Criterion: rtt

 Test the median round trip time toward destination.

 Available for: ping, traceroute.

 `rtt`: maximum RTT (in ms).

 `rtt_tolerance` (optional): tolerance (in %) on `rtt`.

 If `rtt_tolerance` is not given, match when measured RTT is less
 than `rtt`, otherwise match when measured RTT is within `rtt`
 +/- `rtt_tolerance` %.

 Examples:

 expected_results:
 LowRTT:
 rtt: 50
 Near150:
 rtt: 150
 rtt_tolerance: 30

	The first line must include only the “Criterion: xxx” string, where xxx is the class CRITERION_NAME attribute.

Example: Criterion: rtt

	A brief description of the expected result must follow.

Example: Test the median round trip time toward destination.

	The list of measurements’ types for which this expected result can be used must follow, in the format Available for: x[, y[, z]]., where values are valid measurements’ types (ping, traceroute, ...).

Example: Available for: ping, traceroute.

	A list of configuration fields must follow. Every docstring line starting with a backquote is considered to be a field name.

The format must be the following:

`field_name` ["(optional)"]: ["list"] "description..."

The “(optional)” string is used to declare this field as optional, otherwise it’s considered mandatory.

The “list” string is used to declare that this field contains a list of values.

Example: `rtt`: maximum RTT (in ms)., `rtt_tolerance` (optional): tolerance (in %) on `rtt`., `dst_ip`: list of expected IP addresses (or prefixes).

	A (long) description of how this expected result’s fields are used can follow. Here, be careful to avoid lines starting with the backquote, otherwise they will be interpreted as a field declaration.

	Finally, a line starting with the “Example” or “Examples” strings can be used to show some examples. They will be formatted using code blocks.

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	
 previous |

 	ripe-atlas-monitor 0.1.0 documentation

Changelog

0.1.10

	fix packaging issue

0.1.9

improvements

	analyze command, add the --show-all-dns-answers argument

0.1.8

improvements

	dst_responded criterion can be used for SSL measurements too (and is considered in analysis reports too)

fixes

	cosmetic

0.1.7

improvements

	analyze command:
	JSON output

	show unique probes count for DNS measurements

	new check and analysis of DNS RCODEs

fixes

	analyze command, DNS answers analysis for records with no name and no type

	bug in IP addresses cache

0.1.6

improvements

	new checks and analysis for EDNS NSID option

	DNS answers analysis

	probes filter for run and analyze commands now accepts probe IDs and country codes

0.1.5

improvements

	more options for the analyze command:
	show probes (up to 3) beside results

	destination AS and upstream AS results

	show common sequences/patterns among results

	add --probes argument to run and analyze commands to filter results

	email logging of error messages

fixes

	fix empty resultset handling in analyze cmd

0.1.4

new features

	Python 3.4 support

improvements

	-m argument for analyze command, to gather msm id and auth key from the monitor itself

	--dont-wait argument for run command

fixes

	error handling for null RTT results in analyze command

0.1.3

improvements

	better RTT results formatting in analyze command

	no stdout logging when used in daemonize mode

fixes

	error handling for IXPs networks info unavailability

0.1.2

new features

	analyze command to show elaborated results from a measurement

	bash autocomplete

fixes

	continous monitors didn’t run continously

0.1.1

improvements

	better results and actions logging

0.1.0

First release (beta)

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 Navigation

 	
 index

 	ripe-atlas-monitor 0.1.0 documentation

Index

 Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

 _static/comment-close.png

_static/up.png

_static/down-pressed.png

_static/ajax-loader.gif

_static/minus.png

_static/file.png

_static/plus.png

_static/comment-bright.png

search.html

 Navigation

 		
 index

 		ripe-atlas-monitor 0.1.0 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2016, Pier Carlo Chiodi.
 Created using Sphinx 1.3.5.

_static/comment.png

_static/down.png

_static/up-pressed.png

