

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Pyzor 0.7 documentation

Welcome to Pyzor’s documentation!

[image: Latest PyPI version]
 [https://pypi.python.org/pypi/pyzor/][image: Number of PyPI downloads]
 [https://pypi.python.org/pypi/pyzor/][image: Build status]
 [https://travis-ci.org/SpamExperts/pyzor]Contents:

	Introduction
	Contribute

	Getting the source

	Running tests

	License

	Getting Pyzor
	Installing

	Downloading

	Dependencies
	Pyzor Client

	Pyzor Server

	Usage
	Pyzor Client
	Commands

	Servers File

	Input Style

	Pyzor Server
	Daemon

	Engines

	Access File

	Accounts

	Procmail

	ReadyExec

	Configuration
	client configuration

	server configuration

	Changelog
	Pyzor 0.8.0

	Pyzor 0.7.0

	Pyzor 0.6.0

	Pyzor 0.5.0

	About
	History

	Protocol

	Reference
	pyzor.engines
	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

	pyzor.hacks
	pyzor.hacks.py26

	pyzor.account

	pyzor.client

	pyzor.config

	pyzor.digest

	pyzor.forwarder

	pyzor.message

	pyzor.server

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Introduction

Pyzor is a collaborative, networked system to detect and block spam using
digests of messages.

Using Pyzor client a short digest is generated that is likely to uniquely
identify the email message. This digest is then sent to a Pyzor server to:

	check the number of times it has been reported as spam or whitelisted as
not-spam

	report the message as spam

	whitelist the message as not-spam

Since the entire system is released under the GPL, people are free to host
their own independent servers. There is, however, a well-maintained and
actively used public server available (courtesy of
SpamExperts [http://spamexperts.com]) at:

public.pyzor.org:24441

Contribute

	Issue Tracker [http://github.com/SpamExperts/pyzor/issues]

	Source Code [http://github.com/SpamExperts/pyzor]

Getting the source

To clone the repository using git simply run:

git clone https://github.com/SpamExperts/pyzor

Please feel free to fork us [https://github.com/SpamExperts/pyzor/fork]
and submit your pull requests.

Running tests

The pyzor tests are split into unittest and functional tests.

Unitests perform checks against the current source code and not
the installed version of pyzor. To run all the unittests suite:

env PYTHONPATH=. python tests/unit/__init__.py

Functional tests perform checks against the installed version of
pyzor and not the current source code. These are more extensive
and generally take longer to run. They also might need special setup.
To run the full suite of functional tests:

env PYTHONPATH=. python tests/functional/__init__.py

There is also a helper script [https://github.com/SpamExperts/pyzor/blob/master/scripts/run_tests] available that sets-up
the testing enviroment, also taking into consideration the python
version you are currently using:

./scripts/run_tests

Note

The authentication details for the MySQL functional tests are taken from
the test.conf [https://github.com/SpamExperts/pyzor/blob/master/test.conf] file.

License

The project is licensed under the
GNU GPLv2 [http://www.gnu.org/licenses/gpl-2.0.html] license.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Getting Pyzor

Installing

The recommended and easiest way to install Pyzor is with pip:

pip install pyzor

In order to upgrade your Pyzor version run:

pip install --upgrade pyzor

Note

The latest version requires at least Python 2.6.6

The Pyzor code will also work on Python3, but requires refactoring done with
the 2to3 tool. This has been integrated in the setup, so installation in
Python3 now works seamlessly with any method described above.

You can also use Pyzor with PyPy [http://pypy.org/].

Downloading

If you don’t want to or cannot use pip to download and install Pyzor. You
can do so directly from the source:

python setup.py install

You can find the latest and older versions of Pyzor on
PyPI [https://pypi.python.org/pypi/pyzor].

Dependencies

Pyzor Client

If you plan on only using Pyzor to check message against our public server,
then there are no required dependencies.

Pyzor Server

If you want to host your own Pyzor Server then you will need an appropriate
back-end engine. Depending on what engine you want to use you will also need
to install the required python dependecies. Please see Engines
for more details.

The Pyzor also support the gevent library [http://www.gevent.org/]. If you
want to use this feature then you will need to first install it.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Usage

Contents:

	Pyzor Client
	Commands

	Servers File

	Input Style

	Pyzor Server
	Daemon

	Engines

	Access File

	Accounts

	Procmail

	ReadyExec

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Usage

Pyzor Client

The Pyzor Client is a Python script deployed with the package. It provides a
command line interface to the Pyzor Client API:

pyzor [options] command

You can also use the Python API directly to integrate Pyzor in your solution.
For more information see pyzor.client.

Commands

Check

Checks the message read from stdin and prints the number of times it has been
reported and the number of time it has been whitelisted. If multiple servers
are listed in the configuration file each server is checked:

$ pyzor check < spam.eml
public.pyzor.org:24441 (200, 'OK') 134504 4681

The exit code will be:

	1 if the report count is 0 or the whitelist count is > 0

	0 if the report count is > 0 and the whitelist count is 0

Note that you can configure this behaviour by changing the report/whitelist
thresholds from the configuration file or the command-line options.
See client configuration.

Info

Prints detailed information about the message. The exit code will always be
zero (0) if all servers returned (200, ‘OK’):

$ pyzor info < spam.eml
public.pyzor.org:24441 (200, 'OK')
 Count: 134538
 Entered: Sat Jan 4 10:01:34 2014
 Updated: Mon Mar 17 12:52:04 2014
 WL-Count: 4681
 WL-Entered: Mon Jan 6 14:32:01 2014
 WL-Updated: Fri Mar 14 16:11:02 2014

Report

Reports to the server a digest of each message as spam. Writes to standard
output a tuple of (error-code, message) from the server. If multiple servers
are listed in the configuration file the message is reported to each one:

$ pyzor report < spam.eml
public.pyzor.org:24441 (200, 'OK')

Whitelist

Reports to the server a digest of each message as not-spam. Writes to standard
output a tuple of (error-code, message) from the server. If multiple servers
are listed in the configuration file the message is reported to each one:

$ pyzor whitelist < spam.eml
public.pyzor.org:24441 (200, 'OK')

Note

This command is not available by default for the anonymous user.

Ping

Merely requests a response from the servers:

$ pyzor ping
public.pyzor.org:24441 (200, 'OK')

Pong

Can be used to test pyzor, this will always return a large number of reports
and 0 whitelist, regardless of the message:

$ pyzor pong < ham.eml
public.pyzor.org:24441 (200, 'OK') 9223372036854775807 0

Predigest

Prints the message after the predigest phase of the pyzor algorithm.

Digest

Prints the message digest, that will be sent to the server.

Genkey

Based upon a secret passphrase gathered from the user and randomly gathered
salt, prints to standard output a tuple of “salt,key”. Used to put account
information into the accounts file.

Servers File

This file contains a list of servers that will be contacted by the Pyzor
client for every operation. If no servers are specified it defaults to the
public server:

public.pyzor.org:24441

The servers can also be specified as IP addresses, but they must always be
followed by the port number.

For example having this in ~/.pyzor/servers:

This is comment
public.pyzor.org:24441
127.0.0.1:24441

Will configure the client to check both the public server and a local one:

$ pyzor ping
public.pyzor.org:24441 (200, 'OK')
127.0.0.1:24441 (200, 'OK')

Input Style

Pyzor accepts messages in various forms. This can be controlled with the
style configuration or command line option. Currently support are:

	msg - individual RFC5321 message

	mbox - mbox file of messages

	digests - Pyzor digests, one per line

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Usage

Pyzor Server

The Pyzor Server will listen on the specified address and any serve request
from Pyzor Clients.

Daemon

Starting

The Pyzor Server can be started as a daemon by using the --detach option.
This will:

	daemonize the script and detach from tty

	create a pid file

	redirect any output to the specified file

Example:

$ pyzord --detach /dev/null --homedir=/home/user/.pyzor/

Stopping

To safely stop the Pyzor Server you can use the TERM signal to trigger
a safe shutdown:

$ kill -TERM `cat /home/user/.pyzor/pyzord.pid`

Reloading

The reload signal will tell the Pyzor Server to reopen and read the access and
passwd files. This is useful when adding new accounts or changing the
permissions for an existing account. This is done by sending the USR1
signal to the process:

$ kill -USR1 `cat /home/user/.pyzor/pyzord.pid`

Engines

The Pyzor Server supports a number of back-end database engines to store the
message digests.

Gdbm

This is the default engine, and the easiest to use and configure. But this it
is also highly inefficient and not recommended for servers that see a large
number of requests.

To use the the gdbm engine simply add to the config file
~/.pyzor/config:

[server]
Engine = gdbm
DigestDB = pyzord.db

The database file will be created if it didn’t previously exists, and will be
located as usual in the specified Pyzor homedir.

For more information about GDBM see http://www.gnu.org.ua/software/gdbm/.

MySQL

This will require the MySQL-python [https://pypi.python.org/pypi/MySQL-python] library.

Note

MySQL-python does not currently support Python 3

To configure the MySQL engine you will need to:

	Create a MySQL database (for e.g. pyzor)

	Create a MySQL table with the following schema:

CREATE TABLE `digests` (
 `digest` char(40) default NULL,
 `r_count` int(11) default NULL,
 `wl_count` int(11) default NULL,
 `r_entered` datetime default NULL,
 `wl_entered` datetime default NULL,
 `r_updated` datetime default NULL,
 `wl_updated` datetime default NULL,
 PRIMARY KEY (`digest`)
)

	Create a MySQL user

	Grant ALL PRIVILEGES to that user on the newly created table

To use the MySQL engine add to the configuration file:

[server]
Engine = mysql
DigestDB = localhost,user,password,pyzor,digests

Redis

This will require the redis [https://pypi.python.org/pypi/redis] library.

To use the redis engine simply add to the configuration file:

[server]
Engine = redis
DigestDB = localhost,6379,,0

Or if a password is required:

[server]
Engine = redis
DigestDB = localhost,6379,password,0

In the example above the redis database used is 0.

Migrating

If you want to migrate your database from one engine to another there is an
utility script installed with pyzor designed to do this. Note that the
arguments are the equivalent of the Engine and DigestDB options. Some
usage examples:

	Moving a database from gdbm to redis:

pyzor-migrate --se gdbm --sd testdata/backup.db --de redis --dd localhost,6379,,0

	Moving a database from redis to MySQL:

pyzor-migrate --se redis --sd localhost,6379,,0 --de mysql --dd localhost,root,,pyzor,public

Access File

This file can be used to restrict or grant access to various server-side
operations to accounts. For more information on setting up accounts see
accounts.

The format is very similar to the popular tcp_wrappers hosts.{allow,deny}:

privilege ... : username ... : allow|deny

	privilege:	a list of whitespace-separated commands The keyword all can
be used to to refer to all commands.

	username:	a list of whitespace-separated usernames. The keyword all
can be used to refer to all users. The anonymous user is
refereed to as anonymous.

	allow|deny:	whether or not the specified user(s) can perform the specified
privilege(s) on the line.

The file is processed from top to bottom, with the first match for
user/privilege being the value taken. Every file has the following implicit
final rule:

all : all : deny

If this file is non-existant, the following default is used:

check report ping pong info : anonymous : allow

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Usage

Accounts

Pyzor Accounts can be used to grant or restrict access to the Pyzor Server, by
ensuring the client are authenticated.

To get an account on a server requires coordination between the client user
and server admin. Use the following steps:

	User and admin should agree on a username for the user. Allowed characters
for a username are alpha-numerics, the underscore, and dashes.
The normative regular expression it must match is ^[-\.\w]+$. Let us
assume they have agreed on bob.

	User generates a key with pyzor genkey. Let us say that it generates
the salt,key of:

227bfb58efaba7c582d9dcb66ab2063d38df2923,8da9f54058c34e383e997f45d6eb74837139f83b

	Assuming the server is at 127.0.0.1:9999, the user puts the following
entry into ~/.pyzor/accounts:

127.0.0.1 : 9999 : bob : 227bfb58efaba7c582d9dcb66ab2063d38df2923,8da9f54058c34e383e997f45d6eb74837139f83b

This tells the Pyzor Client to use the bob account for server
127.0.0.1:9999. It will still use the anonymous user for all other
servers.

	The user then sends the key (the part to the right-hand side of the comma)
to the admin.

	The admin adds the key to their ~/.pyzor/pyzord.passwd:

bob : 8da9f54058c34e383e997f45d6eb74837139f83b

	Assuming the admin wants to give the privilege of whitelisting (in addition
to the normal permissions), the admin then adds the appropriate permissions
to ~/.pyzor/pyzord.access:

check report ping pong info whitelist : bob : allow

For more information see Access File.

	To reload the account and access information send the USR1 signal to
the daemon.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Usage

Procmail

To use Pyzor in a procmail system, consider using the following simple recipe:

 :0 Wc
| pyzor check :0 a
pyzor-caught

If you prefer, you can merely add a header to message marked with Pyzor,
instead of immediately filtering them into a separate folder:

 :0 Wc
| pyzor check :0 Waf
| formail -A 'X-Pyzor: spam'

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Usage

ReadyExec

ReadyExec [http://readyexec.sourceforge.net/] is a system to eliminate the
high startup-cost of executing scripts repeatedly. If you execute Pyzor a lot,
you might be interested in installing ReadyExec and using it with Pyzor.

To use Pyzor with ReadyExec, the readyexecd.py server needs to be started as:

readyexecd.py socket_file pyzor.client.run

socket_file can be any (non-existing) filename you wish ReadyExec to use,
such as /tmp/pyzor:

readyexecd.py /tmp/pyzor pyzor.client.run

Individual clients are then executed as:

readyexec socket_file options command cmd_options

For example:

readyexec /tmp/pyzor check
readyexec /tmp/pyzor report
readyexec /tmp/pyzor whitelist --style=mbox
readyexec /tmp/pyzor -d ping

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Configuration

The format of this file is INI-style (name=value, divided into [sections]).
Names are case insensitive. All values which are filenames can have shell-style
tildes (~) in them. All values which are relative filenames are interpreted to
be relative to the Pyzor homedir. All of these options can be overridden by
command-line arguments.

It is recommended to use the provided sample configuration [https://github.com/SpamExperts/pyzor/blob/master/config/config.sample]. Simply copy it in
pyzor’s homedir, remove the .sample from the name and alter any
configurations you prefer.

client configuration

	ServersFile

	Must contain a newline-separated list of server addresses to
report/whitelist/check with. All of these server will be contacted for
every operation. See Servers File.

	AccountsFile

	File containing information about accounts on servers. See Accounts.

	LogFile

	If this is empty then logging is done to stdout.

	Timeout

	This options specifies the number of seconds that the pyzor client should
wait for a response from the server before timing out.

	Style

	Specify the message input style. See Input Style.

	ReportThreshold

	If the number of reports exceeds this threshold then the exit code of the
pyzor client is 0.

	WhitelistThreshold

	If the number of whitelists exceed this threshold then exit code of the
pyzor client is 1.

server configuration

	Port

	Port to listen on.

	ListenAddress

	Address to listen on.

	LogFile

	File to contain server logs.

	UsageLogFile

	File to contain server usage logs (information about each request).

	PidFile

	This file contain the pid of the pyzord daemon when used with the
–detach option.

	PasswdFile

	File containing a list of user account information. See Accounts.

	AccessFile

	File containing information about user privileges. See
Access File.

	Gevent

	If set to true uses the gevent library.

	Engine

	Then engine type to be used for storage. See Engines.

	DigestDB

	The database connection information. Format varies depending on the engine
used. See Engines.

	CleanupAge

	The maximum age of a record before it gets removed (in seconds). To
disable this set to 0.

	Threads

	If set to true, the pyzor server will use multi-threading to serve
requests.

	MaxThreads

	The maximum number of concurrent threads (0 means unlimited).

	DBConnections

	The number of database connections kept opened by the server (0 means a
new one for each request).

Note

DBConnections only applies to the MySQL engine.

	Processes

	If set to true, the pyzor server will use multi-processing to serve
requests.

	MaxProcesses

	The maximum number of concurrent processes (cannot be unlimited).

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Changelog

Pyzor 0.8.0

Bug fixes:

	Fix unicode decoding issues. (#1 [https://github.com/SpamExperts/pyzor/issues/1])

New features:

	A new option for the pyzor server to set-up digest forwarding.

	A new script pyzor-migrate is now available. The script allows
migrating your digest database from one engine to another.
(#2 [https://github.com/SpamExperts/pyzor/issues/2])

Perfomance enhancements:

	Use multiple threads when connecting to multiple servers in the pyzor
client script. (#5 [https://github.com/SpamExperts/pyzor/issues/5])

	A new BatchClient is available in pyzor client API. The client
now send reports in batches to the pyzor server.
(#13 [https://github.com/SpamExperts/pyzor/issues/13])

Others:

	Small adjustments to the pyzor scripts to add Windows compatibility.

	Automatically build documentation.

	Continuous integration on Travis-CI [https://travis-ci.org/SpamExperts/pyzor].

	Test coverage on coveralls [https://coveralls.io/r/SpamExperts/pyzor?branch=master].

Pyzor 0.7.0

Bug fixes:

	Fix decoding bug when messages are badly formed

	Pyzor now correctly creates the specified homedir, not the user’s one

New features:

	Logging is now disabled by default

	Automatically run 2to3 during installation (if required)

New pyzord features:

	Added ability to disable expiry

	New redis engine support has been added

	New option to enable gevent

	Added the ability to reload accounts and access files using USR1 signal

	Added the ability to safely stop the daemon with TERM signal

	Split the usage-log and normal log in two separate files

	Pyzord daemon can now daemonize and detach itself

Pyzor 0.6.0

	pyzor and pyzord will now work with Python3.3 (if
the the 2to3-3.3 is previously ran)

	pyzord and pyzor now supports IPv6

	Improved handling of multi-threading (signals where
again removed) for the mysql engine

	Introduced multi-processing capabilities

	Improved HTML parsing

	Introduced self document sample configurations

	Introduced ability to set custom report/whitelist thresholds
for the pyzor client

	Greatly improved tests coverage

Pyzor 0.5.0

Note that the majority of changes in this release were contributed back
from the Debian pyzor package.

	Man pages for pyzor and pyzord.

	Changing back to signals for database locking,
rather than threads. It is likely that signals
will be removed again in the future, but the
existing threading changes caused problems.

	Basic checks on the results of “discover”.

	Extended mbox support throughout the library.

	Better handling on unknown encodings.

	Added a –log option to log to a file.

	Better handling of command-line options.

	Improved error handling.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

About

History

Pyzor initially started out to be merely a Python implementation of Razor, but
due to the protocol and the fact that Razor’s server is not Open Source or
software libre, Frank Tobin decided to implement Pyzor with a new protocol and
release the entire system as Open Source and software libre.

Protocol

The central premise of Pyzor is that it converts an email message to a short
digest that uniquely identifies the message. Simply hashing the entire message
is an ineffective method of generating a digest, because message headers will
differ when the content does not, and because spammers will often try to make
a message unique by injecting random/unrelated text into their messages.

To generate a digest, the 2.0 version of the Pyzor protocol:

	Discards all message headers.

	If the message is greater than 4 lines in length:

	Discards the first 20% of the message.

	Uses the next 3 lines.

	Discards the next 40% of the message.

	Uses the next 3 lines.

	Discards the remainder of the message.

	Removes any ‘words’ (sequences of characters separated by whitespace) that are 10 or more characters long.

	Removes anything that looks like an email address (X@Y).

	Removes anything that looks like a URL.

	Removes anything that looks like HTML tags.

	Removes any whitespace.

	Discards any lines that are fewer than 8 characters in length.

This is intended as an easy-to-understand explanation, rather than a technical one.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

Reference

	pyzor.engines
	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

	pyzor.hacks
	pyzor.hacks.py26

	pyzor.account

	pyzor.client

	pyzor.config

	pyzor.digest

	pyzor.forwarder

	pyzor.message

	pyzor.server

Networked spam-signature detection.

	
exception pyzor.AuthorizationError

	Bases: pyzor.CommError

The signature was valid, but the user is not permitted to do the
requested action.

	
exception pyzor.CommError

	Bases: exceptions.Exception

Something in general went wrong with the transaction.

	
exception pyzor.IncompleteMessageError

	Bases: pyzor.ProtocolError

A complete requested was not received.

	
exception pyzor.ProtocolError

	Bases: pyzor.CommError

Something is wrong with talking the protocol.

	
exception pyzor.SignatureError

	Bases: pyzor.CommError

Unknown user, signature on msg invalid, or not within allowed time
range.

	
exception pyzor.TimeoutError

	Bases: pyzor.CommError

The connection timed out.

	
exception pyzor.UnsupportedVersionError

	Bases: pyzor.ProtocolError

Client is using an unsupported protocol version.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.engines

	pyzor.engines.common

	pyzor.engines.gdbm

	pyzor.engines.mysql

	pyzor.engines.redis

Database backends for pyzord.

The database class must expose a dictionary-like interface, allowing access
via __getitem__, __setitem__, and __delitem__. The key will be a forty
character string, and the value should be an instance of the Record class.

If the database backend cannot store the Record objects natively, then it
must transparently take care of translating to/from Record objects in
__setitem__ and __getitem__.

The database class should take care of expiring old values at the
appropriate interval.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

 	pyzor.engines

pyzor.engines.common

Common library shared by different engines.

	
class pyzor.engines.common.DBHandle

	Bases: tuple

DBHandle(single_threaded, multi_threaded, multi_processing)

	
multi_processing

	Alias for field number 2

	
multi_threaded

	Alias for field number 1

	
single_threaded

	Alias for field number 0

	
exception pyzor.engines.common.DatabaseError

	Bases: exceptions.Exception

	
class pyzor.engines.common.Record(r_count=0, wl_count=0, r_entered=None, r_updated=None, wl_entered=None, wl_updated=None)

	Bases: object

Prefix conventions used in this class:
r = report (spam)
wl = whitelist

	
r_increment()

	

	
r_update()

	

	
wl_increment()

	

	
wl_update()

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

 	pyzor.engines

pyzor.engines.gdbm

Gdbm database engine.

	
class pyzor.engines.gdbm_.GdbmDBHandle(fn, mode, max_age=None)

	Bases: object

	
absolute_source = True

	

	
apply_method(method, varargs=(), kwargs=None)

	

	
classmethod decode_record(s)

	

	
static decode_record_0(s)

	

	
classmethod decode_record_1(s)

	

	
classmethod encode_record(value)

	

	
fields = ('r_count', 'r_entered', 'r_updated', 'wl_count', 'wl_entered', 'wl_updated')

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object at 0x7f44f7ebd350>

	

	
reorganize_period = 86400

	

	
start_reorganizing()

	

	
start_syncing()

	

	
sync_period = 60

	

	
this_version = '1'

	

	
class pyzor.engines.gdbm_.ThreadedGdbmDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.gdbm_.GdbmDBHandle

Like GdbmDBHandle, but handles multi-threaded access.

	
apply_method(method, varargs=(), kwargs=None)

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

 	pyzor.engines

pyzor.engines.mysql

MySQLdb database engine.

	
class pyzor.engines.mysql.MySQLDBHandle(fn, mode, max_age=None)

	Bases: object

	
absolute_source = False

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object at 0x7f44f7ebd350>

	

	
reconnect()

	

	
reconnect_period = 60

	

	
reorganize_period = 86400

	

	
start_reorganizing()

	

	
class pyzor.engines.mysql.ProcessMySQLDBHandle(fn, mode, max_age=None)

	Bases: pyzor.engines.mysql.MySQLDBHandle

	
reconnect()

	

	
class pyzor.engines.mysql.ThreadedMySQLDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.mysql.MySQLDBHandle

	
reconnect()

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

 	pyzor.engines

pyzor.engines.redis

Redis database engine.

	
class pyzor.engines.redis_.RedisDBHandle(fn, mode, max_age=None)

	Bases: object

	
absolute_source = False

	

	
items()

	

	
iteritems()

	

	
log = <logging.Logger object at 0x7f44f7ebd350>

	

	
class pyzor.engines.redis_.ThreadedRedisDBHandle(fn, mode, max_age=None, bound=None)

	Bases: pyzor.engines.redis_.RedisDBHandle

	
pyzor.engines.redis_.decode_date(x)

	

	
pyzor.engines.redis_.encode_date(d)

	

	
pyzor.engines.redis_.safe_call(f)

	Decorator that wraps a method for handling database operations.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.hacks

	pyzor.hacks.py26

Various hack to make pyzor compatible with different Python versions.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

 	pyzor.hacks

pyzor.hacks.py26

Hacks for Python 2.6

	
pyzor.hacks.py26.hack_all(email=True, select=True)

	Apply all Python 2.6 patches.

	
pyzor.hacks.py26.hack_email()

	The python2.6 version of email.message_from_string, doesn’t work with
unicode strings. And in python3 it will only work with a decoded.

So switch to using only message_from_bytes.

	
pyzor.hacks.py26.hack_select()

	The python2.6 version of SocketServer does not handle interrupt calls
from signals. Patch the select call if necessary.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.account

A collection of utilities that facilitate working with Pyzor accounts.

Note that accounts are not necessary (on the client or server), as an
“anonymous” account always exists.

	
class pyzor.account.Account(username, salt, key)

	Bases: object

	
pyzor.account.hash_key(key, user, hash_=<built-in function openssl_sha1>)

	Returns the hash key for this username and password.

lower(H(U + ‘:’ + lower(K)))
K is key (hex string)
U is username
H is the hash function (currently SHA1)

	
pyzor.account.key_from_hexstr(s)

	

	
pyzor.account.sign_msg(hashed_key, timestamp, msg, hash_=<built-in function openssl_sha1>)

	Converts the key, timestamp (epoch seconds), and msg into a digest.

lower(H(H(M) + ‘:’ T + ‘:’ + K))
M is message
T is integer epoch timestamp
K is hashed_key
H is the hash function (currently SHA1)

	
pyzor.account.verify_signature(msg, user_key)

	Verify that the provided message is correctly signed.

The message must have “User”, “Time”, and “Sig” headers.

If the signature is valid, then the function returns normally.
If the signature is not valid, then a pyzor.SignatureError() exception
is raised.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.client

Networked spam-signature detection client.

>>> import pyzor
>>> import pyzor.client
>>> import pyzor.digest
>>> import pyzor.config

To load the accounts file:

>>> accounts = pyzor.config.load_accounts(filename)

To create a client (to then issue commands):

>>> client = pyzor.client.Client(accounts)

To create a client, using the anonymous user:

>>> client = pyzor.client.Client()

To get a digest (of an email.message.Message object, or similar):

>>> digest = pyzor.digest.get_digest(msg)

To query a server (where address is a (host, port) pair):

>>> client.ping(address)
>>> client.info(digest, address)
>>> client.report(digest, address)
>>> client.whitelist(digest, address)
>>> client.check(digest, address)

To query the default server (public.pyzor.org):

>>> client.ping()
>>> client.info(digest)
>>> client.report(digest)
>>> client.whitelist(digest)
>>> client.check(digest)

Response will contain, depending on the type of request, some
of the following keys (e.g. client.ping()[‘Code’]):

All responses will have:
- ‘Diag’ ‘OK’ or error message
- ‘Code’ ‘200’ if OK
- ‘PV’ Protocol Version
- ‘Thread’

info and check responses will also contain:
- ‘[WL-]Count’ Whitelist/Blacklist count

info responses will also have:
- ‘[WL-]Entered’ timestamp when message was first whitelisted/blacklisted
- ‘[WL-]Updated’ timestamp when message was last whitelisted/blacklisted

	
class pyzor.client.BatchClient(accounts=None, timeout=None, spec=None, batch_size=10)

	Bases: pyzor.client.Client

Like the normal Client but with support for batching reports.

	
flush()

	Deleting any saved digest reports.

	
force()

	Force send any remaining reports.

	
report(digest, address=('public.pyzor.org', 24441))

	

	
whitelist(digest, address=('public.pyzor.org', 24441))

	

	
class pyzor.client.CheckClientRunner(routine, r_count=0, wl_count=0)

	Bases: pyzor.client.ClientRunner

	
handle_response(response, message)

	

	
class pyzor.client.Client(accounts=None, timeout=None, spec=None)

	Bases: object

	
check(digest, address=('public.pyzor.org', 24441))

	

	
info(digest, address=('public.pyzor.org', 24441))

	

	
max_packet_size = 8192

	

	
ping(address=('public.pyzor.org', 24441))

	

	
pong(digest, address=('public.pyzor.org', 24441))

	

	
read_response(sock, expected_id)

	

	
report(digest, address=('public.pyzor.org', 24441))

	

	
send(msg, address=('public.pyzor.org', 24441))

	

	
timeout = 5

	

	
whitelist(digest, address=('public.pyzor.org', 24441))

	

	
class pyzor.client.ClientRunner(routine)

	Bases: object

	
handle_response(response, message)

	mesaage is a string we’ve built up so far

	
run(server, args, kwargs=None)

	

	
class pyzor.client.InfoClientRunner(routine)

	Bases: pyzor.client.ClientRunner

	
handle_response(response, message)

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.config

Functions that handle parsing pyzor configuration files.

	
pyzor.config.expand_homefiles(homefiles, category, homedir, config)

	Set the full file path for these configuration files.

	
pyzor.config.load_access_file(access_fn, accounts)

	Load the ACL from the specified file, if it exists, and return an
ACL dictionary, where each key is a username and each value is a set
of allowed permissions (if the permission is not in the set, then it
is not allowed).

‘accounts’ is a dictionary of accounts that exist on the server - only
the keys are used, which must be the usernames (these are the users
that are granted permission when the ‘all’ keyword is used, as
described below).

	Each line of the file should be in the following format:

	operation : user : allow|deny

where ‘operation’ is a space-separated list of pyzor commands or the
keyword ‘all’ (meaning all commands), ‘username’ is a space-separated
list of usernames or the keyword ‘all’ (meaning all users) - the
anonymous user is called “anonymous”, and “allow|deny” indicates whether
or not the specified user(s) may execute the specified operations.

The file is processed from top to bottom, with the final match for
user/operation being the value taken. Every file has the following
implicit final rule:

all : all : deny

	If the file does not exist, then the following default is used:

	check report ping info : anonymous : allow

	
pyzor.config.load_accounts(filepath)

	Layout of file is: host : port : username : salt,key

	
pyzor.config.load_passwd_file(passwd_fn)

	Load the accounts from the specified file.

	Each line of the file should be in the format:

	username : key

If the file does not exist, then an empty dictionary is returned;
otherwise, a dictionary of (username, key) items is returned.

	
pyzor.config.load_servers(filepath)

	Load the servers file.

	
pyzor.config.setup_logging(log_name, filepath, debug)

	Setup logging according to the specified options. Return the Logger
object.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.digest

	
class pyzor.digest.DataDigester(msg, spec=None)

	Bases: object

The major workhouse class.

	
atomic_num_lines = 4

	

	
digest

	

	
classmethod digest_payloads(msg)

	

	
email_ptrn = <_sre.SRE_Pattern object at 0x7f44f7f73350>

	

	
handle_atomic(lines)

	We digest everything.

	
handle_line(line)

	

	
handle_pieced(lines, spec)

	Digest stuff according to the spec.

	
longstr_ptrn = <_sre.SRE_Pattern object at 0x7f44fbda61f8>

	

	
min_line_length = 8

	

	
classmethod normalize(s)

	

	
static normalize_html_part(s)

	

	
classmethod should_handle_line(s)

	

	
unwanted_txt_repl = ''

	

	
url_ptrn = <_sre.SRE_Pattern object at 0x7f44f7f622a0>

	

	
value

	

	
ws_ptrn = <_sre.SRE_Pattern object at 0x7f44f7f5d6f0>

	

	
class pyzor.digest.HTMLStripper(collector)

	Bases: HTMLParser.HTMLParser

Strip all tags from the HTML.

	
handle_data(data)

	Keep track of the data.

	
class pyzor.digest.PrintingDataDigester(msg, spec=None)

	Bases: pyzor.digest.DataDigester

Extends DataDigester: prints out what we’re digesting.

	
handle_line(line)

	

	
pyzor.digest.get_digest(msg)

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.forwarder

	
class pyzor.forwarder.Forwarder(forwarding_client, remote_servers, max_queue_size=10000)

	Bases: object

Forwards digest to remote pyzor servers

	
queue_forward_request(digest, whitelist=False)

	If forwarding is enabled, insert a digest into the forwarding queue
if whitelist is True, the digest will be forwarded as whitelist request
if the queue is full, the digest is dropped

	
start_forwarding()

	start the forwarding thread

	
stop_forwarding()

	disable forwarding and tell the forwarding thread to end itself

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.message

This modules contains the various messages used in the pyzor client server
communication.

	
class pyzor.message.CheckRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'check'

	

	
class pyzor.message.ClientSideRequest

	Bases: pyzor.message.Request

	
op = None

	

	
setup()

	

	
class pyzor.message.InfoRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'info'

	

	
class pyzor.message.Message

	Bases: email.message.Message

	
ensure_complete()

	

	
init_for_sending()

	

	
setup()

	

	
class pyzor.message.PingRequest

	Bases: pyzor.message.ClientSideRequest

	
op = 'ping'

	

	
class pyzor.message.PongRequest(digest=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
op = 'pong'

	

	
class pyzor.message.ReportRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestSpecBasedRequest

	
op = 'report'

	

	
class pyzor.message.Request

	Bases: pyzor.message.ThreadedMessage

This is the class that should be used to read in Requests of any type.
Subclasses are responsible for setting ‘Op’ if they are generating a
message,

	
ensure_complete()

	

	
get_op()

	

	
class pyzor.message.Response

	Bases: pyzor.message.ThreadedMessage

	
ensure_complete()

	

	
get_code()

	

	
get_diag()

	

	
head_tuple()

	

	
is_ok()

	

	
ok_code = 200

	

	
class pyzor.message.SimpleDigestBasedRequest(digest=None)

	Bases: pyzor.message.ClientSideRequest

	
add_digest(digest)

	

	
class pyzor.message.SimpleDigestSpecBasedRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestBasedRequest

	
class pyzor.message.ThreadId

	Bases: int

	
error_value = 0

	

	
full_range = (0, 65536)

	

	
classmethod generate()

	

	
in_ok_range()

	

	
ok_range = (1024, 65536)

	

	
class pyzor.message.ThreadedMessage

	Bases: pyzor.message.Message

	
ensure_complete()

	

	
get_protocol_version()

	

	
get_thread()

	

	
init_for_sending()

	

	
set_thread(i)

	

	
class pyzor.message.WhitelistRequest(digest=None, spec=None)

	Bases: pyzor.message.SimpleDigestSpecBasedRequest

	
op = 'whitelist'

	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Pyzor 0.7 documentation

 	Reference

pyzor.server

Networked spam-signature detection server.

The server receives the request in the form of a RFC5321 message, and
responds with another RFC5321 message. Neither of these messages has a
body - all of the data is encapsulated in the headers.

The response headers will always include a “Code” header, which is a
HTTP-style response code, and a “Diag” header, which is a human-readable
message explaining the response code (typically this will be “OK”).

Both the request and response headers always include a “PV” header, which
indicates the protocol version that is being used (in a major.minor format).
Both the requestion and response headers also always include a “Thread”,
which uniquely identifies the request (this is a requirement of using UDP).
Responses to requests may arrive in any order, but the “Thread” header of
a response will always match the “Thread” header of the appropriate request.

Authenticated requests must also have “User”, “Time” (timestamp), and “Sig”
(signature) headers.

	
class pyzor.server.BoundedThreadingServer(address, database, passwd_fn, access_fn, max_threads, forwarding_server=None)

	Bases: pyzor.server.ThreadingServer

Same as ThreadingServer but this also accepts a limited number of
concurrent threads.

	
process_request(request, client_address)

	

	
process_request_thread(request, client_address)

	

	
class pyzor.server.ProcessServer(address, database, passwd_fn, access_fn, max_children=40, forwarding_server=None)

	Bases: SocketServer.ForkingMixIn, pyzor.server.Server

A multi-processing version of the pyzord server. Each connection is
served in a new process. This may not be suitable for all database types.

	
class pyzor.server.RequestHandler(*args, **kwargs)

	Bases: SocketServer.DatagramRequestHandler

Handle a single pyzord request.

	
dispatches = {'info': <function handle_info at 0x7f44f7af1410>, 'whitelist': <function handle_whitelist at 0x7f44f7af1398>, 'ping': None, 'report': <function handle_report at 0x7f44f7af1320>, 'pong': <function handle_pong at 0x7f44f7af1230>, 'check': <function handle_check at 0x7f44f7af12a8>}

	

	
handle()

	Handle a pyzord operation, cleanly handling any errors.

	
handle_check(digest, record)

	Handle the ‘check’ command.

This command returns the spam/ham counts for the specified digest.

	
handle_error(code, message)

	Create an appropriate response for an error.

	
handle_info(digest, record)

	Handle the ‘info’ command.

This command returns diagnostic data about a digest (timestamps for
when the digest was first/last seen as spam/ham, and spam/ham
counts).

	
handle_pong(digest, _)

	Handle the ‘pong’ command.

This command returns maxint for report counts and 0 whitelist.

	
handle_report(digest, record)

	Handle the ‘report’ command.

This command increases the spam count for the specified digest.

	
handle_whitelist(digest, record)

	Handle the ‘whitelist’ command.

This command increases the ham count for the specified digest.

	
class pyzor.server.Server(address, database, passwd_fn, access_fn, forwarder=None)

	Bases: SocketServer.UDPServer

The pyzord server. Handles incoming UDP connections in a single
thread and single process.

	
load_config()

	Reads the configuration files and loads the accounts and ACLs.

	
max_packet_size = 8192

	

	
reload_handler(*args, **kwargs)

	Handler for the SIGUSR1 signal. This should be used to reload
the configuration files.

	
shutdown_handler(*args, **kwargs)

	Handler for the SIGTERM signal. This should be used to kill the
daemon and ensure proper clean-up.

	
time_diff_allowance = 180

	

	
class pyzor.server.ThreadingServer(address, database, passwd_fn, access_fn, forwarder=None)

	Bases: SocketServer.ThreadingMixIn, pyzor.server.Server

A threaded version of the pyzord server. Each connection is served
in a new thread. This may not be suitable for all database types.

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pyzor 0.7 documentation

 Python Module Index

 p

 			

 		
 p	

 	[image: -]
 	
 pyzor	

 	
 	
 pyzor.account	

 	
 	
 pyzor.client	

 	
 	
 pyzor.config	

 	
 	
 pyzor.digest	

 	
 	
 pyzor.engines	

 	
 	
 pyzor.engines.common	

 	
 	
 pyzor.engines.gdbm_	

 	
 	
 pyzor.engines.mysql	

 	
 	
 pyzor.engines.redis_	

 	
 	
 pyzor.forwarder	

 	
 	
 pyzor.hacks	

 	
 	
 pyzor.hacks.py26	

 	
 	
 pyzor.message	

 	
 	
 pyzor.server	

 Created using Sphinx 1.2.2.

 Navigation

 	
 index

 	
 modules |

 	Pyzor 0.7 documentation

Index

 A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | I
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | V
 | W

A

 	

 	absolute_source (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	(pyzor.engines.redis_.RedisDBHandle attribute)

 	Account (class in pyzor.account)

 	add_digest() (pyzor.message.SimpleDigestBasedRequest method)

 	

 	apply_method() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.gdbm_.ThreadedGdbmDBHandle method)

 	atomic_num_lines (pyzor.digest.DataDigester attribute)

 	AuthorizationError

B

 	

 	BatchClient (class in pyzor.client)

 	

 	BoundedThreadingServer (class in pyzor.server)

C

 	

 	check() (pyzor.client.Client method)

 	CheckClientRunner (class in pyzor.client)

 	CheckRequest (class in pyzor.message)

 	Client (class in pyzor.client)

 	

 	ClientRunner (class in pyzor.client)

 	ClientSideRequest (class in pyzor.message)

 	CommError

D

 	

 	DatabaseError

 	DataDigester (class in pyzor.digest)

 	DBHandle (class in pyzor.engines.common)

 	decode_date() (in module pyzor.engines.redis_)

 	decode_record() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	

 	decode_record_0() (pyzor.engines.gdbm_.GdbmDBHandle static method)

 	decode_record_1() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	digest (pyzor.digest.DataDigester attribute)

 	digest_payloads() (pyzor.digest.DataDigester class method)

 	dispatches (pyzor.server.RequestHandler attribute)

E

 	

 	email_ptrn (pyzor.digest.DataDigester attribute)

 	encode_date() (in module pyzor.engines.redis_)

 	encode_record() (pyzor.engines.gdbm_.GdbmDBHandle class method)

 	

 	ensure_complete() (pyzor.message.Message method)

 	

 	(pyzor.message.Request method)

 	(pyzor.message.Response method)

 	(pyzor.message.ThreadedMessage method)

 	error_value (pyzor.message.ThreadId attribute)

 	expand_homefiles() (in module pyzor.config)

F

 	

 	fields (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	flush() (pyzor.client.BatchClient method)

 	force() (pyzor.client.BatchClient method)

 	

 	Forwarder (class in pyzor.forwarder)

 	full_range (pyzor.message.ThreadId attribute)

G

 	

 	GdbmDBHandle (class in pyzor.engines.gdbm_)

 	generate() (pyzor.message.ThreadId class method)

 	get_code() (pyzor.message.Response method)

 	get_diag() (pyzor.message.Response method)

 	

 	get_digest() (in module pyzor.digest)

 	get_op() (pyzor.message.Request method)

 	get_protocol_version() (pyzor.message.ThreadedMessage method)

 	get_thread() (pyzor.message.ThreadedMessage method)

H

 	

 	hack_all() (in module pyzor.hacks.py26)

 	hack_email() (in module pyzor.hacks.py26)

 	hack_select() (in module pyzor.hacks.py26)

 	handle() (pyzor.server.RequestHandler method)

 	handle_atomic() (pyzor.digest.DataDigester method)

 	handle_check() (pyzor.server.RequestHandler method)

 	handle_data() (pyzor.digest.HTMLStripper method)

 	handle_error() (pyzor.server.RequestHandler method)

 	handle_info() (pyzor.server.RequestHandler method)

 	

 	handle_line() (pyzor.digest.DataDigester method)

 	

 	(pyzor.digest.PrintingDataDigester method)

 	handle_pieced() (pyzor.digest.DataDigester method)

 	handle_pong() (pyzor.server.RequestHandler method)

 	handle_report() (pyzor.server.RequestHandler method)

 	handle_response() (pyzor.client.CheckClientRunner method)

 	

 	(pyzor.client.ClientRunner method)

 	(pyzor.client.InfoClientRunner method)

 	handle_whitelist() (pyzor.server.RequestHandler method)

 	hash_key() (in module pyzor.account)

 	head_tuple() (pyzor.message.Response method)

 	HTMLStripper (class in pyzor.digest)

I

 	

 	in_ok_range() (pyzor.message.ThreadId method)

 	IncompleteMessageError

 	info() (pyzor.client.Client method)

 	InfoClientRunner (class in pyzor.client)

 	InfoRequest (class in pyzor.message)

 	

 	init_for_sending() (pyzor.message.Message method)

 	

 	(pyzor.message.ThreadedMessage method)

 	is_ok() (pyzor.message.Response method)

 	items() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

 	iteritems() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	(pyzor.engines.redis_.RedisDBHandle method)

K

 	

 	key_from_hexstr() (in module pyzor.account)

L

 	

 	load_access_file() (in module pyzor.config)

 	load_accounts() (in module pyzor.config)

 	load_config() (pyzor.server.Server method)

 	load_passwd_file() (in module pyzor.config)

 	

 	load_servers() (in module pyzor.config)

 	log (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	(pyzor.engines.redis_.RedisDBHandle attribute)

 	longstr_ptrn (pyzor.digest.DataDigester attribute)

M

 	

 	max_packet_size (pyzor.client.Client attribute)

 	

 	(pyzor.server.Server attribute)

 	Message (class in pyzor.message)

 	min_line_length (pyzor.digest.DataDigester attribute)

 	

 	multi_processing (pyzor.engines.common.DBHandle attribute)

 	multi_threaded (pyzor.engines.common.DBHandle attribute)

 	MySQLDBHandle (class in pyzor.engines.mysql)

N

 	

 	normalize() (pyzor.digest.DataDigester class method)

 	

 	normalize_html_part() (pyzor.digest.DataDigester static method)

O

 	

 	ok_code (pyzor.message.Response attribute)

 	ok_range (pyzor.message.ThreadId attribute)

 	

 	op (pyzor.message.CheckRequest attribute)

 	

 	(pyzor.message.ClientSideRequest attribute)

 	(pyzor.message.InfoRequest attribute)

 	(pyzor.message.PingRequest attribute)

 	(pyzor.message.PongRequest attribute)

 	(pyzor.message.ReportRequest attribute)

 	(pyzor.message.WhitelistRequest attribute)

P

 	

 	ping() (pyzor.client.Client method)

 	PingRequest (class in pyzor.message)

 	pong() (pyzor.client.Client method)

 	PongRequest (class in pyzor.message)

 	PrintingDataDigester (class in pyzor.digest)

 	process_request() (pyzor.server.BoundedThreadingServer method)

 	process_request_thread() (pyzor.server.BoundedThreadingServer method)

 	ProcessMySQLDBHandle (class in pyzor.engines.mysql)

 	ProcessServer (class in pyzor.server)

 	ProtocolError

 	pyzor (module)

 	pyzor.account (module)

 	pyzor.client (module)

 	

 	pyzor.config (module)

 	pyzor.digest (module)

 	pyzor.engines (module)

 	pyzor.engines.common (module)

 	pyzor.engines.gdbm_ (module)

 	pyzor.engines.mysql (module)

 	pyzor.engines.redis_ (module)

 	pyzor.forwarder (module)

 	pyzor.hacks (module)

 	pyzor.hacks.py26 (module)

 	pyzor.message (module)

 	pyzor.server (module)

Q

 	

 	queue_forward_request() (pyzor.forwarder.Forwarder method)

R

 	

 	r_increment() (pyzor.engines.common.Record method)

 	r_update() (pyzor.engines.common.Record method)

 	read_response() (pyzor.client.Client method)

 	reconnect() (pyzor.engines.mysql.MySQLDBHandle method)

 	

 	(pyzor.engines.mysql.ProcessMySQLDBHandle method)

 	(pyzor.engines.mysql.ThreadedMySQLDBHandle method)

 	reconnect_period (pyzor.engines.mysql.MySQLDBHandle attribute)

 	Record (class in pyzor.engines.common)

 	RedisDBHandle (class in pyzor.engines.redis_)

 	reload_handler() (pyzor.server.Server method)

 	

 	reorganize_period (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	

 	(pyzor.engines.mysql.MySQLDBHandle attribute)

 	report() (pyzor.client.BatchClient method)

 	

 	(pyzor.client.Client method)

 	ReportRequest (class in pyzor.message)

 	Request (class in pyzor.message)

 	RequestHandler (class in pyzor.server)

 	Response (class in pyzor.message)

 	run() (pyzor.client.ClientRunner method)

S

 	

 	safe_call() (in module pyzor.engines.redis_)

 	send() (pyzor.client.Client method)

 	Server (class in pyzor.server)

 	set_thread() (pyzor.message.ThreadedMessage method)

 	setup() (pyzor.message.ClientSideRequest method)

 	

 	(pyzor.message.Message method)

 	setup_logging() (in module pyzor.config)

 	should_handle_line() (pyzor.digest.DataDigester class method)

 	shutdown_handler() (pyzor.server.Server method)

 	sign_msg() (in module pyzor.account)

 	

 	SignatureError

 	SimpleDigestBasedRequest (class in pyzor.message)

 	SimpleDigestSpecBasedRequest (class in pyzor.message)

 	single_threaded (pyzor.engines.common.DBHandle attribute)

 	start_forwarding() (pyzor.forwarder.Forwarder method)

 	start_reorganizing() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	

 	(pyzor.engines.mysql.MySQLDBHandle method)

 	start_syncing() (pyzor.engines.gdbm_.GdbmDBHandle method)

 	stop_forwarding() (pyzor.forwarder.Forwarder method)

 	sync_period (pyzor.engines.gdbm_.GdbmDBHandle attribute)

T

 	

 	this_version (pyzor.engines.gdbm_.GdbmDBHandle attribute)

 	ThreadedGdbmDBHandle (class in pyzor.engines.gdbm_)

 	ThreadedMessage (class in pyzor.message)

 	ThreadedMySQLDBHandle (class in pyzor.engines.mysql)

 	ThreadedRedisDBHandle (class in pyzor.engines.redis_)

 	

 	ThreadId (class in pyzor.message)

 	ThreadingServer (class in pyzor.server)

 	time_diff_allowance (pyzor.server.Server attribute)

 	timeout (pyzor.client.Client attribute)

 	TimeoutError

U

 	

 	UnsupportedVersionError

 	unwanted_txt_repl (pyzor.digest.DataDigester attribute)

 	

 	url_ptrn (pyzor.digest.DataDigester attribute)

V

 	

 	value (pyzor.digest.DataDigester attribute)

 	

 	verify_signature() (in module pyzor.account)

W

 	

 	whitelist() (pyzor.client.BatchClient method)

 	

 	(pyzor.client.Client method)

 	WhitelistRequest (class in pyzor.message)

 	wl_increment() (pyzor.engines.common.Record method)

 	

 	wl_update() (pyzor.engines.common.Record method)

 	ws_ptrn (pyzor.digest.DataDigester attribute)

 Created using Sphinx 1.2.2.

 _modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Pyzor 0.7 documentation »

 All modules for which code is available

		pyzor

		pyzor.account

		pyzor.client

		pyzor.config

		pyzor.digest

		pyzor.engines.common

		pyzor.engines.gdbm_

		pyzor.engines.mysql

		pyzor.engines.redis_

		pyzor.forwarder

		pyzor.hacks.py26

		pyzor.message

		pyzor.server

 Created using Sphinx 1.2.2.

_static/minus.png

_static/comment.png

search.html

 Navigation

 		
 index

 		
 modules |

 		Pyzor 0.7 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 Created using Sphinx 1.2.2.

_static/up.png

_static/plus.png

_static/comment-close.png

_static/file.png

_static/pyzor.gif

_static/comment-bright.png

_static/down.png

_static/ajax-loader.gif

_static/up-pressed.png

_static/down-pressed.png

